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Introduction

Nanotechnology is recognised as one of the most important new technologies of the 
twenty-first century. The global investment in nanotechnology from public sources 
for 2008 exceeded $7 billion. The market size for nanotechnology is expected to 
grow to over $64.2 billion by 2019 with over commercial 50,000 products contain-
ing engineered nanomaterials (ENMs).

Nanotechnology promises new materials for industrial applications by having 
new or enhanced physico-chemical properties that are different in comparison to 
their micron-sized counterparts. However, as in all industrial applications, the 
potential exposure of humans and the environment to these materials is inevitable. 
As these materials go through their life-cycle – from development, to manufacture, 
to consumer usage, to final disposal – different human groups (workers, bystanders, 
consumers), animal species (e.g. worm, fish or humans through secondary expo-
sure) and environmental compartments (air, soil, sediment, ground and surface 
water) will be exposed to them. A growing body of evidence has shown a range of 
toxic effects from ENM suggesting that even their low mass exposure will result in 
a risk to human health or the environment. Furthermore, the toxicity of ENM can be 
attributed to some of their physico-chemical properties such as surface area, charge 
or reactivity. There is thus a clear need for a better understanding of the relationship 
between ENM structure and properties and the adverse responses they evoke in liv-
ing organisms. Clearly, understanding this relationship will greatly help in design-
ing future ENM by using the ‘safe by design’ approach.

The European Union (EU) has set ambitious plans for the future of nanotech-
nology. Accordingly, the regulatory agencies are urgently seeking ways of assess-
ing the potential health risks caused by exposure to ENM. Available data are so far 
insufficient to meet this need. This is because research to determine impacts of 
ENM on diverse biological systems, although essential for assessing their hazard, 
is time-consuming and expensive, and has ethical implications when animals are 
used. In silico methods for predicting biological effects of ENM play an important, 
complementary role to that of experimental research. Due to the complexity of 
interactions of ENM with living organisms, and the increasing use of high-
throughput screening methods to generate large in  vitro datasets, statistical 
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modelling (e.g. quantitative structure-activity relationships, QSAR and machine 
learning methods (e.g. neural networks) are becoming methods of choice. They 
have been applied successfully to the development of pharmaceuticals and crop 
protection agents over the past several decades.

QSAR methods are increasingly being used by regulatory agencies for chemical 
risk assessment. They have also been applied more recently to modelling the prop-
erties of materials, including ENM. Although QSAR techniques have only started 
to be used to predict biological effects of ENM, they have shown encouraging initial 
results. However, ENMs present significantly different obstacles to modelling com-
pared to drugs and industrial chemicals, and specific models based on the structures 
and properties of ENMs are therefore needed. Issues pertinent to the development 
of computational methods for modelling ENM properties and their biological 
effects are central to this book, together with development in research that are 
required if the regulation of nanomaterials is to be assisted by computational tools 
within the next decade. Preliminary work demonstrates that these models show con-
siderable promise for modelling ENM toxic effects. They are also useful for predict-
ing toxic effects of new ENM based on their material properties and for classifying 
ENM according to common properties or common biological endpoints. Ultimately, 
the predictive power of these models will lead to considerable reduction in the use 
of animal experimentation.

In the frame of the FP7 program, the EC funded a total of six research projects 
and the COST Action TD1204 Modena, specifically devoted to various aspects of 
nanotoxicity modelling. All the projects worked in close coordination to develop 
new methodologies and tools suitable for transforming raw nanosafety data into 
new insight on the mechanisms governing nano-bio interactions. The most relevant 
outcomes of some of these modelling projects are presented either as chapters on 
modelling or as integrated case studies in the safety/hazard assessment of ENMs.

This book reflects on the co-operation between international scientists; the con-
tributors cover a truly multidisciplinary spectrum of scientific disciplines including 
material sciences, metrology, exposure sciences, mammalian toxicology and eco-
toxicology. In addition, transversal approaches entangle these disciplines providing 
the breadth and depth necessary to foster understanding the molecular rationale of 
toxicity of nanoparticles; these include computer science (databases, data mining) 
mathematics (data analysis ad modelling) and systems biology so that toxicity can 
be understood and tackled at any possible level, ranging from molecular to living 
organism.

Edinburgh, UK� Lang Tran
Madrid, Spain� Miguel A. Bañares 
Tarragona, Spain� Robert Rallo
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Chapter 1
Engineered Nanomaterials:  
Their Physicochemical Characteristics 
and How to Measure Them

Rambabu Atluri and Keld Alstrup Jensen

Abstract  Numerous types of engineered nanomaterials (ENMs) are commercially 
available and developments move towards producing more advanced nanomaterials 
with tailored properties. Such advanced nanomaterials may include chemically 
doped or modified derivatives with specific surface chemistries; also called higher 
generation or multiconstituent nanomaterials. To fully enjoy the benefits of nano-
materials, appropriate characterisation of ENMs is necessary for many aspects of 
their production, use, testing and reporting to regulatory bodies. This chapter intro-
duces both structural and textural properties of nanomaterials with a focus on dem-
onstrating the information that can be achieved by analysis of primary 
physicochemical characteristics and how such information is critical to understand 
or assess the possible toxicity of engineered nanomaterials. Many of characteriza-
tion methods are very specific to obtain particular characteristics and therefore the 
most widely used techniques are explained and demonstrated.

Keywords  Nanomaterials • Nanoparticles • Nanostructures • Physico-Chemical 
Characterization • Properties • Microscopy • Spectroscopy • Specific Surface Area • 
Functionalization

1.1  �Introduction

In today’s world, there has been a change in the comfort of human life in many ways 
ranging from smart and light-weight materials, technologically advanced buildings 
with self- or easy-to-clean coatings, small communication systems, functional 
foods, advanced medication system and light-weight and/or high-speed transport 
systems. This progress is not only linked to the development of specialty materials 

R. Atluri (*) • K.A. Jensen 
National Research Centre for the Working Environment (NRCWE),  
Lerso Parkallé 105, 2100 Copenhagen, Denmark
e-mail: rba@nrcwe.dk
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but also the methods for their characterization and analysis. Invention of new mate-
rials leads to categorize materials research into different branches such as nanosci-
ence and nanotechnology i.e. fundamental principles of molecules, structures at 
1–100 nm and their application of these structures into useful nanoscale devices and 
functional products.

Looking into the history of material development, nanomaterials as such are not 
new. They have been in use since B.C and A. D. An iconic example of it is Lycurgus 
cup, which exhibits the most remarkable characteristic of color diffraction between 
green to red under different lighting conditions [16]. This is due to the suspension 
of tiny gold (nano) particles within the glass matrix, whose diameters are compa-
rable to the wavelength of visible light. The quantity of these particles was quite low 
and even the glass makers did not know these features. If the glass manufacturers 
had known the explanations for the color changes and a way to investigate the prop-
erties, nano-products we might have reached beyond the nanotechnology stage by 
the twenty-first Century [7]. Lack of instrumentation and methods to study the inter-
nal, external and structural properties at nanoscale levels have led a little progress 
until late 1930s, where commercial electron microscopes were established. At the 
same time spectroscopic methods became available beginning with the discovery of 
X-ray diffraction by Max von Laue and his colleagues in 1912 [14], which enabled 
determination of nano- to atomic scale structures in materials. In later years devel-
opment of quantum science and computing has added speed by which material 
innovation may occur.

Today a large number of nanomaterials exist and are still developed as needs and 
ideas arise for new applications and new properties. Developments especially occur 
in the development of advanced nanomaterials with tailored properties. Such nano-
materials include nanoparticles which have been chemically doped or modified to 
have a specific tailored surface chemistry. Therefore particulate nanomaterials 
(nano-objects in ISO terminology) are grouped into mono and multi-constituent 
nanomaterials (ISO/TR 11360:2010(E)). Mono-constituent nanomaterials are also 
referred to as being first order nanomaterials whereas multiconstituent nanomateri-
als are second, third generation materials etc., which describes the presence of one 
or two to the n’th additional compounds enclosed or coating the nano-object consid-
ered the core or skeleton of the nanomaterial. Clearly this plurality of possible struc-
tural and compositional combinations can require the combination of several 
techniques to characterize a nanomaterial.

In this chapter, we will focus on demonstrating the information that can be 
achieved by analysis of primary physicochemical characteristics of nanomaterials 
and how such information can be used to identify and understand the nanostructures 
within nanomaterials. A range of methods used in the analysis of nanomaterial char-
acteristics is quite large. Many of these methods are very specific for particular 
characteristics and therefore most widely used techniques are explained. Compared 
to bulk materials, nanomaterials need one or more analysis, sometime a specific 
technique to clearly understand the properties and applications associated with it. 
Moreover, it is described how such information is key to understand or assess the 
possible toxicity of engineered nanomaterials.

R. Atluri and K.A. Jensen
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1.2  �Types of NM and Physicochemical Properties to Measure

In principle nanomaterials can be produced for all non-gaseous elements in the 
entire periodic system. Some nanomaterials are produced in very large amounts 
(e.g., carbon black, SiO2, TiO2, ZnO, Fe-oxide, carbon nanotubes, and nanoclays) 
whereas others, but still technologically important materials (e.g., Ag, Ce-oxides, 
quantum dots such as CdSe, and nanoporous materials) are produced in much 
smaller quantities. Nanomaterials, such as nano-cellulose and graphene, also have 
high industrial potential and currently have very high focus [10, 24–26, 47]. A 
recent analysis of nanomaterial producers in the world showed 22 materials pro-
duced by up to 300 manufacturers (Table 1.1; [3]). However, a world list of nano-
materials in production covers a much wider range without including considerations 
of chemical derivates achieved by e.g., surface chemical modifications and also 
considering variations in dimensions and structural variations, which is important 
for e.g., carbon nanotubes. Future Markets estimates the 2010 worldwide produc-
tion of nanomaterials was 21,713 tons, a tenfold increase from 2002 and is esti-
mated to more than double to 44,267 tons by 2016, driven by demand from 
applications in electronics, energy, medicine, chemicals, coatings and catalysts.

As for all other particulate materials, there are a number of physico-chemical 
characterization end-points define the different nanomaterials. The characteristics 
and properties to be assessed depend strongly on chemical type and chemical-
structural complexity of the nanomaterials and on the purpose. One may discrimi-
nate between the end-points required to identify the material versus the end-points 
required to characterize its dispersibility into a given matrix versus characterization 
required for chemicals registration and finally for full risk assessment [22, 49]. The 
characterization can be divided into characterization of primary physicochemical 
properties and secondary properties, which describe the state, reactivity and fate of 
the nanomaterial during and after release and/or exposure. The primary character-

Table 1.1  List of nanomaterials in production according to Future Markets (2014)

Carbon based
Metal oxides and 
Metalloid oxides Metals, Salts organics Others

Single Wall 
CNTs
Double wall 
CNTs
Multi Wall 
CNTs
Fullerenes
Graphene
Nano-carbon 
black

Silicon dioxide
Titanium dioxide
Aluminium oxide
Antimony tin oxide
Bismuth oxide
Cerium oxide
Cobalt oxide
Copper oxide
Iron oxide
Magnesium oxide
Manganese oxide
Yttrium oxide
Zinc oxide
Zirconium oxide

Gold
Nickel
Silver
Palladium
Quantum 
dots

Dendimers
Nano-cellulose
Organic dyes
Organic 
pigments
Polymers

Nanoclays
Tungsten carbide
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ization end-points including average size/size-distribution including agglomeration/
aggregation state, shape/morphology, surface area and porosity, atomic structure, 
chemical composition, surface chemistry and a long list of available analytical tech-
niques were listed as candidates to enable such data. We refer to the chapters by 
Zuin et  al. [49] and Jensen et  al. [22] and additional references [1, 2] for more 
detailed information on these end-points and characterization techniques.

1.3  �Physicochemical Characterization to Identify 
Nanomaterials

1.3.1  �Chemical and Structural Properties

The chemical composition and structure of nanomaterials, similar to regular mate-
rials, is the key to identify and group the nanomaterial into its material class. A 
combination of chemical and structural information is particularly important if 
different generations of nanomaterials should be identified as proposed in Atluri 
and Jensen [5].

1.3.1.1  �Composition

The chemical composition is the key to classifying various nanomaterials. Groups 
could be ceramic, metallic, semi-metallic/semi-conducting, polymers, carbon-
based, and organic/inorganic as proposed in ISO/TR 11360 (2010), but more 
detailed classification is most likely needed for both material and regulatory pur-
poses and already proposed for carbon allotropes (e.g., [18]) and in more detailed as 
exemplified for fullerenes [12].

The chemical composition of a nanomaterial refers to entities of which the mate-
rial is composed. The function of nanomaterials is influenced by the chemical com-
position and hence different physical, chemical, mechanical and biological 
properties. The observed toxicity of nanomaterials often linked to their composition 
in the form of coating, and impurities. For example, it has been shown that CNTs 
show considerable toxicity especially because of catalyst metal contaminants such 
as the metal oxides, introduced during production and purification process. The 
toxicity of CNTs is due to the release of metal contaminants and their ability to 
cross the cell membrane [35]. Others demonstrated that CNTs containing different 
surface charge and modification, size, and length, could influence the potential 
toxicity. Especially the presence of individual separated stiff fibrils or fibers are 
considered one of the key characteristics leading to severe pulmonary toxicological 
effects [13, 23, 33]. Understanding the effects of CNTs on the biocompatibility, 
toxicity, and risk assessment may sometimes lead to conflicting results and hard to 
predict where the toxicity comes from [30]. In addition, there is no consistency of 
constituent species and amounts of metal impurities in CNTs made from the same 
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process but of different batches and are quite different in materials obtained from 
different vendors, which makes it more complex to generalize the toxicity of CNTs. 
Table 1.2 shows chemical compositions of different Multiwall-CNTs as derived by 
Wave-Dispersive X-Ray fluorescence spectroscopy (WDXRF). All the materials 
were purchased from different vendors in the form of pristine and surface function-
alized CNT.  Irrespective of their group, the purity of MWCTNs as pure carbon 
ranges between 86 and 97 % and a wide range of metal oxides as impurities.

The chemical composition can be analyzed using a range of methods. Depending 
on the method used, the elemental analysis will range from qualitative to quantita-
tive analysis. The most common characterisation methods for analyzing the chemi-
cal composition of nanomaterials are X-Ray fluorescence spectroscopy (XRF), 
Energy Dispersive X-Ray Spectroscopy (EDS/EDS), Electron Energy Loss 
Spectroscopy (EELS), X-Ray photoelectron spectroscopy (XPS), Inductively 
Coupled Plasma-Mass Spectrometer (ICP-MS), Nuclear Magnetic Resonance 
(NMR), Raman Spectroscopy, and Static secondary Ion Mass Spectrometry (SIMS). 
However, all the methods are not equally suitable for quantification of the material 
chemical composition. For example variation depending on extraction procedures 
may be important for indirect methods such as ICP-MS.

1.3.1.2  �Crystalline Phases

Identification of the atomic structure of materials has been essential for their identi-
fication for several decades and is the whole foundation for modern mineralogy and 
materials science. It is also evident from the current toxicological literature that the 
toxicological effects of engineered nanomaterials can vary considerably depending 
on the structural properties [27]. In particular, the biological responses of many 
nanoparticles largely depend on the crystal phases but of similar in their composi-
tion. For example, the composition of silica is stoichiometrically similar; various 
forms of silica differ in their physicochemical and toxicological properties. It exists 
in crystalline and amorphous state with long and short range order, respectively. It 
is well known that inhalation of crystalline silica shown to be serious adverse effects 
among workers in the form of increased lung cancer and has been classified as a 
human lung carcinogen with important differences between quartz [trigonal 
(α-quartz) or hexagonal (β-quartz)] and the less abundant tridymite [orthorhombic 
(α-tridymite) or hexagonal (β-tridymite)] polymorphs. However, synthetic amor-
phous silica (SAS) has so far not shown any adverse effects because of their amor-
phous state [29]. Similar distinctions between rutile and anatase phases of titanium 
oxide can be made [42].

The powder X-ray diffraction technique is a fundamental technique for the iden-
tification of crystalline phase of nanomaterials. When an incident beam of X-rays (a 
form of electromagnetic radiation with a wavelength of 1Å) interacts with a target 
sample, the waves are scattered from lattice planes separated by an interplanar dis-
tance d. The scattered waves interfere constructively, and the path difference 
between two waves undergoing constructive interference is given by 2dsinθ, where 

1  Engineered Nanomaterials
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θ is the scattering angle. The intensity of the scattering wave as a function of scat-
tering angle gives a diffraction pattern. Both the positions and the relative intensities 
of the diffraction peaks are indicative of a particular structure, such as cubic, hex-
agonal and help to determine crystal symmetry to structure determination. One pos-
sible limitation of XRD while using for nanomaterials is their peak-broadening at 
lower scale where nanomaterials become amorphous structure, but may still be 
crystalline [34]. Though, the size limitation is more of a material specific and indeed 
depends on the accuracy of diffractometer, users must be aware of the problem 
while measuring nanomaterials.

Figure 1.1 shows the X-Ray diffraction patterns of different silica materials such 
as quartz (Sigma-Aldrich), Mesoporous Silica (MCM-41, [8]) and fumed silica 
(Sigma-Aldrich). Between 20 and 300 2θ, the amorphous nature of silica is indi-
cated by a single broad peak, for both MCM-41 and fumed silica. Due to ordered 
pore structure, mesoporous silica shows (Fig. 1.1 inset) three peaks (100, 110 and 
200) between 2theta angles of 1.5–6°, which are consistent with 2 dimensional (2D) 
hexagonal cylindrical porous network with space group symmetry, p6mm [6]. On 
the other hand, the crystallinity of quartz results in a range of diffraction peaks, 
consistent with hexagonal crystal system with a space group, P3121.

Compared to laboratory X-Rays, the synchrotron radiation sources give more 
intense and higher energy radiation with very shorter angles of scattering <0.10. In 
addition, an in-situ Small-angle X-ray scattering (SAXS) pattern can be recorded in 
a short time while the XRD pattern needs at least a couple of minutes for acceptable 
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Fig. 1.1  Powder X-Ray diffraction (XRD) graphs of quartz, fumed silica, and mesoporous silica 
(Inset: shows low angle peaks of mesoporous silica)
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data. The structural growth information from the nucleation stage during the 
nanoparticle synthesis can thus be accessible with the SAXS technique. SAXS is 
also an X-ray diffraction-based technique, where synchrotron radiation is used as a 
source, which occurs when charged particles are accelerated in a curved path or 
orbit. Any charged particle which moves in a curved path or is accelerated along a 
linear path will emit electromagnetic radiation. When the wavelength of the electro-
magnetic radiation is of the same order as the length of a sample particle, the parti-
cle will scatter the radiation. Detection and analysis of this scattering pattern can 
yield valuable information about the size, shape, and internal structure of the 
particle.

Both XRD and SAXS only give a diffraction pattern for further interpretation of 
the crystal phases of nanoparticles. However, microcopy methods such as AFM, 
SEM, and TEM give 2-dimensional images of the nanoparticles at the atomic scale. 
In particular, direct imaging by TEM images gives not only the amplitude but also 
the phase information of the structure factors of the crystal. The indexed Fast Fourier 
Transform (FFTs) of the TEM images can be further used to refine the lattice param-
eters and thereby the crystal symmetry. TEM information is obtained from a single 
crystal (~108 times smaller than the size of a specimen for XRD) whereas XRD 
data is from the bulk material. The importance of TEM imaging for structural inves-
tigation is best explained, for instance, in refining the symmetry of mesoporous sili-
cas and their pore connectivity in the amorphous silica network [4, 6]. Typical TEM 
images recorded along the [1 0 0], [1 1 0] and [1 1 1] direction and corresponding 
FFT-diffractograms of all the samples are shown in Fig. 1.2. Crystallographic recon-
struction procedure and image processing of the images gives 3D-electrostatic 
potential density model as shown in Fig. 1.2d. The reflection conditions derived 
from the TEM images and their corresponding FFT-diffractograms, confirms the 
space group symmetry of mesoporous silica as Pm-3n. The pore structures of a 
sample may be visualized from the 3D-electrostatic potential maps reconstructed 
from the structure factors obtained from electron crystallography. The boundary 
between pore and the pore-wall is determined by the so-called threshold value 
(related to the pore volume fraction), derived from the mesopores volume and the 
silica wall density (2.2 g/cm3). Overall, HRTEM combined with electron crystal-
lography gives not only the 2D images of nanomaterials at atomic resolution but 
also their tomographic view at macro-scale.

This type of analysis can be used to describe the nanostructures as well as loca-
tion of doped or nature of nanomaterial cores, which is important for identification 
of nanomaterial class and nanomaterial generations if not known beforehand.

1.3.1.3  �Surface Modification/Functionalization

Surface treatment or surface modification or functionalization or doping of nano-
materials induces distinct chemical and physical properties compared to their 
pristine form. For example, the surface treatment of silica with methyl groups is 
an effective way to disperse the silica nanoparticles in a wide range of organic 

R. Atluri and K.A. Jensen
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solvents. Functionalization has been used to conjugate drug molecules, polymers 
and organic groups to NPs. It has been demonstrated that non-covalent attachment 
of polyethyleneimine (PEI) polymers to the silica surface not only increases cel-
lular uptake but also generates a cationic surface to which DNA and siRNA con-
structs could be attached [43]. In another case, functionalization has also been 
shown to protect NPs against agglomeration and render them compatible in other 
phases. Silica coating on semiconductor materials such as CdS nanoparticles 

040
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033

330
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B
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c d

b

Fig. 1.2  HRTEM images of mesoporous material SBA-1 type, viewed parallel to the [100] (a), 
[111] (b) and [110] (c) directions. Inset shows FT diffractograms recorded from regions of the 
particles shown. (d) The 3D-electrostaic potential map of mesoporous silica showing two types of 
cavities (A, B) with open cavity-connecting windows to the neighboring cavities [6]1

1 Reprinted from Microporous and Mesoporous Materials, 133 /1–3, Rambabu Atluri, Zoltán 
Bacsik, Niklas Hedin, Alfonso E. Garcia-Bennett, Structural variations in mesoporous materials 
with cubic Pm3¯n symmetry, 27–35., Copyright (2016), with permission from Elsevier.

1  Engineered Nanomaterials



12

improves the stability of the particles as well as prevents coagulation during the 
chemical or electronic processing [20, 38, 40, 44, 45]. Therefore, surface func-
tionalization of NPs is rather necessary to render specific functionality over the 
core NPs. Similar surface-chemical modification of carbon-based materials such 
as fullerenes and CNTs are usually considered essential for dispersion and any 
application in matrix nanocomposites [18].

In general, surface modification of nanoparticles can be achieved by chemical and 
physical modifications. Most often a combination of both methods being used for 
higher generation of engineered nanomaterials. The most frequently used and indus-
trially relevant method for nanocomposites based on polymers/nanoparticles includes 
solution belding or melt blending [48]. Depending on the function and application, 
various surface treating agents such as organic and/or inorganic in the form of ele-
ments, compounds and materials can be used to modify the surfaces of nanoparticles. 
The complexity of the nanoparticles derived by their chemical doping and surface 
modifications, which depends on the extent and location of the surface treating 
agents. Complexity is the location of the compounds either external (E) or as a core 
(C) of nanoparticle matrix or combination of both, thanks to the chemistry of nano-
materials for merging many phases into a single but multifunctional system. Figure 
1.3 shows possible derivations of silica nanoparticles after modification; mostly rely 
on chemical and physical or combinations of both the methods. Apart from organic 
compounds for surface treatment, various inorganic nanoparticles used to construct 
hybrid architectures of silica including nanoparticles assembled at the surface of a 

Silica NMs

Organic+Inorganic

Inorganic

Organic

Fig. 1.3  Schematic illustration of several derivations after surface modification/functionalization 
of silica nanoparticles. Green: organic, Plum: Inorganic, Light Black: Silica
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silica particle, encapsulation of nanoparticles in a silica shell etc. Several physico-
chemical characterization methods can be used to determine the chemical complex-
ity of doping and surface chemical modification of nanomaterials both quantitatively 
or qualitatively, including electron microscopy, XRF, XPS, molecular spectroscopy 
such as FT-IR and X-Ray, Raman, and mass spectrometry (GC/LC/ICP). In addition, 
Thermal Gravimetric Analysis (TGA) is the most widely used and relatively easy 
method for quantitative analysis of surface modifications.

1.3.2  �Textural Properties

1.3.2.1  �Size and Size Distribution

Materials exist in different forms and size depending on the source and manufactur-
ing process. Size and size-distribution is the key characteristic of nanomaterials and 
key for their identification for regulatory purposes [17, 21]. Nature has a large num-
ber of nano-sized materials with properties that are distinct and relatively compa-
rable to man-made nanomaterials. The carbon based nanoparticles such as 
Buckminsterfullerene and graphene are typical examples of it.

As nanomaterials (NMs) are generally defined by having small dimensions in the 
nanoscale, i.e. between ca. 1 and 100 nm and have large surface to volume ratios, 
their physicochemical properties are different from the properties known for bulk 
materials [36]. As the size of a particle decreases, the proportion of atoms on the 
surface of the particle increase and, consequently, the physicochemical properties 
will be different from the properties known for non-nanomaterials.

Therefore, significant efforts have been put forward by different government 
bodies and policy makers to define the size limits of a nano-object. According to the 
EU recommendation, “Nanomaterial’ means a natural, incidental or manufactured 
material containing particles, in an unbound state or as an aggregate or as an 
agglomerate and where, for 50 % or more of the particles in the number size distri-
bution, one or more external dimensions is in the size range 1–100 nm”.

Particle size measurements have a direct impact on the reliability of products 
containing nanoparticles and provide a basis for toxicological studies of nanoparti-
cles. However, selecting right particle size methods have a great impact on the reli-
ability of the size and size distribution. Different methods (Table 1.3) often have 
different bases for the particle size and size distribution, for example dry samples 
vs. wet sample dispersions. In addition, the principles of methods such as light dif-
fraction or electron microscopy should also be taken into account for a correct inter-
pretation of the measurements. The quality of measurements also depends on the 
different screening criteria such as size measurements for spheroidal and non-
spheroidal particles, agglomerates, and aggregate particles and size measurements 
for environmental, health and safety evaluations. Currently, methods are rather 
advanced for quantitative size-distribution analysis of granular nanomaterials (see 
e.g., [11, 31]).

1  Engineered Nanomaterials
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1.3.2.2  �Aggregation/Agglomeration

Due to high surface energies, nanoparticles have tendency to form agglomerates/
aggregates. As summarized in Schneider and Jensen (2009) [50], the agglomeration 
of nano-objects in nanomaterials can be due to different phenomena, which can be 
grouped into: electrical properties (e.g., van der waal forces), magnetic properties 
(e.g., ferromagnetism), physical interlock (e.g., entanglement), and bridging (liquid 
film or greasy coatings). Some of these agglomeration phenomena have weak forces 
and require moderate energy for dispersion, whereas others have large effect or 
binding forces and require dedicated efforts to disperse the nano-objects. Aggregates 
consist of nano-objects bound together with significant interface contacts and high 
binding energies. Aggregates can therefore not be separated without breaking the 
material.

Agglomerates or aggregates make it especially difficult to explore the properties 
and applications of nanomaterials. In reality the nano-objects in nanomaterials 
rarely exist as separate units unless this is a particular target in the manufacturing 
process and in many cases the particles are not in uniform shape, particularly when 
the materials are scaled up. Particles do agglomerate and aggregate and have differ-
ent size ranges depending on the use and the environment. In many synthetic pro-
cesses for nanoparticles, especially surfactant-free chemical reactions, aggregation 
or agglomeration occurs immediately as particles are generated. The terms agglom-
eration and aggregation are still rather confusing for defining the particle state.

If the properties associated with the aggregation or agglomeration is not under-
stood, the analysis may sometimes give misleading results on data such as particle 
size and dispersion level. In another context, increasing use of manufactured 

Table 1.3  Table shows different particle size methods and typical size ranges

Method
Typical measurement 
range

Type of size 
distribution Available standards

SEM 1 nm−10 μma Number based ISO 16700: 2004
TEM 0.5 nm–1 μma Number based ISO 13322–1: 2004

ISO 13322–2: 2006
SAXS >5 nm Scattering 

intensity based
ISO/TS 13762:2001

AFM >1 nm Number based ASTM E2859–11
XRD <100 nm Scattering 

intensity based
ISO 20203: 2005

Centrifugal liquid 
sedimentation

>20 nm Extension 
Intensity based

ISO 13318–3: 2004
ISO 13318–2: 2007

DLS 1 nm – several micro 
metersb

Number and 
volume based

ISO 22412:2008

Particle tracking analysis >25 nm Number based ISO/DIS 19430
Field flow fractionation 1 nm–200 nm Intensity based –

aSome instruments have lower detection limits
bRanges may be wider and vary considerably with instruments and software
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nanoparticles ensures these materials will make their way into the environment dur-
ing their lifecycle. The state of these nanoparticles in the environment and biologi-
cal systems remains a question, which stress the importance of understanding the 
mechanisms of aggregation and agglomeration.

Methods for determining the state of aggregation and agglomeration are mainly 
the same techniques as used for the nanoparticle size determinations. It is highly 
recommended to follow a special preparation protocol before doing the measure-
ments, to avoid misleading information on the state of particles in the dry state vs. 
dispersion state. In this aspect, preparation of TEM grids shows (Fig. 1.4) a nice 
attempt on the importance of methods such as drop-on-grid and grid-on-drop show-
ing the dispersion of particles on the grid.

Strategies for preventing aggregation mainly come from conventional colloid 
science in which particles are coated with foreign capping agents and/or the surface 
charges are tailored to separate them via electrostatic repulsions [28]. High energy 
mechanical methods such as grinding, sonication have also been used as a post 
treatment for making the dispersions and fine particles more homogenous. ISO TR 
13097 2013–06 on dispersion reports the methods that can be used to monitor the 
state of nanoparticles in solutions, acceleration procedures and data evaluation. The 
OECD is now looking to prepare a new test guideline, which can refer to existing 
ISO standards.

1.3.2.3  �Shape

The beauty of engineered nanoparticles is their hierarchal shapes and associated 
physical – chemical properties. Unlike bulk materials, the thermodynamic and sur-
face energy considerations at nanoscale are more complicated by the high surface 

a b

Fig. 1.4  Transmission electron microscopy images of silica nanoparticles showing their 
agglomeration state depending on the sample preparation methods such as (a) drop-on-grid and 
(b) grid-on-drop
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area to volume ratio. For a material with a perfect symmetric sphere, the total sur-
face energy is lowered by decreasing the amount of surface area corresponding to a 
given volume. On the other hand, faceted nanoparticles show high number of reac-
tive and high atom density facets and may influence the properties such as dissolu-
tion, aggregation, and reactivity. Bottom-up methods are used for producing a large 
variety of nanoparticles. Depending on the synthesis conditions and composition, 
variety of shapes such as spheres, wires, rods, plates, spheroids, tubes etc. have been 
developed.

The shape of nanoparticles plays an important role in understanding the proper-
ties associated at nanoscale. Particularly for nanomedicine applications, the shape 
of nanoparticles has recently been identified as a key factor influencing circulation 
time, bio-distribution, cellular uptake, as well as targeted drug delivery. The realiza-
tion of shape factor came from the non-spheroidal shapes of various and bacteria, 
but still improving their ability to evade an immune response [41]. However, shape 
effect studies show considerable toxicity to human cells and question the health and 
environmental fate of nanoparticles. It was shown that wire- shaped silver nanopar-
ticles induced a strong cytotoxicity to human cells (A549) than spherical silver 
nanoparticles. It was argued that small diameter of nanowires shown to induce cell 
membranes but the large length of silver wires does not allow a complete entry as 
compared to the spherical nanoparticles [39]. In another example, ZnO nanoparti-
cles of different shapes also show toxicity to marine algae [32]. Therefore, shape is 
an important parameter when considering the fate of nanoparticles.

For shape determination of nanoparticles, electron microscopes such as SEM, 
TEM and SPM (Scanning Probe Microscopy) are used. However, for intrinsic prop-
erties such as crystal structure, symmetries and surface morphology, electron 
microscopy combined with tomography are used. Figure 1.5 shows SEM images of 
different zinc oxide particles, synthesized under various reaction conditions and 
concentrations. The morphology of zinc oxide formed by the reaction of zinc salts 
and hydroxide ions is very dependent not only on pH, temperature, concentration, 
and reaction time but also on the stirring time and water addition sequence of the 
reactions. By controlling these factors, flower-like, needle-like, star-like and spheri-
cal morphologies were obtained. Likewise, different metal, non-metal, and metal 
oxide nanoparticles including silica, TiO2, iron oxide, gold, and, silver has been 
developed with various shapes and aspect ratios.

1.3.2.4  �Surface Area and Porosity

A distinct characteristic of nanomaterials as compared to their bulk form is the area 
of accessible surface, as described by the specific surface area. Nanomaterials pos-
sess high surface area per unit mass due to a high portion of atoms at the surface 
relative to the atoms in the interior of the particles. Due to their large surface area to 
volume ratio, nanomaterials are highly attractive, and therefore, lead to a lot of new 
properties stemming from quantum effect and surface/interface effect. For applica-
tions requiring a large surface area per unit weight such as hydrogen storage for 
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vehicles, chemical sensing, light harvesting, and for catalysts, nanomaterials or 
nanostructured materials be promising candidates. A typical example and so far 
holds the highest experimental surface areas of any porous materials reported to 
date is metal-organic frameworks (MOFs), displaying ∼7000 m2/g of surface area 
[15]. To put it another way, just a few grams of nanoparticles offers a surface area 
equivalent to the size of a football stadium. On the flip side, a greater toxicity was 
found from nanomaterials than from their larger counterparts associated by high 
absorption capacity. It was shown that ultrafine titanium oxide nanoparticles are 
more inflammogenic and cytotoxic than when compared to the fine sized particles 
of lower surface area [37].

a

c

e f

d

b

Fig. 1.5  Different shapes of ZnO particles, under various synthesis conditions such as aging time, 
concentration, pH (=10, 8, 7), and temperature gives (a) Flower-like,  (b) Prism-like, (c) Needle-like, 
(d) Star-like grains, (e) Aggregated spheres, and (f) Sheet-like flakes, respectively. Scale bar is 1 µm.
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Having high surface and interface areas of nanoparticles induce a strong interac-
tion with the surrounding liquid or gaseous adsorbents. Depending on the strength 
of the interaction and surface charge, the adsorption can be described as being either 
physical or chemisorption. Chemisorption is characterized mainly by a strong inter-
action between adsorbate-adsorbent while physical adsorption is due to mainly dis-
persion forces, i.e. weak intermolecular forces between non-polar molecules. The 
latter is more favored for surface area and porosity measurements because of its 
non-destructive nature and the ease of quantification of the adsorbate.

For powders, the specific surface area is usually determined by the nitrogen 
adsorption technique using the BET (Brunauer, Emmett and Teller) method [9], by 
which one may also measure the surface area given by nanoporosity. Though, other 
techniques such as SAXS (Small Angle X-Ray Scattering) developed for solutions, 
but the methods are not routinely usable.

Gas adsorption is a prominent technique for the comprehensive characterization of 
surface area and porosity measurements. The adsorption of gasses such as N2, He, Ar 
(adsorbate) at various relative pressures on a solid (adsorbent) gives information of 
textural properties including surface area, pore volume, and pore size. The measure-
ment is performed volumetrically; calibrated volumes of gas are added to a sample 
tube that is immersed in liquid nitrogen with a known amount of sample. The amount 
of gas adsorbed can be calculated from the measured pressure difference in the sample 
tube after the addition of a known volume. If the amount of adsorbed gas is plotted 
against the pressure, an isotherm is obtained. From this plot, surface area, pore vol-
ume, and pore size can be derived. Unfortunately, the gas adsorption method for sur-
face area and porosity measurements is not applicable for liquid based materials.

Figure 1.6 shows nitrogen adsorption-desorption isotherms of various porous and 
nonporous nanoparticles. The shapes of the isotherms are different, and the adsorption 
volumes of nitrogen differ extensively between the nanoparticles. Mesoporous silica, 
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SBA-15 [46] shows high absorption capacity than the other nanoparticles, indicative 
of high surface area material. This is due to the ordered pore structure at mesoscale 
and possesses a narrow pore size distribution as evidenced from the reversible hyster-
esis loop (Type IV). MWCNTs and Fumed silica exhibit a moderate amount of 
adsorption at low relative pressures and resembles the inter-particle pore characteris-
tics. The other nanoparticles exhibit nonporous characteristics and most of the adop-
tion comes from the surface of the particles and hence exhibit low surface areas. The 
shape of the isotherm sometimes distinguishes the porous vs nonporous materials and 
even on the types of various porous materials. Most of the materials exhibit six types 
of adsorption isotherms. For microporous materials, the pore filling occurs in a con-
tinuous way (Type I) and the majority of micropore filling occurs at relative pressures 
below 0.1. The Type II isotherm is typical for macroporous and non-porous solids 
where monolayer coverage followed by multilayers at high relative pressures. Type III 
and Type V isotherms are characteristic of weak adsorbate-adsorbent interactions and 
are most commonly associated respectively with non-porous and microporous adsor-
bents and microporous or mesoporous solids. Type IV isotherms are typical for meso-
pores where pore-filling occurs by pore condensation.

The BET equation was used to calculate the surface area (SBET) from the adsorp-
tion data obtained in the relative pressure (P/Po) range from 0.05 to 0.3. The total 
pore volume (Vtot), which is an important parameter for porous nanoparticles calcu-
lated from the amount of gas adsorbed at the highest relative pressure (P/Po), implies 
how open the pore structure is. The pore size distributions (PSD) of the nanoparti-
cles are calculated from the adsorption branch of the isotherm and fitting various 
pore shapes such as cylindrical, bottleneck, slit type pores.

Most widely accepted PSD models are the Barrett-Joyner-Halenda (BJH), 
Horvath-Kawazoe (HK), and the Non-local density functional theory (NLDFT) 
models. The Surface area and porosity properties derived from the nitrogen iso-
therms on selected nanoparticles are shown in Table 1.4. From the table, it is clear 
that porous nanoparticles show high porosity properties than nonporous particles 
and mesoporous silica (SBA-15) being the high in pore characteristics.

Finally, BET surface area has also been considered as an important parameter to 
identify nanomaterials. As per the EU recommendation, volume specific surface 
area (VSSA) proposed as a complementary definition to distinguish nanomaterials 
from non-nanomaterials. The recommended VSSA (i.e. greater than 60  m2/cm3) 
corresponds to a 100 nm sphere.

1.4  �Conclusions and Closing Remarks

Engineered nanomaterials represent one of the most fascinating developments in 
recent years. They are increasingly used to construct products with attractive fea-
tures and uses. More than 20 nanomaterials of type are already used in consumer 
products and estimates to demand 50,000 tons/year in near future. With industrial 
production specific reporting requirements also arise for chemical registration and 
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toxicological testing. It is evident that the many different nanomaterial and deriva-
tives result in different properties of the specific nanomaterials. Therefore, there are 
increasing demands for proper methods and standard operational procedures for 
physicochemical characterization of nanomaterials and updated systems for chemi-
cal classification. As a first step it is important to be able to identify a nanomaterial, 
which is a key topic in ongoing research projects.

In this chapter, we gave examples on the key physicochemical characteristics and 
the type of data one can achieve. A variety of techniques can be used to obtain both 
structural and textural properties, which are essential to identify and report unique-
ness of specific nanomaterials. Electron microscopy is the most widely used instru-
ment for chemical and structural investigation of nanomaterials at relatively high 
resolution and even close to atomic levels. In principle, other non-destructive meth-
ods are also applicable, such as X-ray diffraction and gas absorption isotherms. It is 
anticipated that this type of data will be important in the next generation of material 
grouping and categorization systems as well as to understand what drives particle 
toxicity in greater depth. Even-though, significant progress have been made over the 
last decade, there is still no full understanding on how the different physicochemical 
parameters relate to nanomaterials hazards. In fact the parameters are still only used 
to some extent in this types of exploration. The challenge will be even greater 
acknowledging that complex nanomaterials have entered industrial scale production 
and needs to be included in such analysis.
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Chapter 2
Assessment of Human Exposure to ENMs

Araceli Sánchez Jiménez and Martie van Tongeren

Abstract  Human exposure assessment of engineered nanomaterials (ENMs) is 
hampered, among other factors, by the difficulty to differentiate ENM from other 
nanomaterials (incidental to processes or naturally occurring) and the lack of a sin-
gle metric that can be used for health risk assessment. It is important that the expo-
sure assessment is carried out throughout the entire life-cycle as releases can occur 
at the different stages of the product life-cycle, from the synthesis, manufacture of 
the nano-enable product (occupational exposure) to the professional and consumer 
use of nano-enabled product (consumer exposure) and at the end of life.

Occupational exposure surveys should follow a tiered approach, increasing in 
complexity in terms of instruments used and sampling strategy applied with higher 
tiers in order tailor the exposure assessment to the specific materials used and work-
place exposure scenarios and to reduce uncertainty in assessment of exposure. 
Assessment of consumer exposure and of releases from end-of-life processes cur-
rently relies on release testing of nano-enabled products in laboratory settings.

Keywords  Engineered nanomaterials • Occupational exposure • Consumer 
exposure • Tiered approach

2.1  �Occupational Inhalation Exposure Assessment 
of Engineered Nanomaterials

2.1.1  �Why Carry Out an Exposure Assessment?

Exposure assessments can be carried out for a variety of reasons. For example, for 
(i) regulatory risk assessment, i.e. to provide evidence that exposures are below 
Derived No Effect Levels (DNELs) under the EU REACH (Registration, Evaluation, 
Authorization and Restriction of Chemicals) regulations; (ii) for risk management, 
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i.e. by checking whether exposure is below Occupational Exposure Limits (OELs); 
(iii) to check the effectiveness of exposure control measures; (iv) to contribute to 
epidemiological studies or health surveillance.

Strategies for conventional chemicals are reasonably well established and in gen-
eral, relatively easy to measure mass-based metrics are used for exposure assess-
ment. In contrast, for engineered nanomaterials (ENMs) there are no established 
standard measurement protocols and no consensus on the most appropriate single 
exposure metric. In fact, the REACH Implementation Projects on Nanomaterials 
(RIP-oNs) recommended using more than a single metric [1]. The design of the 
measurement strategy will depend on the purpose of the study. ENMs are manufac-
tured in many variations of size, shape, structure, and surface modifications. 
Exposure to ENM can occur as primary particles, aggregates or agglomerates (usu-
ally referred as nanostructured particles), as well as ENMs embedded in a matrix. 
The exact physical-chemical composition of the ENM can change across its life-
cycle and can also change over time following release into environmental media to 
such an extent that exposure measurement is a challenging process.

There is strong evidence of a particle size-related and morphology-related health 
risk following inhalation of some aerosols. Fibre-shaped nanomaterials such as car-
bon nanotubes (CNT) and other high aspect ratio nanomaterials (HARN) such as 
graphene, nanoclay or silver nanowires, have been shown to pose particularly high 
risk to the respiratory system after inhalation exposure [17, 23, 47, 50, 54, 56]. 
Relevant information about exposure to nanomaterials can be gained from number 
and surface area concentration measurements. In addition, further characterisation 
of chemical and physical properties of airborne particles collected on filter samples 
is recommended [40].

2.1.2  �Occupational Exposure Limits for Nanomaterials

There are very few OELs specifically for ENMs. For carbon nanotubes (CNT) (all 
types) and carbon nanofibers (CNF), NIOSH advocates a Recommended Exposure 
Limit (REL) of 1 μg m−3 elemental carbon in the respirable fraction as an 8-h time-
weighted average (TWA). This REL was established based on a review of animal 
studies and other toxicological data relevant to assessing the potential non-malignant 
adverse respiratory effects of CNT and CNF [41]. NIOSH recognizes that the REL 
level may not fully protect workers’ health but will help to minimize the risk of 
developing lung disease. In order to test compliance with this mass-based limit, 
NIOSH recommends measurement of airborne elemental carbon as a proxy for 
CNT/CNF, according to the NIOSH method 5040 [37].

NIOSH also recommends a REL of 0.3 mg/m3 for ultrafine (including nanoscale) 
TiO2 as a TWA concentration for up to 10 h/day during a 40-h work week [40]. 
When the particulate exposure consists predominantly of TiO2, then the NIOSH 
method 0600 [38] for measuring fine and ultrafine TiO2 is recommended. If there is 
also exposure to other airborne particulates or when the size distribution of TiO2 
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(fine vs. ultrafine) is unknown, other measurements and/or analytical techniques 
may be needed to characterize ultrafine TiO2. Either NIOSH Method 7300 based on 
ICP-AES [39] can be used to analyse TiO2, or electron microscopy, equipped with 
X-ray energy dispersive spectroscopy (EDS), to identify TiO2 particles.

It is argued that for particles smaller than 100 nm due to their low mass compared 
to their larger particle number and surface area, mass may not be the most appropri-
ate metric for health risk assessment [16, 44] and surface area is the preferred prob-
ably most relevant exposure metric [25]. NIOSH (like ISO) also acknowledges that 
surface area may be a more appropriate metric than mass; however, since there are 
currently no established analytical methods to assess specific particle surface area 
for TiO2, mass-based measurements are accepted as a surrogate metric.

The British Standard Institute (BSI) has proposed bench-mark values for four 
types of ENMs [12]. For fibrous materials, the bench-mark value (0.01 fibres/ml) is 
based on the clearance limit in the UK for asbestos removal operations. For other 
ENMs, the bench-mark values are derived from the OEL of the corresponding 
micro-sized bulk material. For insoluble ENM this is 0.066 × OEL, for soluble is 
0.5 × OEL and for carcinogenic, mutagenic, asthmagenic or reproductive toxin in 
bulk form ENM this is 0.1 × OEL. It should be noted these bench-mark values are 
for guidance only and should not be considered to representative of safe workplace 
exposure levels, as they have not been linked to toxicological end-points. They have 
been developed under the assumption that the hazard potential of the nanoparticle 
form is greater than the micron-sized particle. Van Broekhuizen et al. [52] intro-
duced the concept of bench-mark values and proposed so called non-substance spe-
cific nano reference values. When the exposure exceeds an ‘action level’ more 
specific measurements or exposure controls are required.

In Germany, the Institute for Occupational Safety and Health of the German 
Social Accident Insurance (IFA) has established limit values for airborne parti-
cles between 1 and 100 nm based on the particle number concentration. For met-
als, metal oxides and other biopersistent granular ENMs with a density over 
6,000 kg/m3, concentrations should not exceed 20,000 particles/cm3. For ENMs 
with densities below 6,000 kg/m3 the concentration (1–100 nm) should not exceed 
40,000 particles/cm3 [24].

2.1.3  �Measurement Devices

There are a number of different techniques to measure real-time particle number, 
mass, size distribution and surface area of airborne particles covering the particle 
size range from 3 nm to 20 μm. However, the principle of operation of particle size 
instruments limits the particle range that a single instrument can measure, and there-
fore in order to acquire the full size distribution a range of different instruments is 
employed. It should be noted that despite the fact that the definition of ENM refers 
to materials with one dimension <100 nm, their agglomerates and aggregates can 
reach micron sizes and therefore measurements should  – cover both nano- and 
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micron-size ranges [45]. There is currently no agreement on the upper size limit that 
should be assessed. It is likely that agglomerates/aggregates of nanosized particles 
will be largely in the respirable fraction (D50 < 4 μm). As well as being present as 
agglomerates/aggregates, ENMs can be scavenged by large background particles 
and ENM can also be released as part of relatively large particles consisting mainly 
of the matrix in which the ENM is embedded. High aspect ratio nanomaterials such 
and CNT and graphene may also be characterised by one dimension in the nano-size 
range but have large (>4 μm) physical sizes and lengths in the micron-size range 
[41, 47]. Hence, in addition to measurement of the respirable fraction, it may also 
be appropriate to include the inhalable fraction (D50 up to 100 μm).

Condensation particle counters (CPC) are the most common instruments used to 
measure the total (i.e. not size resolved) particle number concentration. They are 
available as portable and hand held devices making them suitable for screening 
assessment. The size range can be from up to 2.5 nm to 10 μm depending on the 
model. CPCs can be used in combination with a differential mobility analyser 
(DMA) to measure size – resolved particle number concentrations.

CPCs generally have two counting modes: a single particle count mode (up to 
104–106 particles cm−3) where each particle is counted individually and the photomet-
ric mode for concentrations above 106 particles cm−3 where the light scattered by all 
particles is measured and compared with calibration levels. Time resolutions are often 
down to 1 s measurement intervals. The accuracy of the single particle count mode is 
usually ±10, and the photometric mode is less accurate (±20). Accuracy of the CPC 
may also depend on the condensation fluid and particle. For example, the accuracy in 
the photometric mode differs between hygroscopic and hydrophobic particles when 
water is used as the condensation fluid. In recent years portable electrical diffusion 
chargers (e.g. DISCmini, Partector, NanoTracer) have been developed which can be 
used for personal monitoring. The electrical current, stemming from unipolar diffu-
sion charged particles, is coincidentally proportional to the lung deposited surface 
area (as long as the particle size range is within 20 nm ≤ dp ≤ 400 nm) [4]. In addition 
these instruments also provide estimates of the total number concentration (usually 
10–300 nm and or up to 10 μm in the case of the Partector), along with the mean par-
ticle diameter. Size-resolved instruments use electrical mobility analysers or differen-
tial mobility analysers. The most frequently used instruments are the FMPS (Fast 
Mobility Particle Sizer), and the SMPS (Scanning Mobility Particle Sizer). The 
Electrical Low Pressure Impactor (ELPI) can also be used to estimate the mass if the 
charge and the density of the particle are known and has the additional advantage that 
airborne particles are collected to allow for off-line analysis.

Most of these instruments are calibrated with spherical, compact, non-porous 
particles of a specific density. However, nano-sized particles and their agglomer-
ated/aggregated forms tend to have a fractal-like structure and this can affect the 
accuracy of the measurements taken by these instruments. This type of instrumenta-
tion will also have limitations for the assessment of releases of fibre or platelet-
shaped nanomaterials. Instrument-specific effects such as counting efficiency (e.g. 
CPC) and multiple charging (e.g. SMPS, FMPS) can also affect the measurement 
accuracy.
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Since the instruments are calibrated with specific particles they only provide an 
equivalent diameter: electrical equivalent mobility diameter when sizing is by an 
electric field, diffusive (or thermodynamic) equivalent diameter, thermophoretic 
equivalent diameter or aerodynamic equivalent diameter for separation by impac-
tion. For inhalation exposure the aerodynamic diameter is the most relevant equiva-
lent diameter in the size range above approximately 100 nm. However, for particles 
below 100 nm diffusion due to Brownian motion is a more dominant deposition 
mechanism in the respiratory system and therefore the mobility-equivalent diameter 
is more relevant [27]. However, it is still unclear how the shape and density affect 
the electrical mobility diameter (and any other equivalent diameter) and therefore 
for nanofibres and nanoplates further studies are required to understand how they 
behave following inhalation [25].

Several studies have compared the performance of these devices [2, 22, 29, 53] 
using different aerosols morphologies and concentrations and found differences for 
the total number and the sizing of up to 30 %.

As stated above, the range of instruments deployed in nanoparticle detection 
should not be restricted to instrumentation covering the ENM primary size since 
airborne ENMs easily agglomerate into particles larger than several hundred nano-
meters. Aerodynamic Particle Sizers (size range 0.5–20 μm) using a time-of-flight 
light-scattering technique that measure aerodynamic diameter in real time can be 
usefully applied in exposure assessment. Aerodynamic diameter is a significant 
aerosol size parameter as it determines the particles’ behaviour while airborne. 
Particle classification results from differences in the mobility of particles based on 
their size, density and charge as they travel through an optical detector. Results are 
presented as aerodynamic equivalent diameter, defined as the physical diameter of a 
unity density sphere that settles through the air with a velocity equal to that of the 
particle in question. Particles that have the same aerodynamic diameter will exhibit 
the same airborne behaviour and knowledge of the aerodynamic diameter subse-
quently allows determination of where the particle will be deposited in the human 
respiratory tract [13] and whether the particle will penetrate a filter, cyclone or other 
particle-removing device.

Measurements taken with direct reading instruments are useful to study varia-
tions in the metric assessed and size distribution during nano-related activities for 
comparison with background values. However, results of direct reading instruments 
alone should be interpreted with extreme caution [11, 15] in particular when used to 
derive mass related values for assessment of the exposure dose.

Another aspect that should be taken into consideration when using these instru-
ments for exposure assessment is that they do not discriminate between the ENM and 
any other nano-sized particles present in the environment. Therefore to confirm the 
presence of the ENMs, characterization according to structure, size and morphology 
(Scanning/Transmission electron microscopy (SEM/TEM) and chemical identifica-
tion (e.g. Energy Dispersive X-Ray (EDX); X-ray Photoelectron Spectroscopy 
(XPS), X-ray fluorescence (XRF)) of the particles collected on a filter is required. 
SEM or TEM are the most common methods used for particle characterization. 
However, SEM/TEM only provides information on the surface of a sample and 
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therefore will not register ENM embedded in a matrix (e.g. polymer fragments with 
CNT). For nanocomposite materials atomic force microscopy (AFM) has been 
proved useful to characterize the ENM below the surface of composites [28, 59]. 
There are very few samplers specifically designed to collect the nano size fraction 
(<100 nm). Two samplers allow particle collection directly on the TEM grid: The 
Aspiration Electron Microscopy Sampler designed by VTT Technical Research 
Centre of Finland (from where it is commercially available) and the Mini Particle 
Sampler (MPS) developed by INERIS and distributed by EcoMesure.

2.1.4  �Exposure Assessment Approaches of Engineered 
Nanomaterials

In contrast to conventional chemicals, where there are international standards for 
measuring, analysing and reporting of occupational exposure, for ENMs no estab-
lished standard methods are available.

The International Standard Organization issued some guidelines in 2007 [25] 
and 2011 [26]. The reports provide very useful information on the available charac-
terization methods but do not include details on how to analyse and interpret the 
measurement results and how to differentiate ENM from other nano-sized particles 
present in the workplace. In recent years several approaches have been published [3, 
5, 6, 8, 35, 36, 40, 41, 57] and a number of initiatives have emerged across the nano-
safety community to harmonize and standardize measurement strategies for ENMs. 
A series of international workshops “Global Harmonization of Measurement 
Strategies for Exposure to Manufactured Nano-Objects” have been organised since 
2012 [9]. The European partnership of Occupational Health and Safety research 
(PEROSH) group has created a Nano Exposure and Contextual Information 
Database (NECID) to collect exposure measurement in a harmonized way.

These publications and workshop discussions formed the basis for the develop-
ment of harmonized tiered approach published by the Organisation for Economic 
Co-operation and Development Working Party on Manufacture Nanomaterials 
(OECD WPMN SG8) [43]. The European Committee for Standardization is also 
preparing a document: ‘Workplace Atmosphere- Assessment of inhalation exposure 
to manufactured nano-objects and their agglomerates (NOAA)’ (CEN TC 137).

Most of the measurements strategies suggest a tiered approach:

•	 In the first tier contextual information on the materials, activities and exposure 
factors (e.g. amount of material used, ventilation, protective equipment, number 
of workers, frequency of exposure) is gathered to confirm that work with ENM 
is being carried out and exposure is possible.

•	 In the second tier, the concentration of airborne nanomaterials in the workplace 
is measured using a non-size selective real time portable particle number concen-
tration instrument (e.g. CPC, NanoTracer, DISCmini, NanoCheck). The concen-
tration during the activity is compared to background concentrations to assess 
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any potential increase in the particle number during the handling of the ENMs. 
In addition, some of the approaches recommend the collection of filter samples 
for off-line analysis using SEM or TEM coupled with a chemical identification 
technique. This helps to discriminate between the ENMs and nano-sized back-
ground particles. If activity concentrations are significantly increased over the 
background, the assessor may choose to evaluate the risk management measures 
and repeat a tier two assessment or to move directly to a tier three assessment.

•	 During a tier three assessment a more detailed survey is carried out which may 
include the measurement of personal exposure and/or the use of more complex 
equipment that provide real-time data on size-resolved particle number concen-
trations (e.g. FMPS, SMPS, ELPI), particle mass and/or surface area.

The main challenges highlighted in these approaches are (1) to distinguish the 
ENM from the background NMs (natural or incidental materials generated during 
the process, e.g. polymer particles release during extrusion); (2) to decide when to 
move from a basic survey to an in-depth campaign; and (3) to estimate quantitative 
exposure concentrations that can be used in health risk assessment.

Background particle concentration (especially when measured as particle number 
concentration) usually has a high spatial and temporal variability as they are affected 
by multiple emission sources (e.g. passing vehicles or nearby processes [34].

The approaches indicate three main strategies to assess the background:

–– To measure during the activity under the same conditions but without using the 
ENM under investigation. This type of background allows determining the contri-
bution of process-generated nano particles and therefore is the preferred method. 
However, this approach is not often feasible (e.g. for bagging activities).

–– Far-field background: measurements collected at the same time as the activity in 
a place where no contribution of ENM is expected. This background concentra-
tion does not allow differentiation of process-generated nano particles and 
ENMs.

–– Before & after the activity: again background measurements collected in this 
way do not allow differentiation of process-generated and other nano particles 
(e.g. from vehicles) and the ENMs of interest.

The nanoGEM approach [3] proposed to subtract the arithmetic mean (AM) of 
the background particle number concentration (measured for at least 45 min) from 
the AM measured during the activity. If the difference of the activity minus the 
background is larger than three times the SD of the background then release (if 
measurements are collected near the source) or exposure (if measurements are col-
lected near the breathing zone of the operator) can be confirmed. The assumption is 
that that the background concentration will remain stable. However in practice this 
is may not be the case and this approach may not be applicable. However careful 
study design and interpretation can enable discrimination from the background in 
some circumstances. Considering the multiple sources of NMs in the workplace and 
the challenges to identify the ENM of concern, it is important to gather contextual 
information on other sources that could generate airborne nanoparticles.

2  Assessment of Human Exposure to ENMs
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Another important issue when carrying out a measurement survey is where to 
locate the measuring equipment in relation to the processes being monitored. Most 
studies target measurements areas in close proximity to the ENM source (<30 cm). 
While this is informative to determine whether there is emission of nanoaerosols 
into the workplace atmosphere, it is usually not representative of workers’ exposure. 
Aerosol concentrations change over time due to deposition, diffusion and the effects 
of ventilation. This is particularly important for nano-sized aerosols due to their 
high diffusion rates and the effects of agglomeration and scavenging by background 
particles resulting in lower concentration and a shift of the size distribution. 
Consequently, measurements near the source or at any fixed point may not represent 
accurately the exposure of workers. Considering that only a few personal monitors 
are currently commercially available, the assessment of personal exposure is quite 
challenging. In this aspect modelling can be a very useful tool for exposure assess-
ment and some advances have been made in relation to modelling of airborne 
nanoparticles in the work environment (both in field and theoretical; [19, 33, 48, 
49]). In addition, if nanoaerosols are released into the workplace environment, they 
may deposit on work surfaces and act as a secondary exposure source to workers 
[55].

Regarding the decision criteria to move from a basic assessement to an in-depth 
monitoring survey the different approaches highlight different considerations. 
Witschger et al. [57] argues that the decision to carry out an in-depth monitoring 
campaign has to be taken considering the knowledge and experience of measure-
ment of nanoaerosols, availability of instruments and methods, reachability of 
working location, compatibility of the instruments with the working environment 
and existence of previous measurements from the same place. Their basic level also 
includes chemical analysis of collected filter samples (e.g. TEM + EDX) in addition 
to CPC measurements. They also suggest that if the measurement campaign is likely 
to be challenging due to the working environment, release studies in a laboratory 
(e.g. dustiness measurement) can be carried out instead.

Brouwer et  al. [8] proposed to divide the particle number concentration into 
those <100 nm and >100 nm. For both size fractions the decision to move to tier 
three should be based on a Student t-test on the concentrations during the activity 
and background; the ratio of those concentrations, the results from the TEM and 
EDX analyses and observations of the activities/processes taken place at the work 
place (Table 2.1).

Brouwer et al. [10] highlighted that data from direct reading instruments with 
short measurement intervals are autocorrelated and therefore the use of parametric 
methods, which are designed for independent data, is not appropriate. ARIMA 
(Autoregressive Integrated Moving Average) models could be used to estimate 
whether the activity has an effect on the level of particles compared with back-
ground levels [31, 32].

As part of the 7th Framework Project MARINA (Managing the Risk of 
Nanomaterials, http://www.marina-fp7.eu/) an exposure assessment strategy spe-
cifically developed for human risk assessment was developed. In this approach, also 
consisting of three tiers, the decision to move to a higher tier is not based solely on 
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the exposure but on an assessment of risk (i.e. the combination of the exposure and 
hazard). In tier one all the available information is used to make a decision about the 
likelihood of emission into the workplace atmosphere. The approach points to sev-
eral tools that could be used for such assessment (e.g. MARINA exposure library, 
control banding tools). If the health risk is not considered to be negligible, the user 
moves to tier two, where the emission of ENM is confirmed through measurements 
(off-line particle characterization and chemical identification) [47].

The strategies described above do not provide a consistent framework for  – 
reporting the measurements. Some recommendations and guidelines are given; e.g. 
Brouwer et al. [8] recommends that the results should be summarised into size bins 
of ≤100  nm and >100  nm. Other issues such as the number of measurements 
required to obtain a representative concentration, assessment of personal exposure 
and transport processes from the source to the receptor are not fully addressed in 
any of the proposed strategies.

2.2  �Consumers Exposure

The development of nanotechnology has unleashed the manufacture of consumer 
products containing ENMs. The Woodrow Wilson inventory (http://www.nanotech-
project.org/cpi/) currently lists 1,600 products in the market claiming to contain 
ENMs. The Nanowerk database (http://www.nanowerk.com/nanomaterial-database.
php) has information on the characteristics and suppliers of 3,000 different types of 
ENMs. The types of products spread across a wide range of categories, from building 
materials, sport equipment, electronics and automotive materials, nanomedicine, to 
personal use products that are used/applied directly on the skin such as clothes, 
deodorant, cosmetics and sun creams as well as food and food-packing materials [30].

Figure 2.1 shows the estimated maximum volume (metric tons/year) of ENMs 
used in different product categories in 2010 based on a marker study from Future 
Markets [18].

While the ENMs are meant to increase the performance of the product, their 
presence in consumer products has raised concerns over their safety towards human 
health and the environment. Consumer exposure can occur through direct contact 

Table 2.1  Decision criteria to move to tier three in the exposure assessment Brouwer et al. [8]

p-value 
(t-test)

Ratio 
AM-nanoactivity/
AM background TEM EDX Observations

Overall 
likehood

<0.05 ≥2.0 <100 nm + agglomerates Yes Absence 
other sources

Likely

<0.05 1.05–2.0 Agglomerates, few particles Intrusion 
outdoor air

Possibly

>0.05 <1.05 Large particle agglomerates Not Other 
sources

Not likely

AM arithmetic mean, TEM transmission electron microscopy, EDX energy dispersive X-Ray
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from the use of products (e.g. sun creams, clothes) or indirectly through the environ-
ment (e.g. contact with water, air, soil contaminated with ENMs) or products con-
taminated with ENMs (e.g. ENMs leached from food packing). Therefore, 
consumers can be exposed through all exposure pathways (inhalation, dermal, 
ingestion and eyes). Children exposure through mouthing of materials should also 
be considered as well as any other susceptible exposed populations.

Several studies have attempted to understand the mechanisms of ENM release 
from consumers’ products (NanoRelease: http://www.ilsi.org/ResearchFoundation/
RSIA/Pages/NanoRelease1.aspx: NanoHouse: http://www-nanohouse.cea.fr/; 
Scaffold: http://www.scaffold.eu-vri.eu/). These studies have provided very useful 
data on release to evaluate whether consumers can be potentially exposed through 
the environment; however, in most cases they do not provide quantitative exposure 
information. Within the NanoRelease project, exposure to consumers from sports 
equipment and electronics was estimated to be unlikely whilst exposure from tyres 
and textiles was found to be likely. Therefore, the magnitude of the release from 
consumer products will largely depend on the type of product, how much energy is 
applied to it (e.g. tires) and the presence of physical barriers between the ENMs 
and the consumers (e.g. electronics).The NanoHouse project concluded that for 
ENM used in paints under hard abrasion and leaching were mainly released embed-
ded within a matrix or in agglomerate form. Very few single nanoparticles were 
released from paints. Pirela et al. [46] assessed consumers’ exposures to particles 
release during laser printing using inks containing ENMs. The results showed that 
particles of silica, alumina, titania, iron oxide, zinc oxide, copper oxide, cerium 
oxide, carbon black among others could be released into the air during printing.

When assessing consumers’ exposure it is important to know the conditions of 
use (specific use and exposure route, frequency, amount used per application), the 
form and characteristics of the ENM in contact with the human body and how the 
ENM migrates from the product to the body. ENMs are incorporated in different 
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forms, suspended in liquids, suspended in solids, bound to the surface and embed-
ded in a matrix [20]. It should be noted that the ENM released from the matrix 
might have different characteristics to the primary ENM incorporated into the man-
ufactured product (e.g. coating may be removed) [42]. In order to understand the 
potential health effects and to develop acceptable daily intake levels it is important 
to be able to characterize these changes.

Modelling of consumers’ exposure to ENM is less advanced than workers’ expo-
sure. Environmental flow dynamic models can predict the concentrations of ENM 
in different compartment levels providing therefore an insight on the potential indi-
rect exposure to consumers. For example direct exposure to ENM in composites is 
considered to be unlikely. However, emissions to the environment at the end of life 
of the ENM are likely. Sun et al. [51] estimated annual emissions in 2014 in the EU 
to the surface water of 7,610 ton for nano-TiO2, 1,330 ton for nano-ZnO and 1.27 
ton CNT; for natural and urban soil of 2,230 ton for nano-TiO2, 1,380 ton for nano-
ZnO and 26.5 ton CNT; for sludge treated soil emissions were 45,400 for nano-
TiO2, 1.35 ton for nano-ZnO and 8.67 ton CNT and emission in the air of 324 ton 
for nano-TiO2, 149 ton for nano-ZnO and 2.80 ton CNT.

Despite these studies and the existing consumer product inventories (e.g. 
Woodrow Wilson inventory; ANEC-BEUC 2010 inventory of consumer products 
containing nanomaterials; Wijnhoven et  al. [58]), there are few quantitative data 
available on consumers’ exposure.

Using the best estimates available and/or worst-case assumptions, Hansen et al. 
[21] estimated consumer exposure to be 26, 15, and 44 μg/kg bw/year for a facial 
lotion, a fluid product, and a spray product containing nanoparticles, respectively. 
Chen et al. [14] estimated a mass of nano-TiO2 in the breathing zone of 170 μg/m3 
during 2.5  min application of a bathroom cleaning propellant spray containing 
nano TiO2.

The assessment of consumers’ exposure to ENM is more challenging, as the 
materials contained in the products are not well characterized and are mixed with 
other chemicals that affect the release and transfer of the ENM and their availability 
for exposure. Further studies using standard protocols are required to better under-
stand consumers’ exposure.

2.3  �Exposure During the End of Life

There is little information available on the potential for exposure to nanomaterial-
containing products during disposal and recycling stages. Established recycling 
schemes are available for consumer products such as electronics, packaging as well 
as large-scale dismantling of appliances, cars, aircraft and structures like wind tur-
bine blades. Releases of ENM from the product matrix and exposure through end-
of-life processes are possible as they generally involve high energy, abrasive 
processes, e.g. incineration, shredding, cutting, bailing and storage in open space 
environments [7]. Further studies are required to better understand the release sce-
narios associated with end-of-life processes.

2  Assessment of Human Exposure to ENMs
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Chapter 3
The Life Cycle of Engineered Nanoparticles

David González-Gálvez, Gemma Janer, Gemma Vilar, Alejandro Vílchez, 
and Socorro Vázquez-Campos

Abstract  The first years in the twenty-first century have meant the inclusion of 
nanotechnology in most industrial sectors, from very specific sensors to construc-
tion materials. The increasing use of nanomaterials in consumer products has raised 
concerns about their potential risks for workers, consumers and the environment. In 
a comprehensive risk assessment or life cycle assessment, a life cycle schema is the 
starting point necessary to build up the exposure scenarios and study the processes 
and mechanisms driving to safety concerns. This book chapter describes the pro-
cesses that usually occur at all the stages of the life cycle of the nano-enabled prod-
uct, from the nanomaterial synthesis to the end-of-life of the products. Furthermore, 
release studies reported in literature related to these processes are briefly 
discussed.

Keywords  Life Cycle • Nanomaterials • Nanocomposites • Release • Risk

3.1  �Introduction

The increasing use of nanomaterials in industrial and consumer products results in 
a potential risk for workers, consumers and the environment.

A starting point for any comprehensive risk assessment or life cycle assessment 
is the identification of all relevant life cycle steps, so that all scenarios with a poten-
tial risk can be evaluated. The life cycle is totally product-dependent, as each prod-
uct has its own manufacturing processes, uses and waste treatment and, so, its own 
hotspots for nanomaterial release and associated risks. This chapter presents a brief 
overview of the most common processes that take place at different steps of a prod-
uct life-cycle (Fig. 3.1) and highlights the potential contribution of each step to the 
release of nanomaterials and associated risk.
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It is also important to clearly identify all the processes implied in each life cycle 
stage to know which mechanisms drive to release. Apart from release quantification, 
the form of release (isolated particles, aggregates, embedded in a matrix, surface 
modified by hydration or oxidation, etcetera) may be determinant for the hazard 
evaluation.

3.1.1  �Production Levels of Engineered Nanomaterials

Some nanomaterials, such as carbon black and silica, have been industrially used 
for decades. However, during the last decade, new materials and modifications have 
allowed a dramatic expansion of nanotechnology. Despite the multiple materials 
that are being investigated at a research scale, at this moment it is estimated that 
nanomaterials produced at an industrial scale belong to only around 20 chemical 
classes [1]. At the moment, any attempt to determine nanomaterials production has 
to be based on estimations as they do not have to be reported. Only France and 
Denmark have recently regulated nanomaterials in products, so these nano-
additivated products have to be registered and labelled in order to inform the con-
sumers [2, 3].

Attempts to estimate the production levels and applications of nanomaterials 
have been based on information provided by industry through surveys. Sometimes 
the data collected relates to production capacities and sometimes to actual pro-
duction amounts and the geographical area under scope also differs [4–6]. One of 
the most thorough recent surveys is that of Piccino et al., who send a survey to 
industrial representatives from companies producing or using nanomaterials to 
estimate the worldwide or Europe-wide production of such materials [7]. A con-
siderable large variability among answers by different industrial representatives 
reflects the general uncertainties related to the actual worldwide production vol-
umes. However, there was general agreement that silica, titanium dioxide, zinc 
oxide, carbon nanotubes, iron oxides, aluminium oxides, and cerium oxides are 
the nanomaterial types with highest production volumes. The median production 
quantities for each of these nanomaterials ranged between 55 and 5500 tonnes per 
year worldwide [7], depending on the material. These values are also consistent 
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Fig. 3.1  Life-cycle of nano-enabled products
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with estimated annual production volumes in China in 2012, which ranged from 
200 to around 1300 tonnes for titanium dioxide, zinc oxide, aluminium oxide, 
zirconium oxide, and silver [8].

According to the French registry [9], the quantities produced and imported in 
2014 are around 274,000 and 122,000 tones, respectively. Carbon black and silicon 
dioxide are the category of substances with largest produced or imported quantities, 
both above 100,000 t/year. These are followed by calcium carbonate and titanium 
dioxide, with volumes ranging 10,000–100,000 t/year. Other materials reported to 
be produced or imported in amounts above 1000  t/year are aluminium oxide, 
boehmite (γ-Al(OH)O), calcium 4-[(5-chloro-4-methyl-2-sulphonatophenyl)azo]-
3-hydroxy-2-naphthoate, reaction mixture of cerium dioxide and zirconium diox-
ide, polyvinyl chloride, and magnesium silicate.

3.2  �Engineered Nanomaterials Synthesis

The synthesis of ENMs is the step of a nano-enabled product life cycle that has 
received the highest attention in the literature in relation to the potential risks for 
human health [10–13]. By contrast, the potential release of ENMs to the environ-
ment during this step has received little attention and it is commonly assumed to be 
low, though this completely depends on the procedures used during the production, 
cleaning and maintenance [14–17].

Due to the novelty of the field and the continuous research in the development of 
new nanomaterials, multitude of synthetic methodologies can be found in the litera-
ture. Most of these processes are adequate for laboratory scale and even pilot scale 
synthesis, but completely unworkable at industrial scales. Synthetic methods are 
often divided in top-down and bottom-up methods [18].

•	 Top-down methods. The successive cutting or slicing of bulk materials into 
nanomaterials play an important role in industrial synthesis of nanostructures 
that need specific shapes/sizes such as nanotransistors. Lithography, milling and 
attrition are the most common top-down processes used at the moment. The prin-
cipal disadvantages of top-down approaches are the internal stress and the imper-
fection introduced in the surface structure due to the use of so energetic 
techniques. Such imperfections may have dramatic effect over surface chemistry 
and physical properties of such prepared nanomaterials.

•	 Bottom-up methods. Atom by atom chaotic building of nanomaterials com-
prises most of synthetic methods as these are also the most common procedures 
in materials science. The main disadvantage of these methods is that usually a 
distribution of sizes is obtained, but compositions are more homogeneous than in 
top-down approaches.

Synthetic methods are usually divided in dry or wet synthesis; open or enclosed 
reactions; and gas-, solid- or liquid-phase reactions. Moreover, depending on the 
synthetic method and the material, different purification steps may be necessary 
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and, in the case of coated particles, one or more modification steps with extra 
purification are needed. To facilitate comprehension, this section is organized first 
by nanomaterial group, and then by synthetic methods.

3.2.1  �Carbon Based Nanomaterials Production

Sizable quantities of carbon based nanomaterials can be produced using various 
methods; among them, plasma based, thermal and hydrothermal syntheses pro-
cesses are the most used techniques [19–22].

The two most common plasma methods in the literature are Arc Discharge and 
Laser Ablation. Arc Discharge Method consists in passing current between two graph-
ite electrodes under helium, hydrogen or methane at low pressure in presence of tran-
sition metal based catalysts [23–28]. This causes vaporization of graphite that 
condenses over the cathode (and walls of the reactor). Carbon nanotubes (CNT) can 
also be produced by Laser Ablation, which is similar to Arc Discharge but the energy 
is provided by a laser. This laser vaporizes graphite and catalyst, so that nanocatalysts 
are formed and the carbon nanomaterials grow over them [29–35].

Thermal synthesis methods are also very abundant in the literature for the pro-
duction of CNT. Carbon Vapour Deposition (CVD) consists in the decomposition of 
a carbon source (usually a hydrocarbon over a transition metal catalyst). Both type 
of carbon source and catalyst affect in the CNT growth. Carbon based nanomateri-
als can also be produced by sono- or hydrothermal methods, which consist on the 
heating of a hydrocarbon/water mixture under pressure in the presence of a catalyst 
(usually Ni) [36–38].

These methods usually produce low quantities of carbon based nanomaterials 
(fullerenes, SWCNT, MWCNT, etcetera) mixed with other allotropic forms of car-
bon. The conditions used during the synthesis favour one form over the others, but 
purification steps are always necessary.

Graphene, graphene oxide and derivatives are synthesized very differently [39–
43]. The bottom-up approaches used for the rest of carbon based nanomaterials are 
modified to get 2D carbon layers over a support, which has to avoid 3D growth [44]. 
Graphene can be also produced by top-down approaches. The purest and most per-
fect graphene is produced by exfoliation of graphite [45–47], graphite oxide (fol-
lowed by reduction) [48–50] and carbon nanotubes [51].

Carbon based nanomaterials surface can be modified to improve their dispers-
ibility, their compatibility with a matrix or to functionalize them to add chemical 
groups that can later react or bond to any other entity, such as antibodies [52, 53], 
quantum dots [54] or gold nanoparticles [55]. These modifications are usually based 
on the following approach. In a first step, the nanomaterials are oxidized by a hydro-
thermal process (i.e.: sonication in presence of diluted nitric acid) that causes 
defects on the surface. Then, the hydroxyls and carboxylic acids formed are used for 
subsequent functionalization by traditional chemical reactions. Other strategies 
include direct arylation, carbene or nitrene addition or Friedel-Craft acylation.
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Carbon nanotubes and nanofibers have centred most of the attention of hygienists 
and toxicologists due to their fast increase in production volume and observed dustiness 
[16, 56–64]. Most published studies on occupational exposure to CNT show that, as the 
synthesis processes take place in closed reactors, most of the exposure occurs during 
material recovery and during cleaning and maintenance operations [57, 65–67].

3.2.2  �Metallic Nanomaterials Production

Metallic nanomaterials (MNM) are traditionally synthesized by the reduction of a pre-
cursor under controlled conditions and in the presence of a stabilizer [68]. The solvent, 
conditions and stabilizers used depend on the element of the NP and on the purpose. Wet 
syntheses have been traditionally considered of lower risk in terms of occupational 
exposure due to lower aerosol formation compared to the work with powders.

Noble and seminoble metallic nanoparticles (Ag [69], Au [70], Pt [71], Pd [72, 
73], Ru [74], Rh [75], Ir [76]) are usually industrially synthesized by reduction of a 
precursor salt in water (such as HAuCl4 or RuCl3). Once the colloids are synthe-
sized, they can be directly functionalized in situ or phase-transferred to an organic 
solvent for further surface functionalization when necessary [77]. The conditions 
and precursors used completely determine the results in terms of size and morphol-
ogy [78]. Although less common, all these materials can be produced by other meth-
ods, such as electrochemical deposition, physical synthesis or sol-gel method.

More reactive metallic nanoparticles are synthesized by similar approaches 
(which can be also used with noble metals), but under more controlled conditions 
(air-free atmosphere, organic solvents, ionic liquids, etcetera). The most common 
strategy consists on direct reduction or decomposition of organometallic com-
pounds or metallic carbonyls, such as Fe(CO)5, Co2(CO)8 or Ru(cod)(cot). Initially 
these syntheses used to produce polydisperse NP, but their optimization has 
improved the control of size and nowadays they are used for the synthesis of zerova-
lent nanoparticles of several metals: Fe, Co, Ru, Ir, Au, Ni or Rh, and different types 
of mixtures (core-shell, alloys...) [79, 80]. Surface modification of these materials is 
usually done in situ, and the organic modifier is used as stabilizer.

Though most metallic nanoparticles are produced by wet processes, occupa-
tional exposure cannot be neglected [81–86]. Release of metallic nanomaterials to 
the environment has received some attention, particularly Ag-NPs release, but most 
studies use assumptions to estimate the release during the MNP synthesis rather 
than actual measurements [87].

3.2.3  �Oxide Based Nanomaterials Production

Several physical and chemical routes for the synthesis of nanometal oxides (NMOx) 
have been reported. Solution routes are the most widely used at laboratory scale, as 
they need more easily accessible set-ups and allow having a better control size and 
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shape. In contrast, at the industrial scale, gas phase methods are the most commonly 
used as they are usually cleaner and better conversions are obtained. Moreover, they 
can be used for the deposition of thin films or nanostructures over a particular sub-
strate. Both solution and gas-phase methods are widely used to produce different 
NMOx such as ZnO [88], TiO2 [89], FexOy [90], CeO2 [91, 92], ZrO2 [93], CuxO 
[94], Al2O3 [95], SiO2 [96–98], CoxOy [99], etcetera.

Solution routes are based on the decomposition of a salt or alkoxide precursor in 
solution, normally by means of a source of energy, to form the nanomaterial. 
Thereafter, this nanomaterial is separated from the solution by centrifugation, nano-
filtration or other nano-appropriate techniques. Some examples of solution routes 
include solvo-/hydrothermal method, precipitation method, electrochemical synthe-
sis, sonochemical method, sol-gel method and microemulsion.

In gas phase methods, metal vapour is produced by thermal, laser ablation, elec-
tron beam, ion beam, molecular beam or by vaporizing and dissociating any metal 
precursor. This metal vapour reacts with oxygen to produce the metal oxide that is 
deposited on the bottom and the internal walls of the reactor.

Different surface modification strategies exist. The most commonly reported 
are: (i) chemical functionalization of the surface by bonding of a silane derivate, 
which renders a very stable modification; (ii) addition of compounds that have 
affinity for NMOx surfaces, such as carboxylates or phosphates; and (iii) polymer 
grafting [100].

Occupational exposure to nanometal oxides in production facilities has not 
received much attention in the literature. In general, the reported studies show that 
the exposure is due to specific operations such as reactor opening, material recovery 
or cleaning and maintenance [86, 101–104].

3.2.4  �Quantum Dots Production

Quantum dots (QD) can be produced by several methods, both top-down and bot-
tom-up approaches [105–107]. The advantage of top-down processes is that very 
well-defined QD are produced. This is necessary, for instance, when producing 
nano-transistors for computing. However, these high energy methods usually result 
on physical and chemical damage to the particle surface. On the other hand, bottom-
up approaches produce smaller and purer particles, as necessary in sensing 
applications.

Lithography, reactive-ion etching and wet chemical etching are the most com-
monly used top-down processes. The bottom-up processes are very similar to the 
ones explained for nanometal oxides synthesis.

The surface of most quantum dots is very easy to modify, as several functional 
groups have affinity for them (thiols, amines, carboxylic acids, etcetera). Thus, a 
multitude of papers report QD functionalization with biomolecules (DNA, RNA, 
proteins...) [108, 109], polymers [110] or other nanomaterials [111].
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Despite of the high concern about quantum dots toxicity [106, 112–114] and 
their potential impact over workers and the environment, there is a lack of experi-
mental data on the exposure to quantum dots during synthesis steps. Moreover, the 
only study that was found at the moment focused on a labscale synthesis [104].

3.2.5  �Polymeric and Ceramic Nanofibres Production

Nanofibres are usually produced by the electrospinning method [115–119]. This 
method produces non-woven fabrics, in which the fibres are randomly oriented and 
connected by physical entanglements or bonds, without any knitting or stitching. In 
the electrospinning method, polymers are usually dissolved in a proper solvent (or 
molten) and the nanofiber is produced by high voltage. Recently, this technique has 
been extended to ceramic nanofibres synthesis. In this case, polymeric nanofibres 
loaded with ceramic precursors are prepared by electrospinning and, later, com-
busted to render the ceramic nanofiber.

Nanofibres production is usually done in closed conditions and neither occupa-
tional nor environmental exposure have been reported during this life cycle step. All 
the publications have focused on secondary manufacturers [120].

3.3  �Nanocomposite Production

The incorporation of the nanomaterial in or on a matrix is a key step in nano-enabled 
products life cycle (except on those cases where nanomaterials are a final product 
by themselves, such as nanocatalysts). Nanotechnology has greatly progressed dur-
ing the last two decades and, nowadays, we can find applications for almost any 
type of nanomaterial in any type of matrix.

A nanocomposite is a multiphase solid material that has at least one of the phases 
in the nanoscale. The main difference between nanocomposites and traditional com-
posites is the high surface of contact between the phases in the first case. The addi-
tion of nanomaterials to solid matrices produces materials with enhanced, or even 
completely new, attributes, such as conductive polymeric matrices, electrolumines-
cent metals, semiconductor ceramics or photo-luminescent textiles. The properties 
and quality of the resulting nanocomposite depend on the constituents of the com-
posite, but also on the degree of dispersion and homogeneity of the different phases, 
which depend on the compatibilization between the phases and the mixing/addition 
methods.

In addition, nanomaterials can be also added to the surface of a material to obtain 
new or improved surface properties. This surface addition can be done by in situ 
nanocomposite formation, such as surface treatment of ceramic tiles with a solution 
of nanosized titania and a resin that is later dried [121]; by physical or chemical 
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attachment of the nanomaterial to the surface, such as textiles with silver nanopar-
ticles bonded to the fibres [122]; or by direct deposition of a thin layer over the 
surface, such as solar cells of nanosized TiO2 prepared by direct CVD over the cell 
surface [123].

Other types of nano-additivated formulations include nanomaterial dispersion in 
emulsions, such as paints or cosmetics, or mixtures of non-consolidated solids, such 
as catalytic mixtures for gas emission treatment.

The literature on this field is very broad (8,280; 88,000 and 75,000 results in 
Google Books, Google Scholar and Web of Science, respectively, when looking for 
all in title: nanocomposites).1 Due to the scope of this book, this chapter will only 
provide an overview on the production processes for the main types of nanocompos-
ites: polymeric, ceramic, metallic and textiles. If needed, the reader can expand this 
information in some of the existing reviews [124–126].

3.3.1  �Polymeric-Matrix Nanocomposites

Research on polymeric nanocomposites has exponentially grown in the last decades 
and this has been reflected in an increase in the number of products launched to the 
market based on such materials, from conductive polymeric materials to artificial 
tissues.

Polymeric matrix nanocomposites can be synthesized by different techniques 
that can be divided in three major groups: solution casting, melt blending and in situ 
polymerization [127–130]. Solution casting consists in the dissolution of the poly-
mer and dispersion of the nanomaterial in a solvent (usually using ultrasonication). 
Then, the nanocomposite is obtained by removing the solvent. In the melt blending 
method, the polymer and the nanomaterial are intensively mixed in an extruder or a 
mixer at a temperature that allows polymer mobility. In situ polymerization consists 
on the mixture of the nanomaterial and monomers (in solution or not) under condi-
tions that favour the polymerization. Polymerization can be catalyzed by the nano-
material itself (i.e. silicate layers promote intercalated monomer polymerization) or 
by the addition of polymerization catalysts. Moreover, the nanomaterial may be 
coated with vinyl moieties where polymerization can start.

The choice of the synthesis method and its conditions completely depend on the 
polymer and on the type of nanomaterial. A good compatibility of the polymer and 
the nanofiller is critical for a homogeneous physical-chemical behaviour of the 
composite and to reduce nanomaterial release in following life cycle phases [131]. 
The most common strategies used to improve such compatibility are the use of addi-
tives that act as a surfactant between the nanomaterial and the polymer [132–135], 
and the surface modification of the nanomaterial to make it more compatible with 
the polymer [135–138].

1 Search done on the 21st January 2015.

D. González-Gálvez et al.



49

3.3.2  �Ceramic-Matrix Nanocomposites

Nano-additivation of ceramic materials has resulted in the development of new 
materials with enhanced properties. The most important disadvantage of ceramic 
materials is their fragility, and the addition of nanomaterials is mainly used for the 
reinforcement of the ceramics that allows their use in new applications (i.e. armours, 
surgery materials or artificial bones). In addition, nanomaterials can also confer 
other properties that make these materials useful in fields such as optical, electronic 
or sensing [128, 139]. Ceramic matrices were traditionally reinforced with metallic 
particles [140–142], but nowadays one can find in the literature ceramics reinforced 
with carbon based nanomaterials [143, 144], nanometal oxides [145, 146] or quan-
tum dots [147].

Three methodologies are basically used in the processing of ceramic matrix 
nanocomposites: powder process, polymer precursor process and sol-gel process 
[128]. Powder process consists of the mixing of the different materials that are thor-
oughly milled together in wet conditions; later the mixture is dried and consoli-
dated, usually by pressure or moulding. This process is simple but results on a 
heterogeneous material. Polymer precursor process is similar, but the nanomaterial 
precursor is added to a polymer that is later pyrolized. Sol-gel process consists in 
the hydrolysis and condensation of molecular precursors dissolved in organic media 
to form a sol-gel, which is later dried and consolidated.

3.3.3  �Metal-Matrix Nanocomposites

Particulate reinforced metal-matrix composites have been used for decades [148], 
but the reinforcement with nanomaterials has been developed recently and metal-
matrix nanocomposites are still in their infancy [149]. The main advantages of 
metal matrices are their inherent thermal stability, resistance to abrasion, and ther-
mal and electrical conductivities. But their development was strained by their cost 
and the difficulties of preparation [128, 149, 150]. The nano-additivation of metal 
matrices confers a combination of ceramic and metal properties to the material. This 
makes the material ideal for multiple applications, such as structural materials in the 
aeronautic industry or in light energy conversion.

Several methods for metal-matrix nanocomposites processing are described in 
the literature, including vapour phase processing, spray pyrolysis, powder metal-
lurgy, solidification, chemical and deformation processes. The most used and cheap-
est method is solidification, which consists on the melting of the metal and the 
nano-reinforcement and rapid solidification of the melt by different processes. 
Liquid infiltration is similar, but in this case only the metal is melt and surrounds the 
nanomaterial. The homogeneity of the mixture can be improved by ultrasounds. The 
other methods are similar to the ones used in nanomaterial synthesis (sol-gel syn-
thesis, CVD, spray pyrolysis, etcetera) (see Sect. 3.2).
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3.3.4  �Nano-additivated Textiles

Nanomaterials can be integrated in the textiles in different phases of their fabrica-
tion, which leads to different types of nano-additivated textiles: (i) Nanotextiles, 
when the nanomaterial is added once the fabric is produced, most of the products 
falls in this category; (ii) Nanocomposite textiles, when the material used to make 
the fibres is a nanocomposite; and (iii) Nanofibrous materials, when they are made 
from nanofibres (woven or non-woven) [151]. Nanomaterials are added to textiles 
to provide new or improved properties. The most common ones are antimicrobial 
activity and UV-filtering, but they are also used as flame retardants, water repellent, 
static protection, electrical conductivity, enhanced resistance or strength, photo- or 
electro-luminescent, self-cleaning, etcetera.

Several methods have been used for surface modification of fibre-based materi-
als, such as textiles and membranes [152–155]. Usually they involve small modifi-
cations during the fabric processing; the nanomaterial is added as any other additive 
by methods such as impregnation, roll-to-roll and pad-dry-cure. The main problem 
of these methods is that the nanomaterials are usually not well fixed to the fabric and 
majorly released during the washing process [156–161]. In order to minimize the 
release of nanomaterials, binders and functionalized particles are used to improve 
particle affinity for the textiles. Ultrasounds, UV irradiation, plasma-treatment and 
ion-beam-assisted deposition are very effective for the surface modification of tex-
tiles, but impractical for large scale manufacturing (several preparatory steps, time-
consuming and costly).

Nanocomposite fibres have emerged in the last decade as a very interesting mate-
rial for nano-enabled textiles processing. In this case, nanocomposite material is 
produced as any other polymer-matrix nanocomposite (see Sect. 3.3.2). The main 
challenge is to get nano-reinforced polymers that can be processed as fibres and 
that, later, do not reduce the mechanical properties of the fabric.

Textiles and other non-woven products (such as filtering membranes) can be made 
of nanofibres. Nanofibres are produced by electrospinning (see Sect. 3.2.5) and can 
contain pure polymer(s) or nanocomposites. At the moment, nanofibres are not woven 
at industrial scale and are usually used as additive over other fibres [151]. Non-woven 
nanofibres are used as layer and barrier materials [115, 117, 118, 162, 163].

3.3.5  �Occupational and Environmental Exposure 
During Nanocomposite Production

Most of the available studies on occupational exposure to nanomaterials focused on 
the nano-additivated material preparation. Nanomaterial synthesis is usually done in 
close reactors and workers are basically exposed during the nanomaterial recovery 
and during cleaning and maintenance. In contrast, weighting, pouring, and mixing 
of nanomaterial and bulk materials (common steps during nano-additivation of 
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materials) are usually done in open conditions, and can involve big amounts of 
nanomaterials, so that the exposure during this step is potentially high [10, 12, 164–
166]. This has been corroborated by exposure monitoring campaigns in workplaces 
as described in different reviews [167, 168] and other later studies [169–175].

On the other hand, nanomaterial release to the environment during this step is 
usually considered unlikely. Once the process is finished, the nanomaterials are 
embedded in a matrix or a mixture, so their recovery is easier and also the waste 
treatment [16].

3.4  �Product Manufacturing

Product manufacturing involves a series of processes to convert the nano-additivated 
material into the final product. Machining is necessary to obtain final products with 
specified dimensions, surface finishing and tolerances. Most of the machining pro-
cesses are physically aggressive and can lead to nanomaterial release. Although 
these processes are carried out by machines, they usually need an operator, some-
times in close and long contact to the material (i.e. sewing). Some examples of 
machining processes include soldering, welding, cutting, sewing, grinding, shred-
ding, sanding, punching and drilling. Moreover, one has to consider than several of 
these processes may be necessary to get the final product, which may mean the 
product manufacturing divided in several phases that can even occur in different 
companies or locations.

Nanomaterial release from nanocomposites during the machining processes has 
received special attention in the literature in comparison to other processes during 
manufacturing and use stages. Indeed, almost half of the papers identified in a 
recent review on nanomaterial release from nanocomposites focused on machining 
processes [176].

Most of these studies are focused on CNT- and NMOx-based nanocomposites, 
with almost no attention to nanometal-based nanocomposites. Regarding the matrix, 
most of the studies focus on polymeric nanocomposites, probably because they are 
the ones with highest production volumes (Fig. 3.2) [176, 177].

CNT

NMOx

Clays

Nanometal

Other

Polymer-matrix
nanocomposites
Ceramic-matrix
nanocomposites

Metal-matrix
nanocomposites

Paints / coatings

Fig. 3.2  Summary of reviewed papers by nano-reinforcement, left, and by base material, right, 
submitted to machining processes (Based on Froggett et al. 2014)
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Nanomaterial release from nanocomposites during the machining processes 
can be studied simulating real operations or using standardized protocols. Non-
standard studies of cutting/sawing [120, 178, 179], grinding [120, 180], shred-
ding [181], sanding [65, 120, 182–186], and drilling [187–190] under different 
conditions (wet/dry, hot/cold, etcetera) are found in the literature. Studies based 
on standard protocols usually focus on abrasion, using a Taber abraser [131, 185, 
191–198]. Regardless on the type of simulation, most studies analyze the released 
material and usually conclude that part of the matrix released contains nanoma-
terials embedded. Only four publications report significant release of isolated 
nanomaterial [120, 131, 186, 192]. It is important to notice that most of these 
sanding/abrasion studies do not clearly distinguish between abrasions due to 
aging or industrial processes.

From the publications mentioned in this section, it can be concluded that the 
matrix play a more important role than the nano-reinforcement on the overall deg-
radation caused by the machining processes. Moreover, good dispersion of the 
nanofillers in the matrix could reduce the release of isolated nanomaterials [131].

3.5  �Use Phase

At the moment, the major usage of nanomaterials is considered to be at the indus-
trial level. For example, they are used as catalysts, membranes, and as additives or 
technical components of materials in various application fields. In addition, some 
nano-enabled products are addressed to professionals and consumers. There is no 
doubt that the diversity of applications of ENMs in commercial products has 
grown extensively over the past decade, and continues to grow rapidly [199]. 
However, the actual distribution of nanomaterials over different product catego-
ries is largely unknown. According to the (US) Nanotechnology Consumer 
Products Inventory [200], which has been updated very recently, the number of 
consumer products that are claimed to contain nanomaterials has increased from 
54 products in 2005 to 1628 products in 2013. Although these numbers are likely 
to reflect real trends, their accuracy is questionable because tracking products that 
contain nanomaterials is rather challenging. With a few exceptions, current label-
ling regulations do not require that the nanomaterial be listed specifically as an 
ingredient. On the other hand, some products on the market with the claim of 
“nano” may neither contain nanomaterials nor be produced with nanotechnology. 
Depending on the area of application, interest in reporting the use of nanomateri-
als can differ, which could result on biased estimations on the main area of appli-
cation if based on reported use.

Such lack of information regarding the real use of nanomaterials in consumer 
products may change in the coming years. First, some regulations, such as those 
affecting cosmetics and food ingredients in the EU are currently already request-
ing producers to label nanomaterials in their products [201, 202]. And second, 
some countries established compulsory registries of nano-enabled products. 
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France was the first European country to require the identification of ‘substances 
with nanoparticle status’ that are produced, imported, distributed, or formulated 
from the 1st of January 2013 (Article 185 of the French Environmental Code [3]). 
Since June 2014, the Danish EPA also requests the reporting into the nano-prod-
uct register of mixtures and articles that are intended for sale to the general public 
and which contain nanomaterials. They did, however, limit the type of products 
that should be reported on the basis of their potential to represent a risk to the user 
or the environment. Therefore, reporting is only requested for products where the 
nanomaterial itself is released under normal or reasonably foreseeable use or 
where the nanomaterial itself is not released but substances in soluble form that 
are classified as carcinogen/mutagen/reprotoxic (CMRs) or environmentally dan-
gerous substances are released from the nanomaterial. In addition, some type of 
products (mostly those covered by specific product risk assessments, such as med-
icines or cosmetics) are also exempt [2].

A recent report outlines the results of the two first declaration periods in France 
(up to 1st June 2014) [9, 203]. Table 3.1 includes the sectors of use with more than 
100 declarations in 2014. The sectors with the highest number of declarations were 
agriculture, forestry and fishery, and formulation [mixing] of preparations and/or 
re-packaging (excluding alloys) with 58 and 19 of the declarations, respectively. 
Regarding chemical product categories, the most commonly reported are: (1) coat-
ings and paints, thinners, paint removers, (2) cosmetics and personal care products, 
and (3) plant protection products, altogether accounting for almost 70  % of the 
chemical product categories registered (Table 3.2). Finally, among the registered 
articles, the most frequently reported categories were rubber articles (AC10), 
machinery, mechanical appliances, and electrical/electronic articles (AC2), plastic 
articles (AC13), vehicles (AC1), and other articles with intended release of sub-
stances (AC30).

Future updates of this registry and other registries will provide more realistic 
estimates of the global production of nanomaterials and their main applications.

Table 3.1  Distribution of sectors of use among the total declared in 2014

Code Descriptor Occurrence Percentage

SU1 Agriculture, forestry, fishery 6417 58.28
SU10 Formulation [mixing] of preparations and/or re-packaging 

(excluding alloys)
2131 19.36

SU0 Other 877 7.97
SU17 General manufacturing, e.g. machinery, equipment, 

vehicles, other transport equipment
330 3.00

SU4 Manufacture of food products 233 2.12
SU24 Scientific research and development 227 2.06
SU11 Manufacture of rubber products 161 1.46
SU12 Manufacture of plastics products, including compounding 

and conversion
161 1.46

SU9 Manufacture of fine chemicals 119 1.08

Adapted from Ministère de l’Écologie du Développement durable et de l’Énergie (2014)
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3.5.1  �Common Nanomaterial Applications and Potential 
for Release of Nanomaterials

Some applications involve the intended release of NM, either to result on an intended 
human exposure (e.g., application of nano-enabled sunscreen onto the skin), or to 
application on other surfaces (e.g., generation of a nanocoating by spraying into a glass 
surface). In these cases, the estimation of the direct release of NMs is rather straightfor-
ward. However, understanding which fraction of it reaches its target application point, 
and which is the fate of such fraction after application is still largely unknown.

In other many applications, NM are part of the product matrix and are not 
intended to become released during use. Nevertheless, some of the normal use pro-
cesses for some products may result on such unintended release. These can be 
mechanical processes, such as washing, wearing, tearing, breaking, and drilling, or 
physical-chemical degradation processes, such as weathering and chemical abrasion. 
The amount of the NM released from the matrix during the use stage will depend on 
several factors: the amount of NM in the product, the product lifetime, the way the 
NM are incorporated in the material (surface applications or in matrix), the surface 
contact area of the product that is affected by the process inducing release, the trans-
fer factor of the NM within the matrix, the thickness of the product, and the fre-
quency and duration of use.

During the last years, an increasing interest has resulted on research on the 
release of NM during the use phase of nano-enabled products. Indeed, it is 
assumed that unintended emissions from diffuse sources are one of the most 
important sources of NM releases to the environment [14]. Nevertheless, the num-
ber of studies evaluating release of NM from solid nanocomposites is still very 
low (Table 3.3) [176].

In general, weathering studies with polymeric nanocomposites have shown the 
degradation of the polymeric matrices due to photo- and chemical degradation. As 
a consequence, the nanoparticles tend to accumulate in the degraded zone, at the 
surface of the nanocomposite. However, free released NM are barely detected and 
rarely freed from the matrix in which they were included, even when weathering 
experiments have been combined with secondary mechanical forces [204, 205].

The release of nanomaterials (embedded in organic binder, as aggregates, or as 
single particles) from conventional paints during run-off events has been reported 
[195, 206–209]. However, the amounts released greatly differ among studies.

Table 3.2  Distribution of chemical product categories among the total declared in 2014

Code Descriptor Occurrence Percentage

PC9a Coatings and paints, thinners, paint removers 631 24.0
PC39 Cosmetics, personal care products 605 23.0
PC27 Plant protection products 575 21.9
PC13 Fuels 216 8.2
PC32 Polymer preparations and compounds 160 6.1

Adapted from Ministère de l’Écologie du Développement durable et de l’Énergie (2014)
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A considerable number of studies have also focused on the release of nanomate-
rials (mostly silver) from textiles during washing processes [157, 160, 161, 210–
212]. High releases have often been reported during the first washing event [211]. 
All these studies suggest that the silver particles in the textile dissolve to silver ions 
in the water and form secondary particles. A similar process seems to occur when 
textiles containing silver nanoparticles are immersed in artificial sweat [213–215].

The available research still provides a rather partial view of the potential release 
of nanomaterials or dissolved ions from consumer products. And further research is 
needed to understand and model which factors and how determine release under 
different processes.

3.6  �End of Life

Products containing nanomaterials will eventually reach the end of their useful lives 
and, unless recycled, be discarded. In addition, waste materials containing nanoma-
terials are being generated during the manufacture of nanotechnology products. 
These waste streams generated during the life cycle of products containing nanoma-
terials are potential sources of nanomaterials into the environment. The handling, 
treatment and disposal of such wastes will determine the resulting environmental 
releases of nanomaterials. Therefore, the development of appropriate end-of-life 
management strategies for waste streams containing nanomaterials is critical.

This section provides an overview of the most common recycling and end-of-life 
processes for products and waste streams containing nanomaterials.

3.6.1  �Recycling

Two categories of waste can be considered in terms of recycling processes. First, waste 
streams that are treated as broad waste categories, such as plastics or paper. These are 
typically highly heterogeneous mixtures of different products that could include multi-
tude of different nanomaterials. And second, narrower categories, such as PET bottles, 

Table 3.3  Summary of the current literature on release of nanomaterials from solid nanocomposites

Weathering Washing Contact

Textiles/Fabrics 0 7 2
Thermoset 8 0 0
Termoplastic 6 0 2
Paints/Coatings 9 0 1
Cement 2 0 0
Dental glass 0 0 1
Ceramic 0 2 0
Total 25 9 6

Adapted from Froggett et al. [176]
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tyres, and Li-ion batteries, that are comparatively much more homogeneous. Regardless 
of the category, current recycling processes will handle products with and without 
nanomaterials in unknown proportions. Research is needed to estimate the type and 
quantity of nanomaterials in different material flows entering recycling systems, and on 
how the presence of nanomaterials alters the quality of the recycled material. Indeed 
some research has been published on the performance of recycled composites contain-
ing nanomaterials, and results show that the presence of nanomaterials may negatively 
affect the quality of the recycled composites [216, 217]. Such information could result 
on changes in the optimal applications for the recycled materials or on changes in the 
recycling processes per se. In addition, information is also needed on the potential 
release of nanomaterials during these processes and on technical measures that could 
be used for minimizing them [218]. The generation of such information is necessary to 
evaluate potential negative impacts on workers or the environment [219].

3.6.2  �Incineration

Incineration is a thermal treatment, through which waste is combusted in an oxidiz-
ing ambient at temperatures in the range of 850–1200 °C [220]. There are different 
types of plants, which mostly differ in the off-gas treatment section. Materials 
(including nanomaterials) that enter an incineration plant can be totally or partially 
combusted or remain unaltered, depending on the local conditions in the combus-
tion chamber, the melting point and reactivity of the materials, and additional matrix 
materials in which they are present. Unaltered or partly combusted materials can 
end up in the slag/bottom ash, retained in the particle control filters and becoming 
part of the fly ash, or go through such filters and be released to the environment.

Nanomaterials in the waste streams entering an incinerator may exist as free parti-
cles (i.e. a powder) or dispersed in a liquid or solid material. Based on theoretical 
thermodynamic considerations and on some experimental data, it is generally assumed 
that most nanomaterials in waste would end up in bottom ash. This would be the case 
for particle aggregates or particles that do not totally combust. A smaller fraction, 
mainly free particles and some partly combusted materials, would reach the air filtra-
tion systems, where a proportion of those would be retained [17, 220–225]. Some 
experimental data suggest that state-of-the-art flue gas cleaning systems (such as elec-
trostatic precipitators and wet scrubbers) would effectively retain nanomaterials, but 
the efficiency of current filter techniques is still controversial [221, 222]. Further exper-
iments are needed to fully substantiate these assumptions on the fate of nanomaterials 
in an incineration plant, and quantify efficiency of filter techniques for different type of 
nanomaterials. In addition, it remains unclear in what form the NM are present in the 
bottom ash. Treatment of the bottom ash depends on regional legislation, but it is usu-
ally disposed in landfills, unless originated from special waste streams that justify its 
further confinement. It is assumed that most of the waste streams containing nanoma-
terials will be considered domestic wastes, resulting in less strict regulations on the fate 
of resulting bottom ashes. Therefore, understanding in which form the nanomaterials 
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are usually present in the bottom ash (i.e. whether or not enclosed in vitrified frag-
ments) is important to understand their possible later mobility [225]. This information 
could be used to evaluate if current treatments are appropriate for the resulting ashes.

3.6.3  �Landfilling

Landfill is a system of waste disposal that is based on burial of municipal solid 
waste (MSW) in specifically designed sites. Although landfill is one of the most 
exploited treatments for MSW end of life, it is not yet clear how NM behave during 
disposal. If NM are able to be transported through waste, then the potential for 
release from landfills to the surrounding environment increases. Existing studies 
show some degree of mobility for different NM, which depends on the NM and the 
composition of the leachate (organic composition, ionic strength, pH) [226, 227]. 
Another concern about the presence of NM in landfills is related to their capacity to 
influence biological activity. Very few data is available on this issue, and so far this 
indicates no effects on the overall biological activity [228, 229], although bacterial 
community structure has been shown to be sensitive to some nanomaterials [229].

3.6.4  �Waste Water Treatment

Domestic (and some industrial) waste water containing nanomaterials will end up in 
sewage treatment plants and industrial waste water treatment plants.

Concerns are related to the impact of nanomaterials on the biological systems 
within such treatments, and on their fate. Several studies have investigated such 
processes (see recent review by Neale et al. [230]), but available information is still 
rather partial. Part of the sewage sludge, when metal concentrations are below 
established maximum limits, is applied on land as supplemental fertilizer of landfill 
cover. Current regulations establish metal content limits without consideration of 
particle size. Yang et al. estimated the proportion of nano-TiO2 present in a landfill 
and concluded that it represented around 0.1–0.2 % of the total Ti [231]. However, 
these values could vary regionally and with changing trends in the production of 
nano-TiO2. Further knowledge on the mechanisms of metal transport in soils and 
effects of environmental conditions and particle size are needed to evaluate the 
potential impact of applying sewage sludge containing nanomaterials on soils.

3.6.5  �Current Practise and Regulations

Altogether, there is very limited information on the possible risks associated to the 
presence of nanomaterials in wastes. In the lack of specific evidence for concern, no 
specific processes are required for wastes containing nanomaterials in neither 
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Europe nor the United States [232, 233]. In Europe, wastes are classified as hazard-
ous or non-hazardous based on Regulation No. 1272/2008 on Classification, 
Labelling and Packaging of Substances and Mixtures [234]. This regulation does 
not include specific requirements for nanomaterials. Therefore, it is likely that 
nanomaterials will be classified in the same categories as their bulk form, and nano-
specific hazards may be overlooked. The classification of waste as hazardous or 
non-hazardous is a key step as it leads to different requirements under the Waste 
Framework Directive. For example, mixing restrictions, labelling, and record keep-
ing do not apply to wastes containing nanomaterials, unless they have been classi-
fied as hazardous [235].

Even when nanomaterials would be classified as hazardous, they may still be 
appropriate for use in some consumer products. In those cases, it is unlikely that 
their classification would result on specific end-of-life treatments for consumer 
products containing them. However, this is an issue that also applies to other type of 
hazardous substances.

More details on how current regulations affect wastes containing nanomaterials 
(and associated gaps) can be found in previous review reports [232, 233, 236].
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Chapter 4
From Dose to Response: In Vivo Nanoparticle 
Processing and Potential Toxicity
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Abstract  Adverse human health impacts due to occupational and environmental 
exposures to manufactured nanoparticles are of concern and pose a potential threat 
to the continued industrial use and integration of nanomaterials into commercial 
products. This chapter addresses the inter-relationship between dose and response 
and will elucidate on how the dynamic chemical and physical transformation and 
breakdown of the nanoparticles at the cellular and subcellular levels can lead to the 
in vivo formation of new reaction products. The dose-response relationship is com-
plicated by the continuous physicochemical transformations in the nanoparticles 
induced by the dynamics of the biological system, where dose, bio-processing, and 
response are related in a non-linear manner. Nanoscale alterations are monitored 
using high-resolution imaging combined with in situ elemental analysis and empha-
sis is placed on the importance of the precision of characterization. The result is an 
in-depth understanding of the starting particles, the particle transformation in a bio-
logical environment, and the physiological response.
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4.1  �Introduction

Nanotechnology is a key modernization driver that balances innovations in material 
synthesis with the need for novel solutions that impact all energy sectors, emerging 
medical fields, and rapidly evolving electronics applications [3]. It also offers envi-
ronmental technology breakthroughs by integrating nanotechnology products and 
synthetic biology and offers opportunities that focus on human health and animal 
welfare. The field of nanomaterials is a multidisciplinary area in which material sci-
ence is explored at the nano-scale, but the concepts behind nanoscience are not new. 
In his celebrated lecture at Caltech, in 1959, physicist Richard Feynman described 
the process of manipulating and controlling individual atoms, molecules and 
nanoparticles, and he anticipated an “enormous number of technical applications” 
through the creation of novel materials and compounds [22, 76, 78]. More than half 
a century later, scientists and engineers are finding various ways to produce a wide 
range of nanoparticles [1]. Importantly, the fast exploration and deployment of 
nanomaterials must also incorporate exposure, toxicity and risk assessment studies 
in order to balance the successful integration of nanomaterials into everyday life 
with any potential safety and environmental issues [7, 17, 18, 48, 58, 69, 72, 78]. 
This is critically important in determining which parts of life may be enriched with 
the assistance of nanomaterials and which parts may suffer.

Manufactured nanoparticles (MNPs) typically range in size from 1–100 nm [23]. 
They exhibit unique properties compared with those of their larger-sized “macro” 
counterparts. The differences are due to vastly increased surface-to-bulk ratios and 
because of the distinct structures of MNPs [13, 27, 80, 88]. Nanotechnology and the 
application of nanoparticles in consumer products has become an integral part of 
today’s life and require safety assessments [4, 12, 20, 27, 32, 34, 50, 59, 66, 73]. The 
growing rate of nanoparticle-based product developments has raised worldwide 
apprehension regarding the release of MNPs into the environment and their subse-
quent uptake. There are several uptake pathways for MNPs, which complicates the 
issue of modelling exposure risks tremendously [5, 15, 30, 40, 54, 60, 83]. Nano-
safety studies have seen an exponential rise over the past two decades, but the effects 
and dangers of nanoparticles, either for animals, humans, or cell structures, are still 
not clearly defined [10, 43]. Safety concerns have led industrial and academic 
researchers to adopt strategies to make MNPs more biocompatible, by employing 
techniques such as capping with various functional groups and also by exploring 
new synthesis routes [64], but the ultimate fate of the MNPs after uptake remains 
unresolved [28, 56, 85]. This is, in part, heightened by additional effects from 
nanoparticles that come from sources other than controlled manufacturing labs, 
such as pollution-derived nanoparticles where the composition, size ranges and 
effects are often unknown. Another important issue is the environmental signifi-
cance of natural colloids and nanoparticles that govern elemental mobility and bio-
availability [33], where much of the environmental pool of nanoparticles consists of 
breakdown products from both organic and inorganic sources such as cellulose frag-
ments and clays that may be in the same size range as MNPs. There is also the influx 
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of pollution-derived nanoparticles produced in urban settings from industrial efflu-
ents and auto exhausts, which are an important part of risk assessment models and 
have been linked to major health problems [11, 19, 88].

Adverse human health effects due to occupational and also environmental expo-
sures to nanoparticles are of worldwide concern. Concepts of nanoparticle dose 
metric and response metric are of paramount importance [42, 43] and can provide 
key insights into relationships between the nanoparticles’ synthetic identity and 
chemical reactivity, their biological activity which involves aggregation, protein 
interactions, protective surface coatings as well as migration and, lastly, their stabil-
ity, all of which contribute individually and collectively to dose-dependent toxicity 
outcomes [79]. An in-depth understanding of biokinetics is vital to obtaining mean-
ingful risk assessment protocols for MNPs [71, 78, 87]. This has to include informa-
tion on the biodistribution and clearance of MNPs as a function of the exposure 
route [43]. Furthermore, it has to include information on uptake, transport and trans-
formation of MNPs as a function of dose and epithelial route of entry (including but 
not limited to gastro-intestinal, dermal and respiratory ports-of-entry). It also 
requires thorough data collection on the biotransformation of MNPs within target 
tissues and cells [27]. The cellular and subcellular interactions of nanoparticles are 
a function of the physiological environment which can only respond to a certain 
number of invader nanoparticles or reactive surface area (smaller nanoparticles con-
tribute higher surface areas and in this regard, also contribute different surface prop-
erties such as charge, composition, structures, porosity, redox-state and reactivity). 
This is sometimes referred to as the “surface area dose-response relationship” [61] 
and affects the short and long term fate of nanoparticles after uptake. Dose and 
nanoparticle properties (nano-design) will undoubtedly influence the transport and 
bioprocessing (in vivo effect) of the MNPs and their derivatives (break-down prod-
ucts) which leads to a dose-dependent reactivity and physiological response (nano-
toxicity) (Fig. 4.1).

A dose-dependent instability of synthesized MNPs after exposure and cellular 
uptake leads to in vivo processing and transformation, which may be followed by a 
certain response (oxidative stress and inflammation) and ultimately results in nano-
toxicity (Fig. 4.1). Clearly, a nanoscale substance might potentially be toxic for a 
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biological system when the “dose” or concentration exceeds an adverse threshold. 
The response “effect” could be initiated by a single “acute” dose, or, by repeated 
low “chronic” dose that occurs over an extended time frame. Careful dose evalua-
tions are necessary for meaningful risk assessments of nanoparticles and play a 
major role in regulatory processes to help determine health-relevant limits [43]. For 
example, instillation studies are typically carried out with high MNPs doses and it 
is impossible to know whether effects are caused by overload conditions or due to 
the MNPs’ inherent effects. Inhalation studies can offer insights at lower dose, yet 
they too are met with inflammatory responses which have been determined more 
often than not to be independent of the nature of MNPs that are inhaled [43, 88]. 
Because of these difficulties in dose-response studies, the mechanisms that induce 
toxicity from respiratory exposures are poorly understood and thus hinder the build-
ing of predictive models. Similarly, low dose response studies for MNP exposures 
to skin and gastrointestinal epithelial tissues are lacking as is our understanding of 
how differences in the local biological milieu effects microenvironment around a 
nanoparticle and vice-versa.

4.1.1  �In Vivo Processing and Transformation of Nanoparticles

The issue that will be addressed in this chapter is the relationship between dose and 
potential in vivo processing of nanoparticles (response) shown in Fig. 4.1. The issue 
includes nanoparticle uptake, transport and transformation as a function of dose and 
uptake routes. In vivo processing is defined here as the dynamic chemical and/or 
physical breakdown of nanoparticles at the cellular and subcellular level [27]. The 
process can be followed by in vivo formation of new reaction products including 
ions, nuclei and growth of second generation nanoparticles all of which may be set 
in motion by the breakdown of the original nanomaterials. Such in vivo biotransfor-
mation processes are known to occur with implanted orthopedic materials that can 
lead to both pathologic and beneficial patient outcomes. For example, nanoparticle 
wear debris formed from articulating prosthetic surfaces can lead to osteolysis [29], 
whereas the successful adherence and osteoinduction of amorphous bioactive glass 
results from a dissolution and re-precipitation reaction and induces a material phase 
change to crystalline hydroxyapatite [35, 39].

Uptake and transport of nanoparticles to different regions in the body have been 
extensively studied and are generally linked to certain pathology and toxicity [40, 43, 
51, 52, 56, 61]. However, the in vivo breakdown and processing of MNPs that leads 
to formation of new reaction products with different properties is not very clear and 
obfuscates the issue of exposure risk and related outcomes. It also makes the design 
of meaningful predictive models significantly more challenging. The breakdown 
mechanism of MNPs in cells depends on the material composition, surface coatings, 
ports of entry and the organs they invade (Fig. 4.2). The instability of nanoparticles 
in cells then initiates another cascade of responses that yet have to be defined. In this 
Chapter, we describe applications of advanced electron microscopy methods to the 

U.M. Graham et al.



75

analysis of fixed tissue sections, which provides critical information on material 
phase changes and the oxidation states of MNPs [27]. Specifically, we discuss use of 
high resolution (nanometer) transmission electron microscopy (HRTEM) coupled 
with simultaneous elemental analysis for the investigation of the in vivo processing 
of nanoparticles as a function of dose and uptake route (Fig. 4.2). The in vivo pro-
cessing evidence can then be used for more comprehensive modelling of the poten-
tial exposure risks for nanoparticles. The goal of these studies is to investigate cellular 
and subcellular interactions of MNPs using advanced imaging and analysis of the 
retained particles and correlate these interactions with biological and toxicological 
effects. The data are important to build meaningful predictive models that are based 
on the dynamic interaction of nanoparticles at the cellular and subcellular levels after 
uptake. A thorough understanding of nanoparticle processing in biological systems 
as a function of dose is vital in making determinations of the long-term toxicological 
effects. This requires studies to determine in vivo solubility (nanoparticle dissolu-
tion), size and shape changes in response to the original dose and nanoparticle reten-
tion time (Fig. 4.2). A possible increase or decrease in protein corona around the 
MNPs and their cell associations also must be examined [14, 25]. In vivo processing 
of MNPs is a function of dose and residence time in particular tissues or cells. The in 
vivo processed nanoparticles and any “newly” formed phases and reaction products 
must be compared with the original MNPs (Fig. 4.2). The nanoparticle’s characteris-
tic “fingerprints” before and after in vivo processing are based on composition, geo-
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metrical parameters and physio-chemical, structural and spectroscopic properties. 
Without this data, it would be impossible to build meaningful models that correlate 
nanoparticle dose and exposure risks. However, a deep understanding of biokinetics 
is also central to obtain an all-encompassing exposure risk assessment and involves 
identification of target organs following different routes of exposure. One has to 
evaluate the in vivo processing of MNPs not only in the regions where uptake first 
occurs (portal-of-entry-organs), but also must observe any particle breakdown or 
processing in secondary and further ancillary target tissues while considering the 
original dose and residence time of the particles. Often the experimental character-
ization of nanoparticles that is obtained before exposure is directly linked to cellular-
based assays. This means that risk assessment models typically assume that the 
“invader” nanoparticles that cause toxicity are exactly the same as those that were 
used in the exposure experiments. Unfortunately that is an oversimplification. To 
date we know that nanoparticles are processed in vivo [28] and the extent to which 
they are processed needs to be systematically studied so that this information can be 
incorporated into advanced risk assessment models. Future studies will need to eval-
uate the in vivo processing of MNPs in portal-of entry organs and also in secondary 
target tissues and evaluate any modifications/transformations of MPNs with regards 
to their physicochemical changes as a function of the route and duration of exposure. 
Only then can predictive models be designed to better forecast nanoparticle-dose-
toxicity relationships. State of the art microscopy methods can be applied to obtain 
needed in vivo processing data, and several examples of this approach are presented 
in the remainder of this Chapter.

4.2  �The Role of Cellular Breakdown and In Vivo Processing 
of Nanoparticles

The study of in vivo induced changes to nanoparticles is an emerging area of inves-
tigation. In the case of highly soluble materials such as nano-copper and nano-silver 
any dissolution and particle breakdown after uptake into biological media can be 
expected and has been demonstrated [6]. However, the in vivo breakdown and trans-
formation mechanisms of essentially poorly soluble particles (PSP) like ceria 
(CeO2) on a cellular and subcellular level are not well understood. The breakdown 
mechanism of CeO2 nanoparticles in the liver of rats was recently demonstrated for 
the first time [27]. These findings confirm that nanoparticle uptake and sequestra-
tion in peripheral organs can lead to the formation of secondary particles with dif-
ferent physiochemical properties including altered reactivity and effects that result 
in varying degrees of toxic effects over long periods of exposure. Furthermore, ceria 
in vivo transformation can progress to a toxic, more benign, or potentially beneficial 
state [32]. In this regard, CeO2 nanoparticles after prolonged residence time of 
90 days inside liver undergo in vivo processing that causes a shift towards smaller 
particle size and an increased reactive surface area with enhanced free radical scav-
enging potential of the new in vivo formed ultrafine particles [27]. This work also 
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showed with the help of high resolution imaging and analysis that essentially insol-
uble CeO2 nanoparticles experience partial dissolution and reformation inside the 
liver. Breakdown and redistribution after inhalation of ceria nanoparticles could be 
a possible coping mechanism of biological systems and a step towards improving 
nanoparticle biocompatibility as illustrated in Fig. 4.3.

Because CeO2 is basically insoluble under laboratory controlled conditions, one 
has to question what drives dissolution of CeO2 and similar nanoparticles in the 
liver, lung and possibly other regions in vivo and whether enzyme activity and other 
factors need to be incorporated into risk assessment models. This is particularly 
important for more soluble nanoparticles such as amorphous silica (SiO2), alumina 
(Al2O3), titania (TiO2) and iron oxides (Fe2O3 and Fe3O4) which constitute the vast 
volumes of MNPs used today in consumer products and medical imaging. Faster 
dissolution rates could lead to rapid particle breakdown and transformation. Clearly, 
how to obtain insights into biotransformation routes of nanoparticles and their in 
vivo processing response depends on well-designed experimental studies that pro-
vide dose-controlled nanoparticle uptake, i.e., via instillation, inhalation (lung, 
olfactory system), oral intake (stomach, GI) or dermal uptake (skin: intact versus 
injured) (Fig. 4.2). This has to be followed by a systematic comparison of the in vivo 
transformed particles with the pristine precursor materials by examining morpho-
logical changes, size variations, dissolution patterns and the presence or absence of 
secondary reaction zones (new precipitates) in the vicinity of the transforming 
nanoparticles. Further detailing the physio-chemical changes during bioprocessing 
of nanoparticles may be an effective tool in understanding their subcellular and 
temporal fate that controls toxicity. These analyses depend on advanced imaging 
methods. High-resolution electron microscopy applications allow the use of fixed 
tissues to examine nanoparticle location, size and composition immediately after 
deposition and also after prolonged residence time. Nanoparticle-cell interaction 
and dose-dependent inflammatory response raises the question about underlying 
cellular mechanisms that produce nanoparticle instability (Fig. 4.2). Therefore, 
dose-dependent toxicity that is caused by in vivo processing of nanoparticles needs 

Fig. 4.3  Nanoparticle breakdown can lead to improved biocompatibility
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to be considered in risk assessment models. Also, it is important to model nanotox-
icity as a function of the nanoparticle instability, transformation, mobility and 
potential in vivo reformation (precipitation) at the cellular and subcellular level. 
Nanoparticle instability in vivo is a function of the particle’s inherent composition, 
size, molecular structure and surface chemistry among other properties, but also a 
function of the complex cellular condition such as protein corona, inflammatory 
responses (chronic vs. acute), upregulation of inflammatory defense mechanisms 
and availability of enzymatic catalysts just to name some. Mobility of individual 
nanoparticles may be controlled by both physical transport of the intact particles, 
and also by a sequence of dissolution and reformation steps. High resolution analy-
sis of the reaction zones around dissolving nanoparticles in phagolysosomes show 
breakdown patterns, void spaces and pore-formation, suggesting that there are con-
tinuous processes that release and relocate molecules during the nanoparticle trans-
formation. This information is important in creating government regulations for 
nanoparticle exposure to workers and consumers. One very important aspect for 
obtaining nanoscale structural and chemical information to be able to study the 
breakdown and processing of MNPs, of course, is the preparation and conditioning 
of tissue materials which precedes all of the advanced imaging and analysis tech-
niques. We refer here to previous works that give excellent overviews of the tissue 
preparation techniques [49, 55, 74].

The following sections will discuss the importance and application of advanced 
imaging methods to help identify the various processes involved during in vivo 
nanoparticle transformation and give three specific examples for: (1) high and low 
dose inhaled amorphous silica (SiO2) nanoparticles that are deposited, transformed 
and relocated inside rat lung; (2) ceria (CeO2) nanoparticle dispersion and in vivo 
processing in spleen after a single high dose instillation; and (3) discuss the spatial 
and temporal relationship of in vivo synthesized ferritin nanoparticles (iron oxy-
hydroxide Fe-OOH) as a direct response to the uptake and processing of invader 
SiO2 and CeO2 nanoparticles, and suggest mechanisms at the cellular and subcel-
lular levels.

4.3  �Advanced Imaging and Analysis of Nanoparticles 
in Tissue Sections

The study of nanoparticle in vivo processing is compounded by the number of vari-
ables in play when it comes to biotransformation, such as composition, morphology, 
size, and exposure mechanism or route of entry. The situation is made even more 
complex for researchers in that specialized methods of investigation are required to 
observe nanoparticle transformations in biological systems. Typical methods 
employed in biological research can only partly reveal nanoparticle transformations 
or information about the mechanisms involved due to the small size range. These 
methods include fluorescence, confocal, and polarized microscopy, electron micro-
graphs, radiological tracing, and measurements of biological toxic response 
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indicators. Traditional material characterization methods used by material engineers/
scientists need to be employed that allow resolution and analysis at the nanoscale. 
Methods that have been employed so far are the standard electron microscopy tech-
niques used in materials characterization such as, electron diffraction [2, 27, 46], and 
scanning transmission electron microscopy (STEM) [81] with the associated analyti-
cal techniques energy dispersion spectroscopy (EDS) [36, 84], and electron energy 
loss spectroscopy (EELS) [16, 26, 80]. Also, x-ray photoelectron spectroscopy (XPS) 
has been used [27]. Aberration corrected STEM allows imaging at the atomic scale 
and will be instrumental in determining the structures and composition of in vivo 
formed nanoparticles that are only a few nanometers or possibly sub-nano size [57]. 
The use of these methods is complicated by the nanoparticles being hosted inside a 
biological matrix. This requires modifications to the standard biological sample 
preparation techniques [49, 55, 74].

4.3.1  �High Resolution Analytical Microscopy

Electron microscopy has been fundamental in gaining knowledge about biological 
systems since the 1950’s and was instrumental in developing insights into cellular 
ultrastructure [21]. As electron microscopes evolved, the imaging needs of the biol-
ogist and that of material scientist diverged. The biologist needed high contrast, 
wide field, and low accelerating voltages, whereas the material scientist needed high 
resolution imaging, high accelerating voltages, and high brightness through the use 
of a field emission electron source. This resulted in differing classes of electron 
microscopes being manufactured such as the Philips 201 and CM-10 for biological 
applications versus the Philips 300, 400, and CM-12 for material characterization. 
This has resulted in major medical research centers having biologically oriented 
electron microscopes with an inability to apply what are now common material 
characterization techniques. Multidisciplinary collaborations between medical 
researchers and material scientists can overcome this. High-resolution transmission 
electron microscopy (HRTEM), coupled with advanced detectors allows one to 
probe materials in unprecedented detail, providing both local chemical information 
and also structural properties.

An analytical electron microscope today can image and obtain compositional and 
electronic information down to the angstrom level. This ability provides highly local 
information from surface-environment interactions such as in vivo nanoparticles. 
Other material characterization techniques work for bulk samples and have resolu-
tions larger than several nanometers. Thus, for the study of in vivo transformation of 
nanoparticles there is only one choice, an HRTEM designed for materials analysis 
[28, 84]. A typical HRTEM used in materials characterization will have both TEM 
and STEM capability with EDS and EELS being incorporated with the use of 
computer technology to allow the acquisition of elemental line profiles and maps 
acquired in STEM mode. This allows not only elemental analysis but also acquisition 
of material phase changes and oxidative states via the EELS data [16, 53]. Combining 
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these observations with material phase databases such as the Materials Project (www.
materialsproject.org) and computation from first principles using spectroscopy ori-
ented software such as FEFF9 [67] in principle, allows the identification of phases 
and electronic states. Because a standard non-aberration corrected field emission 
electron microscope designed for materials analysis will typically be able to achieve 
a STEM spot size of 0.2 nm, changes in nanoparticle surfaces versus their main bod-
ies can be analyzed [27]. This data combined with material phase structure data and 
spectroscopy computation can, in principle, provide information on structural and 
electronic changes in nanoparticles in tissue. This is the type of information needed 
to understand the interaction of a nanoparticle with its local environment in order to 
gain an understanding of the mechanisms behind in vivo transformation and how this 
relates to toxicity.

4.3.2  �Example I: Amorphous Silica (SiO2) Inside Lung Tissue

Analysis of the clearance kinetics using modelling of retained lung burden of SiO2-
MNPs showed a significant in vivo solubility which raises questions about underly-
ing cellular mechanisms that result in the instability of the SiO2-MNPs and related 
toxicity [24]. This was the stimulus to use HRTEM applications and to look for 
evidence of particle breakdown and mobility in the lung tissue at both cellular and 
subcellular levels. The principal objective for HRTEM is to examine any nano-scale 
alteration, dissolution and processing of SiO2-MNPs after inhalation by comparing 
the translocated particles with the precursor SiO2-MNPs. A dose and time controlled 
inhalation study involved groups of rats that were exposed to aerosols containing 
amorphous SiO2-MNPs for 4 h/day, 5 days/week for 4 weeks with a 27 day post-
exposure observation period at three different concentrations and dose-dependent 
pulmonary inflammation in the rats, and data was collected in relation to the expo-
sure time and corresponding dose that was used [62]. In this particular study, sub-
chronic inhalation exposures of the SiO2-MNPs were investigated using an approach 
of dosimetric modelling to determine the mechanisms for clearance of these 
nanoparticles from the lung. Both mechanical clearance and partial dissolution have 
to be considered as potential pathways. Determining the in vivo bioprocessing 
mechanisms of the nanoparticles will be important towards risk characterization 
and to better assess possible health effects caused by the transformation, transloca-
tion and clearance of the particles after exposure. The HRTEM observation of the 
precursor (as synthesized) SiO2-MNPs particles showed a typical size of ~20–50 nm 
with a corresponding spherical morphology of the individual aerosolized SiO2-
MNPs components (Fig. 4.4). Furthermore, after 27 days post-exposure the phago-
cytosed SiO2-MNPs that were sequestered in alveolar macrophages in the fixed 
tissue sections were imaged using high resolution Dark Field STEM. The STEM 
images show clear indication of significant in vivo breakdown and transformation 
(Fig. 4.5). There is also structural evidence in the Dark Field STEM (Fig. 4.5) that 
a portion of SiO2-MNPs had been completely dissolved out. The degree of in vivo 
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processing of the particles and partial dissolution most likely depends on the resi-
dence time, dose, and synthetic identity of the original inhaled SiO2-MNPs. Most of 
the SiO2-MNPs particles lost their original spherical morphology after prolonged 
lung retention and are now displaying various dissolution patterns (pitting), void 
formation and secondary outward growth that results in the formation of multiple 
reaction zones. To gain greater insights into what controls particle transformation 
and determine if there are any relationships with subcellular components, one has to 
perform detailed elemental mapping of the regions of interest. As an example, ele-
mental EDS maps of O, Si, S and P (Fig. 4.6) are obtained from a region that is 
illustrated in the Dark Field STEM image in Fig. 4.5. The EDS elemental maps of 
O, Si, S, and P require the use of a 1 nm STEM probe to have enough counting 
statistics within a reasonable dwell time as illustrated in (Fig. 4.6).

Typically a 1–2 s dwell time is used depending on the signal strength. EELS map-
ping can be done with a 0.2 nm probe and dwell times as small as 0.1 second, depend-
ing on the elemental edge being mapped. Higher edges require longer dwell times. 
When doing simultaneous EDS and EELS mapping a compromise must be worked 
out to have a long enough time for a good EDS count and short enough so as not to 
overload the EELS CCD detector [27]. Other EELS acquisition parameters such as 
dispersion and y-binning can be adjusted to obtain a satisfactory EELS signal [16, 
26]. After performing EDS mapping of a region that seems to have undergone in vivo 
processing of SiO2-MNPs in alveolar macrophages the O and Si signals clearly fol-
low the outline of the SiO2-MNPs (Fig. 4.6). However, the Si signal furthermore is 
indicating that some Si is present in the close neighborhood of the SiO2-MNPs, while 
the O signal is predominantly confined to the outline of the alveolar macrophage-
entrapped nanoparticles and not seen in the immediate subcellular surroundings. 

SiO2-MNPs
“agglomerates”

TEM:
Precursor SiO2
material

Spherical
shape

a

b

100 nm

20 nm

Fig. 4.4  illustrates 
precursor SiO2-MNPs prior 
to dose controlled 
inhalation into lungs. (a) 
Large agglomerates. (b) 
Precursor SiO2-MNPs with 
amorphous nanostructures 
and predominantly 
spherical shape. Some 
overlapping spheres are 
marked with circles
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Fig. 4.5  Dark field STEM 
imaging of lung section 
after repeated dose 
inhalation and 27 days post 
treatment. SiO2-MNPs 
show pores and significant 
in vivo processing. Almost 
all of the original spherical 
morphology has 
disappeared after 27 days 
post treatment exposure. 
SiO2-MNPs show 
dissolution patterns, void/
pore formation (yellow 
arrows) and significant 
outward growth of reaction 
zones (secondary growth 
shown by blue arrow)

O-K Si-K S-K P-K

Fig. 4.6  Elemental EDS maps of O, Si, S, and P taken from a region in Fig. 4.4
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Some O may be present in –(Si-O-Si)- forming anionic silanol components within 
the tissue and this could be a critical mechanism for Si transport and new precipi-
tates and studies are needed at the molecular level to determine the processes 
involved in Si mobility after processing of the MNPs. The elemental scans for S and 
P were included here to show that, surprisingly, the signals are shadowing the loca-
tion of the SiO2-MNPs. This opens chief questions for future work including queries 
into the underlying in vivo processing mechanisms that guide nanoparticle delivery 
to certain cellular and subcellular locations and chemical environments after uptake 
and also how this may be affected by dose. The dose variations (high vs. low) all 
resulted in significant in vivo processing of the SiO2-MNPs after inhalation which 
probably is based on the relatively high solubility of amorphous silica [9, 24, 31]. 
Importantly, in vivo processing gives rise to second generation nanoparticles and 
reaction zones containing Si- phase within the vicinity of the bio-transformed SiO2-
MNPs, which suggests that migration and relocation processes take place at the 
cellular and subcellular levels as determined in elemental mapping (Fig. 4.6). 
Moreover, high resolution STEM coupled with EDS confirms that release of Si ions 
and relocation and precipitation of secondary Si- phases in the alveolar macro-
phages results in generation of Si-rich halos “Si-clouds” at the outskirts of partially 
dissolving SiO2-MNPs (Fig. 4.7). An analogous cloud-formation process was shown 
for the first time to take place when poorly soluble ceria (CeO2) nanoparticles bio-
process in liver tissue [27].

Detailing all of the physio-chemical changes that take place during bioprocess-
ing of SiO2-MNPs in alveolar macrophages and other tissue locations as a function 
of dose is still under development. This may be an effective tool in understanding 
their subcellular and temporal fate and how this factors into controlling a toxic 

Fig. 4.7  Dark Field STEM imaging and EDS spot analyses show the bioprocessing of SiO2-MNPs 
in alveolar macrophages. Migration of Si occurred outwards and led to a secondary reaction zone 
“Si-cloud” between SiO2-MNPs and yellow line. The small very bright spots in the Si-cloud region 
are ferritin nanoparticles
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response after environmental uptake of nanoparticles. More work is needed to study 
the dose effects on the extent of SiO2-MNPs breakdown and the relocation of Si as 
a function of saturation levels. An example of further detailing the chemical and 
structural content of the Si-Cloud contents is shown in the Dark Field STEM images 
that demonstrate a greater extent of in vivo processed SiO2-MNPs in the alveolar 
macrophage and the development of nanozone formation (Fig. 4.8). The chemical 
breakdown of the SiO2-MNPs (Zone I) leads to pitting in the original particles with 
subsequent material migration and relocation into satellite zones (Zone II in Fig. 
4.8) which hosts much smaller particles that are highly dispersed. This is the reason 
why Zone II appears less dense and concentrated in the Dark Field STEM image. It 
will be of paramount importance to apply aberration corrected STEM and 3D–
imaging to probe the chemical composition of the matrix of Zone II that engulfs the 
very small SiO2-MNPs. If Zone II matrix is chemically distinct from other 
nanoparticle-free regions in the alveolar macrophage that hosts the SiO2-MNPs it 
can help determine if protein formation or encapsulation helps stabilize the SiO2-
MNPs and make them more biocompatible after in vivo processing.

The examples above show that in vivo processing of nanoparticles can occur and 
that a materials-oriented electron microscope can reveal some aspects of the changes 
that are occurring. This coupled with toxicological response monitoring could pro-
vide information as to whether nanoparticle dose-dependent changes reduce or 
increase toxic effects. Much work remains to be done in determining the in vivo 
properties of the many different types of nanoparticles and how variables such as 
particle morphology, size, surface treatments, and composition effect in vivo pro-
cessing. The application of aberration corrected electron microscopes to the study 
of in vivo processing would most likely be very fruitful [65, 86]. These microscopes 
have the resolution to determine if a cloud surrounding a nanoparticle is composed 
of single molecules or very small clusters as in the silica examples above. It could 

a b

Fig. 4.8  (a) Dark Field STEM image shows in vivo breakdown of SiO2-MNPs in alveolar macro-
phage (Zone I) and formation of Zone II. (b) Magnified region shows small nanoparticles in Zone II
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also determine if the composition of such clusters is that of the precursor particle or 
if a reaction has occurred thereby modifying the clusters and resulted in new com-
pounds. In addition aberration-corrected STEM could provide high resolution maps 
of the surface layers of nanoparticles and corresponding surrounding tissue to better 
understand the mechanisms behind in vivo processing. Importantly, aberration-cor-
rected electron optical sectioning can give insights into any potential protein corona 
formation at the exterior of the nanoparticles. Recently, RAMAN mapping has also 
become commercially available. This opens the possibility of identifying molecular 
changes in the tissue surrounding nanoparticles in vivo as a function of dose.

4.3.3  �Example II: Ceria (CeO2) Nanoparticles Inside Spleen 
Tissue

EELS analysis was performed on a 200 kV JEOL 2100F TEM/STEM and spectrum 
images were collected to investigate morphologies, size distribution and oxidation 
states of ceria nanoparticles (CeO2-MNPs) in rat spleen tissue. A therapeutic dose 
(4 g/kg) of ~15–20 nm CeO2-MNPs was used and instilled four times over a 2 week 
time period. The hydrothermal synthesis procedure for the CeO2-MNPs resulted in a 
narrow size range ~20 nm [47]. The particle surfaces were capped using a citrate 
coating (10  %) in 5  % aqueous dispersion. The (CeO2-MNPs) synthetic identity 
included size, surface charge (Zeta potential: −40 mV at pH 7.3) and structural char-
acterization using HRTEM/STEM analyses and EELS in the spleen tissue (Fig. 4.9).

Previously, the in vivo processing, transformation and subcellular effects of 
CeO2-MNPs in a rat model using a single high dose (85 mg/kg) was presented with 
corresponding effects on oxidative stress increases and decreases and internalized 
CeO2-MNPs were shown to cause distinct cellular responses and oxidative stress, 
but also presented significant in vivo processing which releases smaller CeO2-
MNPs clouds with much improved ROS potential [27, 32]. Since CeO2-MNPs can 
do both generate and scavenge free radical oxygen species (ROS), it is important 
to distinguish CeO2-MNPs that contribute to either ROS production or ROS scav-
enging in subcellular levels [41]. Example II shows how ceria MNPs translocate to 
spleen tissue and in the spleen the original CeO2-MNPs produced Ce-clouds (Fig. 
4.9). In this particular case a therapeutic dose (4 g/kg) of CeO2-MNPs not only 
bio-accumulated in spleen which can be demonstrated with the help of HRTEM 
and Dark Field STEM imaging, but the original ceria nanoparticles were also 
structurally altered and second generation plumes of ultra-fine (<3  nm) ceria 
nanoparticles formed close by, which can be seen as clouds next to the in vivo pro-
cessed ceria precursors (Fig. 4.9). Corresponding EELS analyses along the EELS-
trace line in Fig. 4.9 compare the redox state of the precursor and newly precipitated 
ceria clouds. The high angle STEM analysis along the EELS line profile used a 
small probe size (0.2 nm) to minimize any fixed tissue sample damage that could 
occur under the prolonged electron beam exposure. The oxidation states of Ce 
were determined by the fine structures of M4,5 edges in EELS as described 
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elsewhere in details [77]. The schematic in Fig. 4.10 gives some insights on how to 
compute the EELS edges for Ce and, in particular, the energy loss for Ce M4 versus 
Ce M5. The greater the contribution of Ce M5, the higher is the ceria reduction 
potential [77]. Interestingly, the same kind of Ce-cloud formation was also shown 

Fig. 4.9  STEM and EELS analyses of CeO2-MNPs in spleen after a therapeutic dose and 14 days 
residence time. Analysis of the ceria M5/M4 ratio along the line profile from an EELS spectrum 
image
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previously for a high-dose of CeO2-MNPs after intravenous uptake and sequestra-
tion of CeO2-MNPs in liver and was associated with a much improved ROS poten-
tial [27]. Different valance states of the ultra-small CeO2-MNPs needles are 
characterized by core loss EELS to have very high Ce+3 signatures (corresponding 
to oxygen vacancies) as evidenced by the greater Ce M5 contributions obtained via 
the EELS analyses and are similar to those in the Ce-clouds (Fig. 4.9). Both 
HRTEM and Dark Field STEM demonstrate that Ce-phosphates formed in the 
spleen and this typically occurs in lysosomal regions where ultra-small ceria par-
ticles transform/reform (the mechanism of transformation/reformation is not 
known at this time) (Figs. 4.11 and 4.12).

Elemental maps can be produced from EDS and EELS spectrum images (in high 
resolution STEM mode) and in the example below span across the regions where 
the Ce-nanoparticles accumulate. This information can then be used to build a thor-
ough understanding of the temporal, structural and cellular relationships involving 

Fig. 4.11  TEM and HRTEM images with increasing magnification show the presence of CeO2-
MNPs and Ce-phosphate after in vivo processing and leads to a local arrangement. Many MNPs 
are self-aligning to form needle- shaped structures indicted with red arrows
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tissue composition and location of nanoparticles. An example is shown in Fig. 4.13 
where elemental maps were generated over a select region that is illustrated using 
dark field STEM in Fig.4.12. These are fairly low EELS pixel count maps in order 
not to destroy the tissue structures during the prolonged electron beam scanning. 
Therefore, a low angle dark field STEM condition has to be selected to bring out the 
cellular structures in the spleen (Fig. 4.13) while simultaneously analyzing the rela-
tive elemental composition and spectral signatures of for example Ce, P, C, Ca, N 
and O in the same region using STEM spectrum imaging (Fig. 4.13).

Elemental maps obtained from the EDS and EELS spectrum images allow for a 
comparison of the elemental distribution that is associated with the cellular struc-
tures and that of the accumulated nanoparticles. The low pixel count maps take 
about 30 min to acquire. Higher pixel count maps can be obtained but the required 

0.5 µm

Fig. 4.12  CeO2-MNPs are 
imaged using low angle 
dark field STEM condition 
showing cellular structures 
in the spleen. The 
CeO2-MNPs localize 
around cellular inclusions
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Fig. 4.13  STEM spectrum imaging and elemental maps of Ce-MNPs localized around spleen 
inclusions
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time increases rapidly and this can affect the beam/sample interaction and lead to 
artifacts. Elemental imaging may also be accomplished using an EELS imaging 
filter. Typically an in-column filter is more successful on biological specimens due 
to the smaller beam dose required. When using post column filters the sample stabil-
ity may be impacted due to the high brightness required (electron intensity). The 
elemental imaging for Ce-MNPs that seem to preferentially locate around globular 
lipid-based components (Figs. 4.12 and 4.13) clearly shows that the Ca and N are 
highly enriched as part of the internal composition of the lipid structures and they 
have an outer shell or corona that is phosphor rich (P signal is high at the outside of 
the globular structures in Fig. 4.13). The Ce signal completely overlaps with the P 
signal suggesting, at the least, a spatial relationship. In case of the preferential Ce 
deposition at the outside of the lipid structures it would suggest that there is either a 
mechanism that controls the delivery of the Ce-MNPs to that particular P-rich loca-
tion or, that Ce ions migrated to that region and formed new Ce-oxides, Ce-hydroxides 
or Ce-phosphates. The O-signal clearly shadows the areas of both, Ce and P signals 
(Fig. 4.13). The elemental map of the S-signal shows that it is confined to the lipid 
structures only. At this time it is not known how certain regions in cells govern 
nanoparticle delivery and accumulation, but there seems to be an underlying chemi-
cal control that needs to be considered. Much work will be required to understand 
the relationship between tissue components and nanoparticles, but the use of 
HRTEM/STEM and EELS is certainly a tool that will be very useful towards that 
goal. How the MNPs’ port-of-entry, dose, exposure duration and post-exposure 
time factor into the transport phenomena, particle transformation and in vivo pro-
cessing mechanisms is not known at this time.

4.3.4  �Example III: Ferritin Nanoparticles Inside Lung 
and Liver Tissue

The uptake and sequestration of MNPs, both silica (amorphous SiO2) and ceria 
(CeO2) results in the partial breakdown and in vivo processing of the original MNP-
particles as discussed in Examples I and II in earlier sections in this Chapter. 
Remarkably, there is additional evidence one can gain from HRTEM: the presence of 
different MNPs (SiO2, CeO2) in different organs (lung, liver, spleen) after being 
delivered via different uptake routes (inhalation, intravenous), have at least one 
response in common, specifically, the simultaneous formation of ferritin nanoparti-
cles in the vicinity of the invader MNPs. Ferritins represent bio-mineralized iron 
nanoparticles that are typically 5–8 nm in size and trapped inside the cage of the iron 
storage protein [8]. They occur immediately juxtaposed to the cell-invading and 
inflammation-inducing MNPs [27]. Moreover, the ferritin nanoparticles are highly 
concentrated next to the MNPs when compared to tissue regions that are not affected 
by inflammation, as shown in the Dark Field STEM images in Figs. 4.14 and 4.15. 
The individual solitary bright white spots surrounding the invader MNPs (inside the 
lysosomal regions) each represent one ferritin nanoparticle of 5–8 nm size (Figs. 
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Fig. 4.14  SiO2-MNPs in TEM and dark field STEM showing cellular structure of the alveolar 
macrophage, location. The SiO2-MNPs are surrounded by ferritin nanoparticle halos identified 
using EELS spot analysis

4.14 and 4.15). It is well established that ferritin nanoparticles form during the bio-
mineralization of ferrous (reduced) iron. A conserved iron-binding site, the ferroxi-
dase center of the ferritin protein regulates iron storage in iron metabolism [38]. It is 

U.M. Graham et al.



91

generally assumed that ferrous iron Fe(II) binds the ferroxidase center and the oxi-
dized iron Fe(III) spontaneously enters the ferritin cage. High resolution imaging as 
well as spectroscopic and kinetic studies of ferritins (family of 24 iron storage pro-
teins), suggest many common characteristics, including highly symmetric subunits 
of a cavity-engulfing protein coating in which the iron bio-mineralization takes 
place. Furthermore, there are four channel passages through the protein shell that 
help facilitate ingress and egress of ions which results in an iron core with eight sub-
units rather than a single dense sphere [75]. There are catalytic sites at the inner shell 
“ferroxidase center” which control the oxidation of Fe(II). The mechanisms of bio-
mineralization of iron that result in ferritin nanoparticles like the ones shown in Figs. 
4.14 and 4.15 are described elsewhere [8, 38], but the association (close locality) 
with invader MNPs is novel and requires a thorough investigation of the subcellular 
mechanisms and participation of iron as a redox mediator to counter the effects of 
invader MNPs. The significance of iron in biological systems is due to its ability to 
engage in redox reactions, including the scavenging of free radicals [27]. In general, 
iron forms a labile iron pool that includes iron atoms, but free Fe(II) must be 

Fig. 4.15  CeO2-MNPs in dark field STEM showing cellular structure in the spleen macrophage. 
The CeO2-MNPs localize around cellular inclusions and are surrounded by ferritin nanoparticles 
identified using EELS spot analysis
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managed either by use in hemoglobin or inside of the iron storage protein, ferritin. 
Otherwise, reduced Fe(II) iron can participate in the Fenton reaction and cause free 
radical formation [44]. There are numerous transferrin receptors, all of which are 
proteins that participate in iron transport at the cellular and subcellular levels. Once 
Fe(II) is sequestered in the ferric form within the ferritin protein shell, this particular 
iron will not participate in free radical formation. In fact, the oxidation of one Fe(II) 
to Fe(III) releases an electron that can neutralize a free radical species and, thereby, 
act as an anti-oxidant. Each ferritin cavity can hold up to 4500 oxidized iron atoms 
[63] and each one had to release an electron while being oxidize. It is this catalytic 
process that provides ferritin with the anti-oxidant property. The physical character-
ization of the ferritin particles includes details of the protein shell as well as charac-
terization of the mineralized iron oxide core. In the high resolution dark field images 
of the lung and spleen thin sections only the iron oxide core is visible due to the 
comparatively high atomic number and close packing of the iron atoms, while the 
surrounding ferritin-protein shell has about the same density and general chemical 
make up as the cellular matrix and, therefore, is difficult to distinguish (Figs. 4.14 
and 4.15). The dense iron core allows z-contrast imaging using HAADF-STEM 
(Figs. 4.14 and 4.15). When using aberration corrected STEM this technique pro-
vides insights into the detailed morphologies and structures of the iron core [70]. 
Although the exact composition and stoichiometry of the core is not well understood 
yet, most literature today suggests that the core is composed of a ferrihydrite (iron-
oxyhydrite) and also approximates this structure in human liver [63].

The copious ferritin nanoparticles that form halos around sequestered MNPs 
(Figs. 4.14 and 4.15) occur in such a high concentration that it, unmistakably, 
seems to be a direct response to the presence (invasion) of the MNPs in either the 
lung or spleen (Figs. 4.14 and 4.15). Ferritin nanoparticles are typically present 
throughout cells, but not in the particularly high concentration that is shown inside 
the ferritin-halos around MNPs (Figs. 4.14 and 4.15). Unexpectedly, the elevated 
ferritin nanoparticle accumulation seems independent of the nature of the MNPs 
(amorphous SiO2, CeO2 and others not shown in this Chapter). The mechanisms 
that control the abundant in vivo formation of ferritin nanoparticles next to the 
invader MNPs need to be further investigated, but it seems to indicate that the cel-
lular and subcellular response mechanism(s) trigger an upregulation of iron 
immediately juxtaposed to the MNPs. This is very important since MNPs are 
linked to inflammatory processes and possible cell toxicity, which results in for-
mation of free radicals [44]. Either the MNPs or the free radicals, or both, initiate 
mechanisms that trigger the upregulation of iron in the same regions. Consequently, 
ferritin nanoparticles that form as a result of the oxidation of Fe(II) to Fe(III) can 
participate in free radical scavenging processes as mentioned earlier and provide 
the needed anti-oxidant response to counteract invader MNPs. This can explain 
the ferritin-rich halos that are observed in the HAADF-STEM images around the 
MNPs (Figs. 4.14 and 4.15). At this time there is no available data on a nanopar-
ticle induced dose-dependent ferritin response, but it seems logical that the higher 
the MNPs dose, the greater the ferritin nanoparticle concentrations would be in 
the affected tissue regions.
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4.4  �Synchrotron Analysis: Dose-Dependent Nanoparticle 
Signatures in Tissue

X-ray absorption spectroscopy methods making use of synchrotron radiation, such 
as XANES and EXAFS, may prove useful in providing information on the elec-
tronic and local atomic structure of elements in nanotoxicology. A screening of 
selected tissue samples for elements of interest may provide information regarding 
the incorporation of such elements from exposure to nanoparticles as a function of 
a particular dose that led to a certain pathological response. An important analogy is 
when an X-ray absorption spectroscopy survey was conducted on coal samples to 
determine the chemical nature and structure of elemental impurities. In that case, 
the researchers were faced with a similar staggering problem. Coal contains nearly 
the entire periodic table as impurity elements, and many of the impurity elements 
were of concentrations 1000 ppm or less, which could not be confidently character-
ized by conventional microscopic, spectroscopic, or diffraction techniques [82]. 
Using predominantly fluorescence mode, significant and important information was 
obtained on numerous trace elemental impurities in coal using X-ray absorption 
spectroscopy [37]. Just below the edge energy and prior to the single scattering 
region, pre-edge features provide useful information on site symmetry (e.g., a sharp 
feature is typically produced with tetragonal symmetry, while octahedral generally 
produces a faint signal), the white line region provides information on the oxidation 
state of the material, and the multi-scattering region provides information on the 
immediate environment of neighboring atoms. The higher energy region provides a 
wealth of information on the identity of neighboring atoms, their interatomic dis-
tances, and their degree of coordination. Although XANES in principal can also be 
obtained in high resolution STEM mode using electron microscope applications, 
elemental dispersion over larger tissue areas is not possible using large magnifica-
tion settings and needs to be done at a synchrotron source. Two examples related to 
catalyst particles (iron oxide and ceria nanoparticles) that are often examined with 
regards to their nano-toxic response are provided below. In the first case [68] the 
role of the element K in promoting the carburization rate of iron oxide in Fischer-
Tropsch synthesis catalysts was explored by XANES and EXAFS spectroscopy. 
The XANES spectra were recorded with the catalyst heated in flowing carbon mon-
oxide (Fig. 4.16a). Changes in the white line are evident (Fig. 4.16a), and in com-
paring the spectra to those of reference compounds, reduction was found to proceed 
by way of Fe2O3 to Fe3O4 to FeO to Fe carbides. Simultaneous EXAFS spectra were 
recorded (Fig. 4.16b). The low distance- peak of Fe-O coordination and the high 
distance peak of Fe-Fe coordination in Fe2O3 change to match the distances of Fe-O 
and Fe-Fe coordination in Fe3O4. At the end of the trajectory, Fe-C bonds in Fe 
carbides are clearly observed in the intermediary range of distance. Thus, the two 
techniques (XANES and EXAFS) provided similar information on the chemical 
changes occurring, but simultaneously and from two different perspectives. Bio-
mineralized iron oxides are very often present at the cellular and subcellular levels 
and it is important to distinguish oxidation states and also to observe whether iron 
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may be coordinated to carbon, sulfur or phosphor and if variations occur as a func-
tion of dose (nanoparticle exposure).

A second example [45], on the doping of nanosized ceria (CeO2) domains with 
platinum doping of 0.5  % (by weight) and 50  % (by mole) calcia, is described 
below. The XANES patterns of Ce4+ and Ce3+ are very different (Fig. 4.17a).

where Ce4+ contains two very broad peaks, as well as additional features, while 
Ce3+ exhibits a sharp distinct peak, B0. This is based on changes in the electronic struc-
ture of ceria, and its effect on the allowed electronic transitions. When the same CeO2 
nanoparticle catalyst was heated in hydrogen (Fig. 4.17b) to activate the surface by 
reduction, the addition of the dopants (Pt and Ca) facilitated surface shell reduction to 
~200°C (from 450 to 500°C for undoped ceria), and bulk reduction commenced at 
~400°C (rather than >700°C for undoped ceria). This clearly demonstrates the 
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sensitivity of the analysis tool towards elemental, structural and thermal changes as a 
function of reduction potential. Thus, using high intensity X-rays generated at the 
synchrotron can provide a wealth of information regarding the identity, chemical 
state, and local atomic structure of nanoparticles, and may provide key information in 
any survey of tissue samples for nanotoxicology.

4.5  �Synopsis

In this chapter the inter-relationship between dose, nanoparticle uptake, cellular and 
subcellular interactions and nanotoxicity has been discussed with examples of means 
of observation of in vivo bio-processing and response. Emphasis is placed on the 
importance of the precision of characterization of the starting particles, the particles in 
a biological environment, and the physiological response. The relationship between 
dose, bio-processing, and response is an area of active research as all three may be 
related in a non-linear manner. It is pointed out that relatively insoluble materials like 
CeO2 have been observed in vivo to undergo significant changes in shape, size, mate-
rial phase and electronic structure. Because of this, the modelling and prediction of 
dose versus toxicity over time becomes a non-linear problem because the initial par-
ticles can transform over time and initiate different responses that evolve as the 
dynamic system undergoes further transformations. The examples in this chapter 
illustrate two advanced materials characterization methods that are useful in the char-
acterization of nanoparticles, before and after introduction in the biological environ-
ment, and in observing specific types of physiological response. These methods are 
advanced analytical electron microscopy (STEM/EELS) and x-ray absorption near 
edge spectroscopy (XANES). In conclusion the dose response relationship is compli-
cated by the physicochemical transformations in the nanoparticles induced by the 
biological system producing an altered response. Thus, the modelling and prediction 
of dose-response-toxicity relationships has to take into account non-linear dependen-
cies when attempting to predict a dose versus toxicity response relationship. This has 
to be especially considered when predictive modelling of nanomaterials utilizes in 
vitro models. Therefore, the long-term goal is to develop cellular in vitro models that 
can support dynamic processing of nanoparticles for exposure risk assessment.
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Chapter 5
Literature Review of (Q)SAR Modelling 
of Nanomaterial Toxicity

Ceyda Oksel, Cai Y. Ma, Jing J. Liu, Terry Wilkins, and Xue Z. Wang

Abstract  Despite the clear benefits that nanotechnology can bring to various sec-
tors of industry, there are serious concerns about the potential health risks associ-
ated with engineered nanomaterials (ENMs), intensified by the limited understanding 
of what makes ENMs toxic and how to make them safe. As the use of ENMs for 
commercial purposes and the number of workers/end-users being exposed to these 
materials on a daily basis increases, the need for assessing the potential adverse 
effects of multifarious ENMs in a time- and cost-effective manner becomes more 
apparent. One strategy to alleviate the problem of testing a large number and variety 
of ENMs in terms of their toxicological properties is through the development of 
computational models that decode the relationships between the physicochemical 
features of ENMs and their toxicity. Such data-driven models can be used for hazard 
screening, early identification of potentially harmful ENMs and the toxicity-
governing physicochemical properties, and accelerating the decision-making pro-
cess by maximising the use of existing data. Moreover, these models can also 
support industrial, regulatory and public needs for designing inherently safer ENMs. 
This chapter is mainly concerned with the investigation of the applicability of 
(quantitative) structure-activity relationship ((Q)SAR) methods to modelling of 
ENMs’ toxicity. It summarizes the key components required for successful applica-
tion of data-driven toxicity prediction techniques to ENMs, the published studies in 
this field and the current limitations of this approach.
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5.1  �Introduction

There has been much interest recently in assessing and managing the potential 
effects of ENMs on human health and the environment. There is now a significant 
amount of studies highlighting that although not all ENMs necessarily have side 
effects, certain types of ENMs can pose risks to human health and the environment 
[20, 53, 111] if not properly managed. It has been well reported in literature that a 
nano-sized form of some materials may exhibit significantly different toxicity 
despite their chemically identical structure [60, 64]. Although is evidently known 
that some ENMs exhibit adverse effects, their mode of toxic action and the factors 
affecting their toxicological responses are still not fully discovered. It is clear that 
large knowledge gaps still exist in areas that are essential for monitoring and mini-
mizing the risks of potentially toxic ENMs [25, 31].

The current toxicity assessment approach primarily relies on animal-based 
testing that is not only time and cost demanding and but also ethically problem-
atic. Considering the high number of ENMs requiring toxicity screening, the use 
of alternative approaches such as in silico tests relying on computational model-
ling methods are needed to predict health risks of a range of ENMs with less cost 
and time compared to animal testing. There are several computational techniques 
that have been developed and used in toxicology. The (quantitative) structure–
activity relationship ((Q)SAR) analysis is one of the most promising computation 
approach for toxicity prediction of ENMs since they are capable of quantifying 
the relationship between relevant properties and biological activity of a certain 
class of materials. It is a data-driven method that attempts to make use of existing 
experimental data for in silico prediction of toxicological endpoints. The main 
assumption behind this approach is that toxicity depends on, and hence can be 
predicted by, physicochemical properties such as size, shape, surface characteris-
tics and crystal structure. A schematic workflow of the nano-(Q)SAR technique is 
given in Fig. 5.1.

Although the need for the development of intelligent testing strategies based 
on in silico methods to assess the toxicity of ENMs has been emphasized by 
many scientists and regulators [35, 36, 98], scientific investigation of their appli-
cations as predictive tools for toxicological evaluation of ENMs has not received 
much attention. To address this research gap and devote systematic attention to 
this subject, this chapter is focused on investigating whether the computer-based 
structure-activity relationship methods are applicable to predict the toxicologi-
cal effects of ENMs. The ultimate aim here is to contribute to moving the nano-
toxicology research forward from individual assessments toward a more 
integrated hazard screening approach that can predict the toxicity potential of 
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ENMs based on their structural and physical characteristics. The main aim is to 
give the reader a detailed understanding of the nano-(Q)SAR process, the con-
cepts behind it, the appropriate tools to use, and the remaining knowledge gaps 
in this area.

5.2  �Toxicity of Nanomaterials

Nanotechnology is a broadly applicable science with considerable potential for 
breakthroughs in a wide variety of fields. It has impact in almost all branches of 
engineering, resulting in a rapid increase in the number of ENMs being exploited 
commercially. However, the distinctive characteristics of ENMs not only make 
them a material of choice for various applications, but also affect their toxicity 
potential and present a challenge for the existing regulatory systems.

As numerous natural nano-sized materials have existed in the environment for 
centuries, and the nature has been filled with several nanofeatures, nanomaterials 
are not entirely new in many ways. However, unlike naturally occurring nanoparti-
cles (NPs) or incidentally produced nano-sized byproducts, the intentionally 
designed and manufactured NPs are completely new and capable of exhibiting dif-
ferent biological effects [105]. The study of toxicity of these newly introduced 
ENMs falls into a new emerging discipline called nanotoxicology. Due to their 
small size, ENMs have generally been considered to be able to enter and damage 
living organisms [85].

Experiments

Biological
Activity Data

Data Pre-processing Model Construction

Model Validation

Internal
validation

External
validation

Data
cleaning

Data
splitting

Descriptor
selection

Descriptors (Q)SAR input data

QSAR Workflow

Understanding the relationship between physicochemical properties
and nanomaterial toxicity

Hazard control and risk assessment of nanomaterials

Nano-(Q)SARs

Interactions between nanomaterials and biological systems

Computations

Fig. 5.1  (Q)SAR modelling of nanomaterial toxicity (Reprinted from Particuology, 21, Ceyda 
Oksel et  al., (Q)SAR modelling of nanomaterial toxicity: A critical review, 1–19., Copyright 
(2015), with permission from Elsevier)
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In recent years, some particular ENMs have been shown to exhibit toxic 
responses. For example, carbon nanotubes (CNTs) are reported to induce oxidative 
stress [112] and pulmonary toxicity [115]. Another example of ENMs of significant 
toxicological concern is nanosilver. Despite initially being perceived to be non-
hazardous material, recent studies have provided convincing evidence that nanosil-
ver can exhibit more pronounced toxicity than larger-sized particles of the same 
substance [5, 32]. For an extensive review of the potential side effects of ENMs, the 
interested reader can refer to [4, 55, 60, 79, 111].

A toxicological endpoint is the measure of the toxic effect of a substance on 
human health or the environment, and it determines the harmfulness of a substance. 
The toxicity of compounds can be evaluated by conducting in vivo, in vitro, and in 
silico studies. For classical human health hazard assessment through in vivo testing, 
several toxicological endpoints are relevant, e.g. acute and chronic dermal, oral or 
inhalative toxicity as well as skin and eye irritation. Although in vitro assays are 
commonly preferred to in vivo assays as an initial test because of their time and cost 
effectiveness, there is also a well-recognised need in the nanoscience community to 
compare and validate in vitro findings with in vivo observations. In (Q)SAR analy-
sis, it is the specific type of activity, such as cell viability or cytotoxicity, that is 
going to be modelled and predicted. (Q)SAR models can be built and used for the 
prediction of all toxicological endpoints as long as sufficient toxicity data is pro-
vided as input [99]. Ideally, the biological effects of various compounds with differ-
ent sizes, structures, and complexities under relevant exposure conditions should be 
tested with standardized test methods for the successful development of nano-(Q)
SAR models.

5.3  �Descriptors of ENM Properties

Physicochemical descriptors are experimentally or theoretically derived parameters 
that are used to correlate the structural parameters with the endpoint of interest 
through a statistical method. In general, there are two ways of obtaining molecular 
descriptors representing physical and chemical properties of chemical: experimen-
tal measurements and theoretical calculations. Theoretical descriptors can be 
obtained from different theories and semi-empirical techniques. They provide vari-
ous structural and compositional information and significant insight into correla-
tions which are assumed to exist between physicochemical properties and biological 
activity. There are more than 5000 descriptors that have been derived to represent 
molecular structures but the majority of them are not directly applicable to ENMs. 
The main problem in using traditional descriptors for nanostructures is their com-
plexity and non-uniformity which make the direct transformation of the nanostruc-
tures into a computer-readable form difficult. Experimentally measured parameters 
such as particle size, size distribution, surface area and surface charge can also be 
used as descriptors in computational studies. Due to the current limitations in repre-
senting nanostructures in a machine readable form, most of the existing nano-(Q)

C. Oksel et al.



107

SAR studies use experimental descriptors as an input when developing computa-
tional models of ENM toxicity.

There are several issues that are currently of concern to nano-(Q)SAR modellers. 
The main problem with experimental descriptors is the lack of agreement on how, 
when and where to characterize ENMs prior to toxicity testing. For theoretical 
descriptors, the main issue is the appropriate and useful representation of nanostruc-
tures enabling computational treatments. Another important issue is the develop-
ment of novel descriptors for ENMs’ structure. Although traditional QSAR analysis 
is almost standardized, their application to ENMs is still under development and 
involves several difficulties, given the complexity of nanostructures. In this section, 
physicochemical properties that are likely to influence the biological activity of 
ENMs are briefly explained and their measurement methods are summarised.

5.3.1  �Parameters Influencing the Toxicity of ENMs and their 
Measurement

The first step in modelling ENM toxicity is identifying toxicity-related properties 
that can be used as potential determinants of adverse effects of ENMs. Because a 
complete and exact list of parameters influencing the toxicity of ENMs has not yet 
been established, detailed material characterization prior to toxicity testing is essen-
tial to determine the factors contributing to the biological activities of ENMs and 
their potential hazards. Although there is still no scientific consensus on the mini-
mum set of relevant nanocharacteristics for toxicological evaluation, some particu-
lar physicochemical features are included in the majority of recommendations [95]. 
The size of ENMs is one of the most important characteristics that affects the prop-
erties and behavior of ENMs, and is hence included in the recommendation list of 
almost all nanotoxicologists. However, as mentioned by Oberdorster et al. [85], the 
size of the particles is not the only factor that causes changes in the biological activi-
ties of materials at the nanoscale. The following characteristics may also be linked 
to nanotoxicity: size distribution, agglomeration state, shape, crystal structure, 
chemical composition, surface area, surface chemistry, surface charge, and porosity. 
Powers et al. [95] investigated the important elements of NM characterization, and 
expanded the list reported by Oberdorster et al. [85] to include purity, solubility, and 
hydrophobicity. In a recent review on the minimum set of physicochemical proper-
ties required to characterize NMs, Pettitt and Lead [92] suggested that, in addition 
to the parameters that are most likely to have an effect on NM behavior such as size, 
surface properties, solubility, and aggregation characteristics, information about the 
production process and history of ENMs should also be provided to avoid incorrect 
interpretation of toxicity data. One of the most comprehensive lists of the important 
physicochemical characteristics for toxicological studies has been provided by the 
Organization for Economic Cooperation and Development (OECD) Working Group 
on Manufactured Nanomaterials, the OECD WPMN [88]. The WPMN suggested a 
list of physicochemical properties potentially needing to be addressed for 

5  Literature Review of (Q)SAR Modelling of Nanomaterial Toxicity



108

characterization relevant to (eco)toxicity, and devised a testing programme to inves-
tigate this. The physicochemical properties mentioned in this guidance are listed in 
Table 5.1. The term “composition” in Table 5.1 covers chemical identity and molec-
ular structure, as well as degree of purity, impurities, and additives. Another term in 
this list that is often broadly defined is the “surface chemistry”. Here, it is meant to 
identify various modifications of the surface (i.e., coatings) and the composition of 
the outer layer of the NMs. In OECD’s list, there are also many properties, such as 
dustiness and n-octanol–water partition coefficient, that have not been specified as 
prerequisites for NM characterization by other researchers; within the OECD 
WPMN there is now agreement that the n-octanol-water partition coefficient is not 
relevant for NMs. Powers et al. [95] took dustiness as an example and argued that 
such a measurement for dry NM applications should first be standardized, because 
the presence of well-established analytical techniques for the measurement of 
intended properties is essential to express the results in comparable terms; dustiness 

Table 5.1  Physicochemical properties and material characterization

Characterization (as on the shelf) Characterization (in respective media)

Appearance (IA) Dissociation 
constant (IA)

Composition/purity

Melting point (IA) pH (IA) Size, size distribution
Density (IA) Agglomeration or 

aggregation
Agglomeration/aggregation

Size, size distribution Crystalline phase Zeta-potential
N-octanol-water partition 
coefficient (WR)

Crystallite and grain 
size

Biophysical properties (AA) (protein 
binding/corona characterization, 
residence times, adsorption enthalpy, 
conformation changes on binding)

Water solubility/dispersibility, 
hydrophilicity

Aspect ratio, shape

Solubility/dispersibility in 
organic solvents, oleophilicity

Specific surface 
area

Auto flammability (IA) Zeta potential Test item preparation protocol, 
conditioning, homogeneity and short 
term stability

Flammability (IA) Surface chemistry 
(WA)

Stability in solvents and 
identity of relevant 
degradation products

Stability and 
homogeneity (on 
the shelf, in water 
and organic 
solvents)

Oxidizing properties (IA) Dustiness
Oxidation reduction potential Porosity, pore and 

pour density
Explosiveness (IA) Photocatalytic 

activity
Storage stability and reactivity 
towards container material

Catalytic activity

Stability towards thermal, 
sunlight, metals

Radical formation 
potential

WR where relevant, IA if applicable, WA where available, AA as appropriate
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is not an inherent property but depends on the sample tested. For a detailed descrip-
tion of the potential toxicity-related physicochemical properties shown in Table 5.1, 
please refer to OECD’s guidance on testing ENMs [88].

5.3.1.1  �Particle Size and Size Distribution

The size of ENMs is regarded as one of the most important properties determining 
the toxicity potential of ENMs. The surface area to volume ratio increases with 
decreasing particle size. The change in surface-to-volume ratio also affects the 
surface energy and hence the reactivity of the material. In addition to surface reac-
tivity, the interaction of ENMs with living systems and the uptake and deposition of 
ENMs within the human body are also affected by particle size [96]. It is generally 
believed that the risk posed by materials containing nanosized particles increases 
with decreasing particle size [81]. Indeed, Gurr et al. [45] showed that the oxidative 
damage induced by TiO2 particles is size-specific: the smaller the particle size, the 
greater the oxidative damage induced. Similarly, the toxicity of nanosilver is 
assumed to be dependent on the particle size. Park et al. [90] compared the cytotox-
icity, inflammation, genotoxicity, and developmental toxicity induced by different-
sized silver ENMs (20, 80, and 113 nm), and found that the smallest nanosilver 
particles exhibited higher toxicity than larger particles in the assays. More recently, 
in an interesting study, Xiu et al. [135] concluded that the toxicity of silver NPs are 
only indirectly associated with morphological features (i.e., these properties influ-
ence the release of silver ions which in turn has an effect on the toxicity). All such 
findings suggest that the size of particles is a possible factor that may directly or 
indirectly contribute to the toxicity of chemicals. However, in some cases, no rela-
tionship between the toxicity of particles and their sizes is observed [64, 70]. There 
are several techniques that can be used to measure the size of ENMs. Although not 
a comprehensive list, the most common particle size measurement techniques appli-
cable to ENMs are given in Table 5.2.

The results of different particle size measurement techniques are usually not in 
agreement because the measurement principles behind each method are different. 
In general, it is possible to classify the particle size measurement methods appli-
cable to ENMs into three categories: microscopy-based, light scattering-based, 
and separation techniques [107]. Electron microscopy techniques, which are based 
on scattered (SEM) or transmitted (TEM) electrons, provide very accurate infor-
mation and give a clear view of individual and aggregated particles. Therefore, 
these methods can also be used for polydisperse particle samples. The scanning 
electron microscopy (SEM) technique provides information about the size, size 
distribution, particle shape, and morphology, but there is a risk of influencing 
particle properties during sample drying and contrasting [11]. SEM and TEM give 
two-dimensional information on the particles. Unlike electron microscopy tech-
niques, a vacuum environment is not required to obtain atomic force microscopy 
(AFM) images, which allows the measurement of particle sizes under ambient 
conditions [47].
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Dynamic light scattering (DLS) is based on the Brownian motion of suspended 
particles in solution and gives the hydrodynamic diameter of the particles measured, 
which is larger than results for dry-measurement diameters. The main advantages of 
DLS techniques are their simplicity and speed, while their main weaknesses are the 
high sensitivity to sample concentration and the inability to differentiate between 
large individual particles and aggregates [81], and furthermore, DLS cannot be suc-
cessfully applied to polydisperse suspensions of particles as the intensity of the 
scattered light is proportional to diameter, D, to the power of six, D6, meaning that 
large particles will overshadow smaller ones. Dynamic centrifugal sedimentation 
(DCS) and analytical ultracentrifugation use the difference in sedimentation rates of 
different sized particles to separate a sample. Tantra et al. [120] emphasized that one 
of the main disadvantages of DCS is the requirement to know the exact density of 
the particle including coatings and adsorbed analytes on the surface. A dry size 
measurement method is Brunauer–Emmett–Teller (BET) surface area analysis, 
which calculates the mean particle diameter from surface area measurement based 
on the assumption that the particles are nonporous and spherical. Additionally, there 
are several other size measurement methods, including laser diffraction, mobility 
analysis, acoustic methods, field-flow fractionation (FFF), and fluorescence correla-
tion spectroscopy (FCS), each of which has its pros and cons. Domingos et al. [26] 
provided a good example of size measurement by multiple analysis methods includ-
ing TEM, AFM, DLS, FCS, NP tracking analysis (NPTA), and flow field flow frac-
tionation (FIFFF). They confirmed that the particle size measured by DLS is 
typically higher than those obtained using the other sizing methods. It was con-
cluded that there is no ideal nanoscale measurement technique that is suitable for all 
sample types. Various factors, such as the nature of the substance to be measured, 
the constraints of cost and time, and the type of information required, play a deci-
sive role in the choice of the sizing method. Additionally, the structural properties of 
ENMs, sample preparation, and polydispersity have significant effects on the results 
of different ENM size measurement techniques.

There are three important criteria that should be met for accurate measurement 
of particle size: a well-dispersed system, selection of a representative sample, and 
appropriate selection of the size measurement method considering the nature of the 
ENM and its intended use [96]. It should also be kept in mind that some methods 
require dispersion, such as DLS, NPTA, and DSC. The aggregation/agglomeration 
of particles in dispersions leads to an increase in the measured particle size, as does 
the formation of corona, when the hydrodynamic diameter is measured. The results 
from wet measurements may reflect well the biological situation in nano-toxicity 
studies, depending on the media, because ENMs will actually not be in a dry form 
when they are in contact with human cells/organs.

It is our view that the combination of a microscopic technique (e.g., TEM or 
AFM) and an ensemble technique (e.g., DLS) seems appropriate for monodisperse 
systems, because this can provide a complete picture of the size characteristics in 
the dry form and suspension. For polydisperse systems, the DLS technique has seri-
ous problems, hence it should be replaced or complemented with an alternative size 
measurement approach. In summary, it is usually useful to combine a single-parti-
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cle size measurement technique with an ensemble method to obtain a rich dataset 
of particle sizes and the size distribution, especially when a priori knowledge on 
these parameters is unavailable for the test material. The results of seven studies by 
different researchers are given in Table 5.3, with the aim of comparing different 
ENM size measurement techniques. It should also be pointed out that, compared 
with the average value of the particle size, the size distribution provides a more 
realistic representation of particle size information, which is a critical attribute in 
nanotoxicology. However, measurement of particle size distributions usually pro-
vides a large amount of data (e.g., hundreds of size distribution components), which 
may cause problems in the (Q)SAR analysis (e.g., increased random correlations). 
Therefore, it is important to find a reasonable way to represent all components of 
the size distributions with a few variables that still retain all of the information pres-
ent in the input data. Wang et al. [132] carried out principal component analysis on 
size distribution data consisting of a large number of particle size distribution mea-
surements to reduce the number of descriptors to a manageable size. This study is a 
good example of how to handle large size distribution datasets prior to nano-(Q)
SAR analysis. Instead of reporting mean particle size values, researchers should 
also take into account the variations in the size distribution as a whole, because the 
ENM samples consist of a range of particle sizes, not only a single type of 
particles.

5.3.1.2  �Particle Shape

The shape of ENMs is another important feature influencing the biological activities 
of the particles. The hydrodynamic diameters of spherical and rectangular particles 
with the same mass, and hence their mobility in solution, vary because of shape 
effects. Moreover, shape characteristics greatly affect the deposition and absorption 
kinetics of NPs in a biological environment [81]. The importance of shape in toxic-
ity has been proven for CNTs. Poland et  al. [93] showed that long multiwalled 
CNTs (MWCNTs) are more toxic than short/tangled MWCNTs. The study under-
taken by Powers et al. [96] revealed that the antibacterial activity of silver NPs is 
shape-dependent. In another study, Gratton et al. [41] demonstrated that rod-like 
(high aspect ratio) NPs are drawn or internalized more efficiently into cells than 
cylindrical NPs. Although there are several studies investigating and confirming the 
potential effect of NP shape on toxicity, it is still not possible to draw clear conclu-
sions or define any particular shape inherently “toxic” with current knowledge. 
Further research is required on NPs with similar composition but different shape to 
investigate the role of NP shape in toxicity.

There are several nondimensional shape indexes that can be used to quantify 
the shape characteristics of particles, such as sphericity/circularity, aspect ratio/
elongation, convexity, and fractal dimensions. The shape index of NPs is usually 
determined using microscopic methods such as SEM and TEM, which have the 
ability to simultaneously determine both particle size and shape. Additionally, the 
ratio of two particle sizes measured by different techniques, such as DLS and 
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TEM/SEM, can be used as a simple expression of particle shape [56]. Because 
shape characteristics and the distribution of NPs may vary when they are in con-
tact with organisms, shape measurements should also be made for “as-exposed” 
as well as “as-received” forms. Wang and Ma [130] defined the shape of a crystal 
according to the normal distance between each surface of the particle and its geo-
metrical centre. They carried out principal component analysis (PCA) on the 
shape description dataset for data compression. The calculated surface–centre 
distances or the resultant principal component values can be directly used as 
shape indexes of NPs, especially nonspherical NPs, in nano-(Q)SAR. Moreover, 
these values can also be used as dynamic shape factors to investigate the time and 
size dependence of shape once this modelling methodology is applied to model 
the aggregation/agglomeration behaviour of NPs. If aggregation/agglomeration 
occurs, the normal distances for some faces may disappear with some new dis-
tances appearing. If breakage occurs, some new normal distances will be identi-
fied to represent the new faces. Such alternative approaches are useful for 
nano-(Q)SAR applications because they take into account the dynamic nature of 
NP shape.

5.3.1.3  �Crystal Structure (Crystallinity)

ENMs with the same chemical composition may have different toxicological prop-
erties because of their different atomic arrangements and crystal structure. Jiang 
et al. [62] investigated the effect of crystallinity on NP activity by comparing the 
ROS generating capacity of TiO2 NPs with similar size but different crystal phases 
(amorphous, anatase, rutile, and anatase/rutile mixtures). The study found that 
amorphous samples showed the highest level of ROS activity followed by pure ana-
tase and anatase/rutile mixtures, while pure rutile produced the lowest level of 
ROS. Nanosilica, which occurs in multiple forms, is another ENM whose toxicity 
may vary depending on the nature of its crystal structure [82].

A widely used technique to obtain information about crystal phases, purity, crys-
tal structure, crystallite size, lattice constants, and defects of NPs is X-ray diffrac-
tion (XRD). XRD is a useful tool to characterize nanostructures because it provides 
nondestructive evaluation of the structural characteristics without the need for 
exhaustive sample preparation [28]. Its noncontact and nondestructive features 
make XRD ideal for in situ measurements [113]. Measurement in a desired atmo-
sphere is allowed in XRD. This makes XRD advantageous for toxicological charac-
terization in which collection of crystal structure data in biologically relevant media 
becomes an important issue.

Additionally, high-resolution transmission electron microscopy (HR-TEM) and 
selected-area electron diffraction (SAED) can be used to obtain information about 
the crystal structure, especially when data acquisition from individual nanocrystals 
is required. We believe that conventional XRD is preferable over TEM for crystal-
lographic investigation of nanostructures because of the sample-damaging and the 
user-dependent nature of TEM.
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5.3.1.4  �Surface Characteristics

Surface Functionalization

Surface chemistry is another factor that needs to be considered for the complete char-
acterization of NPs, because it plays an important role in the surface interactions and 
aggregation behavior of NPs in liquid media. Therefore, if the surfaces of ENMs are 
intentionally functionalized, each chemical species and functional groups on the sur-
face should be identified. The influence of surface coating on the toxicity of Ag-NPs 
has been investigated by many researchers [21, 83, 140]. The results from Nguyen et al. 
[83] showed that uncoated Ag-NPs are more toxic than coated Ag-NPs. However, the 
coating is not the only factor that reduces the toxicity of Ag-NPs. Changes in the aggre-
gation state and particle size as a result of surface coating may also be important.

Information about how the ENM surface affects the interactions of NPs in a bio-
logical environment can be obtained from different techniques, such as electron 
spectroscopy (X-ray photoelectron spectroscopy (XPS) and Auger electron spec-
troscopy (AES)), scanning probe microscopy (AFM and scanning tunneling micros-
copy (STM)), ion-based methods (secondary ion mass spectrometry and low-energy 
ion scattering), and other spectroscopic techniques (e.g., IR, NMR, and Raman 
spectroscopy) [6]. The most important advantage of electron spectroscopy is its 
high surface sensitivity. XPS is one of the most commonly used techniques for sur-
face analysis [125]. Both XPS and AES can be used to obtain information about the 
presence, relative surface enrichment, composition, and thickness of coatings.

Surface Charge

Surface charge is another important characteristic that may affect the toxicity of 
ENMs. The biological interactions of ENMs, and hence their biological activities, 
are highly surface-charge dependent. Park et al. [91] analyzed the effect of surface 
charge on toxicity using negatively and weakly negatively charged silica-NPs. They 
found that negatively charged silica-NPs have a higher level of cytotoxicity than 
weakly negatively charged silica-NPs. In another study, the core of silicon-NPs was 
covered with different organic monolayers to obtain different surface charges (posi-
tive, negative, and neutral) [10]. The study found that positively charged silicon-
NPs are more toxic than neutral silicon-NPs, while negatively charged silicon-NPs 
induced almost no cytotoxicity.

Because it is challenging to directly measure the charge at the surface of parti-
cles, zeta potential measurement using dynamic or electrophoretic light scattering is 
usually used to quantify the surface charge. According to Xu [136], among the three 
techniques that can be used to determine the zeta potential (electrophoretic light 
scattering (ELS), and acoustic and electroacoustic methods), ELS is preferred for 
various applications because of its certainty, sensitivity, and versatility. However, 
classic ELS cannot successfully determine the zeta potential of turbid samples 
because the light cannot penetrate the sample. Preferably, the sample should be 
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optically clean and nonturbid for accurate measurements. It was also noted in the 
same study that the accuracy of zeta potential measurements is greatly affected by 
environmental conditions, such as pH and ionic strength. The pH-dependence of the 
zeta potential should also be taken into account because changing the pH of a solu-
tion may greatly alter the distribution of surface charge.

The current understanding of the relationship between surface charge and toxic-
ity is severely limited, mainly because of the incapability of existing in situ mea-
surement techniques and the environment-dependence of zeta potential 
measurements [61]. Because the value of the zeta potential obtained may vary 
between different techniques and experiments [38], multiple tests should be con-
ducted for the best possible accuracy and the results should be reported together 
with details on measurement conditions (e.g. pH value and sample concentration).

5.3.1.5  �Aggregation State

Some NPs have the tendency to form large agglomerates both in the dry form and in 
suspension. If NPs form clusters, they may behave like larger particles because of 
their increased hydrodynamic size [20]. Because agglomeration could affect impor-
tant physicochemical features, such as particle size and the size distribution, the 
biological effects of these changes should be identified to avoid incorrect estimation 
of the toxic potential of ENMs [61].

The aggregation state is often quantified by measuring the size distribution of 
existing agglomerates. It can be monitored and quantified by microscopic tech-
niques such as TEM, SEM, and AFM. Additionally, DLS can also be used to inves-
tigate NP aggregation. However, characterization of the agglomerate size of NPs in 
suspensions is very challenging because the degree of aggregation can be influenced 
by external conditions (e.g., pH, temperature, and humidity). Ideally, in situ instru-
ments that are capable of measuring the size, shape, and number of all agglomerates 
in the relevant medium are required to characterize the aggregation state. The par-
ticle size information used in early nanotoxicological studies usually refers to the 
primary size of individual NPs and ignores the effect of aggregation. Although 
accurate characterization of the aggregation state prior to nanotoxicity testing is 
seen as a prerequisite by several researchers [13, 61, 129], there is still no clear 
consensus on how to characterize aggregation. However, characterizing the aggre-
gation shape using fractal dimensions, which provide an index of complexity by 
measuring the space-filling capacity of an object, may be the way forward [109].

5.3.2  �NP-Specific Descriptors

Because some properties of ENMs are different from conventional materials, it is 
very likely that also the toxicity of ENMs could be different and associated to nano-
phenomena. Therefore, the development of nanospecific descriptors capable of 
describing the distinctive properties of NPs is one of the main research requirements 
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in the area of computational nanotoxicology. In this section, the different approaches 
to develop novel NP-descriptors will be presented.

Glotzer and Solomon [39] proposed an approach to characterize NPs based on 
microscopic images. They defined eight orthogonal dimensions that can be used as 
NP-descriptors to compare the structural similarity of different NPs: surface cover-
age, aspect ratio, faceting, pattern quantization, branching, chemical ordering, 
shape gradient, and variation in roughness (Fig. 5.2). Although the development of 
new descriptors based on microscopic images is a promising idea, the numerical 
expression of these eight dimensions is still an unresolved problem.

The idea suggested by Glotzer and Solomon [39] has inspired other researchers 
to use microscopic images of NPs for the extraction of structural information. Puzyn 
et al. [97] proposed to quantify each pixel in SEM, TEM, and AFM images using 
RGB colour codes or gray-scale representation, and then produce a rectangular array 
of numbers (Fig. 5.3). They also emphasized that these numerical values of image 
pixels can be used as new descriptors for encoding the structural properties of NPs.

In another study, Xia et al. [133] developed a multidimensional biological sur-
face adsorption index (BSAI) consisting of five quantitative nanodescriptors: lone-
pair electrons, polarity/polarizability, hydrogen-bond donors, hydrogen-bond 
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G: Shape gradient
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Descriptors

Fig. 5.2  Derivation of eight qualitative descriptors based on microscopic images (Reprinted from 
Nature materials, 6, Glotzer et al., Anisotropy of building blocks and their assembly into complex 
structures., 557–562., Copyright (2007), with permission from Elsevier)
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Fig. 5.3  Derivation of structural descriptors based on microscopic images (Reprinted from Small, 
5, Puzyn et al., Toward the development of “nano-QSARs”: advances and challenges., 2494–509., 
Copyright (2009), with permission from John Wiley and Sons)
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acceptors, and London dispersion. These five nanodescriptors represent the funda-
mental forces governing the adsorption process of NPs in a biological environment. 
In their follow-up study [134], they performed PCA on five-dimensional nanode-
scriptor datasets to reduce dimensionality, and obtained a two-dimensional repre-
sentation of the molecular interaction forces in biological systems and hence 
facilitated characterization of the surface properties of ENMs (Fig. 5.4). After 
obtaining two-dimensional nanodescriptors via PCA, they managed to classify 16 
different ENMs into separate clusters based on their surface adsorption properties.

Burello and Worth [19] proposed that different types of spectra (e.g., NMR, IR, 
Raman, and UV–Vis) can be used as nanodescriptors because they contain 
fingerprint-like information (Fig. 5.5). The first step is spectral measurement fol-
lowed by conversion of the spectra into a numerical matrix. This data matrix can be 
seen as spectra-derived descriptors and used for (Q)SAR analysis. It is not entirely a 
new perspective because spectral information has already been used in a number of 
studies. The use of IR information for (Q)SAR analysis was shown to be promising 
by Benigni et  al. [9]. They compared the IR spectra with several descriptors 
commonly used in (Q)SAR studies, and found that IR spectra contain unique infor-
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Fig. 5.5  Derivation of NP-descriptors based on the spectra of ENMs (Reprinted from Wiley 
Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 3, Burello et al., QSAR model-
ing of nanomaterials., 298–306., Copyright (2011), with permission from John Wiley and Sons)
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mation that cannot be obtained from molecular descriptors. Zhou et al. [141] used 
the spectra of multiwalled NTs for characterization, while Yang et al. [137] attempted 
to correlate XRD data with photocatalytic performance using the dye decolouriza-
tion rate. We strongly believe that the use of spectra-derived descriptors in (Q)SAR 
modelling of ENMs is an interesting approach and deserves further investigation.

The final properties of materials are related not only to the chemical composition 
and structure of materials but also to the preparation, synthesis, and processing 
methods. Le et al. [68] suggested that molecular descriptors characterizing physico-
chemical properties of compounds could be combined with historical descriptors 
describing the sample preparation and synthesis techniques of materials to develop 
reliable and predictive models. Although historical descriptors can be useful for 
modelling traditional materials, their implementation to nano-(Q)SAR models can 
be very difficult because they probably have no ability to distinguish between ordi-
nary and nanosized particles. The determination of three-dimensional descriptors 
that are suitable for nanostructures and NP representation is another promising 
approach and undoubtedly will be put into practice in the near future. In addition, 
the development of more sophisticated image analysis approaches (e.g., texture 
analysis-based methods) would facilitate the rapid extraction of morphological 
information (e.g., particle size, shape, surface area, and aggregation state) from 
microscopic images of NPs.

5.4  �Nano-(Q)SAR and Modelling Techniques

A (Q)SAR is a mathematical model that attempts to relate the biological activities 
or properties of a series of chemicals to their physicochemical characteristics in a 
quantitative manner [99]. Although the first use of (Q)SAR models is attributed to 
Hansch [50], who brought physical organic chemistry and the study of chemical 
biological interactions together to propose the first (Q)SAR approach, the relation-
ship between chemical structure and biological activity was reported in several ear-
lier studies ([16, 103]., [89]). Hansch’s (Q)SAR approach has found applications in 
many disciplines, such as drug design, and chemical and biological science. 
Moreover, numerous modification of Hansch’s approach to QSAR modelling have 
been developed by many other researchers [66].

In (Q)SAR models, it is assumed that the observable biological activity is cor-
related with the structure of compounds, and this correlation can be expressed in a 
mathematical equation. The presumed relationship between the activity and struc-
ture is expressed with the following form of mathematical equation:

	
y f xi= ( ) , 	 (5.1)

where y is the biological activity of the chemical (i.e., toxicity) and f(xi) is a function 
of structural properties. A set of well-characterized compounds with known biologi-
cal effects is required to obtain this mathematical equation. The structural features 
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of compounds with known biological activities are represented by measured or cal-
culated molecular descriptors. Then, a mathematical model relating the measured 
activity to the descriptor sets is obtained by regression analysis. The last step is 
evaluation of the reliability of the model and its applicability to other compounds. 
One of the most important steps, which is often omitted, is to define the model’s 
boundaries and limitations to demonstrate how well it performs when applied to 
substances that are not used in building the model.

5.4.1  �Nano-(Q)SAR Research

The papers focusing on the development of nano-(Q)SAR models are given in 
Table 5.4. Most of the nano-(Q)SAR studies focused on metal oxide (MO) ENMs 
because of their common commercial use and high production volume. One of the 
first attempts to show that computational (Q)SAR can give valuable information 
about nanotoxicity was reported by Liu and Hopfinger [71]. They used molecular 
dynamic simulations to investigate the effect of CNT insertion on the cellular mem-
brane structure. Four potential toxicity sources were investigated through mem-
brane interaction-(Q)SAR analysis. Although the result of this study was very 
informative and encouraging, a proven (Q)SAR model was not established because 
of the absence of experimental data.

Sayes and Ivanov [108] assessed the presence of ENM-induced cell damage 
based on the release of lactate dehydrogenase (LDH) from cells. Six different physi-
cal characteristics were measured for each of the selected MO ENMs (TiO2 and 
ZnO): primary particle size, size in water and two buffered solutions, concentration, 
and zeta potential. First, they performed principal component and correlation analy-
sis on the preprocessed dataset to reveal possible correlations between the physical 
properties and LDH release measurements. Although a strong correlation between 
some of the physical features were observed, such as particle size and concentration 
in water, no correlation was found between the measured physical properties and 
cellular cell damage in the principal component analysis. Their initial intention was 
to use the same dataset to develop a regression and classification model. However, 
they were unable to develop a statistically significant regression model using the 
TiO2 and ZnO dataset. The results of classification analysis were better because they 
managed to produce a classifier with zero resubstitution error. A clear description of 
the experimental design, ENM preparation, cell culture conditions, and methodol-
ogy were given in the paper. The inclusion of such knowledge in toxicological 
research is very important because it greatly improves the interpretability of col-
lected data and enhances its comparability with other studies. The downside of the 
study is undoubtedly the small number of ENMs and physical descriptors used. It is 
unrealistic to build a (Q)SAR model with a few ENMs because it does not allow the 
splitting of the original datasets into training, validation, and test sets. The number 
of final descriptors used to develop a (Q)SAR model can be less than six, but it is 
desirable to have a much larger number of initial descriptors, especially in the 
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absence of specific knowledge regarding the relevance of particular properties to 
nanotoxicity.

In another study, two different experimental nanotoxicity datasets were used to 
derive a mathematical relationship between the toxicity of ENMs and their physico-
chemical properties [33]. The advantage of the data used in this study was the con-
current testing of ENMs under the same conditions. In the first case study, three 
distinct clusters of ENMs were identified based on their biological activity, and 
support vector machine (SVM) models with high accuracies were developed. In the 
second case study, a descriptor quantifying lipophilicity was the most significant 
predictor of biological activity because it accurately discriminated between ENMs 
with low and high values of PaCa2 cellular uptake. Overall, it was shown that the 
(Q)SAR approach can provide useful information for toxicity prediction of new 
ENMs. The methodology used in this work fulfilled all the principles of the OECD 
for the validation of (Q)SAR models.

Puzyn et al. [100] were one of the first to derive a mathematical equation based 
on the dataset of cytotoxicity and molecular descriptors. Initially, a set of 12 struc-
tural descriptors were quantum-chemically calculated using the semiempirical PM6 
method. Among the pool of descriptors, only one structural descriptor (ΔHMe+) rep-
resenting the enthalpy of formation of a gaseous cation with the same oxidation 
state as that in the MO structure was used to establish the following nano-(Q)SAR 
model:

	
log / . . .1 2 59 0 5050EC HMe( ) = - +D

	
(5.2)

A set of 17 MO-NPs used by Puzyn et al. [100] can be considered as small from 
a modelling perspective, but the development of such predictive nano-(Q)SAR 
models is helpful to encourage new investigations.

Another simple but statistically powerful nano-(Q)SAR model was developed by 
Epa et al. [29] based on the results of in vitro cell-based assays of ENMs. They used 
the same dataset as Fourches et al. [33] with minor changes. The difference was that 
new descriptors encoding the presence or absence of some particular features, such 
as coating, were added. They managed to build the following nano-(Q)SAR equa-
tion based on these dummy variables:

	

Smooth muscle apoptosis Fe O= ±( ) - ±( ) -2 26 0 72 10 73 1 05

5 5
2 3

. . . .

.

I

77 0 98 3 53 0 54±( ) - ±( ). . . ,I Idextran surface charge 	

(5.3)

where I IFe O dextran2 3
, , and Isurface charge stand for indicators (taking values of 1 or 0) for 

the core material, surface coating, and surface charge, respectively. This was the 
second quantitative model developed to predict the toxicity of nanostructures. 
Compared with Eq. (2), this mathematical expression was developed from a more 
diverse set of data.

Recently, the hypothesis that ENM toxicity is a function of some physico-
chemical properties was tested by Wang et al. [132]. A set of 18 ENMs including 
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carbon-based materials and MOs were used in the study. Different types of cyto-
toxicity assays were performed, such as LDH, apoptosis, necrosis, hemolytic, and 
MTT, and several structural and compositional properties were measured. 
Initially, they applied PCA to the cytotoxicity data to combine the toxicity values 
measured at different doses into a single value that describes all the data points on 
the dose–response curve. It should be mentioned that, because toxicity is highly 
dose-dependent, the toxicological effects are usually evaluated at multiple con-
centrations in a series of tests, and the results are represented with a dose–response 
curve. Figure 5.6 shows examples of the dose–response curves obtained for the 18 
ENMs. From this graph, the cell viability is lower in the cells treated with N3 
(nanotubes), N14 (zinc oxide), and N6 (aminated beads) than the other ENMs. 
There are various methods to analyze and compare dose–response curves, such as 
area under the curve, slope of the curve, threshold values, min/max response, and 
the benchmark dose approach. In this study, Wang et al. [132] performed PCA to 
integrate the entire curve, and used the resulting principal components as an over-
all measure of cumulative response. They concluded that, compared with other 
approaches, PCA-based representation of the dose–response curves provides 
more reasonable results when ranking the ENMs according to their hazard poten-
tial. Because of the high toxicity level of four particular ENMs (zinc oxide, poly-
styrene latex amine, Japanese nanotubes, and nickel oxide), nano-(Q)SAR 
analysis focused on these four ENMs to investigate the potential factors behind 
their observed toxicity. It was concluded that the physicochemical characteristics 
leading to the toxicity of ENMs were different, and it was not possible to draw a 
general conclusion that was valid for all toxic ENMs screened in the study. 
However, the nano-(Q)SAR method was found to be useful to reveal that some of 
the measured properties, such as metal content, high aspect ratio, and particle 
charge, were correlated with the toxicity of different nanosized materials.

Liu et al. [72] developed a classification-based (Q)SAR model based on multiple 
toxicity assays, 44 iron oxide core NPs, and 4 simple descriptors (size, zeta poten-
tial, and relaxivities). They suggested that existing nano-(Q)SAR models did not 
take into account the acceptance level of false negative to false positive predictions. 
Unlike previously constructed nano-(Q)SAR models, they also investigated the 
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decision boundaries of the nano-(Q)SARs subject to different acceptance levels of 
false negative/false positive predictions.

In another study, Liu et al. [73] attempted to relate the physicochemical proper-
ties of MO-NPs to their toxicity by developing a structure–activity relationship. A 
number of classification nano-(Q)SAR models were developed based on a large 
toxicity dataset of 24 MO-NPs. A set of 30 molecular descriptors were calculated 
for each NPs, and only two of them (conduction band energy and ionic index) were 
identified as important molecular descriptors on which the best performing nano-(Q)
SAR model was built. Their conclusion was in a good agreement with the results of 
Burello and Worth [19], who found that the conduction band energy of oxide NPs is 
related to their toxicity. Similar findings have also been reported by Zhang et al. 
[139], who indicated that the oxidative stress induced by MO-NPs could be linked 
to their conduction and valance band energies.

More recently, Singh and Gupta [116] attempted to build classification and 
regression nano-(Q)SAR models using ensemble methods such as decision tree for-
est (DTF) and decision tree boost (DTB). Five different datasets were used to dem-
onstrate and confirm the suitability of these techniques for the (Q)SAR modelling 
process by comparing the accuracy of the developed nano-(Q)SARs with past stud-
ies. It was concluded that the nano-(Q)SAR models constructed had high perfor-
mance and statistical significance along with superior predictive ability to previous 
studies.

From our point of view, the common problem in the majority of published (Q)
SAR studies is that it is not possible to generalize the results in the absence of 
explanatory information regarding the underlying reasons for the system behavior, 
thus making the usability of these studies limited for compounds outside the study. 
When the results of (Q)SAR analysis are only valid for the tested compounds, (Q)
SAR becomes a data analysis tool with no predictive ability. To ensure the reliability 
of the established nano-(Q)SARs, researchers should also address model uncer-
tainty arising from experimental error and lack of knowledge. Moreover, most of 
the existing nano-(Q)SAR studies used small datasets to establish a link between 
nanostructure and toxicity. Although small datasets can be useful to describe or 
explain the relationship between NP structure and activity, they may not be very 
useful for predictive purposes.

Table 5.4 summarises the previously reported nano-(Q)SAR studies and com-
pares their methodologies with OECD principles: (1) a defined endpoint, (2) an 
unambiguous algorithm, (3) the applicability domain, and (4) model validation for 
stability and predictivity.

5.4.2  �Nano-(Q)SAR Modelling Techniques

In principle, a variety of methods that have proven to be effective in classic (Q)SAR 
modelling, such as statistical methods, neural networks and decision trees, can be 
applied to nano-(Q)SAR.  In practice, however, their direct use in ENM toxicity 
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modelling has difficulties. The major obstacle originates from the availability of 
data, because some (Q)SAR algorithms require large datasets that are not currently 
available for ENMs. Considering the current scarcity of nanotoxicity data, it is rea-
sonable to use modelling tools that can make effective use of smaller datasets. In 
addition, there is still insufficient knowledge about physicochemical descriptors 
that can predict the toxicity of ENMs. Therefore, current nano-(Q)SAR studies 
should focus on identifying toxicity-related physicochemical characteristics as well 
as predicting potential toxicity values. The ease of use (i.e., the ease of model build-
ing and interpretation of the results) is another important consideration, particularly 
in the nano-(Q)SAR world where the ability to interpret the resulting models is the 
key to understanding the correlation between different forms of biological activity 
and descriptors. Overall, the following factors have to be considered when selecting 
nano-(Q)SAR modelling techniques:

•	 Minimum data requirements. Effective use should be made of limited data with-
out relying on the availability of large datasets.

•	 Transparency. Models should be transparent (rather than black-box), intuitive, 
and able to help identify the physicochemical descriptors that are related to the 
toxicity of ENMs

•	 Ease of model construction. The technique should be easy to use and easy to 
implement.

•	 Nonlinearity. The technique should be able to reveal nonlinear relationships/pat-
terns in the dataset.

•	 Low overfitting risk. The technique should have low risk of overfitting, which 
may reduce the generalization of the model.

•	 Descriptor selection function. The technique should have the capability of fea-
ture selection to exclude redundant descriptors before model building.

•	 Ease of interpretation. The technique should be able to produce meaningful and 
interpretable outcomes and explain how the outcomes are produced.

•	 Low modeller dependency. The technique should have low sensitivity to changes 
in the model parameters.

Below, some (Q)SAR modelling methods are examined, including decision 
trees, statistical methods, support vector machines, neural networks, multidimen-
sional visualisation, and knowledge-based expert systems. The focus is on discuss-
ing their suitability for nano-(Q)SAR modelling, rather than introducing the 
individual algorithms. Additionally, feature selection and model validation methods 
are briefly discussed.

5.4.2.1  �Decision Trees (DTs)

Automatic generation of decision trees from data is a powerful machine learning 
technique that can be used as a classification or regression tool for categorical and 
numerical predictions of biological activity in (Q)SAR studies [76]. DTs can be 
constructed with small, large, or noisy datasets, and then used to detect nonlinear 
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relationships. They have a tree-like structure that splits data points into different 
classes based on decision rules to categorize and model input data. Various DT gen-
eration algorithms are available, and can be broadly classified as shown in Fig. 5.7. 
The most significant advantages of DT methods are their capability to automatically 
select the input variables (i.e., the physicochemical descriptors that contribute to the 
observed toxicity) and to remove descriptors that are not related to the endpoint of 
interest. In a previous study, Buontempo et al. [17] demonstrated the use of a genetic 
programming-based DT generation technique for in silico toxicity prediction. They 
developed a DT model containing five descriptors selected from a pool of more than 
a thousand descriptors that has good predictive performance for both training and 
test datasets. This “knowledge discovery” capability is no doubt valuable to identify 
the physicochemical descriptors that contribute to the toxic effects of ENMs. Such 
knowledge has even more benefits for eliminating or minimizing the risk of ENMs 
through engineering approaches (i.e., modification of physicochemical properties 
that influence the toxicological response through the active engineering of ENMs). 
Another benefit of DT analysis is its capability to avoid the (Q)SAR model being 
overbiased towards data in dense areas, which is a problem with some other tech-
niques, such as linear regression and neural networks. Small data cases, i.e., data 
outside the dense data area, can also be modelled as branches of a decision tree. An 
additional advantage of DTs is the ease of their interpretability and transparency 
[77]. Investigation of DTs for modelling ENM toxicity requires more research, 
because, in addition to the abovementioned advantages, there are researchers who 
have voiced concerns about the generalization ability and predictive power of DTs 
[8]. DTs (and their extension known as “random forest”) have been investigated for 
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implementations of each type (Reprinted from Particuology, 21, Ceyda Oksel et al., (Q)SAR mod-
elling of nanomaterial toxicity: A critical review, 1–19., Copyright (2015), with permission from 
Elsevier)
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(Q)SAR modelling in a number of studies [2, 3, 49, 76, 119]. Further research on 
DTs should focus on maximizing their advantages and overcoming their limitations. 
An interesting example is random decision forest, and several studies have shown 
its improved generalization ability over DTs [37, 77, 121].

5.4.2.2  �Statistical Methods and Feature Selection

Several statistical methods, such as multiple linear regression (MLR), principal 
component regression (PCR), and partial least squares (PLS) regression, have been 
extensively studied in (Q)SAR analysis because of their ease of use and interpreta-
tion [138]. PLS is a linear regression method that handles data cases where the 
number of predictors is greater than the number of compounds. The PLS method 
works well when there are several noisy and intercorrelated descriptors, and also 
allows multiple responses to be simultaneously modelled . The usefulness of PLS in 
(Q)SAR studies, especially when the descriptors are highly correlated and numer-
ous, has been proven by several researchers [23, 27, 30, 43, 75]. However, this 
method can only be used for the solution of linear regression problems. To over-
come this problem, nonlinear versions of the PLS method have been developed 
based on different algorithms, such as kernel-based PLS [104], neural network PLS 
[101], and genetic algorithm-based PLS [51]. These extensions allow nonlinear 
relationships to be modelled in (Q)SAR studies, which is not otherwise possible 
with the simple PLS technique. Although MLR is one of the most common model-
ling techniques used to develop regression-based (Q)SAR models, there are three 
main factors limiting the use of MLR in nanotoxicity modelling: the linearity 
assumption, i.e., it cannot detect nonlinear causal relationship; the restriction on the 
ratio of compounds to predictors in the data, i.e., the lowest ratio of the number of 
ENMs to the number of descriptors should be 5:1; and the dependence of its perfor-
mance on redundant variables, i.e., the presence of correlated input variables and 
input variables that are irrelevant to the output may lead to poor model performance 
[110]. Dimension reduction methods, such as PCA, can be useful for eliminating 
correlations between input variables (i.e., physicochemical descriptors) without 
removing information about irrelevant variables that may still affect the model per-
formance. Overall, the main advantage of linear models, such as MLR and PLS, 
over nonlinear models is their transparency. Some information of the relative impor-
tance of the physicochemical descriptors can be directly obtained from a linear 
model by examining the weights, whereas some nonlinear models, such as neural 
networks, cannot give such direct information.

The feature selection process is different from the above mentioned dimension 
reduction technique, i.e., PCA, in that it selects only the inputs that have an effect 
on the outputs. The input variables that have little or no effect on the outputs are 
removed during the model building process. Among the various methods for auto-
matic input feature selection, the genetic algorithm (GA) has shown excellent per-
formance. The GA feature selection approach can be applied together with almost 
all (Q)SAR model building algorithms. The GA starts from a population of possible 
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solutions (called individuals of chromosomes), which can be randomly generated. 
Each gene in the first generation of solutions consists of randomly selected descrip-
tors. A (Q)SAR model can be built using the randomly selected descriptors in each 
chromosome. (Q)SAR models built based on the individuals in the initial popula-
tion of solutions in this first generation are evaluated using a defined fitness function. 
Based on Darwin’s theory of “survival of the fittest”, individuals undergo operations 
such as mutation and crossover to generate the population of individuals in the next 
generation. In summary, a GA algorithm has the following essential steps:

	1.	 Random generation of a set of solutions (the number of solutions can be set by 
the user) and code into a vector group with fixed length;

	2.	 Generation of a new set of solutions by the method below, or generation of new 
solutions to substitute individuals in the current population;

	2.1	 Selection of parent individuals based on the value of fitness function;
	2.2	 Crossover to generate one or several subindividuals;
	2.3	 Apply mutation operation to some individuals;

	3.	 Repeat step (2) until one of the stopping criteria is met.

The stopping criteria are reaching the maximum number of generations or time 
limit, and satisfying the stop criterion for the fitness function. For more detail, 
please refer to (Reddy et al. [102], Goodarzi et al. [40], Ma and Wang [78]).

5.4.2.3  �Support Vector Machines (SVMs)

There is increasing interest in the use of SVMs, which can handle both regression 
and classification problems, as an alternative to linear modelling methods such as 
MLR and PLS in (Q)SAR studies [24, 80]. SVMs can handle many issues that usu-
ally affect the performance of other (Q)SAR modelling techniques, such as nonlin-
ear relationships, collinear descriptors, small datasets, and model overfitting [80]. 
SVMs have good potential for (Q)SAR analysis because of their accuracy and high 
generalization capability. On the other hand, the main disadvantages of SVMs are 
the high sensitivity of model performance to the selection of design parameters 
(e.g., kernel functions) and the complexity of direct interpretation of SVM deci-
sions. SVMs have been used in numerous studies to construct classification [24] and 
regression [80, 84] based (Q)SAR models. As previously mentioned, GA-based fea-
ture selection can be integrated with SVM in (Q)SAR modelling, as shown in near-
infrared chemometrics [78].

5.4.2.4  �Artificial Neural Networks (ANNs)

ANNs are algorithms that imitate how the human brain works and computationally 
simulate human brain activity based on the neural structure of the brain. Although 
in some cases the poorly understood structure of this technique affects its practical 

5  Literature Review of (Q)SAR Modelling of Nanomaterial Toxicity



130

reliability, successful applications of ANNs in the (Q)SAR world [48, 58, 128] keep 
interest in this method alive. ANNs offer several advantages to (Q)SAR developers, 
including the ability to deal with the nonlinear nature of structure–activity relation-
ships and large descriptor datasets including unnecessary variables. However, ANNs 
also have several disadvantages, such as difficulty in interpreting the outcome, 
selecting the optimum complexity, risk of overfitting, and high sensitivity of the 
generalization power to changes in parameters and network topology. In some 
applications, ANN models are treated as a black-box because of their inability to 
give deep insight into the encoded relationship between the predictors and predicted 
outcomes [46]. Other studies have suggested that ANN systems should not still be 
seen as inexplicable models [118] because a number of methodologies facilitating 
the interpretation of model outcomes have been developed [7, 18, 44]. Furthermore, 
it should be pointed out that, like other modelling techniques, ANN can be used 
together with GA-based feature selection algorithms to remove redundant variables 
during the model building process. In addition, some researchers have investigated 
the use of the sensitivity analysis method for minimization of the input data dimen-
sion and extraction of information about the relative importance of inputs to an 
output [142].

5.4.2.5  �Multidimensional Visualisation

Multi-dimensional data visualisation is an approach that allows visual exploration 
of high dimensional data sets in a lower-dimensional display. It significantly con-
tributes to better understanding of the more complex statistical procedures and 
resulting models in relation to the dataset. It has many important applications and, 
in particular, can be considered as an important tool to summarise and visually 
explore the important characteristics of the dataset being analysed. Multidimensional 
visualisation techniques, such as parallel coordinates [15, 57, 131] and heat maps, 
are very effective tools for (Q)SAR analysis of toxicity data. They can visually dis-
play the causal relationships between ENM physicochemical descriptors and the 
toxicity endpoints, handle limited datasets, and allow interactive analysis with the 
aid of interactive functions and multiple colours built in to the software tools. To 
provide an example, in Fig. 5.8 the data generated by Shaw et al. [114] are scaled, 
displayed, and coloured using a parallel coordinates graph produced by C Visual 
Explorer (CVE) tool.

5.4.2.6  �Knowledge-Based Expert Systems

(Q)SAR often refers to data-driven modelling. However, the usefulness of 
knowledge-based expert systems should not be underestimated, as evidenced by the 
success of the expert system DEREK of Lhasa Ltd. for toxicity predictions [42]. 
This expert system draws its knowledge from both literature and databases, and is 
considered to be one of the most powerful tools for the toxicity predictions of 
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molecules. Considering the gaps and variations in the available ENM toxicity data 
(i.e., incomplete characterization of physicochemical descriptors and different mea-
sures of toxicity), it is our belief that knowledge-based expert systems, ideally with 
some kind of “text data mining” capability that can continuously capture new 
knowledge appearing in the literature, might be one of the most effective approaches 
for nano-(Q)SAR.

5.4.2.7  �Model Validation

Irrespective of the method used to construct the (Q)SAR models, the validity of the 
outcomes of the predictive models should be evaluated both internally and exter-
nally. Internal validation is the process of evaluating the prediction accuracy of (Q)
SAR models based on the dataset used in the modelling process. The most common 
internal validation techniques used in (Q)SAR studies are least squares fit (R2), chi-
squared (χ2), root-mean squared error (RMSE), leave-one-out or leave-many-out 
cross-validation, bootstrapping, and Y-randomization [127]. The use of external 
validation techniques in addition to internal validation methods is increasingly 
being recommended by researchers [126, 127] and authorities [86] for the assess-
ment of (Q)SAR model reliability in the best and most trustworthy way. Moreover, 
it is always beneficial to use more than one validation metric to quantitatively mea-
sure the accuracy of the model prediction.

The definition of the applicability domain of the constructed and statistically vali-
dated model is the final, but one of the most important, steps in the (Q)SAR model 

NP Code
1

31 74 36 153 5.9 9.06 0.92 0.69 0.6

high apoptosis
(>-0.74)

low apoptosis
(<-1.54)

mid. apoptosis
(-1.54<APO<-0.74)

20.45 15 30.15 ~37 ~3.94 ~1.18 ~2.242.34
Size R1 R2 Zeta Potential Mean APO Mean Mito Mean RED Mean ATP

Fig. 5.8  CVE plot of the data collected by Shaw et  al. [114] (descriptors: size, relaxivities  
(R1 and R2), and zeta potential; toxicity endpoints: apoptosis (APO), mitochondrial potential 
(Mito), reducing equivalents (RED), and ATP content (ATP)). The mean apoptosis data is 
divided into three categories: low (APO<−1.54), medium (−1.54<APO<−0.74), and high 
(APO>−0.74), and each category is highlighted in different colors (Reprinted from Particuology, 
21, Ceyda Oksel et al., (Q)SAR modelling of nanomaterial toxicity: A critical review, 1–19., 
Copyright (2015), with permission from Elsevier)
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building process. There are several approaches (e.g., geometry, range, distance, and 
probability density function based approaches) to define the applicability domain 
region of statistical models based on different algorithms. For more detailed infor-
mation about the available approaches for defining the (Q)SAR model applicability 
domain, refer to the review papers of Jaworska et al. [59] and Sahigara et al. [106].

5.4.3  �Input Data for Nano-(Q)SAR and Its Current Availability

In nano-(Q)SAR models, the importance of high-quality and well-described datas-
ets is even more pronounced because the unique properties of ENMs are mostly 
associated with particular sizes and conditions [34]. Ideally, the input data required 
to build a reliable (Q)SAR model should be (1) obtained from a preferably single 
and standardized protocol, (2) examined in terms of accuracy and suitability for (Q)
SAR analysis, and (3) large enough to allow rational division of the data into train-
ing and test sets. Because nano-(Q)SAR is a data-based method, the accuracy of the 
data determines the quality of the final model. Therefore, it is very important to 
create a comprehensive nanotoxicity database and make it broadly accessible.

In a recent study, Lubinski et al. [74] developed a framework to help modellers 
evaluate the quality of existing data for modelling (e.g., nano-(Q)SAR) purposes. In 
the first part of their study, they provided a set of criteria that are mostly related to 
the source and quantity of the data, experimental procedures, and international stan-
dards followed during the characterization process and documentation. In the sec-
ond part, they assessed the quality of a collection of nanotoxicity data by scoring 
them according to the proposed criteria. The majority (201 out of 342 data points) 
of the dataset that was collected and scored was evaluated as useful with restrictions 
for developing (Q)SAR-like models.

In fact, there is now a great amount of data on nanotoxicity. However, the major-
ity of the available data on ENM toxicity comes from studies focusing on a few 
ENMs, and hence is not useful for modelling purposes. At this point it should be 
noted that the data obtained by different research groups is often incomparable 
because of the differences in experimental procedures (e.g., sample preparation, 
dispersion protocols, assay types, cell types and exposure doses) and ENMs used 
(e.g., size, shape and surface modifications). Therefore, the data to be modelled 
should preferably come from the same study/project until standardized testing pro-
cedures and specific types of reference materials are available and accepted. Often, 
the physicochemical properties measured are not directly related to the toxicity of 
ENMs because characterization was carried out in the absence of a test medium.

Predefined data formats are necessary to facilitate the storage, maintenance, and 
exchange of ENM data between different researchers. There are a large number of 
freely available toxicity databases, most of which are more general in scope and not 
customized for particular purposes. Commercially available ENM-specific data-
bases are still at the research stage and limited to a few applications. ISA-TAB-
NANO introduced by Thomas et al. [123] is a standard NM data sharing format that 
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facilitates the import/export of NM data and enables data exchange between 
different nanotechnology laboratories and researchers. The ISA-TAB-NANO speci-
fication uses four different spreadsheet-based file formats: investigation, study, 
assay, and material file format.

The OECD WPMN initially launched a database on Research into Safety of 
Manufactured Nanomaterials in 2009 [87]. However, it does not provide direct 
access to data because the overall outcomes and outputs section is usually filled in 
as “publications”. Furthermore, as interest weaned, the systematic updating has 
been discontinued and the database put on hold.

NANOhub is a database for managing information about ENMs. It currently 
hosts several projects, but the access to data is usually restricted to only project 
participants. The experience of collecting data in NANOhub has been captured in 
OECD harmonised templates (OHTs) to report regulatory studies for some of the 
physicochemical endpoints for nanomaterials. These additional templates will also 
be integrated in the International Uniform Chemical Information Database (IUCLID) 
under REACH for registration. Another data sharing portal that provides access to 
ENM characterization and in vitro toxicity data is caNanoLab. The main aim of this 
data repository is to facilitate the sharing of knowledge on nanomedicine.

An alternative approach for collecting nanotoxicity data is to use text mining 
techniques to develop a customized knowledge repository system. The Nano Health 
and Environmental Commented Database (NHECD) is a text mining tool that 
allows automated extraction of information about the effects of ENMs on human 
health and the environment from scientific papers. However, the current perfor-
mance of such NM databases using text mining algorithms is not very good because 
of the nonstandardized recording of ENM information and the difficulties in extract-
ing numerical data from plots (i.e., a large amount of published data in nanotoxicity 
is available only in the form of plots) and. At this stage, it is important to ensure that 
all data is recorded in a universally agreed format to facilitate the extraction of ENM 
information from the literature. The existence of specifications for ENM informa-
tion sharing is also very important from the viewpoint of (Q)SAR modelling, 
because the establishment of predictive (Q)SAR models requires close collabora-
tion between different disciplines and research groups. The development of an 
agreed ontology for ENMs and nanosafety research (i.e., a formal representation of 
nanostructures, biological properties, experimental model systems, conditions, and 
protocols) will facilitate not only collection of nanotoxicity data, but also data min-
ing and resource integration efforts.

5.5  �Final Remarks

Despite the clear benefits that nanotechnology can bring to various sectors of indus-
try, there are serious concerns about the potential health risks associated with ENMs, 
intensified by the limited understanding of what makes ENMs toxic and how to 
make them safe. As the use of ENMs for commercial purposes and the number of 
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workers/end-users being exposed to these materials on a daily basis increases, the 
need for assessing the potential adverse effects of multifarious ENMs in a time- and 
cost-effective manner becomes more apparent. One strategy to alleviate the problem 
of testing a large number and variety of ENMs in terms of their toxicological prop-
erties is through the development of computational models that decode the relation-
ships between the physicochemical features of ENMs and their toxicity. Such 
data-driven models can be used for hazard screening, early identification of poten-
tially harmful ENMs and the toxicity-governing physicochemical properties, and 
accelerating the decision-making process by maximising the use of existing data. 
Moreover, these models can also support industrial, regulatory and public needs for 
designing inherently safer ENMs. Therefore, the idea of using time- and cost-saving 
computational approaches such as (Q)SAR in nanotoxicology has gained popularity 
in recent years and attracted the interest of regulators and researchers aiming at 
moving from animal-based individual toxicity assessments toward a more inte-
grated hazard screening approach.

(Q)SAR models have been successfully used by engineers, and physical and 
medicinal chemists to predict hazardous properties of molecules for over 50 years. 
Although adaptation of the (Q)SAR approach to nanotoxicology has been encour-
aged by many investigators [19, 98], there are still several barriers that need to be 
overcome to establish predictive, reliable, and legally acceptable nano-(Q)SAR 
models. The current toxicity measurement methods used for bulk materials are not 
always fully adequate to examine ENMs and would, in any case, have to be used 
with due attention to the material tested. The WPMN launched a series of expert 
meetings to review the applicability of the OECD test guidelines to ENMs and to 
identify gaps in availability of test guidelines, resulting in a number of proposals to 
the OECD Test Guidelines Programme for updating existing guidelines and adding 
new ones with a view to better address the testing needs of ENMs.

As the available nanotoxicity data is far from ideal for modelling purposes, the 
choice of nano-(Q)SAR tools used should be made by considering the nature of the 
existing data (e.g. limited datasets, collinear input data) and desired outcomes (e.g. 
easily-interpretable models). Previous research on in silico analysis of ENMs toxic-
ity has shown that although computerised (Q)SAR models are useful for modelling 
nanotoxicity endpoints, they have limited robustness and predictivity, and interpre-
tation of the models they generate can be problematic. The main problem is caused 
due to the most commonly used (Q)SAR modelling methods working best with 
large data sets, but are not particularly good at feature selection, and cannot handle 
collinear input data. Ideally, new computational modelling tools or new ways of 
using existing tools are required to model the relatively sparse and sometimes lower 
quality data on the biological effects of ENMs.

Predictive models such as (Q)SAR have great potential to fill in data gaps on 
nanotoxicity and to be used as a priority-setting method for risk assessment of 
ENMs. Once all the potential risks are identified by means of toxicity screening 
methods including in silico models (e.g. (Q)SAR), the next step is the implementation 
of risk reduction measures for those risks that are outside the range of tolerable 
limits.	 While the past studies provided strong evidence that data-driven computa-
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tional methods can provide useful information for hazard screening and risk assess-
ment of ENMs, much research remains to be done on order to be able to develop 
optimal and regulatory acceptable nano-(Q)SAR models. Clearly, more comprehen-
sive and high-quality datasets are necessary before obtaining optimal nano-(Q)SAR 
models. To improve the accuracy of computational models, quality issues associ-
ated with experimental data used to develop the model in the first place must be 
tackled. Moreover, the development of novel descriptors that are able to express the 
specificity of nano-characteristics would also be of interest. Another problem that 
complicates the development of predictive models is the heterogeneity of the ENM 
family. There is a need to generate homogeneous datasets that include specific types 
or individual classes of ENMs since different types of ENMs are likely to have dif-
ferent mechanisms of toxicity. Despite open questions and uncertainties addressed 
in this chapter, the results of published nano-(Q)SAR studies have provided quanti-
tative insights leading to toxicity predictions of ENMs. To further prove the useful-
ness of nano-(Q)SAR approach for ENM toxicity prediction, there is a need for 
more case studies on high quality datasets associated with a set of ENMs with simi-
lar core composition but varying physicochemical properties (e.g. size, shape, sur-
face charge etc.) examined under realistic and identical experimental conditions.
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Chapter 6
Systems Biology to Support Nanomaterial 
Grouping

Christian Riebeling, Harald Jungnickel, Andreas Luch, and Andrea Haase

Abstract  The assessment of potential health risks of engineered nanomaterials 
(ENMs) is a challenging task due to the high number and great variety of already 
existing and newly emerging ENMs. Reliable grouping or categorization of ENMs 
with respect to hazards could help to facilitate prioritization and decision making 
for regulatory purposes. The development of grouping criteria, however, requires a 
broad and comprehensive data basis. A promising platform addressing this chal-
lenge is the systems biology approach. The different areas of systems biology, 
most prominently transcriptomics, proteomics and metabolomics, each of which 
provide a wealth of data that can be used to reveal novel biomarkers and biological 
pathways involved in the mode-of-action of ENMs. Combining such data with 
classical toxicological data would enable a more comprehensive understanding 
and hence might lead to more powerful and reliable prediction models. Physico-
chemical data provide crucial information on the ENMs and need to be integrated, 
too. Overall statistical analysis should reveal robust grouping and categorization 
criteria and may ultimately help to identify meaningful biomarkers and biological 
pathways that sufficiently characterize the corresponding ENM subgroups. This 
chapter aims to give an overview on the different systems biology technologies and 
their current applications in the field of nanotoxicology, as well as to identify the 
existing challenges.
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6.1  �Introduction

Engineered nanomaterials (ENMs) are becoming a mainstream technology in mod-
ern product design due to their unique physico-chemical properties. An ever grow-
ing number of ENMs are used worldwide in very diverse products and applications 
such as construction, food packaging, cosmetics, textiles or medicines. ENMs can 
enhance mechanical properties for instance in concrete, facilitate cleaning of sur-
faces in paints, enhance gas barrier capabilities in beverage packaging, block ultra-
violet radiation from human skin in sunscreens, or produce self-healing surfaces. 
With the widespread use of ENMs possible health risks for humans must be 
addressed properly. One of the obvious challenges is how to assess the multitude of 
already existing and newly emerging ENMs in a reasonable time frame in a reliable 
and relevant manner. Thus, in nanotoxicology there is an urgent need of powerful 
prediction tools, which can ultimately support decision making with respect to pri-
oritization and facilitate ENMs grouping or categorization. Systems biology in 
combination with predictive statistical tools may become a central piece of the 
future nanotoxicological toolbox as it will allow for in-depth understanding of 
affected pathways and at the same time support and facilitate grouping on the basis 
of the mode-of-action of ENMs (Fig. 6.1).

A thorough understanding of affected pathways, so called “toxicity pathways”, 
may then lead to the discovery of “adverse outcome pathways” (AOPs). The OECD 
[94] described the concept of AOPs in 2013, which integrate toxicological key 
events and describe in a cascade-like way the main steps from contact of the respec-
tive hazardous chemical to the ultimate adverse outcome. Importantly, AOPs do not 
only describe molecular and cellular events but also integrate data from tissues and 
whole organs [146]. Nowadays, an increasing number of toxicological endpoints 
can be described by AOPs as knowledge on underlying toxicity mechanisms is 
growing. Examples for well-defined AOPs are skin sensitization, cholestasis, liver 
fibrosis or liver steatosis. AOPs are not restricted to environmental chemicals, but 
may also be applied in nanotoxicology. However, so far examples in the field of 
nanotoxicology are still lacking. Thus, the use of systems biology and the descrip-
tion of AOPs for ENMs are of paramount interest in nanotoxicology. This would not 
only support the development of new and highly specific testing methods but also 
would allow grouping of ENMs. In a minimalistic view it would help to identify 
ENMs which require further testing, as well as ENMs where in-depth evaluation 
may not be needed [101]. Thus, the use of systems biology approaches in combina-
tion with modern statistical methods would also significantly reduce the number of 
animals for nanotoxicological testing and therefore implement the 3R paradigm 
(replacement, reduction and refinement) as first introduced in 1959 as a cornerstone 
of modern toxicology [116]. It also should be noted that the predictivity of animal 
models towards human adverse health effects is often limited [134]. It may be 
expected that knowledge on AOPs, however, will facilitate species-to-species 
extrapolation and thus the application of data obtained from animal models to 
humans, and also from animal models to in vitro approaches and vice versa [101].
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The goal in animal based experiments is to determine the highest possible dose 
at which a given substance or ENM does not cause any adverse effect, also referred 
to as “no observed adverse effect level” (NOAEL) together with the lowest dose that 
would cause a pathological effects after a defined treatment period, which is referred 
to as “lowest observed adverse effect level” (LOAEL). By applying empirically 
derived assessment factors to take into account the uncertainty from inter- and intra-
species extrapolation hazard reference values like the “derived no effect level” 

Integrative data analysis
Pathway analysis

MetabolomicsProteomicsTranscriptomics

ENM

Organism/cellular model

NGS
Phospho-
proteomics etc. Lipidomics etc.

Toxicity pathways
Adverse outcome pathway

Fig. 6.1  Schematic work flow of systems toxicology (All images from Wikimedia, authors from 
top to bottom, left to right: Nandiyanto; Mikael Häggström; Dr. Timothy Triche, National Cancer 
Institute; Miguel Andrade; RonBeavis; Yikrazuul; Jheald; Boghog2; Pumbaa80; Nikn)
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(DNEL) can be inferred, which are then employed for human health risk assess-
ments. The use of NOAEL and DNEL values is applicable for toxicological effects 
with a threshold. In general, similar principles apply for ENMs despite the fact that 
some of the established guidelines may require additional adaptations for the assess-
ment of ENMs.

Information about the molecular mechanisms of the observed adverse effects is 
currently considered a nice add-on and is no requirement for risk assessments. 
Traditionally, mechanistic insights are gained by hypothesis-driven research inves-
tigating perturbations after treatment with specific xenobiotics within one pathway 
at a time. Connections within and between pathways are inferred from additional 
experiments and from literature. This targeted approach has unravelled most of the 
vast molecular knowledge of biological systems available today.

Xenobiotics (and also ENMs) usually interact with multiple molecular targets in 
a biological system, often resulting in changes in cellular RNA molecules, proteins, 
lipids or metabolites. Often, affected proteins interact with other proteins and so on, 
creating networks of alterations that may even often overlap starting from different 
primary targets. The surface area of ENMs is large enough to provide the possibility 
for multiple interactions of a single nano-object with several biomolecules at the 
same time. The binding of molecules on the ENM surface may be used by the manu-
facturer to specifically alter the surface or may occur in a less specific and controlled 
way during application as soon as the ENM enters a biological environment [21], 
which results in the latter case in the formation of a biomolecule corona. Thus, dif-
ferent interactions are possible on a single nano-object. Due to interactions with 
ENMs biomolecules such as proteins might be denatured and/or presented out of 
context in the organism [37, 135]. In addition, on some ENMs surface reactions 
occur that generate secondary molecules that may interact with further undirected 
target molecules. For instance, reactive oxygen species may be generated due to 
surface catalysed reactions on ENMs that cause oxidative stress, which may lead to 
metabolite oxidation, DNA damage, and protein carbonylation [117]. Advances in 
life-sciences research in the fields of “omics” technologies provide tools to address 
the complexity of possible perturbations using descriptive approaches that record 
system-wide changes. The “omics” technologies collect very large data sets, often 
in a quantitative manner which mirror molecular responses in the genome, tran-
scriptome, proteome and metabolome after exposure to environmental chemicals in 
living organisms. The four major approaches are genomics, transcriptomics, pro-
teomics, and metabolomics. Examples of other more specialized fields are lipido-
mics and phosphoproteomics. Each of these technologies produces a static snapshot 
in one point of time, which represents only a small part of the whole organism even 
for the specific biomolecule class monitored. This limitation has to be considered in 
experimental design and data assessment such that for instance different time points 
are included. Genomics and transcriptomics are the predominantly used technolo-
gies in toxicological research. Both initiated the field of so-called toxicogenomics 
[90, 91]. Especially high-throughput micro-arrays are a valuable an often applied 
tool for the rapid screening and interpretation of toxicogenomic data, which subse-
quently can be used to define not only multiple modes of actions, but can ultimately 
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in combination with other data be used to define adverse outcome pathways [4, 64, 
109, 150]. Due to obvious similarities and common requirements for data analysis, 
data integration, and interpretation the use of “omics” technologies in toxicological 
research are summarised and commonly referred to as systems toxicology [148]. 
Systems toxicology usually applies methods of systems biology to toxicological 
problems and combines this knowledge with classical toxicological approaches. 
This allows for measurement of large networks of molecular and functional changes 
within one organism. The changes are recorded throughout multiple levels within a 
biological entity [122]. To this end, data from in vivo and in vitro experiments can 
be combined and also the combination of high-throughput data with “omics” proved 
useful [105]. Combining systems biology results with modern statistical approaches 
for data interpretation may support the elucidation of adverse outcome pathways. 
So far, systems biology is only beginning to be applied in nanotoxicology and cur-
rently only a few published studies are available. However, in particular in nanotoxi-
cology the knowledge about affected pathways may help to design new test methods. 
Currently, there is high need of new test methods, which are suitable to screen many 
ENMs and which can support decision-making and prioritization. Furthermore, sys-
tems biology can substantially support the development of ENM grouping 
approaches based on the mode of action. In the next paragraphs we will give an 
overview of the different “omic” approaches and give examples how they have 
already been applied in nanotoxicology.

6.2  �Transcriptomics

Gene-expression profiling, or transcriptomics, determines the changes in expression 
of mRNAs, rRNA, tRNA and other non-coding RNA molecules in a cell population 
[39], tissue/organ [14], or organism [136]. Transcriptomic analysis is arguably the 
best established and most widely used approach to investigate biological network 
responses [74]. Transcriptomics advanced with the development of oligonucleotide 
microarrays and the introduction of high-density array printing by Affymetrix. 
Limited by the known genomic sequence of the organism and using well-established 
bioinformatics tools to identify possible open reading frames, oligomer probe arrays 
can be designed covering the whole transcriptome. Clinical or environmental sam-
ples as well as samples derived from model systems can be investigated in high-
throughput parallel analyses on these microarrays [82]. Current microarrays can 
cover each gene or its exons. Standard exon arrays are available for human, mouse, 
and rat. Especially the analysis of alternatively spliced RNA transcripts as well as 
the accuracy of the overall gene-expression has been greatly improved by the use of 
exon arrays [152]. However, with the establishment of next-generation sequencing 
(NGS) technologies it is now possible to achieve full cDNA sequencing and RNA 
sequencing of a cell or tissue in one analysis in a reasonable time frame. As NGS 
technologies are becoming more powerful and affordable they may replace microar-
ray technologies in the near future [33, 97]. NGS approaches are expected to offer 
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greater accuracy. In particular they provide transcript counts similar to quantitative 
PCR. Moreover, NGS methods are more flexible. They also allow for gene-expres-
sion studies in organisms for which microarrays are not available, such as many 
model systems used in environmental toxicology. NGS also allows for the assess-
ment of the microbiome and its population responses to exposures [158].

6.3  �Transcriptomics in Nanotoxicology

From all “omics” technologies transcriptomics is applied most often to study effects 
of ENMs due to the fact that approaches are well established in many laboratories. 
However, the amount of available transcriptome data for ENMs is still very low. 
Most available studies investigate only one ENM or a very small set of ENMs.

Transcriptomics has been applied in the nematode Caenorhabditis elegans to 
study the effects of gold nanoparticles (NPs), which were shown to induce tran-
scriptional changes in the unfolded protein response [136]. Moreover, a comparison 
to previous data on silver NPs revealed diverse responses to the two ENMs [136].

Another study investigated carbon black Printex 90 NPs applied by instillation in 
mice. The authors found persistent elevated cytokine expression in dams and 
changes in liver mRNA of offspring at high doses [60]. A similar study revealed 
alteration of the hepatic cholesterol synthesis pathway in adult mice [14]. The latter 
study was combined with gene expression data of disease related studies for a sub-
sequent bioinformatics analysis which revealed a similarity of carbon black induced 
effects and pulmonary injury and fibrosis [15].

Two types of multi-walled carbon nanotubes (MWCNTs) were instilled in mice 
showing overall similar transcriptional responses [107]. Larger MWCNTs exhibited 
an earlier stronger inflammatory response and stronger fibrosis [107].

Surface-modified TiO2 NPs induced elevated cytokine transcript levels and also 
of several miRNAs after short term inhalation of mice [51].

No effects were found for coated and aged TiO2 NPs on Caco-2 cells including 
in microarray analysis [36].

Comparing the effects of anatase and rutile NPs and bulk TiO2 NPs in 
Caenorhabditis elegans revealed different expression patterns for the different 
materials [114]. However, nano- and bulk form of the materials exhibited similar 
profiles [114]. It was observed that anatase particles exerted a greater effect on 
metabolic pathways, whereas rutile particles had a greater effect on developmental 
processes [114].

Instilled TiO2 NPs of different sizes and surface modifications in mice led to an 
overall similar inflammatory response by transcriptional analysis [52]. While this 
points to a common mechanism, closer analysis showed that the magnitude of the 
response was dependent on the ENM surface area [52].

Nephrotoxicity of nanoscale and microscale copper particles was addressed by a 
study in rats by gavage, demonstrating that a high dose of nanoscale but not 
microscale copper (by mass) induced strong transcriptional and necrotic responses 
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[75]. A lower dose induced a smaller, partially overlapping, set of transcripts which 
were suggested as possible low dose indicators of toxicity.

Differential effects of silver ions, citrate-coated, and PVP-coated silver NPs 
were uncovered in an ecotoxicological study in Daphnia magna [108]. Silver ions 
exhibited a clearly different expression profile to the NPs, and PVP-coated NPs 
elicited a response in DNA damage repair genes and an overall stronger response 
than citrate-coated NPs [108].

Similarly, comparing the effects of silver ions to citrate-coated silver NPs in 
Oncorhynchus mykiss showed only a small number of specifically regulated tran-
scripts [40]. However, linear discriminant analysis was able to separate both forms 
of silver [40].

The gender difference in rats exposed to silver NPs was investigated in kidneys, 
showing a higher expression of genes involved in xenobiotic metabolism in males 
and of cellular signalling in females [28].

Different types of polystyrene NPs and carbon nanotubes were compared in a 
human endothelial cell line [39]. Inflammation, oxidative stress, and DNA damage 
were the most regulated processes [39]. The more cytotoxic particles induced more 
transcriptional changes while the presence of serum decreased overall cytotoxicity 
but had little effect on the top regulated transcripts [39].

6.4  �Proteomics

The proteome encompasses the full complement of proteins in a cell [89], bio-
logical liquids [67], tissue/organ [49], or organism [69]. Proteomics is the sys-
tematic approach to characterizing ideally all proteins. However, the broad 
spectrum of physico-chemical properties of proteins dictates that only a part, 
albeit a large part, of all proteins is detected with current technologies. Thus, for 
some purposes a subset of proteins first needs to be selectively enriched. In pro-
teomics an additional complexity arises due to the fact that not only changes in 
overall protein amounts are of interest but also the measurement of posttransla-
tional protein modifications. Proteins are both acceptors and mediators of altered 
biological responses as a consequence of exposure to substances. Changes in 
protein levels may correspond directly to mRNA expression or may be due to 
post-transcriptional regulation such as regulated translation or regulated proteo-
lytic turnover. In addition, altered protein function may be a consequence of 
posttranslational modifications. For instance, protein phosphorylation can be 
addressed by high-throughput phosphoproteomics to characterize molecular 
events proximal to disease-related signalling mechanisms [32, 88]. Moreover, 
oxidation events due to oxidative stress in response to toxic exposures, the most 
discussed possible effect of ENMs, can be described by redox proteomic analysis 
for instance by assessing carbonylated proteins [143].

With its unmatched sensitivity and throughput, mass spectrometry (MS) is the 
key technology of modern proteomics. It allows for the detection of peptides in 
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biological samples in the sub-femtomolar range with a mass accuracy of less than 
10 ppm. Such a high degree of accuracy is requisite to comparisons between sam-
ples of proteins derived from different exposed and control samples. For non-
targeted comparisons of samples usually isotope tagging for relative and absolute 
quantification (iTRAQ) is used. Even higher accuracy can be achieved by comple-
mentation with a targeted method. Typically in such a combination the untargeted 
assessment is used to unravel possible alterations, which are then followed up in a 
targeted, more precise measurement. Often selected reaction monitoring (SRM) is 
used for this purpose, which allows for the precise quantification of predetermined 
proteins. Peptides are generated by a controlled enzymatic digestion of the pro-
teome and quantified by MS.  The selection of proteins and peptides for precise 
quantification is done either by prior, non-targeted approaches (e.g. iTRAQ) or by a 
careful review of available data in the scientific literature. Bioinformatics tools are 
employed to predict the cleavage pattern of the selected protein. From this list at 
least two proteolytic peptides are selected for SRM. Those ideally should be highly 
specific for the protein and distinguish it from all other proteins. SRM transitions 
for each of those peptides are selected and unique identification and accurate quan-
tification have to be verified through optimization and validation. Multiplexed 
approaches are possible where hundreds of proteins are quantified in a single MS 
run [72]. For example, the Nrf2-mediated stress response of macrophages to oxi-
dised LDL was investigated demonstrating up-regulation of a group of antioxidant 
proteins [65].

Often proteomics approaches require the enrichment of a protein subset. 
Most often this is done by cellular sub-fractionation (e.g. by differential cen-
trifugation) or by antibody-based pulldown approaches. In particular, antibody-
based enrichment is used for assessing posttranslational modifications of 
proteins. Posttranslational modifications of proteins are important cellular 
mechanisms for regulating and diversifying the cellular proteome. Identification 
and characterization of this layer of cellular regulation can provide deeper 
insight into the cellular physiology and affected pathways in response to toxic 
insults. Examples of posttranslational modifications include phosphorylation, 
glycosylation, ubiquitination, nitrosylation, methylation, acetylation, lipidation 
and proteolysis [159]. For enrichment, phosphorylation motif specific antibod-
ies [83], di-glycine-lysine-specific antibodies for ubiquitinated peptides [147], 
and other antibodies are employed. To enrich phosphorylated peptides after 
digestion of the protein lysates TiO2 resins are commonly used [131]. Another 
strategy is chemical labelling of proteins and immuno-detection after 2D gel 
electrophoresis. This approach is used in redox proteomics to detect protein 
carbonylation. In oxidative stress proteins become directly and indirectly oxi-
dised generating various carbonyl groups. These protein carbonyl groups are 
conjugated to 2,4-dinitrophenylhydrazine and subsequently detected using anti-
2,4-dinitrophenyl antibodies [153].

Proteomics and subsequent targeted proteomics yield important mechanistic 
details of toxicology pathways that were based on transcriptomic data.
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6.5  �Proteomics in Nanotoxicology

There are several studies using proteomics techniques to investigate toxicological 
effects of ENMs. However, similar to transcriptomics studies described above, most 
employ only one specific ENM and often they furthermore assess only a single 
concentration and/or one time point. While these studies provide important insights 
into ENM effects, the difference in ENM characteristics and in experimental set-
tings makes it difficult or impossible to compare them in order to draw more general 
conclusions on ENM influences on the proteome and to understand how ENM prop-
erties influence toxicity.

Carbon nanotubes are one of the most investigated ENM. By comparing as-
grown MWCNTs with thermally treated MWCNTs it was demonstrated that impu-
rities were in large part responsible for the observed cytotoxicity [53]. However, 
stress response proteins were induced also by thermally treated MWCNTs [53]. A 
comparison of SWCNTs with graphene showed SWCNTs inducing proteins related 
to oxidative stress while graphene had little effect [156]. Lung tissue was investi-
gated after a repeat-dose instillation of mice with SWCNTs, asbestos, and carbon 
black [130]. SWCNTs elicited the strongest response in regulated proteins with a 
similar profile to asbestos [130]. In a renal cell model, fullerenes, SWCNTs, and 
MWCNTs induced the most proteins in the lowest dose, suggesting that aggregation 
reduces the effect on cells [11]. Oxidized SWCNTs induced oxidative stress and 
interfered with intracellular metabolic routes, protein synthesis, and cytoskeletal 
systems in HepG2 cells [155]. Graphene oxide as a comparison had little effect on 
protein expression and was less cytotoxic [155]. Serum-free and surfactant-treated 
MWCNTs were compared for their effect on human aortic endothelial cells [144]. 
Different protein expression patterns were observed between the two suspensions 
with the eIF2 pathway as the only common pathway [144]. Lung tissue was inves-
tigated after repeat-dose instillation of rats with three different ENMs, Fe3O4, SiO2, 
and SWCNTs [77]. Seventeen commonly regulated proteins were identified and the 
authors suggest all three ENMs induce lung damage [77]. The secreted proteins by 
a macrophage model in response to MWCNTs and asbestos were investigated by 
proteomics [98]. Long rigid MWCNTs and asbestos showed similarities while 
tangled MWCNTs exhibited only limited overlap with rigid MWCNTs. All materi-
als showed release of lysosomal proteins while only for rigid MWCNTs apoptosis-
related proteins were secreted [98]. Levels of proteins in lung bronchoalveolar 
lavage fluid of mice treated by oropharyngeal aspiration with uncoated or alumin-
ium oxide coated MWCNTs were determined to uncover their effect on lung tissue 
[54]. Uncoated MWCNTs elicited a stronger response but in similar pathways to 
coated MWCNTs [54].

Another heavily researched ENM is nanosilver. A comparison of PVP-coated 
silver NPs versus AgNO3 on plants revealed differing protein expression profiles, 
while redox regulation and sulphur metabolism were affected by both [142]. 
Similarly, silver NPs and AgNO3 were tested in mussels showing different protein 
expression profiles yet similar affected pathways [45]. The authors suggest that 
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toxicity of NPs was mediated by oxidative stress-induced cell signalling cascades 
[45]. Citrate capped 20 and 100 nm silver NPs were compared on a colon cell line 
[143]. While overall the same pathways were affected (e.g. DNA damage repair), 
more proteins were affected by the 20 nm NPs [143]. Reanalysis of the proteomic 
data revealed that proteins involved in cell death and mitochondrial activity were 
more affected by 20 nm NPs than by 100 nm NPs, while proteins involved in cell 
growth were affected similarly by both particle sizes [84]. Carbonylated proteins as 
a marker for oxidative stress were investigated in Daphnia magna after treatment 
with silver NPs or AgNO3 [110]. Different profiles were found for the two treat-
ments [110].

Recently, a large redoxproteomics study was published, which assessed protein 
carbonylation for a panel of 24 different ENMs [30]. The results reaffirmed that 
oxidative stress is a major affected pathway in response to cellular ENM exposure, 
and that protein carbonylation is a promising readout for this pathway.

6.6  �Metabolomics

Metabolomics is the latest “omics” technology in the “omics” toolbox. Changes in 
metabolome are generally regarded to give an as-close-as-possible picture of the 
actual phenotype changes of the organism. The metabolome represents the ultimate 
change in the levels of chemical species usually resulting from molecular perturba-
tions at the genomic and proteomic levels. Thereby, the metabolome ultimately rep-
resents the functional status of a cell.

This approach tries to quantify as many metabolites within the target organism as 
possible, e.g. sugars, lipids, steroids, amino acids, carnitines, nucleotides etc. To 
that end, hyphenated analytical techniques are applied, especially the combination 
of mass spectrometry with quantitative NMR is very common. The investigated 
metabolites encompass mostly products or substrates of enzyme-mediated pro-
cesses [13]. It is also possible to detect and quantify internalized xenobiotics and 
their biotransformation products concomitant to the perturbed endogenous 
metabolome if the molecular size of the xenobiotic chemical is low enough. 
However, the latter requires some understanding of the kinetics of the xenobiotic 
toxicants and their metabolites as well as of related biomolecular adducts [111]. In 
a conventional approach, as many as possible metabolites are identified and changes 
in their abundance are quantified.

The biological matrix for metabolomics experiments can be very different and 
also highly complex. Generally a broad variety of different biological systems like 
cell cultures [12], 3D cell cultures, tissue samples [96] and whole organ cultures 
[76] including the emerging application area of microfluidic organ model systems 
[7] can be investigated for the assessment of the metabolome. Metabolomics experi-
ments can also be performed with different body fluids like bronchoalveolar lavage 
fluid (BALF) [23] or serum. Even whole organisms can be assessed [112]. Due to 
the fact that the metabolome is very complex as it covers very different biomole-

C. Riebeling et al.



153

cules it is not possible to use a single analytical technique to cover all metabolites 
within one biological system in one analysis. A variety of mass spectrometry meth-
ods (GC-MS, GCxGC-MS, LC-MS, Ion-mobility-MS) or quantitative NMR are 
used so far to assess quantitative changes in the metabolome after exposure to envi-
ronmental chemicals. All these methods can also be used for the assessment of the 
metabolome in exposure assays to ENMs in nanotoxicology. Metabolomics has 
been also successfully used for the assessment of no observed adverse effect levels 
(NOAEL) in toxicology with similar or even higher sensitivity than common toxi-
cological methods commonly used [140]. However, there are also pitfalls in the 
system, where metabolomics data show lower sensitivity than commonly used toxi-
cological approaches. An overarching analysis found that 18 % of all investigated 
cases showed lower sensitivity than common toxicological approaches [140], indi-
cating the need to combine not only results from other “omics” technologies, but 
also to combine “omics” approaches with established toxicological approaches in 
an integrated manner.

Of particular interest in toxicology are the assessment of metabolomic changes 
in animals and humans. This is closely linked to the identification of biomarker 
sets correlated with certain diseases like diabetes [123] or kidney disease [31]. 
For biomarker identification it is a paramount requisite that the sampling should 
be as easy as possible. Therefore, either metabolic profiles from blood [19], urine 
samples or breath samples, e.g. for the assessment of bronchoalveolar infections, 
[38] are investigated. In addition, tissue samples [29] or organ biopsy samples 
[44] are studied for the assessment of quantitative metabolite changes associated 
with various diseases or disease states. In particular, this is used for cancer diag-
nosis to distinguish non-malignant from malignant tissue samples or for stage 
determination of cancer.

6.7  �Metabolomics in Nanotoxicology

So far, only a limited number of metabolomics studies investigated the influence of 
ENMs. Again, similarly to the situation in transcriptome or proteome research in 
most of the studies only one ENM is investigated.

Many studies focused on the effects of TiO2 NPs. One study analysed metabolo-
mics changes in human skin cells (HaCaT cells) after exposure to TiO2 NPs and 
metabolite changes could be associated with oxidative stress and influenced mito-
chondrial activity [137]. Another study also tested TiO2 NPs (anatase, 18 nm) in 
HGF cells [42], and subsequent metabolomics studies revealed an increase in pros-
taglandin levels within these cells after exposure together with an reduction of 
amino acid, urea cycle, polyamine, S- adenosylmethionine and glutathione biosyn-
thesis. Metabolomics studies of mouse fibroblasts [12] showed a significant distur-
bance of the amino acid signature after exposure to colloidal nano-TiO2 solutions 
and that these disturbances could be correlated to the observed cytotoxicity of the 
ENM. Urine and serum were investigated by metabonomics in rats exposed orally 
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to TiO2 NPs [18]. Disturbances in energy and amino acid metabolism and the gut 
microflora environment were found [18]. Intratracheally instilled TiO2 in rats 
induced metabolite changes in serum that indicated slight liver and kidney injury 
which was corroborated by clinical chemistry [124].

Other intensely studied ENMs are nanosilver and nanosilica. Metabolomics was 
already used to assess metabolic profile changes in rats after oral gavage of silver 
ions and silver NPs [50]. The results showed that nanosilver increased not only uric 
acid levels, but also allantoin levels in rat urine.

Metabonomics was highlighted as a potential and robust non-destructive tool 
for monitoring the temporal effect of NPs in cell culture media [59]. The meta-
bonomic assay revealed pronounced effects of SiO2 NPs in lung alveolar A549 
cells on glucose, lactate, histidine, phenylalanine, and tyrosine at early time 
points when cell viability was not impaired. Moreover, the data suggest that the 
different sizes of NPs induced different dose-dependent effects with different 
time courses [59]. The study also showed a dose-dependent increase of ROS 
formation. Different sizes of SiO2 particles were intravenously injected in mice 
and liver tissues and serum analysed by integrated metabonomics analysis [80]. 
Disturbances in energy metabolism, amino acid metabolism, lipid metabolism, 
and nucleotide metabolism were reported that may be attributable to the observed 
hepatotoxicity. No major differences were found by the different NP sizes among 
the metabolite profiles. Surface area had a greater effect than particle number on 
toxicity [80]. Metabolite perturbations after intranasal SiO2 NP application in 
rats implicated impairment in the tricarboxylic acid cycle and liver metabolism 
[99]. The authors suggested from their data that SiO2 NPs may have a potential 
to induce hepatotoxicity in rats [99].

Other ENMs are less often studied. Metabolic responses to MnO NPs in bioflu-
ids (plasma and urine) and tissues (liver, spleen, kidney, lung and brain) from rats 
could be divided into four classes: MnO biodistribution-dependent, time-depen-
dent, dose-dependent and complicated metabolic variations [73]. Particle size and 
surface chemistry of NPs were correlated to changes in the metabolic profile [73]. 
Single-walled carbon nanotubes after intratracheal instillation in rats induced 
changes in blood plasma and liver tissues indicating liver injury [76]. Changes in 
lipids and lipid associated molecules suggested a mechanism involving oxidative 
stress [76]. Iron oxide NPs were intravenously injected in rats, and metabonomics 
analysis performed on urine and plasma [35]. Subtle metabolic changes in response 
to NPs were found in a number of metabolic pathways including energy, lipid, 
glucose and amino acid metabolism [35]. The authors followed up their investiga-
tion by analysing tissues, including kidney, liver and spleen [34]. The metabonom-
ics analysis demonstrated correlations between biofluids and tissues in their 
response to NPs [34]. Size and surface chemistry of the NPs affected their biologi-
cal effects [34, 35]. Another study investigated the metabolic changes caused by 
antimicrobial effects of carboxyl-capped bismuth NPs in Heliobacter pylori colo-
nies [86]. The results showed an increased release of acetate, formic acid, gluta-
mate, valine, glycine, and uracil into the culture medium after NP treatment, 
indicating perturbations of various metabolic pathways like the Krebs cycle and 
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nucleotide and amino acid metabolism. Thus, metabolomics in combination with 
other “omics” technologies could also give insights for new ENM applications, 
e.g. by discovering antimicrobial effects.

A few studies only investigate several ENMs at the same time. One study 
describes metabolic changes within 265 cellular metabolites after exposure of liver 
HepG2 cells to four TiO2 and two CeO2 materials [66]. The results showed that five 
out of the six investigated ENMs significantly reduced glutathione concentrations 
and associated metabolite levels within HepG2 cells. The study showed that 8 nm 
CeO2 NPs significantly increased lipid levels including fatty acid concentrations 
within HepG2 cells, whilst all other investigated NPs did not show a similar effect. 
CeO2, but not TiO2, increased asymmetric dimethylarginine concentration and thus 
possible decreased iNOS activity and NO concentrations.

6.8  �Lipidomics

The lipidome is an example of a specialized subset of the metabolome. It comprises 
the complete known lipid profile of a biological system [17]. Lipidomics is the sys-
tematic approach to characterize and quantify lipids in biological samples using 
analytical methods mostly based on MS.

Lipids are the fundamental constituents of all cellular membranes [47, 56], 
provide an important energy reserve [102], and exhibit intracellular as well as 
systemic signalling functions [141]. Exposure to environmental chemicals often 
induces considerable changes in the cellular and tissue lipid composition. Levels 
of specific lipids such as certain sphingolipids that are involved in lipid signal-
ling can be indicative of a cells stress status [48]. Therefore, lipidomics as a 
powerful method to describe the overall lipid composition of biological matrices 
has great potential to identify and detect candidate biomarker signatures indica-
tive of toxicity. Recent advances in MS-based techniques enable the identifica-
tion and quantification of hundreds of molecular lipid species in a high throughput 
manner [145, 149]. It is possible to analyse large sample collections by auto-
mated methods in a 96-well format [61]. Multiple MS platforms can be employed 
to characterize the extracted lipid such as detecting the lipids by shotgun lipido-
mics or after separation by liquid chromatography to detect and quantify lipids 
of lower abundance.

Moreover, alterations of lipid homeostasis contribute to several pathophysio-
logical conditions like diabetes, cardiovascular disease, Parkinson’s disease, 
Alzheimer’s disease or nonalcoholic fatty liver disease (NAFLD) to distinguish 
between the different disease states steatosis, nonalcoholic steatohepatitis 
(NASH), and cirrhosis [55, 106, 125]. Lipidomic studies, combined with other 
“omics” technologies in an integrated approach have the potential not only to get 
better understanding of the up- and downregulation of cellular signalling path-
ways [62] but may ultimately be one of the tools to assess adverse outcome path-
ways also for nanotoxicology.
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6.9  �Lipidomics in Nanotoxicology

Lipidomic studies were also already used to evaluate the nanotoxicity of single 
walled carbon nanotubes after inhalation and showed selective pulmonary peroxida-
tion profiles [138]. Lipidomics in combination with proteomics was used to assess 
the influence of metal (silver) and metal oxide (CuO, TiO2 and ZnO) NPs to primary 
mouse hepatocytes [128], thereby revealing particle specific effects. While silver 
NPs increased triacylglycerol levels and decreased sphingomyelin levels, CuO NPs 
decreased phosphatidylethanolamines and phosphatidylinositols and caused down-
regulation of electron transferring protein subunit beta. TiO2 caused the upregula-
tion of ATP-synthase and electron transferring protein alpha. These investigations 
show the diversity of regulation mechanisms for a small subset of NPs and clearly 
indicate that a more general integrated “omics” approach is needed to fully assess 
nanotoxicity and possible involved adverse outcome pathways by combining result-
ing information from several “omics” technologies. Testing strategies for relevant 
“reference” subsets of nanoparticles are needed to establish and evaluate possible 
adverse outcome pathways and their subsequent “omics” perturbations not only 
when fully established but in a time-dependent manner [63]. That is how “omics” 
pattern gradually change from the time of exposure until adverse outcome effects 
like apoptosis are finally manifested. In that way, “omics” perturbations observed 
by exposure to newly emerging ENMs can not only be assessed against adverse 
outcome effects like apoptosis, but also against various intermitting time-dependent 
“omic” pattern changes. This would also ultimately give a tool to assess “positive” 
“omics” pattern changes after exposure to evaluate long-term effects caused by 
exposure to ENMs without acute manifestation of nanotoxicological effects.

6.10  �High-Content Screening

Data of molecular changes gathered from “omics” technologies should ideally be 
corroborated by cellular or tissue-level observations measured under the same con-
ditions. Histopathology is performed for the standard guidelines for regulatory 
assessment while “omics” technologies are employed to provide additional data. On 
the other hand, for small organisms and cells in culture, high-content screening 
(HCS) methods are available [85, 92]. These methods are based on the automated 
computer-aided visual detection of a panel of functional biomarkers in either a fixed 
specimen labelled with fluorescent reagents or directly on a living specimen during 
the time of the exposure. Mostly digital microscopy and flow cytometry are 
employed in HCS, which may provide precise temporal, spatial, and contextual 
information defining the biological status of the cells or organs and structure of 
small organisms. It should be noted that in terms of ENMs their possible interfer-
ence with especially optical/visual techniques demands extra scrutiny for HCS 
methods [26]. A broad panel of biomarkers is available to quantify key cellular 
events such as apoptosis, autophagy, cell proliferation, cell viability, cytotoxicity, 

C. Riebeling et al.



157

DNA damage, mitochondrial health, mitotic index, oxidative stress, nascent protein 
synthesis, and phospholipidosis and steatosis. Some of these biomarkers can be 
used in multiplexed approaches and allow quantitative measurements of the abun-
dance and localization of proteins and/or changes in the morphology of the cell.

6.11  �Combinatorial Omics and Integrated Data Analysis

A small number of studies concerning ENMs have integrated more than one omics 
technique.

Cunningham et al. [22] combined high throughput omics biotechnologies with 
systems biology to screen for toxicity of single walled carbon nanotubes (SWCNTs) 
compared to nanosize TiO2, quartzous SiO2, carbon black (Printex 90), and carbonyl 
iron on human primary epidermal keratinocytes and bronchial epithelial cells. 
Expression arrays for mRNA and microRNA were used together with 2D protein 
gel electrophoresis and mass spectrometry detection. Expression profile compari-
son revealed similar profiles of SWCNTs and carbonyl iron at non-cytotoxic doses 
and of SWCNTs and quartzous SiO2 at cytotoxic doses [22].

Silica-coated magnetic NPs containing Rhodamine B isothiocyanate MNPs@
SiO2(RITC) were investigated for gene expression and metabolic changes in human 
embryo kidney 293 cells [120]. Based on microarray gene chip and gas chromatog-
raphy mass spectrometry analysis, glutamic acid was increased and expression of 
genes related to the glutamic acid metabolic pathway as well as organic acids related 
to the Krebs cycle were disturbed at a high dose of particles. Furthermore, a 
decreased capacity of ATP synthesis, increases in ROS concentration, and mito-
chondrial damage were observed in functional assays [120].

Proteomics and miRNA sequencing technologies were utilized to investigate 
effects of silver NPs on human dermal fibroblasts [58]. Of the 57 pathways found 
regulated in response to the ENM, four pathways were concurrently affected by dif-
ferentially expressed miRNA, target mRNAs and target proteins: “Regulation of actin 
cytoskeleton”, “Signalling of hepatocyte growth factor receptor”, “Insulin signalling”, 
and “MAPK signalling pathway”. The results indicated that silver NPs might induce 
toxicity by affecting the cytoskeleton, ATP synthesis and apoptosis [58].

Exposure of three human cell lines to two high aspect ratio ENM types, TiO2 
nanobelts and multiwalled carbon nanotubes (MWCNT) was investigated by global 
transcriptome and proteome analyses [132]. Macrophage-like THP-1 cells, small 
airway epithelial HT29, and intestinal Caco-2 cells exhibited unique patterns of 
gene and protein expressions, with no differentially expressed genes or proteins 
overlapping across all three cell types. Exposure of 1 h induced similar expression 
patterns in response to both TiO2 and MWCNT while being different for each cell 
type. This apparent general response to insult stood in contrast to the response after 
24 h, which was unique to each ENM. In THP-1 cells TiO2 exposure affected regu-
lation of pathways associated with inflammation, apoptosis, cell cycle arrest, DNA 
replication stress and genomic instability, whereas MWCNTs elicited increased cell 

6  Systems Biology to Support Nanomaterial Grouping



158

proliferation, DNA repair and anti-apoptotic pathways. The authors suggest that the 
differential regulation of the biological pathways might represent cellular responses 
to high (TiO2) and low (MWCNT) ENM toxicity, respectively [132].

The mode of action of TiO2 in the dark on Escherichia coli was investigated 
using transcriptomic and proteomic analysis [121]. Pathway enrichment was 
observed for the lipid A synthesis pathway, gluconeogenesis, the fatty acid 
β-oxidation pathway, and importantly for trehalose biosynthesis and several specific 
membrane transporters indicating osmotic stress. The study revealed that the bacte-
ricidal mechanism of TiO2 in the dark comprises depolarization and loss of mem-
brane integrity, resulting in cellular ion imbalance and depletion of the intracellular 
ATP content. At the molecular level it manifests as an osmotic stress response [121].

PVP-coated CeO2 NPs were investigated in the alga Chlamydomonas reinhardtii 
[127]. While growth was unaffected, metabolomic and transcriptomic analysis 
revealed down-regulation of photosynthesis associated pathways at high concentra-
tions. This response was ENM-specific as neither CeNO3 nor PVP showed such an 
effect [127].

Overall, system toxicology attempts to combine all available data to reveal AOPs. 
AOPs are defined as a sequence of key events starting with a molecular initiating 
point and culminating in an adverse outcome of interest to risk assessment [6]. This 
provides a framework, which is different from the toxicant and species-specific 
mode of action concept. An AOP knowledge base (https://aopkb.org/) is made avail-
able by the OECD together with the US-EPA, the European commission, and the 
ERDC. The platform provides public access to a peer-reviewed wiki-based tool to 
develop AOPs (https://aopkb.org/aopwiki/). The OECD has also developed a hand-
book to guide in the development of AOPs (https://aopkb.org/common/AOP_
Handbook.pdf). Not every technique is used for every toxicant, and it is believed 
that the wealth of data provided by “omics” technology allows for some extrapola-
tion. However, the massive amounts of data also pose major challenges. Many of the 
techniques are in early development which means that data generation has the 
potential to still increase in large part because costs are decreasing.

Genomics, transcriptomics, proteomics, and metabolomics are involved in dif-
ferent ways in the definition of the phenotype. While the genome is rather static, 
epigenetics is a recent research field that involves regulation by DNA modifications 
as well as post-translational protein modification that has yet to acquire AOP rele-
vant information. The transcriptome is much more dynamic and largely responsible 
for the regulation [74]. Proteomics and metabolomics have an even higher variabil-
ity and therefore more directly participate in an observed change in phenotype. 
More immediate responses and rapid regulation of signalling pathways are for 
example mediated by post-translational modifications such as phosphorylation [95]. 
In addition, there are numerous examples for the regulatory influence of endoge-
nous metabolites [2, 154]. The integration of data from the different “omics” tech-
niques still represents a challenge as the techniques based on the measurement 
principles and molecular classes have different scales in terms of abundance, data 
accuracy and variance [5]. Methods and tools that manage, integrate, and process 
data are being developed [151]. Software tools are being developed that store and 
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manage data and also provide details about the experimental setup, such as EMMA 
[27], and MIMAS [43]. A standard based on minimum information about microar-
ray experiments (MIAME) [16], MAGE-TAB [113], has been adopted by public 
databases such as ArrayExpress (http://www.ebi.ac.uk/arrayexpress/) and Gene 
Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/). Similarly, for proteomics 
minimum information about proteomics experiments (MIAPE) has been developed 
as a standard [126]. Ideally, data would also be standardised so that exchange 
between platforms and techniques is facilitated. To this end, scoring methods are 
available that allow the direct combination of data, e.g. from proteomics and metab-
olomics [93]. With the development of genome-wide visualization and modelling 
platforms such as Cytoscape the situation has improved, and commercial vendors 
now provide the built-in inspection and analysis of data from different omics tech-
niques, e.g. the Ingenuity Pathway Analysis (IPA) software [41]. The IPA software 
also provides analysis with respect to known molecular toxicological reactions [41]. 
Analysis starts with the identification of significantly modified individual genes, 
proteins or metabolites, and enrichments in certain pathways leads to the identifica-
tion of affected signal transduction or other biosynthetic and metabolic pathways. 
The biologically relevant integration of many different marker molecules of multi-
ple “omics” techniques in this higher level analysis makes it less susceptible to 
fluctuations in individual genes / proteins / metabolites. An increasing number of 
transcriptomics (e.g. [1, 3, 107], proteomics [70] and metabolomics studies [119] 
have been performed. Key to successful classification/grouping strategies is the 
identification of adverse outcome pathways, which needs to be as detailed and accu-
rate as possible by integrating various omics data. These can then add to the 
definition of AOPs [146]. Definition of AOPs for ENMs is seen as an important step 
towards the classification of their effects and grouping of ENMs.

Different algorithms are required for the bioinformatics data analysis of signalling 
pathways [24, 139]. The various algorithms allow for different perspectives on the 
data for their evaluation. Statistical analyses are highly susceptible to the quality of 
the underlying data and this still presents a challenge for increasing the reliability of 
the conclusions reached [104]. Data integration over the different platforms still rep-
resents a formidable challenge [46]. The more so as for ENMs additionally physico-
chemical parameters must be brought together with classical toxicity data, 
transcriptome, proteome, metabolome and possibly heterogeneous data from other 
sources (publications, other projects) of which the structure varies widely. Tools for 
data integration are being developed, but even more work is needed for heteroge-
neous data sets [151]. Once a data matrix is created, the data can be examined for 
correlations by means of principal component analysis (principal component analy-
sis, PCA), hierarchical cluster analysis (Hierarchical Cluster Analysis, HCA) and 
other statistical analysis methods such as partial-least-squares (PLS), and orthogonal 
projection to latent structures discriminant analysis (OPLS-DA), or Random Forest.

For instance, it was possible to correlate oxidative stress to the conduction band 
energy levels of metal oxide NPs in a large data set of physico-chemical conditions 
and in vitro experiments [157]. Twenty four metal oxide NPs were investigated by 
different in  vitro cytotoxicity assays not addressing specific mechanisms, and in 
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addition using an automated multi-parametric HTS assay. Changes in ROS produc-
tion (DCF and MitoSox red fluorescence), intracellular calcium flux (Fluo-4 fluo-
rescence), mitochondrial membrane potential (JC-1 fluorescence), and surface 
membrane permeability (PI uptake) were quantitatively assesses in two cell lines 
cells. A selection of materials was also tested for acute pro-inflammatory effects by 
oropharyngeally instillation in mice.

Induction of ROS production and pro-inflammatory effects were strongly corre-
lated to overlap conduction band energy levels with the cellular redox potential. 
Both cellular assays exhibited good correlation with the generation of acute neutro-
philic inflammation and cytokine responses in vivo. This analysis is based primarily 
on the use of high-throughput methods and the interpretation of the resulting large 
amounts of data [87].

Another type of data can be obtained from reporter gene library expression data 
and select panel quantitative PCR. A comparative study investigated the genotoxic 
effects of anatase TiO2, carbon black, single wall carbon nanotube (SWCNT) and 
fullerene in Escherichia coli, Saccharomyces cerevisiae, and human A549 cells 
[71]. Through integration of data from the different assays, it was demonstrated that 
anatase TiO2 and carbon black induce oxidative stress which contributes to DNA 
damage in eukaryotic cells [71]. On the other hand, single wall carbon nanotube 
(SWCNT) and fullerene appear to induce DNA double strand breaks in a different 
way [71]. Gene expression profiles also indicate different types of DNA repair 
mechanisms involved for the different materials [71].

Supervised machine learning can also be used, as demonstrated by a decision 
tree developed on the toxicity of cobalt ferrite NPs [57]. In addition to the grouping 
based on the aforementioned band gap of metal oxide NPs, the size of the particle 
surface has been associated with oxidative stress responses to ENM [115]. Due to 
the huge variety of possible nano-objects it may be necessary to additionally per-
form an expert-assisted weight of evidence analysis in most cases [78, 160].

Direct interpretation of results obtained from in vitro studies in the context of 
potential in vivo exposures is not possible in most cases. To date, most in vitro 
models do not yield information on pharmacokinetics, i.e. the processes regarding 
absorption, distribution, metabolism and excretion. However, these processes 
govern the exposure of the target tissue in the intact organism, making it a crucial 
difference between the situation in vitro and in vivo. Moreover, this issue is not 
limited to the in vivo-in vitro comparison, many differences in toxicity from test 
animals to humans originate in differences in pharmacokinetics [59]. For this rea-
son, data on the mechanisms of action as well as data on pharmacokinetic behav-
iour are required for a comprehensive prediction of the biological activity of 
compounds [8, 9].

Quantitative in vitro to in vivo extrapolation (QIVIVE) models the environ-
mental exposures to a chemical that could produce target tissue exposures in 
humans equivalent to those associated with effects in an in vitro toxicity test. 
Typically, in vitro toxicity tests yield an EC50, a Benchmark concentration, or 
an interaction threshold identified by a biologically based dose-response model 
for the toxicity pathway of concern that can be used in such calculations. 
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Cellular assays can reveal specific molecular and cellular perturbations, and can 
be used to characterize dose-dependent transitions that may result in organ/sys-
tem insult. Using these data together with in  vitro and in silico approaches 
including quantitative structure activity relationship (QSAR) modelling, physi-
ologically based pharmacokinetic (PBPK) modelling, and information on 
metabolism, transport, binding, and other model parameters from cell- and/or 
cell derived material-based assays, QIVIVE can provide an estimate of the like-
lihood of harmful effects in  vivo from expected environmental exposures. 
Blaauboer et al. recommended a scheme for the incorporation of in vitro assay 
data, QSAR and QSPR information, in vitro metabolism data, and pharmacoki-
netic modelling in the estimation of human toxicity [10]. In this scheme, a 
chemical-specific pharmacokinetic model is parameterised using the available 
in vitro data on the absorption, tissue distribution, metabolism, and excretion of 
a chemical. While this scheme holds true also for ENMs, much less data are 
available and novel parameters concerning physico-chemical properties have to 
be taken into account. For chemicals, currently available quantitative structure-
property relationship (QSPR) techniques can be used in many cases to estimate 
chemical properties and kinetics when the specific data for that chemical are 
lacking. For example, tissue partitioning of a chemical can be estimated using 
simple empirical correlations from its water solubility, vapour pressure, and 
octanol/water partitioning co-efficient [25, 100, 118]. QSPR techniques are cur-
rently being developed for ENMs, and require the input of systematic and high 
quality data [20, 81, 133]. The complexity of the possible changes to ENMs in 
the body, such as (partial) solubility, protein corona formation and evolution, 
and aggregation has to be reflected in a pharmacokinetic model. Pharmacokinetic 
models are not only useful in estimating expected equivalent doses associated 
with toxicity by in  vivo exposure from concentrations at which toxicity is 
observed in an in vitro toxicity assay. Modelling of the in vitro toxicity assay 
can also provide important information on the temporal profile of cellular expo-
sure to free chemical that can be used in the design of the most appropriate 
in vitro experimental protocol [129].

Estimation of the metabolic clearance is arguably the greatest challenge in 
parameterizing even the simplest pharmacokinetic model. Currently, the most 
extensive data in this respect are on drug pharmacokinetics. ENMs pose an extra 
challenge in that they are often composed of more than one material, might 
release chemicals depending on the different compartments, or even dissolve and 
reform in the body [103]. For soluble chemicals, e.g. released by an ENM, it 
would be necessary to perform in vitro assays of the dose-response (capacity and 
affinity) for metabolic clearance [79]. A qualitative classification system has 
been developed based on physico-chemical properties to predict whether a chem-
ical was likely to be cleared by metabolism (including the CYP isozyme involved) 
or by urinary excretion [68]. As data accumulates for a greater number of chemi-
cals across a wider range of chemical classes, it may be possible to predict both 
qualitative and quantitative clearance using QSAR approaches over a broader 
domain of applicability.
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6.12  �Conclusion

Systems biology is increasingly used in toxicology as we currently observe a 
paradigm change and there is increasing interest in understanding underlying 
toxicity mechanisms and defining AOPs. It is advisable to combine “omics” tech-
nology with classical toxicological endpoints. If possible, different “omics” 
techniques should be used to assess the full complexity of changes and also to 
derive more reliable information on affected pathways. However, data integra-
tion over the different platforms still represents a formidable challenge as the 
techniques are based on different measurement principles and different molecu-
lar classes have different scales in terms of abundance, data accuracy and vari-
ance. The more so this holds true for ENMs, where additional factors account for 
an even larger variability. Currently, knowledge is only beginning to emerge how 
different physico-chemical parameters truly affect toxicity and which influence 
batch-to-batch variations play. Thus, the material characterization and the sam-
ple preparation (e.g. preparation of ENM dispersions or also mode of ENM pre-
sentation to the cells) deserve much more attention when assessing ENMs.

Additionally one should take into account different possible uptake routes for 
ENMs (ingestion, dermal, inhalation or injection). Another important issue is the 
choice of the cell model for in vitro studies or the strain & species for animal studies. 
Large differences in responses may be expected in different cell lines as well as in 
different strains of a given species.

Ultimately only the combination of “omics” technologies with high power 
statistical integrative data interpretation methodologies will unravel important 
and relevant information with respect to toxicity. In part, concepts already exist 
how omics data can be used for risk assessment, e.g. for quantitative assessment 
of the metabolome. Thus systems biology is getting more and more established. 
It may be expected that current limitations, e.g. in data integration and data 
analysis, might be overcome soon. Systems biology, by providing very large 
data sets offers the unique advantage of getting information on underlying 
molecular mechanisms and identifying affected signalling pathways, often 
referred to as toxicity pathways. This in turn may allow the development of 
AOPs. For ENMs such mechanistic based knowledge is highly needed in order 
to develop grouping approaches. It is well accepted that traditional risk assess-
ment paradigms, e.g. assessing each ENM variant in a case-by-case basis, will 
not be sufficient to deal with the large amount of ENMs in a reasonable time 
frame. Systems biology can support the development of grouping approaches. 
However, prerequisite is the development of better standardized approaches 
starting for instance with the definition of benchmark materials which allow for 
comparison between different studies. The largest bottleneck is that currently 
most studies assess only one ENM at a time or a very limited number of ENMs 
only. This renders it very difficult to compare outcomes of different studies.
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However, intensive research efforts are ongoing. Many large currently funded 
European projects focus on the use of systems biology for a larger set of ENMs. 
First possible grouping approaches for ENMs are already discussed in scientific 
literature. By integrating omics based data one may expect a huge progress.
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Chapter 7
Multiscale Modelling of Bionano Interface

Hender Lopez, Erik  G.  Brandt, Alexander Mirzoev, Dmitry Zhurkin, 
Alexander Lyubartsev, and Vladimir Lobaskin

Abstract  We present a framework for coarse-grained modelling of the interface 
between foreign nanoparticles (NP) and biological fluids and membranes. Our 
model includes united-atom presentations of membrane lipids and globular proteins 
in implicit solvent, which are based on all-atom structures of the corresponding 
molecules and parameterised using experimental data or atomistic simulation 
results. The NPs are modelled by homogeneous spheres that interact with the beads 
of biomolecules via a central force that depends on the NP size. The proposed meth-
odology is used to predict the adsorption energies for human blood plasma proteins 
on NPs of different sizes as well as the preferred orientation of the molecules upon 
adsorption. Our approach allows one to rank the proteins by their binding affinity to 
the NP, which can be used for predicting the composition of the NP-protein corona 
for the corresponding material. We also show how the model can be used for study-
ing NP interaction with a lipid bilayer membrane and thus can provide a mechanis-
tic insight for modelling NP toxicity.

Keywords  Nanoparticle • Toxicity • Coarse-grained molecular dynamics • Protein 
corona • Cell membrane

7.1  �Introduction

Over the last decade, in vitro and in vivo experiments have produced significant 
amount of veritable information that can be integrated into theoretical models with 
the aim of predicting possible health and environmental effects of engineered 
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nanoparticles (NP) [1]. However, even the most systematic studies leave the ques-
tion of precise toxicity mechanisms associated with NPs wide open [2–4]. An 
important finding arising from these studies is that the toxic effects can emerge 
either from membrane damage or from interaction of NPs, once they are inside the 
cell, with the internal cell machinery. Therefore, an evaluation of possible risks 
should include an assessment of NP ability to penetrate, modify, or destroy the cell 
membrane and bind to key biomolecules [4]. Being selectively permeable, mem-
branes participate in control of the transport of vital substances into and out of cells. 
Whereas some biomolecules may penetrate or fuse with cell membranes without 
overt membrane disruption, no synthetic material of comparable size has shown this 
property [5]. Among the factors determining the outcome of NP-membrane interac-
tion the surface properties of nanomaterials play a critical role, which can implicate 
the membrane or plasma proteins in conditioning NP prior to cell penetration.

The detailed understanding of the crucial stages of NP-cell membrane interac-
tion can be achieved with computer simulation. Molecular dynamics is now a well-
recognized tool for studying intermolecular interactions, self-assembly, and 
structure of biomolecules or their complexes. The reliability and predictive charac-
ter of molecular modelling has improved significantly during the last few years, 
with development of new, carefully parameterized force fields, simulation algo-
rithms, and greatly increased computer power [6]. The role of computer simulation 
is now well recognized in many fields including drug design and toxicology [7–9]. 
In the same way, one can attempt to predict the detrimental effect of NPs from 
physical considerations. Establishing a qualitative and quantitative connection 
between physicochemical properties of NPs and their effect on biological function-
ing of membranes can help to identify the possible pathways leading to toxicity 
and give a mechanistic interpretation of toxicological data. To achieve this goal, 
one has to understand the processes occurring at the bionano interface or on the 
initial stages of contact between the foreign nanomaterial and the organism such as 
formation of NP-biomolecule complexes, NP-cell membrane interaction, and NP 
uptake into the cell.

Understanding the corona formation and NP uptake requires one to address the 
lengthscales at the range of up to 100 nanometres, which is currently beyond the 
reach of direct atomistic modelling. Though lipid membranes have been very inten-
sively studied by molecular simulations during last decade [10], in general, model-
ling NP translocation through a lipid membrane is a significant challenge. Depending 
on the size of the NP and any associated proteins (corona) tens of thousands, or 
more, of lipid and other molecules may be needed to model a representative fraction 
of the membrane. For small (under 5 nm) NPs, cytotoxicity effects such as mem-
brane disruption and poration can be addressed at the atomistic scale and at this 
scale significant insights have already been gained using molecular simulation using 
atomistic or coarse-grained (CG) force fields [11–14]. To assess interactions of 
larger NPs with membranes mesoscopic simulations based on greatly reduced num-
ber of degrees of freedom are required. To build a quantitative mesoscale model, 
information on NP-biomolecule association should be transferred from atomistic 
simulations to the larger scale using coarse-graining.
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Many of today’s CG models use empirical parameterization of effective interac-
tion potentials. There exist several basic approaches for systematically constructing 
effective CG potentials from the results of atomistic simulations. One common 
approach is based on reproduction of forces for specific snapshots of the system (the 
force matching approach [15, 16] and the other, is based on fitting of structural 
properties, for which the radial distribution functions are typically used (the inverse 
Monte Carlo (IMC), or Newton Inversion method) [17, 18]. The IMC method was 
previously used to build CG models of various molecular systems including ion-
DNA solutions [19]. In the same spirit, CG models of plasma and membrane pro-
teins have been developed [20–23] using the united-atom scheme, i.e. replacing the 
common groups of atoms by single beads, and thus drastically reducing the number 
of degrees of freedom. The solvent is usually removed from the CG model and is 
integrated into effective interaction potentials between the CG beads, which on 
itself provides a big gain in efficiency. A systematic coarse-graining based on the 
all-atom presentations will preserve the shape and size of the relevant molecules and 
thus molecular specificity. In this approach we sacrifice a number of internal degrees 
of freedom, such as protein conformations, which can be justified a posteriori. 
Although neglecting the protein internal degrees of freedom is a necessarily shaky 
approximation, this could be the most beneficial one as we can get around the 
dynamic bottlenecks related to slow protein unfolding.

Similar to molecules, one can use IMC and other coarse-graining methods to 
model effective interactions between NPs [9, 24, 25]. Thus, the construction of the 
mesoscale modelling tool involves the following steps, with each consecutive stage 
based on a systematic coarse-graining of the more detailed description and vali-
dated by experimental data (Fig. 7.1):

In the following sections, we describe a minimum set of such CG tools that allow 
one to simulate the interaction of the NP-protein corona complex with a lipid 
bilayer. The remainder of the paper is constructed as follows. First, we describe a 
CG model to calculate the adsorption energies and the most favorable adsorption 

MD (All-atom resolution) 

NP surface atoms + lipid
molecules + aminoacids 

• Interaction of lipids with NP
surface 

• Interaction of aminoacids
with NP surface 

• Parametrization of the CG
models of lipids and
aminoacids 

MD (Coarse-grained) 

CG NP + CG proteins + CG
lipids 

• Adsorption of proteins at NP
surface 

• Formation of NP protein
corona 

• NP-membrane interaction
and attachment 

LB + MD (Coarse-grained) 

Coated or bare NP +
membrane 

• NP translocation across
membrane 

• Passive endocytosis 
• Membrane disruption and

recovery 
• Inclusion of small NP into

membrane 

Lab data on biomolecule
adsorption, corona formation

Lab data on NP uptake,
membrane disruption

Lab data on NP protein corona,
NP-membrane adsorption

Fig. 7.1  Scheme of the multiscale simulation approach for modelling NP uptake
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orientations of proteins onto a hydrophobic NP. The proposed method is then used 
to calculate the adsorption energies of the two common proteins in human blood 
onto NPs with negative or positive surface charge or neutral surface. We also report 
on the effect of the NP radius on the adsorption energies and validate the proposed 
methodology against full atomistic simulations. Then, in Sect. 7.3 we describe a 
methodology, in which full atomistic simulations of a lipid bilayer and various 
lipid-Cholesterol mixtures are used for the extraction of CG pair potentials. In Sect. 
7.4, we present a CG simulation of the interaction a bare NP and of a NP-protein 
complex with a lipid bilayer. Finally, in Sect. 7.5 we summarise the main results.

7.2  �Nanoparticle-Protein Interaction

It is now well accepted that foreign surfaces are modified by the adsorption of bio-
molecules such as proteins or lipids in a biological environment, and that cellular 
responses to materials in a biological medium might reflect the adsorbed biomole-
cule layer, rather than the material itself [26]. Recently, the concept of the NP-protein 
corona has been introduced to describe the proteins in association with NPs in bio-
logical fluids [27–30]. The composition of NP corona is flexible and is determined 
by many affinity constants and concentrations of the components of the blood 
plasma. One can speculate that in many practically relevant situations, the protein 
corona is the surface that is exposed to the cell membrane and is the entity the cell 
protective mechanisms have to deal with. Thus, for most cases it is more likely that 
the biologically relevant unit is not the particle itself, but a nanoobject of specified 
size, shape, and with certain protein corona structure. Naked particle surfaces will 
have a much greater (non-specific) affinity for the cell surface than a particle hiding 
behind a corona of “bystander” proteins – that is proteins for which no suitable cel-
lular recognition machinery exists. The evidence suggests that, in comparison to 
typical cell-membrane-biology event timescales, the particle corona is likely to be a 
defining property of the particle in its interactions with the cell surface, whether it 
activates cellular machinery or not. Similar observations and outcomes exist for 
particles inside the cell, in key locations, though we cannot discuss details here 
[27–30]. We assume that the actual content of the corona is determined by (i) the NP 
exposure to the protein solution (blood plasma), (ii) a competition between the 
adsorbed proteins and the glycoproteins/membrane lipids. We will model the pro-
tein and lipid interaction with the NP surface at the CG united-atom level for 
selected set of proteins (see Table 7.1) and lipids. These simulations will provide 
interaction energies and will be used to predict the kinetics of protein/lipid corona 
formation. The data on aminoacid interaction with NP will allow us to compute 
binding affinities of arbitrary proteins of known structure within an additive model 
implying that the total protein-NP interaction energy is computed as a sum of NP 
interactions with aminoacids in contact with NP surface. From the typical protein 
concentrations and adsorption energies one can also predict the average content of 
the corona using ideal adsorbed solution theory [31]. It is important to understand 
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that at this stage we would be able neither to scan all the plasma proteins nor to take 
into account any change of protein conformation or bonding between the adsorbed 
proteins. However, as the effect of the corona is still largely unknown, we can only 
hope to capture the most important contributions of the plasma protein to the NP 
dispersion stability and their interaction with the cell membrane.

Due to complexity of blood plasma, we can only model it at a simplified level. It 
seems reasonable to include the elements, which are more likely to affect the NP 
interactions and aggregation, and mediate their interaction with the membrane. The 
plasma can then be modelled as a solution of biomolecules in an implicit solvent 
with a dielectric constant of water and the Debye length corresponding to physio-
logical ionic strength, van der Waals interactions set to corresponding triplets 
NP-protein-water, or protein-water-protein, and appropriate surface charges on the 
molecules. In this work, we study the adsorption of two of the most abundant pro-
teins in blood plasma, Human Serum Albumin (HSA) and Fibrinogen (Fib). In 
Table 7.1, we summarise their relative content in blood and their molar mass. 
Although this two proteins represent important components of the blood plasma 
because of their abundance, recent observations [27–29, 32] demonstrate that the 
protein corona can include hundreds of different plasma proteins. As of now, it is 
mostly not known what proteins dominate the content of the corona or play the most 
crucial role in the NP coating and uptake, although some progress has been made 
[33] and there is hope that such information will become available in the coming 
years.

7.2.1  �Adsorption of Proteins onto Nanoparticles

The starting point for development of a CG model for the interaction of NPs with 
proteins is to decide how much detail from the molecular structure of the protein 
one needs to keep. There is an active and extensive research activity on the different 
CG models that can be used to simulate proteins under different conditions (for 
more detailed reviews see [20, 22, 34]). The aim of this work is to propose a set of 
tools that could be used to simulate the interaction of one or more proteins (and in 
some cases quite big proteins) with a NP, for relatively long timescales. To meet this 
goal with a reasonable computational effort the number of beads representing the 
protein should be kept as small as possible but the proposed model should also pre-
serve enough structural information about the molecule. For these reasons we 

Table 7.1  Proteins, PDB ID used for the coarse-graining and the abbreviations used in the text, 
and their size and abundance in human blood plasma

Protein PDB ID Abbreviation Weight fraction in plasma, % Molar mass in, kDa

Human Serum 
Albumin

1N5U HSA 5.0 67

Fibrinogen 3GHG Fib 0.4 340
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propose a one-bead-per-residue model and consider the structure of the protein as a 
rigid body. We have studied the predictions of this model in more detail in Ref. [35]. 
The crystal structures of the proteins are obtained from the literature and one bead 
is per amino-acid is placed at the position of the α-carbon. At the end of this section, 
we will test the validity of this first approximation. The second approximation is 
what level of detail will be needed to represent the NP. In this work, we will con-
sider spherical homogeneous NPs so a single-bead representation is justified.

In our model, the total NP surface-protein interaction potential (U) is a function 
of distance from the surface to the centre of mass (COM) of the protein, dCOM and of 
protein orientation. It is given by a sum of two contributions:

	
U U U

i

N

i i= +( )
=
∑

1

VdW el

	
(7.1)

where N is the total number of residues in the protein, Ui
VdW  is the van der Waals 

interaction of residue i with the surface and Ui
el  is the electrostatics interaction of 

residue i with the surface.
For van der Waals contribution to the potential energy we propose a modified 

version of the residue-residue interaction potential as suggested in [21]. The model 
is based on the widely used residue-residue interaction energies proposed by 
Miyazawa and Jernigan [36], but instead of having a 20 × 20 interaction matrix this 
is reduced to a table of normalized hydrophobicities, εi, one for each amino acid 
(see Table 7.2 in [21]). A hydrophobicity index 0 is assigned to the most hydrophilic 
residue (LYS) and an index 1 to the most hydrophobic one (LEU). We should stress 
that any other hydrophobicity scale can also be used, it just has to be transformed 
such that the indices have to be between 0 and 1, where 0 is assigned to the most 
hydrophilic residue while 1 to the most hydrophobic one. In this work, we consider 
a generic surface which chemical reactivity that can be modeled as another residue 
with a hydrophobicity index εs.

Table 7.2  Normalized hydrophobicities εi (taken from Table II in [21]) and σi for each amino acid 
(taken from [38])

Residue LYS GYU ASP ASN SER ARG GLU PRO THR GLY
εi, ε 0.00 0.05 0.06 0.10 0.11 0.13 0.13 0.14 0.16 0.17
σi, nm 0.64 0.59 0.56 0.57 0.52 0.66 0.60 0.56 0.56 0.45
Residue HIS ALA TYR CYS TRP VAL MET ILE PHE LEU
εi, ε 0.25 0.26 0.49 0.54 0.64 0.65 0.67 0.84 0.97 1.00
σi, nm 0.61 0.50 0.65 0.55 0.68 0.59 0.62 0.62 0.64 0.62

The most hydrophilic residue has a εi of 0, while the most hydrophobic has a value of 1. For 
residue-residue interactions, we use the Lorentz-Berthelot mixing rules 

s s si j i j i j i j, ,/ ,= +( ) =2 e e e
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To model interaction of biomolecules with particles of different sizes we use the 
following model for the nanomaterial. We assume that the interaction between a 
residue i and a bead of the NP s being at a distance r from each other is given by a 
modified 12-6 Lennard-Jones potential:
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εe , n is a parameter that scales the interaction energy, εs , i is the combined hydropho-
bicity index of residue i and the nanomaterial and is given by 

i s i s s i, ,,= se e e  is the 
average van der Waals radius of residue i and the nanomaterial bead, σs, i = (σs + σi)/2 , rc, i 
is the position of the minimum of the pair potential.

An integration of the 12-6 potential over the volume of the nanomaterial as 
defined in [21] gives a 9-3 Lennard-Jones-type potential. For a flat surface, the inter-
action can be expressed in terms of d, the distance between the residue centre of 
mass the closest element of the surface. An integration over a semi-space gives:
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where es e n= 4p 45 , ,re e  is the number density of beads in the nanomaterial, d is the 
distance from the residue i to the surface, dc , i = (2/5)1/6σs , i. Although the density ρ 
seems to be an important parameter scaling the interaction, it is not independent and 
therefore is not crucial for our method. From fitting the adsorption energy to experi-
mental or MD simulation data, we can find the composite quantity εesρ, which is 
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sufficient for further calculations. For a NP of radius R, a similar integration over 
the particle volume gives:
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where r is the distance from residue i to the centre of the NP. The distance rc,i cor-
responds to the minimum of the potential and Uc

vdW  is the value of the function 
Us i,

vdW (rc,i) as defined in the range rc,i ≤ r ≤ rcut. We do not show the general expres-
sion for the position of the minimum as it is too bulky. The minimum is located at 
rc,i − R ≈ (2/5)1/6 σs,i at R ≫ σs , i and is displaced to shorter distances at smaller R. The 
variation, however, is not very large, at R → ∞, rc,i − R ≈ 0.858374σs,i, at R = 200σs,i 
it is 0.858375σs,i, at R = 20σs,i it is 0.858469σs,i, at R=2σs,i it is 0.865242σs,i.

Note that the potential in Eq. (7.2) will only give a repulsive interaction between 
a highly hydrophilic surface and any residue (i.e. defining εs = 0, gives εs,i = 0 for all 
residues). On the other hand, assigning a non-zero value for εs will only change the 
magnitude of the interaction between any residue and the surface but not the shape 
of the potential. In this way, the proposed potential is limited to model only hydro-
phobic surfaces. Because of this limitation, we set the value of εs = 1 for all simula-
tions. Alternatively, a potential that includes desolvatation penalties, as the 12-10-6 
Lennard-Jones potential proposed in [37, 38] for residue-residue interactions or the 
modified version proposed in [23] used to model residue-surface interactions, can 
be used to generate a more general interaction potential. The main drawback of the 
use of these more refine formulas for the potential is that the parameterization is 
more challenging, and the applicability of a set of parameters could be very 
narrow.

The electrostatic interactions in Eq. (7.1) is modeled by adding point charges on 
the NP surface. This charges interact with the charged residues via a Debye-Hückel 
potential. The electrostatic interaction energy between a residue i and all the charges 
on the surface is given by:
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where rij is the distance between the residue i and the point charge on the surface j, 
λB = e2/(4πε0εrkBT) is the Bjerrum length, kB is the Boltzmann constant, T the 
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temperature, ε0 the dielectric permittivity of vacuum, εr the relative dielectric per-
mittivity of water, qi the charge of residue i, qj the charge of the point charge j on the 
surface, Ne the total number of point charges on the surface and λD is the Debye 
length (defined through lD Bc

- =2
08pl  , with c0 is the background electrolyte concen-

tration). In practice, the points charges are evenly distributed on the spherical sur-
face of the NP using a Golden Section spiral algorithm and all points will have the 
same charge qj given by qj = 4πσR2/Ne, where σ is the surface charge density of the 
NP and R is the radius of the NP.

7.2.2  �Orientational Sampling and the Calculation 
of the Adsorption Energy

In this work, we are not considering conformational changes during the adsorption 
process and assume that proteins are rigid. Although the adsorption process might 
conduce to conformational changes, this events happen at longer times than orien-
tational changes on the surface [39]. Taking this into account, the adsorption ener-
gies calculated here will give a valuable insight into the long-time evolution of the 
of the NP-protein corona content.

In our CG model, each residue of a protein is represented by a single bead located 
at the α-carbon position. The native structures are obtained from the Protein Data 
Bank, and in Table 7.1 we report the proteins studied in this work, the PDB ID from 
which the CG model were built and the abbreviation that will be used in the rest of 
the text. The chosen proteins are some of the most abundant in human blood and 
will have a major influence in the formation of the NP protein-corona.

To identify the most favourable orientation of adsorbed protein globule (the one 
with the minimum adsorption enthalpy) we will follow the method suggested in 
[40], which is not as efficient as e.g. a genetic algorithm, but can provide additional 
information about the adsorption process. Briefly, a configuration space search is 
performed, where a systematic rotation of the protein allows us to build an adsorp-
tion map. There are three degrees of freedom (DOF) that have to be scanned. Figure 
7.2 shows that any point on the surface of the protein can be defined by a position 
vector from the COM of the protein. This vector is characterised by two angles: ϕ 
and θ and by rotating the molecule an angle −ϕ around the z direction and then by 
an angle −θ + 180° around the y axes will make the position vector point towards 
the surface. The third DOF is the distance from the COM to the closest point of the 
surface, dCOM. Here, we sample ϕ from 0 to 350° in steps of 10° and θ from 0 to 170° 
in steps of 10° (note that ϕ = 0° is equivalent to ϕ = 360°, and that θ = 0° is equiva-
lent to θ = 180°). Instead of obtaining the “real” adsorption free energy by calculat-
ing the potential of mean force for all orientations, we only calculate the potential 
energy U (given by Eq. (7.1)), which is the sum of all the interactions between the 
surface and the protein. As the adsorption energies are expected to be at least five 
times kBT and as the proteins are assumed to be rigid, neglecting thermal fluctuations 

7  Multiscale Modelling of Bionano Interface



182

is clearly justified. For each configuration (ϕi, θj), the total potential energy is calcu-
lated as a function of distance of the COM, U (dCOM, ϕi, θj), to the surface for the 
case of a slab (Fig. 7.2b) or to the center of the NP for the case of a NP (Fig. 7.2c). 
Following a similar approach as in [41], and denoting the reaction coordinate dCOM 
= z, the adsorption energy for any particular configuration in the case of a protein 
adsorbing on a flat surface is given by:
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Fig. 7.2  Definition of the protein orientation. (a): Any point on the surface of the protein can be 
defined by a position vector from the COM to that point and depends on two angles ϕ and θ. The 
remaining degree of freedom is the distance of the COM, dcom to (b) the surface for a slab or (c) 
to the center of the NP
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where a(ϕi, θj) is the maximum interaction distance from the COM of the protein to 
the surface for the given orientation. For the case of a NP-protein interaction, the 
mean interaction energy for any particular orientation is given by:
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Then the total mean adsorption energy of the system for both cases (slab and NP), 
Ead, can be estimated by averaging over all adsorbed states with Boltzmann weight-
ing [40]:

	

E

P E

P
i j

ij i j

i j
ij

ad =
( )åå

åå

f q,

	

(7.8)

where Pij = sin(θj) exp[−E(ϕi, θj)/kBT] is the Boltzmann weighting factor.

7.2.3  �Details of the Simulations, Parameterisation 
and Validation

All simulation were performed using ESPResSo MD package [42] and the cutoff for 
the interaction potential in Eq. (7.2) was set to rcut = 6 nm. For all calculations the simu-
lation box was taken big enough to fit the NP and the protein. The method described 
here only involves the calculation of the total energy of the system given by Eq. 7.1, 
therefore a coupling to a thermostat is not required. After the CG model were built from 
the PDB files, the obtained structures were shifted so the COM of the molecules was in 
the origin of the frame of reference and this structure was defined as the (ϕ = 0°, θ = 0°) 
orientation. With this definition the first residue in the sequence of each protein will 
have the following (ϕ, θ) angles: (21.4°, 85.2°) for HSA and (132.1°, 46.4°) for Fib.

The units of the simulations are: lengths (L) in nm, energy (ε) in kBT ≈ 4.15 × 
10−21 J taking a temperature of T = 300 K, for the mass unit (M) we selected the 
average mass of the 20 residues (ca. 110 Da) hence in our simulations all residues 
have a mass of 1. The values of εi and σi can be found in Table 7.2 and as mentioned 
in Sect. 7.2.1 we will only consider hydrophobic NPs with εs = 1 and σs = 0.35 nm.

NPs with negative surface charges as well as neutral NPs were considered. For 
the negatively charged ones, a surface charge density of −0.02 C/m2 was used. As 
explained in Sect. 7.2.1, the charged surfaces are modelled by individual point 
charges. The surface density of these charged beads (σc = Ne/R2) was set to 4 nm–2 
for all the simulations, which gives e.g. a Ne = 100 for a NP of R = 5 nm. Then, we 
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assumed that each bead carries a charge of −0.39e, where e is the elementary charge. 
As we are considering physiological conditions, we use λB = 0.73 nm and λD = 1 nm. 
Residue charges at this condition are +e for LYS and ARG, −e for ASP and GLU, 
and +0.5e for HIS. The rest of the residues are neutral.

The only free parameters of the model are ρεes in Eq. (7.2), and the parameterisa-
tion was done by systematically changing its value to match experimental data of 
adsorption of Lysozyme on hydrophobic surfaces reported by Chen et al. [43]. The 
native structure for our CG model of Lysozyme was obtained from the PDB  
ID: 2LYZ. With ρεes = 1.972kBT/nm3 we obtain a value of −7.6kBT for the adsorption 
energy (very close to the experimental reported value of −7.9kBT).

To validate the parameterization, the adsorption energy of Myoglobin (PDB ID: 
1MBN used for the CG model) was calculated using the same value of ρεes obtained 
from the parameterisation. In this way, a value of −6.1kBT was found for the adsorp-
tion energy of Myoglobin. This value is slightly lower that the experimental value 
of −7.6kBT also reported by Chen et al. [43] but reproduces the trend that Myoglobin 
adsorbs slightly weaker than Lysozyme to a hydrophobic surface.

7.2.4  �Protein Adsorption Energies

Results for the adsorption energies calculated using Eq. (7.8) as a function of NP 
radius are shown in Fig. 7.3. The results show that HSA adsorbs stronger as the 
radius of the NP increases until the energy reaches a minimum value (Fig. 7.3a). For 
small NPs, the combination of the size effect (increasing R increases the van der 
Waals interactions) with the availability of residues to interact with the surface 
ensures that the proteins adsorb stronger (more negative values) as the radius is 
increased. Then, after a value of radius around 50 nm, the Ead starts to converge to 
the value corresponding to a flat surface as the van der Waals interactions and the 
number of residues close to surfaces do not change significantly by increasing R. 
We performed calculations for NPs of R up to 500 nm and confirmed that the adsorp-
tion energy indeed converges to the slab values. For the Fib molecule the situation 
is different (Fig. 7.3b). In this case the adsorption energy decreases as a function of 
R at least until the biggest radius studied here (R = 100 nm) and it is lower than for 
the adsorption onto a flat surface. The big size of the Fib molecule (ca. 45 nm on its 
longest axes) makes that for at least until R = 100 nm the combined effects of cur-
vature and number of residues that interact with the surface are still noticeable. The 
effect of the charge is more important for the HSA that for the Fib. HSA charge is 
overall negative, so the electrostatic interactions contribution is mainly repulsive 
increasing the values of the Ead. On the other hand, the Fib molecule’s charge is 
positive and the electrostatic interactions tend to increase the adsorption of the Fib 
onto a negative surface. In neither of the proteins the maximum contribution of 
electrostatic interactions was more than 3kBT.

The systematic sampling employed for the calculation of the adsorption energies 
can also be used to identify the most favourable orientations for adsorption and to 
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study how the charge and/or the radius of the NP influence the protein orientation. 
Figure 7.4 shows a surface map of the adsorption energy as a function of the angles 
θ and ϕ for HSA. Each panel is for a radius of 5 or 100 nm and for a neutral or a 
negatively charged surface. The surfaces are complex in structure showing an 
energy landscape with several local minima with differences less than 1kBT. It is also 
important to notice that the maps have large areas with adsorption energies of −6kBT 
or lower. Our results show that HSA will strongly adsorb at physiological condi-
tions and room temperature and that orientational changes after adsorption are ener-
getically favourable. Comparison of different panels in Fig. 7.4 shows that radius 
has only a small effect on the preferred orientations, while the NP surface charge 
density has a minor impact on the preferred orientations.

A different scenario is observed for Fib. Figure 7.5 shows colour maps of Fib 
adsorption energy for two radii for neutral and charged surfaces. In this case, the maps 
depend on the radius of the NP (compare Fig. 7.5a with Fig. 7.5b or Fig. 7.5c with Fig. 
7.5d) but change very little between the charged and uncharged surface (compare Fig. 
7.5a with Fig. 7.5c or Fig. 7.5b with Fig. 7.5d). As we already noticed for HSA, the 
charge has a small effect on the total adsorption energy so we do not expect that it 
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would dramatically change the energy maps. The radius and the surface curvature 
seem to be more important as for big proteins (like Fib) a larger NP allows a more 
extensive contact and thus influences the preference for protein orientations (or NP 
binding pockets). In Fig. 7.6, we show the most favorable orientations for Fib on a 
neutral surface for two different NP radii. For the small NP (Fig. 7.6a), Fib has its 
adsorption energy minimum in a configuration where the NP interacts with a rela-
tively small segment of the molecule. Meanwhile, for a large NP, Fib tends to bind in 
a completely different orientation (Fig. 7.6b). Now the most favourable orientation is 
the one with the longest axis of the Fib molecule along the surface.

A straightforward conclusion from the above data is that the bigger the protein, 
the stronger it will bind to a NP. This result agrees with the experimental observa-
tion reported by De Paoli et al. [44], which shows that the binding association con-
stant on citrate-coated gold NPs (which can be considered as moderately negative 
hydrophobic NP) depends mainly on the size of the protein (they studied HSA, Fib 
and other blood proteins). It is interesting also to compare our results with the simu-
lations of NP corona formation reported by Vilaseca et al. [45]. Using CG MD sim-
ulations, they found that for a flat surface at long times the most abundant protein 
adsorbed was Fib, then Immunoglobulin-γ (of intermediate size between HSA and 
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Fib) and at last HSA. We should note that the adsorption energies calculated in this 
work will be a good predictor of the equilibrium composition of the NP-protein 
corona while at short times other factors such as the protein sizes and their concen-
trations have to be considered to predict the corona composition.

We should note that the approach presented here is justified for small NPs but may 
be difficult to use with large NPs for two main reasons. First of all, the interaction 
potential resulting from integration of the van der Waals forces over the volume of the 
NP will become long-range in that case. Here, we explicitly assumed that the particle 
is hydrophobic, so that there a non-negligible attraction will be felt by the protein far 
away from the NP (up to tens of nanometers), well beyond the typical range of the 
interactions of individual molecules. In our example, the prefactor εs,i scales the inter-
actions, so that the attraction is strongest between the hydrophobic NP and the hydro-
phobic residues. We performed the energy calculation without any cut-off but had to 
limit the interaction radius in the MD simulation below to 6 nm. Second, it is not a 
priori clear whether the same hydrophobicity coefficient εs,i can be used to describe 
the interaction of the bulk material of the NP with the protein as we determined for the 
surface beads. While the interaction at small distances is modified by water structur-
ing at the surface, the long-range van der Waals force should not be affected by the 
local effects. Therefore, the coefficients for hydrophilic materials may underestimate 
the attraction between the NP and biomolecules. To overcome this limitation, one 
needs to treat the bulk of the NP differently from the surface layer. From this point of 
view, it would be reasonable to introduce a two-layer model of a NP, where the surface 
layer takes into account hydration and the attraction of biomolecules to the NP is not 
underestimated due to the short cut-off. To include the attraction in full, one must use 
cut-off distances of at least particle diameter, i.e. 5 nm for 2.5 nm NP, 10 nm for 5 nm 
NP, etc. The main issue to be solved in future modelling is how to increase the cut-off 
of the NP bulk material interaction with the biomolecule beads in common simulation 
codes without affecting dramatically the computational cost.

7.2.5  �Validation of the Methodology

We now test our CG methodology with predictions of full-atomistic MD simulation. 
We model adsorption of small plasma protein Ubiquitin (Ubi) to a flat TiO2 surface. 
The reasons for choosing Ubi for the validation was due to the its small size (only 
76 residues) and known folded structure, which allows us to perform full atomistic 
simulations in a reasonable amount of time.

The Ubi crystal structure was obtained from the PDB (PDB ID file 1Ubi [46]) 
and was coarse-grained as explained above (see Fig. 7.7). To be able to directly 
compare against full atomistic simulations, in this case the interactions potentials 
between the 20 different residues and the surface were obtained by performing full 
atomistic simulations of the adsorption of each of the 20 aminoacids and then per-
forming an inverse Monte Carlo calculation.
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Fig. 7.7  CG model of Ubi 
(PDB ID: 1Ubi [46]). In 
our model each residue in 
the protein is represented 
by one bead
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With the CG methodology we obtained the total adsorption energy of −10.7kBT 
for Ubi and the adsorption map is shown in Fig. 7.8. The surface obtained shows 
two major minima and a number of local minima. It also predicts that orientational 
changes are favorable after adsorption as some of the minima are connected by an 
energy landscapes with rather small barriers (less than 3kBT).

To analyse the validity of our model and to understand the dynamical behavior of 
the adsorption process we performed a series of full atomistic simulations. We used the 
VESTA program [47] to construct a 5 × 20 × 32-supercell of the TiO2 rutile unit cell. 
The coordinates were rotated so that the normal of the TiO2 slab, corresponding to the 
(100) surface, was oriented along the z-direction. The box was elongated in the z-direc-
tion and periodicity was assumed in all directions. The final size of the simulation box 
was then 9.466 × 9.184 × 12 nm. Covalent bonds were added to all Ti-O pairs within 
a 2 Å-cutoff. We used force field parameters for the TiO2 slab from a recent parameteri-
sation study [48]. The same force field was use to calculate the CG potential interac-
tions between the surface and the 20 amino acids. The same folded Ubi structure as for 
the CG model was used and inserted above the TiO2 slab. The TiO2-Ubi system was 
solvated by insertion of 25,817 water molecules around the protein and the slab, and 
the final system contained 99,802 atoms. The system was energy minimized for 1000 
steps and then equilibrated at constant temperature (300 K) and pressure (1 bar) for 
100 ps using Berendsen’s weak scaling algorithms [49], with relaxation constant τ = 
1 ps in both cases. The temperature coupling was applied independently to the TiO2 
slab and to the rest of the system. The pressure tensor must be kept anisotropic due to 
the solid TiO2 slab, but the off-diagonal components of the compressibility tensor (and 
the reference pressure tensor) were set to zero to enforce a rectangular simulation box. 
The diagonal elements of the compressibility tensor were set to 5 × 10–7 bar–1 in the 
lateral directions (bulk TiO2) and 5 × 10–5 bar–1 in the normal direction (bulk water). 
The box vectors relaxed 2–4 % during equilibration.

In a first simulation, we placed the protein in the (ϕ = 0°, θ = 0°) orientation close 
to the surface and followed the dynamics for 440 ns at constant volume and 300 K. The 
Nose-Hoover thermostat [50, 51] with the coupling constant τ = 5 ps was used to 
ensure proper sampling of the ensemble when controlling the temperature. The simu-
lation was run in parallel using 512 cores and frames were kept every 5 ps.

The trajectory obtained showed that the protein motion was diffusive in the bulk 
water for about 25 ns until making contact with the TiO2 slab. Then the Ubi mole-
cule attached to the surface and remained adsorbed for the rest of the simulation. To 
study the stability of the structure of the protein during adsorption we calculated the 
root-mean-square-deviation (RMSD) as a function of time and the results are shown 
in Fig. 7.9. The RMSD remained at a low constant value of ca. 0.2 nm2 during the 
simulation, i.e. no unfolding occurred in the adsorbed state. This results clearly 
confirms that for the adsorption of Ubi on TiO2 a rigid body model for the protein 
structure is well justified.

A detailed study of the simulation trajectory revealed that the protein motion 
could be characterized by four states, and that adsorption occurs through a two-step 
mechanism (Fig. 7.10). First, the protein diffuses freely in the bulk water. Second, 
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the C-terminus of Ubi the protein contacts the TiO2 surface and provides a lock for 
the protein to the first solvation layer. Third, Ubi rotates and locks into position on 
the surface. Fourth, the protein diffuses on the surface in the locked orientation.

The adsorption process is relatively fast once the first surface contact is initiated. 
The anchoring of the C-terminus to the first solvation layer occurs in about 5 ns and 
the locking is completed after 10 additional nanoseconds. The residues at the 
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Fig. 7.9  The root-mean-square deviation (RMSD) of Ubi during the simulation with respect to the 
PDB reference structure. No unfolding occurs and the RMSD is 0.15 nm2 throughout the simula-
tion, which is the same as found in simulations of the folded structure in bulk water
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Fig. 7.10  Four distinct stages were identified during adsorption. (a) The protein diffuses in the 
bulk water. (b) The N-terminus of Ubi anchors to the solvation layer of the TiO2 slab. (c) The pro-
tein rotates and locks to the solvation layer through GLN40 and GLN31. (d) The protein diffuses 
on the solvation layer in the locked conformation
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C-terminus are ARG 74, GLY 75 and GLY 76. The anchoring is initiated when the 
charged end of ARG74 contacts the surface perpendicularly. The contact is not with 
the bare surface, but with the first solvation layer, which is strongly bound directly 
to the surface. At this point the rest of the protein diffuses in the bulk until (ca. 5 ns) 
GLU 40 can contact the surface, which leads to the protein being locked into an 
adsorbed orientation after 10 ns. The locking procedure consists of Ubi first con-
necting GLN40 to the surface, followed by a second connection through GLN31. 
The two glutamines (GLN31 and GLN40) form a bridge that stabilizes the orienta-
tion of the protein and no more changes in orientation occur for the rest of the 
simulation.

The residues involved in the anchor-lock mechanism are arginine and glutamine. 
These have been identified by potential of mean force calculations [48] of isolated 
side chain fragments (together with aromatic side chains) to be the strongest binders 
to TiO2. In both cases, the NH2-group of the end of the amino acid approaches the 
surface in a perpendicular orientation but can then rotate to maximize the interac-
tions with the solvation layer.

The “upright” position of the protein in the adsorbed state suggests that it does 
not correspond to a free energy minimum. Since the orientation does not change 
over 400 ns, it is likely that there are high free energy barriers associated with the 
orientation changing into another free energy basin. To map all values of ϕ and θ, 
more sampling of the protein adsorption is needed. This could either be done in a 
repetitive fashion from different starting configurations or with enhanced sampling 
techniques such as metadynamics.

As for Ubiquitin we do not observe any unfolding within several hundreds of nano-
seconds, we can conclude that our rigid protein model for studying adsorption is justi-
fied at least for some conditions: small NPs, non-metallic particles and small and 
compact proteins such that the adsorption energies are within few tens of kBT. For 
other situations, one should evaluate the energy to decide whether the model is suffi-
cient. In general, conformational changes can be an important factor for the adsorp-
tion dynamics process [44]. This assumption can be relaxed by e.g. using a Gō–Type 
model (see [34] for a review on CG models of proteins). Furthermore, as the method-
ology we presented is computationally very efficient and can provide information 
about the structure of NP-protein complexes, it can be used as an exploring tool to 
perform more sophisticated and computationally demanding calculations.

7.3  �Coarse-Grained Model of a Lipid Bilayer

Any attempt to simulate with some molecular details but at length and time scale 
involve in the uptake of NPs through a cell membrane must rely on a CG model of 
the main constituents of the biological membranes. In this section we describe a 
methodology to systematically CG a lipid bilayer and lipid bilayer containing 
Cholesterol from the results of full atomistic simulations.
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7.3.1  �Molecular Simulations of Various Lipid-Cholesterol 
Mixtures

We started the CG procedure by performing all-atom molecular dynamics simula-
tions for three lipid mixtures: (i) 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine 
with Cholesterol (DMPC + CHOL); (ii) 1,2-dioleoyl-sn-glycero-3-phosphatidylserine 
with Cholesterol (DOPS + CHOL); (iii) 1,2-dimyristoyl-sn-glycero-3-
phosphatidylcholine with 1,2-dioleoyl-sn-glycero-3-phosphatidylserine (DMPC + 
DOPS). The composition of this systems are reported in the Table 7.3. In each simu-
lation, the starting state was generated randomly and energy was minimized after-
wards. Then a short 1 ns NVT simulation at density 1 g/cm3 was carried out, which 
was followed by a 100 ns equilibration simulation in NPT-ensemble and a production 
stage of 400 ns. The Slipids force field was used [52, 53]. Other simulation parame-
ters: time step 2 fs; Nose-Hoover isotropic thermo/barostat with temperature 303 K, 
pressure 1 bar, relaxation times 0.1 and 1 ps for thermostat and barostat respectively; 
all bonds were constrained by Links algorithm; particle-mesh Ewald with Fourier 
spacing 1 Å and tolerance parameter 10−5. The configurations were saved in the tra-
jectory each 10 ps. The atomistic simulations were performed using the Gromacs 
simulation engine (v. 4.5) and a rigid TIP3P water model.

7.3.2  �Mapping of Atomistic to Coarse-Grained Trajectories: 
From Residue to Beads

The atomistic trajectories obtained in the simulations were mapped onto CG trajec-
tories, and radial distribution functions between sites of the CG models have been 
determined. As shown in Fig. 7.11, 10 beads for representation of DMPC molecule 
were used at the CG level (3 beads instead of each of the two hydrocarbon tails, 4 
beads instead of the head group including esters), 14 beads for DOPS molecule (5 
beads instead of each hydrocarbon tail with specific distinguishing of the beads with 
double bond and beads uniting 3 or 4 methylene groups, and 4 beads instead of the 
head group), 5 beads for CHOL molecule, and Na+ ions as a single bead were used. 
Water was not included into CG model but its effect was included into 

Table 7.3  Composition of the simulations used for the CG of lipids mixtures

System I. DMPC-Cholesterol II. DMPC-DOPS III. DOPS-Cholesterol

Number of DMPC 30 30 –
Number of DPPS – 30 30
Number of Cholesterol 30 – 30
Number of water 2000 2000 2000
Number of Na+ – 30 30
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solvent-mediated potentials. Figure 7.12 shows a snapshot of CG DMPC bilayer, 
which is spontaneously formed in a CG lipid system.

The radial distribution functions (RDF) between CG sites obtained after coarse-
graining of the atomistic trajectories were used to compute effective potentials 
defining interactions in the CG models using the inverse Monte Carlo method. The 
RDF were computed for each pair of different CG sites and were used as an input to 
compute effective CG potentials which reproduce the RDFs. Computations of effec-
tive potentials were done for the same compositions of the systems I, II, and III as 

Fig. 7.11  Mapping of systems at an atomistic level to a CG level where each residue of the atom-
istic system is replaced by a bead for DMPC, Cholesterol and DOPS (1,2-dioleoyl-sn-glycero-3-
phosphatidylserin) molecules. CG sites of the same type are given by the same color

a b

Fig. 7.12  Simulation snapshot of a single CG DMPC lipid molecule (left) and of self-assembled 
DMPC bilayer 15 × 15 nm containing 762 lipids (right)
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the respective atomistic simulations listed in Table 7.3. The software package 
MagiC [54] was used. In the inversion process, the first 20 iterations have been 
carried out using iterative Boltzmann inversion, followed by 30–40 iterations using 
the inverse Monte Carlo algorithm.

More specifically, the RDF’s have been determined between beads involved in 
“non-bonded” interactions, that is between CG sites belonging different molecules 
or the same molecule but separated by more than two bonds. Also, reference distri-
bution functions for the bond lengths and bending angle distribution functions were 
determined for the all CG sites relevant for the three types of considered molecules. 
Then the calculated RDFs and bonded reference distribution functions were used to 
calculate parameters of the corresponding CG potentials. This is a multistage pro-
cess, from a high resolution system description to a low resolution one. Monte Carlo 
computer simulations of the CG system DMPC + CHOL using Metropolis method 
(MagiC package) were carried out. The parameters were calculated using a two-step 
iteration technique: first, the iterative Boltzmann inversion method was performed 
to calculate a set of intermediate parameters; second, the inverse Monte Carlo algo-
rithm was used to calculate the final set of parameters. The final parameters of the 
CG potentials for DMPC + CHOL mixture have been calculated (see Fig. 7.13).

7.3.3  �Validation of the Lipid Coarse-Grained Model

The interaction potentials obtained for the CG models using the inverse Monte 
Carlo technique were validated by comparison with atomistic simulations. Figure 
7.14 shows radial distribution functions between some selected sites of DMPC lipid 
and Cholesterol computed in CG and atomistic simulations of a mixture of 30 
DMPC lipids, 30 Cholesterol molecules and 1800 waters. The result shows a perfect 
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coincidence of the RDFs, which justifies the approximations made and the quality 
of the CG model.

Figure 7.12 shows a snapshot of CG DMPC bilayer, which is spontaneously 
formed in a CG lipid system. We have carried out a number of simulations of flat 
lipid bilayers composed of CG lipid models representing other lipids which can be 
built from the CG sites presented in Fig. 7.11. These simulations were carried out at 
zero-tension conditions within the atomistic and CG models. Table 7.4 shows com-
parison of some properties not related to the RDFs obtained within atomistic and 
CG simulations of a piece of bilayer composed of 128 DMPC lipids. Very good 
agreement is observed for the average area per lipid (which is one of the most 
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important parameters for a lipid bilayer) and for the tail order parameter, and a rea-
sonably good agreement for the bilayer compressibility. Especially important is the 
agreement for the order parameter, which shows that orientational fluctuations of 
the lipid tails are the same in atomistic and CG models.

Table 7.5 shows average areas per lipid obtained in CG simulations carried out in 
conditions of zero tension and experiment for a number of lipids. Except DMPC, other 
lipids included in this table were not used in the parameterization of the CG potentials. 
The models for these lipids were built from appropriate sites of DMPC and DOPS lipids 
shown in Fig. 7.11, and the CG interaction potentials were taken as determined in IMC 
computations for DMPC and DOPS lipids (some of them shown in Fig. 7.13). One can 
see generally good agreement with experiment, though simulations show a tendency for 
some underestimation of the lipid area. The bilayer composed of DSPC lipids was found 
in the gel phase which again is in agreement with experiment (the temperature of gel 
phase transition for DSPC is 55 °C). We are not aware on an experimental value of the 
average lipid area for the gel phase of DSPC, but it is generally accepted that average 
area per lipid in the gel phase is in the range 43–48 Å2 for phosphatidylcholine lipids. 
Also, atomistic simulations of DSPC bilayer in a gel phase [55] reports the average lipid 
area of 44.5 Å2, which is in good agreement with the result of our CG model.

7.4  �NP and Bilayer Simulation

Using the methodologies described in Sects. 7.2 and 7.3, we now can construct a 
model to simulate the interaction of a DPMC lipid bilayer with a small hydrophobic 
NP and a hydrophobic NP associated with one molecule of HSA. Following is the 
description of the simulations and the main results.

Table 7.4  Comparison of the properties of the DMPC bilayer obtained from the full atomistic 
simulations and the CG model

Area per lipid Compressibility Tail order parameters
(Å) (1014 N/nm) (1) (2)

Atomistic 60 1.9 0.57 0.52
CG 59 2.5 0.56 0.52

Table 7.5  Average areas per lipid. Comparison of simulation results computed in CG simulations 
and experiments at T = 303 K

Lipid
Area per lipid (Å2)
Sim Exp

DMPC (14:0/14:0 PC) 59.0 60.5 [56]
SOPC (18:0/18:1n9 PC) 60.4 61.1 [57]
DOPC (18:1n9/18:1n9 PC) 62.0 67.4 [58]
DSPC (18:0/18:0) 43.5a 44.5a,b [55]

aBilayer in gel phase
bEvaluated in atomistic MD simulations
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7.4.1  �Interaction Potentials and Parameters of the Simulations

The simulated systems are composed of the NP, the lipids that form the bilayer, the 
amino acids of the HSA, and monovalent ions that are used to resemble physiologi-
cal conditions. For all interactions we assume two contributions: electrostatic and 
van der Waals interactions. For the electrostatic contribution, all charged beads 
interact through a Coulomb potential between given by:
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(7.9)

where rij is the distance between the bead i and the bead j, λB is the Bjerrum length 
and qi and qj are the charges of the beads i and j respectively. The calculation of this 
long-range interaction was implemented through an Ewald summation P3M algo-
rithm [42]. The Bjerrum length is set to 0.71 nm in all cases. Note that in the MD 
simulation, the background salt ions are explicitly present, so we do not need to 
employ the screened Coulomb potential Eq. (7.5).

For the van der Waals interactions we use the following model:

•	 Aminoacid − aminoacid van der Waals interactions: we do not explicitly con-
sider interaction between any pair of aminoacids within the single protein mol-
ecule as the protein is not allowed to change conformation from the PDB crystal 
structure. To improve the computational efficiency instead of simulating the 
HSA molecule as a rigid body, we connect all residues which are separated less 
than 10 nm by harmonics bonds with a spring constant of 100kBT. Figure 7.15a 
shows the resulting CG model for the HSA (build according to PDB ID:1N5U), 
while Fig. 7.15b shows the resulting network of bonds (8059 in total).

a b

Fig. 7.15  (a) CG model of HSA protein used in this study. Each residue is represented by a single 
bead located at the position of the α-carbon. Each color represents one of the three domains of the 
HSA molecule. (b) All beads separated by less than 10 nm are connected by stiff harmonic bonds
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•	 NP − aminoacid van der Waals interactions: we used the interaction potential 
defined in Eq. (7.2) and the same parameters for the aminoacids and the NP 
obtained by the parameterization described in Sect. 7.2.3.

•	 Lipid-lipid interactions: the CG models of the lipids in the bilayer and the inter-
actions between the four different types of beads were obtained as described in 
Sect. 7.3.

•	 Lipid-NP interactions: we used the same interaction potentials as in the case of 
NP-aminoacid interaction Eq. (7.2) and assumed that lipid beads interact with 
the surface according to their hydrophobicity. We classify the lipid beads into 
one of two groups: head or tail. The head beads are NCL, PCL and COL (see Fig. 
7.11), and they are considered to be hydrophilic with a value of εi = 0.1. The tail 
beads (labeled CH4 in Fig. 7.11) are hydrophobic and a value of εi = 0.75 is used 
for these groups. The van der Walls radius of all the lipids beads is set to σi = 
0.6 nm.

•	 Lipid-aminoacid interactions: for these interactions we use the same approach as 
for the NP-residues and NP-lipid. The potential interaction is also based on the 
hydrophobicity of the beads given by the following modified 12-6 Lennard-Jones 
potential:
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where r is the distance from the lipid bead l to the residue i, εla is a free parameter 
that scales the interaction energy, εl , i is the combined hydrophobicity index of 
lipid l and the residue i and is given by i s i s s i, ,,= se e e  is the average van der 
Waals radius of residue i and the lipid l, σl , i = (σl + σi)/2 , rc = 21/6σl , i and rcut is the 
cut-off for the van der Waals interaction. As in this work we only study the appli-
cability of the proposed methodology we do not systematically parameterize the 
value of εla, instead we set this scaling parameter to 0.5kBT for all simulations. 
This values gives interactions between the lipids and the residues in the same 
order of magnitude as the ones reported in [59].

•	 Ion-ion and ion-molecule interactions: in addition to the Coulomb forces, we 
include excluded volume interactions by means of a WCA potential. The van der 
Waals radii of the ions are set to 0.2 nm.

For all simulations a NP of radius 2 nm is used with a surface charge of −0.02 C/m2. 
We use NVT ensemble with the box size was 15 × 15 × 20 nm and we assume physi-
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ological conditions with monovalent salt concentration of 0.1 M (270 negative and 
positive ions are placed in the simulation box). For a larger NP, NPT simulation would 
be necessary. To keep charge neutrality, further 16 positive ions are added. The bilayer 
is composed of a total of 762 lipids (381 lipids in each layer). A Langevin thermostat 
with a friction coefficient of γ = 0.05 is used and the units of mass, energy and charge 
are the same as described in Sect. 7.2.3. The time unit (τ) is obtained by performing a 
simulation of the bilayer with ions (no NP or proteins are added) and measuring the 
lateral diffusion constant. We obtained a value of 8 × 10–5 nm2/τ, which compared with 
the experimental value of 5 μm2/s gives τ = 16 ps.

35 ns 360 ns0 ns

Fig. 7.16  Time sequence of simulation snapshots illustrating the interaction of a DMPC lipid bilayer 
with a negatively charged hydrophobic NP. The radius of the NP is 2 nm. The ions are not shown
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Fig. 7.17  Distance of the surface of the bare NP to the center of the bilayer as a function of time. 
The dashed line shows the average position of the bilayer surface
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7.4.2  �Simulation of a Nanoparticle in Contact with a Lipid 
Bilayer

To study the interaction of a bare NP with the lipid bilayer we initially position the 
NP close to the bilayer surface and follow the time dynamics of the system. Three 
snapshots are shown Fig. 7.16. From the initial state the NP adsorbs quickly to the 
surface of the bilayer and then penetrates to around 1 nm inside the membrane and 
stays strongly attached until the end of the simulation (see snapshots at 35 and 
360 ns). To explore the adsorption process in more detail, the distance of the surface 
of the NP to the center of the bilayer was recorded and the results are shown in Fig. 
7.17. The NP reaches the bilayer in a few nanoseconds and then attaches to the sur-
face for around 50 ns (the dashed line in Fig. 7.17 marks the average position of the 
surface of the lipid bilayer, as defined by the position of the maximum of density of 
the lipid headgroups). After that, the NP starts penetrating the membrane (in a few 
nanoseconds). Then a slow internalization is observed until the NP reaches its final 
position at approximately 300 ns. The internalization of the NP is mediated by the 
attractions between both type of lipids and the NP. The penetration then stops (or 
becomes much slower) because any further displacement requires a substantial 
change in the membrane structure. To study long-time dynamics of the system, NP 
lipid wrapping and uptake one needs a bigger bilayer or/and NPT ensemble [60]. 
Despite of this limitation, the results obtained with our methodology agree with a 
recent report [61] for the absorption of a hydrophobic NP with a membrane com-
posed of lipids and specialized receptors.

7.4.3  �Simulation of a Nanoparticle-Protein Complex 
in Contact with a Lipid Bilayer

As we discussed above, the NP gets coated by proteins before it reaches the cell 
membrane, and this NP-protein complex is responsible for the final fate of the NP 
[62]. Considering this, we now simulate the interaction of a NP-protein complex, 
where protein corona is represented by a single HSA molecule. As shown in Sect. 
7.2, not all orientations in which protein adsorbs onto a surface are equally probable 
and for our simulation of the interaction of a hydrophobic NP with a DPMC lipid 
membrane we first calculate the adsorption energy map of HSA onto a 2 nm of 
radius hydrophobic NP. The adsorption map is shown in Fig. 7.18a. We can see that, 
as in the cases discussed above, the energy landscape contains more than one mini-
mum. We found the average adsorption energy of −1.7kBT and as the initial orienta-
tion for the simulation we selected the orientation (θ, ϕ) = (145°, 110°), which 
corresponds to adsorption energy of −2.7kBT and the corresponding complex 
NP-HSA is shown in Fig. 7.18b.

Figure 7.19 shows a sequence of snapshots from simulation of the NP-HSA com-
plex with the lipid bilayer. In the initial state, the protein is facing the bilayer. In the 
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simulation, the HSA at first moves in front of the membrane and prevents a direct 
contact between the NP and the lipids. Then, the NP-HSA complex rotates so that 
the NP faces the bilayer and starts penetrating the membrane. Figure 7.20 shows the 
distance of the NP surface to the center of the membrane. The rotation is reflected 
in the sudden change of the position of COM of the HSA. After this quick rear-
rangement the NP starts the penetration while the protein stays attached to the NP 
for the whole simulation but moves around the surface of the NP as can be seen in 
the snapshot for the times 140 and 300 ns in Fig. 7.19. This movement of the HSA 
molecule can also be observed from the curve of the COM of the HSA curves as a 
function of time (Fig. 7.20).

Comparing the two simulations we see that the presence of the HSA dramatically 
changes the interaction of the NP with the membrane. We can envision that a NP, 
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Fig. 7.18  (a) Initial state of the NP-HSA complex. (b) Surface map of the adsorption orientations 
of HSA onto a 2 nm negatively charged hydrophobic NP

0 ns 140 ns 300 ns

Fig. 7.19  Time sequence of the snapshots of the interaction of a DMPC lipid bilayer with a nega-
tively charged hydrophobic NP complex with one HSA molecule. The radius of the NP is 2 nm. 
The ions are not shown
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fully coated NP with HSA, will not be able to penetrate into the membrane, so the 
coating is changing completely its biological reactivity.

7.5  �Conclusions

In this work, we presented a multiscale methodology for modelling interactions at 
bionano interface, which is central for understanding uptake and toxicity of nano-
materials. We used systematic coarse-graining techniques to reduce the complexity 
of the problem by removing some degrees of freedom and focussing on the proper-
ties of interest. Since the CG models consists of about ten times less interaction 
centres than the atomistic model, and the solvent (water) is not modeled explicitly, 
simulations of the CG model take two to three orders of magnitude less CPU time 
compared with atomistic simulations for equal system size, or, alternatively, CG 
model can be used for simulations of whole proteins, small NPs and sufficiently 
large cell membrane fragments at the scale of tens of nanometers. We have param-
eterised and validated the model against experiments and all-atom MD 
simulations.

The technique for coarse-graining NP-protein interaction, which we presented 
in Sect. 7.2 can be used to calculate the binding energies for arbitrary plasma, 
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Fig. 7.20  Distance of the surface of the complex of NP with one HSA to the center of the bilayer 
and the COM of the HSA as a function of time. The dashed line shows the average position of the 
bilayer surface
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cytosol, or membrane proteins, rank them by binding affinity to the NP and predict 
the content of NP protein corona. Our calculations show that the NP surface charge 
has a small effect on the adsorption energies in comparison to van der Waals inter-
actions between the residues and the surface. We also find that the charge of the NP 
does not influence much the orientation, in which the protein prefers to adsorb. On 
the other hand, we have shown the size of the NP has a big effect on the adsorption 
energy maps, due to the amount of material involved and because the curvature of 
the NP determine the sections of the protein that can interact with the surface. 
Based on our simulations results, we can predict bigger proteins adsorb stronger on 
the inorganic surfaces, even for small NPs, in agreement with the Vroman effect. 
We have also demonstrated that a rigid protein model is justified at least for small 
globular proteins. In Sect. 7.3, we have parameterised a CG lipid and Cholesterol 
model, which reproduces the key bilayer properties of atomistic model of the same 
system. Finally, in Sect. 7.4, we have shown how the CG lipid and NP-protein 
models can be combined to model NP-cell membrane interactions and NP attach-
ment and uptake.
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Chapter 8
Biological Surface Adsorption Index 
of Nanomaterials: Modelling Surface 
Interactions of Nanomaterials 
with Biomolecules

Ran Chen and Jim E. Riviere

Abstract  Quantitative analysis of the interactions between nanomaterials and their 
surrounding environment is crucial for safety evaluation in the application of nano-
technology as well as its development and standardization. In this chapter, we dem-
onstrate the importance of the adsorption of surrounding molecules onto the surface 
of nanomaterials by forming biocorona and thus impact the bio-identity and fate of 
those materials. We illustrate the key factors including various physical forces in 
determining the interaction happening at bio-nano interfaces. We further discuss the 
mathematical endeavors in explaining and predicting the adsorption phenomena, 
and propose a new statistics-based surface adsorption model, the Biological Surface 
Adsorption Index (BSAI), to quantitatively analyze the interaction profile of surface 
adsorption of a large group of small organic molecules onto nanomaterials with 
varying surface physicochemical properties, first employing five descriptors repre-
senting the surface energy profile of the nanomaterials, then further incorporating 
traditional semi-empirical adsorption models to address concentration effects of 
solutes. These Advancements in surface adsorption modelling showed a promising 
development in the application of quantitative predictive models in biological appli-
cations, nanomedicine, and environmental safety assessment of nanomaterials.
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8.1  �Introduction

The interest in the interactions between biological molecules and artificial materials 
has existed long before the introduction of synthetic nanomaterials into the world. 
It is a consensus in the medical device and biomaterials community that, when 
inserted into biological environment, most artificial devices or materials start to 
adsorb biomolecules native to that environment. Such adsorption is often mani-
fested in changes in surface physicochemical properties, bioidentity, bioavailability, 
and toxicity of the device or material; as well as the change in structure and biologi-
cal function of the adsorbed molecules. Research has shown, by manipulating sur-
face functionalization, one can either reduce or enhance the adsorption of 
biomolecules to serve desired purposes [1–3].

With the vast production and wide application of nanomaterials in consumer 
products [4] and biomedical fields [5–7], the interactions of nanomaterials with 
biomolecules raise concerns that such interactions could alter or impair the normal 
functionality of the molecules. For example, the binding of proteins to nanomateri-
als could induce changes in the secondary structures and thus affect the stability and 
folding of the proteins; alternatively, the adsorption or binding to membrane recep-
tors could induce immune responses in the cell. On the other hand, the adsorption 
of biological macromolecules also modifies the surface functionalization of the 
nanomaterials by forming a layer or layers of biomolecules known as a biocorona, 
or protein corona (molecules are proteins), upon introduction into a physiological 
environment.

The formation and unique composition of the biocorona literally defines the bio-
logical identity of the nanomaterials and determines how the host system sees them, 
and in turn affects their bioavailability, biodistribution, therapeutic efficacy, and 
toxicity [8–12]. In terms of scientific fundamentals, the one key process to under-
stand the complexity of such intertwined matrix of biological systems and artificial 
materials is adsorption, and the factors which represent the physicochemical prop-
erties of both nanomaterials and biomolecules can be quantitated as profiles of sig-
nature characteristics to determine their respective identities. In this chapter, we 
review the fundamentals of surface adsorption, discuss the application of statistical 
modelling in extracting aforementioned signature characteristics, the formulation of 
the Biological Surface Adsorption Index (BSAI) model, and how traditional semi-
empirical adsorption models can be adopted for its correction at varied adsorbate 
concentrations.

This chapter is organized as follows: introduce the role of biomolecular adsorp-
tion in biomedical applications of various materials of a wide range of sizes, fol-
lowed by presentation of adsorption models that have been used to characterize and 
predict these phenomena. Specifically in the area of nanomaterial application, we 
show the landscape of current study on biocorona, as well as its profound impact on 
the understanding of the application and implication of artificial nano-sized devices 
or materials in biological systems. We further discuss the physical foundation of 
these phenomena, driven by intermolecular forces and thermodynamics, and 
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introduce statistical modelling methods used to describe the surface interaction in 
terms of physicochemistry. Secondly, we introduce our protocol for chemical analy-
sis of surface adsorption of ~30 small organic molecules onto ~20 types of nanopar-
ticles with various surface functionalizations, and then we develop our BSAI models 
using statistical tools based on our experimental data collected from chemical anal-
ysis. We also describe our most recent efforts to improve this model by incorpora-
tion of higher order adsorbate concentration terms in the original BSAI model 
equation, as well as the inclusion of one of the traditional semi-empirical adsorption 
models – Langmuir Adsorption – to address the possible “crowding effect” present 
at high solute concentrations. Thirdly, we examine the predictive power of both the 
original and modified BSAI models, including high order term corrections and 
Langmuir incorporated versions. Moreover, a molecular dynamics (MD) study is 
presented to show its computational capabilities of adsorption prediction by com-
paring to experimental data. Finally, we present examples of the application of 
Principal Component Analysis (PCA) on these surface adsorption models for the 
characterization and clustering of the nanomaterials based on their surface physico-
chemical properties and adsorption profiles, we also provide an outlook of applying 
such profiling techniques in the field of nanomaterial risk assessment and prediction 
of toxicological effects.

8.2  �Biomolecular Adsorption

The topic of biomolecular adsorption onto solid surfaces, as a widely observed and 
complex phenomenon, has attracted enormous research interest in the medical and 
pharmaceutical sciences, analytical chemistry, bioengineering, biophysics, and 
even environmental sciences. Bioengineers often find themselves in a situation 
where they have to deal with thrombosis caused by the adsorption of protein and 
other biological molecules on the surface of medical implants in contact with bodily 
fluids which is abundant in protein [13–16]; analytical devices like sensors and 
micro protein chip may face failure due to the accumulated adsorption of biological 
molecules on their surfaces [17–19]. On the other hand, adsorption of specific type 
of biological molecules may have desirable effect, including increased biocompat-
ibility, suppressed immune response, or binding with specific receptors to selec-
tively target cell types with those receptors expressed on their surfaces [20, 21].

In the era of nanotechnology, biomolecular adsorption remains a common puz-
zle, only with increased complexity from the diverse physicochemical properties of 
nanoparticle surfaces, much more enhanced mobility due to their extremely small 
sizes and thus significantly increased rates of biomolecular interactions. Upon 
nanomaterial entrance into biological or ecological systems, they first encounter 
numerous and varied biological or organic macromolecules, adopting a more 
dynamic and convoluted mode of movement in those systems compared to bulk 
surfaces. Due to their extremely small sizes, it is much easier for them to be in 
contact with various subsystems or organs within an organism. They readily interact 
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with blood proteins if injected as drug carriers, gastric mucus if ingested, and pul-
monary surfactant lipids if inhaled, transformations which alter their subsequent 
uptake by a wide range of tissue or cell types which may be determined by the type 
of molecules coated on the particles surfaces. On the other hand, such interaction 
could also change the structure or impair the function of adsorbed biological mole-
cules; the proteins adsorbed may not fold normally because their secondary is 
altered and become very unstable.

8.2.1  �Intermolecular Forces Determines Biological Adsorption

In biological systems, the interactions of biomolecules with synthetic nanomaterials 
are governed by the same principles which determine those between colloidal par-
ticles. These intermolecular forces are loosely categorized as follows.

	1.	 Electrostatic interactions result in attraction or repulsion depending on the charge 
of the particle/molecule, or re-orientation for partially charged/zwitterionic par-
ticles. Another important factor in considering electrostatic force is with ions, 
which in high ionic strength biological fluid tend to shield electrostatic interac-
tions, decreasing the active distance to nanometers.

	2.	 Interactions involving sharing of electron clouds, such as hydrogen bonding 
(H-bonding), which is universal in biological aqueous environment and π inter-
actions often found between carbon-based nanomaterials and aromatic residue-
rich proteins. Since H-bonding is essential for protein-protein interaction, 
including polymerization of protein complexes by their monomers or dimers, 
H-bonding between biomolecules and synthetic particles could disrupt such nat-
ural occurring biochemical process. [22] The π-stacking is an attractive interac-
tion between aromatic carbon rings resulting in two most energetically preferred 
configurations: parallel and T-shaped. It is often observed that the aromatic rings 
of amino acids orient parallel to the aromatic rings of carbon sheets or fullerene 
cages. Such interaction could disrupt the native secondary and tertiary structures 
of proteins [23–26].

	3.	 Electrodynamic interaction, or dispersion force, sometimes loosely referred to as 
van der Waals (vdW) force. vdW is a short-range interaction which decreases 
rapidly as the participating atoms move away from each other. The vdW force 
between two atoms is usually very weak, however a large contact area some-
times can be accomplished through the deformation of the proteins; thus the 
vdW force can be drastically enhanced. On the other hand, the vdW force also 
tends to maximize the contacting area to suppress the attractive potential energy 
between the atoms, so the complementary shapes of the NP and proteins can 
sometimes dictate the affinity of their binding.

	4.	 Entropic forces include depletion force and hydrophobic force. In a biological 
system, water molecules play an essential role through hydrogen-bonding: the 
bonded water network exclude anything that is nonpolar and does not form 
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hydrogen bonds together to maximize their entropy, or create an additional 
energy barrier for particles to interact with each other by creating a hydration 
layer on the surfaces of hydrophilic particles. In aqueous solution, biomolecules 
form such structures such that their hydrophobic moieties are hidden from water, 
and their hydrophilic components are present at the surfaces. Most NPs entering 
a biological system possess partially hydrophobic surfaces, including the NPs 
with hydrophilic surface coating that are usually incomplete. The hydrophobic 
interactions between proteins and NPs tend to either integrate the NP to the 
hydrophobic core of the protein, or unfold the protein to expose its hydrophobic 
residues. Research has demonstrated that hydrophobic nanoparticles such as car-
bon nanotubes (CNT) can insert themselves into the hydrophobic core of pro-
teins forming stable structures, sterically inhibiting normal binding with other 
proteins required for their functions [27].

Characterizing and quantitating as a surface force profile the abilities of nanoma-
terials to engage in various interactions could shed light on the design, engineering, 
and synthesizing of nanostructures to either enhance or diminish their ability to 
adsorb certain types of molecular species to modify their bioidentity or biodistribu-
tion for their intended purposes, and reduce their toxicity. However in experimental 
practices, it is extremely difficult to quantitatively discriminate these forces from 
adsorption measurements of the combined effects. MD computer simulations are 
sometimes used to access or predict the interaction between nanoparticles and pro-
teins; however the construction of more complex particles and larger molecules, and 
the calculation of large group of particles can be extremely expensive relative to 
computer time. Also, simulated models of nanoparticles are often a generic and 
idealized version of a particular particle type; they typically do not reflect the batch/
lot or manufacturer specific differences among the same type of materials. Thus, 
MD simulation might not be ideal for quality control, risk assessment or surface 
characterization on a large scale.

8.2.2  �Adsorption Models

Adsorption models have been developed by treating adsorption and desorption at 
equilibrium as dynamic processes, which depend on the energy of adsorption deter-
mined by the interaction potential with the surface. Naturally, at equilibrium of an 
adsorption process, the rates of adsorption and desorption are equal, assuming the 
interaction potential is the same at every possible interaction site on the surface for 
the same type of molecule (uniform surface assumption), we have Langmuir 
adsorption:
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+
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where θ is the ratio of number of occupied interaction sites to number of total 
sites, Ce is the equilibrium concentration of the adsorbate. K is Langmuir constant, 

which is temperature and adsorption energy dependent: K e
E

RTµ
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, where −ΔE is 
the adsorption energy, R is gas constant, and T is temperature in Kelvin. The appli-
cation of the Langmuir model is largely limited by its assumptions to a certain range 
of concentration and temperature. Numerous methods have been proposed to make 
corrections to the model to generalize the assumptions especially where it fails to fit 
the experimental data.

For heterogeneous surfaces, which have varying interaction potentials, it is pos-
sible generalize the adsorption model by superimposing a set of Langmuir equa-
tions, each corresponding to different interaction energy:

	
q =

+
=å å

i
i

e

e i
ia

KC

KC
a

1
1, ,

	
(8.2)

where ai is the fraction of sites associated with a specific interaction potential. This 
type of generalization can expand the applicability of the model over a wider range 
of experimental conditions with more drastically varying temperatures and 
concentrations.

Under many circumstances, the trend of experimental adsorption data gives non-
zero slope beyond the point where adsorption sites are predicted to be reaching satu-
ration. This is due to a secondary or multiple layer adsorptions forming on top of the 
first layer, resulting from the longer range of intermolecular forces between the 
adsorbate molecules and the adsorbent surface, or the interactions between the 
adsorbed and free adsorbate molecules. In a multilayer adsorption system, each layer 
can be treated as a new effective adsorption surface with a different adsorption poten-
tial, thus the distinction between different layers comprised a generalized monolayer 
adsorption model. With the assumption of (1), the layers after the first have the same 
adsorption potential, and those layers of adsorption are treated as liquefaction of the 
adsorbate, (2), the number of layers goes to infinity when the concentration 
approaches saturation, by assuming the rates of adsorption and desorption are equal 
between adjacent layers, Brunauer, Emmett, and Teller proposed BET adsorption 
model:
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where Cs is the solubility of the adsorbate, and B is BET constant. The concentra-

tion term 
C

C
e

s

 is defined to be chemical activity, which plays an important role in 

one of our modified BSAI surface adsorption models developed in a later section 
and serves as a parameterized level of chemical saturation in the aqueous phase.
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A more relevant adsorption energy based model was proposed by Dubinin, 
Polanyi, and Radushkevich, originally for porous structures. In Polanyi theory [28–
31], the ratio of occupied adsorption site over total possible site is related to adsorp-
tion potential energy by: lnθ  =  − k(ΔE)2, where k is a adsorbate specific parameter. 
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. Polanyi model theoretically relates the partition of solute 

molecules between the solution and the adsorbent to the adsorption potential energy 
of the adsorbent surfaces.

8.2.3  �Quantitative Structure-Activity Relationship (QSAR) 
Approach

As mentioned in Sect. 8.2.2, in the Polanyi model, parameter k is adsorbate specific, 
which can presumably be related to different physicochemical properties of the adsor-
bate molecules due to their different chemical structure. Thus, by selecting a few types 
of adsorbate molecules with varying physicochemical properties and compare their 
adsorption characteristics, one can deduce the relative contributions of those properties 
to the adsorptions. In Quantitative Structure-Activity Relationship (QSAR), the funda-
mental assumption is that the chemical activity of molecules is a function of their chemi-
cal structure. As a result, physicochemical structural properties can be parameterized, 
and introduced into a statistical model thereby generating an index, or molecular 
descriptor, for each parameter corresponding to one of the chemical properties. Such 
indices then can be used to predict the adsorption of a particular type of adsorbate.

QSAR has been applied successfully in drug design, pharmacokinetics, toxico-
logical prediction and medicinal chemistry by quantifying the atomic, structural 
and topological features of a target molecule. A simple Linear Free Energy 
Relationship (LFER) model can stablish a linear connection between a parameter-
ized chemical or physical interaction and a few descriptors describing relevant 
physicochemical properties of participating parties. Molecular connectivity indi-
ces and the solvatochromic parameters are the most widely used sets molecular 
descriptors for the prediction of chemical/biological activities. Molecular connec-
tivity indices are molecular structure-based, sometimes also called topological 
indices; they are usually calculated using the molecular graph of a chemical com-
pound. In contrast, solvatochromic parameters are comprised of indices that repre-
sent the relatively scaled abilities of the chemical compound to interact with other 
molecules through intermolecular forces, such as Coulomb force, dispersion force, 
hydrogen-bonding, polarity, etc. As previously described, those forces are exactly 
the ones deemed important in the interpretation of biological molecular adsorption 
onto nanomaterials. One study tested molecular connectivity-based QSAR models 
and compared them to solvatochromic parameters-based LFER models [32], the 
results showed that the QSAR models were slightly more predictive, but the 
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parameters used in the models were less physically interpretable as they failed to 
explicitly correlate physicochemical properties of nanomaterials with their bio-
logical or environmental behavior.

8.3  �Biological Surface Adsorption Index (BSAI)

The interaction between nanomaterials and biological systems focuses on the inter-
face between a solid nanoparticle surface and an aqueous media containing various 
ionic species and biological macromolecules [33]. In this complex system, the 
nanoparticle surface can be dramatically altered by solvation, the adsorption of 
those molecules and ions, forming a unique solid-liquid interface, significantly dif-
ferent from what was observed from bulk materials and larger devices due to their 
much increased surface to volume ratio, and thus drastically different adsorption 
energy profiles. The biological surface adsorption index (BSAI) is a novel approach 
to characterize surface adsorption energy of nanomaterials that is the primary force 
behind nanoparticle aggregation, protein corona formation, and other complex 
interactions of nanomaterials within biological systems [34–36]. This method has 
helped in understanding of fundamental interactions between nanomaterials and 
environmental pollutant molecules such as natural organic matter, or functional 
groups and amino acid residues on biomacromolecules which may cause the forma-
tion of biocorona [11, 12, 37–39]; the latter considered as the determining factor of 
bio-identity, bio-availability, and toxicity of nanoparticles in biological systems. 
Five quantitative nanodescriptors were selected to represent the surface adsorption 
forces (hydrophobicity, hydrogen bond, polarity/polarizability, and lone-pair elec-
trons) of the nanomaterial interaction with biological components. BSAI nanode-
scriptors are intrinsic properties of nanomaterials useful not only for QSAR 
statistical modelling for the prediction of adsorption, but also for the characteriza-
tion of nanoparticle surfaces through their physicochemical intermolecular forces to 
generate a fingerprint mapping the categorization and profiling of nanomaterials.

8.3.1  �BSAI Model

Similar to QSAR, which can generate linear regression coefficients utilizing molec-
ular descriptors to predict surface adsorption; in the BSAI model the descriptors are 
used to generate nanodescriptors to characterize the physiochemical properties of 
surfaces of nanomaterials through the interaction with and adsorption of various 
probe organic compounds.

The BSAI approach was formulated based on the elements of fundamental 
molecular forces that contribute to biomacromolecule adsorption, and other biologi-
cal processes: Coulomb force (charged particles), London dispersion (hydrophobic 
interactions), hydrogen-bond acidity and basicity, dipolarity/polarizability and 
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lone-pair electrons [40]. Direct experimental determination is possible only for 
Coulomb forces through zeta potential measurements. The magnitude of the other 
four molecular interaction parameters can be calculated using the proposed BSAI 
approach. In theory, the adsorption process of organic molecules onto the surfaces 
of nanomaterials is determined by each type of molecular interactions. These inter-
actions can be mathematically obtained from a set of probe compounds with diverse 
physicochemical properties covering a reasonably large chemical space. The 
adsorption coefficients (k) of the probe compounds can be measured by experimen-
tal quantification of the probe compounds adsorbed on the surfaces after equilib-
rium of interaction is reached. The logk values are scaled to a set of known molecular 
descriptors (Abraham’s descriptors) of the probe compounds using multivariate lin-
ear regression (MLR) to generate a group of nanodescriptors which can be inter-
preted as the contributions from each type of molecular interactions. In principle, 
for the purpose of predictive modelling, different sets of molecular descriptors 
(either empirical or theoretical) developed in QSAR studies can be used for the 
BSAI approach [41]. But to retain clear physical relevance and interpretability, we 
employed Abraham solute descriptors as molecular descriptors. Abraham solute 
descriptors were chosen also because of their successful use in biological-related 
context. The model is expressed as:

	 log , , , , ,k c rR p a b vV i ni i i i i i= + + + + + = ¼p a b 1 2 3 	 (8.4)

where ki is the adsorption coefficient, n is the number of compounds used as probes, 
and c is the regression constant. Five variables Ri , πi , αi , βi , Vi are the molecular 
descriptors of the ith probe compound, where Ri is the excess molar refraction rep-
resenting molecular force of lone-pair electrons, πi is the polarity/polarizability 
parameter, αi and βi are the hydrogen-bond acidity and basicity respectively, and Vi 
is the McGowan characteristic volume describing hydrophobic/lipophilicity inter-
actions. The BSAI nanodescriptors are the regression coefficients r , p , a , b , v 
reflecting the differential compound-nanomaterials interactions.

In our approach, the nanodescriptors for a given nanoparticle are obtained using 
multiple linear regression analysis of the [logk , r , p , a , b , v] matrix. The Abraham 
solute descriptors [Ri , πi , αi , βi , Vi] were generated using Absolv module provided 
by either the Absolv program in the ADME Suite software or the ADME online 
service (Advanced Chemistry Development Inc., Toronto, Canada). The regression 
analysis was performed by SAS or JMP Pro (SAS Institute Inc., Cary, NC).

The conceptualization of the BSAI approach was inspired by the successful pre-
diction of biological activities of small molecules using octanol–water partition 
coefficient (log Ko/w) [42, 43]. The value of log Ko/w measures the contribution of 
hydrophobic interactions in biological processes [44]. However, it is difficult to 
measure the log Ko/w values for nanomaterials, because it is difficult to form stable 
suspensions for most nanomaterials in both polar and non-polar liquid. The key 
thrust of the BSAI approach is to measure a set of log Ko/w equivalent parameters for 
nanomaterials that can be used for quantitative model development. Correlation of 
the log Ko/w values and the adsorption coefficients (log k) of the probe chemicals on 
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multiwalled carbon nanotubes (MWCNTs) is shown in Fig. 8.1. This indicates that 
hydrophobicity has significant contribution toward the adsorption process, with a 
correlation slope of 0.68 and R2 of 0.57, but the scattered data points indicate that 
lipophilicity is not the only significant factor, with other molecular interactions pos-
sibly playing an important role in surface adsorption processes. This observation is 
consistent with the literature [45]. Thus the BSAI index can be viewed simply as a 
multivariate partition coefficient quantitating a nanomaterial’s surface properties in 
terms of biologically-relevant molecular interaction forces.

8.3.2  �Chemical Analysis

8.3.2.1  �Adsorption of Nanomaterials with Chemical Probes

The adsorption experiments are conducted by incubating nanomaterial with a stan-
dard solution containing the probe compounds of known concentrations. The concen-
tration of probe compounds should be kept as low as possible in order to reduce the 
concentration effects and interactions among the probe compounds, however this is 
restricted by the limits of detection and quantification of the instruments. In this case, 
only ‘parts per billion’ levels of the probe compounds (individual concentrations) 
were required in this study due to analytical sensitivity of the SPME/GC–MS method. 
Specifically, 2 mg of nanoparticles was added to 200 μL deionized water in a 2 mL 
glass vial. The vial was then vortexed to for uniform nanoparticle suspensions, then 
1 mL of working solution (W1, W5, W10, W25 or W50) containing probe compounds 
of different concentrations were added to the vial. The vial was then sealed immedi-
ately with a Teflon-lined septa cap to prevent evaporation. For nanomaterials that are 
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Fig. 8.1  Correlation of the adsorption coefficients (log k) of the probe compounds on MWCNTs 
with their logKo/w values, suggesting that lipophilicity is significant in the adsorption process 
(R2 = 0.57) but is not the only factor (Adapted by permission from Macmillan Publishers Ltd.: 
[Nature Nanotechnology] (Ref. [34]), copyright (2010))
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received in aqueous suspensions, a volume of the aqueous suspensions containing 
2 mg of solid nanomaterial was mixed with certain volume of working solution to get 
the same final concentrations as solid nanomaterials above. The mixtures were then 
put under vigorous shaking for 5 h until equilibrium condition was reached. The equi-
librium was verified by monitoring the kinetics of the adsorption. The particles were 
then removed from solution by either centrifugation or filtration.

8.3.2.2  �Analysis of Chemical Probes by SPME and GC/MS

Solid phase microextraction (SPME) in combination with gas chromatography / 
mass spectrometry (GC/MS, Agilent GC-QQQ 7000B) was employed to determine 
the concentration changes of probe components before and after adsorption with 
nanomaterials. In SPME, a poly-dimethylsiloxane/divinylbenzene (PDMS/DVB) 
membrane coated fiber was used for the extraction of probe compounds from the 
liquid phase. The extraction time was 20 min. In GC/MS, separation was performed 
on a 30 m × 0.25 mm (i.d.) × 0.25 μm (df) HP-5MS capillary column (Agilent, Palo 
Alto, CA). The column oven was programmed as follows: the initial temperature 
was 40  °C and held for 1  min, ramped at 20  °C/min to 60  °C and 2  °C/min to 
100 °C, held at 100 °C for 2 min, then ramped at 20 °C/min to 200 °C and 40 °C/
min to 270 °C, and finally held at 270 °C for 3 min. The injection port was main-
tained at 280  °C for using PDMS/DVB fibers. The injection model was Pulsed/
Splitless and desorption time was 5 min. Agilent GC-QQQ/MassHunter Workstation 
was used for data acquisition. The equilibrium concentrations (Ce) were directly 
determined using Qualitative Analysis software (Agilent). The surface concentra-

tion of adsorbed probe compounds was determined as C
V C C

mad
e=

-( )0 0 , where V0 

is the total volume in the vial, C0 is the concentration of a probe compound prior to 
adsorption, and m is the mass of nanoparticles present in the suspension. The 
adsorption constant of a given compound onto a particular type of particle is the 
ratio of surface concentration (Cad) versus the equilibrium concentration (Ce)
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8.3.3  �Model Results and Validation

Figure 8.2 shows the nanodescriptors of MWCNT representing the relative contri-
butions of the four types of molecular interactions are depicted . The term for hydro-
phobic force (v = 4.18) is a strong contributor. This is consistent with the result 
obtained when the log k values were correlated with log Ko/w values of the probe 
compounds alone. Hydrogen-bond basicity (b = −2.78) is the second most signifi-
cant factor, but has a negative value, which suggests that the MWCNT surface is 
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less likely to donate protons (to the probe chemicals) than water at the liquid–solid 
interface. Hydrogen-bond acidity (a = −0.37) has a slightly negative value, indicat-
ing that the proton acceptor strength of the MWCNT surface is slightly weaker than 
water. The third strong factor is the dipolarity/polarizability (p = 1.75), which can 
be explained by the abundant π-electron clouds on the MWCNT surface [9]. The 
lone-pair electrons (r = 0.043) appear to have a minimal effect, which could be due 
to the fact that the π-electron cloud may shield the lone-pair electrons in MWCNTs 
disabling their ability to contribute toward the adsorption processes. The BSAI 
approach provides both rational interpretations for the molecular interactions and 
five quantitative physicochemical parameters, which can be used for the character-
ization of the relative strengths of the molecular interactions of the nanomaterials in 
the adsorption processes. It is worthy to note that hydroxyl and carboxyl derivatiza-
tion of MWCNTs significantly increased its suspension stability in aqueous media, 
while their surface adsorption property was not significantly altered. This could be 
due to the fact that the main polar derivatization sites occurred at the ends of 
MWCNT while the adsorption property of tube surfaces was not significantly 
altered. Therefore, carbon nanotubes may be envisioned as drug carriers via tube 
surface adsorption of the drugs [46]. This also explains one of the differences 
between carbon nanotubes and asbestos, which has hydrophilic surfaces that could 
not form a strong adsorbed protein layer [47–50].

Plots of the predicted log k values of the five nanodescriptors for MWCNT ver-
sus the measured log k values are shown in Fig. 8.3. A linear correlation was 
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Fig. 8.2  The five nanodescriptors [r , p , a , b , v] measured by the BSAI approach, representing the 
five major molecular interactions in nanoparticle adsorption processes: lone-pair electrons, polar-
ity/polarizability, hydrogen-bond donor, hydrogen-bond acceptor and London dispersion, respec-
tively. The nanodescriptors of MWCNTs are depicted with standard errors of the regression 
analysis. Positive values indicate that the nanoparticle surfaces have stronger interaction potentials 
with the chemicals or biomolecules, and negative values indicate the molecular interactions are 
stronger in the aqueous phase (Adapted from by permission from Macmillan Publishers Ltd.: 
[Nature Nanotechnology] (Ref. [34]), copyright (2010))
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obtained, with a correlation coefficient (R2) of 0.93. This demonstrated that the five 
nanodescriptors [r , p , a , b , v] of the BSAI approach provide a much better predic-
tion of the adsorption affinity of MWCNTs than lipophilicity (log Ko/w) alone (Fig. 
8.1). The robustness of the model was studied by internal cross-validation using the 
leave-one-out (LOO) and leave-many-out (LMO25%) techniques [51, 52], resulting 
in validation coefficients Q2

LOOof 0.888 and Q2
LMO25% of 0.883 for MWCNT. All of 

the cross-validation coefficients were greater than 0.7, revealing the robustness of 
the predictive model [51].

External validation was conducted using 12 different compounds on MWCNT 
(measured log k values and solute descriptors are given in Table 8.1). The external 
validation coefficient (Q2

ext) of the model was 0.78, suggesting satisfactory predic-
tive capability for the external validation compounds [51, 53].

A Williams plot (Fig. 8.4) was used to verify the applicability of the model, 
showing the leverages of the probes (diagonal elements of the Hat matrix) versus 
the Euclidean distances of the compounds to the models measured by standardized 
and cross-validated residuals [51, 53]. If the standardized and cross-validated resid-
ual of a compound is greater than three standard deviation units (±3σ), the com-
pound will be treated as outliers. If the leverage, or hat-value of the compound is 
greater than the warning leverage (h > h*), it suggests that the compound is very 
influential in the model. The warning leverage is defined as h* = 3(N + 1)/n, where 
N is the number of independent variables in the predictive model (N = 5 in Eq. (8.2)) 
and n is the number of observations, or number of probe compounds (n = 28 in this 
study). All the training probe and validation compounds are within the chemical 
domain defined by the training probe compounds (±3σ and h* = 0.64), suggesting 
no outliers, and that the predictive capability of the model is reliable.

The BSAI model was also applied to various types of metal or metal oxides 
nanomaterials; we illustrate with AlOOH I (aluminum hydroxide oxide) as an 
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example. The 5 nanodescriptors of AlOOH I nanoparticles are indicated in Fig. 8.5. 
Those descriptors were calculated using MLR on adsorption coefficients along with 
the molecular descriptors of a wide range of probe chemicals at the lowest concen-
tration (W1) used in this study. The relative magnitude of the descriptors (a, b, v 
values significantly different from 0) suggested that the binding of the molecules 

Table 8.1  Measured and predicted logk values for the validation compounds on MWCNT

Validation Compounds
Measured 
log k R π α β V

Predicted 
log k

1 2-chlorophenol 3.18 0.84 0.84 0.33 0.3 0.897 2.97
2 o-dichlorobenzene 3.56 0.83 0.85 0 0.1 0.961 3.93
3 m-dichlorobenzene 3.65 0.83 0.84 0 0.05 0.961 4.05
4 p-dichlorobenzene 3.51 0.86 0.88 0 0.1 0.961 3.99
5 hexachloroethane 3.42 0.86 0.74 0 0.15 1.124 4.29
6 nidrobenzene 3.64 0.83 1.26 0 0.21 0.89 4.05
7 isophorone 3.01 0.54 0.76 0 0.45 1.24 3.96
8 2,4-dichlorophenol 3.84 0.98 0.93 0.5 0.23 1.019 3.78
9 1,2,4-trichlorobenzene 4.19 0.96 0.95 0 0.03 1.083 4.82
10 2-chloronaphthalene 5.73 1.42 1.1 0 0.17 1.207 5.23
11 2,4-dinitrotoluene 5.82 1.12 1.77 0 0.31 1.205 5.99
12 azobenzene 5.72 1.38 0.86 0 0.41 1.48 5.28

Adapted with permission from (Ref. [35]), copyright (2011) American Chemical Society
The predicted logk values were obtained by plugging the five solute descriptors [R, π, α, β, V] of a 
given validation compounds into the predictive model for MWCNT. The solute descriptors were 
generated by the Absolv program in ADME Suite software, Version 4.95 (Advanced Chemistry 
Development Inc., Toronto, Canada)
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onto nano surfaces received most significant contribution from hydrogen bonding 
and hydrophobic interactions. Williams plot (Fig. 8.6) was used to test the applica-
bility of the model, indicating randomly distributed studentized residuals below and 
above 0  in the range from −2.5σ to 2.5σ, Hat values all smaller than h* = 0.72. 
Further tests were run by randomly separating the data into two groups: a training 
group on which the model was built, and an external testing group using which the 
predictive capabilities were confirmed. Cross validation was conducted using leave-
one-out (LOO) method on model built based on the training data set. Although the 
model showed acceptable goodness-of-fit (R2 = 0.86), Fig. 8.7 shows that neither 
internal cross validation (Q2

cv = 0.66) nor external testing were ideal.
The feasibility of the BSAI approach and some applications of nanodescriptors 

have been described using both carbon-based and metal oxide nanomaterials as 
examples. Predictions such as those made for MWCNTs can also be made for other 
nanomaterials if their five nanodescriptors are measured using the BSAI approach. 
The BSAI nanodescriptors for a few additional nanomaterials including silver (AgP: 
powder and Ag50: colloid), TiO2, ZnO, CuO, NiO, Fe2O3, SiO2, C60 (powder), nC60 
(colloid), MWCNT and hydroxylated MWCNT (CNTOH) were measured using the 
same experimental protocols and probe compounds used for MWCNT listed in 
Table 8.2. However, for some of the nanomaterials, the adsorption of some of the 
probe compounds was too weak to be measured accurately; therefore, these com-
pounds were excluded from regression analyses. This lack of adsorption of specific 
probes is reflective of these nanomaterial surface interactions. The number of 
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Fig. 8.5  Nanodescriptors [r , p , a , b , v] measured by the BSAI modelling representing the five 
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polarity/polarizability, hydrogen-bond donor, hydrogen-bond acceptor, and London dispersion, 
respectively. The nanodescriptors of AlOOH I were calculated from adsorption data averaged over 
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compounds (n) used in the regression analysis and the R2 value for each of the nano-
materials are also given (Table 8.2). The nanodescriptors for a given nanomaterial 
can be used to construct the predictive model for the nanomaterial similar to the 
predictive model for MWNCT using data from entry 7, Table 8.2. A few oxide and 
metal nanomaterials were also included for diversity, while their nanodescriptor 
values reflect larger errors as seen in the low regression R2 values due to the weak 
adsorption of the probe compounds on these nanomaterials. A different set of probe 
compounds optimized for these metal oxides would be needed to be developed for 
optimal characterization.

Figure 8.8 shows the five nanodescriptors obtained across each of the nanomateri-
als. The nanodescriptors of tested nanomaterials provide fingerprints for comparisons 
on their physical chemical properties. An irregular pattern of the nanodescriptors was 
observed in the case of NiO nanoparticles because of its specific chemisorption of 
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phenol derivatives, suggesting that compounds having specific chemical interactions 
with a given nanomaterial should not be used as probe compounds for that nanomate-
rial. In turn, the BSAI approach can be used to identify specific interactions of chemi-
cals or biomolecules that would act as outliers in the predictive model.

8.3.4  �Profiling of Nanoparticle Surface Physiochemical 
Properties by Principal Component Analysis (PCA)

Surface physicochemical properties of nanomaterials in terms of how likely they 
engage in different surface interactions can be quantitatively compared using those 
five nanodescriptors, however such comparison can be counterintuitive. Principal 
component analysis (PCA) provides an efficient way of reducing the dimension 
from five two by projecting most of the variance to the first two principal compo-
nents. PCA was performed by orthogonally transforming the five-dimensional data 
set into two principal components, with the first principal component accounting for 
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Fig. 8.8  The nanodescriptors [r, p, a, b, v] are regression coefficients representing the relative 
molecular interaction strengths of the nanomaterials. The nanodescriptors of NiO nanoparticles 
showed an irregular pattern because of its unique chemisorption of phenol-derivative probe com-
pounds (Adapted from by permission from Macmillan Publishers Ltd.: [Nature Nanotechnology] 
(Ref. [34]), copyright (2010))
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as much of the variability in the data as possible and the second component contain-
ing the highest variance possible under the constraint that it be orthogonal to the first 
component [54]. The two components (PC-1 and PC-2) generated by PCA from the 
nanodescriptors of the 16 nanomaterials are listed in Table 8.2. Figure 8.9 shows a 
two-dimensional plot of the two principal components (PC-1 vs. PC-2). The 16 
nanomaterials can be roughly divided into three groups: strong adsorption nanoma-
terials including carbon hollow spheres, carbon nanotubes and their derivatives, 
medium adsorption nanomaterials including C60 (powder), polar derivative of fuller-
enes and graphene oxides, and weak adsorption nanomaterials including oxide and 
metal nanoparticles. This two-component reduction of the five descriptor index pro-
vides a simpler comparison of nanomaterial surface properties, which may be useful 
for the categorization of biological effects based on surface properties.

These nanodescriptors can be directly correlated with the biological activity in 
weight-based dose quantities, since they are obtained based on weight concentra-
tions of the nanomaterials. This overcomes the difficulties in measuring surface area 
of nanomaterials due to their possibly assumed aggregated or agglomerated states 
under biological conditions. In fact, the surface area measured using the conven-
tional BET method [55] by nitrogen gas adsorption in dry environment may have 
less physical relevance in biological conditions due to various interactions with 
their aqueous environment including agglomeration and aggregation caused by 
hydrophobic interactions and hydrogen bonding [56, 57]. For example, pristine 
fullerene in powder form is located in the polar derivative zone despite its 
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hydrophobic nature, because single fullerene particles form larger aggregates with 
specific surface area significantly smaller than molecular C60; therefore, their affin-
ity for hydrophobic small organic or biological molecules is significantly reduced. 
In fact, the BSAI nanodescriptors reflect the real aggregation state of the measure-
ment in the solution, not the idealized size or particle sizes in purified forms before 
dose preparation. This has a significant advantage in predicting effects under in situ 
biological conditions.

8.4  �Predictive Concentration-Dependent BSAI Model

The process of adsorption of small organic or larger biological molecules onto 
nanoparticle surfaces is usually complex and concentration-dependent. In particu-
lar, the concentrations of the probe compounds (partially as a result of multiple 
layer adsorptions) could affect the values of the adsorption coefficients. In the 
chemical analysis described in previous sections, the probe compounds were used 
at extremely low concentrations in the adsorption experiments to reduce these con-
centration effects. We adopted a realistically applicable method to avoid the experi-
mental or instrumental error inherent to very low probe concentrations: we calculated 
the nanodescriptors for a given nanomaterial from binding coefficients experimen-
tally obtained at serial concentrations, and then extrapolated them to infinitely low 
concentration to obtain a set of theoretical nanodescriptors in an ideal solution [58]. 
The dependences of the nanodescriptors collected from MWCNT on solute concen-
trations are presented in Fig. 8.10. The extrapolated values at the ideal condition 
(infinitely low concentration) of the five nanodescriptors [r, p, a, b, v] for MWCNTs 
are 0.21, 1.17, −0.69, −3.24 and 4.31, respectively. These mathematically extrapo-
lated values would be generally applicable to derive predictive models without the 
concentration effects [34]. However, a more reasonable approach would be directly 
incorporating a concentration-related term into the model.

8.4.1  �Concentration Effects and Concentration-Corrected 
Model

The BSAI model was initially formulated at the condition of low probe concentra-
tions to achieve nanoparticle surface characterization by avoiding influences of 
probe chemicals concentrations because of possible nonlinear adsorption isotherms 
at higher concentrations, as well as cross-chemical interactions. Experimental 
results show that the BSAI nanodescriptors have a nonlinear dependence on probe 
chemical concentrations, and such concentration effects arise from the increased 
probability of interactions among molecules of both the same species and different 
species as the concentrations increase. Thus previous experiments were limited at 
extremely low probe chemical concentrations to eliminate the potential 
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concentration effects for better understanding of the surface physicochemical prop-
erties of the particles. However, such concentration effects should not be overlooked 
for the purpose of prediction on chemical binding on the nanomaterials, since from 
a realistic perspective, concentration of contaminants can vary across unpredictable 
ranges with respect to environmental applications of nanomaterials. Previous stud-
ies were conducted using a LFER-based modelling strategy on the binding of select 
aromatic organic molecules with granular activated carbon, and validation of linear 
relationships between the descriptors and a concentration-related term was success-
ful only at extremely low concentrations. [59] However, a different study showed 
that quadratic polynomial relation between the descriptors and concentration terms 
was effective to quantitatively incorporate the probe concentration effects before the 
subsequent LFER modelling. This approach was especially effective when such 
model was applied to the prediction of adsorption of various chemical species of 
interests [60]. But this method requires a separate regression analysis, which means 
significantly more concentration-dependent adsorption data to ensure the quality of 
the fitting of the isotherm are needed.

A polynomial dependence of nanodescriptors on concentrations is incorporated 
in the model: logki = c + rRi + pπi + aαi + bβi + vVi , i = 1 , 2 , 3 ,  …  , n, where

	 c lT mT n= + +2
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	 r l T m T nr r r= + +2

	

	
p l T m T np p p= + +2

	

	 a l T m T na a a= + +2

	

	 b l T m T nb b b= + +2

	

	 v l T m T nv v v= + +2

	 (8.6)

T
C

C
e

s

= log , where Ce is the equilibrium concentration of a probe in the solution 

after adsorption, and Cs is the solubility of the probe, chemical activity =
C

C
e

s

 is used 
as a parameterized level of chemical saturation in the aqueous phase.

The new regression coefficient becomes: [l , m , n , lr ,  …  , mv , nv] (polynomial 
indices). In the process of regression, these coefficients were directly incorporated 
in the model, so there is no need for a separate quadratic polynomial model after the 
initial LFER-based modelling. This newly constructed polynomial model is ideally 
suited for predictions of the binding of various organic chemical species at different 
concentration levels.

For each nanoparticle, a set of nanodescriptors were calculated using MLR anal-
ysis on the matrix of [logk , r , p , a , b , v]. The Abraham solute molecular descriptors 
[Ri , πi , αi , βi , Vi] were obtained using Absolv module provided by ADME online 
service (Advanced Chemistry Development Inc., Toronto, Canada). MLR analyses 
were then performed using JMP Pro (SAS Institute Inc., Cary, NC) to obtain poly-
nomial indices. Internal cross-validation using leave-one-out (LOO) technique were 
conducted to test the robustness of the models, typically the model is considered 
robust when PRESS RMSE < 1 and QCV

2 0 7> . .

8.4.2  �Results and Validation of Concentration-Corrected 
Model

Modelling results with direct incorporation of the concentration-related term 

T
C

C
e

s

= log  is presented in this section to demonstrate the role of chemical concen-

tration in the binding of these chemicals. MLR analyses on the complete set of data 
were performed before the reconstruction of the BSAI index [r , p , a , b , v] using Eq. 
(8.6). AlOOH nanoparticles, along with various carbon-based and metal/metal oxide 
materials, were presented here as an example. Figure 8.11 shows the dependences of 
these descriptors on T. As expected, different trend of concentration-dependences 
was observed for the descriptors of different nanomaterials. Ranges of those descrip-
tors indicated that, most significant positive contribution toward the binding is from 
the hydrophobic force (v, 0.82–5.06), showing a trend of decrease with the increase 
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Fig. 8.11  Nanodescriptors of AlOOH I obtained from the modified model were shown to be poly-
nomial functions of T = log(Ce/Cs) (a), regression constant c; (b), nanodescriptor r of the excess 
molar refraction R; (c), nanodescriptor p of the effective solute dipolarity and polarizability π; (d), 
nanodescriptor a of the effective solute hydrogen-bond acidity α; (e), nanodescriptor b of the effec-
tive solute hydrogen-bond basicity β; (f), nanodescriptor v of the McGowan characteristic volume 
V; (g), comparison of the dependences on concentration among the descriptors; (h), concentration 
dependent of predicted log k follows quadratic polynomial function (AlOOH I -acetophenol) 
(Adapted with permission from (Ref. [36]), copyright (2014) American Chemical Society)
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of equilibrium concentration Ce. This trend could be explained by the competition for 
nanoparticle surfaces among different organic molecules present in the mixture. A 
larger v term is reasonable for particles with both hydrophobic and hydrophilic sites 
on their surfaces, because for these types of particles, interactions between hydro-
phobic regions or moieties on the particle surfaces and the organic molecules likely 
make significant contribution to the binding. While the molecules being driven to 
bind with less hydrophobic and more hydrophilic sites on the particle surfaces could 
be the reason for decreases in v term as the concentrations increase. However, further 
increase in concentration could still cause increase of v, because the spatial re-
arrangements of the molecules on the surfaces, or multiple layer adsorption induced 
by intermolecular forces can still increase the density of molecules bound to hydro-
phobic sites. Hydrogen-bond basicity (b, −6.35 to −1.14) starts with a negative con-
tribution with large magnitude at low concentration, which means, compared to 
water molecules, the surface is less likely to accept protons from the probe chemicals 
and form hydrogen bonds. Then it increases with the increase of concentration, prob-
ably because surface defects such as oxidation, which could potentially accept pro-
tons, can host more molecules as the concentration increases and the proton-accepting 
ability of the oxygen atom in water molecules are saturated.

Cross validation using LOO method were carried out (Q2
cv = 0.83 for AlOOH I, 

the rest of regression coefficients and validation results of some example nanopar-
ticles are listed in Table 8.3), External validation were employed by randomly 
choosing 20 % of the entire observations as the testing set and the rest as the training 
set to build the model (data presented in Table 8.4).

Obvious nonlinearity was found in most of the nanodescriptors – concentration rela-
tionships. But some have negligible quadratic terms (e.g. constant c in the case of 
AlOOH I), which means the concentration dependence of these descriptors can reason-
ably well approximated using linear functions within the concentration ranges. Such 
concentration dependence was actually demonstrated by another study over a different 
and smaller range of chemical activities (T ranging from −1 to −3), and the material 
discussed was granular activated carbon [59]. However, due to magnified surface 
chemical effect, such approach was probably not well suitable for the nano scale adsor-
bent judging by on the results presented here. Nonetheless in particular cases, the 
model can be significantly simplified yet still accurate enough by eliminating the qua-
dratic term in polynomial model within the specific range of concentration.

Further examination was conducted to test the interpolation of this polyno-
mial model to another concentration range that is not included in model training 
process, as well as extrapolation to different chemicals. Specifically, the data 
were divided into three groups: training, validation, and testing. The validation 
sets consisted of results from the second highest concentration used in our 
experiments (W10). The testing sets consisted of results from environmental 
pollutants, nitrobenzene and chlorophenol, at four concentration levels. The 
models were then built using training set. Stepwise regression based on minimal 

AICc criteria ( AICc AIC
k k

n k
= +

+( )
- -

2 1

1
, where n is the sample size, k is the num-

ber of parameters in the model) was employed for each particle separately for 
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the reduction of model complexity, and then manual adjustments were taken to 
obtain maximum unification possible unification across different nanoparticles. 
The validation sets were then used to test interpolation capability of the model, 
i.e. the predictive capability on the adsorption of the compounds at a different 
concentration; testing sets were used to test the extrapolation capability, i.e. 
predictive power on the adsorption of environmental contaminant chemical 
compounds. Select results are shown in Table 8.5: model complexity was suc-
cessfully reduced from 17 parameters to 10 for metal or oxide particles (five left 
columns) and 6 for carbon-based particles (five right columns). For most of the 
particles R2>0.8, and R2

vlidation and R2
testing are all larger than 0.7. Figure 8.12 

clearly shows successful predictive abilities of the reduced models in cases of 
AlOOH I (R2 = 0.86, R2

validation = 0.84, R2
testing = 0.79) and MWNT-OH (R2 = 0.86, 

R2
validation = 0.75, R2

testing = 0.79).

8.4.3  �Profiling of Nanoparticle Surface Physiochemical 
Properties Using Concentration-Corrected Model

From the regression analysis described above, sets of 17-dimensional indices were 
obtained, describing the surfaces physicochemical properties of those particles used 
in experiments. For the purpose of characterization and categorization of the physi-
cochemical properties the dimension needs to be reduced. PCA was conducted in 
order to mathematically convert the 17-dimensional vectors comprised of polyno-
mial indices into a set of new vectors that are orthogonal to each other with the first 
two accounting for maximum variance possible. Then comparisons based on those 
two first vectors, or components were made among the nanomaterials. The results 
clearly indicated the capability of separation or categorization between metal/oxide 
and carbon-based materials for both the original BSAI model and the polynomial 
model (Fig. 8.13).

8.4.4  �Infinite Dilution Adsorption Descriptors – Incorporating 
Traditional Adsorption Models

One drawback of the polynomial model is its large number of descriptors obtained 
from the MLR analyses, which could limit its application for the interpretation of 
different physicochemical interactions engaged in the binding process. In addition, 
according to the clustering analyses results, clear separation could be made only for 
particles with drastically different surfaces. Such restrictions could reduce the mod-
el’s value in providing guidelines in nanomaterials designing and safety assessment. 
A different method, involving approximation at the low concentration using 
Langmuir physiosorption model, is used to address this concentration effect. The 
underlying theory of such method is that the concentration effect is induced by the 
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intertwined interactions of water with chemical molecules, as well as among chemi-
cal molecules of the same or different species [34, 60], the probability of which 
increases as the concentration increases.

Both nanoparticle surface physicochemical properties and the probe chemical 
concentrations are determining factors of surface physisorption. One must be mini-
mized in order to identify the other. Ideally, adsorption coefficient can be defined 
at infinitesimally low concentrations, referred to as infinite dilution adsorption 
index (k∞):

	
k

C

CC

ad

e
¥ ®
= lim

0 0
	

(8.7)
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Fig. 8.12  Predicted versus measured log k values for (a) AlOOH I (R2 = 0.86, Rvalidation
2 = 0.84, 

Rtesting
2 = 0.79) and (b) MWNT–OH (R2 = 0.86, Rvalidation

2 = 0.75, Rtesting
2 = 0.79) (Adapted with 

permission from (Ref. [36]), copyright (2014) American Chemical Society)
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In the original BSAI model, very small concentrations were used to reduce the 
concentration effect. However, the limit of detection and quantification are usually 
restricted by measurement errors and instrumental conditions, ambient signal noise, 
or cross contamination. Such limitation can be avoided to certain extent by 
alternative analyses based on Langmuir physisorption theory, which relates to 
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Fig. 8.13  Nanoparticle clustering plots by two principal components. The two components were 
obtained by principal component analysis of the five nanodescriptors and 17 polynomial indices of 
both metal/oxide and carbon-based nanoparticles from (a) original BSAI model and (b) polyno-
mial model (Adapted with permission from (Ref. [36]), copyright (2014) American Chemical 
Society)
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adsorbed concentration of a chemical to its equilibrium concentration (modified 
from Eq. (8.1) introduced in Sect. 8.2.2.):

	
C

KQC

KCad
e

e

=
+1

,
	

(8.8)

In this formula, Q is the adsorption capacity, or maximum possible adsorbed 
amount as Ce increases, and K is Langmuir equilibrium constant. At infinitesi-

mally low concentration, 
C

C
QKad

e

® , suggesting that k∞ = QK. Therefore, an 

estimated value of the infinite dilution adsorption coefficient can be calculated 
by fitting the Langmuir model to experimental results. More importantly, such 
estimation seems to be insensitive to experimental errors possibly because the 
model fitting process using large datasets from multiple concentrations aver-
ages out the errors.

Adsorption data from four concentration groups were used for the Langmuir 

regression in the linearized form: 
C

C Q
C

QK
e

ad
e= +

1 1
. Regression analyses 

between 
C

C
e

ad

 and Ce were used to obtain an approximated adsorption coeffi-

cient k0 at ideal condition (infinitely low concentration). Then similar BSAI 
modelling was conducted using logk∞ in the same manner as the previous 
model, and concentration-independent nanodescriptors were obtained to 
achieve the elimination of chemical concentration effect. Better characteriza-
tion and categorization based on surface physicochemical properties of nano-
materials can be obtained using the model built on such approximation. The 
whole process of BSAI approach, including experimental methods and statisti-
cal analyses, for the original model, as well as the two improved ones, is illus-
trated by the flow chart in Fig. 8.14.

8.4.5  �Infinite Dilution Model Validation and Surface Profiling

The extrapolation of adsorption data to an infinitely low concentration can approximate 
an ideal aqueous environment. As a result, it is now possible to characterize and catego-
rize the surface properties without the external influence (Table 8.6). This is an impor-
tant improvement, because surface physicochemical properties of the nanoparticles are 
independent on probe concentration. The results of categorization of the metal/oxide 
nanoparticles are shown in Fig. 8.15. These results were obtained using PCA based on 
nanodescriptors generated from the original BSAI model (Fig. 8.15a, at the lowest 
experimental chemical concentration) and the Langmuir low-concentration approxi-
mation (Fig. 8.15b). The ability of that the low-concentration approximation to gener-
ate similar clustering but much better separation is revealed by comparing the two. 
Although excellent predictive abilities were discovered for the polynomial model dis-
cussed in previous sections, incases of both inter-concentration and inter-chemical 
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Statistical ModellingChemical Analysis

Incubation of
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Removal of NP

Adsorption of
probes onto SPME  

GC/MS
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post-incubation probe

concentration  

Calculation of
adsorption coefficients 

Multi-variant regression
for descriptor

Langmuir Isotherm
fitting to calculate QK  

Fig. 8.14  Flow chart of complete BSAI approach (Adapted with permission from (Ref. [36]), 
copyright (2014) American Chemical Society)

Table 8.6  Infinite dilution adsorption descriptors obtained from Langmuir isotherm approximation

c r p a b v R2 QCV
2

AlOOH I 1.33 0.50 −0.05 1.51 −2.15 1.70 0.81 0.64
BaSO4 NM220 1.76 0.51 −0.09 0.86 −1.33 1.11 0.74 0.45
TiO2 NM105 1.52 0.51 −0.07 1.19 −1.68 1.41 0.78 0.59
ZnO NM110 1.48 0.37 −0.36 1.47 −1.88 1.88 0.74 0.51
SiO2.Amino 1.60 0.31 −0.29 1.40 −1.88 1.77 0.72 0.49
SiO2.Naked 2.07 0.61 −0.32 1.16 −1.79 1.15 0.78 0.58
SiO2PEG 2.01 0.53 −0.63 1.57 −2.13 1.44 0.80 0.60
SiO2.Phosphat 1.72 0.41 −0.38 1.47 −1.77 1.68 0.83 0.69
ZrO2.Amino 1.85 0.27 −0.63 1.63 −1.93 1.77 0.82 0.70
ZrO2.PEG 1.96 0.84 −1.03 1.52 −1.91 1.64 0.69 0.46
ZrO2.TODacid 1.88 0.31 −0.55 1.75 −2.09 1.48 0.81 0.70
AG50.citrat 2.08 0.74 −0.53 1.13 −1.75 1.34 0.73 0.48
AG200.PVP 2.40 0.39 −0.33 1.27 −1.22 0.88 0.65 0.24
sMWCNT 0.81 0.91 1.26 −0.83 −1.20 1.53 0.71 0.38
FullrC60 0.42 0.44 −1.07 −0.16 −2.11 2.52 0.88 0.75
MWNT-OH −1.77 2.19 1.53 −0.30 −1.38 2.30 0.88 0.73
MWNT50 um −0.20 1.07 1.32 −0.83 −0.88 2.39 0.74 0.27
MWNT-COOH 10–20 nm −2.11 1.24 1.52 0.01 −1.73 4.02 0.92 0.83
MWNT-COOH30–50 nm 0.00 1.57 0.43 −0.44 −0.60 2.71 0.86 0.70

Adapted with permission from (Ref. [36]), copyright (2014) American Chemical Society
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species predictions, the categorization ability was acceptable only in the case of sepa-
rating carbon-based from metal/oxide particles, achieving no clear distinction within 
the group of metal/oxides. The possible reason for such performance discrepancy was 
because of the larger number of parameters in the polynomial model, and confounded 
errors from dimension reduction employed in PCA.
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Fig. 8.15  Nanoparticle clustering plot by two principal components. The two components were 
obtained by principal component analysis of the five nanodescriptors of metal and oxide nanoparticles 
from (a) the original BSAI model and (b) the low-concentration approximation by the Langmuir 
model (Adapted with permission from (Ref. [36]), copyright (2014) American Chemical Society)
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8.4.6  �Comparative Molecular Dynamics (MD) Simulation 
Predictions on Adsorption

Molecular dynamics techniques have the potential to facilitate the design and opti-
mization of nanomaterials surfaces for applications such as drug delivery and con-
taminant removal, given that reliable atomistic models of nanomaterial surfaces are 

Table 8.7  List of adsorbate molecules considered in this work

Abbrev. Compound Name Substituent Halogen

Ah acetophenone ketone
bPh biphenyl aromatic
BrPl 3-bromophenol hydroxyl X
ClAh 4-chloroacetophenone ketone X
ClAn 4-chloroanisole ether X
ClPl 3-chlorophenol hydroxyl X
ClT 4-chlorotoluene alkyl X
dMPl 3,5-dimethylphenol alkyl, hydroxyl
EtBa ethylbenzoate ester–alkyl
EtPh ethylbenzene alkyl
EtPl 4-ethylphenol alkyl, hydroxyl
FPl 4-fluorophenol hydroxyl X
mCr m-cresol alkyl, hydroxyl
MeBa methylbenzoate ester–alkyl
MeBl (3-methylphenyl)methanol alkyl, hydroxyl
MeNh 1-methylnaphthalene aromatic
MMBa methyl-2-methyl benzoate alkyl, ester–alkyl
Nh naphthalene aromatic
NoPh nitrobenzene nitro
NoT 4-nitrotoluene alkyl, nitro
PhAc phenylacetate ester–alkyl
PhAm 4-chlorophenylamine amine X
PhBr bromobenzene – X
PhCl chlorobenzene – X
PhCN benzonitrile nitrile
PhEl 2-phenylethanol alkyl–hydroxyl
PhI iodobenzene – X
PhMl phenylmethanol alkyl–hydroxyl
Pl phenol hydroxyl
PrPh propylbenzene alkyl
pXy p-xylene alkyl
T toluene alkyl

For clarity in our plots, the compounds are indicated by the short, but sometimes nonstandard 
abbreviations given here. The other columns indicate how the molecule differs from a benzene 
prototype and whether the compound is halogenated. Adapted with permission from (Ref. [61]), 
copyright (2015) American Chemical Society
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available as well as accurate descriptions of their interactions with relevant solutes. 
This section provides an example on the calculation of adsorption of small organic 
molecules onto CNTs. The equilibrium constants determined using MD simulation 
coupled with free-energy calculation techniques are directly compared to those 
obtained from experimental measurements. Based on the results, these calculations 
are highly predictive of the relative adsorption affinities of the compounds, with 
excellent correlation between calculated and measured values of the logarithm of 
the adsorption equilibrium constant.

The model of CNTs were set to best match those used in BSAI experiments [61]. 
Fig. 8.16a shows an example of the models used in the MD simulations. According 
to calculation results, the presence of four graphene sheets versus a single graphene 
sheet has only a mild effect on calculated adsorption constants, implying that such 
models are reasonable representations of any relatively flat graphenic surface, 
including free-standing graphene and graphene nanoplatelets. Figure 8.16b shows 
the potentials of mean force for a few representative compounds. At large distances, 
z > 1.4 nm, the interaction between the surface and adsorbate becomes negligible, 
yielding a plateau at a fixed value, which by convention is anchored to zero. On the 
other hand, steric interaction leads to a rapidly rising free energy as the adsorbate 
attempts to penetrate the surface (z < 0.33 nm). Given the relatively hydrophobic 
natures of both the small aromatics and carbon nanotubes [62], one would expect 
adsorption to be thermodynamically favored. Minima are found in the potentials of 
mean force with magnitudes of several times the thermal energy for all adsorbates, 
occurring at distances from z  =  0.35–0.37  nm. The deepest free-energy well of 
−8.7 kcal/mol is seen for 1-methylnaphthalene, while the shallowest is for toluene. 
As seen in Fig. 8.16a, in all cases the lowest free-energy configuration corresponds 
to the adsorbates lying flat on the graphene, with the aromatic moieties parallel to 
surface. The fraction of adsorbed molecules is not determined solely by the depth of 
the free energy well, but also by its shape. For example, although 4-nitrotoluene 
possesses a slightly deeper minimum in Fig. 8.16b than biphenyl, the larger size of 
biphenyl leads to a broader well, which gives it a larger equilibrium constant. The 
logarithm of adsorption constants is plotted against the corresponding experimen-
tally determined value for each compound in Fig. 8.16c. Substantial linear correla-
tion is unmistakable and can be quantified by a Pearson correlation coefficient of r 
= 0.90. Furthermore, in absolute terms, values of log k range from 2.0 to 5.7, while 
those of calculated values occupy a similar range of 1.7–4.2. Thus, there is excellent 
consistency between experiment and simulation in the relative values for different 
adsorbates, and substantial agreement in an absolute sense as well.

The experimental data for comparison was obtained to construct BSAI models 
[34–36] that relates adsorbate physicochemical properties to their affinity for nano-
material surfaces. In some cases, the surface adsorption descriptors could be con-
structed more conveniently in silico. While MD simulations can directly yield 
adsorption free energies, such calculations become rapidly more expensive and 
time-consuming as the systems become larger and more complicated, such as the 
presence of multiple chemical species, and defects or impurities in the nanomateri-
als. Therefore, we recognize the potential of combining information gleaned from 
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simulation with a structure activity approach exemplified by the BSAI surface 
adsorption index. The optimal strategy may be a multi-scale approach, using 
explicit-solvent molecular dynamics and coarser descriptions derived from it, such 
as the grand-canonical Monte Carlo/Brownian dynamics approach, to build predic-
tive structure-activity models for complex heterogeneous systems. A combination 
of both approaches also allows for a direct testing of MD assumptions of fine struc-
ture (e.g. distribution of surface substituents) using the experimental data.

While the MD simulation method has validated existing atomistic models of 
graphenic and modified graphenic surfaces, there has been little systematic evalua-
tion of models used for other nanomaterials. Existing force fields for materials such 
as metals and ceramics may require further evaluation to demonstrate whether they 
perform consistently for a wide variety of organic adsorbates. Moreover, many 
exciting new materials lack any force fields with even minimal validation. Thus, for 
MD approach to be practical, it is necessary to construct a comprehensive library of 
force fields suitable for interactions between nanosurfaces and organic molecules. 
On the experimental side, more consistent synthesis and better characterization can 
also help in constructing more accurate models. Thus, comparative research on 
experimentally and computational characterizations can shed light on the fine struc-
ture of nanomaterials surfaces on atomistic/molecular level, and the nature of their 
interactions in terms of physical forces and energetics.

8.5  �The Outlook for BSAI Applications

Factors that determines the nature of the surface interactions, including the hetero-
geneity of the particle surface, the surface functional groups and the surrounding 
aqueous environment are the major reasons why the adsorption process of these 
chemicals or biomacromolecules on to particle surfaces is so complex. Elevated 
concentration typically causes such complexity to increases significantly due to the 
competitive interactions between molecules of either the same species or different 
species coexisted in the solution at higher concentration. When the Langmuir low 

Fig. 8.16  Comparison of experiment and simulation for compound adsorption on naked carbon 
nanotubes. (a) Model for molecular dynamics simulation of adsorption of small molecules onto the 
surface of multi-wall carbon nanotubes. The atoms of the graphene sheets and an exemplary adsor-
bate (3-bromophenol) are shown as spheres, with hydrogen, carbon, oxygen, and bromine atoms 
shown in white, green, red, and crimson. Here, for clarity, the water is indicated by a translucent 
cyan surface; however, in the simulations, water molecules were represented explicitly. (b) 
Calculated free energy as a function of distance between the first graphene sheet to the center of 
mass of the adsorbate (the coordinate z) for exemplary adsorbates. (c) Comparison of the logarithm 
of the adsorption equilibrium constant measured in experiment and the same quantity calculated in 
simulation for all 29 adsorbates. The abbreviations of the compounds used here are listed in Table 
8.7 (Adapted with permission from (Ref. [61]), copyright (2015) American Chemical Society)
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concentration approximated BSAI model was built, the requirement of low concen-
trations of probe chemicals were still valid to insure the applicability of the Langmuir 
isotherms [63]. To study the binding at much higher concentrations, models that 
consider solute-solute interaction or multilayer adsorption should replace the 
Langmuir approach [63–65]. Another potential improvement on the accuracy of the 
isotherm fitting can be achieved by reduce the experimental concentration intervals. 
The applicability of polynomial models, although with parameterized concentra-
tion, should still be experimentally restricted within the concentration range where 
the dependence of the descriptors on concentration can be accurately described as 
quadratic functions.

Other environmental factors like pH and temperature can also be incorporated. 
Temperature fluctuation is important in both biological systems and the environ-
ment since the energetics of those interactions can strongly influenced. In principle 
BSAI model can be expanded to include both factors. Measures should be taken to 
avoid large fluctuation in temperature, which could cause evaporation/condensation 
of the volatile small organic chemicals. Changes in pH should also be realistic con-
sidering the nanomaterials in biological systems can be transported from one com-
partment to another with different proton concentration. Significant impact on the 
models should be expected due to this difference, since most of the physicochemical 
interactions considered in the models are based on electron displacement, and can 
be drastically influenced by the pH of local environment. When we obtained experi-
mental data, we used small organic molecules because their physicochemical prop-
erties can be quantitatively and semi-empirically parameterized by rather simple 
and small sets of descriptors. Also, the modelling using these physically interpre-
table or well defined descriptors would be better for the purpose of surface charac-
terization and categorization of NPs. However, there still exist challenges of 
quantitatively parameterize the physicochemical properties of a complex structure 
such as a large protein. In order to obtain a statistically reliable model for such 
larger macromolecules or molecular complexes, a much larger experimental data 
set, as well as a much more complex set of descriptors, would be required.

8.5.1  �Biological/Environmental Activity Prediction

Apparently the polynomial model could be applied for the prediction of the molecu-
lar physisorption, in cases of either environmental contaminants or biomacromole-
cules. Our experimental setup requires that the probe chemicals should be kept at 
minimal concentrations to insure the applicability of the original BSAI model and 
Langmuir model. The application of such model for the purpose of prediction 
requires that the model training concentrations should to be on the same level as the 
concentrations to be predicted. Because the validity of the model is actually limited 
by a certain range of concentration. For similar reasons, the chemicals to be pre-
dicted should fall into the same chemical space of the probes which are used for 
model building. Thus, in order to produce a more applicable model, the probes 
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should have comparable but diverse physicochemical properties to cover a large 
chemical space.

The categorization using the models can render significantly different adsorption 
profile for particles with the same core materials but different surface. For example, in 
cases of SiO2.Amino and SiO2.Naked (Fig. 8.17), the quadratic terms had opposite 
signs, reversing the trend of concentration dependences. This can be explained by the 
fact that both the number of probe molecules in the solution and the number of active 
surface adsorption sites (supposedly determined by surface coating) are the determin-
ing factors in terms of concentration dependence. Comparing SiO2.Amino and SiO2.
Naked, the amino coating caused large differences in p (interactions from molecule 
dipolarity and polarizability), and v (hydrophobic forces). These differences could be 
due to the increased hydrophilic sites caused by the surface coating compared to pris-
tine nanoparticles. Thus, by illustrating the trend of concentration dependence in 
BSAI descriptors, polynomial indices can make additional distinctions about the sur-
face coating, and may be able to better predict differences in biomolecule adsorption 
and potential biological activity, caused by different surface coating. Another advan-
tage of this experimental-based approach is that actual manufactured nanoparticles 
can be evaluated under biological relevant conditions.

In general activities of nanomaterials in biological or environmental systems, or 
the response of the host systems can be predicted by creating a link between the 
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activity and the physicochemical parameters using similar QSAR-like approaches. 
Clustering of 50 nanomaterials was achieved using QSAR modelling by creating a 
characterization profile using a “i j k” parameter (certain biological effect is mea-
sured at dose i to cell type j and the effect is measured using assay k); based on the 
results, a screening mechanism can be established to target desired biological effects 
for certain cell types with certain assay [66]. Another study successfully created a 
model to predict smooth muscle apoptosis caused by nanoparticles using three 
parameters representing particle core material, surface coating, and surface charge 
respectively as an example of QSAR bridging biological effects and physicochemi-
cal properties [67–69]. A similar nanomaterial environmental impact (NEI) model-
ling framework was proposed explore and evaluate the environmental toxicity of 
nanomaterials using a zebrafish model system, the model can generate a summa-
rized EZ score representing the toxic effect of nanomaterials from precious mea-
surements [70]. In a different direction, non-linear models were employed to predict 
the complex phase behavior of amphiphilic nanoparticles for drug delivery; it is 
capable of predicting how different drugs, drug loadings, and temperatures affect 
nanoparticle mesophase behavior [71].

Efforts have been made in applying nanotechnology for environmental pollution 
detection and remediation to pesticide contamination. Many nanoparticles were 
proposed as sensors for the detection of organophosphorus pesticides like paraoxon, 
malathion, chlorpyrifos, and dichlorvos [72–74], where adsorption of the target 
molecule onto the nanoparticle surfaces is the key signaling process. Similarly, 
methods aimed at the removal of pesticides from the environment have been pro-
posed using nanomaterials. Alumina (Al2O3) and magnesium oxide (MgO) 
nanoparticles embedded in active carbon fibers were capable of destructive adsorp-
tion of diazinon [75], zinc oxide (ZnO) or silver (Ag) – chitosan composites removed 
permethrin and other pesticides from water [76, 77]. Recent studies revealed that 
metal or metal oxide nanoparticles, such as Ag [78–80], ZrO2 [81], or titanium diox-
ide (TiO2) [82] were capable of pesticide degradation via either surface or photoca-
talysis. Nanoparticle based filtration and surface catalyzed degradation technologies 
[83] mostly rely on surface adsorptions of the contaminants onto particle surfaces, 
while photocatalytic methods benefit from high surface affinity between the two, 
since they usually utilize enhanced localized photon energy to magnify the catalytic 
capabilities. Prediction on adsorption of environmental contaminants has also been 
achieved using BSAI by analyzing the interactions of select group of nanomaterials 
with a variety of pesticides. Statistical modelling was conducted on the experimen-
tally obtained adsorption data based on polynomial BSAI models [84]. These quan-
titative computational approaches support the application of BSAI modelling in the 
area of environmental contaminant detection and remediation.

Researchers have been developing applications of nanotechnology for detection 
and remediation of environmental contamination by organic pollutants like pesti-
cides. The detection of organophosphorus pesticides like paraoxon, malathion, 
chlorpyrifos, and dichlorvos were explored using nanoparticles-based sensing 
methods [72–74]. In these methods, the key signaling process depends on the 
nanoparticle surface adsorption of the target molecule. Furthermore, researchers 
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have also explored nanoparticle-based methods for the removal of pesticides from 
the environment. For example, destructive adsorption of diazinon was achieved 
using active carbon fibers with alumina (Al2O3) and magnesium oxide (MgO) 
nanoparticles [75], removal of permethrin and other pesticides from water were 
achieved using zinc oxide (ZnO) or silver (Ag) – chitosan composites [76, 77]. pes-
ticide degradation capability via either surface or photocatalysis was also revealed 
for metal or metal oxide nanoparticles, including Ag [78–80], ZrO2 [81], or titanium 
dioxide (TiO2) [82]. Surface adsorptions of the contaminants is the key process for 
most nanoparticle-based filtration and surface catalyzed degradation technologies 
[83], even for methods based on photocatalysis, since it benefit from high surface 
affinity toward the nano surfaces, which helps taking advantage of localized photon 
energy magnifying the catalytic capabilities. By utilizing BSAI models to analyze 
the interactions of select group of nanomaterials with a variety of pesticides, predic-
tion on the adsorption of these environmental contaminants can be made. Out latest 
efforts include statistical modelling on the experimentally obtained adsorption data 
based on polynomial BSAI models [84], validating the application of BSAI model-
ling in the area of environmental contaminant detection and remediation.

8.5.2  �Surface Characterization, Categorization and Safety 
Assessment

The BSAI approach can also be used for the determination of the toxicity thresholds 
of nanomaterials. The strong affinity of proteins toward the nanomaterial surfaces 
could result in irreversible adsorption, which forms a biocompatible coating reduc-
ing the toxicity of the nanomaterials in biological systems. For example, carbon 
nanomaterials have very hydrophobic surface; irreversible adsorption with proteins 
is postulated by the BSAI characterization data, which could render such carbon 
nanomaterials nontoxic in biological systems. Clarification or validation from some 
toxicity studies of carbon nanomaterials is still needed to identify the true cause for 
observed toxicities reported in the literature; for example, the toxicity from leached 
metal ions would attribute to the defects or contaminants, not the carbon nanomate-
rial itself [85–87]. On the other hand, binding of proteins with certain functions or 
physiological roles, such as complement factors, to the surface of carbon nanoma-
terials could also lead to adverse immunological effects [88–90]. The adsorption of 
proteins could lead to protein structural changes in higher degrees such as confor-
mation, unfolding, or new epitopes [91], which could cause new biological conse-
quences. Clearly, there is a need for a rational approach to predict such effects.

Physicochemical characterization of nanosurfaces in terms of adsorption capa-
bilities is also of great importance. Adsorption isotherms can be fitted according to 
physical adsorption models described in Sect. 8.2.2, and generate metrics reflecting 
surface interaction affinities. Categorization on the surface adsorption profiles were 
conducted based on the fitness of their isotherms to the three physical physisorption 
models using PCA on the coefficients of determination obtained from each of the 
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model fittings. Our recently published [84] research shows that better separation 
were achieved for all ZrO2, SiO2, and silver groups than that obtained using polyno-
mial BSAI indices. Furthermore, PCA was again applied to model fitting parame-
ters obtained from Freundlich models. The separating based on these fitting 
parameters alone seems to be comparable to previous results using the coefficients 
of determination of all three models. The possible reason is that the linear range of 
the isotherms can be better fitted by the Freundlich models. The Freundlich models 
were also able to extract more accurate information for the comparison of isotherms 
at the low concentration range to those at relatively higher and saturating concentra-
tions. ZrO2 particles seem to be significantly better separated than in the case of 
polynomial models, possibly because their adsorption isotherms presented very dis-
tinctive patterns for a few pesticides, such as relatively lower affinity for tetrachloro-
m-xylene indicated by the trend toward saturation compared to the linear trend for 
some other pesticides.

Since the low concentration approximation of BSAI descriptors is able to largely 
exclude factors other than particle forces, including inter-molecular interactions 
among different solutes and water, the clustering on those descriptors is expected be 
able to more accurately categorize nanomaterials surfaces. One potential applica-
tion would be predicting biological or environmental behaviors of unknown 
nanomaterials by categorization using low concentration approximated BSAI 
descriptors together with nanomaterials with known biological or environmental 
behavior. Particles clustered within the same group should attract similar types of 
organic or biological molecules. Since the biological impact of nanomaterials are 
largely determined by their affinity for biomacromolecules including proteins and 
subcellular structures like lipid bilayers, materials with the same bio-identity, bio-
distribution or toxicity may likely be found within the same cluster [92]. A similar 
model was proposed for the characterization of biological activities of nanomateri-
als: small organic molecules were replaced with larger biomacromolecules, the 
adsorption of proteins and the content of formed protein corona were used as finger-
prints to create surface characterization profiles of nanomaterials, the adsorption of 
proteins can be predicted similarly, and the materials can be categorized according 
to their profiles. However due to the complexity of protein and other macromole-
cules, at this stage the model is still rather primitive to achieve more accurate pre-
diction [93].

Multiple potential applications could be conceived in the field of nanomaterial 
environmental safety assessment. An assessment tool based on BSAI approach 
would be particularly powerful in quantitatively characterizing and categorizing 
the biological identity of various engineered nanomaterial. A nanomaterial’s 
BSAI indices would allow initial predictions of the material’s interactions to 
contaminants in aqueous environments such as aquifers, surface ponds and lakes, 
the ability to predict nanomaterial binding to environmental contaminants is 
demonstrated in this chapter as an example. Such approach could also find appli-
cation in environmental remediation where one could define an optimal BSAI 
with high affinity for a specific contaminant in a defined environment and then 
using statistical clustering, identify an appropriate nanomaterial. In order to 

R. Chen and J.E. Riviere



249

continue the development and application of these indices, the correlation 
between BSAI-characterized nanomaterials and known biological and environ-
mental endpoints is crucial.

8.6  �Summary

In summary, we reviewed the physical nature and impact of biomolecular adsorp-
tion in general, introduced the physicochemical molecular interactions, explored 
mathematical models that have been developed to describe the adsorption. 
Furthermore, we presented a new approach of statistical modelling (BSAI) that uti-
lized large sets of experimental nanomaterial chemical probe adsorption data and 
modified modelling approaches to generate more advanced BSAI models, including 
a polynomial model, and a low concentration approximated model. These improved 
models possess either improved predicting or better categorizing abilities. 
Specifically, better prediction results were achieved by the polynomial models over 
varied concentration ranges in cases of both inter-chemical species and inter-
concentration predictions. Better separation, even among the group of nanomateri-
als with similar chemical compositions (e. g. metals & oxides), was achieved by low 
concentration approximated models. These modified models can be utilized either 
as standardized characterization method, or to build a comprehensive database of 
descriptors from tested nanomaterials combined with data on their biological behav-
ior. Such databased could make significant contribution to the prediction on bio-
identity due to biomolecule adsorption and their possible cellular uptake pathways 
for new and untested nanomaterials.

Identification of new nanomaterials with desirable biological effects can be 
achieved through clustering analysis on their surface descriptors in combination 
with known nanomaterials documented the database. In another direction of future 
development, pharmacokinetic models can be incorporated to BSAI modelling to 
better describe or predict the fate of nanomaterials at the whole organism level, e.g. 
concentration in different organs, clearance rate, etc. We have shown that these 
improvements toward the original BSAI approach can better assist in silico quanti-
tative safety assessment for nanomaterials to provide guidelines for the engineering 
of novel nanomaterials with potential applications in diagnostics and therapeutics 
by targeting specific surface descriptors.
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Chapter 9
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Abstract  The development and implementation of safe-by-design strategies is 
key for the safe development of future generations of nanotechnology enabled 
products. The safety testing of the huge variety of nanomaterials that can be syn-
thetized is unfeasible due to time and cost constraints. Computational modeling 
facilitates the implementation of alternative testing strategies in a time and cost 
effective way. The development of predictive nanotoxicology models requires the 
use of high quality experimental data on the structure, physicochemical properties 
and bioactivity of nanomaterials. The FP7 Project MODERN has developed and 
evaluated the main components of a computational framework for the evaluation of 
the environmental and health impacts of nanoparticles. This chapter describes each 
of the elements of the framework including aspects related to data generation, 
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management and integration; development of nanodescriptors; establishment of 
nanostructure-activity relationships; identification of nanoparticle categories; haz-
ard ranking and risk assessment.

Keywords  Nanotoxicology • Nanoinformatics • Nanodescriptors • QNAR • Risk 
assessment

9.1  �Introduction

Nanotechnology, through the development of novel materials, nano-enabled prod-
ucts and advanced processes, will impact significantly many areas of research, 
industry and society. In economic terms, the nanomaterial market is expected to 
reach $11.8 billion by 20201. At an industrial scale, the safe application of nanotech-
nology requires the comprehensive analysis of the potential environmental and 

1 http://www.researchandmarkets.com/research/4sxcfc/global.
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human health impacts after the introduction of engineered nanoparticles (eNP) and 
nanomaterials (NMs) in the environment.

The environmental risk assessment of eNPs requires data on emission 
sources, physicochemical properties, fate, transformations and persistence, and 
on their potential toxicity. However, nanosafety data are uncertain and with 
significant knowledge gaps. Since the goal of nanosafety assessment is to pro-
vide meaningful information in relatively short time and using a reasonable 
amount of economic resources, the whole assessment process and methodol-
ogy must be simplified. The development of computational models suitable to 
predict properties constitutes a key element to achieve cost-effectiveness in 
nanosafety assessment. Specifically, the importance of developing Quantitative 
nanostructure-activity relationships (QNAR) for hazard ranking, risk assess-
ment and safe-by-design nanoparticles has been recognized as one of the key 
objective by the EU Nanosafety Cluster2 in its Strategic Research Agenda for 
2015–2025 [68].

MODERN3 (MODelling the EnviRonmental and human health effects of 
Nanomaterials) is an FP7 Project funded by the European Commission whose 
main objective was the development of a robust computational framework suit-
able for evaluating the environmental and health impact of eNPs. In environmen-
tal conditions, nanoparticle effects depend on bioavailability and toxicity 
mechanisms, which in turn are influenced by physicochemical and structural 
properties. The development of predictive nanotoxicity models requires the col-
lection and integration of the experimental data available in the literature and in 
public data repositories into a well-characterized nanoparticle knowledge base. 
It is also essential to develop new nanodescriptors suitable to relate the eNP 
structure with the corresponding property and bioactivity profiles. Data on prop-
erty profiles, together with the in vitro/in vivo screening of toxicity, can be sum-
marized as eNP signatures that can be subsequently used to establish nanoparticle 
categories that will increase the confidence in nanosafety assessments. Fig. 9.1 
summarizes the integration of all the above elements within a consistent frame-
work to facilitate the development of predictive models for the safety assessment 
of nanomaterials.

This chapter introduces the components of the integrative framework developed 
in MODERN. Section 2 focuses on data-related issues including data generation 
and strategies and tools for data management and integration. Section 3 discusses 
the development of nanodescriptors based on the electronic structure of nanoparti-
cles and size-dependent descriptors based on molecular modelling. Section 4 intro-
duces the development of structure-activity relationships for nanomaterials. Section 
5 develops nanoparticle categories and hazard ranking schemes. As conclusion, 
Sect. 6 provides a perspective on the use of computational modelling for developing 
a new generation of safe-by-design nanoparticles.

2 http://www.nanosafetycluster.eu.
3 http://modern-fp7.biocenit.cat.
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9.2  �Data Generation and Data Management

The first step in the implementation of a computational strategy for transforming 
nanoparticle data into relevant knowledge for nanosafety assessment is the collec-
tion of high quality information. Literature data collection/curation in MODERN 
has been complemented with the development of a well characterized, both in terms 
of physicochemical properties and biological activity, library of nanoparticles. The 
project focus on inorganic nanoparticles, specifically metals and metal oxides. This 
section provides an overview of the synthesis and physicochemical characterization 
process, together with the characterization of the impact of nanoparticles in envi-
ronmentally relevant organisms. The final part of this section provides an overview 
of the data management system developed in MODERN and outlines strategies for 
integrating biological (e.g., omics) data into the model development process.

9.2.1  �Synthesis and Physicochemical Characterization 
of Nanoparticles

Fig. 9.2 shows a schematic of the main elements in a Flame spray pyrolysis (FSP) 
process, which is a versatile technique to produce new and functional nanoparticles 
[34]. Compared to the other aerosol techniques, the variety of materials that can be 
produced is much wider because the process utilizes liquid precursors that are 
directly atomized and ignited forming a spray flame [73]. During the flame spray 
process, the liquid precursors (carrying all the energy into the flame) in the form of 
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droplets are introduced to the flame subsequently vaporizing followed by atomiza-
tion and gas phase chemical reactions producing cluster seeds of the NPs [72]. The 
liquid precursor atomization is achieved with a two fluid nozzle that utilizes high 
gas velocities to disintegrate the liquid into fine droplets [47].

Each droplet approaching the flame through the spray nozzles essentially serves 
as a micro-reactor with the exact stoichiometry required for the reaction, producing 
materials with homogeneous chemical composition in a single step [47, 71]. The 
resulting cluster seeds grow rapidly by collision and coalescence mechanisms and/
or surface growth to produce NPs [34]. The subsequent nanoparticle production is a 
function of the thermal energy flux that directly influences the particle formation 
parameters such as temperature profile and residence time within the high tempera-
ture environment (≥ 2000  °C). Eventually, the NP aerosol is quenched to room 
temperature and NPs are collected on a filter unit or directly deposited as porous 
film on the substrates [39]. Due to the enormously broad range of liquid precursors 
available, FSP is currently considered as one of the most promising techniques for 
synthesis of a very large diversity of sophisticated inorganic NPs [73].

9.2.1.1  �Physicochemical Characterization of the Nanoparticle Library

A library composed by 11 NPs including ZnO, CuO, Co3O4, Fe3O4, Mn3O4, TiO2, 
Sb2O3, Al2O3, SiO2, MgO and metallic Pd was obtained using FSP.  The specific 
surface area and primary particle sizes of the particles, determined using BET mea-
surements, were in the range of 53–289  m2/g and 8–13  nm, respectively. The 
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determination of the crystal structure of ZnO and TiO2 showed undetectable changes 
in the lattice parameters. At constant FSP reactor conditions, TiO2 had equivalent 
primary particle size (dBET) and the crystallite size (dXRD) in the range of 12–14 nm 
and the weight % of anatase and rutile content was found to be 12.4 and 87.6 %, 
respectively. Similarly, for the other NPs, CuO, Sb2O3, Al2O3 and MgO, the data for 
the lattice parameters were in reasonable agreement with the reference data suggest-
ing well-formed single crystalline ultrafine particles. The phase analysis of the spi-
nel type mixed oxides such as Mn3O4, Fe3O4 and Co3O4 showed single phase Mn3O4 
with very minor changes in the crystal structure relative to the standard model. 
Similarly, Co3O4 was also a single phase spinel crystalizing in cubic system. 
However, unlike Mn3O4 and Co3O4, Fe3O4 had two phase mixtures (hematite (Fe2O3) 
and magnetite (Fe3O4) with a distribution of 64.7 and 35.3 % by weight, respec-
tively. The independent crystallite size analysis showed that within the mixture 
magnetite (8.2 nm) was slightly smaller than hematite (9.4 nm). In order to estimate 
the size and morphology of these metal oxide NPs, TEM investigation was carried 
out. The images of ZnO showed particles with 20 nm (dTEM). The bright field image 
and the corresponding selected area electron diffraction (SAED) shows highly crys-
talline nature of the ZnO, Fe3O4, MgO and TiO2 NPs. TEM images of Co3O4, TiO2, 
CuO and MgO showed spherical nanocrystals and all particles were homogenous 
except few bigger spheres scattered in the matrix with size distribution ranging 
9–15 nm. The morphology of FeOx and WO3 were similar with reduced crystallinity 
observed through low intensity XRD patterns. The primary particle sizes were in the 
range of 10–15 nm clearly agreeing with the mixed particle sizes of Fe2O3 and Fe3O4 
(9.4 and 8.3 nm, respectively). The NPs of Sb2O3 are quite different relative to the 
other nanoparticles. The long chain agglomerates of the Sb2O3 NPs might be due to 
either insufficient oxygen during combustion or to the mismatch of the precursor/
solvent combination.

Selected nanoparticles such as ZnO and/or TiO2 were also analyzed using high 
resolution transmission electron microscopy and XRD (Fig. 9.3).  For ZnO, the 
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respective d-spacing perpendicular to these dense rows of maxima is 0.248  nm 
which corresponds to d011 = 0.247 nm from the X-ray diffraction measurements. 
From symmetry considerations in space group P 63 m c (Laue group 6/mmm) the 
[h k l] lattice direction observed in the HRTEM images are symmetrically equiva-
lent to [0 1 1] (see Fig. 9.4a, b).

The chemical composition of Co3O4, Fe3O4 and Mn3O4 was evaluated by XPS 
analysis (Fig. 9.4c–e). The result showed presence of M2+ and M3+ coordination. 
However, with the increase in the atomic number of the transition metal atom (Mn to 
Fe to Co) the corresponding coupling distances of 2p1/2 to 2p3/2 also increased. The 
peak analysis of the spectra of cobalt, iron and manganese showed that (1) binary 
oxides are present in the form of Co3O4, Mn2O3 or Fe2O3, (2) only iron oxide (Fe2O3) 
surface is clean without any additional impurities, and (3) Mn3O4 has surface MnO 
whereas Co3O4 has surface hydroxylation. Unusual is that the XRD analysis showed 
two phase mixtures (hematite (Fe2O3) and magnetite (Fe3O4) in FeOx but XPS analysis 
showed 100 % of Fe2O3, which is very unlikely. Similarly, XRD analysis of Mn3O4 
showed single phase material while XPS showed only Mn2O3 with 1 % of MnO.
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The discrepancies observed using the two different techniques for the spinel 
characterization are quite striking. Actually, XPS is a surface characterization tech-
nique and the sample penetration depth does not exceed 10 nm. If the surface is 
enriched with hematite during XPS analysis, the signal from the magnetite is appar-
ently lost.

9.2.2  �Characterization of the Interaction of Nanoparticles 
with Biological Systems

Currently, the number of papers published on the biological effects of NPs exceeds 
40,000 and it is growing rapidly. Most of this publicly available nanotoxicity data 
are for metal oxides that has led to the development of QNAR models based mostly 
on bacterial toxicity endpoints. However, the inconsistencies in the available data 
related to the complexities inherent to NPs as well as their use in biological experi-
ments hinder the quality and applicability of the models. In MODERN, available 
literature data for metal and metal oxide eNPs were extended by generating homog-
enous toxicity data for a number of species relevant in ecotoxicology. The generated 
data was subsequently used to develop/validate QNAR models based on nanode-
scriptors obtained from electronic structure and by molecular modelling of eNPs.

9.2.2.1  �Selection of Test Species

According to Commission Regulation (EU) No 286/2011 the criterion for classify-
ing and categorizing substances as hazardous to the aquatic environment is as fol-
lows: chemicals are considered of acute (short-term) aquatic hazard when their 
L(E)C50 ≤ 1  mg/L), based on the results of standardized toxicity tests with fish 
(96 h) and/or crustaceans (48 h) and/or algae (72 or 96 h).

The selection of test species for mandatory testing of chemicals for regulatory 
purposes addresses different trophic levels as well as the diverse biological 
complexity present in the ecosystems. In the case of eNPs, also the ability of test 
organisms to ingest/internalize particles is an important consideration for species 
selection. In addition, the composition of the test battery is also influenced by prac-
tical considerations such as ease of cultivation in the laboratory and modifications 
in test protocols needed to study eNPs.

At the base of every ecosystem there are primary producers (autotrophs) that 
convert CO2 to organic matter using light or chemical energy, normally con-
sumed by several levels of consumers. In the majority of aquatic environments, 
the principal primary producers are microalgae, which justifies their inclusion in 
the test battery. In the current work algae were represented by Pseudokirchneriella 
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subcapitata, a freshwater species commonly used in aquatic toxicology, known 
to be sensitive to metals, including metal-containing eNPs [2, 6, 29]. Algae are 
considered ‘particle-proof’ as the algal cell wall should prevent nanoparticles 
entry into the cells. Indeed, there are only very few reports of particle internaliza-
tion into algae [33, 79].

The primary consumers in the current test battery were represented by a proto-
zoan Tetrahymena thermophila. Protozoa are ecologically widely spread naturally 
particle-feeding organisms that are also important in biological wastewater treat-
ment [14, 33]. As an example, T. thermophila has been shown to ingest single walled 
carbon nanotubes and bacteria as food with no apparent discrimination [32]. 
Reported long residence times of eNPs such as CdSe/ZnS quantum dots in T. ther-
mophila refer to the increased risks of transfer of these eNPs to higher trophic levels 
in the ecosystem [51].

We also included bacteria (prokaryotes) in our test suite to represent biodegrad-
ers that are of crucial importance in all ecosystems. Naturally luminescent bacte-
rium Vibrio fischeri was chosen as the Microtox test (Vibrio fischeri bioluminescence 
inhibition assay) is probably the most used bacterial toxicity test in environmental 
studies. The kinetic modification of that test (Flash Assay) was used as it is a rapid, 
simple, cost effective and sensitive method for the evaluation of toxic properties of 
chemicals, including eNPs [49]. Analogously to unicellular algae bacteria can be 
classified as organisms that do not internalize nanoparticles.

The selection of Tetrahymena as well as Vibrio fischeri has additional relevance in 
terms of QNAR development. Toxicity data obtained using these species have been 
used extensively for the development of structure-activity relationships [11, 54].

9.2.2.2  �Description of Experimental Protocols

Preparation of Nanoparticle Suspensions  For all assays the NPs were mixed 
with deionized (DI) water to yield 25 ml of 200 mg/l stock suspensions that were 
vortexed and sonicated for 4 min before use (40 W, Branson probe sonicator, USA). 
For toxicity experiments the NP stock suspensions were diluted 1:1 with 200 % 
respective test medium to obtain 100 mg/l suspensions in each medium.

Algal 72 h Growth Inhibition Assay with Pseudokirchneriella Subcapitata  The 
OECD 201 algal growth inhibition test guidelines [57] were followed as described 
in detail in Aruoja et al. [2]. Briefly, the exponentially growing P. subcapitata cells 
were exposed to various concentrations of NPs in standard 20 ml glass scintillation 
vials containing 5 ml of algal growth medium. The vials were shaken on a transpar-
ent table constantly illuminated from below with fluorescent tubes in a temperature-
controlled environment (24 ± 1 °C) for up to 72 h. Algal biomass was determined at 
least every 24 h by measuring the fluorescence of algal extract [22]. EC50 values 
(effective concentration that leads to 50 % reduction of biomass) were calculated 
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from dose-response data. By using the vials only once we managed to keep the coef-
ficient of variation of biomass density in replicate control cultures below 5  % 
throughout the experiments. It was therefore sufficient to have samples in duplicate 
with four controls distributed evenly on the transparent table.

24 h Cell Viability Assay with the Protozoan Tetrahymena Thermophile  Protozoan 
culture (T. thermophila strain BIII) was grown as described by [50]. The cells were 
harvested during the exponential growth phase and washed twice with DI water. For 
toxicity analysis 100 μl of harvested and washed T. thermophila suspension in DI 
water was added to 100 μl of the suspension of NPs that were previously diluted in 
DI water in 96-well polystyrene plates. Final cell density in the test was 5 × 105 
cells/ml. Protozoan suspension and NPs in DI water were used as non-treated and 
abiotic controls, respectively. The test plates were incubated in 25 °C in the dark. 
After 24 h viability of the cells was determined based on the ATP content as previ-
ously described [50]. A volume of 10 μl of ATP standard (10–5 M) was used for 
internal calibration. All the luminescence measurements were done using Orion II 
plate luminometer (Berthold Detection Systems, Germany). The amount of the ATP 
in each well was calculated according to the following equation:

	
ATP

RLU RUL
ATP,mmol =

-
´sample background

standard
standardRULATP 	

(9.1)

The ATP concentrations in the samples were expressed as percentages of the 
non-treated controls. The EC50 values (effective concentration leading to a 50 % cell 
death) was calculated from the concentration-effect curves.

Vibrio Fischeri Kinetic Bioluminescence Inhibition Assay (a Flash-Assay)  Acute 
bioluminescence inhibition assay (exposure time 30 min) with Vibrio fischeri was 
carried out in room temperature (~20 °C) in 96-well microplates according to the 
Flash-Assay protocol [28, 49]. A volume of 100 μl of bacterial suspension was 
added to 100 μl of test suspension by automatic dispensing in the luminometer test-
ing chamber. The luminescence was recorded for the first 10 s after dispense of the 
bacteria in each well without additional mixing. After 30 min incubation the lumi-
nescence was recorded again. The Microplate Luminometer Orion II (Berthold 
Detection Systems, Pforzheim, Germany), controlled by Simplicity Version 4.2 
Software was used. Reconstituted V. fischeri Reagent (Aboatox, Turku, Finland) 
was used for the bacterial suspension and all chemicals were prepared in 2 % NaCl. 
The inhibition of bacterial luminescence (INH%) was calculated as follows:
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KF (correction factor) characterizes the natural loss of luminescence of the con-
trol (i.e. bacterial suspension in 2 % NaCl). IC0 and IT0 are the maximum values of 
luminescence during the first 5 seconds after dispense of 100 μl of bacteria to 100 μl 
of control or sample, respectively. IC30 and IT30 are the respective values after 30 min. 
EC50 is the concentration of a compound reducing the bioluminescence by 50 %.

9.2.2.3  �Comparative Analysis of Nanoparticle Toxicity

The results of the toxicity analysis of MODERN’s eNP library are presented in 
Table 9.1. All eNPs were about the same primary size (10–20 nm) and their average 
hydrodynamic size in DI water was between 65 and 171  nm, except for Mn3O4 
(395 nm) and MgO (1964 nm) that formed bigger agglomerates. Alga was clearly 
the most sensitive among the three species used, with EC50 values below 100 mg/l 
for 10 out of 12 eNPs. Algal EC50 values lower than 1.0 mg/l were determined for 
ZnO, Pd and CuO, whereas only ZnO and CuO were consistently the most toxic 
across all three species (EC50<10  mg/l). The relative sensitivity of algae was 
expected, based on previous studies that have revealed algae and crustaceans as the 
most sensitive groups to metallic eNP exposure [32]. Similarly, ZnO and CuO have 
shown consistent toxicity to various aquatic test species due to highly toxic Zn and 
Cu ions leaching from these particles [6, 24, 29, 37]. Taken into account the data on 
solubilization and abiotic reactive oxygen species (ROS) production of the studied 
eNPs, only ZnO toxicity could be fully explained by Zn solubility whereas the 
mechanism of CuO toxicity probably involved the generation ROS. At least par-
tially, the observed growth inhibition of algae by eNPs could be due to entrapment 
of algal cells into eNPs agglomerates creating a physical barrier for nutrients and/or 
light. Also, the intimate contact between cells and eNPs in cell-nanoparticle agglom-
erates probably amplified the harmful effects of ROS if generated by eNPs, thus 
explaining the observed higher sensitivity of the algal assay relative to bacterial and 
protozoan tests. However, the interpretation of the algal assay is not straightforward 
since the cells inside the eNP agglomerates can stay viable and resume growth upon 
dilution. We thus hesitate in assigning the ‘acutely hazardous’ classification to 
Co3O4, TiO2, Mn3O4 and Fe3O4 despite the algal 72 h EC50 values near the 1 mg/l 
threshold. On the other hand, while the majority of the eNPs did not affect the via-
bility of protozoa below the 100 mg/l exposure level, the accumulation of eNPs in 
their food vacuoles may lead to food-web transfer and bioaccumulation, and there-
fore to potential harm.

In order to understand the mechanisms of (aquatic) toxicity of eNPs and ulti-
mately move closer to cost-efficient toxicity prediction a quantitative approach to 
mechanisms is required. This approach should be usable across different organisms 
or even for the whole aquatic ecosystem and should therefore include data from a 
battery of test organisms belonging to different trophic levels. One variant of the test 
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battery is presented in the current study and includes algae as primary producers, 
protozoa as consumers and bacteria as decomposers. As the current study reveals 
quite similar toxic effects of metal-based eNPs across species at different trophic 
levels and in a range of biotests, it is highly probable that QNAR models based on 
one aquatic species (for example P. subcapitata, T. thermophila or V. fischeri) could 
at least to some extent predict the toxic effects also to other aquatic organisms pav-
ing the way to establish activity-activity relationships for nanomaterials.
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Cell type Eukaryote Eukaryote Prokaryote
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Nano-
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(%)§ 

ROS
(HPF)$

ROS
(DCF)+

Algal 72 h
growth

inhibition
OECD 201

Protozoan
24 h viability

Bacterium
30 min. lumi-
nescence
ISO 21338 

Mechanism of 
toxicity Classification†

ZnO 56.1 - - Zn ions

Pd <0.5 + ++ ROS Acute
aquatic hazardCuO 5.14 +++* - Cu ions & ROS

Co3O4 1.25 + + ROS

TiO2 <0.83 +++ + ROS

Mn3O4 11.1 - +++ ROS Acute
aquatic hazard?Fe3O4 <1.38 +* - ROS

Al2O3 0.40 + -

SiO2 NA - -

WO3 63.2 - -

MgO 38.1 - -

Sb2O3 56.3 + -

Table 9.1  Toxicity, classification to acute toxic hazard categories and tentative mechanisms of 
toxic action for 12 metallic nanoparticles tested within FP7 project MODERN [3]

The multitrophic test battery consisted of alga Pseudokirchneriella subcapitata, protozoa 
Tetrahymena thermphila and bacterium Vibrio fischeri. Tentative ranking of eNPs for acute aquatic 
hazard is based on the threshold L(E)C50 ≤1 mg/l of the most sensitive assay. The highest nominal 
concentration of NPs in the tests was 100 mg/l. EC50 values are based on nominal concentrations 
of NPs and the range of EC50 values for each toxicity assay is color-coded from red (hazardous) 
to dark green (not classified). Mechanisms of observed toxicity of NPs are proposed based on the 
solubility and/or the potential to generate Reactive Oxygen Species (ROS) by studied eNPs in the 
abiotic conditions
¥ – MODERN library of nanoparticles synthesized using flame spray pyrolysis; primary sizes from 
8 to 20 nm, specific surface area from 30 to 290 m2/g;
§ – soluble metal in 10 % nanoparticle suspension in deionized water determined after ultracentri-
fugation by atomic adsorption spectroscopy;
$  – formation of Reactive Oxygen Species (ROS) in abiotic conditions as measured using 
3'-(p-hydroxyphenyl) florescein assay [17];
+  – formation of ROS in abiotic conditions as measured using 2.7-dichlorodihydrofluorescein 
diacetate assay [68];
* – in the presence of hydrogen peroxide;
† – adhering to European Commission regulation (EU) No 286/2011
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9.2.3  �Integration of “Omics” Data into Nanosafety Models

To integrate biological data into the models, we propose to use high-throughput 
data, such as gene expression (transcriptomics) or protein expression (proteomics) 
data. Their advantages are that they provide comprehensive information about 
changes in cellular processes, they are expected to detect the early onset of toxic 
responses, and they are also expected to facilitate the mechanistic understanding of 
toxicity. Using high-throughput data, however, poses important challenges [27, 43]. 
The experimental platforms and the methods of data analysis are relatively young. 
In particular, there is no general agreement on a recommended workflow of data 
analysis, which causes reproducibility issues. Moreover, the interpretation of results 
is difficult, because of the enormous level of detail, the amount of noise and the 
degree of data correlation. We propose therefore to incorporate high-throughput 
data not in its raw form but aggregated into pathway expression data. This reduces 
the data dimensionality in a biologically relevant manner. Pathway results are easier 
to interpret, easier to validate with specific biomarkers, and they can provide hints 
about the underlying toxicity mechanisms.

To define a workflow of high-throughput data analysis, we divide the analysis 
in three steps, each one with a well-defined purpose. We exemplify the process for 
the case of transcriptomics data obtained with microarrays, which is the most 
commonly used today. The steps are: (1) preprocessing of gene expression, (2) 
normalization of gene expression, and (3) analysis of differential pathway 
expression.

Preprocessing of Gene Expression Data  This step encompasses all the quality 
control checks and data correction recommended by the platform builder. The aim 
is to remove as much technical variation as possible within each sample. It is worth 
noting that gene expression microarrays have different hybridization affinities per 
probe (each probe tests a small section of a gene), which implies that there is 
unavoidable technical variation across genes. As a consequence, the analysis pipe-
line has to take into account the fact that expression levels obtained with this tech-
nology are not directly comparable between genes.

Normalization of Gene Expression  The objective in this case is to remove the 
technical variation between samples, which emerges from small differences in total 
mRNA concentration, reagent concentration, hybridization conditions, etc. This 
step is much less dependent on the specifics of each experimental platform, and thus 
it can be addressed with general methods. The final result is a GxS matrix of gene 
expression data, for G genes and S samples.

Analysis of Differential Pathway Expression  To aggregate gene expression into 
pathway expression, it is necessary to define a score for each pathway, which has a 
clear biological interpretation. Several options have been proposed [40], the two 
more popular being the number of differentially expressed genes in the pathway, 
and the rank comparison of genes in the pathway with the complete expression 
profile. The first approach makes difficult the assessment of statistical significance, 
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using the unrealistic null hypothesis which results from permuting the gene labels 
[19]. The second approach puts the emphasis on changes of gene expression that are 
highly correlated in the pathway (many genes over- or under-expressed in a similar 
amount). This may be the case in the alteration of signaling pathways, but not so 
much in other cases, like for example regulation pathways.

For these reasons, we propose a method which uses all the expression data avail-
able (no preliminary filtering of gene hits) and which does not assume any kind of 
pattern in gene expression variation when a pathway is altered. The statistic is 
inspired in the logistic function, used to map continuous variables into a probability 
estimate in logistic regressions. Let ti be the t-statistic resulting from comparing 
expression levels between an experimental treatment and the corresponding control 
condition. The differential expression gi for the gene i is defined as:
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This definition of gi treats over- and under-expression changes equally, compares 
and scales each gene independently (removing differences in hybridization affini-
ties) and takes into consideration the uncertainty in the estimation of differential 
expression. Afterwards, the differential expression pj of pathway j is defined as the 
average differential expression of all the genes Pj annotated to the pathway:
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This manner, we obtain a non-negative, normalized TxP matrix, with T rows 
representing experimental treatments and P columns representing pathways. Each 
coefficient pij represents the differential expression of pathway j in treatment i, as a 
number between 0 and 1. The resulting matrix of biological information can be eas-
ily integrated with physicochemical data to develop predictive models.

The above pathway analysis workflow was implemented in MODERN as a web 
application4 (Fig. 9.5) that identifies differentially expressed pathways from high-
throughput transcriptomics or proteomics assays. It also highlights the important 
genes in connection to those pathways. The tool makes use of pathway reference 
information from a curated database. The algorithm is based on network statistics 
calculated over a genome-wide network, built from the data available for the target 
species [13].

4 http://biocenitc-deq.urv.cat/anapath.
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9.2.4  �Management of Nanosafety Data

The development of reliable nanosafety assessment strategies requires the compila-
tion of a significant amount of very heterogeneous data (e.g., emission sources, 
nanoscale properties, intermedia distribution, transformations and persistence, and 
effects in biological systems). Although these data are rapidly emerging, there is 
still a critical need for implementing efficient data management protocols aimed to 
facilitate data retrieval, transparent data sharing and the development of robust 
structure/property/activity relationships. To be effective, data repositories must pro-
vide researchers and regulators with tools for knowledge extraction from annotated 
data. Data collected from nanotechnology research are fundamental for the identifi-
cation of correlations between nanomaterial’s structure, physicochemical properties 
and biological activity. Establishing these relationships is of paramount importance 
to identify mechanisms of toxicity and to guide safe-by-design strategies for new 
nanomaterials.

Fig. 9.5  Screenshot of the pathway analysis tool developed in MODERN. Sample output showing 
pathways identified from gene differential expression data (http://anapath.biocenit.cat)
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Currently, most of the data on nanosafety are widely scattered and remain inac-
cessible as tables and figures in scientific literature or in non-public databases (e.g., 
research project results and industrial R&D activities). Data ambiguity, the lack of 
standardization together with unstructured and heterogeneous data sources makes 
the impact assessment of nanomaterials a challenging task plagued with uncertain-
ties. The use of ontologies (i.e., controlled vocabularies and relationships that cap-
ture knowledge in a specific domain) provides a unifying approach for data 
structuring and annotation. The use of standards for data annotation allows the inte-
gration of heterogeneous data sources, aggregation and presentation in an accessible 
format and facilitates the computational analysis of the integrated data sets. The 
combination of controlled vocabularies with database systems enables querying 
databases not only through their logical schema, but also through the concepts of the 
ontology and their semantic relationships. Consequently, users can retrieve data in 
the context of what the data are about, which includes the ontological terms related 
to the data, their taxonomic parents, related terms and ontology definitions [21]. 
Although ontologies are common in biology and biomedicine, their use is still 
scarce in nanotechnology. This can be attributed, in part, to the novelty of the disci-
pline but also to the limited amount of publicly available data.

The NanoParticle Ontology (NPO, [74]) was a pioneering work in the develop-
ment of ontology for nanomaterials and their applications. The ontology, which 
includes 1903 classes and 81 properties, encompasses knowledge underlying the 
preparation, chemical composition, physicochemical characterization and in vitro/
in vivo characterization of nanomaterials and is intended for top-level modelling of 
nanomedicine and nanosafety concepts. However, because of its initial development 
in nanotechnology cancer diagnosis and therapy, the low-level details of NPO are 
mainly focused on the applications of nanotechnology in cancer research. 
Complementary approaches to extend ontologies to the whole nanosafety domain 
have been developed within the FP7 eNanoMapper Project5 [23]. The eNanoMap-
per ontology6 covers the full scope of terminology needed to support research into 
nanomaterial safety. It builds on multiple pre-existing external ontologies resulting 
in a total of 6690 classes and 587 properties.

To extract the maximum amount of relevant information, nanomaterial data 
should not be analysed independently of the overall nanosafety context. For instance, 
data only on in vitro toxicity effects are not sufficiently relevant/informative to get 
the complete picture of the potential impact of a nanomaterial. Additional informa-
tion such as in situ nanomaterial properties, information on synthesis process, expo-
sure conditions and actual dose and distribution of the particles taken up by cells/
animals, and characteristics of the biological endpoint are also required. Based on 
these principles, a data management system with full support for ontology annota-

5 http://www.enanomapper.net.
6 http://bioportal.bioontology.org/ontologies/ENM.
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tion was conceived and implemented in MODERN. The function of the data man-
agement system is to store nanosafety data in a semantically consistent manner by 
leveraging existing ontologies for specific parts of the nanosafety domain. In addi-
tion, the system has been designed to be interoperable and to facilitate data sharing. 
To this end, the data management system implements the ISA-TAB-Nano data 
exchange format [75].

Following the above principles, the nano Data Management System7 (nanoDMS, 
see Fig. 9.6) implements a unified and semantically annotated nanosafety data 
repository based on ISA-TAB-Nano for data sharing. Within MODERN, the use of 
the data management system has been complemented by the development of proce-
dures for the curation of data so that data quality and provenance information are 
ensured. The usability of the system has been evaluated in collaboration with other 
modelling projects (e.g., nanoPUZZLES8, [48]). The system provides different 
access control levels to protect data confidentiality, integrity and preserve intellec-
tual property rights. The system also offers support for server federation, allowing 
the easy deployment of a distributed nanosafety cloud.

7 http://nanodms.biocenit.cat.
8 http://www.nanopuzzles.eu/.

Fig. 9.6  Web interface of the nanoDMS system showing the ISA-TAB_Nano structure (http://
nanodms.biocenit.cat)
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9.3  �Computational Characterization of eNPs: Development 
of Nanodescriptors

The development of in silico toxicity models for nanoparticles is mainly hindered 
by two factors: lack of appropriate descriptors and scarcity of consistent experimen-
tal data. While the latter is largely caused by the difficulties in synthesizing nanopar-
ticles with well characterized and narrow size distribution, agglomeration, etc., the 
former is mainly caused by the very complex and large structures of nanoparticles 
(as compared to organic molecules) not permitting the use of most atom-explicit 
computational methods. MODERN has implemented two approaches for nanode-
scriptor development. The first is based on quantum chemistry calculation to 
describe the electronic structure of the nanoparticle whereas the second is based on 
molecular modelling principles.

9.3.1  �Nanodescriptors Based on nanoparticle’s Electronic 
Structure

For a chemical compound X containing N electrons, the ionization potential IP and 
electron affinity EA are defined as difference in energy E for the process of subtract-
ing or adding one electron, which can be approximated through Koopmans theorem 
as negative energies of the highest occupied and lowest unoccupied molecular orbit-
als, εH (HOMO energy) and εL (LUMO energy), respectively [8, 60]:
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In Eq. 9.6, the physicist (and former chemist) sign convention for EA is used that 
provides a positive value in case the anion is more stable than the neutral 
compound.

The electronegativity EN (often termed χ) of a molecule is a measure of its initial 
attraction towards electronic charge. Its rigorous definition as negative partial deriv-
ative of energy E on N can be transformed to a finite-difference approximation 
employing IP and EA, which in turn can be approximately replaced by the HOMO 
and LUMO energies [8, 60]:
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Correspondingly, the hardness HD (often termed η) characterizing the resistance 
to charge transfer can be expressed in a simple finite-difference form [8, 59]:
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In a solid-state conductor with a typical electron density of 5 × 1022 cm3 (number 
of conducting electrons N per unit volume V), the probability of occupancy of a 
given energy level εi, fi (a number between 0 and 1) is governed by the Fermi-Dirac 
statistics -where k and T denote the Boltzmann constant and absolute temperature, 
respectively- [69]:
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Here, the Fermi level εF is associated with the occupation probability of 0.5 at 
0 K, and thus can be understood as highest occupied energy level of the respective 
electronic band (that is only partly filled in case of metals). For a free-electron gas 
as simple model of a metallic conductor with ε0 denoting the lowest occupied energy 
level, the energy difference [69]:
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(with h = Planck’s constant, and m = electron mass) quantifies the kinetic energy of 
the Fermi-level electron, and as such is a positive quantity. In practice, EF and εF are 
often used synonymously and thus both called Fermi energy. Considering Eq. 9.10, 
however, we call εF (that for bound electrons is a negative quantity) the Fermi level 
of the system of interest. EF increases by the 2/3 power with increasing density of 
conducting electrons (N/V); taking the EF values of sodium (Na) and silver (Ag) as 
example, the significantly higher value of the latter (5.5 vs. 3.1 eV) is driven by a 
more than twofold higher electron density.

Since for conductors εF can be approximately taken as highest occupied level, the 
negative of its energy essentially corresponds to the minimum work required to 
remove an electron from a solid. The latter is called the work function reflecting the 
electronic structure of the solid and its surface. On the one hand, the work function 
corresponds to the (lowest) IP of a molecule (see Eq. 9.5). On the other hand, this 
correspondence holds only approximately because of the variation in electronic 
characteristics between bulk and surface-layer atoms, the latter of which are less 
shielded and thus more prone to ionization.

In a semiconductor, εF is located in the forbidden region halfway between the 
filled valence band and the empty conduction band (referring to 0° K). Denoting εv 
and εc as highest filled and lowest unfilled levels of the valence and conduction 
band, respectively, these levels represent the semiconductor ionization potential and 
electron affinity according to:
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	 IP » -eV 	 (9.11)

	 EA » -e L 	 (912)

(with IP approaching –εF upon metallization of the material), and the solid-state 
analogues of Eqs. 9.7 and 9.8 provide working equations for the semiconductor 
electronegativity and hardness:

	
EN » - +( ) = -

1

2
e e eV Fc

	
(9.13)

	
HD » - +( ) = -( )1

2

1

2
e e e eV Vc c

	
(9.14)

Considering further that at room temperature, the Fermi-Dirac distribution is 
smeared out with finite occupation probabilities of energy levels above εF, the 
semiconductor work function could be estimated through –εF and thus EN (Eq. 
9.13) or –εv (the solid-state IP) or through their arithmetic mean. In any case, Eqs. 
9.13 and 9.14 demonstrate that for semiconductors, the band gap reflects the solid-
state resistance to charge transfer, and the mean of the highest occupied and lowest 
unoccupied orbital energies the initial electron attraction of solid-state material, 
keeping in mind that a more detailed description would require to consider the 
respective surface-layer modulation of these electronic structure characteristics.

The descriptors developed using the approach discussed above are subsequently 
used in Sect. 4 to explore structure-activity relationships for the library of metal 
oxide nanoparticles developed in MODERN.

9.3.2  �Size-Dependent Nanodescriptors Based on Molecular 
Modelling Approaches

One of MODERN’s goals has been to find a solution to the lack of “true nanode-
scriptors” capable of distinguishing between the properties of compounds in the 
bulk and in nanoparticles of different sizes. To address this issue, the approach 
chosen was to model eNPs as whole-particles since it is the most consistent and 
size-aware option. Naturally, true quantum chemistry is not applicable to such 
large systems, therefore, molecular-mechanics/dynamics based methods have 
been used.

Using this approach, a series of descriptors derived from the full molecular 
mechanic simulation of metal oxide nanoparticles have been developed. Due to the 
increasing processing power of computers, it is possible to calculate the energy and 
structural parameters of nanoparticles in a relatively small timescale using simple 
interatomic potentials.

The first step of the simulation is the generation of atomic coordinates for a 
nanoparticle. The thermodynamically most stable crystal structure for each metal 
oxide is selected and the corresponding unit cell parameters are used to generate a 
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spherical nanoparticle with the desired diameter. The atoms in this sphere are 
divided into two groups: core and shell. The atoms in the core are assumed to have 
similar characteristics to the bulk material while the shell atoms are destabilized. 
While the positions of the atoms can be optimized according to different schemes, 
the approach works even without optimization. Already from a single-point calcu-
lation, the potential energy and coordination numbers can be extracted. These val-
ues are the basis to derive different categories of descriptors for nanoparticles. 
Table 9.2 describes the basis of each class of nanodescriptor. Constitutional 
descriptors, reflecting the chemical composition, can be as simple as the number of 
metal or oxygen atoms in the two respective nanoparticle regions. Topological 
(i.e., connectivity based) descriptors include the average coordination number of 
metal and oxygen atoms in the shell group and in the core group. Descriptors based 
on potential energy can either be derived solely from the nanoparticle (average 
potential energy of metal atoms in shell regions) or in comparison with bulk mate-
rial (difference between the lattice energy of nanoparticle and bulk material). Some 
of the 35 descriptors developed were specific to metal oxide eNPs (parameters 
related to oxygen atoms or metal atoms) but the concept can be adjusted to pure 
metal NPs or other types of particles in a straightforward manner.

9.3.2.1  �Nanodescriptor Calculation

The calculation of nanodescriptors was performed with the LAMMPS9 molecular 
dynamics simulator program [63] using Buckingham potentials to calculate the 
energies. The most stable form of the metal oxide crystal structure was selected as 
input for developing the nanodescriptors. Energy of the unit cell was calculated, the 
optimal cutoff values for Coulombic interactions were calibrated which were later 
used for nanoparticle calculations. Atomic coordinates of nanoparticle were found 
by replicating the selected unit cell and cutting out the desired shape of the nanopar-
ticle (sphere in the present case). To ensure the charge neutrality of the nanoparticle, 

9 http://lammps.sandia.gov.

Table 9.2  Classes of size-dependent nanodescriptors for metal oxide eNPs

Descriptor related 
to Basis of descriptors

Chemical 
composition

Total number of atoms in nanoparticle, in the core and shell regions.

Potential energy Average potential energy of all atoms in nanoparticle, of metal atoms or 
oxygen atoms, in electron volts.

Lattice energy Lattice energy of the whole nanoparticle, relative lattice energy (per 
diameter or per surface area or as compared to a perfect crystal) of the 
particle in electron volts.

Topology Average coordination number of all atoms, metal atoms or oxygen atoms 
in the nanoparticle.

Size Diameter, surface area and volume of the nanoparticle in Å, Å2, Å3, 
respectively.
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an appropriate number of metal or oxygen atoms were added to random lattice posi-
tions on the surface of the nanoparticle. After that, descriptors from classes described 
above were calculated from the results of a single-point energy calculation.

A large number of the descriptors are derived from the potential energy which is 
composed of two parts: pairwise energy calculated by the Buckingham potential (Eq. 
9.15), and Coulombic interactions, which are calculated by Wolf summation [82]:

	
E A e

C

r
rB

r

c= - <
-

* ,r
6
r

	
(9.15)

where A, ρ, C are constants of the Buckingham potential; r is the interatomic dis-
tance; rc is the cut-off radius.

Wolf summation was used as the computationally much more affordable alterna-
tive to the traditional Ewald summation [15]. The required cut-off radiuses for the 
Wolf summation were derived from the modelling of respective infinite crystals by 
periodic calculation of small clusters of crystal unit cells.

One of the main requirements for these calculations are the constants for 
Buckingham potentials. For many metal oxides, these values can be found from the 
literature, but for example Sb2O3, these constants had to be derived. Density func-
tional theory (at the level of B3LYP/Def2-TZVDP) was used to calculate the inter-
atomic potential parameters. The ability to derive the interatomic potential fully 
theoretically based on by ab-initio calculations and the subsequent calculation of 
descriptors using these parameters is a great advantage since the only experimental 
parameter required for the calculation of nanodescriptors is the determined struc-
ture of the unit cell. As many metal oxides can exist in multiple crystal structures, 
the thermodynamically most stable crystal structure under standard conditions was 
used for the calculation of nanodescriptors in all cases.

Geometric descriptors are based on the calculated diameter of the nanoparticle, 
which is defined as the maximum distance between any two atoms in the nanopar-
ticle. Constitutional descriptors are based on the chemical composition of nanopar-
ticle. Descriptors which are based on the potential energy indicate the stability of 
the core and shell regions in the nanoparticle, respectively. Topologic descriptors 
are based on the coordination number of atoms (defined as counting the neighboring 
atoms which lie inside radius R.

	
R R RM O= +( )1 2. *

	
(9.16)

where RM, RO are the ionic radii of metal and oxygen atoms, respectively. The last 
group of descriptors is based on the lattice energy, the difference of the latter com-
pared to that of a perfect crystal and the proportion to diameter, surface area, and 
volume.

The main advantages of these nanodescriptors over previously published descrip-
tors are:

	1.	 Current descriptors require only one experimental parameter for calculation, 
namely the structure of the unit cell of the metal oxide. This information is avail-
able for many different metal oxides (and other compounds)
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	2.	 Descriptors are size-dependent.
	3.	 Method for calculating descriptors is easily extendable to include solvent effects 

or to nanoparticles with non-spherical shape.

The unit cell structure is necessary to calculate the required constants for the 
Buckingham potential and to generate the structure of the nanoparticle. While at the 
moment the thermodynamically most stable crystal structure is used, in principle 
any other crystal structure can be used if so desired.

9.3.2.2  �Analysis of Size-Dependency

The size-dependency of the new nanodescriptors is paramount, as the nanoparticles 
with the same chemical composition but different size can have different toxicity/
property values. The size-dependency of a Cr2O3 nanoparticle descriptor “Difference 
between lattice energies of nanoparticle and perfect crystal” is depicted on Fig. 9.7 
based on data generated from molecular dynamic calculations in MODERN.
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Fig. 9.7  The size-dependency of the descriptor “Difference between lattice energies of nanopar-
ticle and perfect crystal” for a Cr2O3 nanoparticle
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As the radius of nanoparticle increases, the difference between lattice energy of 
nanoparticle and the corresponding perfect crystal is reduced, approaching a con-
stant. This follows the notion that as the size of nanoparticle approaches macroscopic 
levels, the properties of the nanoparticle start to become similar to the ones of mac-
roscopic particle/bulk material. The curve presented in Fig. 9.7 agrees well with the 
commonly accepted position that nanoparticles of size below 20 nm require the most 
attention as they start to possess significantly different properties as compared to 
bulk material.

9.4  �Structure-Activity Relationships for Nanoparticles

The approach of Quantitative Structure-Activity Relationships (QSAR) is 
widely used in chemical and biological sciences, attempting to relate the differ-
ences in chemical structure represented by a set of descriptive parameters 
(descriptors) to a physicochemical property or biological activity. Biological 
activity usually depends on several descriptors and the corresponding multilin-
ear QSAR model has the following form:

	 P a a X a Xn n= + +¼+0 1 1 	 (9.17)

In the above example, the biological activity (P) depends on structural features 
represented by n descriptors (X1 … Xn) and n+1 coefficients (a0 … an), which are 
determined by multilinear regression analysis. Once a valid QSAR model has been 
determined, the prediction of physicochemical properties or biological activity for 
related compounds becomes possible. The quality of the predictions of a QSAR 
model depends on the accuracy of the experimental data, the choice of descriptors 
and the statistical methods, and on the validation of the model. Naturally, each 
QSAR model is limited to a certain applicability domain, depending on the struc-
tural features present in the source dataset and the range of the experimental values. 
The same general principles for QSAR development can be applied to eNPs. 
However, for eNPs one most include additional information in the structure of the 
models to account for nanoparticle size as well as for changes in its properties in 
exposure conditions. In addition to data related issues (i.e., scarcity, uncertainty and 
variability), the lack of detailed mechanistic knowledge of nanoparticle toxicity 
adds an additional complexity level to model development, validation and use.

9.4.1  �Structure-Activity Relationships Based on Nanoparticle’s 
Electronic Structure Descriptors

In recent years it became apparent that besides the often-discussed redox activity of 
nanoparticles that may induce reactive oxygen species (ROS), other toxicological 
pathways may play a role [53]. In this context, a particular issue is phagocytosis 
(Trojan horse) as highly efficient route of uptake into the cell [42], offering the 
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possibility of metal-specific toxicity at very high concentrations upon intracellular 
dissolution. In the following, algal toxicity in terms of 72-h EC50 (growth inhibition 
50 %, see Sect. 2.2) values are analyzed from the viewpoint of quantum chemical 
reactivity parameters calculated for eNP monomers, including trend analyses of the 
electronic structure characteristics when going from the monomers to clusters with 
increasing molecular size.

9.4.1.1  �Endpoint Selection and Computational Details

Algal toxicity data in terms of 72-h EC50 [mg/L] values -effective concentration 
inhibiting the growth by 50 %- for a subset of metal oxide nanoparticles (Al2O3, 
CuO, Fe2O3, MgO, Sb2O3, SiO2, TiO2 and ZnO) were used as endpoint. For their 
conversion from the original mass-based unit to mol/L, the molar mass of the 
respective unit cell was divided by its number of metal atoms, considering the fact 
that in this way, the toxicity is normalized to the concentration of metal ions. Taking 
the Al2O3 NP as an example, the crystal monomer is Al2O3, yielding AlO1.5 as formal 
basis for the NP molar mass. The resultant log EC50 [mol/L] values were used for 
comparison with electronic structure characteristics.

The starting geometries for the metal oxide clusters have been prepared in the 
following way. For each cluster, a part was cut out of the solid-state crystal structure 
of the material, such that the number of metal atoms (which we use as a measure for 
the cluster size) was as desired. The cutting was performed in such a way that the 
surface of the resulting cluster is completely terminated with oxygen atoms. 
Subsequently, hydrogen atoms have been added to exposed oxygen atoms in order 
to obtain a neutral charge, turning some oxygen atoms into hydroxyl groups and 
others into water molecules. This creates a microsolvation around the cluster, and 
keeps the coordination number of the metal atoms at the same value as in the bulk 
phase. To give an example, the cluster containing one aluminum atom was cut out 
of the corundum lattice as formal “AlO6”, because aluminum has six nearest oxygen 
neighbors in the lattice. Subsequently, hydrogen atoms were added, turning three of 
the oxygen atoms into hydroxyl groups and the remaining three into water mole-
cules, thus yielding a final cluster of Al(OH)3(H2O)3 that is neutral in charge.

The quantum chemical calculations have been performed with the program pack-
age Orca [52], employing density functional theory (DFT) with the PBE functional 
[62] and Grimme’s empirical D3 dispersion correction [20]. Atom-centered basis 
sets of the type def2-TZVPP [80] have been used for all atoms. The SCF conver-
gence criterion was set to “VeryTight”. The starting structures of all metal oxides 
(monomers and clusters containing an increasing number of monomer units) have 
been cut from the corresponding solid state lattices, and subsequently the exposed 
surfaces have been saturated by hydroxide ions to obtain charge-neutral species. 
Water molecules were added to account for solvation effects (“microsolvation”). 
Based on these structures, geometry optimizations (convergence criterion “Tight”) 
have been performed to determine equilibrium geometries. IP, EA, εF (−EN) and 
HD as electronic structure characteristics have been calculated from the respective 
DFT orbital energies based on Koopmans theorem (see Eqs. 9.5–9.8 and their solid-
state counterparts Eqs. 9.11–9.14).
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9.4.1.2  �Trend Analysis

The data distributions of log EC50 [mol/L] of the eight eNPs vs. calculated IP, EA, 
εF (= −EN) and HD of the NP monomers (saturated by H atoms) are shown in  
Fig. 9.8. As can be seen from the top left plot, NP toxicity vs. IP suggests a separa-
tion between the main-group metal oxides MgO, Sb2O3, SiO2 and Al2O3 on the one 
hand, and the transition-metal oxides CuO, ZnO, Fe2O3 and TiO2 on the other hand.

Whereas both subsets overlap in their IPs as estimated through Koopmans theo-
rem from the HOMO energies, the high toxicity end of the former (log EC50: from 
−2.6 for MgO to −3.4 for SiO2) differs by 1.5 log units from the low toxicity end of 
the latter (log EC50: from −4.9 for Fe2O3 to −5.9 for ZnO). Moreover, eNP toxicity 
increases with decreasing IP for the transition-metal eNPs, which contrasts with the 
opposite trend observed for the main-group counterparts. Since the IP is inversely 
related to the ease of electron donation, the latter appears to play a toxicity-enhancing 
role only for algal toxicity of the transition-metal oxide eNPs, suggesting a redox-
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Koopmans theorem (see Eqs. 9.5–9.8). Algal toxicity data were taken from [3]
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mediated toxicity pathway in contrast to a different toxicological mode of action for 
the main-group oxide NPs.

In the top right plot of Fig. 9.8, a similar discrimination between the main-group 
and transition-element metal oxide eNPs is shown with EA as eNP monomer prop-
erty. In this case, increasing EA corresponds to an increase in algal toxicity for the 
transition metals, indicating that the latter is enhanced with increasing capability of 
accepting excess electronic charge (keeping in mind the presently used sign conven-
tion for EA as outlined above). Regarding the Fermi level of the eNP monomers 
(bottom left in Fig. 9.8), eNP toxicity increases with increasing εF, suggesting that 
the NP electron donor strength provides a significant contribution to the algal toxic-
ity. The corresponding decrease in toxicity with increasing EN (= −εF) is in line 
with this interpretation and indicates that in contrast to the main-group metal oxides, 
the transition-metal eNPs show a decrease in toxicity with increasing initial electron 
attraction.

When analyzing log EC50 from the viewpoint of the electronic hardness (that is 
inversely related to the polarizability), a similar between-group separation is 
accompanied by less pronounced within-group trends. In this case, the main-
group metal oxides show a weak increase in toxicity with increasing HD, which 
would also hold with regard to ZnO as compared to the other three transition-
metal oxides, but not otherwise. Taking all four plots of Fig. 9.8 together, the level 
of significant approximation regarding eNP electronic properties should be kept 
in mind, which concerns both fundamental and methodological issues (eNP 
monomer vs eNP bulk vs eNP surface, Koopmans theorem, DFT computational 
chemistry).

In summary, the above quantum chemical analysis of the algal toxicity of 
metal-oxide eNPs suggests a significant difference in mode of action between 
the subgroups of transition metals and main-group elements. For the former, 
toxicity increases with increasing electron-donor capability, indicating that a 
redox-mediated process involving electron transfer to reactive oxygen species 
(ROS) plays a crucial toxicological role. Alternatively, and considering the 
experimental setting with exposure to light and thus radiation energy, the 
increase in toxicity with decreasing IP may also reflect an increased probability 
for electronic transitions into the excited state and thus a phototoxic contribu-
tion to the observed algal growth inhibition in terms of 72-h EC50 values. For the 
main-group elements, the lack of respective EC50 dependencies suggests a non-
ROS mode of toxic action.

9.4.2  �QNAR Development from Size-Dependent 
Nanodescriptors

For (small) organic molecules, descriptors quantifying geometric, steric or elec-
tronic properties of a molecule can be empirically determined or more accurately 
calculated using quantum chemical methods of computational chemistry, usually at 
semi-empirical level often based on AM1 parametrization [38].
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These methods, however, are not well suited to model inorganic materials, espe-
cially nanoparticles due to the large number of atoms and the contribution of the 
lattice. Moreover, many of the algorithms used to calculate descriptors for organic 
molecules cannot be directly applied for nanoparticles. One simple approach to 
overcome this problem is to use external descriptors – known/measured properties 
of the nanoparticle material (or calculated from small metal oxide clusters) such as 
lattice energy, electronegativity, size, ionic index etc. [45] have successfully used 
this type of descriptors to model the probability of toxicity of metal oxide nanopar-
ticles, as the best model has a classification accuracy of 93.74 %. A similar approach 
was used by [65] to describe the cytotoxicity of 17 metal oxide nanoparticles to 
bacteria Escherichia coli. The resulting QSAR model utilized one descriptor: 
enthalpy of formation of gaseous metal cation. Descriptors based on the SMILES 
code of the compound have been also used to model the toxicity and Young modulus 
of inorganic nanomaterials [64, 76, 78]. The modelling of nanoparticles coated with 
a layer of organic molecules has been limited to descriptors directly calculated from 
the structure of the coating material [35, 77]. Unfortunately, none of these approaches 
is capable of predicting the size-dependency of the toxicity of nanoparticles, a phe-
nomenon observed recently by several experimental studies [9, 36, 61].

A simple example of a QNAR model using size-dependent nanodescriptors was 
constructed and is presented below. Toxicity data in Table 9.3 were taken from the 
work of [65].

Using the information in Table 9.3 and the size-dependent nanodescriptors 
developed in Sect. 3.2, a two parameter multilinear QNAR was developed:
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Where ND1 in Eq. 9.18 corresponds to the nanodescriptor Average potential energy 
of atoms in the shell region of the nanoparticle in electron volts, and ND2 is the 
nanodescriptors corresponding to the Average potential energy of oxygen atoms in 
the core region of the nanoparticle in electron volts. The QNAR shows acceptable 
statistics for performance and stability10:
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Fig. 9.9 shows a plot of the experimental versus predicted endpoint values.

10 *R2-squared correlation coefficient; R2
cv –squared cross-validated correlation coefficient; F – 

Fisher criterion; s2 – squared standard deviation.

M. Brehm et al.



285

Table 9.3  Experimental and predicted log(1/EC50) values of nanoparticles, calculated 
nanodescriptors (ND) and size information

NP
Log(1/EC50) Nanodescriptors NP size
Exp. Pred. ND1 (eV) ND2 (eV) Diameter (nm)

ZnO 3.45 3.38 –19.36 –19.70 21.0
CuO 3.20 3.34 –21.25 –21.60 48.0
V2O3 3.14 2.72 –28.60 –19.47 20.0
Y2O3 2.87 2.75 –27.19 –18.00 32.7
Bi2O3 2.82 3.01 –17.04 –8.36 51.0
In2O3 2.81 2.75 –27.88 –18.94 59.6
Sb2O3 2.64 2.74 –28.04 –18.97 20.0
Al2O3 2.49 2.49 –32.79 –20.80 31.0
Fe2O3 2.29 2.71 –29.64 –20.71 20.0
SiO2 2.20 1.96 –41.98 –23.11 20.0
ZrO2 2.15 2.22 –32.16 –14.06 25.0
SnO2 2.01 2.11 –37.23 –19.27 21.0
TiO2 1.74 1.77 –43.31 –21.05 15.0
CoO 3.51 3.37 –19.83 –20.14 20.0
NiO 3.45 3.37 –19.92 –20.33 20.0
Cr2O3 2.51 2.68 –30.37 –21.09 20.0
La2O3 2.87 2.77 –12.12 4.24 24.6

ND1 is the Average potential energy of atoms in the shell region of the eNP and ND2 is Average 
potential energy of oxygen atoms in the core region of the eNP. Toxicity data were taken from [66]
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oxides, based on the two 
nanodescriptor model (Eq. 
9.18) Toxicity data were 
taken from [66]
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9.4.2.1  �Model Interpretation

The first nanodescriptor – ND1 – in Eq. 9.18 is a very obvious choice, since many of the 
outstanding characteristics of eNPs are related to the uncompensated potential energies 
of the atoms at or near the surface of the particle. The descriptor is not that much com-
position dependent, instead it relates to the shape and size of the particle. The second 
nanodescriptor – ND2 – is more composition specific, as the potential energy of the 
oxygen atoms in the unperturbed lattice of an oxide depend both on the lattice structure 
and the metal atom involved. Therefore, with just two descriptors the model can account 
for the chemical composition, the lattice structure, the size, and the shape of eNPs.

The computational method described above was designed to be expandable to 
allow the development of a more accurate representation of nanoparticles and more 
complex descriptors. While at the moment the descriptors were calculated from 
single-point energies, it is easily expandable to include full or partial minimization 
of the geometry of the nanoparticle before the calculation of descriptors or even 
perform molecular dynamics simulation of these systems to replicate the pyrolysis 
conditions used in the synthesis of nanoparticles. In this way, even the synthesis 
conditions can be reflected by the model. Computationally more expensive potential 
improvements include the use of solvent and coating materials around the nanopar-
ticle. In order to prove the benefits of such more elaborate approaches, however, a 
very consistent and accurate experimental dataset has to be used with known and 
controlled particle size distribution and other variables.

9.5  �Nanoparticle Grouping and Hazard Ranking

9.5.1  �Identification of Nanoparticle Categories.

The large number of nanotechnology enabled products and the multitude of different 
types of nanomaterials makes impracticable, in terms of time and costs, their exhaus-
tive hazard and risk assessment. Nanomaterial categorization criteria are needed to 
develop “grouping schemes” that will make nanosafety assessment more efficient. 
From a computational nanotoxicity perspective, the large number of possible 
nanoparticle types (e.g., diverse combinations of core composition, surface modifi-
cations and functionalization) hinders the development of “universal” models. It is 
thus fundamental to develop similarity metrics involving different nanomaterial 
characteristics (e.g., physicochemical property profile and biological activity) across 
their entire life cycle. The use of appropriate similarity metrics will facilitate the 
grouping of nanoparticles into homogeneous categories where more accurate and 
reliable models can be developed and validated. The establishment of eNP categories 
will also enable the ranking of their environmental and human health impact paving 
the way to the development of a risk assessment framework for nanomaterials.

Within MODERN, different techniques and algorithms have been used to group 
the metal and metal oxide nanoparticles into similar groups using different types of 
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information. The different category schemes developed in the current analysis are 
discussed in terms of the soluble, active and passive groups proposed by [1] in their 
DF4nanoGrouping framework. In what follows, a given eNP is considered as active 
if it has EC50 values lower than 100 mg/L for at least one of the tested species.

The data set in Table 9.4, covering material characters and hazard estimates will 
be used in the following to illustrate the application of the hierarchical analysis.

9.5.1.1  �Categories Derived from Physicochemical Properties

Categories can be developed from measured physicochemical properties of the 
eNPs. Fig. 9.10 depicts the categories obtained using the Self-Organizing Map 
(SOM) algorithm [41] to group the 11 metal oxide nanoparticles in MODERN’s 
library [3]. Each SOM map unit ((i.e., circles in Fig. 9.10) can be interpreted as a 
cluster. Accordingly, nanoparticles assigned to the same unit form a category. The 
features used for grouping include BET size, hydrodynamic diameter in DI water, 
zeta potential in DI water and the oxidation level (see Table 9.4). Prior to SOM 
development, data were centered and scaled. Map topology was defined as toroidal 
(i.e., periodic boundaries) to avoid border effects and the map grid was rectangular 
with a dimension of 3 × 2 units. The position of eNPs within each unit reflects their 
similarity (i.e., the closer the labels the more similar the eNPs). In addition, the 
distance of a nanoparticle to the unit center (i.e., center of each circle) is related to 
the ability of a given nanoparticle to act as a representative element for the group of 
eNPs assigned to the unit. The SOM analysis identifies six different groups of 
nanoparticles.

Table 9.4  Toxicities of nanoparticle (eNP) suspensions to algae Pseudokirchneriella subcapitata, 
protozoa Tetrahymena thermophila and bacteria Vibrio fischeri

eNP
Algae 
z EC50

Protozoa 
EC50

Bacteria 
EC50

BET 
size 
(BET)

Hydrodinamic 
size (nm, DI 
water)

Zeta 
potential 
(mV, DI 
water)

Oxidation 
level

ZnO 0.1 1.84 11.52 20.4 171 16.4 2
CuO 0.43 2 1.78 13.1 130 17 2
TiO2 1.26 52.6 100 12.2 171 –13.6 4
Fe3O4 1.93 26.03 100 9.7 128 22.2 2.67
Co3O4 1.11 100 100 11.5 99 23 2.67
Mn3O4 1.34 100 100 15.2 395 –14.4 2.67
Pd 0.41 100 55.42 15.1 127 –27.8 0
SiO2 35.58 100 100 7.8 148 –33.2 4
Al2O3 30.8 100 100 11.4 95 39.2 3
WO3 57.8 100 87.07 10.6 63 –45.2 6
MgO 100 100 100 13.6 1964 6.9 2
Sb2O3 100 100 73.74 20.5 125 –24.3 3

Data were taken from [3]
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ZnO WO3

SiO2

TiO2

Mn3O4

Sb2O3

Fe3O4

Co3O4
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hydrodynamic_size_DI_water

ZP_DI_water

Oxidation_level

AI2O3
CuO MgO

Fig. 9.10  Self-Organizing Map (SOM) clustering of metal oxide nanoparticles in MODERN’s 
library. Clustering was performed based on the group of physicochemical properties reported in 
Table 9.5. (Top) Identification of eNPs in each category. (Bottom) Physicochemical property pro-
file of each category
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Data in Fig. 9.10 provides the basis for the interpretation of the categories 
obtained from SOM analysis. Category 1 is formed only by ZnO and its main 
characteristics are large BET size and a moderate positive ZP in DI water. The 
distinctive features of Category 2 {WO3} are the oxidation level and a highly 
negative surface charge. Category 3 comprises {SiO2, TiO2}, the main character-
istics of this group are the oxidation level and negative surface charge. The repre-
sentative eNP of this category is TiO2. The fourth category includes {Mn3O4, 
Sb2O3} and its main features are similar to category 1. However, BET sizes are 
smaller and the surface charge in DI water is negative. The representative eNP of 
this category is Mn3O4. Category 5 is the most populated {CuO, Al2O3, Fe3O4, 
Co3O4} and contains positively charged eNPs. The category representative is 
Fe3O4. Finally, category 6 is formed by MgO and its distinctive property is the 
hydrodynamic size with large values.

Categories 1, 2, 3 and 5 include eNPs which are either soluble or active to the 
species tested (EC50 < 100 mg/L). Category 6 includes a passive eNP whereas cat-
egory 4 mixes active with passive eNPs.

9.5.1.2  �Categories Derived from the Ecotoxicity Profile

Grouping can also be derived from the observed nanoparticles’ effects on different 
test species using different assays. The toxic effects of the 12 eNPs in MODERN’s 
library were compared by grouping the different eNPs according to type of assay 
and the corresponding EC50 values (Table 9.5). Despite the fact that different species 
and assays were used, similarities in terms of toxicity emerged. Soluble metal oxide 
eNPs (CuO and ZnO) were the most toxic to all the species. Similarly, Pd and Co3O4 
were toxic to alga and bacteria relatively low concentrations. The only non-toxic 
(i.e., passive) eNP to all species in all testing conditions was MgO. The remaining 
eNPs (Al2O3, Co3O4, Fe3O4, Mn3O4, SiO2, TiO2) showed no toxic effects at concen-
trations below 100 mg/l. The algal growth inhibition assay was the most sensitive. 
According to this assay, MgO and Sb2O3 did not show any toxicity even at very high 
concentrations (100 mg/l). In contrast, CuO, ZnO and Pd showed growth inhibition 
at very low concentrations (<1 mg/L).

Using a data-driven grouping approach based on community detection on com-
plex networks three categories of eNPs were automatically detected. Complex net-
works are graphs containing a set of nodes, representing nanoparticles, and a set of 
edges connecting pairs of nodes [55]. Data used to build the network were standard-
ized by subtracting their mean and dividing by their standard deviation, and then the 
Euclidean distance between each pair of nanoparticles was computed. Distances 
were finally converted into weights in a range between 0 and 1, in order to obtain a 
completely connected network with weighted edges.

The grouping of nanoparticles inside the network was done looking for what it is 
called the analysis of the community structure of the networks [18], i.e. a partition 
of the network into communities, which are subsets of nodes more strongly con-
nected between them than with the rest of the nodes in the network.

The drawing of the network in Fig. 9.11 as well as the analysis of their commu-
nity structure was done using the software Gephi [5]. Gephi looks for community 
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EC50 mg compound/L 72 h EC50 24 h EC50 30 min EC50

Organisms: Algae Protozoa Bacteria

Species:
Pseudokirchneriella
subcapitata

Tetrahymena
thermophila

Vibrio fischeri
(G-)

Exposure medium: Mineral medium DI water 2 % NaCl

0.1-1 CuO, ZnO, Pd None None

>1-10 CuO, ZnO CuO

>10-100 Al2O3, SiO2, WO3 Fe3O4, TiO2 ZnO, Pd, WO3, Sb2O3

>100 MgO, Sb2O3

Al2O3, Co3O4, MgO,
Mn3O4, Pd, Sb2O3,
SiO2, WO3

Al2O3, Co3O4, Fe3O4,
MgO,  Mn3O4, SiO2,
TiO2

Co3O4, Fe3O4, Mn3O4,
TiO2

Table 9.5  Expert criteria categorization of eNPs based on the toxicity values (EC50 or MBC, mg 
compound/L) to bacteria, protozoa and algae. All NPs were tested in nominal concentrations from 
0.01 up to 100 mg/L

Fig. 9.11  Categories identified from the integrated (algae + protozoa + bacteria) ecotoxicity pro-
file. Color codes correspond to different eNP categories
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structure maximizing one of the most successful quality functions for community 
detection, the modularity function [56], which evaluates the quality of a network’s 
partition into communities.

Interestingly, the category that contains soluble and active eNPs, formed by 
{ZnO, CuO, Fe3O4 and TiO2}, is consistent with the grouping observed in the trend 
analysis of electronic structure descriptors (Fig. 9.8). The second category that com-
prises {Mn3O4, Co3O4, SiO2, and Al2O3 also corresponds to active eNPs. Finally, the 
third category that includes {WO3, MgO and Sb2O3} corresponds to eNPs which are 
passive from the ecotoxicity viewpoint (i.e., EC50 > 100  mg/L for at least two 
species).

9.5.1.3  �Categories Identified from Integrated Structure-Physicochemical 
and Ecotoxicological Data

Relevant eNP categories can be identified from data by integrating heterogeneous 
information related to multiple aspects of the nanomaterial. Fig. 9.12 depicts the 
categories identified using complex network analysis after integrating three 

Fig. 9.12  Grouping obtained using complex network analysis techniques. Data used for grouping 
includes size-dependent nanodescriptors, physicochemical properties (BET size, ZP in DI water, 
oxidation state) and ecotoxicity profile for algae, bacteria and protozoa. The size of each node is 
proportional to nanoparticle’s BET size. Colors correspond to communities (groups) of eNPs iden-
tified using modularity
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different types of information including structure, physicochemical properties and 
ecotoxicity. The soluble category includes ZnO and CuO whose toxicity is driven 
by solubility. The category corresponding to the active nanoparticles is formed by 
three subgroups with different activity levels and includes Fe3O4, TiO2, Mn3O4, 
Co3O4, SiO2, Al2O3 and WO3. Finally, the passive category is formed by Sb2O3 and 
MgO.

9.5.2  �Integrated Hazard Ranking for Risk Assessment.

Current nano(eco)toxicological knowledge is by far not sufficient to tackle all the 
issues involved in the hazard evaluation of eNPs. Compared with single-test organ-
ism systems, which are already quite complicated covering a myriad of interactions 
of nanoparticle-organism-environmental factors, ecosystems are by far more com-
plicated involving thousands of species exposed to natural and engineered nanopar-
ticles in various combinations and varying environmental conditions. The integration 
within a hazard-ranking framework of the information gathered from reliable exper-
imental data and from reliable models should provide cost-effective tools to evalu-
ate the environmental and human health impact of eNPs.

For eNPs, only few MCDA approaches have been reported [26, 44]. However, 
these previous approaches do not build on the robust order-preserving foundation of 
partial order theory. Order-preserving should be interpreted in this context in the 
sense that if new information is entered, the order of the original information will be 
preserved. This order preserving approach has good potential for hazard assess-
ment, as it allows maintaining previous decisions when new data arrive, in this way 
refining the decision.

In regard to hazard assessment, the results of tests with eNPs – on characteriza-
tion, exposure and toxicity – are almost always partial, e.g. either do not have a full 
set of data for each eNP, the data come from different sources, or the data are not 
directly comparable because it is unknown how to extrapolate data between eNPs. 
The problem is complex and the information in form of data tends to be limited, so 
it is highly important to be aware of uncertainties and to select proper methods that 
are suited for handling uncertain and ill-defined problems. Here, we will focus on 
the partial and total order attribute value models to provide a robust framework, 
where order (ranks/groups) is preserved even when more complex approaches are 
enforced.

9.5.2.1  �Partial Order (POAV) and Total Order (TOAV) Attribute Value 
Models

As mentioned in the introduction, transfer of knowledge between eNPs is impor-
tant, partly because there may be insufficient knowledge in regard to a hazard char-
acterization for the individual eNPs, partly because transferring knowledge between 
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eNPs (when relevant) will save resources and, hence, optimize the hazard assess-
ment efforts for example by prioritizing materials. One way to transfer knowledge 
is by being able to compare information between eNPs by ranking or grouping this 
information [58].

It should be mentioned that other approaches relevant to hazard decision making 
(and grouping and ranking) have used more refined tools based on various linear 
based methods, e.g. [10, 65]. Common for these approaches is that they favor tools 
which provide advanced answers, but also have a number of pre-requisites and con-
straints that may inhibit their usefulness in this context when using multiple source 
data.

Given the values assigned to the attributes, a ranking can be performed. Since 
there is no preference between attributes, i.e. one attribute is not of different 
importance than another attribute (see, [7]), the rankings that can be done in the 
partial ordering are robust rankings because they are independent of weighting 
factors and ranking functions (e.g. using an analytical hierarchy process). This 
partial order model assumes a known monotonic relation between the attribute 
value and the importance for the sub-problem. Thus, an increasing attribute 
value is assumed to give either a higher or lower hazard level for the whole 
value interval of the attribute. The POAV model fails if, for the same attribute, 
there is an increasing hazard level for increasing attribute level for some values 
and a decreasing hazard level for increasing attribute values for other attribute 
values.

Total Order Attribute Value models assume a known weighting and func-
tional relation between all attribute values that can yield a final rank of hazard 
(e.g. using outranking). The rankings generated by a POAV model will be repro-
duced if the same attribute values are used in a TOAV model. But where the 
POAV will leave conflicting ranks as an open question, the TOAV will rank all 
eNPs using Multi Attribute Utility Theory (MAUT). This analysis needs to 
assume multi attribute preference functions to be valid. The challenge is that 
these functions are difficult to define and they will control the result. If there is 
sufficient information to calibrate the ranking model using the relationship 
between attribute values and “true” rank, then the functions can be found and 
evaluated using e.g. the UTA method [30]. However, it is difficult to establish so 
much information in case of eNPs. Basically, there are two main types of prefer-
ence functions: additive functions, where the contribution from one attribute 
(preference) is independent of the contribution from other attributes, and multi-
plicative functions, where the contribution from an attribute depends on the con-
tribution from other attributes.

The partial order rank can be combined with a categorization to investigate 
whether one category tends to be ranked above/below another category [66]. The 
difference between categories and attributes for the ranking is that categories can 
be any type of labelling, while attributes need to have an order relation. Any kind 
of category can be applied to look for patterns between the ranking and the 
category.
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9.5.2.2  �Example: Ranking of eNPs Using the POAV Model

The eNPs presented in Table 9.4 can be hazard ranked through their attribute values, 
i.e. by assuming that a lower EC50 value poses a higher hazard than a higher EC50 
value. Each attribute can be ranked as show in yellow rankings in Fig. 9.13, and a 
joint rank, that only makes rankings between two eNPs that have the same rank for 
all three attributes, is shown as a Hasse-diagram. For example, the rank ZnO > TiO2 
is true for all three attributes (cell tests), while both the rank ZnO > CuO and CuO 
< ZnO are present for the single attributes, so ZnO and CuO are not ranked in the 
Hasse-diagram (Fig. 9.13).

The rankings in the Hasse-diagram are “robust” because they are independent on 
any preference between the attributes. In the Hasse-diagram, there are 45 robust 
eNP rankings out of the total 12 × 11/2 = 66 possible pairs of eNPs to be ranked. 

ZnO ZnO CuO

CuO ZnO

Pd

Sb2O3

Mn3O4

TiO2Fe3O4

WO3 Co3O4

AI2O3

SiO2

MgO

Pd CuO ZnO

CiO Fe3O4 Pd

Co3O4 TiO2 Sb2O3

TiO2 Co3O4 WO3

TiO2Mn3O4

Fe3O4

AI2O3

SiO2

WO3

MgO

45 robust

. . 

-Algae

+ +

-Protozoa -Bacteria
Hasse-diagram: Joint rank for all

three attributes

Fig. 9.13  Rank of each of three sets of toxicity data and the combined rank of the same data. Some 
NMs are equal ranked for respectively Algae as (MgO, Sb2O3), Protozoa as (Co3O4, Sb2O3, Mn3O4, 
Pb, SiO2, Al2O3, WO3, MgO, Sb2O3), Bacteria as (TiO2, Fe3O4, Co3O4, Mn3O4, SiO2, Al2O3, MgO)
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Thus, 68 % of all rankings between the eNPs can be made without any assumed 
weighting of the attributes in relation to each other or any preference function that 
aggregate the attributes to one rank.

9.5.2.3  �Risk Ranking

Following analyses of the material and hazard attributes, it is possible to proceed 
to the actual risk analysis, obviously only if risk is associated with the material or 
hazard in a known way. Apart from ranking of the known risk among materials, it 
is also possible to some extent to rank an unknown material. The ranking-group-
ing aspect can be used to assess possible risks if a set of benchmarking materials 
are available. A benchmark is an eNP for which there exists knowledge about 
descriptors (e.g. material characteristics) and the related risk. By ranking 
“unknown” eNPs material-characteristics together with benchmarks, knowledge 
from benchmarks can be used to interpret the unknown eNPs. In this case, the 
unknown eNPs will be ranked in a bounded risk banding interval, i.e. depending 
on the benchmarking materials the top boundary condition (known) can be identi-
fied and all unknown eNPs that have the combination of descriptors below this are 
not likely to cause risk.

In summary, the ranking approach can be used to derive a risk banding level and 
support risk decision, even when a continuous model cannot be applied to the data. 
This is a key point in the grouping and read across for risk assessment of nanoma-
terials. The ranking approach may further support a priori or posterior grouping of 
the materials and in this way optimize the risk characterization. It will likely be 
especially useful to identify materials of different mode of action, defined as differ-
ent concentration-response curve parameters.

9.6  �Towards Safe-by-Design eNPs

The production of safe nanomaterials requires controlling the property profile of 
new nanoparticles during their synthesis and the understanding of the interactions 
between nanoparticle structure, properties and biological activity. Safe-by-design 
strategies for nanoparticles can be implemented by introducing changes in their 
structure, which in turn modify their intrinsic properties and biological effects.

It is well known that ZnO nanoparticles dissolve in the biological medium. 
Accordingly, the toxicological effects of ZnO NPs have an important relationship 
with particle dissolution, which start in the tissue culture or environmental medium 
and, making its way inside the cells, to the different organs of living organisms [4, 
31, 81, 83]. The demonstration of Zn2+ dissolution leading to an increased cytotox-
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icity points out the necessity for re-engineering ZnO through surface modification 
such as Fe doping that might slow down the dissolution effect due to its stronger 
coordination with neighboring Zn in the crystal structure consequently improving 
the cytotoxicity profile [12, 16, 84].

Similar to the use of the inherent dissolution property of ZnO as a toxicity para-
digm, TiO2, an insoluble nanoparticle, is prone to light activation and has a potential 
to induce toxicity under UV exposure conditions [25]. The electrons are excited to 
the conduction band of TiO2 creating a hole in the valence band via UV light irradia-
tion. Materials that are capable of separating an e−/h+ pair in the electronic bands are 
technologically important however are critically hazardous to the environment since 
the e−/h+ pair is able to interact with surrounding H2O and molecular oxygen to 
generate ROS (HO• radical and/or superoxide) [25, 46, 70]. To study and control 
bioactivity under light irradiation, TiO2 could be doped so that band gap values 
could be tuned in such a way that the electronic excitation is possible at low energy 
wavelength.

A third toxicity paradigm could be the overlap of the conduction band energy of 
metal oxides with the oxidative redox potential of reactions within the cell. 
Re-engineering the conduction band energy would allow safer designing of the 
particles.

The development of in silico models, relating the structure and properties of 
nanomaterials with their biological activity, will be key for the implementation of 
safe-by-design strategies in future generations of nanomaterials [85]. From data 
analysis and structure/property-activity modelling, toxicity can be related to a num-
ber of physicochemical properties of nanoparticles. The combination of in vitro tox-
icity assessment with the application of in silico models has the potential to 
contribute to establish a new paradigm for development and testing of nanomateri-
als. The integrative approach implemented in MODERN has demonstrated the fea-
sibility of developing nanoparticle descriptors that can be subsequently used for the 
establishment of predictive nanotoxicity models, which in turn can inform hazard 
ranking and nanosafety assessment
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Chapter 10
Compilation of Data and Modelling 
of Nanoparticle Interactions and Toxicity 
in the NanoPUZZLES Project
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Abstract  The particular properties of nanomaterials have led to their rapidly 
increasing use in diverse fields of application. However, safety assessment is not 
keeping pace and there are still gaps in the understanding of their hazards. 
Computational models predicting nanotoxicity, such as (quantitative) structure-
activity relationships ((Q)SARs), can contribute to safety evaluation, in line with 
general efforts to apply alternative methods in chemical risk assessment. Their devel-
opment is highly dependent on the availability of reliable and high quality experi-
mental data, both regarding the compounds’ properties as well as the measured toxic 
effects. In particular, “nano-QSARs” should take the nano-specific characteristics 
into account. The information compiled needs to be well organized, quality con-
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trolled and standardized. Integrating the data in an overarching, structured data col-
lection aims to (a) organize the data in a way to support modelling, (b) make (meta)
data necessary for modelling available, and (c) add value by making a comparison 
between data from different sources possible.

Based on the available data, specific descriptors can be derived to parameterize 
the nanomaterial-specific structure and physico-chemical properties appropriately. 
Furthermore, the interactions between nanoparticles and biological systems as well 
as small molecules, which can lead to modifications of the structure of the active 
nanoparticles, need to be described and taken into account in the development of 
models to predict the biological activity and toxicity of nanoparticles. The EU 
NanoPUZZLES project was part of a global cooperative effort to advance data 
availability and modelling approaches supporting the characterization and evalua-
tion of nanomaterials.

Keywords  Nanoparticle • Nanomaterial • Toxicity • Interactions • Data compila-
tion • Data quality • Data standardization • Nano-descriptors • Nano-QSAR

10.1  �Introduction

The number of nanomaterials and their applications in nanotechnology is increas-
ing rapidly and will grow considerably in the foreseeable future. It is the particu-
lar properties of the nanomaterials, based on specific characteristics such as the 
particle shape and size distribution, surface area and chemistry, solubility and 
porosity as well as the state of agglomeration and dispersion, which have led to 
their increased use in diverse fields of application such as medicine, cosmetics, 
food and textile products, water treatment, catalysis or in construction and 
electronics.

However, safety assessment of nanoparticles is not keeping pace with their 
rapid development and there are still gaps in the understanding of the hazards 
posed by nanomaterials. The basic requirement for establishing a nanoparticle-
specific hazard assessment is the availability of reliable and consistent nanotox-
icity data, associated with high quality characterization of the identity and 
structural/physico-chemical properties of the materials investigated. There are 
many efforts worldwide to elucidate mechanisms of action for nanoparticles and 
generate toxicity data for diverse endpoints. However, the publication of the data 
is disperse and thus makes their comparability and uptake for safety assessment 
difficult.

Risk assessment of all chemicals including nanoparticles is increasingly being 
supported by computational methods, such as (quantitative) structure–activity 
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relationships ((Q)SARs), based on the understanding that the biological activity 
of a substance is related to its chemical structure and physico-chemical properties. 
The development of these in silico approaches is highly dependent on the avail-
ability of reliable and high quality experimental data. QSAR models are well 
established for different endpoints for organic molecules, however, the same tech-
niques cannot necessarily be applied directly to nanoparticles. As such, so called 
“nano-QSARs” have to take the nano-specific characteristics of nanoparticles into 
account. Therefore the compilation of data of high quality, both regarding the 
compound characteristics, particular for nanomaterials, as well as the measured 
toxic effects, is imperative as the basis for the modelling of nanotoxicity. Ideally 
these data should be made available in a unified form and in an open, electronic, 
easily accessible format.

Within the 3-year European NanoPUZZLES project 
(European Commission 7th Framework Programme, 
FP7-NMP-2012-SMALL-6, grant agreement no. 
309837), from January 2013 to December 2015, the 
partners University of Gdańsk (Gdańsk, Poland), Istituto 
di Ricerche Farmacologiche Mario Negri (Milan, Italy), 
National Hellenic Research Foundation (Athens, 
Greece), Liverpool John Moores University (Liverpool, 
England) and BioBaltica (Gdańsk, Poland) have col-
laborated to advance knowledge and computational 

methods for modelling the relationships between the structure, properties, 
molecular interactions and toxicity of nanoparticles. The work has been organ-
ised into four complementary thematic areas (the “puzzles”), namely: 
NanoDATA, collation and evaluation of available physico-chemical and toxico-
logical data for nanoparticles; NanoDESC, descriptors specific to nanoparticles 
and their characteristic features; NanoINTER, interactions of nanoparticles 
with biological systems; NanoQSAR, using the knowledge gained from within 
the first three puzzles to understand the relationships between experimental 
toxicity data and nanoparticle properties and develop nano-QSAR models. The 
project has focussed on two groups of nanomaterials: inorganic nanoparticles 
such as metal oxides and carbon nanomaterials such as fullerenes and fullerene 
derivatives.

A general approach to data driven modelling of nanomaterial toxicity, starting 
from the review of available data, is summarized in Fig. 10.1 [25]. The data collec-
tion entails consideration of the data quality and suitability of the data for modelling 
(e.g. availability of key endpoint data for a suitably large number of nanomaterials 
obtained from a single source) as well as standardization of the format and terminol-
ogy, essential for nanotoxicity modelling, also in view of the broader application of 
the data by integration into overarching databases, supporting predictive model 
development and safety evaluation of nanomaterials.
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10.2  �Data Collection

Reliable information on the structural characteristics and physico-chemical proper-
ties of nanomaterials, as well as available experimental data on biological effects, is 
the basis for the development of nano-QSARs. Therefore, the first step for model-
ling is to identify and collate available data, from the scientific literature or, for 
example, other research initiatives generating data on nanomaterials.

Compiling the data in an overarching, even inter-project or global, data collec-
tion has the following aims:

	(a)	 to organize the data in a form to optimally support the modelling,
	(b)	 to ensure all (meta)data necessary for modelling are available,
	(c)	 to add value to the available data by making comparison of data from different 

sources possible and thus to enable the integration of these data from diverse 
efforts to characterize nanomaterial hazard for the development of models to 
support nanosafety assessment.

To achieve these aims, particular efforts have been made in the NanoPUZZLES 
project to identify available data through a comprehensive literature review and these 
data were evaluated according to the requirements for building a data collection use-
ful for nano-QSAR modelling. In order to merge heterogeneous datasets and make 
them comparable, a suitable standardised data format and vocabulary is needed.

Within the NanoPUZZLES project, data from more than 300 publications were 
identified, including data obtained through the NanoBridges project (FP7-PEOPLE-
2011-IRSES, grant agreement no. 295128), principally focussing on the endpoints 
cytotoxicity, genotoxicity and aquatic toxicity for fullerenes, carbon nanotubes, 
metal/metal oxides and silica nanoparticles. Physico-chemical and structural infor-
mation which were identified also included size characterisation measurements 
from multiple techniques such as transmission electron microscopy (TEM) and 
dynamic light scattering (DLS).

The specific procedures and suggestions for the standardisation and quality 
assessment of the information collected are described below.

Fig. 10.1  A general approach to data collection to model nanoparticle toxicity
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10.2.1  �Data Quality and Availability

The quality of an in silico prediction model depends on the quality of the data used 
for the model development. Therefore the consideration and evaluation of the data 
quality is a crucial step for modelling.

Data suitability considerations comprise three different areas, which include 
evaluation of some nanomaterial specific properties, as follows:

•	 the amount of data and their quality sufficient or necessary for modelling
•	 the quality and completeness of the nanomaterial structural characterization and 

physico-chemical properties data,
•	 the quality of the nanomaterial toxicity data.

Lubinski et al. [14] suggested that at least 10 data points, from a single source, 
are required for (Q)SAR modelling. A literature survey was performed in 
NanoPUZZLES and the results confirmed that it is a challenge, in practice, to 
achieve this criterion. Out of a sample of 363 primary experimental articles consid-
ered in 2014, with cytotoxicity and genotoxicity data for nanomaterials, most 
reported on too few nanomaterials/data points to develop models based on data from 
a single source. The use of data from different sources would improve the data avail-
ability situation, if they were sufficiently comparable. Therefore the recording of 
(physico-chemical and toxicity) data in a standardized form is the prerequisite to 
compare data from different sources and possibly allow the development of models 
based on multiple sources. The standardization of data recording is discussed in the 
next section.

Lubinski et  al. [14] proposed a general set of quality criteria for any kind of 
nanomaterial experimental data, based on Klimisch scores [9]. The Nanomaterial 
Registry proposes a set of “compliance levels” [18, 20] for evaluating the curated 
physico-chemical data. These approaches were considered when developing pro-
posals for data quality and completeness assessment within NanoPUZZLES.  In 
addition, published proposals regarding priority physico-chemical characterization 
parameters [31, 32] as well as the need to consider the potential for artefacts and 
misinterpretations in data obtained from nanotoxicology tests [21] was taken into 
account to develop provisional data quality/completeness schemes for assessing the 
curated physico-chemical and toxicity data.

The importance of transparency of this evaluation has to be emphasized, i.e., as 
also recommended for the ToxRTool [29], all outcomes obtained from evaluation 
of individual checklist criteria as well as the final quality assessment should be 
reported to allow for critical evaluation of the quality assessment by end-users. The 
most appropriate manner in which the completeness and quality of curated nano-
material data should be evaluated remains a critical question (see Marchese 
Robinson et al. [16]).

10  Compilation of Data and Modelling of Nanoparticle Interactions and Toxicity



308

10.2.2  �Standardization of Data Recording

To make it possible to integrate data(sets) from different sources and experimental 
measurements into one database, there is a need for standardization of the data for-
mat, the vocabulary and metadata used. This also provides the necessary basis to 
allow for the possible comparison of heterogeneous experimental data.

ISA-TAB-Nano [6, 15, 34], an extension of the ISA-TAB specification for report-
ing of data from biological experiments based upon a standardized representation of 
(meta)data [26, 27], was proposed as a global standard for nanomaterial data shar-
ing and has been adopted as such for the nanotoxicity modelling projects. Specific 
data collection templates, designed to support collection of specific nanosafety data 
and metadata, were developed within NanoPUZZLES [15]. Columns and rows were 
pre-defined based upon relevant items of (meta)data capturing key physico-chemical 
measurements, toxicological data and experimental conditions.

The ISA-TAB-Nano specification is based upon a set of four linked 
spreadsheet-like tab-delimited text file types, designed to capture different kinds 
of nanoaterial (meta)data from experimental measurements, the Investigation, 
Study, Assay and Material files, with a pre-defined file structure and syntax for 
(meta)data. The Study and Assay files describe the samples and the correspond-
ing assays respectively, including assay conditions and measured values. A 
Material file records chemical composition information, associated with the orig-
inal nanomaterial sample, and (as of ISA-TAB-Nano version 1.2) nominal/ven-
dor supplied characteristics. There are two types of studies: “physico-chemical 
characterization” or “in vitro and in vivo characterization” studies. For the for-
mer, the (derivative) nanomaterial sample is considered “the sample” which is 
being tested in an assay whilst, for the latter, the (derivative sample of the) bio-
specimen is considered “the sample” and the nanomaterial is considered an 
experimental variable whose effect on the assay outcome is being evaluated – or, 
in the nomenclature of the ISA-TAB-Nano specification, a “factor”. The 
Investigation file links all of the previous three file types together and allows for 
links to additional metadata, such as primary literature references and links to 
ontologies. Figure 10.2 shows the concept of the links between different ISA-
TAB-Nano file types schematically.

These file types are named according to the following conventions: “i_xxxx.txt” 
(Investigation files), “s_xxxx.txt” (Study files), “a_xxxx.txt” (Assay files), “m_xxxx.txt” 
(Material files) where “xxxx” denotes some unique file identifier. Figure 10.3 shows a 
simplified example of how the linked ISA-TAB-Nano files were used to record data 
from a literature source in the NanoPUZZLES project. In addition, ISA-TAB-Nano also 
specifies how to create links between nanomaterial samples and any kind of external 
(raw) data files as well as images, e.g. from transmission electron microscopy.

In addition to the standardization of the “technical” data format, it is essential to 
define a) a consistent vocabulary to describe the information and, b) which informa-
tion on the nanomaterial characterization and toxicity assays needs to be recorded 
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Fig. 10.2  ISA-TAB-Nano defines a set of linked spreadsheet files (Investigation, Material, Study, 
and Assay), with a pre-defined file structure and syntax for (meta)data. Capture of physico-
chemical (meta)data is illustrated

Fig. 10.3  A simplified illustration of how linked ISA-TAB-Nano files are used to record data 
derived from physico-chemical characterization as well as biological characterization assessments 
of nanomaterials reported in a single primary literature reference (Adapted from Marchese 
Robinson et al. [16]. Creative Commons Attribution License, http://creativecommons.org/licenses/
by/2.0)
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to ensure possible comparison and valid deduction of models (minimum information 
requirements). While the generic ISA-TAB-Nano specification pre-defines file 
structure and syntax, it does not specify all (meta)data to be recorded.

Recording data in a unified, consistent terminology is required to avoid inconsis-
tencies, for example due to synonyms. Therefore, for data extracted from the litera-
ture, links to terms from ontologies, retrieved using BioPortal [44], for example the 
NanoParticle Ontology [33], were identified. Links to those ontologies are estab-
lished via the Investigation file. The selection of appropriate terms is still a chal-
lenge due to inconsistent definitions of terms and incompleteness of existing 
ontologies. This standardized labeling facilitates the possibility to filter the com-
piled data collection, for example to find all data associated with the same specific 
toxic effect, and allows comparison of data measured in different experiments.

The adequate characterization of the nanomaterial and description of the assay 
performed are crucial to allow exploration of intra-and inter-assay and -laboratory 
comparison and thus to clearly define a uniform basis for the development of nano-
QSAR models. For example, an adequate description of the structure is needed to 
characterize a nanomaterial. A comprehensive and universal format for uniquely rep-
resenting nanomaterial structures, however, is not yet established, due to the complex 
nature of nanomaterials. Therefore chemical structures of the nanomaterials were 
recorded where possible, e.g. for fullerenes and their derivatives, using the SMILES 
(Simplified Molecular-Input Line-Entry System) line notation. However, the inher-
ent complexity of the nanomaterial structures makes this notation inapplicable for 
most nanoparticles. In some cases, partial representations based on Crystallographic 
Information Files (CIF) are available. The ISA-TAB-Nano Material and Assay files 
are used to record key structural/physico-chemical data such as crystal phase and size 
information or link to transmission electron microscopy image files.

In general, to ensure a certain quality standard in terms of completeness, minimum 
information requirements need to be determined regarding which (meta)data should 
be recorded, i.e. to make certain that all necessary information for modelling the bio-
logical activity/hazard of nanomaterials are made available and to allow the evaluation 
of whether measurements were obtained under sufficiently similar experimental con-
ditions to allow the combination in one single modelling dataset. Proposals for nano-
material data Minimum Information Standards have been discussed in the literature, 
with an emphasis on the parameters required to adequately define the structural and 
physico-chemical nanomaterial properties, e.g. by the Minimum Information on 
Nanoparticle Characterization (MINChar) initiative [16, 31, 32].

The ISA-TAB-Nano specification, as proposed by its developers, does not spec-
ify exactly which nanomaterial characteristics, experimental details and measure-
ments should be recorded. Therefore extended data collection templates were 
designed within NanoPUZZLES to capture important toxicity and physico-
chemical/structural measurements and key experimental details [15]. Within 
NanoPUZZLES it was suggested that the minimum information criteria should suf-
ficiently define the exact parameters to be recorded. For example, the list of param-
eters proposed by the MINChar initiative [32] to be reported for nanoparticles in 
toxicological studies only states “particle size/size distribution” as an essential 

A.-N. Richarz et al.



311

parameter. It would be useful to further specify how to record this, e.g. as the 
z-average hydrodynamic diameter and polydispersity index determined from 
dynamic light scattering.

10.2.3  �Contributions to a Universal Database

The physico-chemical and toxicity data of nanomaterials are collected with the aim 
of supporting the modelling of nanomaterial properties and toxicity as well as to 
build an increasing data basis to support hazard assessment of nanomaterials. Ideally 
all data should be integrated in one universal database, or be searchable through 
interoperable databases.

The assessment of the data quality and adherence to minimum information 
requirements as well as their preparation in a standardized format contributes to the 
effort of organizing the diverse experimental data for inclusion in a database. The 
aim of the data collection, quality evaluation and standardization is to organize the 
data and to also allow for a comparison between data from different sources and 
thus give added value to the data collection. This possible comparison of different 
data collected for the same nanomaterials will bring together the dispersed efforts to 
characterize nanomaterials to support safety assessment. Therefore the character-
ization of the sample and adequate description of the experimental measurements 
are crucial to allow intra-and inter-assay and -laboratory comparison.

For this overall aim, the general intention is to feed the collected, evaluated and 
standardized data into an interoperable, searchable nanotoxicity database, which 
may be consulted on its own to identify hazards and support nanomaterial risk 
assessment, or used as the data basis for the development of predictive models. The 
preparation of datasets based on the ISA-TAB-Nano specification was done in view 
of integration of these data within external databases. For example, NanoPUZZLES 
ISA-TAB-Nano datasets were submitted to the nanoDMS online database, devel-
oped within the EU MODERN project [19].

10.3  �Modelling Interactions and Toxicity of Nanoparticles

In silico models such as (quantitative) structure-activity relationships ((Q)SARs), 
are developed from experimental data and are based on the premise that the biologi-
cal activity of a substance, e.g. an observed effect on human health or environmental 
species, can be related to the chemical structure and physico-chemical properties of 
the compound. This relationship can be expressed as mathematical equations 
including descriptors of the relevant physico-chemical properties.

Although traditional QSARs have been successfully applied to nanomaterials in 
some cases, more specific approaches are needed for the model development for 
nanoparticles [45].

10  Compilation of Data and Modelling of Nanoparticle Interactions and Toxicity



312

10.3.1  �Need for Specific Nano-descriptors

In order to develop QSARs for nanoparticles, suitable descriptors need to be found 
taking into account the specific characteristics of nanoparticles and their relation-
ship to the activities to be modeled, i.e. in particular to describe the structure and 
nanoparticle physico-chemical properties appropriately [3, 5, 23].

The development of novel descriptors for nanoparticle structures was the aim of 
the NanoPUZZLES NanoDESC work package. The “nano-descriptors” developed 
should reflect the essential properties of nanomaterials such as parameters charac-
terizing the particular nanoparticle structure and electronic states resulting from 
quantum effects of the nano-size. An overview of the type of the general character-
istics described by 0D to 4D descriptors and examples of specific nanoparticle prop-
erties are given in Table 10.1.

While the chemical structure of a substance can be generally represented by, e.g., 
an orbital graph, a 2D SMILES string or the unique InChI identifier, a novel concept 
is needed for the majority of nanomaterials to express the specific features of the 
“nano structure”: The molecular architecture of nanoparticles is very large and com-
plex, with inorganic and organic elements and exact stoichiometry varying between 
materials [2], and it is not always possible to represent the specific interactions 
between different parts of the nanosystems topologically and/or by means of molec-
ular and quantum mechanics.

A possible approach for the creation of a model for nanomaterial(s), when tradi-
tional descriptors such as 2D topological indexes, 3D stereochemical and quantum 
mechanical descriptors are not adequate, is to consider the measured endpoint as a 
mathematical function of all available eclectic information. The traditional QSAR 
paradigm ‘Endpoint = F(molecular structure)’ will therefore be replaced with 

Table 10.1  Molecular 
descriptors: simple 
mathematical representation 
of a molecule, used to encode 
significant features of 
molecules

Dimensions Characterization

0D descriptors Constitutional
1D descriptors Physico-chemical
2D descriptors Topology of a molecule
3D descriptors Based on a space representation of a molecule
4D descriptors Various conformers of the same compound

Properties Experimental measurements

Shape and aggregation High resolution microscopy
Composition, purity 
and surface chemistry

Spectroscopy and chromatography 
methods

Surface charge Zeta potential analysis
Crystal structure X-ray diffraction
Particle number and 
size distribution

e.g. SEM, TEM, DLS

Surface area Brunauer-Emmett-Teller adsorption

SEM scanning electron microscopy, TEM transmission electron 
microscopy, DLS dynamic light scattering
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‘Endpoint = F(eclectic information)’ for nano-QSARs [40]. This information 
includes atomic composition, conditions of synthesis or preparation of the nanoma-
terial, as well parameters such as particle size and its distribution, agglomeration 
state, porosity, particle shape, symmetry, surface area and charge, coating, metal 
content, dissolution, crystal structure, electronic properties (reactivity, conductivity, 
interaction energies), chiral vectors of nanotubes, number of walls in the nanotubes 
[4]. Table 10.2 shows examples of different descriptors applied to the modelling of 
nanomaterials to predict the listed properties.

It should be noted that (most of) the nanospecific properties cannot be calculated 
but have to be provided experimentally for the specific nanomaterial considered (see 
Table 10.1). In consequence the nano-QSAR models are dependent on experimental 
measurements, rather than calculated descriptors from the molecule representation, 
and the experimental procedure to determine the respective values may influence 
the model quality. Moreover, the characterization of the applicability domain of a 
nano-QSAR model has to be extended consequently according to the new types of 
descriptors (see for example [41]).

Further examples of descriptors include the metal electronegativity (χ), the 
charge of the metal cation corresponding to a given oxide (χox), the atomic number 
and valence electron number of the metal, which were used as simple molecular 
periodic table-based descriptors for QSAR model development, for example to pre-
dict the cytotoxicity of metal oxide nanoparticles towards E. coli [7].

In collaboration with the NanoBridges project, scanning electron microscope 
(SEM) and transmission electron microscope (TEM) images of nanoparticles were 
computationally processed and analyzed by means of a customized algorithm 
implemented in the ImageJ software to obtain new descriptors. Morphological 
(large scale) features were analyzed in relation to shape and size and expressed in 
the form of ten key descriptors: area, perimeter, major axis, minor axis, aspect ratio, 
maximum Feret’s diameter, minimum Feret’s diameter, roundness, circularity, and 
solidity.

The “Liquid Drop” Model (LDM) descriptors were also developed with the 
NanoBridges project. They describe the geometric and volume features of studied 
metal oxide nanoparticles. The model is based on the representation of the nanopar-
ticle as a spherical drop, the elementary particles are densely packed and the density 
is equal to the density of bulk [30].

10.3.2  �Modelling Interactions of Nanoparticles with Biological 
Systems and Small Molecules

The knowledge of the interactions between nanoparticles and biological systems, 
such as DNA, proteins and membranes is limited. However, these interactions can 
lead to the formation of protein coronas, particle wrapping, intercellular uptake and 
biocatalytic processes, and thus modify the structure of the active nanoparticle, 
which has an impact on model development, e.g., the descriptors to be calculated. 
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Therefore, the aim of the NanoINTER part of the NanoPUZZLES project was to 
develop methods to simulate and predict interactions between engineered nanopar-
ticles and biomolecules, their environment (e.g., solvents) as well as small 
molecules.

For the development of a computational protocol for the reliable calculation of the 
properties of large interacting systems, extensive calculations have been performed, 
which involved: a large array of techniques (e.g., semi-empirical-PM6-, HF, DFT-
B97D, wB97XD, M062X, B3LYP, PBE0-, MP2, molecular dynamics, molecular 
mechanics Poisson-Boltzmann surface area (MM-PBSA)), and basis sets (e.g., 
6-31G*, 6–31+G*, 6-311G*); ab initio techniques for the calculation of the intermo-
lecular interaction energy (e.g., the Su and Li approach, Kitaura and Morokuma 
(KM) method, effective fragment potential approach (EFP), a variational perturba-
tion scheme); the atoms-in-molecules (AIM) technique for the computation of the 
hydrogen bond energy; geometry optimization techniques (e.g., B97D/6-31G*, 
PM6). Several properties, such as the interaction energy, the energies of the Highest 
Occupied Molecular Orbital (EHOMO) and Lowest Unoccupied Molecular Orbital 
(ELUMO), ionization potential, electron affinity, dipole moment, polarizabilities and 
first hyperpolarizabilities, binding free energies, hydrogen bond energies, and struc-
tural features were computed. A variety of nanoparticles were used to evaluate their 
structure and interaction properties, for example: C24H12, C84H20, C24H12, C114H30, 
C222H42, C366H54; C60, C60Fn, (TiO2)n, single wall carbon nanotube (SWCNT, C360). 
The calculations were tested on a variety of biomolecules, such as proteins or protein 
fragments (e.g., HIV-1PR, renin, a G protein-coupled receptor (GPCR), human 
serum albumin, and human DNA topoisomerase II-alpha).

In conclusion, the following computational methods were recommended:

•	 A DFT technique for computing the interactions of nanoparticle-nanoparticle 
systems.

•	 Ab initio techniques for calculating the interaction properties of biomolecule- 
biomolecule systems: the AIM method for the computation of the hydrogen bond 
energy and the Su and Li method for the calculation of the interaction energy.

•	 Molecular dynamics for studying large biomolecule-nanoparticle or biomolecule-
biomolecule systems: the AIM method for the computation of the hydrogen bond 
energy and MM-PBSA for the calculation of the interaction energy.

The interaction energy of a series of fullerene derivatives with human serum 
albumin (HSA), or appropriately defined models of HSA, has been computed and 
resolved into a variety of meaningful contributions by employing ab initio methods. 
MM-PBSA for the resolution of the binding free energy has also been used. After a 
detailed analysis of the large body of the computed data, the resolution of the inter-
action energy yielded the following results:

•	 For small or average size systems, the use of the Su and Li method in connection 
with DFT may provide valuable information on the interaction mechanism.

•	 The fragment molecular orbital method gives very useful information for the 
whole interacting system, but it is computationally demanding.
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316

•	 For large interacting systems, the employment of MM-PBSA is recommended.

Furthermore, the interaction with the solvent environment was investigated. 
Water soluble fullerene derivatives are essential for many biomedical applications. 
Several studies have examined the relation between solubility and toxicity [28]. 
Pilot computations on the solubility of several fullerenes were undertaken. It was 
shown that the solubilization energy (ΔΕ) depends on the dielectric constant (ε) and 
the functional groups attached to the C60 core, while an increase in ε leads to an 
increase in |ΔΕ|. Also, it was shown that the solvent may have a significant effect on 
some properties (e.g., the average polarizability) of the interacting system.

Three different geometry conformations were used to study the interaction 
between a fullerene derivative and a model of graphene oxide, i.e. between two dif-
ferent nanoparticles, in aqueous solution. The observed energy difference between 
the two dominant conformations may be attributed to the number of hydrogen bonds 
formed between the fullerene and the surface of graphene oxide.

Additionally, molecular aggregation of fullerene systems is obtained spontane-
ously in aqueous solution, as represented by stable hydrophobic clusters throughout 
the molecular dynamics simulations. Conversely, water-soluble fullerenes do not 
form agglomerates in water regardless of their concentration and initial member 
separation. Moreover, to study the relationship between aggregation and toxicity, 
(e.g., [13]), pilot computations were performed on the aggregation of fullerenes, 
(C60)n, n = 1–6, where it was shown that:

•	 Aggregation has a negligible effect on the considered properties.
•	 The solvent appears to have a minor effect on the properties of (C60)n.

Another objective was to connect the genotoxicity/mutagenicity of a series of 
fullerenes, C60Fn, n = 10, 12, 14, 16 and 18, with their solubility. It is known that 
EHOMO increases with mutagenicity. This knowledge allowed for the relationship 
between mutagenicity and solubility of C60Fn to be investigated since it was shown 
that an increase in n was followed by an increase in solubility and a decrease in 
mutagenicity. It was also demonstrated that mutagenicity increases with lipophilic-
ity (logP), QF (the sum of the charges on the fluorine atoms of C60Fn), E(S-T), the 
dipole moment, the average polarizability, and the first hyperpolarizability. 
Therefore, a relationship connecting mutagenicity with solubility and a set of 
important electronic descriptors may be established. The interaction of C60Fn with 
DNA and human DNA topoisomerase II-alpha (HT2a) was also studied by perform-
ing molecular dynamics and MM-PBSA free energy calculations. Significant inter-
actions have been found between C60Fn and both systems, particularly between 
C60Fn and HT2a. These interactions may induce an undesirable effect on the DNA 
function.

Finally, the effect of: (i) chemical composition, (ii) size and shape, (iii) aggrega-
tion, (iv) surface charge, and (v) contamination of nanoparticles upon a series of 
properties, such as the structure, the binding free energy (ΔEbind), the interaction 
energy (Eint), EHOMO and ELUMO of several nanoparticle-biomolecule systems was 
investigated. The nanoparticles investigated were: a) molecular graphene (C84H24, 
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C60B12N12H24, C78H24FeN4), b) C60 and (C60)4, c) two single wall carbon nanotubes 
(C360H40, C180H20), d) a series of functionalized C60 derivatives, and e) C60Fn, n = 10, 
12, 14, 16, and 18. For biomolecules, the following systems were used: a) the five 
nucleobases (NBs), thymine (T), cytosine (C), guanine (G), adenine (A) and uracil 
(U), b) the guanine tetramer (G4), c) HSA, d) HT2a, and e) a DNA sequence were 
considered. The ab initio study on the effect of size and shape of the nanoparticle 
was performed on complexes: C84H24-X/Y, C60-X, C360H40-X/Y, C180H20-X, where 
X=guanine and Y=adenine. It was found that Eint is mostly affected by the size and 
shape and in a lesser extent by EHOMO/LUMO. Molecular dynamics runs for fullerenes 
bound to HSA showed that compounds with longer groups attached to the fullerene 
core strengthen HSA binding, while compounds with shorter groups diminish pro-
tein binding (Fig. 10.4). For the study of the aggregation effect, the (C60)4-G4 com-
plex was used. A significant change of the G4 geometry was observed and a high Eint 
(−18.4 kcal/mol) was computed. The effect of the surface charge was studied by 
computing the Eint of C60Q-G, where Q = 0, −2, −4. It was found that the charge of 
C60 has a remarkable impact on Eint and on the geometry of guanine. Regarding HSA 
complexes, the calculations showed that negatively charged groups on the fullerenes 

Fig. 10.4  Hydrogen bond interactions between fullerenes and human serum albumin. Main 
hydrogen bonds between fullerene derivatives and the binding cavities of human serum albumin 
are shown as dotted lines. Residues that are involved in interactions with the compounds are high-
lighted (Adapted with permission from Leonis et al. [13], Copyright (2014) American Chemical 
Society)
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are necessary to produce profound binding effects [12]. Also, fullerene binding to 
the IIA site of HSA was associated with allosteric modulation of IIIA and heme 
binding sites. The above findings may be particularly useful in future nanoparticle 
design for biological applications.

The influence of contamination was studied with Eint and EHOMO/LUMO calculations 
on C84H24-NB, C60B12N12H24-NB and C78H24FeN4-NB, where changes were observed 
in the presence of the contaminant (B12N12 and FeN4). Significant binding for func-
tionalized fullerenes was observed in HSA, HT2a and DNA systems, with the van 
der Waals and nonpolar terms being the dominant contributions. The detailed 
description of each investigation performed under NanoPUZZLES, including those 
which are mentioned above, can be found in [8, 10, 11, 42, 43].

10.3.3  �Examples of Nano-QSAR Modelling

The NanoPUZZLES NanoQSAR work package developed nano-QSAR models 
based on the data and information discussed above, with the aim of extending the 
understanding of toxicity and behavior of nanoparticles by establishing relation-
ships between experimental and computational properties.

To encode the cytotoxicity profile of metal oxide nanoparticles to the bacterium 
E. coli, periodic table-based descriptors were employed to construct robust interpre-
table quantitative structure-toxicity relationship (QSTR) models. Ten random splits 
of the data into the training and test set were examined with extensive validation 
techniques employing the Organization for Economic Co-operation and 
Development (OECD) recommendations. The results obtained have demonstrated 
that simple periodic table derived descriptors (metal electronegativity and the charge 
of the metal cation corresponding to a given oxide) have a significant influence on 
the cytotoxicity of metal oxide nanoparticles to bacteria E. coli. Both descriptors 
were obtained from the molecular formula and information derived from the peri-
odic table. Moreover, both descriptors are independent of the nanoparticles’ size 
range, thus avoiding the modelling difficulties arising with the variation of various 
physical nanoparticle properties with the size range. In addition, the results obtained 
confirmed that the toxicity of metal oxide nanoparticles is associated with the reduc-
tive potential, i.e., the detachment of the electron from the metal oxides [7].

To investigate the differences in the mechanisms of toxicity of metal oxide 
nanoparticles to the bacterium E. coli (prokaryotic system) and a human keratino-
cyte cell line (eukaryotic system), different computational approaches were utilized. 
To reflect the nanoparticles’ structure for the different levels of organization, i.e. 
from single molecule to supramolecular ensemble of molecules, a Simplex 
Representation of Molecular Structure (SiRMS) and the “liquid drop” model (LDM) 
were used. Classification models were developed based on the combination of 
descriptors calculated within the NanoPUZZLES NanoDESC work package. Based 
on these simple fragmentary 2D descriptors (forming two latent variables) a consen-
sus model was developed. The Nano-QSAR models obtained provided reliable pre-
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dictions for all metal oxide nanoparticles studied. It needs to be highlighted, 
however, that the developed nano-QSAR models refer to different mechanisms of 
toxicity of nanoparticles towards the bacterium E. coli and the human keratinocyte 
cell line (HaCaT) [30]. The schematic representation of suggested mechanisms is 
shown in Fig. 10.5.

As further examples, toxicological data collected and novel nanodescriptors cal-
culated were used to model the cellular uptake of 109 magnetofluorescent nanopar-
ticles modified with small organic molecules into PaCa2 pancreatic cancer cells [38] 
and the membrane damage (units/L) caused by TiO2 nanoparticles. The latter model 
is based on the use of eclectic information, in particular the following physico-
chemical parameters of the TiO2 nanoparticles have been adopted: engineered size, 
size in water suspension, size in phosphate buffered saline, concentration, and zeta 
potential [39].

a

b

Fig. 10.5  Schematic representation of the mechanism of metal oxide nanoparticle toxicity for:  
(a) bacterium E. coli and (b) human keratinocyte cell line (HaCaT) (Reproduced from Sizochenko 
et  al. [32], http://dx.doi.org/10.1039/c4nr03487b with permission of The Royal Society of 
Chemistry)
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With nanomaterials there is the problem of the lack of standardization and harmoni-
zation, in addition to the related issue of finding suitable descriptors. The novelty of the 
CORAL approach, as applied to nano-QSAR, is in its simplicity [40]. It is highly flexi-
ble and involves a broad series of parameters of different nature, including experimental 
values arising from the different protocols. Thus, the model can adapt the features of 
interest depending on the case, covering a wide set of situations. CORAL is shown to be 
a general system and that several specific models can be produced through CORAL 
using the particular parameters relevant in each case. The disadvantage of this, which 
however is related to the lack of general protocols in many of the experiments with 
nanomaterials, is that the specific model requires as inputs the values of the specific 
experimental case used to train the model, and thus the specific model is very local.

Optimal descriptors calculated within NanoPUZZLES have also been used to 
develop a mathematical model for the mutagenicity of fullerenes. Experimental data 
for the bacterial reverse mutation test on C60 nanoparticles for TA100, and WP2uvrA/
pkM101 were employed as dependent variables, i.e. endpoints. The models obtained 
were the mathematical function of all available eclectic data, such as: dose, 
metabolic activation (i.e. with or without S9 mix) and illumination (i.e. darkness or 
irradiation), in the role of logical and digital basis [36].

Moreover, optimal descriptors have been applied to predict thermal conductivity 
of micro-electro-mechanical systems (MEMS), largely used in nanotechnology. 
The decimal logarithm of thermal conductivity of MEMS has been modelled as a 
mathematical function of temperature and physicochemical status of MEMS, such 
as Ceramic (code = 1), Single crystal (code = 2), Cubic (code = 3), Chemical Vapour 
Deposition (CVD, code = 4), and Glass (code = 5) [41].

In summary, within NanoPUZZLES, physico-chemical properties as well as tox-
icity of a series of nanoparticles were predicted using various approaches. It was 
demonstrated that all models provide reliable predictions, though are characterized 
by different accuracy as compared to experimental data. The models developed 
allow for the prediction of physico-chemical properties and toxicity of new nanopar-
ticles, not studied yet experimentally.

10.4  �Nanoparticle Evaluation to Be Set in a Global Context

The evaluation of nanomaterials, toxicity tests and development of predictive models 
cannot be singular efforts but should be coordinated within ongoing global initiatives 
in order to make valid conclusions on nanoparticle toxicity. The presented work was 
integrated in international research and discussions, as shown in Fig. 10.6.

The NanoPUZZLES project coordinated approaches with other EU research 
projects modelling nanotoxicity (ModNanoTox, NanoTransKinetics, ModEnpTox, 
MembraneNanoPart, PreNanoTox, MODERN). At the European level, all projects 
addressing different aspects of nanosafety are joined under the overarching umbrella 
of the NanoSafety Cluster (http://www.nanosafetycluster.eu), with cross-cluster 
working groups on cross-cutting topics such as databases, hazard, risk and modeling. 
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Furthermore, an EU-US dialogue (http://us-eu.org) framework is coordinating 
ongoing efforts and discussions on both sides of the Atlantic. In addition, the US 
Nanotechnology Working Group (https://wiki.nci.nih.gov/display/ICR/Nanotechno
logy+Working+Group), including the developers of the ISA-TAB-Nano specifica-
tion, is very active for example in discussing data sharing standards, ontologies and 
nanomaterial characterisation.

10.5  �Conclusions

Computational models predicting nanotoxicity could make an important contribu-
tion to safety evaluations, in line with general efforts in applying alternative meth-
ods in chemicals risk assessment, as promoted by recent legislation such as REACH 
and the European Cosmetics Regulation. This includes in silico models such as 
nano-QSARs for properties and toxicities.

Compiled, well organized, quality controlled and standardized information 
allows for the optimal use of existing data to support nanomaterial hazard and risk 
assessment. Integrating the data in an overarching, structured data collection pur-
sues the following aims: a) organizing the data in a way to support the modelling, 
b) making certain that all (meta)data necessary for modelling are available, c) add-
ing value to the available data by making a comparison between data from different 
sources possible. Databases of nanoparticle physico-chemical and toxicological 
properties thus allow for the use and comparison of all available data in integrated 
risk assessment approaches, avoiding new in vivo tests.

Based on the available data, specific descriptors can be derived to describe the 
nanomaterial-specific structure and physico-chemical properties appropriately. 
Furthermore, the interactions between nanoparticles and biological systems as well 
as small molecules, which can lead to modifications of the structure of the active 
nanoparticles, need to be described and taken into account in the development of 
models to predict the biological activity and toxicity of nanoparticles.

Overall, a global effort is required and is being built up to overcome the fragmen-
tation of efforts to create, characterize and assess the toxicity data needed for the 
nanomaterial hazard and risk assessment. It aims to bridge the gap between experi-
mental, computational as well as regulatory efforts.

Fig. 10.6  Collaboration of the NanoPUZZLES project with other nanotoxicity modelling projects 
and setting within global nano-research networks
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Chapter 11
Case Study III: The Construction 
of a Nanotoxicity Database –  
The MOD-ENP-TOX Experience

Hanne Vriens, Dominik Mertens, Renaud Regret, Pinpin Lin,  
Jean-Pierre Locquet, and Peter Hoet

Abstract  The amount of experimental studies on the toxicity of nanomaterials is 
growing fast. Interpretation and comparison of these studies is a complex issue due 
to the high amount of variables possibly determining the toxicity of nanomaterials.

Qualitative databases providing a structured combination, integration and quality 
evaluation of the existing data could reveal insights that cannot be seen from differ-
ent studies alone. A few database initiatives are under development but in practice 
very little data is publicly available and collaboration between physicists, 
toxicologists, computer scientists and modellers is needed to further develop data-
bases, standards and analysis tools.

In this case study the process of building a database on the in vitro toxicity of 
amorphous silica nanoparticles (NPs) is described in detail. Experimental data were 
systematically collected from peer reviewed papers, manually curated and stored in 
a standardised format. The result is a database in ISA-Tab-Nano including 68 peer 
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reviewed papers on the toxicity of 148 amorphous silica NPs. Both the physico-
chemical characterization of the particles and their biological effect (described in 
230 in vitro assays) were stored in the database. A scoring system was elaborated in 
order to evaluate the reliability of the stored data.

Keywords  Amorphous silica nanoparticles • ISA-Tab-Nano • Data reliability • In 
vitro • Nano-informatics

11.1  �Introduction

Nanotechnology results in the presence of a variety of different engineered NPs (NPs) 
in our environment. Due to their small size NPs behave differently from their larger 
counterparts of the same composition. Therefore adjusted safety assessment (hazard 
identification, hazard characterisation and exposure assessment) is needed. The last 
10 years hazard identification and characterisation has mainly focused on finding the 
physicochemical properties of NPs that determine their interaction with biological 
systems and the underlying pathways causing these interactions, resulting in a large 
number of experimental data published. Drawing conclusions from these data is how-
ever difficult because of the large amount of variables possibly determining the toxic-
ity outcome. Variables are associated with the nanomaterial itself and the exposure 
conditions, the biological test system (in vitro/in vivo) and the toxicological assay.

A structured combination and integration of the existing data could reveal vari-
ables which are important determinants of NPs toxicity and can eventually lead to 
predictive models and QSARs for nanotoxicity. Database initiatives relevant for 
nanotoxicology are under development: CaNanoLab [1], the Nanomaterial Registry 
[2], the NP Information Library [3] and the Nanomaterial-Biological Interactions 
Knowledge Base [4]. In practice very few data is publicly available and collabora-
tion between physicists, toxicologists, computer scientists and modellers is needed 
to further develop databases, standards and analysis tools.

This case-study describes the construction of a database on the in vitro toxicity 
of amorphous silica NPs (including particles with a silica shell). A search of PubMed 
was performed to collect 68 peer-reviewed papers which were manually curated. 
Both the physicochemical characteristics of the NPs and their interaction with cel-
lular systems were stored in an ISA-Tab-Nano compatible format. To assess the 
reliability of the stored data a scoring system was elaborated: variables associated 
with the nanomaterials, toxicity assay and biological system were scored to assess 
the reliability of the data.

First the process of data collection (including criteria and literature search) 
(11.2.1), data storage (11.2.2) and data evaluation (11.2.3) is described in order to 
build a qualitative database. In paragraph 5 the database itself is described: the arti-
cles, in vitro assays and NPs. And some results of the reliability scoring system are 
presented. In paragraph 6 several issues that came up during the construction of the 
database and some future suggestions to overcome these issues are discussed.
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This project is a subproject of the “Modelling Assays Platform “MAP” for haz-
ard ranking of engineered metal-based NPs (MOD-ENP-TOX) ” project of the 
Seventh Framework Program (FP7) funded by the European Union.

11.2  �Construction of the Database

11.2.1  �Data Collection

11.2.1.1  �Including Criteria

Data were collected from peer-reviewed papers which investigate the in vitro tox-
icity of amorphous silica NPs. This type of nanomaterial is well studied; a pre-
liminary search gave more than 600 hits. And experiments have shown that 
different silica NPs, although it is one chemical identity, can give different bio-
logical effects [5].

Selected papers:

	1.	 study the toxicity of amorphous silica particles with a defined shape (aspect ratio 
<3), composition (all silica or a silica shell), crystallinity (amorphous) and pri-
mary size;

	2.	 study the effect of the particles on cell lines or primary cells (experimental 
in vitro studies),

	3.	 and include information on cell viability, apoptosis/necrosis, genotoxicity, oxi-
dative stress and pro-inflammation.

The dose of NPs effectively reaching the cells depends on the exposure route/
method (dry state, suspension or aerosol). In order to avoid dose-response curves 
which are difficult to compare, we only included experimental studies that adminis-
ter particles to the cell in suspension.

11.2.1.2  �Literature Search

A sensitive search strategy, to retrieve as many relevant papers as possible, was 
performed using PubMed. Searching “amorphous silica OR silica NPs AND toxic-
ity NOT review” with a filter of 10 years and full text availability gave 624 hits (13th 
of May 2014).

Secondly the 624 papers were sorted by relevance. The relevance sort option 
is based on an algorithm that analyses each PubMed citation that includes the 
search terms. A “weight” is calculated for citations depending on how many 
search terms are found and in which fields they are found. In addition, recently-
published articles are given a somewhat higher weight for sorting [6]. Only the 
titles of the 450 most relevant papers were further screened for retrieval (cfr. 
including criteria 11.2.1.1). The 117 retrieved articles underwent a second 
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evaluation for which the including criteria were applied to the full article. 
Another 47 papers were excluded because they studied a different population 
(ecotoxicity study (n = 1), in  vivo study (n = 5)), different intervention (used 
functionalised silica particles (n = 13), badly characterised particles (n = 15), 
crystalline particles (n = 1), microscale particles (n = 3), particles in dry state 
(n = 1)) and/or a different outcome (n = 6). Also one paper written in Chinese and 
three papers with no information on the statistics were excluded. Eventually 68 
papers were retrieved for the construction of the database.

The selection procedure is depicted in Fig. 11.1.

11.2.2  �Data Storage

Data are stored in ISA-Tab-Nano; an emerging standard format for sharing nanoma-
terial research data. The format supports the use of ontology terms to promote stan-
dardized descriptions, and facilitate search and integration of data. Four types of 
files are provided to store different types of data:

	1.	 The investigation file contains descriptive information (principle investigators, 
sponsor, link to full text paper,…) which lays the foundation for the other ISA-
Tab-Nano files and links them together.

	2.	 The material file describes the materials used; nanomaterials but also other mate-
rials such as positive controls.

624 potentially
relevant papers

identified

450 most relevant
papers: titles screened

for retrieval

117 retrieved papers:
full paper screened for

retrieval

68 papers retrieved for
the construction of the

database

174 papers excluded 

333 papers excluded because the titles describe a different
population, intervention and/or outcome then stated in our
including criteria

49 papers excluded because they studied a different
population (ecotoxicity study (n=1), in vivo study (n=5))
intervention (functionalised silica particles (n=13), badly
characterised particles (n=15), crystalline particles (n=1), only
microscale particles (n=3), particles administered in dry state
(n=1)) and/or outcome (n=6). Also 1 paper written in Chinese
and 3 papers with no information on statistics were excluded.

Fig. 11.1  Selection procedure for peer reviewed papers included in the database
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	3.	 The study file describes how samples (material and biological samples) are pre-
pared for analysis (physicochemical, in vitro and in vivo characterisation).

	4.	 The assay file is designed to store the measured endpoints of the physicochemi-
cal, in vitro or in vivo characterisation of the nanomaterials [7].

Figure 11.2 depicts how the ISA-Tab-Nano files are linked to each other.
ISA-Tab-Nano recommends using the material file only to store the nominal char-

acteristics and chemical composition of the NPs. The experimentally measured physi-
cochemical characteristics are stored in the assay files. We chose to store all the 
physicochemical characteristics in the material file to make analysis and data integra-
tion more convenient afterwards in perspective of the MOD-ENP-TOX project.

The different fieldnames used in the material, investigation, assay and study file 
can be found in Table 11.1. The data of each article is stored in a set of these four 
types of files.

11.2.3  �Data Reliability Evaluation

Klimisch et al. define the reliability of data as an evaluation of the inherent quality 
of a test report or publication relating to preferably standardized methodology and 
the way the experimental procedure and results are described to give evidence of the 
clarity and plausibility of the findings [8].

Investigation file

Material file

Study file
in vitro

Study file in
vivo

Study file
phys-chem

Assay file

Assay file

Assay file

Assay file

Assay file

Assay file

Assay file

Assay file

Assay file

Fig. 11.2  Linkage of the different ISA-Tab-Nano files
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General guidelines on reliability assessment of toxicological data are described 
in literature. The following is a selected overview of the existing schemes relevant 
for the data reliability assessment within the MOD-ENP-TOX project. Both general 
schemes designed for the reliability assessment of chemicals and more specific 
schemes for nanomaterials are discussed (11.2.3.1). Afterwards a scheme is pro-
posed to assess the reliability of the data in our database (11.2.3.2).

Table 11.1  Overview of the fieldnames used in the four ISA-Tab-Nano files used to describe data 
from one paper

INVESTIGATION FILE: pubmed ID, DOI, title and authors of publication
MATERIAL FILE: material source name, material description, material synthesis, material 
manufacturer
 � Primary size: diameter, min feret diameter, max feret diameter assay name
 � Shape: shape, aspect ratio, assay name
 � Crystallinity: major crystalline fraction, major crystalline fraction proportion, minor 

crystalline fraction, minor crystalline fraction proportion, amorphous fraction proportion, 
assay name

 � Composition: composition core, composition shell, composition coating, assay name
 � Purity: purity core/shell, assay name
 � Surface area: specific surface area, external surface area, assay name
 � Porosity: porosity, pore volume, pore size, assay name
 � Surface charge: zeta-potential in water/saline/saline with serum/medium/ medium with serum, 

assay name
 � Agglomeration/aggregation: hydrodynamic diameter in water/saline/saline with serum/

medium/ medium with serum, assay name
 � Solubility: solubility in water, assay name
STUDY FILE (physicochemical characterisation):
STUDY FILE (in vitro assays): source name, material type, cell species, cell organ, cell type, 
NP sample, particle concentration, exposure route/medium/duration, serum concentration 
exposure medium, hydrodynamic diameter exposure medium
 � ASSAY FILE (viability): viability relative to ctrl, LDH medium, cytotoxicity, ATP level, cell 

death, number of cells
 � ASSAY FILE (genotoxicity): tail DNA, tail DNA (treatment-control), micronucleated cells, 

cytokinesis block proliferation index
 � ASSAY FILE (pro-inflammation): (mRNA) IL-6, (mRNA) IL-8, (mRNA) TNF-α, (mRNA) 

IL1-β, (mRNA) COX-2, (mRNA) MMP-9, (mRNA) MIP-1 alpha/beta, F3, ICAM1, VCAM1, 
SELE, NRF-2,cytc, MCP-1, iNOS

 � ASSAY FILE (oxidative stress): dichlorofluorescin, hydroethidium, hydroxyphenyl 
fluorescein, glutathione, oxidized/reduced, glutathione, malondialdehyde, hydroxyl-alkenals, 
HO-1, superoxide dismutase, superoxide dismutase activity, hydrogen peroxide

 � ASSAY FILE (apoptosis/necrosis): live cells, early apoptotic rate, late apoptotic and necrotic 
rate, total apoptotic and necrotic rate, caspase-3/9, caspase-3/7/9 activity, bax, bcl-2, p53, p21, 
cell morphology changes, SubG1/G1/S/G2 phase

STUDY FILE (in vivo assays):
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11.2.3.1  �Schemes for Assessment of the Reliability of Toxicological Data

Klimisch et  al. published a categorisation scheme to assign toxicological data of 
chemicals to one of four reliability categories: reliable without restrictions, reliable 
with restrictions, not reliable or not assignable. Distinction between these reliability 
categories are based on the amount of information provided on the testing procedure 
and analysis. Tests conducted and reported in accordance to international standards 
have the highest grade of reliability [8]. Unfortunately, the differentiation between 
reliability classes is not always clear. To make the decision process of assigning reli-
ability categories more transparent and harmonised the ‘ToxRTool’ (Toxicological 
data Reliability Assessment Tool – [9]) was developed. The tool provides a detailed 
list of yes-no questions about the identification of the test substance, characterization 
of the biological system, description of the study design, documentation of the study 
results and the plausibility of the study design and data [10]. The answers to the yes-
no questions are used to attribute the data to one of the Klimisch categories.

The evaluation criteria for toxicity need to be reconsidered for toxicological data 
of nanomaterials, taking into account the following complications:

	1.	 The toxicity of nanomaterials not only depends on the dose and the composition 
but also on the size, shape, specific surface area, surface coating, porosity, sur-
face charge and the solubility of the nanomaterials [2, 11].

	2.	 No international standardized test procedures exist for both the physicochemical 
characterisation of the nanomaterials and their toxicity assessment. The OECD 
initiated a large programme on the safety of manufactured nanomaterials which 
will result in a set of guidelines supporting standardization [12]. Guidelines 
already published are: ‘Report of the OECD expert meeting on the physical 
chemical properties of manufactured nanomaterials and test guidelines’, 
‘Guidance on Sample Preparation and Dosimetry for the Safety Testing of 
Manufactured Nanomaterials’,…

	3.	 Nanomaterials can interfere with toxicity assays resulting in false positive and 
false negative results [13, 14].

The Nanomaterial Registry provides a metric, the compliance level (CL), of the 
quality and quantity of characterization for each nanomaterial entry. In order to be 
compliant a nanomaterial characterization should include: the synthesis method or 
processing details, the DOI citation of the synthesis procedure, the manufacturer or 
synthesis laboratory name, the product name and lot number and the nanomaterial’s 
physical state. For each measurement the following should be reported: the tech-
nique, technique protocols and parameters and the best practice information. 
Compliance levels are only developed for data associated with the nanomaterial, not 
for the data on the interactions with biological systems [2].

Lubinski et al. published a scheme to assess the quality of nanotoxicity data in 
the context of developing QSPR’s/QSAR’s. A checklist of yes-no questions supports 
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the user to assign data to one of five reliability classes. The checklist comprises 
questions related to the extent to which the nanomaterials were characterised, the 
degree to which the experimental assays and methods were described and the use of 
standardised protocols [15].

11.2.3.2  �Scheme for Reliability Assessment of In Vitro Nanotoxicity Data

We developed a scoring system to assess the reliability of in vitro nanotoxicity 
data extracted from papers. Reliability scoring is based on the amount of informa-
tion available on the different variables influencing in vitro toxicity outcome of 
the nanomaterials (which depends on the way of reporting, amount of detail given) 
and on how this information was obtained (methodology). The variables influenc-
ing in vitro nanotoxicity were recently listed by Krug [16]. He makes a differen-
tiation between variables associated with the nanomaterial, with the toxicity assay 
and the biological system. The following is the list of variables copied from Krug 
and a proposition for a scoring system to assess the reliability of data of in vitro 
nanotoxicity data.

In the end a score will be assigned to each particle, assay and test system to give 
an indication of the reliability of the data.

Variables associated with the nanomaterial:

	A.	 sample purification for the removal of biologically relevant trace elements
	B.	 sample characterization of the raw material: composition and purity size shape 

agglomeration status etc.
	C.	 sample characterization regarding biological impurities: endotoxins etc.
	D.	 dispersion in biological media under relevant conditions: temperature humidity 

gas concentrations (O2, CO2) salinity etc.
	E.	 sample characterization in biological media: size and shape agglomeration sta-

tus protein corona etc.
	F.	 the measurement device used for the characterisation (not listed by Krug)

In Table 11.2 is a concrete list of variables associated with the nanomaterials that 
should be reported because they influence the toxicity outcome. The more variables 
specified in the paper the more reliable the data.

Variables associated with the toxicity assay:

	A.	 selection of the correct test system regarding the biological endpoints
	B.	 different test systems for the same biological endpoint
	C.	 controls: adapted negative controls adapted positive controls comparison to ref-

erence materials
	D.	 testing of possible interferences of the NP with the biological test system bind-

ing of indicator molecules light absorption or fluorescence of the materials etc.
	E.	 not considered measurement uncertainty: round robins, calibration with stan-

dards or reference material
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The following table (Table 11.3) is a concrete list of variables associated with the 
toxicity assay that should be reported because they influence the toxicity outcome.

Variables associated with the biological system:

	A.	 selection of the biological system
	B.	 cell lines: selection criteria identification age and storage number of passages 

etc.
	C.	 primary cells/organ systems: donor dependency donor variability culture 

conditions
	D.	 culture conditions during the experiments: temperature humidity gas concentra-

tions (O2, CO2) salinity etc.
	E.	 biological parameter: cell density volume of the medium serum content of the 

medium compatibility of the solvent or dispersion medium

Table 11.2  Scoring scheme variables associated with the nanomaterial

Variables

Information available
Make a choice:
yes=1/no=0

Information available
Make a choice: yes=1/
no=0

Composition core/shell 1 or 0 1 or 0

Composition coating 1 or 0 1 or 0

Purity (metal basis) 1 or 0 1 or 0

Purity (endotoxin) 1 or 0 1 or 0

Material synthesis 1 or 0 1 or 0

Primary size 1 or 0 1 or 0

Primary size distribution 1 or 0 1 or 0

Porosity 1 or 0 1 or 0

Surface area 1 or 0 1 or 0

Agglomeration/Aggregation in water 1 or 0 1 or 0

Surface charge in water 1 or 0 1 or 0

Solubility in water 1 or 0 1 or 0

Crystallinity 1 or 0 1 or 0

Shape 1 or 0 1 or 0

Sum Score characterisation Score measurement device

Table 11.3  Scoring scheme variables associated with the toxicity assay

Variables
Information available
Make a choice: yes=1/no=0

Choice of correct assay regarding the toxicological endpoint 1 or 0

Interference of material with assay 1 or 0

Negative control 1 or 0

Positive control 1 or 0

Used different test systems for same biological endpoint 1 or 0

Sum Score toxicity assay
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The following scoring system (Table 11.4) was elaborated for each biological 
system:

11.3  �Description of the Database

11.3.1  �The Articles

The 68 articles used to construct the database were from 35 different journals. The 
most represented journals were “Nanotoxicology” (9 papers), “Toxicology in vitro” 
(6 papers) “Tox Letters” (4 papers), and “Tox Sciences” (4 papers). Other high 
ranked journals e.g. “Particle & Fibre Toxicology” had a surprisingly low success 
rate (2 papers). This can be due to the fact that these higher ranked journals are less 
tolerant to publish studies with insufficient physicochemical data on the NPs or 
have a broader scope.

11.3.2  �The In Vitro Assays

Articles are stored in ISA-Tab-Nano describing 148 different silica NPs (or NPs 
with a silica shell) and their biological impact in 230 different in  vitro assays. 
Fourty three percent of the assays investigated viability, 16 percent apoptosis/
necrosis, 26 percent oxidative stress, 10 percent pro-inflammation and 6 per cent 
genotoxicity (Fig. 11.3).

The different types of assays per type of toxicological endpoint represented in 
the database are listed in Table 11.5:

Table 11.4  Scoring scheme variables associated with the biological system

Variables
Information available
Make a choice: yes=1/no=0

Selection of the appropriate test system 1 or 0

Origin of the cells 1 or 0

Passage of cells 1 or 0

Cell density 1 or 0

Primary cells, cell lines or cancer cells 1 or 0

Dispersion method of nanomaterials 1 or 0

Test medium 1 or 0

Amount of serum test medium 1 or 0

Agglomeration/Aggregation in exposure medium 1 or 0

Sum Score biological system
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11.3.3  �The Particles

One hundred and fourty eight particles are stored in the database. The characteris-
tics stored in the database are believed to be important determinants of nanotoxicity: 
chemical composition, primary size, primary size distribution, shape, crystallinity, 
solubility, surface charge, surface area, and agglomeration/aggregation. Table 11.6 
gives an overview of these characteristics, how these were measured and the fre-
quency of these measurements in the database. As a preposition for an article to be 
accepted for storage in the database was the characterisation of the primary size, 
shape, composition and crystallinity all the 148 particles have these characteristics 
measured (relative frequency is 1).

Few simplifications were made to make that data more homogenous and 
comparable:

	1.	 diameter ranges were converted to a mean diameter by taking the arrhythmic 
mean of the upper and lower limit of the range

	2.	 for NPs with a bimodal size distribution only the smallest mean diameter was 
taken into account for analysis

	3.	 for ellipsoidal/cylindrical particles the average of the Feret min diameter and 
Feret max diameter is used as the mean diameter

Viability
43 %

Apoptosis/necrosis
16 %

Oxidative stress
26 %

Pro-inflammation
10 %

Genotoxicity
5 %

Fig. 11.3  Distribution of 
the 230 in vitro assays over 
the toxicity endpoints
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Table 11.5  Different types of assays per toxicological endpoint included in the database

Cell viability

Lactate dehydrogenase release assay
Trypan blue cell staining
MTT/MTS/XTT/WST-1/WST-8 reduction assay
Propidium iodide uptake assay
Neutral red uptake assay
Annexin V-propidium iodide assay

Resazurin reduction assay
ATP single parameter assay
Cell proliferation assay
Clonogenic assay
Sulforhodamine B assay

Apoptosis/Necrosis

qRT-PCR
Western blot
Annexin V- propidium iodide assay
Annexin V assay

ELISA
Cell morphology assay
Caspase activity assay
Mitotic cell cycle arrest assay

Oxidative stress

ROS/RNS assay
Thiobarbituric acid assay
Glutathione assay
Hydroxyl radical assay

SOD activity assay
Western blot
qRT-PCR

Pro-inflammation

ELISA qRT-PCR
Genotoxicity

Micronucleus assay Comet assay

Table 11.6  Frequency table of the physicochemical characterisation particles

Characteristic Measurement Freq.
Relative 
freq.*100

Chemical composition Composition core 148 100
Composition shell 148 100
Composition coating 148 100
Purity 24 16
Material synthesis 97 66

Primary size Mean diameter 148 100
SD diameter 85 57

Shape Shape 148 100
Crystallinity Major crystalline fraction 148 100

Major crystalline fraction 
proportion

148 100

Minor crystalline fraction 148 100
Minor crystalline fraction 
proportion

148 100

Amorphous fraction proportion 148 100
Surface area Mean specific surface area 75 51

SD specific surface area 10 8
Mean external surface area 23 16

(continued)
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Table 11.6  (continued)

Characteristic Measurement Freq.
Relative 
freq.*100

Porosity Porosity (porous/nonporous) 68 46
Pore volume 8 5
Pore size 21 14

Surface charge Mean zeta-potential in water 52 35
SD zeta-potential in water 22 15
Mean zeta-potential in 
physiological saline

6 4

SD zeta-potential in physiological 
saline

1 1

Mean zeta-potential in medium 32 22
SD zeta-potential in medium 6 4
Mean zeta-potential in medium 
with serum

17 11

SD zeta-potential in medium with 
serum

7 5

Agglomeration/aggregation Mean hydrodynamic diameter in 
water

66 45

SD hydrodynamic diameter in 
water

35 24

Mean hydrodynamic diameter in 
physiological saline

8 5

SD hydrodynamic diameter in 
physiological saline

4 3

Mean hydrodynamic diameter in 
medium

62 42

SD hydrodynamic diameter in 
medium

25 17

Mean hydrodynamic diameter in 
medium with serum

37 25

SD hydrodynamic diameter in 
medium with serum

21 14

Solubility Solubility in water 1 1

11.3.3.1  �Chemical Composition

All particles are made of amorphous silica or have an amorphous silica shell. The 
core of 15 particles is not pure silica but contains Fe3O4 (2), Fe3O4/Fe2O3 (2), 
dansylamide (1), rhodamine (7) or redF (3). Only eight particles have a coating: 
BSA (6), ethylene (1) and Al2O3 (1).

Of the 24 particles that were described in purity; 18 particles were said to have 
purity higher than 98 % or higher, the others were just mentioned to be pure.
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The material synthesis is important for the composition of nanomaterials, espe-
cially the surface chemistry of the silica particles. The density of silanol groups on 
the particle surface depends on the temperature. At high temperature which is for 
example needed to make pyrogenic silica there is a dehydration of the silanol groups 
on the surface area resulting in a lower density of silanol groups on the surface and 
a possibly different reaction with the environment [17].

For 97 of the particles the way they were synthesised was specified in the article 
(Fig. 11.4): 36 % of these particles were made by the Stöber process, 16 % were 
ludox® silica, 16 % made by the reverse microemulsion process, 14 % is pyrogenic 
silica, 7 % precipitated.

11.3.3.2  �Primary Size

The frequency distribution of the mean diameter of the particles is depicted in Fig. 
11.5. For only 57 % of the particles a standard deviation is reported.

11.3.3.3  �Shape

55.4 percent of the particles are spherical, 35.1 % polyhedral, 0.7 % cylindrical, 
5.4 % irregular and 3.4 ellipsoidal. The particles were described with these terms in 
the article or the T/S EM pictures of the particles were used to assign the particles 
to one of these shape classes.

For the other measured characteristics there were too many missing values, it 
does not seem usefull to report any descriptive statistics on these.

Levasil
1 %

Mesoporous
4 % Precipitated

5 %

Pyrogenic
9 %

Ludox

10 %

Reverse
microemulsion

10 %
Stöber/colloida

l
26 %

Not specified

35 %

Fig. 11.4  Relative 
frequency of synthesis 
method used to make 
amorphous silica NPs
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11.3.4  �Data Evaluation

11.3.4.1  �Evaluation Variables Associated with Nanomaterials

The scoring scheme developed in 11.2.3.2 to evaluate variables associated with nano-
materials was filled out for each amorphous silica NP (Table 11.2). Figure 11.6 is a 
frequency table of the “Score characterisation” of the 148 amorphous silica nanomateri-
als. Articles were allowed in the database under the condition that the composition of 
the core and shell, the composition of the coating, the shape, the crystallinity and the 
primary size of the particles were known. Therefore, no characterisation scores less than 
five were observed. None of the particles has a maximum characterisation score of 14.

The percentage of characteristics for which the measurement device was speci-
fied is calculated for each particle (“Score measurement device”/“Score characteri-
sation”*100 - Fig. 11.7).

The average of this calculation for all the NPs was only 45 % implying that in more 
than 50 % of the reported characteristics the method used was not clearly specified.

11.3.4.2  �Evaluation Variables Associated with the Toxicity Assay and Test 
System

The two scoring schemes developed in to evaluate variables associated with the 
toxicity assay and test system were filled out for the MTT reduction assays (30 
assays). Figure 11.8 are the frequency tables of the “Score toxicity assay” and the 
“Score test system” of the 30 MTT reduction assays included in the database.
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Fig. 11.5  Frequency distribution of the mean diameters of the 148 particles in the database
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11.4  �Discussion

This case study describes the construction of an ISA-Tab-Nano formatted database, 
collecting data of in vitro toxicological studies published in peer reviewed journals. 
In total after triaging the data of 68 articles were included (starting from more than 
600 hits). The characteristics (physicochemical and biological) of 148 different 
amorphous silica NPs are described in the database.
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Several issues and according needs came up during construction of the 
database:

11.4.1  �Purpose Made Materials vs Commercial (Standard/
Benchmark) Materials

Many different particles were identified (although only amorphous silica NPs were 
included) and not much overlap in the use of nanomaterials was found. This is due 
to the fact that several silica NPs were “in house made” (or purpose made) and 
therefore only used in one experiment/study. On one hand this increases the scope 
of the database but on the other also increases the amount of data gaps and reduces 
the amount of overlap in the database hindering to create models generating data 
with high confidence. The use of a benchmark material would significantly increase 
the number of overlapping data points and make comparison between experiments, 
researchers, and particles possible.

11.4.2  �Quality Evaluation of the Existing Data

In search of the critical properties that determine the toxicity of NPs, numerous 
investigations have been undertaken. Despite these efforts our knowledge on the 
possible hazardous effects of nanotechnology and its applications lags far behind 
the progress of nanotechnology. This is, mainly in the early years of nanotoxicol-
ogy, caused by toxicity testing without appropriate material characterization and the 
lack of standardized dispersion and experimental protocols. Researchers 
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underestimated the complexity of nanomaterials and experiments were set-up in 
similar ways as with chemicals. Inadequate characterisation made it impossible to 
link nanomaterials’ characteristics to their biological effect. Likewise, the question 
whether the existing (biological) assays for chemicals were appropriate for nanoma-
terials was not sufficiently addressed. Lately a lot of attention went to the impor-
tance of physicochemical characterisation of nanomaterials. Papers were published 
on minimal information criteria [2, 18]. Still little attention went to the validation of 
the (biological) assays for testing nanomaterials. Now, most researchers are aware 
of the importance of a detailed characterisation of both the nanomaterials and the 
toxicity assays, and the validation of the methods used to characterise them. The 
scientific community has started to fill the data and knowledge gaps.

This awareness has also initiated the search for good and workable quality crite-
ria to assess the reliability of the already published toxicological data. The criteria 
used in our database are not integrated into the final database in ISA-Tab-Nano 
since these are not solely objective data but are the result of unavoidable subjective 
expert judgment. Researcher using the database can easily implement his/her own 
quality judgment to the database before applying it for modelling purposes.

11.4.3  �Standardized Formats

Finally, it can be recommended that all researchers should deliver the data presented 
in a scientific paper as an annex in ISA-Tab-Nano format. Now we have curated 
manually 68 papers, which is a tedious job, prone on reporting errors. The process 
of curation of data from a scientific paper includes extracting data from text (in 
which often not all measured data are given), figures (the small scale does often not 
allow precise extraction of numeral data, and smoothing of curves does not allow 
correct extraction), and tables (providing in general the most detailed data). Not 
only the different sections (text vs tables and figures) deliver different quality of 
data, also the fact that most experiments, although repeated several times (n-value 
of repeated measures) are reported as one mean value (± SD); this data is still valu-
able in a database but it would be better to collect the data per experimental run. 
Therefore, if researchers are encouraged to deliver  – together with a published 
paper/report – a small ISA-TAB Nano compatible database, this would deliver more 
useful details into the database and would reduce significantly the number of 
‘human’ errors.

The current database will be made available to the other researchers within other 
modelling projects and with research institutes such as JRC in Italy. The database 
will be used in the MOD-TOX-ENP project, where algorithm(s) will be developed 
to identify those physicochemical properties determining the hazardous effects of 
NPs.

This study describes the construction of an ISA-Tab-Nano formatted database, 
collecting data of in vitro toxicological studies published in peer reviewed journals. 
The study revealed some issues and future needs:
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•	 Lately a lot of attention went to the importance of physicochemical characterisa-
tion of nanomaterials, to make the link between materials’ characteristics and 
biological effect. This should not result in a loss of quality of the biological 
characterization, including interference verification, of the nanomaterial.

•	 Due to a general lack of good reference/benchmark data in publications it 
remains difficulty in comparing and combining data of different peer reviewed 
papers into a databases.

•	 Standardised database formats will improve the exchange and integration of 
data – here we used ISA-Tab-Nano format.

•	 It can be recommended that all researchers should deliver, as an annex to any 
publication, the data presented in ISA-Tab-Nano format (or another standard 
format).
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