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Introduction

The essays collected in this volume represent work carried out over a
period of more than ten years on a variety of problems in artificial in-
telligence, the philosophy of mind and language, and natural-language
semantics, addressed from a perspective that takes as central the use of
formal logic and the explicit representation of knowledge. The origins
of the work could be traced even farther back than that, though, to
the early 1970s when one of my goals as a graduate student was, in the
hubris of youth, to write a book that would be the definitive refutation
of Quine's Word and Object (1960). Over the intervening years I never
managed to find the time to write the single extended essay that book
was to have been, and more senior sages took on the task themselves
in one way or another (with many of the resulting works being cited
in these pages). In retrospect, however, I think that the point of view
I wanted to put forth then largely comes through in these essays; so
perhaps my early ambitions are at least partly realized in this work.

Two important convictions I have held on to since those early days
are (1) that most of the higher forms of intelligent behavior require the
explicit representation of knowledge and (2) that formal logic forms
the cornerstone of knowledge representation. These essays show the
development and evolution over the years of the application of those
principles, but my basic views on these matters have changed relatively
little. What has changed considerably more are the opposing points of
view that are most prevalent. In the early 1970s, use of logic was some-
what in disrepute in artificial intelligence (AI), but the idea of explicit
knowledge representation was largely unquestioned. In philosophy of
mind and language, on the other hand, the idea of explicit represen-
tation of knowledge was just beginning to win its battle against the
behaviorism of Quine and Skinner, powered by the intellectual energy

XI
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generated by work in generative linguistics, AI, and cognitive psychol-
ogy.

Today, in contrast, logic has made a comeback in AI to the point
that, while it still has its critics, in the subfield of AI that self-
consciously concerns itself with the study of knowledge representation,
approaches based on logic have become the dominant paradigm. The
idea of explicit knowledge representation itself, however, has come to
be questioned by researchers working on neural networks (e.g., Rumel-
hart et al. 1987, McClelland et al. 1987) and reactive systems (e.g.,
Brooks 1991a, 1991b). In the philosophy of mind and language, the
battle with behaviorism seems to be pretty much over (or perhaps I
have just lost track of the argument).

In any case, I still find the basic arguments in favor of logic and
representation as compelling as I did twenty years ago. Higher forms
of human-like intelligence require explicit representation because of the
recursive structure of the information that people are able to process.
For any propositions P and Q that a person is able to contemplate, he
or she is also able to contemplate their conjunction, "P and Q," their
disjunction "P or Q," the conditional dependence of one upon the other
"if P then Q," and so forth. While limitations of memory decrease our
ability to reason with such propositions as their complexity increases,
there is no reason to believe there is any architectural or structural
upper bound on our ability to compose thoughts or concepts in this
recursive fashion. To date, all the unquestioned successes of nonrep-
resentational models of intelligence have come in applications that do
not require this kind of recursive structure, chiefly low-level pattern
recognition and navigation tasks. No plausible models of tasks such as
unbounded sentence comprehension or complex problem solving exist
that do not rely on some form of explicit representation.

Recent achievements of nonrepresentational approaches, particu-
larly in robot perception and navigation, are impressive, but claims
that these approaches can be extended to higher-level forms of intelli-
gence are unsupported by convincing arguments. To me, the following
biological analogy seems quite suggestive: The perception and naviga-
tion abilities that are the most impressive achievements of nonrepresen-
tational models are well within the capabilities of reptiles, which have
no cerebral cortex. The higher cognitive abilities that seem to require
representation exist in nature in their fullest form only in humans, who
have by far the most developed cerebral cortex in the biological world.
So, it would not surprise me if it turned out that in biological systems,
explicit representations of the sort I am arguing for are constructed
only in the cerebral cortex. This would suggest that there may be a
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very large role for nonrepresentational models of intelligence, but that
they have definite limits as well.

Even if we accept that explicit representations are necessary for
higher forms of intelligence, why must they be logical representations?
That question is dealt with head-on in Chapter 1, but in brief, the ar-
gument is that only logical representations have the ability to represent
certain forms of incomplete information, and that any representation
scheme that has these abilities would a fortiori be a kind of logical
representation.

Turning to the essays themselves, Part I consists of two chapters of
a methodological character. Chapter 1 reviews a number of different
roles for logic in AI. While the use of logic as a basis for knowledge rep-
resentation is taken as central, elaborating the argument made above,
the uses of logic as an analytical tool and as a programming language
are also discussed. I might comment that it was only after this chapter
was originally written that I gained much experience using PROLOG,
the main programming language based on logic. Nevertheless, I find
that my earlier analysis of logic programming holds up remarkably
well, and I would change little if I were to re-write this chapter today.
My current opinions are that the most useful feature of PROLOG is
its powerful pattern-matching capability based on unification, that it
is virtually impossible to write serious programs without going outside
of the purely logical subset of the language, and that most of the other
features of the language that derive from its origins in predicate logic
get in the programmer's way more than they help.

Chapter 2 is a brief commentary that appeared as one of many ac-
companying a reprinting of Skinner's "Behaviorism at Fifty" (1984).
Given the demise of behaviorism as a serious approach to understand-
ing intelligence, it may be largely of historical interest, but it does lay
out some of the basic counter arguments to classic behaviorist attacks
on mentalistic psychology and mental representation.

Part II contains three chapters dealing with prepositional attitudes,
particularly knowledge and belief. Chapter 3 is a distillation of my
doctoral dissertation, and presents a formal theory of knowledge and
action. The goal of this work is to create a formal, general logic for
expressing how the possibility of performing actions depends on knowl-
edge and how carrying out actions affects knowledge. The fact that
this logic is based on the technical constructs of possible-world seman-
tics has misled some researchers to assume that I favored a theoretical
analysis of prepositional attitudes in terms of possible worlds. This
has never been the case, however, and Chapters 4 and 5 present the
actual development of my views on this subject.
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Chapter 4 develops a semantics for belief reports (that is, state-
ments like "John believes that P") based on a representational the-
ory of belief. In the course of this development, a number of positive
arguments for the representational theory of belief are presented that
would fit quite comfortably among the methodological chapters in Part
I. Later, I came to view the semantics proposed for prepositional at-
titude reports in this chapter as too concrete, on the grounds that
it would rule out the possibility of attributing prepositional attitudes
to other intelligent beings whose cognitive architecture was substan-
tially different from our own. In its place, Chapter 5 presents a more
abstract theory based on the notion of Russellian propositions. This
chapter also provides a detailed comparison of this Russellian theory
of attitude reports to the theory presented in the original version of
situation semantics (Barwise and Perry 1983).

Part III presents three chapters concerning autoepistemic logic.
This is a logic for modeling the beliefs of an agent who is able to
introspect about his or her own beliefs. As such, autoepistemic logic
is a kind of model of propositional attitudes, but it is distinguished
from the formalisms discussed in Part II by being centrally concerned
with how to model reasoning based on a lack of information. The abil-
ity to model this type of reasoning makes autoepistemic logic "non-
monotonic" in the sense of Minsky (1974). Chapter 6 presents the
original work on autoepistemic logic as a rational reconstruction of
McDermott and Doyle's nonmonotonic logic (1980, McDermott 1982).
Chapter 7 presents an alternative, more formally tractable semantics
for autoepistemic logic based on possible worlds, and Chapter 8 is a
recently-written short retrospective surveying some of the subsequent
work on autoepistemic logic and remaining problems.

Part IV consists of two essays on the topic of natural-language se-
mantics. In taking a representational approach to semantics, we divide
the problem into two parts; how to represent the meaning of natural-
language expressions, and how to specify the mapping from language
syntax into such a representation. Chapter 9 addresses the first issue
from the standpoint of a set of problems concerning adverbial modi-
fiers of action sentences. We compare two theories, one from Davidson
(1967b) and one based on situation semantics (Perry 1983), concluding
that aspects of both are needed for a full account of the phenomena.
Chapter 10 addresses the problem of how to map between syntax and
semantics, showing how a formalism based on the operation of unifi-
cation can be a powerful tool for this purpose, and presenting a theo-
retical framework for compositionally interpreting the representations
described by such a formalism.



Part I

Methodological Arguments





The Role of Logic in Artificial
Intelligence

Formal logic has played an important part in artificial intelligence (AI)
research for almost thirty years, but its role has always been contro-
versial. This chapter surveys three possible applications of logic in AI:
(1) as an analytical tool, (2) as a knowledge representation formalism
and method of reasoning, and (3) as a programming language. The
chapter examines each of these in turn, exploring both the problems
and the prospects for the successful application of logic.

1.1 Logic as an Analytical Tool
Analysis of the content of knowledge representations is the application
of logic in artificial intelligence (AI) that is, in a sense, conceptually
prior to all others. It has become a truism to say that, for a system to
be intelligent, it must have knowledge, and currently the only way we
know of for giving a system knowledge is to embody it in some sort of
structure—a knowledge representation. Now, whatever else a formal-
ism may be, at least some of its expressions must have truth-conditional
semantics if it is really to be a representation of knowledge. That is,
there must be some sort of correspondence between an expression and
the world, such that it makes sense to ask whether the world is the
way the expression claims it to be. To have knowledge at all is to
have knowledge1 that the world is one way and not otherwise. If one's
"knowledge" does not rule out any possibilities for how the world might
be, then one really does not know anything at all. Moreover, whatever

Preparation of this chapter was made possible by a gift from the System Develop-
ment Foundation as part of a coordinated research effort with the Center for the
Study of Language and Information, Stanford University.

1 Or at least a belief; most people in AI don't seem too concerned about truth in
the actual world.
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AI researchers may say, examination of their practice reveals that they
do rely (at least informally) on being able to provide truth-conditional
semantics for their formalisms. Whether we are dealing with concep-
tual dependencies, frames, semantic networks, or what have you, as
soon as we say that a particular piece of structure represents the as-
sertion (or belief, or knowledge) that John hit Mary, we have hold of
something that is true if John did hit Mary and false if he didn't.

Mathematical logic (particularly model theory) is simply the branch
of mathematics that deals with this sort of relationship between expres-
sions and the world. If one is going to analyze the truth-conditional
semantics of a representation formalism, then, a fortiori, one is going
to be engaged in logic. As Newell puts it (1980, p. 17), "Just as talking
of programmerless programming violates truth in packaging, so does
talking of a non-logical analysis of knowledge."

While the use of logic as a tool for the analysis of meaning is per-
haps the least controversial application of logic to AI, many proposed
knowledge representations have failed to pass minimal standards of
adequacy in this regard. (Woods (1975) and Hayes (1977) have both
discussed this point at length.) For example, Kintsch (1974, p. 50) sug-
gests representing "All men die" by (Die,Man) fe (All ,Man). How are
we to evaluate such a proposal? Without a formal specification of how
the meaning of this complex expression is derived from the meaning of
its parts, all we can do is take the representation on faith. However,
given some plausible assumptions, we can show that this expression
cannot mean what Kintsch says it does.

The assumptions we need to make are that "&" means logical con-
junction (i.e., "and"), and that related sentences receive analogous
representations. In particular, we will assume that any expression of
the form (P & Q) is true if and only if P is true and Q is true, and
that "Some men dance" ought to be represented by (Dance,Man) &
(Some,Man). If this were the case, however, "All men die" and "Some
men dance" taken together would imply "All men dance." That, of
course, does not follow, so we have shown that, if our assumptions
are satisfied, the proposed representation cannot be correct. Perhaps
Kintsch does not intend for "&" to be interpreted as "and," but then
he owes us an explanation of what it does mean that is compatible with
his other proposals.

Just to show that these model theoretic considerations do not sim-
ply lead to a requirement that we use standard logical notation, we can
demonstrate that AII(Man,Die) could be an adequate representation of
"All men die." We simply let Man denote the set of all men, let Die
denote the set of all things that die, and let A\\(X, Y) be true whenever
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the set denoted by X is a subset of the set denoted by Y. Then it will
immediately follow that AII(Men,Die) is true just in case all men die.
Hence there is a systematic way of interpreting AII(Men,Die) that is
compatible with what it is claimed to mean.

The point of this exercise is that we want to be able to write com-
puter programs whose behavior is a function of the meaning of the
structures they manipulate. However, the behavior of a program can
be directly influenced only by the form of those structures. Unless
there is some systematic relationship between form and meaning, our
goal cannot be realized.

1.2 Logic as a Knowledge Representation and
Reasoning System
The Logic Controversy in AI
The second major application of logic to artificial intelligence is to use
logic as a knowledge representation formalism in an intelligent com-
puter system and to use logical deduction to draw inferences from the
knowledge thus represented. Strictly speaking, there are two issues
here. One could imagine using formal logic in a knowledge representa-
tion system, without using logical deduction to manipulate the repre-
sentations, and one could even use logical deduction on representations
that have little resemblance to standard formal logics; but the use of
a logic as a representation and the use of logical deduction to draw
inferences from the knowledge represented fit together in such a way
that it makes most sense to consider them simultaneously.

This is a much more controversial application than merely using the
tools of logic to analyze knowledge representation systems. Indeed,
Newell (1980, p. 16) explicitly states that "the role of logic [is] as
a tool for the analysis of knowledge, not for reasoning by intelligent
agents." It is a commonly held opinion in the field that logic-based
representations and logical deduction were tried many years ago and
were found wanting. As Newell (1980, p. 17) expresses it, "The lessons
of the sixties taught us something about the limitations of using logics
for this role."

The lessons referred to by Newell were the conclusions widely drawn
from early experiments in "resolution theorem-proving." In the mid
1960s, J. A. Robinson (1965) developed a relatively simple, logically
complete method for proving theorems in first-order logic, based on the
so-called resolution principle:2

2We will assume basic knowledge of first-order logic. For a clear introduction to
first-order logic and resolution, see Nilsson (1980).
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(PVQ),(-,PVR)\=(Q\fR)
That is, if we know that either P is true or Q is true and that either
P is false or R is true, then we can infer that either Q is true or R is
true.

Robinson's work brought about a rather dramatic shift in attitudes
regarding the automation of logical inference. Previous efforts at auto-
matic theorem-proving were generally thought of as exercises in expert
problem solving, with the domain of application being logic, geometry,
number theory, etc. The resolution method, however, seemed powerful
enough to be used as a universal problem solver. Problems would be
formalized as theorems to be proved in first-order logic in such a way
that the solution could be extracted from the proof of the theorem.

The results of experiments directed towards this goal were disap-
pointing. The difficulty was that, in general, the search space generated
by the resolution method grows exponentially (or worse) with the num-
ber of formulas used to describe the problem and with the length of
the proof, so that problems of even moderate complexity could not be
solved in reasonable time. Several domain-independent heuristics were
proposed to try to deal with this issue, but they proved too weak to
produce satisfactory results. In the reaction that followed, not only was
there was a turning away from attempts to use deduction to create gen-
eral problem solvers, but there was also widespread condemnation of
any use of logic in commonsense reasoning or problem-solving systems.

The Problem of Incomplete Knowledge
Despite the disappointments of the early experiments with resolution,
there has been a recent revival of interest in the use of logic-based
knowledge representation systems and deduction-based approaches to
commonsense reasoning and problem solving. To a large degree this
renewed interest seems to stem from the recognition of an important
class of problems that resist solution by any other method.

The key issue is the extent to which a system has complete knowl-
edge of the relevant aspects of the problem domain and the specific
situation in which it is operating. To illustrate, suppose we have a
knowledge base of personnel information for a company and we want
to know whether any programmer earns more than the manager of
data processing. If we have recorded in our knowledge base the job
title and salary of every employee, we can simply find the salary of
each programmer and compare it with the salary of the manager of
data processing. This sort of "query evaluation" is essentially just an
extended form of table lookup. No deductive reasoning is involved.
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On the other hand, we might not have specific salary information in
the knowledge base. Instead, we might have only general information
such as "all programmers work in the data processing department, the
manager of a department is the manager of all other employees of that
department, and no employee earns more than his manager." From this
information, we can deduce that no programmer earns more than the
manager of data processing, although we have no information about
the exact salary of any employee.

A representation formalism based on logic gives us the ability to
represent information about a situation, even when we do not have a
complete description of the situation. Deduction-based inference meth-
ods allow us to answer logically complex queries using a knowledge base
containing such information, even when we cannot "evaluate" a query
directly. On the other hand, AI inference systems that are not based
on automatic-deduction techniques either do not permit logically com-
plex queries to be asked, or they answer such queries by methods that
depend on the possesion of complete information.

First-order logic can represent incomplete information about a sit-
uation by

Saying that something has a certain property without saying
which thing has that property: 3xP(x)
Saying that everything in a certain class has a certain property
without saying what everything in that class is: Vx(P(x) D Q(%))
Saying that at least one of two statements is true without saying
which statement is true: (P V Q)
Explicitly saying that a statement is false, as distinguished from
not saying that it is true: ->P

These capabilities would seem to be necessary for handling the kinds
of incomplete information that people can understand, and thus they
would be required for a system to exhibit what we would regard as
general intelligence. Any representation formalism that has these ca-
pabilities will be, at the very least, an extension of classical first-order
logic, and any inference system that can deal adequately with these
kinds of generalizations will have to have at least the capabilities of an
automatic-deduction system.

The Control Problem in Deduction
If the negative conclusions that were widely drawn from the early ex-
periments in automatic theorem-proving were fully justified, then we
would have a virtual proof of the impossibility of creating intelligent
systems based on the knowledge representation approach, since many
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types of incomplete knowledge that people are capable of dealing with
seem to demand the use of logical representation and deductive in-
ference. A careful analysis, however, suggests that the failure of the
early attempts to do commonsense reasoning and problem solving by
theorem-proving had more specific causes that can be attacked without
discarding logic itself.

The point of view we shall adopt here is that there is nothing wrong
with using logic or deduction per se, but that a system must have some
way of knowing, out of the many possible inferences it could draw,
which ones it should draw. A very simple, but nonetheless important,
instance of this arises in deciding how to use assertions of the form
P D Q ("P implies Q"). Intuitively, such a statement has at least two
possible uses in reasoning. Obviously, one way of using P D Q is to
infer Q, whenever we have inferred P. But P D Q can also be used,
even if we have not yet inferred P, to suggest a way to infer Q, if that
is what we are trying to do. These two ways of using an implication are
referred to as forward chaining ("If P is asserted, also assert Q") and
backward chaining ("To infer Q, try to infer P"), respectively. We can
think of the deductive process as a bidirectional search, partly working
forward from what we already know, partly working backward from
what we would like to infer, and converging somewhere in the middle.

Unrestricted use of the resolution method turns out to be equiva-
lent to using every implication both ways, leading to highly redundant
searches. Domain-independent refinements of resolution avoid some
of this redundancy, but usually impose uniform strategies that may
be inappropriate in particular cases. For example, often the strategy
is to use all assertions only in a backward-chaining manner, on the
grounds that this will at least guarantee that all the inferences drawn
are relevant to the problem at hand.

The difficulty with this approach is that whether it is more efficient
to use an assertion for forward chaining or for backward chaining can
depend on the specific form of the assertion, or the set of assertions in
which it is embedded. Consider, for instance, the following schema:

Vx(P(F(x)) D P(x))

Instances of this schema include such things as:

Va;(Jewish(Mother(x)) D Jewish(a;))

That is, a number x is less than a number y if a; + 1 is less than y; and
a person is Jewish if his or her mother is Jewish.3

3I am indebted to Richard Waldinger for suggesting the latter example.
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Suppose we were to try to use an assertion of the form Va;(P(F(a;))D
P(x)) for backward chaining, as most "uniform" proof procedures
would. In effect, we would have the rule, "To infer P(x), try to in-
fer P(F(x))." If, for instance, we were trying to infer P(A), this rule
would cause us to try to infer P(F(A)). This expression, however, is
also of the form P(x), so the process would be repeated, resulting in
an infinite descending chain of formulas to be inferred:

P(A)
P(F(A))
P(F(F(A)))

If, on the other hand, we use the rule for forward chaining, the number
of applications is limited by the complexity of the assertion that orig-
inally triggers the inference. Asserting a formula of the form P(F(x))
would result in the corresponding instance of P(x) being inferred, but
each step reduces the complexity of the formula produced, so the pro-
cess terminates:

P(F(F(A)))
P(F(A))
P(A]

It turns out, then, that the efficent use of a particular assertion
often depends on exactly what that assertion is, as well as on the
context of other assertions in which it is embedded. Kowalski (1979)
and Moore (1980b) illustrate this point with examples involving not
only the distinction between forward chaining and backward chaining,
but other control decisions as well.

In some cases, control of the deductive process is affected by the
details of how a concept is axiomatized, in ways that go beyond "local"
choices such as that between forward and backward chaining. Some-
times logically equivalent formalizations can have radically different
behavior when used with standard deduction techniques. For example,
in the blocks world that has been used as a testbed for so much AI
research, it is common to define the relation "A is Above B" in terms
of the primitive relation UA is (directly) On B," with Above being the
transitive closure of On. This can be done formally in at least three
ways:4

Var, y(Above(a:, y) = (On(z, y) V 3z(0n(a;, z) A Above(z, y))))

* These formalizations ate not quite equivalent, as they allow for different pos-
sible interpretations of Above, if infinitely many objects are involved. They are
equivalent, however, if only a finite set of objects is being considered.
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Var, y(Above(z, y) = (On(z, y) V 3z(Above(a:, 2) A On(z, y))))
Vz, y(Above(z, y) = (On(z, y) V 3z(Above(x, z) A Above(z, y))))

Each of these axioms will produce different behavior in a standard
deduction system, no matter how we make such local control decisions
as whether to use forward or backward chaining. The first axiom de-
fines Above in terms of On, in effect, by iterating upward from the lower
object, and would therefore be useful for enumerating all the objects
that are above a given object. The second axiom iterates downward
from the upper object, and could be used for enumerating all the ob-
jects that a given object is above. The third axiom, though, is essen-
tially a "middle out" definition, and is hard to control for any specific
use.

The early systems for problem solving by theorem-proving were
often inefficient because axioms were chosen for their simplicity and
brevity, without regard to their computational properties—a problem
that also arises in conventional programming. To take a well-known ex-
ample, the simplest procedure for computing the nth Fibonacci number
is a doubly recursive algorithm whose execution time is proportional
to 2", while a slightly more complicated, less intuitively defined, singly
recursive procedure can compute the same function time proportional
to n.

Prospects for Logic-Based Reasoning Systems
The fact that the issues discussed in this section were not taken into ac-
count in the early experiments in problem solving by theorem-proving
suggests that not too much weight should be given to the negative
results that were obtained. As yet, however, there is not enough ex-
perience with providing explicit control information and manipulating
the form of axioms for computational efficiency to tell whether large
bodies of commonsense knowledge can be dealt with effectively through
deductive techniques. If the answer turns out to be "no," then some
radically new approach will be required for dealing with incomplete
knowledge.

1.3 Logic as a Programming Language

Computation and Deduction
The parallels between the manipulation of axiom systems for efficient
deduction and the design of efficient computer programs were recog-
nized in the early 1970s by a number of people, notably Hayes (1973),
Kowalski (1974), and Colmerauer (1978). It was discovered, moreover,
that there are ways to formalize many functions and relations so that
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the application of standard deduction methods will have the effect of
executing them as efficient computer programs. These observations
have led to the development of the field of logic programming and the
creation of new computer languages such as PROLOG (Warren, Pereira,
and Pereira 1977).

As an illustration of the basic idea of logic programming, consider
the "append" function, which appends one list to the end of another.
This function can be implemented in LISP as follows:

(append a b) =
(cond((nuil a b)

(t (cons (car a) (append (cdr a) b))))

What this function definition says is that the result of appending B to
the end of A is B if A is the empty list, otherwise it is a list whose first
element is the first element of A and whose remainder is the result of
appending B to the remainder of A.

We can easily write a set of axioms in first-order logic that explicitly
say what we just said in English. If we treat Append as a three-place re-
lation (with Append(yl, B, C) meaning that C is the result of appending
B to the end of A) the axioms might look as follows5 :

Vx(Append(Nil,x,:c)
Vz,y, z(Append(a:,3/,z) D

Vu;(Append(Cons(u>, a;), y, Cons(u>, z))))

The key observation is that, when these axioms are used via backward
chaining to infer Append(j4, B, x), where A and B are arbitrary lists and
a; is a variable, the resulting deduction process not only terminates with
the variable x bound to the result of appending B to the end of A, it
exactly mirrors the execution of the corresponding LISP program. This
suggests that in many cases, by controlling the use of axioms correctly,
deductive methods can be used to simulate ordinary computation with
no loss of efficiency. The new view of the relationship between deduc-
tion and computation that emerged from these observations was, as
Hayes (1973) put it, "Computation is controlled deduction."

The ideas of logic programming have produced a very exciting and
fruitful new area of research. However, as with all good new ideas,
there has been a degree of "over-selling" of logic programming and,
particularly, of the PROLOG language. So, if the following sections fo-
cus more on the limitations of logic programming than on its strengths,

5To see the equivalence between the LISP program and these axioms, note that
Cons(tu, x) corresponds to A, so that w corresponds to (car A) and x corresponds
to (cdr A).
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they should be viewed as an effort to counterbalance some of the over-
stated claims made elsewhere.

Logic Programming and PROLOG
To date, the main application of the idea of logic programming has
been the development of the programming language PROLOG. Be-
cause it has roots both in programming methodology and in auto-
matic theorem-proving, there is a widespread ambivalence about how
PROLOG should be viewed. Sometimes it is seen as "just a program-
ming language," although with some very interesting and useful fea-
tures, and other times it is viewed as an "inference engine," which can
be used directly as the basis of a reasoning system. On occasion these
two ways of looking at PROLOG are simply confused, as when the
(false) claim is made that to program in PROLOG one has simply to
state the facts of the problem one is trying to solve and the PROLOG
system will take care of everything else. This confusion is also evi-
dent in the terminology associated with the Japanese fifth generation
computer project, in which the basic measure of machine speed is said
to be "logical inferences per second." We will try to separate these
two ways of looking at PROLOG, evaluating it first as a programming
language and then as an inference system.

To evaluate PROLOG as a programming language, we will com-
pare it with LISP, the programming language most widely used in AI.6

PROLOG incorporates a number of features not found in LISP:

Failure-driven backtracking
Procedure invocation by pattern matching (unification)
Pattern matching as a substitute for selector functions
Procedures with multiple outputs
Returning and passing partial results via structures containing
logical variables

These features and others make PROLOG an extremely powerful
language for certain applications. For example, its incorporation of
backtracking, pattern matching, and logical variables make it ideal for
the implementation of depth-first parsers for language processing.7 It
is probably impossible to do this as efficiently in LISP as in PROLOG.

6 The fact that the idea of logic programming grew out of AI work on automated
inference, of course, gives AI no special status as a domain of application for logic
programming. But because it was developed by people working in AI, and because
it provides good facilities for symbol manipulation, most PROLOG applications
have been within AI.

7This is in fact the application for which it was invented.
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Moreover, having pattern matching as the standard way of pass-
ing information between procedures and decomposing complex struc-
tures makes many programs much simpler to write and understand in
PROLOG than in LISP. On the other hand, PROLOG lacks general
purpose operators for changing data structures. In applications where
such facilities are needed, such as maintaining a highly interconnected
network structure, PROLOG can be awkward to use. For this type of
application, using LISP is much more straightforward.

To better understand the advantages and disadvantages of PROLOG
relative to LISP, it is helpful to consider that PROLOG and LISP both
contain a purely declarative subset, in which every expression affects
the course of a computation only by its value, not by "side effects." For
example, evaluating (2 + 3) would normally not change the computa-
tional state of the system, while evaluating (X <— 3) would change the
value of X. In comparing their "pure" subsets, one finds that PROLOG
is strictly more general than LISP. These subsets can both be thought
of as logic programming languages, but the logic of pure LISP is re-
stricted to recursive function definitions, while that of PROLOG per-
mits definitions of arbitrary relations. This is what gives rise to the
use of backtracking control structure, multiple return values, and logi-
cal variables. Pure PROLOG, then, can be thought of as a conceptual
extension of pure LISP.

The creators of LISP, however, recognized that "although this lan-
guage [pure LISP] is universal in terms of computable functions of
symbolic expressions, it is not convenient as a programming system
without additional tools to increase its power," (McCarthy et al 1962,
p. 41). What was added to LISP was a set of operations for directly
manipulating the pointer structures that represent the abstract sym-
bolic expressions forming the semantic domain of pure LISP. LISP
thus operates at two distinct levels of abstraction; simple things can
be done quite elegantly at the level of recursive functions of symbolic
expressions, while more complex tasks can be dealt with at the level of
operations on pointer structures. Both levels, though, are conceptually
coherent and, in a sense, complete.

PROLOG also has extensions to its purely logical core that most
users agree are essential to its use as practical programming language.
These extensions, however, do not have the kind of uniform concep-
tual basis that the structure manipulation features of LISP do. Such
features as the "cut" operation for terminating backtracking, "assert"
and "retract" for altering the PROLOG database, and predicates that
test whether variables are free or bound are all powerful and useful
devices, but they do not share any common semantic domain of oper-
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ation. There is nothing categorically objectionable about any of these
features in isolation, but they do not fit together in a coherent way.
The result is that, while PROLOG provides a very powerful set of tools,
the effective use of those tools depends to a greater extent than with
many other languages on the ingenuity of the programmer and his
acquaintance with the lore of the user community.8

This suggests that if PROLOG is really to replace LISP as the lan-
guage of choice for AI systems, it should be given a more powerful
and more conceptually coherent set of nonlogical extensions to the
basic logic-programming paradigm, analogous to LISP's nonlogical ex-
tensions to the recursive-function paradigm. This suggestion would no
doubt be resisted by purists who see the present nonlogical features of
PROLOG as already departing too far from the semantic elegance of
a system where the correctness of a program can be judged simply by
whether all of its statements are true; but that is an idealized vision
whose practical realization is doubtful.9

PROLOG as an Inference System
Whatever its merits purely as a programming language, much of the
current enthusiasm for PROLOG undoubtedly stems from the impres-
sion that, because a PROLOG interpreter can be viewed as an auto-
matic theorem-prover, PROLOG itself can be used as the reasoning
module of an intelligent system. This is true to an extent, but only
to a limited extent. The major limitation is that all practical logic
programming systems to date, including PROLOG, are based, not on
full first-order logic, but on the Horn-clause subset of first-order logic.

The easiest way to view Horn-clause logic is to say that axioms
must be either atomic formulas such as Or\(A, B) or implications whose
consequent is an atomic formula and whose antecedent is either an
atomic formula or a conjunction of atomic formulas:

8 To be fair, this last statement is true of LISP as well, especially with regard to
recent extensions, such as "flavors." But it seems that with PROLOG one is forced
into this domain of semantic uncertainty sooner than with LISP.

9 One can make a plausible argument that the advent of massively parallel com-
puter architectures will change this situation. For the type of problem that would
normally be solved by an algorithm that changes data structures, using an im-
perative language typically requires fewer computation steps than using a declar-
ative language but creates more timing dependencies. Thus parallel architectures
and declarative languages are well matched, because the architecture provides the
greater computational resources required by the language, and the language pro-
vides the lack of timing dependencies required to take advantage of the architecture.
It remains to be seen, however, for how wide a class of problems the speedups due
to parallelism outweigh the additional computation steps required.
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(On(i, y) A Above(y, z)) D Above(x, z)

Furthermore, the only queries that can be posed are those that can be
expressed as a disjunction of conjunctions of atomic formulas:

(On(A, B) A On(B, <7)) V (On(C, B) A On(5, A))

These limitations mean that no negative formulas—for example,
->On(.A, B)—can ever be asserted or inferred, and no disjunction can
be inferred unless one of the disjuncts can be inferred. Thus, Horn-
clause logic gives up two of the main features of first-order logic that
permit reasoning with incomplete knowledge: being able to say or infer
that one of two statements is true without knowing which is true, and
being able to distinguish between knowing that a statement is false and
not knowing that it is true.

The question of quantification is more complicated. Horn-clause
logic does not permit quantifiers per se, but it does allow formulas
to contain function symbols and free variables, and there is a result
(Skolem's theorem) to the effect that with these devices, any quanti-
fied formula can be replaced by one without quantifiers. However, this
quantifier-elimination theorem does not apply to most logic program-
ming systems, because of the way they implement unification (pattern
matching).

According to the usual mathematical definition of unification, a
variable cannot be unified with any expression in which it is a proper
subexpression. That is, x will not unify with F(G(z)), because there
is no fully instantiated value for x that will make these two expres-
sions identical. The test for this condition is usually called "the occur
check." The occur check is computationally expensive, though, so most
logic programming systems omit it for the sake of efficiency. There is a
mathematically rigorous foundation for unification operation without
the occur check, based on infinite trees, but this version of unification is
not compatible with the quantifier-elimination techniques usually used
in automatic theorem-proving. In particular, without the occur check,
a. logic programming system cannot properly distinguish between for-
mulas that differ only in quantifier scope, such as, Vx(3y(P(x, y))) and
3y(\/x(P(x, y))). That is, the system cannot distinguish between the
statement that every person has a mother, and the statement that
every person has the same mother.

These restrictions are so severe that PROLOG is almost never used
as a reasoning system without using the extra-logical features of the
language to augment its expressive power. In particular, the usual
practice is to define negation in the system, using the "cut" operation,
so that -tP can be inferred by having an attempt to infer P termi-
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nate in failure. Making this extension permits the implementation of
nontrivial reasoning systems in PROLOG in a very direct way,10 but
it amounts to making "the closed-world assumption": any statement
that cannot be inferred to be true is assumed to be false. To adopt
this principle, though, is to give up entirely on trying to reason with
incomplete knowledge, which is the main advantage that logic-based
systems have over their rivals.

To see what one gives up in making the closed-world assumption,
consider the following problem, adapted from Moore (1980b, p. 28).
Three blocks, A, B, and C, are arranged as shown:

A B C

A is green, C is blue, and the color of B is unstated. In this arrange-
ment of blocks, is there a green block next to a block that is not green?
It should be clear with no more than a moment's reflection that the
answer is "yes." If B is green, it is a green block next to the nongreen
block C; if B is not green then A is a green block next to the nongreen
block B.

To solve this problem, a reasoning system must be able to withold
judgment on whether block B is green; it must know that either B is
green or B is not green without knowing which; and it must use this
fact to infer that some blocks stand in a certain relation to each other,
without being able to infer which blocks these are. None of this is
possible in a system that makes the closed-world assumption.

This is not to say that using PROLOG as a reasoning system with
the closed-world assumption is always a bad thing to do. For applica-
tions where the closed-world assumption is justified, using PROLOG in
this way can be extremely efficient—possibly more efficient than any-
thing that can be programmed in LISP (for much the same reasons
that top-down parsing is so efficient in PROLOG). But not all situa-
tions justify the closed-world assumption, and where it is not justified,
the fact that PROLOG can be viewed as a theorem-prover is irrelevant.
The usefulness of PROLOG in such a case will depend only on its utility
as a programming language for implementing other inference systems.

1.4 Conclusions
In this chapter we have reviewed three possible applications of for-
mal logic in artificial intelligence: as a tool for analyzing knowledge-
10Ironically, it is necessary to go outside the purely logical subset of PROLOG to
do this!
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representation formalisms, as a source of representation formalisms and
reasoning methods, and as a programming language. As an analyti-
cal tool, the mathematical framework developed in the study of formal
logics is simply the only tool we have for analyzing anything as a repre-
sentation. There is little more to say, other than to note all the efforts
to devise representation formalisms that have come to grief for lack of
adequate logical analysis.

The other two applications are more controversial. A large segment
of the AI community believes that any representation or deduction
system based on standard logic will necessarily be too inefficient to be
of any practical value. We have argued that such negative conclusions
are based on experiments in which there was insufficient control of the
deductive process, and we have presented a number of cases in which
better control would lead to more efficient processing. Moreover, we
have argued that when an application involves incomplete knowledge
of the problem, only systems based on logic seem adequate to the task.

The use of logic as a basis for programming languages is the most
recent application of logic within AI. We had two major points to
make in this area. First, current logic programming languages (i.e.,
PROLOG) need to be more developed in their nonlogical features before
they can really replace LISP as the primary language for developing
intelligent systems. Second, as they currently exist, logic programming
languages are suitable for direct use as inference systems only in a very
restricted class of applications.

After thirty years, where does the use of logic in AI now stand?
In all fairness, would one have to say that its promise has yet to be
proven—but, of course, that is true for most of the field of AI. It may
be that, if the promise of logic is to be fulfilled, it will have to come in
a remerging of two of the main themes explored in this chapter: auto-
matic deduction and logic programming. Logic programming grew out
of the realization that, if automated reasoning systems are to perform
efficiently, the information they are given must be carefully structured
in much the same way that efficient computer programs are structured.
But, instead of using that insight to produce more efficient reasoning
systems, the developers of logic programming applied their ideas to
more conventional programming problems. Perhaps the time is now
right to take what has been learned about the efficient use of logic in
logic programming, and apply it to the more general use of logic in
automated reasoning. This just might produce the kind of basic tech-
nology for reasoning systems on which the development of the entire
field depends.





A Cognitivist Reply to
Behaviorism

In "Behaviorism at Fifty," B. F. Skinner (1984) attacks the idea of
mentalistic psychology in general, and mental representation in partic-
ular. There are two major themes running through Skinner's various
objections. He argues, first, that mentalistic notions have no explana-
tory value ("The objection is not that these things are mental, but that
they offer no real explanation..."), and second, that since the correct
explanation of behavior is in terms of stimuli and responses, mentalistic
accounts of behavior must be either false or translatable into behav-
ioristic terms (".. .behavior which seemed to be the product of mental
activity could be explained in other ways."). What I hope to show is
that a "cognitivist" perspective offers a way of constructing mentalistic
psychological theories that circumvent both kinds of objection.

The first theme appears twice in infinite-regress arguments. Skin-
ner ridicules psychological theories that seem to appeal to homunculi,
on the grounds that explaining the behavior of one homunculus would
require a second homunclus, and so on. Later he employs the same
rationale to criticize theories of perception based on internal represen-
tation: If seeing consists of constructing an internal representation of
the thing seen, the internal representation would then apparently re-
quire an inner eye to look at it, etc. Skinner's concern for explanatory
value is also evident in his view of mental states as mere "way sta-
tions" in unfinished causal accounts of behavior. If an act is said to
have been caused by a certain mental state, without any account as to
how that state itself was caused, there seems to be little to constrain

Preparation of this chapter was made possible by a gift from the System Develop-
ment Foundation as part of a coordinated research effort with the Center for the
Study of Language and Information, Stanford University.
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what states we invoke to explain behavior. The limiting case would be
to "explain" every action an agent performs by simply postulating a
primitive desire to perform that action.

Skinner's concerns about explanatory value should not be taken
lightly, and they seem to me to pose serious problems for older-style
mentalistic psychological theories. Often these theories appear to allow
no direct evidence for the existence of many kinds of mental states and
events. According to such theories, "poking around the brain" will not
help, because mental entities are not physical; moreover, asking the
subject for introspective reports may not help either, because mental
entities can be unconscious. But a second consequence of the view that
mental entities are nonphysical is that we have no a priori idea as to
what the constraints on their causal powers might be. We are thus left
in a situation in which we could, at least in principle, postulate any
mental states and events we like, adjusting our assumptions regarding
their effects on behavior to fit any possible evidence.

How does cognitivism avoid Skinner's charges in this area? I take it
that what distinguishes cognitivism from other mentalistic approaches
to psychology is the premise that mental states can be identified with
computational states. This has two consequences for the problem at
hand. First, computational states must in some way be embodied in
physical states. This means that if behavioral evidence alone were not
sufficient to determine what mental state an organism was in, neurolog-
ical evidence could be brought to bear to decide the question. Second,
and of much more immediate practical consequence, is the fact that
there is a very well-developed mathematical theory of the abilities and
limits of computational systems. Hence, once we identify mental states
with computational states, we are not free to endow them with arbi-
trary causal powers.

When a computational account of mental states and events is given,
Skinner's infinite-regress arguments lose their force. While it is a char-
acteristic of computational theories of mind to explain the behavior of
the whole organism in terms of interactions among systems that may
appear to be "homunculi," a computational account, as Dennett (1978,
p. 123-124) has pointed out, requires each of these homunculi to be less
intelligent than the whole they comprise. Thus, while there is indeed
a regress, it is not an infinite one, because eventually we get down to a
level of homunculi so stupid that they can be clearly seen to be "mere
machines." Similar comments apply to Skinner's worries about explain-
ing perception in terms of mental representation. Although he is quite
correct in maintaining the pointlessness of supposing that the brain
contains an isomorphic copy of the image on the retina, computational
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theories of vision simply do not work that way. Although they make
use of internal representations, these express an interpretation of the
image, not a copy. While a retinal image might be thought of as a two-
dimensional array of light intensities, the postulated representations
take as primitives such notions as "convex edge," "concave edge," and
"occluding edge." These representations are then manipulated compu-
tationally in ways that make sense given their interpretations. Waltz
(1975) gives a very clear (albeit already outdated) exposition of this
approach.

Skinner's notion of unfinished causal account is not necessarily an-
swered simply by adopting a computational perspective, but conscien-
tious cognitive theorists do address the problems raised by the tendency
to attribute precisely those structures that are needed to account for
observed behavior. Some deal with it as Skinner suggests, by investi-
gating the causation of mental states (e.g. studying language acquisi-
tion), but the more frequent strategy is to show how a single compu-
tational mechanism (or the interaction of a few mechanisms) accounts
for a broad range of behavior. If, for example, we can show that a
relatively small set of linguistic rules can account for a much larger
(perhaps infinite) set of natural-language sentence patterns, then it
is certainly not vacuous, or without explanatory value, to claim that
those linguistic rules in some sense characterize the mental state of a
competent language user.

Whether or not Skinner would acknowledge that the cognitivist
framework has the potential to produce mentalistic theories with gen-
uine explanatory value, I suspect he would argue that, because of
the other major theme of his paper, any such conclusion is really
beside the point. In his view, mentalistic terminology is at best a
rather complicated and misleading way of talking about behavior and
behavioral dispositions. Skinner's picture seems to be that mental
states, rather than being real entities that mediate between stimulus
and response, are merely summaries of stimulus-response relationships.
Thus, hunger, rather than being what causes us to eat when presented
with food, would be regarded as the disposition to eat when presented
with food. (This interpretation of mental states obviously reinforces
Skinner's opinion that mental explanations of behavior are vacuous;
attributing eating to a disposition to eat explains nothing.)

The response to this point of view is that, even if we could get
a complete description of an organism's "mental state" in terms of
behavioral dispositions, that fact would not vitiate attempts to give a
causal account of those dispositions in a way that might make reference
to mental states more realistically construed. A computer analogy is
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helpful here. Complex computer systems often have "users' manuals"
that are intended, in effect, to be complete accounts of the systems'
behavioral dispositions. That is, they undertake to describe for any
input (stimulus) what the output (response) of the system would be.
But no one would suppose that to know the content of the user's man-
ual is to know everything about a system; we might not know any-
thing at all about how the system achieves the behavior described in
the manual. Skinner's response might be that, if we want to know
how the behavioral dispositions of an organism are produced, we have
to look to neurobiology—but this would miss the point of one of the
most important substantive claims of cognitivism. Just as in a com-
plex computer system there are levels of abstraction above the level of
electronic components (the analogue, one supposes, of neurons) that
comprise coherent domains of discourse in which causal explanations
of behavior can be couched ("The system computes square roots by
Newton's method."), so too in human psychology there seem to be
similar levels of abstraction—including levels that involve structures
corresponding roughly to such pretheoretical mentalistic concepts as
belief, desire, and intention.

Finally, it may very well be impossible to describe the behavioral
dispositions of organisms as complex as human beings without refer-
ence to internal states. Skinner seems to assume uncritically that, if
the sole objective of psychology is to describe the stimulus-response
behavior of organisms, one can always do so without reference to in-
ternal states. But this is mathematically impossible for many of the
formal models one might want to use to describe human behavior. In
particular, given some of the behavioral repertoires that human beings
are capable of acquiring (e.g., proving theorems in mathematics, under-
standing the well-formed expressions of a natural language), it seems
likely that no formal model significantly less powerful than a general-
purpose computer (Turing machine) could account for the richness of
human behavior. In a very strong sense, however, it is generally impos-
sible to characterize the behavior of a Turing machine without referring
to its internal states. Now, the behaviorists may be fortunate, and it
may turn out that the behavioral dispositions of humans are indeed
describable without reference to internal states, but Skinner appears
not even to realize that this is a problem.

To summarize: (1) Skinner's arguments against the explanatory
value of mentalistic psychology do not apply to properly constructed
cognitivist theories; (2) the existence of a complete behavioristic psy-
chology would neither supplant nor render superfluous a causal cog-
nitivist account of psychology; (3) the regularities of human behavior
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that Skinner's approach to psychology attempts to describe may not
even be expressible without reference to internal states.





Part II

Prepositional Attitudes





A Formal Theory of Knowledge
and Action

3.1 The Interplay of Knowledge and Action
Most work on planning and problem solving within the field of artifi-
cial intelligence assumes that the agent has complete knowledge of all
relevant aspects of the problem domain and problem situation. In the
real world, however, planning and acting must frequently be performed
without complete knowledge. This imposes two additional burdens on
an intelligent agent trying to act effectively. First, when the agent
entertains a plan for achieving some goal, he must consider not only
whether the physical prerequisites of the plan have been satisfied, but
also whether he has all the information necessary to carry out the plan.
Second, he must be able to reason about what he can do to obtain nec-
essary information that he lacks. In this chapter, we present a theory
of action in which these problems are taken into account, showing how
to formalize both the knowledge prerequisites of action and the effects
of action on knowledge.

Planning sequences of actions and reasoning about their effects is
one of the most thoroughly studied areas within artificial intelligence
(AI). Relatively little attention has been paid, however, to the impor-
tant role that an agent's knowledge plays in planning and acting to
achieve a goal. Virtually all AI planning systems are designed to op-

The research reported herein was supported in part by the Air Force Office of Sci-
entific Research under Contract No. F49620-82-K-0031. The views and conclusions
expressed in this document are those of the author and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or
implied, of the Air Force Office of Scientific Research of the U.S. Government. This
research was also made possible in part by a gift from the System Development
Foundation as part of a coordinated research effort with the Center for the Study
of Language and Information, Stanford University.
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erate with complete knowledge of all relevant aspects of the problem
domain and problem situation. Often any statement that cannot be
inferred to be true is assumed to be false. In the real world, however,
planning and acting must frequently be performed without complete
knowledge of the situation.

This imposes two additional burdens on an intelligent agent trying
to act effectively. First, when the agent entertains a plan for achieving
some goal, he must consider not only whether the physical prerequi-
sites of the plan have been satisfied, but also whether he has all the
information necessary to carry out the plan. Second, he must be able
to reason about what he can do to obtain necessary information that he
lacks. AI planning systems are usually based on the assumption that,
if there is an action an agent is physically able to perform, and carry-
ing out that action would result in the achievement of a goal P, then
the agent can achieve P. With goals such as opening a safe, however,
there are actions that any human agent of normal abilities is physically
capable of performing that would result in achievement of the goal (in
this case, dialing the combination of the safe), but it would be highly
misleading to claim that an agent could open a safe simply by dialing
the combination unless he actually knew that combination. On the
other hand, if the agent had a piece of paper on which the combination
of the safe was written, he could open the safe by reading what was on
the piece of paper and then dialing the combination, even if he did not
know it previously.

In this chapter, we will describe a formal theory of knowledge and
action that is based on a general understanding of the relationship be-
tween the two.1 The question of generality is somewhat problematical,
since different actions obviously have different prerequisites and results
that involve knowledge. What we will try to do is to set up a formalism
in which very general conclusions can be drawn, once a certain mini-
mum of information has been provided concerning the relation between
specific actions and the knowledge of agents.

To see what this amounts to, consider the notion of a test. The
essence of a test is that it is an action with a directly observable result
that depends conditionally on an unobservable precondition. In the
use of litmus paper to test the pH of a solution, the observable result
is whether the paper has turned red or blue, and the unobservable
precondition is whether the solution is acid or alkaline. What makes

1This chapter presents the analysis of knowledge and action, and the representa-
tion of that analysis in first-order logic, that were developed in the author's doctoral
thesis (Moore 1980a). The material in Section 3.3, however, has been substantially
revised.
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such a test useful for acquiring knowledge is that the agent can infer
whether the solution is acid or alkaline on the basis of his knowledge
of the behavior of litmus paper and the observed color of the paper.
When one is performing a test, it is this inferred knowledge, rather
than what is directly observed, that is of primary interest.

If we tried to formalize the results of such a test by making sim-
ple assertions about what the agent knows subsequent to the action,
we would have to include the result that the agent knows whether the
solution is acid or alkaline as a separate assertion from the result that
he knows the color of the paper. If we did this, however, we would
completely miss the point that knowledge of the pH of the solution
is inferred from other knowledge, rather than being a direct observa-
tion. In effect, we would be stipulating what actions can be used as
tests, rather than creating a formalism within which we can infer what
actions can be used as tests.

If we want a formal theory of how an agent's state of knowledge
is changed by his performing a test, we have to represent and be able
to draw inferences from the agent's having several independent pieces
of information. Obviously, we have to represent that, after the test
is performed, the agent knows the observable result. Furthermore,
we have to represent the fact that he knows that the test has been
performed. If he just walks into the room and sees the litmus paper on
the table, he will know what color it is, but, unless he knows its recent
history, he will not have gained any knowledge about the acidity of the
solution. We also need to represent the fact that the agent understands
how the test works; that is, he knows how the observable result of the
action depends on the unobservable precondition. Even if he sees the
litmus paper put into the solution and then sees the paper change color,
he still will not know whether the solution is acid or alkaline unless
he knows how the color of the paper is related to the acidity of the
solution. Finally, we must be able to infer that, if the agent knows (i)
that the test took place, (ii) the observable result of the test, and (iii)
how the observable result depends on the unobservable precondition,
then he will know the unobservable precondition. Thus we must know
enough about knowledge to tell us when an agent's knowing a certain
collection of facts implies that he knows other facts as well.

From the preceding discussion, we can conclude that any formalism
that enables us to draw inferences about tests at this level of detail must
be able to represent the following types of assertions:

(1) After A performs Act, he knows whether Q is true.
(2) After A performs Act, he knows that he has just performed Act.
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(3) A knows that Q will be true after he performs Act if and only if
P is true now.

Moreover, in order to infer what information an agent will gain as a
result of performing a test, the formalism must embody, or be able to
represent, general principles sufficient to conclude the following:

(4) If (1), (2), and (3) are true, then, after performing Act, A will
know whether P was true before he performed Act.

It is important to emphasize that any work on these problems that
is to be of real value must seek to elicit general principles. For instance,
it would be possible to represent (1), (2), and (3) in an arbitrary, ad
hoc manner and to add an axiom that explicitly states (4), thereby
"capturing" the notion of a test. Such an approach, however, would
simply restate the superficial observations put forth in this discussion.
Our goal in this chapter is to describe a formalism in which specific
facts like (4) follow from the most basic principles of reasoning about
knowledge and action.

3.2 Formal Theories of Knowledge
A Modal Logic of Knowledge
Since formalisms for reasoning about action have been studied exten-
sively in AI, while formalisms for reasoning about knowledge have not,
we will first address the problems of reasoning about knowledge. In
Section 3.3 we will see that the formalism that we are led to as a so-
lution to these problems turns out to be well suited to developing an
integrated theory of knowledge and action.

The first step in devising a formalism for reasoning about knowl-
edge is to decide what general properties of knowledge we want that
formalism to capture. The properties of knowledge in which we will
be most interested are those that are relevant to planning and acting.
One such property is that anything that is known by someone must be
true. If P is false, we would not want to say that anyone knows P. It
might be that someone believes P or that someone believes he knows
P, but it simply could not be the case that anyone knows P. This is, of
course, a major difference between knowledge and belief. If we say that
someone believes P, we are not committed to saying that P is either
true or false, but if we say that someone knows P, we are committed
to the truth of P. The reason that this distinction is important for
planning and acting is simply that, for an agent to achieve his goals,
the beliefs on which he bases his actions must generally be true. After
all, merely believing that performing a certain action will bring about
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a desired goal is not sufficient for being able to achieve the goal; the
action must actually have the intended effect.

Another principle that turns out to be important for planning is
that, if someone knows something, he knows that he knows it. This
principle is often required for reasoning about plans consisting of sev-
eral steps. Suppose an agent plans to use Act\ to achieve his goal,
but, in order to perform Aci\ he needs to know whether P is true and
whether Q is true. Suppose, further, that he already knows that P is
true and that he can find out whether Q is true by performing Act-}.
The agent needs to be able to reason that, after performing Act?, he
will know whether P is true and whether Q is true. He knows that
he will know whether Q is true because he understands the effects of
Actz, but how does he know that he will know whether P is true? Pre-
sumably it works something like this: he knows that P is true, so he
knows that he knows that P is true. If he knows how Act^ affects P,
he knows that he will know whether P is true after he performs Acty.
The key step in this argument is an instance of the principle that, if
someone knows something, he knows that he know it.

It might seem that we would also want to have the principle that,
if someone does not know something, he knows that he does not know
it—but this turns out to be false. Suppose that A believes that P,
but P is not true. Since P is false, A certainly does not know that P,
but it is highly unlikely that he knows that he does not know, since he
thinks that P is true.

Probably the most important fact about knowledge that we will
want to capture is that agents can reason on the basis of their knowl-
edge. All our examples depend on the assumption that, if an agent
trying to solve a problem has all the relevant information, he will ap-
ply his knowledge to produce a solution. This creates a difficulty for
us, however, since agents (at least human ones) are not, in fact, aware
of all the logical consequences of their knowledge. The trouble is that
we can never be sure which of the inferences an agent could draw,
he actually will. The principle people normally use in reasoning about
what other people know seems to be something like this: if we can infer
that something is a consequence of what someone knows, then, lacking
information to the contrary, we will assume that the other person can
draw the same inference.

This suggests the adoption some sort of "default rule" (Reiter 1980)
for reasoning about what inferences agents actually draw, but, for the
purposes of this study, we will make the simplifying assumption that
agents actually do draw all logically valid inferences from their knowl-
edge. We can regard this as the epistemological version of the "fric-
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tionless case" in classical physics. For a more general framework in
which weaker assumptions about the deductive abilities of agents can
be expressed, see the work of Konolige (1985).

Finally, we will need to include the fact that these basic properties
of knowledge are themselves common knowledge. By this we mean that
everyone knows them, and everyone knows that everyone knows them,
and everyone knows that everyone knows that everyone knows them,
ad infinitum. This type of principle is obviously needed when reasoning
about what someone knows about what someone else knows, but it is
also important in planning, because an agent must be able to reason
about what he will know at various times in the future. In such a case,
his "future selP is analogous to another agent.

In his pioneering work on the logic of knowledge and belief, Hintikka
(1962) presents a formalism that captures all these properties. We will
define a formal logic based on Hintikka's ideas, but modified somewhat
to be more compatible with the additional ideas of this chapter. So,
what follows is similar to the logic developed by Hintikka in spirit, but
not in detail.

The language we will use initially is that of prepositional logic,
augmented by an operator Know and terms denoting agents. The
formula Know(^4, P) is interpreted to mean that the agent denoted
by the term A knows the proposition expressed by the formula P.
So, if John denotes John and Likes(Bill,Mary) means that Bill likes
Mary, Know(John,Likes(Bil!,Mary)) means that John knows that Bill
likes Mary. The axioms of the logic are inductively defined as all in-
stances of the following schemata:

Ml. P, such that P is an axiom of ordinary propositional logic
M2. Know(A, P) D P
MS. Know(A, P) D Know(A, Know^, P))
M4. Know(,4,(P D Q)) D (Know(vl,P) D Know(yl,Q))

closed under the principle that

M5. If P is an axiom, then Know(v4, P) is an axiom.

The closure of the axioms under the inference rule modus ponens
(from (P D Q) and P, infer Q) defines the theorems of the system.
This system is very similar to those studied in modal logic. In fact, if
A is held fixed, the resulting system is isomorphic to the modal logic
S4 (Hughes and Cresswell 1968). We will refer to this system as the
modal logic of knowledge.

These axioms formalize in a straightforward way the principles for
reasoning about knowledge that we have discussed. M2 says that any-
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thing that is known is true. M3 says that, if someone knows something,
he knows that he knows it. M4 says that, if someone knows a formula
P and a formula of the form (P D Q), then he knows the corresponding
formula Q. That is, everyone can (and does) apply modus ponens. M5
guarantees that the axioms are common knowledge. It first applies to
M1-M4, which says that everyone knows the basic facts about knowl-
edge; however, since it also applies to its own output, we get axioms
stating that everyone knows that everyone knows, etc. Since M5 applies
to the axioms of prepositional logic (Ml), we can infer that everyone
knows the facts they represent. Furthermore, because modus ponens
is the only inference rule needed in prepositional logic, the presence
of M4 will enable us to infer that an agent knows any prepositional
consequence of his knowledge.

A Possible-Worlds Analysis of Knowledge
We could try to use the modal logic of knowledge directly in a com-
putational system for reasoning about knowledge and action, but, as
we have argued elsewhere (Moore 1980a), all the obvious ways of do-
ing this encounter difficulties. (Konolige's recent work (1985) suggests
some new, more promising possibilities, but some important questions
remain to be resolved.) There may well be solutions to these problems,
but it turns out that they can be circumvented entirely by changing
the language we use to describe what agents know. Instead of talking
about the individual propositions that an agent knows, we will talk
about what states of affairs are compatible with what he knows. In
philosophy, these states of affairs are usually called "possible worlds,"
so we will adopt that term here as well.

This shift to describing knowledge in terms of possible worlds is
based on a rich and elegant formal semantics for systems like our modal
logic of knowledge, which was developed by Hintikka (1962, 1971) in
his work on knowledge and belief. The advantages of this approach are
that it can be formalized within ordinary first-order classical logic in a
way that permits the use of standard automatic-deduction techniques
in a reasonably efficient manner2 and that, moreover, it generalizes
nicely to an integrated theory for describing the effects of actions on
the agent's knowledge.

Possible-world semantics was first developed for the logic of neces-
sity and possibility. From an intuitive standpoint, a possible world
may be thought of as a set of circumstances that might have been true

2Chapters 6 and 7 of Moore (1980a) present a procedural interpretation of the
axioms for knowledge and action given in this chapter that seems to produce rea-
sonably efficient behavior in an automatic deduction system.
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in the actual world. Kripke (1963) introduced the idea that a world
should be regarded as possible, not absolutely, but only relative to
other worlds. That is, the world W\ might be a possible alternative
to Wy, but not to Ws. The relation of one world's being a possible
alternative to another is called the accessibility relation. Kripke then
proved that the differences among some of the most important axiom
systems for modal logic corresponded exactly to certain restrictions
on the accessibility relation of the possible-world models of those sys-
tems. These results are reviewed in Kripke (1971). Concurrently with
these developments, Hintikka (1962) published the first of his writings
on the logic of knowledge and belief, which included a model theory
that resembled Kripke's possible-world semantics. Hintikka's original
semantics was done in terms of sets of sentences, which he called model
sets, rather than possible worlds. Later (Hintikka 1971), however, he
recast his semantics using Kripke's concepts, and it is that formulation
we will use here.

Kripke's semantics for necessity and possibility can be converted
into Hintikka's semantics for knowledge by changing the interpreta-
tion of the accessibility relation. To analyze statements of the form
Know(j4, P), we will introduce a relation K, such that K(A,Wi,W%)
means that the possible world W? is compatible or consistent with
what A knows in the possible world W\. In other words, for all that
A knows in W\, he might just as well be in W%. It is the set of worlds
{u>2 | K(A, Wi, wi}} that we will use to characterize what A knows in
W\. We will discuss A's knowledge in W\ in terms of this set, the set
of states of affairs that are consistent with his knowledge in W\, rather
than in terms of the set of propositions he knows. For the present, let
us assume that the first argument position of K admits the same set
of terms as the first argument position of Know. When we consider
quantifiers and equality, we will have to modify this assumption, but
it will do for now.

Introducing K is the key move in our analysis of statements about
knowledge, so understanding what K means is particularly important.
To illustrate, suppose that in the actual world—call it WQ—A knows
that P, but does not know whether Q. If W\ is a world where P is false,
then W\ is not compatible with what A knows in WQ', hence we would
have ~<K(A, WQ, W\). Suppose that W2 and W$ are compatible with
everything A knows, but that Q is true in W^ and false in W^. Since A
does not know whether Q is true, for all he knows, he might be in either
Wi or Ws instead of WQ. Hence, we would have both K(A, Wo, W?)
an K(A, WQ, Wz). This is depicted graphically in Figure 1.

Some of the properties of knowledge can be captured by putting
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w,

Figure 1. "A knows that P"
"A doesn't know whether Q"

constraints on the accessibility relation K. For instance, requiring
that the actual world W0 be compatible with what each knower knows
in Wo, i.e., Vai(K(ai,Wo, W0)), is equivalent to saying that anything
that is known is true. That is, if the actual world is compatible with
what everyone [actually] knows, then no one has any false knowledge.
This corresponds to the modal axiom M2.

The definition of K implies that, if A knows that P in W0, then P
must be true in every world Wi such that K(A,Wo,Wi). To capture
the fact that agents can reason with their knowledge, we will assume
the converse is also true. That is, we assume that, if P is true in every
world Wi such that K(A, W0, Wi), then A knows that P in WQ. (See
Figure 2.) This principle is the model-theoretic analogue of axiom M4
in the modal logic of knowledge. To see that this is so, suppose that A
knows that P and that (P D Q). Therefore, P and (P D Q) are both
true in every world that is compatible with what A knows. If this is the
case, though, then Q must be true in every world that is compatible
with what A knows. By our assumption, therefore, we conclude that
A knows that Q.

Since this assumption, like M4, is equivalent to saying that an agent
knows all the logical consequences of his knowledge, it should be inter-
preted only as a default rule. In a particular instance, the fact that P
follows from A's knowledge would be a justification for concluding that
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K

Figure 2. "P is true in every world that is compatible with
what A knows"

A knows P. However, we should be prepared to retract the conclusion
that A knows P in the face of stronger evidence to the contrary.

With this assumption, we can get the effect of M3—the axiom stat-
ing that, if someone knows something, he knows that he knows it—by
requiring that, for any W\ and W%, if W\ is compatible with what A
knows in Wo and W% is compatible with what A knows in Wi, then
Wi is compatible with what A knows in WQ. Formally expressed, this
is

Vai,w1,w2(K(ai,Wo,wi} D (K(ai,wi,w2) D K(a1,W0, w>2)))

By our previous assumption, the facts that A knows are those that
are true in every world that is compatible with what A knows in the
actual world. Furthermore, the facts that A knows that he knows are
those that are true in every world that is compatible with what he
knows in every world that is compatible with what he knows in the
actual world. By the constraint we have just proposed, however, all
these worlds must also be compatible with what A knows in the actual
world (see Figure 3), so, if A knows that P, he knows that he knows
that P.

Finally, we can get the effect of M5, the principle that the basic
facts about knowledge are themselves common knowledge, by general-
izing these constraints so that they hold not only for the actual world,
but for all possible worlds. This follows from the fact that, if these
constraints hold for all worlds, they hold for all worlds that are com-
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K,

K

Figure 3. "If A knows that P, then he knows that he knows that P"

patible with what anyone knows in the actual world; they also hold for
all worlds that are compatible with what anyone knows in all worlds
that are compatible with what anyone knows in the actual world, etc.
Therefore, everyone knows the facts about knowledge that are repre-
sented by the constraints, and everyone knows that everyone knows,
etc. Note that this generalization has the effect that the constraint cor-
responding to M2 becomes the requirement that, for a given knower,
K is reflexive, while the constraint corresponding to M3 becomes the
requirement that, for a given knower, K is transitive.

Analyzing knowledge in terms of possible worlds gives us a very
nice treatment of knowledge about knowledge. Suppose A knows that
B knows that P. Then, if the actual world is Wo, in any world Wi such
that K(A, Wo, W\), B knows that P. We now continue the analysis
relative to Wi, so that, in any world W? such that K(B,W\tWi), P
is true. Putting both stages together, we obtain the analysis that, for
any worlds Wi and W2 such that K(A, W0, Wi) and K(B, Wl, W2), P
is true in W-z (See Figure 4.)

Given these constraints and assumptions, whenever we want to as-
sert or deduce something that would be expressed in the modal logic
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Figure 4. "A knows that B knows that P"

of knowledge by Know(A, P), we can instead assert or deduce that P
is true in every world that is compatible with what A knows. We can
express this in ordinary first-order logic, by treating possible worlds as
individuals (in the logical sense), so that K is just an ordinary relation.
We will therefore introduce an operator T such that T(W, P) means
that the formula P is true in the possible world W. If we let WQ denote
the actual world, we can convert the assertion Know(yl, P) into

It may seem that we have not made any real progress, since, al-
though we have gotten rid of one nonstandard operator, Know, we
have introduced another one, T. However, T has an important prop-
erty that Know does not. Namely, T "distributes" over ordinary logical
operators. In other words, ->P is true in W just in case P is not true
in W, (P V Q) is true in W just in case P is true in W or Q is true
in W, and so on. We might say that T is extensional, relative to a
possible world. This means that we can transform any formula so that
T is applied only to atomic formulas. We can then turn T into an or-
dinary first-order relation by treating all the atomic formulas as names
of atomic propositions, or we can get rid of T by replacing the atomic
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formulas with predicates on possible worlds. This is no loss to the ex-
pressive power of the language, since, where we would have previously
asserted P, we now simply assert T(W0,P) or P(Wo) instead.

Knowledge, Equality, and Quantification
The formalization of knowledge presented so far is purely propositional;
a number of additional problems arise when we attempt to extend the
theory to handle equality and quantification. For instance, as Frege
(1949) pointed out, attibutions of knowledge and belief lead to viola-
tions of the principle of equality substitution. We are not entitled to
infer Know(J4, P(C)) from B - C and Know(,4, P(B]) because A might
not know that the identity holds.

The possible-world analysis of knowledge provides a very neat so-
lution to this problem, once we realize that a term can denote different
objects in different possible worlds. For instance, if B is the expression
"the number of planets" and C is "nine," then, although B = C is
true in the actual world, it would be false in a world in which there
was a tenth planet. Thus, we will say that an equality statement such
as B — C is true in a possible world W just in case the denotation of
the term B in W is the same as the denotation of the term C in W.
This is a special case of the more general rule that a formula of the
form P(A\,..., An) is true in W just in case the tuple consisting of
the denotations in W of the terms A\,..., An is in the extension in W
of the relation expressed by P, provided that we fix the interpretation
of = in all possible worlds to be the identity relation.

Given this interpretation, the inference of Know(J4, P(C)) from
B = C and Know(A, P(B)) will be blocked (as it should be). To
infer Know(yl, P(C)) from Knaw(A, P(B)) by identity substitution, we
would have to know that B and C denote the same object in every
world compatible with what A knows, but the truth of B = C guaran-
tees only that they denote the same object in the actual world. On the
other hand, if Know^, P(B)) and Know(A, (B = C)) are both true,
then in all worlds that are compatible with what A knows, the deno-
tation of B is in the extension of P and is the same as the denotation
of C; hence, the denotation of C is in the extension of P. From this
we can infer that Know(A, P(C)) is true.

The introduction of quantifiers also causes problems. To modify
a famous example from Quine (1971b), consider the sentence "Ralph
knows that someone is a spy." This sentence has at least two inter-
pretations. One is that Ralph knows that there is at least one person
who is a spy, although he may have no idea who that person is. The
other interpretation is that there is a particular person whom Ralph
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knows to be a spy. As Quine says (1971b, p. 102), "The difference
is vast; indeed, if Ralph is like most of us, [the first] is true and [the
second] is false." This ambiguity was explained by Russell (1949) as
a difference of scope. The idea is that indefinite noun phrases such as
"someone" can be analyzed in context by paraphrasing sentences of
the form P("someone") as "There exists a person x such that P(x),"
or, more formally, 3x(Person(a;) A P ( x ) ) . Russell goes on to point out
that, in sentences of the form "A knows that someone is a P" the rule
for eliminating "someone" can be applied to either the whole sentence
or only the subordinate clause, "someone is a P." Applying this obser-
vation to "Ralph knows that someone is a spy," gives us the following
two formal representations:

(1) Know(Ralph, 3z(Person(z) A Spy(ar)))
(2) 3z( Person (z) A Know(Ralph,Spy(x)))

The most natural English paraphrases of these formulas are "Ralph
knows that there is a person who is a spy," and "There is a person who
Ralph knows is a spy." These seem to correspond pretty well to the
two interpretations of the original sentence. So, the ambiguity in the
original sentence is mapped into an uncertainty as to the scope of the
operator Know relative to the existential quantifier introduced by the
indefinite description "someone."

Following a suggestion of Hintikka (1962), we can use a formula
similar to (2) to express the fact that someone knows who or what
something is. He points out that a sentence of the form "A knows who
(or what) B is" intuitively seems to be equivalent to "there is someone
(or something) that A knows to be B." But this can be represented
formally as 3z(Know(yl, (x = B))). To take a specific example, "John
knows who the President is" can be paraphrased as "There is someone
whom John knows to be the President," which can be represented by

(3) 3z(Know(John, (a; = President)))

In (1), Know may still be regarded as a purely propositional opera-
tor, although the proposition to which it is applied now has a quantifier
in it. Put another way, Know still is used simply to express a relation
between a knower and the proposition he knows. But (2) and (3) are
not so simple. In these formulas there is a quantified variable that,
although bound outside the scope of the operator Know, has an oc-
currence inside; this is sometimes called "quantifying in." Quantifying
into knowledge and belief contexts is frequently held to pose serious
problems of interpretation. Quine (1971b), for instance, holds that
it is unintelligible, because we have not specified what proposition is
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known unless we say what description is used to fix the value of the
quantified variable.

The possible-world analysis, however, provides us with a very nat-
ural interpretation of quantifying in. We keep the standard interpre-
tation that 3x(P(x)) is true just in case there is some value for x that
satisfies P. If P is Kr\ow(A, Q(x)), then a value for x satisfies P(x) just
in case that value satisfies Q(x) in every world that is compatible with
what A knows. So (2) is satisfied if there is a particular person who is
a spy in every world that is compatible with what A knows. That is,
in every such world the same person is a spy. On the other hand, (1)
is satisfied if, in every world compatible with what A knows, there is
some person who is a spy, but it does not have to be the same one in
each case.

Note that the difference between (1) and (2) has been transformed
from a difference in the relative scopes of an existential quantifier
and the operator Know to a difference in the relative scopes of an
existential and a universal quantifier (the "every" in "every possible
world compatible with.. ."). Recall from ordinary first-order logic
that 3x(Vy(P(x, y))) entails Vy(Bx(P(x,y))), but not vice versa. The
possible-world analysis, then, implies that we should be able to in-
fer "Ralph knows that there is a spy," from "There is someone Ralph
knows to be a spy," as indeed we can.

When we look at how this analysis applies to our representation
for "knowing who," we get a particularly satisfying picture. We said
that A knows who B is means that there is someone whom A knows
to be B. If we analyze this, we conclude that there is a particular
individual who is B in every world that is compatible with what A
knows. Suppose this were not the case, and that, in some of the worlds
compatible with what A knows, one person is B, whereas in the other
worlds, some other person is B. In other words, for all that A knows,
either of these two people might be B. But this is exactly what we
mean when we say that A does not know who B is! Basically, the
possible-world view gives us the very natural picture that A knows
who B is if A has narrowed the possibilities for B down to a single
individual.

Another consequence of this analysis worth noting is that, if A
knows who B is and A knows who C is, we can conclude that A knows
whether B = C. If A knows who B is and who C is, then B has the
the same denotation in all the worlds that are compatible with what
A knows, and this is also true for C. Since, in all these worlds, B and
C each have only one denotation, they either denote the same thing
everywhere or denote different things everywhere. Thus, either B — C



42 / LOGIC AND REPRESENTATION

is true in every world compatible with what A knows or B ^ C is.
From this we can infer that either A knows that B and C are the same
individual or that they are not.

We now have a coherent account of quantifying in that is not framed
in terms of knowing particular propositions. Still, in some cases know-
ing a certain proposition counts as knowing something that would be
expressed by quantifying in. For instance, the proposition that John
knows that 321-1234 is Bill's telephone number might be represented
as

(4) Know(John,(321-1234 = Phone-Num(Bill))),

which does not involve quantifying in. We would want to be able to
infer from this, however, that John knows what Bill's telephone number
is, which would be represented as

(5) 3ar(Know(John,(x = Phone-Num(Bill)))).

It might seem that (5) can be derived from (4) simply by the logical
principle of existential generalization, but that principle is not always
valid in knowledge contexts. Suppose that (4) were not true, but that
instead John simply knew that Mary and Bill had the same telephone
number. We could represent this as

(6) Know(John,(Phone-Num(Mary) = Phone-Num(Bill))).

It is clear that we would not want to infer from (6) that John knows
what Bill's telephone number is—yet, if existential generalization were
universally valid in knowledge contexts, this inference would be valid.

It therefore seems that, in knowledge contexts, existential gener-
alization can be applied to some referring expressions ("321-1234"),
but not to others ("Mary's telephone number"). We will call the ex-
pressions to which existential generalization can be applied standard
identifiers, since they seem to be the ones an agent would use to iden-
tify an object for another agent. That is, "321-1234" is the kind of
answer that would always be appropriate for telling someone what
John's telephone number is, whereas "Mary's telephone number," as a
general rule, would not.3

In terms of possible worlds, standard identifiers have a very straight-
forward interpretation. Standard identifiers are simply terms that have

3 "Mary's telephone number" would be an appropriate way of telling someone what
John's telephone number was if he already knew Mary's telephone number, but
this knowledge would consist in knowing what expression of the type "321-1234"
denoted Mary's telephone number. Therefore, even in this case, using "Mary's
telephone number" to identify John's telephone number would just be an indirect
way of getting to the standard indentifier.
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the same denotation in every possible world. Following Kripke (1972),
we will call terms that have the same denotation in every possible
world rigid designators. The conclusion that standard identifiers are
rigid designators seems inescapable. If a particular expression can al-
ways be used by an agent to identify its referent for any other agent,
then there must not be any possible circumstances under which it could
refer to something else. Otherwise, the first agent could not be sure
that the second was in a position to rule out those other possibilities.

The validity of existential generalization for standard identifiers fol-
lows immediately from their identification with rigid designators. The
possible-world analysis of Know(j4, P(B)) is that, in every world com-
patible with what A knows, the denotation of B in that world is in
the extension of P in that world. Existential generalization fails in
general because we are unable to conclude that there is any particular
individual that is in the extension of P in all the relevant worlds. If
B is a rigid designator, however, the denotation of B is the same in
every world. Consequently, it is the same in every world compatible
with what A knows, and that denotation is an individual that is in the
extension of P in all those worlds.

There are a few more observations to be made about standard iden-
tifiers and rigid designators. First, in describing standard identifiers we
assumed that everyone knew what they referred to. Identifying them
with rigid designators makes the stronger claim that what they refer
to is common knowledge. That is, not only does everyone know what a
particular standard identifier denotes, but everyone knows that every-
one knows, etc. Second, although it is natural to think of any individual
having a unique standard identifier, this is not required by our theory.
What the theory does require is that, if there are two standard iden-
tifiers for the same individual, it should be common knowledge that
they denote the same individual.

3.3 Formalizing the Possible-World Analysis of
Knowledge

Object Language and Metalanguage
As we indicated above, the analysis of knowledge in terms of possible
worlds can be formalized completely within first-order logic by admit-
ting possible worlds into the domain of quantification and making the
extension of every expression depend on the possible world in which
it is evaluated. For example, the possible-world analysis of "A knows
who B is" would be as follows: There is some individual x such that,
in every world w\ that is compatible with what the agent who is A in



44 / LOGIC AND REPRESENTATION

the actual world knows in the actual world, x is B in w\. This means
that in our formal theory we translate the formula of the modal logic
of knowledge,

into the first-order formula,

One convenient way of stating the translation rules precisely is to
axiomatize them in our first-order theory of knowledge. This can be
done by introducing terms to denote formulas of the modal logic of
knowledge (which we will henceforth call the object language) and ax-
iomatizing a truth definition for those formulas in a first-order lan-
guage that talks about possible worlds (the metalanguage). This
has the advantage of letting us use either the modal language or the
possible-world language — whichever is more convenient for a particular
purpose — while rigorously defining the connection between the two.

The typical method of representing expressions of one formal lan-
guage in another is to use string operations like concatenation or list
operations like Cons in LISP, so that the conjunction of P and Q might
be represented by something like Cons(P, Cons('A, Cons(Q, Nil))), which
could be abbreviated List(P,'A, Q). This would be interpreted as a list
whose elements are P followed by the conjunction symbol followed by
Q. Thus, the metalanguage expression Cons(P, Cons('A, Cons(Q, Nil)))
would denote the object language expression (P/\Q). McCarthy (1962)
has devised a much more elegant way to do the encoding, however.
For purposes of semantic interpretation of the object language, which
is what we want to do, the details of the syntax of that language are
largely irrelevant. In particular, the only thing we need to know about
the syntax of conjunctions is that there is some way of taking P and
Q and producing the conjunction of P and Q. We can represent this
by having a function And such that And(P, Q) denotes the conjunction
of P and Q. To use McCarthy's term, And(P, Q) is an abstract syntax
for representing the conjunction of P and Q.

We will represent object language variables and constants by met-
alanguage constants; we will use metalanguage functions in an ab-
stract syntax to represent object language predicates, functions, and
sentence operators. For example, we will represent the object lan-
guage formula Know(John, 3x(P(x))) by the metalanguage term Know
(John,Exist(X,P(X))), where John and X are metalanguage constants,
and Know, Exist, and P are metalanguage functions.



A FORMAL THEORY OF KNOWLEDGE AND ACTION / 45

Since Know(John,Exist(X,P(X))) is a term, if we want to say that the
object language formula it denotes is true, we have to do so explicitly
by means of a metalanguage predicate True:

True(Know(John,Exist(X,P(X)))).

In the possible-world analysis of statements about knowledge, however,
an object language formula is not absolutely true, but only relative to
a possible world. Hence, True expresses not absolute truth, but truth
in the actual world, which we will denote by WQ. Thus, our first axiom
is

LI. Vpi(True(pi)=:T(Wb,Pi)),
where T(W, P) means that formula P is true in world W. To simplify
the axioms, we will let the metalanguage be a many-sorted logic, with
different sorts assigned to differents sets of variables. For instance,
the variables wi, w?,.. .will range over possible worlds; xi, x?,.. .will
range over individuals in the domain of the object language; and ai,
02,. • .will range over agents. Because we are axiomatizing the object
language itself, we will need several sorts for different types of object
language expressions. The variables p\, p?,.. .will range over object
language formulas, and < i ,2 2 , . . .will range over object language terms.

The recursive definition of T for the prepositional part of the object
language is as follows:

L2. V tu j ,p i , p t (T (w i , And(pi,p2)) = (T(wi,pi) A T(WI, p2)))
L3. Vi«i,pi,P2(7>i - Or(pi, pa)) EE (T(ti>i,pi) V T(Wl,p2)))
L4. Vu;1,p1,p2(T(«;1, lmp(Pl,p2)) = (T(wllPi) D
L5. VWl,Pl,p2(T(«>i, lff(pi,
L6. Vwi.p^TK.Nottpi))

Axioms L1-L6 merely translate the logical connectives from the
object language to the metalanguage, using an ordinary Tarskian truth
definition. For instance, according to L2, And(P, Q) is true in a world
if and only if P and Q are both true in the world. The other axioms
state that all the truth-functional connectives are "transparent" to T
in exactly the same way.

To represent quantified object language formulas in the metalan-
guage, we will introduce additional functions into the abstract syntax:
Exist and All. These functions will take two arguments—a term denot-
ing an object language variable and a term denoting an object language
formula. Axiomatizing the interpretation of quantified object language
formulas presents some minor technical problems, however. We would
like to say something like this: Exist (X, P) is true in W if and only if
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there is some individual such that the open formula P is true of that in-
dividual in W. We do not have any way of saying that an open formula
is true of an individual in a world, however; we just have the predicate
T, which simply says that a formula is true in a world. One way of
solving the problem would be to introduce a new predicate, or perhaps
redefine T, to express the Tarskian notion of satisfaction rather than
truth. This approach is semantically clean but syntactically clumsy,
so we will instead follow the advice of Scott (1970, p. 151) and define
the truth of a quantified statement in terms of substituting into the
body of that statement a rigid designator for the value of the quantified
variable.

In order to formalize this substitutional approach to the interpre-
tation of object language quantification, we need a rigid designator
in the object language for every individual. Since our representation
of the object language is in the form of an abstract syntax, we can
simply stipulate that there is a function @ that maps any individual
in the object language's domain of discourse into an object language
rigid designator of that individual. The definition of T for quantified
statements is then given by the following axiom schemata:

L7. V^OTK, Exist(X, P)) = 3xi(T(u;i, P[@(xi)/X])))
L8. V

In these schemata, P may be any object language formula, X may
be any object language variable, and the notation P[@(x\)/X] desig-
nates the expression that results from substituting @(a;i) for every free
occurrence of X in P.

L7 says that an existentially quantified formula is true in a world
W if and only if, for some individual, the result of substituting a rigid
designator of that individual for the bound variable in the body of the
formula is true in W . L8 says that a universally quantified formula is
true in W if and only if, for every individual, the result of substituting
a rigid designator of that individual for the bound variable in the body
of the formula is true in W .

Except for the knowledge operator itself, the only part of the truth
definition of the object language that remains to be given is the defini-
tion of T for atomic formulas. We remarked previously that a formula
of the form P(A\, . . ., An} is true in a world W just in case the tuple
consisting of the denotations in W of the terms AI , . . . , An is in the
extension in W of the relation P. To axiomatize this principle, we
need two additions to the metalanguage. First, we need a function
D that maps a possible world and an object language term into the
denotation of that term in that world. Second, for each n-place object
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language predicate P, we need a corresponding n+1-place metalan-
guage predicate (which, by convention, we will write :P) that takes as
its arguments the possible world in which the object language formula
is to be evaluated and the denotations in that world of the arguments
of the object language predicate. The interpretation of an object lan-
guage atomic formula is then given by the axiom schema

L9. Vwi, <! , . . . , *„
(T(wi,P(ti, . . . ,<„)) = :P(tiM , D(wi,ti), ..., D(w1,tn)))

To eliminate the function D, we need to introduce a metalanguage
expression corresponding to each object language constant or function.
In the general case, the new expression will be a function with an extra
argument position for the possible world of evaluation. The axiom
schemata for D are then

L10.
Lll.
L12. Vtfl!, < ! , . . . , tn

(D(w1,F(t1, . . .,*„)) = :F(wlt D(w1,t1), ..., D(wlt «„))),
where C is an object language constant and F is an object language
function, and we use the ":" convention already introduced for their
metalanguage counterparts.

Since @(KI) is a rigid designator of xi, its value is x\ in every pos-
sible world. In the general case, an object language constant will have
a corresponding metalanguage function that picks out the denotation
of the constant in a particular world. Similarly, an object language
function will have a corresponding metalanguage function that maps a
possible world and the denotations of the arguments of the object lan-
guage function into the value of the object language function applied
to those arguments in that world.

It will be convenient to treat specially those object language con-
stants and functions that are (or can be used to construct) rigid des-
ignators. We could introduce additional axioms asserting that such
expressions have the same value in every possible world, but we can
accomplish the same end simply by making the corresponding meta-
language expressions independent of the possible world of evaluation.
So, for object language constants that are rigid designators, we will
have a variant of axiom Lll:

Llla. Vwi(D(wi,C) = :C) if C is a rigid designator.

We will similarly treat rigid functions — those that always map a par-
ticular tuple of arguments into the same value in all possible worlds:
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L12a. \fwi,ti,...,tn

(D(wl,F(tl, . . . ,<„) ) = ^(DOi;!,*!), . . .,D(Wl,tn)))
if F is a rigid function.

Finally, we introduce a special axiom for the equality predicate of
the object language, fixing its interpretation in all possible worlds to
be the identity relation:

L13.

A First-Order Theory of Knowledge
The axioms given in the preceding section allow us to talk about a
formula of first-order logic being true relative to a possible world rather
than absolutely. This generalization would be pointless, however, if we
never had occasion to mention any possible worlds other than the actual
one. References to other possible worlds are introduced by our axioms
for knowledge:

Kl. Vt0i ,*i , j>i

K2.
K3.

Kl gives the possible-world analysis for object language formulas
of the form Know(J4, P). The interpretation is that Know(A, P) is true
in world W\ just in case P is true in every world that is compati-
ble with what the agent denoted by A in W\ knows in W\. Since
an object language term may denote different individuals in different
possible worlds, we use D(Wi,A) to identify the denotation of A in
W\. K represents the accessibility relation associated with Know, so
K(D(Wi, A),Wi, Wz) is how we represent the fact W^ is compatible
with what the agent denoted by A in W\ knows in W\ .

As we pointed out before, the principle embodied in Kl is that an
agent knows everything entailed by his knowledge. Since this is too
strong a generalization, in a more thorough analysis we would regard
the inference from the right side of Kl to the left side as being a default
inference. K2 and K3 state constraints on the accessibility relation K
that we use to capture other properties of knowledge. They require
that, for a fixed agent :A,K(\A,w\,w%) be reflexive and transitive.
We have already shown this entails that anything that anyone knows
must be true, and that if someone knows something he knows that
he knows it. Finally, the fact that K1-K3 are asserted to hold for
all possible worlds implies that everyone knows the principles they
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embody, and everyone knows that everyone knows, etc. In other words,
these principles are common knowledge.

To illustrate how our theory operates, we will show how to derive
a simple result in the logic of knowledge, that from the premises that
A knows that P(B) and A knows that B = C, we can conclude that
A knows that P(C). Our proofs will be in natural-deduction form.
The axioms and preceding lines that justify each step will be given
to the right of the step. Subordinate proofs will be indicated by in-
dented sections, and ASS will mark the assumptions on which these
subordinate proofs are based. DIS(./v~, M) will indicate the discharge
of the assumption on line N with respect to the conclusion on line
M. The general pattern of proofs in this system will be to assert the
object language premises of the problem, transform them into their
metalanguage equivalents, using axioms L1-L13 and Kl, then derive
the metalanguage version of the conclusion using first-order logic and
axioms such as K2 and K3, and finally transform the conclusion back
into the object language, again using L1-L13 and Kl.

Given: True(Know(A,P(B)))
True(Know(A,Eq(B,C)))

Prove: True(Know(A,P(C)))

1. True(Know(A, P(B))) Given
2. T(W0,Know(A,P(B))) Ll,l
3. K(D(W0,A),W0,w1)DT(w1,P(B)) Kl,2
4. ^(:^(VFo),M /-0,U;i)DT(«;1,P(B)) Lll,3
5. True(Know(A, Eq(B, C))) Given
6. T(W0,Know(A,Eq(B,C))) Ll,5
7. K(D(W0,A),W0,w1)DT(wl,^(B,q) Kl,6
8. tfOACW^Wĵ ODTK.EqtB.C)) L11.7
9. K(:A(WQ),W0,Wl)

 ASS

10. T(wi,P(B)) 4,9
11. :P(w1,D(w1,B)) L9,10
12. :/>(«;!, :£(«>!)) Lll.ll
13. T(wi,Eq(B,q) 8,9
14. D(wliB) = D(wi,q L13,13
15. :B(wi) = :C(wi) Lll,14
16. :P(wi,:C(wi)) 12,15
17. :P(wi,D(wi,Q) L11.16
18. r(u>i,P(C)) L9,17
19. K(:A(W0),W0,wl)DT(w1,P(C)) DIS(9,18)
20. K(D(W0,A),W0,wi)oT(wi,P(C)) L11.19
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21. T(W0 )Know(A )P(C))) Kl,20
22. True(Know(A, P(C))) L1.21

A knows that P(B) (Line 1), so P(B) is true in every world com-
patible with what A knows (Line 4). Similarly, since A knows that
B = C (Line 5), B = C is true in every world compatible with what
A knows (Line 8). Let w\ be one of these worlds (Line 9). P(B) and
B = C must be true in wi (Lines 12 and 15), hence P(C} must be true
in w\ (Line 16). Therefore, P(C) is true in every world compatible
with what A knows (Line 19), so A knows that P(C) (Line 22). If
True(Eq(B,C)) had been given instead of True(Know(A,Eq(B,C))), we
would have had B = C true in WQ instead of w\. In that case, the
substitution of C for B in P(B) (Line 16) would not have been valid,
and we could not have concluded that A knows that P(C). This proof
seems long because we have made each routine step a separate line.
This is worth doing once to illustrate all the formal details, but in sub-
sequent examples we will combine some of the routine steps to shorten
the derivation.

3.4 A Possible-Worlds Analysis of Action
In the preceding sections, we have presented a framework for describing
what someone knows in terms of possible worlds. To characterize the
relation of knowledge to action, we need a theory of action in these
same terms. Fortunately, the standard way of looking at actions in AI
gives us just that sort of theory. Most AI programs that reason about
actions are based on a view of the world as a set of possible states of
affairs, with each action determining a binary relation between states
of affairs—one being the outcome of performing the action in the other.
We can integrate our analysis of knowledge with this view of action by
identifying the possible worlds used to describe knowledge with the
possible states of affairs used to describe actions.

The identification of a possible world, as used in the analysis of
knowledge, with the state of affairs at a particular time does not re-
quire any changes in the formalization already presented, but it does
require a reinterpretation of what the axioms mean. If the variables
wi, W2,.. .are reinterpreted as ranging over states of affairs, then "A
knows that P" will be analyzed roughly as "P is true in every state
of affairs that is compatible with what A knows in the actual state
of affairs." It might seem that taking possible worlds to be states of
affairs, and therefore not extended in time, might make it difficult to
talk about what someone knows regarding the past or future. That
is not the case, however. Knowledge about the past and future can
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be handled by modal tense operators, with corresponding accessibility
relations between possible states-of-affairs/worlds. We could have a
tense operator Future such that Future(P) means that P will be true
at some time to come. If we let F be an accessibility relation such that
F(Wi, W-z) means that the state-of-affairs/world W% lies in the future
of the state-of-affairs/world W\, then we can define Future(P) to be
true in W\ just in case there is some Wi such that F^i,^) holds
and P is true in W-z.

This much is standard tense logic (e.g., Rescher and Urquhart
1971). The interesting point is that statements about someone's knowl-
edge of the future work out correctly, even though such knowledge is
analyzed in terms of alternatives to a state of affairs, rather than alter-
natives to a possible world containing an entire course of events. The
proposition that John knows that P will be true is represented simply
by Know(John, Future(P)). The analysis of this is that Future(P) is true
in every state of affairs that is compatible with what John knows, from
which it follows that, for each state of affairs that is compatible with
what John knows, P is true in some future alternative to that state of
affairs. An important point to note here is that two states of affairs
can be "internally" similar (that is, they coincide in the truth-value
assigned to any nonmodal statement), yet be distinct because they dif-
fer in the accessibility relations they bear to other possible states of
affairs. Thus, although we treat a possible world as a state of affairs
rather than a course of events, it is a state of affairs in the particular
course of events defined by its relationships to other states of affairs.

For planning and reasoning about future actions, instead of a tense
operator like Future, which simply asserts what will be true, we need
an operator that describes what would be true if a certain event oc-
curred. Our approach will be to recast McCarthy's situation calculus
(McCarthy 1968, McCarthy and Hayes 1969) so that it meshes with
our possible-world characterization of knowledge. The situation cal-
culus is a first-order language in which predicates that can vary in
truth-value over time are given an extra argument to indicate what
situations (i.e., states of affairs) they hold in, with a function Result
that maps an agent, an action, and a situation into the situation that
results from the agent's performance of the action in the first situation.
Statements about the effects of actions are then expressed by formulas
like P(Resu\t(A,Act,S)), which means that P is true in the situation
that results from A's performing Act in situation S.

To integrate these ideas into our logic of knowledge, we will recon-
struct the situation calculus as a modal logic. In parallel to the opera-
tor Know for talking about knowledge, we introduce an object language
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operator Res for talking about the results of events. Situations will not
be referred to explicitly in the object language, but they will reappear
in the possible-world semantics for Res in the metalanguage. Res will
be a two-place operator whose first argument is a term denoting an
event, and whose second argument is a formula. Res(£', P) will mean
that it is possible for the event denoted by E to occur and that, if it
did, the formula P would then be true. The possible-world semantics
for Res will be specified in terms of an accessiblity relation R, parallel
to K, such that R(:E, W\, Wy) means that Wi is the situation/world
that would result from the event :E happening in W\.

We assume that, if it is impossible for :E to happen in W\ (i.e., if
the prerequisites of :E are not satisfied), then there is no W-^ such that
R(:E, Wi, Wi) holds. Otherwise we assume that there is exactly one
W2 such that (:E, Wi, W2) holds4

Rl. \/wi,w2,W3,ei((R(ei,wi,W2)f\R(ei,wi,W3)) D (iu2 = w3))

(Variables e\, 62,...range over events.) Given these assumptions,
Res(£1, P) will be true in a situation/world Wi just in case there is
some Wi that is the situation/world that results from the event de-
scribed by E happening in Wi, and in which P is true:

R2.

The type of event we will normally be concerned with is the perfor-
mance of an action by an agent. We will let Do(A, Act) be a description
of the event consisting of the agent denoted by A performing the ac-
tion denoted by Act.5 (We will assume that the set of possible agents
is the same as the set of possible knowers.) We will want Do(j4, Act)
to be the standard way of referring to the event of j4's carrying out the
action Act, so Do will be a rigid function. Hence, Do(j4, Act) will be a

4This amounts to an assumption that all events are deterministic, which might
seem to be an unnecessary limitation. From a pragmatic standpoint, however, it
doesn't matter whether we say that a given event is nondeterministic, or we say
that it is deterministic but no one knows precisely what the outcome will be. If we
treated events as being nondeterministic, we could say that an agent knows exactly
what situation he is in, but, because :E is nondeterministic, he doesn't know what
situation would result if :E occurs. It would be completely equivalent, however,
to say that :E is deterministic, and that the agent dots not know exactly what
situation he is in because he doesn't know what the result of :E would be in that
situation.

5It would be more precise to say that Do(A,Act) names a type of event rather
than an individual event, since an agent can perform the same action on different
occasions. We would then say that Res and R apply to event types. We will let
the present usage stand, however, since we have no need to distinguish event types
from individual events.
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R:Do(:A , :Act)
2 w ' P

R:Do(:A2:Act) .
>( P

Figure 5. True(Know(^i,Res(Do(^2,Act),P))) =

Vii»i(tf(:Ai, Wb, «>!):>
3w2(R(:Do(: A2,: Act), wi, w2) A T(w2, P)))

rigid designator of an event if A is a rigid designator of an agent and
Act a rigid designator of an action.

Many actions can be thought of as general procedures applied to
particular objects. Such a general procedure will be represented by a
function that maps the objects to which the procedure is applied into
the action of applying the procedure to those objects. For instance, if
Dial represents the general procedure of dialing combinations of safes,
S a safe, and Comb(S') the combination of S, then Dial(Comb(5),5)
represents the action of dialing the combination Comb(S) on the safe
5, and D(A, Dial(Comb(5), S)) represents the event of A's dialing the
combination Comb(S) on the safe S.

This formalism gives us the ability describe an agent's knowledge
of the effects of carrying out an action. In the object language, we
can express the claim that AI knows that P would result from j42's
doing Act by saying that Know(A!, Res(Do(A2,^4c<),P)) is true. The
possible-world analysis of this statement is that, for every world com-
patible with what A\ knows in the actual world, there is a world that
is the result of A2's doing Act and in which P is true (see Figure 5).
Formally, this is expressed by

Vwi(K(:Ai, WQ, wi) D 3w^(R(:Do(:A2,: Act), Wl,w2) A T(w,, P ) ) ) ,

if we assume that AI, AI, and Act are rigid designators.
In addition to simple, one-step actions, we will want to talk about

complex combinations of actions. We will therefore introduce expres-
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sions into the object language for action sequences, conditionals, and
iteration. If P is a formula, and Acti and Acti are action descrip-
tions, then (Acti;Act2), H(P,Acii,Act2), and While(P ,Acti) will also
be action descriptions. Roughly speaking, (Acti\Acii) describes the se-
quence of actions consisting of Acti followed by Adi. \f(P, Acti, Acti)
describes the conditional action of doing Acti if P is true, otherwise
doing Acti. \Nh\\e(P,Acti) describes the iterative action of repeating
Acti as long as P is true.

Defining denotations for these complex action descriptions is some-
what problematical. The difficulty comes from the fact that, whenever
we have an action described as a sequence of subactions, any expres-
sion used in specifying one of the subactions needs to be interpreted
relative to the situation in which that subaction is carried out. For
instance, if Puton(X, Y) denotes the action of putting X on Y, Stack
denotes a stack of blocks, Table denotes a table, and Top picks out the
top block of a stack, we would want the execution of

(Puton(Top(Stack), Table); Puton(Top(Stack), Table)

to result in what were initially the top two blocks of the stack being
put on the table, rather than what was initially the top block being
put on the table twice. The second occurrence of Top(Stack) should be
interpreted with respect to the situation in which the first block has
already been removed. The problem is that, in general, what situa-
tion exists after one step of a sequence of actions has been excecuted
depends on who the agent is. If John picks up a certain block, he.
will be holding the block; if, however, Mary performs the same action,
she will be holding the block. If an action description refers to "the
block Mary is holding," exactly which block it is may depend on which
agent is carrying out the action, but this is not specified by the action
description.

One way of getting around these difficulties conceptually would
be to treat actions as functions from agents to events, but notational
problems would remain nevertheless. We will therefore choose a differ-
ent solution: treating complex actions as "virtual individuals" (Scott
1970), or pseudoentities. That is, complex action descriptions will not
be treated as referring expressions in themselves, but only as compo-
nent parts of more complex referring expressions. In particular, if Act
is a complex action description (and A denotes an agent), we will treat
the event description Do(A, Act), but not Act itself, as having a deno-
tation. Complex action descriptions will be permitted to occur only
as part of such event descriptions, and we will define the denotations
of the event descriptions in a way that eliminates reference to complex
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actions. We will, however, continue to treat actions as real entities
that can be quantified over, and simple action descriptions such as
Dial(Comb(S),S) will still be considered to denote actions.

The denotations of event descriptions formed from conditional and
iterative action descriptions can be defined as follows in terms of the
denotations of event descriptions formed from action sequence descrip-
tions:

R3. Vtoi,ii ,f2,*3,Pi

R4.

R3 says that performing the conditional action \f(P,Acti,Act2) results
in the same event as carrying out Act\ in a situation where P is true
or carrying out Act? in a situation where P is false. R4 says that
performing \Nhi\e(P ,Act) always results in the same event as

lf(P,(,4d;While(P,yld)),Nil)

where Nil denotes the null action. In other words, doing While(jP,.Ac<) is
equivalent to doing Act followed by \Nti\\e(P,Act) if P is true, otherwise
doing nothing — i.e., doing Act as long as P remains true.

To define the denotation of events that consist of carrying out action
sequences, we need some notation for talking about sequences of events.
First, we will let ";" be a polymorphic operator in the object language,
creating descriptions of event sequences in addition to action sequences.
Speaking informally, if £1 and EI are event descriptions, then (E\\ E%)
names the event sequence consisting of E\ followed by E%, just as
(Act\;Acti) names the action sequence consisting of Act\ followed by
Acl%. In the metalanguage, event sequences will be indicated with
angle brackets, so that (:E\}:E^) will mean :E\ followed by :E?. The
denotations of expressions involving action and event sequences are
then defined by the following axioms:

R5. Vtoi . tx . ta . ts
(£>(«!, Do(*1,(t2;t3))) =
D(Wl , (Do(<! , <2); Do(@(D(w1 , <i)),

R6. Vwi,W2,tl,ty



56 / LOGIC AND REPRESENTATION

R5 says that the event consisting of an agent ^4's performance of
the action sequence Act\ followed by Act2 is simply the event sequence
that consists of A's carrying out Aci\ followed by his carrying out Aci^.
Note that, in the description of the second event, the agent is picked
out by the expression @(D(wi, A)), which guarantees that we get the
same agent as in the first event, in case the original term picking out
the agent changes its denotation after the first event has happened. R6
then defines the denotation of an event sequence description (Ei;E2) as
the sequence comprising the denotation of E\ in the original situation
followed by the denotation of E2 in the situation resulting from the
occurrence of E\ . If there is no situation that results from the occurence
of E I , we leave the denotation of (E\\ E?) undefined.

Finally, we need to define the accessibility relation R for event se-
quences and for events in which the null action is carried out.

R7. V i y 1 i y 2 e i , e 2

R8. Vu>i,

R7 says that a situation W2 is the result of the event sequence (Ei, E2)
occurring in Wi if and only if there is a situation W3 such that W3 is
the result of EI occurring in W\ , and W2 is the result of EI occurring
in W3.

6 We will regard Nil as a rigid designator in the object language
for the null action, so :Ni l will be its metalanguage counterpart. R8,
therefore, says that in any situation the result of doing nothing is the
same situation.

3.5 An Integrated Theory of Knowledge and
Action

The Dependence of Action on Knowledge
As we pointed out in the introduction, knowledge and action interact
in two principal ways: (1) knowledge is often required prior to taking
action; (2) actions can change what is known. In regard to the first,
we need to consider knowledge prerequisites as well as physical prereq-
uisites for actions. Our main thesis is that the knowledge prerequisites
for an action can be analyzed as a matter of knowing what action to

6 R7 guarantees that the sequences ( ( E i , E y ) , E 3 ) and (Ei, (E?,E3)) always define
the same accessibility relation on situations; so, just as one would expect, we can
regard sequence operators as being associative. Thus, when we have a sequence
of more than two events or actions, we will not feel obliged to indicate a pairwise
grouping.
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take. Recall the example of trying to open a locked safe. Why is it
that, for an agent to achieve this goal by using the plan "Dial the
combination of the safe," he must know the combination? The reason
is that an agent could know that dialing the combination of the safe
would result in the safe's being open, but still not know what to do be-
cause he does not know what the combination of the safe is. A similar
analysis applies to knowing a telephone number in order to call some-
one on the telephone or knowing a password in order to gain access to
a computer system.

It is important to realize that even mundane actions that are not
usually thought of as requiring any special knowledge are no different
from the examples just cited. For instance, none of the AI problem-
solving systems that have dealt with the blocks world have tried to take
into account whether the robot possesses sufficient knowledge to be able
to move block A to point B. Yet, if a command were phrased as "Move
my favorite block back to its original position," the system could be just
as much in the dark as with "Dial the combination of the safe." If the
system does not know what actions satisfy the description, it will not
be able to carry out the command. The only reason that the question
of knowledge seems more pertinent in the case of dialing combinations
and telephone numbers is that, in the contexts in which these actions
naturally arise, there is usually no presumption that the agent knows
what action fits the description. An important consequence of this view
is that the specification of an action will normally not need to include
anything about knowledge prerequisites. These will be supplied by a
general theory of using actions to achieve goals. What we will need to
specify are the conditions under which an agent knows what action is
referred to by an action description.

In our possible-world semantics for knowledge, the usual way of
knowing what entity is referred to by a description B is by having
some description C that is a rigid designator, and by knowing that
B — C. (Note, that if B itself is a rigid designator, it can be used
for C.) In particular, knowing what action is referred to by an action
description means having a rigid designator for the action described.
But, if this is all the knowledge that is required for carrying out the
action, then a rigid designator for an action must be an executable
description of the action—in the same sense that a computer program
is an executable description of a computation to an interpreter for the
language in which the program is written.

Often the actions we want to talk about are mundane general pro-
cedures that we would be willing to assume everyone knows how to
perform. Dialing a telephone number or the combination of a safe
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is a typical example. In many of these cases, if an agent knows the
general procedure and what objects the procedure is to be applied to,
then he knows everything that is relevant to the task. In such cases,
the function that represents the general procedure will be a rigid func-
tion, so that, if the arguments of the function are rigid designators,
the term consisting of the function applied to the arguments will be a
rigid designator. Hence, knowing what objects the arguments denote
will amount to knowing what action the term refers to. We will treat
dialing the combination of a safe, or dialing a telephone number as be-
ing this type of procedure. That is, we assume that anyone who knows
what combination he is to dial and what safe he is to dial it on thereby
knows what action he is to perform.

There are other procedures we might also wish to assume that any-
one could perform, but that cannot be represented as rigid functions.
Suppose that, in the blocks world, we let Puton(5, C) denote the ac-
tion of putting B on C. Even though we would not want to question
anyone's ability to perform Puton in general, knowing what objects B
and C are will not be sufficient to perform Puton(B, C); knowing where
they are is also necessary. We could have a special axiom stating that
knowing what action Puton(5,C) is requires knowing where B and C
are, but this will be superfluous if we simply assume that everyone
knows the definition of Puton in terms of more primitive actions. If we
define Puton(X, Y) as something like

(Movehand (Location (X));
Grasp;
Movehand(Location(Top(y)));
Ungrasp),

then we can treat Movehand, Grasp, and Ungrasp as rigid functions,
and we can see that executing Puton requires knowing where the two
objects are because their locations are mentioned in the definition.
So, although Puton itself is not a rigid function, we can avoid having a
special axiom stating what the knowledge prerequisites of Puton are by
defining Puton as a sequence of actions represented by rigid functions.

To formalize this theory, we will introduce a new object language
operator Can. Can(A,Act,P) will mean that A can achieve P by per-
forming Act, in the sense that A knows how to achieve P by performing
Act. We will not give a possible-world semantics for Can directly; in-
stead we will give a definition of Can in terms of Know and Res, which
we can use in reasoning about Can to transform a problem into terms
of possible worlds.

In the simplest case, an agent A can achieve P by performing Act
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if he knows what action Act is, and he knows that P would be true as
a result of his performing Act. In the object language, we can express
this fact by

Va(3a;(Know(a, ((x = Act) A Res(Do(a, Act), P ) ) ) ) D Can(a,Act,P)).

We cannot strengthen this assertion to a biconditional, however, be-
cause that would be too stringent a definition of Can for complex ac-
tions. It would require the agent to know from the very beginning of
his action exactly what he is going to do at every step. In carrying out
a complex action, though, an agent may take some initial action that
results in his acquiring knowledge about what to do later.

For an agent to be able to achieve a goal by performing a complex
action, all that is really neccessary is that he know what to do first, and
that he know that he will know what to do at each subsequent step.
So, for any action descriptions Act and Act\ , the following formula also
states a condition under which an agent can achieve P by performing
Act:

Va(3x(Know(a, ((Do(a, (x; Acti)) - Do(a, Act))h
Res(Do(a, x), Can(a, Act,, P ) ) ) ) ) D

Can(a,Act,P)).

This says that A can achieve P by doing Act if there is an action X
such that A knows that his execution of the sequence X followed by
Acti would be equivalent to his doing Act, and thathis doing X would
result in his being able to achieve P by doing Act\.

Finally, with the following metalanguage axiom we can state that
these are the only two conditions under which an agent can use a
particular action to achieve a goal:

Cl.

(T(Wl,Exist(X,Know(f1,And(Eq(X)t3),Res(Do(t21t3)!p1)))))V
a<4(r(toi)Exi$t(X,Know(t1)And(Eq(Do(<2,(X;t4)),Do(<2)<3)),

Res(Do(*2,X),
Can(t2)*4)pi))))))))))

Letting t\ — A,ti = A\, and ts = Act, Cl says that, for any formula
P, if AI is the standard identifier of the agent denoted by A, then A
can achieve P by doing Act if and only if one of the following conditions
is met: (1) A knows what action Act is and knows that P would be
true as a result of AI'S (i.e., his) doing Act, or (2) there is an action
description t4 = Act, such that, for some action X, A knows that A\'s
doing X followed by Act\ is the same event as his doing Act and knows
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that AI'S doing X would result his being able to achieve P by doing
Act1.

As a simple illustration of these concepts, we will show how to
derive the fact that an agent can open a safe, given the premise that
he knows the combination. To do this, the only additional fact we need
is that, if an agent does dial the correct combination of a safe, the safe
will then be open:

Dl. Vtui ,a i ,z i
(:Safe(*i) D

i, :Dial(:Comb(«;1, xi

Dl says that, for any possible world W\, any agent :A, and any safe :S,
there is a world W2 that is the result of :A's dialing the combination of
:Son :Sin W\, and in which :S is open. The important point about this
axiom, is that the function :Comb (which picks out the combination to a
safe) depends on what possible world it is evaluated in, while :Dial (the
function that maps a combination and a safe into the action of dialing
the combination on the safe) does not. Thus we are implicitly assuming
that, given a particular safe, there may be some doubt as to what its
combination is, but, given a combination and a safe, there exists no
possible doubt as to what action dialing the combination on the safe is.
(We also simplify matters by omitting the possible world-argument to
:Safe, so as to avoid raising the question of knowing whether something
is a safe.) Since this axiom is asserted to hold for all possible worlds,
we are in effect assuming that it is common knowledge.

Now we show that, for any safe, if the agent A knows its combi-
nation, he can open the safe by dialing that combination; or, more
precisely, for all X, if X is a safe and there is some Y, such that A
knows that Y is the combination of X, then A can open X by dialing
the combination of X on X:

Prove:True(AII(X)lmp(And(Safe(X),Exist(Y,Know(A,Eq(Y,Comb(X))))))
Can(A,Dial(Comb(X),X),Open(X))))

1. T(W0, ASS
And(Safe(@(a;1),

Exist(Y, Know(A, Eq(Y, Comb(@(x1 ))))))))
2. :Safe(x!) 1.L2.L9
3. ViMffO^WiO.Wb.wOD 1,L2,L7,K1,L11,

(:C = :Comb(u>i, *!))) L13.L10.L12
4. K(:A(W0),W0,Wl) ASS
5. :C = :Comb(u>i,a:i) 3,4
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6. :D\a\(:C,xi) = \D\a\(:Comb(w1,xi),xl) 5
7. T(WI, L10,L12,L12a,

Eq(@(:Dial(:C,xi)), L13

8. 3w2(R(:Do(:A(W0), 2,D1
:Dial(:Comb(wi, xi

:Opcn(iU2)xi)))
9. T(wi, Lll,L10,L12a,

A)), L9, R2

Open(@(*i))))

10. T(wi, 7,9,L2
And(Eq(@(:Dial(:C,*i)),

Res(Do(@(D(W0,A)),
Dial(Comb(@(a:i)),@(xi))),

U. K(:A(W0),W0,wi) D DIS(4,10)
(wlt

And(Eq(@(:Dial(:C,xi)),

Res(Do(@(D(W0,A)),
Dial(Comb(@(£1)),@(x1))),

Open(@(x!)))))
12. T(W0,

Know(A,
And(Eq(@(:Dial(:C,a;i))I

Dial(Comb(@(xi)),@(xi))),

Dial(Comb(@(xi)),@(xi))),
Open(@(xi))))))

13. T(W0, 12.L7
Exist(X,

Know(A,
And(Eq(X,

Dial(Comb(@(xi)),

Dial(Comb(@(a;i)),
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14. T(W0, 13,C1
Can(A,

Dial(Comb(@(ii)),@(*i)),
Open(@(*i))))

15. T(W0, DIS(1,14)
And(Safe(@(n),

Exist(Y, Know(A, Eq(Y, Comb(@(ari )))))))) D
T(W0,

Can(A, Dial(Comb(@(zi)), ©(an)), Open(@(n))))
16. True(AII(X, 15,L4,L8,L1

lmp(And(Safe(X),
Exist(Y,

Know(A,
Eq(Y,Comb(X))))))

Can(A, Dial(Comb(X), X), Open(X))))

Suppose that x± is a safe and there is some C that A knows to
be the combination of xi (Lines 1-3). Suppose u>i is a world that is
compatible with what A knows in the actual world, Wo (Line 4). Then
C is the combination of xi in w\ (Line 5), so dialing C on x\ is the
same action as dialing the combination of x± on x\ in w\ (Lines 6 and
7). By axiom Dl, A's dialing the combination of x\ on x\ in wi will
result in xi's being open (Lines 8 and 9). Since wi was an arbitrarily
chosen world compatible with what A knows in Wo, it follows that in
Wo A knows dialing C on x\ to be the act of dialing the combination
of xi on x\ and that his dialing the combination of x i on x\ will result
in xi's being open (Lines 10-12). Hence, A knows what action dialing
the combination of x\ on x\ is, and that his dialing the combination
of xi on x\ will result in xi's being open (Line 13). Therefore A can
open x\ by dialing the combination of #1 on xi, provided that x\ is a
safe and he knows the combination of xi (Lines 14 and 15). Finally,
since x\ was chosen arbitrarily, we conclude that A can open any safe
by dialing the combination, provided he knows the combination (Line
16).

The Effects of Action on Knowledge
In describing the effects of an action on what an agent knows, we will
distinguish actions that give the agent new information from those
that do not. Actions that provide an agent with new information will
be called informative actions. An action is informative if an agent
would know more about the situation resulting from his performing
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the action after performing it than before performing it. In the blocks
world, looking inside a box could be an informative action, but moving
a block would probably not, because an agent would normally know no
more after moving the block than he would before moving it. In the real
world there are probably no actions that are never informative, because
all physical processes are subject to variation and error. Nevertheless, it
seems clear that we do and should treat many actions as noninformative
from the standpoint of planning.

Even if an action is not informative in the sense we have just defined,
performing the action will still alter the agent's state of knowledge. If
the agent is aware of his action, he will know that it has been performed.
As a result, the tense and modality of many of the things he knows will
change. For example, if before performing the action he knows that
P is true, then after performing the action he will know that P was
true before he performed the action. Similarly, if before performing
the action he knows that P would be true after performing the action,
then afterwards he will know that P is true.

We can represent this very elegantly in terms of possible worlds.
Suppose :A is an agent and :E\ an event that consists in :A's performing
some noninformative action. For any possible worlds Wi and Wi such
that W^ is the result of :E^s happening in Wi, the worlds that are
compatible with what :A knows in W? are exactly the worlds that are
the result of :E\'s happening in some world that is compatible with
what :A knows in W\. In formal terms, this is

Vwl,wi(R(:E,wl,wi] D
Vwa(K(:A, wi,w3) =

3w^(K(:A, wi, w4) A R(:E, w4, w3)))),
which tells us exactly how what :A knows after :E\ happens is related
to what :A knows before :E\ happens.

We can try to get some insight into this analysis by studying Fig-
ure 6. Sequences of possible situations connected by events can be
thought of as possible courses of events. If W\ is an actual situation
in which :E\ occurs, thereby producing Wi, then Wi and Wi comprise
a subsequence of the actual course of events. Now we can ask what
other courses of events are compatible with what :A knows in W\ and
in Wi. Suppose that Wi and Wz are connected by :Ei in a course of
events that is compatible with what :A knows in W\. Since :E\ is not
informative for :A, the only sense in which his knowledge is increased
by :Ei is that he knows that :E\ has occurred. Since :E\ occurs at the
corresponding place in the course of events that includes W4 and W3,
this course of events will still be compatible with everything :A knows
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Figure 6. The effect of a noninformative action on the
agent's knowledge

in W-2. However, the appropriate "tense shift" takes place. In W\, W^
is a possible alternative present for :A, and W% is a possible alternative
future. In W%, W$ is a possible alternative present for :A, and W4 is a
possible alternative past.

Next consider a different course of events that includes Ws and We
connected by a different event, :Ei. This course of events might be
compatible with what :A knows in W\ if he is not certain what he
will do next, but, after :E\ has happened and he knows that it has
happened, this course of events is no longer compatible with what he
knows. Thus, We is not compatible with what :A knows in W^. We
can see, then, that even actions that provide the agent with no new
information from the outside world still filter out for him those courses
of events in which he would have performed actions other than those
he actually did.

The idea of a filter on possible courses of events also provides a
good picture of informative actions. With these actions, though, the
filter is even stronger, since they not only filter out courses of events
that differ from the actual course of events as to what event has just
occurred, but they also filter out courses of events that are incompatible
with the information furnished by the action. Suppose :E is an event
that consists in :A's performing an informative action, such that the
information gained by the agent is whether the formula P is true. For
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-0w,>r

R:E

K:A y^^r^C)
Figure 7. The effect of an informative action on the agent's knowledge

any possible worlds W\ and W-z such that Wi is the result of :£"s
happening in W\ , the worlds that are compatible with what :A knows
in Wi are exactly those worlds that are the result of :E's happening
in some world that is compatible with what :A knows in W\ , and in
which P has the same truth-value as in W?:

Vu>i, w2(R(:E, wi,wi) D

A R(:E,

It is this final condition that distinguishes informative actions from
those that are not.

Figure 7 illustrates this analysis. Suppose W\ and W% are connected
by :E and are part of the actual course of events. Suppose, further,
that P is true in Wy. Let W$ and W3 also be connected by :E, and
let them be part of a course of events that is compatible with what :A
knows in W\. If P is true in W3 and the only thing :A learns about
the world from :E (other than that it has occurred) is whether P is
true, this course of events will then still be compatible with what :A
knows after :E has occurred. That is, W3 will be compatible with what
:A knows in Wy. Suppose, on the other hand, that W$ and WQ form
part of a similar course of events, except that P is false in We- If :A
does not know in W\ whether P would be true after the occurrence of
:E, this course of events will also be compatible with what he knows
in W\. After :E has occurred, however, he will know that P is true
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consequently, this course of events will no longer be compatible with
what he knows. That is, W§ will not be compatible with what :A knows
in W2.

It is an advantage of this approach to describing how an action
affects what an agent knows that not only do we specify what he learns
from the action, but also what he does not learn. Our analysis gives
us necessary, as well as sufficient, conditions for :A's knowing that P is
true after event :E. In the case of an action that is not informative, we
can infer that, unless :A knows before performing the action whether
P would be true, he will not know afterwards either. In the case of an
informative action such that what is learned is whether Q is true, he
will not know whether P is true unless he does already — or knows of
some dependence of P on Q.

Within the context of this possible-world analysis of the effects of
action on knowledge, we can formalize the requirements for a test that
we presented in Section 3.1. Suppose that Test is the action of testing
the acidity of a particular solution with blue litmus paper, Red is a
prepositional constant (a predicate of zero arguments) whose truth
depends on the color of the litmus paper, and Acid is a prepositional
constant whose truth depends on whether the solution is acidic. The
relevent fact about Test is that the paper will be red after an agent A
performs the test if and only if the solution is acidic at the time the
test is performed:

(Acid D Res(Do(A,Test),Red))A(-.Acid D Res(Do(^, Test), -.Red))

In Section 3.1 we listed three conditions that ought to be sufficient
for an agent to determine, by observing the outcome of a test, whether
some unobservable precondition holds; in this case, for A to determine
whether Acid is true by observing whether Red is true after Test is
performed:

(1) After A performs Test, he knows whether Red is true.
(2) After A performs Test, he knows that he has just performed Test.
(3) A knows that Red will be true after Test is performed just in case

Acid was true before it was performed.

Conditions (1) and (2) will be satisfied if Test is an informative
action, such that the knowledge provided is whether Red is true in the
resulting situation:

Tl. Vwi,W2,a,i

, wi, w4) A R(:Do(ai, Test), w>4) w3))A
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(:Red(«,2) = :Red(t03)))))

If :Red and :Test are the metalanguage analogues of Red and Test, Tl
says that for any possible worlds Wi and Wi such that W^ is the result
of an agent's performing Test in W\, the worlds that are compatible
with what the agent knows in Wi are exactly those that are the result
of his performing Test in some world that is compatible with what he
knows in W\, and in which Red has the same truth-value as in W%. In
other words, after performing Test, the agent knows that he has done
so and he knows whether Red is true in the resulting situation. As with
our other axioms, the fact that it holds for all possible worlds makes
it common knowledge.

Thus, A can use Test to determine whether the solution is acid,
provided that (3) is also satisfied. We can state this very succinctly
if we make the further assumption that A knows that performing the
test does not affect the acidity of the solution.7 Given the axiom Tl
for test, it is possible to show that

Acid D Res(Do(J4, Test), Know(A, Acid))

and

-.Acid D Res(Do(A,Test),Know(A,-lAcid))

are true, provided that

Know(,4, (Acid D Res(Do(A Test), (Acid A Red))))

and

Know(A, (-.Acid D Res(Do(A, Test), (-^Acid A --Red))))

are both true and A is a rigid designator. We will carry out the proof
in one direction, showing that, if the solution is acidic, after the test
has been conducted the agent will know that it is acidic.

Given: True(Know(A, lmp(Acid, Res(Do(A, Test), And(Acid, Red)))))
True(Know(A, lmp(Not(Acid), Res(Do(A,Test),
And(Not(Acid),Not(Red))))))
True(Acid)

Prove: True(Res(Do(A, Test), Know(A, Acid)))

7We have to add this extra condition to be able to infer that the agent knows
whether the solution is acidic, instead of merely that he knows whether it was
acidic. The latter is a more general characteristic of tests, since it covers destructive
as well as nondestructive tests. We have not, however, introduced any temporal
operators into the object language that would allow us to make such a statement,
although there would be no difficulty in stating the relevant conditions in the object
language. Indeed, this is precisely what is done by axioms such as Tl.
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Figure 8. The effect of a test on the agent's knowledge

5,2627.
Vwi(K(:A,Wi,wi) D :Acid(u;2))

28. True(Res(Do(A, Test), Know(A, Acid))) 27,L9,Llla,L12,
K2,R2,L1

The possible-world structure for this proof is depicted in Figure 8.
Lines 1 and 2 translate the premises into the metalanguage. Since A
knows that, if the solution is acidic, performing the test will result in
the litmus paper's being red, it must be true in the actual world Vl^o
that, if the solution is acidic, performing the test will result in the
litmus paper's being red (Line 3). Suppose that, in fact, the solution is
acidic (Line 4). Then, if Wi is the result of performing the test in Wo
(Line 5), the paper will be red in Wi (Line 6). Furthermore, the worlds
that are compatible with what A knows in W\ are those that are the
result of his performing the test in some world that is compatible with
what he knows in W\, and in which the paper is red if and only if it is
red in W\ (Line 7). Suppose that w% is a world that is compatible with
what A knows in W\ (Line 8). Then there is a Wz that is compatible
with what A knows in Wo (Line 9), such that wj, is the result of A's
performing the test in W$ (Line 10). The paper is red in w%, if and only
if it is red in Wi (Line 11); therefore, it is red in w% (Line 12). Since
A knows how the test works, if the solution were not acidic in Wz, it
would not be acidic, and the paper would not be red, in w? (Line 13).

Now, suppose the solution were not acid in Wz (Line 14). If W$ is
the result of A's performing the test in Wz (Line 15), the paper would
not be red in W± (Line 16). But Wi is the result of A's performing the
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test in W3 (Line 17), so the paper would not be red in w2 (Line 18).
We know this is false (Line 19), however, so the solution must be acidic
in Wa (Line 20). If the solution is acidic in Wz, it must also be acidic
in the situation resulting from A's performing the test in Wa (Lines
21-23), but this is w? (Line 24). Therefore, the solution is acidic in u>2
(Line 25). Hence, in W\, A knows that the solution is acidic (Line 26),
so in the situation resulting from A's performing the test in WQ, he
knows that the solution is acidic (Line 27). In other words (Line 28),
A's performing the test would result in his knowing that the solution
is acidic.

By an exactly parallel argument, we could show that, if the solution
were not acidic, A could also find that out by carrying out the test, so
our analysis captures the sort of reasoning about tests that we described
in Section 3.1, based on general principles that govern the interaction
of knowledge and action.



Computational Models of Belief
and the Semantics of Belief
Sentences
WITH G. G. HENDRIX

4.1 Computational Theories and Computational
Models
This chapter considers a number of problems in the semantics of belief
sentences from the perspective of computational models of the psychol-
ogy of belief. We present a semantic interpretation for belief sentences
that is suggested by a computational model of belief, and show how
this interpretation overcomes some of the difficulties of alternative ap-
proaches, especially those based on possible-world semantics. Finally,
we argue that these difficulties arise from a mistaken attempt to iden-
tify the truth conditions of a sentence with what a competent speaker
knows about the meaning of the sentence.

Over the years the psychology of belief and the semantics of be-
lief sentences have provided a seemingly endless series of fascinating
problems for linguists, psychologists, and philosophers. Despite all the
attention that has been paid to these problems, however, there is lit-
tle agreement on proposed solutions, or even on what form solutions
should take. We believe that a great deal of light can be shed on the
problems of belief by studying them from the viewpoint of computa-
tional models of the psychological processes and states associated with
belief. The role of computational theories and computational models

The work reported herein was supported by the National Science Foundation under
Grant No. MCS76-22004, and by the Defense Advanced Research Projects Agency
under Contract N00039-79-C-0118 with the Naval Electronic Systems Command.

71



72 / LOGIC AND REPRESENTATION

in the cognitive sciences always seems to be a matter of controversy.
When such theories and models are discussed by non-computer scien-
tists, they are frequently presented in a rather apologetic tone, with
assurances and caveats that, of course, this is all oversimplified and
things couldn't really be like this, but...

This may be the result of an unwarranted inference that anyone
who takes a computational approach in one of these disciplines thereby
endorses what is sometimes called the thesis of "mechanism" (Lucas
1961): that minds can be completely explained in terms of machines,
which in contemporary discussions are usually taken to be computers.
When the metaphysical doctrine of dualism was more widely held, the
mechanism thesis could be rejected on the grounds that minds were
nonphysical. It appears to be more fashionable to adhere to a mate-
rialistic metaphysics nowadays, but to hold that the way minds are
embodied in brains is so complex as to be beyond all human under-
standing, or at least too complex to be represented by Turing machines
or computer programs. On the basis of current knowledge, these ques-
tions appear to us to be completely open. The existing evidence may
well have as little relevance to future discoveries as the arguments of
the Greek philosophers about atomism have to modern atomic theory.

We wish to argue, however, that the usefulness of computational
approaches in the cognitive sciences does not depend on how (or even
whether) these questions are eventually answered. In elaborating this
view, it will be helpful to make a distinction between computational
theories and computational models. We will say that a theory of a cog-
nitive process is a computational theory if it claims that the process is
a computational process. The mechanism thesis can be viewed as the
claim that every cognitive process is a computational process. Obvi-
ously, one can hold that certain cognitive processes are computational
without claiming that all are, so having a particular computational
theory of some cognitive process still leaves the mechanism thesis an
open question.

The construction of computational theories is the most obvious use
of computational ideas in the cognitive sciences. However, even with-
out computational theories, computational models can be extremely
useful. By a computational model of a cognitive process we mean a
computational system whose behavior is similar to the behavior of the
process in some interesting way. The important point is that one can
make use of computational models without making any claims about
the nature of the process being modeled. For example, the use of com-
putational models in weather forecasting does not commit one to the
claim that meteorological processes are computational.
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What makes computational models in meteorology interesting is
the fact that they can make useful predictions about the behavior of
the system being modeled. In the cognitive sciences few models, com-
putational or otherwise, have such predictive power, and we are hard
pressed to think of any cases in which the predictions that are made
can be considered useful. Thus at our current level of understanding,
prediction of behavior does not appear to be the most productive role
for computational models of cognitive processes.

What computational models do seem to be good for is clarifica-
tion of conceptual problems. Many of the most vexing problems in the
cognitive sciences are questions as to how any physical system could
have the properties that cognitive systems apparently possess. Com-
putational models can often supply answers to questions of this kind
independently of empirical considerations regarding the way human (or
other) cognitive systems actually function. The point is that concep-
tual arguments often proceed from general observations about some
cognitive process to specific conclusions as to what the process must
be like. One way of testing such an argument is to construct a com-
putational model that satisfies the premises of the argument and then
to see whether the conclusions apply to the model. When used in this
way, a computational model may be best thought of not so much as
a model of a process, but rather as a model (in the sense of "model
theory" in formal logic) of the theory in which the argument is made.
That is, a conceptual argument ought to be valid for all possible models
that satisfy its premises, so it had better be valid for a particular com-
putational model, independently of how closely that model resembles
the cognitive process that is the "intended model."

In the remainder of this chapter we will try to apply computational
models in this way to investigate some of the problems about belief
and the semantics of belief sentences. First we will present a model of
belief that seems to satisfy most of our pretheoretical notions. Then
we will ask what implications it would have for the semantics of belief
sentences, if human belief were analogous to our model. As will be
seen below, this leads us to some conclusions quite different from those
drawn by other authors.

4.2 Internal Languages
Before going into the details of what a computational model of belief
might look like, we need to deal with a set of objections that have been
raised to one of the basic assumptions we will make. The assumption
is that beliefs are to be explained in terms of expressions in some sort
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of internal language that is not the language used externally—a "lan-
guage of thought" to use Fodor's (1975) term. To possess a particular
belief is to bear a certain computational relation to the appropriate
expression in this internal language. This sort of explanation has fre-
quently been attacked by philosophers, particularly Ryle (1949) and
Wittgenstein (1953), as incomprehensible, but this is surely a case of a
conceptual argument that fails when applied to computational models.
Many computer systems have been built that have internal languages in
this sense, and we are unable to find appeals to any features of human
cognition in the usual arguments against internal languages that would
make these arguments inapplicable to those systems. In particular, the
internal language used in one of these computer systems always has a
well-defined syntax, and usually a clear notion of inference defined in
terms of manipulations of the formulas of the language. Whether these
languages have truth-conditional semantics is more problematical, but
for purposes of psychological explanation this may well be unneces-
sary. After all, if truth-conditional semantics cannot be given for the
internal language the machine uses, although we know how to explain
the behavior of the machine (since it was specifically designed to have
that behavior), then such semantics cannot be required for the expla-
nation. But if truth-conditional semantics is not required to perform
"psychological explanation" for machines, why should it be required
for humans?

Even if we accept the existence of computer systems that use such
an internal language as a "model-theoretic" demonstration that the
arguments against internal languages are misguided, just where they go
wrong remains an interesting question. It would clearly be impossible
to examine all such arguments in this brief chapter, (and we confess
that we are not scholars of that literature,) but it may be instructive to
look at at least one example. One familiar type of argument used by
behaviorists against any number of concepts in cognitive psychology
runs something like this:

The only evidence admissible in psychology is behavioral evidence.
There will always be many hypotheses, equally compatible with
any possible behavioral evidence, about what X an organism has.
Therefore, there is no empirical content to the claim that an organ-
ism has one X rather than another. Therefore the notion of X is
unintelligible.

Quine has used this type of argument repeatedly in his discus-
sions of the indeterminacy of translation (1960), ontological relativity
(1971a), and knowledge of grammatical rules (1972). "Set of expres-
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sions in an internal language" is one of the concepts frequently sub-
stituted for "X" in this schema. The argument has some plausibility
when applied to the human mind, where we have very little idea of how
expressions in an internal language might be physically represented. It
loses that plausibility when applied to computational models. If we
recast the argument we can see why:

The only evidence admissible for analyzing computer systems is
behavioral evidence. There will always be many hypotheses, equally
compatible with any possible behavioral evidence, about what set
of expressions in an internal language form the basis of a computer
system's "beliefs." Therefore, there is no empirical content to the
claim that a computer system has one set of expressions rather than
another. Therefore the notion of a set of expressions in an internal
language in a computer system is unintelligible.

Where this argument breaks down depends on what is taken to be
behavioral evidence. If we take behavioral evidence to be simply the
input/output behavior of the system when it is running normally, then
there is certainly more than behavioral evidence to draw upon. With
a computer system we can do the equivalent of mapping out the entire
"nervous system," and so understand its internal operations as well.
On the other hand, if behavioral evidence includes internal behavior,
it becomes much less plausible to say that there will be no way to tell
which set of expressions the system possesses.

At this point, a computer scientist might be tempted to shout, "Of
course! To find out what internal expressions the systems has, all you
have to do is to print them out and look at them!"—but there is more
to be said for the Quinean argument than this. What are directly
observable, after all, are the physical states of the machine and their
causal connections. There are many levels of interpretation between
them and the print-out containing the set of expressions we wish to at-
tribute to the machine. A Quinean might argue that there will be other
interpretations that will lead to a different set of expressions, perhaps
in a different internal language. With computer systems, however, the
fact that they are designed to be interpreted in a certain way makes it
extremely likely that any alternative interpretation would be far less
natural, and so could be rejected on general grounds of simplicity and
elegance. If this were not the case, it would be like discovering that
the score of Beethoven's Ninth is actually the score of Bach's Mass in
B Minor under a different, but no more complex, interpretation of the
usual system of musical notation.
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The Quinean argument fares somewhat better when applied to hu-
mans because there is no a priori reason to assume that human brains
are designed to be interpreted in any particular way. Thus it is more
plausible that there might be multiple descriptions of the operation of
the brain in terms of internal languages, and that these descriptions,
while incompatible with one another, are nevertheless equally compat-
ible with all the evidence, including neurological evidence. But as the
example of the computer system shows, and contrary to the Quinean
argument, there is also no a priori reason to assume that this must be
the case. It is, as the saying goes, an empirical question. It should be
clear that one of the empirical commitments of any theory in cognitive
psychology is that there be a preferred interpretation of the physical
system in terms of the entities postulated by the theory. If this com-
mitment is recognized, then failure to find a preferred interpretation
makes the theory not incoherent or unintelligible, but simply false.

In view of all this, the best that can be said for the Quinean ar-
gument is that it points out the possibility that there will be more
than one theory compatible with any evidence that can be obtained.
But this is always the case in science. Surely no one would suggest
that atomic theory is incoherent because there might be some as yet
undiscovered alternative that is equally compatible with the evidence.
Thus our consideration of computational models leads us to agree with
Chomsky (1975, p. 182) that Quine's indeterminacy doctrine comes
to no more than the observation that nontrivial empirical theories are
underdetermined by evidence.

4.3 A Computational Model of Belief
The basic outlines of the computational model of belief presented below
should be familiar to anyone acquainted with developments in artifi-
cial intelligence or cognitive simulation over the past few years. In
calling this a model of belief, however, we must be careful to distin-
guish between psychology and semantics. Our model is intended to be
a psychologically plausible account of what might be going on in an
organism or system that could usefully be said to have beliefs. Even if
we assume that the model does describe what is going on, the seman-
tic question remains of how the English word "believe" relates to the
model. We will put off addressing that question until Section 4.4.

As we said in the preceding section, belief will be explained in
our model in terms of a system's being in a certain computational
relation to expressions in an internal language. We will call the set of
expressions to which a system is so related the belief set of the system.
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The exact relationship between the expressions in this set and what we
would intuitively call the beliefs of the system will be left unspecified
until we discuss the semantics of belief sentences in Section 4.4. We will
also be somewhat vague as to just what computational relation defines
the belief set, but we can name some of the constraints it must satisfy.
First of all, we will stipulate that, to be in the belief set of a system,
an expression must be explicitly stored in the system's memory. It
may turn out that we want to say the system has beliefs that would
correspond to expressions that are not explicitly stored, but can be
derived from stored expressions. In that case, the relationship between
the system's beliefs and its belief set will be more complicated, but it
will still be important to single out the expressions that are explicitly
stored.

The fact that an expression is stored in the memory of the system
cannot be sufficient, however, for that expression to be in the system's
belief set. If the system is to be even a crude model of an intelligent
organism, it will need to have prepositional attitudes besides belief,
which we would also presumably explain in terms of expressions in its
internal language stored in its memory. We can account for this by
treating the memory of the system as being logically partitioned into
different spaces—one space for the expressions corresponding to beliefs,
another for desires, another for fears, etc. These various spaces will
be functionally differentiated by the processes that operate on them
and connect them to the system's sensors and effectors. For example,
perceiving that there is a red block on the table might directly give rise
to a belief that there is a red block on the table, but probably not the
desire or fear that there is a red block on the table. Similarly, wanting
to pick up a red block might be one of the immediate causes of trying
to pick up a red block, but imagining picking up a red block would
presumably not.

This is a bit oversimplified, but not too much. Although it is true
that perceiving a red block on the table could cause a fear that there
is a red block on the table, this would need to be explained by, say,
a belief that red blocks are explosive. In going from perception to
belief, no such additional explanation is necessary. It seems completely
compatible with our pretheoretical notions (which is what our model is
supposed to reflect) to assume that we are simply built in such a way
that we automatically accept our perceptions as beliefs unless they
conflict with existing beliefs. (Anyone who does not think we are built
this way should look out his window and try to disbelieve that what
he sees is actually there.)
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As to the internal language itself, we will again leave the details
somewhat sketchy. For the purposes of this discussion, it will be suf-
ficient to assume that the language is that of ordinary predicate logic
augmented by intensional operators for prepositional attitudes. The
expressions in a belief set would be well-formed formulas in this lan-
guage. The basic inference procedures should certainly be inclusive
enough so that there is some way of applying them to generate any
valid inference, but they could include procedures for generating plau-
sible inferences as well. The important point is that, to interpret a set
of formulas as a belief set, there had better be a well-defined notion
of inference for them, since people clearly draw inferences from their
beliefs. It is equally important, moreover, that there be a notion of an
inference process in the model. The basic inference procedures merely
define what inferences are possible, not what inferences will actually
be drawn. There must be a global inference process that applies spe-
cific inference procedures to the formulas in the belief set and adds the
resulting formulas to the belief set.

As simple as this model is, it seems to account fairly well for the
obvious facts about belief. For example, it explains how "one-shot"
learning can occur when one is told something. The explanation is
that the hearer of a natural-language utterance decodes it into a for-
mula in his internal language and adds the formula to his belief set.
This idea, which seems to be almost universally accepted in generative
linguistics and cognitive psychology, would hardly be worth mention-
ing if it were not for the fact that it differs so radically from the view
presented in behaviorist psychology. According to standard behaviorist
assumptions, we would expect that repeated trials and reinforcements
would be necessary for learning to occur. This has some plausibility
in the case of complex skills or large bodies of information, but a mo-
ment's reflection will show that very little learning fits this picture.
Most "learning" consists of acquiring commonplace information such
as where the laundry was put and what time dinner will be ready. Our
model seems to explain this type of learning much better than does
reinforcement of responses to a given stimulus.

A slightly less trivial, but still fairly obvious comment is that this
model has no difficulty explaining how the system could accept one
belief, yet reject another that is its logical equivalent. Suppose that
beliefs are individuated more or less as are formulas in the internal
language. Suppose further that the system has a particular formula P
in its belief set that is logically equivalent to another formula Q, in the
sense there is some way of applying the basic inference procedures of
the system to infer Q from P and vice versa. The system may not put Q
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in its belief set, however, because it never tries to derive Q, or because
its heuristics for applying its inference procedures are not sufficient to
find the derivation of Q, or because the derivation of Q is so long that
it exhausts the system's resources of memory and time. We raise this
point because the possibility that "A believes P" is true and "A believes
Q" is false, even though P and Q are logically equivalent, is currently
considered to be a major problem in the semantics of belief sentences,
especially for theories based on possible-world semantics. In view of
the voluminous literature this problem has generated (Montague 1974a;
Partee 1973,1979; Stalnaker 1976; Cresswell 1982), it is striking to note
that, if reality is even vaguely like our a computational model, this is
no problem at all for the psychology of belief. This suggests to us that
the problem is artificial, a point we will return to in Section 4.5.

A more serious problem that can be handled rather nicely in this
model is the question of what beliefs are expressed by sentences con-
taining indexicals such as "I," "now," and "here." This is particularly
troublesome for theories that take the language of thought to be iden-
tical to the external natural language. To take an example suggested
by the work of Perry (1977, 1979), suppose that Jones has a belief he
would express by saying "I am sitting down." We would take Jones's
use of the word "I" to be a reference to Jones himself and take Jones's
belief to be about himself. What is it that makes Jones's belief a belief
about himself? It can't be simply that he has used the word "I" to
express it, because he might not be using "I" as it is normally used in
English; he must also believe or intend that in using "I" he refers to
himself. But if this belief or intention consists in having certain English
sentences stored in the appropriate space in his memory, it is hard to
see how the explanation can avoid being circular. It is certainly not
sufficient for Jones to believe "When I use 'I,' it refers to me," because
this doesn't express the right belief or intention unless it has already
been established that Jones uses "me" and "I" to refer to himself.

One way to try to get out of this problem is to say that Jones
has some nonindexical description of himself and that his use of "I"
is shorthand for this description. But, as Perry points out, having
such a description is neither necessary nor sufficient to account for
his use of "I." To see that it is not necessary, suppose Jones is the
official biographer of Jimmy Carter, but he becomes insane and begins
to believe that he actually is Jimmy Carter. Thus his beliefs include
things he would express by "My name is 'Jimmy Carter,' " "I am
President of the United States," "My daughter is Amy Carter," and so
forth, in great detail. It does not seem to be logically impossible that
all the nonindexical descriptions he attributes to himself are in fact
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true of Jimmy Carter and not true of him. On the description theory
of indexicals, this should mean that Jones uses "I" to refer to Jimmy
Carter and that his beliefs are all true. But it is intuitively clear that
he still uses "I" to refer to himself, and that his beliefs are all delusional
and false. On the other hand, suppose he is not insane, but uses "I"
as a shorthand for some true description of himself such as "Jimmy
Carter's biographer." Hence, when he says "I am sitting down" he
expresses the belief "Jimmy Carter's biographer is sitting down." This
does not explain his belief that he is sitting down, however, unless he
also believes that he is Jimmy Carter's biographer.

In view of Kripke's (1972) critique of the description theory of
proper names, it is not surprising that the description theory of index-
icals doesn't work either. Nevertheless, it is interesting that Kripke's
alternative, which does seem to work for proper names, still does not
work for indexicals. Kripke's theory is essentially that when someone
uses a proper name, it derives its reference from the occasion on which
he acquired the use of the name, and that this creates a causal chain
extending back to the original "dubbing" of the individual with that
name. Thus, our use of "Kripke" refers to Kripke because we have
acquired the name from occasions on which it was used to refer to
Kripke. But this can't explain the use of the word "I," because no one
ever acquires the use of "I" from an occasion on which it was used to
refer to him.

In our computational model we can explain the use of "I" by as-
suming that the system has an individual constant in its internal
language—call it SYS—that intrinsically refers to the system itself,
and that the system uses "I" to express in English formulas of its in-
ternal language that involve this individual constant. This may seem
to be no progress, since we are left with the task of explaining how SYS
refers to the system. This is an easier task, however. A substantial part
of the problem posed by "I" is that it is part of a natural language,
and natural languages are acquired. The problem about beliefs being
English sentences in the mind is that the person might have acquired a
nonstandard understanding of them. Similarly, Kripke's causal-chain
theory fails to explain the reference of "I" because "I" doesn't fit the
assumptions the theory makes about how terms are acquired. As Fodor
(1975) points out, however, if the internal language of thought is in fact
not an external natural language, then we can assume that it is innate,
and we are relieved of the problem of explaining how the expressions
in it are acquired.

We can explain how SYS refers intrinsically to the system in terms
of the functional role it plays. The system can be so constructed that,
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when it seems to see a red block, a formula roughly equivalent to "SYS
seems to see a red block" is automatically added to the belief set, or at
least becomes derivable in the belief space. Similarly, wanting to pick
up a red block is intrinsically connected to "SYS wants to pick up a
red block," and so forth. If the meaning of SYS is "hard-wired" in this
way, then learning the appropriate use of "I" requires only learning
something like "Use T to refer to SYS." This type of explanation
cannot be given in terms of the word "I" alone, because people are not
hard-wired to use "I" in any way at all.

4.4 The Semantics of Belief Sentences
We hope the picture that we have presented so far is plausible as a
model of the psychology of belief. If it is, then we have solved a number
of interesting conceptual problems. That is, we have given at least a
partial answer to the original question of how any physical system
could have the properties that cognitive systems appear to have. Of
course, solving conceptual problems is different from solving empirical
problems; we have very little evidence that human cognitive systems
actually work this way. On the other hand, we tend to agree with
Fodor (1975, p. 27) that the only current theories in psychology that
are even remotely plausible are computational theories, and that having
remotely plausible theories is better than having no theories at all.

In light of the foregoing, there is a truly remarkable fact: although
the psychology of belief is relatively clear conceptually, the seman-
tics of belief sentences is widely held to suffer from serious conceptual
problems. This might be less remarkable if the authors who find dif-
ficulties with the semantics of belief sentences rejected our conceptual
picture, but that is not necessarily the case. For instance Cresswell
(1982, p. 73) acknowledges that "it is probably true that what makes
someone believe something is-indeed standing in an certain relation to
an internal representation of a proposition," and it appears that Partee
(1979) would also be favorably inclined towards this kind of approach.

It seems to us that, if we have a clear picture of what the psychology
of belief is like, it ought to go a long way towards telling us under what
condition attributions of belief are true. That is, it ought to give us
a basis for stating the truth-conditional semantics of belief sentences.
Our general view should be clear by now: if our computational model
of belief is roughly the way people work, then "A believes that S" is
true if and only if the individual denoted by "A" has the formula of his
internal language that corresponds appropriately to "5" in his belief
set, or can perhaps be derived in his belief set with limited effort. This
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latter qualification can be included or excluded, according to whether
one wants to say that a person believes things he may never have
thought about but that are trivial inferences from his explicit beliefs,
such as the fact that 98742 is an even number, or that Anwar Sadat is
a creature with a brain.

To complete this view we have to specify the relation between an
attributed belief and the corresponding formula in the belief set. As a
first approximation, we could say that "v4 believes that 5" is true if and
only if the individual denoted by "A" has in his belief set a formula he
would express by uttering "5." For example, "John believes that Venus
is the morning star" would be true if and only if the person denoted by
"John" has a formula in his belief set that he would express as "Venus
is the morning star." We believe this formulation is on the right track,
but it has a number of difficulties that need to be repaired. For one
thing, it is obviously not right for de re belief reports, such as "John
believes Bill's mistress is Bill's wife." On its most likely reading, "Bill's
mistress" is a description used by the speaker of the sentence, not John.
We would not expect John to express his belief as "Bill's mistress is
Bill's wife." We will return to the issue of de re belief reports later,
but for now we will confine ourselves to de dicto readings.

Another apparent problem is the notion of a sentence in an exter-
nal language expressing a formula of an internal language, but this can
be dealt with by the same sort of functional explanation that we used
initially to justify the notion of a belief set. A sentence expresses the
internal formula that has the right causal connection with an utterance
of the sentence. That causal connection may be complicated, but it
is basically like the one between the contents of a computer's mem-
ory and a print-out of those contents. We will therefore assume that,
given a causal account of how the production of utterances depends
on the cognitive state of the speaker, there is a best interpretation of
which formula in the internal language is expressed by a sentence in
the external language.

A genuine problem in our current formulation is the fact that a per-
son cannot be counted on to express his belief that Venus is the morning
star as "Venus is the morning star," unless he is a competent speaker
of English. A possible way around this would be to say that A believes
that P if A has in his belief set a formula of his internal language that
a competent speaker of English would express by uttering "S." This
would be plausible, however, only if we assume that every person has
the same internal language, and that expressions in the language can
be identified across individuals. It might well be true that the internal
language has the same syntax for all persons, since this would presum-



COMPUTATIONAL MODELS OF BELIEF / 83

ably be genetically determined, but that is not enough. We would have
to further assume that a formula in the internal language means the
same thing for every person.

This is clearly not the case, however, as many examples by Put-
nam (1975, 1977), Kaplan (1977), and Perry (1977, 1979) demonstrate.
What these examples show is that two persons can be in exactly the
same mental state (which, on our view, would require having the same
belief sets), yet have different beliefs, because their beliefs are about
different things. This should not be surprising, since there is nothing
in our computational model to suggest that the reference or semantic
interpretation of every expression in the language of thought is innate.
Some expressions can be considered to have an innate interpretation
because of the functional role they play in the model. Logical connec-
tives and quantifiers in the internal language might have an a priori
interpretation because of the way they are treated by innate inference
procedures, and we have already discussed the idea that a cognitive
system could have a constant symbol that intrinsically refers to the sys-
tem. Predicates and relations for perceptual qualities, such as shapes
and colors, would also seem to have a fixed interpretation based on the
functional role they play in perception.

For most other expressions, including most individual constants
and nonperceptual functions, predicates, and relations, there seems
no reason to suppose that the interpretations are innately given. In
fact, "concept learning" seems to be best accounted for by assuming
that the internal language has an abitrarily large number of "unused"
symbols on which information can be pegged. Acquiring a natural-
kind concept might begin by noticing regularities in the perceptual
properties of certain objects and deciding to "assign" one of the unused
predicate symbols to that type of object. Then one could proceed
to investigate the properties of these objects, adding more and more
formulas involving this predicate to his belief set. Note that there is no
reason to assume that the formulas added to the belief set constitute a
biconditional definition of the concept; hence this picture is completely
compatible with Wittgenstein's (1953) observation that we typically
do not know necessary and sufficient conditions for application of the
concepts we possess. Furthermore, since it is the acquisition process
that gives the predicate symbol its interpretation, we can accommodate
Putnam's (1975, 1977) point that a concept's extension can be partly
determined by unobserved properties of the exemplars involved in its
acquisition. This also demonstrates, contrary to Fodor (1975), that
concept learning can be explained in terms of an internal language,
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without assuming that the language already contains an expression for
the concept.

It appears that concept acquisition processes like the one suggested
above could provide the symbols of the internal language with a seman-
tic interpretation via the sort of causal chain that Kripke and Putnam
discuss in connection with the semantics of proper names and natural-
kind terms. Assuming the details can be worked out, we can use this
semantic interpretation to try to define sameness of meaning across
persons for expressions in the internal language. We can do this along
lines suggested by Lewis's (1972) definition of meaning for natural lan-
guages: an expression P has the same meaning for A as Q has for B if
P and Q have the same syntactic structure and each primitive symbol
in P has the same intension for A as the corresponding symbol in Q
has for B. We take an intension to be a function from possible worlds
to extensions, and we assume that the intension of a primitive sym-
bol is either innate, because of the functional role of the symbol, or is
acquired in accordance with the causal-chain theory.

The problem with this definition is that two primitive symbols can
have the same intension, but differ in what we would intuitively call
meaning. Suppose John believes that Tully and Cicero are two different
people. He might have in his belief set expressions corresponding to:

Name(Person3453) = "Tully"

Name(Person9876) = "Cicero"
IMot(Person3453 = Person9876)

The best that the causal-chain theory can do for us is to provide
the same intension for both Person3453 and Person9876, a function that
picks out Cicero in all possible worlds. But clearly, these two symbols
do not have the same meaning for John. In general, we probably would
want to say that two symbols differ in meaning for an individual unless
they have the same intension and are treated as such in the person's
belief set (e.g., by having a formula asserting that they are necessarily
equivalent).

To accommodate this observation, we will say that if the primitive
symbol P has the same intension for A that the primitive symbol Q
has for B, then P has the same meaning for A that Q has for B, pro-
viding either that these are the only symbols having that intension for
A and B, or that the same expression in a common external language
expresses P for A and Q for B. This latter condition may seem arbi-
trary, but it will allow us to say that if Bill and John both believe that
Cicero denounced Catiline and Tully did not, then they both believe
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the same things. To use Quine's (1971a, p. 153) phrase, this amounts
to "acquiescing in our [or in this case, Bill and John's] mother tongue."

These criteria obviously do not guarantee that, if two persons pos-
sess symbols with the same intension, there is some way to determine
which ones have the same meaning. There may be other conditions
that would allow us to do this that we have not thought of, but there
will undoubtedly be residual cases. Suppose a language has two terms,
P and Q, that, unknown to the speakers of the language, are rigid des-
ignators for the same natural kind, and so have the same intension. In
a language that has only one term for this natural kind, it might well
be impossible to express the belief that these speakers express when
they say, "Some P's are not Q's." Imagine a culture in which the idea
of the relativity of motion was so deeply embedded that they had no
concept of X going around Y rather than Y going around X, but only
X and Y being in relative circular motion. How would we go about
explaining to them what it was that got Galileo into trouble?

We are finally in a position to state the truth conditions for de dido
belief reports that seem to follow from our computational model. First,
we will say that an English expression "S" expresses the meaning of an
internal expression P for an individual A just in case, for any competent
English speaker B, there is an internal expression Q that has the same
meaning for B as P has for A, and "5" expresses Q for B. Then a de
dicto belief report of the form "A believes that S" is true if and only
if the individual denoted by "A" has in his belief set a formula P such
that "S" expresses the meaning of P for him.

To modify this theory to account for de re belief reports we will
essentially reconstruct Kaplan's (1969) approach to apply to the inter-
nal language. According to our computational model, having a belief
comes down to having the right formula in one's belief set, and a belief
report tells us something about that formula. A de dicto belief report,
such as "John believes Venus is the morning star," provides us with a
sentence that expresses the meaning of the formula in the belief set.
In a de re belief report, such as "John believes Bill's mistress is Bill's
wife," part of the sentence, in this case "Bill's wife," need not express
the meaning or intension of any part of the corresponding formula. In-
stead, it expresses the reference of part of the formula. Suppose that
the relevant formulas in John's belief set are something like:

Name(Person55443) = "Bill"
Wife(Person55443) = Person 12345

If these formulas are the basis for the assertion that John believes
Bill's mistress is Bill's wife, then it must at least be the case that the
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occurrences of Personl2345 in John's belief set refer to Bill's mistress.
Otherwise, if John's belief is about anybody at all, then it is that
person rather than Bill's mistress whom John believes to be Bill's wife.
Something more than this is required, though. De re belief reports are
generally held to support existential generalization. That is, from the
fact that John believes Bill's mistress is Bill's wife we can infer that
there is someone whom John believes to be Bill's wife. Phrasing it this
way, however, we seem to be saying that John not only believes Bill is
married, but he can pick out the person he thinks Bill is married to. If
John has merely been told that Bill has been seen around lately with a
beautiful woman and he has inferred that she must be his wife, then we
could not really say that there is some specific person that he believes
to be Bill's wife. There seems to be a certain amount of identifying
information that John must have about Person 12345 for his belief set
to justify a de re belief report, although it is not always clear exactly
what this information would be.

Now we can fully state our theory of the semantics of belief sen-
tences. A sentence of the form "A believes 5" is true if and only if
the individual denoted by "A" has in his belief set a formula P that
meets the following two conditions: first, the subexpressions of "S"
that are interpreted de dicto must express the meaning for him of the
corresponding subexpressions of P; second, the subexpressions of "5"
that are interpreted de re must have the reference for him of the cor-
responding subexpressions of P, and he must be able to pick out the
reference of those subexpressions of P.

4.5 Conclusion
The truth-conditional semantics for belief sentences presented above is
a fairly complicated theory, but that really should not count against it.
Most of its complexity was introduced to explain how a belief report
in English could be true of someone who is not a competent speaker of
that language. Most alternative theories of belief ignore this question
entirely. All the formulations of possible-world semantics for belief that
we know of, for instance, assume an unanalyzed accessibility relation
between a person and the possible worlds compatible with his beliefs.
That relation must surely be mediated somehow by his psychological
state or his language, but no explanation of this is given. Further-
more, the most serious problem that plagues possible-world theories,
the problem of distinguishing among logically equivalent beliefs of the
same person, is no problem at all in our theory.
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The really interesting question for us, though, is not whether one
particular semantic theory is superior to another, but why so little
effort has been made thus far to develop an account of the truth condi-
tions of belief sentences in terms of psychological states and processes.
Since belief is a psychological state, it seems that this would be the
most natural approach to follow. Almost all the recent work on the se-
mantics of belief sentences, however, appears to strive for independence
from psychology. Most of this work tries to define belief in terms of
a relation between persons and some sort of nonpsychological entities,
with the relation either left unanalyzed or analyzed in nonpsycholog-
ical terms (e.g., Hintikka 1962, 1971; Montague 1974b; Partee 1973,
1979; Stalnaker 1976; Cresswell 1982; Quine 1960, 1971b). We can
only speculate as to why this is the case, but we can think of at least
two probable motivations.

One motivation is what Cresswell calls "the autonomy of semantics"
—the idea that the goal of semantics is to characterize the conditions
under which a sentence of a language is true, and that this can be
done independently of any considerations as to how someone could
know what the sentence means or believe that what the sentence says
is true. Thus we can say that "The cat is on the mat," is true if and
only if the object referred to by "the cat" bears the relation named
by "is on" to the object referred to by "the mat", without raising
or answering any psychological questions. The point that the truth
conditions of sentences do not in general involve psychological notions
seems well taken, but it surely does not follow that they never do. No
one seems to object to giving the truth conditions of sentences about
physical states in terms of physical relations and physical objects, as in
the example above. Why then, should there be any objection to giving
the truth conditions for sentences about psychological states in terms
of psychological relations and psychological objects?

To look at the matter a little more closely, the possible-world the-
ories attempt to give the semantics of belief sentences in terms of se-
mantic rather than psychological objects. That is, these theories claim
that the objects of belief are built out of the constructs of the semantic
theory itself. This would be a very interesting claim if it were true,
but the failure up to now to make such a theory work suggests that
it is probably not. If this assessment is correct, it seems natural to
assume that the truth conditions of sentences about belief and other
psychological states will involve the objects described by true psycho-
logical theories. If a true theory of the psychology of belief turns out
to require the notion of an internal language, then it is probable that
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the truth conditions for belief sentences will involve expressions of that
language.

The other motivation for seeking a nonpsychological semantics for
belief sentences is the desire to unify the kind of truth-conditional se-
mantics that we have been discussing with what is sometimes called
"linguistic semantics," the task of characterizing what competent
speakers know about the "meaning" of the sentences of their language.
The most straightforward way to make this unification is to assume
that the semantic knowledge that competent speakers of a language
have is knowledge of the truth conditions of the language's sentences—
a view that is, in fact, widely endorsed (Davidson 1967a, Moravcsik
1973, Partee 1979, Woods 1981, Cresswell 1982). It is quite implausi-
ble, however, that the kind of theory we have been sketching is what
people know about belief or belief sentences. The root of the problem is
our claim that the truth conditions for belief sentences can ultimately
be stated only in terms of a true theory of the psychology of belief.
But it is no more plausible that all speakers know such a theory than
that all speakers know true theories of physics, chemistry, or any other
science.

Our answer to this objection is that the idea that the semantic
knowledge of speakers amounts to knowledge of truth conditions is
simply mistaken. This is a general point that applies not only to sen-
tences about psychological states, but to many other kinds of sentences
as well. As we mentioned in Section 4.4, Putnam has convincingly ar-
gued that the extension of natural-kind terms generally depends not
simply on what speakers of a language know or believe about the exten-
sion of the term, but also on what properties the objects that the term
is intended to describe actually possess. But this means that speakers
do not, in fact, know the truth-conditions of sentences that involve
natural-kind terms. The properties that speakers believe characterize
the extension of a natural-kind term may turn out to be incomplete or
even wrong. When it was discovered that whales are mammals, what
was discovered was just that. It was not discovered that whales did
not exist, even if being a fish was previously central to what speakers
of English believed about the truth conditions of "X is a whale." In
general, the truth conditions for a natural-kind term depend not so
much on the knowledge of competent speakers as on true scientific the-
ories about the natural kind in question. Viewed from this perspective,
the truth conditions of belief sentences depend on what turns out to
be true in psychology because belief states form natural kinds in the
domain of psychology.
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According to our computational model, what a competent speaker
of a language needs to know about the meaning of a sentence is not
its truth conditions, but what formula in his internal language the
sentence expresses in a given context. Of course, as we discussed in
Section 4.4, this formula has truth conditions, and it seems plausible
to say that the truth conditions of a sentence in a context are the same
as those of the formula it expresses in that context. Now, knowing a
formula in the internal language that has the same truth conditions
as the sentence is something like knowing the truth conditions of that
sentence, but not very much like it. In particular, it is nothing like
knowing the statement of those truth conditions in any of the semantic
theories we have discussed.

In the case of a belief sentence, the corresponding formula in the
internal language might be thought of as an expression in a first-
order language with a belief operator. If the hearer of "John be-
lieves that snow is white," takes "John" to refer to the same person
as his internal symbol Person98765, and takes "snow is white" to ex-
press White(Snow), then the whole sentence might express for him the
formula Believe(Person98765,White(Snow)). The functional roles and
causal connections of the symbols in this formula determine its truth
conditions, and those must be right for this formula to actually have
the meaning for the hearer that John believes snow is white. Otherwise
the hearer has not understood the sentence. To get those truth con-
ditions right the hearer might have to have a lot of knowledge about
belief, such as that people generally believe what they say, that they
often draw inferences from their beliefs, and that they usually know
what they believe. Knowing these properties of belief would help pin
down the fact that belief is the psychological state denoted by Believe,
yet these properties do not by any means constitute necessary and suf-
ficient truth conditions for formulas involving Believe. But it is only
required that these formulas have such truth conditions, not that the
hearer know them.

The mistaken attempt to identify truth conditions with what speak-
ers know about the meaning of sentences in their language has led to
many pseudoproblems. For instance, Partee (1979) raises the ques-
tion of whether for possible-world semantics to be correct, an infinite
number of possible world models would have to exist in our heads. She
concludes that they would not because "performance limitations" could
let us get by with a finite number of finite models. This whole issue
seems to be pretty much beside the point, however. Even for notions
for which possible-world semantics appears to be adequate, such as the
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concept of necessity, nothing approximating possible worlds needs to
be in our heads, although something like modal logic might.

Another example of the confusion that results from trying to unify
these two notions of semantics is Woods's (1981) attempt to base a
theory of meaning on "procedural semantics." Woods tries to iden-
tify the meaning of a sentence with some sort of ideal procedure for
verifying its truth, saying that this procedure is what someone knows
when he knows the meaning of the sentence. This has an advantage
over possible-world semantics in that it can provide distinct meanings
for logically equivalent sentences, since two different procedures could
compute the same truth value in all possible worlds. The "procedures"
that Woods is forced to invent, however, are not computable in the
usual sense, even in principle. For example, to account for quantifi-
cation over infinite sets he proposes infinite computations, while for
prepositional attitudes he suggests something like running our proce-
dures in someone else's head. The sense in which these nonexecutable
procedures are procedures at all is left obscure.

Partee starts from a particular notion of truth conditions, that of
Montague semantics, and asks how such conditions could be repre-
sented in the head of a speaker. Woods starts from something that
could be in the head of a speaker, i.e., procedures, and tries to make
them yield truth conditions. In both cases, unlikely theories result from
trying to say that it is truth conditions that are in the head, when all
that is required is that what is in the head have truth conditions.

In this chapter we have examined a wide range of issues from the
perspective of computational models of psychological processes and
states. These issues include the legitimacy of psychological models
based on internal languages, the problem of distinguishing logically
equivalent beliefs, the psychology of having beliefs about oneself, belief
reports about a nonspeaker of the language of the report, and the
relation between truth-conditional and linguistic semantics. We do not
claim to know whether the computational models we have proposed
provide a correct account of all the phenomena we have discussed.
What we do claim, however, is that many abstract arguments as to
how things must be can be shown to be incorrect, and that many
confusing conceptual problems can be clarified when approached from
the standpoint of the concrete examples that computational models
can provide.



Prepositional Attitudes and
Russellian Propositions

5.1 Introduction
An adequate theory of propositions needs to conform to two sets of
intuitions that pull in quite different directions. One set of intuitions
concerning entailments (or, more specifically, the lack thereof) among
reports of prepositional attitudes such as belief, knowledge, or desire
points toward a very fine-grained notion of proposition. To be the
objects of attitudes, propositions must seemingly be individuated al-
most as narrowly as sentences of a natural language. On the other
hand, other intuitions seem to require that propositions not be specifi-
cally linguistic entities—rather that they be proper "semantic" objects,
whatever that really amounts to.

Over the last few years, a number of approaches have been proposed
in the attempt to reconcile these two types of intuitions. I believe that
the simplest approach with any hope of success is the recent revival
of the "Russellian" view of propositions, based on the semantic ideas
expressed in The Principles of Mathematics (Russell 1903, Chapter
V). Russell's idea at that time seems to have been that a proposition
consists of a relation and the objects related. This contrasts with
the "Fregean" view that a proposition must contain something like

This work was supported by a gift from the System Development Foundation. I
would like to thank David Israel for his advice and criticism in the development of
the ideas presented in this chapter, as well as for many helpful comments on the
first draft. I would also like to thank Gordon Plotkin for pointing out that I was
mistaken to claim, in the original version of the chapter, that it was impossible for
all functions from individuals to propositions to be constituents of propositions, and
for suggesting how the construction of propositions and prepositional functions of
finite type could be extended to higher ordinals so that all functions from individuals
to propositions would, in fact, be constituents of propositions.
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concepts of the objects related by the relation, rather than containing
the objects themselves.

In this chapter, we explore the Russellian view of propositions and
its adequacy as a basis for the semantics of prepositional attitude re-
ports. We review some of the familiar problems of attitude reports and
suggest that a number of other approaches to their solution fall short of
the mark. We then sketch how these problems can be handled by the
Russellian approach, pointing out that it in fact offers a more complete
treatment of the problems than is sometimes realized, and we present
a formal treatment of a logic based on the Russellian conception of a
proposition. Finally we discuss a number of remaining issues, including
the need to distinguish prepositional functions from properties and the
problem of proper names in attitude reports.1

5.2 The Problem of Attitude Reports
Although it is familiar ground to quite literally everyone versed in the
problems of providing a formal account of the semantics of natural
language, it is useful to set the stage by reviewing why there exists
a problem at all regarding the semantics of prepositional attitude re-
ports. At the most general level, the goal of formal semantics is to
assign meanings systematically to expressions of a natural language.
What meanings are taken to be varies from theory to theory, but the
notion of truth or truth conditions always plays a central role. The
reason for this is perhaps best put by Cresswell (1982), who points out
that the semantic principle we can be most certain of is that if two
sentences have different truth values (in the same context of use), they
do not have the same meaning. What counts as a systematic assign-
ment of meanings also varies, but it usually involves some version of
the principle of compositionality: the meaning of an expression is a
function of the meaning of its parts.2

Putting together these two basic semantic principles leads us to the

Soames (1987) presents a theory that is similar in many ways to the one proposed
here. For the most part the ideas expressed in this chapter were developed inde-
pendently, but wherever ideas are taken directly from Soames, an explicit citation
is given.

2 This blurs a distinction between two kinds of meaning. Call meaning! the mean-
ing an expression has on a particular occasion of use, and meaning2 the function
of features of occasions of use that determines what meaning] the expression has
on a particular occasion. We will by and large ignore this distinction, since most
theories, insofar as they make the distinction at all, assume that both meaning]
and meaning2 are compositional. It should be kept in mind, however, that other
options do exist, such as holding that the meaning] of an expression is a function
of the meaning2 of its parts.
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standard test for difference of meaning or (to use a less pretheoreti-
cally loaded term) semantic value: a difference must exist whenever
substitution fails to preserve truth value. That is, suppose there is a
sentence 5 containing an expression E, such that substituting £" for
E in S results in a sentence S' that differs in truth value from 5, in
the same context of use. E and E' must then differ in semantic value.
Why? Well, S and S' must differ in semantic value because they dif-
fer in truth value. Since the semantic values of 5 and 5' must be a
function of the semantic values of their parts, they must have some
corresponding parts that differ in semantic value. But the only corre-
sponding parts of 5 and S' that are not identical are E and E'; hence
these must differ in semantic value.

Prepositional-attitude reports provide a context for applying this
test to proposals for the semantic value of whole sentences, since they
contain whole sentences as proper parts. Attitude reports are typi-
cally of the form "A V's that 5," where V is an attitude verb such
as "believe", "know", or "realize" and S is an embedded sentence; for
example, "John knows that two plus two is four." The principle of
compositionality requires that the semantic value of an attitude report
be a function of the semantic value of the embedded sentence, and of no
other feature of the embedded sentence.3 Any assignment of semantic
values to sentences, then, has to pass the substitution test with respect
to prepositional-attitude reports: if "A V's that 5" and "A V's that
S'" differ in truth value, then S and S' cannot be assigned the same
semantic value.

In discussing attitude reports informally, one usually says that the
embedded sentence expresses the proposition toward which the agent
is reported to bear a certain attitude. The connection between this
informal description of attitude reports and formal theories of their
semantics is made by taking the semantic value of a sentence (on an
occasion of use) to be the proposition it expresses (on that occasion).
This identification may seem to beg an important question, but in prac-
tice the identification usually turns out to be stipulative; propositions
are simply defined to be whatever the semantic theory assigns as the
semantic value of sentences.

The major reason attitude reports are problematic is that using
them in the substitution test seems to require a narrower individuation
of propositions than any other phenomenon in language. If we were

3This assumes that the embedded sentence counts as a single part, or syntactic
constituent, of the attitude report. It is considered to be so in just about every
formal semantic theory, at least for so-called de dicto interpretations of attitude
reports.
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content to give a semantic account of a sufficiently restricted subset
of a natural language, excluding prepositional-attitude reports, among
other things, it might suffice to take the semantic values of sentences
to be simply their truth values. This is the approach adopted in the
standard Tarskian semantics for first-order logic. The only sentential
operators in the language of first-order logic are truth-functional, so
there is no need to consider the semantic values of sentences as being
anything more complex than their truth values.

As soon as we enrich the language, however, the Tarskian approach
becomes inadequate. If we add modalities for necessity and possibility,
we can create contexts in which substitution of embedded sentences
with the same truth value does not preserve the truth value of the
embedding sentence. For example, the sentence "It is necessary that
two is an even number" is true and contains the embedded true sentence
"Two is an even number." If we substitute for the latter the true
sentence, "The earth is the third planet from the sun," however, the
resulting larger sentence, "It is necessary that the earth is the third
planet from the sun" is false. Hence we cannot assign the same semantic
value to "Two is an even number" and "The earth is the third planet
from the sun" without giving up at least one of our two basic semantic
principles. The standard response to this type of example has been
to take the semantic value of a sentence to be not its truth value,
but the set of "possible worlds" in which it is true. The use of such
notions in giving a formal semantics for natural language originated
with Montague (1974c) and, until recently, has been far and away the
dominant approach in the field. This approach handles the current
example, since "Two is an even number" is true in all possible worlds
while "The earth is the third planet from the sun" is not.

Possible-world semantics yields finer-grained semantic values of sen-
tences than Tarskian semantics, but propositional-attitude reports re-
quire an even narrower individuation of semantic values of sentences in
order to pass the substitution test. According to possible-world seman-
tics, there is only one necessarily true proposition, the one that is true
in all possible worlds, and, similarly, only one necessarily false propo-
sition. But "A V's that 5" and "A V's that S"" can differ in truth
value even if 5 and S' are both necessarily true or both necessarily
false. Consider a mathematician who does not believe some conjecture
that is eventually proved to be a theorem. David Hilbert, for example,
certainly did not believe at the time he posed his famous list of prob-
lems that first-order logic was undecidable, yet as a competent mathe-
matician he obviously did believe many other necessary mathematical
truths, such as that two is a square root of four. Thus "Hilbert believed
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that first-order logic is undecidable" is false, but "Hilbert believed that
two is a square root of four" is true, although on the possible-worlds
theory, "First-order logic is undecidable" and "Two is a square root of
four" have the same semantic value, i.e., the proposition that is true
in all possible worlds. The major problem posed by the semantics of
propositional-attitude reports, then, is to find a plausible theory of
propositions that individuates them narrowly enough to avoid making
false predictions about entailments among attitude reports.

5.3 How Fine-Grained Must Propositions Be?
As Soames (1987) has pointed out, one can take the central idea of
possible-world semantics—that the semantic value of a sentence is the
set of possible worlds in which it is true—and separate it into two
aspects. One aspect is that the semantic value of a sentence is the col-
lection of circumstances that support its truth, while the other is that
truth-supporting circumstances should be complete possible worlds.
One way of viewing situation semantics, at least in its original version
(Barwise and Perry 1983), is that it seeks to solve the problem of atti-
tude reports by retaining the idea that the semantic value of a sentence
is the collection of circumstances supporting its truth, but choosing a
more finely individuated type of truth-supporting circumstances than
possible worlds.

Situations are, in fact, exactly that. They are modeled as be-
ing more or less like partial possible worlds, determining the truth of
certain atomic propositions, but having nothing to say about others.
Hence, for any complete possible world, there would be many situations
that are part of that world. Barwise and Perry use this device to try
to get at the notion of a statement's subject matter. In their theory, a
statement like "Joe is eating" does not entail "Joe is eating and Sarah
is sleeping or Sarah isn't sleeping." There are situations that support
the truth of the first but not the second, because they say nothing
about whether or not Sarah is sleeping. This seems to solve the prob-
lem presented by the Hilbert examples. There are situations that sup-
port the truth of "Two is a square root of four," because they include
the square-root relation holding between two and four. Many of these
situations, however, say nothing about whether first-order logic has
the property of decidability. The collection of situations that support
the truth of "Two is a square root of four" is therefore distinct from
the collection of situations that support the truth of "First-order logic
is undecidable," so these two sentences express different propositions.
By individuating truth-supporting circumstances more narrowly, Perry
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and Barwise manage to individuate the semantic values of sentences
more narrowly.

It is not clear, however, that even replacing possible worlds with
situations individuates propositions narrowly enough. Consider the
following example: Suppose there is a building with a triangular cross
section and three doors, A, B, and C, each equidistant from the other
two. Suppose an agent wants to enter the building and so tries door A,
but finds it locked. If he has no information about the other two doors,
we would expect him to be indifferent as to which he should try next,
since they are equidistant from him and from each other. However,
if he knows that, whenever A is locked, B is not (and knows nothing
else), we would expect him to go to door B, since that would ensure
his getting into the building, whereas going to C would not.

Now, the interesting question is, what should he do if he tries door
B first and finds it locked, knowing that, whenever A is locked, B is
not? A moment's thought shows that he should go to door A, because
if it is the case that, whenever A is locked, B is not, then it is also the
case that, whenever B is locked, A is not. The point is that it does
take a moment's thought to realize this; it is entirely possible that one
could know that, whenever A is locked, B is not, and not realize that,
whenever B is locked, A is not. Thus it is possible for "John knows
(believes, realizes) that, whenever A is locked, B is not locked" to be
true while "John knows (believes, realizes) that, whenever B is locked,
A is not locked" is false.

This is clearly yet another counterexample to possible-worlds se-
mantics (since "Whenever A is locked, B is not locked" and "Whenever
B is locked, A is not locked" will be true in exactly the same possible
worlds), but it may also be a counterexample to situation semantics.
There is a problem, at least superficially, because both propositions
appear to have the same subject matter; they involve exactly the same
objects and properties. Unlike the mathematical example discussed
previously, it seems that one cannot solve the problem by finding situ-
ations that support the truth of one of the sentences but, because they
do not include the objects and relations the second sentence is about,
do not support the truth of the other. Indeed, it seems difficult to
imagine any independently motivated notion of truth-supporting cir-
cumstances that could distinguish between those that support "When-
ever A is locked, B is not locked," and those that support "Whenever
B is locked, A is not locked."

It would be hard to demonstrate categorically that the example
under discussion cannot be treated successfully in situation semantics,
because, in its unfinished state, one cannot say with certainty how
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"whenever" would be treated (but see the discussion in Section 5.5).
Nevertheless, our example should raise doubts as to whether any ap-
proach based on distinguishing propositions by their truth-supporting
circumstances can individuate propositions finely enough to avoid mak-
ing false predictions concerning entailments among attitude reports.4

5.4 Could Propositions Be Syntactic?
The examples we have looked at suggest that propositions will have to
be individuated almost as finely as sentences of a natural language to
avoid undesirable entailments among attitude reports. This has led to
the development of a number of theories of the attitudes as relations to
syntactic objects. The simplest theory of this sort is that the objects
of attitude reports are just sentences of a natural language. Quine
(1971b) has suggested this approach, and Stalnaker (1984) has taken
a position toward belief in mathematical propositions that is a slight
variant of this: propositions are treated as sets of possible worlds, but
mathematical propositions are interpreted as being about the truth of
mathematical sentences. The fact that it is hard to imagine an agent
who lacks language having sophisticated mathematical beliefs makes it
at least somewhat plausible that mathematical beliefs are beliefs about
sentences, but any "metalinguistic" approach of this general sort also
raises problems. Most notably, it makes it difficult to explain what
we are doing when we report in one language the beliefs of an agent
who speaks a different language. The problem can be seen in the
Hilbert examples. Hilbert's native language was German, so it is highly
unlikely that when he thought about mathematics, he thought about
the truth of English sentences. Hence the truth of "Hilbert believed
that two is a square root of four" does not seem to depend on Hilbert's
having any attitude at all toward the embedded sentence "Two is a
square root of four," which is, after all, a sentence of English and not
German. If we try to get around this problem by saying that "Hilbert
believed that two is a square root of four" means Hilbert stood in the
belief relation to a sentence of German whose English translation is
"Two is a square root of four," we seem to beg the question, since the
notion of translation appears to depend on the notion of sameness of
meaning, and it is the difficulty of individuating meanings adequately
that prompted the syntactic approach in the first place.

Even if this problem could be circumvented—perhaps by giving

*Soames (1987) comes to much the same conclusion, but his major argument
derives from views that we do not accept concerning the truth conditions of attitude
reports containing proper names. (See Section 5.8.)
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a nonsemantic account of the translation relation—the metalinguistic
approach does not seem to be applicable to all situations in which
truth-supporting circumstances do not individuate propositions finely
enough. The difference between believing that, whenever A is locked,
B is not, and believing that, whenever B is locked, A is not, seems to
have nothing to do with natural language. One could easily imagine an
intelligent but non-language-using agent displaying behavior that one
would associate with the first belief but not the second. That is, he
might go immediately from door A to door B when he is unable to get
through ^4, but might hesitate, or even go to door C, if he approached
B first and found it locked. Although it might turn out that only
language-using agents display this sort of behavior and that, whenever
any other organism is taught something analogous to "Whenever A is
locked, B is not locked," it also learns the corresponding analogue of
"Whenever B is locked, A is not locked," this would be a significant
empirical discovery (and a very surprising one at that), rather than a
prediction that should follow logically from an a priori theory of the
objects of the attitudes.

Problems such as these, as well as the popularity of the "represen-
tational theory of mind," have led to a related view that the semantics
of prepositional-attitude reports should be defined in terms of inter-
nal representations of the meanings of the sentences used to describe
the content of the attitude. That is, what constitutes the belief that,
whenever A is locked, B is not, is not an attitude toward an English
sentence, but rather possessing in one's "belief store" an internal rep-
resentation encoding the belief. The reason that one can believe that,
whenever A is locked, B is not, without believing that, whenever B
is locked, A is not, is that these have different representations in the
internal language. This general picture is perhaps most closely asso-
ciated with Fodor (1975), but the most explicit attempt to construct
a semantics for belief reports based on it is probably one developed in
part by this author (see Chapter 4).

This sort of theory resolves at least some of the problems of the
metalinguistic approach to attitude reports. Once one accepts the no-
tion of a system of internal representation, it is not implausible to
assume that all humans have the same system. The sharing of a belief
among speakers of different languages is accounted for by assuming
that, while they may express the belief differently in their respective
external languages, they have the same encoding of the belief in their
common internal language. Similarly, a non-language-using agent, if
he has complex beliefs, may be assumed to have an internal language
in which those beliefs are encoded. Two beliefs that are true in exactly
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the same circumstances may be different because they have different
encodings in the agent's system of internal representation, even though
the agent lacks an external language to express them.

All this may well be true, but it is still not clear whether the postu-
lation of a system of internal representation solves the problems of the
metalinguistic approach or merely postpones them. Even if all people
have similar systems of internal representation, it does not seem very
plausible that all agents capable of holding prepositional attitudes do.
A dog digs a hole in the lawn because he believes there is a bone buried
there. The dog's human owner, observing him, comes to hold the same
belief. Must the dog and the human have the same system of internal
representation for them both to be able to believe there is a bone buried
at a particular spot on the lawn? In this case, it seems that something
more abstract than syntactic structure is needed to attribute the same
belief to both dog and human.

There is another problem in treating the semantics of prepositional-
attitude reports that is particularly troublesome for syntactic theories
of the attitudes: the problem of quantifying into prepositional-attitude
contexts. If quantifiers range over actual objects like chairs, tables, and
people, then an attitude report like "There is someone whom Ralph
believes to be a spy" is difficult to interpret on a syntactic theory of the
attitudes. The quantified sentence is true just in case some actual per-
son has the property of being believed by Ralph to be a spy. But this
seems to require that the person be in some sense a constituent of what
Ralph believes and, if the objects of beliefs are syntactic entities, it is
hard to see how this could be. In a formal treatment of a syntactic ap-
proach to the attitudes (e.g., Konolige 1985), a substitutional theory of
quantification can be adopted, along with the assumption that the sys-
tem of representations that encode beliefs includes a unique standard
designator for each element of the domain. This assumption makes the
logic function smoothly, but is wildly implausible as a theory of the
attitudes of real agents. Attempts to describe more plausible accounts
of quantifying-in that are compatible with a syntactic theory of the
attitudes invariably become very complicated and seem to require a
treatment of quantification into attitude reports that is quite different
from the treatment of other types of quantification. (Kaplan's (1969)
early attempt to explain quantifying-in illustrates nicely the complexi-
ties that arise.5) The need to provide a simple and uniform treatment of

5 Although Kaplan was working within a Fregean theory of prepositional attitudes
rather than a syntactic theory, the central problem in both cases is that the en-
tities over which quantification range cannot be constituents of the objects of the
attitudes.
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quantifying into attitude contexts, along with related problems raised
by pronouns in attitude reports, perhaps as much as anything else,
points toward a Russellian treatment of the objects of the attitudes.

5.5 The Russellian Theory
Compared with the other approaches we have discussed, the basic Rus-
sellian picture of propositions is striking in its simplicity. A proposition
is simply a structured entity composed of an n-ary property or relation
and n objects. A proposition is true if and only if the objects stand in
the relation, and propositions are identical if and only if they consist
of the same objects standing in the same relation in the same way.6

It might be tempting to regard a Russellian proposition as being a se-
quence of a relation and its arguments. It seems preferable, though,
to regard propositions as a distinct sort of object in their own right,
and, although one might wish to model them as sequences, there is no
reason to take them literally to be sequences.

Since the Fregean view that propositions must contain concepts
of objects rather than the objects themselves has been dominant for
something like eighty or ninety years, the idea that propositions have
things like tables, chairs, and people as constituents may seem strange.
There is an intuition that physical objects exist in one realm and ab-
stract objects in another, and that it doesn't make sense to claim that
objects from one side of this divide have objects from the other side
as constituents. However, a moment's thought reveals that set theory
has exactly the same problem as soon as we go beyond the universe of
purely mathematical objects and consider sets of ordinary objects, like
the set of all the artifacts in the British Museum. Sets are abstract
objects, but this set contains such things as statues, clocks, coins, and
jewelry. So this is an example of an abstract object that contains phys-
ical objects, yet we do not find it in any way strange. Alternatively,
we could sidestep the issue by remaining agnostic as to whether propo-
sitions literally contain objects (or, for that matter, properties and
relations) and simply hold that propositions are individuated by their
subject matter. Hence, if we change the relation or any of the objects
the proposition is about, we obtain a different proposition.

Because they are structured objects, Russellian propositions can be
made to mirror the structure of sentences closely enough to distinguish
propositions that may be true in the same circumstances. Yet they are

6 By "the same way" we mean, roughly speaking, in the same order. That is, the
proposition that John is taller than Bill must be distinguished from the proposition
that Bill is taller than John.
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in no sense syntactic or linguistic objects, since they are defined only
in terms of objects, properties, and relations. They are consequently
free from the problems of language specificity that plague the sorts of
theories discussed in Section 5.4.

It seems questionable whether Russell himself ever presented a sat-
isfactory theory of the nature of logically complex propositions. In
his writings where the "Russellian" notion of a proposition is most
clearly articulated, only the simplest sorts of propositions are treated
in a way that would at all appeal to a modern semanticist. In Chapter
V of Principles of Mathematics, Russell says of the proposition that
Socrates is human that it contains Socrates and the property of being
human. The only types of more complex propositions he considers in
that discussion are those that involve quantification, but the theory of
quantification he presents there is certainly not something one would
wish to adopt.

The most straightforward way of extending Russell's ideas about
elementary propositions to handle more complex ones is to treat propo-
sitions and prepositional functions as objects that can themselves enter
into propositions as arguments of properties and relations. In particu-
lar, logical connectives such as conjunction, disjunction, and negation
can be treated as relations among, or properties of, propositions, while
quantifiers can be treated as relations among, or properties of, prepo-
sitional functions.

To explore this approach, it will be useful to introduce some formal
notation for propositions. Given the simplicity of the theory, the no-
tation can also be extremely simple. A Russellian proposition will be
denoted simply by a parenthesized sequence consisting of an expression
denoting an n-ary property or relation followed by expressions denoting
the n objects being related. Thus the expression (R AI . . . An) denotes
the Russellian proposition that the relation denoted by R holds among
the objects denoted by AI, . . . , An, and, in accord with the individu-
ation conditions for propositions, the expression (R AJ . . . An) denotes
the same proposition as the expression (R' A ' j . . . A^,) if and only if R
and R' denote the same relation, n is equal to n', and, for every i from
1 through n, Aj denotes the same object as AJ-.

Our examples about doors being locked can be handled by regarding
"whenever" as expressing a relation between propositions, and "not"
as expressing a property of propositions. Thus "A is locked" expresses
the proposition that A has the property of being locked, (Locked A);
"B is not locked" expresses the proposition that the proposition that
B is locked has the property of not being the case, (Not (Locked B));
and "Whenever A is locked, B is not locked" expresses the proposition
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that the proposition that A is locked and the proposition that B is not
locked stand in the relation of the second's being the case whenever
the first is the case,

(Whenever (Locked A) (Not (Locked B))).

This last proposition is clearly different from the proposition that,
whenever B is locked, A is not,

(Whenever (Locked B) (Not (Locked A))),

because, in the two cases, the "whenever" relation holds between dif-
ferent pairs of propositions.7

As we mentioned above, quantification can be handled by treating
quantifiers as properties of, or relations among, prepositional functions.
We can, for example, interpret "some" and "every" as expressing gen-
eralized quantifiers that relate two prepositional functions. If we use
lambda expressions to denote prepositional functions, "Every man is
mortal" could then be interpreted as expressing the proposition

(Every (Ax (Man x)) (Ay (Mortal y))).

This is the proposition that the "every" relation holds between the
function that maps an individual into the proposition that the indi-
vidual is a man and the function that maps an individual into the
proposition that the individual is mortal; that is, it is the proposition
that every individual that satisfies the first prepositional function also
satisfies the second.8

Just as in the examples with "whenever", many quantified propo-
7There is, as is often the case, a problem here with respect to time and tense. We

might not want to consider the embedded sentences in "Whenever A is locked, B
is not locked" as expressing complete propositions because they are not specific as
to time. The received wisdom is that propositions must be true or false absolutely,
not relative to a time. If we wanted to hold to that position, we would have to treat
the semantic values of the embedded sentences not as propositions, but as functions
from times to propositions. It is not so clear, however, which are the objects of
prepositional attitudes. The conventional wisdom, again, is that the objects of the
attitudes are absolute rather than time-relative, but consider the following case: In
1952, John formed the belief that Nixon was a crook and has held to that opinion
ever since. Naively, this seems like one belief that he has maintained for over thirty
years. But the object of that belief would then not be temporally absolute; it could
have been false hi 1952, but true in 1972. The alternative that is actually compatible
with the conventional wisdom would be that at every instant, he has a new belief
that Nixon is a crook at that instant—rather counterintuitive. Whichever way we
come down on this issue, it is not difficult to adjust the semantic theory accordingly.
Hence we will follow a long-established tradition and ignore time and tense in the
remainder of this chapter.

8 We will say that an object satisfies a prepositional function if and only if the
function maps the object into a true proposition.
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sitions that are logically equivalent will nonetheless be distinct. The
proposition that not every man is mortal,

(Not (Every (Ax (Man x)) (Ay (Mortal y)))),

will be distinct from the proposition that some man is not mortal,

(Some (Ax (Man x)) (Ay (Not (Mortal y)))),

because the first says that the proposition that every man is mortal
has the property of not being the case, whereas the second says there is
something that satisfies the function that maps an individual into the
proposition that the individual is a man and also satisfies the function
that maps an individual into the proposition that the individual is not
mortal.

The Russellian approach thus provides, in a very natural way, more
finely individuated semantic values for sentences than do any of the
approaches we have considered that are based on collections of truth-
supporting circumstances. Moreover, it allows for a straightforward
treatment of quantification into attitude contexts, which was a major
difficulty with syntactic approaches to propositional-attitude reports.
To be consistent with the examples given above, we would want to
say that "Some man is believed by Ralph to be a spy" expresses the
proposition

(Some (Ax (Man x)) (Ay (Believe Ralph (Spy y))).

That is, some individual who satisfies the propositional function
(Ax (Man x)) also satisfies the propositional function (Ay (Believe Ralph
(Spy y))). This is the point at which things came unstuck in the syntac-
tic approach to attitude reports. In order to satisfy the propositional
function (Ax (Man x)), an object must have the property of being a
man. That is, it must be an actual flesh-and-blood person. To sat-
isfy (Ay (Believe Ralph (Spy y))), however, the object must be such
that the belief relation holds between Ralph and the proposition that
the object is a spy. On a syntactic (or a Fregean) approach, it is not
clear what this proposition would be, since actual individuals cannot
be constituents of beliefs. At best, concepts or expressions that denote
individuals can be constituents of beliefs, so some complicated story
has to be told about how to get from an actual individual to the right
sort of concept or expression. Moreover, one is faced with the unpalat-
able choice of either telling the same complicated story with respect to
all quantification or treating quantification into attitude reports very
differently from other kinds of quantification.

On a Russellian approach there are no such complications. The
theory of quantification is both simple and uniform. An individual
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satisfies the function (Ax (Man x)) just in case the property of being
a man holds of the individual. An individual satisfies the function
(Ay (Believe Ralph (Spy y))) just in case the belief relation holds between
Ralph and the proposition that the property of being a spy holds of the
individual. The treatment is the same in both cases because there is no
difficulty in having actual indivduals as constituents of propositions.

It is worth emphasizing that Russellian propositions seem to be able
to provide all the objects needed for an account of the semantics of at-
titude reports. In the paper that, perhaps more than any other, led to
the revival of interest in Russellian propositions, Kaplan (1977)9 treats
them as an adjunct to, rather than a substitute for, Fregean propo-
sitions. Kaplan's view at that time seemed to be that some expres-
sions do have both a sense and a denotation, just as Frege maintained,
but that other expressions (particularly indexicals and demonstratives)
have only a denotation, so that all they can contribute to the proposi-
tion expressed by the sentence that contains them is the objects they
denote. Kaplan seemed to want to retain Fregean propositions (which
he calls "general" propositions) where only expressions of the former
type were involved, but to allow Russellian propositions (which he calls
"singular" propositions) as well to handle expressions of the latter type.

It is easy to see why it might seem that having Russellian proposi-
tions does not dispense with the need for Fregean propositions. Con-
sider the sentence "The father of Bill is happy." What does the noun
phrase "the father of Bill" contribute to the proposition the sentence
expresses? According to the commonsense view that this phrase de-
notes Bill's father, it seemingly must contribute something other than
just its denotation because, even if Bill has the same father as Mary,
"The father of Bill is happy" and "The father of Mary is happy" appear
to express different propositions. One could easily be in a position to
believe one but not the other. This is of course just the problem that
led Frege to make the distinction between denotation and sense, and
something like Fregean senses seem to be needed for its solution.

How would belief reports be analyzed according to Kaplan's pic-
ture? If we take the belief report "John believes that the father of Bill
is happy," we note an ambiguity, traditionally described in terms of
the de dicto/de re distinction. On the de re interpretation, we would
be saying of Bill's father that John believes him to be happy, which we
would analyze in terms of John's believing a Russellian singular propo-

9After circulating in typescript form for many years, Kaplan's paper was eventu-
ally published in a volume of papers from a Kaplan festschrift conference (Almog,
Perry, and Wettstein 1989, pp. 481-614).
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sition that includes the property of being happy and Bill's father. On
the de dicto interpretation, we would be saying that John believes a
Fregean general proposition that includes the property of being happy
and the Fregean sense of the noun phrase "the father of Bill." Rus-
sellian propositions are needed to account for de re interpretations of
belief reports, but Fregean propositions seem to be needed to account
for de dicto interpretations.

This really does seem to have been Kaplan's view (1977, p. 13-15).
Kaplan even notes (1977, footnote 9), and suggests a solution to, a
problem that arises when both Fregean and Russellian propositions are
allowed within the same theory. The problem is to distinguish a general
proposition that contains the Fregean sense of an expression from a
singular proposition about that Fregean sense itself. For instance, how
do we distinguish the Fregean proposition that the father of Bill is
happy from the Russellian proposition that literally says that the sense
of "the father of Bill" is happy? On Kaplan's view they both have the
same structure and the same constituents.

Kaplan's proposed solution to this problem need not concern us here
because, by taking a different approach to the interpretation of complex
noun phrases, we can eliminate the need for Fregean senses and avoid
the problem altogether. The approach in question is basically just the
one contained in Russell's (1949) famous theory of descriptions: treat
all complex noun phrases as quantified noun phrases. If we treat "the"
as a generalized quantifier instead of a singular-term-forming operator,
the problem raised by Frege goes away.10 "The father of Bill is happy"
would be taken to express the proposition that the prepositional func-
tion expressed by "father of Bill" and that expressed by "is happy"
stand in the relation expressed by "the":

(The (Ax (Father x Bill)) (Ay (Happy y))).

This will of course be distinct from the proposition that the preposi-
tional function expressed by "father of Mary" and that expressed by "is
happy" stand in the "the" relation, as well as from the overtly singular
proposition that simply attributes the property of being happy to a
particular man who happens to be the father of both Bill and Mary. It
is not necessary that the relation expressed by "the" be the particular
one that would be consistent with Russell's theory of descriptions (or
that it be viewed as structurally complex, which is a source of many
objections to Russell's theory). So long as it is some generalized quan-
10Except for proper names, which are dealt with in Section 5.8.
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tifier, the Russellian theory of propositions will not fall prey to Frege's
counterexamples.

Kaplan (1977, p. 15) asserts that, when Russell propounded his
theory of descriptions, he gave up the theory of propositions that we
are elaborating. Whether or not he did discard that theory is a question
we can leave to the Russell scholars; the point to be made here is that
he need not have done so. Russell's theory of the meaning of noun
phrases certainly changed dramatically between 1903 and 1905. But
nothing in the later theory is inherently incompatible with the basic
picture of the structure of propositions presented in the earlier work.

Before going on to consider some of the more subtle issues con-
nected with the Russellian theory of propositions, it is worth taking
one more look at the possibilities for successfully treating attitude re-
ports within the framework of situation semantics. In Section 5.3 we
doubted that an approach based on treating situations as fine-grained
truth-supporting circumstances would provide a solution to the prob-
lem of attitude reports, but we cautioned against assuming that no
solution within the general framework of situation semantics could be
found. Indeed, recent work on situation semantics (Barwise and Perry
1985, Barwise and Etchemendy 1987) suggests that the problem of dis-
tinguishing "Whenever A is locked, B is not locked" and "Whenever B
is locked, A is not locked" might be attacked by treating "whenever"
as a relation between states of affairs,11 so that a situation would sup-
port the truth of "Whenever A is locked, B is not locked" just in case
it includes the "whenever" relation holding between the "A is locked"
state of affairs and the "B is not locked" state of affairs.

This would indeed distinguish the two sentences in question, since,
from a formal standpoint, there is nothing to require a situation that
includes the "whenever" relation holding between the "A is locked"
and "B is not locked" states of affairs to also include the "whenever"
relation holding between the "B is locked" and "A is not locked" states
of affairs, or vice versa. To adopt this treatment, however, is really to
abandon the idea that situations are truth-supporting circumstances.
Suppose we have an actual situation that really does completely estab-
lish the truth of "Whenever A is locked, B is not locked," e.g., one that,
for every point in time, settles the questions of whether A is locked and
whether B is locked and, for every point for which it includes A's being
locked, also includes 5's not being locked. Such a situation would not
formally support the truth of "Whenever A is locked, B is not locked"
unless it also included the "whenever" relation holding between the "A
11 Which were called "situation-types" in the original version of the theory.



PROPOSITIONAL ATTITUDES AND RUSSELLIAN PROPOSITIONS / 107

is locked" state of affairs and the "5 is not locked" state of affairs. Fur-
thermore, if a situation does include this, it does not matter what else
it contains. It seems, then, that we can dispense with all the elements
of the theory that allow us to treat situations as truth-supporting cir-
cumstances, and simply identify the semantic content of "Whenever A
is locked, B is not locked" with a single semantic object that consists
of the "whenever" relation holding between the "A is locked" state of
affairs and the "B is not locked" state of affairs. This, however, is
no longer an alternative to the Russellian notion of a proposition; it
simply is that notion.12

5.6 Russellian Logic
In this section we formalize the syntax and semantics of the notation
introduced in the preceding section. We can think of this as giving us a
kind of "Russellian logic" that could play the same role in providing a
Russellian semantics for fragments of natural language that Montague's
intensional logic has played with respect to possible-world semantics.

One of the main problems in formalizing Russellian logic stems from
our decision to use lambda expressions to denote propositional func-
tions. We want the propositional functions in our theory to be just
what they seem to be, namely, functions from objects to Russellian
propositions—functions that could be modeled as sets of ordered pairs
of objects and propositions.13 If we were to allow arbitrary lambda ex-
pressions in our logical language, we would face the well-known prob-
lem that the unrestricted lambda calculus does not have simple models
in terms of functions viewed as sets of ordered pairs in standard set
theory. All the issues of concern in this chapter, however, arise even
if we restrict our attention to first-order quantification, which, within
our framework, amounts to dealing only with propositional functions
that map individuals into propositions. This restricted case can be
treated relatively simply, so we will accept the restriction and confine
our attention to functions from individuals to propositions.
12Barwise and Etchemendy (1987) advocate what they call "Austinian" proposi-
tions, which they distinguish from Russellian propositions in that they describe a
particular situation rather than the entire world. Both types of propositions they
present, however, are the kinds of structured semantic objects we are consider-
ing; consequently, from standpoint of the issues discussed in this chapter, both are
Russellian.
13It is perhaps an obvious point, but it is worth emphasizing that they need be
nothing more than functions-in-extension. We do not require anything intensional
in a Russellian logic, because Russellian propositions already offer a sufficiently rich
domain of extensions to make all the distinctions we need.
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These considerations lead us to define a first-order Russellian lan-
guage to be a language with the following categories of expressions:

• Predicate constants, or simply predicates, which are atomic sym-
bols denoting properties and relations.

• Individual terms, which are either individual variables or indi-
vidual constants.

• Functional terms, or lambda expressions, which denote preposi-
tional functions and are of the form (Av F), where v is an indi-
vidual variable and F is a formula.

• Propositional terms, or formulas, which denote propositions and
are of the form (R AX ... An), where R is an n-ary predicate and
A i , . . . , An are terms.

Well-formed expressions will be said to be closed if every individual
variable they contain is bound within some lambda expression accord-
ing to the usual notion of bound variable.

There are a number of observations about this language that may
be warranted. First, formulas are just one type of term rather than a
fundamentally different category. They are simply terms that denote
propositions. We do not even consider it ill-formed to attribute to a
proposition what we would normally think of as a property of an in-
dividual. We could, for instance, say that the proposition that two is
a square root of four is taller than John; it would merely be a false-
hood. Treating formulas as terms that denote propositions enables us
to introduce prepositional attitudes just as relations between agents
and propositions. Similarly, there are no special provisions made for
logical operators or quantifiers, since these are treated simply as partic-
ular properties of, and relations among, propositions and prepositional
functions. Finally, it should be noted that although we have intro-
duced lambda expressions to denote prepositional functions, we have
not introduced any notation to indicate functional application. We
could easily do so, but it is not necessary for addressing the problems
of interest in this chapter.

An interpretation of a first-order Russellian language is a quadruple
{I,R,E,C}, where I is the domain of individuals, R is the domain of
properties and relations, E is the function that maps each member of
R into its extension, and C is the function that gives the denotation
of the constants of the language, mapping each individual constant of
the language into a member of I and each predicate constant of the
language into a member of R.

To provide denotations for formulas and lambda expressions, we
also need a domain of propositions and a domain of prepositional func-
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tions, but these can be defined in terms of I and R. A system of proposi-
tions and prepositional functions of finite type suffices for this purpose,
so we define by mutual induction P, the domain of propositions of fi-
nite type, and F, the domain of prepositional functions of finite type,
as follows:

• Let Pi be the smallest set such that both:
o For all j < i, Pj is a subset of P,-.
o For every n, every n-ary relation R in R, and every sequence

AI , . . . , An of members of I U P, U Fj , the proposition that
R holds among AI,. . . , An is an element of P,-.

• Let FQ be the empty set.
• Let Fi+i be the set of all functions from I into Pj.

We can think of P,- as the set of propositions of type i and F,- as
the set of functions of type i from individuals to propositions. The
domains P and F, then, are respectively the set of all propositions of
finite type, and the set of all functions of finite type from individuals
to propositions, that can be constructed from the set of individuals I
and the set of properties and relations R. Having defined P and F, we
can now characterize E a bit more precisely: if R is an n-ary property
or relation in R, E(.R) is the set containing each n-tuple (A\, . . . , An)
of members of I U P U F, such that R holds among A\ , . . . , An .

The domains P and F are not the largest domains of propositions
and prepositional functions we could define, but as we will see be-
low, they are adequate to provide denotations for all the formulas and
lambda expressions in our logic. In some sense, F is restricted more
than P. Relative to I, R, and F, every proposition that could reason-
ably be in P according to the Russellian picture is in P. The only way
to generate more propositions would be to have more individuals, more
properties and relations, or more propositional functions. F, however,
contains far fewer than all the functions from I into P. It contains
only those that can be assigned a finite type. If we wish, however, we
can enlarge P and F so that F does contain all the functions from I
into P, simply by generalizing the construction of P, and F,- to higher
ordinals.14

The construction goes almost exactly as before. We simply substi-
tute variables ranging over ordinals for variables over natural numbers
to get definitions of Pa and Fa for any ordinal a, except that, if a is
14 This was pointed out by Gordon Plotkin.
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a limit ordinal, Fa is defined to be \Jg<a F/?. The definitions of P and
F in the original construction, then, would simply give us Pw and Fw

in the extended construction. It is easy to show that, in the extended
construction, the size of Pa and Fa are bounded by a cardinal that
depends on the size of I and R. Since there are more ordinals than
can be put in one-to-one correspondence with any cardinal, and F0+i
must always be at least as big as Fa, it follows that there must be some
ordinal a such that Fa+i = Fa, which in turn means that P0+i = Pa-
Inspection of the definitions of P0 and F0 shows that this is a level
where Fa contains all the functions from I into Pa, and that Pa and
F0 will remain the same at all higher ordinals. Either this extended
construction or the original construction limited to finite types can be
assumed in the rest of the chapter without any significant differences.

With respect to an interpretation (I,R,E,C), we can define the
denotation of every closed well-formed expression and the truth of every
closed formula. We define a two-place partial function D such that, if
g is a partial function from individual variables to their values and E
is a well-formed expression, D(<7, E) is the denotation of E under the
variable assignment g. D(g, E) will be undefined if E contains a free
occurrence of a variable that is not assigned a value by g. We can
define D as follows:

• If E is an individual constant or predicate constant, then D(jf, E)
= C(E).

• If E is an individual variable, then D(0, E) = #(E).
• D(0,(Av F)) is the function that maps each member A of I into

D(g[v/A], F), where g[v/A] is identical to g except that it gives
the variable v the value A.

• D(#,(R A i . . . A n ) ) is the proposition that the relation D(0, R)
holds among the objects D(g, Aj), . . . ,D(</, An). Note that the
identity conditions on Russellian propositions imply that
D((?,(R Aj . . .An)) = D(0,(R' Ai . . . A^)) if and only if D(</, R) =
D(<7,R'), n — n', and, for all i between 1 and n, D(0,A,-) =

The denotation of a well-formed expression E will be D(<7o, E), where
go is the partial function from variables to values that is undefined
everywhere. This definition has the consequence that denotation is
defined only for closed well-formed expressions.

Note that every closed formula has a denotation in P and every
closed lambda expression has a denotation in F. Let the rank of a
formula or lambda expression E be the maximum depth of embedding
of lambda expressions in E. A simple inductive argument shows that, if
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E is of rank n and D(g, E) is defined, then, if E is a formula, D(</, E) is
a proposition of type n contained in P, or, if E is a lambda expression,
D((JJ, E) is a prepositional function of type n contained in F. It is also
worth noting that, if all constants have distinct denotations, two closed
well-formed expressions will always have distinct denotations unless
they can be made identical by renaming bound variables. Thus we
have achieved the goal of individuating propositions almost as finely
as sentences without invoking any overtly syntactic notions.

The truth of a closed formula is easily defined in terms of D and
E. A closed formula (R A! . . . An) is true if and only if (D(00, AI), . . . ,
D(<7o,An)} is in E(D(#o,R)); that is, if and only if the n-tuple of the
denotations of Aj , . . . , An is in the extension of the denotation of R.
It may seem that this does not say very much about the truth of
formulas when compared with truth definitions for standard logics;
we might have expected to see recursive clauses that give the truth
conditions of complex formulas in terms of the embedded formulas
they contain. In the general case, however, we do not want the semantic
framework itself to impose any constraints on what the truth conditions
of a complex proposition might be. Those truth conditions are simply
specified by whatever E assigns as the extensions of the properties and
relations used to build up a complex proposition. This is of particular
concern with respect to propositional-attitude relations, such as belief.
There might be empirical facts about the phenomenon of belief that
would introduce constraints on the collection of propositions an agent
believes, but logic itself should impose none.

On the other hand, we may wish to treat quantifiers and logical
connectives as a special case among properties of, and relations among,
propositions and prepositional functions. When we introduce "logical"
predicate constants such as Every and Not, we may wish to place ex-
tra conditions on E so that formulas involving these constants will be
guaranteed to have their usual truth conditions. For instance, we can
specify that Not actually represents negation by imposing on E the
constraint that

{D(ff,(RAi...An)))€E(C(Not))

if and only if

That is, the property of not being the case holds of a proposition if and
only if the principal relation of the proposition does not hold among
its arguments. For Every, the relevant constraint is that

Av (R A! . . .An))),D(0,(Av' (R' A; . . . AJ,,)))) € E(C(Every))
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if and only if, for every A in I such that

(D(g[v/A], A i ) , . . . , D(ff[vM], An)> e E(D(g[v/A], R)),

it is also the case that

{D(fl[v'M], Ai ) , . . . ,D(ff[v'M], A;,)} G E(D(ff[v'M], R'))-

In other words, the "every" relation holds between two prepositional
functions just in case every individual that the first prepositional func-
tion maps into a true proposition is also mapped into a true proposition
by the second prepositional function.

Clearly, similar constraints could be imposed on E for all the other
usual logical particles. In fact, if we replaced the generalized quantifiers
Every and Some with two one-place predicates of prepositional func-
tions, Forall and Exists, and we treated (Vv F) and (3v F) as "syntactic
sugar" for (Forall (Av F)) and (Exists (Av F)), respectively, we could
furnish a Russellian semantics for the standard notation for first-order
predicate logic that would be completely equivalent to standard model
theory in terms of the truth conditions assigned to closed formulas.
With a Russellian semantics, however, prepositional-attitude relations
can be accommodated simply by adding new predicates to the language
and their denotations and extensions to the interpretation, without any
undesirable entailments being created.

5.7 Why Propositional Functions?
One striking fact about the theory we have presented is the care with
which we have distinguished properties and relations from propositional
functions. It seems an obvious question to ask whether we could not
dispense with one of these notions in favor of the other. After all,
with both properties and propositional functions all one has to do to
obtain a proposition is to add an argument in the right way. In fact, we
could dispense with properties and relations in favor of propositional
functions, or vice versa, but either change to the theory would have
rather unpleasant consequences. In one direction the reduction would
leave open important questions that are settled by the current theory;
in the other direction it would introduce new questions for which there
do not seem to be obvious answers.

If we tried to eliminate properties and relations in favor of proposi-
tional functions, we would no longer be able to say anything in general
about the individuation conditions for propositions. Reinterpreting the
notation (P A) so that it denotes the result of applying the proposi-
tional function denoted by P to the object denoted by A, we could no
longer state that (P A) never denotes the same proposition as (P' A')
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unless P and P' have the same denotation and A and A' have the same
denotation. It might turn out that P denotes the same prepositional
function as (Ax (R x A')) and P' denotes the same prepositional func-
tion as (Ay (R A y)), in which case ( P A ) and (P' A') would both
denote the same proposition as (R A A'), no matter what R, A, and A'
denote. This would amount to taking take propositions as primitive,
rather than properties and relations. Thomason (1980) has previously
proposed taking propositions as primitive, which certainly does avoid
the undesired entailments among attitude reports. It gives up two
very intuitive consequences of the Russellian theory, however; (1) that
propositions have a definite structure, and (2) that they are individu-
ated by their subject matter.

The other possible reduction would be to eliminate prepositional
functions by interpreting lambda expressions as denoting complex
properties. On this approach, the proposition that all men are mortal
might still be denoted by

(Every (Ax (Man x)) (Ay (Mortal y))),

but (Ax (Man x)) and (Ay (Mortal y)) would be taken to denote proper-
ties, rather than prepositional functions, and Every would denote a rela-
tion between properties. The individuation conditions on propositions
would be retained, so that ((Ax (R x A')) A) and ((Ay (R A y)) A')15

would denote distinct propositions, since they do not attribute the
same property to the same object. They would, however, have the
same truth conditions.

The main problem with this approach is that there seems to be
no intuitive basis for settling many questions of identity for proper-
ties denoted by lambda expressions. For example, what is the re-
lation between the property denoted by Man and that denoted by
(Ax (Man x))? If they are different, wherein lies the difference? If
they are the same, by what principle can we draw that conclusion?
Or, to take a slightly more complex example, we might consider the
lambda expression (Axy (R y x)) to denote the converse of a relation
R. The converse of the converse of R should be R itself, but this would
require (Axy ((Axy (R y x)) y x)) and R to denote the same relation.
What general principle would give us that identity?

The approach we have chosen avoids these problems. Man and
(Ax (Man x)) have different denotations because the first denotes a
I5These would be ill-formed expressions in our current logic, but, if lambda expres-
sions denoted properties and relations instead of prepositional functions, it would
be a completely arbitrary restriction not to allow them to appear in the predicate
position of formulas.
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property, the second a prepositional function; they are of fundamen-
tally distinct semantic categories. All questions about the identity of
the denotations of lambda expressions are answered by the extensional
individuation conditions for prepositional functions. These will ensure
that two lambda expressions denote the same function if and only if,
roughly speaking, they have the same structure with all predicate and
individual constants in corresponding positions having the same deno-
tation, subject to renaming of variables.16

Of course, there are reasons other than the problems central to
this chapter for developing a full-blown property theory with complex
expressions denoting properties (e.g., nominalization), and the issues
raised here might have to be addressed in that context. The problem
of individuating propositions finely enough for a treatment of preposi-
tional attitudes need not raise those issues, though, so it seems best to
adopt an approach that leaves them to one side.

5.8 Proper Names
We have left until last what is perhaps the most difficult problem of
all concerning the semantics of attitude reports, the problem of proper
names. Up to this point, we have assumed that the semantic value of
a proper name is simply what we ordinarily regard as its referent. For
example, in the sentence "John is happy," the semantic value of "John"
would be some particular person named "John", the semantic value of
"is happy" would be the property of being happy, and the semantic
value of the whole sentence would be the Russellian proposition that
attributes the property of being happy to the person named "John".
The trouble with this treatment of proper names is that it seems possi-
ble to derive different propositions by substituting one proper name for
another with the same referent. The classic example is that it seems
that "Cicero" and "Tully" must have different semantic values, even
though they are names for the same person, because "John believes
that Cicero was a Roman orator" could be true while "John believes
that Tully was a Roman orator" is false.

Recently the view that the semantic value of a proper name is
always just its referent has come to be fairly widely held. Barwise and
Perry (1983), Kaplan (1977), and Soames (1987) have all been among
the advocates of this position, which has come to be called the "direct-
reference theory". According to these theorists, "John believes that
16This assumes that functional application is not expressible. If we extended our
language to permit functional application, then two lambda expressions would de-
note the same function if and only if their Church-Rosser normal forms met this
condition.
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Cicero was a Roman orator" actually does entail "John believes that
Tully was a Roman orator," but there is a pragmatic reluctance to
substitute "Tully" for "Cicero" because we tend to make belief reports
do double duty—not only reporting what propositions are believed, but
also indicating what sentences are accepted. Thus, "John believes that
Cicero was a Roman orator" not only reports that John believes the
proposition that Cicero/Tully was a Roman orator, but it also leads us
to expect that John would accept as true the sentence "Cicero was a
Roman orator." The reason we are reluctant to substitute "Tully" for
"Cicero" is that it would be misleading, not that it would be false.

If arguments of this sort were correct, it would be most convenient
for our Russellian theory of propositions, because the problem of proper
names would be explained away and no modification of the theory
would be required. Unfortunately, there are other examples that seem
to reveal not merely a reluctance to substitute, but also instances of
substitution that definitely lead from truth to falsehood. Suppose that
someone comes to Stanford to meet the famous John Perry. Being of
sound mind, and having followed Perry's work through the philosophy
journals, he certainly knows (the necessarily true proposition) that
John Perry is John Perry. When he arrives at Stanford, he goes directly
to the Center for the Study of Language and Information, where a
seminar is in progress, and asks the group "Which of you is John
Perry?" One of the members of the Center turns to Perry and says
"He does not know that you are John Perry." The direct-reference
theory would predict that this last statement is simply false. Under
the circumstances described, "You are John Perry" and "John Perry
is John Perry" would express exactly the same proposition; hence the
proposition expressed by "He knows that John Perry is John Perry"
would be the same as "He knows that you are John Perry." Yet, in
this case, our intuitions seem clear that the first is true and the second
is false.

Positive arguments for the view that proper names are directly
referential—that is, that their semantic value is simply their referent—
are actually rather hard to find. In most of the work on direct ref-
erence, one mainly finds rather careful arguments that certain uses of
pronouns are directly referential, followed by little more than a claim
that proper names work the same way.17 What this analogy does not
17There may be a mistaken reliance on Kripke's (1972) arguments that proper
names are rigid designators. Kripke's arguments are quite convincing, at least with
respect to modal contexts, and directly referential expressions would, a fortiori,
be rigid designators, but this is merely consistent with the hypothesis that proper
names are directly referential; it does not actually show that they are.
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take into account is that proper names are subject to the same de
dicto/de re distinction as definite descriptions, whereas pronouns nor-
mally are not. Recall that the belief report "John believes that the
father of Bill is happy" is subject to an ambiguity as to whether the
semantic content of the phrase "the father of Bill" is part of the belief
attributed to John or is used to pick out a certain individual whom
John has a belief about. Paraphrases that suggest one or the other
of these interpretations would be "John believes that whoever is the
father of Bill is happy," for the first, and "John believes of the father
of Bill that he is happy," for the second. This same ambiguity exists
if we substitute a proper name for the definite description. "John be-
lieves that Cicero was a Roman orator" has two interpretations that
we could paraphrase by "John believes that whoever was Cicero was
a Roman orator" and "John believes of Cicero that he was a Roman
orator." The first of these is like a de dicto interpretation of a definite
description, while the second is like a de re interpretation.

Similar sentences containing pronouns, on the other hand, appear
to have only one interpretation, which behaves like the de re interpreta-
tion of a definite description or a proper name. Thus, speaking (across
the centuries) to Cicero, we could say "John believes that you were
a Roman orator." This seems to be much like saying "John believes
of you that you were a Roman orator;" i.e., the de re interpretation.
This is just what one would expect from a direct-reference treatment
of pronouns, since only the referent of the pronoun would be available
to be part of the semantic content of the utterance. Since sentences
with proper names can also have de re interpretations, there is a ba-
sis for the claimed parallelism between proper names and pronouns.
However, note that, on a de re interpretation, substitution of corefer-
ential proper names is allowable. That is, the proposition expressed by
"John believes of Cicero that he was a Roman orator" does entail that
expressed by "John believes of Tully that he was a Roman orator."
What the direct-reference theory does not account for is the apparent
de dicto interpretations of proper names, for which substitution is in-
valid. The proposition expressed by "John believes that whoever was
Cicero was a Roman orator" certainly does not entail that expressed
by "John believes whoever was Tully was a Roman orator."

How, then, are we to treat the de dicto interpretation of proper
names in attitude reports? It seems to me that a limited appeal to the
metalinguistic approach provides the most satisfactory account. That
is, on the de dicto interpretation, "John believes Cicero was a Roman
orator" should be treated, roughly speaking, as if it were "John believes
that the entity called 'Cicero' was a Roman orator." This will express a
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different proposition from "John believes that the entity called 'Tully'
was a Roman orator," because the names "Cicero" and "Tully" actu-
ally form part of the propositions expressed. We argued in Section 5.4
that the metalinguistic approach could not provide a general solution
to the problem of individuating objects of the attitudes. Limited to
the case of proper names, though, the arguments against the metalin-
guistic approach fail to apply. The principal argument was that the
metalinguistic approach does not explain how we can report in a given
language the attitudes of agents who are not speakers of that language.
But to claim that "John believes that whoever was Cicero was a Ro-
man orator" is true, while "John believes that whoever was Tully was
a Roman orator" is false, it seems that John must be a speaker of a
language that includes both the name "Tully" and the name "Cicero";
hence, the translation problem does not arise.

There is one slight twist, however, that makes things more compli-
cated. While it seems that an agent must be a speaker of a language
in which a certain name occurs in order to have a de dicto attitude in-
volving the name, the name need not occur in the agent's language in
exactly the form it does in the language of the attitude report. Thus
we could report that John believes that Tully was a Roman orator,
even if John's only language were Latin and he used "Tullius" instead
of "Tully". Note, however, that "Tullius" and "Tully" are in a historic-
linguistic sense the same name, rather than being two distinct names
that in some mysterious way have the same meaning over and above
their reference.

Kripke's (1979) famous example of Pierre who believes the city
called "London" is ugly but that the city called "Londres" is beautiful
relies on the transformation of a name in going from one language
to another. This might initially seem to be a counterexample to a
metalinguistic treatment of proper names, but in fact it is not. The
crucial point is that in describing Pierre's beliefs in Kripke's example,
we must resort to talking about the city called "London" and the city
called "Londres" because we lack any clear intuitions as to whether
we should say that "Pierre believes that London is beautiful" is true
relative to a de dicto interpretation of "London". This is exactly what
we should expect if a metalinguistic treatment of proper names were
correct, with the differing forms of the same name in different languages
being treated as equivalent. If we think of Pierre as a speaker of French,
we should say that he does believe that London is beautiful; if we
think of him as a speaker of English, we should say that he does not
believe that London is beautiful. Since he is presented as bilingual, our
conventions for interpreting belief reports do not resolve the question.
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A metalinguistic interpretation of de dicto occurrences of proper
names in attitude reports seems, on the whole, to give the best ex-
planation of our intuitions, but how should we fit it into the over-
all framework we are developing? Should we simply regard the met-
alinguistic interpretation as providing the standard semantic value for
proper names? I think that we probably should not; we should rather
regard it as a pragmatic reinterpretation that is applied to make sense
out of problematical cases, with the direct-reference account actually
providing the normal interpretation. We are not retreating, though, to
the position taken by the "pure" direct-reference theorists. Their view
was that the semantic value of proper names remains the same in all
contexts, but that there are pragmatic restrictions on the use of certain
attitude reports that might cause hearers to draw mistaken inferences.
This can explain why speakers refrain from making certain utterances
that would, according to their theory, express true propositions, but
it cannot explain why speakers make other utterances that, according
to their theory, express false propositions. The view advocated here,
on the other hand, is that pragmatic considerations actually cause us
to assign a nonstandard semantic value to a proper name when a de
dicto interpretation of the proper name is required, which gives us a
proposition that is in fact true in those cases that cause trouble for the
pure direct-reference view.

There are several reasons for preferring this way of looking at things
over a theory that says that proper names are always treated metalin-
guistically, but two considerations seem particularly compelling. One
is the fact that the same problem arises with terms that denote kinds,
accompanied by strong intuitions that the metalinguistic interpretation
is exceptional. That is, we are not even aware of the metalinguistic in-
terpretation unless the direct-reference interpretation is in some way
odd. For example, in the sentence "John believes that oculists charge
too much for their services," we do not sense any ambiguity in the inter-
pretation of "oculists". On the other hand, "John believes that oculists
are devil worshipers" suggests an ambiguity between an interpretation
on which John has confused the words "oculist" and "occultist" and
the more direct interpretation that John has a strange belief about the
religious practices of eye doctors. The second reason for regarding the
metalinguistic interpretation of proper names as a nonstandard alter-
native interpretation is that treating it as the standard interpretation
yields wrong results in contexts other than attitude reports, particu-
larly modal contexts. As Kripke (1972) has forcefully argued, proper
names act as rigid designators in modal contexts, but a phrase such as
"the entity called 'Cicero'" is not a rigid designator. It refers to what-
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ever is called "Cicero", and that can obviously vary from one possible
set of circumstances to another.

5.9 Conclusion
In this chapter, we have looked at what seem to be the major issues
involved in developing a Russellian theory of propositions that is ad-
equate to deal with the semantics of attitude reports. We have tried
to sketch solutions to the most important problems, but in most areas
there is clearly more work to be done. In particular, the treatment
of proper names seems both the least elegant and least well-developed
part of the theory. The theory is no worse than any other in this re-
gard, however, since no one seems to have offered a better treatment
of proper names within any framework.

Another issue that deserves more attention is the question of
whether we may have individuated propositions too finely. As we re-
marked in Section 5.6, if all constants have distinct denotations, then
every pair of closed formulas of our Russellian logic that cannot be
made identical by renaming variables denote distinct propositions. If
we decide that this is too strict a standard of prepositional identity,
there are various ways we could choose to relax it. For example, it is a
commonly held view that, in conjunctions and disjunctions, the order of
conjuncts or disjuncts should not affect propositional identity. That is,
(And P Q) should denote the same proposition as (And Q P). We have
suggested in Section 5.5 that conjunction and disjunction be treated
as relations on propositions, but it would not conflict with the basic
structure of the theory to treat them as properties of sets of propo-
sitions, or even as associative commutative operators in an algebra of
propositions.

The theory is clearly in need of generalization beyond the restric-
tion to first-order, well-typed propositional functions. The theory as
it stands is an odd mixture, with completely untyped predication but,
because of the role played by propositional functions, highly restricted
quantification. It would clearly be no problem to extend the theory to
higher-order, well-typed propositional functions, and hence to higher-
order quantification. This would not, however, give us the ability to
quantify over all propositions, since there is no type that encompasses
them all. Use of models for the type-free lambda calculus (Stoy 1977)
could perhaps provide a way to remove this restriction. Allowing predi-
cation over all propositions would of course make the theory vulnerable
to the semantic paradoxes, but, given the current interest in solving
the paradoxes rather than avoiding them, along with the fact that they
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do arise in natural language, any theory within which the issues cannot
at least be raised should probably be considered inadequate.

Finally, although we have presented a formal language whose in-
terpretation is given in terms of the Russellian theory of propositions
developed here and have suggested informally what meaning, in terms
of the theory, should be assigned to various sentences of English, a for-
mal semantics for a significant fragment of English within the theory
nonetheless remains to be presented. It seems clear that a semantics for
such a fragment could be produced, but undoubtedly many interesting
new issues and problems would be uncovered in the process.



Part III

Autoepistemic Logic





Semantical Considerations on
Nonmonotonic Logic

6.1 Introduction
Commonsense reasoning is "nonmonotonic" in the sense that we often
draw, on the basis of partial information, conclusions that we later
retract when we are given more complete information. Some of the
most interesting products of recent attempts to formalize nonmono-
tonic reasoning are the nonmonotonic logics of McDermott and Doyle
(1980; McDermott 1982). These logics, however, all have peculiarities
that suggest they do not quite succeed in capturing the intuitions that
prompted their development. In this chapter we reconstruct nonmono-
tonic logic as a model of an ideally rational agent's reasoning about
his own beliefs. For the resulting system, called autoepistemic logic,
we define an intuitively based semantics for which we can show au-
toepistemic logic to be both sound and complete. We then compare
autoepistemic logic with the approach of McDermott and Doyle, show-
ing how it avoids the peculiarities of their nonmonotonic logic.

It has been generally acknowledged in recent years that one impor-
tant feature of ordinary commonsense reasoning that standard logics
fail to capture is its nonmonotonicity. An example frequently given to
illustrate the point is the following. If we know that Tweety is a bird,
we will normally assume, in the absence of evidence to the contrary,
that Tweety can fly. If, however, we later learn that Tweety is a pen-
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Research under Contract No. F49620-82-K-0031. The views and conclusions ex-
pressed in this document are those of the author and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or
implied, of the Air Force Office of Scientific Research or the U. S. Government.
This chapter previously appeared in Artificial Intelligence, Vol. 25, No. 1, 1985,
and is reprinted here with the permission of the publisher, Blsevier, Amsterdam.
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guin, we will withdraw our prior assumption. If we try to model this
in a formal system, we seem to have a situation in which a theorem
P is derivable from a set of axioms A, but is not derivable from some
set A1 that is a superset of A. The set of theorems, therefore, does
not increase monotonically with the set of axioms; hence this sort of
reasoning is said to be "nonmonotonic." As Minsky (1974) has pointed
out, standard logics are always monotonic, because their inference rules
make every axiom permissive. That is, the inference rules are always of
the form "P is a theorem if Qi , . . . , Qn are theorems," so that new ax-
ioms can only make more theorems derivable; they can never invalidate
a previous theorem.

Recently there have been a number of attempts to formalize this
type of nonmonotonic reasoning. The general idea is to allow axioms to
be restrictive as well as permissive, by employing inference rules of the
form "P is a theorem if Qi,..., Qn are not theorems." The inference
that birds can fly is handled by having, in effect, a rule that says that,
for any X, "X can fly" is a theorem if "X is a bird" is a theorem and
"X cannot fly" is not a theorem. If all we are told about Tweety is
that he is a bird, we will not be able to derive "Tweety cannot fly";
consequently, "Tweety can fly" will be inferable. If we are told that
Tweety is a penguin and we already know that no penquin can fly,
we will be able to derive the fact that Tweety cannot fly, and so the
inference that Tweety can fly will be blocked.

One of the most interesting embodiments of this approach to non-
monotonic reasoning is McDermott and Doyle's "nonmonotonic logic"
(1980; McDermott 1982). McDermott and Doyle modify a standard
first-order logic by introducing a sentential operator "Af," whose infor-
mal interpretation is "is consistent." Nonmonotonic inferences about
birds being able to fly would be sanctioned in their system by the axiom
(McDermott 1982, p. 33)

Vz(Bird(a:) AAf(Can-Fly(ar)) D Can-Fly(z)).

This formula can be read informally as "for all X, if X is a bird and
it is consistent to assert that X can fly, then X can fly." McDermott
and Doyle can then have a single general nonmonotonic inference rule,
whose intuitive content is "MP is derivable if ~>P is not derivable."

McDermott and Doyle's approach to nonmonotonic reasoning seems
more interesting and ambitious than some other approaches in two re-
spects. First, since the principles that lead to nonmonotonic inferences
are explicitly represented in the logic, those very principles can be
reasoned about. That is, if P is such a principle, we could start out
believing Q D P or even MP D P, and come to hold P by drawing in-
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ferences, either monotonic or nonmonotonic. So, if we use McDermott
and Doyle's representation of the belief that birds can fly, we could
also represent various inferences that would lead us to adopt that be-
lief. Second, since they use only general inference rules, they are able
to provide a formal semantic interpretation with soundness and com-
pleteness proofs for each of the logics they define. In formalisms that
use content-specific nonmonotonic inference rules dealing with contin-
gent aspects of the world (i.e., it might have been the case that birds
could not fly), it is difficult to see how this could be done. The effect
is that nonmonotonic inferences in McDermott and Doyle's logics are
justified by the meaning of the premises of the inferences.

There are a number of problems with McDermott and Doyle's non-
monotonic logics, however. The first logic they define (1980) gives
such a weak notion of consistency that, as they point out, MP is not
inconsistent with ->P. That is, it is possible for a theory to assert si-
multaneously that P is consistent with the theory and that P is false.
McDermott subsequently (1982) tried basing nonmonotonic logics on
the standard modal logics T, S4, and S5. He discovered, however,
that the most plausible candidate for formalizing the notion of con-
sistency that he wanted, nonmonotonic S5, collapses to ordinary S5
and is therefore monotonic. In the rest of this chapter we develop an
alternative formalization of nonmonotonic logic that shows why these
problems arise in McDermott and Doyle's logics and how they can be
avoided.

6.2 Nonmonotonic Logic and Autoepistemic
Reasoning

The first step in analyzing nonmonotonic logic is to determine what sort
of nonmonotonic reasoning it is meant to model. After all, nonmono-
tonicity is a rather abstract syntactic property of an inference system,
and there is no a priori reason to believe that all forms of nonmono-
tonic reasoning should have the same logical basis. In fact, McDermott
and Doyle seem to confuse two quite distinct forms of nonmonotonic
reasoning, which we will call default reasoning and autoepistemic rea-
soning. They talk as though their systems were intended to model
the former, but they actually seem much better suited to modeling the
latter.

By default reasoning we mean the drawing of plausible inferences
from less-than-conclusive evidence in the absence of information to the
contrary. The examples about birds being able to fly are of this type.
If we know that Tweety is a bird, that gives us some evidence that
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Tweety can fly, but it is not conclusive. In the absence of information
to the contrary, however, we are willing to go ahead and tentatively
conclude that Tweety can fly. Now even before we do any detailed
analysis of nonmonotonic logic, we can see that there will be prob-
lems in interpreting it as a model of default reasoning: In the formal
semantics McDermott and Doyle provide for nonmonotonic logic, all
the nonmonotonic inferences are valid. Default reasoning, however, is
clearly not a form of valid inference.1

Consider the belief that lies behind our willingness to infer that
Tweety can fly from the fact that Tweety is a bird. It is probably
something like most birds can fly, or almost all birds can fly, or a typical
bird can fly. To model this kind of reasoning, in a theory whose only
axioms are "Tweety is a bird" and "Most birds can fly," we ought to
be able to infer (nonmonotonically) "Tweety can fly." Now if this were
a form of valid inference, we would be guaranteed that the conclusion
is true if the premises are true. This is manifestly not the case. The
premises of this inference give us a good reason to draw the conclusion,
but not the ironclad guarantee that validity demands.

Now reconsider McDermott's formula that yields nonmonotonic in-
ferences about birds being able to fly:

Vx(B\rd(x) A M(Can-Fly(z)) D Can-Fly(z))

McDermott suggests as a gloss of this formula "Most birds can fly,"
which would indicate that he thinks of the inferences it sanctions as
default inferences. But if we read M as "is consistent" as McDermott
and Doyle repeatedly tell us to do elsewhere, the formula actually says
something quite different: "For all X, if X is a bird and it is consistent
to assert that X can fly, then X can fly." Since the inference rule for
M is intended to convey "MP is derivable if ->P is not derivable," the
notion of consistency McDermott and Doyle have in mind seems to be
that it is consistent to assert P if ->P is not derivable. McDermott's
formula, then, says that the only birds that cannot fly are the ones
that can be inferred not to fly. If we have a theory whose only axioms
are this one and an assertion to the effect that Tweety is a bird, then
the conclusion that Tweety can fly would be a valid inference. That is,
if it is true that Tweety is a bird, and it is true that only birds inferred

1In their informal exposition, McDermott and Doyle (1980 p. 44-46) emphasize
that their notion of nonmonontonic inference is not to be taken as a form of valid
inference. If this is the case, their formal semantics cannot be regarded as the "real"
semantics of their nonmonotonic logic. At best, it would provide the conditions that
would have to hold for the inferences to be valid, but this leaves unanswered the
question of what formulas of nonmonotonic logic actually mean.
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not to fly are in fact unable to fly, and Tweety is not inferred not to
fly, then it must be true that Tweety can fly.

This type of reasoning is not a form of default reasoning at all; it
rather seems to be more like reasoning about one's own knowledge or
belief. Hence, we will refer to it as autoepistemic reasoning. Autoepis-
temic reasoning, while different from default reasoning, is an important
form of commonsense reasoning in its own right. Consider my reason
for believing that I do not have an older brother. It is surely not that
one of my parents once casually remarked, "You know, you don't have
any older brothers," nor have I pieced it together by carefully sifting
other evidence. I simply believe that if I did have an older brother I
would know about it; therefore, since I don't know of any older broth-
ers, I must not have any. This is quite different from a default inference
based on the belief, say, that most MIT graduates are eldest sons, and
that, since I am an MIT graduate, I am probably an eldest son.

Default reasoning and autoepistemic reasoning are both nonmono-
tonic, but for different reasons. Default reasoning is nonmonotonic
because, to use a term from philosophy, it is defeasible: its conclusions
are tentative, so, given better information, they may be withdrawn.
Purely autoepistemic reasoning, however, is not defeasible. If you re-
ally believe that you already know all the instances of birds that cannot
fly, you cannot consistently hold to that belief and at the same time
accept new instances of birds that cannot fly.2

As Stalnaker (1993) has observed, autoepistemic reasoning is non-
monotonic because the meaning of an autoepistemic statement is
context-sensitive; it depends on the theory in which the statement is
embedded. If we have a theory whose only two axioms are

Bird(Tweety)
Vx(Bird(x) A Af (Can-Fly(x)) D Can-Fly(i)),

then MP does not merely mean that P is consistent—it means that P
is consistent with the nonmonotonic theory that contains only those
two axioms. We would expect Can-Fly(Tweety) to be a theorem of this
theory. If we change the theory by adding -tCan-Fly(Tweety) as an
axiom, we then change the meaning of MP to be that P is consistent
with the nonmonotonic theory that contains only the axioms

-iCan-Fly(Tweety)
Bird(Tweety)

2 Of course, autoepistemic reasoning can be combined with default reasoning; we
might believe that we know about most of the birds that cannot fly. This could lead
to defeasible autoepistemic inferences, but their defeasibility would be the result of
their also being default inferences.
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Var(Bird(ar) A Af (Can-Fly(z)) D Can-Fly(z)),

and we would not expect Can-Fly(Tweety) to be a theorem. The op-
erator M changes its meaning with context just as do indexical words
in natural language, such as "I," "here," and "now." The nonmono-
tonicity associated with autoepistemic statements should therefore be
no more puzzling than the fact that "I am hungry" can be true when
uttered by a particular speaker at a particular time, but false when
uttered by a different speaker at the same time or the same speaker
at a different time. So we might say that, whereas default reasoning
is nonmonotonic because it is defeasible, autoepistemic reasoning is
nonmonotonic because it is indexical.

6.3 The Formalization of Autoepistemic Logic
Rather than try directly to analyze McDermott and Doyle's nonmono-
tonic logic as a model of autoepistemic reasoning, we will first define
a logic that demonstrably does model certain aspects of autoepistemic
reasoning and then compare nonmonotonic logic with that. We will
call our logic, naturally enough, autoepistemic logic. The language will
be much like McDermott and Doyle's, an ordinary logical language
augmented by autoepistemic modal operators. McDermott and Doyle
treat consistency as their fundamental notion, so they take M as the
basic modal operator and define its dual L to be -iM-i. Our logic,
however, will be based on the notion of belief, so we will take L to
mean "is believed," treat it as primitive, and define M as ->L->. In
any case, this gives us the same notion of consistency as theirs: a for-
mula is consistent if its negation is not believed. Since there are some
problems with regard to the meaning of quantifying into the scope of
an autoepistemic operator that are not relevant to the main point of
this chapter, we will limit our attention to prepositional autoepistemic
logic.

Autoepistemic logic is intended to model the beliefs of an agent
reflecting upon his own beliefs. The primary objects of interest are sets
of autoepistemic logic formulas that are interpreted as the total beliefs
of such agents. We will call such a set of formulas an autoepistemic
theory. The truth of an agent's beliefs, expressed as a prepositional
autoepistemic theory, will be determined by (1) which prepositional
constants are true in the external world and (2) which formulas the
agent believes. A formula of the form LP will be true with respect to
an agent if and only if P is in his set of beliefs. To formalize this, we
define notions of interpretation and model as follows:

We proceed in two stages. First we define a propositional interpre-
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tation of an autoepistemic theory T to be an assignment of truth-values
to the formulas of the language of T that is consistent with the usual
truth recursion for prepositional logic and with any arbitrary assign-
ment of truth-values to prepositional constants and formulas of the
form LP. A propositional model of an autoepistemic theory T is a
prepositional interpretation of T in which all the formulas of T are
true. The propositional interpretations and models of an autoepis-
temic theory are, therefore, precisely those we would get in ordinary
propositional logic by treating all formulas of the form LP as proposi-
tional constants. We therefore inherit the soundness and completeness
theorems of propositional logic; i.e., a formula P is true in all the
propositional models of an autoepistemic theory T if and only if it is a
tautological consequence of T (i.e., derivable from T by the usual rules
of propositional logic).

Next we define an autoepistemic interpretation of an autoepistemic
theory T to be a propositional interpretation of T in which, for every
formula P, LP is true if and only if P is in T. It should be noted that
the theory T itself completely determines the truth of any formula of
the form LP in all the autoepistemic interpretations of T, indepen-
dently of the truth assignment to the propositional constants. Hence,
for every truth assignment to the propositional constants of T, there is
exactly one corresponding autoepistemic interpretation of T. Finally,
an autoepistemic model of T is an autoepistemic interpretation of T
in which all the formulas of T are true. So the autoepistemic inter-
pretations and models of T are just the propositional interpretations
and models of T that conform to the intended meaning of the modal
operator L.

This gives us a formal semantics for autoepistemic logic that
matches its intuitive interpretation. Suppose that the beliefs of an
agent situated in a particular world are characterized by the autoepis-
temic theory T. The world in question will provide an assignment of
truth-values for the propositional constants of T, and any formula of
the form LP will be true relative to the agent just in case he believes
P. In this way, the agent and the world in which he is situated directly
determine an autoepistemic interpretation of T. That interpretation
will be an autoepistemic model of T, just in case all the agent's beliefs
are true in his world.

Given this semantics for autoepistemic logic, what do we want from
a notion of inference for the logic? From an epistemological perspec-
tive, the problem of inference is the problem of what set of beliefs
(theorems) an ideally rational agent would adopt on the basis of his
initial premises (axioms). Since we are trying to model the beliefs of a
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rational agent, the beliefs should be sound with respect the premises;
we want a guarantee that the beliefs are true provided that the premises
are true. Moreover, since we assume that the agent is ideally rational,
the beliefs should be semantically complete; we want them to contain
everything that the agent would be semantically justified in conclud-
ing from his beliefs and from the knowledge that they are his beliefs.
An autoepistemic logic that meets these conditions can be viewed as
a competence model of reflection upon one's own beliefs. Like com-
petence models generally, it assumes unbounded resources of time and
memory, and is therefore not a plausible model of any finite agent.
It is, however, the model upon which the behavior of rational agents
ought to converge as their time and memory resources increase.

Formally, we will say an autoepistemic theory T is sound with re-
spect to an initial set of premises A if and only if every autoepistemic
interpretation of T in which all the formulas of A are true is an au-
toepistemic model of T. This notion of soundness is the weakest condi-
tion that guarantees that all of the agent's beliefs are true whenever all
his premises are true. Let / be the autoepistemic interpretation of T
that is determined by what is true in the actual world (including what
the agent actually believes). If all the formulas of T are true in every
autoepistemic interpretation of T in which all the formulas of A are
true, then all the formulas of T will be true in 7 if all the formulas of
A are true in 7; hence, all the agent's beliefs will be true in the world
if all the agent's premises are true in the world. However, if there is
an autoepistemic interpretation of T in which all the formulas of A
are true but some formulas of T are false, then it is possible that 7 is
that interpretation, and that all the agent's premises will be true in
the world, but some of his beliefs will not.

Our formal notion of completeness is that an autoepistemic theory
T is semantically complete if and only if T contains every formula that
is true in every autoepistemic model of T. If a formula P is true in
every autoepistemic model of an agent's beliefs, then it must be true if
all the agent's beliefs are true, and an ideally rational agent should be
able to recognize that and infer P. On the other hand, if P is false in
some autoepistemic model of the agent's beliefs, then that model, for
all he can tell, might be the way the world actually is; he is therefore
justified in not believing P.

The next problem is to give a syntactic characterization of the au-
toepistemic theories that satisfy these conditions. With a monotonic
logic, the usual procedure is to define a collection of inference rules to
apply to the axioms. For a nonmonotonic logic this is a nontrivial mat-
ter. Much of the technical ingenuity of McDermott and Doyle's systems



SEMANTICAL CONSIDERATIONS ON NONMONOTONIC LOGIC / 131

lies simply in their formulation of a coherent notion of nonmonotonic
derivability. The problem is that nonmonotonic inference rules do not
yield a simple iterative notion of derivability the way monotonic infer-
ence rules do. We can view a monotonic inference process as applying
the inference rules in all possible ways to the axioms, generating addi-
tional formulas to which the inference rules are applied in all possible
ways, and so forth. Since monotonic inference rules are monotonic,
once a formula has been generated at a given stage, it remains in the
generated set of formulas at every subsequent stage. Thus the theo-
rems of a theory in a monotonic system can be defined simply as all
the formulas that are generated at any stage. The problem with at-
tempting to follow this pattern with nonmonotonic inference rules is
that we cannot draw nonmonotonic inferences reliably at any particu-
lar stage, since something inferred at a later stage may invalidate them.
Lacking such an iterative structure, nonmonotonic systems often use
nonconstructive "fixed point" definitions, which do not directly yield
algorithms for enumerating the "derivable" formulas, but do define sets
of formulas that respect the intent of the nonmonotonic inference rules
(e.g., in McDermott and Doyle's fixed points, MP is included whenever
->P is not included.)

For our logic, it is easiest to proceed by first specifying the closure
conditions that we would expect the beliefs of an ideally rational agent
to possess. Viewed informally, the beliefs should include whatever the
agent could infer either by ordinary logic or by reflecting on what he
believes. Stalnaker (1993) has put this formally by suggesting that a
set of formulas T that represents the beliefs of an ideally rational agent
should satisfy the following conditions:

1. If PI, . . . , Pn are in T, and PI, . . . , Pn h Q, then Q is in T (where
"h" means ordinary tautological consequence).

2. If P is in T, then LP is in T.
3. If P is not in T, then ->LP is in T.

Stalnaker (1993, p. 187) describes the state of belief characterized by
such a theory as stable "in the sense that no further conclusions could
be drawn by an ideally rational agent in such a state." We will therefore
describe the theories themselves as stable autoepistemic theories.

There are a number of interesting observations we can make about
stable autoepistemic theories. First we note that, if a stable autoepis-
temic theory T is consistent, it will satisfy two more intuitively sound
conditions:

4. If LP is in T, then P is in T.
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5. If -*LP is in T, then P is not in T.

Condition 4 holds because, if LP were in T and P were not, ->LP would
be in T (by Condition 3) and T would be inconsistent.3 Condition 5
holds because, if ->LP and P were both in T, LP would be in T (by
Condition 2) and T would be inconsistent.

Conditions 2-5 imply that any consistent stable autoepistemic the-
ory will be both sound and semantically complete with respect to for-
mulas of the form LP and ->LP: If T is such a theory, then LP will be
in T if and only if P is in T, and ->LP will be in T if and only if P is
not in T. Thus, all the prepositional models of a stable autoepistemic
theory are autoepistemic models. Stability implies a soundness result
even stronger than this, however. We can show that the truth of any
formula of a stable autoepistemic theory depends only on the truth of
the formulas of the theory that contain no autoepistemic operators.
(We will call these formulas "objective.")

Theorem 1 IfT is a stable autoepistemic theory, then any autoepis-
temic interpretation ofT that is a prepositional model of the objective
formulas ofT is an autoepistemic model ofT.

(The proofs of all theorems are given in the appendix.)
In other words, if all the objective formulas in a stable autoepistemic

theory are true, then all the formulas in that theory are true. Given
that the objective formulas of a stable autoepistemic theory determine
whether the theory is true, it is not surprising that they also determine
what all the formulas of the theory are.

Theorem 2 // two stable autoepistemic theories contain the same ob-
jective formulas, then they contain exactly the same formulas.4

Finally, with these characterization theorems, we can prove that
the syntactic property of stability is equivalent the semantic property
of completeness.

Theorem 3 An autoepistemic theory T is semantically complete if
and only ifT is stable.

By Theorem 3, we know that stability of an agent's beliefs guar-
3 Condition 4 will, of course, also be satisfied by an inconsistent stable autoepis-

temic theory, since such a theory would include all formulas of autoepistemic logic.
*This theorem implies that our autoepistemic logic does not contain any "non-

grounded" self-referential formulas, such as one finds in what are usually called
"syntactical" treatments of belief. If, instead of a belief operator, we had a belief
predicate, Bel, there might be a term p that denotes the formula Bel(p). Whether
Bel(p) is believed or not is clearly independent of any objective beliefs. The lack of
such formulas constitutes a characteristic difference between sentence-operator and
predicate treatments of prepositional attitudes and modalities.
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antees that they are semantically complete, but stability alone does
not tell us whether they are sound with respect to his initial premises.
That is because the stability conditions say nothing about what an
agent should not believe. They leave open the possibility of an agent's
believing propositions that are not in any way grounded in his initial
premises. What we need to add is a constraint specifying that the
only propositions the agent believes are his initial premises and those
required by the stability conditions. To satisfy the stability conditions
and include a set of premises A, an autoepistemic theory T must in-
clude all the tautological consequences of AU{LP \ P is in T}(J{->LP \
P is not in T}. Conversely, we will say that an autoepistemic theory T
is grounded in a set of premises A if and only if every formula of T is in-
cluded in the tautological consequences of A\J{LP \ P is in T}\j{-<LP
| P is not in T}. The following theorem shows that this syntactic con-
straint on T and A captures the semantic notion of soundness.

Theorem 4 An autoepistemic theory T is sound with respect to an
initial set of premises A if and only ifT is grounded in A.

From Theorems 3 and 4, we can see that the possible sets of beliefs
that an ideally rational agent might hold, given A as his premises, ought
to be just the extensions of A that are grounded in A and stable. We
will call these the stable expansions of A. Note that we say "sets",
because there may be more than one stable expansion of a given set of
premises. For example, consider {->LP D Q, ->LQ D P} as an initial
set of premises.5 The first formula asserts that, if P is not believed,
then Q is true; the second asserts that, if Q is not believed, then P is
true. In any stable autoepistemic theory that includes these premises,
if P is not in the theory, Q will be, and vice versa. But if the theory is
grounded in these premises, if P is in the theory there will be no basis
for including Q, and vice versa. Consequently, a stable expansion of
{-•IP D Q, ->IQ D P} will contain either P or Q, but not both.

It can also happen that there are no stable expansions of a given
set of premises. Consider, for instance, {-<LP D P}.6 If T is a stable
autoepistemic theory that contains ->LP D P, it must also contain P.
If P were not in T, —>LP would have to be in the T, but then P would
be in T—a contradiction. On the other hand, if P is in T, then T is
not grounded in {->LP D P}. Therefore no stable autoepistemic theory
can be grounded in {->LP D P}.

This seemingly strange behavior results from the indexicality of the
5McDermott and Doyle (1980, p. 51) present this example as {MC D ->D, MD

-.C}.
6McDermott and Doyle (1980, p. 51) present this example as {MC D ->C}.
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autoepistemic operator L. Since L is interpreted relative to an entire
set of beliefs, its interpretation will change with the various ways of
completing a set of beliefs. In each acceptable completion of a set
of beliefs, the interpretation of L will change to make that set stable
and grounded in the premises. Sometimes, though, no matter how we
try to form a complete a set of beliefs, the result never coincides with
the interpretation of L in a way that gives us a stable set of beliefs
grounded in the premises.

This raises the question of how to view autoepistemic logic as a
logic. If we consider a set of premises A as axioms, what do we consider
the theorems of A to be? If there is a unique stable expansion of A, it
seems clear that we want this expansion to be the set of theorems of A.
But what if there are several stable expansions of A—or none at all?
If we take the point of view of the agent, we have to say that there can
be alternative sets of theorems, or no set of theorems of A. This may
be a strange property for a logic to possess, but, given our semantics,
it is clear why this happens. An alternative (adopted by McDermott
and Doyle with regard to their fixed points) is to take the theorems
of A to be the intersection of the set of all formulas of the language
with all the stable expansions of A. This yields the formulas that are
in all stable expansions of A if there is more than one, and it makes
the theory inconsistent if there is no stable expansion of A. This too
is reasonable, but it has a different interpretation. It represents what
an outside observer would know, given only knowledge of the agent's
premises and that he is ideally rational.

6.4 Analysis of Nonmonotonic Logic
Now we are in a position to provide an analysis of nonmonotonic
logic that will explain its peculiarities in terms of autoepistemic logic.
Briefly, our conclusions will be that the original nonmonotonic logic of
McDermott and Doyle (1980) is simply too weak to capture the notions
they wanted, and that McDermott's (1982) attempt to strengthen the
logic does so in the wrong way.

McDermott and Doyle's first logic is very similar to our autoepis-
temic logic with one glaring exception; its specification includes noth-
ing corresponding to our Condition 2 (if P is in T, then LP is in T).
McDermott and Doyle define the nonmonotonic fixed points of a set
of premises A, corresponding to our stable expansions of A. In the
prepositional case, their definition is equivalent to the following:

T is a fixed point of A just in case T is the set of tautological
consequences of A U {->LP \ P is not in T}.
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Our definition of a stable expansion of A, on the other hand, could be
stated as

T is a stable expansion of A just in case T is the set of tautological
consequences of A U {LP \ P is in T} U {->LP \ P is not in T}.

In nonmonotonic logic, {LP \ P is in T} is missing from the "base" of
the fixed points. This makes it possible for there to be nonmonotonic
theories with fixed points that contain P but not LP. So, under an
autoepistemic interpretation of L, McDermott and Doyle's agents are
omniscient as to what they do not believe, but they may know nothing
as to what they do believe.

This explains essentially all the peculiarities of McDermott and
Doyle's original logic. For instance, they note (1980, p. 69) that MC
does not follow from M(C A D). Changing the modality to L, this
is equivalent to -<LP does not follow from -<L(P V Q). The problem
is that, lacking the ability to infer LP from P, nonmonotonic logic
permits interpretations of L that are more restricted than simple belief.
Suppose we interpret L as "inferable in n or fewer steps" for some
particular n. P might be inferable in exactly n steps, and P V Q in
n + 1. According to this ~>L(P V Q) would be true and -\LP would be
false. Since this interpretation of L is consistent with McDermott and
Doyle's definition of a fixed point, ->LP does not follow from -*L(PVQ).
The other example of this kind noted by McDermott and Doyle is
that {MC, -i(7} has a consistent fixed point, which amounts to saying
simultaneously that P is consistent with everything asserted and that
P is false. But this set of premises is equivalent to {->LP, P}, which
would have no consistent fixed points if LP were forced to be in every
fixed point that contains P.

On the other hand, McDermott and Doyle consider it to be a prob-
lem that the set of premises {MC D D, ->D} has no fixed point in
their logic. Restated in terms of L, this set of premises is equivalent
to {P D LQ, P}. Every stable autoepistemic theory containing these
premises will also contain Q. (If such a theory is consistent, being
closed under tautological consequence, it will contain ->LQ and, there-
fore, must contain Q to avoid containing LQ. On the other hand, an
inconsistent autoepistemic theory will contain Q because it contains
everything.) But Q is not contained in any theory grounded in the
premises {P D LQ,P}; it is possible for P D LQ and P both to be
true with respect to an agent while Q is false. So there is no stable
expansion of {P D LQ, P} in autoepistemic logic; hence, this set of
premises cannot be the foundation of an appropriate set of beliefs for
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an ideally rational agent. Thus, our analysis justifies nonmonotonic
logic in this case, contrary to the intuition of McDermott and Doyle.

McDermott and Doyle recognized the weakness of the original for-
mulation of nonmonotonic logic, and McDermott (1982) has gone on to
develop a group of theories that are stronger because they are based on
modal rather than classical logic. McDermott's nonmonotonic modal
theories alter the logic in two ways. First, the definition of fixed point
is changed to be equivalent to

T is a fixed point of A just in case T is the set of modal consequences
of A U {-iiP | P is not in T},

where "modal consequence" means that P h LP is used as an addi-
tional inference rule. Second, McDermott considers only theories that
include as premises the axioms of one of the standard modal logics
"T," "S4," and "S5."

Merely changing the definition of fixed point brings McDermott's
logic much closer to autoepistemic logic. In particular, adding P h LP
as an inference rule means that all modal fixed points of A are stable
expansions of A. However, adding P h LP as an inference rule, rather
than adding {LP \ P is in T} to the base of T, has as a consequence
that not all stable expansions of A are modal fixed points of A. The
difference is that, in autoepistemic logic, if P can be derived from
LP, then both can be in a stable expansion of the premises, whereas
in McDermott's logic there must be a derivation of P that does not
rely on LP. Thus, although in autoepistemic logic there is a stable
expansion of {LP DP} that includes P, in McDermott's logic there
is no modal fixed point of {LP D P} that includes P. It is as if, in
autoepistemic logic, one can acquire the belief that P and justify it later
by the premise that, if P is believed, then it is true. In nonmonotonic
logic, however, the justification of P has to precede belief in LP. This
makes the interpretation of L in nonmonotonic modal logic more like
"justified belief than simple belief.

Since we have already shown that autoepistemic logic requires no
specific axioms to capture a competence model of autoepistemic rea-
soning, we might wonder what purpose is served by McDermott's sec-
ond modification of nonmonotonic logic, the addition of the axioms
of various modal logics. The most plausible answer is that, besides
behaving in accordance with the principles of autoepistemic logic, an
ideally rational agent might well be expected to know what some of
those principles are. For instance, the modal logic T has all instances
of the schema L(P D Q) D (LP D LQ) as axioms. This says that the
agent's beliefs are closed under modus ponens—which is true for an ide-
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ally rational agent, so he might as well believe it. S4 adds the schema
LP D LLP, which means that, if the agent believes P, he believes that
he believes it (Condition 2). S5 adds the schema ->LP D L-dP, which
means that, if the agent does not believe P, he believes that he does
not believe it (Condition 3). Since all these formulas are always true
with respect to any ideally rational agent, it seems plausible to expect
him to adopt them as premises. Thus, S5 seems to be the most plausi-
ble candidate of the nonmonotonic logics as a model of autoepistemic
reasoning.

The problem is that all of these logics also contain the schema
LP D P, which means that, if the agent believes P, then P is true—
but this is not generally true, even for ideally rational agents.7 It turns
out that LP D P will always be contained in any stable autoepistemic
theory (that is, ideally rational agents always believe that their beliefs
are true), but making it a premise allows beliefs to be grounded that
otherwise would not be. As a premise the schema LP D P can itself be
justification for believing P, while as a "theorem" it must be derived
from -iiP, in which case P is not believed, or from P, in which case P
must be independently justified, or from some other grounded formulas.
In any case, as a premise schema, LP D P can sanction any belief
whatsoever in autoepistemic logic. This is not generally true in modal
nonmonotonic logic, as we have also seen, but it is true in nonmonotonic
S5. The S5 axiom schema ->LP D L-^LP embodies enough of the model
theory of autoepistemic logic to allow LP to be "self grounding": The
schema -<LP D L-iLP is equivalent to the schema -*L-iLP D LP, which
allows LP to be justified by the fact that its negation is not believed.
This inference is never in danger of being falsified, but, from this and
LP D P, we obtain an unwarranted justification for believing P.

The collapse of nonmonotonic S5 into monotonic S5 follows imme-
diately. Since LP D P can be used to justify belief in any formula
at all, there are no formulas that are absent from every fixed point of
theories based on nonmonotonic S5. It follows that there are no formu-
las of the form -*LP that are contained in every fixed point of theories
based on nonmonotonic S5; hence there are no theorems of the form
->LP in any theory based on nonmonotonic S5. (Recall that the theo-

7 LP 3 P would be an appropriate axiom schema if the interpretation of LP were
"P is known" rather than "P is believed," but that notion is not nonmonotonic.
An agent cannot, in general, know when he does not know P, because he might
believe P—leading him to believe that he knows P—while P is in fact false. Since
agents are unable to reflect directly on what they do not know (only on what they
do not believe), an autoepistemic logic of knowledge would not be a nonmonotonic
logic; rather, the appropriate logic would seem to be monotonic S4.
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rems are the intersection of all the fixed points.) Since these formulas
are just the ones that would be produced by nonmonotonic inference,
nonmonotonic S5 collapses to monotonic S5. In more informal terms,
an agent who assumes that he is infallible is liable to believe anything,
so an outside observer can conclude nothing about what he does not
believe.

The real problem with nonmonotonic S5, then, is not the S5 schema;
therefore McDermott's rather unmotivated suggestion to drop back to
nonmonotonic S4 (1982, p. 45) is not the answer. The S5 schema merely
makes explicit the consequences of adopting LP D P as a premise
schema that are implicit in the logic's natural semantics. If we want to
base nonmonotonic logic on a modal logic, the obvious solution is to
drop back, not to S4, but to what Stalnaker (1993) calls "weak S5"—
S5 without LP D P. It is much better motivated and, moreover, has
the advantage of actually being nonmonotonic.

In autoepistemic logic, however, even this much is unneccessary.
Adopting any of the axioms of weak S5 as premises makes no difference
to what can be derived. The key fact is the following theorem:

Theorem 5 // P is true in every autoepistemic interpretation of T,
then T is grounded in AU{P} if and only ifT is grounded in A.

An immediate corollary of this result is that, if P is true in every au-
toepistemic interpretation of T, then T is a stable expansion of AU{P}
if and only if T is a stable expansion of A.

The modal axiom schemata of weak S5,

L(P D Q) D (LP D LQ)
LP D LLP
->LP D L-iLP,

simply state Conditions 1-3, so all their instances are true in every
autoepistemic interpretation of any stable autoepistemic theory. The
nonmodal axioms of weak S5 are just the tautologies of propositional
logic, so they are true in every interpretation (autoepistemic or other-
wise) of any autoepistemic theory (stable or otherwise). It immediately
follows by Theorem 5, therefore, that a set of premises containing any
of the axioms of weak S5 will have exactly the same stable expansions
as the corresponding set of premises without any weak-S5 axioms.

6.5 Conclusion
McDermott and Doyle recognized that their original nonmonotonic
logic was too weak; when McDermott tried to strengthen it, however,
he misdiagnosed the problem. Because he was thinking of nonmono-
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tonic logic as a logic of provability rather than belief, he apparently
thought the problem was the lack of any connection between provabil-
ity and truth. At one point he says "Even though ->M->P (abbreviated
LP) might plausibly be expected to mean 'P is provable,' there was not
actually any relation between the truth values of P and LP," (1982,
p. 34), and later he acknowledges the questionability of the schema
LP D P, but says that "it is difficult to visualize any other way of
relating provability and truth," (1982, p. 35). If one interprets non-
monotonic logic as a logic of belief, however, there is no reason to expect
any connection between the truth of LP and the truth of P. And, as
we have seen, the real problem with the original nonmonotonic logic
was that the "if" half of the semantic definition of L—that LP is true
if and only if P is believed—was not expressed in the logic.

Appendix: Proofs of Theorems
Theorem llfT is a stable autoepistemic theory, then any autoepis-
temic interpretation of T that is a prepositional model of the objective
formulas ofT is an autoepistemic model ofT.

Proof. Suppose that T is a stable autoepistemic theory and 7 is an
autoepistemic interpretation of T that is a prepositional model of the
objective formulas of T. All the objective formulas of T are true in /. T
must be consistent because an inconsistent stable autoepistemic theory
would contain all formulas of the language, which would include many
objective formulas that are not true in /. Let P be an arbitrary formula
in T. Since stable autoepistemic theories are closed under tautological
consequence, T must also contain a set of formulas PI, ..., Pk that
taken together entail P, where, for each i between 1 and k, there exist
n and ro such that P,- is of the form

Pi,i V LPi,2 V ... V LPi<nV -ilPiin+1 V ... V ->LPiim

and Pj,i is an objective formula. (Any formula is interderivable with a
set of such formulas by prepositional logic alone.) There are two cases
to be considered:

(1) Suppose at least one of LP,-^,. • . , £P,>, -iiPj,n+i, • • • , ~1iP«,m
is in T. By Conditions 4 and 5, we know that, if any such formula is in
T, it must be true in 7, since T is consistent and 7 is an autoepistemic
interpretation of T. But, since each of these formulas entails Pj, it
follows that Pi is also true in 7.

(2) Suppose the first case does not hold. Conditions 2 and 3 guar-
antee that in every stable autoepistemic theory, for every formula P,
either LP or -<LP will be in the theory. Hence, if T does not contain
any of LP,-,2, • • • , 7/Pj,n, -iiPi,n+i, • • • > ~<LPi,m, it must contain all of
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- i L P f : 2 , . . . , -iLPj,,,, LPi,n+ii • • • , LP,-|m. But Pj^ is a tautological con-
sequence of Pi and these formulas (imagine repeated applications of
the resolution principle); so P,-^ must be in T. But P^ is objective,
and so, by hypothesis, must be true in /. Since Pit\ entails Pi, it must
be the case that Pi is true in I.

In either case, Pi will be true in /. All the P, taken together entail
P, so P must also be true in /. Since P was chosen arbitrarily, every
formula of T must be true in 7; hence / is an autoepistemic model of
T. D

Theorem 2 If two stable autoepistemic theories contain the same ob-
jective formulas, then they contain exactly the same formulas.

Proof. Suppose that 7\ and TI contain the same objective formulas
and TI contains P. We prove by induction on the depth of nesting of
autoepistemic operators in P (the "L-depth" of P) that Ta also contains
P. If the L-depth of P is 0, the theorem is trivially true, since P will be
an objective formula. Now suppose that P has an L-depth of d greater
than 0, and that, if two stable autoepistemic theories contain the same
objective formulas, then they contain exactly the same formulas whose
L-depth is less than d.

Since stable autoepistemic theories are closed under tautological
consequence, TI must also contain a set of formulas PI , . . . , Pk that are
interderivable with P by prepositional logic, where, for each i between
1 and k, there exist n and m such that P,- is of the form

Pi,i V LP,-,2 V ... V LPi,nV -LP;,n+1 V ... V -LP,-,m
and P,-^ is an objective formula. Note that, since prepositional logic
will treat all the formulas of the form LPj-j as prepositional constants,
it is impossible to increase the L-depth of a formula by prepositional
inference, so each of these formulas will have an L-depth of not more
than d.

We can also assume that TI and T-^ are consistent. If one of these
theories were inconsistent, it would contain all formulas of the language.
Since, by hypothesis, the two theories contain the same objective for-
mulas, the other theory would contain all the objective formulas of
the language and, since these formulas are inconsistent, it would also
contain all the formulas of the language. For each P,-, there are three
cases to be considered:

(1) TI contains LP,-j for some j between 2 and n. Since TI is
consistent, by Condition 4 it must also contain P,-j. Since the L-depth
of Pij is one less than that of LP,-^-, it must be less than d; so, by
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hypothesis, T^ must contain P,-;- and, by Condition 2, it must contain
LPitj. But Pi is a tautological consequence of LPij, so TI contains P^.

(2) TI contains -*LPitj for some j between n+ 1 and TO. Since 7\ is
consistent, by Condition 5 it must not contain Pij. Since the L-depth
of Pitj is one less than that of -iLP.-j, it must be less than d; therefore,
by hypothesis, TI must not contain P,-j and, by Condition 3, it must
contain ->iP,-j. But Pi is a tautological consequence of ->LPjj, so TI
contains Pi.

(3) Suppose neither of the first two cases holds. Conditions 2 and 3
guarantee that in every stable autoepistemic theory, for every formula
P, either LP or -<LP will be in the theory. Hence, if Tj does not
contain any of iPj,2, • • • > LPiin, -iIP,-]n+1,..., -<LPiim, it must contain
all of-iLPi^,..., -iLPi<n, LPi>n+\,..., LPiim. But P,^ is a tautological
consequence of P,- and these formulas; so P^j must be in TI. P,-,i is
objective, however, so Pj,i must also be in T?. Since P,- is a tautological
consequence of P^i, TI contains P,.

Thus, all of PI, . . . , Pit are in T%. Since P is a tautological conse-
quence of these formulas, P is also in Tj. Since P was chosen arbitrar-
ily, every formula in TI is also in T%. The same argument can be used
to show that every formula in TI is also in TI , so T\ and TI contain
exactly the same formulas. D

Theorem 3 An autoepistemic theory T is semantically complete if
and only ifT is stable.

Proof. "If" direction: we show that, if T is a stable autoepistemic
theory, then T contains every formula that is true in every autoepis-
temic model of T. Let T be a stable autoepistemic theory and let P
be an arbitrary formula that is not in T. We show that there is an
autoepistemic model of T in which P is false.

We know from prepositional logic that P is propositionally equiva-
lent to (i.e., true in the same prepositional models as) the conjunction
of a set of formulas PI , . . . , P*, where, for each i between 1 and k, there
exist n and TO such that P,- is of the form

PM V LPitt V ... V LPi,nV -IPi,n+1 V ... V ^LPi,m

and P^i is an objective formula. Since P will be a tautological conse-
quence of P! ,. . . , Pk and T is stable, Condition 1 guarantees that, if P
is not in T, at least one of P j , . . . , Pf. must not be in T. Let P,- be such
a formula. P,- is a tautological consequence of each of its disjuncts, so
none of them can be in T. We show that there is an autoepistemic
model of T in which all of these disjuncts are false.
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Since P^i is not in T, it must not be a tautological consequence of
the objective formulas of T. Given this and the fact that P^i is objec-
tive, it follows from the completeness theorem for prepositional logic
that there must be a truth assignment to the prepositional constants
of T in which P^i is false and all the objective formulas of T are true.
But, we can extend this truth assignment (or any truth assignment to
the prepositional constants of T—see Section 6.3) to an autoepistemic
interpretation of T. Call this interpretation / and note that P8|1 is
false in /. I will be a prepositional model of the objective formulas of
T; so, by Theorem 1, I is an autoepistemic model of T in which P,-^ is
false.

Now consider the other disjuncts of P8-. Note that Conditions 2
and 3 require that a stable theory contain all the formulas of the form
LP or ->IP that are true in the autoepistemic interpretations of the
theory. Since none of LPj,2, • • • , LPi,n, -.IP,-,n+i, • • • , ~>LPitm are in
T, none of Z/P<,2, • • • , £Pi,n, -"i-Pi.n+i, • • • , ~>LPi,m are true in any au-
toepistemic interpretation of T. In particular, none of LPj,2, • • • , LPi<n,
->LPitn+i, • • • , -.IPi,m are true in 7. Therefore, / is an autoepistemic
model of T in which, since all of the disjuncts of Pi are false, P,- it-
self is false. But P is propositionally equivalent to a conjunction that
includes P,-, so 7 is an autoepistemic model of T in which P is false.

"Only if" direction: we show that, if T is semantically complete,
then T is stable. Suppose T is semantically complete. For any formula
P, if P is true in every autoepistemic model of T, then P is in T. Let
7 be an arbitrary autoepistemic model of T. If we can show that some
formula P is true in 7, P must be true in every autoepistemic model
of T (since 7 is arbitrarily chosen) and, thus, P must be in T. We now
show that T satisfies Conditions 1-3.

(1) Suppose PI, . . . , Pn are in T and P1;..., Pn h Q. Since 7 is a
model of T, PI , . . . , Pn will be true in 7. Since PI , . . . , Pn will is true
in 7 and Q is a tautological consequence of P\,..., Pn, Q will also be
true in 7. Therefore, Q will be in T. (2) Suppose P is in T. Since 7 is
an autoepistemic model of T, LP will be true in 7. Therefore, LP will
be in T. (3) Suppose P is not in T. Since 7 is an autoepistemic model
of T, -.IP will be true in 7. Therefore, -.IP will be in T.

Conditions 1-3 are all satisfied, so T is stable. D

Theorem 4 An autoepistemic theory T is sound with respect to an
initial set of premises A if and only ifT is grounded in A.

Proof. "If" direction: suppose T is grounded in A. Every for-
mula of T is therefore included in the tautological consequences of
A U {LP \ P is in T} U {->LP \ P is not in T}. We show that T is
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sound with respect to A—i.e., that every autoepistemic interpretation
of T in which all the formulas of A are true is an autoepistemic model
ofT.

Let / be an autoepistemic interpretation of T in which all the for-
mulas in A are true. We show that / is an autoepistemic model of T.
If P is in A, then, trivially, P is true in 7. If P is of the form LQ
and Q is in T, or if P is of the form ~<LQ and Q is not in T, then
P is true in / because 7 is an autoepistemic interpretation of T. We
have now shown that all the formulas in A U {LP \ P is in T} U {->LP
| P is not in T} are true in I, so all their tautological consequences
are true in 7. But all the formulas of T are included in this set, so
7 is an autoepistemic model of T. Since 7 was an arbitrarily chosen
autoepistemic interpretation of T in which all the formulas of A are
true, every autoepistemic interpretation of T in which all the formulas
of A are true is an autoepistemic model of T.

"Only if direction: suppose T is sound with respect to A. Every
autoepistemic interpretation of T in which all the formulas of A are
true is therefore an autoepistemic model of T. We show that T is
grounded in A—i.e., every formula of T is a tautological consequence
of A U {LP | P is in T} U {->LP\ P is not in T}.

Let A1 = A U {LP \ P is in T} U {->LP\ P is not in T}. Note that,
for all P, if P is in T, LP will be in A', so LP will be true in every
prepositional model of A'; however, if P is not in T, -*LP will be in A'
and LP will not be true in any propositional model of A'. Therefore,
in every propositional model of A', LP is true if and only if P is in T,
so every propositional model of A' is an autoepistemic interpretation
of T. Since every autoepistemic interpretation of T in which all the
formulas of A are true is an autoepistemic model of T, every proposi-
tional model of A1 is an autoepistemic model of T. Since every formula
in T is true in in every autoepistemic model of T, every formula in T is
true in every propositional model of A'. By the completeness theorem
for propositional logic, every formula of T is therefore a tautological
consequence of A'. Hence T is grounded in A. D

Theorem 5 If P is true in every autoepistemic interpretation of T,
then T is grounded in A U {P} if and only ifT is grounded in A.

Proof. Suppose that P is true in every autoepistemic interpretation of
T. For any set of premises A, the set of autoepistemic interpretations
of T in which every formula of A U {P} is true is therefore the same as
the set of autoepistemic interpretations of T in which every formula of
A is true. Thus, every autoepistemic interpretation of T in which every
formula of A U {P} is true is an autoepistemic model of T if and only
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if every autoepistemic interpretation of T in which every formula of A
is true is an autoepistemic model of T. Hence, T is sound with respect
to A U {P} if and only if T is sound with respect to A. By Theorem 4,
therefore, T is grounded in A U {P} if and only if T is grounded in A.
n



Possible-World Semantics for
Autoepistemic Logic

7.1 Introduction
In Chapter 6, we presented a nonmonotonic logic for modeling the be-
liefs of ideally rational agents who reflect on their own beliefs, which we
called "autoepistemic logic." We defined a simple and intuitive seman-
tics for autoepistemic logic and proved the logic sound and complete
with respect to that semantics. However, the nonconstructive charac-
ter of both the logic and its semantics made it difficult to prove the
existence of sets of beliefs satisfying all the constraints of autoepistemic
logic. This note presents an alternative, possible-world semantics for
autoepistemic logic that enables us to construct finite models for au-
toepistemic theories, as well as to demonstrate the existence of sound
and complete autoepistemic theories based on given sets of premises.

Autoepistemic logic is nonmonotonic, because we can make state-
ments in the logic that allow an agent to draw conclusions about the
world from his own lack of information. For example, we can express
the belief that "If I do not believe P, then Q is true." If an agent adopts
this belief as a premise and he has no means of inferring P, he will be
able to derive Q. On the other hand, if we add P to his premises, Q
will no longer be derivable. Hence, the logic is nonmonotonic.

Autoepistemic logic is closely related to the nonmonotonic logics
of McDermott and Doyle (1980; McDermott 1982). In fact, it was
designed to be a reconstruction of these logics that avoids some of their
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Research under Contract No. F49620-82-K-0031. The views and conclusions ex-
pressed in this document are those of the author and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or
implied, of the Air Force Office of Scientific Research or the U. S. Government.
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peculiarities. This is discussed in detail in Chapter 6. This work is also
closely related to that of Halpern and Moses (1984), the chief difference
being that theirs is a logic of knowledge rather than belief. Finally,
Levesque (1981) has also developed a kind of autoepistemic logic, but
in his system the agent's premises are restricted to a sublanguage that
makes no reference to what he believes.

7.2 Summary of Autoepistemic Logic
The language of autoepistemic logic is that of ordinary propositional
logic, augmented by a modal operator L. We want formulas of the
form LP to receive the intuitive interpretation "P is believed" or "I
believe P." For example, P D LP could be interpreted as saying "If P
is true, then I believe that P is true."

The type of object that is of primary interest in autoepistemic logic
is a set of formulas that can be interpreted as a specification of the be-
liefs of an agent reflecting upon his own beliefs. We will call such a
set of formulas an autoepistemic theory. The truth of an agent's be-
liefs, expressed as an autoepistemic theory, is determined by (1) which
propositional constants are true in the external world and (2) which
formulas are believed by the agent. A formula of the form LP will be
true with respect to an agent if and only if P is in his set of beliefs.
To formalize this, we define the notions of autoepistemic interpreta-
tion and autoepistemic model. An autoepistemic interpretation I of an
autoepistemic theory T is a truth assignment to the formulas of the
language of T that satisfies the following conditions:

1. / conforms to the usual truth recursion for propositional logic.
2. A formula LP is true in 7 if and only if P €. T.

An autoepistemic model of T is an autoepistemic interpretation of
T in which all the formulas of T are true. (Any truth assignment
satisfying Condition 1 in which all the formulas of T are true will be
called simply a model of T.)

We can readily define notions of soundness and completeness rel-
ative to this semantics. Soundness of a theory must be defined with
respect to some set of premises. Intuitively speaking, an autoepistemic
theory T, viewed as a set of beliefs, will be sound with respect to a set
of premises A, just in case every formula in T must be true, given that
all the formulas in A are true and given that T is, in fact, the set of
beliefs under consideration. This is expressed formally by the following
definition:

An autoepistemic theory T is sound with respect to a set of premises
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A if and only if every autoepistemic interpretation of T that is a
model of A is also a model of T.

The definition of completeness is equally simple. A semantically
complete set of beliefs will be one that contains everything that must
be true, given that the entire set of beliefs is true and given that it is
the set of beliefs being reasoned about. Stated formally, this becomes

An autoepistemic theory T is semantically complete if and only if
T contains every formula that is true in every autoepistemic model
ofT.

Finally, we can give syntactic characterizations of the autoepistemic
theories that conform to these definitions of soundness and complete-
ness (Chapter 6, Theorems 3 and 4). We say that an autoepistemic
theory T is stable if and only if (1) it is closed under ordinary tauto-
logical consequence, (2) LP £ T whenever P € T, and (3) -<LP € T
whenever P £ T.

Theorem 1 An autoepistemic theory T is semantically complete if
and only ifT is stable.

We say that an autoepistemic theory T is grounded in a set of
premises A if and only if every formula in T is a tautological conse-
quence of A U {LP | P e T} U {-IP | P $ T}.

Theorem 2 An autoepistemic theory T is sound with respect to a set
of premises A if and only ifT is grounded in A.

With these soundness and completeness theorems, we can see that
the possible sets of beliefs an ideally rational agent might hold, given
A as his premises, would be stable autoepistemic theories that contain
A and are grounded in A. We call these theories stable expansions of
A.

7.3 An Alternative Semantics for Autoepistemic
Logic

The semantics we have provided for autoepistemic logic is simple, in-
tuitive, and allows us to prove a number of important general results,
but it requires enumerating an infinite truth assignment if the theory
under consideration contains infinitely many formulas. This makes it
difficult to exhibit particular models and interpretations we may be
interested in. The problem is that, in the general case, there need
be no systematic connection between the truth of one formula of the
form LP and any other. Autoepistemic logic is designed to charac-
terize the beliefs of ideally rational agents, but we want the semantics
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to be broader than that. The semantics we have defined is intended
to apply to arbitrary sets of beliefs, with the beliefs of ideally rational
agents being a special case (just as model theory for standard logic
applies to arbitrary sets of formulas, not just to those that are closed
under logical consequence). Thus, our semantics makes no necessary
connection between the truth of L(P A Q) and LP or LQ, because it
is at least conceivable that an agent might be so logically deficient as
to believe P A Q without believing P or believing Q. In such a case,
there is little we can expect the truth definition for an autoepistemic
theory to do, other than to list the true formulas of the form LP by
brute stipulation.

If we confine our attention to ideally rational agents, however, much
more structure emerges. In fact, we can show that stable autoepis-
temic theories can be simply characterized by Kripke-style possible-
world models for modal logic (1971). For our purposes, what we need
to recall about a Kripke structure is that it contains a set of possible
worlds and an accessibility relation between pairs of worlds. The truth
of a formula is defined relative to a world, and conforms to the usual
truth recursion for prepositional logic. A formula of the form LP is
true in a world W just in case P is true in every world accessible from
W. Kripke structures in which the accessibility relation is an equiva-
lence relation are called S5 structures, and the S5 structures that will
be of interest to us are those in which every world is accessible from
every world. We will call these the complete S5 structures. Our major
result is that the sets of formulas that are true in every world of some
complete S5 structure are exactly the stable autoepistemic theories.
(This result has been obtained independently by Halpern and Moses
(1984) and by Melvin Fitting (personal communication)).

Theorem 3 T is the set of formulas that are true in every world of
some complete S5 structure if and only if T is a stable autoepistemic
theory.

Proof. Suppose T is the set of formulas true in every world of a complete
S5 structure. By the soundness of prepositional logic, T is closed under
tautological consequence. By the truth rule for L, LP is true in every
world just in case P is true in every world; therefore LP 6 T if and
only if P € T. Furthermore, by the truth rule for L, LP is false in
every world just in case P is false in some world; so ->LP € T if and
only if P $. T. Therefore T is stable. In the opposite direction, suppose
that T is stable. Let T' be the set of formulas of T that contain no
occurrences of L. We will call these the objective formulas of T. Since
T is closed under tautological consequence, T' will also be closed under
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tautological consequence. Consider the set of all models of T' and the
complete S5 structure in which each of these models defines a possible
world. T' will contain exactly the objective formulas true in every world
in this model; hence, T' will contain precisely the objective formulas of
the stable autoepistemic theory T" defined by this S5 structure. But
by a previous result (Chapter 6, Theorem 2), stable theories containing
the same objective formulas are identical, so T must be the same as
T". Hence, T is the set of formulas true in every world of a complete
S5 structure. D

Given this result, we can characterize any autoepistemic interpre-
tation of any stable theory by an ordered pair consisting of a complete
S5 structure (to specify the agent's beliefs) and a prepositional truth
assignment (to specify what is actually true in the world). Such a
structure (K, V) defines an autoepistemic interpretation of the theory
T consisting of all the formulas that are true in every world in K. A for-
mula of T is true in (K, V) if it is true according to the standard truth
recursion for prepositional logic, where the prepositional constants are
true in (K, V) if and only if they are true in V, and the formulas of
the form LP are true in (K, V) if and only if they are true in every
world in K (using the truth rules for Kripke structures). We will say
that (K, V) is a possible-world interpretation of T and, if every formula
of T is true in (K, V), we will say that (K, V) is also a possible-world
model of T. In view of the preceding theorem, it should be obvious
that for every autoepistemic interpretation or autoepistemic model of
a stable theory there is a corresponding possible-world interpretation
or possible-world model, and vice versa.

Theorem 4 // (K, V) is a possible-world interpretation of T, then
(K, V) will be a possible-world model of T if and only if the truth as-
signment V is consistent with the truth assignment provided by one of
the possible worlds in K (i.e., if the actual world is one of the worlds
that are compatible with what the agent believes).

Proof. If V is compatible with one of the worlds in K, then any prepo-
sitional constant that is true in all worlds in K will be true in V.
Therefore, any formula that comes out true in all worlds in K will also
come out true in (K, V), and (K, V) will be a possible-world model of
T. In the opposite direction, suppose that V is not compatible with any
of the worlds in K. Then, for each world W in K, there will be some
prepositional constant that W and V disagree on. Take that constant
or its negation, whichever is true in W, plus the corresponding formu-
las for all other worlds in K, and form their disjunction. (This will be
a finite disjunction, provided there are only finitely many prepositional



150 / LOGIC AND REPRESENTATION

constants in the language.) This disjunction will be true in every world
in K , so it will be a formula of T, but it will be false in V. Therefore,
(K, V) will not be a possible-world model of T. D

7.4 Applications of Possible- World Semantics
One of the problems with our original presentation of autoepistemic
logic was that, since both the logic and its semantics were defined
nonconstructively, we were unable to easily prove the existence of sta-
ble expansions of nontrivial sets of premises. With the finite models
provided by the possible-world semantics for autoepistemic logic, this
becomes quite straightforward. For instance, we claimed (see Chap-
ter 6) that the set of premises {->LP D Q,->LQ D P] has two stable
expansions — one containing P but not Q, and the other containing Q
but not P — but we were unable to do more than give a plausibility
argument for that assertion. We can now demonstrate this fact quite
rigorously.

Consider the stable theory T, generated by the complete S5 struc-
ture that contains exactly two worlds, {P, Q} and {P, ->Q}. (We will
represent a possible world by the set of prepositional constants and
negations of prepositional constants that are true in it.) The possible-
world interpretations of T will be the ordered pairs consisting of this
S5 structure and any prepositional truth assignment. Consider all the
possible-world interpretations of T in which -iLP D Q and -iLQ D P
are both true. By exhaustive enumeration, it is easy to see that these
are exactly

Since, in each case, the actual world is one of the worlds that
are compatible with everything the agent believes, each of these is
a possible-world model of T. Therefore, T is sound with respect to
{->LP D Q,^LQ D P}. Since T is stable and includes {->LP D Q,
->LQ D P} (note that both these formulas are true in all worlds in the
S5 structure), T is a stable expansion of A. Moreover, it is easy to see
that T contains P but not Q. A similar construction yields a stable
expansion of T that contains Q but not P.

On the other hand, if both P and Q are to be in a theory T, the
corresponding S5 structure contains only one world, {P, Q}. But then
({{P, Q}}, {~>P, "'Q}) is a possible-world interpretation of T in which
->LP D Q and -<LQ 3 P are both true, but some of the formulas of T
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are not (P and Q, for instance). Hence, if T contains both P and Q,
T is not a stable expansion of {->LP D Q, -*LQ D P}.





8

Autoepistemic Logic Revisited

"Semantical Considerations on Nonmonotonic Logic" (see Chapter 6)
started off to be a short commentary of a methodological/philosophical
character on McDermott and Doyle's work on nonmonotonic logics
(McDermott and Doyle, 1980; McDermott, 1982). When I started writ-
ing the paper, I didn't understand the technical details of McDermott
and Doyle's logics very well, but I knew that they had some peculiar
and unintuitive properties, and I believed that these might be related
to what I saw as some methodological problems in their approach. The
principal problem I saw was in trying to model jumping to conclusions
by default with a logic whose notion of inference is guaranteed by its
semantics to be truth-preserving. To drive home the point, I tried to
distinguish between default reasoning and what I called "autoepistemic
reasoning," or reasoning about one's own beliefs. (To be linguistically
pure, I should have called it "autodoxastic reasoning," but in all hon-
esty, that just didn't have the same ring to it.) I won't go any further
into the details here, because that short methodological commentary
survives as part (Section 6.2) of what turned out to be a work of much
broader scope. As I studied McDermott and Doyle's papers in more
detail, I discovered that the problematical features of their logics had
technical remedies that could be motivated within a framework based
on autoepistemic reasoning. Therefore, I called my reconstruction of
nonmonotonic logic "autoepistemic logic." The result was a simple and
elegant logic that both explained and eliminated many of the unintu-
itive properties of McDermott and Doyle's logics, and that also turned
out to provide a foundation for a substantial amount of further work.

This material was first presented at the 1983 International Joint
Conference on Artificial Intelligence (although it was not published in

This chapter previously appeared in Artificial Intelligence, Vol. 25, Nos. 1-2, 1993,
and is reprinted with the permission of the publisher, Elsevier, Amsterdam.
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Artificial Intelligence until 1985). In 1984,1 presented a second paper
(see Chapter 7), providing a possible-world semantics for autoepistemic
logic. The original work had been based on a syntactic notion of belief:
The beliefs of an agent were characterized simply by an arbitrary list
of formulas. The original paper went on to develop a theory of an ideal
autoepistemic reasoner, but the basic framework could be applied to
any reasoner, ideal or not. By confining its scope to ideal reasoners, the
second paper is able to develop a more structured model theory that
makes concrete examples much easier to present. In particular, in the
original framework, the characterization of an ideal reasoner required
an infinite number of formulas in the syntactic model, since an ideal
reasoner always has an infinite number of beliefs. With the possible-
world framework, however, the beliefs of an ideal reasoner based on
simple premises can be characterized by a simple, finite model, which
makes it easy to rigorously demonstrate the existence of autoepistemic
theories having particular properties.

The publication of these two papers was followed by considerable
activity by other researchers. Much of this work attempts to relate
autoepistemic logic to other formalisms. This literature has become
far too extensive to catalogue here, but some of the more interest-
ing papers include Konolige's (1988) and Marek and Truszczynski's
(1989) studies of the relationship between autoepistemic logic and de-
fault logic, Gelfond's (1987) and Gelfond and Lifschitz's (1988) work
on the relation of autoepistemic logic to negation-as-failure in logic
programming, and Przymusinski's (1991) grand unification of three-
valued forms of all the major formalisms for nonmonotonic reasoning
using the "well-founded semantics" for logic programming. In addition,
Shvarts (1990) has gone back to look more closely at the relationship
between autoepistemic logic and McDermott's (1982) nonmonotonic
modal logic. Shvarts has shown that autoepistemic logic does, in fact,
fall within McDermott's framework and would be nonmonotonic K45,
or nonmonotonic weak S5, to use the terminology of "Semantical Con-
siderations." McDermott, however, looked only at nonmonotonic T,
S4, and S5, and so missed out on the appropriate logic for the au-
toepistemic interpretation of the modal operators.

To me, the most interesting open problems connected with au-
toepistemic logic concern its extension from prepositional logic to first-
order logic and the computational properties of the resulting systems.
The original papers on autoepistemic logic concerned only the preposi-
tional version of the logic. With the possible-world semantics, it is easy
to show that any prepositional autoepistemic theory is decidable, as
long as there are only finitely many proposition letters. For each such
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theory, there are only finitely many possible-world models, which are
themselves finite structures. So any questions of validity, satisfiability,
or consequence can be answered simply by enumerating and checking
all the models.

If autoepistemic logic is extended to first-order logic, but
"quantifying-in" is dissallowed—that is, if autoepistemic modal op-
erators are never applied to formulas with free variables—then all the
important syntactic and semantic properties of the logic seem to carry
over, but the computational properties change because the models are
no longer guaranteed to be finite, and there may be infinitely many
of them. In fact, it is easy to see that an autoepistemic version of an
essentially undecidable theory would not even be recursively enumer-
able. The reason is that formulas of the form ->LP will mean "P is not
provable." So if we could enumerate the formulas of the autoepistemic
theory, we would have a way to decide the formulas of (perhaps an ex-
tension of) the original theory. But if the original theory is essentially
undecidable (e.g., Peano arithmetic), this is known to be impossible.

The interesting question then, is what happens with an autoepis-
temic version of a decidable theory. If no extra axioms are added, then
it is easy to show that the theory remains decidable. If a finite number
of extra axioms are added, the theory remains decidable, as long as
quantifying-in is not allowed. This might seem to give us a lot, but
in fact such theories are not very expressive. Without quantifying-in,
the only way to express a generalization such as "My only brothers are
the ones I know about," is to use an axiom schema, which amounts to
adding an infinite number of axioms. If we allow axiom schemata or
other infinite sets of axioms, it is an open question whether the theory
remains decidable.

Finally, the extension of first-order autoepistemic logic to allow
quantifying-in remains unsettled. This is a conceptually difficult area,
because it is not completely clear what such formulas mean. There
is a long and unresolved debate in the philosophy of language about
the difference between "it is believed that something has the prop-
erty P" and "there is something that is believed to have the property
P." Yet that is exactly the distinction that would be marked in au-
toepistemic logic by the difference between L3xP(x) and 3xLP(x).
Levesque (1990) has proposed a logic containing an operator whose
intuitive interpretation is meant to be "all that I know," which could
be thought of as a metatheory for autoepistemic logic and which does
allow quantifying-in. However, Levesque has been unable to prove that
his logic is semantically complete. In any case, at this writing, I am
unaware of any published attempts to allow quantifying-in directly in
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autoepistemic logic, although a paper by Konolige (1991) on the sub-
ject is in press. It will be interesting to see whether a consensus can
be reached on the right approach to this problem.



Part IV

Semantics of Natural Language





Events, Situations, and Adverbs

9.1 Introduction
This chapter concerns a dispute about the relationship of sentences
to the events they describe, and how that relationship is manifested
in sentences with adverbial modifiers. The two sides to the argu-
ment might be called the "Davidsonian position" and the "situation
semantics position"; the former being chiefly represented by Donald
Davidson's well-known paper "The Logical Form of Action Sentences"
(Davidson 1967b) and the latter by John Perry's critique of Davidson's
view, "Situations in Action" (Perry 1983).1

The issue turns on Davidson's analysis of how a sentence such as
(1) is related to a similar sentence with an adverbial modifier, such as
(2).

(1) Jones buttered the toast.
(2) Jones buttered the toast in the bathroom.

Stated very informally, Davidson's position is this: (1) claims that an
event of a certain type took place, to wit, a buttering of toast by Jones,
and that (2) makes a similar claim but adds that the event took place
in the bathroom. Put this way, an advocate of situation semantics
could find little to complain about. Perry and Bar wise themselves say
rather similar things. The dispute is over the way that (1) and (2)
claim that certain events took place. Davidson suggests that the event
in question is, in effect, a hidden argument to the verb "butter". As
he would put it, the logical form of (1), (not analyzing the tense of the
verb or the structure of the noun phrase) is not

This research was supported in part by the Air Force Office of Scientific Research
under Contract No. F49620-85-K-0012 and in part by a gift from the System De-
velopment Foundation.

JThis dispute is a special case of a much deeper disagreement about semantics
that is treated in depth by Barwise and Perry in Situations and Attitudes (1983).
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(3) Buttered(Jones, the toast)

but rather

(4) 3z(Buttered(Jones, the toast, a;)),

where the variable x in (4) ranges over events. Adding the adverbial
modifier is then quite straightforward; it is simply an additional pred-
ication of the event:

(5) 3x(Buttered(Jones, the toast, x) A ln(the bathroom, x))

Perry objects strenuously to making the event described by the sen-
tence an explicit argument to the relation expressed by the verb. He
says:

If we ask what about the statement tells us that there was an
event of that type, the only reasonable answer is that the whole
statement does. It is not that part of the statement refers to an
event, and the other part tells us what it was like. Part of the
statement refers to Jones and the other part tells us what he did.
Both parts working together tell us that an event of a certain sort
occurred. The simple parts of the sentence refer to basic uniformi-
ties across events: Jones, buttering, and the toast. The way the
simple parts are put together in the sentence describes the event
(Perry 1983, p. 2).

Now it happens that Davidson considers but rejects an analysis
derived from Reichenbach (1947, p. 266-274) that is in the spirit of
Perry's objection. On this analysis, (1) and (2) would be rendered by
(6) and (7), respectively:

(6) 3x(x consists in the fact that Jones buttered the toast)
(7) 3x(x consists in the fact that Jones buttered the toast and

x took place in the bathroom)

This seems to meet Perry's objection in that it is the whole state-
ment "Jones buttered the toast" that gives rise to the reference to the
event, rather than a hidden argument to the verb. Davidson rejects
the analysis, however, on the grounds that its logical properties are
problematical. Davidson notes that, from the identity of the Morning
Star and Evening Star, we would want to be able to infer that, if I flew
my spaceship to the Morning Star, I flew my spaceship to the Evening
Star. On the analysis under consideration, this requires being able to
infer (9) from (8).

(8) 3x(x consists in the fact that I flew my spaceship to the
Morning Star)



EVENTS, SITUATIONS, AND ADVERBS / 161

(9) 3x(x consists in the fact that I flew my spaceship to the

Evening Star)

Davidson argues that the only reasonable logical principles that
would permit this inference would entail the identity of all actually
occuring events, which would be absurd. Barwise and Perry's (1983,
p. 24-26) rejoinder to this is that Davidson makes the unwarranted
assumption that logically equivalent sentences would have to be taken
to describe the same event, an idea they reject. Perry (1983) goes on
to develop, within the framework of situation semantics, an analysis of
event sentences and adverbial modification that is faithful to the idea
that, in general, it is an entire sentence that describes an event.2

To summarize the state of the argument: Davidson and Perry agree
that sentences describe events, but Davidson thinks that it is virtually
incoherent to view the event as being described, as it were, "holis-
tically" by the entire sentence, whereas Perry views it as "the only
reasonable answer." Barwise and Perry pinpoint where they think
Davidson's argument goes wrong, and Perry provides an analysis of
adverbial modification consistent with the holistic view.

9.2 Some Facts about Adverbs and Event
Sentences

One of the things that Perry's and Davidson's analyses have in common
is that neither is based on a very extensive survey of the linguistic data
to be explained by a theory of adverbial modification; their arguments
are based more on general logical and metaphysical concerns. A close
examination of the relevant linguistic phenomena, however, shows that
neither Davidson nor Perry have the story quite right, and that a more
complete account of adverbial modification has to include at least two
possible relations between sentences and events, one close to Davidson's
account and the other close to Perry's.

The key set of data we will try to explain is that there exists a
significant class of adverbs that can be used to modify event sentences
in two quite distinct ways:

(10) (a) John spoke to Bill rudely,
(b) Rudely, John spoke to Bill.

(11) (a) John stood on his head foolishly,
(b) Foolishly, John stood on his head.

2 We omit the details of Perry's own analysis of adverbial modification, as it is not
really needed for the points we wish to make.
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(12) (a) John sang strangely,
(b) Strangely, John sang.

The difference between the first and second member of each pair should
be clear. For instance, (lOa) suggests that it was the way that John
spoke to Bill was rude, while (lOb) says that the very fact that John
spoke to Bill was rude. Thus (lOa) leaves open the possibility that
John could have spoken to Bill without being rude, but (lOb) does not.
Similar remarks apply to the other pairs. With this class of adverbs,
in general, "X did Y Adj-\y" means that the way X did Y was Adj,
and "Adj-ly, X did Y" means that the fact that X did Y was Adj. We
will therefore say that the (a) sentences involve a "manner" use of the
adverb and that the (b) sentences involve a "fact" use.

One notable observation about the fact use of these adverbs is that
they are indeed "factive" in the sense that the truth of the sentence
with the adverb entails the truth of the sentence without the adverb.
This is in contrast to other "sentential" adverbs like "allegedly" or
"probably":

(13) Probably John likes Mary.
(14) John likes Mary

The truth of (13) would not necessarily imply the truth of (14). This
factivity extends to the adjective forms from which the adverbs derive:

(15) It was rude for John to speak to Bill.
(16) It was foolish for John to stand on his head.
(17) It was strange for John to sing a song.

Another significant fact is that with copular constructions, only the
fact use is possible; the manner use doesn't exist:

(18) Strangely, John is tall.
(19) *John is tall strangely.

Copular constructions accept the fact use of adverbs, as is shown by
(18). If we move the adverb to the end of the sentence to try to obtain
a manner interpretation as in (19), the sentence is unacceptable.

Finally, perhaps the most important logical difference between the
fact and manner uses of these adverbs is that the manner sentences are
extensional with respect to the noun phrases in the sentence, whereas
the fact sentences are not. That is, we may freely substitute coref-
erential singular terms in the manner sentences, but not in the fact
sentences. Suppose it is considered rude to speak to the Queen (un-
less, say, she speaks to you first), and suppose John is seated next
to the Queen. Then it could well be that (20) is true, while (21) is
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false, although they differ only in substituting one singular term for a
coreferring one.

(20) Rudely, John spoke to the Queen.
(21) Rudely, John spoke to the woman next to him.

Thus (21) can differ in truth-value from (20) because, on at least one
interpretation, it seems to entail that it was rude for John to speak
to the woman next to him, whoever she was, i.e., even if she were not
the Queen. The issue is somewhat complicated by the fact that these
sentences also exhibit the sort of de dicto/de re ambiguity common
to most nonextensional constructs. That is, (20) and (21) seem to be
open to an an additional interpretation that there is a certain woman,
whom we may identify either as the Queen or the woman next to John,
and that it was rude for John to speak to that particular woman.

On the other hand, it seems that (22) and (23) must have the
same truth-value on any interpretation, so long as the Queen and the
woman next to John are the same person. Moreover, no de dicto/de
re distinction seems to obtain.

(22) John spoke to the Queen rudely.
(23) John spoke to the woman next to him rudely.

Note, however, that (22) and (23) are not completely extensional in the
sense that first-order logic is extensional. That notion of extensionality
requires, not only intersubstitutivity of coreferring singular terms, but
also intersubstitutivity of sentences with the same truth-value. But
even if (24) and (25) have the same truth-value, it does not follow that
(26) and (27) do.

(24) John spoke to the Queen.
(25) John spoke to the Prince.
(26) John spoke to the Queen rudely.
(27) John spoke to the Prince rudely.

This sort of behavior is quite general with these adverbs. Exam-
ples similar to (20) through (27) can be constructed for "foolishly",
"strangely", and all the other adverbs in this class.

9.3 Situations and Events
Before we can give a semantic analysis of event sentences that accounts
for these observations, we must develop the framework within which
the analysis will be couched. As this will require technical notions of
situation and event, this section is devoted to explaining those con-
cepts.
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A word of caution is in order before proceeding further. The goal of
this exercise is semantic analysis of natural language, not the discov-
ery of Deep Metaphysical Truths. If we postulate situations or events
as entities in the world, it is not necessarily because we believe they
objectively exist, but because postulating them gives the most natural
analysis of the meanings of the class of sentences we are trying to ana-
lyze. Our real concern is to identify the metaphysics embedded in the
language, not to decide whether that metaphysics is true.

A second word of warning concerns our use of the term "situation".
This term is so closely identified with the work of Barwise and Perry,
that one might be misled into assuming that the theory of situations
assumed here is simply Barwise and Perry's theory. That is emphati-
cally not the case. Yet it seems so clear that both Barwise and Perry's
theory and the theory presented here are attempts to formalize a sin-
gle intuitive notion, that in the end it would probably be even more
misleading to employ a different term.

Situations and Propositions
Relatively little in the way of a theory of situations is actually needed
to construct an analysis of the linguistic data that we have presented.
We really need to say little more than (1) that situations are part of the
causal order of the world rather than an abstraction of it, and (2) that
situations are in one-to-one correspondence with true propositions. To
leave the theory of situations at this, however, would leave open so
many questions about what sort of objects situations and propositions
were that it might cast serious doubt over the application of the theory
to the analysis of event sentences.

In our theory, situations are simpler entities than in Barwise and
Perry's theory. For us, a situation is a piece of reality that consists
of an n-tuple of entities having an n-ary property or relation.3 Like
Barwise and Perry, then, we take properties to be first-class entities.
A proposition is simply an abstraction of a situation: a way that a
situation could be. We will assume that for every n-ary property and
every n-tuple of entities, there exists the proposition that those entities
satisfy that property. That is, suppose we have an individual John and
the property of being tall. If John is tall, then there is an actual
situation of John being tall. Even if John is not tall, however, there is
the abstract possibility of John being tall: i.e., there might have been
a John-being-tall situation, but as things turned out, there was not.

3We might want to add "at a spatio-temporal location", but we will ignore this
aspect of the problem, as the issue seems independent of the others considered here.
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This abstract possibility is what we take a proposition to be. A true
proposition is one that is the abstraction of an actual situation. We
can ask what would be the individuation criteria for situations and for
propositions in this theory, and while various answers are possible, the
most natural one would be that identity of the properties and each
pair of corresponding arguments are required for the identity of two
situations or propositions.

The theory so far satisfies both of the requirements that we previ-
ously placed on situations. They are part of the causal order of the
world, because they are taken to be pieces of reality, just as Barwise
and Perry take real situations to be. They are in one-to-one corre-
spondence with the true propositions, because they have been indi-
viduated in such a way that there is exactly one situation for every
proposition that accords with reality. What may be in doubt, how-
ever, is that there will be enough propositions to do the work that no-
tion normally does in semantics. Elsewhere (see Chapter 5), we show
how the theory can be extended to handle first-order quantification,
prepositional connectives, and prepositional attitude attributions, by
admitting propositions and prepositional functions among the entities
to which properties and relations can be applied.

To summarize the extensions briefly: Prepositional connectives be-
come properties of propositions. Negation, for example, would be a
unary property of propositions. A proposition has the negation prop-
erty just in case it is false. For every false proposition, there is an
actual situation of it being false, and for every proposition there is the
additional proposition that it is false. Conjunction, disjunction, etc.,
become binary relations between propositions. First-order quantifiers
become properties of functions from individuals to propositions.4 For
example, in standard logic "All men are mortal" is rendered as "Every-
thing is such that, if it is a man, then it is mortal." In our framework
this would be analyzed as the proposition: every individual is mapped
into a true proposition by the function that maps an entity into the
proposition that, if the entity is a man, then it is mortal.

Within this theory there is a natural semantics for first-order logic
with formulas taken to denote propositions, with distinct formulas de-
noting distinct propositions unless they can be made identical by re-
naming of variables. We will therefore use the notation of standard

4 A generalized quantifier treatment where quantifiers are considered to be binary
relations on pairs of properties is probably preferable, but we present the simpler
treatment in this chapter to be consistent with standard logic and with Davidson.
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logic freely in the rest of this chapter, but with the semantics sketched
here rather than the normal Tarskian semantics.

Situations and Events
The proceeding discussion makes an attempt to clarify the relation
between situations and propositions, but what of events? Although we
have claimed that situations are parts of the real world, they may seem
rather abstract. Events, on the other hand, may seem much more real
and familiar. For instance, if a bomb goes off, there seems little doubt
that there really is such a thing as the explosion. We can see it and
feel it, and it has undoubted causal effects. We will maintain, however,
that situations and events are intimately related; that, in fact, robust
large-scale events such as explosions consist of nothing more than the
sum of (literally) uncountably many simple situations.

Suppose an object moves from point PI to point PI between T\ and
TI. Consider the situation of the object being at PI at T\, the situation
of it being at PI at TI , and all of the situations of it being at some
intermediate point at the corresponding intermediate time. We claim
that the event of the object moving from PI to PI between T\ and
TI consists of nothing more than the sum of all these situations. The
argument is really quite simple: If all these situations exist—that is, if
the object is at P\ at T\ and at PI at T% and at all the intermediate
points at the corresponding intermediate times—then the movement
in question exists. Nothing more needs to be added to these states of
affairs for the moving event to exist; therefore it is gratuitous to assert
that the moving event consists of anything beyond these situations.

The only qualification that needs to be mentioned is that the verb
"consist" is used quite deliberately here, instead of the "be" of identity.
That is because, according to common sense, one and the same event
could have consisted of slightly different smaller events, and hence of a
slightly different set of situations. World War II would not have been a
different war merely if one fewer soldier had been killed. But this is no
different than the observation that changing one screw on a complex
machine does not make it a different machine. Thus we will say that
situations are the stuff out of which events are made, just as material
substances are the stuff out of which objects are made. The exact
identity criteria for events in terms of situations are likely to be just
as hard to define as for objects in terms of their material. But by the
same token, there is no reason to conclude that there is something to
an event over and above the situations it includes, any more than there
is to conclude that there is something to an object over and above the
material it is made of.
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9.4 The Analysis
With this framework behind us, let us look again at "Jones buttered
the toast." Perry begins his analysis by saying

"Jones" refers to Jones, "the toast" refers to some piece of toast,
and "buttered" refers to a relational activity, with the tense con-
straining the location (Perry 1983, p. 2).

This certainly seems unobjectionable. We have two objects and
a binary relation, ignoring tense, as we do throughout this chapter.
If the objects in question actually satisfy the relation, then there is
a corresponding situation. But how is this situation related to the
commonsense event of Jones buttering the toast? The buttering event
is surely a complex motion, so by the argument of the last section it
must consist of countless situations of the butter, the toast, the knife,
Jones's arm, etc. being in certain positions at certain times. According
to the identity criterion we have given for situations, those situations
and the event which is constituted by their sum are distinct from the
single situation of the buttering relation holding between Jones and
the toast.

Clearly the buttering situation and the buttering event are closely
related, but according to the principles we have adopted, they cannot
be one and the same. Davidson's analysis of event sentences turns out
to provide a very attractive way of expressing the relation between
them. If we analyze an event sentence as asserting the existence of
an event, as he suggests, then according to our semantic framework,
the sentence asserts that a certain property of events is instantiated.5

In the buttering toast example, the sentence says that the property of
being a buttering of the toast by Jones is instantiated. The situation
that the whole sentence describes, then, is the situation of the property
of being a buttering of the toast by Jones being instantiated. Thus, on
the one hand, we have a situation of a certain property of events being
instantiated, and on the other hand we have the event that actually
instantiates the property.

On first exposure, this may seem like an artificial distinction im-
posed to solve an artificial problem. In point of fact, however, this
distinction is exactly what is needed to explain the two types of adver-
bial modification discussed in Section 9.2. Moreover, all the data pre-
sented there can then be quite straightforwardly accounted for within
the framework we have developed.

5 Strictly speaking, the theory says the sentence asserts there is an event mapped
into a true proposition by a certain prepositional function, but for simplicity we
will paraphrase this in terms of the corresponding property of events.
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Let us look again at perhaps the simplest pair of sentences illus-
trating these two types of modification:

(12) (a) John sang strangely,
(b) Strangely, John sang.

The manner use of the adverb in (12a) seems to fit quite comfort-
ably within the Davidsonian pattern of treating adverbs as making
additional predications of the event whose existence is asserted by the
basic sentence. If John sang strangely, it seems most definitely to be
the singing event itself that is strange. With (12b), though, the singing
event itself may be quite ordinary as singing events go. It seems to be
the fact that there is any singing by John at all that is strange. But
this is precisely what we are saying if we analyze (12b) as predicating
strangeness of the situation of the property of being-a-singing-by-John
being instantiated.

We can represent this symbolically by making a minor extension
to ordinary logic; (12a) can be represented in the way Davidson has
already suggested.

(28) 3x(Sang(John, x) A Strange(a;))

The extension is required to represent the fact use of the adverb in
(12b). That sentence attributes strangeness to a situation, and since
we have decided to let formulas denote propositions, we do not yet have
any notation for situations. One remedy for this is to let situations be
in the domain of individuals, as Davidson already assumes events to be,
and to introduce a relation "Fact" that holds between a situation and
the corresponding true proposition. The name "Fact" is chosen because
this relation quite plausibly provides the semantics of the locution "the
fact that P." Note that while "Fact" denotes a relation between a
situation and a proposition in our semantics, it will be an operator
whose first argument is a singular term and whose second argument is
a formula, rather than an ordinary relation symbol. (12b) would then
be represented by

(29) 32/(Fact(y,3a:(Sang(John, x))) A Strange(7/))

This says literally that there exists a fact (or situation) of there being
a singing-by-John event and that fact is strange, or more informally,
the fact that John sang is strange.

If there is a distinct situation corresponding to every true propo-
sition, it may be worrying to allow situations into the domain of in-
dividuals. There are various foundational approaches that could be
used to justify this, but we will merely note that the logical principles
needed for our use of situations are so weak that no inconsistency seems
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threatened. The only general principle that seems appropriate is the
schema

(30) 3y(Fact(j,,P)) = P

This schema can easily be shown to be consistent by giving "Fact" a
simple syntactic interpretation that makes the schema true.

Under this analysis of event sentences and adverbial modification,
all the other data are easily explained. The factivity of the fact use
of adverbs and their related adjectives arises because the adverbs and
adjectives express properties of situations, which are real pieces of the
world that do not exist unless the corresponding propositions are true.

Copular sentences do not exhibit the fact/manner distinction in
their adverbial modifiers, because they do not involve event variables;
only the overall situation is available for the adverb to be predicated
of. This provides one answer to Perry's objection to the Davidsonian
treatment of event sentences: "The idea that 'Sarah was walking' gets a
cosmically different treatment than 'Sarah was agile' strikes me as not
very plausible." (Perry 1983, p. 3) The first of these can take manner
adverbials, and the second cannot, a fact that seems to require some
difference in analysis to explain.

The extensionality with respect to noun phrases of sentences with
manner adverbials follows directly from Davidson's original proposal.
The noun phrases do not occur within the adverbial's ultimate scope,
which is only the event variable. Changing the entire sentence, as in
(24) through (27), changes the event, though, so we do not get that
sort of extensionality.

The nonextensionality of sentences with fact adverbials follows from
the fact that changing a description of a participant in an event changes
the particular property of the event that goes into determining what sit-
uation is being discussed, even though the event itself does not change.
If we compare (20) and (21),

(20) Rudely, John spoke to the Queen.
(21) Rudely, John spoke to the woman next to him.

we see that the two sentences describe a single event, John's speaking
to the Queen, who is also the woman next to him. The sentences
describe the event in two different ways, though, so they ascribe two
different properties to it.6 If we leave out the adverb, the unmodified
sentences assert that these two properties of events are instantiated.

6To make sure these two properties do come out nonidenticaHn our semantics, we
need to treat "the" as a quantifier. There are many independent reasons for doing
this, however.
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Since these properties are different, the situation of one of them being
instantiated is a different situation from that of the other one being
instantiated. Hence one of those situations might be rude (of John)
without the other one being so.

9.5 Conclusions
Let us return to Davidson's and Perry's analyses of event sentences, to
see how they fare in the light of the data and theory presented here.
We have adopted Davidson's analysis of manner adverbials wholesale,
so we are in complete agreement with him on that point. We sharply
disagree with him, however, on the possibility of associating event-
like entities, i.e., situations, with whole sentences, and we find them
absolutely necessary to account for the fact use of adverbs, a case
Davidson fails to consider. Perry, on the other hand, rightly takes
Davidson to task for his faulty argument against associating situations
with whole sentences, but then fails to look closely enough at the data
to see that something like Davidson's analysis is still needed to account
for the detailed facts about manner adverbials.
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Unification-Based Semantic
Interpretation

10.1 Introduction
Over the past several years, unification-based formalisms (Shieber
1986) have come to be widely used for specifying the syntax of nat-
ural languages, particularly among computational linguists. It is less
widely realized by computational linguists that unification can also be
a powerful tool for specifying the semantic interpretation of natural
languages. This chapter shows how unification can be used to specify
the semantic interpretation of natural-language expressions, including
problematical constructions involving long-distance dependencies. The
chapter also sketches a theoretical foundation for unification-based se-
mantic interpretation, and it compares the unification-based approach
with more conventional techniques based on the lambda calculus.

Many of the techniques described here are fairly well known among
natural-language researchers working with logic grammars, but have
not been extensively discussed in the literature, perhaps the only sys-
tematic presentation being that of Pereira and Shieber (1987). This
chapter goes into many issues in greater detail than do Pereira and
Shieber, however, and sketches what may be the first theoretical anal-
ysis of unification-based semantic interpretation.

The research reported in this chapter was begun at SRI International's Cambridge
Computer Science Research Centre in Cambridge, England, supported by a grant
from the Alvey Directorate of the U.K. Department of Trade and Industry and
by the members of the NATTIE consortium (British Aerospace, British Telecom,
Hewlett Packard, ICL, Olivetti, Philips, Shell Research, and SRI). The work was
continued at the SRI Artificial Intelligence Center and the Center for the Study
of Language and Information, supported in part by a gift from the Systems De-
velopment Foundation and in part by a contract with the Nippon Telegraph and
Telephone Corporation.
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We begin by reviewing the basic ideas behind unification-based
grammar formalisms, which will also serve to introduce the style of
notation to be used throughout the chapter. The notation is that used
in the Core Language Engine (CLE) developed by SRI's Cambridge
Computer Science Research Center in Cambridge, England, a system
whose semantic-interpretation component makes use of many of the
ideas presented here (Alshawi 1992).

Fundamentally, unification grammar is a generalization of context-
free phrase structure grammar in which grammatical-category expres-
sions are not simply atomic symbols, but have sets of features with
constraints on their values. Such constraints are commonly specified
using sets of equations. Our notation uses equations of a very sim-
ple format—just f eature=value—and permits only one equation per
feature per constituent, but we can indicate constraints that would be
expressed in other formalisms using more complex equations by letting
the value of a feature contain a variable that appears in more than
one equation. The CLE is written in Prolog, to take advantage of the
efficiency of Prolog unification in implementing category unification,
so our grammar rules are written as Prolog assertions, and we fol-
low Prolog conventions in that constants, such as category and feature
names, start with lowercase letters, and variables start with uppercase
letters. As an example, a simplified version of the rule for the basic
subject-predicate sentence form might be written in our notation as

(1) syn(s_np_vp,
Cs:[type=tensed],
np:[person=P,num=N],
vp:[type=tensed,person=P,num=N]]).

The predicate syn indicates that this is a syntax rule, and the first
argument s_np_vp is a rule identifier that lets us key the semantic-
interpretation rules to the syntax rules. The second argument of syn
is a list of category expressions that make up the content of the rule,
the first specifying the category of the mother constituent and the rest
specifying the categories of the daughter constituents. This rule, then,
says that a tensed sentence (s: [type=tensed]) can consist of a noun
phrase (np) followed by a verb phrase (vp), with the restrictions that
the verb phrase must be tensed (type=tensed), and that the noun
phrase and verb phrase must agree in person and number—that is,
the person and num features of the noun phrase must have the same
respective values as the person and num features of the verb phrase.

These constraints are checked in the process of parsing a sentence
by unifying the values of features specified in the rule with the values of
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features in the constituents found in the input. Suppose, for instance,
that we are parsing the sentence Mary runs using a left-corner parser.
If Mary is parsed as a constituent of category

np: [person=3rd,mun=sing] ,

then unifying this category expression with

np:[person=P,num=N]

in applying the sentence rule above will force the variables P and H to
take on the values 3rd and sing, respectively. Thus when we try to
parse the verb phrase, we know that it must be of the category

vp:[type=tensed,person=3rd,num=sing].

Our notation for semantic-interpretation rules is a slight general-
ization of the notation for syntax rules. The only change is that in
each position where a syntax rule would have a category expression, a
semantic rule has a pair consisting of a "logical-form" expression and
a category expression, where the logical-form expression specifies the
semantic interpretation of the corresponding constituent. A semantic-
interpretation rule corresponding to syntax rule (1) might look like the
following:

(2) sem(s_np_vp,
[(apply(Vp,Hp),s:[]) (

(Ip.npiQ),
(Vp.vp:[])]).

The predicate sem means that this is a semantic-interpretation rule,
and the rule identifier s_np_vp indicates that this rule applies to struc-
tures built by the syntax rule with the same identifier. The list of pairs
of logical-form expressions and category expressions specifies the log-
ical form of the mother constituent in terms of the logical forms and
feature values of the daughter constituents. In this case the rule says
that the logical form of a sentence generated by the s_np_vp rule is
an applicative expression with the logical form of the verb phrase as
the functor and the logical form of the noun phrase as the argument.
(The dummy functor apply is introduced because Prolog syntax does
not allow variables in functor position.) Note that there are no feature
restrictions on any of the category expressions occurring in the rule.
They are unnecessary in this case because the semantic rule applies
only to structures built by the s_np_vp syntax rule, and thus inherits
all the restrictions applied by that rule.
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10.2 Functional Application vs. Unification
Example (2) is typical of the kind of semantic rules used in the standard
approach to semantic interpretation in the tradition established by
Richard Montague (1974b, Dowty, Wall, and Peters 1981). In this
approach, the interpretation of a complex constituent is the result of
the functional application of the interpretation of one of the daughter
constituents to the interpretation of the others.

A problem with this approach is that if, in a rule like (2), the verb
phrase itself is semantically complex, as it usually is, a lambda expres-
sion has to be used to express the verb-phrase interpretation, and then
a lambda reduction must be applied to express the sentence interpreta-
tion in its simplest form (Dowty, Wall, and Peters 1981, p. 98-111). To
use (2) to specify the interpretation of the sentence John likes Mary,
the logical form for John could simply be John, but the logical form
for likes Mary would have to be something like X\like(X,mary). (The
notation Var\Body for lambda expressions is borrowed from Lambda
Prolog (Miller and Nadathur 1986).) The logical form for the whole
sentence would then be apply(X\like(X,mary), John), which must be
reduced to yield the simplified logical form like(john,mary).

Moreover, lambda expressions and the ensuing reductions would
have to be introduced at many intermediate stages if we wanted to
produce simplified logical forms for the interpretations of complex con-
stituents such as verb phrases. If we want to accommodate modal
auxiliaries, as in John might like Mary, we have to make sure that the
verb phrase might like Mary receives the same type of interpretation
as like(s) Mary in order to combine properly with the interpretation
of the subject. If we try to maintain functional application as the only
method of semantic composition, then it seems that the simplest logi-
cal form we can come up with for might like Mary is produced by the
following rule:

(3) sem(vp_aux_vp,
C(X\apply(Aux,apply(Vp,X)),vp:C]),
(Aux.aux:[]),
(Vp.vp:[])]).

Applying this rule to the simplest plausible logical forms for might and
like Mary would produce the following logical form for might like Mary:

X\apply(might,(apply(Y\like(Y,mary),X)))

which must be reduced to obtain the simpler expression

X\might(like(X,mary))
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When this expression is used in the sentence-level rule, another reduc-
tion is required to eliminate the remaining lambda expression. The
part of the reduction step that gets rid of the apply functors is to
some extent an artifact of the way we have chosen to encode these
expressions as Prolog terms, but the lambda reductions are not. They
are inherent in the approach, and normally each rule will introduce at
least one lambda expression that needs to be reduced away.

It is, of course, possible to add a lambda-reduction step to the
interpreter for the semantic rules, but it is both simpler and more
efficient to use the feature system and unification to do explicitly what
lambda expressions and lambda reduction do implicitly—assign a value
to a variable embedded in a logical-form expression. According to this
approach, instead of the logical form for a verb phrase being a logical
predicate, it is the same as the logical form of an entire sentence, but
with a variable as the subject argument of the verb and a feature on
the verb phrase having that same variable as its value. The sentence
interpretation rule can thus be expressed as

(4) sem(s_np_vp,
C(Vp,s:[]) ,
(HP,np:[]),
(Vp.vp:[subjval=Np])]),

which says that the logical form of the sentence is just the logical form
of the verb phrase with the subject argument of the verb phrase unified
with the logical form of the subject noun phrase. If the verb phrase
likes Mary is assigned the logical-form/category-expression pair

(like(X,mary),vp:[subjval=X]),

then the application of this rule will unify the logical form of the subject
noun phrase, say John, directly with the variable X in like(X,mary)
to immediately produce a sentence constituent with the logical form
like(john,mary).

Modal auxiliaries can be handled equally easily by a rule such as

(5) sem(vp_aux_vp,
[(Aux.vp:[subjval=S]),
(Aux,aux:Cargval=Vp]),
(Vp,vP:[subjval=S])]).

If might is assigned the logical-form/category-expression pair

(might(A),aux:[argval=A]),

then applying this rule to interpret the verb phrase might like Mary
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will unify A in might(A) with like(X,mary) to produce a constituent
with the logical-form/category-expression pair

(might(1ike,X,mary),vp:[sub j val=X]),

which functions in the sentence-interpretation rule in exactly the same
way as the logical-form/category-expression pair for like Mary.

10.3 Are Lambda Expressions Ever Necessary?
The approach presented above for eliminating the explicit use of lamb-
da expressions and lambda reductions is quite general, but it does not
replace all possible uses of lambda expressions in semantic interpreta-
tion. Consider the sentence John and Bill like Mary. The simplest
logical form for the distributive reading of this sentence would be

and(like(John,mary).like(bill,mary)).

If the verb phrase is assigned the logical-form/category-expression pair

(like(X,mary),vp:[subjval=X]),

as we have suggested, then we have a problem: Only one of John
or bill can be directly unified with X, but to produce the desired
logical form, we seem to need two instances of like(X,mary), with
two different instantiations of X.

Another problem arises when a constituent that normally functions
as a predicate is used as an argument instead. Common nouns, for
example, are normally used to make direct predications, so a noun like
senator might be assigned the logical-form/category-expression pair

(senator(X),nbar:[argval=X])

according to the pattern we have been following. (Note that we do
not have "noun" as a syntactic category; rather, a common noun is
simply treated as a lexical "n-bar.") It is widely recognized, however,
that there are "intensional" adjectives and adjective phrases, such as
former, that need to be treated as higher-level predicates or operators
on predicates, so that in an expression like former senator, the noun
senator is not involved in directly making a predication, but instead
functions as an argument to former. We can see that this must be the
case, from the observation that a former senator is no longer a senator.
The logical form we have assigned to senator, however, is not literally
that of a predicate, however, but rather of a complete formula with a
free variable. We therefore need some means to transform this formula
with its free variable into an explicit predicate to be an argument of
former. The introduction of lambda expressions provides the solution
to this problem, because the transformation we require is exactly what
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is accomplished by lambda abstraction. The following rule shows how
this can be carried out in practice:

(6) sem(nbar_adj_nbar,
[(Adjp,nbar:[argval=A]),
(Adjp,adjp:[type=intensional,argvall=X\Nbar,

argva!2=A]),
(Nbar,nbar:[argval=X])]).

This rule requires that the logical-form/category-expression pair
assigned to an intensional adjective phrase be something like

(former(P,Y),adjp:[type=intensional,argvall=P,
argva!2=Y]),

where former(P.Y) means that Y is a former P. The daughter nbar
is required to be as previously supposed. The rule creates a lambda
expression, by unifying the bound variable with the argument of the
daughter nbar and making the logical form of the daughter nbar the
body of the lambda expression, and unifies the lambda expression with
the first argument of the adjp. The second argument of the adjp be-
comes the argument of the mother nbar. Applying this rule to former
senator will thus produce a constituent with the logical-form/category-
expression pair

(former(X\senator(X),Y),nbar:[argval=Y]).

This solution to the second problem also solves the first problem.
Even in the standard lambda-calculus-based approach, the only way in
which multiple instances of a predicate expression applied to different
arguments can arise from a single source is for the predicate expression
to appear as an argument to some other expression that contains mul-
tiple instances of that argument. Since our approach requires turning a
predicate into an explicit lambda expression if it is used as an argument,
by the time we need multiple instances of the predicate, it is already
in the form of a lambda expression. We can show how this works by
encoding a Montagovian (Dowty, Wall, Peters 1981) treatment of con-
joined subject noun phrases within our approach. The major feature
of this treatment is that noun phrases act as higher-order predicates
of verb phrases, rather than the other way around as in the simpler
rules presented in Sections 10.1 and 10.2. In the Montagovian treat-
ment, a proper noun such as John is given an interpretation equivalent
to P\P(john), so that when we apply it to a predicate like run in
interpreting John runs we get something like apply(P\P(jonn) ,run)
which reduces to run(john). With this in mind, consider the following
two rules for the interpretation of sentences with conjoined subjects:
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(7) sem(np_np_conj_np
[(Conj,np:[argval=P]),
(Hpl,np:[argval=P]),
(Conj,conj:[argvall=Npl,argva!2=Np2]),
(Hp2,np:[argval=P])]).

(8) sem(s_np_vp,
C(Ip.s:D),
(Np.np:[argval=X\Vp]),
(Vp,vp:[subjval=X])]).

The first of these rules gives a Montagovian treatment of conjoined
noun phrases, and the second gives a Montagovian treatment of simple
declarative sentences. Both of these rules assume that a proper noun
such as John would have a logical-form/category-expression pair like

(apply(P,john),np:[argval=P]).

In (7) it is assumed that the conjunction and would have a logical-
form/category-expression pair like

(and(Pl,P2) ,conj : [argvaH=Pl,argval2=P2] ) .

In (7) the logical forms of the two conjoined daughter nps are unified
with the two arguments of the conjunction, and the arguments of the
daughter nps are unified with each other and with the single argument
of the mother np. Thus applying (7) to interpret John and Bill yields
a constituent with the logical-form/category-expression pair

(and(apply(P,John),apply(P,bill)),np:[argval=P]).

In (8) an explicit lambda expression is constructed out of the logical
form of the vp daughter in the same way a lambda expression was
constructed in (6), and this lambda expression is unified with the ar-
gument of the subject np. For the sentence John and Bill like Mary,
this would produce the logical form

and(apply(X\like(X,mary),John),
apply(X\like(X,mary),bill)),

which can be reduced to and(like(john,mary),like(bill,mary)).

10.4 Theoretical Foundations of Unification-Based
Semantics

The examples presented above ought to be convincing that a unifica-
tion-based formalism can be a powerful tool for specifying the inter-
pretation of natural-language expressions. What may not be clear
is whether there is any reasonable theoretical foundation for this ap-
proach, or whether it is just so much unprincipled "feature hacking."
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The informal explanations we have provided of how particular rules
work, stated in terms of unifying the logical form for constituent X
with the appropriate variable in the logical form for constituent Y,
may suggest that the latter is the case. If no constraints are placed on
how such a formalism is used, it is certainly possible to apply it in ways
that have no basis in any well-founded semantic theory. Nevertheless,
it is possible to place restrictions on the formalism to ensure that the
rules we write have a sound theoretical basis, while still permitting the
sorts of rules that seem to be needed to specify the semantic interpre-
tation of natural languages.

The main question that arises in this regard is whether the seman-
tic rules specify the interpretation of a natural-language expression in
a compositional fashion. That is, does every rule assign to a mother
constituent a well-defined interpretation that depends solely on the
interpretations of the daughter constituents? If the interpretation of
a constituent is taken to be just the interpretation of its logical-form
expression, the answer is clearly "no." In our formalism the logical-
form expression assigned to a mother constituent depends on both the
logical-form expressions and the category expressions assigned to its
daughters. As long as both category expressions and logical-form ex-
pressions have a theoretically sound basis, however, there is no reason
that both should not be taken into account in a semantic theory; so,
we will define the interpretation of a constituent based on both its cat-
egory and its logical form. Taking the notion of interpretation in this
way, we will explain how our approach can be made to preserve compo-
sitionality. First, we will show how to give a well-defined interpretation
to every constituent; then, we will sketch the sort of restrictions on the
formalism one needs to guarantee that any interpretation-preserving
substitution for a daughter constituent also preserves the interpreta-
tion of the mother constituent.

The main problem in giving a well-defined interpretation to ev-
ery constituent is how to interpret a constituent whose logical-form
expression contains free variables that also appear in feature values
in the constituent's category expression. Recall the rule we gave for
combining auxiliaries with verb phrases:

(5) sem(vp_aux_vp,
[(Aux.vp:[subjval=S]),
(Aux,aux:[argval=Vp]),
(Vp,vp:[subjval=S])]).

This rule accepts daughter constituents having logical-form/category-
expression pairs such as
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(might(A),aux:[argval=A])

and

(like(X,mary),vp:[subjval=X])

to produce a mother constituent having the logical-form/category-
expression pair

(might(like,X,mary),vp:Csubjval=X] .

Each of these pairs has a logical-form expression containing a free vari-
able that also occurs as a feature value in its category expression. The
simplest way to deal with logical-form/category-expression pairs such
as these is to regard them in the way that syntactic-category expres-
sions in unification grammar can be regarded—as abbreviations for the
set of all their well-formed fully instantiated substitution instances.

To establish some terminology, we will say that a logical-form/ca-
tegory-expression pair containing no free-variable occurrences has a
"basic interpretation," which is simply the ordered pair consisting of
the interpretation of the logical-form expression and the interpretation
of the category expression. Since there are no free variables involved,
basic interpretations should be unproblematic. The logical-form ex-
pression will simply be a closed well-formed expression of some ordi-
nary logical language, and its interpretation will be whatever the usual
interpretation of that expression is in the relevant logic. The category
expression can be taken to denote a fully instantiated grammatical
category of the sort typically found in unification grammars. The only
unusual property of this category is that some of its features may have
logical-form interpretations as values, but, as these will always be inter-
pretations of expressions containing no free-variable occurrences, they
will always be well defined.

Next, we define the interpretation of an arbitrary logical-form/ca-
tegory-expression pair to be the set of basic interpretations of all its
well-formed substitution instances that contain no free-variable oc-
currences. For example, the interpretation of a constituent with the
logical-form/category-expression pair

(might(like,X,mary),vp:[subjval=X])

would consist of a set containing the basic interpretations of such pairs
as

(might(like,john.mary),vp:[subjval=John]),
(might(like,bill,mary),vp:[subjval=bill]),

and so forth.
This provides well-defined interpretation for every constituent, so
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we can now consider what restrictions we can place on the formal-
ism to guarantee that any interpretation-preserving substitution for
a daughter constituent also preserves the interpretation of its mother
constituent. The first restriction we need rules out constituents that
would have degenerate interpretations: No semantic rule or semantic
lexical specification may contain both free and bound occurrences of
the same variable in a logical-form/category-expression pair.

To see why this restriction is needed, consider the logical-form/ca-
tegory-expression pair

(every(X,man(X),die(X)),np:Cboundvar=X,bodyval=die(X)] ),

which might be the substitution instance of a daughter constituent
that would be selected in a rule that combines noun phrases with verb
phrases. The problem with such a pair is that it does not have any well-
formed substitution instances that contain no free-variable occurrences.
The variable X must be left uninstantiated in order for the logical-form
expression every(X,man(X) ,die(X)) to be well formed, but this re-
quires a free occurrence of X in np: [boundvar=X,bodyval=die(X)].
Thus this pair will be assigned the empty set as its interpretation.
Since any logical-form/category-expression pair that contains both free
and bound occurrences of the same variable will receive this degener-
ate interpretation, any other such pair could be substituted for this
one without altering the interpretations of the daughter constituent
substitution instances that determine the interpretation of the mother
constituent. It is clear that this would normally lead to gross violations
of compositionality, since the daughter substitution instances selected
for the noun phrases every man, no woman, and some dog would all
receive the same degenerate interpretation under this scheme.

This restriction may appear to be so constraining as to rule out
certain potentially useful ways of writing semantic rules, but in fact it
is generally possible to rewrite such rules in ways that do not violate the
restiction. For example, in place of the sort of logical-form/category-
expression pair we have just ruled out, we can fairly easily rewrite the
relevant rules to select daughter substitution instances such as

(every(X,man(X),die(X)),np:[bodypred=X\die(X)]),

which does not violate the constraint and has a completely straightfor-
ward interpretation.

Having ruled out constituents with degenerate interpretations, the
principal remaining problem is how to exclude rules that depend on
properties of logical-form expressions over and above their interpre-
tations. For example, suppose that the order of conjuncts does not
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affect the interpretation of a logical conjunction, according to the in-
terpretation of the logical-form language. That is, and(p.q) would
have the same interpretation as and(q.p). The potential problem that
this raises is that we might write a semantic rule that contains both a
logical-form expression like and(P.Q) in the specification of a daughter
constituent and the variable P in the logical form of the mother con-
stituent. This would be a violation of compositionality, because the
interpretation of the mother would depend on the interpretation of the
left conjunct of a conjunction, even though, according to the semantics
of the logical-form language, it makes no sense to distinguish the left
and right conjuncts. If order of conjunction does not affect meaning,
we ought to be able to substitute a daughter with the logical form
and(q,p) for one with the logical form and(p.q) without affecting the
interpretation assigned to the mother, but clearly, in this case, the
interpretation of the mother would be affected.

It is not clear that there is any uniquely optimal set of restrictions
that guarantees that such violations of compositionality cannot occur.
Indeed, since unification formalisms in general have Turing machine
power, it is quite likely that there is no computable characterization of
all and only the sets of semantic rules that are compositional. Never-
theless, one can describe sets of restrictions that do guarantee composi-
tionality, and which seem to provide enough power to express the sorts
of semantic rules we need to use to specify the semantics of natural
languages. One fairly natural way of restricting the formalism to guar-
antee compositionality is to set things up so that unifications involving
logical-form expressions are generally made against variables, so that
it is possible neither to extract subparts of logical-form expressions nor
to filter on the syntactic form of logical-form expressions. The only
exception to this restriction that seems to be required in practice is
to allow for rules that assemble and disassemble lambda expressions
with respect to their bodies and bound variables. So long as no extrac-
tion from inside the body of a lambda expression is allowed, however,
compositionality is preserved.

It is possible to define a set of restrictions on the form of seman-
tic rules that guarantee that no rule extracts subparts (other than the
body or bound variable of a lambda expression) of a logical-form ex-
pression or filters on the syntactic form of a logical-form expression.
The statement of these restrictions is straightforward, but rather long
and tedious, so we omit the details here. We will simply note that
none of the sample rules presented in this chapter involve any such
extraction or filtering.
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10.5 Semantics of Long-Distance Dependencies
The main difficulty that arises in formulating semantic-interpretation
rules is that constituents frequently appear syntactically in places that
do not directly reflect their semantic role. Semantically, the subject of a
sentence is one of the arguments of the verb, so it would be much easier
to produce logical forms for sentences if the subject were part of the
verb phrase. The use of features such as subjval, in effect, provides a
mechanism for taking the interpretation of the subject from the place
where it occurs and inserting it into the verb phrase interpretation
where it "logically" belongs.

The way features can be manipulated to accomplish this is partic-
ularly striking in the case of the long-distance dependencies, such as
those in WH-questions. For the sentence Which girl might John like?,
the simplest plausible logical form would be something like

which(X,girl(X),might(like(john,X)) )

where the question-forming operator which is treated as a generalized
quantifier whose "arguments" consist of a bound variable, a restriction,
and a body.

The problem is how to get the variable X to link the part of the
logical form that comes from the fronted interrogative noun phrase
with the argument of like that corresponds to the noun phrase gap
at the end of the verb phrase. To solve this problem, we can use a
technique called "gap-threading." This technique was introduced in
unification grammar to describe the syntax of constructions with long-
distance dependencies (Karttunnen 1986, Pereira and Shieber 1987,
p. 125-129), but it works equally well for specifying their semantics.
The basic idea is to use a pair of features, gapvalsin and gapvalsout,
to encode a list of semantic "gap fillers" to be used as the semantic
interpretations of syntactic gaps, and to thread that list along to the
points where the gaps occur. These gap fillers are often just the bound
variables introduced by the constructions that permit gaps to occur.

The following semantic rules illustrate how this mechanism works:

(9) sem(whq_ynq_np_gap,
[(Np,s:[gapvalsin=[],gapvalsout=[]]),
(Np.np:[type=interrog,bodypred=A\Ynq]),
(Ynq.s:Cgapvalsin=[A],gapvalsout=[]])]).

This is the semantic-interpretation rule for a WH-question with a long-
distance dependency. The syntactic form of such a sentence is an inter-
rogative noun phrase followed by a yes/no question with a noun phrase
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gap. This rule expects the interrogative noun phrase which girl to have
a logical-form/category-expression pair such as

(which(X,girl(X),Bodyval),
np:[type=interrog,bodypred=X\Bodyval]).

The feature bodypred holds a lambda expression whose body and
bound variable are unified respectively with the body and the bound
variable of the which expression. In (9) the body of this lambda expres-
sion is unified with the logical form of the embedded yes/no question,
and the gapvalsin feature is set to be a list containing the bound
variable of the lambda expression. This list is actually used as a stack,
to accomodate multiply nested filler-gap dependencies. Since this form
of question cannot be embedded in other constructions, however, we
know that in this case there will be no other gap-fillers already on the
list.

This is the rule that provides the logical form for empty noun
phrases:

(10) sem(empty_np,
[(Val.np:[gapvalsin=[Val|ValRest],

gapvalsout=ValRest])]).

Notice that it has a mother category, but no daughter categories. The
rule simply says that the logical form of an empty np is the first element
on its list of semantic gap-fillers, and that this element is "popped"
from the gap-filler list. That is, the gapvalsout feature takes as its
value the tail of the value of the gapvalsin feature.

We now show two rules that illustrate how a list of gap-fillers is
passed along to the points where the gaps they fill occur.

(11) sem(vp_aux_vp,
[(Aux,vp:[subj val=S,gapvalsin=In,

gapvalsout=0ut]),
(Aux,aux:Cargval=Vp]),
(Vp.vp:[subjval=S,gapvalsin=In,

gapvalsout=0ut])]).

This semantic rule for verb phrases formed by an auxilliary followed by
a verb phrase illustrates the typical use of the gap features to "thread"
the list of gap fillers through the syntactic structure of the sentence
to the points where they are needed. An auxiliary verb cannot be or
contain a WH-type gap, so there are no gap features on the category
aux. Thus the gap features on the mother vp are simply unified with
the corresponding features on the daughter vp.

A more complex case is illustrated by the following rule:
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(12) sem(vp_vp_pp,
[(Pp.vp:[subjval=S,gapvalsin=In,

gapvalsout=0ut]),
(Vp.vp:[subjval=S,gapvalsin=In,

gapvalsout=Across]),
(Pp.pp:[argval=Vp,gapvalsin=Across,

gapvalsout=0ut])]).

This is a semantic rule for verb phrases that consist of a verb phrase
and a prepositional phrase. Since WH-gaps can occur in either verb
phrases or prepositional phrases, the rule threads the list carried by the
gapvalsin feature of the mother vp first through the daughter vp and
then through the daughter pp. This is done by unifying the mother
vp's gapvalsin feature with the daughter vp's gapvalsin feature, the
daughter vp's gapvalsout feature with the daughter pp's gapvalsin
feature, and finally the daughter pp's gapvalsout feature with the
mother vp's gapvalsout feature. Since a gap-filler is removed from
the list once it has been "consumed" by a gap, this way of threading
ensures that fillers and gaps will be matched in a last-in-first-out fash-
ion, which seems to be the general pattern for English sentences with
multiple filler-gap dependencies. (This does not handle "parasitic gap"
constructions, but these are very rare and at present there seems to be
no really convincing linguistic account of when such constructions can
be used.)

Taken altogether, these rules push the quantified variable of the
interrogative noun phrase onto the list of gap values encoded in the
feature gapvalsin on the embedded yes/no-question. The list of gap
values gets passed along by the gap-threading mechanism, until the
empty-noun-phrase rule pops the variable off the gap values list and
uses it as the logical form of the noun phrase gap. Then the entire
logical form for the embedded yes/no-question is unified with the body
of the logical form for the interrogative noun phrase, producing the
desired logical form for the whole sentence.

This treatment of the semantics of long-distance dependencies pro-
vides us with an answer to the question of the relative expressive power
of our approach compared with the conventional lambda-calculus-based
approach. We know that the unification-based approach is at least as
powerful as the conventional approach, because the the conventional
approach can be embedded directly in it, as illustrated by the examples
in Section 10.3. What about the other way around? Many unification-
based rules have direct lambda-calculus-based counterparts; for exam-
ple (2) is a counterpart of (4), and (3) is the counterpart of (5). Once we
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introduce gap-threading, however, the correspondence breaks down. In
the conventional approach, each rule applies only to constituents whose
semantic interpretation is of some particular single semantic type, say,
functions from individuals to propositions. If every free variable in our
approach is treated as a lambda variable in the conventional approach,
then no one rule can cover two expressions whose interpretation essen-
tially involves different numbers of variables, since these would be of
different semantic types. Hence, rules like (11) and (12), which cover
constituents containing any number of gaps, would have to be replaced
in the conventional approach by a separate rule for each possible num-
ber of gaps. Thus, our formalism enables us to write more general rules
than is possible taking the conventional approach.

10.6 Conclusions
In this chapter we have tried to show that a unification-based approach
can provide powerful tools for specifying the semantic interpretation of
natural-language expressions, while being just as well founded theoret-
ically as the conventional lambda-calculus-based approach. Although
the unification-based approach does not provide a substitute for all
uses of lambda expressions in semantic interpretation, we have shown
that lambda expressions can be introduced very easily where they are
needed. Finally, the unification-based approach provides for a simpler
statement of many semantic-interpretation rules, it eliminates many
of the lambda reductions needed to express semantic interpretations
in their simplest form, and in some cases it allows more general rules
than can be stated taking the conventional approach.
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