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PREFACE 

The study of partial differential equations (PDEs) of applied mathematics involves the 
formulation of problems that lead to partial differential equations, the classification 
and characterization of equations and problems of different types, and the examination 
of exact, approximate, and numerical methods for the solution of these problems. 
Each of these aspects is considered in this book. 

The widespread availability of computers in the scientific community and the ad-
vent of mathematical software such as Maple, Matlab, and Mathematica has had the 
effect of eliminating the need for carrying out many routine symbolic and numerical 
calculations that arise when solving PDEs manually. Furthermore, it has become 
possible to create and employ fairly sophisticated numerical methods for the solution 
of PDEs without having to use lengthy computer codes created by professional nu-
merical analysts. For example, Maple has built-in procedures or codes that can solve 
both ordinary differential equations (ODEs) and PDEs symbolically and numerically. 
The procedures available for the solution of initial and boundary value problems for 
ODEs greatly exceed those that are available for the solution of initial and boundary 
value problems for PDEs. For that reason we have created a number of Maple pro-
cedures that deal with problems arising in the solution of PDEs and are related to the 
material in each of the chapters in the book. These procedures generate solutions to 
problems using the methods developed in each chapter. A graphical representation 
of the results can often be generated. This has been done for the first ten chapters of 

xxiii 



XXÌV PREFACE 

the book, whose material generally follows the presentation of the second edition of 
the text. 

Two new chapters dealing with finite difference and finite element methods have 
been added for the third edition. For these two chapters a large number of Maple 
procedures have been created for the solution of various initial and boundary value 
problems for PDEs. Thus, not only are the ideas behind the numerical solution 
methods presented, but their implementation is made possible. It was not possible 
to do everything in triplicate, using Maple, Matlab, and Mathematica, because 
many new codes were created. As a result, it was decided to restrict our presentation 
to the use of Maple. 

The first chapter is concerned with the formulation of problems that give rise 
to first- and second-order PDEs representative of the three basic types (parabolic, 
hyperbolic, and elliptic) considered in this book. These equations are all obtained as 
limits of difference equations that serve as models for discrete random walk problems. 
These problems are of interest in the theory of Brownian motion and this relationship 
is examined. A new section has been added that presents random walks that yield 
first order PDEs in the limit. Finally, a section that employs Maple procedures to 
simulate the various random walks and thereby generate approximate solutions of the 
related PDEs is included. These methods fall under the general heading of Monte 
Carlo methods. They represent an alternative to the direct numerical solution of 
the difference equations in the manner considered in Chapter 11. Only elementary 
concepts from probability theory are used in this chapter. 

Chapter 2 deals with first order PDEs and presents the method of characteristics for 
the solution of initial value problems for these equations. Problems that arise or can 
be interpreted in a wave propagation context are emphasized. First order equations 
also play an important role in the methods presented in Chapters 9 and 10. 

In Chapter 3, PDEs are classified into different types and simplified canonical 
forms are obtained for second order linear equations and certain first order systems in 
two independent variables. The concept of characteristics is introduced for higher-
order equations and systems of equations, and its significance for equations of different 
types is examined. In addition, the question of what types of auxiliary conditions are 
to be placed on solutions of PDEs so that the resulting problems are reasonably for-
mulated is considered. Further, some physical concepts, such as energy conservation 
and dispersion, which serve to distinguish equations of different types are discussed. 
Finally, the concept of adjoint differential operators is presented. 

Chapter 4 presents the method of separation of variables for the solution of prob-
lems given in bounded spatial regions. This leads to a discussion of eigenvalue prob-
lems for PDEs and the one-dimensional version thereof, known as the Sturm-Liouville 
problem. Eigenfunction expansions, in general, and Fourier series, in particular, are 
considered and applied to the solution of homogeneous and inhomogeneous prob-
lems for linear PDEs of second order. It is also shown that eigenfunction expansions 
can be used for the solution of nonlinear problems by considering a nonlinear heat 
conduction problem. 

In Chapter 5, the Fourier, Fourier sine, Fourier cosine, Hankel, and Laplace trans-
forms are introduced and used to solve various problems for PDEs given over un-
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bounded regions in space or time. As the solutions of these problems are generally 
obtained in an integral form that is not easy to evaluate, approximation methods for 
the evaluation of Fourier and Laplace integrals are presented. 

Not all problems encountered in applied mathematics lead to equations with 
smooth coefficients or have solutions that have as many derivatives as required by the 
order of the PDEs. Consequently, Chapter 6 discusses methods whereby the concept 
of solution is weakened by replacing the PDEs by integral relations that reduce the 
number of derivatives required of solutions. Also, methods are presented for dealing 
with problems given over composite media that can result in singular coefficients. 
Finally, the method of energy integrals is discussed and shown to yield information 
regarding the uniqueness and dependence on the data of solutions of PDEs. 

Green's functions, which are discussed in Chapter 7, depend on the theory of 
generalized functions for their definition and construction. Therefore, a brief but self-
contained discussion of generalized functions is presented in this chapter. Various 
methods for determining Green's functions are considered and it is shown how initial 
and boundary value problems for PDEs can be solved in terms of these functions. 

Chapter 8 contains a number of topics. It begins with a variational characterization 
of the eigenvalue problems considered in Chapter 4, and this is used to verify and 
prove some of the properties of eigenvalues and eigenfunctions stated in Chapter 4. 
Furthermore, the Rayleigh-Ritz method, which is based on the variational approach, is 
presented. It yields an approximate determination of eigenvalues and eigenfunctions 
in cases where exact results are unavailable. The classical Riemann method for solving 
initial value problems for second order hyperbolic equations is discussed briefly, as 
are maximum and minimum principles for equations of elliptic and parabolic types. 
Finally, a number of basic PDEs of mathematical physics are studied, among which 
the equations of fluid dynamics and Maxwell's equations of electromagnetic theory 
are discussed at length. 

Chapters 9 and 10 deal with perturbation and asymptotic methods for solving 
both linear and nonlinear PDEs. In recent years these methods have become an 
important tool for the applied mathematician in simplifying and solving complicated 
problems for linear and nonlinear equations. Regular and singular perturbation 
methods and boundary layer theory are discussed in Chapter 9. Linear and nonlinear 
wave propagation problems associated with the reduced wave equation that contains 
a large parameter are examined in Chapter 10. These include the scattering and 
diffraction of waves from various obstacles and the problem of beam propagation in 
linear and nonlinear optics. It is also shown in Chapter 10 how singularities that 
can arise for solutions of hyperbolic equations can be analyzed without having to 
solve the full problem given for these equations. Finally, an asymptotic simplification 
procedure is presented that permits the replacement of linear and nonlinear equations 
and systems by simpler equations that retain certain essential features of the solutions 
of the original equations. 

Chapter 11 presents a full discussion offinite difference methods for the numerical 
solution of initial and initial and boundary value problems for PDEs. Equations of 
all three types, as well as systems of PDEs, are considered. Linear and nonlinear 
problems are examined. A large number of difference schemes are introduced, and 
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questions of consistency and stability are examined. Specially created and built-
in Maple procedures are presented for implementation of most of these difference 
schemes. 

The finite element method for the approximate numerical solution of initial and 
initial and boundary value problems for a large class of PDEs in two spatial dimensions 
is presented in Chapter 12. It is developed from the Galerkin integral representations 
of the given problems and the Galerkin method for constructing approximate solutions 
of these problems. Triangulations of the spatial region over which the problem is 
formulated are created and finite element solutions are constructed. Maple procedures 
that carry out these processes are presented and their use is demonstrated. 

The text includes a substantial number of figures. As we have indicated, not only do 
built-in and the newly constructed Maple procedures solve problems analytically and 
numerically, but they can also represent results graphically. The figures in Chapters 
1,11, and 12, were generated with the use of Maple, which was not the case for the 
remaining figures. This accounts for the difference in the representation of coordinate 
axes in some of the figures, for example. 

The Bibliography contains a list of references as well as additional reading. The 
entries are arranged according to the chapters of the book and they provide a collection 
of texts and papers that discuss some or all of the material covered in each chapter, 
possibly at a more elementary or advanced level than that of the text. 

This book is intended for advanced undergraduate and beginning graduate stu-
dents in applied mathematics, the sciences, and engineering. The student is assumed 
to have completed a standard calculus sequence including elementary ODEs, and to 
be familiar with some elementary concepts from advanced calculus, vector analysis, 
and matrix theory. (For instance, the concept of uniform convergence, the diver-
gence theorem, and the determination of eigenvalues and eigenvectors of a matrix are 
assumed to be familiar to the student.) Although a number of equations and prob-
lems considered are physically motivated, a knowledge of the physics involved is not 
essential for the understanding of the mathematical aspects of the solution of these 
problems. 

In writing this book I have not assumed that the student has been previously exposed 
to the theory of PDEs at some elementary level and that this book represents the next 
step. Thus I have included such standard solution techniques as the separation of 
variables and eigenfunction expansions together with the more advanced methods 
described earlier. However, in contrast to the more elementary presentations of this 
subject, this book does not dwell at great length on the method of separation of 
variables, the theory of Fourier series or integrals, the Laplace transform, or the 
theory of Bessel or Legendre functions. Rather, the standard results and methods are 
presented briefly but from a more general and advanced point of view. Thus, even 
with the addition of the numerical finite difference and finite element methods, it has 
been possible to present a variety of approaches and methods for solving problems 
for linear and nonlinear equations and systems without having the length of the book 
become excessive. 

There is more than enough material in the book to be covered in a year-long course. 
For a shorter course it is possible to use the first part of Chapter 3 and Chapters 4 
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and 5 as a core, and to select additional material from the other chapters, such as 
numerical methods, as time permits. The book contains many examples. Very often, 
new approaches or methods are brought out in the form of an example. Thus the 
examples should be accorded the same attention as the remainder of the text. 

In preparing the third edition, the material contained in the second edition was 
retained, but rewritten, clarified, and revised where necessary, with corrections made 
as needed. In addition to the inclusion of two new chapters, some new material was 
added throughout the first ten chapters. In particular, Maple methods that deal with 
the material in each chapter are presented in a new section at the end of each chapter. 
Additionally, for example, Chapter 1 has a new discussion of random walks related 
to first order PDEs. To assist the reader, the sections of the book have been broken 
up into a collection of subsections that focus on specific topics and subtopics that are 
considered. 

A number of new exercises have been created to supplement those of the second 
edition. The exercises are placed at the end of each section. With a few exceptions, no 
substantially new theories or concepts are introduced in the exercises. For the most 
part, the exercises are based on material developed in the text, and the student should 
attempt to solve as many of them as possible to test his or her mastery of the subject. 
Answers and solutions to selected exercises and all the Maple codes that were created 
for use in the book are available via the FTP site: 

fip://fip. wiley. com/scUechjned/partial-differential/ 
A supplementary Instructor's Solutions Manual is also available. 

I would like to thank Susanne Steitz and Steve Quigley, mathematics editors at 
Wiley-Interscience, for their support of this project. I acknowledge my gratitude to 
my wife, Naomi, for her assistance and understanding during the many hours that 
were spent in writing this book. 

ERICH ZAUDERER 
New Jersey 

March 2006 



CHAPTER 1 

RANDOM WALKS AND PARTIAL 
DIFFERENTIAL EQUATIONS 

It is traditional to begin a course on partial differential equations of applied mathe-
matics with derivations of the basic types of equations to be studied based on physical 
principles. Conventionally, the problem of the vibrating string or the process of heat 
conduction is considered and the corresponding wave or heat equation is derived. 
(Such derivations and relationships are discussed later in the text.) We have chosen 
instead to use some elementary random walk problems as a means for deriving and 
introducing prototypes of the equations studied in the text: (1) the diffusion equa-
tion, (2) the wave equation, or more specifically, the telegrapher's equation, and (3) 
Laplace's equation. More general forms of each of these types of second order par-
tial differential equations are also derived, and random walks that generate first order 
linear and nonlinear partial differential equations are also presented. The equations 
describing the random walks are partial difference equations, whose continuum limits 
are the aforementioned partial differential equations. This reverses the approach used 
in the numerical method of finite differences for the solution of differential equations, 
where derivatives in the given equation are replaced by difference quotients. Only 
elementary and basic concepts from probability theory are required for our discussion 
of the random walk problems and they are not used in the sequel. 

Partial Differential Equations ofAppplied Mathematics, Third Edition. By Erich Zauderer 1 
Copyright © 2006 John Wiley & Sons, Inc. 



2 RANDOM WALKS AND PARTIAL DIFFERENTIAL EQUATIONS 

Our discussion of the limiting processes will be somewhat heuristic and formal, 
but they can be rigorously justified. The discrete formulation of differential equations 
based on random walk problems yields insights into the usefulness and validity of 
a number of numerical approaches employed in the method of finite differences for 
the numerical solution of the partial differential equations considered. This relates 
specifically to questions of consistency, stability and convergence that arise in the 
analysis of finite difference methods and are addressed in Chapter 11, which deals 
with these methods. Also, some basic properties of each of the types of equations 
derived are elementary consequences of the discrete random walk formulations and 
are verified directly for each of the limiting partial differential equations. 

1.1 THE DIFFUSION EQUATION AND BROWNIAN MOTION 

Unrestricted Random Walks and Their Limits 

We begin with the unrestricted one-dimensional random walk problem. A particle 
starts at the origin of the z-axis and executes random steps or jumps each of length δ 
to the right or to the left. Let X{ be a random variable that assumes the value δ if the 
particle moves to the right at the ith step and the value —5 if it moves to the left. Each 
step is assumed to be independent of the others, so that in the language of probability 
theory, the Xi are identically distributed, independent random variables. Let p or q be 
the probability that the particle moves to the right or to the left, respectively. These 
probabilities are identical for each step, so we have Prob(xi = δ) = P(XÌ — δ) = p 
and P(XÌ = —δ) = q. The particle must move either to the right or to the left, so that 
p + q = 1. The position of the particle at the nth step is given by 

Xn = x\+xi-\ ha;„. (1-1.1) 

Using the binomial distribution, the probability that the particle is located at a fixed 
point after a given number of steps can be determined explicitly. Since we are more 
interested in the continuum limit of the random walk problem as the step length 
δ —> 0 and the number of steps n -+ oo, we do not consider the exact solution of 
the problem above (see Exercise 1.1.11). Instead, we determine the mathematical 
expectation and the variance of the random variable Xn. They will be related below 
to certain physically significant constants when we connect the random walk model 
with the theory of the Brownian motion of a particle. The expectation of Xn yields 
the expected or mean location of the particle at the nth step, and the variance of Xn is 
a measure of how much the actual location of the particle varies around the expected 
location. 

Example 1.1. Expectation and Variance: The Discrete Case. A discrete 
valued random variable x that assumes the values am with probability pm, has the 
expected value or the mathematical expectation E{x), given as 

E(x) = Y^amPm. (1.1.2) 
m 
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Thus for the random variable x* we have 

E{Xi) = (+S)P{xi = δ) + (-S)P(xi = -S) = (p - q)S. (1.1.3) 

Since E(x) is a linear function of x, ( 1.1.3) yields 

( n \ n 

$ > * ) = £ E(xi) = (p - ς ) ίη . (1.1.4) 
i= l / i=l 

In the physical literature the mathematical expectation is expressed as E(x) = (x) 
and this notation is used below. Thus ( 1.1.4) yields 

(Xn) = (p - q)Sn. (1.1.5) 

The expected location of the particle after n steps is at x = 0, x > 0, or x < 0 
according as p = q, p > q, or p < q. 

The variance V(x) of a random variable x is defined in terms of the expectation 
as V(x) = ((x — (x))2) = (x2) — (x) , where the last equation follows from the 
properties of the expectation. Now, the variance of a sum of independent random 
variables equals the sum of the variances of the random variables. Thus, since Xn — 
ΣΓ=ι хг a nd t n e x% же independent random variables, V(Xn) = V (ΣΓ=ι x*) = 

YZ=iV(xi) = Y:=1[(xi)-{xi)2].But 

(x2) = (+S)2P(Xi = δ) + (S)2P(Xi = -δ) = (p + q)62 = δ2 (1.1.6) 

sincep + q = 1. Recalling (1.1.3) and (p + q)2 = 1, we easily obtain 

n 

V(Xn) = Σ № - (P - q)2S2} = 4pgi2n. (1.1.7) 

Brownian Motion 

The foregoing results will now be applied to yield a mathematical description of 
one-dimensional Brownian motion. This motion refers to the ceaseless, irregular, 
and (apparently) random motion of small particles immersed in a liquid or gas. An 
individual particle is assumed to undergo one-dimensional motion due to random 
collisions with smaller particles in the fluid or gas. In a given unit of time, many 
collisions occur. Each collision is assumed to be independent of the others and to 
impart a displacement of the particle of length δ to the right or to the left. The apparent 
randomness of the motion is characterized by assuming that each collision moves the 
particle independently to the right or to the left with probability p or q, respectively. 
Clearly, the observed motion of the particle can be simulated by the random walk 
problem. 



4 RANDOM WALKS AND PARTIAL DIFFERENTIAL EQUATIONS 

Suppose it is found experimentally, for a particle immersed in a fluid or gas under-
going one-dimensional motion, that the average or mean displacement of the particle 
per unit time equals c, while the variance of the observed displacement around the 
average equals D > 0. We assume that there are r collisions per unit time. (We note 
that r is not known a priori but is assumed to be large). Then, for our random walk 
model of the observed motion, we must have (approximately) after r steps 

(p - q)6r « c, 4pqS2r « D, (1.1.8) 

in view of the expressions (1.1.5) and ( 1.1.7) for the mean and the variance. 
Since the motion of the particle appears to be continuous, we examine the limit 

as the step length δ —» 0 and the number of steps r —» oo. This must occur in such 
a way that с and D [as given in (1.1.8)] remain fixed in the limit. Now if p ф q 
and p — q does not tend to zero as δ —> 0 and r —> oo, we conclude from (1.1.8) 
that Sr —» c/(p — q), 4pqS2r —» (4cpq/p — q) δ —> 0. However, 4pqS2r must tend 
to D φ 0 in the limit as δ —» 0 and r —» oo, in view of (1.1.8), so we must have 
p — q —> 0 in the limit. Combined with p + q = 1, this implies that both p and q 
tend to ^ in the limit. If p = q = | in the discrete model, we have с = 0. But 
if p — q ф 0, so that с ф 0, the particle exhibits a drift to the right or to the left 
depending on the sign of с Additionally, if D = 0, there is no variation around the 
average displacement с and the motion of the particle must appear to be deterministic 
and not random or irregular. 

These results can be realized if we set p = (1 + bo)/2, q = (1 — bö)/2 with the 
constant b (independent of δ) to be determined and chosen such that 0 < p, q < 1. 
Then, p + q = 1 and p - q — bo, and the foregoing limits imply that as δ —> 0 and 
r —> oo, we have 62r —* D, p —» | , q —» | , and ò = c/D. More generally, if we set 

p=l-(a + b6), 9 = I ( a - M ) , (1.1.9) 

with 0 < a < 1, we find that p + q = a. Thus, if a < 1, there is a nonzero 
probability, 1 — p — q = I — a, that the particle rests at each step (i.e., it takes a 
step of zero length). Since the additional value assumed by the random variable x, 
is zero, the expectation and the variance of the random variable are again given by 
(1.1.3) and (1.1.6), except that p + q = a in (1.1.6). As a result, (1.1.7) becomes 
V(Xn) = (a - Ρδ2)δ2η. Finally, (1.1.8) (suitably modified) yields αδ2τ -> D and 
b62r —» c, so that b = ac/D. We see that a and b cannot be determined uniquely 
in terms of the observed quantities с and D. The more precise details regarding the 
probability that the particle rests or moves at each step cannot be determined from its 
observed motion. 

For r steps to occur in unit time, each individual step of length δ must occur in 
1/r = T units of time while n steps occur in n/r = ητ time units. To describe the 
motion of the particle that starts at the point x = 0 at the time t = 0, we use the 
random walk model to obtain the probability that the particle is at the position x at the 
time t. That is, after n steps we have approximately Xn = x and nr — t. If x > 0, 
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for example, we must have 

Xn = kd = x and nr = t, (1.1.10) 

where к equals the excess of the number of steps taken to the right over those taken 
to the left. A similar expression with к < 0 is valid if x < 0. 

We define 

v{x,t) = P(X„ = x) atthetime t = пт (1.1.11) 

to be the probability that at the (approximate) time t, the particle is located (approx-
imately) at the point x. If p + q = 1, we can determine an explicit expression for 
v(x, t) on using the binomial distribution. However, since we are mainly interested in 
a continuum limit of the random walk problem as δ and τ tend to zero, we construct a 
partial difference equation satisfied by v(x, t). Again, we do not solve the difference 
equation but show that in the continuum limit it tends to a partial differential equation 
that serves as a model for the Brownian motion of a particle. (See, however, Exercise 
1.1.11.) 

The probability distribution v(x, t) satisfies the difference equation 

v(x, t + T) = pv(x -S,t) + qv{x + δ, t). (1.1.12) 

This states that the probability that the particle is at x at the time t + τ equals the 
probability that it was at the point x — δ at the time t multiplied by the probability p 
that it moved to the right in the following step plus the probability that the particle 
was at the point χ + δαί the time t multiplied by the probability q that it moved to the 
left in the following step. The plausibility of ( 1.1.12), where p + q = 1, is apparent. 

Expanding in a Taylor series with remainder, we have 

v{x, t + r)= v{x, t) + rvt{x, t) + 0{T2), 

v{x ±S,t) = v{x,t) ± δυχ(χ,t) + \δ2νχχ{χ,t) + 0(δ3). i A . - ( I - I -«) 

where 0{yk) means that lim^oZ/ kO(yk) is finite. Substituting (1.1.13) into 
( 1.1.12) we readily obtain 

vt{x,t) = (q-p)- vx{x,t) + -(p + q)— υχχ(χ,ί) + θ(τ+— ) . (1.1.14) 

In the limit as δ —> 0 and τ —> 0, assuming that p + q — 1,(1.1.14) tends to the partial 
differential equation 

on using (1.1.11) with r = 1/T and noting that p and q tend to \ in the limit. 
(Since δ2/τ has a finite limit, δ4/τ must tend to zero.) In view of (1.1.10), which 
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requires x and t to remain fixed in the limit, we must also have \k\ —> oo and 
n —» oo such that kS —> x and ητ —> t. Further, v(x, t) must now be inter-
preted as a probability density associated with the continuous random variable x 
at the time t, rather than as a probability distribution in the discrete random walk 
model. This means that the probability that x lies in a given interval [a, b] is given by 
P(a < x < b) = Ja v (x, t) dx at the time t. If the interval [a, b] is small, we have, 
v(x, t) « P(a < x < b)/(b - a). 

lip and q are defined as in ( 1.1.9), the difference equation (1.1.12) must be replaced 
by 

v(x,t + T) = (1 -p-q)v(x,t) + pv(x - S,t) + qv(x + 6,t) (1.1.16) 

since there is a nonzero probability that the particle was at the point x at the time t 
and did not move from there. However, if we expand и as in (1.1.13) and note the 
results following (1.1.9), we again obtain (1.1.15) in the limit, if we set αδ2/τ = D 
and Ь62/т — с. We note that δ2/τ must have a finite limit as δ —* 0 and τ —> 0. Thus, 
the (truncation) error in (1.1.14) is 0(r + δ2). 

The equation ( 1.1.15) is known as a diffusion equation and D is called the diffusion 
coefficient. We examine the significance of the coefficients с and D in (1.1.15) in 
Example 1.3, with calculations based directly on (1.1.15) rather than on the results 
obtained from the random walk model. 

To determine a unique solution v(x, t) of (1.1.15), we need to specify an initial 
condition for the density function. Since the particle was initially (i.e., at the time 
t = 0) assumed to be located at the point x = 0, it has unit probability of being at 
x = 0 at the time t — 0 and zero probability of being elsewhere at that time. This 
serves as initial data for the difference equation (1.1.12). In terms of the density 
function v(x, t) that satisfies (1.1.15), we still must have v(x, 0) = 0 for x ф 0, but 
with the density concentrated at x = 0. Since the total probability at t = 0 satisfies 

/

oo 

v{x,0)dx = l, (1.1.17) 
-oo 

we see that v(x, 0) behaves like the Dirac delta function; that is, 

ν(χ,0)=δ(χ). (1.1.18) 

[The delta function δ(χ) is not to be confused with the step length δ introduced in the 
random walk problem.] 

Example 1.2. The Dirac Delta Function. The Dirac delta function is discussed 
fully in Section 7.2. At present, we characterize it as the limit of a sequence of 

discontinuous functions <5e(x) defined as 56(x) — < ' ' ' Each δε(χ) has 

unit area under the curve and in the limit as e —> 0, öt(x) —> 0 for all x Φ 0. 
However, on formally interchanging the limit process with integration, we obtain 
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/_οο δ(χ) dx = lirrie-,ο J_00 δ€{χ) dx = 1. It also follows for continuous functions 
f{x), on using the mean value theorem for integrals before passing to the limit, that 

F 
J —с 

f(x)6(x)dx = f(0) (1.1.19) 

so that in effect f(x)6(x) = f(Q)S(x). Further, δ(χ — ξ) vanishes for all x φ ξ, so 
that if S(x) is replaced by δ(χ — ξ) in (1.1.19), we obtain /(£) instead of /(0) , so 
ύαί№δ(χ-ξ)=№δ(χ-ξ). 

The combined equations (1.1.15) and (1.1.18) constitute an initial value problem 
for the partial differential equation (1.1.15). It is derived later and it can be shown 
directly by substitution that the function 

v(x,t) = exp (x - ct)2 

2Dt 
(1.1.20) 

is a solution of the initial value problem (1.1.15) and (1.1.18). For fixed t, the 
probability density function (1.1.20) is the density function of a normal or Gaussian 
distribution with mean (x) = ct and variance ((x — (a;))2) = Dt. In view of the 
exponential decay of v(x, t), we find that the density is concentrated around the curve 
x — ct = 0, so that the particle appears to move with the (drift) velocity dx/dt = c. 
This also follows from the equation {x) /t = с The variance of the particle location 
around the path x = ct [in the (x, i)-plane] increases linearly in t and is given by Dt. 

Although the foregoing results for the mean and the variance are well known for 
the normal distribution, they may be verified directly by considering the limit of the 
discrete random walk problem, and this is done in Example 1.3. 

The foregoing random walk model yields (1.1.5) and ( 1.1.7) as the mean and the 
variance, respectively. As n —» oo, δ —> 0, and 1/r —» 0, we obtain from (1.1.5) and 
(1.1.7) 

( (x) = lim(p — q)ön = lim(p — q)örn/r = lim[(p — α)δτ]ητ = ct, 

((x - (x))2) — Ιΐϊϊΐ4ρςδ2η = \ϊτηΑρςδ2Γπτ = Dt, 

on using (1.1.11) and (1.1.10). [Although we have assumed that p + q = 1 in 
( 1.1.21 ), the results remain valid if p and q are defined as in ( 1.1.9).] Using ( 1.1.21 ) 
and applying the central limit theorem of probability theory to Xn (which is a sum 
of n independent random variables) as n —+ oo, we can conclude directly that the 
limiting distribution for x is Gaussian with mean ct and variance Dt. 

Example 1.3. Expectation and Variance: The Continuous Case. If x is a 
continuous random variable, the fcth moment of x is defined as 

/

oo 

xkv(x,t)dx, (1.1.22) 
-OO 
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where v(x, t) is the probability density function at the time t. We assume that v(x, t) 
and its .x-derivatives vanish sufficiently rapidly at infinity, so that all terms evaluated 
at infinity in the following integrations vanish. [In fact, (1.1.20) shows that v(x, t) 
decays exponentially at infinity.] 

First we show (x°) = 1 for all t so that v(x, t) is, in fact, a probability density for 
all t > 0. Integrating in ( 1.1.15) we have 

, oo d/x0\ лоо j , o o 

/ vt dx = ' ' = - c / vxdx + -D vxxdx = 0, (1.1.23) 
J — oc "^ J — oo ^ J — oo 

since v and vx are assumed to vanish at infinity. Thus (a;0) is constant in time. But 
(1.1.17) shows that (a;0) = 1 att = 0, so that (x°) = 1 forali time. 

Next, we consider the expected value (x) of the continuous random variable x. 
We multiply (1.1.15) by x and integrate from — oo to oo. This gives J^° xvt dx = 
d/dt J_ xv dx = d (x)/dt = —c f^ xvx dx + (D/2) J_<x>xvxx dx 
= cf^° vdx = c{x°) = с on integrating by parts, using (1.1.23) and (ж0) = 1. 
At the time t = 0, since v(x,0) = δ(χ), the property (1.1.19) of the delta function 
implies that {x) = 0 at t = 0. Therefore, we obtain an initial value problem for (x), 
d (x)/dt = c: {x} | = 0 with the solution 

{x)=ct, (1.1.24) 

which agrees with (1.1.21). 
The variance of a; is given by V(x) = (ж2) — (x) . The second moment (a:2) 

clearly vanishes at t = 0 in view of (1.1.18) and (1.1.19). Multiplying (1.1.15) 
by x2 and integrating, we have f_ x2vtdx = d(x2)/dt = — cj_ x2vxdx + 
(D/2) / ^ x2vxx dx= 2c / ^ xvdx + Dj^vdx = 2c (x) + D (x°) on inte-
grating by parts. Using (1.1.24) and (a;0) = 1, we obtain the initial value problem 
d(x2)/dt = 2c2f + D, (x2) | t = 0 = 0, which yields (x2) = cH2 + Dt. Thus the 
variance is given by 

V(x) = (x2) - (x)2 = c2t2 + Dt- c2t2 = Dt (1.1.25) 

which agrees with ( 1.1.21 ). 

Restricted Random Walks and Their Limits 

The foregoing random walk problem and the limiting initial value problem provide 
a valid description of the motion of a Brownian particle in an unbounded region. If 
the region is bounded on one or both sides, boundary conditions must be added. We 
now consider two random walk problems in which the particle is restricted to move 
in the region x < I with I > 0. The point x = I is either an absorbing or a reflecting 
boundary. 
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At an absorbing boundary, once the particle reaches the boundary point at x = I, 
it is absorbed and can no longer move into the region x < I. With v(x, t) as the 
probability that the particle is (approximately) at the point x at the time t, we have at 
x = I, 

v(l,t + r)=pv(l-5,t), (1.1.26) 

since the particle cannot reach a; = I from the right. We assume that p + q = 1. Using 
the Taylor series (1.1.13) gives (1 — p)v(l,t) = 0(τ + δ). Since p —» ^ as δ and r 
tend to zero, we have in the limit 

v{l,t)=0 (1.1.27) 

as the boundary condition for the density function at an absorbing boundary. 
For the case of a reflecting boundary, the boundary is assumed to have the properties 

of an elastic barrier. When the particle reaches the barrier at the time t, there is a 
probability p that the particle moves to the right beyond x = I and returns to x = I 
at the time t + τ. (Of course, it can also move to the left with probability q when it 
reaches the barrier.) Thus the boundary condition for the probability v(x, t) is 

v(l, t + r)= pv(l -6,t)+ pv(l, t). (1.1.28) 

Again using (1.1.13) we haveu(Z, t) +rvt(l,t) + О (r2) = 2pv(l,t) —pSvx(l,t) + 
0{δ2) . On multiplying across by δ/τ, noting that 1p — 1 = p — q, and going to 
the limit in (1.1.28), we obtain lim (δ/τ) (p — q)v — lim (δ2/τ) ρυχ — lim<5wt + 
lim О [δτ + δ3/τ) = cv — \Dvx = 0 on using (1.1.11). Therefore, the boundary 
condition at the reflecting boundary point x = I is 

cv(l,t)-^Dvx(l,t) = 0. (1.1.29) 

Within the interval —oo < x < I, v{x, t) satisfies the diffusion equation (1.1.15) 
with the initial condition (1.1.18) at t = 0. At x = I, v(x,t) satisfies either the 
boundary condition (1.1.27) or ( 1.1.29). The solutions of these initial and boundary 
value problems are considered in Chapter 5. If we study the motion of a Brownian 
particle in a finite interval, say —l<x<l, each endpoint can represent an absorbing 
or a reflecting boundary. The boundary conditions at x = —/ in the case of an 
absorbing or reflecting boundary are given as in (1.1.27) and (1.1.29), respectively, 
except that/ is replaced by — I. In the interior of the interval, v(x,t) satisfies (1.1.15) 
with the initial condition (1.1.18). Such problems are considered in Chapter 4. 

Fokker-Planck and Kolmogorov Equations 

In a further generalization of the foregoing results, we assume that the probabilities 
p and q [defined as in ( 1.1.9)] are functions of the position of the particle. Then the 
probabilities associated with the point x are given as 

p=\{a{x) +b(x)6), q=±(a(x)-b(x)S). (1.1.30) 
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We assume that 0 < a(x) < 1 and that b(x) is chosen such that 0 < p, q < 1. 
The probability v(x, t) that the particle is at the point x at the time t now satisfies a 
difference equation, 

v(x,t + T) = [1 — p(x) - q(x)]v(x, t) +p(x - δ)υ(χ — δ,ί) +q(x + δ)υ(χ + δ, t). 
(1.1.31) 

On expanding all the terms in Taylor series around x and ί as in (1.1.13), and assuming 
that as δ —» 0 and τ —> 0, α(χ)δ2/τ —► D(x) and b(x)ö2/r —> c{x), we obtain, in 
the limit, 

dv(x,t) _ d(c(x)v(x,t)) 1 d2(D(x)v(x,t)) , . 
~ d ^ ~ dx~ + 2 dx~2 ■ { Ι Λ · ό 2 ) 

This is known as the Fokker-Planck equation in the physical literature and as the 
forward Kolmogorov equation in the mathematical literature. It represents a general-
ization of the diffusion equation and describes the motion of a Brownian particle in 
an inhomogeneous medium, on the basis of our model. The initial condition for the 
probability density function v(x, t) is again (1.1.18). However, the functions c(x) 
and D(x) can no longer be interpreted as in (1.1.24) and (1.1.25), since the calcu-
lations in Example 1.3 are not valid for the Fokker-Planck equation with variable 
с and D. Nevertheless, the coefficients c(x) and D(x) are known as the drift and 
diffusion coefficients, respectively. At an absorbing boundary we find as before that 
the density function must vanish. The boundary condition at a reflecting boundary 
point is considered in the exercises. 

In the foregoing, the probability that the Brownian particle is at the point x at the 
time t was given in terms of its location at the preceding time period. This analysis 
gave rise to the difference, diffusion, and Fokker-Planck equations determined above. 
Now, however, we examine the probability that the particle is at the point x at the 
time t in terms of its location in the following time period. With p and q given as in 
(1.1.30), we find that the particle can only have reached the points χ — δ,χ, and x + δ 
at the time t + т. Thus, v satisfies the difference equation 

v(x, f ) = [1 — p(x) — q(x)]v(x, t + T) + p(x)v(x + δ, t + r) + q(x)v(x — 5,t + r). 
(1.1.33) 

In contrast to ( 1.1.31 ), all the probabilities p and q are evaluated at x since they are 
all related to the motion of the particle from the point x at the time t. To determine 
the probability that the particle is at some point x on the real axis, we must know the 
probabilities for all points x at some later time. Thus, if v(0,0) = 1 and v(x, 0) = 0 
for x φ 0, ( 1.1.33) gives the probability that the particle is at some point x at an earlier 
time t < 0. Consequently, ( 1.1.33) is a backward difference equation. Proceeding as 
in the discussion following (1.1.31), we obtain in the limit as δ —» 0 and r —* 0 in 
(1.1.33), 

^ ) = _φ)^*) _ iD{x)^U. (1.1.34) 

This is known as the backward Kolmogorov equation. If the condition (1.1.18) 
is assigned for the density function v(x, t) at the time t = 0, it represents an end 
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condition for (1.1.34), as the equation is to be solved for t < 0. Although it is 
assumed that с and D are functions of x in (1.1.34), even if they are taken to be 
constants, the forward and backward Kolmogorov equation still differ in the sign of 
the second derivative term. In fact, (1.1.34) is the adjoint equation of (1.1.32), as 
follows from our discussion of adjoint operators in Section 3.6. 

The forward and backward Kolmogorov equations determine the probability den-
sity at each point x in terms of the position of the particle at an earlier and at a later 
time, respectively. Even if the time direction is reversed in the backward equation, 
(i.e., we replace t by —t), the distinction as to how the solution is to be interpreted 
remains. However, we do not pursue these matters further. The form of the boundary 
conditions for the backward equation is considered in the exercises. Apart from its 
intrinsic interest, the backward equation also arises in the process of determining the 
Green's function for the forward equation, as will be seen in Chapter 7. 

Properties of Partial Difference Equations and Related PDEs 

We conclude this section by noting a number of consequences for the solutions of 
initial and boundary value problems for the diffusion equation (1.1.15) and its gen-
eralizations that follow from the difference equation formulation of the associated 
random walk problems. To begin, we observe that the difference equations (1.1.12), 
(1.1.26), (1.1.28), and (1.1.31) imply that the solutions of the initial and boundary 
value problems evolve in time. That is, the solution of any point at a given time t 
depends only on initial and boundary data given at earlier times. This characterizes 
the causality property; only past events influence future events. For the backward 
Kolmogorov equation, however, there is backward causality. That is, events in the 
future influence the past. 

Second, we consider the initial value problem or the initial and boundary value 
problem with the boundary condition (1.1.27). The difference equation (1.1.12) 
represents v(x, t + r) as a weighted average of v evaluated at two points at an earlier 
time t. (We have a weighted average since p > 0, q > 0, and p + q = 1.) Since v 
vanishes initially everywhere except at one point and v vanishes on the boundary, we 
conclude that 0 < v < 1 everywhere and the maximum value of v (i.e., v = 1), as 
well as the minimum value of υ (i.e., v = 0), is attained either on the boundary or on 
the initial line. This maximum and minimum principle carries over to the diffusion 
equation, as shown in Chapter 8. The diffusion process distributes the densities in 
the interior in a fairly uniform fashion so that the maximum and minimum values 
occur on the initial or boundary line. The difference equation (1.1.32), which yields 
the Fokker-Planck equation, does not express v(x, t + r) as a weighted average of 
v evaluated at the earlier time t unless p and q are constants. Otherwise, since p 
and q are all evaluated at different points, the coefficients of v need not add up to 
1. Consequently, we do not expect the general Fokker-Planck equation to satisfy 
a maximum or minimum principle. However, in the difference equation (1.1.33), 
v(x, t) is given as a weighted average of v evaluated at the time t + r, since p and q 
are both evaluated at the same point. As a result there is a maximum principle for the 
backward Kolmogorov equation, as shown in Chapter 8. 
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Finally, requiring that δ2/τ tends to a finite, nonzero limit as δ and r tend to zero, 
implies that δ/τ —> oo in the same limit. This means that the speed of the particle 
in Brownian motion (which is given by the limit of δ/τ) is infinite. This fact is also 
implied by the solution (1.1.20) of the initial value problem (1.1.15) and (1.1.18). 
It shows that v(x, t) is instantaneously nonzero for all x when t > 0, even though 
v(x, t) vanishes for all x φ 0 at t = 0. Thus there is a nonzero probability, however 
small it may be, that the particle is located in the neighborhood of any point as soon 
as t increases from zero. 

Langevin Equation 

The foregoing limitation (the infinite particle speed) of the theory of Brownian motion 
based on solution of the diffusion equation was noted by Einstein, who was the first 
to derive a diffusion equation to describe Brownian motion. He recognized that the 
diffusion equation yields a valid model only as t gets large. Since (with с = 0) 
(1.1.15) also represents the equation of heat conduction, in which v represents the 
temperature and D represents a thermal diffusion coefficient, the same difficulty with 
regard to the interpretation of the physical processes involved occurs for the heat 
equation. 

A different analysis of the theory of Brownian motion was given by Ornstein and 
Uhlenbeck in an effort to overcome this shortcoming. It is based on the Langevin 
equation for the velocity u(t) = x'(t) of the particle in Brownian motion. It has the 
form 

u'(t) = -fu(t) + F(t). (1.1.35) 

This is just Newton's law of motion for the particle. The term mu(t) is the momentum 
of the particle, and we have divided through by m in the equation. The positive 
constant / is a frictional resistance coefficient, while the term F(t) represents the 
effects of random collisions with the other particles in the fluid or gas. They showed 
that (1.1.35) implies finite particle velocities, in particular for small times, and yields a 
description of the motion of the particle for large times based on the diffusion equation 
(1.1.15). Equation (1.1.35) and its generalizations that describe Brownian motion in 
inhomogeneous media, are all examples of stochastic differential equations, in that 
they contain random terms. The theory and application of such equations has been 
the subject of much research in recent years. 

In the following section we show, on the basis of a modified random walk model, 
how to construct a limiting differential equation that yields a finite speed for the 
particle undergoing Brownian motion for small t and reduces to the preceding results 
as t —> oo. 

Exercises 1.1 

1.1.1. Verify, by direct substitution, that the function v(x,t) given in (1.1.20) is a 
solution of the diffusion equation (1.1.15). 
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1.1.2. Show that the function v(x,t) given in (1.1.20) satisfies the following con-
ditions when t > 0, (a) J^° v{x,t) dt = 1; (b) J^° xv(x, t) dx = ct; (c) 
f^° x2v(x,t)dx = c2t2 + Dt. Conclude thereby that υ(χ, t) is a probability density 
function with mean ct and variance Dt. Hint: / ^ e~x dx = y/π. 

1.1.3. Again considering the function v(x, i) of (1.1.20), show that the limit as t J. 0 
is zero when i ^ O . Conclude from this and the result of Exercise 1.1.2(a) that 
lim^o v(x, t) = δ(χ), so that the initial condition (1.1.18) is satisfied. 
1.1.4. Show that if I > 0, the functions 

satisfy the diffusion equation (1.1.15) (with с = 0), the initial condition (1.1.18), 
and, respectively, satisfy the boundary conditions (1.1.27) and (1.1.29) with с = 0. 
(The construction of these solutions may be based on the method of images that is 
discussed in Section 7.5.) 
1.1.5. Derive the diffusion equation in two dimensions, vt = ^D(vxx + vyy), by 
constructing an appropriate difference equation in the manner leading to ( 1.1.12), but 
assuming that the particle is equally likely to move to the points (χ±δ, у) and (x, y±S) 
from the point (ж, у). Use the Taylor series and define D = limT_o,<5—ο{δ2/2τ) to 
obtain the diffusion equation from the difference equation. 

1.1.6. Derive the Fokker-Planck equation in two dimensions vt = —{c\v)x — {c2v)y+ 
i \{D\v)xx + {D2v)yy\, by assuming that the probabilities for motion to the right 
or to the left and up or down are given as in (1.3.19), and constructing an appro-
priate difference equation. With D given as in Exercise 1.1.5, and the coefficients 
in the Fokker-Planck equation defined analogously to those in (1.1.32), obtain the 
differential equation from the difference equation as δ and τ tend to zero. 
1.1.7. With the probabilities defined as in Exercise 1.1.6, derive a backward difference 
equation and the corresponding backward Kolmogorov equation in two dimensions. 
1.1.8. Derive the diffusion equation in three dimensions, vt = ^D(vxx + vyy + 
vZz), with D = Ηπν^ο,ό—ο{δ2/3τ), by using assumptions similar to those given in 
Exercise 1.1.5. 
1.1.9. Generalize the results of Exercise 1.1.6 and derive a difference equation and a 
Fokker-Planck equation for the three-dimensional case. 
1.1.10. With the probabilities given as in Exercise 1.1.9, derive a backward difference 
equation and a backward Kolmogorov equation for the three-dimensional case. 
1.1.11. With x = Ы and t = ητ, where fc = 0, ± 1 , ± 2 , . . . and n = 0 ,1 ,2, . . . , 
v(x, t) = v(k6, nr) gives the probability that the particle is at the point Ы at the time 
ητ. (a) Express the difference equation ( 1.1.12) in terms of the function v(kö, ητ). 
(b) Given the initial conditions v(0,0) = 1 and v{kö, 0) = 0 for к ф 0, solve the 
difference equation recursively for all к with n = 1,2,3, and 4. (c) Show that for 
each of the foregoing values of n we have Y^L^^ v(kö, пт) = 1. (d) Show that the 

(x - 21) 
2Dt 

2 
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solution of the initial value problem of part (b) is 

f , " ' , p(n + k)/2(n-k)/2 2l±A = 0 ) 1 , 2 , . . . , 

1.0, otherwise. 

Using this solution, verify the results of part (b). 

1.1.12. With a = 1, D = constant, and c(x) = -ωχ in (1.1.30) and (1.1.32), the 
Fokker-Planck equation describes Brownian motion with the particle subjected to an 
elastic restoring force. As \x\ increases, the probability that the particle moves farther 
away from the origin decreases, (a) Show that this restoring property follows from 
the definition of p(x) and q(x). (b) Using the methods of Example 1.3 and retaining 
the initial condition (1.1.18), determine the first three moments of the random variable 
x for this case, (c) Obtain the expectation and the variance using the results of part 
(b) and compare them with the expectation and variance given in the text for the 
Brownian motion of a/ree particle. 

1.1.13. For the random walk problem modeled by (1.1.31), using the assumptions 
made in the text, show that at a reflecting boundary, (1.1.28) is replaced by v(l, t+τ) = 
p(l - δ)ν(1 -S,t)+ p(l)v(l,t) + [1 - p(l) - q(l)]v(l,t). Show that in the limit as 
δ and г tend to zero, this yields ^(Dv)x — cv = 0 as the boundary condition for the 
Fokker-Planck equation at a reflecting boundary point x = I. 

1.1.14. (a) Since the particle must remain fixed at an absorbing boundary point once 
it reaches that point, show that the boundary condition for the backward Kolmogorov 
equation (1.1.34) at an absorbing boundary point is v = 0. (b) Show that at a reflecting 
boundary point, the boundary condition associated with the backward difference 
equation (1.1.33) is v(l,t) = pv(l,t + r) + [1 — p — q]v(l,t + r) +qv(l — δ,ί + τ), 
with p and q both evaluated at x = I. Verify that as δ and r tend to zero, this tends 
to vx = 0. This is the boundary condition for the backward Kolmogorov equation 
(1.1.34) at a reflecting boundary. 

1.1.15. If x = — I and x = I are reflecting boundary points, by integrating the 
Fokker-Planck equation (1.1.32) from — I to +/, show that the integral of v(x,t) 
over that interval remains constant. Thus, the probability that the particle remains in 
the interval is fixed for all time since no absorption takes place. This probability is 
initially equal to 1, and it remains at 1 for all time. 

1.1.16. (a) Show that in the two- or three-dimensional case, we must have v = 0 
at an absorbing boundary, for both the Fokker-Planck equation and the backward 
Kolmogorov equation, (b) If the particle is equally likely to move in all directions 
in the two- or three-dimensional case, show that the normal derivative of v at the 
boundary (i.e., the derivative of v in the direction of the exterior unit normal at 
the boundary of the region) must vanish at each reflecting boundary point. This 
boundary condition applies for both the Fokker-Planck and the backward Kolmogorov 
equations. 
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(x-y-ct) 
2Dt with constant с 1.1.17. Show that the function υ^χ,ί; y) = , ' exp 

and D, is a solution of the diffusion equation (1.1.15) and the time-reversed backward 
Kolmogorov equation vt = cvy + \ Dvyy. [This equation results from (1.1.34) if we 
replace t by —t and x by y.] For both equations the initial condition is v(x, 0; y) = 
δ{χ - у). 

1.2 THE TELEGRAPHER'S EQUATION AND DIFFUSION 

The random walk problem considered in Section 1.1 was shown to imply an infinite 
speed for a particle in Brownian motion in the continuum limit modeled by the diffu-
sion equation (1.1.15). It may be reasonably argued that this is a consequence of the 
basic assumption that each step in the random walk is independent of the previous 
steps. Thus in the limit as the step length, as well as the time lapse between steps, 
tends to zero, the probability that the particle moves right or left tends to \. The 
particle is, therefore, equally likely to move to the right or to the left regardless of 
the direction in which it was moving previously. Consequently, the limiting path is 
totally irregular and the particle cannot be said to have a fixed finite velocity. The 
same is true for each of the models considered. 

Correlated Random Walks and Their Limits 

An assumption in the random walk problem that might be expected to yield a smoother 
path of motion for the particle in the limit (at least in the initial stages) is that there 
exists a positive correlation between two adjacent steps. This correlation is expected 
to increase to a maximum value of unity as the step length and the time between 
steps tend to zero. The correlation implies a tendency for the particle to continue 
moving in a given direction once it begins to move in that direction. If, initially, 
probabilities for motion to the right or left are established, the particle will maintain 
its tendency to move in a fixed direction for a certain time at a finite speed. After 
awhile, the inherent randomness of the process reduces the motion to that obtained in 
the preceding section. This assumption was introduced into the random walk problem 
by R. Fiirth in a study of Brownian motion. He showed that it implies a finite velocity 
for the particle at small times and yields the results of Section 1.1 for large times. 

The correlated random walk was considered independently by G. I. Taylor in a 
discussion of diffusion processes. ItwasreexaminedbyS. Goldstein, who formulated 
a difference equation characterizing the random walk and constructed its limiting 
partial differential equation. We shall use the results of Taylor and Goldstein in our 
discussion but retain the notation of Section 1.1. The correlated random walk is 
described in the following example. 

Example 1.4. The Correlated Random Walk. The particle is assumed to start 
at x = 0 and move to the right or to the left with probability equal to | initially. 
Subsequently, the particle has a constant probability of persistence in or reversal of 
direction at each step. At the ith step the random variable Xi assumes the values +δ 
or — δ and is readily seen to do so with probability equal to \. However, the steps are 
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no longer assumed to be independent, as in Section l. 1. Xn again gives the position 
of the particle after n steps [as in ( 1.1.1 )], but we now have for the mean value of Xn, 

{Xn) = /j2xi)=J2(xi)=0, (1.2.1) 
u=i 

since the equal likelihood of a step to the right or left implies that (xi) = 0. 
For the variance of Xn, we have V(Xn) — {(Xn - (Xn))2) = (X2) on using 

( 1.2.1 ), so that the variance equals the second moment of Xn. Also, we easily obtain 
V(xi) = ({xi — {xi})2) = (xf) = δ2. The second moment (X2) ' s given as 

(К) Σ> ) = {Σχ2 + 2 Σ x 
г-Ь] 

vi=l i i = l i,j = l , i< j 

and we evaluate it in terms of the correlation coefficient between Xi and Xj. 
The correlation coefficient p(xi, Xi+k) between two random variables Xi and Xi+k 

is defined as 
p{XiiXi+k) = (xiXi+k) - (*i) <*i+k) _ ( } 

It vanishes if the Xi are independent random variables. We shall assume that partial 
correlations between two nonadjacent random variables x^ and Xj (i.e., | j — г |> 1) 
equal zero. Since the x^ are identically distributed random variables, the correlation 
coefficient between any two adjacent random variables is equal, so that 

p(Xi,Xi+l) = p. (1.2.4) 

Further, the correlation between ж; and Xì+к (with к > 1) occurs only through the 
intermediate random variables Xi+1, Xi+2, ■ ■., Xi+k-1 since partial correlations are 
assumed to vanish. Thus p(xi,xi+k) = pk■ Since V{xi) = δ2 for all г and (xi) — 0, 
we obtain from ( 1.2.4) (xiXi+k) = S2pk. Introducing this into ( 1.2.3) gives 

(X2) = δ2 [n + 2(n - l)p + 2(n - 2)p2 + ■■■ + 2pn~1} . (1.2.5) 

This series is easily summed in terms of the finite geometric series, and we have 

2np 2p(l-pnY 
(X2n) - δ2 11 + \-p {l-pf 

(1.2.6) 

Proceeding as in Section 1.1, we set n = tjr in ( 1.2.6) and consider the limit as 
δ —» 0, r —» 0, and η - » ο ο with t fixed and Xn —> x to obtain 

(X2n)= Z 
1 + P . . 2ρ(1-ρ^)τ2 

1 - / Г + ( l - p ) 2 
(1.2.7) 
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We assume that lim δ/τ = -у, the finite velocity of the particle. For ( 1.2.7) to have a 
finite nonzero limit as т —► 0, we must have 

r^O 1 — p 2X 

where A is a nonzero positive constant. [The factor 2 in (1.2.8) is introduced for 
convenience.] This is consistent with the fact that as r —» 0 the correlation coefficient 
p must tend to unity. It then follows that 

lim p ' / r = e~2Ai, (1.2.9) 
r—»0 

and (1.2.7) tends to 

~t 
(x2)=l2 

X 2λ2 ( 1 - е " 2 Л Е ) (1.2.10) 

An expression of the form (1.2.10) for the variance of x was obtained by Ornstein 
and Uhlenbeck and Fiirth in their (improved) theories of Brownian motion. It was 
also assumed in their theories (as we have done) that the mean displacement {x) of 
the particle equals zero. For large values of Xt, ( 1.2.10) reduces to 

( x 2 ) « ^ i , (1.2.11) 

which agrees with the result ( 1.1.21 ) for the mean square displacement of the particle 
in Brownian motion (in the case where (x) = 0), if we set 

£> = y , (1-2.12) 

with D as the diffusion coefficient. For small values of Xt, on expanding e~2Xt in 
a Taylor series we obtain (a;2) « 72i2. This shows that in the initial stages of the 
motion \J{x2)/t « 7, which means that the motion of the particle is essentially 
uniform with speed 7. Ornstein and Uhlenbeck, using Langevin's equation, obtained 
a density function for the random variable x that gives the displacement of the par-
ticle in Brownian motion. It reduces to the density function (1.1.20) for the normal 
distribution as t —> 00, has zero mean, and its variance is given by (1.2.10). They 
also constructed a differential equation that their density function satisfies but were 
not able to show that their equation reduces to the diffusion equation (1.1.15) (with 
с = 0) as t —> 00. 

Partial Difference Equations for Correlated Random Walks 
and Their Limits 

Following the approach of 5. Goldstein, we now construct a partial difference equation 
and its limiting partial differential equation that characterize the correlated random 
walk described. 
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Let a(x, t) be the probability that a particle is at the point x at the time t and 
arrived there from the left, while ß(x, t) is the probability that a particle is at x at the 
time t and arrived there from the right. Thus a(x, t) and ß(x, t) characterize right-
and left-moving particles, respectively. Also, let p be the probability that the particle 
persists in its direction after completing a step, whereas q is the probability that it 
reverses its direction after completing a step. The probabilities p and q are assumed 
not to vary from step to step, and we have p + q = 1. Thus if a particle arrives at x 
from the left, p is the probability that it continues to the right in the next step, and q is 
the probability that it reverses its direction and goes to the left in the next step. (Note 
that p and q were defined differently in the preceding section.) 

With steps of length δ occurring in time intervals of length r, we immediately 
obtain the coupled system of difference equations for a(x, t) and ß(x, t), 

a{x,t + r) = pa(x - S,t) + qß(x - δ,t), (1.2.13) 

ß(x, t + r)= pß(x + 6,t) + qa(x + 6, t), (1.2.14) 

on using the preceding definitions of a, β, ρ, and q. 
The foregoing assumption that as r —> 0 the correlation coefficient p —> 1 [see 

(1.2.8)], implies that as τ —> 0, the probability p of persistence in direction should 
tend to unity, whereas the probability q of reversal should tend to zero. This means 
that we should have for small r, 

ρ = 1 - λ τ + 0 ( τ 2 ) , <7 = λτ + 0 ( r 2 ) , (1.2.15) 

where λ is the rate of reversal of direction. Now it can be shown that the correlation 
coefficient p is related to p and q as p = p — q. Since p + q — 1, (1.2.15) yields 
p = p-q=\-2q=l- 2λτ + 0(τ2). Recalling (1.2.8), we conclude that λ - X 
since 

lim —̂— = i - = lim —, = Λ-. (1.2.16) 
T-.0 1 - P 2λ τ - 0 2 λ τ + Ο(τ2) 2λ 

It was observed by Kac that in view of (1.2.15) and the independence of the 
probabilities p and q for each step, the probability of reversal of direction in a given 
time span is determined by what is known as a Poisson process. This will be exploited 
below when an elementary property of the Poisson process is used. 

Introducing Taylor expansions for a and /3in (1.2.13)—(1.2.14), and using ( 1.2.15), 
yields 

at{x, t) = - (δ/τ) ax(x, t) - Xa(x, t) + λβ{χ,t) + 0(τ + δ + δ2/τ), (1.2.17) 

ßt(x, t) = (δ/τ) ßx{x, t) + Xa(x, t) - Xß(x,t) + 0(r + ö + δ2/τ). (1.2.18) 

Taking the limit as δ, τ —» 0, with δ/τ —» 7, yields a coupled system of PDEs: 
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^ - 7 ^ = A a ( x , * ) - № , * ) ■ (1.2.20) 

In the limit, a(x, t) and ß(x, t) are to be interpreted as probability density functions 
for right- and left-moving particles, respectively. 

Since at the time t = 0 the particle is located at x = 0 and is equally likely to 
move to the right or to the left, the probabilities a and ß vanish for x ^ 0 and equal 
| at x — 0. In terms of the density functions a(x, t) and ß(x, t) this yields the initial 
conditions as follows from the discussion in Section 1.1: 

α{χ,0)=β{χ,0) = ±δ(χ), (1.2.21) 

where δ(χ) is the Dirac delta function. 
The system ( 1.2.19)-( 1.2.20) together with (1.2.21) constitutes an initial value 

problem for a(x, t) and ß(x, t) that can be solved directly. However, to compare our 
results with those of Section 1.1, we introduce the probability density function v(x, t) 
associated with the point x and the time t without regard to the direction in which the 
particle is moving. It is given as 

v(x,t)=a(x,t) + ß{x,t), (1.2.22) 

since the particle must have arrived at x from either the right or the left. Adding 
(1.2.20) to (1.2.19) gives 

%£* + -, Z£*-o. 
Subtracting (1.2.20) from (1.2.19) gives 

Differentiating ( 1.2.23) with respect to t and ( 1.2.24) with respect to x after multi-
plying by 7, and subtracting the second equation from the first, yields the following 
equation for v(x, t) = a(x, t) + ß(x, t): 

d2v{x,t) _,2d
2v(x,t) , ο λ dv(x,t) _ n , . „„ 

dt* Ί дх* +Ζλ dt ~ υ · {1-1-гь} 

This partial differential equation is a special case of what is called the telegrapher's 
equation, an equation that governs the propagation of signals on telegraph lines. It 
can also be characterized as a wave equation with a damping effect due to the term 
2λ dv/dt. That is, if A — 0, ( 1.2.25) reduces to the (one-dimensional) wave equation. 
The solution of ( 1.2.25) is presented in later chapters, however, the damping effect is 
considered below. 

In contrast to the diffusion equation (1.1.15), which contains only one time deriva-
tive, the telegrapher's equation (1.2.25) has two time derivatives and, therefore, re-
quires two initial conditions. From (1.2.21)—(1.2.22) we obtain, since a — β — 0 at 
i = 0, 

v(x, 0) = δ(χ), vt(x, 0) = 0. (1.2.26) 
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In the following example, we derive the moments of the continuous random vari-
able x whose density function v(x, t) satisfies (1.2.25)—(1.2.26). 

Example 1.5. Expectation and Variance: The Continuous Case. To ob-
tain the first three moments of the random variable x, ( 1.2.25) is multiplied by 1, ж, 
and x2, respectively, and the result is integrated from — oo and oo with respect to x. 
Integrating by parts, assuming that v(x, t) vanishes sufficiently rapidly at infinity so 
that all contributions from the limits at infinity vanish, and using the initial conditions 
( 1.2.26), we easily obtain the following equations. 

έ<*>+2λ!<*>=0' 
έ^>+ 2 λΙ<^> 272 

{x) 

<*2> 

t=o 

d_ 
dt 

<*»> 0. (1.2.27) 
t=o 

= 0, 
i = 0 I« 0. (1.2.28) 

t=o 

= 0, 
t=o 

ί^ = 0. (1.2.29) 
t=o 

The moments (xk) are defined as in (1.1.22). 
The solution of (1.2.27) is (χϋ) — 1, which shows that v(x, t) is indeed a prob-

ability density function for all t > 0. The solution of ( 1.2.28) is clearly {x) = 0, 
whereas that of ( 1.2.29) is identical with ( 1.2.10). These results confirm that v(x, t) 
characterizes a random variable whose expectation and variance agree with those 
obtained above in the continuum limit of the correlated random walk. 

Telegrapher's, Diffusion and Wave Equations 

From ( 1.2.11 )-( 1.2.12) we see that as t —> oo, the mean square displacement (x2) of 
the particle tends to the form given in Section 1.1 for a particle undergoing Brownian 
motion. We may expect, therefore, that in some sense the telegrapher's equation 
(1.2.25) tends to the diffusion equation (1.1.15) (with с = 0) as t —> oo. To establish 
a means of assessing the magnitude of the terms in ( 1.2.25) for large t, we introduce the 
change of scale t = σ/ e, where 0 < e <C 1. Even for moderate values of σ, since e is 
small, t takes on large values. We have d/dt 
so that ( 1.2.25) becomes 

е(д/да) anàd2/dt2 = е2(д2/да2 

θ2ν(χ,σ) 
θσ2 

2 θ2υ(χ,σ) 3υ(χ,σ) 
7 —?τ~ί \- Лле дх2 да 

0. (1.2.30) 

If we assume that v does not vary rapidly with respect to σ, we may discard the 
term e2(d2v/da2) compared to 2\e(dv/da) since e <g; 1 implies that e2 <C e. Thus 
( 1.2.25) can be approximated for large t by the equation 

dv(x,t) _ 72 d2v(x,t) 
dt ~2X dx2 (1.2.31) 
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where σ was replaced by t in ( 1.2.30) after discarding the second time derivative term. 
This equation is to be compared with the diffusion equation (1.1.15) where we must 
put с = 0. It has already been shown in (1.2.11)—(1.2.12) that with D = η2/λ, the 
mean square displacements obtained from the random walk models in this and the 
preceding section agree for large t. Consequently, if the parameters are identified in 
this manner, ( 1.2.32) is identical with (1.2.15). The validity of the diffusion equation 
is limited to large values of t in its use as a model for Brownian motion as we have 
seen. However, ( 1.2.25) may be taken to represent a valid model for Brownian motion 
for all t > 0. For small values of t, it yields the required finite particle velocities, and 
for large t, it reduces to the diffusion equation. 

To examine the behavior of the solution of the initial value problem ( 1.2.25)-
( 1.2.26) for small t, we note that the speed of the particle is 7. Thus, since the particle 
is at x = 0 at the time ί = 0 and it can travel to the right or the left, it can never 
reach the set of points x for which |a:| > 7Ì. The density function v(x, t) should, 
therefore, vanish for \x\ > ft, and this will be verified when the full solution of 
( 1.2.25)-( 1.2.26) is given in a later chapter. 

The location of the particle on one of the lines x = ±7^, can only be the result 
of the particle never having reversed its direction from the time t = 0 on, when it 
started on one of the paths x = ±~ft in the (x, i)-plane. The probability of reversal 
of direction is characterized by a Poisson process as described by (1.2.15) with rate 
of reversal λ = λ. As is well known for this process with rate A, the probability 
of nonreversal (i.e., persistence) in direction is given by е_л* at time t. Since the 
particle is equally likely to be on the line x = 7t or x = —7t, we conclude that the 
probability that the particle is on either line is 

v(x,t) = \e-*. (1.2.32) 
x=±~,t Z 

For small values of t, e~xt « 1 so that most of the probability is concentrated on the 
lines x = ±7i. Therefore, we have essentially deterministic motion with speed 7 
along the lines x = ±ft. As t increases, e~Xt decays rapidly and the density v(x, t) 
begins to become more concentrated in the interior region | x |< 7Ì. Eventually, the 
motion appears to become totally random and can be described by the random walk 
model and the limiting diffusion equation given in the preceding section. 

In a further analysis of the effect of the randomness assumptions that led to the 
partial differential equations (1.2.15) and (1.2.25), it is of interest to consider the 
reduced equations obtained from (1.1.15) and (1.2.25) when D and λ, respectively, 
are equated to zero. Since D is a measure of the variance around the mean particle 
path, we expect that the reduced equation with D = 0 should yield deterministic 
motion with the mean speed с Also, λ is the rate of direction reversal of the particle, 
so that if λ = 0, the particle should move with speed 7 either along the path x = 7Ì 
or x = — 7Ì. Putting D = 0 in (1.1.15) gives 

dv^t1+cdv^t1=0 

at ox 
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With the initial condition ( 1.1.18), the formal solution of ( 1.2.33) is 

v(x,t) = S(x-ct), (1.2.34) 

where the Dirac delta function δ(χ — ct) vanishes for x — ct φ 0. If we formally dif-
ferentiate (1.2.34), we find that it satisfies (1.2.33), and (1.2.34) equals δ(χ) at t = 0. 
The density function v(x, t) is concentrated on the path x — ct = 0, so that the particle 
moves (deterministically) along that path. Equivalently, the particle moves with the 
fixed velocity с The case where D ф 0 in ( 1.1.15) (i.e., the diffusion equation) may, 
therefore, be characterized as representing a random motion around a deterministic 
path for the particle given by x = ct in the (x, i)-plane. The equation (1.2.33) is 
called a wave equation representing unidirectional wave motion with velocity c, for 
reasons that will become apparent when such equations are discussed in Chapter 2. 

Putting λ = 0 in (1.2.25) yields the wave equation 

at1 ox1 

With the initial conditions (1.2.26), the formal solution of (1.2.35) is 

v(x, t) = У(х - ct) + \δ{χ + ct). (1.2.36) 

This result may be obtained from ( 1.2.33)—( 1.2.34) by noting that with λ = 0, the 
system (1.2.19)- (1.2.20) reduces to two unidirectional wave equations, 

da(x,t) , _.da(x,t) dß(x,t) _dß(x,t) 
—d^+1—dx-=Q' — δ ^ - Ί - θ χ - = ° > ( 1 · 2 · 3 7 ) 

with initial data a(x, 0) = β(χ, 0) = δ(χ)/2. Recalling that v — a + β and 
the result (1.2.34), immediately yields (1.2.36). The definition of the Dirac delta 
function implies, by way of (1.2.36), that the particle is restricted to move along the 
deterministic path x = jt or x = —jt with speed 7. The factor | before each delta 
function is a consequence of the random choice of direction at the time t = 0 for the 
particle (i.e., either to the right or to the left). Once the particle chooses a direction it 
must continue to move in that direction, since λ = 0 implies that the probability of 
reversal of direction is zero. If А ф 0, we have seen in the foregoing that there is some 
initial directionality to the particle motion, but this disappears rapidly and the motion 
becomes completely random. The wave equation (1.2.35) permits two directions of 
motion (to the right and to the left) with speed 7. 

Another important limiting form of the telegrapher's equation ( 1.2.25) occurs if 
we divide by 2λ and let λ —» oo and 7 —» 00 but require that 7 2 /λ remain fixed 
and nonzero. Then, (1.2.25) reduces to (1.2.31). As the rate of reversal λ and the 
particle speed 7 both tend to infinity, but with 7 2 /λ = D as in (1.2.12), the Brownian 
motion model of this section is effectively reduced to that of the preceding section. 
However, it is not correct to state that both models are completely equivalent under 
the assumptions of large reversal rates and speeds. For, as we have shown in ( 1.2.11 ), 
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the mean square displacement of the particle predicted by both models agrees only 
if Xt is large. Thus, even for very large A, if t is sufficiently small, the results of 
both models disagree. Further, if we replace (1.2.25) by (1.2.31), we lose a second 
order time derivative term, and (1.2.31) cannot accommodate both initial conditions 
(1.2.26). The neglect of the term vtt because it is multiplied by a small parameter 
represents a singular perturbation of the equation. Such problems are studied in 
Section 9.3. 

Position-Dependent Correlated Random Walks and Their Limits 

As was done for the Brownian motion model considered in Section 1.1, we now 
introduce persistence and reversal probabilities that depend on the position of the 
particle. In a further generalization, we assume that these probabilities depend on the 
direction of motion of the particle and admit the possibility that the particle rests at 
each step. In the present correlated random walk model, we define the probabilities 
a(x, t) and ß(x, t) as before. However, p+ and q+ represent the probabilities of 
persistence and reversal in direction if the particle is moving to the right, and p~~ and 
q~ represent the same probabilities for leftward motion. These probabilities are given 
as 

p±(x,t) = σ{χ) - λ±(χ)τ, q±(x,t) = λ±(χ)τ. (1.2.38) 

The probability that the particle rests at each step is given by 1 — p± — g* = 1 — σ, 
and is taken to be independent of the direction in which the particle is moving. As 
r —» 0, both reversal probabilities tend to zero. This characterizes the correlated 
nature of the random walk. We again require that as δ and r tend to zero, the ratio 
δ/τ —> 7, with 7 as the finite particle velocity. 

The coupled system of difference equations satisfied by a(x, t) and ß(x, t) is easily 
found to be 

a(x,t+r) = \l-p+(x)-q+(x)]a(x,t)+p+(x-6)a(x-6,t)+q-(x-6)ß(x-S,t), 
(1.2.39) 

ß{x, t+τ) = [1 -p- (x)-q~ {x)) ß{x, t)+p~ {χ+δ)β(χ+δ, t)+q+ (χ+δ)α(χ+δ, t). 
(1.2.40) 

On expanding the terms in a Taylor series around x and t, and letting δ and τ tend to 
zero, we obtain 

at(x,t) + f(a{x)a(x,t))x + \+{x)a(x,t) - \-(x)ß(x,t) = 0 , (1.2.41) 

ßt(x,t)-y{a{x)ß{x,t))x~X+(x)a{x,t)+X-{x)ß{x,t)=0. (1.2.42) 

To obtain a single equation for the probability density function v(x, t), defined as 
in ( 1.2.22), we assume that the sum of the reversal rates λ + and λ~ is a constant. 
More precisely, we set 

Х±(х) = ХТ^/Х-ф(х), (1.2.43) 
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where λ is a constant and ψ(χ) is a given function. On manipulating ( 1.2.41)-( 1.2.42), 
as was done for ( 1.2.19)-( 1.2.20), we obtain 

vu{x, t) - η2\σ(χ){σ(χ)ν(χ, t))x]x + 2^\η {σ{χ)φ{χ)ν{χ, t))x + 2\vt(x, t) = 0. 
(1.2.44) 

This equation is the analog of the telegrapher's equation (1.2.25) for the case of 
Brownian motion in an inhomogeneous medium. The initial data for v(x, t) at t = 0 
are again given by ( 1.2.26). 

If σ = 1 and φ = 0, (1.2.44) reduces to (1.2.25). The difference \~ - A+ in 
the reversal rates gives rise to the drift term (i.e., the first order ^-derivative term) 
in (1.2.44). This term arises even if σ = 1, in which case there is a zero rest 
probability. To relate (1.2.44) to the Fokker-Planck equation (1.1.15), which was 
shown to characterize Brownian motion in an inhomogeneous medium on the basis 
of an uncorrelated random walk model, we divide by 2λ in (1.2.44) and let λ and 7 
tend to infinity while requiring that η2/λ have a nonzero limit. This yields 

vt(x, t) = -(c(x)v(x, t))x + i [у/ОЩ [уЩх)у{х, t)) ] , (1.2.45) 

where y/D(x) = Ιίτη(η//\/\)σ(χ) and c(x) = lim(-y / \/\)ψ(χ)σ(χ). We observe 
that ( 1.2.45) does not have the same form as ( 1.1.15) unless the diffusion coefficient 
D is a constant. 

The difference in the form of the diffusion equations (1.1.15) and (1.2.45) is 
well known in the theory of stochastic differential equations. The Fokker- Planck 
equation (1.1.15) results on solving generalized Langevin equations by using the Ito 
stochastic calculus. If the Stratonovich stochastic calculus is used, an equation of 
the form ( 1.2.45) results. Further, it has been shown that on solving certain gen-
eralized Langevin equations in which the random terms contain correlation effects, 
and then letting the correlation effects tend to zero, a diffusion equation of the type 
(1.2.45) results. This conclusion is consistent with our derivation of (1.2.45). It is 
also possible to construct backward difference equations, telegrapher's equations and 
their generalizations in the manner of the results in Section 1.1. These matters are 
considered in the exercises. 

Boundary value problems based on the random walk model formulated in this sec-
tion are considered in the exercises. A full discussion of initial and initial boundary 
value problems for the telegrapher's and related equations is given in later chapters. 
We conclude by noting that the difference equation formulation of the random walk 
problems in this section again indicates, as was the case in the preceding section, that 
the solution at the time t depends only on data for the problem given at earlier times. 
The fact that the particle speed 7 is finite implies, as was indicated, that the den-
sity function v(x, t) with the data (1.2.26) concentrated at the origin vanishes when 
I x I > 7Ì. This is true for the solutions of the telegrapher's and wave equations. For 
the equation (1.2.44) with the data (1.2.26), the region outside of which v(x,t) = 0 
has a more complicated form. It will be determined later in the book. The existence 
of a finite (maximal) speed of propagation of disturbances is a fundamental prop-
erty of hyperbolic partial differential equations, of which the wave and telegrapher's 
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equations are prototypes. This property is not shared by diffusion equations (which 
are equations of parabolic type), as shown in the preceding section. (A classification 
of equations into various types is given in Chapter 3.) 

Exercises 1.2 

1.2.1. Verify that (1.2.5) sums to (1.2.6). 

1.2.2. Show that the limit in (1.2.9) is correct. 

1.2.3. Obtain the results of Example 1.5 for the moments specified by solving the 
given initial value problems for the ordinary differential equations. 

1.2.4. Consider the solution (1.1.20) of the initial value problem (1.1.18) for the 
diffusion equation (1.1.15). Using the approach of Exercise 1.1.3, show that the limit 
of this solution as D —> 0 is the delta function ( 1.2.34). 

1.2.5. (a) Let v — Ve~xt in the telegrapher's equation (1.2.25) and show that V 
satisfies the equation Vtt - Ί2νχχ - X2V = 0. (b) Put z = \/ηΗ2 — x2 and show 
that V(x, t) = W(z) satisfies the ODE W"(z) + {\/z)W'{z) - (λ2/Ί

2)\¥{ζ) = 0. 
[Note that the region z > 0 is where the solution v(x, t) was shown to be nonzero 
in the text.] (c) Let W(z) = (1 /\/z)w(z) and show that w(z) satisfies the equation 
w"(z) + [l/Az2 - (A2/72)]w(z) = 0. (d) Observe that for \x\ < -ft, as jt -> oo 
we have z = \/j2t2 — x2 « jt — (x2 /2-ft) and, consequently, z —» oo as ηί —* 
oo. Thus we can approximate the equation for w(z) when ηί is large by w"(z) — 
(X2/,y2)w(z) = 0. Using (1.2.12), show that as ηί —> oo we have approximately 
v(x, t) « (a/s/^t)e~(x l2Dt\ where a is an arbitrary constant. This has the form of 
the solution (1.1.20) of the diffusion equation with с = 0. 

1.2.6. Put x = kS and t = ητ as in Exercise 1.1.11 and set a(x, t) = a(k6, пт) and 
β(χ, t) = ß{kö, пт). Show that the difference equations ( 1.2.13)-( 1.2.14) take the 
form a[h5, (n + l)r] = pa[(k - 1)5,nr)] + qß[{k - \)δ,ητ\, ß[kS, (n + ί)τ] = 
pß[(k+l)S,nr)]+qa[(k+l)6,nT], with the initial conditions α(0,0) = /3(0,0) = \, 
and a(k5,0) = ß(k5,0) = 0, for к ф 0. 
1.2.7. .(a) Solve the difference equations of Exercise 1.2.6 recursively for all к and 
for n = 1,2,3, and 4. (b) Show that for the values of n above, Y^=_00 a(kS, пт) = 
ΣΓ=-οο/«™-) = ι. 
1.2.8. (a) Solve the difference equations of Exercise 1.2.6 for α(±ηδ, ητ) and 
β(±ηδ,ητ). Show that α(ηδ, пт) = β(-ηδ,ητ) = \pn~l and that α(-ηδ,ητ) — 
β(ηδ,ητ) = 0 for n > 1. (b) With x = ±ηδ and t = пт so that x = ±{δ/τ)ί, 
show that as n —» oo, δ —» 0, r —► 0, and δ/τ —> η, we have α(ηί,ί) —» 
\e~xt, ß(—"ft,t) —* \e~xt. These results are in agreement with (1.2.32) since 
v = Q + ß. 

1.2.9. With v(kö, пт) = а(к6, пт) + ß(kS, пт), show that v satisfies the difference 
equationv[kS, (η+1)τ] = pv[(k— 1)6,пт]+ру[(к+1)6,пт}~(p—q)v[kS, (n—l)r] 
with the initial conditions г>(0,0) = 1, v(k6,0) = 0, к =/= 0, and υ(—δ,τ) = 
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υ(δ,τ) = | , v(kö, τ) = 0, к ф ±1 . [We observe that with p = q = \, the 
correlation coefficient p = p — q vanishes and the difference equation reduces to 
(1.1.12). If/3 = p — q ф 0, the probability v(k6,nr) depends not only on the location 
of the particle at the preceding step but on the preceding two steps.] 

1.2.10. (a) Solve the difference equation of Exercise l.2.9forv(kS, пт) withn = 2,3 
and 4, and for all k. (b) Solve the equation for ν(±ηδ, ητ) for n > 2. (c) Show that 
у(ко,пт) = Ofor |fc| > n. 

1.2.11. Let λ + and λ~ be constants and σ = 1 in (1.2.38) and in (1.2.41) and 
(1.2.42). Putting v = a + β, show that v(x, t) satisfies the telegrapher's equation 
vtt - Ί2νχχ + (λ+ + \-)vt - 7(λ+ - А " К = 0. 

1.2.12. (a) Apply the method of Example 1.5 to show that as t —> oo the expecta-
tion (x) and variance V(x) of the continuous random variable characterized by the 
equation in Exercise 1.2.11 are given as 

. . 7 ( λ + - Α _ ) T , . . , , \ , ι2 872λ+λ~ 

<*> = - I W Ä T *' v{x) = {x) -{x) ю ( Ä ^ T Ä ^ ' 
(b) Compare the results of part (a) with those for the Brownian motion model of 
Section 1.1. Explain why the coefficient of t in the expression for (x) may be char-
acterized as a drift velocity, (c) Show that V(x) « 72i2 for small t. 

1.2.13. Generate the results of Exercise 1.2.12 for the expectation and variance by 
proceeding as follows. Assuming that x and t are large and of the same order of 
magnitude (say, x = x/e and t — i/e, where 0 < e <§; 1), we can neglect the second 
derivative terms in the equation for v(x, t) given in Exercise 1.2.11 and obtain in a first 
approximation, vt -

 Ί\+~χ_) υχ = 0. Using this equation to obtain an expression for 
vxx, show that in the next approximation we obtain the following diffusion equation 
forv(x, t): 

7 ( λ + - λ - ) 4 7
2 λ + λ -

vt - (A++A-) Vx - ( Α + + Α - ) 3 ^ = 0 · 

Demonstrate that this equation implies the results of Exercise 1.2.12(a). 

1.2.14. With the persistence and reversal probabilities p± and q± defined as in 
(1.2.38), obtain the difference equations 

a(x, t) - [1 - p+ - q+]a(x, t + r)+ p+a{x + δ, t + r ) + q+ß(x -δ,ί + τ), 

β{χ,t) = [1 - p- - q~]ß(x,t + r) + q~a(x + ö,t + T)+ p~ß(x -S,t + τ), 

where the p"1" and q^ are all evaluated at the point x. These equations determine the 
probabilities that right- and left-moving particles are located at the point x at the time 
t, in terms of their possible locations at the time t + r. 
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1.2.15. As δ and τ tend to zero, show that the system of difference equations derived 
in Exercise 1.2.14 yields the system of differential equations at + ησαχ — Α+α + 
\+ β = 0, ßt — ησβχ + \~a — λ~β = 0. This system is the analog of the backward 
Kolmogorov equation for the model of Brownian motion considered in this section. 

1.2.16. Put v = a + β and let λ + and λ~ be defined as in (1.2.43). Show that the 
system of Exercise 1.2.15 yields vu — Ύ2σ(σνχ)χ — 2\/\ησ·ψνχ — 2\vt = 0. This 
is the backward form of the equation ( 1.2.44). It is to be solved for t < 0 in terms of 
the data (1.2.26) given at t — 0. It is also the adjoint equation of (1.2.44) (see Section 
3.6). We note that if σ = 1 and ψ = 0, this is known as the backward telegrapher's 
equation. 

1.2.17. Carry out the limit described in the discussion immediately preceding equa-
tion (1.2.45) for the equation of Exercise 1.2.16 and obtain vt — —cvx - \^/~D 
(V~Dvx)x. This is the backward form of the equation (1.2.45), and is again its ad-
joint. 

1.2.18. Put σ = 1 in (1.2.38) and ψ = -x in (1.2.43). Show that the limiting 
diffusion equation (1.2.45) has the form of the equation given in Exercise 1.1.12. 
Explain why the behavior of the reversal rates λ + and A~ for x < 0 and x > 0 
suggests that this problem is similar to that of Exercise 1.1.12, where the particle is 
subjected to an elastic restoring force. 

1.2.19. Consider the motion of a particle in the semi-infinite interval x < I, and let 
x = / be an absorbing boundary, (a) Show that for the discrete problem ß(l, t) = 0 
since the particle cannot reach that point from the right. For a particle that moves to 
the right, we have a(l, t + r ) = p+(l — δ)α(1 — δ, t). (b) As δ and r tend to zero, 
if σ(1) φ 0, conclude that a(l, t) = ß(l, t) — 0 are the required conditions at an 
absorbing boundary. 

1.2.20. Let the particle move in the interval x < I, and assume that x = I is a 
reflecting boundary, (a) Show that for the discrete problem we have ß(l, t + r ) = 
p+(l)a{l,t) + [i-p-{l)-q-(l)}ß(l,t), α(1,ί + τ) = p+(l-S)a(l-S,t) + q-(l-
δ)β(1 - δ,ί) + [1 - p+(l) - q+(l)]a(l,t). (b) In the limit as δ and r tend to zero, 
obtain a(l, t) = ß(l, t), at + ^(σα)χ = ( λ - — λ + )α as the boundary conditions at 
a reflecting boundary. 

1.3 LAPLACE'S EQUATION AND GREEN'S FUNCTION 

In the random walk problems of the preceding sections we were concerned with 
finding the probability that a particle located initially at the point x = 0 and moving 
in a random manner is located at a point a; at a later time t. Consequently, we 
were dealing with time-dependent problems. In this section we consider three time-
independent random walk problems in plane regions. The one- and three-dimensional 
versions of these problems are considered in the exercises. 

Each of the problems we study involves a random walk in a bounded plane region 
with an absorbing boundary. The first problem examines the probability that a particle 
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starting at some point in the region reaches a specified point on the boundary and is 
absorbed there before it reaches and is absorbed at another boundary point. The 
second problem is essentially concerned with the probability that the particle reaches 
a fixed interior point before it is absorbed at the boundary. The third problem involves 
the determination of the expected or mean time it takes for a particle starting at some 
point in the interior until it is absorbed at the boundary. This is known as a mean 
first passage time problem. The number of steps required for the particle to reach 
the fixed boundary or interior point is not relevant. That is, the time it takes for the 
particle to reach that point is not considered or determined, so that these problems 
are time independent. For the mean first passage time problem, the possible times 
until absorption for each interior point are averaged out, so that there is no explicit 
time dependence. The first two problems may be thought to represent stationary 
or steady-state versions of appropriate modifications of the problems considered in 
Sections 1.1-1.2. In fact, the time independent form of the diffusion and telegrapher's 
equations (in two space dimensions) is Laplace's equation which is derived below. 
We remark that none of these problems is meaningful if there is a purely reflecting 
boundary. For in that case, the particle does not cease its motion on reaching the 
boundary. However, we can consider a mixed boundary condition, in which part of 
the boundary is absorbing and the rest of the boundary is reflecting. 

Let A represent the bounded region under consideration and dA its (piecewise 
smooth) boundary curve. We enclose A and its boundary by a rectangle with sides 
x = a,x = b,y = c, and у = d where a < b and с < d. With δ as the step length in the 
random walk, we assume the intervals [a, ò] and [c, d] can be subdivided into the set of 
pointsXfc = a+Skandyi = c+δΐ,respectively,with0 < к < n, 0 < I < m, xn = b 
and ym = d. Each point that lies within A (i.e., does not lie on dA) is called an interior 
point. Each interior point (xk, yi) has four neighboring points in four perpendicular 
directions. If one of the neighboring points lies on dA or is exterior to A, we call it 
a boundary point. The points in the rectangle that are neither interior nor boundary 
points will not be considered. 

Time-Independent Random Walks and Their Limits 

In the first random walk problem, we ask for the probability that a particle starting 
at an interior point of the region A reaches the specified boundary point (xi,yj) 
before it reaches and is absorbed at any other boundary point. Let v(x, y) be the 
probability that the particle starts at the interior point (x, y) and reaches the boundary 
point (xi,yj). We assume that the particle is equally likely to move to any of its 
four neighboring points from the interior point (x, y). Thus the probability that it 
moves to any of its four neighbors equals \. The probability that the particle reaches 
the boundary point (xi,yj) from the point (x, y) can be expressed in terms of the 
probability that it moves to any of its four neighboring points and reaches (XÌ, yj) 
from one of these points. Thus we obtain the partial difference equation 

v(x,y) = -[v(x + S,y) + υ{χ - S,y) + v(x,y + δ) +v(x,y-6)}. (1.3.1) 
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If (x, y) is a boundary point, we have 

v{x,y) = (1' {X'y) = {Xi^' (1.3.2) 
LO, (x,y) φ (xi,yj), 

since when the particle is at a boundary point (x, у) ф (xi,yj) it is absorbed and 
cannot reach the point (xi ,yj). If one of the neighboring points of (x, y) is a boundary 
point, (1.3.2) is to be used in (1.3.1). 

In the limit as the step length δ —> 0, the number of points in the subdivisions of 
[o, b] and [c, d] tend to infinity, and the boundary points defined actually lie on the 
boundary dA. Using Taylor's formula gives 

Г v(x ±S,y) = v{x,y)±S vx(x,y) + (δ2/2)vxx{x,y) + 0{δ3), 

1 v(x, у ± δ) — v(x, y)±S vy(x, y) + (δ2/2) Vyy(X, 

Inserting (1.3.3) into (1.3.1), dividing by δ2, and letting δ —► 0 yields 

(1.3.3) 

d2v{x,y) d2v{x,y) 
dx2 dy2 ' [ ' 

which is known as Laplace's equation. The function v(x, y) is now interpreted as a 
probability density. 

We assume that arc length s is defined on the boundary dA and that as δ —> 0, the 
point (xi,yj) tends to the (boundary) point (x, y) on dA. The boundary conditions 
( 1.3.2) are easily found to take the form 

/ v(x,y)ds = l, v(x,y)=0, (х,у)едА, (х,у) ф (x,y). (1.3.5) 
JdA 

For example, if (x, y) is a point in an open interval on the ж-axis that comprises a 
portion of the boundary dA, we can set v(x, y) = δ(χ — x) in that interval [where 
δ(χ — x) is the Dirac delta function] and v(x, y) = 0 elsewhere on dA. 

Green's Function 

The second random walk problem we consider asks for the probability that a particle 
starting at an interior point (x, y) in the region A reaches a specified interior point 
(ξ, η) before it reaches a boundary point and is absorbed. The region A is subdivided 
as in the first problem, and interior and boundary points are defined as before with the 
step length again equal to δ. Since the problem is time-independent and the particle 
does not stop its motion once it first reaches (ξ, η), it is possible for the particle to 
pass through the point (ξ, η) more than once before it reaches and is absorbed at 
the boundary. Consequently, if the particle begins its motion at (ξ,η), it has unit 
probability of reaching (ξ, η) since it is there already. However, it can also move to 
one of its four neighboring points and reach (£, η) from there, if the neighbor is not 
a boundary point. Therefore, if we introduce a function w(x, y) that characterizes 
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the prospects of a particle reaching (ξ, η) from the starting point (x, y), we cannot 
consider w(x,y) to be a probability distribution since it may assume values exceeding 
unity. In particular, ιυ(ξ, η) > 1, as we have seen. 

The preceding random walk problem (as well as the first one of this section) was 
considered by Courant, Friedrichs, and Lewy in a classic early paper on difference 
methods for the partial differential equations of applied mathematics. They introduced 
the probabilities that a particle starting at (x, y) reaches (ξ, η) in 0 ,1 ,2 , . . . , n , . . . 
steps and defined a function of (x, y) that equals the sum of all these probabilities. 
This function gives the expected number of steps that it takes for a particle starting at 
(x, y) to reach (ξ, η) before it is absorbed at the boundary. We shall take the function 
w(x, y) introduced above to be defined in this manner. This function satisfies a 
difference equation, as we now show. 

If the point (x, y) is a boundary point, we must have 

w(x, y) — 0, (x,y) a boundary point, (1.3.6) 

since the particle is absorbed at a boundary point and cannot reach (ξ, η) from there. 
If (x, y) is an interior point not equal to (£, r/), we obtain the difference equation 

w(x,y) — -[w(x + S,y) + w(x - 6,y) + w(x,y + δ) +w(x,y - δ)] (1.3.7) 

on expressing the expectation w(x, y) of reaching (ξ, η) from (x, y) in terms of the 
expectation of reaching (ξ, η) from each of the four neighboring points (x ± δ, у) and 
(x, у ± δ), on condition that the particle goes from each of these points to the point 
(x, y) in the next step. Since the particle is equally likely to move to each of its four 
neighboring points, the conditional probability equals \. If (x, y) = (ξ, η), we have 

Μξ,η) = 1 + ~[ω(ξ + δ,η)+υ)(ξ-δίη) + υ)(ξ,η + δ) + υι(ξ,η-δ)], (1.3.8) 

since the particle has unit probability of reaching (£, 77) considering that it is there 
to begin with, and it retains the possibility of reaching (ξ, η) from each of its four 
neighboring points as before. 

For small δ, (1.3.7) and (1.3.8) take the form 

ΛΜ ΛΜ = Г θ(δ2), (χ,ν)ϊ(ξ,η), ( . 
дх* ду* \-4/δ* + 0(δη, (χ,ν) = (ξ,η), 

on using (1.3.3). This shows that w(x,y) satisfies Laplace's equation at interior 
points (z, y) φ (ξ, η) as δ —> 0. At the point (ξ, η), the right side of (1.3.9) blows 
up as δ —* 0. Now as δ —» 0, w(x, y) is to be understood as a density function, so 
that the integral of w(x, y) over some small neighborhood of (x, y) characterizes the 
property in which we are interested. If we consider a square with center at (£, 77) 
and with side proportional to the step length δ, the area of the square multiplied 
by 4/<52 tends to a finite nonzero limit as δ —» 0. Since the right side of (1.3.9) 
vanishes for (x, y) φ (ξ, η) and its integral over the aforementioned square has a 
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finite nonzero limit as δ —» 0, we conclude that it must be proportional in the limit to 
the two-dimensional Dirac delta function. 

The two-dimensional Dirac delta function with singular point (ξ, η) has the prop-
erties (see Section 7.2): 

I δ(χ - ξ)δ(ν - v)dxdy = 1, δ(χ-ξ)δ(ν-η) = 0, (x,y) φ (ξ,η), (1.3.10) 
я 

where R any open region containing the point (ξ, η). As in Example 1.2, it follows 
that for continuous f(x, y) we have the further property 

jj f(x, уЩх - ξ)δ(ν - η) dx dy = fÜ, η). (1.3.11) 

As the step length δ —+ 0, the boundary points of the discrete problem tend to 
points on dA, and (1.3.6) now states that w(x,y) vanishes on dA. To analyze the 
properties of the solution of this boundary value problem, it is convenient to replace 
w(x, y) by the Green's function K(x, y; ξ, η) for this problem. The Green's func-
tion K(x, y; ξ, η) for Laplace's equation with homogeneous boundary conditions is 
defined to be a solution of 

δ2Κ(χ,ν;ξ,η) δ2Κ{χ,υ;ξ,η) 
да? ÖÜ2 =-δ{Χ-ξ)δ(υ-η), (х,у) £ А, (1.3.12) 

which satisfies the boundary condition 

Κ(χ,ν,ξ,η) = 0, (х,у)€дА. (1.3.13) 

As was shown above, the density function w(x, y) differs from Green's function 
only by a constant factor. Thus both w(x, y) and K(x, y; ξ, η) are solutions of (special) 
inhomogeneous forms of Laplace's equation. (Green's functions are a useful tool for 
solving boundary value problems for partial differential equations and are discussed 
in Chapter 7.) 

The two random walk problems considered so far in this section are not completely 
unrelated, since one problem asks for the probability that an interior point is reached 
and the other seeks the probability that a boundary point is reached. The following 
example shows that the two problems are indeed connected, by establishing a rela-
tionship between the density function v(x, y) for the first random walk problem and 
the Green's function K(x, y; ξ, η) for the second random walk problem. 

Example 1.6. Green's Theorem. We formally apply Green's second theorem to 
the functions v(x, y) and K(x, y; ξ, η). Integrating over the region A and its boundary 
dA, we have 

/ / („ VK - к V.) * * _ / ( „ £ - * ! ) d,, (,.3.i4, 
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where V2 = д2/дх2 + д2/ду2 is the Laplacian operator, д/дп is a derivative in the 
direction of the exterior normal to the boundary dA, and s is the arc length on dA. 
We have V2v(x,y) = Oand V2K{x,y;£,, η) = —δ(χ-ξ)δ^-η), in view of (1.3.4) 
and (1.3.12). Further, ( 1.3.5) implies that on the boundary, v(x, у)дК(х, у; ξ, η)/3η 
equals ν(χ, у)дК(х, у; ξ, η)/Οη. Combined with the fact that K(x, y; ξ, η) vanishes 
on dA, we obtain from ( 1.3.14) 

ic \ f дКл δΚ(χ,ϋ;ξ,η) , , , , , , 
υ{ξ,η) = ~LV *Γώ = д~п ' ( 1 · 3 Λ 5 ) 

where (1.3.5) and (1.3.11) were used. This shows that if the Green's function К can 
be determined, the boundary value problem ( 1.3.4)-( 1.3.5) can be solved since (ξ, η) 
is an arbitrary interior point in A. 

Equation ( 1.3.15) has the following interpretation. The probability density ν(ξ, η) 
characterizes the probability that particles starting in a neighborhood of (£, η) reach 
the boundary point (x, y). The normal derivative дК(х, у; ξ, η)/θη is a measure of 
the flux of particle density associated with particles originating near the boundary 
point (x, y) and reaching the interior point (ξ, η). Therefore, —дК/дп is a measure 
of the flux in the reverse direction, and this should essentially equal ν(ξ, η). 

Mean First Passage Times and Poisson's Equation 

The third random walk problem we consider determines the mean or expected time it 
takes for a particle starting at an interior point (x, y) in the region A until it is absorbed 
at the boundary. This yields what is known as the mean first passage time for each 
point and we denote it by u{x, y). Assuming that the particle takes steps of length 
δ at intervals of time r and is equally likely to move to each of its four neighboring 
points from the point (x, y), we obtain the difference equation 

u(x, у) =т+ -[u(x + S,y) + u{x -S,y) + u{x, y + S) + u(x, y-δ)]. (1.3.16) 

The expected time until absorption u(x, y) is expressed in terms of the expected time 
until absorption for each of the four neighboring points, multiplied by the probability 
\ that the particle moves to each of these points. We must also add the time τ it takes 
for the particle to reach one of the neighboring points in a single step. If (x, y) is a 
boundary point, u(x, у) = О since the time until absorption at any boundary point is 
zero. In the limit as δ —> 0 and r —» 0, while δ2/2τ —» D, we obtain 

-D(uxx(x,y)+Uyy(x,y)) = - 1 (1.3.17) 

on using (1.3.3). The inhomogeneousform of Laplace's equation, of which ( 1.3.17) is 
a special case, is known as Poisson 's equation. The boundary condition for u(x, y) is 

u(x,y) = 0, (x,y)edA. (1.3.18) 
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Position-Dependent Random Walks and Their Limits 

Each of the three random walk problems discussed in this section can be generalized 
to permit position-dependent jump probabilities as was done in Sections 1.1 and 1.2. 
To do so, we assume that the probabilities that a particle located at the point (x, y) 
moves to the right or to the left are given by p\ and q\, respectively, while those for 
upward or downward motion are given by p2 and q2, respectively. These probabilities 
are defined as 

Pi{x,y) = -[ai(x,y) + bi{x,y)6], qi{x,y) = -{сц(х,у) -bi{x,y)S], г = 1,2. 
(1.3.19) 

The ai and bi are chosen such that 0 < pi + q\ + p2 + q2 < 1. 
For the first random walk problem, the difference equation ( 1.3.1 ) is replaced by 

v(x,y) = [l-Pi-qi-P2- 42}v(x,y) + P\v(x + 5,y) + qiv{x - δ,у) 

+ p2v(x,y + ö) + q2v(x,y-ö). (1.3.20) 

The coefficients of the v terms are all evaluated at (x, y), and the coefficient of v(x, y) 
on the right of equation ( 1.3.20) represents the probability that the particle rests at the 
point (x, y). On expanding all the terms in (1.3.20) in Taylor series, as in (1.3.3), we 
easily obtain 

ai{x,y)vxx{x,y) + a,2{x,y)vyy{x,y) + 2bi(x,y)vx{x,y) + 2b2{x,y)vy(x,y) = 0 
(1.3.21) 

on dividing by δ2 and letting δ tend to zero. The boundary condition is again (1.3.5). 
For the second random walk problem, the difference equation (1.3.7) is replaced 

by 

w{x, y) = [l-P\-qi-P2- 42\w{x, y) + q\w(x + δ, у) + piw(x - δ, у) 

+q2w(x,y + ö)+p2w(x,y-6). (1.3.22) 

However, in view of our definition of w(x, y), the probabilities pi and qi must all be 
evaluated at the same points as the expectations w that they multiply. The same is 
true for the modified form of (1.3.8). As a result, when all the terms are expanded 
for small δ, and we let δ tend to zero, after dividing by δ2, we obtain for the Green's 
function K(x, y; ξ, η) associated with this problem the equation 

{aiK)xx + {a2K)yy - 2(bxK)x - 2{b2K)y = -δ(χ - ξ)δ(υ - η), (1.3.23) 

with the a\,bi,a2, b2 as functions of x, y. Again, К must vanish on the boundary. 
The differential operator acting on К in (1.3.23) is the adjoint of the operator acting 
on v in ( 1.3.21 ), as follows from our discussion in Section 3.6. This observation yields 
a relationship between υ and К similar to that given in Example 1.6 and based on 
a generalization of Green's theorem. This is considered in the exercises. Similarly, 
the generalization of the third random walk problem considered in this section is 
examined in the exercises. 
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Properties of Partial Difference Equations and Related PDEs 

We conclude this section with a number of comments regarding the properties of 
boundary value problems for Laplace's equation and the related equations derived in 
this section that are suggested by the difference equation treatment presented above. 

The difference equation ( 1.3.1 ) together with the boundary condition ( 1.3.2), when 
applied to all interior points in the subdivision of A, yields a simultaneous system of 
equations for the functions v(xk, yi ) where (xk, yi ) is a typical interior point. All the 
boundary data play a role in the solution for v at the interior points. The same is true 
for the other equations considered in this section. This contrasts with the situation 
encountered in the preceding sections. Although the solution was required for all 
t > 0, the solution for fixed t did not depend on data for later values of t. 

Further, the difference equation (1.3.1) characterizes the value of v(x, y) at the 
center of a diamond-shaped quadrilateral, as the mean or average of its values at the 
four vertices. With (x, y) as its center, the diamond has the points (x ± δ, у) and 
(x, у ± δ) as its vertices. This mean value property carries over to functions v(x, y) 
that satisfy Laplace's equation. It is shown later that any solution v(x, y) of (1.3.4) 
equals the average of its values on a circle with center at (x, y) as long as the circle 
is interior to the region A. 

The foregoing mean value property for the difference equation implies that the 
maximum and minimum values of v(x, y) must be assumed at boundary points of 
A. This follows since v(x, y) is the average of its neighboring values and, therefore, 
cannot be greater than or less than those values. This maximum and minimum principle 
will be shown to be valid for certain boundary value problems for Laplace's equation. 
In fact, it follows from (1.3.1) that if the maximum or minimum of v(x, y) is attained 
at an interior point of A, v(x, y) must be constant throughout A. For if (x, y) is an 
interior maximum or minimum point, v(x, y) cannot be represented as the average of 
its four neighboring values if any one of them is, respectively, smaller or larger than 
the value of v at (x, y). This property carries over to solutions of Laplace's equation, 
as will be shown, and is known as the strong maximum and minimum principle. 

The representation (1.3.20) for v(x,y) implies that it also satisfies a maximum 
and minimum principle. Consequently, we expect such a principle to be valid for 
solutions of ( 1.3.26), and this will be demonstrated. Further questions relating to the 
positivity of solutions of Poisson's equation (1.3.17) and the positivity of the Green's 
function determined from (1.3.12)—(1.3.13), are examined later in the book. 

Exercises 1.3 

1.3.1. (a) Show that in the one-dimensional case, if the particle is equally likely to 
move to the right or to the left, ( 1.3.1 ) is replaced by v(x, y) = ^ [v(x -δ) + ν(χ + δ)]. 
(b) Show that in the three-dimensional case, when the particle is equally likely to move 
to any of its six neighboring points, we obtain v(x, y,z) = ^ [v(x + δ, у, z) + v[x — 
δ, у, z) + v(x, y-ö,z)+ v(x, y + S,z) + v{x, y,z-ö) + v(x, y,z + δ)]. 
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1.3.2. Show that the limiting differential equations for Exercise 1.3.1(a) and (b) are 
(a) vxx = 0 and (b) vxx + vxx + vxx = 0, respectively. 

1.3.3. Consider the interval 0 < x < 1. Let v(x) be the probability that the particle 
reaches the boundary point x = 1 and is absorbed before it reaches and is absorbed at 
the boundary x = 0. (a) Show that the appropriate boundary conditions in this case 
are v(0) — 0 and v(l) = 1. (b) Show that v(x) = x, which satisfies the boundary 
conditions of part (a), is a solution of both the difference equation of Exercise 1.3.1 (a) 
and the (one-dimensional) differential equation of Exercise 1.3.2(a). 

1.3.4. We define the Green's function К (x; ξ) in the one-dimensional case, for the in-
terval 0 < x < 1, to be the solution of the boundary value problem Θ2Κ(χ;ξ)/θχ2 = 
-δ(χ - ξ), Κ(0; ξ) = Κ(ί; ξ) = 0, 0 < ξ < 1. (a) By integrating the equation for 

,χ[£ 

Κ(χ;ξ) over a small neighborhood of ж = ξ, show that [дК/дх]\х~£ = — 1 (i.e., 
the jump in дК/дх at x = ξ is -1 ) . Assuming that K(x; ξ) is continuous at x = ξ, 
define Κ(χ,ξ) as Κ(χ;ξ) = Κ^χ-,ξ), 0 < x < ξ, and Κ(χ;ξ) = Κ2{χ;ξ), ξ < 
χ < 1. Show that we then obtain the equations д2К\{х;£)/дх2 = 0, 0 < x < 
ξ, d2K2{x;Ì)/dx2 = 0, ξ < x < LandthesupplementaryconditionsK^Oj^) = 
Κ2(1;ξ) = 0, Κ^ξ-,ξ) = Κ2(ξ;ξ), ΟΚ2(ξ;ξ)/Οχ-θΚ1(ξ;ξ)/θχ = - l . (b)Show 
that the solution of part (a) is Κχ(χ; ξ) = (1 — ξ)χ, Κ2(χ; ξ) = (1 — χ)ξ. 

1.3.5. (a) Apply a one-dimensional form of Green's theorem (1.3.14) to show that 
with v(x) and Κ(χ;ξ) defined as in the two preceding exercises we have ν(ξ) = 
—дК(1; ξ)/θχ. (b) Demonstrate that the result of part (a) is correct by using the 
explicit forms for the functions v(x) and K(x; ξ). 

1.3.6. Solve the difference equation (1.3.1) in the square 0 < x < 3 and 0 < у < 3 
at the points with coordinates x = 1,2 and у = 1,2, assuming that 5 = 1 and 
(xi, %■) = (0,1) in (1.3.2). 

1.3.7. Show that v(x,y) = l i sa solution of the boundary value problem for Laplace's 
equation in the square 0 < x < l , 0 < y < l , with the boundary conditions 
v(x, 0) = 1 and dv/дп = 0 on the other three sides of the square. Noting that 
dv/дп — 0 corresponds to a reflecting boundary condition, interpret the solution. 

1.3.8. (a) Show that in the one-dimensional case, if the particle is equally likely to 
move to the right or to the left, the mean first passage time u{x) satisfies the difference 
equation u(x, у) = т+^[и(х — δ)+η(χ+δ)}. (b) Show that in the three-dimensional 
case, if the particle is equally likely to move to any of its six neighboring points, the 
mean first passage time u(x, y, z) satisfies the equation u(x, y,z) = τ + |[tt(x + 
<5, y, ζ)+η(χ-δ, у, z)+u(x, y-δ, z)+u(x, y+δ, z)+u(x, y,z-S)+u(x, y, ζ+δ)}. 

1.3.9. Show that if lim δ2/τ = Dinpart(a)andlim<52/3T = Din part (b) of Exercise 
1.3.8, the limiting differential equations for the one- and three-dimensional difference 
equations are, respectively, (a) \Du"(x) = —1 and (b) \D[uxx + uyy + uzz] = —1. 
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1.3.10. Show that in the one-dimensional case, the equations (1.3.21) and (1.3.23) 
take the form L[v] = a(x)vxx + 2b(x)vx = 0, L*[K] = (aK)xx - 2(bK)x — 
-δ(χ-ξ). 

1.3.11. Demonstrate that with the operators L and L* defined as in Exercise 1.3.10, 
we have vL*[K] - KL[v] = [v(aK)x - aKvx - 2bKv\x. 

1.3.12. Given the interval 0 < x < 1 with v(0) = 0, v(l) = 1, and Κ(0;ξ) = 
K{\; ξ) = 0, integrate the expression given in Exercise 1.3.11 over the interval. Use 
the equations in Exercise 1.3.10 to conclude that ν(ξ) = —α(1)3Κ(1;ξ)/θχ. This 
is the analog of the result (1.3.15) and Exercise 1.3.5. A similar result is valid in the 
two- and three-dimensional cases. 

1.3.13. Write down the equations that correspond to (1.3.21) and (1.3.23) in the 
three-dimensional case. 

1.3.14. Show that the mean first passage time u(x) for an inhomogeneous one-
dimensional medium, with p and q given as in ( 1.1.30), satisfies the ODE ^ D(x)u"(x) 
+ c(x)u'(x) = —1, where с and D are defined as in (1.1.32). 

1.3.15. Consider the interval 0 < x < 1 and the mean first passage time problem 
of Exercise 1.3.9(a). (a) Find the solution u(x) if u(0) = u(l) = 0. (b) Determine 
u(x) if u(0) = u'(l) = 0. In this case, the boundary at x = 0 is absorbing and that 
at x = 1 is reflecting, (c) If u'(0) = u'(l) = 0, in which case both boundary points 
are reflecting, show that the problem has no solution. 

1.3.16. Use Green's theorem (1.3.14) with v(x,y) = 1 to show that the Green's 
function K(x, y; ξ, η) that satisfies (1.3.12) and whose normal derivative vanishes on 
the boundary of A, does not exist. That is, in the case of a reflecting boundary, the 
Green's function problem has no solution. 

1.3.17. Show that v(x, y) = (x + iy)n, where г = y/^ϊ, is a solution of Laplace's 
equation (1.3.4) for all integers n > 0. 

1.3.18. Consider v(x, y) = (x + iy)2 and write it in the form v(x, y) = f(x, y) + 
ig(x, y), where f(x, y) and g(x, y) are the real and imaginary parts of the function 
v(x, y). Show that f(x, y) and g(x, y) have no relative maxima or minima in the 
(x, y)-plane and that both satisfy Laplace's equation. 

1.3.19. Show that v(x, y, z) = (x + iy cos Θ + iz sin θ)η is a solution of Laplace's 
equation in three dimensions (see Exercise 1.3.2) for all integers n > 0 and for 
0 < θ < 2π. 

1.3.20. Write v(x,y,z) = (x + iy cos Θ + iz sin Θ)2 in the form v(x,y, z) = 
F(x, y, z) + iG(x, у, z), where F(x, y, z) and G(x, y, z) are real-valued functions. 
Show that F(x,y,z) and G(x, у, z) are solutions of Laplace's equation and that they 
have no relative maxima and minima in {x, y, z)-space. 
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1.4 RANDOM WALKS AND FIRST ORDER PDEs 

T he random walks considered in the preceding sections were all related, in some way, 
to the theory of Brownian motion. They gave rise to second order partial differential 
equations in the continuum limit. We now consider random walks that give rise to 
first order partial differential equations in the limit. (This possibility was indicated in 
Sections 1.1 and 1.2.) In this section our emphasis is on the relation between random 
walk difference equations and various difference approximations that are used in the 
numerical solution of first order partial differential equations by the method of finite 
differences, which is presented in Chapter 11. A variety of partial difference equations 
is generated and questions relating to their stability properties are addressed. Solution 
methods for first order partial differential equations are considered in Chapter 2. 

Random Walks and Linear First Order PDEs: Constant Transition 
Probabilities 

We begin by reconsidering the unrestricted random walk introduced at the beginning 
of Section 1.1. The particle can move to the right, to the left or remain stationary at 
each step, with steps of length δ occurring at time intervals of length r. As before, 
the probability for a step to the right is p and that for a step to the left is q. Again, 
the mean displacement of the particle equals c, but now we require a zero variance, 
so that the particle appears to move deterministically. As shown in the discussion 
following (1.1.8), this requires that p — q does not tend to zero in the continuum limit. 
As a result, D as given in (1.1.8) equals 0. 

These results can be realized if we set 

p = ^ ( a + 6), q=\(a~b), (1.4.1) 

with a and ò restricted so that p and q represent probabilities. [This representation 
differs from (1.1.9), where ò is replaced by bS.] Thus, with r = 1/r, we have 
αδ2/τ - » D a s before, but Ь6/т —> с. Since we require a finite value for c, we 
conclude that D = 0. The difference equation for υ is given by ( 1.1.16), 

v{x, t + T) = (1 - p - q)v{x, t) + pv(x - 5,t) + qv(x + δ, t), (1.4.2) 

and can be expressed as 

v(x,t+r) = (l-a)v{x,t)+(l + ζ\ v{x-6,t)+(j - M v{x+6,t). (1.4.3) 

The Taylor expansion yields 

vt{x, t) = -b- vx{x, t) + -a — vxx(x, t) + 0(T) +O( — ) . (1.4.4) 
T 2 T \ T J 
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In the limit as δ —> 0 and r —» 0, we obtain the first order PDE 

д ф о + с ^ м ) = 0 
at ox 

This is known as the unidirectional wave equation and characterizes wave motion to 
the right if с > 0 and to the left if с < 0. (It is also referred to, occasionally, as the 
advection equation.) 

We see that δ/τ must have a finite nonzero limit and we set b = ст/δ. Then the 
difference equation (1.4.3) becomes 

v(x,t+r) = (ΐ-α)«(Μ)+(| + g ) v(x-S,t)+{^ - g ) v(x+6,t). (1.4.6) 

The value of a plays no role in the limit. But since p + q = a, we conclude that 
0 < a < l,asthesumoftheprobabi!itiescannotexceedl. Furthermore,0 < p,q < 1 
implies that \c\ τ/δ < a, and this places a restriction on the values of δ and r in terms 
of a, for a fixed с (in the discrete case). (We note that no matter how a is specified 
we must have \c\ τ/δ < 1.) 

We now introduce three choices for a and consider their relation to well-known 
finite difference schemes for the numerical solution of (1.4.5) discussed in Chapter 
11. To begin, we assume that с > 0 and choose a so that q = 0. This means that 
the particle can only move to the right and this corresponds to what is known as the 
explicit forward-backward scheme for the solution of ( 1.4.5). If q = 0, we must set 
a — ст/δ and (1.4.6) becomes 

( CT\ CT 

l-—)v{x,t) + —v{x-ö,t). (1.4.7) 
For the difference equation to retain its probabilistic interpretation we must have 
ст/δ < 1. This agrees with the von Neumann stability condition for the explicit 
forward-backward scheme determined in Chapter 11. 

Next we assume that с < 0 and choose a so that p = 0. This means that the 
particle can only move to the left, and this corresponds to what is known as the 
explicit forward-forward scheme for the solution of (1.4.5). If p = 0, we must set 
a = —ст/δ. and (1.4.6) becomes 

( CT \ CT 

l + -T-)v(x,t)-—v(x + ö,t). (1.4.8) 
For the difference equation to retain its probabilistic interpretation, we must have 
—ст/δ < 1. This agrees with the von Neumann stability condition for the explicit 
forward-forward scheme determined in Chapter 11. 

Finally, we choose a = 1. As a result, there can be nonzero probabilities for steps 
to the right and to the left. This corresponds to what is known as the Lax-Friedrichs 
scheme for the solution of ( 1.4.5). Then ( 1.4.6) becomes 

v(x,t + T)=^ + ^\v(x-ö,t)+(±-^\v(x + ö,t). (1.4.9) 
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For the difference equation to retain its probabilistic interpretation we must have 
|c| τ/δ < 1. This agrees with the von Neumann stability condition for the Lax-
Friedrichs scheme determined in Chapter 11. 

If we assume that the particle is initially located at x = 0, the initial condition for 
(1.4.5) is v(x,0) = δ(χ), and the solution is v(x,t) = δ(χ — et). Noting the behavior 
of the Dirac delta function δ(χ), we find that v(x, i) vanishes for x — ct φ 0, so that 
the particle moves horizontally with the velocity с We see that even for values of 
a that yield nonzero probabilities for motion to the left or to the right, deterministic 
motion with velocity с results. 

It is possible to introduce an absorbing or reflecting boundary condition at some 
value of x. If the initial position of the particle is at x = 0, then if с > 0, the particle 
moves to the right and a boundary condition can be inserted at some point x > 0. 
If с < 0, there can be a boundary condition at a point x < 0. We do not consider 
these boundary conditions here. 

Random Walks and Linear First Order PDEs: Variable Transition 
Probabilities 

Next we consider random walks with position-dependent probabilities p(x) and q{x). 
Then v(x, t) satisfies the difference equation 

v(x, t + r) = [1 — p(x) — q(x)\ v(x, t) + p(x — δ) v(x — 6,t) + q(x + δ) v(x + δ, t), 
(1.4.10) 

withp(a;) = [a(x) +b(x)]/2, q(x) = [a(x) - b(x)]/2. If weputc(a;) = b{x)ö/r, 
the difference equation ( 1.4.10) becomes 

/ % г- / M , N ί alx — 8) c(x — δ)τ\ . . . 
v(x, t + τ) = [1 - a(x)} v(x, t) + ί V

 2
 ; + V

 2δ ' \ v(x - δ, t) 

+ (*^_Ф^Нх + 6Л {ίΛΛΪ) 

Using the Taylor expansion as before and going to the limit as δ —> 0 and τ —* 0, we 
obtain the first order partial differential equation 

dv(x,t) | d(c{x)v{x,t)) ^ Q (14 12) 
dt dx 

We observe that ( 1.4.12) is not simply a generalization of ( 1.4.5) with с replaced by 
c(x), but contains an additional term с '(x)v(x, t). 

If we modify the random walk problem in the manner that led to the difference 
equation (1.1.33), we obtain instead of ( 1.4.11 ), 
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r / M / N ίo-(x) C(X)T\ . 

v(x, t) = [1 - a{x)\ v(x, t + r)+l -ψ- + - ^ - J v{x + δ, t + r ) 

+ (^-^W-4* + r). (1.4.13) 
. 2 25 , 

In the limit we obtain in place of ( 1.4.12), 

* § ! * > + ф ) * ! М = 0 . (1-4.14) 
σί era 

Solution methods for ( 1.4.12) and ( 1.4.14) are presented in Section 2.2. 
In correspondence with our discussion above, we consider three special choices of 

a{x) that we apply to the difference equation ( 1.4.11 ). [The same approach works for 
( 1.4.13).] To begin, we assume that c(x) > 0 and choose a(x) so that q{x) = 0. This 
means that the particle can only move to the right and this corresponds to the explicit 
forward-backward scheme introduced above for the solution of (1.4.5). If q(x) = 0 
we must set a(x) = c(x)r/S, and ( 1.4.11 ) becomes 

v{x, t + r)=(l- ^Φ-) v(x,t) + (ϊΦΐ) „(ж - δ,t). (1.4.15) 

For the difference equation to retain its probabilistic interpretation we must have 
C(X)T/S < 1. This generalizes the von Neumann stability condition for the explicit 
forward-backward scheme in the case of constant coefficients. 

Next we assume that c(x) < 0 and choose a(x) so thatp(x) — 0. This means that 
the particle can only move to the left and this corresponds to the explicit forward-
forward scheme introduced above for the solution of ( 1.4.5). If p(x) = 0 we must set 
a — -C(X)T/S, and ( 1.4.11 ) becomes 

φ , t + r)=(l + Щ^-) v(x,t) - (^Φ-) υ(χ + S,t). (1.4.16) 

For the difference equation to retain its probabilistic interpretation we must have 
—с(х)т/6 < 1. This generalizes the Neumann stability condition for the explicit 
forward-forward scheme in the case of constant coefficients. 

Finally we put a(x) = 1. As a result, there can be nonzero probabilities for steps 
to the right and to the left. This corresponds to the Lax-Friedrichs scheme introduced 
above for the solution of ( 1.4.5). Then the difference equation ( 1.4.11 ) becomes 

< M + r ) = ( i + ^ ) v(x-6,t)+(^-C-^ v(x + S,t). (1.4.17) 

For the difference equation to retain its probabilistic interpretation we must have 
|c(a;)| τ/δ < 1. This generalizes the von Neumann stability condition for the Lax-
Friedrichs scheme in the case of constant coefficients. 
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Random Walks and Nonlinear First Order PDEs 

Each of the three random walks considered above can be generalized by permitting the 
probabilities p and q to depend on v(x, t). For the explicit forward-backward scheme 
weputp(:r, t) — (f(v(x,t))r)/(v(x,t)S),q(x,t) = 0, where / is an arbitrary differ-
entiable function. Since p is a probability, we must have 0 < [f(v(x,t))r]/[v(x, t)ö] 
< 1. [If f(v(x, t)) = cv(x, t) the problem reduces to the constant coefficient case.] 
The difference equation ( 1.4.10) takes the form 

.М + ̂ - т а · ^ * * ^ · (L4'18) 
Using the Taylor expansion as before and going to the limit as δ —* 0 and τ —» 0, we 
obtain the first order quasilinear partial differential equation (in conservation form) 

dv(x,t) , d(f(v(x,t)) 
dt dx 

= 0. (1.4.19) 

For the explicit forward-forward scheme we put p(x,t) — 0, q(x,t) = —[f(v 
(x,t))r]/[v(x,t)S], where / is an arbitrary differentiable function. Since q is a 
probability we must have 0 < -[f(v(x,t))r}/[v(x,t)S] < 1. [If f{v(x,t)) = 
с v(x, t ) the problem reduces to the constant coefficient case.] The difference equation 
( 1.4.10) takes the form 

*(M + r) = (l + №'$Т) v(x,t) - № + *'*»'. (i.4.20) 
v(a;,<)(5 

Using the Taylor expansion as before and going to the limit as δ —> 0 and r —» 0, we 
again obtain the first order quasilinear PDE ( 1.4.19). 

In the Lax-Friedrichs scheme we put p(x, t) — 1/2 + [f(v(x,t))r]/[2v(x, t)6], 
q{x,t) = 1/2 — [f(v(x,t))r]/[2 v(x,t)5], where / is an arbitrary differentiable 
function. We must have 0 < [\f(v(x, t))\ r]/[v(x, t)S] < 1, since p and q are 
probabilities. The difference equation ( 1.4.17) takes the form 

v(x, t+r) 
1 f(v(x-S,t))T 
2 2v(x - 6, t)S 

v(x—S,t) ■ 
f(v(x + S,t))T 

2ν(χ + δ,ί)δ 
ν(χ+δ,ί). 

(1.4.21) 
Using the Taylor expansion as before and going to the limit as δ —» 0 and r —> 0 
again yields the first order quasilinear PDE ( 1.4.19). 

We can write (1.4.19) as dv(x, t)/dt + f'(v(x, t))dv(x, t)/dx = 0. Then, if we 
put / '(г) = c(z), it takes the form 

dv(x,t) . . ..dv(x,t) v ' +c{v(x,t))- v ' 
dt dx 

0. (1.4.22) 

Solution methods for (1.4.22) are presented in Section 2.3. If c(z) = c, a con-
stant, we obtain the unidirectional wave equation dv(x, t)/dt + с dv(x, t)/dx = 0. 
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Of particular interest is the case c(z) = z, which yields 

* | 1 * ) + ф , 4 ) ^ М = 0 . (1.4.23) 

This is known as the inviscid Burgers ' equation and will be studied in some detail. 

Exercises 1.4 

1.4.1. Let the parameter a in (1.4.6) be chosen as a = θ\ε\τ/δ, where Θ is to be 
specified. This is known as the θ-scheme. Assign values of Θ that give rise to the 
forward-backward, forward-forward, and Lax-Friedrichs schemes considered in the 
text. 

1.4.2. Determine a restriction on Θ in Exercise 1.4.1 so that p and q (as given in 
(1.4.1)) retain their probabilistic interpretation. 

1.4.3. Leto = \C\T/S in Exercise 1.4.1. Determine that unless Θ — 1 no probabilistic 
interpretation can be given to the resulting scheme. It will be seen in Chapter 11 that 
this choice of Θ results in the Lax-Wendroff difference scheme. 

1.4.4. Consider the backward difference equation v(x, t) = (1 — p — q)v(x, t + τ) + 
qv(x - 5,t + τ) + ρυ(χ + δ, t + r ) . Construct a Taylor expansion as in (1.4.4) and 
obtain (1.4.5) in the limit as δ —► 0 and r —> 0. 

1.4.5. Construct a 0-scheme, as in Exercise 1.4.1, for the backward difference equa-
tion of Exercise 1.4.4. 

1.5 SIMULATION OF RANDOM WALKS USING MAPLE 

The relationship between random walks and partial differential equations established 
in this chapter is not only of intrinsic interest, but can serve as a tool for the (approx-
imate) numerical solution of partial differential equations. The difference equations 
can be solved recursively, with given initial and boundary values, to determine an 
approximate solution of the related partial differential equations for a range of values 
of £ at a given time t. Alternatively, each random walk can be simulated by the use 
of a random number generator, and for given transition probabilities p and q it is 
possible to determine the location of a particle that starts at some initial point after 
it takes a finite number of steps of fixed length. We use Maple to implement these 
methods. 

Maple contains many built-in procedures or codes that carry out processes such as 
summation, differentiation, integration, and the solution of difference, ordinary dif-
ferential, and partial differential equations. Yet Maple's procedures cannot be applied 
directly to deal with the foregoing partial difference equations and their simulations. 
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As a result, a number of new Maple procedures have been written that solve the dif-
ference equations and simulate the random walks presented above. The simulation 
methods fall into the general category of Monte Carlo methods for the solution of the 
initial and boundary value problems for partial differential equations. 

The procedures that solve the difference equations employ Maple's ability to carry 
out recursions. The simulations of the random walks make use of Maple's random 
number generator to determine the probability that the particle undertaking a random 
walk takes a step to the right, to the left, or rests at each increment in time. However, the 
location of a particle after a single simulated random walk does not yield a meaningful 
approximation to the solution of the related partial differential equation. A large 
number of random walks must be simulated and the results must be averaged to 
yield a useful result. Thereby, probabilities and probability densities are assigned to 
the points that can be reached in the random walks. Although more general finite 
difference methods for the solution of initial and boundary value problems for partial 
differential equations and Maple procedures for their implementation are presented in 
Chapter 11, specific procedures related to the difference equations considered in this 
chapter are introduced here for the purpose of comparing their solutions with exact 
results and those obtained via simulation. 

Unrestricted Random Walks 

We begin by considering unrestricted random walks with constant transition proba-
bilities p and q. The related initial value problem for the Fokker-Planck equation (it 
reduces to the heat or diffusion equation if с = 0) is 

dv(x,t) dv(x,t) 1 _ d2v(x, t) , n. ., . ., „ „. 
ЛГ-+С^Г = 2°-^' Φ^) = δ(χ). (1.5.1) 

The solution of this problem, which is referred to as the fundamental solution of the 
Fokker-Planck equation, was given in ( 1.1.20) as 

v(x, t) = . exp 

A number of Maple procedures have been constructed that deal with matters re-
lated to unrestricted random walks. The procedure FundSolFP(x, t,D,c, options) 
evaluates the fundamental solution (1.5.2) of (1.5.1) at the point x and at the time t, 
with prescribed diffusion and drift coefficients D and c, respectively. The fifth argu-
ment of the procedure must be either the word explicit or the word float. It determines 
whether the result is given in explicit or floating-point form. 

As an example, the solution at x = 1, t = 2, with D = 1 and с = 4 is given 
in explicit form as FundSolFP(l,2, l,4,explicit) = exp(—49/4)/2γ/π and in 
floating point form as FundSolFP(l, 2,1,4, float) = 0.1349856694 x 10 - 5 . 

(x - cty 
2Dt 

(1.5.2) 
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The procedureNumRandomWalkConstip, q, [a, b],n, δ, τ) solves unrestricted ran-
dom walk problems with constant transition probabilities p and q, that start at x = 0. 
The integer n specifies the number of steps taken in the random walk and δ, т are the 
step length and the time increment, respectively. The solution is found in the interval 
[αδ, 6(5], and a and 6 should be chosen so that it contains [—ηδ, ηδ] as a subinterval. 
If an optional seventh argument is added (it can be any name or number), information 
about the problem is returned but no solution data are given. 

Example 1.7. Unrestricted Random Walk: A General Case. The output of 
the procedure NumRandomWalkConst(p, q, [—2,2], 2, δ, τ, r) displays the following 
general information about the random walk. Fokker-Planck Equation: щ + {p — 
q)6/rux = (1/2)(ρ+ς)52/τΜχχ, Diffusion Coefficient = (p+<j)<52/r, Drift Coeffi-
cient = (p - q)6/r, x step length = δ, t step length = r, Number of steps = 2, Stability 
parameter = (l/2)(p + q),t = 2r. The stability parameter must be greater than zero 
and less than or equal to 1/2, since p and q are probabilities. 

The output of the procedure NumRandomWalkConstip, q, [-2,2], 2, δ, τ) displays 
probabilities and probability densities for the random walk at the time t = 2τ in 
tabular form: 

- t = 2r 

x Probability Density 

-2 6 q2 q2/25 

-δ -2{p + q-l)q (p + q-l)q/6 

0 l-2p-2q + p2+4pq + q2 (1 - 2p - 2q + p2 + 4pq + q2)/26 

δ -2(p + q-l)p {p + q-l)p/S 

.26 p2 p2/26 

As indicated by the display, the probability density at a given point is determined 
by dividing the probability by 2δ, which equals twice the ж-step length for this ex-
ample. It is the density values that approximate the solution of related initial value 
problem for the related partial differential equation. The list of probabilities can be 
displayed separately by entering [seq(RWalkC(p, q,i,2),i= —2..2)], whose output 
is[<72, 2(l-p-q)q, (l-p-q)2+2pq, 2(1 -p-q)p, p2], while the list of probability 
densities can be displayed by entering [seq(RWalkDens[i, 2], г = —2..2)], whose 
output is [q2/2ö, ς (1 - p - q)/S, ((1 - p - q)2 + 2pq)/26, p(l - p - q)/5, ρ2/2δ]. 
If a probability at a point equals 0, its value is displayed in the output array, but the 
density at the corresponding point is left blank. Also, zero density values are omitted 
in the output of RWalkDens. 
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Next we consider a special case of the above with p = 1/2, q = 1/4, and δ = τ = 
0.1. The relevant procedure is NumRandomWalkConst{\/2,1/4, [-2,2], 2, .1, .1), 
with the output 

i = 0.2 

X 

-0 .2 

-0 .1 

0.0 

0.1 

0.2 

Probability 

0.0625 

0.1250 

0.3125 

0.2500 

0.2500 

Density 

0.3125 

0.6250 

1.5625 

1.2500 

1.2500 
The values displayed are consistent with those given for the general case. 

The procedure SimRandomWalkConst(p, q, [a, b],n, δ, τ, options) simulates 
unrestricted random walk problems with constant transition probabilities p and q 
that start at x = 0. At each step, Maple's random number generator is used to 
generate a number R that lies in the unit interval [0,1]. If the number R satisfies 
the condition 0 < R < p, the particle takes a step to the right. If the number R 
satisfies p < R < p + q, the particle takes a step to the left. But if p + q < R < 1, 
the particle remains stationary. The integer n determines the number of steps in the 
random walk and δ, τ are the step length and the time increment, respectively. Since 
the particle takes n steps, it cannot get beyond the point —ηδ on the left and ηδ on 
the right. The solution is found in the interval [αδ, об], which should be chosen to 
include the interval [-ηδ, ηδ]. The output can be a plot of the random walk if the 
seventh argument is plot, or an integer N that may be positive, negative, or zero if the 
seventh argument is data. For example, if N = 5, the particle reaches the point 5δ in 
the random walk, whereas if N = - 3 , the point —3δ is reached. All points reached 
in the random walk can be accessed by entering N(k), where к represents the fcth 
step in the walk and the corresponding point is N(k)6. 

If an eighth argument m a positive integer, is added in the procedure, m random 
walks are simulated by the procedure and probabilities and densities are assigned 
to points reached in the random walks, based on the average number of times that 
these points are reached at the end of each random walk. The results are displayed 
in a table. Densities for points that cannot be reached in the random walk are not 
displayed in the table. 

The procedure OutputArray takes lists of outputs for the solution of a single prob-
lem obtained by different methods and displays them in a matrix array. For example, 
Output Array {x, t = 5, [0,1,2], [Method(A), Method(B)}, [[.1, .2], [.3, .4], [.5, 
.6]]) yields the output of two different methods at the prescribed values of x and 
at the given time t. The outputs of each of the methods must be given as lists as 
shown. The procedure is used in the examples below. 
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Example 1.8. The Simulation of an Unrestricted Random Walk. The ran-
dom walk with p = .6, q = .4, δ = .1, and τ = .1, with 10 steps, can be simulated 
by invoking SimRandomWalkConst(.6, .4, [—10,10], 10, .1, .l,data). A possi-
ble list of outputs [—2,0,4, —1,3] is obtained on carrying out the procedure five 
times. This means that at the time t = 1 the particle reaches the points in the list 
[—0.2,0,0.4, -0.1,0.3]. The random walk corresponds to the Fokker-Planck equa-
tion 

du(x,t) | 1 du(x,t) _ 1 d2u{x,t) пьъл 
dt + 5 ~дх~~ - 20 дх* ■ ( 1 · 5 · ^ 

The procedure NumRandomWalkConst(.6, .4, [—10,10], 10, .1, .1) solves the random 
walk problem at the time t = 1. The output gives probabilities at the points x = 
- 1 , -0.9, . . . , 0,..., 0.9,1. Then [seq(RWalkDens[i, 10],i = 10..10)], causes the 
following list of probability densities to be exhibited: [.0011, .00786, .0531, .2123, 
.5574,1.003,1.254,1.075, .6047, .2016, .06057]. Only nonzero entries are displayed. 
(The probabilities and densities are zero because the particle cannot reach those points 
in the random walks. This happens, in general, only if p + q = 1, as is the case here.) 
Densities at the points that are omitted can be determined via linear interpolation, but 
we do not carry this out. 

SimRandomWalkConst(.6, .4, [-10,10], 10, .1, .1, data, 5000) carries out a 
simulation of 5000 of the foregoing random walks and determines a terminal point for 
each of the random walks at t = 1. The procedure [seq(SRWalkD(.6, .4, г, 10), г = 
-10..10)] yields the list of averaged probability densities, [.002,0, .008,0, .05,0, 
.212,0, .583,0,1., 0,1.233,0,1.081,0, .596,0, .21,0, .052]. We observe that every 
other entry is zero, as found above. Each application of the procedure yields a differ-
ent output (in general) because the numbers used in the procedure are found using a 
random number generator. 

Figure 1.1 displays 500 simulated random walks as determined by invoking 
SimRandomWalkConst(.6, .4, [—10,10], 10, .1, A, plot) 500 times. The horizon-
tal line segments represent the movement of the particle in one step. The Maple 
procedure plots{display] is used to generate the plot. 

The procedure [seq(FundSolFP(i/10,1, .1, .2,float),z = —10..10)] generates the 
list of numbers: [.00094, .002974, .0085, .02197, .05140, .1089, .2085, .3614, 
.5668, .8043,1.033,1.20,1.261,1.2,1.033, .8043, .5668, .3614, .2085, .1089, .0514] 
which represent the values of the exact (fundamental) solution of the initial value prob-
lem for the (related) Fokker-Planck equation (1.5.3) at the points a; = - 1 , -0 .9 , ...,0, 
..., 0.9,1 and at the time t = 1.0. In contrast to the random walk results, there are no 
zero values in this list. 

Making use of the procedure OutputArray causes the foregoing results to be dis-
played in an array that makes it possible for each of the entries in the list to be 
compared directly. Only points where the random walks have nonzero values are 
displayed. There is fairly good agreement between the random walk results and 
those found from the exact solution. Improvement can be achieved by increasing the 
number of subdivisions of the given interval so that the x step length is decreased. 
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mm 

Figure 1.1 500 Simulated random walks. 

Additionally, if the total number of simulations is increased, improved approximations 
to the probabilities are expected to be obtained: 

t= 1.0 

X 

-1.0 

-0.8 

-0.6 

-0.4 

-0.2 

0.0 

0.2000 

0.4000 

0.6000 

0.8000 

1.0 

FundSol 

0.0009419 

0.008500 

0.05142 

0.2085 

0.5669 

1.033 

1.262 

1.033 

0.5669 

0.2085 

0.05142 

RandWalk 

0.001049 

0.007864 

0.05308 

0.2123 

0.5574 

1.003 

1.254 

1.075 

0.6047 

0.2016 

0.06047 

RWSirn 

0.002000 

0.008000 

0.05000 

0.2120 

0.5830 

1.0 

1.233 

1.081 

0.5960 

0.2100 

0.05200 

The solution curves generated by the list of points in the array and plotted using 
Maple's plot procedure are displayed in Figure 1.2. 
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Figure 1.2 A plot of the three solution curves. 

Restricted Random Walks 

We consider restricted random walks in bounded intervals with constant transition 
probabilities p and q. (Random walks in semi-infinite intervals can also be consid-
ered by choosing the endpoint on the unbounded side to be sufficiently far from the 
boundary that the particle cannot reach it in the number of steps specified.) The 
boundaries can be absorbing or reflecting, as defined in Section 1.1. The related 
Fokker-Planck equation and initial condition for v(x, t) are given as in (1.5.1). We 
require that v(x, t) = 0 at an absorbing boundary, and at a reflecting boundary, with 
с = 0 in the Fokker-Planck equation, we require that vx(x, t) = 0. (The case with 
с ф 0 is not considered here.) 

In contrast to the situation for the unrestricted random walk considered above, 
there is no general, elementary, closed-form solution of the initial and boundary 
value problem for the related Fokker-Planck equation. The method of eigenfunction 
expansions, developed in Chapter 4, or the method of images of Chapter 7, must be 
used to solve the problem. These solutions involve infinite series, in general. We 
consider these results to represent exact solutions of the given problems and use trun-
cated eigenfunction expansions to compare with results obtained via the random walk 
approach. (Although Maple procedures that generate solutions of partial differential 
equations in terms of eigenfunction expansions are presented in Chapter 4, we do not 
use them here. Finite expansions are constructed directly.) 

Two Maple procedures that solve and simulate restricted random walk problems are 
presented. NumRestRandomWalkConst(p, q, [a, b],n, lbdry,rbdry, absref, δ, τ) 
solves restricted random walk problems with constant transition probabilities p and 
q, that start at x = 0. The integer n specifies the number of steps taken in the random 
walk and δ, τ are the step length and the time increment, respectively. The arguments 
Ibdry and rbdry are negative and positive integers I and r, respectively, that deter-
mine the location Ιδ and τδ of the left and right boundary, respectively. The solution is 
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found in the interval [αδ, bS] if the interval lies within that determined by the boundary 
points. Otherwise, the interval [αδ, bS] is cut off on the left or on the right by the 
boundary point. If the argument absref in the procedure is given as absorbing, the 
boundary conditions at both endpoints are absorbing, whereas if the argument absref 
is reflecting, the boundary conditions at both endpoints are reflecting. (We do not 
consider the case of mixed boundary conditions.) When an optional tenth argument is 
added (it can be any name or number), only information about the problem is returned, 
but no solution data are given. 

SimRestRandomWalkConst(p, q, [a, b],n, Ibdry, rbdry,absref, 6, r, option 
s) simulates restricted random walk problems with constant transition probabilities 
p and q, that start at x = 0. At each step, Maple's random number generator is 
used to generate a number R that lies in the unit interval [0,1]. If the number R 
satisfies 0 < R < p, the particle takes a step to the right. If the number R satisfies 
p < R < p + q, the particle takes a step to the left. But if p + q < R < 1, the 
particle remains stationary. The positive integer n determines the number of steps in 
the random walk and δ and r are the step length and the time increment, respectively. 
In n steps the particle cannot go beyond the point — ηδ on the left and ηδ on the 
right. The solution is found in the interval [αδ, bö] if the interval lies within that 
determined by the boundary points. Otherwise, the interval [αδ, bö] is cut off on the 
left or on the right by the boundary point. When the argument absref is absorbing, the 
boundary conditions at both endpoints are absorbing, whereas if the argument absref 
is reflecting, the boundary conditions at both endpoints are reflecting. (We do not 
consider the case of mixed boundary conditions.) As was the case for the unrestricted 
random walk, the output can be a plot of the random walk if the 10th argument is 
plot, or an integer N that may be positive, negative, or zero if the tenth argument 
is data. All points reached in the random walk can be accessed by entering N(k), 
where к represents the fcth step in the walk, and the corresponding point is N(k)6. If 
an eleventh argument m is added in the procedure, where m is a positive integer, m 
random walks are simulated by the procedure. Then probabilities and densities are 
assigned to points reached in the random walks, determined by the average number 
of times that these points are reached at the end of each random walk. 

Example 1.9. A Simulation of a Restricted Random Walk. The output of 
NumRestRandom,WalkConst(.5, .5, [-30,10], 100, -30,10, absorbing, .1, .01, 
p) gives general information about the restricted random walk that is considered and 
its related Fokker-Planck equation. It indicates that the random walk has p = .5, q = 
.5, δ = .1, and r = .01. The particle takes 100 steps in the interval —3 < x < 1 
starting at x = 0 with absorbing boundary conditions at x = — 3 and x = 0, and the 
solution is found at t = 1. The random walk corresponds to the following problem 
for the diffusion equation 

du(x,t) __ 1 d2u(x,t) 
dt = 2 dx2 ' 

u(x,0) = δ(χ), u(-3,t) = 0, u(l,t) = 0, (1.5.5) 

in the region — 3 < x < 1, t > 0. 



5 0 RANDOM WALKS AND PARTIAL DIFFERENTIAL EQUATIONS 

A truncated form of the eigenfunction expansion solution (containing 50 terms) of 
the foregoing initial and boundary value problem is given as 

1*° , . /3πΑΛ (-π4Η\ . fn(x + 3)k\ 
" ( M ) « 2 Z ^ s i n I — ) e x P ( 32 ) s i n I i )· ^1·5·6) 

Each term in the sum is a solution of the diffusion equation and vanishes at x = — 3 
and a; = 1. The sum evaluated at x = 0,0.2, . . . , 0.8,1, and t = 1 yields the values 
[.34495, .31209, .25735, .18350, .09551,0.]. 

NumRestRandomWalkConst(0.5,0.5, [-30,10], 100, -30 , 10, absorbing, 
.1,.01) solves the random walk problem above at the time t = 1. The output of 
the procedure finds probabilities at the points x = —3, —.29,..., 0 , . . . , .9,1. On 
entering the procedure [seq(RRWalkCD(.5, .5, i, 100), i = -30..10)], a list of proba-
bility densities for each of the foregoing points is exhibited. We select the probability 
densities at the points x = 0 ,0 .2 , . . . , 0.8,1]. This yields the list [0.34373,0.31080, 
0.25617,0.18261,0.09503,0.] 

The procedure SimRestRandomWalkConst(.5, .5, [-30,10], 100, -30,10, 
absorbing, .1, .01, data, 10000) simulates 10,000 of the foregoing random walks and 
determines a terminal point for each of the random walks at t = 1. On using the pro-
cedure [seq(SRRWalkD(.5, .5, i, 100), i = -30..10)], a list of (averaged) probability 
densities is obtained, from which we exhibit the following list of probability densities 
at the points x = 0, . 2 , . . . , .8,1: [.34252, .33452, .27301, .18751, .08850,0]. The 
procedure OutputArray displays the foregoing results in an array. We see that there 
is fairly good agreement between the random walk results and those found from the 
exact solution, but again there is room for much improvement: 

" t = 1.0 
X 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 

EigenExp 
0.34495 
0.31209 
0.25735 
0.18350 
0.09551 

0.0 

RandWalk 
0.34373 
0.31080 
0.25617 
0.18261 
0.09503 

0.0 

RWSim 
0.34252 
0.33452 
0.27301 
0.18751 
0.08850 

0.0 

The case of reflecting boundaries can be treated in a similar manner, but we do not 
consider it here. 
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Correlated Random Walks 

The correlated (unrestricted) random walks considered in Section 1.2 were shown 
to correspond to the telegrapher's equation in the limit as the step length and the 
time between steps tends to zero. The related initial value problem for this partial 
differential equation was found to be [see (1.2.25)—( 1.2.26)] 

d2u(x,t) n d2u(x,t) „, duix.t) „ „. . . 
dW - 7

 dJ
 +2X st ' <χ>0ϊ = δ(χ)' «t(s.0)=0. 

(1.5.7) 
As was the case for the unrestricted random walk and the related Fokker-Planck 
equation, the initial value problem (1.5.7) has an exact closed-form solution. This 
solution can be approximated by solving the initial value problem for the difference 
equations that correspond to the correlated random walk. The correlated random 
walk can be also be simulated and the results can also be used to generate numerical 
approximations to the solution of the foregoing initial value problem. 

The exact solution of (1.5.7) is given as 

u(x,t) = -ε~Χί(δ{χ-ηί)+δ{χ + ηί)) 

+ le-Xt 

7 V7 2 i 2 - x2 H(ft-x)H(x+ft), (1.5.8) 

where /0 (z) and I\ (z) are the modified Bessel functions of zero and first order, respec-
tively, with z = λ \Ζη2ί2 — x2 /η. (This result is derived in Chapter 7.) The function 
H{z) represents the Heaviside function, which is defined as H(z) = 0, z < 0 
and Я(г) = 1, z > 0. The Maple procedure SingSolTel(x,t,7,X, options) 
finds solutions of (1.5.7) at x and t, for the parameter values 7 and λ. If the 
fifth argument is explicit, the solution is expressed in the form (1.5.8). If the fifth 
argument is float, the solution is expressed in floating-point form. For example, 
SingSolTel(0.l, 2,0.1,3, float) gives the output 2.458859496. 

Two Maple procedures that solve and simulate correlated random walk problems 
are given here. The Maple procedureNumCorrRandomWalkConst(p, q, [a, b],n, δ, τ) 
solves correlated random walk problems with constant persistence and reversal prob-
abilities p and q that start at x = 0. The integer n specifies the number of steps taken 
in the random walk and δ, τ are the step length and the time increment, respectively. 
The solution is found in the interval [αδ, οδ]. When an optional seventh argument 
is added, (it can be any name or number), only information about the problem is 
returned, but no solution data are given. 

The procedure SimCorrRandomWalkConst(p, q, [a, b], n, δ, r, options) sim-
ulates correlated random walk problems with constant persistence and reversal prob-
abilities p and q that start at x = 0. At each step, Maple's random number generator 
is used to generate a number R that lies in the unit interval [0,1]. If the number R 
satisfies the condition 0 < R < p, the particle takes a step that represents a persis-
tence in its direction of motion. If it was moving to the right, it continues to move 
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in that direction in the next step. If it was moving to the left, it continues moving to 
the left. If the number R satisfies the condition p < R < p + q, the particle reverses 
its direction. If the number R satisfies the condition p + q < R < 1, the particle 
remains stationary. The integer n determines the number of steps in the random walk 
and δ, Τ are the step length and the time increment, respectively. The particle cannot 
go beyond the point — ηδ on the left and ηδ on the right, in n steps. The solution is 
found in the interval [αδ, bS\. As for the random walks considered above, the output 
can be a plot of the random walk if the seventh argument is plot, or an integer N that 
may be positive, negative, or zero if the seventh argument is data. All points reached 
in the random walk can be accessed by entering N(k), where к represents the kth 
step in the walk, and the corresponding point is N(k)ö. If an eighth argument m is 
added in the procedure, where m is a positive integer, m correlated random walks 
are simulated by the procedure and probabilities, and densities are assigned to point 
reached in the random walks, based on the average number of times that these points 
are reached at the end of each random walk. 

It follows from our discussion in Section 1.2 that the probability of persistence p 
must be close to 1 for the random walk solution to agree closely with the solution of 
the telegrapher's equation. In the following example we simulate a correlated random 
walk whose persistence probability p equals 0.9. It will be seen, however, that p must 
be closer to 1 to obtain good agreement between the random walk problem and the 
telegrapher's equation. 

Example 1.10. The Simulation of a Correlated Random Walk. The out-
put of the procedure NumCorrRandomWalkConst(.9, .1, [—10,10], 10, .1, .l,p) 
displays general information about the correlated random walk that we consider and 
its related telegrapher's equation, 

d2u(x,t) d2u(x,t) du(x,t) 

—W д^- + 2—д^=°- (L5-9) 

The reversal rate is 1, the x and t step lengths are both 0.01, and the number of steps 
equals 10. The solution is found at t — 1. The persistence probability is p = 0.9 and 
the reversal probability is q = 0.1. At the initial step, the particle is equally likely 
to move to the right or to the left. Since p 3> q, the particle has a strong tendency 
to persist in its direction of motion once the direction is established initially. As p is 
fairly close to 1, we expect good agreement between the random walk result and the 
solution of the corresponding telegrapher's equation (1.5.9). 

The Maple procedure [e_1 /0.2, seq(SingSolTel(i/lO, 1,1,1, float),г = —9. 
.9), e_1/0.2] determines the (exact) solution values at the points x — — 1, — .8,..., 0, 
..., .8,1 at the time t — 1. The values at the points x = — 1 and x = 1 are determined 
from the expression ( 1.2.32). 

NumCorrRandomWalkConst(.9, .1, [—10,10], 10, .1, .1) solves the difference 
equation for the correlated random walk and then [seq(CWalkD(.9, .1, г, 10), г = 
— 10.. 10)] yields the probability densities at the foregoing points. Finally, SimCorr 
RandomWalkConst(.9, .1, [-10,10], 10, .1, A,data, 5000) simulates 5000 corre-
lated random walks, and [seq(SCWalkD(.9, .\,i, 10), г = —10..10)] determines 
probability densities at the set of points that are listed above. 
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OutputArray displays the foregoing results in an array which shows that there 
is fairly good agreement between the random walk results and those found from the 
exact solution, but again there is room for much improvement. This could be achieved 
by choosing a value of p that is closer to 1. When doing so, however, it becomes 
necessary to adjust the other parameters in the random walk problem so that the same 
(related) telegrapher's equation results. 

t = 1.0 

X 

-1.0 

-0.8000 

-0.6000 

-0.4000 

-0.2000 

0.0 

0.2000 

0.4000 

0.6000 

0.8000 

1.0 

SingSol 

1.840 

0.2970 

0.3142 

0.3266 

0.3342 

0.3368 

0.3342 

0.3266 

0.3142 

0.2970 

1.840 

CRandWalk 

1.937 

0.3109 

0.3326 

0.3486 

0.3585 

0.3618 

0.3585 

0.3486 

0.3326 

0.3109 

1.937 

CRand WalkSim 

1.876 

0.3110 

0.3410 

0.3450 

0.3710 

0.3580 

0.3550 

0.3600 

0.3170 

0.3400 

1.928 

It was shown in Section 1.2 that the solution of the telegrapher's equation tends to that 
of a related Fokker-Planck equation as t increases. In this case the related equation 
is the diffusion equation 

9u(x, t) 1 d2u(x,t) ηκ-ιπΛ 
~дГ = 2 "tea— (1-5Л0) 

We compare the values of the solutions of the telegrapher's and diffusion equations 
at x = 0 and the times t = 1,3,6,. . . , 30. The values for the telegrapher's equa-
tion are found from [seq(SingSolTel(0,3i, 1,1, float), г = 1..10)] and are given as 
[.2199, .1594, .1311, .1139, .1021, .09338, .08652, .08101, .07644, .07252]. For the 
diffusion equation the values are found from [seq(FundSolFP(0, Зг, 1,0, float), i = 
1..10)] as [.2302, .1628, .1329, .1151, .103, .094, .08703, .0814, .0767, .07279]. It is 
seen that the solution values agree more closely as t increases. 
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Time-Independent Random Walks 

The random walks of Section 1.3 correspond to Laplace's and Poisson's equations 
in the limit as the step length tends to zero. We examine these random walks in 
rectangular regions in the (x, y)-plane. Maple procedures that find explicit solutions 
of the related difference equations and simulate the random walks are given here. 
The boundary value problems for the related partial differential equations do not have 
an explicit closed-form solution in general. We use the method of eigenfunction 
expansions (as presented in Chapters 4 and 7) to construct solutions of the problems. 
These are taken to represent exact solutions of these problems, and truncated forms 
of these expansions are used as approximate solutions that are compared with the 
results determined by solving the random walk problem. 

The (steady-state) random walk problem in the rectangle a < x < b, c< у < dis 
solved by the procedure NumSteadyRandomWalk([i, j], x = a..b,n,y = c..d,m, 
numits, position, opt). The integers n and m are the number of x- and y-subintervals, 
respectively. The step sizes in the x- and {/-directions are given as a + (6 — a)/n and 
с + (d — c)/m, respectively, and they must be equal. (However, we do not require 
that b — a = d — c.) The list [i,j] in the first argument of the procedure specifies 
the coordinates of a boundary or interior point in the rectangle. The values of i and 
j are restricted to be positive integers. If г = 0, г = n, or j — 0, j = m, the point 
chosen is a boundary point, and the sixth argument of the procedure position must 
be the word boundary. (The numbers i and j determine the location of the boundary 
points in an obvious manner. The boundary points cannot be vertices of the rectangle, 
so that, for example, [0,0] and [n,m] are excluded.) If the point [i,j] corresponds 
to an interior point, the sixth argument of the procedure position must be the word 
interior. The system of difference equations is solved recursively, using iteration, 
and numits determines the number of iterations. (This method corresponds to the 
Gauss-Seidel method introduced in Chapter 11.) The eighth argument opt is optional. 
If it is omitted, a list of probabilities for all points in the subdivision of the rectangle 
is displayed. If there are eight arguments in the procedure, opt must be given as plot, 
arrayp, or arrayd. Then the output is a plot of a rectangle that exhibits probabilities 
at all points of the subdivision, an array that displays the probabilities, or an array 
that displays the probability densities, respectively. 

SimSteadyRandomWalk([i,j],x = a..b,n,y = cd,m,[r, s],position,opt) 
simulates the random walk described above. The first six arguments of the procedure 
are defined as before and position reflects whether the point [i, j] is a boundary or an 
interior point. The point specified by [r, s] is the point in the interior of the rectangle 
where the particle starts its random walk. The random walk ends when the particle 
reaches the boundary. The eighth argument opt must be given as plot or data. The 
procedure gives the number of steps taken in the random walk, starting from the 
interior point [r, s] until a boundary point is reached, if the last argument is data. 
Otherwise, the output is a plot that exhibits the steps taken by the particle during the 
random walk. When an optional ninth argument, a positive integer N, is added, the 
ratio of the number of times the boundary or interior point [i, j] is reached in the N 
random walks (each of which starts at [r, s]) divided by ./V, is displayed. 
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Whereas NumSteadyRandomWalk([i, j], x = a..b,n, у = c..d,m, numits, 
position, opt) determines probabilities and densities at all the grid points in the 
interior of the rectangle, SimSteadyRandomW alk{[i, j], x = a..b, n,y = cd, m, 
[r, s], position, opt) only finds probabilities or densities associated with one interior 
point at a time. To determine probabilities and densities at all interior grid points, 
random walks must be simulated for each of these points. 

The procedures NumMeanFirstPassTime and 51/иА/еал/ч!г5?Аш71те determine 
directly and via simulation, respectively, mean first passage times for steady random 
walks. (These problems are not strictly time-independent, but they are most closely 
related to steady random walks.) NumMeanFirstPass Time(x = a..b, n,y = 
c.d, m, tstep, numits, opt) solves the mean first passage time problem in the rect-
angle a<x<b, c<y<d. The integers n and m are the number of x- and 
2/-subintervals, respectively, in the problem. The step sizes in the x- and y-directions 
are given as a + (b — a)/n and с + (d — c)/m, respectively, and they must be equal. 
(However, it is not required that b — a — d — c.) The number tstep represents the 
time step in the random walk. The system of difference equations is solved recur-
sively, using iteration, and numits determines the number of iterations. The seventh 
argument opt is optional. If it is omitted, a list of mean times until absorption at the 
boundary, for all points in the grid of the rectangle is displayed. If there are seven 
arguments in the procedure, the seventh argument must be plot or array. Then the 
output is a plot of a rectangle that exhibits the mean first passage times or an array that 
displays these times at all points of the grid, respectively. If there are eight arguments 
in the procedure, the seventh and eighth arguments can be anything. The output of the 
procedure is the related Poisson equation together with some additional information. 

SimMeanFirstPassTime([i,j],x = a..b,n,y = c.d, m,tstep,opt) simu-
lates the steps in a mean first passage time problem. The first argument [i, j] specifies 
the point at which the random walk begins. The next five arguments are defined as 
above. The sixth argument, opt, must be the name plot or data. If the name is plot, 
the steps taken until the particle is absorbed are displayed and plotted. If the name is 
data, the number of steps taken until the particle is absorbed is displayed. If the name 
is data and an additional argument N is added, where N is required to be a positive 
integer, the mean time to absorption at the boundary for TV random walks, each of 
which begins at [i,j], is displayed. 

The foregoing random walk problems are related to boundary value problems for 
Laplace's and Poisson's equations, as shown in Section 1.3. We consider specific 
random walk problems in the following example. The solutions of the related PDE 
problems are approximated by constructing finite sums of eigenfunction expansions. 
These partial sums are taken to represent exact solutions of the problems and are 
compared with the random walk results. 

Example 1.11. A Simulation of a Steady Random Walk: Boundary Point. 
NumSteadyRandomWalk(\3,6], x = 0..1,6, у = 0..1,6,50, boundary, arrayd) 
carries out the simulation of the random walk. The output of the procedure is given 
in two parts. 
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The main part is an array that displays the probability densities associated with 
the random walk. The first column in the array lists the y-values and the last row in 
the array lists the x-values displayed in the array (floating- point representations of 
fractions are used, e.g, 1/6 « 0.17): 

1.0 0.0 0.0 0.0 5.999 0.0 0.0 0.0 

0.83 0.0 0.2412 0.7217 2.089 0.7217 0.2412 0.0 

0.67 0.0 0.2427 0.5567 0.9160 0.5567 0.2427 0.0 

0.50 0.0 0.1731 0.3461 0.4614 0.3461 0.1731 0.0 

0.33 0.0 0.1034 0.1932 0.2375 0.1932 0.1034 0.0 

0.17 0.0 0.04725 0.08566 0.1022 0.08566 0.04725 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

y \ x 0.0 0.17 0.33 0.50 0.67 0.83 1.0 

Each boundary value, except that at the point (0.5,1), is zero. The remaining entries 
represent probability densities at interior points. 

Additionally, the first part of the output displays information about the random 
walk problem. The random walk takes place in the unit square 0 < x < 1, 0 < 
у < 1. The x and у step lengths both equal 1/6 and the boundary point is given as 
(1/2,1). The number of iterations that will be carried out by the procedure in solving 
the difference equations is 50. The related partial differential equation is Laplace's 
equation V2u{x, y) = 0, which is to be solved in the unit square with the (Dirichlet) 
boundary conditions u(x, 0) = 0, u(x, 1) = δ(χ — 1/2), u(0, y) = 0, u(l, y) = 0. 
Again, δ(ζ) is the Dirac delta function. 

The problem can be solved by constructing an eigenfunction expansion, of which 
a truncated form (with 25 terms) is given as 

25 

^-* sin(7TÄ;/2)sinh(Ä:7n/)[cosh^Ä;) + sình(nk)]sm(kKx) , 
u ( a ; , j / ) « ^ 4 - l + co8h(27rifc) + sinh(27rfc) ' ( L 5 ' 

It is easily verified that each term in the sum is a solution of Laplace's equation 
and vanishes at x — 0, у = 0, and x = 1. The sum evaluated at the points with 
x = [1/6,2/6,3/6,4/6,5/6] and у = 2/6 yields the list of values for the solution 
u(x, y) as [.1045, .1873, .2202, .1873, .1045]. 

Finally, we simulate 5000 random walks in the unit square (with the conditions 
given above), each of which originates at the foregoing list of points. The Maple 
procedure [seq(SimSteadyRandomWalk([3,6],x = 0..1,6,y = 0..1,6, [i, 2], 
boundary, data, 5000), г = 1..5)] simulates these random walks. Then [seq 
(SWalkDSim([i,2],i — 1..5)] finds the list of probability densities at these points 
as [.09960, .2208, .2292, .1800, .1008]. 
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Using the procedure OutputArray, we place the probability densities at у — 0.33 
determined above in an array: 

у = 0.33 
x 

0.17 
0.33 
0.50 
0.67 
0.83 

EigenSol RandWalk RWSim 

0.1045 
0.18735 
0.2201 
0.1873 
0.1045 

0.1034 
0.1932 
0.2375 
0.1932 
0.1034 

0.09960 
0.2208 
0.2292 
0.1800 
0.1008 

There is fairly good agreement among the three results. 

In the following example, we reconsider the random walk of Example 1.11 and 
replace the boundary point with an interior point. All three methods presented above 
will be considered and the results compared. 

Example 1.12. A Simulated Steady Random Walk: Interior Point. We 
invoke NumSteadyRandomWalk([3,3], x = 0..1,6, у = 0..1,6,50, interior, 
arrayd). The first part of the output states that the random walk takes place in the 
unit square 0 < ж < 1 , 0 < у < 1 with the step length equal to 1/6 and the 
interior point given as (1/2,1/2). The number of iterations carried out in solving the 
difference equations is 50. The remaining part of the output is an array that displays 
the probability densities in the form given in the preceding example: 

" 1.0 

0.83 

0.67 

0.50 

0.33 

0.17 

0.0 

. y\x 

0.0 
0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 
0.02885 

0.05770 

0.07692 

0.05770 

0.02885 

0.0 

0.17 

0.0 
0.05770 

0.1250 

0.1923 

0.1250 

0.05770 

0.0 

0.33 

0.0 
0.07692 

0.1923 

0.4422 

0.1923 

0.07692 

0.0 

0.50 

0.0 
0.05770 

0.1250 

0.1923 

0.1250 

0.05770 

0.0 

0.67 

0.0 
0.02885 

0.05770 

0.07692 

0.05770 

0.02885 

0.0 

0.83 

0.0 
0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

1.0 

The random walk problem is related to the following boundary value problem for 
Poisson's equation: 

д2и{х,у) д2и{х,у) 
dx2 dy2 -δ(χ - 1/2) 6{y - 1/2), 0 < ж < 1, 0 < у < 1, 

(1.5.12) 
which is to be solved in the unit square with the (Dirichlet) boundary conditions 
u(x, 0) = 0, u(x, 1) = 0, u(0, y) = 0, u(l , y) — 0. Again, S(z) is the Dirac delta 
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function, and we are effectively determining a Green's function for Dirichlet boundary 
conditions in the unit square. A truncated form (with 25 terms) of the eigenfunction 
expansion solution of the boundary value problem is given as 

25 

i(x,y)*J22 

fc=l 

sin(nk/2) sinh(7rfc/2) sinh(kny) вт(кттх) 
irk sinh^/c) 

25 

Σ* H(y - 1/2) sin^fc/2) sinh^/c) sinh[for(-l + 2y)/2] sin(knx) 

fc=l nk sinh(7rfc) 
(1.5.13) 

where H(z) is the Heaviside function. Each term in the sum is a solution of Laplace's 
equation and vanishes at x = О, у = 0, у = 1, and x = 1. The sum evaluated at 
x = [1/6,2/6,3/6,4/6,5/6] and у — 1/6 yields the list of values for the solution 
u(x, y): [.03054, .05987, .07426, .05987, .03054]. 

Finally, we simulate 5000 random walks in the unit square (with the conditions 
given above) that originate at the foregoing list of points, using [seq(SimSteadyRan-
domWalk([3,3],x = 0..l,6,y = 0..1,6, [г, l],boundary,data,5000),i = 1..5)]. Then 
the procedure [seq(SWalkDSim([i, 1], г = 1..5)] yields the following list of probability 
densities at these points: [.03065, .05635, .0744, .0593, .0261]. 

OutputArray displays the probability densities at у = 1/6: 

У = 1/6 

x EigenSol RandWalk RWSim 

1/6 0.03054 0.02885 0.03065 

1/3 0.05987 0.05769 0.05635 

1/2 0.07426 0.07692 0.07440 

2/3 0.05987 0.05769 0.05930 

5/6 0.03054 0.02885 0.02610 

We conclude our discussion with a consideration of a mean first passage time 
problem. 

Example 1.13. A Mean First Passage Time Problem. We consider the 
boundary value problem for Poisson's equation, 

дЧ(х, у) + д^у± = _200] 0<χ< 0 6i Q<y< 0_8i (1 5 14) 
dx2 dy2 
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which is to be solved subject to the (Dirichlet) boundary conditions u(x, 0) = 
0, u(x, 0.8) = 0, u(0, y) = 0, u(0.6, y) = 0. A truncated (with 25 terms) eigen-
function expansion solution of the boundary value problem is given as 

25 

i(x, y) « У"] 144 

Ък-π· Ьктту А-кк 7rfc(5y-4) 
e~3- + e 3 - l (-1) - 1 sin(^p) 

fc=l 
k43 [ c o s h ( ^ ) + s i n h ( ^ ) + 1] 

(1.5.15) 

It is easily verified that each term in the sum vanishes at x = 0, у = 0, у = 0.8, 
and x = 0.6. The sum evaluated at the points with x = [0.1,0.2,0.3,0.4,0.5] and 
у = 0.4 yields the values for u(x, y): [3.8716,6.0486,6.7481,6.0486,3.8716]. 

A related random walk problem is obtained by invoking the procedure NumMean 
FirstPassTime(x = 0..0.6,6,y = 0..0.8,8,1/2,50,array,p). The output pre-
sents information about the random walk and states that the x step length = 0.1, the 
t step length = 1/2, with six x subintervals and eight у subintervals. If we drop the 
last argument in the procedure, we obtain the following array of mean first passage 
times for the random walk (the last row and first column in the array represent x- and 
y-values as before): 

0.80 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.70 0.0 2.043 3.048 3.354 3.048 2.043 0.0 

0.60 0.0 3.123 4.794 5.319 4.794 3.124 0.0 

0.50 0.0 3.657 5.686 6.335 5.686 3.657 0.0 

0.40 0.0 3.818 5.960 6.647 5.960 3.818 0.0 

0.30 0.0 3.657 5.686 6.335 5.686 3.657 0.0 

0.20 0.0 3.123 4.794 5.319 4.794 3.123 0.0 

0.10 0.0 2.043 3.048 3.354 3.048 2.043 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

y\x 0.0 0.10 0.20 0.30 0.40 0.50 0.60 

Finally, we simulate 5000 random walks in the rectangle 0 < x < 0.6, 0 < у < 
0.8 (with the conditions given above), that originate at the foregoing list of points. 
The procedure [seq(SimMeanFirstPassTime([i, 4], x = 0..0.6,6, у = 0..0.8,8, 
1/2, data, 5000), г = 1..5)] simulates these random walks. Then the procedure [seq 
(F/J7'5i/n([i,4],i=1..5)] finds the list of mean first passage times at these points as 
[3.9275,5.9127,6.6331,5.9489,3.8412]. 
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OutputArray places the mean first passage times at у = 0.4 determined above into 
an array: 

у = 0.4 
X 

0.10 
0.20 
0.30 
0.40 
0.50 

EigenSol 
3.872 
6.049 
6.748 
6.049 
3.872 

RandWalk 
3.818 
5.960 
6.647 
5.960 
3.818 

RWSim 
3.928 
5.913 
6.633 
5.949 
3.841 

There is a fairly satisfactory agreement in the results. 

Random Walks with Variable Transition Probabilities 

For most of the random walk problems with constant transition probabilities that 
were treated above, related problems with variable transition probabilities were con-
sidered in Sections 1.1-1.3. Maple procedures have been created to deal with most of 
these problems and their simulations. Here we consider only one case, the restricted 
position-dependent random walk. The Maple procedures NumRestRandomWalk and 
SimRestRandomWalk solve and simulate such random walk problems. The related 
Fokker-Planck equations have variable coefficients, and in general, no closed-form 
solutions or full eigenfunction expansions are available for the associated initial and 
boundary value problems. Only random walks and their simulations are considered 
here. 

The Maple procedure NumRestRandomWalk(p(x), q(x), x, [a, b],n, Ibdry, 
rbdry, absref, δ, τ) solves restricted random walk problems with variable transition 
probabilities p(x) and q(x) that start at x = 0. The integer n specifies the number of 
steps taken in the random walk, and δ, τ are the step length and the time increment, 
respectively. The arguments Ibdry and rbdry are negative and positive integers / and 
r, respectively, that determine the location IS and rS of the left and right boundary, 
respectively. The solution is found in the interval [αδ, bS] if the interval lies within that 
determined by the boundary points. Otherwise, the interval [αδ, bó] is cut off on the 
left or on the right by the boundary point. If the argument absref in the procedure is 
given as absorbing, the boundary conditions at both endpoints are absorbing, whereas 
if the argument absref is reflecting, the boundary conditions at both endpoints are 
reflecting. When an optional eleventh argument is added (it can be any name or 
number), only information about the problem is returned but no solution data are 
given. (See Example 1.14.) 

SimRestRandomWalk(p(x), q(x),x, [a, b], n, Ibdry, rbdry, absref, δ, τ, opts) 
simulates restricted random walk problems with variable transition probabilities p(x) 
and q(x), that start at x = 0. At each step, Maple's random number generator is used 
to generate a number R that lies in the unit interval [0,1]. (Here x is the location 
of the particle following the previous step.) If the number R satisfies the condition 
0 < R < p{x), the particle takes a step to the right. If p{x) < R < p(x) + q(x), 
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the particle takes a step to the left. If p(x) + q(x) < R < 1, the particle remains 
stationary. The integer n determines the number of steps in the random walk and 
δ, Τ are the step length and the time increment, respectively. The particle cannot go 
beyond the point — ηδ on the left and ηδ on the right, in n steps. The solution is 
found in the interval [αδ, bö] if it lies within that determined by the boundary points. 
Otherwise, [αδ, Ь6] is cut off on the left or on the right by the boundary point. If 
absref is given as absorbing or reflecting, both boundary conditions are absorbing 
or reflecting, respectively. The output is a plot of the random walk, or an integer 
N that may be positive, negative, or zero, if the eleventh argument is plot or data, 
respectively. All points reached in the fcth step of the random walk can be accessed 
by entering N(k). They are N(k)ö. If a twelfth argument m (a positive integer) is 
added, m random walks are simulated. 

Example 1.14. Restricted Position-Dependent Random Walk: Absorbing 
Boundary. NumRestRandomWalk(6/10 - 1 / 1 0 / ( 1 +x 2 ) , 4/10 +1/10/ (1 + 
x2),x, [-9,9], 10, -10,10, absorbing, 1/10,1/10, p) has the following output; Fok-
ker-Planck Equation: ди/dt + {\/Ъ)д/дх ({l - 1/ (l + x2)} u) = ( l /20)02u/ 
dx2, with Diffusion Coefficient = 1/10, Drift Coefficient = 1/5 - 1/[5(1 + x2)], 
Left Boundary = — 1, Right Boundary = 1, x step = 1/10, t step = 1/10, Steps 
= 10, ж-intervals = 20, Stability parameter = 1/2, t = 1. Omitting the last argu-
ment in the procedure and entering [seq(RRWalkD(6/10 - 1/10/(1 + a;2), 4/10 + 
1/10/(1 + x2),x,i, 10), г = —9..9)] yields the following list of probability den-
sities at the points x = -0 .8 , - 0 . 6 , . . . , 0 , . . . , 0.6,0.8 and at the time t = 1: 
[.0396, .2026, .5807,1.037,1.23,1.013, .5898, .2368, .0595]. 

SimRestRandomWalk(6/10-l/10/(l + x2),4/10 + 1/10/(1 + x2),x, [-10, 
10], 10, —10,10, absorbing, .1 , .1, data, 10000) simulates 10,000random walks un-
der the foregoing conditions. seq(SRRWalkD(6/10-l/10/(l+x2), 4/10+1/10/(1+ 
x2), x, i, 10), г = —9..9)] gives the probability densities at t = 1 at the points listed 
above: [.043, .196, .558,1.018,1.214,1.03, .623, .234, .0705]. OutputArray yields 

t = 1.0 
X 

-0.80 
-0.60 
-0.40 
-0.20 

0.0 
0.20 
0.40 
0.60 
0.80 

RandWalk 

0.0396 
0.2026 
0.5807 
1.037 
1.230 
1.013 

0.5898 
0.2368 
0.0595 

RWSim 

0.04300 
0.1960 
0.5580 
1.018 
1.214 
1.030 

0.6230 
0.2340 
0.07050 
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Exercises 1.5 

1.5.1. Determine the fundamental solution of the Fokker-Planck equation (1.5.1), 
with D = 2 and с = 10, by using the procedure FundSolFP. (a) Use the Maple 
procedurepdetest to verify that the output satisfies the given PDE. (b) Plot the solution 
for — 2 < x < 2, 0 < ί < 2 using plot3d. (c) Evaluate the fundamental solution at 
various values of a; and t directly and by using the procedure FundSolFP. (d) Use int 
to integrate the fundamental solution with respect to x from — oo to oo. 

1.5.2. Use the procedure NumRandWalkConst to verify all the results given in 
Example 1.7. 

1.5.3. Refer to Example 1.8 and use the procedures NumRandomWalkConst and 
SimRandomWalkConst to obtain corresponding results. Since Maple's random 
number generator is used to determine the probabilities in the simulation procedure, 
different results are expected each time that procedure is invoked. 

1.5.4. Generate a plot similar to that in Figure 1.1 using 500 simulations. Repeat the 
process using 1000 simulations. 

1.5.5. Reproduce the table given in (1.5.4) (with possibly different values for the 
random walk simulation). 

1.5.6. Reproduce the results of Example 1.9. 

1.5.7. Reproduce the results of Example 1.10. 

1.5.8. Reproduce the results of Example 1.11. 

1.5.9. Reproduce the results of Example 1.12. 

1.5.10. Reproduce the results of Example 1.13. 

1.5.11. Reproduce the results of Example 1.14. 



CHAPTER 2 

FIRST ORDER PARTIAL DIFFERENTIAL 
EQUATIONS 

2.1 INTRODUCTION 

This chapter initiates our study of analytical methods for solving partial differential 
equations. We begin with scalar first order equations, that is, equations in which 
the highest derivative of the dependent variable is of first order. Our discussion is re-
stricted to problems involving two independent variables and deals almost exclusively 
with the method of characteristics for solving these problems. The presentation is 
thereby simplified, but as shown in the exercises, this method is easily extended to 
handle equations with more independent variables. Other analytical solution meth-
ods for first order equations exist, but apart from the method of the complete integral, 
they are not discussed here. Numerical solution methods for the solution of first 
order PDEs based on random walk analogies were presented in Chapter 1 and finite 
difference methods for their solution are presented in Chapter 11. 

First order equations can occur directly as models for physical processes or can 
arise as approximations to higher-order equations or systems of equations. Thus 
the unidirectional linear wave equation ( 1.2.33), studied in Example 2.2, approxi-
mates the diffusion equation of Section 1.1 when the diffusion coefficient is negligibly 
small. The quasilinear wave equation (2.3.9), or more generally (2.3.48), serves as an 
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approximation to Euler's equations of fluid dynamics (see Section 8.5) or represents 
a simple model for traffic flow [see also ( 1.4.22) and ( 1.4.23)]. The nonlinear eiconal 
equation (2.4.23) plays an important role in the theory of geometrical optics and rep-
resents an approximation to wave optics as shown in Section 10.1. In fact, linear, 
quasilinear, and nonlinear first order equations play significant roles in the approxi-
mation methods for higher order equations which are discussed in Chapters 9 and 10. 

The formulation of mathematical models can lead naturally to systems of first order 
equations, as in the case of the correlated random walk of Section 1.2 [see ( 1.2.19)-
(1.2.20)] or as in Euler's hydrodynamic equations of Section 8.5. Alternatively, as 
shown in Example 2.1, systems can be constructed by reduction of higher-order 
equations. Conversely, linear systems of equations with constant coefficients can 
always be reduced to single higher-order equations, as was shown in Section 1.2 
for the special system (1.2.19)-( 1.2.20) and as can be demonstrated in general. The 
methods of this section cannot be used directly for the solution of first order systems 
except in special cases, such as in the derivation of d'Alembert's solution of the wave 
equation in Example 2.4. (That is, if the system contains one or more first order 
equations that are uncoupled from the other equations, these can be solved separately 
and their solutions can then be introduced into the remaining equations. As in the case 
of Example 2.4, it may then be possible to solve the full system using the methods 
of this chapter.) In Chapter 3 we discuss first order systems of partial differential 
equations and their simplification. Although we do not present any general analytic 
solution methods in the following chapter and in this book for arbitrary first order 
systems, specific problems that involve linear and nonlinear systems are studied and 
various methods of solution are introduced. Additionally, numerical finite difference 
methods for the solution of first order PDEs and systems of PDEs are presented in 
Chapter 11. 

Example 2.1. The Reduction of Higher-Order Equations to Systems. 
The wave equation (1.2.35) can be written in the factored form 

vtt(x, t) - 7 2 vxx(x, t) = {d2
t -72 d2

x)v{x, t) = (dt + 7 dx)(dt -7 dx)v(x, t) = 0, 
(2.1.1) 

with dt = д/dt and dx = д/дх. We set (dt — 7 dx)v(x, t) = u(x, t) and find from 
(2.1.1) that (dt + 7 dx)u(x, t) = 0, so that we obtain the system 

dv(x, t)/dt — 7 dv(x, t)/dx = u(x, t), du(x, t)/dt + 7 du(x, t)/dx — 0. 
(2.1.2) 

Although this system is coupled, the second equation can be solved independent of 
the first. Its solution u(x, t) can then be introduced into the first equation and v(x, t) 
can be determined. This is done in Example 2.4. 

The transformation w(x,t) = extv(x,t) converts the damped wave equation 
(1.2.25) into 

^ ^ - 7 2 ^ ^ - A M M ) = 0 . (2.1.3) 
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The factorization method can then be applied to yield 

dw(x,i) dw(x.t) . . du(x.t) du(x.t) l 9 . . .„ _ ,. 

Now both equations must be solved simultaneously, and the methods developed in 
this chapter do not lead to a straightforward solution of (2.1.4). [A direct factorization 
of equation ( 1.2.25) is presented in the exercises.] 

The factorization technique applied to Laplace's equation (1.3.4) yields 

9Ч^У) + дЧ^У) = (Д + гду)(дх - idy)v(x,y) = 0. (2.1.5) 

where г = y/^ΐ, дх = д/дх, and ду = д/ду. Proceeding as for the wave equation 
leads to a first order coupled system with real and imaginary coefficients. As we 
generally require real solutions of Laplace's equations, this procedure is unsatisfac-
tory. A system of equations more customarily associated with Laplace's equation is 
obtained by putting dv(x, y)/dx = u(x, y) and dv(x, y)/dy = w(x, y). Assuming 
that the mixed partial derivatives are equal, we easily obtain, on using (2.1.5), 

dw(x,y)/dx = ди(х,у)/ду, dw(x,y)/dy = —ди(х,у)/дх. (2.1.6) 

These are the Cauchy-Riemann equations, which are of fundamental importance in 
the theory of complex variables. They must be solved simultaneously. 

For the diffusion equation ( 1.1.15), no simple factorization is possible. However, 
if we put u(x, t) = dv(x, t)/dx, we obtain the system 

dv(x, t)/dx = u{x, t), dv{x, t)/dt - (D/2) du(x, t)/dx = -cu(x, t). (2.1.7) 

Again, this system must be solved simultaneously. 
This chapter emphasizes methods that yield explicit solutions of PDEs. The re-

duction of higher-order PDEs to (real) first order systems is of importance in their 
numerical solution via the finite difference methods of Chapter 11. 

Exercises 2.1 

2.1.1. Show that if we set u = vt and w = vx in the wave equation (2.1.1 ), we obtain 
the system {ux = wt, щ = i2wx). Note that this system is coupled, and in contrast 
to (2.1.2), neither of the equations can be solved independent of the other. Thus the 
manner in which an equation of higher order is represented as a system can play a 
significant role. 

2.1.2. Express the telegrapher's equation ( 1.2.25) in the form (dt + 7<9X) (dt — ηΒχ + 
2\)v — 2\ηυχ = 0, and obtain the coupled system {vt— ^vx — и — 2λν, щ + ηηχ — 
2λΊυχ = 0}. 



6 6 FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS 

2.1.3. Consider the PDE vu — f2vxx + avx + bvt + cv = 0 with constant coefficients. 
Use factorization to obtain ut(a;, t) + Aux(x, t) + Cu(x, t) = 0, where u(x, t) = 

v(x,t) 
u(x,t) 

A = -7 0 
-76 7 

С 
b - 1 
с О 

. Show that if a — 76 and 

с = 0, the differential equation for и can be solved independent of that for v. 

2.1.4. Show that the functions u(x, y) and w(x, y) in the Cauchy-Riemann equations 
(2.1.6) both satisfy Laplace's equation. 

2.2 LINEAR FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS 

Method of Characteristics 

The most general first order linear partial differential equation has the form 

a(x, t) ^ ^ + b(x, t) ~f^- = c(x,t)v(x,t) + d(x,t), (2.2.1) 

where a, b, c, and d are given functions. Unless stated otherwise, these functions 
are assumed to be continuously differentiable. At each point (x, t) where the vector 
[a(x, t), b(x, t)] is defined and nonzero, the left side of (2.2.1 ) (essentially) represents 
a directional derivative of v(x, t) in the direction of [a(x, t), b(x, t)]. The equations 

-£=a(x,t), -£=b(x,t) (2.2.2) 

determine a family of curves x = x(s), t = t(s). (A particular curve in the family is 
given by specifying a point through which the curve must pass.) The tangent vector 
to the curve x = x(s), t — t(s) is [x'(s),t'(s)]. The system (2.2.2) states that the 
tangent vector coincides with the direction of the vector [a(x, t), b(x, t)] at each point 
where [a(x, i), b(x: t)] is defined and nonzero. Therefore, the derivative of v(x, t) 
along these curves becomes 

dv dv[x(s),t(s)] dv dx dv dt dv dv 
ds ds dx ds dt ds dx dt 

on using the chain rule and (2.2.1 ) and (2.2.2). 
The family of curves a; = x(s), t = t(s), v = v(s) determined by solving the sys-

tem of ODEs (2.2.2H2.2.3), are called the characteristic curves of the PDE (2.2.1). 
Since the equations (2.2.2) can be solved independently of (2.2.3), the curves in the 
(x, i)-plane determined from (2.2.1) are occasionally also referred to as characteris-
tic curves or characteristic base curves. The approach we develop to solve (2.2.1) 
by using the solutions of (2.2.2)-(2.2.3) is called the method of characteristics. As 
shown, it is based on the geometric interpretation of the partial differential equation 
(2.2.1). 

The existence and uniqueness theory for ordinary differential equations, assuming 
certain smoothness conditions on the functions a, b, c, and d, guarantees that exactly 
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one solution curve (x(s),t(s),v(s)) of (2.2.2)-(2.2.3) (i.e., a characteristic curve) 
passes through a given point (xo,to,vo) in (x,t,v)-space. As a rule, we are not 
interested in determining a general solution of the partial differential equation (2.2.1 ) 
but rather a specific solution v = v(x, t) [i.e., a surface in (x, t, i/)-space] that passes 
through or contains a given curve C. This problem is known as the initial value 
problem for (2.2.1). 

The initial value problem for (2.2.1) is solved by the method of characteristics as 
follows. We represent the initial curve С parametrically as 

x = x(r), t = i(r), v = V(T) (2.2.4) 

for a given range of values of the parameter r . The curve may be of finite or infinite 
extent and must have a continuous tangent vector at each point. Every value of т 
fixes a point on С through which a unique characteristic curve passes. The family of 
characteristic curves determined by the points of С may be parameterized as 

X = X(S,T), t = t(s,r), V = V(S,T), (2.2.5) 

where s = 0 corresponds to the initial curve C. That is, we have x(0, т) = х(т), 
ί(0, τ) = ί(τ), and v{0, τ) = ν(τ). 

The equations (2.2.5), in general, yield a parametric representation of a surface 
in (x, t, ?;)-space that contains the initial curve C. Assuming that the equations x = 
x(s, T) , t = t(s, T) can be inverted to give s and τ as (smooth) functions of x and t 
[which is the case if the Jacobian determinant Δ(β,τ) = xstT—tsxT ^ Oat C], these 
functions can be introduced into the equation v = v(s, r). The resulting function 
v = V(x, t) satisfies (2.2.1 ) in a neighborhood of the curve С in view of (2.2.3), the 
initial condition (2.2.4) {i.e., V(x(r), t(r)) — ν(τ)}, and is the unique solution of 
the given initial value problem. It is referred to as the integral surface for the problem. 
The smoothness requirements placed on the functions a, b, c, and d in equation (2.2.3) 
imply that V(x, t) is continuously differentiable near the curve C. Figure 2.1 shows 
how the integral surface is constructed in terms of the initial and characteristic curves. 

If the foregoing method does not result in an integral surface, the initial value 
problem may not have a solution at all, or it may have infinitely many solutions. The 
latter situation arises if the initial curve С is itself a characteristic curve, in what 
is known as a characteristic initial value problem. Even if an integral surface can 
be constructed, it may be discontinuous or may fail to be differentiable along some 
curve. 

Examples 

The following examples illustrate the use of the method of characteristics in solving 
initial value problems for linear first order equations and show how problems with 
nonsmooth or nonunique solutions can arise and how to deal with them. (The role 
of characteristics in relation to the nonexistence or nonuniqueness of solutions of 
initial value problems is reexamined from a different point of view in Section 3.2.) 
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4\ 

Figure 2.1 Construction of the integral surface. 

We observe that although the method of characteristics reduces the problem of solving 
first order PDEs to that of solving a system of ODEs, the exact solution of this 
(generally) nonlinear system is most often not an elementary task. Numerical methods 
for the solution of the initial value problem for this system may have to be used. 

Example 2.2. Unidirectional Linear Wave Motion. In Chapter 1 

dv(x, t)/dt + с dv{x, t)/dx = 0, (2.2.6) 

with a constant coefficient c, was said to represent unidirectional wave motion [see 
(1.2.33)]. (This equation is also known as the advection equation.) We examine the 
initial value problem for (2.2.6) with the initial condition at t = 0, 

w(x,0) = F(x), (2.2.7) 

where F(x) is a given function. 
Using the method of characteristics, we parameterize the initial curve С as 

х = т, t = 0, v = F(T). 

The characteristic equations [i.e., (2.2.2)-(2.2.3)] become 

dx 
= c, 

dt _ 
ds 

dv 
0. 

(2.2.8) 

(2.2.9) 
ds "' ds '' ds 

Solving (2.2.9) subject to (2.2.8), with s = 0 as the initial curve, gives 

X{S,T)=CS + T, t(s,r) = s, V{S,T) = F(T). (2.2.10) 
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Using the first two equations to solve for s and τ as functions of x and t yields 

s = t, r = x-ct. (2.2.11) 

Substitution of this result in the equation for v in (2.2.10) gives 

v(s, T) = F(T{X, t)) = F{x - ct). (2.2.12) 

Clearly, if F(x) is differentiable, the solution v(x,t) = F(x — ct) satisfies (2.2.6) 
as well as the initial condition (2.2.7). [The formal solution v(x, t) = δ(χ — ct) of 
(1.2.33) given in Chapter 1 follows from (2.2.12).] 

Let the initial function v(x, 0) = F(x) represent a waveform. Then the solution 
v(x, t) = F(x — ct) shows that a point x for which x — ct- constant as t increases, 
will always occupy the same position on the wave form. If с > 0, that point x 
moves to the right with the speed dx/dt = с As ж is a typical point, we see that 
the entire initial wave form F(x) moves to the right with speed с without change of 
shape. If с < 0, the direction of motion is reversed. Therefore, (2.2.6) characterizes 
unidirectional wave motion with velocity с 

The characteristic base curves for (2.2.6) are x — ct = т in view of (2.2.11). For 
each value of r, (2.2.10) shows that υ is constant on these curves. This implies that the 
initial data are transmitted along these curves, in the sense that whatever the value of 
v is at t = 0 at some point x, it is retained at all points x that lie on the characteristic 
curve through that initial point. As a result, the initial data are transmitted at the 
characteristic velocity dx/dt = с (to the right or to the left) as t increases from zero. 

The expression v = F(x — ct) obtained in (2.2.12) represents a general solution 
of (2.2.6) since F(z) is an arbitrary function. It can be used, as an alternative to the 
method of characteristics, to solve initial value problems for (2.2.6). For example, 
if we specify that v = f(t) on the curve x = h(t), we obtain v(h(t),t) = f(t) = 
F(h(t) — ct). With z = h(t) — ct, there exists a differentiable inverse function 
t = g{z) if z'(t) = h'(t) — с ф 0, that is, if the initial base curve x = h(t) is not 
tangent to a characteristic base curve at any point. Then the unique solution of the 
problem is v(x, t) = f(g(x — ct)). 

If h'(t) = с along the entire curve, we find that x — ct is a constant along that 
curve, so that the initial base curve is a characteristic. On denoting the constant 
by a (i.e., x — ct = a), we have v = f(t) = F(a) on the initial curve. Then the 
problem has no solution unless f(t) = A = constant. If so, this is a characteristic 
initial value problem for (2.2.6), since it follows from (2.2.9) that the initial curve 
in (x, t, u)-space is characteristic. The solution to this problem is not unique. Any 
differentiable function F(z) with F(a) = A yields a solution υ = F(x - ct) of the 
problem. 

If h'(t) = с at a finite number of points, a unique continuous inverse function 
t = g(z), as given above, exists. However, g(z) will not be differentiable at these 
points, so that v = f(g(x — ct)) is a continuous, nondifferentiable solution along the 
characteristic base curves through these points. 
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Example 2.3. Unidirectional Linear Wave Motion: Specific Initial Data. 
Consider the unidirectional linear wave equation (2.2.6) with the initial value υ = f(t) 
on the parabola a; = h(t) = t2. Since h'(c/2) = c, we see that the parabola is tangent 
to the characteristic base curve x — ct — —c2/4 at the point (x, t) = (c2/4, c/2). 
Using the general solution v — F(x — ct), we find that F(t2 — ct) = f(t), on 
applying the initial condition. With z = t2 — ct, the inverse function t — g(z) 
is defined (piecewise) as t = g~(z) = c/2 — (z + c2/4)1/2, t < c/2, and t = 
g+{z) = c/2 + (z + c2/4)1/2, t > c/2. It is continuous for z > - c 2 / 4 , but it is not 
differentiable at z = —c2/4. 

Thus, on the characteristic base curves that intersect x = t2 with t < c/2, we 
have the solution v = v- (x, t) = f(g~ (x — ct)), while those curves that intersect the 
parabola with t > c/2 yield v = v+(x, t) = f(g+(x — ct)). However, in the region 
x — ct > —c2/4, where the solution to the initial value problem is defined, each 
characteristic intersects the parabola twice except at the point (x, t) = (c2/4, c/2), 
where the characteristic is tangent to the parabola. Since v = f(t) is assigned 
arbitrarily and v-(x, t) and v+(x, t) are constant on each characteristic, we see that 
the solution is double valued for x — ct> — c2 /A. Since any neighborhood of the point 
of tangency on the parabola contains points where the solution is double valued, the 
domain of definition of the integral surface cannot be restricted to yield a nonsingular 
solution. Therefore, the initial value problem has no solution. 

On reformulating the problem and specifying that v = f(t) onx = t2 fori < c/2, 
the unique solution is v = f(g~(x — ct)). It is continuous for x — ct > —c2/4, but 
it is not differentiable along the line x — ct = —c2/4. As such, it must be interpreted 
as a solution in a generalized sense, in a manner to be defined below. However, if we 
require that t <t0 < c/2, the solution has the same functional form as before but is 
now differentiable wherever it is defined. Similarly, we can consider an initial value 
problem on x = t2 with t > c/2 and obtain a unique solution. 

With regard to the initial value problem for the general first order equation (2.2.1), 
if the characteristic base curves, determined from (2.2.2), intersect the initial base 
curve more than once, the problem generally has no solution. The solution v(x, t) 
is completely determined along a characteristic base curve by its value at a point 
on the initial base curve. Thus, if the projection of this characteristic on the (x, t)-
plane (i.e., the characteristic base curve) intersects the initial base curve more than 
once, the solution will in general be multivalued. Each intersection point carries an 
initial value for υ and thereby determines a characteristic curve that differs from those 
characteristics determined at other intersection points, except in the unlikely case that 
the data at all these points are compatible. 

Of particular interest is the initial and boundary value problem for (2.2.1 ), with the 
initial condition v(x, to) = f(x) for x > xo and the boundary condition v(xo, t) = 
g(t) for t > to- The problem is to be solved in the quarter-plane x > xo, t > to- If 
each characteristic base curve intersects both the initial and the boundary line of the 
quarter-plane, the problem has no solution in general. However, if each characteristic 
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base curve intersects the initial and the boundary line of the quarter-plane only once, a 
solution can be found in general. [A similar result is obtained if the initial condition is 
replaced by v(x, to) = f{x) for x < x0, so that the quarter-plane is x < xo, t > to-] 
Thus, for (2.2.6) with с < 0, the initial and boundary value problem in the quarter-
plane x > xo, t > to has no solution in general. 

Example 2.4. d'Alembert's Solution of the Wave Equation. We now derive 
the solution of the initial value problem for the wave equation (2.1.1 ), which was first 
obtained by d'Alembert. The wave equation was encountered in Section 1.2 and it 
describes many physical phenomena, as we shall see. It is often introduced as an 
equation describing the transverse displacement of a tightly stretched string, and is 
discussed from this point of view in Example 4.9. The constant -у2 then equals the 
tension Г divided by the density p of the string, and v(x, t) is the vertical displacement 
of a point x on the string at the time t. Appropriate initial conditions for the wave 
equation are 

v(x, 0) = f{x), dv(x, 0)/dt = g(x). (2.2.13) 

For the vibrating string, these represent its initial displacement and velocity. It is then 
assumed that the string is sufficiently long that disturbances arising at the ends of the 
string do not affect the vibration generated by the initial data, within the time span in 
which the motion is observed. 

We solve the initial value problem (2.1.1) and (2.2.13) by using the system (2.1.2). 
The initial value of v{x, t) in the system is given as in (2.2.13), and the initial condition 
for u(x, t) is obtained from the first equation of (2.1.2) as u(x, 0) = g(x) - jf'(x). 
Using (2.2.12) we immediately obtain u(x,t) = g(x — ηί) — ηί'(χ — -ft), since 
F(x) -g(x)- lf'{x). Substituting into (2.1.2) gives 

^ - 7 ^ = *(* - 7«) - 7 / 4 * - 7*), (2.2.14) 

with the initial condition v(x, 0) = f(x). 
From (2.2.2)-(2.2.3) we obtain the characteristic equations for (2.2.14) as 

d x d t i d v t> со о i к\ -j- = -7, 3" = 1 . -r=9-lf, (2.2.15) as as as 

with the initial curve v(x, 0) = f(x) parameterized as x — r, t = 0, v = / ( r ) . The 
solutions of the problem above yield the system of curves 

X = - 1 S + T, t = s, v= [ (g-lf')da + f(r). (2.2.16) 

Now both g and / ' are functions of x — jt, and the first two equations in (2.2.16) imply 
that x — 7t = - 2 7 s + r . Thus v(s, т) can be expressed as v(s, r ) = f0

s[g(—2ja + 
T) - 7 / ' ( _ 2 7 σ + τ)] da + / ( τ ) . The change of variables λ = -27σ + τ yields 
v(s, τ) = - ( I / 27 ) /T"2 7 S + T g(X) d\ + ( l / 2 ) / ( - 2 7 e + r) + (1/2)/(τ) . Again the 
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first two equations in (2.2.16) imply that r = x + ηί and —27s + τ = x - ηί, so that 
in terms of x and t, the solution is 

v = V(x, t) = -\f(x + 7 i ) + f{x - 7 i)] + — / 5(A) dX. (2.2.17) 
2 27 Jx_lt 

This is d'Alembert's solution of the initial value problem for the wave equation. It 
can be verified directly that it satisfies (2.1.1) and (2.2.13). 

Let G(z) = Jz g(X) dX, that is, G is the antiderivative of g. Then (2.2.17) can be 
expressed as 

v(x, t) = ±f(x + 1t) + ±-G(x + 7t) l-f{x - 7 i ) - ^G(x - 7«) 

(2.2.18) 
Since 7 > 0, the first and second bracketed terms represent waves traveling to the 
left and right, respectively, with speed 7. Each wave travels without change of shape. 
However, the presence of these wave forms is not always apparent in the solution, 
because of the interference caused by the interaction of these traveling waves when 
they are superposed or summed as in (2.2.18). 

Generalized Solutions 

The family of characteristics (2.2.5) yields a smooth solution v = V(x, t) of the initial 
value problem (2.2.1 ) and (2.2.4) only if the data (2.2.4) and the functions a, b, c, and 
d in (2.2.1 ) are smooth, and the Jacobian determinant A(s, r ) is not zero. If the initial 
value v = v(r) in (2.2.4) is singular at r = r0, this singularity is transmitted along 
the characteristic (2.2.5) that passes through that point on the initial curve (2.2.4). 
Then the integral surface is singular along that characteristic, and depending on the 
singularity of ν(τ), it may not have first derivatives or it may be discontinuous there. 

For example, if the first derivative of F(x) in (2.2.7) has a jump discontinuity at 
x = 0, the solution v = F(x — ct) of (2.2.6) has discontinuous x- and i-derivatives 
along the characteristic (base) curve x = ct. If F(x) has a jump discontinuity at 
x = 0, then v = F(x — ct) has a jump discontinuity along x = ct. In each case, 
v = F(x—ct) is not a solution of (2.2.6) in the classical sense, as it is not differentiable 
along x = ct. We must treat it as a generalized solution and now show how this is to 
be done in the general case. 

Let v(x, t) be a continuously differentiable solution of (2.2.1) except along the 
arbitrary curve x = x(s), t = t(s), where it is continuous but its first derivatives 
have (finite) jump discontinuities. We evaluate (2.2.1) at two points (x, t) on either 
side of the curve and consider the difference of these two equations. In the limit as 
these points approach a common point on the curve, we obtain 

a[vx] + b[vt] = 0, (2.2.19) 

where the brackets represent the jumps in the first derivatives across the curve. All 
other terms in (2.2.1 ) are assumed to be continuous across the curve. A continuously 
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differentiable solution of (2.2.1 ) everywhere except along a curve across which the 
jumps in the first derivatives satisfy (2.2.19) is said to be a generalized solution 
of (2.2.1). 

In fact, the curve x = x(s), t — t(s) across which the jumps in the first derivatives 
satisfy (2.2.19) cannot be arbitrary but must be a characteristic base curve. Since 
[v] = 0 by assumption, if we differentiate this equation along the curve (using the 
chain rule), we find that d[v]/ds is given as 

x'{s)[vx} + t'(s)[vt} = 0. (2.2.20) 

Now (2.2.19)—(2.2.20) yields a simultaneous homogeneous linear system for the 
jumps [vx] and [vt]. As we assume that they are not both zero, we can effectively 
conclude that x'{s) = a and t'(s) = b. In view of (2.2.2), the curve must be a char-
acteristic, and (2.2.19) states that d[v]/ds = 0 along the characteristic. It is shown 
in the exercises that the jumps [vx] and [vt] satisfy ordinary differential equations of 
first order along the characteristics. From these equations we conclude that unless 
the derivatives undergo jumps in the data for the problem, the solution cannot have 
any jumps in the derivatives. 

If v(x, t) is a continuously differentiable solution of (2.2.1) except along a curve 
x — x(s), t = t(s) where v has a jump discontinuity, we must generalize the concept 
of a solution of (2.2.1 ) even further. To do so we write (2.2.1 ) in conservation form, 

{av)x + (bv)t = (c + ax + bt)v + d, (2.2.21) 

and integrate (2.2.21) over an arbitrary closed and bounded region R in the {x,t)-
plane with a piecewise smooth boundary curve S. On applying Green's theorem in 
the plane, we obtain 

/ avdt- bv dx = / / [(c + ax + bt)v + d] dx dt, (2.2.22) 
Js JJR 

with integration over S taken in the positive direction. This integral relation is equiv-
alent to the differential equation (2.2.1) in any region where v(x, t) is continuously 
differentiable, as follows from Green's theorem and the arbitrariness of the region R 
(see Exercise 8.1.9). However, the integral relation remains valid even if v(x, t) has 
a jump discontinuity across some curve. 

If we apply the integral relation (2.2.22) to a region R that surrounds an arbitrary 
portion of the curve x — x(s), t = t(s) across which v{x, t) has a jump discontinuity 
(see Figure 6.3), and let the boundary curve S collapse onto the discontinuity curve, 
we obtain 

(at'(s)-bx'(s))[v]=0, (2.2.23) 

since the limiting line integrals are taken in opposite directions and υ (x, t) has different 
limits on both sides of the curve. (Again, [v] is the jump in v across the curve.) 
Although the limit implies only that the integral of (2.2.23) over a portion of the 
discontinuity curve vanishes, the arbitrariness of that portion implies that the integrand 
must itself be zero (see Exercise 8.1.9). 
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Since [v] φ 0 in (2.2.23) by assumption, we must have at'(s) — bx'(s) — 0. 
But the vector [t'(s), —x'(s)] is normal to the curve x = x(s), t — t(s), so we 
again conclude that the discontinuity curve must be a characteristic base curve along 
which x'(s) = a, t'(s) = b. Thus, if v(x, t) has (together with its first derivatives) 
a jump discontinuity across a characteristic base curve (2.2.2) but is a continuously 
differentiable solution of (2.2.1 ) elsewhere, it is a generalized solution of (2.2.1 ). 

As examples, we consider 

, . f X -Ct, X <ct, ( x - c t , Ж < 0, ,г,пг,л\ 
υ ι ^ = (ι, x>ct, «2(Μ) = ( ι , χ > 0 . (2-2.24) 

v\(x,t) is a generalized solution of (2.2.6) but V2(x,t) is not, since x = ct is a 
characteristic base curve of (2.2.6) whereas x = 0 is not. 

If we apply the discussion that precedes equation (2.2.19) to the present case, where 
both v and its first derivatives have jump discontinuities across the characteristic base 
curve (2.2.2), we obtain 

a[vx] + b[vt] = c[v], (2.2.25) 

since v also has a jump discontinuity. As we have shown, (2.2.25) is equivalent to 
the ODE d[v]/ds = c[v] along the discontinuity curve. It not only determines the 
variation of the jump along that curve, but also shows that there can be no discontinuity 
in a generalized solution of (2.2.1 ) unless it arises in the data for the equation. The 
case when the functions a, b, c, and d have jump discontinuities also requires the 
introduction of generalized solutions, and these are considered in the exercises. 

Example 2.5. Equations with Singular Points. In our discussion of (2.2.1 ) it 
has been assumed that the coefficients a and 6 do not both vanish at some point (x,t). 
If they are both zero at x = xo, t — to, (xo,to) is a critical point for the (autonomous) 
system (2.2.2), x'(s) = a(x, t), t'(s) — b(x, t), from which the characteristic base 
curves are determined. Either two or more solution curves of this system intersect at 
the critical point or they spiral around or encircle that point. In each case, difficulties 
arise in the formulation of initial value problems for (2.2.1) in the neighborhood of 
the critical point, or singularities occur at that point in solutions with initial data given 
outside its neighborhood. Consequently, we refer to that point as a singular point for 
the equation (2.2.1 ). 

We consider the initial value problem 

x ̂ ^ + t ^ M = „,(*, t), v(x, 1) = /(*), (2.2.26) 

where с is a constant in the PDE. The PDE has a singular point at (x, i) = (0,0), and 
we examine its effect on the solution of the initial value problem. 

The initial curve С for the problem can be parameterized as 

x = r, t = 1, v = /(T), (2.2.27) 
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and the characteristic equations are 

dx dt dv .„ „ „„. 
* = * · dS = t' Ts = cv- ( 2 · 2 · 2 8 ) 

The solutions of (2.2.28) that satisfy (2.2.27) at s = 0 are 

X{S,T) = те8, t{s,r) = es, V(S,T) = / ( r ) e c s . (2.2.29) 

Solving for s and r in terms of x and t, gives s = log t, т = x/t, which is valid for 
t > 0. Inserting this into the equation for v, we obtain as the solution of the initial 
value problem (2.2.26) 

v(x,t)=f(^)tc. (2.2.30) 

The critical point (x, t) = (0,0) for the system x'(s) = x, t'{s) = t is called a 
proper node in the theory of ODEs. The characteristic base curves are the pencil of 
straight lines x = Xt (—oo < λ < oo), together with t = 0, all of which intersect 
at the origin. Thus, if с = 0 in (2.2.26) so that (2.2.30) reduces to v = f(x/t), the 
solution is not defined for arbitrary f(x), when t = 0 and x ψ 0, and is infinitely 
multivalued at the origin when x = 0. Furthermore, if f(x) = 1, (2.2.30) is not 
defined on the ж-axis if с < 0; is continuous but not differentiable there if с = 1/3; 
but is a valid solution for all x and tifc— 1. 

Next, we consider the initial value problem 

' ^ - « ^ = 0 , «(*,0) = / ( * ) , * > 0 . (2.2.31) 

The PDE has a singular point at (x,t) = (0,0). The characteristic equations for 
(2.2.31) are 

x'(s) = i, t'(s) = -x, v'(s) = 0. (2.2.32) 

If we parameterize the initial curve С as x = т, t = 0, v = / ( r ) , we obtain the 
solution of the system (2.2.32) that satisfies these initial conditions at s — 0, in the 
form X(S,T) = r coss , t(s,r) = —rsins, V(S,T) = / ( r ) . On solving for r in 
terms of x and i, we find that т = (x2 + f2)1/2, so that 

v(x,t)=f((x2+t2Y/2). (2.2.33) 

The solution v(x, t) is completely determined for x2 + t2 > 0 in terms of the data 
given on the positive x-axis. It is not differentiable at the origin. 

The critical point (0,0) for the system x'(s) — t, t'(s) = — x, is called a center. 
The characteristic base curves are concentric circles whose center is at the origin. 
They are fully determined by specifying a point that they pass through on the positive 
x-axis. The solution v(x, t) is constant on each circle. 
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Characteristic Initial Value Problems 

If the Jacobian determinant Δ(β,τ) = xstT — tsxT associated with the first two 
equations in (2.2.5) vanishes on the initial (base) curve x = χ(τ), t = ί(τ), the 
tangent vector to the curve has the direction of the vector [a, b] at each point. Therefore, 
it must be a characteristic base curve. We change the variable on the initial base curve 
from r to s, with s chosen so that the components x'{s) and t'(s) of the tangent vector 
satisfy (2.2.2). Then we have a characteristic initial value problem if the initial value 
v, expressed in terms of the parameter s, satisfies equation (2.2.3). If this equation is 
not satisfied, the initial value problem has either no solution or a nonsmooth solution. 

As an example, we consider (2.2.26) with the initial condition v= f(t)onx = tfor 
t > 0. On representing the initial curve parametrically as x = r, t = randw = / ( τ ) , 
we find that the solution of the characteristic equations is x = res, t = res, and 
v = f(r)ecs. The Jacobian determinant Δ(β,τ) vanishes not only at s = 0 but 
identically. [As shown in the exercises, this is always the case if the initial base curve 
is characteristic and the coefficients a and b in (2.2.1 ) are continuously differentiable.] 
To determine what condition f(t) must satisfy for this to be a characteristic initial 
value problem, we set r = T(S) and find that the first two characteristic equations in 
(2.2.28) are satisfied if r = es so that x = t = es. Then v = f(es) and the third 
equation in (2.2.36) requires that e s / ' (e s) = cf(es). The general solution of this 
equation is f(es) = ßecs, where ß is an arbitrary constant. In terms of x and t this 
requires that on x = t we must have υ = f(t) = ßtc to obtain a characteristic initial 
value problem. If υ = f(t) does not have the required functional form, the problem 
has no solution. 

If а ф 0 in (2.2.1 ), we can divide through by a in (2.2.1 ) and replace the charac-
teristic equations (2.2.2) and (2.2.3) by 

dv с d dt b .„ „ „,. 
— = -v + - on — = - . (2.2.34) 
dx a a ax a 

Similarly, if b ψ 0 in (2.2.1 ), we obtain the characteristic equations 

dv с d dx a .„ „ „„. 
Tt = bv+b on Έ = ν (2·2·35) 

Consider the initial value problem for (2.2.1 ) with v = f(x)ont — h(x). If i = h(x) 
is a solution of t' (x) = b/a, we have a characteristic initial value problem, if v = f(x) 
satisfies f'(x) — (c/a)f(x) + d/a. If we have v — f(t) o n i = g(t), and x = g{t) 
satisfies the equation x'(t) = a/b, we must have f'(t) = (c/b)f(t) + d/b for this to 
be a characteristic initial value problem. Both characteristic initial value problems 
have nonunique solutions, as is shown most easily by constructing a general solution 
of (2.2.1 ) for each case. 

Let φ(χ, t) = λ represent a family of characteristic base curves for (2.2.1 ). In terms 
of (2.2.34), we assume that they can be expressed as t = h(x, X) and for each A we 
solve the linear ordinary differential equation for v. If we express the general solution 
as v = F(x, λ), the general solution of (2.2.1) is υ = F(x, φ(χ, t)). In connection 
with (2.2.35), we express the characteristics as x = g(t, X) and for each A we solve 
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for v. With the general solution given as v = G(t, A), the general solution of (2.2.1) 
is v = G(t, φ(χ, t)). [We note that φ(χ, t) satisfies the equation а фх + b φι = 0.] 
Each of the foregoing general solutions of the ODEs contains an arbitrary constant 
that can vary with A. Consequently, the corresponding general solutions of (2.2.1) 
depend on an arbitrary function, each of which is constant on each characteristic base 
curve. Therefore, a characteristic initial value problem has infinitely many solutions, 
since all that is required of the arbitrary functions is that their value at φ(χ, t) = Ao, 
the initial characteristic (along which they are constant), be chosen so that the initial 
condition is satisfied. 

Example 2.6. Characteristic Initial Value Problems. The PDE (2.2.26) can 
be expressed in either of the forms (2.2.34) or (2.2.35), say if x and t are both positive. 
We obtain either 

- , (2.2.36) 
dv с 
dx x 

dv с 
~di~~tV 

on 

on 

dt 
dx 

dx 
~dl 

or 
fin \ s* ri rf rp 

(2.2.37) 

The family of characteristic base curves is ф(х, t) = x/t = A. This yields t = 
h(x, A) = x/X or x = g(t, A) = Xt as the explicit representations of these curves. 
(We note that t = 0 is also a characteristic curve.) Along t = x/X, we find that 
υ = F(x, A) = ß(X)xc, while on x = Ai we obtain v = G(t, A) = ß(X)tc. Thus, 
the general solution of (2.2.26) has the formt; (a;, i) = ß(x/t)xcOTv(x,t) = ß(x/t)tc 

and they both contain an arbitrary function ß(x/t). [The arbitrary function ß{x/t) 
can be replaced by the arbitrary function η{ί/χ). Then, at t = 0 the solution must be 
of the form 7(0)arc.] 

For example, if we specify that v = 5xc on the line t = x/3, we have a charac-
teristic initial value problem. The (nonunique) solution is v(x, t) = ß(x/t)xc, with 
/?(3) = 5 but ß(x/t) otherwise arbitrary. However, if г; = sin x on t = x/3, the 
initial value problem has no solution, since v does not satisfy the ordinary differential 
equation in (2.2.36). 

An interesting characteristic initial value problem occurs for the equation 

*гМ + ^ ^ * ) = ф , 0 , (2.2.38) 

where we assume that t > 0. The characteristic equations can be given in the form 
(2.2.34) as 

^ί=υ on ¥- = yft. (2.2.39) 
dx dx 

To study the characteristic base curves that originate on the a>axis, we must solve the 
nonlinear equation t'(x) = \Jt{x) with i(A) = 0. The solution of the initial value 
problem for each value of the parameter A is not unique. Two solutions are t = 0 and 
t = \{x — A)2, and there are infinitely many others. 

We see that t = \{x — A)2 is a family of characteristics for (2.2.38), and each 
curve in this family is tangent to the ж-axis at its point of intersection. Thus, the 
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line t = 0 is an envelope of characteristics (see the Appendix) in addition to being a 
characteristic, as we have shown. In view of the discussion that precedes this example, 
the characteristic family is given as φ(χ, t) = x — 2\Д = A, and we easily find from 
(2.2.39) that the general solution of (2.2.38) is 

v(x, t) = β{χ - 2sft)ex (2.2.40) 

for arbitrary /3(A). On the characteristic t = 0, (2.2.39) yields v = ßex. 
Noting the form that v must have on the characteristic t = 0, we expect that the 

initial value problem for (2.2.38) with v(x, 0) = f(x) does not have a solution unless 
f(x) = ß ex with constant ß. The solution is then given as v(x, t) — ßex. We may, 
however, use the general solution (2.2.40) to obtain, for arbitrary f{x), the solution 
v(x, t) = f(x — 2\/i)e2v^, which is continuous at t = 0 but not differentiable there. 
It must be understood as a generalized solution. If f(x) — ßex, this solution agrees 
with that obtained above and is differentiable at t = 0. In either case the solution is 
determined uniquely. 

The foregoing results appear to be at variance with our general conclusions con-
cerning characteristic initial value problems. If v(x, 0) = f(x) has the required 
exponential form, the initial value problem is characteristic and yet the solution was 
found to be unique. If f(x) does not have the required form, the initial value problem 
should have no solution and yet we found a generalized solution. These inconsisten-
cies can be traced to the fact that the coefficient \/i of v in (2.2.38) is not differentiable 
at t = 0. The line t = 0 is a singular solution of t'(x) = ^/t(x), and it cannot be ob-
tained from the family of characteristics determined above for any specific choice of 
A. Therefore, the general solution of (2.2.38) given above does not yield nonunique-
ness here. Since each of these characteristics intersects t = 0, the general solution 
can be used to solve an initial value problem given on the z-axis. Each characteristic 
intersects the ar-axis only once, so the solution is unique. Because the intersection is 
tangential, the solution is not differentiable at t = 0. 

Exercises 2.2 

2.2.1. Solve the initial value problem for the damped unidirectional wave equation 
vt{x,t) + cvx(x,t) + \v(x,t) = 0, v(x,0) — F(x), where A > 0 and F(x) is 
prescribed. 

2.2.2. (a) Solve the initial value problem for the inhomogeneous equation vt{x, t) + 
cvx(x,t) = f(x,t), v(x,0) = F(x), with prescribed f(x,t) and F(x). (b) Solve 
the problem when /(ж, t) = xt and F{x) = sin(a;). 

2.2.3. Discuss the solution of the wave equation (2.1.1) for the following cases: 
(a) v{x,0) = f(x) = x, vt(x,0) = g(x) = 0. (b) f(x) = 0, g(x) = x. (c) 
f(x) = sin(a;), g(x) = — 7cos(a;). (d) f(x) = sin(x) g(x) = 7cos(a;). Based on 



LINEAR FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS 7 9 

the results obtained, observe that solutions of the wave equation may or may not have 
the form of traveling waves. 

2.2.4. Consider the inhomogeneous wave equation utt (ж, ί)— Ί2νχχ{χ, t) = F{x,t). 
(a) Apply the method of Example 2.1 to reduce it to the system vt (x, t) — jvx (x,t) = 
u(x, t), ut(x, t) + ηηχ(χ, t) = F{x, t). (b) Solve the initial value problem for the 
inhomogeneous wave equation with the initial data v(x,0) = f{x), vt(x,0) = g{x). 

2.2.5. Solve the signaling problem for (2.2.6) in the region x > 0 with the boundary 
condition v(0, t) = G(t) for — oo < t < +oo. 

2.2.6. Show that the initial value problem vt(x,t) + vx(x,t) = 0, v(x,t) = x 
on x2 + t2 = 1, has no solution. However, if the initial data are given only over 
the semicircle that lies in the half-plane x + t < 0, the solution exists but is not 
differentiable along the characteristic base curves that issue from the two endpoints 
of the semicircle. 

2.2.7. Solve the initial value problem vt(x, t) + exvx(x, t) = 0, v(x, 0) = x. 

2.2.8. (a) Show that the initial and boundary value problem for (2.2.6) with с > 0 
can be solved in the quarter-plane x > 0, t > 0 with the data v(x, 0) = F(x) 
and υ(0, t) = G(t), if F(x) and G(t) are arbitrary smooth functions that satisfy the 
conditions G(0) = F(0)andG'(0) = -cF'(O). (b) Show that for с < 0, the problem 
can be solved only if the data F(x) and G(t) satisfy a compatibility condition. In this 
case, the characteristic base curves intersect both the x- and the i-axes. 

2.2.9. If vx(x, t) has a jump across the characteristic base curve x = x(s), t = t(s) 
but the generalized solution v of (2.2.1 ) is continuous there, show that ^ [vx] = 
(c — ax + (a/b) bx) [vx]. If vx has a jump at a point on the initial curve, this deter-
mines the variation of [vx] along the characteristic through that point. Once [vx] is 
determined, [vt] can be obtained from (2.2.19). 

2.2.10. Let / ( T ) in (2.2.27) be given as / ( r ) = Oforr < 0and / ( r ) = r f o r r > 0 . 
Obtain the generalized solution of this problem and use it to determine the jump in 
vx. Show that this jump satisfies the equation found in Exercise 2.2.9. 

2.2.11. If the function d(x, t) in (2.2.1) has a jump discontinuity across a (nonchar-
acteristic) curve but the coefficients a(x, t), b(x, t), and c(x, t) are smooth functions, 
obtain an equation for the jumps in vx(x,t) and vt{x, t) across that curve. [As-
sume that v(x, t) is continuous there.] Show that if d(x, t) is discontinuous across a 
characteristic base curve, the solution v(x, t) must also have a jump along that curve. 

2.2.12. Solve the initial value problem of Exercise 2.2.2 if (a) f(x, t) = #(a:)and(b) 
f(x, t) = H(x — ct). In both cases, set F(x) = 0. [H(z) is the Heaviside function 
defined as H(z) = 0 for z < 0 and H(z) = 1 for z > 0.] Verify the conclusions of 
Exercise 2.2.11. 

2.2.13. Let f(x) = H{x) in (2.2.31), where H(x) is the Heaviside function (see Ex-
ercise 2.2.12). Find the generalized solution of this initial value problem for (2.2.26) 
and verify that (2.2.25) is satisfied for this equation. Also, show that the jump in 
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v satisfies the ordinary differential equation given in the discussion in the text that 
follows equation (2.2.25). 

2.2.14. Let the coefficients a(x,t) and b(x,t) in (2.2.1) have jump discontinuities 
across a curve x = x(s), t = t(s). Assume that v(x, t) also has a jump across that 
curve and use the integral relation (2.2.22) to show that the values of a(x, i), b(x, t), 
and v(x, t) on opposite sides of the curve (with unit normal vector n) are related by 
[ai, 6i] · nvx = [a2, Ы ■ ηυ2. (The subscripts denote values on opposite sides of the 
curve.) 

2.2.15. Consider the initial value problem vt(x,t) + c(x)vx(x,t) = 0, c(x) = 
ci, x < 0, c(x) = C2, x > 0, υ(χ,0) = f(x), where c\ and сг are positive 
constants. Use the jump condition obtained in Exercise 2.2.14 to solve this problem. 
Hint: First solve for v(x,t) in the region x < 0 and t > 0. Then use the jump 
condition as well as the initial condition to solve for v in x > 0 and t > 0. Note that 
v(x, t) has a jump across x = c2t unless /(0) = 0. 

2.2.16. Show that the initial value problem (t - x)vt{x,t) — (t + x)vx(x,t) = 
0, v(x, 0) = f(x), x > 0, has no solution if f(x) is an arbitrary function. Hint: The 
singular point at the origin gives rise to characteristics that spiral around the origin. 

2.2.17. Show that the equation a(x)vx(x,t) + b(t)vt{x,t) = 0 has the general 
solution v(x, t) = F[A(x) - B(t)], where A'{x) = l/a(x) and B'(t) = l/b(t). 

2.2.18. Show that the equation a(t)vx(x,t) + b(x)vt(x,t) = 0 has the general 
solution v{x, t) = F[B(x) - A(t)}, where B'(x) = b{x) and A'{t) = a{t). 

2.2.19. Given the initial value problem tvt(x,t) + xvt(x,t) = cv(x,t), v(x,x) = 
/(ж), x > 0, where с is a constant, determine a condition on the function f(x) so 
that this becomes a characteristic initial value problem. Supposing that f(x) satisfies 
that condition, obtain a (nonunique) solution of the problem. 

2.2.20. Show that the initial value problem ut(x,t)+ux(x, t) = x, u(x,x) = 1 has 
no solution. Observe that the initial curve t = x is a characteristic base curve and 
explain why this is not a characteristic initial value problem. 

2.2.21. (a) Show that ut(x, t) + cux(x, t) = F(x, t), u(x, x/c) = f(x) is a charac-
teristic initial value problem if f'{x) = (l/c)F[x, x/c]. (b) Verify that 

1 fx 

u(x,t) = — I F 
c Jx-ct 

is a solution of the characteristic initial value problem of part (a) if g(0) = /(0) 
but g(z) is an otherwise arbitrary function, (c) Let F(x, t) = cos(a; + t) in part 
(a). Determine the appropriate choice of f(x) and obtain the general solution of the 
problem. 

2.2.22. Show that the Jacobian A(s, r) satisfies the equation dA(s, r)/ds = (ax + 
bt)A(s, r ) . Thus, if Δ(δ, τ) vanishes at s = 0 and ax and bt are continuous, A(s, r ) 
vanishes identically. Hint: Use equations (2.2.2). 

r, 
r — x + ct 

dr + g(x — ct) 
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2.2.23. Determine A(s, r) for equation (2.2.38) with initial data on t = 0. Note 
that the Jacobian vanishes at s = 0 but not for s > 0. Show that A(s, r ) satisfies 
the equation of Exercise 2.2.22 and explain why the result of that exercise is not 
contradicted. 

2.2.24. Obtain the general solution of the equation vt(x, t) + t1^3vx(x, t) — v(x, t). 
Show that t — 0 is a characteristic for this equation but that the initial value problem 
witht>(:r,0) = f(x) has a unique but nondifferentiable solution (at t = 0) for arbitrary 
f(x). Show that the characteristics are all tangent to the ж-axis. 

2.2.25. Generalize the method of characteristics to problems in three dimensions. 
Given the linear equation avx + bvy + cvz = dv + e, where a, b, c, d, e, and v 
are functions of (x, y, z), obtain the characteristic equations dx/ds = a, dy/ds = 
b, dz/ds = c, dv/ds = dv + e. The initial value problem for this case specifies an 
initial hypersurface given parametrically in (x, y, z, u)-space, as x = x(X, т), у = 
у(\,т), z = ζ(λ,τ) , ν = v(X, τ), with λ and ras the parameters. The family of char-
acteristic curves is now given as x = x(s, Х,т), у = y(s, λ,τ), z — z(s, X, r ) , v = 
V(S,X,T), with s as the running parameter along a curve and (λ, τ) as a two-parameter 
family specifying the individual curves. If the equations for (x, y, z) can be inverted 
to yield (s, λ, τ) as smooth functions of (x, y, z), the function v = v(x, y, z) ob-
tained thereby is a solution of the initial value problem. Discuss situations in which 
the method of characteristics may not give a solution or yields a nonunique solution. 

2.2.26. Using the method of characteristics, solve the initial value problem vx(x, y, z) 
+ vy{x,y,z) + vz(x,y,z) = 0 , v(x,y,0) = f(x,y), where f(x,y) is prescribed. 
(a) Parametrize the initial data and let x = X, у = τ, ζ = 0, and v = f(X, r) and 
set up the characteristic equations, (b) Show that the solution of these equations is 
x = s + X, у = s + T, z = s, υ = f(X, r ) . (c) Conclude that the solution of the 
initial value problem is v(x, y, z) = f(x — z,y — z). 

2.2.27. Extend the method of characteristics to linear equations in n dimensions. 
Given the equation £)"= 1 ß i (x i , . . . ,xn)dv/dxi = b(xi,... ,xn)v + c(xi,... ,xn), 
where v = v(x\,..., xn), obtain the system of ODEs dxi/ds = α,, (г = 1 , . . . , η), 
dv/ds = bv+c. The initial values for this problem are given as Xi = Χί(τ\,... , τ η_ι ) 
and v — ν(τι,..., τ„_ι) at s — 0, with n , . . . , τ„_χ as parameters. The char-
acteristic curves are Xi = Xi(s, n , . . . ,rra_i) and v = V(S,TI, ... , r„_i ) , where 
г = 1,2, ...,n. If S,TI, ..., τη_ι can be solved for in terms of x\,... ,xn, then 
v = v(x\,..., xn) is a solution of the initial value problem. 

2.2.28. Use the method of characteristics to solve the problem Σ™=1 vXi (x\,..., xn) 
= 0, г;(агь...,а;п_1,0) = / ( ΐ ι , . . . , ι η _ ι ) where / ( ж ь . . . ,xn-\) is given, (a) 
Show that the solution of the characteristic equations can be given as xi = S+TÌ (i = 
Ι , . , . , η ) , χη = s, v = / ( τ ι , . . . , τ „ _ ι ) . (b) Conclude that v(xi,...,xn) = 
f(x\ — xn,X2 — Xn, ■ ■ ■, Xn-i — Xn) is the solution of the problem. 
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2.3 QUASILINEAR FIRST ORDER PARTIAL DIFFERENTIAL 
EQUATIONS 

A first order partial differential equation of the form 

QijL du 

a(x, t,u) ——h b(x, t,u) — = c(x, t, u) (2.3.1) 

is said to be quasilinear, since it is linear in the derivative terms but may contain 
nonlinear expressions of the form и du/dt or и2. Such equations occur in a variety 
of nonlinear wave propagation problems and in other contexts, but we emphasize the 
wave propagation aspect in the examples. Proceeding as in Section 2.2, we interpret 
(2.3.1) geometrically for the purpose of constructing a solution via the method of 
characteristics. 

Method of Characteristics 

We assume that a solution и = u(x,t) of (2.3.1) can be found and examine its 
properties as implied by (2.3.1 ). The solution и = u(x, t) is called an integral surface, 
and we express it in implicit form as F(x, t, u) = u(x, t) — и = 0. The gradient 
vector V F = [ди/дх, du/dt, —1] is normal to the integral surface F(x, t, u) = 0. 
On transposing the term с in (2.3.1 ), we can express the resulting equation as a scalar 
or dot product, 

du , du г , , 
ad-x+bTt-C=[aAc]· 

du du 
dx ' dt 

0. (2.3.2) 

The vanishing of the dot product of the vector [a, b, c] with the gradient vector VF , 
implies that these vectors are orthogonal. Accordingly, the vector [a, b, c] lies in 
the tangent plane of the integral surface и = u(x, t) at each point in the (x, t, u)-
space where V F is defined and nonzero. At each point (x, t, u), the vector [a, b, c] 
determines a direction that is called the characteristic direction. As a result, the 
vector [a, b, c] determines a characteristic direction field in (x, t, u)-space, and we 
can construct a family of curves that have the characteristic direction at each point. 
If the parametric form of these curves is x = x{s), t = t(s), and и = u(s), we must 
have 

dx . dt du . . . 
—- = a(x, t,u), — = b{x, t,u), — = c(x,t,u), (2.3.3) 
as ds ds 

since [dx/ds, dt/ds, du/ds] is the tangent vector along the curves. The characteristic 
equations (2.3.3) differ from those in the linear case, since the equations for x and t 
are not, in general, uncoupled from the equation for u. The solutions of (2.3.3) are 
called the characteristic curves of the quasilinear equation (2.3.1). 

Assuming that a, 6, and с are sufficiently smooth and do not all vanish at the 
same point, the theory of ordinary differential equations guarantees that a unique 
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characteristic curve passes through each point (xo, to, «o)· The initial value problem 
for (2.3.1) requires that u(x, t) be specified on a given curve in the (x, £)-plane. This 
determines a curve С in (x, t, ii)-space referred to as the initial curve. To solve this 
initial value problem, we pass a characteristic curve through each point of the initial 
curve C. If these curves generate a surface, this integral surface is the solution of 
the initial value problem. We now state and outline the proof of a theorem that gives 
conditions under which a unique solution of the initial value problem for (2.3.1) can 
be obtained. 

Let a, b, and с in (2.3.1 ) have continuous partial derivatives in all three variables. 
Suppose that the initial curve C, given parametrically as x = х(т), t = t(r), and 
и = и(т), has a continuous tangent vector and that 

dt Hr 
Δ(τ) = — a[x(r), t(r), U(T)} - g b[x(r), t(r), U(T)] φ 0 (2.3.4) 

on С Then there exists one and only one solution и = u(x, t), defined in some 
neighborhood of the initial curve C, that satisfies (2.3.1) and the initial condition 
u[x{r),t{r))] =U(T). 

The proof of this theorem proceeds along the following lines. The characteristic 
system (2.3.3) with initial conditions at s = 0 given as x = х{т), t = t(r), и = и{т) 
has a unique solution of the form 

x = X(S,T), t = t(s,r), U = U(S,T), (2.3.5) 

with continuous derivatives in s and r, and with 

x(0, T) = X(T), i(0, r ) = i(r), u(0, т) = и{т). (2.3.6) 

This follows from the existence and uniqueness theory for ordinary differential equa-
tions. The Jacobian of the transformation x — x(s, r ) , t = t(s, r ) at s = 0 is 

A ( S , T ) | S = 0 = 

dx 
ds 

dt 
ds 

dx 
Эт 

at 
дт 

dt dx 
dr dr 

s=0 

= Δ(τ), (2.3.7) 
s=0 

and it is nonzero in view of the assumption (2.3.4). By the continuity assumption, 
the Jacobian determinant does not vanish in a neighborhood of the initial curve. 
Therefore, the implicit function theorem guarantees that we can solve for s and r as 
functions of x and t near the initial curve. 

Then 
u(s, T) = u(s(x, t), T(X, t)) = U(x, t) (2.3.8) 

is a solution of (2.3.1). This is readily seen on substituting u(s(x, t),r(x,t)) into 
(2.3.1), using the chain rule and the characteristic equations (2.3.3). The uniqueness 
of the solution follows since any two integral surfaces that contain the same initial 
curve must coincide along all the characteristic curves passing through the initial 
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curve. This is a consequence of the uniqueness theorem for the initial value problem 
for (2.3.3). This completes our proof. 

The condition (2.3.4) essentially means that the initial curve С is not a characteristic 
or is not the envelope of characteristic curves. If the initial curve is characteristic, 
so that Δ(τ) = 0 and, in addition, it is a solution of the characteristic equations 
(2.3.3), solutions exist but they are not unique. This is called a characteristic initial 
value problem. If the initial curve is the envelope of characteristic curves (see the 
Appendix), so that Δ(τ) = 0 along the curve but the curve does not satisfy (2.3.3), 
the integral surface may not be differentiable along the initial curve. If the initial 
curve is noncharacteristic but Δ(τ) = 0 at a discrete set of points, special problems 
that originate at these points occur with the solution. Examples of each of these types 
are considered in the exercises. 

Wave Motion and Breaking 

We now consider an important example of a quasilinear first order PDE, the simplest 
case of unidirectional nonlinear wave motion. It is often referred to as the inviscid 
Burgers ' equation in view of its connection with the (viscous) Burgers ' equation, 
which is of importance in fluid mechanics (see Section 10.3). We concentrate on 
the initial value problem for this equation and consider various features of nonlinear 
wave motion, that distinguish it from linear wave motion. (In other contexts, it is 
referred to as a convection equation, and when a second x-derivative term is added, 
as a convection-diffusion equation.) 

Example 2.7. Unidirectional Nonlinear Wave Motion. The simplest quasi-
linear equation characterizing one-directional nonlinear wave motion is 

^ + Ф , * ) ^ = 0 , (2.3.9) 

the inviscid Burgers' equation. We introduce the initial value u(x, 0) = f(x) for a 
given smooth function f(x). 

To solve the initial value problem for (2.3.9), we parameterize the initial curve as 

x = T, t = 0, u = f(r). (2.3.10) 

We find that Δ(τ) = —1, so that Δ(τ) Φ 0 along the entire initial curve. The 
characteristic equations are 

dx dt du .„ „ ,.,. 
— = u , — = 1, - τ - = 0 , (2.3.11) 
as as as 

with initial conditions at s = 0 given by (2.3.10). Denoting the solutions by 



QUASILINEAR FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS 8 5 

x(s, T) , t(s, r ) , and u(s, r ) , we see from du/ds = 0 that u(s, т) is constant along 
the characteristics. Thus, 

U ( S , T ) = U ( 0 , T ) = / ( T ) , (2.3.12) 

on using (2.3.10). Inserting (2.3.12) into dx/ds = u, we immediately obtain 

X(S,T) =T + sf{r), t(s,r) = s. (2.3.13) 

If the conditions of the theorem are satisfied, this system can be inverted near s = 0 
to give s = t and r = т(х, t). Then (2.3.12) yields the solution 

u = f(r(x,t)) = U(x,t). (2.3.14) 

Since s = t and т — x — sf(r) = x — tu in view of (2.3.13), the implicit form of the 
solution is 

u = f{x-tu). (2.3.15) 

We consider the solution и = u(x, t) of (2.3.9) to represent a wave. The wave 
form at the time t is given by the curve и = u(x, t) in the (x, it)-plane with t as a 
parameter and и = f(x) as the initial wave form. The (numerical) value of u(x, t) 
represents the height of the wave at the point x and the time t. To determine the 
motion of the wave, we must find the velocity dx/dt of each point on the wave. The 
first two characteristic equations in (2.3.11) imply that dx/dt = u. Thus, the greater 
the amplitude \u(x, t) | of the wave, the greater the speed of the corresponding point x 
on the wave. [This contrasts with the situation for linear wave motion determined by 
equation (2.2.6), where dx/dt = с = constant, so that each point and, consequently, 
the entire wave form moves with a single speed.] If u(x, t) > 0, the point x moves 
to the right; if u(x, t) = 0, it remains fixed; whereas if u(x, t) < 0, it moves to 
the left. Thus if u(x, t) takes on both positive and negative values, individual points 
maintain a fixed direction of motion, but different portions of the wave form can move 
at different speeds either to the right or to the left. Therefore, the wave motion need 
not be totally unidirectional as is the case for linear wave motion. Assuming that 
u(x, t) > 0, points x where u(x, t) has larger values and the wave is higher, move 
more rapidly to the right than points x where u(x, t) has smaller values and the wave 
is lower. If, initially, there are higher portions of the wave form located to the left 
or the rear of lower portions, the higher points may eventually overtake (and pass) 
the lower points. The wave is said to break the first time this happens. At the time 
t when the wave breaks, the function u(x, t) becomes multivalued and is no longer 
a valid solution of (2.3.9). Similar difficulties can occur if u(x, t) is not restricted 
to be positive. The geometric aspects of the breaking process are demonstrated in 
Example 2.8. 
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In many processes described by the quasilinear wave equation (2.3.9), the function 
u(x, t) represents a physical quantity, such as density, which is intrinsically expected 
to be single valued. Thus when the wave u(x, t) breaks and becomes multivalued, the 
equation (2.3.9) that describes the physical process is no longer an acceptable model 
for the process. In general, this means that certain higher derivative terms that were 
neglected in the derivation of the quasilinear equation become significant and must 
be retained. It will be shown in Section 10.3, in a discussion of the viscous Burgers' 
equation, how the addition of a second derivative term to the inviscid Burgers' equation 
(2.3.9) can yield solutions valid for all time. A similar situation was encountered in 
our discussion of the diffusion equation (1.1.15). With Dirac delta function initial 
data, the solution of the diffusion equation which is given in (1.1.20) is a smooth 
function for all x and for t > 0. However, if the diffusion coefficient D is equated 
to zero and the first order unidirectional wave equation (1.2.33) results, the solution 
( 1.2.34) remains sharply singular for all ί > 0. This indicates that the inclusion of 
higher derivative terms tends to smooth out the solution. 

An alternative method for dealing with the breaking phenomenon is to introduce a 
discontinuous solution of (2.3.9) known as a shock wave that extends the validity of 
the solution beyond the breaking time. Such solutions of (2.3.9) must be interpreted 
in a generalized sense, as was done for discontinuous solutions of the linear equation 
(2.2.1 ). This approach has the advantage that a complete analysis of the breaking wave 
solution can be carried out on the basis of the first order equation (2.3.9) without having 
to analyze a higher order nonlinear equation. However, as will be seen, the correct 
determination of the (shock wave) discontinuity solution is not as straightforward as 
it was in the linear case. In general, an appeal to the physical origin of the problem 
is needed to make the correct determination. 

In any case, even if the wave breaks at the time t, the solution (2.3.15) of the initial 
value problem remains valid until that time. Thus it is important to determine the 
time when the wave u(x, t) first begins to break. In addition, to determine the shock 
wave it is necessary to know not only the time but also the point(s) x at which the 
wave breaks. We consider two methods for doing so. 

First, we use implicit differentiation to determine the slope of the wave form 
и = u(x, t) = f(x — tu) at the time t. The slope ди/дх is readily found to be 

du = f'(x - tu) 
дх l+tf'{x-tu)' \ ■ · ) 

From (2.3.13) we see that the characteristic base curves for (2.3.9) are the family 
of straight lines x — tf(r) = r, with r as a parameter. When the denominator on 
the right side of (2.3.16) [i.e., 1 + tf'(x - tu) = 1 + tf{r)] first vanishes, the 
slope ди/дх becomes infinite and the wave begins to break. Since the denominator 
vanishes when 

*-т- (2'зл7) 

the breaking time is determined from the value of r at which t has its smallest non-
negative value. 
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The second method for determining the breaking time considers the characteristic 
curves (2.3.12)—(2.3.13) of the equation (2.3.9). We have shown that и = / ( r ) on 
the characteristic base curves 

x - tf(r) = T, (2.3.18) 

where т is a parameter. If for two or more values of r the straight lines (2.3.18) 
intersect, и will in general be multivalued at the intersection point, for u(x, t) must 
equal f(r) at that point, and / (r) may have different values on each of the lines 
(2.3.18) that intersect at the point. To find the possible intersection points, we 
must determine the envelope of the family of straight lines (2.3.18). As shown 
in the Appendix, if F(x, t,r) = 0 is a one-parameter family of curves, the en-
velope of this family is obtained by eliminating the parameter r from the system 
{F(x, t, T) = 0, FT(x,t,r) = 0}. In our case, F = x — ί / ( τ ) - r = 0 and 
dF/дт = —tf'(r) - 1 = 0 . The equation dF/дт = 0 shows that the times at which 
the characteristic curves touch the envelope are given by t = — 1// '(τ), so that the 
initial breaking time is in agreement with that determined from the first method. 

Once the value of r that yields the breaking time t is determined, the point x at 
which the wave breaks is found from (2.3.18). There may be more than one value of 
the parameter r that yields the same breaking time t. In general, each of the values 
of r yields a different breaking point x. It can also happen that different parts of the 
wave break at different times. While the classical (differentiable) solution is not valid 
after the first breaking time, the later breaking times play a role in the construction of 
shock waves. 

We note that if / ' ( r ) > 0 for all r, the right side of (2.3.17) must always be 
negative, so that the wave never breaks. Geometrically, this means that the initial 
wave form и = f(x) is a monotonically increasing function of x. Since the larger the 
values of u, the faster the corresponding points on the wave move, no point x on the 
wave can overtake any other point and no breaking occurs. However, i f / ' ( r ) < Ofor 
all r, the initial wave form is a monotonically decreasing function. Thus points in the 
rear portion of the wave move faster than points in the front portion and eventually 
overtake them. When this happens, the wave breaks. If / ' ( т ) takes on both positive 
and negative values, wave breaking generally occurs. 

The foregoing results concerning the breaking of the wave и = f(x — tu) can be 
interpreted from a different point of view. From (2.3.17)—(2.3.18) we conclude that 
the breaking time is determined from the point on the curve a; = г — / ( т ) / / ' ( т ) , t = 
— l / / ' ( r ) , и = / (т ) where t has its smallest value. As is easily verified, this curve 
has the property that Δ(τ) [as defined in (2.3.4)] vanishes on it. Thus if this curve 
were chosen as an initial curve for (2.3.9), the theorem stated for the general case 
would not guarantee that this initial value problem has a unique (smooth) solution. 
In fact, (2.3.16) implies that the solution would not be differentiable along the initial 
curve. We infer from the above that even when the initial data guarantee a unique 
solution for the given quasilinear equation, this solution breaks down along a curve 
where the condition (2.3.4) [i.e., Δ(τ) ψ 0] is violated. 

The breaking curve determined above is not a characteristic curve for (2.3.9) since 
и is not constant on it. For the sake of completeness, we show that if the initial curve 
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for (2.3.9) is characteristic, the initial value problem has infinitely many solutions. 
Let и = c- constant on the line x = ct. [This curve is a characteristic for (2.3.11) 
since with t = s, x = cs, the characteristic equations (2.3.11) are satisfied.] Then 
и = f(x — tu) is a solution of the characteristic initial value problem as long as 
/(0) = с but / is an otherwise arbitrary but smooth function. 

Unidirectional Nonlinear Wave Motion: An Example 

The following example continues our discussion of the unidirectional wave equation. 
Three specific initial wave forms are selected and the resulting wave motions are 
examined in some detail. Differing features of unidirectional nonlinear wave motion 
are thereby brought out. Difficulties that arise as a result of the breakdown of solutions 
are exhibited. How these problems can be resolved will be shown in the sequel. 

Example 2.8. Unidirectional Nonlinear Wave Motion: Specific Initial 
Data. In this example three special choices of initial values for (2.3.9) (i.e., du/dt+ 
и ди/дх = 0) are given and the corresponding solutions analyzed. 

1. The initial value is 
u(x, 0) = f(x) = -x. (2.3.19) 

Since f'(x) = — 1, we expect (in view of the foregoing discussion) that the wave will 
break and the solution u(x, t) will become multivalued. In fact [since / ( r ) = —r], 
(2.3.17) gives t = 1 as the breaking time. 

Now (2.3.15) gives the implicit form of the solution as 

и = f{x - tu) = -(x - tu), (2.3.20) 

from which it follows that 
u(x,t) = j ^ . (2.3.21) 

We easily verify that (2.3.21) satisfies (2.3.9) and the initial condition (2.3.19), as 
well as the fact that it blows up at the time t = 1. 

The motion of the wave u(x,t) = x/(t — 1) is indicated in Figure 2.2. As t 
increases, the wave form u(x,0) = —x executes a clockwise rotation around the 
origin in the (x, u)-plane. Since и — 0 at x = 0, that point (i.e., x = 0) is stationary. 
Also, \u\ increases linearly with |x|, and points x farther away from the origin have 
a linearly increasing velocity, yielding the effect indicated in the figure. At t = 1 the 
wave form u(x, t) coincides with the u-axis and becomes infinitely multivalued. 

The breakdown of the solution and its multivaluedness at t = 1 may also be de-
termined by considering the characteristic base curves, which for this initial value 
problem are given by x = (1 — t)r, with т as a parameter. When t = 1, these 
characteristic lines all intersect at the point (x, t) = (0,1). Since each of the lines 
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Figure 2.2 The wave motion. 

carries a different value of r, and u(x, t) is constant on each of these lines, it must 
become infinitely multivalued at t = 1. This is indicated in Figure 2.3. 

If the initial condition (2.3.19) is replaced by f(x) = x, we have / ( τ ) = r and 
/ ' ( T ) = 1. Then, according to (2.3.17), the wave never breaks. This fact is borne out 
by the solution u(x, t) = x/(t + 1) of this problem, which is defined for all t > 0. 

More generally, if u(x,0) = f(x) = a+ßx (with constant a and/?), we determine 
from (2.3.15) that the solution is u(x, t) = (ßx + a)/(ßt + 1). Thus if ß < 0, the 
wave breaks when t = —1//3, but if ß > 0, the wave never breaks. The characteristic 
lines are given as x — at + (ßt + 1)τ, and at the breaking time t = — ί/β, we 
have x = —α/β. At this point u(x, t) is stationary and the wave form rotates around 
this point. At the breaking time the wave form u(x, t) is vertical and is infinitely 
multivalued. 

<n 

(=1 

Figure 2.3 The characteristic curves. 
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2. The initial condition is 

it(a:,0) = /Or) = 1 - x2. (2.3.22) 

Using (2.3.16) gives the implicit form of the solution as и = f(x — tu) = 1 — 
(x — tu)2. Solving this quadratic equation for и gives two branches, u(x, t) = x/t — 
[1 ± y/l + 4t(t - x)]/2t2. To satisfy the initial condition (2.3.22) we must choose 
the minus sign and obtain 

u(xt) = it_lzjTTWEä. ( 2 . 3 . 2 3 ) 

Differentiating (2.3.23) with respect to x, we find that the slope ди/дх becomes 
infinite when the radical in (2.3.23) vanishes, that is, when x = t + \/At. As long as 
x < t + l/4i, the radical in (2.3.23) is real valued and the solution u(x, t) is well 
defined. An easy calculation shows that x < t + I/At for all x < 1 since t > 0. 
At £ = 1, the radical vanishes when t = | , and as x —* oo, the time t at which 
it vanishes decreases to zero. Thus if the initial condition is given over the infinite 
interval —oo < x < oo, the wave begins to break immediately at x = +oo. 

The characteristic base curves for this problem are x — i ( l - r 2 ) = т [see (2.3.18)], 
where т is a parameter. The solution u(x, t) is constant along the characteristics. The 
envelope of this family of characteristic curves is readily found to be x — t — l /4i = 0, 
which is identical to the curve obtained above. Since two neighboring curves of 
the characteristic family that intersect on the envelope correspond to two different 
values of r, the solution u(x, t) becomes double valued at the envelope. In fact, 
the radical term in the solution (2.3.23) vanishes on the curve x = t + l /4i in the 
(x, i)-plane, so that u(x, t) splits into the two branches given in u(x, t) = x/t — 
[1 ± \J\ + At(t - x)]/2t2, along the envelope x = t + l /4i . An indication of how 
the wave u(x, t) propagates is given in Figure 2.4. 

Figure 2.4 The wave motion. 
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If the initial data (2.3.22) are restricted to the interval — oo < x < a where a > 1, 
the foregoing discussion implies that the resulting wave will not break immediately. 
However, some care must be exercised in determining the breaking time. On applying 
the formula (2.3.17) to this problem, we obtain t = l/2т, so that the wave breaks when 
t — I/2a. Yet the solution (2.3.23) with x < a and ί > 0 predicts the earlier breaking 
time t = \{a — \/a2 — 1). This discrepancy may be resolved by observing that for 
this problem, (2.3.23) is valid only in the region x < a+( l— a2)t, t > 0. Thatis,the 
region is bounded on the right by the characteristic base curve x = a + (1 — a2)t with 
ί > 0 that passes through the point (x, t) = (a, 0). In that region the breaking time is 
easily found to be t = I/2a. The point at which the wave breaks is x = a/2 + l/2a. 

In general, и(х, 0) must be specified over the entire ж-axis, whereas in the foregoing 
it is given only for x < a. The simplest approach is to set u(x, 0) = 1 — a2 for x > a. 
The resulting initial value f(x) is continuous for all x, but it is not differentiable 
at x = a. The solution u(x, t) is given by (2.3.23) to the left of the characteristic 
x = a + (1 — a?)t, whereas u(x, t) = 1 — a2 to the right of the characteristic. The 
solution is continuous across the characteristic, but the first derivatives of и have 
jump discontinuities there. [Generalized solutions of (2.3.9) with jumps in the first 
derivatives are considered below.] The breaking time for this wave is again t = \/2a. 
This result is valid for all a and not just for a > 1. However, the wave does not break 
unless a is positive. 

3. The initial condition is 

u(x, 0) = f(x) = sin x. (2.3.24) 

The implicit form of the solution is given as 

и — f(x — tu) = sm{x — tu), (2.3.25) 

and the characteristic curves are x — t sin r — т = 0. Using (2.3.17), we have 

i = - l / c o s r , (2.3.26) 

so that the breaking time occurs when t = 1, since when 

τ = (2η + 1)π, η = 0 , ± 1 , ± 2 , . . . , (2.3.27) 

we have COST = —1. At all other values of r, t either exceeds unity or is negative. 
When t = 1 the wave breaks at the points x = (2n + 1)π. 

A qualitative picture of the wave motion is indicated in Figure 2.5, where the 
interval 0 < x < 2π is considered. The critical nature of the point (x, u) = (π, 0) is 
apparent since the wave form rotates in a clockwise motion near that point. 

In a generalization of the foregoing we replace (2.3.24) by u(x, 0) = f(x) — 
a + bsinx, a > b > 0. Then f(x) is positive for all x and each point on the initial 
wave form moves to the right. From (2.3.17) we find that t = —1/òcosr, and t 
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Figure 2.5 The wave motion. 

has a minimum when r is an odd multiple of π, as in (2.3.27). The breaking time is 
t = I/o, and the wave breaks simultaneously at the points x = (2n + 1)π + a/b. 

Generalized Solutions and Shockwaves 

If the initial wave form f(x) for (2.3.9) is a smooth function, the solution u(x,t) 
remains smooth until the time when the wave breaks, if, indeed, it breaks at all. 
However, if f(x) is continuously differentiable for x φ XQ but is merely continuous 
at x = xo and has a jump in the first derivative there, it follows from the results of 
Example 2.7 that и = f(xo) on the line x — x0 + tf(xo). The jumps in the first 
derivatives of и across this line satisfy the equation 

Ы + u[ux] = [щ] + f(x0)[ux] = 0, (2.3.28) 

which is derived exactly as was (2.2.19) for the linear case. The solution u(x, t), 
which is continuous but has a jump in the first derivatives across a characteristic line, 
is called a generalized solution. It is shown in the exercises that the jumps in the first 
derivatives satisfy ordinary differential equations along the characteristic base curve. 

For example, if f(x) = x for x < 1 and f(x) = 1 for x > 1, we have u(x, t) = 
x/(t + 1) for x < t + 1 and u(x, t) = 1 for x > t + 1. Then, и — 1 on the line 
x = t + 1, while [ut] = \/{t + 1) and [ux] = - l / ( i + 1) across the line x = t + 1, 
so that (2.3.28) is satisfied. 

If f(x) has a jump discontinuity at x = xo, the concept of solution must be 
generalized even further. To do so, we express (2.3.9) in conservation form, 

(u)t + (u2/2)x = 0. (2.3.29) 

This is also referred to as a conservation law, for if we integrate with respect to x 
from a to b, we obtain 

^- f udx=\ (u{a, tf - u{b, tf). (2.3.30) 
dt Ja z 
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This can be interpreted to mean that the rate of change of u(x, t) over the interval 
[a, b] equals the difference in the flux u(x, t)2/2 at x — a and x = b. Thus, u(x, t) 
is a conserved quantity. 

We integrate (2.3.29) over an arbitrary closed and bounded region R in the (ж, t)-
plane with a piecewise smooth boundary curve S. Then, Green's theorem in the plane 
yields 

/ udx- -u2 dt = 0, (2.3.31) 
Js 2 

with integration taken in the positive direction. If u(x, t) is continuously differen-
tiable, this integral relation is equivalent to (2.3.9). 

Suppose that a solution u(x, t) of (2.3.9) has a jump discontinuity across the curve 
x = x(s), t = t(s). Let the boundary curve S in (2.3.31) collapse onto an arbitrary 
portion of [x(s), t(s)] and conclude that [see (2.2.23)] 

^ ( e ) N - it'(s)[u2} = 0. (2.3.32) 

Represent the discontinuity curve as x = x(t) (i.e., let t = s) and put [u] = u2 — гц, 
where u2 and u\ are the limits of и as the curve is approached from the right and the 
left, respectively. Since [u2\ =u\ — u\, (2.3.32) reduces to 

a/(i) = | ( « i + « 2 ) . (2.3.33) 

If the discontinuity in и originates at the point XQ when t = to, we obtain the initial 
condition x(to) = xo for the equation (2.3.33). 

Next, let U{t) = (иг + u2)/2 and write (2.3.33) as x'(t) = U(t). Thus, the 
discontinuity in the solution moves with the velocity U, which is the average of the 
two (limiting) velocities u\ and u2 on either side of the discontinuity curve. Since 
u(x, t) is constant on each characteristic, the discontinuity curve is intersected by the 
characteristics x = tu\ + n and x = tu2 + r2 with n < т2. These lines can intersect 
only if ui > u2. Since U is the average of ui and u2, we must have 

U!>U> u2. (2.3.34) 

Without the discontinuity curve, the solution would be multivalued and this curve 
prevents that from happening. In applications of (2.3.9) to fluid mechanics, as in 
Section 10.3, (2.3.34) is often referred to as the entropy condition. 

The propagating jump or discontinuity in the solution is referred to as a shock 
wave and the velocity U of the jump is called the shock velocity. When a wave breaks 
at x = xo at the time io. the solution u(x, t) becomes multivalued and loses its 
validity. By introducing a shock wave for which the shock curve is determined from 
(2.3.33) with x(to) = xo, the solution can be extended beyond the breaking time. 
In the following examples we show that this can be done for a number of problems 
related to those considered in Example 2.8. In each problem, the initial wave form 
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is a piecewise linear bounded analog of a function considered in the example. This 
permits the construction of explicit solutions and shock waves for the initial value 
problems. Their behavior is qualitatively similar to that of the solutions of the more 
general problems. Additionally, a Maple procedure is presented in Section 2.5 that 
automates the construction of shock waves for problems with piecewise linear initial 
data. 

Example 2.9. Compression and Expansion Waves. We consider waves of 
the form studied in part 1 of Example 2.8. But here, as in the examples that follow, 
the initial wave form u(x, 0) = f(x) is assumed to be bounded for all x. In all cases 
the initial values are given for the equation (2.3.9). 

The initial wave form f(x) yields the solution u(x, t): 

Ì
1, x < 0, г 1, x < t, 

1 - x/a, 0 < x < a, u(x, t) = < (a — x)/(a — t), t < x < a, 
0, x > a, l o , x > a. 

(2.3.35) 
The distance between the two constant wave heights и = 1 and и = 0 decreases until 
the wave breaks at the time t = a. The wave form appears to undergo compression 
as t increases, so it is called a compression wave. 

At the time t = a, all the characteristics that issue from the interval 0 < x < a 
intersect at the point x = a. Since f(x) assumes all the values of a; between zero and 1 
in that interval, the solution u(x, t), which is constant on each characteristic, assumes 
all the values between zero and 1 when t = a. That is, it is infinitely multivalued. 
Technically, however, u(x, a) merely has a jump discontinuity at x = a. We have 
u(x,a) = 1, x < a and u(x, a) = 0, x > a. Thus, the solution can be extended 
beyond t = a by introducing a shock wave. 

The wave u(x, t) breaks at x = a when t = a, with u\ — 1 and u-i = 0. Thus, 
U = \ and the entropy condition (2.3.34) is met. The equation (2.3.33) becomes 
x'(t) — |witha;(a) = a, with the solution x (t) = (a+t)/2,fori > a. Consequently, 
we obtain the shock wave for t > a, 

/ 1 , x < ( o + i)/2, 
u{x,t) = i (2.3.36) 

{0, x > {a + t)/2. 

The continuous (generalized) solution (2.3.35) remains valid until t = a. Then it is 
replaced by the shock wave (2.3.36). The shock speed is U = \, so that the shock 
wave form is a unit step that moves to the right with speed \. 

The initial wave form f(x) yields the solution u(x, t), 

{ 0, x < 0, /Ό, x < 0, 

x/a, 0 < x < a, u(x,t) = < x/(a + t), 0<x<a + t, 

1, x > а, К I, x > a + t. 
(2.: 

(2.3.37) 
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For this problem, as t increases, the distance between the two constant wave heights 
и = 0 and и = 1 increases. Therefore, this is called an expansion wave. This wave 
does not break and the solution is valid for all time. 

It is of interest to consider the limits of the two foregoing problems as a tends to 
zero. In both cases this means that in the limit, the initial function f(x) is piecewise 
constant and has a jump discontinuity at x = 0. This is often referred to as a Riemann 
problem. In the first case, f(x) = 1 for x < 0 and f(x) = 0 for x > 0. On 
solving this initial value problem by the method of characteristics, we find that the 
characteristics intersect at x = 0 as soon as t increases from zero. Thus the solution 
is double valued and the wave breaks immediately. In the second case, f(x) = 0 
for x < 0 and f(x) = 1 for x > 0. Again solving by the method of characteristics, 
we find that u(x, t) = 0 for x < 0 and u(x, t) = 1 for x > t. In this problem 
the characteristics do not intersect so that the wave does not break. However, since 
none of the characteristics pass through the points (x, t) in the sector 0 < x < t, the 
solution remains undetermined there. 

As noted, in the first problem the wave breaks immediately at x = 0 when t = 0. 
Since u\ = 1 and U2 = 0, the shock wave is found to be 

, ч fi, x < t/2, 

This also follows from (2.3.36) on taking the limit as a tends to zero. 
For the second problem we obtain a continuous solution valid for all time on letting 

a tend to zero in the original solution (2.3.47). This yields 

( 0, x < 0, 
x/t, 0<x<t, (2.3.39) 

1, x>t. 
It is possible to construct a shock wave for the second problem, defined as 

, ч f 0, x < t/2, 
«(*,*) = | l t χ>;/2_ (2.3.40) 

However, this solution must be rejected because the shock wave construction fails 
to satisfy the entropy condition (2.3.34), since the wave speed on the left of the 
shock (i.e., u\ = 0) is smaller than that on the right (i.e., U2 — 1). This shows that 
the absence of the entropy condition (2.3.34) could lead to nonunique solutions of 
problems with discontinuous data. It is also shown in Section 10.3 that shock waves 
for the inviscid Burgers' equation that fail to satisfy the entropy condition (2.3.34) 
cannot be limits, as the viscosity tends to zero, of traveling wave solutions of the 
viscous Burgers' equation. 



9 6 FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS 

Example 2.10. Triangular Waves. 
2.8 is replaced by 

/(*) = 

If the initial condition of part 2 of Example 

1 - х 2 , 
0, 

\x\ < 1, 
lari > 1, 

(2.3.41) 

the resulting wave breaks at the point x = 1 when t = | . The jump in the solution 
is zero at that time and it increases gradually. As a result, the shock wave for this 
problem has a variable speed, in contrast to the situation encountered in Example 2.9. 
Rather than study this problem, we consider a simpler qualitatively similar problem. 

Let u(x, 0) = f(x) be given as 

/ ( l o , 
\χ\ < l , 

\x\ > 1. 
(2.3.42) 

The compressive part of this wave at x = 1 breaks immediately and requires the 
introduction of a shock wave with shock speed U = \. The expansive part of the 
wave at x = —1 can be dealt with by introducing a continuous wave, as was done 
Example 2.9. 

Since the shock originates at x = 1, the equation of the shock front is x = 
t/2 + 1. The jump at x = - 1 yields u(x,t) — (x + l ) / i for - 1 < x < t - 1 (see 
Exercise 2.3.18). The full solution to the problem is 

u(x,t) = < 

ro, 
(x 

1, 
o, 

+ i)A, 
x < - 1 , 
- 1 < x < t 

t - 1 < x < 
x>\t+\. 

- 1 , 
i i + 1 

(2.3.43) 

This solution is valid only until the time t — 4, when the expansion wave и = (x+l)/t 
overtakes the shock wave. This occurs at the point x = 3. 

2V7-1 

Figure 2.6 A triangular wave. 

Within the sector — 1 < χ < ί — 1, the characteristics are the lines x + 1 = λί 
that issue from the point (x, t) = (—1,0) and on which и — (x + l)/t = A. The 
characteristics that issue from the x-axis for x > 3 are all vertical lines on which 
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и = 0. These two sets of characteristics begin to intersect at x = 3 when t = 4 and 
the solution becomes double valued at that time. A new shock wave is required and 
the shock front is determined from x'(t) — — ̂ (x(t) + l)/t with x{A) = 3. The 
solution is x(t) = 2\ß — 1 and the shock speed is U = (1/i)1/2 . 

Thus, the solution for t > 4 is 

u{x,t)= { (x + l)/t, -1<х<2лД-1, (2.3.44) 
о, 
(x + l)/t, 

o, 

x < - 1 , 
- 1 <x< 2УД 

x>2y/i-l. 

The solution has the form of a triangular wave (see Figure 2.6). As t tends to infinity, 
the jump in the solution tends to zero. The wave form for the problem originally 
formulated in this example assumes a similar triangular shape as t gets large. 

Example 2.11. N Waves. In view of the periodicity of the sinusoidal wave forms 
considered in Part 3 of Example 2.8, it is sufficient to study the problem over a single 
period. To simplify matters we consider an initial wave form that is constant outside 
a finite interval but has a quasisinusoidal shape within the interval. 

Let u(x, 0) = f(x), with f(x) defined as 

№ 

—x, 
x + 2, 

4-х, 

2, 

-2 < x < 

\x\ < 1, 
1 < x < 2, 
\x\ > 2. 

-i , 

(2.3.45) 

The wave form has two compressive parts whose slope is —1 and an expansive part 
with unit slope. Using the results of part 1 of Example 2.8, the solution is easily 
constructed. The wave u(x, t) breaks at the time t = 1 and this occurs at the two 
points x = 0 and x = 4. 

When t > 1, the solution obtained by the method of characteristics is given as 

2, 
(z + 2)/(t + l) , 
2, 

x < 2i - 2, 
t - К x < 3ί 
x > 2ί + 2. 

u(x,i) = { (x + 2)/(t + l), ί - 1 < ι < 3 ί + 1 , (2.3.46) 

We observe that the characteristics intersect at x = 0 and x = 4 when t = 1 and 
two shock waves are required with shock fronts originating at these points. The 
equations for the shock speed (2.3.33) are identical for both shocks and are given as 
x'(t) = l + (a: + 2)/(2 + 2f). Withx(l) = 0, the solution is x(t) = 2t - (2i-f 2)1/2, 
and for a;(l) = 4, the solution is x(t) = 2t+ (2i + 2)1/2. 

Thus, the solution for t > 1 is 

« ( M ) = i ( a : + 2 ) / ( t + 1>' l * - 2 * l < ^ ' (2.3.47) 
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As shown in Figure 2.7, the wave form has the shape of an inverted JV. Therefore it 
is called an N wave. As t tends to infinity, the magnitudes of the two jumps decrease 
on the order of \j\ft. 

u = 2 

1 

I = 2l-V2(l+1) 

^ ^ " ' 11=2 

^* " * + 2 

* = 2f+V2('+l) * 

Figure 2.7 An JV wave. 

If f(x) = a + òsin(x) with a > b > 0, the solution takes the form of a periodic 
set of JV waves after the breaking time. Whereas the foregoing JV waves all travel to 
the right with increasing t, if f(x) = sin x the shock waves are all stationary because 
of the symmetry of the data with respect to the i-axis. However, they still assume 
the general form of JV waves after the breaking time. 

The equation 

ut(x, t) + c(u(x, t))ux{x, t) = 0, (2.3.48) 

where c(u(x, t)) is an arbitrary function of u(x, t), is the quasilinear equivalent of the 
linear equation (2.2.6) and is more representative of the type of first order quasilinear 
wave equations studied in applications. If we multiply across by c'(u) in (2.3.48), 
we obtain ct + ccx — 0, and this is exactly (2.3.9) with и replaced by с Thus, 
we do not expect the behavior of the solutions of (2.3.48) to be qualitatively much 
different from those of (2.3.9), as long as the solutions remain smooth. However, if the 
solution becomes multivalued and shock waves are required, the transformed version 
of (2.3.48) does not determine the correct shock fronts unless c(u) = c+cu. To see 
this, let the conservation law associated with (2.3.48) be given as ut + (C(u))x — 0, 
withC'(u) = c(u). Then the shock speed U for this equation is U = [C(u)]/[u]. For 
the transformed equation we have U = \ (сг + c\ ), where c-i and cx are the values of 
c(u) on the right and left sides, respectively, of the shock. These shock velocities are 
unequal, in general, unless c(u) — c + cu with constant с and c, as is easily verified 
directly. Nevertheless, the simpler transformed version of (2.3.48) remains valid until 
the breaking time and can be used to determine that time. 
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Exercises 2.3 

2.3.1. Using implicit differentiation, verify that и = f(x — tu) is a solution of the 
wave equation (2.3.9). 

2.3.2. Consider the damped quasilinear wave equation ut(x, t) + u(x, t)ux(x, t) + 
cu(x, t) = 0, where с is a positive constant, (a) Using the method of characteristics, 
construct an implicit solution of the initial value problem with u(x, 0) = f(x)-
Discuss the wave motion and the effect of the damping, (b) Determine the breaking 
time of the solution by finding the envelope of the characteristic curves and by using 
implicit differentiation. With r as the parameter on the initial line, show that unless 
/ ' ( r ) < —c, no breaking occurs. Contrast this result with that for the undamped case 
discussed in the text. 

2.3.3. Let f(x) = ax in Exercise 2.3.2. Obtain an explicit representation of the 
solution and show directly that the wave does not break if a > —c. If a < —c, the 
wave breaks at the time t = (1/c) log[a/(a + c)]. 

2.3.4. Consider the one-dimensional form of Euler's equations for isentropic flow 
(8.5.42), (8.5.47), and (8.5.49) and assume that the pressure p is a constant. The 
equations reduce to pt + pux + upx = 0, щ + uux = 0. Let u(x, 0) = f(x) and 
p(x, 0) = g(x). By first solving the equation for и and then the equation for p, obtain 
the implicit solution и = f(x - ut), p = g(x — ut)/[1 + tf'(x — ut)]. 

2.3.5. Obtain explicit expressions for the solution given in Exercise 2.3.4 if (a) f(x) = 
x, g(x) = 1; (b) f(x) = x, g(x) = x. 

2.3.6. Solve the initial value problem for the equation ut(x, t)+cux (x, t)+u2 (x, t) = 
0, u(x, 0) = x, where с is a constant. 

2.3.7. Obtain the solution of the initial value problem ut + c(u)ux = 0, u(x, 0) = 
f(x), where с is a function of u, in the implicit form и = f[x — tc(u)]. Discuss the 
solution in the cases where c'(u) > 0 and c'iu) < 0. 

2.3.8. Using the implicit form of the solution obtained in Exercise 2.3.7, determine 
the breaking time of the wave. 

2.3.9. Solve the initial value problem ut(x, t) + u2(x, t)ux(x, t) = 0, u(x, 0) = x. 
Determine the breaking time of the solution and compare it with that obtained through 
the result of Exercise 2.3.8. 

2.3.10. Solve the initial value problem ut(x,t) + u(x,t)ux(x,t) = 0, u(x,0) = 
/ (x), using the method of characteristics, (a) Using the parameters s and т as defined 
in the text, show that the solution can be expressed as X(S,T) = | [ / ( r ) + r]es — 
\[f{r)-T)e-\ t(s,r) = s, U(S,T) = ì [ / ( r ) + r]es + ì [ / ( r ) - r ] e - s . (b)Obtain 
the solution in the form и = u(x, t) when (i) f(x) = 1 and (ii) f(x) = x. 

2.3.11. Consider the initial value problemut(x,i) +u(x, t)ux(x,t) = 0, u(x,0) = 
tto + eF(a;),whereuoisaconstant, 0 < e <S 1, and F(x) is uniformly bounded for all 
x. With e = 0, u{x, t) = UQ represents a constant solution of the given equation. The 
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initial condition represents a small perturbation around the constant щ, so we look for 
the solution in the form of a perturbation series around the constant state и = щ. (а) 
Let u(x,t) = uo + eu\(x:t) + e2U2(x,t)-\ and substitute this series formally into 
the equation for u(x, t). Collecting like powers of e and equating their coefficients 
to zero, obtain a recursive system of equations for the functions m(x,t) (i > 1). 
[Determine only the equations for u\ (x, t) and U2(x, t).] Show that the appropriate 
initial conditions for the щ (x, t) are ui(x,0) = F(x), щ(х,0) = О, г > 2. (b)Show 
that the solutions for ui(x, t) and u<i(x, t) are ui(x, i) = F(x — щЬ), v.2(x, t) = 
—tF'(x — uot)F(x — uot). (c) Since и = UQ + eui + е2г*2 + · · ·, show that when 
—etF' ~ 1, the term e2u^ is of the same order of magnitude as eu\ and the terms in 
the series do not get smaller as was assumed. Compare the time t at which the series 
breaks down with the breaking time given in the text, as applied to the initial value 
problem, (d) Obtain the foregoing results for u\(x, t) and u^ix, t) by inserting the 
series for u(x, t) directly into the implicit form of the solution as given in (2.3.15), 
expanding the function / in a series in e, and comparing like powers of e. 

2.3.12. Show that the initial condition u(x, t) = t2/2 on x = i 3 /6 for the equation 
ut{x,t) + u(x,t)ux(x,t) = t yields a characteristic initial value problem. Obtain 
the implicit solution x = ut - t3/3 + F(u - t2/2), where F(0) = 0 but F(z) is 
otherwise arbitrary. 

2.3.13. Given the initial condition u(x, t) = 1 — 4/i2 on x = t + l/4f for equation 
(2.3.9), express the initial curve in parametric form by setting t = т. Show that 
Δ(τ) = 0 but that the initial curve is not characteristic. Obtain two continuous 
solutions for this problem, neither of which is differentiable on the initial curve. 
Hint: See Example 2.8, Part 2. 

2.3.14. Let x = | r 2 , t = r, and и = r be the initial curve for equation (2.3.9). 
Verify that Δ(τ) = 0 but that this is not a characteristic initial value problem. Obtain 
two solutions for this problem. 

2.3.15. Solve the equation of Exercise 2.3.12 with the initial curve given as in Exercise 
2.3.14. Show that the initial curve is not characteristic but that Δ(τ) = Othere. Obtain 
an implicit solution of this problem. 

2.3.16. Solve equation (2.3.9) with the initial value u(0, t) = —t. Express the initial 
curve as x = 0, t = r, and и = — т and show that Δ(τ) = 0 only when τ = 0. Use 
the method of characteristics or (2.3.15) to obtain the solution 

u(x,t) = --t+-(t2+4x)1/2, £ < 0 , u{x,t) = --t--(t2+4x)1/2, t > 0. 

Observe that u(x, t) is not differentiable on i2 + 4x = 0 and is not continuous at 
t = 0, x > 0. 

2.3.17. Given the initial values for (2.3.9), u(x, 0) = f(x), x < a, and u(x, 0) = 
g(x), x > a, with f(a) < g(a), obtain the continuous solution (in implicit form) 
u(x,t) = f(x — tu), x < tf(a)+a, u(x,t) = (x—a)/t, tf(a)+a < x < tg(a)+a, 
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and u(x,t) = g(x — tu), x > tg(a) + a. Hint: Consider the characteristics that 
issue from the point (x, t) = (a, 0). 

2.3.18. Let/(ж) = viand g(x) = В (A < B) in Exercise 2.3.17. Obtain an explicit 
expression for the solution u(x, t) for all x. 

2.3.19. If the initial condition for (2.3.9) is u(x, 0) = A, x < a and u(x, 0) = 
B, x > a, with A > B, show that the wave breaks immediately. Determine the form 
of the shock wave and show that it is stationary if В = —A. 

2.3.20. Let u(x,0) = A, x < -A, u(x,0) = -x, -A < x < A, and u(x, 0) = 
—A, x > A, with A > 0, be the initial values for (2.3.9). Solve for u(x,t) and 
determine the breaking time. Construct the appropriate shock wave and show that it 
is stationary. 

2.3.21. By introducing a shock wave when necessary, obtain a solution of the initial 
value problem for (2.3.9) with u(x, 0) = 1, x < —1, u(x,0) = —x, — 1 < x < 0, 
and u(x, 0) — 0, x > 0, that is valid for all time. 

2.3.22. Let u(x, 0) = 2, x < 0, u(x, 0) = 1, 0 < x < 1 and u(x, 0) — 0, x > 1 be 
the initial values for (2.3.9). Show that the shock that originates at x — 0 overtakes 
the shock from x = 1 at the time t = 1 at the point x = 3/2. Introduce a new shock 
wave and extend the validity of the solution for all time. 

2.3.23. Using graphical means or otherwise, show that if x = πandί > lin(2.3.26), 
there is one root n for equation (2.3.26) that lies in the interval 0 < r < π. Verify 
that то = π and τ^ = π — τχ are also roots of this equation. Since u(x, i) is constant 
on each characteristic, show that ω(π, t) is triple valued for t > 1. Show that u(x, t) 
is equal in magnitude but opposite in sign on the two characteristics that intersect the 
line x = π from the left and from the right. Conclude that the corresponding shock 
wave is stationary. 

2.3.24. Multiply (2.3.9) by и and obtain the conservation law {u2/2)t + (u3/3)x = 0. 
From the corresponding integral relation determine the equation for the shock front 
that takes the place of (2.3.33). Show that if u(x,0) = 1, x < 0andu(a;,0) = 0, x > 
0, the shock speed U = 2/3. On the basis of the conservation law (2.3.29), however, 
the shock speed U = 1/2. Thus, even though both conservation laws are equivalent 
to (2.3.9) if the solutions are smooth, they give rise to different shock waves. The 
correct form of the conservation law must be known to guarantee the correct choice 
for the discontinuity solutions. 

2.3.25. Verify that if c(u) in (2.3.48) is a linear function of u, the shock velocity has 
the form given in the text. 

2.3.26. Differentiate (2.3.9) with respect to x and show that on a characteristic curve 
along which x'(t) = u, ux satisfies the equation d{ux)/dt + ux = 0. Let ux = A 
at ί = 0 and show that the solution of this ordinary differential equation becomes 
singular when t = —I/A. Consequently, any point on the initial wave form where 
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the slope A is negative is associated with a breaking time t = —1/A. Determine that 
this result agrees with that given in equation (2.3.17). 

2.3.27. Generalize the method of characteristics to deal with the three-dimensional 
quasilinear equation aux + buy + cuz = d, where a, b, c, and d, are functions of 
x, y, z, and u. Show that the characteristic equations are {dx/ds — o, dy/ds = 
b, dz/ds = c, du/ds = d} and discuss appropriate initial conditions. 

2.3.28. Solve the initial value problem ux(x,y, z) + uy(x,y,z) + uz(x,y,z) = 
u2{x,y, z), u{x,y,Q)=x + y. 

2.4 NONLINEAR FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS 

In this section the method of characteristics is extended to deal with nonlinear first 
order partial differential equations in two independent variables. Although solutions 
of linear and quasilinear equations can be obtained as special cases of the general 
method developed below, these equations are of sufficient special interest to merit the 
separate discussion accorded them. A general discussion of the method of charac-
teristics is followed by two examples. The eiconal equation of geometrical optics is 
analyzed in some detail. 

Method of Characteristics 

In its most general form the first order PDE can be written as 

F(x, t, u(x, t),ux(x, t), ut(x, t)) = 0, (2.4.1) 

where ux(x, t) = du(x, t)/dx and ut(x, t) = du(x, t)/dt. Let p = ux and q = ut, 
and consider an integral surface и = u(x, t) that satisfies (2.4.1). Its normal vector 
has the form [ux, щ, — 1] = [p, q, —1], and (2.4.1) requires that at the point (ж, t, u), 
the components p and q of the normal vector satisfy the equation 

F(x,t,u,p,q) = 0. (2.4.2) 

An integral surface и = u{x, t) of (2.4.1 ) is not known a priori, so we think of (2.4.2) 
as characterizing a collection of admissible solutions or integral surfaces и = u(x, t). 
That is, their normal vectors at the points (x, t, u) must satisfy (2.4.2). Each normal 
vector determines a tangent plane to the surface, and (2.4.2) is seen to generate a 
one-parameter family of tangent planes (to possible integral surfaces) at each point 
in (x, t, u)-space. We require that F£ + F% ф 0, so that (2.4.2) is not independent of 
p and q. 

For example, if (2.4.1) has the form ихщ — 1 = 0 , then F = pq — 1 = 0 and 
q = 11 p. As p ranges through all real values, q = l/p determines a one-parameter 
family of normal vectors [p, q, — 1] = [p, l /p, -1] at each point (x, t, u). Similarly, 
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if F = xu + tu2 — (smx)ux + 1 = 0, then at (x,t,u) we have F(x,t,u,p,q) — 
xu + tq2 — (sina;)p + 1 = 0, which yields a set of values q = q(p). Note that q 
cannot always be specified as a single-valued function of p. However, we shall always 
assume that one branch of the possible set of solutions q = q(p) has been chosen. 

In general, the (tangent) planes determined by p and q envelop a cone known as 
the Monge cone. Then if и = u(x, t) is a solution of (2.4.1), it must be tangent to 
a Monge cone at each point (x, t, u) on the surface. The intersection of the Monge 
cones with the surface determines a field of directions on the surface known as the 
characteristic directions, as shown in Figure 2.8. 

Characteristic 
directions 

Figure 2.8 The Monge cones. 

We find the characteristic directions as follows. The planes determined by the set 
of normal directions \p, q, —1] at a point (xo, to, щ) satisfy the equations 

H(x,t,u,p,q) = u-u0-p(x -xo) - q(p)(t - t0) = 0. (2.4.3) 

It is assumed in (2.4.3) that F(xo, to, щ,р, q) = 0 is solved for q as a function of 
p and one of the set of possible solutions expressed as q = q(p) is selected. The 
envelope of the planes (2.4.3) (where p is a parameter) is determined by eliminating 
p from (2.4.3) and the equation 

_ = - ( x - x 0 ) - ^ ( t - t o ) = 0 . (2.4.4) 

If we solve for p = p(x, t) from (2.4.4) and substitute the result in (2.4.3), we obtain 
the equation of the Monge cone. 

For example, if F = pq — 1 = 0, then q — 1/pand dq/dp = —1/p2. From (2.4.4) 
we obtain 1/p2 = q2 = (x — xo)/{t — to). Substituting in (2.4.3) gives the equation 
of the Monge cone as (u — щ)2 = Цх — xo)(t — to)-
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Continuing our discussion of the general case, we apply the chain rule to F(x0, t0, 
uo,P, q) = 0, and obtain 

dF dF dqdF „ ,. . π „ , „ ч 

Since q'(p) = —Fp/Fq, substitution in (2.4.4) yields 

x — XQ t — to 
rp Fq 

(2.4.6) 

Using (2.4.6) in (2.4.3) gives 

и-u0 x-x0 Fp pFp + qFq 

T^=pT-^+q=pyq
+q-—Fq—

 (2A7) 

Combining (2.4.6) and (2.4.7) yields 

U — Щ X — XQ t — to 
pFp + qFq Fp F( 

(2.4.8) 
я 

The (x, t, u) are the running variables in the tangent planes (2.4.3) so that the 
denominators in (2.4.8) are all constants evaluated at {xo,to,uo) on the integral 
surface. As a result, a fixed direction is determined by (2.4.8) on each tangent plane 
(for particular values of p and q). The direction is given by the vector [Fp, Fq, pFp + 
qFq]. As p and q range through all their values, these directions, known as the 
characteristic directions, determine the family of lines (2.4.8) that generate the Monge 
cone at (ζο,ίο,ωο). 

We now construct equations for curves x = x(s), t = t(s), and и = u(s) 
that have a characteristic direction at each point (i.e., the direction of the vector 
[Fp, Fq, pFp + qFq]). The ODEs for these curves are given as 

dx „ dt „ du ,_, _ .„ , „. 
Ts=F- Ts=F- Ts=pF» + qF'>- ( 2 · 4 · 9 ) 

Since p and q can vary from point to point, the curves determined from (2.4.9) 
must be chosen such that they lie on a single surface и = u(x, t). To achieve this 
result, we assume that a surface и = u(x, t) is given, so that p and q (i.e., ux and 
щ) are known. Then we determine the values that p and q must have along curves 
x — x{s), t = t(s), и = u(x(s),t(s)) that lie on that surface. Since we must also 
have p = p(x(s), t(s)) and q = q(x(s), t(s)) on that surface, we obtain 

^ = PXFP +ptFq, ^ = qxFv + qtFq, (2.4.10) 

on using (2.4.9). 
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Further, if и = u(x,t) is a solution of (2.4.1), we have F(x,t,u,p,q) = 0, which 
implies that 

dF dF 
— = Fx + Fup+FpPx + Fqqx = 0, — = Ft + Fuq+FpPt + Fqqt = 0. (2.4.11) 

But ux = p and щ = q imply that uxt = Pt = щх = qx- Substituting pt = qx into 
(2.4.11) and inserting the result in (2.4.10) yields 

^ = -Fx-FuP, %. = -Ft-Fuq. (2.4.12) 
ds ds 

The five equations (2.4.9) and (2.4.12) now constitute a completely self-contained 
system of equations for the functions x(s), t(s), u(s),p(s), and q(s). [The integral 
surface и = и(x, t ) no longer needs to be given a priori in order to specify the values of 
p and q.] They are known as the characteristic equations for the differential equation 
(2.4.1). 

The initial value problem for (2.4.1 ) requires that the integral surface и = u(x,t) 
contain a curve C, the initial curve, which we give parametrically as x = х(т), t = 
ί(τ), и = и(т). In terms of the functions x(s), t(s), and u(s), these values are 
taken to correspond to initial values given at s = 0, as was done in previous sections. 
However, in contrast to the situation for linear and quasilinear equations, we must now 
also specify initial values for p(s) and q(s) if we hope to obtain a unique solution of 
the characteristic equations and, consequently, of the initial value problem for (2.4.1 ). 
The initial values p(r) and q(r) on the curve С cannot be arbitrary, since p and q 
must be components of the normal vector to the integral surface и = u(x, t). 

If we let p = ρ(τ) and q = q(r) be the initial values of p and q on the curve C, 
these values must be determined from the equation 

ί ( ι ( τ ) , ί ( τ ) 1 ΐ ί ( τ ) 1 ρ ( τ ) , ί ( τ ) ) = 0 (2.4.13) 

and the strip condition 

ψ = ρ{Γ)ψ+9(Τ)ψ. („1 4 ) 

These equations follow from the fact that ρ(τ) and q(r) must be components of the 
normal vectors to the surface и = u(x: t) evaluated along the initial curve C. The 
data р(т) and q(r) are determined by solving (2.4.13) and (2.4.14) simultaneously. 
There may be more than one set of solutions for р(т) and q(r). However, in each 
problem we select a specific set of initial values x(r), t(r), и(т), р(т), and q{r). 

Given the characteristic equations and initial conditions for x, t, u, p, and q, 
together with the requirement (see the Appendix) 

% F * F , + 0 (2.4.15) 
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on the initial curve C, we can obtain a unique solution of the initial value problem 
for (2.4.1 ) in a neighborhood of the initial curve C. We note that the assignment of 
x, t, and и together with p and q on the curve С means that we are specifying an 
initial strip, that is, a space curve (x(r), t(r), и(т)) together with a family of tangent 
planes at each point having a normal vector with components [р(т), q(r), —1], as 
shown in Figure 2.9. This explains why (2.4.14) is called the strip condition. 

Figure 2.9 The initial strip. 

The solutions x(s, r ) , t(s, r ) , andu(s, r) of the characteristic equations for fixed r 
determine a space curve. The functions p(s, τ) and q(s, τ) determine a tangent plane 
with normal vector [p, q, — 1] at each point of the space curve. The combination of 
a curve and its tangent planes is called a characteristic strip. The integral surface 
и = u(x, t) is constructed by piecing together these characteristic strips to form a 
smooth surface. Its equation is found by solving for s and r as functions of x and t 
from x = x(s, T) and t = t(s, r ) and inserting the results in и — u(s, r ) . 

Example 2.12. A Nonlinear Wave Equation. We consider the equation 

F(x, t, u(x, t), ux(x, t), ut(x, t)) = ut(x, t) + иЦх, t) = 0, (2.4.16) 

with the initial condition 
и{х,0) = ах, (2.4.17) 

where a is a constant. Theequation (2.4.16) isofthe generalform ut+c(u,ux)ux — 0, 
of which two special cases, с = constant and с = c{u), were considered in the 
previous sections. We might expect that (2.4.16) has some features in common with 
the linear and quasilinear wave equations considered earlier and refer to (2.4.16) as 
a wave equation. The nonlinearity of the x-derivative term in (2.4.16) implies, as 
we demonstrate, that the solution и = u(x, t) is not constant along the characteristic 
curves. However, the velocity of specific points x on the wave is related to the nature 
of the wave form at those points, as was the case for the quasilinear equation (2.3.9). 

To solve this initial value problem, we parameterize the initial curve as 

x = r, t = 0, и = ат. (2.4.18) 
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From (2.4.13H2.4.14) we obtain 

Q(T)+P(T)2=0, a = p(r), (2.4.19) 

which yields as the initial data for p and q, 

ρ(τ) = a, q(r) = -a2. (2.4.20) 

Since X'(T)F4 — t'{T)Fp = 1, condition (2.4.15) is also satisfied. 
The characteristic equations for this problem are found to be 

x'{s) = 2p, t'{s) = l, u'(s) = q + 2p2, p'{s)=0, q'(s)=0. (2.4.21) 

Using the data (2.4.18) and (2.4.20), we obtain X(S,T) = 2as + r, t(s,T) = 
s, U(S,T) — a2s + ατ, p(s,r) = a, q{s,r) = —a2. Solving for s = s(x,t), 
г — T(X, t) from the first two equations above gives s = t, τ = x — 2at, and the 
solution of (2.4.16)-(2.4.17) becomes 

u(x,t)=a(x-at). (2.4.22) 

The solution u(x, t) = a(x — at) represents a plane wave moving with velocity a. If 
a > 0, it moves to the right, whereas if a < 0, it moves to the left. 

Although the solution и = a(x — at) behaves like the solution of a linear unidirec-
tional wave equation with velocity a, the wave и = a(x — at) is not constant on the 
characteristic base curves, x — 2at = r . Points on these curves travel with velocity 
2o, and points on the wave и = a(x — at) have velocity a. 

Replacing the parameter s by t in (2.4.21) yields dx/dt = 2p, du/dt = q + 
2p2, dp/dt = 0, dq/dt = 0. Since p = constant and p = ux, we conclude that 
points x move with a velocity equal to twice the slope of the wave form и = u(x,t). 
However, the fact that и ψ constant on the characteristics implies that this velocity is 
not that of points on the wave moving parallel to the x-axis. This is consistent with 
the foregoing results. It does indicate that if the initial wave form u(x, 0) = f(x) 
has variable slope, points x where f(x) has positive slope move to the right, whereas 
points where f(x) has negative slope move to the left. Also, the greater the magnitude 
of the slope, the greater the velocity. This process continues throughout the wave 
motion and can lead to the breakdown of the solution even for smooth initial wave 
forms. This difficulty did not arise for the problem (2.4.16)-(2.4.17) since the initial 
slope is constant. 

In the exercises another initial value problem for (2.4.16) is considered, where the 
problem of the breaking of the wave и = u(x, t) does occur. 
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Geometrical Optics: The Eiconal Equation 

The eiconal equation of geometrical optics in two space dimensions has the form 

u2
x(x,y)+u2

y(x,y)=n2, (2.4.23) 

and we shall assume that n = constant. We present a derivation of the eiconal equation 
in the exercises that exhibits its connection with wave propagation problems. Here 
we replace the variable t of (2.4.1) by the variable у so that q = uy, and у takes the 
placeofiin(2.4.1)-(2.4.15). 

To begin, we take as the initial condition for (2.4.23) 

u(x,y)\x=y=u(y,y)=ay, (2.4.24) 

where a = constant. Parametrically, this can be expressed as 

x = г, у = г, и = ат. (2.4.25) 

The initial values p(r) and q(r) on the curve (2.4.25) are determined from (2.4.13)-
(2.4.14) as 

p2 + q2 - n2 = 0, a = р(т) + q(r). (2.4.26) 

The first equation states that \p/n, q/n] is a unit vector. Let Θ = constant, with 
0 < θ < 2π, and set 

ρ(τ) = ncos(ö), q(r) = nsin(ö), (2.4.27) 

so that the first equation in (2.4.26) is satisfied. Then the second equation implies that 

cos(0) + sin(0) = V^sin (θ+^j = - . (2.4.28) 

[We select one of the solutions of (2.4.28). For example, if a/n = 1, we can have 
Θ = 0 or Θ = 7I-/2.] The condition (2.4.15) yields 2(sin(0) - cos(ö)) = 0. Since this 
expression vanishes at Θ = π/4 or θ = 5π/4, we must exclude those values of Θ and 
the related values of a; that is, a — 

The characteristic equations are 

dx „ dy du о , dp „ dq .„ л _„. 
Ts=2p' Is=2q> dS=2p+2p> Ts=°> i = ° - (2·4·29) 

Thus, p and q are constant on the characteristics, so that p(s,r) = p(0,r) = 
ncos(#), q(s,r) = ς(0,τ) = nsin(0), and we obtain the straight-line character-
istics, 
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x(s, T) = 2ns cos(#) + r, y(s, T) = 2ns sin(#) + r, 

u(s, T) = 2n2s + [sin(6») + cos(6»)]nr, (2.4.30) 

where (2.4.28) was used. Solving for s and r as functions of x and у from (2.4.30) 
yields 

У-х = xsin(6>)-3/cos(6>) (2 4 31) 
2n(sin(0)-cos(0)) ' sin(0) - cos(0) ' V · · ; 

Inserting this into (2.4.30) gives the plane wave solution 

u(x,y) = n(xcos(8)+ysm(e)). (2.4.32) 

It is readily verified that (2.4.32) satisfies the eiconal equation and the initial condition 
(2.4.24). A more general plane wave solution of the eiconal equation can immediately 
be constructed from (2.4.32) in the form 

u(x, y) = u0 + n[(x - x0) cos(0) + (y- i/o) sin(0)], (2.4.33) 

where x$, yo, and щ are constants. 
A second initial value problem for the eiconal equation, whose values are given 

at a point rather than on a curve, leads to a singular solution of (2.4.23) which is 
called a cylindrical wave. Let the initial point be (x, y, u) = (XQ, yo, щ), so that the 
initial values are х{т) — XQ, у(т) = yo, и(т) = UQ. The strip condition (2.4.14) is 
satisfied automatically for all p and q. Thus р(т) and q(r) are determined from the 
single equation 

F(x0,yo,u0,p{r),q(r)) = p(r)2 + q(r)2 - n2 = 0. (2.4.34) 

Letp(r) = ncos(r), q(r) = nsin(r), and (2.4.34) is satisfied. Continuing as in the 
preceding initial value problem we again find that p(s, т) and q(s, r ) are constant on 
the characteristics and 

x(s, T) = 2ns cos(r) + XQ, y{s, T) — 2ns sin("r) + yo, u(s, r ) = 2n2s + UQ. 
(2.4.35) 

Squaring and summing the equations for x and у in (2.4.35) and solving for s readily 
yields, if we take the positive square root, 

u(x, y) = u0 + nyj{x - x0)
2 + {y- yo)2 (2.4.36) 

as a singular solution of the eiconal equation. It clearly satisfies (2.4.23) everywhere 
except at the initial point (xo, yo), where the derivatives ux and uy are singular. In 
fact, (2.4.36) determines a cone with vertex at {XQ, yo, UQ), which is identical with 
the Monge cone through that point. 
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In the context of geometrical optics, if и = u{x, y) is a solution of the eiconal 
equation, the level curves u(x, y) = constant represent (light) wave fronts, whereas 
the characteristic base curves x = x(s, r ) and у = y(s, r ) , for fixed т, represent 
light rays. Thus the level curves of the solutions (2.4.32) or (2.4.33) are straight lines. 
In terms of the physical three-dimensional problem for which we are considering 
two-dimensional cross sections, the straight lines correspond to planes. Hence they 
are called plane waves. Similarly, the level curves of the solution (2.4.36) are circles 
that in the three-dimensional problem correspond to cylinders and therefore yield 
cylindrical waves. The tangent vectors to the characteristic base curves (i.e., the light 
rays) are found from (2.4.29) to be [dx/ds, dy/ds] = 2[p, q]. These curves are 
straight lines since p and q are constant for fixed r . Further, the normal vectors to 
the level curves u(x, y) = constant are Vu = [ux, uy] — \p, q]. This shows that the 
light rays are normal to the wave fronts. 

The intensity of light in geometrical optics is characterized by the convergence or 
divergence of the light rays. As the rays converge, the intensity increases, whereas 
the intensity decreases as the rays diverge. The singular point (xo,yo) in the initial 
value problem for cylindrical waves is known as a focal point or a focus, since all the 
rays are seen to converge at that point or diverge from it. It represents a point of high 
intensity of light. Another region of high intensity of light is given by curves that are 
envelopes of the characteristic base curves or the light rays. Such curves are known 
as caustic curves. The solutions of the eiconal equations break down at foci or caustic 
curves. They suggest that the intensity of light tends to infinity there. Other methods 
not based solely on the eiconal equation for the description of optical effects, such as 
wave optics, yield valid descriptions of the optics in such regions. They are discussed 
in Chapter 10. 

To complete our discussion of the eiconal equation, we show how the singular 
solution (2.4.36) may be used to solve a general initial value problem for the eiconal 
equation. The method we use is related to the complete integral method for the solution 
of first order partial differential equations. A complete integral of the equation (2.4.1 ) 
is a solution of the form M(x, t, u, a, b) = 0, where a and b are arbitrary constants. In 
our problem the solution (2.4.36), in fact, contains three arbitrary constants, XQ, yo, 
and uo· We now indicate how (2.4.36) can be used to solve (2.4.23) with the initial 
values (2.4.25) and (2.4.27). For simplicity, we assume that the constants a and n 
are chosen such that a = n. This implies that we either have Θ — 0 or Θ = π/2 in 
(2.4.32), so that u(x, y) — nx or u(x, y) = ny. 

We set XQ = т,уо = т, and UQ = пт in (2.4.36) so that (XQ, yo, UQ) = (г, г, пт) 
represents the initial curve (2.4.25). This yields the family of solutions 

u(x, у) = пт + rnj(x - r ) 2 + (y- T ) 2 . (2.4.37) 

Expressing the solution in implicit form as 

H{x, у,и,т)=и-пт- пл/{х - т)2 + (у- г)2 = 0, (2.4.38) 
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and differentiating with respect to r gives 

fU-n + n (*-r) + (V-T) ^Q; (2439) 
dT ^{X - r )2 + (y _ T)2 

where (2.4.38)-(2.4.39) determines the envelope of the family of solutions (2.4.37). 
We easily conclude from (2.4.39) that (x — т)(у — т) = 0, so that either т = x or 
T = y, and we obtain 

tf=i" "~ " '" " ' "' ' ~' (2.4.40) 
I " - "" "'"" " " - -

nx — n\y — x\ = 0, T = x, 

■пу-п\у-х\=0, т = у. 

Two continuously differentiable solutions can be obtained from (2.4.40) in the form 
u(x, y) = nx and u(x, y) = ny, which correspond to the values 9 = 0 and θ = π/2 
in (2.4.36), respectively. Both solutions clearly satisfy the initial condition и = nx = 
ny on the line x = y. 

The existence of two solutions to the initial value problem (2.4.23)-(2.4.24) merits 
discussion. It signifies that merely specifying it on a curve without also specifying p 
and q (i.e., an initial strip) does not yield a unique solution, in general. The eiconal 
equation, F = p2+q2 — n2 = 0 i s a quadratic expression for which q = ± л/п2 — p2, 
so that for every choice of p there are generally two values of q. This means that, in 
general, there are two differentiable solutions passing through a given initial curve. 
The importance of these two solutions in applications of the eiconal equation is 
indicated in the exercises and is emphasized in our discussion of the eiconal equation 
in Chapter 10. 

Exercises 2.4 

2.4.1. Solve the initial value problem u2(x, t)ut(x, t) — 1 = 0, u(x, 0) = x. 

2.4.2. Use the method of characteristics to solve ut{x,t) + ul(x,t) = t with 
u{x,0) = 0 . 

2.4.3. Obtain two solutions of (2.4.16) if u(x, x) = 1. Verify that (2.4.15) is satisfied 
for both solutions. 

2.4.4. Find two complex-valued solutions of ux(x,t)ut {x, t) = 1 if u(x,x) = 1. 

2.4.5. Solve (2.4.16) if u(0, t) =t. 

2.4.6. Solve the initial value problem щ {x, t) + u2 (x, t) + u(x,t) = 0, u(x, 0) = x, 
using the method of characteristics. 

2.4.7. Consider the wave equation in two dimensions vxx(x, y, t) + vyy(x, y, t) = 
[l/c2{x,y)}vtt(x,y,t). (a) Let v{x,y,t) = У(х:у)е~™г (г = N/=l) and then 
show that V(x,y) satisfies the reduced wave equation Vxx(x,y) + Vyy(x,y) = 
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\u}2/c2{x,y)]V{x, y). (The constant ω is the angular frequency of the solution.) 
Since c(x, y) represents the (local) speed of wave propagation (as we shall see later 
in the text), we introduce a constant reference speed co, say, the speed of light, and 
define the index of refraction n as n(x, y) = co/c(x, y) and the wave number к as 
к = ω/co. Then the reduced wave equation takes the form Vxx(x, y) + Vyy(x, y) + 
k2n2(x, y)V(x, y) = 0. (b) Assume that к » 1 and look for a solution of the reduced 
wave equation in the form V(x,y) = А{х,у)егки^х,у\ Show that on substituting 
this form in the reduced wave equation, collecting like powers of k, and equating the 
coefficients of k2 and к to zero, we obtain the eiconal equation (2.4.23) for u(x, y) 
and 2Ax(x, y)ux(x, y) + 2Ay(x,y)uy(x, y) + [uxx(x, y) + uyy(x, y)]A(x,y) = 0. 
This is known as a transport equation for Л(х, у) (which represents an amplitude 
term), (c) Show that if n(x, y) and A(x, y) are constants and u(x, y) is the plane 
wave solution (2.4.36), V(x, y) is an exact solution of the reduced wave equation. 
Otherwise, the function V(x, y) = A(x, y)elku(-x>y'> represents what is known as the 
geometrical optics approximation to the solution of the reduced wave equation. (This 
approximation is discussed further in Section 10.1.) 

2.4.8. Letu(a;,i) = A(t)eu(-X'1^ in equation (1.1.15) and solve the resulting equation 
for A(t) and u(x, t) by first taking u(x, t) to be a solution of ut(x, t) + cux(x, t) — 
^Du2(x, t) = 0. Let u(x, t) = ax + bt and obtain the family of solutions u(x, t) = 
TX + {\DT2 - cr) t. Determine the envelope of this family and thereby obtain the 
singular solution u{x, t) = — (x — ct)2/2Dt. If u(x, t) is the singular solution, solve 
for ^(i) and show that the resulting solution for v(x, t) is of the form (1.1.20). 

2.4.9. Solve ut(x,t) = c2u2
x(x,t) if u(0,i) = -t. 

2.4.10. Let u(x, y) = \Jx2 + y2. Solve the transport equation for A(x, y) given in 
Exercise 2.4.7, subject to the condition A(x, y) = 1 on the circle x2 + y2 = 1. Show 
that A(x, y) is singular at the origin (0,0), which represents a focal point for u(x, y). 

2.4.11. Consider the eiconal equation ux(x,y) + u2 (x, y) = n2(x, y) withn(x, y) — 
n\, x < 0, 

with ri2 > ri\ and constant n\ and n?. (a) Given the boundary 
712, X > 0, 

condition ы(0, у) — n\y cos(ö) where θ = constant, solve for all possible u(x, y) in 
the regions x < 0 and x > 0. (Hint: They will be plane wave solutions.) These 
solutions play a role in the problem of a plane interface between two media with 
differing indices of refraction, (b) Obtain expressions for the directions of the rays 
found in part (a), as given by Vu and evaluated on the interface x = 0. These formulas 
represent what are known as Snell's laws of reflection and refraction. 

2.4.12. The characteristic equation for the wave equation ( 1.2.35) is given as u2(x, t) — 
η2ηχ(χ,ί) = 0 (see Section 3.2). Use the method of characteristics to obtain the plane 
wave solutions u(x, t) = x ±jt and the singular solution u(x, t) = constant on the 
pair of straight lines x2 = η2ί2. 
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2.4.13. Extend the results of the text for nonlinear equations to n dimensions. With 
the equation given as F(xi,x2, ...,xn,u,uXi,... ,uXn) = 0, obtain the character-
istic equations (with щ = uXi) dxi/ds = FPi, du/ds = Y^=iPiFPi, dpi/ds = 
— (FuPi+FXi), wherez = 1,2,... ,n. Also, obtain conditions equivalent to (2.4.13)-
(2.4.14). 

2.4.14. Obtain plane wave solutions and singular solutions equivalent to (2.4.33) 
and (2.4.36), respectively, for the eiconal equation in three dimensions, ux(x,y,z) + 
Uy(x, y, z) + u2

z(x, y, z) = n, n =constant. 

2.4.15. Solve the initial value problem ut{x,t) + ux(x,t) = 0, u(x,0) = -ж2. 
Show that the solution breaks down when t=\. 

2.4.16. Differentiate (2.4.16) with respect to x and let v = ux. Show that v satisfies 
an equation of the form (2.3.48) and interpret the results of Example 2.12 accordingly. 

2.4.17. Differentiate F(x(s), t(s), u(s),p(s), q(s)) with respect to s, and use (2.4.9) 
and (2.4.12) to conclude that F is constant along the characteristics. 

2.4.18. Use differentiation and the equations of Exercise 2.4.13 to show that F(xi(s), 
... ,xn(s),u(s),pi(s),... ,pn(s)) is constant along the characteristics. 

2.5 MAPLE METHODS 

Maple contains a number of built-in procedures for the exact and numerical solu-
tion of ordinary and partial differential equations. The basic tool for the solution 
of ordinary differential equations (ODEs) and systems of ODEs is the procedure 
dsolve. Additionally, there is a package of procedures DEtools that contains special-
ized procedures for the manipulation and solution of ODEs. The related procedure 
and package for the solution of partial differential equations (PDEs) is pdsolve and 
PDEtools, respectively. In view of the greatly increased complexity inherent in the 
solution of PDEs as compared to the solution of ODEs, the ODE procedures in Maple 
yield much more information about the exact and numerical solution of initial and 
boundary value problems for ODEs than the corresponding ones for PDEs. When 
it comes to exact solutions of PDEs, the built-in Maple procedures mostly obtain 
general results, if possible, and do not solve initial and initial and boundary value 
problems directly. The situation is improved when finding numerical solutions for 
certain types of PDEs. Consequently, we have written a number of Maple procedures 
that deal with the problems considered in this chapter. They are presented and dis-
cussed below. To a large extent, the procedures employ the method of characteristics 
to generate solutions of the problems considered. 
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Linear First Order Partial Differential Equations 

We begin by considering the basic Maple procedures for the solution of differential 
equations and apply them to some of the linear equations treated in this chapter. An 
initial value problem for the linear PDE 

„ „ „ . dv(x.t) dv(x.t) , ,„ . 
PDE1 = x I ' + 1 V ' = cv(x, t), (2.5.1) 

ox at 

was considered in Example 2.5. On applying the procedurepdsolve(PDEl), where 
PDEl refers to the foregoing PDE, Maple obtains the general solution 

v{x,t)=F(-\xc (2.5.2) 

with F(z) as an arbitrary function. With the initial condition v(x, 1) = f(x), the 
PDE was shown to have the solution 

v(x,t)=f(^)tc. (2.5.3) 

It can be reproduced from (2.5.2) if we put F(z) = f(l/z)zc. 
The procedure charstrip in the PDEtools package determines the system of char-

acteristic equations for a first order PDE. Thus, charstrip(P'DEI, v(x, t)) yields the 
system of characteristic equations (2.2.28). This system of ODEs can then be solved 
with the initial data (2.2.26) using dsolve. This gives (2.2.29), and proceeding as in 
Example 2.5 and using Maple's solve procedure yields (2.5.3). 

We have constructed a Maple procedure LinPDEl([a(x,t),b(x,t),c(x,t)v+ 
d(x, t)], [x, t, v], [x, to, f(x)]) that solves the following initial value problem: 

a (x, t) V ^ ' + b (x, t) — ^ - = с (x, t) v{x, t)+d (x, t), v(x, t0) = f(x) 

(2.5.4) 
if the characteristic equations can be solved and an exact solution can be determined. 
The output of the procedure exhibits the characteristic equations and their initial 
conditions. The solution of these equations is expressed in parametric form, if it can 
be found. Finally, the solution v = v(x, t) of the given initial value problem, if it 
can be found, is exhibited. On applying this procedure to the PDE (2.5.1) with the 
initial value v{x, 1) = f(x) in the form LinPDEl([x, i, cv], [x, ί,υ], [χ, 1, /(#)]), 
the solution (2.5.3) is obtained. If the initial time is t = 0, the procedure indicates 
that the characteristic condition equals zero and no solution is found. As indicated 
in Example 2.6, this is not a characteristic initial value problem unless f(x) has a 
special form. 

The procedure LinPDEl handles only initial value problems for linear first order 
PDEs with initial values of the form v(x, t0) = f{x)· For initial value problems with 
the initial curve given parametrically as x = g{r), t = h(r), v = / ( τ ) , the procedure 
NumLinPDEl([a(x,t),b(x,t),c(x,t)v + d(x,t)], [x, t,v], [д(т),к(т),/(т)],т, 
explicit) attempts to find an exact solution of the first order PDE in (2.2.1) with 
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the specified initial values, and exhibits the solution if it can find it. If the fifth 
argument of the procedure is numeric and a sixth argument [XQ, t0, v0] is added, 
the procedure uses a numerical method to determine the characteristic through the 
point (хсь to, VQ). (In both cases, the method of characteristics is used.) The Maple 
output is a procedure that permits the evaluation of the solution values along the 
characteristic. This can be done as long as Maple's numeric ODE solver can find a 
solution. 

We reconsider the PDE (2.5.1). If the initial condition is v(x, 1) = f(x), the 
procedure NumLinPDEl([x, t, cv], [x, t, v], [r, 1, f(r)],r,explicit) finds the so-
lution (2.5.3). The third argument expresses the initial condition parametrically as 
x = r, t = 1, v = / ( T ) . If the initial condition is v(x,0) = f(x), the parametric 
representation can be given as x — r, t = 0, v = / ( r ) . The characteristic condition 
in this case, as exhibited by the procedure, is zero, and no solution is found. However, 
this is not a characteristic initial value problem. But if we put f(x) = xc, the output 
of the procedure states that this is a characteristic initial value problem with infinitely 
many solutions. It exhibits one of the solutions as being v(x, t) = xc. 

The initial condition v(x,x — 1) = f(x) for (2.5.1) cannot be dealt with by the 
procedure LinPDEi. If we represent the initial condition parametrically as x = 
T, t — T — 1, v = / ( T ) , the procedure NumLinPDEl finds the solution 

v(x,t) = fl — \(x-t)c. (2.5.5) 

As shown in Example 2.6, the line t = x/3 is a characteristic base curve for (2.5.1). 
With the initial value v(x, x/3) = 5xc, we have a characteristic initial value problem, 
whereas if the initial condition is v(x, x/3) = sin(z), there is no solution. On 
representing the base curve as x = r,t = т/3, NumLinPDEl finds that v(x, t) = bxc 

is one of infinitely many solutions in the first case, and that there is no solution in the 
second case. 

The procedure NumLinPDEl([1,sin(:r), v], [x, t, v\, [т,О, т],т, explicit) de-
termines the exact solution of the PDE 

* M + 8 i n ( i ) ? ! M = 0( . l t ) , (2-5.6) 

with the initial condition v(x, 0) = x, as 

v(xt]=&rccos(t + CQS(x))ex 

^ ' ' earccos(t+cos(x)) ' \ · J 

Theprocedure7VumLmP£)£l([l,sin(x),i;], [x, t,v], [т,0,т],т,numeric, [1,0,1], 
output = array([0, .5,1,1.2,2])) solves the characteristic equations for (2.5.6) with 
the initial condition г>(1,0) = 1 numerically. [Note that this determines a single 
characteristic curve that passes through the point (1,0,1) in the (x, t, w)-plane.] The 
output exhibits the solution values as an array. The values of s are given as a list 
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[0, .5,1,1.2,2] in the procedure and the result yields the values of x, t, v at these 
points. 

[s,x{s),t{s),v{s)\ 

(2.5.8) 

0.0 1.0 0.0 1.0 

0.50000 1.5000 0.46957 1.6487 

1.0 2.0 0.95645 2.7183 

1.2000 2.2000 1.1288 3.3201 

2.0 3.0 1.5303 7.3891 

The solution values for v(x, t) agree with those determined from the exact solution 
(2.5.7). 

Higher-dimensional linear first order PDEs can be solved by using the procedure 
NumLinPDEXhd. Exact and numerical solutions can be determined. As an example 
in three space dimensions and one time dimension, we have the PDE with constant 
coefficients 

dv , dv dv , dv , .„ „ „. 
ad-x + bd-y+clTz

+dm=ev + f> (2-5-9) 

with v = v(x, y, z, t) and the initial condition v(x, y, z, 0) = g(x, y, z). We invoke 
NumLinPDElhd([a,b, c, d], e, f, [x,y,z,t], v, [λ,τ,uj,0,g(X,τ,ω)], [Χ,τ,ω], 
explicit). The initial condition is expressed in parametric form. The solution is 
found to be 

/ ,ч / ( (et\ Л fdx — at dy — bt dz - ct\ f et 
v ( S l t f , M ) = - ^ e x p ^ 7 j - l j + ^ - 5 - , - 5 - , - ä - j e x p ^ 

(2.5.10) 
Equations with variable coefficients can also be treated and numerical solutions can 
be found. 

Quasilinear First Order Partial Differential Equations 

To solve a general quasilinear PDE for u(x, t) with u(x, to) = f{x) we use Num 
QuasiPDEl(a{x, t, u), b(x, t, u), c{x, t, u), [r, to, f(r)], r, [x, t, u], explicit). The 
PDE to be solved is 

a (x, t, u(x, t)) U^ ' + b {x, t, u(x, t)) U^ ' = с (х, t, u{x, t)). (2.5.11) 
dx dt 

The procedure attempts to find an explicit solution of the initial value problem, 
and this is clearly impossible in the general case. We specialize to the problem 
for the inviscid Burgers' equation (2.3.9) considered in Example 2.8. The initial 
condition is u(x, 0) = a + ßx. We have NumQuasiPDEl(u, 1,0, [т, 0, a + 
βτ],τ,[χ,ί,η],explicit). The initial curve is expressed in parametric form as 



MAPLE METHODS 1 1 7 

x = T, t = О, и = a + βτ and the solution is u(x, t) — (a + ßx)/(l + tß), in 
agreement with the result in Example 2.8. 

We can solve the initial value problem for the PDE (2.3.48) with u(x, 0) = f(x) 
by using NumQuasiPDE\(c{u), 1,0, [r, 0 , / ( r ) ] , r , [x, t,u], explicit). The out-
put has the form и — f (RootOf(—x + c(f(z))t + z)), using the RootOf proce-
dure. On substituting /(z) = и in the result, we obtain the implicit solution, 

u = f{x-c(u)t). (2.5.12) 

This reduces to the implicit solution (2.3.15), if c(u) = u, in which case the PDE 
reduces to the inviscid Burgers' equation. 

The procedure ShockWave constructs solutions and shock waves for the inviscid 
Burgers' equation (2.3.9) if the initial value is a piecewise linear function. We begin 
by considering the Riemann problems introduced in Example 2.9. If we invoke the 
procedure ShockWave([[l,0,a]], [x, t],u), the second and third arguments specify 
the independent and dependent variables. The first argument is a list (of lists) that 
represents [u|x<Q, u | x > a , a], where the first two elements are the initial values of и 
for x < a and for x > a for a specified value of x = a. The output exhibits the 
PDE (2.3.9) and the initial condition u(x,0) = 1, x < a, u(x,0) = 0, x > a. 
The statement The solution or shock wave is valid for all time is printed out. For this 
problem a shock wave is formed immediately at x = a when t = 0 and remains valid 
for all t > 0. The shock wave is represented as a piecewise-defined function 

ulx,t) = < n . (2.5.13) 
v ' \ 0, x >t/2 + a. v ; 

The shock wave has a unit jump and travels to the right without change of shape with 
the shock speed U = 1/2. It reduces to the result obtained in Example 2.9 if a = 0. 

The procedure ShockWave([[0,1, a]], [x, t],u) solves (2.3.9) with the initial con-
dition u(x, 0) = 0, x < a, u(x, 0) = 1, x > a. For this problem, the solution is 
not a shock wave but a continuous (expansion wave) that is given as 

{ 0, x < a 

{x-a)/t, x<t + a, (2.5.14) 
1, x>t + a. 

It reduces to the result given in Example 2.9 if a = 0. 
All the results found in Examples 2.10 and 2.11 can be reproduced by the Shock 

Wave procedure, because the initial data are piecewise constant. As an example we 
consider the ./V-wave of Example 2.11. We use ShockWave([[2, -x, —2], [—x, x + 
2, - 1 ] , [x + 2,4 - x, 1.], [4 - x, 2,2]], [x, t],u). The output states that the solution is 
valid until t = 1 and that the wave breaks at x = 0 and x = 4. The solution is given 
as 

2, x<-2 + 2t, 
x/(-l + i), x<-l + t, 

u{x,t)= I (x + 2)/(l + t), x<3t + l, (2.5.15) 
( -4 + a?)/(-l + t), x<2 + 2t, 
2, x > 2 + 2t. 



1 1 8 FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS 

On invoking the procedure ShockWave(u(x, t), [x, t],u,t = 1), where the solution 
(2.5.15) is entered as the first argument, together with a fourth argument t = 1, (that 
gives the breaking time), the output is a shock wave (an TV-wave) that remains valid 
for all t > 1. It is given as 

(2, x < 21 - V2 + 2i, 

u(x,t) = < (x + 2)/( l + i), x < 21 + v / 2T2i , (2.5.16) 

2, a; > 21 + >/2 + 2t. 

The solution agrees with the result found in Example 2.11. 
As seen from the foregoing, the first argument in ShockWave can either be a 

piecewise function, defined via the Maple command piecewise, or a list of lists that 
specifies the points where the piecewise function undergoes a change of definition. 
The definition to the right and left of each point must be specified, and any number 
of points may be considered. However, the function must be piecewise linear. 

Nonlinear First Order Partial Differential Equations 

The procedure NumNonLinPDEl(F(x,t,u,p,q) = 0, [χ(τ),ί(τ),ιι(τ),ρ(τ),ς 
{т)],т, [X, t, u, p, q], explicit) solves the initial value problem for the PDE F(x, t, u, 
Pi я) = 0 [as defined in (2.4.2)] with the initial condition given parametrically as 
x = χ(τ), t — ί(τ), и = и(т), р = р(т), q = q(r). As indicated in Section 2.4, it 
is necessary to select a specific q = q(p) from the solution(s) of F(x, t, u, p, q) = 0. 
To find a possible set of initial values for p and q in terms F(x, t, u, p, q) = 0, we 
must first apply the procedure with only three terms [х{т), t(r),u(r)\ in the second 
argument. The output is a possible set of values р(т), q(r). On selecting one of these 
values, the full procedure can be used to determine an explicit solution if possible. A 
numerically determined characteristic can also be found, but we don't consider this 
here. Additionally, the procedure NumNonLinPDElhd that deals with nonlinear 
first order PDEs is not discussed here. 

As a simple example we consider the initial value problem of Example 2.12. 
NumNonLinPDEl(q+p2 = 0, [r, 0,ατ],τ, [x, t, и, p, q], explicit) yields the out-
put q(r) = —a2, p(r) = a as the initial values for p and q. Then, we replace 
[r, 0, ат] in the foregoing procedure by [r, Ο,ατ, α, —a2]. This gives the solution 
u(x, t) = ax — a2t, in agreement with (2.4.22). 

Next, we consider the eiconal equation (2.4.23) and construct a plane wave solu-
tion. We invoke the procedure iVumiVonLmP-D£'l(p2+q'2—n2 = 0, [τ, τ, n(sin(0) 
+ COS(0))T], T, [X, у, и,p, q], explicit). The output yields two possible sets of val-
ues p = ncos(9), q = nsin(ö) and p = nsin(0), q = ncos(ö). We select 
the first set as in (2.4.27) and replace the second argument in the procedure by 
[r,T, n(sin(ö) + cos(0))r,ncos(0),nsin(#)]. Maple's output is the plane wave 
u(x,y) = n (xcos(ö) +ysin(6)). 
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Exercises 2.5 

2.5.1. Consider the PDE (2.5.1). (a) Apply the Maple procedure pdsolve to obtain 
the general solution (2.5.2). (b) With the initial condition v(x, 1) = f(x), use the 
procedures LinPDEl and NumLinPDEl to get the solution (2.5.3). (c) Use 
char strip of the PDEtools package to determine the characteristic equations for 
(2.5.1) and use dsolve to obtain a solution of the system. 

2.5.2. Let f(x) = cos (x2) and с = 2 in (2.5.3). (a) Use the animate procedure 
from the plots package to animate the solution (2.5.3) for —2 < x < 2andl < t < 2. 
(b) Apply the plot3d procedure to plot (2.5.3) for the range of values give in part (a). 

2.5.3. Find the solution (2.5.5) of (2.5.1) using NumLinPDEl. 

2.5.4. Use NumLinPDEl to determine that (2.5.1) with the initial condition v(x, 
x/3) = 5xc yields a characteristic initial value problem for (2.5.1) with infinitely 
many solutions. However, if the initial condition is v(x,x/3) = sin(x), there is no 
solution. 

2.5.5. Reproduce the table (2.5.8). 

2.5.6. Solve the initial value problem (2.2.31 ) using the procedures LinPDEl and 
NumLinPDEl. 

2.5.7. Use LinPDEl and NumLinPDEl to obtain the solution (2.5.7). 

2.5.8. Apply pdsolve to obtain a general solution of (2.2.38). 

2.5.9. Consider the initial value problem xux(x, y) + (x + y)uy(x, y) = cu(x, y), 
u(l,y) = f(y) with a constant c. (a). Find a general solution of the PDE using 
pdsolve. (b). Use NumLinPDEl to solve the initial value problem. 

2.5.10. Apply NumLinPDElhd to solve the initial value problem for (2.5.9) with 
the initial condition v(x, y, z, 0) = g(x, y, z). Obtain a general solution of (2.5.9) 
with pdsolve. 

2.5.11. Use NumLinPDElhd to solve the initial value problem zux(x,y,z) + 
yuy(x, y, z) + uz(x,y, z) = 0, u(x, y, 0) = f(x,y). 

2.5.12. Obtain the solution found at the end of Example 2.8, Part 1, by invoking 
NumQuasiPDEl. 

2.5.13. Determine the implicit solution (2.5.12) by proceeding as indicated in the 
text. 

2.5.14. Solve the initial value problem щ (x,t) + u(x,t)ux (x,t) = t, u(x,0) = ax, 
where a is a constant, using NumQuasiPDEl. Determine the breaking time for 
the solution. Show that the wave does not break if a > 0. 

2.5.15. Consider the problem given in Example 2.8, part 2. (a) Invoke the proce-
dure NumQuasiPDEl and show that allvalues applied to the output yields two 
solutions. Determine that (2.3.23) is the correct solution, (b) The output of the 
procedure yields a parametric representation of the solution in the form {x(s) = 
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(1 — r2)s + T, t(s) = s, u(s) = 1 — г 2 } . Use this parametric representation to 
animate the solution using plots[animate] with s = 0..2. We note that s = t and the 
plot shows that the solution rapidly becomes double valued. 

2.5.16. Use NumQuasiPDEl to obtain an implicit solution of the initial value 
problem (x + u(x, y))ux(x, y) + (y + u(x, y))uy{x, y) = 0, u(x, 0) = f(x). Find 
an explicit solution of the problem if f(x) = x2 with x > 0. 

2.5.17. The Maple procedure NumQuasiPDElhd([l, 1,1], u2, [τχ, τ^, 0, τ\ + тг], 
[τι, Т2],[х, у, ζ, и], explicit) solves the initial value problem ux(x,y,z) 
+ uy(x,y,z) + uz(x,y,z) = u2(x,y,z), u(x,y,0) = x + y. Use it to obtain 
the solution of the problem. 

2.5.18. Use the procedure ShockWave to obtain (2.5.13). 

2.5.19. Obtain (2.5.14) by using the ShockWave procedure. 

2.5.20. Reproduce the results of Example 2.10 using the ShockWave procedure. 

2.5.21. Reproduce the results of Example 2.11 using the ShockWave procedure. 

2.5.22. Reproduce the results of Example 2.12 using the NumNonLinPDEl pro-
cedure. 

2.5.23. Reproduce the results of the subsection of Section 2.4 on the eiconal equation 
using the NumNonLinPDEl procedure. 

Appendix: Envelopes of Curves and Surfaces 

Let F(x, i, r) = 0 be a one-parameter family of curves in the (x, i)-plane with 
parameter r. The envelope of the family of curves is determined from the equations 

dF 
F(x,t,T)=0, — {x,t,r)=0. 

Solving for r = т(х, t) from the second equation and substituting into the first 
equation gives the envelope F[x, t, т(х, t)] = 0. It is generally assumed that each 
curve in the family intersects the envelope tangentially at least once. Otherwise, the 
resulting curve is not referred to as an envelope. If F is a function of more than two 
variables and depends on a parameter r, the foregoing procedure for constructing the 
envelope also applies. 

As an example, let a curve be given as t = f(x). If [т, /(т)] is a fixed point on 
that curve, the equation of the tangent line to the curve at that point is F(x, t, r ) = 
t — / ( r ) — (x — r)f'(r) = 0. As the parameter т varies, we have a one-parameter 
family of tangent lines to the curve. Now, dF/дт = — (x — r)f"(r) = 0 implies 
that if / " (т ) ф 0 for all r, then т = x. Inserting this in the equation F(x, t, r ) = 0 
yields the envelope F(x, t, т)\т=х —t — f(x) = 0. Thus the given curve t = f(x) 
is the envelope of its family of tangent lines. The family of curves is tangent to the 
envelope at, at least, one point. 
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If we consider the family of curves t = \x\ + r, and express them as F(x, t, r) = 
(t - r ) 2 - x2 = 0, we find that Fr = -2(f - τ) = 0. This yields τ = ί and we 
conclude that x = 0. However, the ί-axis is not an envelope of this family of broken 
lines, since none of them is tangent to the ί-axis. It does represent the locus of singular 
(nondifferentiable) points of this family. 

As another example we consider the pencil of straight lines through the origin 
F = t — TX = 0. Combined with the equation FT = 0, we obtain x = t = 0. 
Although the origin is not an envelope for this family of lines, it is the point where 
they all intersect. 

As an example of a three-dimensional problem, we consider the family of spheres 
F(x, y, z, T) — (x — r ) 2 + y2 + z2 — a2 = 0 , whose radii equal a and whose centers 
are the points (τ, 0,0), where τ is a parameter. Since dF/дт = 2(x — r) = 0, 
we find that r = x. The envelope of the family of spheres is, therefore, given by 
F[x, y, z, T(X)] = y2 + z2 - a? = 0. This is the equation of a circular cylinder of 
radius a whose axis coincides with the x-axis. 

If the family of curves is given in parametric form as x = x(s, r), t = t(s, r ) , we 
let s be the running parameter along a single curve and τ be the parameter specifying 
a member of the family. Geometrically, the curves of the family are tangent to the 
envelope at their points of intersection, so we may characterize τ as a parameter along 
the envelope curve (each value of τ specifies a point of intersection on that curve). 
Now [дх/ds, dt/ds] is a tangent vector of a member of the family for each fixed 
r, whereas [дх/дт, —дх/дт] is a normal vector of the envelope curve when s is 
evaluated at the envelope. Since the tangent vector of a member of the family of 
curves is orthogonal to the normal vector of the envelope at the point of intersection, 
we have for their dot product 

дх dt 
ds' ds 

dt дх 
dr' dr 

This equation describes the envelope of the family. 
The envelope equation is to be compared with the conditions (2.3.4) and (2.4.15). 

Noting (2.3.7) and (2.4.9) we see that both of the conditions (2.3.4) and (2.4.15) are 
equivalent to Δ(0, r) = xstT — tsxr\s=o Φ 0. In terms of the initial value problem 
for the equations (2.3.1) and (2.4.1), the condition Δ(0,τ) φ 0 requires that the 
initial curve С be neither a characteristic curve nor an envelope of characteristic 
curves. Otherwise, the solution may not exist, or if it does exist, need not be unique. 
Additionally, even if the initial curve satisfies the condition (2.3.4) or (2.4.15), when 
the family of characteristics forms an envelope, the solution breaks down, as is seen for 
the quasilinear equation (2.3.9) and is shown for the eiconal equation in Chapter 10. 

For example, the circle x2 +12 = a2 is given parametrically as x = a cos(r), t = 
asin(r). Its tangent lines are X{S,T) = acos(r) — assin("r), t(s,r) = asin(T) + 
ascos(r), as is readily seen. Here s is the running parameter along a tangent line 
and г characterizes a particular tangent line. We have A(s, r ) = xstT — tsxT = a2s, 
so that A(S,T) = 0 implies that s — 0 is the envelope. Then χ(0,τ) — GCOS(T), 
i(0, T) = asin(r) yields the circle x2 + t2 = a2, as was expected. 



CHAPTER 3 

CLASSIFICATION OF EQUATIONS AND 
CHARACTERISTICS 

The telegrapher's and wave equations, the diffusion equation, and Laplace's equation, 
derived in Chapter 1, are prototypes of the three basic types of partial differential 
equations encountered most often in applications. They are equations of hyperbolic, 
parabolic, and elliptic type, respectively. The classification of equations and systems 
of equations, in general, into these three (or possibly other) types is considered in this 
chapter. 

Furthermore, formulations of initial and boundary value problems appropriate to 
equations of different types are given. Additionally, characteristics that were shown 
to play an important role in the theory of first order partial differential equations 
are reintroduced from a somewhat different point of view. Their significance in the 
theory of hyperbolic partial differential equations is demonstrated. Further, certain 
basic concepts relating to second order linear equations with constant coefficients 
are introduced and discussed. Finally, the important concept of adjoint differential 
operators is presented. 

Partial Differential Equations ofAppplied Mathematics, Third Edition. By Erich Zauderer 1 2 3 
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3.1 LINEAR SECOND ORDER PARTIAL DIFFERENTIAL EQUATIONS 

We begin by considering the general second order linear partial differential equation 
in two independent variables, 

A(x, y)uxx(x, y) + 2B{x, y)uxy{x, y) + C(x, y)uvy(x, y) + D(x, y)ux(x, y) 

+ E{x,y)uy{x,y) + F(x,y)u(x,y) = G(x,y), (3.1.1) 

where the terms A, B,..., G are given real-valued functions. Special cases of 
(3.1.1) were derived in Chapter 1 (with у replaced by t in some instances). It will 
now be shown that the principal part of (3.1.1 ), that is, the terms containing second 
derivatives of u, can be transformed by a change of independent variables into a form 
similar to that of the wave, diffusion, and Laplace equations considered in Chapter 1. 
Consequently, these equations are, in fact, prototypes of second order linear equations 
of the general form (3.1.1). The transformed versions of these equations are referred 
to as canonical forms. 

Without loss of generality, it may be assumed that A(x, у) ф 0 in some region R 
and we divide by A(x, y) in (3.1.1). Then, with дх = д/дх and ду = д/ду, we 
express the principal part of the differential operator in (3.1.1) as follows: 

d2
x + (2В/А)дхду + {С/А)д2 = (дх - ш+ду)(дх - ω~8ν) + (ωχ - ω+ω;)3υ, 

(3.1.2) 

where ω+(а;, у) апйи)~{х,у) are defined as [on comparing both sides of (3.1.2)] 

+ i \ , -i \ 2В(Х,У) +, λ -, N C{x,y) 
α,+ Μ + ω (»,„) = - - ^ - - j - , ω+(χ,„)ω (x,y) = J(—y (3.1.3) 

Solving the system (3.1.3) for ω+ (χ, у) апа ш~(х,у) gives 

±, , _ -B{x,y) ± у/Д2(х,2/) - A(x,y)C(x,y) 
[X,y)~ A(x,y) ■ { ' 

The ω±(χ, у) are the roots of the quadratic equation А(х,у)ш2 + 2B(x,y)ui + 
C(x,y)=0. 

We have obtained (3.1.2) by following the procedure used in Section 2.1, where 
the differential operators for the wave and Laplace's equations were factored. Since 
the coefficients A, B, and С are functions of x and y, there is an additional term 
involving dy in (3.1.2). Instead of using (3.1.2) to express (3.1.1) as a system of two 
first order equations (as was done in Section 2.1 ), we use (3.1.2) to simplify the form 
of the given equation (3.1.1). 

As we are generally interested in obtaining real-valued solutions of (3.1.1), the 
possibility of using the factorization (3.1.2) to simplify (3.1.1) depends on whether 
ω± (x, y) are real- or complex-valued functions of x and y. This is determined by the 
sign of the discriminant В2 (х, у) — A(x,y)C(x,y) in (3.1.4). We shall assume that 
B2(x, y) — A(x, y)C(x, y) is either of one sign or vanishes identically throughout the 
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hyperbolic type, 

parabolic type, 

elliptic type. 

(3.1.5) 

(3.1.6) 

(3.1.7) 

given region R. On that basis we classify (3.1.1 ) as belonging to one of the following 
three types in the region R: 

B2{x,y)-A{x,y)C(x,y)>0, 

B2(x,y)-A{x,y)C(x,y)=0, 

B2(x,y)-A{x,y)C{x,y)<Q, 

Applying these criteria to the equations of Chapter 1, we find that the wave (and 
telegrapher's), diffusion, and Laplace's equations are of hyperbolic, parabolic, and 
elliptic type, respectively. We now determine canonical forms for (3.1.1) of each of 
the types (3.1.5ИЗ. 1.7). 

Canonical Forms for Equations of Hyperbolic Type 

When B2 (x, y) - A(x, y)C(x, y) > 0 in the region R, the functions ω± (χ, y) are real 
valued and distinct in that region. We may then express the operators dx — ω^ ду 

as directional derivatives. Along the family of curves 

^ = -ш±(х,у), (3.1.8) 

we have, for any differentiable function v — v(x, y), 

dv dv dy dv . „ . .„ , „. 
Τχ = θ-χ + ΙϊΓν = ^-ω9*)ν ( 3 Λ · 9 ) 

on using (3.1.8). 
The (one-parameter) families of curves determined by the solutions of (3.1.8) are 

called the characteristic curves of (3.1.1). They form two independent families of 
curves in the (x, j/)-plane since dy/dx = — ш±(х,у) with ω+(χ,у) ψ u~{x,y) 
implies that they intersect nontangentially. We express these curves as 

Ì = Ì{x,y), η = η{χ,ν), (3.1.10) 

where ξ - constant corresponds to the curves y' + ω+(χ, у) = 0, while η = constant 
corresponds to the curves y' + ω~ (x, y) — 0. For example, if the coefficients A, B, 
and С in (3.1.1 ) are constants, so are ω+ and ω~. Then we can set ξ = у + ω+χ and 
η = у + ω~χ. 

We introduce ξ and η as new coordinates in (3.1.1), and this is referred to as the 
characteristic coordinate system. On the characteristic curves ξ = constant and η -
constant, we have 

0 = ξχ + ΐ/(χ)ξν=ξχ-ω+ξν, ω+=ξχ/ξν, (3.1.11) 

0 = Цх + y'(x)Vy = ηχ -ω~ηυ, ω~=ηχ/ηυ. (3.1.12) 
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It follows from our assumptions that ξυ φ Oandr/y Φ 0. Since ω+(ж, i/)andw~(x, у) 
are solutions of the quadratic equation A (x, y)u}2+2B(x, y)u;+C(x, у) = О as shown 
above, we conclude that φ = ξ(χ, у) and ф = η(χ, у) both satisfy the characteristic 
equation for (3.1.1) 

А(х,у)ф2
х(х,у) + 2В(х,у)фх(х,у)фу{х,у) + С(х,у)ф1(х,у) = 0. (3.1.13) 

Also, if и = η(ξ, η) = η[ξ(χ, у), η(χ, у)], we have ди/дх = η^ξχ + ηηηχ and 
ди/ду = 4ξξυ + ηηηυ, so that 

ди + ди (я +л ^ t , + с + 
оЛ — = (дх - и^ду)и = υ,ζξχ + ηηηχ - ω^υ,ξξυ - ω^ηηηυ 

= {ξχ - ω+ξυ)υ,ς + (ηχ - ω+ηυ)υ,η = \{ηχ - ω+ηυ)δη\η, (3.1.14) 

in view of (3.1.11 ). Similarly, (3.1.12) implies that 

du öu 
— - ω~ — = (дх - ш~ду)и = [(ξχ - ω-ξυ)θξ}ιι. (3.1.15) 

Using (3.1.11 )-(3.1.12) to express ξχ and ηχ in terms of ξν and ηυ yields, in view 
of(3.1.14)-(3.1.15), 

dx - ω+ду — -ην(ω
+ - ω~)δη, (3.1.16) 

дх - ω-ду = ξν(ω
+ - ω~)θξ. (3.1.17) 

Both operators are nonzero since ω+ φ ω~. Thus 

(дх - üj+dy){dx - ω~δν) = [~ην(ω
+ - ω~)θη][ξν(ω

+ - ω~)θζ] 

= ~ξννν("
+ - "Ί292

ξη - ην{ω+ - ω-)8η (ξυ(ω+ - ω~)) θξ. (3.1.18) 

Substituting this result in (3.1.1 ), as modified in (3.1.2), and expressing everything in 
terms of ξ and η, we obtain (on dividing by the nonzero coefficient of u ^ ) 

«€.»(£>V) + α(ξ,η)ηξ(ξ,η) + ο(ξ,η)ηη(ξ,η) + ο(ξ,η)η(ξ,η) = ά(ξ,η). (3.1.19) 

This is one of the canonical forms for (3.1.1 ) when it is of hyperbolic type. 
Although the factorization procedure was used to determine the principal part of 

the canonical form (3.1.19), it is generally simpler to use a more direct approach 
to obtain (3.1.19). Once the characteristic coordinates (3.1.10) have been found, 
we can transform (3.1.1) directly into the form (3.1.19), using the chain rale for 
differentiation. The principal part of the equation in (ξ, ^-coordinates is given 
as in (3.2.10). As shown in the exercises, the coefficient of υ,ξη in (3.2.10) equals 
(A/A)(AC — Β2)ξυηυ, and this is nonzero in R. 
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The transformation 

ξ = α + β, η = α-β, (3.1.20) 

in (3.1.19) yields an alternative canonical form for the hyperbolic case, 

uaa — Ußß + äua + büß + cu = d, (3.1.21) 

where и and its derivatives and a, b , c, d, are functions of a and ß. If A, B, and 
С in (3.1.1) are constants, the variables a and ß are given as a = у — {B/A)x and 
ß = {l/A){B2 -AC)l/2x. In either of the canonical forms (3.1.19)or (3.1.21), the 
principal parts have constant coefficients. The telegrapher's and wave equations of 
Section 1.2 are of the form (3.1.21). 

Canonical Forms for Equations of Parabolic Type 

When B2(x,y) — A(x,y)C(x,y) = 0 in the region R, we have u+(x,y) 
= w~(x,y) = w(x,y) and (3.1.2) becomes 

dl + (2В/А)дхду + {С/А)д2
у = {дх - иду)2 + (ωχ-ω шу)ду, (3.1.22) 

with ш(х, у) = —В(х, у)/А(х, у), in view of (3.1.4). Since there is only one value 
of ω{χ, у), we obtain only one family of characteristic curves, determined from 

dy , x B(x,y) 

а-х=-^У)=М^У)· ( 3 - L 2 3 ) 

Let 
ζ = ξ(χ,ν), η = η(χ,ν)· (зл.24) 

Here ξ = constant is the family of characteristic curves determined from (3.1.23). η 
= constant is an arbitrarily chosen independent family of curves, chosen such that the 
Jacobian determinant ξχην - ξυηχ of the transformation (3.1.24) is nonzero in the 
region R. 

Again, φ = ξ(χ, у) is a solution of the characteristic equation (3.1.13). For 
example, if A, B, and С in (3.1.1 ) are constants, so is ω, and we can set ξ = у + ωχ 
and η = шу + ex, where с φ ω2 but is an otherwise arbitrary constant. Proceeding as 
for the hyperbolic case, introducing the coordinates (3.1.24) and using the chain rule 
to transform (3.1.1), we obtain the canonical form [see (3.2.10) and the exercises] 

W É . V ) + a(£> ЧК(É. V) + Ηξ, η)ηη{ξ,η) + ο(ξ,η)η{ξ, η) = ά(ξ,η), (3.1.25) 

where a, b, c, and d are specified functions of ξ and η. Again, the coefficients in the 
principal part of (3.1.25) are constant. The diffusion equation of Section 1.1 has the 
form (3.1.25). 
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Canonical Forms for Equations of Elliptic Type 

When B2(x,y) — A(x,y)C(x,y) < Q,LO+(x,y) andu~(x,y) as defined in (3.1.4), 
are complex valued in the region R. Hence the characteristics defined by (3.1.8) are 
complex curves. Assuming that the terms A, B,..., G in (3.1.1) can be defined 
for complex arguments, the change of variables (3.1.10) may still be applied to bring 
(3.1.1) into the form (3.1.19). Again, the coefficient of щп is given as (4/A)(AC — 
Β2)ξυηυ and this is nonzero. However, the variables ξ and η are complex, so that the 
usefulness of the canonical form (3.1.19) is questionable. For example, if A, B, and 
С in (3.1.1) are constants, we obtain ξ = у-(B/A)x + i(l/A)(AC- B2)1/2xand 
ξ = υ - (B/A)x - i{l/A){AC - B2)ll2x, where г = j^l. 

The further transformation 

ξ = α + ίβ, η = α-ίβ (3.1.26) 

in (3.1.19) introduces the real-valued variables a and β. (This follows since ω+ 

and ω~ are complex conjugates in the elliptic case, when the terms A, B, and С 
are real as assumed.) If A, B, and С are constants, а = у — (B/A)x and β — 
(1/A)(AC — Β2)χΙ2χ. We then easily obtain the canonical form 

Uaa + Ußß + a(a, ß)ua + b(a, ß)up + c(a, ß)u = d(a, ß) (3.1.27) 

for the elliptic case where и and its derivatives are functions of a and ß and a, b, c, d 
are real valued functions. [The canonical form (3.1.27) can also be obtained by 
another method, which we do not consider, that does not require the introduction of 
complex variables.] Laplace's equation of Section 1.3 has the form (3.1.27). 

Equations of Mixed Type 

If the terms A, B,..., F in (3.1.1 ) are constants, the canonical forms for the hyper-
bolic, parabolic, and elliptic cases are valid over the entire domain of definition of 
the inhomogeneous term G. Each canonical form has constant coefficients. Then a 
further simplification of the equation can be achieved, as shown in the exercises. If 
one or more of the terms A, B,..., F in (3.1.1 ) is variable, and the partial differential 
equation is of hyperbolic, parabolic, or elliptic type throughout the region of interest, 
it can be brought into one of the foregoing canonical forms. However, if the equation 
is of more than one type within the region, it is said to be of mixed type. In that case, 
it can be brought into an appropriate canonical form within each subregion where it 
has fixed type. We consider an example of an equation that is of all three types. 

Example 3.1. An Equation of Mixed Type. The equation 

uxx(x,y) + yuyy(x,y) = 0 (3.1.28) 

is of mixed type, since it is hyperbolic for у < 0, parabolic for у = 0, and elliptic for 
у > 0, as follows immediately from the fact that B2(x, y) — A(x, y)C(x, y) = —y. 
We obtain canonical forms for (3.1.28) in each of the three regions. 
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The parabolic region is the simplest to deal with, since for у = 0 the equation 
assumes the canonical form 

uxx(x,y)=0. (3.1.29) 

In this case ω — 0, so that the characteristic curve determined from dy/dx = 0 is 
у = 0. That is, the ж-axis is the characteristic curve, and it represents a curve across 
which a transition from hyperbolic to elliptic type takes place. For this reason, the 
solution of initial and boundary value problems for (3.1.28) in a neighborhood of the 
ж-axis is rather difficult since (3.1.28) is of three different types in this neighborhood. 

In the hyperbolic region у < 0, we have 

w±(.-r,y) = ±λ /=2/ . (3.1.30) 

(3.1.31) 

The characteristic equations 

y'(x) = -u±(x,y) = TN/3^ 

yield the two characteristic families 

ξ = x + 2V
/—у = constant, η = x — 2 \f—y = constant. (3.1.32) 

From (3.1.2) we obtain for the differential operator in (3.1.28) 

dl + ydl = (dx - yf^y ду)(дх + sf^y dy) - -dy, 

and from (3.1.18), 

(dx -Уду)(дх + V=y ду) = 4ΘΪη. 

(3.1.33) 

(3.1.34) 

Since dy = ξυθξ + щдг, = - ( l / v c r y ) ( ö j - дп) and ξ - η 
canonical form for (3.1.28) in the hyperbolic region as 

4 ^ / ^ , we obtain the 

uxx(x, y)+y uyy(x, y)=4 ν·ξη(ξ,ν) + 
1 

Ш - V) 
(щ(£,ч) - uv(£,v)) = ο. 

(3.1.35) 
The characteristic curves for the hyperbolic case are the two branches of the parabo-

las у = — ì (x — c)2, where с is a constant, as shown in Figure 3.1. The branches with 
the positive slopes give the curves ξ = constant, while η = constant gives the branches 
with the negative slopes. We note that both branches are tangent to the ж-axis, which 
is the single characteristic curve in the parabolic region. In fact, the ж-axis is the 
envelope of the characteristic curves for the hyperbolic region у < 0. 

In the elliptic region у > 0, we have ω±(χ, у) = i y 7 - ? / = i t ^ , so that the 
characteristic curves are complex. The equations (3.1.32) remain valid but they now 
take the form 

ξ = x + 2iy/y = constant, η — x — 2iy/y = constant. (3.1.36) 
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Figure 3.1 The characteristic curves. 

Using (3.1.26) gives 
a = x, ß = 2y/y. 

With Q and ß as the new variables, we have 

Vv 
U0, Ußß 2J/3/2 

(3.1.37) 

uß = 0, (3.1.38) 

so that the canonical form is 

uxx(x,y) + yuyy(x,y) = uaa(a, ß) + u00(a, ß) - - uß(a,ß) = 0. (3.1.39) 

We conclude our discussion of this example with the observation that the canoni-
cal forms (3.1.35) and (3.1.39) in the hyperbolic and elliptic cases have coefficients 
that are singular when ξ = η and β = 0, respectively. Both singular regions corre-
spond to the a;-axis, across which the equation (3.1.28) undergoes a transition from 
hyperbolic to parabolic to elliptic type. The lack of validity of the hyperbolic and 
elliptic canonical forms at the ж-axis is signaled by the singularity of the coefficients 
there. Although the study of equations of mixed type is of interest in a number of 
applications, we shall deal (almost) exclusively with equations that are of a single 
type in the region under consideration. 

Exercises 3.1 

3.1.1. Show that the coefficient of υ,ξν in (3.2.10) equals (4/A)(AC - Β2)ξυηυ in 
the hyperbolic case if ξ and η are defined as in Section 3.1. 

3.1.2. Show that if φ = ξ and ψ = η, as defined in (3.1.24), are used as coordinates 
in transforming (3.1.1) in the parabolic case, the coefficient of ηηη in (3.2.10) is the 
only one that is nonzero, and the equation (3.1.25) results. 

3.1.3. Show that if the transformation (3.1.10) is introduced into (3.1.1 ) in the elliptic 
case, the coefficient of ιΐςη in (3.2.10) equals (4/A)(AC — Β2)ξυηυ. 

3.1.4. Show that the equation uxx(x, y) + 4uxy(x, y) + 3uvy(x, y) + 3ux(x, y) — 
uy(x, y) + 2u(x, y) — 0 is of hyperbolic type. Determine its characteristic curves 
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and bring it into the canonical form (3.1.19). Introduce the further transformation 
ui£> v) = exp(a£ + βη)ν(ξ, η), and choose the constants a and β to eliminate the 
first derivative terms in the resulting canonical form. 

3.1.5. Show that the equation uxx(x, y) + 2uxy(x, y) + uyy(x, y) + 5ux(x, y) + 
3uy(x,y) + u(x,y) = 0 is of parabolic type and bring it into the canonical form 
(3.1.25). Using the transformation of the dependent variable given in Exercise 3.1.4, 
show that the terms involving ιΐξ and и in the canonical form can be eliminated. 

3.1.6. Show that the equation uxx(x, y) — 6uxy(x, y) + 12uyy(x, y) + 4ux(x, y) — 
u(x,y) = sm{xy) is of elliptic type and bring it into the canonical form (3.1.27). Pro-
ceeding as in the exercises above, show that the first derivative terms in the canonical 
form can be eliminated. 

3.1.7. Determine the regions where Tricomi's equation uxx(x,y)+xuyy(x,y) = Ois 
of elliptic, parabolic, and hyperbolic types. Obtain its characteristics and its canonical 
form in the hyperbolic region. 

3.1.8. Showthatthe equation uxx(x,y)+yuyy(x,y) + ^uy(x,y) = 0 has the simple 
canonical form ιΐςη = 0 in the region where it is of hyperbolic type. Use this result 
to show that it has the general solution u(x, y) = f(x + 2yJ—y) + g(x — 2^/^y), 
with / and g as arbitrary functions, in the hyperbolic region. 

3.1.9. Classify the following equations as of hyperbolic, elliptic or parabolic type: 
(a) buxx(x,y) - 3uyy(x,y) + sin(x)ux(x,y) + exy uy(x,y) +u(x,y) — 0. 
(b) 3uyy(x, y) — 10ux(x, y) + Auy(x, y) + cosh(x)'u(a;, y) = 0. 
(c) 10uxx(x,y) + uyy{x,y) - ux(x,y) + [log(l + x2)]u(x,y) = 0. 
3.1.10. Classify the following equations as of hyperbolic, elliptic, or parabolic type: 
(a) exyuxx(x, y) + cosh(x)uyy(x, y) + uy(x, y) - u(x, y) = 0. 
(b) [log(l + x2 + y2)]uxx(x, y)-[2 + cos(x)]uyy(x,y) = 0. 
(c) Uyy(x, y) + [1+ x2]ux(x, y) - uy(x, y) + u(x, y) = 0. 

3.1.11. Show that if В = 0 in (3.1.1 ), the equation is of fixed type if AC < 0, AC = 
0, or AC > 0 everywhere in the region where (3.1.1) is defined. 

3.2 CHARACTERISTIC CURVES 

To introduce and motivate our discussion of characteristic curves for second order 
partial differential equations, we begin by reconsidering linear first order equations 
and their characteristics. However, we now discuss them from a somewhat different 
point of view than that of Section 2.2. 

First Order PDEs 

The characteristic (base) curves of the linear first order PDE 

a(x, y)ux(x, y) + b(x, y)uy(x, y) = c(x, y)u(x, y) + d{x, y), (3.2.1) 
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can be obtained [assuming that a(x, y) ^ 0] as solutions of 

? = *Щ. (3.2.2) 
ax a(x, y) 

We suppose that у = h(x) is a solution of (3.2.2) and look for a solution u(x, y) of 
(3.2.1) with the initial value u(x, h(x)) = f(x). Using the chain rule and (3.2.1)— 
(3.2.2), we conclude that adu/dx = af'(x) = cf(x) + d on the characteristic base 
curve у = h(x). Unless f(x) satisfies this compatibility condition, the initial value 
problem has no solution. If f(x) does satisfy the compatibility equation, the curve 
у = h(x), u(x, h(x)) = f(x) in (x, y, u)-space is a characteristic curve for (3.2.1) 
and there are infinitely many solutions or integral surfaces и = u(x, y) of (3.2.1 ) that 
contain the characteristic curve. 

These results were obtained in Section 2.2 (with у replaced by t). We assume that 
a and b in (3.2.1 ) are not both zero. If ö ф 0 but a can vanish, we can express (3.2.1 ) 
in a form equivalent to (2.2.35) and adapt the discussion of that equation to obtain 
compatibility conditions in the present case. In this section, however, we deal with 
the case where a is nonzero. 

It was also shown in Section 2.2 that a curve у = h(x) along which a solution 
of (3.2.1) is continuous but whose derivatives are discontinuous across it must be a 
characteristic base curve [i.e., is, it satisfies (3.2.2)]. We demonstrate this again using 
a different method. This method can easily be generalized to deal with higher-order 
differential equations. 

Let у = h(x) be the curve of (derivative) discontinuity and represent it implicitly 
as ф(х, у) = у — h(x) = 0. We consider the family of curves ф(х, у) = constant and 
the family of orthogonal trajectories ф(х, у) = constant [the orthogonal trajectories 
are solutions of the equation y' = —l/h'(x)]. Introducing the (£, 77)-coordinate 
system defined by 

ξ = ф(х, у), η = ψ(χ, у), (3.2.3) 

we obtain for и = η(ξ, η) — и(ф(х, у), ψ(χ, у)), 

Ux = У-ζξχ + ν·ηηχ = фхщ + ψχΐΐη, иу = ηςξυ + и^Цу = фущ + ψυτιη. (3.2.4) 

Thus 

aux + buy = {αφχ + Ьфу)щ + (αψχ + Ьфу)ия = си + d. (3.2.5) 

Now let щ (х, у) and u<i {x, y) represent solutions of (3.2.5) defined in the regions 
ξ < 0 and ξ > 0, respectively, with u\ = 112 along the curve ξ = у — h(x) = 0. 
With и = u\ for ξ < 0 and и = u% for ξ > 0, the solution и and the derivative uv 

are continuous on the curve ξ — 0, since un is an interior derivative along the curve 
ξ = constant. However, u^ represents a normal derivative across the curve ξ = 0 and 
Щ has a jump discontinuity there by assumption. Since u\ and u-χ are solutions of 
(3.2.5) for ξ φ 0, we have 
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[(αφχ + Ьфу)п£ + (αψχ + Ьфу)ип - cu - d] 

u=w2,4>o 

= 0 (3.2.6) 
u=u\ ,ξ<0 

for the difference of the bracketed expression across the curve ξ = 0 along the 
orthogonal curves η - constant. In the limit as ξ —> 0 it follows that 

(αφχ+οφυ)[ηξ]\ξ=ο = 0, (3.2.7) 

where [щ] |ξ=ο is the jump in ΐίξ across the curve ξ = 0. The other terms vanish since 
they are continuous at ξ = 0. By assumption [ΐίξ]|ξ=ο φ 0, so that (3.2.7) implies 
that 

афх+Ьфу^=0 = -аЬ'{х) + Ь = 0, (3.2.8) 

since ξ = 0 corresponds to the curve ф(х, у) = у — h(x) = 0. As a result, h'(x) — 
y'(x) = b/a, so that у = h(x) is a solution of the characteristic equation (3.2.2), 
as was to be shown. That is, discontinuities in derivatives of continuous solutions 
и — u(x, y) of (3.2.1) can occur only across characteristic (base) curves. However, 
this requires that a, b, c, and d are continuous (see Exercise 3.2.7). 

We show that if initial data u(x, y) are prescribed for (3.2.1) along a characteristic 
(base) curve у = h(x), it is impossible to solve for ux and uy uniquely along that 
curve, if a solution exists at all. Thus if there is a solution, no unique tangent plane 
can be defined along the initial curve and it is not possible to specify a unique integral 
surface that contains the initial curve and satisfies the initial value problem. (This 
result has been obtained previously, based on the method of characteristics, but we 
now obtain it in a different way, one that can easily be generalized to deal with systems 
of equations.) 

Given the initial value u(x, h(x)) = f(x) on the curve у = h(x) that satisfies 
(3.2.2), we have du(x,h(x))/dx = ux + h'(x)uy = f'(x)- Combining this with 
(3.2.1) evaluated on у = h(x) yields the simultaneous linear system for ux and uy, 
{ux + h'(x)uy = f'(x), aux + buy = cf(x) + d}. The determinant of coefficients 
of this system vanishes; that is, 

D = 
1 h'(x) 

a b 
= -ah'{x) + 6 = 0, (3.2.9) 

since y'{x) = h'(x) = b/a in view of (3.2.2). Consequently, either ux and uy cannot 
be determined at all on у = h(x) or, at best, they can be solved for nonuniquely 
if f(x) satisfies a consistency condition. This condition is readily found to be 
af'(x) = cf(x) + d, which is identical with the compatibility condition given above. 
Conversely, the discussion above shows that a curve у = h(x) on which и is pre-
scribed and for which ux and uy either cannot be determined or can only be determined 
nonuniquely must be characteristic since we must then have D = 0 in (3.2.9). The 
determinant D vanishes only if у = h(x) is a solution of (3.2.2). 
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Second Order PDEs 

Characteristic curves for the second order equation (3.1.1 ) are determined by using the 
first of the two techniques developed for first order equations. (The second approach 
is presented in the exercises.) We specify the possible curves у = h(x) across which 
the second derivatives of a solution u(x, y) of (3.1.1) can have discontinuities. The 
solution u(x, y) and its first derivatives are assumed to be continuous across these 
curves. 

Let0(z,y) = y — h(x) = 0 and define the orthogonal family of curves ξ=constant 
and η = constant as in (3.2.3). In terms of the variables ξ and 77, (3.1.1) takes the form 

(Аф1 + 2Вфхфу + Сф2
у)и^ + 2 (Αφχψχ + В(фхфу + фу-φχ) + Сфу-фу) 4ξη 

+(ΑψΙ + 2Вфхфу + Сф2
у)ит + ■ ■ =G, (3.2.10) 

where the dots represent first derivative and undifferentiated terms in u. Since и and 
щ are assumed to be continuous across ξ = у — h(x) = 0, we conclude that un, υ,ξη, 
and also continuous, since д/θη is an interior derivative operator along ξ = 0. 

Again we consider solutions щ (х, у) and 112 (x, y) of (3.1.1) defined in the regions 
ξ < 0 and ξ > 0, respectively. Evaluating (3.2.10) in each of the regions above, 
taking the difference of these equations, and going to the limit as ξ —> 0, we obtain 

(ΑφΙ + 2Вфхфу + C$) [u«] | £ = o = 0, (3.2.11) 

where [ωξξ]|ξ=ο is the jump in the second derivative of и across the curve ξ = 0. 
All other terms vanish in view of their assumed continuity across that curve. Since 
[ίίξξ] |ξ=ο is taken to be nonzero, we must have 

Аф1 + 2Вфхфу + Сф\ = 0. (3.2.12) 

This is the characteristic equation for (3.1.1) [see (3.1.13)]. 
Assuming (as was done in Section 3.1) that the coefficient A in (3.1.1 ) is nonzero, 

we can factor (3.2.12) as 

А(фх - ω+ фу)(фх - ω~ фу) = 0, (3.2.13) 

with ω+ and ω~ defined as in (3.1.4). If ω+ and ω~ are real valued, we see that a curve 
ξ = ф(х, у) = 0 or, equivalently, у = h(x) across which υ,ξξ is discontinuous must 
be one of the characteristic curves (3.1.8). This follows since ф = у — h(x) implies 
that фх — ω± фу = —h'(x) — ω^. Thus one of the two equations y' = h' = —ω± 

must be satisfied in view of (3.2.13). 
Using similar arguments, it can be shown that discontinuities in higher derivatives 

of a solution must also occur only across characteristic curves. 
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Example 3.2. The Wave, Diffusion, and Laplace's Equations. For the wave 
equation ( 1.2.35), the characteristic equation (3.2.12) has the form 

ΦΙ - Ί2ΦΙ = {Фг + 1Фх){Фг ~ ΐΦχ) = 0· (3-2.14) 

Equating each factor to zero separately gives the straight-line characteristic curves 
φ{χ,ΐ) ~χ±ηί = constant, with slopes dt/dx — T l / 7 · The telegrapher's equation 
( 1.2.25) has the same principal part as the wave equation ( 1.2.35), so it has the same 
characteristic curves. 

For the diffusion equation ( 1.1.15) we have the characteristic equation (ϋ/2)φχ = 
0, which implies that φ = φ(ί) = constant, so that the straight lines t = constant are 
the characteristics. 

Laplace's equation (1.3.4) yields the characteristic equation 

Φΐ + Φΐ = 0. (3.2.15) 

For real-valued ф(х, у) we must have фу — фх — 0, so that no real solutions other 
than ф = constant exist. Thus, Laplace's equation has no real characteristic curves. 

The foregoing results are typical for equations of hyperbolic, parabolic, and elliptic 
type. Elliptic equations have no real characteristic curves, so that solutions cannot 
have discontinuous derivatives. Consequently, solutions и = u(x, y) are extremely 
smooth functions, and this is consistent with the nature of elliptic equations that 
describe equilibrium processes where everything has already smoothed itself out. 

Parabolic equations of the type we generally consider have the lines t = constant 
as characteristics, and discontinuities in derivatives must occur across these lines. 
Since we are concerned with the evolution of solutions as t (i.e., the time variable) 
increases from some fixed value of t (usually, t = 0), if these discontinuities occur 
initially when t — 0, they cannot be spread into the region t > 0, and again solutions 
are smooth functions. 

It is for hyperbolic equations that characteristics play the most significant role. 
Example 3.2 shows that for the wave and telegrapher's equations the characteristics 
extend from the (initial) line, say, t = 0 into the region t > 0. Thus in their role as 
curves across which discontinuities or singularities in the solution occur, they act as 
carriers of singular initial data for the solution, and the effects of these singularities are 
felt for all time. The importance of characteristics in the solution of various problems 
for hyperbolic equations is demonstrated throughout the book. 

Exercises 3.2 

3.2.1. Иф(х, у) = constant is a family of characteristics for (3.2.1), show that (3.2.5) 
reduces to (αψχ + bipy)uv = cu + d. Assuming that и is continuous across ξ = 
ф(х, у) = 0 whereas щ has a jump discontinuity there, demonstrate that the jump 
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[ΐίξ] at ξ = 0 satisfies the ordinary differential equation (αφχ + οψν)[ιΐξ]ή = c[it$] 
by differentiating (3.2.5) with respect to ξ. This result determines the variation of the 
jump [ΐίξ] along the characteristic ξ = 0. 

3.2.2. Consider the equation ux(x, y) + uy(x, y) = 0, and the continuous solution 
u(x, y) = Qi (y — x) for у < x and u(x, y) = «2(2/ — x) f° r У > x- Let ξ = у — x. 
Show that for ct\ ф a2, [щ] = ai — a.\ across ξ = 0 and that this jump satisfies the 
condition found in Exercise 3.2.1 for the variation of the jump. 

3.2.3. Considerthe equation ux(x,y)+uy(x,y) — cu(x,y) = 0 where с is a constant. 
Show that the appropriate (ξ, η) coordinates in (3.2.3) are ξ = у — x, η = у + x, 
where ξ = у — x = constant are the characteristics. Obtain the equation 2u,,(£, η) — 
cu{Ìi v) = 0 a nd the equation 2[«ς]^ = с[щ] for the jump [u^]. Verify that both 
u{x,y) = ßi(y - x) ехр[±с(у + х)], у < xandu(x,y) = ß2(y - x)exp[±c(y + 
x)], у > x are solutions of the given equation for у ψ χ and that the jump in ΐίξ 
across ξ = у — x = 0 satisfies the equation for the jump (β\ and ßi are constants). 

3.2.4. If ф(х, у) = constant is a family of characteristics for (3.1.1), show that (3.2.10) 
takes the form 2βϊΐςη + "fuvv + δηη + pu^ + Xu + σ — 0. If u^ has a jump across 
ξ = ф(х, у) = 0 and the terms in the equation abobve are continuous across ξ = 0, 
conclude on differentiating the equation with respect to ξ that the jump [щ(] satisfies 
2β[υ,ξξ]η + ρ[«ξξ] = 0 at ξ = 0, assuming smooth coefficients. 
3.2.5. Given the hyperbolic equation W;t:T(x, y) — uyy(x, y) = 0, show that и(ж, 2/) = 
ßi(y — x)2, у < xandu(x,y) = ßiiy — x)2-, у > a; are solutions with discontinuous 
second derivatives across the characteristic у = x if the constants βι and /?2 are 
unequal. If ξ = у — x, show that [ωξξ] satisfies the appropriate form of the equation 
for the jump across ξ = 0 given in Exercise 3.2.4. 

3.2.6. Let v(x,t) be a continuous solution of the diffusion equation (1.1.15) and 
assume that vt(x, t) has a jump across a characteristic t = constant. Show that the 
jump [vt] satisfies the equation [vt] = 0, so that no jump can exist under the given 
conditions. 

3.2.7. Let the inhomogeneous term d(x, y) in (3.2.1) have a jump across the curve 
ξ = ф{х,у) — 0 and assume that the solution u(x,y) is continuous there. Proceeding 
as in the text, show that the equation for the jump in щ across ξ = 0 is (αφχ + 
Ьфу)[и^ = [d]. Thus, if ξ = ф(х, у) = 0 is a characteristic curve, we must assume 
that и itself has a jump across ξ = 0 to avoid a contradiction. 
3.2.8. Show that the results obtained in Exercise 2.2.11 are consistent with those that 
follow from Exercise 3.2.7. 
3.2.9. By differentiating (3.2.10) as often as necessary with respect to ξ, show that 
jumps in Θηιι/3ξη, η > 3 must also occur across characteristics, assuming the 
appropriate lower-order derivatives are continuous. 

3.2.10. Ifu and the normal derivative ди/дп are specified on a curve у = h(x),show 
how to specify ux and uy on that curve. Then, assuming that ux[x, h{x)\ = a(x) 
and uy[x,h(x)] = β(χ), where a(x) and β(χ) are known functions, obtain the 
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equations {uxx + uxyh! = a', uxy + uyyh! = β', Auxx + 1Buxy + Сиуу = 
-Da — Eß — Ff + G} for the specification of uxx, uxy, and uyy along the curve 
у = h{x). [We assume that u[x, h{x)} = f{x).] Show that if Ah'2 - 2Bti + С = 0, 
the second derivatives of и cannot be specified uniquely on у = h(x), if they can be 
determined at all. If we set ф = у — h(x), show that the equation above becomes the 
characteristic equation (3.2.12). 

3.2.11. Consider the hyperbolic equation uxx(x,y) — uyy(x,y) — 0. Apply the 
method of the Exercise 3.2.10 and show that uxx, uxy, and uyy can be determined 
nonuniquely on a characteristic if the compatibility condition a'h' — ß' = 0 is sat-
isfied. Construct a set of initial conditions for и and ди/дп on the characteristic 
у - x — 0 such that the compatibility conditions are satisfied, and show that this 
problem for the given equation has infinitely many solutions. 

3.2.12. Show that the compatibility condition that guarantees that the problem in 
Exercise 3.2.10 has a (nonunique) solution along the characteristic у = h(x) is 
Ah'ß' - 2Bß' - Αοΐ + G - Ff - Eß - Da = 0. 

3.3 CLASSIFICATION OF EQUATIONS IN GENERAL 

Classification of Second Order PDEs 

We begin by considering the second order linear partial differential equation in n 
variables 

n n no n c\ 

T,T,^ex7dx- + ^bidx-+CU + d = °' ( 3 · 3 Λ ) 

i = l .7 = 1 J i=l 

where u, α^, òj, с, and d are functions of xi,..., xn. This equation cannot, in 
general, be reduced to a simple canonical form over a full region, as was done in 
the case of two independent variables in Section 3.1. For the purpose of classifying 
(3.3.1 ) into different types, we shall generalize the factorization procedure of Section 
3.1. It will then be seen that if the coefficients α^ are constants or if we restrict 
ourselves to a single point in {x\,..., x„)-space, it is possible to bring the principal 
part of (3.3.1 ) (i.e., the highest derivative terms) into a canonical form. 

With dXi = d/dxi, г = 1 , . . . , га, and дт
х = [дХг,..., дХп] as a row (gradient) 

vector (which is the transpose of the column vector dx), it is easily seen that we may 
express the principal part of the differential operator in (3.3.1) as 

n n 

Σ Σ aijdXidXj = dT
xA8x + ■■■. (3.3.2) 

t=l j=\ 

The dots stand for first derivative terms and then x n matrix A has the coefficients 
dij as its elements. We note that if the α^ are constants, the first derivative terms in 
(3.3.2) are absent. Since we assume that mixed partial derivatives of и are equal (i.e., 
uXiXj = uXjXi), (3.3.1 ) may be arranged so that its coefficients have the property that 
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ciij = üji and we assume that this has been done. Thus the matrix A is symmetric 
and it is assumed to be real valued in the present discussion. 

It is well known from matrix theory that a real-valued symmetric matrix A has 
only real eigenvalues λχ, À2, . . . , A„ (counted with their multiplicities) and that there 
exists a corresponding orthonormal set of n eigenvectors r i , Γ2, . . . , rn . Forming the 
matrix R with the eigenvectors r, as its n columns, we find that R is an orthogonal 
matrix with the property 

RTAR = D 

λι 

0 

0 

An 
That is, using R, we can diagonalize the matrix A. 

We now introduce the directional derivative operators 

d, Ь 

and form the vector operator 

r a.T i = 1 n, 

de = RTdx 

(3.3.3) 

(3.3.4) 

(3.3.5) 

[The operators <% may be compared with the operators Θξ and дц in (3.1.16)-
(3.1.17).] Since R is an orthogonal matrix so that RT = R~l (i.e., its transpose 
equals its inverse), (3.3.5) yields dx = Rd^. Introducing this expression into (3.3.2) 
gives 

n 

dlAdx + ■■■ = dl{RTAR)di + ■■■ = θ^ϋθξ + ..■ = £ ] X i d l + ■■■, (3.3.6) 
i= l 

where the dots represent first derivative operators (since the elements in the foregoing 
matrices need not be constant) and where (3.3.3) has been used. 

Recalling the classification method for equations in two independent variables 
given in Section 3.1, we find that in terms of the result (3.3.6), the elliptic case 
corresponds to the situation when Ai and Аг have the same sign. The hyperbolic case 
requires that Ai and A2 have opposite signs, whereas the parabolic case occurs when 
Ai or Аг equals zero. For the n-dimensional case in (3.3.1), we base our classification 
of the equation at a point P in (χχ,..., :rn)-space on the result obtained in (3.3.6). 
Thus it is characterized by the properties of the eigenvalues of A. 

With Ai, λ 2 , . . . , An as the eigenvalues of A, we introduce the following classifi-
cation for the equation (3.3.1): 

Г Ai > 0, all ί', 
< or elliptic type. (3.3.7) 
I A, < 0, all i, 

J One of the λέ > 0 or Ai < 0, 
|̂  All other Aj have opposite sign, hyperbolic type. (3.3.8) 

One or more of the Ai = 0, parabolic type. (3.3.9) 
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For the two- and three-dimensional cases, the classification above exhausts all 
possibilities. However, if n > 4 in (3.3.1 ), it may happen that two or more of the Xi 
have one sign, while two or more of the remaining Xi have the opposite sign. Such 
equations are said to be of ultrahyperboUc type. Since they do not occur often in 
applications, they are not studied in this book. 

If (3.3.1) is of fixed type at every point in a region, the equation is said to be ofthat 
type in the region. If the type changes within a region, the equation is said to be of 
mixed type. When the principal part of (3.3.1 ) has constant coefficients, the equation 
is clearly of one type everywhere in (χχ,..., £ra)-space. 

As basic examples of second order partial differential equations we have 

V2u = uxx + uyy + uzz = 0, elliptic type. (3.3.10) 

utt - V2u = utt - uxx - Uyy - uzz = 0, hyperbolic type. (3.3.11) 

щ — V2u = ut — uxx — Uyy — uzz = 0, parabolic type. (3.3.12) 

These are the higher-dimensional Laplace, wave, and diffusion equations. The opera-
tor V2 = д2/дх2 + д2/ду2 + д2 /dz2 is the Laplacian operator in three dimensions. 
A further example is given by Schròdinger's equation, 

Ь2 

ihut = V2u + Vu, (3.3.13) 
2ra 

where г = χ /^ϊ , h is Planck's constant, m is the mass, and V is a given potential 
function. This equation is clearly of parabolic type. 

Once we have exhibited how second order equations in n variables are to be clas-
sified, it is appropriate to ask whether there exist transformations of the independent 
variables (similar to those considered in Section 3.1) that bring (3.3.1) into a canon-
ical form, say, of the type given in (3.3.6) but where the principal part has constant 
coefficients. It is shown in the exercises that this is not possible, in general, if n > 3 
in (3.3.1). 

If the coefficients ац of the principal part are all constants, simple canonical forms 
do exist. In fact [noting (3.3.4)], the linear transformation 

ξί = τ[χ, i = l , . . . , n , (3.3.14) 

where xT = [x i , . . . ,xn], transforms the principal part of (3.3.1) into the form 

n n n 

Σ Σ aiJuxi*i = Σ XiUbb ' (3.3.15) 

where the λί are the (constant) eigenvalues of A. Clearly, an elementary further 
transformation of the variables ξι,..., ξη, can reduce the principal part to a form 
in which the coefficients are either 0, +1 , or —1. The resulting partial differential 
equation is then in canonical form. 
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Characteristic Surfaces for Second Order PDEs 

To determine the characteristics for (3.3.1) we look for surfaces φ(χ\,..., xn) = 
constant across which second derivatives of solutions of (3.3.1) can have discon-
tinuities. This can be done by introducing n (independent) families of surfaces 
φ^ ( x i , . . . , xn) = constant (with φ^~> = φ) and the corresponding coordinate system 
Vi = Φ^ (χι i ···) χη), г = 1 , . . . , п. Transforming from the Xi coordinates to the T7j 
coordinates in (3.3.1), we easily obtain, with 771 = φ, 

г=1 j=\ 

ифф + --- = 0, (3.3.16) 

where the dots represent second derivative terms in the variables 772,..., 77„, as well 
as first derivative terms and undifferentiated terms in all variables. Now ιΐφφ is a 
second derivative of и across the surface ф = constant. Thus if ф = constant satisfies 
the equation 

n n 

"Σ,^^ίΦχίΦχί =°> (3.3.17) 
«=i j = i 

Пфф cannot be determined uniquely in terms of υ,φ and u, as well as interior derivatives 
of u, given on the surface φ = constant. Consequently, the only surfaces across which 
и can have discontinuities in its second derivatives are solutions of (3.3.17). These 
surfaces are the characteristic surfaces for (3.3.1), and (3.3.17) is the characteristic 
equation. 

For example, Laplace's equation (3.3.10) has the characteristic equation 

Φΐ + Φΐ + Φ2
ζ = 0, (3.3.18) 

and this equation has no real solutions. Thus Laplace's equation has no real charac-
teristics. This indicates that its solutions are smooth functions. 

The three-dimensional wave equation (3.3.11) yields the characteristic equation 

Φί-Φΐ-Φ2
ν-Φΐ= 0· (3.3.19) 

Among the important solutions of (3.3.19) are the plane waves, 

φ — cot — K\x — К2У — K3Z = constant, (3.3.20) 

where ω2 = κ\ + κ^ + к§, and a singular solution, the characteristic cone 

Φ=(ί- t0)
2 -{х- х0)

2 -(у- y0)
2 -{z- z0)

2 = 0, (3.3.21) 

where P0 = (XQ, yo, z0, t0) is a given point. 
The three-dimensional diffusion equation (3.3.12) has the characteristic equation 

Φΐ + Φΐ + Φΐ= 0, (3.3.22) 
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which yields the characteristic surfaces 

ф(х, у, z, t) = t = constant. (3.3.23) 

Example 3.3. Classification of an Equation of Mixed Type. We consider 
the equation 

uXlXl+2(l+cx2)uX2X3 = uXlXl+(l+cx2)uX2X3 + (l + cx2)uX3X2 = 0 , (3.3.24) 

with constant c, and apply the classification procedure. From (3.3.2) we have 

02
Χλ + (1 + сх2)дХ2 дхз + (1 + сх2)дхз дХ2 = дхАЭх - сдхз, (3.3.25) 

where 

А = 

1 0 0 

0 0 1 + сх2 

0 1 + и 2 0 
дх 

дх 

дх 

дх 

(3.3.26) 

The eigenvalues and the corresponding orthonormalized eigenvectors of A are 

λι = 1, Γι = 
1 
0 
0 

Л2 = (1+СХ 2 ) , Г2 = 
0 

l/v/2 
. l/v/2 

λ3 = ~{1 + сх2), г3 

The orthogonal matrix R is 

0 
l/v/2 

-1/V2 
(3.3.27) 

1 0 0 

R= 0 l/v/2 l / \ /2 

0 l/y/2 -1/V2 

and it may be verified that R = RT = R'1 and that 

1 0 0 

RTAR = 

(3.3.28) 

Further, 

8ζ = Rdx = 

0 1 + cx2 0 

0 0 - 1 - C X 2 

dXl 

(dX2+dX3)/s/2 
(dX2-dX3)/V2 

= D. 

δξ2 

9ξ3 

(3.3.29) 

(3.3.30) 
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С 

so that since R is a constant matrix, 

дт
хАдх = (Д0 € ) г Л(Д0 с ) = Θ^ΌΘξ 

= λ^Ι + X2dl + Азв|а + ^ % - - ^ % , (3.3.31) 

where we have used (3.3.27) and (3.3.30). 
In view of (3.3.11)—(3.3.12), we conclude that (3.3.24) is parabolic when x2 = 

— 1/c (if с ф 0) and is hyperbolic in the half-spaces x2 > — 1/c and ж2 < — 1/c. 
If с = 0, all the eigenvalues are constant with Ai = X2 = 1 and Лз = —1, so that 
(3.3.24) is hyperbolic everywhere. Then, on applying the transformation (3.3.14), we 
have 

ξι=χι, 6 = -1=(х2 + хз), £з = - / = ( ж 2 - ж 3 ) , (3.3.32) 

and (3.3.24) takes on the canonical form 

4ιξι + иЫг - 43ξ3 = 0· (3.3.33) 

It is a wave equation in two dimensions with £з as the time variable. 

First Order Systems of Linear PDEs: Classification and Characteristics 

Next we consider the classification of first order systems of linear partial differential 
equations in two independent variables. They may be written as 

A(x, y) ^ ^ - + B(x, y) ^^Ù. = C(x, y)u(x, y) + d(x, y), (3.3.34) 

where A(x, y), B(x,y), and C(x,y) are n x n matrix functions of x and у and 
u(x, y) and d(a:, y) are n-component vectors. At least A(x, y) or B(x, y) is assumed 
to be nonsingular [i.e., aetA(x,y) ф 0, det B(x,y) ф 0, or both determinants are 
not zero]. Our classification procedure is based on the properties of the characteristic 
curves that can occur for (3.3.34). 

Now (3.3.34) represents a natural generalization of the linear first order equation 
(3.2.1 ) with the scalar dependent variable replaced by a vector variable. Consequently, 
if A(x, y) is nonsingular, it is appropriate to formulate an initial value problem for 
(3.3.34) that assigns the value u(x,y) = f(x) on the curve у = h(x). Proceeding 
as in Section 3.2, the characteristic curves of (3.3.34) are defined to be those curves 
on which ux(x,y) and uy(x,y) cannot be specified uniquely (if, indeed, they can 
be determined at all) in terms of the given initial data. The alternative procedure 
presented in Section 3.2 whereby the characteristics were determined as the curves 
across which continuous solutions of (3.3.34) can have discontinuous first derivatives 
can also be applied here. It is considered in the exercises. 



CLASSIFICATION OF EQUATIONS IN GENERAL 1 4 3 

On the initial curve у — h{x), we have u[x, h(x)] = f(x). Thus 

^^^-=ux+h'(x)uy=f(x). (3.3.35) 

Solving for ux in terms of Uj, and substituting in (3.3.34) gives 

(B - h'(x)A) uy = Cf(x) - Af(x) + d, (3.3.36) 

where A, B, C, and d are evaluated on the curve у = h(x). Now (3.3.36) represents 
a system of equations for uy, [on the curve у = h(x)]. The solution is unique only if 
the determinant of the coefficient matrix of is nonzero, i.e., 

det(ß - h'(x)A) = \B- h'(x)A\ φ 0. (3.3.37) 

A curve у = h(x) for which this determinant vanishes identically is called a charac-
teristic curve for (3.3.34). If the initial conditions u(x, h(x)) = ΐ(χ) are such that 
the system (3.3.36) has a (nonunique) solution, we have a characteristic initial value 
problem. The singularity of the matrix В — h'A gives rise to a compatibility condition 
on the right side of (3.3.36) for a solution to exist, which, in turn, implies a restriction 
on the data f(a;). Even if f(x) does not satisfy this condition, the curve у — h{x) is 
called a characteristic curve. 

To determine the full set of (possible) characteristic curves, we express the char-
acteristic determinant (3.3.37) in the form 

\B(x,y(x)) - y'(x)A(x,y(x))\ = 0, (3.3.38) 

with у — y(x)as the characteristic curve. The determinant is an nth-degree algebraic 
equation for y'(x), and this is the characteristic equation for (3.3.34). 

If all the roots y'{x) of (3.3.38) are real and distinct in some region, the system 
(3.3.34) is said to be strictly or totally hyperbolic in that region. Denoting these roots 
by the functions u>i(x,y), г = 1 , . . . , n, we obtain n families of characteristic curves 
as solutions of the equations 

y'(x) =u)i(x,y), i = l,...,n. (3.3.39) 

If all the roots uji(x,y) of (3.3.38) are complex valued, the system (3.3.34) is 
said to be of elliptic type. Then there are no real characteristic curves as carriers of 
possible discontinuities in derivatives of solutions and the solutions are expected to 
be smooth functions. The case where some roots are real and others are complex will 
not be considered. When all the roots are real but one or more is a multiple root, 
additional conditions which we now consider must be given to determine if (3.3.34) 
is of hyperbolic or parabolic type. 

If the matrix A in (3.3.34) is singular, (3.3.38) does not yield an nth-degree alge-
braic equation for y'{x), as the lines x constant are characteristics in that case and 
they cannot be expressed in the form у = y{x). Since A is singular, В must be non-
singular according to our assumptions. Then we consider the initial value problem 
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u = f(y) on the curve x = g{y). Proceeding as before and solving for ux we find 
that if x = x{y) is a solution of the characteristic equation 

\A(x(y), y) - x'(y)B(x(y), y)\=0, (3.3.40) 

the solution for ux is not unique, if indeed it exists at all. This is an nth-degree 
algebraic equation for x'(y) and each root determines a characteristic curve. The 
classification of the system (3.3.34) based on the roots x'(y) of (3.3.40) parallels that 
given above based on the roots y'(x) of (3.3.38) and will not be repeated here. 

If we set φ = у — h(x) = 0 or ф = x — g(y) = 0, both characteristic equations 
(3.3.38) and (3.3.40) can be written as 

\фхА + фуВ\ = 0. (3.3.41) 

This is often referred to as the characteristic equation for (3.3.34). 
To complete the classification process we now assume that the matrix В in (3.3.34) 

is nonsingular throughout the region under consideration so that it has an inverse. 
Multiplying through by the inverse matrix B~x in (3.3.34), we obtain an equation of 
the form 

uy(x, y) + A(x, y)ux(x, y) = C{x, y)u(x, y) + d(x, y); (3.3.42) 

that is, we have effectively put В = I, the identity matrix. [With у replaced by t, 
(3.3.42) has the form of many time-dependent systems that occur in applications.] 
Then, with В = I in (3.3.40) and А; (г = 1 , . . . , n) as the eigenvalues of A counted 
with their multiplicities, we have x'(y) = λ,. If all the eigenvalues are real and 
there exist n linearly independent eigenvectors 14 (г = 1 , . . . , n) for the matrix 
A, the system (3.3.42) is of hyperbolic type. The multiplicity of the eigenvalues 
plays no role, but it is true that when all the eigenvalues are distinct, there exist n 
linearly independent eigenvectors. (Then the system is strictly or totally hyperbolic, 
as indicated above.) In particular, if Л is a (real) symmetric matrix, there are always 
n linearly independent eigenvectors. We note that if there are multiple eigenvalues, 
there are fewer than n independent families of characteristic curves. However, if there 
are multiple (real) eigenvalues and fewer than n linearly independent eigenvectors 
for A, the system (3.3.42) is of parabolic type. 

Systems of Hyperbolic Type 

When the system (3.3.42) is of hyperbolic type, it can be transformed into the fol-
lowing normal or characteristic form. We form the matrix R whose column vectors 
rj (x, y),..., rn(x, y) are eigenvectors of A(x, y). Then let 

u(x,y) = R{x,y)\(x,y) (3.3.43) 

in (3.3.42). Since R(x, y) is nonsingular, we have for \(x, y), 

Vy(x, У) + [Я^Чх, У)МХ, y)R(x, 2/)]VX(:E, y) = C{x, y)\{x, y) + d{x, y), 
(3.3.44) 
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where R 1 (x, y)A(x, y)R(x, y) is a diagonal, not necessarily constant, matrix whose 
diagonal elements are the eigenvalues Aj(x, y) of A(x, y). That is, 

R 1{x,y)A(x,y)R{x,y) 
M(x,y) о 

K{x,y) 

(3.3.45) 

This follows since R~1(x,y)A(x, y)R(x,y) is a similarity transformation which 
diagonalizes the matrix A(x,y). Also, C(x,y) = R~1(x,y)C(x,y)R(x,y) — 
R~1(x,y)Ry(x,y) - R~1{x,y)A(x,y)Rx(x,y), where Rx(x,y) and Ry(x,y) are 
derivatives of the matrix R(x, y), and d(x, y) = R~x (x, y)d(x, y). The representa-
tion (3.3.44) is often referred to as the normal form of the hyperbolic system. 

Now each eigenvalue \i(x, y) determines a characteristic direction x'(y), via the 
equation x'(y) = Xi(x, y). As a result, the system (3.3.44) can be written in terms of 
the components Vi(x, y) of \(x, y) as 

dv aVi V^ , x 
dy on 

J ' = l 

dx 
dy Xi: i = l , . . (3.3.46) 

The -fij and Si are determined from C(x, y) and c£(:r, y) in (3.3.44). Each иДж, у) is 
differentiated along a characteristic curve determined from x'(y) = Xi(x, y). There-
fore, this system is said to be in characteristic form. 

In general, the system (3.3.46) must be solved simultaneously. If the equations in 
the system are not coupled, each equation can be solved separately along its character-
istic curve. This is the case, for example, if С = 0 in (3.3.34) and A and В are constant 
matrices. Even if the equations cannot be solved separately, iteration methods can be 
applied that make use of the fact that the derivative terms are uncoupled. 

Example 3.4. First Order Systems in Two Dependent Variables. In Sec-
tion 2.1 the wave, diffusion, and Laplace's equations were reduced to first order sys-
tems. We now reconsider their classification in system form based on the foregoing 
discussion. 

The system (2.1.2) for the wave equation may be written as 

ut(x, t) + Aux(x, t) = Cu(x, t), (3.3.47) 

where 

u(a:,i) = v(x,t) 
u(x,t) 

Putting у = t in (3.3.38), we have 

\I-t'(x)A\= 1 + lt>{x) 

- 7 0 
0 7 

0 
1 - 7i'(ar) 

C = 
0 1 
о о (3.3.48) 

1 - [it'(x)]2 = 0 (3.3.49) 
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as the characteristic equation, because В = I, the identity matrix, in this case. Since 
t'(x) = ±1 /7 , we obtain, as expected, the characteristic curves x ± jt = constant. 
The roots of the characteristic equation are ω\ = l/η and ω^ = —1/7, and these are 
real and distinct. Thus the system (3.3.47) is strictly hyperbolic. 

The Cauchy-Riemann equations (2.1.6) have the form 

Aux{x, y) + Buy(x, y) = 0, 

where 

u(x,y) --

Thus (3.3.38) becomes 

\B - y'(x)A\ = 

w(x,y) 
u{x,y) A = I, В 

0 - 1 
1 0 

(3.3.50) 

(3.3.51) 

~У1Х) -y\x) | = l + № ) ) 2 = 0 . (3.3.52) 

— 1), there are no real characteristics and the system Since y'{x) = ± г (г -
(3.3.50) is elliptic. 

The system (2.1.7) that represents the diffusion equation has the form 

Aux(x, t) + BvLt(x, t) = Cu(x, i), 

where 

u(x, t) = 
u(x,t) 
v(x,t) A = 

-D/2 0 
0 1 B = 

0 1 
0 0 с 

We multiply across in (3.3.53) by A = 
-2/D 0 

0 1 and obtain 

ux(x, t) + But(x, t) = Cu(x, t), 

where 
B = 

0 -2/D 
0 0 C = 

2c/D 0 
1 0 

This has the basic form of (3.3.35) and has the characteristic equation 

\B-t'(x)I\ = 
-t'(x) -2/D 

0 -t'(x) = (t'(x))2=0. 

(3.3.53) 

- с О 
1 0 

(3.3.54) 

(3.3.55) 

(3.3.56) 

(3.3.57) 

Thus t'(x) = 0 is a double root and the characteristic curves are t = constant. Since 
1 

the matrix В has only one linearly independent eigenvector г 

shown), the system (3.3.55) is of parabolic type. 
0 

(as is easily 
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The system 
ut(x, t) + ux(x, t) = Cu(x, t), (3.3.58) 

where 
(3.3.59) 

is equivalent to the single equation 

uxx(x,t) + 2uxt{x,t) +utt(x,t) - u(x,t) = 0. (3.3.60) 

Comparing (3.3.58) with (3.3.35), we sett = у and A = I. The identity matrix / has 
the double real eigenvalues λι = À2 = 1 and the linearly independent eigenvectors 
Γι = i and Γ2 = j . Thus (3.3.58) is a hyperbolic system but it is not strictly hyperbolic. 
Yet according to the classification procedure of Section 3.1 [with у = t in (3.1.1)], 
we have A = В = С = 1 in (3.3.60), so that B2 - AC = 0 and (3.3.60) is of 
parabolic type. This example shows that the definition of hyperbolicity given above 
for systems of equations is somewhat more comprehensive than that given for single 
equations. 

Higher-Order and Nonlinear PDEs 

Next we turn to the consideration of a single linear partial differential equation of 
order m in n independent variables. We have 

n n n „ m 

ΣΣ·· ·Σ^5^*-4 (".ei) 
2 1 = 1 22 = 1 Ìm = l m 

where we write only the principal part of the differential equation. The dots represent 
lower derivative and undifferentiated terms in u(x\,... ,xn)· Adapting the proce-
dure given above for the second order equation (3.3.1), it is readily shown that the 
characteristic surfaces φ{χ\,... ,xn) = constant are solutions of the characteristic 
equation 

n n 

_ Σ · " Σ «м . -лЖ, ··■&:«„. =0· (3-3-62) 
« 1 = 1 i m = l 

These are surfaces in n-space across which mth-order derivatives of solutions of 
(3.3.61) can have discontinuities. If there are no real surfaces that satisfy (3.3.62), 
the equation (3.3.61) is of elliptic type. Classification into other types is somewhat 
more complicated and is not considered. However, specific equations of higher order 
are discussed in the text. 

As an example we consider the biharmonic equation in two variables, 

V2 V2u(x, y) = uxxxx(x, y) + 2uxxyy(x, y) + Uyyyy(x, y) = 0. (3.3.63) 

u(x,t) 
u(x,t) 
v(x,t) С 
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Its characteristic equation is 

Clearly, it has no real solutions, so that (3.3.63) is elliptic. 
Next, we consider a system of first order equations in n variables, 

(3.3.64) 

n „ 

»=i 
dxi 

c = 0, (3.3.65) 

where A1 and Barekxk matrix functions of x\,... ,xn and u and с are /c-component 
column vector functions of χχ,..., xn. The characteristic surfaces for (3.3.65) are 
surfaces φ(χχ,... ,xn) = constant on which the derivatives uXi (i = 1 , . . . , n) cannot 
be specified uniquely (if at all) for given initial data u = f on those surfaces. It can 
be shown that such surfaces must be solutions of the characteristic equations 

det ±*£ 
<=i 

Σ,Α'φ^ = 0. (3.3.66) 

Again, if no real surfaces satisfying (3.3.66) exist, (3.3.65) is of elliptic type. We 
shall have occasion to characterize systems as being of hyperbolic or parabolic type 
in specific examples and exercises but do not classify them in general. We also do 
not discuss the classification of. systems of higher-order equations. Technically, they 
can always be reduced to first order systems. 

Finally, we consider nonlinear equations and systems. If the principal parts of 
these equations are linear and the nonlinearities are confined to the lower order terms, 
the classification of these equations proceeds as above. For example, the equation 

V2u = eu 

is of elliptic type, while the system 

( ut(x, t) - -yux(x, t) = u2(x, t) + v(x, t), 

I vt(x, t) + ηνχ{χ, t) = u(x, t)v(x, t), 

(3.3.67) 

(3.3.68) 

where 7 = constant is of hyperbolic type. 
As to equations where nonlinearities occur in the principal parts, we deal only 

with quasilinear equations. That is, the principal part is linear in the highest deriva-
tive terms, but it may have coefficients that contain lower derivative or undifferentiated 
terms. The classification proceeds as for the linear case, but it depends on the specific 
solution under consideration. The characteristics also depend on the specific solu-
tion. (This fact was observed in our discussion of first order quasilinear equations in 
Chapter 2.) 

As an example we consider the system 

tit(a;,i) - vx(x,t) = 0, 
vt(x, t) + c'(u(x, t))ux(x, t) = 0, (3.3.69) 
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where c(u) is a given differentiable function. (This system occurs in a number of 
branches of continuum mechanics in one form or another. For example, it describes 
the motion of nonlinear elastic waves in a bar.) Identifying у with t, (3.3.69) has the 
form (3.3.42) with 

u(x, t) 
u(x,t) 
v(x,t) 

0 - 1 
-c'(u(x,t)) 0 , С = 0, d = 0. (3.3.70) 

The eigenvalues of the matrix A are given as λι (x, t) = yjc'{u(x,t)) and X2 (x, t) = 
— ^d(u(x,t)). If the solution u(x,t) is such that c'(u(x,t)) > 0, we find that 
(3.3.69) is hyperbolic. If c'(u(x, t)) = 0, the system is clearly parabolic, while it 
is elliptic if c'(u(x, t)) < 0. In the hyperbolic case, the characteristic curves are 
determined from the equations dx/dt = ±\Jc!(u{x,t)). They obviously depend on 
the particular solution u(x, t) under consideration. 

Putting v(x, t) = wt (x, t) and u(x, t) = wx (x, t) in (3.3.69), we obtain the second 
order quasilinear equation 

wtt(x,t) - c'(wx(x,t))wxx(x,t) = 0. (3.3.71) 

Considering a specific solution w(x, t) in (3.3.71 ) and recalling the results of Section 
3.1, we have 

B2(x,t) - A(x,t)C(x,t) = c'(wx(x,t)). (3.3.72) 

Thus (3.3.71) is hyperbolic if c'(wx(x, t)) > 0, parabolic if c'(wx(x, t)) = 0, and 
elliptic if c'(wx(x, t)) < 0. This is consistent with the results above for the system 
(3.3.69) since u(x, t) = wx(x, t). 

Quasilinear First Order Systems and Normal Forms 

We consider the quasilinear system 

A(x, t, u)ux + B(x, t, u)ut = c(x, t, u), (3.3.73) 

where u and с are n-component vectors and the n x n matrices A and B, as well as c, 
are functions of x, t, and u. We assume that the matrix В is nonsingular and consider 
the eigenvalue problem 

ATr = XBTr, (3.3.74) 

where AT and BT are the transposes of the matrices A and B. Since BT is non-
singular, this represents a generalized eigenvalue problem for AT. [It can also be 
interpreted as a generalized eigenvalue problem for A with respect to B, in terms 
of left (row) eigenvectors r T rather than right (column) eigenvectors r. That is, we 
consider the eigenvalue problem r T A = XrTB.] If all the eigenvalues λ, are real and 
there exist n linearly independent eigenvectors r^, the system (3.3.73) is ofhyperbolic 
type. If there are multiple (real) eigenvalues and fewer than n linearly independent 
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eigenvectors, the system (3.3.73) is of parabolic type. If all the eigenvalues are com-
plex, it is of elliptic type. [We remark that this classification also applies to the linear 
system (3.3.34) if В is a nonsingular matrix.] 

If the system (3.3.73) is hyperbolic, it is possible to reduce it to a simpler form 
known as the characteristic normal form. To do so, we multiply (3.3.73) on the left 
by the transpose of each of the n independent eigenvectors rj determined above. This 
yields 

rjB[ut + AjUx] Ξ Σ O-ij 
3=1 

duj duj 
dt г дх 

= r(c = Si, i = Ι,.,.,η. (3.3.75) 

Now the characteristic curves for this system are the solutions of x'(t) = λ,. Thus, 
along each characteristic and for each eigenvector, we have 

/ill · (ιΎ 

^aij~dt =δί ОП Έ = λέ' i = 1 ' · · · ' " · (3.3.76) 
3 = 1 

This is the characteristic normal form for the system. In each of the n equations the 
components of u are differentiated in a single direction, the characteristic direction. 
Whereas a characteristic normal form can also be obtained for the linear system 
(3.3.34), it is not as strong a simplification of the linear system as was achieved in the 
characteristic form (3.3.46). In the characteristic form only a single unknown function 
is differentiated in each equation. In the following example and in the exercises, it 
will be shown that it can be possible to simplify the characteristic normal form even 
further for certain quasilinear hyperbolic systems. 

Example 3.5. The Characteristic Normal Form. We construct the charac-
teristic normal form for the quasilinear system (3.3.69) in the hyperbolic case. This 
system has the matrix form (3.3.73) with A and u defined as in (3.3.70). The matrix 
В = I and the vector с = 0. The eigenvalues for the problem (3.3.74) are the same 
as those for the eigenvalue problem for A. They were found to be λι = \/d{u} and 
\2 = — \/c'(u) in the preceding discussion of (3.3.69). [We assume that c'(u) is pos-
itive.] Two generalized eigenvectors are easily determined to be rf = [yjc'{u), -1] 
авагЪ = \у/?Щ,\]. 

To obtain the normal form, we multiply the equation Aux + ut = 0 by the eigen-
vectors rf and τζ. This yields 

л / с » ut ± s/d{u)ux T vt ± yjc'{u)vx = 0, (3.3.77) 

where the upper signs correspond to λι and the lower signs to A2. Along the charac-
teristics x'(t) = ± \ /c ' (u) these equations can be written as 
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The equations (3.3.77) and (3.3.78) represent the characteristic normal form for the 
given system. 

For this problem a further simplification is possible. Equation (3.3.78) can be 
written as 

— I \Jd{u) du =F v 0 on -4- =±Jcf(u). (3.3.79) 
at 

This shows that the bracketed terms are constant on the corresponding characteristics. 
That is, 

F dx 
\/с!{и) du =F v = constant on — = ±Jd{u). (3.3.80) 

dt 
These terms are referred to as the Riemann invariants for this problem. Such invariants 
occur in a number of fluid mechanics problems and play an important role in their 
solution. 

Exercises 3.3 

3.3.1. Show that the equation 3uXlXl - 2uXlX2 + 2uX2X2 - 2иХ2Хз + ЗиХзХз + 
ЪиХ2 — uX3 + lOu = 0 is of elliptic type by determining that the matrix A [see 
(3.3.2)] has the eigenvalues λι = 1, Аг = 3, and Аз = 4. Determine a transformation 
(3.3.14) that yields the equation u i l ? 1 + 3щ2& + 4uÌ3£3 + (9/\/б)щг + (1/\/2)щ2 -
(6/\/3)ωξ3 + 10ΐί = 0,foru(£i,£2,£3)· Construct transformations of the independent 
and dependent variables that replace the coefficients of the second derivative terms 
by unity and eliminate the first derivative terms. 

3.3.2. Show that the PDE иХ1Хз(х1,х2,хз) = О is of parabolic type. Use (3.3.14) 
to bring it into canonical form. 

3.3.3. Classify the following equations into elliptic, parabolic, or hyperbolic type; (a) 
uxx + 2uyz + cos(x)uz - exp(y2)u = cosh(z); (b) uxx + 2uxy + uyy + 2uzz + (1 + 
xy)u = 0; (c) 7uxx - I0uxy - 22uyz + uyy - I6uxz - 5uzz = 0; (d) ezuxy - uxx = 
\og[x2 + y2 + z2 + 1]. 

3.3.4. Show that all linear second order equations of elliptic type with constant 
coefficients can be brought into the form Σ " = 1

 ωχίχ; + cu = F(xi,... ,xn). 

3.3.5. Show that all linear second order equations of hyperbolic type (in n + 1 
variables) with constant coefficients can be transformed into ΣΓ=ι UX%XÌ ~ ux0x0 + 
cu = F(x0,xi,-- .,xn)-

3.3.6. Determine the regions where uxx(x, y, z) — 2x2uxz(x, y, z) + uyy(x, y, z) + 
uzz{x, y, z) = 0 is of hyperbolic, elliptic, or parabolic type. 

3.3.7. Demonstrate that the equations (a) V · (p(x)Vit(x)) + q(x)u(x) = F(\); (b) 
p(\)ut(\,t) - V · (ρ(χ)Υω(χ,ί)) + q(\)u(\,t) = F(x,t), and (c) p(x)utt(x,i) -
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V ■ (p(x)Vu(x, t)) + \(x)ut(x,t) + q(x)u(x,t) — F(x,t) are of elliptic, parabolic, 
and hyperbolic types, respectively, in a region R where p(x) and p(x) are positive. 

3.3.8. Considering that if we disregard the order of differentiation, the function 
"(£i ,···,&») has exactly \n(n — 1) mixed partial derivatives of order n, show that 
if n > 3 there are, in general, an insufficient number of equations of transforma-
tion leading from (3.3.2) to (3.3.6) to eliminate the mixed partial derivative terms in 
ξι,.-.,ξη throughout a given region. If n = 3, the mixed partial derivative terms 
can be eliminated but the coefficients of the щ^ terms cannot, in general, be made 
to equal plus or minus 1, as was done in the two-dimensional case. 

3.3.9. Use the transformation (3.3.32) to bring (3.3.24) of Example 3.3 into the form 
«€ii! + [1 + (c/\/2)(& + &)]«&& - [1 + (c/>/2)(& + Ы К з « з = °· Attempt a 
transformation of this equation to bring it into the form (3.3.33). 

3.3.10. Show that uy(x,y)+Aux(x,y) = 0, with A = , is of parabolic 

type. 

3.3.11. Show that the system Aux(x,y) + Buy(x,y) = Си + d, where A = 
0 

- 1 B = 1 
-1 -1 

, is of elliptic type. 

3.3.12. Determine the characteristic curves of the strictly hyperbolic system Uy(x,y)+ 
Aux(x,y) = Cu(x,y), where 

1 0 1 
0 2 3 
0 0 - 1 

С 
- 2 1 5 
0 3 7 
1 - 3 - 1 0 

Reduce this system to the normal form (3.3.44). 

3.3.13. Show that uy(x,y) + Aux(x,y) = 0, where A = 
1 1 0 
1 1 0 
0 0 2 

is a 

hyperbolic system and reduce it to the normal form (3.3.44). 

3.3.14. (a) Use the canonical form obtained in Exercise 3.3.13 to show that the 
general solution of the equation uy(x,y) + Aux(x,y) = 0 given in that exercise 

(fi(x)+f2(x-2y))/V2 
(-fi(x) + f2(x-2y))/V2 

/з(х - 2y) 
isu(cc,y) = 

for Uy(x, y) + Aux(x, y) = 0 with u(a;, 0) 

. (b) Solve the initial value problem 

sina; 
1 

ex 

1 
2e~x 

2ex 

1 is strictly 3.3.15. Show that uy(a;, y) + Aux(x, y) = 0, where A = 

hyperbolic. Determine its characteristic curves and reduce it to the normal form 
(3.3.44). 
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3.3.16. If the constant coefficient system uv(x, y) + Aux(x,y) = 0 is hyperbolic 
[with u(x, y) as an n-component vector], show how to obtain a general solution by 
using the normal form (3.3.44). 

3.3.17. Use the method given in the text that leads up to equation (3.2.7) to show 
that if u(x, y) is a continuous solution of (3.3.34) whose first derivatives have a jump 
across the curve ξ — ф(х, у) = 0, the jump in the derivative across the curve satisfies 
the equation (Αφχ + Βφυ)[ιΐξ] = 0. Since the jump is nonzero by assumption, 
conclude that ф(х, у) = 0 satisfies (3.3.41) and must be a characteristic curve. 

3.3.18. Let у = h{x) be a characteristic curve for the strictly hyperbolic system 
(3.3.34). Then the matrix В — h'A is singular. Multiply on the left in (3.3.36) by a 
left nullvector of the singular matrix and determine a compatibility condition on the 
initial value u = f(x) for the problem to be a characteristic initial value problem. 

3.3.19. Consider the strictly hyperbolic system uy(x,y) + Aux(x, у) = О with 
Г 1 2 1 

A = . Show that у = — x and у = x/3 are characteristic curves for this 

system. If we set u = f(x) on each of these curves, determine conditions on f(x) 
so that in each case we have a characteristic initial value problem. For appropriately 
chosen f(a:), determine the (nonunique) solution in each case. 

3.3.20. Reduce Euler's equations of one-dimensional isentropic fluid flow (see Sec-
tion 8.5), {pt + upx + pux = 0, ut 4- (c2/p)px + uux = 0}, to characteristic normal 
form. Also, determine the Riemann invariants for this system. 

3.3.21. (a) Reduce the shallow water equations (see Section 10.3) {ht +uhx + hux = 
0, ut + uux + ghx = 0}, where h is the height of the water above a horizontal bottom, 
и is its velocity, and g is the gravitational constant, to characteristic normal form, (b) 
Determine the Riemann invariants for this system. 

3.3.22. Reduce Euler's equations of one-dimensional adiabatic flow (see Exercise 
8.5.19), {pt + upx + pux = 0, щ + uux + (l/p)px = 0, pt + upx + с2рих}, to 
characteristic normal form. 

3.3.23. Show that uttt(x,t) — c2uxxt{x,t) + a(utt(x,t) — a2uxx(x,t)) = 0 is of 
hyperbolic type and determine its characteristic curves. (It is of hyperbolic type if 
the characteristic curves are real and distinct.) 

3.4 FORMULATION OF INITIAL AND BOUNDARY VALUE PROBLEMS 

As seen in our discussion of the model equations derived in Chapter 1 and the first 
order PDEs of Chapter 2, we are not merely interested in finding arbitrary functions 
that satisfy the given differential equations. Rather, we ask for specific solutions that 
satisfy certain auxiliary conditions associated with the given problem. 

The diffusion and telegrapher's or wave equations, which are of parabolic and 
hyperbolic types, respectively, both contain a time dependence. We have found it 
appropriate in our discussion in Chapter 1 to prescribe values of the solutions of these 
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equations at an initial time t = 0. For the diffusion equation, initial values for the 
density function v(x, t) were assigned, and for the telegrapher's and wave equations 
v(x, 0) and dv(x, 0)/dt were prescribed. In case the values of x are unrestricted, this 
constitutes an initial value problem for each of these equations. 

When the values of x are restricted to lie in a bounded or semi-infinite interval, 
v(x, t), dv(x, t)/dx, or a linear combination of both must be prescribed on the bound-
aries for all t > 0, as seen in our discussion of the diffusion equation in Chapter 1. 
Such conditions are also appropriate for the telegrapher's or wave equation when x 
is similarly restricted. The combined prescription of v(x, t) and/or its derivatives on 
the initial line t = 0 and on the boundary line(s) constitutes an initial and boundary 
value problem for each of these equations for v(x, t). 

Laplace's equation was shown in Chapter 1 to characterize an equilibrium or 
steady-state situation where time plays no role. The unknown function v(x, y) was 
specified on the boundary of the region under consideration. This constitutes a bound-
ary value problem for Laplace's equation. 

As we have seen, the equations discussed in Chapter 1 are representative of second 
order equations of parabolic, hyperbolic, and elliptic type. As a general rule (in 
terms of the equations we shall consider), parabolic and hyperbolic equations are 
characteristic of problems that contain a time dependence. Initial value or initial and 
boundary value problems are appropriate for such equations, depending on whether 
spatial boundaries occur for these problems. Elliptic equations represent equilibrium 
or steady-state situations in regions with boundaries (in which time-dependent effects 
play no role), and boundary value problems are appropriate for such equations. 

The number of initial and/or boundary conditions that should be assigned for a 
given differential equation depends on several factors. It may be stated that if the 
initial line or plane t = 0 is noncharacteristic and the equation contains к time 
derivatives, the function and its first к — 1 time derivatives must be prescribed at 
t = 0. This is valid if we deal with a vector or scalar function. The dependence of 
the number of boundary conditions on the order of the differential equations is more 
complicated and requires separate discussions for different classes of equations. 

More generally, if the data for the problem are not given at t = 0 or on some spatial 
boundary for all time, it becomes necessary to examine if they have the character 
of initial or boundary data. This determination again depends on the given PDE. 
When data are given in a region that has the character of an initial curve or surface, 
the problem is known as a Cauchy problem. Also, for certain equations, boundary 
data are referred to as Dirichlet or Neumann or Robin data. They are discussed 
at appropriate places in the text. Further, we consider data given on characteristic 
curves and surfaces, and it is necessary to determine under what circumstances such 
problems can be solved. (Certain problems of this type have been encountered in 
Chapter 2 and in preceding sections of this chapter.) 

Well-Posed Problems 

The problem of deciding what form of initial and/or boundary data are appropriate 
for given partial differential equations is fairly complicated. A set of guidelines 



FORMULATION OF INITIAL AND BOUNDARY VALUE PROBLEMS 1 5 5 

was proposed by Hadamard, who listed three requirements that must be met when 
formulating an initial and/or boundary value problem. A problem for which the 
differential equation and the data lead to a solution satisfying these requirements is 
said to be well posed or correctly posed. If it does not meet these requirements, it is 
incorrectly posed. 

Hadamard's conditions for a well-posed problem are: 

1. The solution must exist. 
2. The solution must be determined uniquely. 
3. The solution must depend continuously on the initial and/or boundary data. 

The first two conditions require that the equation plus the data for the problem must 
be such that one and only one solution exists. The third condition states that a slight 
variation of the data for the problem should cause the solution to vary only slightly. 
Thus, since data are generally obtained experimentally and may be subject to numer-
ical approximations, we require that the solution be stable under small variations in 
initial and/or boundary values. We cannot permit wild variations to occur in the solu-
tion if the data are altered slightly. These are reasonable requirements for a problem 
arising in a physical context. 

Thus for any given differential equation defined over a certain region, one must 
check whether the data assigned for the problem meet the Hadamard criteria. It was 
seen in Chapter 1 that the equations we derived were naturally associated with a set 
of initial and/or boundary conditions. These conditions are, in fact, appropriate for 
the differential equations that were considered and the problems given in Chapter 1 
are well posed. It may well be argued that any problem arising in a physical context 
comes with built-in data, so that there is no need to decide which data are relevant. 
However, since any PDE representing a physical process is a mathematical model 
obtained, in general, under various simplifying assumptions, it is not a priori obvious 
that the formulation of the mathematical problem is reasonable or well posed. 

The problems we consider in this book are sufficiently standard that their appro-
priate formulations are well understood. Nevertheless, we comment occasionally on 
questions of uniqueness or continuous dependence on data. 

It should be noted that certain problems representing physical processes are, in 
fact, incorrectly posed in the sense of Hadamard, and this does not appear to be due 
to a weakness in the mathematical model. Such problems have been studied and 
methods for dealing with such problems are continuing to be developed. We do not 
consider such problems in this book. 

We now present two examples of incorrectly posed problems and discuss further 
questions relating to this matter in Section 3.5. 

Example 3.6. Incorrectly Posed Problems. Boundary value problems are, as 
a rule, not well posed for hyperbolic and parabolic equations. This follows because 
these are, in general, equations whose solutions evolve in time, and their behavior at 
later times is predicted by their previous states. Thus a boundary value problem that 
arbitrarily prescribes the solution at two or more separate times (at one or more given 
points in space) is not reasonable. 
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As a simple example, we consider the hyperbolic equation uxy(x,y) = 0 in 
the square region 0 < x < 1 and 0 < у < 1 with boundary values assigned on 
the sides of the square. We show that this problem has no solution if the data are 
prescribed arbitrarily. Since uxy(x,y) = 0 implies that ux(x,y) = constant, we 
have ux(x, 0) = ux(x, 1). If we put u(x, 0) = f(x) and u(x, 1) = g(x), we have 
ux(x, 0) = f'(x) and ux(x, 1) = g'(x). Unless f(x) and g(x) are prescribed such 
that f'(x) = g'(x), the boundary value problem cannot be solved, so it is incorrectly 
posed. 

For Laplace's equation, the Cauchy problem is, in general, not well posed. This 
is shown by the following example credited to Hadamard. We consider the equation 
uxx(x,y) + uyy(x,y) = 0 in the region у > 0 with the Cauchy data u(x,0) = 0 
and uy(x,0) = (sinnx)/n. The solution is easily obtained as u(x,y) = 
(sinh(ny)s'm(nx))/n2. Now, as n —» oo, uy(x, 0) —> 0, so that for large n the 
Cauchy data u(x, 0) and uy(x, 0) can be made arbitrarily small in magnitude. How-
ever, the solution u(x, y) oscillates with an amplitude that grows exponentially like 
eny as n —> oo. Thus arbitrarily small data can lead to arbitrarily large solutions 
and the solution is unstable. This violates the third condition of Hadamard, requiring 
continuous dependence of the solution on the data. 

Exercises 3.4 

3.4.1. Solve the Cauchy problem for Laplace's equation given in Example 3.6 by 
expanding u(x, y) as a power series u(x, y) = Y^hLo[dku(x, 0)/dyk]yk/k\. Deter-
mine the derivatives дки(х, 0)/дук by differentiating Laplace's equation uyy(x, y) = 
—uxx(x, y) along the initial line у = 0 and using the Cauchy data given there. 

3.4.2. Construct the solution of the Cauchy problem for the heat equation щ {x,t) = 
c2uxx(x,t) with the initial condition u(x,Q) = f(x), as a power series u(x,t) = 
Y^=o\dnu{x, 0)/dtn]tn/n\, assuming that f(x) is sufficiently differentiable. [De-
termine the derivatives dnu(x, 0)/dtn from the heat equation and the initial condi-
tion.] 

3.4.3. Use the method of Exercise 3.4.2 to show that the solution of ut(x,t) = 
c2uxx(x, t), u(x, 0) = cos(x) is given as u(x, t) = cos(a;) exp(—c2i). 

3.4.4. Obtain a solution of the telegrapher's equation utt(x,t) — "f2uxx(x,t) + 
2\ut(x, t) = 0, where 7 and λ are positive constants, in the form of a power se-
ries in t if the Cauchy data are given as u(x, 0) = cos x, ut(x, 0) = 0. 

3.4.5. Show that the solution of the initial value problem for the wave equation 
(2.1.1) is continuously dependent on the initial data (2.2.13), by showing that over 
the finite time interval 0 < t < T, d'Alembert's solution (2.2.17) is uniformly small 
in magnitude if the same is true for the initial values f(x) and g(x). 

3.4.6. Consider the wave equation uu{x,t) = uxx(x,t) in the square 0 < x < 
7Γ, 0 < t < 7Γ, with u{x, t) = 0 on the boundary. Show that u(x, t) = sin(x) sin(i) 
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is a solution of the equation that vanishes on the boundary. Explain why the boundary 
value problem for the wave equation in the given square with и — f on the boundary 
is not well posed. 

3.4.7. Use the solution u(x,t) — (l/n)exp(pn2t)sm(nx) of the backward heat 
equation puxx + ut = 0 with p > 0 to show that the initial and boundary value 
problem for that equation in the interval 0 < x < π with t > 0, where u{x, t) is 
prescribed on x = 0, x = π, and t — 0, is not well posed. 

3.4.8. Consider the exterior boundary value problem for Laplace's equation 
V2u(x, y, z) = 0, with p2 = x2 + y2 + z2 > a2 and u(x, y, z) prescribed on 
the sphere p = a as u\p=a = A (A - constant). Show that it has (at least) two 
solutions, и = А, и = Aa/p. (The solution can be shown to be unique if we require 
that и —» 0 as p —> oo.) 

3.4.9. Apply the divergence theorem to the expression V · Vu(x, y) to show that 
the boundary value problem for V2u{x, y) = 0 in the region A with ди(х, у)/дп = 
f(x, y) on the boundary dA has no solution unless JdA f da = 0. Also, observe that 
if a solution does exist for this problem, it is not unique since the solution и = a (o 
= constant) can be added to the given result. 

3.5 STABILITY THEORY, ENERGY CONSERVATION, AND DISPERSION 

In this section we consider certain general properties of partial differential equations 
that distinguish equations of different types beyond or apart from the classification 
process given in previous sections. We recall that classification depends only on the 
form of the principal part of the equation. Here we examine the role played by the 
lower order terms in the equation in determining the behavior of the solutions. 

For simplicity we restrict our discussion to second order linear PDEs with constant 
coefficients. The general ideas carry over to higher order linear equations and systems 
of equations with constant coefficients. These matters are considered in the exercises. 
Also, certain aspects can be generalized to apply to equations with variable coefficients 
and to nonlinear equations as indicated later in the book. 

Normal Modes and Well-Posedness 

Given the linear second order homogeneous equation in two variables 

Auxx + 2Buxt + Cutt + Dux + Eut + Fu = 0, (3.5.1) 

where A,B,...,F are real constants and и = u(x,t), we look for exponential 
solutions of the form 

u(x, t) = a{k) exp[ikx + X(k)t], (3.5.2) 

where a(k) is a constant and г = л/^Т. The parameter к is assumed to be real and 
\(k) must be chosen such that (3.5.2) satisfies (3.5.1 ). The solutions u(x, t) for each 
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к are called normal modes of the equation (3.5.1 ). Since the coefficients in (3.5.1 ) are 
assumed to be real, the real and imaginary parts of the normal modes (3.5.2) are also 
solutions of (3.5.1). (If a is a complex-valued quantity and is written as a = ai-Nc*2> 
where a\ and a? are real-valued, then a\ = Re[a] and a2 = lm[a] are the real and 
imaginary parts of a, respectively.) 

We assume that t represents time and discuss the behavior of the normal modes in 
the region t > 0. As shown in later chapters, the solution of an initial value problem 
for (3.5.1) with initial data at t = 0 can be represented as a superposition of normal 
modes either by the use of Fourier series or integrals. Thus the behavior of the solution 
of the initial value problem is largely determined by that of the normal modes. 

Inserting (3.5.2) into (3.5.1) yields the quadratic equation 

CX2 + {2iBk + E)\ + {~Ak2 + iDk + F) = 0. (3.5.3) 

Solving for A = X(k), we let X(k) represent either of the two possible solutions of 
(3.5.3). Then the normal mode can be written as 

u(x, t)=a(k) exp[i(kx + lm[X(k)]t)] exp [Re [A (*;)]*]. (3.5.4) 

The magnitude of u(x, t) is given as 

\u(x,t)\ = |o(fc)|exp[Re[A(fc)]i]. (3.5.5) 

We assume that \a(k)\ is bounded for all к and see that the growth of \u(x, t)\ as t 
increases from zero is determined by the expression Re[A(fc)]. 

We consider two possibilities. Either Re [A(fe)] is bounded above for all real к or 
it is unbounded. We define the constant Ω to be the least upper bound (denoted as 
lub) of Re [X(k)] as к ranges through all its values; that is, 

Ω = lub Re[A(fc)], - c o < к < со. (3.5.6) 

If Re[A(fc)] is not bounded above, we set Ω = +co and this is the case we now study. 
The case when Ω < со is considered later. 

Assuming that Ω = +oo, we put a(k) = 1/A(fc)2 in the normal mode (3.5.2) and 
consider the initial value problem for the normal mode with data at t = 0. On evaluat-
ing (3.5.2) and its derivative at t = 0, we have u(x, 0) = [l/A(fc)2] егкх, щ(х,0) = 
[l/X(k)] elkx. Since Re[A(fc)] is unbounded, there exist values of к for which \u{x, 0)| 
= l/|A(fc)|2 and \щ(х, 0)| = 1/A(fc) are arbitrarily small, yet \u(x, t)\ [as given in 
(3.5.5)] is arbitrarily large for any t > 0. This follows since 1/A(fc) decays alge-
braically, whereas exp[Re[A(fc)]i] grows exponentially. Thus Hadamard's stability 
criterion for the initial value problem for (3.5.1) is violated if Ω = +oo, and the 
initial value problem is not well posed. If Ω < +oo, it can be shown that the initial 
value problem for (3.5.1) is well posed. 

Before considering the case where Ω < +co, we apply the foregoing discussion 
to specific PDEs of elliptic, parabolic, and hyperbolic types. 
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For the elliptic equation uxx(x, t) + utt(x, t) + pu(x, t) = 0 with p = constant, 
X(k) in the normal mode solution (3.5.2) has the form X(k) = ±y/k2 — p, and we 
readily find that Ω = +oo. Thus, the Cauchy problem for this PDE with data at t = 0 
is not well posed. 

The parabolic equation puxx(x, t )+ut {x, t) = 0, where p = constant, has the form 
of the diffusion or heat equation if p < 0 and is known as the backward diffusion or 
heat equation if p > 0. One form can be obtained from the other if the time direction 
is reversed; that is, if t is replaced by —t. Normal mode solutions for this PDE yield 
X(k) = pk2. Now if p < 0, we have Ω = 0, whereas if p > 0, we have Ω = +oo, 
so that the Cauchy problem is not well posed if p > 0. 

The hyperbolic equation uu (x, t) — uxx (x,t) + pu(x, t) = 0, where p = constant, 
has normal mode solutions (3.5.2) with X(k) given as X(k) = ±i\/k2 + p. For 
sufficiently large |fc|, if p < 0, we have Re[A(fc)] = 0. With p > 0, Re[A(fc)] 
vanishes for all k. Thus Ω < +oo and the Cauchy problem is well posed. 

In each of the foregoing cases we have |A(fc)| —► oo as |fc| —> oo, so that if data 
of the above form are chosen, \u(x, 0)| and \щ(х, 0)| can be made arbitrarily small 
by choosing |fc| » 1. But if Ω < +oo, \u(x, t)\ is also small since exp(Re[A(fc)]i) 
does not grow unboundedly with к for fixed values of t. 

Stability 

The constant Ω defined in (3.5.6) is known as the stability index for the differential 
equation. We have already seen that when Ω = +oo, solutions of the initial value 
problem for (3.5.1) are unstable. That is, solutions whose magnitude is initially 
arbitrarily small can grow arbitrarily large even at finite times. In the following 
discussion we assume that Ω < +oo and ask whether solutions of initially bounded 
magnitude can grow unboundedly as t —> oo. Equations for which this can happen 
are said to be unstable. Otherwise, they are said to be stable. Thus even if the Cauchy 
problem is well posed, the equation may be unstable. 

Physically, instability indicates that even in the absence of external effects due 
to forcing terms in (3.5.1), internal mechanisms generate a growth in the solution 
as time increases. If the Cauchy problem is not well posed (i.e., Ω = +oo), the 
validity of the mathematical model must be reexamined. If the Cauchy problem 
is well posed, instability plays an important role if the equation was derived by a 
linearization procedure under which it was assumed that solutions remain small in 
magnitude for all time. Examples of stability analyses where the present results play 
a role are given later in the book. 

Given the normal mode solution (3.5.2) and its magnitude (3.5.5), we note the 
following results. If Ω < 0, then \u(x, t)\ —» 0 as t —» oo for all k. If Ω > 0, there 
are normal modes with к near Ω, for which \u(x, t)\ —» oo as t —» oo. If Ω = 0, 
there may be values of к for which |u(ar, t)\ is bounded but does not tend to zero 
as t —> oo, although \u(x, t) | —► 0 for the remaining values of fc. [We remark that 
since Ω is a least upper bound, it may happen that Re[A(fc)] never equals zero even 
if Ω = 0.] 
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Noting the preceding discussion, we introduce the following classification for 
(3.5.1 ). If Ω < 0, the equation is said to be strictly stable. If Ω > 0, the equation is 
unstable. If Ω = 0, the equation is said to be neutrally stable, but it may be unstable 
in this case. 

For example, the parabolic equation 

щ(х, t) — c2uxx(x, t) + aux(x, t) + bu(x, t) = 0 (3.5.7) 

has X(k) = —k2c2 —b — ika, so that Ω = —b. It is stable if b > 0, unstable if b < 0, 
and neutrally stable if b = 0. 

A simple example indicating the problems that can arise in the neutrally stable 
case is given by the equation 

uxx{x,t) + 2uxt(x,t) +utt(x,t) = 0, (3.5.8) 

for which X(k) = —ik so that Re[A(fc)] = 0 = Ω. The equation has solutions 

u(x, t) = aeik{x-^ + иек{х~1), (3.5.9) 

where a and b are arbitrary constants. In particular, the solution of the Cauchy problem 
with u(x, 0) = 0 and ut(x, 0) = 1 is given by u(x, t) — t. Thus even though the data 
are uniformly bounded in magnitude, the solution grows unboundedly as t —» со. It 
is generally true that for a neutrally stable case, if there is instability, the growth of the 
solution will be algebraic rather than exponential. [We remark that the second term 
on the right of (3.5.9) is not a normal mode solution of (3.5.8) as defined in (3.5.2).] 

It must again be emphasized that for the data at t = 0 of the normal mode solution 
(3.5.2), we have |u(ar,0)| = \a\ and |ut(a;,0)| = |aA(fc)|. The data are uniformly 
bounded for all x and fixed k. However, \u(x, t)\ = \a\ exp[Re[X(k)t\] and if Ω < 
+0O, \u(x, t)\ can tend to infinity only as t —» со. This contrasts with the case where 
Ω = +00 and \u(x, t)\ can become arbitrarily large for fixed t. 

Energy Conservation and Dispersion 

If Re[A(fc)] = 0 for all k, (3.5.1 ) is said to be an equation of conservative type. Then 
we have \u(x, t)\ = \a\ = |tt(x,0)| in view of (3.5.5), so that the amplitude |u| of the 
normal mode solution is constant in time. Since |u|2 is generally a measure of the 
energy of the normal mode solution, we find that the energy is conserved in time and 
say that the equation (3.5.1 ) is conservative. 

In the conservative case, X(k) may be expressed as λ(Α;) = — iw{k), where u>(fc) 
is real valued for all k. The normal mode solution then takes the form 

u(x, t) = a{k) exp (i[kx - w(k)i\). (3.5.10) 

Inserting (3.5.10) into (3.5.1) yields 

ω = ui(k), (3.5.11) 
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which is known as the dispersion relation for the differential equation. If w{k) is real 
valued for all real к as we have assumed and, additionally, w"(k) ф 0 [i.e., w(fc) is 
not a linear function of k], the equation (3.5.1) is said to be of dispersive type. [We 
note that regardless of the assumptions made above on u>(fc), (3.5.11) is known as the 
dispersion relation for (3.5.1 ).] 

Recalling the discussion in Example 2.2, we find that (3.5.10), for fixed k, has the 
form of a wave that travels with velocity dx/dt = w(k)/k. The term Θ = kx - u(k)t 
in (3.5.10) is called the phase of the normal mode and dx/dt = ш(к)/к is the phase 
velocity. If u/'(/c) = 0, we assume that ω(0) = 0 and find that u(k) = ck, where с 
= constant, so that the phase velocity dx/dt = ck/k = с has a constant value с for 
all normal modes. Since the general solution can be constructed as a superposition 
of normal modes it will also represent a wave traveling with velocity с [In general, 
u;(fc) has two values, so that the general solution is a sum of two waves.] 

However, if ш"(к) ф 0, the phase velocity dx/dt = u>(k)/k will be different for 
different values of к so that different normal modes have different velocities. The 
general solution obtained as a superposition of the normal modes yields a wave that 
disperses since its components or modes all travel at different velocities. We shall see 
in Section 5.7 that the relevant velocity for dispersive wave motion is not the phase 
velocity w(k)/k, but the group velocity, defined as dw{k)/dk. 

Dissipation 

Finally, if the stability index Ω < 0 and Re[A(fc)] is negative for all except a finite 
number of values of k, the equation (3.5.1) is said to be of dissipative type. In that 
case, (3.5.5) shows that \u(x, t)\ decays to zero as t —■> oo for all but a finite number 
of values of к and the energy |u(a;,i)|2 is dissipated as t —> oo. When Ω < 0, 
all solutions tend to zero as t —> oo. However, if Ω = 0, those modes for which 
Re[A(A;)] = 0 do not decay as t —► oo and they are expected to constitute the major 
contribution to the solution for large values of t. This fact is demonstrated when 
dissipative equations are studied in Section 5.7. 

We now consider two examples of equations of dissipative and dispersive type. 
The telegrapher's equation derived in Chapter 1 is an equation of dissipative type. 
The Klein-Gordon equation which occurs in relativistic physics is an equation of 
dispersive type. Both these equations are commonly used as model equations of 
dissipative and dispersive type. 

Example 3.7. The Telegrapher's and Klein-Gordon Equations. The tele-
grapher's equation ( 1.2.25), that is, 

t) + 2Xut(x,t)=0 (3.5.12) 

[where λ has been replaced by A to avoid confusion with λ = A(fc)], yields for 

the normal mode solutions (3.5.2) X(k) = —A ± y^A2 - 72fc2. Since A > 0 by 
assumption, the real part of X(k) is easily seen to be negative for all к ф 0. At к = 0 
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either λ(0) = 0 or λ(0) = -2Ä, so that Ω = 0 for (3.5.12). Consequently, the 
telegrapher's equation is neutrally stable and is of dissipative type. Note that when 
A = 0, (3.5.12) reduces to the wave equation and A(fc) = ±ijk in that case. Then 
Re[A(fc)] = 0 for all k, so that the wave equation is also neutrally stable and is of 
conservative type. For this reason, when A > 0, (3.5.12) is often called the damped 
wave equation. 

All normal mode solutions of (3.5.12) are damped as t —> oo except for the solution 
corresponding to A(0) = 0. It is shown in Section 5.7 that the main contribution to 
the solution of the Cauchy problem for (3.5.12) as t —> oo comes from the normal 
modes with к « 0. 

The Klein-Gordon equation has the form 

utt{x,t) -j2uxx(x,t) +c2u{x,t) = 0 , (3.5.13) 

where 7 and с are constants. The normal modes (3.5.2) are X(k) = ±iy/j2k2 + c2, 
so that the dispersion relation is ω = u>(k) = \J~f2k2 + c2. Since u(A;) is real valued 
for all к and и)"(к) ф 0, we conclude that, in addition to being neutrally stable, the 
Klein-Gordon equation is of conservative and dispersive type. Again, it may be noted 
that if с = 0 in (3.5.13), it reduces to the wave equation for which iv(k) = *yk. Since 
w"{k) — 0 in this case, the wave equation is not of dispersive type. 

To conclude our discussion of stability theory, it must be emphasized that the 
foregoing definitions are relevant, in general, only for the initial value problem for 
(3.5.1). When initial and boundary value problems are considered, the parameter к 
may be restricted to a discrete set of values. The solution of the problem is then 
given as a superposition of a discrete set of normal modes that correspond to the 
aforementioned values of k. Stability is then defined in terms of the growth or decay 
of these normal modes. If one or more of the normal modes is unbounded as t —► 00, 
the problem is unstable. If all the normal modes decay as t —> 00, the problem is 
stable. Examples of stability analyses for initial and boundary value problems are 
given later in the text. The concept of Von Neumann stability for finite difference 
schemes, which is introduced in Chapter 11, is closely related to our presentation in 
this section. 

Exercises 3.5 

3.5.1. Show that the stability index Ω for the hyperbolic equation utt(x, t) 
—y2uxx(x,t) — c2u(x,t) = 0 is given as Ω = с (The constant с is assumed to 
be positive.) Thus although the Cauchy problem for this equation is well posed, the 
equation is unstable. 

3.5.2. Consider the hyperbolic equation utt (x, t) — c2uxx (x, t)+ut (x, t) — aux (x,t) 
= 0. By examining the solutions A = A(A;) of (3^5.3) as specialized to the above 
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equation, show that the equation is unstable if c2 < a2. Hint: Look at small values 
offc. 

3.5.3. Demonstrate that the following equations are all of dispersive type by con-
sidering normal mode solutions of the form (3.5.2). Also, determine the relevant 
dispersion relations, (a) utt(x, t) - η2ηχχ{χ, t) - a2uxxtt(x, t) = 0; (b) utt{x, t) + 
l2uxxxx(x, t) = 0; (c) ut(x, t) - aux(x, t) + ßuxxx(x, t) = 0. 

3.5.4. Show that the diffusion equation (1.1.15) is of dissipative type. 

3.5.5. Given the hyperbolic equation uttt{x, t)—l2v-xxt{x, t)+utt(x, t)—c2uxx{x, t) 
= 0, obtain the relationship λ = λ(Α;) for the normal mode solutions (3.5.2) of the 
equation above. Using the known criterion that the polynomial Ρ(λ) = λ3 + a\\2 + 
a^X + аз has roots with negative real parts if 03 > 0, ai > 0, and 0,10,2 > аз, 
conclude that the given hyperbolic equation is neutrally stable and is of dissipative 
type if 7 2 > c2. 

3.5.6. Given the system of equations Aux(x, t) 4- But(x, t) + Cu(x, t) = 0, where 
A, B, and С are constant n x n matrices and u(x, t) is an n-component vector, 
normal mode solutions are given as u(x, t) = a(fc) exp[ikx + X(k)t], where a(k) is a 
constant vector. Show that for u(x, t) to be a solution of the given equation, we must 
have \ikA + AB + C\ = 0 . Explain how concepts of well-posedness and stability 
may be introduced for the given system on the basis of the result above. 

3.5.7. Apply the method of Exercise 3.5.6 to the system ( 1.2.19M 1.2.20) and to 
the systems given in Example 3.4 [replacing у by t in the Cauchy- Riemann sys-
tem (3.3.50)]. Discuss stability and well-posedness questions for these systems and 
compare the results with those obtained for the scalar equivalents of these systems. 

3.5.8. With к = [ki, fo,-, &з] a nd χ = [̂ ι У-, А> obtain the appropriate equation λ = 
A(k) forme normal mode solutions u(x, t) = a(fc) exp[ikx+A(A;)i] of the following 
equations: (a) utt(x, t) - 72V2u(x, t) + Xut{x, t) = 0; (b) ut t(x, t) - 72V2u(x, t) + 
c2u(x, t) = 0; (c) ittt(x, t) + V2u(x, t) = 0; (d) ut(x, t) - 72V2u(x, t) = 0, where 
λ > 0, all the coefficients are constants, and V2 is the Laplacian operator in three 
dimensions. Discuss well-posedness and stability for these equations in the manner 
of Section 3.5. 

3.6 ADJOINT DIFFERENTIAL OPERATORS 

The concept of adjoint differential operators has been encountered in connection 
with each of the continuum limits of random walk problems considered in Chap-
ter 1. In the study of time-dependent random walk problems it was noted that the 
forward and backward differential equations are adjoints of one another. For time-
independent problems, it was indicated that Laplace's equation and its generalizations 
and the equations for the corresponding Green's functions involve adjoint differen-
tial operators. In each case the equations and their adjoints were derived independent 
of one another. However, a key relationship between them involves the use of Green's 
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theorem and its generalizations. This was demonstrated in Example 1.6 for Laplace's 
equation and the corresponding Green's function. 

The basic result that is used in obtaining Green's theorem and its generalizations is 
the divergence theorem. Thus, if V is the gradient operator in space and L is Laplace's 
operator L = V2, we have 

wL[u] — uL[w] = wV2u — uV2w = V · [wVu — itVtu], (3.6.1) 

where the term on the right is a divergence expression. On integrating (3.6.1) over 
a bounded region, the divergence theorem expresses the integral of the left side of 
(3.6.1) in the interior of the region in terms of the integral of the normal component 
of the vector on the right in (3.6.1 ) over the boundary. 

However, if the operator L is given as L = d/dt — V2, we find that to obtain 
a divergence expression in the manner of (3.6.1), it is necessary to introduce a new 
operator L* = —d/dt — V2 in terms of which 

wL[u] - uL*[w\ = V · [~wVu + uVw, wu], (3.6.2) 

where V = [V, d/dt] is the gradient operator in space-time. For two space dimen-
sions, V has the form [d/dx, d/dy, d/dt]. [The divergence theorem in space-time 
can be applied to equation (3.6.2).] The operator L* is called the adjoint operator of L. 

As shown above, if L is Laplace's operator the expression wL[u] — uL*[w] is 
in divergence form with L* = L = V2. Since the adjoint operator is identical 
to Laplace's operator, the Laplacian is a self-adjoint operator. Equations in which 
these differential operators appear are called self-adjoint or nonself-adjoint equations 
according as the operators are self-adjoint or not self-adjoint. 

More precisely, if L* is an operator for which wL[u] — uL*[w] is a divergence 
expression, it is the formal adjoint operator of L, and if L* = L, the operator L is 
formally self-adjoint. (The same is true for the related differential equations.) As 
will be seen in our discussion of eigenvalue problems and Green's functions later in 
the book, the boundary (or initial and boundary) conditions associated with the given 
equation and its formal adjoint also play a role in determining whether or not the 
problem is self-adjoint. Thus it is possible for an operator to be formally self-adjoint 
but for the problem associated with this operator and its adjoint to be nonself-adjoint. 
But if the operator is not self-adjoint, the problem cannot be self-adjoint. In this 
section, however, we deal only with the adjointness of the operators themselves, and 
we now present a formula for the adjoint of the most general linear second order 
differential operator. 

Scalar PDEs 

The general linear second order differential operator L can be written as 

i=l j = l J i=l 
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where the a , j , ò», and с are functions of x\,... ,xn. The adjoint differential operator 
L* is given as 

™-±±%£g-±*&+~. 
г=1 j = l J 

It can be verified directly that 

tüLl· uL* Σ 

dxi 

dxi ' 

where 
<9tt d(a,ijw) 

dxj dxj 
+ biuw. 

(3.6.4) 

(3.6.5) 

(3.6.6) 

The expression on the right of (3.6.5) is a divergence expression, and the n-dimensional 
form of the divergence theorem applied to the region G yields 

If {wL[u]-uL*[w}}dv= [ P-nds, (3.6.7) 
JJG J dG 

where P is a vector with n components P\,... ,Pn and n is the exterior unit normal 
vector to the boundary dG. As has already been indicated, the possibility of using 
the divergence theorem as in (3.6.7) is a key reason for the importance of the adjoint 
operator L*. 

To see how the adjoint operator L* is constructed, we consider a typical term. We 
have 
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WandxJ-U^xT 

d 

dxi 
anw 

du 

dxi 

dx\ 
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(3.6.8) 

(3.6.9) 

By carrying out all the differentiations in (3.6.4) and comparing L* with L, it 
is easy to determine that if bi = Σ ? = ι daij/dxj, г = 1 , . . . , n , the operator L is 
self-adjoint. As a result, a first order partial differential operator L [i.e., (3.6.3) with 
aij = 0 for all i and j] is never self-adjoint. In the self-adjoint case the operator L 
takes the form 

Μ̂ = Σ Σ 
_d_ 

dxi 

du 

' dx-i 
+ CU. (3.6.10) 

t гл;л \ ÌJ:I;A I 
i = l j = l 

We observe that if the operator L has constant coefficients, it cannot have any first 
derivative terms if it is to be self-adjoint. The foregoing results can be specialized, 
by putting n = 1, to apply to ODEs as well. 
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Example 3.8. Adjoint Differential Operators. In this example we consider 
three differential operators of elliptic, hyperbolic, and parabolic types (related PDEs 
are studied throughout the book) and determine their adjoints. 

We begin with the elliptic operator L defined as 

Lu = - V · (pVu) + qu, (3.6.11) 

where p > 0. Since wLu — uLw = V · [— pwVu + puVw], we see that the operator 
L is self-adjoint. 

For the hyperbolic operator L defined as 

L = pun + Lu, (3.6.12) 

with Lu given as in (3.6.11 ), we have wLu — uLw = V · [—pwVu+puVw, pwut — 
puwt], where V is the space-time gradient operator. (The positive function p is 
assumed to be independent of t.) Thus, the operator L is self-adjoint. 

For the parabolic operator L defined as 

Lu = put + Lu, (3.6.13) 

where L is defined as in (3.6.11), we have wLu—uL*w = V-[—pwVu+puVw, pwu], 
where V is the space-time gradient operator, and the adjoint operator L* is given as 
L* — —put + Lu. Thus, in the parabolic case, the operator L is not self-adjoint. 

Systems of PDEs 

Adjoints can also be defined for systems of equations. We consider only linear systems 
in two variables. Let the matrix operator M be defined as 

M[u(x, y)\ = A{x, y)ux{x, y) + B(x, y)uy(x, y) + C{x, y)u{x, y), (3.6.14) 

where A(x, y), B(x, y), and C(x, y) are n x n matrix functions of x and у and u 
is an n-component vector. We define the adjoint operator M* as M*[w(x, y)] = 
-(AT(x,y)\v(x,y))x - (BT(x,y)w(x,y))y + CT{x,y)w(x,y), where the super-
script T denotes the transpose of the matrix or the vector. With this choice of M* we 
obtain w r M u - uTM*w = V · [wTAu, w T ßu] , where V is the two-dimensional 
gradient vector. That is, we obtain a divergence expression and this motivates the 
definition of the adjoint operator. If A = —Ат, В = — BT (i.e., A and В are 
antisymmetric matrices), A^ + By" = 0, and С = CT, the operator M is self-
adjoint. Some examples of systems of equations and their adjoints are considered in 
the exercises. 
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Quasilinear PDEs 

If the equations or systems are quasilinear, the foregoing cannot be used to define 
adjoint operators because the dependence of the coefficients on the unknown func-
tion(s) invalidates the results, as is easily seen. Nevertheless, it is useful to obtain 
results similar to those given above for linear problems, for the purpose of defining 
weak or generalized solutions of quasilinear equations. This can be accomplished if 
the equation is given in conservation form. We consider only a single equation in two 
variables. 

Let Lu be defined as 

Lu(x,t) = V · u(x, t) = u\(x,t)x + U2(x,t)t, (3.6.15) 

where u\(x,t) = f(x,t,u(x,t)) and u2(x, t) = g(x,t,u(x,t)) withtt(a:,f) as the 
unknown function. (V — [д/дх, д/dt] is the gradient operator in space-time.) Then 
it is easily verified that 

wLu + u · Vw = (wui)x + (wu2)t = V · (ιυιι). (3.6.16) 

We do not explicitly define an expression that serves as the adjoint of Lu, but note 
that (3.6.16) does express the left side of the equation in divergence form. Thus, if 
we integrate (3.6.16) over a bounded region R in (x, i)-space and w vanishes on the 
boundary dR, we have 

/ / wLudx dt = - / / u-Vwdxdt. (3.6.17) 

As an example, we consider the inviscid Burgers' equation in conservation form, 
{u)t + {\u2)x = 0, as in (2.3.29). Here, ui = \u2 and u2 = u. Then 

wLu + u · Vw = ί -wu2 j + ( m ) ( . (3.6.18) 

On the basis of (3.6.18), we can define weak solutions of Lu = 0 that are not 
differentiable everywhere as piecewise continuous solutions for which the integral 
on the right in (3.6.18) vanishes for each w. Weak solutions of linear equations are 
discussed from this point of view in Section 6.4. 

Exercises 3.6 

3.6.1. Verify the result (3.6.5). 

3.6.2. Determine the adjoint operators for the following operators: 
(a) Lu{x, y) = exuxx(x, y) + x2uxy(x, y) + yuy(x, y) - \Qu(x, y). 
(b) Lu(x, y) = a{x, y)ux(x, y) + b(x, y)uy(x, y) + c(x, y)u(x, y). 
(c) Lu(x, y, t) = ut(x, y, t) - c2[uxx(x, y, t) + uyy{x, y, t)]. 
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3.6.3. Show that the backward Kolmogorov equation ( l. 1.34) is the adjoint of the 
Fokker-Planck equation (1.1.32). 

3.6.4. Show that the differential operator in ( 1.3.23) is the adjoint of the operator in 
(1.3.21). 

3.6.5. Show that the equation derived in Exercise 1.2.16 is the adjoint of equation 
(1.2.44). 

3.6.6. Show that the system derived in Exercise 1.2.15 is the adjoint of the system 
(1.2.41 )-( 1.2.42). 

3.6.7 Determine the adjoints of the systems in Example 3.4. 

3.6.8. Verify that (3.6.16) is valid for the equation (2.3.29). 
3.6.9. Obtain an adjoint operator L* for the second order linear ordinary differential 
operator L given as Ly(x) = a(x)y"(x) + b(x)y'(x) + c(x)y(x). 

3.6.10. Obtain an adjoint operatori* for the third order operatori, given as Lu(a;, t) = 
ut (x, t) — ux(x,t) + j2uxxx (x,t), such that wLu — uL*w is a divergence expression. 

3.6.11. Show that the operator Lu(x, t) = utt(x, t) + uxxxx(x, t) is self-adjoint by 
expressing wLu — uLw in divergence form. 

3.6.12. Demonstrate that Lu(x, t) = ut t(x, t) + V2V2u(x, i) is self-adjoint by ex-
pressing wLu — uLw in divergence form. 

3.7 MAPLE METHODS 

We have constructed a number of Maple procedures that automate the factorization 
and classification techniques for scalar PDEs and systems of PDEs that were discussed 
in this chapter. Procedures that determine the well-posedness and stability of scalar 
PDEs and systems of PDEs are also presented. A procedure that determines adjoint 
operators is given in Chapter 7, where these operators play an important role in the 
construction of Green's functions. 

Classification of Equations and Canonical Forms 

The procedure ClassPDEld determines the discriminant of a second order PDE 
[as in (3.1.5)—(3.1.7)] and classifies the equation as being of hyperbolic, elliptic 
or parabolic type, if possible. The PDE may be of mixed type.) It is given as 
ClassPDE2d(a, 2b, c, \x, y]) and has the output 

„ . . , „ д2и д2и д2и . . . ,o ,„,,-,4 Principal Part = a —x + 26 ——-—(- с -^-=, Discriminant = b — ac. (3.7.1) 
oxz oxay ay* 

Clearly, a, 2b, and с are the coefficients of the second derivative terms in the PDE 
and [x, y] are the independent variables. 
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As a specific example, we consider ClassPDE2d(—x, 0,1, [ж,?/]). The principal 
part of the PDE is —x uxx + uyy (it represents an equation of mixed type) and the 
output is Discriminant = x, Hyperbolic, if it is assumed that x > 0 by entering the 
Maple command assume(x > 0). If the command assume(x < 0) is entered, 
the output is Discriminant = x, Elliptic. If Maple can determine the sign of the 
discriminant, the PDE is classified. 

The procedure PDEFactor2d factors linear second order PDEs and finds a 
canonical form, if feasible. Maple's dsolve procedure is used to determine the 
characteristic curves. It has the form PDEFactor2d(a, 2b, c,d,e, f, [x, y]), where 
a, 26, c, d, e, / are the coefficients of the linear PDE auxx + 2buxy + cuyy + 
dux + euy + fu = 0, with the independent variables [x, y]. The procedure exhibits 
the discriminant as given in (3.1.5)-(3.1.7) and should be used only if Maple can 
determine if the discriminant is positive, negative, or zero. 

As an example, we apply the procedure to the equation (3.1.28) of mixed type 
considered in Example 3.1, that is, 

uxx(x,y)+yuyy(x,y) = 0. (3.7.2) 

If у < 0, the PDE is of hyperbolic type and the output of PDEFactor2d{l, 0, y, 0,0, 
0, [x, y\) gives the characteristic curves ξ = — x + 2 y/^^y, η = —x — 2 v/-J/> which 
correspond to those given in (3.1.32)—(3.1.33) but are defined differently here. In 
addition, the variables a and β are specified as a = — x, β = 2v^zy. They are 
defined by ξ = a + β, η = a — β as in (3.1.20). 

In terms of the variables (ξ,η), the canonical form is given as υ,ξη(ξ,η) + 
1/(2{ξ-η))(ηξ(ξ,η) - ηη{ξ,η)) = 0, in agreement with (3.1.35). The alter-
native canonical form is uaa(a,β) — Ußß(a,ß) + {l/ß) υ,β(α,β) = 0. These 
represent the two types of canonical forms for hyperbolic equations. The pro-
cedure also gives the factored form of the principal part of the PDE (3.7.2) as 
dl + Уду = (дх - s[=y ду)(дх + ^ y ду). 

With у > 0, the PDE is ofelliptic type and the output of PDEFactor2d{\, 0, y, 0, 
0,0, [x: y\) is ξ = ^/y + \ix, η = у/у - \ix; a = ^/y, β = x/2. The variables 
(ξ, η) are complex and we select the real variables (a, β) defined as in (3.1.26). The 
corresponding canonical form is given as uaa (a,ß)+Ußß (a,ß) — (l/a)ua(a,ß) = 
0. The result differs from the canonical form (3.1.40) because a and ß are defined 
differently here, but the results are equivalent. 

The PDE (3.7.2) is of parabolic type when у = 0. Rather than apply the procedure 
in that case we consider a PDE that is of parabolic type everywhere. We invoke the 
procedure PDEFactor2d(y2,2y, 1,0,0,0, [x, y]) that corresponds to the equation 
y2uxx (x,y) + 2yuxy(x, y) + uyy(x, y) — 0. The output states that the discriminant is 
zero and exhibits the factored principal part as у2д2 + 2уд2

у-\-дуу = у2(дх + ^ ду)
2. 

The transformation variables ξ and η of (3.1.24) are given as ξ = —2x + y2, η = 
—x + y2, with ξ = constant as the family of characteristics, and the canonical form is 
ηηη(ξ, η) + 2/(2r/ - ξ)[ηξ(ξ, η) + ηη(ξ, η)} = 0. 

The foregoing procedures deal only with second order PDEs in two independent 
variables. The procedure ClassPDEScalar classifies linear second order PDEs 
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with constant coefficients for any number of independent variables and exhibits their 
canonical forms. The process presented in Section 3.3 is followed. The relevant 
eigenvalues and eigenvalues are exhibited. (Maple's linalg and Linear Algebra 
packages are used.) The equation is classified into hyperbolic, parabolic, or elliptic 
type. The transformation variables are shown and the (canonical) form of the PDE is 
displayed. For the PDE in three independent variables 

3 3 3 

У^ У~̂  aijUXiXj + ^2 biUXi + cu = 0, (3.7.3) 
г=1 j = l г=1 

the classification procedure has the form ClassPDEScalar([[au, 012,013], 
[021,022, α23], [α3ι, α32, а33]], [h,b2, £>3], с, [11,12,13]) where the coefficients of the 
PDE exhibited in the first three arguments of the procedure. 

We consider the PDE 

2uxx + 8uyX — 12uzx + 2uyy — 12uZy — 15uzz + 3ux — Uy + 2uz+5u = 0. (3.7.4) 

ClassPDEScalar{[\2,8, -12], [0,2, -12], [0,0, -15]], [3, -1 ,2 ] , 5, [x, y, z)) 
determines that (3.7.4) is of hyperbolic type. Further, it yields as the eigenvalues 
and eigenvectors [-18,1, [1,1,4]], [9,1, [-2, -2,1]], [ -2 ,1 , [1, -1,0]]. That is, the 
eigenvalues are {-18, 9, - 2 } , each of which has multiplicity 1. The eigenvector that 
corresponds to the eigenvalue —18 is given as [1,1,4], for example. The transforma-
tion variables are given as ξι = (\/2/6)(x + у + 4z), ξ2 = (z -2x — 2y)/3, £3 = 
(л/2/2)(х — у). The simplified (canonical) form is given as 

,„ d2u nd
2u nd

2u 5y/2 du 2 du „ /- du „ n ,„ „ гЧ - 1 8 ^ + 9 ^ - 2 ^ + ^ ^ - - — + 2^2—- + 5U = 0. (3.7.5) 
9ξι δζ,2 αξ3 3 οξι 3αξ2 σξ3 

(An additional, elementary change of variables, whereby the coefficients of the second 
derivative terms in (3.7.5) are replaced by +1 or —1, is needed to actually obtain the 
canonical form. We do not carry this out.) 

Classification and Solution of Linear Systems 

system of linear PDEs in two independent variables 

A(x, y)ux(x, y) + B(x, y)uy(x, y) = C(x, y)u(x, y) + d(x, y), (3.7.6) 

and finds normal and characteristic forms for the system in the hyperbolic case. [The 
matrices A(x, y), B(x, y), C(x, y) are all nxn matrices and u(x, y) andd(x, y) aren-
vectors. It is assumed that B(x,y) has an inverse and у can be replaced by t or another 
variable in the system.] The procedure transforms the system (3.7.6) into a form with 
В = I, where / is the identity matrix. The analysis then proceeds as in Section 3.3. 
The procedure determines a set of eigenvalues and eigenvectors as in Section 3.3. 
If all the eigenvalues are complex, the system is elliptic. If they are real and each 



MAPLE METHODS 171 

eigenvalue of multiplicity к has exactly к linearly independent eigenvectors, the 
system is hyperbolic. If all the eigenvalues are real and at least one multiple eigenvalue 
of multiplicity к has fewer than к linearly independent eigenvectors, the system is 
parabolic. The procedure takes the form ClassSyst(A, B, C,d,[x\,..., xn]). 

ClassSyst([{l,0}, [-3, -1]], [[2,1], [ -1 , -1]], [[0,0], [0,0]], [0,0], [x,y\) has 

A = 
1 0 

- 1 в 
1 

-1 -1 (3.7.7) 

in (3.7.6) with С 
- 2 - 1 
5 2 

0 and d = 0. The system is transformed into (3.7.6) with A = 

,B = I, the identity matrix, С = 0, and d = 0. The eigenvalues are the 

imaginary numbers г and —i, with unit multiplicity. The system is of elliptic type and 
the procedure identifies it as such, with eigenvalues and eigenvectors [г, 1, [1, —2 — 
*]], [ - i , l , [ l , - 2 + t]]. 

The use of Class_Syst([[0, - 1 ] , [0,0]], [[1,0], [0,1]], [[0,0], [0,0]], [0,0], [x,t]) 

and В = I, the identity matrix and С = 0, d = 0, with у 

yields A 

[0, - 1 ] , [-x2,0]], [[1,0], [0,1]], [[0,0], [0,0]], [0,0], [x,t]) 

В = I, the identity matrix, and С — 0, d = 0, with у 

yields A = 0 0 

replaced by t in (3.7.6). The procedure finds that 0 is a double eigenvalue and that 
the system is of parabolic type. 

Invoking ClassSyst( 
0 - 1 

-x2 0 
replaced by t in (3.7.6). (It is assumed that x ф 0.) The eigenvalues and eigenvectors 
are given as [x, 1, [1, —x]], [—x, 1, [1,ж]]. The system is of hyperbolic type. The 
matrix R in the transformation u = R\, whose columns are the eigenvectors found 

. The procedure determines the normal form 

(3.7.8) 

With [vi(x, t), v2(x, t)] and [ui(x, t), u2(x, t)] as the components of \(x,t) and 
ui (x, t)/2 — uz{x, t)/2x 

above, is given as R = 

(3.3.37) as 

d\(x,t) 
dt 

' x 0 

0 -x 

' 1 1 ' 
—X X 

d\(x, t) 
dx 

1/2 1/2 " 

1/2 1/2 
\(x,t) + 

" 0 ' 

0 

u(x, t), respectively, we obtain v(x, t) — 

Vi(x,t) +V2{x,t) 
-XVj (x, t) + XV£(x, t) 

ui (x, t)/2 + U2(x, t)/2x 

. Finally, the characteristic form is given as 

, u(x,t) 

( dvi(t)/dt = -vi(t)/2 + v2(t)/2 on 
\ dv2(t)/dt = -vi(t)/2 + v2(t)/2 on 

dx(t)/dt = x(t), 
dx{t)/dt = -x(t). 

(3.7.9) 

The procedure HypSystExplicit finds exact solutions for hyperbolic systems 
with constant coefficients that contain only principal parts. They have the form 
Aux(x,t) + But(x,t) = 0. On reducing the system to normal or characteristic 
form, the first order equations in the system are uncoupled and can be solved exactly. 
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The procedure is applied to an initial value problem for the system above with initial 
conditions given at the time t = to- It takes the form HypSystExplicit(A, B, \x, t], 
t = t0,1С), with 1С as the initial data. 

HypSystExplicit(A, B, [x,t],t = 0, [f(x),g(x)]), with A, B, andu as 

' 1 4 ' 
- 3 2 , B = 

1 2 ' 
0 1 , u(x,i) = ui(x,t) 

u2(x,t) 
, u(x,0) = ' f(x) ' 

. 9(x) . 
(3.7.10) 

yields the exact solution 

«i(x, i) = f(x - 7t), u2(x, t) = | / ( a : - 2t)+g(x - 2i) - | / ( x - It). (3.7.11) 

Quasilinear Hyperbolic Systems in Two Independent Variables 

The procedure ClassHypSystChar(A,B, c, u, [x,t]) determines a characteristic 
normal form for the quasilinear system (3.3.73), A(x,t,u(x,t))ux(x,t) + 
B(x,t,u(x,t))ut{x,t) — c(x,t,u(x,t)), where u and с are n-component vectors 
and A and В wren x n matrices. 

We reconsider the quasilinear system considered in Example 3.5. To deal with this 
problem, we use the procedure ClassHypSystChar([[0, —1], [—c, 0]], [[1,0], [0, l]], 
[0,0], [it, v], [x, t]). The term [—c, 0] in the argument should be [—c'(u), 0], in order 
to get the correct system (3.3.69). We use [—c, 0] to enable Maple to determine 
the eigenvalues and eigenfunctions for this problem. As indicated above, the Maple 
procedures for doing so fail if the matrix contains general functions in its components. 
The output of the procedure exhibits the relevant eigenvalues and eigenvectors for 
this problem. Once the results given by the procedure are exhibited, the substitution 
с — —c'(u) is used, and the correct eigenvalues, eigenfunctions, and the characteristic 
normal form given in (3.3.78) are obtained. We do not exhibit the output of the 
procedure. 

Well-Posedness and Stability 

We have constructed two procedures, WellposedScal and WellposedSyst, that deter-
mine if a linear scalar PDE or a linear system of first order PDEs with constant 
coefficients is stable or unstable. This includes the determination if the basic IVP for 
the PDE is well posed or not. If the PDE is neutrally stable, the dispersion relation 
for the PDE is exhibited if a real one exists. 

For the scalar case the procedure takes the form WellposedScal(PDE, u, [x, t}), 
where PDE is a (homogeneous) partial differential equation to be analyzed, и is the 
dependent variable, and [x, t) are the independent variables. 

If we apply the procedure to (3.5.13), we use WellposedScal(KGEquation, 
u, [x, t\). The output exhibits the Klein-Gordon equation and the following informa-
tion. As in (3.5.3) we obtain λ2 + 72fc2 + c2 = 0, which is solved for λ to give 
λι = y/—j2k2 — с2, А2 = — \/—72fc2 — c2. The output gives Real part of A = 
(0,0), lub = 0. The statements The initial value problem is neutrally stable and 
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Dispersion Relation = —ω1 + 72Ar + с = 0 are printed out. The results agree with 
those found in Example 3.7. 

Next we consider WellposedScal(PDE,u, [x,t]) for the third order PDE = 
d3u(x, t)/dt3 + d3u{x, t)/dx3 = 0 and obtain λ3 - ik3 = 0, with i = s/^ϊ. The 
equation is solved for A to give Ai = — i(—1/2 + i\/3/2)k, X2 = —г(—1/2 — 
i\/3/2)k, A3 = -ik. The results Real part of A = {\/Зк/2,-\/Зк/2,0), lub = 00, 
and The initial value problem is not well posed are printed out. 

To deal with a system of PDEs Aux(x, t) + But(x, t) + Cu(x, t) = 0, we use 
WellposedSyst(A, В, С, и, [x, i\). We apply it to the system with 

1 0 
0 1 
0 0 

B = I, с 
0 0 0 
1 0 0 
0 0 0 

(3.7.12) 

where / is the identity matrix, to obtain (X + ik)2(X - 2ik) = 0, which is solved for A 
to give; Ai = 2гк, Аг = —ik, Аз = —ik. The real parts for each of the three roots of 
A and the least upper bound are exhibited as; Real partofA = (0,0,0), lub = O.Then 
the statements The initial value problem is neutrally stable and Dispersion Relation = 
-ω3 + Зк2ш + 2fc3 = 0 are printed out. 

Exercises 3.7 

3.7.1. Consider the PDE auxx+2buXy+cuyy+dux+eUy+fu = 0 with constant co-
efficients in the principal part, (a) Apply the procedure ClassPDE2d(a, 26, с, [х, у] ) 
to classify PDE, and invoke Maple's assume facility, applied to the discriminant b2 — 
ac to obtain the results (3.1.5)-(3.1.7). (b) Use PDEFactorld (a, 2b, c,d,e, f, [x,y]) 
to obtain a factorization of the principal part of the PDE and to obtain canonical forms 
for the PDE. 

3.7.2. Reproduce the results of Example 3.1 by using ClassPDE2d and 
PDEFactor2d. 

3.7.3. Use PDEFactor2d to obtain the result of Exercise 3.1.8. 

3.7.4. Consider the PDE (3.7.4). Apply the procedure ClassPDEScalar to deter-
mine its classification and obtain its canonical form. 

3.7.5. Apply PDEFactor2d to solve Exercise 3.1.4. 

3.7.6. Apply PDEFactor2d to solve Exercise 3.1.5. 

3.7.7. Use PDEFactor2d to solve Exercise 3.1.6. 

3.7.8. Apply the procedure ClassSyst to the system (3.7.6) with coefficients given 
in (3.7.7) and С = 0, d = 0. 

3.7.9. Apply ClassSyst to the system (3.7.6) with A ■ 

and d = 0. 

-1 
,B = I,C = 0, 
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0 - 1 
-X2 0 

,B 3.7.10. Apply ClassSyst to the system (3.7.6) with A = 

I, C = 0,andd = 0. 

3.7.11. Use HypSystExplicit to obtain (3.7.11) for the system (3.7.10). 

3.7.12. Apply ClassHypSystChar to obtain the results of Example 3.5. 

3.7.13. Apply WellposedScal to determine the stability property and the dispersion 
relation for the Klein-Gordon equation (3.5.13). 

3.7.14. Apply WellposedSyst to Aux (x, t) + But {x, t) + Cu(x, t) = 0 with the 
coefficients (3.7.12). 



CHAPTER 4 

INITIAL AND BOUNDARY VALUE 
PROBLEMS IN BOUNDED REGIONS 

4.1 INTRODUCTION 

This chapter deals with boundary value problems for elliptic equations and initial and 
boundary value problems for parabolic and hyperbolic equations given over bounded 
spatial regions. The basic method for solving these problems is the technique of sep-
aration of variables. This method requires that eigenvalue problems for differential 
equations be studied and expresses solutions as series of eigenfunctions. Only scalar 
problems in one, two, or three space dimensions are treated in this chapter. The one-
dimensional eigenvalue problem known as the Sturm-Liouville problem is studied in 
detail. Higher-dimensional eigenvalue problems are considered in Chapter 8. 

The separation of variables method is applicable to the study of linear homogeneous 
equations with homogeneous boundary conditions. Techniques for solving inhomo-
geneous problems, such as Duhamel's principle and eigenfunction expansions, are 
also presented in this chapter. Further, it is demonstrated by means of a detailed 
example in Section 4.7 how eigenfunction expansions may be used in the solution of 
nonlinear problems. 

Partial Differential Equations ofAppplied Mathematics, Third Edition. By Erich Zauderer 175 
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Balance Law for Heat Conduction and Diffusion 

To achieve a unity of presentation, we consider only second order equations of each 
of the three basic types given in a special form. This form, however, is representative 
of a large class of partial differential equations of physical interest. All equations with 
constant coefficients derived in Chapter 1 are either of this form or can be reduced 
to this form. To indicate how these equations, which may have variable coefficients, 
can arise in applications, we now present a brief derivation of a parabolic equation of 
the form to be considered. This derivation, in contrast to those given in Chapter 1, is 
more representative of the approaches generally used in deriving partial differential 
equations as models for physical processes. 

Throughout this chapter, G will represent a bounded interval in one space dimen-
sion or a bounded region in two or three dimensions. dG will represent its boundary. 
(In one dimension dG is just the endpoints of the interval G.) 

In the following derivation we restrict our discussion to three space dimensions 
and let G be an arbitrary closed region within G, with dG as the boundary surface. 
Let ds be an element of surface area of dG and dv be a volume element. The function 
u(x, t) where x is a point in space and t is time, is assumed to represent a scalar 
physical quantity such as the temperature or the concentration of a substance, for 
example. 

With n as the exterior unit normal vector on the boundary dG, the expression 
p(x) Vu(x, t) ■ n ds represents the flux or rate of flow of the quantity u(x, t) through 
ds at the time t. The positive function p(x) is given and assumed to be time indepen-
dent. The operator V is the gradient operator in three-dimensional space. The time 
rate of change of и (x, i) in an element dv at the time t is given by p(x) (du(x, t)/dt) dv, 
where the positive quantity p(x) is given and time independent. Additional effects 
occurring in the element dv at the time t are represented as # (x , t) dv, with # (x , t) 
assumed to have the form Я(х, ί) = — q(x)u(x, t) + F(x, t), where for notational 
convenience in our discussion we set F{x, t) = p(x)F(x,t). With q(x) as a non-
negative time-independent function, q(x)u(x, t) represents (internal) effects due to 
changes proportional to u(x, t), whereas F(x, t) represents external influences on the 
medium under consideration. [See Section 8.2 for a discussion of the consequences 
of permitting q(x) to be negative.] 

The basic physical balance or conservation law for the arbitrary region G is, in 
terms of the representation of H(x, t), 

/ / p-—dv = / pWu-nds- qudv+ / / pF dv. (4.1.1) 

This states that the time rate of change ofu(x, t) in the region G equals the flux of 
u(x,t) through the boundary ofG and the changes due to internal effects proportional 
to u(x, t), as well as external effects acting throughout G. That is, these effects must 
balance each other out. 

Applying the divergence theorem to the surface integral in (4.1.1 ) yields 

/ pVu-nds= / / V-(pVu)cfo. (4.1.2) 
JdG JJG 
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Inserting (4.1.2) into (4.1.1) and combining terms gives 

dv = 0. (4.1.3) I p-Q- - V · (pVu) + qu- pF 

Assuming a continuous integrand, the arbitrariness of the region G implies the van-
ishing of the integrand in (4.1.3) (see Exercise 8.1.9). Consequently, we obtain the 
inhomogeneous parabolic equation 

p(x) ^ ^ - V · (p(x)Vu(x, 0) + q(*)u(x, t) = p(x)F(x, i), (4.1.4) 

which is valid at an arbitrary point in the region G. A similar argument in two space 
dimensions leads to (4.1.4) with V interpreted as a two-dimensional gradient operator. 
In one space dimension, (4.1.4) has the form 

ρ{χ) 0u^i) _ д_ ^{χ) du^tl^ + q{x)u{^t) = p{x)F{x^t) ( 4 л 5) 

In the context of heat conduction, u(x, t) is the temperature andp(x) is the thermal 
conductivity of the medium. The relationship between the heat flux J(x, t) and the 
temperature u(x, i), when expressed in the form J(x, t) = -p(x)Vu(x, t), is called 
Fourier's law. (The minus sign indicates that heat flows from warmer to cooler 
regions.) The term p(x) is the product of the specific heat с and the density p(\) of 
the medium. In the case of one-dimensional heat conduction in a rod, if there is lateral 
heat transfer between the rod and the surrounding medium, the function q{x) results 
from Newton's law of cooling, which states that the heat flow through the (lateral) 
boundary is proportional to the difference between the internal temperature u(x, t) 
of the rod and the external temperature. 

If (4.1.4) or (4.1.5) describes the diffusion of a substance, и(х, t) equals the con-
centration of that substance. The relationship between the flow of the substance and 
its concentration u(x, t) has the same form as Fourier's law and is known as Fick's 
law in diffusion theory. The quantity p(x) is called the diffusion coefficient or the 
diffusivity. In the simplest models of diffusion, p(x) = 1 and q(x) = 0. (We remark 
that in the case of heat conduction, if p and p are constants, the ratio p/p is called the 
thermal diffusivity.) 

The foregoing derivations of the heat and diffusion equations were based on macro-
scopic considerations, where observable phenomena were taken into account. In 
Chapter 1 we derived the diffusion equation by considering the motion of a parti-
cle or a group of particles. These microscopic considerations yielded equations that 
involve observable quantities such as particle densities, drifts, and variances. 

Basic Equations of Parabolic, Elliptic, and Hyperbolic Types 

In view of our continual use of the equations above and related equations, we define 
the differential operator L in two or three dimensions as 

Lu=-V ■ (p(x)Vu) + q(x)u, (4.1.6) 
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and in one space dimension as 

Lu = -^(p(x)^)+q(x)u. (4.1.7) 

It is assumed that p and p are positive functions and that q is a nonnegative func-
tion. Then the parabolic equations (4.1.4) and (4.1.5) take the form (using higher-
dimensional notation) 

p(x) ^ ^ + Lu(x, t) = p(x)F(x, t). (4.1.8) 

If the problem leading to (4.1.8) is stationary or time independent, (i.e., F and all 
auxiliary conditions placed on the problem depend on x only), we may look for a 
solution in the form и = u(x), and (4.1.8) reduces to the elliptic equation 

Lu(\) = p(x)F{x). (4.1.9) 

Further, it can be shown that a large class of hyperbolic equations of interest in 
applications can be expressed as (using higher-dimensional notation) 

p(x) ^ ^ + Lu(x, t) = p(x)F(x, t). (4.1.10) 

For example, in one space dimension the equation governing the longitudinal vibra-
tion of a rod has the form (4.1.10). We assume the rod has a constant cross-sectional 
area A and let u(x, t) be the displacement of the section of the rod at the point ж as a 
function of time. By Hooke's law, the tension force acting on the section at the point 
x is given as p(x)Aux(x,t), where p(x) is Young's modulus. A segment of the rod 
extending from x to x + Ax, of length Ax, has the momentum pA Ax щ, where p(x) 
is the density. Then Newton's law of motion applied to this segment of the rod yields 
p(x) Ax utt{x, t) = Ap(x + Ax) ux{x + Ax, t) — Ap(x) ux(x, t). On dividing by 
A Ax and letting Δχ tend to zero, we obtain the one-dimensional form of (4.1.10) 
with q = F = 0. 

As has already been remarked in Example 2.4 and will be demonstrated in Example 
4.2, the equation of the vibrating string has the form (4.1.10) (in one dimension) 
with p = T, the constant tension of the string. Similarly, the transverse vibration 
of a tightly stretched thin membrane with density p(x, y) is governed by the two-
dimensional form of (4.1.10), where p equals T, the constant tension of the membrane. 
In both cases и is the vertical displacement of a point on the string or on the membrane. 
If a restoring force proportional to the displacement acts at each point of the string or 
membrane, in addition to other external forces, the full equation (4.1.10) applies. 

The telegrapher's equation of Chapter 1 is not of the form (4.1.10) since it contains 
a ди/dt term. However, a simple change of the dependent variable reduces it to the 
form above. In fact, any equation of the form (4.1.10) that contains an additional term 
p ди/dt can be transformed into the form (4.1.10) by a change of variable if p/p = 
constant. 
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Boundary Conditions 

In the following sections we consider initial and/or boundary value problems for the 
equations (4.1.8)-(4.1.10). Appropriate initial values for the parabolic and hyperbolic 
equations (4.1.8) and (4.1.10) will be introduced as required. However, the boundary 
values on dG for all three equations (4.1.8)-(4.1.10) are assumed to be of a standard 
form common in applications. 

In the case of two or three space dimensions, we consider boundary conditions of 
the form 

a{x)u + ß(x) — 
dn 

= B(x,t), (4.1.11) 
dG 

where a(x), ß(x), and B(x, t) are given functions evaluated on the boundary region 
dG. In the elliptic case, G is a region in x-space and В = B(x) is independent of 
t. In the parabolic and hyperbolic cases, we consider a region Gx in x-space and 
construct the region G in (x, i)-space whose points (x, t) satisfy the condition that 
x £ G and that t ranges through a specified set of values, say, to < t < t\. (The 
region G can also be characterized as a direct product in the form G = Gx x [to, h].) 
The expression ди/дп denotes the exterior normal derivative on dG. 

The boundary condition (4.1.11) relates the values of и on dG and the flux of 
и through dG. We require that a(x) > 0, /3(x) > 0, and a(x) + ß(x) > 0 on 
dG. (These conditions may be violated in general.) If (1) α(χ) ф 0, ß(x) = 0, (2) 
a(x) = 0, β(χ) ф 0, and (3) α(χ) φ 0, β(χ) φ 0, (4.1.11) are boundary conditions 
of the first, second, and third kind, respectively. Boundary conditions of the first 
and second kind are generally referred to as Dirichlet and Neumann conditions, and 
boundary conditions of the third kind are often called Robin conditions. We can 
also consider boundary conditions of the mixed kind. This means that a mixture of 
boundary conditions of the first, second, and third kinds is specified for и on the 
boundary. 

In the interests of greater precision, we assume that dG is subdivided into three 
disjoint subsets Si, S2, and S3 (i.e., dG = Si \J S2 U S3). On Si, S2, and S3, и 
satisfies a boundary condition of the^rsi, second and third kind, respectively. Each of 
these sets may be an empty set. If at least two of the sets are not empty, the boundary 
condition is of the mixed kind. If only one of the three is not empty, the boundary 
condition is of the first, second, or third kind according as the set is Si, S2, or S3. 
To simplify the presentation of formulas and results, this notation is used throughout 
when dealing with integrals over the boundary and with boundary conditions. 

In one dimension, G represents the interval 0 < x < I and dG the points x = 0 
and x = I. In the hyperbolic and parabolic cases, (4.1.11 ) takes the form 

aiu{0,t) - ßiux(Q,t) = gi(t), a2u(l,t) + ß2ux(l,t) = g2(t). (4.1.12) 

The conditions on (a, ß) given above carry over in a natural way to the pairs of 
constants (αι, βι) and (a2, ß2). The minus sign in the condition at x = 0 in 
(4.1.12) is needed since du/dn = —du/dx at that point. 

When F and В (or gi and g2) in (4.1.8)—(4.1.12) are nonzero, the equations 
and boundary conditions are of nonhomogeneous type. The separation of variables 



1 8 0 INITIAL AND BOUNDARY VALUE PROBLEMS IN BOUNDED REGIONS 

method introduced in the following section applies only to the homogeneous cases, 
when F and В are both zero. However, when this method is applied to boundary 
value problems for the elliptic equation (4.1.9), we must have F = 0 while В = 0 
on only part of the boundary, as will be seen. 

Exercises 4.1 

4.1.1. Derive the heat or diffusion equation (4.1.5) from a balance law appropriate 
to the one-dimensional case. 

4.1.2. Show that if p(x) = cp(x), where с is a constant, p(x)utt(x,t) + p(x)ut{x, t) + 
Lu(x,t) = p(x)F(x,t) can be brought into the general form (4.1.10) if we set 
u(x, t) = exp[at]v(x, t) and choose a appropriately. 

4.1.3. Carry out the transformation of Exercise 4.1.2 for the telegrapher's equation 
utt(x, t) — ~/2uxx(x, t) + 2Xut(x, t) = 0, where λ is a positive constant. 

4.2 SEPARATION OF VARIABLES 

In this section we present the method of separation of variables and apply it to the 
solution of initial and/or boundary value problems for homogeneous versions of the 
equations and boundary conditions introduced in Section 4.1. 

In the hyperbolic case we consider the homogeneous PDE 

d2u(x t) 
p(x) ^ ' +Lu(x,t) = 0, x e G , i > 0 , (4.2.1) 

where the bounded region G, the coefficient p(x), and the operator L are defined as 
in Section 4.1. The homogeneous boundary conditions are 

a(x)u(x,t) + ß(x)du{X,t) = 0, ί > 0, (4.2.2) 
dG дп 

aiu(0,t)-ßiux(0,t) = 0, a2u(l,t)+ß2ux{l,t) = 0,t>0, (4.2.3) 

in two or three dimensions and in one dimension, respectively. On the boundary dG, 
the coefficients in (4.2.2)-(4.2.3) must satisfy the conditions given in Section 4.1. 
The initial conditions for the PDE (4.2.1 ) are given as 

«(x,0) = / (x) , ut(x,0) = g(x), xeG. (4.2.4) 

In the parabolic case, the equation for u(x, t) is given as 

p(x) d u ^ + Lu{x, t) = 0, x e G, t > 0, (4.2.5) 
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with the boundary conditions (4.2.2) or (4.2.3), and the initial condition 

u(x,0) = /(x) , x e G . (4.2.6) 

In the elliptic case, we introduce a function и = u(x, y), where x is a point in 
the region G (which is now one- or two-dimensional, with x replaced by x in the 
one-dimensional case) and у is a scalar variable given over the interval 0 < у < I. 
The PDE for u(\, y) has the form 

ρ{χ) дЫх,у) _ Lu{x^y) = 0) x e G) о < у < ί, (4.2.7) 

with p, p, and q as functions of x only. The boundary conditions in x or x are of 
the form (4.2.2) or (4.2.3). These are combined with the following inhomogeneous 
boundary conditions at у = 0 and у = I: 

u(x,0) = /(x) , u(xj)=g(x), x e G . (4.2.8) 

Example 4.1. Equations with Constant Coefficients. We consider the one-
dimensional case, assume that p{x) = p(x) = 1 and q(x) = 0 in (4.2.1), (4.2.5), and 
(4.2.7), and formulate the appropriate problems for each of the PDEs above. Figures 
4.1 to 4.3 display the regions where the solutions are to be determined and the initial 
and/or boundary conditions for these problems. 

Figure 4.1 Hyperbolic case. 
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Figure 4.2 Parabolic case. 

Figure 4.3 Elliptic case. 

It should be noted that for the hyperbolic and parabolic cases we are considering 
initial and boundary value problems, whereas in the elliptic case we have a strict 
boundary value problem. The equation (4.2.7) for the elliptic problem is written 
in the form indicated to permit a unified presentation of the separation of variables 
technique for all three cases. 

The method of separation of variables asks for a solution of (4.2.1 ) and (4.2.5) in 
the form 

u{x,t) = M(\)N(t), (4.2.9) 

and of (4.2.7) in the form 
u(x,y) = M(x)N(y), (4.2.10) 

with the function M(x) required to satisfy the boundary conditions (4.2.2) or (4.2.3), 
with x replaced by x as required. Substituting (4.2.9) and (4.2.10) into the appropriate 
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equations and dividing through by pMN yields 

N"(t) LM(\) 
N(t) ~ p{x)M(x)' 

N'(t) _ LM(x) 

N{t) p(x)M(x)' 
N"(y) LM(x) 

hyperbolic case, (4.2.11) 

parabolic case, (4.2.12) 

elliptic case. (4.2.13) 
N(y) р(х)М(хУ 

Since the left and right sides of these equations depend on different variables, they 
cannot be nonconstant functions of their respective variables. Thus each side of the 
equations must be a constant. We denote this (separation) constant by — Л. As a 
result, we obtain the following equations for M and N: 

LM{x) = λρ(χ)Μ(χ), (4.2.14) 

N"{i) + XN(t) = 0, hyperbolic case, 
N'(t) + XN{t) = 0, parabolic case, (4.2.15) 
N"(y) - XN(y) = 0, elliptic case. 

In addition to being a solution of (4.2.14), M(x) is required to satisfy the boundary 
conditions (4.2.2) or (4.2.3). [Thenu(x,i) = M(x)N(t) or u{x,y) = M(x)N(y) 
will also satisfy these boundary conditions.] Since both the equation and the boundary 
conditions for M(x) are homogeneous, M(x) = 0 is a solution of the problem. It 
must be rejected since it is of no value in solving the given problem for u. Thus, we 
must find nonzero solutions of the boundary value problem for M(x), referred to as 
eigenfunctions, and such solutions exist only for certain values of the parameter λ in 
(4.2.14), the corresponding eigenvalues. This known as an eigenvalue problem. 

Self-Adjoint and Positive Operators 

When applied to functions that satisfy the boundary conditions (4.2.2) or (4.2.3), 
the differential operator L [or more precisely, (1/p)L] in (4.2.14) has the property 
of being a self-adjoint as well as a positive operator. We discuss these properties 
below, following which important consequences of these properties for the eigenvalue 
problem associated with the operator L are examined. Although a large part of our 
discussion is presented in notation appropriate for the two- and three-dimensional 
cases, the general results are valid for the one-dimensional case as well. 

Let и and w be (smooth) functions defined over the two- or three-dimensional 
region G that satisfy the boundary condition (4.2.2) on dG. Then 

/ / \wLu — uLw] dv = I p \u— w—— 
JJG JdG L дп дп 

ds = 0, (4.2.16) 

where д/дп is the exterior normal derivative, as will be shown. The operator L was 
determined to be formally self-adjoint in Example 3.8, but we verify this here again 
and go on to show that the boundary value problem is self adjoint. 
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To prove (4.2.16) we note that 

κΛ7 · (pVu) = V · (pwS/u) - pVw ■ Vu. (4.2.17) 

Interchanging w and и in (4.2.17) and subtracting one expression from the other gives 

wW ■ (pVtt) - uV · (pVw) = V · (pwVu) - V · (puVw). (4.2.18) 

In view of (4.1.6) (i.e., the expression for L), we obtain 

/ / [wLu — uLw]dv — — I p[wVu — uVw] · n ds = / p 
JjG JdG JdG 

dw du 
дп дп 

ds, 

(4.2.19) 
on applying the divergence theorem. Both и and w satisfy (4.2.2), so that 

a(x)u + ß(\) — = 0, a(x)w + ß(x)^-
dG d n 

= 0. (4.2.20) 
dG 

We may think of (4.2.20) as a simultaneous system of homogeneous equations for a 
and ß at each point of dG. Since a + ß > 0 on dG by assumption, the system must 
have a nonzero solution. This can occur only if the determinant of the coefficients of 
the system (i.e., udw/dn — wdu/дп) vanishes on dG. Consequently, the surface 
integral in (4.2.19) vanishes, as was to be shown. 

Given two functions /(x) and g(x) defined and integrable over the region G, the 
inner product of these two functions with weight p(x) > 0 is defined as 

(/(x), g(x)) = JJ p(x)/(x)fl(x) dv. (4.2.21) 

These functions are assumed to be real-valued and need not satisfy the boundary 
conditions(4.2.2). Since (f(x),g(x)) = (#(x),/(x)),theinnerproductisi3>mmein'c. 
(If the functions are complex valued, a different inner product, introduced in the next 
section, is defined.) If (f(x),g(x)) = 0, the functions /(x) and g(x) are said to be 
orthogonal. In terms of the inner product (4.2.21 ), we define a norm of the function 
/ W as 

| | /(x) | | = y/{f(x),№) = JJJGP(x)P(x) dv. (4.2.22) 

The norm | | /(x) | | is nonnegative for real valued /(x) , and is a measure of the mag-
nitude of/(x). If/(x) is continuous in G, then | | / (x) | | = 0 if and only if/(x) = 0. 
Most often one defines the inner product (4.2.21 ) with p(x) = 1, but for our discussion 
we require the more general definition given above. 

In terms of the inner product (4.2.21 ), (4.2.16) can be expressed as 

w, - Lu] = (- Lw,uj . (4.2.23) 
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An operator L with the property that (w, Lu) = (Lw, u) is said to be self-adjoint. If 
p(x) φ 1, the operator (l/p(x))L satisfies the self-adjointness condition in terms of 
the inner product (4.2.21 ), while if p(x) = 1, the operator L is self-adjoint. Thus, the 
self-adjointness of (1/' p(x))L or L is determined not only by the definition of L but 
also by the boundary conditions (4.2.2) that и and w must satisfy. (The discussion of 
adjoint differential operators given in Section 3.6 involved only the concept of formal 
adjointness.) 

Next, we suppose that и satisfies the boundary condition (4.2.2). We have 

/ / uLu dv = - \\ [V ■ (puVu) - p(Vu)2] dv + / / qu2 dv 
JJG JJG JJG 

= [[ \p(Vu)2 + qu2]dv- [ pu-^ds, (4.2.24) 
JJG JdG on 

where (4.2.17) and the divergence theorem have been used. On the subset S3 of 
dG, (4.2.2) yields ди/дп — — (a/'β) и, while on Si and S2, и and ди/дп vanish, 
respectively. Consequently, (4.2.24) can be expressed as 

/ / uLu dv = / / \p(Vu)2 + qu2] dv + V%.u2 ds. (4.2.25) 

The assumptions on p, q, a, and β given previously imply that the right side of 
(4.2.25) is nonnegative if и is real valued. 

In terms of the inner product (4.2.21 ), (4.2.25) implies that if и is real valued, 

I uLudv= f- Lu,u) > 0 . (4.2.26) 

A self-adjoint operator L with the property that (Lu, u) > 0 is said to be a positive 
operator. Thus if p ф 1, we see that (1/p)L is a positive operator, whereas if 
p = 1, the operator L is itself positive. Again the positivity of (l/p)L or L is based 
not only on its definition but also on the boundary conditions (4.2.2) that и must 
satisfy. If we relax the requirement that q in (4.1.4) and a and β in (4.1.11 ) must be 
nonnegative, the operator (\/p)L is still self-adjoint as long as a and β are not both 
zero simultaneously. However, for (l/p)L to be a positive operator, these conditions 
cannot be relaxed. 

Eigenvalues, Eigenfunctions, and Eigenfunction Expansions 

The problem of determining a nonzero solution M(x) of (4.2.14), with boundary 
conditions of the form (4.2.2) and (4.2.3), is known as an eigenvalue problem. The 
values of λ for which nonzero M(\) exist are known as eigenvalues. The corre-
sponding solutions of the eigenvalue problem for M(x) are called eigenfunctions. In 
the one-dimensional case, the eigenvalue problem is known as the Sturm-Liouville 
problem, and it is discussed in the following section. 
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We now apply the results of the foregoing discussion to the eigenvalue problem 
(4.2.14). Let Mk (x) and Mj (x) be eigenfunctions corresponding to the distinct eigen-
values Afe and \j, respectively. Since Mk(\) and Mj(\) both satisfy the boundary 
condition (4.2.2), the result (4.2.16) implies that 

И (MkLMj - MjLMk) dv = 0. (4.2.27) 

But LMj = XjpMj and LMk = XkpMk, so that (4.2.27) yields 

I (XjpMkMj - XkpMjMk) dv = (A, - Xk){Mk, Mj). (4.2.28) 
G 

By assumption, Xj φ Afe, so that (4.2.28) implies that 

{Mk,Mj) = 0, зфк. (4.2.29) 

Consequently, eigenfunctions corresponding to different eigenvalues must be orthog-
onal in terms of the inner product (4.2.21). 

Using (4.2.29) and the fact that the coefficients in the differential operator L are 
assumed to be real valued, it is easily shown that the eigenvalues for our problem must 
be real and that the corresponding eigenfunctions may be chosen to be real valued. 
(This is proven for the one-dimensional eigenvalue problem in Section 4.3, and the 
method of proof carries over immediately to the higher-dimensional problem.) 

Let Mfc(x) be a real-valued eigenfunction that corresponds to the real eigenvalue 
Afc. Since LMk = Afe/sMfc, the positivity property (4.2.26) implies that 

if MkLMk dv = Afc fi pMl dv = AfcHMfcll2 > 0. (4.2.30) 

Because Mfc(x) is real valued and nonzero by assumption, we conclude that the 
eigenvalue Afc > 0. 

Thus the self-adjointness property of the operator (l/p)L implies that the eigen-
values are real and that eigenfunctions corresponding to different eigenvalues are 
orthogonal. The positivity property implies that the eigenvalues are nonnegative. It 
can be shown (see Section 8.1) that there are a countably infinite number of eigenval-
ues At (k = 1,2,...) whose only limit point is at infinity (i.e., Afc —» oo as к —> oo). 
We denote the corresponding set of (real valued) eigenfunctions by Mfc(x). Further 
properties of eigenvalues and eigenfunctions are presented later, and the eigenvalue 
problem is reexamined from a variational point of view in Section 8.1. 

For each eigenvalue Afc we obtain an equation for Nk in (4.2.15). Assuming for 
simplicity that Afc > 0 for all k, we have for the Nk 

( iVfc(i) = afcCos(v/Afc"0 + i>fcsin(\/Afc^), hyperbolic case, 

Nk(t) = afcexp(—Afct), parabolic case, (4.2.31) 
Nk(y) = ak ехр(\/А/ь2/) + bk exp(—v/Afc 2/), elliptic case. 
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The ak and bk are arbitrary constants that must be determined. Forming the product 
MkNk, we obtain uk = MkNk, which for each value of к satisfies the appropriate 
equation (4.2.1), (4.2.5), or (4.2.7), together with the boundary condition (4.2.2) or 
(4.2.3). 

To satisfy the additional conditions on u(x, t) or u(x, y) given above, we consider 
the formal superposition of the solutions uk and construct the series 

oo oo 

u = J]«fc = J]Mfc^fe. (4.2.32) 
fc=l fc=l 

The ak and bk in the terms Nk are chosen to satisfy the additional conditions placed 
on и that are as yet unaccounted for by our choice of the Mk(x). 

In the hyperbolic case the initial conditions (4.2.4) must be satisfied and we obtain 
formally 

f u(x,0) = ΣΓ=ι Mk(x)Nk(0) = 5 X i akMk(x) = / (x) , ^ 

\ ut(x, 0) = ΣΖι Mk(x)N'k(0) = ΕΓ=ι vb~kbkMk(x) = g(x). 

The expressions (4.2.33) represent eigenfiinction expansions of /(x) and g(x). The 
validity of this representation is characterized by the concept of completeness of the 
set of eigenfunctions Mk(x). If the set is complete, then under certain conditions on 
the functions /(x) and g(x), the expansions (4.2.33) with appropriately chosen ak 

and bk will converge to these functions. The more stringent the conditions, the better 
the convergence. Since the Mk(x) are eigenfunctions for a self-adjoint operator 
as we have shown, even under very mild conditions on /(x) and g(x) the series 
of eigenfunctions will in some sense converge to these functions. This is discussed 
more fully for the one-dimensional case in Section 4.3 and for the higher-dimensional 
problem in Chapter 8. 

For the hyperbolic case considered above and the further discussion in this section, 
the Mfc(x) are assumed to be an orthogonal set; that is, (Mk, Mj) = 0 for к ф j . 
As shown above, this assumption is valid if each Mk(x) corresponds to a different 
eigenvalue, that is, there is exactly one linearly independent eigenfiinction for each 
eigenvalue. In the case of a multiple eigenvalue for which there are a finite number 
of linearly independent eigenfunctions, the Gram-Schmidt orthogonalization process 
(see Exercise 8.2.1) can be used to orthogonalize the finite set of eigenfunctions. 
(The eigenvalue problem we consider here cannot have more than a finite number of 
linearly independent eigenfunctions for each eigenvalue.) 

To determine the ak in (4.2.33), we multiply the series by p(x)Mj (x) and integrate 
over G. This gives 

oo 

(/(χ),Μ,-(χ)) = 53afc(Mfc(x),Mj(x)) = α,·(Μ,-(χ),Μ,·(χ)), (4.2.34) 
k=\ 

on using (4.2.29) and assuming that summation and integration can be interchanged 
in the series. Proceeding similarly for the bk, we find that 

(/(x),Mfc(x)) (g(x),Mfc(x)) 
k (Mk(x),Mk(x)Y k VX~k(Mk(x),Mk(x)Y ( ■ · ' 
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The formal solution of the initial and boundary value problem for the hyperbolic 
equation (4.2.1 ) is then given as 

oo 

u(x, ί) = Σ {ak с о ^ < ) + bk s i n i v ^ i ) ) Mfc(x). (4.2.36) 
fc=l 

For the parabolic case, the initial condition (4.2.6) must be met, so that 

oo oo 

u(x,0) = £Mfc(x)JVfc(0) = Y^akMkix) = / (x) . (4.2.37) 
fe=l fc=l 

Thus the ak are specified as in (4.2.35) and the formal solution of the initial and 
boundary value problem for the parabolic equation (4.2.5) is 

oo 

u(x, t) = Σ ake-XktMk{\). (4.2.38) 
fc=l 

In the elliptic case, the boundary conditions (4.2.8) must be satisfied. This yields 
the eigenfunction expansions 

J u(x, 0) = ΕΓ=ι (ofc + bk)Mk(x) = / (x) , 

[ u{x, Ϊ) = Σ,ν=ι (afe ехр(л/А^О + bk e x p ( - V ^ Ì ) J Mk{x) = g(x). 

Applying the technique used in the hyperbolic case yields 

f ak + bk = (/(x), Affc(x))/(Mfc(x), Mfc(x)), 

\a f eexp(v/Xn) + 6fcexp(--\/Äifci) = (fl(x), Mfc(x))/(Mfc(x),Mfe(x)). 
(4.2.40) 

Unique solutions for the ak and bk can be determined from the foregoing system. 
Then the formal solution of the boundary value problem for the elliptic equation 
(4.2.7) is 

CO 

akexp(y/\k'y) + bkexp{-,/λ^y)j Mk(x). (4.2.41) 
fc=l 

The solutions above are often termed classical solutions of the given equations 
if the formal operations carried out are valid and the series expansions of и can be 
differentiated term by term as often as required by the equations and the initial and 
boundary data. However, even if term-by-term differentiability is not valid, the sum 
и may still be characterized as a generalized solution if certain conditions specified 
later are met. 

We have shown that the separation of variables method reduces each of the initial 
and boundary value problems given in this section to the study of an eigenvalue 
problem. Unless the eigenvalues Xk and the eigenfunctions Mk(x) can be determined, 
the formal series solutions obtained remain unspecified. For many of the problems 
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considered in this book the eigenvalues and eigenfunctions can be determined exactly, 
as we demonstrate in this and later chapters. When exact results are not available, 
approximation methods such as the Rayleigh-Ritz method discussed in Section 8.2 
and the finite element method presented in Section 12.7 yield effective approximations 
to the leading and most significant eigenvalues and eigenfunctions. 

Exercises 4.2 

4.2.1. Verify the result (4.2.16) in the two-dimensional case if L = - V 2 , и = 
1 — r2, w = (1 - r ) 2 , where r2 — x2 + y2, if the region G is the interior of the circle 
r = 1. Note that both и and w vanish on the boundary r = 1. 

4.2.2. Let и = (1 — r) 2 and w = cos^r) , so that ди/дп and dw/dn both vanish 
on the circle r = 1. With L = —V2 and G given as the region r < 1, verify that the 
integral over the region G in (4.2.16) vanishes. 

4.2.3. With R2 = x2 + y2 + z2, let и = exp(l - R) and w = (R- l ) 2 , so that 
ди/дп + и and dw/dn + w both vanish on the sphere R = 1. If G is the interior 
of the unit sphere (i.e., the region R < 1) and L — - V 2 + 10, show that (4.2.16) is 
valid for the functions above. 

4.2.4. If the region G is the unit square 0 < a: < 1, 0 < j / < 1, and u(x,y) = 
xy(l — x)(l — y) so that u(x,y) vanishes on dG, show that (4.2.26) is satisfied if 
L = - V 2 . 

4.2.5. Show that λ = 0 is an eigenvalue and M(x) = с = constant is an eigenfunction 
for the eigenvalue problem (4.2.14) if and only if q = 0 in the operator L and a — 0 
in the boundary condition. Hint: Use (4.2.25). 

4.2.6. Show that if λ = 0 occurs as an eigenvalue when the elliptic problem (4.2.7) 
is solved by separation of variables, with the boundary condition (4.2.8) replaced by 
uy(x, 0) = f(x) and uy(x, I) = g(x), the problem has no solution unless f(x) and 
g(x) satisfy compatibility conditions. (Use the results of Exercise 4.2.5 to show this.) 
Conclude that the solution is not unique if the compatibility conditions are met and 
verify that these results are consistent with those obtained in Exercise 3.4.9. 

4.2.7. Show that Mj(x,y) = 1 and Mk{x,y) = COS(KX) со$(жу) are both eigen-
functions for the problem -(Mxx(x,y) + Myy (x, y)) = XM(x,y), 0 < x < 1, 0 < 
у < 1, with the boundary condition dM(a;, y)/<9n = 0 on the unit square. Determine 
the corresponding eigenvalues and verify directly that the orthogonality condition 
(Mj(x, y), Mk(x, у)) = О is satisfied. 

4.2.8. Show that M(x) = 1 is an eigenfunction for - V · (p(x)VM(x)) - M(x) = 
\M(\) in the region G with дМ(х)/дп = 0 on dG. Determine the correspond-
ing eigenvalue and explain why the occurrence of a negative eigenvalue does not 
contradict (4.2.30). 

4.2.9. Assuming that the eigenfunctions М^(х) are uniformly bounded, interpret the 
fact that u(x, t) as given in (4.2.38) vanishes as t —» oo if the λ^ are all positive, in 



1 9 0 INITIAL AND BOUNDARY VALUE PROBLEMS IN BOUNDED REGIONS 

terms of the physical significance of the heat conduction problem and its boundary 
conditions. Consider also the special case referred to in Exercise 4.2.5, which yields 
λ = 0 as an eigenvalue. 

4.2.10. Consider the two-dimensional eigenvalue problem in polar coordinates r 
and Θ, LM(r, Θ) = -V2M(r, Θ) = XM(r, Θ) in the region r < 1 with the boundary 
condition (a) M{1,0) = O,(b)Mr(i,0) = 0,οτ(ο)ΜΓ(1,θ)+ΗΜ{1,θ) = 0,{h> 0). 
(i) By expressing the Laplacian in polar coordinates and assuming that M = M(r) 
(i.e., it is independent of Θ), show that M(r) satisfies Bessel's equation of order 
zero, (ii) In the general case, with M = M(r, Θ), set M(r, Θ) = Mi(r)M2(0) and 
use separation of variables to show that if M(r, θ + 2π) = M(r, Θ), the function 
Mi (r) must satisfy a Bessel equation of integral order. For each of these eigenvalue 
problems we require that the solutions be bounded at r = 0 (see Section 4.3 for 
further discussion). 

4.2.11. Express Laplace's equation V2tt = 0 in spherical coordinates (r, θ, φ) with 
r > 0, 0 < Θ < 2π, and 0 < φ < π (see Example 8.3). Assume that и = u(r, ф) 
(i.e.,it is independentofö)andsetu(r,</>) = Ν{τ)Μ(φ). Use separation of variables 
to show that Μ(φ) satisfies -d [ήη{φ)άΜ{φ)/άφ] /άφ = λάη(φ)Μ(φ), with λ as 
the separation constant. Let x = cos(</>) and conclude that M{x) = Μ(φ) satisfies 
the Legendre equation. If we require that M(x) be bounded at x = — 1 and x = +1 , 
we obtain the eigenvalue problem discussed in Section 4.3. 

4.2.12. Given any two functions / and g for which the inner product and norm are 
defined as in (4.2.21 )-(4.2.22), show that they satisfy the Cauchy-Schwarz inequality 
| ( / ,9) | < 11/11 1Ы1· Hint: Expand out the non-negative integral ffGp(f + ag)2 dv, 
where a is a constant, as a quadratic expression in a and show that the discriminant 
must be negative or zero. 

4.2.13. Suppose that q(x) in the operator L [defined in (4.1.6)] can have negative 
values but that q(x) > q, with q as a negative constant. Also, let p(x) > p, with p as a 
positive constant. Put a = q/p, and define the operator Lu(x) = Lu(x)—ap(x)u(x). 
For functions u(x) that satisfy (4.2.2), show that (l/p(x))L is a positive operator. 
Since the eigenvalue problem for Lmust yield only nonnegative eigenvalues, conclude 
from the fact that the eigenvalues have no finite limit points, that the eigenvalue 
problem for L, with q(x) given as above, can have only a finite number of negative 
eigenvalues. 

4.2.14. Consider the operator L defined as Lu(x) — Lu(x) + b(x) · Vu(x), where 
Lu{x) has the form (4.1.6) and b(x) is a given vector function. Determine the formal 
adjoint L* of the operator L. Also, determine the boundary conditions that w(x) must 
satisfy so that the integral of w(x)Lu(x) — u(x)L*w(x) over the region G vanishes 
if u(x) satisfies a homogeneous boundary condition of the (a) first kind, (b) second 
kind, or (c) third kind on dG. 

4.2.15. Consider the eigenvalue problem LM(x) = Xp(x)M(x) for each of the three 
boundary conditions determined for L in Exercise 4.2.14. Proceed as in the text and 
use the conclusion of Exercise 4.2.14 to show that eigenfunctions for the eigenvalue 
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problem for L and the adjoint eigenvalue problem for L* are orthogonal if they 
correspond to different eigenvalues. These two sets of eigenfunctions are referred to 
as a biorthogonal set. 

4.3 THE STURM-LIOUVILLE PROBLEM AND FOURIER SERIES 

Sturm-Liouville Problem 

The one-dimensional version of the eigenvalue problem of Section 4.2, 

Li"«i = - s p(x) + q(x)v(x) = Xp(x)v(x), (4.3.1) 
dx 

where 0 < x < I and v(x) satisfies the boundary conditions (4.2.3), 

alV(0) - /?ц/(0) = 0, a2v(l) + ß2v'(l) = 0, (4.3.2) 

is known as the Sturm-Liouville problem. We require that p(x) > 0, p(x) > 0, and 
q(x) > 0, and that p(x), p(x), q{x), and p'(x) be continuous in the closed interval 
0 < x < I. Also, we must have Qj > 0, ßi > 0, and оц + ßi > 0 for г = 1, 2. 
Then we have a regular Sturm-Liouville problem. However, if one or more of the 
conditions on the coefficients in (4.3.1) are relaxed, say, if p(x) or p(x) or both are 
permitted to vanish at either or both of the endpoints x = 0 and x = I, we have 
a singular Sturm-Liouville problem. Both cases are of interest in applications and 
examples of each type are considered. We note that in discussions of Sturm-Liouville 
problems in the literature it is generally not required that q(x) and the coefficients in 
(4.3.2) be nonnegative. 

Before discussing and deriving some of the important properties of the eigenvalues 
and eigenfunctions of the Sturm-Liouville problem, we introduce several definitions 
and concepts. Some of these were given in Section 4.2 but are repeated here in their 
one-dimensional form. Unless otherwise specified, the functions considered in the 
following discussion are real valued. 

The inner product of two functions ф(х) and ф(х) (bounded and integrable over 
the interval 0 < x < I) is defined as 

(ф(х), -ф(х)) = I р(х)ф(хЩх) dx, (4.3.3) 
Jo 

with the weight function p{x) > 0 in 0 < x < I. [Most often one uses a unit weight 
function p(x) — 1. For our purposes, the definition (4.3.3) is more appropriate.] The 
inner product is clearly symmetric, that is, (φ(χ), Ψ(χ)) = (Ф(х), Ф(х)). The norm 
of a function ф(х) defined in terms of the inner product (4.3.3) (or induced by it) is 

■iff | |0(x)|| = у/{ф(х),ф{*)) = \ / Р(х)Ф2(х) dx. (4.3.4) 
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The norm, which is clearly nonnegative, is a measure of the magnitude of the function 
φ(χ) over the interval 0 < x < 1. If φ(χ) is continuous in that interval, then ||0(:r)|| = 
0 if and only if φ(χ) = 0. Any function φ(χ) with a finite norm [i.e., ||<^(a;)|| < oo] 
is said to be square integrable over the interval 0 < x < I. If φ(χ) is such that 
||</>(a;)|| = 1- шеп ф(х) is said to be normalized to unity. Any square integrable 
function can be normalized by defining a new function ф(х) = ф(х)/\\ф(х)\\ for 
which we see that ф(х) = 1. [We require that all square integrable functions be 
integrable (see Exercises 4.3.1 and 4.3.2).] 

Two functions ф(х) and ф(х) for which 

(ф(х), ф(х)) = 0 (4.3.5) 

are said to be orthogonal over the interval 0 < x < I. A set of functions {фк (х)}, к = 
1,2,..., for which 

(фк(х),Фз(х))=0, kj=j, (4.3.6) 

is said to be an orthogonal set. If, in addition, | \фк (x) \ \ = 1 for all фк(х), the set is 
said to be orthonormal. Any orthogonal set can be orthonormalized by normalizing 
each of the фк{х) in the manner shown above. 

If the functions φ(χ), ψ{χ), or фк{х) can assume complex values, we replace the 
inner product (4.3.3) by the (weighted) Hermitian inner product 

(φ(χ), ψ(χ)) = [ р(х)ф(х)фЩ dx, (4.3.7) 
Jo 

where the overbar denotes complex conjugation. The inner product has Hermitian 
symmetry since (φ(χ), ψ(χ)) = (Ψ(χ), Ф{х))- The induced norm is 

||0(x)|| = у/{ф(х), ф(х)) = Jj р(х)\Ф(х)\2 dx, (4.3.8) 

sothat||</»(x)|| > 0. 
We now return to a consideration of real-valued functions. Given the orthonormal 

set of square integrable functions {фк(х)}, к = 1,2,.. . , and the square integrable 
function φ(χ) over the interval 0 < x < I, the set of numbers (ф, фк) are called the 
Fourier coefficients of ф{х). The formal series 

oo 

ф(х) = ^2(ф(х),фк)фк(х) (4.3.9) 
fc=l 

is called the Fourier series οίφ(χ). Even though we have equated φ(χ) to its Fourier 
series in (4.3.9), we have yet to specify in what sense the Fourier series converges to 
the function φ(χ), if it converges at all. Further, although we use the term Fourier 
series to denote any expansion of a function in terms of a set of orthonormal (or more 
generally, orthogonal) functions, in our later discussions, as well as in the literature, 
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this term is more commonly used to denote an expansion in a series of trigonometric 
functions. 

To discuss the convergence properties of the series (4.3.9), we note that for the 
finite sum ^2k=1 (Ф{х), Фк)Фк{х), we have 

Φ(χ) -~^2(Ф,Фк)Фк{х) 
fc=i 

ЛГ N 

( 0 , 0 ) - 2 ^(ф,фк)
2 + ^(Ф,Фк? 

fc=l fc=l 

N 

= \\Ф\\2-^(Ф,Фк?>0, (4.3.10) 
fc=l 

where we have used elementary properties of the inner product, the orthonormality of 
the set {фь(х)}, and the nonnegativity of the norm. Since | |0(ar)| | < 00 and (4.3.10) 
is valid for all TV, we obtain in the limit as TV —» oo 

oo 

"£(ф(х),фк)
2<\\ф(х)\\2, (4.3.11) 

fc=l 

which is known as Bessel's inequality. This shows that the sum of squares of the 
Fourier coefficients of any square integrable function ф{х) converges, and implies 
that (ф(х), фк) tends to zero as к —» со. 

A sequence of (square integrable) functions {ΦΝ(Χ)}, N — 1,2,..., is said to 
converge to a function φ(χ) in the mean if 

lim \\φ[χ) - ΦΝ{χ)\\ = 0. (4.3.12) 
N—»oo 

This differs from and does not imply pointwise convergence, and is called mean 
square convergence. Denoting the partial sums of (4.3.9) by 

N 

ΦΝ(χ) = Σ (Φ(χ), Фк)Фк(х), (4.3.13) 
fe=l 

we see that if Parseval's equality, 

oo 

^{ф(х),фк? = \\Ф{х)\\2, (4.3.14) 
k=l 

is satisfied, (4.3.10) implies that 

lim \\φ(χ)-ΦΝ(χ)\\2= lim \\\φ(χ)\\2 - ^Г{ф{х),фк)
2 1 = 0. (4.3.15) 

I fc=l ) 

Thus the Fourier series (4.3.9) converges in the mean square sense to the function 
φ{χ) in the interval 0 < x < Z if" Parseval's equality is satisfied. 
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A set of square integrable functions {фк(х)}, fc = 1,2,. . . , is said to be complete 
(with respect to mean square convergence) if for any square integrable function ф(х), 
its Fourier series (4.3.9) converges to it in the mean. It follows from (4.3.15) that if 
Parseval's equation (4.3.14) is satisfied for all square integrable functions ф(х), the 
set of functions {фк(х)}, к = 1,2,..., is complete. Although few restrictions need 
to be placed on a function φ(χ) in order to achieve mean square convergence for 
its Fourier series, in applications of Fourier series to the solution of boundary value 
problems, stronger forms of convergence such as uniform convergence are generally 
required. 

Properties of Eigenvalues and Eigenfunctions 

We return to the Sturm-Liouville problem, list the basic properties of the eigenvalues 
and eigenfunctions, and derive the simplest of these properties. 

/. Eigenfunctions corresponding to different eigenvalues are orthogonal. Let Xi 
and Xj be two distinct eigenvalues and Vi (x) and Vj (x) two corresponding eigenfunc-
tions for the problem (4.3. l)-(4.3.2). Then 

I [viLvj — VjLvAdx = / —— (pvjV \ — pviV '■) dx = 0, (4.3.16) 
Jo Jo dx 

as is easily verified on using the boundary conditions (4.3.2) for Vi and Vj. But we 
also have 

[VÌLVJ — VjLvi] dx = (Xi — Xj) / pviVj dx — (Xi — XJ)(VÌ,VJ). (4.3.17) 
Jo 

Since Χίφ Xj, by assumption, we conclude that 

{vi(x),vj(x))=0, (4.3.18) 

which implies orthogonality. [This result should be compared with (4.2.27)-(4.2.29) 
and follows from the self-adjointness of the operator (1/p)L.\ 

2. The eigenvalues are real and nonnegative and the eigenfunctions may be chosen 
to be real valued. Suppose that an eigenvalue Xi is complex valued. Then Xj = Xi 
represents a second, distinct eigenvalue. Because the coefficients in the operator 
L are real valued, eigenfunctions corresponding to Xi and Xj = Xi are Vi (x) and 
Vj(x) = Vi(x), where Vj(x) is obtained by complex conjugation in the equation for 
Vi(x). Then since λ* φ Xj, (4.3.18) shows that 

(vi(x):Vj(x)) = (νί(χ),:φή) = [ p(x)\Vi(x)\2 dx = 0. (4.3.19) 
Jo 

But Vi(x) ψ 0, so that the integral in (4.3.19) must be nonzero, and we have a 
contradiction. Consequently, we must have Xj = Xi so that Xi is real valued. Since 
the coefficients and the eigenvalues in the equation (4.3.1) are now real valued, the 

L 
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real and imaginary parts of any solution (i.e., eigenfunction) must also satisfy (4.3.1). 
Therefore, the eigenfunctions can be chosen to be real valued and we assume them 
to be such. 

The nonnegativity of the eigenvalues can be shown as follows. Let v(x) be an 
eigenfunction. Then 

(v,-Lv) = -pvv 'IÓ + / pv'2 dx+ I qv2 dx > 0, (4.3.20) 

since, say, at x = I we have 

-p(l)v(l)v'(l) = ( («2/ß2Ml)v2(l) > 0, Ä > 0, ( 4 3 2 1 ) 
L o, p2 = o, 

with a similar result valid at x = 0. [The last two integrals in (4.3.20) are clearly 
nonnegative.] But we also have 

v,-Lv\ =(υ,λν) = λ(ν,υ) = λ\\υ\\2, (4.3.22) 

with ||u|| > 0, by assumption. Combining (4.3.20) and (4.3.22) gives 

λ = Щ Ш > o, (4.3.23) 
IMI2 

which proves that the eigenvalue λ is nonnegative. [Note that the positivity of the 
operator (l/p)L has been used to prove this result. This may be compared with the 
discussion in the preceding section.] 

The foregoing discussion may be used to show that if q(x) > 0 in the interval 
0 < x < I, A = 0 cannot be an eigenvalue of the Sturm-Liouville problem. If 
q(x) = 0, λ = 0 is an eigenvalue if and only if a\ = a2 — 0. This is shown in the 
exercises. 

3. Each eigenvalue is simple. The second order ODE (4.3.1 ) can have at most two 
linearly independent eigenfunctions for each eigenvalue λ. But, the Sturm-Liouville 
problem, (see the exercises), has only one linearly independent eigenfunction for each 
eigenvalue. That is, each eigenvalue is simple. 

4. There is a countable infinity of eigenvalues having a limit point at infinity. The 
set of eigenvalues can be arranged as follows: 0 < λχ < X2 < Λ3 < . . . with 
Afc —> 00 as к —» oo. The set of eigenvalues is called the spectrum of the operator L, 
and we see that the spectrum is discrete, nonnegative, and has a limit point at infinity. 

5. The set of eigenfunctions {vk(x)}, к = 1,2,.. .forms a complete orthonormal 
set of square integrable functions on the interval 0 < x < I. As a result, if the 
function v(x) is square integrable over the interval 0 < x < I, the Fourier series or, 
equivalently, the eigenfunction expansion 

00 

«(*) = Σ Μ * ) ' «fc)t>fc(aO (4.3.24) 
fe=l 

converges to v(x) in the mean. It can be shown that if v(x) is continuous and, in 
addition, has a piecewise continuous first derivative in 0 < x < I and v(x) satisfies 
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the boundary conditions (4.3.2), the Fourier series (4.3.24) converges absolutely and 
uniformly to v(x) in the given interval. If v(x) has a jump discontinuity at some 
interior point xo in the interval, the Fourier series converges to (v(xo—) + v(xo+))/2 
at that point, where V(XQ-) and v(xo+) are one-sided limits of v{x) as x approaches 
xo from the left and right, respectively. 

Proofs of properties 4 and 5 are not given here. However, the discussion in Sec-
tion 8.1, which deals with higher-dimensional eigenvalue problems can be adapted 
to yield a proof of these properties for the Sturm-Liouville problem. 

Determination of Eigenvalues and Eigenfunctions 

The eigenvalues and eigenfunctions of the Sturm-Liouville problem can be obtained 
formally as follows. Let V(x; X) and W(x; X) be solutions of the initial value prob-
lems for the equation (4.3.1) with the initial conditions 

V(0;A) = 1, V"(0;A) = 0, W(0;A)=0 , W"(0;A) = 1, (4.3.25) 

respectively. Then, the function 

v(x; X) = ß{V{x\ X) + a i W(x; X) (4.3.26) 

isasolutionof(4.3.1)that satisfies the boundary condition (4.3.2) at x = 0. Tosatisfy 
the condition at x = / we must have 

a2ßiV(l; X) + a2axW(l; X) + ß2ßiV{l; X) + ß2aiW'(l; X) = 0, (4.3.27) 

which results from the substitution of (4.3.26) into (4.3.2). The eigenvalues λ = 
Xk {k = 1,2,...) of the Sturm-Liouville problem are determined as the roots of the 
equation (4.3.27). The corresponding eigenfunctions are given as 

vk(x)=v(x;Xk) = ß1V{x;Xk) + a1W(x;Xk), к = 1,2,.. . . (4.3.28) 

In the following, we consider a number of regular and singular Sturm-Liouville 
problems that lead to trigonometric, Bessel, and Legendre eigenfunctions. 

Trigonometric Eigenfunctions 

We begin with a fairly general case and then specialize the results to obtain the basic 
trigonometric eigenfunctions. We set p(x) = p(x) — 1 and q(x) = 0 in (4.3.1) 
while retaining the general boundary conditions (4.3.2). The resulting equation for 
the eigenfunction v(x) is 

-v,,{x)=Xv{x). (4.3.29) 

The solutions of (4.3.29) that satisfy (4.3.25) are found to be 

V(x; X) = cos(VXx), W(x; X) = s m ^ x \ (4.3.30) 
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assuming that λ > 0. Exercise 4.3.10 deals with A = 0. Then 

v(x; A) = /?i c o s i v i ) + ax
 s i n ( ^ x ) ; (4.3.31) 

ч/А 
and the eigenvalues are determined from the transcendental equation 

\Z\(alß2+ß1a2)cos(Vxi) + {a2a1 - Xß2ßi)sm(\/Xl) = 0, (4.3.32) 

some of whose properties are considered in Exercise 4.3.9. Once the eigenvalues 
Afc (k = 1,2,...) are determined from (4.3.32), we obtain the eigenfunctions 

vk{x) = βϊ cos(^À7z) + αχ З Ш ( ^ Ж ) , к = 1,2,.... (4.3.33) 
vAfe 

Fourier Sine Series 

We reconsider the eigenvalue equation (4.3.29) but simplify the boundary conditions 
(4.3.2) and assume that 

<*i = a2 = 1, βι = ß2 = 0. (4.3.34) 

Then A = 0 is not an eigenvalue (see Exercise 4.3.10) and the eigenvalue equation 
(4.3.32) reduces to 

sm(Vxl) = 0, (4.3.35) 

and this yields the eigenvalues 

7rfc4 

A f c = ( — J , к = 1 , 2 , . . . . (4.3.36) 

The normalized eigenfunctions are given as 

vk(x) = ^jsm(^x\, к =1,2,.... (4.3.37) 

as is easily verified. 
Based on our exact determination of the eigenvalues and eigenfunctions for the 

foregoing Sturm-Liouville problem, the first four properties for the general eigenvalue 
problem listed above can be verified directly. The expansion of a function in a series 
of eigenfunctions (4.3.37) as given in (4.3.24) is known as a Fourier sine series. 

Fourier Cosine Series 

We reconsider (4.3.29) but with boundary conditions (4.3.2) for which we set 

ax = a2 = 0, βι=β2 = 1· (4.3.38) 
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The eigenvalue equation for λ > 0 becomes 

sin(>/Ai) = 0, (4.3.39) 

and since λ = 0 is an eigenvalue (see Exercise 4.3.10) we obtain the eigenvalues 

A f c = ( ? ) ' * = M , 2 , . . . . (4·3 ·4 0) 

The corresponding normalized eigenfunctions are found to be 

vo(x) = -7j, vk{x) = J j cos (—x\ , к = 1,2, (4.3.41) 

Again, the first four properties for the general Sturm-Liouville problem can be verified. 
The series expansion of a function in terms of the eigenfunctions (4.3.41) in the form 
of (4.3.24) is known as a Fourier cosine series. 

Fourier Series 

Finally, we reconsider the equation (4.3.29) but extend the interval from 0 < x < I 
to — I < x < I. In addition, (4.3.2) are replaced by what are known as periodic 
boundary conditions. Specifically, we study the eigenvalue problem 

-v" (x) = Xv{x), -Kx<l, (4.3.42) 

with the (periodic) boundary conditions 

v(-l) = v(l), v'(-l) = v'(l). (4.3.43) 

The eigenvalue problem (4.3.42)-(4.3.43) is not of the Sturm-Liouville type, as it 
was defined above. Nevertheless, most of the properties listed for the Sturm-Liouville 
problem remain valid in this case as we shall see. 

Using the general solution 

v(x; X) = a cos (V\x) + bsin(y/Xx) (4.3.44) 

of (4.3.42) (where we have tacitly assumed that λ > 0), we easily conclude that the 
eigenvalues are given as 

7rfc4 

Afc= ( — 1 , fc = 0 , l , 2 , . . . , (4.3.45) 

on applying (4.3.43). By considering the solution of (4.3.42)-(4.3.43) for λ < 0 it 
can be shown that v(x) = 0 is the only possible result, so that there are no negative 
eigenvalues. However, AQ = 0 is a eigenvalue for this problem. 
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For each Xk except λο = 0, cos(\/Xkx) and sin(>/Afc χ) are linearly independent 
eigenfunctions, so that each Afc > 0 is a double eigenvalue. Thus property 3 given 
for the Sturm-Liouville problem is not valid in this case. 

The full set of normalized eigenfunctions in terms of the (new) inner product 
(defined over —l<x<l) 

L 
and the induced norm 

is given as 

{ф(х),гр(х)) = Ф(х)Ф(х)ах, (4.3.46) 

\\Ф(х)\\ = J^ФЦх) dx, (4.3.47) 

1 1 I' nk \ 
va{x) = -= vk(x) = —zcosi — x\ , к =1,2,..., (4.3.48) 

vk(x) = ^sm(?j-x\ к = 1,2,..., (4.3.49) 

For к > l,vk(x) and vk(x) are linearly independent normalized eigenfunctions that 
correspond to the eigenvalues λ^. It can be verified directly that 

(vk(x),Vj(x)) = (vk(x),Vj(x)) = 0, кфз, (4.3.50) 

{vk(x),vj(x))=0, k,j = 0,1,2,.... (4.3.51) 

Thus the set of eigenfunctions {vk(x),Vj(x)}, к = 0,1,2,..., j = 1,2,... is an 
orthonormal set with respect to the inner product (4.3.46). Further, it can be shown 
that the eigenfunctions form a complete set with respect to square integrable functions 
v(x) over the interval —l<x<l. Such functions have a Fourier series expansion 

oo 

v{x) = (v(x),v0)vo(x) +^2[{v{x),vk)vk(x) + (v(x),vk)vk(x)} (4.3.52) 
fe=l 

that converges to v(x) in the mean. 
If v(x) is continuous and, in addition, has a piecewise continuous first derivative 

in the interval -I < x < I and v(x) satisfies the boundary conditions (4.3.43), the 
series (4.3.52) converges absolutely and uniformly to v(x). It may be noted that all 
essential properties of the Sturm-Liouville eigenvalues and eigenfunctions carry over 
to the present case. 

Properties of Trigonometric Fourier Series 

Trigonometric Fourier series are of sufficient interest to be studied without relating 
them to an eigenvalue problem. Their basic common feature is that they all involve 
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expansions in the functions {cos[(7rfc//):r]}, к = 0,1,2, ...and {sin[(nk/l)x]}, к = 
1,2,... These functions are all periodic of period 21, the cosine functions are even 
functions of x, and the sine functions are odd functions of x. [A function is periodic 
of period P if ф(х + P) = ф(х) for all x. It is an even function if ф(—х) = ф(х) 
for all x, and it is an odd function if ф{—х) = —ф(х) for all x.} Thus, although the 
functions v(x) that are expanded in trigonometric series are defined over the interval 
0 < x < I or —/ < x < I, the Fourier series themselves are defined for all x. 

As a result, assuming that the trigonometric (Fourier) series converge, they may 
be considered to provide an extension of the definition of the function v(x) from its 
given interval to the entire real line. Thus in the case of Fourier series, the given 
function v(x) is extended as the function V(x) as follows: 

Г V(x) = v(x), -l<x <l, . > 
\V{x + 2l) = V{x), - o o < z < o o . \,ы.ол) 

The Fourier sine series of v(x), defined over the interval 0 < x < I, is extended 
as the function V0(x) which is given as 

V0(x) = v(x), 0<x<l, 
V0{x) = -v(-x), -l<x<0, (4.3.54) 
V0(x + 21) = V0(x), -oo < x < oo. 

Thus V0(x) first extends v(x) as an odd function into the interval — I < x < 0 and then 
as an (odd) periodic function of period 21 over the entire x-axis. The odd extension 
is relevant here since all the sine functions are odd. 

For the Fourier cosine series we extend v(x), which is defined over the interval 
0 < x < I, to the entire x-axis via the function Ve(x) as follows: 

Ve(x) = v(x), 0<x<l, 
Ve(x)=v(-x), -l<x<0, (4.3.55) 
Ve(x + 21) = Ve(x), -oo < x < oo. 

Thus Ve (x) is an even periodic extension of period 21 of the function v(x). 
We have shown that the Fourier series, sine series, and cosine series not only 

represent v(x) over the appropriate interval (i.e., either 0 < x < I or — I < x < I) 
but also the functions V(x), V0(x), and Ve(x), respectively, over the entire real line. 
Consequently, if V(x) is an odd periodic function, the Fourier series must take the 
form of a sine series. Similarly, if V(x) is periodic and even, the Fourier series must be 
a cosine series. Also, the graphs of the extended functions V(x), V0(x), and Ve(x) 
provide some insight into the pointwise convergence properties of the appropriate 
Fourier series. 

As an example, we consider the function v(x) = x over the interval 0 < x < I. 
The odd and even periodic extensions of v(x) are shown in Figures 4.4 and 4.5. If 
v(x) = x in —/ < x < I, the periodic extension of v(x) to V(x) with V(x + 
21) = V(x), is identical to the function V0(x) graphed in Figure 4.4. In either 
case the extended function V0(x) — V(x) has jump discontinuities at the points 
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x = ±(2n + 1)1 (n = 0 ,1,2, . . . ) . These discontinuities cause the pointwise con-
vergence of the Fourier series to be slow away from these points. At these points 
the Fourier series converges to zero. In the case of the sine series, v(x) = x does 
not satisfy the appropriate boundary condition (4.3.2) at x = I, while for the Fourier 
series the function v(x) = x is not periodic over the interval — I < x < I since 
v(—l) φ v(l). For the even periodic extension, Ve(x) is continuous for all x but is 
not differentiable at the points x — nl (n — 0, ± 1 , ±2 , . . . ) . Pointwise convergence 
is more rapid in this case than for the odd or periodic extension considered above. 
Yet it is still fairly slow because the curve is not smooth. In fact, with v(x) — x we 
have v '(0) = v '(/) = 1, so that the boundary condition (4.3.2) appropriate for the 
cosine eigenfunctions is not satisfied. 

Figure 4.4 Odd extension of v(x) = x. 

Figure 4.5 Even extension of v(x) = x. 

If the boundary conditions for the relevant eigenvalue problem are satisfied by 
the given function v(x), the smoother v(x) is, the better the convergence. This is 
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evidenced by the smoothness of the relevant extended functions V0(x), Ve(x), and 
V(x). In general, the greater the number of continuous derivatives the extended 
functions have, the more rapid the pointwise convergence of the Fourier series. This 
matter is examined further in the exercises. 

Bessel Eigenfunctions and Their Series 

We consider a singular Sturm-Liouville problem that arises from the eigenvalue prob-
lem for Bessel's equation of order n, with n as an integer or zero, 

n2 

+ — v{x) = Xxv{x), (4.3.56) 
x 

on the interval 0 < x < I. [The ODE (4.3.56) has the self-adjoint form of (4.3.1). 
On replacing x by \fX~x, (4.3.56) becomes Bessel's equation of order п.] Since 
p(x) = p(x) = x and q(x) — n2/x, we see that these functions are positive for 
0 < x < I, butp(x) andp(x) vanish at a; = 0andq(a;) is singular there. Nevertheless, 
x = 0 is a regular singular point for Bessel's equation, and bounded solutions of 
(4.3.56) do exist. 

To obtain these solutions we impose the boundary conditions 

v(x) bounded at x = 0, v(l) = 0. (4.3.57) 

(The condition at x = I can be replaced by a boundary condition of the second or 
third kind. The eigenvalues and eigenfunctions for these problems are considered 
in the exercises.) In general, the boundedness condition at the singular point is 
supplemented by the condition limx^o p(x)v'(x) = 0. This guarantees that not only 
are the eigenfunctions bounded, but that eigenfunctions corresponding to different 
eigenvalues are orthogonal. To see this, we recall from (4.3.16)-(4.3.17) that with 
Aj ψ^ Xj, 

(Xi - Х^)(ы{х),уа(х)) = \р{х)ь^х)у[{х) - р{х)Уг(хЦ(х)]\х
х2

1
0- (4.3.58) 

For the right side to vanish so that orthogonality results, not only must Vi and Vj be 
bounded at x = 0 and x = / but also, Мтр(х)у[(х) = limp(a;)i^(a;) = 0 as x —► 0 
and x —> I if a singularity exists at x — 0 and x = I. 

For our eigenvalue problem (4.3.56)-(4.3.57), the singular solution of Bessel's 
equation is rejected in view of (4.3.57), and the eigenfunctions must be determined 
from the Bessel functions of ordern, that is, Jn(y/Xx). Since JQ{-/XX) = l+0(x2) 
a n d J n ( ^ a · ) =0(xn) as x —» 0, we find that these functions are bounded at x = 0 
and that xJ'0{\/~Xx) = 0{x2) and xJ'n(\fXx) = 0(xn) there. Also, p(x) = x, so 
that limx^op(x)v'(x) = 0 is satisfied. 

The eigenvalues are determined from the boundary condition v(l) — 0. We de-
note the positive zeros of the Bessel function Jn(x) by afe„, к = 1,2,..., so that 
Jn{otkn) = 0. [There are infinitely many real positive zeros of the Bessel functions 

L[v(x)} = - d_ 
dx 

dv(x) 
dx 



THE STURM-LIOUVILLE PROBLEM AND FOURIER SERIES 2 0 3 

Jn{x) with a limit point at infinity, and they are tabulated or can be found using 
Maple, for example.] Then v(l) = 0 implies that J„(\/~Xl) = 0 and the eigenvalues 
for each n are given by 

Afc„ = (^f ) 2 , fc=l,2,.... (4.3.59) 

Using the properties of the Bessel function, it is shown in the exercises that the square 
of the norm of the eigenfunctions £ы(х) = JnW^kn I) is 

ri /2 
\Jn(V>4cnx)\\2 = / xJ^(VXknx) dx = — Jn+iiV^knl)- (4.3. 

In view of the orthogonality property demonstrated above, the set 

fc=l,2,..., , ч \/2 JnW^kn x) 
Vkn{x) = -Г-

l \Jn+lW^kn l)\ 

60) 

(4.3.61) 

is an orthonormal set of eigenfunctions for the Sturm-Liouville problem (4.3.56) 
and (4.3.57) for each n. These eigenfunctions form a complete set, and any smooth 
function v(x) defined overthe interval 0 < x < I that satisfies the boundary condition 
v(l) = 0 can be expanded in a convergent series 

ν(χ) = ^2(v{x)^vkn(x))vkn(x)- (4.3.62) 
fc=l 

Legend re Polynomial Eigenfunctions and Their Series 

The eigenvalue problem for the self-adjoint form of the Legendre equation is 

L[v(x)} d_ 
dx 

{1.^JM = Xv(x), (4.3.63) 

where v(x) is defined over the interval — 1 < x < 1 and satisfies the boundary 
conditions 

v(x) bounded at x — ± 1 . (4.3.64) 

As p(x) = l - a ; 2 > 0 f o r - l < : r < l and vanishes at x = ± 1 , (4.3.63)-(4.3.64) is 
a singular Sturm-Liouville problem. The points x = ±1 are regular singular points 
for Legendre's equation, and bounded solutions exist. 

The Frobenius theory of power series solutions for (4.3.63) shows that the only 
bounded solutions of the Legendre equation (4.3.63) over —1 < x < 1 are polynomial 
solutions, and these occur only if λ assumes the eigenvalues 

Xk = k(k+l), fc = 0 , l ,2 , (4.3.65) 
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The eigenfunctions that correspond to the eigenvalues Xk are usually normalized to 
yield the Legendre polynomials of degree k. They are given as 

Pk(x) = (теп) -ττ(*2 - i)fe = У n (Mf cl ! ,4,(s - i)n- (4·3·66) 
v ; \2kk\J dxkK ' ^ (к - n)\2n{n\)2K y v ; 

with the normalization chosen such that Pfc(l) — 1 for all k. Since we have 
limx=±i (1 — x2)P'k{x) = 0, the supplementary condition that p(x)v'(x) have a 
finite limit at the singular points is satisfied [see the discussion leading to (4.3.58)]. 
Consequently, the Legendre polynomials form an orthogonal set over the interval 
— 1 < x < 1. Further, it can be shown that 

\\Pk(x)\\2 = ^ p2(x)dx = ^ - i , fc = 0 , l , 2 , . . . . (4.3.67) 

Thus the orthonormal set of eigenfunctions is given as 

ilk 4- 1 
Vk(x) = y—?-Pk(x), к = 0,1,2,.... (4.3.68) 

The set {vk(x)} is complete and any smooth function v(x) defined over the interval 
- 1 < x < 1 can be expanded in a convergent series of eigenfunctions 

v(x) = f; Lx), \[Щ1рк(х)\ ]1Щ1Рк{х). (4.3.69) 

Exercises 4.3 

4.3.1. Let p(x) = 1 in the norm (4.3.4). Show that the function ф(х) = l/\/x is 
integrable (as an improper integral) over the interval 0 < x < 1, but that it is not 
square integrable. 

4.3.2. Letp(x) = 1 in the norm (4.3.4). Show that the function q(x), defined to equal 
1 when x is a rational number and to equal — 1 when x is irrational, is not integrable 
over any finite interval but is square integrable. 

4.3.3. Show that the square integrable functions фк(x) = sin(nk log x/ log 2), к > 
1, are orthogonal over the interval 1 < x < 2 with respect to the inner product with 
weight function p(x) = 1/x. Obtain the norms of these functions and construct an 
orthonormal set. 

4.3.4. Show that the set of complex-valued functions фк{х) = exp(ikx), к = 
0, ± 1 , ± 2 , . . . , is orthogonal with respect to the Hermitian inner product (4.3.7) over 
the interval —π < x < π if the weight function p(x) — 1. Determine the norms of 
the фк{х) and construct an orthonormal set. 

4.3.5. Obtain the Fourier coefficients of the function ф(х) — x with respect to the 
orthonormal set of functions obtained in Exercise 4.3.3. 
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4.3.6. Adapt the argument given following (4.2.20) to show that the boundary terms 
in (4.3.16) vanish. 

4.3.7. Conclude from (4.3.22) that if A = 0 is an eigenvalue of the (regular) Sturm-
Liouville problem, the corresponding eigenfunction v (x) must satisfy J0 \p(x)v' (x)2 + 
q(x)v2 (x)]dx — p(x)v(x)v' (x)\Q — 0, andwemusthave9(a;)i;2(a;) =p(x)v'(x)2 = 
0, since the boundary contributions are nonnegative. Noting that v(x) cannot vanish 
identically, show that q(x) = 0 and v(x) = constant. This must, in turn, imply that 
QJ = θ2 = 0, since the boundary conditions could not be satisfied otherwise. 

4.3.8. Suppose that there are two linearly independent eigenfunctions v(x) and w(x) 
that correspond to the eigenvalue λ. Since they both satisfy the same equation and 
boundary conditions, show that we must have a\v(Q) — β\υ'{Ό) — 0, θΊΐυ(Ο) — 
ßiw'(0) = 0. Noting that ΟΊ and β\ cannot both vanish, show that the determinant 
of the system above, which equals the Wronskian of v(x) and w(x) evaluated at zero, 
must vanish. Thereby, conclude that v(x) and w(x) are linearly dependent, so that 
each eigenvalue must be simple. 

4.3.9. Consider the transcendental equation (4.3.32) for the determination of the 
eigenvalues in Section 4.3. Let λ = p2 and show that the equation can be written as 
ta.n(pl) = p(a\ßi + a2ßi)/(p2ßiß2 - а к Ы . Put a: = ta.n(pl) and a; = ρ(α\βι + 
<*2ßi)/(p2ßiß2 - «10:2)· Graph both functions in the (p, ж)-р1апе and show thereby 
that there are an infinite number of eigenvalues Xk and that Afe —> 00 as к —> oo. 
Show that for large к, Afe » (пк/l)2. 

4.3.10. Obtain the equation that corresponds to (4.3.32) if we put A = 0 in (4.3.29). 
Show that zero is an eigenvalue only if ct\ = α-χ = 0 in the boundary conditions 
(4.3.2) and find the corresponding eigenfunction. 

4.3.11. Use (4.3.1) and integrate by parts to show that if v(x) and the eigenfunc-
tions Vk(x) satisfy the same boundary conditions and v(x) is sufficiently smooth, the 
Fourier coefficients of t>(:r) are given as(v(x),Vk(x)) = (1/Afc) (vk(x),Lv(x)/p(x)), 
Afe φ 0. It can be shown that Afe « с2к2 as к —* oo for any (regular) Sturm-Liouville 
problem. (The constant с may be different for each problem.) Conclude thereby 
that if |wfc(x)| and \(vk(x), Lv{x)/p{x))\ are uniformly bounded, the Fourier series 
(4.3.24) converges uniformly and absolutely. Hint: Use the Weierstrass M-test. 

4.3.12. Verify the results of Exercise 4.3.11 for the case of the Fourier sine series 
assuming that v{x) has two continuous derivatives and that г>(0) = υ(1) = 0. 

4.3.13. Determine the eigenvalues and eigenfunctions of the problem v"(x)+\v(x) = 
0, г/(0) = 0, v(l) = 0. Show that the properties 1-4 in the text are valid for this 
problem and normalize the set of eigenfunctions. 

4.3.14. Determine the eigenvalues (approximately) and the eigenfunctions of the 
problem*/' (ж) + λν(χ) = 0, v{0) = 0, v'{l) + ßv(l) = 0, where β > 0. Show that 
the properties 1—4 in the text are satisfied and normalize the set of eigenfunctions. 
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4.3.15. Find the eigenvalues and eigenfunctions of the problem [(1 + x)2v'(x)]' + 
λν(χ) = 0, v(0) = v(l) = 0. Verify the properties 1-4 in the text and normalize the 
eigenfunctions. Hint: Put t = 1 + x and transform the given equation into an Euler 
(homogeneous) equation. 

4.3.16. Obtain the Fourier sine and cosine series of the following functions given over 
the interval 0 < x < l\ (a) v{x) = x; (b) v(x) = x(x -1); (c) v(x) = x2(x - I ) 2 ; (d) 
v(x) = cos(57r:c/7). Construct the even and odd extensions of each of the functions 
above. Compare the rates of convergence for each of the Fourier series based on the 
smoothness properties of the even and odd extensions. 

4.3.17. Obtain the Fourier series expansion of v{x) = sin2(nx/l)(x — I)2 over the 
interval —l<x<l. Discuss the convergence properties of the series. 

4.3.18. With λ = Xkn, v(x) = JnW^knx] and t = y/Xj^x in (4.3.56), multiply 
across by tJn and integrate from 0 to s/Хы I to obtain 

-J Jt[{tJ'nf\dt + n2 Jo (Jn)'dt = Jo
 t2(Jn)'dt 

andconcludethat||Jn(v'À^~r)||2 = (l/2\kn)[(\knl
2 - n2)[Jn(y/X^l)}2 + XkJ

2 

[JnW^knl)]2]· (a) In the case where v(l) = 0, determine the normalization constant 
(4.3.60) by using the formula J'n{x) = —Jn+\(x) + {n/x)Jn{x). (b) Determine the 
eigenvalues Xkn and the normalization constant for the eigenfunctions if the boundary 
condition is v'(l) = 0. (c) Determine the eigenvalues Xkn and the normalization 
constant for the eigenfunctions if the boundary condition is v'(l) + hv(l) = 0, with 
positive h. [In parts (b) and (c) the eigenvalues are given in terms of zeros of equations 
that involve Bessel functions and/or their derivatives.] (d) Show that zero is an 
eigenvalue only if n = 0 and the boundary condition is v'(l) = 0. Determine the 
normalized eigenfunction in that case. 

4.3.19. Given the Taylor expansion J0(x) = £ ° 1 0 (- l)VСЛ)2 (z/2)2 j , show that 
the first three (positive) zeros of Jo(x) are (approximately) «ю = 2.41, ого = 5.52, 
and α30 = 8.65. [Note that the series for JQ(X) is alternating.] 

4.3.20. Use Jn(VX~x) « J2/(K\/X~X) cos (\/Xx - πη/2 - π /4 j , which is valid 

as \/Xx —> со, to show that the large eigenvalues (4.3.59) are given approximately 
as Xkn ~ (π/c//)2. 

4.3.21. Expand the function v(x) = 1 in a series of eigenfunctions Vk,o{x) as given 
in (4.3.61И4.3.62). Hint: Use the formulas in Exercise 4.3.22. 

4.3.22. Expand v(x) = I2 — x2 in a series of eigenfunctions Vk,o{x) as given in 
(4.3.61)-(4.3.62). Evaluate the Fourier coefficients by using integration by parts and 
the formulas [xn Jn(x)]' = xnJn-i(x) and J-n(x) = (—l)nJn(x)-

4.3.23. Obtain the first five Legendre polynomials Po(x),..., PA{X) and show that 
they are mutually orthogonal. 



SERIES SOLUTIONS OF BOUNDARY AND INITIAL AND BOUNDARY VALUE PROBLEMS 2 0 7 

4.3.24. Use the derivative definition of the Legendre polynomials Pk{x) given in 
(4.3.66) (this is known as Rodrigues'formula) to obtain the normalization constants 
(4.3.67). Hint: Integrate by parts as often as necessary. 

4.3.25. Expand the following functions in a series of Legendre polynomials: (a) 
v(x) = x; (b) v(x) = 5 — Ax + 10x3; (c) v{x) = x4. 

4.3.26. Determine the eigenvalues and eigenfunctions for the problem y"(x) + 
Xy(x) = 0, 0 < x < I, y'{0) + y{0) = 0, y(l) = 0. Note that the boundary 
condition at x = 0 does not have the required form (4.2.3) and show that there is one 
negative eigenvalue. (Show by graphical means how the eigenvalues are distributed.) 

4.3.27 Determine the eigenvalues and eigenfunctions for the eigenvalue problem 
y"(x) + 2y'(x) + (1 + X)y{x) = 0, 0 < x < 7Γ, y'(O) = у'{ж) = 0. (Note that 
this is not a Sturm-Liouville problem since the equation is not self-adjoint. It can be 
reduced to self-adjoint form via a transformation of the dependent variable.) 

4.3.28. Show that the eigenvalue problem y"{x) - 2y'(x) + (1 + X)y{x) = 0, 0 < 
x < 7Г, y'(0) = 2y(0), y'(n) = 2y(n) is the adjoint problem for that of in Exercise 
4.3.27. in the sense of Exercise 4.2.14. Show that the eigenvalues for both problems 
are the same and that the eigenfunctions for the original and the adjoint problems are 
orthogonal if they correspond to different eigenvalues. 

4.4 SERIES SOLUTIONS OF BOUNDARY AND INITIAL AND 
BOUNDARY VALUE PROBLEMS 

In this section the method of separation of variables is applied to specific boundary 
and initial and boundary value problems for PDEs. Examples dealing with initial and 
boundary value problems for the wave and the heat equations, and a boundary value 
problem for Laplace's equation, are presented. The solution of each of the problems 
is discussed in some detail. 

Example 4.2. The Wave Equation: Vibrations of a Fixed String. Let 
u(x, t) represent the transverse displacement of a tightly stretched string of length I. 
Under various simplifying assumptions it is found that u(x, t) satisfies the wave 
equation 

utt(x,t) -c2uxx(x,t) = 0, 0 < x < I, t > 0, (4-4.1) 

with с = \JTjp, where T is the tension and p is the density of the string, both of 
which are assumed to be constant. 

Now и = u(x, t) is the graph or shape of the string at the time t, and ux{x, t) is 
the slope at a point x on the string. We assume that \ux\ <iC 1, so that the curvature 
of the string approximately equals uxx(x, t). The mass per unit length of the string 
equals the density p of the string. Then Newton's law of motion states that putt at 
a point x on the string equals the transverse force acting on it. All forces acting on 
the string are neglected compared to the force due to the string's tension. This force 
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is proportional to the curvature uxx, with a constant of proportionality equal to the 
tension T. The greater the curvature, the greater this (tension) force, whose effect is 
to straighten out the string. As a result, u(x, t) satisfies the wave equation (4.4.1 ). 

The ends of the string are assumed to be fixed for all time, and this yields the 
boundary conditions 

u(0, t) = 0, u{l, t) = 0, t > 0. (4.4.2) 

The prescribed displacements and velocities at t = 0 yield the initial conditions 

u(x,0) = f(x), ut(x,0) = g{x), 0<x<l. (4.4.3) 

To solve the initial and boundary value problem (4.4.1)-(4.4.3), we apply the 
separation of variables method of Section 4.2 and set u(x,t) = M(x)N(t). Then 
M(x) satisfies the following eigenvalue problem: 

-c2M"(x) = \M(x), M(0) = M(l) = 0. (4.4.4) 

An equivalent Sturm-Liouville problem was considered in Section 4.3 in connection 
with the Fourier sine series. [We must replace λ by λ/c2 in (4.3.29).] Then, the 
eigenvalues and the normalized eigenfunctions for (4.4.4) are 

тткс\ , , , . /2 . / n k λ * = ( — ) . Mfc(:r) = ^ 7 s i n i - p r ) , к =1,2,.... (4.4.5) 

From (4.2.31 ) we obtain 

( ITnC \ f 7T/ÌV \ 

— i j + ò f c s i n i — i j , Ä = l , 2 , . . . , (4.4.6) 
and the corresponding solutions Uk(x, t), which are known as normal modes, 

uk{x,t) 
I' ixkc \ , . (-ккс 

au cos I —— t 1 + òfc sin I —— t ysin ί — x ) , k = 1,2,.... 

(4.4.7) 

Each Uk(x, t) satisfies (4.4.1) and the boundary conditions (4.4.2). 
To satisfy the initial conditions (4.4.3), we form the sum (4.2.32), set 

«(*,«) = $2 Ufcfot), (4·4·8) 
fc=l 

and apply the initial conditions to u(x, t). This gives us 
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rc °° /2" /π/г \ 
u(x,0) = 2 ju f c ( z ,0 ) = ^ a f c W y s i n ( — z ) = f(x), (4.4.9) 

fc=i fc=i V ' \ l У 

(x.O) - t ^ = Σ (ψ) bfi »i» (?*) = .(»)· (4.4-10) 
These are Fourier sine series with the eigenfunctions Mk = у 2/1 sin[(wk/l)x] (they 
are normalized) and (4.2.35) yields 

a-k (f(x),Mk(x)) = \j] f / (*) «in i y i j dx,k = l,2,..., (4.4.11) 

6fe = ( ^ g , Μ,(χή =^~JQ 9(x) sin ( ^ a ; ) dx, к = 1,2,.. . . (4.4.12) 

This completes the formal determination of the solution. 
To assure that the formal series solution (4.4.8) represents a classical solution of the 

wave equation and satisfies the initial conditions, we must place conditions on the data 
f(x) andg(x). The function/(x) is required to have two continuous derivatives and a 
third piecewise continuous derivative, and in addition we must have/(0) = f(l) = 0 
and /"(0) = /"( / ) = 0. The function g(x) must be continuously differentiable and 
have a piecewise continuous second derivative as well as satisfying the conditions 
5(0) = g(l) = 0. Under these conditions the series (4.4.8) can be differentiated term 
by term twice and the resulting series converge uniformly. Then u(x, t) is a solution 
of the wave equation since each иь{х, t) satisfies the equation. The conditions on 
f(x) and g{x) guarantee that the sine series as well as the series of its derivatives 
converges, since it is required that f(x) and g(x) satisfy the boundary conditions for 
the appropriate Sturm-Liouville problems to assure the uniform convergence of the 
Fourier series, as indicated in the preceding section (see Exercises 4.3.11 and 4.3.12). 

We now present a brief interpretation of the solution (4.4.8). Each of the normal 
modes Uk(x, t) [i.e., (4.4.7)] can be expressed as 

/ frier' \ / "Trie \ 

uk{x,t) =ак cosi——(t + Sk) sin I — ж , fc = 1,2,.. . , (4.4.13) 

Qfc \/i\/al + bl h = - ^ arctan f M , к = 1,2,.... (4.4.14) 

For each solution ик{х, t), a fixed point XQ executes harmonic vibrations with am-
plitude 

' ■жк 
Ak =ak sin I —xo (4.4.15) 

Solutions of the wave equation are called waves and we refer to ик(х, t) as a standing 
wave, since each point x on the string oscillates in place as t varies. The points 
xm = ml/k (m = 1,2,.. . , к — 1) at which sm[(nk/l)xm] — 0 remain fixed during 
the vibration and are called the nodes of the standing wave. The standing wave has 
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maximum amplitudes at the points xn — (2n + l)Z/2fc (n = 0 ,1 ,2 , . . . , fc — 1) 
at which sin[(nk/l)xn] = ± 1 , and they are called antinodes. The standing wave 
Uk(x, t) is also known as the fcth harmonic. Thus, 

ω* = ^ = >/λ^ k = 1 ,2,3, . . . , (4.4.16) 

is the frequency of vibration of the fcth harmonic Uk(x, t). 
The energy of the vibrating string at the time t is given by the integral 

rl 

It represents a sum of the kinetic energy of motion and the potential energy due to the 
tension. The total energy is a sum of the energies distributed among the harmonics 
Uk(x, t). The energy of the fcth harmonic Uk(x, t) is 

2 / P , . . C , W \ \ 2 i , ,2™/„2 , L 2 \ ,'duk(x,t)\ | r/aufc(a;,t)\ I ^ = Wfem(a£+6|) 

(4.4.18) 

where m = pi is the mass of the string. We observe that Ek (i) is independent of t, 
so that the total energy 

oo oo 

E(t) = Σ Efc(i) = g Σ « « +b*) (4·4·19) 
fc=l fc=l 

is constant in time, and E(t) = E(0). The initial energy is conserved since we 
have neglected dissipative effects, consistent with our characterization of the wave 
equation in Example 3.7 as being of conservative type. 

It was shown in Example 2.4 that the solution of the initial value problem for the 
wave equation can be written as the sum of two propagating or traveling waves; that 
is, it has the form 

u(x, t) = F{x - ct) + G{x + ct), (4.4.20) 

where F and G are determined from the initial conditions. The normal modes Uk(x, t) 
can also be expressed as the sum of propagating waves as 

1 / ink \ Ink 
Uk{x,t) = —7= ( afcsin ί — (x + ct) | +afcsin ί —r{x - ct) 

+ - = (bk cos {^—{x-ctU -bkcos(~(x + ct)JJ . (4.4.21) 

Although there are four propagating waves in (4.4.21 ), they combine to form a stand-
ing wave through interference. In this representation, u(x, t) equals 

ΐ Γ ° ° /nk \ °° ink \ 
u(x, t) = —= ^2 ak sin ί — (x + ct) j + ^2 ak s m ( ~j~(x ~~ ct) ) 

(4.4.22) 

where we have assumed for simplicity that g(x) = 0, so that bk =0 for all fc. 
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Apart from a factor \, these series are identical in form to the Fourier sine series 
(4.4.9) for f{x), if the argument x is replaced by x ± ct. Now the initial value f(x) 
is not denned outside the interval [0, /]. Proceeding as in Section 4.3, we define the 
function F(x) as 

F(x) = f{x), 0<x<l, 
F(x) = -f(-x), -Kx<0, (4.4.23) 
F(x + 21) = F(x), -oo < x < oo, 

so that F(x) is an odd periodic extension of f(x) of period 2/ over the entire pr-
axis. Then the Fourier series expansion of F(x) is identical to the sine series (4.4.9) 
for f(x), since F(x) is an odd periodic function. Since F(x) is defined for all x, 
the Fourier series for the periodic function F(x ± ct) can be constructed. Its form is 
precisely that of (4.4.9) with x replaced by x ± ct. Consequently, the solution (4.4.22) 
can be expressed as 

u{x,t) = -F(x + ct) + -F(x-ct), 0<x<l,t>0. (4.4.24) 

The conditions under which (4.4.24) represents a solution of the initial and boundary 
value problem for the wave equation [with g(x) = 0], based on its construction as an 
odd periodic extension of f(x), can be shown to be slightly weaker than those given for 
the standing wave representation of the solution. The traveling wave representation 
(4.4.24) of the solution of the wave equation can be interpreted in terms of waves 
being continually reflected off the ends of the string. As a result of interference, only 
standing wave motion seems to occur when the vibration of a string is observed over 
a length of time. 

As indicated previously, the Fourier series representation of F(x) does not smooth 
out the discontinuities of F(x). Thus unless F(x) is a smooth function, the solution 
u(x, t) may have discontinuities or discontinuous derivatives along the curves x ± ct 
= constant, in view of (4.4.24). This shows that discontinuities or discontinuous 
derivaties of solutions of the wave equation can occur only along the characteristic 
curves, as shown in Section 3.2. Later in the book we show how the concept of 
solution may be generalized to include functions that do not have the required number 
of derivatives. 

Example 4.3 The Heat Equation: Heat Conduction in a Finite Rod. Let 
u(x, t) represent the temperature in a homogeneous, laterally insulated rod of length 
I at the point x (0 < x < I) and at the time t. Since no heat can escape through 
the sides of the rod, the problem is effectively one-dimensional and in the absence of 
heat sources, u(x, t) satisfies the heat equation 

ut(x,t) -c2uxx(x,t) = 0, 0 < x < I, t > 0, (4.4.25) 

where c2 is the coefficient of heat conduction. As in Section 4.1, c2 is the thermal 
conductivity divided by the product of the specific heat and the density of the medium, 
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all of which are taken to be constant. The ends of the rod at x = 0 and x = I are 
assumed to be kept at zero temperature, so that 

u ( 0 , i ) = 0 , u(/,i) = 0, i > o , (4.4.26) 

whereas initially, at t = 0, there is a given temperature distribution 

u(x, 0) = f(x), 0<x<l. (4.4.27) 

We apply the separation of variables technique to solve this problem and proceed as 
in Example 4.2. With Uk(x,t) = Mk{x)Nk(t), the eigenvalues λ^ and the eigen-
functions Mfc are given as in (4.4.5) and Nk{t) is found to be [see (4.2.31)] 

Nk{t) = akexp ( 7TfccV 
1,2,.. . . (4.4.28) 

The solution u(x,t) becomes 

«(*,*) = J2Mk(x)Nk(t) = W 7 ^ a f c e - ( ' f c c / ' ) a t s i n ( ^x) . (4.4.29) 
fc=l V ' fc=l \ « / 

Initially, we have 

u(x, 0) = Σ «к J у sin ί — a; I = / ( i ) , (4.4.30) 
fe=l ^ ' 

so that the ak are defined as in (4.4.11). Thus the formal solution of (4.4.25)-(4.4.27) 
is specified completely. 

To examine the validity of the expansion (4.4.29), we note that for t > 0 the terms 
in the series decay exponentially. If we assume that the initial temperature f(x) is 
bounded over the interval [0, I], the Fourier coefficients α^ are bounded. As a result, 
the series for и(x, t) with t > 0 can be differentiated term by term as often as required. 
Since each term Uk(x,t) satisfies the heat equation, so does u(x,t) for t > 0 and 
we also have u(0, t) = u(l, t) = 0. To assure that the initial condition is satisfied, 
the Fourier series (4.4.30) must converge uniformly. To achieve this, we require that 
f(x) be continuous and piecewise continuously differentiable in 0 < x < I and that 
/(0) = /(/) = 0. The uniform convergence of the Fourier sine series (4.4.30) implies 
that the series (4.4.29) for u(x, t) converges uniformly for t > 0 and that the solution 
is continuous for 0 < x < I and t > 0. 

In the vibrating string problem of Example 4.2 (which involved a hyperbolic equa-
tion) the solution as given in (4.4.22) essentially has the form of a Fourier series. This 
has the effect that any discontinuities in the data are preserved and transmitted along 
the characteristic lines x ±ct = constant in (x, i)-space. For the heat equation, how-
ever, even if the initial temperature f(x) is discontinuous but bounded, the solution 
u(x, t) is continuously differentiable as often as is required. The more derivatives 
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a function has, the smoother it is, so that heat conduction is seen to be a smoothing 
process. Even if the heat is initially concentrated near one point in 0 < x < I, it is 
distributed instantaneously, according to our solution, in an even and smooth fashion 
throughout the interval. Further, as t —> oo, the temperature u(x, t) —> 0 since there 
are no heat sources in this problem and the rod is continually being cooled at its 
endpoints. 

As indicated in our discussion of the diffusion equation in Chapter l, disturbances 
move at infinite speeds for the heat equation, and this fact is borne out by the properties 
of the solution obtained. It may also be noted that the characteristics of the heat 
equation are the lines t = constant. Since characteristics are carriers of discontinuities 
or rapid variations of the solution, there is no mechanism whereby these effects can 
be transmitted into the region t > 0 from the initial line ί = 0, which is itself a 
characteristic curve. 

Example 4.4. Laplace's Equation in a Rectangle. We consider the boundary 
value problem for Laplace's equation 

Uyy(X, y) = 0 (4.4.31) 

in the rectangle 0 < a: < /, 0 < у < I, with the boundary conditions 

«(a;, 0) = f(x), u(x, Ϊ) = g{x), u{0, y) = 0, u{l, y) = 0. (4.4.32) 

The function u{x, y) may represent the steady-state displacement of a stretched mem-
brane whose rectangular boundaries are fixed according to (4.4.32). [Proceeding sim-
ilarly, we can solve another problem for (4.4.31) with nonzero boundary conditions 
on x — 0 and x = I and zero boundary conditions on у = 0 and у = I. Adding 
the solutions of both problems yields a solution of Laplace's equation with arbitrary 
boundary conditions on a rectangle.] 

Applying the separation of variables method of Section 4.2 and proceeding as in 
Example 4.2, we obtain the eigenfunctions Mk(x) as in (4.4.5) and the eigenvalues 
At = {ттк/l)2. With uk(x, y) = Mk{x)Nk{y), the Nk{y) are given as [see (4.2.31)] 

— y\ + bkexpl- — у), к =1,2,.... (4.4.33) 

The functions Nk (y) can be expressed as linear combinations of hyperbolic sine 
functions and we write uk(x, y) as 

Uk(x,y) = 

(4.4.34) 
with the ak and bk as yet arbitrary. A formal solution of Laplace's equation obtained 
by superposition is 

oo 

u{x,y) = ̂ 2uk(x,y). (4.4.35) 
fe=l 

aksinh [-j-yj+bksinh l—(y- Ì) 
2 . ink 

lsm[Tx 
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The boundary conditions at у = 0 and у = I imply that 

u(x,0) = Σ Ofcsinh f - y i\ y | s i n №χλ = f{x), (4.4.36) 

u(x, Ϊ) = ^2 ak sinh ( η- Ì J J- sin f ^ - x J = 5(1). (4.4.37) 

The Fourier coefficients of these sine series are [see (4.4.11)—(4.4.12)] 

i h = (f(x),Mk(x))/sinh(-nkÌ/l), к = 1,2,..., (4 4 38) 
\ak = {g{x),Mk(x))/smh(nkl/l), к = 1,2,.... 

This completes the formal solution of the boundary value problem. 
Assuming that the integrals / 0 | / (x) | dx and fQ \g(x)\ dx are bounded by m, and 

noting that sinh a; = (ex - e~x)/2 < ( l /2)ex for x > 0, we obtain 

L ■ u \nkr i\l ^ т^/2/1ех.р[(пк/1){1-у)} my/2/lexp[-nky/l} 
ofcsinh ——(y — l) < —τ ; — < — 1 ^ 

[I J βχρ[πΑ:ί/Ζ][1-βχρ[-2πΑ;///]] 1 - ехр[-2тг///] 
(4.4.39) 

with a similar bound valid for |afcsinh[(7rfc/Z)y]|. Thus the terms in the series 
u(x,y) = 5ZbLi uk(x,y) are bounded by exponentially decaying terms for large 
к in the open interval 0 < у < I. (The exponential bound for the bk and ak terms 
breaks down at у = 0 and у = I, respectively.) Consequently, the series can be 
differentiated term by term as often as desired in 0 < у < I and u(x, y) satisfies 
Laplace's equation and the boundary conditions at x = 0 and x = I, since each of 
the uk(x, y) does so. To assure that u(x, y) is continuous up to у = 0 and у = I and 
assumes the boundary values there, the Fourier series (4.4.36)-(4.4.37) must be uni-
formly convergent in 0 < x < I. This is the case if /(0) = / ( / ) = g(0) = g(l) = 0, 
if f(x) and g(x) are continuous, and if f'{x) and g'(x) are piecewise continuous in 
that interval. 

For u(x, y) to satisfy Laplace's equation inside the rectangle we merely require 
that f(x) and g(x) be bounded or that fQ \f{x)\ dx and fQ \g{x)\ dx exist [i.e., 
f(x) and g(x) may even be singular]. Then u(x, y) is defined by the series to be 
an infinitely differentiable function within the rectangle. However, the boundary 
values at у = 0 and у = I need not be assumed continuously at all points unless 
the additional conditions on f(x) and g{x) given previously are met. Again, this 
contrasts with the results obtained for the wave equation, where discontinuities are 
seen to spread into interior regions from the boundary. Since Laplace's equation 
has no real characteristics, boundary data discontinuities must be confined to the 
boundary and the interior solution is smooth. Physically, since Laplace's equation 
characterizes steady-state or equilibrium situations, we may expect that effects due 
to discontinuities in the data have smoothed themselves out. 
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This concludes our discussion of the separation of variables method for homoge-
neous problems. Further examples involving other eigenvalue problems are consid-
ered in the exercises and in Section 4.6. 

Exercises 4.4 

4.4.1. Determine the motion of a plucked string. That is, find a solution u(x, t) of 
the wave equation (4.4.1) with u(0, t) = u(l, t) = 0 and the initial conditions 

u(x,0) = f{x) = | ^ / ! ' χ ) / ( ζ _ a ) ) l < * < l ut(*,0) = 9(x) = 0. 

4.4.2. Solve the initial and boundary value problem for the wave equation (4.4.1) 
withu(0, t) = u(l,t) = 0 and the initial conditions f(x) = 0, д(х) = δ(χ — α), 0 < 
a < I, where δ(χ) is the Dirac delta function. This yields the motion of a string due 
to a point impulse at x — a administered at the time t = 0. 
4.4.3. Solve (4.4.1)-(4.4.3)if f(x) = 0, g(x) = x(x - I). 

4.4.4. Solve (4.4.1M4.4.3) if f(x) = sin2(nx/l), g(x) = 0. 
4.4.5. Express the solution of Exercise 4.4.1 in the form (4.4.24) and use this result 
to describe the displacement u(x, t) of the string at various times t > 0. 
4.4.6. Use separation of variables to obtain the general form of the (series) solu-
tion of the problem utt(x,t) — c2uxx(x,t) = 0, 0 < x < I, t > 0, with the 
initial conditions u(x,0) = f(x), ut(x,0) = g(x), and the boundary conditions 
ux(0,t) = ux{l,t) = 0. 

4.4.7. Obtain the solution ofthe problemin Exercise 4.4.6 if f(x) — 0smdg(x) = 1. 
Interpret the result. 
4.4.8. Solve the problem of Exercise 4.4.6 if f(x) = x2(x — I)2, g(x) = 0. 
4.4.9. Using separation of variables, solve the following initial and boundary value 
problem uu(x, t) - c2uxx(x, t) = 0, 0 < x < I, t > 0, u(x, 0) = f{x), щ{х, 0) = 
g{x), u(0,t) = 0, ux(l,t) = 0. 

4.4.10. Solve the problem in Exercise 4.4.9 if f(x) = x(x — I)2, g(x) = 0. 
4.4.11. Apply the method of separation of variables to solve the wave equation (4.4.1 ) 
with the initial data (4.4.3) and the boundary data u(0, t) = 0, ux(l, t) + ßu(l, t) = 
0, ß > 0. 
4.4.12. Obtain the solution of the problem in Exercise 4.4.11 if the initial data are 
f(x) = sin2^a;//) , g(x) = 0. 
4.4.13. Multiply the wave equation (4.4.1) by u(x, t) and make use of the identity 
uxx(x,t)ut{x,t) = (ut(x,t)ux(x,t))x - ^(ul(x,t))t, to obtain \-§i[u2{x,t) + 
c2v?x{x, i)] - c2-^[ut(x, t)ux(x, t)] = 0. Integrate over the interval 0 < x < I and 
show that if either u(x,t) or ux {x, t) vanishes at x = 0 and x = /, the energy integral 
(4.4.17) is a constant (recall that T = c2p). Obtain an appropriate energy integral if 
ux(0,t) -ßiu(0,t) = 0 and ux(l,t)+ß2u(l,t) = 0with/3b ß2 > 0. 
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4.4.14. Verify the result (4.4.19). 
4.4.15. Use separation of variables to solve the following problem for the telegra-
pher's equation vu(x, t) — η2νχχ(χ, t) + 2\vt(x,t) = 0, 0 < x < I, t > 0, where 
λ > 0, with v(x, 0) = f(x), vt{x, 0) = g(x), v(0, t) = v(l, t) = 0. Show that the 
solution v(x, t) tends to zero as t —> oo. 
4.4.16. Solve the initial and boundary value problem for the Klein-Gordon equa-
tion uu(x,t) — ~i2uxx{x,t) + c2ut{x,t) — 0, 0 < x < I, t > 0, u(x, 0) = 
f(x), щ(х, 0) = g(x), u(0, t) = u(l, t) = 0. Use separation of variables. 
4.4.17. Solve the heat equation (4.4.25) with the boundary data (4.4.26) and the initial 
data u(x, 0) = f(x) = x(l — x). 

4.4.18. Solve the problem (4.4.25)-(4.4.27) if f(x) = 6{x - a), 0 < a < I, where 
δ(χ) is the Dirac delta function. 
4.4.19. Apply separation of variables to solve ut(x,t) — c2uxx{x,t) = 0, 0 < 
x < I, t > 0, u(x,0) = f{x), ux(0,t) = ux(l,t) = 0. The boundary conditions 
imply that no heat escapes through the ends of the rod. Show that as t —> oo we 
have limt-.oo u(x, t) — (l/l) J0 f(x) dx. This represents the average of the initial 
temperature distribution. 
4.4.20. Solve the problem in Exercise 4.4.19 if (a) f(x) = х;(Ъ) f(x) = sin2(nx/l). 

4.4.21. By integrating the heat equation (4.4.25) over the interval 0 < x < I, show 
that if ux(0, t) = ux(l,t) = 0, we have JQ u(x, t) dx = constant. Explain why this is 
consistent with the result in Exercise 4.4.19 regarding the limit of u(x, t) as t —> oo. 
4.4.22. Use separation of variables to solve the following problem for the heat equa-
tion: ut(x,t) — c2uxx(x,t) = 0, 0 < x < I, t > 0, u(x,0) = f(x), u(0,t) = 
0, ux (l,t) + ßu(l, t) = 0, ß > 0. The boundary condition of the third kind at x = I 
results from Newton's law of cooling if there is convective heat exchange between 
the rod and a medium adjacent to the rod at x = I that is kept at zero temperature. 
4.4.23. Solve the problem in Exercise 4.4.22 if f(x) — x. 

4.4.24. If the lateral portion of a rod undergoes convective heat exchange with a 
medium kept at zero temperature, the temperature u(x, t) in the rod satisfies the 
equation ut(x,t) - c2uxx(x,t) + a2u(x,t) = 0, 0 < x < I, t > 0. Assume that 
w(0, t) = u(l, t) = 0, u(x, 0) = f(x), and that a is a constant. Find the temperature 
u(x, t) by the method of separation of variables. Obtain the limit as t —> oo of the 
temperature u(x, t). 

4.4.25. Use separation of variables to solve Laplace's equation V2u(x, y) = 0 in the 
rectangle 0 < a ; < i , 0 < j / < i , with the boundary conditions of the second kind 
"χ(0,y) = ux(l,y) = 0, 0 < у < Ϊ, uy(x, 0) = f(x), uy(x, Ϊ) = g(x), 0 < x < I. 
Determine conditions on f(x) and g(x) for a solution to exist. Discuss the rate of 
convergence of the solution. 
4.4.26. Solve the following boundary value problem for Laplace's equation V2u(x, y) 
= 0, 0 < x < I, 0 < у < I, u{0,y) = u(l,y) = 0, 0 < у < Ì, uy(x,Q) = 
f(x), uy(x,l) = g(x), 0 < x < I. 
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4.4.27. Solve Laplace's equation V2u(x, y) = 0 in the rectangle 0 < x < I, 0 < 
у < I with the boundary conditions u(0,y) = 0, ux(l,y) + ßu(l,y) — 0, ß > 
0, 0 < у < Ì, и{х, 0) = f(x), и{х, Ϊ) = 0, 0 < х < I. 

4.4.28. Let f(x) = х(х - I) and g(x) = 0. Solve the following boundary value 
problems: (a) Example 4.4; (b) Exercise 4.4.25; (c) Exercise 4.4.26. 

4.4.29. Consider Laplace's equation V2u(x, y) = 0 in the unbounded region 0 < 
x < l, у > 0. Let u(0,y) = u(l,y) = 0, у > 0, u(x,0) = f(x), 0 < x < l, 
as well as requiring that u(x, y) be (uniformly) bounded as у —> oo for 0 < x < I. 
Show that the solution of this problem can be obtained by separation of variables. 
Find the limit of u(x, y) as у —> oo. 

4.4.30. Apply separation of variables to solve the boundary value problem for the 
elliptic equation uxx(x, y) + uyy(x, y) — c2u(x, y) = 0, 0 < x < I, 0 < у < I in 
the given rectangle, with the boundary conditions u(0, y) = u(l, y) = 0, u(x, 0) = 
f{x), u(x,l) =g(x). 

4.4.31. Use separation of variables to show that the reduced wave equation uxx(x, y)+ 
uyy(x,y)-\-k2u(x,y) = 0,0<x<l,Q<y< l with the (homogeneous) boundary 
condition u(x, y) = 0 on x = 0, x = l, у = 0, у = I can have nonzero solutions 
for certain values of k. Determine these values of к = kn. (They correspond to the 
eigenvalues for Laplace's equation in a rectangle.) By applying Green's theorem [see 
(4.2.19)], conclude that if к = kn, the Dirichlet problem for the reduced wave equa-
tion has no solution unless the boundary values satisfy a compatibility or orthogonality 
condition. [Let w(x, y) = wn(x, y) be a solution of V2wn(x, y) + fc^u;„(x, y) = 0, 
with wn(x, y) = 0 on the boundary of the rectangle, in the application of (4.2.19).] 
Show that if a solution does exist for к — kn, it is not unique. 

4.4.32. Solve the initial and boundary value problem for the two-dimensional wave 
equation in a disk, utt{x,y,t) - c2[uxx(x,y,t) + uyy(x,y,t)} = 0, x2 + y2 < 
I2, t > 0, with the initial conditions u(x,y, 0) = f(x,y), ut{x,y,0) = g{x,y) 
and the boundary condition u(x,y,t) = 0 , x2 + y2 — I2, t > 0. Use separation 
of variables and the results of Exercise 4.2.10 and Section 4.3. (The solution of this 
problem describes the vibration of a circular membrane with a fixed edge if c2 = T/p, 
where T is the tension and p is the density.) 

4.4.33. Solve the initial and boundary value problem for the heat equation in a disk, 
ut(x,y,t) - c2[uxx(x, y,t) + uyy(x, y,t)] = 0, x2+y2 < I2, t > 0, with the initial 
condition u(x, y, 0) = f(x,y), and the boundary condition u(x,y,t) = 0, x2+y2 = 
I2, t > 0. Use separation of variables and see Exercise 4.4.32. 

4.4.34. Express the Laplacian in cylindrical coordinates (r, Θ, z) and solve the Dirich-
let problem for V2u(r, Θ, z) = 0 in the finite cylinder 0 < г < Д , Ο < 0 < 2 π , 0 < 
z < lwhhu(R,6,z) = f(z)andu(r,e,0) — u(r,9,l) = 0, by looking for a solution 
in the form и — u(r, z). Hint: The solution must be bounded at r = 0 and involves 
the modified Bessel function Io{x). 
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4.4.35. Solve the problem of Exercise 4.4.34 if the boundary conditions are replaced 
by u(r, Θ, 0) = 0, u(r, Θ, I) = g(r) and u(R, Θ, z) = 0, by looking for a solution in 
the form и = u(r,z). 

4.4.36. Express V2u = 0 in spherical coordinates (r, θ, ф) with r > 0, 0 < Θ < 
2π, and 0 < φ < π. Consider the boundary value problem for V2u(r, Θ, ф) = О 
within the sphere r < I for the function и = u(r, Θ, </>) with the boundary condition 
u(l, Θ, ф) = /{ф), 0 < φ < π (i.e., the boundary values are independent of Θ). Look 
for a solution in the form и = U(r, ф) and use separation of variables to construct 
an eigenfunction expansion of the solution in terms of Legendre polynomials (see 
Exercise 4.2.11, Section 4.3, and Example 8.3). 

4.5 INHOMOGENEOUS EQUATIONS: DUHAMEL'S PRINCIPLE 

The method of separation of variables was applied in the foregoing to obtain solutions 
of initial and boundary value problems for homogeneous PDEs. Here we construct 
solutions of inhomogeneous equations using a technique known as Duhamel 's princi-
ple, which effectively relates the problem to one involving a homogeneous equation. 
The method is valid for initial value problems and initial and boundary value problems 
for hyperbolic and parabolic equations. 

We consider equations of the form 

Г p(x)utt(\, t) + L[u(x, t)} = g{x, t), hyperbolic case, 
\ p(x)ut(x, t) + L[u(x, t)] = g(x, t), parabolic case, 

with L[u] defined as in (4.1.6) or (4.1.7), p(x) > 0, and g(x, t) a given forcing or 
source term. (While x is treated as a vector variable, the results are valid for one 
space dimension as well). If we consider the initial value problem for (4.5.1), we 
assume u(x, t) satisfies homogeneous initial conditions at t — 0. For the initial and 
boundary value problem for (4.5.1) in a bounded region G, we again assume that 
homogeneous initial conditions for u(x, t) at t = 0 in addition to the homogeneous 
boundary conditions (4.2.2) or (4.2.3). Thus 

f u(x, 0) = ut(x, 0) = 0, hyperbolic case, 
< , ч (4.5.2) 
L u(x, 0) — 0, parabolic case. 

Duhamel's principle proceeds as follows. Consider a homogeneous version of 
(4.5.1), that is, 

Г p(x)vtt(x, t) + L\v{x, t)} = 0, hyperbolic case, 
\ p(x)vt{x, t) + L[v(x, t)] = 0, parabolic case, 
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for the function v(x, t), which is assumed to satisfy the same boundary conditions (if 
any are given) as u(x, t). Let v(x, t) satisfy the following initial conditions given at 
t = r, where r > 0: 

Г v(x, T) = 0, vt(x, T) = g{x, r)/p(x), hyperbolic case, 
\ v(x, T) = g(x, τ)/ρ(χ), parabolic case, 

with p(x) and g(x, t) given as above. 
We assume that the problem above for v(x, t) can be solved by separation of 

variables for the initial and boundary value problem or by other means for the initial 
value problem. The solution depends on the parameter r (i.e., the initial time), so we 
write it as v = v(x, i; r ) . Then Duhamel's principle states that the solution u(x, t) of 
the given inhomogeneous problem is 

u(x, t) = / υ(χ,ί;τ)άτ. (4.5.5) 
Jo 

[A motivation for the method is obtained by noting that the effect of the term g(x, t) 
can be characterized as resulting from a superposition of impulses at times t = τ over 
the time span 0 < τ < t.] 

To verify that u(x, t) as given in (4.5.5) is a solution of the problem, we note that 
ut(x,t) = v(x,t;t) + J0 vt(x,t;T) dr,utt{x,t) = d[v(x,t;t)]/dt + vt(x,t;t) + 
/ 0 vtt(x, t; T) dr, and L[u(x, t)} = JQ L\v(x, t; r)] dr. In view of (4.5.4), we have 
in the parabolic case, 

» ( x , i ; i ) = j ( x , i ) M x ) , (4.5.6) 

and in the hyperbolic case, 

v(x, t; t) = 0, vt{x, t; t) = g(x, t)/p(x). (4.5.7) 
Therefore, 

put(x, t) + L[u(x, t)] = g(x, t)+ \pvt(x, t; τ) + L(v(x, t; r))] dr = g(x, t), 
Jo 

(4.5.8) 

putt(x,t) + L[u(x,t)} = g{x,t)+ / [pvtt{x,t;T) + L{v{x,t;r))} dr = g{x,t). 
Jo 

(4.5.9) 

Also, u(x, 0) = 0 and щ(x, 0) = v(x, 0; 0) = 0, so that u(x, t) as defined by (4.5.5) 
satisfies all the conditions of the problem. 

Examples 

Next we consider two examples where we apply Duhamel's principle to an initial 
value problem for the inhomogeneous wave equation and an initial and boundary 
value problem for the inhomogeneous heat or diffusion equation. 
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Example 4.5. The Inhomogeneous One-Dimensional Wave Equation. 
We consider the wave equation with a given forcing term g(x, t), 

utt(x, t) — c2uxx(x, t) = g(x, t), — oo < x < oo, t > 0, (4.5.10) 

and the homogeneous initial conditions 

u(x, 0) = ut(x, 0) = 0, -oo < x < oo. (4.5.11) 

[We can add a solution of the homogeneous wave equation with arbitrary data to 
u(x, t), enabling us to solve the general initial value problem for (4.5.10).] 

Applying Duhamel's principle, we consider the function v(x, t; r ) that satisfies 
the equation 

vtt{x,t;r) — c2vxx(x,t;r) = 0, — oo < x < oo, t > τ, (4.5.12) 

and the initial conditions at t — τ, 

v(x, T; T) = 0, vt{x,T\T) = д(х,т), — oo < x < oo. (4.5.13) 

From d'Alembert's solution (see Example 2.4) we easily obtain 

v(x,t;r) = — / д{а,т) da, (4.5.14) 
i c Jx-c(t-r) 

and from (4.5.5), u(x, t) takes the form 

1 ft f-X + c(t-r) 

u(x,t) = — / / д(а,т) da dr. (4.5.15) 
2C Jo Jx-c(t-r) 

If we replace the initial data (4.5.11 ) by the arbitrary data 

u{x, 0) = F(x), ut{x, 0) = G(x), (4.5.16) 

the solution of the initial value problem (4.5.10) and (4.5.16) is 
1 1 I-X + Ct 

2 2c Jx-Ct 

1 /■« /-X + c ( i - r ) 
+ - / / g(a,r)dadr. (4.5.17) 

^ c -/0 Jx-c(t-r) 

At the arbitrary point (s0, io) with <o > 0, u(xo, to) depends only on values x and 
t within the characteristic triangle pictured in Figure 4.6. This follows on inspection 
of the arguments of F(xo ± cio) and the domains of integration for G{a) and g(a, r ) 
in (4.5.17). As a result, the characteristic triangle is called the domain of dependence 
of the solution at the point x0 and at the time to- Similarly, the sector pictured in 



INHOMOGENEOUS EQUATIONS: DUHAMEL'S PRINCIPLE 221 

Figure 4.7 that is bounded by the characteristic lines issuing from the point (xo, 0) is 
called the domain or region of influence of the initial point (xo, 0). All points (x, t) 
in this sector have the point (xo, 0) within their domain of dependence. In particular, 
if g(x, t) = 0 and F(x) and G(x) are concentrated at the point xo, we see that 
the solution u(x, t) vanishes identically outside the domain of influence of the point 
xo· Within the sector, u(x, t) may or may not be zero. The two characteristic lines 
x ±ct = xQ ± ct0 represent wave fronts for the solution, since u(x, t) = 0 ahead 
of the wave fronts (which move right and left) and u(x, t) φ 0, in general, at points 
(x, t) that lie within the sector behind the wave fronts. 

Figure 4.6 Domain of dependence. 

Figure 4.7 Domain of influence. 
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Example 4.6. The Inhomogeneous One-Dimensional Heat Equation. The 
heat equation in a finite interval 0 < x < I, with a heat source, has the form 

ut(x, t) — c2uxx(x, t) = g(x, t), 0 < x < I, t > 0. (4.5.18) 

We assume a homogeneous initial condition u(x, 0) = 0 and the boundary conditions 
u(0, t) = u(l, t) = 0 at x = 0 and x = I. 

On applying Duhamel'sprinciple and using the solution obtained in (4.4.29) for 
the homogeneous heat equation with t replaced by t — r, we obtain the result 

v(x,t;r) = W y ^ a f e ( r ) e x p 
fc=l 

teVr*-
V i ) 

(t-T) sin (Ь)· 
with the ак(т) determined from the initial condition 

ν(χ,τ;τ) =д{х,т) = у - ^ 
fc=l 

afc(r)sin ( —x 

(4.5.19) 

(4.5.20) 

Note that the Fourier coefficients a.k are functions of the parameter т [i.e., for each 
value of r we obtain a Fourier sine series of g(x, т)]. As a result, the solution of the 
initial and boundary value problem for (4.5.18) is given in the form 

u(x,t) τΣ 
fe=l 

ак{т)ехр ( ■ккс 
(t-τ) *Ь(т8)' 

(4.5.21) 
where summation and integration have been interchanged. This is a valid procedure 
since the series converges uniformly, say, if we assume that g(x, t) is a bounded 
function. If u(x, 0) = f(x) and is nonzero, we may add the solution (4.4.29) to 
(4.5.21). Thereby we obtain the solution of the modified problem. 

Next, we specialize the foregoing result to a specific problem. We suppose that 
g(x, t) = sin(nx/l). Then it can be seen by inspection that a\ = \/T/2 and аь = 
0, к > 1. Consequently, the solution (4.5.21) takes on the simple form 

u{x,t)= (—λ [ l - e x p - ( y ) 2 * } sin ( у ж ) . (4.5.22) 

Note that we are again assuming that the initial condition is given as u(x, 0) = 0. 
As t —► oo we see that 

lim ufar,ί) = ( — ) sin (^χ) =ν(χ). (4.5.23) 
t->oo \ π α / ^ ' ' 

The limiting function v(x) in (4.5.23) is a solution of the steady-state problem for the 
heat equation with g(x, t) = sm(nx/l). It is given as 

-cV'(ar) = sin (jx) , v(0) = v(l) = 0. (4.5.24) 
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This problem results when we assume that u(x,t) = v(x) [i.e., и(х, t) is independent 
of t] and the initial condition is dropped. 

More generally, if the inhomogeneous term g(x, t) is independent of time, that is, 
g(x, t) = G(x), with G(x) arbitrary, we obtain from (4.5.21) 

'■кк > 
-x «(*.*) = vfg{(dL) «* ( i -«p[- ( ΐ ) *])*»( 

(4.5.25) 

where we have used the fact that a*; is independent of τ to carry out the r integration. 
As ί —» oo in (4.5.25) we have 

Uinufo t ) = у у Σ ( ^ ) öfc s i n (τΧ) Ξ υ ( χ ) · ( 4 · 5 - 2 6 ) 

We easily check that v{x) solves the steady-state problem for the heat equation 

-c2v"(x) = G(x), v(0) = v(l) = 0. (4.5.27) 

Now even if u(x, 0) = f(x) φ 0, we have already seen in Example 4.10 that the 
effect of the nonzero initial heat distribution dies out as t —> oo, so that when the 
heat source term g(x, t) = G(x) is independent of time, the temperature distribution 
(when the ends of the rod are fixed at zero temperature) is well approximated by the 
solution of (4.5.27) for large t. 

This completes our discussion of Duhamel's principle. The method of finite Fourier 
transforms and other techniques for handling inhomogeneous problems are discussed 
in the following section. 

Exercises 4.5 

4.5.1. Solve the initial value problem utt{x,t) — c2uxx(x,t) = g(x,t), —oo < 
x < oo, t > 0, u(x, 0) = ut(x,0) = 0 if g(x, t) has the following form: (a) 
g(x,t) = e_tsin(a;); (b) g(x,t) = t; (c) g{x,t) = <5(a;)cos(t); (d) g{x,t) = 
δ(χ — a)5(t — b), a, b = constant, b > 0. In parts (c) and (d), δ(ζ) is the Dirac delta 
function. 

4.5.2. Use Duhamel's principle to solve utt(rc, t) — c2uxx(x, t) = g(x, t), 0 < x < 
l,t>0, u(x, 0) = ut(x, 0) = 0, it(0, t) = u(l, t) = 0. 

4.5.3. Solve the problem in Exercise 4.5.2 if g(x, t) assumes the following forms: 
(a) g(x,t) = x(x — /); (b) g(x,t) = sin(u>x)sin(wci), ω φ nk/l; (с) g(x,t) = 
sin(nx/l) sin(7rci/Z). 
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4.5.4. Apply Duhamel's principle to obtain the solution of the initial and boundary 
value problem ut(x, t) — c2uxx(x, t) = g(x, t), 0 < x < I, t > 0, u(x, 0) = 0, 
u(0,t)=u(l,t) = 0. 

4.5.5. Consider the special case in which g = g(x) (i.e., it is independent of i) in 
Exercise 4.5.4 and examine the limit of the solution u(x,t) ast —► oo. What condition 
must g(x) satisfy so that this limit exists? 

4.5.6. Let g(x, t) = cos(nx/l) in Exercise 4.5.4 and obtain the solution of the initial 
and boundary value problem in that case. 

4.5.7. Use Duhamel's principle to solve the following problem forthe inhomogeneous 
telegrapher's equation utt(:r,t) —c2uxx(x,t)+2\ut{x,t) — g(x), 0 < x < I, t > 0, 
where λ > 0, with the initial and boundary conditions u(x,0) = 0, ut(x,0) — 
0, u(0, f) = u(l, t) — 0. Find the limit of the solution as t —> oo and show that it 
satisfies an appropriate steady-state problem. Verify this result if g(x) = sin(nx/l). 

4.5.8. Use Duhamel's principle to obtain the solution of the inhomogeneous Klein-
Gordon equationuu{x,t) — uxx(x,t) + c2u(x,t) = g(x,t), 0 < x < I, t > 0,with 
the initial and boundary conditions u(x,0) = 0, ut(x,0) = 0, u(0,t) = u(l,t) — 0. 
Use the results of Exercise 4.4.16. 

4.6 EIGENFUNCTION EXPANSIONS: FINITE FOURIER TRANSFORMS 

The method of separation of variables presented in Section 4.2 led to the representation 
of the solution of the given problem in a series of eigenfunctions of the differential 
operator L defined in (4.1.6)-(4.1.7). To generate the appropriate eigenvalue problem, 
it was necessary that both the equation and the boundary conditions be homogeneous. 
For the self-adjoint operators (l/p)L under consideration, the eigenfunctions have 
the property of completeness, so that under certain conditions a function f(x) can 
be expanded in a (convergent) series of eigenfunctions. The orthogonality of the 
eigenfunctions renders the determination of the coefficients in the series to be quite 
simple. 

In this section we reverse the foregoing approach and begin by directly expressing 
the solution of the problem as a series of eigenfunctions. The coefficients in the series 
are arbitrary and must be determined from the differential equation and the data for 
the problem. Rather than substituting the series directly into the equation, we convert 
the PDE into a hierarchy of ODEs for the determination of the unknown coefficients, 
termed Fourier coefficients. The equation is thereby transformed into a collection of 
equations for these Fourier coefficients, and this technique is often called the method 
of finite Fourier transforms. More specifically, if the method involves the use of 
Fourier sine, Fourier cosine, or Bessel function expansions of the form considered in 
Section 4.3, it is known as the method of finite sine, cosine, or Hankel transforms, 
respectively. The reason for this will become clearer when we discuss (infinite) 
Fourier transforms in Chapter 5. This method applies to inhomogeneous equations 



EIGENFUNCTION EXPANSIONS: FINITE FOURIER TRANSFORMS 2 2 5 

with inhomogeneous initial and boundary data. Technically, therefore, it enables us 
to solve the most general problems formulated in Section 4.1. 

PDEs with General Inhomogeneous Terms and Data 

We consider PDEs of the form 

p{\)Ku + Lu = p(\)F, (4.6.1) 

where L is denned as in (4.1.6) or (4.1.7), and p(x) > 0 and F are given functions. The 
differential operator К can be given as К = д/dt, К = д2/dt2, or К = —д2/ду2, 
so that (4.6.1) has the form of (4.1.8), (4.1.10), or (4.2.7), respectively. Or К = 0 
and (4.6.1 ) reduces to (4.1.9). In fact, L may have the form associated with any of the 
eigenvalue problems considered in Section 4.3. All that is required of К is that it does 
not depend on any of the variables that occur explicitly in the eigenvalue problem 
associated with L. Equations of parabolic, hyperbolic, or elliptic type can be treated 
by this method. The inhomogeneous boundary conditions for the problem are as 
given in (4.1.11 ) or (4.1.12) and initial conditions are assigned in the hyperbolic and 
parabolic cases as in (4.2.4) or (4.2.6). Conditions of the form (4.2.8) for the elliptic 
case can also be given. 

The solution и of each of the foregoing problems is expanded in a series of eigen-
functions Mfc(x) determined from the eigenvalue problem 

LMk(x) = Xkp(x)Mk(x), к = 1,2,... (4.6.2) 

with homogeneous boundary conditions of the form (4.2.2) or (4.2.3). For this 
discussion it is assumed that the Mk(x) form a complete orthonormal set. Thus 
(Mfc(x), Mj(x)) = Skj, the Kronecker delta. We expand и as 

oc 

u = ^NkMk(x), (4.6.3) 
fc=l 

where the Fourier coefficients Nk (which may depend on t or on y) are to be specified. 
In terms of the inner product (4.2.21 ), the Nk are formally given as 

Nk = (u,Mk(x)), (4-6.4) 

since the Mk(x) are orthonormalized, but the solution и is not yet known. To specify 
the Nk we do not substitute (4.6.3) directly into the equation (4.6.1) since the series 
may not be differentiable term by term. Instead, we transform (4.6.1 ) into a system of 
equations for the Fourier coefficients Nk- For each k, Nk is a finite Fourier transform 
of u. Or, more precisely, the full set of the Nk represents the finite Fourier transform 
of u. Once the full set of the Nk is known, и can be reproduced from the series 
(4.6.3). In this sense (4.6.3) inverts the transforms Nk and the series representation 
of и is called the inverse (finite) Fourier transform of the Nk. 
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To proceed, we multiply (4.6.1 ) by Mk (x) and integrate over the underlying region 
G to obtain 

ίί p{x)Mk{x)Ku dv = K ff p(x)Mk(x)u dv = K(u, Mk(x)) 

= - if Mk(x)Lu dv + fi p(x)FMk(x) dv, (4.6.5) 

where we have pulled the differential operator К out of the integral. Now from 
(4.2.19) we have 

/ / Mk{x)Ludv = / / uLMk{x)dv - I p(x) 
JJG JJG JdG 

■__ , ,du dMk(x) 
M f c ( x ) - li- ds. 

дп дп 
(4.6.6) 

Then, using (4.6.2) and the boundary condition satisfied by и and Mkix) in (4.6.6) 
we readily obtain 

-IL Mk(x)Ludv = -Xk(u,Mk(x)) 

JSl a(x) дп Js2US3 β(χ) 

We denote the boundary integral terms in (4.6.7) by В к. (We assume in our discussion 
that zero is not an eigenvalue for any of the problems we consider.) 

Combining (4.6.7) and (4.6.5), we obtain the hierarchy of ordinary differential 
equations for Nk, 

KNk + \kNk = Fk + Bk, к = 1 , 2 , . . . , (4.6.8) 

where Fk is the Fourier coefficient of F [i.e., Fk = {F, Mk{x))]. 
In the elliptic case that corresponds to (4.1.9) and for which К = 0 in (4.6.1 ), the 

equations (4.6.8) are, in fact, algebraic. Since Xk > 0 for all к by assumption, the 
Nk are uniquely determined. For the elliptic case that corresponds to (4.2.7) with 
К = —д2/ду2, (4.6.8) is a second order ordinary differential equation in у and the 
Nk(y) must satisfy the boundary conditions obtained by setting u(x, y) = f(x) and 
u(x, y) = g(x) in (4.6.4) at у = 0 and у = I, respectively, in view of (4.2.8). 

For the parabolic case, К = д/dt and we have for Nk{t), 

^ β + XkNk(t) = Fk(t) + Bk(t), Nk(0) = (f(x),Mk(x)). (4.6.9) 
dt 

The initial condition is obtained from the eigenfunction expansion of u(x, 0) = /(x) . 
The solution of this problem is 

Nk(t) = (/(x), Mfe(x)) exp(-Àfci) + [ [Fk(r) + Вк(т)] exp[-Afc(i - т)] dr. 
Jo 

(4.6.10) 
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In the hyperbolic case, with К = d2/dt2 we obtain the initial conditions from 
oo oo 

«(ж,0) = /(x) = ^Nk(0)Mk(x), ut(x,0) = g(x) = ^ ^ ( 0 ) M f c ( x ) , 
fc=l fc=l 

(4.6.11) 
so that at t = 0 we have for Nk(t), 

Nk(0) = (f(x),Mk(x)), N'k(0) = (9(x),Mk(x)). (4.6.12) 

The solution of the equation 

cPNk(t) 

dt2 

which satisfies (4.6.12), is 

+ XkNk(t) = Ffc(t) + Bfe(t), (4.6.13) 

Nk(t) = (f(x),Mk(x))cos(i/X~kt) + -^={g(x),Mk(x)) sinici) 

+ 4r= f [Fk(r) + Вк(т)} sm[y/X~k(t - т)} dr. (4.6.14) 
VAfc Jo 

The foregoing results for the parabolic and hyperbolic cases reduce to those obtained 
in Section 4.2 by means of separation of variables if Fk = Bk = 0. 

The solutions и obtained as a series of eigenfunctions cannot, in general, be ex-
pected to be classical solutions that satisfy the differential equation (4.6.1 ) and assume 
the initial and boundary values pointwise. In fact, each of the eigenfunctions Mk(x) 
satisfies a homogeneous boundary condition, whereas the solution и given as a sum 
of these eigenfunctions may satisfy an inhomogeneous boundary condition. Never-
theless, these boundary conditions are certainly accounted for in the equations (4.6.8) 
for the Nk. Thus convergence up to the boundary may have to be interpreted in a 
generalized sense, perhaps using mean square convergence. Additionally, although 
there may be pointwise convergence in interior regions, the lack of convergence up 
to the boundary generally slows the rate of convergence for the series everywhere. 
Consequently, we present a method (following Example 4.8) that often enables us to 
circumvent the foregoing difficulty by converting the problem to one with homoge-
neous boundary conditions. 

Examples 

Example 4.7. Hyperbolic Equations: Resonance. We consider the inho-
mogeneous hyperbolic equation 

p(x)utt(x, t) + Lu(x, t) = p{x)Mi(x) βίη(ωί), (4.6.15) 

where Mj(x) is one of the eigenfunctions determined from (4.6.2) and F(x, t) = 
Mi{x) sin(u;i) is a periodic forcing term in t with frequency of vibration ω = con-
stant. The initial conditions as well as the boundary conditions are assumed to be 
homogeneous; that is, /(x) = g(x) = B(x, t) = 0. 
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Now Fk(t) = (F(x,i),Mfc(x)) = sin(wi)(Mi(x),Mfc(x)) = £iA:sin(cji), where 
the Kronecker delta Sik = 0 for i ф к and 6ц = 1 for all i. Since (/(x), М^(х)) = 
(g(x), Mfe(x)) = ßfc(i) = 0 for all к in this problem, we have, from (4.6.14), 

Ni(t) i Г . 
-j= I si 
J\ Jo 

sin(oii) sin[\/Ai(i - r)\ dr 
wv/A^sin(^Aii) — sin(wi) 

VX~i(u>2 - Xi) 
(4.6.16) 

and iVfc(i) = 0 for к ф г. Thus the series (4.6.3) reduces to the single term 

1 
u(x, t) = ω2 - A j [y/X~ 

■■ sin( y/Xi t) — sin(ut) Mi(x), (4.6.17) 

which is, in fact, the exact solution of the problem. 
Clearly, (4.6.17) is not valid if ω = \f\i.. We may obtain the solution in that case 

by going to the limit as ω —> л/λϊ in (4.6.17). Г Hospital's rule gives 

u(x,t) 
2s/\~ 

sm{\f\~it) 

sf\~i 
t cos( yXi t) Mi(x). (4.6.18) 

To interpret these results, we observe that the numbers u;fc = \Afc (k = 1,2,...) 
represent the natural frequencies of vibration of the solution of the homogeneous 
initial and boundary value problem for (4.6.15) [i.e., with F(x, t) = 0] in view of 
(4.2.31). Thus when ω φ ωί (one of the natural frequencies), the solution (4.6.17) 
oscillates with the imposed external frequency ω, as well as the natural frequency 
Wi = \/λϊ. The external energy fed into the system is distributed between these two 
frequencies. However, if ω = u>i = л/λϊ, we find that the amplitude of the oscillatory 
solution increases unboundedly with t as t —» oo. The effect is known as resonance. 
It results because the entire external energy is concentrated within a single natural 
frequency of vibration, and the continuous input builds up its amplitude. 

Example 4.8. Poisson's Equation in a Circle. We consider the boundary 
value problem for Poisson 's equation, 

V2u(x,y) = -F{x,y), (4.6.19) 

within a disk of radius R with center at the origin and an inhomogeneous boundary 
condition assigned on the boundary circle. Expressing the problem in polar coordi-
nates (r, Θ), we obtain for u(r, Θ) the equation 

d2u(r,0) \ди{г,в) 1 d2u{r,e) 
dr2 r dr r2 ΘΘ2 y , h 

within the circle (i.e., for r < R) and the boundary condition 

и(Я,0) = / (0) . 

(4.6.20) 

(4.6.21) 
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In view of our discussion following equation (4.6.1), this problem can be solved in 
terms of the eigenfunctions Mk{r, Θ) determined from W2Mk(r, Θ) — —ХкМк(г, Θ) 
for r < R with Mk(R, Θ) = 0. Since this higher-dimensional eigenvalue problem 
is not considered until Chapter 8, we present an alternative approach to the given 
boundary value problem that involves an expansion in terms of one-dimensional 
eigenfunctions. 

The solution of (4.6.20)-(4.6.21 ) is expected to be single valued at any point within 
the disk, so we must have u(r, θ + 2π) = u(r, Θ) with a similar result for F(r, Θ) 
and f(9). That is, u(r, Θ), F(r, Θ), and /(#) are periodic of period 2π in Θ. This 
suggests that the eigenvalue problem associated with Lu = —д2и/дв2 with periodic 
boundary conditions of period 2π is appropriate here. Accordingly, we write (4.6.20) 
in the form 

Ku{r,6) + Lu{r,6) = -r2urr(r,e)-rur{r,e)-uee(r,e)=r2F(r,e), (4.6.22) 

and expand the solution in a series of eigenfunctions for the operator L. The foregoing 
eigenvalue problem was discussed in Example 4.6, where with / = ж, we obtained 
the eigenfunctions {cos(fcö)}, к = 0 ,1 ,2 , . . . and {sm(fcö)}, к = 1,2,..., and the 
eigenvalues λ^ = к2, к = 0,1,2,.... Using the orthonormal set of eigenfunctions 
(4.3.48)-(4.3.49) we obtain the eigenfunction expansion 

1 °° 1 
u(r, Θ) = - = a0{r) + У ^{ак(г) cos(fcö) + Ьк{г) sin(fc0)} (4.6.23), 

which corresponds to (4.6.3). Even though this eigenvalue problem is not of Sturm-
Liouville type, the finite Fourier transform method can be applied. 

To begin, we note that the Fourier coefficients a0(r), ak(r) and bk(r) are given 
in terms of u(r, Θ) as 

a0{r) = - - L / u{r, θ) άθ, ак{г) = ~ f u{r, Θ) cos(fc0) άθ, к = 1,2,. . . . 
ν2π } - τ νπ J-K 

(4.6.24) 

Mr) = Α= ί и{г,в)sin(jfcfl) άθ, к = 1,2,.... (4.6.25) 
νπ J-π 

The equations for the Fourier coefficients a0(r), ak(r), and bk(r) are obtained from 
(4.6.20) on multiplying across by the eigenfunctions and integrating from — π to π as 

d2ak[r) , 1 dak(r) kj_ = fc = 0 , l ,2 (4.6.26) 

where Ak(r) and Bk(r) are the Fourier coefficients of F(r,6). Since r = 0 is a 
singular point in the equations for ak (r) and bk (r) and we require the solution u(r, Θ) 
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to be bounded at r = 0, we obtain the boundary conditions oo(r), Ofc(r), bk(r) 
bounded at r = 0, к = 1,2, At r = R, (4.6.23) must represent the Fourier series 
expansion of f(ß). Thus, the boundary condition (4.6.21) implies that aQ(R) = 
/o, ak(R) = fk, bk(R) = fk, к > 1, where / 0 , fk, and fk are the Fourier 
coefficients of f(9). 

Noting that (4.6.26)-(4.6.27) are both inhomogeneous forms of Euler's equation 

C'k\r)+l-C'k{r)-1^Ck{r)=Q, k = 0 , 1 ,2 , . . · , (4.6.28) 

for which a fundamental set of solutions is 

_ „ . Г constant, _ . . f rk , / . A 
C°^ = { log(r), Cfc(r) = \ rJfc, k - h ( 4 6 · 2 9 ) 

we obtain, on using variation of parameters, the following solutions of the foregoing 
boundary value problems: 

a0(r) = [ log (^\ A0(t)t dt+ f log (j\ A0(t)t dt + / 0 , (4.6.30) 

l r [/ß\fc 
= 2fc70 [\r) 

[(?)'" (s)1 + έ / [ ( f ) - ( я ) ] © ' * « " " ® ' / ' · ^ 1 ' (4.6.31) 

with the òfe(r) identical in form to the Ofe(r) (A; > 1) except that Ak{t) and Д are 
replaced by Bkit) and Д , respectively. 

Thus the Fourier coefficients in the series (4.6.23) for u(r, Θ) are specified com-
pletely. Under suitable conditions on F(r,0), say / 0 ϊ^_ F2(r,6)r dr άθ < co, 
with /(#) continuous and piecewise smooth, the Fourier series (4.6.23) converges 
uniformly. Then u(r, Θ) is continuous and u(R, Θ) = f(9). 

Time-Dependent PDEs with Stationary Inhomogeneities 

An interesting special case for the parabolic and hyperbolic problems discussed arises 
when the functions F(x, t) and B(x, t) are independent of t. Since these terms cause 
the problems to be inhomogeneous, the inhomogeneities are said to be stationary 
(i.e., time-independent). This assumption has the effect that the terms Fk and Bk are 
time-independent constants. As a result, the integrals in (4.6.10) and (4.6.14) can be 
evaluated, and we obtain for Nk(t), 
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Nk(t) = 

Nk(t) = 

(f,Mk) 

(f,Mk)-

Fk+Bk 

Fk+Bk e-xkt +Fk + Bk 

Afe 

1 
cos(^/λk~t)+—ΐ=(g,Mk)sin(^/λk~t)+ 

VAfc 

(4.6.32) 

Fk + Bk 

Afe ' 
(4.6.33) 

in the parabolic and hyperbolic cases, respectively. 
In both cases we can decompose Nk(t) into the form Nk(t) = Nk(t) + Nk, where 

Nk = (l/Afe)(Ffc + Bk) is independent of t. Correspondingly, the solution u(x, t) 
can be formally expressed as u(x, t) = ΣΤ=ι Nk{t)Mk(x) + ΣΤ=ι NkMk(x). If 
we set F(x, t) = F(x) and B(x, t) = B{x) since F and В are independent of t and 
define 

v(x)^J2NkMk(x), (4.6.34) 
fe=l 

it is readily seen that v(x) is the solution of the boundary value problem for the 
stationary version of (4.6.1 ), 

Lv(x) = p{x)F{x), a{x)v{x) + β{χ) 
dv(x) 

dn 
B(x). (4.6.35) 

OG 

[On solving (4.6.35) by the finite transform method, we obtain (4.6.34).] 
Then if we put 

u(x, t) = w(x, t) + v(x), 

with i>(x) defined as above, w(x, t) satisfies the homogeneous equation 

p(x)Kw(x, t) + Lw(x, t) = 0, 

with the boundary condition 

dw(x, t) 
a{x)w(x,t) + β(χ)-

dn 
= 0, 

(4.6.36) 

(4.6.37) 

(4.6.38) 
dG 

where К = d/dt and К = d2 /dt2 in the parabolic and hyperbolic cases, respectively. 
The respective initial conditions are 

w{x, 0) = f(x) - v(x), w{x, 0) = /(x) - v{x), wt(x, 0) = g(x). (4.6.39) 

Once the possibility of the decomposition (4.6.36) has been recognized, it may be 
introduced directly when solving initial and boundary value problems with stationary 
inhomogeneities. Since the equation for w(x,t) and the boundary conditions are 
homogeneous, the rate of convergence of the formal series solution of the problem for 
w(x, t) is accelerated. Additionally, if the problem involves only one space dimension, 
we obtain an ordinary differential equation for v(x). Then if v(x) can be determined 
without the use of an eigenfunction expansion, we expect that the solution of the given 
problem u(x, t) = w(x, t) + v(x) takes a form better suited for numerical evaluation. 
The same is true for the determination of v(x). 
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Conversion to Problems with Homogeneous Boundary Data 

We have indicated that the nonhomogeneity of the boundary conditions prescribed for 
the solution of (4.6.1) weakens the convergence rate of the eigenfunction expansion 
(4.6.3). The following method can be used as a remedy. Given the boundary condition 
(4.1.11 ) or (4.1.12), we seek a function V(x, t) such that 

a(x)y(x,i) + № 9 V ( X l t ) 
dn 

= B(x,t), (4.6.40) 
dG 

or ^ ( χ , ί ) such that aiVr(0)i)-/3iVx(0,i) = fli(*), a2V(l,t) + ß2Vx{l,t) = g2(t). 
The function V(x, t) or V(x, t) must be differentiable as often as required in the given 
differential equations. If such a function can be constructed we set (working with the 
higher-dimensional case) u(x, t) = W(x, t) + V(x, t), and find that W(x, t) satisfies 
the equation 

p{x)KW{x, t) + LW{x, t) = p(x)F{x, t) - p{x)KV(x, t) - LV{x, t), (4.6.41) 

with initial conditions of the form (4.6.39) [where v(x) is replaced by V(x, 0) and a 
term —Vt (x, 0) is added to the second equation in (4.6.39), depending on whether the 
equation is parabolic or hyperbolic]. However, the boundary conditions for W(x, t) 
are easily found to be homogeneous. Duhamel 's principle or the finite transform 
method can now be applied to solve for W(x, t). 

Example 4.9. The Inhomogeneous Heat Equation. We consider the fully in-
homogeneous initial and (Dirichlet) boundary value problem for the one-dimensional 
heat equation in a finite interval. We have 

ut{x,t) - c2uxx(x,t) = g(x,t), 0<x<l,t>0, (4.6.42) 

u(x,0) = f(x), 0 < x < l, u(0,t) = gi(t), u(l,t)=g2(t),t>0, (4.6.43) 

where the inhomogeneous term g(x, t) and the data f(x), gi(t), and g2(t) are pre-
scribed. 

The use of linear interpolation, readily results in the construction of the function 

V(x, i) = у \xg2{t) + (l- x)gi (t)], (4.6.44) 

which satisfies the boundary conditions in (4.6.43). Then with u(x, t) = W(x, t) + 
V(x, t), we find that W(x, t) satisfies the equation 

Wt{x,t) - c2Wxx(x,t) = g(x,t) - у [xg'^t) + (I - x)g[(t)} (4.6.45) 

for 0 < x < I and t > 0, with the initial and homogeneous boundary conditions 
given as 

W(x,0) = f(x)-j[xg2(0) + (l-x)9l(0)}, W(0,t) = W(l,t) = 0. (4.6.46) 
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It may be noted that if g(x,t) — 0 and the functions gi(t) and g^t) are time-
independent constants so that the inhomogeneities are stationary, we have 
V(x,t) = V(x) = (I/I) [xgi + {I — x)g\\- In that case, V(x) is a solution of 
the stationary form of the heat equation — c2uxx(x, t) = 0 with the boundary condi-
tions w(0, t) = g\ and u(l, t) = g?.. Nevertheless, this does not signify that there is 
an equivalence between the two decomposition methods given above in all cases in 
which the given partial differential equation is homogeneous and the boundary con-
ditions are stationary. For example, another possible choice for V(x, t) in the above 
problem is V(x,t) = (l/sinh(i)) [sinh(a;)<72(i) + sinh(/ - x)gi(t)]. This does not 
yield a solution of the stationary case if g\ and c/2 a r e constant. 

Exercises 4.6 

4.6.1. Obtain the coefficients Nk in the eigenfunction expansion (4.6.3) for the one-
dimensional hyperbolic and parabolic problems. 

4.6.2. Let the operator К in (4.6.1) be given as К = d2/dt2 + 2\d/dt, where 
λ is a positive constant. Given the same initial and boundary conditions as for the 
hyperbolic problem discussed in the text, determine an expression for the Fourier 
coefficient Nk analogous to equation (4.6.14). 

4.6.3. It was assumed in the text that the eigenvalues Afc are all positive. Discuss the 
necessary modifications if λο = 0 is an eigenvalue and the term iV0Mo(x) occurs in 
the expansion (4.6.3). 

4.6.4. Use the finite sine transform to solve the problem uu{x, t) — c2uxx(x, t) = 
xe~l, 0 < x < l,t > 0, u(x,0) = 0, ut(x,0) = 0, u(0,t) = sin(i),u(Z,£) = l. 

4.6.5. Apply the finite cosine transform to solve the problem utt{x, t) — (?uxx (x,t) = 
0,0<x<l,t>0, u(x,0) = 0, ut(a;,0) = 0, ^ (Ο , ί ) = t, ux{l,t) = 0. 

4.6.6. Use the finite sine transform to solve the problem utt(x, t) — c2uxx(x, t) = 
F(x)sm((jjt), 0 < x < I, t > 0, whereo; Φ nkc/l, and the initial and boundary data 
are u(x, 0) = щ(х,0) = u(0,t) — u{l,t) = 0. Consider the limit of the solution 
u(x, t) as ω —» nkc/l and obtain a resonance effect. 

4.6.7. Consider the two-dimensional Laplace's equation V2tt(r, Θ) = 0 in the disk 
r < R with the boundary condition u(R, Θ) = f(9). Solve this problem by using 
finite Fourier transforms. 

4.6.8. Use the finite sine transform to solve the Dirichlet problem for Laplace's 
equation in a rectangle uxx(x, y) + uyy(x,y) = 0 , 0 < x < I, 0 < у < I, 
u{x,0) = f(x), u{x, I) = g{x), u(0, y) = h(y), u(l,y) = r(y). 
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4.6.9. Apply the finite cosine transform to solve the Neumann problem for Poisson's 
equation in a rectangle uxx(x, y) + uyy(x, y) = —F(x, y), 0 < x < I, 0 < у < I, 
uy(x,0) = f(x), Uy{x,l) = g(x), ux(0,y) = h(y), ux{l,y) = r(y). Determine 
conditions on F(x, y) and the boundary values of u(x, y) so that a solution exists. 

4.6.10. Solve the Neumann problem for Laplace's equation V2u(r, Θ) = 0 in the 
disk r < R if du(R, в)/дг = sin3(6>). 

4.6.11. Consider the equation/fu(r ,0, i)-V2u(r,0, i) = F(r,t), 0 < r < R, 0 < 
t, 0 < θ < 2π, where К is either a first or second order partial derivative operator 
in t with constant coefficients. If u(R, Θ, t) = B(t) and the initial data are functions 
of r only, we may set и = u(r, t). Show that the equation can then be written in the 
form rKu(r, t) + Lu(r, t) = rF(r, t), where L is the Bessel operator (with n = 0) 
defined in (4.3.56). Show how the results in the text can be used to develop a finite 
transform method for solving the given problem. This transform, which involves 
Bessel functions, is called the finite Hankel transform. Hint: See Section 5.5. 

4.6.12. Use the finite sine transform to solve the following problem for the heat 
equation: ut(x,t) — c2uxx(x,t) = e _ t , 0 < x < I, t > 0, u(x, 0) = 0, u(0,i) = 
a, u(l, t) = β, where a and β are constants. Obtain the behavior of the solution as 
t gets large. 

4.6.13. Use the finite cosine transform to solve the following problem: щ(х, t) — 
c2uxx{x, t) = 0, 0 < x < I, t > 0, u(x, 0) = 0, мх(0, t) — 0, ux(l, t) = e _ t . 

4.6.14. Consider the problem ut(x,t) — c2uxx(x,t) = 0, 0 < x < I, t > 0, 
u(x, 0) = 0, u(0,t) = 0, u(l,t) = 1. (a) Solve the problem by using (4.6.44) to 
eliminate the inhomogeneous boundary terms, (b) Solve the problem by using the 
finite sine transform, (c) Compare the rates of convergence of the series solutions 
obtained in parts (a) and (b). 

4.6.15. Given the problem ut(x, t) — c2uxx(x, t) = 0, 0 < x < I, t > 0, u(x, 0) = 
0, u(0,t) = 0, u(l,t) — e~l, determine conditions on с and l such that there is 
a solution of the homogeneous heat equation in the form u(x, t) = v{x)e~l that 
satisfies the boundary conditions above. Use this solution to solve the given initial 
and boundary value problem. 

4.6.16. Obtain a solution of the following problem for the heat equation ut(x, t) — 
c2uxx(x,t) = 0, 0 < x < I, t > 0, u(0,t) — 0, u(l,t) = t, in the form of 
a polynomial in x and t. Show how this solution can be used to solve the initial 
and boundary value problem for the heat equation with the boundary data above and 
u(x,0) = f(x), 0 < x < l. Discuss the behavior of the solution of the latter problem 
for large t. 

4.6.17. Solve the problem uu(x, t) - c2uxx(x, t) — 0, 0 < x < I, t > 0, u(x, 0) = 
ut(x, 0) = 0, u(0, t) = t, u(l,t) = 1, by introducing a change of the dependent 
variable that renders the boundary conditions homogeneous. 
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4.7 NONLINEAR STABILITY THEORY: EIGENFUNCTION EXPANSIONS 

Nonlinear Heat Equation: Stability Theory 

In this section we consider a nonlinear heat conduction equation in one dimension and 
investigate the stability of the equilibrium or zero temperature distribution. That is, 
we wish to determine if small perturbations around the zero temperature distribution 
at the initial time decay to zero as t increases or perhaps develop into a new stationary 
solution with increasing t. We are concerned primarily with the problem of heat 
conduction in an (insulated) rod of finite length with the ends of the rod kept at zero 
temperature for all time. But to compare results of the present stability analysis with 
those of Section 3.5, we consider briefly the stability problem for a rod of infinite 
extent. 

Let u(x, t) represent the temperature distribution of an insulated rod and assume 
that there is a nonlinear heat source of strength — \u(x, i)(l — u2(x, t)). Then the 
(nonlinear) heat equation to be studied has the form 

ut(x, t) - uxx{x, t) — Xu(x, t)(\ - u2(x, t)), (4.7.1) 

where the parameter λ depends on the properties of the rod. We are concerned 
with the growth in time of small initial perturbations around the equilibrium solution 
uo(x, t) = 0 of (4.7.1 ), so we introduce the initial condition 

u(x,0) = eh{x), (4.7.2) 

where h(x) is uniformly bounded and 0 < e <?; 1. 
We are interested in two problems. The basic problem is that in which the rod is 

of finite extent—it is assumed to occupy the interval 0 < x < π—and the boundary 
conditions at the endpoints x = 0 and x = π are 

u(0,i) = 0, ω ( π , ί ) = 0 . (4.7.3) 

[In this case (4.7.1)-(4.7.2) are valid in the interval 0 < x < π.] The other problem 
deals with a rod of infinite extent so that (4.7.1)-(4.7.2) are given over the interval 
—oo < x < oo. Since the data for either problem are small (of order of magnitude 
ε), we look for a solution of each problem in the form 

u(x,t) = ew(x,t), (4-7.4) 

and trace its evolution in time. If this perturbation around the solution щ(х, t) = 0 
remains small as t increases, the zero solution is stable. However, if w(x, t) grows 
without bound as time increases, the equilibrium solution is unstable. Since we are 
unable to solve either of the foregoing nonlinear problems exactly, we use approximate 
methods for studying the stability of the equilibrium solutions of the problems. 

Inserting (4.7.4) into (4.7.1) and dividing by e gives 

wt{x, t) — wxx(x, t) = Xw(x, t) — 62λιυ3(χ, t). (4.7.5) 



2 3 6 INITIAL AND BOUNDARY VALUE PROBLEMS IN BOUNDED REGIONS 

We first carry out a linear stability analysis. Assuming that the solution u(x, t) = 
ew(x, t) is stable so that it does not grow without bound and noting that e2 -c 1, 
we linearize the equation (4.7.5) by dropping the term proportional to w3(x, t). The 
resulting linear equation is 

wt(x, t) - wxx(x, t) = Xw(x, t), (4.7.6) 

and we perform a stability analysis of (4.7.6) with the initial and boundary conditions 
carried over from the nonlinear problem. If the solutions of the linear problem are 
stable, our assumption leading to the neglect of the nonlinear term in (4.7.5) is valid for 
all time. We conclude that the nonlinear problem is stable and is well approximated 
by the linearized version of the problem. 

However, if the linearized problem exhibits instability, the solution w(x, t) grows 
in time so that, eventually, the term e2w3 (x, t) can attain an order of magnitude equal 
to that of the term w(x, t). Consequently, the nonlinear term in (4.7.5) cannot be 
neglected and the full nonlinear equation must be used. Then, although the linear 
stability analysis predicts that the equilibrium solution u0(x, t) — 0 is unstable and 
that the perturbation grows without bound, a nonlinear analysis may show that, in 
fact, the perturbation grows only until it reaches another equilibrium solution. This 
is demonstrated for the initial and boundary value problem for (4.7.1). 

Nonlinear Heat Equation: Cauchy Problem 

We begin by considering a linear stability analysis of the Cauchy problem for (4.7.1 ). 
Thus we study the normal mode solutions 

w(x, t) = a(k) exp[ikx + \(k)t] (4.7.7) 

of the linearized equation (4.7.6). Inserting (4.7.7) into (4.7.6) gives A(A;) = λ — к2. 
Since A is a real constant, the stability index Ω defined as in Section 3.5 is given by 
Ω = À. Thus (4.7.6) is strictly stable if λ < 0 and is unstable if λ > 0. For λ > 0, 
the linear stability analysis predicts unbounded growth for the perturbation ew and 
instability for the equilibrium solution UQ{X, t) = 0. 

To see that the perturbation ew(x, t) need not necessarily grow without bound but 
may reach another (stable) equilibrium solution, we proceed as follows. We first note 
thatui(a;,i) = 1 is a solution of (4.7.1). To check for the stability of this (additional) 
equilibrium solution, we set u(x, t) = 1 + ev(x, t), with 0 < e -С 1 and analyze the 
linearized equation for v(x, t); that is, 

vt(x,t)-vxx{x,t) = -2\v(x,t). (4.7.8) 

For the normal mode solutions (4.7.7) [with w(x, t) replaced by v(x, t)] we now 
obtain λ(Α;) = —2λ - к2, so that the stability index is Ω = —2λ. Thus for λ > 0, 
in which case the linear stability analysis showed the zero (equilibrium) solution 
UQ(X, t) = 0 to be unstable, we now have stability for the equilibrium solution 
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u\(x,t) = 1. This suggests that perturbations of the zero solution do not grow 
unboundedly but only until they reach the stable equilibrium щ (x, t) — 1. We do not 
prove this is the case in general, but find an explicit solution of a Cauchy problem for 
(4.7.1 ) where this is exactly what happens. 

Let h(x) = 1 in (4.7.2) and look for a solution of (4.7.1 ) that is independent of x; 
that is, u(x, t) = U(t). Then U(t) satisfies the initial value problem for the ordinary 
differential equation 

U'(t)=XU(t)(l-U(t)2), 1/(0) = с (4.7.9) 

The solution of (4.7.9) obtained by separation of variables is 

eext 

u{x, t) = U(t) = ^ = . (4.7.10) 
^ 1 + е2(е2Л*_!) 

For small values of t, we expand this solution in powers of e and find that u(x, t) « 
eext — ew(x,t), where w(x,t) satisfies (4.7.6) and w(x,0) = 1. w(x,t) —> oo as 
t —> oo if λ > 0, but (4.7.10) does not tend to infinity but approaches the equilibrium 
solution u\ {x, t) = 1. If A < 0, the term e2Xt in the denominator of (4.7.10) tends to 
zero as t —> oo. Thus since e2Xt — 1 « 0 for small t and e2 <C 1, we conclude that 
u(x, t) as given in (4.7.10) is well approximated by ew(x, t) = eext for all time. That 
is, the linearization procedure is valid for all time if the linearized problem is stable. 

Nonlinear Heat Equation: Initial and Boundary Value Problem 

Turning now to the consideration of the initial and boundary value problem (4.7.1)-
(4.7.3) in the interval 0 < x < π, we begin by applying linear stability theory. 
We look for normal mode solutions of the linearized equation (4.7.6) that satisfy 
the homogeneous boundary conditions (4.7.3). Although (4.7.7) yields solutions of 
(4.7.6) for all real k, to find solutions that vanish at x = 0 and x = π we must take 
linear combinations of the normal modes and restrict the values of k. We obtain 

wn(x,t) = hnexp[(\ — n2)t]sin(nx), n = l , 2 , . . . , (4.7.11) 

where hn is a constant and we have set к = n since w(x, t) vanishes at x = 0 and 
x = π for these values of k. [The solutions (4.7.11) are precisely what results if 
separation of variables is applied to (4.7.6) with the boundary conditions (4.7.3).] 

The solution of the initial and boundary value problem for the equation (4.7.6) 
with the conditions (4.7.2)-(4.7.3) is a linear combination of the (normal mode) 
solutions (4.7.11 ). Thus the stability properties are determined from the discrete set 
of solutions wn(x,t) given in (4.7.11) rather than from the continuous set (4.7.7) 
with — oo < к < oo, which is relevant for the Cauchy problem. We see that if 
λ < 1, the wn(x, t) in (4.7.11) all decay to zero as t —» oo, whereas if A > 1, at 
least one of the wn(x, t) grows exponentially as t —> oo. Consequently, the linear 
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stability analysis predicts that the equilibrium solution UQ = 0 is unstable to small 
perturbations if A > 1, while if λ < 1, it is stable and all perturbations eventually die 
out as t increases. Again, if A > 1, the linear stability analysis that predicts instability 
becomes invalid after a finite time since the nonlinear term in (4.7.5) becomes equally 
important with the linear term given the growth of w(x, t ). Thus, a nonlinear stability 
analysis of the growth of the perturbation term и = ew is needed. 

The values A = 0 and A = 1 given for the Cauchy and the initial and boundary value 
problems for the linearized equation (4.7.6) determine the threshold of instability (in 
the linear theory) for the given problems. These values of A are denoted by Ac, the 
critical value of λ. That is, if A > Ac, we have instability, and if λ < Ac, we have 
stability. It should be noted that the critical value is determined not only from the 
given (linearized) equation but also by the boundary conditions, if any are given. As 
shown above, the critical values Ac differ in the case where no boundary conditions 
are assigned and in the case where boundary conditions are given. 

The initial and boundary value problem (4.7.1)-(4.7.3) cannot be solved exactly. 
There are several approximate methods for analyzing this nonlinear problem, but we 
consider only one approach, which is based on eigenfunction expansions or equiva-
lently, finite Fourier transforms. 

The operator L = —д2/дх2 in (4.7.1), together with the boundary conditions 
(4.7.3), is associated with the eigenfunctions Mk(x) = y/2/nsin(kx), к = 1,2,... 
[i.e., LMk{x) = \kMk{x) with Afc = k2 and Mk{0) = Mk(n) = 0]. The nor-
malized set {Mk(x)} is complete and we represent the function w(x, t) (recall that 
и = ew) in the form 

oo 

w(x,t) = Y/Nk(t)Mk(x), Nk(t) = (w(x,t),Mk(x)). (4.7.12) 

Using the initial condition (4.7.2), we have 

Nk(Q) = (h(x),Mk(x)). (4.7.13) 

[The inner product for this problem is (f{x),g(x)) — JQ f(x)g(x) dx.] 
We obtain an equation for Nk(t) by taking a finite sine transform in (4.7.5); that 

is, we multiply by Mk(x) and integrate between 0 and π. This gives us 

N'k(t) + k2Nk(t)=XNk(t)-\e
2 f w3(x,t)Mk(x)dx, к = 1,2,. . . . (4.7.14) 

Jo 

The integral term yields 

/ w3{x,t)Mk{x)dx= Σ afflNiWNjWNttt), (4.7.15) 

where the coefficients a\J are obtained by cubing the series for w(x, t) and integrating 
term by term. This yields the infinite system of coupled equations 
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N'k(t) + (k2 - \)Nk{t) = -Àe2 Σ 4ÌNi(W(t)Ni(t), (4.7.16) 
i,j,i=l 

with the initial conditions (4.7.13). 
Neglecting the terms of order e2 in the equations (4.7.16) is equivalent to linearizing 

the problem and has the effect of uncoupling the equations. Then the Nk(t)Mk(x) 
have the form (4.7.11) with n replaced by k. We observe that for λ < Äc = 1 all the 
Nk (t) in the linearized case tend to zero as t —» oo, whereas for A > Ac = 1, at least 
one of the Nk(t) grows exponentially in t. 

We wish to examine the behavior of the solution if A is slightly larger than the 
critical value Àc; that is, À « 1 but Ä > 1. Then k2 - À > 0 for к > 2 but 1 - A < 0. 
It is of interest to study the behavior of the solution in the neighborhood of the critical 
value where according to the linear theory a transition from stability to instability 
takes place. 

Since for к > 2, к2 — A > 0, we take as a first approximation 

Nk{t) = (h(x), Mk{x)) exp[(À - k2)t] к > 2; (4.7.17) 

that is, we neglect the terms of order e2 in (4.7.14) with к > 2. A similar approxi-
mation in the equation for N\ (t) leads to an exponentially growing term of the form 
(4.7.17) with к = 1. Inserting these expressions for Nk(t) {k = 1,2,...) into the se-
ries on the right side of (4.7.16) shows that all the terms in the sum decay exponentially 
except for the terms аЩЛ^ (ί). 

The linearized form of the equation for iVj (i) implies that it is growing exponen-
tially, while all other Nk (t) decay exponentially, so we retain the term Xe2a\ x\ Nf (t) 
in the equation for iv*i (f ) and obtain 

JVi(i) + (1 - λ)ΛΓχ(ί) + Ae2a(
1
1
1
)
1iV1

3(i) = 0. (4.7.18) 

For the coefficient а\^ we have from (4.7.15) 

a[\\ = f (Mj(x))4 dx = 4 / sin(z)4 dx = ^ - . (4.7.19) 
Jo π Jo 2π 

Thus Ni (t) satisfies 

N[(t) + (1 - λ)ΛΓχ(ί) + ^ e2N*(t) = 0. (4.7.20) 

To solve (4.7.20) we multiply across by N\ (t) and obtain 

1ЩР1 + (1 - WUt) + 3-^Nt(t) = 0, (4.7.21) 
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which is a Riccati equation for Nf(t). The solution of (4.7.21) satisfying Νχ (0) — 
(h, Mi) is found to be 

Nl{t) = s MX),Ml{x))e«-* 
[1 + [3Xe2(h(x), Μι{χ))2/(2π(λ - l ) ) ] ^ * " 1 ) * - l ) ] 1 / 2 

For small values oft this expression reduces to Ni(t) « (h(x), Mi (ж))е'л_1 'г, which 
is the solution of the linearized equation, as was expected. However, as t —» oo, since 
A — 1 > 0 we have 

лг , ч (h(x),MUx)) [2π f \ - l \ 1 / 2 , , , „ , , , 
i m Ni(t) = ,;, ; ; ' , / ; :{, w—- - — , (4.7.23) 

so that iVi (t) tends to a finite (stationary) value, rather than growing without bound 
as predicted by the linear theory. 

We remark that the above results are self-consistent since we now find that the 
terms aulA^f(i) in the equations (4.7.16) for к > 2 are uniformly bounded for all t 
and it is correct to approximate Nk(t) as in (4.7.17) since the right side of (4.7.16) is 
of order e2. Thus we obtain from (4.7.12), with u(x, t) = e w(x, t), 

, ,. (h(x),Mi(a;)) 2 , ,. . , . . . ,.-Пл\ 

™^)ышЫшл[ — ] ^ 1 ( 4 · 7 · 2 4 ) 

as t -> oo in view of (4.7.17) and (4.7.23). We assume that (h(x),Mi(x)) ψ 0 
and (4.7.24) shows that the solution at large time depends only on the sign [i.e., 
(h(x),Mi(x))/\(h(x), Mi(x))\] of the leading term of the Fourier series of u(x,0) 
and not on its magnitude. The large time behavior of the solution is independent of f, 
so that the solution u(x,t) with λ > Ac does not grow unboundedly as predicted by the 
linear theory. Instead, it approaches a steady state whose approximate description 
(correct to order e) is given in (4.7.24). We note that (4.7.24) is an approximate 
solution of the stationary form of (4.7.1) [i.e., with ut(x,t) = 0] when λ ~ Xc — 1· 

The foregoing approximation method may be extended to deal with nonlinear heat 
sources of the form Xf(u), where /(0) = 0 and f(u) has a Taylor expansion around 
и = 0. Also, hyperbolic and elliptic equations with similar types of nonlineanties 
can be treated by this method. Some examples are presented in the exercises. 

Exercises 4.7 

4.7.1. Show that (4.7.23) is a solution of the equation (4.7.20). 
4.7.2. Obtain the solution (4.7.22) of the equation (4.7.20). 
4.7.3. Consider the nonlinear heat equation ut(x,t) — uxx(x,t) = Xu(x,t)[l — 
u(x, f )], —oo < x < oo, t > 0. Carry out a linear stability analysis around the two 
solutions u0(x,t) = 0 a n d u i ( x , t) = 1. 
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4.7.4. Solve the Cauchy problem for ut{x,t)—uxx (x, t) = Xu(x, t)[l—u(x, t)\, — oo 
< x < oo, t > 0, with the initial condition u(x, 0) = e, 0 < e -С 1, by looking for 
a solution independent of x. Expand the solution for small e and compare the result 
with that obtained by solving a linearized version of the problem. Obtain the limit of 
the solution of the nonlinear problem as t —» oo. 
4.7.5. Apply the method of eigenfunction expansions to solve (approximately) the 
nonlinear heat equation, ut{x,t) — uxx(x,t) — Xu(x,t)(l - u(x,t)), 0 < x < 
7Г, t > 0 if u(x,0) = eh(x), 0 < e « 1, u(0,f) = ω(π,ί) = 0. Determine the 
critical value Ac of A and solve the problem if A is slightly larger than Ac. 
4.7.6. Consider the boundary value problem for the nonlinear elliptic equation uxx 

(x,y) +uyy(x,y) = -Xu(x,y)(l -u2(x,y)), 0 < x < π, у > 0 with u(0, у) = 
u(n, y) = 0, u(x, 0) = eh(x). Requiring that u(x, y) —» 0 as у —* oo, apply a linear 
stability analysis to obtain a critical value Ac of A. Expand the solution in the form 
u(x,y) = е^2^=1 Nk(y) ( \ / 2 / π s i n k x \ and obtain an (approximate) nonlinear 
equation for N\(y) and linear equations for the Nk{y) with к > 2. Discuss the 
behavior of the nonlinear equation for N\ (y) as far as possible without necessarily 
solving it, and consider the behavior of the solution u(x, y) as у —> oo. 
4.7.7. Consider the nonlinear equation utt{x,t)—uxx (x, t) = —Xu(x,t)(l—u2(x,t)), 
-oo < x < oo, t > 0, of hyperbolic type, (a) Show that if the equation is linearized 
for small u(x, t) and A > 0, there exist exponentially growing solutions, (b) Set 
u(x, t) — 1 + ev(x, t) and obtain a linearized equation for v(x, t) in the form of the 
Klein-Gordon equation if A > 0, and show that it is neutrally stable. 
4.7.8. Consider the initial and boundary value problem for the nonlinear hyperbolic 
equation utt(x,t) — uxx(x,t) = —Xu(x,t)(l — u2(x,t)), 0 < x < π, t > 0, 
u(x,0) = eh(x), ut(x,0) = 0, u(0,t) = u(n,t) = 0. Use a linear stability analysis 
around the solution щ(х, t) — 0 to determine a critical value Ac such that exponen-
tially growing normal mode solutions exist if A > Ac. Using eigenfunction expansions 
in the manner presented in the text, discuss this nonlinear initial and boundary value 
problem if A is slightly greater than Ac. 

4.8 MAPLE METHODS 

The Maple procedure pdsolve can find general solutions for PDEs in various forms. 
We have seen in Chapter 2 that it has some success in dealing with initial value 
problems for first order PDEs in that it finds the characteristic equations, and these 
can then be solved using the ODE procedure dsolve. General solutions of the PDEs 
can also be used for this purpose. When dealing with second or higher order PDEs, 
the results are less useful. Although some general information is dispensed by Maple, 
exact solutions (even in series form) of initial and boundary value problems for these 
PDEs are hard to obtain using pdsolve without a good deal of further analysis. 

For example, if we invoke pdsolve(WaveEquation) where the argument is 
the one-dimensional wave equation (4.4.1), Maple's output is the general solution 
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u(x,t) = Fi(ct+x) + F2{ct — x). Theoutputofpdsolve(WaveEquation,HINT 
= M(x)N(t)), where we ask for a solution of the wave equation using separation of 
variables in the form u{x, t) = M{x)N(t), is и (x, t) = M {x) N (t), {d2N(t)/dt2 

= c2AiV (t), d2M(x)/dx2 = XM (x)} . For the heat equation (4.4.25), pdsolve 
(HeatEquation) yields u(x,t) = M{x)N(t), and {dN{i)/dt = c2XN(t), 
d2M{x)/dx2 = XM (x)}. pdsolve(LaplaceEquation) gives a closed-form solu-
tion for Laplace's equation (4.4.31 ) in complex form. If we add the argument HINT = 
M(x)N(y), Maple's output is и {x, y) = M (x) N (y), {d2N(y)/dy2 = -XN (y), 
<pM(x)/dx2=XM(x)}. 

For each of the PDEs considered above, Maple indicates that they are separable and 
exhibits the separated ODEs. Similar results are given for higher dimensional versions 
of these PDEs. To use these results to determine solutions of initial and boundary value 
problems for these PDEs, eigenvalues and eigenfunctions and their expansions must 
be determined. Although Maple can solve many boundary value problems for ODEs, 
it does not have a procedure for finding eigenvalues and eigenfunctions for ODEs. 

Eigenvalue Problems for ODEs 

We have constructed two procedures that determine eigenvalues and eigenfunctions 
for second order ODEs, which need not necessarily be self-adjoint. These procedures 
can be applied to solve regular and singular Sturm-Liouville problems. The main 
procedure EVProbODE determines the characteristic equation for the determination 
of the eigenvalues and the corresponding eigenfunctions. Maple's dsolve procedure 
is used to solve the given ODE, and the boundary conditions are used to determine 
an equation for the eigenvalues. Generally, the eigenvalue equation cannot be solved 
explicitly to give a full set of eigenvalues. The related procedure Evalues deals with 
this problem. It determines the eigenvalues in a specified interval numerically if the 
problem has no parameters. The equation for the determination of the eigenvalues and 
the general expression for the eigenfunctions must be entered. These can be given 
as the global variables CharEqn and EFunc as determined from the procedure 
EVProbODE. 

The procedure EVProbODE{EV'Equation,x = a..b,BCL,BCR,v(x),X) 
has the following arguments. The first four arguments give the ODE for the eigenvalue 
problem, with the boundary conditions BCL and BCR at the left and right endpoints 
x = a and x = b, respectively, of the interval [a, b]. The dependent variable is v and 
the eigenvalue parameter is λ. 

We apply EVProbODE to the eigenvalue problem of Section 4.3 and obtain the 
following output, which agrees essentially with (4.3.32)-(4.3.33); 

Eigenvalues = (сца2 - λ/3ι/32) sin(-\/X /) + V~X(aiß2 + ß\a2) cos(\/X l) — 0, 

Eigenfunctions = /3ivAcos(VA:r) + QI sin(vAx). (4.8.1) 

As a further result, not given in the example, we obtain the squared norm for the 
eigenfunctions found above (valid for λ φ 0). They are determined by using Maple's 
int procedure, and found to be 
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(ßiaia2 - a\ß2 + ßfXa2 - Xß2ß2ai) cos(s/Xl) 
Squared Norm = 

+ 

2(ßlXß2-a1a2) 

2β2αλΧβ2 - 2βλα\α2 + X2ß\lß2 - Xß2laia2 + a\lß1\ß2 - a\la2 

2{ß1Xß2-a1a2) 
For simple problems such as those of the subsections of Section 4.3 that deal with 

the basic trigonometric eigenfunctions, the eigenvalue equation can be solved exactly 
to determine closed-form expressions for the eigenvalues. However, if we consider 
a mixed problem for (4.3.29) with a\ = 1, a2 = 4, ß\ = 0, ß2 = 1, I = 1, we 
obtain the eigenvalue equation 

cos (Vx\ y/X + 4 sin (\/x\ = 0 (4.8.2) 

with the unnormalized eigenfunctions sin The eigenvalues must be deter-
mined numerically, and we use the procedure Evalues to do so. 

The procedure Evalues(CharEqn, E Fune, X, int, ή) finds eigenvalues in a spec-
ified interval numerically. The eigenvalue equation and eigenfunction must be given. 
They can be given as the global variables CharEqn and E Fune as determined on ap-
plying the procedure EVProbODE to the same eigenvalue problem. The eigenvalue 
parameter equals λ. In keeping with our use of the procedures for Sturm-Liouville 
problems, the left endpoint of the λ interval is λ = 0. The interval chosen is divided 
into n subintervals, with n as the fifth argument in the procedure. The length of the 
interval equals n x int, where int is the fourth argument in the procedure. 

For the foregoing example with the eigenvalue or characteristic equation (4.8.2), 
we invoke Evalues(CharEqn, E Fune, X, 10,90) after EVProbODE has been en-
tered as above. The λ-interval [0,900] is broken up into 90 subintervals of length 10. 
Numerically determined eigenvalues {Xk}, к = 1,2,. . . , 10 are found to be [6.607, 
28.666, 68.939, 128.48, 207.59, 306.37, 424.86, 563.06, 721.00, 898.67]. The cor-
responding unnormalized eigenfunctions are {sin(\/Äfc x)}, к = 1,2,.. . , 10. Their 
norms can be found by specializing to this case the general result for the squared 
norm given above. 

In the following example we consider a singular Sturm-Liouville problem that 
arises when the Schrodinger equation of quantum physics, 

h2 

ihut{x, t) = - — V 2 u ( x , t) + V(x, t)u(x, t), (4.8.3) 

is solved by separation of variables. 

Example 4.10. An Eigenvalue Problem that Involves Hermite Polynomi-
als. Separation of variables in the quantum mechanical harmonic oscillator equa-
tion in one dimension leads to the following singular Sturm-Liouville problem over 
an infinite interval 

—v"(x) + x2 v(x) = X v(x), —oo < x < oo, v(x) bounded as |:r| —» oo. 
(4.8.4) 



2 4 4 INITIAL AND BOUNDARY VALUE PROBLEMS IN BOUNDED REGIONS 

We apply the procedure EVProbODE(—v"(x) + x2v(x) = Xv{x),x = — 00..00, 
v(x) = bounded, v(x) = bounded, v(x), A) (the third and fourth arguments ask for 
bounded solutions at ±00) and obtain for the eigenvalues 

-)= WhittakerW{\/4,1/4, x2) = bounded, (4.8.5) 
y/X 

and for the eigenfunctions 

-^=WhittakerW{X/A,l/A,x2). (4.8.6) 
V i 

Maple solves the ODE in terms of the Whittaker function WhittakerW. 
The eigenvalues A must be chosen to satisfy (4.8.5). On trying a set of pos-

itive integral values of A in the ODE, dsolve shows that if A = 2fc + 1 where 
к = 0 ,1 ,2, . . . , there is one set of solutions of the form e~x /2Рк{х) with Pk(x) 
as a polynomial of degree к. (They are multiples of Hermite polynomials.) They 
are bounded at infinity and it turns out that only these values of A yield bounded 
solutions. To see this, the behavior of the solutions at infinity must be determined. 
convert(l I \/xWhittakerW(\/4,1/4, x2), Hermite) yields the expression 
HermiteH(-l/2+X/2, x)2^^2~x/2'> ехр(-ж2/2), where Hermite(a, x) is aHer-
mite function. With the foregoing choice of A, the Hermite functions become Hermite 
polynomials. 

Noting this relation, it is easily shown that the transformation v(x) = e~x /2w(x) 
in (4.8.4) yields Hermite's differential equation,w"(x) — 2xw'(x) + (X—l)w(x) = 0. 
The polynomial solutions Pk(x) of this equation with A = 2fc + 1, к = 0,1,2,... 
are commonly chosen to be the Hermite polynomials Нк(х). The first five Her-
mite polynomials are H0(x) = 1, Hi(x) = 2x, H2(x) = 4a;2 - 2, H3(x) = 
8x3 — \2x, Hi(x) = 16a;4 — 48a;2 + 12. (In Maple notation the Hermite polyno-
mials are given as HermiteH(k, x).) The eigenvalues and orthonormalized set of 
eigenfunctions for the Sturm-Liouville problem (4.8.4) are 

Afc=2fc + 1, vk(x) = -=2==е-х2'2Нк{х), fc = 0 , l ,2 , (4.8.7) 
V2k 7Г*/2 fe! 

Continuing our discussion of singular Sturm-Liouville problems, we consider an 
eigenvalue problem for an ODE related to Laguerre 's differential equation. 

Example 4.11. An Eigenvalue Problem that Involves Laguerre Polyno-
mials. We consider the following singular Sturm-Liouville problem over a semi-
infinite interval: 

—xv"(x) — v'(x) + I — — - I v(x) = Xv(x), 0 < x < 00, 

v(x) bounded as x —> 0, x —» 00. (4.8.8) 
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Note that for this problem, q(x) = x/4 - 1/2 is nonnegative only for x > 2 and that 
x — 0 is a regular singular point for the ODE. As a result, we ask for a solution that 
is bounded at x = 0 and at infinity. 

We apply the procedure EVProbODE(-x v"(x) - v(x) + {x/4 - 1/2) v(x) = 
Xv(x),x = O..oo,w(x) = bounded, v(x) = bounded, v(x),X) and obtain for the 
eigenvalue equation WhittakerM(l/2 + \,0,x)/y/x = bounded, and for the 
eigenfunctions WhittakerM(1/2 + \,0,x)/y/x. The solution is given by Maple 
in terms of the WhittakerM function. (Replacing the WhittakerM function by 
the WhittakerW function also yields a solution of the ODE.) 

The Maple command series shows that WhittakerW(1/2 + X,0,x)/\/x has 
an infinite limit at x = 0, whereas WhittakerM'(1/2 + λ, 0, x)/y/x is finite there. 
Therefore, the WhittakerM function is appropriate for this problem. The eigenval-
ues are determined from the condition that WhittakerM"(1/2 + λ, 0, x)/y/x must 
be bounded at infinity. We try a set of positive integral values of λ in the ODE, 
and dsolve shows that if A = к where к = 0,1,2, . . . , there is one set of solu-
tions of the form e~xl2Pk{x) with Pk{x) as a polynomial of degree k. (They are 
multiples of Laguerre polynomials.) These solutions are bounded at infinity and it 
turns out that only these values of λ yield bounded solutions. The Maple proce-
dure convert(l/y/xWhittakerM(X + 1/2,0, x), Laguerre) yields the expression 
Laguerre(X, x) exp(—x/2), where Laguerre(X,x) is a Laguerre function. With 
the foregoing choice of λ, the Laguerre functions become Laguerre polynomials. 

It is easily shown that the transformation v(x) = e~xl2w(x) in (4.8.8) yields 
Laguerre's differential equation, xw"(x) + (1 — x)w'(x) + Xw(x) = 0. The poly-
nomial solutions Pk(x) of the equation with A = к, к = 0 ,1 ,2 , . . . , are com-
monly chosen to be the Laguerre polynomials Lk{x). The first five Laguerre poly-
nomials are Lo (я) = 1) L\(x) = 1 - x, L2(x) = 1 — 2x + x2 /2, L3(x) = 
-x3/6 + 3x2/2 - 3x + 1, 1,4(ж) = re4/2 4 - 2ж3/3 + Зж2 - 4x + 1 . [In Maple 
notation the Laguerre polynomials are given as LaguerreL(k, x).] The eigenvalues 
and orthonormal set of eigenfunctions for the Sturm-Liouville problem (4.8.8) are 

Xk=k, vk(x) = e-x/2Lk(x), к = 0,1,2,.... (4.8.9) 

Trigonometric Fourier Series 

We restrict our discussion to Fourier series given over the interval —l<x<l and 
to Fourier sine series and Fourier cosine series given over the interval 0 < x < I. 

The procedure FourierCoeff(f(x) ,χ,η,Ι) determines the nth Fourier coefficient(s) 
of the Fourier series of f(x) over —l<x<l. The output for n ψ 0 is 

an = у / f(x)cosy——jdx, bn = - / (x)sinf—— Jdx. (4.8.10) 

If a fifth argument numeric is added in the procedure, the Fourier coefficient in-
tegrals are evaluated numerically. For example, if f(x) = (x — 6)3cos(x3) is 
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expanded in a Fourier series over — 4 < x < 4, the integrals that determine the 
Fourier coefficients cannot be evaluated in closed form. The use of FourierCoeff{ (x — 
6)3 cos(a;3), x, 33,4, numeric) determines that the thirty-third Fourier coefficients 
are \ fl4(

x - 6)3 cos (x3) cos ( f πχ) dx = -46.78574768, and \ f*4(x - 6)3 

cos (x3) sin (ψ πχ)άχ = -14.99891264. 
The procedure FourierSeries(f(x), x, n, I) determines n + 1 terms in the Fourier 

series of f(x) over — / < x < I. (We can set n = oo.) For example, the Fourier 
series of the Dirac delta function δ(χ) over the interval — I < x < I is given as 

*M = ì + ìf~(i=). <4·8·η> 
fc=l v ' 

The expansion of f(x) = (x — 6)3 cos(x3) in a Fourier series over — 4 < x < 
4 up to six terms is carried out numerically by invoking FourierSeries((x — 
6)3cos(x3),x, 5,4, numeric). The output (with only four significant digits re-
tained) is (x - 6)3 cos(x3) « -49.01 - 78.94 cos (.7855 a;) + .9671 sin (.7855 x) -
84.1 cos (1.571 x)+7.594 sin (1.571 x)-53.95 cos (2.356x)+19.71 sin (2.356 x ) -
21.88 cos (3.142 x)+29.86 sin (3.142 x)+36.76 cos (3.928 x)+24.18 sin (3.928 x) . 
The numerical result can be evaluated at any point in the given interval and can be 
plotted. Clearly, the approximation can be improved by finding more terms in the 
series. We note that f(x) = (x — 6)3 cos(x3) does not satisfy /(—4) = /(4) , one 
of the periodic boundary conditions for the Fourier series given in (4.3.43). As a 
result, the periodic extension of f(x) is discontinuous and the convergence rate of 
the Fourier series is slow, so that many terms in the series are needed to yield a good 
approximation. Indeed, we find that/(0) = —216, while the partial sum found above 
has the value -251.12 at x = 0. 

The procedure FourierSineCoeff(f(x),x,n,l) determines the nth Fourier sine 
coefficient of the Fourier sine series of f(x) over 0 < x < I. The output is 
bn = (2/1) fQ f (x) sin (ηπχ/Ι) dx. If a fifth argument numeric is added in the proce-
dure, the Fourier sine coefficient integrals are evaluated numerically. As an example, 
we find the nth Fourier sine coefficient of f(x) = x to be bn = —21 ( -1)" /ηπ . 

The procedure FourierSineSeries(f(x),x, n, I) determines n terms in the Fou-
rier sine series of f(x) over 0 < x < I. (We can set n = oo.) For example, the 
Fourier sine series of f(x) = x is 

^ 2 ( - i ) 1 + f c ; . fk*x\ x = Σ kn
 si" {—) · (4·8·12) 

fc=l Ч ' 

We note that the rate of convergence of the series is only О [l/к), because the odd peri-
odic extension of a; is discontinuous. However, the sine series for f(x) = x2 (x — I) 
is given as 

*2 (* - 0a = Σ т Й (-12 + fc2-2) ( - 1 + (-Dfc)sin ik-¥) ■ (4·8·13) 
k=\ ^ ' 

The series converges on the order of 0{l/k5) because the function and its first deriva-
tives vanish at x = Oandx = I, so that the odd periodic extension is a smooth function. 
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Finally, the procedure FourierCosineCoejf(f(x), χ,η,Ι) determines the nth Fourier 
cosine coefficient of the Fourier cosine series of f(x) over 0 < x < I. The output 
is (for n φ 0) an = (2/1) JQf (x) cos(mrx/Z) dx. If a fifth argument numeric is 
added in the procedure, the Fourier cosine coefficient integrals are evaluated numer-
ically. As an example, we find the nth Fourier cosine coefficient of f(x) = x to be 
αη = [21(-1 + (-1)η)]/η2π2. 

The procedure FourierCosineSeries(f(x),x,n,l) determines n terms in the 
Fourier cosine series of f(x) over 0 < x < I. (We can set n = oo.) For example, the 
Fourier cosine series of f(x) = x is 

fc=l v 7 

The cosine series converges more rapidly that the sine series because the even periodic 
extension of f(x) — x is continuous. 

As indicated, partial sums of the three types of Fourier series considered above can 
be plotted. This is of interest in demonstrating the Gibbs phenomenon graphically. It 
asserts that partial sums of Fourier series of a function /(a;) overshoot and undershoot 
the values of the extended function at points of discontinuity. 

Fourier-Bessel and Fourier-Legendre Series 

The procedure FourierBesselCoeff(f (x) ,χ,η,Ι,τη) finds the Fourier coefficients bn%m 

of Fourier-Bessel series of the function f(x) associated with Bessel functions of order 
n in the interval 0 < x < I. The eigenvalues are related to the zeros of the Bessel 
functions as in (4.3.59). We consider only the case where the function vanishes at 
x = / and is bounded at x = 0. The output of the procedure is 

f„x/ (x) BesselJ (n, Bessel JZeros(n,m)x/I)dx 
bn,m = 2 Jo J K ' — v a — ' (4.8.15) 

I2 BesselJ (1 + n, BesselJ Zeros (n, m)) 

where BesselJ(n, x) is the Bessel function J„(x) of ordern in Maple notation. (If a 
sixth argument numeric is added, the integral is evaluated numerically.) The expres-
sion BesselJZeros(n, m) represents the mth positive zero of the Bessel function 
J„(x). It is given as amn in (4.3.59). [The coefficient bn<m agrees with (4.3.62).] 
FourierBesselSeries(f(x), r, n, N, I) yields a finite (iV-term) or infinite Fourier-
Bessel series that corresponds to the case above. 

As an example, we obtain a 10-term Fourier-Bessel series of / (x) = 1 — x2 

in terms of the zero order Bessel function Jo(#) o v e r ш е interval 0 < x < 1, 
evaluated at x = 0.5. We observe that / (x) vanishes at x = 1, so that we ex-
pect good convergence for the series. The procedure is FourierBesselSeries(\ — 
x2, x, 0,10,1, BesselJZeros(0,1..10)), where the last argument gives the first 10 
positive zeros of JQ(X). (This results in the evaluation of the Bessel zeros that 
occur in the Fourier-Bessel coefficients.) The exact and approximate results are 
(1 - x2)|x=0.5 = -75 « .7502247424. 
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Next we consider Fourier-Legendre series. The procedure FourierLegendreCoeff 
(f{x), x, n) finds the nth coefficient Ln in the series. The output is Ln = (2n + l ) /2 
f_1f (x) P (n, x) dx, where P(n, x) is the Maple notation for the nth-degree Leg-
endre polynomial Pn(x). The full Fourier-Legendre series is given by Fourier 
LegendreSeries(f(x), x, infinity) as 

00 2Ä-+ 1 Γ1 

/(*) = Σ — ? " / f(x)P(k,x)dxP(k,x). (4.8.16) 

We obtain two terms in Fourier-Legendre series of cos(.x) by invoking Fourier 
LegendreSeries(cos(x),x,2). The output is cos(x) ~ sin(l)Po(a;) + 
(-10 sin (1) + 15 cos (1)) P2(x) = sin (1) + (-10 sin (1) + 15 cos (1)) ( -1 /2 + 
Зж2/2). The first terms on the right side of the equality exhibit the Fourier-Legendre 
coefficients and the Legendre polynomials Po(x) and Рг(х). The second terms ex-
press the result as a second-degree polynomial. FourierLegendreSeries(cos(x), x, 
2, numeric) yields cos(a;) « 0.8415Р0(х) - 0.3102P2(z) = 0.9966 - 0.4653a;2 

and evaluates the foregoing result numerically. 

Finite Fourier Transforms: Eigenf unction Expansions 

In Section 4.6 we constructed solutions of initial and boundary value problems as well 
as boundary value problems for a class of PDEs. The solutions were obtained in the 
form of eigenfunction expansions и = Y^=1 Λ/fcMfc, with Mfc as the eigenfunctions. 
Two procedures have been constructed to generate these expansions. The procedure 
FiniteFourTransTerm finds the coefficients Nk in these expansions and FiniteFour-
TransSeries yields the partial or complete eigenfunction expansion. The PDEs must 
have two independent variables, and the appropriate eigenfunctions for each problem 
must be known and prescribed within the procedure. The finite Fourier transform 
method is used to find solutions in all cases. 

For a time-dependent PDE such as the wave or heat equation, the first procedure is 
FiniteFourTransTerm{PDE, BCL, BCR, x = 0..1, ICList, t = f0..oo, u(x, t), 
Mfc(or)), which generates specific terms Nk(t)Mk(x) in the eigenfunction expansions 
of the form u(x, t) = Σ™=ι Nk(t) Mk(x). The PDE must be given as the first ar-
gument in the procedure. The initial condition is given at t — to and the ж-interval is 
0 < x < I. The terms BCL and BCR represent the boundary conditions at x = 0 
and x = I, respectively. They may be given as u(x,t) = g(t) or ux(x,t) = h(t), 
for example. ICList represents a list of initial conditions at t = t0. For the heat 
equation we have [u(x,t) = f(x)}, while for the wave equation we must enter 
[u(x,t) = f(x),ut(x,t) = g(x)]. The eigenfunction Mfc (ж) must be given. (It need 
not be normalized.) Then the procedure determines Nk(t), if possible, and displays 
Nk (t)Mk (x). If an arbitrary ninth argument is added in the procedure, the full initial 
and boundary value problem is displayed as well as the equation for Nk(t) and its 
solution. 

For example, FiniteFourTransTerm(ut(x,t) — uxx(x,t) = x2,u(x,t) = 0, 
u(x, t) — 0,x = 0..7Г, [u(x, t) = x),t — 0..00, u(x,t),sin(2x), full) yields the 
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outputut(o;,i) — uxx(x,t) = x2, x = 0..7Г, t = O..00,u(x,t) = x, t — 0, u(x,t) = 
0, x = 0, u(x, t) = 0, x = π. Eigenf unction = sin(2x), a: = 0..π. (n/2)N'(t) + 
2nN{t) = - π 3 / 4 , ΛΓ(0) = - π / 2 , and the term (-7r/4 + 7r e - 474-e-4 t )s in(2a;) . 
The eigenvalue problem is v" (x) + A v(x) = 0, v(0) — 0, υ(π) = 0. The (unnormal-
ized)eigenfunctionsaresin(fca;), к = 1,2, The eigenfunction Мг (ж) = sin(2a;) 
is selected for this problem. The last part of the output represents N2(t)M2{x). [On 
removing the last argument full in the procedure only N2(t)M2(x) is displayed.] 

For a time-independent PDE such as Poisson's equation, the first procedure is 
FiniteFourTransTerm(PDE, BCL, BCR, x = 0..1, BVList, у = a..b, u(x, y), 
Mfc(x)), which generates specific terms N/c(y)Mic(x) in the eigenfunction expansions 
of the form «(or, у) = Y^=1 Nk(y)Mk{x). The only change from the time-dependent 
case is that BVList is a list of boundary conditions at у = a and у = b. If Dirichlet 
conditions are assigned, we enter [u(x,y) = g(x),u(x,y) = h(x)] with g(x) and 
h(x) as the values at у = a and у = b, respectively. 

As an example, we consider the procedure FiniteFourTransTerm(uxx+uyy — 
-2n2sin(Kx)sm(ny),u(x,y) = 0,u(x,y) = 0,x = 0..1,[u(x,y) = 0,u(x,y) = 
0],y = 0..l,u(x,y),sin(knx)). ItfindsthetermiVfe(t/)Mi;(a;) for the given Poisson 
equation in the unit square with u(x, y) = 0 on the boundary. The eigenvalue problem 
for this case is v"(x) + Xv(x) = 0, v(0) = 0, v(l) — 0. The (unnormalized) 
eigenfunctions are Mk(x) = sin(nkx), к = 1,2, The output gives 

, . , , . , , . - 4 sin (ny) sin (ктг) к sin (тгкх) ,.η-,^ 

Since к is a positive integer, we conclude that Nk(y)Mk{x) = 0 for all к > 1. Thus, 
N\(y)M\{x) must give the exact solution of the problem. However, when we put 
к = 1 in (4.4.11), we have an indeterminate form. Taking the limit as к tends to zero 
yields u(x, y) = s in^x) sin(7n/). This is the exact solution of the given problem, 
as is immediately seen. It can be obtained directly by reapplying the procedure and 
entering βίη(πχ) as the last argument. 

The second procedure FiniteFourTransSeries finds partial or complete eigen-
function expansions. The first seven arguments in the procedure are identical to those 
in FiniteFourTransTerm. If the eighth argument is Mk(x), as before, the full 
eigenfunction expansion is found, but if it is [seq(Mk(x), к = 1..JV)], only N terms 
in the expansion are displayed. [On invoking the procedure, if к is assumed to be 
an integer (using Maple's assume facility), an incorrect result may be obtained, say, 
when к = 0 yields an eigenvalue. Then, it is recommended that no assumption be 
made about к initially, and only after a series is obtained should the assumption that 
к is an integer be introduced. In some problems, however, unless к is assumed to 
be an integer, a messy result is obtained. Then FiniteFourTransTerm should be 
used to get the correct term for к = 0, and the full series should be adjusted accord-
ingly. In general, the output of the procedure indicates which values of к can lead to 
problems.] To check the full formulation of the problem, FiniteFourTransTerm 
can be invoked. 
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We reconsider the boundary value problem for Poisson's equation given above, but 
now ask for the complete eigenfunction expansion. On invoking FiniteFourTrans 
Series(uxx + uyy = —2 π2ύη(πχ) sinку),и(х,у) = 0,u(x,y) = 0,x = 0..1, 
[u(x, y) = 0, u(x, y) = 0], у = 0..1, u(x, y), sin(knx)), we obtain 

• ^ sin(ny)sm(kn)ksm(Kkx) , . . , . , 
U(X,y) = > - 4 у - ; -τ-τ^ ΤΓ~{ ,, s , ч · (4.8.18) 

^ ( fc 4 - l ) ( -cos (^ ) s in ( fc^+fc^ ^ ; 

Clearly, all the terms agree with those found using FiniteFourTransTerm. If we 
assume that к is an integer, the output is u(x, y) = Σ * 1 ι 0, which is incorrect. Now, 
part of the output of FiniteFourTransSeries for this problem identifies fc = 1 as a 
singular point for the corresponding term in the series, putting the result for that case 
in question. All the other terms in the series vanish. Then, to get the correct value for 
the fc = 1 term, we must use FiniteFourTransTerm, as was done above. 

Finally, we consider an initial and Neumann boundary value problem for the wave 
equation. We use FiniteFourTransSeries(utt(x,t) — uxx(x,t) = 0,ux(x,t) = 
0,ux(x,t) = l,x = 0..1, [u(x,t) — 0,ut(x,t) = l],t = 0..oo,u(x,t),cos(knx/l)). 
The eigenvalue problem for this case is v"(x) + λυ(χ) = 0, υ'(0) = 0, v'(l) = 0. 
The (unnormalized) eigenfunctions are Mk{x) = cos(nkx/l), fc = 0,1,2, The 
eigenfunction expansion is given as 

« (*.*) = *+j - ̂  Σ (<- (ψ) - 0 i1 + ( " 1 ) f c ) c o s ( 2 9/ J±L / / W \ \ , .4 /fax 

, s x - , , ■ COS{~ 
(4.8.19) 

Stationary Inhomogeneities and Modified Eigenfunction Expansions 

We have seen in Section 4.6 that for time-dependent problems, if the coefficients and 
the nonhomogeneous terms in the PDE and the boundary conditions are stationary 
(i.e., time independent), it is possible to separate out the effect of these terms and 
construct a new problem in which the PDE and the boundary conditions are homoge-
neous. The procedure Steady State Sol deals with this case. A steady-state solution 
is obtained from the solution N(x) of the corresponding time-independent boundary 
value problem as given in (4.6.35). [Here we put v(x) = N(x).] (The procedure 
works for one space dimension.) If we express the solution of the given problem as 
u(x, t) = N(x) + w(x, i), in the manner of (4.6.36), then w(x, t) satisfies a homo-
geneous PDE with homogeneous boundary conditions. The eigenfunction expansion 
for w(x, t) has better convergence properties than that for the given problem. [We 
note that the steady-state problem may not have a solution if и (х, t) does not approach 
a steady state.] 

If the boundary conditions for the problem are not time independent, then the 
procedure SteadyStateSol applied to the homogeneous version of the PDE with the 
given (time-dependent) boundary conditions determines a function JV(a:, t) that sat-
isfies the boundary conditions. Proceeding as above [and replacing N(x) by N(x, t)] 
now yields a problem for w(x, t) with an inhomogeneous PDE (in general) but with 
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homogeneous boundary conditions. This again yields an improved eigenfunction 
expansion of the solution. [The choice of a function with the properties of N(x, t) 
for a given problem is not unique, and simpler expressions may be found than those 
given by the procedure.] 

The procedure is SteadyStateSol(PDE,BCL,BCR,x = 0..l,u(x,t)), with 
the arguments defined as before. We consider an example. The procedure Steady 
StateSol(ut(x,t) — c2 uxx(x,t) = l,u(x,t) = 2,u(x,t) = l,x = 0..l,u(x,t)) 
exhibits the steady state problem as part of its output: 

Steady State: - c2 N"{x) = l,x = 0..Z, N(0) = 2, N(l) = 1, (4.8.20) 

and obtains the steady-state solution 

If the constant boundary condition at x = 0 is replaced by the boundary condi-
tion u(0, t) = t, there is no steady state solution. Then the output of the proce-
dure SteadyStateSol(ut(x,t) — c2 uxx(x,t) = l,u(x,t) = t,u(x,t) = l,x = 
0..l,u(x,t)) is 

We have N(0,t) — t and N(l,t) = 1. The problem for w(x, t) determined from 
u(x, t) = N(x,t)-\-w(x,t) satisfies homogeneous boundary conditions, but the PDE 
satisfied by w(x, t) is nonhomogeneous. Nevertheless, the finite Fourier transform 
eigenfunction expansion converges more rapidly than that for u(x, t) because the 
boundary conditions are homogeneous. 

Having determined N(x) or N(x, t) for a given initial and boundary value prob-
lem for a PDE, the procedure FiniteFourTransSeriesMod makes use of the 
SteadyStateSol result to convert the problem to one with homogeneous bound-
ary conditions. (If the given problem has a steady state, the PDE for the new problem 
will be homogeneous.) This should accelerate the convergence rate of the series. 
The procedure retains all eight arguments of FiniteFourTransSeries, but the re-
sult N(x) or N(x, t) obtained from Steady State Sol must be inserted between the 
seventh and eighth arguments of FiniteFourTransSeries. (Then there are nine 
arguments in the procedure.) The procedure carries out the necessary modifications 
of the given problem and displays the full solution in the form и = N + w. 

To illustrate the use of the foregoing procedures, we consider an initial and bound-
ary value problem for the nonhomogeneous heat equation 

ut(x, t) - 4 uxx{x, t) = - 1 , u{x, 0) = 0, u(0, t) = 0, ω(π, t) = 1. (4.8.23) 

Solving with FiniteFourTransSeries, we obtain for и = u(x, t) 

°° ( ( l + 4 (k2 - 1) (- l ) f c ) e~4kH + 4 (-l)l+k k2 + ( - l ) f c - l ) s in (b ) 

2k4 ' 
(4.8.24) 

fc=l 
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The output of SteadyStateSol is N(x) - x2/8 - ((π2 - 8)ζ)/8π. Making use of 
N(x), we apply FiniteFourTransSeriesMod and obtain 

, ч z2 ( π 2 - 8 ) ζ ~ ( l + ( 4 / c 2 - l ) ( - l ) f e ) e - 4 ^ s i n ( f c a : ) 

(4.8.25) 

We observe that the terms in the series given by FiniteFourTransSeries decay 
like 1/fc, but those in the series given by FiniteFourTransSeriesMod decay at 
an exponential rate. 

Exercises 4.8 

4.8.1. Apply the Maple procedure pdsolve to the wave, heat, and Laplace's equations, 
with and without the Hint that requests separated solutions, and obtain the results 
presented in the text. 

4.8.2. Use the procedure EVPProbODE to obtain the results given in (4.8.1). 

4.8.3. Find the squared norm of the eigenfunctions determined in Exercise 4.8.2 
using the Maple procedure int. 

4.8.4. Apply EVPProbODE to obtain the eigenvalue equation (4.8.2) and then 
invoke the procedure Evalues to determine the first 10 eigenvalues. 

4.8.5. Reproduce the results of Example 4.10. 

4.8.6. Reproduce the results of Example 4.11. 

4.8.7. Apply the procedures that determine Fourier, Fourier sine, and Fourier cosine 
coefficients and series to obtain the results given in the subsection on Trigonometric 
Fourier Series in the book. 

4.8.8. Obtain 10 terms oftheFourier-Bessel series of f(x) = 1 -х 2 over the interval 
0 < x < 1 using the procedure FourierBesselSeries. 

4.8.9. Invoke the procedure FourierLegendreSeries to obtain five terms in the 
Fourier-Legendre expansion of cos(a;). 

4.8.10. Apply FiniteFourTransTerm(ut(x,t) — uxx(x,t) = x2,u(x,t) = 0,u 
(x,t) =0,x = 0..7Г, [u(x,t) = x],t = O..oo,u(x,t),8m(2x), full) to generate the 
output given in the text. 

4.8.11. Obtain (4.8.17) by using the procedure FiniteFourTransTerm. 

4.8.12. Obtain (4.8.18) by using the procedure FiniteFourTransSeries. 

4.8.13. Obtain the results (4.8.24)-(4.8.25) by invoking Steady StateS ol, Finite 
FourTransSeries, and FiniteFourTransSeriesMod. 



CHAPTER 5 

INTEGRAL TRANSFORMS 

5.1 INTRODUCTION 

In Chapter 4 we dealt with initial and boundary value problems for PDEs given over 
bounded spatial regions. The method of separation of variables and the closely related 
finite Fourier transform method were used to obtain solutions of these problems. This 
chapter deals for the most part with PDEs defined over unbounded spatial regions. 
The tools we use for solving Cauchy and initial and boundary value problems are 
integral transforms. Specifically, we consider the Fourier transform, the Fourier sine 
and cosine transforms, the Hankel transform, and the Laplace transform. 

Instead of proceeding directly to a discussion of each of these transforms, as will be 
done in the following sections, we begin by showing how the separation of variables 
method motivates some of the results and suggests which transforms are appropriate 
for given problems. 

As was done Chapter 4, we restrict our discussion to the second order equations 
(4.2.1), (4.2.5) and (4.2.7) of hyperbolic, parabolic, and elliptic types, respectively. 
On applying the method of separation of variables to each of these equations, we set 
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u(\, t) = M(x)N(t) (with t replaced by у in the elliptic case) and obtain, as before, 

LM{x) = X2p(\)M(\), (5.1.1) 

with the separation constant λ replaced by λ2 for convenience. 
The equations for ./V are given as 

' N"(t) + X2N{t) = 0, hyperbolic case, 
< N'(t) + X2N(t) = 0, parabolic case, (5.1.2) 
. N"(y) - X2N(y) = 0, elliptic case. 

Since we are dealing with unbounded spatial regions, we shall generally require 
that the solution M(x) of (5.1.1) be bounded or vanish at infinity. If the region 
is a semi-infinite interval or a half-plane, one of the boundary conditions given in 
Chapter 4 is applied on the finite portion of the boundary. All boundary conditions 
are assumed to be of homogeneous type, so that M(x) = 0 satisfies (5.1.1) and the 
boundary conditions. To obtain nonzero M(x), restrictions must be placed on the 
parameter λ2. The values of λ (rather than λ2) for which nonzero M(x) can be 
found are the eigenvalues, and the corresponding M(x) are the eigenfunctions for the 
eigenvalue problem. 

The fundamental distinction between the eigenvalue problem for (5.1.1) over an 
unbounded region and that for a bounded region considered in Chapter 4 is that, in gen-
eral (and this is the case for the problems considered here), the spectrum (i.e., the set 
of eigenvalues) is continuous in the unbounded case, whereas in the bounded case the 
spectrum is discrete, as we have seen in Chapter 4. Consequently, if Afe (к — 1,2,...) 
is the set of eigenvalues in the discrete case and Uk = MkNk is the corresponding 
set of solutions of the given PDE, the general solution is obtained by superposition 
of the Uk as 

oo oo 

и = Σ «* = Σ MkNk- (5Л-3) 

fc=l fc=l 

In the case of a continuous spectrum, the eigenvalues λ range over the set D, which 
may be the interval —oo < λ < oo, 0 < λ < oo, or some other uncountable set. 
Let u\ = ΜχΝχ be the separated solution, corresponding to λ, of the given partial 
differential equation. We then obtain a general solution by the formal superposition 

u= I uxdX= I ΜχΝχάΧ. (5.1.4) 
JD JD 

Since the spectrum is continuous and an orthogonality property for the eigenfunctions 
M\ does not occur in a simple and natural way (as for the discrete spectrum), the 
specification of the N\ in (5.1.4) in terms of initial and boundary data cannot be 
carried out in a general way as was done in Chapter 4. 

Therefore, we concentrate on a number of specific eigenvalue problems for (5.1.1 ) 
in this chapter that lead to the consideration of Fourier, Hankel, and Laplace 
transforms. (In this respect our discussion parallels that given in Section 4.3 for the 



ONE-DIMENSIONAL FOURIER TRANSFORMS 2 5 5 

Sturm-Liouville problem.) Only the most basic properties of each of the transforms 
are presented and their use is demonstrated in a number of examples. Once it is 
determined that a particular transform is relevant for the solution of a given problem, 
the solution is obtained by transforming the given equation and solving for the trans-
form function. (This approach is identical to that used in the finite Fourier transform 
method of Chapter 4.) Simple and useful expressions for the solution do not often 
result once its transform is known, so approximate methods for evaluating Laplace 
and Fourier transforms and integrals are presented at the end of this chapter. 

5.2 ONE-DIMENSIONAL FOURIER TRANSFORMS 

Weconsidertheone-dimensionalformof(5.1.1)with/9(x) = p{x) = landra ; ) = 0, 
given over the infinite interval —oo < x < oo; that is, 

M"(x) + X2M(x) = 0, -oo < x < oo, (5.2.1) 

with the auxiliary condition that M(x) remain bounded as |x| —» oo. The general 
solution of (5.2.1) in complex form is 

Μλ (a;) = a(X)eiXx + ß{X)e~iXx, (5.2.2) 

where a(A) and ß(X) are constants. The boundedness condition restricts the eigen-
value parameter λ to be real valued. Thus the eigenvalues λ lie in the interval 
—oo < A < oo, so that the spectrum is continuous. 

Corresponding to the eigenfunction expansions given in Chapter 4, we would like 
to be able to represent an arbitrary function f(x) (under suitable conditions) in terms 
of the eigenfunctions M\(x) in the form 

/

OO ΡΌΟ 

(a(X)eiXx + ß{X)e~iXx) dX = j(X)e~iXx dX, (5.2.3) 
-oo J — oo 

where7(A) = a(-X)+ß(X) [the integral in 7(A) is obtained from the first integral via 
a simple change of variables]. Since the eigenfunctions for this eigenvalue problem 
are not orthogonal (in an elementary sense), it is not immediately apparent how to 
determine 7(A) in terms of f(x) in (5.2.3). However, a generalized orthogonality 
property for the eigenfunctions M\ (x) is determined in Section 7.2 when Dirac delta 
functions are discussed. It is shown that (1/2π) f^° е~

гХх
е
г^х dx — §{\ _ Д). 

Thus, if we multiply across in (5.2.3) by (1/2ж)егХх, integrate with respect to x from 
-00 to 00, and assume that it is valid to interchange the order of integration, we 
conclude that 

1 f°° 
7(A) = — J eiXxf{x) dx, (5.2.4) 

on using the substitution property of the Dirac delta function δ(ζ) and replacing A 
by A. 
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An alternative (formal) method for determining 7(A) in (5.2.3) can be based on 
the expansion (4.3.52) for the Fourier series of the function v(x) given in Section 4.3. 
On expressing the trigonometric functions in complex form and letting I —» 00, it can 
be shown (see the exercises) that a plausible result is the Fourier integral formula 

/(*) = T- / / е-'Х*-»№ dt dX, (5.2.5) 

where we have used f(x) in place of v{x). If we define the function F{X) in terms 
of the inner integral in (5.2.5) to be 

F(X) = - = / eiXxf{x) dx, (5.2.6) 
\>2π J-ao 

(where we have changed the variable of integration from t to x), we obtain 

1 Г°° 
f(x) = -j= J e~iXxF{\) d\. (5.2.7) 

The coefficients in (5.2.6)-(5.2.7) have been chosen to be 1/\/2π for the purpose of 
achieving symmetry in the formulas for F{\) and f{x)-

The function F{\) in (5.2.6) is called the Fourier transform of f{x) and (5.2.7) is 
the Fourier inversion formula that gives the function f(x) in terms of its transform 
F(X). In this context, the function f(x) is referred to as the inverse Fourier transform 
ofF(A). By comparing (5.2.7) with (5.2.4), we conclude that 7(λ) = (l/V2n)F{\). 
(We remark that various alternative definitions of the Fourier transform and its inver-
sion formula are given in the literature. In particular, Maple uses a different definition, 
as we will see. As a result, transforms of specific functions and certain formulas may 
assume different forms, but in their use for solving problems for differential equations, 
the solutions of the problems must be the same.) 

General Properties 

Once the Fourier integral formula has been obtained, sufficient conditions for its 
validity can be verified directly. Thus if f(x) is piecewise continuously differentiable 
on each finite interval and J^° \f(x)\ dx < 00, it can be shown that the integral in 
(5.2.5) converges pointwise to the function f(x) at points of continuity of f{x). At a 
point x0 where f(x) has a jump discontinuity, the integral converges to \f{xQ-) + 
5/(^0+), the average of the limit values of f(x). If we weaken the conditions on 
f(x) and merely require that it be square integrable over —00 < x < 00, so that 
/-oc \fix)\2dx < 00, it can be shown that the integral converges to f(x) in the mean 
square sense. 

In applications of Fourier transforms it is often necessary to find the inverse trans-
form of # (λ ) = F(\)G(X), where F(X) and G(X) are transforms of the known 
functions f(x) and g(x), respectively. The inverse transform of H(X) is given as 
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1 / Ό Ο -i /»OO ΛΟΟ 

τ= I e-iX*F(X)G(X)d\=— / e-iX^-^f(t)G(X)dtdX, 
2π J-oo 2π J-oo J-oo 

-1 pOO /»OO 1 /»OO 

= 1T /W / e-iX^G(X)dXdt=^= f(t)g(x-t)dt, (5.2.8) 
^ У-оо . / -oo V27T У-оо 

where we have assumed that the interchange of orders of integration is valid. The last 
integral in (5.2.8) represents the convolution of f(x) and g(x). We have shown that 
the Fourier transform of the convolution of f(x) and g(x) equals the product of the 
Fourier transforms of f(x) and g(x). This result is known as the convolution integral 
theorem for Fourier transforms. 

If we put G(A) = F(X), the complex conjugate of F(X), in (5.2.8), it is easily 
shown that we obtain the Parseval equation for Fourier transforms: 

/

OO /»OO 

|F(À)|2 dX = / \f{x)\2 dx. (5.2.9) 
-oo J — oo 

This should be compared with the Parseval equality (4.3.14) for Fourier series. 
A fundamental result for the application of Fourier transforms to differential equa-

tions relates the Fourier transform of derivatives of functions to the transform of the 
functions themselves. For the transform of f'(x) we have 

1 /»oc · \ /»oo 
== / eiXxf'(x) dx = - = / eiXxf(x) dx = -iXF(X), (5.2.10) 
2π J-oo ν 2 π J-oo 

where F(X) is the Fourier transform of f{x), assuming that f(x) is a smooth function 
that vanishes at infinity. More generally, if / ( " ' (x) is the nth derivative of f(x), and 
f(x) and its first n — 1 derivatives are smooth functions that vanish at infinity, we 
have 

1 f°° 
_ / eiXxf{n)(x)dx=-(iX)nF{X) n = l , 2 , 3 , . . . . (5.2.11) 
2π j - ; » 

The formulas (5.2.10)—(5.2.11 ) are obtained on integrating by parts. 
If/(x) is absolutely integrable, [i.e., J^° \f(x)\dx < oo], the Riemann-Lebesgue 

lemma asserts that its Fourier transform F(X) tends to zero as |λ| tends to infinity. (See 
the exercises for a proof.) The rate at which F(X) —» 0 depends on the smoothness 
of f(x) and on how rapidly it decays as | i | —* oo. 

Further properties of Fourier transforms and transforms of specific functions are 
given in the exercises, in Section 5.8, and in tables of transforms. 

Applications to ODEs and PDEs 

We now consider several problems for ODEs and PDEs whose solutions are found 
by using Fourier transforms. In each case one of the independent variables has the 
infinite interval (—oo, oo) as its domain of definition. 
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Example 5.1. An Ordinary Differential Equation. An example that exhibits 
the basic features of the Fourier transform method for solving differential equations 
is given by the following problem for the ODE 

y"{x) - k2y(x) = -f(x), -oo < x < oo, (5.2.12) 

where к is a constant and f(x) is prescribed. We require that 

y(x), y'(x) —► 0, as |ar| —» oo, (5.2.13) 

and that f(x) has a Fourier transform F(X). Let 

1 f°° 
Y{X) = -== / eiXxy(x) dx, (5.2.14) 

ν 2 π J-oo 

so that Y(X) is the Fourier transform of the solution y(x). 
To solve this boundary value problem, we (Fourier) transform the equation (5.2.12) 

by multiplying across by (1/\/2π) éXx and integrating both sides with respect 
to x from -oo to +0O. Our assumptions (5.2.13) imply that on using (5.2.11), 
( 1 / \ / 2 π ) / ! ^ eiXxy"(x) dx = (-iX)2Y(X) = - λ 2 Υ(λ ) . Thus, the equation for 
Y{X) is algebraic and we obtain, with G(X) - 1/(λ2 + A;2), 

-(A2 + k2)Y(X) = -F(X), Y(X) = ^ У ЕЕ F(X)G(X). (5.2.15) 

To find y(x), we must invert У (A). This can be done using the convolution theorem 
(5.2.8) if the inverse transform of G(X) is known. Using a table of transforms or 
complex integration theory, it can be shown that 

w,L'-x'G^-w,L£>-£■-*'· (5·2·16> 
with к > 0. [Note that once the inverse transform of G(X) is given, as in (5.2.16), 
the Fourier transform of that function is easy to evaluate and thereby shown to equal 
G{X).] Using (5.2.16) in the convolution theorem, with Y(X) = F(X)G(X), we 
obtain the solution of (5.2.12)-(5.2.13) in the form 

-, ΛΟΟ 1 /-OO 

y(x) = -j= J e-iX*F(X)G(X) dX=-J^ e '^- ' l /W dt. (5.2.17) 

It is of interest to apply the solution formula (5.2.17) for two special choices of 
f(x). First we set f(x) = 1 and then we set f(x) = δ(χ — ξ), where δ(χ — ξ) is the 
Dirac delta function. With f(x) — 1 we obtain 

1 Γχ 1 f°° 1 
y{x) = at / _ e~k(X'l) dt + Yk]x

 eHx~t] dt = ¥■ ( 5 · 2 · 1 8 ) 
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Putting f(x) = δ(χ — ξ) and recalling the properties of the delta function given in 
Example 1.2 gives 

1 f°° 1 
У{Х) = 2k j те

 е~к[Х~%(1 -®dt=Ìk e-fc|X_el- (5-2Л9) 

Each of these solutions has a shortcoming. The function y(x) = \/k2 satisfies 
(5.2.12) but fails to vanish at infinity, as required by the boundary condition (5.2.13). 
The function y(x) = (l/2k) e~k^x~^ satisfies (5.2.12) at all x φ ξ and vanishes at 
infinity, but is not differentiable at x = ξ. 

We do not expect the solutions above to satisfy all the conditions of the bound-
ary value problem (5.2.12)—(5.2.13) since, in both cases, the Fourier transforms of 
the functions f(x) are not defined in a conventional sense. We proceed formally. 
The function f(x) = 1 has a Fourier transform equal to τ/2π <5(λ). This can be 
seen by putting F(X) = \/2π <5(λ) in the inversion formula (5.2.7). Similarly, the 
Fourier transform of f(x) = δ(χ — £)isF(À) = (1/у/2п)егХ$. In either case we are 
required to deal with generalized functions (specifically, Dirac delta functions) and 
without extending the theory of Fourier transforms to include such functions (as is 
done in Section 7.2) and an appropriate formulation of the corresponding boundary 
value problems, it is not clear that the solution formula can be applied in such cases. 
Nevertheless, the solution y(x) = 1/k2 in the case where f(x) — 1 is certainly plau-
sible (even if it does not vanish at infinity), and the solution y(x) = (l /2A)e- f c lx -^ 
when f(x) = δ(χ — ξ) is known as the Green's function for (5.2.12)—(5.2.13). (The 
importance of Green's functions in solving problems for both ODEs and PDEs is 
demonstrated in Chapter 7.) 

Although a direct approach can be developed to deal with each of the foregoing 
special cases which may or may not depend on Fourier transform theory, we now 
show how each of the solutions can be obtained as limits of sequences of solutions of 
the boundary value problem (5.2.12)-(5.2.13), each of which satisfies the conditions 
of the problem. As such, the two solutions obtained previously are called generalized 
solutions. 

We define the sequence of functions 

, , ч (a{N), \x\<N, 

where N > 0, and consider two cases. First, we set a = 1 for all N and find that 
lim/v-.oo /N(X) = 1 for all x. This corresponds to the case fix) = 1 given above. 
Second, we set a(N) = 1/2N and obtain, in accordance with our discussion in 
Example 1.2, Нтлг^о /N(ÌC) = δ(χ). This corresponds to the case f(x) = δ(χ), 
where we have put ξ = 0 for simplicity. 

Clearly, each of the /JV(X) has a Fourier transform, and the problem (5.2.12)-
(5.2.13) may be solved in the manner given above with f(x) = /jv(x). The solution 
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уы{х) corresponding to JN{X) is found to be 

. _ a(N) fN _kix_t, , , _ / [ ! - e-kNcoSh(kx)]a(N)/k2
: \x\ < N, 

yi\jyx) — —-—— / с dt — \ 
2к J-N {[e-kWsmh{kN)}a(N)/k2, \x\>N. 

(5.2.21) 
We have И т ^ ^ о о уи{х) — 0 and lim^^oo y'N{x) = 0, so (5.2.13) is satisfied. 

First we put a(N) = 1 in (5.2.21). Then as N —> oo, the pointwise limit of 
yN(x) is clearly уы{х) —* 1/fc2 for all finite x. Next we set a(N) = 1/2N and the 
limit as N —» 0 is found to be, on using l'Hospital's rule, yw(x) —> (l/2fc)e-ic'z '. 
(This is the Green's function with ξ = 0.) The limits are nonuniform over the infinite 
interval, so the smoothness properties and the vanishing at infinity are not preserved 
in both cases, yet we have obtained these solutions as limits of strict solutions of the 
boundary value problem. It may be stated as a general principle that solutions of a 
given problem obtained by formal and plausible means can be characterized as limits 
obtained in an appropriate fashion of a sequence of strict solutions of the problem. 
We shall have further occasion to construct solutions of problems by formal means, 
but will not always show how they may be obtained as a limit of strict solutions. In 
Chapter 4, the eigenfunction expansions did not always constitute strict solutions of 
the given problem and had to be interpreted as generalized solutions of the problem 
even though this was not always indicated explicitly. 

On replacing the differential equation (5.2.12) by 

y"(x) + k2y{x) = -f(x), -oo < x < oo, (5.2.22) 

we can no longer require that y(x) and y'(x) tend to zero as |x| —» oo, and use 
the Fourier transform as was done for (5.2.12). Indeed, if f(x) = 0 for |a;| > N, 
the general solution of (5.2.22) for |a;| > TV is a linear combination of sin(fca;) and 
cos(kx). While it is bounded at infinity, it cannot be made to vanish there unless it is 
identically zero. Further if we formally apply the Fourier transform to (5.2.22) and 
neglect contributions from infinity, we obtain 

YW = -£%, (5.2.23) 

and the inverse transform y(x), [in terms of (5.2.7)] does not exist for arbitrary f(x) 
in view of the singularity of Y(X) at λ — ±k. 

To proceed with the solution of (5.2.22), we adapt the solution formula (5.2.17) 
to fit the present problem. [This parallels the approach used in the two special cases 
considered for (5.2.12).] We observe that if we replace к by ik or by —ifcin (5.2.12), 
the equation takes the form (5.2.22). Thus, if we replace к by ±ik in (5.2.17) we 
must obtain a solution of (5.2.22) if f(x) is a function for which the resulting integral 
converges. This gives 

У± 
r°° 

{x)=±kj_ e ± i f e | x _ t | / ( * )Ä , (5.2.24) 
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where y± (x) correspond to the choice к —» =ргА:, respectively. Both y+ (x) and y_ (x) 
are solutions of (5.2.22) and are bounded at infinity. The solution cannot be required to 
vanish at infinity to obtain a unique result, as was the case for (5.2.12). Furthermore, 
asking that the solution be bounded does not yield uniqueness, as shown by the two 
solutions given in (5.2.24). 

If (5.2.22) arises in the context of wave propagation as a reduced (inhomogeneous) 
wave equation (see Example 6.13), the radiation condition at infinity, 

'dy(x) 
lim 

\x\—»oo а|ят| 
iky(x) = 0, (5.2.25) 

picks out the solution y+{x) in (5.2.24) and guarantees a unique solution for the 
problem. If f(x) vanishes outside a finite interval, the radiation condition (5.2.25) 
signifies that a wave traveling away from the source toward infinity is generated. 
This is represented by the solution y+(x). The solution y_ (x) represents a wave that 
travels inward from infinity. (This is elaborated on in Example 6.13 and Section 10.1.) 
The choice f(x) = δ(χ - ξ) yields the Green's function y+{x) = (i/2k)elk^x~^ for 
the boundary value problem. 

Example 5.1 shows the effectiveness of the Fourier transform in solving a boundary 
value problem for ODEs over an infinite interval. It was seen, however, that modifi-
cations of the Fourier transform method, as originally presented, may be required to 
solve certain problems of great interest. 

Example 5.2. The Cauchy Problem for the Heat Equation. We consider 
the heat (or diffusion) equation 

ut{x, t) - c2uxx(x,t) = 0, — oo < x < oo, t > 0, (5.2.26) 

where c2 is a constant, with the initial condition 

u(x,0) = f(x), - o o < z < o o , (5.2.27) 

and use a Fourier transform in the z-variable. We assume that f(x) has a Fourier 
transform and that и and ux vanish at infinity, so that (5.2.11) is applicable. The 
solution obtained will be found to be valid under weaker conditions than are necessary 
for the Fourier transform method to be applicable. 

Denoting the Fourier transform of u(x, t) by 

U(X 
1 Г 

,t) = - = j elXxu{x,t) dx, (5.2.28) 

we multiply through by (1/ν/2π)βιλχ in (5.2.26) and integrate with respect to x from 
-oo to -(-oo. Using (5.2.11), we obtain an ODE for U(X, t), 

-$= [ ute
iXx dx + {c\)2U{\, t) = д и № + (c\)2U(X, t) = 0. (5.2.29) 

ν 2 π J-oo àt 
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Fourier transforming the initial condition (5.2.27) yields 

1 f°° 
U(X,0) = F(X) = - = etXxf(x)dx. (5.2.30) 

ν 2 π J-oo 

The solution of the initial value problem (5.2.29)-(5.2.30) is 

U(X,t) = F(X)e^cX)2t. (5.2.31) 

To find u(x, t), we must invert the Fourier transform U(X, t). We have 
-i /»OO /»OO 

u{x,t) = — / e-iX{x-s)-x2c2tf(s)dXds, (5.2.32) 
2π У_оо7-оо 

where we have used (5.2.30) and interchanged the order of integration. To evaluate 
the inner integral we break it up into two integrals from — oo to 0 and 0 to oo to obtain 

/

oo />oo 

e-iX(x-s)-^cH dX = 2 €-
χ*Λ cos(A(x - s)) dX. (5.2.33) 

-oo Jo 
To evaluate the second integral in (5.2.33), let the integral 1(a) be defined as 

/»OO 

1(a) = 2 / β _ λ ν * cos(aA) dX. (5.2.34) 
Jo 

In view of the exponential decay of the integrand (for t > 0) we can obtain dl /da 
by differentiating under the integral sign. We have, on integrating by parts 

dl(a) 

/

°° 2 2 a 

Xe~x c É sin(aX) άΧ = - - γ 1(a). 

(5.2.35) 
da 

Now 1(0) is given as 
/•OO / 

/(0) = 2 / е~х2сЧ dX = , / — . (5.2.36) 
Jo \ с t 

The solution of the initial value problem (5.2.35)-(5.2.36) is found to be 

I(a)\a=x =4° 
Jo 

e x c ' cos(A(cc - s)) d\= \}-^2 e x P 
(x - sf 

AcH 
(5.2.37) 

Introducing (5.2.37) into (5.2.32) yields the solution of the Cauchy problem 
(5.2.26)-(5.2.27)as 

1 Г 

The term 

VAncH i I —oo 

σ ( χ - ξ , ί ) 

exp 
(x-s)2 

VATTCH 

AcH 

exp 

/(e) da. 

(x-02 

AcH 

(5.2.38) 

(5.2.39) 
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is known as the fundamental solution of the heat or diffusion equation. With the formal 
substitution f(s) — 6(s — ξ) in (5.2.38), we obtain the fundamental solution (5.2.39). 
Thus (5.2.39) is a solution of the heat equation corresponding to a point source of 
heat at the initial time t = 0 located at the point x = ξ. The solution (5.2.38) can be 
thought of as a superposition of solutions due to point sources distributed along the 
ж-axis, with density f(x). The rapid decay at infinity of the exponential term (when 
t > 0) in the integral in (5.2.38) indicates that the restriction J^° \f(x)\ dx < oo 
placed on f(x) to guarantee the existence of its Fourier transform, can be relaxed 
considerably. 

We have already encountered a solution of the form (5.2.39) in Section 1.1. In 
fact, given the diffusion equation (with drift) for v(x, t), 

vt(x,t) + cvx(x,t) = --Dvxx(x,t), (5.2.40) 

considered in (1.1.15), if we set x = x — ct, i = t, and и (x,i) — v(x,t), then 
u(x,i) satisfies (5.2.26) with c2 replaced by D/2 and (x,t) by {x,i). Further, 
u(x,0) — u(x, 0) =v(x,Q). Thus with the initial condition (1.1.18) for v(x,t) [i.e., 
v(x, 0) = δ(χ)], we obtain the solution (1.1.20) for v(x, t) on comparing with the 
fundamental solution (5.2.39). 

Either from the solution (5.2.38) with f(x) = 0 outside a finite interval or from 
the fundamental solution (5.2.39), we conclude that u(x, t) is instantaneously greater 
than zero at each x as soon as the time t increases from zero. [If u(x, t) represents 
temperature, it is generally assumed that u(x, 0) = f(x) > 0.] Thus heat propagates 
at infinite speed according to the heat equation (5.2.26). A similar observation was 
made and discussed in connection with the diffusion equation of Section 1.1. 

For the initial value problem for the nonhomogeneous heat equation 

ut{x,t) - c2uxx(x,t) = F(x,t), -oo < x < oo, t > 0, u(x,0)=0, (5.2.41) 

we easily obtain, on using Duhamel's principle, 
ft ΛΟΟ 

u(x,t)= / G(x-s,t-r)F(s,r)dsdT, (5.2.42) 
Jo J-oo 

where G(x — s, t — r) is defined as in (5.2.39). The result (5.2.42) can also be obtained 
by the use of Fourier transforms. The fundamental solution (5.2.39) is thus seen to 
play an important role in the solution of the Cauchy problem for the heat equation. 
As we shall see, it also plays a role in the solution of problems over semi-infinite 
intervals and even problems over a finite interval. 

The function G(x — ξ, t) is also of interest for the reason that when 11 0, G(x — 
ξ, t) —» δ(χ - ξ). Thus G(x — ξ, t) represents a smooth function (for t > 0) which 
in the limit tends to the Dirac delta function. This is in contrast to the functions 5e(x) 
defined in Example 1.2, which tend to δ(χ) as e —► 0 but have jump discontinuities 
at x = ±ε and are not smooth functions. 
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Example 5.3. The Cauchy Problem for the Wave Equation. The Cauchy 
problem for the wave equation asks for a function u(x, t) that satisfies, for —oo < 
X < 00, 

utt{x,t) - c2uxx(x,t) = 0, t > 0, u(x,0) = f(x), ut(x,0) = g(x). (5.2.43) 

The Fourier-transformed initial value problem is 

d2U(X,t) 

dt2 + (c\yU(X,t) = 0,t>0, t/(A,0) = F(A), 
dU{X,0) 

dt = ад, 
(5.2.44) 

where U, F, and G are Fourier transforms of u, / , and g, respectively. It is assumed 
that the operations necessary to obtain (5.2.44) are valid. 

The solution of the initial value problem (5.2.44) is easily found to be 

ìF^ + àcGW ei\ct + ìF^-àc G(A) -iXct U(X,t) 

Inverting this transform gives the solution 

1 Z-00 1 f°° 
u(x,t) = —= e-iX{x-ct)F{X)dX+—^i e-iX{x+ct)F{X)dX 

2ν2π J-oo 2\/2π J-oo 

. (5.2.45) 

+ -2c 

I Г „~i\(x-ct)GW 
lX 

dX + -
2c 

1 Г e-u(x+ct)G(A) άχ 

iX 

The integrals involving G(X) in (5.2.46) are to be interpreted in the Cauchy principal 
value sense in the neighborhood of λ = 0. 

If we express the function g(x) as 

1 f00 

g(x) = - = / e~iXxG(X) dX, 
ν2π J-oo 

the indefinite integral of g(x) is given as 

ί 9{s)ds=-wJ. °° ^ ^ α χ , 

(5.2.47) 

(5.2.48) 

with the integral in G(X) interpreted in the Cauchy principal value sense. Then 
(5.2.46) can be given as 

u(x 
1 1 rx+°t 

, t) = ~[f{x - ct) + f(x + ct)] + — / g(s) da, (5.2.49) 

on using (5.2.7) and (5.2.48). The expression (5.2.49) is just d'Alembert's solution, 
which was obtained in Example 2.4 by another method. 
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Example 5.4. Laplace's Equation in a Half-Plane and Stokes' Rule. We 
begin by considering Dirichlet's problem for Laplace's equation in a half-plane. We 
require that u(x, y) satisfy the PDE with the boundary condition 

uxx{x,y) +uyy{x,y) — 0, -oo < x < со, у > 0, u(x,0) = f(x), (5.2.50) 

and the additional conditions 

u(x, y) —> 0 as |x| —» oo, u(x, y) bounded as у —> oo. (5.2.51) 

To solve (5.2.50)-(5.2.51 ) we introduce the Fourier transform in x of the function 
u(x, y) defined as 

1 f°° 
U{\,y) = -7== eiXxu{x,y)dx. (5.2.52) 

ν 2 π J-oo 

Then the Fourier-transformed problem (5.2.50)-(5.2.51) becomes 

d2UQy2
,y) - x2U(\ v) = 0, 0 < у < oo, (5.2.53) 

with the boundary conditions 

U{\,0) = F(\), U(X,y) bounded as у -> oo. (5.2.54) 

Here F(X) is the transform of f(x) and the boundedness condition is a consequence 
of (5.2.51). The solution of (5.2.53)-(5.2.54)is 

U(X,y)=F(X)e-Wy, (5.2.55) 

where the |A| occurs, since we require that U(X,y) is bounded as у —> oo, and λ 
ranges from —oo to +oo. Inverting the transform U(X, y) gives 

-i ЛОО /»OO 

Ф,У) = 1Г / e-iX^-^-^yf(t)dXdt (5.2.56) 
*K J-oo J-oo 

on using the inverse transform for F(X) and inverting the order of integration. By 
breaking it into two parts, the inner integral can be evaluated as 

£ e - * - „ - № d A = _ | _ . (5.2.57) 

"( i-r i"f/I(x4')
+»'<"· (5·2-58' 

It may be verified directly that for у > 0, (5.2.58) satisfies Laplace's equation. 
However, a careful examination of the integral is required to show that the boundary 

Thus we have 
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condition in (5.2.50) is satisfied. Although the coefficient у of the integral vanishes 
at у = 0, the integral is singular at the point t = x when у = 0. The combination of 
these two effects leads to the satisfaction of the boundary condition. We do not carry 
out this verification in the general case. 

Instead, we consider a special example with f(x) = H(x), where H{x) is the 
Heaviside unit step function defined as H(x) — 0, x < 0 and H{x) = 1, x > 0. 
Inserting f(t) = H(t) into (5.2.58) yields an integral that can be evaluated explicitly 
in terms of the inverse tangent function. The result is 

n + 2taxT1(x/y) / r o s n X 

u(x,y) = — — . (5.2.59) 

We note that Ит^^,» и(х, у) = 1/2, so that the boundedness condition in (5.2.51) 
is met. However, the condition on u(x,y) as |x| —> oo is not satisfied. (This 
condition was imposed to enable the simplification of the transform of the uxx term.) 
Indeed, H(x) does not even have a conventional Fourier transform since H(x) = 1 
for x > 0. Nevertheless, (5.2.59) is a solution of Laplace's equation for у > 0 
that satisfies the boundary condition at у = 0. Furthermore, u(x, y) is a smooth, 
infinitely differentiable function for у > 0 even though its limit at у = 0 has a 
jump discontinuity at ж = 0. The discontinuity in the boundary value is immediately 
smoothed out for у > 0, consistent with our observation in Section 3.2 that Laplace's 
equation characterizes equilibrium processes where everything is smoothed out. 

In the exercises, we apply the solution formula (5.2.58) to several cases where 
f(x) is either constant or piecewise constant, and may not be Fourier transformable, 
if f(x) does not vanish at infinity. In all cases, as in the foregoing example, the 
solutions are bounded at infinity. It can be shown that the boundedness requirement 
implies that the solutions are unique. 

If we consider the Neumann problem for Laplace's equation, the boundary condi-
tion in (5.2.50) is replaced by 

"jf' ' = g(x), -oo < x < oo, (5.2.60) 

and u(x, y) must be bounded in the upper half-plane. Solving this problem directly, 
leads to certain difficulties with the convergence of the relevant Fourier transforms 
that we prefer to avoid. Instead, we solve it by using a general principle known as 
Stokes ' rule. Here it takes the following form. 

Let u(x, y) satisfy 

uxx(x, y) + uyy(x,y) = 0, -oo < x < oo, у > 0, (5.2.61) 

and the boundary condition 

uy(x,0) = g(x), — oo < x < oo. (5.2.62) 

Put v(x, у) = ди(х, у)/ду. Then 

d_ 
dy 

V2v(x, y) = — V2u(x, y) = 0, v(x, 0) = uy(x, 0) = g(x). (5.2.63) 
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Thus if we can solve the Dirichlet problem (5.2.63) for v(x, y), the solution of the 
Neumann problem (5.2.61)-(5.2.62) is u(x, y) = Jy v(x, s) ds and is determined up 
to an arbitrary constant. Using the solution (5.2.58) gives 

= ; £ (/" да) «W * -1 £ bg((, - «)» + Λ ρ(ί) Λ 
It can be verified that (5.2.64) satisfies (5.2.61H5.2.62). 

We have considered the application of Fourier transforms to some basic but simple 
problems. In each case it was possible to obtain the solution in a fairly straightforward 
manner by inverting relevant Fourier transforms. Equations of parabolic, hyperbolic, 
and elliptic types were chosen to show the applicability of the Fourier transform 
technique for equations of each of the three basic types. The solutions obtained in 
the examples are discussed further, later in the text and in the exercises. 

In general applications of transform methods it is not expected that the inverse 
transforms can be simplified as far as was done in the examples above. However, 
approximation methods are available that yield results in various regions of interest 
in the domain of the dependent variable. Certain methods of this type are presented 
in Section 5.7. Additionally, it is possible to evaluate inverse transforms numerically 
and approximately by replacing the infinite limits in the inversion integral by finite 
limits. 

Exercises 5.2 

5.2.1. Show that the (general) Fourier series (4.3.52) may be expressed in complex 
form as f(x) = Σ™=_00 Cfc exp {—mkx/1), with the Fourier coefficients Ck given as 
Cfc = (1/2Z) f_t f(t) exp (mkt/l). This result may be obtained directly by using the 
orthogonality property of the functions exp[i(nh/l)x] over the interval —l<x<l, 
in the manner of Exercise 4.3.4. 

5.2.2. Show that the results in Exercise 5.2.1 may be expressed as 

1 ~ ri [ nk 

fc=—oo 

dt. 

Assume that the A-axis (—oo < λ < oo) is subdivided into the intervals [Xk-i, Afe], 
with Afe = nk/l, whose length is AXk = π/Ι- Rewrite the expression as 

1 °° /"' /(z) = ^ Σ / f(t)exp[-iXk(x-t)]dtAXk, 
k=~oo 
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and show that as / —> oo this (formal) Riemann sum tends to the Fourier integral 
formula (5.2.5) if the limit exists. 

5.2.3. Prove that if f(x) is absolutely integrable, its Fourier transform (5.2.6) tends 
to zero as | A| —> oo. (This is the Riemann-Lebesgue lemma.) Hint: Let x = у + π/Α 
in (5.2.6) and show that F(X) can be expressed in the form (5.2.6) with f(x) replaced 
by —f(x + π /λ) . Take the average of the two expressions for F(X) and let |λ| —► oo. 

5.2.4. Consider the Fourier transforms found in Exercises 5.2.7, 5.2.9, and 5.2.10. 
Show how the rates at which these transforms tend to zero as |A| —» oo are related to 
the smoothness properties of the inverse transforms f{x). 

5.2.5. Show that the Fourier transform of xf(x) is —iF'(X). 

5.2.6. Obtain the Fourier transform Y(X) of the Airy equation y"{x) — xy(x) = 
0, with Y(0) = 1/л/2~7г. Show that the inverse transform Ai(x) has the integral 
representation given in Exercise 5.7.2. 

5.2.7. Show that the Fourier transform of the function FN{X) defined in (5.2.20) is 
given as FN{X) = уД/π a{N) sin(XN)/X. 

5.2.8. Let a(N) = 1/2N in Exercise 5.2.7 and show that the limit of FN(X) as 
N —» 0 is 1/\/2π. Conclude that the Fourier transform of δ(χ) should be 1/\/2π. 

5.2.9. Obtain the Fourier transform of f(x) = exp[—k\x\], к > 0 and verify the 
result in (5.2.16). 

5.2.10. Adapt the results of Example 5.2 to obtain the Fourier transform of f(x) = 
exp(—c2x2). 

5.2.11. Use the formula (5.2.10) and the result of Exercise 5.2.10 to obtain the Fourier 
transform of the error integral erf(x) = (2/у/7г) / 0 e~s ds. 

5.2.12. Obtain the (closed-form) solution of the problem (5.2.12)-(5.2.13) if f(x) is 
f 1, \x\ < a, 

defined as f(x) = < v ' \ 0 , |x| > a. 

5.2.13 Obtain the result (5.2.42) by using (a) Duhamel's principle; (b) Fourier trans-
forms. 

5.2.14. Show that the fundamental solution G(x — ξ, t) of the heat equation as defined 
in (5.2.39) has the property that as t —> 0, lim(_o G(x - ξ, t) = 0, x φ ξ. Also 
demonstrate that for t > 0 we have J^° G(x — ξ, t) dx = 1. Conclude from these 
results that G(x — ξ, t) tends to the Dirac delta function δ(χ — ξ) as t —> 0. 

5.2.15. Assuming that u(x, t) and its derivatives vanish as \x\ —> oo, integrate 
the heat equation (5.2.26) over the ж-axis and obtain the result f_oo u(x, t) dx = 
IT,*, f(x) dx, where u(x, 0) = f{x). Using Exercise 5.2.14, verify the result for the 
solution given in (5.2.38). 
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5.2.16. Let the initial temperature f(x) in (5.2.38) be f(x) = < ' 'where 
t 0, \x\ > a, 

UQ = constant. Express (5.2.38) in terms of the error integral erf(x) defined in Exercise 
5.2.11. 

5.2.17. Use Fourier transforms to solve uu{x, t) — c2uxx(x, t) = F(x, f), —oo < 
x < oo, t > 0, with u(x, 0) = ut{x, 0) = 0. 

5.2.18. Solve the problem for the hyperbolic equation utt(x,f) - c2uxx(x,t) — 
a2u(x, f) — 0, —oo < x < oo, t > 0 with the initial data u(x, 0) = f(x), 
ut(x,0) = 0. 

5.2.19. Use Fourier transforms to solve utt(x,t) + uxxxx(x,t) = 0, —oo < x < 
oo, t > 0, with u(x,0) = f(x), ut(x,Q) = 0. Hint: The inverse transform of 
cos (λ2ί) is (1/χ/2ί) cos (x2/4t - π / 4 ) . 

5.2.20. Let /(f) = 1 in (5.2.58) and evaluate the integral in terms of t a n - 1 z to show 
that the solution becomes u(x, y) = 1. Note that u(x, y) does not tend to zero as 
у —> oo in this case and that f(x) = 1 does not have a Fourier transform. 

5.2.21. Noting the result in Exercise 5.2.20 and the fact that Нтг/_о К{х — t,y) = 
0, x ф f, where K(x -t,y) = (y/n)/[(x - t)2 + y2}, show that K(x - t, y) tends 
to δ(χ — t) as у —» 0. 

5.2.22. Let/(f) = a, t < 0 and/(f) = b,t> 0 in (5.2.58) and evaluate the integral 
in terms of the inverse tangent function. 

5.2.23. Use Fourier transforms to solve the boundary value problem uxx(x,y) + 
uyy(x,y) — c2u(x,y) = 0, —oo < x < oo, у > 0 with the boundary condi-
tions uy(x, 0) = - / ( ж ) , u(x, y) bounded as у —» oo. Hint: The inverse transform 
of exp(-j/\/A2 4- c2)/\/\2 + c2 is (^/2/тг)К0[сл/х2 + у2}, where K0 is the zero-
order modified Bessel function of the second kind. 

5.2.24. Solve Laplace's equation in a strip using Fourier transforms: uxx(x,y) + 
uyy(x,y) = 0, -oo < ж < о о , 0 < у < L, with u(x,0) = e '^', u(x,L) = 
О, и(х, у) —> 0 as \x\ —> oo. 
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5.3 FOURIER SINE AND COSINE TRANSFORMS 

On considering the one-dimensional form of (5.1.1) over the semi-infinite interval 
0 < x < oo with p(x) = p(x) = 1 and q(x) = 0, we obtain the equation 

M"{x) + \2M(x) = 0, 0 < x < oo. (5.3.1) 

Two sets of boundary conditions are considered for the function tt(x, t) [or u(x, y)], 
which give rise to the eigenvalue problem under consideration when the variables are 
separated as in Section 5.1. First, we assume that и vanishes at x = 0 and is bounded 
as x —> oo. This implies the (homogeneous) boundary conditions 

M(0) = 0, M{x) bounded as x -» oo, (5.3.2) 

for the solution (5.3.1). Second, we assume that ux vanishes at x = 0 and that и is 
bounded as x —► oo. This yields the (homogeneous) boundary conditions 

Af ' (0)=0, M(x) bounded as x -► oo, (5.3.3) 

for(5.3.1). 
The eigenvalue problem (5.3.1)—(5.3.2) yields the eigenfunctions 

Mx(x) = sin(Ax), (5.3.4) 

with the continuous spectrum 0 < λ < oo. Negative values of λ need not be consid-
ered since sin(-Ax) = — sin(Ax). 

The eigenvalue problem (5.3.1) and (5.3.3) gives rise to the eigenfunctions 

Mx(x) = cos(Ax), (5.3.5) 

with the continuous spectrum 0 < λ < oo. Again, negative values of λ need not be 
considered since cos(—Xx) = cos(Àa;). 

Let the function / (x) , denned for x > 0, satisfy conditions equivalent to those 
given in Section 5.2 for Fourier transformable functions. Then corresponding to the 
eigenvalue problem (5.3.1)-(5.3.2), we have the representation 

FS(X) = J-f sin(Ax)/(x) dx, (5.3.6) 

with Fs(\) denned as the Fourier sine transform of f(x). The inversion formula 
giving f(x) in terms of its transform is 

»-Ы f(x) = J - / sin(Ax)Fs(A) d\. (5.3.7) 

The formula (5.3.7) yields an odd extension of f(x) to the entire x-axis [i.e., 
/(—x) = —/(x)]. By considering the Fourier transform (5.2.6) and its inversion 
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formula (5.2.7) as applied to the odd extension of f(x), we obtain (5.3.6)-(5.3.7), as 
shown in the exercises. Thus (5.3.7) converges to f(x) at points of continuity and to 
its mean value at points of jump discontinuity. 

For the eigenvalue problem (5.3.1) and (5.3.3) we have the representation 

Fc(X) -Ш cos(Xx)f(x) dx, (5.3.8) 

with FC(X) defined as the Fourier cosine transform of f(x). The inversion formula 
giving f(x) in terms of its transform is 

'<*>=ЛГ cos(Aa;)Fc(A) dX. (5.3.9) 

These formulas result from the Fourier integral formulas (5.2.6)-(5.2.7) when applied 
to an even function f(x) [i.e., f{—x) = f(x)], as is shown in the exercises. It is 
seen that (5.3.9) yields an even extension of f(x) to the entire axis, and again, the 
convergence properties for (5.3.9) are equivalent to those for the Fourier transform. 

General Properties 

Convolution theorems for products of Fourier sine and cosine transforms are presented 
in the exercises. As was found for the Fourier transform, it is possible to represent 
Fourier sine and cosine transforms of derivatives of f(x) in terms of Fourier sine and 
cosine transforms of f(x). These results are obtained using integration by parts. We 
derive the results for the transforms of f'(x) and f"(x). Results for transforms of 
higher derivatives are easily obtained. 

For the sine transform integral we have 

/•OO X = 0 0 /.OO 

/ f'(x)sin(\x) dx = f(x)sin(Xx) ~X\ f(x)cos(Xx)dx, (5.3.10) 
JO i = 0 JO 

/•oo ix=oo лоо 

/ f"(x) sin(Ax) dx = f'(x) sin(Ao;) - A / f'{x) cos(Aa;) dx 
Jo \x=o Jo 

= /'(:r)sin(Ax) — А/(ж) cos(Aa;) 
x=0 

x=oo noo 

- A 2 / f(x)sin(Xx)dx. (5.3.11) 
x=0 JO 

Thus if we assume that f(x) and f'{x) vanish at infinity, we obtain on using the 
definitions (5.3.7) and (5.3.8), 

/27^/0°° f'(x)sin(Xx) dx = -XFC{X), 

/2/^/0°° f"(x) sin(Aa:) dx = X^/2/^ /(0) - A2FS(A). 
(5.3.12) 

We observe that the Fourier sine transform of the first derivative of a function f'(x) 
is given in terms of the Fourier cosine transform of f(x). The Fourier sine transform 
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of the second derivative f"(x), is given in terms of the sine transform of f{x). There 
is an additional boundary term λ-^/2/π/(0) that vanishes if /(0) = 0, that is, if f(x) 
satisfies the boundary condition of the relevant eigenvalue problem. The formulas 
(5.3.12) show that the use of the sine transform is not expected to be effective unless 
the differential equation contains only derivatives of even orders in the transformed 
independent variable and if only one boundary condition is assigned for each two 
derivatives of the transformed function. 

A similar result is true for the cosine transform. We easily find on using (5.3.7) 
and (5.3.8) that 

/ 2 M 0 ° ° / ' (x) cos(Aar) dx = -y/2fa f(0) + AF„(A), 

/27^/0°° f"(x)cos(\x) dx = -\y/2/nf'{0) - X2FC(X), 
(5.3.13) 

if we assume that f(x) and f'{x) vanish at infinity. Again, if / ' (0) = 0 so that f(x) 
satisfies the boundary condition at x = 0 of the associated eigenvalue problem, the 
cosine transform of f"(x) is given strictly in terms of the cosine transform of the 
function f(x), as shown in (5.3.13). 

The formulas (5.3.12) and (5.3.13) for the Fourier sine and cosine transforms of the 
second derivative of a function require that the function and its derivative, respectively, 
be specified at x = 0 if these transforms are to be useful in solving differential 
equations. Thus, the sine or cosine transforms are appropriate for problems over 
semi-infinite intervals in a spatial variable in which the function or its derivative are 
prescribed on the boundary. The Fourier sine and cosine transforms are generally 
not useful when applied with respect to a time variable in connection with initial 
conditions at t = 0. For example, the heat equation contains only one time derivative 
ut, so that its sine transform is given in terms of its cosine transform. The wave 
equation contains a second time derivative u t t , but since both и and щ are specified 
at t = 0 neither the sine nor the cosine transform can account for the full initial data. 
As shown in Section 5.6, the Laplace transform is the proper choice when the time 
variable is transformed. 

An additional property of the sine and cosine transforms that follows immediately 
from their definitions is that 

ft Г ■ <\ \ ti u dFe(A) [2 [°° ,. . ,, . , 
\ — I sm(Xx)x j(x)dx = ——, \ — I cos{Xx)xj(x)dx 
V T J O όλ V π J0 

dFs(X) 
dx ' 

(5.3.14) 
Further useful properties of Fourier sine and cosine transforms and transforms of 

specific functions are presented in the exercises, in Section 5.8, and are found in tables 
of Fourier sine and cosine transforms. 

Applications to PDEs 

We now consider several problems for PDEs that can be solved by the use of Fourier 
cosine and sine transforms. (A number of problems for ODEs are presented in the 
exercises.) It should be noted that some problems that can be solved by use of Fourier 
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transforms in one of the variables, such as in Example 5.4, can also be solved by the 
use of cosine or sine transforms in the other variable(s). Cosine or sine transforms can 
be used when the transformed spatial variable is restricted to a semi-infinite interval, 
and the choice of the cosine or sine transform is dictated by the boundary conditions, 
as indicated. As often happens in applications to PDEs, since more than one variable 
occurs in the problems, it may be that one variable is unrestricted whereas the other 
variable is bounded on one side. As a result, either the Fourier transform or the Fourier 
cosine or sine transform may be used to solve the given problem. 

Example 5.5. The Heat Equation in a Semi-Infinite Interval. We consider 
the heat (or diffusion) equation 

ut(x,t) -c2uxx(x,t) = 0 , 0 < x < oo, t > 0, (5.3.15) 

where c2 is a constant, over the semi-infinite interval 0 < x < oo, with the initial 
condition 

u(x,Q) = f(x), 0 < ж < о о , (5.3.16) 

and either the boundary condition of the first kind, 

u(0,t)=g{t), t > 0, (5.3.17) 

or the boundary condition of the second kind, 

ux(0,t) = h(t), i > 0 . (5.3.18) 

For the first boundary value problem [i.e., where u(0, i) = g(t)) we apply the 
Fourier sine transform in x, since the term u(0, t) corresponds to the /(0) term that 
occurs in (5.3.12). For the second boundary value problem [i.e., where ux(0, t) = 
h(t)] we use the Fourier cosine transform, in view of the relation between ωχ(0, ΐ) 
and/ '(0) in (5.3.13). 

Applying the Fourier sine transform to (5.3.15), we multiply through in (5.3.15) 
by the term ^/2рквт{Хх) and integrate from 0 to oo to obtain 

dUs(X,t) , , x , 2 r r , . A _ , , /2 
m + (Xc)2Us(X, t) = Ac2у - g(t) (5.3.19) 

on using (5.3.13) and (5.3.17). The function US(X, t) is the sine transform of u(x, t); 
that is, 

Us(X,t) = J - [ sin{Xx)u{x,t) dx. (5.3.20) 

From the sine transform of the initial condition (5.3.16), we have U„(\, 0) = FS(X). 
The solution of the initial value problem for US(X, t) is 

US(X,t) = Fs(X)e-x2c2t + A c 2 y | Г е- А 2 с 2 ( ' - т ^(т) dr. (5.3.21) 
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The inverse transform of US(X, t) yields the solution 

ty POO ΛΟΟ 

u(x,t) = — / e~x c tsin(Xs)sin(Xx)f(a)dXda 
π Jo Jo 

i\ 2 ft /-00 

+ — / / Xe-x2c2(t-Tig{T)sm(Xx)dXdT 
π Jo Jo 

= - / / e-A2c2t{cos[A(x-s)]-cos[A(a; + s)]}/(s)iiAds 
π Jo Jo 

+ — f Г 4- \-e~x"c^1-^ cos{Xx)] д{т) dXdr 
^ Jo Jo ox I J 

= l°°[G(x -a,t)- G(x + a,t)]f(a) ds - 2c2 f ^^AzAg{j) d T | 

(5.3.22) 

where we have used the notation G(x, t) for the fundamental solution of the heat 
equation defined in (5.2.39). The foregoing result was obtained by interchanging 
the order of integration in both integrals and evaluating the inner integrals follow-
ing the approach presented in (5.2.33)-(5.2.37). We have also used the identity 
2sin(Aa;) sin(As) = cos[A(x — s)] — cos[A(a; + s)]. 

Using Duhamel's principle and (5.3.22), it is easy to see that the solution of the 
inhomogeneous heat equation 

vt{x,t) - c2vxx(x,t) =F{x,t), x>0,t>0, (5.3.23) 

with data v(x, 0) = f(x) and v(Q, t) = g(t), is 

pt ЛОО 

24) 
pi POO 

v(x,t)=u(x,t)+ / [G(x-a,t-T)-G(x+s,t-T)]F(s,T)dadr, (5.3. 
Jo Jo 

where u(x, t) is given by (5.3.22). 
In the case of a uniform initial temperature, u(x, 0) = f(x) = UQ = constant, we 

readily obtain, on changing the variable of integration, 

/ [G{x-a,t)-G{x + a,t)]f(a)da= ^ ^ d r - ^ ^ dr 
Jo J-x/2cVt Vn Jx/2cVt Vn 

= 2uo Г c l
 e-r* dj, = щ erf(_Ξ_) , (5.3.25) 

νπ Jo \2c\/tJ 

where erf(z) is the error function integral, defined as 

erf(z) = -= / e~r2 dr, (5.3.26) 
Vn Jo 
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with the properties that erf(0) = 0 and erf(oo) = 1. Thus the solution of the initial 
and boundary value problem (5.3.15)—(5.3.17) with u(x,0) = щ andu(0,i) = 0 is 
given as 

u(x, t) = u0 erf ( —^γ ) . (5.3.27) 

We note that u(x, 0) = UQ erf(oo) = u0, u(Q, t) = щ erf(0) = 0 and u(x, t) -* 0 
as t —» oo. Even though f(x) = щ does not have a sine transform, the solution 
(5.3.27) satisfies all conditions of the problem. Again it can be shown that (5.3.27) 
is the limit of a sequence of problems with Fourier transformable initial data, but we 
do not demonstrate this. 

We observe that if the initial temperature/(a;) is not constant but | /(x) | < M < oo 
for all x > 0 (as we indeed assume), we have 
I (-00 ЛОО 

/ [G(x - s,t) - G(x + s,t)]f(a) ds < M [G{x - s,t) - G(x + s,t)]ds 
Uo Jo 

\2cVtJ 
= Merf 7=) ->0 as t -> oo, (5.3.28) 

\2cVtJ 
since G(x — s,t) > G(x + s, t) for x, s > 0 and erf(z) —> 0 as z —» 0. [We have used 
the extended mean value theorem for integrals applied to the finite interval [0, N] and 
then let TV —» oo to obtain the inequality in (5.3.28).] Thus as t —> oo, the solution 
u(x,t) [i.e., (5.3.22)] of the initial and boundary value problem (5.3.15)—(5.3.17) 
tends to the steady state 

, ч n 2 /"' dGlx,t-r) , ч , u(x,t)^-2c2J ^ '-9{τ)άτ, ί>1 , (5.3.29) 

in the sense that the effect of the initial temperature distribution u(x, 0) = f(x) 
is dissipated. (The term steady state does not signify time-independence for this 
problem.) 

In fact, if we consider the initial value problem for the heat equation (5.3.15) with 
0 < x < oo and t > to, and specify that u(x, to) = f(x) and u(0,t) = g(t), the 
solution is 

u(x,t)= [G{x -s,t-t0)- G(x + s,t- t0)}f(s) ds 
Jo 

-2c*£aG(^-TW, (5.3.30) 
as follows from (5.3.22). We assume that |/(a;)| < M and that g(t) is defined for all 
t. The estimate (5.3.28) shows that the absolute value of the first integral is bounded 
by M erf(x/2c\/t — to). Then as io —► -oo, if u(x,t) is bounded for all time, we 
obtain in the limit 

u(x,t) = -2c 2 f dG<"X,t~T)g{r) dr. (5.3.31) 
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This is the solution of the steady-state problem for(5.3.15) over the intervalO < x < 
oo, where no initial condition is prescribed and the boundary condition is given for 
all t > -oo as tt(0, t) = g(t). If 

u(0,t) = g(t) = (g(t), t>0, 

\ 0 , i < 0 , 
(5.3.32) 

(5.3.31) reduces to (5.3.29). 
If the initial temperature u(x, 0) = f(x) = 0 and the boundary temperature 

u(0, t) = g(t) = u\ = constant, it is readily verified (as shown in the exercises) that 
the solution (5.3.22) can be expressed as 

u(x, t) = iti 1 -e r f 
2cVtJ 

u\ erfc (— 
\2cVt 

(5.3.33) 

erf(z). where erfc(z) is the complementary error function, defined as erfc(2) = 1 
As we see from its definition, erfc(z) —> 1 as z —> 0. 

Thus from (5.3.28) we conclude that the temperature u(x, t) —>· 0 as t —» oo if 
the boundary temperature g(t) = 0 and the initial temperature u(x, 0) = f(x) is 
uniformly bounded. If the boundary temperature g(t) =щ= constant and the initial 
temperature is uniformly bounded, (5.3.33) shows that the temperature u(x, t) tends 
to the constant state щ as t —» oo. 

Finally, we remark that the function 

w(x,t) -2c· 
zdG(x,t) 

dx 
(5.3.34) 

which occurs in the last integral in the solution (5.3.22), is a solution of the homoge-
neous heat equation (5.3.15) that satisfies the conditions 

lim w(x,t) 0, x > 0, lim w(x, t) 
x—>0+ 

0, t > 0. (5.3.35) 

However, as we approach the origin (a;, t) = (0,0) along the curve x = 2c\/i, we 
have 

lim 
t->o+ 

-2c 
2dG(x,t) 

dx 
= lim 

=2c^ * - ° + L2v^Ci3/2 
exp 

x2 \ 
AcHj х=2с\Д 

lim _ oo. (5.3.36) 

Thus w(x, t) is unbounded at the origin. Although w(x, t) is a solution of the 
heat equation that satisfies homogeneous initial and boundary conditions, in view 
of (5.3.35), it is unbounded at the origin. To guarantee that solutions of the initial and 
boundary value problem (5.3.15)-(5.3.17)are determined uniquely, we must require 
that the solution u(x, t) be bounded. Otherwise, we could add the function w(x, t) 
multiplied by an arbitrary constant to any solution, without altering the initial and 
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boundary data for the problem. In fact, w(x, t) is a solution of the heat equation for 
—oo < x < oo and t > 0, and its limit as t tends to zero along any line x = constant 
is zero. However, it is not bounded at the origin in view of (5.3.36). Consequently, 
unless we require that the solution of the initial value problem for the heat equation 
is bounded for all t > 0, the solution is not unique. 

Using the Fourier cosine transform and proceeding as above, we readily obtain 
the solution of the second boundary value problem (5.3.15)-(5.3.16) and (5.3.18) in 
the form 

/»oo Л 

u(x, t)= [G(x -s,t)- G(x + s, t)\f(s) ds - 2c2 / G(x, t - т)Н{т) dr 
Jo Jo 

pt /»oo 

+ / / [G{x-s,t-r) + G{x + s,t-T)]F(s,T)dsdT, (5.3.37) 
Jo Jo 

where the last term occurs if the inhomogeneous problem for the heat equation [i.e., 
(5.3.23)] is considered. 

With constant initial temperature u(x, 0) = f(x) = щ = constant and h = F = 0 
in (5.3.37) we have, after some manipulation of the integrals, 

/»OO Г су /»ОО 

u(x,t) — / [G(x — s, t) — G(x + s, t)]uo ds = щ \—-= I e~r dr =щ. 
Jo L V π Jo 

(5.3.38) 
This is to be expected since du(0, t)/dx is a measure of the amount of heat passing 
through the boundary x — 0 and we have du(0, t)/dx = 0. Also, F(x, t) = 0, so 
that there are no heat sources. As a result, no heat escapes through the boundary 
x = 0 and no heat is generated. Consequently, the temperature remains fixed at 
u(x,t) = щ. 

It should also be noted that the function 

w(x, t) = -2c2G{x, t) (5.3.39) 

that occurs in the second integral in (5.3.37) has the property that 

lim w(x, t) = 0, x > 0, lim W[X'l' = 0, t > 0, (5.3.40) 

as is readily seen. Also, w(x, t) is a solution of the heat equation (5.3.15). However, 
w(x, t) is unbounded at (x, t) = (0,0) if we approach the origin along the curve given 
in (5.3.36), so we must require the solution of the second boundary value problem to 
be bounded in order to obtain a unique solution. 

The solution of the third boundary value problem for the heat equation in the 
semi-infinite interval with the boundary condition 

u x (0 , t ) - f i t i (0 , i ) = r(i), (5.3.41) 

where h > 0 is a constant and r(t) is given, is considered in the exercises. 
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Some of the results obtained in the foregoing example are rederived in Chapter 7 
using Green's function methods. We have expressed them in terms of the fundamental 
solution G(x, t) for the purposes of comparison with later results. 

Example 5.6. Laplace's Equation in a Strip and a Quarter-Plane. We 
consider Laplace's equation in a semi-infinite strip 

uxx{x, y) + uyy(x, y) = 0, 0 < x < oo, 0 < у < a, (5.3.42) 

with the boundary data 

u(0,y)=0, u(x,y) —»0 as x —> oo, uniformly in y, (5.3.43) 

u(x,0) = f(x), u(x,a)=0 0 < x < oo. (5.3.44) 

Since u(x, y) is specified on the boundary x = 0, the Fourier sine transform is 
appropriate for this problem. Let the sine transform of u(x, y) be defined as 

Us(\,y) = J— sin(Xx)u(x,y) dx (5.3.45) 

and multiply through in (5.3.42) by ^/2^sin(Aa:) and integrate from 0 to oo. Using 
(5.3.13) and noting that u(0, y) = 0, we obtain 

d2U*^y)_X2Us{Xiy) = 0. (5.3.46) 

With Fs (λ) as the sine transform of f(x) and in view of (5.3.44), we have 

Us(X,0) = Fs(X), Us(\,a)=0, (5.3.47) 

and 
Us(X,y) = FS(X) sinHXa) . (5.3.48) 

The inverse sine transform yields 

u(x, y) = - Г Г f(s) sm(Xs) s i n ( A x ) S m h ^ ( " ~ y ^ ds dX. (5.3.49) 
π J0 J0 sinh(Aa) 

Note that if αλ 2> 1, we have 

шпЬ[Л(а-у)] и e_x αχ > > L 

sinh(Aa) 

Thus the A-integral in (5.3.49) converges at an exponential rate. The s-integral also 
converges well if f(x) —» 0 as x —> oo, as is, in fact, required by the boundary 
condition (5.3.43). We remark that if there are inhomogeneous boundary conditions 
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at у = a and x = 0, the resulting problem can be solved in a similar fashion. Also, if 
we replace the Dirichlet boundary condition in (5.3.43) with the Neumann condition 
«x(0, y) = g{y) at x = 0, the problem can be solved with the use of the Fourier 
cosine transform. 

In the limit as a —> oo in the problem above we obtain the quarter-plane problem 
for Laplace's equation, that is, 

uxx{x,y) + uyy(x,y) = 0 , x > 0, у > 0, (5.3.51) 

with the boundary conditions 

w(0,y) = 0, u(x,0) = f(x), lim u(x, y) —> 0 uniformly in y. (5.3.52) 
x—»oo 

This problem may be solved by a direct application of the sine transform or by 
going to the limit as a —> oo in the solution (5.3.49). Using the latter approach and 
noting (5.3.50), we obtain as the solution of (5.3.51)-(5.3.52), 

Q /»OO лОО 

u(x,y) = - / f (s) sin(Xs) sm(Xx)e~Xy dsdX. (5.3.53) 
π Jo Jo 

Interchanging the order of integration, we have for the inner integral, 
/»ОС /»OO 

2 / sin(As) 8т(Аа.)е-л» dX = е-
Ху{сов[\(х - s)} - cos[A(x + s)}} dX 

Jo Jo 
- y y (5.3.54) 

y2 + (x — s)2 y2 + (x + s)2 ' 

on adapting the result in equation (5.2.58). Then the solution u(x, y) takes the form 

u{x,y) = - / 
π Jo y2 + (x — s)2 y2 + (x + s)2 / (e) da. (5.3.55) 

The formula (5.3.55) may be compared with that given in (5.2.58) for the solution 
of the half-plane problem for Laplace's equation. If we define/(i) in (5.2.58) to be an 
odd function of t [i.e.,/(—i) = —f{t)], the integral (5.2.58) can easily be transformed 
into (5.3.55). This is equivalent to extending the above quarter-plane problem to a 
half-plane problem by extending the solution u(x, y) to the full infinite x-interval 
as an odd function [i.e., u(—x,y) = —u(x,y)] with u(0,y) = 0. Then if f(x) is 
also extended as an odd function, we would expect the solutions (5.2.58) and (5.3.55) 
to agree, as they indeed do. A further connection between half- and quarter-plane 
problems is considered in Chapter 7 when we discuss Green's functions. 

Exercises 5.3 

5.3.1. Show that if f(x) is an odd function of ж [i.e., f(—x) = —/(ж)], the formulas 
(5.2.6)-(5.2.7) for the Fourier transform yield the formulas (5.3.6)-(5.3.7) for the 
Fourier sine transform. 
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5.3.2. Show that if f{x) is an even function of x [i.e., f(—x) = f{x)], the formulas 
(5.2.6)-(5.2.7) yield the formulas (5.3.8)-(5.3.9) for the Fourier cosine transform. 

5.3.3. Determine the Fourier sine and cosine transforms of the following functions: 

(a) f(x) = e~k\ к > 0; (b) f(x) = ( *' ° ^ X~ "' (c) f(x) = xe~*; (d) 

fix) — e~xcos(:c). 

5.3.4. By specializing the convolution theorem for the Fourier transform to even and 
odd functions f[x) and g(x) as needed, obtain the following convolution theorems 
for sine and cosine transforms: 
(a) /0°° sin(Xx)Fs(X)Gc(X) d\ = \ /0°° f(t)[g(\x - t\) - g(x + t)} dt. 
(b) /0°° cos(Xx)Fc(X)Gc(X) dX = \ /0°° f(t)[g(\x - t\) + g(x +1)} dt. 

5.3.5. Use the Fourier sine transform, Exercise 5.3.3(a), and the convolution theorem 
to solve y"(x) — k2y(x) ~ —f(x), x > 0, y(0) = 0, y(x) —» 0 as x —» oo. 

5.3.6. Use the Fourier cosine transform, Exercise 5.3.3(a), and the convolution the-
orem to solve y"(x) — k2y{x) = -f(x), x > 0, y'(0) = 0, y(x) —> 0 as x —> oo. 

5.3.7. Use the Fourier sine transform to solve the boundary value problem for the 
ordinary differential equation y"(x) — k2y(x) = e~x, x > 0, к ф 1, y(0) = 
1, y(x) —» 0 as x —» oo. 

5.3.8. Use the Fourier cosine transform to solve the problem in Exercise 5.3.7 if we 
replace the condition y(0) — 1 by the boundary condition y'(0) — 1. 

5.3.9. Use Duhamel's principle to obtain the result (5.3.24). 

5.3.10. Show that the solution (5.3.22) takes the form (5.3.33) if f(x) = 0 and 
git) = u\ = constant. 

5.3.11. Suppose that u(x, t) satisfies the heat equation (5.3.15), the initial condition 
(5.3.16), and the boundary condition (5.3.41). Let v(x, t) = ux(x,t) — hu(x,t). 
Show that v(x, t) is also a solution of the heat equation; that is, vt (x, t) — <?vxx (x,t) = 
0, 0 < x < oo, ί > 0, with the initial condition v(x, 0) = f'{x) — hf(x), x > 0, 
and the boundary condition u(0, t) = r(t), t > 0. Assuming that u(x, t) is bounded 
as x —> oo, show that the solution of the given problem for u(x, t) is given in terms 
of v(x, t) as u(x, t) = ehx J^ e~hsv(s, t) ds. 

5.3.12. Use the Fourier sine transform to solve the following initial and boundary 
value problem forthe wave equation uu(x,t) — c2uxx(x,t) = 0, 0 < x < oo, t > 0, 
u{x,0) = ut{x,0) = 0, ω(0, ί) = g{t). 

5.3.13. Solve the following problem for the wave equation using the Fourier cosine 
transform uu[x, t) — c2uxx(x,t) = 0, 0 < x < oo, t > 0, u(x, 0) = ut{x, 0) = 
0, Μ ι (0 , ί )= ί?( ί ) . 
5.3.14. Solve the Dirichlet and Neumann problems for Laplace's equation in a half-
plane given in Example 5.4 by the use of Fourier sine and cosine transforms, respec-
tively. 
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5.3.15. Solve the boundary value problem (5.3.51)—(5.3.52) for Laplace's equation 
using the Fourier sine transform. 

5.3.16. Use the Fourier sine transform to solve the problem uxx(x, y) + uyy(x, y) — 
0, 0 < x < oo, 0 < у < a, u(x, 0) = e~x, u(x,a) = 0, u(0,y) = 1, u(x,y) —> 
0 as x —> oo. 

5.3.17. Apply the Fourier cosine transform to solve the problem uxx(x,y)+uyy (x, у ) 
0, 0 < x < со, 0 < у < со, with the boundary conditions ux(0, y) = 0, у > 

_ , _. i l , 0 < х < 1 , 
o,«(*.o) = | 0 j β > 1_ 
5.3.18. Use Stokes' rule in the manner indicated in Example 5.4 to construct a solution 
of the problem uxx (x, y) + uyy{x,y) = 0 , 0 < ж < со, 0 <y < oo,u(0,y) = 0, 
uy(x,0) = g{x), from the solution of the problem (5.3.51)-(5.3.52) given in (5.3.55). 

5.4 HIGHER-DIMENSIONAL FOURIER TRANSFORMS 

Higher dimensional Fourier transforms may be characterized as before in terms of 
higher dimensional eigenvalue problems for (5.1.1 ) with p = p = 1 and q = 0 over 
the entire space. Alternatively, they may be obtained by a repeated application of one-
dimensional Fourier transforms in each of the variables. The conditions of validity for 
the transforms are then readily carried over from the one-dimensional case. Instead 
of discussing the properties of the higher-dimensional transforms, we merely define 
the transforms and the inversion formulas and cite the necessary properties as they 
are needed. 

Let x = [x\,..., xn] and λ = [Ai, . . . , λη] be n-component vectors. Under 
hypotheses on /(x) analogous to those given in the one-dimensional case, we have 
for the n-dimensional Fourier transform F(X) of /(x) the representation 

1 />oo /·σο 

(A) 
and the Fourier inversion formula 

1 /*oo /»oo 

The integrals (5.4.1 )-(5.4.2) are both n-dimensional and dx and dX are n-dimensional 
volume elements and λ · x = Σ™=1 XiXi is the scalar or dot product of the vectors 
λ and x. The formulas (5.2.10)-(5.2.11 ) relating the transforms of derivatives to the 
transforms of given functions are valid in the higher-dimensional case as well. Here 
they must be applied to transforms of partial derivatives of /(x) and we require that 
/(x) and its partial derivatives vanish at infinity. 

It is also possible to consider transforms equivalent to the sine and cosine trans-
forms given above if the problem is given over a semi-infinite space. We remark that 
although Fourier transforms lead to a formally simple approach to the solution of 
initial and boundary value problems for partial differential equations, the evaluation 
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and simplification of the resulting integral representation of the solution is generally 
not a simple task. This was observed in the examples considered above. We restrict 
our discussion to two and three-dimensional Fourier transforms. 

Cauchy Problem for the Three-Dimensional Wave Equation: Spherical 
Means and Stokes' Rule 

We examine the Cauchy or initial value problem for the wave equation in three 
dimensions, with и = u(x, y, z, t), in the form 

uu - <? [uxx + uyy + uzz] = 0 , t > 0, -oo < x, y, z < oo, (5.4.3) 

where c2 is a constant, with the initial conditions 

u(x,y,z,0)=0, ut(x,y,z,0) = f(x,y,z). (5.4.4) 

We consider only the case where u(x, y, z, 0) = 0, since according to Stokes' rule 
(see Example 5.4), the solution of the wave equation (5.4.3) with data u(x, y, z, 0) = 
f(x, y, z), ut(x, y, z, 0) = 0 is ди(х, у, z, t)/dt, where u(x, y, z, t) satisfies (5.4.3)-
(5.4.4). This is easily verified. Then the solution of the general initial value problem 
for (5.4.3) is just the sum of these two solutions. 

To solve (5.4.3)-(5.4.4) by the Fourier transform method, we multiply (5.4.3) by 
1/(\/27г)3ехр[г(А1Ж+Л2?/+Аз2;)] and integrate with respect to x, y, and z from— oo 
to oo. Let U(X, t) denote the Fourier transform of u(x, y, z, t). Using the analogs of 
the formulas (5.2.10)-(5.2.11 ), we obtain the transformed equation 

^ + c2(A2 + XI + λ2)ί/(λ, t) = 0, (5.4.5) 

on assuming that и and its first partial derivatives vanish at infinity. The initial 
conditions for U(X, t) are 

U(X, 0) = 0, Ut(X, 0) = F(X), (5.4.6) 

where F(X) is the Fourier transform of f(x, y, z). 
The solution of (5.4.5)-(5.4.6) is 

ЩХ,0) = Р{\)™Ш, (5.4.7) 
|A|c 

where |λ| = \/X\ + λ | + \\. Inverting the Fourier transform yields 

»<*· »■г· <> = (vSF / I С £ 1 * s i "»A"*"v ' <"· <5·4·8' 
where λ = [λι, Аг, λ3], χ = [χ, y, z] and dX — dX\ dX2 аХз. 
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Writing sin[|A|ci] = (1/2г)(ег1л1с* - e г1лМ), we express u(x, y , z, t) as 

F(X) fOO /»OO pOO 

x < exp 

2г(%/2^)3 

г|Л| (et-

J — oo J — oo 

ж)]" 

У-ОС I 

exp -

X\c 

-i\\\ (ct + 
X x 

1*1 )]} dX. (5.4.9) 

The terms exp [±г|А| (ci =f λ · χ / | λ | ) ] in (5.4.9) axeplane wave solutions of the wave 
equation (5.4.3). That is, the solutions remain constant on planes λ · x = constant 
that move (parallel to themselves) at the speed с Thus (5.4.9) is a superposition of 
plane wave solutions traveling in all possible directions. (These plane waves represent 
normal mode solutions of the wave equation.) 

The integral (5.4.9) can be simplified by expressing F(X) in terms of f(x, y , z). 
It is then possible to integrate out four of the resulting integrals, and one method for 
doing so that involves the use of the Dirac delta function is given in Example 7.9. 
Instead of carrying out this process, we merely quote the final result and indicate in 
the exercises an alternative, simpler method for deriving the final expression. 

The solution u(x, y , z, t) is given in terms of spherical coordinates with their origin 
at the point (x, y , z) and defined as 

ξ = x + rsìn((f>)cos(6), η = t/ + r s i n ( 0 ) s i n ( 0 ) , ζ= z + rcos(<j)), (5.4.10) 

u(x,y,z,t)= (5.4.11) 

T~ I / / ( x + CÌSÌn(</))cOs(o),y + C Ì S Ì n ( 0 ) s Ì n ( o ) , 2 + CÌCOs(<^))sÌn((/))£ÌO(Ì</>. 
4π J0 J0 

Given a sphere S of radius a with center at (x, y , z), we define the average value of 
the function / ( £ , η, ζ) over the sphere to be given as 

where 4πα 2 is the area of the sphere S and ds is the area element on the sphere. In 
the spherical coordinates (5.4.10), the area element is given as ds = a2 sin((/>) άθ άφ. 

Then it is easily seen that (5.4.11 ) can be written as 
u(x,y,z,t)=tMct{f], (5.4.13) 

where Mct[f] is the average value of / over the sphere of radius ct with center at 
(x, y , z). Mct[f] is denoted as the spherical mean of / over the sphere, and as such 
our solution method is called the method of spherical means. 

Recalling Stokes' rule and using superposition of the two solutions, we obtain as 
the solution u(x, y , z, t) of the wave equation (5.4.3) with initial data 
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u(x,y,z,0)=g{x,y,z), ut(x,y,z,0)=f(x,y,z), (5.4.14) 

u{x,y,z,t) = tMct[f] + g-t{tMct[g}}. (5.4.15) 

The expression (5.4.15) is often called Kirchhoff's formula for the solution of the 
wave equation. 

Using Duhamel's principle (see Section 4.5), we readily obtain the solution of the 
inhomogeneous wave equation for u(x, y, z, t); 

utt-c
2[uxx+Uyy + uzz}= G(x,y,z,t), t > 0, - c o < x, y, z < oo, (5.4.16) 

with initial data (5.4.14), as 

д /"* 
u(x,y,z,t) = tMct[f] + Q-t{tMct[g}} + / (t - T)Mc{t_T)[G{x,y,z,T)) dr. 

(5.4.17) 
The integral term on the right in (5.4.17) can be expressed as a triple integral over 
the interior of the sphere r = ct with center at (x, y, z) and radius ci, where r — 
\ /(£ — x)2 + (v ~ v)2 + (C — z)2- In rectangular coordinates, the integral takes a 
form referred to as a retarded potential: 

I (t-r)Mc(t_T)[G]dT = J - j jjj ίβ(ξ,η,ζ,ί-ϊ) άξάηάζ. (5.4.18) 

In the retarded potential the contributions to the solution at the point (x, y, z) and 
at time t come only from the points in the interior and on a sphere of radius ct with 
center at (x, y, z). Since the speed of wave propagation is c, the function G, evaluated 
at the retarded or earlier time t — r/c, is integrated over a sphere of radius r, as the 
effect of these points reaches the center of the sphere at the time t. 

Cauchy Problem for the Two-Dimensional Wave Equation: Hadamard's 
Method of Descent 

Before discussing the solution (5.4.15), we obtain from it using Hadamard's method 
of descent the solution of the initial value problem for the wave equation in two 
dimensions. In this method we look for a solution of the wave equation (5.4.3) 
independent of z, with initial data 

u{x,y,t) *(x,y), du{x^t] 

t=o dt 
f(x,y), (5.4.19) 

t=o 

so that u(x, y, t) satisfies the wave equation in two dimensions, 

utt(x,y,t) -c2[uxx(x,y,t) +Uyy(x,y,t)} = 0 , t > 0, -oo < x, у < oo. 
(5.4.20) 
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We introduce f(x, y) and g(x, y) into the solution (5.4.15) and because the data 
are independent of z we may take the center of the sphere r = ct to be at (x, y, 0). 
Introducing spherical coordinates on the sphere r = \ /(£ — x)2 + {V ~ У)2 + С2 = 
ct with the surface element ds, we can write 

«<*· y^=-òi IL f^ds+ùit{\ IL ^«^ ">ds] ■ ^ 
The sphere r = ct has its center at (x, у, 0) and the (ξ, 77)-plane cuts it in the circle 
r = ί/(ξ — x)2 + (η — у)2 = ct. Since the integrands in (5.4.21) are independentof 
ξ, we can integrate out the ξ dependence by effectively projecting the upper and lower 
hemispheres onto the circle in the (ξ, ^-plane. Using the relation ds = sec(7) άξ άη, 
between the surface element ds on the sphere and the area element άξ άη in the plane, 
where 

sec(7) = . 0
 Ct (5.4.22) 

s/cP-Ü-xf-iri-v)*' 
and noting that we get the same contribution from each hemisphere, we obtain 

U(xvt)--L[[ f&V)*idV 1 д \ ff 9(ξ,η)άξάη\ 
U{X'y't)-21rcJUct J(ct)2-r2+2ncdt\JJr<ct J{ct)

2-r2}' 
(5.4.23) 

where r = \/{ξ — x)2 + (η — у)2. The integration in (5.4.23) is carried out over the 
interior of the circle of radius ct centered at (x, y). For the nonhomogeneous problem 

uu(x,y,t) - c2[uxx{x,y,t) + uyy(x,y,t)] =G(x,y,t), t > 0, - c o < x, у < со 
(5.4.24) 

with homogeneous initial data, Duhamel'sprinciple yields the solution 

u{x, y,t) = ̂ - f ff / ί! (ξ ' ?ίΤ)
 2 <% dv dr, (5.4.25) 

27ГС J0 JJr<c{t-T) y/c(t - т)2 - Г2 

where r = ^(ξ — x)2 + (η — у)2. 
This technique is called the method of descent since we descend from three to two 

space dimensions to construct a solution for the lower-dimensional problem in terms 
of the solution of the higher dimensional one. It is also possible to descend from two 
dimensions to one and construct d'Alembert's solution from the solution (5.4.23). 

Huygens' Principle 

We now discuss the solution (5.4.15) and (5.4.23) of the three- and two-dimensional 
wave equations, respectively. The basic distinction between the forms of the two 
solutions is that (5.4.15) represents integration over the surface of a sphere whereas 
(5.4.23) represents integration over the interior of a circle rather than on the circle 
itself. This characterizes a sharp difference in the nature of wave propagation in three 
and two dimensions. 
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We suppose that the initial data / and g are concentrated in a neighborhood of 
a point Po in the two- or the three-dimensional case. That is, we assume that they 
vanish outside an arbitrarily small neighborhood of Po- In the three-dimensional 
case, (5.4.15) states that the solution u(x, y,z,t) of the wave equation at the time t 
and at the point (x, y, z) depends on the data / and g only at points intersected by 
the sphere of radius ct with center at (x, y, z). If this sphere does not intersect the 
given neighborhood of P0, the solution u(x, y, z, t) = 0. As t increases, the sphere 
must eventually intersect a neighborhood of Po [no matter where (x, y, z) is located]. 
The first time a disturbance is felt at (x, y, z) represents the time t it takes the wave 
front, originating at the point of the neighborhood of Po nearest to (x, y, z), to reach 
the point (x, y, z). Since the distance from the nearest point in the neighborhood of 
Po to (x, y, z) is ct, the speed of the propagation of the wave front is с Because the 
data / and g are concentrated near Po, as t increases the sphere will ultimately no 
longer intersect the given neighborhood of Po and the solution u(x, y,z,t) will again 
be equal to zero. 

The foregoing discussion shows that sharp signals or disturbances can occur in 
three-dimensional wave motion. Not only does it take a finite time for disturbances 
to travel from one point to another, but after the disturbance has passed, the solution 
returns to zero and the effect of the disturbance is no longer felt. This phenomenon 
is known as Huy gens' principle. Huygens used this principle to construct solutions 
of wave propagation problems. Given the surface of a disturbance, or a (sharp) wave 
front, at the time io, a sphere of radius ct is drawn surrounding each point on the 
surface. The envelope of these spheres then gives the location of the wave front at 
the time io + t. Although this construction only gives the front of the disturbance in 
general, in the case of concentrated sources (i.e., initial data concentrated at a point 
Po) the construction gives the full disturbance (see Example 7.9). If the wave has a 
trailing edge, it disappears once the trailing edge has passed. (Huygens' construction 
of wave fronts served as the basis of the wave theory of light.) 

For the two-dimensional case, if the initial data / and д are concentrated in a 
neighborhood of the point Po, the solution (5.4.23) shows that u(x, y, t) will be zero 
until the circle with center at (x, y) and radius ct intersects the neighborhood of Po. 
Once the circle begins to intersect the neighborhood of Po, the solution at the point 
(x, y) will not vanish as t increases, because the integration in (5.4.23) is carried out 
over the interior of the circle, not just its boundary. Thus although sharp wave fronts 
can exist in two-dimensional wave propagation, since it takes a finite time for the 
effect of the data near Po to reach the point (x, y), the effects of the disturbance linger 
and do not disappear sharply as in the three-dimensional case. Instead, they diffuse 
slowly to zero as t —> co (see Example 7.9). As a result, Huygens' principle, which 
predicts sharp wave fronts and trailing edges, is not valid in the two-dimensional case. 
Yet, Huygens' construction can be used to determine the location of wave fronts. 

The solutions given for the two- and three-dimensional wave equations can be 
used to determine domains of dependence and influence as was done earlier in the 
one-dimensional case, but this is not carried out here. Also, as seen in the exercises, 
Hadamard's method can be applied to other PDEs. 



HIGHER-DIMENSIONAL FOURIER TRANSFORMS 2 8 7 

Heimholte and Modified Helmholte Equations 

We begin by considering the (inhomogeneous) elliptic equation 

uxx(x, y) + uyy(x, y) - k2u(x, y) = f(x, y), -oo <x, у < oo, (5.4.26) 

where the constant к > 0, f(x, y) is specified, and u(x, y) satisfies the additional 
condition 

u(x , l / ) -»0 as \x\, \y\ —» oo. (5.4.27) 

We assume that f(x, y) has a Fourier transform. The equation (5.4.26) is sometimes 
referred to as the modified Helmholtz equation, in contrast to the case where — k2 is 
replaced by +k2, which is referred to as the Helmholtz equation. A stationary version 
of two-dimensional diffusion equations can give rise to (5.4.26). 

To solve (5.4.26)-(5.4.27), we apply the two-dimensional Fourier transform to 
(5.4.26) and easily obtain 

ит=-жШ*· ( 5 ·4'2 8 ) 

where λ = [λι, Аг], and U(\) and F(X) are the Fourier transforms of u(x, y) and 
f(x, y), respectively. [We have assumed in obtaining (5.4.28) that not only и but also 
its first partial derivatives vanish at infinity.] 

Inverting the transform gives the solution 

Since F(X) has the form 
1 / *00 / *00 

F(X) = — / e^t+^f&tfdtdn, (5.4.30) 
Ίπ J_0CJ_00 

we obtain, on inserting (5.4.30) into (5.4.29), 

U(X'y)- 4π2;_ 0 Ο /_ 0 Ο 7_ Ο 0 7_ 0 Ο
6 X2 + X2 + k2 ' 

(5.4.31) 
on interchanging the order of integration. Introducing polar coordinates in the two 
inner integrals in (5.4.31), that is, λχ = рсоъф, Аг = psin<^>, and also expressing 
x — ξ and у — η in polar form x — ξ = r cos Θ, у — η = r sin Θ, we readily obtain 
λι {x - ξ) + Аг(г/ - η) = pr cos(4> — Θ). Transforming to polar coordinates gives 

oo />oo /7 oo J —oo 

exp(-z[Ai(x - О + Л2(У - η)]) 
A 

oo /·2π — iprQos{4>—θ) 

d\\ d\2 

77 
Jo Jo 

A? + A| + k2 

») 
p </0 d/г. (5.4.32) p2 + fc2 
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Using the integral representation of the Bessel function of order zero JQ{Z), 

1 Γ2π 

J0(z) = — / e«cos(0-e) ^ £ = c o n s t a n t (5.4.33) 

we obtain, since Jo (г) = Jo{—z), 

A further result from the theory of Bessel functions yields 

27Γ f ° ФЩ dp = -2жК0(кг), (5.4.35) 
7o p2 + k2 

where Ко is the modified Bessel function of the second kind, some of whose properties 
are given in Chapter 6. When (5.4.35) is introduced into (5.4.31), we obtain, with 
r = ^/(ξ - x)2 + (η - у)2, 

u(x,y) = — / Κ0(^)/(ξ,η)άξάη. (5.4.36) 

If f(x, y) — S(x-xo)6(y — y0), the two-dimensional Dirac delta function (5.4.36) 
reduces to 

«(*, У) = ^-K0(kr), r = y/(x-x0)
2 + (y-yo)2- (5.4.37) 

This is known as the free-space Green's function for the modified Helmholtz equa-
tion. As shown in the exercises, (5.4.26) becomes a modified Bessel equation when 
expressed in a polar coordinate form independent of the angular variable. We return 
to this problem in later chapters. 

Replacing k2 by —k2 in (5.4.26), results in the (inhomogeneous) Helmholtz equa-
tion. On making use of the Fourier transform to solve, we conclude that the transform 
of the solution is given by (5.4.28) with k2 replaced by —к2. Thus, the transform is 
singular and the inversion formula for the determination of и{х, у) cannot be applied. 
[The situation is analogous to that encountered for (5.2.22).] Rather than consider the 
general case, we obtain the free-space Green's function for the Helmholtz equation. 
To do so, we replace к by — ik in (5.4.37). Using a known relationship between the 
function KQ of imaginary argument and the Hankel function of the first kind HQ 
yields 

u(x,y) = -H™{kr), r = y/[x - x0)
2 + (y- г/о)2· (5.4.38) 

This solution satisfies the radiation condition of Section 10.1 in view of the behavior 
of the Hankel function for large argument given in (6.7.36). Replacing к by ik in 

(2) 

(5.4.37) leads to a Hankel function of the second kind HQ ', and the solution does not 
satisfy the radiation condition. 
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Exercises 5.4 

5.4.1. Express the three-dimensional wave equation in spherical (spatial) coordinates 
and show that if we look for a solution и = u(r, t) where r is the radial variable, 
the function г>(г, t) = ru(r, t) is a solution of the one-dimensional wave equation 
vtt{r,t) — c2wrr(r,i) = 0. Obtain the general solution u(r, t) = F(r — ct)/r + G(r + 
ct)/r, where F and G are arbitrary functions. These solutions represent spherical 
(propagating) waves. 

5.4.2. Consider the function 6e(x) defined in Example 1.2 and the integral 
1 ЛОО /»OO />00 -I 

I(x,y,z,t;e) = — / / /(ξ,η,ζ)-δ^ - ct) άξ άη άζ, 
47ГС J — ос У —oo J — oo T 

where г2 = (x —ξ)2 + {ν — η)2 + (ζ — С)2· Since5e(r—et) vanishes when \r — ct\ > ε, 
the integral extends only over a finite region. Conclude, in view of the fact that the 
integral represents a superposition of spherical waves, that I(x, y, z, t; e) is a solution 
of the three-dimensional wave equation. Introduce the spherical coordinates defined 
in (5.4.10) and show that the integral takes the form 

/»7Γ /*27Г /*0О 

I[x,y, z,t;e] = I I I f[x+rsin(<j))cos(e),y+rsm(<f))sin(e),z+rcos((l>)] 
Jo Jo Jo 

x 6€{r — ct)r sin(0)/47rc dr άθ άφ. 

Carry out the limit as e —» 0, use the property (1.1.19) of <5e and the fact that 
lim€^o<^£(^ — ci) vanishes when г ф et, and conclude that I(x,y,z,t;e) tends 
to (5.4.11) as e -» 0. 

5.4.3. Verify by direct differentiation that (5.4.11) is a solution of (5.4.3)-(5.4.4). 

5.4.4. Solve the problem for the wave equation in three dimensions uu (x,y,z,t) — 
c2[uxx(x,y,z,t) + uyy(x,y,z,t) + uzz(x,y,z,t)} = 0, with - c o < x,y, z < co, 

t > 0, if the initial data are given as u(x, y, z, 0) = 0, щ{х, у, z, 0) = 

where r2 = x2 + y2 + z2. 

5.4.5. Solve the following problem for the wave equation using the spherical wave so-
lutions obtained in Exercise 5.4.1: utt(x, y, z, t)—c2[uxx(x, y, z, t)+uyy(x, y, z, t)+ 
uZz{x,y,z,t)] = 0, with —co < x,y,z < co, t > 0, if the initial data are 
u(x, y, z, 0) = 1, щ(х, y, z, 0) = r2, where r2 = x2 + y2 + z2. 

5.4.6. Obtain the solution of the Cauchy problem for the two-dimensional wave 
equation utt(x, y, t) - c2[uxx(x,y,t) + uyy(x,y,t)] = 0, - c o < x,y < co, t > 0, 
with u(x, y, 0) = 0, ut{x, y, 0) = x2 +y2. Determine the value of u(0,0,i). 

5.4.7. Solve Mtt(x, y,t) - c2[uxx(x,y,t) +uyy(x,y,t)\ = 0, - c o < x,y < co, 
t > 0, with u(x, y, 0) = x, ut{x, y, 0) = 0. 

5.4.8. Apply the method of descent to solve the Cauchy problem for the Klein-
Gordon equation vtt(x,t) — c2vxx(x,t) + a2v{x,t) = 0, - c o < x < co, t > 0, 

\ 1, r <a, 
1 0, r > a, 
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with v(x, 0) = 0, vt(x, 0) = f(x). Let u(x, y, t) = cos(ay/c)v(x, t) and show that 
u(x, y, t) satisfies the wave equation in two dimensions. Then descend from two 
dimensions to one. 

5.4.9. Use the method of descent to solve the Cauchy problem for the hyperbolic 
equation, vtt(x,t) — c2vxx(x,t) — a2v(x,t) = 0, —oo < x < oo, t > 0, with 
v(x,0) = 0, vt{x,0) = f(x). Let u(x,y, t) = exp(ay/c)v(x,t) and show that 
u(x, y, t) satisfies the wave equation in two dimensions. Then descend from two 
dimensions to one. 

5.4.10. Express the Laplacian in polar coordinates and show that (5.4.37) is a solution 
of the homogeneous form of (5.4.26) when r > 0. 

5.4.11. Use the two-dimensional Fourier transform to solve the following Cauchy 
problem for the heat equation, щ(х, у, t) = с2[ихх(х, у, t) + uyy(x, у, t)}, —oo < 
x, у < oo, t > 0, with u(x, y, 0) = f(x, y). 

5.4.12. Use the three-dimensional Fourier transform to solve the Cauchy problem for 
the heat equation (as formulated in Exercise 5.4.11) in the case of three dimensions. 

5.4.13. Consider the following Cauchy problem: utt (x, y,z,t) — c2[uxx(x, y, z, t) + 
uyy(x, y, z, t) + uzz(x, y, z, f)] = F(x, y, ζ)ε~%ωί, with -oo < x, y, z < oo, t > 0 
and initial data u(x, y, z, 0) = 0, ut(x, y, z, 0) = 0, where ω is a constant. Assume 
that F(x, y, z) vanishes outside the bounded region V. Use the retarded potential 
(5.4.18) to show that for large t the solution of this problem has the form 

g- ίω ί i f r eikr 

u(x,y,z,t) = -£—ß- Ρ{ξ,η,ζ)—άξάηάζ, t -» oo, 

where A; = ω/c. Noting that и has the form u(x,y,z,t) = v{x,y,z)e"Mt, show 
that v(x, y, z) satisfies the inhomogeneous reduced wave equation V2v(x, y, z) + 
k2v(x,y,z) = —(l/c2)F(x,y,z), —oo < x,y, z < oo. v = {1/Ажг)егкг is the 
free-space Green's function for the reduced wave equation (see Section 6.7). 

5.5 HANKEL TRANSFORMS 

We have seen in Chapter 4 and its exercises that certain problems lead naturally to the 
representation of the solutions in terms of Bessel functions. In bounded regions we 
are led to the Bessel function expansions considered in Chapter 4. For unbounded 
regions, in carrying out separation of variables in two or three space dimensions in 
cases where the Laplacian operator is expressed in polar or cylindrical coordinates, 
we are often led to consider the following eigenvalue problem in the radial variable r: 

L[v(r)] = - — ( г —P- | + —v(r) = X2rv(r), 0 < r < oo, (5.5.1) 
dr \ dr J r 

where λ2 is the eigenvalue parameter and the equation is written in the self-adjoint 
form (4.3.1 ). [In fact, (5.5.1 ) is Bessel's equation of order n in the variable Xr.] Неге п 
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can be any positive integer or zero. We require that the eigenfunctions v(r) be bounded 
for all r. This implies that the (unnormalized) eigenfunctions are vn,\(r) = Jn(Xr), 
where Jn(z) is the Bessel function of order n and λ can be any nonnegative real 
number so that the spectrum is continuous. Each value of n determines a different 
family of eigenfunctions. [Since Jn(—z) = (—l)nJn(z), we need not consider 
negative values of λ.] 

A function f(r) defined for r > 0 and satisfying the conditions given in Section 
5.3 has the representation in terms of the eigenfunctions vn,\(r), 

/•OO 

f(r) = / XJn{Xr)Fn(X) dX, n > 0, (5.5.2) 
Jo 

where the Hankel transform Fn(X) is given by 

/•OO 

Fn{X)= rJn(Xr)f(r)dr, n > 0 . (5.5.3) 
Jo 

In this context, (5.5.2) is the inversion formula for the Hankel transform and f(r) 
is the inverse Hankel transform of ^ η (λ) . For each integer n > 0, the integral 
(5.5.3) determines a Hankel transform of order n. [We note that alternative forms 
of the Hankel transform formulas are given in the literature.] The formulas (5.5.2)-
(5.5.3) can be obtained from the two-dimensional Fourier transform formulas, and 
this derivation is considered in the exercises. 

General Properties 

As has been demonstrated, the usefulness of the Fourier, sine and cosine transforms 
in solving boundary value problems for differential equations rests on the fact that 
transforms of derivatives of functions can be related to the transforms of the functions 
themselves. The corresponding property for the Hankel transform is contained in the 
following equation. (The bracketed term on the left arises directly or after some 
intermediate calculations when the Laplacian is expressed in polar or cylindrical 
coordinates.) In applying the Hankel transform of order n to a given equation we are 
led to consider an expression of the form 

/•OO 

/ rJn(Xr) 
Jo 

= -X2Fn(X) + [rfrJn(Xr) - \rfj'n{\r)]r
r^ . (5.5.4) 

It is obtained on integrating by parts and is closely related to (4.3.58). [The operator 
L of (5.5.1 ) is used.] In general, the bracketed term on the right is required to vanish. 
This occurs if / and fr are bounded at the origin and y/rf and \/rfr vanish at infinity. 
Note that for n > 0 the Bessel function Jn(Xr) is bounded at zero and vanishes like 
l/\/r at infinity. In certain problems, we permit / to be singular at r = 0 but in such 
a fashion that the limits limr_o rfrJn and limr_o rfJ'n are finite. 

1 _ n % 
Jrr + /r 9 / dr 
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Although comprehensive tables of Hankel transforms are available (Maple can 
also be used), we list several results for use in the examples. The equation 

Jo 

1 

e~XzM\r) dX = z, r > 0, (5.5.5) 

shows that the zero-order Hankel transform of / ( r , z) — l/y/z2 + r2 is given as 
FQ(A, z) = (1/А)е~Лг. Using the transform formula (5.5.3), we obtain 

/»OO 

Jo 

^o(Ar) dr = 1 _λ ζ ( 5 5 6 ) 

о Vz2 + r 

The result (5.5.5) can be verified by using the integral representation of the Bessel 
function Jo(Ar) and interchanging orders of integration (see Exercise 5.6.10). A 
second result that can be obtained by using the series expansion of the Bessel function 
Jn(Xr) and integrating term by term is 

j f W ) e - " > dX = I (£)\xp (-£) . (5.5.7) 

We cite additional results as they are required and now consider several examples 
in which Hankel transforms are used to solve problems for equations of elliptic, 
hyperbolic, and parabolic types. 

Applications to PDEs 

Example 5.7. Laplace's Equation: An Axial Source. We consider Laplace's 
equation in three dimensions with a source concentrated on the г-axis. Introduc-
ing cylindrical coordinates (r, Θ, z) and noting the axial symmetry, we ask for a 
^-independent solution u(r, z) of Laplace's equation, 

V2u(r, z) = urr(r, z) + -ur(r, z)+uzz(r, z) = 0, r > 0, -oo < z < oo, (5.5.8) 
r 

with the conditions on the г-axis (i.e., r = 0) given as 

01L\V Zi 
lim r2u(r, z) = 0, lim 2-лт — ) ^ — ί - = -f(z), -oo < z < oo, (5.5.9) 
)—>0 r—>0 ОГ 

so that f(z) is a measure of the strength of the source. [We discuss concentrated 
source problems in Section 6.7.] 

Applying the zero-order Hankel transform to (5.5.8) [in view of (5.5.4)], we mul-
tiply across by r Jo (Ar) and integrate from 0 to oo. [The zero-order transform is used 
because the term (n2/r2)u(r, z) does not occur in equation (5.5.8).] Defining the 
zero-order Hankel transform UQ(A, z) of u(r, z) as 

/•OO 

U0{X,z)= / rJ0(Xr)u(r, z) dr (5.5.10) 
Jo 
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and using (5.5.4), we obtain 

0 = / rJo(Xr) 
Jo 

urr(r, z) + -ur(r, z) + uzz(r, z) 
r 

dr 

= -X2U0(X, z) + d2U°{£z)+[rur(r, z)Jo(Xr)-Xru(r, z)4(Xr)}r
rz?. (5.5.11) 

Now Jo(0) = 1, JÓ{Xr) = —Ji(Xr) and Ji(Xr) « Xr/2 as r —> 0. Assuming 
that the contributions from the limit at infinity vanish in (5.5.11) and noting that 
ruJ^Xr) « —(Xr2/2)u as r —> 0, we obtain on using (5.5.9), 

d2Uf^Z) - X2Uo(X, z) = -^f(z), -oo < * < oo. (5.5.12) 

Requiring that U0(X, z) —> 0 as \z\ —+ oo, we have precisely the problem considered 
in Example 5.1. The solution is 

1 f°° 
Uo(X, ζ) = ^χ] e~XÌZ~sìf(s) da, (5.5.13) 

on comparing with (5.2.17). Inverting the transform Ε/ο(λ, ζ) gives 

/(e) ds л POO /»OO -I PC u{r>z)=^Ll *-xì*-sìMxr)mdxds=-i y/r2 + (z- s)2 

(5.5.14) 
on interchanging the order of integration and using (5.5.5). 

The term (1/4π)[Γ2 + (z — s ) 2 ] - 1 / 2 is the source function or free-space Green's 
function for Laplace's equation, with the source point at (x, y, z) = (0,0, s), (see 
Example 6.13). Thus, the solution (5.5.14) represents a superposition of point source 
functions over the г-axis with density f(z). 

Example 5.8. The Wave Equation in Two Dimensions. We consider the 
initial value problem for the two-dimensional wave equation over the entire spatial 
region with radially symmetric initial data. We introduce polar coordinates (r, Θ) and 
look for a solution u(r, t) independent of Θ. This gives 

utt{r,t) -c2 (urr(r,t) + -ur(r,t) j = 0 , r > 0 , t>0, (5.5.15) 

with initial data 
u(r, 0) = f(r), ut(r, 0) = g(r). (5.5.16) 

We again use the zero-order Hankel transform Щ (λ, t) as defined in (5.5.10) (with 
z replaced by t), and obtain the problem 

д2Щ
д^

Ь) +c2X2U0(X,t)=0, i > 0 , (5.5.17) 



2 9 4 INTEGRAL TRANSFORMS 

with the initial conditions 

E/0(A, 0) = F0(A), 9υο(λ>°) = G o ( A ) | ( 5 - 5 1 8 ) 

where UQ, FQ, and Go are the zero-order Hankel transforms of u, f, and g, respec-
tively, and (5.5.4) with n = 0 has been used. [It is assumed that и is such that the 
boundary terms in (5.5.4) vanish.] Solving (5.5.17)—(5.5.18) gives 

U0(X, t) = F0(X) cos(Aci) + Щ^ sm(Xct). (5.5.19) 
Ac 

Inverting the transform yields 

u(r, t)= AF0(A) cos(Aci) J0(Xr) dX + - G0(A) sin(Aci) J0(Ar) dX. 
Jo с J0 

(5.5.20) 

Example 5.9. The Diffusion Equation with Axialiy Symmetric Data. We 
consider the three-dimensional diffusion equation in cylindrical coordinates where 
the concentration u(x,y, z,t) has an initial distribution that depends only on r = 
yjx2 + y2. We introduce cylindrical coordinates (r,6,z) and look for a solution 
u(r, t) of the initial value problem 

ut(r,t) = D (urr{r,t) +-ur(r,t)\, i > 0 , u(r,0) = / ( r ) , r > 0, (5.5.21) 

where D > 0 is the diffusion constant. 
Applying the zero-order Hankel transform to (5.5.21), we obtain, on using the 

notation of Example 5.8, 

дЩ^Ь) + DX2U0(X,t) = 0, t > 0, U0(X,0) = F0(A). (5.5.22) 

Thus 
t/0(A,i) = Fo(A)e-DA2t (5.5.23) 

and 
u(r,t)= / XsJ0(Xr)J0(Xs)e-Dx2tf(s)dXds, (5.5.24) 

Jo Jo 
on interchanging the order of integration in the last integral. We cite a known result 
to evaluate the inner integral. That is, 

L k * « " i » ) "*=ài «p (-^sr) '» (^ί) · <5·5'25' 
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where IQ{Z) is the modified zero-order Bessel function discussed in Chapter 6. We 
note the property of IQ(Z) that /o(0) = 1, so that for s = 0 in (5.5.25) [since 
J0(0) = 1] we find that (5.5.25) reduces to (5.5.7) with n = 0 and D = 1. Inserting 
(5.5.25) into (5.5.24) gives 

«<Γ·«> = ш Г е х р ( -πέτ) / 0 (im)/(s)s d s · ( 5 · 5 · 2 6 ) 

It is of interest to show how this solution reduces to the fundamental solution for 
the two-dimensional heat or diffusion equation if we let / ( r ) represent a concentrated 
source at r = 0. We require that with f(r) > 0, 

lim 2π / f(r)r dr = 1, (5.5.27) 
c^° Jo 

where we assume that the source is concentrated in a circle of radius e and let the 
radius tend to zero but keep the source strength fixed at unity. It may be assumed that 
f(r) vanishes for r > e. Using the generalized mean value theorem for integrals, we 
have [since f(r) > 0] 

« (M) = ^ e x p ( - I Ì ± £ ) /o ( ^ ) [ m s dr, (5.5.28) 

where s = s(e) —> 0 as e —> 0. Then as e —» 0, we obtain 

"<'■'> - sk«» {-ш) - « ^ " ( - З Д ■ (5·5'29) 

on using the result (5.5.27) and /o(0) = 1. This is the fundamental solution of 
the diffusion equation in the two-dimensional case. It should be compared with the 
one-dimensional fundamental solution G(x, t) defined in (5.2.39). 

If the initial value f(r) is concentrated on a circle r = a, we require that 2π J^° / ( r ) 
rdr = 1, so that the concentrated source has unit strength. To determine the solution 
in this case, we assume that f(r) > 0 and vanishes outside the interval (a-e,a + e), 
thereby reducing the integral (5.5.26) to one with finite limits. Proceeding as in the 
point source problem, we obtain the solution (on letting e —» 0) 

«'■«-^Ч-ЗД^ш)· (5'530) 
In the limit as a tends to zero, (5.5.30) reduces to (5.5.29). 
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Exercises 5.5 

5.5.1. ConsiderineFouriertransformformulas(5.4.1)-(5.4.2)inthecasen = 2. Let 
x\ = rcos(#), X2 — rsin(ö), λχ = Asin(0), X2 — Acos(^>), and put f{x\,X2) = 
e-in"f{r). Show that the transform F(A b A2) [i.e., (5.4.1)] takes the form 

^ ( λ ι , λ 2 ) = — / / exp[i\rsin{e + <l>)-in9]f(r)rdedr. 

From the integral representation Jn(Xr) — (1/2π)/"πβχρ[ίλΓ8Ϊη(0) — ίηθ]άθ 
for the Bessel function Jn(\r) of integral order, conclude that e_m*F(Ai,A2) — 
f™ rJn(Xr)f(r) dr = F{X). Insert e"in*F(A) and e~inef(r) into the inversion 
formula (5.4.2) to obtain 

■I / » O C /»7Γ 

f(r) = — / / exp[m(6» + 0) - zAr sin(0 + <j>)]F(X)\ # dA. 

Use the integral representation of Jn(Xr) given previously to derive (5.5.2). 

5.5.2. Verify the result given in (5.5.4). 

5.5.3. Integrate by parts in (5.5.5) to obtain the result /0°° e~Xz J\(Xr) dX = (1/r) 
(1 - z/y/z2+r2). Hint: J'0{z) = - J i ( z ) . 

5.5.4. Evaluate the integral (5.5.14) if f{z) = 1. 

5.5.5. Use the zero-order Hankel transform to solve the Neumann problem for 
Laplace's equation, urr(r, z) + -ur(r, z) + г*22(г, z) = 0, r > 0, z > 0, u(r, z) —> 
0 as z —> 00, uz(r, 0) = —l/πε2, r < e, ыг(г, 0) = 0, г > e. Show that the 
transform is Uo(X, z) = ( l /πελ2) J\ (Хе)е~Хг. Let e —» 0 and show that the solution 
u{r, z) -> (1/2π)(τ-2 + г 2 ) " 1 / 2 in the limit. 

5.5.6. Use the Hankel transform to solve the problem urr(r,z) + ur(r,z)/r + 
uzz(r,z) — k2u(r,z) = 0, r > 0, —00 < z < 00, with the boundary conditions 
(5.5.9) given on the z-axis. 

5.5.7. Use the Hankel transform to construct a (formal) solution of the following 
problem: ut(r,t) — D (urr{r,t) + \ur(r,t)) + F(r,t), r > 0, t > 0, where 
D > 0 and u(r, 0) = f(r). 

5.5.8. Solve the Cauchy problem for the damped wave equation, utt(r, t)+a2ut (r, t)— 
c2(urr(r,t) + \ur{r,t)) — 0, r > 0, t > 0, with the initial conditions u(r,0) = 
/ ( r ) , ut(r, 0) = g(r), r > 0, by using the Hankel transform. 

5.5.9. Consider the Cauchy problem for the wave equation: utt{r,6,t)—c2 (urr (r,6,t) 
+ ^ur(r, Θ, t) + ^ивв(г, Θ, t)) = 0, with r > 0, 0 < θ < 2π, t > 0, and the initial 
conditions u(r, Θ, 0) = f(r) cos(n#), ut(r, Θ, 0) = g(r) cos(nö), with n as a posi-
tive integer. Let u(r, Θ, t) — v(r, t) cos(nÖ). Solve the resulting Cauchy problem for 
v(r, t) by means of the nth-order Hankel transform. 
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5.5.10. Consider the diffusion equation in three dimensions. Introduce spherical 
coordinates and if the initial value is given as u(r, 0) = f(r), where r is the radial vari-
able, show that u(r,t) satisfies the equation ut(r,t) = D (urr(r,t) + ^ur(r,t)), r > 
0, t > 0, with D as the diffusion constant. This problem cannot be solved by means 
of the Hankel transform. However, let v(r, t) = ru(r, t) and show that v(r, t) satisfies 
the one-dimensional diffusion equation with v(0, t) — 0 and v(r, 0) = rf(r). Use 
the results of Example 5.5 to solve this problem and obtain the solution of the given 
problem for u(r, t). As in Example 5.9, let f(r) represent a concentrated source at 
r = 0, and, in analogy with (5.5.27), suppose that limt-,0 4π f^ f(r)r2 dr = 1. 
Determine the limit of the solution u(r, t) as e —> 0. This limit is the fundamental 
solution of the diffusion equation in the three-dimensional case. 

5.6 LAPLACE TRANSFORMS 

The solution of initial and boundary value problems for hyperbolic and parabolic 
equations by the use of the transform methods presented previously in this chapter 
involves the transformation of the spatial variable(s) in the problems, as we have 
seen. The problems are thus reduced to the solution of initial value problems for 
the transformed dependent variables. The Laplace transform, however, solves these 
problems by acting on the time variable in the hyperbolic and parabolic equations 
and yields boundary value problems for the transformed dependent variables. (In 
its application to Cauchy problems, the boundary conditions are given at infinity.) 
Even though the nature of their applications is rather different, the Laplace transform 
and its inversion formula can be derived from the corresponding formulas (5.2.6) and 
(5.2.7) for the Fourier transform and its inverse. This is the approach that we use. As 
the Laplace transform generally acts on the time variable, we formulate its properties 
in terms of the variable t. 

Given a function f(t) defined for t > 0 and integrable over any finite interval (say, 
it is piecewise continuous), we extend its definition to t < 0 by putting f(t) = 0 
for t < 0. [It is not required that /(0) = 0.] We assume that f(t) is of exponential 
order as t —> oo. That is, there exist real constants с > 0, к, and M such that 
| / ( i ) | < Mekt for t > c. Let a be an arbitrary constant with a > k. Then the 
Fourier transform F(\) of e~atf(t) is given as 

1 Г°° 
F(\) = - = / e ^ - ^ / W dt, (5.6.1) 

ν 2 π Jo 

since /(f) vanishes for negative t. (The notation for the Fourier transform has been 
changed slightly.) Let λ = a — ζλ in (5.6.1) and we have 

/•oo 

F{\) = / e~xtf{t) dt, (5.6.2) 
Jo 
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where F{X) = (2n)1/2F[i{\ - a)]. From the expression (5.2.7) for the inverse 
Fourier transform, we obtain 

, - A t /(*) = — Г e-
%xtF{\) dX. (5.6.3) 

Transforming again to the variable λ = a — iX, we find that A = =FOO corresponds to 
A = a ± ioo and that dX = — (1/z) dX. Therefore, the integration path along the real 
A-axis in (5.6.3) is transformed into a path along the line L in the complex A-plane 
parallel to the imaginary axis. With A = Ai + г'Аг, £ is given as A = α + ιλ2, - o o < 
X2 < 00 and has the direction shown in Figure 5.1. In terms of A, the inversion 
formula (5.6.3) takes the form 

/(*) 2тггЛ e
MF{X) dX, (5.6.4) 

since the term e~at cancels out. 
The formula (5.6.2) determines the Laplace transform F(X) of f(t). The complex 

inversion formula for the Laplace transform that determines f(t) in terms of F(X) 
is given by (5.6.4). For a function f(t) that satisfies the conditions given above, the 
formulas (5.6.2) and (5.6.4) are valid for all A such that Re[A] = Χχ = a > k. 

Ьм 

Figure 5.1 The line L. 

General Properties 

Given the transform F(X), the function f(t) can often be determined from (5.6.4) by 
using the residue theory of complex variables. Otherwise, approximation methods 
are available to deal with (5.6.4). The inversion formula (5.6.4) will not play a 
(significant) role in our discussion of the Laplace transform. Laplace transforms are 
tabulated extensively (Maple contains a large number of built-in transforms in its 
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integral transform file). Additionally, it is often possible to invert Laplace transforms 
by reducing F(X) to a form for which the inverse transform is known. In this respect 
the linearity of the Laplace transform and the convolution theorem (see Exercise 5.6.3) 
play an important role. Thus if F(X) can be expressed as a finite (or even an infinite) 
sum, each of whose terms has a known inverse transform, we can invert F(X) given 
that the inverse of the (infinite) sum is the sum of the inverses. It is not always a 
straightforward matter to carry out this procedure, as will be seen. 

The usefulness of the Laplace transform in solving problems for ODEs and PDEs 
that involve initial conditions is brought out by the following result, which relates 
the transform of derivatives to the transform of the given function. If f^{t) = 
dnf{t)/dtn, we have 

/ *00 /»OO 

/ e-*7<n>(t)dt = An / e-Xtf{t)dt-Xn-1f(0) / ( n _ 1 ) ( 0 ) , (5.6.5) 
Jo Jo 

on using integration by parts. We see that the transform of the nth derivative of f(t ) is 
given in terms of the transform of f(t) and n initial values of /(f) and its derivatives 
at t = 0. By contrast, the sine or cosine transform of an even-order nth derivative 
of f(x) involves only n/2 values of f(x) and its derivatives at x = 0. Additional 
general properties of Laplace transforms are given in the exercises, in Section 5.8, 
and in tables of transforms. 

Applications to PDEs 

Example 5.10. The Heat Equation in a Finite Interval. We again consider 
the heat equation in a finite interval, 

ut(x,t) — c2uxx(x, t) = 0, 0 < x < I, t > 0, (5.6.6) 

where c2 is a constant, with the boundary and initial conditions 

u(0, i) = 0, u(l, t) = 0, t > 0, u(x, 0) = f{x) 0 < x < I. (5.6.7) 

This problem was solved by separation of variables in Example 4.3. However, we 
now obtain the solution in a different form and compare both results. 

The problem (5.6.6)-(5.6.7) is solved by applying the Laplace transform in the 
i-variable. We multiply in (5.6.6) by e~xt and integrate with respect to t from 0 to 
oo. Defining the transform of u(x, t) as 

/•OO 

U(x,X)= e~xtu(x,t) dt, (5.6.8) 
Jo 

and using (5.6.5) and transforming the boundary conditions (5.6.7) yields 

XU{x, X) - f{x) - с2 д U ^ Л) = 0, 0 < x < l, Щ0, X) = U(l,\)=0. (5.6.9) 
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The solution of the boundary value problem (5.6.9) is found to be 

—■= ■= / sinh ( s I sinh I —-
cV\smh{V\l/c) Jo \ c ) V е 

U(x,X) = —f- _ w / _ i ; / sinh [ s ) sinh ( (I — x) ] f(s) ds 

+ —= -= / sinh — x sinh —(I - s) f(s) ds. (5.6.10) 
cy/X sinh(^X I/c)Jx \ с J \ c y ' j J y > y ' 

This result may be obtained by using the Green's function or variation of parameters 
method for ordinary differential equations. 

The inversion of the transform U(x, X) is not straightforward, even if the inversion 
formula (5.6.4) is used, unless the transform is simplified first. In view of the discus-
sion preceding (5.6.4), we may assume that λ (or |λ|) is not small. Consequently, we 
have the following result: 

1 2 2 exp(-\ /X//c) 
sinh(\/XZ/c) exp(\/ÀZ/c) — exp(—y/Xl/c) 1 — exp(—2^/Xl/c) 

= 2exp ί — - J X^exp ί —j , (5.6.11) 

on using the series 1/(1 — x) = Y^L0 xh, which is valid for |a;| < 1, since it may 
be assumed that λ is large enough so that exp(—2\/Xl/c) < 1. The hyperbolic 
functions in the integrals (5.6.10) can also be expressed in terms of exponentials. We 
combine the exponentials and assume that in the inversion process, summation and 
integration, as well as orders of integration, can be reversed (this can be shown to be 
valid for this problem). Further, we find from a table of Laplace transforms that 

Jo 
e~xt 1 (-a 

:exp sfa \ 4i 
v2 

dt = 4 = e ~ a v / \ a > 0. (5.6.12) 
ν λ 

Using (5.6.12), the solution u(x, t) can then be written as (after a tedious but straight-
forward manipulation of the resulting series expansions) 

u(x,t)= Σ {G(x-s-2kl,t)-G(x + s-2kl,t)}f(s)ds, (5.6.13) 

where G(x — s, t) is the fundamental solution of the heat equation as in (5.2.39). 
The solution (5.6.13) has a form quite different from that given in terms of Fourier 

sine series in Example 4.3. By the uniqueness theorem for the initial and boundary 
value problem for the heat equation proven in Chapter 8, both solutions must be 
identical. The equivalence of both sums is demonstrated in Exercise 7.5.15 based on 
the Poisson summation formula. 

We remark that both solution forms are useful in evaluating the solution и(х, t) for 
different ranges of values of t. Because of the rapid exponential decay of the terms in 
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the Fourier series (4.4.29), the series converges rapidly for large values of t. However, 
the series of fundamental solutions converges most rapidly for small values of t since 
all the terms in the series except G(x — s, t), which has delta function behavior in 
0 < x < I, vanish at t = 0. Thus for the purposes of computation each of the series 
is useful. 

Example 5.11. The Wave Equation in a Finite Interval. We consider an 
initial and boundary value problem for the wave equation in a finite interval. We have 

utt(x, t) — c2uxx(x, t) = 0, 0 < x < I, t > 0, (5.6.14) 

with the homogeneous initial conditions and the boundary conditions 

u(x,0) = 0 , ut{x,0) = 0, u(0,t) = 0,u{l,t) = g(t). (5.6.15) 

This problem can be solved by the method of finite sine transforms given in Section 
4.6, but we now obtain the solution in a different form by using the Laplace transform 
to solve the problem. 

Let U(x, X), defined as in (5.6.8), denote the Laplace transform of the solution 
u(x,t). We transform (5.6.14) and use (5.6.5) and the initial conditions (5.6.15) to 
obtain 

X2U{x, X) - & 
д2и(х, л) 

dx2 = 0,0<x<l, U(0,\) = 0,U(l,\) = G{X), 

(5.6.16) 

where G(\) is the Laplace transform of g(t). The solution of the boundary value 
problem for U{x, X) is 

U{x,X) = G{X) 
sinh[(X/c)x] 

sinh[(A/c)i] ' 
(5.6.17) 

To invert this transform we proceed as in Example 5.10, expand U(x, X) for large 
λ, and express the hyperbolic functions in terms of exponentials. Then 

U{x,X) 
A:=0 *· 

-(Х-1-2Ы) 
С 

exp -(x + l + 2kl) 

(5.6.18) 
The inverse transform of each term in this series can be found from the result of 
Exercise 5.6.4, and the solution to the given problem is 
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u(x,t) = Σ H (t - i [ ( l + 2k)l - x]\ g(t-^[{l + 2k)l 

-H (t - -[(1 + 2k)l + x]\ g(t- -[(1 + 2k)l + x}j , (5.6.19) 

where H(z) is the Heaviside function. 
The form of this solution differs from that obtained by means of the finite sine 

transform. That solution involves trigonometric functions and effectively represents 
u(x,t) as a sum of standing waves. The solution form (5.6.19) is given in terms of 
traveling waves. The occurrence of the Heaviside functions signifies that at given 
times additional right- and left-traveling waves or wave fronts are generated as a 
result of reflection from the boundary. (A direct method for constructing this type of 
solution is given in Example 6.7.) Clearly, this form of the solution is only useful for 
small t. For large t, the standing wave representation is preferable. 

Abelian and Tauberian Theories 

As we have seen in the foregoing examples, it is not always a simple matter to invert 
a Laplace transform resulting from the solution of a partial differential equation. 
Consequently, it is of interest to examine methods that yield approximate expressions 
for inverse Laplace transforms. The Abelian and Tauberian asymptotic theories for 
Laplace transforms that relate the values of the transform JP(A) as λ —» OO and λ —» 0 
to the values of the function f(t) as t —> 0 and t —> oo, respectively, are useful in 
that regard. Given the presence of the exponentially decaying term in the formula 
(5.6.2) for F(X) and assuming that f(t) is reasonably behaved, we expect that the 
main contributions to the integral for F(X) come from small values of λί. Thus if λ 
is large, t must be small and vice versa. 

A useful Abelian result states that if 

oo 

n=0 

then for the transform F(\) we have 
oo i 

ВД « Σ α » λ ^ Τ ' Α ^ ο ο . (5.6.21) 
71=0 

The converse is also true, so that (5.6.21) implies (5.6.20). The result (5.6.21) can 
be obtained by formally substituting (5.6.20) in the integral (5.6.2) for F(X) and 
integrating term by term. The series (5.6.20) and (5.6.21) need not converge, but 
may have only asymptotic validity. This means that for small t and large λ, f(t) 
and F(X) are well approximated by the leading terms in the given series even if the 
series diverge. (See Section 5.7 and Chapter 9 for a more complete discussion of the 
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meaning of asymptotic equalities and series.) In the theory of asymptotic expansions 
of integrals, the relation between F(X) and f(t) given by (5.6.21) and (5.6.20) is a 
special case of a general result known as Watson's lemma. The converse, which is 
more useful for our purposes, is attributed to Heaviside. 

A simple application of the foregoing Abelian result can be given in connection 
with the initial value problems formulated in Exercises 3.4.2 and 3.4.4 for the heat and 
telegrapher's equations. If these problems are solved by means of the Laplace trans-
form and the transform function is expanded in inverse powers of λ as in (5.6.21 ), the 
power series expansions of the inverse transforms coincide with the results obtained 
in these exercises. The expansions obtained in the two examples in this section are 
also Abelian results that are valid and useful for small t, since they were obtained by 
expanding the transform for large λ. However, the solutions are not in the form of 
power series in t, since the large λ expansion does not have the form (5.6.21). 

For small values of λ, a useful Tauberian result which requires a knowledge of 
complex variables theory for its application is as follows. Let F(X) be analytic for 
Re[A] > k. Assume further that F(X) has isolated real and simple poles in the finite 
λ-plane located at the set of points {λη} with Ai > A2 > Аз > · ■ · . With f(t) 
assumed to be real, suppose that F(X) has (real) residues {βη} at the poles {λη}. 
Then we have 

oo 

/(<) « Σ ßne
x-\ (5.6.22) 

n=l 

which is valid as t —* oo. This result is a special case of a general technique for 
inverting Laplace transforms known as the Heaviside expansion theorem. To apply 
this theorem, we suppose that the transform function F(X) can be written as F(X) = 
G(X)/H(X), where G(X) is an entire function of λ and H(X) has simple zeros at 
the points A = A„. Thus, F(X) has only simple poles at λ = A„, assuming that 
G(Xn) φ 0. (They need not be real valued.) Then, on using residue theory to 
evaluate the inversion integral (5.6.4), we obtain 

pw = Σ § ¥ s βληί· (5·6·23) 
n=l П {Лп> 

The residue of F(X) at λη is given by G(Xn)/H'(Xn). [The series (5.6.23) may 
have only asymptotic validity.] If the poles λ„ satisfy the additional conditions given 
above, we obtain a Tauberian result in that the terms in the series (5.6.23) grow or 
decay exponentially, so that f(t) is well approximated by the leading terms in the 
series for large t. However, if the A„ are all pure imaginary numbers, for example, 
each of the exponentials in (5.6.23) has unit magnitude, so that no simplification 
results for large values of t. 

To obtain a Tauberian result for Example 5.10 we note that the transform function 
U(x,X) is apparently singular at the zeros of sin h(\/X//c). These are located at the 
points An = —(жс/1)2п2 (n = 0,1,2, . . . ) . It is easily seen, however, that λο = 0 is 
not a singular point of U(x, X). Since the zeros {A„} (n > 1) areali simple, U(x, A) 
has simple poles at these points. The A„ satisfy the condition Ai > A2 > A3 > · · · 
and it can be verified that the residues {/?„} of U(x, X) at {An} are all real, so that the 
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conditions for the aforementioned Tauberian theorem are met. The Tauberian result 
u(x, f) = ]CnLi ßn{x)eXnt can be shown to be identical with the Fourier sine series 
(4.4.29). Again, that series is convergent and not merely asymptotic and is useful for 
large f. 

In Example 5.11 the poles of the transform function (5.6.17) are determined from 
the zeros of sinh[(A/c)i] and the poles of G(X). The hyperbolic function has simple 
zeros at the points A„ — mcn/l (n = ± 1 , ±2 , . . . ) (λο = 0 does not contribute a 
pole). If we assume that the poles of G(X) are all simple and do not coincide with the 
λ„, the expansion form (5.6.23) (appropriately modified) is valid for this problem. 
However, if the poles of G(X) have a nonpositive real part, the expansion does not 
yield a useful Tauberian result. The pure imaginary zeros of the hyperbolic sine 
function contribute the most significant terms for large f, and none of these terms 
decays in magnitude as f tends to infinity. 

Exercises 5.6 

5.6.1. Determine the Laplace transforms of the following functions: (a) /(f) = 1; 
(b) /(f) = eat; (c) /(f) = cosut; (d) /(f) = sinwf; (e) /(f) = tn/n\; (f) /(f) = 
S(t - a), a> 0. 

5.6.2. Show that if F(X) is the Laplace transform of /(f), the Laplace transform of 
e~atf(t) is F(\ + a). 

5.6.3. Let /(f) and g(t) have Laplace transforms F(X) and G(X), respectively. Show 
that the Laplace transform of / 0 f(s)g(t — s) ds is given as F(X)G(X). (This is the 
convolution theorem for the Laplace transform.) 

5.6.4. Show that the Laplace transform of #(f - a)f(t — a), a> 0, where H(t) is 
the Heaviside function, is F(X)e~aX. 

5.6.5. Show that the Laplace transform of J0 f(s) ds is given as F(X)/X. 

5.6.6. Let f(t;a) have the Laplace transform F(X;a), where a is a parameter. 
Show that (a) df(t; a)/da has the transform dF{X; a)/da; (b) Ja /(f ; s) ds has the 
transform Ja F(X; s) ds. 

5.6.7. Use (5.6.12) and Exercise 5.6.6 to determine that the Laplace transform of 
[ a / (2Vi f 3 / 2 ) ] e - a 2 / 4 t i s e - a v / X 

5.6.8. Use (5.6.12) and Exercise 5.6.6 to determine that the Laplace transform of 
erf(a/2v/f) is (1 - e~aVK}/X. 

5.6.9. Use (5.6.12) and Exercise 5.6.6 to determine that the Laplace transform of 
erfc(a/2v/t) is (1/A)e-Q A 

5.6.10. Determine the Laplace transform of the zero-order Bessel function Jo(af). 
Hint: Use the integral representation given in Exercise 5.7.1. 
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5.6.11. Solve, using the Laplace transform: ut(x,t) — c2uxx(x,t) = 0, 0 < x < 
oo, t > 0, u(x, 0) = f(x), u(0, t) = 0. 

5.6.12. Solve, using the Laplace transform: ut(x,t) — c2uxx(x,t) = 0, 0 < x < 
00, t > 0 , u{x,Q) = 0, u(0,f) = g(t). 

5.6.13. Solve, using the Laplace transform: ut(x,t) - c2uxx(x, t) — 0, 0 < x < 
ο ο , Ο Ο , u(x,0) = 0, ux{0,t) = h(t). 

5.6.14. Use the Laplace transform to solve the Cauchy problem щ (x, t) — c2uxx (x, f ) 
= 0, —oo < x < oo, ί > 0, u(x, 0) = δ(χ — a). 

5.6.15. Use the Laplace transform to solve: ut(x,t) — c2uxx(x,t) = 0, 0 < x < 
1, t > 0, it(0, t) = е~\ ux(l, t) = 0, t > 0, u(x, 0) = 0, 0 < x < l. 

5.6.16. Solve, using the Laplace transform, utt(x,t) — c2uxx(x,t) = 0, 0 < x < 
oo, t > 0, u(0, i) = f(t), t > 0, u(x, 0) = ut(x, 0) = 0, 0 < x < oo. 

5.6.17. Solve the problem of Exercise 5.6.16 if the Dirichlet boundary condition is 
replaced by the Neumann condition ^ ( 0 , t) = —g(t). 

5.6.18. Use the Laplace transform to solve the Cauchy problem uit(x, t)—c2uxx(x, t) 
= 0, —oo < x < oo, t > 0, u(x, 0) = 0, щ(x, 0) = δ(χ — a), —oo < x < oo. 

5.6.19. Solve the Cauchy problem for the telegrapher's equation using the Laplace 
transform: utt{x,t) — 72uxx(x,t) + 2\ut(x,t) = 0, —oo < x < oo, t > 0, 
u(x,0) = 0, ut(x, 0) = g(x), — oo < x < oo. ffini: Eliminate the щ term by a 
transformation of the dependent variable. Then, make use the fact that the Laplace 
transform of I0(a\/t2 — b2)H(t — a) is given as (A2 - a 2 ) - 1 / 2 exp(-ò\A 2 - a2), 
where IQ(Z) is the modified Bessel function of zero order and H(z) is the Heaviside 
function. 

5.6.20. Solve the initial and boundary value problem for the telegrapher's equation of 
Exercise5.6.19withx > Oandi > Oifu(a;,0) = ut(x,0) = 0andux(0,i) = - / ( f ) . 

5.6.21. Verify the relationship (5.6.20)-(5.6.21 )by formally integrating term by term 
in the formula (5.6.2). 

5.6.22. Use the Laplace transform to obtain the exact solution of the following prob-
lem: ut(x,t) - c2uxx(x,t) — 0, 0 < x < I, t > 0, u(0,t) = u(l,t) = 0, f > 
0, u(x, 0) = x + sin (3πχ/1), 0 < x < I. Use the Abelian result (5.6.20)-(5.6.21) 
to discuss the solution of this problem for small f on the basis of the behavior of the 
Laplace transform. Compare your results with those obtained from the exact solution. 

5.6.23. Suppose that the Laplace transform F(\) is a rational function; that is, 
F{\) = G{X)/H(\) where G(\) and H(X) are polynomials. If #(A) has only 
simple zeros, show that the partial fraction expansion of F(X) yields a (finite) Heav-
iside expansion (5.6.23) for the inverse transform if G(X) is a polynomial of lower 
degree than H(X). 
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5.6.24. Invert the transform (5.6.17) by use of the convolution theorem and the 
Heaviside expansion of the ratio of hyperbolic functions. Show that the resulting 
series solution agrees with that obtained by using finite sine transforms to solve the 
problem in Example 5.11. 

5.6.25. Let g(t) = e~l in (5.6.15) and invert the resulting transform (5.6.17) by a 
direct application of the Heaviside expansion (5.6.23). 

5.6.26. Demonstrate that the Laplace transform of the solution of the following 
problem satisfies the conditions required for the validity of the Tauberian result given 
in the text. ut(x,t) — c2uxx{x,t) — 0, 0 < x < I, t > 0, u(0,t) = u(l,t) = 1, 
t > 0,u(x,0) = 0, 0 < x < l. Use the Tauberian result (5.6.22) to obtain an 
expansion of the solution u(x, t) for large t and show that it is, in fact, an exact 
solution of the given problem. 

5.6.27. Solve, using the Laplace transform: uu(x, t) — c2uxx(x, t) = e _ t , 0 < x < 
co, t > 0, u(0, t) = sin(t), t > 0, u(x, 0) = ut(x, 0) = 1, 0 < x < co. 

5.7 ASYMPTOTIC APPROXIMATION METHODS FOR 
FOURIER INTEGRALS 

In this section we discuss two useful approximation methods for evaluating integrals 
that result from an application of Fourier transform techniques. We give only a brief 
discussion of these methods and apply them to two problems relating to dispersive 
and dissipative wave motion (these concepts were defined in Section 3.5). We refer 
to the literature for additional details regarding the validity and applicability of these 
and other asymptotic methods for evaluating integrals. We say that the function f(x) 
is asymptotic to the function g(x) as x —» a and denote the asymptotic equality by 
f(x) » g(x) if the ratio f(x)/g(x) tends to unity as x —» a. 

We first consider the method of stationary phase, which we apply to a solution of 
the Cauchy problem for the Klein-Gordon equation representative of dispersive wave 
motion. Then we consider a method developed by Sirovich (which is related to the 
Tauberian theory for Laplace transforms of Section 5.6) and apply it to a solution of 
the Cauchy problem for the telegrapher's or dissipative wave equation representative 
of dissipative wave motion. (Some properties of both these equations were given in 
Example 3.7.) Neither of these methods requires complex variables theory for its 
application. 

It was seen in our discussion of transform methods in this chapter that one cannot, 
in general, expect to evaluate integrals resulting from transform methods in closed 
form. Consequently, the methods discussed are essential, in that they yield simple 
and useful representations of the solutions. 
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Method of Stationary Phase 

The method of stationary phase is an asymptotic approximation method for evaluating 
integrals of the form 

I{k) = Г агкф(г) fit) dt, (5.7.1) 

where к is a large real parameter and f(t) is a real- or complex-valued function, 
referred to as the amplitude term. The real-valued function φ(ϊ) is called the phase 
term. [The case of finite endpoints in the integral (5.7.1 ) is considered below.] Since к 
is large and <j>(t) real valued, the integrand in (5.7.1 ) oscillates rapidly and cancellation 
occurs over most of the domain of integration. However, near the points t where 
φ'{ϊ) = 0, that is, the stationary points of the phase, the cancellation is reduced 
significantly because of the diminished oscillation of the integrand. Thus the major 
contribution to the integral comes from the neighborhood of these points. 

We assume that φ{ί) and f(t) are smooth functions and proceed as follows. Let io 
be an isolated stationary point and assume that φ"{ίο) φ 0 and /(io) Φ 0. Expand 
φ(ί) and f(t) in a Taylor series around t = i 0 and obtain [since φ'(ίο) — 0] 

φ(ί)=φ(ί0) + ~φ"(10)(ί-ίο)2 /(<) = /(io) + (5.7.2) 

Only the terms given in (5.7.2) are retained in the (leading order) stationary phase 
approximation. Let e > 0 be a small number. Then the method of stationary phase 
asserts that the main contribution to the integral I(k) for large k, if there are no other 
stationary points, is given as 

rto+e 

I{k) « exp[ifc0(io)]/(io) / exp 
Jta-e 

~Ф"(к)(г-г0)
2 dt 

■ ехр[гкф(Ь ο)]/(ίο) Г exp 
ik 

<№)( ί - ίο)2 dt, (5.7.3) 

where we have replaced the finite limits io T e by =Foo since the main contribution to 
the infinite integral (see the discussion below) comes from the neighborhood of ίο· 
The last integral in (5.7.3) can be evaluated and we obtain the asymptotic result 

I(k) 0tfc</)(in) /(io) exp 
ίπ 0"(ίο) 
4 |<№)| 

2π -ι 1/2 

kW(to)\ 
00 . (5.7.4) 

The formula (5.7.4) represents the dominant contribution to the integral I(k) for 
к » 1 if t = to is the only stationary point. If there is more than one stationary 
point, there is a contribution of the form (5.7.4) from each such point and we sum 
all the contributions. If ф"Цо) = 0, so that there is a higher order stationary point, 
the procedure above fails and a different discussion which requires the expansion of 
</>(£) up to cubic or higher powers, is necessary to yield the contribution from that 
stationary point. 
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If the phase φ(ί) has no stationary points, so that φ'(ί) φ 0 for all f, we determine 
the behavior of (5.7.1 ) by integrating by parts. To do so, we replace the infinite limits 
in the integral (5.7.1) by the finite limits a and b. After integrating by parts in the 
modified integral, we let a and b tend to minus and plus infinity, respectively. On 
integrating by parts once, we obtain 

t=b , ,b , rf{t) 

m ik<t>>{t)e 
t=a ikJa dt 

eifc*(t) dt. (5.7.5) 

If the endpoint contributions vanish as о and b tend to infinity, we conclude that I (k) 
decays at least like l/к as к —» oo. [Even if the endpoint contributions do not vanish 
in the limit, we can transform (5.7.1) into a Fourier integral and conclude from the 
Riemann-Lebesgue lemma that the integral vanishes as к —» oo, but perhaps at a 
slower rate than 1/fc.] If n integrations by parts can be carried out and at each step the 
endpoint contributions are zero, the integral I(k) decays at least like l/kn as к —» oo. 
Clearly, if an unlimited number of integrations by parts can be carried out, I(k) is in 
effect exponentially small for large k. 

If one or both of the endpoints in (5.7.1) are finite (we denote them by a and b, 
as above), we must include the contributions from these endpoints in our asymptotic 
approximation of I(k). [We assume that the endpoints are not stationary points of 
φ{ί).\ The contributions from the endpoints are obtained from the integration by parts 
formula (5.7.5). Thus, if f(t) does not vanish at the endpoints, their contribution is 
of order 1/k as к —► oo. If <f>(t) has no stationary points, the endpoint contributions 
are dominant. Otherwise the stationary point contribution, given in (5.7.4), which is 
of the order of 1/y/k, is dominant. [If an endpoint is also a stationary point, (5.7.4) 
multiplied by \ gives the asymptotic value of I(k) at that point, as is easily seen.] If 
the function /(f) in (5.7.1) is piecewise smooth, we break up the integral into a sum 
of integrals in each of which /(f) is smooth and proceed as above. We do not discuss 
the case of a higher-order stationary point. 

Dispersive PDEs: Klein-Gordon Equation 

We now apply the method of stationary phase to the solution of the Cauchy problem 
for the Klein-Gordon equation, 

uu(x, t) - η2ηχχ{χ, t) + c2u(x, f) = 0, f > 0, -oo < x < oo, (5.7.6) 

with initial data u(x,0) and ut(x,0) specified at f = 0. Let U(\,t) be the Fourier 
transform of u(x, f), that is, 

1 f°° 
U{X,t) = - = \ eiXxu(x,f) dx. (5.7.7) 

ν 2 π J-oo 

The Fourier-transformed equation (5.7.6) is given as 

+ (7
2λ2 + c2)U{\, f) = 0, f > 0. (5.7.8) d2U(X,t) , , 2 χ 2 , ολ 

dt2 
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Introducing the Fourier transforms of the initial data, we easily determine that U{X,t) 
can be written as 

[/(A, t) = F+{\)exp(iV72A2+c2i) + F-{X)ехр(-г^72А2 + с2 ί)· (5.7.9) 

The terms .F±(A) can be specified in terms of the transforms of the initial data for 
u(x, t). Since we are only interested in a general characterization of dispersive wave 
motion, we are not concerned with the specific form of the functions F±(X). We 
do require, however, that F± (A) be smooth functions. This would be the case if the 
initial data vanish sufficiently rapidly at infinity. 

Inverting the Fourier transform U(X, t) gives 

1 Г°° 
u(x,t) = -== / F+(A) exp{i[w+(X)t - Xx}} dX 

1 f°° 
+ -:= F-(X)exp{i[w-{X)t-Xx}}dX, (5.7.10) 

ν 2 π J-oo 

where ω±(Χ) = ±\/j2X2 +c2 = ± ω(Χ). The equation ω = ω(Χ) is the dispersion 
relation for the Klein-Gordon equation, and the terms exp{ (i[±u(X)t — Xx]} are the 
normal mode solutions. (In comparing with the results in Example 3.7, the parameter 
к used there is replaced here by —A.) The solution (5.7.10) is thus a superposition of 
normal mode solutions with the phase terms 

φ±(χ,ί,Χ) = ±ω(Χ)ί-Χχ. (5.7.11) 

The phase velocity, that is, the velocity dx/dt for which φ± (χ, t, A) remains constant, 
is given as 

ах = ± ^ = ±}ЩТ1 
at X X 

We see that for each real value of A we have | dx/dt \ > 7, so that the phase speed of the 
normal modes exceeds the characteristic or wave front speed 7 of the Klein-Gordon 
equation. The characteristic speed represents the maximum speed of propagation of 
disturbances for hyperbolic equations. This property has already been demonstrated 
for the wave equation and is shown to be valid for more general hyperbolic equations, 
such as (5.7.6), later in the text. Thus the physical significance of the phase velocity 
must be examined more closely. 

Noting that the general solution (5.7.10) of the Klein-Gordon equation is a super-
position of the normal modes with phase terms (5.7.11), each of which has a different 
phase speed, it appears that the appropriate object to consider is not a single normal 
mode but a group of normal modes or a wave packet. A wave packet is obtained by 
superposing a collection of normal modes with wave numbers A ranging over some 
interval. Since each mode has a different phase velocity, the group of normal modes 
disperses as it propagates and fails to retain its shape. We now show by using the 
method of stationary phase that although individual modes in a group travel at dif-
ferent velocities, the wave packet as a whole retains its group character and travels 



3 1 0 INTEGRAL TRANSFORMS 

with a velocity appropriately known as the group velocity. (It can be shown that an 
energy associated with the wave packet travels with group velocity.) We apply the 
stationary phase method to each of the integrals in (5.7.10), choosing x and t, which 
are parameters in the integrals, to be large. A single stationary point λ is found for 
each choice of x and t. The method determines that the major contribution to each 
integral comes from values of λ near the stationary point, so that we obtain a wave 
packet whose properties we examine. 

As shown in Exercise 5.7.3, the F_ (λ) integral in (5.7.10) is the complex conjugate 
of the F+ (A) integral. Thus it suffices to consider only the F+ (X) integral. The 
solution u(x, t) equals twice the real part of that integral. Let 

i r°° ; 

I(x, t) = - = i F+(X) ехр[г(^7 2 А 2 +с 2 t - Xx)} dX, (5.7.13) 
ν 2 π У-оо 

and assume that both x and t are large. If we were to set x = at, where a is constant, 
then either x or t would play the role of the large parameter к in the integral (5.7.1) 
so that the stationary phase method could be applied to (5.7.13). We do so without 
bringing the integral into the exact form (5.7.1). 

The stationary points of the phase ф+ (х, t, X) are determined from 

ж = £ил>*~^=ω'(λ)*-χ = 7 # W ~ x = 0- (5"7Л4) 

This implies that 

and the stationary value λ is given as 

- 1 / 2 
С X 

= 7 Ϊ 72 (?У (5.7.16) 

The expression ω'(Χ) = η2X/л/72А2 + с2 is known as the group velocity. As 
is seen from (5.7.15), there is a common stationary value A for all (a;, t) that satisfy 
the equation x/t = ω'(Χ) [i.e., different values of x and t do not lead to different 
stationary values λ if x and t are related by x = ω'(Χ)ί]. It follows from the stationary 
phase method that the solution retains a fixed character or form at a point x moving 
with velocity ω'(Χ) if the wave packet with wave numbers A near the stationary value 
is observed. We note that the group speed |ω'(λ)| is less than 7 (the characteristic 
speed) for all values of λ. In fact, there are (real) stationary values λ only for x 
and t such that 72i2 — x2 > 0, as is seen from (5.7.16). If x and t are such that 
72i2 — x2 < 0, the stationary phase result is I(x, t) « 0 since there are no stationary 
points and we assume that an unlimited number of integrations by part are possible. 

The lines x = ±-yt represent the boundaries of the domain of influence of the 
point (0,0) for the Klein-Gordon equation (this has already been shown for the wave 
equation and is shown to be valid for the Klein-Gordon equation in Chapter 7). Thus 
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in the context of the stationary phase result we have I(x, t) « 0 and, equivalently, the 
solution u(x, t) = 0 outside the domain of influence corresponding to a concentrated 
or point initial source at x = 0. This suggests that for large x and t, the solution 
u(x, t) (under the foregoing assumptions on the initial data) appears to correspond 
to the solution of a problem with initial data concentrated at the origin. The group 
velocity lines x = ui'(X)t lie within the domain of influence, as shown in Figure 5.2. 
(This contrasts with the phase velocity lines, all of which lie outside the domain of 
influence.) As the values x and t approach the characteristic lines x = ±jt, (5.7.16) 
shows that the stationary value λ tends to infinity. Then the stationary phase method, 
as presented, fails and a different discussion, which may be found in the literature, 
is necessary to discuss the solution near the characteristic lines. We observe that as 
|λ| —> oo, (5.7.15) implies that |ω'(λ)| —> η, so that the group speed tends to the 
characteristic speed. 

Figure 5.2 The group line. 

To complete the determination of the asymptotic approximation of I(x,t), we 
note that u/'(A) = 7

2 с 2 ( 7
2 Л 2 + с 2 ) - 3 / 2 > 0 and 0' |(λ) = ω"(λ)ί > 0, so that 

φ'1(λ)/\φ+(λ)\ = 1. Consequently, we obtain from (5.7.4), 

/ ( м ) и [и*»{\)}ч*р+{х)е*р{* Η λ ) ί - A x + Я) 

- ^ Я + ( | ) exp (VV72*2-z2 + j J > (5·7·17) 
where (5.7.16) was used to express A as a function of x/t and we put H+ = 
F+ [α/'(λ)]_1/2. This asymptotic formula determines the amplitude and the phase of 
a wave packet moving with the group velocity dx/dt = α/(λ) (—oo < λ < oo) and 
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is valid for |a;| < -γί. The amplitude of the wave packet decays like \/\Д as ί —» oo. 
As x —> ±-yt or |λ| —» oo, we see that u/'(A) —> 0, so that (5.7.17) becomes invalid 
near the characteristic lines, as was indicated. In the region |x| > ηί, that is, outside 
the characteristic sector indicated in Figure 5.2, we have I{x, t) « 0 if the conditions 
given above are met, since the integral has no stationary points. 

We conclude by observing that the initial value problem for the Klein-Gordon 
can be solved exactly in terms of Bessel functions (as demonstrated in Chapter 7). 
However, the foregoing asymptotic characterization of dispersive wave propagation 
and the significance of the group velocity and wave packets are not readily apparent 
from the exact solution. Finally, we emphasize that (5.7.17) is valid only for large 
times t and that the full asymptotic solution of the given Cauchy problem equals twice 
the real part of (5.7.17). 

Sirovich's Method 

When dealing with Cauchy problems for partial differential equations of dissipative 
type, the Fourier integrals have a different form than those that occur when solving 
Cauchy problems for PDEs of dispersive type. The stationary phase method is in-
appropriate for these integrals and a different approach is needed to get asymptotic 
results. To this end, we introduce a method developed by Sirovich for approximately 
evaluating Fourier integrals of the type encountered on solving problems of dissi-
pative type. This method differs from the method of stationary phase in that the 
integrands considered decay exponentially as the relevant parameter gets large. Thus 
the major contribution comes from the neighborhood of the point in the integration 
interval where the integrand has its maximum absolute value. In the stationary phase 
method, the integrand oscillates rapidly as the relevant parameter gets large and the 
main contributions come from the points where the oscillation is minimal. Sirovich's 
method is closely related to approaches used in approximating Laplace transform 
integrals, since for those integrals we also have exponential decay as the transform 
parameter gets large. 

Sirovich's method deals with (Fourier-type) integrals of the form 

/

oo 

F{X) exp[-g(X)t - iXx] dX, (5.7.18) 
-OO 

for which the following conditions are satisfied: 

7_00
00|F(A)|dA<M<(x3, 

m a x | F ( A ) | m < M , 

Re[<?(A)] > 0, 
< L J - (5.7.19) 

g(X) = 0 if and only if A = 0, 

g{X) = iaX + βλ2 + 0(|A|3), a, β real, β > 0, A -> 0, 

g(X) continuous in A. 
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These conditions not only guarantee the convergence of the integral but indicate that 
for large t the main contribution to the integral comes from values of λ near the origin. 
Then as t —> oo we have 

I{x,t)= I exp[-ßX2t-iaXt-iXx]F(X)dX + o ( ^ Z I \ (5.7. 20) 

where δ is a small positive constant. The order term 0[- ■ ■} is understood to mean that 
if F(x) = 0[G(x)}, then \F(x)/G(x)\ —> A for some constant A as x —> a. Thus 
0\\/tl~s\ means that as t -> oo, the error term in (5.7.20) decays like A/t1'0. 

To simplify the integral in (5.7.20) we introduce a further approximation and 
replace F{X) by F(0). We then obtain 

/

oo 

exp[-ßX2t - iaXt - iXx]F(0) dX. (5.7.21) 
-oo 

This integral can be evaluated exactly [see (5.2.33)-(5.2.37)] and we have 

I(x,t)^JjtF(0)exp {x + at)2' t^oo. (5.7.22) 
Aßt 

For proofs, further developments, and refinements of this method, we refer to Sirovich's 
work. 

Dissipative PDEs: Dissipative Wave Equation 

We consider the Cauchy problem for the dissipative wave equation (or the telegra-
pher's equation), 

uu(x,t) — uxx(x,t) + ut(x,t) = 0, t > 0, -oo < x < oo, (5.7.23) 

with smooth initial data u{x, 0) and ut(x, 0) specified at t = 0. We solve the problem 
by means of the Fourier transform. An exact solution of the Cauchy problem can be 
given in terms of modified Bessel functions as shown in Chapter 7. However, we are 
interested in determining the behavior of the solution u(x, t) as t tends to infinity. The 
large time behavior of the solution is not readily apparent from the Bessel function 
representation unless further analyses are carried out. Sirovich's method permits the 
analysis of the Fourier integral representation of the solution and yields important 
insights into how the solution behaves for large time. 

We define the Fourier transform U(X,t) of u(x, t) as in (5.7.7) and obtain the 
transformed equation of (5.7.23) as 

£ ^ ) + Щ ^ ) + А 2 „ ( Л , ( ) = 0, t > 0 . (5.7.24) 

The initial values U(X, 0) and dU(X, 0)/dt of ί/(λ, t) are given in terms of the 
transforms of u(x, 0) and ut(x, 0). We are not concerned with the specific form of 
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the data since we want to characterize the solution in general terms. Solving (5.7.24), 
we have 

U(X,t) = F + ( A ) e ( - 1 + ^ r Z S 5 ) t / 2 + F _ ( A ) e ( - 1 - ^ r 5 ^ ) t / 2 , (5.7.25) 

and the inverse transform yields the solution as 

u(x, i) = - 7 = / F+{X)ei-l+^r^)t'2-iXx dX 
ν 2 π J-oo 

+ ^L= / F _(A ) e ( - l -V^4^) t /2- iAx d A ) ( 5 7 2 6 ) 

\/2π j_oo 

where F+(X) and F_(A) are specified in terms of the initial data. We assume that 

/

oo 
|F±(A)| dX < M < oo. (5.7.27) 

-oo 

To discuss the behavior of the solution for large values of t, we first notice that for 
A2 > 1/4 we have Vl - 4A2 = is/AX*' - 1, since 4A2 - 1 > 0. Thus 

e(- i±Vi=4Xi)t /2 = e - t / 2 e ± iv^Ä73 T t /2 ) Λ2 > 1 / 4 ( 5 7 2 8 ) 

Consequently, we obtain 

-±= / F ± (A) e±*V4Ä^It/2-axe- t /2 d À 

\/2π Λ 2 > ί 

„-t/2 roo -, 
< % = / |F±(A)| dX < -£= Me~t/2 (5.7.29) 

J — oo 2тг 2π 
in view of (5.7.27). Therefore, the contributions to both integrals in (5.7.26) for values 
of A such that A2 > 1/4, are exponentially small for large t. For A2 < 1/4 we have 

е(-1-^=Щф < e _ t / 2 ) Д2 < 1 / 4 j 

3(_i+Vi=4Ä*)t/2 < eo = x> λ 2 < 1 / 4 j 

(5.7.30) 

(5.7.31) 

as is easily seen. Thus the exponential in (5.7.30) is maximal at A = ± \, whereas that 
in (5.7.31) has its maximum at A = 0. Combining the result (5.7.30) with (5.7.29), 
we obtain an estimate for the -FL(A) integral in (5.7.26) over the full interval of 
integration. We have 

/

OO ΛΟΟ 

F _ ( A ) e ( - W l ~ 4 A я ) ' / 2 - ^ d A < e - t /2 / |j?_(A)|dA. (5.7. 
-OO J—OO 

'.32) 
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Therefore, the entire F-(X) integral is bounded by {М/л/Ът)е~1/2 and we have 
shown it to decay exponentially, uniformly in x as t —» со. The F+ (A) integral does 
not exhibit uniform decay as t —» со, and we expect that the major contribution to 
the solution u(x, t) as t —» oo must come from this integral. Furthermore, since the 
exponential (5.7.31) that occurs in this integral decays for all λ Φ 0, we expect that 
the major contribution to this integral for large t must come from the neighborhood 
ofA = 0. 

We apply Sirovich's method to the F+ (A) integral in (5.7.26). To do so we identify 
F+(\)/V2n with F(X) and the term (1 - > /1-4А 2 ) /2 with g{X) in (5.7.18). We 
assume that F+(X) satisfies the first two conditions in (5.7.19) so that, in addition to 
being absolutely integrable, F+(X) must be uniformly bounded. Further, we have 

Re[g(X)] = Re (1 - \ Л - 4λ2)/2 > 0, 

g(X) = (1 - y/l - 4A2)/2 = 0, only at 

OO < λ < CO, 

A = 0, 

A->0, 

(5.7.33) 

(5.7.34) 

(5.7.35) g(X) = (1 - Vl - 4A2)/2 = A2 + 0(|A|3), 

on using the binomial expansion. Also, g(X) is continuous for all A. Thus all the 
conditions on g(X) are met, and we have a = 0 and β = 1 in the fifth condition in 
(5.7.19). Then (5.7.22) yields 

which is valid as t —» oo. 
It may be remarked that to apply Sirovich's method to the integral in (5.7.18), we 

simply expand g(X) in a Taylor series around A = 0, retaining terms up to quadratic 
order only. This yields the exponent in (5.7.20). The conditions given on g and F 
ensure that over the full range of integration the maximum contribution for large t 
comes from the neighborhood of A = 0. 

Combining the results (5.7.32) and (5.7.36), we obtain 

„ ( x , i ) « * + W e x p ( ~ ) , t - o o . (5.7.37) 

Recalling the form of the fundamental solution of the heat equation [see (5.2.39) with 
ξ = 0 and с = 1], that is, G(x, t) = exp ( -χ2 /4ί) / \ /4πΐ , we find that 

u(x, t) « ν^πF+(0)G{x, t), t -» co. (5.7.38) 

Since the exponential in (5.7.37) essentially differs from zero only in the parabolic 
region x2/4t = 0(1), the large time behavior of the solution u(x, t) is as shown in 
Figure 5.3. 

The solution (5.7.38) has the form of a constant multiple of the fundamental so-
lution of the heat or diffusion equation with a source point at the origin. (Note that 
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Figure 5.3 The large time behavior. 

at large times the solution appears to represent the effect of a source at the origin just 
as it was the case for the large time solution of the Klein-Gordon equation.) The dif-
fusion effect (5.7.38) occurs in the wake of the wave fronts or characteristics x = ±t 
after a long time, and yields the major contribution to the solution u(x, t) since the 
dissipative effect has damped out everything else. Although (5.7.38) also dies out as 
t —> oo, it decays only algebraically like t~ll2 for x2 < At rather than exponentially 
as is the case for all other values of x. 

For the more general dissipative wave equation or telegrapher's equation, 

utt{x,t)—c2uxx(x,t)+ut(x,t) — aux(x,t) = 0, t > 0, - c o < x < oo, (5.7.39) 

where a and с are positive constants and appropriate initial data u(x, 0) and щ (х, 0) 
are assigned, the Fourier transform method readily yields 

u{x,t) = -^=f F+(A)exp ( - ^ + \y/\ - 4c2A2 - 4i\a) t - i\x 
ν2π 7-00 ΙΛ 2 2 / 

1 /-oo Г / 1 1 \ 
+ -7= F_(A)exp y/l - 4c2A2 - 4iXa )t - i\x 

dX 

dX. (5.7.40) 

with F± (A) specified in terms of the initial data. The coefficient of t in the exponential 
of the first integral has the following (binomial) expansion around A = 0: 

( - 1 + y/l - 4c2A2 - 4гАа) / 2 = -iaX + {a2 - c2)X2 + 0(X3). (5.7.41) 

Unless a2 < c2, the coefficient of A2 is positive, and the exponential grows as t 
increases, if A is small. Thus for c2 < a 2 the Cauchy problem for (5.7.39) is unstable 
since there are normal modes for small A that grow unboundedly as t increases. 

We assume, therefore, that a 2 < c2in(5.7.39). It can then be shown that the second 
integral in (5.7.40) decays exponentially as t —> oo and that Sirovich's method can 
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be applied to the first integral. We obtain 

4(c2 - a2)t J v ' 

As was shown in Example 5.2, the expression (5.7.42) is—apart from a multi-
plicative constant—the fundamental solution of the diffusion equation (5.2.40) if we 
set с = —a and D/2 = c2 — a2 in that equation. In contrast to the result obtained 
for (5.7.23), the diffusion effect is now concentrated along the line x = —at rather 
than along the ί-axis. To observe the diffusion as t —► со, we must let x —> - c o 
such that x + at remains small. Since a < c, the line of diffusion x + at = 0 lies 
within the characteristic lines x = ±ct. As the diffusion effect may be thought to 
be traveling along the line x = —at with velocity —a, we may consider (5.7.39) to 
possess two speeds of wave propagation. For small times t, disturbances travel at the 
characteristic speed с to the right and/or to the left. At large times t, the dissipative 
effects have damped out most of the initial disturbances, and what remains in the wake 
of the wave fronts is a diffusion effect characterized by (5.7.42) that propagates with 
speed a to the left. 

The relationship between dissipative wave propagation and diffusion has been 
discussed in the models presented in Chapter 1. The foregoing asymptotic results 
yield a further demonstration of the close relationship between both effects. We have 
further occasion to touch upon this question later in the book. 

To conclude our discussion of asymptotic methods, we remark that even when 
exact solutions of problems are available, asymptotic approximations yield useful 
and often significant insights into the behavior of solutions in different regions. In 
addition, by suggesting general forms for solutions in different regions, it is often 
possible to construct approximate solutions of equations (say, when they have variable 
coefficients) for which no exact solution is available, by assuming that these solutions 
have the same general asymptotic form. This idea is exploited in Chapter 10 when 
we discuss direct asymptotic methods for partial differential equations. 

Exercises 5.7 

5.7.1. The Bessel function of integral order Jn (x) has the integral representation 
Jn(x) = ^ / Γ π exp(ix sin(ö) — ίηθ) άθ. Apply the method of stationary phase 
to obtain the asymptotic formula Jn(x) » y/2/πχcos(a; — πη/2 — π/4), valid as 
x —► со. Hint: There are two stationary points. 

5.7.2. The Airy function Ai(x) has the integral representation Ai(x) = (1/π) 
/0°° cos(r3/3 + хт) dr. Let x < 0 and r = sj—x t and use the method of sta-
tionary phase to show that the Airy function has the asymptotic expression Ai(x) « 
(1/у/тг)\х\~1/4 sin [(2/3)|xr|3/2 + π/4] , as x -»· - c o . Hint: There are two station-
ary points. 

5.7.3. Express the functions F+ (A) andF_(A) in (5.7.10) in terms of the transforms 
of the initial data u(x,0) = f(x) andut(a;,0) = g(x). Show that F+(-X) = F_(A) 

u(x,t) F+(0) 
л/2(с2 - a2)t exp 
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(the complex conjugate) and that the solution u(x, t) in (5.7.10) is real. Obtain the 
asymptotic form of u(x, t) by considering the contributions from the F+(X) and 
F-(\) integrals. 

5.7.4. Show that u(x,t) = Jo (c /7)\ /72 t 2 — x2\ is a solution of the Klein-Gordon 
equation (5.7.6). Let x = at in the Bessel function with \a\ < 7, and expand Jo 
asymptotically for large x and t. Show that the result agrees with that obtained in 
Exercise 5.7.3 for an appropriate choice of F+ (λ) and F_ (λ). 

5.7.5. Use the Fourier transform to obtain the solution of the Cauchy problem for 
the linearized Korteweg-deVries equation (see Example 9.7) ut(x, t) + a2ux(x, t) + 
b2uxxx(x,t) = 0, —00 < x < 00, t > 0, with the initial condition u(x,0) = 
f(x), —00 < x < 00. Apply the method of stationary phase to discuss the solution 
u(x, t) for large x and t. 

5.7.6. Use the Fourier transform to solve the initial value problem for the dissipative 
wa\eeq\iaüonutt{x,t) — uxx(x,t) — a2uxxt(x,t) = 0, —00 < x < 00, t > 0,with 
the initial data u(x, 0) = f(x), щ(х, 0) = a2f"(x), —00 < x < 00, t > 0. Apply 
Sirovich's method to obtain an asymptotic expression for the solution as t gets large. 

5.7.7. Apply the Fourier transform to solve the boundary value problemfor the elliptic 
equation uxx(x, t) + uu(x,t) — ut(x,t) — 0, — 00 < x < co, t > 0, assuming 
that u(x, t) and f(x, i) are suitably behaved at infinity. Apply Sirovich's method to 
discuss the asymptotic behavior of u(x, t) for large t. 

5.7.8. Verify that the solution (5.7.40) of the initial value problem for (5.7.39) has 
the behavior given in (5.7.42) for large t. 

5.8 MAPLE METHODS 

Maple's procedures for carrying out integral transforms and inverting them are con-
tained in the package inttrans, which is accessed by invoking withfinttrans). The out-
put is [addtable, fourier, fouriercos, fouriersin, hankel, hilbert, invfourier, 
invhilbert, invlaplace, invmellin, laplace, mellin, savetable]. Clearly, the trans-
forms fourier, fouriercos, fouriersin, hankel, and laplace are the ones we 
have considered in this chapter. The Fourier and Laplace transforms have the inver-
sion formulas invfourier and invlaplace, respectively. The Fourier sine, Fourier 
cosine and Hankel transforms are self-inverting. We will not consider Mellin and 
Hilbert transforms and the addtable and savetable procedures. Maple's definitions 
of the Fourier and Hankel transforms differ from those given in the text. We have 
constructed procedures that convert Maple's version of these transforms and their 
inverses to ours. 
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Fourier Transforms 

Maple's Fourier transform FM (λ) and FT(X) as defined in (5.2.6) are 

/

OO -| ΛΟΟ 

f{x)e-iXxdx, FT(X) = ^= f(x)eiXxdx. (5.8.1) 
-oo ν 2 π J-oo 

The inverse Fourier transform in Maple and in (5.2.7) are given as 
1 f°° 1 Γ°° 

f(x) = t- FM(\)eiXxd\, / (*) = - = / FT(X)e-iX*dX. (5.8.2) 
2π 7-ое ν 2 π У_оо 

The Maple procedures/oMner(/(a;), x, X) and invfourier(FM(X), X, x) determine the 
Fourier transform FM (X) of f(x) and its inverse. Rather than use Maple's integration 
facility to evaluate integrals that arise in the Fourier transform and its inverse as 
defined in the text, we have constructed two procedures that use Maple's transforms 
and convert the outputs into forms that result from the text Fourier transforms. They 
are given as Fourier(f (x), χ, λ), which yields FT(X), and InvFourier(FT(X), X, x), 
whose output is f(x). This means that Maple's built-in tables of transforms are 
invoked even when the text's definition of the Fourier transform and its inverse are 
used. 

In the following table we present some Fourier transforms and their inverses as 
given by Maple, with F(X) = fourier(f(x),x,X) [we drop the subscript notation 
FM(X)] and f(x) = invfourier(F(X), λ, χ). 

fix) 

Vinc4eXP{ 4?t) 

^ { c o s ( £ ) + s i n ( £ ) } 
1 

H(x) 

±(δ{χ + 1) + δ(χ - 1)) 

e-fclxl, к > 0 

xf(x) 

F(X) 

exp(-A2c2i) 

cos(A2i) 

2πδ{Χ) 

πδ(Χ) - г/Х 

cos(A) 
2k/{k2 + λ2) 

ίβί ·(λ) 
1 дХ 

Here δ(χ) is the Dirac delta function and H(x) is the Heaviside function. The inverse 
Fourier transform of F(X) = exp(—X2c2t) as defined in the text is 

InvFourier(exp(—X2c2t),X,x) = exp ( — -—~- 1 . (5.8.3) 

We will generally use Maple's version of the Fourier transform and its inverse in our 
discussion, for the purpose of simplicity. 
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The Fourier transform applied to the heat equation asfourier(utt{x, t)—<?uxx (x, t) 
— 0, x, X) yields the transformed equation. 

d2 

j-^fourier{u{x, t), x, X) + c2X2fourier(u(x, t), x, X) = 0. (5.8.4) 

This is an ODE in the Fourier transform/oi/n'cr(u(x, t), x, A). To make use of Maple's 
ODE solver dsolve, we substitute fourier(u(x,t), x, A) = U(t) into (5.8.4). On 
assuming that the initial condition for the heat equation is u(x, 0) = f(x), we find 
that [/(0) = fourier(f(x),x, A). The solution is 

fourier(u(x,t),x,X) = fourier(f(x),x,X)e~c λ ' . (5.8.5) 

On inverting the transform, Maple makes use of the convolution theorem for Fourier 
transforms to obtain the result (5.2.38), after some simplification. 

It is not possible, in general, to evaluate the Fourier integrals and obtain closed-
form expressions for Fourier transforms and their inverses. The methods of Section 
5.7 can be used to generate approximate results for ranges of values of the transform 
parameters. If the Fourier integrals contain no parameters, say they are evaluated at 
specific values of x or t, Maple's numerical integration facility can be used to ob-
tain numerical approximations. In the following example we consider the numerical 
evaluation of an inverse transform. Even though the Fourier integral can be eval-
uated explicitly, we employ an approximate method to evaluate it and examine the 
consequences. 

Example 5.12. The Fourier Transform of a Discontinuous Function and 
GibbS Phenomenon. We consider the discontinuous function 

**>={J: \xx\ti: <5·8·6) 
Maple finds its Fourier transform F(X) to be F(X) = 2sin(A)/A. Inverting the 
transform reproduces the function (5.8.5) at points of continuity and has the value 
5 at the points x = ±1 of discontinuity. This is expected because the transform 
converges to average value of the limits of f(x) at points of discontinuity. 

To determine the behavior of the inverse transform near the points of discontinuity 
if it is evaluated approximately rather than exactly, we express it in terms of its real 
and imaginary parts and easily conclude that it is given as 

= 2 f°° sm(A)cos(a;A) ^ 
π Jo A 

We obtain an approximation to the improper integral by replacing the upper limit oo 
by a finite limit s. Then Maple expresses the resulting integral as 

f(x) « - Г S i n ( A ) c O S ( x A ) dX = - [Si ((x + l)s)- Si (Or - 1) s)}. (5.8.8) 
7Г Jo К π 



MAPLE METHODS 321 

The Sine integral Si(s) is defined as Si(s) = J0
ssin(i)/i dt. By choosing ever-

increasing values of s in (5.8.8), we expect to get improved approximations to the value 
of f(x) at some fixed value of ж. However, near the points of the jump discontinuity, 
the Gibbs phenomenon, which was observed in the theory of trigonometric Fourier 
series, comes into play. To see this we put s = 100,000 in (5.8.8) and evaluate the 
expression at several values of x. This gives for the approximate values fa(x) of f(x) 

/Q (0.5) = .9999999999, / a ( l ) = .4999984126, /a(1.5) = -0.0000000003, 

/a(0.9999) = 1.027869704, /„(1.0001) = -0.02786703995. (5.8.9) 

We find that at the points of continuity x = 0.5 and x = 1.5 of f(x) the results 
are extremely close to the exact values 1 and 0, respectively. At the point x = 1 
of jump discontinuity, the approximate value is extremely close to 0.5, the average 
jump values. However, near the point x = 1 the approximate results overshoot and 
undershoot the exact limiting values 1 and 0, respectively, by the amount 0.0278. 
This is the Gibbs phenomenon. 

Fourier Sine and Cosine Transforms 

Maple's definitions of the Fourier sine and cosine transforms and their inverses agree 
with those given in Section 5.3. Both transforms are self-inverting in the sense that 
the variable of integration must be changed from x to λ to switch from the sine and 
cosine transforms Fs{\) and FC(X), respectively, of f{x), to their inverses. The 
Maple VToceà\ir&sfouriersin(f(x), x, X) andfouriercos(f(x), x, A) find the sine and 
cosine transforms of f(x). Thus, the sine transforms and their inverses are given as 

[2 f°° 
fouriersin(f(x),x,X) = \ — sm(Xx)f(x) dX, 

V я" Jo 

fouriersin(fouriersin(f(x),x,X),X,x) = f(x), (5.8.10) 

and the cosine transforms and their inverses are 

fouriercos(f(x),x,X) = J — cos(Xx)f(x) dX, 

fouriercos(fouriercos(f(x),x, A), X,x) = f(x). (5.8.11) 

It is important to note that the order of (x, X) and (A, x) is reversed on carrying out 
the direct and inverse Fourier sine and cosine transforms as shown in the above. 

In the following table we present some Fourier sine transforms and their inverses as 
given by Maple: FS(X) = fouriersin(f(x), x, A), / (x) = fouriersin(Fs(X), A, x). 
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№ F . (A) 

i l , 0 < x < a R,- , . .. ,. 
{ о , х>а sJi(l-cos(Xa))/X 

1 Д 
e~kx, к > 0 yjlX/(k2 + A2) 

l/x T f 
xf(x) -dFc(\)/d\ 

Next, we present a table of some Fourier cosine transforms and their inverses as 
given by Maple: FC(X) = fouriercos(f(x),x, λ), f(x) = fouriercos(Fc(X), X, x). 

/(*) 
Г 1, 0 < x < a 
[0, x > a 

1 

e~kx, k>0 

e-kx 

xf(x) 

Fc(X) 

yf(sin(Àa))/A 

^δ(Χ) 

φ/№ + χ2) 
У^ехр(-А2/4/с) 

dFe(X)/dX 

Again, δ(χ) is the Dirac delta function. 
To demonstrate how the Fourier sine and cosine transforms are to be used when 

dealing with boundary value problems, we construct the solution of two boundary 
value problems for an ODE in the following example. 

Example 5.13. A Boundary Value Problem for an Ordinary Differential 
Equation. We consider the ODE 

y"{x) - k2y(x) = e~x, x>0, к ф 1. (5.8.12) 

With the boundary condition at x = 0 given as y(0) = a, we apply the Fourier sine 
transform to (5.8.12) and obtain 

/ / ч *ч [2 X(a + aX2-l) 
fouriersin{y{x),x,X) = γ ~ д 2 + д 4 + fc2 + fc2A2 ■ (5-8.13) 

Inverting the transform yields the solution 

y ( i ) = ( l + ̂ -y-e- (5814) 
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We observe that the solution satisfies the given ODE (5.8.12), the boundary condition 
at x = 0, and vanishes at infinity. 

For the case of a derivative boundary condition at x = 0 given as y'(0) = b, we 
apply the Fourier cosine transform to (5.8.12) and obtain 

fouriercos{y(x),x,X) = ~\j- χ2 + д 4 + fc2 + fc2A2 · (5.8.15) 

Inverting the transform yields the solution 

/ λ (l + b-bk2)e.-kx-ke-x „ „ ,„ч 
У(х) = {- F I ^ · (5.8.16) 

The solution satisfies (5.8.12), the boundary condition at x — 0, and vanishes at 
infinity. 

Higher-Dimensional Fourier Transforms 

Higher-dimensional Fourier transforms must be obtained as iterated one-dimensional 
Fourier transforms. The same is true for the inverse transforms. (There is no Maple 
procedure that finds higher-dimensional Fourier transforms directly.) We again work 
only with Maple's definition of the one-dimensional Fourier transform, but use the 
transform parameters of Section 5.4. In two dimensions, Maple gives the Fourier 
transform of f(x, y) as 

/

OO ЛОО 

/ f(x,y)e-i(-xXl+yX2)dxdy. 
-oo*/ —oo 

(5.8.17) 
We denote the transform by F(\i,\2). Then the inverse transform is given as 

invfourier(invfourier(F(Xi,X2), X\, x), X2, у) 

= - ^ / / F(Xu\2)e
i(xXl+yX*U\1d\2. (5.8.18) 

The extension of the formulas to more dimensions is straightforward. 
As an example, we find the transform of exp[— (x2 + y2)/(éc2t)]. We iterate the 

Fourier transform as above and find that 

fourierÜounerie-^+^'^^x,^)^,^) = 4сНже-{х'сЧ-х^\ (5.8.19) 

The product of Dirac delta functions 4π2<5(λι )δ(λ2) has the inverse Fourier transform 

invfourier(invfourier('ÌTr2S(Xi)S(X2),Xi,x)1X2,y) = 1. (5.8.20) 

The iterated Fourier transforms can be applied to PDEs in two or more space 
dimensions as in Section 5.4, but we do not consider this here. 
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Hankel Transforms 

Maple's definition of the Hankel transform and its inverse differs from that given in 
Section 5.5 in (5.5.3) and (5.5.2). We denote the Maple Hankel transform by FHM (A) 
and the definition (5.5.3) by FHT(X). Then we have, for the Hankel transform of 
f(r) of ordern, 

FHM(\)= y V J n ( A r ) / ( r ) d r , FHT(X)= rJn(\r)f(r)dr. 
Jo Jo 

(5.8.21) 
The expressions for the inverse transforms are given as 

f(r) = / v / V J n ( À r ) Ì W (X)dX, / ( r ) = / XJn(Xr)FHT (X)dX. (5.8.22) 
Jo Jo 

Here Jn(x) represents the Bessel function of order n. [In Maple's notation it is 
given as BesselJ(n, x).] Maple's definition of the Hankel transform is given in a 
self-inverting form. The Maple Hankel transform of order n of a function f(r) is 
determined from the procedure hankel(f(r),r, X, n). If we denote the transform by 
F(X), the inverse Hankel transform / ( r ) is given by hankel(F(X), X, r, n). 

HankelTrans(f(r), r, A, n) yields the Hankel transform FHT(X) of order n of 
/ ( r ) in the form given in Section 5.5. To determine the inverse Hankel transform f(r) 
of FHT(X) we use HankelTrans(FnTW, X, r, n). On applying HankelTrans 
(L(y(r)), r, λ, η) to the ordinary differential operator 

1 n2 

L(y(r)) = y"(r) + - y'(r) - ^ y(r), (5.8.23) 

we obtain as the Hankel transform 

-X2F(X)- lim ту' (r) J„ (Ar) - X2ry(r) (-Jn+l (Ar) + ^ Μ ) 

(5.8.24) 
where F(A) is the Hankel transform of order n of / ( r ) . This result agrees with the 
expression found in (5.5.4), if we note the relationship J'n{Xr) = —X J„+1(Ar) + 
nJn{Xr)/r and assume that the limit of the bracketed expression as r —> oo is zero. 
If we apply Maple's hankel procedure to (5.8.23), we obtain —A2F(A) instead of 
(5.8.24) because Maple assumes that the limit in (5.8.24) is zero in its procedure. As 
shown in Example 5.9, this is not always the case. We do not apply the procedure to a 
specific problem but instead, present a table of some Hankel transforms with FHT (λ) 
as the Hankel transform of f(r). (We employ the HankelTrans procedure.) 
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№ F(X) 

k 2fc+1r(l/2(n + fc) + l) 
Хк+'2Т{1/2{п-к)) 

1 
H(k-x), fc> 0,n = 0 jJi(kX) 

— k-r2 

л* 

, n = 0, ^ exp(-A2/4fc) 

Again, H(x) is the Heaviside function. 

Laplace Transforms 

The built-in Maple procedure laplace(f(t),t, X) determines the Laplace transform 
F(X) of f(t) as 

/-00 

F(A) = / f{t)e~xt dt. (5.8.25) 
Jo 

The definition agrees with that given in (5.6.2). The inverse Laplace transform f(t) 
is given by invlaplace(F(X), X, t) A number of useful Laplace transforms of specific 
functions are presented in the exercises for Section 5.6, so we do not present a table 
of transforms here. Instead, we solve an initial and boundary value problem for the 
heat equation in a finite interval and examine the behavior of the solution for small 
and large values of t. 

Example 5.14. The Heat Equation in a Finite Interval. We consider the 
initial and boundary value problem for the heat equation 

ut(x,t) = c2uxx(x,t), 0 < x < I, t > 0, u(x,Q) = 0, u(0,t) = 1, u(l,t) = 0. 
(5.8.26) 

We apply the Laplace transform laplace(ut(x,t) = c2uxx(x,t),t, X) to the heat 
equation and denote the transform by U(x, X). The boundary conditions must also 
be transformed. We obtain laplace(l,t,X) = 1/A and laplace(0, t, A) = 0. The 
transformed problem is 

XU{x,X) - u(x,0) = c2d2U}X'X\ 0 < x < I, t/(0, A) = j , U(l, A) = 0. 
oxz X 

(5.8.27) 
Using Maple's dsolve procedure to solve (5.8.27) yields 

e x p ( 4 * ) - e x p ( Ä ^ ) 
U(x, A) = \-j-L J i J . (5.8.28) 

A ( l - e x p ( 4 ^ ) ) 
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First, we approximate the transform for large values of λ and obtain a result that 
gives a useful approximation to the solution for small t according to Abelian theory. 
Let 

,-Ρ(^). им,^щ^т. (,8,9) 
Then r < 1 for sufficiently large λ. We expand U(x, X) in a Taylor series around 
r — 0 and obtain 

exp ( - 4 * ) + Σ ~ = 1 [exp ( - ^ * + W Ä ^ _ e x p ( V Ä x - W Ä ^ j 
U(x,X) = . 

(5.8.30) 
On using invlaplace to invert the transform we obtain the solution 

( X \ / γ liry \ I X LTi \ 

wiJ+Σ Hc UTI+^д) -erfc {-^7t
+^д) 

(5.8.31) 
where eric(z) is the complementary error function. For large п/лД the bracketed 
terms in the sum are small and (5.8.31) is well approximated by the leading terms. 

To obtain an approximation of the solution u(x, t) for large t, we obtain a Tauberian 
result of the form (5.6.22). We express the Laplace transform (5.8.28) in the form 

U(x,X) = V
 ( ' ■ (5·8 ·3 2) 

Asinhi^J 
As in Section 5.6, we find that the zeros of sinh( \f\~ l/c) given as λ„ = —(nnc/l)2 (n = 
0,1,2, . . . ) are the simple poles of U(x, X). The residues at these poles are easily de-
termined by setting G(X) = sinh(\/X(i — x)/c)/\/X and H(X) = smh(y/X I/c)y/X~, 
so that 

1-х „ 2 / π η χ \ ., / , „ „ „ ч 
ßo=—r-, ßn = s i n ( — - , η > 1 . 5.8.33 

ί πη \ I / 
The Tauberian result is thus found to be 

««.о-^-Ё^тЧ-^)· (5'8·34) 
n=l N ' 

The result agrees with that obtained via the modified eigenfunction expansion of 
Section 4.6. The steady-state term (I — x)/l is separated out, and the expansion is 
useful for large t. 



MAPLE METHODS 3 2 7 

Asymptotic Approximation Methods for Fourier Integrals 

StatPhase finds the leading term(s) of an asymptotic approximation of Fourier type 
integrals of oscillatory type with a large parameter к of the form 

/

oo 

eifc*(t)/(i) dt, (5.8.35) 
-oo 

where f{t) is a real- or complex-valued function, referred to as the amplitude term. 
The real-valued function </>(i) is called Has phase term. (The case of finite endpoints in 
the integral can also be considered.) The procedure has the form StatPhase(φ(ί), f(t), 
t = a..b, k). It attempts to find the stationary points of the phase [i.e., the roots of 
φ'(ί) = 0 ] . If all the stationary points are not found within the procedure or if they 
do not all lie within the interval of integration, the relevant points must be supplied 
to the procedure by adding a fifth argument which lists the stationary points. 

Example 5.15. The Asymptotic Approximation of the Bessel Function. 
For integral n, the Bessel function J„(x) can be given as 

Jn(x) = — f e-™ee*"in(e) de (5.8.36) 
2*" J-K 

We use StatPhase to determine the asymptotic approximation of Jn(x) as x —> oo. 
Comparing (5.8.35) with (5.8.36), we see that t <-» Θ, к <-> x, φ(ΐ) <-> sin(0), and 
fit) <-► ε~ίηθ/2π, and we use StatPhaseismie),e~ine/2π,θ = -π..π,χ). The 
output lists all the stationary points of the phase sin(ö) as <9fc = π (fc + 1/2) (A; = 
0, ± 1 , ±2 , . . . ) [i.e., the zeros of cos(0)]. Only the points =ρπ/2 lie within the interval 
of integration [—π, π]. We reapply the procedure with the added fifth argument 
[-π/2, 7г/2]. This yields 

Jnix)&J—cosiz-^-jV z » l . (5.8.37) 

The procedure SirMeth obtains asymptotic approximations of Fourier type inte-
grals of dissipative type using Simvich's method of Section 5.7. The integrals have 
the form (5.7.28) 

/•OO 

(5.8.38) 
/

OO 

F (A) e~
9Wt-iXx d\. 

-oo 

The procedure SirMei/i(<?(A),F(À), [:τ,ί],λ) checks if the conditions given in 
(5.7.19) are met. If so, it gives an asymptotic approximation of the integral /(x, t) 
valid for large t. If all the conditions are not satisfied, an error message appears. 

As an example, we apply Sir Method to the integral 
1 /»oo ^ - , — , 

I(x, t) = -==\ Ρ (λ ) ε - ( ° 2 λ 2 / 2 - ^ 4 λ 4 - 4 λ * / 2 )< - ί λ * dX, 
ν 2 π J-oo 

(5.8.39) 
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The procedure determines that all the conditions required for the validity of Sirovich's 
method are satisfied and yields the result 

«'•""^"'"■'Нй^)· ,>>L <5'8'40) 

Discrete Fourier Transform and Fast Fourier Transform 

As was indicated in Section 5.2, the Fourier integral formula (5.2.5) from which the 
Fourier transform and its inverse were derived can be generated by considering a 
complex form of the Fourier series representation of f(x) over the interval [—1, I] 
and allowing I to tend to infinity (see Exercises 5.2.1 and 5.2.2). For the present 
discussion, we consider the function f(x) to be given over the interval [0, 21] rather 
than the interval [—1, I]. Then the complex Fourier series representation of f(x) is 
given as 

f(x)= £ C f c e x p f ^ V (5.8.41) 
fc=-oo V l ' 

and the Fourier coefficients èk are given as 

4 = 2l£mexp{Jlr) dt (5-8-42) 
We have modified the forms of the complex Fourier series and the Fourier coefficients 
in Exercise 5.2.1, by replacing i by —%. 

In general, the integrals in (5.8.42) for the Fourier coefficients cannot be evaluated 
exactly and numerical methods must be used. We use the trapezoidal rule to do so. 
The interval [0,21] is divided into N equal parts to yield the points Xj = 2l(j — 1)/N 
with j — 1,2,..., JV. The values/ (x j) are given at each of the Xj. [It will be assumed 
that /(2/) = /(0) because of periodicity.] We use the procedure Aproximatelnt 
from Maple's Student Calculus! package, with the arguments method = trapezoid 
and partition = N, and obtain after some simplification the approximate Fourier 
coefficients 

3=0 V J 

We observe that Ck+N — àk, so that only JV different c^ are determined from (5.8.43). 
These terms are entered into a truncated form of the Fourier series (5.8.41), given as 

/Or) « Mx) = Σ cfeexp (ΐψ) . (5.8.44) 
fe=o V ' / 

As indicated below, this approximation is referred to as a trigonometric interpolation 
polynomial. Rather than discuss this now, we reexamine the foregoing from a slightly 
different perspective. 
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In general, the function f{x) may not be defined over the entire interval [0,21]. 
Instead, a set of numbers fj (they may be real or complex) are prescribed at the 
points Xj, and we associate these numbers with the values of a function f(x) [i.e., 
f(xj) — fj]. The set of points Xj is defined as above, and the set of prescribed values 
at the points will be denoted by f{xj ) whether f(x) is known or not. Discrete Fourier 
transforms and their inverses are given in terms of the values. 

We use the Maple package DiscreteTransforms, which contains the two procedures 
FourierTransform and InverseFourierTransform to determine discrete Fourier trans-
forms and their inverses. (Therefore, the notation follows that of Maple rather than 
that of Exercises 5.2.1 and 5.2.2.) Then the discrete representation of f(x), given in 
terms of complex exponentials, is 

/ f e ) = ^ E ^ - p ( ^ f c ^ ^ ) , ; = ! , . . . , * . (5.8.45) 

The Cfc are the Fourier coefficients and are given as 

N 

Ck ^ Σ / ( * , ) exP ( - 2 " ( f c - A r
1 ) ° - 1 ) ) , * = ! , . . , * . (5.8.46) 

The set of values {ck} represent the discrete Fourier transform of the set of input 
values {f(xj)}. The set of values {f(xj)} is the inverse discrete Fourier transform 
ofthe{cfc}. 

It may be noted that f{x\) = f(xN+i) with x\ = 0 and XN+I = 21, so that 
/(0) = f{2l). The validity of the representation of the {Cfc} is based on the following 
orthogonality and normalization conditions. 

N 

2_V N >e\ N ) =0, пфт, (5.8.47) 
fc=l 

N 

^ e ^ " >e\ * )=N. (5.8.48) 
fc=l 

If f(x) is known, the foregoing can be used to determine a trigonometric interpo-
lation polynomial /лг (a;) for f(x) in terms of a discrete set of N interpolation values 
Xj = 2l(j — 1)/N given over the interval [0, 2/]. It has the form 

/ , w = ^ E c * e * p ("(*71 ) а ;) - <5·8·49) 

with the Fourier coefficients given as in (5.8.46). The trigonometric polynomial 
/лг(х) clearly assumes the values f{xj) at the interpolation points Xj. It agrees with 
(5.8.44) except for a shift in the summation index and a change in the normalization 
of the Fourier coefficient that gives rise to the 1/y/N term. 
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Example 5.16. A Discrete Fourier Transform. We consider the function 
f(x) = exp(x/4) cos(5x) over the interval [0,2π] with N = 4. The interpola-
tion points are x\ = 0, χ-ι = π/2, x3 = π, X4 = 3π/2. The values of f(x) at the 
interpolation points a re / (x i ) = 1, /(£2) = 0, / (хз) = -βχρ(π /4) , f{xi) = 0. 

The trigonometric interpolation polynomial (5.8.49) becomes 

1 4 

Μχ) = О Σ c * exp^fc - ^ (5·8·50) 

with the Fourier coefficients с*; determined from (5.8.46) with N = 4 to be 

Ci = (1 - ехр(тг/4))/2 « -.59664, 
c2 = (1 + ехр(тг/4))/2 « 1.59664, 
c3 = (1 - ехр(тг/4))/2 « -.59664, l ' ' 
C4 = (1+ βχρ(π/4))/2 « 1.59664. 

Then 

! 4 

exp(x/4) cos(5x) « - ^cf cexp[i(fc - l)x], x e [0,2π]. (5.8.52) 

At the four interpolation points there is exact equality in (5.8.52). 
The Ck represent the discrete Fourier transform of the values f(xj) and they can 

be determined by invoking the Maple procedure FourierTransform(V), where the 
vector V is given as V = [1, 0, - exp(7r/4), 0]. Its entries are the values of 
f(x) at the four interpolation points. Maple's output is a four-component vector 
[-0.596640 + 0.0i, 1.59664 + O.Oi, -0.596640 + O.Oi, 1.59664 + 0.0г]. The numbers 
0.0г signify that the imaginary part of each of the Cfc equals zero. The result agrees 
with that given above. 

If we apply the procedure InverseFourierTransform(W), where W represents the 
foregoing vector, we obtain the four-component vector [1.0+О.Ог, 0.0+О.Ог, —2.19328 
+0.0г, 0.0 + 0.0г]. Its entries are the values of / (x) at the four interpolation points, 
given in floating-point form. Since - θχρ(π/4) « -2.19328, the results agree with 
the above. 

The process of determining the discrete Fourier transform and its inverse may 
involve an exceedingly large number of operations, a single one of which is taken to 
comprise a (complex) addition and multiplication. The fast Fourier transform is a 
method for determining the Fourier coefficients Cfc of the discrete Fourier transform 
with a greatly reduced number of calculations. The number of operations required 
to determine the N Fourier coefficients Ck straightforwardly, using the foregoing 
representation, is found to be iV2. However, if we use the fast Fourier transform to 
determine the с*;, the number of operations is 2NM if N = 2 M . This is a tremendous 
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reduction for large TV. For example, if M = 10, we have TV = 1024, N2 = 1048576, 
and 2NM = 20480. (In Example 5.16 we had N = 4,sothatM = 2, and no advantage 
is gained by using the fast Fourier transform.) 

We do not exhibit the basis of the fast Fourier transform method, which involves 
a decomposition of (5.8.42). The procedures FFT and iFFT use the fast Fourier 
transform and its inverse to determine the Cfc and the f(xj). The procedures can be 
applied only if N can be expressed as N = 2 M for some integer M. The more 
recent Maple procedures FourierTransform and InverseFourierTransform invoke the 
fast Fourier transform in more general cases. 

Apart from its use in trigonometric interpolation and related Fourier series, the 
discrete Fourier transform can also be used to approximate Fourier transforms nu-
merically. The infinite limits in the Fourier transform integral are replaced by finite 
negative and positive limits, and the integral is then transformed into (two) integrals, 
each having zero as the lower limit and a positive upper limit. On approximating each 
integral using Riemann sums, we obtain expressions that have the form of discrete 
Fourier transforms or their inverses, each of which will generally have a large value 
of N. Then the fast Fourier transform method can be used to evaluate the discrete 
Fourier transforms and thereby approximate the given Fourier transform. We do not 
present any examples here. 

Exercises 5.8 

5.8.1. Verify that Maple's definition of the Fourier transform and its inverse are as 
given in (5.8.1) and (5.8.2). 

5.8.2. Use Maple to confirm the results given in the table of Fourier transforms. 

5.8.3. Generate a plot of the function in (5.8.8) that exhibits the Gibbs phenomenon. 

5.8.4. Use Maple to confirm the results given in the table of Fourier sine transforms. 

5.8.5. Use Maple to confirm the results given in the table of Fourier cosine transforms. 

5.8.6. Confirm the results in Example 5.13. 

5.8.7. Use Maple to confirm the results given in the table of Hankel transforms. 

5.8.8. Obtain the solutions of Exercises 5.6.1-5.6.10 using Maple's laplace 
procedure. 

5.8.9. Carry out the steps presented in Example 5.14. 

5.8.10. Apply the StatPhase procedure to obtain (5.8.37). 

5.8.11. Apply the procedure SirMethod to obtain (5.8.40). 

5.8.12. Reproduce the results of Example 5.16. 



CHAPTER 6 

INTEGRAL RELATIONS 

The problems considered in the preceding chapters dealt mostly with partial differen-
tial equations, whose coefficients, inhomogeneous terms, and initial and/or boundary 
data were smooth functions. Consequently, the solutions were expected to be smooth 
functions as well. It is often the case, however, that the medium for which the dif-
ferential equation models some physical property is heterogeneous and some of its 
characteristics, such as density or conductivity, change discontinuously across some 
region. For example, this situation arises when we consider the longitudinal vibra-
tion of a composite rod composed of two rods of different constant densities joined 
at some point. Then the coefficients in the wave equation that describes the motion 
of the vibrating rod may be singular at the point where the rods are attached. 

In addition, it is of interest to consider problems where the inhomogeneous term in 
the equation, which may represent a forcing term or a source (or sink), is concentrated 
over some lower-dimensional region such as a curve or a point. Also, the data for 
the problem may have discontinuities or singularities. As a result, the solutions of 
these problems are no longer expected to be smooth functions in general. Thus it 
becomes necessary to attach a meaning to solutions of differential equations that are 
not differentiable as often as required by the equation. In some cases these solutions 

Partial Differential Equations ofAppplied Mathematics, Third Edition. By Erich Zauderer 3 3 3 
Copyright © 2006 John Wiley & Sons, Inc. 



3 3 4 INTEGRAL RELATIONS 

are not even continuous everywhere. (Some of these matters were considered in our 
discussion of first order equations in Chapter 2.) 

This chapter deals with the foregoing questions by showing how the given partial 
differential equations can be replaced by equivalent integral relations. These rela-
tions will be derived directly from the partial differential equations and may involve 
derivatives of the unknown function. In any case, fewer derivatives than are required 
for the solution of the partial differential equation are needed for the solution of the 
equivalent integral relation. Thereby, we generalize or weaken, for some problems, 
the concept of solution of a differential equation and the results obtained are called 
generalized or weak solutions. 

The wave equation is discussed in some detail and an equivalent integral wave 
equation is derived. We have seen in Chapter 3 that solutions of hyperbolic equa-
tions, in contrast to those for elliptic and parabolic equations, do not smooth out 
discontinuities or singularities in the data. The wave equation is a prototype equation 
of hyperbolic type, so we concentrate our discussion on it. (Singular solutions are 
considered in Section 10.2 as well.) 

Finally, we introduce the concept of energy integrals for partial differential equa-
tions of each of the three types. We show how they can be used to prove uniqueness 
and continuous dependence of the solutions on the data. Our discussion is restricted 
to second order partial differential equations of the form considered in Chapter 4. 
However, the ideas and methods introduced can be carried over to other equations. 

6.1 INTRODUCTION 

In Section 4.1 the parabolic equation (4.1.4) was derived by applying a balance 
law over a certain region. Assuming that all terms occurring in the balance law 
are continuous (or, more generally, smooth), it is possible to derive the parabolic 
equation (4.1.4). If the smoothness requirement is not met throughout the region, say 
there is some subregion across which the properties of the medium undergo a sharp 
discontinuous change, the arguments leading to (4.1.4) may fail. Then, the balance law 
can be used to derive matching conditions for the solutions of the partial differential 
equation (4.1.4) that remain valid on both sides of the region of discontinuity. These 
conditions show how to connect solutions across the region of discontinuity. A similar 
approach may be applied if the inhomogeneous term of the equation is singular in 
some region. 

Generally speaking, if the PDE is derived from some physical principle applied 
over an arbitrary region as in Section 4.1, it is possible to take into account the 
foregoing special situations and incorporate the appropriate results into the derivation. 
We have derived various equations in Chapter 1 from a different point of view, one from 
which it is not obvious how to take into account discontinuities or other singularities 
in our derivation. Therefore, we adopt the following approach. We assume that 
the partial differential equation is given and convert it into an equivalent integral 
relation (thereby reversing the commonly used method of derivation of the differential 
equation from the integral relation). On using this approach in Chapter 2 to construct 
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generalized solutions of quasilinear equations, it was found that different integral 
relations (each of which is equivalent to the given differential equation when the 
solutions are smooth) gave rise to different generalized solutions. This nonuniqueness 
in the determination of generalized solutions does not occur for linear equations, 
which we deal with exclusively in this chapter. A detailed discussion is given for the 
hyperbolic equation (4.1.10) and the appropriate results are given without derivation 
for the parabolic and elliptic equations (4.1.8) and (4.1.9), respectively. No other 
equations are discussed. 

Integral Relation: Hyperbolic PDE 

We consider the hyperbolic equation (4.1.10) in two or three space dimensions; that is, 

P(x) ^ τ ^ - V · (p(x)Vu(x, *)) = p(x)F(x, t) - q(x)u(x, t), (6.1.1) 

where p(x), p(x), and q(x) have the properties given in Chapter 4. (x is a two- or 
three-dimensional variable.) Let R be a closed and bounded region in (x, f)-space 
with dR as its boundary. We integrate (6.1.1) over Д to obtain 

II (putt - V · (pVu)) dv = / / (pF - qu) dv. (6.1.2) 
Я JJR 

Let the gradient operator in (x, t)-space be defined as V = [V, д/dt], so that (6.1.2) 
may be written as [since p = p(x)] 

/ / V · [pVu, -put] dv = N {qu - pF) dv, (6.1.3) 

where [pVu, — put] is a three- or four-component vector. Applying the divergence 
theorem to the first integral in (6.1.3) gives 

/ \pVu,-put]-nds= (qu-pF) dv, (6.1.4) 
JdR JJR 

where n is the exterior unit normal vector to dR. Equation (6.1.4) is the equivalent 
integral relation (or, more precisely, the integrodifferential equation) we are seeking. 

We now choose a special form for the region R that is commonly specified when 
(time-dependent) PDEs are derived using a balance law or a similar physical principle. 
Fixing t, we choose a closed and bounded region Rx in x-space. Then we construct 
the region R in (x, i)-space whose points (x, t) satisfy the conditions x € Rx and 
io < t < i i . (The region R is shown in Figure 6.1.) (The region R can also be 
characterized as a direct product in the form R = Rx x [io> *i]·) Let dRx be the 
boundary of Rx, and let dRx be the lateral boundary of R. Also, denote the upper and 
lower caps of R by dR\ and dRo, respectively (note that dRo = Rx). The exterior 
unit normal vector n on these surfaces assumes the following form. With nx defined 
to be the exterior unit normal vector to dRx, we find that on dRx, n = [nx, 0], on 
dRu n = [0, 1], while on dRo, n = [0, - 1 ] . 
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Figure 6.1 The region R. 

Then (6.1.4) takes the following form in two- or three-space dimensions, 

I put ds — / put ds + I (pVu) · nx ds = II (qu — pF) dv. (6.1.5) 
JdRo JdRi JdRs JJR 

The integration over dR0 and dR\ in (6.1.5) is effectively taken over the region Rx. 
On the lateral surface dRx we have ds = dsx dt, where dsx is the surface differential 
over dRx, and in the region R we have dv = dx dt, where dx is an area or volume 
element in two or three dimensions, respectively. We can write (6.1.5) as 

/ p(x)Mx, 
JRx 

ii) - u t ( x , t 0 ) ] dx /7 
Jt0 Ja 

du(x,t) 
p(x)—^ '-dsxdt 

OR* 9nx 

- ί (q{x)u(x,t)-p{x)F(x,t)) dxdt, (6.1.6) 
»/ to ** R\ 

where ди/дпх is the exterior normal derivative of и on the surface dRx. In one space 
dimension when Rx is the interval (xo, xi), (6.1.6) has the form 

/ p(x)[ut{x,ti)-ut(x,t0)}dx= \p(xi)ux(xi,t)-p(x0)ux(x0,t)]dt 
J xo Jto 

- / [q(x)u(x,t)-p(x)F{x,t)]dxdt. (6.1.7) 

To consider a concrete example, we assume that (6.1.1 ) describes the longitudinal 
vibration of a rod and that the problem is one-dimensional. Then the integral relation 
(6.1.7) characterizes the change in momentum of a segment of a rod (xo, x\) in 
the time interval (ίο, ί ι ) . The displacement of the rod at the time t is given by 
u(x, t), the density is p{x), and the tension is T(x, t) — p(x)ux(x, t)—as required 
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by Hooke 's law—where p(x) equals Young's modulus at the point x. The momentum 
per unit length equals p(x)ut (x, t) and we put q(x) = 0 in (6.1.7). Also, p(x)F(x, t) 
represents the external force density. Thus (6.1.7) equates the change in momentum 
to the forces acting on the segment (x0, χχ) of the rod. In the limit as x0 —» xi and 
io —► ί ι , we obtain the partial differential equation (6.1.1) with q = 0 and V replaced 
by д/дх. For the limiting procedure to be valid, u(x, t) must have continuous second 
derivatives and p(x), p'(x), and F(x, t) must be nonsingular. This enables the mean 
value theorems for derivatives and integrals to be applied to (6.1.7). At points where 
the limit process is not valid, (6.1.7) does yield matching conditions, as will be shown. 

Integral Relation: Parabolic and Elliptic PDEs 

For completeness we present the appropriate integral relations for the parabolic and 
elliptic equations of Section 4.1. Their derivations are similar to those given in the 
hyperbolic case and are not presented. 

For the parabolic equation (4.1.4) we have 

/ [pVu, -pu\- n ds = (qu- pF) dv, (6.1.8) 
JdR JJR 

and in a form equivalent to that in (6.1.6), 

f ftl Г ди(х t) 
/ p(x)[u(x,ii) -u(x,t0)]dx = / / p(x) v ' dsxdt 

JR, Jt0 JdR%
 anx 

- / {q(x)u{x,t)-p(x)F{x,t)) dxdt. (6.1.9) 
Jto JR, 

For the elliptic case, given the equation 
- V · (p(x)Vu(x)) + q(x)u(x) = p{x)F(x), (6.1.10) 

we have the equivalent integral relation 

J p{x)^-ds = Jj (q(x)u(x)-p(x)F(x))dv. (6.1.11) 

The regions R and Rx and their boundaries are defined as in the foregoing hyperbolic 
problem for the parabolic case, while R = Rx in the elliptic case. We do not write 
down the one-dimensional forms of (6.1.8)-(6.1.11). 

In each of the foregoing integral relations in two- or three-dimensional x-space, 
if we choose Rx to be a rectangular region (i.e., XQ < x < x\, yo < у < y\, ZQ < 
z < zi, in three dimensions), it is an easy matter to retrieve the PDEs from the 
integral relations in the limit as Rx shrinks to a point and io -* h ■ However, the 
function и and the coefficients, as well as F, must be sufficiently smooth for this 
limiting process to be valid. This implies the equivalence of the differential and 
integral representations of the given equations in regions where everything is smooth. 
In the following sections we show how to use the integral relations in cases where 
the foregoing limit process breaks down in some region, so that the given differential 
equation is not valid there. 
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Exercises 6.1 

6.1.1. Derive the one-dimensional form of (6.1.1 ) from the integral relation (6.1.7) by 
using mean value theorems for derivatives and integrals, assuming that the functions 
are sufficiently smooth. 

6.1.2. Obtain the integral relation (6.1.8) from the parabolic equation (4.1.4). 

6.1.3. Obtain the integral relation (6.1.9) from the parabolic equation (4.1.4). 

6.1.4. Specialize (6.1.9) to the case of one space dimension and derive the (one-
dimensional) parabolic equation (4.1.5) from it using appropriate mean value theo-
rems. 

6.1.5. Derive the integral relation (6.1.11) from the elliptic equation (6.1.10). 

6.1.6. Consider a two-dimensional form of (6.1.11 ) and let R be the rectangle Xo < 
x < x\ and yo < у < 2/ι· Assuming that the functions are smooth, derive (6.1.10) 
from (6.1.11 ) by using appropriate mean value theorems. 

6.2 COMPOSITE MEDIA: DISCONTINUOUS COEFFICIENTS 

We consider any one of the three integral relations (6.1.6), (6.1.9), or (6.1.11) and 
assume that a Cauchy, an initial and boundary value, or a strict boundary value 
problem, whichever is appropriate for the equation, is given over a region G in x-
space. (The region G may be bounded or unbounded.) Let G be divided into two 
subregions G\ and Gì with So as the lower-dimensional boundary region separating 
Gi and G2. We assume that the properties of the given medium vary discontinuously 
across So (for all time t if the problem has a time dependence), so that one or more 
of the functions p(\), p(x), or q(x) is discontinuous across S0 (they are permitted to 
have, at most, jump discontinuities). As a one-dimensional example, if two strings 
of different densities are attached at a point XQ (this point corresponds to So) and we 
consider the equation for the vibration of the composite string, the density p(x) will 
be discontinuous at the point XQ. 

At points x or (x, t) that are not in the region of discontinuity and where the 
coefficients and the solution are taken to be smooth functions, we may go to the limit 
in the integral relations and derive the appropriate PDE. Thus at points x or (x, t) 
such that x is interior to G\ or G2, the PDE is valid. The solution in Gi is denoted by 
u\ and that in Gì by щ. We require that the solution of the problem be continuous 
across So- If и is a temperature distribution or is the displacement of a string, we 
expect it to be continuous in the interior of the region G. Therefore, the first matching 
condition is 

To obtain a second matching condition, we apply the appropriate integral relation 
over a region йх that contains a portion of SO in its interior, as pictured in Figure 6.2. 
(In the hyperbolic and parabolic cases, the region R considered above, is given as the 
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Figure 6.2 The composite region. 

direct product R = Rx x [t0, ti]. In the elliptic case, we put R = Rx.) We consider 
the integral relations (6.1.6), (6.1.9), and (6.1.11 ). Let the region Rx collapse onto So ■ 
Since и (as well as ut, which is an interior derivative in SO) is continuous across So 
and /?, p, q, and possibly, F have, at most, jump discontinuities across So, the only 
contribution that results in the limit comes from the normal derivative terms, as they 
may have different values on both sides of So. Because this result is valid over any 
portion of So, we conclude on the basis of the duBois-Reymond lemma (see Exercise 
8.1.9) that the second matching condition is 

P i dn Vi 
So 

dU2 

dn 
(6.2.2) 

So 

where pi (x) and Рг(х) represent the limiting values of p(x) (which may be discon-
tinuous across So) as x approaches a point in SO from the subregions G\ and G2, 
respectively. [Both normal derivatives on So in (6.2.2) are taken in the same direction.] 

We remark that (6.2.1 )-(6.2.2) state that и and p ди/дп are continuous across So, 
and these conditions are valid for all time if и is time dependent. If p is continuous 
across So but one or more of the other terms in the equation are discontinuous, so 
that a matching condition is required, then и and ди/дп are continuous across So-
In that case, apart from the change in the matching condition (6.2.2), where p\ = pi, 
the problem is solved in the same way. 

In the one-dimensional case, if So corresponds to the point xo, and G\ and Gì 
correspond to values of a; less than and greater than xo, respectively, (6.2.1)-(6.2.2) 
are replaced by 

Ul\ = U2\ : λ\χ0 "Ίαο' Pi 
du\ 
dx = P2 

ÖU2 

dx 
(6.2.3) 
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Cauchy and Initial and Boundary Value Problems 

When solving initial and boundary value problems or Cauchy problems in composite 
media, the matching conditions derived above supplement the initial and boundary 
conditions that these problems must satisfy. 

For the case of an initial and boundary value problem for a hyperbolic equation in 
a composite medium with SO as the region of discontinuity and G given as the union 
of Gi, So, and G2 (see Figure 6.3), we have the PDEs 

f pi d2uxjdt2 - V · (piVui) + qui = p^Fu x e Gu t > 0, 
I 92 d2u2/dt2 - V · (p2Vu2) + qu2 = P2F2, x e G2, t > 0. 

The initial conditions are 

f«i(x,0) = /i(x), öui(x,0)/öi = fli(x), x e G i , 
U 2 (x ,0 ) = /2(x), du2(x,0)/dt = g2(x), xeG2. 

The boundary conditions, given on the boundary S of the region G, are 

( aiui + ßidui/dn\s — Bi(x,t), x 6 dG\, 
\ a2u2 + ß2du2/dn\s = B2(x, t), x G dG2, 

and the matching conditions are 

1 1 дщ 
U l | S o = U 2 l 5 „ ' Pi dn 

du2 

So d n 

(6.2.4) 

(6.2.5) 

(6.2.6) 

(6.2.7) 
So 

The subscripts 1 and 2 signify that the functions are evaluated in the regions G\ and 
G2, respectively, or on their boundaries. 

Figure 6.3 The region G. 

If a Cauchy problem is considered for the hyperbolic equation, the region G is of 
infinite extent, so the boundary conditions (6.2.6) are dropped but the other equations 
are retained. In either case, we can solve the problem by considering each of the 
equations in (6.2.4) for the regions G\ and G2 separately. We apply the initial and 
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boundary conditions for each subregion with the additional conditions u\ = ui and 
«2 = Ù2 on So where ui and Ü2 are as yet unknown. Once щ and u2 are determined, 
ui and Ù2 are found by applying the matching conditions (6.2.7). 

For the case of an initial and boundary value problem for a parabolic equa-
tion in a composite medium with So as the region of discontinuity, we replace 
d2Ui/dt2, г = 1,2, by дщ/dt, i = 1,2, in (6.2.4) and drop the second initial 
condition dui(\,0)/dt = gi(x), г = 1,2, in (6.2.5). For the case of a boundary 
value problem for an elliptic equation in a composite medium with SO as the region 
of discontinuity, the time derivatives in (6.2.4) and the initial conditions in (6.2.5) are 
omitted. The other conditions are unchanged for both cases. 

Example 6.1. The Longitudinal Vibration of an Infinite Composite Rod. 
We consider the longitudinal vibration of a composite rod of infinite extent. The rod 
is made up of two homogeneous rods joined at x = 0, each of which has a constant 
density p and a constant Young's modulus p (see the foregoing discussion). Here the 
region G is the infinite interval -00 < x < 00 with G\ given as —00 < x < 0 
and G<2. given as 0 < x < 00. The discontinuity region So is the point x = 0. We 
equate q and F to zero in (6.2.4) and replace V by д/дх. Also, pi, p2 and pi, рч 
are prescribed constants for the problem. 

The appropriate wave equations for u(x, t) in the regions G\ and G2 are 

d2Uj(x,t) 2 d2Uj{x,t) 
—д^--С*—дх^=0' , = 1 ' 2 , ( 6 · 2 · 8 ) 

where c2 — Pi/pi, i = 1,2. Thus there are different speeds of wave propagation c\ 
and C2 in the two regions G\ and G2, respectively. 

We assume that a wave f(t — x/c\) is approaching the junction point x = 0, 
as t approaches zero from negative values, and we want to determine the resulting 
reflected and transmitted waves. To do so, we formulate this as a Cauchy problem 
with the initial data 

·.(*.·» = / ( -#) . ^ - ' ( - ί ) . - " · <·*·> 
«2(a:,0) = 0, ^ 2 ^ 0 ) = 0 > χ > 0 ( 6 2 1 0 ) 

Note that a solution of (6.2.8) with г = 1 and the initial data (6.2.9) is just u\(x,t) = 
f(t — x/c\)—that is, a wave traveling to the right with speed c\. For small t, this is 
assumed to be the only disturbance in the region G\. [This is the case if we assume 
that for some xi < 0, we have f(—x/c\) = 0 for x > x\.] As t increases, the wave 
reaches the junction point x = 0 and gives rise to a reflected and transmitted wave. 
In addition to (6.2.9)-(6.2.10), the solutions u\ and u-i must satisfy the matching 
conditions (6.2.3), where xo = 0. 

The general solutions of the wave equations (6.2.8) are 

Ui(x,t) = fi (t - ^Λ + 9i (t + ^) , i =1,2. (6.2.11) 
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•a 

«, «/r»-x/itH*/n+x/c,i 

Figure 6.4 Vibration of a composite rod. 

From (6.2.9)-(6.2.10) we obtain four equations for / i , f2, gi, and g2 · Differentiating 
these equations as needed, we easily conclude that g\{z) = 0 for z < 0, 52(^) = 0 
for z > 0, / i (z) = / (г ) for г > 0 and f2(z) = 0 for 2 < 0. 

The matching conditions yield a simultaneous system of equations for f2(t) and 
<7i(i) with t > 0. Solving these equations and introducing the results into (6.2.11) 
yields the solution for t > 0, as 

Ul(x,t)=f(t-^-j+Rf(t+^-j ,x<0, u2{x,t) = Tf (t-^-Y x>0, 

(6.2.12) 
where the reflection coefficient R and the transmission coefficient T are 

R = Vßm-yp2P2^ T = ijpm , 6 2 1 3 ) 

\/PlPl + \/P2P2 ' y/P\V\ + y/P2P2 ' 

For small t the solution is u\ = f(t — x/c\) and u2 = 0. The incident wave 
f(t — x/c\) travels to the right (i.e., toward x = 0) with speed c\. When it reaches 
the interface x = 0, two additional waves arise: the reflected wave Rf(t + xjc\) 
which travels to the left with speed c\, and the transmitted wave Tf(t — x/c2), which 
travels to the right with speed c2. Apart from a constant factor, each wave has the 
same waveform f(x). The reflection and transmission coefficients R and T each 
modify the basic waveform f(x). We note that 1 + R — Г, so that, in a sense, 
there is a conservation of the total waveform over the entire length of the rod. If 
P1P1 — P2P2. we have R = 0 and T = 1, so that the incident wave is transmitted 
without undergoing reflection. If p2p2 » P1P1, we obtain R « — 1 and T « 0. 
This represents the case of iota/ reflection. No wave is transmitted to the right of the 
junction point x = 0. Only a reflected wave is generated. The solution is described 
in Figure 6.4. 
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Eigenvalue Problems and Eigenfunction Expansions 

It was indicated above that to solve Cauchy or initial and boundary value problems in 
composite media, one should first solve two subproblems in the two subregions G\ 
and Gì with arbitrary, unspecified boundary data on the discontinuity region SO· The 
solutions of the full problem are then determined by applying the matching conditions. 

There is an alternative approach that we now discuss for problems in bounded 
spatial regions. In the absence of a discontinuity region, such problems were solved 
in Chapter 4 with the use of eigenfunction expansions. The eigenfunctions were 
determined from the eigenvalue problem associated with the related homogeneous 
equation and homogeneous boundary conditions. We now show that it is possible to 
construct eigenvalue problems for composite media. The results can be used to solve 
boundary and initial and boundary value problems for composite media by means of 
eigenfunction expansions. 

Again considering the region G with SO as a discontinuity region for the coeffi-
cients, we introduce the following eigenvalue problem for v(x), 

L[v(x)} = - V · (p(x)Vw(x)) + q(x)v(x) = \p(x)v(x), x G G, x 0 S0, (6.2.14) 

dv 
a(x)v(x) + ß(x) дп (6.2.15) 

dv (x) 
v(x) and p — — are continuous across SO- (6.2.16) 

on 
The coefficients p(x), q(x), and p(x) may have jump discontinuities across SO· All 
the significant properties of eigenvalues and eigenfunctions given in Chapter 4 remain 
valid for this eigenvalue problem. 

We demonstrate the orthogonality of eigenfunctions corresponding to different 
eigenvalues in the one-dimensional case, with G given as the interval 0 < x < I. 
With L defined as in (4.3.1 ) and Vi and Vj as eigenfunctions corresponding to different 
eigenvalues A, and Xj, (Aj ψ АД (4.3.16) yields 

fx° d fl d 
/ — {pvjv[ - pviv'j) dx + / — (pvjv'i - pviv'j) dx = 0, (6.2.17) 

where xo is the point of discontinuity (it corresponds to So) and 0 < xo < I. This 
follows because the contribution to each integral vanishes at the boundary points 
x = 0 and x — I, as before. At the point x = XQ, the functions pviv'j and pvjv[ both 
occur with opposite signs and their contribution vanishes since Vi, Vj, pv[, and pic-
are assumed to be continuous at x = xo. 

The inner product and the norm for this eigenvalue problem are defined as 

(VÌ,VJ) = / pViVjdx+ / pviVjdx, \\ы\\ = y/(vi,Vi). (6.2.18) 
JO Jxo 

Then, on using (4.3.17) and (6.2.17), we conclude that Vi(x) and Vj(x) are orthogonal. 
The other properties listed and proven in Section 4.3 for the Sturm-Liouville problem 
can be proven for the present problem as well. 
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Next we solve the problem of heat conduction in an insulated composite, finite rod 
with the ends kept at zero temperature. To do so, we use the eigenvalue problem that 
results if the problem is solved by separation of variables. 

Example 6.2. Heat Conduction in a Finite Composite Rod. We consider 
heat conduction in an insulated piecewise homogeneous rod of length I, with the 
ends kept at zero temperature for all time. With the rod positioned in the interval 
0 < x < I and the junction of the two homogeneous portions occurring at the interior 
point x = XQ, we have the following initial and boundary value problem for the 
temperature u(x, t) of the rod, with и = ui (x, t) for x < xo and и = ii2(x, t) for 
x > xo, 

Г pi dui(x,t)/dt - p i d2ui(x,t)/dx2 = 0, 0 < x < xo, t > 0, ((\o\q\ 
\p2du2(x,t)/dt-p2d

2U2(x,t)/dx2 = 0, xo<x<l,t>0. { ' ' ' 

The coefficients Pi, рг, Pi, and рг are all constant. (See Section 4.1 for their descrip-
tion.) The boundary and initial conditions are 

ui(0,i) = 0, u2(l,t) = 0, t > 0 , u{x,0) = f(x), 0<x<l. (6.2.20) 

The matching conditions at x = XQ are 

ui(xo,t) = u2(xQ,t), pi dui(x0,t)/dx = p2 du2{xo,t)Idx, t > 0. (6.2.21) 

Using separation of variables we are led to the following eigenvalue problem for 
the function v(x) with v = v\ (x) for x < xQ and υ = V2(x) for x > XQ: 

PIV"(X) + XpiVi(x), 0 < x < xQ, P2V2(X) + Хр2^2{х), XQ <x <l- (6.2.22) 

The homogeneous boundary conditions are 

υι(0) = 0, v2{l)=0, (6.2.23) 

and the matching conditions at x = XQ are 

V\{XQ) = V2{XQ), pi V[(X0) = p2 v'2(xo)· (6.2.24) 

To determine the eigenfunctions, we solve (6.2.22) for v\ (x) and v2(x) and apply 
the boundary conditions (6.2.23). This yields 

ui(a:) = i 4 s i n ( w ^ - x ) ) v2{x) = В sin j J^f* (x - i) j , (6.2.25) 

where A and В are arbitrary constants. The matching conditions yield a simultaneous 
homogeneous linear system for A and B. As we require a nonzero solution, the 
determinant of the coefficients must vanish. This yields 

Cipi COt I XQ J + C2P2 COt I (I - XQ) J = 0, (6.2.26) 



COMPOSITE MEDIA: DISCONTINUOUS COEFFICIENTS 3 4 5 

where c\ = y/ρϊ/ρϊ and c2 = \Jvil'Pi- This equation determines the eigenvalues 
Afc (k = 1,2,...). We do not solve this equation but note that the Afc are real, 
countably infinite, and positive according to the general theory. 

The eigenfunctions v^ (x) corresponding to the λ^, for к = 1,2,. . . , are 

yW = ЦАХ/0 χ < XQi yik){x) = «niVbil-*)/*) XQ < χ 

Sin(x/Afc Xo/Ci) Sin(VAfc(/ - X0J/C2) 

(6.2.27) 

For the norm of v^ (x), we have 

lMfc)(*)H2 = 2 ■ ^ , , + _ . 2 ; ^ ^ 0 ) . . .. (6.2.28) 
2sinz(VAfcXo/c1) 2sin^(VAfc(Z - xo)/c2) 

The orthogonality of the set of eigenfunctions υ^ (χ) may be verified directly, and 
using (6.2.28), the set may be orthonormalized. The completeness property of the 
eigenfunctions asserts that a function φ(χ) under suitable conditions can be expanded 
in a series of eigenfunctions. 

Applying these results to the initial and boundary value problem for the heat equa-
tion (6.2.19)-(6.2.21 ), separation of variables, or finite Fourier transforms, yields the 
series representation for the solution u(x, t) in the form 

00 

u{x, t) = Σ ake-Xktv{k) {x), (6.2.29) 
fc=l 

where the Afc and υ^ (χ) are the eigenvalues and eigenfunctions of the problem 
(6.2.22)-(6.2.24). The ak are the Fourier coefficients of the initial temperature dis-
tribution f{x)\ that is, u(x, 0) = ^ZfcLi 0-к^к\х) = f(x), and they are given as 

Qfc = 
\\νΜ{χψ 

P i / f{x)v[k)(x)dx + p2 f(x)v(
2
k\x) dx 

JO Jx0 

(6.2.30) 

for к = 1,2,.. . . The v[k)(x) and v(k){x) are given in (6.2.27), and ||t;(fc>(:r)||2 is 
given in (6.2.28). 

The series (6.2.29) represents the formal solution of the problem. The nonhomo-
geneous version of the foregoing heat conduction problem can be solved using the 
eigenfunctions v^(x) and the finite Fourier transform. Similarly, related problems 
for hyperbolic and elliptic equations also can be solved in terms of these eigenfunc-
tions. 

Exercises 6.2 

6.2.1. Formulate, in the manner of (6.2.4)-(6.2.7), an initial and boundary value 
problem for the parabolic equations (4.1.4) and (6.1.8) if SO is a discontinuity region. 
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6.2.2. Formulate, in the manner of (6.2.4)-(6.2.7), a boundary value problem for the 
elliptic equations (6.1.10)-(6.1.11 ) if So is a discontinuity region. 

6.2.3. (a) Show that if p2 « 0 in Example 6.1, then R « 1 and T « 2 in (6.2.13). 
Demonstrate that the (approximate) solution to this problem (i.e., with p2 ~ 0) can be 
obtained by solvingforui(ar, f)in x < 0 with the boundary condition dui(0,t)/dx = 
0, and then obtaining u2(x, t) in x > 0, by using the boundary condition иг(0, t) = 
ui(0,t). (b) Show that if p2 —* oo, we have R —> - 1 and T —> 0, so that there 
is no transmitted wave. Introduce the assumption that p2 3> pi into the matching 
condition for Example 6.1, set up (approximate) boundary values for the two regions 
x < 0 and x > 0, and determine that their solutions are consistent with the results 
obtained from (6.2.12) for large p2 ■ 

6.2.4. Consider the problem of heat conduction in an infinite composite rod com-
posed of two homogeneous rods connected at x = 0. Put и = u\ (x, t) for x < 0 and 
и = u2(x, t) for x > 0 and assume that they satisfy the equations p\ du\(x, t)/dt — 
Pi d2ui(x,t)/dx2 — 0, -oo < x < 0, t > 0, p2du2(x,t)/dt-p2d

2u2(x,t)/dx2 

= 0, 0 < x < oo, t > 0. Let Mi(x, 0) = A and u2(x, 0) = B, where A and В are 
constants and apply the matching conditions (6.2.21) at x0 = 0. Determine the tem-
perature u(x,t) fort > 0. Hint: Letui(x,i) = a\ +βι erf(—х/2с\уД), u2(x,t) = 
a2 + ß2 еп(х/2с2\Д), where ai and ß\ are constants and c2 = Pi/pi for г = 1,2. 
The function erf(z) is the error function integral defined in (5.3.26). 

6.2.5. Reconsider the problem of Exercise 6.2.4 and replace the constant initial data 
by the arbitrary initial conditions щ (х, 0) = /1(2;) andw2(a;,0) = f2(x). Solve the 
respective problems for u\{x, t) and u2(x, t) by assuming that p\ du\(Q, t)/dx = 
Pi du2(0, t)/dx = g(t) is a known function. The solution of the initial and boundary 
value problems for щ(х, t) and u2(x, t) may then be obtained from the result (5.3.37). 
Use the matching condition u\ (0, t) = u2 (0, t) to show that g(t) is the solution of the 
Abel integral equation G(t) = f0 g(r)/\/t — т dr, where G(t) is a known function. 

The solution of this equation is g(t) = (l/n)d/dt (j0 G{r)/\/t - т dr\ . 

6.2.6. Show that the solution of the problem in Exercise 6.2.4 may be obtained by 
applying the Laplace transform in the time variable. 

6.2.7. Adapt the discussion of Section 4.2 to show that the operator (l/p)L associated 
with the eigenvalue problem (6.2.14)—(6.2.16) is a positive operator. Conclude that 
the eigenvalues for the problem are nonnegative. 

6.2.8. Discuss the eigenvalue problem (6.2.22)-(6.2.24) if the boundary conditions 
(6.2.23) are replaced by v[(0) = v'2{l) ~ 0. Obtain an equation for the determination 
of the eigenvalues and obtain an orthonormal set of eigenfunctions. Show that λ = 0 
is an eigenvalue and v(x) = 1 is an eigenfunction for this problem. 

6.2.9. Expand the function f(x) = 1 in a series of the eigenfunctions v^ (x) given 
in (6.2.27) and use this result to obtain a solution of the problem (6.2.19)-(6.2.21) if 
u(x,0) = 1. 
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6.2.10. Consider the initial and boundary value problem for the hyperbolic equations 
Pid2U!(x,t)/dt2-pid2ui(x,t)/dx2 = 0,0 < x < x0, t > 0,p2d

2U2(x,t)/dt2-
P2d2U2(x,t)/dx2 = 0, xo < x < I, t > 0, in a composite medium. Let 
u(x,Q) = f(x), ut(x,0) = g{x), 0 < x < l, where и = u\{x,t) for x < XQ 
and и = U2(x, t) for x > XQ. Assuming that ui(x, t) and it2(x, t) satisfy the bound-
ary conditions (6.2.20) and the matching conditions (6.2.21), apply separation of 
variables and show how the solution can be expressed in terms of the eigenfunctions 
obtained in Example 6.2. 

6.2.11. Develop a finite Fourier transform approach for the eigenfunctions obtained in 
Example 6.2 for the purpose of solving the problem (6.2.19)-(6.2.21 ) if the equation 
and the boundary conditions are inhomogeneous. 

6.2.12. Show how Laplace transforms can be used to solve the problem (6.2.19)-
(6.2.21). 

6.2.13. Let щ(х,y) and U2(x,y) satisfy the Helmholtz equations V2u\(x,y) + 
k2ui(x,y) = 0, -oo < у < oo, x < 0, V2U2(x,y) + k2U2(x,y) = 0, —oo < 
у < со, x > 0, with fci and k2 as constants, and let u\ (x, y) and ыг(х, у) be related 
across x = 0 by the matching conditions щ(0,у) = U2(0,y), dui(0,y)/dx = 
du2{0,y)/dx. Represent щ(х,у) and U2(x,y) as ui(x,y) = exp[ifci(xcosΘ + 
ysinO)] + Rexp\ik\(x cose + у sino)], U2(x,y) = Texp[ik2(xcos4> + ysin^)], 
where —π/2 < θ, φ < π/2, and π/2 < θ < 3π/2. The angle θ is assumed to be 
specified. Determine the constants^, </>, R, and T such that the Helmholtz equations 
and the matching conditions are satisfied. This problem characterizes the scattering 
of a plane wave at an interface. A general discussion of scattering problems is given 
in Chapter 10. The restrictions on the angles Θ and φ are required to guarantee a 
unique solution to this problem and to correspond to physically motivated radiation 
conditions. The relationships between the angle of incidence Θ and the angles of 
reflection and refraction Θ and φ, respectively, are known as Snell's laws. 

6.3 SOLUTIONS WITH DISCONTINUOUS FIRST DERIVATIVES 

It has been shown in Section 3.2 that discontinuities in second derivatives for second 
order partial differential equations must occur across characteristic curves or surfaces. 
A large class of second order partial differential equations were shown in Section 
6.1 to have equivalent integral relations in the case where the coefficients and the 
unknown functions were smooth. Since the integral relations contain, at most, first 
derivatives of the unknown functions, they can be used to attach a meaning to solutions 
of differential equations that are continuous and have only piecewise continuous first 
derivatives. 

We begin by considering the integral form (6.1.4) of the hyperbolic equation (6.1.1 ) 
in three dimensions. Assume that a solution u(x,t) of (6.1.4) is continuous across 
a surface φ(χ, t) — 0 but has jump discontinuities in its first derivatives across that 
surface. [Here x represents (x, y, z).] Denote the surface by 5Ό and assume that it 
divides the given region R into the subregions Ri and R2. The solution u(\, t) is 
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assumed to be smooth in R\ and _R2, and the functions p, p, q, and F in (6.1.1) and 
(6.1.4) are assumed to be smooth throughout R. A unit normal vector n to So can be 
given in terms of the space-time gradient vector νφ as 

- - ^ - [Щ' Φΐ] (6.3.1) 
,2 |V0| vWF+0; 

We apply the integral relation (6.1.4) over R\ and Я2 and allow these regions to 
collapse onto SO. With the exception of ut and Vu, all functions in the integral relation 
(6.1.4) including n(x, t) are continuous across SQ. Therefore, we easily obtain 

L р\Уи\.Уф-Р[щ]фг ds = 0 ( 6 3 2 ) 

So \W\ 

where [V] denotes the jump in V across SO. The same expression can be obtained 
over any arbitrary subregion of So, so that the integrand itself must vanish in view of 
the duBois-Reymond lemma (see Exercise 8.1.9). Thus 

p[Vw] · Уф - p[ut}<t>t = 0. (6.3.3) 

Now u(x, t) is continuous across So and is continuously differentiable in the in-
terior of So—that is, directional derivatives of u(x, t) in tangential directions on So 
are continuous. As a result, we can obtain additional equations for the jumps in и 
and Vu across So- (We note that there are four derivatives to be determined in the 
three-dimensional case, so that four equations are needed.) We observe that the vec-
tors ni = [фи 0,0, -φχ], n2 = [0, фи0, -фу], and n3 = [0,0, фи -φζ\ are linearly 
independent and are all orthogonal to the normal vector n. Thus the scalar product 
of the space-time gradient vector Vu into any of the vectors ni , n2, and П3 yields an 
interior derivative in So. Denoting u(x, t) by щ(x, t) in Ri and by u2(x, t) in R2, 
we differentiate щ and u2 in each of the directions щ, n2, and П3. The resulting 
interior derivatives of и are continuous across So so that the difference of the results 
for u\ and u2 must vanish. This yields the following three additional equations: 

[ηχ]φί - [щ]Фх = 0, [иу]фг - [щ]фу = 0, [иг]фг - [щ]фг = 0 (6.3.4) 

for the jumps in Vu and щ across So. 
The four equations (6.3.3)-(6.3.4) are a homogeneous linear system for the jumps 

[ux], [uy], [u2],and [щ] across So. As we assume that one or more of these jumps is 
nonzero, the determinant of the coefficients of this system must vanish to guarantee 
a nonzero solution. The value of the determinant is 

ф*[рф1-р(Ъф)2]=0. (6.3.5) 

Equating the bracketed term in (6.3.5) to zero yields the result 

рф*-р(\7ф)2=0. (6.3.6) 
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On comparing with (3.3.17) we find that (6.3.6) is the characteristic equation for 
the hyperbolic equation (6.1.1 ). Thus φ(χ, t) = 0 must be a characteristic surface, 
and discontinuities in first derivatives can occur only across characteristic surfaces. 
It is shown in the exercises that <̂>t = 0, which is also a consequence of (6.3.5), 
does not lead to a surface of discontinuity. We conclude that a continuous, piecewise 
continuously differentiable solution of (6.1.1) or, more precisely, of (6.1.4), satisfies 
(6.1.1 ) in regions where it is smooth and the jumps in the first derivatives must satisfy 
(6.3.3) on all characteristic discontinuity surfaces. 

Equation (6.3.6) can be expressed (apart from a nonzero factor) as a dot product of 
the normal vector n [i.e., (6.3.1)] to the characteristic surface φ = 0, and the vector 
t = \рЧф, —рфь}- Since n · t = 0, the two vectors are orthogonal and t is tangent to 
the characteristic surface. But (6.3.3) can be written as [Vu] ■ t = 0, and this states 
that the (interior) derivative of [u] in the direction of t is zero on the characteristic, 
consistent with the fact that и is continuous there. Consequently, (6.3.3) is satisfied 
automatically if the solution и is continuous across the characteristic but has jumps 
in the first derivatives. 

For the parabolic case (6.1.8), where щ does not appear in the integral relation, 
the foregoing analysis yields (6.3.3) with the щ term absent. The further calculations 
are the same as before, and instead of (6.3.5), we obtain 

ΡΦΪΦΦΫ = 0, (6.3.7) 

which characterizes the surface SO across which щ and Vu can have jump discon-
tinuities. Again фг = 0 does not yield a surface of discontinuity (see the exercises). 
This leaves (V(/>)2 = 0, which is the characteristic equation for the parabolic equa-
tion (4.1.4). We conclude that φ = φ(ί), so that the surfaces t = constant are the 
characteristics. As a result, Vu is continuous across the characteristics, since it rep-
resents interior differentiation on the surfaces t = constant. Thus it appears that only 
щ can have a jump across the characteristics. However, by considering the jump in 
the parabolic equation (4.1.4) across t = constant (in the manner of Section 3.2), we 
obtain р[щ] = 0, since u, its interior derivatives, and all other terms in the equation 
are assumed to be continuous across t = constant. Consequently, щ must also be 
continuous across t = constant. 

For the elliptic case (6.1.11 ) we obtain the result (6.3.7) with the ф\ term absent. 
Since the surface So is given as ф(х,у,г) = 0 in this case (i.e., there is no t-
dependence), we again conclude that there are no real characteristics or discontinuity 
surfaces for the elliptic equation (6.1.10). 

Example 6.3. The Cauchy Problem for the Wave Equation. We consider 
a Cauchy problem for the one-dimensional wave equation with discontinuous initial 
data. Let u(x, t) satisfy 

utt(x, t) — c2uxx(x, t) = 0, -oo < x < co, t > 0, (6.3.8) 
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with the initial conditions 

u(x, 0) = 0, — oo < x < co, ut(x,0) — < ' > (6.3.9) 

Since u(x, t) is initially continuous and ut(x, 0) has a jump discontinuity, we expect 
the solution to have discontinuous first derivatives on the characteristics that issue 
from the point (x, t) = (0,0). 

A formal application of d'Alembert 's solution (2.2.21) yields 
-I pX + Ct 

u(x,t) = — / ut(s,0)ds, 
i c Jx-ct 

(6.3.10) 

with ut(x, 0) given as in (6.3.9). We divide the half-plane t > 0 into three sectors 
as shown in Figure 6.5. The sectors I, II, and III are separated by the characteristic 
curves x = ±ct that issue from the initial discontinuity point (0,0) of the velocity 
ut(x, t). The integration in (6.3.10) is easily carried out and yields 

f i , 
u(x,t) = I (t + x/c)/2, u 

x - ct > 0, I 
x - ct < 0 < x + ct, II 
x + ct < 0, III. 

(6.3.11) 

«U, 01-«,1».01-0 » (» .О»-0 .« , ( * .0 ) -1 

Figure 6.5 The solution of the Cauchy problem. 

Clearly, u(x, t) satisfies the wave equation (6.3.8) in the interior of each sector 
and is continuous across the characteristics x = ±ct. In sector I, du/dx — 0 and 
ди/dt = 1. In sector II, du/dx = l /2c and ди/dt = 1/2, while in sector III, 
du/dx = du/dt = 0. Thus the derivatives of u(x, t) have jump discontinuities 
across the characteristics x = ±ct. Therefore, u(x, t) is not a strict solution of 
(6.3.8) since it lacks the required number of derivatives. 

To show that (6.3.11) satisfies the integral form (6.1.4) of the wave equation, 
we show that щ, иг, and из (the values of и in the diree sectors) satisfy the one-
dimensional form of the jump condition (6.3.3) across the characteristics x = ±ct. 
We have already seen that u(x, t) is a solution of the wave equation (6.3.8) away from 
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these characteristics. For the characteristic x — ct, we have φ(χ, t) = x — ct = 0, 
so that φχ = I and фь — - с . Also, p = 1 and p = c2, so that (6.3.3) becomes 

2r l i r l 2Ìdu2 диг\ (ди2 дщ\ 1 1 n , . „ . „ , c[ux] + c[ut)=c | _ - _ j + c | _ - — j = - c - - c = 0. (6.3.12) 

On the characteristic x = —ct, we have ф = x + ct = 0 with фх — 1 and φχ = с. 
Thus (6.3.3) becomes 

2r i r l 2/ÖW3 ди2\ (ди3 ди2\ 1 1 /«Q 1<n 
c [ U x ] - c N = c | _ - _ | - c | _ - _ j = - - c + - c = o. (6.3.13) 

We have demonstrated that u(x, t) is a twice-differentiable solution of the wave 
equation (6.3.8) away from the characteristics and that it satisfies the jump condition 
(6.3.3) across the characteristics x = ±ct. Thus (6.3.11) satisfies the integral form 
(6.1.4) of the wave equation. 

Exercises 6.3 

6.3.1. Show that for the one-dimensional wave equation (6.3.8) the jump conditions 
(6.3.3)-(6.3.4) reduce to the single condition c[ux] ± [ut] = 0 across the characteristics 
ф(х, t) = x =F ct = constant. 

6.3.2. Determine that the function и(x, t) = j {^X ~ ^ ' x ~ c t < Q> with /(0) = 
[ 0 x — ct > 0, 

0 and / '(0) ф 0, satisfies the jump condition across the characteristic φ{χ,ΐ) = 
x — ct = 0 for the wave equation given in Exercise 6.3.1. 

6.3.3. Show that u{x, t) = { e ' -^ ж ~ *)' x ~ * < ®' where f(x) is a smooth 

function with /(0) = 0 and / ' (0) ф 0, is a solution of the hyperbolic equation 
utt(x, t) — uxx(x, t) + 2ut(x, t) + u(x, t) — 0, with discontinuous first derivatives 
across x — t = 0. Derive the jump conditions for this equation and verify that the 
jump condition across the characteristic x — t — 0 is satisfied for u(x, t). 

6.3.4. Determine that the function u(x, y,t) = ( f ^* ' У ' *)]' Ф}( * ' У ' ' j < J 
K ,y' > \ 0 0(«, », ί) > 0 , 

where 0(ж, у, ί) = xcos(ö) + у sin(ö) - ct with a constant #, is a solution of the 
two-dimensional wave equation uu(x,y,t) — c2[uxx{x,y,t) + uyy(x,y,t)] = 0, 
whose derivatives are discontinuous across the characteristic ф{х, у, ΐ) = 0. Show 
that the jump conditions at ф(х, у, t) — 0 are satisfied. 

6.3.5. Show that u(x,y,z, t) = { J n h ( r ~ c i ) / r ' Г " C\ < J' where r2 = x2 + 
v a w \ 0 r - c i > 0 , 

y2+z2, satisfies the three-dimensional wave equation uu{x, y, z, t)—V2u(x, y, z, t) = 
0, and that its first derivatives satisfy the jump conditions across the characteristic 
r-ct = 0. 
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6.3.6. Show that if we have <f>t = 0 in (6.3.5), we conclude from (6.3.4) that [ut] = 0 
across the surface φ(\) = constant, and find from (6.3.3) that the normal derivative 
of u(x, t) must be continuous across φ(χ) = constant. Therefore, both u(x, t) and its 
first derivatives must be continuous across φ(χ) = constant. 

6.3.7. Obtain (6.3.7) from the integral relation (6.1.8) in the parabolic case. 

6.3.8. Show that фь = 0 in (6.3.7) does not yield a surface of discontinuity for the 
first derivatives of solutions of the corresponding parabolic equation. 

6.3.9. Show that the solution of the initial and boundary value problem for the heat 
equation, ut(x,t) —c2uxx(x,t), 0 < x < oo, t > 0, u(x, 0) = 0, x > 0, u(0,t) = 
f 0, 0 < t < t0, . . . tU , ,. . , 

< 1 is given in the following form 
11 to < t, 

f0, 0 < x < oo, 0 < t < t0, 
Щх,*) - I erfc(x/2cy/t=to~), 0 < x < oo, t0 < t, 

where erfc(2) is the complementary error function defined in (5.3.33). Verify that 
even though u(0, t) has a discontinuity at t = io, u(x, t), ux{x, t), and ut(x, t) have 
a zero jump across t = to for x > 0. Note that t = to is a characteristic for the heat 
equation. 

6.4 WEAK SOLUTIONS 

The results of the preceding section have extended the concept of the solution of 
second order partial differential equations to the case of discontinuous first deriva-
tives. Had we introduced initial displacements u(x, 0) with jump discontinuities in 
Example 6.3, a formal application of d'Alembert's solution would have shown that 
the solution has discontinuities across the characteristics x = ±ct for the wave equa-
tion. Such solutions cannot be discussed on the basis of the foregoing methods where 
the continuity of solutions was assumed. To deal with such problems, we weaken 
the concept of solution even further and obtain a new integral expression for each of 
the hyperbolic, parabolic, and elliptic equations considered. Again, this expression is 
equivalent to the given differential equation when the solutions are smooth. However, 
it remains valid even if the solution has jump discontinuities. 

Initial and Boundary Value Problems for Hyperbolic Equations 

We discuss the hyperbolic equation (6.1.1) in detail and then state the results for the 
parabolic and elliptic equations of Section 4.1. Given the region R, we consider the 
smooth function v (x, t) that is assumed to vanish identically on and near the boundary 
dR of R, if R is of finite extent. If R is of infinite extent, we assume that v(x, t) 
vanishes outside some bounded region, as well as on and near any finite boundary of 
R. We define the operator L as 

L[u) = putt - V · (pVu) + qu, (6.4.1) 
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where we are again considering two- or three-dimensional spatial regions. Then we 
obtain, since the operator L is formally self-adjoint (see Section 3.6), 

vL[u] - uL[v] = p[vutt - uvtt] - [vV ■ (pWu) - uV ■ (pVv)\ 

= —[pvut - puvt] - V · [pwVtt - puWv], (6.4.2) 

since p = p(x). Using the space-time gradient vector V = [V, д/dt] we have 
vL[u] — uL\v] = —V · \pvVu — puVv, —pvut + puvt]. Integrating over the region 
R, we obtain 

ff lv{L[u] - pF) - (uL[vj - vpF)\ dV 

— — 11 V ■ \pvVu — puVv, —pvut + puvt] dV 

= — \pvVu — puVv, —pvut+puvt]-nds = 0 (6-4.3) 
JdR 

where n is the exterior unit normal to dR. The last integral in (6.4.3) results on using 
the divergence theorem, and it equals zero since v vanishes identically near dR. This 
is so even if R is unbounded, since v(x, t) vanishes for sufficiently large x and t. The 
divergence theorem is then applied to a region bounded by dR and by portions of 
circles or spheres whose radius is subsequently allowed to tend to infinity. 

We conclude from (6.4.3) that 

if v(L[u] - pF) dV = ff (uL[v] - vpF)) dV. (6.4.4) 

If u(x, t) is a smooth solution of (6.1.1), the integral on the left in (6.4.4) vanishes 
and we conclude that for any admissible w(x, t) we have 

IL [uL[v] - vpF)) dV = 0. (6.4.5) 
R 

Conversely, if и(х, i) satisfies the integral expression (6.4.5) for all admissible v(x, t) 
and u(x, t) is twice continuously differentiable, we obtain from the equation (6.4.4) 

I v{L[u] - pF) dV = 0. (6.4.6) 
я 

Using the fundamental lemma of the calculus of variations (see Exercise 8.1.8), we 
conclude from the arbitrariness of v(x, t) that L[u] — pF — 0, so that ii(x, t) satisfies 
(6.1.1). 

If u(x, t) is a twice continuously differentiable solution of the hyperbolic equation 
(6.1.1 ), we say that u(x, t) is a classical solution of the differential equation. If u(x, i) 
is a solution of (6.4.5) for all admissible v(x, t) but does not have the required number 
of derivatives to be a classical solution of the differential equation (6.1.1 ), we say that 
u(x, t) is a weak or generalized solution of the differential equation. Note that the 
solutions of the integral relation (6.1.4) may also be termed weak solutions if they 
are not twice differentiable. 
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Initial Value Problems for Hyperbolic Equations 

Weak solutions of initial value problems for the hyperbolic equation (6.1.1 ) are defined 
as follows. We proceed as before but assume that a portion of dR, say dRo, lies on 
the initial region t = 0, where u(x, 0) = /(x) and щ(х, 0) = <?(x) are specified. The 
function v(x, t) need not vanish on dRo but it must vanish on and near the remainder 
of dR. As a result, the integral over dR in (6.4.3) is nonzero when taken over the 
subset dRo of dR. Then, if 

if (uL[v\ - vpF)) dV+ f {pfvt - pgv) ds = 0 (6.4.7) 
JjR JdRo 

for all admissible v(x, t), u(x, t) is said to be a weak solution of the aforementioned 
initial value problem for (6.1.1 ). 

It can again be shown that if u(x, t) is a classical solution of (6.1.1 ) in two subre-
gions R i and RQ. of R and has a jump discontinuity across the surface So that separates 
R\ and i?2, then So must be a characteristic surface. This is done by applying (6.4.4) 
to the two regions R\ and R-2 and considering the nonzero contributions (i.e., the 
integral over So). We represent So by ф(х, t) = 0. The integral is then given as 

/ {v [[V«], [«*]] · [pV& -рфг] - [u}[Vv,vt] ■ [pV0, -P4H]} ds = 0, (6.4.8) 
JSo 

where [V] denotes the jump in V across So. Since v is arbitrary we can put v = 0 
on So- We then conclude on the basis of the duBois-Reymond lemma, as in Section 
6.3, that [u][Vw, wt] · ]рЧф, —рфь] = 0. Now if the vector \ρ4φ, — ρφϊ\ is not 
tangential to the surface So, then [Vw, vt] ■ \рУф, —рфг] is effectively a transverse 
(i.e., nontangential) derivative of г; on So and cannot be assumed to vanish throughout 
So even if υ is zero there. As a result, we must put [u] = 0 on So, and this contradicts 
our assumption that и has a nonzero jump across So- Therefore, the vector must be 
tangential and its dot product with normal vector [V<£, фг] to So must vanish. This 
yields the characteristic equation рф\ — p(V</>)2 = 0, so that So is a characteristic 
surface. 

Weak Solutions of Parabolic and Elliptic Equations 

We now define weak or generalized solutions for the parabolic and elliptic equations 
of Section 4.1. We say that и(х, t) is a classical solution of the parabolic equation 

L[u] =■ put-V ■ (pVu) + qu = pF (6.4.9) 

if u(x, t) has a continuous time derivative and two continuous derivatives in the spatial 
variables. With the region R and the smooth function v(x, t) defined as before, we 
easily conclude by adapting the foregoing procedure for classical solutions u(x, t) 
that 

/ / [u{-pvt - V · (pVv) + qv} - vpF] dV = 0. (6.4.10) 
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The operator L* [v] = — pvt — V· (pVv)+qv in the braces is the formal adjoint of the 
operator L[u) of (6.4.9) (see Section 3.6). If u(x, t) satisfies (6.4.9) for all admissible 
v(x, t) and is not a classical solution of (6.4.9), we say that it is a weak or generalized 
solution of the differential equation (6.4.9). Weak solutions of initial value problems 
for (6.4.9) are considered in the exercises. 

Similarly, if u(x) is a twice continuously differentiable solution of the elliptic 
equation 

L[u] = - V · (pVu) + qu = pF, (6.4.11) 

it is a classical solution of (6.4.11 ), and it is easily shown to satisfy the integral relation 

if [u{V ■ (pVv) - qv} + vpF] dV = 0 (6.4.12) 

for all admissible v(x), since L is a formally self-adjoint operator. If u(\) satisfies 
(6.4.12) but is not a classical solution, it is said to be a weak or generalized solution 
of (6.4.11). In view of the smoothness properties of solutions of elliptic equations, 
there is generally no distinction between weak and classical solutions in the elliptic 
case. 

Examples 

We now consider some examples. In the first example we consider a weak solution 
of an initial value problem for the wave equation (6.3.8). In the second example we 
examine the Fourier series solutions obtained in Chapter 4 and show how they may 
be interpreted as weak solutions. 

Example 6.4. Weak Solutions of the Wave Equation. The Cauchy problem 
for the wave equation 

uu(x, t) = c2uxx(x,t), \x\ < oo, t > 0, u(x, 0) = 

has the formal d Alembert 's solution for t > 0 

( 0, x < —ct, 
1/2, -ct < x < ct, (6.4.14) 

1, x > ct. 
Since u(x, t) is discontinuous across the characteristics x = ±ci, we must interpret 
the solution in a generalized sense. 

We consider the rectangular region R displayed in Figure 6.6 and assume that the 
smooth function v(x, t) vanishes near the boundary dR of R except for the part of 
dR that coincides with the x-axis. The region R is divided into sectors I, II, and III, 
and we show that (6.4.14) satisfies (6.4.7) for all admissible v(x, t) so that it is a weak 
solution of (6.4.13). We have 

x < 0 , 
x > 0 , 

ut(x, 0) = 0, 

(6.4.13) 
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Figure 6.6 The region R. 

dxdt / / u[vtt - c2vxx] dV = / / \\vtt - c2u 

+ / / -^[vtt - c2vxx] dx dt + / / 0[vtt - (?v. c]dxdt. (6.4.15) 

For the integral over the region A, where A represents I or II, we have 

/ / [vtt - c2vxx] dxdt= - — , — · [c2vx, -vt] dxdt. 

= - I [c2vx, —vt] ■ nds = - / vtdx + c2vx dt, (6.4.16) 
JdA JdA 

on using the divergence theorem and the fact that nds = [dt, —dx]. The integration 
in the line integral over dA is taken in the positive direction. 

Since v(x,t) vanishes on dR if t > 0,andona;=Fci = Owe have vt dx+c2vx dt = 
±cdv,we obtain 

ГГ Л*2 /-(0,0) /-(0,0) 

/ / u[vtt - c2vxx] dxdt = - vtdx - I cdv + I 
JjR JO J(X2,T) J(XI,T) 

dv 

r(x2,T) /•^2,-i ) c Л C C 

/ -dv = - vt dx - cv{0,0) + -v(0,0) + -v(0,0) = - / vtdx. 
J(o,o) 2 Jo f 

Jo (6.4.17) 
Since T is arbitrary, we have shown that u(x, t) satisfies (6.4.7) (appropriately mod-
ified for this example) for all x and for t > 0, and it is therefore a weak solution of 
the Cauchy problem (6.4.13). 
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Example 6.5. Eigenfunction Expansions and Weak Solutions. The series 
solutions given in terms of eigenfunctions obtained in Chapter 4 by the method of 
separation of variables or by finite Fourier transforms, were shown to require strong 
conditions on the data for the given problems to render them classical solutions. 
This was especially the case for problems that involved hyperbolic equations. It was 
indicated in Chapter 4 how the series may be understood as generalized solutions in 
case they are not classical solutions, and we now use the preceding results to show 
in a more precise manner how the series solutions are to be interpreted as weak or 
generalized solutions. 

Our discussion is restricted to the hyperbolic equation (4.1.10) with the homo-
geneous boundary conditions (4.2.2) and the initial conditions (4.2.4). Proceed-
ing as in Section 4.6, we expand u(x,t) in a series of eigenfunctions u(x, t) = 
Efcli Nk(t)Mk(x), with Nk{t) defined as in (4.6.14) except that Bk = 0 for all к 
since the boundary conditions are homogeneous. We assume that each of the eigen-
functions Mfc (x) is twice continuously differentiable and so are the Nk (t). The partial 
sum um(x, t) = Σ™=ι Nk(t)Mk(x), is easily seen to be a classical solution of the 
equation 

P ^ f - V · (pVum) + qum = PFm, (6.4.18) 

where Fm(x, t) is the mth partial sum of the Fourier series of F(x, t). The initial 
and boundary conditions are um(x,0) = ]CfcLi(/>Mk)Mk(x), dum(x,0)/dt = 
ΣΤ=ι(9, Mfc)Mfc(x), aum + ßdum/dn\dG = 0. 

We consider the time interval 0 < t < T and the region G on which the initial data 
are assigned together with its boundary dG. Define the region by R in (x, i)-space 
as the direct product G x [0, T]. Let v(x, t) be a smooth function that vanishes on 
and near dR. Then, since each um is a classical solution of (6.4.18), we have from 
(6.4.5) 

If um{pvtt - V · (pVv) + qv} dV= If pFmv dV. (6.4.19) 

We now assume that as m —» oo we have um(x,0) —> /(x), dum(x,0)/dt —» 
g(x), Vwm(x, 0) —> V/(x), and Fm(x, i) —> F(x, t), where / and g are the initial 
data and pF is the inhomogeneous term of the hyperbolic equation. The convergence 
of um(x, 0) to /(x) is assumed to be uniform, while all other cases represent mean 
square convergence. It can then be shown that the partial sums um(x, t) converge in 
the mean square sense to a function u(x, t) in the region R. The function u(x, t) need 
not be a solution in the classical sense. 

To proceed, we consider the integral 

IL (и - um){pvtt - V · (pVw) + qv} - p{F - Fm)v dV. (6.4.20) 
R 

Let L[v] represent the expression in the braces in (6.4.20), and apply the Cauchy-
Schwarz inequality (see Exercise 4.2.12) to the absolute value of the integral. This 
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gives us 

iff (« - um)L[v) - p(F - Fm)v dV < \\u - um\\ \\L[v]/p\\ + \\F-F„ 

(6.4.21) 
On proceeding to the limit a s m - » oo in (6.4.21 ) we conclude that the right side tends 
to zero, since linim^oo ||it — um\\ = Oandlimm_*oo \\F — Fm\\ = 0 by assumption. 
Consequently, 

ff u{pvtt - V · (pVv) + qv) dV = jj pFv dV, (6.4.22) 

and we have shown that u(x, t) is a weak solution of 1.10). [The manner in which we 
have shown that um(x, t) converges to a solution u(x, t) is often called weak conver-
gence.] On using (6.4.7) instead of (6.4.5) to define a weak solution, the foregoing 
analysis shows that u(x, t) is a weak solution of the given initial and boundary value 
problem. 

We have not taken into account the boundary conditions assigned for the problems 
considered in this section because u(x, t) was chosen to vanish on the boundary. An 
alternative weak formulation of initial and boundary value problems for more general 
forms of (second order) equations than those considered in this section is given in 
the exercises. Boundary terms do play a role in the resulting weak solutions. This 
formulation is used in the Galerkin method for obtaining approximate solutions of 
the given initial and boundary value problems (see Section 8.2 and Chapter 12). 

Exercises 6.4 

Co x — ct<о 
6.4.1. Show that u(x, y, t) = < ' _ ' is a weak solution of the two-

I -L f Ju C-6 ^ v/ j 

dimensionalv/aveequauonutt{x,y,t)—c2[uxx(x,y,t)+uyy(x,y,t)] = O.Hint: Use 
(6.4.3) and apply it to regions on both sides of the characteristic surface ф(х,у, t) = 
x — ct = 0. Show that the boundary integral over the surface ф(х, у, t) = 0, which 
results from the integration over the region where <j>(x,y,t) > 0, vanishes by showing 
that the terms in v can be expressed as a directional derivative. 

6.4.2. Verify that u(x, t) = < . ; ,(' , , ' is a weak solution of the 
J I sm(i + ct), x + ct>0, 

one-dimensional wave equation. 
6.4.3. Obtain the integral (6.4.9) that characterizes weak solutions for the parabolic 
equation (6.4.8). 

6.4.4. Obtain an integral relation [similar to (6.4.7)] that characterizes weak solutions 
of initial value problems for the parabolic equation (6.4.8). 
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6.4.5. Using the convergence properties of Fourier sine series discussed in Chapter 
4, set up an initial and boundary value problem for the homogeneous wave equation 
in the finite interval 0 < x < I with it(0, i) = u(l, t) = 0 such that its separation of 
variables result is a weak solution and not a classical solution. That is, choose the 
initial data f(x) and g(x) such that the conditions given in Example 6.5 are met, but 
the series solution is not twice differentiable term by term. 

6.4.6. Solve the initial and boundary value problem for the heat equation given in 
Exercise 6.3.9, with the initial condition u(x, 0) = 1 and the boundary condition 
u(0, t) = 1 for 0 < t < to and u(0, t) = 0 for t > to- Show that the solution is 
continuous across t — to-

6.4.7. Use separation of variables to show that a formal solution of the steady-
state problem for the heat equation ut(x, t) — c2uxx(x,t) = 0, —oo < x < 

co, t > 0, u(0, t) = < *■ ' ' ' where ω is a constant, is given as u(x, t) — 

| e x p ( - v ^ 7 2 ? a ; ) s i n ( - v ^ 7 2 ? a ; + a;i), t > 0, i f w e r e q u i r e t h a t u ( : M ) _ > 0 

as x —> oo. Determine that u(x,t) is not a weak solution of the heat equation. Show 
that (5.3.31 ) with g = u(0, t) (as defined in this exercise) is a weak solution of the 
heat equation. 

6.4.8. Consider the (nonself-adjoint) elliptic equation— V-(p(x) VU(X))+(?(X)M(X)+ 
b(x) · Vtt(x) = p(x)F(x) in the bounded region G, with one of the (four) boundary 
conditions given in Section 4.1 assigned on dG. Multiply across by a function v(x) 
and integrate the equation over the region G. Use Green's theorem to obtain the 
integral relation 

/ / [pVu · Vt> + quv + vb ■ Vul dV = lì pvF dV + / pv—-ds. 
JJG JJG JOG 9n 

Determine the form of the integral relation for each of the four boundary conditions 
given in Section 4.1. If u(x) is specified on a part of the boundary, put v(x) = 0 
there. For each case this yields an integral relation of the Galerkin form associated 
with the boundary value problem for the elliptic equation. The function u(x) is said 
to be a weak solution of the given boundary value problem, in the Galerkin sense, 
if it satisfies the corresponding integral relation for all admissible u(x). Only in 
the case of Dirichlet data on all or part of the boundary must u(x) be chosen to 
satisfy the boundary condition and v(x) be equated to zero there. Otherwise, u(x) 
and v(x) are unrestricted. One of the forms of the Galerkin method for obtaining 
approximate solutions of boundary value problems is based on the foregoing results. 
An integral relation of Galerkin form can also be associated with initial and boundary 
value problems for hyperbolic and parabolic equations. (See Chapter 12 for a general 
discussion.) 
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6.5 THE INTEGRAL WAVE EQUATION 

The integral relation (6.1.4) that corresponds to the one-dimensional wave equation 
(6.4.12) leads to a number of interesting expressions that can be used to solve various 
initial and boundary value problems for the wave equation as we now demonstrate. 
If u(x, t) is a solution of the one-dimensional wave equation (6.4.12), then (6.1.4) 
takes the form of a line integral and we obtain 

/ [c2ux, — ut] ■ n ds = l щ dx + <?ux dt = 0, (6.5.1) 
JdR JdR 

since n ds = [dt, —dx]. When the wave equation (6.4.12) has a nonhomogeneous 
term F, this term must be integrated over the region R. We call (6.5.1) the integral 
wave equation, and now choose a variety of regions R and integrate (6.5.1 ) over their 
boundaries. 

Figure 6.7 The characteristic quadrilateral. 

Characteristic Quadrilaterals and Triangles 

First we select R be a region in (x, i)-space bounded on four sides by characteristic 
lines x ± ct = constant as pictured in Figure 6.7. As a result, dR is a characteristic 
quadrilateral. On the lines x = ±ct = constant we have dx = =fc dt and щ dx + 
c2ux dt = ^fcdu. Then the integral (6.5.1) takes the form 
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p rB pC pD PA 

I щ dx + c2ux dt = с du — cdu+ I с du— c du 
JdR JA JB Je JD 

= 2c K B ) + «(D) - u{A) - u(C)] = 0, (6.5.2) 

with u(C), for example, given as u(C) = u(x—k, t+h), where к and h are prescribed 
positive constants. This gives the difference equation 

u(x — k,t + h) + u(x + k,t — h) = и Ix + ch,t ) +u ix — ch,t-\— I. 

(6.5.3) 
Using Taylor's expansion it can be shown that any twice continuously differentiable 
solution of the difference equation must satisfy the wave equation, in view of the 
arbitrariness of h and к (see Exercises 6.5.1 and 6.5.2). 

Figure 6.8 The characteristic triangle. 
As our next choice for the region R, we choose a characteristic triangle with base 

on the ж-axis, whose two other sides are characteristic line segments, as shown in 
Figure 6.8. Then dR is the boundary of the characteristic triangle, and using the 
foregoing results, we obtain 

p r(x,t) /-{x-ctfi) p(x+ct,0) 
/ ut dx + <?ux dt = — / cdu+ I с du— щ(х, 0) dx 

JdR J(x+ct,0) J(x,t) J{x-ct,0) 

px+ct 
=-2cu(x,t) + cu(x + ct,0) + cu(x-ct,0)+ ut{x,0)dx = 0. (6.5.4) 

J x—ct 

Given the Cauchy problem for the wave equation (6.4.12) with initial data u(x, 0) = 
f(x), ut{x, 0) = g(x), we obtain from (6.5.4), 

1 1 rX+ct 

Ф, «) = ö [/(z - ct) + f(x + ct)} + — / g{x) dx, (6.5.5) 
2 2c Jx-ct 

which is just d'Alembert 's solution. For the inhomogeneous wave equation with a term 
F on the right of (6.4.12), we must add the integral of F(x, t) over the characteristic 
triangle R to the solution (6.5.5). 
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Figure 6.9 The quadrilateral. 

A third choice for the region of integration R in (6.5.1 ) is the quadrilateral pictured 
in Figure 6.9 with the boundary dR, three of whose sides are characteristics and whose 
fourth side is an interval on the x-axis. We apply (6.5.1) over the boundary of the 
region R to obtain 

r r{x,t) /.(O.t-x/c) 
/ utdx + c2ux dt = — I cdu+ с du 

JdR J(x+ctft) J(XJ) 

Act-χ,Ο) p(x+ct,0) 
— I cdu+ щ(х,0) dx = — 2cu(x, t) + cu(x + ct, 0) 

J(0,t-x/c) J(ct-x,0) 

Ax+ct,0) 

+ 2cu{0,t-x/c)-cu{ct-x,0)+ u t (x ,0)dx = 0. (6.5.6) 
J(ct-x,0) 

With the initial conditions u(x, 0) = / (x) , ut(x, 0) = g(x) and the boundary con-
dition u(0, t) = h(t), we obtain 

1 1 fct+x r x\ 
u(x,t) = -[f{x-ct)-f(ct-x)} + — g(x)dx + h(t--). (6.5.7) 

2 ZcJct-x v cJ A

fCt+X 

ct — x 

Differentiating (6.5.7) with respect to x and evaluating the result at x = 0 gives 

ux(p,t) = f'(ct) + -g{ct)--ti{t) = ux(ct,0) + -ut(ct,0) — ut(0,i)· (6.5.8) 
с с c e 

Using these results, any initial and boundary value problem for the wave equa-
tion over a finite, semi-infinite, or infinite interval can be solved and domains of 
dependence for the solutions can be established, as we now show. 
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Examples 

Example 6.6. The Wave Equation in a Semi-Infinite Interval. We consider the 
initial and boundary value problem for the inhomogeneous wave equation in a semi-
infinite interval; that is, 

utt(x,t) — c2uxx(x, t) = F(x, t), 0 < x < oo, t > 0, (6.5.9) 

with initial and boundary conditions 

u(x,0) = f(x), ut(x,0) =g{x), x>0, au{0,t) -ßux(Q,t) = B(t), t > 0, 
(6.5.10) 

where a > 0, ß > 0 and a + ß > 0 (with constant a and ß) and F, f, g, and В are 
given functions. 

To solve this problem we break up the first quadrant in the (x, i)-plane into two 
regions. In region I, x > ct, and in region II, x < ct. These regions are sepa-
rated by the characteristic curve x = ct which issues from the origin, as shown in 
Figure 6.10. 

Figure 6.10 The first quadrant. 

For a point (x, t) in region I, we integrate over a characteristic triangle and obtain 
d'Alembert's solution (6.5.5) plus an integral of F(x, t) taken over the characteristic 
triangle, 

1 pt l-X+c(t-T) 
u(x, t) = d'Alembert's solution + — / / F{a,r)da dr. (6.5.11) 

2c 7o Jx-c(t-r) 

If the point (x, t) is in region II, we integrate over the quadrilateral pictured in 
Figure 6.10, three of whose sides are characteristics, and obtain from (6.5.7) 
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1 1 f C I t l 
u(x, t) = - [f(x + ct) - f(ct - x)\ + — / g{x) dx 

Δ i c Jct-x 

+h(t-3 + hffQ
FbT)*rdr' (6.5.12) 

where h(t) = u(0, t), which is as yet unspecified if β φ 0 in (6.5.10) and F(x, t) is 
integrated over the interior of the quadrilateral in Figure 6.10, which we denote by Q. 

If F = 0, then ux(0, t) is given as in (6.5.8). Substituting (6.5.8) into the boundary 
condition (6.5.10) gives 

ah(t) - β 
1 1 

f(ct) + - g(ct) - - ti(t) Bit), (6.5.13) 

which is a first order ordinary differential equation for u(0,t) = h(t). The initial 
condition is h(0) = l imt_0 u(0, t) = u(0,0), assuming that u(x, t) is continuous at 
(0,0). In that case u(0,0) = l i m ^ o u(x, 0) = limx^0f(x) = / (0) . 

Now if /3 = 0 and a = 1 in (6.5.10), then u(0,t) = h(t) = B{t) so that (6.5.12) 
is already completely specified. However, if B(0) ψ / (0) , the solution (6.5.11)-
(6.5.12) is discontinuous across the characteristic x = ct. As the characteristic is 
approached from points in region I, the limit of u{x, t) is /(0) + С and the limit of 
u(x, t) as x = ct is approached from region II is B(0) + C, where the constant С 
is identical for both regions. We remark that even if B(0) = / (0) , the derivatives 
ux and щ may be discontinuous across the characteristic x = ct, say, if B'(Q) = 
limt_owt(0,i) φ g(0) = \imx->oux(x,0). In these cases, the solution of the 
initial and boundary value problem must be interpreted in the generalized sense. If 
β Φ 0 in (6.5.10), u(0, t) is unspecified and we may put u(0,0) = /(0) to make the 
solution continuous across the characteristic line x = ct. The solution of (6.5.13) 
with /i(0) = /(0) is 

h(t) = f(a 
Jo 

exp ca 

J 
(τ-t) CB(T) - ™f(cr) +д(ст)\ dr, (6.5.14) 

ß V ' ß 
when β φ 0. If F Φ 0, it contributes an additional term to h(t). 

In the special case where f = g = F — Owe obtain the following solution of the 
initial and boundary value problem (6.5.9)-(6.5.10): 

Г0, x > ct, 
«(ж, t) = | cjß jt-x/c e x p ^ca/ß^T _ t + я/с)] в{т) dr, 0<x< ct, 

(6.5.15) 
if β φ 0. If a = 0 and ß = 1, we have 

«(«·*) = {°' / (J-*/cB(T)dT) J < f < c i > (6-5.16) 
while if a = 1 and ß = 0, we obtain 

u(x,t) Го, 
-\B(t- x/c), 

x > ct, 
0 < x < ct. 

(6.5.17) 
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In each of the foregoing cases, the boundary condition (6.5.10) gives rise to a wave 
of the general form h(t - x/c) that travels to the right with speed с For this reason 
the problem is often referred to as a signaling problem. 

The domain of dependence of a point (a;, t) in the first quadrant is given by the 
characteristic triangle in region I and by the quadrilateral in region II. This follows 
from the solutions (6.5.11)—(6.5.12). 

Example 6.7. The Wave Equation in a Finite Interval. The initial and bound-
ary value problem for the wave equation in a finite interval can be solved by separation 
of variables and by the use of finite transform methods in terms of standing waves, 
as was shown in Chapter 4. We now use the foregoing results to construct a solu-
tion that yields a useful small time description in terms of propagating waves (see 
Example 5.11). Given the interval 0 < x < I, we consider the problem 

utt(x, t) - c2uxx(x, t) = F(x, t), 0 < x < I, t > 0, (6.5.18) 

with initial conditions 

u(x,0) = f(x), ut{x,0)=g(x), 0<x<l, (6.5.19) 

and the boundary data 

au{Q,t)-ßux{0,t)=Bi(t), au(l,t)+ßux(l,t) = B2(t), О 0, (6.5.20) 

where а > 0, ß > 0, and а + ß > 0 (with constant a and ß) and F, / , g, and В are 
given functions. 

To solve the problem we break up the strip 0 < x < I, t > 0 into a collection of 
regions i?i, R2, R3, ■ ■., as shown in Figure 6.11. The regions Rk (к = 1,2,...) 
are bounded by portions of the initial line t — 0, the boundary lines x = 0, Z, 
and portions of characteristic lines x ± ct = constant. The problem can be solved 
successively by starting with the solutions in Ri, R2, and Д3. In Ri, u(x,t) is 
given by d'Alembert's solution. In R2 and R3 the solution is obtained as in Example 
6.6 from (6.5.12) or a slight modification thereof. In R4 we find u{x,t) by using a 
characteristic quadrilateral and (6.5.3), which gives u(x, t) in terms of its (known) 
values in Ri, R2, and R3. Similarly, it is possible to construct quadrilaterals and to 
use (6.5.3) or (6.5.12) to determine the solution in all the regions Rk with к > 4, on 
proceeding step by step from R5 to R6 to Д7, and so on. The values of u(x, t) on the 
characteristic lines that separate the regions Rk depend on the compatibility of the 
data at (0,0) and (1,0), which determines whether the solution is continuous. 

The hatched strips in Figure 6.11 indicate how the solution u(x, t) propagates if 
the initial or boundary data are concentrated in a small a; or a small t interval. Two 
cases are depicted. In one case we assume that u(x, 0) = f{x) vanishes outside the 
interval (χο,^ι) whereas the other data g(x),F(x,t),B\(t), and B2(t) all vanish. 
This results in two waves with sharply defined wave fronts if f(x) is discontinuous at 
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Figure 6.11 The regions Rk-

XQ and ж i, traveling to the right and to the left with speed с As they hit the boundaries 
x = 0 and x = I, they are reflected and move in the opposite direction, as shown, 
again with sharp wave fronts. This process continues indefinitely. 

In the second case, we assume that B\ (t) = 0 everywhere outside the interval 
(ίο, ίι) and that all the other data vanish. This yields a wave traveling to the right 
with speed с until it reaches x = I. It is then reflected and reverses direction until it 
is again reflected from the boundary x = 0, and so on. In both cases, if β φ 0 in 
(6.5.20), the waves do not have sharp trailing edges. 

For the general case, it may be possible to detect at the initial stages of the wave 
motion (if the data are concentrated in small intervals or regions), propagating waves 
resulting from the effect of the data. However, as time increases, the interference from 
all waves makes it impossible to distinguish individual waves, and the representation 
of the solution in terms of standing waves given in Chapter 4 becomes more useful. 

Example 6.8. Moving Boundaries. We consider an initial and boundary value 
problem for the wave equation in a region initially given as x > 0. As t increases from 
zero, the boundary point x = 0 begins to move according to the equation x — h(t), 
with h(0) = 0. Thus, u(x, t) satisfies the wave equation 

utt(x,t) - c2uxx(x,t) = 0, h(t) < x < oo, t > 0, (6.5.21) 
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with the initial and boundary conditions 

u(x,0) = f{x),ut(x,0) = g(x), x>0, u(h(t),t) = B(t), t > 0, (6.5.22) 

with prescribed f(x), g(x), and B(t). 

Figure 6.12 The case when h'(t) > с 

If the speed of the moving boundary \dx/dt\ = \h'(t)\ exceeds the speed с of 
wave propagation for (6.5.21 ), the problem (6.5.21 )-(6.5.22) is not well posed. This 
can be seen by examining Figure 6.12, where the case h'(t) > 0 is considered. (We 
concentrate our discussion on this case.) The solution u(x, t) at a point (h(t), t) on 
the boundary curve is uniquely determined (by means of d'Alembert's solution) from 
the initial data f(x) and g(x) alone. Unless the boundary condition u(h(t),t) = B(t) 
is such that the values of и equal those resulting from the initial data, a solution does 
not exist. Consequently, the problem is not well posed in this case. [If h'(t) < — c, 
the boundary condition (6.5.22) does not determine the solution u(x, t) uniquely, as 
will be shown in the exercises. As a result, the problem is again not well posed.] 

When the boundary speed \dx/dt\ = \h'(t)\ is less than the speed с of wave prop-
agation, the problem (6.5.21)-(6.5.22) is well posed and the solution can be obtained 
in the manner indicated in Figure 6.13, where the case h'(t) > 0 is considered. 
[However, the result is also valid for h'(t) < 0.] We consider the regions R\ and 
i?2 separated by the characteristic line x = ct. At a point (x, t) in Д ь d'Alembert's 
solution is valid and it expresses u{x, t) in terms of the initial data. At a point (x, t) 
in i?2, we use the quadrilateral displayed in Figure 6.13 to obtain the result, 

■I -I fX + Ct 

u(x,t) = u(a,r) + -[f(x + ct) -f(a + CT)] + — g(s) ds. (6.5.23) 
^ iC Ja+CT 

The point (σ, r) is where the characteristic x — ct = constant through (x, t) intersects 
the curve a; = h(t). It is determined from the equations σ—ст = x—ct, h(r)—a = 0. 



3 6 8 INTEGRAL RELATIONS 

It follows that x = h(r) + c(t — r) , so that r is a function of x — ct. Thus, 
u(a, T) = B(r) is a right-traveling wave. Once (σ, r) is determined, we may express 
u(x, t) in i?2 as 

u{x, t) = B(T) + -[f{x + ct) - f{a + CT)} + — / g{s) da. (6.5.24) 
Δ AC J(T+CT 

As (x, t) —» (0,0), we also have (σ, τ) —> (0,0), so that with limt_>0 u(h(t), t) = 
limt_o B(t) = B(0), we find that unless limx_o u(x, 0) = Ηπΐχ^ο f(x) — /(0) = 
.B(O), the solution is discontinuous across the characteristic x = ct and must be 
interpreted in a generalized sense. 

Figure 6.13 The case when 0 < h'(t) < с 

An instructive special case occurs if we consider the boundary curve x = h(t) — 
c0t, \c0\ < c, and the periodic boundary condition u(h(t), t) = B(t) = u(cot, t) — 
A cos(u;i), where A and ω are prescribed constants. Thus, a boundary point moves 
with the constant velocity CQ. We assume that f(x) = g(x) = 0. Then τ = 
(ci - x)/(c — co) and the solution is 

u^xt^fAcos[{cw/(c-co))(t-x/c)}, c0t<x<ct (6.5.25) 
I U 5 Ct ^ X . 

This result has the following interesting interpretation. The wave u(x,t) = 
A COS[(OJ/(C — c0))(t-x/c)], which results from the effect of the boundary motion— 
which may be thought to represent a moving energy source—has a frequency of oscil-
lation ώ = [с/ (с — co)]w, which exceeds the frequency of oscillation ω of the source 
term [i.e., Acos(wt)] ifco > 0. The converse is true if CQ < 0. In both cases the wave 
u(x, t) moves to the right. Thus, if the boundary source moves in the direction of the 
resulting wave motion (i.e., CQ > 0) the frequency ω increases, whereas if it moves 
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in the opposite direction (i.e., Co < 0), the frequency ώ decreases. This phenomenon 
is known as the Doppler effect. 

Spacelike and Timelike Curves 

A curve x = h(t) in the (x, i)-plane for which \h'(t) | < c, where с is the characteristic 
or wave speed of the wave equation uu = c2uxx, is called a timelike curve. If 
\h'{t)\ > c, it is called a spacelike curve. Any spacelike curve can be used as an 
initial curve for the wave equation on which и and ди/дп, the normal derivative on 
the curve, must be specified. Any timelike curve can play the role of a boundary 
curve on which one condition on u(x, t) can be assigned, as is the case for the time 
axis x = 0. We now demonstrate how the foregoing results can be used to solve an 
initial and boundary value problem with initial data given on a spacelike curve and 
boundary data prescribed on a timelike curve. 

<x, t) 

x ' A , M : Space-like 

Figure 6.14 Timelike and spacelike curves. 

Let u(x, t) be a solution of the wave equation (6.5.21) and suppose that the space-
like curve x = h\ (t) and the timelike curve x = /12(f) bound the region R depicted 
in Figure 6.14. Let u(x, t) and du(x, t)/dn, the normal derivative, be specified on 
x = h\(t) as 

du{h,{t),t) _ ^ ( 6 5 2 6 ) 
u(Mt), *)=/(«)» dn = 9(t), 

and let u(x, t) be prescribed on x = h2(t) as ω(/ΐ2(ί), ί) = B(t). 
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It follows from (6.5.26) that 

Г du{hi(t),t)/dt = h\{t)ux+ut = f'(t), 

du(hi(t), t)/dn = (-ux + h[(t)ut) /^/l + h'^ty = g(t), 
(6.5.27) 

since du(h\{t),t)/dn = ([— Ι,/ι'^ί)] · Vtt) /y/l + h[(t)2. It is possible to solve for 
ux and щ on x = h\ (t) in terms of f(t) and g(t) from (6.5.27). In the region R\ of 
Figure 6.14 the solution at an arbitrary point (x, t) can be specified in terms of f(t) and 
g(t) by applying the formula (6.5.1) to the characteristic triangle shown in the figure. 
In the region R2 of Figure 6.14, the solution at a point (x, t ) can be specified in terms 
of f(t), g(t), and B(t) by using (6.5.1) and integrating over the quadrilateral shown 
in the figure. We observe from the figure that of the two backward characteristics 
issuing from the point (a;, t), only one intersects the timelike curve, whereas both 
intersect the spacelike curve. This signifies that only one wave is generated by the 
data on a timelike curve, whereas two waves are generated by data on a spacelike 
curve. 

Characteristic Initial Value Problem 

Another problem that is of great interest for the wave equation is the characteristic 
initial value problem. In this problem u(x, t) is prescribed on the two forward charac-
teristics issuing from the point (xo, 0) and we look for a solution of the wave equation 
in the interior of the sector bounded by the characteristics. This a problem with mov-
ing boundaries, where each boundary moves with the speed of wave propagation. We 
consider the equation 

utt(x, t) — c2uxx{x, t) = F(x, t), XQ — ct < x < xo + et, t > 0, (6.5.28) 

with the characteristic data, for t > 0, 

u(x,t)\x-ct=x0 = Bi(t), u(x,t)\x+ct=Xo = B2(t), (6.5.29) 

and the compatibility condition Si (0) = £2(0). Using the difference equation (6.5.3) 
we obtain the solution u(x, t) as 

u(x,t) = B\ K'+^ll+* 1 ( XQ-X 

2 V с 

- Βι (0) + ^~ if F(a, T) da dr, (6.5.30) 
2 c JJcQ 

where the integration is carried out over the characteristic quadrilateral (denoted as 
CQ) depicted in Figure 6.15. 

It may be noted that in contrast to the results for first order equations, where 
characteristic initial data resulted in nonunique solutions, the solution (6.5.30) is 
unique. This can be attributed to the fact that the data are given on two intersecting 
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C V 0| 

Figure 6.15 The characteristic initial value problem. 

characteristics and are compatible at the point of intersection. If u(x, t) is specified 
on only one characteristic line, the solution is not unique. 

The characteristic initial value problem plays a role in Riemann 's method of solu-
tion of the Cauchy problem for the second order hyperbolic equation in two variables 
discussed in Section 8.3. The equation is assumed to be in the canonical form for 
hyperbolic equations (apart from the fact that с ψ 1), 

utt{x,t) — c2uxx(x,t) = aux(x,t) + but(x,t) + du(x,t) + F(x,t), (6.5.31) 

where a, b, and d may be functions of x and i. We assume that the characteristic 
initial data for u{x, t) are given as in (6.5.29) and are compatible. By treating the 
right side of (6.5.31) as an inhomogeneous term, (6.5.30) yields the solution in the 
form of an integral equation 

u(x, t) = B\ 
1 / x-
2 1 + — 

x0 + B2 2 Г с - Β ι ( 0 ) 

-\ / / F(a, т) da dr-\ / / (aua + buT + du) da dr. (6.5. 
2c JJCQ 2c JJCQ 

32) 

We put u(x,t) = R(x,t) + T[u,ux,ut], where R(x,t) represents the terms that 
involve Bi, £?2, and F, and T[u,ux,ut] represents the integral terms in ux, щ, 
and и. 
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The integral equation (6.5.32) can be solved by iteration. We select an arbitrary 
initial approximation u^°\x, t) [we can set u^ = 0 in this case] and insert u^ into 
the right side of (6.5.32). In the next approximation we have 

u{1\x, t) = R{x, t) + T[u{0\ ux°\ u<0)]. (6.5.33) 

Iterating this process gives 

uM(x, t) = R(x, t) + I > ( n - 1 } , u^-V, u[n'1]}. (6.5.34) 

It can be shown that if the data and the coefficients in (6.5.31 ) are smooth, the sequence 
of functions г/™' (х, t) converges to a unique solution of the characteristic initial value 
problem; that is, vSn\x, t) —> u{x, t) as n —» oo. We also have du^/dx —» ди/дх 
and ди^/dt —» du/dt, which implies that u(x, t) satisfies (6.5.32). The details of 
the proof are not presented here. 

Exercises 6.5 

6.5.1. Use Taylor's series to show that a solution of the difference equation (6.5.3) 
must be a solution of the wave equation (6.4.12) in view of the arbitrariness of h 
and k. 

6.5.2. Show that the general solution u(x, t) — F(x — ct) + G(x + ct) of the wave 
equation (6.4.12), is also a solution of the difference equation (6.5.3). 

6.5.3. Obtain the solution u(x,t) for each of the formulas (6.5.15)-(6.5.17)ifB(i) = 
sin(aii). Verify that in each case the solution obtained satisfies the boundary condition. 

6.5.4. Let f{x) = 1 and g = ß = Bl = B2 = F = 0 in the problem (6.5.18)-
(6.5.20). Use the method of Example 6.7 to obtain the solution u(x, t) of this problem 
in the regions Ri, R2,..., R7 indicated in Figure 6.11. 

6.5.5. Show that the problem utt{x,t) - uxx{x,t) = 0, 2i < x < oo, t > 0, 
u(x,0) = x, ut(x,0) = 0, 0 < x < oo, u(2t,t) — \,t> Ohas no solution. 

6.5.6. Solve the initial and (moving) boundary value problem (6.5.21)-(6.5.22) if 
f(x) = g(x) = 0, h(t) = -cot, 0 < c0 < c, and B(t) = Acos{u)t. Obtain the 
Doppler effect and show that the solution oscillates at a frequency below the input 
frequency ω. 

6.5.7. Solve the problem (6.5.21)-(6.5.22) if f(x) = 1, g{x) = 0, h(t) = -c0t, c0 > 
c, and B(t) = 1. Show that the problem has a nonunique solution. 

6.5.8. Solve the characteristic initial value problem (6.5.28)-(6.5.29) if F(x, t) = 
cosivi, B\{t) = e _ i , and 5 г ( 0 = 1. 

6.5.9. Let x = h\(t) = 2t be a spacelike curve on which the data (6.5.26) where 
f(t) = sin t and g(t) = lare given. Solve the Cauchy problem for the wave equation 
utt(x, t) = uxx(x, t) in the region 2i — x > 0 with the given Cauchy data on x = 2t. 
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6.5.10. Solve the Goursatproblem for the wave equation uu{x, t) = c2uxx(x, t) in 
the region 0 < x < ct, t > 0 with the data u(0, t) = g(t), u(ct, t) = f(t), t > 0, 
assuming that/(0) = g(0). (A problem in which the data are given on a characteristic 
curve and on an intersecting timelike curve is called a Goursat problem.) 

6.5.11. Solve the modified Goursat problem for the wave equation uu{x,t) = 
c2uxx(x, t) in the region ct < x < co, t > 0 with the data u(ct, t) = g(t), u{x, 0) = 
f{x), assuming that /(0) = g(0). [Here the data are given on a characteristic line 
and the (spacelike) z-axis.] 

6.5.12. Solve the characteristic initial value problem for the hyperbolic equation 
utt{x,t) - uxx(x,t) + 2ut(x,t) + u(x,t) = 0, —t < x < t, t > 0, with the 
data u(t, t) — e~l, u(—t, t) = e', t > 0, by using the iteration procedure given in 
(6.5.32H6.5.34). Hint: The solution is u{x, t) = e~x. 

6.5.13. Show that the initial and (moving) boundary value problem for the heat 
equation ut{x,t) — c2uxx(x,t) — 0, co< < x < co, t > 0, u(x,0) = f(x), 0 < 
x < co, u(c0t,t) — g(t), t > 0 can be solved by introducing the moving coordinate 
system σ = x — cot, τ — t. In the new variables σ and r we obtain a problem for 
ΰ(σ, r) in the region σ > 0, r > 0 with data given at σ = 0 and r = 0. Introduce 
a change of the dependent variable that yields an initial and boundary value problem 
for a heat equation with data given at σ = 0 and τ = 0. 

6.6 CONCENTRATED SOURCE OR FORCE TERMS 

It has been generally assumed in the preceding sections and chapters that the inhomo-
geneous term pF, which occurs in the equations of Section 4.1 and which represents 
a source or force term, is fairly smoothly distributed throughout the region where the 
problem is to be considered. It often happens, however, that the source or force term 
is effectively concentrated near some lower-dimensional region, such as a curve for 
a problem in two-dimensional space-time. In such cases it is convenient to idealize 
the inhomogeneous term as having infinite density in the region of concentration and 
vanishing outside that region. Thus pF must be singular in the region where it is 
concentrated, and the given differential equation must be interpreted in terms of the 
integral relations given in Section 6.1. We assume that although pF is singular, the 
integral of pF over the region of its concentration is finite, and we now show how to 
characterize the effect of the inhomogeneous term on the solution. 

Hyperbolic Equations 

We consider the hyperbolic equation (6.1.1) and its integral relation (6.1.5). If the 
equation is defined over (n + 1)-dimensional space-time, the inhomogeneous term 
pF is assumed to be concentrated over an n-dimensional region SO and to have the 
property that JR pF dv = Js pF0 ds, where ds is a surface or line element. This 
result is a consequence of the fact that F(x, t) = 0 for (x, ί) ^ So, but F(x, t) is 
concentrated on So so that the integral over R collapses to an integral over So- The 
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function Fo(x, t) represents the surface distribution of the force or source term over 
So- [F(x, t) is also known as a single-layer distribution.] The solution u(x, t) of 
(6.1.4) is assumed to be continuous across SQ. We do not consider double-layer 
distributions of F{x, t) over So. In that case, the solution u(x, t) is discontinuous 
across So- (See Exercises 7.2.23 and 7.2.24, where some mathematical aspects of the 
definitions of these distributions are presented.) 

To determine the variation of и across SO, we let the region R collapse onto So 
in (6.1.4), so that in the limit dR coincides with So and, in fact, covers it twice. 
The limiting normal vectors n of dR [in the integral relation (6.1.4)] have opposite 
direction at common points on So so that they differ only in sign. This implies that 
fs [\P^u>~Put\]s0-nds = — Js pFo ds since p, p, and gare assumed to be smooth 
functions, so that the contribution from JR qu dv vanishes in the limit. The bracket 
[· · -]s0 in the integral represents the jump in the quantity across S0. Since the result 
is also valid if the integrals are taken over an arbitrary portion of So, we conclude 
from the duBois-Reymond lemma (see Exercise 8.1.9) that the jump condition, 

[[pVu, -put]]s0 ■ n = - p i o , (6.6.1) 

is valid at any point (x, t) on So. The continuity of u(x, t) across So yields a second 
jump condition, 

[u]So = 0. (6.6.2) 

If ф(х, t) = 0 represents the surface So, the left side of (6.6.1) has the form of 
the left side of (6.3.3). Applying interior differentiation to (6.6.2) in So yields the 
additional equations (in the three-dimensional case) (6.3.6) for the jumps in the first 
derivatives across So- The jumps in the first derivatives of и can be determined from 
this system of four equations. However, if S0 is a characteristic surface, the system 
has no solution for nonzero Fo. For in that case, the homogeneous version of this 
system [i.e., (6.3.3)-(6.3.4)] has a nontrivial solution, as we have seen. The difficulty 
arises because u(x, t) itself must be discontinuous across So, if So is characteristic. 
Since the (source) surface So is moving at a characteristic speed, it cannot generate 
a disturbance that travels ahead of it, as that would require a speed greater than the 
(maximum) characteristic speed. It does, however, leave a disturbance in its wake, 
and as a result, ω(χ, t) has a jump across So. 

In the special case that So is a cylindrical surface in (x, i)-space with generators 
parallel to the ί-axis, we conclude that [ut]s0 = 0 since [u]s0 = 0. Then we can 
express (6.6.1 ) in terms of the jump in the normal derivative of u(x, t) across So as 
[du/dn]So = —pFo/p, with p and p evaluated on So. 

We only consider problems for (6.1.1 ) in which So divides the region R, over which 
the problem is defined, into two disjoint regions. Away from So, u(x, t) satisfies a 
homogeneous version of (6.1.1 ) since F(x, t) = 0 there. To solve the problem, 
we can find it(x, t) in each of the two regions using the given data for the problem 
and matching these solutions across So using (6.6.1) — (6.6.2). This approach is 
used in Example 6.10, with a more direct approach presented in Example 6.9. With 
appropriate modifications the foregoing matching conditions are valid for the elliptic 
and parabolic equations of Section 4.2. 
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One-Dimensional Hyperbolic Equations: Stationary Concentrated 
Forces 

In the one-dimensional version of (6.1.1), if pF is concentrated at the point x = 
x0 for all time (i.e., it is stationary), we have instead of (6.6.1)-(6.6.2), [u]Xo = 
О, [ди/дх)Хо = —p(x0)F0(t)/p(xo). The following example yields an interesting 
application of the foregoing results. 

Example 6.9. The Vibration of a Loaded String. We consider the vibration of 
a finite string with fixed endpoints and with concentrated masses чщ(г = 1,2,.. . , n) 
placed at points Xi (i = 1 , . . . , n) on the string, where 0 < Xi < I. As the string 
vibrates, the masses m* exert concentrated forces Fi(t) at the points Xi. Newton's 
second law of motion requires that 

Fi(t) = -miUtt(xi,t), i= 1,2, . . . , n , t > 0, (6.6.3) 

where u(x, t) is the displacement of the string. The result (6.6.3) follows since the 
acceleration of the point mass rrii is just the acceleration of the point Xj on the string 
and this is given by UU(XÌ, i). 

The problem to be solved for an arbitrary, not necessarily homogeneous string 
requires that u(x, t) satisfy 

, .d2u(x,i) д ( . xdu(x,t)\ „ , , . , „ „ ,, 
P ( X ) &t* =дх'\р(х) дх ) ' 0<x<l,t>0,x^Xi (6.6.4) 

[generally, p(x) represents the constant tension T], with the conditions u(0, t) = 
0, u(l,t) = 0, t > 0, at the boundary, and the initial conditions 
u(x,0) = / (x) , ut(x,0) = g{x), 0 < x < 1. The jump conditions at x = Xi 
are 

\u)Xi = 0, p(xi) 
du 
дх 

— -Fi(t) - miUtt(xi,t), i = l,...,n, (6.6.5) 

where (6.6.3) was used and pF is replaced by F in this case. 
The initial and boundary value problem (6.6.4)-(6.6.5) can be solved as follows. 

Let u(x, t) = M(x)N(t), and we obtain, on separating variables, with λ as the 
separation constant, 

N"(t) + XN(t) = 0, t > 0, (6.6.6) 

(p(x)M'(x)Y + Xp(x)M(x) =0, 0 < x < I, x ф хи (6.6.7) 

with the boundary conditions M(0) = 0, M(l) = 0, and the jump or matching con-
ditions [M(x)]Xi = 0, m,iM{xi)N"(t) = p(xi)[M'(x)]XiN(t), with г = 1 , . . . ,n. 
Using (6.6.6), we can replace the second matching condition by 

p{xi)[M'(x)]Xi=XmiM(xi)=0, t = l , 2 , . . . , n . (6.6.8) 
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The foregoing constitutes an eigenvalue problem for M{x), with the interesting 
aspect that λ, the eigenvalue parameter, enters not only in the differential equation 
(6.6.6) but also in the jump conditions. It can be shown that the eigenvalues and 
eigenfunctions for this problem have essentially the same properties as those occurring 
in the Sturm-Liouville problem (see the exercises). A vibrating string problem with a 
load (or mass) placed at one end of the string is considered in Exercises 6.6.4 and 6.6.5. 

Once the eigenfunctions are determined, the solution of the initial and boundary 
value problem is found in the usual manner by using eigenfunction expansions. 

One-Dimensional Hyperbolic Equations: Moving Concentrated Forces 

Let us consider the one-dimensional versions of the hyperbolic (or parabolic) equa-
tions of Section 4.1 and assume that the force or source term moves but is concentrated 
along the curve x — h(t), which plays the role of So in the foregoing discussion. 
In the hyperbolic case we use the one-dimensional form of the matching or jump 
conditions (6.6.1)-(6.6.2) on x = h(t). Since u(x,t) is assumed to be continuous 
across x — h(t), a relationship between the jumps [ux] and [ut] across the curve can 
be established by differentiating [u] along x = h(t). Also, an expression relating the 
jumps [ux] and [ut] is determined from (6.6.1 ). This yields 

du' 
дх 

where p and p are evaluated on x = h(t). [In the parabolic case it is easily seen that 
the jump condition corresponding to (6.6.1 ) does not involve a time derivative of u.] 
The matching conditions for the hyperbolic and parabolic cases can be given in terms 
of a known function /o (i ) [expressed in terms of F0 (t) as in (6.6.9) for the hyperbolic 
case] as [u]x=h{t) = 0, [du/dx\x=h(t) = -f0(t). 

Example 6.10. The Wave Equation with a Moving Concentrated Force. 
A concentrated force term for the wave equation moves with velocity CQ, and it is 
assumed that | со | < c, where с is the speed of wave propagation. Thus the force term 
moves along the line x — c^t in space-time. We begin by assuming that the force 
term is oscillatory and obtain a solution similar to that for the problem considered in 
Example 6.8. 

The initial value or Cauchy problem is formulated as follows. The function u(x,t) 
satisfies the wave equation away from the line x = cot; that is, 

uu(x,t) = c2uxx(x,t), —oo < x < cot, cot < x < со, t > 0, c0 > 0, (6.6.10) 

where 
«(χ,ί) = ί " 1 ί Χ ' * ! ' -™<x<c^ t > 0 . (6.6.11) 

v ' \u2(x,t), cot < x < со, v ' 

x = htt\ 

/ V I + h'(t)*F0(t) 
P-Ph'(t)2 ' 

(6.6.9) 
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The matching conditions are 

( u2(c0t,t) -m(c0t,t) = o, 

\ du2{cot,t)/dx — du\(c0t,t)/dx = —/o(i) = -Acos(u)t), 

where A and ω are constants. The initial conditions are 
f ui(x,0) = du1{x,0)/dt = 0, - c o < x < 0, 
1 u2(x, 0) = du2(x, 0)/dt = 0, 0 < x < co. 

(6.6.12) 

(6.6.13) 

Figure 6.16 The moving force problem. 

In the regions R\ and R2 of Figure 6.16 we have u\ = u2 = 0 since the domains 
of dependence of points in these regions contain only initial data that are all zero. In 
R\ we look for a solution in the form ui(x, t) = g(x + ct) and in R2 in the form 
u2(x, t) — f(x — ct) since the moving force generates waves moving to the right 
and to the left. This is so because the curve along which the force moves is timelike 
and characteristics issue from either side of the curve. (A more systematic approach 
based on the integral wave equation of Section 6.5 can also be used.) Applying the 
matching conditions (6.6.12), we readily obtain 

ui(x,t) = (c2 - CQ)/(2WC)Asin [ω(χ + ct)/(c + c0) 

u2(x,t) = (CQ - c2)/(2uJc)Asm[uj(x - ct)/(c- c0) 

—ct < x < cot, 

Cot < X < Ct. 

(6.6.14) 

We again observe the Doppler effect in (6.6.14). The wave u\ (x, t), which moves in 
a direction opposite to that of the force if c0 > 0, has the frequency ώ = [c/(c + co)]u; 
which is smaller than the frequency ω of the force term. The wave u2(x, t), which 
travels in the same direction as the force has the frequency ώ = [с/(с — οο)]ω, which 
exceeds the frequency ω of the force term. 

If the force speed Co exceeds the characteristic speed c, the foregoing results are 
not valid. The problem is formulated as in (6.6.10)46.6.13), except that we consider 
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an arbitrary force term /o(i) (i.e., it need not be oscillatory) and assume that CQ > с 
Thus, the line x = cot lies between the characteristic line x = ct and the positive 
z-axis and is not situated as shown in Figure 6.16. Because the initial data (6.6.13) 
are zero, we find that щ(х, t) = 0 in the sector between the negative ж-axis and the 
line x = —ct. Similarly, U2(x, t) = 0 in the sector between the positive a>axis and 
the line x = cot. Then the matching conditions (6.6.12) determine the (Cauchy) data 
on the spacelike line x = cot to be 

U l ( c o M ) = 0 , ^ M L / 0 ( i ) , (6.6.15) 

To solve for u\ (x, t) in the sector bounded by x = c^t and x = ct, we construct a 
characteristic triangle whose base is a segment of the line x = cot. Using the integral 
wave equation (6.5.1) gives 

c 2 _ c 2 r(x+ct)/(c0+c) 
ui(x,t) = —-—- / fo(s) ds, ct < x < cot. (6.6.16) 

2 c J(x-ct)/(c0-c) 

Now u(x, t) is continuous across the characteristics x = ±ct since the initial 
data are continuous at the origin. Consequently, u\{x,t) at x — ct equals (6.6.16) 
evaluated on that line, and u\{x,t) = 0 on ж = —ct since u\(x,t) vanishes to 
the left of x = —ct. To complete the determination of u(x, t), we must solve the 
characteristic initial value problem in the sector bounded by the lines x = ±ct with 
the foregoing data. From (6.5.30) we obtain 

2 _ c 2 Mx+ct)/(ca+c) 
ui(x,t) = „ ° / fo{s)ds, -ct<x<ct. (6.6.17) 

2c J0 

Thereby, the solution is completely determined. 
In the problem considered previously where the force speed is less than the charac-

teristic speed, the moving force point gives rise to two waves, one of which precedes 
the force. In the present problem, the force point again gives rise to two waves, one 
moving to the right and the other to the left. However, no wave precedes the force 
point, since the wave speed is less than the force speed. 

If the force speed CQ — c, the characteristic speed, the solution u(x, t) must be 
discontinuous across the path of the force, as was noted previously. In that case the 
concentrated force gives rise to only one wave that travels in its wake. Ahead of the 
moving force point the solution is zero if the initial data are zero. As a result, if the 
solution were continuous on the path of the force, this wave would have zero height 
on the force path. Since the wave is constant on each characteristic that intersects the 
path of force, it must have zero height everywhere, and this is not possible. 
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Exercises 6.6 

6.6.1. Adapt the method presented in (4.3.16)-(4.3.17) to determine that the orthogo-
nality condition for the eigenvalue problem given for (6.6.7) is /0' Mj{x)Mk(x)p{x) 
dx + Y™=lmiMj(xi)Mk{xi) = 0, where Mj(x) and Mfc(x) correspond to the 
eigenvalues \j and Afc with λ̂  φ Afe. Conclude that the appropriate inner product 
associated with this eigenvalue problem is (ф(х), Ф{х)) = f0 ф(х)ф(х)р(х) dx + 
ΣΓ=ι ΊηίΦ(Χί)Ψ{Χί)- The (induced) norm is given as ||<^>(χ)||2 = (φ(χ),φ(χ)) = 
J0 φ

2(χ)ρ(χ) dx + X)™=1 тг[ф(хг)]2. Show that the eigenvalues are real and positive. 
Determine a formula for the Fourier coefficients ck in an expansion of a function f(x) 
in a series of the eigenfunctions Mk(x). 

6.6.2. Let p{x) = p(x) = 1, I = π, n = 1, and x\ = 1 in the problem for 
(6.6.7). Determine an equation for the eigenvalues and obtain the corresponding 
eigenfunctions. 

6.6.3. Expand f(x) — 1 in a series of eigenfunctions found in Exercise 6.6.2. 

6.6.4. Assume that the load in the vibrating string problem of Example 6.9 is placed 
at the end of the string at x = I. The boundary condition u(l, t) = 0 is then replaced 
by m\Utt(l, t) = —p(l)ux(l, t). Show why this follows from (6.6.5). Use separation 
of variables to obtain the eigenvalue problem for this case that replaces the one given 
in Example 6.9. 

6.6.5. Let p = p = 1 in the problem of Exercise 6.6.4. Show that the eigenvalues 
for the resulting eigenvalue problem are determined from the equation cot(l\/X) = 
mi \/λ. Demonstrate graphically that there are infinitely many eigenvalues A = Afe. 
Show that the eigenfunctions Мк(х) are given as Mk(x) = sm(^/λкx)/sm(^/λk I), 
к = 1,2,..., and that they are orthogonal with respect to the inner product of Exercise 
6.6.1, where n = 1 and χχ = I. Calculate the norm of these eigenfunctions. 

6.6.6. Obtain the limit of the solutions (6.6.14) as c0 —> 0 and discuss the resulting 
problem and its solution in that case. 

6.6.7. Let/o(i) = ^cos(u>i) in(6.6.15)and obtain the solution of the given problem 
in that case. Discuss the Doppler effect. 

6.6.8. Use the matching conditions (6.6.9) to solve the heat equation put(x,t) — 
puxx(x,t) — 0, —oo < ж < о о , ί > 0 , χφ 0, where p and pare positive constants, 
if u(x, 0) = 0 and h(t) = 0 in (6.6.9). Use the Laplace transform. 

6.6.9. Solve the problem of Exercise 6.6.8 by means of the Fourier transform. Hint: 
Use the jump condition (6.6.9) to obtain an expression for the transform of the second 
derivative of u(x, t) in terms of the transform of u(x, t). 

6.6.10. Derive the jump condition (6.6.9) for the hyperbolic case and show that the 
corresponding condition for the parabolic case is obtained by replacing the denomi-
nator in (6.6.9) by p. 
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6.6.11. Consider the heat equation щ(x,t) = c2uxx(x,t), —oo < x < oo, t > 0, 
with u(x, 0) = 0 and a source moving along the line x = h(t) = coi, across which 
the jump conditions [u] = 0 and [ux] = —(i/l + CQ/C2)FO(Ì) are satisfied. Use the 
transformation of Exercise 6.5.13 to change this problem into one with a stationary 
source point and solve the given problem. 

6.6.12. Consider the following moving boundary (and source) problem щ(х, t) = 
c2uxx(x,t), 0 < x < h(t), t > 0, ω(0,ί) = щ, u[h(t),t] — 0, ux[h(t),t] = 
—ah'(t), where /i(0) = 0, and the determination of h(t) is part of the problem. (The 
constants a > 0 and щ > 0 are given.) This is an example of a one-phase Stefan 
problem, in which the region x > 0 is filled with ice, taken to be at zero temperature, 
and the boundary x = 0 is kept at a positive temperature щ. As t increases from zero, 
the ice begins to melt and the curve x = h(t) separates the water and the ice. In effect, 
we are solving a heat conduction problem in a composite region composed of water 
and ice, and the conditions along the separation curve x = h(t) are jump conditions 
determined from the properties of heat flow across such a boundary. However, since 
the temperature u(x, t) of the ice remains at zero while in its frozen state, we may 
treat the separation curve as a boundary curve for the liquid state, and treat the jump 
conditions as boundary conditions. Nevertheless, this problem is complicated by the 
fact that x = h(t) is not known a priori. 

To solve this problem, assume that u(x, t) has the form of u?.{x, i) given in Exercise 
6.2.4, and substitute it into the three boundary conditions. Conclude that h(t) must be 
a constant multiple of \Д, and show how this constant can be determined numerically. 

6.7 POINT SOURCES AND FUNDAMENTAL SOLUTIONS 

In this section we assume that the inhomogeneous term pF in the differential equations 
of Section 4.1 that represents a source or force term is effectively concentrated at a 
point Po· (To simplify the presentation, the term source will be used in the following, 
even though it may represent a force in some contexts.) We consider two cases. 
To begin, we deal with higher-dimensional hyperbolic and parabolic equations and 
assume that pF is concentrated at the point Po = *o for all time t > 0. The one-
dimensional version of this problem was considered in Section 6.6. This represents 
a stationary point source. Next, we assume that the point of concentration in the 
hyperbolic or parabolic case is Po = (xo, io) and in the elliptic case, Po = χο· For 
time-dependent problems this constitutes an instantaneous point source. (We use 
notation for the spatial variable appropriate for the two- or three-dimensional cases. 
However, we will also consider problems in one dimension.) 

In both cases, pF can be expressed in terms of the Dirac delta function, which 
was discussed briefly in Chapter 1. Since the theory of the delta function and other 
generalized functions is not presented until Chapter 7, we discuss the foregoing prob-
lems, as far as possible, on the basis of the integral relations of Section 6.1. However, 
the theory of Green's functions developed in Chapter 7 is closely related to the point 
source problem. 
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Hyperbolic and Parabolic Equations: Stationary Point Sources 

We start with the integral relations (6.1.6) and (6.1.9) for the hyperbolic and parabolic 
cases, respectively. We assume that pF is concentrated at the point P0 = xo in the 
region Rx for alii > 0 and that it has the property JR pF dx = f(t), where f(t) is 
a (smooth) function that characterizes the source strength for t > 0 and vanishes for 
t < 0. In the limit as Rx shrinks down to the point P0, we obtain from (6.1.6) and 
(6.1.9) 

lim / ppLdsx = -f{t). (6.7.1) 

Although (6.7.1) should, in fact, be integrated over the interval to < i < t i , as is 
the case in (6.1.6) and (6.1.9), our result is valid since the interval of integration is 
arbitrary. The integrals in (6.1.6) and (6.1.9) that involve и or щ vanish in the limit 
as Rx —» Po since these terms are not more singular than x-derivatives in и and the 
relevant integrals are higher dimensional than the integral in (6.7.1). 

The result (6.7.1) is valid for an arbitrary region Rx and its boundary dRx. It 
takes on a simpler and more useful form if Rx is chosen to be a disk or a ball. In the 
two-dimensional case, let Rx be the disk of radius r with center at Po = (XQ , yo) and 
introduce polar coordinates with the pole at PQ. Then 

lim / p—— dsx = lim / p-r - r άθ = lim ( 2πρΓ—- ) = —fit), 
9Я^(ХО,УО)ЛЙ» дпх r^oJ0

 удг r^\ μ drj JKh 

(6.7.2) 

with the 0-integral taken over the circle of radius r. In the three-dimensional case 
let Rx be a ball of radius r with center at Po = (xo, Уо, zo) and introduce spherical 
coordinates with the pole at Po. Then (6.7.1) easily yields 

lim f p^- dsx = lim ( 4πρτ-2-^ ) = -f(t), (6.7.3) 

on integrating over the sphere of radius r. In (6.7.2) and (6.7.3) we have used the 
fact that ди/дпх = ди/дг on dRx and assumed that the mean value theorem for 
integrals can be applied in both cases. 

The stationary point source problem can now be formulated as follows. The 
function и (x, t ) satisfies the homogeneous form of the relevant hyperbolic or parabolic 
equation for x ф x0 and t > 0, since pF vanishes away from the source point P0. 
At P0, u(x, t) must satisfy the condition (6.7.2) or (6.7.3). Initially, at t = 0 it is 
required that u(x, t), as well as щ (х, t) in the hyperbolic case, vanish. If the problem 
is given over a bounded spatial region, u(x, t) must satisfy homogeneous boundary 
conditions. 

The foregoing problem requires a different approach from that used in solving 
the concentrated source problem of the preceding section or, for that matter, all the 
problems of the previous sections. In the earlier problems it was possible to divide 
the region R over which the problems were formulated into two (or more) subre-
gions separated by the curves or surfaces on which the sources or singularities were 
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concentrated. Consequently, these curves or surfaces could be treated as additional 
boundaries for the problems, on which boundary conditions (i.e., matching or jump 
conditions) could be assigned. For the point source problem above and the one treated 
in the following, such a subdivision is not a priori possible because the source is con-
centrated either on a line or at a point and, as such, cannot represent a boundary for the 
region, given the space-time or space dimension of the problems we are considering. 
This makes it difficult to obtain exact results in the general case. However, if the 
problem has certain symmetries, such as axial symmetry, it may be possible to reduce 
the number of independent variables and treat the source points as boundary points, 
as was done in Example 5.9. This is the case in the examples presented below. 

The nature of the singularity of the solution u(x, t) of this problem at the source 
point may be determined by treating (6.7.2)-(6.7.3) as approximate equations near 
Po· Integrating (6.7.2) yields, with r2 = (x - xQ)2 + (y — Уо)2, 

-fit) 
u(x,y,t) и ^ — rlogr, (x,y) ^ (xo,yo), (6.7.4) 

in the two-dimensional case. In three dimensions (6.7.3) gives, with r2 = (x — XQ)2 + 
(.У - Уо? + (z- zo)2, 

-f(t) 
u{x,y, z, t) « -— - r-, (x, y, z) « (a;o,i/o, z0). (6.7.5) 

In both cases only the most singular part of the solutions has been retained. 
In the following two examples we solve the stationary point source problems for 

the wave and heat equations. Because the equations have constant coefficients, exact 
solutions can be found. 

Example 6.11. The Stationary Point Source Problem for the Wave 
Equation. Let u(x, t) satisfy the two- or three-dimensional wave equation 

utt(x,t) - c2V2u(x,t) = 0, x ^ x o , t>0, (6.7.6) 

every where except at the source point P0 = Xo· We assume that u(x,0) = ut(x, 0) = 
0, and that at Po the condition (6.7.2) or (6.7.3) is satisfied. 

To solve this problem we let r = |x — xo|, the (spatial) distance from the source 
point P0 = xo, and look for a solution of (6.7.6) in the form и = u(r, t). Then (6.7.6) 
becomes 

utt(r,t) -c2 urr{r, t) H ur(r, t) 0, r >0,t > 0 , n = 2,3, (6.7.7) 

in the case of two or three (space) dimensions. 
We begin with the three-dimensional case since it is easier to handle. Let n = 3 in 

(6.7.7) and put v(r,t) = ru(r,t), where r2 = (x—x0)
2 + (y — yo)2 + (z-zo)2. Then 

we easily verify that v(r, t) satisfies the one-dimensional wave equation vu{r, t) — 
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c2vrr(r, t) = 0, which has the general solution v(r, t) = F[t - r/c] + G[t + r/c]. 
Thus u(r, t) = (l/r)(F[t — r/c] + G[t + r/c]). As ut(r, t) must vanish at t = 0 and 
u(r, t) satisfies the source point condition (6.7.3) where f(t) — 0 for t < 0, we find 
that G[t + r/c] = 0 and obtain 

^=4^(4)· (6-7"8) 

Because f(t) vanishes for negative t, u(r, t) vanishes at t = 0 when r > 0. Near 
r = 0, (6.7.8) behaves like (6.7.5), where we must set p = c2. 

The solution (6.7.8) represents a propagating spherical wave that starts to spread 
out from the source point Po at the time t = 0 with speed c. The spherical wave fronts 
are given as r = ci because u(r, t) = 0 when r > ct, since f(t) vanishes when its 
argument is negative. 

In the two-dimensional case, (6.7.7) cannot be simplified as nicely as was done 
for n — 3. However, the point source problem for n = 2 can be solved in terms of 
Hankel transforms, in which case the condition (6.7.2) at the source can effectively 
be treated as a boundary condition at r = 0 (see Examples 5.7 and 5.8). 

A simpler method for solving this problem uses the three-dimensional result (6.7.8) 
and proceeds as follows. (This approach is analogous to Hadamard's method of 
descent of Section 5.4. ) We think of the point source at Po = (^ο, Уо ) as representing 
a line source for the three-dimensional problem, located on the line x = XQ, у = 
Уо, z = z in space. By summing (i.e., integrating) over all source points (хо,Уо, ^ο) 
along this line, we obtain the solution to the two-dimensional problem. Thus we 
integrate (6.7.8) [where r2 = {x — x0)

2 + (y — yo)2 + (z — z0)2] with respect to ZQ 
from — oo to -boo and obtain 

1 Г°° 1 / r\ 1 Z"00 1 / r \ 
-M) = 4 ^ }_ж -f (' - - ) **> = ̂ l -f{t- - ) dz 

=L· fr C[c2(t -r)2 " f 2 i " i / 2 / ( r ) d r ' <6·7·9) 
where z = z — ZQ, r2 = (x — xo)2 + (y — Уо)2, т = t — r/c and we have used 
the fact that f(t) = 0 for t < 0. Also, (6.7.9) vanishes at t = 0 since f(t) vanishes 
for negative values of its argument. In fact, (6.7.9) vanishes when f > ct. Thus, 
the solution (6.7.9) is a propagating circular (or cylindrical) wave and the circles (or 
cylinders) f = ct are wave fronts for the two-dimensional point source problem. 

For the sake of completeness, we include the solution of the point source problem 
for the one-dimensional wave equation. This problem can be solved by the methods 
of the preceding section. If the source acts at the point x0, we require that u(x, t) 
and Ut(x, t) vanish at t = 0 and that the foregoing jump conditions are satisfied, with 
p = 1, p — c2,andF0(i) = /(*)· To solve, we set u = F[t + (x — xo)/c] forx < XQ 
and и = G[t — (x — XQ)/C] for x > XQ. Using the initial and jump conditions, we 
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ί(Μ) = έ/ 
easily obtain the solution 

pt—\x — Xo\/c 

f(s)ds. (6.7.10) 
о 

Since f(t) = 0 for t < 0, we have u(x, t) = 0 for \x — XQ\ > ct and (6.7.10) 
represents two propagating plane waves that travel away from the source. 

The solutions of the point source problem demonstrate an important distinction 
in the nature of wave propagation in one, two, and three dimensions. To see this we 
assume that the source function f(t) vanishes for t > τ > 0 (i.e., it acts only for a 
finite time). Then (6.7.8) in the three-dimensional case vanishes when r < c(t — τ), 
in addition to the fact that it is zero ahead of the spherical wave front r = ct. That 
is, the (moving) disturbance is concentrated in the region c(t — τ) < r < ct. The 
signal has a sharp leading and trailing edge. In the two- and one-dimensional cases, 
the solution or signal has a sharp leading edge but has a nonzero wake for all time. 
This distinction represents what is known as Huygens' principle (see Section 5.4). 

Example 6.12. The Stationary Point Source Problem for the Heat 
Equation. Let и (x, t ) satisfy the two- or three-dimensional equation of heat con-
duction 

ut(x,t) - c 2 V 2 u(x , i ) = 0 , x ^ x o , t>0, (6.7.11) 

everywhere except at the source point Po = xo- We assume that u(x, 0) = 0, and 
that at Po the condition (6.7.2) or (6.7.3) is satisfied. 

To solve this problem we look for a solution in the form и = u(r, t), where 
r = |x - x0| is the distance from the source point PQ. Then (6.7.11) becomes 

ut(r,t) - c2 i \ П — I . . 

urr(r,t) -\ u(r,t) 0, r > 0 , < > 0 , n = 2,3, (6.7.12) 

in two or three dimensions. 
For the three-dimensional case, with n = 3 in (6.7.12), we put v(r, t) = ru(r, t) 

and find that v(r, t) satisfies the one-dimensional heat equation vt(r, t) = c2vrr(r, t). 
At t = 0 we have v(r, 0) = 0. We assume that v(r, t) and vr(r, t) are bounded at 
r = 0, so that (6.7.3) yields the condition v(0, t) = (1/4πο2)/(ΐ). The resulting 
initial and boundary value problem for v(r, t) for r > 0 and t > 0 was solved in 
Example 5.5 [see (5.3.22)]. In terms of that result for v(r, t) we obtain the solution 

u(r, t)= [4πο2(ί - τ ) ] _ 3 / 2 exp 
Jo 

r2 

4c2(t-r) 
/ ( T ) dr. (6.7.13) 

In the two-dimensional case, we set n = 2 in (6.7.12). We have u(r, 0) = 0 
and at r = 0 the condition (6.7.2) must be satisfied. We use the zero-order Hankel 
transform to solve this problem and proceed as in Example 5.9. We easily determine 
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that the Hankel transform U(X, t) satisfies the equation Ut(X, t) + (cX)2U(X, t) = 
(1/2π)/(ί). Also, U(X, 0) = 0. Solving this equation, inverting the transform, 
interchanging the order of integration in the resulting double integral, and using 
(5.5.7) yields the solution 

u(r,t)= / [ 4 ^ 2 ( i - T ) ] _ 1 e x p 
Jo 4c2(i-r) 

f(T)dr. (6.7.14) 

For the one-dimensional case, with the source located at a; = xo, we cite the result 
of Exercise 6.6.8, which yields the solution 

u(x,t) = / G{x-x0,t-T)f(r)dT, (6.7.15) 
Jo 

where G(x,t) is the fundamental solution of the heat equation defined in equation 
(5.2.39). 

In fact, in each of the three problems considered in this example, the solution of 
the point source problem is given as a product of the fundamental solution of the heat 
equation with the density function / ( r ) , integrated from 0 to t. 

Point Sources and Instantaneous Point Sources 

Next we consider point source problems for elliptic equations and instantaneous point 
source problems for parabolic and hyperbolic equations. In the elliptic case the source 
point is Po = xo. while in the hyperbolic and parabolic cases it is Po — (XQJ *о)· The 
source is assumed to have unit strength, so that the concentration of pF at the point 
P0 implies that 

if pFdv = \ (6.7.16) 

for any region R in space or space-time that contains Po, while pF vanishes when 
P Ф PQ. Thus pF is identical with the Dirac delta function with singular point at Po. 

Since pF — ΟίοτΡφ Ρ0, the solution u(x) or u(x, t) of the point source problem 
satisfies the homogeneous form of the relevant differential equation or the equivalent 
integral relation away from P0. The behavior of и at Po must be determined from the 
integral relation, since и is not expected to be smooth at Po. 

Proceeding formally, we consider the integral relation (6.1.4) for the hyperbolic 
case and assume that the region R contains the source point P0. Then as R shrinks 
down to PQ, we obtain the formal limit 

lim / [pVu, -put] ■ n ds = - 1 (6.7.17) 
dR^Pa JdR 

on using (6.7.16) and assuming the other terms in the integral relation vanish in the 
limit. Similarly, the integral relation (6.1.8) for the parabolic case yields, as R —» Po, 

lim / [pVtt, -pu] -nds = - 1 . (6.7.18) 
ая-^Ро JdR 
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In the elliptic case the integral relation (6.1.11) gives 

lim 
dR 

im / p - ^ ds = - 1 . (6.7.19) 
-^poJdR dn 

In obtaining (6.7.18) and (6.7.19) we have used (6.7.16) and assumed that all other 
terms in the integral relations (6.1.8) and (6.1.11) vanish in the limit as R —+ Po. 

Now for the hyperbolic problem the singularity of и (x, t ) does not remain isolated 
at the source point Po but is transmitted along the characteristics that contain that 
point. Thus u(x, t) may not possess the derivatives near Po required to make the 
integral relation (6.1.4) and its limit (6.7.17) valid. In that case we must replace 
the foregoing integral relation by that obtained in Section 6.4 for which the solutions 
u(x, t) were not required to be differentiable or even continuous. The relevant integral 
relation is (6.4.5), and in terms of that expression it is easy to see that (6.7.17) should 
be replaced by 

lim / / u[pvtt - V ■ (pVv) + qv] dV = v(P0). (6.7.20) 
dR^Po JJR 

This condition must be satisfied for every smooth function v(x, t) that vanishes near 
the boundary of R. More precisely, we require that и be a weak solution of the given 
hyperbolic equation, in the sense that it satisfies (6.4.5), and this takes the form of 
(6.7.20) with the limit process removed. 

In the hyperbolic problem, the family of characteristic curves or surfaces con-
taining a given point Po = (χο,ίο) envelops a (singular) characteristic known as 
the characteristic conoid, which has a vertex at P0. This conoid reduces to the two 
characteristic curves that pass through the point Po = XQ in the case of one space 
dimension. For the wave equation in three dimensions, the conoid coincides with the 
characteristic cone (3.3.21 ). The solution of the point source problem is thus expected 
to be singular along the entire characteristic conoid and it appears that (6.7.20) rather 
than (6.7.17) is the relevant condition at Po for the hyperbolic case. 

In fact, if we formally set f(t) = S(t —t0) [where S(t) is the Dirac delta function 
and io > 0] in the point source problem for the wave equation considered in Example 
6.11, the problem reduces to that for an instantaneous point source at (xo, io)· It 
has the formal solution u(r, t) = 1 /(4-KC2r)S[t — to — r/c], as follows from (6.7.8). 
This shows the solution to be singular not just at Po but along the entire forward 
characteristic cone r = c(t — to). 

In the parabolic problem, the characteristic curves or surfaces that contain the 
point P0 = (χο,ίο) are the lines or planes t = t0, as follows from the results of 
Chapter 3. However, as shown, the singularity in u(x, t) is confined to the point Po, 
and does not spread throughout the characteristic t = to- Thus, it is unnecessary to 
replace (6.7.18) by a condition based on the weak formulation of the problem given in 
(6.4.9). Although this simplifies the parabolic case in comparison with the hyperbolic 
case, the condition (6.7.18) is not always easy to apply. 

The source point condition (6.7.19) for the elliptic case poses the fewest problems. 
Since elliptic equations have no real characteristics, the singularity of u(x) must be 
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confined to the source point PQ = xo, and и and its derivatives are expected to be 
smooth on dR in (6.7.19). Effectively, the elliptic point source problem can be treated 
in the same way as the continuous point source problem for hyperbolic and parabolic 
equations. 

In view of the foregoing, we discuss the elliptic point source problem on the basis 
of the condition (6.7.19), while the point source problems for the hyperbolic and 
parabolic cases are dealt with in a different way. It is generally easier to deal with the 
latter problems by expressing pF as a <5-function and using the theory of generalized 
functions to solve the problem, as is done in Chapter 7. Nevertheless, many results for 
the point source and related problems were obtained before the theory of generalized 
functions was developed. 

Fundamental Solutions 

Solutions of the foregoing point source problems are called fundamental solutions 
of the given differential equation. As such, they are merely required to satisfy the 
homogeneous form of the equation away from the source point Po and the appropriate 
condition (6.7.17), (6.7.18), (6.7.19), or (6.7.20) at P0. Fundamental solutions are, 
therefore, not determined uniquely since any smooth solution of the homogeneous 
differential equation can be added to them. Here we will be mostly concerned with 
fundamental solutions that are required to satisfy additional conditions that serve to 
specify them uniquely. 

For the hyperbolic and parabolic problems we require that the fundamental solution 
it(x, i) satisfies a causality condition. This states that the solution u(x, t) must vanish 
identically fori < io when Po = (xo, io) is the source point. Thus we are considering 
the effect of the source point Po on the solution u(\, t) in the region t > t0. This is 
referred to as the causal fundamental solution. The causality assumption translates 
into the condition that и and щ vanish at t = to for all P ф Р0. That is,we effectively 
have an initial value problem for the given equations with zero data away from Po 
and with the data at Po determined from the source point conditions. Since t = to is a 
characteristic for the parabolic problem, we can arbitrarily set u(x, t) = 0 for t < to 
since singularities in the solution are confined to the point Po. For the hyperbolic 
problem (as we have already observed in a number of special cases), the domain of 
influence of a point Po = (xo, io) is the forward characteristic conoid (i.e., that part 
of it for which t > to) with vertex at P0. Then with u(x, t) = 0 for i < i0, the causal 
fundamental solution vanishes identically in the exterior of the forward characteristic 
conoid. 

For the elliptic problem we require that the fundamental solution have a specified 
behavior at infinity. It is then known as the free space Green's function. Here we con-
sider only fundamental solutions in unbounded regions. If the point source problem 
is given for a bounded region, the fundamental solution must satisfy homogeneous 
boundary conditions. Solutions of such problems are referred to as Green's functions. 
Green's functions for equations of all three types are considered in Chapter 7. The 
Green's functions determined in that chapter for hyperbolic and parabolic equations 
in unbounded regions differ from the causal fundamental solutions obtained here. 
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Fundamental Solutions of Elliptic Equations 

Elliptic problems are easiest to deal with, so we begin our discussion of fundamental 
solutions with the elliptic case. In one dimension, where we are dealing effectively 
with an ODE for и = u(x), the source point condition (6.7.19) is reduced to a jump 
condition for u' (x) at the point XQ . In two and three dimensions the condition (6.7.19) 
is essentially of the form (6.7.1) if we set f(t) = 1. Consequently, the simplified 
forms of (6.7.1) given in (6.7.2) and (6.7.3) are valid for the present case as well if 
we set f(t) = 1 in these equations. With the number of dimensions given by n, we 
conclude that the source point condition (6.7.19) can be expressed as 

' [du/dx]x=XQ = -l/p(x0), n = 1, 
l imr_0 (2тгргди/дг) = - 1 , n = 2, (6.7.21) 
limr_o (4npr2du/dr) = — 1, n = 3. 

When n = 1, the bracket represents the jump in u'(x) at a; = XQ, which is given as 
u'(xo+) — u'(xo—). For n = 2 we have r2 = (x — xo)2 + (y — Уо)2, and for n = 3, 
r2 = {x- x0)

2 + {y- yo)2 + {z- г0)2. 
Away from the source point Po. the fundamental solution и satisfies the homoge-

neous equation 
- V · (pVu) + qu = 0, РфРо, (6.7.22) 

where V is replaced by d/dx in the one-dimensional case. For the one-dimensional 
problem, the source condition (6.7.21) can be treated as a matching condition for 
two solutions of (6.7.22) in the intervals x < xo and x > XQ- This is not so in the 
higher-dimensional problems. We also see that the conditions (6.7.21 ) are insufficient 
to determine solutions of (6.7.22) uniquely. 

Fundamental solutions can be found by looking for singular solutions of (6.7.22) 
that have the behavior (6.7.21) at the source point. This approach is used when we 
obtain fundamental solutions of PDEs with constant coefficients in Example 6.13. 
Even if the solutions do not satisfy the auxiliary conditions placed on the problem, 
they are important because we can add smooth solutions of (6.7.22) to the results to 
account for the additional conditions. (This method is used in Chapter 7 to construct 
Green's functions.) 

To examine the form of the singularity at the source point Po, we consider (6.7.21 ) 
to represent approximate equations near Po, just as was done in obtaining (6.7.4) and 
(6.7.5). Solving these (approximate) equations yields 

-\x - xQ\/2p{x0), n=\, 

- log{r)/2Kp(x0, y0), n = 2, (6.7.23) 
_ ί/4πρ(χ0, yo, zo)r, n = 3, 

which is valid for points P near Po and where r is defined as in (6.7.21) for n = 2 
and n — 3. The one-dimensional form of u{x) in (6.7.23) was chosen to make the 
solution symmetric with respect to XQ- In all cases only the most singular terms of 
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the solution were retained. We note that the singularity of и is localized at the source 
point Po in all cases, and that the strength of the singularity increases as the dimension 
n increases. 

Example 6.13. Fundamental Solutions for Elliptic Equations with 
Constant Coefficients. We consider the elliptic equation 

pV и — qu = 0, (6.7.24) 

where p > 0 and q are constants. Guided by (6.7.23), we look for a fundamental 
solution of (6.7.30) that depends on the distance r from the source point Po. In one 
dimension (6.7.24) is an ODE and r = \x — XQ\. In two and three dimensions r is the 
radial variable in polar and spherical coordinates, respectively, with the pole at Po. 

Let и = ù(r) in (6.7.24) and we obtain the ordinary differential equation 

P ü"(r) + 
n ■ 1 

ü'(r) qü(r) = О, г > 0, 1,2,3, (6.7.25) 

with n as the number of dimensions in the problem. For n = 2 and n = 3 we assume 
that the fundamental solution is independent of the angular variables. 

To begin, we set q = 0 in (6.7.24), which reduces it to Laplace's equation when 
n = 2 and n = 3. For each n we require a singular solution of (6.7.25), and a set of 
such solutions is easily found to be given by 

' c\x — XQ\, n = l , 

ü(r) clog \/(х-хо)2 + {у-Уо)2, 

c[(x-xo)2 + (y-yo)2 + (z-z0)
2}-^, 

n = 2, (6.7.26) 
n = 3, 

with the constant с to be determined. On using the conditions (6.7.21 ) at Po or, more 
simply, by comparing (6.7.26) with (6.7.23), we find that 

- l /2p, n = 1, 
-1/27ГР, 

1/4πρ, 

n : 
n ■ 

n ■■ 

(6.7.27) 

Other solutions of (6.7.25) exist that also satisfy the conditions (6.7.21) at P0. How-
ever, the fundamental solutions (6.7.26)-(6.7.27) are in the standard form associated 
with (6.7.24) when q = 0, particularly when n — 2 or n = 3, in which case it reduces 
to Laplace's equation. 

If q φ 0 in (6.7.24)-(6.7.25) and n = 1, we obtain 

u(r) 
Ciexp(v/q/pr) + c2exp(-4 /qr /pr) , q > 0, 

ci exp(i^-q/p r) + c2 exp(-iy/-q/p r), q < 0, 
(6.7.28) 

with the constants c\ and c2 to be determined. This is done so that we obtain the 
free space Green's functions for these equations by specifying the behavior of the 
fundamental solutions at infinity, as well as at the source point. 
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For 9 > 0 w e require that (6.7.28) tend to zero at infinity—that is, as \x — XQ\ —* 
oo—and that it satisfy (6.7.21) at XQ. Since r = \x — xo\ in (6.7.28), we conclude 
that 

и(х) = ̂ (рд)-1/2ехр(-^/ф\х-х0\У q > 0, (6.7.29) 

is the (uniquely determined) free space Green's function for this case. 
With q < 0 and n = 1, (6.7.24) has the form of the Helmholtz or reduced wave 

equation in one dimension. Given the wave equation vu(x,t) = pvxx(x,t), if we 
set v(x, t) = u(x) ex^—is/^ t) with q < 0, we find that u(x) satisfies the one-
dimensional form of (6.7.24). The free space Green's function for the Helmholtz 
equation is a fundamental solution that represents a wave traveling away from the 
source point. Combined with the source point condition (6.7.21), it implies that 
(6.7.28) has the form 

Ф) = ̂ ( -P9 ) " 1 / 2 exp (iV-q/P \x - xo\) , 9 < 0 . (6.7.30) 

When multiplied by exp(—г^ч? t), (6.7.30) is a plane wave traveling away from the 
source point x = xo with speed yjp. 

In both of the foregoing problems, a uniquely determined free space Green's func-
tion was obtained, because the presence of exponentially growing solutions at infinity 
when q > 0 and the existence of waves traveling from infinity to the source point 
when q < 0 is physically unreasonable. (A physical interpretation of the case q > 0 
is given below.) 

With n = 2 and q < 0, (6.7.25) has the form of Bessel's equation of zero order. 
We require a singular solution of this equation and 

и = «(г) = Colo \y/-q/py/{x - xo)2 + (у - Уо)2] , q < 0, (6.7.31) 

where со is a constant and YQ{Z) is the Neumann function of zero order, is singular at 
r = 0. With n = 2 and q > 0 in (6.7.25) we obtain the modified Bessel equation of 
zero order, and a singular solution is 

и = ü(r) = Cltfo [Vq/P~V(x - xo)2 + (У- Уо)2] , q>0, (6.7.32) 

where c\ is a constant and Ko(z) is the modified zero-order Bessel function of the 
second kind. For z ~ 0 these functions have the following behavior: Yo(z) « 
2/π log(z), ДГо(.г) и - log(z) , 2 « 0. Comparing (6.7.31)-(6.7.32) with (6.7.23) 
and using the above, we conclude that со = — l/4p, ci = 1/2πρ. 

With n = 3 and ς ̂  0 in (6.7.24), we easily obtain the solutions 

(1/4πρτ) exp(-i/q/p r), q > 0, 

(1/4πρτ) exp(iy/—q/p r), q < 0, 
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where r2 = (x — XQ)2 + (y — yo)2 + {z — z0)
2. As r —► 0 these fundamental solutions 

have the required behavior (6.7.23). 
The foregoing two- and three-dimensional fundamental solutions were specified 

solely on the basis of their behavior at the source point. To determine the free space 
Green's functions for these problems, we require that the fundamental solutions have 
a prescribed behavior at infinity. If q > 0, (6.7.24) represents a stationary form of 
the diffusion equation vt + qv = pV2v that is obtained on setting v(x, t) = u(x). 
We require that v(x, t) and, consequently, u(x) tend to zero as the distance r from the 
source point Po tends to infinity. If q < 0, (6.7.24) is again the reduced wave equation 
or Helmholtz's equation. If v(x, t) is a solution of the wave equation vtt+qv = pV2v, 
we require that w(x, t) = u(x) exp(—iyf^q t) represent a diverging wave traveling 
away from the source point Po as r —> oo. 

To apply the conditions at infinity we must know the behavior of the Bessel func-
tions Yo and KQ for large values of the argument. We have 

Y0{z) « [2/πζ]1 /2 sin(z - π/4), K0{z) « [π/2ζ]1 / 2 e"2, z -» oo. (6.7.34) 

We conclude that for q > 0 the fundamental solutions (6.7.32) and (6.7.33) both 
decay exponentially as r —* oo and are, therefore, the free space Green's functions 
in two and three dimensions for this case. 

When n = 3 and q < 0, the fundamental solution (6.7.33) represents a diverging 
spherical wave traveling away from the source point Po with speed ^/p. Thus it is the 
free space Green's function for this problem. However, since sin г = (1/2г)[егг — 
e~"\, the fundamental solution (6.7.31) with n = 2 contains both diverging and 
converging cylindrical waves for large r, in view of (6.7.34). Thus (6.7.31 ) is not the 
free space Green's function for this problem. 

The correct form for the free space Green's function in two dimensions is given 
by 

u(x, у) = (г/4р)Н{
0
1} [^ф^(х-Хо)2 + (у-у0)2\ , q < 0, (6.7.35) 

whereto (z) is the zero-order Hankelfunction ofthefirst kind. Щ (z) is a singular 
solution of the zero-order Bessel equation with the following behavior: 

H{
0
1}(z) « (2ι/π) log(z), z « 0, H{

0
1](z) » [2/nz}1/2 exp[i(z-n/4)}, z -» oo. 

(6.7.36) 
Consequently, (6.7.35) exhibits the correct behavior (6.7.23) at the source point and 
represents a diverging cylindrical wave as the distance r from the source point tends 
to infinity. 
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Fundamental Solutions of Hyperbolic Equations 

We now turn to the consideration of fundamental solutions for hyperbolic equations. 
Because of the aforementioned complications with the interpretations of these so-
lutions and the determination of their behavior at the source point, we concentrate 
mostly on one-dimensional problems for equations with constant coefficients, but 
some higher-dimensional results are also presented. 

The solution of the instantaneous point source problem for hyperbolic equations 
can be determined from the solution of the stationary source problem discussed pre-
viously, by specializing the result to the case where source acts instantaneously at the 
time t = to. We show how this can be done for the wave equation, for which the 
stationary point source problem was solved in Example 6.11. Let f(t) = 6(t — to), 
the Dirac delta function, with io > 0. Since the delta function vanishes for t φ to, 
the stationary source problem of Example 6.11 is formally converted into an instanta-
neous source problem. The solution of the instantaneous source problem is obtained 
by replacing f(t) by the Dirac delta function in each of the solution formulas obtained 
in Example 6.11. 

We obtain the following results. With n = 3, (6.7.8) yields 

*™ = Τ^δ(*-*°-ΐ)· ( 6 · 7 · 3 7 ) 

In two dimensions, (6.7.9) yields 

V ; 27ГС ^/c2(t - to)2 - r 2 V ' 

In the one-dimensional case, (6.7.10) yields 

M(*. t) = ir H[c(t - h) -\x-xo\]· (6.7.39) 

In (6.7.38) and (6.7.39), H(z) is the Heaviside function. Its presence signifies that 
the solutions vanish outside the forward characteristic cone or sector with vertex at 
P0 and ίο· The causal fundamental solution (6.7.37) vanishes everywhere except on 
the forward characteristic cone. Each of these solutions is singular not only at the 
vertex of the characteristic cone, but along the entire forward characteristic cone. 
This shows why they must be interpreted in the weak sense. (They are rederived and 
discussed in Section 7.4.) 

We would like to determine the fundamental solutions directly, independent of 
having to solve more general problems, as has been done above. Although such 
direct determinations of fundamental solutions are given in Chapter 7, using the 
theory of generalized functions and transform methods, we now present an alternative 
method for obtaining fundamental solutions for hyperbolic equations with constant 
coefficients. 
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Example 6.14. Fundamental Solutions for Hyperbolic Equations with 
Constant Coefficients. We consider the hyperbolic equation 

putt - pV2tt + qu = 0, (6.7.40) 

with constant coefficients and determine fundamental solutions of (6.7.40) in a manner 
similar to that given for the elliptic equations of Example 6.13. Let Po be the source 
point in one, two, or three (spatial) dimensions and io the time when the source acts. 
In space-time, the instantaneous source point is Po = (Po, io)· With г = |x — xo| 
as the distance from Po (in one dimension r = \x — XQ\), we define the hyperbolic 
distance 7 as 7 = y/(t — to)2 — r2/c2, where c2 = p/p. In a hyperbolic (non-
Euclidean) geometry appropriate for the hyperbolic equation (6.7.40), 7 represents 
distance from the point (Po, io)- It l s positive when r2 < <?{t — io)2 and is imaginary 
when r2 > c2(t — to)2. It vanishes when r2 = c2(t — to)2, and this is the equation of 
the characteristic cone for (6.7.40) with vertex at (Po, io). [For n = 1 this yields the 
two characteristic lines through the point (xo, io)·] As shown for the wave equation, 
fundamental solutions for (6.7.40) are expected to vanish outside the characteristic 
cone, so this distance function is appropriate for our problem. 

Proceeding as in Example 6.13, we look for a singular solution of (6.7.40) in the 
form и = η(η). This gives the ordinary differential equation 

77 

η"{Ί) + - «'(7) 
7 

+ ? и ( 7 ) = 0 , n = 1,2,3, (6.7.41) 

of the general form of (6.7.26). To avoid using the complex-valued variable 7 when 
considering the fundamental solution outside the characteristic cone, we introduce 
the squared hyperbolic distance σ = -у2. Then σ > 0 within the cone and σ < 0 
outside the cone. With и — υ(σ) in (6.7.41), we obtain 

, „ , . n+1 „ ' 
σ и (σ) -\ — u(a) + | « ( σ ) = 0, η= 1,2,3. (6.7.42) 

First we set q = Oandn = 1 in (6.7.42) to obtain σΰ"(σ)+ΰ'(σ) = 0. [Withn = 1 
and q = 0, (6.7.41) and (6.7.42) have the same form.] The general solution of this 
equation is υ(σ) — a+b log(a), with a and ò as arbitrary constants. While the solution 
υ(σ) = b log(a) is singular on the characteristic cone, it differs from the fundamental 
solution (6.7.39) obtained previously. The second (independent) solution υ(σ) — a 
is not singular at all, but it is constant within the (forward) characteristic cone as is 
the case for (6.7.39). If we formally put υ(σ) = 0 outside the characteristic cone, the 
solution has a jump discontinuity across the cone and is no longer a classical solution 
of the equation for υ(σ). It must be interpreted as a generalized solution. 

To show that such a solution is possible, we require some elementary concepts 
from the theory of generalized functions, whose properties are discussed fully in 
Section 7.2. If H(x) is the Heaviside function, then H'(x) = 0 for all x φ 0, but the 
derivative is not defined at x = 0. However, if we assume that H'(x) can be defined 
at x = 0 as well (this will be done in Section 7.2), we have J" H'(x) dx = 1, 
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since #(oo) = 1 and H(—oo) — 0. Noting the results of Example 1.2, we put 
# ' (x) = δ(χ), the Dirac delta function. Additionally, since /(χ)δ(χ) = /(0)<5(x) 
(see Example 1.2), we find that χδ(χ) = 0. Formally differentiating this equation 
gives x δ'(x) 4- δ(χ) = 0. Consequently, ΰ(σ) = αΗ(σ) is a generalized solution of 
συ"(σ) + υ'(σ) = 0. It vanishes outside the characteristic cone where σ < 0, and 
υ(σ) = a within the cone where σ > 0. 

For u to be a fundamental solution of (6.7.40) we must specify the value of a. 
If и is to be a causal fundamental solution, it must vanish for t < to as well. We 
cannot obtain a causal fundamental solution strictly in terms of the variable σ, which 
can distinguish only between the interior or the exterior of the full characteristic 
cone, not between the forward and backward parts of the cone. Therefore, we set 
u(a) = αΗ(σ) for t > t0 and и = 0 for t < i0. 

In effect, we define the causal fundamental solution of (6.7.40) (with q = 0) in 
the one-dimensional case to be и — a for \x — xo| < c(t — io) and и = 0 for 
\x — xo\ > c(t — to)- It follows from the discussion in Example 6.4 that this is a 
weak solution of the differential equation for (x, t) ψ (χο, io)· We now determine 
the constant a so that the source point condition (6.7.20) is satisfied. 

Let the point (xo, io) lie in the interior of the rectangular region R [of (6.7.20)] 
whose boundary is parallel to the coordinate axes. The function v(x, t) in (6.7.20) 
is assumed to vanish on and near dR. Noting the definition of u(x, t), the integral 
(6.7.20) reduces to an integral over the region A, whose boundary comprises a portion 
of the rectangle and the two characteristics |x — xo| = c(t — to). Thus, 

/ / u[pvtt - pvxx] dV = / / u[pvtt - pvxx] dV 

= a [pvtt - pvxx] dV = -ai pvt dx + pvx dt 
JJ A JdA 

rP\ rPo 
= -a^/pp / dv + a,y/pp / dv = 2a^/ppv(P0) = v(P0), (6.7.43) 

JPo JP-2 

where Po = (xo,to), Pi and Pi are the points where the characteristics intersect 
the rectangle and the techniques used in Example 6.4 have been applied. We find 
that a = 1/2^/pp = \/2cp. Consequently, the causal fundamental solution of the 
one-dimensional version of (6.7.40) where we put q = 0 is given as 

( l/2cp, | x - x o | < c(t -t0), 
n I I ^ (* *\ (6.7.44) 

0, [ x - x o | > c ( i - i 0 ) . 
This solution coincides with that obtained in (6.7.39) if we put p = 1 and c2 = p. 

If n = 1 and q > 0, (6.7.41) has the form of Bessel's equation of zero order. 
The nonsingular solution is и — aJo[{q/p)1^2')], where a is an arbitrary constant 
and J0(z) is the zero-order Bessel function. To obtain a causal fundamental solution 
for (6.7.40) in this case, we put a = l/2cp and set и = 0 outside the forward 
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characteristic cone. This gives 

j (l/2cp)J0 \fqfp\Jc2(t - t0)
2 -(x- x0)

2] , \x - x0\ < c(t - t0), 
(x,t) jo, \x — XQ\ > c(t — to). 

(6.7.45) 
If n = 1 and q < 0 in (6.7.41), we have a modified Bessel equation of zero order. 

With IQ{Z) as the modified Bessel function of zero order, the causal fundamental 
solution of (6.7.40) for this case is 

j (l/2cp)I0 i/-q/py/c2(t - t0)
2 - (x - x0)

2 , \x - x0\ < c(t-t0), u{x, t ) — < J 
l o , \χ — x0\ > c(t — to). 

(6.7.46) 
The verification that (6.7.45) and (6.7.46) are weak solutions of (6.7.40) is somewhat 
more complicated than that given above for the case when q = 0 and is not be given 
here. We note that when q = 0, both (6.7.45) and (6.7.46) reduce to (6.7.44). The 
derivation of causal fundamental solutions of (6.7.40) in higher dimensions by the 
foregoing method is not presented here. It requires a greater familiarity with the 
properties of generalized functions than was needed for the one-dimensional case. 
These solutions are considered in Section 7.4. 

Fundamental Solutions of Parabolic Equations 

Finally, we consider fundamental solutions of parabolic equations. Because of the 
aforementioned complications with the interpretations of these solutions and the de-
termination of their behavior at the source point, we concentrate mostly on one-
dimensional problems for equations with constant coefficients. Some results for 
higher-dimensional problems are also presented. 

The solution of the instantaneous point source problem for parabolic equations can 
be determined from the solution of the stationary point source problem, by specializing 
the result to the case where the source acts instantaneously at the time t = to- We 
carry this out for the heat equation, for which the stationary point source problem was 
solved in Example 6.12. Let f(t) — S(t — to), the Dirac delta function, with io > 0. 
Since the delta function vanishes for t ф to, the stationary point source problem of 
Example 6.12 is formally converted into an instantaneous point source problem. The 
solution of the instantaneous point source problem is obtained by replacing /(f) by 
the Dirac delta function in each of the solution formulas obtained in Example 6.12. 

For the heat equation, we find from Example 6.12 that the causal fundamental 
solution has the form 

u(r, t) = G(r, t - t0)H(t - to), (6.7.47) 

where r is the (spatial) distance from the source point Po, H(z) is the Heaviside 
function and G(r, t — tQ) is the fundamental solution of the heat equation in one, two, 
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or three dimensions. The Heaviside function is required in (6.7.47) to make u(r, t) 
vanish for t < to. However, as shown previously, since the fundamental solution 
G tends to zero at an exponential rate as t J, io. u(r, t) is a smooth function across 
t = to, for all points P φ Ρο· Therefore, the integral condition (6.7.18) can be used 
to determine the behavior of the solution at the singular point (r, t) — (0, to). Its use 
is demonstrated below for the one-dimensional problem. 

As was done for the point source problems treated above for elliptic and hyperbolic 
equations, we want to find fundamental solutions for parabolic equations directly, in-
dependent of having to solve more general problems. Although such direct determina-
tions of fundamental solutions are given in Chapter 7 using the theory of generalized 
functions and transform methods, we now present an alternative method for obtaining 
fundamental solutions for parabolic equations with constant coefficients. 

The causal fundamental solution for the heat equation in one, two or three di-
mensions was given in (6.7.47). By looking for a solution of the heat equation that 
depends on a similarity variable (as defined in the exercises), the heat equation is 
reduced to an ODE and the fundamental solution can then be constructed in terms of 
its solutions. This approach parallels that given in Examples 6.13 and 6.14 for elliptic 
and hyperbolic equations and is considered in the exercises. 

In Example 6.15a different approach is used, and the causal fundamental solution 
for the one-dimensional heat equation is obtained as a limit of the causal fundamental 
solution for the telegrapher's equation. This is of interest in connection with Brownian 
motion, as discussed in Sections 1.1 and 1.2. 

Example 6.15. The Fundamental Solution of the Heat Equation in One 
Dimension. The (hyperbolic) telegrapher's equation 

eutt{x,t) -c2uxx(x,t)+ut(x,t) = 0, (6.7.48) 

where e > 0, formally reduces to the heat equation if we set e = 0. We might 
expect that as e —» 0, the causal fundamental solution of (6.7.48) corresponding to a 
source point at Po = {χο, to) reduces to the causal fundamental solution of the heat 
equation. Indeed, the causality condition for both problems requires that u(x, t) = 0 
fori < ίο· Furthermore, the causal fundamental solution of (6.7.48) vanishes outside 
the forward characteristic sector \x — XQ\ < c(t — to) where с = c/s/ё. As e —► 0, 
the boundary y/l\x - aro I = c(t — t0) of this sector tends to the line t = to, which 
is a characteristic line for the heat equation. In the limit, therefore, the fundamental 
solution of (6.7.48) is expected to be nonzero in the region t > to, a result appropriate 
for the heat equation. 

Let 
u(x, t) = exp [-(t - t0)/2e] v(x, t), (6.7.49) 

in (6.7.48) and we obtain 

evtt{x,t) -c2vxx(x,t) - —v(x,t) = 0. (6.7.50) 

At the source point Po = (xo, io). (6.7.49) implies that u(xo, to) = v(x0,t0), so that 
the fundamental solution of (6.7.50) should yield the fundamental solution of (6.7.48) 
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by means of (6.7.49). With p = e, p = c2, and q = — l / 4e , we obtain the causal 
fundamental solution of (6.7.48) from that of (6.7.40) in the form 

u(x,t) 

e - ( t - t 0 ) / 2 e 

/4c2( h 
y/c2(t-t0)ye-(x-xo)2 

yfÄeTt 
\x — xo\ < c(t — t0)/y/e, 

0, \x — xo\ > c(t — to)/\/e, 

(6.7.51) 

where (6.7.49) was used in connection with the result (6.7.46). As z —* oo, the 
modified Bessel function Io (z) has the asymptotic behavior IQ{Z) « ez/y/2nz. Also, 
for t > <o and 0 < f < 1 we have 

c2(t - io)2 

- {х- xo) 
2 _ c{t - tp) -έ^-^) , (6.7.52) 

which follows from the binomial expansion. 
As e —► 0 the argument of / 0 in (6.7.51) can be given as (t — to)/ 

2e—(x- a;0)2 /(4c2(i — to)) + 0(e), and it tends to infinity. Then, we easily obtain 
in the limit as e —> 0, 

u(x,t) = < 

1 
ν /4π Ε

2 ( ί - io) 

0, 

exp 
(х- XQ)2 

" 4 c 2 ( i - i 0 ) . 
t>t0, 

t<t0, 

(6.7.53) 

which is identical to the causal fundamental solution of the heat equation given in 
(6.7.47). 

Exercises 6.7 

6.7.1. Use (6.7.21 ) to determine that the constants с in (6.7.26) are given as in (6.7.27). 

6.7.2. Derive the result (6.7.10). 

6.7.3. Derive the result (6.7.14). 

6.7.4. Show that the results (6.7.37)-(6.7.39) follow from the corresponding results 
for a continuous point source. 

6.7.5. Derive the equations (6.7.42) and (6.7.43). 

6.7.6. Show that if u(x, t) satisfies the heat equation ut(x,t) = c2uxx(x,t), so 
does u(ax, a2t), where a is a constant. Put a = 1/\Д and show that the heat 
equation has a similarity solution of the form u(x,t) = F(x/\/i), where F(z) 
satisfies the equation F"(z) + (z/2c2)F'(z) = 0, and that F' (z) = a e x p ( - z 2 / 4 c 2 ) . 
Noting that ux (x, t) is a solution of the heat equation if u(x, t) is a solution, conclude 
that ux{x,t) = д/дх [F (x/Vt)] = {l/Vt)F' (x/y/t) = (a/y/t) exp(—x2/Ac2t) 
(with ä = Ι / λ / ϊ π ο 2 this is the fundamental solution of the heat equation). 
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6.7.7. Let r2 = x2 + y2 and u(r, t) be a solution of the heat equation in two di-
mensions. Show that u(ar, a2t) is also a solution and construct a similarity solu-
tion of the form u(r, t) — F(r/\/i). Noting that ut(r, t) is also a solution of the 
heat equation if u(r, t) is a solution, conclude that ut(r, t) = д/dt [F (г/уД)] = 
(ä/t) exp(—r2/4c2t) satisfies the heat equation щ — c2V2u (with ä = 1/4кс2 this 
is the fundamental solution of the heat equation). 

6.7.8. Letr2 = x2+y2+z2 and show that the heat equation ttt(x,i) = c2V2u(x,i)in 
three dimensions has a solution of the form u(r, t) = F(r/\/t)/r, where ru{r, t) = 
v(r,t) = F ( r / \ / i ) is a similarity solution of vt{r,t) = c2vrr(r,t). Show that 
ut(r,t) = d/dt [(l/r)F (r/Vt)} = (à / i 3 / 2 )exp(-r 2 /4c 2 i ) satisfies the heat equa-
tion [with a = (l/\/47rc2)3 this is the fundamental solution of the heat equation in 
three dimensions]. 

6.7.9. Obtain the solution of the (continuous) point source problem for the two-
dimensional heat equation discussed in the text by constructing a superposition of 
appropriately modified fundamental solutions as given in Exercise 6.7.7. 

6.7.10. Proceeding as in Exercise 6.7.9 and using Exercise 6.7.8, solve the (contin-
uous) point source problem for the three-dimensional heat equation. 

6.8 ENERGY INTEGRALS 

For the most part, we have been concerned with the construction of solutions of partial 
differential equations in this and the preceding chapters, but not with the question of 
uniqueness and continuous dependence on the data. As was stated in Section 3.4, 
existence, uniqueness, and continuous dependence on data are required if an initial 
and/or boundary value problem is to be well posed. Using the concept of energy 
integrals, we now discuss briefly the uniqueness and continuous dependence on the 
data of the solutions of the second order differential equations we have considered in 
the last three chapters. (See Section 4.1 for a description of the boundary conditions.) 

Energy Integrals for Hyperbolic Equations 

We begin with the hyperbolic equation 

p(x)u«(x,t)-V-(p(x)Vti(x,t))+9(x)ti(x,t) = pF{x,t), x e G , t > 0 , (6.8.1) 

where G is a region in x-space with the boundary dG, p(x) and p(x) are positive, 
and q(\) is nonnegative in G. Initial and boundary data are given as in (4.2.4) and 
(4.1.11 ). The coefficients and the data for (6.8.1 ) are assumed to be such that classical 
solutions can be constructed. We show that these solutions are unique and depend 
continuously on the data. 
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To construct an energy integral for (6.8.1) we multiply across by ut and inte-
grate over G. Since ut(x,i)V · (p(x)Vu(x,t)) = V · (p(x)ut(x, i)Vu(x,t)) — 
p(x)Vu(x, t) ■ Vtij(x, t), we obtain 

/ / ut[putt - V · (pVu) + ςω] dv= — -pu2 + -p(Vu)2 + -gu 2 cfo 

- ί put-j^ds= if pFut dv, (6.8.2) 

where we have used the divergence theorem and the fact that the region G and the 
coefficients in (6.8.1) are time independent. 

The energy of the system in the absence of external effects is 

E(t) = \fj [pu2 + p(Vu)2 + qu2) dv+l-JP^u2ds, (6.8.3) 

where the surface integral term comes from substituting for ди/дп in (6.8.2) on 
using the boundary condition. For the wave equation with homogeneous boundary 
data, the energy represents the sum of kinetic and potential energies in the case of a 
vibrating string. [We note that based on the assumptions on p(x), p(x), and <?(x), as 
well as a(x) and /3(x), all of which are nonnegative, each of the integrals in (6.8.3) 
is nonnegative.] 

Thus on using (6.8.3) in (6.8.2), we have 

E'(t) = [[ pFut dv+ [ ?-Bt^ds+ [ ^But ds. (6.8.4) 
JJG JS1 a dn Js2us3 P 

The terms on the right in (6.8.4) represent changes in the energy of the system due to 
internal and boundary forces. 

We use the energy integral to prove that the initial and boundary value problem for 
(6.8.1) has a unique solution. Suppose that there are two solutions u\(x, t) and u-i (x, t) 
of the initial and boundary value problem for (6.8.1). Since the problem is linear, 
the difference u(x, t) — u\{x, t) — г*г(х, t) must be a solution of the homogeneous 
form of (6.8.1 ), that is, with F = 0 and with zero initial and boundary data. Since 
F = В = 0, we find from (6.8.4) that E'{t) = 0. Thus E(t) = constant and energy 
is conserved. Furthermore, 

E(t) = E(0) =l-Jj [p(x)u2
t(x,0) +p(x)(Vu(x,0))2 +q(x)u2(x,0)] dv 

+ l-JsP(x)^u2(x,0)ds = 0, (6.8.5) 

since the initial data г*(х, 0) and ut(x, 0) vanish. [Note that E(t) = constant implies 
that E(t) = E{0).] Then for any t > 0 we have 
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E{t) = ÌJI К х ) и ? ( х ' * ) + Р ( х ) ^ и ( х , 0 ) 2 + д(х)г*2(х,*)] do 

+\JsP(x)^u2(x,t)ds = 0. (6.8.6) 

Since p(x), p(x) are positive and q(x) is nonnegative in G, and a(x) and /3(x) are 
positive on S3, both integrands in (6.8.6) are nonnegative and we conclude that 
щ{х, t) = 0 and Vu(x, t) = 0, for x e G. The vanishing of all the first deriva-
tives of u(x, t) implies that u(x, t) = constant. But u(x, 0) = 0, so that u(x, t) = 0 
and u\(x, t) = U2(x, t). Thus we have shown that the (classical) solutions of the 
initial and boundary value problem are unique. In the above we have admitted the 
possibility that q(x) = 0 over a portion of G. However, if q{x) > 0 in G, we conclude 
directly from (6.8.6) that u(x, t) = 0. 

If the coefficient q(x) in (6.8.1 ) is permitted to be negative, the foregoing argument 
fails to prove uniqueness, as we can no longer conclude from the vanishing of E(t) in 
(6.8.6) that the integrands and, consequently, ut(x, t) and Vu(x, t) vanish. To obtain 
uniqueness for this case we set 

u{x,t) = ertv(x,t), (6.8.7) 

where r is a positive constant to be specified. Inserting (6.8.7) into (6.8.1) yields 

pvtt + Zr/rut - V · {pVv) + (r2p + q)v = e~rtpF. (6.8.8) 

We assume that p(x) and q(x) are uniformly bounded in the region G, with \q(x)\ < 
M, where M is some constant. Then we choose r such that r2p(x) > M [recall that 
p(x) > 0], and this implies that r2p(x) + q(x), the coefficient of v(x, t) in (6.8.8), is 
positive. 

We multiply across by vt(x, t) in (6.8.8) and integrate over G. Then 

ш[11а[pvì+p{Vv)2+{r2p+qW] dv+L TV4S]+IL2rpvì dv 

= [[ e-rtpFvt dV + [ £ (e~rtB)t ~ds+ ί ξ e'rtBvt ds. (6.8.9) 
JJG JS1 ot dn Js2us3 ß 

Let E(t) equal half the term in braces in (6.8.9). Assuming there are two solutions 
u\ (x, t) and i*2 (x, t) of the initial and boundary value problem for (6.8.1 ), we consider 
the difference u(x, t) = u\ (x, t) — U2(x, t). This leads to a homogeneous initial and 
boundary value problem for the solution of the homogeneous form of (6.8.8). Then 
since F = В = 0 in (6.8.9), we have 

E'(t) = -Чг и p{x)v2(x,t) dV < 0, (6.8.10) 

inasmuch as p(x) and r are positive. From (6.8.10) we determine that E(t) is nonin-
creasing in time. But £"(0) = 0 since v(x, t) = vt(x, i) = 0 at the time t = 0. Also, 
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È(t) > 0 for alii since p(x), p(x), and r2p(x) + q(x) are positive inGanda(x)//?(x) 
is positive in S3. Since E(t) cannot increase from its value Ё(0) = 0 as t increases, 
we conclude that E(t) = 0. Again the nonnegativity of the integrals implies that 
v(x,t) = 0, so that «i(x,t) = V2(x,t) and, consequently, u\(x,t) = U2(x,t) and 
uniqueness is proven. 

The energy integral method can also be used to prove continuous dependence on 
the data for the solution of the initial and boundary value problem for (6.8.1). For 
simplicity we assume that F(x, t) = B(x, t) = 0. The case with nonzero F(x, t) and 
B(x, t) requires additional estimates of the given integrals in F(x, t) and B(x, t). Let 
u(x, 0) = /(x) and ut (x, 0) = g(x). We assume that there are two sets of initial data 
/i(x), /г(х) and gi{x), 32(x) with corresponding solutions u\(x,t) and u2{x,t). 
The data are assumed to be close to each other in the sense that 

||/i(x)-/2(x)|| < ex, ||V/iW-v/2(x)|| < e2, |Ых)-<Ых)|| < c3, (6.8.11) 

where the norm 11 · · · 11 represents the absolute value of the maximum difference 
between the functions indicated over the region G, and the constants ei, 62, and 63 
are small. We consider the case where q(x) > 0 and ß(x) = 0 in the boundary 
condition. Thus the energy E(t) is conserved. 

Let u(x, t) — щ (x, t) — u2(x, t). The energy integral for u(x, t) yields 

E(t) = E(0) = \jj [p(9l - g2)
2 + p(Vh ~ V/2)2 + <?(/i - / 2)2] dv, 

(6.8.12) 

since, for example, ut(x, 0) = gi{x) — fl2(x)· Using (6.8.11), we can bound E(t) in 
terms of €1, È2,ande3. We write this as E(t) < M(βι, (.2, ез), where M{e\, £2, ез) —> 
0 as ei, €2, and £3 tend to zero Thus we can make E(t) arbitrarily small, say, less 
than e, if the ê  (г = 1,2,3) are small. This yields 

*«4//0 -^f--^-) + P ( V w i - V u 2 ) 2 + 9 ( u i - t i 2 ) 2 dv < e. 

(6.8.13) 

The positivity of p(x), i>(x), and q(x) implies that each term in the integral is small, 
so that u\(x, t) and its first derivatives are close to и2(х, t) and its first derivatives. 
Thus, if the data /(x) , V/(x), and g(x) undergo small perturbations, the solutions 
are perturbed only slightly. This signifies continuous dependence on the data. We 
note that if F(x, t) and B(x, t) are not zero, slight variations in their values lead to 
variations of the corresponding solutions that increase in time. However, in a fixed 
time interval 0 < t < T the difference between the original and perturbed solutions 
can be kept uniformly small. 

If the domain G is of infinite extent and we are considering the Cauchy problem 
for (6.8.1 ) with initial data in G, we must assume that the data and the solution u(x, t) 
vanish for sufficiently large |x|. Then uniqueness can be proven by the energy integral 
approach. The surface integral in (6.8.3) is absent and we can conclude that zero data 
implies that u(x, t) = 0. In the same fashion, continuous dependence on the data can 
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be shown. In addition, if G is a semi-infinite region, say, a half-space, the preceding 
arguments also carry through. 

We have seen that in the absence of interior or boundary force terms F(x, t) and 
B(x, t), the energy E(t)—that is, (6.8.3)—is conserved if q > 0. However, for 
(6.8.8), which is essentially a dissipative hyperbolic equation with 2rpvt represent-
ing the dissipative effect, the energy E(t) decreases in time as seen from (6.8.10). 
Assuming that the energy integral represents the kinetic and potential energy of the 
system, the energy is dissipated as t increases and is converted into another energy 
form, such as heat energy. This is consistent with our results in Chapter 1 relating the 
telegrapher's equation to the diffusion or heat equation. 

We conclude our discussion of the hyperbolic case by noting that more precise 
results could have been obtained for (6.8.1) that would have given domains of depen-
dence for both the Cauchy and the initial and boundary value problems for (6.8.1). 
For the sake of simplicity we did not present the more complicated analysis required 
to obtain these sharper results. 

Energy Integrals for Parabolic Equations 

Next we consider the parabolic equation 

p(x)ut(x, t) - V · (p(x)Vu(x, i)) + q{x)u(x, t) = p(x)F(x, t), xeG, t> 0, 
(6.8.14) 

with the initial condition u(x, 0) = /(x) and the boundary data (4.1.11). We assume 
that p(x) and p(x) are positive, and q(x) is nonnegative in G, and that u(x, t) is a 
classical solution of the initial and boundary value problem. 

To obtain an energy integral for (6.8.14) we multiply across by u(x, t) and integrate 
over G. Since 

u(x,i)V · (p(x)Vu(x,t)) = V · (p(x)u(x,i)Vu(x,t))-p(x)Vti(x,i) · Vu(x,i), 
(6.8.15) 

we obtain, on using the divergence theorem, 

/ / pu2 dv\ + / / [p(Vu)2 + qu2} dv = PupT ds + / / PFudv-

(6.8.16) 
We have 

/ pu^ds=- f ^pu2ds+ [ E-B^ds+ [ ^Buds. (6.8.17) 
JOG dn Js3 ß JSi a dn Js2us3 ß 

We define the energy term for (6.8.14) as 

E(t) = \ If p(*)u2(x,t) dv. (6.8.18) 

Assuming that there are two solutions m(x,t) and U2(x, t) for the initial and 
boundary value problem for (6.8.14), the difference u(x,t) = ui(x,t) - U2(x,t) 

dt 
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satisfies the homogeneous form of (6.8.14) with homogeneous initial and boundary 
data. Thus we obtain from (6.8.16)-(6.8.17), 

E'(t) = - if \p(Vu)2 + qu2} dv- I ^ pu2 ds < 0, (6.8.19) 
JJG JS3 P 

because p(x), q(x), p(x), a(x), and ß(x) are nonnegative. Since E(t) > 0,E(0) = 
\ IIG PU(X' 0)2 dv = 0, and E(t) is nonincreasing in view of (6.8.19), we conclude 
that E(t) = 0 for all t. Thus u(x, t) = 0 and u\ (x, t) — U2(x, t), so that uniqueness 
is established. Continuous dependence on the data follows by an argument similar 
to that in the hyperbolic case. If the region G is of infinite extent and u(x, t) vanishes 
as |x| —► oo, we can also prove uniqueness and continuous dependence on the data. 

Again, if q(\) < 0, this method fails, but if q(x) is uniformly bounded in G, 
the transformation (6.8.7) reduces (6.8.14) to a form for which this approach proves 
uniqueness. 

The equation (6.8.19) shows that the energy E(t) is not conserved and this is the 
case even if u(\, t) = 0 on the boundary and q(x) = 0. There is, however, another 
conserved quantity if q(x) = 0 and du(x, t)/dn vanishes on the boundary [i.e., there 
is no flux of u(x, t) through the boundary]. WithF(x, t) = q(x) = Oin (6.8.14), we 
obtain on integrating the equation over G, 

IL[put-v-{pVu)]dv=itIIapudv'Lp^ds=^IIG
pudv=o-

(6.8.20) 

The quantity JJG pu dv is conserved and if, initially, u(x, 0) = /(x) , we have 

if p(x)u(x, t) dv = JJ p(x)f(x) dv. (6.8.21) 

The integrals in (6.8.21 ) represent the total amount of heat, say, in the region G. Even 
if G is of infinite extent and u(x, t) vanishes as |ж| —> oo, (6.8.21) remains valid. 

Energy Integrals for Elliptic Equations 

For the elliptic equation 

-V-(p(x)Vu{x)) + q(x)u(x)=p{x)F(x), xeG, (6.8.22) 

with the boundary condition (4.1.11), we multiply across by u(x) and integrate over 
G. Using the divergence theorem and (6.8.15), this gives the energy integral, 

/ / \p(Vu)2 + qu2} dv= pu-^- ds + / / pFu dv. (6.8.23) 

The energy term is 

E = llG\p(x)(Vu(x))2+q(x)u2(x)}dv + j | £ j p(x)u2(x) ds. (6.8.24) 
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Proceeding as before, we easily prove uniqueness of classical solutions if a(x) ψ 
0 in the boundary condition a(x)u(x) + β(χ) du{x)/dn\dG = B(x). However, 
if a(x) and q(x) are zero, the solution is unique only up to an additive constant 
since u(x) = constant is a solution of V · (p(x)Vu(x)) = 0 with the boundary 
condition β(χ) du(x)/dn\dG = 0. Furthermore, uniqueness can be demonstrated 
only if q(x) > 0 in (6.8.22). If q(x) < 0, the energy integral method (in the present 
form) cannot be used to prove uniqueness. In fact, as shown in Chapter 8, the solution 
need not be unique in that case. 

The uniqueness theorem can also be extended to exterior boundary value problems 
for (6.8.22), with G is a semi-infinite region or a region of infinite extent outside a 
closed and bounded region with the conditions (4.1.11) assigned on the finite bound-
aries. The solution is required to satisfy appropriate conditions at infinity. (See the 
exercises for a discussion of Laplace's and Poisson's equations.) Also, the continuous 
dependence on the data for solutions of the boundary value problem for (6.8.22) can 
be proven by this method. 

The energy integral method can be applied to systems of equations. It can also be 
used to prove existence of solutions, not only uniqueness and continuous dependence 
on data, but we do not consider this here. 

To conclude our discussion, we note that for parabolic and elliptic equations there 
exist maximum principles whereby uniqueness and continuous dependence on data 
can be proven for equations of a more general form than those considered in this 
section. They are considered in Chapter 8. 

Exercises 6.8 

6.8.1. Use the energy integral method to prove uniqueness for the solution of the 
Cauchy problem for the hyperbolic equation (6.8.1). 

6.8.2. Construct an energy integral for the one-dimensional form p(x)utt(x,t) 
- (p(x)ux (x, t))x+q(x)u(x, t) = p(x)F(x, t) of the hyperbolic equation (6.8.1) and 
prove uniqueness and continuous dependence on the data for the initial and boundary 
value problem for this equation. [In proving continuous dependence, set F(x, t) and 
the boundary terms equal to zero.] 

6.8.3. Prove that the solution of the initial and boundary value problem for the 
parabolic equation (6.8.14) is continuously dependent on the data, assuming that 
F(x, t) and the boundary terms are zero. 

6.8.4. Determine conditions at infinity that would guarantee uniqueness for the exte-
rior Dirichlet problem for Laplace's and Poisson's equations on the basis of the energy 
integral method. Hint: Apply the energy integral method to the region bounded by the 
curve or surface where the data are assigned and by a circle or sphere that completely 
contains the boundary on which those data are given. Allow the radius of the circle or 
sphere to tend to infinity and obtain conditions on the solution that make the integral 
over the circle or sphere tend to zero as the radius tends to infinity. 
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6.8.5. Show that u(x, y) = log(-\/x2 + y2/a) and u{x, y) = 0 are both solutions of 
uxx{x, y) + uyy(x,y) = 0 for x2 + y2 > a2 with u(x,y) = 0 on x2 + y2 = a2. 
Use the conditions at infinity determined in Exercise 6.8.4 to eliminate one of these 
solutions and to obtain uniqueness for the foregoing exterior Dirichlet problem. 

6.8.6. Show that u(x, y, z) — a/ \Jx2 + y2 + z2 and u(x, y, z) = 1 are both solu-
tions of the exterior Dirichlet problem for uxx(x,y, z) + uyy (x, y, z) +uzz (x, y,z) = 
0 in the region x2 + y2 + z2 > a2 with the boundary condition u(x, y, z) = 1 on 
x2 + y2 + z2 = a2. Use the conditions at infinity obtained in Exercise 6.8.4 to 
eliminate one of the solutions above so that this problem has a unique solution. 

6.8.7. Develop an energy integral approach for the first order linear equation щ (x, t)+ 
a(x, t)ux(x, t) + b(x, t)u(x, t) = 0, - c o < x < oo, t > 0, by multiplying across 
by u(x, t), using the identity auux = (^au2)x — ^axu

2 and integrating with respect 
to x from -oo to oo. Assuming that all coefficients have the necessary behavior at 
±oo and using the change of variable (6.8.7), show how the energy integral can be 
used to prove uniqueness for the Cauchy problem for the given equation. 

6.8.8. Consider the first order hyperbolic system with constant coefficients ut (x, t) + 
Aux(x, t) + Bu(x,t) = 0, —oo < x < oo, t > 0, where Л is a real symmetric 
matrix. Multiply across by the vector uT(x,t) and integrate from —oo to oo with 
respect to x. Assuming that u(x, t) vanishes as |ж| —► oo, show that the energy in-
tegral E{t) = f^° |u(x, t)\2 dx < 0 if В is a nonnegative matrix with the property 
that uT(x, t)Bu(x, t) > 0 for all vectors u(x, t). If В is not nonnegative, the trans-
formation u(a;, t) = ertv(x, t) with г > 0 yields a system for v(x, t) in which the 
coefficient В of v(x, t) can be made nonnegative for an appropriate choice of r. Use 
the energy integral E(t) to prove uniqueness for the Cauchy problem for the given 
system. 

6.8.9. Use the method of Exercise 6.8.8 to show that the Cauchy problem for the 
system (2.1.2), which is equivalent to the wave equation, has a unique solution. 

6.8.10. Apply the method of Exercise 6.8.8 to prove uniqueness for the solution 
of the Cauchy problem for the system (1.2.23)-(1·2.24), which is equivalent to the 
telegrapher's equation. 

6.8.11. Use an energy integral to show that the initial and boundary value problem 
for the equation of a vibrating rod (see Section 8.5) utt(x, t) + uxxxx{x, t) = 0, 0 < 
x < I, t > 0, with u(x, 0) and щ(х, О) specified and u(x, t) and ux(x, t) given 
at x = 0 and x = I, has a unique solution. Hint: Use the identity utuxxxx = 
\Щиххх)х — \Щхихх)х + 2\uxx)l· 

6.8.12. Show that the boundary value problem for the biharmonic equation (see 
Section 8.5) V2 V2u(x, y) = 0, in a bounded region R, with u(x, y) and ди(х, у)/дп 
specified on dR has a unique solution by using an appropriate energy integral. Hint: 
u\/2V2u = uV · (uVV2u) = V · (uVV2u) - V · (VuV2w) + (V2u)2. Deduce that 
if u(x, y) = du(x, y)/dn — 0 on dR, we must have V2u(x, y) = 0, and conclude 
from the uniqueness theorem for Laplace's equation that u(x, y) = 0. 
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6.8.13. Combine the methods of Exercises 6.8.11 and 6.8.12 to develop an energy 
integral that yields uniqueness for the initial and boundary value problem for the 
equation of a vibrating plate (see Section 8.5) utt{x, y, t) + c2 V2V2u(x, y, t) = 0, 
in a bounded region R where u(x, y, 0) and щ{х, у, 0) are prescribed and u(x, y, t), 
together with ди(х, у, t)/dn, is specified on dR. 

6.9 MAPLE METHODS 

There are essentially no built-in procedures in Maple that deal directly with the general 
concepts introduced and discussed in this chapter. We have seen, however, that in 
determining fundamental solutions it becomes necessary to solve ordinary differential 
equations and to examine the properties of their solutions, which may involve special 
functions. Some of these matters are considered here. 

Integral Wave Equation 

Section 6.5, which deals with the integral wave equation, presents a number of results 
that represent solution formulas or techniques for the solution of the wave equa-
tion. They lend themselves to the creation of Maple procedures that automate the 
construction of solutions via these processes. 

We present only one procedure IntWaveEqNum, which finds numerical solu-
tions of the initial and boundary value problem for the (one-dimensional) homoge-
neous wave equation for u(x,t) in a finite interval 0 < x < /with Dirichlet conditions 
assigned at the endpoints. The problem is given as 

utt{x,t) =c2uxx(x,t), u(x,0)-f(x), ut{x,0) = g{x), 

u(0,t) = r(t), u(l,t) = s(t). (6.9.1) 

To find the solution of (6.9.1 ) at the point (x, t) = (ξ, τ), the arguments are given as 
IntWaveEqNum(c,u(x,t),[f(x),g(x)],[r(t),s(t)],x = 0..1,[ξ,τ]). The procedure 
finds the solution at the point x = ξ at the time t = r in terms of the initial and 
boundary data in a stepwise fashion. 

Example 6.16. The Wave Equation in a Finite Interval. We put с = 1 and 
Z = 1 in the procedure IntWaveEqNum and determine the solution at points in the 
four regions Ri, R2, R3, RA displayed in Figure 6.11. The initial and boundary 
data are kept arbitrary. Let υ(ξ, т) represent the output of the procedure at the point 
(ξ,τ). Then we have 

/■0.85 
ü(0.5,0.35) = 0.5 ( / (0.85) + / (0.15)) + 0.5 / g (s) da. (6.9.2) 

./0.15 
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The point (0.5,0.35) lies in the region Ri and (6.9.2) is just d'Alembert 's solution 
evaluated at that point. Next, we consider a point in i?2 and obtain 

,•0.75 
u(0.9,0.35) = 0.50 / (0.75) - 0.50 / (0.55) + 0.50 / g(s)ds + s (0.25). 

./0.55 
(6.9.3) 

Only the effect of the boundary value at x = 1 is felt at this time. Then we consider 
a point in Дз and obtain 

/•0.75 

ü(0.1,0.65) = - 0 . 5 ( / ( 0 . 5 5 ) - / ( 0 . 7 5 ) ) + 0.5 / g {s)ds + r (0.55). (6.9.4) 
./0.55 

Now, the boundary value at x = 0 but not at x = 1 appears in the solution. Finally, 
we consider a point in R4 and find that both boundary conditions occur in the result, 
as expected. 

^■0.75 
«(0.5,1.25) = r (0.75) + s (0.75) - 0.5 ( / (0.75) + / (0.25)) - 0.5 / g (s) da. 

./0.25 

(6.9.5) 
As a concrete example we consider the function u(x, t) = (x + t)2, which is 

a solution of the wave equation (6.9.1) with с = 1. We set / = 1, evaluate the 
initial and boundary values for this solution and determine its value at the point 
(x, t) = (0.4,46.73). On using the initial and boundary conditions in the procedure 
IntWaveEqNum{\, u(x, t), [x, t], [x2,2x], [i2, (1 + t)2],x = 0 . . . 1, [0.4,46.73]) 
the output u(0.4,46.73) = 2221.2369, equals the value of the solution at the given 
point, which is u(0.4,46.73) = 2221.2369. 

Fundamental Solutions 

A basic technique for finding fundamental solutions of partial differential equations 
with constant coefficients involved a transformation of the variables that reduced the 
PDEs to ODEs. The solutions of the ODEs were found and on the basis of their 
behavior at the singular point and at infinity, in a number of cases, fundamental 
solutions were constructed. Maple can be used to convert the PDEs to ODEs, and 
then procedures such as dsolve, series, and asympt can be invoked to solve the 
ODEs and analyze their behavior. We reexamine one of the elliptic PDEs considered 
in Example 6.13 from this point of view. 

Example 6.17. The Free Space Green's Function for an Elliptic Equation. 
We consider the elliptic equation (6.7.24) with constant coefficients in two dimensions, 

p {d2u(x, y)/dx2 + d2u(x, y)/dy2) - qu(x, y) = 0, (6.9.6) 

where p > 0 and q < 0. Then u(x, y) = ü ( y/(x — XQ)2 + (у — У0)2 ) yields 

р(й"(г) + -й'(г)) - qü{r) = 0, (6.9.7) 
г 
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where r — \J{x — xo)2 + (y — yo)2· The Maple procedure dsolve gives 

u(r) = c 1 J o ( v / r 9 7 p r ) + c 2 y 0 ( y = ^ r ) , (6.9.8) 

in terms of the Bessel functions Jo and YQ with arbitrary constants c\ and c2. 
The Bessel function YQ is singular at r = 0. series determines the behavior of 

u(r) near r = 0 to be u(r) « с2[21п(г)/я-], r —» 0. On proceeding as in Example 
6.13, we find that we must put c2 = — l/4p. To determine the constant ci, we must 
examine the behavior of u(r) at infinity. The Maple procedure asympt finds the 
required asymptotic behavior as 

u(r) « J ^ ; {-p/q)1/4 (ci - гс2)ехр \i [yj-q/pr - - J 

+ V 2тгг ( _ P / 9 ) 1 / 4 ( c i + i c 2 ) e x p [ - i\yf^qfpr- - J , r -> oo. (6.9.9) 

To satisfy the Sommerfeld radiation condition, we must put c\ = —гс2 = г/4р. 
As a result, (6.9.8) becomes 

4r) = ~ {Jo (s/4Jpr)+iY0 (y^fpr)) = ^ t f ^ ( У ^ г ) . 
(6.9.10) 

Exercises 6.9 

6.9.1. Use the procedure IntWaveEqNum to obtain the results given in Exam-
ple 6.16. 

6.9.2. Use the Maple procedures referred to in Example 6.17 to reproduce the results 
given there. 



CHAPTER 7 

GREEN'S FUNCTIONS 

The method of Green's functions is an important technique for solving boundary value, 
initial and boundary value, and Cauchy problems for partial differential equations. 
It is most commonly identified with the solution of boundary value problems for 
Laplace's equation and a Green's function has already been introduced in that context 
in Chapter 1. It was also seen in Section 1.3 and in our study of point source problems 
in Section 6.7 that the Green's function is often worthwhile determining in its own 
right rather than as a tool to be used only for solving another problem. 

In this chapter we begin by constructing generalizations of Green's second theorem 
that are appropriate for the second order differential equations introduced in Chapter 4. 
These integral theorems [which are special cases of the general result (3.6.7) given in 
Section 3.6] are then used to show how boundary value, initial and boundary value, and 
Cauchy problems can be solved in terms of appropriately defined Green's functions for 
each of these problems. Even though the construction of Green's functions requires 
that a problem similar to the original (given) problem must be solved, it is often easier 
to solve the Green's function problem in a number of important cases, as we shall see. 
In this regard the fundamental solutions considered in Section 6.7, of which Green's 
functions are a special case, play an important role. Since the determination and 
use of Green's functions require the use of generalized functions such as the Dirac 
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delta function, a brief discussion of the theory of generalized functions is given in 
this chapter. Most of the chapter, however, is devoted to the construction and use 
of Green's functions for problems involving equations of elliptic, hyperbolic, and 
parabolic types. 

7.1 INTEGRAL THEOREMS AND GREEN'S FUNCTIONS 

In this section we construct integral theorems appropriate for the elliptic, hyperbolic, 
and parabolic equations introduced in Section 4.1. Each of these theorems follows 
from an application of the divergence theorem and represents a generalization of 
Green's second theorem. These theorems form the basis for the construction of the 
Green's functions we consider in this chapter. Technically, the theorems are valid only 
if the functions occurring in the integrals are sufficiently smooth, and as we have seen 
in Section 6.7, this is generally not the case for Green's functions. Nevertheless, we 
shall assume that these theorems are formally valid in all cases and rely on the theory 
of generalized functions presented in Section 7.2 to form a basis for their validity, 
even though this is not demonstrated. We begin our discussion with problems in two 
or three space dimensions and present the one-dimensional results at the end of this 
section. Even though these integral theorems are special cases of the general result 
(3.6.7), we include some details of their derivation. 

Integral Theorems and Green's Functions for Elliptic Equations 

We start with the elliptic equation 

Lu(\) = - V · (p(x)Vu(x)) + <7(x)u(x) = p(x)F(x) (7.1.1) 

in two or three dimensions given over a bounded region G with the boundary condi-
tions 

du(\) a(x) u{x) + /?(x) 
dn 

= B(x). (7.1.2) 
dG 

The conditions on the coefficients in (7.1.1) and (7.1.2) given in Section 4.1 are 
assumed to remain in effect. Introducing a function w(x) whose properties are to be 
specified and proceeding as in Example 4.2, we obtain 

/ / [wLu — uLw]dv = — / pVwVu — uVw] -nds = I p \u— w— ds, 
JJG JdG JdG I on dn 

(7.1.3) 
on applying the divergence theorem with nas the exterior unit normal on dG. Equation 
(7.1.3) is the basic integral theorem from which the Green's function method proceeds 
in the elliptic case. 

The function w(x) is now determined such that (7.1.3) expresses и(х) at an arbitrary 
point ξ in the region G in terms of w(x) and known functions in (7.1.1) and (7.1.2). 
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Let w(x) be a solution of Lw(\) = δ(χ — £), where δ(χ — £) is a two- or three-
dimensional Dirac delta function. The substitution property of the delta function then 
yields 

II u{x)Lw{x) dv = II u(x) δ(χ -ζ)άυ = u(£)· (7-1.4) 

In view of (7.1.1 ) we also have 

if w(x)Lu{x) dv = И p(x)w(x)F(x) dv. (7.1.5) 

It now remains to choose boundary conditions for w(x) on dG so that the boundary 
integral in (7.1.3) involves only w(x) and known functions. This can be accomplished 
by requiring w(x) to satisfy the homogeneous version of the boundary condition 
(7.1.2); that is, a(x) w(x) + β(χ) dw(x)/dn\dG = 0. If x e Si on dG, we have 

dw du 1 dw 
u ΊΓ ~ W7T = ~B я~> ( 7 Л · 6 ) 

on on a on 

in view of (7.1.2). If x e 5 2 U S3 on dG, we have 

dw du I ^ 
U^n-WTn = -ßBw- . (7Л-7) 

The function w{x) is called the Green's function for the boundary value problem 
(7.1.1)—(7.1.2). To indicate its dependence on the point ξ, we denote the Green's 
function by w(x) — Κ(χ;ξ), as in Section 1.3. In terms of the Green's function 
K(x; £), the foregoing implies that (7.1.3) takes the form 

««) = II PK(x;t)Fdv- I P^d-^ds+ f Pa s 
JJG JS1 a on Js2us3 P 

(7.1.8) 
The Green's function K(x; ξ) thus satisfies the equation 

-ν-(ρ(χ)νΚ(χ;ξ))+4(χ)Κ(χ;ξ) = δ(χ-ξ), χ, ξ 6 G, (7.1.9) 

and the boundary condition 

δΚ(χ;ξ) 
α(χ)Κ(χ-ξ)+β(χ) 

dn 
= 0, (7.1.10) 

dG 

with the derivatives taken in the x-variables. It follows from (7.1.9) and Section 
6.7 that the Green's function is a fundamental solution of (7.1.1). This fact will be 
exploited in the construction of certain Green's functions. 

Not all Green's function problems (7.1.9)-(7.1.10) have solutions. In certain cases 
considered later, a generalized or modified Green's function must be constructed that 
satisfies an equation that differs from (7.1.9) or boundary conditions that differ from 
(7.1.10). However, once the Green's function has been determined, the formulas 
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(7.1.8) or slightly modified ones in the generalized case yield the solution u(x) of 
the boundary value problem (7.1.1 )-(7.1.2) at any point in G. By introducing appro-
priate assumptions on the behavior of the solutions at infinity, the Green's function 
technique can also be applied to problems over unbounded regions. We construct 
Green's functions for specific elliptic equations of the form (7.1.1) over bounded and 
unbounded regions. 

Integral Theorems and Green's Functions for Hyperbolic Equations 

We consider the initial and boundary value problem for the hyperbolic equation 

p(x)utt(x,t)+Lu(x,t) = p{x)F(x,t), xeG,t>0, (7.1.11) 

where the operator L is defined as in (7.1.1 ) and G is a bounded region in two or 
three-dimensional space. The initial conditions for u(x, t) are 

u(x,0) = /(x) , щ(х,0) = g(x), xeG. (7.1.12) 

The boundary conditions on dG are given as in Section 4.1 in the form 

du(x, t) 
a(x)u(x,t) + ß(x) 

дп 
= 5(χ,ί), ί > 0 . (7.1.13) 

dG 

àR. 

. * > ' ,*
e 

Figure 7.1 The region R. 

The integral theorem appropriate for the problem is given over the bounded cylin-
drical region R = G x [0, T] in (x, i)-space , as shown in Figure 7.1 (Γ > 0 is an 
arbitrary number). The lateral boundary of R is denoted by dRx and the two caps of 
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the cylinder, which are portions of the planes t = 0 and t = T, are denoted by dRo 
and dRr, respectively. dRo is identical to the region G and the initial conditions for 
u(x, t) are assigned on it. The boundary conditions for u(x, t) are assigned on dRx. 
The exterior unit normal n to dR has the form n = [nx, 0] on dRx, where nx is the 
exterior unit normal to dG. On dRo, n has the form n = [0, —1], and on dRr it has 
the form n = [0, 1]. 

It follows from Section 6.4 that for an arbitrary function w(x, t) we have 

/ / \w{puu + Lu)— u(pwtt+Lw)]dv = I [—pwVu+puVwypwut—puwtl-nds 
JJR JdR 

= (-pwVu+puWw)-nxds + (pwut—puwt)dx — (pwut—puwt)d\, 
JdR% JÖRT JdRo 

(7.1.14) 

where V = [V, д/dt], the gradient operator in space-time, the divergence theorem, 
as well as the foregoing results concerning the exterior unit normal to the boundary 
dR have been used. The integral relation (7.1.14) forms the basis for the Green's 
Junction method for solving the initial and boundary value problem (7.1.11 )-(7.1.13). 

We now show how w(x, t) is specified so that the solution u(x, t) of (7.1.11)-
(7.1.13) can be determined at an arbitrary point (£, r) in the region R from (7.1.14). 
First we require that w(x, t) be a solution of 

p(x)wtt(x,t) + Lw{x,t) = 5(x-£)S(t-T), £ e G, 0 < т < T. (7.1.15) 

The product of the Dirac delta functions in (7.1.15) has the effect 

И u{pwtt + Lw) dv= if и δ{χ - £)6{t - r ) dv = ιι(ξ, τ). (7.1.16) 

In addition, we obtain from (7.1.11), 

/ / w{putt + Lu) dv = / / pwF dv, (7.1.17) 

so that this term is known once w(x, t) is specified. 
Since 

/ pl-wVu + uVw) ■ nx ds = / pl—w-—h u—— 1 ds, (7.1.18) 
JdR, JdR, \ dn dnj 

we see that if we require, as in the elliptic case, that 
r\ I 

aw + ß ^ \ =0, (7.1.19) 

we obtain 

/ P (-^ + u ? i ds = I - B Ir ds - I -*Bwds> (7-1-20) JdR, V on dn) Jàla dn Js2us3 ß 

where Si, 5г, and S3 are the portions of dRx that correspond to Si, S2, and S3 on 
dG, respectively. 
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To complete the determination of w(x, t), we expect that initial conditions must 
be assigned to it for some value of i. If w(x, t) and wt (x, i) are specified at t = 0, the 
integral over dRo in (7.1.14) is determined completely since u(x, t) and ut(x, t) are 
given at t = 0. However, u(x, t) and ut(x, t) at t = T (i.e., on dRr) are not known. 
If we specify w(x, t) and wt(x, t) at t = T, it must be done in such a way that the 
unknown values of u(x, t) and ut(x, t) play no role in the integral over dRr- The 
only possible choice is to set 

w(x,T) = 0, wt(x,T) = 0, (7.1.21) 

so that the entire integral over dRr vanishes. 
The equation (7.1.15) together with the boundary condition (7.1.19) and the con-

ditions (7.1.21 ) at t = T constitutes a backward initial and boundary value problem 
for the function w(x, t). It differs from the types of problems considered previously 
for hyperbolic equations (see, however, Section 1.2), where initial conditions were 
assigned at t = 0 and the problem was solved for t > 0. Here we assign end con-
ditions at t = T and solve the problem for t < T. The problem for ги(х, t) is well 
posed because if t is replaced by —i in wu(x, t) its sign is unchanged. We will 
refer to problems for which either initial conditions or end conditions are assigned 
as initial value problems. The function w(x,t) determined from (7.1.15), (7.1.19), 
and (7.1.21) is called the Green's function for the initial and boundary value problem 
(7.1.11)-(7.1.13)foru(x,i). It is denoted as tu(x, t) = K(x,t;£,r). 

Once the initial and boundary value problem for K(x, t; ξ, τ) is solved, the values 
of K(x, 0; £, r) and Kt(x, 0; ξ, τ) are known. Then the foregoing results yield the 
solution u(x, t) at an (arbitrary) point (£, r) as 

«(€, r) = if pKF dv+ f (pKg - pKtf) dx 
JJR JdRo 

Js, a dn Js2us3 ß 

For completeness, we state the problem that the Green's function K(x, t; £, r) 
must satisfy. It is a solution of the equation 

p{x)Ktt(x,t;ζ,τ) + LK(x,i;£,r) = δ{χ-ξ)δ{1 - τ ) , χ,ξ e G, t,r <T, τ > 0, 
(7.1.23) 

with the end conditions 

K(x, Τ; ξ, τ) = 0, Kt(x, T; & τ) = 0, (7.1.24) 

and the boundary condition 

dK(x,t;£,T) 
α{χ)Κ(χ,ϊ,ξ,τ)+β(χ) 

дп 
= 0, t<T. (7.1.25) 

It is shown in the exercises that K(x, t; ξ, τ) = Κ(ξ, —τ; x, —t). Therefore, as a 
function of £ and r , K(x, t; ξ, τ) satisfies the same differential equation but with 
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time running forward instead of backward. In these variables it represents the causal 
fundamental solution for the given hyperbolic operator and the boundary condition 
(7.1.25). 

Integral Theorems and Green's Functions for Parabolic Equations 

The parabolic equation 

p(x)ut(x,t) + Lu(x, t) = p(x)F(x,t), xeG,t> 0, (7.1.26) 

with the initial and boundary conditions 

du(x, t) 
u(x,0) = /(x) , x e G, a(x)u{x,t) + ß(x) 

дп 
= B(x,t), t > 0 , 

dG 
(7.1.27) 

can be treated in the same way as the hyperbolic problem (7.1.11)—(7.1.13). The 
operator L, the regions R and G, and their boundaries are defined as in the foregoing 
hyperbolic problem. 

We introduce the function w(x, t) and consider the integral relation 

/ / [w(put + Lu) — u(—pwt + Lw)] dv = / / V · [—pwVu + puWw, pwu] dv 

— / I —vw——Vpu-^— 1 ds + pwudx- / pwudx. (7.1.28) 
JdRx \ dn dnj J9RT J9RO 

Again, V = [V, d/dt] is the gradient operator in space-time and the region R and 
its boundaries are as shown in Figure 7.1. The result (7.1.28) is a consequence of 
the divergence theorem, but it differs from the preceding integral theorems for the 
elliptic and hyperbolic problems in the following respect. The operator p(d/dt) + L 
in the parabolic equation (7.1.26) is not self-adjoint. Its adjoint operator is given as 
—p{d/dt) + L. With this choice for the adjoint operator we find that w(put + Lu) — 
u(—pwt + Lw) is a divergence expression, as is shown in (7.1.28) (see Example 3.9). 

We require ги(х, t) to be a solution of 

-p(x)wt{x,t) + Lw(x,t) = 6{x-£)ö(t-T), i e G , 0 < T < T , (7.1.29) 

with the end and boundary conditions 

dw(x,t) 
w{x,T) = 0, a(x)w(x,t)+ß(x)-

дп 
= 0. (7.1.30) 

Then, w;(x, t) = K(x, t\ ξ, r) is the Green's function for the initial and boundary 
value problem (7.1.26)-(7.1.27). It follows from (7.1.28) that 

U ( £ , T ) = if PKFdv+ [ pKfdx- f - В ^-ds + f § BK ds. 
JJR JdRo JS, a ОП Js2US3 P 

(7.1.31) 
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For completeness, we state the problem that the Green's function Κ(χ,ί;ξ,τ) 
must satisfy. It is a solution of the equation 

-p(x)Kt(x,t;tT) + LK(x,t;£,r) = 6(x-£)S(t-r), χ,ξ e G, ί , τ < T, г > О, 
(7.1.32) 

with the end and boundary conditions 

K{x, T; t T) = 0, a(x)K(x, t; ζ, τ) + β(χ) дК{%' *''ζ'τ) 
дп dR, 

= 0, t < Т. 

(7.1.33) 

The equation (7.1.32) satisfied by the Green'sfunction K(x, t\ ξ, τ) is a backward 
parabolic equation that results on reversing the direction of time in the (forward) 
parabolic equation (7.1.26). Since the problem for the Green's function is to be 
solved backward in time, the initial and boundary value problem (7.1.32)—(7.1.33) 
for К is well posed. [That is, we must determine K(x, t; £, r) for t < T with an end 
condition given at t — Т.] Once K(x, t; ξ, τ) has been determined, all the terms on 
the right side of (7.1.31 ) are known and the solution и (х, t) of the initial and boundary 
value problem (7.1.26)-(7.1.27) is specified completely. 

It is shown in the exercises that K(x, t\ ξ, τ) = Κ(ξ, —τ; x, —t). Therefore, as a 
function οίξ and т, К (x, t ; ξ, τ) satisfies a forward parabolic differential equation, but 
with time now running forwards instead of backwards. In these variables it represents 
the causal fundamental solution for the given parabolic operator and the boundary 
condition (7.1.33). 

Causal Fundamental Solutions and Green's Functions for 
Cauchy Problems 

The Green's functions K(x; £) and K(x, t; £, r) defined above are fundamental solu-
tions of the PDEs (7.1.9), (7.1.23) or (7.1.32) in the elliptic, hyperbolic, and parabolic 
cases, respectively. Each of these equations is the adjoint of the given equation for u(x) 
or u(x, t). Since the elliptic and hyperbolic equations are self-adjoint, the Green's 
function is also a fundamental solution of the given equation. In the parabolic case, 
since the given equation is not self-adjoint, the Green's function K(x, t; ξ, τ) is only 
a fundamental solution of the adjoint equation. We have shown, however, that as a 
function of £ and r, K(x, t; ξ, τ) is a fundamental solution of the given parabolic 
equation. 

Let us consider an instantaneous point source problem for the hyperbolic and 
parabolic cases, with the source acting at the time t — r and located at the point x = £. 
We require that the solution u(x, t) satisfy the homogeneous boundary condition 
Q(X)U(X, t) + ß(x)du(x, t)/dn = 0 on dG for t > τ and that u(x, t) = 0 for 
t < т. Then the solution is called a causal fundamental solution for the initial and 
boundary value problem. (In Section 6.7 we found causal fundamental solutions over 
unbounded regions.) We have already indicated how to obtain these solutions in terms 
of the Green's functions K{x, i; £, r ) . 
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The Green's function method can also be used to solve Cauchy problems for 
hyperbolic and parabolic equations. In the hyperbolic case we assume that u(x, t) 
is a solution of (7.1.11 ) with initial data (7.1.12) and in the parabolic case u(x, t) is 
a solution of (7.1.26) that satisfies the initial condition (7.1.27). Both problems are 
given over the entire two- or three-dimensional space. The integral theorems (7.1.14) 
and (7.1.28) can be used for these problems if we assume that the (spatial) boundary 
dRx tends to infinity and the solution u(x, t) and the Green's function K(x, t; ξ, τ) 
are such that the contributions from these integrals vanish in the limit. 

The Green's function K(x, t; £, r) for the hyperbolic case is taken to be the solution 
of the backward Cauchy problem (7.1.23) and (7.1.24). Then the solution of the 
Cauchy problem (7.1.11 )-(7.1.12) is given as 

<Ì,T)= { ( pKFdxdt+f [PKg-pKtf]\t=0dx, (7.1.34) 
•/0 Jx—space Jx—space 

as is easily seen from the (modified) integral relation (7.1.14). 
In the parabolic case the Green's function К(х, t; £, r) is chosen to satisfy the 

backward Cauchy problem (7.1.32)-(7.1.33), and it then follows from the (modified) 
integral theorem (7.1.28) that the solution of the Cauchy problem (7.1.26)-(7.1.27) 
takes the form 

<tr)= [ f pKFdxdt+f [PKf]\t=0dx. (7.1.35) 
./0 Jx—space Jx—space 

The foregoing results are easily modified to yield Green's functions and solution for-
mulas for initial and boundary value problems for hyperbolic and parabolic equations 
given over semi-infinite spatial regions. 

Green's Functions for Hyperbolic and Parabolic Equations: An 
Alternative Construction 

There is an alternative approach to the construction of Green's functions that applies 
in the hyperbolic and parabolic cases. Instead of having K(x, t; ξ, r ) satisfy the 
inhomogeneous equations (7.1.23) and (7.1.32), we require that they be solutions of 
the homogeneous equations 

p(x)Ktt(x,t;t,T) + LK(x,t;t,r) = 0, x,£€G,t<T, (7.1.36) 

-p{x)Kt{x,f,t,T)+LK{x,t;t,T)=0, x,£eG,t<r, (7.1.37) 

in the hyperbolic and parabolic cases, respectively. The homogeneous initial condi-
tions (7.1.24) and (7.1.33) are replaced by 

й- (х ,т ;Е ,т )=0 , ^ ( » , Т ; 1 , Т ) = - Д ( * ~ € ) , ζ e G, (7.1.38) 

K(x, r; £, r) = 6{X
prJ\ Ì € G , (7.1.39) 
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respectively. The boundary conditions (7.1.25) and (7.1.33) for K(x, t-,ξ, r ) are 
retained. 

In this formulation we obtain 

/ [pKut - puKt] dx = ί ιιδ{χ-ξ)άχ = ιι(ξ,τ), (7.1.40) 
JdR-r JdRr 

f puKdx= ί ηδ{χ-ξ)άχ = η{ξ,τ), (7.1.41) 
JdRT JdRr 

for the hyperbolic and parabolic cases, respectively, when (7.1.38) and (7.1.39) are 
used. The solutions и(ξ, τ) then have the form (7.1.22) and (7.1.31 ) in the hyperbolic 
and parabolic cases as is easily seen. The only difference is that the domain of 
integration in the original formulation of the Green's function problem extends from 
0 to T whereas in the present formulation it extends from 0 to r < T. However, 
since the equation and the data for K(x, t; £, r) are all homogeneous for т < t < T, 
the Green's function K(x, t; £, r) vanishes identically in that interval. Consequently, 
the domains of integration are, in effect, identical for both formulations. The relation 
between these two approaches is connected with Duhamel 's principle (see Section 
4.5), which relates inhomogeneous equations with homogeneous initial conditions to 
homogeneous equations with inhomogeneous initial conditions. 

Integral Theorems and Green's Functions in One Dimension 

The preceding results are valid in two or three space dimensions. The case of one 
dimension for the elliptic equation (7.1.1) with the boundary condition (7.1.2), leads 
to the consideration of a boundary value problem for an ordinary differential equation 
for u(x). It is given as, for 0 < x < I, 

_± (p{x)
djM.\ + q{x)u(x) = p{x)F(x) { ^(°) - A«'(°) - ßb 

dx\P(X) dx j + , ( I ) U l I ) " W ' W · \a2u(l) + ß2u'(l)=B2, 
(7.1.42) 

where a.\, β\, α2, β2 satisfy the conditions given in Chapter 4. The related Green's 
function K(x; ξ) satisfies the equation 

LKix-,ξ) = - | - (p(x) дКдХ
х'°) +q{x)K{x;0 = δ(χ-ξ), 0 < x, ξ < l, 

(7.1.43) 
with the boundary conditions 

α1Κ{0;ξ)-β1ΘΚ(0;ξ)/δχ = 0, α2Κ(1;ξ) + β2ΘΚ(1;ξ)/θχ = 0. (7.1.44) 

The solution of the boundary value problem (7.1.43)-(7.1.44) is expressed at a 
point ξ with 0 < £ < / in terms of the solution formula (7.1.8) specialized to the 
one-dimensional case. The region G is the interval 0 < x < I and the Si (i = 1,2,3) 
correspond to boundary conditions of the first, second, or third kinds at x = 0 and 
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x = /. Thus the integral over G in (7.1.8) becomes an integral over 0 < x < I. The 
integrals over the Si reduce to the integrands evaluated at x = 0 or x = I. The normal 
derivative д/дп equals —д/дх at x = 0 and д/дх at x = ί. For example, in the case 
of mixed boundary conditions in (7.1.42) with a\ Ф 0, ß\ = 0, a2 ф 0, β2 φ 0, 
we obtain the solution formula 

« ( 0 = / p(x)K(x; g)F(s) dx + Л В, ^ ° ; ζ) + ψ Β2Κ(1; ξ). (7.1.45) 
Jo Οί\ ÓX β2 

The one-dimensional versions of the hyperbolic and parabolic equations (7.1.11) 
and (7.1.26) lead to the consideration of the region R given as [0,1] x [0, T]. The 
boundary dR is made up of the portion dRx, which comprises the lines x = 0 and 
x = I with 0 < t < T, and dRo and dRr, which represent the lines t = 0 and t = T, 
respectively, with 0 < x < /. The region R is depicted in Figure 7.2. 

Figure 7.2 The region R. 

For the hyperbolic case we have, with 0 < x < I, t > 0, 

[Pix) -dx-) 
p{x)d^t) _ d_ (ήχ) du(^y]+q{x)u{xt) = р{х)ПхЛ ( 7 . L 4 6 ) 

with the initial conditions 

u(x,0) = / (x) , ut(x,0) = g(x), 0 < x < / , (7.1.47) 

and the boundary conditions 

alU(0,t) - ßiux{0,t) = ρι(ί), a2u(l,t) + ß2ux{l,t)=g2{t). (7.1.48) 
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With the operator L defined as in (4.1.7), we have 

rT rl 

/ / [K{putt + Lu) - u{pKtt + LK)] dx dt 
Jo Jo 

= - [pKut - puKt]\t=Q dx+ [-pKux +puKx]\x=l dt 
Jo Jo 

+ / [pKut -puKt]\ dx- I {-pKux +puKx]| dt, (7.1.49) 
Jo Jo 

where the space-time gradient operator V = [д/дх, д/dt] and Green's theorem in 
the plane were used. 

For the one-dimensional parabolic case we consider the equation 

p{x)du^t)_ _ d_ ^ρ{χ) du^ty^+q{x)u(xt) = р{х)р{хЛ {7лщ 

with 0 < x < I, t > 0, the initial condition 

u(x,0) = f(x), (7.1.51) 

and the boundary conditions (7.1.48). Proceeding as in the higher-dimensional case, 
with V = [д/дх, д/dt] as the space-time gradient operator, we obtain 

/ / [K(put + Lu) - u(-pKt + LK)] dx dt 
Jo Jo 

= - [pKu]\ dx+ / [-pKux + puKx]\ dt 
Jo Jo 

+ I [pKu]\t=T dx - I [-pKux + puKx]\ dt. (7.1.52) 
Jo Jo 

With (ξ, τ) as an interior point in the region R, we choose K(x, t; ξ, τ) to be a 
solution of 

ρ(χ)ΚΗ(χ,ί·,ξ,τ)+Ι,Κ(χ,ϊ,ξ,τ)=δ{χ-ξ)δ(ί-τ), t<T, (7.1.53) 

-p{x)Kt{x,t-i,T)+LK{x,t;^T)=5{x-i)6{t-T), t <T, (7.1.54) 

with 0 < x, ξ < I, and 0 < t, τ < T in the hyperbolic and parabolic problems, 
respectively. In addition, we have the end conditions 

K{x, T; ξ, τ) = 0, Kt(x, T; ξ, τ) = 0, (7.1.55) 

in the former case and 
Κ(χ,Τ;ξ,τ) = 0 (7.1.56) 
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in the latter case. In both cases K(x, t; ξ, τ) is required to satisfy the homogeneous 
version of (7.1.48). If we have β\ = β2 = 0 in the boundary conditions, we obtain 

/ l-PKux+puKx}\ dt= [ ^g2(t)Kx(l,t^,r)dt, (7.1.57) 
Jo Jo a2 

[ [-pKux+puKx}\x=0dt= [ ^gi(t)Kx(0,t^,r)dt. (7.1.58) 
Jo Jo Q i 

Using these results, we easily obtain the following expression for the solution и at 
the arbitrary point (ξ, r ) in the hyperbolic case 

u{£,r)= / / p{x)F{x,t)K(x,t;£,r)dxdt 
Jo Jo 

+ / ρ(χ)[9(χ)Κ{χ,0;ξ,τ) - /(χ)Κχ(χ,0;ξ,τ)]άχ 
Jo 

+ ΠΕί9Μ1^(0.*;ί.-)-Είίί^«.';ί,τ)} dt (7.1.59) 
Jo I <*i <*2 J 

when ßi = ß2 = 0 in the boundary conditions. For the parabolic case we have 

l-T A 

U {ξ,τ)= / / p(x)F(x,t)K(x,t;£,r)dxdt+ / ρ(χ)/{χ)Κ(χ,0;ξ,τ) dx 
Jo Jo Jo 

+ Π^^^(0,^,τ)-^Α^(Μ;ξ,τ)1 dt, (7.1.60) 
Jo { al Q2 J 

with ßi = ß2 = 0 in the boundary conditions. 
If ß\ and /?2 are not zero or if there are mixed boundary conditions, a somewhat 

different expression for the solutions is readily obtained. Also, if the problem is 
given over a semi-infinite interval or we are dealing with the Cauchy problem over 
the infinite interval, appropriate expressions for the solution are easily found in a 
manner similar to that used previously in the higher-dimensional problems. Further, 
K(x, t; ξ, τ) can be characterized in an alternative manner as was done in (7.1.36)-
(7.1.40) for higher dimensions. 

Green's Functions for Nonself-Adjoint Elliptic Equations 

The initial (or end) data for the Green's functions K(\, τ; ξ, r) in the hyperbolic and 
parabolic cases are assigned either at t = T or at t = т. For the given problem 
for u(x, t), however, the data are prescribed at t = 0. This results from the fact 
that the Green's function is the solution of an adjoint problem in which time runs 
backward rather than forward. The general form of the boundary conditions is the 
same for K{\\ £) and u(x) in the elliptic problems, and for К(x, r; £, r ) and u(\, t) 
in the hyperbolic and parabolic problems considered. This occurs because the elliptic 
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operator L that occurs in all three equations is self-adjoint, and it determines the 
choice of the boundary condition for the (adjoint) Green's function problem in each 
case. To see what happens if the elliptic (spatial) operator is not self-adjoint, we 
now consider a boundary value problem for a nonself-adjoint elliptic equation and 
determine the corresponding Green's function problem. 

Consider the elliptic equation 

Lu{x) = Lu(x) + b(x) · Vit(x) = p(x)F(\) (7.1.61) 

in a bounded region G, where L is defined in (7.1.1). With b(x) φ 0, the operator L 
is not self-adjoint. The boundary conditions for u(x) are 

a(x)u(x) + ß ( x ) ^ B(x), (7.1.62) 
dG 

as in the problem (7.1.1)—(7.1.2). The operator L*, defined as L*u(x) = Lu(x) — 
V · (u(x)b(x)), is the adjoint of L, as is easily checked, and we have 

/ / [wLu — uL*w] dv = Il V ■ \puVw — pwVu + wub] dv 

ds (7.1.63) / [ 
JdG L 

dw du . 
pu— pu>——h wub ■ n 

on on 

on using the divergence theorem. 
Proceeding as in the problem (7.1. l)-(7.1.2), we put w(x) = K(x; ξ), the Green's 

function, and require that K(x; £) be a solution of 

L*K(x; О = δ(χ - ί ) , χ , ί € G. (7.1.64) 

Then K(x; ξ) must be specified on dG so that u(£) is determined completely in terms 
of the boundary values for u(x) and Ä"(x; £). If x € Si on dG (see Section 4.1) we 
have 

dK du r , ,_ P„dK „ / du\ p„dK 
pu- pK—+Kuh-n= ^B— + K (иЪ-п-р—) = -В—, 7.1.65 

dn on a dn \ dn/ a dn 

if we set K(x; ξ) = 0 . If x € S2 U S3 on dG, we have 

dn dn β \ dn β ) β 
(7.1.66) 

if v/c setp{x)dК(χ\ξ)/θη + (ρ(χ)α{χ)/β{χ))Κ(χ;ξ) +К{х;ф{х)-п = 0. Thus, 
the (adjoint) boundary conditions for К (х; £) are 
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Κ(χ;ξ)=0, xeSi, (7.1.67) 

* Ц (a(x)K(x; 0 + / ? ( x ) ^ ^ + K(x; £)b(x) n, x e S2 U S3. 

In terms of the Green's function K(x; ξ) that satisfies the adjoint equation (7.1.64) 
and the adjoint boundary conditions (7.1.67), the solution u(x) of the problem 
(7.1.61)—(7.1.62) is given by the formula (7.1.8). We observe that only in the case 
of Dirichlet boundary conditions for u(x) does the Green's function K(x; ξ) satisfy 
the (homogeneous) Dirichlet condition K(x; ξ) = 0 on the boundary. For boundary 
conditions of the second and third kind, K(x; £) satisfies modified boundary condi-
tions as given in (7.1.67) [unless b(x) · n = 0 on the boundary]. The adjoint boundary 
conditions in the one-dimensional case are considered in the exercises. 

If we replace the operator i in (7.1.11) and (7.1.26) (the hyperbolic and parabolic 
cases) by the operator L, but leave the initial and boundary conditions for these equa-
tions unchanged, we find that the Green's functions K(x, t; ξ, τ) for these problems 
are defined in terms of the adjoints of the modified equations. They have the same 
end conditions as before, but on the (lateral) boundary dRx they satisfy (7.1.67). 

Because of the greater difficulty involved in determining Green's functions for the 
foregoing nonself-adjoint problems, we restrict our discussion to problems with self-
adjoint elliptic operators. However, before proceeding to construct Green's functions 
for various problems, we present the theory of generalized functions in the following 
section since these functions play an important role in Green's function theory. 

Exercises 7.1 

7.1.1. Show that for the elliptic case the Green's function K(x; ξ) determined from 
(7.1.9H7.1.10)is symmetric [i.e., Κ{χ;ζ) = Κ(ξ,χ)]. Hint: Lettt(x) = K(x;£) 
and w{x) = K{x; £) in (7.1.3). 
7.1.2. Show that the Green's function for the hyperbolic problem (7.1.23)—(7.1.25) 
satisfies the equation K(x, t; ξ, τ) = Κ(ξ, —τ; χ, —ί). Hint: Let u(x, t) = K(x, —t; 
ί , —f ) and w(x, t) = K(x, t; ξ, τ) in (7.1.14). 
7.1.3. Show that the Green's function for the parabolic problem (7.1.32)—(7.1.33) 
satisfies Κ(χ,ί;ξ,τ) = K(£,-r;x,—t). Hint: Let u(x, t) = К(x, —t; £, —f) and 
w(x, t) = K(x, t; ξ, τ) in (7.1.28). 
7.1.4. Let F = 0 in (7.1.8) and let В have delta function behavior with the singular 
point at x = x on the boundary so that (7.1.8) reduces to u(£) = — p/a дК(х; £)/дп, 
x £ Si, η(ξ) — ρ/βΚ(χ; ξ), χ € ^2 U 5з- Use these results to show that not only 
can the solution of (7.1.1)—(7.1.2) with В = 0 and F ψ 0 be expressed as the 
superposition of the solutions of point source or singularity problems, but the same 
can be done for (7.1.1)—(7.1.2) if F = 0 and В ф 0. In the latter case the point 
sources lie on the boundary. 
7.1.5. Use the expression (7.1.22) to characterize the solution of the initial and bound-
ary value problem for the hyperbolic equation (7.1.11 ) as a superposition of solutions 
of point source problems, as in Exercise 7.1.4. 
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7.1.6. Use the expression (7.1.31 ) to characterize the solution of the initial and bound-
ary value problem for the parabolic equation (7.1.26) as a superposition of solutions 
of point source problems. 

7.1.7. Obtain an expression for the solution η(ξ, τ) of the hyperbolic equation (7.1.11) 
based on the Green's function obtained from (7.1.36) and (7.1.39). 

7.1.8. Using the Green's function determined from (7.1.37) and (7.1.40), obtain an 
expression for the solution ιι(ξ, τ) of the parabolic equation (7.1.26). 

7.1.9. Verify that υ,(ξ,τ) is given as in (7.1.59) if /?i = /32 = 0, and find the 
appropriate form for u(£, r ) if a\= 0.2 = 0. 

7.1.10. Verify the expression for ΐί(ξ,τ) in (7.1.60) \i β\ — /?2 = 0, and obtain the 
correct form for η(ξ, τ) if αι = α2 = 0. 

7.1.11. Consider the initial and boundary value problem for the (damped) hyperbolic 
equation p(x)utt(x,t) + 2\p(x)ut(x,t) + Lu(x,t) = p(x)F(x,t), where λ is a 
positive constant and L is given as in (7.1.1 ), with the initial and boundary conditions 
(7.1.12)-(7.1.13). Determine the appropriate Green's function problem and obtain a 
solution formula for u(x, t) that corresponds to (7.1.22). 

7.1.12. Let Mu(x, t) = utt{x, t) + c2uxxxx(x, t). Express wMu — uMw in diver-
gence form and use this result as done in the text for the hyperbolic equation (7.1.11) 
to determine how a Green's function K(x, t; ξ, r ) should be constructed for the initial 
and boundary value problem for Mu(x, t) = F(x, t). Here u(x, t) and ut{x, t) are 
specified at t = 0 and, say, u{x,t) and ux(x,t) are given on the boundary of the 
interval 0 < x < I. 

7.1.13. Generalize the result of Exercise 7.1.12 to utt(x,t) + c2V2V2u(x,t) 
= F{x,t). Hint: Use (8.5.38). 

7.1.14. Considerthehyperbolic system Mu(x,t) — ut(x,t)+Aux(x,t)+Bu(x,t) = 
c(x, t), А, В constant, where Л is a (real) symmetric matrix and В and c(x, t) are 
real valued. With M* as the adjoint of M and BT equal to the transpose of B, show 
that wTu - uTM*w = wT[ut + Aux + Bu] - uT [-wt - Awx + BTv/] has the form 
of a divergence expression. Use the formula to construct a Green's matrix (or tensor) 
K(z,t;£,T)thatisasolutionofM*K(:r,t;£,T) = δ(χ-ξ)δ(ί-τ)Ι, t < T, -сю < 
x < oo, K(x, T; ξ, r ) = 0, where I is the identity matrix. Use K(x, t; ξ, r ) to obtain 
a formula for the solution of the Cauchy problem for the given equation for 11(2:, t) 
withu(a:,0) = f(x). 

7.1.15. Determine the equation for the Green's function and the adjoint boundary 
conditions for the one-dimensional form of (7.1.61)—(7.1.62). 

7.1.16. Let Κ(χ;ξ) be a solution of LK{x;£) = δ(χ - ξ) [see (7.1.62)] with a 
homogeneous form of the boundary condition (7.1.63) given on dG. Show that 
К(x; £) — Κ(ξ; x), where К(х; £) is the Green's function determined from (7.1.64) 
and (7.1.67). 
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7.2 GENERALIZED FUNCTIONS 

Throughout the text and especially in connection with fundamental solutions and 
Green's functions, we have used the Dirac delta function in various calculations. 
Although the delta function is neither integrable nor differentiable in the conventional 
sense, we have integrated and differentiated this function. In this section, the Dirac 
delta and other functions are characterized as generalized functions and it is shown 
how the formal operations carried out on these functions are to be interpreted. Only 
the elementary and basic ideas of the theory of generalized functions are presented. 
Our discussion is restricted primarily to the one-dimensional case, as we shall see 
that the results for higher-dimensional problems can often be characterized in terms 
of the one-dimensional case. Many of the definitions and properties of generalized 
functions presented below carry over to higher dimensions. The approach we use was 
developed by Laurent Schwartz and defines generalized functions in terms of what 
are known as linear functionals. 

Test Functions and Linear Functionals 

We begin by considering the collection of test functions φ(χ) that are assumed to 
have derivatives of all orders for all x (they are C°° functions) and vanish identically 
outside a bounded region. (Such functions are said to have compact support, and in 
the exercises it is shown that such functions exist.) 

The generalized function f(x) is defined with respect to the set of test functions 
φ(χ) as the linear functional (/, φ(χ)). For each φ{χ), the functional has a uniquely 
defined numerical value. Therefore, f(x) is technically a function of a function that 
assumes a (numerical) value for each φ(χ). So we call (/, φ(χ)) ^functional. Strictly 
speaking, the generalized function f(x) is not a function of ж (i.e., it does not assume 
values for each x) but rather, of each test function ф(х). The ф(х) are called test 
functions since f(x) is determined by specifying its effect on the test function ф{х). 
However, for the cases we consider, generalized functions can be characterized as 
ordinary functions of x for almost all values of x. 

The functional (/, ф{х)) is assumed to be linear, that is, if ф{х) and ф(х) are two 
test functions and a and b are constants, 

(/, аф(х) + Щх)) = a(f, φ(χ)) + b(f, ψ(χ)). (7.2.1) 

In addition, (/, φ{χ)) is required to be continuous in the following sense. If {фк(х)} 
is a sequence of test functions, all of which vanish outside a common region and 
{фк(х)} converges (say, uniformly) to a function ф(х) as к —> oo, we have 

lim ( / ,&(*)) = ( / , # * ) ) . (7.2.2) 
к—*<x> 

The collection of generalized functions f(x) is a linear (vector) space in view of 
(7.2.1). Given a sequence of generalized functions {Д (x)} for which 

lim (Л, </>(*)) = (/,Ф0), (7.2.3) 
К—»ΌΟ 
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we say that fk{x) converges to the generalized function f(x) as к —> oo. This type 
of convergence is called weak convergence and has been encountered earlier in the 
book in a different context. 

A concrete general representation of the linear functional (/, ф{х)) is given in the 
case where f(x) is an (ordinary) integrable function over any finite region. We then 
associate the functional (/, ф(х)) with an integral given as 

и,ф{х)) = j ί{χ)φ{χ)άχ, (7.2.4) 

where the integration is carried out over the region where φ(χ) is nonzero. The 
linearity of the functional follows from the linearity of the integral, and the continuity 
of the functional is not hard to show. In view of the representation (7.2.4), the reason 
for the use of the inner product notation (/, φ(χ)) for the functional becomes clear. 

If f(x) and g(x) are two integrable functions such that (/,ф(х)) = (д,ф(х)) 
for all ф(х), we must have f(x) = g(x) for almost all x. This follows since 
(f^(x)) - (д,ф(х)) = f(f(x) - д{х))ф{х) dx = 0. The vanishing of the in-
tegral for all test functions ф(х) implies (say, by using the fundamental lemma of 
the calculus of variations) that f(x) = g(x) for almost all x. This shows that the 
functional representation (7.2.4) of f(x) essentially specifies f(x) uniquely if f(x) 
is integrable. Thus with each integrable function a unique generalized function (/, </>) 
can be identified. Such generalized functions are often called regular generalized 
functions. 

Generalized functions that are not ordinary integrable functions are often called 
singular generalized functions. The basic example is given by the Dirac delta func-
tion, δ(χ) which is defined as 

(δ, φ(χ)) = [δ{χ)φ{χ) dx = 0(0). (7.2.5) 

[In higher dimensions with the test functions given as φ(χ) we have (δ, ф(х)) = ф{0)·] 
Although we have formally carried over the integral representation of (/, ф{х)) given 
in (7.2.4) to this case, the delta function is not an integrable function. We recall that 
δ(χ) was previously defined to be zero for all x φ 0. Thus the improper integral in 
(7.2.5)—it is improper since δ[χ) is assumed to be singular at zero—must vanish for 
all x. Consequently, since φ(0) need not vanish for all φ(χ), we find that δ(χ) is a 
singular generalized function. It may be noted that the integral representation (7.2.4) 
for singular generalized functions is not strictly valid, but it is generally used. 

The generalized function f(x) can be identified with (the values of) an ordinary 
function g(x) in a region G if we have (/, ф{х)) = (д{х), Ф{х)) for all test functions 
ф(х) that vanish outside G. We then say that f(x) = g(x) in the region G. In 
particular, if g(x) = 0 in G, we say that f(x) vanishes in the region G. As an example, 
we now show that δ(χ) vanishes for all x φ 0. We consider all test functions φ(χ) 
that vanish in a neighborhood of a; = 0, so that, in particular, φ(0) = 0. Then, using 
the definition (7.2.5) of δ(χ), we find that (<5, φ{χ)) = φ{0) = 0 = (0, φ(χ)). Thus 
δ(χ) = 0 for all x ф 0. 
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In Example 1.1 we characterized the delta function as a limit of the sequence of 
f fe/2, |z| < 1/fc, 

integrable functions Д (x) = < . . . We have 
I U, |X| ^ J.//C. 

(Л, <K*)) = ? / Ф(х) dx = ™ / dx = ф(х) (7.2.6) 
^ J-l/k * J-l/k 

on using the mean value theorem for integrals with -1/fc < x < 1/fc. Since ф(х) 
is continuous at x = 0, we obtain lim.k->oo(fk, Ф(х)) — l im^oo φ(χ) = 0(0) = 
(δ, φ(χ)). Recalling our definition of the convergence of sequences of generalized 
functions, we conclude that the functions fk(x) converge to the delta function δ(χ) 
as fc —> oo. 

Properties of Generalized Functions 

The properties of generalized functions are usually derived from results valid for 
the functional (/, φ{χ)) when f(x) is a regular generalized function. They are then 
defined to be properties of generalized functions. Thus we have 

r ( (1/c) / ^ №Ф(х/с) dx, с > 0, 
(f(cx), φ(χ)) = J^ /(«Ж«) dx = I _(1 /c ) ^ Мх)ф{ф) dXi c K 0i 

(7.2.7) 

/

OO ЛОО 

f(x + α)φ{χ) dx = / ϊ(χ)φ(χ-α)άχ, (7.2.8) 
-oo J — oo 

with constant с and a. Therefore, we define for the generalized function f(x) 

(f(cx), ф(х)) = 1 (f(x), </> ( | ) ) , ( / (* + α), φ(χ)) = (f{x), Ф(х - a)). 

(7.2.9) 

As a consequence of these definitions, we have for the delta function δ(χ), 

(S(cx),ф(х)) = щ (δ(χ),φ(ϊ)) = щ<М0) = ( щ * ^ ) . Φ ( χ ) ) ' (7 ·2 ·1 0) 

so that δ(οχ) = (l/|c|)<$(x) formally. In particular, if с = —1, we obtain δ(—χ) = 
δ(χ), so that δ(χ) may be said to be an even function. Similarly, 

(δ(χ - у), ф(х)) = (δ(χ), φ(χ + у)) = ф(у), (7.2.11) 

which is known as the substitution property of δ(χ) and is generally written as 

^(х-у)ф(х))=ф(у). (7.2.12) 
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If f(x) and g(x) are regular functions, we have j(g(x)f(x))<t>(x) dx = J f(x) 
(д(х)ф(х)) dx, so that (д(х)/(х),ф(х)) = (/(х),д(х)ф(х)). If g{x) is infinitely 
differentiable, д(х)ф(х) is a test function. We define the product of an infinitely 
differentiable function g(x) and the generalized function f(x) as 

(д(х)/,ф(х)) = (/,д(х)ф(х)). (7.2.13) 

An example of this result is given by 

g(x)6(x -y)= д(уЩх - у), (7.2.14) 

which follows from {g(x)6{x - у),ф(х)) = {δ{χ - у),д{х)ф{х)) = д{у)ф(у) = 
(g(y)S(x — у), ф(х)), in view of (7.2.11). In particular, χδ(χ) = 0 · δ(χ) = 0. 

If f(x) and f'(x) are regular generalized functions, we obtain 

/

OO /»OO 

φ(χ) df = - Пх)ф'{х) dx = -(f{x), φ'(χ)), 
-oo J — oo 

(7.2.15) 
since φ(χ) vanishes as |a:| —* oo. If f(x) has n derivatives, repeated integration by 
parts yields 

We take (7.2.16) to be the definition of the nth derivative of the generalized function 
f(x). Test functions ф(х) are assumed to be infinitely differentiable, so we conclude 
that any generalized function f(x) has derivatives of all orders. In higher dimensions 
a similar result is valid for partial derivatives of /(x) . 

f 0, x < 0, 
As an example, we consider the function f(x) = < „ which is continu-

I X · JL/ -^ \J) 

ous at x = 0 but is not differentiable there. To obtain the generalized derivative we 
have 

/

oo />oo 

f(x)<f>'(x) dx = - хф\х) dx 
-oo ./0 

ЛОО lOO »OO ЛОО 

- - x άφ = -χφ\ + φ(χ)άχ= / φ{χ)άχ. (7.2.17) 
Jo lo Jo Jo 

Now the functional that represents the Heaviside function H(x) defined as 
(0, x < 0, 

Я ( , ) = { 1 ) χ > 0 ) (7.2.18) 

is given by 

/

OO POO 

Η{χ)φ{χ)άχ= I φ(χ)άχ. (7.2.19) 
-00 Л) 

Thus (7.2.17) shows that f'(x) = H{x), with f(x) defined as above. 
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As (Η'(χ),φ(χ)) = -(Η(χ),φ'(χ)) = -f™<p'(x)dx = φ(0) = (δ(χ),φ(χ)), 
we conclude for the Heaviside function 

H'(x) = δ{χ). (7.2.20) 

Further, we have 

(δ'(χ), φ{χ)) = -(δ(χ), φ'(χ)) = -φ'(0), (7.2.21) 

(δ"(χ), φ{χ)) = (δ(χ), φ"(χ)) = φ"(0). (7.2.22) 

An additional result that has already been used in Section 6.7 is the following: 
(χδ'(χ),φ(χ)) = (δ'(χ),χφ(χ)) = -(δ(χ),(χφ(χ))') = -(δ(χ),χφ'(χ)+φ(χ)) = 
— (χφ'(χ) + φ(χ))\χ=0 — —</>(0) = — {δ(χ), φ(χ)). This may be formally expressed 
as the equation 

χδ'{χ)+δ(χ)=0. (7.2.23) 

In the following two examples we use the foregoing properties to construct gen-
eralized power functions and show how functions with jump discontinuities can be 
expressed as generalized functions. 

Example 7.1. Generalized Power Functions. The functions xm, where m is 
a negative integer, xaH{x), where a is any real number and H{x) is the Heaviside 
function, are either ordinary power functions or the zero function, when x ф 0. 
However, either the functions themselves or their derivatives (from some order on) 
are singular at x = 0. We introduce generalized functions associated with these 
functions that retain the basic properties of (nonsingular) power functions. 

First we define the generalized functions 

fn(x) = xnH(x), n = 0 ,1 ,2 , . . . . (7.2.24) 

If n = 0, this is just the Heaviside function, and for x > 0, it is identical with xn. If 
n > 0, we obtain from (7.2.15) 

хпН(х)ф'(х) dx = (-1) / хпф'(х) dx 
■oo JO 

lOO »OO 

= -хпф{х)\ +п xn-^(x)dx=(nfn-i{x)^{x)), (7.2.25) 
lo Jo 

so that fn(x) — nfn-i(x). Also, xfn{x) = fn+i{x)- We see that fn(x) retains the 
basic properties of the power function xn (at x ψ 0), but it has generalized derivatives 
of all orders. The fcth derivative of fn(x) is given by 

dkfn(x) ,φ(χή =(-!)* (ίη(χ),?^^=(-1)*Ι~χ»φΜ(χ)άχ 
dxk 

(7.2.26) 
in view of (7.2.16). 
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Next we define the generalized functions 

fa(x) = xaH(x), a > - 1 , а ф integer. (7.2.27) 

Since a > — 1, the integral representation of (fa(x), Ф(х)) converges. Thus, fa(x) 
has generalized derivatives of all orders. If a < —1, the integral representation of 
fa(x) diverges. In that case we define the generalized functions 

f"&fc) = 7—ГТГ-ТГПлха+кн(х)> а + к>-1, (7.2.28) 
(α + 1) · · · (α + к) 

where к can be chosen as the smallest integer such that a + к > — 1, and a is not an 
integer. In terms of the fa(x; k), we define fa(x) as 

fa(x) = ^[fa(x;k)}, (7.2.29) 

with the feth generalized derivative of fa{x; k) understood to mean 

( /„ (*) ,Ф0) = (йк)(х;к),ф(х)) = ; / х*+кфЮ(х) dx 
(a + 1) · · · (a + k) J0 

(7.2.30) 
on using (7.2.16). (The integral converges since a + к > — 1.) We note that for 
a > —1, we would set к = 0 in (7.2.28) and/o(x;0) = fa{x), so that the definitions 
(7.2.27) and (7.2.29) agree in that case. If x > 0, both (7.2.27) and (7.2.29) yield 
fa(x) = xa. It is shown in the exercises that fa(x) = afa-\{x) and that xfa(x) = 
fa+l(x)-

The product of the function 1/x™, where n is a positive integer, with a test function 
ф(х) is not integrable at x = 0, in general. To deal with this problem, we first let 
n = 1 and define the generalized function g\ (x) — 1/x as 

(9ι(χ),φ(χ)) = (Кф(х)] = P.V.y 1ф(х) dx, (7.2.31) 

where P. V. signifies that the Cauchy principal value of the integral is to be taken. In 
terms of gi{x), we define the generalized functions gn(x) as 

9n{x) = ^ Ί ) Τ £ ^ [ 5 l ( x ) ] ' " = 2'3'· ··· ( 7 · 2 ·3 2 ) 

This means that 

1 Γ°° 1 
(дп(х),ф(х)) = — P.V. / -φ^ι\χ) dx (7.2.33) 

( n - 1 ) ! J-^x 

on using (7.2.16). The relation between gn(x) and l/xn and some additional prop-
erties of these functions are considered in the exercises. 
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Finally we consider the function (l/xn)H(x), where n is a positive integer. The 
singularity at x = 0 is not integrable. It is not possible to define a unique generalized 
function associated with (l/xn)H(x) that retains the basic properties of the power 
function l/xn, as shown in the exercises. We define the generalized functions hn(x) 
as 

hn(x) = t^^£^l(log(x)+c)H(x)}, n = 1,2,3, . . . , (7.2.34) 

where the arbitrary constant с can be different for each n. [Ifx > 0, hn(x) = l/xn.] 
We have 

— 1 f°° 
(hn(x), ф{х)) = — / (log(x) + φ< Β >( ι ) dx. (7.2.35) 

\ n — >■)■ JO 

Some additional properties of hn(x) are considered in the exercises. 

The generalized power functions defined above can be used to assign a mean-
ing to divergent improper integrals with algebraic singularities. In his treatment of 
fundamental solutions for hyperbolic equations Hadamard introduced the method of 
finite parts to evaluate divergent improper integrals with algebraic singularities. His 
analysis preceded the development of generalized functions as presented above. A 
connection between the foregoing discussion and Hadamard's method is considered 
in the exercises. 

Example 7.2. The Derivative of a Discontinuous Function. Let the func-
tion f(x) be continuously differentiable everywhere except at x — a, where it has 
a jump discontinuity. Consequently, f(x) does not have an ordinary derivative at 
x = a, but the generalized function associated with f(x) is differentiable every-
where and we now obtain its first derivative. 

Using (7.2.15), we have 

(ί'(χ),φ(χ)) = -ϋ(χ),φ'(χ)) = -/(х)ф(х) + f /'(χ)Φ(χ) dx 
J — oc 

I OO rtOO />00 

+ / ί'(χ)Φ(χ) dx = [ί{χ)]χ=αφ(α) + / ί'{χ)φ{χ) dx, 
a Ja J — oo 

(7.2.36) 
where [f(x)]x=a is the jump in f(x) at x = a and the derivative in the last integral 
is defined at all x except x = a. Since f'{x) is assumed to have a finite limit as x 
approaches a from the left and from the right, the value of f'(x) at x = a plays no 
role in the integral. We can express [}'(χ)}χ=αφ{α) in the terms of the delta function 
in the form ([f(x)]x=aö(x — а), ф(х)) and the last integral in (7.2.36) can be written 
as {f'{x), ф{х)). Thus the generalized derivative f of f(x) can be expressed as 

/ ' = [f(x)]x=aS{x -a) + ί'{χ)\χφα. (7.2.37) 
It may be noted that (7.2.20) is a special case of this result. 
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An application of (7.2.37) may be made to the problem of determining the Green's 
function K{x; 0 for the ODE (7.1.42). We have 

ic {p{x) ^È~) = ~δ{χ ~ °+ς{χ)κ{χ;ξ)- (7·2·38) 

Using (7.2.37), we conclude that q(x)K(x; ξ) is the ordinary derivative of p(a;)/i (x; ξ) 
for x φ ξ, and —1 is the jump of p(x)K(x; ξ) at x = ξ. Since p(x) is continuous at 
x = ξ, the jump in dK(x; ξ)/δχ at x — ξ is [dK(x; ξ)/δχ]χ=ζ = — 1/ρ(ξ)> a result 
that agrees with (6.7.21). 

The expression (7.2.37) for the generalized derivative of f{x) suggests that we 
can express f(x) as a sum of a continuous function and a piecewise constant function 
with a jump at x = a. In fact, we can write 

/ (*) = }{x) + [f(x)]x=aH(x - a). (7.2.39) 

Alternatively, we can set 

f(x) = f(x) - [f(x)]x=aH(a - x). (7.2.40) 

The functions f(x) and f(x) are given as the difference of f(x) and the jump terms 
on the right of (7.2.39) and (7.2.40), respectively. Each function is continuous and 
has a jump in the first derivative at x = a. Thus, the derivative functions f'(x) and 
f'{x) are regular generalized functions, and the need for a generalized derivative of 
f(x) is restricted to the terms that involve the Heaviside functions. 

If f(x) has derivatives of all orders for x < a and for x > a and f(x) and its 
derivatives have (at most) jumps at x = a, we can express f(x) as the sum of a C°° 
function and a series of terms that accounts for the jumps at x = a. To do so, we 
introduce the generalized functions 

Hn(x) = ~fn(x) = ~xnHn(x), n = 0 , l , . . . , (7.2.41) 
TV. TV. 

given in terms of (7.2.24). Then we express f(x) as 

oo 

f(x) = f{x) + Σ\ϊ(η\χ)]χ=αΗη{χ - a), (7.2.42) 
n=0 

where we have used the form (7.2.39). The function f(x) equals the difference 
between f(x) and the sum on the right side of (7.2.42). [The jumps in the derivatives 
of f(x) are expected to be known.] Noting that H'n{x) = Я„_1 (х), we easily verify 
that f(x) has derivatives of all orders. 

The representation (7.2.42) is valid even if f(x) is continuous and has continuous 
derivatives of order k at x = a, but the derivatives of order k +1 and higher have jump 
discontinuities there. Additionally, if f(x) has a finite (or even an infinite) number 
of jumps, the foregoing representation can be carried out at each singular point. 
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As an example we consider the function f(x) — x, x < a, f(x) = x2, x > a. 
We easily obtain f(x) = f(x) + ELo[ / ( n ) ( z ) ]x=a Hn(x - a) = x + (a2 -
a)H(x — a) + (2a — l)Hi(x — a) + 2H2(x - a). If a = 0, f(x) is continuous 
at x = 0 but has a jump in the first two derivatives there. Then the above takes the 
form f(x) = x — Hi(x) + 2ff2(:r). The Heaviside function H(x) that determines 
the jump at x = 0 is absent from the expression. 

The representation (7.2.42) and generalizations thereof are used in Section 10.2 
in the analysis of the propagation of discontinuities and singularities of hyperbolic 
equations. 

Fourier Transforms of Generalized Functions 

In determining Green's functions for differential equations, it is often necessary to take 
transforms of the delta function. Therefore, we now discuss how Fourier transforms 
of generalized functions are to be defined. Since we are mostly concerned with 
transforms of the delta function and possibly its derivatives, we begin by considering 
generalized functions that vanish outside a bounded region. 

For the one-dimensional problem, let the generalized function f(x) vanish outside 
the interval [—R, R] (i.e., it has compact support). It is possible to construct test 
functions φ(χ) with the property that φ(χ) = 1 for x e [-R, R] and φ(χ) = 0 
outside an interval that contains [—R, R]. Assuming for the moment that f(x) is a 
regular function, the Fourier transform .F(A) of f(x) is given as, since f(x) = 0 
outside [—R, R], 

F(\) = -L· [ eiX*f(x)dx = - L / eiXxf{x)^x)dx 
V27r J-R ν 2 π J-R 

1 Г 
ν/2π J-c 

eiXxf(x)$(x) dx = ( f(x), -=είΧχφ{χ) ) . (7.2.43) 

Since 11'τ/2π егХх ф{х) is again a test function, we define the Fourier transform of 
the generalized function f(x) to be 

F{\)=(f{x),-^eiXx4>(x)Y (7.2.44) 

For example, the Fourier transform of the delta function δ(χ) is given as 

Р(Х)=(б(х),^Ххф(*))=^, (7-2.45) 

since ф(0) = 1 by assumption. This result is formally equivalent to 

1 f°° 1 
F(X) = - = \ eiXx6(x) dx = -=. (7.2.46) 

\/2π J-oo ν 2 π 
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All the properties of Fourier transforms given in Section 5.2 are valid for this case. 
Higher dimensional Fourier transforms are defined in a similar way. 

To define Fourier transforms for generalized functions without compact support 
we proceed as follows. Let f(x) and g(x) be regular real-valued functions whose 
Fourier transforms are F(X) and G(X), respectively. Then the Fourier transform 
of g(—x) is given by G(X), the complex conjugate of G(X). On setting x = 0 in 
(5.2.26), we conclude that 

/

oo />oo 

F(X)G{X) dx= f{x)g(x) dx. (7.2.47) 
-oo - / - o o 

Noting the formulas (5.2.6)-(5.2.7) relating the transform F(X) and its inverse trans-
form f(x), we see that g(x) can be considered to be the transform of G(X). Then 
if G(X) is assumed to be a test function φ(Χ) and we denote its transform by Φ(λ), 
(7.2.47) may be written as 

/

OO /»OO 

F{X)<t>(X)dx= / /(χ)Φ(χ)άχ. (7.2.48) 
-oo J — oo 

Clearly, both sides of the equation are linear functionals of the form (7.2.4) and we 
can write (7.2.48) as 

( ί » = (/,Φ). (7.2.49) 
This is taken as the definition of the Fourier transform F(X) of the generalized function 

Unfortunately, even though every test function ф(х) has a Fourier transform, the 
transform is not itself a test function unless ф(х) vanishes identically. Thus the right 
side of (7.2.49) does not define a generalized function in general since Ф(х) is not 
necessarily a test function, so that (7.2.49) does not result in a meaningful definition 
of the Fourier transform for all generalized functions. To obtain a useful definition 
of the Fourier transform on the basis of (7.2.49), we must introduce a new class 
of test functions whose properties are preserved under Fourier transformation and, 
correspondingly, a new class of generalized functions. 

Accordingly, we define the class of test functions of rapid decay that are required 
to be C°° and to vanish, together with all their derivatives, more rapidly than any 
negative power of |x| as \x\ —» oo. The function exp(—x2) belongs to this class of 
test functions but not to the previously defined collection of test functions since it 
does not have compact support. However, every test function with compact support 
belongs to this class of test functions. It is not hard to show that the Fourier transform 
of the present class of test functions is again a test function of the same class. 

If ф(х) is a test function of rapid decay, the linear functional (/, ф(х)) determines 
a generalized function of slow growth. The basic definitions and properties given for 
the previously defined generalized functions carry over to this class of generalized 
functions. Thus they have derivatives of all orders. (We do not discuss convergence 
of test functions and weak convergence of generalized functions for this case.) Any 
regular function f(x) that is integrable over any finite interval and does not grow 



GENERALIZED FUNCTIONS 4 3 5 

more rapidly than any power of \x\ as |a;| —> co, determines a (regular) generalized 
function of slow growth by means of the formula (7.2.4). Since our main interest lies 
in the definition of the Fourier transform for the class of generalized functions of slow 
growth, we do not discuss all of their properties. We conclude with the observation 
that if / (x) is a generalized function of slow growth and φ(χ) is a test function of rapid 
decay, then the linear functional on the right side of (7.2.49) determines a generalized 
function of slow growth that we define to be the Fourier transform F(X) of f(x). 

As an example, we consider the Fourier transform of the (generalized) function of 
slow growth f(x) = 1. The conventional Fourier transform is not defined for f(x) 
and f(x) does not have compact support so that the definition (7.2.44) cannot be used. 
Using (7.2.49) where F(X) is the Fourier transform of f(x) = 1, we have 

/

OO -i /»OO /»OO 

Φ(χ) dx = -= j j еХхф{Х) dX dx 
-OO У/ Л7Г J—oo J — OO 

= л/2тг i - i /" / е-<А<*-1^(А) dxdx] =у/2пф(0), 
Ι_ν2π J-oo J -oo J t=o 

(7.2.50) 
where we have used the Fourier integral formula (5.2.5) after interchanging the order 
of integration. Thus (F, φ) = \/2πφ(<ο) = \/2π (δ(χ),φ(χ)), so that the Fourier 
transform of f(x) = 1 equals \/2π δ(χ). This result can be obtained formally from 
the inversion formula for the Fourier transform (5.2.7), where the use of (7.2.45) gives 

1 f°° 1 
δ{χ) = ~— e-i>* d\. (7.2.51) 

λ/2π У-оо v 2π 
Multiplying across by ν 2 π and applying complex conjugation on both sides yields 
the required relationship. 

Weak Convergence of Series 

In connection with the application of Fourier series and eigenfunction expansion meth-
ods for the solution of partial differential equations, we consider a further property of 
generalized functions that assigns a significance to such series even if they do not con-
verge everywhere. Let 5Zn̂ =i 9n{%) be an infinite series of functions that converges 
uniformly in any bounded region, and let the sequence of partial sums of the series 
be defined as fk(x) = Σ η = 1 9 n ( x ) , к = 1,2, Then if f(x) is the limit of the 
sequence {fk{x)}, we have Итк-,оо(/к(х),Ф(х)) = üm^oo J/к(х)Ф(х)ах = 
J linifc^oo /к(х)ф(х) dx = J /(х)ф(х) dx = (f(x), Ф(х)), since the uniform con-
vergence of the sequence {fk{x)} permits the interchange of the limit process and 
integration. Note that the vanishing of the test function ф(х) outside a bounded region 
implies that the integration is carried out only over that region so that the convergence 
is uniform. 

The foregoing result shows that the sequence {fk{x)} and, consequently, the 
given series converges to the function f(x) in the sense of weak convergence. Thus 
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f(x) and the fk(x) can be interpreted as generalized functions. If each term gn{x) 
in the series has m derivatives, so does each term fk(x) in the sequence. Using 
(7.2.16), we have {dmfk{x)/dxm^{x)) = ( - l ) m {fk{x),dm<l>{x)/dxm). Since 
the right side of this equation converges as к —» oo (as dm<t>(x)/dxm has com-
pact support), we find that the sequence {dmfk(x)/dxm} converges weakly, as 
к —» oo, to the mth derivative of / (x) . In fact, limfc_00(dm/fc(x)/cixm, ф(х)) = 
(-1)тИтк^00(/к(х),атф(х)/ахт) = {-1)т(/(х),атф{х)/ахт) and this 
equals (ат)(х)/ахт,ф(х)). 

As an example of the use of these results, we consider the Fourier sine series 
F(x) = ΣΤ=ι ansm(nx), where we assume that \an\ < M < oo for all n. On 
differentiating the series G(x) = — Σ™=1 αη sin(nx)/n2, twice term by term, we 
obtain the sine series above. Since the terms in the series G(x) are majorized by 
M/n2, the series is uniformly convergent. Thus even though the series for F(x) may 
not converge pointwise everywhere, we conclude on the basis of the foregoing that 
it converges weakly to the generalized function F(x), which represents the second 
generalized derivative of G{x). 

Example 7.3. Generalized Solutions of the Wave Equation. It was shown 
in Example 6.6 that the solution of the wave equation 

utt(x, t) - c2uxx(x, t) = 0, x > 0, t > 0 (7.2.52) 

in the semi-infinite interval x > 0, with the initial and boundary data 

ы(х,0) = 0, ut(x,0) = 0, x > 0, u{0,t) = 1, t > 0 , (7.2.53) 

is given in terms of the Heaviside function H(x) as 

ii(x,t) = # ( « - - ) ■ (7.2.54) 

Since H{x) has derivatives of all orders in the generalized sense, we have utt = 
H" (t - x/c) =S'(t- x/c), uxx = H" (t - x/c) / c 2 = S'(t- x/c) / c 2 . Thus 
(7.2.54) is formally a solution of the wave equation if we admit generalized functions 
as solutions. This interpretation of a generalized solution of the wave equation is 
related to the concept of weak solutions of Section 6.4. 

We next consider the wave equation (7.2.52) in the finite interval 0 < x < I with 
the boundary conditions u(0,t) = u(l,t) = 0, t > 0, and the initial conditions 
u(x, 0) = 1, ut(x, 0) = 0, 0 < x < I. Using the results of Example 4.9, we obtain 
the (formal) Fourier sine series solution 

u(x, t) - J - ] P ak cos ( ——- 11 sin ί — x J . (7.2.55) 

The Fourier coefficients ak are given as 

<"=/!i4?ib=5<i-(-i)')= 2у/21/ък, 

o, 
k = 

k = 

= 1,3,. 
= 2,4,. 

(7.2 

■ ■ · I 

.56) 
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Thus (7.2.55) can be written as 

u(x, t) Σ π *—' к 
fc=l 

' — cos ( —— t I sin I -^ x 
V ι 

nk 
T 

(7.2.57) 

where the prime indicates that the summation is taken only over the odd numbers 
A = 1,3,5, . . . . 

In view of (4.4.22) we can write (7.2.57) as 

u(x,t) Σ π *-^ к 
fc=l 

, 1 · sin жк , 
— (x + ct) 

2 ^ > , 1 
+ - Σ ' 

fc=l fc 
s in 

■кк 
(x — ct) , (7.2.58) 

where each term in the series represents a propagating or progressive wave. As noted 
in Section 4.3, the Fourier sine series (7.2.55) evaluated at t = 0 is the odd periodic 
extension of the function f(x) = 1 defined in 0 < x < I. The graph of the extended 
function is shown in Figure 7.3. 

I 1 , ο υ 

I I 
I I 

ГЧ 
L· 

Figure 7.3 The odd periodic extension of f(x) = 1. 

Let F(x) denote the extended function of f(x). It is seen that F(x) has jumps 
of magnitude 2 at the points x = nl, n = 0, ± 1 , ±2, Then (7.2.58) shows that 
u(x, t) has the form 

u(x, t) = - F{x + ct) + - F(x - ct). 
Zt Li 

(7.2.59) 

The Fourier series does not converge pointwise to F (x) at x = nl, n = 0, ± 1 , ± 2 , . . . , 
and F(x) is certainly not differentiable there. Consequently, (7.2.59) cannot be inter-
preted as a classical solution of the initial and boundary value problem for the wave 
equation. 

However, each of the Fourier sine series in (7.2.58) converges in the generalized 
sense to the functions \F{x ± ct) in view of our discussion. In addition, they can 
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be differentiated twice to show that (7.2.59) is a generalized solution of the wave 
equation. For example, we have for F(x + ct), 

л °° i 

F(x + ct) = - Σ ' τsin 
fc=l 

■кк , . 
(7.2.60) 

and on using Example 7.2 we obtain 

dF(x + ct) 
dx Σ 2(-1)ηδ{χ + <Λ-τα) = -Σ' cos 

fc=l 

жк 
Ύ 

{x + ct) 

(7.2.61) 
since F(x + ct) — ±1 at x + ct ф ni and has jumps of magnitude 2 at x + et = ni. 
A second derivative yields 

d2F(x + ct) 4π 
Σ 2(-ί)η δ'(x + ct - ni) = -j^- ^2'к sin 

■кк . .̂ 
-у (χ + ct) dx2 ^ v ' K ' i2 

n=-oo fc=l 
(7.2.62) 

Since δ'(χ) = 0 for x Φ 0, the series of derivatives of delta functions, as well as the 
sine series, in (7.2.62) vanishes for x+c i φ ni. However, atee + ct = ni, each term in 
the sine series is zero. Thus it would appear that the sine series is identically zero and 
this is not so. [We have shown in (7.2.23) that χδ'(χ) φ 0 but equals — δ(χ).] This 
observation demonstrates that infinite series that are valid in a weak or generalized 
sense cannot always be dealt with in the same way as ordinary series. Again, this 
interpretation of the solution is closely related to that given in Example 6.5, where 
such Fourier series were characterized as weak solutions. 

Properties of the Dirac Delta Function 

The product of an ordinary function and a generalized function was defined in (7.2.13). 
Yet there does not seem to exist a useful definition of the ordinary product of two 
generalized functions. Thus we cannot define the product δ(χ)δ(χ) or H(x)H(x) 
in a consistent manner (see Exercise 7.2.19). Yet δ(χ)δ(χ — a) with а ф 0 is well 
defined since the singular points of both delta functions do not coincide. Thusatx = 0, 
δ(χ — a)\x=o — δ(—α) = 0 and at x = a, δ(χ)\χ=α = δ(α) = 0. Consequently, we 
are effectively considering the product of an ordinary function and the delta function, 
and we have δ(χ)δ(χ — a) = 0. 

In a similar fashion it is possible to consider the product of two generalized func-
tions if they involve different variables. (This is sometimes called the direct product.) 
For example, the two-dimensional delta function δ(χ, у) can be written as 

ö{x,y) =S(x)S(y). (7.2.63) 
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Using the definition of the delta function (7.2.5) which is valid in any number of 
dimensions, we have 

/ / δ(χ, у)ф(х, y)dxdy = / 6(хЩу)ф(х, у) dx dy 
J J {хлу)—plane J — oo J — oo 

J —с 

6(у)ф(0,у) dy = ф(0,0) = (δ(χ, у), ф(х,у)), (7.2.64) 

so that the two expressions in (7.2.63) are seen to be equivalent. Similarly, we obtain 
in three dimensions 

δ(χ,υ,ζ) = δ{χ)δ(ν)δ(ζ). (7.2.65) 

By changing variables in the integral in (7.2.64) it is possible to obtain delta function 
representations in polar or other coordinate systems. This can also be done in the 
three-dimensional case. 

In addition, it is possible to define generalized composite functions such as δ \д{х)], 
where д(х) is assumed to be an ordinary function. The interpretation of these functions 
is based on the integral representation (7.2.4) and a change of variables, in the manner 
used in (7.2.7H7.2.8). 

For example, if g(x) is a smooth monotonie function that vanishes at x = XQ and 
is such that g'(x) > 0 for all x, we have, formally, 

(δ\3(χ)],φ(χ)) = Г δ[9(χ)]φ(χ) dx = Г *(*ffi*y] da 

φ(χ0) ( 1 
(д1Ш6{Х~Х0),Ф{х))' ( 7 ' 2 · 6 6 ) 

д'(хо) \д'(хо) 
where we have used the transformation σ = g(x) with σ — 0 corresponding to 
x = x0. Thus ö[g(x)} = (1/д'(х0)Щх - x0). If g'(x) < 0 for all x, we find that 
the change of variables σ = g(x) reverses the order of integration in (7.2.66). As a 
result, if g'(x) > 0 or g'(x) < 0 for all x with g(xo) = 0 (and x — xo as the only 
zero), we obtain 

sbW = U77T\ δ(χ - x°)· ( 7 · 2 · 6 7 ) 

Iff (zojl 
If g{x) has more than one zero and g'{x) Φ 0 at each of the zeros, we have, on 

applying the foregoing argument in the neighborhood of each zero (which we assume 
to be isolated), 

δ[9(χ)]=ΣΓ7?-Ύ]δ(χ-χη), (7.2.68) 
„ 19 (χη)\ 

where we sum over all the zeros x, 
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Example 7.4. Properties of the Delta Function. We show that 

δ(αχ + ЬуЩсх + dy) = l_ δ(χ)δ(υ). (7.2.69) 

Proceeding formally, we would consider the two-dimensional integral representation 
of the functional (δ(αχ + by)ö(cx + dy), ф(х, у)) and change the variables to obtain 
(7.2.69). Instead, we use a direct approach that treats the problem as one involving 
the product of two delta functions with different arguments. 

We first assume that а — 0 but b and с are not zero. Since δ(αχ + by)\a=o = 
S{by) = 0 for у ф 0, on using (7.2.14) we find that 6(by)6(cx + dy) = S(by)S(cx). 
Then (7.2.10) implies that S(by)6(cx) = {l/\bc\)S(x)S(y), and this yields (7.2.69) 
in the case a = 0. If а ф 0, we have 

δ(αχ + by)S(cx + dy) — δ(αχ + by)6 [(—bc/a + d) y] 

= δ{αχ + by)\J^bc]6{y) = R^Mö(ax)<5(y) = ]^Μδ{χ)δ^ 
(7.2.70) 

where we have used (7.2.14) and (7.2.10) several times. 
In a similar fashion we may consider the generalized function 5[д(ж)] in the case 

where g(x) = 0 only at x = XQ and </(a;) ψ 0 for all x. We have [since g'(xo) φ 0], 
on using Taylor's theorem with remainder, 

S[g(x)] = δ < g\xo){x - xo) - о ) ] } · (7.2.71) 

Since <5[g(a;)] is singular only at x — XQ, we may express it as 

S[g(x)} = 6{g'(x0)(x - xQ)} = Щ^6(х ~ xo), (7.2.72) 

which is in agreement with (7.2.67). 
Both results obtained show that taking account of the localized (point) singularity 

of the delta function can lead quickly to simplified expressions in problems that 
involve the Dirac delta function. The basic property we have used is that the delta 
function vanishes everywhere except where its argument equals zero. However, this 
approach must be used with caution when dealing with derivatives of delta functions. 

We conclude our discussion of generalized functions by noting that generalized 
functions are often referred to as distributions. This is because generalized func-
tions may be thought to represent the distribution of densities of masses, charges, or 
other physical quantities. In this context, the delta function δ(χ) has infinite den-
sity at x = 0 but {δ(χ), 1) = /_ δ(χ) dx = 1, so that the total amount of mass, 
say, is unity. Similarly, we may consider the derivative of the delta function δ'(χ) 
to represent the density of a dipole located at x = 0. The total charge is given as 
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(δ'(χ),1) = -(S(x),d(l)/dx) = -(δ(χ),Ο) = 0, so that the total charge van-
ishes as expected. However, the moment of the dipole around x = 0 is given as 
ΙΖοχδ'(χ) dx = № ) > z ) = - (.S(x),dx/dx) = -(Ä(ar), 1) = - 1 . Thus -δ'(χ) 
is a dipole distribution located at x = 0 with a unit moment. 

Further properties of one- or higher-dimensional generalized functions will be 
considered as needed in our discussion. 

7.2.1. Consider the sequence of functions fk(x,y,z) = \ n ,, 

Exercises 7.2 

" 3fc2/47r, r < \/k, 
гпсе ot tunctions fk{x, y, z) = < 

where r2 = x2 + y2 + z2. Let ф(х, у, z) be a test function. Show that 

/ / fk(x,y,z)<ß(x,y,z)dxdydz = <l)(0,0,0), 
-ooJ-ooJ-oc 

so that the sequence Д(х, у, г) converges to the delta function δ(χ, у, z) in three 
dimensions. 

f exp[-a2 / (a2 - |x|2)], |x| < a, 
. , ^ are test 

0, |x| > a, 

functions. (The result is valid in one dimension as well.) That is, they are infinitely 
differentiable and vanish outside the region |x| < a. 

7.2.3. (a) Show that the generalized derivative of \x\ is sgn x, the signum function, 
defined as sgn x = —1 for x < 0 and sgn x = 1 for x > 0. (b) Show that the 
generalized derivative of sgn x equals 2δ(χ). 

7.2.4. Show that xn6^m\x) = 0 if m < n, and if m > n we have zn(5(m> (x) = 
{-l)n\m\/{m-n)№m-n\x). 

7.2.5. If fa (x) is the power function defined in (7.2.30), show that f'a (x) — afa-i(x) 
mdxfa{x) = fa+1(x). 

7.2.6. Show that xg\ (x) = 1 and that xgn(x) = gn-\(x) for n > 2, where gn(x) is 
the generalized power function (7.2.31)-(7.2.32). 

7.2.7. Consider the product xhn(x), with hn(x) defined as in (7.2.34). Express this 
product as (xhn(x), φ(χ)) = (кп(х),хф(х)). Use (7.2.35) with n = 2 and ф(х) 
replaced by хф(х) to conclude that xh,2{x) ф h\{x) unless we choose two different 
constants in the definition (7.2.34). 

7.2.8. Show that h'n(x) = -nhn+i(x) for hn(x) defined by (7.2.34). 

7.2.9. Determine the generalized derivative of the following functions: (a) f(x) = 
H(x - l )s inx; (b) f{x) = χ2δ(χ); (с) f(x) = exö'(x + 3) - H{x)cos2x; (d) 
f{x) = Hix - 1) log ж; (e) f(x) = e^l. 
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7.2.10. Obtain the formal Fourier sine and cosine series of the delta function δ(χ — 
xo), δ(χ — x0) = (2/1) Y^=1 sm(nkxo/l) sin(nkx/l), and δ(χ — xo) — (1//) + 
(2/1) ΣΤ=ι c o s {nkxo/l) cos (nkx/l), where 0 < x, xo < I- Show that these series 
are convergent in the generalized sense. Hint: Consider test functions φ(χ) that 
vanish outside a closed subinterval of (0,/). Show that the sine and cosine series 
converge weakly to φ(χο). 

7.2.11. Express δ(χ2 — a2) as a sum of delta functions in the manner of (7.2.68). 

7.2.12. Express J(sin:r) as a series of delta functions by using (7.2.68). 

7.2.13. Show that the sequence of functions fe(x) = (l/\/4ne) exp(—x2/4e) tends 
to δ(χ) as ε —> 0. 

7.2.14. Show that lime_>0
 Я^ж+<;~ = δ(χ) in the sense of weak convergence. 

7.2.15. Let f(x) be a positive continuous function in [a, b] that vanishes outside [a, b] 
and has unit area under the curve. Show that l ime_o(l /e) / (x/e) = à(x) ш the weak 
sense. 

7.2.16. Show that δ'(-χ) = -δ'(χ). 

7.2.17. Let f(x) be defined as δ(χ) in the interval —π < x < π and extend it 
as a periodic function of period 2π. Show that the extended function f(x) can be 
expressed as f(x) — Y^L_00 δ[χ — 2ктг] and that it has the generalized (complex) 
Fourier series f(x) = (1/2π) 5Zfcl-oo exp(«fcr). 

7.2.18. Express the integral in (7.2.31) as (1/χ,φ(χ)) = /0°° ^χ)~^-χ) dx, and 
show that the generalized derivative of g(x) = log |x| is given by the generalized 
function g\ (x) = 1/x. 

7.2.19. Noting that χδ(χ) = 0, show that 0 = (0,φ(χ)) = (χδ(χ)(1/χ),φ(χ)) = 
(δ(χ),φ(χ)) = 0(0), where 1/x stands for gi(x) — 1/x, the generalized function 
defined in equation (7.2.31 ). Conclude from this that if the product of the generalized 
functions χδ(χ) and 1/x were defined, we would have the result 0 = δ(χ). 

7.2.20. Show that the function F(x) in Example 7.3 can be expressed as F(x) — 
1 + Σ°=-οο 2(-1)"+1Я(гг/ -x) + Σ,Ζι 2(-1ТН(х - ni). 

7.2.21. Given the divergent integral ^хаф(х) dx, - 2 < a < —1, where0(O) ф 0, 
itsfinite part is defined by Hadamard tobe /Qc ха[ф(х)-ф(0)] dx+ca+1/(a + 1)0(0), 
(We do not consider his definition of the finite part for the case where a < — 2 
and nonintegral.) Use the generalized function / a (x) defined in (7.2.29) to obtain 
/0C хаф(х) dx = -I/(a + 1) /0C ха+1ф'(х) dx + ca+1/(a + 1) ф(с). Integrate by 
parts once in Hadamard's finite part formula to show that the two expressions for the 
value of the divergent integral are equivalent. 
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7.2.22. Determine the finite part of the integral /^(1 + x)/x3/2 dx. 

7.2.23. Given a (piecewise smooth) surface S, consider the generalized function 
F(x, y, z)S(S) that vanishes at all points P not on the surface S and has the prop-
erty that (F(x, y, z)S(S),(f)(x,y, z)) = Js F(x,y, г)ф(х,у, z) ds. The function 
F(x, y, z)6(S) is called a single-layer distribution and represents a generalization 
of the one-dimensional Dirac delta function. Show that if f(x, y, z) is a piecewise 
smooth function with a jump discontinuity across the surface S, then df(x, y, z)/dx = 
df(x, y, z)/dx\pgS + [f(x, y, z)]s n · i S(S), where n is a unit normal to the surface 
S and [f(x, y, z)]s is the jump in f(x, y, z) across S, given as the difference between 
the value of f(x, y, z) on the side of S that n points to and the side it points away 
from. Also, obtain the corresponding formula for the other two partial derivatives of 
f(x, y, z). Hint: Use the definition of the generalized (partial) derivative of f(x, y, z) 
and the divergence theorem. 

7.2.24. With the single-layer distribution F(x, y,z)S(S) given as in Exercise 7.2.23, 
the double-layer distribution is given as —d/dn(F(x, y, z)5(S)), where д/дп is the 
normal derivative on Sand (—d(F(x, y, z)S(S))/dn), ф(х, у, z)) = fs F(x, у, ζ)θφ 
(x, у, z)/dn ds. This corresponds to a generalization of — δ'(χ). Demonstrate that 
V2f(x, y, z) = V2f(x, y, z)\pis + d([f(x, y, z)]sS{S))/dn + [df(x, y, z)/dn]s 

6(S). Single- and double-layer distributions can be used to describe some of the re-
sults in Chapter 6 relating to concentrated source terms in the language of the theory 
of generalized functions. 

7.2.25. Showthat(a) (1/2π) / ^ exp(i\x) exp{~i\x) dx = δ(λ-λ); (b) (2/π) /0°° 
cos(Àa;) cos(Äa;) dx = δ(λ — λ), λ, λ > 0; (с) (2/π) j* 0 sin(Ax) sin(Ax)cix = 
δ(Χ — λ), λ, λ > 0. Demonstrate that these results can be interpreted as orthogonal-
ity conditions for the functions arising in the Fourier transform, the Fourier cosine 
transform, and the Fourier sine transform. In part (a) the Hermitian inner product 
must be used. 

7.3 GREEN'S FUNCTIONS FOR BOUNDED REGIONS 

A general procedure for determining Green's functions for problems given over 
bounded (spatial) regions is the method of finite Fourier transforms presented in 
Section 4.6. For the equations (7.1.9), (7.1.23), and (7.1.32) given in Section 7.1, 
the Green's function is expanded in a series of eigenfunctions of the elliptic operator 
L defined in (7.1.1). The coefficients in the series of eigenfunctions are specified 
in the manner shown in Section 4.6. Although this procedure is identical to that 
given in Section 4.6, the solutions of the given problems expressed in terms of the 
Green's functions have a somewhat different form than that given earlier. However, 
the uniqueness theorems guarantee that there can be only one solution for each of 
these problems. We do not demonstrate in the general case the equivalence of the 
various solution forms. Our main emphasis in this section lies in the construction of 
Green's functions. 
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Green's Functions for Elliptic PDEs 

We begin by constructing the Green's function K(x; ξ) for the elliptic problem. As 
shown in Section 7.1, the function K(x; ξ) satisfies the equation 

LK(x; ξ) = - V · (p(x) VK(x; £)) + q(x)K(x; ζ) = δ(χ - ζ), χ, £ 6 G (7.3.1) 

and the boundary condition 

,ΘΚ(χ;ξ) 
α(χ)Κ(χ;ζ) + β(χ)-

дп 
= О, (7.3.2) 

dG 

where derivatives are taken with respect to the variable x. Let Κ(χ;ξ) be the or-
thonormalized set of eigenfunctions of the operator L; that is, 

LMfc(x) = Xkp(x)Mk(x), к = 1,2,.. . , (7.3.3) 

where the Mk(x) are the eigenvalues of L and p(x) is a given weight function. The 
boundary condition for the Mk(x) is (7.3.2) with K(x; g) replaced by Mk(x). 

We express K(x; ξ) as a series of eigenfunctions 

oo 

K{x;$ = YiNk{t)Mk{x), (7.3.4) 
fc=l 

as in (4.6.3) with the (Fourier) coefficients Nk(è) to be determined. Proceeding as 
in Section 4.6, we multiply (7.3.1) by Mk(x), (k = 1,2,...) and integrate over the 
region G. [Note that the operator К introduced in Section 4.6 is unrelated to the 
Green's function К(х; £) of the present chapter.] Using the results (4.6.5)-(4.6.8) 
and noting that both K(x; £) and Mk(x) satisfy homogeneous boundary conditions 
of the form (7.3.2), we obtain 

XkNk(i) = JJs(x-t)Mk{x)dx = Mk{t), к = 1 , 2 , . . . , (7.3.5) 

since ξ e G. Then if all the Xk > 0, we have Nk(£) = Mk(£)/\k, and this yields 
the bilinear expansion of the Green's function К(х; £), 

oo 

fc=l 

Mfc(x)Mfc(i) 
Xk 

Κ(χ;0 = Σ ΐ ■ ( 7 · 3 · 6 ) 

We notice that К (x; £) = K(£; x), so that the Green's function for the elliptic problem 
is symmetric. This result can be proven directly for the Green's function without the 
use of the bilinear expansion (see Exercise 7.1.1). The symmetry is a consequence 
of the fact that the operator (l/p)L taken together with the boundary conditions is 
self-adjoint. It implies that the interchange of the source point £ and the observation 
point x does not alter the solution. 
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It was shown in Section 4.2 that the eigenvalues λ^ for the eigenvalue problem 
(7.3.3) with the boundary condition (7.3.2) [with Κ(χ;ξ) replaced by Mfc(x)] are 
nonnegative. It has also been demonstrated in Exercise 4.2.5 that λο = 0 is an 
eigenvalue for this problem if and only if q(x) = 0 in the operator L and a(x) = 0 in 
the boundary condition. The corresponding eigenfunction Mo (x) is clearly a constant 
in that case. Consequently, unless zero is an eigenvalue, the bilinear expansion (7.3.6) 
yields a formal solution of the boundary value problem (7.3. l)-(7.3.2)for the Green's 
function K(x; ξ). It may be verified directly that (7.3.6) is a (generalized) solution 
of(7.3.1)-(7.3.2). 

In the one-dimensional case, (7.3.1 ) is an ODE and the bilinear expansion (7.3.6) 
represents an expansion of the Green's function K(x; ξ) in terms of the eigenvalues 
and eigenfunctions of a Sturm-Liouville problem. In that case, it is often prefer-
able to determine the Green's function by solving the differential equation directly. 
Additionally, for certain higher-dimensional problems it is possible to construct the 
Green's function in terms of eigenfunctions for lower-dimensional problems. Since 
the solution of higher-dimensional eigenvalue problems is generally not a simple task, 
this can lead to a substantial simplification of the Green's function problem, especially 
if the resulting eigenvalue problems are one-dimensional. 

Proceeding as in Section 4.2, we consider the function и = u(x, y) where x is a 
point in the (bounded) region G and у is a scalar variable defined over the interval 
0 < у < I. In place of (7.1.1) we now consider the equation 

p{\)uyV{\, y) - Lu(x, y) = -p(x)F(x, y), xeG,0<y<i, (7.3.7) 

and the boundary conditions (7.1.2) and (4.2.8) if G is a two-dimensional region. 
If G is one-dimensional and is given as 0 < x < I, u(x, y) satisfies the boundary 
conditions (7.1.47), where t is replaced by y. 

The Green's function for the problem satisfies the equation 

Ρ(χ)92κ{χ^2'
ξ'η) -LK(x,y-,tv) = -δ(χ-ζ)δ(ν-η), *,ί e G, О < υ,η < i, 

(7.3.8) 

and the boundary condition (7.3.2)—if G is two-dimensional—as well as a homo-
geneous form of the boundary condition (4.2.8). The differential operator in (7.3.7) 
is self-adjoint. The Green's function is expressed in the form K(x, y; ξ, η) and the 
derivatives in (7.3.8) are taken with respect to the variables x and y. If the region G 
is one-dimensional, K(x, y; ξ, η) satisfies the boundary conditions (7.1.47) (where t 
is replaced by y) with u(x, y) replaced by K(x, y; ξ, η) and g\{y) = 52(2/) = 0. 

To determine K(x, y; ξ, η) we use the finite Fourier transform procedure of Section 
4.6. With the set {Mfc(x)} (k = 1,2,...) as the eigenfunctions of the operator L in 
(7.3.8), we construct the eigenfunction expansion 

00 

K(x, y; ί ,η) = Σ Nk(y)Mk(x). (7.3.9) 
fc=l 
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The Nk (y) are the Fourier coefficients of К(х, у; ξ, η) given as 

Nk(y) = (K(x,y;tv),Mk(x)) = jj p(x)K(x,y;t,V)Mk(x) dx, к > 1, 

(7.3.10) 

assuming that G is two-dimensional. We multiply (7.3.8) by Mk(x) and integrate 
over the region G. Again using the results (4.6.5)-(4.6.8), we obtain 

N'k\y) - XkNk(y) = -Мк(£Щу -V),0<y,V<ì,k = l,2,.... (7.3.11) 

Since K(x, 0; ξ, η) — K(x, l; ξ, η) = 0, we must have 

Nk(0) = 0, Nk(ì) = 0, (7.3.12) 

as the boundary conditions for Nk(y). To determine the Nk(y), we must construct 
a Green's function, given here as Nk(y)/Mk(£), for an ODE in a finite interval. 
Although Nk(y) may also be found using eigenfunction expansions, we use a more 
direct and concrete approach in the following example. 

Example 7.5. Green's Function for an Ordinary Differential Equation. 
Using the notation given in Example 7.1, we consider the Green's function K(x; ξ) 
that satisfies the equation 

d2KQ*20 -ο2Κ(χ;ξ) = -δ(χ-ξ), 0<χ,ξ<1, (7.3.13) 

with the homogeneous (Dirichlet) boundary conditions 

Κ(0;ξ) = 0, Κ{1;ξ)=0. (7.3.14) 

From our discussion in Example 7.2 we find that К (х; ξ) satisfies the homogeneous 
equation 

92Κ
9

{£ξ) - c2K(x; ξ) = 0, x φ ξ, (7.3.15) 

and the continuity and jump conditions at x = ξ: 

~ΘΚ(χ;ξ) 
K(x; ξ) continuous at x = ξ, 

дх 
= - 1 , (7.3.16) 

where the brackets represent the jump in the first derivative of K(x; ξ) across x = ξ. 
To solve this problem we denote Κ(χ;ξ) by Κι(χ;ξ) for x < ξ and Κ2(χ;ξ) 

for x > ξ. Both Κι(χ; ξ) and K2(x; ξ) satisfy the homogeneous equation (7.3.15). 
Κι(χ;ξ) vanishes at x = 0 while Κ2(χ;ξ) vanishes at x = I. We easily conclude 
that 

Κι(χ;ξ) = aisinh(cx), Α"2(χ;ξ) = a2sinh[c(i — ж)], (7.3.17) 
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where a.\ and a2 are as yet unspecified constants (note that с is assumed to be a 
constant). The continuity and jump conditions (7.3.16) imply that a\ sinh(c£) = 
ci2sinh[c(Z — £)], and —u2Ccosh[c(/ — £)] — aiccosh(c£) = —1. The solution 
of the system for a\ and a2 is given as a\ = sinh[c(/ — £)]/(csinh(cZ)), a2 = 
sinh[c£]/(csinh(ci)). Inserting these expressions into (7.3.17), we obtain the Green's 
function K(x; ξ) as 

I ( sinh[c(Z — £)]sinh(ca;), 0 < x < ξ, 
K ( X ; ξ ) = csinh(c/) { sinh(c£) sinh[c(/ - x)}, ξ<χ<1. ( 7 · 3 ' 1 8 ) 

We observe that K(x; ξ) = Κ(ξ; x), so that the Green's function is symmetric. 
In the limit as с —» 0, we obtain the Green's function К(х; ξ) that satisfies the 

equation 

д 2 ^ £ ; 0 =~δ{χ-ξ), 0<χ,ξ<1, (7.3.19) 

and (7.3.14). Since sinh(x) « x as x —> 0, it is given 

1 ( χ(1-ξ), 0<χ<ξ, 
Κ{χ^ = Ί\ξ(ΐ-χ), ξ<*<ι. ( 7 · 3 · 2 0 ) 

We continue our discussion of (7.3.8) and assume that the eigenvalues Afc of (7.3.3) 
are all positive. Then on using the results of the preceding example, we find that the 
solution of (7.3.11)—(7.3.12) is given as 

Mfc(£) ί s inh[v^(f - η)} sinh(v/^?/), 0<ν<η, 
/ V i (ту ) — ^ ^_^ л A 

y/Xksiah(y/X^i) \ sinh(v^fc η) sinh[V%T(Z - y)], η <y < I. 
(7.3.21) 

Inserting (7.3.21) into (7.3.9) completes the formal solution of the problem (7.3.8) 
for the Green's function К(x, y; ξ, η) for the given special region. 

The preceding technique can be generalized to deal with elliptic equations 

p(x)Lu(x, y) - Lu(x, y) = -p(x)F(x, y), x G G, 0 < у < Ì, (7.3.22) 

where 
Lu{x,y) а(у)ди{Х'У) 

dy [ dy 
+ b(y)u(x,y), (7.3.23) 

so that L is a self-adjoint operator. The (x, y)-region may be defined as in the forego-
ing, and the boundary conditions in the y-variable may be of the more general form 
(7.1.47), appropriately modified. 

The Green's function K(x, y; ξ, η) satisfies the equation 

p(x)LK(x, y; ζ, η) - LK(x, у; ζ, η) = -δ(χ - £)<% - η), (7-3.24) 
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where x, £ £ G, 0 < y, η < I, and K{x, y; ξ, η) satisfies a homogeneous version 
of the boundary conditions for u(x, y). Expanding К(х, y; £, η) as in (7.3.9), we 
conclude that Nk(y) satisfies 

LNk(y) - XkNk(y) = -Мк(£Щу -η),0<ν,η<ί, к = 1,2,... (7.3.25) 

and Nk(y) satisfies appropriate boundary conditions at у = 0 and у = I. Thus 
we again obtain a Green's function problem for a self-adjoint ordinary differential 
equation. A simple case of the Green's function problem was considered in Example 
7.5, and further cases are studied in the exercises. We have further occasion to consider 
the technique of reducing the Green's function problem to a lower dimensional one 
later in this chapter. 

Example 7.6. Laplace's Equation: Green's Function for a Rectangle. 
We consider the rectangular region G, given as 0 < x < I and 0 < у < I, and 
construct the Green's function K(x, y; ξ, η) that satisfies the equation 

Θ2Κ{χ^;ξ,η) δ2Κ(χ,ψ,ξ,,η) 
дх1 όψ = -δ{χ- ξ)δ^ - η), (χ, y) e G, (7.3.26) 

with 0 < ξ < I and 0 < η < I and the Dirichlet boundary condition 

Κ{χ,ν,ξ,η) = 0, (x,y)edG. (7.3.27) 

We begin by applying the first of the two methods presented above. Thus, we must 
solve the following Dirichlet eigenvalue problem in the region G: 

-V2M(x, y) - AM (a;, y), {x, y) e G, M{x, y) = 0, (x, y) G 8G. (7.3.28) 

The eigenvalues and eigenfunctions are determined using the method of separation 
of variables. 

Let M(x,y) = F(x)G(y) and insert this expression into (7.3.28). We have 
Mxx(x,y) + Myy(x,y) + \M(x,y) = F"(x)G(y) + F(x)G"(y) + XF(x)G(y) = 0. 
Dividing by F(x)G(y) and separating variables gives F"(x)/F(x) + λ = 
—G"(y)/G(y) = k2, where k2 is the separation constant. The equations for F(x) 
and G(y) are 

F"(x) + (λ - k2)F{x) = 0, G"{y) + k2G{y)=0. (7.3.29) 

The boundary condition in (7.3.28) implies that 

F(0) = F(l) = 0, G(0) = G(l) = 0. (7.3.30) 

Consequently, we are led to consider one-dimensional eigenvalue problems for F(x) 
and G(y) of a type studied in Section 4.3. 
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For the eigenvalue problem (7.3.29)-(7.3.30) for G(x) we obtain as the eigenvalues 
and the eigenfunctions 

kl=(^y,Gm(y)=sm(^,m = l,2,.... (7.3.31) 

For each of these eigenvalues, we have an eigenvalue problem (7.3.29)-(7.3.30) for 
F(x). As in Section 4.3, we find the eigenvalues 

( 7ΓΤ7 \ 
— J , m = l , 2 , . . . , n = l , 2 , . . . , (7.3.32) 

and the eigenfunctions 

( 7TTÜK \ 
— J , n = l , 2 , . . . . (7.3.33) 

Combining the results obtained, we conclude that the eigenvalues and the eigen-
functions for the problem (7.3.28) are given as 

/πη\2 /πτηλ « . /πηχ\ . (ππιυ\ , „,. 
A n m = ( — J +{-γ) > M n m ( i , i / ) = B i n ( — J s m i - ^ J , (7.3.34) 

with η,τη = 1,2, The unnormalized eigenfunctions are denoted as 
Mnm(x, y) = Fn(x)Gm(y). It may be noted that the eigenvalues Xnm are positive, 
infinite in number, and tend to infinity as n and m tend to infinity. 

The appropriate inner product for the rectangular region G is given as 

{f{x,V),9{x,y))= f{x,y)g(x,y)dxdy. (7.3.35) 
Jo Jo 

If we consider the two pairs (n, m) and (j, к) with (n, m) ф (j, к), we have 

(Mnm,Mjk)=i s i n i c i sin (^YJdy j s i n ( ^ ) s i n i ^ p W = 0, 

(7.3.36) 

since {sm(irnx/l)} and {sin(nmy/l)} are orthogonal sets andm ф к and/orn ф j . 
Thus eigenfunctions { Mnm (x, y] } form an orthogonal set that we now orthonormal-
ize. The square of the norm of Mnm(x, y) is given as 

| |M„m| |2 = £ s i n 2 ( l ! p ) d y jTs in 2 (ψ-) dx=1-1-, (7.3.37) 

on using Section 4.3. Thus an orthonormal set of eigenfunctions is 

. . 2 . /πηχ\ . Iππιυ\ , „ . . 
Мпто(а;1у) = - ^ = 8 ш ^ — J s i n i - ^ J , n,m= 1,2,.... (7.3.38) 
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Different sets of values of (n, m) do not necessarily yield distinct eigenvalues Anm. 
For example, if / = /, we see that λΐ2 = (π//)2 + (2π/Ζ)2 = λ2ΐ· Nevertheless, the 
set of eigenvalues Xnm can be arranged in a sequence that corresponds to the posi-
tive integers к = 1,2,3, . . . with an equivalent arrangement for the eigenfunctions 
Mnm(x, y). It is then possible to speak of the set of eigenvalues Â  and the eigen-
functions Mk(x, y), with к = 1 ,2,3, . . . , and even if λ^ is a multiple eigenvalue, 
the corresponding eigenfunctions are orthogonal, as we have shown. The single-
subscript notation was used in our earlier discussions of multidimensional eigenvalue 
problems. 

Given a function f(x, y), defined in the rectangular region 0 < x < I and 0 < 
у < I, that satisfies certain smoothness conditions, we have the expansion 

/(х,y) = —j= Ύ^ Ύ^ cnmsin ( ^ y - j sin ί —^- ) , (7.3.39) 
VUn=lm=l l \ I / 

with the Fourier coefficients cnm given as 

Cnm = —r=l j f(x,y)sm(^-—-J sinl-γ-jdxdy. (7.3.40) 

The expansion (7.3.39) is known as a double Fourier sine series. 
Having determined the eigenfunctions and eigenvalues for the problem (7.3.28) 

we are now in a position to construct the Green's function K(x, y; ξ, η). In view of 
(7.3.6), we obtain 

. oo oo sm(nnx/l) βΐηίπηξ/Ι) sin ( nmy/l ) sin ( ππιη/Ι ) 

(7.3.41) 
as the eigenfunction expansion of the Green's function for the region G. 

The alternative method presented above for the construction of the Green's function 
for the rectangular region G has better convergence properties than those of the series 
(7.3.41), as we now demonstrate. The equation (7.3.26) for the Green's function 
K(x, y; ξ, η) is written as 

ΡΚίχ^ξ,η) _ LK{x^ y ; ξ η ) = _ δ{χ _ ξ)δ{υ _ ч)> ( 7 3.42) 

with the operator L given as L = -(д2/дх2). The appropriate eigenvalue problem 
is 

LM(x) = -M"{x) = XM(x), 0<x<l, M (0) - M(l) = 0. (7.3.43) 

This represents a Sturm-Liouville problem which was solved in Example 4.4. The 
eigenvalues and orthonormalized eigenfunctions are 

A f c = ( ^ y , M f e ( z ) = y ^ s m ( ^ ) , fc = l , 2 , . . . . (7.3.44) 
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With Nk(y) defined as in (7.3.21), the Green's function is given by the eigenfunction 
expansion 

oo 

K(x, y; ξ, η) = Σ Nk(yWk(x). (7.3.45) 
fc=l 

For у different from η, the hyperbolic functions that occur in Nk(y) can be approxi-
mated by exponentials as was done in Example 4.11, and the series can be shown to 
converge fairly rapidly if \y — η\ is not small. 

Both (7.3.41 ) and (7.3.45) can be used to solving Dirichlet's problem for Laplace's 
equation in a rectangle. It has been shown in Example 4.11 that a direct separation 
of variables approach yields quite satisfactory results. 

Modified Green's Functions for Elliptic PDEs 

The eigenfunction expansion method for constructing Green's functions for the elliptic 
equation (7.1.1) with the boundary condition (7.1.2) fails if λο = 0 is an eigenvalue of 
the associated eigenvalue problem. As indicated, this occurs for the Green's function 
problem (7.3.1)-(7.3.2)if and only if q(x) = 0 in (7.3.1) and a(x) = 0 in the boundary 
condition (7.3.2). 

Let λο = 0 be an eigenvalue of the operator L [see (7.3.3)] and M0(x) be the 
eigenfunction corresponding to λο. Then (7.3.5) implies that λο-ΛΌ = 0 = Μο(ξ), 
and this is not possible since we cannot have Mo = 0. Clearly then, the Green's 
function cannot be constructed in the given manner if λο = 0 is an eigenvalue. There 
are two methods whereby a modified Green's function can be constructed in the special 
case of a zero eigenvalue. For each of the two modified Green's functions it is possible 
to solve the CQriesrjoMia£boAM\du!̂ f чгАйартоЬктйя Цч) V& атмитет s«iü\ai \o 
that presented for the (ordinary) Green's function K(x;£) in Section 7.1, and this 
will be demonstrated below. 

We put q(x) = 0 in (7.1.1) and consider the elliptic equation 

Lu(x) = - V · (p(x)Vu(x)) = p(x)F(x), xeG, (7.3.46) 

with the Neumann boundary condition 

du(x) 
/?(*) = B(x). (7.3.47) 

dG dn 

The eigenvalue problem that corresponds to (7.3.46)-(7.3.47) is given as 

dM(x) 
LM{x) = λρ(χ)Μ(x), x € G, = 0, (7.3.48) 

dG dn 

and λ0 = 0 is an eigenvalue. It follows from the results of Section 4.6 that 

AoTVo = 0 = / / p(x)F(x)M0(x) dx + f ^-M0(x)B(x) ds. (7.3.49) 
JJG JOG P W 
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Since M0(x) must be a constant (see Exercise 4.2.5), we conclude that 

fj p(x)F(x) dx + j щВ(х) ds = 0. (7.3.50) 

Unless F(x) and B(x) are such that the compatibility condition (7.3.50) is satisfied, the 
boundary value problem (7.3.46)-(7.3.47) has no solution. We assume that (7.3.50) 
is satisfied and construct the modified Green's function. 

In the first method, the modified Green's function, which we denote by K(x; ξ), 
is expanded in a series of eigenfunctions of the operator L, 

oo 

К(х;Ц)=^Мк(£)Мк(х), (7·3 ·5 1) 
fc=l 

where the Mk(x), к = 1,2,... correspond to the positive eigenvalues of L. This 
expansion differs from that given in (7.3.4) since the eigenfunction MQ(X) is absent 
from the series, even though λ0 = 0 is an eigenvalue for this problem. We have 
removed the term N0(£)Mo(x) from the expansion so as to avoid obtaining the 
contradictory result λοΝ0(ξ) — 0 = Μο(ξ), which was derived in the foregoing. 

Since the complete set of eigenfunctions is given as {Mk(x)}7 к = 0 ,1 ,2 , . . . , 
the eigenfunction expansion of δ(χ — ξ) is 

oo oo 

δ(χ - €) = $ > ( χ - ζ), Mfc(x))Mfc(x) = ρ(ζ) Σ Mfc(€)Mfc(x). (7.3.52) 
fe=0 k=0 

This series can be expressed as δ(χ — ξ) = p(x) ΣΤ=ο Mk{£)Mk{x)- Further, 

oo oo 

LK(x;О = ΣNk(t)LMk(x) = p(x) ^ХкМк(£)Мк(х) . (7.3.53) 
fe=l fc=l 

Comparing (7.3.52) with (7.3.53) shows that if we set Nk(£) = Mk{i)/\ki к = 
1,2,... , the modified Green's function satisfies the equation 

oo 

LK(x; ζ) = Σ p(x)Mfe(£)Mfe(x) = δ(χ - ζ) - ρ(χ)Μ0(ξ)Μ0(χ). (7.3.54) 
fc=i 

Noting the foregoing discussion, we define the modified Green's function K(x; £) 
to be a solution of the equation 

LK(x; ζ) = -V · (p(x)VK(x; €)) = <5(x - ζ) - p(x)M0(€)M0(x), x, £ e G 
(7.3.55) 

with the Neumann boundary condition 

ΘΚ(χ;ξ) 

дп 
= 0. (7.3.56) 

ÖG 
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The bilinear series of eigenfunctions for K(x; ξ) has the form 

* { ч в _ £ «УЙ«ИО. (7.3.5Т) 
fc=l k 

Given the boundary value problem (7.3.46)-(7.3.47), we now construct a solution 
formula for u(x) in terms of the modified Green's function K(x; £). Following the 
procedure given in Section 7.1, we set w = К in (7.3) and note that (7.1.4) gives 

if u{x)LK{x; ξ) dv = η(ζ) - M0(£) if p{x)u{x)M0{x) dv. (7.3.58) 

The last integral in (7.3.58) is the Fourier coefficient of u(x) with respect to the 
eigenfunction M0(x), and it can be expressed as (u(x),M0(x)). Then we obtain 
from (7.1.8) the solution formula 

« (£ )= [[ pFK(x;t)dv+ [ ^K(x;£)ds + (u(x),M0(x))M0(t), (7.3.59) 
JJG JdG P 

where p, p, F, B, β are all functions of x. The solution exists only if the compatibility 
condition (7.3.50) is satisfied, and even then it is determined only up to an arbitrary 
constant multiple of the constant eigenfunction Mo(x) as seen from the last term in 
(7.3.59). Consequently, as has been noted in Section 6.8, the solution to the boundary 
value problem (7.3.46)-(7.3.47) is not unique. Any constant can be added to it. 

Similarly, the modified Green's function K(x;£) is determined only up to an 
arbitrary constant. By expressing K(x; ξ) in the form (7.3.51) and (7.3.57), we have, 
in effect, equated the arbitrary constant to zero. As a result, the modified Green's 
function K(x; £) is symmetric. The modified Green's function K(x; £) differs from 
the ordinary Green's function K(x; £) in that LK does not equal δ(χ - £), but is given 
as in (7.3.55). However, K(x; ξ) does satisfy the homogeneous boundary condition 
(7.3.56). 

There is an alternative construction of a modified Green's function, which we 
denote by Κ(χ;ξ), associated with the boundary value problem (7.3.46)-(7.3.47), 
for which we have 

LJT(x; « = -У-(р(х)УА-(ж; £)) = * ( « - * ) , x, £ e G. (7.3.60) 

An application of the divergence theorem shows that 

- / / V · (p VA') dv = - f ρψ- ds = ff δ(χ -ξ)άυ = 1. (7.3.61) 

Consequently, if we set LK(x; ζ) = δ(χ — £), we cannot have dK(x; ξ)/θη = 0 
on dG, as was the case for K(x; ζ). Instead, we must set dK(x;£)/dn\dG = b(x), 
where ò(x) is any function for which JdGp(x)b(x) ds = —1, in view of (7.3.61). 
[Note that 6(x) may be taken to be a constant.] 
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The solution formula for u(x) that satisfies (7.3.46)-(7.3.47) is then obtained from 
the results given at the beginning of Section 7.1. With w(x) = K(x; £) we obtain in 
place of (7.1.7), 

u ( x ) ö f ^ | ) _ κ(χ;ξ)^- = u(x)b(x) - Λ-)Β(χ)Κ(χ;<-) (7.3.62) 

and the solution is obtained in the form 

u{i)= [[ pFK{x;i)dv+ ( ^-K{x;i)ds- [ pbu(x) ds, (7.3.63) 
JJG JdG P JdG 

where p,p, F, B, ß, b are all functions of x, on using (7.1.8). The last integral in 
(7.3.63) is an arbitrary constant since b(x) is arbitrary. 

The expansion of K(x; ξ) in a series of eigenfunctions is not as straightforward as 
that for K(x; ξ) since K(x; ξ) does not satisfy a homogeneous boundary condition. 
Nevertheless, it can be carried out using the finite Fourier transform techniques of 
Section 4.6. A relation between K(x; ξ) and K(x\ ξ) can be established by way of 
the procedure developed in Chapter 4, whereby inhomogeneous boundary conditions 
can be transformed to homogeneous conditions. This is considered in the exercises. 

Example 7.7. Laplace's Equation: The Modified Green's Function in a 
Rectangle. Given the rectangular region G defined as 0 < x < I and 0 < у < I, 
we construct the modified Green's function K(x, y; ξ, η) that satisfies the equation 
[(see (7.3.55)] 

Pklwtr,) ^Κ^,Π) =-δ{χ-ξ)δ{ν-η) + Μ0(№ο(*), (7.3.64) 

with (x, y) e G and (ξ, η) e G, and the Neumann condition дК(х, у; ξ, η)/οη\0„ 

= 0, where дК(х, у; ξ, η)/δη is an exterior normal derivative. 
To solve for K(x, y; ξ, η), we must determine the eigenvalues and eigenfunctions 

of the problem 

- V 2 M ( x , y) = XM(x,y), (x, y) e G, dM{X'V) 

dn 
= 0. (7.3.65) 

6G 

Using separation of variables, we set M(x, y) = F(x)G(y) in (7.3.65) and obtain 
Mxx{x, y) + Myy(x, y) + XM = F"{x)G{y) + F{x)G"{y) + XF{x)G{y) = 0. Di-
viding by F(x)G(y) andseparatingvariablesgivesF"(x)/F(x)+À = —G"(y)/G(y) 
= k2, where k2 is the separation constant. Then F(x) satisfies the boundary value 
problem 

F"(x) + (A - k2)F{x) = 0, 0 < x < I, F'(0) = F'(l) = 0. (7.3.66) 

Also, G(y) satisfies 

G"{y) + k2G(y) = 0, 0<y<Ì, G'(0) = G ' ( Ì ) = 0 . (7.3.67) 

The eigenvalue problems for F(x) and G(y) were studied in Section 4.3. 
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The eigenvalues and eigenfunctions for (7.3.67) are 

ππι\ „ , „ Inmy\ 
И — 

I 
, Gm(y) = cos 

VTJ' 
m = 0,1,2,. (7.3.68) 

For F(x) we find the eigenvalues 

. 2 
An ki /πηγ 

VTJ ' 
n = 0 ,1 ,2 , . . . , m = 0 ,1 ,2 , . . . , (7.3.69) 

and the eigenfunctions 

Fn(x) = cos^^-J, n = 0 ,1 ,2 , . . . . /πηχ\ (7.3.70) 

Then the eigenvalues and the corresponding eigenfunctions for (7.3.65) are 

/ π η \ 2 /πτη\' 

- (τ) + (τ) Mnm(x,y) = cos ( ^ ) cos ( ^ψ- ), (7.3.71) 
V / ντ· 

with η, m = 0,1,2, The unnormalized eigenfunctions are denoted as Mnm(x, y)-
It may be noted that the eigenvalues Xnm are nonnegative, infinite in number, and 
tend to infinity as n and m tend to infinity. 

The inner product for the region G is given as in (7.3.35), and it is easily shown 
that {Mnm(x, y)} is an orthogonal set using Section 4.3. Also, the square of the 
norm of Mnm(x,y) is \\Mnm(x,y)\\2 = (Mnm(x,y),Mnm(x,y)) = li/j, n,m = 
1,2,... . For M00{x,y), ||Moo(:r,2/)||2 = lì, and for Mn0(x,y) and M0m(x,y), 
\\Mn0{x,y)\\2=li/2=\\M0rn(x,y)\\2,withn,m = l,2,.... 

Consequently, the orthonormal set of eigenfunctions is given as 

Mnm(x,y) 

2/llcos(nnx/l), 

2/11 cos ( nmy/l ), 

m = n = 0, 

m = 0, π = 1,2,.. . , 

n = 0, m = 1,2,.. . , 

4/IIcos(nnx/I)cos lтгту/I), n,m = 1,2, 

(7.3.72) 

We see that Aoo = 0 is an eigenvalue whose eigenfunction Moo (я, у) is constant. 
Having determined the eigenfunctions Mnm(x, у ), we expand the modified Green's 

function in a series of these functions as in (7.3.57). The eigenfunction Moo(x, y) 
must be excluded from the series. We have 
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- , 2 ̂  cos (nmy/tj cos {ππιη/ί) 2 ^ сов(7гоа:/0 со8(тгп£//) 
K[xty;t,V)-ü^ {ππι/ϊ)2 + ύ ^ {m/l)2 

. οο οο cos(nnx /1) οο8(πηξ/1) cos (nmy/l) cosi πτηη/ΐ) 
i - T V i ^J. V L. (7.3.73) 

The alternative procedure presented above for the construction of Green's func-
tions in terms of eigenfunctions for lower-dimensional problems can also be used 
to determine modified Green's functions. Its application to the problem of Example 
7.7 is considered in the exercises. We do not construct Green's functions for non-
selfadjoint problems because of difficulties that arise in connection with eigenf unction 
expansions for nonselfadjoint eigenvalue problems. 

Green's Functions for Hyperbolic PDEs 

The Green's function for the hyperbolic pmblem considered in Section 7.1 is expressed 
as K(x, t; ξ, τ) and satisfies the equation 

P(x)d2K{XQt2tT) +LK(x,t;£,T) = δ(χ-ξ)δ(ί-τ), x,£€G,t,T<T, 
(7.3.74) 

with G and T defined as before. In addition, K(x, ί;ξ,τ) satisfies the initial conditions 
K(x, T; £, r) = dK(x, T\ ξ, r)/dt = 0 and the boundary condition 

a(x)K(x,t;tr)+ß(x)dK{XftT 

дп 
= 0, t < Т. (7.3.75) 

If the region G is one-dimensional (i.e., x = zandO < x < I), the boundary condition 
(7.3.75) is replaced by a one-dimensional form as in (7.1.44). 

Proceeding as in Section 4.6, we expand К(x, t; £, r) in a series of eigenfunc-
tions, K(x,t-,ξ,τ) = ΣΤ=ι Nk{t)Mk{x), where Mk(x) are the eigenfunctions of 
the operator L, that satisfy a boundary condition of the form (7.3.75). To determine 
the Nk(t), (7.3.74) is multiplied by Mfc(x) and integrated over G. This yields the 
equations 

N'k'{t) + XkNk(t) = Mk(£)6(t - T), t,r<T,k=l,2,.... (7.3.76) 

The initial conditions for Nk(t) are Nk(T) = N'k(T) = 0. 
On the basis of Example 7.2 we conclude that Nk(t) is continuous at t = τ and 

that N'k(t) has a jump discontinuity [Nk(t)]t=T = Mk(£). The conditions at t = T 
imply that Nk(t) = 0, r < t < T. Additionally, the continuity of Nk(t) and the 
jump condition on N'k(t) at t = τ imply that Nk(r) = 0, N'k{r) = -Mk(i). These 
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serve as initial conditions for Nk(t) in the interval t < т. Since S(t — r ) 
t < г, Nk(t) satisfies the equation 

Ofor 

N'k\t) + XkNk(t) = 0, t<T. (7.3.77) 

The solution of the problem for JVfc(t) is easily found and can be given as 

Nk(t) = 
1 

sin Afc(r-t) Mk{&H(T-t), (7.3.78) 

where H(x) is the Heaviside function (7.2.18). The Green's function Κ(χ,ί;ξ,τ) 
thus has the form 

K{x,t;£,T) Σ 
Lfc=l 

1 
Afc(T-i) Mk($)Mk(x) H{r-t). (7.3.79) 

We observe that K(x, t; ξ, τ) is symmetric in x and ξ but not in t and т. As noted in 
the discussion following (7.1.25), the function S(x, t; ξ, τ) — K(x, —t; £, —τ) is the 
causal fundamental solution for the given problem and is given as 

S(x,l;i,T) = Σ 
Lfc=i 

1 
s in Af c(i-T) Mfc(i)Mfe(x) H(t-r). (7.3.80) 

It may be verified directly that (7.3.79) is a generalized solution of (7.3.74). It 
has been assumed that λο = 0 is not an eigenvalue. If Ao = 0 is an eigenvalue, an 
additional term (r - i)M0(£)Mo(x) must be added to the series in (7.3.79), as shown 
in the exercises. Some specific examples of eigenfunction expansions of Green's 
functions for hyperbolic problems are also considered in the exercises. 

We note that the Green's function (7.3.79) is a solution of the homogeneous version 
of (7.3.74) for t < т. At t = г the Green's function (7.3.79) vanishes, and its time 
derivative is — δ(χ — $)/ρ(ξ). Also, the boundary condition (7.3.75) is satisfied by 
the Green's function for t < т. These results follow easily from our discussion. 
Thus, for t < г the Green's functions determined by each of the methods given in 
Section 7.1 are identical. 

Green's Functions for Parabolic PDEs 

The Green's function K(x, t; £, r ) for the parabolic problem of Section 7.1 satisfies 
the equation 

-р(х)дК{Х
д^'т) + LK(x,t;tr) = δ(χ - €)Ä(i - r ) , χ,ξ e G, ί , τ < T, 

(7.3.81) 
and the initial and boundary conditions Κ(\,Τ\ξ,τ) = 0, α(χ)Κ(χ,ί;ξ,τ) + 
ß(x)dK{x, t; ξ, т)/дп\да = 0, t < Т, respectively, if G is a two- or three-dimen-
sional region. 
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As was done for the hyperbolic problem, we expand K(x, t; £, r) in a series of 
eigenfunctions K(x, ί; ξ, τ) = ΣΤ=ι Nk(t)Mk(x). Multiplying (7.3.81) by Mk(x) 
and integrating over the region G, we obtain 

-N'k{t) + XkNk(t) = Mk(£)6(t - T), t,T<T,k=l,2,.... (7.3.82) 

Since S(t — τ) = δ(τ — ί), we can write (7.3.82) as 

^[β-λ**ΛΓ*(ί)] = -Мк(&е-х*Ч(т -t) = -Мк{$,)е-^Ч(т - t), (7.3.83) 

where (7.2.14) was used. Integrating (7.3.83) and using the initial condition Nk(T) = 
0, we obtain 

Nk(t) = ex^-T^Mk{i)H{T - t). (7.3.84) 

[We recall that dH(x)/dx = δ(χ).] Thus the Green's function is 

Κ(χ,ί;ζ,τ) J2eXk{t~T)Mk(t)Mk(x) 
.k=l 

H(T -1). (7.3.85) 

As noted in the discussion following (7.1.33), S(x, t; ξ, τ) = K(x, —t; ξ, —τ) is the 
causal fundamental solution for the given problem, and has the form 

5(χ , ί ;€ ,τ ) £У"<т-*>М*(€)Мк(х) 
A = l 

H(t - r ) . (7.3.86) 

It is not difficult to show directly (see the exercises) that the series (7.3.85) is a 
generalized solution of (7.3.81). If λο = 0 is an eigenvalue, the series (7.3.85) must 
be modified as shown in the exercises. Some specific examples of eigenfunction 
expansions of Green's functions for parabolic problems are also considered in the 
exercises. 

We conclude with the observation that the Green's function (7.3.85) is a solution 
of the homogeneous version of (7.3.81) fori < т. It takes the value δ(χ — ζ)/ρ(ζ) 
at t = т. Also, the boundary condition for the problem is satisfied by the Green's 
function for t < т. This follows easily from our discussion. Consequently, we find 
that for t < г the Green's functions determined by each of the methods given in 
Section 7.1 for the parabolic case are identical. 

Exercises 7.3 

7.3.1. Obtain the Green's function (7.3.20) for the problem (7.3.19) and (7.3.14) 
directly—that is, not as a limit of the function (7.3.18). Use this Green's function to 
solve the problem u"{x) = f(x), 0 < x < I, u(0) = u(l) = 0. 

7.3.2. Solve the boundary value problem: u"(x) — c2u(x) — —f(x), 0 < x < 
I, u(0) = u(l) = 0 using the Green's function (7.3.18). 
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7.3.3. Determine the Green's function K(x; ξ) for the problem: д2К(х, £,)/dx2 — 
c2K{x;0 = -δ(χ -ξ),0<χ,ξ<1, Κ(0;ξ) = 0, дК(1;ξ)/δχ = 0. 

7.3.4. Consider the problem of Exercise 7.3.3 with the boundary condition at x = 0 
replaced by ΘΚ(0;ξ)/Θχ = 0 and determine the Green's function Κ(χ;ξ). Show 
that К(x; ξ) has no limit as с —> 0 and explain why this limit fails to exist. 

7.3.5. Obtain the Green's function K(x\ ξ) that satisfies the following problem: 
δ2Κ(χ,ξ)/Θχ2 + ο2Κ(χ;ξ) = -δ(χ-ξ), 0<χ,ξ<1, Κ(0;ξ)=0, Κ(1;ξ) = 0. 

7.3.6. Find the Green's function K(x; ξ) determined from the following problem: 
χθ2Κ(χ,ξ)/θχ2+θΚ(χ;ξ)/Θχ = -δ(χ-ξ), 0<χ,ξ< 1,withΚ(χ;ξ)bounded 
atx = 0andi;s:(l;O = 0. 

7.3.7. Solve for the Green's function Κ(χ;ξ): д/дх [(1 + х)2дК(х; ξ)/θχ] -
2Κ(χ;ξ) = -δ(χ -ξ),0<χ,ξ<1, Κ(0;ξ) = Κ(1;ξ) = 0. 

7.3.8. Obtain a one-dimensional version of the formula (7.1.8) for the solution of the 
following boundary value problem, — (p(x)u'(x))' + q(x)u(x) = p(x)F(x), 0 < 
x < I, aiu(0) - ßiu'(0) = a b Q 2 U ( 0 + ßiu'{l) = а2, where αι,α2,βι,β2 are 
nonnegative, ot\ + βι > 0, а2 + ßi > 0, р(х) > 0, q(x) > 0, р(х) > 0, and 
F(x) is a given function. Hint: The solution formula is given in terms of the Green's 
function Κ(χ;ξ) determined from (7.1.43)-(7.1.44). 

7.3.9. Use the results of Exercises 7.3.3 and 7.3.8 to solve the following problem: 
u"{x) - c2u(x) = ex, 0 < x < I, u(0) = 3, u'(l) = 10. 

7.3.10. Obtain an eigenfunction expansion for the Green's function K(x; ξ) deter-
mined from (7.3.19) and (7.3.14) and show that the result obtained is the Fourier sine 
series representation of the function K(x; ξ) given in (7.3.20). 

7.3.11. Show that the following Green's function problem has no solution: д/дх \р{х) 
θΚ(χ;ξ)/3χ] = -δ{χ-ξ), 0<χ,ξ<1, θΚ(0;ξ)/8χ = 3Κ(1;ξ)/θχ = O.Hint: 
Integrate from x = 0 to x = I. 

7.3.12. Obtain the modified Green's function Κ(χ;ξ) that satisfies the problem 
д/дх \р(х)дК(х-^)/дх\ = -δ(χ -ζ) + l/l, 0 < χ,ξ < l, дК(0^)/дх = 

(y*s/p(s)ds, 0<χ<ξ, 
дК{1- O/ftr = 0, in the form К (x; ξ) = | , ; , {g _ ι ) / φ ) ^ ξ < χ < ι 

[Note that K(x; ξ) is determined up to an arbitrary constant.] Show how K{x\ ξ) 
may be used to solve the boundary value problem — (p(x)u'(x))' = f(x), 0 < x < 
I, u'(0) = a, u'(l) = b, assuming that this problem has a solution. Integrate the 
equation for u(x) from 0 to I to determine a condition for the solution to exist. 

7.3.13. Construct a modified Green's function K{x; ξ) that satisfies the problem 
д/дх\р(х)дк(х;£)/дх\ = -δ(χ - ξ), 0 < χ,ξ < l, дК(0;£)/дх = A, 

дК{1; £)/дх = В. Choose the constants A and В such that the problem for K(x; ξ) 



4 6 0 GREEN'S FUNCTIONS 

has a solution. Then show how K(x; ξ) can be used to solve the boundary value 
problem for u(x) given in Exercise 7.3.12. 

7.3.14. Verify that (7.3.93) is the solution of the problem for (7.3.76). 

7.3.15. Verify that (7.3.84) is the solution of (7.3.82) with Nk(T) = 0. 

7.3.16. Show that if the Green's function К (x; £) determined from (7.3.1 )-(7.3.2) has 
the eigenfunction expansion (7.3.6), then the Green's function K(x; £) determined 
from the problem LK{x\ £) - λρ(χ)Κ(χ; ξ,) = δ(χ — £), with the boundary condition 
(7.3.2), is given as K(x; ξ) = £ ? \ M"(A)M*W. (Note that this Green's function is 

Afe — A 

not defined in the preceding form if λ = Afe for some k.) 

7.3.17. Use the result of Exercise 7.3.16 to determine the Green's function for the 
elliptic equation V2K(x,y-,ξ,η) + ΧΚ(χ^;ξ,η) = -δ(χ — ξ) S(y — η), in the 
rectangle 0 < x < I, 0 < у < I with the Dirichlet boundary condition (7.3.27), from 
the result (7.3.41). 

7.3.18. Construct the Green's function K(x, y-,ξ,η) for Laplace's equation in the 
rectangle 0<x<l, 0<y<l, where Κ(χ,^,ξ,η) satisfies (7.3.26) and the 
boundary conditions К(x, 0;ξ,η) = Κ(χ,1;ξ,η) = 0, 0 < x < l, Κ(0,^,ξ,η) — 
οΚ(1^;ξ,η)/δχ = 0, 0 < у < I. Use the method presented in the discussion 
following (7.3.7). 

7.3.19. Obtain the Green's function for Laplace's equation in a disk 0 < r < R with 
a homogeneous Dirichlet boundary condition on r = R. Express the Laplacian in 
polar coordinates and obtain the equation for the Green's function K(r, θ; ρ, φ) in the 
form 

д2К(г,в;р,ф) [ 1дК(г,в;р,ф) | 1 д2К(г,в;р,ф) = 6(r - ρ)δ(θ - φ) 
дг2 г дг г2 дв2 г 

where 0 < г, р < R and 0 < θ, φ < 2π, and the right side of the equation is 
the two-dimensional delta function in polar coordinates. The boundary condition is 
K(R, Θ; p, φ) = 0. Construct an eigenfunction expansion of K(r, θ; ρ, φ) based on 
the eigenvalue problem for the operator —д2/дв2 with periodic boundary conditions; 
that is, -M"(0 ) = ЛМ(0) ( - π < 0 < π) with Μ ( - π ) = Μ(π) and Μ ' ( - π ) = 
Μ'(π). Obtain an equation of the general form (7.3.25) in the radial variable and 
solve it subject to the conditions that the solution is bounded at r = 0 and vanishes 
at r = R. 

7.3.20. Solve the problem of Exercise 7.3.19 if the disk is replaced by an annular 
region Ri < r < R-2 and K(r, θ; ρ, φ) vanishes on the boundary. 

7.3.21. Obtain the Green's function in the disk 0 < r < R for the reduced wave equa-
tion with a Dirichlet boundary condition on r = R. Proceed as in Exercise 7.3.19 and 
obtain d2K(r, Θ; p, ф)/дг2 + (1/г)дК{г, Θ; p, ф)/дг+(1/г2)д2К(г, θ; ρ, φ)/8θ2 + 
k2K(r, Θ; p, φ) = -6{r - ρ)δ{θ - ф)/г, and the condition K(R, θ; ρ, φ) = 0. The 
only difference in the treatment of this problem is that the equation in the radial vari-
able now has the form of Bessel's equation. Two independent solutions of Bessel's 



GREEN'S FUNCTIONS FOR BOUNDED REGIONS 461 

equation of ordern are Jn(z) and Yn(z), the Bessel and Neumann functions, respec-
tively. 

7.3.22. Consider the modified Green's functions K(r, Θ; p, φ) and K(r, θ; ρ, φ) for 
the Neumann problem for Laplace's equation in the disk 0 < r < R. Construct a 
function f(r) that is smooth in the disk and satisfies the condition f'(R) = - l/2nR. 
Use f(r) to transform the problem for K(r, θ; ρ, φ) to a new problem with a homo-
geneous boundary condition. Discuss the relationship between this new problem and 
that for the function K(r, Θ; p, φ). 

7.3.23. Obtain the form of the eigenfunction expansion (7.3.79) for K(x, t; ξ, τ) if 
λο = 0 is an eigenvalue. 

7.3.24. Obtain the form of the expansion (7.3.85) for К(x, t; £, r) if λο = 0 is an 
eigenvalue. 

7.3.25. Determine the Green's function for the wave equation uu(x, y, t)—uxx(x, y, t) 
—uyy(x,y,t) — 0 in the rectangle 0 < x <l, 0 <y < I with the boundary condition 
u(x, y,t) — 0 on the rectangle. That is, find the solution of (7.3.74)-(7.3.75) with 
p(x) = p(\) = 1 and q(x) = 0 in (7.3.74) and a(x) = 1, /3(x) = 0 in the boundary 
condition (7.3.75). [Here x corresponds to (x, y).] 

7.3.26. Construct the Green's function for the one-dimensional wave equation uu (x, t ) 
— uxx(x,t) = 0 in the interval 0 < x < I with the following boundary condi-
tions: (a) u{0,t) =.u(l,t) = 0, t > 0; (b) u(0,t) = ux(l,t) = 0, t > 0; (c) 
Ux(0,i) = u I ( i , i ) = 0, i > 0 . 

7.3.27. Use the Green's functions determined in Exercise 7.3.26 to write down the 
solution of the wave equation uu{x, t) — uxx(x, t) = 0 in the interval 0 < x < I, 
with the initial data u(x, 0) = sinx, ut(x, 0) = 1, and the boundary conditions: 
(a) u(0,f) = e~\ u(l,t) = 0, t > 0; (b) u(0,f) = 0, ux(l,t) = 1, t > 0; (c) 
u(0, t) = sin(i), ux(l, t) = 0, t > 0. 

7.3.28. Verify that (7.3.85) is a generalized solution of (7.3.81 ). 

7.3.29. Construct the Green's function forthe one-dimensional heat equation ut(x, t) — 
Uxx(x,t) = 0 in the interval 0 < x < I with the following boundary condi-
tions: (a) u(0,t) = u(l,t) = 0, t > 0; (b) ω(Ο,ί) = ux(l,t) = 0, t > 0; (c) 
«x(0,i) = u I ( i , i ) = 0, t > 0 . 

7.3.30. Use the Green's functions obtained in Exercise 7.3.29 to solve the initial and 
boundary value problems for the heat equation ut {x, t) — uxx (x,t) = 0 in the interval 
0 < x < I with u(a;,0) = 1, and the boundary data: (a) u(0,t) = e - t , u(l,t) = 
0, t > 0; (b) w(0, i) = sin(i), ux(l, i) = 0, ί > 0; (с) u(0, t) = 1, ux(l, t) = 0, 
t> 0. 

7.3.31. Determine the Green's function for Laplace's equation in the cube 0 < x < 
1, 0 < у < I, 0 < z < I with Dirichlet conditions on the boundary. Use the 
eigenfunctions for the rectangle obtained in Example 7.6. 



4 6 2 GREEN'S FUNCTIONS 

7.4 GREEN'S FUNCTIONS FOR UNBOUNDED REGIONS 

The finite and infinite Fourier transforms introduced in Chapters 4 and 5 can be used 
to determine Green's functions for problems given over unbounded spatial regions. 
Rather than give a general discussion for equations of different types, we determine 
specific Green's functions for problems that involve the heat, wave, Klein-Gordon, 
modified telegrapher's, and reduced wave equations. (Each of these equations has 
constant coefficients.) The main tool will be the Fourier transforms of Sections 5.2 
and 5.4, and properties of generalized functions presented in Section 7.2 will be used. 
Some of the results obtained in Chapter 6 will be reproduced. 

Green's Functions for the Heat Equation in an Unbounded Region 

We begin by considering the heat equation in one dimension over the infinite interval 
—oo < x < oo. The medium is assumed to be homogeneous. In view of Section 7.1, 
the Green's function K(x, t; ξ, τ) is a solution of the equation 

ΘΚ(χ,ί;ξ,τ) 2θ
2Κ(χ,ί;ξ,τ) .. ^..,^ , ^ _ 

dt У 2 = -δ(χ-ξ)δ(ί-τ), -oo < χ < oo, t,r < Τ, 

(7.4.1) 

and satisfies the initial condition K(x, Γ; ξ, τ) = 0. 
We use the one-dimensional Fourier transform in x to solve the initial value 

problem for K(x, t; ξ, τ). Let the Fourier transform of K(x, t; ξ, τ) be denoted by 
k(X, ί;ξ, τ). Then 

1 f°° 
k(X,t;ξ,τ) = - = eiX*K(x,t;ζ,τ) dx. (7.4.2) 

ν 2 π V-oo 

To obtain an equation for k(X, i; ξ, r ) , we multiply (7.4.1) by (\/\/Ъг)егХх and 
integrate from —oo to +oo. Using (5.2.11) we obtain the equation 

Щ Х ^ Т ) - (cA)2fc(A,t;Ì,T) = ^JL j * S(t-r), t< T. (7.4.3) 

Also, &(λ, ί; ξ, τ) satisfies the condition k(X, T; ξ, r ) = 0. The equation (7.4.3) has 
the form of equation (7.3.82) with Nk(t) replaced by k(X, t; ξ, r ) , λ^ given as (cA)2, 
and Μΐς(ξ) given as (1/л/27г) ειΧξ. The initial condition at t = T is identical for 
both functions Nk (i) and k(X, t; ξ, τ). Therefore, the solution k(X, t\ ξ, τ) is obtained 
from (7.3.84) as 

k(X, t;ξ, τ) = -£= exp [(cX)2{t - τ) + ίΧζ]Η(τ - t). (7.4.4) 
ν 2 π 

The inversion formula for the Fourier transform then gives 

1 f00 

Κ(χ,ϊ,ξ,τ) = —Η(τ-ί) exp[-iX(x-t)-(cX)2{r-t)}dX. (7.4.5) 
2T J_00 
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This integral was evaluated in Example 5.2. Using the results ofthat example gives 
the Green's function as 

, ч H(r-t) 
Κ(χ,ί;ξ,τ) = 7 ni ч exp y/4*c*(T-t) L 4 c 2 ( r - i ) 

(x-02 
(7.4.6) 

We note that K(x, t; ξ, τ) is symmetric in x and ξ but not in t and r . In fact, there 
is a reversal in time in relation to the fundamental solution G(x — ξ,ί — r) defined 
in (5.2.39). This results because K(x, t; ξ, τ) satisfies the backward heat equation, 
whereas G(x — ξ, t — τ) satisfies the forward heat equation. 

By using the two-dimensional Fourier transform it is easy to show that the two-
dimensional Green's function is 

Κ(χ,ν,ί;ξ,η,τ) 
H(r - t) 

4nc2(r - t) exp 4c2 (r - 1 ) 
(7.4.7) 

Similarly, the three-dimensional Fourier transform yields 

Κ(χ,ν,ζ,ί;ξ,η,ζ,τ) = 
Η(τ - t) 

exp 
(χ-02 + (υ-η)2 + (ζ-ζ)2 

4 c 2 ( r - i ) [4πο 2 (τ - ί ) ] 3 / 2 

(7.4.8) 
as the three-dimensional Green's function. We will refer to (7.4.6)-(7.4.8) as the free 
space Green's functions for the heat equation. In each case we obtain the causal 
fundamental solution for the heat equation by replacing t by —t and r by —т. The 
results agree with (6.7.40). 

Given the initial value problem for u(x, t), 

ut(x,t) — c2uxx(x,t) = F(x,t), — oo < x < oo, t > 0, (7.4.9) 

with the initial condition u(x, 0) = f(x), the Green's function K(x, t; ξ, τ) may be 
used to obtain the solution u{x,t). With -oo < ξ < oo and r > 0, the solution 
formula is 

ιι{ξ,τ)= / K(x,t;£,r)F{x,t)dxdt+ Κ(χ,0;ξ,τ)/(χ) dx, 
JO J — oo J — oc 

(7.4.10) 

as follows from (7.1.35) in Section 7.1, with K(x, ί;ξ,τ) given in (7.4.6). Now 
Pi /»OO ΛΤ /*Ö 

/ / K{x,t;£,T)F(x,t)dxdt= I I 
JO J-oo JO J-c y/4nc2{T-t) 

dx dt, 

(7.4.11) 
since H(T — t) = 0 for t > т. Also, 

K(x, 0; ξ, r)f(x) dx = - = = / / (x)e-(*-i>2/4 c^ dx, (7.4.12) 
-oo V47TC2T J - o o 

since H(T) = 1 for r > 0. It is seen immediately that the solution (7.4.10) agrees 
with that given in Example 5.2. 
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Green's Functions for the Wave Equation in an Unbounded Region 

We construct the Green's function K(x, t; ξ, τ), where x = x,y,z and ξ = ξ, η, ζ, 
appropriate for the solution of the Cauchy problem for the wave equation in three di-
mensions. Using this function, the two-dimensional Green's function is then obtained. 
In addition, the Green's function for the one-dimensional problem is discussed. 

In three space dimensions, the Green's function K(x, t; £, r) satisfies the equation 

d2K(x,t;£,T) 
3t2 c2V2K(x, t; ζ, τ) = δ(χ - £)S(t - г), (7.4.13) 

with V2 = д2/дх2 + д2/ду2 + d2/dz2, δ{χ -ξ) = δ(χ - ξ)δ(ν - η)δ{ζ - 0 , 
-οο < χ, у, ζ, ξ, η, ζ < oo, and t, τ <Τ. The conditions at t = T are 

КЬТХ,т) = дКЬ£*'т)=0. (7.4.14) 

To solve, we use the three-dimensional Fourier transform 
-1 /ΌΟ /ΌΟ /«OO 

k(\, t; £, r) = 3 / / / eiiXlX+X2V+X3z)K(x, t; ξ, r ) dx dy dz, 
( v 2 7 r ) J—oo ·'—oo J—oo 

(7.4.15) 
where λ = λι,λ2,λ3. We obtain an equation for k(X,t-,ξ,τ), by multiplying 
1/(\/2π) exp[i(Xix + X2y + λ3ζ)] into (7.4.13) and integrating with respect to 
x, y, and z from — oo to oo. Using the properties of the Fourier transform (see 
Example 5.7) gives (with |λ| = \/X\ + X2 + X2) 

d2k(\t;tr) + c 2 l x { 2 k { X i t . ξ τ) = _ Ц _ 6χρ[ ί (λ ιξ + χ2η + Хз<)] 6{t _ r ) 

(7.4.16) 

and the conditions Α;(λ, T;£, τ) = dk(\,T;£,T)/dt = 0. This problem is equivalent 
to that for Nk(t) given in (7.3.76). Using (7.3.78) gives 

k(X, t; £, T) = — г ^ з sin[c|A|(T - t)} exp\i{X^ + Χ2η + А3С)]Н(т - ί). 
(v^F) c|A| 

(7.4.17) 
Inverting the Fourier transform yields 

H{T -1) f°° [°° [°° sin[c|A|(T-t)] «*«·«-*№ LLL c\X\ 

χβχρ{-ί[Χ1(χ-ξ) + Χ2(ν-η) + Χ3(ζ-ζ)}}άΧ1άΧ2άΧ3. (7.4.18) 

This integral, which is to be inteφreted in a generalized sense, can be evaluated 
by transforming to spherical coordinates. Let |λ|, Θ, and φ be spherical coordinates 
with \X\ > 0, 0 < Θ < 2тг, and 0 < ф < ir . The polar axis (i.e., ф = 0) 
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is chosen to coincide with the (half) line connecting the origin (i.e., λι = Аг = 
A3 = 0) to the fixed point (x — ξ, у — η, z — ζ). Since (x — ξ, у — η, z — ζ) 
is on the polar axis, we have Xi{x — ξ) + Хъ{у — η) + Хз{г — ζ) = |À|rcos(0), 
where г = sj(x — ξ)2 + (у — η)2 + (z - ζ)2. The volume element is given as 
dXi dX2 dX3 = |A|2 sin(0)d|A| άθ άφ, and K(x, t; ξ, τ) of (7.4.18) takes the form 

К = H^n ~.P Г Г /" rs in[c |À|(T-i)]e - i | A | r c o e (* ) |A|8m(0)ded0d|A| . c(27r) Ja Jo Jo 
(7.4.19) 

The two inner integrals are easily evaluated, and their contribution is found to be 
(4π/|λ|τ·) sin[|A|r]. Then, (7.4.19) can be evaluated as follows: 

K(x,i;ί, T) = Я
0

(Т
2~ Ь) Г sin[c|A|(r - ί)] sin[|A|r] d\X\ 

= ^ ϊ ^ 1
 1°°(COS{\\\[C(T - t) - r}} - cos{|A|[c(r - i) + r]}) d|A| 

_ H(T - t) Г(ехр{цХ\{с{т -t)-r]- ехр{г|А|[с(т - t) + r}}) d\\\ 
Jo 

[S[c(T-t)-r]-S[c(T-t)+r]}, (7.4.20) 
4ποΓ 

where (7.2.51) has been used. Now 6\с(т — t) + r] = 0 since for r — t > 0 and 
r > 0, c(r — t)+r ф 0. For the same reason, ò\c(j — t)—r\ vanishes for r — t < Oso 
that there is no need to include the Heaviside function in (7.4.20). Thus K(x, t; £, т) 
is given as 

K(x, y, z, t; ξ, η, С, г) = Д [ С ( Т
4 ~^ ~ Г ] , (7.4.21) 

8π20Γ 

Н(т -1) 

with r = ^(χ-ξ)2 + {ν-η)2 + {ζ-ζ)2. 
То determine the Green's function in two (space) dimensions, we integrate the 

Green's function (7.4.21) with respect to ζ from —oo to +oo. The resulting Green's 
function К = K(x, t; ξ, r ) , where we now have x = x, у and £ — ξ, η, is independent 
of z and ζ and satisfies the equation 

d2K(x,t;tr) 2 
dt2 ° 

d2K{x,t;^r) | d2K(x,t;tr) 
дх2 ду2 δ(χ-ξ)δ(ν-η)δ(ί-τ) 

(7.4.22) 
for —oo < x, y, ξ, η < oo, and t, т < Т. In effect, we are considering a line 
source in three-dimensional space, and because of the homogeneity of the medium 
(there are constant coefficients in the equation) this corresponds to a point source in 
two dimensions. If we formally integrate (7.4.13) with respect to ζ and assume that 
К is independent of z, then (7.4.22) results. 

On integrating over ζ, the two-dimensional Green's function becomes 
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Introducing the change of variables s = z — ζ gives 

ΚΜ(,τ) -jL fSl^blU, (T.4.24) 
2тгс J0 r 

where r = y/{x — ξ)2 + (у — η)2 + s2 and the integral from 0 to oo results since 
the integrand is an even function of s. A further change of variables r2 = p2 + s2, 
with p2 — (x - ξ)2 + (y — η)2, yields ds/r = dr/s = dr/y/r2 - p2, and (7.4.24) 
becomes 

S[C(T -t)-r] 

y/r2 - p2 Ä-(M;€,r) = ^ - / u ^ ' 4 ' i d r . (7.4.25) 

If C(T — t) < p, the integral vanishes, since the argument of the delta function is 
negative in that case. If с(т — t) > p, the substitution property of the delta function 
yields K(\, t; ξ, τ) = (1/2пс)(1/^с2(т -t)2 - p2). With the use of the Heaviside 
function, both results can be combined into a single expression, 

* ( * , » , ί ;ξ ,4 ,τ) = J _ H[c{r-t)-P\ 
\ ,y, , ч , / , j 2nCy/c

2(T-t)2-p2 

where p2 = (x — ξ)2 + (у — η)2. 
In the one-dimensional problem the Green's function К(х, t; ξ, τ) satisfies the 

equation 

^ K { X ^ T ) - c^K{X
d^

T) = δ(χ - OS(t - r), (7.4.27) 

with —oo < x, ξ,< oo, and t, τ < T. Again the conditions at t = T are 
Κ(χ,Τ;ξ,τ) = ΘΚ(χ,Τ;ξ,τ)/Οί = 0. It is a simple matter (see the exercises) 
to adapt the general solution of the Cauchy problem to show that K(x, t-,ξ,τ) is 
given as 

Г l/2c, \x - ξ\ < с(т - t), 

*(*.*^>={0 > \x-t\>c(r-t). <7·4·28) 
K(x, t\ ξ, τ) can be expressed in terms of Heaviside functions as 

K{x, t;ξ, τ) = ^-H\x -ct-{£- οτ)}Η[ξ + ст - {x + et)}, (7.4.29) 

and it is straightforward to show that this is a solution of the problem. 
A common feature of the Green's functions (7.4.21), (7.4.26), and (7.4.29) is that 

they are symmetric in x and £, where x is the observation point and ξ is the source 
point in two or three dimensions and in x and ξ in one dimension. We shall refer to 
them as the free space Green's functions for the wave equation. If we replace t by — t 
and г by —r, we obtain the causal fundamental solution for each of the problems. 
Let the fundamental solutions be denoted by S. In the three-dimensional case we 
have 

S=6[CitLTcr~r]' r ^ ^ ( x - 0 2 + (y-v)2 + (z~()2. (7.4.30) 
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In two dimensions 

*=ά$Β^· >-*-»+*-*. (7.4.31) 

whereas in one dimension 

S = 1 я [ с ( * -т) + (х- 0 ] Я [ С ( * - T) - (s - 0 ] . (7-4.32) 

Each of these functions satisfies the same equation as the Green's function K, except 
that for each of them we have 5|t=o = dS/dt\t=o = 0. Even though they do not all 
have the same form as the causal fundamental solutions given in (6.7.37)-(6.7.39), 
they can be shown to be identical on using the properties of the Dirac delta and 
Heaviside functions. 

The fundamental solutions yield a vivid distinction between the nature of wave 
propagation in two and three dimensions as characterized by solutions of the wave 
equation. (These differences have already been discussed in Example 5.7.) Given 
the source point (ξ, η, ζ) and the time r, the forward characteristic cone for the 
wave equation is c(t — r) = ^{x — ζ)2 + (у — η)2 + (z — ζ)2, t > т. For the two-
dimensional problem with the source point (ξ, η) and the time τ we have c(t — τ) = 
yj(x — ξ)2 + {у — η)2, t > т. Noting the behavior of the delta function, (7.4.30) 
indicates that the disturbance due to a point source at (ξ, η, ζ) acting at the time r, 
is concentrated on a sphere of radius c(t — r) with center at (ξ, η, ζ) at the later time 
t and vanishes elsewhere, in the three-dimensional case. For the two-dimensional 
problem, the disturbance resulting from a point source at (ξ, η) acting the time r, 
is distributed throughout a circle of radius c(t — r ) with center at (ξ, η) at the later 
time t. Consequently, both disturbances spread out with the speed с in all directions. 
However, in the three-dimensional case there is a sharp wave front that leaves no wake 
and the disturbance is only felt instantaneously at any point. In the two-dimensional 
problem the solution does not return to zero as soon as the wave front passes, but 
there is a wake that decays like l/c(i — r) as t increases. The sharp signals that 
occur only in three-dimensional wave propagation and not in the two-dimensional 
case characterize what is known as Huygens' principle. 

Green's Functions for the Klein-Gordon Equation and 
the Modified Telegrapher's Equation 

In connection with the Cauchy problem for the one-dimensional Klein-Gordon equa-
tion (5.7.6), we are led to consider the Green's function К(х, t; ξ, τ) that satisfies the 
equation 

d2K(x,t;£,T) 2d
2K(x,t;tr) , 2 „ , 

dt2 dx2 + <τΚ(χ,ϊ,ξ,τ)=δ{χ-ξ)δ(ί-τ), (7.4.33) 

with —oo < x, ξ,< oo, and t, τ <T. The conditions at t = T are K(x, T; ξ, τ) = 
0Κ(χ,Τ;ξ,τ)/θί = 0. 
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On replacing t by —t and τ by —r in the causal fundamental solution (6.7.45) and 
adjusting the parameters, we conclude that the Green's function K(x, t; ξ, τ) should 
be given as 

Κ(χ,1;ξ,τ) 
(l/27)Jo [ ( C / 7 ) \ / 7 2 ( * - T ) 2 - ( Z - £ ) 2 J ,\*-ξ\< 7(* - T), 

0, \x - ξ\ > 7 ( ί - τ), 
(7.4.34) 

where J0 is the Bessel function of order zero. Noting (7.4.29), we can express 
K(x, t; ξ, τ) as 

2η Ί 
Η[χ-ξ-Ί(ί-τ)}Η[ξ-χ + Ί(τ-ί)}. 

(7.4.35) 
Since Jo(0) = 1 we see that (7.4.35) reduces to the Green's function for the one-
dimensional wave equation if we set с = 0. It is straightforward to verify that (7.4.35) 
is a solution of the Green's function problem. 

It may be noted that with c = ic (where i = \/^T) in the Klein-Gordon equation 
(7.4.33) we obtain the modified telegrapher's equation 

δ2Κ(χ,1;ξ,τ) 2Θ
2Κ(χ,ί;ξ,τ) . 2 , 

dt2 дх2 -ο2Κ(χ,ί;ξ,τ) = δ(χ-ξ)δ(ί-τ). (7.4.36) 

This equation results when the first time derivative term is eliminated from the tele-
grapher's equation (see the exercises). Since Jo{ix) = Io(x), the modified Bessel 
function of zero order, we obtain for К = К(x, t; ξ, τ) in place of (7.4.35) [see also 
(6.7.46)], 

27 - V V ( * - T ) 2 - ( * - 0 2 

7 
ff[x-£-7(t-T)]firß-* + 7 (T- t ) ] · 

(7.4.37) 
Again, (7.4.35) and (7.4.37) are referred to as free space Green's functions. 

Given the initial value problem for the Klein-Gordon equation, 

utt{x,t)—72uxx{x,t)-\-c2u(x,t)=F(x,t), — oo < x < co, t > 0, (7.4.38) 

with the initial conditions 

u(x,0) = f(x), ut(x,0) = g(x), — oo < x < co, 

the solution at an arbitrary point (ξ, τ) is given in terms of (7.4.35) as 

dt 

(7.4.39) 

η(ξ,τ)= / K(x,t;£,r)F(x,t)dx> 
J0 J-oo 

+ [^К{хЛ^)9{х)-дК^Т'Ях) 
dt 

dx, (7.4.40) 

where т <T and (7.1.34) has been modified appropriately. 
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The solution (7.4.40) can be expressed in a simple form in terms of the data 
for the problem, as we now demonstrate. In the double integral in (7.4.40) we 
have K(x, t; ξ,τ) = 0 for t > τ, so that the upper limit in the t integral extends 
only up to r . Also, from (7.4.38) we conclude that K(x, i;£, r) vanishes unless 
\x - ζ\ < Ί(τ — t), and this is equivalent to ξ — η(τ — t) < x < ξ + η(τ - t). 

F(x,t) Therefore, we obtain / 0 J^ K(x, t\ ξ, T)F(X, t) dxdt=~ /QT Jé 
ξ + 7 ( τ - ί ) 

)ζ-Ί(τ-1) 

Jo 

Jo 

^V^it-r)2 -{χ-ξ)2 dx dt. Further, we have Κ(χ,0;ξ,τ) = j _ 
2 7 

- (x - ξ)2\ H[x - (ξ - Ίτ)]Η[ξ + Ίτ - x], so that / ^ K(x, 0; ξ, r ) 

g(x)dx = тЬ L_ Ίζ Jo T:\JI2T2 — {x — ξ)2 g(x) dx, as the Heaviside function 

/«4 о [ с \ Л 2 ( » - ' - ) 2 - ( * - 0 2 / - Л „ . ,A . l r r r , . ^о\су/-у*(1-т)*-(х-&/-у\ 

product vanishes outside the interval (ξ — ητ, ξ + ητ). Finally, дК(х, 0; ξ, r)/dt = 
•л' 

L ' · · : : " · J HT^._^t_/vH-M f f i t ^ T _ j 

! ■ /o [c v /7 a ( t - r ) 2 - (x -g ) a /7 ] „ , 
"2 ^ 7 2 ( ί _ τ ) 2 _ ( χ _ ξ ) 2 ί' 

ητ ~ x]. In view of the substitution property of the delta function, the last two terms 
in the above reduce to — \δ[χ — (ξ — Ίτ)] ~ \δ[χ — (ξ + ут)] since Jo(0) = 1 
a n d F ( 2 7 r ) = 1. Therefore, Ι^ιχοΚ(χ,0;ξ,τ)/θί/(χ) dx = -{er/2) J ^ 

ν / 7 2 ( ί _ τ ) 2 _ ( χ _ ξ ) 

δ[χ-{ξ-Ύτ)]Η[ξ + -γτ-χ] '[χ-(ξ-Ύτ)]δ[ξ + 

Jó[V72t2-(x-Q2/7l ! . . ! . , 
γ / 7 2 τ · 2 - ( χ - ξ ) 

Combining the foregoing results and noting that —J'Q(x) = J\(x), the Bessel 
function of order 1, gives the solution u(x, t) of the initial value problem (7.4.38)-
(7.4.39) as 

u{x,t)=f(X-lt)+J{X + lt) + 
j /-x+7t 

^7 Jx—yt 
Jo ■.y/^-iX-W 9(0 άξ 

et Г 

"2 Ух 

х+7* J l C v /7 2 * 2 - (x - 0 2 / 7 

x-7t ^ 7 2 * 2 - О г - 0 2 /(£) # 

+ - / " / 
27 Уо Л 

t . χ + 7 ( ί - τ ) 

- 7 ( t -
F&T)JO -νΊ2(ί-τ)2-(χ-ξ)2 

L7 
d£ dr. (7.4.41) 

This solution formula reduces to that for the Cauchy problem for the inhomogeneous 
wave equation if we set с = 0. 

If we set с = icin (7.4.41) and note that Jo (iz) = IQ(Z) and J\(iz) = ih(z), we 
obtain as the solution of the modified telegrapher's equation 

utt(x,t)--y2uxx(x,t)-c2u(x,t) = F(x,t), -oo < x < oo, t > 0, (7.4.42) 

with the initial conditions (7.4.39), in the form 
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u(x,t) = 
f{x-lt)+f{x + yt) 

+ 
i rx+lt 

27 Jx-yt 
{x-tf 9(ξ) άξ 

+ 
et Г 

2" Ух 

--+it / х Cy/ηΗ* - (z - 0 2 / 7 

-7t ^ 7 2 < 2 - ( х - 0 2 /(О <« 

+ 
1 /-t px+i(t-T) 

J7 JO Jx--r(t-T) r) 
-ч/т1 

7 
( f - r ) 2 - ( x - o 2 df dr. (7.4.43) 

Both solutions (7.4.41) and (7.4.43) exhibit the domains of dependence and influ-
ence for the Klein-Gordon and modified telegrapher's equations. (The telegrapher's 
equation is discussed in the exercises.) It has already been indicated that these do-
mains, which characterize the maximum speed at which disturbances or signals travel, 
are determined by the principal parts of the given equations (i.e., the second deriva-
tive terms) and do not depend on the lower-order terms. Our results show that these 
equations and the wave equation have identical domains of dependence and influence. 

Green's Functions for Parabolic and Hyperbolic PDEs 

Before considering Green's functions for elliptic equations, we examine the relation-
ship between the Green's functions for hyperbolic and parabolic equations defined 
in terms of the inhomogeneous equations (7.1.23) and (7.1.32) and those defined in 
terms of the homogeneous equations (7.1.36) and (7.1.37). The relationship between 
these two determinations of Green's functions for the case of bounded regions was 
discussed at the end of Section 7.3. 

Let the Green's functions К (x, t; ξ, τ) be defined in terms of the (backward) initial 
value problems (7.1.36)-(7.1.40) for the hyperbolic and parabolic cases with the initial 
data given at t = τ and the problem defined over the entire space. Then if we set 
K(x, ί ;£,τ) = Κ(χ,ί;ξ,τ)Η(τ - t) with r < T, it is easy to verify from the 
properties of Κ(χ,ί;ξ,τ) and by direct differentiation that K(x,t;£,r) is indeed 
the solution of the Green's function problem given in terms of the inhomogeneous 
equations (7.1.23) and (7.1.32) for the hyperbolic and parabolic cases, respectively. 
Thus for t < T, both of these formulations lead to the same Green's functions. 

In a similar fashion, it can be shown that the causal fundamental solutions for 
hyperbolic and parabolic equations can be characterized in terms of initial value 
problems. If the instantaneous source point is at (x, t) = (£, r ) , the initial conditions 
for the homogeneous form of the hyperbolic equation (7.1.11) are u(x, t) = 0 and 
ut(x,t) = δ(χ - £)//э(х) at t = т. For the homogeneous form of the parabolic 
equation (7.1.26) with the same source point, the initial condition becomes u(x, t) = 
δ(χ — ζ)/ρ(χ) at t = т. Then the causal fundamental solutions for these problems, 
which we denote by 5(x, ί; ξ, r ) , can be expressed in terms of solutions u(x, t) of the 
aforementioned initial value problems in the form S(x, t; ξ, τ) = u(x, t)H(t — r ) . 

Consequently, instantaneous point source problems and the related causal funda-
mental solutions need not necessarily be characterized strictly in terms of inhomo-
geneous differential equations, as has been done in Section 6.7 or previously in this 
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section, for instance. We can determine the solutions of these problems in terms of 
homogeneous equations with appropriate Dirac delta function initial conditions. This 
approach is used in Section 10.2 when we analyze the propagation of singularities 
for hyperbolic equations. 

Green's Functions for the Reduced Wave Equation: Ocean Acoustics 

Since the free space Green's functions for (self-adjoint) elliptic equations with con-
stant coefficients have already been discussed fully in Example 6.13, we restrict our 
analysis of Green's functions for elliptic problems in unbounded regions to a single 
boundary value problem involving the reduced wave equation, which is of interest in 
the theory of ocean acoustics. 

The ocean, which we assume to be homogeneous, is taken to be of infinite extent 
in the x and у directions and is assumed to have a constant depth h > 0. The plane 
z = 0 represents the surface of the ocean, and the plane z = — h is the (rigid) bottom. 
Thus, the region G for this problem is given as —со < х, у < со, and —h < z < 0. 
A point source is located at (x, y, z) = (0, 0, ζ) with — h < ζ < 0. Then, the 
Green's function K(x, y, z; ζ) satisfies the equation 

V2K(x, y, z; C) + k2K(x, y, ζ;ζ) = - δ(χ)δ(ν)δ(ζ - С), (7.4.44) 

and the boundary conditions 

ЛГ(*,у,0;<) = 0, * ( g ^ - f r f l = ( K (7.4.45) 

The real part of K(x, y, z; ζ)ε~ίωί, where ω is the frequency and к = ω/c rep-
resents the time-harmonic acoustic pressure, satisfies a wave equation with constant 
wave speed с in the absence of any source terms (see Exercise 2.4.7). Thus the 
equation for K(x, y, z; ζ) is known as the reduced wave equation or the Helmholtz 
equation. The conditions (7.4.45) are appropriate for the sound pressure at the surface 
and at the (rigid) bottom, respectively. The homogeneity of the ocean implies that к 
in (7.4.44) is a constant. This Green's function problem for K(x, y, z; ζ) does not 
have a unique solution unless a radiation condition is imposed. This is done in our 
discussion. 

To solve for the Green's function K(x, y, z; £) we use the method of eigenfunction 
expansions. We consider an eigenvalue problem for the function M(z) associated 
with the operator L = —d2/dz2 - k2 and given over the interval with — h < z < 0. 
Thus, the eigenvalue problem is 

-M"(z) - k2M{z) = XM(z), -h<z<0, M (0) = 0, Αί'(-Λ) = 0, (7.4.46) 

where λ is the eigenvalue parameter. On comparing (7.4.46) with the Sturm-Liouville 
problem of Section 4.3, we find that apart from the fact that the coefficient — k2 of 
M(z) is negative, every condition is the same. All properties of the eigenvalues and 
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eigenfunctions given in that section are valid for (7.4.46) except that there are a finite 
number negative eigenvalues, as will be shown. 

The general solution of the ODE in (7.4.46) is M(z) = c\ sin (zs/k2 + X) + 
C2C0S (z\/k2 + λ). The condition M(0) = 0 implies that c-i = 0. The condition 
M'(—h) = 0 implies that cos (hy/k2 + A) = 0, so that λ is specified in terms of the 
zeros of the cosine function. The eigenvalues and eigenfunctions are 

лп -+ϊ)'(ί)' к2, Mn(z) = sin »+1)(д (7.4.47) 

for n = 0,1,2, We observe that some of the eigenvalues An may be negative, 
depending on the magnitude of k. 

The inner product for this problem is (φ{ζ), φ{ζ)) = §_Ηφ{ζ)'ψ{ζ) dz and 
(Mn(z), Mm(z)) = 0 for m φ η, as can easily be shown. Also, 

(Mn(z),Mn(z)) = J{±-±cos[(2n+l)(j) dz = \ . (7.4.48) 

Thus the normalized set of eigenfunctions are 

Ϊ2 
Mn(z) sin -im) n = 0,1,2, (7.4.49) 

In terms of the Mn(z), we construct the eigenfunction expansion of the Green's 
function K(x, y, z; ζ) = 2Z^L0 Nn(x, y)Mn(z). The Nn(x, y) are determined by 
multiplying (7.4.44) by Mn{z) and integrating from —h to 0. Using the procedures 
of Section 4.6, we obtain, for n = 0 ,1 ,2 , . . . , 

W2Nn{x,y) + k2- "+№ Nn(x,y) =-Μη(ζ)δ(χ)δ(υ). (7.4.50) 

To obtain a unique solution of (7.4.50), we must specify the behavior of Nn(x, y) 
as x,y —* 00. Disregarding the multiplicative constant Μη(ζ), we are essentially 
interested in constructing a free space Green's function for (7.4.50). If k2 > [n + 
(1/2)]2(π//ι)2, (7.4.50) is an inhomogeneous Helmholtz equation, while if k2 < 
[n + (1/2)]2(π//ι)2, it is a modified Helmholtz equation. 

With r = y/x2 + y2, a function ф(х, у) is said to satisfy the Sommerfeld radiation 
condition at infinity if 

lim y/r 
дф{х, у) 

дг 
- ίωφ{χ, у) 0, 

and ф(х, у) satisfies the equation 

Фхх(х, У) + Фуу(х, У) + ω2φ(χ, у) = 0 

(7.4.51) 

(7.4.52) 
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as r —> oo. With ω2 = —λ„ and λ„ defined in (7.4.47), we write (7.4.50) as 

ν2Νη(χ,ν)+ω2
ηΝη(χ,υ) = -Μη(ζ)δ(χ)δ(ν), η = 0 ,1 ,2 , . . . . (7.4.53) 

If ω2 > 0, we use Example 6.13 to conclude, in view of (6.7.35), that 

Nn{x,y)=%-Mn{Q)H^\wnr), n = 0 , l , . . . , (7.4.54) 

where Щ (z) is the zero-order Hankel function of the first kind. With the use 
of (6.7.38) it is easy to see that (7.4.54) satisfies the radiation condition (7.4.51) if 
ω2 > 0. Ιίω2 < 0 (i.e., ωη is imaginary), the appropriate solution of (7.4.53) must be 
given in terms of the modified Bessel function KQ(Z) as in (6.7.32). However, since 
Щ (iz) = (2/ni)K0(z) for z > 0 we conclude that (7.4.54) is a suitable solution 
for all values of n. Since Nn(x, y) decays exponentially at infinity when a;2 < 0, in 
view of (6.7.34), the radiation condition is certainly satisfied. 

Collecting our results, we obtain the Green's function К = K(x, y, z; ζ) in the 
form 

(7.4.55) 

where ω2 = к2 — [n + (1/2)]2(π//ι)2. As n increases, the argument of the Hankel 
function eventually becomes imaginary, so that the terms in the series decay expo-
nentially for large n. 

Exercises 7.4 

7.4.1. Use the two-dimensional Fourier transform to obtain the Green's function 
(7.4.7). 

7.4.2. Use the three-dimensional Fourier transform to obtain the Green's function 
(7.4.8). 

7.4.3. Apply the Fourier sine transform to obtain the Green's function for the one-
dimensional heat equation ut(x,t) — c2uxx(x,t) = 0 in the semi-infinite interval 
0 < x < oo with u(x, t) prescribed at x = 0 and t = 0. 

7.4.4. Apply the Fourier cosine transform to obtain the Green's function for ut{x, t) — 
c2uxx(x, t ) = 0 i n 0 < a : < o o , t > 0 with u(x, 0) and ux(0, t) specified. 

7.4.5. Use the general solution of the Cauchy problem for the wave equation in one 
dimension to obtain the Green's function К (ж, ί; ξ, τ) as given in (7.4.28). 

7.4.6. Apply the formula (7.1.34) to obtain the solution of the Cauchy problem for 
the wave equation uu (x, t) = c2 V2u(x, t) in three dimensions if the initial data are 
u(x, 0) = 0 and ut(x, 0) = /(x) . The solution has the form given in (5.4.12). 

K=ihyjm Hs i r π 
"+12Ì-k< sin 

1 \ 7Г 
П + 2 Г 
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7.4.7. Obtain the result (5.4.23) for the Cauchy problem for the wave equation 
utt(x,t) = c2V2tt(x,t) in two dimensions if u(x, 0) = 0 and itt(x, 0) = /(x) 
using the Green's function (7.4.26) and the formula (7.1.34). 

7.4.8. Use the Green's functions for the wave equation in one, two, and three dimen-
sions given in (7.4.29), (7.4.26), and (7.4.21 ) to determine domains of dependence for 
the solutions of the Cauchy problem for the inhomogeneous wave equation in each 
of the three cases. 

7.4.9. The Green's function for the Klein-Gordon equation in three dimensions, 
utt ~ 72V2u + c2u = 0, is Κ(χ,ι/,ζ,ί;ξ,η,ζ,τ) = S[J(T - t) -τ)/Α-κητ — 

(ο/4π7
2) Jx [(ο/7)ν/72(τ - t)2 - г 2 1 / ^ 7

2 ( т - t)2 - τ2Η[Ί{τ - t) - r], where 
г2 = {х — ξ)2 + (у — η)2 + (z — ζ)2, as can be shown by using the Fourier trans-
form. Let r2 = 72(r — t)2 — r2 in the Klein-Gordon equation and obtain the 
equation [see (6.7.42)] ü"(r) + (3/f )u'(r) + (c/7)2 ù(r) = 0. Show that this equa-
tion has the nonsingular solution üi(r) = (1/r) J\ [cr/7], where J\ is the Bessel 
function of order one. Argue that the preceding expression for the Green's function 
Κ(χ,υ,ζ,ί;ξ,η,ζ,τ) is reasonable in view of the fact that it reduces to the Green's 
function for the wave equation when с = 0 and has the same singularity on the 
characteristic cone. 

7.4.10. Use the discussion of Exercise 7.4.9 to obtain the Green's function K(x,y,z,t; 
ξ, η, ζ, τ) appropriate for the hyperbolic equation uu {x, У, z, t) — 72V2u(x, y, z, t) — 
c2u(x, y, z, t) = 0 in three dimensions. Hint: It can be obtained by replacing с by ic 
in the Green's function for Exercise 7.4.9. 

7.4.11. Obtain the Green's function К (x, y, t; ξ, η, τ) for the two-dimensional Klein-
Gordon equation utt(x,y,z,t) — ~f2V2u(x,y,z,t) + c2u(x,y,z,t) = 0 as 
Κ(χ,υ,ί;ξ,η,τ) = (1/27Г7) cos [ (c / 7 )s / l 2{r - t)2 - p2\ / \ / 7 2 ( τ - t)2 - p2 

Η[η{τ — t) — p], where p2 = (x — ξ)2 + (у — η)2, by following the procedure given 
in Exercise 7.4.9. 

7.4.12. Obtain the Green's function К (x, y, t; ξ, η, τ) for the two-dimensional hyper-
bolic equation utt{x, y, z, t) — η2V2u(x, y, z, t) — c2u(x, y, z, t) — 0 as K(x, y, t; 

ξ,η,τ) = (1/27Г7) cosh [(φ)^/Ί
2(τ - t)2 - / > 2 ] / V V ( T - t)2 - ρ2Η\Ί{τ -

t) — p], where p2 = (x — ξ)2 + (у — η)2, by following the method of Exercise 7.4.9. 

7.4.13. Obtain the (free space) Green's function for the telegrapher's equation ( 1.2.29). 
Hint: Eliminate the first derivative term in the equation for the Green's function. 

7.4.14. Obtain the Green's function for the Cauchy problem for Schrödinger's equa-
tion ih ди{х, t)/dt + h2/2m d2u(x, t)/dx2 = 0, where Ti is Planck's constant, m 
is the mass, and г = \ /^T. Hint: Use the Fourier transform. 

7.4.15. Show that the solution of θ2Κ{χ;ξ)/θχ2-k2K(x;£) = -δ{χ-ξ), -oo < 
x, ξ < oo, K(x; ξ) —> 0 as \x\ —> 00, is given as K(x\ ξ) = (l/2fc) exp(-fc|x - ξ\) 
(see Examples 5.1 and 6.13). 
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7.4.16. Obtain the solution K(x; ξ) of the problem d2K{x; ζ)/3χ2 + k2K{x; ξ) = 
—δ(χ - ξ), —oo < χ,ξ < oo, l im^^oo [ΘΚ(χ;ξ)/θ\χ\ — гкК(х·^)} = 0 [i.e., 
К(х\ ξ) satisfies the radiation condition at infinity] in the form K(x; ξ) = (i/2k) exp 
(ik\x — ξ\) (see Example 6.13). 

7.4.17. Solve the following problems for K{x, ξ): д2К(х; ξ)/Θχ2 - k2K(x; ξ) = 
-δ(χ-ξ),0<χ,ξ<οο. (a)Κ(0;ξ) = 0, lim*..«, Κ(χ;ξ) = 0; (Ь)дК(0;ξ)/δχ 
= 0, l im^oo Κ(χ; ξ) = 0. 

7.4.18. Obtain the Green's function for the following problem: d2K(x; ξ)/δχ2 + 
k2K{x\£) = —δ(χ - ξ), О < χ,ξ < oo, with the boundary conditions Κ(0;ξ) = 
0, l im^oo [ΘΚ(χ;ξ)/θχ - ikK(x^)\ = 0. 

7.4.19. Determine the Green's function K(x,y; ξ, η) that satisfies the following prob-
lem: 

θ2Κ(χ,υ;ξ,η) , &Κ{χ,ν;ξ,η) (0<Χ,ξ<1, 
дх~2 + οψ = -*(*-0*(»-ч), | _ 0 0 < 2 / ) 7 ? < 0 0 , 

К(х, у; ξ, η) = 0 at x = 0 and x = I, К(х, у; ξ, η) is bounded as \y\ —> oo. 

Hint: Use the eigenfunctions for the interval 0 < x < /with zero boundary conditions. 

7.4.20. Show that the following problem has no solution. 

&*Κ(χ,ν,ξ,η) θ2Κ(χ,υ;ξ,η) (θ<χ,ξ<1, 
Ox2 + ду2 - [ ζ , [ ν Vh \-oo<y,V<oo, 

дК(х у; ξ, η) = Q a t ^ = 0 anda; = / , Κ{χ,ν,ξ,η) -* 0 as \y\ -» oo. 
ox 

Hint: Use the cosine eigenfunctions for 0 < x < I. 

7.4.21. Obtain the Green's function K(x, y; ξ, η): 

ΨΚ{χ, у- ξ, η) - с2К(х, у; ξ, η) = -δ(χ - ξ)δ(ν -η), { " ^ * < ^ Д 00j 

Κ(χ, у; ξ, η) = 0 at χ — 0 and χ = I, Κ(χ, у; ξ, η) —► 0 as \y\ —» oo. 

Hint: Use the eigenfunctions for the interval 0 < x < I. 

7.4.22. Set up a two-dimensional version of the ocean acoustics problem (i.e., drop 
the у dependence in the problem) and solve for the Green's function K(x, z; ζ). 

7.4.23. Solve for the Green's function K(x, y, z\ ξ, η, ζ): V2K(x, у, z; ξ, η, ζ) — 
ο2Κ{χ^,ζ;ξ,η,ζ) = -δ{χ-ξ)δ^-η)δ(ζ-ζ),0 < χ,ξ < I, -oo <y^,z,C< 
oo, with Κ(χ^,ζ;ξ,η,ζ) = Oat a; = 0 and x = 1,Κ(χ^,ζ;ξ,η,ζ)^ 0 as \y\ —> 
oo, \z\ —» oo. Hint: Use the free space Green's function found in Example 6.13. 
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7.5 THE METHOD OF IMAGES 

The Green's function К for any of the PDEs of Section 7.1 can be expressed in the 
form 

K = KF + KG, (7.5.1) 

where Kp is the free space Green's function. We recall that the free space Green's 
function satisfies the same differential equation as the Green's function K. In addition, 
KF satisfies (backward) causality conditions in the hyperbolic and parabolic cases, 
and appropriate conditions at infinity in the elliptic case. Consequently, KG satisfies 
a homogeneous differential equation with homogeneous end conditions at t — T if 
these are relevant. The boundary conditions for KG are no longer homogeneous, 
however. For example, if К is required to vanish on dG, then KG = —KF on dG. 
Although it may be possible to use eigenfunction expansions or transform methods to 
determine KG, we do not use these approaches here since К itself can just as easily 
be determined in the same fashion, as we have seen in Sections 7.3 and 7.4. However, 
the results for KQ obtained by expansion or transform methods may be better suited 
for numerical evaluation than those found for K, since KG is not singular within G. 

In this section we construct Green's functions only for the equations of Section 7.1 
that have constant coefficients with boundaries dG of a special form. We decompose 
the Green's function К as in (7.5.1) and use the method of images to determine KQ. 
We assume that the boundaries for the given problem are made up of (portions of) 
lines or planes, or (portions of) circles or spheres. For a prescribed singular point 
of the Dirac delta function in the equation for K, we consider all possible image 
points obtained by reflection through lines and planes and inversion through circles 
and spheres. (The inversion process is defined later.) If none of the resulting image 
points lies in the interior of the region in which the problem is specified and certain 
additional conditions are met, the Green's function К can be specified in a simple 
manner. We do not describe the most general regions and equations for which the 
method of images works. Instead, we consider a number of problems in the text and 
the exercises that exhibit the basic features of the method. Clearly, it is necessary to 
know the free space Green's functions Kp for the given equations in order to apply 
the method of images, and most of the relevant ones have already been determined. 

Laplace's Equation in a Half-Space 

We consider Laplace's equation in the half-space z > 0. The Green's function 
К — K(x, y, z; ξ, η, ζ) satisfies the equation 

V2K{x, y, z; ξ, η, ζ) = -δ(χ - ξ)<% - η)δ(ζ - ζ) (7.5.2) 

in the region G defined as the half-space z > 0. On the boundary dG [i.e., the 
(x, j/)-plane z = 0 on which д/дп = —д/dz], we have 

αΚ(χ,ν,0;ξ,η,ζ)- ß τ^ = 0. (7.5.3) 
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We assume that a and ß are constants and consider three cases. For the Dirichlet 
problem we set a = 1 and ß — 0; for the Neumann problem we put a — 0 and 
ß = —1; for the Robin problem we set a = h and /3 = 1 with h > 0. The Green's 
function if (ж, у, z; ξ, η, ζ) is required to vanish at infinity. 

We recall that the free space Green's function for Laplace's equation is 

KF(x, y, z; ξ, V,0 = ^ [(* - О 2 + (j/ - ??)2 + (* - С)2] ~"2 , (7-5.4) 

as was shown in Example 6.13. It follows from our discussion in that example 
that V2KF(x,υ,ζ-,ξ,η,ζ) = ~δ(χ - £)<$(y - η)δ(ζ — ζ). The Green's function 
К(x, у, z\ ξ, η, ζ) is then expressed as K(x, y, z; ξ, η, ζ) = KF(x, у, z; ξ, η, ζ) + 
KG(x, У, z; ξ, η, С). As a result, V2KF(x, у, z; ξ, η, <) + V2KG(x, у, z; ξ, η, ζ) = 
-δ(χ-ξ)δ(,υ-η)δ(ζ—ζ) implies that V2KG {Χ, у, z; ξ, η, ζ) = 0, so that X G (ж, у, z; 
ξ,η,ζ) is a harmonic function (i.e., a solution of Laplace's equation). In view of 
(7.5.3), the boundary condition for KG(x, y, z; ξ, η, ζ) is 

aKG(x, у, 0; ξ, η, ζ) - β ^—— 

= -αΚΡ(χ,ν,0;ξ,η,ζ)+β — . (7.5.5) 

The point (ξ, η, ζ) is the source (or singular) point for the Green's functions К (х, у, z; 
ξ, η, ζ) and KF(x, у, z; ξ, η, ζ). Now KF{x, у, z; ξ, η, ζ) is given in terms of the 
distance from the observation point (ж, у, z) to the source point (ξ, η, ζ). As shown in 
Figure 7.4, if we introduce the image (source) point (ξ, η, —ζ)—that is, the reflection 
°f (£) Ήι С) m the plane z = 0—then as the observation point (x, y, z) tends to a 
boundary point (x, y, 0), its distance from (ξ, η, ζ) equals its distance from (ξ, η, —ζ). 

Consequently, if we introduce the function 

KG(x,y, z;ξ,η,ζ) = ^ [(x - ξ)2 + (у - VY + (z + С ) 2 ] ' ^ , (7-5.6) 

we have in effect a free space Green's function that corresponds to the image source 
point (ξ,η,-ζ). At the boundary z = 0, Κο(χ^,0;ξ,η,ζ) = ± [{x - ξ)2+ 

(υ-η)2 + ζ2}~1/2 = ΚΡ(χ,υ,0;ξ,η,ζ), dKG(x,y,0; ξ,η,ζ)/θζ = -ζ/ 
(4π[(χ - О 2 + (У -ri)2 + ζψ2) = -dKF(x, у, 0; ξ, η, ζ)/θζ. 

Furthermore, V2kG(x, у, ζ; ξ, η, ζ) = —δ(χ - £)ö(y - η)δ(ζ + ζ), and the right-
hand side vanishes in the half-space z > 0 since δ(ζ + 0 = 0 there. There-
fore, if we set Κα{χ,ν,ζ;ξ,η,ζ) = —Κα(χ^,ζ;ξ,η,ζ) for the Dirichlet prob-
lem and KG(x,y, z; ξ, η, ζ) = KG(x,у, z;ξ, г/, С) for the Neumann problem, the 
Green's function K{x, y, z; ξ, η, ζ) = KF{x, у, z; ξ, η, ζ)+Κα(χ, у, z; ξ, η, ζ) satis-
fies (7.5.2) in the half-space z > 0 as well as the boundary conditions K(x, у, 0; ξ, η, ζ) 
= 0 and дК(х, у, 0; ξ, η, ζ)/θζ — 0, which are appropriate for the Dirichlet and Neu-
mann problems, respectively. 

The Green's function for the Robin problem cannot be obtained solely in terms 
of an image source point at (ξ, η, —ζ). Instead, we must introduce an entire line of 
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(l.i.f) 

T 
<*,*.) 

A 
Ч.п.-tl 

i 

Figure 7.4 The source point (ξ, η, ζ) and its image point. 

image sources on the line x = ξ and у = η with z extending from z = -ζ to z 
and a source density function to be determined. Let 

-oo 

Κβ(χ,ν,ζ;ξ,η,ζ) J_ 
4π 

+ 4тг/_( 

[ ( x - 0 2 + (y-r/)2 + (2 + C)2] 

Ρ(β) 

-1/2 

eis, (7.5.7) 
4тг ./_«, [(я, - ξ)2 + (у _ ч)2 + (ζ _ s)2]i/2 

where p(s) is the source density. When we put h = 0 in the boundary condition 
дК(х, у, 0; ξ, 77, ζ)/dz — hK(x, у, 0; ξ, η, ζ) = 0, we expect (7.5.7) to reduce to the 
form appropriate for the Neumann problem, so we must have p(s) = 0 when h = 0. 
For this reason we have added the free space Green's function corresponding to an 
image source at (ξ, η, -ζ) to the integral term in (7.5.7). 

It is assumed that p(s) decays sufficiently rapidly at infinity that the integral in 
(7.5.7) converges and that differentiation under the integral sign is permitted. We then 
find that V2KG(X, y, z; ξ, η, ζ) = 0 for z > 0, since all the singular points in (7.5.7) 
occur in the lower half-space z < 0. Applying the boundary condition at z = 0 gives, 
in view of (7.5.5), 

dKG 

dz 
-hKG 

С Л21-3/2 

2 = 0 

4π , 

~[(χ-ξ)2 + (υ-ν)2 + ζ2 

4π[(*-02 + (ν-ν)2 + ζ2] 

- 1 / 2 
ds 

-1/2 _ А Г 
4тгУ_с 

p(s) ds 

дКр 
' dz 

+ hKf 
2 = 0 

-£!<*■ 
- о о [ ( а : - 0 2 + ( » - ч ) 2 + в2] 1 / а 

■О2 + (У - v)2 + С2Г3/2 

+£-[(χ-02 + (ν-ν)2 + ζ2] 
-1/2 

4π 
(7.5.8) 
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The operator d/dz has the same effect as —d/ds at z = 0, and the use of d/ds in 
the integral term enables us to integrate by parts. We have 

/ j P{S) ί [(X " ° 2 + {У - V)2 + ̂  "1/2 ds ( 7

Combining results gives 

Ί» J - « , [(i - i)2 + (j, - I,)2 + »2]1 / 2 

Therefore, the boundary condition is satisfied if we set 

p'(s)-hp(s) = 0,s<-C, р(-С) = -2Л. (7.5.11) 

The solution of the initial value problem (7.5.11 ) is p(s) — —2heh^s+^. We note that 
p(s) vanishes for h = 0 and that it decays exponentially as s —> — oo. 

The Green's function for the third boundary value problem thus has the form 

K(x, y, z; ξ, η,ζ)=^ [(* ~ ξ)2 + (v - V? + (z - ζ)2} ^П 

+^[(*-Оа + (у-ч)а + (* + С)Т1/2 

- тг / Г7? de. (7.5.12) 
2π У_оо [(Ж _ ξ)2 + (у _ η)2 + (г _ s)2]l/2 

With ft = 0 this reduces to Green's function for the Neumann problem. The Green's 
function for the Dirichlet problem is 

K(x, y, z; ξ, η, ζ) = - ^ [(* - О 2 + (У " т,)2 + (г - С)2] _ 1 / * 

~έ[(ж ~ξ)2 + {у~η)2 + {z+°2] "1/2 · (7-5-13
On using the free space Green's function for Laplace's equation in two dimensions, 

it is easy to obtain the Green's function for the half-plane problem in two dimensions. 
Furthermore, on using the formulas given in Section 7.1, one can readily obtain the 
solutions of boundary value problems in the half-space or the half-plane for Laplace's 
equation, as shown in the exercises. 
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Hyperbolic Equations in a Semi-Infinite Interval 

The free space Green's functions appropriate for the one-dimensional hyperbolic 
equation (7.1.45) with constant coefficients were obtained in Section 7.4. For the 
Klein-Gordon equation, the free space Green's function KF(x, t-,ξ,τ) satisfies (7.4.33) 
and is given as 

KF = ±- Jo 
2j 

- ν / 7 2 ( ί - τ ) 2 - ( χ - 0 2 

7 
Η[χ-ξ-Ί(ί-τ)]Η[ξ-χ + Ί(τ-ί)], 

(7.5.14) 
in view of (7.4.35). For the modified telegrapher's equation (7.4.36), we have 

27 
V 7 2 ( i - T ) 2 - ( z - 0 2 

7 
Η[χ-ξ-Ί(ί-τ)]Η[ξ-χ + Ί(τ-ί)}. 

(7.5.15) 
The free space Green's function for the wave equation (7.4.27) is 

KF(x, t; ξ, τ) = ^H[x - ξ - φ - τ)}Η[ξ -х + с(т- t)}. (7.5.16) 

For the wave equation, KF(x, t; ξ, τ) can also be expressed as 

KF(x, t;ξ, τ) = ±H(r - t)H[c2(t - rf - (x - ξ)2]. (7.5.17) 

It is readily seen that (7.5.17) is consistent with (7.4.28) and that the product of the 
Heaviside functions given in (7.5.14)—(7.5.15), can also be expressed in the form 
(7.5.17) with appropriately modified constants. In connection with the application of 
the method of images, it is apparent from the form of KF(x, t; ξ, τ) in (7.5.17) that 
an image source can be introduced at x = — ξ if the Green's function in the interval 
x > 0 is to be obtained. It can be shown by direct substitution that (7.5.17) is a 
solution of (7.4.27). 

For each of the hyperbolic equations considered we now obtain Green's functions 
for the semi-infinite interval x > 0. In the case of Dirichlet boundary conditions at 
x = 0 [i.e., K(0, t; ξ, τ) = 0], the Green's function is given as 

K{x, t; ξ, τ) = KF{x, t; ξ, τ) - KF(x, t; -ξ, τ), (7.5.18) 

where KF(x, ί;ξ,τ) is the appropriate free space Green's function (7.5.14), (7.5.15), 
or (7.5.16). IfbNeumann boundary condition is given atx = 0 [i.e., dK(0, t; ξ, т)/дх 
= 0], the Green's function is 

K(x, t; ξ, τ) = KF(x, t; ξ, τ) + KF(x, t; -ξ, τ). (7.5.19) 

Finally, if a Robin boundary condition is assigned (i.e., ΘΚ(0,ί;ξ,τ)/δχ — hK 
(0, t; ξ, τ) = 0 with h > 0), the Green's function is 

r-ζ 
Κ(χ,ί;ξ,τ) = Κρ(χ,ί;ξ,τ) + Κρ·(χ,ί;-ξ,τ)-2Η / eh{s+i)KF{x,t;s,T)ds. 

J — OO 

(7.5.20) 
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By comparison with the methods used in the preceding example or by direct verifi-
cation it can be determined that (7.5.18)-(7.5.20) give the required Green's functions 
for each of the boundary value problems considered. 

Heat Equation in a Finite Interval 

We construct the Green's function K{x, t\ ξ, r) for the equation of heat conduction 
in a finite interval 0 < x < I. Thus K(x, t; ξ, r) satisfies the equation 

^ψΐί + ̂ 2κψ:ΐ1 = _δ(χ_0δ(ι_τ)ΰ<χΛ<ι^<τ 
(7.5.21) 

It is assumed that K(x, ί;ξ,τ) vanishes at the endpoints so that K(0, t-,ξ,τ) = 
K(l, t; ξ, τ) = 0. In addition, we have the end condition K(x, T; ξ, τ) = 0. 

The free space Green's function Kp(x, t; ξ, τ) for the one-dimensional heat equa-
tion was found in Section 7.4 to be [see (7.4.6)] 

Κρ(χ,ί;ξ,τ) 
Η(τ - t) 

exp 74тгс2(т - t) I 4 c 2 ( r - i ) 
( s - 0 2 1 

(7.5.22) 

We express Κ(χ,ί;ξ,τ) in the form (7.5.1) [i.e., K(x,t-,ξ,τ) = Κρ(χ,ί;ξ,τ) + 
Kc{x, t; ξ, τ)] and use the method of images to specify KQ{X, t; ξ, r ) . The source 
point x = ξ must have an image with respect to x = 0 and x = I, and each of the 
image sources, in turn, must also have images with respect to x = 0 and x = I. 
Consequently, we are led to consider an infinite sequence of source points ξη = 
±ξ ± 2nl, with n = 0,1,2,3, Some of these points are shown in Figure 7.5. 

-2b f 
— o — 

-2/+ { 
I O — 

21- ( 
—o—-

21+i 

-31 -21 31 

Figure 7.5 The source point and the image sources. 

The Green's function К = K(x, t; ξ, τ) can then be written as an infinite series 

К 
Н(т -1) 

^4тгс2(т - 1 ) ni Σ exp 
(χ-ξ- 2nlf 

4 c 2 ( r - i ) exp 
(x + ξ - 2nl) 21 

4c2(r - 1 ) 

(7.5.23) 
The term with n = 0 and a positive coefficient corresponds to KF(x, t; ξ, r ) . Clearly, 
K(x, T; ξ,τ) — 0 since r < T. It can be shown that the series can be differentiated 
term by term. Inasmuch as each of the functions in the series except the term that 
corresponds to Kp(x, t; ξ, τ) has it source point ξη outside the interval 0 < x < I, 
we see that (7.5.23) satisfies (7.5.2). Also, it is not difficult to see that at x = 0 and 
x = I there corresponds to each term in the series with a positive coefficient an iden-
tical term with a negative coefficient. For example, Figure 7.5 shows that x = ξ and 
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x — — ξ are images with respect to x = 0 and that x = ξ and x = 21 — ξ are images 
with respect to x — I. The terms in the series (7.5.23) that correspond to the points 
x = ξ and x = — ξ are ехр[-(ж - £)2/4c2(r - t)} - exp[-(x + £)2/4c2(r - f)], 
and this difference vanishes at x = 0. Also, for x = ξ and x = 21 — ξ we have 
ехр[-(ж - £)2/4c2(r - f)] - exp[-(x + ξ- 2/)2/4с2(т - ί)], and this difference 
vanishes when x = I. In fact, if we replace n by — n in the second series, it becomes 
identical to the first series at x = 0 and their difference equals zero. At x = I we 
replace n by —n + 1 in the second series and find that the two series are equal. 

The solution of the initial and boundary value problem for the heat equation in a 
finite interval when the formula (7.1.35) of Section 7.1 is used has a form similar to 
that given in Example 5.12. As was shown there, this result is expected to be useful 
for small values of t, whereas that given by the finite Fourier transform method is 
more useful for t large. 

Green's Function for Laplace's Equation in a Sphere 

As shown above, the method of images can be applied to equations with constant 
coefficients of all three types if there are linear or planar boundaries. For Laplace's 
equation it is possible to extend the image method to problems that involve circular 
or spherical boundaries as demonstrated below. 

We construct the Green's function for the Dirichletproblem for Laplace's equation 
in the interior of a sphere using inversion with respect to the sphere. The Green's 
function К = K(x, y, z; ξ, η, ζ) satisfies the equation 

V2K(x, y, z; ξ, η, ζ) = -δ(χ - ξ)δ(ν - η)δ(ζ - Q (7.5.24) 

and the boundary condition K(x, у, ζ; ξ, η,ζ) = 0 on the sphere of radius о with 
center at the origin. Let the observation point P be denoted by P = (x, y, z). The 
source point is Po — (£> Ή-, С) a nd the origin of coordinates (i.e., the center of the 
sphere) is О = (0,0,0). 

Figure 7.6 Inversion with respect to the sphere. 

As shown in Figure 7.6, we introduce the image source point Ρ$ = (ξ', η', СО-
The point PQ lies on the radial line extending from the origin О through the source 
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point Po. Its distance from the origin equals p\, and the distance of Po from the origin 
is /9o· These distances are related by poP\ = a2, where a is the radius of the sphere. 
The foregoing process of obtaining PQ from Po is called inversion with respect to the 
sphere. We note that if a = 1, then p\ = 1/po, so that the distances po and p\ are 
inverse to one another. The observation point P is assumed to lie on the sphere in 
Figure 7.6. 

The triangles ΔΟΡΡο and AOPPQ in the figure are similar, since they have a 
common angle LPOPQ and proportional sides О Po/OP = OP/О PL This follows 
since OP = a (the radius of the sphere), OPo = po, OPQ = p\, and OPo OPQ = 
popi = OP 2 = a2 in view of the above. The similarity of the triangles implies that 
all three sides are proportional and we have 

^ = - = ^ , (7.5.25) 
a pi n 

where ro = PPo and r\ — PPL 
To complete the solution of the problem we set К = Kp + KG, where Kp is the 

free space Green's function (7.5.4) and KG is a constant multiple of the free space 
Green's function with source point at PQ = (ξ', η', ζ'). That is, 

4π \ r 0 т\) 
Κ(χ,υ,ζ;ξ,η,ζ) = — - + - , (7.5.26) 

4π \ г о Vi) 

where ri = ( х - 0 2 + (1/-ч)2 + (г-С)2апс1г? = (х - ξ')2 + (у ~ η')2 + (* ~ С)2> 
with the constant с to be specified. Since PQ lies outside the sphere, the second term 
in (7.5.26) is a solution of Laplace's equation within the sphere. Thus (7.5.26) is a 
solution of (7.5.24). On the sphere [i.e., when P = (x, y, z) lies on the sphere] we 
have, in the notation of Figure 7.6, 

*<*.».«**0-£(£ + £ ) - ^ (l + f), (7JUT) 

in view of (7.5.26). Thus if с = —a/po, the Green's function К vanishes on the 
sphere. Therefore, we obtain the Green's function 

K(x, y, z; ξ, η,ζ) = ±(1- -±Α . (7.5.28) 
4π \r0 ponj 

Let G represent the interior of the sphere x2 + y2 + z2 = a2 with dG representing 
the sphere itself. The Dirichlet boundary value problem for Poisson 's equation, 

V2u{x, y, z) = -F{x, y, z), (x, y, z) € G, (7.5.29) 

with the boundary condition 

u(x,y,z)\dG = B(x,y,z), (7.5.30) 
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has the solution, with К = K(x, y, z; ξ, η, ζ), 

η(ξ,η,ζ)= Jl KF(x,y,z)dv- j ^B(x,y,z)ds, (7.5.31) 

where (ξ, η, ζ) as an arbitrary point within the sphere, as follows from (7.1.8). 
To determine (7.5.31 ) more explicitly it is necessary to evaluate the exterior normal 

derivative дК(х, у, z; ξ, η, ζ)/θη on the surface of the sphere. Now 

dK 1 [ θ ( 1 "\ дго а д ( 1 \ дт\ ] 1 f 1 dr0 a dr\ 1 
4π \ Э 

дг0 
ίη 
\roJ 

\ dr0 

' дп 
а д 
Родп ί° 

\nj 
\ дп' 
' дп_ 

1 
4π 

г ì aro 
r% дп дп 4π [oro \roJ дп родг\ \rij дп \ 4π [ г§ дп ' р$г\ дп 

(7.5.32) 

We note that rg = (х - ξ)2 + (у - η)2 + (z - С)2 and that г2 = {x - ξ')2 + (у-
η')2 + (z — С')2, with (x, у, z) given as a point on the sphere in the present discussion. 
On introducing coordinate systems with the origins at (ξ,η,ζ) and (ξ',η',ζ'), we 
immediately conclude that dr0/dn = cos(#0), dr\/dn = cos(öi). The angle θο 
is the angle between the exterior unit normal vector to the sphere at the point P = 
(x, y, z) and the vector extending from the source pointPo = (ζ,ν,ζ)ίοΡ. Similarly, 
<?i is the angle between the normal vector at P and the vector from PQ = (ξ', η',ζ') 
to P. Referring to Figure 7.6 and using the law of cosines, we obtain cos(#o) = 
(a2 + r2, - />o)/2aro, cos^x) = (a2 + r2 - p2)/2ari. Using (7.5.25) to replace p\ 
and r\ by po and r0 in cos(öi) gives cos(öi) = (p2, + г2, — а2)/2р0П)· Combining 
these results we conclude that dK/dn\dG = (Po — а2)/Аттаг^. Thus the solution 
formula (7.5.31 ) reduces to 

<ξ,η,ζ) = ^- if (±-—)Fdv + -!-[ ^ ^ B d s , (7.5.33) 
4KjJG\r0 ponj 4KaJdG rg 

with F = F(x,y,z) and В = B(x,y,z). By transforming to spherical coordinates 
with center at the origin, the second integral in (7.5.33) can be expressed as, with 
7 = IPOPo, 

4πα JdG rg 4π JQ J0 [a2 - 2ap0 cos(7) + pg]3/2 

(7.5.34) 
This expression is known as Poisson's integral for the sphere and can be obtained 
by using separation of variables for Laplace's equation in the sphere. It represents 
the solution of the Dirichlet problem for Laplace's equation, that is, (7.5.29)-(7.5.30) 
with F(x, y, z) = 0. 

If we put F(x, y, z) = 0 in (7.5.33) and evaluate η(ξ, η, ζ) at the origin, we obtain 

«(0,0,0) = - ί - j / B{x, y, z) ds, (7.5.35) 
4ττα^ JdG 
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since po = 0 and ro = a in that case. Now 4πα2 equals the surface area of the sphere 
and B(x, y, z) is the value of u(x, y, z) on the surface of the sphere. Thus г*(0,0,0) 
evaluated at the center of the sphere equals the average of its values on the surface of 
the sphere. This mean value property is valid for harmonic functions (i.e., solutions 
of Laplace's equation) in both two and three dimensions. It also arises in discrete 
formulations of Laplace's equation, as was seen in Section 1.3. This property can be 
derived in a more direct manner using Green's theorem as shown in the exercises. 

The method of inversion that we have used to obtain Green's function for the 
Dirichlet problem does not work for the case of Neumann's problem or the third 
boundary value problem for the sphere. Similarly, it cannot be applied to other 
elliptic equations or, for that matter, to hyperbolic or parabolic equations. As an 
example, we consider the reduced wave equation in three dimensions, 

V2u(x, y, z) + k2u{x, y, z) = 0, (7.5.36) 

in a sphere and try to use inversion to find the Green's function for the Dirichlet prob-
lem. As shown in Example 6.13, the free space Green's function for this problem is 

KF(x,y,z^,V,0 = ̂ e i k r , (7.5.37) 

withr2 = (χ—ξ)2 + {ν—η)2+(ζ—ζ)2. This function satisfies the (three-dimensional) 
radiation condition of Sommerfeld lim,-,,» г [дКр/дг — ikKp] = 0. The Green's 
function K is sought in the form 

К = -j- (—eikra + — e i f e n i , (7.5.38) 
4π \r0 n J 

with ro and r\ defined as above and the constant с to be determined. Clearly, с must 
have the same value given in the foregoing, (i.e., с = —a/p0). However, on the 
sphere we have ri = (a/po)ro, so that the exponentials have different arguments and 
no cancellation occurs. It is not possible to replace etkTl by e

ifc(po/a)ri ) j n which case 
both exponentials would be equal on the sphere, since (1/Vi) exp\ik(po/a)ri] is not 
a solution of the reduced wave equation. 

There are other analytic techniques for obtaining Green's functions that we have 
not discussed. For example, conformai mapping methods are extremely useful in 
obtaining Green's functions for Laplace's equation in two dimensions. They require 
a knowledge of the theory of complex variables for their application. In addition, it 
is often possible to use known Green's functions to convert a differential equation to 
an integral equation and thereby construct other Green's functions. Again, it is rarely 
a simple matter to solve the integral equations that result, and most often this must 
be done approximately. Finally, there exist perturbation and asymptotic methods for 
finding certain Green's functions. An indication of how to use such methods is given 
in Chapters 9 and 10, which are devoted to approximation methods. 
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Exercises 7.5 

7.5.1. Use the Green's functions obtained in the subsection on Laplace's equation in 
a half-space and appropriate forms of the solution formulas obtained in Section 7.1 to 
construct the solution of Laplace's equation V2u{x, y,z) = 0 in the half-space z > 0 
if the following boundary conditions are given: (a.) u(x, y, 0) = f(x,y), - c o < 
x,y < co; (b) du(x,y,Q)/dz = f(x,y), - c o < x,y < со; (с) du(x,y,0)/dz -
hu(x,y,0) = f(x,y), - c o < x,y < oo. 
7.5.2. Use the method of images to obtain the Green's function associated with 
the Dirichlet problem for V2u(x, y) = 0 in the half-plane у > 0, in the form 
Κ(χ,ν;ξ,η) = -(l/27r)log(p/,3), 0 < у,ц < oo, -oo < χ,ξ < со, where 
p2 = (x — ξ)2 + (у — η)2 and p2 = (x — ξ)2 + (у + η)2. Use this Green's function 
to obtain the solution (5.2.58) of the boundary value problem (5.2.50)-(5.2.51). 
7.5.3. Apply the method of images to obtain the Green's function associated with the 
Neumann problem for V2u(x,y) — 0, in the form If (x, ^,ξ,η) = — (l/2n)log(pp), 
0 < y, η < со, - c o < x, ξ < со, where p and p are defined as in Exercise 7.5.2. 
Use this Green's function to obtain the solution (5.2.66) of Laplace's equation with 
the boundary condition (5.2.60). 
7.5.4. Obtain the Green's function that corresponds to (7.5.12) in the two-dimensional 
case. 
7.5.5. Use the method of images to obtain the Green's function for Laplace's equa-
tion in a composite medium in three dimensions. That is, determine Κ(χ^,ζ;ζ,η, ζ) 
that satisfies p(x, y, z)W2K(x, y, z, ξ, η, ζ) = -δ(χ - ξ)δ^ - η)δ(ζ - ζ), - c o < 
χ, ξ-y, η,ζ,ζ < oo, with z φ 0, the condition К(χ, у, ζ, ξ, 77, С) —*■ 0 as |2r| —̂  со, as 
well as the jump conditions at 2 = 0, K(x, y, z, ξ, η, ζ) and p(x,y,z) 
ΘΚ(χ^,ζ,ξ,η,ζ)/οζ continuous at 2 = 0, where p(x, y, z) = pi for z < 0, 
p(x,y,z) =p2forz > 0,andpi and p-2, are constants. Hint: LetK(x, y, ζ,ξ,η, ζ) = 
Κι{χ,ν,ζ,ξ,η,ζ)ΐοτζ < 0ΆηάΚ(χ^,ζ,ξ,η,ζ) = Κ2{χ,ν,ζ,ξ,η,ζ) forz > 0. 
Since the source point lies in z > 0 use the free space Green's function and its image 
for z > 0 and the free space Green's function with a source at (ξ, η, ζ) in z < 0. 
Then apply the matching conditions. 

7.5.6. Use the approach that led to (7.5.23) to construct a Green's function for 
Laplace's equation V2M(X, y, z) — 0 in the region —00 < x < со, —со < у < 
со, 0 < z < со for the case of Dirichlet boundary conditions. 
7.5.7. Apply the method of images to construct the Green's function for the Helmholtz 
equation V2u(x, y, z) + k2u(x, y, z) = 0 in the half-space 2 > 0, in the case 
where К(x, y, z; ξ, η, ζ) satisfies one of the following boundary conditions: (a) 
K(x, y, 0; ξ, η, С) = 0; (b) дК(х, у, 0; ξ, η, Q/dz = 0; (с) дК(х, у, 0; ξ, η, ζ)/θζ -
hK(x, у, 0; ξ, η, ζ) = 0, with - c o < χ^,ξ,η < со, and where K{x, у, ζ; ξ, η, ζ) 
satisfies the radiation condition at infinity in all cases. Hint: Use Example 6.13. 

7.5.8. Construct the two-dimensional forms of the Green's functions obtained in 
Exercise 7.5.7 for the Helmholtz equation V2u(x, y) + k2u(x, y) = 0 in the half-
plane у > 0. 
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7.5.9. Construct the Green's function for V2u(x, y, z) — c2u(x, y, z) = 0 in the 
half-space z > 0 if the Green's function K(x, y, z; ξ, η, ζ) satisfies the following 
boundary conditions: (a) K(x, y, 0; ξ, η, ζ) = 0; (b) дК(х, у, 0; ξ, η, ζ)/Θζ = 0 for 
all —οο < χ, у < со, and К(х, у, ζ; ξ, η, ζ) —> 0 as \z\ —> oo. Hint: Use Example 
6.13 and the method of images. 
7.5.10. Carry out the solution of the two-dimensional version of Exercise 7.5.9 in 
the half-plane у > 0. 
7.5.11. Use the Green's function (7.5.18) for the wave equation in the semi-infinite 
interval 0 < x < со, to solve the following initial and boundary value problem: 
utt(x, t) — c2uxx(x71) = 0, 0 < x < oo, t > 0, u(x, 0) = ut(x,0) = 0, 0 < x < 
co, u(0,t) = g(t), t > 0 . 
7.5.12. Solve the following problem by use of the Green's function (7.5.19): uu (x, t ) — 
72Uxx(z,t) + c2u(x,t) = 0, x > 0, t > 0, u{x,0) = и((ж,0) = 0, a; > 
0, du(0,t)/dx = h(t), t > 0 . 
7.5.13. Verify that (7.5.19) is indeed the appropriate Green's function for the modified 
telegrapher's equation (7.4.36) in the case of Neumann boundary conditions. 
7.5.14. NotingtheresultofExercise7.2.17[i.e.,2ж^=_0О6[х-2кп] = Σ£1-οο 
exp[ifcz]], multiply both sides by a Fourier transformable function φ(χ), and con-
clude upon integrating that V2nY!,'^=_00 ф[2кп] = ^fcl-oo Ffob where F[k] is 
the Fourier transform of ф(х). This result is known as Poisson's summation formula. 

7.5.15. Use the Poisson summation formula (Exercise 7.5.14) to show the equivalence 
of the Green's function expression (7.5.23) for the heat equation and that obtained by 
the method of eigenfunction expansions. 
7.5.16. Use the method of images to construct the Green's function K(x, t; ξ, τ) for 
the heat equation in a finite interval if (a) dK(x, t; ξ, т)/дх = 0 at x = 0 and x = I; 
(b) dK(0, t; ξ, т)/дх = 0, dK(l, t; ξ, т)/дх = 0. 
7.5.17. Apply the method of images to construct a Green's function for the heat 
equation in the semi-infinite interval 0 < x < oo with Dirichlet boundary conditions 
and use it to solve the following problem: ut(x,t) — c2uxx(x,t) = 0, 0 < x < 
oo, t > 0, u(x, 0) = f(x), 0 < x < со, u(0, t) = g(t), t > 0. 
7.5.18. Adapt the inversion process used to determine the Green's function for 
Laplace's equation in a sphere to obtain the Green's function for the Dirichlet problem 
for Laplace's equation in a disk x2 + y2 < a2. 

7.5.19. Verify the result (7.5.36). 
7.5.20. Obtain Poisson's integral for the circle [see (7.5.36)] by using the Green's 
function obtained in Exercise 7.5.18. 
7.5.21. Use the method of images to determine the appropriate Green's function 
Κ(χ^,ξ,η) for Laplace's equation V2u(x, y) = 0 in the quadrant 0 < x < 
со, 0 < у < со with the following boundary conditions: (a) Κ(χ^,ξ,η) = 
0 on x = 0, у > 0 and у — 0, x > 0; (b) Κ(χ^,ξ,η) — 0 on x = 0, у > 
О, дК(х, у, ξ, ц)1ду = 0 on у = 0, х > 0; (с) дК(х, у, ξ, η)/Θχ = 0 on x = 
0, i / > 0 , ΘΚ(χ,ν,ξ,η)/θν = 0опу = 0, х > 0. 
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7.5.22. Apply the method of images of construct the Green's function for Laplace's 
equation within the hemisphere x2 + y2 + z2 < a2, z > 0, with Dirichlet boundary 
conditions. Hint: Use inversion in the sphere and reflection in the plane z = 0. 
7.5.23. Obtain the Green's function for the Dirichlet problem for Laplace's equation 
within the quarter-circle x2 + y2 < a2, x > 0, у > 0. Hint: Reflect in the x- and 
y-axis as in the quarter-plane problem and then invert each source and image source 
in the circle. 
7.5.24. Let и be a solution of Laplace's equation V2u(x) = 0 in the region G, 
and let R be the interior of a circle or a sphere centered at Po and completely 
contained within G. (a) Use Green's theorem or the divergence theorem to show 
that fdR ди(х)/дп ds = 0. (b) Let Κ(χ;ξ) be the free space Green's function for 
Laplace's equation with singular point at Po. Apply Green's theorem in the region R 
to the harmonic function u(x) and the Green's function K(x; £). Deduce the mean 
value theorems u(P0) = (1/4πα2) JdR u(x) ds and ω(Ρο) = (1/2πο) JdR u(x) ds 
in three and two dimensions, respectively, where a is the radius of the sphere and the 
circle with center at Po. 

7.6 MAPLE METHODS 

Generalized Functions 

Maple defines the Heaviside function as Heaviside and the Dirac delta function as 
Dirac. That is, H(x — a) = Heaviside(x — a) and δ(χ — a) = Dirac(x — a) in 
terms of our notation (which we use below). For the Heaviside function we have 

( 0, x < 0, 

undefined, x = 0, (7.6.1) 
1, 0<x. 

The value of ff (0) is left undefined by Maple and can be assigned. The derivative of 
the Heaviside function is given as dH(x)/dx = δ(χ). Maple evaluates integrals that 
contain Heaviside and Dirac delta functions. For example, J^° f(x)6(x — a)dx = 
f{a) and Π ο / ( ζ № ~a)dx = - / ' ( a ) . 

Ordinary differential equations that contain Dirac delta or Heaviside functions can 
be solved using the dsolve procedure. The solution of the boundary value problem 

y"(x) = -δ(χ - 1/2), 0 < ζ < 1 , y(0) = y(l) = 0, (7.6.2) 
is found by Maple, on expressing the result in piecewise form, as 

( x/2, x < 1/2, 
» M = { - , / 2 + 1/2, 1/2 <x. <7·6·3) 

Maple carries out integral transforms of Heaviside and Dirac delta functions. The 
Fourier transform of H(x) is given as fourier(H(x), x, \) = πδ(λ) - г/А. The 
Laplace transform of H(x - 1) is found to be laplace(H(x - 1), x, X) = e~x/X. 
The inverse Laplace transform of 1 is invlaplace(l, A, x) = δ(χ). 
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Green's Functions for ODEs 

Maple can determine Green's functions for ordinary differential equations because 
of its ability to solve ODEs with Dirac delta function inhomogeneous terms, as we 
have shown above. As an example, we consider 

with the boundary conditions 

K(Q, ξ) bounded, K{\; ξ) = 0. (7.6.5) 

The point x = 0 is a singular point for the ODE so we require that the Green's function 
be bounded there. On using dsolve to solve the problem we can only prescribe the 
condition at x = 1. Maple's solution is 

K(x; ξ) = - log(x) + Η(ξ - x)(\og(x) - log(O) + clog(ar), (7.6.6) 

with с as an arbitrary constant. Since the solution must be bounded at x = 0 we set 
с = 0. This yields the Green's function 

f - l n ( 0 , χ<ξ, 

* < * * > = | - l n ( * ) , ξ < χ . ( 7 · 6 " 7 ) 

We have constructed a procedure GreensFuncODE that automates the construc-
tion of Green's functions of self-adjoint ODEs. It takes the form GreensFuncODE 
{\ρ{χ),Ρ'(χ),-ς(χ)},Κ(χ;ξ),αιΚχ{χ;ξ) - βιΚ(χ;ξ) = 0,α2Κχ{χ;ξ) + 
β2Κ(χ; ξ) = 0,ξ,χ = Q..I). The Green's function K{x; ξ) satisfies (7.2.38) over the 
finite interval 0 < x < I with the boundary conditions α\Κχ{0; ξ) — β\Κ(0; 0 = 0 
and α2Κχ(1;ξ) + /32if(/;0 — 0. Although we have entered a general boundary 
condition in the procedure, it is possible to replace the boundary conditions at x = 0 
or x = I by a boundedness condition if the endpoints are singular points for the ODE. 

For example, the Green's function problem (7.6.4)-(7.6.5) is solved by the pro-
cedure GreensFuncODE([x, 1,0], К (x; ξ),Κ(χ;ξ) = bounded, К (χ,ξ) = Ο,ξ, 
x = 0..1) and yields the solution (7.6.7). 

Modified Green's functions can also be determined by the procedure. If we invoke 
GreensFuncODE'([1,0,0],K(x;ξ), Κχ{χ;ξ) = 0, Kx(x;ξ)=0,ξ,χ = 0..1), we 
obtain the modified Green's function determined from the problem 

d2K(x-f) 1 
dx* δ{χ~ξ) + Τ 0<x>t<l> (7·6·8) 

with the boundary conditions 

Κχ(0,ξ) = 0, Κχ(1;ξ) = 0. (7.6.9) 

The Green's function is found to be 
(x2-e)/2i, χ<ξ, 
(x2 -ξ2- 2lx + 2/0/2/, ξ < х-KM = {,2 c2 o L , o i , w o i c ^ (7-6-10) 
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Adjoint Differential Operators 

We have seen the importance of adjoint differential operators and boundary condi-
tions for the construction of Green's functions for ordinary and partial differential 
equations. Let L* be the (formal) adjoint operator of L. Then wLu — uL*w = 
V ■ M, and an application of the divergence theorem yields an integral over the 
boundary of the given region. (In the case of an ordinary differential equation, 
the divergence operator is replaced by a first derivative operator.) The procedure 
AdjOp determines the adjoint differential operators L* for second order differ-
ential operators L and the related operators M. The procedure takes the form 
AdjOp(Coeff2D, CoefflD, Coeffu,u,VarList), where и is the dependent vari-
able and VarList is a list of the independent variables. The first two arguments 
of the procedure are a list of coefficients of the second and first derivative terms, 
respectively, in the operator L, and the third argument is the coefficient of the undif-
ferentiated term. 

If we invoke Лф'Ор([[р(а;)]], \p'(x)],q(x),u, [x]), we determine the adjoint of the 
ODE operator Lu = p(x)u"(x) + p'(x)u'(x) + q(x)u(x). Since L is a self-adjoint 
operator, the output of the procedure gives the adjoint operator as L*w = Lw, and 
the operator M is given as M(u, w) = p(x)[w(x)u'(x) — u{x)w'(x)\. 

The procedure Лф'Ор([[ехр(ж), x2/2\, [x2/2,0]], [0, y], -10 , u, [x, y\) finds the 
adjoint of the partial differential operator Lu = exuxx + x2uxy + yuy — 10u, to be 
L*w = exwxx + x2wxy + 2exwx + (2x — y)wy + (ex - ll)w, We see that L is not 
self-adjoint. The operator M is given as M(u, w) = [exwux — exuw — exuwx + 
x2wuy/2 — x2uwy/2, x2wux/2 — xuw — x2uwx/2 + yuw]. 

Exercises 7.6 

7.6.1. Use Maple to solve Exercise 7.2.9. 

7.6.2. Determine the Green's function of Example 7.5 using dsolve. 

7.6.3. Solve the Green's function problem of Exercise 7.3.5 using dsolve. 

7.6.4. Put I = 1 in the boundary value problem of Exercise 7.3.9 and obtain its 
solution by using dsolve. 

7.6.5. Solve the ODE in Exercise 7.4.9 using dsolve. 

7.6.6. Solve the Green's function problem (7.6.4)-(7.6.5) using (a) dsolve; (b) the 
procedure GreensFuncODE. 

7.6.7. Solve the Green's function problem (7.6.8)-(7.6.9) using (a) dsolve; (b) the 
procedure GreensFuncODE. 

7.6.8. Obtain the adjoint operator of the general linear second order ordinary differ-
ential operator with variable coefficients using the procedure AdjOp. 



CHAPTER 8 

VARIATIONAL AND OTHER METHODS 

In this chapter we present a number of methods and results that apply to either prob-
lems studied previously or to a new class of problems. We begin with a presentation 
of a variational characterization of the eigenvalue problems introduced in Chapter 4 
and show how the variational approach enables us to prove some of the properties of 
eigenvalues and eigenfunctions given in that chapter. An important consequence of 
this approach is the Rayleigh-Ritz method, which yields approximate determinations 
of eigenvalues and eigenfunctions and this method is considered next. 

We continue with a discussion of the classical method ofRiemann for integrating 
linear hyperbolic equations of second order. This is followed by a presentation of 
maximum and minimum principles for the diffusion and Laplace's equations, and their 
consequences for uniqueness and continuous dependence on data for problems for 
these equations. In addition, we consider a positivity property for the telegrapher's 
equation. 

The chapter concludes with a discussion of some basic equations of mathematical 
physics. First we consider the fourth order partial differential equations that govern 
the vibration of rods and plates. Next we examine the equations of fluid dynamics, 
Maxwell's equations of electromagnetic theory, and the equations of elasticity theory, 

Partial Differential Equations ofAppplied Mathematics, Third Edition. By Erich Zauderer 491 
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each of which is a system of partial differential equations. Techniques for simplifying 
and solving these equations are considered. 

8.1 VARIATIONAL PROPERTIES OF EIGENVALUES AND 
EIGENFUNCTIONS 

It has been demonstrated in the preceding chapters that eigenvalue problems play an 
important role in various methods for solving problems for PDEs. Previously we have 
determined the eigenvalues and eigenfunctions by using separation of variables for 
PDEs and finding general solutions of ODEs for the Sturm-Liouville problem. In this 
section we show how the eigenvalues and eigenfunctions can be specified by means 
of a variational principle. Thereby, it is possible to prove some of the properties of 
the eigenvalues and eigenfunctions given at the beginning of Chapter 4. Furthermore, 
the variational approach leads to a useful approximate method for determining the 
first few eigenvalues and eigenfunctions. This method, known as the Rayleigh-Ritz 
method, is discussed in Section 8.2. 

Energy Integrals and Rayleigh Quotients 

To motivate the use of the variational principle, we begin by considering the (self-
adjoint) eigenvalue problem 

LM{\) = - V · (p(x)VM(x)) + g(x)M(x) = Ap(x)M(x) (8.1.1) 

for the function M(x) defined in the bounded region G. As in Sections 4.1 and 4.2, 
we assume that p(x) > 0 and p(x) > 0 in G, while q(x) > 0 in G. The eigenfunction 
M(x) is assumed to satisfy the boundary condition on dG, 

a ( x ) M ( x ) + / 3 ( x ) a M ( x ) 

dn 
= 0, (8.1.2) 

9G 

where a(x) > 0 and /3(x) > 0, while α(χ) + /3(x) > 0 on dG. The boundary condi-
tions may be of the first, second, third,, or mixed kind, as described in Section 4.1. (We 
use notation appropriate for the two- or three-dimensional eigenvalue problem and 
occasionally indicate the appropriate forms for the one-dimensional Sturm-Liouville 
problem.) 

As discussed in Section 4.2, we assume that there are a countable infinity of eigen-
values Àfc (к = 1,2,...) that are real valued and nonnegative. They are numbered 
according to nondecreasing values as 

0 < A! <A 2 < A3 < · · · < Afc < · · · . (8.1.3) 

The associated eigenfunctions M^(x) are assumed to form a complete orthonormal 
set. That is, 

(Mfc( x), Mj{x)) = jj р(х)Л4(х)М;(х) dv = 6kj, (8.1.4) 
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where the Kronecker delta 8kj = 1 for к = j and Skj — 0 for к ψ j.with к, j = 
1,2,3, . . . . 

Furthermore, any function u(x) that is sufficiently smooth and satisfies the bound-
ary condition (8.1.2)—where M(x) is replaced by u(x)—can be expanded in a series 
of eigenfunctions 

u(x) = J2NkMk(x). 
k=\ 

The Fourier coefficients Nk are given as 

Nk = (u(x), Mfc(x)) = JJ p(x)u(x)Mk(x) dv. 

(8.1.5) 

(8.1.6) 

(8.1.7) 

We assume that u(x) is normalized to unity, so that 

H x ) | | 2 = (u(x),u(x)) = JJ P(x)u2(x) dv = 1. 

To proceed, we consider the integral 

[[ uLudv = if (p(x)(Vu(x))2 + q{x)u2(x)} dv- ί p{x)u(x)^Q ds, 

(8.1.8) 

where (4.2.24) has been used. Here u(x) satisfies the boundary condition 

du(x) 
Q(X) U(X) + β(χ) 

дп 
0. (8.1.9) 

dG 

As a result, if we note the formulation of the boundary conditions in Section 4.1, 
the right side of (8.1.8) can be expressed in the following form, which we denote by 
E(u(x)) : 

E(u(x))= [[ \p(x)(Vu(x))2 + q(x)u2(x)}dv+ f ^ p ( x ) u
2 ( x ) d S . (8.1.10) 

JJG JS3 PW 
The expression ^(^(x)) represents an energy integral on the basis of our discussion 
in Section 6.8, and E(u(x)) is a nonlinear functional of u(x). It is nonnegative in 
view of the assumptions on p(x), p(x), q{x), a(x), and/3(x). 

On inserting (8.1.5) into (8.1.8), we have 

E(u(x)) = JJG J^NkMk(x)Lu(x) 
Ufc=i 

f>! 
dv = Σ \Nk ff М*(х)Мх) dv 

f > X x ) M f e ( x ) M , - ( x ) } 
J '= l 

dv 

J2^k { ΣλΜΜ^,Μ^χ)) \ =J2\kN
2, (8.1.11) 

fe=l fc=l 
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since LMj(\) = XjpMj(x) and (Mfc(x), Μ,-(χ)) = 6kj. Also, 

fc=l ^ 

р(х)М к (х)£лГ,М,(х) 
J'=l 

dv 

oo 

= Σ Μ Σ^·(Μ*(χ)'Μ>(χ)) ? = Σ Ν * ' ί8·1·12) 
fc=l ^ j = l J fc=l 

since (M|t(x), My(x)) = 5kj- We have assumed that the interchanges of summation, 
differentiation, and integration used in (8.1.11 )-(8.1.12) are valid. 

Noting (8.1.3) and (8.1.12), we obtain from (8.1.11) 
OO OO OO 

E(u(x)) = £ > i V f c
2 > Σ^Νξ = Aj £ > | = А ь (8.1.13) 

fe=l fc=l fc=l 

Thus for all admissible functions u(x) that satisfy the boundary condition (8.1.9) and 
have unit norm ||u(x)|| = 1, we have E(u(x)) > λχ. 

Now if u(x) satisfies the additional constraints 

(u(x),Mfc(x))= if p(x)u(x)Mk(x)dv = 0, fe = l , 2 , . . . , n - l , (8.1.14) 

the first n — 1 coefficients in the series (8.1.5) (i.e., N\,N2,..., Nn-i) all vanish, in 
view of (8.1.6). Then (8.1.11) yields 

OO OO 

E(u(x)) = Σ xkNi >ΧηΣ Nk = A» (8ЛЛ5) 
k=n fc=n 

on using (8.1.3) and (8.1.12). In addition, for all n, 

E{Mn(x)) = if Mn(x)LMn(x) dv = λη ff p{x)Mn(xf dv = Xn, (8.1.16) 

since the Mn(x) are normalized by assumption. 
We have shown the following. The energy integral E(u(x)) is greater than or 

equal to the smallest eigenvalue λι associated with the eigenvalue problem (8.1.1)-
(8.1.2), for all admissible u(x). The minimum value Ai is assumed if u(x) = M\ (x), 
the first eigenfunction. If u{x) satisfies the additional constraints (8.1.14), we have 
i?(u(x)) > λη, and the minimum is assumed if u(x) = Mn{x). Consequently, we 
may characterize the eigenvalues λη and the eigenfunctions M„(x) in terms of the 
following minimum problem. 

The nth eigenvalue Xn of the problem (8.1.1)—(8.1.2) is the minimum value of 
the energy integral E(u(x)) over the set of admissible functions u{x) that satisfy the 
conditions (8.1.7), (8.1.9), and (8.1.14). [Ifn = I, the conditions (S.I A4) are absent.] 
Further, among all admissible functions u(x), the minimum value of E(u(x)) (i.e, 
Xn) is assumed ifu(x) is the normalized eigenfunction Mn(x) o/(8.1.1)-(8.1.2). 
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In a slight variation of this process, we drop the restriction that the admissible 
functions u(x) are normalized to unity. Then, if w(x) is a function that satisfies the 
boundary condition (8.1.9) and the constraints (8.1.14) [where u(x) is replaced by 
w(x)], we can set u(x) = w(x)/\\w(x) | |. The function u(x) satisfies all the conditions 
stated in the foregoing minimum problem. Its energy integral takes the form 

VIM«)II/ IM*)II2 {w(x),w{x)) 

With E(w(x)) defined as in (8.1.10), the ratio E(w(x))/(w(x),w(x)) is known as 
the Rayleigh quotient. Again the minimum values of the Rayleigh quotient determine 
the eigenvalues, and these minima are assumed by unnormalized eigenfunctions, 
determined only up to an arbitrary multiplicative constant. 

Example 8.1. The Dirichlet Eigenvalue Problem for the Laplacian in a 
Square. We consider the eigenvalue problem for the Laplacian operator, 

V2M(x, y) + XM{x, y) = Mxx{x, y) + Myy{x, y) + \M(x, y)=0 (8.1.18) 

in the square 0 < x < π and 0 < у < π, with the Dirichlet boundary condition 

M(x,y)\dG = 0. (8.1.19) 

The region G is the interior of the square, and dG is given by the sides of the square. 
The eigenvalues and eigenfunctions for the problem (8.1.18)—(8.1.19) were deter-
mined in Example 7.6. The first eigenvalue Ац was found to be An = 2, and the 
associated normalizedeigenfunction is Mi\{x,y) = (2/π) sin(:r) sin(?/). We use the 
energy integral to estimate the first eigenvalue. 

The appropriate energy integral for this problem is 

E(u(x,y)) = [u2
x(x,y) + u2

y(x,y)}dxdy. (8.1.20) 
Jo Jo 

An admissible function u(x, y) must vanish on the boundary of the square and must 
be normalized so that 

/*7Γ ρ7Γ 

(u(x,y),u(x,y)) = / u2(x,y)dxdy = 1. (8.1.21) 
Jo Jo 

Now if u(x, у) = Мц (ж, у), we have 

(Mn(ι , ι / ) , Mu(x,y)) = - i / / sin2(x)sin2(y) dxdy = 1, (8.1.22) 
πι Jo Jo 

Е(Мц{х, у)) = — / [cos2(x) sin2(y) + sin2(ж) cos2(у)] dx dy = 2, 
i" Jo Jo 

(8.1.23) 
so that £ ( M n ( i , у)) = Ац, as was to be expected in view of (8.1.16). 
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As was shown, if u(x, y) is any admissible function other than Mn (.т, у), we must 
have E(u(x, у)) > Ац = 2. To see this in a particular case we consider the function 
u(x, y) = (30/n5)xy(n — χ)(π — у). The coefficient ЗО/π5 has been prescribed so 
that (8.1.21 ) is satisfied and u(x, y) clearly vanishes on the boundary. We readily find 
that 

900 Γπ Γπ 

Е(и(х,у)) = -й / [x2(n-x)2(n-2y)2+y2(n-y)2(K-2x)2}dxdy = 2.03. 
^ Jo Jo 

(8.1.24) 

Thus E(u(x,y)) = 2.03 > An = 2, as required. Given the arbitrary choice of 
u(x, y), the value 2.03 is a remarkably good approximation to Ац = 2. 

Although u(x, y) yields an excellent approximation to the eigenvalue Ац, it does 
not appear to be a good approximation to the eigenfunction Мц(х, у). In fact, if 
we measure the difference between u(x, y) and M\\(x, y) in the mean square norm, 
we obtain \\Mn(x,y) - u(x,y)\\2 = $* f£[Mn(x,y) - u(x,y)]2dxdy = 0.73, 
so that \\Мц(х,у) — u(x,y)\\ « 0.85, which is not small. This indicates that the 
variational approach may be expected to yield a much better approximation to the 
eigenvalues than to the eigenfunctions. The reason for this is demonstrated below. 

Courant's Maximum-Minimum Principle 

For the purpose of comparing the properties of eigenvalues arising in different eigen-
value problems, our formulation of the variational (minimum) problem is unsatisfac-
tory. It characterizes the nth eigenvalue for a given problem in terms of the first n — 1 
eigenfunctions of the problem, in view of the constraints (8.1.14). That is, we must 
first determine the eigenfunctions M\ (x ) , . . . , M„_ i (x) in order to specify the eigen-
value A„. For the same reason, it is a simple matter to estimate the leading eigenvalue 
for the problem (as seen in Example 8.1 ) but not the remaining eigenvalues. It is 
of interest to obtain a variational formulation that permits the determination of any 
eigenvalue directly without having to solve any other problem. Such an approach 
was developed by Courant and is known as the maximum-minimum principle. 

Given the eigenvalue problem (8.1.1)—(8.1.2) we consider a collection of (suffi-
ciently smooth) functions {mk(x)}, к = 1 ,2,3, . . . , defined in the region G. These 
functions need not satisfy any specific conditions in G or on the boundary dG. To 
determine the nth eigenvalue A„, we introduce a function w{\) that satisfies the 
boundary condition (8.1.9) and the n - 1 constraints 

(w(x), mfc(x)) = / / p(x)w(x)rnh(x) dv = 0, к = 1,2,. . . , n - 1. (8.1.25) 

Then we find the minimum of the Rayleigh quotient E(w(x))/(w(x), w(x)) by vary-
ing over all admissible functions w(x). Foreachsetoffunctionsmi(x),... ,mn_i(x) , 
we obtain a minimum for the Rayleigh quotient. We then vary these minima over all 
possible sets of functions mi (x ) , . . . , m„_i(x). The maximum of these minima is 
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equal to the nth eigenvalue λη. The maximum-minimum principle can be stated as 

E<*<"» · - V (8.L26) max 
{mi, . . . ,m„_i( 

mm (x) \{w{x),w(x)) 

To prove this result, we note that on putting w(x) = Σ™=1 CjMj(x), where the 
Mj(x) are eigenfunctions for (8.1.1)—(8.1.2), we may specify the constants Cj so 
that the n — 1 constraints (8.1.25) are satisfied. In fact, we have {w(x), mfc(x)) = 
Σ2?=ι Cj(-Mj'(x)> Trikix)), к = 1,2,.. . , n — 1. This is an underdetermined system 
of homogeneous linear equations for the n constants Cj, and it has a solution with 
at least one of the Cj remaining arbitrary. Therefore, we can satisfy the additional 
condition (w(x),w(x)) — Σ?=ι Cj = 1 by choosing the undetermined constant(s) 
appropriately. Note that w(x) satisfies the boundary condition (8.1.9) since each 
of the Mj(x) does so. Therefore, w(x) is an admissible function for the minimum 
problem. 

We have, for the w(x) given above, 

, E
(
{fx}\, = Σ ν 3 ^λ- ί>? =λ« с8·1·27) 

(Цх),Цж)) ^ J fr{ 3 

in view of (8.1.11) and the normalization of w(x), since 0 < X3 < Xn, j = 
1,2,... , n — 1. Therefore, for each set of functions mi (x ) , . . . , mn_χ (χ), we have 
found an admissible function w(x) for which the Rayleigh quotient is less than or 
equal λ„. Consequently, the maxima of all the minima of the Rayleigh quotient can-
not exceed λ„. However, if w(x) = M„(x), the nth eigenfunction for the problem 
(8.1.1)-(8.1.2),wehave 

E(Mn(x)) _ Ε(Μη{χ)) = An> ( 8 Л - 2 8 ) 

(Mn(x),M„(x)) 

using (8.1.16), so that the maximum-minimum principle (8.1.26) is verified. 

Variational Formulation of the Eigenvalue Problem 

We have shown that subject to appropriate constraints, the minima of the Rayleigh 
quotient (8.1.17) are the eigenvalues of (8.1.1)—(8.1.2) and they are assumed when 
the minimizing functions are eigenfunctions. Reversing this process, we now for-
mulate a variational problem for the Rayleigh quotient and show directly that the 
eigenvalues and eigenfunctions for (8.1.1)—(8.1.2) result from the solution of the 
minimum problem. The variational problem considered depends on the conditions 
placed on the admissible functions and the boundary conditions for the eigenvalue 
problem (8.1.1 )-(8.1.2). As seen in (8.1.10), the energy integral E(u) varies with the 
boundary conditions (8.1.9). 

In the case of Dirichlet boundary conditions [i.e., M(x) = 0 on dG] the appropriate 
Rayleigh quotient is 

E(w{\)) 1 
|w(x)||2 \\w(x) 

■ if [p(x){Vw{x))2 +q(x)w2{x)]dv. (8.1.29) 
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In the case of Neumann boundary conditions [i.e., дМ{х)/дп = 0 on dG] the 
Rayleigh quotient again has the form (8.1.29). However, for Robin boundary condi-
tions [i.e., дМ(х)/дп + h(x)M(\) =0ondG with h(x) = a(x)/ß(x)], we obtain, 
in view of (8.1.10), 

E(w(x)) 1 
/ / [p(Vw(x))2 + qw2(x)]dv + / h(x)pw2{x)ds 

JjG JdG \\w(xW IK*) 
(8.1.30) 

It is assumed that h(x) > 0 and that p, q, p are functions of x. In the case of mixed 
boundary conditions and if S3 is not an empty set, the Rayleigh quotient has the form 
(8.1.30) with the surface integral taken over S3. 

The variational problem is given as follows. The function w(x) that yields a 
minimum for the variational problem 

f(T(^?2 = minimum, (8.1.31) 
\\w(x)\\2 

among all functions w(x) that vanish on dG for the case of Dirichlet boundary 
conditions and satisfy the constraints 

(w(x),M1(x)) = (w(x),M2(x)) = · · · = (w(x),Mn_i(x)) = 0, (8.1.32) 

is—upon normalization—the nth eigenfunction Mn (x) of the problem (8.1.1)—(8.1.2) 
with Q = 1 and ß = 0 in (8.1.2). The nth successive minimum value of the Rayleigh 
quotient (8.1.31) is the eigenvalue Xn that corresponds to Mn(x). The eigenvalues 
Xj are ordered as 0 < Αχ < X2 < ■ ■ ■ < Xn- For the eigenvalue problem (8.1.1)-
(8.1.2) with boundary conditions of the second and third kinds, there no restrictions 
are placed on the boundary values of admissible functions w. In the case of mixed 
boundary conditions, we require that w(x) = 0 on S\. 

To demonstrate this result we assume that a sufficiently smooth minimizing func-
tion for the variational problem exists. (This is difficult to prove, in general.) Let 
the minimizing function be denoted by wn(x) and the admissible functions w(x) be 
represented as, with e is a constant parameter, 

io(x) = wn{x) + eW{x), (8.1.33) 

where W(x) satisfies the same admissibility conditions as w(x). 
In terms of (8.1.33) the variational problem becomes 

E(w(x)) E(wn(x)+eW(x)) 
и / suo = 7j , >, , w , чц2 = minimum. (8.1.34) 
\\w(x)\\2 \\wn(x) + eW(x)\\2 

As a function of the parameter e, the Rayleigh quotient in (8.1.34) assumes a minimum 
value when e = 0 [i.e., when w(x) = w„ (x)]. Consequently, e = 0 must be a critical 
or stationary point of the function £ (W(X)) / | | IÜ 2 (X) | | , so that its derivative with 
respect to e must vanish at e = 0. As a result we have 
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d_ 
de \\\wn + tW\\*] 

= P^F [lie 

= 0 (8.1.35) 
e=0 

pVwn ■ VW + q 
pE(wn) 

wnW dv + I hpwnW ds 
JdG 

If we are dealing with the Dirichlet or Neumann problem, the surface integral is absent 
in (8.1.35). Using (4.2.17) and the divergence theorem gives 

/ / pVwn ■ VW dv = - WV ■ (pVwn) dv+ / / V · (pWVwn) dv 
JJG JJG JJG 

= - if WV- (pVwn) dv + f pW^ ds. (8.1.36) 
JJG JOG on 

Introducing (8.1.36) into (8.1.35) yields 

pE(wn) JjG - V · (PVwn) + Wdv+ [ \-£l + hwn 
Jac [ dn 

Wpds = 0. 

(8.1.37) 
For the eigenvalue problem with Dirichlet boundary conditions, the surface integral 

in (8.1.37) vanishes since W(x) = 0 on the boundary. From the arbitrariness of W(x) 
in the region G (see Exercises 8.1.7 and 8.1.8 for some additional details regarding 
this point) we conclude that the bracketed term in the volume integral must vanish. 
Therefore, wn (x) satisfies the equation 

-V · (p(x)Vtun(x)) + q(x)wn(x) = §^Ш P ( * K W . (8-1-38) 

with гип(х) = О on dG. This implies that 

E(wn(x)) 

IKWII2 

\w„{x) 

λη (8.1.39) 

andiü„(x)/||iün(x)|| = Mn(x), in view of (8.1.1M8.1.2). 
In the case of Neumann boundary conditions for the eigenvalue problem, we must 

set h = 0 in the surface integral in (8.1.35). The arbitrariness of W(x) again implies 
that the integrals over G and dG in (8.1.37) must vanish separately. Thus wn (x) again 
is a solution of (8.1.38), but the vanishing of the surface integral leads to the natural 
boundary condition 

dwn(x) 

dn 
= 0. (8.1.40) 

dG 

We conclude that wn(x)/\\w„(x)11 = M„(x), the nth eigenfunction for the problem 
(8.1.1) with a(x) = 0 and ß(x) = 1 in (8.1.2), and that (8.1.39) again yields the 
eigenvalue λ„. 
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For the Robin boundary value problem [i.e., with h(x) / 0], the arbitrariness of 
W(x) implies that both integrals in (8.1.37) vanish separately. The natural boundary 
condition for wn (x) becomes 

dwn(x) 
d n + h{x)wn{x) = 0 (8.1.41) 

dG 

and wn(x) satisfies (8.1.38). Consequently, u;„(x)/||w;„(x)|| — Mn(x), the nth 
eigenfunction for (8.1.1), with a(x)/ß(x) = h(x) in (8.1.2), and (8.1.39) yields the 
eigenvalue An. 

In the case of mixed boundary conditions, we conclude as before that wn(x) 
satisfies (8.1.38). On Si, where Dirichlet conditions are given, we have wn(x) = 0. 
On S2,u>n(x) satisfies the natural boundary condition (8.1.40) (where dG is replaced 
by S2). On S3, wn(x) satisfies the natural boundary condition (8.1.41) (where dG is 
replaced by S3). 

We observe from (8.1.33) that \\w(x) — wn(x)\\ = O(e), but for the approximate 
eigenvalue λ = E(w(x))/\\w(x)\\2, we have λ - λ„ = 0(e2), since the O(e) term 
in the expansion of λ in powers of e vanishes, noting (8.1.35). This accounts for the 
fact that we consistently obtain better approximations for the eigenvalues than for the 
eigenfunctions when using the variational method. 

This concludes our direct demonstration that the eigenvalues and eigenfunctions 
for (8.1.1 )-(8.1.2) can be determined from a variational problem. Since (based on our 
assumptions) the Rayleigh quotient is nonnegative, so is its minimum and we must 
have λι > 0. The ordering of the eigenvalues is considered in Exercise 8.1.6. 

Distribution of the Eigenvalues 

The foregoing variational problem requires that the first n — 1 eigenfunctions must 
be known if we are to determine the nth eigenvalue and eigenfunction. However, 
Courant's maximum-minimum principle permits the determination of each eigen-
value independently of the other (lesser) eigenvalues. Restricting ourselves to the 
variational eigenvalue problem with Dirichlet boundary conditions, we now show 
that the eigenvalues λ„ —> oo as n —> 00. Although the variational problem shows 
(see Exercise 8.1.6) that the eigenvalues can be ordered as in (8.1.3), it may happen 
that the eigenvalues have a finite limit point and that infinitely many (independent) 
eigenfunctions can be associated with a single eigenvalue. However, the fact that 
Ara —» 00 implies that each eigenvalue has a finite multiplicity; that is, there are only 
a finite number of linearly independent eigenfunctions associated with each distinct 
eigenvalue. 

The use of the maximum-minimum principle permits the comparison of variational 
problems with different sets of coefficients in the Rayleigh quotients and problems 
defined over different regions G. We assume that the coefficients p(x), p(x), and q(x) 
that occur in the Rayleigh quotient have maximum and minimum values in the region 
G together with its boundary dG and continue to require that p(x) > 0, p(x) > 0, and 
q(x) > 0 in G. Let the constants рм, Рм, and дм, represent the maximum values 
andpm, pm, and qm, represent the minimum values of the functions p(x), p(x), and 
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q(x), respectively. (We assume thatpm and pm are not zero.) Further, the admissible 
functions w(x) will be required to vanish on dG and to satisfy the constraints (8.1.25). 

On examining the Rayleigh quotient appropriate for the Dirichlet problem, 

E(w(x)) = ][с\р(х)(Ую(х))2 + д(х)т2(х)}ау 

IM*)II2 JGp(x)w*(x)dv ' {- ■ } 

it is clear that if we replace p(x), p{x), and q(x) by the constants рм, рт> and QM, 
we obtain a new Rayleigh quotient, EM('w(x))/\\w(x)\\2

n, f° r which 

EM(W(X)) E(W(X)) 

\\w(xWm - \\w(xW [ ' } 

for each admissible function w (x). Now the inner product that occurs in the constraints 
(8.1.18) for the new problem with constant coefficients can be expressed as 

(w(x), mfe(x)) = / / pmw{x)mk(x) dv = / / p(x)w{x) ( m f c ( x ) - p - j dv. 

(8.1.44) 
Thus the constraints for the new problem must be given in terms of the set of functions 
rhk(x) = (pm/p(x))mk{x) if we want the new problem to have the same set of 
constraints. But in the maximum-minimum principle the set of functions mfc(x) 
ranges over all sufficiently smooth functions and, therefore, so does the set mfc(x). 
We conclude that the max-min of EM(W{X))/\\W(X)\\2

71 is greater than or equal to 
the max-min of E(w(x))/\\w(x)\\2. 

Similarly, replacingp(x),p(x), andq(x) in (8.1.42) by the constants рт,рм, and 
qm yields a modified Rayleigh quotient Em(w(x))/\\w(x)\\\1 for which 

Em(w(x)) E(w(x)) 

1Их)Н2м - IK*)II2 ' [ ' j 

The foregoing procedure may be applied to the constraints (8.1.25), and we con-
clude that the max-min of £'m(w;(x))/||w(x)||2vr does not exceed the max-min of 
£'(w(x))/||w(x)||2. For the set of admissible functions w(x), vanishing on dG and 
satisfying the constraints (8.1.25), each of the aforementioned max-min yields the 
nth eigenvalue for the given variational problem. Thus 

X{
n
m)<K<\{

n
M), (8.1.46) 

where \„ , \ n , and λ„ ' are the nth eigenvalues for the variational problem with 
the Rayleigh quotients Em(w{x))/\\w(x)\\2

M, E(w(x))/\\w(x)\\2, smdEM(w{x))/ 
| \w(x) | ̂ respectively. 

Next we introduce changes in the region G. Suppose that we consider a subregion 
G contained in G (i.e., G С G, where a portion of the boundary <9Gmay coincide with 
dG). Let E(w(x))/\\w(x)\\2 be the Rayleigh quotient for the variational problem in 
G. Suppose we require that all admissible functions w(x), in addition to vanishing 
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on dG and satisfying the constraints (8.1.25), must vanish on dG and in that part of 
G exterior to G. Since the additional requirements on the functions ги(х) effectively 
reduces the number of admissible functions for the variational problem, the maximum-
minimum for the new problem cannot be smaller than the max-min An attained when 
the added restrictions are absent. However, the new set of admissible functions is 
precisely that which is appropriate for the variational problem in the subregion G. The 
max-min for the variational problem in G is A„, the nth eigenvalue for that problem. 
As a result, we obtain 

λη < An. (8.1.47) 

To complete our discussion, we consider two rectangular regions, RM and Rm. 
(In three dimensions these are rectangular boxes.) The region RM contains the 
region G within it, whereas the region Rm is completely contained within G, so that 
Rm. С G С RM- First we consider the max-min variational problem for the Rayleigh 
quotient £,M(w(x))/||t(;(x)||^l, with the region G replaced by Д т but the problem 
otherwise unchanged. In view of (8.1.47), we conclude that 

A(Af) < д ^ ( 8 Л 4 8 ) 

where A„ and A„ are the nth eigenvalues for the problem associated with 
Ем(«'(х))/||и'(х)|1т' over the regions G and Rm, respectively. 

Next, consider the max-min variational problem for i?m(ti;(x))/||t[;(x)||^ with 
the region G replaced by RM but the problem otherwise unchanged. Using (8.1.47) 
gives 

W < λ<Γ\ (8.1.49) 

where A„ ' and An are the nth eigenvalues for the problem associated with 
Em(w(x))/\\w(x)\\M over the regions RM and G, respectively. 

Combining (8.1.46), (8.1.48), and (8.1.49) yields the set of inequalities 

д(т) < A(m) <χη< λ(Μ) < λ(Μ)_ (8.1.50) 

The eigenvalues A„ ' and A„ ' can be determined exactly by separation of variables 
since the equations have constant coefficients and the regions are rectangular. This 
has already been carried out for a special two-dimensional problem in Example 7.6, 
and the general case is considered below for two and three dimensions. Since the 
eigenvalues A„ and An tend to infinity as n —> oo (as shown below), so do the 
eigenvalues A„ for the Dirichlet problem, as was to be shown. 

Many additional properties of eigenvalues may be obtained by arguments similar 
to those given. For example, it can be shown that the eigenvalues A„ for the Neumann 
problem, the Robin boundary value problem, and the mixed boundary value problem 
also tend to infinity as n —► oo but we do not prove this here. The property that 
A„ —► oo as n —> oo, is used below to prove completeness in the mean square 
sense of the eigenfunctions for the Dirichlet problem. A similar argument can be 
used to prove completeness in the mean square sense of the eigenfunctions for the 
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other boundary value problems referred to above, given the fact that the eigenvalues 
A„ —> oo as n —> oo. 

Dirichlet Eigenvalue Problems for Elliptic Equations with 
Constant Coefficients 

We consider Dirichlet eigenvalue problems for elliptic equations with constant coef-
ficients. The results obtained serve to verify some of our conclusions and illustrate 
some of the properties of eigenvalues obtained above. 

The eigenvalue problem 

-pV 2 M(x) + qM(\) = \pM(x) (8.1.51) 

in the region G with the Dirichlet boundary condition 

M(x)|f lG = 0, (8.1.52) 

where p, q, and p are assumed to be constants, is associated with the variational 
problem 

E(w(x)) JG\p(VK>(x))* + qw2(x)}dv 
и / v.,, = ψ 2i \ A = m i n i m u m > (8.1.53) 
IM*)II2 IGPw(x)dv 

where all admissible functions w(x) must vanish on dG and satisfy appropriate ad-
ditional constraints. 

Now (8.1.51 ) can be written as 

V2M(x) + ^ ^ M(x) = V2M(x) + XM(x) = 0; (8.1.54) 
P 

that is, A = (Xp — q)/p. Similarly, the variational problem (8.1.53) can be expressed as 

E(w(x)) p / с ( У г ф ) ) 2 dv q . . 
и , 4 | | 2 = Tr о , ч , 1" - = minimum. (8.1.55) 

Both (8.1.54) and (8.1.55) imply that if we can solve a simplified version of (8.1.51 ) -
(8.1.52) or (8.1.53) with p = p = 1 and q = 0 [we just get the negative Laplacian on 
the left in (8.1.52)] and we denote the eigenvalues of that simplified problem by A„, 
then the eigenvalues An of (8.1.51 )-(8.1.52) or (8.1.53) are given as 

An = p A " + g , n = 1 ,2 ,3 , . . . . (8.1.56) 
P 

The relationship (8.1.56) between A„ and Ara demonstrates the following properties 
discussed in the general case of variable coefficients. If the coefficients p and q are 
increased, the eigenvalues increase, whereas the reverse is true if p and gare decreased. 
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Also if p is decreased, the eigenvalues are increased, whereas if p is increased, the 
eigenvalues decrease. 

Next we determine an explicit set of eigenvalues for several regions G. First we 
specialize G to be a rectangle as given in Example 7.6, with 0 < x < I and 0 < у < I. 
The eigenvalues for (8.1.54) and (8.1.52) are given as 

A„m = ( ^ ) 2 + f e ) , n,m= 1 ,2,3, . . . , (8.1.57) 

as shown in that example. 
Similarly, on considering the rectangular box 0 < x < I, 0 < у < I, and 

0 < z < I in three dimensions and separating variables, we readily obtain the 
eigenvalues for (8.1.54) and (8.1.52) as 

r /πη\2 (πτη\ (nk\ , , „ „ ,„ , ,„ч 
*Kmk=[-j-) +[-Г) + ( " г ) ' n, m, fc = 1 ,2 ,3 , . . . . (8.1.58) 

In both cases the eigenvalues can be expressed as a sequence {λ„} and we have 
λ„ —> oo as n —» oo, since Xnm —♦ oo and Xnmk —> oo as their subscripts tend to 
infinity. Consequently, in view of (8.1.56), Xn —* oo as n —► oo, since p and p are 
positive. Furthermore, the rectangular regions RM and Rm introduced in our earlier 
discussion may be assumed to have sides parallel to the coordinate lines or planes in 
the two- or three-dimensional cases, respectively. Since the eigenvalue equation in the 
case of constant coefficients is invariant under the translation of axes, the eigenvalues 
are given as in (8.1.57) or (8.1.58). Therefore, we conclude that the eigenvalues λ„ ' 
and Xn tend to infinity as n —> oo, and (8.1.50) implies that λ„ —> oo as n —> oo. 

It is seen from (8.1.57) and (8.1.58) that as the dimensions of the rectangular region 
G are changed, the eigenvalues change in a specific manner. As the lengths of the 
sides are decreased, the eigenvalues Anm and Xnmk increase, whereas the reverse 
is true if the lengths of the sides are increased. This result is consistent with our 
conclusion relating the eigenvalues of region G to those of a subregion G. 

The following example uses the foregoing results to obtain an upper and lower 
bound for the first eigenvalue for the Laplacian in the unit circle with Dirichlet bound-
ary conditions. 

Example 8.2. The Dirichlet Eigenvalue Problem for the Laplacian in a 
Circle. We discuss the Dirichlet eigenvalue problem for the unit circle. First the 
eigenvalues and eigenfunctions are determined by means of separation of variables. 
Then the inequalities (8.1.50) are used to bound the leading eigenvalue for the circle 
in terms of the eigenvalues for inscribed and circumscribed squares. 

Expressing the Laplacian operator in polar coordinates, we consider the eigenvalue 
problem 

V2M{r, Θ) + XM(r, Θ) = Mrr(r, Θ) + -Mr{r, θ) + \ΜΘΘ{Γ, Θ) + XM{r, Θ) = 0 
r rA 

(8.1.59) 
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in the unit disk 0 < r < 1, with the Dirichlet boundary condition 

M(1 ,0 )=O. (8.1.60) 

The solutions M(r, 0) are required to be single valued in the disk, so that 

М(г,0 + 2тг)=М(г,0). (8.1.61) 

To solve for M(r, 0) we use separation of variables and set M(r, 0) — F(r)G{6). 
Inserting this expression into (8.1.59) gives 

, F " ( r ) + ( l / r )F ' ( r ) + AF(r) G " ( 0 ) _ о 
F(r) - G(0) ' { ' 

where m2 is the separation constant. The equation for G(0) is 

G"(0) + m 2 G(0)=O. (8.1.63) 

The condition (8.1.61) requires G(0) to be periodic of period 2π, and this implies that 
m = n, an integer. The equation for F„ (r) (i.e., for each n) is 

K(r) + lK(r) +(x- ^ ) ^ ( r ) = 0, (8.1.64) 

which is Bessel's equation of order n. This equation was discussed in Example 4.7. 
The solutions Fn(r) that are finite at r = 0 are the Bessel functions and are given 
as Fn(r) = Jn{\f\r). The boundary condition (8.1.60) requires that Jn(\/A) = 0, 
so that the eigenvalues A are the squares of the zeros of the Bessel functions. These 
were denoted by α^η (k = 1,2,...) in Example 4.7, so that we have 

Afen = K „ ) 2 , fc=l,2,..., n = 0 , l , 2 , . . . . (8.1.65) 

Since with m — n, (8.1.63) yields the trigonometric functions cos(n0) and 
sin(n0), the eigenfunctions Mfc„(r, 0) are obtained from the functions Jo(akor), 
Jn{<^knf) cos(n0), Jra(c*fcnr) sin(n0). It is not difficult to normalize this orthogonal 
set of eigenfunctions. Here we are mainly concerned with the eigenvalues Afcra, and 
the first eigenvalue is given in terms of the first zero of the Bessel function Jo (ж), that 
is, Aio = (aio)2 « (2.40)2 = 5.76. 

To obtain an upper and lower bound for the first eigenvalue Аю for the unit circle, 
we consider inscribed and circumscribed squares of sides %/2 and 2, respectively, 
as pictured in Figure 8.1. The leading eigenvalue Ац for the circumscribed square 
is, on using (8.1.57), Xn = 2 (π/2)2 = π2 /2 « 4.93. The first eigenvalue for the 
inscribed square is Ац = 2 (π/\/2) = π2 « 9.87, so that Ац < Аю < Ац, 
consistent with (8.1.50). This is a poor method for approximating the eigenvalue Аю 
since the squares do not approximate the circular region very well. However, this 
method can be used to provide bounds for all the zeros of the Bessel functions. In 
Section 8.2 we use the Rayleigh-Ritz method to approximate the first eigenvalue Аю 
for the circle. 
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Figure 8.1 Eigenvalues for a circle. 

Completeness of the Eigenfunctions 

We can now prove the completeness of the orthonormalized set of eigenfunctions 
{Mk(x)} that satisfy (8.1.1) in G and the Dirichlet conditions Mk(x) = 0 on dG. 
Let u(x) be a smooth function defined in G that vanishes on dG [i.e., u(x) satisfies 
the admissibility conditions for the variational problem]. We expand u(x) in a series 
of eigenfunctions as in (8.1.5) with the Fourier coefficients given in (8.1.6). [u(x) 
need be normalized as in (8.1.7).] Let the remainder i?„(x) be defined as 

ß n ( x ) = « ( x ) - £ w f e M f e ( x ) . 

Then we show that 
n 

lim | |Я„(х)| | = Hm и(х)-У/ЫкМк(х) 

к=\ 

(8.1.66) 

(8.1.67) 

so that (8.1.5) converges to u(x) in the mean square sense, and the completeness 
of the eigenfunctions {Mk(x)} is demonstrated. The norm ||Я„(х)|| is defined as 
||я„(х)||2 = /ср(х)я*(х)л,. 

Since u(x) and the eigenfunctions {Mk(x)} are admissible for the variational 
problem, so is the remainder term Rn (x). In addition, for j = 1 , . . . , n, 

(Rn(x), Mj(x)) = («(x), Mj(x)) -^2Nk(Mk(x), Μ,-(χ)) = Nj - TV,- = 0, 
A : = l 

(8.1.68) 
in view of (8.1.4) and (8.1.6). Consequently, Я„(х) satisfies the constraints for the 
minimum problem that determines the (n + l)st eigenvalue λ η + ι and this yields for 
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the Rayleigh quotient (8.1.42), 

E(Rn{x)) 
>K +i> (8.1.69) 

lltfnWII2 

since the minimum is assumed for the eigenfunction Mn +i(x) . We write (8.1.69) as 

uwou" < £ ( я » м ) 
Xn + 1 

(8.1.70) 

We already know that λ „ + 1 —» oo as n —> oo, so that we need only show that 
E(Rn(x)) is bounded as n —> oo to conclude that ||Я„(х)|| —> 0 as n —► oo. 

Now, as is easily shown, 

E(u(x)) = E Rn(x) + J2NkMk{x) 
fc=l 

= E(Rn(x)) + E 
, f e = l 

+ 2 Σ Nk JJ bWVi?„(x) · VMfc(x) + q(x)Rn(x)Mk(x)} dv. 

Using (8.1.36), the integral term in (8.1.71 ) can be expressed as 

\p{x)WRn{x) ■ VMfc(x) + q(x)Rn(x)Mk(x)\ dv 

J2NkMk(x) 

(8.1.71) 

IL· (8.1.72) 

/X Rn{x)[-V ■ (p(x)VMfc(x)) + q{x)Mk{x)} dv = Xk{Rn(x), Mfe(x)) = 0, 

where we have used the fact that Rn{x) = 0 on dG, the orthogonality properties 
(8.1.68), as well as the fact that Mk(x) satisfies (8.1.1) with λ = λ^. Furthermore, 
we obtain from (8.1.11), 

E £jVfcMfc(x) 
Lfc=i 

n n 
= Σ Σ AfeJVfcJV^MfcixJ.M^x)) = 5 ] XkNl (8.1.73) 

j = l fe=l fc=l 

Combining these results gives 

n 

E(Rn(x)) = E(u(x)) - Σ λ*Λβ < ß(«(x)), (8.1.74) 
fc=l 

since E(u(x)) is finite by assumption and the eigenvalues Xk are nonnegative. We 
conclude from (8.1.74) that E(Rn (x)) is bounded for all n. Therefore, (8.1.70) shows 
that 11 Rn (x) 11 —► 0 as n —» oo, and the mean square convergence of the series (8.1.5) 
to u(x) and the completeness of the eigenfunctions Mk(x) is demonstrated. As was 
indicated earlier, if we can show that the eigenvalues λη for the second, third, and 
mixed boundary value problems tend to infinity, we can use the given argument to 
show that the corresponding set of eigenfunctions is complete. 
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For the one-dimensional Sturm-Liouville eigenvalue problem discussed in 
Section 4.3, the appropriate Rayleigh quotient is 

E(w(x)) = ti\p(x)(w>(x))*+q(x)w2(x)]dx χ 

\Mx)\\2 fQp{x)w2{x)dx 

when the admissible functions w(x) satisfy the Dirichlet conditions w(0) = w(l) = 0. 
The appropriate Rayleigh quotients for the second, third, and mixed boundary value 
problems are presented in the exercises. All the basic results given for the higher 
dimensional eigenvalue problem carry over to the Sturm-Liouville problem. Thus the 
completeness of the eigenfunctions (i.e., the sine functions) of Example 4.4, and the 
convergence of the Fourier sine series in the mean square sense can be demonstrated. 

We note that we can drop our assumption that the function u(x) expanded in a 
series of eigenfunctions must vanish on the boundary dG. This follows since any 
admissible function u{\) that does not vanish on dG can be approximated arbitrarily 
closely, in the mean square norm, by a function that does vanish on dG. In this norm 
the values of functions at specific points or lower dimensional regions do not play a 
significant role, in general. 

Solutions of the boundary value problems for the self-adjoint elliptic equations 
considered in Section 4.1 can also be determined by means of a variational principle. 
Indeed, Dirichlet's principle is a classical variational principle that determines the so-
lution of the Dirichlet problem for Laplace's equation to be the minimum of an energy 
integral. Dirichlet's principle and more general variational principles are considered 
in the exercises. We have discussed variational principles for eigenvalue problems 
in this section because the results are useful in solving problems for equations of all 
three types as indicated. 

Exercises 8.1 

8.1.1. Consider the eigenvalue problem of Example 8.1 (see Example 7.6). Show 
that the eigenvalues can be ordered as in (8.1.3) and that the energy integral 8.1.20) 
satisfies (8.1.16). 

8.1.2. Consider the eigenvalue problem of Example 8.1 with the Dirichlet condition 
(8.1.19) replaced by the Neumann condition дМ(х, у)/дп\а = 0 (see Example 
7.7). Show that the eigenvalues can be ordered as in (8.1.3) and that the appropriate 
energy integral [i.e., (8.1.20)] satisfies (8.1.16). 

8.1.3. Obtain the appropriate form for the energy integral (8.1.10) for the Sturm-
Liouville eigenvalue problem; — (p(x)u'(x))' + q(x)u(x) = Xp(x)u(x), 0 < x < I, 
u'(0) — hiu(0) — 0, u'(l) + h2u(l) = 0, with positive h\ and hi-

8.1.4. Show that the energy integral (8.1.10) for the eigenvalue problem u"{x) + 
Xu(x) = 0, 0 < x < I, u(0) = 0, u'{l) + hu(l) = 0, h > 0, is E(u(x)) = 
f0{u'(x))2 dx + hu2(l). Let un(x) = sin(v/A^a;) be the (unnormalized) 
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eigenfunctions for this problem with the A„ determined from \/X^ cos(\An I) + 
hsin(\/X^ I) = 0. Demonstrate that E(un(x)) = Xn(un(x),un(x)). Hint: Use the 
eigenvalue equation to simplify the energy integral. 

8.1.5. Consider the function u(x, y) = cxy sin(a;) sin(y). Determine the constant с 
such that the norm (8.1.21 ) of this function is unity. Observe that u(x, y) vanishes on 
the boundary of the square 0 < я < π, 0 < у < π, and evaluate the energy integral 
(8.1.21) for the function. Compare your result with the eigenvalue Лц = 2 for the 
square and evaluate the norm \\Мц(х,у) — u(x, y)\\ as in Example 8.1. 

8.1.6. Show that the eigenvalues found from the variational principle (8.1.31) with 
the constraints (8.1.32) can indeed be ordered as 0 < Χι < λ2 < · · · < λ„ < · · ·, by 
noting that to determine λ„ an additional constraint is added to those already given 
for the preceding eigenvalues so that the class of admissible functions is reduced. 

8.1.7. It is required in the text that W(x) defined in (8.1.33) satisfy the constraints 
(8.1.32). Show that if we set W(x) = W(x) + Σ"ΖΪ αάΜό{χ), where W(x) is 
arbitrary [apart from having to vanish on dG if W(x) vanishes there], we may choose 
the constants a,j = —(^(x), Mj(x)) so that W(x) satisfies the constraints (8.1.32). 
Replace W(x) by the preceding expression in the discussion following (8.1.35) and 
show that (8.1.37) results with W(x) replaced by W(x). 

8.1.8. Show that if JG f(x)g(x) dv = 0 for a continuous function /(x) in G and 
arbitrary functions g(x), we must have /(x) = 0. This result is often called the 
fundamental lemma of the calculus of variations. Hint: Assume that /(x) ф 0 at 
some point in G, so that it is nonzero in the neighborhood of that point because it is 
continuous, and then choose g(x) appropriately. 

8.1.9. Show that if JG f(x) dv = 0 for arbitrary regions G within which /(x) is 
continuous, we must have /(x) = 0. Hint: Proceed as in Exercise 8.1.8. This 
result is known as the du Bois-Reymond lemma and is closely related to the lemma of 
Exercise 8.1.8. 

8.1.10. The eigenvalues for the problem (xu'(x))' + (\/x)u(x) = 0, 1 < x < 
2, u(l) = u(2) = 0 (see Exercise 4.3.3), are given as λ„ = ^n / log2) , n = 
1,2, With p(x) = x, q(x) = 0, p(x) = l/x, determine the constants pm, рм, 
pm, and рм for the interval 1 < x < 2, where the subscripts m and M correspond to 
the minima and maxima of these functions. Obtain the eigenvalues for the appropriate 
constant coefficient problems obtained from this problem and verify the result (8.1.46) 
for the eigenvalues of all three problems. 

8.1.11. Obtain upper and lower bounds for the eigenvalues for the following problem: 
-V2M(x,y) +xyM(x,y) = XM(x,y), 0 < x < π, 0 < у < π, М(0,у) = 
Μ(π, у) = М{х, 0) = М(х, тг) = 0. 

8.1.12. Use the method presented in the subsection that deals with Dirichlet eigen-
value problems for elliptic equations with constant coefficients to estimate the lowest 
eigenvalue for the following problem: V2M(x, y)+XM(x, y) = 0, x2/a2+y2/b2 < 
1, a < b, M{x, y) = 0, x2/a2 + y2/b2 = 1. 
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8.1.13. Obtain an upper and lower bound for the lowest eigenvalue of the follow-
ing problem in a sphere: V2M(x,y, z) + XM(x,y,z) — 0, x2 + y2 + z2 < 1, 
M(x,y,z) = 0, x2 + y2 + z2 = 1, Proceed as in Exercise 8.1.12. The exact 
eigenvalue will be found in (8.2.18) to equal π2. 

8.1.14. Use the energy integral (8.1.10) to show that the leading eigenvalue Ai for 
the problem (8.1. l)-(8.1.2) increases as α/β increases. (Using the Courant max-min 
principle, it can be shown that all the eigenvalues A„ have this property.) 

8.1.15. Use separation of variables in polar coordinate to determine the eigenvalues 
and eigenfunctions for the following problem. — V2M(r, Θ) = AM(r, Θ), 0 < r < 
a, 0 < θ < φ, [φ < 2π], with M(r, Θ) = 0 on the boundary. The eigenvalues are 
the squares of zeros of Bessel functions. 

8.1.16. Use the results of Exercise 8.1.15 and the method of the text to obtain an upper 
and lower bound for the leading eigenvalue for the following problem. Mxx(x, y) + 
муу(х> У) + AM(x, y) = 0, (x, y) e G, with M(x, y) = 0 on dG, where the G is 
the interior of the triangle bounded by the lines у = 0, у = x and x = 1. 

8.1.17. Show that the (exact) eigenvalues and eigenfunctions for the problem of 
Exercise 8.1.16 are given as Xnm = π2(η2+πι2), n < m, n = 1,2,.. . , m = 2 , . . . , 
M„m(x, y) — sin(Trmx) sin(wny) — 8ΐη(πηχ) sm(nmy). Verify that the bounds on 
the leading eigenvalue obtained in Exercise 8.1.16 are correct. 

8.1.18. Show that the energy integral E(w(x)) [as defined in (8.1.29)] for functions 
w(\) that equal /(x) on dG is minimized by the solution u(x) of the Dirichlet problem 
-V-(p(x)Vu(x))+?(x)u(x) = 0, x e G; u(x) = / (x) , x e dG.Hint: Letw(x) = 
u(x) + W(x) where u(x) is the (assumed) solution of the problem and W(x) is an 
arbitrary function that vanishes on G. Show that ^(^(x)) = E(u(x)) + E(W(x)) > 
E(u(x)), if W(x) Φ 0. If p(x) = 1 and q(x) = 0, this is a classical result known as 
Dirichlet's principle. 

8.1.19. Adapt the procedure given in the text to show that the solution of the problem 
^(^(x)) - J G 2w(x)F(x) dv = minimum, where ^(^(x)) as defined in (8.1.29) 
or (8.1.30) is a solution of the problem —V · (p(x)Vu(x)) + q(x)u(x) = F(x), with 
homogeneous boundary conditions of the first, second, third, or mixed kind. In the 
case of Dirichlet boundary conditions, the admissible functions for the variational 
problem must vanish on dG for the Dirichlet problem or on the subset S\ of dG in 
the mixed problem. The boundary conditions of the second and third kind are natural 
and no restriction must be placed on the admissible functions in that case. In the latter 
cases, the boundary condition that the solution u(x) satisfies depends on the choice 
of E(w(x)). Hint: Let w(x) = u(x) + eW(x), where u(x) is the (assumed) solution 
of the minimum problem. 

8.1.20. Show that the solution of the problem E(w(x)) — JG 2w(x)F(x) dv — 
JdG 2w(x)p(x)f(x) ds — minimum, yields the solutions of the boundary value prob-
lems —V · (p(x) Vu(x)) + q(x)u(x) = F(x), x e G with the boundary conditions 
ди(х)/дп = jF(x) ordu(x)/dn + h(x)u(x) = f(x), x e dG, depending on whether 
E(w(x)) has the form (8.1.29) or (8.1.30), respectively. The boundary conditions 
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for the minimum problem are natural. To obtain the solution of the inhomogeneous 
equation with the Dirichlet boundary condition u(x) = /(x) on dG, we must pro-
ceed as in Exercise 8.1.19 except that all admissible functions must equal /(x) on 
dG. Adapt the foregoing results to obtain the appropriate minimum problem in the 
case of mixed boundary conditions. Hint: Let w(x) = u(x) + eW(x), where u(x) is 
the (assumed) solution of the problem. 

8.2 THE RAYLEIGH-RITZ METHOD 

The formulation of the eigenvalue problem in variational form has led to some inter-
esting and useful conclusions concerning the general properties of eigenvalues and 
eigenfunctions, as we have seen. For the most part, we have relied on separation of 
variables or exact solutions (in the one-dimensional case) to determine the eigenval-
ues and eigenfunctions for a given problem. The Rayleigh-Ritz method is an elegant 
and useful approximation method for the determination of the first few eigenvalues 
and eigenfunctions. In fact, it is most effective in approximating the lowest eigen-
value, and this is often the most important one in applications. As we shall see, 
the method yields an algebraic problem for the determination of the eigenvalues and 
eigenfunctions. 

The Rayleigh-Ritz method can also be used to obtain approximate solutions of the 
variational form of self-adjoint elliptic boundary value problems. For nonself-adjoint 
elliptic boundary value problems, the Galerkin method can be applied to the Galerkin 
form of these problems (see Exercise 6.4.8) to yield approximate solutions. These 
matters are considered in the exercises. 

To begin, we select n (basis) functions φ\(χ),..., фп(х) that are admissible for 
the variational problem under consideration. That is, they must be sufficiently smooth 
and must vanish on dG in the case of Dirichlet boundary conditions. For the case of 
Neumann or Robin boundary conditions, they need not satisfy any conditions on dG. 
These functions are chosen to be linearly independent and are selected, if possible, 
to be good approximations to the eigenfunctions for the problem. 

We form the linear combination 
n 

и>(х) = ^скфк(х) (8.2.1) 
fc=l 

with as yet undetermined coefficients ck and insert this sum into the Rayleigh quotient 
£(u;(x))/||it;(x)||2. This yields 

E{w{x)) Σ " Λ = Ι cJCk \L· b W j · Wfe + яФэФк] dv + JS3 Нрф^фк dsj 

\\W(X)\\2 EJfc=l cj°k 1СРФ]ФкаУ 
(8.2.2) 

If there are only Dirichlet or Neumann conditions on dG, S3 is an empty set and there 
is no integral over S3 in (8.2.2). If there are only Robin boundary conditions, the set 
S3 coincides with dG. Otherwise, S3 is a subset of dG. 
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Let the n x n matrices A = (a,jk) and В = (bjk) have the respective elements 

° i * = / / bV0jW-V0fc(x)+#j(*)0k(*)]<*«+ / Нрфз(х)фк(х)а8, (8.2.3) 
JJG JS3 

bjk = fi рфа(х)фк(*)ау, (8.2.4) 

where p, q, h, and p are functions of x. We introduce the n-component column vector 
с with the components c\, C2,.. . , c„, with cT as its transpose. Then (8.2.2) can be 
expressed as 

E(w(x)) cTAc 
\\w(xW cTBc' { ' 

as is easily verified. We remark that both cTAc and cTBc are quadratic forms in 
the Ci. Further, the (real-valued) matrices A and В are symmetric, as follows from 
(8.2.3)-(8.2.4). The matrix A is positive definite if q(x) > 0, whereas В is always 
positive definite, as shown in the exercises. This means that if q(x) > 0, cTAc and 
cTBc are positive scalars for any real vector с ф 0, and they vanish only if с = 0. 
If q(x) = 0, the matrix A is, at least, positive semi-definite. That is, it can vanish 
for с ф 0 if we take the фк (x) to be constants and a Neumann boundary condition is 
prescribed on all of dG. 

The Rayleigh quotient E(w(x))/\\w(x)\\2 is now a function of the vector с and 
we wish to minimize this expression. To proceed with the Rayleigh-Ritz method, we 
assume that с = σ is the vector that minimizes the expression (8.2.5) and represent 
the arbitrary vector с in the form с = σ + Σ%=1 e^efc. The vectors e i , . . . , e„ are the 
standard basis vectors for n-component vectors, so that e^ has 1 as its fcth component 
and zero as its remaining components. The constants tk characterize the variation of 
с around the minimizing vector <r. Inserting с into (8.2.5) gives 

ΙΜΌΙΙ2 [σ + ΣΖ=ι ̂ *]τΒ[σ + Σ*=ι W 
To determine the equation satisfied by <r, we differentiate (8.2.6) with respect to 

6fc (fc = 1 , . . . , n) and then equate all the ek and each derivative to zero, since the 
minimum occurs when all the €/t = 0. This yields the n equations (for к = 1 . . . , n) 

д E(w(x)) _ <$Ασ + aTAtk [^Βσ + aTBek]aTAa 

^ | Η Χ ) Ι Ι 2
[ ( 1 = Ο , . . . , £ „ = Ο ] _ °ΤΒσ {σΤΒσγ 

(8.2.7) 

Since A and В are symmetric matrices and aTAek and атВек are scalars, we have 
(aTAek)T = *ΪΑτσ = ^Ασ = στΑ^, and a similar result with A replaced by 
B. Thus (8.2.7) reduces to 

е Ц Α σ ~ l·^Βσ) = °' k = l , . . . , n , (8.2.8) 
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and the vector in parenthesis in (8.2.8) is orthogonal to the n basis vectors e i , . . . , e„, 
so that it must be the zero vector. This yields the eigenvalue problem 

T Л 

Ασ = ΧΒσ, X = % ^ . (8.2.9) 
σ'Βσ 

Now if the 0i (x ) , . . . , φη(χ) form an orthonormal set, we find from (8.2.4) that 
bjk = öjk, the Kronecker delta. Then В is a unit matrix, and (8.2.9) reduces to the 
standard eigenvalue problem for the matrix A with σ as the eigenvector and λ as the 
eigenvalue. If В is not a unit matrix, we also refer to σ as an eigenvector of A with 
respect to the positive definite matrix В and to λ as the corresponding eigenvalue. 

The characteristic equation for the determination of the eigenvalues of the matrix 
A is det[A — XB] = 0. This is an nth-degree algebraic equation for λ, and the fact that 
A and В are symmetric matrices implies that all the eigenvalues are real. Since the 
matrices A and В are positive definite if q(x) > 0, the eigenvalues must be positive. 
[If q(x) = 0, they are, at least, nonnegative.] Therefore, they can be ordered as 
0 < \i < X2 < · · · < λ„. 

For each eigenvalue Afc there is at least one independent eigenvector a^k\ and 
there are n linearly independent eigenvectors {σ^}, к = Ι,.,.,η, even if the n 
eigenvalues are not all distinct. It is easy to show that eigenvectors corresponding to 
different eigenvalues are orthogonal with respect to the matrix B. In fact, we have 
from (8.2.9), 0 = σΜ

Τ[Α - ΧόΒ]σ^ - σ^Τ[Α - XkB]a^ = σ^ΤΑσ^ -
aU)T

Atrw _ χσΜ
τ
Βσω + xk(Tu)T

B(T(k) = (A; _ χ σ <*)'Βσω where 

the symmetry of A and В was used. Thus if Xk ф Xj, we have σ^ Βσ^ = 0. 
If В is the identity matrix, the foregoing is equivalent to the dot product of the two 
vectors σ^ and σ^ and shows orthogonality. If В is not a unit matrix, we say that 
the vectors are orthogonal with respect to B. Using a Gram-Schmidt process (see 
Exercise 8.2.1) it is possible to orthonormalize the set of eigenvectors with respect to 
В and obtain σ ^ Βσ^) = ókj, к, j = l,...,n, where Skj is the Kronecker delta. 

Each eigenvector σ^ determines an approximate eigenfunction, Mj(\) = Σ£=ι 
c£ 'фк (x), j = 1, - . . , n, where the ck

3 are the components of the vector σ^. We ob-
serve that the inner product ( M3; (x), Mfc (x) ) of the set of approximate eigenfunctions 
Mj(x) is (Mj(x),Mfc(x)) = JGp(x)Mj(x)Mk(x) dv = £ " m = i c ^ Ä ™ = 

σ^ Βσ^. Thus approximate eigenfunctions corresponding to different approxi-
mate eigenvalues are orthogonal. Furthermore, if the { σ ^ } are orthonormalized 
with respect to B, so are the {Mj (x)} with respect to the inner product above and its 
(induced) mean square norm. 

The foregoing yields a basis for the validity of the Rayleigh-Ritz method. If the 
set of basis functions {φ\ (x ) , . . . , φη (x)} is a subset of a complete set of functions 
{фк{х)}, к = 1,2,..., any admissible function w(x) (including the exact eigenfunc-
tions) can be expanded in an infinite series of the form w(x) = Y^Li СкФк(х)- The 
original minimum problem is then replaced by a problem where the coefficients Cfc 
in the full expansion must be determined sp as to minimize the Rayleigh quotient. 
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Proceeding as above gives an infinite system of coupled equations for the с*;. There 
must be an infinite number of solutions of the system that yield all the eigenval-
ues and eigenfunctions, because each eigenfunction can be expanded in terms of the 
{фк (х)}. The Rayleigh-Ritz method replaces the infinite sum by the finite sum (8.2.1) 
and obtains n approximate eigenvalues and eigenfunctions for the problem. The ap-
proximate eigenfunctions are mutually orthogonal, as are the exact eigenfunctions. 
Increasing the number of basis functions yields improved results. 

The Courant maximum-minimum principle enables us to compare the approximate 
eigenvalues λ^ with the exact eigenvalues Ль In replacing the given variational 
problem with the Rayleigh-Ritz formulation, we are placing an additional constraint 
on the problem by requiring all admissible functions to be linear combinations of 
the functions φι(χ),..., фп(х)· Thus every eigenvalue obtained by means of the 
Rayleigh-Ritz process cannot be smaller than the exact eigenvalue, so that 

Xk<h, k = l,...,n. (8.2.10) 

Application of the Rayleigh-Ritz Method 

In Example 8.1 a single admissible function u(x,y) was used to approximate the 
lowest eigenvalue and eigenfunction for the Dirichlet problem for the Laplacian in 
the rectangle. This amounts to using the Rayleigh-Ritz method with a single function 
ф\ (x, y) that vanishes on the rectangle. Example 8.3 deals with the Dirichlet problem 
for the Laplacian in the unit sphere. 

Example 8.3. The Dirichlet Eigenvalue Problem for the Laplacian in a 
Sphere. We consider the eigenvalue problem 

V2M{x,y,z) + \M{x,y,z) = 0, {x,y,z)eG, (8.2.11) 

with the Dirichlet boundary condition M(x, y, z)\dG = 0, where G and dG are the 
interior and surface of a unit sphere centered at the origin. Introducing spherical 
coordinates (r, θ, φ) with 0 < r < oo, 0 < θ < 2π, 0 < φ < π, gives 

1 д ( 0дМ\ 1 д 
г2-т^ 1 + г2 дг \ дг ) г2 sin(0) дф 

. /±,дМ~\ 1 д2М Ж1, п s in(0)—- + . 2 / ^ яа2 + А М = 0, 
дф J s i n ^ ) αθ2 

(8.2.12) 

where М = М(г, θ, φ). The boundary condition becomes M(1, Θ, ф) = О. 
Using separation of variables, we set M(r, θ, φ) = F(r)Y(6, φ), and insert this 

expression into (8.2.12) to obtain after some simplification 

(r2F'(r)Y , ч , -1 
+\rz = F(r) γφ,φ) 

д ( . ΘΥ(θ,φ)\ 1 δ2Υ(θ,φ) 
8in(0) \:Ύ) + 

ап(ф) дф y-^j дф j · s i n 2 ^ дв2 
(8.2.13) 
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The left and right sides of (8.2.13) depend on different variables, so they must both 
be constant. With k2 as the separation constant, Υ(θ, φ) satisfies 

1 д ( . ΟΥ(θ,φ)\ 1 θ2Υ{θ,φ) 
. зт(ф) κ'Ύ' + . 2 „ "'^' + k2Y(0,φ) = 0. (8.2.14) 

sin(0) дф \ дф ) ъ\ъ?{ф) дв2 

We require that Υ(θ, φ) be periodic in Θ [i.e., Υ(θ + 2π, φ) = Υ(θ, φ)] and that it be 
bounded at φ = 0 and φ = π, as the coefficients in (8.2.14) are singular there. These 
conditions determine the values of k2 to be k2 = n(n + 1), n = 0 ,1 ,2 , . . . , and 
yield the solutions Υη(θ, φ) known as the spherical harmonics. A further separation 
of variables in (8.2.14) determines them to be products of Legendre functions and 
sine and cosine functions (see the exercises). 

The boundary value problem for F(r) becomes (l/r2)d/dr [r2dF(r)/dr] + 
[X - n(n + l ) / r 2 ] F{r) = 0, with F(r) bounded at r = 0 and F ( l ) = 0. With 
F(r) = f(r)/y/r, the ODE reduces to the Bessel equation of order n + | , 

1 
f"(r) + - f'(r) + 

r 
X-

(n + 1/2) 2П 
f(r) = 0. (8.2.15) 

The boundedness condition on F(r) at r = 0 implies that (up to a constant mul-
tiple) f(r) = Лг+1/2(\/Аг) and the boundary condition at r = 1 requires that 
Jn+1/2(VX) = 0. 

If ocmn (m = 1,2,...) are the roots of the Bessel function J n + i / 2 ( a ) , we obtain 
the eigenvalues 

Xmn = (amn)
2, n = 0 , l , 2 , . . . , m = l , 2 , . . . . (8.2.16) 

The roots of the Bessel functions are all real and for each n are listed in increasing 
order. It is well known that Ji/2(x) = \/2/7rxsin(z) and, in fact, all the Bessel 
functions Jn+x/2{x) can be expressed in terms of powers of x and the sine and cosine 
functions. 

We have shown that the eigenvalues for the sphere are given by (8.2.16) and the 
associated eigenfunctions are 

Mmn = -т=./„+1/2(атпг)У„(0,<£). (8.2.17) 

(The Mmn are not normalized.) The lowest (exact) eigenvalue is given by Xw = a2
0, 

where ЙЮ is the smallest positive zero of the Bessel function J\/2{x). In view of the 
above, we have 

Aio = a\0 = 7Г2. (8.2.18) 

To approximate the eigenvalue λχο using the Rayleigh-Ritz method, we introduce 
the function φι (r, θ,φ) = 1 — r, which appears to be the simplest function that 
vanishes at r = 1 and is bounded at r = 0. Then w(r, Θ, ф) = с\ ф\ (г, Θ, </>), is an 
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admissible function for the variational problem associated with the Dirichlet problem 
for (8.2.11). The Rayleigh quotient is 

E(w) c\ % /0
2π ^ 1 (Vfr (г, θ, φ)? r2 s inW dr άθ άφ ι ο 

H I 2 <$ / ; /0
2π fi фЦг, θ, φ) г2 аш(ф) άτάθάφ 

Since the exact eigenvalue is π2 « 9.87, the approximate eigenvalue Аю = 10 given 
in (8.2.19) yields excellent agreement. We do not discuss how well the first eigenfunc-
tion is approximated nor approximations for higher eigenvalues and eigenfunctions. 

Diffusion Process with a Chain Reaction 

In the foregoing examples we have been concerned primarily with the determination 
of the leading or smallest eigenvalue in the problems considered. In a number of 
applications, a precise determination of this eigenvalue is of the greatest interest, as 
is the case in the following problem. 

Let u(x, y, z, t) be the concentration of some diffusing substance, and let the 
strength of the sources in the substance be proportional to the concentration. Accord-
ing to our discussion in Section 4.1, the equation for и is given as 

ut(x, y, z, t) = c2 V2u(x, y, z, t) + ηη(χ, у, z, t), (8.2.20) 

where c2 and 7 are positive constants, both of which are characteristic of the sub-
stance. Note that —7, which corresponds to q in (4.1.4), is now negative rather than 
nonnegative. An initial and boundary value problem of interest for (8.2.20) occurs 
if we consider the diffusion process within a bounded region G, with the initial and 
boundary conditions 

u(x,y,z,0) — f{x,y,z), u(x,y,z,t)\dG = 0. (8.2.21) 

Applying the separation of variables method to problem (8.2.20)-(8.2.21 ), we put 
u(x, y, z, t) = N(t)M(x, y, z) and insert it into (8.2.20). This leads to 

V2M(x,y,z) _-N'(t)+>yN(t) _ 
M(x,y,z) - c*N(t) ~ A ' l* ' 

where λ is the separation constant. Thus, we consider the eigenvalue problem 

V2M(x, y, z) + XM(x, y, z) = 0, (x, y, z) 6 G, M{x,y, z)\dG = 0. (8.2.23) 

The eigenvalues Xk (fc = 1,2,...) are positive and can be arranged as 

0 < Ai < λ2 < λ3 < · · ■ < Afe < · · ■, (8.2.24) 

as shown previously. We denote the associated eigenfunctions by Mk(x,y, z). For 
each λ^ we obtain a solution Nk(t) of the separated equation for N(t) in the form 
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Nk(t) — ak exp[(7 — XkC2)t], к = 1,2,..., with arbitrary constants a,k- Finally, 
the solution of (8.2.20)-(8.2.21)is given as 

OO 

u(x,y,z,t) = ^2акМк{х,у,z)exp[(7 - Afcc2)i], (8.2.25) 
fc=l 

with the ak given as the Fourier coefficients in the eigenfunction expansion of the 
initial concentration f(x, y, z). 

An important question regarding the solution (8.2.25) is whether the concentration 
u(x, y, z, t) grows without bound as the time t increases, in which case the prob-
lem (8.2.20)-(8.2.21) is unstable. Since the concentration at any time t is a result 
of reactions that occur within the substance as was indicated, we say that when the 
concentration u(x,y,z,t) increases exponentially, a chain reaction is taking place 
because of the rapid increase in u(x, y, z, t). The solution (8.2.25) shows that ex-
ponential growth in t occurs if 7 — A^c2 > 0. In view of (8.2.24), we see that the 
lowest eigenvalue Ai is the most significant, and if 7/c2 > λι, a chain reaction takes 
place in the substance. Now the eigenvalue varies as the region G is changed, and the 
parameters c2 and 7 can presumably be adjusted for given substances. Therefore, if 
we fix two of the three constants, say, 7 and c2, we may define a critical value of the 
third constant, λι. If λι > 7/c2, no chain reaction takes place, whereas if λι < 7/c2, 
a chain reaction does occur. Thus the critical value of λι, which we denote by λ^ , 
is given as Aj ' = 7/c2. 

For a specific problem in a given region it is important to determine the first 
eigenvalue (i.e., the lowest) to see if it is greater or less than the critical value. In 
the case of the unit sphere, we have found that the lowest eigenvalue equals π2. The 
Rayleigh-Ritz method yielded a slightly higher value. It is clearly important to be 
able to approximate the lowest eigenvalue as accurately as possible. In Exercises 
8.5.31 and 8.5.32 we consider a waveguide problem for which the determination of 
the leading eigenvalue is of critical importance. 

Rayleigh-Ritz Method for Sturm-Liouville Problems 

In the following examples we apply the Rayleigh-Ritz method to two Sturm-Liouville 
eigenvalue problems. 

Example 8.4. A Sturm-Liouville Problem with Mixed Boundary 
Conditions. The eigenvalue problem with the mixed boundary conditions 

M"(x) + XM(x) = 0, 0 < x < 7Г, M'(0) = 0, Μ(π) = 0, (8.2.26) 

has the eigenvalues and the (unnormalized) eigenfunctions 

fc = 0 ,1 ,2 , . . . . (8.2.27) 

We use the Rayleigh-Ritz method to approximate the two lowest eigenvalues. 

2 
λ* = ( fc+ 2 ) ' Mk{x) =cos к + | ·] x 
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The appropriate Rayleigh quotient for this problem is 

E(w{x)) KWixWdx 

IKz)ll2 %w2{x)dx ' { ' 

The admissible functions w(x) are required to vanish at x = π [i.e., w(n) = 0]. At 
x = 0 there is a natural boundary condition so that no restrictions need be placed on 
w(x) at that point. 

To apply the Rayleigh-Ritz method, we select two functions 0ι (χ) and 02 (x) that 
satisfy the admissibility conditions; that is, 0ι(π) = 02 (π) = 0. As in (8.2.1), we set 

w(x) = Ci0i(a;) + с2ф2{х), (8.2.29) 

with 0i (x) and ф2(х) chosen as 

φι(χ) =π2-χ2, φ2{χ)=π3-χ3. (8.2.30) 

We note that 0ι (π) = 02(π) = 0 and that, in addition, φ[ (0) = 02(O) = 0. Although 
admissible functions need not have vanishing derivatives at x = 0, we expect to get 
improved results with our choices for 0i (x) and 02 (x) since they are expected to 
more closely approximate the eigenfunctions (8.2.27), whose derivatives do vanish 
at x = 0. 

Evaluating the integrals (8.2.3)-(8.2.4) with p = p = landq = 0 and V0 replaced 
by 0', we obtain the matrices 

" 4π3/3 3π4/2 
A = 

_ 3π4/2 9π5/5 

The two roots of the characteristic equation det(A - \B) = 0 are λι = 0.25, \2 = 
2.39. We have retained only two decimal places, and λι is, in fact, slightly larger than 
0.25. Comparing the approximate eigenvalues Ài and A2 with the exact eigenvalues 
λι = 0.25 and \2 — 2.25 [see (8.2.27)], we observe that there is excellent agreement 
between \x and Ai but that Ä2 is not as close to Аг. This is the norm for the Rayleigh-
Ritz procedure, in that the higher eigenvalues are more poorly approximated than 
the lower ones. We do observe that we have Ai < Ai and \2 < X2, as required by 
(8.2.10). 

Given the approximate eigenvalues λ\ and À2 we can determine approximate 
eigenfunctions by specifying two sets of coefficients c\ and c2 in (8.2.29). We do not 
carry out this calculation. 

В 
8π5/15 7ττ6/12 

7π6/12 9π7/14 
(8.2.31) 
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Example 8.5. A Sturm-Liouville Problem with a Variable Coefficient. We 
consider the problem 

M"{x) + (A - ex)M(x) = 0, 0 < x < n, M(0) = 0, Μ(π) = 0. (8.2.32) 

We assume that 0 < e С 1, so that q(x) = ex is uniformly small in the interval 
0 < x < n and is nonnegative. With e = 0, (8.2.32) reduces to an exactly solvable 
problem. In any case, (8.2.32) can be solved exactly in terms of Airyfunctions, which 
are solutions of the equation y"(x) — x y(x) = 0. Nevertheless, we do not use the 
exact solutions of (8.2.32) but use approximate techniques to determine the lowest 
eigenvalue for the Sturm-Liouville problem (8.2.32). 

First we apply the Rayleigh-Ritz method. In view of (8.1.75), the Rayleigh quotient 
appropriate for (8.2.32) is 

E(w(x)) f*l(wi(x))*+exw*(x)}dx 

II4»0II2 f*w2(x)dx ' K ' ' ' 

The admissible functions w(x) are required to vanish at x = 0 and x = n. Since e is 
small and for e — 0 the lowest eigenvalue for (8.2.32) is λι = 1 and the correspond-
ing eigenfunction is M\(x) = y/(2/n)s'm(x), we pick φι{χ) in the Rayleigh-Ritz 
approximation (8.2.1) to be φι(χ) = sin(a;). Clearly, φι(χ) is admissible for the 
variational problem. 

With w(x) = с\ф\(х) we have as the leading approximate eigenvalue 

E{w{x)) fQ[cos2(x)+exsm2(x)]dx επ ♦ , . , , , > 
TkRF " /0"aina(*)d« " + T - λι· (8·2·34) 

Now for 0 < x < π, q(x) = ex satisfies the inequalities 0 < ex < en, with qm = 0 
and qM = en representing the minimum and maximum value of q(x), respectively. 
Then (8.1.46) implies that \{™] < λι < \[M), where A^m) = 1 and \[M) = 1 + en, 
as is easily seen on replacing λ — ex by A and by A — en to determine Х)™' and X[ , 
respectively. The Rayleigh-Ritz procedure implies that 

en 
λ ι < λ ! = 1 + γ , (8.2.35) 

and we have λχ < X\ . The smaller e is, the better the approximation to λχ. 
Alternatively, a perturbation method may be applied to the problem (8.2.32). The 

solutions M(x) and the eigenvalues A are functions of e; that is, M(x) — M(x; e) 
and A = A(e). Consequently, we expand both M(x; e) and A(e) as 

M(x; e) = M<°> (x) + eM(1) (x) + · · ■, A(e) = X{0) + e A(1) + · · ■. (8.2.36) 

We insert (8.2.36) into (8.2.32) to obtain 
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M"{x;e) + (X-ex)M(x;e) 

+ e 

^ М + Л(0)М(0)(,) 
dx2 

d2Mil)№ + А ( % ( » ( 1 ) + (A«1) - x)AfW(x) 
cte"2 0, (8.2.37) 

M(0)(0) + eM(1)(0) + · · · = М(0)(тг) + еМ(1)(тг) + · · · = 0. (8.2.38) 

Equating coefficients of like powers of e to zero in (8.2.37)-(8.2.38) yields 

d2M
d

(°2iX) + X{0)M^(x) = 0, M<°>(0) = Μ(°>(π) = 0 (8.2.39) 

for M^ (x). The leading eigenvalue and normalized eigenfunction for this problem 
are 

W 
The problem for M( 1 )(x) 

*м!У+хммы 
ax1 

' = 1, 

is 

(x) = 

M[0)(x) = d-sm{x). 
7Γ 

(8.2.40) 

-(V i) ж)М(0)(ж), M(1)(0) = Μ( 1 )(π) = 0. 
(8.2.41) 

With λ(0) = λ(!0) = 1, the first eigenvalue for (8.2.39), the inhomogeneous ODE in 
(8.2.41) has no solution unless the inhomogeneous term is orthogonal to the eigen-
function М[0) (X) . This follows on multiplying the ODE in (8.2.41 ) by м[0) (a;) and 
integrating from 0 to π. We have 

" ^ + А^мфх=Гм 
. dx J Jo 

" (8.2.42) 

on integrating by parts and using (8.2.39) and (8.2.41). This implies that / ^ ( λ ^ — 
x) sin2(я) dx = 0, from which we conclude that 

/■7Г 

/ M\0) 

Jo dx1 dx = 0 

l(D 

λ(1) = λί1) = ί . 
1 2 

(8.2.43) 

Having determined Ai , we can specify M\ (x), but this is not carried out. 
Inserting (8.2.40) and (8.2.43) in (8.2.36) gives 

A i ( e ) » l + y . (8.2.44) 

The approximation (8.2.44) to the lowest eigenvalue is identical to that given by the 
Rayleigh-Ritz method. This appears to be due to our choice of φ\ (a;) in the Rayleigh-
Ritz method to equal the leading eigenfunction for (8.2.32) with e = 0. However, the 
perturbation method readily yields approximations to the higher eigenvalues, whereas 
this is not so easily accomplished by way of the Rayleigh-Ritz method, as we have 
seen (see also Section 9.2). 
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Exercises 8.2 

8.2.1. The Gram-Schmidt Process. Let (φ(χ),ψ(χ)) represent a (weighted) inner 
product for either vectors or scalars. Assume that the set of functions {фк(x)} 
(k = 1,2,...) is linearly independent. Show that if ||0(x)||2 = (ф(х),ф(х)), 
the set of functions {фк(х)} given as, φι{χ) = </>ι(χ)/||0ι(χ)||, 0г(х) — <fo(x) -
(02(χ),<Μχ))0ι(χ), 02(x) = 02(x)/||02(x)||, ^з(х) = 0з(х) - («/»з(х), 
<M*))0iW - ОЫх),<Ых))<Ых), 0з(х) = 0з(х)/||0з(х)||, <Μχ) = <Μχ) -
(04(х), Ф\(x))0i (х) - (04(х), 02(х))</>2(х) - (04 (х), 0з(х))0з(х), and so on, is an 
orthonormal set. 

8.2.2. Let(0(ar),T/>(a:)) = / 0 0(a;)V'(a;)cia;andput<?!>i(x) = l, 02(z) = x, фз(х) = 
x2, ΦΑ{Χ) = ж3. Construct an orthonormal set ф\ (х), (feOc), 03(:r),and(/>4(:r)using 
the Gram-Schmidt process. 

8.2.3. Given the three (independent) row vectors d>J = [1,2, — 1], φζ = [0,1,3], φζ 
= [—1,1,0], form an orthonormal set of vectors φ1: φ2, and <j>3 from the preceding 
set using the Gram-Schmidt method and the dot product of the vectors as an inner 
product. 

8.2.4. Conclude from the fact that E{w(x)) with q(x) > 0 and ||ги(х)|| are both 
positive if w(x) vanishes on dG and is not identically zero that the matrices A and В 
defined by (8.2.3)-(8.2.4) must be positive definite in view of (8.2.5). 

8.2.5. Separate variables in equation (8.2.14) for the spherical harmonics with k2 = 
n(n + 1), and let Υη{θ, φ) = Н(ф)С(в) to obtain the equations 

1 d sin(0) άΗ(φ)] , Г . , ,. μ2 

sin(0) άφ |_ άφ + η(η + ί)-
sin2(0) 

Я (0) = 0, 

and G"(9) + μ2Οβ) = 0, where μ2 is the separation constant. Conclude that since 
G{9) is periodic of period 2π, μ = m is an integer so that the G(6) are trigonometric 
functions. Leti = cos φ in the equation for Η(φ) and obtain d/ dt (1 — t2)dH{t)/dt 

+ [n{n + 1) - m 2 / ( l - i2)] H{t) = 0 in the interval - 1 < t < 1, where H(t) = 
Н(совф) = Н{ф). This is the associated Legendre equation. The solutions Н(ф) 
must be bounded at ф = 0 and ф = ж. Consequently, H(t) must be bounded at 
t = ±1 . If m = 0, the bounded solutions are the Legendre polynomials Pn(cos9) 
discussed previously. If m ф 0, bounded solutions are obtained only if m < n and 
are given as the associated Legendre functions P™ (cos ф). The functions P™ (t) can 
be defined as P™(i) = ( - l ) m ( l - t2)m/2dm/dtm[Pn{t)} in terms of the Legendre 
polynomials Pn{t). 

8.2.6. Differentiate the Legendre equation d/dt [(1 - t2)dPn(t)/dt]+n(n+l)Pn{t) 
= 0, m times and show that H(t) = (1 - t2)ml2dmPn(t)/dtm is a solution of the 
associated Legendre equation of Exercise 8.2.5. Determine that P™(t) = Oif m > n 
from its definition in terms of Pn(t), and show that P™{t) is bounded at t = ±1 . 
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8.2.7. Determine the coefficients c\ and c2 corresponding to each eigenvalue Ai 
and \i for the problem of Example 8.4, and show that the resulting functions are 
orthogonal. 

8.2.8. Use the Rayleigh-Ritz method to approximate the leading eigenvalue for the 
problem V2M(x, y) + XM(x, y) = 0, x2 + y2 < 1, M(x, y) = 0 , x2 + y2 = 1. 
Use the approximating function φ\ (r) = cos(7rr/2), where r2 = x2 +y2. Compare 
the result with that given in Example 8.2. 

8.2.9. Construct a function φ\ (χ, y) that vanishes on the triangle given in Exercise 
8.1.16 and use the Rayleigh-Ritz method to approximate the leading eigenvalue for 
the problem as given in Exercise 8.1.17. 

8.2.10. Approximate the lowest eigenvalue for the problem in Example 8.4 by using 
only the function φ\ (χ) as defined in (8.2.30). Compare the approximate result with 
that obtained in Example 8.4. 

8.2.11. Using the appropriate Rayleigh quotient, approximate the first eigenvalue for 
the following problem: M"(x) + XM{x) = 0, 0 < x < 1, M(0) = 0, Af'(l) + 
M(l) = 0. Let 0i (x) =3x- 2x2. 

8.2.12. Solve the problem of Example 8.5 for the leading eigenvalue by letting 
w(x) = с\ф\{х) + С2</>2(ж), with the basis functions ф\{х) = sin(a;) and ф2{х) = 
arcos(a;/2). 

8.2.13. Explain why if the approximation functions фк (x) in (8.2.1 ) are chosen to be 
elements of a complete set {</>fc(x)}, the more terms one takes in the series (8.2.1), 
the better the approximation to the leading eigenvalue and eigenfunction. 

8.2.14. Use the Rayleigh-Ritz method to approximate the leading eigenvalue for the 
problem in Exercise 8.1.10. Let φι(χ) = (x — l)(x — 2). 

8.2.15. Show how the Rayleigh-Ritz method can be applied to the variational prob-
lems given in Exercise 8.1.19. Hint: Express w(\) as in (8.2.1 ) with w(\) required to 
vanish on dG for the Dirichlet problem or on S\ for the mixed problem, but arbitrary 
on dG or on a subset thereof where boundary conditions of the second or third kind 
are assigned. 

8.2.16. Use the Rayleigh-Ritz method (see Exercise 8.2.15) to approximately solve 
the following Dirichlet problem for Poisson's equation within the square: V2w(z, y) = 
- sin(a;), 0 < £ < π , 0 < у < π, u(x, у) = 0 on the boundary. Use a one-term 
Rayleigh-Ritz approximation. 

8.2.17. Show how the Rayleigh-Ritz method can be applied to the variational prob-
lems of Exercise 8.1.20. Hint: See Exercise 8.2.15. For Dirichlet conditions, let 
w{\) — φο(χ) + Σ2=ι cfc0fc(x), where φ0{\) - /(x) on dG or S\ and the фк(\) 
vanish on dG or S\. If boundary conditions of the second or third kind are given on 
all or part of dG, put ^o(x) = 0 and let the </>fc(x) be unrestricted there. 
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8.2.18. Solve the Dirichlet problem V2u(:r, y) = —1, x2 + y2 < 1, u(x,y) = 
x2, x2 + y2 = 1, using the Rayleigh-Ritz method. [See Exercise 8.2.17 and let 
<j>i(x,y) — x2 and ф2(х,у) = cos(7rr/2) as in Exercise 8.2.8.] 

8.2.19. Consider the nonself-adjoint elliptic equation and the integral relation of 
Galerkin form given in Exercise 6.4.8. Depending on the boundary conditions as-
signed for u(x) on G, expand u(\) in the same form as the function w(x) in Exercise 
8.2.17. Then choose n independent functions vi(x), 1>г(х), · · ·, fn(x) that are re-
quired to vanish on whatever part of dG that u(x) itself is prescribed on, but are 
otherwise arbitrary. Insert the expansion of u(x) into the Galerkin integral relation 
and successively set v(x) equal to vi{x), иг(х), ■· ■, vn(x). This yields n equations 
for the coefficients c\, с г , . . . , cn. This technique for constructing an approxi-
mate solution to the boundary value problem is known as the Galerkin method, (a) 
Determine the system of equations for the с*. (b) Show that the system obtained 
in part (a) is identical to the system determined from the Rayleigh-Ritz method if 
Wfc(x) = Фк(х), к = l,...,n (see Exercise 8.2.17) and the vector b(x) = 0, so that 
the original equation is self-adjoint. 

8.2.20. Use the Galerkin method to solve the Dirichlet problem V2u(x, y)—ux(x,y)+ 
uy(x, y) = — 1, x2 + y2 < 1, where u(x, y) satisfies the same boundary condition 
and is expanded as in Exercise 8.2.18, and where we set v(x, y) = 1 — x2 — y2. 

8.3 RIEMANN'S METHOD 

Riemann 's method is a classical technique for solving the Cauchy problem for hy-
perbolic linear partial differential equations in two independent variables. Although 
this method does not yield closed-form solutions except in a limited number of cases, 
it does provide useful information about domains of dependence and influence for 
solutions in general. It was shown in Section 3.1 that second order hyperbolic equa-
tions in two variables can be brought into one of the two canonical forms (3.1.19) 
or (3.1.21), and the Riemann method is generally applied to one of these forms. We 
do not consider this method in its full generality, but we also do not use either of 
the two canonical forms for hyperbolic equations in order to show how to deal with 
curvilinear characteristics. 

We consider the equation 

utt(x,t) -j2(x)uxx(x,t) + a(x)ux(x,t) + ß(x)ut(x,t) +c(x)u(x,t) = F(x,t), 
(8.3.1) 

with j(x) > 0, given for —oo < x < oo, t > 0. The initial conditions given at t = 0 
are 

u(x,0) = f(x), ut(x, 0) = g(x), -oo < x < oo. (8.3.2) 

With the operator M defined as 

Mu = utt{x,t) -j2(x)uxx(x,t) + a(x)ux(x,t) + ß{x)ut(x,i) +c(x)u(x,t), 
(8.3.3) 
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Figure 8.2 The characteristic triangle. 

the adjoint operator M* is given as 

M*w = wtt(x,t)-(j2(x)w(x,t))xx-(a(x)w(x,t))x-ß(x)wt(x,t)+c(x)w(x,t). 
(8.3.4) 

Introducing a bounded but as yet arbitrary region G in (x, i)-space with boundary 
dG, we obtain on using (3.6.5)-(3.6.6) 

/ / {wMu - uM*w} dx dt 

= / [—"f2wux + u(-y2w)x+auw] dt+[uwt— wut-ßuw] dx, (8.3.5) 
JdG 

with integration over dG carried out in the positive direction. 
The characteristic curves for (8.3.1) are solutions of the equations dt/dx = 

=F 1/η(χ), so that they are given by 

/

X J 

—— = constant. (8.3.6) 

7(s) 
Let (ξ, τ) be a point in the (x, i)-plane with ξ > 0. The two characteristic curves 
(8.3.6) that pass through that point are given as t ± L ds/j(s) = r. If the curves 
are extended backward in t until they intersect the x-axis, we obtain a characteristic 
triangle whose base is a segment of the z-axis and whose other sides are characteristic 
curves. The interior of the triangle is denoted as G and the triangle itself by dG, as 
shown in Figure 8.2. The boundary dG is divided into three parts, dGo, dG+, and 
dG-, and we apply (8.3.5) to this region. The figure displays the positive direction 
of integration. 

On the line segment dG0 the line integral in (8.3.5) becomes 

/ [uwt -wut — ßuw) dx = / [f(x)wt(x,0) — (g(x)+ß(x)f(x))w(x,0)} dx, 
JdGo JA-

(8.3.7) 
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since dt = 0, u(x, 0) = f(x), and ut(x, 0) = g(x). On the characteristic segments 
dG± we have, since Ύ(Χ) > 0,dt = ψί/^(χ) dx, and forany function v{x,t) defined 
and differentiable along the characteristics, dv/dx = vx+dt/dxvt = vx^fl//y(x)vt-
Thus 

/ [—"t2wux + u(j2w)x + auw] dt + [uwt — wut — ßuw] dx 
JdG± 

JdG+ 

ndw „7 1 - n 2——I- 3—w H—;aw ± — (iw 
dx 7 7 J 

1 

1 
- i 
7 } dx 

dw 7' 1 1 
2 — + 3—w + -^aw ± -ßw 

dx 7 7^ 7 
(8.3.8) 

Collecting the results, we obtain 

rA+ 

2~/uw\p = {~ffw\A_ + 7fw\A+ } - / [fwt ~(g + ßf)w] dx 
JA-

+ Г т [2— 
JA+ U L dx 

7' 1 1 
+ 3—w H—= аго H— /Згу I da; 

/ : 
+ / 7« 

1 du/ 7 1 
2 — + 3—ги + - ^ a w βιυ 

аа; 7 7 7 
с£г + / / (гоМ[м] - uM*[w])rfa;di. 

(8.3.9) 

То obtain an expression for the solution u(x, t) at the point P = (£, r ) , we require 
that го(х, f ) satisfy the following conditions. First we set 

M*[w(x,t)} = 0 (8.3.10) 

in the characteristic triangle G. To eliminate the integrals over the characteristics 
dG+ and dG-, we set 

dw "y (x\ 1 1 2 -Γ + 3 - ^ w + -^— a{x)w ± -t-τ ß(x)w = 0 (8.3.11) 
aa; 7(a;) Ί \x) Ί\χ) 

on these characteristics. Finally, to obtain an expression for u(x, t) at P that is 
independent of the value of w(x, t), we set 

21{x)w(x,t)\P = 2Ί(ξ)υ}(ξ, τ) = 1. (8.3.12) 

The equations (8.3.11)—(8.3.12) represent an initial value problem for w(x, t) on 
the characteristic curves. The solution is easily found to be 

1 
W ± = 2 

7(0 
73(a;) 

1/2 

е х р | _ ц _, ^ _ v „ , ds 
1 ixa(s)±7(s)ß(s) 

(8.3.13) 
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with w± evaluated on the characteristics dG±. The equation (8.3.10) for w and 
the conditions (8.3.12)—(8.3.13) comprise a characteristic initial value problem for 
w(x, t). (The problem is to be solved backward rather than forward in time.) Such 
a problem is well posed and has been discussed at the end of Section 6.5 where an 
iteration method for solving the characteristic initial value problem for the canonical 
form of second order hyperbolic equations was presented. We assume that a solution 
can be found for the present problem as well and obtain explicit solutions for two 
simple cases in Example 8.6. 

The solution w(x, t) is called the Riemann function. Since it depends on the point 
P = (ξ, r ) , we express it as w(x, t) = R(x, t; ξ, r ) . Then we have from (8.3.9), since 
M[u] = F, 

«(£, τ) = {JJR\A. + 7 /Я |л + }+ [[ FRdxdt- [ + [fRt -(g + ßf)R] dx. 
JJG JA-

(8.3.14) 
The solution formula (8.3.14) shows that the domain of dependence of the solution 
u(x, t) of (8.3.1)—(8.3.2) is the interior of the backward characteristic triangle with 
vertex at the point (x, t). Reversing the argument shows that the domain of influence 
of a point (x, 0) is the interior of the forward characteristic sector formed by the two 
characteristics issuing from the point (x, 0). 

To establish a connection between the Riemann function, the Green's function, and 
the fundamental solution, we set F(x, t) = δ(χ — ξ)δ(ί — f ) in (8.3.1) and (8.3.14) 
and assume that the initial data f(x) and g(x) vanish. Then (8.3.14) yields, with 
(ξ, τ) replaced by (x, t), 

f)eG, 
r)iG. 

u{x, t) = if R(i, t; x, Щх - ξ)δ{ϊ - f) di dt = ( Д ^ ' г ' х> ^ ' ^ ' r 

JJG I 0, (ξ, Τ 
(8.3.15) 

This shows that the Riemann function Я(£, г; x, t) represents the effect of a point 
source located at the point (ξ, r ) . As shown in Figure 8.3, if the point (x, t) lies in the 
forward characteristic sector with vertex at (£, r ) , the solution is nonzero. Otherwise, 
u(x, t) vanishes, since disturbances cannot move faster than the characteristic speed 
x'(t) = 7(x). In fact, the Riemann function Д(£, r ;x , t) is equal to the causal 
fundamental solution for the operator Mu [see (8.3.3)] in the forward characteristic 
sector, that is, in the region where the causal fundamental solution is nonzero. 

Similarly, the Riemann function R(x, t; ξ, τ) (now expressed in terms of the orig-
inal variables) agrees with the free space Green's function for the operator Mu in the 
backward characteristic sector that issues from (ξ, r ) (see Figure 8.2). The causal 
fundamental solution and the free space Green's function both vanish outside the 
forward and backward characteristic sectors, respectively. Thus, each of these func-
tions is completely determined once the Riemann function together with its domain 
of definition is known. Prior to the development of the theory of generalized func-
tions, the importance of whose role in the construction of Green's functions and 
fundamental solutions was demonstrated in the preceding chapters, most efforts to 
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Figure 8.3 Forward and backward characteristic sectors. 

solve Cauchy problems for hyperbolic equations were based on generalizations of 
Riemann's method. 

Example 8.6. Riemann's Function for Equations with Constant Coeffi-
cients. With 7= constant and а = ß = с = 0 in (8.3.1), we obtain the inhomoge-
neous wave equation 

utt(x, t) - 72ux x(x, t) = F(x, t). (8.3.16) 

In this case the operator M as given in (8.3.3) is self-adjoint. The Riemann function 
equals I/27 on the characteristics, and we immediately conclude that 

R(x,t^,r) = ±- (8.3.17) 
27 

in the characteristic triangle. The causal fundamental solution for this problem has 
the form (6.7.45) and agrees with (8.3.15). It follows easily that (8.3.14) reduces to 
d'Alembert's solution of the initial value problem for (8.3.16). 

If 7 = constant, a = ß = 0, с = constant, with с < 0, we obtain for (8.3.1), 

t) + cu(x,t) = F(x,t). (8.3.18) 

The operator M in (8.3.3) is self-adjoint and we have R = I /27 on the characteristic 
curves. By looking for a solution of the equation for R that depends on the hyperbolic 
distance denned in (6.7.41) with с replaced by 7, we find as in Example 6.14 that the 
Riemann function R is given as 

R(x,t;£,r) = —10 
27 

yi^^72(i_r)2_(:c_C)2 (8.3.19) 
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since the modified Bessel function IQ(Z) has the property that /o(0) = 1. The causal 
fundamental solution (8.3.15) agrees with (6.7.47), and (8.3.14) agrees with (7.4.43), 
as shown in the exercises. 

Exercises 8.3 

8.3.1. Determine the conditions under which equation (8.3.1) is self-adjoint and 
show that the Riemann function is symmetric in that case. That is, R(x, t; ξ, τ) = 
ϋ(ξ , τ ; χ , ί ) . 

8.3.2. Show that (8.3.14) reduces to d'Alembert's solution of the wave equation if 
R{x,t;^,r) is given by (8.3.17), η{χ) is a constant, anaß{x) = 0. 

8.3.3. Verify that (8.3.14) and (7.4.43) are identical if R(x, t-,ξ,τ) is given by (8.3.19) 
and с = —с2. 

8.3.4. Obtain the Riemann function for (8.3.18) with с > 0 (i.e., the Klein- Gordon 
equation). Show that the solution formula for this problem agrees with (7.4.41). 

8.4 MAXIMUM AND MINIMUM PRINCIPLES 

In Chapter 1, the diffusion, telegrapher's, and Laplace's equations were derived as 
limiting forms of certain random walk problems. It was indicated that some of the 
properties of the discrete random walk models carry over to the limiting PDEs. For 
example, a mean value property for the discrete form of Laplace's equation was 
shown in Section 7.5 to be valid for solutions of Laplace's equation. In this section 
we show that the maximum and minimum properties valid for discrete forms of the 
diffusion and Laplace equations carry over to their limiting forms. These properties 
can be used to prove uniqueness and continuous dependence on data of the solutions 
of these equations. In addition, we will show for the telegrapher's equation that if 
the initial data for the Cauchy problem are positive, the solution must be positive. 
This is consistent with the interpretation of the solution in Section 1.2 as a probability 
density function that must be nonnegative. 

Maximum and Minimum Principles for the Diffusion Equation 

We begin by presenting a maximum principle for the diffusion or heat equation 

ut(x,t)-c2uxx(x,t)=Q (8.4.1) 

in the closed rectangular regioni? given as 0 < x < /andO <t<T. We assume that 
c2 is a constant. [A more general equation of parabolic type with constant coefficients 
in the form 

vt{x,t) - c2vxx(x,t) = avx(x,t) + bv(x,t) (8.4.2) 
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can be reduced to (8.4.1 ) by way of the transformation v(x, t) = exp(aa; + ßt)u(x, t) 
with a = -a/2c2 and ß = b - a2/4c2.] 

The maximum and minimum principle is given as follows. Let u(x, t) be a solution 
of (8.4.1 ) in 0 < x < I and 0 < t < T that is continuous in the closed region R. 
Then the maximum and minimum values of u(x, t) are assumed on the initial line 
t = 0 or at points on the boundary x = 0 and x = I. 

In proving this principle we make use of a corresponding maximum and minimum 
principle for the inhomogeneous diffusion equation 

ut{x, t) - c2uxx(x, t) = F(x, t) (8.4.3) 

given over the closed region R. Let u(x, t) be a solution of (8.4.3) that is continuous 
in the closed region R. Then if F(x,t) < 0 in that region, u(x,t) attains its maximum 
values on t = 0, x = 0, or x = I and not in the interior of the region or at t = T. If 
F(x, t) > 0 in R, u(x, t) attains its minimum values on t = 0, x = 0, or x = I and 
not in the interior R or at t = T. 

The proof of this principle for the inhomogeneous equation (8.4.3) is based on 
showing that if a maximum or minimum occurs at an (interior) point (xo, to) with 
0 < xo < I and 0 < io < T, we are led to a contradiction. We consider the case with 
F(x, t) < 0 first. Since u(x, t) is continuous in the closed and bounded region R, it 
must assume its maximum there. At the assumed interior maximum point (xo, to), 
we must have 

ut(xo,t0) > 0, uxx{x0,t0) < 0, (8.4.4) 

as is known from calculus. If io < T, then щ(хо, to) = 0, since both ux(x, t) and 
ut{x, t) vanish at an interior maximum point. However, it may happen that t0 = T, 
in which case (xo, h) = (xo, T) is on the boundary of the closed region and we can 
merely assert that щ(хо, Т) > 0, since u(x, t) may be increasing at that point. 

If we insert the inequalities (8.4.4) into (8.4.3), we obtain a contradiction. The 
left side of the equation is nonnegative, whereas the right side is strictly negative. 
Consequently, the maximum must be assumed on the initial line or on the boundary. 
If F(x, t) > 0, we assume there is an interior minimum point (xo, to) and obtain the 
inequalities (8.4.4) with the signs reversed. Again this leads to a contradiction, so 
that the minimum must be assumed on the initial line or on the boundary. 

The inequalities (8.4.4) at a maximum or their reversed form at a minimum, do 
not yield a contradiction when they are inserted into (8.4.1), as uxx(x, t) and ut(x, t) 
may both vanish at (so, to). To prove the maximum principle for (8.4.1) based on the 
foregoing argument, we introduce the auxiliary function 

t)=u(x,t) + ex2, (8.4.5) 

where e > 0 is a constant and u(x, t) satisfies (8.4.1). Now w(x, t) is continuous in 
R, so that it has a maximum at some point (xi,t\) in the region. If we assume that 
0 < x\ < I and 0 < t\ < T, we again conclude that 

wt(xi,ti)>0, wxx(xi,ti) < 0. (8.4.6) 
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But 

wt(x,t) -c2wxx{x,t) = ut(x,t) -c2uxx(x,t) - 2c2e = -2c2e < 0, (8.4.7) 

since u(x, t) satisfies (8.4.1). Inserting (8.4.6) into (8.4.7) now leads to a contradic-
tion, since the left side is nonnegative and the right side is strictly negative. Therefore, 
w(x, t) assumes its maximum on the initial line or on the boundary since w(x, t) sat-
isfies (8.4.3) with F(x, t) < 0. 

Let M be the maximum value of u(x, t) on t = 0, x = 0, and x = I (i.e., on the 
initial and boundary lines). Then w(x, t) = u(x, t) + ex2 < M + el2 in R since 
w(x, t) has its maximum on t = 0, x = 0 or x — I. Consequently, 

u(x, t) = w(x, t) - ex2 < w(x, t) <M + el2. (8.4.8) 

Since e is arbitrary, we can let e —> 0 in (8.4.8) and conclude that u(x, t) < M 
throughout the closed region R, and the proof is complete. 

To obtain a minimum principle, we consider — u(x, t), where u(x, t) is a solution 
of (8.4.1). Clearly, — u(x,t) is also a solution of (8.4.1) and the maximum values 
of — u(x, t) correspond to the minimum values of u(x, t). Since — u(x, t) satisfies 
the maximum principle, we conclude that u(x, t) assumes its minimum values on the 
initial line or on the boundary lines. This implies that if the initial and boundary data 
for the problem are nonnegative, the solution must be nonnegative, a result consistent 
with the interpretation of the solution as a probability density, a concentration or a 
temperature. 

For the Cauchy problem for (8.4.1) over the initial line t = 0, the solution u(x, t) 
is nonnegative if u(x, 0) = f(x) is nonnegative. This follows directly from the 
representation of the solution given in Example 5.2. We have 

, x 1 f°° 
u(x, t) = I exp 

VAKCH J-OO 

(x - s)2 

AcH 
f(s) ds. (8.4.9) 

The exponential term and the algebraic coefficient in (8.4.9) are positive, so that 
u(x, t) is nonnegative as long as the initial value f(x) is nonnegative. 

On examining the proofs of the maximum and minimum principles for (8.4.1) 
and (8.4.3), we observe the following basic difference between the results. For the 
inhomogeneous equation (8.4.3) it was shown that the maximum or minimum values 
must be attained either on the initial line or the boundary lines and that they cannot 
be assumed in the interior. This result is known as a strong maximum and minimum 
principle. For the homogeneous equation (8.4.1) we determined that the maximum 
and minimum values are attained on the initial line or on the boundary lines. However, 
the possibility that the solution can also assume these maximum and minimum values 
at interior points was not excluded. (This would be the case, for example, if the 
solution is identically constant.) This result is referred to as a weak maximum and 
minimum principle. It can be proven (but we do not carry this out) that a strong 
maximum and minimum principle is valid for (8.4.1). It states that if the solution 
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does assume the maximum and minimum values in the interior, it must be identically 
constant. 

We now show that if the solution u(x,t) of (8.4.1 ) has a maximum value at a point 
on the boundary x = 0 or x = I, the normal derivative du(x, t)/dn is positive at 
that point unless u(x, t) is identically constant. This means that ux(l,t) > 0 and 
ux(0, t) < 0. At a minimum point the normal derivative is negative. [We note that 
at x = /, say, we must have ux(x, i) > 0 at a maximum point since the point lies on 
the boundary, but the theorem states that ux(x, t) is strictly positive there.] 

A separate discussion is required at x = 0 and at x = I. We consider the boundary 
line x = / and assume that (x, t) = (I, to) is a maximum point for the solution u(x, t) 
of (8.4.1) with u(i,i0) = M. LetO < a <t0 < ß < TandO < a < I, and construct 
the rectangle R bounded by x = a, x = I, t = a, and t = ß. We assume that 
u(l, t) < M for t Φ io on the side of R that coincides with the boundary and we 
also have u(x, t) < M on the three other sides of the rectangle because of the strong 
maximum principle. Given the auxiliary function 

v{x, t) = u(x, t) + e(x2 - 4lx + 3l2), (8.4.10) 

where e > 0, we have v(l,t) = u(l,t) and we choose e to be sufficiently small so 
that v(x, t) < M on the sides x = a and t = a of the rectangle. [This is possible 
because u(x, t) is strictly less than M on these sides.] Further, 

vt(x,t) - c2vxx(x,t) = ut{x,t) - c2uxx{x,t) - 2c2e = -2c2e < 0. (8.4.11) 

Thus, the maximum principle for the inhomogeneous diffusion equation applied 
to the rectangle R implies that v(x, t) has its maximum at the point (I, to). As a result, 
vx(l,t0) > 0, and this means that ux(l,t0) > 2le > 0, as was to be shown. (This 
result is valid even if the maximum point is not isolated.) If u(x, t) is a constant, the 
proof is clearly not valid. The proof that ux(x, t) < 0 at a maximum point on x = 0 
is left as an exercise. 

The maximum and minimum principles may be used to prove uniqueness and con-
tinuous dependence on the data for solutions of initial and boundary value problems 
for the diffusion equation. They can also be extended to higher space dimensions and 
to equations with variable coefficients. These matters are considered in the exercises. 

Maximum and Minimum Principle for Poisson's and Laplace's 
Equations 

We begin with a maximum and minimum principle for Poisson 's equation, 

V2u(x,y) = -F(x,y) (8.4.12) 

in two dimensions. Consider the bounded region G and its boundary dG. Then, the 
maximum values of a solution u(x, y) of (8.4.12) are attained on dG if F(x, y) < 0 
in G, and the minimum values of u(x, y) are assumed on dG if F(x, y) > 0 in G. 
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To prove this result we note that since u(x, y) is continuous in a closed and bounded 
region by assumption, it must assume its maximum in G or in dG. Let us suppose 
that the maximum is assumed at a point (xo, Уо) ш G and consider the case where 
F(x, y) < 0 in G. Then at the interior maximum point (XQ, yo), we must have 

ихх(х0,Уо) < 0, иуу(х0,Уо) < 0. (8.4.13) 

But since F(x,y) < 0, (8.4.12) yields 

uxx{x0, yo) + uyy(x0, yo) > 0, (8.4.14) 

which contradicts (8.4.13). Thus, the maximum of u(x,y) must occur on dG. 
To show that the minimum of u(x, y) is attained on dG if F(x, y) > 0 in G, we 

replace u(x, y) by —u(x, y) in the preceding argument. This is equivalent to replacing 
F(x,y) by -F(x,y) in (8.4.12). Since F{x,y) > 0, we obtain -F(x,y) < 0 and 
conclude that — u(x, y) assumes its maximum on dG. Therefore, u(x, y) assumes its 
minimum on dG and the minimum principle is proven. 

Now the Green's function Κ(χ^;ξ,η) for Laplace's equation with Dirichlet 
boundary conditions satisfies [see (1.3.12)—(1.3.13)] 

Κχχ(χ,ν;ξ,η)+Κυυ(χ,ν;ξ,η) = -δ(χ-ξ)δ(ν-η), (χ^),(ξ,η) eG, (8.4.15) 

and the boundary condition K{x, y; ξ,η) = 0 on dG. We would like to conclude 
that K(x, y; ξ,η) > 0 in G in view of its probabilistic interpretation in Section 1.3. 
Since the delta function is not an ordinary function, it is not obvious that the pre-
ceding theorem can be applied. However, we may obtain the delta function in two 
dimensions as a limit of sequences of ordinary nonnegative functions in the manner 
of Example 1.2 and Exercise 7.2.1, as is easily shown. For each of these functions 
we obtain a nonnegative solution of (8.4.15), where the delta function is replaced by 
a member of the sequence of functions. This follows since K(x, y; ξ, η) and each 
of its approximations vanishes on dG and the right side of (8.4.15) is nonpositive. 
Technically, the minimum principle proved in the foregoing requires the right side of 
(8.4.12) to be strictly negative in G, and the members of the delta sequence are such 
that —F(x, y) in (8.4.12) can only be said to be nonpositive. However, the minimum 
principle is valid in that case also, as easily follows from the proof of that principle 
given for Laplace's equation below. In the limit, as the sequence tends to the delta 
function, the sequence of approximate Green's functions tends to the Green's function 
K(x, y; ξ, η), and this, in turn, must also be nonnegative. 

The maximum principle for the Laplace's equation in two dimensions is proven 
by following the procedure used above for the diffusion equation. We consider a 
solution u(x, y) of Laplace's equation, 

uxx(x, y) +uyy(x,y) = 0, (8.4.16) 

in the region G with the boundary dG. Let M be the maximum value of u(x, y) on 
dG and suppose that the (bounded) region G can be enclosed in a square of side 21 
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with center at the origin. Then the auxiliary function w(x, y) = u(x, y) + ex2, with 
e > 0, satisfies the equation 

V2w(x,y) = V2[u(x,y) + ex2} = 2e > 0. (8.4.17) 

Based on our considerations for Poisson's equation with F(x, y) < 0, we conclude 
that w(x, y) attains its maximum on dG. Then for (x, y) £ G, we have w(x, y) < 
M + el2, since I2 > x2 for all x on dG by our assumption. Finally, u(x,y) = 
w(x, y) — ex2 < w(x, y) < M + el2. Since e is arbitrary, we conclude that 

u{x,y)<M (8.4.18) 

on letting б —* 0, so that the maximum is assumed on the boundary. 
By considering — u(x, y) in place of u(x, y), we conclude, as was done earlier, 

that the minimum is also assumed on the boundary. As we have not excluded the 
possibility that u(x, y) can assume the maximum and minimum values in the region 
G, our result is a weak maximum and minimum principle. It can also be shown for 
Laplace's equation that unless u{x, y) is identically constant, the normal derivative 
du(x, y)/dn on dG is positive at a point where u(x, y) assumes its maximum and 
negative at a point where u(x, y) assumes its minimum. 

These results can be used to prove uniqueness and continuous dependence on data 
for boundary value problems for Laplace's and Poisson's equations. They can be 
extended to three dimensions and to certain problems with variable coefficients of the 
type considered in this text. This is done in the exercises. 

The minimum principle for Laplace's equation again shows that nonnegative bound-
ary data imply nonnegative solutions as required by our random walk formulation 
in Section 1.3. We have already derived the mean value property for solutions of 
Laplace's equation (see Exercise 7.5.27). This property can be used to prove the 
maximum and minimum principles for solutions for Laplace's equation. It can also 
be used to show that whenever the maximum or minimum is attained in the interior 
of the region (as well as on the boundary), the solution u(x, y) must be identically 
constant. This is the strong maximum and minimum principle for Laplace's equation. 
It is discussed in the exercises. 

Positivity Principle for the Telegrapher's Equation 

To conclude this section, we consider the telegrapher's equation of Section 1.2, that 
is, 

vtt(x,t)-j2vxx(x,t) + 2\vt(x,t) =0, (8.4.19) 

and express it in the form of a system 

at(x,t)+fax{x,t) = -\a(x,t)+Xß(x,t), (8.4.20) 

ßt{x, t) - Ίβχ{χ, t) = Xa(x, t) - Xß(x, t), (8.4.21) 
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as in ( 1.2.23)-(l .2.24), with v(x, t) = a(x, t)+ß{x, t). Since a{x, t) and ß(x, t) are 
interpreted as probability densities, we require that a(x, t) and ß(x, t) be nonnegative. 
In particular, if the initial data 

a(x, 0) = f(x), ß(x,0) = g(x), - o o < x < oo (8.4.22) 

are nonnegative, we must have a(x, t) > 0 and ,9(0;, t) > 0 for ί > 0. In terms of 
v(x, t) we should have v(x, t) > 0 if u(z, 0) > 0 when solving a Cauchy problem for 
v(x, t). We will show that if the data f(x) and g(x) in (8.4.22) are strictly positive, 
the solutions a(x, t) and ß(x, t) must also be positive. The case of nonnegative data 
is considered in the exercises. 

To verify these results we consider the characteristic curves for (8.4.19)-(8.4.21), 
which are given as x ± ft = constant. On the curves x ± "ft = constant we have for 
any function w(x, t) 

dw dx ,„ л „„. 
~dt = Wx ~dt + Wt = Τ Ίνΰχ + Wt' (8.4.23) 

This yields for (8.4.20), 

do 
~dt 
dot 

on + Ίθίχ = -j- = — λα + λβ on x — "ft = constant (8.4.24) 

and for (8.4.21), 

ßt - Ίβχ = - i - = Xa - Χβ on x + -ft = constant. (8.4.25) 
eft 

These equations can be written as 

— [exta] = \extß on x - -ft = constant, (8.4.26) 

— \extß] = AeAtQ! on x + "ft - constant. (8.4.27) 
dt 

Now if a(x, 0) > 0 and ß(x, 0) > 0, it follows from (8.4.26)-(8.4.27) that 
{d/dt)[eXta]\t=o > 0 and (d/dt)[extß)\t=0 > 0 since λ > 0. Initially, there-
fore, exta(x, t) and eXtß(x, t) must be increasing functions of time. Since a(x, t) 
and ß(x, t) are initially positive, it is not possible that they become negative at any 
later time t, for (8.4.26)-(8.4.27) are valid for all time. Consequently, v(x, t) = 
a(x, t) + ß(x, t) is also positive, as was to be shown. 

Exercises 8.4 

8.4.1. Use the maximum principle to prove that the initial and boundary value problem 
for the heat equation, ut (x, t) — c2uxx(x, t) = F(x,t), 0 < x < I, t > 0, u(x, 0) = 
f{x), u(0,t) = gi(t), u(l,t) = cte(i)i has a unique continuous solution. Hint: 
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Assume there are two solutions щ(х, t) and U2(x,t) and consider the difference 
ù(x, t) = u\(x, t) — 1*2(2:, t). 

8.4.2. Show that if щ(х, t) and U2(x, t) are solutions of the heat equation ut (x, t) = 
c2uxx(x, t) whose initial and boundary data at x = 0, t = 0, and x = I satisfy the 
inequality \ui(x, t) — иъ(х, t)\ < e, x = 0, t = 0, x = I, \ui(x, t) — иг(х,ί) | < e 
for all (x, t) in 0 < x < I, t > 0. This proves that solutions of the first boundary 
value problem for the heat equation depend continuously on the data. Hint: Consider 
the solutions vi(x,t) = —e, u(x,t) = u\{x,t) — U2(x,t) and V2(x,t) = e of the 
heat equation and use the maximum principle to conclude that v\ (x, t) < u(x, t) < 
V2(x, t) by examining these functions two at time. 

8.4.3. Prove that the Cauchy problem for the heat equationut(x, t) — c2uxx(x, t) = 
F(x,t), —oo < x < oo, t > 0, u(x,0) = f(x), —oo < x < oo, \u(x,t)\ < 
M, —oo < x < oo, t > 0, has a unique continuous solution. Assume that the 
problem has two solutions щ (х, t) and it2 (x, t) and consider the difference ù(x, t) = 
ui(x,t) — U2(x,t). Consider the interval —l<x<l and the function v(x, t) = 
(AM/l2)(c2t + x2/2) which is a solution of the (homogeneous) heat equation. Show 
that \ù(x, t) | < v(x, t) on the boundary x = — I, t = 0, x = I and conclude from the 
maximum principle in the bounded interval \x\ < I that \ù(x, t)\ < v(x, t) in \x\ < I 
and t > 0. By letting / —> oo, conclude that ù(x, t) — 0. 

8.4.4. Consider the initial and boundary value problem given in Exercise 8.4.1. Let R 
be the region 0 < x < /andO < t < T, and introduce the auxiliary function w(x,t) = 
u(x,t) + ̂ (x2/c2)ma,XR \F(x, t)\, as well as the function w{x,t), which has the form 
of w(x, t) except that u(x, t) is replaced by — u(x, t). Use the maximum principle 
for the inhomogeneous heat equation to show that |u(a;,i)| < maxs |и(ж, i)| + 
^(l2/c2)max.R |F(a:, i)|, where S represents the part of dR that coincides with t = 
0, x — 0, and x = I. Use this inequality to prove continuous dependence on the data. 

8.4.5. Show that the problem of Exercise 8.4.1 with Neumann boundary conditions 
at x = 0 and x — I, has a unique solution. Hint: Use the fact that ux(x, t) ф 0 at a 
maximum or minimum point on x — 0 and x = I to conclude that the homogeneous 
version of the problem has its extreme values at t = 0. 

8.4.6. Show that the problem of Exercise 8.4.1 with Robin or mixed boundary condi-
tions has a unique solution. Hint: Consider what happens at a maximum or minimum 
point on the boundary and use the hint in Exercise 8.4.5. 

8.4.7. Determine a maximum and minimum principle for the heat equation щ (x, t) — 
c2 V2it(x, t) = 0 in a bounded region in two or three dimensions. Hint: Proceed as 
in the one-dimensional case and replace w(x, t) in (8.4.5) by w(\, t) = u(\, t) + er2, 
where r2 = x2 + y2 and r2 = x2 + y2 + z2 in two and three dimensions, respectively. 
Note that the bounded region may be assumed to be contained in a circle or sphere 
of sufficiently large radius. 

8.4.8. Obtain a maximum principle for the parabolic equation p(x)ut(x,f) — V · 
(p(x)Vw(x, i)) = 0, in a bounded region, with bounded p(\) > 0 and p(\) > 0. 
Similarly, obtain a maximum principle for the equation in Exercise 1.1.17. Hint: 
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Let w(x, t) = и(х, ί) + еехр[аж] and then choose a such that p(x)wt(x, t) — V · 
(p(x)Vm(x, t)) < 0. Conclude that w(x, t) must have its maximum at t = 0 or at 
the boundary of the given region for ί > 0. Proceed as in the one-dimensional case 
in the text. 

8.4.9. Use the maximum principle of Exercise 8.4.8 to prove that the first boundary 
and initial value problem for p(x)ut{x, t) - V · (p(x)Vu(x, t)) = p(x)F(x, t) has a 
unique solution. 

8.4.10. Consider the elliptic equation V · (p(x)Vu(x)) = -F(x), p(x) > 0 in two 
or three dimensions in a bounded region G with the boundary dG. Show that if 
F(x) < 0 in G, the solution u(x) assumes its maximum on dG, and if F(x) > 0 in 
G, the solution u(x) assumes its minimum on dG. Hint: The first partial derivatives 
of u(x) vanish at an interior maximum point. 

8.4.11. Obtain a maximum principle for the elliptic equation V · (p(x)Vw(x)) = 
0, p(x) > 0, in the two- and three-dimensional cases. Similarly, obtain a maximum 
principle for equation (1.3.21). Hint: Proceed as in Exercise 8.4.8 and use Exercise 
8.4.10 

8.4.12. Use the maximum principle to prove continuous dependence on the data for 
the Dirichlet problem for the elliptic equation V · (p(x)Vu(x)) = 0, p(x) > 0, in a 
bounded region. Hint: Adapt the method of Exercise 8.4.2. 

8.4.13. Use the fact that the normal derivative ди(х)/дп must be nonzero at a max-
imum or minimum point on the boundary dG to prove that the second, third, and 
mixed boundary value problems for the elliptic equation of Exercise 8.4.10 have a 
unique solution. In the case of the second boundary value problem the solution is 
unique up to an arbitrary constant. 

8.4.14. Consider the elliptic equation - V · (p(x)Vu(x)) + q{x)u{x) = 0, p(x) > 
0, </(x) > 0 in a bounded region G. Show that u(x) < Oat an interior maximum point 
and that u(x) > 0 at an interior minimum point. Conclude from this that the Dirichlet 
problem for the equation with u(x) = /(x) on dG must have a unique solution. 

8.4.15. Let u(x, y, z) satisfy V2u(x, y, z) = 0 in G, and let Po and the sphere SO 
centered at Po with radius a lie completely within G. Then the mean value theorem 
for harmonic functions states [see (7.5.35)] U(PQ) = j ^ JTS u(x, y, z) ds, with the 
integration taken over the sphere So. Assuming that u(x, y, z) is continuous up to dG 
so that it has a maximum in the closed region, use the mean value theorem to show 
that the maximum is achieved on the boundary dG. Hint: Assume that the maximum 
point Mo is interior to G. Apply the mean value principle to all spheres centered at 
Mo extending up to the boundary dG. Since U(MQ) > u{P) for each P in G or dG 
by assumption, conclude that if u(P) < U(MQ), we would be led to the contradiction 
that ti(M0) < u(M0). This argument can be extended to conclude that if u(x, y, z) 
does attain its maximum in G, it must be a constant function. 

8.4.16. Show that the solution u(x, t) of the Cauchy problem for the wave equation, 
uu{x,t) - c2uxx(x,t) = 0, - o o < x < co, t > 0, u(x, 0) — f(x), ut(x,0) = 
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g{x), —oo < x < oo, is nonnegative if f(x) > 0 and g(x) > 0. Hint: Use 
d'Alembert's solution. 

8.4.17. Use the solution formula (7.4.43) for the Cauchy problem for the modified 
telegrapher's equation (7.4.42) and the properties of the modified Bessel functions 
/o(z) and li (z) to show that if the data f{x), g(x), and F(x, t) are nonnegative, so 
is u(x, t). Show how this relates to the result for the telegrapher's equation given in 
the text. 

8.5 SOLUTION METHODS FOR HIGHER-ORDER PDEs AND 
SYSTEMS OF PDEs 

With the exception of Chapter 2, which deals with first order partial differential 
equations, we have mostly studied second order partial differential equations in this 
text. In this section we consider a number of important physical processes that are 
governed by higher-order PDEs and systems of PDEs. In a number of cases the 
techniques used previously for second order equations can be applied, whereas in 
other cases special methods need to be introduced. We begin by considering the 
higher order equations that govern the lateral vibrations of rods and plates. Then 
we discuss the equations of fluid dynamics, Maxwell's equations of electromagnetic 
theory, and the equations of elasticity theory. Both linear and nonlinear problems are 
considered. 

Although the problems to be considered are not of the general form studied pre-
viously in the text, it will be shown in some cases that they can be reduced to a 
consideration of PDEs studied previously. However, we only touch upon some of the 
methods used for these problems, and each of the theories of fluid dynamics, electro-
magnetics, and elasticity has associated with it a rich body of mathematical methods. 
Additionally, in Chapters 9 to 11 we consider approximate methods for solving PDEs, 
and these techniques are useful not only for the PDEs studied previously but also for 
the types of problems considered in this section. 

Lateral Vibration of a Rod of Infinite Length 

The lateral vibration of a thin homogeneous rod is governed by the PDE 

utt{x, t) +c2 uxxxx(x,t) = 0, (8.5.1) 

where u(x, t) is the deflection of the rod at the time t. The constant c2 depends on 
the physical properties of the rod. (The longitudinal vibration of a thin homogeneous 
rod is governed by the wave equation.) We do not derive (8.5.1) but note that in 
contrast to the wave equation for the vibrating string, which contains the term uxx(x, t) 
proportional to the curvature of the string, (8.5.1) contains a fourth derivative term, 
uxxxx(x, t). Because of the extreme rigidity of the rod, the internal force on a portion 
of the rod is proportional to a fourth rather than a second derivative of the displacement 
u(x, t), as for the stretched string. Invoking Section 3.3, we find that (8.5.1) is an 
equation of parabolic type and the lines t = constant are the characteristics. 
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The Cauchy problem for (8.5.1) with prescribed data u(x,0) and ut(x,0) is 
well posed. To see this, we look for normal mode solutions as in Section 3.5, 
u(x,t) = a(k)exp[ikx + X(k)t]. This yields, for all real k, X2{k) + c2fc4 = 0, 
so that X(k) = ± ick2. The stability index Ω = 0, so that the Cauchy problem is 
well posed. Furthermore, ш(к) = ck2, X(k) = ±iu>(k), implies that (8.5.1) is con-
servative as well as being of dispersive type. The dispersion relation is u(k) = ck2, 
and the group velocity dw(k)/dk = 2ck exceeds the phase velocity u(k)/k = ck in 
magnitude. It is worth noting that even though the PDE (8.5.1) is not of hyperbolic 
type, it is, nevertheless, an equation of dispersive type. 

We use Fourier transform methods to solve the Cauchy problem for (8.5.1). On 
proceeding as in Section 5.2, with the initial data for (8.5.1) at t = 0 given as 

u(x,0) = f{x), ut(x,0) = g(x), 

we denote the Fourier transform of u{x, t) as 

— 00 < X < 00 , 

1 Г 
\/2π J-c 

U(X,t) 

and obtain the Fourier-transformed problem 

d2U{X,t) 

егХхи{х, t) dx, 

(8.5.2) 

(8.5.3) 

dt2 + c2A4t/(À,i) = 0, i > 0 , U{X,0) = F(X), 
dU{X,0) 

dt 
= G(X), 

(8.5.4) 

where F(X) and G(X) are the Fourier transforms of f(x) and g(x), respectively. It 
has the solution 

U(X,t) = ìF^+2b G(X) eic\H + F(X) 
1 

2icX2 G(X) -ic\2t 

(8.5.5) 

Inverting the transform yields 

1 f f°° f°° 
u(x,t) = - = \ / H+(X)ei{ulWt-Xxi dX+ # _ ( λ ) β ί ( - ω ( λ ) ί " λ χ ) dX 

(8.5.6) 

where ω(λ) = cX2 and H±(X) are the coefficients of е±гсЛ ' in (8.5.5). 
Rather than evaluate (8.5.6) for specific choices of f(x) and g{x), we use the 

method of stationary phase of Section 5.7 to analyze the behavior of the solution 
u{x, t) as t gets large. The integrals in (8.5.6) may be written as 

1 i°° 
/±(z , i ) = — = / tf±(A)exp[i(Ma;,i;A)]dÀ, (8-5.7) 

ν 2 π J-oo 

with <?!>±(x, t; X) = ±u)(X)t — Xx = ±cX2t — Xx. We assume that x and t are large. 
Then the stationary points are determined from άφ±(χ,ί; X)/dX = ±2αλί — x = 
0, so that λ = λ± = ±x/2ct. Thus, say, if x > 0, we have λ+ = x/2ct and 
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λ_ = -x/2ct as positive and negative stationary points for the integrals 1+ and 
/_, respectively. Also, φ±(χ, t; A±) = ±c (x2/4c2t2) t =F x2/2ct = ψχ2/4σέ and 
ά2φ±{χ,ί;λ±)/άλ2 = ±2ct, so that ά2φ±/άλ2/\ά2φ±/άλ2\ = ± 1 . Furthermore, 
d2w(\±)/d\2 = 2c, so that using an appropriate modification of (5.7.4) gives 

. . Я+(А+) / ix2 ίπ\ Я_(Л_) fix2 ίπ\ . . χ u(x.t) « — . — exp — h —- H .— exp , \x\,t —> oo. 

(8.5.8) 

If the initial data f(x) and g(x) are real valued, it is easy to see, on using the definition 
of the Fourier transform, that #+(λ) and if_(—λ) are complex conjugates. Since 
λ+ = —λ_, we conclude that (8.5.8) is real valued. 

Thus near the (group) lines x/2ct = constant, the solution of the initial value 
problem for (8.5.1) for large t is approximated by (8.5.8) and the solution decays like 
Ι /Λ / Ì as t —» oo. 

Lateral Vibration of a Rod of Finite Length 

The lateral vibration of a thin homogeneous rod of finite extent, say, of length I, is 
again governed by (8.5.1), with u(x, t) as the deflection of the rod. We place the rod 
in the interval 0 < x < I and prescribe boundary conditions at x = 0 and x = I. The 
boundary conditions 

u(0,t) = ux(0,t) = 0, u(l,t) = ux{l,t) = 0, (8.5.9) 

imply that the rod is clamped at both edges so that и and the slope ux both vanish. The 
resulting initial and boundary value problem for u(x, t) in 0 < x < I, where u(x, t) 
satisfies (8.5.1), the initial conditions (8.5.2) in the finite interval, and the boundary 
conditions (8.5.9), can be solved by separation of variables. 

We set u(x,t) = F(x)G(t) in (8.5.1), and this yields the separated equation 
G"{t)/c2G(t) = -F""(x)/F(x) = - λ 2 , with - λ 2 as the separation constant. 
Then we obtain 

G"{t) + (Xc)2G(t) = 0, F""(x) - X2F(x) = 0. (8.5.10) 

The conditions (8.5.9) imply that F(0) = F'(0) = F{1) = F'(l) = 0, so that 
we have an eigenvalue problem for F(x). We do not discuss general properties of 
higher-order eigenvalue problems but solve the preceding problem directly. 

The general solution of the ODE for F(x) in (8.5.10) is (for λ > 0) F{x) = 
a cos(\/A X) + 6cosh(-\/A x) + csin(\/À x) + dsinh(\/X x). The conditions F(0) = 
F'(0) = 0 imply that b = -a and d = -c. Thus F(x) = a[cos(V\~x) -
cosh(\/A:r)] -f c[sin(\/~Xx) — sinh(\/X:r)]. At x = ! we have {a[cos(\/Xl) — 
cosh(v/X/)] + c[sin(\/Xi) - sinh(vCU)] = 0, a[-sin(y/\l) - sinh(\/AZ)] + 
c[cos(y/\l) — cosh(\/\l)} = 0}. For a and с to be nonzero, the determinant of 
the coefficients of this system must vanish. This gives the eigenvalue equation 2 — 
2 cos(\/XI) cosh(\/Xl) = 0. This equation be written as cos 
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Figure 8.4 The graphs of cosh(x) and sec(a;). 

As the graph in Figure 8.4 shows, the curves for cosh(\/A/) and sec(V\l) have 
infinitely many intersections. [Zero is not an eigenvalue since F(x) vanishes for λ = 
0.] Clearly, the eigenvalues tend to infinity. Since cosh(\/A/) grows exponentially 
with \/λ, the large eigenvalues are given approximately by the zeros of cos( \/λ) since 
sec(\/A) = 1/ cos(\/A). Let Xk (k = 1,2,...) denote the eigenvalues. Then a set of 
eigenfunctions is given by 

Fk(x) = [sin( VÀfc /) - sinh( VÀfe Z)][cos( VA* x) - cosh(VÀfc x)} 

cos(vÀfcZ) - cosh(\/Afci)][sin(vAfca;) — sinh(yXk х)}. (8.5.11) 

The Fk(x) are not normalized. It can be shown that JQ Fk(x)Fj(x)dx = OifXk ф Aj 
by direct verification. 

Furthermore, it can be shown that the set {Fk(x)} is complete and any smooth 
function in 0 < x < I can be expanded in a series of the Fk(x). 

Solving for Gfe(i) from (8.5.10) gives Gk(t) = α^cos(AfcCi) + ßksin(XkCt), 
with ak and ßk as arbitrary constants. The formal solution of (8.5.1) is obtained by 
superposition as 

u{x,t) = J2Fk(x)Gk(t). (8.5.12) 
fc=l 

Formally applying the initial conditions to the series (8.5.12) leads to the specification 
of ak and ßk in terms of the (Fourier) coefficients of the functions f(x) and g(x) 
when expanded in a series of eigenfunctions Fk(x). 

Other types of boundary conditions for (8.5.1 ) and properties of the corresponding 
eigenvalue problems for F(x) are given in the exercises. 
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Vibration of a Plate 

The vibration of a thin plate is governed by the equation 

utt{x, У, t) + c2V2V2u(x, y, t) = 0, (8.5.13) 

where u(x, y, t) is the transverse displacement of the point (x, y) on the plate at the 
time t, and V2 is the two-dimensional Laplacian operator. The constant c2 depends 
on the physical properties of the plate. The wave equation mat governs the vibration 
of a membrane is given as utt(x, y, t) — c2W2u{x, y,t) = 0 and contains only the 
Laplacian operator, while (8.5.13) contains the iterated Laplacian because of the 
greater rigidity of the plate. If we assume that the plate occupies the region G in 
the (x, y)-plane and is clamped at the boundary or edge dG, we have the boundary 
conditions 

du(x,y,t) u(x,y,t) = 0, 
dG dn 

= 0. 
dG 

Also, u(x, y, t) must satisfy the initial conditions 

u(x,y,0) = f{x,y), ut(x,y,0) =g{x,y). 

(8.5.14) 

(8.5.15) 

Because (8.5.13) is of fourth order in the spatial variables, we require two boundary 
conditions. However, since there are only two time derivatives in (8.5.13) we have 
two initial conditions. The problem (8.5.13)—(8.5.15) may be shown to be well posed. 

We attempt to solve this initial and boundary value problem by using separation 
of variables. Let 

u{x,y,t) = F(x,y)G{t). 

This yields, on inserting (8.5.16) into (8.5.13), 

G"{t) V2V2F(x,y) 
-A, 

c*G{t) F(x,y) 

where —λ is the separation constant. The equation for G(t) is 

G"{t) + \c2G{t) = 0, 

and F(x, y) must satisfy 

V2V2F(x,y)-\F(x,y)=0 

for (x, y) GG with the boundary conditions 

F{x,y) = 0, 
dF(x,y) 

dG dn 
0. 

(8.5.16) 

(8.5.17) 

(8.5.18) 

(8.5.19) 

(8.5.20) 
dG 

That is, we obtain an eigenvalue problem for F(x, y). 
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To make any further progress with this problem we must be able to determine 
the eigenvalues λ and the eigenfunctions F(x, y) for specific regions. It turns out, 
however, that (8.5.19) is only separable in polar coordinates, so that more complicated 
or, possibly, approximation methods are needed if the problem does not involve a 
circular clamped plate. Indeed, in rectangular coordinates, (8.5.19) takes the form 
Fxxxx(x,y) + 2Fxxyy(x,y) + Fyyyy(x,y)-XF(x,y) = 0. Then, if we set F(ж, i/) — 
A(x)B(y), we have 

A""(x)B(y) + 2A"(x)B"(y) + B""(y)A(x) - XA(x)B(y) = 0, (8.5.21) 

and it is not possible to separate the variables x and у in (8.5.21). 
For the circular plate the eigenfunctions F(x, y) can be obtained as follows. Let 

X — k4 for simplicity of notation and factor (8.5.19) as 

(V2V2 - k4)F(x, y) = (V2 + A:2)(V2 - k2)F{x, y) = 0. (8.5.22) 

This factorization can be carried out irrespective of the choice of coordinates, but only 
in the case of polar coordinate problem does it lead to a solution of the eigenvalue 
problem (8.5.19)-(8.5.20). We express F in polar coordinates as F = F(r, Θ), and 
assume that the region G is the disk r < R with the circle r = R as the boundary 
dG. Then F(r, Θ) must be bounded at r = 0 and must be periodic of period 2π in 
Θ—that is, F(r, θ + 2π) = F{r, Θ)—since F(r, Θ) must be single valued in G. Thus, 
if F(r, Θ) satisfies either of the equations 

(V2±fc2)F(r,0) = Frr(r,e)+^Fr{r,e) + ̂ Fee(r,9)±k2F(r,e) = 0, (8.5.23) 

it is a solution of (8.5.19) since the order of the operators in (8.5.22) can be inter-
changed. 

The equations (8.5.23) can be solved using separation of variables. Let F(r, Θ) = 
V{r)W(6), and (8.5.23) can be expressed as 

V"(r) + -V'(r) ± k2V(r) - %V{r) = 0, π"(θ) + n2W(0) = 0 (8.5.24) 
r rz 

after separating the variables, with n2 as the separation constant. The periodicity of 
F(r, Θ) implies that W{6 + 2π) = W{6), so that n must be a (positive) integer or 
zero (i.e., n = 0,1,2, . . . ) . Consequently, we have Wn(ß) = cos(nö) and Wn{0) = 
sin(nö) as the appropriate solutions W(6) in (8.5.24). For each value of n, (8.5.24) is 
a Bessel equation for V(r) of order n if the plus sign (i.e., +k2) is chosen. When the 
minus sign (i.e., — k2) is selected in (8.5.24), we have the modified Bessel equation 
of order n. 

The product functions Fn (r, Θ) = Vn (r) Wn (Θ) must be bounded at r = 0, so that 
the appropriate solution of (8.5.24) with the term +A;2 is Vn = Jn{kr), the Bessel 
function of nth order. For the case —/c2 we obtain Vn = In (kr), the modified Bessel 
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function of nth order. Consequently, we find that for each integer n, we have the 
solutions 

Fn{r,6) = [anJn(kr) + 7„/„(fcr)] cos(nö) + [ßnJn(kr) + 6nIn{kr)] sin(nö) 
(8.5.25) 

of (8.5.22), where an, βη, ηη, and δη are constants. On applying the boundary 
conditions (8.5.20) to each of the Fn(r, Θ), we determine the eigenvalues λ = к4. 
For the circular region G, the normal derivative dF(r, 9)/dn becomes dF(R, 6)/dr 
on r = R. Since the boundary conditions must be valid for all Θ, we see that 
the coefficients of cos(nö) and sin(n#) must vanish separately once the boundary 
conditions are applied. The coefficient of cos(nÖ) yields the system 

anJn{kR) + inIn{kR) = 0, anJ'n{kR) + ηηΙ'η{Ηϋ) = 0. (8.5.26) 

A second system with an and ηη replaced by βη and δη, respectively, results from 
the coefficient of sin(nö). Since the coefficients an and ηη must not vanish, we 
conclude that the determinant of the coefficients in (8.5.26) vanishes and this yields 
the transcendental equation 

Jn(kR)I'n{kR) - In(kR)J'n{kR) = 0 (8.5.27) 

for the determination of the eigenvalues. (The second system yields the same result.) 
The appropriate values of к must be specified approximately and we do not consider 
this matter here. Once the full set of eigenvalues has been found we solve (8.5.18) 
for G(t). Then, on summing over all the product solutions (8.5.16), we may specify 
the two sets of arbitrary constants in the solution of (8.5.18) so as to satisfy the initial 
conditions (8.5.15). 

Since the general problem is quite complicated, we consider a simplified case 
where the initial data (8.5.15) are functions of the radial variable r only, that is, 

«(r, Θ, 0) = f(r), ut(r, Θ, 0) = g(r). (8.5.28) 

Then the eigenfunctions F(r, Θ) may be chosen to be independent of Θ, and we obtain 
instead of (8.5.25), F{r) = a0J0{kr) + 70/o(b-). The equations (8.5.26)-(8.5.27) 
remain valid, but we must put n = 0. Let km (m = 1,2,3,...) represent the (real) 
roots of (8.5.27) with n = 0. The (unnormalized) eigenfunctions Fm(r) then have 
the form 

Fm{r) = I0(kmR)J0(kmr) - J0(kmR)I0{kmr). (8.5.29) 

The {Fm(r)} are an orthogonal set with weight function rover the interval 0 < r < R. 
With \m = k4

n, the solutions of (8.5.18) are 

Gm(t) = am cos(fc^ci) + bm sin(fc^ci) (8.5.30) 

with arbitrary constants am and ό, 
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The formal series и = J2m=\ ^m(f)Gm(i) satisfies the equation (8.5.13) in the 
diskO <r< R, the boundary conditions (8.5.14) on r = R, and the initial conditions 
(8.5.28) once the constants am and bm in (8.5.30) are specified in terms of f(r) and 
g(r). Using the orthogonality properties of the eigenfunctions {Fm(r)}: this is easy 
to carry out. The eigenfunctions for the eigenvalue problem (8.5.19)-(8.5.20) are 
known to form a complete set, so that the expansions discussed are valid if the initial 
data satisfy certain smoothness conditions. 

Static Deflection of a Plate: The Biharmonic Equation 

It is of considerable interest to study the stationary or static version of the vibrating 
plate equation (8.5.13). Then, the displacements и = u(x,y) are independent of 
time, and we find that u(x, y) satisfies the biharmonic equation 

V2V2u(:r, y) = 0. (8.5.31) 

Clearly, any harmonic function u(x,y) [i.e., a solution of Laplace's equation V2u(x, y) 
= 0] will also satisfy (8.5.31 ). This can occasionally be used to advantage in solving 
boundary value problems for the biharmonic equation. 

We consider a clamped circular plate of radius R and let u(r, Θ) represent the 
deflection at a point (r, Θ). Using direct verification it may be shown that the function 

u(r, Θ) = (r2 - R2)v(r, Θ) + w(r, Θ) (8.5.32) 

is a solution of the biharmonic equation if v(r, Θ) and w(r, Θ) are both harmonic 
functions. We want to determine u(r,6) to be a solution of (8.5.31) in the disk 
0 < r < R with the clamped plate boundary conditions 

и(г,в) л·). апм 
г=д 9г 

: g{ß). (8.5.33) 

The problem can be solved by choosing v(r, Θ) and w(r, Θ) in (8.5.32) appropriately. 
The boundary condition u{R,6) = f{0) implies that u{R,9) = w{R,9) = / (0) . 
Thus w(r, Θ) must be a solution of Laplace's equation in the disk 0 < r < R, 
which satisfies the Dirichlet condition w(r,6) = f(6) on the boundary r = R. 
This problem has been solved previously and completely specifies w(r,9). The 
condition du(r,9)/dr = g{ff) опг = Л implies that du(R,в)/дг = 2Rv{R,Θ) + 
dw(R,6)/dr = д{в). Since w(r,6) has already been specified, dw(R,6)/dr is a 
known function and we obtain v(R,0) = (l/2R)g(ß) - (l/2R)dw(R,0)/dr as 
the Dirichlet boundary condition for the harmonic function v(r, Θ). Again, v(r, Θ) 
is thereby uniquely specified and we have obtained a solution of the boundary value 
problem (8.5.31) and (8.5.33) in terms of the solution of two boundary value problems 
for Laplace's equation in a circle. 
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Next, we briefly consider the fundamental solution and Green's function meth-
ods for the biharmonic equation. We proceed as in Section 6.7 and consider the 
inhomogeneous biharmonic equation 

W2V2u{x,y) = ~F(x,y). (8.5.34) 

With P0 as the point (xo, i/o), we integrate over a region G with boundary dG that 
contains Po in its interior and obtain 

f[v-[WV2u(x,y)}dxdy = [ -
JJG JdG 

dW2u(x,y) 
dn 

ds = — Il F(x,y)dxdy = — 1, 

(8.5.35) 

where we have applied the divergence theorem and chosen F(x,y) to represent a point 
source with singularity at Po so that the integral of F(x, y) equals unity. Introducing 
polar coordinates with the pole located at PQ and taking the limit in (8.5.35), we obtain 

lim 
dG^Po 

/ 
JdG 

dn 
(V2u)ds 

ι-2-π 

= lim / 
дг 

(V2u) r de 
=iQ+rcos(t ì ) 

lim 
r-»0 

2-кг — (V2w)| = - 1 
or ' 

(8.5.36) 

if we let G represent a disk of radius r centered at Po. Continuing as in Section 6.7, we 
assume that и = u(r) and we have V2w(r) = (1/r) d/dr (r du(r)/dr). This yields 
the approximate equation 2-Krd/dr [(1/r) d/dr (rdu(r)/dr)] ~ —1. We integrate 
and retain only the most singular terms and obtain the fundamental solution 

u(r) 
1 

r logr, (8.5.37) 

wherer2 = (x-x0)
2 + (y-yo)2. It can be verified that (8.5.37) solves the biharmonic 

equation everywhere except at r = 0. In fact, apart from the constant factor, (8.5.37) 
may be derived by looking for a solution of (8.5.31) that depends only on r. 

We obtain the Green's theorem for an arbitrary region G, 

I [MVV2D - vVV2u]dxdy 

I 
JdG 

d{v2v) 
dn 

,„9 . du . _ , . dv 9(V2u) 
ds (8.5.38) 

on the basis of the identity uV2V2v — t>V2V2u = V · p, where p = Ì Ì V V 2 D — 
vW2u + (V2u)Vv — (V2w)Vu, and the divergence theorem. 
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The Green's function K(x, ρ\ξ,η) for the biharmonic equation with clamped plate 
boundary conditions is a solution of V2V2K(x, y; ξ, η) = —δ(χ - £)<5(y — η) that 
satisfies the boundary conditions K(x, y; ξ,η) | dG = 0, ΘΚ(χ^;ξ,η)/θη\9α = 0. 
Now if u(x, y) satisfies the inhomogeneous equation (8.5.34) in G and assumes 
prescribed boundary conditions u= s(x, y) and ди/дп = r(x, y) on dG, the Green's 
theorem (8.5.38) [where we set v = K(x, y; ξ, η)] yields the result 

fla"1*· u(£,v)= N K{x,y\£,4)F(x,y)dxdy 

-JdG [ ( V * K ( x , y ; ^ ) ) r { x , „ ) - , ( * , „ ) » t r « ™ * ' " » ds. (8.5.39) 

Using special techniques, it is possible to construct the Green's function K(x, y; 
ξ, η) for the case of circular clamped plate. We do not derive or exhibit this Green's 
function but note that in view of (8.5.37), K(x, y; ξ, η) can be expressed as K(x, y; 
ξ,η) = —(l/8n)r2ìogr + V(x,y), where V(x,y) is a regular solution of the 
homogeneous biharmonic equation. Applying the boundary conditions (8.5.50) to 
K(x, y; ξ, η) yields a set of boundary conditions for V(x, y) and dV(x, y)/dn on 
dG. Since the boundary value problem for the biharmonic equation with clamped 
plate boundary conditions was solved previously, it is possible to determine V(x, y) 
and, thereby, K(x, y; ξ, η) for the circular clamped plate. 

Euler's Equations of Inviscid Fluid Dynamics 

We begin by deriving the Euler equations of motion for a nonviscous or inviscid fluid. 
Let u = и(ж, у, z, t) be the velocity vector of a fluid particle situated at the point 
(x, y, z) at the time t. Also let p = p(x, y, z, t) and p = p(x, y, z, t) represent the 
pressure and the density, respectively, of the fluid. It is assumed that no external forces 
are acting on the fluid. In the general case, with variable pressure and density, we are 
dealing with a compressible fluid or gas, and the resulting equations characterize gas 
dynamics. 

We consider a volume of the fluid occupying a region R with boundary dR. As-
suming that there are no sources or sinks for the fluid in R, the rate of increase of 
the fluid in R in unit time must be balanced by the flux or inflow of fluid through the 
boundary dR. Analytically, this may be expressed as 

— / / p(x, y, z,t)dv = - p(x, y, z, t) u(x, y, z,t)-n ds, (8.5.40) 

where n is the exterior unit normal vector and the minus sign occurs since we are 
concerned with the inflow. [We note that p(x, y, z, t) dv is an element of mass and 
that p(x, y, z, t)u(x, y, z, t) -nds represents the flow of mass through the boundary 
element ds.] Applying the divergence theorem to the integral over dR and bringing 
the time derivative inside the integral over R in (8.5.40)—since R is fixed in time—we 
obtain 

I [pt(x, y,z,t) + V ■ (p(x, y, z, t)u(x, y, z, t))] dv = 0. (8.5.41) 
R 
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Since (8.5.41 ) must be valid for an arbitrary region R, we conclude that the integrand 
vanishes identically and obtain 

pt(x, y, z, t) + V · {p{x, y, z, t)u{x,y, z, t)) = 0, (8.5.42) 

which is known as the equation of continuity. 
Next we consider the law of conservation of momentum for the fluid. Since we 

are neglecting frictional forces due to the effects of viscosity, as well as all exter-
nal forces, the only force acting on the volume of fluid in the region R is due to 
the pressure along the boundary dR. The total pressure is given as P(x, y, z, t) = 
— JdRp(x, y, z, t)n ds, which is effectively a resultant of all the internally directed 
normal pressures at the boundary. According to Newton's second law of motion, the 
pressure force equals the mass times the acceleration of the fluid element or particle. 
The acceleration of a particle is given by du/dt, but since the particle is moving along 
a path x = x{t), у = y(t), z = z(t), we obtain from the chain rule 

du du dudx dudy dudz „ . .„ , „„, 
— = — + — — + - — r + -,—r=ut + (u-V)u. (8.5.43) 
dt dt dx dt dy dt dz dt K ' v ' 

Here we have used the fact that 

u=[x'(t), y'(t), z'(t)}, u-V = x'-^ + y'-^ + z ' ^ . (8.5.44) 

The derivative du/dt in (8.5.43) is often referred to as a material derivative. The total 
momentum of the fluid particles in R must equal the resultant pressure forces, and 
we obtain 

JJ p(x,y,z, t) d u ( a : ' ^ ' Z , t ) dv = - J p(x,y,z,t)nds, (8.5.45) 

since p(x, y, z, t) dv is an element of mass. Using the gradient theorem, which is a 
simple consequence of the divergence theorem, the integral over dR can be converted 
into an integral over R and (8.5.45) becomes 

I P{x, У, z, t) ' ' + Vp(x, y, z, t) 
R i dt 

dv = 0. (8.5.46) 

The arbitrariness of R implies the vanishing of the integrand and we obtain the equa-
tion of conservation of momentum, 

ut{x, y, z, t) + (u - V)u(:r, y, z, t) + Vp(x, y, z, t) = 0. (8.5.47) 
p(x,y,z,t) 

Further we assume that we are dealing with adiabatic flow. This means that 
the entropy s(x, y, z, t), a thermodynamic quantity, remains constant for each fluid 
particle as it moves along the particle path (x(t),y(t),z(t)). (A thermodynamic 
relation between the entropy and other physical properties of the fluid is given below 
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in our discussion of the Navier-Stokes equations.) Thus the material derivative of the 
entropy ds(x, y, z, t)/dt must equal zero. On using the chain rule and (8.5.44), we 
obtain 

st(x, y, z, t) + (u- V)s(x, y, z, t) = 0. (8.5.48) 

The equations (8.5.42), (8.5.47), and (8.5.48) are incomplete as they stand. We 
have only five equations and six unknowns [i.e.,p(x, y, z, t),p(x, y,z,t), s(x, y, z, t), 
and the three components of u(x, y, z, t)]. An equation of state that relates the three 
quantities p, p, s completes the system. We give it as 

p = f(p,s), (8.5.49) 

where the function f(p, s) is determined from thermodynamic considerations and 
differs for different fluids. 

The equations (8.5.42), (8.5.47), (8.5.48), and (8.5.49) constitute Euler's equations 
of fluid dynamics for inviscidadiabatic fluid flow. If the entropy s(x, y, z, t) is initially 
uniform, say s(x,y,z,t) = so, then ds(x,y,z,t)/dt = 0 implies that it remains 
uniform for all time, as each particle carries the same constant value s — so for the 
entropy. (The flow is assumed to remain smooth.) A fluid flow with uniform entropy 
is said to be isentropic. Then we can drop (8.5.48) and replace the equation of state 
(8.5.49) by 

P = /(A»), (8.5.50) 

since s — SQ for all t. The reduced set of equations (8.5.42), (8.5.47), and (8.5.50) are 
Euler's equations for inviscid, isentropicflow. Each of the systems is a quasilinear first 
order system that is not easy to solve in general. Consequently, certain simplifying 
assumptions are introduced to deal with specific types of fluid flow. 

Incompressible and Irrotational Fluid Flow 

In dealing with the flow of liquids rather than gases, we assume that the flow is 
isentropic and that, in addition, p(x, y, z, t) = constant. This means that we are 
dealing with an incompressible fluid and this equation replaces the equation of state 
(8.5.62). (Otherwise, the fluid is compressible, as is the case for a gas.) Noting the 
above, the equation of continuity (8.5.42) reduces to 

V · u(x, y, z, t) = 0. (8.5.51) 

We further assume that the fluid flow is irrotational, which means that the velocity 
field u(x, y, z, t) has the property that its curl vanishes; that is, 

V x u ( i , y , 2 , t ) = 0 . (8.5.52) 

On the basis of Stokes' theorem from vector analysis, we conclude that if (8.5.52) is 
satisfied everywhere, the integral of the velocity around any closed curve vanishes; 
that is, 

<f)u(x,y,z,t)-dr = 0. (8.5.53) 
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The integral in (8.5.53) defines the circulation of the fluid around the closed curve 
and irrotationality means that the flow is circulation free. Since the Euler equations 
describe the fluid motion as it develops in time, it cannot be assumed that if the flow is 
irrotational at one time, it does not become rotational at a later time. It can be shown, 
however, that the fluid remains irrotational for all t (based on Euler's equations) if it 
was so at a given time. 

Rather than consider this question, we examine the problem of steady fluid flow 
for which the pressure p = p(x, y, z) and the velocity u = u(x, y, z) are independent 
of time. Now it is easy to show that if (8.5.53) is satisfied for all closed curves, the 
velocity vector u(x, y, z) can be derived from a (velocity)potentialfunction φ(χ, y,z) 
and can be expressed as u(x, y, z) = ^ф{х, у, z). Inserting this into (8.5.51) gives 
V · u(x, y, z) = V · νφ(χ, у, z) = Ч2ф(х,у,г) = 0, so that ф(х,у,г) satisfies 
Laplace's equation. Once Laplace's equation for the velocity potential ф(х, у, z) is 
solved, we may determine the pressurep from (8.5.47), where we set щ(х, у, z) = 0. 
We see that for steady, incompressible, and irrotational flow, that the study of the 
fluid motion is reduced to the solution of Laplace's equation, subject, of course, to 
appropriate boundary conditions. 

Linearization of Euler's Equations: Acoustics 

A linearization procedure for Euler's equations for isentropic flow that results in a 
study of the wave equation, leads to the theory of acoustics. We perturb u(x, y, z, t), 
p(x, y, z, t), and p(x, y, z, t) around a (constant) equilibrium state u = 0, p = Po, 
and p = po [with po = f(po)] and write, with e = constant, 

u(x,y,z,t) = 0 + eui(x,y,z,i) + · · · , 
p(x, y, z, t) =■ po + epi (x,y,z,t) + ···, (8.5.54) 

, p(x, У, z, t) = p0 + epi (a:, y,z,i)-\ , 

and 0 < e -С 1, where the dots refer to higher-order terms in e. We are considering 
small disturbances around the equilibrium state. (The perturbation around the con-
stant density is often referred to as the condensation.) Inserting (8.5.54) into Euler's 
equations and retaining only 0(e) terms gives 

dpi{x,y,z,t) , 0 R „> y— '- + poV · ui [x, y, z, t) = 0, (8.5.55) 

*I (« .*M) + I ( } (8556) 
at po 

pi{x,y,z,t) = f'(po)pi(x,y,z,t), (8.5.57) 

as the linearized versions of the Euler equations. 
From (8.5.56), we find, on integrating, that щ(х,у,z,t) = Ui(x,y,z,0) — 

( l /po)V/ 0 Pi(x, y, z,t) dt. We assume that initially, U\(x,y,z,t) = 0 or that 
ui(x,y,z,t) is irrotational so that U\(x,y,z,0) = —V^(x,y,z) [i.e., it can be 
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derived from a potential function ф(х, у, z)]. (We recall the vector identity V x V^ 
= 0.) Then 

Ui{x,y,z,t) 
1 f* 

4>(x,y,z) / pi(x,y,z,t)dt 
Po Jo 

= -νφ(χ,ν,ζ,ϊ), 

(8.5.58) 

where ф(х, у, z, t) equals the term in brackets in (8.5.58). We have shown that if the 
flow is initially irrotational, it remains so for all time. 

Putting (8.5.58)into (8.5.56)gives V [~φι{χ, V, z, t) + {l/po)pi(x, У, z, t)} = 0, 
and we may choose 

Pi(x,y,z,t) = ръфг(х,у,г,г). 

Then (8.5.57) implies that 

pi(x,y,z,t) = Po φ^χ,ν,ζ,ΐ). 
U'(Po). 

Inserting (8.5.58) and (8.5.60) into (8.5.55) yields 

фи(х,У, z, t) - [f'(po)] У2Ф(х, У, z,t) = 0, 

so that ф(х, у, z, t) satisfies the wave equation if f'(po) > 0. 
In fact, for a poly tropic gas we have 

f(p)=AP\ 

(8.5.59) 

(8.5.60) 

(8.5.61) 

(8.5.62) 

where A and 7 are positive constants with 7 > 1 and given as 7 = cp/cv, with cp 

and cv equal to the specific heats of the gas at constant pressure and constant volume, 
respectively. We set 

c\p) = f'(p), (8.5.63) 

so that c(po) = \/f'(po) in (8.5.61) represents the propagation speed for distur-
bances. We note that not only ф(х, у, z, t) but p\ (x, y, z, t), p\ (x, y, z, t), and each 
component of U\(x,y, z, t) also satisfy the wave equation (8.5.61). 

For the one-dimensional case we replace u(x, y,z,t) by u(x, t) and obtain the one-
dimensional wave equation for ф(х, t) with the general solution ф(х, t) = F(x — 
c0t) + G(x + cot), with Co = c(po)· The function ф(х, t) must satisfy appropriate 
initial and boundary conditions and then ui (x, t), p\ (x, t), and p\ (x, t) can be ex-
pressed in terms of ф(х, t) by means of (8.5.58), (8.5.59), and (8.5.60). For example, 
if ф(х, t) = F(x — cot), so that only right-moving waves occur, we find that 

' u\(x,t) = —F'(x — cot), 

Pi{x,t) = -c0poF'(x - c0t), (8.5.64) 
^ Pi(x,t) = -(po/co)F'(x - cot), 

so that both pi (x, t) and p\ (x, t) can be expressed in terms of u\ {x, t) in the form 

Pi(x,t) = copoUi(x,t), p\{x,t) = (p0/co)ui(x,t). (8.5.65) 
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Euler's Equations for One-Dimensional Fluid Flow 

The result (8.5.65) suggests that we look for special solutions of the full nonlinear 
system of Euler's equations of isentropic flow in one dimension in the form p = 
p(u), p = p(u), where u(x, t) is the velocity. Using (8.5.63), the one-dimensional 
forms of Euler's equations are 

Pt + f>Ux + upx = 0, (8.5.66) 

c2(p) ut + uux + — ^ ρχ = 0. (8.5.67) 
P 

Since p has been eliminated from (8.5.67), we need only use p = p(u). Inserting this 
into (8.5.66) and (8.5.84) gives 

ut+uux = — - u x , ut + uux = ux, (8.5.68) 
P P 

where p' = dp/du. Equating the right sides of these equations yields 

(c(p)p')2=p2, p' = ±-f-v (8.5.69) 

Inserting (8.5.69) in the first equation of (8.5.68) gives, with c(u) — c[p(u)}, 

ut + [u± c{u)]ux = 0, (8.5.70) 

a first order quasilinear wave equation studied in Chapter 2. Once u(x, t) is found 
from (8.5.70), we may use the solution of (8.5.69) to specify p(x, t). 

Rather than deal with the general case, we consider a polytropic gas for which 
(8.5.62) is valid and choose the plus sign in (8.5.69)-(8.5.70). As a result c2(p) = 
dApi/dp = -)Ар1~1 and (8.5.69) becomes ^ 7 ^ р ( 7 _ 3 ) / 2 р ' = 1. This ODE is 
separable. Assuming that at и = 0 we have p = p0 and c(p)|u=o — c(po) = Co, the 
solution given in terms of c(u) is 

c(u) = со + -^~ u, (8.5.71) 

from which p can be determined. Then (8.5.70) takes the form (with the plus sign 
chosen) 

«* + (co + 4 — « ) ux = 0. (8.5.72) 

If the initial waveform of u(x, t) at t = 0 is given as u(x, 0) = h(x), the result of 
Exercise 2.3.7 implies that 

и = h 
7 + 1 

x — I со Л —и 11 (8.5.73) 
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is the implicit form of the solution of (8.5.71). This represents a wave traveling to 
the right for positive u, and according to the results of Section 2.3, each point x on 
the waveform u(x, t) travels with speed 

■ ^ = c 0 + ^ — u = u + i c 0 + ^ — u j . (8.5.74) 

In fact, for the general case of (8.5.70) we have 

dx 
— =u±c(u). (8.5.75) 
dt 

We see from (8.5.74)-(8.5.75) that ±c(u) represent an addition to the actual velocity 
и of the fluid at which disturbances propagate in the fluid. Therefore, с = γ/'f'(p) 
is called the local speed of sound of the fluid or gas. For the linearized equations of 
acoustics where a perturbation around a zero velocity was carried out, CQ = \J f'{po) 
represents the (constant) speed of wave propagation or the speed of sound for the gas. 
By choosing the minus sign in (8.5.69), we may construct solutions that represent 
waves traveling to the left. If we assume that the velocity и is small and approximate 
c{u) by C{UQ) = Co, our results reduce to those for the equations of linear acoustics. 

In general, solutions of (8.5.70) in the form и = h[x — (u± c(u))t] are known 
as simple waves and represent unidirectional wave motion. An alternative method 
for deriving simple waves is based on the use of the Riemann invariants for the one-
dimensional Euler equations in either the adiabatic or isentropic case (see Example 3.5 
and the exercises for this section). Simple waves play an important role in a number 
of problems in fluid dynamics, a particular case of which is the piston problem. This 
concerns the (one-dimensional) flow that results when a piston is pushed into or 
withdrawn from a long tube filled with gas at rest in a uniform state. (That is, the 
velocity и = 0 and the density, pressure, and entropy are all constant.) As a result, 
the flow can be assumed to be isentropic and can be described in terms of a simple 
wave under circumstances to be considered in the exercises. 

However, as was found for solutions of quasilinear wave equations in Section 2.3 
the simple wave solutions can break down after a finite time because they become 
multivalued or singular. In that case the solution can be continued beyond the breaking 
time by introducing shock waves as was done in Section 2.3. A set of shock conditions 
for the one-dimensional case known as the Rankine-Hugoniot shock conditions is 
considered in the exercises. 

Navier-Stokes Equations for One-Dimensional Viscous Fluid Flow 

An alternative approach to dealing with the breakdown of solutions of the Euler equa-
tions is to include the effects of viscosity and dependence on temperature variations 
that were neglected in our derivation of the Euler fluid flow equations. These effects 
introduce higher derivative terms into the system of fluid dynamics equations, and as 
we have seen on a number of occasions, the inclusion of higher derivative terms may 
have a smoothing effect on the solutions so that no breakdown occurs at all. 
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Rather than discuss the general case, we restrict ourselves to one dimension. With-
out presenting a derivation we write down the Navier-Stokes equations for viscous 
fluid flow in one dimension. We choose as the unknowns the velocity u, the density 
p, the pressure p, and the temperature T. Each of them is a function of x and t. We 
have 

pt + pux + upx = 0, (8.5.76) 

1 4 u 
ut + uux + - px = - - uxx, (8.5.77) 

p 3 p 

pcv[Tt + uTx] + pux = kTxx + -μ(ηχ)
2, (8.5.78) 

О 

p = RpT. (8.5.79) 

In these equations μ is the (constant) coefficient of viscosity, к is the coefficient of 
heat conduction, cp and c„ are the specific heats at constant pressure and volume, 
respectively, and R = cp — cv is the gas constant. We have assumed that there are 
no external forces or heat sources. (We note that in the literature the Navier-Stokes 
equations are often written in different forms.) 

The first two equations, (8.5.76) and (8.5.77) are the equations of continuity 
and conservation of momentum. The new term in (8.5.77) represents forces due 
to viscous effects and vanishes when μ = 0. The equation (8.5.78) characterizes 
the conservation of energy. If we neglect conductivity and viscosity (i.e., we put 
к — μ = 0), we obtain pcv(Tt + uTx) + pux = 0, From (8.5.76) we can replace ux 

by —(l/p)(pt + upx) and obtain p(et + uex) — (p/p) (pt + upx), where the internal 
energy e is given as e = cvT. Using the material derivative, we can write the above 
as de/dt — (p/p2) dp/dt — de/dt + p d/dt (1/p) — 0. Then the thermodynamic 
relation Tds = de + p d (l/p), where s is the entropy, reduces the internal energy 
equation to T ds/dt = 0. We see that the entropy for individual fluid particles re-
mains constant, so that this represents adiabatic flow. If at the initial time we have 
uniform entropy, it remains so for all time, and this corresponds to the isentropic flow 
considered. 

The final equation (8.5.79) is an equation of state for a perfect gas that takes 
the place of (8.5.49). We do not discuss the relationship between these equations, 
say, if μ = к — 0. In any case, the introduction of viscosity and heat conduction 
increases the order of the system of equations from first to second order by means of 
the addition of derivatives in x. It is shown in the exercises that for isentropic flow 
the Euler equations are a hyperbolic system whose characteristic curves for a given 
solution are (8.5.75), with с replaced by с = c(p). The equations of adiabatic flow are 
also hyperbolic, as shown in Exercise 3.3.22. The full Navier-Stokes equations are of 
parabolic type. We do not discuss the solution of these equations here, but in Section 
10.3 we present an approximation method that enables us to draw some conclusions 
about the effect of additional higher derivative terms in the Navier-Stokes equations 
on certain solutions of the fluid flow equations. 
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Steady Two-Dimensional Isentropic Flow 

We conclude our discussion of fluid flow by examining the Euler equations in the 
case of steady (i.e., time independent) two-dimensional isentropic flow. With u(x, y) 
and v(x, y) as the velocity components, p(x, y) as the density, and c2 = f'(p), we 
have from (8.5.42) and (8.5.47), 

puux + pvuy + c2px = 0, puvx + pvvy + c2py = 0, pux + pvy + upx + vpy = 0. 
(8.5.80) 

(8.5.81) 

(8.5.82) 

The system (8.5.80) can be written in matrix form as 

Awx + Bvfy = 0, 

where the matrices A and В and the vector w are given as 

ou 
0 
P 

0 
pu 
0 

c2 

0 
и 

, B = 
pv 
0 
0 

0 
pv 
P 

0 
c2 

V 

, w = 
и 
V 

. P 

This first order quasilinear system may be classified according to the method of 
Section 3.3 for a fixed solution w. The characteristic curves у = y(x) are determined 
from [see (3.3.38)] 

det(£ - y'A) = 

and this gives us 

p(v - y'u) 
0 

-py' 

0 
p(v - y'u) 

P 

-c2y' 

(v - y'u) 
= 0, 

[v - uy'][(v - uy')2 - (1 + y'2)c2} = 0. 

The first factor of (8.5.84) yields the characteristic curves 

, = dy_ = v_ 
dx и 

(8.5.83) 

(8.5.84) 

(8.5.85) 

and these represent the streamlines of the flow, that is, the curves whose tangents are 
the velocity vectors [u, v]. The second factor in (8.5.84) can be written as 

{c2 - u2)y'2 + (2uv)y'+ c2 0. (8.5.86) 

The roots y' of this quadratic equation may be characterized by means of the discrim-
inant, which is D = 4c2 (u2 + v2 — c2), as is easy to show. 

If u2 + v2 > c2, both roots y' are real and distinct and neither is equal to the third 
root (8.5.85). Thus there are three real and distinct characteristics, and the system 
is strictly hyperbolic. Since с is the sound speed and y/u2 + v2 is the speed of the 
fluid, this case corresponds to supersonic flow. If u2 + v2 < c2, the corresponding 
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roots y' are complex. This case corresponds to subsonic flow. (According to our 
classification scheme, since not all the y' are complex, this is not an elliptic system.) 
If u2+v2 = c2, there is a real double root, and the situation is complicated in that case. 
The flow may be termed sonic flow since the fluid speed and sound speed coincide. 

The distinction between subsonic and supersonic flow can be brought out in an-
other, simpler manner by linearizing the system (8.5.80). We set 

и = щ + eui H , v = evi H , p = p0 + tp\ Л , (8.5.87) 

where щ and po are constants and 0 < e <C 1. The dots correspond to higher-order 
terms in e. In (8.5.87) we are perturbing around a constant state in which there is a 
uniform flow with velocity щ > 0 parallel to the z-axis. 

Inserting (8.5.87) in (8.5.80) and retaining only the terms of order e yields 

ди\ о dpi n dv\ odp\ „ дщ dv\ dpi 
роиоЖ + С°Ж = °' PoU°-te + Co~dy- = °' P°-fo + Р0~ду- + Uo^ = °' 

(8.5.88) 
where CQ = c(po). From the third equation in (8.5.88) we have podvi/ду = 
—uodpi/dx — podui/дх = —u0dpi/dx + (cQ/uo)dpi/dx, in view of the first 
equation in (8.5.88). Since d2vi/dxdy = d2vi/dydx, we have pod2vi/dydx = 
—(cQ/uo)d2pi/dy2, pod2vi/dxdy = (CQ/UQ — uo) d2pi/dx2, which follow from 
the above, and imply that 

( 1 _ Μ 2 ) Ε ! ^ + ^ Ι ) = 0 , (8.5.89) 

where me Mach number M is defined as M = uo/co; that is, it is the ratio of the 
underlying constant velocity and the uniform sound speed CQ = c(po). 

If M > 1, (8.5.89) is clearly of hyperbolic type. This corresponds to supersonic 
flow since uo > Co in the unperturbed state. If M < 1, (8.5.89) is of elliptic type and 
we have subsonic flow since UQ < CQ. If M = 1, the equation is parabolic and we 
have sonic flow since щ = CQ. 

We note that the characteristics corresponding to the streamlines for the nonlinear 
system [i.e., (8.5.85)] play no role in the linearized problem. In fact, if we insert 
(8.5.87) into (8.5.85), we obtain to leading order y' = evi/uo, and from (8.5.86) we 
have y'2 = M2 — 1. Thus with e = 0 the characteristic equations are у' = О and 
y' = ±\/M2 — 1. The solutions of y' — 0 (i.e., у = constant) are the streamlines 
of the steady uniform flow и = г*о and v = 0. The characteristics of (8.5.89) (i.e., 
у = ± \ / M 2 — 1 x = constant) are solutions of the equation y' = ±y/M2 — 1. 

Maxwell's Equations of Electromagnetic Theory 

The electric and magnetic field vectors E and H, respectively, which are studied in 
electromagnetic theory, are solutions of the fundamental system of PDEs known as 
Maxwell's equations. For the most part, each equation in the system characterizes an 
experimentally observed property of electric and magnetic fields. We do not present 
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a derivation of these equations but write out the equations in mks units and discuss 
some of their properties. 

Maxwell's equations are given as follows: 

V x E = - | , (8.5.90) 

V x H = — + J , (8.5.91) 

V - B = 0, (8.5.92) 

V · D = p. (8.5.93) 

In addition there are the constitutive relations that express B, D, and J in terms of E 
and H. These equations are 

D = eE, Β = μΗ, J = σΕ. (8.5.94) 

The vectors D, B, and J are the electric displacement, the magnetic induction, and the 
conduction current density, respectively. Further, p is the density of electric charges, 
e is the dielectric constant, μ is the magnetic permeability, and σ is the conductivity. 

We now introduce some simplifying assumptions that render this system more 
tractable. In problems of electrostatics we set all time derivatives equal to zero. 
From (8.5.90) we then find that V x E = 0, so that E is an irrotational field. As was 
shown above, this implies that E can be derived from a potential, so that E = —V</>, 
with φ given as the electrostatic potential. Further, if in (8.5.94) e is a constant,we 
have from (8.5.93) V · E = p/e = - V · V0, so that V20 = -p/e, and φ is a solution 
of Poisson 's equation. If the charge density p vanishes, φ satisfies Laplace's equation. 
If the medium is nonconducting, so that σ = 0 and J — 0, and, in addition, μ is a 
constant, the same result is obtained for the magnetic field H. However, since there 
are no magnetic charges, the magnetostaticpotential satisfies Laplace's equation. 

We return to the consideration of electrodynamics. If the medium is homogeneous 
(i.e., e, μ, and σ are constant) and we also have /9 = 0, the following simplification 
of Maxwell's equations results. We apply the curl operator to (8.5.90) and obtain 
V x V x E = - V x d(pH)/dt = -μ <9(V x H)/dt. Using the vector identity 

V x V x E = V(V · E) - V2E, (8.5.95) 

and (8.5.91) for H gives 

V(V · E) - V2E = -{t*)w - (μσ) — . (8.5.96) 

But V · D = eV · E = 0, in view of (8.5.93), so that 

Я2р я р 
ν 2 Ε - Μ ^ - ( σ μ ) ^ = 0, (8.5.97) 
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with an identical equation satisfied by H. Thus each Cartesian component of E and 
H satisfies a telegrapher's equation of the form 

utt - C2V2M + Xut = 0, (8.5.98) 

where c2 = l/βμ and λ = σ/e. If the medium is nonconducting so that σ = 0, each 
component satisfies the wave equation. In either case, disturbances are propagated 
with the speed с We note that if p ф 0, weobtainaninhomogeneousformof(8.5.97). 

It is also possible to introduce scalar and vector potential functions to treat the 
time-dependent Maxwell's equations. We assume that the medium is homogeneous 
as well as nonconducting, so that σ = 0 and J = 0. The equation (8.5.92), that is, 
V ■ В = 0, implies that В is a solenoidal field and it is shown in vector analysis that 
there exists a vector potential A such that 

B = V x A . (8.5.99) 

Then (8.5.90) yields V x E = -dB/dt = - V x дА/dt, and we obtain V x 
[E + dA/dt] — 0, so that E + дА/dt is an irrotational vector. Consequently, it can 
be derived from a potential ф and we have 

E + — = - V 0 . (8.5.100) 

From the identity V x Vxp = 0, we see that if A is replaced by A = Ao + VV>, 
(8.5.99) will still be satisfied by Ao. Further, in terms of ф we have from (8.5.100) 
E + dAo/dt — — Vifrt — V(/> — — ν(φ + ißt), so that a new scalar potential фа can be 
defined as ф = фо — ψι. To remove this ambiguity we impose the Lorentz condition 
or the Lorentz gauge, 

V - A = - M ^ . (8.5.101) 

With this choice, A and φ both satisfy wave equations, as we now show. 
From (8.5.100), (8.5.93), and (8.5.101) we have V · [E + дА/dt] = V · E + 

ö(V · A)/dt = p/e - {ер)д2ф/д? = -Ψφ, so that, with c2 = Ι/βμ, we have 

ο2ν2φ-φη = —ξ-, (8.5.102) 

which is an inhomogeneous wave equation. To obtain an equation for A we use 
(8.5.91) in the form V x (μΗ) = V x B = (εμ) дЕ/dt, and insert the expres-
sion (8.5.99) to obtain V x B = V x V x A = V(V · A) - V2A = -(βμ) 
[d2A/dt2 + ν(δφ/θί)] , where (8.5.95) and (8.5.100) were used. Rearranging terms 
and using the Lorentz condition (8.5.101) yields 

, ,d2A π 2 Λ M ^ - V 2 A V-A + M f 0, (8.5.103) 

so that A satisfies the homogeneous wave equation. Once A and φ are specified, the 
electric and magnetic fields are given as 

dA 1 
E = - — - V 0 , H = - V x A . (8.5.104) 

at μ 
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Maxwell's Equations in a Vacuum 

We have shown the relationship between Maxwell's equations and Laplace's and 
Poisson's equations in the time-independent case and the wave and telegrapher's 
equations in the time-varying case. Many problems for Maxwell's equations can 
be reduced to a study of these simpler equations subject to appropriate initial and 
boundary conditions. 

As a simple example we consider the initial value problem for Maxwell's equations 
in a vacuum. We have e = μ = constant, σ = p = 0, and J = 0 in (8.5.90)-(8.5.94). 
Maxwell equations can then be written as 

V X E ( M ) = - ^ ^ , V x H ( M ) = e ^ , (8.5.105) 

ν · Ε ( χ , ί ) = ν · Η ( χ , ί ) = 0 . (8.5.106) 

These equations are valid throughout space, and initially we have 

E(x, 0) = F(x), H(x, 0) = G(x). (8.5.107) 

The procedure that led to (8.5.97) can be applied to (8.5.105) to yield the equations 

ν 2 Ε ( χ , ί ) - ( ε μ ) Ε ί Ε ( χ , ί ) = 0 , V2H(x,t) - (c/i)Htt(x,t) = 0. (8.5.108) 

Each Cartesian component of E(x, t) and H(x, t) satisfies a scalar wave equation. 
However, we have only one initial condition for E(x, i) and H(x, t) in (8.5.106) and 
we must also prescribe Et(x,i) and Ht(x, t) initially to obtain a unique solution. 
From (8.5.105) we find that 

J 0E(x,O)/3i = (l/e)V x H(x,0) = (l/e)V x G(x), 
| Ш(х, 0)/8t = - ( l / / i ) V x E(x, 0) = - ( 1 / μ ) ν x F(x). (8.5.109) 

The initial value problem for the scalar wave equation has been solved previously 
in the text in one, two, and three space dimensions. Thus E(x, t) and H(x, t) can be 
determined. To complete the verification of the solution we must show that (8.5.106) 
is satisfied for t > 0 provided that it was true at the time t = 0. Thus we must assume 
that the initial fields F(x) and G(x) are such that 

V-F(x) = V-G(x) = 0. (8.5.110) 

Since V · V x A(x, i) = 0 for any vector A(x, t), we have 0 = V · V x E(x, t) = 
- μ ν · Ht(x, f ) = -/x3(V · H(x, t))/dt, 0 = V · V x H(x, t) = eV · Et(x, t) = 
ed(V · E(x, t))/dt, on using (8.5.105). Thus V · E(x, t) and V · H(x, t) are constant 
in time and since they vanish at t = 0, they do so for all time. 

For the sake of concreteness we consider a specific problem in one dimension. Let 

Е(ж, 0) = F(x) = sin(a;)j, H(x, 0) = G(x) = cos(x)k. (8.5.111) 
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Then (8.5.110) is satisfied and V x ¥(x) = cos(x)k, V x G(x) = sin(x)j, so that 
Et(x,0) = (l/e)sin(x)j, Ht(x,0) = - ( l ^ ) c o s ( x ) k . 

Each component of E(x, t) and H(x, t) satisfies the one-dimensional wave equa-
tion uxx(x, t) — (ep)utt(x, t) = 0. The y-component of E(x, t) has the initial con-
ditions u(x, 0) = sin(x), ut(x, 0) = (1/e) sin(x), while the z-component of H(x, t) 
has the initial conditions u(x,0) = cos(x), щ(х,0) = - ( ly^)cos(x). All other 
components have zero initial conditions and, therefore, vanish for all time. Using 
d'Alembert's solution of the wave equation, we easily obtain (with c2 = l/εμ) the 
standing wave representations 

„ , ч . , s f , ч sin(ct)\ . ww, . . . / , . s in (c i ) \ , E(x,i) = sin(x) I cos(ct) H ^—^ 1 j , H(x,i) = cos(x) I cos(ci) *—*· 1 k. 

(8.5.112) 

Clearly, E(x, t) and H(x, t) satisfy the initial conditions (8.5.111 ). Further, V x 
E(x,i) = cos(x) [cos(ci) + (1/ce) sin(ci)] k, and - μ dH(x,t)/dt = cos(x) 
[^csin(ci) + cos(ci)] k, so that (8.5.105) is satisfied since μο = 1/ce. It can easily 
be verified that (8.5.106) are also satisfied. Finally, it may be noted that although the 
fields E(x, t) and H(x, t) propagate along the x-direction, the nonzero field compo-
nents lie in the transverse y- and z-directions. 

Navier's Equation of Elasticity Theory 

Let the vector u(x, t) represent the displacement of a point x in an elastic medium at 
the time t. Assuming that the medium is isotropie, the equation of motion satisfied 
by u(x, t), which is known as Navier's equation, is 

P d " ( * ' ^ = (A + 2M)V(V · u(x, i)) - MV x V x u(x, t) + F(x, t). (8.5.113) 

Here p is the density of the medium, A and μ are the Lamé constants, which depend 
on the properties of the medium, and F(x, t) represents the external forces. Using 
the vector identity (8.5.95), we can put (8.5.113) into the equivalent form 

P ^ ' = (λ + M)V(V · u(x, t)) + μν2ιι(χ, t) + F(x, t). (8.5.114) 

We assume in our discussion that p, A, and μ are constants. 
We begin our analysis of the equations of elasticity by assuming that u = u(x, t), so 

that the problem is one-dimensional. Letu(x,t) = u(x, t)i+v(x,t)j+w(x,t)k. The 
divergence V · u(x, t) has the form V · u(x, t) = du(x, t)/dx, since u is independent 
of у and z. Thus (8.5.114) becomes 

P ^ И = (λ + / * ) ^ r ^ + ̂ 2 " ^ *) + F ^ *)· ^8·5·115) 

WithF(x, t) = Fi(x, i ) i+F2(x, i ) j + F3(x, t)k, we can uncouple the three equations 
(8.5.115) for the Cartesian components of u(x, t) and obtain 
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putt(x,t) = (\ + 2p)uxx{x,t) + Fi(x,t), (8.5.116) 

pvtt(x,t) = μνχχ{χ,ί) + F2{x,t), pwtt(x,t) = μιυχχ(χ,ί) + F3(x,t). 
(8.5.117) 

Thus each component of u(a;, t) satisfies a wave equation in one dimension. How-
ever, the speed of wave propagation for u(x, t) equals [(λ + 2μ)/ρ]1/2, while the 
corresponding speed for v(x, t) and w(x, t) is (μ/ρ)1/2. 

These results show that there are two modes of wave propagation for elastic waves 
in one dimension. Since the waves associated with u(x, t) have the property that 
the displacement is in the direction of wave propagation, they are called longitudi-
nal waves and travel with the speed [(A + 2μ)/ p]1/2. The second wave motion is 
associated with v(x, t) and w(x, t) and thus corresponds to displacements in a plane 
perpendicular to the direction of wave propagation. Therefore, they are called trans-
verse waves and travel with the speed (μ/ρ)1/2. Since A, μ, and p are all positive, we 
see that the longitudinal waves have greater speed than the transverse waves. (The 
longitudinal waves are often called compression waves and the transverse waves are 
called shear waves.) 

It may be noted that if we put u(a;,i) = u(x, t)i+[v(x,t)j+w(x, t)k] = u(x,t)i+ 
Y(x, t), we have (since и and V are functions of x and t only) V x u(x, t) = V x 
\{x,t), V x ( « ( i , i ) i ) = 0 , V-u(x,t) =V-{u(x,t)i), V-\(x,t) = 0, as is easily 
verified. This suggests that in the general case, we try to decompose the displacement 
vector u(x, t) into two parts, one involving V · u(x, t) and the other V x u(x, t). (It 
is shown in vector analysis that such a decomposition is always possible for a vector 
field. That is, it can be decomposed into a sum of two vectors, one of which has zero 
divergence whereas the other has zero curl.) 

To achieve this decomposition, we multiply (8.5.113) by V- and then by V x ; that 
is, we take the divergence and curl of these equations. We have 

p д ( ^ 2
 U) = (A + 2M)V2(V · u) + V ■ F (8.5.118) 

since the divergence of a curl vanishes. Also, 

Ö2(V x u 
dt2 /A7 2 (Vxu) + V x F (8.5.119) 

because of the vector identities V x [V x V x u] = - V 2 ( V x u) + V(V · V x u) = 
- V 2 ( V x u), V · V x u = 0, and V x ф = 0. 

We have shown that in the general case, the elasticity equations can be reduced to 
the study of two wave equations for V · u(x, t) and V x u(x, t). The term V · u(x, t) 
characterizes the compression and expansion of the body and its waves travel with the 
speed [(A + 2μ)/ρ]1/2. The term V x u(x, i) characterizes the distortion of the body 
and its waves travel with the speed (μ/ρ)1/2 . In dealing with initial value problems 
for elastic wave propagation with no boundaries present, this decomposition can be 
used to great advantage since we know how to solve the initial value problem for the 
wave equation. However, if there are boundaries, the boundary conditions couple the 
components of u(x, t) and the problems are more complicated. 
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Exercises 8.5 

8.5.1. Show that if f(x) = δ(χ) (the Dirac delta function) and g(a;) = 0 in (8.5.2), 
the asymptotic solution (8.5.8) of (8.5.1) is u(x, t) « (1/\/4ποΐ) cos(a;2/4ci - π/4) 
and this is the exact solution of the initial value problem. 

8.5.2. Use the result of Exercise 8.5.1 to show that the solution of (8.5.1) with 
u(x, 0) = / (* ) , ut(x, 0) = 0 is u(x, t) = ^L·- JZe № c o s ( ^ f - f ) da. 

8.5.3. A rod is said to be simply supported at x = 0 if ω(0,ί) = uxx(0,t) = 0. 
Use the Fourier sine transform to solve the following problem for the vibration of a 
semi-infinite rod: utt(x,t) + c2uxxxx(x,t) = 0, 0 < x < oo, t > 0, u(x,0) = 
f(x), ut(x, 0) = g{x), 0 < x < oo, u(0, t) = uxx(0, t) = 0, t > 0. 
8.5.4. Apply the Fourier cosine transform to solve the following problem: uu (x,t) + 
c2uxxxx{x, t) = 0, 0 < x < oo, t > 0, u(x, 0) = f(x), ut(x, 0) = g(x), 0 < x < 
oo, ux(Q,t) = uxxx(0,t) = 0, t > 0. 

8.5.5. The vibration of a finite rod simply supported at both ends is determined by the 
solution of the following problem: utt(x,t) +c2uxxxx(x,t) = 0, 0 < x < I, t > 0, 
u(x,0) = f(x), ut(x,0) = g(x), 0 < x < l, u(0,t) = uxx(0,t) = u(l,t) = 
uxx(l, t) = 0, t > 0. Obtain the solution by using separation of variables. 

8.5.6. A rod is free or unsupported at a point if uxx (x, t) and uxxx (x, t) vanish there. 
Use separation of variables to solve the following problem for the vibration of a rod 
clamped at one end and free at the other end: utt(x, t) + c2uxxxx(x, t) = 0, 0 < 
x < I, t > 0, u(x,0) = /(ж), щ(х,0) = g(x), 0 < x < l, u(0,t) — ux(0,t) = 
uxx{l, t) = uxxx(l, t) = 0, ί > 0. 

8.5.7. Consider the eigenvalue problem v""(x) - λ2υ(χ) = 0, 0 < x < I, with 
the following boundary conditions: (a) v(0) = v'(0) = v(l) = v'(l) = 0; (b) 
w(0) = «"(0) = v(l) = v"(l) = 0; (c) </(0) = v'"{0) = v'(l) = v'"(l) = 0; (d) 
v(Q) = v'(0) = v"(l) = v'"(l) = 0. Let X„ and \m be distinct eigenvalues for each 
of these problems and vn(x) and vm(x) be the corresponding eigenfunctions. Use 
the method of Section 4.3 to show that the eigenfunctions are orthogonal with respect 
to the following inner product {vn(x), vm(x)) = JQ v„(x)vm(x) dx = 0, пфт. 

8.5.8. Construct the Green's function K(x; ξ) for the problems: d4K(x\ ξ)/δχΑ = 
-δ(χ - ξ), 0 < х, ξ < I, where K(x; ξ) satisfies the boundary conditions (a), (b), 
(c), or (d) given in Exercise 8.5.7. Hint: K{x\ ξ) satisfies a homogeneous equation 
at x φ ξ, and the jump in d3K(x; ξ)/θχ3 at x = ξ is —1. In case (c), a modified 
Green's function must be constructed. 

8.5.9. Show how the finite sine transform method can be used to solve the problem 
in Exercise 8.5.5 if the equation and the boundary data are inhomogeneous. 

8.5.10. A simply supported plate satisfies the boundary conditions u(x,y,t) = 0 
and д2и(х, у, t)/dn2 = 0 at the edge. [Here д2и(х, у, t)/dn2 is the second exterior 
normal derivative.] Use separation of variables to solve the problem of the vibrating 
simply supported rectangular plate. That is, solve the following problem for u(x, y,t): 
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utt(x,y,t) + c2V2V2u(x,?/,i) = 0, 0 < x < I, 0 < у < Ì, t > 0, u(x,y,0) = 
f(x,y), ut(x,y, 0) = g(x,y), 0 < x < I, 0 < у < Ì, u(0,y, t) = uxx(0, y,t) = 
u(l,y,t) = uxx(l,y,t) = 0, 0 < у < ΐ, t > 0, u(x,0,t) = uyy(x,0,t) = 
u(xj,t) = uyy(x,i,t) = 0, 0 < x < I, t > 0. Hint: Obtain (8.5.21) and set 
An(x) = sin[(nn/l)x] to satisfy the conditions at x = 0 and x — I. Conclude that 
Bm{y) = sm[(nm/l)y], and obtain the solution in terms of a double Fourier sine 
series. 
8.5.11. Use the Fourier transform to solve the Cauchy problem for the vibrating 
plate equation utt (x, y,t) + c2V2V2u(x,y,t) = 0, —oo < x, у < oo, t > 0, 
u(x,y,0) = f(x,y), ut(x,y,0) = g{x,y), -oo < x,y < oo with appropriate 
conditions at infinity. 
8.5.12. Use Green's theorem (8.5.38) to show that eigenfunctions corresponding to 
different eigenvalues of the problem (8.5.19)-(8.5.20) are orthogonal. 
8.5.13. Verify that (8.5.32) satisfies the biharmonic equation. 
8.5.14. Solve the boundary value problem V2V2u(r, Θ) — 0, x2 + y2 < R2, 
u{R,9) = /(0), du(R,9)/dr = д(в) by using a Fourier series in the angular 
variable Θ. 

8.5.15. Solve the problem of Exercise 8.5.14 using the method presented in the text 
if the boundary conditions are f{9) = 1, g{6) = sin3 Θ. 

8.5.16. Show that (8.5.37) satisfies the biharmonic equation if г ф 0. 
8.5.17. Solve the following problem by looking for a solution of the form и = u(r): 
V2V2u(r, Θ) = F0, x2 + y2 < R2, u(R, Θ) = 0, du{R, 9)/dr = 0, where F0 is a 
constant. 
8.5.18. Obtain the solution of the problem V2V2u(a;,y) = ~S(x)S(y), x2 + y2 < 
R2,u{x,y) = du(x, y)/dn = 0, x2 + y2 = R2 by looking for a solution in the form 
u(x,y) = - ( l /87r)r2 logr + v(r), where r2 = x2 +y2. 

8.5.19. Take the total or material derivative of the equation of state (8.5.49) with 
respect to t and obtain dp/dt = c2 dp/dt on using (8.5.48) and defining c2 = 
df(p,s)/dp. Use this result to replace (8.5.48) by pt{x,y,z,t) + (u(x,y,z,t) ■ 
V)p(x, y, z, t) - c2[pt{x, y, z, t) + (u(x, y, z, t) ■ V)p(x, y, z, t)} = 0. Show that the 
one-dimensional version of the modified form of Euler's equations for adiabatic flow 
is given as in Exercise 3.3.22. 

8.5.20. Use the equation T ds/dt = de/dt + p d/dt (1/p) = 0, together with the 
equations (8.5.42) and (8.5.47), to replace the (entropy) equation (8.5.48) by the 
equation 

p(x, y, z, t) — (e(x, y, z,t) + - \u(x, y, z, t)\2 J + V-(p(x, y, z, t)u(x, y, z, t)) = 0. 

This the equation of conservation of energy. 

8.5.21. Use the result of Exercise 8.5.20 to express the one-dimensional form of 
Euler's equations for adiabatic flow in conservation form (see Section 2.3), pt (x, t) + 
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{p(x, t)u(x, t))x = 0, (p(x, t)u(x, t))t+(p(x, t)u2{x, t)+p(x, t))x = 0, [\p{x, t)u2 

(x, t)+p(x, t)e(x, t)}t+[{\p{x, t)u2{x, t) + p(x, t)e(x, t)) u(x, t)+p(x, t)u(x, t)]x 

= 0. It is from this system of conservation laws that the Rankine-Hugoniot shock con-
ditions are derived, in the manner of Section 2.3. We do not write them down. 

8.5.22. Multiply (8.5.66) by c(p), add (8.5.67) to it, and then subtract (8.5.67) from 
it to obtain с [pt + {и ± с)рх] ± р [щ + (и ± c)ux] = 0. Conclude from these 
equations that с dp/dt + p du/dt = 0 on dx/dt = u + c, and с dp/dt — p du/dt — 
0 on dx/dt = u — c, where d/dt = д/dt + (dx/dt)d/dx. Since с = c(p), show that 
these equations can be written as Jp c(p)/pdp + u = constant on dx/dt = и + с, and 
j p c(p)/p dp — и = constant on dx/dt = и — с They are the Riemann invariants. 

8.5.23. Show that if one of the Riemann invariants in Exercise 8.5.22 is set identically 
constant for all x and t (i.e., it is not just constant on individual characteristics), we 
must have p = p{u). Conclude that the other Riemann invariant has the form of a 
simple wave. 

8.5.24. In the case of a polytropic gas [see (8.5.62)], show that the Riemann invariants 
of Exercise 8.5.23 take the form 2c/(7 - 1) ± и = constant on dx/dt = u±c. 

8.5.25. Consider the problem of the withdrawal of a piston from a polytropic gas 
initially at rest. The problem is one-dimensional, and at the time t = 0 the gas 
is located at x > 0 with velocity и = 0, a constant propagation speed с = Co, 
and constant entropy s = s0. The path of the withdrawing piston is x = g(t), 
with g(0) = 0 and g'(t) < 0. Use the Riemann invariants of Exercise 8.5.24 
and conclude that 2c/(7 — 1) — и = 2co/(7 — 1) since each of the characteris-
tics associated with this invariant issues from the positive ж-axis. Show that и = 0 
and с = со in the sector coi < x < 00. In the region between the piston curve 
and the line x = CQÌ, show that и = constant on dx/dt = Co + [(7 + l)/2]u, 
that is, the solution is a simple wave there. Since the fluid velocity on the piston 
equals the piston velocity, we have the boundary condition и = g'(t) o n i = g{t). 
Obtain the equation of the characteristic x'{t) = Co + [(7 + l)/2]u in the para-
metric form x = д(т) + [со + (7 + 1/2) д'(т)} (t — r ) . The solution is given as 
u ~ i?'(r)i с = со + [(7 — l)/2] g'(r), s = s0, with r determined as a function of 
x and t from the equation for the characteristic. We do not discuss the formation of 
shocks. 

8.5.26. Consider the Hertz vector π (x, t ) and express the scalar and vector potentials 
φ(χ, t) and A(x, t) for Maxwell's equations as ψ(χ,ί) = - V · тг(х,£), A(x, t) = 
(1/с2)07г(х, t)/dt, where εμ = 1/c2. Show that the Lorentz condition (8.5.101) is 
thereby satisfied. ExpressE(x,i) and Hin terms of7r(x,i), and if p{x,t) — σ(χ,ί) = 
0, show that π(χ, t) satisfies the equation πίΕ(χ, t) — c2V27r(x, t) = 0. 

8.5.27. Determine the form taken by Maxwell's equations if p(x, t) = σ(χ, t) = 
0, e(x, ί), μ(χ, ί) are constant, and E(x, i) and H(x, t) are given as E(x,t) = 
e(x)e_ta , t , H(x, t) = Ιι(χ)ε~ιωί, where ω is a constant. 

8.5.28. Verify that V · F(z) = V · G(z) = 0 for the data (8.5.111 ) and show that the 
solution (8.5.112) also satisfies V · E{x, t) = V · H(x, t) = 0. 
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8.5.29. Formulate Exercise 8.5.26 for the Hertz vector if the problem depends only 
on x and t. Assume that the Hertz vector π(χ,ί) is given initially as 7r(x,0) = 
(cosx)i+j, Kt(x,0) = к, — оо < er < со. Determine n(x,t), E(x,t), and H(x,t) 
for ί > 0 by solving the Cauchy problem for π(χ, t). 

8.5.30. Let the Hertz vector π(χ, t) be given as π(χ, t) = α(\)ε~ιωί (see Exercise 
8.5.26). Assuming that the conditions given in Exercise 8.5.27 apply, show that 
V2a(x) + fc2a(x) = 0 , where A; = w/cande(x) = V(V-a(x)) + fc2a(x), h(x) = 
— (ik^c) V x a(x) . 

8.5.31. To study the possibility that electromagnetic waves can propagate in a waveg-
uide, we consider Maxwell's equations in a cylindrical region whose walls are per-
fectly conducting. The interior of the guide is such that e and μ are constant and σ = 0. 
In addition, there are no sources so that /5 = 0 and E(x, y, z, t) and H(x, y, z, t) are 
assumed to have harmonic time dependence, as in Exercise 8.5.27. The tangential 
component of E(x, y, z, t) vanishes on the waveguide wall. Assume that the cylin-
der has its generators parallel to the 2-axis and show that if we set the Hertz vector 
π(χ, y,z,t) equal to π(χ, у, z, t) = a(x, y, ζ)ε~ιωί = u(x, y: г)е~шЬк, the tangen-
tial component of E(x, y, z, t) vanishes if u(x, y,z) — 0 on the cylinder wall (use 
Exercise 8.5.30). Also, conclude that u(x, y, z) satisfies the reduced wave equation 
V2u(x, y, z) + k2u(x, y, z) = 0, к — ω/c. Let u(x, y, z) = M(x, y)v(z) and deter-
mine M{x, y) from the eigenvalue problem V2M(x, y) + XM(x, y) = 0, (x, y) € 
G, M(x,y) = 0, (x, y) € dG, where G is a perpendicular cross section of the cylin-
der. Let λη and Mn(x, y) be the eigenvalues and eigenfunctions for this problem 
with \\ < Xì < ■■ ·. Then vn(z) must satisfy ν'ή(ζ) + (к2 — λη)νη(ζ) = 0. Con-
sidering only waves traveling in the positive 2-direction, show that the Hertz vectors 
7T„(:r, y, z, t) must take the form πη(χ, у, z, t) = anMn(x, y) exp[i(anz — u;i)]k, 
where ση = Vk2 — \ n and an is a constant. Determine that no traveling waves exist 
in the waveguide if k2 < \\ and that only a finite number of such waves exist if 
λη_ι < к2 < λ„. [With к2 < Xn, the field πη(χ, у, z, t) decays as z —» со.] 

8.5.32. Since к = ω/c, show that if ω2 < \\c2 for a particular waveguide where Ai 
is determined as in Exercise 8.5.31, no traveling waves can exist in the waveguide. 
Thus ω = \J\~\ с is termed a cutoff frequency. Determine the cutoff frequencies for 
the waveguides with the following cross sections: (a) 0 < x < I, 0 < у < I; (b) 
x2 + y2 < a2. 

8.5.33. Solve the initial value problem for the one-dimensional Navier equation 
(8.5.114) with F = 0 and the initial data u(x,0) = (cosx)i+j + (sina;)k, ut(x,0) = 
xi + e"xj + k. 

8.5.34. Show that if the equation (8.5.118) is solved for V · u(x, t), we may obtain 
u(x, t) from (8.5.114) by treating the term involving V · u(x, t) as an additional 
inhomogeneous term. Indicate how we may express the solution of the initial value 
problem for (8.5.114) with u(x, 0) and Ut(x, 0) specified, using the general solution 
formula for the wave equation. 
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8.6 MAPLE METHODS 

We have constructed a number of Maple procedures that carry out the Rayleigh-Ritz 
method for the approximate determination of eigenvalues and eigenfunctions, as pre-
sented in Section 8.2, for one, two, and three dimensions. One set of procedures 
finds only approximate eigenvalues, while a corresponding set of procedures obtains 
approximate eigenvalues and eigenfunctions. Only the first set of procedures can 
handle problems that contain parameters. Additional procedures that determine ap-
proximate solutions of boundary value problems based on the Rayleigh-Ritz and the 
Galerkin methods (as presented in the exercises in Sections 8.1 and 8.2) have also 
been constructed but are not presented here. 

Rayleigh-Ritz Method: One Dimension 

In the one-dimensional case we consider regular or singular Sturm-Liouville eigen-
value problems for the second order ODE 

—— ( p(x)—^- ) + q{x)u(x) = Xp(x)u(x), a<x <b (8.6.1) 
ax \ ax J 

with boundary conditions of the type presented in Section 4.3. The procedure 
RayleighRitz Id finds the approximate eigenvalues for the Sturm-Liouville problem 
using then admissible functions {фк(х)}, к = 1,2,... ,n in the appropriate Rayleigh 
quotient. It is given as RayleighRitzld([p(x),q(x),p(x)],x — a..b, [φι(χ),φ2(χ), 
..., φη(χ)], [LBC, RBC]). The boundary conditions at x = a and x = b are speci-
fied in the last argument. If LBC = Dir or LBC = Neu, the boundary conditions 
are u(a) = 0 or u'(a) = 0, respectively. If LBC = h, the boundary condition is 
v! (a) — hu(a) = 0. If the point x = a is a singular point for the differential equation 
or we have a = —oo, we put LBC = Bound. In that case, the admissible functions 
must be bounded at the left endpoint. The same values are given for RBC, and the 
corresponding boundary conditions are u{b) — 0, u'(b) = 0, and u'(b) + hu(b) = 0, 
or the boundedness condition. Only in the case of a Dirichlet boundary condition 
at an endpoint must the {фк(х)} satisfy the admissibility condition that they vanish 
at that endpoint. If one of the фк(х) ф 0 at a Dirichlet endpoint, an error message 
is printed out and the function фк(х) must be replaced. We recall that no admissi-
bility condition is required in the case of Neumann or Robin boundary conditions. 
However, as noted previously, if the {фк {х)} satisfy the relevant boundary condition, 
improved results are obtained. 

As an example, we reconsider the eigenvalue problem of Example 8.4 but in-
crease the number of admissible functions from 2 to 10. They are given as {фк{х) = 
7rfc - xk}, к = 2 , 3 , . . . , 11. Each function vanishes at x = π and has a vanishing 
derivative at a; = 0. The procedure is RayleighRitzld([l,0,1],χ = 0..π, [seq(nk — 
xk,k = 2..11)], [Neu, Dir}). The output list the first ten approximate eigenvalues Xk, 
[0.25,2.26,6.26,12.3,20.2,30.4,43.6,63.4,111,222]. The exact eigenvalues are 
Xk = (k + 1/2)2, and the first ten eigenvalues are [0.25,2.25,6.25,12.2,20.2, 
30.2,42.2,56.2,72.2,90.2]. We find that the first seven approximate eigenvalues are 
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excellent approximations to the exact eigenvalues. In Example 8.4, where only two 
admissible functions were used in the Rayleigh-Ritz approximation, the second ap-
proximate eigenvalue was found not to provide too good an approximation to the 
exact eigenvalue. 

Next we use the procedure to approximate the leading eigenvalues for Bessel's 
equation of order 1, as determined in Section 4.3, where we put n = 1 and / = 1 
in (4.3.56). We invoke RayleighRitzld([x, 1/x,x],x = 0..1,[χ(1 - x),x(l — 
x)2,x(l — x)3, x(l — x)4], [Bound, Dir]). The фк{х) are chosen to vanish at x = 1 
to satisfy the Dirichlet boundary condition. They are also chosen to vanish at x = 0 
rather than simply to be bounded there, to guarantee that the integrals that occur in the 
Rayleigh quotient converge. The four leading approximate eigenvalues determined 
from the procedure are [14.7,49.2,115., 226.]. The exact eigenvalues are the squares 
of the zeros of the Bessel function of order 1. They are [14.7,49.3,104., 177.]. The 
first two eigenvalues are in good agreement. 

The procedure RayleighRitzEFld finds approximate eigenvalues and eigen-
functions for the Sturm-Liouville problems considered above. The arguments of 
the procedure are identical with those of RayleighRitzld. We apply it to the sin-
gular Sturm-Liouville problem of Section 4.3, which involves the Legendre poly-
nomials. The procedure takes the form RayleighRitzEFld([l — x2,0, l],x = 
—1..1, [l,x, x2], [Bound, Bound]). Each monomial is bounded at a; = —1 and 
x = 1. The output of the procedure is; Approximate Eigenvalues = [0.,2.,6.], 
Approximate Eigenfunctions = [Ι,χ,χ2 — 1/3]. The approximate eigenvalues and 
eigenfunctions are, in fact, exact. The approximate eigenfunctions are the first three 
Legendre polynomials if x2 — 1/3 is multiplied by 3/2. 

Rayleigh-Ritz Method: Two and Three Dimensions 

We consider the eigenvalue problem 

- V · (pVM) + qM = XpM (8.6.2) 

in the region G in two or three dimensions. In two dimensions we assume that G can 
be described as c(x) < у < d(x), a < x < b or c(y) < x < d(y), a < у <b. The 
region G may be a rectangular region or the interior of a circle. In three dimensions 
G must be given as r(x, y) < z < s(x, y), c(x) < у < d(x), a < x < b or in one 
of five other related sets of inequalities. The region G may be a rectangular region 
(say the interior of a cube) or the interior of a sphere. 

RayleighRitzld finds approximate eigenvalues for the two-dimensional eigenvalue 
problem using the n admissible functions {фк{х, у)}, к = 1,2,.. . , n in the appropri-
ate Rayleigh quotient. It takes the form RayleighRitz2d([p(x, y), q(x, у), р(х, у)], 
у = c(x)..d{x), x = a..b, [фх {x, у),..., фп(х, у)], [ BCU BC2,BC3, ВС4]). [The 
alternativee form c(y) < x < d(y), a < у < b, can also be used.] The boundary 
conditions are specified in the last argument. It is a list with four elements that 
specifies the coefficients in the Robin boundary conditions. The order in which the 
boundaries of the region are taken in the list, follows that of the curves given in the 
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range arguments. [For example, BC\ corresponds to the boundary curve у = c(x).] 
If one of the elements in the list is zero, there can be a Dirichlet or Neumann condition 
on that side. If it is a Dirichlet condition, all the фк(х,у) must vanish on that side. If 
they do not vanish, it corresponds to a Neumann condition. If the trial functions sat-
isfy all the boundary conditions, improved results are results are obtained. As in the 
one dimensional case, the procedure RayleighRitzEF2d determines approximate 
eigenvalues and eigenfunctions. 

As a concrete example, we determine the leading eigenvalue for the problem 

V2M{x,y)+XM(x,y) =0, 0<x<l,0<y<L, (8.6.3) 

with the mixed boundary conditions 

M(0, y) = Mx(l, y) = M(x, 0) = M(x, L) = 0. (8.6.4) 

We make use of the exact eigenfunction фх(х,у) = sm(nx/2l)sin(ny/L) in 
RayleighRitz2d([l,0,l],y = Q..L,x = 0..Z, [sm(ra/2Z)sin^y/L)], [0,0,0,0]). 
The exact leading eigenvalue is (π2/4)Ζ2 + π 2 /L 2 . If we replace the exact eigen-
function in the procedure by фг(х, у) = (у — L)xy we obtain approximate leading 
eigenvalue 3/12 + 10/L2. The corresponding procedure RayleighRitzEF2d does 
not permit parameters in its arguments. If we put I = 1 and L = 2 in the procedure 
the approximate eigenvalue equals 5.5, as expected. 

In three dimensions, RayleighRitz3d and RayleighRitzEF3d are the rele-
vant approximation procedures. The region is described as above and there are 
six boundary conditions. We approximate the leading eigenvalue in the sphere as 
in Example 8.3. The procedure is RayleighRitz3d([l, 0,1], z = —y/l — x2 — y2·· 
sj\- x1 - y2,y = - V l - x2..\/l - x2,x = - 1 . . 1 , [1 - x2 - y2 - z2}, 
[0,0,0,0,0,0]) The function φχ (x, y, z) — 1 - x2 — y2 — z2 vanishes on the unit 
sphere as required. (We must use a function that results in integrals for the Rayleigh 
quotient that Maple can evaluate in cartesian coordinates. For this reason we do not 
use the function given in Example 8.3. While it is possible to transform the integrals 
to spherical coordinates, the procedure uses cartesian coordinates.) The output of the 
procedure is the approximate eigenvalue 10.5. As shown in Example 8.3 the exact 
eigenvalue is π2 fa 9.87. The approximation found in Example 8.3 is 10. 

We conclude this discussion by approximating the leading eigenvalue for the Lapla-
cian in the unit cube for the case of Robin boundary conditions on each side. That is, 
we consider 

V2M(x,y,z) + XM(x,y,z) = 0 , 0 < x < l , 0 < у < 1, 0 < г < 1, (8.6.5) 

with Robin boundary conditions at x = 0 and x = 1, 

Mx{0,y,z)-M(0,y,z) = 0, Mx(l,y,z) + M(l,y,z) = 0, (8.6.6) 
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and corresponding boundary conditions at у = 0, у = 1 and z = 0, z = 1. We 
use the procedure RayleighRitz3d([l,0, l],z = 0..1,y = 0..1,x — 0..1, [(x2 -
x - \){y2 - у - l)(z2 - z - 1)], [1,1,1,1,1,1]). The function фг{х,у, z) = {x2 -
x — l)(t/2 - у - l){z2 — z — 1) satisfies the boundary conditions on all six sides of 
the cube. Even though ф\ (x, у, z) need not satisfy an admissibility requirement for 
this problem, we expect an improved result with the foregoing choice. The output is 
the approximate eigenvalue 5.121951220. The exact leading eigenvalue, λχ, is given 
in terms of a solution 7 of the transcendental equation tan(7) = 27Д72 — 1) as 
λι = З72, and has the approximate value 5.121158925. 

Exercises 8.6 

8.6.1. Apply the procedure RayleighRitzld to reproduce the first 10 approximate 
eigenvalues given at the beginning of this section. 

8.6.2. Apply the procedure RayleighRitzld to obtain the first four approximate 
eigenvalues given at the beginning of this section. Determine the corresponding exact 
eigenvalues using the Maple procedure for determining zeros of Bessel functions. 

8.6.3. Use the procedure RayleighRitzEFld to determine the approximate eigen-
values and eigenfunctions given at the end of the subsection on the Rayleigh-Ritz 
method in one dimension. 

8.6.4. Apply the procedure RayleighRitzld to reproduce the result obtained follow-
ing (8.6.3)-(8.6.4). Then use the procedure RayleighRitzEF2das in the discussion 
that follows the result to determine the approximate eigenvalue 5.5. 

8.6.5. Use the procedure RayleighRitzld to reproduce the result obtained in the 
text after the first application of this procedure. 

8.6.6. Use the procedure RayleighRitzld to reproduce the result obtained in the 
text after the second application of this procedure, and use Maple to solve the tran-
scendental equation whose solution yields the exact eigenvalue. 



CHAPTER 9 

PERTURBATION METHODS 

9.1 INTRODUCTION 

Chapters 9 and 10 deal with a collection of methods that yield approximate solutions 
for a large class of initial and boundary value problems for partial differential equa-
tions. Generally speaking, these methods are used when a small parameter (or a large 
parameter) occurs in the given equation or data for the problem. Then the (assumed) 
solution is expanded in a series of powers (or inverse powers) of the parameter, and 
this expansion is inserted into the equation and data for the problem. By equating like 
powers of the parameter, a collection of problems results whose solution is expected 
to be simpler than that of the given problem. 

If the series expansion of the solution converges, or is expected to converge, the 
aforementioned technique is often referred to as a perturbation method. If the series 
is divergent but asymptotic, so that the first few terms yield a good approximation 
when extreme values of the parameter are considered, the technique above is called 
an asymptotic method. The terminology is, however, not uniform in the literature and 
what are termed perturbation series may, in fact, be asymptotic, and vice versa. 

In general, it is difficult to specify all the terms in a perturbation or asymptotic 
series for problems involving PDEs. Thus only the first few terms in the series are de-
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termined and the distinction between a convergent or asymptotic series often becomes 
irrelevant. Although for many problems precise results are available regarding the 
convergent or asymptotic nature of the result, we concentrate on the formal aspects 
of constructing the series solutions and generally obtain only the first few terms of 
the series. 

In this chapter we discuss regular and singular perturbation methods. In Chap-
ter 10 we discuss three methods that are not generally referred to as perturbation 
methods. Therefore, we collect them all under the heading of asymptotic methods. 

The appropriate expansion forms for the solution of a given problem are by no 
means obvious in all cases. Consequently, it is often useful to study exact solutions 
of particular problems and expand these solutions in a series involving the relevant 
small or large parameter. This not only suggests appropriate expansion forms for more 
general problems but may also yield useful information for specifying undetermined 
quantities that occur in the general case. 

Perturbation techniques can also be used to replace given equations by simpler ones 
whose solutions contain many of the features of the solutions of the original problem. 
This is especially important for nonlinear equations where perturbation methods are 
used to linearize the problem, as has been done for Euler's equation of fluid dynamics 
in Section 8.5, for instance. Even if the linearization procedure breaks down in certain 
regions, it may still be possible to replace the given equation or system by a simpler 
nonlinear equation. The equation of simple wave motion that was obtained as an 
approximation to Euler's hydrodynamic equations is representative of this approach. 
This idea is developed further in this chapter as well as in Chapter 10. 

In our study of hyperbolic equations we have seen that discontinuities or singu-
larities in the solutions, interpreted in the weak sense, occur across characteristics. 
In fact, any rapid variation in the data for these equations must be carried along the 
characteristics. Near the characteristics, the solutions may be described by means of 
series expansions that may contain a small parameter, as we will show. These results 
are closely related to the asymptotic expansions that will be given for the Helmholtz 
or reduced wave equation, and they are both discussed in Chapter 10. 

It will be seen that more than one type of expansion may be necessary to completely 
describe the perturbation or asymptotic solution of a given problem. For example, an 
expansion may break down in some region or may be insufficient to satisfy the data 
for the problem. These difficulties signify that the given expansion is not uniformly 
valid over the entire region of interest. Techniques such as the boundary layer method 
or the method of multiple scales need to be used to remedy this problem. They are 
introduced in this chapter but are used in both chapters. 

Even though asymptotic equalities, asymptotic expansions, and order of magnitude 
symbols have often been defined and used in the preceding chapters, we now redefine 
these concepts in view of their particular relevance for the material in this and the 
following chapter. 

The order symbol О is defined as 

F(k) = 0\G(k)}, k-+a, (9.1.1) 
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if \F(k)/G(k)\ -+ A as к —> a, where A is a nonzero constant (here a may be ±00). 
If (9.1.1 ) is valid, we say that F(k) is of order G(k) near к = a. The order symbol о 
is defined as 

F(k) = o[G{k)}, k-+a, (9.1.2) 

if \F(k)/G(k)\ ->0as fc ->a . For example, if F(k) = k2(W - cos{k)/k3 + e~k) 
and G(k) = k2, then F(k) = 0[G(k)] as fc -► 00 with Л = 10. With F(fc) defined 
as before and G(k) = к3, wehaveF(fc) = o[G(fc)] as A; —» 00. Finally, the statement 
F(k) = 0[1] means that F(k) is bounded as к —» a. 

A function /(x, A;) which depends on the parameter к has the asymptotic expansion 

00 

/ ( x , f c ) « £ / „ ( x ) f c - " , t9 ·1 ·3) 
n=0 

valid as fc —* 00, if for each N we have 
N-l 

f(x, k)=J2 Шк~п + 0[k-N], k^oo. (9.1.4) 
71=0 

We can also write (9.1.4) as 

N - l 

/ (x, k) = Σ /» (*)*"" + o[k-N+1], к -> oo. (9.1.5) 
n=0 

Both (9.1.4) and (9.1.5) are assumed to be uniformly valid for all x in some region. 
(Here x may be a real single variable, a real multivariable, or a complex variable.) 
Note that with к = 1/e, (9.1.3) represents an asymptotic power series expansion in 
e, valid as e —> 0 through positive values. We shall emphasize the use of the (large) 
О order symbol in our discussion. The basic feature of an asymptotic expansion is 
that the remainder is of lower order (in the expansion variable) than the last term 
retained. The full expansion may, in fact, converge, but convergence is not necessary 
for the result to be useful. Often, more general forms of asymptotic expansions are 
required, such as series in fractional powers of k, and these are also defined as having 
remainders of lower order than that of the last term retained. 

As stated previously, we do not prove that the formal series solutions we obtain are 
either convergent or asymptotic. Occasionally, therefore, strict equality rather than 
asymptotic equality signs are used even though the full series may diverge. Since 
only a few terms in the series are found, this distinction is not always significant. It 
is a general property of asymptotic expansions that finding additional terms need not 
improve the approximation since the series is generally divergent. As the value of the 
parameter к in (9.1.2) increases, the approximation provided by the series gets better. 
Thus we are effectively assuming in our discussion that the parameter is very large (or 
very small if e = 1 /к) since we obtain only the leading terms. However, it is often the 
case that the results are very good even for moderate values of the parameter. Finally, 
we note that all formal operations that we carry out on the asymptotic expansion, such 
as term-by-term differentiation and integration, are assumed to be valid. 
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9.2 REGULAR PERTURBATION METHODS 

We consider a linear or nonlinear differential equation 

L(u,e) = 0 (9.2.1) 

that depends (smoothly) on the small positive parameter e and a problem for (9.2.1) 
given over a bounded or unbounded spatial region G. If (9.2.1) is of elliptic type, 
appropriate boundary conditions are assigned on dG or at infinity. If (9.2.1) is of 
hyperbolic or parabolic type, in addition to the boundary conditions assigned on dG 
or at infinity for all t > 0, initial data are given in G at the time ί = 0. The boundary 
or initial data may depend on e, but the boundary dG is for the present assumed to 
be specified independently of e. (More general problems that involve other types of 
data or boundaries that depend on e will also be considered below.) 

The reduced or unperturbed problem associated with the problem for (9.2.1) is 
obtained on formally setting e = 0 in (9.2.1) and its data. That is, we consider the 
reduced equation 

L ( v , 0 ) = 0 (9.2.2) 

with the reduced data obtained from the data for the given problem for (9.2.1). If 
the reduced problem has a unique solution, the given problem is called a regular 
perturbation problem. Ifthisisnotthecase, v/ehayea. singular perturbation problem. 
Problems of the latter type are studied in Section 9.3. 

Generally speaking, if the reduced equation is of different type or order than the 
given equation, we have a singular perturbation problem. It may happen, however, 
that the reduced problem can be solved even if the order or type of the given equation 
is changed. 

For example, the signaling problem for the hyperbolic equation 

eutt(x, t) — c2uxx(x, t) + щ(х, t) = 0, x > 0, —oo < t < oo, (9.2.3) 

with the boundary condition 

u(0, t) = f{t), -oo < t < oo, (9.2.4) 

reduces to the parabolic problem 

-c2vxx(x,t) +vt{x,t) = 0, x > 0, -oo < t < oo, (9.2.5) 

with the boundary condition 

v(0, t) = f(t), -oo < t < oo. (9.2.6) 

Both the given and reduced problem can be solved in this case. However, the signaling 
problem should be interpreted as a large time limit of an initial and boundary value 
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problem with zero initial data, and in this case the initial value problem for (9.2.3) 
has an excess of initial conditions in relation to the reduced problem (9.2.5). 

Similarly, the hyperbolic equation 

e (utt(x, t) - c2uxx(x, t)) + ux(x, t) = 0, x > 0, -oo < t < oo, (9.2.7) 

with the boundary condition (9.2.4) reduces to 

vx(x,t) = 0, x > 0, -oo < t < oo, (9.2.8) 

with the condition (9.2.6). The (unique) solution of the reduced problem for v(x, t) 
isv(x,t) = f(t). Since (9.2.8) is a first order equation and (9.2.7) is of second order, 
the comments relating to the prescription of initial values apply to (9.2.7) and (9.2.8). 

If the boundary conditions depend on the parameter e, it may happen that the 
conditions for the reduced problem render it unsolvable. As an example, we consider 
the boundary value problem for the biharmonic equation 

V2V2u(z,J/) = 0, (x,y)eG, (9.2.9) 

with the boundary conditions 

u(x,y) = f(x,y), e — ^ - + u ( x , y ) 
да дп 

= g(x,y). (9.2.10) 
ÖG 

Since (9.2.9) does not depend explicitly on e, the reduced equation for u(x, y) is 
also the biharmonic equation, but the reduced boundary conditions require that и = 
f(x, y) and и = g(x, y) on dG. Thus unless f(x, y) = g(x, y), the reduced problem 
for u(x, y) has no solution. Further, even if f(x, y) = g(x, y), the solution of the 
reduced problem is not unique since a boundary condition is lost. Thus (9.2.9)-
(9.2.10) is, in fact, a singular perturbation problem. 

Continuing with our discussion of the regular perturbation method, we expand the 
solution и of (9.2.1) in the perturbation series 

oo 

u=Y^une
n. (9.2.11) 

ra=0 

The difference between и and UQ (i.e., и — UQ) is referred to as a perturbation on 
the solution UQ of the reduced or unperturbed problem. Inserting this expansion into 
(9.2.1) gives 

L(u,e) = L ( ] T une
n,e) = 0. (9.2.12) 

We assume that L(u, e) can be expanded in a power series in и and e. As a result, 
(9.2.12) can be expressed in the form of a series 

oo 

L(u,e) = ^ Ln(un,un-i,...,ui,u0)e
n = 0, (9.2.13) 

Tl=0 
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where the Ln represent differential operators which may be linear or nonlinear, and 
which act on the functions uo, u\,..., un. The series (9.2.11) is also inserted into 
the given initial and/or boundary conditions for the problem. 

To solve the given problem by means of the perturbation method, we equate the 
coefficients of e" in (9.2.13) to zero and obtain 

Ln(un,un-i,...,ui,u0) = 0, n = 0 , 1 , . . . . (9.2.14) 

Similarly, we equate coefficients of like powers of e in the initial and/or boundary 
data. This yields the system of equations (9.2.14) with appropriate data that we solve 
recursively. 

That is, we first solve the reduced equation L0(u0) = 0 with the relevant data. 
Once uo is specified, the equation for щ , Li(ui, u0) = 0, with its data is solved, 
and men the equations for г*2, щ,... with their data are solved successively. 

If the given equation (9.2.1) is linear, the equations Ln(un,..., uo) = 0 are, in 
general, nonhomogeneous versions of the equation Lo (uo) = 0. However, Lo (v-o) = 
0 may itself be a nonhomogeneous equation. Even if the given problem is nonlinear 
but the reduced problem is linear, all the equations (9.2.14) are homogeneous or 
nonhomogeneous equations of the same form. 

For example, if we consider the nonlinear equation 

L(u(x,t), e) = ut(x,t) + u(x,t)ux(x,t) — eu(x,t) = 0, (9.2.15) 

we obtain the reduced equation 

. du0(x,t) du0(x,t) , . . . „ > 
Lo(uo) = g- \-u0(x,t)—^ ^-=0 (9.2.16) 

and 
dui(x,t) dui(x,t) du0(x,t) 

Li{ui,uo) = ^ + u0(x,t)—^ '- +m(x,t)—^ '- -u0(x,t) = 0 . 
(9.2.17) 

However, the nonlinear equation 

L(u(x, t), e) = ut(x, t) + eu(x, t)ux(x,t) — uxx(x,t) — 0 (9.2.18) 

yields the reduced equation 

Ыи0) = д-^> - *η^> = 0 (9.2.19) 

and 

r , ч dui(x.t) d2ui(x,t) , . duo(x,t) „ .„ „ „„. 
Li («i, uo) = gt ^ ^ + u0(x, t) 0^ ' ; = 0. (9.2.20) 

For (9.2.15) the reduced equation (9.2.16) is nonlinear and equation (9.2.17) for 
ui (x, t) is linear, whereas for (9.2.18) the reduced equation (9.2.19) as well as all the 
higher-order equations for the un (x, t) are linear and of the same form. 
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The perturbation method can find approximate solutions to a large class of prob-
lems. However, it is often necessary to introduce modifications or special techniques 
to construct useful results or to extend the validity of the results to the full region of 
interest for the given problem. We now consider a number of different aspects of the 
perturbation method and exhibit each one of them by means of an example. 

Perturbation Method in a Bounded Region 

We begin by considering a boundary value problem in a bounded region for which 
the conventional perturbation method yields a result that is valid throughout the entire 
region. In the following example we discuss a problem for Helmholtz's equation in 
the unit disk for which a closed-form exact solution is easily obtained and compare 
the results of perturbation theory with the exact result. 

Example 9.1. Helmholtz's Equation with a Small Parameter. We consider 
the two-dimensional Helmholtz equation 

uxx{x, y) + uyy{x, y) + e2u(x, y)=0 (9.2.21) 

in the unit disk x2 + y2 < 1 with the Dirichlet boundary condition 

u(x,y) = l, x2+y2 = l. (9.2.22) 

The parameter e2 is assumed to be small, such that the solution of (9.2.21)—(9.2.22) 
is unique. 

To solve, we introduce a perturbation series in powers of e2, 

oo 

η{χ,ν) = Σ un{x,y)e2n. (9.2.23) 
n=0 

We insert (9.2.23) into (9.2.21)-(9.2.22) to obtain 
oo 

V2u{x, y) + e2u{x, y) = V2u0(x, y) + ^ [V 2 u„ (a ; , y) + un_i(x, y)]e2n = 0, 
n=l 

(9.2.24) 
OO 

u{x,y)=uo{x,y) + Y,un(x,y)e2n = 1, x2+y2 = l. (9.2.25) 
n=l 

We have interchanged summation and differentiation in (9.2.24) and have collected 
like powers of e2. On equating like powers of e2 to zero in (9.2.24) and to unity or 
zero in (9.2.25), we obtain 

V2u0(x,y) = 0, W2un{x,y) = -un-fay), n > 1, (9.2.26) 

and the boundary conditions 

u0(x,y) = l, un(x,y)=0, n>\, x2+y2 = l. (9.2.27) 
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The equations for the un(x,y) can be solved recursively starting with that for 
щ(х, у) and using the boundary conditions (9.2.27). The perturbation method has 
replaced the Helmholtz equation (9.2.21 ) by the system of Laplace and Poisson equa-
tions (9.2.26). Introducing polar coordinates r and Θ, the Helmholtz as well as the 
Laplace and Poisson equations can be solved by looking for solutions independent of 
Θ since the problem has no angular dependence. 

With и — u(r), (9.2.21) takes the form 

u"(r) + -u'(r) + e2u{r) = 0 (9.2.28) 
r 

on expressing the Laplacian operator in polar coordinate form and dropping the Θ-
derivative. Now (9.2.28) is just Bessel's equation of zero order in the variable er. The 
solution of (9.2.28) that is bounded at г = 0 and that satisfies the boundary condition 
u(l) = 1 is clearly 

* > = * $ . (..M.) 

where JQ(Z) is the Bessel function of order zero. 
To solve for the un in the perturbation series we again assume that un = un{r) 

and obtain for UQ(T), 

~ ^ ~ + r ~^~ = °' Uo(1) = L ( 9 · 2 · 3 0 ) 

The bounded solution of (9.2.30) is UO(J") = 1. The problem for u\ (r) is 

^ + Σ ^ = - < ' > - - ' . - ω - » · <9·2·31» 
and a simple integration yields the bounded solution u\{r) = (1 — r 2 ) /4 . 

Thus to leading orders the solution is 

u ( r ) = l + e
2 i ^ + 0 ( e 4 ) . (9.2.32) 

Since Jo(z) has the expansion Jo(z) = 1 - z2/4 + 0(z4), we have 

Μα± _ 1-(6T)V4 + Q(^) _ 1 + e 2 i ^ +0(e4] f 9 2 3 3 ) 

J0{e) - 1 - 6 7 4 + 0(6*) " + 4 + 0 ( ° - ( 9 · 2 · ^ 
The series obtained from (9.2.33) converges for sufficiently small e, and it agrees to 
leading orders with the perturbation result (9.2.32). We observe that e must be smaller 
than the first zero of Jo(z), which occurs at z « 2.4, for the solution of (9.2.21)-
(9.2.22) to exist. By noting that the order of magnitude of the first perturbation term 
u\(r) = б2(1 — r 2 ) /4 must be smaller than that of the leading term uo(r) = 1 
in (9.2.32) for 0 < r < 1, we conclude that e < 2 for the perturbation result to 
be valid. Thus the perturbation solution yields a good approximation to the exact 
solution throughout the unit circle, even if we retain only the first few terms, as long 
as e is small. 
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Perturbation Method in an Unbounded Region: Methods of Multiple 
Scales and Renormalization 

Next we consider problems over an unbounded region for which the conventional 
perturbation method yields a result that is not uniformly valid over the entire region 
of interest. In the following example we examine the process of heat conduction 
with a slow radiation loss, which is governed by a parabolic equation with a small 
parameter. The perturbation solution of the relevant problem is not valid for all time, 
and modifications of the method are presented that extend the validity of the result. 
The method of multiple scales is a widely applicable approach to remedy the problem 
of nonuniformity. Another approach is the method of renormalization. Both methods 
are presented in the example. 

Example 9.2. Heat Conduction with Slow Radiation. We consider the 
Cauchy problem for the parabolic equation 

ut(x,t) + eu(x,t) = uxx(x,t), —oo<x<oo,t>0, (9.2.34) 

with the initial value 

u(x, 0) = f(x), -oo < x < oo. (9.2.35) 

The change of variables 

u(x, t) = e~€tv(x, t) (9.2.36) 

yields 

vt(x, t) = vxx(x,t), —oo<x<oo,t>Q, v(x,0) = f(x), (9.2.37) 

so that v(x, t) satisfies the heat equation. The equation (9.2.34) describes heat con-
duction in a rod in which there is heat loss due to radiation on the surface. The 
radiative effect gives rise to the term eu(x, t) in (9.2.34), and (9.2.36) shows that this 
yields a slow heat loss since 0 < e <C 1. 

The solution of (9.2.34)-(9.2.35) is immediately given in terms of the solution of 
the Cauchy problem for the heat equation (9.2.37) studied previously. However, we 
want to apply the perturbation method to solve (9.2.34)-(9.2.35) in order to study the 
effect of the unboundedness of the (x, t) domain for the problem on the perturbation 
result. Let 

oo 

u{x,t) = Σ un(x,t)en, (9.2.38) 
71=0 

and insert (9.2.38) into (9.2.34)-(9.2.35). Equating like powers of 6 gives 

du0(x,t) d2u0(x,t) dun(x,t) d2un(x,t) 
—t ö ^ - = 0 ' —dt ^ - = -«„_!(*,*) , η > 1 . 

(9.2.39) 
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The initial conditions are 

u0(x,0) = f(x), un{x, 0) = 0, n > 1. (9.2.40) 

Putting UQ(X, t) = v(x, t), where v(x, t) is the solution of (9.2.37) with the initial 
condition v(x, 0) = f{x), we easily conclude that 

(-t)n 

un{x, t) = ±—{- v(x, t), n > 0, (9.2.41) 
TV. 

on using mathematical induction. We verify that dun(x, t)/dt — d2un(x, t)/dx2 = 
{-t)n/n\ \vt{x,t) - vxx{x,t)\ - \{-t)n-l/(n - 1)!] v(x,t) = -un-i(x,t) since 
v(x, t) satisfies (9.2.37). The full perturbation solution is 

00 \(—t\n 1 °° (—ft\n 

u(x,t) = J2 — г ~ « ( М ) εη = Σ * - , "(*'*) =e~i tv(a:1i)1 (9.2.42) 
71=0 n = 0 n! 

and this is identical with the exact solution (9.2.36). However, the purpose of the 
perturbation approach is to approximate the exact solution by determining and re-
taining only the first few terms in the perturbation series. If we retain only the first 
two terms in the series (9.2.42) and write u(x, t) = v(x, t) — etv(x, t) + 0(e2), we 
conclude on comparing with the exact solution that for ei <tC 1, the above yields a 
good approximation. 

But if et = 0(ί) or, equivalently, t = 0(l/e), we find that the first perturbation 
ещ(х, t) = —etv(x, t) is of the same order of magnitude in e as the leading term 
uo(x, t). In fact, (9.2.42) shows that every term enun(x, t) in the series is of the same 
order in e as the leading term UQ{X, t)ift — 0(l/e). Consequently, no matter how 
small e is, there is a time t at which all terms in the perturbation series are of the same 
order in e and cannot be neglected on the basis that they constitute small corrections 
for small e. Thus even though the leading terms of the perturbation series yield a good 
approximation for et <S 1, the result is not uniformly valid for all time. Terms of the 
form etv(x, t) are called secular terms and the difficulty caused by the occurrence of 
such terms in a perturbation series is referred to as secular behavior. 

There are several methods for remedying the difficulties caused by secular behavior 
in a perturbation series. One approach involves the summation of all the secular terms 
in the series, thereby assigning equal importance to all of them. This process, called 
renormalization, can be carried out in one form or another for a number of problems. 
In our example each term in the perturbation series is a secular term, so that the 
summation of the series yields the exact solution (9.2.36). 

Another approach, known as the method of multiple scales, takes note of the fact 
that the perturbation solution appears to exhibit two time scales for our problem. 
There is a slow time scale et and a (comparatively) rapid time scale t, as shown by 
(9.2.42). Therefore, we look for a solution of the form u{x, t) = ù(x, t,r), т = et, 
that depends on x, t, and т = et. That is, we treat the fast and slow time scales as 
independent variables. 
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Since 

du(x, t) dù(x, t, r ) dù(x, t, т) дт dù(x, t, т) dù(x, t, т) 
+ dt dt + e dt dt dr 

we have, instead of (9.2.34), 

ùt(x, t, т) + e[ùT(x, t, т) + ù(x, t, T)} = ùxx(x, t, r ) . 

Expanding ù(x, t, r ) in a perturbation series 
oo 

ü(x, t, т) = 22, ùn{x,t,r)en 

n=0 

yields the recursive system 

dù0(x,t,T) d2ù0(x,t,r) 

dr 
(9.2.43) 

(9.2.44) 

(9.2.45) 

dt 

dün(x,t,r) d2ün(x,t,T) 
dt dx2 

dx2 

dùn-i(x,t,r) 
dr 

+ un-i(x,t,r) 

(9.2.46) 

n > 1, 

(9.2.47) 

on equating like powers of e. 
We solve (9.2.46) using the initial condition uo(x, t,r) = f(x) at t = 0. Thus 

ùo{x, t, T) = C(T) V(X, t), where v(x, t) is defined as before and c(r) is an arbitrary 
function of T that need only satisfy c(0) = 1, since t = 0 implies that r = et = 0. 
The equation (9.2.47) for iti {x, t, r ) becomes 

düi(x,t, r ) d2ü\(x, t,r) 
dt 

^ P = - [ c ' ( r ) + c ( r ) ] ^ , i ) , (9.2.48) 

with the initial condition ùi(x,t, r ) = 0 at ί = 0. The terms d{r) and c{r) are 
constants as far the operator on the left side of (9.2.48) is concerned, so we obtain the 
solution 

ùi(x, t,r) = -t [C'(T) + c(r)}v(x,t) +d(r)v(x,t), (9.2.49) 

where d(r) vanishes at r = 0 and ϋ(χ, t) is a solution of the heat equation (9.2.37), 
but they are both otherwise arbitrary. Consequently, we still have a secular term that 
grows with t in the solution (9.2.49). However, we are now in a position to remove 
the secularity by specifying c(r) such that с'(т) + с(т) = 0, c(0) = 1, which yields 
C(T) — e~r = e~ei. We also set ci(r) = 0, for otherwise a further secular term would 
arise at the next level of approximation. Consequently, щ(х, t, r ) = 0 and, as a 
result, ùn(x, t,r) = 0 for all n > 1. The series (9.2.45) thus terminates with the first 
term and yields the exact solution (9.2.36). 
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In the preceding example an exactly solvable problem was solved by the pertur-
bation method. Next we consider a nonlinear problem that cannot be solved exactly. 
The perturbation method reduces it to a class of solvable linear problems. The prob-
lem exhibits secular behavior, and the difficulty is (partially) resolved by using a 
renormalization method rather than the method of multiple scales. 

Example 9.3. A Nonlinear Klein-Gordon Equation. The nonlinear hyper-
bolic equation 

wtt(x,t) - ~f2wxx(x,t) + <?w{x,t) -aw3(x,t) = 0 (9.2.50) 

reduces to the Klein-Gordon equation when the parameter σ is equated to zero and 
arises in a number of physical contexts. The coefficients in (9.2.50) are assumed to 
be constants. We consider the initial value problem for (9.2.50) over the infinite line 
—oo < x < oo with the data 

w(x,0) =ecos(kx), wt(x,0)=0, (9.2.51) 

where 0 < e « 1 and к is a prescribed constant. 
Since the initial data (9.2.51 ) are uniformly small in magnitude, we look for a 

solution of (9.2.50H9.2.51) in the form 

w{x,t)=eu(x,t), (9.2.52) 

and apply the perturbation method to the problem for u(x, t). We must solve 

uu{x, t) - j2uxx(x, t) + c2u(x, t) - e2au3(x, t) = 0, (9.2.53) 

with the initial data 

u{x,0) = cos{kx), ut{x,0) = 0. (9.2.54) 

Expanding u(x, t) as 

oo 

u(x, ί) = Σ un(x, *)e". (9.2.55) 
n=0 

and inserting (9.2.55) into (9.2.53)-(9.2.54)yields the equations for the leading terms 
u0(x,t),... ,u2(x,t) as 

Ln{un) = ^^-l2^~+c2un^U, n = 0, l , (9.2.56) 

L2(U2, «o) = ^ r - ^2 ^ Γ + c2«2 - ™o = 0. (9.2.57) 
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The initial conditions are 

du (x 0) 
u0(x, 0) = cos(fcc), un(x, 0) = 0, n > 1, — " : ' = 0, n > 0. (9.2.58) 

Using separation of variables, the solution of the initial value problem for uo(x, t) 
is found to be uo(x,t) = cos(ut) cos(kx), where ω2 = 72/c2 + c2, which is the 
dispersion relation for the linear Klein-Gordon equation (9.2.56). The equation 
for u\(x, t) is uncoupled from that for щ(х, t) and has homogeneous data. Thus 
ui(x,t) = 0. 

Using the trigonometric identity, cos3(fcr) = (3/4) cos(fcr) + (l/4)cos(3fc:r), 
the equation for u2(x, t) may be written as d2u2(x, t)/dt2 — η2 д2и2{х, t)/dx2 + 
c2u2{x, t) = (3σ/4) cos3(ut) cos(fcr) + (σ/4) cos3(u>t) cos(3fc:r). Putting u2(x, t) 
= Fi (t) cos(for) + F2 (t) cos(3fca;), and inserting it into the equation for u2(x, t), we 
obtain the ordinary differential equations 

F'^{t)+{1
2k2+c2)Fl{t) = ^ c o s 3 H ) , F^'(t)+(9i2k2+c2)F2(t) = ^cos3(ut). 

(9.2.59) 

The initial conditions for u2(x, t) imply that Fx (t), F[(t), F2 (t), and F'2 (t) all vanish 
at t = 0. On using the trigonometric identity above, the equations for Fj (t) and F2 (t) 
are easily solved by the method of undetermined coefficients. 

With these results, the leading terms of the perturbation series solution и = u(x, t) 
of (9.2.53M9.2.54) are found to be 

и = cos(ujt) cos(kx) + e2 —18ΐη(ωί) + ^ g ^ 2 ( c o s H ) - cos(3o;i)) cos(fcx) 

+ e" 
3σ 

1287
2fc2 (cos(o;i) — cos(Ai)) + 

128c2 (cos(Xt) — cos(3wt)) cos(3/cx) 

(9.2.60) 

toO(e3), whereÀ2 = 972A;2 + c2. We detect the presence of a secularterm f2 (x,t) — 
(9e2a/32u})tsm(ujt)cos(kx) in the series. Wheni = 0(e~2) this term is of the same 
order of magnitude as the leading term. As a result, the perturbation series loses its 
validity as t reaches those values. For, on constructing a perturbation series we assume 
that terms containing higher powers of e are much smaller (in magnitude) than those 
with lower powers. Here the range of t is unbounded, and we indicated in Example 
9.2 that the conventional perturbation expansion is generally not uniformly valid over 
unbounded regions. 

Consequently, the result (9.2.60) is valid and useful only for times t such that 
t < 0(e~2). We present a simple method for extending the validity of the perturbation 
result to larger values of i. We note that 

cos(wt) + 9e2a 
32o> 

isin(o;f) = cos ω — 
9e2a 
32ω 

+ 0(e (9.2.61) 
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as follows on expanding the right side of (9.2.61 ) for small e. Using (9.2.61 ) to replace 
the first two terms on the right in (9.2.60) yields the improved result 

и = cos 
ш~1£)*\С05{кх) + ' 3σ 

128ω2 (cos(wi) — cos(3a>t)) cos(fcx) 

3σ + ez ~0,n(cos((ji) - cos(Ai)) + T7~^(cos(Xt) - cos(3u;i)) cos(3fcr), 

(9.2.62) 

correct to 0(e3), in which the secular term is no longer present. There may be 
other secular terms in the series, but they occur for terms of higher order in e, and the 
validity of the perturbation solution is presumably extended in time when written in the 
form (9.2.62). We return to this problem when we consider periodic finite-amplitude 
traveling wave solutions of the nonlinear Klein-Gordon and related equations below. 

The method used to remove the secular term is essentially the method ofrenor-
malization discussed in Example 9.2. Secular terms in the perturbation series are 
removed by summing a part of the perturbation series. In Example 9.2 a full pertur-
bation series was summed, whereas in the present example, since only the leading 
terms of the perturbation series were determined, the renormalization method was 
carried out in an approximate manner. 

Hyperbolic Equation with Slowly Varying Coefficients 

Partial differential equations with slowly varying coefficients can also be treated 
by using a perturbation approach. In the following example we consider a linear 
hyperbolic equation with nonconstant but slowly varying coefficients. As we see, the 
perturbation method, appropriately modified, yields a simple approximate solution. 

Example 9.4. The Wave Equation with a Slowly Varying Wave Speed. 
The hyperbolic equation 

utt(x,t) - c2(ex)uxx(x, t) = 0, (9.2.63) 

where c2(ex) is assumed to have the expansion 

c2(ex) = οΙ + Σ°η[εχ}η (9.2.64) 

with constant c„, reduces to the wave equation with wave speed CQ if e = 0. Since 
dc2(ex)/dx = 0(e) and e is taken to be small, we state that the function c(ex) gives 
rise to a slow variation of the wave speed for (9.2.63) around the constant speed CQ. 
We note that (9.2.63) is not expressed in self-adjoint form and that the (variable) speed 
of disturbances as determined by the domain of influence for concentrated initial data 
for (9.2.63) (see Section 8.3) is given by c(ex). We apply the perturbation method to 



REGULAR PERTURBATION METHODS 5 8 3 

an initial value problem for (9.2.63) to determine the effect of the slow variation of 
c2(ex) around CQ. 

Let the initial conditions for (9.2.63) be 

u(x,0) = f(x), u t ( x , 0 ) = 0 , -00 < x < oo. (9.2.65) 

We expand u(x, t) as u(x,t) = J2^Lo un(x,t)en, and insert it into (9.2.63) and 
(9.2.65). Equating like powers of e yields as the leading order equations 

Ö ^ _ C , ^ M ) = 0 ! ( 9 2 6 6 ) 

d2ux(x,t) 2 d2ui(x,t) _ d2u0(x,t) 
~~дГ2 c° dx2 -XCl dx2 ' ( 9 · 2 } 

where (9.2.64) has been used. The initial conditions for uo(x, t) and щ (х, t) are 

tiofrO) = / (* ) , *ήϊ$- = 0, „ ι ( * ,0 ) = d-^± = 0. (9.2.68) 

We first discuss this problem in general terms, noting the difficulties that arise and 
indicating how they can be resolved. Then we consider a specific choice for c(ex) 
and obtain an explicit result for that case. 

The solution of (9.2.66) and (9.2.68) is 

«o(z.*) = 2^x - Coi) + 2f(X + C o i ) ' (9.2.69) 

We insert this result in the equation (9.2.67) for щ (х, t) and obtain, using the method 
of undetermined coefficients and the data (9.2.68), 

ui(x,t) = -^-[f(x-cot)-f(x+c0t)] 
»Co 

-ψί[Πχ - c0t) - f'(x + c0t)} + ^-[f'(x - cot) + f'(x + c0t)}. (9.2.70) 
4Co Ö 

We observe the presence of secular terms in (9.2.70). When t = 0(e~1^2) or 
xt = 0{e~l ), the term eu\ (ж, t) is of the same order in e as the leading term uo(x, t), 
assuming that f(x) and its derivatives are uniformly bounded. Since both the x and 
the t intervals relevant to this problem are unbounded, the perturbation series would 
appear to be invalid, in general, since values of x for which x = 0[(ei) - 1] must 
occur if — oo < x < oo, for any t > 0. However, if f(x) vanishes outside a bounded 
interval, so does иi (x, t), and large values of x do not play a role as long as t is not 
too large. In that case, the perturbation theory solution тауЪе valid for a substantial 
length of time. 

The general difficulty with the foregoing perturbation series may be traced to the 
fact that the solutions (9.2.69) and (9.2.70) are expressed in terms of the characteristics 

4>±(xt) = x ± cot = constant (9.2.71) 



5 8 4 PERTURBATION METHODS 

of the reduced equation [i.e., (9.2.63) with e = 0] rather than the exact characteristics 
of (9.2.63), which are given as solutions of 

§- = ± т Ц . (9-2.72) 
ax c(ex) 

Given a point (ζο,Ο) on the ж-axis, the difference between the exact and reduced 
characteristics issuing from that point becomes appreciable for large values of x and 
t. Consequently, we may expect that the perturbation solution becomes invalid for x 
and t large. 

To resolve the difficulties with the secular terms that arise in the perturbation result 
(9.2.69) and (9.2.70), we introduce the independent families of exact characteristic 
curves φ(χ, t) = constant and ψ(χ, t) = constant, determined from (9.2.72), which 
reduce to the curves x — cot = constant and x + cot = constant, respectively, when we 
set e = 0 in (9.2.72). Noting the results (9.2.69) and (9.2.70), we look for a solution 
of (9.2.63) in the form 

u(x, t) = g(ex, et)f(<j)(x, t)) + h{ex, et)f{i/)(x, t)). (9.2.73) 

We insert (9.2.73) into (9.2.63) and note that since φ(χ, t) - constant and ψ(χ, t) = 
constant are characteristics, they satisfy the characteristic equations for (9.2.63), and 
we have 

φΐ - с2ф2
х = ф2 - с2ф2

х = 0. (9.2.74) 

We readily conclude that 

c' d 
9r + cga - — g = 0, hT - cha + — h = 0, (9.2.75) 

where σ — ex and τ = et, and that the initial conditions (9.2.65) yield 

g(a,0) = h(a,0) = ^. (9.2.76) 

The initial values for the characteristics are found to be 

φ(χ,0)=ψ(χ,0) = χ. (9.2.77) 

Using the methods of Chapter 2, the initial value problems for φ, -ψ, g, and h are 
readily solved. Rather than present the general solution, we restrict our attention to a 
specific problem for which the characteristics can be determined explicitly. 

Consider (9.2.63) in the interval 0 < x < oo with 

c(ex) = co + ex, (9.2.78) 

u(0, i) = 0 for t > 0 and the data (9.2.65) for x > 0. [We are now considering an 
initial and boundary value problem for (9.2.63).] On comparing (9.2.64) with (9.2.78), 
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we conclude that Ci = 2CQ, ci = l ,andcn = Oforn > 2. The characteristics 4>(x,t) 
and ψ(χ, t) that correspond to this choice of c(ex) and the data (9.2.77) are 

φ(χ, t) = xe~H + — (e~et - 1), φ(χ, t) = xeet + - (eet - 1). (9.2.79) 

We discuss the solution in the region where φ(χ, t) > 0. The equations (9.2.75) 
for g and h with the data (9.2.76) can be solved by looking for solutions that are 
independent of σ since d = 1 in this case. We obtain 

g(ex, et) - ^ exp ( | J , h{ex, et) = Ì exp ( - | J . (9.2.80) 

Then the approximate solution (9.2.73) is 

u{x,t) « \ e ^ f [xe-£t + ^ (e"e t - 1)] + ± e <- d / 2 >/ [xeet + ^ (eet - 1)" . 
(9.2.81) 

On expanding (9.2.81 ) in powers of e, it is easily shown that the first two terms in the 
expansion agree with (9.2.69) and (9.2.70) in the region φ(χ, t) > 0. Although the 
secular terms found in the conventional perturbation expansion are absent in (9.2.81 ), 
we do observe a slow exponential growth in t, say, if f(x) is uniformly bounded. 
Although it would appear that we have used the method of multiple scales to obtain 
(9.2.81), this problem is somewhat more complicated since we not only introduced 
ex and et as variables but also the characteristics φ(χ, t) and ψ(χ, t). 

Boundary Perturbation Methods 

We have seen that the separation of variables and transform methods for the solution 
of initial and/or boundary value problems for partial differential equations are useful 
only for problems given over special regions, such as squares, circles, spheres, or half-
spaces. If the boundary of the region varies only slightly from a boundary for which 
the foregoing methods can be applied successfully, it is possible to use perturbation 
theory to effect an approximate solution to the problem. We now present a brief 
discussion of boundary perturbation methods for a two-dimensional problem and 
consider an example. 

Let the given problem be specified in a two-dimensional region G with dG as its 
boundary. We assume that dG can be expressed in parametric form as 

x = g(s) + eg(s), y = h{s) + eh(s), (9.2.82) 

where 0 < e < 1, s is a parameter and the functions g(s), g(s), h(s), and h(s) are 
prescribed. We could also consider a more general e dependence such as x = g(s, e) 
and у = h(s, e), where g and h can be expanded in powers of e, but we restrict our 
discussion to the form (9.2.82) for the sake of simplicity. Assuming that u(x, y) is 
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specified on the boundary curve dG, we have 

u(x, y)\dG = u(g(s) + eg(s), h(s) + eh(s)) = f(s), (9.2.83) 

where f(s) is prescribed. Further, u(x, y) is assumed to satisfy a linear second order 
partial differential equation with no explicit e dependence 

Lu{x, y) = 0, {x, y) £ G. (9.2.84) 

Using the perturbation method, we expand u(x, y) as 
oo 

u(x,y) = J2 un(x,y)en, (9.2.85) 
n=0 

and insert (9.2.85) into (9.2.83)-(9.2.84). Since L is a linear operator we find that 
Lun(x, y) = 0, n > 0. In (9.2.83) we first expand и in powers of e as 

u(g + eg,h + eh) = u(g, h) + e [gux(g, h) + huy(g, h)] + 0(e2), (9.2.86) 

and then obtain from (9.2.85) 

/ м t ( u\ ~duo{g,h) ~du0{g,h) 
u0(g,h) = f, u1(g,h) = -g—^ h—^ . (9.2.87) 

We find that the perturbation method reduces the given problem to a collection of 
problems given over the unperturbed region G with the boundary curve dG whose 
parametric equations are x — g{s) and у = h(s). It is generally assumed that the 
boundary value problems for the functions un(x,y) in the region G can be solved 
exactly. It is a straightforward matter to extend these results to three-dimensional 
problems and to cases with other types of boundary conditions. We now consider an 
example. 

Example 9.5. Boundary Perturbations for Laplace's Equation. The so-
lution of the Dirichlet problem for Laplace's equation in a rectangle was obtained 
in Example 4.4 via the method of separation of variables. We now consider a small 
perturbation of the rectangular region 0 < a; < / and 0 < у < L. Let the region G 
be given as the interior of the trapezoid defined as 0 < x < I and ex < у < L, so 
that the boundary line у = 0 is replaced by у = ex with 0 < e <S 1 (it is assumed 
that el < L). 

The Dirichlet problem is given as 

uxx{x, y) + uyy(x, y) = 0, 0 < x < I, ex <y < L, (9.2.88) 

with the boundary conditions 

( u(0,y) = 0, 0 < у < L, u(l,y) = 0, e l < у < L, 

| u(x, L) = 0, 0 < x < I, u(x, ex) = f{x), 0 < x < I, 

where f(x) is a prescribed function. 

(9.2.89) 



REGULAR PERTURBATION METHODS 5 8 7 

To solve (9.2.88H9.2.89) we first expand u(x, ex) as 

u(x, ex) = u(x, 0) + exuy(x, 0) + 0(e2) = f(x). (9.2.90) 

Then we expand u(x, y) as in (9.2.85) and find that each of the un(x, y) satisfies 
Laplace's equation. Inserting this expansion into (9.2.90) yields 

UQ(X, 0) + e U\(x,0) + x 
duo(x,0) 

dy 
+ 0(e2) = f(x). (9.2.91) 

For uo{x, y) we have the boundary conditions щ(х, у) — 0, x = 0, у = L, x — 
I, u0(x,0) = f(x), 0 <x < l, in view of (9.2.91), with V2u0(x, y) = 0, 0 < x < 
I, 0 < у < L. The function ui (x, y) also vanishes on the three sides of the rectangle 
(i.e., x = 0, у = L, and a; = I), while on the fourth side 

ui(x,0) = —x 
du${x,Q) 

dy 
0 < x < I, (9.2.92) 

and it satisfies Laplace's equation V2ui(x, y) = 0, 0 < x < I, 0 < у < L. 
From Example 4.4 we obtain the solution of the problem for UQ(X, y) as 

/
2 °° - Ύ^ bk sinh 

' fc=i 

7Tfc 
(У-L) ( тгкх 

— 
(9.2.93) 

where bk is defined in (4.4.38) with I replaced by L. To determine the boundary 
condition (9.2.92) for иi (x, y), we differentiate (9.2.93) term by term with respect to 
у and evaluate it at у = 0 to obtain 

ui(a:,0) = - — 2_\%Ьк —г- cosh 
fc=l 

I 

тгЫЛ 

I ) 

ткх 
(9.2.94) 

Again the results of Example 4.4 can be used to specify u\{x, y) by putting f(x) 
equal to the right side of (9.2.94) and setting g(x) — 0 in that example. 

For the sake of concreteness, we set f(x) = sin(nx/l) in (9.2.89). Then uo(x, y) 
has the form 

и0(х,у) = Щ^ШМ7Гх/1), (9.2.95) 
sinh(7r.L/i) 

and the condition (9.2.94) for u\ (x, y) isui(x, 0) = (nx/l)coth(nL/l)sin(nx/l). 
We note that u\(x, 0) vanishes at x — 0 and x — I and is a smooth function in the 
interval 0 < x < I. Therefore, its Fourier sine series converges uniformly in the given 
interval and as a result, the solution иι (x, у ) obtained by the methods of Example 4.4 
is continuous and therefore bounded in the given region. Thus eu\(x, y) represents 
a small perturbation around uo{x, y) for small e. Similarly, if u\(x, 0) in (9.2.94) is 
a smooth function in 0 < x < I, we conclude that eu\(x, y) is a small perturbation 
arounduo(x,y) since ui(0,0) = щ(1,0) = 0. 
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Perturbation Method for Eigenvalue Problems 

Eigenvalue problems can also be treated by perturbation methods. A special case has 
already been considered in Example 8.5. We use the notation of Chapters 4 and 8 in 
our discussion and consider the problem 

LM(x; e) = - V · (p(x)VM(x; e)) + q(x)M(x; e) = (A(e) + e r(x))p(x)M(x; e) 
(9.2.96) 

in the bounded region G with the boundary condition 

a(x)M(x;e) + ß(x)dM{x;€) 

дп 
= 0. (9.2.97) 

dG 

The parameter e is small (i.e., 0 < e < 1) and r(x) is a given function. It is assumed 
that the reduced eigenvalue problem with e = 0 is solvable and that the eigenvalues 
are simple, so that there is one linearly independent eigenfunction for each eigenvalue. 

To determine the eigenvalues and eigenfunctions of (9.2.96)-(9.2.97), we expand 
both M(x; e) and X(e) in powers of e and set 

oo oo 

M(x;e) = ^ M ( n ) ( x ) £ n , A(e) = ^ X(n)en. (9.2.98) 
n=0 n=0 

Inserting (9.2.98) into (9.2.96)-(9.2.97) gives 

LM^\x) = A(0)p(x)M(0)(x), (9.2.99) 

LM(1)(x) = p(x) ( λ ^ ' Μ ' ^ χ ) + r(x)M(0'(x) + А(1>М(0>(х)) (9.2.100) 

as the equations for the first two M^(x). The boundary conditions are 

3MW(x) 
Q(x)M(n)(x)+/ö(x): 

дп 
= 0, n > 0 . (9.2.101) 

dG 

LetAJj.0) = Xk and M( 0 ) (x) = Mk(x) (k = 1,2,...) represent the (simple) eigen-
values and orthonormalized eigenfunctions of the unperturbed problem (9.2.99) and 
(9.2.101), where n = 0 (these are assumed to be known). The equation (9.2.100) 
is an inhomogeneous version of (9.2.99), with M^' (x) required to satisfy the ho-
mogeneous boundary condition (9.2.101). This problem has no solution unless the 
inhomogeneous term satisfies a compatibility condition, as we now show. We replace 
M(")(x) and A<") by M^n)(x) and λ^η) with n = 0,1 in (9.2.99)-(9.2.101). Then 
(9.2.100) takes the form 

LM\}\X) - Xkp(x)Mi1)(x) = (r(x) + λ ^ ) p(x)Mk(x), (9.2.102) 

since AJj.0) = Afe and M{°\x) = Mk{x). 
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Applying the results of Section 4.2, we multiply (9.2.102) by Mj (x) and integrate 
over G. Since both Mj(x) and Mk '{%) satisfy the boundary condition (9.2.101) we 
obtain, in view of (4.1.28), 

if [MjLM{
k
] - XkpMjM^] dv = if [M^LMj - XkpMjM^] dv 

= (Xj - Xk){M{
k
l),Mj) = if rpMjMk dv + X{t\Mj,Mk) (9.2.103) 

with the inner product (/,<?) defined as (f(x),g(\)) = JGp(x)f(x)g(x) dv. Now, 
if j = к so that Xj = Afe, the left side of (9.2.103) must vanish and this implies that 
Xk must be specified as 

A ^ = -JJ r(x)p(x)Mfc
2(x) dv, (9.2.104) 

since (Mfc(x), Mfc(x)) = 1. For j ψ к, the Fourier coefficients ( M ^ ( x ) , Λί,-(χ)) of 
the function M^ (x) are given as 

( М ^ ( Х ) , М , ( Х ) ) = ( Г ( Х ) ^ ( Х ) : ^ ( Х ) ) , i* к, (9.2.105) 
Л] - Afe 

where we have used the fact that (Mfc(x), Mj(x)) = 0 for j ф к. 

The eigenfunctions Mj (x) are assumed to form a complete set and Mk ' (x) can 
be expanded in the series 

oo 

Mi
k
1)(x) = J2(Mk

:i)(x),Mj(x))Mj(x), к =1,2,.... (9.2.106) 

Each of the Fourier coefficients is specified as in (9.2.105) except for {M{
k
l), Mk), 

which remains undetermined. It can be specified if we normalize each of the eigen-
functions Mfc(x; e). We have 

1 = (Mfe(x;e),Mfe(x;e)) = (M<0)(x), M<0)(x)) 

+2e(M{
k
1)(x),Ml0)(x)) + O(e2) = l + 2e{M{

k
l\x),M(

k°\x)) + 0(e2), (9.2.107) 

since the eigenfunctions Mk '(x) = Mk{x) are already normalized. On equating 
like powers of e, we conclude that (Mk '(x), Мк(х)) — 0. Consequently, the series 
(9.2.106) for Mk \x) is completely specified. 

For each unperturbed eigenvalue Xk and eigenfunction Mk(x), we have determined 
the first perturbation eXk and eMk (x). Higher approximations can be obtained 
by applying the finite Fourier transform method to the equations for Mk (x) and 
proceeding as above. A modification of this procedure is needed to deal with multiple 
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eigenvalues. This is needed because the set of linearly independent eigenfunctions 
associated with the multiple eigenvalue must be prescribed in a special manner. The 
Sturm-Liouville eigenvalue problem has been shown to have simple eigenvalues. 
The results above can easily be expressed in a one-dimensional form. In higher-
dimensional problems, multiple eigenvalues often occur. However, the foregoing 
perturbation method can be applied for every simple eigenvalue in a set of eigenvalues 
that may include multiple eigenvalues. The following example considers such a case. 

Example 9.6. Eigenvalue Perturbations in a Square. We consider a square 
of side 7Γ, with the interior region G defined as 0 < x < π and 0 < у < π, and 
examine the perturbed eigenvalue problem 

-{Mxx{x, y; e) + Myy(x, y; e)) + exyM(x, у; e) = XM(x, у; e), (х, у) G G, 
(9.2.108) 

where 0 < 6 < 1, with the boundary condition M(x, y;e)\QG = 0. The reduced 
eigenvalue problem with e = 0 was considered in Example 7.6. It was found that the 
eigenvalues Anm and the normalized eigenfunctions Mnm(x, y) are 

2 
A„m =n2 + m2, Mnm(x, y) = - sin(na;) sin(my), (9.2.109) 

π 
for n, m = 1,2, We see that An is a simple eigenvalue with only one lin-
early independent eigenfunction Мц (x, y). However, λΐ2 equals λ2ΐ, so that to this 
double eigenvalue there correspond two independent eigenfunctions Mi2(x, y) and 
M2\(x, y). There are infinitely many other multiple eigenvalues. 

As indicated previously, it is often of greatest interest to determine the lowest eigen-
value for a given problem. Since the lowest unperturbed eigenvalue An is simple, 
we may apply the perturbation procedure and determine the corresponding perturbed 
eigenvalue as well as its eigenfunction. The situation is complicated somewhat be-
cause of the double-subscript notation for the eigenvalues and the eigenfunctions of 
the reduced eigenvalue problem. We shall obtain the first perturbation of the eigen-
value Ац but not the perturbation of the eigenfunction Mn[x, y)-

In the notation of the previous discussion we have p(x, y) = 1 and r(x, y) = 
-xy. Then with Ац (e) = Ац + ε\[γ + 0(e2) representing the lowest (perturbed) 
eigenvalue, we have from (9.2.104), 

λί? = 4 Г Г xysm2(x)sm2(y) dxdy=^-, (9.2.110) 

so that Ац (e) = 2 + (т2/4)е + 0{e2). 

Nonlinear Dispersive Wave Motion 

The nonlinear Klein-Gordon equation 

wtt{x, t) - ~f2wxx(x, t) + c2w{x, t) - aw3{x, t) = 0 (9.2.111) 
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discussed in Example 9.3 was found to have an approximate solution of the form 

9ε2σ4 

w(x, t) — e cos{kx) cos ω — 32ω 
+ 0(ел), 

as follows from (9.2.62) and (9.2.52). This can be rewritten as 

w(x, t) = — cos kx — I ω 
9β2σ\ 

32ω 
+ -COS 

9ε2σ , 

[We recall that A; is a constant and u2{k) = j2k2 + c2.] 
Each of the terms in (9.2.113) represents a traveling wave of the form 

w(x, t) — a cos[kx =F ù(k)t], 

(9.2.112) 

+ 0(e3) . 

(9.2.113) 

(9.2.114) 

with a small amplitude term a = e/2 and a phase term Θ = kx =f ù{k)t, where 

Qj{k) = ui(k) — 
9ε2σ 

32ω(£) ■■u)(k) 
9α2σ 

Each term has the phase velocity 

dx 
~a4 = ± 

ù{k) ,u(k) 
= ±- 1 

8(72fc2 + c2) 

9α2σ 
8(7

2fc2+c2) ' 

(9.2.115) 

(9.2.116) 

If the amplitude a = e/2 were assumed to be infinitesimal, the term involving a2 

in (9.2.115) would be neglected and the phase velocity would reduce to that for the 
linear Klein-Gordon equation as given in Example 3.8. However, for traveling waves 
with a small but finite amplitude, where a2 is not neglected, we find that the phase 
speed or, correspondingly, the speed of the wave (9.2.114) depends not only on the 
wave number к but also on the amplitude a. 

The dependence of the wave speed on its amplitude has already been observed in 
our discussion of nonlinear unidirectional wave motion in Chapter 2. The dependence 
of the speed of normal mode solutions of linear hyperbolic PDEs on the wave number 
к was characterized as dispersive wave motion in Section 3.5. The foregoing shows 
that the nonlinear Klein-Gordon equation has (approximate) traveling wave solutions 
whose wave speed depends on both the wave number and the amplitude. 

The theory of nonlinear dispersive wave motion has undergone much study, es-
pecially by Whitham. One aspect that has been investigated is whether periodic 
finite-amplitude traveling waves of the form (9.2.114) or some more general form 
can be constructed for these equations. The amplitude of the waves is assumed to 
be small, so it can serve as a perturbation parameter. We assume that when a small-
amplitude solution is inserted in the given PDE and it is then linearized, a dispersive 
wave equation results. The nonlinear terms introduce higher harmonics as in (9.2.60) 
and a dependence of the dispersion relation ώ — ù(k) on the amplitude as seen in 
(9.2.115). 
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We do not attempt to characterize the general form of nonlinear dispersive wave 
equations for which periodic traveling wave solutions can be found. Rather, we dis-
cuss a specific equation in the following example and consider further examples in 
the exercises. We refer to the literature for general results. One of the earliest ap-
plications of the perturbation method for determining periodic traveling waves for 
nonlinear equations was given by Stokes in his study of water waves. In the fol-
lowing example we construct approximate traveling wave solutions of the nonlinear 
Korteweg-deVries equation, which plays an important role in the theory of water 
waves (see Example 10.15). Exact periodic traveling wave solutions can be found for 
this equation. We do not exhibit them but apply the perturbation method instead. The 
main feature in our approach is that not only the solution but the dispersion function 
is expanded in powers of the small parameter, as suggested by (9.2.115). 

Example 9.7. Periodic Traveling Wave Solutions of the Korteweg-de Vries 
Equation. The Korteweg-deVries equation is given as 

щ{х, t) + (c + u{x, t))ux(x, t) + ßuxxx(x, t) = 0, (9.2.117) 

where с and ß are prescribed constants. In its linearized form, 

ut(x,t) +cux(x,t) + ßuxxx(x,t) = 0, (9.2.118) 

the dispersion relation is (see Section 3.5) 

u}=4){k) = ck-ßki, (9.2.119) 

so that (9.2.118) is of dispersive type. If we drop the third derivative term in (9.2.117), 
we have 

ut{x, t) + (c + u{x, t))ux{x, t) = 0, (9.2.120) 

a quasilinear first order wave equation whose wave speed depends on the amplitude. 
The linearized equation (9.2.118) has traveling wave solutions 

u(x,t) =acos(kx-u>t), (9.2.121) 

where a - constant and ω is given by (9.2.119). The quasilinear equation (9.2.120) 
has the (implicit) solutions 

u = acos[kx-k(c + u)t]. (9.2.122) 

The wave speed for (9.2.121) is dx/dt = ω/k = с - ßk2, and the wave speed for 
(9.2.122) is, formally, dx/dt = с + и. In both cases the wave speed is perturbed 
around the constant c, in the linear case by a function of the wave number and in the 
nonlinear case by the amplitude. Note that if a is small, then |u| is small in view 
of (9.2.122). We may also characterize k(c + u) as a nonlinear frequency term, and 
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then (9.2.121 )—(9.2.122) show that the frequency of the traveling wave solution for 
the full problem (9.2.117) depends on the wave number к and the amplitude a. 

As a result, we look for a perturbation solution of (9.2.117) in the form 

u(x,t) = Σ ηη{θ)αη, (9.2.123) 
71 = 1 

where a is a small positive constant and 

oc 

θ(χ, t) = kx-ùt, ω = Σ ωη{Η)αη. (9.2.124) 
71=0 

We attempt to determine the un{6) to be periodic functions, so that (9.2.123) is a 
periodic traveling wave solution of (9.2.117). To do so it is necessary to specify 
the terms in series expansions of the frequency ώ appropriately. We have included a 
dependence on к and a for the frequency ώ in (9.2.124). 

Inserting (9.2.123) and (9.2.124) into (9.2.117) yields the equations 

(ωο - cfc)«i(0) - ßk3u["{9) = 0, (9.2.125) 

(ωο - ск)и'2{в) - ßk3u'2"{e) = *ui(0)«ì(0) - ωιη\(θ), (9.2.126) 

(ω0 - ск)и'3(в) - ßk3uz"{ß) = kui(0)u2(e) + ки2{в)и\{в) -ωγυ!2{θ) -ω2υ!χ(θ), 
(9.2.127) 

on equating like powers of o. 
As the solution of (9.2.125) we take u\{6) = cos(0) and obtain H)(fc) = ck — 

ßk3. This yields a periodic traveling wave solution corresponding to the linearized 
equation (9.2.118). Neglecting higher powers of a in (9.2.123)-(9.2.124) yields 
(9.2.121). With this choice for u\{9), the right side of (9.2.126) can be expressed as 
fan (9)u[ (θ) -ωχ (fc)u'i (Θ) = ~(k/2) sin(20) +ωχ (к) sin(ö). The term ωι (к) sin(ö) 
gives rise to a secular term proportional to 0sin(#) in the expression for u2{6). We 
seek periodic solutions, so we must remove this term, as will be the case if we set 
wi(fc) = 0 . Then a solution of (9.2.126) is и2(в) = (l/12/3fc2)cos(20). 

Continuing with (9.2.127) we obtain for the right side [since ω\ (к) = 0] 

ки1{в)и'2{в)+ки2{в)и'х{в)-Ш2{к)и\{в) u2(k) 
2Aßk МОУщМЩ-

(9.2.128) 
Again the term involving sin(#) must be removed to avoid generating a secular term 
at the next level. Thus we set u)2(h) = 1/24/3/:, and the solution u3(6) is щ(в) = 
(l/192/32fc4)cos(3ö). 

The full solution to order a3 is 

u(6) = acos(Ö) + « 2 Ц ^ 2 cos(2ö) + α 3 ^ ^ cos(3Ö) + 0{α% (9.2.129) 
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with Θ defined as in (9.2.124) and ώ given as ώ = ù{k, a) = ck — ßk3 + a2/24ßk + 
О (a3). The frequency ω and, consequently, the wave speed are seen to depend on 
both the wave number к and the amplitude a. 

We conclude this example by noting that on inserting the expression и = и(в)— 
with Θ given as in (9.2.124)—into the Korteweg-deVries equation, it is possible to 
find an exact periodic traveling wave solution in terms of elliptic functions. If that 
solution is expanded for small amplitudes, the preceding results are reproduced. We 
do not carry out this discussion, which is given in the literature. 

Exercises 9.2 

9.2.1. Use the perturbation method to solve the following boundary value problem. 
uxx(x,y) + Uyy{x, y) + e2u(x, y) = 1, x2 + y2 < 1, u(x, y) = 0, x2 + y2 = 1. 
Obtain the first two terms in the expansion. 

9.2.2. Obtain the exact solution of the following boundary value problem for the 
Helmholtz equation in the unit sphere: uxx(x, y, z) + uyy(x, y, z) + uzz(x, y, z) + 
e2u(x,y) = 0, x2 + y2 + z2 < 1, u(x,y,z) = 1, x2 + y2 + z2 = 1. Also, 
solve the problem using perturbation theory and compare the exact solution with the 
approximate solution up to terms of 0(e4). 

9.2.3. Use the perturbation method to solve [1 + e(x2 + y2)]uxx(x, y) + uyy(x, y) = 
1, x2 + y2 < 1, u(x, y) = 0, x2 + y2 = 1. 

9.2.4. Apply the perturbation method to obtain an approximate solution of the fol-
lowing problem: uxx(x, y) + uyy(x, y) - e2u2(x, y) = 0, x2 + y2 < 1, u(x, y) = 
1, x2 + y2 = 1. 

9.2.5. Let u(x, y) satisfy uxx(x, y) + [1 + ey]uyy(x, y) = 0, 0 < x, у < π, and the 
boundary conditions u(0, y) = u(w,y) = u(x,n) = 0, u(x, 0) = 1, 0 < x < π. 
Use the perturbation method to obtain an approximate solution. 

9.2.6. Given the exterior boundary value problem for the modified Helmholtz щиа-
tion V2u(x,y, z)-e2u(x, y, z) = 0, r > 1, with the conditions u(:r, г/,-г)|г=1 = e_ e , 
limr_>oo u(x, y, z) = 0, where r2 = x2 + y2 + z2, use a perturbation expansion to 
solve the problem and show that it is not possible to make each term in the series 
vanish as r —> oo. Determine that the series exhibits secular behavior and use the 
method of multiple scales to overcome this difficulty and thereby obtain the exact 
solution of the problem. 

9.2.7. Let K(x, y, z; ξ, η, ζ) represent the free space Green's function for the modified 
Helmholtz equation V2K{x, y, z; ξ, η, ζ) - e2K(x, у, z; ξ, η, ζ) = -δ(χ - ξ)δ(ν -
η)δ(ζ — ζ), with —οο < χ^,ζ,ξ,η,ζ < oo. Assuming that e is small, apply the 
perturbation method to obtain K(x, y, z; ξ, η, ζ) in terms of the Green's function 
for Laplace's equation. Using the results of Example 6.13, discuss the behavior of 
the exact and the approximate Green's functions at infinity. Explain the differences 
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in their behavior at infinity as a result of the occurrence of secular terms in the 
perturbation series. 

9.2.8. Use the perturbation method (for small e) to solve Laplace's equation V2u(r, Θ) 
= 0 in the disk r2 = x2 + y2 < 1 with the boundary conditions: (a) e ди{\, в)/дг + 
u(l,0) = 1; (b) ди(1,в)/дг + еи(1,в) = 1. Show that the problem of part (b) 
cannot be solved by using the perturbation method and obtain the exact solution of 
the problem to show why the regular perturbation theory fails. 

9.2.9. Consider the Robin problem for the elliptic equation —V · (p(x)Vu(x)) + 
q(x)u(x) = p(x)F(x) in a region G with the boundary condition a(x)u(x) + ß(x) 
du(x)/dn\dG = B(x), where a(x) > 0 and ß(x) > 0. Assuming that either a(x) 
or /?(x) is uniformly small on dG, construct a perturbation method whereby the 
solution of the given third boundary value problem can be approximated by solutions 
of Dirichlet or Neumann problems. Comment on the possibility that the data for the 
reduced Neumann problem are incompatible and explain how to resolve that difficulty 
[see Exercise 9.2.8(b)]. 

9.2.10. Use the perturbation method to solve the Cauchy problem for the parabolic 
equation ut(x,t) + eux(x,t) = uxx(x,t), —oo < x < oo, t > 0, with the initial 
value u(x,0) = f(x), —oo < x < oo. Determine that the perturbation series exhibits 
secular behavior and use the method of multiple scales to deal with this problem. 
Also, convert the given problem to an initial value problem for the heat equation by 
introducing the change of variable т = t, σ = x — et. Obtain the solution of the 
transformed problem and compare it with the perturbation result. 

9.2.11. Solve the Cauchy problem for the weakly damped wave equation utt(x, t) + 
eut{x, t) — c2uxx{x, t) = 0, —oo < x < oo, t > 0, with the initial data u(x, 0) = 
f{x), ut(x,0) = 0, —oo < x < oo, using perturbation theory. Show that secular 
terms arise in the perturbation expansion and use the method of multiple scales to 
eliminate them. 

9.2.12. Construct a solution of the Cauchy problem (9.2.53)-(9.2.54) in the form 
u(x, t) — Σ^=0 e2nvn(t) cos[(2n + l)kx]. Note that this should lead to the expan-
sion (9.2.60), but show that vo(t) can be specified so that the 0(e2) secular term is 
eliminated. Indicate how v\ (t) must be chosen to eliminate secular behavior at the 
0(e4) level. Hint: Expand vo(t) and v\ (t) in a series in powers of e2. 

9.2.13. Show that if c(ex) in the hyperbolic equation (9.2.63) is given as in (9.2.78), 
the equation can be transformed into an equation with constant coefficients in the 
region x > 0. Let σ = (1/e) log[(co + ex)/co] and τ = t in (9.2.63) and obtain the 
equation υττ(σ, т) — νσσ(σ, τ) + ευσ(σ, τ) = 0. If the data for the wave equation 
(9.2.63) are u(0,t) = 0, u(x, 0) = f(x), and ut(x, 0) = 0, so that the problem is 
given in the region x > 0, t > 0, determine the appropriate region and data for the 
transformed problem for υ(σ, τ). Discuss the approximate solution of the initial and 
boundary value problem for ν(σ, τ) in the region σ — τ > 0 and compare with the 
result (9.2.81). Hint: Do not expand the transformed initial data in powers of e on 
using a perturbation series to solve for υ(σ, τ). Show that secular terms arise in the 
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perturbation series and apply the method of multiple scales in a judicious manner to 
reproduce the result in the text. 
9.2.14. Consider the initial and boundary value problem for the parabolic equation 
ut(x, t) — (c0 + ex)2uxx(x, t), x > 0, t > 0, where c0 > 0 and 0 < f < 1, with 
the data u(0, t) = 0, u(x, 0) = f(x). Solve by using the perturbation method and 
show that secular terms occur in the perturbation series. Attempt to eliminate this 
difficulty by using the method of multiple scales. Use the transformation given in 
Exercise 9.2.13 to transform the problem into one with constant coefficients that can 
be solved exactly. 

9.2.15. Using the boundary perturbation method, solve the Neumann problem for 
Laplace's equation uxx(x,y) + uyy(x,y) = 0, 0 < x < I, ex < у < L, with the 
data du(0, y)/dx = du(l, y)/dx = du(x, L)/dy = 0, ди(х, ех)/дп = cos(nx/l), 
0 < x < I. 

9.2.16. Solve the Dirichlet problem using the boundary perturbation: uxx(x,y)+ 
uyy(x,y) — 0, e sin у < x < l, у > 0, with u(esin(y),y) = u(l,y) = 0, 
у > 0, u(x, 0) = sm(nx/l), 0 < x < I, u(x, y) bounded as у —> oo. 

9.2.17. Apply the boundary perturbation method to solve the following problem: 
utt(x,t) — c2uxx(x,t) = 0, et < x < oo, t > 0, u(x,0) = щ(х, 0) = 0, x > 
0, u(et, t) = Acos(ujt), t > 0. Show that secular terms result in the perturbation 
series. Compare the perturbation result with the exact solution given in (6.5.25) when 
c 0 = 6. 

9.2.18. Solve the Dirichlet problem for Laplace's equation V2u(x, y) = 0 in an 
ellipses; = (1+ае)совст, у = (H-6e)sin(cr) (0 < σ < 2π) (i.e., a slightly perturbed 
unit circle) using the boundary perturbation method. The boundary condition on the 
ellipse is u(x, y) = x2. 

9.2.19. Use the eigenvalue perturbation method to determine up to 0(e) terms the 
leading eigenvalue and eigenfunction for the following problem. M"(x) + λ(1 — 
e sin2 x)M{x) = 0, 0 < x < 7Г, M(0) = Μ(π) = 0. 

9.2.20. Approximate the leading eigenvalue for the following eigenvalue problem: 
-V2M(x,y) + exyM(x,y) = \M(x,y), 0 < x < π, 0 < у < π, М(0,у) = 
Μ(π, у) = дМ(х, 0)/ду = дМ(х, п)/ду = 0. 

9.2.21. Use the results of Example 8.3 to approximate the leading eigenvalue for 
the following problem in the ball r2 = x2 + y2 + z2 < 1: V2M(x, y, z) + (λ — 
er2)M(x,y,z) — 0, r < 1, M(x,y,z) = 0, r = 1. 

9.2.22. Develop a perturbation method to obtain the eigenvalues for the following 
Sturm-Liouville problems: -d/dx(p(x)dM(x)/dx) + q(x)M(x) — \M(x), 0 < 
x < I, with the boundary conditions (a) eM'(0) - M(0) = 0, M(l) = 0; (b) 
M'(0) - eM(0) = 0, M(l) = 0. 

9.2.23. Apply the method of Exercise 9.2.22 to obtain the leading eigenvalue for each 
of the following problems: M"(x) + XM(x) = 0, 0 < x < π, with the boundary 
conditions(a)eM'(0)-M(0) = 0, Μ(π) = 0;(b)M'(0)-eM(0) = 0, Μ(π) = 0. 
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9.2.24. Reproduce (9.2.113)—(9.2.116) by solving the nonlinear Klein-Gordon equa-
tion (9.2.109) in the form w(x,t) = Ì^=1wn(9)en + Σ^=ι^η(θ) e", where 
θ = kx — ut, θ = kx — at and ώ = Σ^=ι ωη(&)ε"\ ώ = Σ ^ = ι ü>n(k)en. Proceed 
as in Example 9.7 and choose the wn(k) and ùn(k) to eliminate secular terms in the 
expansion of w(x, t). 

9.2.25. Obtain traveling wave solutions of the nonlinear hyperbolic equation wu(x, t) 
— j2wxx(x, t) — c2w(x, t) — aw3(x, t) = 0, by using the expansion forms given in 
Exercise 9.2.24. (Note that the linearized version of this equation does not have a 
real dispersion relation for all values of k. Consider the problem only for those к that 
yield traveling waves in the linearized case.) 

9.2.26. The nonlinear system {Ett(x,t) + Ptt(x,t) — η2Εχχ{χ,ΐ), Ptt(x,t) + 
P(x, t) — σΡ3(χ, t) = c2E(x, t)} occurs in the theory of nonlinear optics. Show 
that if we consider the linear case and set σ = 0, and look for a solution E = 
Ε(θ), Ρ = Ρ(θ), where Θ = kx — ut, we obtain the dispersion relation k2 = 
ω2/72 - <?ω2/[72(ω2 — 1)]. For the (weakly) nonlinear case look for a solution of 
the given system in the form Ε(θ) = a coso + αχ cos 30 + · · ·, Ρ(θ) = 6 coso + 
òi cos 30 + · · ·, where θ = kx — wt and the constants a, b, α,χ, and 6i are small, 
but eti and òi are smaller in magnitude than a and b. Insert these expansions into 
the nonlinear equations and equate the coefficients of like trigonometric terms. From 
the coefficients of the cos Θ terms obtain an expression giving b in terms of a and 
an equation for a = j2k2 — ω2. Expand a in powers of a2 and show that k2 « 
ω 2 / 7

2 - ο2ω2/[Ί
2{ω2 - 1)] + 3σο6ω2/[ΑΊ

2(ω2 - l)4] a2. 

9.3 SINGULAR PERTURBATION METHODS AND BOUNDARY LAYER 
THEORY 

In singular perturbation theory we are concerned with the study of PDEs that contain 
a small parameter that multiplies one or more of the highest derivative terms in the 
equations. Thus when that parameter is equated to zero, giving rise to the reduced 
equation, either the order or the type (or both the order and type) of the given equation 
is changed. Generally, this means that a regular perturbation series solution proves 
inadequate to handle the initial and/or boundary data for the given problem. It can also 
mean that solutions of the reduced equation are singular at a point, curve, or surface 
on which solutions of the given problem are not expected to be singular. Rather than 
discarding the perturbation series completely, it is possible to introduce boundary, 
initial or internal layers across which the solution of the given problem undergoes 
a rapid transition from a form that satisfies all the data given for the problem or is 
nonsingular, to a form represented by the perturbation series. The determination of 
the boundary layers (initial or interior layers are often be referred to as boundary 
layers, as well) and the approximate forms of the given equations in those regions 
forms the subject of boundary layer theory. The procedure whereby solutions valid 
in the boundary layers are identified with the perturbation series solution valid in the 
so-called outer region(s) is often called the matching process. The general process of 
determining perturbation and boundary layer expansions and matching these results is 
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sometimes referred to as the method of matched asymptotic expansions. By combining 
the perturbation and boundary layer solutions, a fairly good approximate description 
of the solution of the given problem can often be found for problems where the exact 
solution is difficult or impossible to determine or where the solution is not easy to 
interpret or evaluate. 

It should be noted that singular perturbation theory is sometimes taken to encom-
pass any problem where regular perturbation theory is inadequate for any reason. This 
may not involve the presence of a small parameter multiplying the highest derivative, 
but may be due to the presence of secular terms that result in the nonunif ormity of the 
solution over an infinite region or the occurrence of a small parameter in the data for 
the problem (examples of these types have been given in Section 9.2). Nevertheless, 
we shall restrict our discussion in this section to the type of problem discussed in the 
preceding paragraph. 

Singular Perturbations and Boundary Layers for First Order PDEs 

As it is somewhat complicated to present a general theory that encompasses all types 
of singular perturbation and boundary layer problems, we begin by considering two 
simple examples for first order PDEs. These problems are analyzed in some detail. 
Then we consider second and higher-order equations from a general point of view 
and in a number of examples. 

Example 9.8. Singular Perturbation of a First Order Equation. The initial 
value problem for the equation 

e(ut{x,t) +ux(x,t)) +u(x,i) = sin(i), — oo < x < oo, t > 0, (9.3.1) 

with 
u(x,0) = / ( z ) , (9.3.2) 

where 0 < e -C< 1 and f(x) is a prescribed smooth function, has the solution 

u(x,t) — ^(sin(i) - ecos(i)) + 
1 + ez 

as is easily verified. 
We attempt to solve (9.3.1)—(9.3.2) by using a conventional perturbation series 

and set 
oo 

u(x, t) = Σ un(x, t)en. (9.3.4) 
71=0 

Inserting (9.3.4) into (9.3.1) and equating like powers of e yields the system 

uo(x, t) = sin(i), un(x, t) = - I -r + ^ J , n > 1. (9.3.5) 

We easily conclude that 

u2n{x,t) = (~l)nsin(t), u2n+1{x,t) = ( - l ) " + 1 cos( i ) , n > 0 . (9.3.6) 

f(x ~t) + 
1 exp -a· (9.3.3) 
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The terms in the perturbation series (9.3.4) are uniquely specified without regard to 
the initial value u(x, 0). Furthermore, the perturbation series 

u(x,t) E(-Dr In [sin(t) - e cos(t)] = 2 [sin(f) ~ e с°8(*)] (9·3·7) 
.n=0 

certainly does not satisfy the initial condition (9.3.2). The reason is that the reduced 
problem for (9.3.1), where e equated to zero, is not even a differential equation and 
cannot absorb arbitrary initial values. This reduced problem characterizes the form of 
all equations arising from the conventional perturbation approach, and none of them 
is a differential equation. 

On comparing the perturbation solution (9.3.7) and the exact solution (9.3.3), we 
see that difference between both solutions is a term significant only in the region 
0 < t < 0(e). That is, for t > 0(e), the exponential exp(—f/e) is small and 
can be neglected. Then the solution of (9.3.1)—(9.3.2) is well approximated by the 
perturbation result (9.3.8). However, within a layer of width O(e) near the z-axis, 
the exponential term in (9.3.3) is significant and must be retained. It is this term in 
combination with the perturbation result (9.3.7) that enables the solution to satisfy 
the initial condition. 

The existence of an initial layer of width 0(e), where the conventional perturbation 
series is not valid, may be inferred from the fact that for t ~ e we have sin(i) ~ 
sin(e) « e and cos(i) « cos(e) « 1. Thus the first two terms in the perturbation 
series behave like u(x, t) ~ sin(i) — e cos(t) « e — e = 0, t ~ e (i.e., they are of 
the same order in e). Therefore, the perturbation series (9.3.7) is not well ordered in 
the region where t = O(e) and it is not expected to be a valid representation of the 
solution. Of course, we know that (9.3.7) is not valid near t = 0, since it fails to 
satisfy the initial condition. However, the foregoing argument yields an approximate 
description of the size of the region where the conventional perturbation method is 
invalid. This argument is similar to that given in Section 9.2 in connection with 
secular terms. 

The significant conclusion that we have reached is that the perturbation result need 
not be discarded completely because of its failure to satisfy the initial condition. It 
need only be replaced by a different or modified approximation in an initial layer of 
width 0(e) near the ж-axis. To study the equation in the initial layer, we introduce 
the stretching transformation 

t = err, (9.3.8) 

where the positive constant r is to be specified. Since e is small, the r variable is large 
even for small or moderate values of t. Thus the region near the ж-axis is stretched 
out. The equation (9.3.8) indicates that we wish to study (9.3.1) in a region where 
t — 0(e r ) . We already have shown that the choice r — 1 is appropriate for our 
problem, but now we wish to show this directly from the equation (9.3.1) by using 
boundary layer arguments. 

On using (9.3.8) in (9.3.1) with ü(x, т) = и(х, егт), we have 
3r 3 

c1 _ ruT(x, r) + ейх{х, т) + ù{x, т) = sin(err) = e r r - i - ^ - + 0(e5 r ) . (9.3.9) 
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Now if r = 1, there is a balance between the terms ùT and ù in (9.3.9), and they 
represent the leading terms for small e in that equation. We retain the ùT term to 
obtain a differential equation in the initial layer that can absorb an initial condition. 
We also want to retain the term ü that occurs in the reduced equation for (9.3.1 ), so that 
a smooth transition from the initial layer to the outer region, where the perturbation 
series (9.3.7) is valid, is expected to result. With r > 1, ùT is the leading term. 
Although this choice of r leads to equations that can account for the initial condition, 
the initial layer seems to be too thin since the equations do not retain any part of the 
reduced equation. Forr < l ,ü is the leading term and nothing has been accomplished. 

Putting r = 1 in (9.3.9), we obtain 

6 3 r 3 
üT(x, r ) + ù(x, r ) + eùx(x, τ) = sin(er) = er —\- 0(е5). (9.3.10) 

6 
The initial condition at r = 0 is ù(x, 0) = / (x) . 

We solve (9.3.10) by the perturbation method and set 

oc 

ù(x, т) = Σ ùn(x, т)еп. (9.3.11) 
n=0 

Inserting (9.3.11 ) into (9.3.10) and equating like powers of e yields 

дй0(х,т) δύι(χ,τ) дщ(х,т) , П 9 1 0 ч 
— h щ(х, т) = 0, -jT + "1 (ж, т)=т — (9.3.12) 

as the two leading equations. They are effectively ODEs in the variable r, and the 
initial conditions for the equations for all the ùn(x, t) at r = 0 are 

ü0(x, 0) = f(x), un(x,0) = 0, n > 1. (9.3.13) 

We remark that it is often the case that the boundary layer equations are ODEs even 
though the perturbation problem is formulated for a PDE. The first two boundary 
layer terms ÙQ(X, T) and ü\ (x, r ) are found to be 

« o ( a : , r ) = / ( i ) e - r , ΰ^χ,τ) = τ - 1 + [I - т/'{х)]е~т. (9.3.14) 

Thus 

Ù(x, т) « f{x)e-T + ф - _ l + [l - Tf{x)]e-T} + 0{e2). (9.3.15) 

In general, we would now apply the matching process to specify unknown quanti-
ties that occur in the outer perturbation expansion. This is carried out by assuming that 
the perturbation series (9.3.7) and the boundary layer (perturbation) series (9.3.11) 
have a common region of validity. Then both series are expressed in terms of a com-
mon set of variables (say, by expressing the unstretched variable in the perturbation 
expansion in terms of the stretched variable in the boundary layer expansion, so that 
t is replaced er in this example). The modified series are expanded in powers of 
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e, terms with like powers of e in both series are identified, and unknown quantities 
are determined. (Exponentially small terms are discarded in this process.) Here, 
however, the (outer) perturbation series is completely specified so that matching is 
unnecessary to complete the solution. Nevertheless, we carry out the matching pro-
cedure to show how the solution undergoes a transition from its boundary layer form 
to the form valid in the outer region where t > O(e). 

We have 
oo oo 

u{x, t ) » ^ un{x, er)en » ^ ùn(x, r)e" (9.3.16) 
П=0 71=0 

in a common region of validity of both series that is assumed to exist. Thus 

ио(х,ет) + eui(x,er) = sin(er) — ecos(er) ~ er — e + 0(e3), (9.3.17) 

ù0(x, т) + eùi {x, т) = f(x)e~T + e[r - 1] + e[l - rf'{x)]e-T « er - e. (9.3.18) 

For the purpose of matching we have assumed that r is large, so that the exponential 
e~T can be neglected, but that er is small, so that sin(er) and cos(er) can be approx-
imated by the leading terms in their power series expansions. This procedure can be 
formalized by assuming, for example, that r = 0 ( e - 1 / 2 ) , so that r is large for small 
e, but er = 0(e : / 2 ) , which is small. Then the region where the matching is carried 
out corresponds to t = er = O^ 1 / 2 ) . The entire matching process can be carried 
out in a systematic manner by using the method of intermediate limits. However, we 
do not require this method, as we consider only leading terms in our analysis, and do 
not discuss this technique, which can be found in the literature. 

On comparing (9.3.17) and (9.3.18), we see that they both agree to the order of e 
retained. Thus, it follows from our perturbation and boundary layer results that the 
approximate solution u(x, t) of (9.3.1 )-(9.3.3) is 

t-e + [f(x)-tf'(x)+e]e-^, 0 < t < 0(e), 
sin(i) - e cos(i) + 0(e2), t > 0(e). [ ' 

In the initial layer of width 0(e), the solution undergoes a rapid transition from a 
form that satisfies the initial condition to the (outer) perturbation approximation. The 
solution in the initial layer corresponds to the expansion of the exact solution (9.3.3) 
for small t, as is easily verified. The fact that / and its derivatives are given as 
functions of x rather than x — t—corresponding to the characteristics x — t = constant 
of (9.3.1)—as is the case in the exact solution (9.3.3) is not that important. Indeed, 
since f(x - t) = f(x) - tf'(x) + 0(t2), we can replace f(x) - tf'(x) by f(x -1) 
for t < O(e). Because of the rapid exponential decay of the term that involves / , 
either of these representations can be used. 

We observe that the approximate solution (9.3.19) can be combined into a single 
composite expression that is (uniformly) valid for all t. We write 

u{x, t) « sin(i) - ecos(i) + [f{x) - tf'{x) + е]е~1/е + 0(e2). (9.3.20) 

u(x, t) 
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The initial condition is satisfied approximately. Within the initial layer of width 
0(e), the trigonometric terms can be approximated by t — e, and in the outer region 
we discard the exponentially small terms so that we retrieve the boundary layer and 
outer perturbation results. The expression (9.3.20) represents the leading terms of a 
composite expansion which can be constructed in a systematic manner from the terms 
in the boundary layer and outer expansions. We do not pursue this matter here any 
further. 

An alternative approach that leads to a different boundary layer construction and 
expansion is based on the following. We have determined that when t = ет the 
perturbation series (9.3.7) becomes disordered. Then if we substitute t = ет in 
(9.3.7), we obtain u{x, i) « (r — l)e + 0(e3), so that u(x, t) « 0(e) in that region. 
Therefore, we put u(x, t) — ev(x, r ) in the boundary layer region and obtain, in place 
of (9.3.10), 

6 2 T 3 
vT(x, r ) + v(x, T) + evx(x, T) = sin(er)/e = т + —— + 0(e4). (9.3.21) 

о 

On expanding v(x, r ) as v(x, r) = X]^L0 vn(x, т)е™, we obtain 

dv0(x, T) 

дт 
+ υ0(χ,τ)=τ. (9.3.22) 

A general solution of this equation is VQ(X, T) = τ — 1 4- F{x)e~T with arbitrary 
F(x). Then, since u(x, t) « evo(x, r ) and u(x, 0) = f{x), we obtain the boundary 
layer approximation 

u(x,t)xt-e+[f(x) + e]e-t/e, 0 < t < O(e). (9.3.23) 

This result corresponds to replacing f(x — t) by f(x) in the modified boundary 
layer approximation given above. However, to obtain (9.3.23) we must put F(x) = 
1 + f(x)/e and, clearly, F(x) should not have any e dependence. Thus, we conclude 
that the original boundary layer analysis presented above is to be preferred. 

To conclude this example, we note that if the term u(x, t) in (9.3.1) is replaced 
by —u(x, t), we may still use the regular perturbation method to construct a series 
solution of the form (9.3.4). However, a boundary layer analysis yields as the leading 
order boundary layer equation dùo(x, т)/дт — щ(х, т) — 0, as is easily seen. The 
solution of this equation that satisfies the initial condition is щ(х, т) = f{x)eT. It 
grows exponentially as r increases so that we do not obtain an initial layer within 
which a rapid transition of the solution to the form of the outer perturbation expan-
sion takes place. The reason for the breakdown of the perturbation method and the 
boundary layer theory is that the initial value problem for (9.3.1 ) with the term и(х, t) 
replaced by — u(x, t) is unstable and has exponentially growing solutions. This is 
easily shown by finding the exact solution of the initial value problem or by the use 
of a stability analysis. 
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The general first order linear equation 

e(a(x, t)ut(x, t) + b(x, t)ux(x,t))+c(x, t)u(x,t) = d(x,t), — oo < x < oo, t > 0, 
(9.3.24) 

where 0 < f « 1 and a(x, t), b(x,t), c(x,t), and d(x, t) are specified functions, 
with the initial condition 

u(x,0) = f(x), (9.3.25) 

yields a singular perturbation problem that may require for its solution the introduction 
of additional internal boundary layers apart from the initial layer. Thus if c(x, t) 
vanishes on a curve in the region t > 0 where a(x, t) and b(x, t) do not vanish, the 
conventional perturbation series may become singular there. However, the solution 
of the full problem (9.3.24)-(9.3.25) is not expected to be singular along that curve. 
Consequently, a modified result that can be obtained by boundary layer methods must 
be introduced. In the following example a problem of this type is considered. 

Example 9.9. An Internal Boundary Layer. The first order PDE 

e(ut{x, t) + ux(x, t)) + {t- l)2u(x, t) = l, -oo < x < co, t > 0, (9.3.26) 

with the initial condition 

u(x, 0) = 0, -oo < x < oo, (9.3.27) 

has the exact solution 

u(x, t) = - exp ( i - 1 ) 
3e 

! 1 / 
. Jo 

exp 
( s - 1 ) 3 

3e 
ds, (9.3.28) 

as is easily verified. Because of the ж-independent initial condition, we may consider 
(9.3.26)-(9.3.27) to be an ODE problem. It is, nevertheless, of interest to study the 
phenomena that occur for the perturbation solution of this problem, as they occur for 
more general problems as well. 

We begin by considering the conventional perturbation series solution 

i(x,t) — y^un(x,t)en (9.3.29) 
n = 0 

of (9.3.26)-(9.3.27). The un (x, t) satisfy algebraic rather than differential equations, 
and we easily obtain as the leading terms of (9.3.29) 

u(x, t) ~ щ(х, t) + eui(x, t) = 
1 

+ 
2e 

( i - 1 ) 2 ( i - 1 ) 5 ' 
(9.3.30) 

Not only does (9.3.30) not satisfy the initial condition (9.3.27) but it also is singular 
at t — 1. The given equation (9.3.26) has no singularity there. 
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To handle the initial condition we introduce the stretching transformation 

t = er, (9.3.31) 

which yields for (9.3.26) 

ùT(x, τ) + eùx(x, T) + ù(x, r ) - 2ети(х, r ) + e2r2ü(x, r) = 1, (9.3.32) 

where и(х,т) = и(х,ет). То obtain (9.3.31) we can use the approach given in 
Example 9.8 (see (9.3.8)-(9.3.9)) and first set t = егт and conclude that we must 
have г = 1. With 

oo 

u{x, τ) = Σ ùn(x, т)еп (9.3.33) 
n=0 

we have 

ди0(х,т) дщ(х,т) дщ{х,т) 
~—L+U0(X,T) = l, A _ ^ + t t l ( X ) T ) =2ти0{х,т) -^-L 

f9.3.34) 

as the leading equations. The initial data for the ùn(x, r ) are 

u n ( x , 0 ) = 0 , n > 0 . (9.3.35) 

The solutions are ùo(x, r ) = 1 — e~T and ù\(x, т) = 2(г — 1) + (2 — r 2 ) e _ r , 
so that 

ù(x, r) « 1 - e~T + C[2(T - 1) + (2 - т 2 )е _ т ] . (9.3.36) 

It is readily verified that (9.3.30) and (9.3.36) match one another if (9.3.30) is expanded 
for small t and (9.3.36) is expanded for large r. 

At t approaches unity, the (outer) perturbation series (9.3.30) blows up. To deter-
mine the values of t where (9.3.30) first begins to break down, we note that when 
t — 1 — 0(ex/3) , the perturbation series (9.3.30) becomes disordered in that the sec-
ond term is of the same order in e as the leading term. This suggests that there exists 
an internal boundary layer near t = 1 whose width is given as \t — 1| = 0(e1^3). 
Further, we find that within the boundary layer u(x, t) « 0[(t - 1)~2] = 0(e~2/3) . 
Therefore, to study the solution of (9.3.26)-(9.3.27) near t— 1. we set 

t-l=e1/3T, u(x,t) = e-2/3v(x,T). (9.3.37) 

This gives 
VT(X,T) + T2V(X,T) + e1/3vx{x,r) = 1. (9.3.38) 

The stretching exponents for e in (9.3.37) could have been determined by the use 
of an argument similar to that given in the preceding example, whereby a balancing 
of significant terms in the resulting equation (9.3.38) is carried out. A new feature 
for this problem is that an independent and the dependent variable were stretched. 
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This is usually required for nonlinear problems and often arises when dealing with 
inhomogeneous linear equations. 

To specify the solution v(x, r) of (9.3.38), we require that it match the outer 
solution (9.3.30) as we approach the region O(e) < t < 1 — 0(e1/ /3), where the 
(outer) perturbation series is valid. That is, we require that as τ —> —co, v(x, τ) 
tends to the form (9.3.30) expressed as a function of r. 

The boundary layer expansion for v(x, r ) is given in powers of e1/3, in view of 
the form of (9.3.38), and we set 

oo 

v(x, τ) = Σ vn{x, r )e n / 3 (9.3.39) 
n=0 

and insert (9.3.39) into (9.3.38). The leading equation is 

dv0(x,r) 

дт 

whose general solution can be written as 

+ T2V0(X,T) = 1, (9.3.40) 

ν0(χ,τ)=βχρ(-γ\ expf y j cfcr + b e x p i - y j , (9.3.41) 

with the arbitrary constant b as yet unspecified. We match (9.3.41) with (9.3.30) and 
integrate by parts to obtain 

with τ assumed to be negative. A further integration by parts yields 

Ыт) *=(?+?) е х р(т)+ wL ^ ίσ3 exp( Y )da. 

(9.3.43) 
Thus 

и0(ж,т) = -2 + ^ 5 + 1 0 e x p i - y j I — e x p ( y ) da, (9.3.44) 

where we have put ò = 0, since the solution would otherwise grow exponentially as 
г -* —oo, and that is ruled out by the form of (9.3.30). If we now express (9.3.30) in 
terms of T, we have u(x, 1 + e1/3r) « e"2/3 ( l / r 2 + 2 / r 5 ) . Since t - 1 = e1 / 3 r 
and и — e~2/3v—in view of (9.3.37)—we find that the internal boundary layer 
expression (9.3.44) matches the outer solution (9.3.30). 

To complete our discussion of the solution we need to examine what happens in 
the region above the internal boundary layer [i.e., when t > 1 + 0(e1/3)] . The outer 
solution (9.3.30) is expected to be valid there. However, for that to be the case, the 
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outer solution must match the internal boundary layer solution as τ —► oo in VQ(X, T). 
To show this we write vo(x, r ) as 

V0(X,T) = e x p i - y j | / e x p i y j r f a + / e x p i y j d a l (9.3.45) 

where both a and r are positive and a < τ—note that we have put 6 = 0 in (9.3.41). 
Since 0 < a < r , the first integral in (9.3.45) contributes an exponentially small term 
to the overall result. Integrating by parts in the second integral as was done previously 
readily yields an expression that matches the outer solution (9.3.30) as r —> oo, since 
the contributions from the lower limit result in exponentially small terms. 

We have shown that a satisfactory description of the solution of (9.3.24)-(9.3.25) 
can be obtained by combining perturbation and boundary layer methods. Although 
an exact solution is available for this problem, the approximate results are generally 
easier to evaluate. It is also possible to construct a composite approximation to the 
solution. We replace the terms 1 + 2е(т - 1) in (9.3.36) by (9.3.41), where we set 
6 = 0 and г = (t — l ) e - 1 / 3 , and replace r by t/e in the remaining terms of (9.3.36). 
Since the outer solution (9.3.30) is singular at t = 1, it cannot be used in the uniformly 
valid composite result. Consequently, the form of the composite result is not much 
simpler than that of the exact solution (9.3.28). 

Singular Perturbations and Boundary Layers for Hyperbolic PDEs 

The following example deals with the singular perturbation of a second order linear 
hyperbolic equation with constant coefficients. The problem gives rise to an initial 
layer as well as secular terms. 

Example 9.10. The Singular Perturbation of a Hyperbolic Equation. We 
consider the second order linear hyperbolic equation 

e(utt(x, t) - c2uxx(x, t)) + ut(x, t) + aux(x, t) = 0, (9.3.46) 

with constant coefficients and 0 < б <!C 1. The initial data on the x-axis are given as 

u{x,0) = f(x), ut{x,0) = g(x). ' (9.3.47) 

The reduced equation obtained by setting e = 0 in (9.3.46) is of first order, so that 
we have a singular perturbation problem. 

We attempt to solve (9.3.46)-(9.3.47) by the use of a regular perturbation series 

oo 

u{x, t) = Y^ ^(x, t)cn- (9.3.48) 
n=0 

Inserting (9.3.48) into (9.3.46) and equating like powers of e yields the recursive 
system 
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du0(x,t) du0(x,t) 
dt dx 

dun(x,t) dun(x,t) d2un-i(x,t) 2 d2un-i(x,t) 
—df-+a—dx— = W* + C —^ ' ^ 1 ' ( 9 · 3 · 4 9 ) 

with the initial conditions 

i r,\ ti \ duo(x>°) , . . dun{x,0) Щ{х,0) = f{x), -^ = g(x), un(x, 0) = 0, -^—'- = 0, n > 1. 
(9.3.50) 

Since the equations for un(x, t) are each of first order, only one initial condition 
can be assigned for each un(x, t) at t = 0. Therefore, the initial value problems 
for the un(x, t) cannot be solved in general. The singular nature of the perturbation 
is thereby brought into evidence. As a result, we cannot expect the perturbation 
series to be valid near the x-axis. Nevertheless, the series (9.3.48) should provide an 
approximate description of the solution u(x, t) away from the ж-axis, as was found 
in the preceding examples. 

Using the methods of Chapter 2, we easily obtain as the general solutions of the 
first three equations in (9.3.49) for the un(x, t), 

MO = F(x - at), (9.3.51) 

ui = t(c2 - a2)F"(x - at) + G(x - at), (9.3.52) 

u2 = (c2 - a2) jF""(x - at) + 2atF'"{x - at) + tG"{x - at) + H{x - at), 

(9.3.53) 

where F(x), G(x), and H(x) are arbitrary functions. [H(x) does not represent the 
Heaviside function here.] 

It is clearly impossible to satisfy the initial conditions (9.3.50) for arbitrary f(x) 
and g{x). Additionally, if we assume that F(x), G(x), and H(x) together with their 
derivatives are uniformly bounded for all x, we see from (9.3.51 )-(9.3.53) that secular 
terms with coefficients et and (et)2 arise in the perturbation expansion (9.3.48). Thus 
the series (9.3.48) is not expected to be valid for et = 0(1) or when t = 0(l/e). 

We have demonstrated that the perturbation series (9.3.48) is not only invalid near 
the initial line but that it also breaks down after a sufficiently long time. In addition, 
we observe from (9.3.51)—(9.3.53) that the terms un(x, t) in the perturbation series 
are waves that travel to the right or left (depending on the sign of a) with speed \a\ . 
Now we have already shown that the maximum speed at which disturbances for the 
hyperbolic equation (9.3.46) can travel is the characteristic speed. This speed equals 
с (we assume that с > 0,) and if \a\ > с it can happen that disturbances as described 
by our perturbation approximation can travel at a speed exceeding the characteristic 
speed. Since this is theoretically not possible, it would appear that we have to reject 
the perturbation series completely for this reason if \a\ > с 

An application of the stability analysis of Section 3.5 shows that (9.3.46) is unstable 
if \a\ > с If we insert the normal mode solution (3.5.2) into (9.3.46), we obtain for 
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X(k), eA(fc)2 + \(k) + ec2k + iak = 0. Noting that 0 < e <C 1 and assuming 
moderate values of к yields two approximate solutions for X(k), 

A i ( f c ) « - - , \2{k) » -iak - e(c2 - a2)k2. (9.3.54) 

Thus if \a\ > c, the real part of \2{k) is positive and the problem is unstable. 
Therefore, we assume that \a\ < с in (9.3.46) so that disturbances associated with 
the equations (9.3.49) travel at slower speeds than the characteristic speed с It can 
be shown that the real parts of λι (к) and X-2 (k) are negative for all к ф 0 if \a\ < c, 
so that (9.3.46) is an equation of dissipative type. 

To specify the unknown functions in the perturbation series, we must relate it to 
the initial data, and this is done by the use of boundary layer theory. The perturbation 
series is expected to be valid from some time t > 0 on, so we assume that there exists 
an initial layer near the ж-axis where the solution of (9.3.46)-(9.3.47) undergoes a 
rapid transition from a form that satisfies the initial data to the perturbation series 
form. 

To determine the appropriate form of (9.3.46) in the initial layer, we introduce the 
stretching transformation 

t = егт, (9.3.55) 

with r > 0 to be specified. We insert (9.3.55) into (9.3.46) to obtain 

e1~2rüTT(x, T) - ec2ùxx(x, т) + e~~rüT(x, т) + айх(х, т) = 0, (9.3.56) 

where we have set u(x, r ) = u(x, e rr) . The initial data for üx(x, r ) at r = 0 are 
ù(x,Q) = f(x), uT{x,0) = егд(х). 

We intend to solve (9.3.56) by a perturbation method. To specify the constant r 
in (9.3.55), we argue that the most significant terms in (9.3.56) are those with the 
lowest power (possibly negative) in e. These terms determine the basic form of the 
equations (in either homogeneous or inhomogeneous form) that must be satisfied by 
the terms in the perturbation series. Since each term must satisfy two initial conditions 
at r = 0, we require that ùTT(x, т) be retained as a leading term in the expansion in 
e. Clearly, this requires that 1 — 2r < — r or r > 1, as is seen on comparing terms 
in (9.3.56). If we choose r > 1, ùTT(x, r ) is the only leading term. However, with 
r = 1, ùTT(x, т) and ùT(x, т) are both of the same order in e, and this choice also 
yields a balance between the term ùTT(x, т) that is significant in the boundary layer 
region, and the term ùT(x, т) that occurs (as щ{х, t)) in the reduced problem in the 
outer region where the perturbation series (9.3.48) is valid. Therefore, we set r = 1. 
Multiplying through by e in (9.3.56) yields 

ùTT(x, т) + ùT (x, T) + eaùx(x, т) — e2c2ùxx(x, т) = 0, (9.3.57) 

with the initial data 

u(x,0) = f(x), uT(x,0) = ед(х). (9.3.58) 
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To solve (9.3.57)-(9.3.58), we introduce the boundary layer expansion 

oo 

ù(x, τ) = Σ ùn{x, т)еп (9.3.59) 
n=0 

into (9.3.57)-(9.3.58) and obtain the recursive system of equations 

д2щ(х,т) дщ(х,т) . 
flr» + —&Г- = °' ( 9 · 3 · 6 0 ) 

d2ùi{x,r) düi(x,t) ди0(х,т) , п „ й 1 , 
~д^- + -дГ~ = ~а —дх—> ( 9 · 3 · 6 1 ) 

040т! + gfi^f) = _а dun-fa г) + г дЧп^(х, т) ^ 2 ; ( 9 з б 2 ) 

on equating like powers of e. The initial data are 

щ(х, 0) = /(ж), ù„(x, 0) = 0, п > 1, 

— ^ = 0 , — ^ ; =s(a;), j£ = 0 , n > 2 . (9.3.63) 

Each of the boundary layer equations is an ODE in τ with initial data at r = 0 and 
is easily solved. We find that for n = 0 and n — 1, 

ù0(x, τ) = f(x), U! (x, T) = (g(x) + af'(x)){l - e~T) - ат/'(ж). (9.3.64) 

The exponential e~T = e_i / / e in ΰ\ {x, r ) decays rapidly as r or t increases and thus 
plays no role in the outer region where t > 0(e) and the perturbation expansion 
(9.3.48) is valid. To specify the unknown functions in (9.3.48), we need to match 
(9.3.59) and (9.3.48), each of which are different representations of the unique solution 
u(x, t). Although (9.3.59) is assumed to be valid in the boundary layer region near 
the ж-axis whose width is of order e, and the perturbation series is expected to be 
valid in a region where t > 0(e), away from the x-axis, it is assumed that they have 
a common region of validity. 

The perturbation and boundary layer expansions for u(x, t) yield 

oo oo 

u(x,t) « ^2ип{х,ет)еп « ^ип{х,т)еп, t = er. (9.3.65) 
n=0 ra=0 

We assume that ет is so small that the terms un(x, ет) can be well approximated by 
the leading terms in their series expansions in t = ет. However, r must be large 
enough that the exponentials e~T in the ün(x, т) terms can be neglected. This is so 
if t = ет = 0{e1'2). Using (9.3.51H9.3.52) gives 

u0(x,ет) + ещ(х, ет) = F{x) - eaTF'(x) + eG(x) + 0(e2), (9.3.66) 
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and neglecting the e T terms in (9.3.64) gives 

ύο(χ,τ) + e«i(x, r) = f{x) - earf'ix) + eg(x) + eaf'(x) + 0(e2). (9.3.67) 

Comparing like powers of e in (9.3.66) yields 

F(x) = f(x), G(x) = g(x) + af'(x), (9.3.68) 

on using (9.3.66)-(9.3.67). Consequently, (9.3.48) has the form 

и = f(x-at) + e[t{c2-a2)f"(x-at)+g(x-at)+af'(x-at)]+0(e2). (9.3.69) 

Further terms in the perturbation series can be determined by carrying this matching 
procedure out to higher orders. 

A composite expression for the solution can be given as 

u{x, t) « f{x - at) + e[t(c2 - a2)f"(x - at) + g(x - at) + af'{x - at)} 

- e[g{x - at) + af'(x - ai)]e~t/e. (9.3.70) 

In the initial layer where t = er, (9.3.70) can be expressed as (9.3.64). The initial 
conditions u(x, 0) = f(x) and ut{x, 0) = g(x) are satisfied to 0(e2) and O(e), 
respectively. 

The perturbation series (9.3.69) breaks down when t = 0 ( l / e ) . A leading-order 
approximation to the solution valid for t > 0 ( l / e ) may be obtained as follows. On 
inserting (9.3.48) into (9.3.46), we obtain 

duo , du0 , /o t t i , дщ д2щ 2<92tt0\ 2 

-оТ+а-дх-+£{-дГ+а^х- + -Ж-С^)=0{£)· 
From (9.3.71) we see that 

dx2 ) 
(9.3.71) 

дщ(х,t) = _a дифъ + 0(е)) а^м) = а2 д Ч о ^ + 0(е) (9з 72) 
dt dx dt2 dx2 

if we assume that the solutions un(x, t) are smooth. Inserting (9.3.72) into (9.3.71) 
yields, to the same level of approximation, 

du0 <9uo 
dt dx 

dui dui 2 2 d2u0 0(e2). (9.3.73) 

Collecting like powers of e yields equations for uo(x, t) and щ (х, t) whose solutions 
are (9.3.51)-(9.3.52). Clearly, the term (a2 - c2)d2u0(x, t)/dx2 is the one that gives 
rise to the secular term in (9.3.52). We may avoid this secularity by regrouping the 
terms in (9.3.73) and writing the equation as 

du0 du0 , . о 2Ν92"ο 
-gf+a^+eia - с ) - ^ 

du\ dui 
+ €{-dT + a-dx-

0(e2). (9.3.74) 
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The bracketed term is equated to zero so that uo(x, t) satisfies a diffusion equation. 
The initial value for UQ(X, t) may be taken to be (9.3.69) evaluated at some time 
t = to < 0(l/e). We remark that results given in Sections 1.2 and 5.7 imply that 
the solution of (9.3.46) should approximately satisfy a diffusion equation for large t. 
The present approach is related to the parabolic equation method discussed below. 

Singular Perturbations and Boundary Layers for Linear Elliptic PDEs: 
A Specific Example 

Next we turn to a consideration of singular perturbation problems for linear second 
order elliptic equations of the form 

e(Auxx + 2Buxy + Cuyy + Dux + Euy + Fu) + aux + buy + cu = g (9.3.75) 

in a region G, where 0 < e <C 1 and и = u(x, y) is prescribed on the bound-
ary dG of G. (That is, we are considering a Dirichlet problem.) The coeffi-
cients A,B,...,F,a,b,c, and g are specified functions of (x,y) and B2(x,y) — 
A(x, y)C(x, y) > 0 in G so that (9.3.75) is of elliptic type. We assume that 
a2(x, y) + b2(x, y) > 0, so that the reduced equation for (9.3.75), 

a{x, y)ux(x, y) + b{x, y)uy(x, y) + c(x, y)u(x, y) = g(x, y), (9.3.76) 

obtained on setting e = 0 in (9.3.75), is a first order PDE. As a result, we are dealing 
with a singular perturbation problem. 

A number of difficulties can arise when trying to solve the Dirichlet problem for 
(9.3.75) by using a regular perturbation series u(x,y) = Σ™=0 un(x,y)en. A major 
problem can result from the fact that each term in the series satisfies a first order 
equation of the general form (9.3.76). Consequently, the data for the given equation 
(9.3.75) may overdetermine the solutions of the equations satisfied by the terms in 
the perturbation series. Also, singularities in the data for (9.3.75) must be carried 
along the characteristics of the reduced equation (9.3.76), and therefore, they occur 
in the terms of the regular perturbation series. The elliptic equation (9.3.75) has no 
real characteristics, and its solutions must therefore be smooth functions. Further, it 
may happen that characteristic initial value problems can occur for the terms in the 
perturbation series or that these terms may become singular in the interior of the given 
region for the boundary value problem for (9.3.75). These and other difficulties can 
be remedied by the introduction of appropriate boundary layers near portions of the 
boundary or in the interior of the given region. 

The construction of a perturbation solution for Dirichlet or other boundary value 
problems for (9.3.75) over an arbitrary region G is not a simple matter in general. To 
appreciate some of the problems that can arise in solving (9.3.75), we begin with a 
specific (simple) example. 
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Example 9.11. A Singular Perturbation Problem for an Elliptic Equation. 
We consider the linear elliptic equation 

e(uxx(x, y) + uyy(x, y)) + ux{x, y) + buy(x, y) = 0 (9.3.77) 

over the semi-infinite region 0 < x < oo and 0 < у < L, with 0 < e « 1 and b 
taken to be a constant. The boundary conditions are 

u(x,0) = f(x), u(0,y)=g{y), u(x,L) = h(x). (9.3.78) 

We assume that f(x) and h(x) vanish as x —► oo and require that u{x, y) —» 0 as 
x —» oo for 0 < у < L. 

As a first step in solving (9.3.77)-(9.3.78)by the perturbation method, we expand 
u(x,y) as 

oo 

η(χ,ν) = Σ un(x,y)en (9.3.79) 
ra=0 

and insert (9.3.79) into (9.3.77)-(9.3.78). On equating like powers of e, we obtain 
for u0(x,y), 

диф1у1+ьдгфу1 = 
ox ay 

and for the un(x, y), with n > 1, 

дип{х,у) дип(х,у) (д2ип-г(х,у) d2un-i(x,y)\ / п , 0 1 ч 
+ b ΈΓ. = - 515 + 515 · (9.3.81) дх ду \ дх2 ду 

The boundary conditions for UQ{X, y) are identical to those for u(x, y) [i.e., (9.3.78)], 
while un(x, y) = 0 on all three boundary lines if n > 1. 

The general solution of (9.3.80) is uo(x,y) = F(y — bx), where F(z) is an 
arbitrary function. Also, щ(x, y) = Fi(y — bx) — [(1 + b2)/b]yF"(y — bx), where 
F\(z) is arbitrary. Alternatively, the solution can be written as u\(x,y) = G\{y — 
bx) — (1 + b2)xF"(y — bx), where G\{z) is arbitrary. 

The lines у — bx- constant are the characteristic lines for the equations for the 
un(x, y). The solution щ(х, у) = F(y — bx) is constant on the characteristic lines. 
If b ф 0, the characteristics intersect two of the boundary lines within the given 
region for the problem. If b = 0, the boundaries у = 0 and у = L coincide with 
characteristic lines. In either case, UQ(X, y) cannot satisfy the full set of boundary 
conditions since the boundary values f(x), g(y), and h(x) are assigned arbitrarily. 

If b > 0, for example, we may set 

u0{x,y) = g(y-bx), x < - , u0(x,y) = f (x - - J , x > -, (9.3.82) 

and satisfy the conditions at x = 0 and у = 0, or we may set 

u0(x, y) = h(x- У-Ξ— ) (9.3.83) 
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and satisfy the condition at у = L. We cannot determine from the perturbation series 
(9.3.79), and the resulting equations for its terms, which of these boundary conditions 
should be assigned. In any case, since the full set of boundary conditions for UQ (X, y) 
and the un(x, y) cannot be applied, we must introduce boundary layers to deal with 
the lost boundary conditions. 

Each of the boundary lines is a candidate for a boundary layer, so we introduce 
stretching transformations that emphasize neighborhoods of each of the boundary 
lines. If b Ф 0, we set [in (9.3.77)] 

у = щ, y-L = eV (9.3.84) 

near у = 0 and у = L, respectively. (The stretching exponent for e is found to equal 1 
by balancing the second derivative term with terms arising from the reduced equation, 
in the boundary layer equation.) With v = v(x, η) we then have the boundary layer 
equation 

υνν(χ, η) + bvn(x, η) + evx(x, η) + e2vxx(x, η) = 0, (9.3.85) 

which replaces (9.3.77). With v(x, η) expanded in powers of e and vo(x, η) as the 
leading term, we find that d2v0(x, η)/οη2 + b dvo(x, η)/δη = 0, with the general 
solution 

v0{x, η) = a(x) + ß{x)e~br>, (9.3.86) 

where a{x) and ß(x) are arbitrary functions. Now, if b > 0, the exponential term in 
(9.3.86) decreases as η increases. Therefore, the boundary layer for this case must 
lie near у = 0. If b < 0, the exponential decreases as η decreases and—in view 
of (9.3.84)—the boundary layer should be located near у = L. In either case the 
boundary layer width is O(e). 

However, if b = 0 and we retain the stretching transformations (9.3.84), we find 
that vo(x, η) is given as 

v0{x, η) = α(χ) + β{χ)η, (9.3.87) 

so that no boundary layer effect occurs at either у = Oory = L, since the solution does 
not undergo exponential decay. In this case we easily conclude that the appropriate 
stretchings are 

у = e'/\ y-L = e1/277 (9.3.88) 

and the boundary layer equation becomes 

υηη(χ, η) + νχ(χ, η) + evxx(x, η) = 0. (9.3.89) 

Then VQ(X, η) satisfies the parabolic equation 

040^7) + θνψτύ = 0 
αηζ ox 
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The boundary layer width is 0(e1^2), and there are boundary layers near у = 0 and 
у — L, as will be shown below. 

Near x = 0, we set x = e£ in (9.3.77) and obtain the boundary layer equation 

™ξξ(£, У) + щ№, У) + tbwyii, у) + e2wyy(£, у) = 0. (9.3.91) 

If ιυ(ξ, у) is expanded in powers of e, we easily find that the leading term гио(£, у) is 
given as 

Mt У) = 7(V) + P(y)e^, (9.3.92) 

with arbitrary 7(2/) and p(y), so that a boundary layer can be located at x = 0 because 
of the exponentially decaying term in (9.3.92). 

For the case b ф 0, we now assume that 6 > 0 and complete the perturbation 
solution of the problem. Since we have shown that there can be boundary layers near 
x = 0 and у = 0 if b > 0, we specify UQ(X, y) = F(y — bx) to satisfy the boundary 
condition dXy = L. This gives the outer solution 

uo(x,y) =h[x-
y-L 

(9.3.93) 

The boundary layer solution vo(x, η) [i.e., (9.3.86)] near у = 0 is required to satisfy 
the boundary condition and the matching condition 

wo(a:,0) = f(x), lim υ0(χ,η) = ìimu0(x,y), 
77—*oo у—»0 

(9.3.94) 

respectively. The matching condition states that for large 77 the boundary layer solution 
vo {x, η) must agree with the outer solution щ{х,у) evaluated for small у. We readily 
find that ио(ж, η) is given as 

ν0{χ,η) =h[x+—] + fix) -h[x+- - О Т / (9.3.95) 

For the boundary layer near x = 0, we have the boundary and matching conditions 

v>o(0,y)=9{y), lim w0(£,y) = limu0(x,y), (9.3.96) 

with η>ο(ξ, у) defined in (9.3.92) and UQ(X, y) given in (9.3.93). Then 

w0{i,y) = h[1^- | + g(y) <*?)] (9.3.97) 

The matching procedure given in (9.3.94) and (9.3.96) is effectively equivalent to 
that carried out in the preceding examples. As we are only matching the leading terms 
in each case, we carry out the matching by the use of a limit process. In the hyperbolic 
problem of Example 9.10 where two terms in the perturbation and boundary layer 
expansion were used, the matching was carried out by expressing both series in terms 
of a common variable. This approach could have been used here as well. 
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Inspection of the outer and boundary layer solutions shows that the solution и = 
u(x, y) of (9.3.77)-(9.3.78) with b > 0 can be expressed in composite form as 

^i±i)+[/w _ ̂ ) ] .-«4 μ, _ ^ ) ] e _ x / e . 

(9.3.98) 
The terms containing the exponentials are significant only within their respective 
boundary layers. Apart from exponentially small terms, и (ж, у) satisfies the boundary 
conditions at у = 0, x = 0, and у = L and vanishes as x —+ oo since f(x) and 
h(x) vanish there. Effects due to possibly incompatible boundary values at the points 
(x, y) = (0,0) and (x, y) = (0, L) are not considered. 

If b < 0 in (9.3.77), the perturbation solution has a composite expression similar 
to that in (9.3.98) except that the boundary layer is shifted to у = L. This case is 
considered in Example 9.12. 

If b = 0 in (9.3.77), the leading term in the (outer) perturbation expansion is 
UQ(X, y) — F{y). Since F(y) is constant on у = 0 and у — L, it cannot satisfy the 
boundary conditions there. We could choose F(y) — g(y) and thereby satisfy the 
boundary condition at x = 0. However, u(x, y) must vanish as x —» oo, and the 
solution uo{x,y) = g{y) does not vary with x and cannot satisfy the condition at 
infinity unless g(y) = 0. Since g(y) is specified arbitrarily, we must put F(y) = 0 
and obtain as the outer solution 

u(x,y)*u0(x,y)=0, (9.3.99) 

for otherwise u(x, y) would not vanish as x —» oo. Consequently, we must use not 
only the boundary layers at у — 0 and у = L but also the boundary layer at x = 0, 
in this case. 

The boundary layer at x — 0 is the easiest to consider. Using (9.3.96)-(9.3.97), 
we conclude that 

Mt,V) = 9{v)e~* (9.3.100) 

since UQ(X, y) — 0. Near у = 0 and у = L we have the parabolic boundary layer 
equation for Vo(x, η), 

οψ ox 

as given in (9.3.90). In the boundary layer near у = 0, where у = e1/2??, the boundary 
condition is 

v0(x,0) = f{x), (9.3.102) 

while for the boundary layer near у = L, where у — L = β1^2η, the boundary 
condition is 

v0(x,0) = h(x). (9.3.103) 

As a; —> cx», we require that vo (x, η) —► 0. Also, as η —* oo in the boundary layer near 
у = 0 and η —> —oo in the boundary layer near у = L, we must have vo(x, η) —» 0, 
because VQ(X, η) must match the outer solution UQ(X, y), which was shown to vanish. 
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With x thought of as the time variable, (9.3.101) is a backward heat equation. 
Thus we cannot assign values for v$(x, η) at x = 0 and solve (9.3.101) for x > 0, 
for such a problem would not be well posed. Instead, we must place conditions on 
vo(x, η) at some x = XQ > 0 and solve for x < XQ. The only conditions given are at 
infinity, as we have shown. We may think of the problem as being given with data at 
x = XQ and then let xo —» — oo. The solution is then given for all x < oo. The result 
is equivalent to a steady-state problem for the heat equation where the effects of the 
initial temperature have died out. We can think ofthat problem as being given for all 
ί > — oo. The solution to the steady-state problem for the heat equation and to our 
problem for (9.3.101) is unique if we assume that the solution is uniformly bounded. 

By adapting the results of Example 5.5, we conclude that the solution of (9.3.101 ) -
(9.3.102) with u0(-oo,T7) = 0is 

η Z"00 

υ0(χ,η) = —= / exp 
V 4π Jx 4(σ - x) 

Ησ) 
(σ - ж)3/2 da. (9.3.104) 

For the problem (9.3.101) and (9.3.103) the solution is 

VQ(X 
л/4~7Г Jx 

exp 
V 

4(σ — x) 
h{a) 

c)3/2 
da. (9.3.105) 

As \η\ —» oo both solutions decay exponentially and vanish as x 
A composite expression for the solution may be given as 

oo. 

u(x,y) ?äg(y)exp[ j exp 4ε(σ - x) 
/ И 

{a - xfl2 da 

+ 
y-L f 

Jx 

exp 
(y-L)2 

4e(<7 - x) 
h(a) 

(a - x)3/2 da. (9.3.106) 

We do not consider the behavior of u(x, y) at (0,0) and (0, L). The solution is 
exponentially small when x > 0(e), у > 0(y / i ) , and \y — L\ > 0(yfe). 

We remark that near x = 0 and in the case where b ф 0, we were led to consider 
ODEs in the boundary layer regions, as had been the case in the problems considered 
previously. However, with b = 0 the boundary layer equations valid near у = 0 and 
у = L turned out to be parabolic PDEs. This can be attributed to the fact that these 
boundary lines coincided with the characteristics of the reduced equation for (9.3.77) 
with 6 = 0. The occurrence of parabolic boundary layer equations when portions of 
the boundary coincide with the characteristics of the reduced equation is generally 
the case, as shown below. 
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Singular Perturbations and Boundary Layers for Elliptic PDEs: 
A General Discussion 

To study the singular perturbation problem for the linear elliptic equation (9.3.75) in 
a general case, it is convenient to transform the coordinates so as to simplify the form 
of the reduced equation 

a(x, y)ux(x, y) + b{x, y)uy(x, y) + c{x, y)u(x, y) = g{x, y). (9.3.107) 

We assume that the characteristic curves for (9.3.107) do not intersect in the region 
given for (9.3.75). Then the characteristics and their orthogonal trajectories may be 
introduced as a new set of coordinates in (9.3.75). The transformed equation can be 
written as 

e(Auxx + 2Buxy + Cuyy + Dux + Euy + Fu) -ux(x, y)+c(x, y)u(x, y) — g(x, y), 
(9.3.108) 

where we have retained the original notation for the coefficients and the variables x, 
у and u(x, y) for the sake of convenience. [The coefficients A, B,..., F in (9.3.108) 
can be functions of (x, y)]. The type of an equation is invariant under nonsingular 
transformations so that (9.3.108) is again of elliptic type. 

Figure 9.1 The convex region G. 

We now consider the Dirichlet problem for (9.3.108) in a bounded region G, and 
note that our discussion applies to the transformed region obtained in going from 
(9.3.75) to (9.3.108). To begin, we assume that G is a convex region as shown in 
Figure 9.1. The points P and R in the diagram are points where the tangent line to the 
(smooth) boundary curve is horizontal. To the left of those points the curve is given 
asx = hi(y), withu(hi(y),y) — f\{y) as the boundary condition. TorightofPand 
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R we have x = /12(2/) and u(/i2(2/), y) = /2(2/)· The characteristics for the reduced 
equation for (9.3.108) are the lines у = constant. Thus the characteristics that pass 
through the interior of G intersect the boundary curve twice. The two characteristics 
that are tangent to dG intersect the boundary curve dG at the points P and R. 

The conventional perturbation series u(x, y) = Σ™=0 un(x, y)en when inserted 
into (9.3.108) yields for u0(x, y), 

_дщ^у} + φ ) y ) uo(x^y) = ^ y ) ( 9 3 1 0 9 ) 

The un(x, y), n > 1, satisfy equations of the same form. Now uo(x, y) must satisfy 
the conditions u0(hi(y),y) = fi(y), u0(h2(y),y) = /2(2/), and this is generally 
impossible, since uo{x, y) is specified uniquely either by its values o n i = h\(y) or 
on x = /12(2/)· Consequently, a boundary layer must be placed near x = h\(y) or 
x = /12(2/)' a nd its location is not known in advance. 

To specify the boundary layer location, we stretch the neighborhoods of the bound-
ary curves x = h\{y) and x = /12(2/)· The stretching transformations are 

x-hi{y)=et, г = 1,2, у = η. (9.3.110) 

The boundary layer width is easily shown to be 0(e), and we replace the variables 
(x, y) by (ξ, η) and u(x, y) by υ(ξ, η). The notation for the coefficients in (9.3.108) 
is retained, so that A(x, y) is written as Α(ξ, η), for example. Then the boundary 
layer equation obtained from (9.3.108) takes the form 

(A(0, η) - 2h'MB{0, η) + h?(V)C(0, η)) ν^(ξ, η) - υξ(ξ, η) = 0(e), г = 1, 2. 
(9.3.111) 

Since (9.3.108) is of elliptic type, both A and С must either be positive or negative, 
and the quadratic form 

Q(X) = A - 2XB + X2C (9.3.112) 

must be nonzero. As a result, the coefficient of νξξ(ξ, η) in (9.3.112), where λ = 
/i^(ry), is either strictly positive or strictly negative. As an example, we assume that 
A = С = a, with a as a constant, and that C = D = E = F = Oin (9.3.108). Then 
Q{\) = a(l + λ2). The sign of a determines that of Q(X). If a > 0, so is Q(X), 
and if a < 0 so is Q{X). 

To solve the boundary layer equation, we expand ν(ξ, η) as 

00 

««,»?) = Σ«η(ξ,ΐ7)εη, (9.3.113) 
n=0 

and insert (9.3.113) into (9.3.111). Then νο(ζ, v) satisfies the equation 

Q(hmd-^-9-^=0. (9.3.114) 
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The general solution of (9.3.114) is 

Mb η) = α(η) + β(η) exp ( — (9.3.115) 

Now ξ increases and decreases with x in view of (9.3.110). Thus, if Q > 0, the 
boundary layer must be placed near x — h2(y), while if Q < 0, the boundary layer 
must be near x = h\ (y). With these choices, the exponential in (9.3.115) decreases 
on moving away from the boundary into the region G. Since Q(X) is either greater 
than or less than zero for all A, we conclude from (9.3.113) that Q > 0 if A and С are 
positive in and on the boundary of G and that Q < 0 if A and С are negative there. 
Thus, the boundary layer must be placed at x = /12(2/) if A and С are positive and at 
x = h\{y) if A and С are negative. 

Assuming that A and С are positive, we have determined that a boundary layer 
(if it is necessary) must be located near the boundary curve x = h2(y). Thus the 
(outer) equation (9.3.109) must be solved subject to the boundary condition given at 
x = h\{y) [i.e.,uo(hi(y),y) = / i(y)] . The solution is easily found to be 

u0(x,y) = / i (y)exp / c(s, y) ds - / #(σ,2/)βχρ / c(s,y)ds 
Ai(«) Va-

da. 

(9.3.116) 

For the boundary layer function νο(ξ, η), we require that υο(0, η) = /2(η). Addi-
tionally, the matching condition gives lim^-.-ooWo^, η) 
UQ(χ,η)- Using (9.3.115) yields 

lim. 

νοίξ,η) = uQ{h2(v),v) + [/2(»7) - u0(/i2(7?),T?)]exp ξ 

Q(KW 

X-»/I 2 (TJ) 

(9.3.117) 

Combining (9.3.116) and (9.3.117), we obtain a composite approximation for 
u(x,y) as 

u(x, y) « u0(x, y) + [f2(y) - u0{h2{y), y)} exp h2{y) 
eQ(h'2(y)) 

(9.3.118) 

Since h'2(y) blows up at the points P and R on the boundary curve (where the tangent 
lines are horizontal), these results are not valid near P and R. (The behavior of the 
solution near those points is considered below.) We obtain a similar result for the 
solution if A and С are negative. 

A different approach is needed if the region G has a portion of its boundary that 
coincides with a line у = constant. A situation of this type is pictured in Figure 9.2. 
The point P separates the curves x = h\(y) andx = h2(y). The transition from these 
curves to the line у = y0 at the points R and T is assumed to be smooth. In the region 
У > Уо within G and away from the point P, the result (9.3.118) again yields an 
approximate solution if A and С are positive. The line у = yo is a characteristic for 
the reduced equation (9.3.109), and the equation for щ (х, у) cannot be solved there 
subject to arbitrary datalo (ж, yo) = f{x)· A boundary layer must be introduced near 
У = Уо· 
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Figure 9.2 A characteristic boundary curve. 

We set у — y0 = βΓη to emphasize the neighborhood oft/ = yo (with the exponent r 
to be determined) and insert this into (9.3.108). This gives, with w(x, η) = u(x, yo + 

erv). 

el~2rC(x, y0)wnri(x, η) - wx(x, η) + c(x, y0)w(x, η) + 0 ( e 1 _ r ) = g{x, y0). 
(9.3.119) 

To achieve a balance between the reduced equation and the term wvv{x, η), we must 
set r = ì . On expanding w(x, η) in powers of e1//2, we obtain for the leading term 
ιν0{χ,η), 

C(x,yo) ^ — т^—*- + ο(χ,νο)υ>0(χ,η) = g(x,y0). (9.3.120) 

which is a parabolic partial differential equation. We have the boundary and matching 
conditions 

wo(x,0) = f(x), lim wo(x,η) = lim uo(x,y) (9.3.121) 
η—>oo у—>уо 

because the boundary layer and the outer solution (9.3.116) must agree. An additional 
condition should be placed on wo(x, η) relating to its behavior near x = h\(y) or 
x = h.2{y). Thinking of ζ as a timelike variable in (9.3.120), we see that (9.3.120) 
corresponds to a forward parabolic equation since C(x,yo) > 0 by assumption. 
Thus it is appropriate to specify the values of wo(x, η) at x = h\{y) since we are 
considering a region where a; > h\{y). However, near x = h\{y) away from the point 
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R, the outer solution щ{х, у) is valid, so that we may consider the (initial) condition 
near x = hi (y) to be equivalent to the condition (9.3.121). That is, WQ(X, η) should 
agree with UQ(X, y) away from the line у = y0. 

The solution of (9.3.120)-(9.3.121) is not straightforward if the coefficients С and 
с are not constant, and special techniques or possibly numerical methods must be 
used to solve for t̂ o {x,v)· If С and с are constants and g = 0, the solution can easily 
be obtained on following the procedure given in the preceding example, but we do 
not present it here. 

Figure 9.3 The nonconvex region G. 

We conclude our discussion of (9.3.108) by examining the behavior of the solution 
of the Dirichlet problem for (9.3.108) near points on the boundary where the tangent 
line is horizontal. As shown in Figure 9.3, we are interested in points where the curve 
is either concave up or concave down or has a point of inflection. This contrasts 
with the situation considered previously where an entire portion of the boundary was 
horizontal. The boundary of G is comprised of three curves x = h\ (y), x = hi (y), 
and x = h%{y). These curves connect the points P, R, and S, as shown in the figure. 
At the point P in the figure, the curve is concave down, at R it is concave up, and at 
S the curve has a point of inflection and a zero slope. 

If Dirichlet boundary conditions are given for (9.3.108) and A and С are both 
positive, we find, as was shown earlier, that a boundary layer must be introduced 
along x = /i2(2/)- The outer equation (9.3.109) can be solved with the data given on 
x = h\{y) and x — h3(y). We can even solve for UQ(X,y) with data given at the 
point of inflection. However, the derivatives of h\ (y), hi{y), and h${y) are singular 
at one or more of the points P, R, and S. Thus the boundary layer solution breaks 
down at P and R and the second term in the ordinary perturbation series is singular 
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at S, since it contains derivatives of h\{y) or /13(2/). The outer solution cannot be 
determined on the horizontal line that extends from S in Figure 9.3, and an internal 
boundary layer must be introduced along that line. 

Let (2:0,2/0) represent the coordinates of the boundary point P, R, or S. We 
assume the boundary curve can be expressed as у = F(x) near (xo, Уо)· Since the 
slope vanishes at (xo, г/о), we have 

У - I/o = \Р"Ы(Х - *o)2 + · · · (9.3.122) 

near P or R, and 

У - 2/0 = \F'"{XQ)(X - x0f + ■■■ (9.3.123) 

near S, with y0 = F(XQ). We assume that F"(x0) and F'"(x0) are not zero in these 
equations. 

To emphasize the neighborhood of the point (хо,Уо), we introduce a (double) 
coordinate stretching 

χ-χο = €τξ, y-y0 = e3v, (9.3.124) 

with r and s to be determined. Inserting (9.3.124) into (9.3.108) and with ν(ξ, η) = 
u(xo + εΓξ, г/о + esv), we obtain 

β'-^Αυ^ξ, η) + 2βι-Γ-°Βνξη(ξ, η) + e ^ C v ^ , η) - 6^νξ(ξ, η) + ■ ■ ■ = 0, 
(9.3.125) 

where А, В, and С are evaluated at (XQ, г/о) and only the leading terms in e have 
been retained. 

Now both r and s must be positive; otherwise, the neighborhood of (xo, г/о) is 
not emphasized. Also, the term νξ(ξ,η) must be retained in (9.3.125) to maintain 
a balance between terms from the reduced equation and higher derivative terms. 
Finally, we require that r and s be such that an approximation to the boundary curve 
у = F(x) of the form (9.3.122) or (9.3.123) be retained near (ж0,2/о)· Thus if 
(9.3.124) is inserted in (9.3.122), we have 

e°v=
l-e2TF"{x0)e + ---, (9.3.126) 

and from (9.3.123) we obtain 

€sr ,= i e 3 r F" ' (x 0 )£ 3 + · · · . (9.3.127) 
0 

Consequently, for points of the type P or R we must put 2r = s, while for points of 
type S, 3r = s in order to balance the leading terms in (9.3.126) and (9.3.127). It is 
then easily seen that the only way to balance νξ(ξ, η) with a second derivative term 
in (9.3.125) is to set 1 - 2s = - r . 
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Thus for points of type P or R we have r = ^ and s = §, while for points of type 
S, r = | and s = f. In either case, if ν(ξ, η) is expanded in appropriate powers of 
e, we find that the leading term satisfies the equation 

С(х0,у0)^ф^-д-^=0. (9.3.128) 

To leading order in e, the boundary curve has the form η — \F"(x0)^
2 near 

points of type P and R, and it has the form η — |F'"(:ro)£3 n e a r points of type S. 
To facilitate the study of the boundary layer equation, we introduce the new variables 

a = r? - —j—ακ ξ κ + \ β = ξ, « = 1,2, (9.3.129) 

where аг = F"(x0) and a2 = \F'"(x0). In these coordinates, a = 0 corresponds 
to the boundary curve. With Wk(a, β) = Vk{a{£,, η), β(ξ, η)), it is possible to study 
the solution in the appropriate boundary layers, but we do not discuss this problem 
further. 

If (9.3.75) is of hyperbolic or parabolic type, perturbation and boundary layer 
methods may again be used in the manner given to solve initial and boundary value 
problems. A particular hyperbolic problem was considered in Example 9.10, where 
the special difficulty arising from an excess of initial conditions for the reduced 
equations was examined. A general discussion of these problems akin to that given 
for the elliptic problem is not given here. 

Parabolic Equation Method 

A common problem that arises when using perturbation methods to solve elliptic, hy-
perbolic, and parabolic differential equations is where to place the boundary layer(s) 
if the data for the given problem result in an overdetermined problem for the reduced 
equation. It can be resolved, as has been done previously, by introducing boundary 
layer coordinates along the relevant parts of the boundary. Those portions of the 
boundary along which the boundary layer equations have solutions that decay ex-
ponentially away from the boundary are the regions where boundary layers can be 
located. An alternative method for determining the location of the boundary layer for 
elliptic and hyperbolic equations is now presented. 

To begin, (9.3.75) is replaced by 

e(Auxx(x,y)+2BuXy(x,y)+Cuyy(x,y))+aux(x,y)+buy(x,y) = 0, (9.3.130) 

which may be of elliptic or hyperbolic type. The additional terms in (9.3.75) have 
been neglected for the sake of simplicity since they do not play a significant role in 
our discussion. Now (9.3.130) states that 

a{x, y)ux(x, y) + b(x, y)uy(x, y) = 0(e). (9.3.131) 
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Assuming that a(x, у), Ь(х, у), и(х, у) and their derivatives are smooth functions, 
we may express uxx(x, y), uxy(x,y), and uyy(x,y) either in terms of uxx(x, y) 
and ux(x, y) or in terms of uyy(x, y) and uy(x, y) correct to 0(e). For example, if 
a(x, у) ф 0, we have 

ux(x,y) = ^—гиу(х,у) + 0(е), (9.3.132) 

so that on differentiating (9.3.132) and simplifying via (9.3.132), we obtain 

b(x,y) 
a(x,y) 

^ ι ΐ ί — 

1УУ 
b(x,y) (b{x,y) 

b{x,y) 

a(x,y) \a(x,y) 

b(x,y) 

b(x,y) 
a(xiV))x 

a(x,y) ~yy \a(x,y)Jy 

Inserting (9.3.133И9.3.134) into (9.3.130) yields 

. 2 

uy + 0(e). 

uy + 0(e), 

(9.3.133) 

(9.3.134) 

AI a. 
a 

2Bb 
+ C луу 

+ aux + buy = 0(e2) 

^ -А(Ь-

(9.3.135) 

Similarly, if b(x, у) Ф 0, we obtain 

2Ba {Ηΐΐ- + A *^XX 1~ 
Ca 
b »)(f).-c(f). 

+ aux + buy = 0(e2). (9.3.136) 

The parabolic equations (9.3.135) and (9.3.136) may be solved by using a con-
ventional perturbation series. The two leading terms in the series satisfy equations 
identical to those for the leading terms in the regular perturbation solution of (9.3.130), 
as is easily shown. Therefore, we expect the solutions of (9.3.135) or (9.3.136) to 
coincide, approximately, with the leading terms of the outer solution of (9.3.130) 
in regions where that solution is valid. As we shall see, the solutions of (9.3.135) 
and (9.3.136) remain valid in certain regions where the outer solution breaks down. 
Also, information about the location of boundary layers for (9.3.130) can be deter-
mined from the parabolic equations (9.3.135) and (9.3.136). The replacement of the 
given equation (9.3.130) by (9.3.135) or (9.3.136) and the analysis of the perturbation 
problem based on the latter equations is referred to as the parabolic equation method. 

For example, if the data for (9.3.130) are not smooth, the discontinuities or sin-
gularities are propagated into the interior along the characteristics of the reduced 
equation (9.3.131). If the (9.3.130) is elliptic, the solution must be smooth in the 
interior, and if it is hyperbolic, the singularities must occur across the characteristics 
of (9.3.130). These characteristics generally do not coincide with those of the reduced 
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equation. The parabolic equations (9.3.135) and (9.3.136) generally smooth out the 
singularities in the data, so that its solutions are smooth across the characteristics of 
the reduced equation. 

To determine the location of boundary layers for the elliptic or hyperbolic equa-
tion (9.3.130), we consider initial value problems for (9.3.135) or (9.3.136) along 
the boundary of the region. Those portions of the boundary for which the initial 
value problems for the parabolic equations (9.3.135) or (9.3.136) are not well posed 
determine where the boundary layers must be located. 

To see how this works, we consider a simpler form of the elliptic equation (9.3.75) 
or (9.3.130), 

e(A(x, y)uxx(x, y) + 2B(x, y)uxy(x, y) + C(x, y)uyy(x, y)) - ux(x, y) = 0 
(9.3.137) 

and the convex region G considered previously. Since a(x, y) = — 1 and b(x, y) = 0 
in relation to (9.3.130), the parabolic equation (9.3.135) becomes 

e C(x, y)uyy(x, y) - ux(x, y) = 0, (9.3.138) 

where we have dropped the 0(e2) terms. Referring to the diagram of the convex 
region G given in Figure 9.1, we see that if C(x, y) > 0, the initial value problem 
for (9.3.138)—with x treated as the time variable—is well posed for data given on 
x = h\{y). But if C(x,y) < 0, the data must be assigned on a; = /12(2/) for the initial 
value problem to be well posed. Noting the relation between the parabolic equation 
solution and the outer solution, we conclude that the boundary layer must be placed 
along x = h2(y) if C(x, y) > 0 and along x = h\{y) if C(x, y) < 0. This result 
is consistent with that given earlier based on a direct boundary layer construction. 
It is not difficult to show that the present and the earlier method for determining 
the location of boundary layers both lead to the same result. However, this is not 
demonstrated here. 

Given the hyperbolic equation with constant coefficients 

e(uu(x, t) - c2uxx(x, t)) + ut(x, t) - aux(x, t) = 0, (9.3.139) 

a related parabolic equation is 

e(a2 - c2)uxx(x, t) + ut(x, t) - aux{x, t) = 0 (9.3.140) 

since ut(x, t) = aux(x, t) + 0(e). The parabolic equation (9.3.140) cannot absorb 
arbitrary initial data u(x, 0) = f(x) and ut(x, 0) = g{x). Thus a boundary layer is 
generally required at t = 0. However, if a2 > c2, we find that even if appropriate 
initial values are determined for (9.3.140), the problem is not well posed in the region 
t > 0 since the coefficients of uxx(x,t) and ut(x,t) are both positive. A similar 
problem was encountered in Example 9.10, where it was shown that if \a\ > c, the 
initial value problem for (9.3.139) is unstable. We assume, therefore, that \a\ < с 
and note that the parabolic equation approach can be used to determine whether the 
given problem is stable or unstable. 
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On considering an initial and boundary value problem for (9.3.139) in the interval 
0 < x < I and with t > 0, we find that a boundary layer is required either along 
x = 0 or x = I if the conventional perturbation approach is used. Now once initial 
data for the parabolic equation (9.3.140) have been determined, it is possible to solve 
(9.3.140) with the given boundary conditions on x = 0 and x = I. That is, a boundary 
layer need not be introduced at all on either boundary line. Nevertheless, it is usually 
simpler to solve the given problem with the use of boundary layers. 

Since we are concerned with the solution near the lines x = 0 and x — I, we 
replace (9.3.140) with the parabolic equation 

utt(x, t) + tit(ж, t) - aux(x, t) = 0, (9.3.141) 

where we have used ux(x,t) = (l/a)ut(x,t) + 0(e). If a > 0, the coefficients of 
utt{x, t) and ux(x, t) have the same sign since с > \a\, whereas if a < 0 they have 
opposite signs. Thus if (initial) data are given at x = 0 and (9.3.141) is to be solved 
for x > 0, the problem is well posed only if a < 0. Consequently, a boundary layer 
must occur near x = 0 in the case a > 0. Similarly, if data are assigned at x = I 
and (9.3.141) is solved for x < I, the problem is well posed only if a > 0,sothata 
boundary layer near x = I occurs when a < 0. We note that if a = 0, the lines x = 0 
and x = I are characteristics of the reduced equation ut(x,t) = 0 and (9.3.140) 
is, in fact, the parabolic boundary layer equation. Again, these results concerning 
the location of the boundary layers are identical with those obtained by means of a 
boundary layer analysis. 

Parabolic Equation Method: Specific Examples 

Example 9.12. The Parabolic Equation Method for an Elliptic PDE. We 
begin by reexamining the problem of Example 9.11. That is, we consider the boundary 
value problem for the elliptic equation 

e(uxx{x, y) + uyy(x, y)) + ux(x, y) + buy{x, y) = 0, 

u(x,0) = / (x) , u(0,y)=g(y), u(x,L) = h(x) (9.3.142) 

within the region 0 < x < oo and 0 < у < L, with 0 < e <C 1, b = constant. 
Dirichlet conditions are specified on three sides of the region, and u(x, y) is required 
to vanish as x —» oo in the interval 0 < у < L. 

Since ux(x, y) = -buy(x, y) + O(e) and uy(x, y) = -(l/b)ux(x, y) + 0(e) if 
b ф 0, the parabolic equations for (9.3.142) are 

e(l + b2)uyy(x,y) +ux(x,y) +buy{x,y) = 0, (9.3.143) 

e ( 1 + la ) и*Лх1 У) + Ux{x, У) + buy(x, y) = 0. (9.3.144) 

4D2 
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From (9.3.143) we see that a problem with initial data given at x = 0 and u(x, y) to 
be determined for x > 0 is not well posed. Also, (9.3.144) shows that if ò > 0, a 
problem with initial data at у = 0 to be solved in the region у > 0 is not well posed. 
If ò < 0 and initial data are given at у = L and (9.3.144) is to be solved for у < L, 
the resulting problem is not well posed. If b = 0, (9.3.144) is not valid and in this 
case there are parabolic boundary layers at у = 0 and у = L. 

We conclude from this discussion that a boundary layer should occur at x = 0 in 
all cases. If b > 0, a boundary layer occurs at у = 0, while if b < 0, a boundary layer 
occurs at у = L. These results are consistent with those obtained in Example 9.11 
by a different method. 

We now suppose that ò < 0 in (9.3.142) so that the boundary layer must be located 
at у — L. (The cases with b > 0 and 6 = 0 were considered in Example 9.11.) It is 
then possible to solve the parabolic equation (9.3.144) with the data given along the 
lines у = 0 and x — 0. Even though x = 0 was shown to be the site of a boundary 
layer, the initial and boundary value problem for (9.3.144) is well posed. Thus we 
consider the equation 

e\2uxx(x, y) + ux{x, y) - c2uy(x, y) = 0, (9.3.145) 

where we have set A2 = 1 + (1/&)2 and ò = —с2, for convenience of notation. The 
initial and boundary conditions are 

u(x, 0) = f{x), «(0, y) = g{y). (9.3.146) 

Even though (9.3.77)-(9.3.78)was formulated in the region 0 < x < ooandO < у < 
L so that g(y) in (9.3.146) is unspecified for у > L, we may solve (9.3.145)-(9.3.146) 
in the first quadrant 0 < x < oo and 0 < у < oo by extending g(y) arbitrarily over 
the interval у > L. Because of the causality property for (9.3.145), the solution 
u(x, y) at any value of у with 0 < у < L depends only on data given for smaller 
(nonnegative) values of y. As a result, the values assigned to g(y) for у > L do not 
affect the solution in 0 < у < L. 

To solve (9.3.145), we set u(x,y) = ехр(-ж/2еЛ2 - y/4e\2c2)v(x, y), and find 
that v(x, y) satisfies the initial and boundary value problem 

vv = -^- υ*ζ' υ ( χ ' °) = / ( χ ) e x P V2€A2/ ' ^ ° ' ^ = 9 ^ 6 X P U e A 2 c 2 / ' 
6 (9.3.147) 

in the region x > 0, у > 0. Using the results of Example 5.5, we find that u(x, y) 
can be expressed as 

ex fv f Г (y + c 2 x - s ) 2 l g(s) 1 

+ J [G ( I + x - s, y) - G ( J + x + s, y) exp ( - ^ ) ] f(s) ds, (9.3.148) 
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where G(x, y) is given as G(x, y) — c/y/4ne\2y exp (—c2x2/£e\2y), which is the 
fundamental solution of the parabolic equation in (9.3.147). 

In the first integral in (9.3.148) we have у — s > 0 and x > 0. Thus when 
x > 0, we see that the contribution from the entire integral is exponentially small 
if e <C 1, since the exponential is uniformly small. This term yields the boundary 
layer behavior near a; = 0. From the expression for G(x, y) given above, we see 
that as e\2y/c2 —» 0, G(x, y) —> δ(χ) in view of the Dirac delta function behavior 
of the fundamental solution discussed previously. Thus as e —> 0, we find that 
G[{y/c2) + x ± s,y] —> 6[(y/c2) + x ± s]. In the region where у > 0, x > 0, 
and s > 0, the delta function S[(y/c2) + x + s\ vanishes. Even though es/eX grows 
exponentially as e —> 0 with positive s, its product with the term G[(y/c2) + x + s, y] 
may be shown to vanish as e —> 0. 

Thus if e <C 1, we find that (9.3.148) reduces to (on replacing c2 by — b) 

u{x, У) « / (x - | ) , x > 0, 0 < у < L, (9.3.149) 

to leading order in e. The expression (9.3.149) represents the leading term in the 
outer solution of (9.3.142) that satisfies the boundary condition at у — 0. The term 
involving g(y) in (9.3.148) is significant only in a boundary layer near x = 0. To 
satisfy the boundary condition at у = L, a boundary layer must be introduced as was 
done in Example 9.11. The solution can then be expressed in a composite form in 
the manner of (9.3.98). Instead, we use the results of Example 9.11 to construct a 
composite expression for the leading perturbation solution analogous to (9.3.98) for 
the case b > 0. We obtain 

u(x,y) *f(x-y-) + [g(y) - f ( _ ! ) ] e x p ( - ^ ) 

b(y - L) 
h{x) - f ( x - - exp (9.3.150) 

The terms containing the exponentials are significant only within their respective 
boundary layers. Apart from exponentially small terms, u(x,y) satisfies the boundary 
conditions at у ~ 0, x = 0, and у = L and vanishes as x —» oo since f(x) and 
h{x) vanish there. Effects due to possibly incompatible boundary values at the points 
(x, y) = (0,0) and (a;, y) = (0, L) are not considered. 

Example 9.13. The Parabolic Equation Method for a Hyperbolic PDE. 
We consider a signaling problem for the hyperbolic equation 

e(utt{x, t) -c2uxx(x, t)) +ut{x, t) - aux(x, t) = 0, a ; , i>0 , (9.3.151) 

with the initial and boundary conditions 

u{x,0) = 0, ut{x, 0)=0, x>0, u(0,t) =g(t), t > 0. (9.3.152) 

We assume that \a\ < c, so that the problem is stable. 



SINGULAR PERTURBATION METHODS AND BOUNDARY LAYER THEORY 6 2 9 

The relevant parabolic approximations for (9.3.151 ) are 

щ(х, t) — aux(x, t) — e(c2 — a2)uxx(x, t) = 0, (9.3.153) 

ut{x,t)-aux(x,t)-eU^j - 1J utt{x,t) = 0. (9.3.154) 

Since c2 > a2, the initial and boundary value problem for (9.3.153) is well posed. 
However, if initial data are given on x = 0 for (9.3.154), the problem is well posed 
for a < 0 and is not well posed for a > 0, as is immediately seen. This is consistent 
with the fact that the characteristics of the reduced equation щ (x, t) —aux(x,t) = 0 
are the lines x + at = constant. For a < 0, these characteristics do not simultaneously 
intersect the initial line t = 0 and the boundary line x = 0, so that the boundary 
condition in (9.3.152) can be assigned for the perturbation series solution of (9.3.151 ) 
without encountering any difficulty, and the perturbation series solution in the sector 
x + at < 0 is completely determined. Even though there are two initial conditions 
given at t = 0 and the equations for the perturbation terms are all of first order, we 
may equate all these terms to zero in the sector x + at > 0 since the initial conditions 
are both homogeneous. This can also be done if a > 0. However, in that case, the 
characteristics x + at = constant intersect both the initial and boundary lines, so that a 
boundary layer is needed at x = 0 to accommodate the boundary condition assigned 
there. 

As indicated, since the initial data are homogeneous, there is no need for an initial 
layer near t = 0 in this problem. We may use u(x, 0) = 0 as the initial condition 
when solving (9.3.151) either by the conventional perturbation and boundary layer 
approach or by the use of the parabolic equation (9.3.153), as we now demonstrate. 
We rewrite (9.3.153) as 

ut{x, t) - aux(x, t) - €72ωχχ(χ, t) — 0, x, t > 0, (9.3.155) 

with 72 = c2 — a2. The initial and boundary conditions are 

u(x, 0) = 0, x > 0, ω(0,ί) = g(t), <> 0. (9.3.156) 

To solve (9.3.155)-(9.3.156), we proceed exactly as for the initial and boundary value 
problem for (9.3.145) treated earlier. Taking into account the slight change in notation, 
we find that 

i — ex [l 

\ /4π7 2 Уо 

Now if a > 0, the argument of the exponential in (9.3.157) vanishes only at 
x = 0, in the region x > 0 and t > 0. Since 0 < e <tc 1, we find that u(x, t) 
is exponentially small for x > 0 and t > 0 and is only significantly greater than 
zero in a small (boundary) layer near x = 0. Thus the outer solution is given as 
u(x, t) »i 0, x > 0, ί > 0, apart from a layer of thickness 0(e) near x = 0. 

[x + a(t - T)Y 

4 6 7 2 ( i - r ) 
9(r) 

К * - т ) ] з / 2 
dr. (9.3.157) 
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If a < 0, the solution (9.3.157) is significantly different from zero for values of 
(x, t) in the first quadrant for which x = —a(t — r ) . Since t — r > 0 and ί, τ > 0, 
this yields the characteristics of the reduced equation ut(x, t) — aux(x, t) = 0 that 
occupy the sector between the line x + at = 0 and the i-axis. 

Now if a = 0 in (9.3.157), we know that as x —> 0, the expression (9.3.157) tends 
to g(t) with the basic contribution from the integral coming from the value τ = t. 
Similarly, we expect that as e —» 0 in (9.3.157) the main contribution to the integral 
comes from the value r = x/a + t and that u(x, t) tends to g[x/a + t]. We note 
that (9.3.157), has been written in terms of e(t — r) and ex, to indicate that small 
values of x and t — τ are equivalent to considering small values of e. Further, in the 
sector between x + at = 0 and the ж-axis, the exponential term in (9.3.157) and, 
consequently, the integral is small. Therefore, we conclude that for small e and a < 0 
we have 

( g(x/a + t), x + at < 0, 
0, x + at>0, * · ' * ° · ( 9 · 3 · 1 5 8 ) 

This result is consistent with that obtained from the conventional perturbation method, 
as is easily shown. However, the expression (9.3.157) remains valid and useful for 
large values of x and t, as well as in the case where the boundary function g(t) is not 
smooth or if g(0) ψ 0. 

If the initial data u(x, 0) and ut (x, 0) for (9.3.151) are not homogeneous, an initial 
layer of width 0{e) is required. The value of the solution at the edge of this initial 
layer may then be used as an initial condition for the parabolic equation (9.3.153). 

Singular Perturbation of an Elliptic PDE in an Exterior Region 

Example 9.14. The Singular Perturbation of the Heimholtz and Modified 
Heimholtz Equations. We begin by considering a boundary value problem for 
the modified Heimholtz equation in the region exterior to the unit disk given as r2 = 
x2 + y2 > 1, 

<?{uxx(x,y) +uyy(x,y)) -u(x,y) = 0 , r > 1, (9.3.159) 

with the boundary conditions 

u(x, y)\r=\ = 1, u(x,y) —* 0 asr —» oo. (9.3.160) 

The exact solution of this problem is 

»<*·»> = щ з д > (9-зл61) 

where KQ is the zero-order modified Bessel function of the second kind. 
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If we introduce the regular perturbation expansion 
oo 

«(*,») = Σ un(x,y)e2n (9.3.162) 
n=0 

into (9.3.159), we find that each term in the expansion equals zero. Thus the outer 
solution of this singular perturbation problem is u(x, y) = 0. This solution satisfies 
the boundary condition at infinity but not on the finite boundary r = 1. To deal with 
that boundary condition, we require a boundary layer at r = 1 and introduce the 
stretching transformation 

r - 1 = ea (9.3.163) 

into (9.3.159), which is transformed to polar coordinates and where we set и = u(r), 
since the problem has no angular dependence. With ν(σ) = u(l + ea) we obtain 
v" (σ) - ν(σ) + et/ (σ) + 0(e2 ) = 0 as the boundary layer equation, and expand ν(σ) 
as ν(σ) = υο(σ) + evi (σ) + 0(e2). Then the boundary condition at r = 1 requires 
that υ0(0) = 1, while the remaining terms in the expansion vanish at σ = 0. The 
vanishing of the outer solution implies that each term in the expansion of ν(σ) must 
vanish as σ —> oo. We easily find that ν(σ) = e~a — ̂ eae~" + 0(e2). In terms of 
the radial variable r, we have 

u(r) l ~ ( r - D exp \{r-l) (9.3.164) 

which agrees with the asymptotic approximation of the exact solution (9.3.161) near 
r = 1 that is obtained by using the formula (6.7.34) with l/e —» oo. Outside 
the boundary layer, the exact solution is exponentially small for small e, so mat 
its magnitude is smaller than any power of e. Therefore, the regular perturbation 
expansion (9.3.162) of the solution must be zero. 

The situation is quite different if we consider a similar exterior boundary value 
problem for the Helmholtz or reduced wave equation, 

e2(uxx(x,y) +uyy(x,y)) +u(x,y) = 0, r > 1, (9.3.165) 

with u(x, y) = 1 at r = 1. As r —» oo, we require that u(x, y) satisfy the radiation 
condition (7.4.51), where ω is replaced by l/e. The exact solution of this problem is 

и(х,у)=П° Г / , (9.3.166) 
#o (Vе) 

where Щ ' is the zero-order Hankel function of the first kind. 
The regular perturbation expansion (9.3.162) for this problem again yields u(x, y) = 

0 as the outer solution. [We observe that u(x, у) = О satisfies the radiation condi-
tion.] To deal with the boundary condition at r = 1, we introduce the stretching 
transformation (9.3.163) and find that the leading term ^ο(σ) in the boundary layer 
expansion satisfies the equation V'Q (σ) + νο(σ) = 0. At σ = 0 we have VQ{CT) = 1. 
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As σ —► oo the boundary layer term must match the outer solution u(x, y) = 0, so 
we require that νο{σ) —► 0 as σ —> oo. However, the boundary layer equation has 
only trigonometric (oscillatory) solutions, and the only solution that tends to zero at 
infinity is the zero solution, which does not satisfy the boundary condition at σ = 0. 

Consequently, no boundary layer exists for the Helmholtz problem and the meth-
ods of this section are inappropriate for this problem. Indeed, the asymptotic ap-
proximation of the exact solution (9.3.166) [see (6.7.38)] for small e is u{r) « 
(1 /^ )ехр[г ( г — l ) /e ] . Thus, the outer solution u(x,y) = 0 has no asymptotic 
validity, since the solution of the given problem does not decay exponentially for 
large r and small e but oscillates rapidly and decays algebraically. A different ap-
proach is required for dealing with this and related problems, and this is given in 
Section 10.1. 

Exercises 9.3 

9.3.1. Obtain the exact and the regular perturbation solution of the initial value 
probleme(ut(x,t)+ux(x,t)) + u(x,t) = sin(x), —oo < x < oo, t > 0,u(x,0) = 
sin x, —oo < x < oo. (Note that the solution of the reduced equation satisfies the 
initial condition.) Construct a boundary layer solution, if it is needed, to obtain an 
approximate solution valid for all t > 0. 

9.3.2. Construct a perturbation and exact solution for the following problem and 
compare both results. e(ut(x,t) — ux(x,t)) — u(x,t) = 0, x > 0, -oo < t < oo, 
u(0,t) = 1, —oo < t < oo. 

9.3.3. Give a complete discussion of the perturbation solution of the following prob-
lem: e(ut{x,t) + ux(x,t)) + u2(x,t) = 0, —oo < x < oo, t > 0, u(x, 0) = 
sin(a;), —oo < x < oo. 

9.3.4. Obtain a perturbation and boundary layer solution of the following problem: 
е(щ{х, t)+ux(x,t))+tu(x, t) = 1, —oo < x < oo, t > 0,u(x,0) = sino:, —oo < 
x < oo. Hint: The initial layer has width 0(y/e). 

9.3.5. Derive the exact solution of the problem in Example 9.9 and compare it with 
the perturbation result for t « 1 and t « 0. 

9.3.6. Let f(x) = sinz andina;) = 0 in the problem of Example 9.10 and obtain the 
boundary layer solution near t = 0 and the outer solution (9.3.70). At t = T > 0, 
let (9.3.70) serve as initial data for the parabolic equation for UQ{X, t) in (9.3.74) and 
let u\{x,t) = 0 in that equation. Determine uo(x,t) for t > T as a solution of 
the parabolic equation and characterize the range of values of t in which each of the 
approximate solutions obtained is valid. 

9.3.7. Discuss the initial value problem vt(x, t) + cvx(x, t) = \Dvxx{x, t), —oo < 
x < oo, t > 0, u(x, 0) = δ(χ), —oo < x < oo, (see Section 1.1) from the point of 
view of a singular perturbation problem if we assume that the diffusion coefficient D 
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is small. Show that even though the reduced equation can absorb the initial condition, 
a boundary layer must be introduced near x = ct since the solutions of the regular 
perturbation equations are singular there. 

9.3.8. Consider the singular perturbation problem for the ODE ey" (x) + a(x)y' (x) + 
b(x)y(x) = 0, 0 < x < 1, with the boundary conditions y(0) = a, y(l) = ß. Show 
that it is not possible, in general, to solve this problem using regular perturbation 
methods, (a) Assume that a(x) > 0 i n 0 < a : < l and obtain an approximate solution 
of the problem by introducing a boundary layer at x = 0. (b) Assume that a(x) < 0 
in 0 < x < 1 and solve the problem approximately by introducing a boundary layer 
at x = 1. 

9.3.9. Let f(x) = x2e~x, h(x) = 0, and g(y) — sm{ny/L) in the problem of 
Example 9.11. Discuss the perturbation and boundary layer solutions of the given 
problem in the following cases, (a) b = 1; (b) b = 0; (c) b = —1. 

9.3.10. Use perturbation and boundary layer methods to obtain an approximate so-
lution of the following problem: e(uxx(x, y) + uyv(x, y)) + ux(x, y) + uy(x, y) — 
0, x > 0 , у > 0,withtt(x,0) =xe"x, u(0,y) = y e ^ a n d l i m ^ o o ^ o o } u(x,y) 
= 0. 

9.3.11. Obtain an approximate solution of the following singular perturbation prob-
lem: e(uxx(x,y) + uyy(x,y)) — u(x,y) = 1, 0<χ<π, 0<y<n, u(x,Q) = 
u(0, y) = u(x, π) = u(n, y) = 0. 

9.3.12. Given the Dirichlet problem ea(uxx(x,y)+uyy (x, y)) — ux(x,y) +u(x,y) = 
0, x2 + y2 < 1, u(x, y) = x, x2 + y2 = 1 (a = constant), determine the location of 
the boundary layer and obtain an approximate solution, away from (x, y) = (0, — 1) 
and(x,y) = (0 , l ) i f (a)a = - l ; ( b ) a = 1. 

9.3.13. Obtain a perturbation and boundary layer solution of the following problem: 
e(uxx{x,y) + uyy(x,y)) -ux{x,y) — 0, x2 + y2 < 1, у > 0, u(x,0) = 1, - 1 < 
x < 1, u(x, y) = y, x2 + y2 = 1, у > 0. Discuss the solution away from the points 
(-1,0), (1,0), and (0,1). 

9.3.14. Consider the singular perturbation problem for the elliptic equation e(uxx(x, y) 
+ uyy(x, y)) - ux(x, y) = 0, x2 + y2 < 1, with the Dirichlet boundary condition 
u(x, y) = f(x, y), x2 + y2 = 1. (a) Show that the point (0, —1) on the circle is a 
point of type R. (b) Show that the point (0,1) is of type P. 

9.3.15. Use perturbation and boundary layer methods to obtain an approximate so-
lution of the following parabolic problem. euxx(x, t) + ux(x, t) — щ(х, t) = 0, 0 < 
x < I, t > 0, with the initial and boundary conditions u(x,0) = f(x), u(0,t) = 
g(t), u(l,t) = h{t). 

9.3.16. Obtain an approximate solution of the singular perturbation problem euxx(x, t) 
+ aux(x, t) - щ(х, t) = 0, x > 0, t > 0, with the initial and boundary conditions 
u(x, 0) = f(x), Ц0, t) = g(t) if (a) a = 1; (b) a = - 1 . 
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9.3.17. Use the parabolic equation method to'locate the boundary layers for the 
elliptic equation e(uxx(x, y) + uyy(x, y)) — ux(x, y) = 0 if Dirichlet conditions are 
assigned on the boundaries of the following regions: (a) 0 < x < π, 0 < у < π; (b) 
О < x < π, 0 < у < oo; (с) х2 + у2 < 1. 

9.3.18. Complete the solution of the problem for (9.3.142) given in Example 9.12 
by obtaining a boundary layer solution near у = L. Combine the result of this 
exercise and of the example in the text to yield a composite approximate solution of 
the problem in the manner of (9.3.98). 

9.3.19. Solve the following initial and boundary value problem using the parabolic 
equation method: e{uu{x, t) — c2uxx(x, t)) — ut(x,t) — aux(x,t) = 0 , 0 < x < 
I, t > 0, u(x,0) = ut{x,0) = 0, 0 < x < l, u(0,t) = 1, u{l,t) = 0, t > 0. 
Assume that \a\ < с and consider these cases, (a) a < 0; (b) a = 0; (с) а > 0. 

9.3.20. Consider the problem e(uxx(x, y) + uyy(x, y)) + ux(x, y) — e~x, 0 < x < 
oo, 0 < у < L, u(x, 0) = u(0, y) = u(x, L) = 0, with u(x, y) —> 0 as x —> oo. 
Apply the parabolic equation approach and obtain euyy(x, у )+ux(x,y) = (1+е)е_ж. 
Solve the problem using the parabolic equation method and the perturbation and 
boundary layer method and compare results. 

9.3.21. Use perturbation and boundary layer methods to solve euxx(x, y)+uyy (x, y)+ 
ux(x, y) = 0, 0 < x < 7Г, 0 < у < π, u(x, 0) = u(0, y) = u(x, π) = 0, ιι(π, у) = 

/Ы-

9.3.22. Apply boundary layer and perturbation methods to solve the following initial 
value problem: e(uttt{x,t) - a2uxxt{x,t)) + utt{x,t) - c2uxx(x,t) = 0, -oo < 
x < oo, t > 0, u(x,0) = f(x), ut(x,0) = g(x), utt(x,0) = k(x), with a > c. 
Hint: Proceed as in Example 9.10. 

9.3.23. Apply perturbation and boundary layer methods to the following problem. 
uu{x,t) + e2uxxxx(x,t)) = e~l, 0 < x < I, t > 0,u(x,0) = ut{x,0) = 0, 0 < 
x < I, u(0,t) = ux(0,t) — u(l,t) = ux{l,t) = 0, t > 0. Find the outer solution 
and show that there are parabolic boundary layers at x = 0 and x = I. 

9.3.24. Determine the location of the boundary layers for the following singular 
perturbation problem: e(uxx(x,y) + uyy(x,y)) + ux(x,y) = 0, у - x3 < 0, 

г 0, x < 0, 
u(x, x3) = < e_x x>Q Hint: {x, y) = (0,0) is a point of type S. 

9.3.25. Obtain the exact and approximate solution of the modified Helmholtz equation 
in the region exterior to the unit sphere: e2V2u(x, y, z) — u(x, y, z) = 0, r > 1, 
with the boundary conditions (9.3.160) where r2 = x2 + y2 + z2. Proceed as in 
Example 9.14. 
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9.4 MAPLE METHODS 

Regular Perturbation Expansions 

We have created a procedure RegPerturb that automates the construction of regular 
perturbation expansions for ordinary and partial differential equations that contain a 
small parameter. Initial value, boundary value, and initial and boundary value prob-
lems can be treated. The output exhibits the equations that each of the terms in the 
expansion must satisfy. These may be ODEs, PDEs, or algebraic equations. (The 
number of terms considered is prescribed by an argument in the procedure.) Appropri-
ate initial and/or boundary conditions for each term are also displayed. The procedure 
is given as RegPerturb(Equation, [1С], [BC],u, [indxvars], [xrange], [trange], 
er,n). Instead of discussing the procedure in general terms, we apply it to the exam-
ples presented in this chapter. 

We begin with Example 9.1. As was shown there, we can put и = u(r) and 
consider the perturbation problem for the ODE, OD El = u"{r) 4- ( l / r )u ' ( r) + 
e2u(r) — 0, 0 < r < 1, with the boundary conditions u(0) = bounded and u(l) = 1. 
We use the procedure RegPerturb(ODEl, [},[u = bounded,и = l],u, [r], [r = 
0..1], [ ], e2,1). There is only one independent variable r and there are boundary 
conditions at r = 0 and r = 1. There is no t dependence and no initial condition 
so that the second and seventh arguments are empty and given as [ ]. The dependent 
variable is u. The perturbation expansion is given in terms of the parameter e2 as 
u(r) = Σο° un(r)e2n. The last argument in the procedure n = 1 indicates that only 
the boundary value problems for uo (r) and щ (г ) will be exhibited in the output of the 
procedure. The result for iti (r) isgivcnasd2ui(r)/dr2 + (l/r)dui(r)/dr+uo{r) — 
0, ωι(0) = bounded, iti(l) = 0. This agrees with (9.2.31). The ODEs can be solved 
recursively using the Maple procedure dsolve. 

The perturbation problem of Example 9.2 is a Cauchy problem given over the in-
finite interval —oo < x < ooasPDEl = ut(x,t) + eu(x,t) = uxx(x,t), u(x,0) = 
f{x).TheprocedureRegPerturb(PDEl, [u= f(x)}, [],u, [x], [},[t = 0..oo],e, 1), 
determines the initial value problems for the first two terms in the perturbation expan-
sion (9.2.38). In this case there is an x and t dependence in the problem. However, 
the initial condition for the problem is given over the entire x-axis so that no specific 
boundary conditions are prescribed, except for requiring the solution to be bounded. 
Thus the third and sixth arguments are empty and given as [ ]. The problem for щ(х, t) 
is determined tobe du\(x,t)/dt — d2u\ (x, t)/dx2 = —uo(x,t), ui(a;,0) = 0. 

To apply the method of multiple scales as was done in Example 9.2, we use 
RegPerturb(ut + e(uT + u)-uxx = 0, [u = f{x)], [],u, [χ,τ], [], [t = 0..oo],e, 1). 
We invoke the PDE (9.2.44) and introduce the slow time variable in the fifth argu-
ment of the procedure. The initial value problem for the term u\{x,t,r) in the 
perturbation expansion is determined to be du\ (x, t, r)/dt — d2u\ (x, t, т)/дх2 = 
- [ди0(х, t, т)/дт + UO(:E, t, r ) ] , u\ (x, 0,0) = 0. 

The perturbation problem for the nonlinear Klein-Gordon equation considered in 
Example9.3 leads to the consideration of the PDE, PDE2 = uu(x, t)—^2uxx(x, t)+ 
c2u{x,t) — e2au3(x,t) = 0, with the initial conditions u(x,0) = cos(fcx) and 
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щ(х,0) = 0. The procedure RegPerturb(PDE2, [u = cos(kx),ut = 0],[],u, 
[χ,τ], [ ], [i = O..oo],e,3) finds the problems that the first four terms in the per-
turbation expansion (9.2.55) must satisfy. The problem for u3(x,t) is given as 
d2u3(x,t)/dt2 — 72 d2u3(x,t)/dx2 + c2u3(x,t) — 3au0(x,t)2ui(x,t) = 0, with 
the initial conditions u3(x, 0) = 0, du3(x, 0)/dt = 0. 

The perturbation problem of Example 9.4 involves the PDE, PDE3 = utt(x, t) — 
(co + Σ ^ = ι Cn(tx)n) uxx(x,t) = 0, with the initial conditions u(x, 0) = f(x) 
andut(a;,0) — 0. Invoking the procedure RegPerturb(PDE3, [и = /(х),щ — 
0],[],u,[x,T],[],[t = О..»],e,l) yields d2ui(x,t)/dt2 - c2

0 d2
Ul{x,t)/dx2 = 

xc\ d2uo(x,t)/dx2, ui(x, 0) = 0, dui(x,0)/dt = 0, in agreement with the results 
(9.2.67) and (9.2.68). 

Boundary perturbations can also be treated with the procedure. We consider 
Example 9.5 for Laplace's equation. The boundary condition at у — ex is ex-
pressed as u(x,ex) = u(x,0) + exuy(x,0) = f(x). The procedure is given as 
RegPerturb(uxx + uyy = 0, [u + exuy = f(x),u = 0], [u = 0,u = 0],u, [x], [x = 
0..1], [y = 0..L], e, 1). Each term in un(x, y) in the perturbation expansion satisfies 
Laplace's equation and vanishes on the three sides x = 0, у = L, x = I of the 
unperturbed rectangle. On the fourth side, the procedure yields the boundary condi-
tion for ui(x,y) asui(a;,0) = —xduo(x,0)/dy. 

The eigenvalue perturbation problem of Example 9.6 for the function M(x,y) in 
the square of side π, with Dirichlet boundary conditions on the sides, are dealt with 
by using the procedure RegPerturb(Mxx + Myy — exyM + X(e)M = 0, [M = 
0,M = 0],[M = 0,M = 0],М,[ж],[ж = 0..тг],[у = 0..π],ε,1). The problem 
for the term M\{x, y) in the procedure is д2М\ (х, у)/дх2 + д2М\ (х, у) /ду2 — 
xyM0 (x, y) + A'(0)Mo (x, y) + X (0) M\ (x, y) = 0, with the boundary conditions 
Mi (x, 0) = 0, Mi (x, π) = 0, Mi (0, y) = 0, Мг (π, у) = 0. The result agrees with 
that found in Example 9.6. 

The problem of Example 9.7 can be solved completely using Maple methods, but 
we do not present this discussion here. 

Singular Perturbations and Boundary Layer Methods 

When dealing with singular perturbation problems, perturbation expansions continue 
to play a significant role. Initially, the given (singular) perturbation problem is ex-
panded in a perturbation series and this determines the outer solution. Once the 
boundary or initial layer equation is determined after carrying out a stretching proce-
dure, it is also expanded in a perturbation series. The procedure RegPerturb can be 
used to determine the problems that each term in the perturbation expansion of the 
given equation or the boundary layer equation must satisfy. 

A procedure BoundLayer has been constructed that determines the boundary 
layer equation associated with a given stretching transformation of a PDE. It is given 
as BoundLayer(PDE,DVar,[IndVars],e,BLLoc,r, StretchVar). The sec-
ond and third arguments of the procedure specify the dependent and independent 
variables, respectively, in the PDE. The fourth argument BLLoc is an equation that 
determines the location of the boundary, initial, or interior layer. Thus, if an initial 
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layer at t = 0 is required, the fourth argument is t = 0. The fifth argument speci-
fies the stretching exponent r. The final argument prescribes the stretched variable. 
For example, if we have an initial layer at t = 0 with the stretching t = err, then 
StretchVar = т. If a double stretching is required, the procedure must be applied 
twice. 

We begin by reexamining Example 9.8. The Cauchy problem is given as SPPDE1 
= e(ut(x,t)+ux(x,t))+u(x,t) = sin(i), u(x,0) = f(x)· The procedure RegPer— 
turb(SPPDEl, [u = f(x)] ,[],u, [x], [ ], [t = 0..oo],e, 1) yields for the first two 
terms in the expansion of the outer solution, щ(х, t) — sin(i), щ(х,0) = f(x), 
anditi(:r,i) = — (duo(x, t)/dt + du0(x,t)/dx),ui(x,0) = 0, in agreement with 
the results obtained in the example. The initial conditions cannot be satisfied and an 
initial layer at t = 0 is required. 

We invoke the procedure BoundLayer(SPPDEl,u, [x,t],e,t = 0,г,т). The 
stretching transformation (9.3.8) is used and the output of the procedure is the initial 
layer equation еих(т,x,e,r) + e1~ruT(r,x,e,r) + и(т,х,е,г) = sin(6rr). The 
dependent variable in the initial layer ù(x, r ) of Example 9.8 is given by the procedure 
in the form и(т, x, e, r). On setting the stretching exponent r = 1, we obtain the initial 
layer equation (9.3.10). If we put r = 1 in the procedure, the required initial layer 
equation is obtained directly. It is given as ILI = eùx(x, т) + ùT(x, т) + ù(x, т) = 
sin(er). Then the procedure Reg Perturb(ILl, [ù = f{x)], [],ü, [x], [], [r = 0..oo], 
e, 2) yields the problems (9.3.12)-(9.3.13). 

Next, we consider Example 9.9 and the internal layer that occurs in that prob-
lem. The PDE is SPPDE2 = e(ut(x,t) + ux(x,t)) + (i - l)2u{x,t) = 1, and 
there is an internal layer at t = 1. Then BoundLayer(SPPDE2, u, [x, t], e, t = 
1,1/3, T, -2 /3 ) , which contains an additional eighth argument, yields the stretch-
ing of both and independent and the dependent variable given as in (9.3.37) as 
t—1 = e r r a n d ω = e~2/3v. The internal boundary layer equation is given as IL2 = 
€1^3VX(X,T) + VT(X,T) + T2V(X,T) = 1. The procedure RegPerturb(lL2, [v = 
f(x)}, [ ], v, [x],[ ], [T = O..00], e1/3,2) determines the problems satisfied by the first 
three terms in the perturbation expansion (9.3.39). Even though an initial condition 
v(x, 0) = f(x) is specified in the procedure, it plays no role in the solution of the 
problem, as indicated in our discussion of the solution in Example 9.9. (The initial 
condition must be entered for the procedure to work.) 

Parabolic Equation Method 

Examples 9.11 and 9.12 both deal with the elliptic equation SPPDE3 = e[uxx(x,y)+ 
Uyy(x,y)]+ux(x,y)+buy(x,y) = 0,with0 < : r < o o , 0 < y < L, and 6 = constant, 
and the boundary conditions u(x, 0) = f(x), u(0, y) = g(y), u(x, L) = h(x). The 
perturbation problem (9.4.12)-(9.4.13) was solved using the boundary layer method 
in Example 9.11 and the parabolic equation method in Example 9.12. We conclude 
our discussion of Maple methods by applying both methods to the solution of the 
problem. 

On applying the procedure BoundLayer to the PDE (9.4.12) at the boundaries 
у = 0, у = L, and x = 0, with the stretching exponent r = 1 and ò Ф 0, we 
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reproduce the results of Example 9.11. If b = 0 in (9.4.12), the choice r = 1/2 
results in parabolic boundary layer equations at у — 0 and у = L, as before. 

The procedure ParabolicEqMeth carries out the parabolic equation method. 
The reduced equation for the given PDE must be of first order. The output ex-
hibits two forms of the parabolic equation, if possible. The procedure has the 
form ParabolicEqMeth(PDE,depvar, [indvars],e), with depvar as the depen-
dent variable and [indvars] as a list of the independent variables. On invoking the 
procedure ParabolicEqMeth(SPPDE3, u, [x, y],e), we obtain the two parabolic 
equations e(l+b2)uyy(x,y) + ux(x,y) + buy(x,y) = 0, ande(l + l/ò2)wxx(x, y) + 
Ux(x,y) + buy(x,y) = 0, asgivenin(9.3.143)-(9.3.144)inExample9.12. 

Our discussion of Maple methods has been restricted to the presentation of the 
procedures RegPerturb, BoundLayer, and ParabolicEqMeth that we have con-
structed and their use in analyzing regular and singular perturbation problems. The 
results obtained via these methods can then be analyzed further by using built-in 
Maple procedures, as is the case for the examples presented in this chapter. 

Exercises 9.4 

9.4.1. (a) Solve the ODE (9.2.28) with the boundary conditions given in the text using 
the Maple procedure dsolve and obtain the solution (9.2.29). (b) Apply the procedure 
RegPerturb to the problem of part (a) with the last argument in the procedure given 
as the number 2. Solve the three resulting equations recursively using dsolve. (c) 
Expand the solution found in part (a) using the Maple procedure taylor and compare 
with the result obtained from part (b). 

9.4.2. Use RegPerturb to analyze the problem of Example 9.2 in the manner dis-
cussed in the text. 

9.4.3. Apply RegPerturb to the PDE (9.2.53) with general initial conditions and 
obtain the equations and initial conditions that the first four terms in the perturbation 
expansion of the solution must satisfy. 

9.4.4. Apply RegPerturb to the perturbation problem of Example 9.4 and obtain 
the problems satisfied by u0(x, t), щ (х, t), and U2(x, t). 

9.4.5. Apply RegPerturb to the boundary perturbation problem of Example 9.5 and 
obtain the problems satisfied by UQ(X, t) and u\(x, t). 

9.4.6. Use RegPerturb to obtain the problems for the first two terms for the eigen-
value perturbation problem of Example 9.6. 

9.4.7. Solve the problem of Example 9.7 using Maple methods. 

9.4.8. Use the procedures RegPerturb and BoundLayer to obtain the results for 
Example 9.8 given in the text. 

9.4.9. Apply BoundLayer and RegPerturb to the problem of Example 9.9. 

9.4.10. Apply the procedures BoundLayer and ParabolicEquationMeth to the 
problems of Examples 9.11 and 9.12 in the manner presented in the text. 



CHAPTER 10 

ASYMPTOTIC METHODS 

This chapter continues our presentation of methods that yield approximate solutions 
of initial and/or boundary value problems for PDEs. We refer to them as asymptotic 
methods, for reasons indicated in Section 9.1, even though they do not all fit precisely 
into that category. 

We begin with a consideration of equations with a large parameter and concentrate 
mostly on the (elliptic) reduced wave equation or the Helmholtz equation. Linear and 
nonlinear problems are considered. A common feature in all the problems is that the 
solutions contain rapidly oscillating terms. 

Next we consider methods for describing the propagation of singularities of hy-
perbolic equations. They permit the solutions of hyperbolic equations to be analyzed 
near singular regions, such as wave fronts, without having to solve the full problems. 
Even though the methods and results appear to have a somewhat different character 
than those considered in the remainder of this chapter and in Chapter 9, they are 
related to the techniques of Section 10.1, as will be seen. 

Finally, we present a method for simplifying linear and nonlinear equations and 
systems of equations by approximating them, in a systematic way, by simpler PDEs. 
The simpler, more easily solvable equations generally model one or more of the 
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basic physical features associated with the full equations or systems. The study of 
simplified models of given problems is fundamental in applied mathematics. 

10.1 EQUATIONS WITH A LARGE PARAMETER 

Linear Reduced Wave Equation 

In the study of boundary value problems for the linear reduced wave equation 

V2u{x) + k2n2(x)u(x) = 0, (10.1.1) 

a case of greatest interest in the context of wave propagation occurs when the (con-
stant) parameter к is large. The function n(x) in (10.1.1) is known as the index 
of refraction. The connection between (10.1.1) and the wave equation is given in 
Exercise 2.4.7. 

Assuming that к is large, we apply a perturbation procedure to ( 10.1.1 ) and expand 
u(x) in inverse powers of к as 

oo 

u(x) = ̂ 2Uj(x)k-j. (10.1.2) 
j=o 

Inserting (10.1.2) into (10.1.1) and equating like powers of k, we immediately con-
clude that uo(x) and all further terms in the expansion must vanish. Putting e = 1/fc, 
we recognize that ( 10.1.1 ) is, in fact, a singular perturbation problem and that asymp-
totic expansions of (10.1.1) must have a form different from that given in (10.1.2) 
(see Example 9.14). To determine appropriate expansion forms, we consider some 
exact solutions of ( 10.1.1 ) in the case where the index of refraction n is a constant. 

For the two-dimensional problem, the simplest solutions of ( 10.1.1 ) are the plane 
wave solutions 

u(x,y) = exp[ikn(xcos6 + ysinO)], (10.1.3) 

where Θ and n are constants. With r2 = (x — ξ)2 + (у — η)2, another solution of 
( 10.1.1 ) in two dimensions is 

u(x,y) = J0(knr), (10.1.4) 

where J0 is the zero-order Bessel function. For large values of k, assuming that nr 
is not small, the asymptotic expansion of the Bessel function Jo(fcnr) (see Exercise 
5.7.1) yields 

u[x,y) = Jo(knr) « ^-j— J cos (knr - J ) 

(10.1.5) 
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Each of the exponential terms in ( 10.1.5) represents an asymptotic cylindrical wave 
solution of (10.1.1). 

In the three-dimensional case with r2 = (x — ξ)2 + (y — η)2 + (z — ζ)2, a spherical 
wave solution of ( 10.1.1 ) is 

u{x,y,z)=-eiknr. (10.1.6) 
r 

The exact and asymptotic solutions ( 10.1.3)-( 10.1.6) of ( 10.1.1 ) indicate that when 
the solutions of ( 10.1.1 ) are expanded asymptotically for large k, they have the form of 
a rapidly varying exponential term multiplied by an amplitude term. On considering 
further terms in the asymptotic expansion of the Bessel function Jo(fcnr), we find 
that the amplitude terms in (10.1.5) are given as series in inverse powers of k. On 
expanding the exponentials in ( 10.1.5) in powers of k, we see that the solution u(x, y) 
contains both negative and positive powers of к in its expansion. This explains why 
the series (10.1.2) does not lead to a useful result. 

Eiconal and Transport Equations of Geometrical Optics 

Noting these results, we look for asymptotic solutions of ( 10.1.1 ) in the form 

u{x) = v{x) eik^x\ (10.1.7) 

where ф(х) is the phase term and v(x) is the amplitude term. (Although we are gen-
erally interested in real solutions of ( 10.1.1 ), such as given by ( 10.1.4), the determina-
tion of asymptotic solutions is greatly simplified by using the complex representation 
(10.1.7). The real and imaginary parts of (10.1.7) yield real asymptotic solutions of 
( 10.1.1 ) and v(x) is clearly an amplitude term, if it is real valued.) Inserting ( 10.1.7) 
into (10.1.1) gives 

V2u + k2n2u = {k2[n2 - (V4>)2]v + гк[2\/ф ■ Vv + νΨφ] + V2u} ёкф = 0. 
(10.1.8) 

Since we assume that к >· 1, we equate the coefficient of the highest power of к in 
( 10.1.8) to zero and obtain 

(V0(x)) 2 =n 2 (x) , (10.1.9) 

which is known as the eiconal equation. It is a nonlinear first order PDE. (It was 
studied in Section 2.4 in the two-dimensional case.) The phase term ф(х) in (10.1.7) 
is specified from (10.1.9) subject to appropriate conditions that result from the data 
given for the reduced wave equation ( 10.1.1 ). 

Once ф(х) is specified, the amplitude v(x) must be determined from 

гк[2Уф(х) ■ Vv(x) + ν(χ)ν2φ(χ)\ + V2v(x) = 0 (10.1.10) 

in view of (10.1.8)—( 10.1.9). Dividing by ik in (10.1.10)and letting к —> oo reduces 
the order of (10.1.10) from second to first order. Since к is assumed to be large, we 
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conclude that the problem of determining v (x) from ( 10.1.10) is a singular perturba-
tion problem. Therefore, difficulties of the type encountered in Section 9.3 are likely 
to occur in the present problem. 

Nevertheless, we look for an asymptotic solution of (10.1.10) in the form 

oo 

v(x) = J2vj(x){ik)~j ■ (10.1.11) 
j=o 

(The expansion in powers of гк rather than к is carried out for convenience.) Inserting 
(10.1.11) into (10.1.10) and equating like powers of к yields the recursive system of 
equations 

2V</>(x) · Vu0(x) + ν0(χ)ν2φ(χ) = 0, (10.1.12) 

2Щ(х) · V^-(x) + Vj{x)V24>(x) = - V 2 ^ _ i ( x ) j > 1. (10.1.13) 

These first order PDEs for the Vj (x) are known as transport equations since they 
describe the variation of the amplitude terms Vj(x) along the rays or characteristics 
determined from the eiconal equation, as shown later. The (initial) conditions for the 
Vj (x) are determined from the data for ( 10.1.1 ). 

Much of the terminology associated with the large к solutions of the reduced wave 
equation ( 10.1.1 ) is drawn from the theory of optics. The propagation of light waves, 
when described in terms of (10.1.1), corresponds to the case where к is large. The 
asymptotic solution (10.1.7) characterizes geometrical optics (or ray optics), since 
it is given in terms of geometry of the rays or characteristics determined from the 
eiconal equation. Often, geometrical optics is taken to mean the results determined 
strictly from the eiconal equation without regard to the transport equations (10.1.12)-
(10.1.13). Solutions based directly on (10.1.1), or some approximation thereof that 
involves second order differential equations, yield results that characterize wave op-
tics. The theory of wave optics is required when geometrical optics fails to describe 
the solution of ( 10.1.1 ) correctly, either because the solution breaks down in the geo-
metrical optics description or because it fails to account for certain effects due to the 
diffraction of light. However, a geometrical theory of diffraction has been developed 
by J. B. Keller that shows how to take into account diffraction effects within the con-
text of a geometrical description of the solution, similar to that given by geometrical 
optics. These asymptotic analyses of wave propagation are examined in some detail 
in this section. 

Exact and Asymptotic Representations of the Free-Space 
Green's Function 

We consider the free-space Green's functions for the two-dimensional reduced wave 
equation with a constant n. The exact result is expanded asymptotically. This yields 
useful information about the nature of the asymptotic solutions of ( 10.1.1 ) in general 
and serves to motivate the discussion that follows. 
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Thefree-space Green'sfunction К (x, y; ξ, η) for the reduced wave equation ( 10.1.1) 
in two dimensions satisfies the equation 

V2K(x, y; ξ, η) + k2n2K(x, у; ξ, η) = -δ(χ - £)ö(y - η), (10.1.14) 

and the radiation condition at infinity 

lim ^ fdK(x y-,ξ,η) _ iknK^ ^ Л = ^ (ю.1.15) 
r->oo \ ОГ ) 

with r2 = (x — ξ)2 + (у — η)2, and n assumed to be constant. In Example 6.13 this 
Green's function was found to be 

K(x,y;tV) = ±H£4knr), (10.1.16) 

where Щ is the zero-order Hankel function of the first kind. 
Noting the asymptotic representation of the Hankel function in (6.7.36), the leading 

term in the asymptotic expansion of K(x, y; ξ, η) with knr » 1 is 

Κ{χ,ν;ξ,η) « l- ( J - ) exp (iknr-1-^) . (10.1.17) 
4 \7Tknr ) \ 4 

Since with г ф 0, Κ(χ^;ξ,η) is a solution of the (homogeneous) reduced wave 
equation (10.1.1), we conclude that (10.1.17) is the leading term in an asymptotic 
solution of (10.1.1) of the form (10.1.7) and (10.1.11). We demonstrate this by 
constructing an asymptotic solution of (10.1.1) that depends only on r. 

Let 
oo 

Κ(χ,ν;ξ,η) = eik*^J2vj(r)(ikyj (10.1.18) 
j=o 

with r > 0. The eiconal equation for ф(г) becomes (V<£(x))2 = [ф'(г)\2 = n2. The 
solution of this equation for which the radiation condition (10.1.15) can be satisfied 
by the expansion ( 10.1.18) is clearly given as ф(г) = nr. The transport equation for 
vo(r) is 

2νφ-νν0+ν0ν
2φ = 2φ'υ'0+ (φ" + ̂ λ ν0 = 2nv'0{r)+^v0{r) = 0, (10.1.19) 

and its (general) solution is 
«o(r) = -^=, (10.1.20) 

у/Г 

where со is an arbitrary constant that may depend on k. With ф(г) and v0(r) given 
as above, we find that Уо(г)егкф^ agrees with the asymptotic form of K(x, y; ξ, η) 
given in (10.1.17). However, the constant CQ in (10.1.20) cannot be specified by the 
foregoing (direct) asymptotic method since it depends on the behavior of the Green's 
function K(x, y; ξ, η) at the source point r = 0. Now both the Green's function 
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(10.1.16) and its asymptotic representation (10.1.17) are singular at r = 0. But the 
Green's function ( 10.1.16) has a logarithmic singularity at r = 0, while its asymptotic 
form (10.1.17) is algebraically singular at r = 0. Since the derivation of (10.1.17) 
from (10.1.16) required that r > 0, we cannot expect (10.1.17) or the equivalent 
result obtained from the direct asymptotic method to be valid at r = 0. 

Thus, although the asymptotic expansion (10.1.18) generates the correct form 
for the Green's function K(x, y; ξ, η) with r > 0, it cannot be related directly to 
the behavior of the Green's function at r = 0, so that the arbitrary constants that 
occur in the full expansion (10.1.18) can be specified. An indirect approach such 
as the boundary layer method must be used to construct a modified expansion for 
К(χ,υ;ξ,η) valid near r — 0. By matching this expansion with (10.1.18), the 
arbitrary constants in the latter expansion can be specified. The boundary layer 
method in this case yields the exact solution (10.1.16), as is easily shown. However, 
in the case of a variable index of refraction n(x), the boundary layer method yields 
useful results since the exact solution is not, in general, available. 

Exact and Asymptotic Representations of the Half-Plane 
Green's Function 

Next, we use the free-space Green's function ( 10.1.16) to construct a Green's function 
for the Dirichlet problem for the reduced wave equation (10.1.1) in the half-plane 
x > 0. The Green's function Κ(χ,·μ;ξ,η) satisfies (10.1.14)—(10.1.15) with the 
boundary condition 

Κ(0,ν;ξ,η)=0. (10.1.21) 

The source point (ξ, η) lies in the right half-plane, so that ξ > 0. The exact solution 
of this problem, obtained by the method of images, is 

Κ(χ,ν,ξ,η) = \H$\knr) - l-H^(knf), (10.1.22) 

where f2 = (x + ξ)2 + (у - η)2 and K(x, у; ξ, η) satisfies the radiation condition at 
infinity. 

Introducing the oscillatory term β~ιω1, where the frequency ω is a constant, we 
form the function v(x, у, t) = K(x, y; ξ, η)β~ιωί. We represent the index of refraction 
as n(x, y) = CQ/C(X, y), where CQ is a constant reference speed (generally taken to 
be the speed of light), and c(x, y) is the speed of wave propagation, and define the 
wave number к as u/c0. Then v(x, y, i) satisfies the two-dimensional wave equation 
vxx{x,y, t) — [l/c2(x,y)]vtt{x,y,t) when (x,y) φ (ξ,η). [This 
result is valid for a solution K(x, y; ξ, η) of (10.1.14) even if n(x, у) ф constant, as 
has been assumed above.] 

We set 

K(x,y;£,V)e-iujt = 1-Н(ъХкпг)е-^-г-Н{ъ\кпг)е-^ = щ е~™*+us е~™1, 

(10.1.23) 
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where щ and us are termed the incident and scattered waves, respectively. If we 
expand the Green's function (10.1.22) asymptotically for r, f > 0 in the right half-
plane, we have 

i / 2 \ 1 / 2 7 / 2 \ 1 / 2 

K{x, y; ξ, η) « i l — ) eiknr-i*/4 _ « _J_ \ eiknf-i*/i_ 
4 \nknrJ 4 \жкпг J 

(10.1.24) 
Introducing this expression into ( 10.1.23) yields the asymptotic representation of the 
incident and scattered waves. [That is, the asymptotic representations of uj(x,y) 
and us(x, y) are the first and second terms on the right of (10.1.24), respectively.] 

This terminology is employed because in the asymptotic representation of ( 10.1.23), 
the term vi(x,y,t) = ui(x, j/)exp(—tut) represents a cylindrical wave traveling 
away from the source point (ξ, η). That part of the wave that hits the boundary x = 0 
is moving toward the boundary. Thus it is characterized as a wave incident upon the 
boundary. The cylindrical wave vs{x, y, t) — us(x, y) exp(—ίωί) is a wave travel-
ing away from the (fictitious) reflected or image source point (—ξ, η), and that part of 
the wave that intersects the boundary x = 0 moves away from it toward the interior 
of the half-plane x > 0. As its existence is due to the presence of the boundary, we 
refer to it as a scattered wave. (Section 2.4 discusses cylindrical waves.) 

Noting these results, we formulate the asymptotic (half-plane) Green's function 
problem as follows. We seek a function K(x, y; ξ, η) given as 

K{x, y; ξ, η) « ui{x, у) + us(x, у), (10.1.25) 

where it/(x, y) and u$(x, y) are asymptotic solutions of the reduced wave equation 
( 10.1.1 ). The incident wave uj (x, y) is assumed to be completely specified—it is the 
free-space Green's function (10.1.16)—(10.1.17)—and the scattered wave us{x, y) is 
to be determined. The boundary condition (10.1.21) for K(x, y; ξ, η) implies that 

us(0,y) =-ui(0,y). (10.1.26) 

The scattered wave us{x, y) is required to be an outgoing wave at the boundary x — 0. 
That is, us{x, у)е~1ш1 must represent wave motion away from x = 0 into the interior 
of the regions > 0. The outgoing condition takes the place of the radiation condition 
in the asymptotic formulation of this problem. 

We now demonstrate that the solution of the foregoing Green's function prob-
lem, carried out to leading terms only, agrees with (10.1.24). The asymptotic form 
of ui is given in (10.1.17), and us is expressed as us{x,y) ~ У{х,у)егкф^х,у\ 
In view of (10.1.26) we must have ф(0,у) = η^/ξ2 + (у — η)2 and V(0,y) = 

-(г/4) (2/7rfcn)1/2 [ξ2 + (у - ?7)2]"1/2ехр(-г7!-/4) ! t h a t is- w e equate both the 
phase and the amplitude terms in ( 10.1.26). 

There are two possible solutions of the eiconal equation satisfied by the (scat-
tered) phase term ф(х,у) with the given initial condition. They are ф±(х,у) = 
riy/{x ± ξ)2 + (у — η)2, but we reject the minus sign since it does not yield an out-
going cylindrical wave for us(x, y). In fact, the phase is then identical to that of 



6 4 6 ASYMPTOTIC METHODS 

the incoming wave ui(x, y). Selecting the plus sign in the phase term and defining 
r2 — (x + ξ)2 + (у — ту)2, we specify the phase as ф(х,у) = nf and conclude 
that V(x,y) = - ( i / 4 ) (2/тгА;пг)1/2ехр(-гтг/4) on using (10.1.19МЮ.1.20)and 
the given boundary condition. The asymptotic result ( 10.1.25) agrees with ( 10.1.24), 
which was obtained from the exact solution. 

Ray Equations for the Asymptotic Phase Term 

We now present a general discussion of the eiconal equation (10.1.9) for the phase 
term ф(х) and its solution. It is a nonlinear first order PDE and it is solved using the 
method of characteristics, as developed in Section 2.4. 

We consider the three-dimensional problem, but the results are easily specialized 
to the two-dimensional case. With ф = ф(х) and p = фх, q = фу, and r = φζ,ν/e 
set 

F(x, y, z, φ,ρ, q, r)=p2 + q2+r2- n2, (10.1.27) 

where n = n(x), so that F = 0 corresponds to the eiconal equation. Using the results 
of Exercise 2.4.13, we find that the characteristic equations for a;, y, z, φ, ρ, q, and 
r are 

dp 
ds 

dx dy dz 
— = 2p, ~r=2q, -j-= 2r, 
ds ds as 

fs = 2(p2 + q2 + r2) = 2n2, 

d{n2) dq d(n2) dr Θ(η2) 
dx ' ds dy ds dz 

(10.1.28) 

(10.1.29) 

(10.1.30) 

where s is a parameter along the characteristics and the fact that F = 0 along the 
characteristic curves was used to obtain (10.1.29). 

The characteristic (base) curves x = x(s) = [x(s), y(s), z(s)\ are called rays, and 
the surfaces of constant phase φ(χ) = constant are called wave fronts. Since the vector 
[p, q, r] = [фх, фу, φζ] = V0(x) is normal to the wave front φ(χ) = constant, the 
equations (10.1.28), which can be written as 

dx 
- = 2 [ p ) ( ? , r ] = 2V0(x), (10.1.31) 

show that the rays are orthogonal to the wave fronts. 
The full first order system of characteristic equations (10.1.28)—( 10.1.30) must 

be solved simultaneously, particularly if the index of refraction n is a function of x. 
However, it is possible to obtain a separate second order system of equations for the 
rays x = x(s). On differentiating ( 10.1.31 ) with respect to s and using ( 10.1.30), we 
obtain 

^ = 2 V ( n 2 ( x ) ) . (10.1.32) 
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This vector equation, together with 

ί ) 2 + (Ι)2 + (5ϊ)2 = 4(ρ2 + '2 + *-2» = 4"2Μ' С 0 ' 1 · 3 3 » 
determines the rays x(s) and the variation of the parameter s along the rays. These 
equations for x(s) are known as the ray equations. They show that the rays are 
specified in terms of the index of refraction n(x). In particular, if the index n(x) is a 
constant, x(s) is linear in s, so that the rays are straight lines. 

Rays in a Stratified Medium 

In the following we specialize the ray equations to the case of two dimensions (x, y) 
and assume that the index of refraction depends only on x [i.e., n = n(x)]. That 
is, we consider wave propagation in an inhomogeneous but stratified medium since 
n = n(x). 

The ray equations (10.1.Ъ2)-(10Л.33) for x(s) andy(s) take the form 

л _«*.(,» ^ ^ v + f i V = 4 B . w . (10„4) 
ds2 dx ' ds2 ' \ds ) \ds t 

From the equation for y(s) we conclude that y'(s) = 2a, where a is an arbitrary 
constant. We multiply the equation for x(s) by x'(s) and obtain 

dx d2x 
ds ds2 

dx 
ds 

T 2 dxd(2n2(x)) _ d(2n2(x)) 
ds dx ds 

(10.1.35) 

which implies that [:r'(s)]2 = 4n2(x) + constant. Making use of the third equation 
in (10.1.34) and the fact that y'(s) = 2a, we obtain x' (s) = ±2(n2(x) - a 2 ) 1 / 2 . But 
x'(s) = x'(y)y'(s) = 2ax'(y), so that the ray equations reduce to 

g U ± , a , (10.1.36) 
dx y/n2{x) - a2 

If we specify a point (x0, y0) that the ray must pass through, as well as the slope of 
the ray at that point, the constant a and the sign in (10.1.36) are determined. The 
resulting ray equation has a unique solution. 

In the context of geometrical optics, it is of interest to determine the structure of 
the rays in a stratified medium without determining the full field. We consider two 
cases. 

First we assume that all rays issue from the y-axis with the same (positive) slope. 
Thus, we set (with a fixed Θ) y(0) = y0, y'(0) = tan(0), 0 < Θ < π/2. We use the 
prescribed initial slope y'(0) to determine the arbitrary constant a in (10.1.36) and 
find that a = n(0) sin(ö). As a result, the initial value problem for the ray equation 
becomes [since y'(0) > 0] 

dy rc(O)sin(0) М П 1 Т Я 
-Ί- = , 2/(0) = 2/0, (10.1.37) 
dx ifn2(x) - n 2 ( 0 ) sin2 (6) 
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and the (formal) solution is 
, , Г n(0) smW)ds .„„,, ooN 

y { x ) = , W +2/0- (10.1.38) 
Jo ^n2(s)-n2{0)sin2{e) 

Each value of i/o determines a ray and we consider the rays only in the right half-plane 
x > 0 . 

To proceed we must specify the behavior of the index of refraction n(x). The 
simplest case occurs if n(x) is monotonically increasing or nondecreasing. Then the 
denominator in (10.1.38) is never zero, and the solution is valid for all x > 0. As т/о 
ranges from minus to plus infinity, the rays cover the entire right half-plane. 

If n{x) decreases monotonically to zero as x —> oo, the slope y'(x) increases 
monotonically until x reaches the value x = xc, at which point n(xc) = n(0) sin(0) 
and the slope y'(xc) is infinite. Each of the rays is refracted (or bent) continuously as 
x increases and at the point x = xc, each ray has a vertical tangent line and begins to 
reverse its direction. Since none of the rays penetrate the region x > xc, it is called 
the refraction shadow region. While the slope y'(x) of each ray is infinite at x = xc, 
the integral (10.1.38) is convergent at ж = xc andy(xc) serves as the initial value for 
the (turned) ray with negative slope. The equation for the new set of rays is 

fXc n(0) sin(0) ds fx n(O)sin(0)ds 
У{х)= i — - / / KJ^=+yo. 

Jo ^n2{s) - n2(0) sin2(6») J*' y/n2(s) - n2(0) sin2(6>) 
(10.1.39) 

Each ray has a negative slope for x < xc and an infinite slope at x = xc. 
lfn(x) decreases monotonically to a value n\ > 0, we see that if ni > n(O)sin(0), 

the slope of the rays never becomes infinite and there is no shadow region. The rays 
cover the entire right half-plane. However, if we determine the angle θ\ from the 
equation щ = n(0) sin(0i ), we find that for Θ > θ\ a shadow region will exist. Thus 
for decreasing n(x) if the initial ray slope is sufficiently large, a refraction shadow 
will occur. 

Next we consider an initial value problem for (10.1.36) in which all the rays 
issue from the origin in the (x, y)-plane. The initial values are y(0) = 0, y'(0) = 
tan(ö), 0 < Θ < 7г. We assume that n(x) is a smooth function defined as follows. 
Fora; < 0, n(x) = n(0) and for a; > xi > 0, n(x) — n(xi) = ηχ, withn(O) > щ . 
Thus, n(x) is constant for x < 0 and x > x\. As x increases from 0 to χχ, η(χ) 
decreases monotonically from n(0) to n\. 

The rays whose initial direction angle Θ satisfies π/2 < θ < π are straight lines 
whose equation is y(x) = a;tan(6)), π/2 < Θ < п. The ray that corresponds to 
θ = π/2 is the line x = 0 with у > 0. For the remaining direction angles we obtain 
the rays in the first quadrant as 

y{x) = / 
Jo 

n(0) sin(ö) ds t n ^ ü ^ π 

y/n2(s)-n2(0)sin2(6>) 
+ 2/0, 0 < β < - . (10.1.40) 

Now the rays with an initial direction angle Θ for which n(0) sin(0) < n\ never 
achieve a vertical slope as x increases from zero. As these rays pass the line x = x\, 
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their slope becomes constant and they have the equation 

v(-x)= Г 
Jo 

n(0) sin(ö) ds 

yjn2(s)-n2(0)sm2(e) 

n(0) sin(ö) 

^'n\ - n 2 ( 0 ) sin2 (0)_ 
+ , " v ' "~v-/ (x-xi). 

(10.1.41) 

The rays for which sin(0) > n\ /n(0) have an infinite slope at the point xe < x\ 
determined from n(xe) = n(0) sin(ö). At that point the rays turn backward. Their 
equation is given by (10.1.39), where we replace xc by xe and put yo = 0. There is 
a limiting diffracted ray whose angle 6C is determined from sin(0c) = щ/п(0) . All 
rays with Θ > 9C are refracted backward while those with Θ < вс have a finite slope 
for all positive x. The refraction shadow is the region above the extended limiting ray 
with negative slope. Since this ray turns around at x = x\ where its slope is infinite, 
the shadow region lies to the left of the line x = x\ (see Figure 10.1). We remark 
that each of the turned rays has a constant slope on the part of the ray that lies in the 
second quadrant. 

shadow I 

Figure 10.1 Rays in a stratified medium. 

General Initial Value Problems for the Ray Equations 

We reconsider the ray equations (10.1.32)-(10.1.33). With da2 = dx2 + dy2 + dz2 

so that σ is an arc length parameter, (10.1.33) implies that da = 2n ds, so that s 
does not generally represent arc length on the rays. In terms of σ the ray equations 
(10.1.32) become 

n(x) I (n(x) t)=v 
| n a ( « ) 

whereas ( 10.1.33) is replaced by 

dx\" 
da') + 

dy_ 
da + 1. 

(10.1.42) 

(10.1.43) 
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Replacing the parameter s by a and noting that d/ds = 2n d/da, we have 

^ = n, (10.1.44) 
da 

for the phase φ, instead of ( 10.1.29). Integrating along a ray χ(σ) from ao to a yields 

φ = φ0+ nda, (10.1.45) 
Jσ0 

where φ and n are functions of χ(σ) and φο is a constant that may vary from ray to 
ray. Thus once the rays are known the phase φ can be determined. 

The (standard) initial value problem for the phase φ requires that it be specified 
on a given initial surface. Let the initial surface be expressed parametrically as 
x = R{a, fi) and let φ = φο{α, fi) on that surface. To determine φ we must find the 
rays that pass through the initial surface and then integrate along the rays as indicated 
in ( 10.1.45). However, since the ray equations are of second order, an initial point, as 
well as an initial direction, must be assigned for each ray on the initial surface. Now 
( 10.1.31 ) shows that the direction of a ray x (i.e., dx/ds or dx/da) is given in terms 
of p, q, and r. Thus, to solve for φ uniquely, we must prescribe not only x and φ 
initially, but also p, q, and r, consistent with the fact that the full set of characteristic 
equations (10.1.28)—(10.1.30) forx, φ, ρ, q, and r is what we are solving. 

To determine p, q, and r initially, and thereby dx/da, we follow the procedure 
given in Section 2.4 and obtain conditions equivalent to the strip conditions found 
there. From the initial condition ф\Я(а, fi)] — φο{α, β) we obtain 

^ £ = V 0 . ^ = i - . — = n — ■ — (10 146) 
da da 2 ds da da da1 

and similarly, 
дф0 „ л <9R dx dR 1лпл „„. 

-m=v*'M=n&,'w (10Л-47) 
where (10.1.31) and d/ds = 2n d/da have been used. An additional condition, 
equivalent to setting F = 0 in (10.1.27) and identical with (10.1.43), is 

§ ■ § - ' ■ < * " 8> 

This yields three equations for the three components of the vector dx/da evaluated 
on the initial surface. We assume that a = ao at the point where each ray intersects 
the surface x = R ( Q , fi), so that dx/da evaluated at a = ao is determined from 
(10.1.46H10.1.48). 

To simplify the determination of the possible solutions for dx/da at a = ao, we 
assume that a and β measure arc length in an orthogonal coordinate system on the 
initial surface x = R(a, β). Then dx/da, dR/da, and dR/dfi are all unit vectors 
and dR/da and dR/dß are mutually orthogonal. Let Θ and ω denote the angles 
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between the vector dx(ao)/da and the vectors dR/da and dR/dß, respectively, with 
0 < θ, ω < π. Then (10.1.46)-(10.1.48) yield 

cos(0) = ! ψ , с о в И = Ì ^ . (10.1.49) 
η да η aß 

The preceding equations generally determine exactly two directions for each ray 
on the initial surface. To see this, we choose an arbitrary point P on that surface 
and introduce a (local) Cartesian coordinate system with its origin at that point. Let 
the unit basis vectors i, j , and к of the coordinate system correspond to the vectors 
dR/da, dR/dß, and a unit normal vector to the initial surface, respectively. Then 
our definition of Θ and ω implies that 

cos(0) = ^ · i, cos(w) = ^ · j (10.1.50) 
da da 

at the point P on the initial surface. The angles Θ and ω are uniquely specified from 
(10.1.49). If the angle 7 is defined as (with 0 < 7 < π) 

dx 
cos(7) = — k, (10.1.51) 

da 

we conclude from ( 10.1.48) that 

cos2(0) + cos2(w) + cos2(7) = 1. (10.1.52) 

Now by definition we have 0 < θ, ω, η < π. If Θ and ω are such that cos(7) φ 0 
in (10.1.52), the quadratic expression (10.1.52) yields two possible values of cos(7), 
one positive and one negative, with identical absolute values. If we choose the value 
of 7, say 7 = 70, for which cos(7o) > 0, we must have 0 < 70 < π/2 and the vector 
dx(ao)/da points toward the same side of the initial surface as the normal vector in 
view of (10.1.51). If we set 7 = 71 = π — 7o, we have cos(7i) = — cos(7o) < 0 
and π/2 < 7ι < π. In this case dx(ao)/da and the normal vector have opposite 
directions. The vectors dx(ao)/da that correspond to 70 and 71, respectively, and 
the normal vector to the initial surface are all coplanar at each point P. 

If the initial data are such that cos(7) = 0 at a point on the initial surface, it follows 
from (10.1.51) that dx(ao)/da lies in the tangent plane of the surface at that point. 
If the rays are tangent to the initial surface at every point, there are two cases that 
are referred to as characteristic initial value problems for φ. In one case the rays are 
completely contained within the initial surface. Since the rays do not leave the initial 
surface x = R ( Q , β), the equation (10.1.44) that describes the variation of φ along 
the rays is, in fact, a condition on the variation of the initial value φο along the rays 
on the initial surface. If the conditions on the data are met, we find that our result 
does not determine the phase function φ outside the initial surface. 

A more interesting case occurs if the rays are merely tangent to the initial surface 
but do not lie within it. Then the initial surface is an envelope or a caustic surface of 
the system of rays. Again the initial value φο must be such that ( 10.1.44) is satisfied 
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when σ = σο, that is, at the point of tangency of the rays. One ray issues from each 
point on the initial surface, and φ is determined from (10.1.45) along each ray. A 
more complicated situation that occurs often in asymptotic problems is when the rays 
are tangent to the initial surface only along a curve or some other subregion but are 
not tangent elsewhere on the surface. Although it is possible to determine the rays 
and the phase function φ for many of these problems, the fact that the rays intersect 
at the initial surface leads to difficulties with the full asymptotic solution. 

In the noncharacteristic case [i.e., when cos(7) Φ 0], two possible ray directions 
are determined at each point on the initial surface. To obtain a unique solution for 
the phase φ, one of the two directions determined from ( 10.1.49)—( 10.1.52) must be 
chosen. We select the set of rays issuing either on one side of the initial surface or 
on the other side. Thereby, χ(σ) and dx/da are uniquely specified at each point of 
the initial surface, and the ray equations determine χ(σ) uniquely. Finally, the phase 
ф(х, у, z) is found from (10.1.45) with integration taken along the ray that passes 
through the point (x, y, z). 

Transport Equations: Rays and Wave Fronts 

The transport equations (10.1.12)—( 10.1.13) can be solved by integrating along the 
rays determined by solving the eiconal equation. We have from (10.1.31) 

dx. dx. dv ' 
2V0 · VVJ = — ■ VVJ; = 2n — · VVJ = 2n - 1 , (10.1.53) 

ds J da J da 

where dvj/da is directional derivative along the ray χ(σ). Thus the transport equa-
tions reduce to ODEs along the rays and are given as 

2n^- + ν0ν
2φ = 0, (10.1.54) 

da 

In ^p- + ν,\>2φ = - V 4 _ i , j > 1, (10.1.55) 
da 

where all functions are evaluated on the ray χ(σ). 
To solve these equations, we express У2ф in terms of its variation along a ray. We 

consider a region R bounded laterally by a tube of rays and capped by two segments 
of wave fronts ф = constant, So and S\, as shown in Figure 10.2. The lateral boundary 
is denoted by S. Let N be the exterior unit normal on the boundary of R. Applying 
the divergence theorem in R gives 

И ΨφdV= ff ν·νφάν= I νφ-Νάα+ j Τ7φ-Νάα+ f 4φ-Νάα. 
J J R J J Ft J So J S J S\ 

(10.1.56) 

T he surface integral over S vanishes since V0 has the direction of the rays and N 
is orthogonal to that direction on S. Assuming that the parameter a increases as we 
move from So to Si, we observe that V(/> has the direction of N on Si, while it has the 
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Figure 10.2 A ray tube. 

direction of —N on So, since So and S\ are portions of phase surfaces. Also, since 
| νφ\ = n, in view of ( 10.1.9), we have 

if Ψφ dV = f nda- f n 
JJ R J S\ J SQ 

da. (10.1.57) 

To determine a simple expression for the element of surface area da on a wave 
front, we introduce a reference wave front φ = 0 and a coordinate system (£, η) on 
that wave front. We then determine all the rays orthogonal to that wave front. Each 
surface φ = constant is parallel to the wave front φ = 0 and is orthogonal to the rays. 
With a as arc length on the rays, we may introduce a (ray) coordinate system (ξ, η, a) 
in space. Further, we can replace a by the wave front coordinate φ, and in view of 
(10.1.44), we have 

άφ = ηάσ (10.1.58) 

along the rays. In the (ξ, η, φ) coordinate system, the surfaces φ = constant are 
orthogonal to the rays, which are given as ξ=constant and η - constant. Consequently, 
if x = r(£, η, φ) are the equations of transformation from Cartesian coordinates to 
(ξ, η, φ) coordinates, we find that the area element da on a wave front is given as 
da = J άξ άη, where J = |ΓξΧΓ4|, as is well known from vector analysis. The volume 
element dV in (ξ, η, φ) coordinates has the form dV = dada = (1/n) Jάξάηάφ, 
since σ is arc length and the distance between two infinitesimally close wave fronts 
φ = constant and φ + άφ = constant is given by da = (1/n) άφ, in view of (10.1.58). 

We now assume that the surface elements So and Si correspond to the wave fronts 
φ - constant and φ + άφ = constant, respectively. Then as the region R (i.e., the ray 
tube) shrinks down on a particular ray, we have in (ξ, η, φ) coordinates 

IL· 
I n da — I ne 

'φ dV « ν2φ - J άξ άη άφ, 
n 

ηΑφ+αφ - nJ\ άξ άη, 

so that 
2 n nJ\<t,+d4, — пЛ\ф 

v*-3 άφ 

(10.1.59) 

(10.1.60) 

(10.1.61) 
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In the limit as άφ —► 0 we obtain, on using (10.1.58), 

We are now ready to solve the transport equations (10.1.54)—(10.1.55). Inserting 
(10.1.62) into (10.1.54) yields 

2n^- + -T~(nJ)v0 = 0. (10.1.63) 
ασ J da 

This can be written as 
2n ^ o V n J ) = 0 ( 1 0 1 6 4 ) 

\fnJ da 

Integrating along the ray x(a) from σο to σ, with ν^\σα = V0(a0) gives 

~n(a0)J(a0)
ll/2 

ν0{σ) = V0(a0) 
n(a)J{a) 

(10.1.65) 

where the dependence of the solution on variables other than a has been suppressed. 
Similarly, the transport equations ( 10.1.55) can be written as 

2n d(vjVnJ) „ 9 „„. 
^ — - = -V2Vj_i, j > 1. (10.1.66) 

VnJ da 

Again integrating along a ray and putting Vj\ao = Vj(ao), we have 

'n{a0)J(a0)'
]1/2 

νί{σ) = Vj(°o) n(a)J(a) (σ) ]ση V n 3 da, j > 1. 
2y/n{a)J(a) 

(10.1.67) 
Although the derivation was carried out for the three-dimensional case, the results 

are valid in two dimensions as well, with J defined appropriately. On the reference 
wave front φ = 0 we now introduce the single coordinate ξ and determine all the 
rays orthogonal to that wave front. In the resulting (ξ, φ) coordinate system we set 
x = r(£, φ) and find that the linear element ds on a wave front is given as ds = J άξ, 
where J = |r^|. The area element dA then has the form dA = dsda = (l/n)J άξάφ, 
since ( 10.1.44) is valid in two dimensions as well. In deriving ( 10.1.61 ) the integration 
is carried out over a plane region bounded by two wave-fronts and two rays. The 
expression for V 2 ^ is the same as was found in the three dimensional problem, as is 
the case for the expressions for the phase function φ and the amplitude terms Vj. 

In both cases J represents an expansion or contraction factor for the rays. It is 
proportional to an area or linear element on the wave fronts. It increases or decreases 
in magnitude according as the rays diverge or converge. Noting the form of VQ in 
(10.1.65), we find that, to leading order in k, the amplitude of the solution increases 
as the rays converge and decreases as the rays diverge. This result is consistent with 
a basic principle of geometrical optics according to which the field is stronger the 
greater the concentration of the rays. 
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If the rays intersect at same point or curve, J vanishes and the amplitude terms 
Vj all blow up. The solution of the reduced wave equation of which we have found 
the asymptotic expansion either remains finite in that region or has a different type 
of singularity, as seen in our discussion of Green's functions above. The asymptotic 
result is not valid in regions where the rays intersect and modified (asymptotic) results 
must be found in such regions. 

The dependence of vo on the divergence or convergence of the rays may be obtained 
by means of different method. Multiplying ( 10.1.12) by vo gives 

v0 [2V0 · Wv0 + ν0Ψφ] = V · (wgV0) = 0. (10.1.68) 

Integrating ( 10.1.68) over the ray tube and using the divergence theorem gives 

0 = if V-(v%V(t>)dV = I vlnda- f v%nda, (10.1.69) 
JjR JSi JSo 

as is easily seen on applying the results that lead from (10.1.56) to (10.1.57). In an 
approximate sense, (10.1.69) may be thought to represent a conservation of energy 
along the ray tubes of the solution of the reduced wave equation. If the ray tube 
shrinks down on a ray x(<r), we have 

Wg7i(ia| = VQTI da\ , (10.1.70) 

where σ\ and σο correspond to two points on the ray. Noting relation da = J άξ άη 
between da and J, we find that VQ at an arbitrary point on a ray is given in terms of 
^oUo = V(ao) precisely as in (10.1.65). 

Specific Ray Systems and Wave Fronts 

If the index of refraction n is a constant, some simple explicit forms for the function 
J and thereby for the amplitude term VQ can be found. The rays are straight lines and 
we may assume without loss of generality that n = 1. Then, as shown by (10.1.44), 
both σ and φ measure arc length on the rays. 

The case of plane wave fronts arises if the rays are parallel lines. Then the area 
element da remains constant on all wave fronts, so that J = constant as well. This 
implies that v0 is constant along the rays. If VQ retains the same constant value on 
all rays, the amplitude terms Vj, with j > 1, may be chosen to vanish, and an exact 
plane wave solution of the reduced wave equation results. (Since the wave fronts are 
orthogonal to the rays, it is clear that they must be planes.) If v0 assumes different 
values on different rays, we obtain what is called a general plane wave. The wave 
fronts φ = constant are again planes, but the amplitude term vo, although it is constant 
on each ray, may vary in magnitude from point to point on the wave fronts. A similar 
result applies in the two-dimensional problem. 

To obtain spherical wave fronts, we introduce spherical coordinates 

x = r sm(9) cos(w), у = rsin(0)sin(u;), z = rcos(ö), (10.1.71) 
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where r > 0, 0 < θ < π, and 0 < ω < 2π. With n = 1, we can put φ = r — r\, 
where r\ is a constant and the reference wave front ф = 0 is the sphere r = r\. The 
ray equation (10.1.42) becomes cPx/da2 = 0 and has the solution x = a + ba, where 
a and b are constant vectors and |b| = 1 in view of (10.1.43). Replacing the variable 
σ by r and introducing the initial data 

x(n) = a + b r\ = [r\ sin(0) cos(cti), r\ sin(0) sin(w), r\ cos(ö)], (10.1.72) 

^ Ρ ^ = b = [sin(0) cos(w), sin(0) sin(W), cos(6>)], (10.1.73) 

we find that 

x(r) = b r = [rsin(ö)cos(w), rsin(0)sin(u;), rcos(0)]. (10.1.74) 

The data ( 10.1.72)-( 10.1.73) imply that the rays x(r) pass through and are orthogonal 
to the sphere r = ri, and (10.1.74) shows the rays to be radial lines issuing from 
the origin. The radial parameter r clearly measures arc length on the rays, and the 
spheres φ = constant are orthogonal to the rays. 

To determine the function J for this case, we identify the wave front coordinates 
ξ and η on φ = 0, with the angular variables Θ and ω. Since n = 1, both φ 
and r measure arc length on the rays. The transformation from Cartesian to ray 
coordinates is x = r(r,9,u>) = [rsin(0)cos(a;), rsin(0)sin(tj), rcos(ö)], as seen 
from (10.1.71). Then da is an element of area on a sphere, and we have da = 
r2 sin(0) άθ du> = J άθ du, where J = \re x Γω| = r2 sin(ö). Thus 

= V0(r0) ^ (10.1.75) 
r 

on each ray. Assuming that VO(TO) is independent of Θ and ω and has the same value 
on each ray, the Vj (j > 1) may be chosen to vanish and the solution of the reduced 
wave equation is the spherical wave и = (с/г)егкг, where с is an arbitrary constant. 
The asymptotic approach yields an exact solution of the reduced wave equation valid 
up to the singular point r = 0. That point is a.focus for the rays since they all intersect 
there. Although the (asymptotic) solution has a valid form up to r = 0, it does blow 
up there since J = 0. 

More generally, the term Vo(r0) in (10.1.75) may vary from ray to ray; that is, it 
has a nonconstant dependence on Θ and ω. Then the wave fronts are still spheres, and 
vo decays like 1/r along a given ray, but a more complicated expression results for 
the amplitude of the entire field that involves all the Vj. 

If we replace the spherical coordinates (10.1.71) by the cylindrical coordinates 
x = rsin(ö), у = rcos(ö), z = z and proceed as before, we obtain cylin-
drical wave fronts. The rays are the radial lines of the polar coordinate system 
x = r sin(#), у = r cos(ö) and the wave fronts are circular cylinders. Then J = r 
andvoisgivenas Vo(ro)[r0/r]1//2 on setting n = 1. In contrast to the case of spherical 
waves, even if we assume that V0(r0) is independent of Θ, the leading term VQ in the 

vo = V0(r0) 
J(ro)) 
J(r) J 
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asymptotic expansion of the solution does not yield an exact solution of the reduced 
wave equation. This was demonstrated when an asymptotic cylindrical wave solu-
tion of the reduced wave equation was found previously from the free-space Green's 
function. Also, the result is not valid up to the singular point, as was the case for the 
spherical wave. The exact and asymptotic results are both singular at the focal point 
of the rays, but they have different types of singularities there, as was shown. 

Next we consider a two-dimensional example in which the rays form a (smooth) 
envelope. If x = R(£) is the equation of this envelope or caustic curve with ξ as an 
arc length parameter, the rays are just the tangent lines of this curve. If σ represents 
arc length along the rays, an orthogonal coordinate system in ξ and σ is given by the 
equations of transformation 

x = Γ(ξ, σ) = R ( 0 + (σ- ξ)Κ'(ξ). (10.1.76) 

Since ξ is arc length, we have |R'(C) I = 1, Κ'(ξ)·Κ"(ξ) = 0,and|R"(£)| = 1/ρ(ζ), 
where ρ(ξ) is the radius of curvature of the caustic curve. ΤηεηΓξ = (σ—£)R"(£)and 
rCT = R ' (0 imply that Γξ · τσ = 0, so that the (ξ, σ) coordinate system is orthogonal. 
The lines ξ = constant are the rays, while the curves σ = constant are the (orthogonal) 
wave fronts. This may be verified directly by noting that with 

Лс = |Γξ| = - ^ ^ i , ha = \xa\ = \, (10.1.77) 

we have 

rfl {νφ)2 = щф* + цф1 = V^W* Φ* + φ1 (10Л-78) 

Thus ф = σ is a solution of the eiconal equation (V<£)2 = 1. The function J for this 
ray system is J = |r^| = \σ — ξ\/ρ, and the solution VQ has the form 

υ0(σ) = V0(a0) 
Jfro) 
J(a) 

1/2 

VfcM σο-ξ 
1/2 

(10.1.79) 

The amplitude term vo is singular when σ = ξ, and this occurs at points on the 
caustic x = R(£), as follows from (10.1.76). The rays intersect at the caustic so that 
J = 0 on that curve. Each member of the family of rays (for which — oo < σ < oo) 
intersects the caustic at σ = ξ. By considering the set of points σ > ζ and σ < ξ on 
each ray, we determine two groups of rays, each of which begins or ends at the caustic. 
The asymptotic solutions given for φ and vo, combined with the results that can be 
obtained for all the г^, are valid for each group of rays away from the caustic curve. 
On the caustic curve these asymptotic expansions blow up, while the corresponding 
solutions of the reduced wave equation are bounded there. Rather than reject the 
asymptotic approach in a neighborhood of the caustic, we present a boundary layer 
approach below that yields a finite asymptotic result at the caustic. 
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Boundary Value Problems for the Reduced Wave Equation 

A typical boundary value problem for the reduced wave equation (10.1.1), which 
is to be solved asymptotically for large k, is formulated in the manner indicated 
in our discussion of Green's functions above. An incident wave ui(x) given as an 
asymptotic series of the form (10.1.7) and (10.1.11) approaches a boundary region 
and is scattered by it. The resulting scattered wave us(x) is again an asymptotic 
series of the type (10.1.7) and (10.1.11) and must be determined. The total field 
u(x) = uj(x) + us(x), an asymptotic solution of (10.1.1), satisfies a homogeneous 
boundary condition of the first, second, third, or mixed kind on the boundary region. 
We mostly assume that u(x) = 0 on the boundary in our discussion. The problem 
is to be solved in an exterior unbounded region and we require that us(x) satisfy a 
radiation condition at infinity. The asymptotic version of the problem replaces the 
radiation condition with an outgoing condition at the boundary. If φ(χ) is the phase 
term of the asymptotic expansion of us(x), then us(x) is said to be outgoing at the 
boundary if the exterior normal derivative of φ(χ) [i.e., дф(х)/дп = V0(x) · N] is 
positive for every exterior unit normal N to the boundary. This means that ад(х) 
travels away from the boundary and is radiating toward infinity. 

The specification of the incident wave u/(x), the boundary condition, and the 
outgoing condition uniquely specify us (x) and thereby the asymptotic solution u(x), 
provided that the phase and the amplitude terms in the asymptotic expansion of us (x) 
can be determined. We assume that u/(x) is given as 

oo 

u/(x) = е ^ ( х ) ^2Wj(x)(ik)-j, (10.1.80) 
j=o 

where the phase ψ(χ) and the amplitude terms Wj (x) are known. The scattered wave 
is expanded as 

oo 

us(x) = екф{х) ^Vj{x){ik)-j, (10.1.81) 

with ф(х) and the Vj (x) to be determined. We have 

oo oo 

e<**(«) ̂ υ ί ( χ ) ( ΐ Α ) - ί = -e
ifc*W 53«7j(x)(iife)-J, (10.1.82) 

3=0 j=0 

on the boundary, if u(x) = U[(x) + us(x) = 0 there. This yields 

φ(χ) = ψ{χ), vj(%) = -Wj(x), j>0, (10.1.83) 

on the boundary. 
As we have seen, the (initial) condition (10.1.83) for φ(χ) is by itself insufficient 

to specify the phase uniquely. In determining the rays associated with the phase ф(х), 
we must also specify a direction for these rays on the (boundary) region where ф(х) 
is given. In general, there are two possible ray directions at each point where ф(х) 
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is specified. Now, V<£(x) has the direction of the rays as shown by (10.1.31), and it 
has been shown that if the rays are not tangent to the surface where φ(χ) is specified, 
their two possible directions lie on opposite sides of the surface. Thus the outgoing 
condition on us(x) uniquely specifies a ray direction at each point, as is easily seen. 

Once the rays and the phase are determined, the amplitude terms Vj(x) can be 
obtained by integrating along the rays as in ( 10.1.54)—( 10.1.55) and using the data 
(10.1.83) as initial conditions. 

Reflection of a Cylindrical Wave by a Parabola 

We now consider the problem of the reflection of a cylindrical wave by a parabohc 
cylinder and construct its asymptotic solution employing the foregoing method. The 
line source of the (incident) cylindrical wave is assumed to lie on the z-axis, and the 
generators of the parabolic cylinder are parallel to the z-axis. It is assumed that index 
of refraction n = 1. Thus the problem may be treated as two-dimensional and we 
look for a solution in the form it = u(x, y). 

The equation of the parabola is given as 

» = ~a У2 - \ , (10.1.84) 

where a > 0 is a given constant. A cylindrical wave is generated by a source located 
at the origin, which is also the focus of the parabola. Consequently, the total field 
u(x, y) satisfies the equation 

V2u{x, y) + k2u(x, y) = - 5(x)S(y), (10.1.85) 

where 6(x)6(y) is the two-dimensional Dirac delta function. We assume that u(x, y) 
vanishes on the parabola [i.e., и (у2/2a — a/2, y) = 0], and that u(x, y) satisfies a 
radiation condition at infinity. An outwardly radiating wave generated by the source 
is uj(x,y) = (Ì/4)HQ {kr), where r2 = x2 + y2, as was shown in the beginning 
of this section. We are concerned with the asymptotic problem for large k. Thus we 
replace the foregoing by its asymptotic expansion. The two leading terms are given 
as 

^ Ч \ Щ 1 + ^ ) Ч г * г ~ т ) t10-1·86) 
on using the large argument asymptotic expansion of Щ ' (kr). 

The wave ui(x,y) is a cylindrical wave incident on the parabola. The asymp-
totic problem then looks for a solution u{x,y) « щ{х,у) + us(x,y), where the 
incident wave ui(x,y) is given by (10.1.86) and the scattered wave us{x,y), ex-
panded as in (10.1.81), is to be determined. The boundary condition requires that 
us (y2/2a — a/2, y) = — ui (y2/2a — a/2,y). The radiation condition implies that 
us(x, y) is an outgoing wave at the parabola. 
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Comparing with the notation used in our discussion of the general problem yields 
as the phase and leading amplitude terms for the incident wave ui(x, y), 

*(z,y)=rt Mx,y) = -sJ---ur,Wl(x,y) = -sJ- r3/2. 
(10.1.87) 

The other terms in the asymptotic expansion of ui(x, y) have not been specified in 
(10.1.86). The appropriate data for the scattered or reflected wave us(x, y) on the 
parabola are that its phase term ф(х, у) satisfy 

ф(х,у)=г on x=Yay
2-% (10.1.88) 

and that ф(х, у) be outgoing on the parabola. The first two amplitude terms vo(x, y) 
and v\(x, y) ofus(x, y) must satisfy 

on the parabola, in view of ( 10.1.87). 
To solve for the phase ф(х, у) of the scattered wave us(x, y), we first represent 

the parabola in parametric form as 

у = T, x = — (T2 - a2), -oo < r < oo. (10.1.90) 

(We note that τ is not an arc length parameter here.) With σ as arc length along the 
rays we must solve the characteristic equations for χ(σ, τ), y(a, τ), φ(σ, τ), ρ(σ, τ), 
and q(a, τ). The initial conditions are given at σ = 0. Thus 

у(0,т) = т, ζ(0,τ) = ^ ( τ 2 - α 2 ) , (10.1.91) 

as follows from (10.1.90). Thatis,a = 0 corresponds to the parabola (10.1.90). The 
condition (10.1.88) for φ yields 

ф(0,т) = ±-(т2+а2), (10.1.92) 

on expressing ( 10.1.90) in terms of the variable т. 
The initial conditions for ρ(σ, τ) and q(a, r ) are determined by proceeding as in 

Section 2.4. The eiconal equation requires thatp2(0, r) + <72(0, r) = 1, and the strip 
condition states that дф(0, т)/дт = p(0, r) дх(0, т)/дт + q(0, т) ду(0, т)/дт on 
the parabola. This yields т/а = р(0, т) т/а + q(0, r ) on using (10.1.91)—(10.1.92). 
Solving for p(0, r) and q(0, r ) gives 

ρ(0,τ) = 1, ς(0,τ) = 0, (10.1.93) 

г 2 — o2 Ίητ 
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One of these two sets of initial conditions for ρ(σ, τ) and q(a, r ) must be rejected 
on the basis of the outgoing condition satisfied by us(x, y). For this problem, this 
means that if N is the unit normal of the parabola that points towards the interior 
region of the parabola (which contains the focus), we must have Уф N > 0 on the 
parabola. We easily find that the unit normal N is N(r) = [а, —т]/у/т2 + a2. Since 
Уф = \ρ{σ, τ), q(a, τ)], we see that on the parabola Уф ■ N = а/\/т2 + a2 > 0 
if (10.1.93) is used, whereas Уф · N = -a/Vr2 + a2 < 0 if (10.1.94) is used. 
Therefore, we conclude that (10.1.93) are the appropriate initial conditions for the 
problem. 

The characteristic equations (10.1.28)—(10.1.30) for this problem are 

dx dy άφ dp dq .„„ „ , 
— = p , / = < / , - p = l, / = ° » / = ° > (10.1.95) 
da da da da da 

sinceri = land du = 2ds. The last two equations in (10.1.95) imply that ρ(σ,τ) and 
q(a, T) are constant along the characteristics. Thus they are equal to their initial values 
(10.1.93) and ρ(σ,τ) = 1, q(a,r) = 0. Inserting these results into the equations for 
x and у in ( 10.1.95) and using ( 10.1.91 ) gives 

х(а,т) =а+— (т2 -а2), у(а,т)=т. (10.1.96) 

Finally, we obtain for φ, in view of ( 10.1.95) and ( 10.1.92), the result 

0 ( σ , τ ) = σ + - ^ ( τ 2 + α2). (10.1.97) 
la 

We invert the system (10.1.96) and express a and r as functions of x and y, to 
obtain a = x — (l/2a)(y2 - α2), τ = y. Inserting this into (10.1.97) yields 

ф(х, у) = x + a. (10.1.98) 

Thus us(x, y) has the phase of a plane wave. Since the amplitude terms of us(x, y) 
are not constant, as we will show, us(x, y) is a general plane wave. 

To solve for vo(x,y) and v\(x,y) we first note that У2ф(х,у) = 0 in view of 
(10.1.98). Further, r = (1/2α)(τ2 + a2) on the parabola. Thus 2V<£ · VTJQ + 
ν2φν0 = 2 dvo/да = Q.Th\is,v0(a,r) =ι>0(0,τ) andu0(a,r) = -(г/4к)у/2/пк 
у/2а/{т2 + а2) е-™1* on using (10.1.89). In terms of я and y, 

since г = у. The equation for v\(a,r) is 2 dvi(a,r)/da = — V2vo(er,т), where 
the right side is a function of r only, in view of (10.1.99). Expressed in terms of 
the (x, y) variables, vi(x, y) takes the form v\(x, y) = V\(y)x + V^y), with given 
V\(y) and V2{y), which we do not exhibit. 
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We have shown that us(x, y) is given as 

us(x,y) « | ~ У 5 ^ ^ 2 е-*/4 + ±{Ъ<я)х + Va(»))| exP[ik(x+a)l 

(10.1.100) 
and this has the form of a general plane wave. Two terms have been calculated to 
show that the asymptotic result (10.1.100) is not uniformly valid. As x increases to 
the point where x = 0(k), it follows from (10.1.100) that the term (l/ik)vi(x,y) 
is of the same order of magnitude as vo(x, y). [We note that \/л/к is a factor of 
the full expression for us{x, y).] Therefore, the asymptotic expansion of us(x, y) 
becomes disordered, in that (l/ik)v\(x, y) is not of lower order in к than VQ{X, y). 
The asymptotic expansion we have obtained for u$ (x, y) is, consequently, useful only 
if x<0(k). 

The growth of the amplitude term v\ (x, y), and that of further terms in the expan-
sion of us(x, y), corresponds to the secular behavior encountered and discussed in 
a number of problems in the Chapter 9. To analyze this question more closely, we 
insert us(x,y) = v(x,y) exp[ifc(a; + a)] into the reduced wave equation (10.1.1) 
with n = 1 and find that 

2ikvx(x, y) + vxx(x, y) + vyy(x, y) = 0. (10.1.101) 

Insertingv(x,y) = Y^=0Vj{x,y){ik)~i into(10.1.101)andsorvingforthet>j(x,y) 
shows that Vj(x, y) = 0{χί) as x —> co, as has been found for v\(x, y). 

The secularity problems encountered may be removed by using a stretching trans-
formation similar to that used in the boundary layer theory of Section 9.3. Since our 
asymptotic results must be modified only for ж > O(k), we set a; = fc£ in (10.1.101) 
to emphasize the region where x is large. This yields 

2ίνξ(ξ, у) + νυυ(ξ, y) + ̂  υξζ(ξ, у) = 0. (10.1.102) 

То leading order in к [i.e., with ν(ξ, у) « ν(ξ, у)] we obtain a parabolic Schrödinger 
equation 

2ivt(t,y)+vyyti,y)=0. (10.1.103) 

We must find a solution of ( 10.1.103) that matches the asymptotic result given above 
for v(x, y), to leading order terms, as ξ = x/k —> 0. Effectively, we are considering 
an initial value problem for (10.1.103) in the region ξ > 0 withi)(£,y) specified ata 
positive value of ξ. 

A general solution of ( 10.1.103) is 

v{(:>y) = L\7texp 
2£ 

f(s)ds. (10.1.104) 

The bracketed term in (10.1.104) is, apart from a constant factor, a fundamental 
solution of ( 10.1.103). By direct substitution we can verify that it satisfies ( 10.1.103) 
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for£ > 0. /(s)in(10.1.104)isarbitraryandmustbespecifiedbymatching(10.1.104) 
with the foregoing asymptotic results. 

To carry out the matching procedure, we rewrite (10.1.104) in terms of £ = fc£ 
and у to obtain 

v{x,y) = W - / exp 
ik(y-s)2 

2x 
f(s)ds. (10.1.105) 

Now if x < O(k), we see that the exponential in (10.1.105) is rapidly oscillating 
since к is large by assumption. Therefore, we can evaluate ( 10.1.105) by the method 
of stationary phase, as presented in Section 5.7. The phase term 0(s) = (y — s)2/2x 
in (10.1.105) has a stationary point where ф'{во) = 0, that is, at so = y. Then the 
leading order result as given in (5.7.4) is 

v(x, y) « v ^ e x p №\ f(y). (10.1.106) 

This result, is valid for small ξ = x/k, must be equated to the leading amplitude term 
vo(x,y) given in (10.1.99). Thus f(y) = -(l/4ir)\j2a/{y2 + a2) andv(x,y) [i.e., 
(10.1.105)] is completely specified. 

We might expect that it should be possible to generate the amplitude term v\ (x, y) 
from the asymptotic expansion of the integral (10.1.105). This is indeed possible, but 
we do not carry out this calculation. 

Asymptotic Expansion at a Caustic 

The foregoing discussion has shown that the geometrical optics results, in which the 
scattered and incident fields are expanded in the form ( 10.1.7) and ( 10.1.11 ), are not 
always adequate. In regions where the rays intersect or in the far field, the geometrical 
optics solution is not valid and a modified expansion or result is needed. Next we 
show how to construct a valid asymptotic result near a two-dimensional caustic along 
which the rays intersect and the geometrical optics result fails. The boundary layer 
method is used. 

We consider a two-dimensional problem for the reduced wave equation (10.1.1) 
with n = 1 and an asymptotic solution of the form (10.1.7) and (10.1.11). The rays 
for this solution are assumed to have a smooth envelope. The envelope is a caustic 
curve for this problem, and the asymptotic solution breaks down on the caustic, as we 
have seen. We retain the notation introduced in our discussion of this problem [see 
(10.1.76H10.1.79)]. 

The equation of the caustic is assumed to be x = R(£), where ξ is arc length on 
the curve. The rays are the tangent lines to the caustic and are given as 

x = τ(ξ, σ) = R ( 0 + (σ- ξ)Κ'(ξ) (10.1.107) 
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with a as arc length on the rays, as shown following (10.1.76). The phase is φ = a, 
and in view of (10.1.79), the leading term in the asymptotic result is 

VbM 
ξ-σ 

1/2 

Лка (10.1.108) 

From ( 10.1.107) we see that when σ = ξ, the rays intersect the caustic and ( 10.1.108) 
shows that the asymptotic result is infinite on the caustic. We assume that a and σο in 
(10.1.108) are less than ξ and that V0(ao) is a prescribed function. Thus (10.1.108) 
represents a wave approaching the caustic x = R(£), whose amplitude becomes 
infinite there. 

Although the asymptotic field is singular at the caustic, the actual field is finite there. 
After the incoming rays of the wave that approaches the caustic pass the caustic, they 
become outgoing rays. The resulting outgoing field is well behaved, and we must 
determine its geometrical optics representation. In addition, no rays penetrate to the 
concave side of the caustic as seen in Figure 10.3. As a result, the geometrical optics 
field must vanish in that region. The actual field is, in fact, nonzero there. We wish 
to study the field at and near the caustic and to determine the transition undergone by 
the geometrical optics field on its passage through the caustic region, that is, how its 
amplitude and phase terms change. 

Figure 10.3 The caustic curve. 

To study the field near the caustic x = R(£), we express the reduced wave equation 
in (ξ, a) coordinates as defined by (10.1.107). The coordinate system is orthogonal 
and we have from (10.1.77) Λ,ξ = (ξ — α)ρ(ξ), ha = 1, where/? = ρ(ξ) is the radius 
of curvature of the caustic. We are at present only considering values of a for which 
a < ξ, since we would otherwise have a double covering of the region above the 
caustic curve. That is, since the full tangent lines cover the region twice, we restrict 
ourselves to half-lines. 

The reduced wave equation (10.1.1) with n = 1 takes the form 

1 д 
ξ — а да 

(ξ-σ. 
9η(ξ,σ) 

да 
Ρ(ξ) д \ρ(ξ) ди(£,а) 
ζ - a di [ξ - a θξ 

+ Ρη(ξ,σ) =0 . 
(10.1.109) 
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Let 
η(ξ,σ) = w(£,a)e ika (10.1.110) 

and insert (10.1.110) into (10.1.109). We retain the phase term of the geometrical 
optics solution (10.1.108) in the expression (10.1.110) since it is the amplitude term 
of (10.1.108) that blows up at the caustic. ιυ(ξ,σ) satisfies 

ik[ 2 
dw 1 
da ξ - a w 

д 
ξ — σ да 

(ξ-σ) 
dw 
Έσ + 

Ρ(ξ) д 
ξ-αδξ 

ρ(ξ) dw 

To emphasize the neighborhood of the caustic we set 

ξ-σ = АГгт/, ξ = λ, 

(10.1.111) 

(10.1.112) 

with the stretching exponent r > 0 to be determined. Since к 3> 1, the stretching 
transformation (10.1.112) implies that small values of ξ — a are to be considered. 
Now д/θξ = д/дХ + Wdjdr) and д/да = -кгд/д^ so that (10.1.111) becomes 

-ik l + r 2 ^ A ) + 1 
at] η 

к*_д_ 
η δη V 

9υ){η, λ) 
8η 

+ 
кгр{Х) ( д_ 

ЭХ 
+ fc' д_ 

θη 

krp(X) fdwfaX) dw^, X) 
= 0. 

ÖX δη 
(10.1.113) 

In assessing the significance of the terms in ( 10.1.113), we note that the coefficient 
of fc1+r should be retained, since in the absence of the stretching transformation it is 
this term that yields the geometrical optics amplitude results in ( 10.1.108). In addition, 
it is the absence of second derivative terms in the transport equations that invalidates 
the geometrical optics result at the caustic. Therefore, we must retain at least one 
second derivative term in (10.1.113). In effect, we have a singular perturbation 
problem in ( 10.1.111 ) and it is the neglect of the higher derivative terms that causes 
difficulties in the geometrical optics expansion. The highest power of к in the second 
derivative terms in (10.1.113) comes from k4r. Thus we choose r so that k1+r and 
k4r are equally significant. The yields 1 + r — 4r, with the result that r = ^. 

Accordingly, we set r = ^ in (10.1.113) and expand w(η, X) in a series in powers 
of fc-1/3. With wo(i?, λ) as the leading term in the series, we find that ιυο(τ/, A) 
satisfies the boundary layer equation 

2 °У ' ; +-w0(η,Χ) 
ση η 

P2(A) д 
η θη 

1. θΜ0(η,Χ) 
η θη 

= 0. (10.1.114) 

This is an ODE for w0 (η, X) as a function of η and can be simplified by setting 
υα0(η, X) = exp(w/3/3p2(A))W(z), where 

z = (V(A))V3 ' 
(10.1.115) 
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and W(z) satisfies the equation 

W"(z) + zW(z) = 0. (10.1.116) 

With z replaced by -z, (10.1.116) becomes the Airy equation, which has two 
linearly independent solutions Ai(z) and Bi(z), some of whose properties we now 
present. The Airy function Ai(z) decays exponentially and Bi(z) grows exponen-
tially as z —> +00. Both functions are oscillatory for z < 0. The asymptotic behavior 
ofthe Airy function Ai(z) for complex-valued z expressed as z = \ζ\ειθ, with \z\ > 0 
and —π < θ < π, is given as 

Ai(z) 2π 
( z ) - 1 / 4 e x p ( - - z 3 / 2 | z | ->oo, |ö| < 7г, (10.1.117) 

and as z —» —oo (this corresponds to θ = ±π), we have 

A i ( z ) R i - L ( - z ) - ^ s i n Q ( - z ) 3 / 2
 + j ) , 

From the functional relations 

-co. (10.1.118) 

Ai(z) = -ωΑί(ωζ)-ω2Αί(ω2ζ), Bi{z) = ίωΑί(ωζ)-ίω2Αι(ω2ζ), (10.1.119) 

where ω = exp(—2πί/3), we can determine the asymptotic behavior ofthe solutions 
Bi(z), Αί(ωζ), and Αι{ω2ζ) of the Airy equation in terms ofthe results (10.1.117)-
(10.1.118) for Ai(z). 

As a result, a general solution of the equation (10.1.116) for W(z) is 

W(z) = Cl(0Ai(-z) + c2(0Bi(-z), (10.1.120) 

where the functions ci(£) and сг(0 must be determined by matching the boundary 
layer result WQélk" with the geometrical optics result (10.1.108). It is easily seen 
from (10.1.117) that Αι(-ωζ) has the asymptotic behavior 

Αί{-ωζ) = Aiize™'3) 
2^F 

-1/4 - > 3 / 2 + n ( z ) - " 4 exp I-г l-z°" + — I I , z - oo, 

(10.1.121) 

and it follows from (10.1.119) that Ai(-wz) = (1/2ίω) [Bi(-z)-iAi(-z)\. Putting 
ci = —гс2 in (10.1.120), we express W(z) as W(z) = ε(ξ)Αί(—ωζ), where c(£) 
is to be specified. As we now demonstrate, this choice for W(z) is appropriate for 
matching the boundary layer and geometrical optics solution. 

The boundary layer solution u0(£, σ) = «?ο(ξ, a)elka takes the form 

ud&,&) = cJ£)Ai 
2Λ-Κ k2e 

V(0 

1/2 

« - σ? exp ik [ σ + 
3/>2(0 

(10.1.122) 
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To match (10.1.122) with the geometrical optics result ( 10.1.108), we expand the Airy 
function asymptotically for ξ — σ > 0 and к large. In view of ( 10.1.121 ), we obtain 

ο(ί)1 /3 / ί'πλ 
Μξ,*) * ο(ξ) ^ 1 / б ^ _ , ) 1 / а «ρ(ί*σ - - J . (10.1.123) 

Comparing with (10.1.108) shows that c(£) must be chosen as 

c (0 = k ^ ^ 25/V(Ì)-1 / 3Vo(ao)(Ì - σο)1/2 exp ( g ) , (10.1.124) 

and the boundary layer term ( 10.1.122) is completely specified. 
We find that the field is not infinite at the caustic as predicted by the geometrical 

optics result. Instead, as seen from (10.1.122) and (10.1.124), it has a finite value at 
the caustic, that is, when ξ = σ. However, the amplitude of the geometrical optics 
term is 0(1) in к away from the caustic, while at and near the caustic, the boundary 
layer term has an amplitude that is 0{k1/6). Since к 3> 1, we do find a growth in 
the amplitude of the field at the caustic as is to be expected, but it does not become 
infinite there. 

While the singularity at the caustic has been eliminated, the foregoing result is 
not completely satisfactory, for the following reasons. First, it predicts that the field 
below the caustic (i.e., in the region not penetrated by the rays) grows without bound 
as we show. The field below the caustic is expected to be weaker than the geometrical 
optics field, and it should decay rather than grow below the caustic. Second, it is not 
apparent from our asymptotic solution what role is played by the outgoing geometrical 
optics field that results after the incident wave passes through the caustic and how 
to determine that field. Consequently, we modify our result so as to remove these 
difficulties. 

To begin, we show that the boundary layer solution (10.1.122) grows without 
bound below the caustic. To do so, an approximate expression for the distance along 
the normal lines to the caustic valid in the boundary layer region is found. The wave 
fronts associated with the system of rays ( 10.1.107) are the curves σ = constant. Since 
the wave fronts are orthogonal to the rays and the rays are tangent to the caustic, we 
see that the wave fronts are orthogonal to the caustic. Now, distance along the wave 
front σ = constant is given as ds = \ξ — σ\/ρ(ξ) άξ. The boundary layer region is 
determined by£ = a+0(fc - 1 / 3 ) in view of(10.1.112). On integrating the expression 
for ds on the wave front σ = constant in the boundary layer region, we obtain 

■ * Ш« - °f = k'"° Ш) - ( ^ )" 3 k~m'' (10U25) 

where (10.1.112) and (10.1.115) are used. Within the boundary layer, the variable s 
yields a measure of distance along the normal line to the caustic. Positive values of s 
correspond to points above the caustic (i.e., in the ray region), and negative values of 
s correspond to points below the caustic. Using ( 10.1.125), we express the boundary 
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layer solution (10.1.122) in terms of the variables ξ and s. To leading order we have 

1/3 

"o ~ ο{ξ)Αί exp 
* < & ) * * · 

pife« (10.1.126) 

where we have set σ = £ + 0(/c - 1 / 3 ) in the boundary layer. If (10.1.126) is evaluated 
for negative values of s in the region below the caustic, we find that k2/3s becomes 
large and negative. Then ( 10.1.117) shows that \щ | grows exponentially as k2^3s —» 
— 00. 

This difficulty may be resolved by considering the behavior of not only the incident 
field, but also of the outgoing field near the caustic. The rays for both the incident 
and outgoing fields are given by (10.1.107). On a ray of the incident field we have 
σ < ξ, whereas on a ray of the outgoing field we have σ > ξ. At the caustic both 
rays meet and σ = ξ. 

The leading term of the geometrical optics form of the incident field и is given in 
( 10.1.108). We denote the outgoing field by ù. Since the ray structure is the same for 
both fields, the leading term in the geometrical optics representation of ù must have 
the form 

υ^ν0(ξ)(σ-ξ)-1/2είΙίσ. (10.1.127) 

The difference between (10.1.127) and (10.1.108) lies in the fact that σ > ξ in 
(10.1.127), while σ < ξ in (10.1.108). Further, the term Ϋ0(ξ) is as yet unspecified. 
Both ( 10.1.127) and ( 10.1.108) are singular on the caustic. 

The total field at a point (x, y) above the caustic is a sum of the incident and 
outgoing fields and is given as и + ù. We must note that even though the incident and 
outgoing fields are expressed in terms of the variables ξ and σ, at each point (x, y) 
these fields are evaluated at two different sets of values of ξ and σ. The determination 
of these values is indicated in Figure 10.4. 

(x,y) 

Figure 10.4 The incoming and outgoing rays. 

To determine Vb(£) in (10.1.127) and to resolve the difficulty concerning the be-
havior of the field below the caustic, we consider the behavior of the total field и + ù 
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near the caustic. Now the boundary layer form of the incident field и was already 
given in (10.1.123)—(10.1.124). To study the boundary layer behavior of ü, we may 
carry over the preceding boundary layer results directly. The only difference is that 
the magnification element h^ has the form /ΐξ = (σ — ξ)/ρ(ξ) if σ > ξ, and this 
replaces the expression given previously. 

However, ( 10.1.109) shows that the form of the reduced wave equation in the (ξ, σ) 
variables is unchanged if ξ — σ is replaced by σ — ξ. Thus every result obtained up 
to ( 10.1.116) remains valid for the outgoing field. Therefore, if we define the leading 
order boundary layer term to be г&о, we find that 

гуо = exp 
ιψ 

3p2(0 
W(z), (10.1.128) 

where ί/, z and W(z) are given as in (10.1.112), (10.1.115), and (10.1.116), respec-
tively. 

Noting the asymptotic result (10.1.117), we find that 

00 . А г ( - Л ) = м(ге-«1*) « ±= (z)^* exp [i Q z 3 / 2 + i ) " 

(10.1.129) 

With W{z) = ο(ξ)Αί(-ω2ζ) = ο(ξ)Αί (-ге~™/3), we obtain for ü0 = wQeik", 

1/2 

ύο(ξ,σ) =c(£)Ai 
k2e 

V(0 
(ξ - of exp ik 

(10.1.130) 
To specify θ(ξ) we expand the Airy function in ( 10.1.130) asymptotically for σ - ξ > 
0 and к large. Since ξ — σ occurs in the Airy function in squared form we must use 
the asymptotic form (10.1.129), valid for large positive z. Thereby, the matching 
between the boundary layer result щ and the geometrical optics result ù is carried 
out. 

The variable z that occurs in the above is defined in (10.1.115) and we have 
(2/3)г3/2 = (φρ2(ξ))\ξ - σ\3 = -(φρ2(ξ))(ξ - σ)\ since ξ - σ < 0, so 
that \ξ — σ\ = — (ξ — σ). This result shows why it is appropriate to choose the Airy 
function Αί{—ω2ζ) for this case (i.e., the outgoing field), for the asymptotic form of 
uo(£, σ) is then found to be 

p(01/3 ( in 
υ0(ξ, a) * г ( 0 ^ 1 / 6 2 5 / 6 ( σ _ ξ ) 1 / 2 exp^fca + - (10.1.131) 

Comparing ( 10.1.131 ) with the geometrical optics result ( 10.1.127) yields 

c(0 = fc1/6v^25/6^)-i/3vb(0exP (-%) . (10.1.132) 

Although (10.1.132) expresses c(£) in terms of Vo(£), we still do not know the 
form of Vo(£). We expect that Vb(£) must be expressed in terms of the (given) 
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incident field. To establish this relationship, we examine the total field UQ + щ (to 
leading order) in the boundary layer region. To do so, it is not convenient to use the 
(ξ, σ) variables, since they have different values for щ and üo, as we have indicated. 
Instead, we use the variables ξ and s, where s measures distance along the normal 
from the caustic in the boundary layer region. To the level of approximation used, it 
follows from ( 10.1.125) and the discussion preceding it that the incident and outgoing 
fields are both evaluated at the same point (ξ, s). Thus (to leading order) the total 
boundary layer field ito + ^ο is given as, 

u0 + ùo « k1/6V^ 2 5 / 6 p(0" 1 / 3 e i f c i (10.1.133) 

2 „ ί π \ V 3 

"Ш55> (*£)'■♦ »«г-" ( З Д 
1/3 ■ 

s 

We require that щ + ù0 decay in the region below the caustic, that is, when s < 0 
in (10.1.133). In view of the asymptotic result (10.1.117), this implies that the sum 
of the Airy functions in the bracketed term of (10.1.133) adds up to a multiple of 
Ai\— (2/p(^))1/3fc2//3s], for Ai(—z) decays exponentially as z —> —oo, whereas 
Ai(—ωζ), Αϊ(—ω2ζ), and Bi(—z) all grow exponentially as z —> —oo. Using 
(10.1.119) with z replaced by — z and noting that Αί(-ωζ) = Лг[ехр(г7г/3),г] and 
Ai(—ω2ζ) = Ai[exp(—iir/3)z], we easily conclude that Vo(£) must be chosen such 
that ν0{ξ)βχρ(-ίπ/12) = ων0(σ0)(ξ - σ0)1 / 2βχρ {in/12). Then (10.1.133) be-
comes 

ηο+υ0^^^β-^25/6ρ(ξ)-^ν0(σο)(ξ-σο)1/2Αζ - ί ^ Ϋ "s eifc«. 

(10.1.134) 

and the field decays below the caustic when k2^3s gets large and negative. 
Requiring that the field must decay below the caustic has enabled us to determine 

Vo (ξ). Inserting the result for VQ (ξ) into ( 10.1.127) yields the outgoing geometrical 
optics field 

/p_ \ 1/2 

« ~ ν0(σ0) I 5—^- J eikf f-"/2 (10.1.135) 

with σ > ξ. To leading order, the incident and outgoing geometrical optics field 
have an amplitude term \σ — ξ|-1^2, which is a consequence of the convergence and 
divergence of the rays as the wave approaches and leaves the caustic. However, on 
comparing the phase terms in (10.1.108) and (10.1.135), we find that the incident 
wave undergoes a phase shift by an amount of π/2 as it passes through the caustic 
and becomes the outgoing wave. 

We have seen that according to geometrical optics, the field in the region below 
the caustic must be zero since no rays penetrate into that region. However, the 
boundary layer result showed that there is a nonzero field below the caustic that 
decays exponentially. In the theory of optics when there are nonzero fields in regions 
where geometrical optics predicts that the field must be zero, we attribute these effects 
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to the process ofdiffraction of light. In the following we consider scattering problems 
in which diffraction effects play a significant role. 

Scattering by a Half-Plane 

We assume that a plane wave ui(x, y, z) = elkz is incident on the half-plane z = 
О, у < 0. The resulting field u(x, y, z) = ui(x, y, z)+us(x, y, z), where us(x,y, z) 
is the scattered wave, satisfies the reduced wave equation (10.1.1) with n = 1. The 
total field u(x, y, z) is required to vanish on the half-plane. Thus we have 

V2u{x, y, z) + k2u(x, y, z) = 0, u{x, y, 0) = 0, у < 0. (10.1.136) 

Proceeding as before, we set us(x,y,z) — е
1кФ(х,у·*) J2"L0Vj{x,y,z)(ik)~j. 

On the boundary surface z = 0, у < 0, the initial condition for ф(х, у, z) is 

ф(х,у,0)=0, j / < 0 , (10.1.137) 

and the initial conditions for the Vj(x, y, z) are 

«o(ar,y,0) = - l , i / < 0 , Vj{x,y,0)=0, y<0,j>l. (10.1.138) 

These conditions follow from the fact that if we express the incident field in the form 
Ul{x, y, z) = е*кф(-х>У'*) £ ° 1 0 Wj(x, у, z)(ik)~j, as given in (10.1.80), the incident 
phase term ψ(χ, y,z) = z vanishes at z = 0, and the leading order amplitude 
term wo(x, y, z) = 1 is the only nonzero term in the (asymptotic) expansion of the 
incident field ui(x, y, z) = ellkz. We remark that this problem could be treated as 
being strictly two-dimensional in terms of the y, z variables, but we prefer to deal 
with it in three-dimensional form. 

To determine the phase term ф(х, у, z) of us{x, y, z), ф(х, у, z) must satisfy the 
outgoing condition at the boundary z = 0 in addition to (10.1.137). Clearly, the 
two solutions of the eiconal equation (νφ(χ, у, z))2 = 1 that vanish at z = 0 are 
ф+(х, y,z) = z and ф-(х, у, z) = —z. Requiring that us(x, y, z) be an outgoing 
wave at the boundary determines the appropriate choice for ф(х, у, z). To apply this 
condition we must distinguish between the two sides of the half-plane z = 0, у < 0. 
Accordingly, we express the scattered wave us(x,y,z) in the form us(x,y,z) = 
v±(x, у, г^е

гкФ±(^'У'г)_ On the side of the half-plane facing the half-space z < 0, 
we have ф = ф-(х,у,г) = —z, since the wave us{x,y,z) = V-{x,y,z)e~xkz 

travels away from the half-plane into the half-space z < 0. On the opposite side 
of the half-plane facing the region z > 0, we must set ф = ф+(х, у, z) = z, since 
us{x,y, z) = v+(x,y,z)etkz travels toward the half-space z > 0 away from the 
half-plane 2 = 0 . 

Since the scattered field in the region z < 0 , y < 0 i s a plane wave, we im-
mediately conclude from the initial conditions (10.1.138) for the amplitude terms 
that vo-{x,y, z) — vo-{x,y, 0) = — 1 and Vj_(x, y, z) — Vj_(x,y,Q) = 0forall 
j > 1. Consequently, the scattered wave in this region is given as 

us(x,y,z) = -e-ikz, г < 0 , 2 /<0 . (10.1.139) 
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Intheregionz > 0, у < 0,us(x, y, z) is also aplane wave and (10.1.138) implies 
that VQ+(X, y,z) = —1 and Vj + (x, y, z) = 0 for j > 1. Thus the scattered wave in 
this region is given as 

us(x, у, z) = -eikz, z>0,y<0. (10.1.140) 

There is no boundary surface in the half-space у > 0, and the scattered waves 
(10.1.139)-( 10.1.140) do not penetrate this region since the rays are orthogonal to the 
half-plane z = 0, у < 0. Thus the total field u(x, y, z) = ui{x, y, z) + us(x, y, z) 
predicted by the geometrical optics approach is 

\z\ < oo, у > 0, 
z<0, y<0, (10.1.141) 
z > 0, у < 0. 

The plane у = 0 is a surface of discontinuity for the geometrical optics solution 
(10.1.141). Even though each of the representations of u(x, y, z) given in (10.1.141) 
is an exact solution of the reduced wave equation (10.1.136) in the interior of the 
three indicated regions, the full expression for u(x, y, z) is not a regular solution 
of (10.1.136). The half-plane у = 0, z > 0 is called a shadow boundary since it 
separates the (shadow) region z > 0, у < 0, where no (incident) rays penetrate, from 
the region z > 0, у > 0, where the incident field acts. In a similar fashion we refer 
to the half-plane у = 0, z < 0 as a reflection boundary. It separates the region where 
the incident and reflected field are observed from the region where there is only the 
incident field. 

To obtain a smooth transition for the asymptotic solution of the scattering problem 
across the discontinuity boundaries, we use boundary layer theory. We consider the 
boundaries at у = 0 with z < 0 and z > 0 separately. 

At the shadow boundary у = 0, z > 0, the field on one side is u(x, y, z) = 0, and 
on the other side it is u(x, y, z) = elkz. Thus we set u(x, y, z) = w(x, y, z)elkz in 
(10.1.136) and obtain 

2ikwz{x, y, z) + wxx{x, y, z) + wyy(x, y, z) + wzz(x, y, z) = 0. (10.1.142) 

To emphasize the neighborhood of у = 0, we introduce the stretching transformation 
у — Ιΐ~τη, with r > 0 to be determined. In the x, η, ζ variables, (10.1.142) becomes 
[in terms of the transformed dependent variable w(x, η, ζ)] 

2ikw2(x^,z) + Ιΐ2τυί)ηη(χ,η,ζ) +·ώχχ(χ,η,ζ) + ύ)ζζ(χ,η,ζ) = 0. (10.1.143) 

To ensure that the original leading term 2ikwz {χ,η,ζ) remains as significant as a sec-
ondderivativetermin(10.1.143), wemustsetr = 1/2. This yields А;(2ггЬг(х, η, ζ) + 
wvn(x, η, ζ)) + wxx(x, η, ζ) + wzz(x, η, ζ) = 0, and the equation for the leading-
order boundary layer term WQ(X, η, ζ) is 

пдЩлЛ + ΡΜχ,η,ζ) = 0 
az αψ 

u{x,y,z) 

ikz 

^bfäZ ^ _ £} vKZ 

o, 
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This parabolic Schrödinger equation has already been encountered in our discussion 
of the reflection of a cylindrical wave by a parabola [see ( 10.1.103)]. We require that 
for large values of η = kll2y, the solution WQ(X, η, z) of (10.1.144) matches with 
the geometrical optics result ( 10.1.141 ). 

We rewrite ( 10.1.144) in terms of the original у and z variables and obtain 

dz dy2 (10.1.145) 

Noting the results (10.1.104)-(10.1.105) in our earlier discussion of Schrödinger's 
equation, we consider a general solution of (10.1.145) in the form 

Ik f°° 
w0(x,y,z) = \ - / ( s )exp 

ik(y — s)2 

2z 
f(s) ds, (10.1.146) 

where / (s) is to be specified by means of the matching process. Since к is large, we 
evaluate (10.1.146) asymptotically using the method of stationary phase as before. 
There is exactly one stationary point at s = y, and in view of (10.1.106) we have the 
asymptotic result Wo(x, y, z) « \/2π ег7Г/4/(у), so that 

w0{x,y,z)e ,ikz '2nf(y)exp(ikz + — ) . (10.1.147) 

We must match (10.1.147) with the geometrical optics field (10.1.141) in the re-
gions z > 0, у > 0 and z > 0, у < 0. The geometrical optics field vanishes 
in the (shadow) region z > 0,г/ < 0. so we must set f(y) = 0 for у < 0. 
For z > 0,y > 0, the geometrical optics field is ui(x,y,z) = ezkz, so that 
f(y) = (l/y/2~Tr)exp(-in/4)fory > 0. Thus,/(у) = (1/</2тг)ехр(-гтг/4), у > 
0, f{y) = 0, у < 0, and WQ(X, у, z) becomes 

W0{x^z)={Ì-z) e X P ("?) / 6XP ik(y — sf 
2z 

ds. (10.1.148) 

With the change of variables σ = (s - у) {k/2z)1/2 , (10.1.148) takes the form 

w0{x,y,z)=n 1 / 2 e x P ( _ 7 " ) - F ( ~ 2 / l / ^ (10.1.149) 

where the Fresnel integral F(t) is defined as F(t) = Jt°° el" da. The field near the 
shadow boundary у = 0, z > 0 is thus given as, to leading order, 

u(x,y,z)*tn 1/2F I - y W - J exp (ikz- — (10.1.150) 

Since F(—oo) = \рк ехр(г7г/4) and F(+oo) — 0, we find that wo{x,y, z) —* 0 
as z —> 0 with у < 0, while w0(x, y, z) —> 1 as z —> 0 with у > 0. Thus WQ{X, y, z) 



6 7 4 ASYMPTOTIC METHODS 

in ( 10.1.149) is a solution of the parabolic equation ( 10.1.145) with the discontinuous 
initial data w0(x, y, 0) = 0 for у < 0 and w0(x, y, 0) = 1 for у > 0. The parabolic 
equation method of Section 9.3 applied to this problem would have led us to consider 
(10.1.145) with the aforementioned data. Further, F(0) = \у/тхе,щ>{т/А), so that 
w0(x, y, z) equals \ on the shadow boundary у = 0, z > 0. This value is the 
average of the amplitudes 0 and 1 of the field in the shadow and illuminated regions, 
respectively. 

In the matching process we considered only the leading term in the asymptotic 
expansion of the boundary layer term w0(x, y, z). On evaluating the representation 
( 10.1.148) of wo (x, у, z ) by the method of stationary phase, we find that there is only 
one stationary point located at s = y. Since the domain of integration is 0 < s < oo, 
there is no stationary point in the region у < 0, z > 0. In the region у > 0, z > 0, 
the stationary point coincides with the endpoint s = 0 of the integration interval if 
у = 0. Otherwise, the stationary point s — у and the endpoint s = 0 are distinct. 

We now apply the stationary phase results of Section 5.7 to the integral ( 10.1.148) 
for w0(x,y,z). Ify < 0, there is no stationary pointin the given interval of integration. 
Thus the main asymptotic contribution to ( 10.1.148) comes from the endpoint s = 0, 
and we obtain 

z ( 1 \ 1 / 2 fikv2 ίπ\ 
Wo{x^z)--y{^) expUT + T J ' y<Q- do·"*!) 

If у > 0, the integral (10.1.148) has a stationary point contribution from the point 
s = у as well as an endpoint contribution from s = 0. The stationary point result 
was found to be wo (#, У, z) ~ 1, while the endpoint result is identical to (10.1.151). 
Thus 

^■»•"-^(^'""Чтаг + т)· '>α (10ЛЛ52) 

Both (10.1.151) and (10.1.152) are singular at у = 0 as well as at z = 0 
Since wo(x, y, z) is valid only in the region near the shadow boundary, we conclude 

from (10.1.151НЮ.1.152) that the total field u(x,y, z) has the form 

' - § ( 2 a l ) 1 / 2 e x P [ ^ + £ ) + f ] , z>0,y<0, 
u(x,y,z) « < i /9 г / 2\ l 

[ eikZ - % (2L·) e x P [ik (z + b) + f ] . * > 0' У > 0. 
(10.1.153) 

near the edge of the shadow boundary. On comparing ( 10.1.153) with the geometrical 
optics result ( 10.1.141 ), we observe that there is no counterpart to the 0(k~ xl2 ) terms 
of (10.1.153) in (10.1.141). In fact, the geometrical optics result was expressed as 
an (asymptotic) series in integral powers of A;-1. Thus terms of order fc-1/2 could 
not arise in that series. These 0(fc- 1/2) terms are due to diffraction effects. In the 
preceding problem, the field due to diffraction below the caustic was found to decay 
exponentially. In this problem, the diffraction field is smaller than the geometrical 
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optics field by a multiplicative factor of 0(fc~1,/2). It is not exponentially small, so 
it must be accounted for in our asymptotic solution of the scattering problem. 

An asymptotic method closely related to the geometrical optics approach that 
accounts for the effects of diffraction is J. B. Keller's geometrical theory of diffraction. 
In the context of the present problem this theory introduces a set of diffracted rays that 
emanate from theedgeofthe boundary surface (i.e.,the half-plane 2 = 0, у < 0). The 
incident rays, in addition to giving rise to the reflected rays in the region z < 0, у < 0, 
generate a set of diffracted rays. Each incident ray that hits the edge yields a family 
of edge-diffracted rays that emanate from the edge as shown in Figure 10.5. These 
rays correspond to those of a cylindrical wave with a focal point at the edge. If we set 
r — y/y2 + z2, the diffracted field UD(X, y, z)—which supplements the geometrical 
optics field—is shown in the geometrical theory of diffraction to have the form 

uD(x,y,z)^ -^LUl(x,Q,0)eikr, (10.1.154) 
vkr 

where D is referred to as a diffraction coefficient and ui(x, 0,0) is the value of the 
incident field at the point of diffraction (x, 0,0) on the edge of the half-plane. 

Figure 10.5 Edge-diffracted rays. 

The diffraction coefficient D must be determined either by solving a canonical 
problem or by using boundary layer theory near the edge. In general, a canonical 
problem is one in which the local geometry and other properties are the same as those 
for the given problem near the point of diffraction. Using either of these methods 
leads one to consider the problem of the scattering of a plane wave by a half-plane with 
the same boundary condition as for our original given problem. That is, the canonical 
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problem is identical to the given problem in the present case. (In general, of course, 
the canonical problem is much simpler than the given one.) The exact solution of our 
problem was found by Sommerfeld. On expanding his result asymptotically for large 
kr, it is found that the diffraction coefficient D must be chosen as 

D 
D J7r /4 

2(2π)!/2 sec (10.1.155) 

where Θ is the angle the diffracted ray, when projected onto the (y, z)-plane, makes 
with the negative z-axis. Also, uj(x, 0,0) = 1 for all values of x. 

The terms of order k~1//2 in ( 10.1.153) must be identified with the diffracted field 
UD{X, y, z) in the region near the shadow boundary. To effect this comparison more 
easily, we introduce the cylindrical coordinate system x = x, у = rcos(9), z = 
r sin(0). The angles Θ of (10.1.155) and Θ given above are related by Θ = θ + π/2. 
For small у with z > 0, we have r = yjy2 + z2 « z + y2/2z. Then we easily 
conclude that sin(0) « 1, cos(0) « 0. Also, (1/2) [sec (θ/2\ + csc (0/2) = 

cos((9/2) + sin(0/2)] /sin(0). 

Noting the above gives — (z/y) (l/2nkz) ' exp [гк (г + y2/2z) + ζπ/4] ~ 
-[sin(6>)/cos(6»)](l/2^r)1/2eifcT'+i7r/4 « - i(l/27rb-)1/2/sin(<?) e

ikr+i*/4 since 

cos(#) = sin(0) and sin(0) « 1. Further, we find that Θ « π/2, so that Θ « π. 
Consequently, cos(0/2) « 0 and sin(0/2) « 1. Then we conclude that D has the 
approximate form D rr/4/ . Inserting this into ( 10.1.154) we find /2π8ίη(0) 
that the diffracted field uo{x,y,z) and the foregoing result agree in the neighborhood 
of the shadow boundary since U[(x, 0,0) = 1. 

The field near the reflection boundary is considered in the exercises. 

Scattering by a Circular Cylinder 

A plane wave uj(x,y,z) = егкх is incident upon a circular cylinder ofradius a, whose 
axis coincides with the 2-axis. The total field u(x, y, z) = uj(x, y, z) + us(x, y, z), 
where us is the scattered wave, satisfies the reduced wave equation (10.1.1)—with 
n = 1—and vanishes on the surface of the cylinder. Clearly, this can be formulated 
as a problem in two dimensions. 

Thus we consider и = u(x, y) that satisfies the reduced wave equation 

uxx(x, y) + uyy(x, y) + k2u(x, y) = 0 (10.1.156) 

in the exterior of the circle x2+y2 = a2. On the circle we have u(x,y) = 0, x2+y2 = 
a2. With u(x,y) = ui(x,y) + us{x,y) where uj{x,y) — егкх, we require that 
us (x, y) satisfies the radiation condition at infinity. 
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Assuming that к 3> 1, we determine an asymptotic solution for us(x,y) in 
the manner described. The scattered field us(x,y) is expanded as us(x,y) = 
егкф(х,у) Y^°=QVj(x,y)(ik)~:>. On the circle, the phase term ф(х,у) satisfies the 
(initial) condition 

ф{х,у)=х, х2+у2 = а2 (10.1.157) 

as well as an outgoing condition. The amplitude terms Vj(x,y) satisfy the initial 
conditions 

vo{x,y) = - 1 , x2 + y2 = a2, Vj(x,y) = 0, x2 + y2 = a2, j> 1. (10.1.158) 

To solve for </>(ж,2/) we represent the circle in parametric form as x = acos(r), у = 
asin(r), 0 < r < 2π. We note that r is not an arc length parameter on the circle 
unless a = 1. With a as an arc length parameter along the rays we must solve the 
characteristic equations for χ(σ, τ), y(a, τ), φ(σ, τ), ρ(σ, τ), and q(a, τ) in order 
to determine ф(х, у). The initial conditions for χ(σ, r ) and y(a, τ), which are given 
at a = 0, are 

X(0,T) = acos(r), t/(0,r) = asin(r). (10.1.159) 

From (10.1.157) we have ф{0,т) =х(0,т) =acos ( r ) . 
The initial conditions forp(a, r ) and q(a, r) must be found from the eiconal equa-

tion and strip condition as in Section 2.4. From the eiconal equation we have p2(0, r ) + 
<72(0,τ) = 1. The strip condition yields —asin(r) = —p(0,r)asm(r) + q(0,r) 
OCOS(T). On solving these equations we easily conclude that there are two possible 
sets of solutions. They are 

р(0,т) = 1, д(0,т) = 0, (10.1.160) 

p(0, r) = - cos(2r), q(0, r ) = - sin(2r). (10.1.161) 

The appropriate solutions must be determined from the outgoing condition. This 
means that ifN is the exterior unit normal to the circle, V0-N = [ρ(0,τ),<?(0, τ)]·Ν > 
0. The normal N for x2 + y2 = a2 is N = [cos(r),sin(r)]. Thus V0 · N = 
[p(0,T),g(0,r)]-N = cos(r)if(10.1.160)isused,andV</>-N= \p(0,r),q(0,r)]· 
N = — cos(r) if (10.1.161) is used. Therefore, since cos(r) > 0 for 0 < r < π/2 
and 3π/2 < r < 2π, and cos(r) < 0 for π/2 < r < 3π/2, we see that V0 · N > 0 
on the left semicircle (i.e., if π/2 < τ < 3π/2) when (10.1.161) is chosen, while 
V0 · N > 0 on the right semicircle if (10.1.160) is selected. At the points (0, a) and 
(0, - a ) where r = π/2 and r = 3π/2, respectively, the rays of the scattered wave 
are tangent to the circle. 

It has been shown that on the right semicircle (i.e., x2 + y2 = a2 with x > 0) we 
must set p(0, r) = 1 and q(0, r ) = 0. Since the characteristic equations are 

dx ay άφ „ dp „ dq , ,„„. 
T=P, /=9. ;r = 1 ' / = 0 ' ; Г = 0 ' (10-1.162) 
ασ ασ ασ da da 
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we see that ρ(σ, r ) = 1 and q(a, r ) = 0. Then, the initial conditions imply that 
χ(σ,τ) = σ + acos(r), у(а,т) = asin(-r), φ(σ,τ) = σ + acos(r) = x. Thus the 
rays of the scattered wave that issue from the right semicircle are identical to those of 
the incident wave. The phase term ф(х, у) equals x, the phase of the incident wave. 
Further, since V20 — 0, we conclude that vo(x,y) = —1, Vj(x,y) = 0, j > l,from 
the transport equations (10.1.54)—(10.1.55) and the initial conditions. Therefore, 
the scattered field is us(x,y) = —elkx, x2 + y2 > a2, x > 0, \y\ < a, in the 
region directly behind the circle where no incident rays penetrate. Thus, u(x, y) = 
U{(x,y) + us{x,y) is 

u(x, y) = eikx - eikx = 0, x2 +y2 > a2, x > 0, \y\ < a. (10.1.163) 

The geometrical optics solution yields a zero total field or, equivalently, a shadow in 
the region behind the circle not illuminated by the incident rays. 

On the left semicircle (i.e., x2 + y2 = a2 with x < 0) we must have p(0, r ) = 
- COS(2T) and ς(0, τ) = - sin(2r), as has been shown. Since ρ(σ, τ) and q(a, r ) are 
constant along the characteristics, they retain their initial values along these curves. 
Consequently, the equations for χ(σ, τ) and y(a, r ) are 

^ l l l = ρ ( σ > r ) = _ cos(2r), $ = q(a, r ) = - sin(2r), (10.1.164) 
ασ da 

with π/2 < r < 3π/2. Noting the initial conditions (10.1.159), we find that 

χ{σ,τ) = acos(r) — CTCOS(2T), y(a,r) = asin(r) — asin(2r). (10.1.165) 

Also, άφ(σ,τ)/άσ — 1 and (10.236) imply that φ{σ,τ) = a + acos(r), π/2 < τ < 
3π/2. It is not possible to express σ and r as functions of x and у in simple form. 
Therefore, we leave our result for the phase φ(σ, τ) in parametric form. 

The rays of the scattered or reflectedfield us(a, r ) are determined from ( 10.1.165), 
and their direction is given by ( 10.1.164). The direction of the incident rays is that of 
the unit vector i. The exterior unit normal vector to the circle is N = [cos(r), sin(r)]. 
It is a simple matter to show that the angle of incidence ai of the incident ray equals 
the angle of reflection а д of the reflected ray. These angles are defined in Figure 10.6. 
In fact, we have оц = ац = |π — τ\ with π/2 < τ < 3π/2. When τ = π/2 and 
τ = 3π/2, the reflected rays coincide with the incident rays. That is, the incident 
rays are tangent to the circle at the points (0, a) and (0, —a) and their extension 
beyond these points into the region x > 0 coincides with the reflected rays. (We 
note that the equality of the angles of incidence and reflection is a general principle 
of geometrical optics.) The region covered by the reflected and the incident rays is 
given as x2 + y2 > a2, with —сю < у < oo for x < 0 and \y\ > a for x > 0. This 
region is referred to as the illuminated region. 

We now proceed to determine the leading-order amplitude term vo (σ, τ) of the re-
flected wave us. To do so we express the transport equation for υο(σ,τ), which 
is given as 2 8ν0(σ,τ)/θσ + νο(σ,τ)'ν2φ(σ,τ) = 0, in the ray coordinates σ 
and r determined from (10.1.165). The Laplacian V2 must be expressed in the 
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Figure 10.6 Angles of incidence and reflection. 

ray coordinate system so that ν2</»(σ, τ) can be evaluated. It is readily found that 
ν2φ(σ,τ) = 1 / [ σ - ( O / 2 ) C O S ( T ) ] , it/2 < τ < 3π/2. Inserting this result into 
the above and using the initial condition vo(0,r) = —1, we obtain ν0(σ,τ) = 
-\/[(a/2)cos(r)]/[(a/2)cos(T) — σ], π/2 < τ < 3π/2, as is easily verified. Thus 
the scattered field is given, to leading order, as 

/ N / (a/2)cos(r) r., , , .41 it 3π 
^ ( σ , τ ) ^ - ^ / ( α / 2 ) ο ο 8 ( τ ) _ σ e x p ^ + acoeir))], - < τ < - . 

The curve 
(10.1.166) 

a = ^ c o s ( r ) , ! < ^ < y , (10.1.167) 

is the envelope of the reflected ray system ( 10.1.165), as is verified by evaluating the 
Jacobian of the transformation (10.1.165) or, equivalently, by using the results in the 
Appendix of Chapter 2. When π/2 < r < 3π/2, we find that cos(r) < 0, so that σ 
is negative in ( 10.1.167). Therefore, the envelope lies within the circle x2 + y2 = a2 

for those values of r , since σ > 0 corresponds to points on or outside the circle. 
However, if r — it/2 or τ = 3π/2, we have cos(7r/2) = cos(37r/2) = 0, so that 
σ = 0 there. Consequently, the envelope or caustic curve (10.1.167) intersects the 
circle at the points (0, a) and (0, —a). It is for this reason that Μ§(σ, r) is not well 
defined at r = π/2 and r = 3π/2. 

The asymptotic (geometrical optics) result we have obtained is the following. In 
the illuminated region the solution и = u(a, r ) is 

. . . . , . ,n . . . / (a/2) COS(T) . , , , . . . 
и « expufctacosm — CTCOS(2T)) — > -—— --^— exphfcla + acos(r)) 1, 

У \a/2) cos(r) — σ 
(10.1.168) 

and this is valid for π/2 < r < 3π/2 and σ > 0. In the shadow region we have 
u(x,y) ss 0, x2 + у2 > a2, x > 0, \y\ < a. The lines у = ±α, a; > 0 are the 
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shadow boundaries that separate the illuminated region from the shadow region. The 
asymptotic solution is not continuous across these lines. 

The field near the shadow boundaries may be studied by the use of the bound-
ary layer theory. The parabolic equation (10.1.144) may be derived. However, the 
solution must be matched not only with the incident and reflected waves in the il-
luminated region and the zero field in the shadow region. The field in the shadow 
boundary must also be matched with the field near the points of diffraction (0, a) and 
(0, —a). The field near these points may be analyzed by proceeding as in Section 9.3 
using boundary layer methods. The problem is rather complicated and has under-
gone much investigation. The geometrical theory of diffraction introduces surface 
diffracted rays, which yield an additional exponentially small field in the shadow and 
illuminated regions. However, we do not pursue these matters here any further. 

Propagation of a Gaussian Beam 

We have seen above that the geometrical optics expansion associated with a general 
plane wave is not valid over large distances because of the occurrence of secular 
effects. In the following we consider the propagation of a narrow beam of light, as 
might be generated by a laser, and analyze this problem by means of a geometrical 
optics expansion. 

We consider a light beam, in the two-dimensional case, that propagates in the 
direction of the positive ar-axis with its amplitude concentrated near the ж-axis. It 
is represented by a function и = u(x, y) that satisfies the reduced wave equation 
(10.1.1), where we set n = 1. We put u(x, у) = у(х,у)е1кф^х'у^ and expand v(x, y) 
as in (10.1.11). At x = 0, the phase term ф(х,у) and the amplitude term v(x, y) are 
given as 

ф(0,у)=0, v(0,y) = Aexp(-^), (10.1.169) 

where A and a are positive constants. The solution is determined in the half-plane 
x > 0, so that (10.1.169) represents a boundary condition for the beam field u(x, y). 
The solution is required to be outgoing at x = 0. 

We do not consider how the beam is formed in the half-plane x < 0, but assume 
that it has the phase and amplitude given in (10.1.169) when it reaches the y-axis. 
Since the amplitude is in the form of a Gaussian distribution (see Section 1.1) we 
refer to it as a Gaussian beam. The beam half-width is a measure of the distance from 
the ж-axis within which the amplitude of the beam is concentrated and it equals \/2a 
on the y-axis. (The half-width generally varies with x.) 

Now ф(х,у) is a solution of the eiconal equation (10.1.9) with n = 1. The 
initial condition (10.1.169) together with the outgoing condition yields the solution 
ф(х, у) — x. Thus, u(x, y) = v(x, у) егкх and v(x, y) satisfies 

2ikvx(x, y) + vxx(x, y) + vyy(x, y) = 0. (10.1.170) 

On expanding v(x, y) as in (10.1.11), we find that v0{x, y) satisfies the equation 
dvo(x, y)/dx = 0 and the boundary condition (10.1.169). The remaining Vj(x, y) 
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satisfy a nonhomogeneous version of the equation for г;о(х, у) and they all vanish at 
x = 0. On solving for vo(x, y) and vi(x, y), we obtain 

i \ / N 1 / N A ( У2\ (-, ίχ гху2\ 

^y)~v0{x,y) + -vl{x,y) = Ae.V{--j[l + — -—2). 
(10.1.171) 

Since the amplitude term is concentrated near у = 0, we determine that the asymptotic 
expansion of v{x, y) begins to become disordered when x « 2ka. Then the second 
term in the expansion of v(x, y) has the same magnitude as the leading term, when 
у = 0. The geometrical optics description of the beam is not valid as x reaches this 
value and diffraction effects begin to play a role. Consequently, the distance x = 2ka 
is referred to as a diffraction length. 

The geometrical optics representation of the beam is that of a general plane wave. 
To study the solution in the secular region where x > 0(ka) we proceed as before. 
The results leading from (10.1.101) to (10.1.105) apply to the present problem as 
well, and the expression in (10.1.105) is equated to the Gaussian amplitude term in 
(10.1.169). This yields 

v{x,y)^Ae-™!4 ik(y - s)2 s2 

2x 2a 
ds. (10.1.172) 

The integral can be evaluated explicitly by completing the square in the exponential 
term and introducing a complex-valued change of variables that reduces the integral to 
the form given in Exercise 1.1.2. (The transformation may be carried out formally, and 
the resulting expression can then be shown to satisfy the conditions of the problem.) 
The Gaussian beam representation is thus given as 

u(x, y) « A exp 
уж — ika 

ikx + 
iky m 

2(x - ika) 4 
(10.1.173) 

If we express (10.1.173) in the form и(x,y) = v{x,y)elk^x,y^ with ф(а;, у) = x, 
we find that it satisfies (10.1.169) at x = 0. Further, v(x,y) is a solution of the 
paraxial wave equation 

2ikvx(x, y) + vyy(x, V)=0, (10.1.174) 

which is, in fact, the parabolic equation approximation to (10.1.170). It has the form 
of a Schrödinger equation. The term paraxial signifies that it describes the field 
u(x, y) = v(x, y)elkx in a narrow region parallel to the axis of propagation (in this 
case the x-axis). 

If x < 0(ka), the beam representation (10.1.173) approximates the form of the 
general plane wave (10.1.171), since Vka/^/x — ika е-г7Г/4 « 1 - ix/2ka and 
iky2 /2(x—ika) « -y2/2a+ixy2/2ka2. Then, with у « Owe have exp[ixy2 /2ka2] 
« 1 + ixy2/2ka2 and the approximation (10.1.171) follows. 

The (approximate) general plane wave representation of the beam ( 10.1.173) loses 
its validity for large x. The beam begins to spread out and assumes the form of 
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a general cylindrical wave. This effect is a result of diffraction. To see this we 
introduce polar coordinates x = rcos(ö), у = r sin(ö), and assume that x ^> ka 
and that y/x < 1. Then the radial variable r can be approximated as r ~ x + y2/2x 
and ( 10.1.173) takes the form 

Vkä ( 1 ) ) exp I ik ιπ u{x,y) « А:~-ещ> ( -^A;2atan2(0) ) exp ί ikr - γ ) . (10.1.175) 

This has the form of a cylindrical wave with source point at the origin. Each value of 
Θ determines a ray and we see that as \θ\ increases, the amplitude term decreases so 
that we have a cylindrical beam. 

Nonlinear Reduced Wave Equation and 
Nonlinear Geometrical Optics 

Our discussion has so far been limited to the linear reduced wave equation (10.1.1) 
and its asymptotic solutions. However, in the theory of nonlinear optics one is led 
to consider a nonlinear version of (10.1.1). If a strong laser beam propagates in a 
medium, it may happen as a result of various effects that the index of refraction is 
altered as the beam traverses the medium. Assuming the medium to be otherwise 
homogeneous, the index of refraction n is found to become a function of the intensity 
of the field. If u(\) represents the (complex) field, we have n = n(|u(x)|2) and the 
field satisfies the nonlinear reduced wave equation 

V2u(x) + k2n2(\u(x)\2)u(x) = 0 (10.1.176) 

in two or three space dimensions. We again assume that the wave number к is large 
and look for asymptotic solutions of ( 10.1.176). 

It is immediately possible to construct plane wave solutions of (10.1.176). For 
example, 

u(x) = Aexp[ikn(A2)x], (10.1.177) 

where the amplitude term Л is a real constant and x is a scalar variable, satisfies 
(10.1.176). We note that in contrast to the linear problem studied in the foregoing, 
the phase in ( 10.1.177) is a function of the amplitude. 

Noting that there are solutions of (10.1.176) in the form (10.1.177), we proceed 
as in the linear case, and look for a solution of the nonlinear reduced wave equation 
in the form 

u(x) = А{хУкф{*\ (10.1.178) 

where the amplitude term A(x) and the phase term ф(х) are assumed to be real 
valued (we no longer require that the amplitude be a constant). Inserting (10.1.178) 
into (10.1.176) and equating real and imaginary parts to zero gives 

[(V0(x))2 - n2(A2(x))}A(x) - ^ V2A(x) = 0, (10.1.179) 

2V0(x) · VA(x) + Α(χ)ν2φ(χ) = 0. (10.1.180) 
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In the geometrical optics approximation we let к —> oo in (10.1.179) and obtain 

(V</>(x))2 = n2(A2(x)), V · (А2(х)Щ(х)) = О, (10.1.181) 

where ( 10.1.68) has been used in ( 10.1.180). The equations ( 10.1.181 ) are referred to 
as the equations of nonlinear geometrical optics. In contrast to the situation in linear 
optics, these equations are coupled and must be solved simultaneously. Nevertheless, 
the eiconal equation in (10.1.181) determines phase surfaces ф(х) - constant and 
rays orthogonal to these surfaces. The transport equation in (10.1.181) determines 
the amplitude A{x) in terms of the divergence and convergence of the rays, as in 
the linear problem. However, we cannot determine the rays without knowing the 
amplitude, and vice versa. 

Self-Focusing and Self-Trapping of Beams in a Nonlinear Medium 

We do not consider how the system (10.1.181) may be solved in general. Instead, 
we examine how a beam propagates in the nonlinear medium on the basis of the 
geometrical optics equations. A beam is characterized as follows. Let ф(х) = constant 
represent a particular phase surface or wave front. The amplitude A(x) is assumed to 
have a maximum at a point P on the wave front and to decrease sharply in value as 
we move away from P in all directions on the wave front. Thus the significant values 
of the field are concentrated near P on the wave front </>(x) = constant, and these 
values are propagated along the rays in the form of a beam. We now assume that the 
index of refraction n(A2(x)) decreases as the amplitude A(x) decreases. Since the 
amplitude falls off as we move away from P on ф(х) = constant, so does n(A2(x)). 
On considering the two neighboring wave fronts ф(х) = constant and φ(χ) + άφ = 
constant, the distance between them measured on the (orthogonal) rays is given as 
da = (l/n(A2(x))) άφ in view of (10.1.58). Since άφ is fixed, we find that as A(x) 
and, consequently, n{ A2 (x)) decrease [on the wave front φ(χ) = constant] as we move 
away from the point P, the distance da between the two wave fronts increases. That 
is, φ(χ) = constant and φ(χ) + άφ = constant are nearest each other at P and become 
increasingly separated away from P. The rays, however, always remain orthogonal to 
the wave fronts. On applying this argument to a succession of wave fronts, we obtain 
the situation pictured in Figure 10.7. The wave fronts become increasingly concave 
and the (orthogonal) rays begin to converge. If the field is symmetric with respect to 
the point P, the rays may eventually focus at some point. In any case, the rays begin 
to converge, and this property of nonlinear optics is known as the self-focusing effect. 
Even if the wave front φ(χ) = constant is plane or initially convex, the dependence 
of the index of refraction n on the amplitude will bend the rays and force them to 
converge, possibly even to a focus. A medium for which the index of refraction has 
this property is called a focusing medium. 

However, as the rays converge, the amplitude of the beam begins to increase in 
view of the relation between the amplitude and the ray structure. If the amplitude A (x) 
becomes extremely large or possibly singular, the geometrical optics approximation 
that predicts the self-focusing effect no longer remains valid and diffraction effects 
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Figure 10.7 The self-focusing effect. 

must be included. That is, we must retain second derivative terms in (10.1.179). In 
the linear problems discussed earlier the inclusion of diffraction effects was shown 
to remove the singularities predicted by the geometrical optics approach and to lead 
to a spreading of the rays in beam propagation. Here, because we have a nonlinear 
problem, it may happen that a beam that undergoes focusing in the geometrical optics 
approximation may actually focus and become singular even if diffraction effects are 
included. 

To see that it is possible to obtain beams that do not undergo self-focusing, we 
construct an exact solution of (10.1.176) or, equivalently, of (10.1.179)-(Ю.1.180), 
which represents a beam. We consider the two-dimensional case with и = u(x, y) and 
assumethatn = n(\u(x,y)\2) isgivenasn(|u(:r,2/)|2) = я2, +ni|tt(a;,y)|2,thatis, 
we have a quadratic nonlinearity. The constant term n0 is the linear index of refraction 
that occurs when nonlinear effects can be neglected. The constant n\ is positive, so 
that n{A2(x,y)) decreases as A2(x,y) decreases. To solve (10.1.179)—( 10.1.180) 
we set, with constant λ, 

ф(х, у) = λχ, Α(χ, у) = Ä(y). (10.1.182) 

Then ( 10.1.180) is satisfied identically and ( 10.1.179) becomes 

Ä"(y) - k2(X2 - nl)A{y) + к2щА3(у) = 0. (10.1.183) 

It is easily verified that a solution of ( 10.1.183) that vanishes together with its deriva-
tives as \y\ —> oo is 

À(y) = 

if we assume that |λ| > no > 0. The amplitude term A(y) decays at an exponential 

2(A'-ng) 4 " 

711 
sech[fc(A2 - n2)1/2y] (10.1.184) 
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rate as \y\ —> oo and is significantly different from zero only in the interval |y| < 
0[k~l{\2 - ng) - 1 / 2 ] . Thus the solution 

u(x,y) 
2 ( λ 2 - η 2 ) 

ГЦ 

1/2 

sech[fc(A2 - nl)l'2y\ eikXx (10.1.185) 

represents a beam that travels without change of amplitude along the ж-axis. We have 
shown in our discussion of a Gaussian beam, that a plane wave solution of the linear 
reduced wave equation in the form of a beam is described by a parabolic equation 
in the far field. Although the geometric optics result in that problem predicted that 
the plane wave travels without change of amplitude to leading order, the diffraction 
effects, as characterized by the parabolic equation, diffuse and spread the field out 
at large distances. In the nonlinear problem considered here, the diffraction effects 
again tend to spread out the beam, while the nonlinear effects tend to focus the beam. 
Since these effects appear to be balanced in (10.1.185) and the beam travels without 
spreading, the solution (10.1.185) is referred to as a self-trapped beam. 

It should be noted that if the index n(A2) is such that it increases as A decreases, 
our discussion shows that the rays diverge as a result of the nonlinearity. An initially 
thin beam would begin to spread out as it moved through the nonlinear medium. 
Therefore, we refer to such media as defocusing media. For example, if n( \u(x) |2 ) = 
я2, + ηι|ω(χ)|2 with n\ < 0, the index n has the defocusing property. Self-trapped 
solutions of the form ( 10.1.185) are not possible for such a medium since the amplitude 
A is real by assumption, and if щ < 0, the amplitude term (10.1.184) is purely 
imaginary. In fact, since both diffraction and nonlinear effects tend to spread out the 
beam, we would not expect that a self-trapped beam would occur in a defocusing 
medium. 

To determine whether the self-trapped beam ( 10.1.185 ) can be expressed in some 
simpler form, we express the hyperbolic secant in terms of exponentials and easily 
conclude that 

u(x,y) = 2 2(A2-n§) 
« 1 

1/2 

екр[гк\х-к{\2-п1)112\у\\ 

x ] Г ( - 1 У е х р [ - 2 Д О 2 -п2)х12\у\\ (10.1.186) 
3=0 

if \y\ > 0. Since the amplitude term is exponentially small, we could not generate 
( 10.1.186) by looking for an asymptotic solution of ( 10.1.176) in the form и = Аегкф, 
where A is expanded in inverse powers of k. However, since λ is arbitrary (apart from 
the requirement that λ2 > η2,) we may consider solutions of the form (10.1.185), in 
which λ2 « n2, + с2/к2, where с is a constant. Then (10.1.185) becomes 

u(x,y)& \ ( — к \τΐι 

1/2 

sech(cj/) exp г I knox + 
2kno 

(10.1.187) 

Thissuggeststhatifweaskforsolutionsof(10.1.176)intheform|u(x)| = 0(k r) 
with r > 0, an asymptotic approach similar to that used for the linear problem can 
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be applied to the nonlinear problem. We note that with the assumption above on 
|u(x)| = A(x), we are essentially considering a weakly nonlinear problem since 
к » 1 by assumption. 

With |u(x)| = 0(k~r), r > 0, we assume that n(|w(x)|2) can be expanded as 

n(|u(x)|2) = nl + 7ÌI|U(X)|2 + n2|u(x)|4 + · · ·, (10.1.188) 

where the coefficients rij with j = 1,2,... are all constants and щ > 0. As we 
have indicated, with n\ positive, the index of refraction (10.1.188) corresponds to 
a focusing medium if |tt(x)| is small. We define the amplitude |u(x)| as |u(x)| = 
A(x) = {l/kr)a(\), r > 0. Withu(x) = A{x)eik<t>^ as in (10.1.178), we obtain for 
ф{х) and <z(x), 

j[(V«Mx))2 - n2
0}a(x) - -^П1а

3(х) - -^п2а
3(х) - · · · } - 7^V2a(x) = 0, 

(10.1.189) 

2V0(x) · Va(x) + α(χ)ν2φ{χ) = 0. (10.1.190) 

To proceed with the solution of ( 10.1.189)—( 10.1.190) we must specify the expo-
nent r and then expand φ(χ) and a(x) in inverse powers of k. The most meaningful 
and interesting choices for r are r = ì and r = 1. With r = | we find that <£(x) and 
a(x) should be expanded in powers of A;-1, whereas if r = 1, the expansion of φ(χ) 
anda(x) should contain powers of A;-2. Now if г = 1, we see from (10.1.189) that 
the cubic term a3(x) and the term V2a(x) are of the same order in k. Thus at the 
second level of approximation the (leading) nonlinear term and the diffraction term 
V2a(x) are balanced. A particular case of this occurs in the result (10.1.187) where 
Л(х) = 0(1/к) and we have a self-trapped wave. However, if r = | , the nonlinear 
effect due to a3(x) enters at the second level of approximation. The diffraction effect 
due to V2a(x) does not occur until the third level of approximation as we shall see. 
We begin with the case where r = | . The case where r = 1 plays a role in the 
analysis of a propagating beam is given below. 

Withr = \ in (10.1.189), we expand ф(х) anda(x) as 

oo oo 

ф{х) = ^ф0{х)к~\ a{x) = Y^aj{x)k-\ (10.1.191) 
j=0 j=0 

and insert these expansions into (10.1.189)—(10.1.190). Collecting like powers of 
1/fc and equating their coefficients to zero gives 

(V0o(x))2 = nl (10.1.192) 

2V<fo(x) · Va0(x) + a0(x)V2<Mx) = 0, (10.1.193) 

2V0o(x) · V</>i(x) = mag(x), (10.1.194) 
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2V(fo(x) · Vax(x) + ai(x)V20o(x) = -2V<fc(x) · V<x0(x) - a0(x)V2^i(x), 
(10.1.195) 

2V0o(x) · V02(x) = n2ao(x) + 3nio0(x)ai(x) 

+ - 4 r V 2 a 0 ( x ) - ^ ^ V ^ o ( x ) · V0i(x) - (V^(x) ) 2 , (10.1.196) a0(x) a0(\) 

2V0o(x) · Va2(x) + α2(χ)ν2φ0{χ) = -2Уф2(х) ■ Va0(x) 
- ao(x)V202(x) - 2V0i(x) · Vai(x) - cn(x)V2<Mx) (10.1.197) 

as the leading equations. We note that the nonlinear term щ а ^ х ) enters in the 
equation for <̂ >i(x), whereas the diffraction term V2ao(x) enters in the equation for 
φι (χ). The preceding equations and all further equations for the φj(x) and dj(x) 
are to be solved recursively. The equations (10.1.192) and (10.1.193) for фо(х) and 
ao(x) are just the eiconal and transport equations of linear geometrical optics. Each 
of these equations reduces to an ODE along the rays associated with the phase term 
фо(х). 

Rather than discuss the solution of these equations for a general class of boundary 
value problems, we consider a specific two-dimensional problem that exhibits some 
of the basic features of beam propagation in a nonlinear medium. 

Propagation of a Beam in a Nonlinear Medium 

The (x, у )-plane is assumed to be divided into a linear region and a nonlinear region. 
The interface between the two regions is the line x = 0. A Gaussian beam is incident 
on the nonlinear region x > 0 from the linear region x < 0. We do not consider the 
field in the linear region, only in the nonlinear region. 

The field u(0, y) equals the incident field uj(0, y), so that 

u(0,y) = «/(0,y) = 4 = E e x P ( - ^ 2 ) . (10.1.198) 

where E and a are real positive constants (see the foregoing discussion of the prop-
agation of a beam in a linear medium). We take x to represent x, у and express the 
nonlinear field u(x, y) in the half-plane x > 0 as 

u(x,y) = - ^ a(x,y) екф^У\ (10.1.199) 

where a(x,y) and ф(х, у) are real valued and are to be expanded in inverse powers of 
fc as in (10.1.191). u(x, y) satisfies the nonlinear reduced wave equation (10.1.176) 
with n expanded as in ( 10.1.188). The terms φ^ (x, y) and a,j (X, y) in the expansion 
of ф{х,у) and a{x,y) satisfy (10.1.192)-(10.1.197) for j = 0, 1, and 2, and their 
initial values are found from ( 10.1.198) to be 

0j(O,y) = 0, j > 0, ao(0,y) = Eexp [~^Л > а,-(0,у) = 0, j > 1. 

(10.1.200) 
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We also require that (10.1.199) be outgoing from the interface x = 0 toward x > 0, 
so that φο (x, y) must satisfy the outgoing condition at x = 0. 

Now фо(х,у) satisfies the eiconal equation (10.1.192), with the initial condition 
Фо(®,у) = 0 and the outgoing condition at x = 0. Thus, фо(х,у) = щх. The 
equation (10.1.193) for ao(x,y) then becomes 2no дао(х,у)/дх = 0. In view of 
(10.1.200) we find that ao(x,y) = Eexp(—y2/a2) . To leading order we have 

u(x,y) 
E 

exp У1 
a2 

ikriQX (10.1.201) 

This represents a beam propagating in the x-direction. The beam half-width is given 
as a since for \y\ > a the amplitude term of u(x,y) is exponentially small (see 
the discussion of the propagation of a beam in a linear medium). At this level of 
approximation neither the nonlinear nor the diffraction effects have been accounted 
for and we consider those effects next. 

The equation (10.1.194) for ф\(х,у), has the form 2щ(х,у)дф1(х,у)/дх = 
nial{x,y) = тцЕ2ехр(-2у2/а2) . Noting (10.1.200) gives 

1 п\ 2y< 
Φι(χ,ν) = ö — E e x P T 

2 no \ or 
Thus the phase term ф(х, у) is given as 

ф(х,у) ^Фо(х,у) + т ФЛх,у) =п°х+2к — E2<ÌXP 

(10.1.202) 

^ - ] χ. (10.1.203) 
or 

The rays, which are orthogonal to the wave fronts, have the direction of Уф(х, у), 
and this is 

V0(x, y) n0 + ni 
2nok al(x,y) i + 

2тцу 2 

пока2 a0(x,y)x (10.1.204) 

At у = 0, Уф(х, у) has the direction of the vector i. For у ψ 0, we see from 
(10.1.204) that for fixed у as ж increases, the j component of Уф{х,у) becomes 
increasingly negative if у > 0 and increasingly positive if у < 0. Atx = 0,¥ф(х,у) 
has no j component. This indicates the presence of a self-focusing effect, in that the 
rays start bending toward the x-axis as x increases, even though they were originally 
parallel at x = 0. We note that if щ < 0, the reverse is true and defocusing takes 
place. We also observe the dependence of the phase on the amplitude in (10.1.203). 
This is a strictly nonlinear effect. 

The equation ( 10.1.195) for a\ (x, y) becomes 

2n0-
dai(x,y) (2n\Ezx 16niE3y2x 

dx noa 

so that 

ai{x,y) = 
niE3x2 4niE3y2x 

noa4 exp % ] , (10.1.205) 

2п\ог 2^,4 
nf.a 

3y2 

exP I —^ a' 
(10.1.206) 
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since a\ (0, y) = 0. This can be written as 

ai{x,y) 

and we obtain 

щЕ2х2 4niE2y2x2 

2п\а2 n\cé 
e x p ( - ^ - ) a o ( a : , i / ) , (10.1.207) 

a{x,y) 
щЕ2х2 4щЕ2у2х2 

1 + { 2k^c7 ~ kn2a* ) 6XP {-^Ji ΕβΧΡ {-*, 
(10.1.208) 

The presence of terms of order a;2 in (10.1.207) and, consequently, in (10.1.208) 
shows that a\ (x, y) undergoes secular growth as a; —> oo. Since the exponential term 
in (10.1.207) is small for large \y\ and the term of order y2 is small for small \y\, 
we conclude that the first term in parentheses in (10.1.207) is the most significant 
for large x. With x fixed, the term that corresponds to it in (10.1.208) attains its 
maximumatj/ = 0. Thusitcanbesaidthatwhenni2?2x2/2fcnoa2 « 1,we have the 
first value of a: at which ao{x, y) and (l/fc)ai(x, y) are essentially of the same order 
of magnitude and the asymptotic series for a(x, y) begins to become disordered. We 
denote the value of x determined from the above by Xf and we see that 

xf 

anov2k 

Е^й 
(10.1.209) 

Apart from a (dimensionless) constant factor, this determines the value of x at which 
the initially plane wave is expected to focus, and we refer to it as a focal length. 
We associate the region where secular growth becomes significant with the onset of 
the self-focusing region for the nonlinear medium. We now demonstrate that such a 
relationship does exist. 

Since our geometrical optics result for ф(х, у) and a(x, y) breaks down when 
x = O(Vk), as follows from ( 10.1.209), we study that region using a boundary layer 
approach. It is easily seen from (10.1.196) that <f>2(x, y) contains a term of the order 
x3. Thus (\/к)ф\(х,у) + (1/к2)ф2(х,у) are of the same order of magnitude when 
x = 0(\/k) since ф\(х,у) = 0(x). However, the leading term фо(х,у) = пох is 
never of the same order of magnitude as the other terms in the expansion of ф(х, у). 
Thus secular behavior occurs in the expansions of both ф(х,у) and a(x,y), but 
фо{х, у) is not involved in it. As a result we shall modify only the series expansion 
of ф(х, у) beginning with the </>i (x, у) term. Since (1/к)ф\(х,у) = 0(l/\/fc) in the 
secular region x = 0(\/k), we set ф(х,у) = TIQX + 1/л/к ф(х,у) in (10.1.189)-
( 10.1.190), where we set r = \. Then 

^ ^ a { x , v ) + \(Vfav)Ya(x,v) 
к 

nia3{x,y) + 

k2 V 2 a ( x , y ) = 0 , (10.1.210) 
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да(х υ) 2 1 
2n0 ^ ' + ~j= Щ(х,у) ■ Va(s,у) + -j= а(х,у)Ъ2ф(х,у) = 0. (10.1.211) 

Since х = 0( \/к) in the secular region we set x = \/Ä;£in(10.1.210)-(10.1.211). 
Then д/дх = (1 /'Vk)d'/'δξ, so that to leading order 

(10.1.212) 

1 L dä&y) dfa,y) dä&y) δ2φ(ξ,υ)\ / 1 \ 
Тк\2П°~^Г+2-ду dy-+a{ty)-d^-j+O{k)=0-

(10.1.213) 

To solve, we expand α(ξ, у) and φ(ξ, у) in powers of l/\/fc and obtain to leading 
order for ά0(ξ, у) and φ0(ξ, у), 

2no °+ψί + (^^\-niäl^y)=0, (10.1.214) 

^ e ^ + 2 e ^ a ^ + M f j t f ) ^ v ) = 0 _ (101215) 

Although these equations are coupled as is the case for the nonlinear geometrical 
optics equations ( 10.1.181 ), they are, nevertheless, easier to solve. 

A number of solutions of ( 10.1.214)-( 10.1.215) have been obtained by Akhmanov 
and others. We shall find one of these solutions and match it with our geometrical 
optics results for ao(x, y) and φι(χ, у). То carry this out, we require that the field 
be considered only near the center of the beam (i.e., near у = 0). This yields the 
approximations 

1 n i Г2 ( 2У2\ 1 η ι Γ2 ηιΕ2 

- — E exp 5- a; « - — E'x ^ 
2 no \ or / 2 no noctz 

Φι(*,ν) = τ — ^ exp — \ )x « - — Егх - - ^ y'x (10.1.216) 

al(x,y) = E 2 exp ( -Ц) « Я2 f 1 - ^ ) . (10.1.217) 

An exact solution of (10.1.214)—(10.1.215) can be found that has the form 

Φο(ξ,υ)=Ί(ξ) + ί:υ2β(ξ), àfo,y) = £ - (i--?jL—), (10.1.218) 
r ^ η U v s , „ , m у α 2 / 2 ( 0 

where 7(ξ), β{ξ), and /(ξ) are to be specified on substituting (10.1.218) into 
(10.1.214)-(10.1.215). We match φ0(ξ,υ) and ä%(£,y) with фг(х,у) and a%(x,y) 
by noting that x = \/fc^, so that for small ξ we have moderate or large values of x. 
On comparing both sets of equations, we find that 7(ξ) and β(ξ) must tend to zero as 
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ξ -► 0, while / ( 0 -> 1 as ξ -» 0. Thus we set 7(0) = /3(0) = 0, /(0) = 1. Before 
inserting (10.1.218) into (10.1.214)-(10.1.215)we multiply (10.1.215) by α0(ξ,ν) to 
simplify the calculations. We obtain from (10.1.214) and from the modified form of 
(10.1.215), respectively, 

ηου
2β'(ξ) + 2ηοΊ'(ξ)+ν

2β2(ξ) 
гцЕ2 2щЕ2у '2„,2 

+ ПО aV3(0 
= 0, (10.1.219) 

Ε2β(ξ) 6E2y2ß(0 η0Ε
2Γ(ξ) + 6n0E

2y2f'(0 

ПО «2/3(0 f2(0 a2f4(0 
0. (10.1.220) 

Now if we set 7' (ξ) = ηιΕ2/2η0/(ξ) in (10.1.219), the two terms in that equation 
that do not contain a factor y2 cancel out. We are left with 

noß'(0+ß40 + 
2щЕ2 

Similarly, if we set 

ß(0 = 

a*p(0 

no/40 
no ' 

0. (10.1.221) 

(10.1.222) 

the two terms in ( 10.1.220) that do not contain a factor y2 drop out. With this choice 
of β(ξ) the remaining terms in ( 10.1.220) cancel out, so that this equation is satisfied 
regardless of the form of / (ξ) . Therefore, /(£) must be specified from (10.1.221). 
Inserting ( 10.1.222) into ( 10.1.221) yields 

_ 2nlE
2 

J [ζ> nl^PiO' 

An implicit solution of (10.1.223) with /(0) = 1, is 

no sin 2 + v7'(£)[W(0] + 
Esj2n{£, 

an0 

(10.1.223) 

(10.1.224) 

Then 7(ξ) and β[ξ) can be specified, but we do not carry this out. 
Since /(£) appears in the denominator in the expression (10.1.218) for äo(£,y), 

we see that when /(£) = 0, the amplitude blows up. This corresponds to a focal 
point for the field. To determine the location of this focal point, we set /(£) = 0 in 
(10.1.224) and obtain as the (first) focal length 

rr π an0Vk (10.1.225) 

since sin(w) = 0. There are, in fact, infinitely many focal points predicted by 
( 10.1.224), but the others are of no interest to us. 

We want to match the preceding boundary layer results with the previously given 
geometrical optics results. This requires that we consider ^(ξ), /?(£)> a nd f(0 
for small ξ. Since /(0) = 1, / ' (0) = 0, and /"(0) = -2ηλΕ

2/nga2 in view 
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of (10.1.223), we have /(£) = / (x/y/k) « 1 - ηλΕ
2χ2/n2

0a
2k. As a result 

we find that β{ξ) = β (x/y/k) « -2niE2x/n0a
2y/k, 7(ξ) = -у (x/y/k) » 

п\Е2х/2по\/к. Inserting these expressions into (10.1.216) yields 

1 fn1E
2x n1E

2y2x\ , . ,„ ,„„„4 
ф(х, y)^n0x+-( - ί —^τ- ' 10.1.226 

к \ 2n0 пост / 

which agrees with the geometrical optics result (10.1.203) when that is evaluated near 
the axis of the beam as in (10.1.217). 

For άο(ξ, у) we have 

м,^Ч-да~>!^Ч+да™ 
for small y. This agrees with the expression (10.1.208) for a(x, y) near the axis of 
the beam. Furthermore, if we determine the focal point for άο (ξ, у) to the level of ap-
proximation used in ( 10.1.227), we find that the/oca/ length is if ss em0 у/к/Е^/щ, 
since /(£) vanishes at this point if it is approximated as above. Comparing this value 
with (10.1.225), we find that they differ by a factor of тг/2%/2 « 1.1. The difference 
is not substantial. The result given in ( 10.1.209) on the basis of the geometrical optics 
approach differs from the above by a factor of yf2. We see from (10.1.227) that this 
difference is due to the factor | , which occurs when the binomial expansion is used 
in (10.1.227). Nevertheless, all expressions for the focal length contain the same 
dependence on the parameters a, no, щ, E, and к. 

Even though the boundary layer equations ( 10.1.214)—( 10.1.215) predict that fo-
cusing occurs, as we have seen, it may yet be that focusing is prevented if diffraction 
effects, which have so far been neglected, are taken into account. That is, we must 
consider equations for the field that include second derivative terms in the amplitude. 
The self-trapped solution (10.1.187) shows that plane wave solutions (in an approxi-
mate form) do exist that do not undergo self-focusing. To analyze this problem, we 
now obtain the terms ф2(х,у) and a2 (x, y) in the expansion of the geometrical optics 
solution (10.1.199). 

The phase term 02 (x, y) satisfies (10.1.196). Using the expressions obtained above 
ίοτ ф0(х,у), ф\{х,у), ао(ж, у), andai (ж, у) and the initial condition 02(O, у) = 0, 
we easily obtain 

2xy2 — xo2 

no a4 
(4n2rio - n2)x ι (a2 - 12y2)n2x3' 

8nl 6nga4 E4exp ( V 
a2 

02(z, 2/) 
llOtt- l O'HQ WIQW 

(10.1.228) 
We insert (10.1.228) into the equation ( 10.1.197) for а2 (х, у) and integrate, retaining 
only the most significant terms near у = 0 and for x large. Then 

. , x2E ( y2\ fn2x4E5 n2x
2E5\ ( by2\ 

a^v) * - ^ e x p r w + \щ^+~~^r)exp \^) ■ 
(10.1.229) 
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In the absence of nonlinear effects (i.e., with щ = n2 = 0) the first term on 
the right in (10.1.229) is the only contribution to a2 (x, y). It represents a diffraction 
effect. Sincea\(x,y) = 0ifni = 0, wehavea(x,y) zz ao(x,y) + (l/k2)a,2(x,y) = 
(l — х2/к2п%а4) E exp (—у2/a2) . Thus for a linear medium, secular effects occur 
when 

xd « кща2, (10.1.230) 

where Xd is the diffraction length [it agrees with (10.1.172) if we put a2 = 2a]. As 
shown in our discussion of the propagation of a Gaussian beam in a linear medium 
when x = O(k), the Gaussian beam field must be described by means of aSchrödinger 
equation. However, since diffraction effects occur when a; = 0(fc) and self-focusing 
occurs when x = 0(\/fc) in view of (10.1.209), it appears that diffraction cannot, in 
general, influence and counteract self-focusing. 

When щ and n2 are not equal to zero, we obtain near у = 0, 

1 1 п\Егх2 Ex2 n2E
5x2 

(10.1.231) 

Secular effects occur when (l/k)ai (x, y) « ao{x, y) in the nonlinear problem and 
when (l/k2)a2(x,y) ^ о,о(х, у) in the linear problem. The combined effects in 
(10.1.231)forwhichao(:r,y) « (\/k)a\(x,y) « (l/k2)a2(x,y) yield 

niE2 , n2E
4 1 i 2 

2n2
)a

2k п^а2к2 п^а^к2
t 

x2 « 1. (10.1.232) 

Noting (10.1.209) and (10.1.230), we have 

1 ^ 1 1 [ i E 2 ^ \ 
r2 τ2, x2

d \ щак ) _ . + ( ^ Г Т Т £ ) . (10.1.233) 

and we assume that 712 > 0. Arguing as above, we could state that (10.1.233) 
determines a first value of x at which self-focusing becomes significant if we include 
diffraction and higher-order nonlinear effects. We have established a relationship 
between the secularity and self-focusing regions previously. Thus (10.1.233) shows 
that diffraction need not prevent self-focusing, but it does delay its onset. The higher-
order nonlinear effect enhances the self-focusing property and brings the focal region 
closer to the origin. This result is not unexpected in view of our general discussion of 
the self-focusing effect. If к is large and the other terms in ( 10.1.232) are of moderate 
size, the diffraction and higher order nonlinear effects do not appear to be significant. 

An interesting situation arises if xj = Xd, so that the focal and diffraction lengths 
are equal. This implies that 

E2 = —^r, (10.1.234) 

so that E is small for large k. With this choice for E, the last term in (10.1.231) is of 
order k~4E, so that 
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a{x,у) и a0{x, y) + -£ <xi(x, y) + -^ a2{x,y) = E + 0{k~4E). (10.1.235) 

Also, in ( 10.1.232) we may eliminate the n2 term since it is of order k~~A compared to 
the other two bracketed terms, which are of order k~2. Consequently, (10.1.233) be-
comes l/x2 « 0, and the focal point is moved off to infinity at this level of approxima-
tion. Furthermore, we have ф(х,у) ~ ф0{х,у) + (1/к)ф\(х, у) + (1/к2)ф2{х,у) — 
щх + 0(k~4) for у « 0, as is easily seen. Thus with E given as in (10.1.234), we 
obtain 

u(x, y) = - д a(x, y)e
ik*^ « (~^λ exp (-^\ eikn°x, (10.1.236) 

using the given approximation. We have replaced a(x,y) « E by a(x,y) и 
Eexp(—y2/a2) in (10.1.236) since the preceding was valid near у = 0, and the 
field, which has the form of a beam, is exponentially small away from у = 0. 

We have shown that if E is given by (10.1.234), the resulting field is a beam that 
travels without change of shape to a high level of approximation for large k. Since this 
is effectively a self-trapped beam for which an (exact) balance between the nonlinear 
self-focusing effect and the defocusing diffraction effect exists, it is of interest to 
compare (10.1.236) with the approximate form (10.1.187) of the exact self-trapped 
solution found earlier. The parameter с that occurs in (10.1.187) may be interpreted 
as an inverse beam half-width for that solution, since when cy > 1, sech(cy) is small. 
Thus if с = Ι /α , the amplitude term in ( 10.1.187) evaluated at the center of the beam 
is equal to E as defined in (10.1.234). We recall that a is the half-width of the beam 
( 10.1.236). Although the beams ( 10.1.187) and ( 10.1.236) have somewhat different 
phase and amplitude representations, they have a common beam half-width a and 
have the same amplitude E at the center of the beam. In addition, they are both 
approximate general plane waves and are self-trapped. 

We now present a boundary layer analysis of the field in the region x = O(k), 
where diffraction effects become important. The phase in that region should equal пах 
plus lower-order correction terms, and the amplitude should be bounded or decreasing 
as к increases. From (10.1.202) and (10.1.206) we see that (l/fc)0i(a;,y) = O(l) 
and (l/k)ai(x,y) = O(k) when x = 0(k). However, фо(х,у) = 0(k) and 
ао(ж,2/) = 0(1) when a; = 0(k). Since we cannot have (\/k)a\(x,y) be of higher 
order than a0(x,y), it must be assumed that ao(x,y) = Eexp(—y2/a2) = 0(k~s) 
for some positive s, and this means that E = 0(k~s). Then (1/к)ф\(х,у) = 
0(k~2s) and (l/k)ai(x, y) = 0(fc1 - 3 s) , so that these correction terms are of reduced 
orders in k. 

To proceed we set ф(х, у) = n0x + (1/к)ф(х,у) in (10.1.189)-(Ю.1.190), since 
when x = 0(k) we have seen that the correction term to фо(х,у) = щх is 
one order of к lower than ф0 itself. With r = \ in ( 10.1.189)-( 10.1.190), we 
have {(2щ/к)дф(х, у)/дх a{x, y) + (l/fc2)(V0(ar, y))2a(x, y] - (m/k)a3(x, y) + 
· · ·} - V2a{x,y)Jk2 = 0, and 2п0да(х,у)/дх + (2/к)Уф(х,у) ■ Уа{х,у) + 
(1/к)а(х,у)У2ф(х,у) = 0. Then with x = fc£, we set a(x,y) = (l/ks)ä(£,y), 
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and ф(х, у) = (1/^3~1)φ(ξ, у), where s > 0 and is to be determined. This implies 
that the amplitude a(x, y) is 0(k~s) and the correction term to фо(х, у) = UQX is 
0(k~2s), as was required previously. We obtain 

2поЩ£ а&у)+(ЩЩ Щ,у)-П1а*&у) 
kl+3s Οξ ду 

]_дЩу}+... = 0 (101237) 

kl+s 
2щ + k3s 

k2+s Qyl 

2 Θφ(ξ,ν) да&у) | ö2*«,!/) 
ду ду ду* 

+ ••• = 0, 

(10.1.238) 

where we have neglected lower-order terms. We must choose s = \ so that the 
significant terms in (10.1.237)-( 10.1.238) include the leading terms in (10.1.212)-
(10.1.213) valid in the focal region. However, we do have an additional second 
derivative term in the amplitude to account for diffraction. 

The leading terms in the expansions of φ(ξ, y) and ά(ξ, у), which we denote by 
φο(ξ, у) and ά0(ξ, у), satisfy 

θφ0(ξ,ν) , ( дфо(£,у)\ -2,с ч 1 дЧ0{^у) 

2п0 

di \ ду ) 

9ά0(ξ,ν) , nd4>o(Ì,y) dàofay) 

άο(ξ,ν) ду2 0, 

(10.1.239) 

+ 2 ду + ào(£,y) 
д2Фо&у) 

Οξ ду 
Introducing the function 

ν(ξ,ν) = ao(Ì,y)exp[i$o(Ì,y)\ 

ду 2
 = 0 . (10.1.240) 

(10.1.241) 

we easily find that 

2ino 
οξ + ду2 + ni\v(i,y)\4(i,y)=0. (10.1.242) 

This nonlinear Schrödinger equation reduces to the linear Schrödinger equation 
(10.1.103) or (10.1.175) when щ = 0. Both equations describe the far field in the 
region x = O(k) where diffraction effects are important. In terms of u(x, y) our 
result is now given as 

u(x,y)*±v(±x,y)eikn°x (10.1.243) 

where v{x/k, y) satisfies the equation 

dv(x/k,y) d2v(x/k,y) 
2гкщ 

дх + ду2 + ni\v(x/k,y)\4(x/k,y) = 0 . (10.1.244) 
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The nonlinear Schrödinger equation (10.1.242) is one of a class of nonlinear 
equations for which an exact solution of the initial value problem can be found. 
The inverse scattering method and related methods that yield these solutions are 
too lengthy and complicated to be considered here. A self-trapped solution of 
( 10.1.242) may be found by setting φ0 (£,y) = λξ, a0(£,y) = й0(у) in (10.1.239)-
(10.1.240). Then ( 10.1.240) is identically satisfied and ( 10.1.239) reduces to the ODE 
2no\äo(y) — riiä^iy) — ä'0'(y) = 0. This has the form of (10.1.183), and a solution 

Г ~ η 1 / 2 

that vanishes as \y\ —» со is à0(y) = 4ηολ/ηι sech[(2n0Ä)1/2y], in view of 
(10.1.184). 

The field u(x, y) is given as 

u(x,y) 
\nik*J 

1/2 

sech[(2n0À)1/2?/] exp г I knox + 
\x (10.1.245) 

on using (10.1.241) and (10.1.243). If we set λ = c2/2n0, (10.1.245) is identical 
to ( 10.1.187). We are interested in a solution of ( 10.1.239)-( 10.1.240) that matches 
(10.1.236). Thus, we set φο(ξ,ν) = 0, ä0(£,y) = Èexp(-y2/a2) ,with£tobede-
termined. Inserting this into (10.1.239)-(Ю.1.240) yields -{2È/a2) (l - 2y2/a2) 
10.1.5exp (-y2/a2) = - n i £ 3 e x p (-3y2/a2), as (10.1.240) is satisfied identi-
cally. Near the center of the beam where у ss 0, we may approximate exp[—2y2/a2] 
by 1 — 2y2/a2. Doing so in the above shows that È must be given as È = 2/n\a2. 
Thus the field u(x, y) near у = 0 is 

u(x,y) 
ща 

2 к2 

!/2 / 2· 
e x p i - ^ ì e i f c n o X (10.1.246) 

The expression (10.1.246) for u(x, y) agrees with ( 10.1.236), which was obtained 
from the geometrical optics solution under the assumption that the self-focusing and 
diffraction lengths are equal. The field (10.1.246) represents a self-trapped beam 
since the amplitude is independent of x and decays exponentially in \y\. If we define 
(2710À)-1/2 = a to be the beam half-width of (10.1.245), we obtain for (10.1.245) 

u(x,y) 
n\a2k2 

1/2 

sech (I)' exp г I knox + 
2noa2k 

(10.1.247) 

The fact that ( 10.1.246) and ( 10.1.247) are both self-trapped beams of half-width 
a and \u(x, 0)|2 = 2/ща2к2 = E$, suggests that EQ plays a critical role in deter-
mining whether beams are self-focused, self-trapped, or effectively propagate as in a 
linear medium. If a beam u(x,y) has \u(x, 0) | > EQ, the focusing effect is stronger 
than the defocusing diffraction effects and self-focusing occurs. If \u(x, 0)| = EQ, 
self-trapping occurs, and if |u(a;, 0) | < EQ, the nonlinearity contributes small correc-
tions to linear wave propagation. The concept of a critical intensity E2 associated 
with beam propagation has been discussed in the literature, and its properties are 
somewhat consistent with these results. The validity of this relationship is difficult to 
verify in general. 
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Exercises 10.1 

10.1.1. Letur(x,y,z) = {1/4пг)е*кпг withr2 = (χ-ξ)2+ (ν-η)2 + (ζ-ζ)2ίχ 
the free-space Green's function for the reduced wave equation (10.1.1) in (x, y, z)-
space {n = constant) with source point in z > 0. Use the method of images to con-
struct the Green's function for the half-space z > 0 in the form K(x, y, z; ξ, η, ζ) = 
U[(x,у, z) + us(x,y,z), if K(x,y,0;ξ,η,ζ) = 0. Note that both uj(x,y, z) and 
us(x,y,z) are of the form (10.1.7) and show that the phase and amplitude terms of 
ui{x, y, z) and us(x, y, z) are equal on z = 0. Also show that us(x, y, z) satisfies 
the outgoing condition at z = 0. 

10.1.2. For the two-dimensional problem ( 10.1.14)-( 10.1.15), determine the Green's 
function K(x, у ; ξ, η) if the Dirichlet condition ( 10.1.21 ) is replaced by the Neumann 
condition 3Κ(0,^,ξ,η)/δχ = 0. Hint: Use the method of images. Expand the result 
asymptotically and show how the leading amplitude term and the phase term of the 
scattered wave и${х, у) can be specified by applying the boundary condition to the 
asymptotic expansion of the solution. 

10.1.3. (a) Apply the method of images to construct the Green's function for ( 10.1.1 ) 
(n = constant) in the quarter-plane x > 0, у > 0 if the Green's function is required 
to vanish on the boundary. Hint: If (ξ, η) is the source point for the free-space 
Green's function in the first quadrant, there are image sources at (—ξ, ту), (—ξ, —η), 
and (ξ, —η). (b) Expand the Green's function asymptotically and show how the 
leading terms may be obtained by expressing the incident and reflected waves in the 
asymptotic form ( 10.1.7). Hint: Consider that the incident rays may undergo a double 
reflection from x = 0 and у = 0. 

10.1.4. Solve the problem of Exercise 10.1.3 if the Green's function K(x, y; ξ, η) 
satisfies the boundary conditions: дК(0, у; ξ, η)/δχ = 0, К(х, 0; ξ, η) = 0. 

10.1.5. Consider the equation u"(x) + k2n2(x)u(x) — 0, which is the one-dimen-
sional version of ( 10.1.1 ). Obtain an asymptotic solution of this equation for large k 
by expanding u(x) as in (10.1.7) and (10.1.11). Determine and solve the equations 
for the phase and amplitude terms. (This technique in one dimension is known as the 
WKB method, and a large body of results is available for this method in the literature.) 

10.1.6. Determine the rays and the phase function ф(х, у) if ф(х, у) = 1 on the 
circular cylinder x2 + y2 = a2 and the index of refraction n(x, y) = 1. Find both 
sets of rays and phase functions. 

10.1.7. Find the rays and the phase function ф(х, у) in the two-dimensional case if 
we set ф(х, у) = Θ (the polar angle in polar coordinates x = r cos Θ, у = r sin Θ) on 
the unit circle x2 + y2 = 1. Also solve the leading order transport equation (10.1.54) 
for VQ(X, y) in this case. [Let n(x, y) = 1.] 

10.1.8. Show that for a cylindrical wave with phase ф = nr = пу/х2 + у2 and a 
constant refractive index n, the amplitude term VQ decays like l/y/r, by using the 
relation (10.1.70). 
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10.1.9. Consider the asymptotic scattering problem for u(x) = u/(x)+us(x), where 
ui(x) and ug(x) are given as in ( 10.1.80)—( 10.1.81 ). Determine the appropriate 
conditions on the phase term φ(χ) and the amplitude terms Vj(x) if the following 
boundary conditions are given on the scattering surface: (а) ди(х)/дп = 0; (b) 
ди(х)/дп + hu(x) — 0. 

10.1.10. Obtain the geometrical optics solution of the problem of the reflection of a 
cylindrical wave by a parabola considered in the text, if the field u(x, y) satisfies the 
Neumann condition ди(х, у)/дп = 0 on the parabola. 
10.1.11. Assume that the plane wave ui{x,y) = егкх is incident on the parabola 
( 10.1.84) from the left and that the total field u{x,y) — U[(x,y) + us(x,y) vanishes 
on the parabola. Determine the asymptotic expansion of the scattered wave us(x, y)-

10.1.12. Assume that the plane wave uj{x,y) = егку is incident on the parabola 
(10.1.84) and that the total field u(x,y) = ui(x,y) + us(x,y) vanishes on the 
parabola. Determine the geometrical optics expansion of the scattered field us(x, y)· 
Obtain only the leading amplitude terms for us(x, y) and leave it in parametric form. 
Show that us(x,y) is singular at the vertex of the parabola and that the field is 
discontinuous across the shadow boundary x = —a/2, у > 0. 
10.1.13. Rework the problem of the asymptotic expansion at a caustic under the 
assumption that the caustic curve is the circle x2 + y2 = a2 and that И)(оо) = 1. 
Obtain expressions for the incident and outgoing geometrical optics fields and for the 
field in the boundary layer in terms of variables associated with the circular caustic. 
Determine the asymptotic value of the field on the caustic x2 + y2 = a2. 

10.1.14. Consider the problem of the scattering by a half-plane as presented in the 
text. Introduce a boundary layer at the reflection boundary у = 0, z < 0 and proceed 
as in the text to obtain a boundary layer solution that yields a smooth transition across 
the reflection boundary. 
10.1.15. Construct the geometrical optics solution for the problem of the scattering 
by a half-plane if the boundary condition in (10.1.136) is replaced by the Neumann 
condition du(x, y, 0)/dz = 0 for у < 0. 
10.1.16. In two dimensions, consider the problem of diffraction by a slit. Let the 
incident plane wave ui(x, у) = егкх approach the y-axis, which has an opening or 
slit for |у | < 1. For x = 0 and \y\ > 1, the boundary condition for the total field 
u(x, y) = ui(x, y) + us(x, y) is given as u(0, y) = 0, \y\ > 1. Using appropriate 
outgoing conditions, determine the geometrical optics field and show that there are 
two shadow and reflection boundaries. Show how boundary layer methods can be 
used to obtain smooth transitions across these shadow and reflection boundaries. 
Compare these results with those that might be obtained by applying the geometrical 
theory of diffraction at each edge—that is, at (0, —1) and (0,1). 
10.1.17. Use the parabolic equation 2ikvx(x, y) + vyy(x, y) = 0, x > 0, with the 

fi, M<i. 
data г;(0, у) = < , . to obtain an approximate solution to the problem of 
Exercise 10.1.16 in the half-plane x > 0. Compare the solution obtained by the 
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parabolic equation method with that obtained in Exercise 10.1.16 using geometrical 
optics and boundary layer methods. 
10.1.18. Obtain the geometrical optics solution of the problem of the scattering 
and diffraction of a plane wave by a circular aperture. That is, consider the plane 
z = 0 with a circular hole given as x2 + y2 < a2 and a plane wave ui(x, y, z) = e%kz 

approaching the (x, 2/)-plane. Let the total field ω (a;, у, z) = ui(x, у, z) + us(x,y, z) 
vanish onz = 0, x2+y2 > a2. Determine the geometrical optics field us(x,y, z) and 
show that the total field u(x, y, z) is discontinuous across the cylinder x2 + y2 = a2. 

10.1.19. Apply the parabolic equation method for the problem of Exercise 10.1.18 in 
the regions; > 0. Obtain 2ikvz(x,y,z)+vxx(x,y,z)+vyy(x,y,z) = 0, z > 0, with 

f l , x2+y2<a2, 
the boundary condition v(x, y, 0) = < 9 2 2 Noting that the funda-

10, x +y > a . 
mental solution for this parabolic equation is F(ar, y, z) = —(1/4π2)βχρ (ikr2/2z), 
where r2 = (x — ξ)2 + (у — η)2, obtain the solution of the Cauchy problem for the 
parabolic equation as an integral over x2 + y2 < a2. Introduce polar coordinates 
and show that the double integral can be expressed as a single integral involving the 
Bessel function Jo. 
10.1.20. Solve the problem of scattering by a circular cylinder with the Neumann 
condition du(x, y)/dn = 0onx2 + y2 = a2. 

10.1.21. Write ( 10.1.173) in the form u(x, y) = v(x, y)etkx and show that v(x, y) is a 
solution of the paraxial wave equation (10.1.174) and satisfies the boundary condition 
(10.1.169). 
10.1.22. If v(x, z) and v(y, z) are solutions of the paraxial waveequations 2ikvz(x, z) 
+vxx(x,z) = 0and2ikvz(y, z)+vyy(y, z) = 0, respectively, show that v(x,y, z) = 
v(x,z)v(y,z) is a solution of the paraxial wave equation in 3D 2ikvz(x,y,z) + 
vxx(x, y, z) + vyy(x, y, z) = 0. 
10.1.23. Use the results of the discussion of the propagation of a Gaussian beam 
given in the text and Exercise 10.1.22 to obtain the Gaussian beam 

u{x,y,z) = A ( _ ) exp 
ikix2 + y2) 
2(z — ika) 

in three dimensions. 
10.1.24. Verify that ( 10.1.184) is a solution of ( 10.1.183). 
10.1.25. Discuss the propagation of a beam in a nonlinear medium in the three-
dimensional case. Introduce cylindrical coordinates (r, Θ, z) and assume that the ini-
tial conditions at z = 0 are </>j(r, Θ, 0) = 0, j > 0, ao(r, Θ, 0) = E exp ( - r 2 / a 2 ) , 
aj(r, Θ, 0) = 0, j > 1. Proceed as in the two-dimensional case and assume that the 
phase and amplitude are independent of Θ. Determine an approximate focal distance 
Zf as in (10.1.209) and a focal length 5/ as in (10.1.225), based on the solution of 
the appropriate nonlinear geometrical optics equations obtained by proceeding as 
in the two-dimensional problem. Note that the equation for / that occurs in three 
dimensions is easier to solve that its two-dimensional analog. 
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10.2 THE PROPAGATION OF DISCONTINUITIES AND SINGULARITIES 
FOR HYPERBOLIC EQUATIONS 

Discontinuities and singularities in the data for (linear) hyperbolic equations are prop-
agated along characteristics, as we have demonstrated on a number of occasions. The 
behavior of solutions in the neighborhood of characteristics across which discontinu-
ities or other rapid variations of the solution occur can be studied separately. Although 
the results obtained do not, in general, yield a full description of the solution, they do 
describe it in a region of interest, such as at a wave front. Other approximate methods 
of the type given in Sections 10.1 and 5.7 may be used to complete the description of 
the solution in certain other regions of interest. 

Solutions with Jump Discontinuities 

To begin, we consider the hyperbolic equation 

utt(x, t) - V · (p(x)Vu(x, t)) + 2X(x)ut(x, t) + q{x)u(x, t) = 0. (10.2.1) 

This has the general form of the hyperbolic equations considered in Chapter 4 except 
that we have put p(x) = 1 and F(x, t) = 0 in (4.1.10), and added a damping term 
2X(x)ut(x, t), where λ(χ) is a positive function. The coefficients p(x) and ςτ(χ) satisfy 
the conditions given in Section 4.1. 

We study the form of the solutions of ( 10.2.1 ) near a wave front surface φ(χ, t) = 0. 
[In the one-dimensional case we replace x by x and φ(χ, t) = 0 is a curve.] It 
is assumed that the solution u(x, t) vanishes on one side of the surface and is a 
nonzero function that satisfies (10.2.1) on the other side of the surface. The solution 
is represented as 

u(x, t) = υ(χ, ί)Η{φ(χ, t)), (10.2.2) 

where Η(φ) is the Heaviside function, with Н{ф) = 0 when ф < 0 and Н(ф) = 1 
when0 > 0. Therepresentation(10.2.2)requiresthatw(x,i)beasolutionof(10.2.1) 
in the region ф(х, t) > 0 and that the value of v(x, t) on ф(х, t) = 0 equals the jump 
in the solution u(x, t) across the wave front. 

To determine the conditions that (10.2.2) places on ф(х, t) and v(x, t), we insert 
(10.2.2) into (10.2.1). This gives, on using Η'(φ) = δ(φ), 

δ'{Φ){Φί -Ρ(νΦ)2}ν - 6(ф){2фм - 2р^ф■ Vv + 2\фгю - (V</>· Vp)v 

+ [Фи -ρν2φ]ν} + Η(φ){υΗ - V · (pVr;) + 2\vt + qv} = 0, (10.2.3) 

with V = д/дх in the one-dimensional case. Since v(x, t) is a solution of (10.2.1), 
the coefficient of Н(ф) in (10.2.3) must vanish in the region where Н(ф) ф 0. The 
delta function δ(φ) and its derivative δ'(φ) both vanish when φ ψ 0. Since δ'(φ) is 
more singular than δ(φ) at φ = 0, we require that their coefficients vanish separately 
if (10.2.3) is to be satisfied. This implies that φ(χ, t) = 0 must be a solution of the 
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characteristic equation for ( 10.2.1 ): 

^(x, i)-p(x)(V</.(x, i))2 = 0. (10.2.4) 

This result is not unexpected since we have already shown that all discontinuities 
must occur across characteristics. 

The vanishing of the coefficient of δ(φ) in (10.2.3) implies that on the characteristic 
surface φ(χ, t) = 0 the function v(x, t) must satisfy 

2&(x,i)wt(M) - 2p(x)V0(x,i) · V«(x,t) + 2 λ ( χ ) ^ ( χ , φ ( χ , ί ) 

+ [фи(х, ί) - V · (p(x)V<Kx, t))]v(x, t) = 0. (10.2.5) 

The appropriate solution φ(χ,ί) of (10.2.4) may be determined by the method 
of characteristics. The relevant equations are given in Exercise 2.4.13. The initial 
conditions for determining the requisite characteristic function φ(χ, t) must be found 
from the data for the hyperbolic equation (10.2.1). Then (10.2.5) can be solved as 
we demonstrate. Again the conditions on v(x, t) in (10.2.5) come from the data for 
(10.2.1). 

Before doing so, we use the same approach on the parabolic equation (4.2.5), 
where we put p(x) = 1. Thus, we insert (10.2.2) into (4.2.5) and obtain 

-δ'(φ)ρ(νφ)2ν+δ(φ)[φιυ-2ρνφ-νν-'ν-(ρν)ν]+Η(φ)[νί-ν-(ρνυ)+ςν} = 0. 
(10.2.6) 

Arguing as before, we conclude that (V</>(x, i))2 = 0, so that φ = φ(ί). Any jumps 
that occur in the solution must occur across the characteristics t = constant. Since φ is 
independent of x, the coefficient of δ(φ) reduces to φ'(ί)ν{χ, t), and this must vanish 
on φ(ί) = 0. But φ(ί) can be expressed in the form φ(ί) =t — c. (It vanishes on the 
characteristic t = c.) Consequently, φ'(ί) ψ 0 anywhere. Therefore, we must have 
v(x, t) = 0 on the characteristic, and the solution of the parabolic equation cannot 
have a jump across the characteristic. This is consistent with our results in Chapter 6. 

We have again determined that jumps in the solutions of homogeneous hyperbolic 
and parabolic equations with smooth coefficients can occur only across characteristics. 
Since elliptic equations do not have real characteristics, the foregoing analysis applied 
to the elliptic equation (4.1.9) with F(x) = 0 shows that its solutions cannot have 
any jumps. In the parabolic case, even though there are real characteristics, no jumps 
can occur across them. Only in the hyperbolic case can there be nonzero jumps. 

Bicharacteristics and the Propagation of Jump Discontinuities 

We apply the method of characteristics to (10.2.4). Let a = фи β = Уф. Then 

F(x,c*,/3) = a 2 - p ( x ) | / 3 | 2 = 0. (10.2.7) 

The characteristic curves for (10.2.4) are called bicharacteristics to distinguish them 
from the characteristics of the hyperbolic equation (10.2.1). Let the bicharacteristic 
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curves be represented as (x(s), i(s), 0(s), a(s), ß(s)). Then we have the equations 
(see Exercise 2.4.13) 

(10.2.8) 
where άφ/ds = 0 since F — 0 along the bicharacteristics. 

It follows from (10.2.8) that φ = constant on the bicharacteristics. Thus if φ = 0 
initially, φ(\, t) = 0 is the resulting characteristic surface. Also, (10.2.8) shows that 
a = constant along the bicharacteristics. Then (10.2.8) indicates that the parameter s 
can be replaced by the (time) parameter t along the bicharacteristics, with dt = 2ads. 
This yields dx/dt = —(ρ/α)β, and a similar transformation can be carried out for 
the other equations in (10.2.8). 

The bicharacteristics can be used to reduce (10.2.5) to an ODE. Given the (bichar-
acteristic) curve x = x(t), t = t on the characteristic φ(χ, t) = 0, we have 

2φιυι-2ρ4φ·4υ + 2Χφιν = 2avt-2pß-Vv+2Xav = 2a(vt - - ß-Vv + Xv) 

= 2a[vt + x'(t) ■ Wv + Xv] = 2a (^ + Xv ) , (10.2.9) 

in view of the above, with v = v(x(t), t). Thus (10.2.5) reduces to 

Έ + Xv + h [фи ~ v ' { ρ ν φ ) ] ν = °· (10-2.10) 

on the bicharacteristics, along which a = φι= constant. 
If p(x) = p is a constant and φ(χ, f) = 0 is the plane wave front φ(χ, t) — 

yjpt - x · 7 - с = 0, where 7 and с are constants, with |—yj = 1, (10.2.10) becomes 
dv/dt + Xv = 0. Since λ > 0, this implies that v(x, t)—when evaluated on the 
characteristic— decays (exponentially) with increasing time. As a result, the presence 
of the damping term 2X(x)ut(x,t) in (10.2.1) has the effect of smoothing out the 
discontinuity (10.2.2). 

In the two-dimensional case, if p(x) = p is a constant and φ—^Jpt — r = 0 i sa 
cylindrical wave front, (10.2.10) takes the form dv/dt+Xv+(p/2ar)v = 0. Since we 
can replace r by ^/pt on the wave front and a = φι = s/p on the bicharacteristics, 
we obtain the solution [assuming that λ(χ) = λ is a constant] v = (с/\Д)е~хг, 
where с is a constant that can vary from one bicharacteristic to the next, v decays 
exponentially because of the damping effect, and it decays algebraically because of 
the spreading of the bicharacteristics. Also, v is singular at t = 0 because all the 
bicharacteristics intersect there. 

In three dimensions, if p(x) = p is a constant and we consider the spherical wave 
front ф = y/pt — r = 0, we find that if λ(χ) = λ is a constant, v — (c/t)e~xt, 
where the constant с may have different values on different bicharacteristics. We 
again observe the combined exponential and algebraic decay of v and its singularity 
at t = 0. 
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Although our result only describes the variation of the solution within the disconti-
nuity region, it is possible to extend it to obtain an expression valid in the neighborhood 
of the discontinuity region as well. To do so we consider the characteristic surfaces 
<f>(x,t) = constant, which are parallel to a prescribed characteristic surface φ(χ, t) = 0. 
For small values of the constant, it is possible to expand v(x, t) in a Taylor series of 
the form 

(10.2.11) 
j=o 

where the Vj(\, t) are evaluated on the characteristic φ(χ, t) = 0. [Effectively, we 
are introducing φ as a new coordinate in addition to a set of coordinates on the 
characteristic surface φ(χ, t) = 0.] We insert (10.2.11) into (10.2.2) and obtain 

*(M)= Σ^(χ,ί) φβ{. 

\з=й 

The generalized functions 

Hj{x) = 

ЧмЛ Η(φ(χ,ί)). (10.2.12) 

χΐ 
H(x), j = 0 ,1 ,2 , . . . , (10.2.13) 

where H(x) is the Heaviside function, have the property that Щ (x) = Hj-\ (x),j > 
1 [see (7.2.41) and Example 7.1]. Thus we write (10.2.12) as 

*(x, *) = ]>"> (x,i)#j MM))· 
j=0 

(10.2.14) 

Inserting (10.2.14) into (10.2.1) and using the above, we again find that δ'(φ) is the 
most singular term and this implies that φ(χ, t) must satisfy the characteristic equation 
(10.2.4). Equating the coefficients of δ(φ) and Η^{φ) to zero yields the system of 
transport equations 

2 ^ 2 ρ ν ψ . ν „ 0 + 2 Λ ^ + 
д2ф 
dt2 - V · (рЧф) υ0=0, (10.2.15) 

2 ^ * 2 i - 2 p V * . V W j + 2 Ä 
dt dt 

дф 
dt 

Vj + g-v-ù**) 
d2Vj-i 

dt2 + V-(pVuj_i)-2A 
dv ' i - i 

dt 
-qvj-i, j>l. (10.2.16) 

In view of ( 10.2.9), each of the transport equations can be expressed as an ODE along 
the bicharacteristics. 

In solving these equations in terms of the discontinuous data given for the problem, 
we do not merely determine the VJ (x, t) along the bicharacteristics that issue from the 
discontinuity region. Instead, the data are represented in the form (10.2.14) at t = 0 
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or on the boundary, and the Vj (x, t) are obtained in terms of the coefficients in these 
series. Thereby the Vj (x, t) are specified over the entire region where the solution is 
valid. This more general result yields the jumps in u(x, t) and its normal derivatives 
at φ(χ, t) = 0. 

This problem can be simplified if the characteristic surface φ(χ, t) — 0 is expressed 
as φ(χ, t) = t — φ(\) = 0. Then ψ(χ) = constant represents the position of the wave 
fronts at different times t. [Often, it is convenient to write φ(χ, t) as φ = ψ(χ) — t.] 
The functions in (10.2.11), evaluated on the characteristic, may now be taken to be 
functions of x, and (10.2.14) becomes 

oo 

u(x,t) = 5^«л-(х)Ял-(< - VW)· (10.2.17) 
j=o 

The characteristic equation (10.2.4) becomes (V^(x))2 = \/p{x), which has the 
form of the eiconal equation. The transport equations (10.2.15)—( 10.2.16) take the 
form, with v-i — 0, 

2pVip-Vvj+2\vj + V-(pVtp)vj = V-(pVvj_i)-guj_i , j > 0. (10.2.18) 

The expressions (10.2.14) or (10.2.17) are to be interpreted as weak solutions of 
( 10.2.1 ) since they involve generalized functions. To see how initial conditions are to 
be assigned for the bicharacteristic or ray equations and for the transport equations for 
the Vj (x), in our discussion below we consider initial and boundary value and Cauchy 
problems for the one-dimensional telegrapher's equation. The results obtained below 
for various problems involving that equation suggest how the general problem ought 
to be treated. 

Functions with Jump Discontinuities and Heaviside Functions 

The use of the expansion (10.2.14) requires that the data for the problems be ex-
pressed directly in terms of the Heaviside function H(x) or the Dirac delta function 
δ(χ). Suppose that the data are given in terms of a discontinuous function F(x) = 
\ f(x), x < 0, 
< , . We assume that f(x) and g(x) are smooth functions in their inter-
1 Qx^ìi x J> \). 

vals of definition and have finite one-sided limits at x = 0. If f(x) can be defined or ex-
tended as a smooth function for all x, we can write F (x) = f(x)+H(x)[g(x)—f(x)]. 
Furthermore, if g(x) — f(x) can be expanded in a Taylor series around x = 0, we 
can express the result as 

oo 

F{x) = f(x) + Y}FM(x)]x=oHj(x), (10.2.19) 
j=o 

where [F^(x)]x=o = g^(0) — / ^ ' ( 0 ) represents the jump in the jth derivative of 
F{x) at x = 0. The Hj(x) are defined as in (10.2.13). 
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More generally, if F(x) is a smooth function for x φ a with at most jumps in its 
derivatives at x = a, we can represent F(x) as in (7.2.42) and obtain 

oo 

F(x) = F(x) + Σ[Ρ^(χ)]χ=αΗ5{χ - a), (10.2.20) 

where F(x) is the difference between F(x) and the sum on the right side of (10.2.20). 
An example is given in Example 7.2 [where we replace f(x) by F(x)] and the 
representation (10.2.20) is obtained. If F(x) has jump discontinuities at a finite 
number of points a j, j = 1,2,.. . , n, a representation in terms of Heaviside functions 
can again be given, as will be seen below. 

If F(x) is given as in (10.2.19) or (10.2.20), its generalized derivatives can be 
obtained by differentiating the series term by term. Apart from the addition of a finite 
number of terms that involve the delta function and its derivatives, the derivatives of 
F(x) are still represented in terms of a series of the functions Hj(x) or Hj(x — a). 
We make use of the representations (10.2.19) and (10.2.20) in our discussion below. 

Initial Value Problem for the Telegrapher's Equation: 
Jump Discontinuities 

We consider the initial value problem for the telegrapher's equation 

utt{x, t) - 7 2 u x x ( x , t) + 2\ut(x,t) = 0, -oo < x > oo, t > 0, (10.2.21) 

with the initial data 

{ - 1 , x < - 1 , 

sin(ar), - 1 < K 1 , ut{x,0) = 0. (10.2.22) 
1, x>h 

The function u(x, 0) can be written in terms of the Heaviside function as 
u(x, 0) = - 1 + (1 + sin(x))H{x + 1) + (1 - sm(x))H(x - 1). (10.2.23) 

To account for the jumps in the initial data at x = 1 and x = —1, we introduce 
the expansions 

oo oo 

U(x,t) ='^2vj(x,t)Hj^(x,t)] +^2wj(x,t)Hj[i;(x,t)]. (10.2.24) 
.7=0 j=0 

Inserting (10.2.24) into (10.2.21), we see that φ(χ,ί) and ψ(χ,ί) must satisfy the 
characteristic equation φΐ —η2φ^. = 0 and that the Vj (x, t) and Wj (x, t) must satisfy 
the (appropriate) transport equations ( 10.2.15)—( 10.2.16) specialized to (10.2.21). 
At t = 0, U(x,0) = ΣΤ=ονΛχ^)ΗΜχ^)ί + ET=owi(x'°)HiW>(xM, and 
this can account only for the singular terms in the data (10.2.23). This implies that 
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we should set φ(χ, 0) = x + 1, ψ(χ,0) = x — 1. We must use both solutions of 
the characteristic equations for φ and ψ that satisfy the conditions above and they are 
<t>(x,t) = x+l—jt, φ(χ,ί) = x+l+jt, tp(x,t) = x — l—^t, V>(x,i) = x — I+7Ì . 

For each characteristic line φ(χ, t) = φ(χ, t) = ψ(χ, t) = ψ(χ, t) = 0, we 
introduce a series of the form ( 10.2.14), and thus we replace (10.2.24) by 

00 00 

U(x,t) =^2vj(x,t)Hj[x+ 1 -jt] + '^2vj(x,t)Hj[x + i + 'yt] 
3=0 j=o 

+ ^2wj{x,t)Hj[x - 1 - 7i] + ^2wj{x,t)Hj[x - 1 + 7i]. (10.2.25) 
i=o j=o 

Considering only the leading terms we have U(x, 0) = [щ(х, 0) + VQ(X, 0)]HO[X + 
l]+[w0{x, 0)+гЬ0(з;, 0)]Η0[χ-1]+· ■ ■ = (l+sin(x))tf [a:+l] + (l-sin(x))ff[a:-l] 
and Ut{x, 0) = [-jv0(x, 0) + 71)0(1,0)]δ[χ + 1] + [-7го0(а;, 0) + 7г&0(а;, 0)Щх -
1]-\ = 0, since we are only concerned with the singular part of the data. Equating 
coefficients of like terms in the equations above and solving the resulting equations 
yields δο(*,0) = t>o(a:,0) = ( l /2)( l + sin(x)), ώο(χ,0) = г&0(а;,0) = (1/2)(1 -
sin(x)). The transport equation for the VQ(X, t), Vo(x, t), wo(x, t), and WQ(X, t) are 
easily solved, and we obtain 

U{x,t) = -[l+nn{x-it)]e-Xt Η{χ+\-ηί) + -[1+ήτ\(χ+ηί)]ε-χί Η{χ+\+ηΐ) 

+-[1-ύη(χ-Ίί)]ε-χίΗ(χ-1-^) + -[1-5ΐη{χ + Ύί)]ε-χίΗ(χ-1 + ̂ ) + ---. 

(10.2.26) 
The coefficients of the Heaviside functions in (10.2.26) are not evaluated on the 

relevant characteristics a; + l ± 7 i = 0 o r x — 1 ± 7 ί = 0. Although our original 
expansion forms required the transport coefficients to be evaluated on the character-
istics, we showed in the preceding that these expansions are formal solutions even if 
the coefficients are not evaluated on the characteristics. To obtain a representation 
where each coefficient in the expansion is evaluated on the relevant characteristic, we 
expand each of the coefficients in (10.2.26) in powers of the relevant characteristic 
variables. If this is done, we obtain to leading terms 

U(x, t) = ì [ l - sin(l)]e-At[H(a; + 1 - 7t) + H(x + 1 + 7Ì) 

+ H(x-1-7t) +H(x-l + τί)] + · · · (10.2.27) 

and the jump across each characteristic is | [1 — sin(l)]e_At. 
The solution u(x, t) of (10.2.21)-(10.2.22) may be represented as 

u(x,t) = v(x,t) + U(x,t), (10.2.28) 
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with U(x, t) given as above. In view of (10.2.22)-(10.2.23), the initial data fori;(x, t) 
arev(x, 0) = - 1 + [sin(x) +sin(l)]#(:r +1) - [s in(x)-s in( l ) ]#(x-1) + · ·■,and 
vt(x, 0) = A[sin(l) - l][H(x +1) + H(x - 1)] H .In addition, U(x, t) gives rise 
to an inhomogeneous term that occurs in the equation for v(x, t). Although u(x, 0) 
is discontinuous at x = — 1 and x = 1, v(x, 0) is continuous for all x. Consequently, 
v(x, t) is a smoother function than u(x, t). We do not solve for v{x, t). 

Initial Value Problem for the Telegrapher's Equation: 
Singular Solutions 

Next we show how to treat problems in which the initial data for the telegrapher's 
equation do not lead to jump discontinuities but result in stronger or, possibly, weaker 
singularities in the solution. For instance, the initial value problem for the telegra-
pher's equation in Section 1.2 has u(x, 0) = δ(χ), so that the solution is expected to 
have a delta function singularity. Also, the problem considered for v(x, t) in ( 10.2.28) 
leads to a solution that is continuous everywhere but has discontinuous derivatives. 

These problems can be dealt with by observing that (10.2.14) can be replaced by 
the expansion 

oo 

u(x,t) = ^Vj(ar,i)5j[^(a;,i)], (10.2.29) 

where the (generalized) functions Sj [x] are related to each other by 

%[χ] = Sj-i[x] (10.2.30) 

but are otherwise arbitrary. On inserting (10.2.29) into the telegrapher's equation, 
using (10.2.30) and equating the coefficients of the Sj[4>\ to zero, we conclude that 
φ(χ, t) must satisfy the characteristic equation and the Vj (x, t) must satisfy the trans-
port equations for the telegrapher's equation, as found above. For example, if we put 
S0[x] =H[x], the Heaviside function, (10.2.30) yields Sj[x] = Hj[x] and (10.2.29) 
reduces to (10.2.14). 

For a given problem we may use the general series ( 10.2.29) and then decide on the 
basis of the data what form So and the Sj should take. As an example, we consider 
the problem of Section 1.2 in which и(х, t) satisfies 

utt(x,t) --y2uxx(x,t) + 2\ut(x,t) = 0 , -oo < x > oo, t > 0, (10.2.31) 

with the initial data 
u(x, 0) = 6{x), ut(x, 0) = 0. (10.2.32) 

Expanding u(x, t) as in (10.2.29), we obtain u(x, 0) = ]C°10
 vj (ж> ®)Sj [Φ{χ-> 0)] = 

δ(χ). Since the Sj are increasingly less singular for increasing j , we conclude that 
S0[x] = δ(χ) and φ(χ,ϋ) = x, so that S\[x] = H[x], Sj[x] — Hj-i[x], j > 1, 
with the Hj defined as in (10.2.13). Again we must consider the two characteristics 
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φ(χ, t) — x — jt = 0, φ(χ: t) = x + jt = 0. It is easily shown on using the transport 
equations for ϋο(χ, t) and ϋο(χ, t) that 

u{x,t) = -e~xtS[x + 7i] + -e~XtS[x --yt] + ···, (10.2.33) 

to leading terms. This confirms the result obtained in Section 1.2. 
As another example we consider the initial value problem that yields the causal 

fundamental solution for the telegrapher's equation, as follows from Chapter 7. The 
function u(x, t) satisfies (10.2.31) and the data are 

u ( x , 0 ) = 0 , ut{x,0) = δ(χ). (10.2.34) 

Expanding u(x,t) as in (10.2.29), we have u(x,0) = Y^=oVj(x,0)Sjy>(x,0)] = 0, 
andut(a:, 0) = v0{x, 0)дф(х, 0)/dt S-i[fi{x, 0)] +Σ£=οΚ+ι(3 !> 0)οφ(χ,0)/θί + 
dvj{x,0)/dt}Sj^{x,0)\ = δ(χ). 

Since S_i[a;] = S'0[x] is the most singular term in the series, we conclude that 
So [ж] = δ(χ), φ(χ, 0) = x, so that S0[x] = H[x]. Consequently, the series (10.2.29) 
for this problem is identical with (10.2.14) since Sj[x] = Hj[x]. 

Adapting the result (6.7.51 ), it is easy to show that the causal fundamental solution 
of the telegrapher's equation is 

u{x, t) = ^-е~м10 (-^Ί4
2-χΑ tf (7ί - x)H(rft + x), (10.2.35) 

27 V7 J 

where IQ[Z] is the modified Bessel function of zero order. On using the Taylor series 
for I0[z] and considering (10.2.35) near each characteristic x — jt = 0 and x + 
jt — 0 for t > 0, it can be shown that the expansion based on the use of (10.2.29) 
agrees completely with the expression obtained from the exact solution (10.2.35). 
To accomplish this, however, the terms in the expansion must be evaluated on the 
appropriate characteristics x — -yt = 0 and x + ηί = 0. This is considered in the 
exercises. 

General Singularity Expansions 

The foregoing shows that singularity expansions of the hyperbolic equation (10.2.1) 
need not be restricted to the form (10.2.14). They can be given as 

00 

u{\,t) = 53«j(x,f)S,-[<A(x,i)], (10.2.36) 
j=0 

where the S, [z] satisfy the relations Sj [z] = S,-_ 1 [z]. This represents a formal solution 
of ( 10.2.1 ) if φ(χ, t) satisfies the characteristic equation 

<fi(x, t) - p(x)(V0(x, t)f = 0 (10.2.37) 
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and the Vj (x, t) satisfy the transport equations 

„ дф dv-i „ „ , „ „, дф H-v.(^) 
= - ^ ^ + ν ■(pVvj-1)-2X^ -qVj_u j>0j (10.2.38) 

where it is assumed that v-\ (x, i) = 0. 
Additionally, the expansion (10.2.36) no longer need be restricted to describing 

the propagation of singularities. For example, if we set 

SQy>] = βίωφ, SM = щг e™*, (10.2.39) 

where ω is a large (real) parameter, (10.2.36) may be regarded as an asymptotic 
solution of (10.2.1 ), as would arise if the problem contains rapidly oscillating data. 
For instance, if initially we have 

u ( x , 0 ) = / ( x ) e i a , 9 ( x ) , ut(«,0) = 0, (10.2.40) 

where ω is large and g(x) is a real-valued function, we look for a solution of (10.2.1) 
in the form (10.2.36) with the 5,- given by (10.2.39). From the initial data (10.2.40) 
we conclude that </>(x,0) = g(\). There are two solutions φ(χ,ί) and </>(x,t) of 
(10.2.37) that satisfy this initial condition. For each solution we construct a series 
(10.2.36) with coefficients Vj(x,t) and Vj(x,t), respectively. Inserting these series 
into the data (10.2.40) determines initial conditions for Vj(x, t) and Vj(x, i), each of 
which satisfies the transport equations (10.2.38). 

With λ = q = 0 and p = η2 = constant in (10.2.1), the choice φ(χ, t) = φ(χ) -
t, Vj (x, t) = Vj (x), with the Sj defined as in (10.2.39), yields the geometrical optics 
expansion for the reduced wave equation. In fact, the series 

°° 1 
у(ху"Ф(х) = J2vj(x)j—j είωψ(χ) (10.2.41) 

is a solution of the reduced wave equation as follows on setting u(x, t) = ε~%ωίν{χ) 
βιωφ(\) wjth ω = к, it reduces to the form considered in Section 10.1. In view of the 
fact that solutions of ( 10.2.1 ) undergo rapid variations across (characteristic) singular-
ity regions, it is not surprising that solutions of the type (10.2.36) and (10.2.39) with 
rapidly oscillating terms are similar in form to solutions that describe the propagation 
of singularities. In this section, however, we are only interested in discussing the 
propagation of singularities for solutions of ( 10.2.1 ) and do not pursue these matters 
any further. 

Initial Value Problem for the Two-Dimensional Wave Equation: 
Jump Discontinuities 

The preceding examples have dealt with problems in one dimension. Next we consider 
an initial value problem for the wave equation in two dimensions. Let u(x, y, t) satisfy 
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the wave equation 

utt(x, У, t) - 72(uxx(x, y, t) + uyy(x, y, t)) = 0, -oo < x, у > co, t > 0, 
(10.2.42) 

where 7 is a constant. The initial data for u(x, y, t) have a jump discontinuity on the 
circle x2 + y2 = a2 and are given as 

u(x,y,0)=a + (ß-a)H[p-a], ut(x,y,0) = 0. (10.2.43) 

Here, a and ß are constants, p2 = x2 + y2, and H[x\ is the Heaviside function. We 
expand u(x, y, t) as 

00 

u(x,y,t)=a + ^2vj(x,y,t)Sj^(x,y,t)]. (10.2.44) 
j=o 

At t = 0 we have u( i ,y ,0) = a + Е?=оуз(х>У'°)8ЛФ(х,У^)} = a + (ß -
a)H[p - a]. This suggests that we set £>о[ф] = Н[ф], Sjfy] = Hj[fi], with the 
Hj defined as in (10.2.13) and ф(х, у, 0) = p — a. Since ф(х, у, t) must satisfy the 
characteristic equation ф2(x, y, t) — 72((/>2.(x, y, t) + фу(х, у, t)) = 0, we obtain two 
possible solutions ф(х, y,t) = p — a — 7Ì, ф(х, y,t) = p — a + jt. To account for 
ф(х, у, t) and ф(х, у, t) we replace (10.2.44) by 

00 00 

u(x, y,t) = a + Y^ ΰί 0Е' У' ь)Нз ΙΦ(Χ' У' t)} + Σ ϋΑχι У-· 1)нз [Φ(χ> У. *)]· 
i=o j=o 

(10.2.45) 
Inserting (10.2.45) into the initial conditions (10.2.43), we easily conclude that VQ 
(x, y, 0) = vo(x, y, 0) = (l/2)(/3 — a). The transport equations for VQ(X, y, t) and 
v0(x,y,t) are dv0{x,y,t)/dt + 7 dv0{x,y,t)/dx + (-y/2p)v0(x,y,t) — 0, and 
dvo(x, y, t)/dt - 7 dvo(x, y, t)/dx — (j/2p)vo(x, y, t) = 0, with the solutions 

v0{x,y,t) = \{ß-a)(^^j , i,o{x^t)=l-{ß-a)[^^j . 

(10.2.46) 

These expressions may be expanded in powers of φ and φ. Doing so yields as the 
leading terms in the expansion of u(x, y, t), 

β-α( a \ 1 / 2
r r r . ß-af a \ 1 / 2

r r r 

(10.2.47) 
The coefficients of the Heaviside functions in ( 10.2.47) could have been determined by 
expressing the transport equations as ODEs along the bicharacteristics of ф(х, у, t) = 
0 and ф(х, у, t) — 0, as was done above. 
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The characteristic surface φ = p — a — jt = 0 represents cylindrical wave fronts 
that travel outward from the circle p = a with speed dp/dt = 7. The jump in и 
across the wave fronts decays like i - 1 / 2 for increasing t. The characteristic surface 
ф — p~ a + jt = 0 yields cylindrical wave fronts that travel inward from p = a 
with speed 7. At the time t = a /7 the wave fronts collapse on the point p = 0, 
and (10.2.47) is singular there since the coefficient of H[p - a + 7Ì] blows up. The 
singularity results because the origin is a focal point for the bicharactenstics. We do 
not consider how (10.2.47) should be modified to deal with this singularity. 

Modified Singularity Expansions: Fundamental Solution of the 
Klein-Gordon Equation 

The usefulness of the expansion (10.2.36) in solving problems for the hyperbolic 
equation (10.2.1) depends on the possibility of representing the data for (10.2.1) in 
the form (10.2.36) and the ability to determine the coefficients in the expansion of the 
solution in terms of those in the data. It may happen, however, that the bicharacteristics 
of ф(х, t ) = 0 intersect in the initial or boundary region. This occurs, for example, if 
φ(χ,ί) = 0 is a characteristic cone or conoid with vertex at t = 0 in the two- or three-
dimensional case. Then, the leading coefficient VQ(X, t), at least, in (10.2.36) must 
be singular where the bicharacteristics intersect, and it is not possible to determine 
its value directly in terms of the data. 

As an example, we consider the causal fundamental solution for the Klein-Gordon 
equation in three dimensions for и = u(x, y, z, t), 

utt - l2[uxx + v-yy + uzz] + c2u = 0, (10.2.48) 

with —00 < x, y, z < 00, t > 0 and constant coefficients. As shown in Chapter 7, 
it is a solution of (10.2.48) with the initial data 

u(x,y,z,Q) = 0, ut{x,y,z,0) = S{x)6(y)S{z). (10.2.49) 

It is given as (see Exercise 7.4.9) 

1 cjA^^-rA 
u(x,y, z,t) = j — δ[Ί1 - r] - V 7 L Hht - r] (10.2.50) 

47Γ7Γ 4тг72 y^y2^2 _ r 2 

for t > 0, where r2 = x2 + y2 + z2 and J\ is the Bessel function of order 1. 
Making use of the Taylor series for J\ yields 

u=-err *[7ί -r] - 4^ Σ {~Z^ltr{Ίί+r)i{lt -r)JH[lt 'r]-
(10.2.51) 

Since [7Ì + r]j = [2r + jt — r]·7 and can be expanded in powers of 7Ϊ — r, we 
see that (10.2.51) has the form u(x,y,z,t)-= ^2JLQVj(x,y,z,t)Sj[jt — r], where 
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So[0] = S[4>], Sj[<t>] = Hj-ιΐφ], j > 1, with Н3Щ denned as in (10.2.13). The 
transport coefficients Vj are evaluated on the characteristic surface φ = jt — г = 0. 
The leading terms are vo = l/An^r, v\ = —с2/87Г73. 

If we attempt to reproduce these results by using the direct expansion method and 
set u(x, y,z,t) = Σ°°=0 Vj (x, y, z, t)Sj [ф(х, у, z, i)], with the Sj given as above, we 
find that it is not possible to determine the Vj and the Sj directly in terms of the initial 
data, because of the singularity that results from the fact that the bicharacteristics of 
the forward characteristic cone for the problem all intersect at r = 0. Therefore, we 
now present an alternative method for constructing causal fundamental solutions of 
hyperbolic equations in which the singularity expansion is modified. 

We represent the causal fundamental solution ( 10.2.50) of the Klein-Gordon equa-
tion in terms of the square of the hyperbolic distance σ defined as σ = t2 — r2/j2 

(see Example 6.14). It has the form, for t > 0, 

u(x,y,z,t) = J L j δ[σ] - ^ - / - ^ Η[σ], (10.2.52) 

as follows on using the properties of the delta function given in Section 7.2. 
On expanding Ji in a Taylor series, as in (10.2.51), we find that u(x,y, z, t) takes 

the form 

1 1 « ^ f- lVr2-?' 

«(».i/.MĴ ÄM + j - j E l ^ r ^ W · (1 0·2·5 3) 

Then, if we set S0(a) = δ(σ) and Sj(a) = Hj-\(a), j > 1, we have S'j(a) = 
Sj-i(a) and u(x, y, z, t) can be written as 

л ν ^ n r 1 1 (-l)jc2j 

u(x,y,z,t) = }^VjSjla}, VJ = -—3 
j = 0 

2π73 22-?'j! 
(10.2.54) 

While this series has the form of (10.2.36) and the Sj satisfy Sj = S j - i , it differs 
from (10.2.36) in that the surfaces σ = constant are not characteristics of the Klein-
Gordon equation unless the constant equals zero. In fact, σ2 — 72(Va)2 = 4σ, and 
only σ = 0, which is the characteristic cone, satisfies the characteristic equation 
for the Klein-Gordon equation. We further observe that with 5_ι(σ) = δ'(σ) and 
5_2(σ) = δ"(σ) we have 

aSj(a)=jSj+1(a), j =-2,-1,0,.... (10.2.55) 

The coefficients Vj in the representation (10.2.54) were determined from the exact 
fundamental solution. We now show how to determine the coefficients in (10.2.54) 
directly from the Klein-Gordon equation and the initial conditions. To do so, we 
insert (10.2.54) into (10.2.48) and make use of (10.2.55) to obtain 

£ [ 4 ( ^ + r . WVJ + , · « , ) + ( ^ H f c i _ 7
2 У Ч _ ! + c V 1 ) ] s j _ 1 ( < 7 ) = 0 

(10.2.56) 
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after some elementary calculations, with υ_ι = 0. On equating the coefficients of the 
Sj to zero, the expression in the brackets in (10.2.56) yields the transport equations 
for the Vj. 

As we only need to integrate these equations over the forward characteristic cone 
t = r / 7 , and r · V = r(d/dr) on the cone, we have t д/dt + r d/dr = r d/dr 
o n i = r / 7 . As a result, the left side of each equation for the Vj has the form 
4r dvj/dr + Ajvj. Since v-\ = 0 , the ODE satisfied by VQ on the characteristic 
cone is r dvo/dr = 0. We require that each Vj be bounded at the Vertex of the cone 
where r = 0, and this implies that VQ must be a constant. Then the equations for the 
remaining Vj become 4r dvj/dr + 4jvj = —c2Vj-i. The boundedness requirement 
implies that all the Vj are constants, and by induction we conclude that 

vi = 2ijl
 V°' J = 1 > 2 ' · · · · (10.2.57) 

With v0 — 1/2π73, the result agrees with (10.2.54). 
While we have specified the value of vo by using the exact result (10.2.54), the 

determination of VQ may be based on comparing our solution with the causal fun-
damental solution of the wave equation near the singular point at the vertex of the 
characteristic cone, where the most singular part of both fundamental solutions must 
agree. Additionally, we have prescribed the form of the Sj in the expansion (10.2.54) 
that was inserted into the Klein-Gordon equation. However, this was not necessary. 
As seen in the following, the form of the Sj can also be determined from the conditions 
given for the problem. 

Modified Singularity Expansions: Fundamental Solutions of 
Hyperbolic Equations 

We consider the hyperbolic equation for u(x, t), 

L{u{\, t)) = ut t(x, t) - V · (p(|x|)V«(x, t)) + 2Aut(x, t) + q(\, t)u(x, t) = 0, 
(10.2.58) 

in two or three dimensions, where |x| = r is the distance from the origin and A is a 
constant. With the initial data u(x, 0) = 0andttt(x,0) = δ(\) [the delta function δ(χ) 
is singular at r = 0], the solution of ( 10.2.58) for t > 0 over the entire space R2 or R3 
yields the causal fundamental solution for (10.2.58). We construct an expansion of 
the fundamental solution in terms of the square of the hyperbolic distance associated 
with (10.2.58) and determine the leading term in the two- and three-dimensional 
cases. This method can also be used for the one-dimensional problem. In that case, 
however, the solution can be determined completely as an expansion in terms of the 
relevant characteristics, as we have shown. 

The hyperbolic distanceelementsfor(10.2.58)is given as ds2 = dt2-(\/p{r)) dr2, 
so that σ, the square of the hyperbolic distance measured from r = 0 and t = 0, is 
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given as σ = t2 — ( JQ
r l/^p(s) ds) .We easily verify that σ(χ, t) satisfies 

σ2 - p(r)(Va)2 = 4σ. (10.2.59) 

We express the fundamental solution of (10.2.58) as и = u(r, t) and expand it in 
the series 

u(r,t) = 5 > i ( r , t ) S » , S » = Sj-i(a), 
j=0 

(10.2.60) 

with the Vj(r, t) and the Sj to be determined. On inserting (10.2.60) into (10.2.58), 
we obtain 

oo 

J2{[a2-p(r)(Wa)2}vj(r,t)Sj-2(a)+[2atdvj(r,t)/dt-2p(r)Va^vj(r,t) 
j=o 

+2\atVj(r,t) + (σ« - V ■ (p(r)Va))t;J(r,i)]5j-1(a) + L[vj(r,t)]Sj(a)} = 0. 
(10.2.61) 

Now σ = 0 represents a characteristic conoid for (10.2.58) with vertex at (r, t) = 
(0,0). We determine the form of the Sj in (10.2.60) by requiring that the solu-
tions of the (transport) equations for the Vj (r, t) be nonsingular at the vertex of the 
characteristic conoid. 

We begin with the two-dimensional case. Only the forward characteristic conoid 
t = /Q

r ds/\Jp(s) concerns us and we have as the differential operator for г>о(л t)> 

4\/Р(Г) 
Jo 

ds dv0 Xvp Щ_ p'(r)v0 vo 
/pjs)\dr Jpjr) 2r 4p(r) \ Ш / ; а / у Ш | ' 

(10.2.62) 
with differentiation taken over the forward characteristic conoid. 

On collecting the coefficients of vo(r, t) in the braces in (10.2.62) we determine 
thatthey behave like 3/2r + 0(1) nearr = 0. Consequently, if we equate (10.2.62) 
to zero to obtain a transport equation for vo(r, t), the solution is singular at r = 0. 
However, in view of (10.2.59), the leading term in the expansion (10.2.61) is given 
as 4aS-2(<y)vo(r, t). Thus if we equate this term to — 65_i (a)vo(r, t), we find that 

4aS'_2(a) + 6S_1(C7)=4 
3 

aS'ó (σ) + -5ό(σ) = 0, (10.2.63) 

and on equating the resulting coefficient of 5_ i (σ) in ( 10.2.61 ) to zero, we now have 

- 1 " 
dv0(r,t) 

dr + 
x +±-+m-U /W) / 

Jo 

ds 
^/pjr) 2r 4p(r) у v ' ч ' J0 у/ф) 

and the singularity in the coefficient of vo(r, t) is eliminated. 

v0(r,t) = 0, 

(10.2.64) 
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Noting the properties of the function fa(x) defined in Example 7.1, we determine 
from (10.2.63) that 50(σ) = (1/^/σ)Η{σ). The solution of (10.2.64) is 

v0(r,t) = c0 

1/2 

-xt on t f 
Jo 

ds 
(10.2.65) 

where Co is an arbitrary constant. With p(r) = constant and q(x) = λ = 0, (10.2.60) 
must reduce to the fundamental solution of the two-dimensional wave equation. On 
comparing our result with (6.7.38), we find that CQ = 1/2πν

/ρ(0). Then, the causal 
fundamental solution is given approximately as 

u(r,t) 
2π ШР(Г)] 

-1/4 и: ds 

\/p(0)p(s) 

1/2 e-^[i-J>/#) 

(10.2.66) 

We have replaced the argument σ of the Heaviside function by t — /Q
r ds/' yfp(s), 

which is valid for t > 0. We do not obtain any further terms in the expansion 
(10.2.60). 

The only difference that occurs in the case of three dimensions (for our purposes) 
is that in the Laplacian operator in spherical coordinates the term d/dr is multiplied 
by 2 rather than 1 as is the case for cylindrical coordinates. This has the effect that 
we must set 

4σ5_2(σ) + 8S_i(a) = 4 [aS0\a) + 2S'0(a)} = 0, (10.2.67) 

in order to eliminate the singularity in the equation for vo(r, t) at the vertex of the 
characteristic conoid. The solution of this equation for So(<r) is SO(c) = ί ( σ ) · On 
solving for vo{r, t) and choosing the arbitrary constant by comparing the result with 
(7.4.30), we obtain 

u(r,t) 
1 

47ГГ 
[p(0)p(r)] -1/4 e - A t Vp{Ö)t (10.2.68) 

which is valid for t > 0. Again we do not obtain further terms in the expansion. 
We have shown how the behavior of solutions of hyperbolic equations near sin-

gularity regions can be determined without having to find the full solution. Further 
examples are given in the exercises. 

Exercises 10.2 

10.2.1. Use expansions of the form (10.2.14) to account for the singularity in the data 
for the following problem: utt(x,t) — ~y2uxx(x,t) + c2u(x, t) = 0, —oo < x < 
oo, t > 0, u(x, 0) = H(x), щ(х, 0) = 7<5(x), —oo < x < oo. 
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10.2.2. Solve the problem of Exercise 10.2.1 if theequation is replaced by utt(x,t) — 
12uxx(x, t) — c2u(x, t) = 0, —oo < x < oo, t > 0, and the data remain the same. 

10.2.3. Expand the solution (10.2.35) near the characteristic x — jt = 0 and show 
that the first two terms agree with those obtained by applying the expansion method 
directly. 

10.2.4. Consider the solution u(x, t) of the problem (10.2.31) and (10.2.34), as given 
in (10.2.35). Show that ut(x, t) + 2\u(x, t) is the solution of (10.2.31)-(Ю.2.32). 
Determine the solution and verify the result (10.2.33). 

10.2.5. Use an expansion of the form (10.2.36) to discuss the approximate solution 
of the initial value problem utt(x, t) — ~f2uxx(x,t) + 2\ut{x,t) = 0, —oo < x < 

(0, x<0, 
oo, t > 0, u(x,0) = < /- „ ut(x,0) = 0. Hint: Use the generalized 

I γ Χ , X J> U, 

functions fa(x) of Example 7.1. 

10.2.6. Solve the wave equation utt{x, y,z) = V2u(x, y, z) in three dimensions with 
с а, г < a, 

theCauchydatau(:r,y,z,0) = 0, ut(x,y,z,0) = < ß r > a ifr2 = x2+y2+z2 

and a, β, and a are constants. Use an expansion of the form (10.2.36). 

10.2.7. Replace с by ic in the fundamental solution (10.2.52) of the Klein- Gordon 
equation to obtain the solution of the following problem and discuss the solution 
and its expansion in terms of the hyperbolic distance, in the manner in which the 
Klein-Gordon equation was analyzed in the text. utt(x,y, z) = η242η(χ, у, z) -
c2u{x, y, z, t) = 0, -oo < x, y, z < oo, t > 0, u(x, y, z, 0) = 0, ut(x, y, z, 0) = 
S(x)S(y)S(z). 

10.2.8. Letp(x) = p(r) = 72(1 + a2r2) in (10.2.58). Determine the explicit forms 
of u(r, t) as given in (10.2.66) and (10.2.68) in the two- and three-dimensional cases, 
respectively. 

10.2.9. Given the hyperbolic system щ(х, t) + Aux(x,t) + Bu = 0, consider an 
expansion u(x,t) = X^l0v.j(a;,t)5,-[</>(a;,i)], where the Sj satisfy Sj = Sj-i. 
Insert the expansion for u(x,t) into the equation for u(x,t) and equate coefficients of 
like terms Sj. Show that ф(х, t) must be a characteristic of the hyperbolic equation 
and that the v,· {x, t) are given in terms of eigenvectors of the matrix from which the 
characteristics are determined. 

10.2.10. Express the telegrapher's equation (10.2.21) as a system of equations by 
setting ut(x, t) = v(x, t) and ux(x, t) = w(x, t). Use the initial data (10.2.34) to 
obtain u(:r,0) = [v(x,0),w(x,0)] = [δ(χ),0] = δ(χ)\. Solve the Cauchy problem 
for this system with the preceding data using the method of Exercise 10.2.9. Compare 
the results with those obtained by solving the telegrapher's equation directly by the 
expansion method given in the text. 
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10.3 ASYMPTOTIC SIMPLIFICATION OF EQUATIONS 

In the first two sections of this chapter and in Chapter 9, we discussed techniques for 
obtaining approximate solutions of initial and boundary value problems for PDEs. In 
this section we consider methods for replacing the equations themselves by simpler, 
more easily solvable equations. Although the use of perturbation and asymptotic 
methods also gives rise to the consideration of simpler equations, the approach we 
use differs from that employed in the aforementioned methods. We show how to 
construct the simplified equations but do not, in general, indicate how they may 
be used to solve specific initial and boundary value problems. As shown, general 
information about the behavior of the solutions of the given full equations can be 
inferred from their simplified forms. 

Asymptotic Simplification of the Dissipative Wave Equation 

To fix ideas we consider the dissipative wave equation with constant a and с and 
c > 0 , 

utt(x,t) — c2uxx(x,t) + ut(x,t) — aux(x,t) = 0. (10.3.1) 

Assuming that the point (xo, io) is a discontinuity or singular point for the data for 
(10.3.1), we study its effect on the solutions of (10.3.1) by setting x — XQ — βσ and 
t - tQ = ет. This yields 

UTT(<T, T) - ο2υ,σσ(σ, τ) + е[ит(а, т) - αησ{σ, τ)] = 0. (10.3.2) 

Although we have, in effect, introduced a boundary layer stretching to obtain (10.3.2), 
we do not proceed as in boundary layer theory by expanding u(a, r ) in powers of 
e. Instead, we introduce an approximate factorization of (10.3.2). If e = 0, then 
(10.3.2) can be factored exactly as was done in (2.1.1), but if e Φ 0 we cannot factor 
(10.3.2) in a simple fashion. Yet since e is small, it can be factored approximately. 
With da = д/да, дт = д/дт in (10.3.2), we have 

[д2-с2д1 + едт-еада}и=[дт-сд<7 + еа + О(е2)}[дт + сд(7 + еЬ + О{е2)}и = 0, 
(10.3.3) 

where a and b are to be specified. (We may assume that a and b are constants.) 
Multiplying out the two first order operators in ( 10.3.3) and comparing the results with 
the second order operator in (10.3.3), we find that a = (c — a)/2c, ò = (с + a)/2c. 

Since the order of the operators in (10.3.3) can be interchanged, we see that to 
order e2, (10.3.2) is equivalent to the two first order equations 

( ητ(σ,τ) -αισ{σ,τ) + e{(c - а)/2с)и(а,т) = 0{e2), 

\ητ{σ,τ)+αισ(σ,τ) + e((c +а)/2с)и(а,т) =0{е2). У ·■> 

Neglecting the 0(e2) terms in (10.3.4), we obtain the solutions 

, . Г / ( а + ст )ехр( -бт (с -а ) /2с ) , / 1 Л О Г ч 
ω(σ,τ) = < , ч , , , W o , (10.3.5) 

I g{a - ст )ехр( -бт (с + а:)/2с), 
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where /and дате arbitrary functions. If \a\ < c, both solutions decay exponentially as 
t -10 = er —♦ oo. If |or| > c, one solution grows exponentially as t — to = ет —► oo. 
It is easy to show that the initial value problem for equation (10.3.1) is unstable if 
| a | > a Since discontinuities in the solutions are carried along the characteristics 
σ ± er = constant, we see that (10.3.5) is useful in describing the propagation of 
discontinuities in the solutions of (10.3.1). In fact, the neglected 0(e2) terms in 
(10.3.4) are antiderivative or integral operators that have the effect of smoothing out 
singularities in the solutions. The expressions for u(a, r ) in (10.3.5) have the general 
form of the solutions given in the preceding section. 

To study the solutions of ( 10.3.1 ) at large times and in the far field, we set x = σ/e 
and t = τ/e and obtain 

e[uTT(a, T) - c2u„„{a, τ)] + ωτ(σ, г) - αιισ(σ, τ) = 0. (10.3.6) 

It follows from (10.3.6) that uTT = auaT — e[uTTT—(?ησστ\ = d(auT)/da+0(e) = 
a2uaa + 0(e), so that (10.3.6) can be replaced by 

Μτ(σ,τ) —αησ(σ, τ) + e(a2 - c2)uaa(a,r) = 0(e2). (10.3.7) 

If \a\ < c, so that the initial value problem for (10.3.1) is stable, we see that on 
neglecting the 0(e2) terms in (10.3.7), we have a diffusion equation,. In the original 
variables this equation has the form 

ut(x,t) — aux(x,t) + e(a2 — c2)uxx(x,t) = 0, (10.3.8) 

and this shows that for large x and t the dissipative wave equation yields a wave motion 
along the line x + at — 0 modified by a diffusion effect represented by the second 
derivative term. Thatis,ife = 0 in (10.3.8), we have undirectional wave motion along 
x + at = 0. The 0(e2) terms neglected in (10.3.7) are higher derivatives of u{a, τ). 
Since the diffusion effect smooths out the solutions, these terms can be disregarded if 
they are multiplied by higher powers of e. Our conclusions are consistent with those 
obtained in Example 5.15 and the discussion in Section 1.2. 

We have determined that there are two types of wave motion associated with 
(10.3.1). In (10.3.4) we obtained approximate equations corresponding to waves 
moving with speed c, and in ( 10.3.7)-( 10.3.8) we obtained an equation characterizing 
wave motion with the speed \a\. The principal part of ( 10.3.1 )—that is, utt — c2uxx— 
yields traveling waves moving to the right or left with speed с The reduced part of 
(10.3.1)—that is, щ — aux—gives rise to a traveling wave moving with speed \a\. 
Wave motions with both speeds play a role in the solution of (10.3.1) in different 
regions, as we have shown. In this section we show how to construct simplified 
approximating equations that characterize basic aspects of the given full equations 
or systems of equations, in a more general setting. Since our method is most easily 
presented in terms of matrix theory, we restrict our discussion to systems of equations. 
Single higher-order PDEs can always be expressed in system form. 

With v = ux and w = ut, the dissipative equation (10.3.1) can be written as a first 
order system, 

ut(x, t) + Aux{x, t) + Bu(x, t) = 0, (10.3.9) 
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where 

u(x, t) 
v(x,t) 
w(x,t) A = 

:2 0 
В о о 

-a 1 

Then (10.3.2) is equivalent to 

ητ(σ, τ) + Aua(a, τ) + eBu(a, т) — 0, 

and (10.3.6) corresponds to 

е[ит(ст,т) + Αησ(σ,τ)} + Βιι(σ,τ) = 0. 

(10.3.10) 

(10.3.11) 

(10.3.12) 

We introduce asymptotic decompositions of ( 10.3.11 ) and ( 10.3.12) that correspond to 
the reduced equations obtained on setting e = 0 in each of these systems of equations. 

Eigenspaces and Projection Matrices 

To carry out these decompositions for (10.3.11) and (10.3.12) and general systems, 
we require the following result from matrix theory. Let M be an n x n matrix 
and C(X) = \M — XI\ its characteristic polynomial. We factor C(X) as C(X) = 
Ci(A)C2(A), where the factors Ci(\) and Сг(А) contain no common eigenvalues 
as roots. Introducing the partial fraction decomposition 1/C(A) = ci(X)/Ci(X) + 
C2{X)/C2{X), we have 1 = ci(A)C2(A) + c2(A)Ci(A). Then the matrices 

Pi = Cl(M)C2(M), P2 = c2(M)Ci(M) (10.3.13) 

are projection matrices that project vectors into the eigenspaces spanned by the eigen-
vectors corresponding to the factors Ci(A) and C2(A), respectively. They have 
the following additional properties Px + P2 = I, ΡλΡ2 = P2P\ = 0, P\M = 
MPi, P2M = MP2, P? = Pi, P% = P2. We assume in our discussion that the 
n x n matrix M has n linearly independent eigenvectors. 

As an example, we construct projection operators for the matrices A and В defined 
in (10.3.10). The characteristic polynomial for A is C(X) = \A- XI\ = A2 - c2 = 
(A + c)(A - c). With Ci(A) = A + с and C2(A) = A - c, we have 

1 
A2 

-l/2c l /2c _ (-l/2c)(A - c) + (l/2c)(A + c) 
A + с А — с A2 (10.3.14) 

Thusd(A) = -c2(A) = l/2c, ci(A)C2(A) = (-l/2c)(A - c), and c2(A)Ci(A) = 
(l/2c)(A + c). Finally, the projection operators are given as 

p> = -hA-"^h 9 
& С hA+^'i с - 1 

-с2 с 
(10.3.15) 
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The matrix A has two eigenvalues λι 
eigenvectors are 

Γΐ = Ari = - с г ь r2 

-с and λ2 = с. The corresponding 

1 Ar2 = cr2, (10.3.16) 

and they are linearly independent. We have Р1Г1 = r i , Pir2 = 0, Ρ2Γι = 0, and 
P2r2 = r2. Since any two-component vector can be expressed as a linear combination 
of ri and r2, we see that Ρχ and P2 project vectors into the required eigenspaces (these 
are one-dimensional in this case). 

For the matrix В in (10.3.10), we have C{\) = \B - XI\ = λ(λ - 1). With 
d (λ) = λ and C2(A) = λ - 1, we have 

_ - 1 
λ ( λ - 1 ) λ 

( Λ - 1 ) + Λ 
λ ( Α - 1 ) ' 

so that 

Pi -[В-71 = 1 0 
а 0 Р2=В 

о о 
-а 1 

(10.3.17) 

(10.3.18) 

The eigenvectors ri and r2, which correspond to the eigenvalues λι = 0 and λ2 = 1, 
respectively, of В are 

1 
Q 

Bri = 0, r2 Br2 = r2. (10.3.19) 

Again, ri and r2 are linearly independent, and Pi and P2 have all the properties 
required of projection operators. 

Asymptotic Simplification of the System Form of the 
Dissipative Wave Equation 

We now use these projection operators to construct asymptotic decompositions of 
(10.3.11) and (10.3.12). Beginning with (10.3.11), we set 

u(cr, T) = Υ(σ, Τ)ΓΙ + eW{a, r )r2 , (10.3.20) 

where V(a, r ) and W(a, r ) are scalar functions (to be determined) that may depend 
on e, and n and r2 are the eigenvectors of A given in (10.3.16). Inserting (10.3.20) 
into (10.3.1 l)gives 

c + a J J 
(10.3.21) 

Applying the projection operator Pi to (10.3.21) (i.e., multiplying across on the left 
by Pi) gives 

(Vr-cV^n+e {(WT + cWa)r2 + V 
0 

с — a M- ■w 

l v T - cVa + 6· с — a 
2c 

V-e*C + Чг"}«-' (10.3.22) 
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since Pir2 = 0. Applying P2 to (10.3.21) yields 

с 
e iWr + cWa -

с _ а т Л , о С + а Tir 
+ e2 -—— Wr2 2c 

0. (10.3.23) 

Retaining terms up to order e in (10.3.22) as was done in our discussion of the 
scalar example, we find that 

VT(a, τ) - cVa{a, r) + e °-^- V(a, r ) = 0, (10.3.24) 

and this agrees with (10.3.4). The leading term of (10.3.23) shows that W(a, τ) can 
be expressed in terms of V(a, r ) apart from an arbitrary function of σ — ст. If this 
arbitrary function is disregarded, we can replace W(a, r ) in ( 10.3.22) by a function of 
V(a,r) given in integral form. Higher approximations may be obtained by expanding 
W(a, T) in a power series in e and solving (10.3.23) for the coefficients as functions 
of V(a, τ), but we do not pursue this matter here. We do note that if ri and r2 are 
interchanged in (10.3.20), we obtain the second form of the equations for и(а,т) 
given in (10.3.4) as the equation satisfied by V(a, r ) . 

Next we consider the system (10.3.12) and again represent u(a, r ) as in (10.3.20), 
with ri and r2 as defined in (10.3.19). Inserting (10.3.20) into (10.3.12) yields 

ίνττ1+νσ _с
а
2 +\νΐ2\ + β2ί\νττ2 + \νσ 0* | = 0 , (10.3.25) 

since Bri = 0. Applyingthe projection operator Pi, as givenin(10.3.18), to(10.3.25) 
gives 

{VT-aVa-eWa}r1=0, (10.3.26) 

as is easily seen. Applying P2 = В to (10.3.25) results in 

{{a2 - c2)Va + W} r2 + e {WT + α\Υσ} r2 = 0. 

We solve (10.3.27) by expanding W(a, r ) as 

(10.3.27) 

W(a,T) = Y/Wj(a,r)e^ 
j=o 

(10.3.28) 

Then W0(a, r ) has the form W0(a, r ) = (c2 - a2)Va. We must also insert (10.3.28) 
into (10.3.26), and on retaining only terms up to order e, we have 

Υτ(σ, τ) - αΥσ(σ, τ) - e(c2 - α2)νσσ(σ, τ) = 0. (10.3.29) 

This result has the form of ( 10.3.7). Clearly, the Wj (σ, r ) in (10.3.28) are all expressed 
in terms of increasingly higher-order derivatives of V(a, τ), as is seen in (10.3.27). 
Thus, in neglecting 0(e2) terms to obtain (10.3.29), we are disregarding presumably 
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smoother higher derivative terms in V(a, τ), in agreement with the discussion given 
for the scalar version of this example. 

For (10.3.12), we do not consider the effect of interchanging ri and Г2 in the 
assumed solution form (10.3.20) because on setting e = 0 in (10.3.12), we obtain 
Βη(σ,τ) = 0, and this has the solution ιι(σ, r ) = V(a, r ) r i , where V(a, r ) is 
arbitrary. It is this expression that was perturbed around in (10.3.20). Similarly, with 
e = 0 in (10.3.11), we have uT(<r, r) + Αησ(σ, τ) = 0, and this has the solutions 
U(CT, r) = V(a + ст)т\ and ιι(σ, r) = V(a — cr)r2 with arbitrary V and V. As a 
result, we considered perturbations corresponding to each of the eigenvectors Γι and 
Г2 in our discussion of (10.3.11). 

The system obtained on setting e = 0 in (10.3.11) or (10.3.12) is known as the 
reduced system. We constructed asymptotic simplifications of the full systems corre-
sponding to solutions for the reduced system. The solutions of the reduced system are 
related to the properties of a relevant coefficient matrix. Based on a decomposition of 
that matrix according to its eigenvectors (even though this was not done explicitly), a 
decomposition of the full system was carried out. We now show how this technique 
may be applied to a general class of systems of equations. 

Asymptotic Simplification of Systems of Equations 

We consider systems of equations of the form 

ut(x,t) + Aux(x,t) + eN[u(x,t)) = 0, (10.3.30) 

where 11(2:, i) is an n-component vector, Л is a constant n x n matrix, and JV is a 
linear or nonlinear differential operator. The matrix A is assumed to have n linearly 
independent eigenvectors. With C(A) = \A — XI\ as the characteristic polynomial 
of A we assume that it can be factored as C(A) — Ci(A)C2(A), where Ci(A) 
and Сг(А) have no common eigenvalues as roots. Further, it is assumed that 0 < 
m < n independent eigenvectors are associated with the eigenvalues of C\ (A) and 
the remaining n — m independent eigenvectors are associated with Сг(А). The 
eigenspaces spanned by these two sets of eigenvectors have the property that any 
n-component vector can be expressed as a sum of two vectors, each of which lies in 
one of the eigenspaces. 

Proceeding as before, but replacing M by A in the equations, we can construct 
the projection operators Pi and P4 associated with the eigenspaces corresponding to 
C\(X) and C2(A), respectively. If v lies in the eigenspace related to Ci(A) and w 
lies in the eigenspace related to C2(A), we have Р\У = v, ΡχΥ/ = 0, P2w = w, 
and P2v = 0. With v(x, t) and w(x, t) as elements of the two eigenspaces defined 
previously, we look for a solution of ( 10.3.30) in the form 

u(x,t) = \(x,t)+ev/{x,t). (10.3.31) 

In doing so it is assumed that we are interested in perturbing u(x, t) around a solu-
tion of the reduced system щ(х, t) + Aux(x, t) = 0, which lies in the eigenspace 
associated with v(:r, t). 
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Inserting (10.3.31) into (10.3.30) yields 

\t(x, t) + A\x(x, t) + e{wt(x, i) + Avfx(x, t) + N[\(x,t) + ew(x, t)}} = 0. 
(10.3.32) 

We assume that N[\(x, t) + ew(x, t)] can be expanded in powers of e and that 
N[\(x, t) + ew(x, f)] = ΛΓ0[ν(χ, t)] + 0(e). Multiplying (10.3.32) by the projection 
operator Pi gives 

vt(x, t) + A\x(x, t) + ePiN[v(x, t) + ew(x, t)] = 0. (10.3.33) 

To obtain (10.3.33) we have used the facts that P\A = ЛР1 and that Pi is a constant 
matrix. Thus, for example, Pi A\x(x,t) = AP\yx(x,t) = A(d/dx)[Piv(x,t)] = 
A\x(x, t) and PiWt(x, t) = (d/dt)[P\Vt{x, t)\ = 0. Similarly, we obtain, on multi-
plying (10.3.32) by P2, 

e{v/t(x,t) + Awx(x,t) + P2N[\{x,t) + ev/(x,t)}} = 0 . (10.3.34) 

Next, we expand w(x, t) as 
00 

w{x,t) =Y^yrj(x,t)ej (10.3.35) 
3=0 

and insert this series into (10.3.33)—( 10.3.34). Using the expansion of N[\(x, t) + 
ew(x, t)] in powers of e, we equate like powers of e in (10.3.34). This yields 

θ ^ + A э ^ + p2JVo[v(^ t)] = 0 (10 3 36) 

for \vo(x,t) and similar equations for the remaining Wj(x,t). The equations for 
Wj (x, t) are to be solved only in terms of v(x, t), and any solutions of the homogeneous 
versions of these equations [which do not depend on v(x, t)] are to be discarded. The 
resulting expressions for the Wj (x, t) are then inserted into (10.3.33). This yields the 
simplified system for v(x, t) since v(x, t) belongs to a lower-dimensional space than 
u(x, t). Thus (10.3.33) effectively contains fewer equations in fewer unknowns than 
does (10.3.30). 

The equation (10.3.33) for v(x, i) may have a very complicated form. However, 
we do not expand v(x, t) in powers of e since this—in combination with (10.3.35)— 
would yield the conventional perturbation solution of (10.3.30). That solution may 
contain secular behavior that we are trying to avoid. Instead, we truncate (10.3.33) 
at some order of e. This new equation can then be used as a basis for a perturbation 
result. For example, retaining only O(e) terms in (10.3.33) gives vt (x, t)+A\x (x, t)+ 
e ΡιΛΓ0[ν(χ, t)] = 0. This equation corresponds to (10.3.24) that was found above. 
Combined with (10.3.36), this yields a leading-order approximation to a solution of 
(10.3.30). The leading-order perturbation result can always be retrieved by expanding 
v(x, t) in a series in powers of e. Thus (10.3.33) represents a more general result, and 
it can be constructed for each eigenspace associated with the matrix A. 
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For example, if A = λχ is a simple eigenvalue of A and ri is the corresponding 
eigenvector, we may consider Ci(A) = A — X\. The eigenspace for Cj(A) is then 
one-dimensional and is spanned by r i . Then we can set v(a;, t) = V(x, t )r i , where 
V(x,t) is a scalar function, in (10.3.31). Since Pi projects vectors into the eigenspace 
spanned by Гь we have PiN[\(x,t) + ew(x, t)] = a(V(x,t),w(x, i) ,e)ri, where 
a is a scalar function. Thus (10.3.33) becomes 

[Vt(x, t) + XiVx(x, t) + ea(V(x, t), w(z, t), e)]ri = 0. (10.3.37) 

This is scalar equation for V(x, t) once the Wj (x, t) are specified in terms of V(x, t). 
In the following we show how systems of equations of the form (10.3.30) arise 

in the theory of viscous fluid flow and the theory of water waves. The asymptotic 
decompositon method is used to obtain simplified forms for these systems. We remark 
that the simplification method presented can also be applied if the matrix A in ( 10.3.30) 
is a slowly varying function of x and t. Also, a related simplification method can be 
used even if the given equation is not in the form (10.3.30), as we have shown for 
the dissipative wave equation. However, we restrict our discussion to the constant 
coefficient case. An extension of this method to higher space dimensions is not 
obvious since the reduced system would generally contain more than one coefficient 
matrix to be dealt with in the foregoing manner. However, if one of the spatial 
variables can be distinguished from the others for some reason, this procedure can be 
carried out, but this is not considered here. 

Navier-Stokes Equations 

The Navier-Stokes equations that describe viscous fluid flow in one dimension were 
given in Section 8.5 as 

Pt + pux + upx = 0, (10.3.38) 

4 
put + puux + px = -puxx, (10.3.39) 

pcv[Tt + uTx] + pux = kTxx + - м Ю 2 , (10.3.40) 

p = RpT. (10.3.41) 

Here p = p(x, t) is the density, и = и(x, t) is the velocity, p = p(x, t) is the pressure, 
and T = T(x, t) is the temperature. The parameter μ is the (constant) coefficient of 
viscosity, к is the coefficient of heat conduction, cp and c„ are the specific heats at 
constant pressure and volume, respectively, and R = Cp Cy is the gas constant. We 
have assumed that there are no external forces or heat sources. 

To apply the asymptotic decomposition method to these equations, we perturb 
p(x, t) and T(x, t) around a constant density and temperature and u(x, t) around a 
zero velocity. Thus we set 

u{x, t) = ε ü{x, t), p(x, t)=p0 + e p(x, t), T(x, t)=T0 + e f(x, t), (10.3.42) 
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where e > 0 is a small parameter. Also, we consider the solution in the far field and 
at large times and let x = σ/e, t = r /e . 

We insert the above into (10.3.38)—(10.3.41) and use (10.3.41) to express p as a 
function of p and T, and only retain terms up to order e in the resulting equations. If 
we set 7 = cp/cv, the ratio of the specific heats, we find that with cp = 1/(7 - 1), 
we have cv = 1/7(7 — 1), R = 1/7, and R/cv = 7 — 1. By rescaling the variables 
and parameters in these equations, it is possible to eliminate the constants po and T0. 
Thus we may set p0 = TQ = 1. Also, for simplicity of notation we drop the carets 
and replace σ and τ by x and t. 

As a result, the system can be written in the form 

ut (a;, t) + Aux{x, t) + e\Bux(x, t) + Cut{x, t) + Duxx(x, t)] = 0, (10.3.43) 

where p, u, T are functions of (x, t), 

0 1 
1/7 0 
0 7 - 1 

0 
1/7 
0 

, B = 
и p 0 

Τ/η и ρ/η 
0 ( 7 - l ) ( T + p) и 

0 0 0 " 
0 ρ 0 
0 0 ρ 

,D = 
0 0 0 1 [ ρ 

С = 0 ρ 0 , D= 0 - 4 μ / 3 0 , u = tt 
0 0 А ( 1 - 7 ) 7 J I. T 

(10.3.44) 
This system is of the form (10.3.30), and we note that the operator multiplying e is 
nonlinear. The linear system ut(x, t) + Aux(x, t) = 0 obtained on setting e = 0 in 
(10.3.43) yields the equations of linear acoustics. 

The characteristic polynomial for A is C(X) = \A - λ/ | = A(l — λ)(1 + λ), so 
that the eigenvalues of A are λο = 0, λι = 1, and A2 = —1. The corresponding 
linearly independent eigenvectors are 

го 
1 
0 
-1 

ri = 
1 
1 

. 7 - 1 . 
г2 = 

1 
- 1 

. 7 - 1 
(10.3.45) 

Using these results, we easily find that the reduced system 

ut(x,t) + Aux(x,t)=0 (10.3.46) 

has the solutions 

11(2:,f) =a(ar)r0, u(x,t)= ß(x-t)ri, u(x,t) = S(x + t)r2, (10.3.47) 

where a, ß, and δ are arbitrary functions. [Here δ(χ) does not represent the Dirac 
delta function.] The general solution of (10.3.46) is a linear combination of these 
three solutions and it shows that two waves traveling to the right and to the left with 
unit speed occur in the solution of the acoustic equations. 
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Using the (conventional) perturbation method to solve (10.3.43), we set 

u(x,i) =uo(x, i ) + eui(a:,t) + · · · . (10.3.48) 

Then u0(x, t) satisfies the reduced equation (10.3.46). If we choose Uo(x,t) = 
ß(x — i ) r b we readily find that Ui = Ui (x, t) satisfies 

-^+A-^-+ß(x-t)ß'{x-t)Er1-ß(x-t)ß'(x-t)Crl+ß"(x-t)Dr1=0, 
ut ox 

(10.3.49) 
where 

B = 
1 1 0 

( 7 - l ) / 7 1 1/7 
0 7(7 - 1) 1 

C = 
0 0 0 
0 1 0 
0 0 1 

(10.3.50) 

Either by expressing ui (x, t) and all the vectors in (10.3.49) as linear combinations 
of the eigenvectors (10.3.45) or by using the projection operators associated with the 
eigenspaces for A, the system (10.3.49) can be solved. It is then seen that secular 
terms result in the expression for Ui (x, t) and the expansion (10.3.48) becomes invalid 
for large t, specifically when t = 0 ( l / e ) . We do not carry out the solution of 
( 10.3.49). Although we have shown peviously how secular effects can be removed, we 
do not apply those methods here. Instead, we show how the asymptotic simplification 
method enables us to avoid any problems with secular terms. 

Asymptotic Simplification of the Navier-Stokes Equations: 
Burgers' and Heat Equations 

The given perturbation result indicates that with increasing time, the solution (or 
wave) Uo = ß(x — t)r\ of the reduced system loses its validity, and that nonlinear 
and higher derivative terms in ( 10.3.43) become significant. To determine their effect, 
we look for a solution of (10.3.43) in the form 

u(x, t) = β(χ, t)ri + e[a(x, t)r0 + δ(χ, f )r2]. (10.3.51) 

This corresponds to (10.3.31) with \(x, t) = ß(x,t)ri and w(x, t) = a(x, t)ro + 
δ(χ, i)r2. The functions β(χ, t), a(x, t), and δ(χ, t) are to be specified, but ß(x, i)rj 
lies in the eigenspace spanned by r i , whereas a(x, t)ro + S(x, t)r2 is a typical vector 
in the eigenspace spanned by r0 and Гг. То obtain the projection operators for these 
eigenspaces, we set C(X) = \A — \I\ = Ci(A)C2(A), where C\{\) = 1 - λ and 
C<i (λ) = λ(1 + λ). The eigenvalue of A corresponding to C\ (λ) is λι = 1, and the 
remaining eigenvalues λ0 = 0 and λ2 = — 1 correspond to the factor C2(A). Since 
1/(λ(1 - λ)(1 + λ)) = ( l /2 ) / ( l - λ) + (1 + λ/2)/(λ(1 + λ)), we find that the 
projection operator Pi , which projects vectors into the eigenspace spanned by r i , is 

P, = \A[I + A} = ^ 
1 7 l 
1 7 1 

7 - 1 7 ( 7 - 1 ) 7 - 1 
(10.3.52) 
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The projection operator P2 corresponding to the eigenspace of Го and r2 is 

- 7 
I-Pi 

27 

2 7 - I - 7 - 1 
- 1 7 - 1 

I - 7 7 ( 1 - 7 ) 1 + 7 
(10.3.53) 

Recalling the definition of u(a;,i) given in (10.3.44), we see that (10.3.51) im-
plies that p(x,t) = ß(x,t) + 0(e), u(x,t) = ß(x,t) + 0(e), T(x,t) = (7 -
l)ß(x, t) + 0(e). If these expressions for p(x, t), u(x, t), and T(x, t) are inserted 
into the matrices В and С as given in(10.3.44), we obtain f? = ß(x,t)B+0(e), С = 
ß(x,t)C + О (e), with È and C given in (10.3.50). Thus on inserting (10.3.51) in 
(10.3.43), we have, correct to 0(e2), 

\ßt + ßx]ri+e{[St-Sx]r2 + atro + ßßxBri+ßßtCr1+ßxxDr1} = 0. (10.3.54) 

On multiplying (10.3.54) with the projection operator Pi, we obtain 

V+37-
ßt + ßx + e 

| 7 ^ + | 7 ^ ^ x + 2 7 _ i m _ ^ + l f c ( 7 _ i ) 2 j ^ j = 0 i 

(10.3.55) 
since Pi го = ΡιΓ2 — 0. Now (10.3.55) implies that ßt = —ßx + 0(e), so we can 
replace (10.3.55) by 

ßt+ßx + e {Ψ ßßx- § д + 1 Мт - i)2 
ßxx \ = 0. (10.3.56) 

This is Burgers ' equation for right-traveling waves. It contains both a nonlinear term, 
ßßx, and a second derivative term, ßxx. 

Next we multiply (10.3.54) by P2, and this yields 

[St - <5*]r2 + atr0 + ββχΡ2Βτχ + ßßtP2Cr1 + βΧχΡ2Ότχ = 0, (10.3.57) 

since Р2Г1 = 0. We solve (10.3.57) by expanding a(x, t) and δ(χ, t) as a(x, t) = 
Σ ° 1 0

 a j ( x i *) e J ' δ(χ, t) = Y^'JLQ Sj(x, i)eJ. It is easiest to solve (10.3.57) by con-
structing projection operators Po and P2 that project vectors into the eigenspaces 
spanned by го andr2, respectively. Using this method and the fact that Pi+Po+P2 = 
/ , we easily establish that 

7 

7 - 1 0 - 1 
0 0 0 

1 - 7 0 1 27 

1 - 7 1 
- 1 7 - 1 

7 - 1 7 ( 7 - 1 ) 7 - I 
(10.3.58) 

Then P0r0 = r0, Por2 = 0, P2r2 = r2, and P2r0 = 0. Since ßt 

we may express (10.3.57) as 
-ßx + 0(e), 

[St - öx}r2 + atr0 + ßßx[P2B - P2C]ri + βχχΡ2Όχχ = 0(e). (10.3.59) 
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Inserting the series into (10.3.59) and multiplying by PQ yields for c*o(x, t), 

^ - + (l-j)ßßx+k(7-l)
2ßx 

Multiplying (10.3.59) by P2, we obtain for δο(χ, t), 

0. (10.3.60) 

* . * + ̂ ± l № + ( | / 1 _ . M 7 . I ) , l A . = a (10.,61) 

We do not consider the equations for CXJ and Sj with j > 1. 
If we set 

u(x,t) = δ(χ, f)r2 4- e[a(x, t)r0 + ß(x,t)ri], (10.3.62) 

and proceed as before, it may be shown that δ(χ, t) satisfies Burgers' equation for 
left-traveling waves. The derivation is carried out in the exercises. Finally, if we set 

u(ar, t) = a(x, t)r0 + e[ß(x, i)ri + δ(χ, i)r2], (10.3.63) 

we find that a(x, t) satisfies a heat conduction equation to the previously specified 
level of approximation, as we now show. 

With u(x,t) given by (10.3.63), we have p{x,t) = a(x,t) + 0(e), u(x, t) = 
O(e), T(x, t) = (7 — \)a(x, t) + O(e), and the matrices В and С become 

В = a 
0 1 0 

(7 - l ) / 7 0 I /7 
0 7(7 - 1) 0 

+ 0(e) = aB + 0(e), С = aC + 0(e), 

(10.3.64) 

with С defined as in (10.3.50). Inserting (10.3.63) into (10.3.43) yields 

atro + e{[ßt + /3x]ri + (6t - öx)r2 + aaxBr0 + aatCr0 + axxDr0} = 0(e2). 
(10.3.65) 

Multiplying (10.3.65) by the projection operator Po gives 

at(x, t)+el- a(x, t)at(x, t) - k(j - l)axx(x, t)\ = 0(e2). (10.3.66) 

Since at(x, t) = 0(e), we may replace (10.3.66) by 

at(x, t) - efc(7 - 1)αχχ(ζ, t) = 0(e2). (10.3.67) 

As7 > l,(10.3.67)isan^Mai/on£>/AeaiconcÌMC/ionifwedroptheO(e2)terms. On 
using the projection operators Pi and Ρ2 in (10.3.65), we may express ß(x,t) and 
δ(χ, t) in terms of a(x, t), but this is not carried out here. 
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Burgers' Equation: Simple Waves and Shockwaves 

We have shown that to 0(e2), ß = ß(x, t), satisfies Burgers' equation, 

ßt+ßx 
7 + 1 

ßßx 
2 1 , / 3 ^ + 2 ^ ( 7 i)2 ßx 0. (10.3.68) 

The leading terms cto(x, t) and δο(χ, t) in the expansions of a(x, t) and δ(χ, t) are 
expressed in terms of ß(x, t) by means of (10.3.60)-(10.3.61). Thus, the perturbed 
density, velocity, and temperature as defined in (10.3.42) are p(x,t) = ß(x,t) + 
ea0(x,t) + €Ó0(x,t), ù(x,t) = ß(x,t) - eS0(x,t), f(x,t) = (7 - l)ß{x,t) -
ea0(x, t) + e(7 - 1)δ0(χ, t). 

To compare the present results with those obtained in Section 8.5, we discuss 
the foregoing approximations as they relate to the velocity u(x, t) = eù(x, t) [see 
(10.3.42)]. We have u(x, t) = eü(x, t) = eß(x, i) — e26o(x, t), and to leading order 
we set u(x, t) = eß(x, t). Multiplying (10.3.68) by e gives 

ut(x,t) + 
Ύ + 1 

! + ■!-—u(x,t) ux(x,t) 
2 ! ,/ 
3 M + 2 f c ( T I)2 uxx{x,t) = 0. 

(10.3.69) 
The diffusion term uxx (x, t) in (10.3.69) disappears if e = Oorif^ = к = 0. Then 

(10.3.69) takes the form of the quasilinear one-dimensional wave equation (8.5.71) 
except that Co = 1 in our case. The equation (8.5.71) was obtained on the basis of 
Euler's equations of fluid motion, in which viscosity and conductivity are neglected 
(i.e., we have μ = к = 0). It was also assumed that the gas is polytropic [i.e., 
(8.5.63) is valid]. Consequently, (10.3.69) is seen to represent a modification of the 
quasilinear equation (8.5.72) if the effects of viscosity and conductivity are included. 
The solutions of (8.5.72) and its generalizations were called simple waves in Section 
8.5, and it was found that they can break down after a finite time. We expect that the 
presence of a second derivative term in Burgers' equation eliminates this problem. 
Since both (8.5.72) and ( 10.3.69) can be solved exactly, we can compare their solutions 
for identical initial values and determine the role of the diffusion term in smoothing 
out the solutions. This will be carried out below. 

With v = (2/3) μ + (1/2) k{-y - l ) 2 , (10.3.69) becomes 

ut(x,t) + 
Ύ 4-1 

l + JLr-u(x,t) ux(x,t) - evuxx(x,t) = 0. (10.3.70) 

On equating e or v to zero in (10.3.70), the solution of the initial value problem for 
the resulting first order equation with the initial condition 

u(x,0) = h(x), (10.3.71) 

is given implicitly as 

и = h x — 
! . 7 + 1 
1 H 7i— u (10.3.72) 
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Co/e and//op/observed that with 1 +[(7 + l)/2]u(x,t) = — 2ev[vx(x,t)/v(x,t)] 
in (10.3.70), v(x, t) satisfies the heat conduction equation 

vt{x,t) = euvxx(x,t), (10.3.73) 

as is readily verified. The initial condition (10.3.71) is transformed into 

v(x,0)=expl-j- ί \l + -^h(s) ds\ = H(x), (10.3.74) 

and the solution of the initial value problem (10.3.73)-( 10.3.74) is given as 

1 f°° 
V{x,t) = ГА 1 / Я ( 0 е Х Р 

\/\-K(.vt J-00 

(x-tf 
Aeut 

άξ. 

The solution u(x, t) of (10.3.70)-(10.3.71) can then be obtained from 

, . 2 Μ^[(χ-ξ)/ί}βΜ-9(ξ,ί)β™}άξ 1 
u(x,t) = r < ^ : — — — — 1 

7 + 1 fr^expl-g&t)^]^ 
where 

9(ξ 
Jo 

1 + 7 + 1 h(s) ds + (χ-ξ)2 

2t 

We examine the solution (10.3.76) for the special initial condition 

hi, x > 0, 
u(x, 0) = h(x) = 

h2, x < 0, 

(10.3.75) 

(10.3.76) 

(10.3.77) 

(10.3.78) 

where 0 < hi < h2 and hi, h2 are constants. Then g(£, t) can be expressed in terms 
of the functions gi(£, t), defined as 

,, ,N , , (x - 0 2 (ξ - x + ait)2 , ( 0-1+0-2 \ , axa2 3ί(ξ, t) = αιξ + -—^- - — — + ai I x — t ] H — t 
2i 2f 

/ ai + a2 Л 
2 

(10.3.79) 

where a* = 1 + [(7 + 1)/2]/ι, (г = 1,2), in the form ρ(ξ, t) = I , f , . < Q 

We recall the fundamental solution G(x,t) of the heat equation G(x,t) = 
exp (—x2/At) /y/Ant. Then we can express (10.3.76) as 

7 + 1 
l+——u(x,t) 

exp[A(x - Ài)/«/] / " J O T - 0 / t ] G 2 ( 0 d£ + /0~[(x - 0 /* ]Gi (0 d£ 

βχρ[λ(ζ - At)/«/] / ° т е G 2 ( 0 <% + /0°° G i ( 0 « 
(10.3.80) 
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whereA = (ах+а2)/2, A = (αι-α2)/2andGj(£) = G{x-ait—£,,evt) (i = 1,2), 
as is easily verified. 

Now as eu —> 0, we have \imtl/^oGifè) = limtv->oG(x — α,ί — ξ,εινί) = 
δ(χ — ait — ξ), as follows from the property of the fundamental solution G(x, t) 
established previously. Also, since a\ < a2, the exponentials in (10.3.80) tend to 
infinity as tv —> 0 if x — Xt < 0, and to zero if x - Xt > 0. Noting these results, we 
readily find that 

(hi, x-[l + ^(hl + h2)]t>0, 
lim u(x,t)= < , г -vii, , N (10.3.81) 

«~0 v ; \h2, x-[l + 3±L{hi+h2)]t<0, V ' 

since 
λ = ^i±^ = 1 + I ± V + h2). (10.3.82) 

We expect that (10.3.81) satisfies the reduced equation for (10.3.70), 

ut(x,t) + l+(^^)u{x,t) ux(x,t)=0, (10.3.83) 

with the initial condition (10.3.78). [Since (10.3.83) results on setting the parameter 
v = 0 in Burgers' equation (10.3.70), and v = 0 if viscosity and heat conduction 
effects are neglected, it is referred to as the inviscid Burgers' equation.] However, 
the implicit solution (10.3.72) of (10.3.83) shows that и is a constant on the lines 
x — [1 + (7 + l)u/2]t = ξ = constant. Also, at t = 0 we have и = h2 if x < 0 and 
и = hi if x > 0, so that 

( hi, x — a\t > 0, 
, , _ (10.3.84) 

h2, x-a2t<0. K ' 
Since a\ < a2, these regions in the (x, i)-plane are given as shown in Figure 10.8. In 
the sector between x = ait and x = a2t, the solution (10.3.84) is multivalued, and 
since this multivaluedness occurs as soon as t exceeds zero, this solution is not valid 
for any time t > 0. 

However, (10.3.81) yields a (discontinuous) solution of (10.3.83) that satisfies the 
initial condition ( 10.3.78) and has a jump across the line x = Xt that lies between the 
lines x = ait and x = a2t as pictured in Figure 10.8. The jump in u{x, t) travels to the 
right with the speed λ, and this does not correspond to either of the two characteristic 
speeds ai and a2 for this problem. In fact, the traveling wave solution (10.3.81) of 
the quasilinear equation (10.3.83) is a shock wave and it has been obtained as the limit 
of the smooth solution (10.3.80) of Burgers' equation as eu —» 0. 

Burgers' Equation: Shock Structure 

In Section 2.3 we constructed shock waves for first order quasilinear equations directly, 
without having to solve a higher-order equation and evaluating a limit, as we have 
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Figure 10.8 The multivalued region and shock line. 

done here. [The direct construction of the shock wave (10.3.81) is considered in the 
exercises.] We recognize, however, that the shock wave is an idealized and simplified 
form of the solution of the given problem for Burgers' equation, in which ev is small 
but nonzero. Consequently, the solution of Burgers' equation for small but nonzero 
ev is valuable in that it yields a solution of the problem that varies rapidly near the 
shock front but is nevertheless smooth. This more detailed description of the solution 
near the shock gives what is called the shock structure. 

There is an alternative approach to determining the shock wave solution (10.3.81) 
of (10.3.83), which is also useful for more general (quasilinear) equations that do not 
have an exact solution as is the case for Burgers' equations. We look for a traveling 
wave solution of the partial differential equation (10.3.70) in the form 

u(x,t)=v(x-Xt), (10.3.85) 

where the function v(x — Xt) and the constant λ are to be specified. They are deter-
mined by the requirement that 

( h\, x — Xt —> oo, 
(10.3.86) 

/ l 2 , X - Xt —» - C O , 

where the constants h\ and h2 have the values given in the initial condition ( 10.3.78). 
Inserting (10.3.85) into (10.3.70) yields a second order ordinary differential equa-

tion for v (x — Xt), 

(1 - X)v' + ^ - ^ vv' = tvv". (10.3.87) 
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Integrating once in (10.3.87) and noting that v' —» 0 as \x — Ai| —» oo, in view of 
(10.3.86), we have 

(1 - Χ)υ + - ^ - ν2+νο= evv', (10.3.88) 

where VQ is an arbitrary constant of integration. On letting x — Xt —> oo, we obtain 

(1 - λ)Λι + ̂ ± 1 h\ + vo = 0, (10.3.89) 

and as x — Xt —> —oo, we have 

(1 - X)h2 + 2 - ± i hi + v0 = 0. (10.3.90) 

On solving the simultaneous system (10.3.89)-(10.3.90) for A and v0, we obtain 

X = l + l±±(h1+h2) = ~X (10.3.91) 

for the value of A as given in (10.3.82), and the value of the constant vo is determined 
tobe 

vo = ̂ ~h1h2. (10.3.92) 

On inserting these values into (10.3.88), we find that the equation can be written as 

v' = ?-^{v-h1)(v-h2). (10.3.93) 

This first order ODE is easily solved using a partial fraction decomposition. We find 
that 

u(x,t) = v(x-Xt) = hi + h i - h a = — (10.3.94) 
1+ехр{[(7 + 1)/4еИ(Л2-Л1)(а:-А*)} 

and this satisfies (10.3.86). Furthermore, as ev —» 0, since h2 > h\, (10.3.94) tends 
to ( 10.3.81 ), as is readily checked. Thus for small but nonzero ev, this solution yields 
the shock structure and describes how the initial discontinuity ( 10.3.78) propagates as 
a smooth step whose transition from the value h2 to the value hi moves at the shock 
speed A. 

We have assumed that 0 < hi < h2 in the initial condition (10.3.78). This 
gives rise to a compression wave solution of the inviscid Burgers' equation (10.3.83), 
which breaks immediately and requires the introduction of a shock wave. However, if 
0 < h2 < hi in (10.3.78), we have an expansion wave for which continuous solutions 
can be found as shown in Section 2.3. Now if we look for a traveling wave solution 
of the viscous Burgers' equation with h2 < hi in (10.3.86), we see from (10.3.93) 
that no traveling wave solution exists that increases smoothly from h2 at —oo to hi 
at +00, since for h2 < v < hi we have v' < 0. Thus, v must be a decreasing 
rather than an increasing function, and this is not possible. As a result, we find that 
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expansion shocks do not result as limits of traveling wave solutions of the viscous 
Burgers' equation. 

More general initial data for (10.3.70) and the behavior of the corresponding so-
lution (10.3.76) as ev —► 0 may be discussed by evaluating the integrals in (10.3.76) 
asymptotically using the method of steepest descents, the saddle point method. How-
ever, we do not pursue this matter. 

Shallow Water Theory: Boussinesq Equations 

It can be shown that the theory of water waves for the case of shallow water and waves 
of small amplitude can be (approximately) described by the Boussinesq equations 

vt(x,t) + wx(x,t) + e[v(x,t)wx(x,t) + w(x,t)vx(x,t)} = 0, (10.3.95) 

wt(x, t) + vx{x, t) + e[w(x, t)wx(x, t) - -wxxt{x, t)] = 0. (10.3.96) 
О 

If we set gh(x, t) = 1 + ev(x, t) and u(x, t) = ew(x, t), where g is the gravitational 
constant, h(x, t) represents the height of the water above a horizontal bottom and 
u(x, t) is the velocity of the water, at a point x and the time t. (The problem is 
one-dimensional.) If we drop the third derivative term in (10.3.96) and express the 
resulting first order system in terms of h(x, t) and u(x, t), we obtain the system of first 
order equations of Exercise 3.3.21. They are known as the equations of shallow water 
theory. The small parameter e in ( 10.3.95)-( 10.3.96) signifies that we are considering 
small wave amplitudes and shallow water, or, equivalently, long waves. 

With 

и = Г v(x,t) 
w(x,t) 

(10.3.97) 
the system (10.3.95)-(10.3.96) can be written as 

ut{x,t) + Aux(x,t) + e[Bux{x,t) + Cuxxt(x,t)}=0. (10.3.98) 

The system (10.3.98) has the form (10.3.30). Putting e = 0 in (10.3.98) yields the 
linear reduced system щ(х, t) + Aux(x, t) = 0, equivalent to the one-dimensional 
wave equation with unit wave speed. In fact, the characteristic polynomial for A is 
C{X) = \A- \I\ = (A - 1)(A + 1). With Ai = 1 and A2 = - 1 as the eigenvalues 
of A, the corresponding eigenvectors are 

" 1 ' 
1 r2 = 1 

- 1 

Whenu(x, t) = a(x, f ) r b wehaveut(x, t) + Aux(x, t) = (at(x,t)+ax(x,t))ri = 
0, and when u(x,t) = ß(x,t)T2, we have ut(x,t) + Aux(x,t) = (ßt(x,t) — 
ßx{x, t))r2 = 0. Thus, a{x, t) = a{x - t) and ß(x, t) = ß(x +1). 

0 1 
1 0 в 

w(x,t) 
0 

v(x, t) 
w(x,t) ,c = 0 

0 
0 

1 
3 
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Asymptotic Simplification of the Shallow Water Equations: 
Korteweg-deVries Equation 

We now carry out the asymptotic simplification of (10.3.98). Since A has only 
two (orthogonal) eigenvectors, the simplification method does not require the full 
machinery developed in our general discussion. The reduced system was shown to 
give rise to a right- and a left-traveling wave. To study the effect of the nonlinear and 
higher derivative terms on the right-traveling wave, we set 

u(x, t) = a(x, t)r! + eß(x, t)r2, (10.3.100) 

where a(x, t) and ß(x, t) are. to specified. We insert (10.3.100) into (10.3.98) and 
obtain 

[at + ax]ri + e l [ßt - ßx]r2 + aax 
1 
~ OLxxt = 0(e2), 

(10.3.101) 
since v(x,t) = a(x,t) + 0(e) and w(x, t) = a(x,t) + 0(e). The vectors rx and 
Г2 are orthogonal, so we need not construct projection matrices corresponding to 
their eigenspaces. Instead, we simply take dot products with ri and then with r2 in 
(10.3.101). 

Dotting with ri in (10.3.101) gives 

at + ax + ^eaax - ^eaxxt = 0(e2) . (10.3.102) 

Dotting with Γ2 gives 

ßt-ßx + \aax + \axxt = O(e). (10.3.103) 
z о 

We solve (10.3.103) by expanding ß(x, t) in a series in powers of e with ß(x, t) = 
ßo(x,t)+0(e). Thus 

dß0{x,t) dß0(x,t) 1 1 , ι η , ι η . , 
—^—— ^ + -a{x,t)ax(x,t) + -axxt(x,t) = 0. (10.3.104) 

Since at(x,t) = —ax(x,t) + O(e) in view of (10.3.102), we may replace that 
equation by 

3 1 
at(x,t) + ax(x,t) + -ea(x,t)ax(x,t) + -eaxxx(x,t) = 0, (10.3.105) 

2 о 

on dropping the 0(e2) terms. This is the Korteweg-deVries equation. As was indi-
cated in Example 9.7, it is a nonlinear dispersive equation. In this regard it differs 
from the Burgers' equation, which is of dissipative type. However, the Korteweg-
deVries equation is also exactly solvable; but the solution method is substantially 
more complicated than that for Burgers' equation, and it is not presented here. 
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We note that if (10.3.105) is solved by expanding a(x, t) in powers of e (i.e., by 
using the perturbation method), secular terms result in that expansion. Thus we leave 
(10.3.105) as it stands, and in terms of its solution we obtain v(x, t) = a(x, t) + 
tßo{x, t), w(x, t) = a(x, t) - eß0(x, t), in view of (10.3.100) and (10.3.104), where 
ßo{x,t) is solved for in terms of a(x, i). If we replace (10.3.100) by u(x,t) = 
ß(x,t)r2 + ea(x,t)ri, we find on proceeding as earlier that ß(x,t) satisfies a 
Korteweg-deVries equation for left-traveling waves, as shown in the exercises. 

Solitary Wave Solution of the Korteweg-deVries Equation 

We have already constructed approximate periodic solutions of the Korteweg-deVries 
equation in Example 9.7. We now obtain a special traveling wave solution of ( 10.3.105) 
that represents what is known as a solitary wave. This wave consists of a single hump 
of constant shape that moves at constant speed. 

Let 
a(x, t) = af(x - Xt), (10.3.106) 

where the constants a and λ and the function / are to be specified. We assume that 
f(x — Xt) vanishes togetherwith its derivatives as |:r —Ai| —► oo. Inserting (10.3.106) 
into ( 10.3.105) gives the third order ODE (1 - A)/ ' + (3/2)ea/ / ' + ( l /6)e / ' " = 0. 
Integrating once gives (1 — A)/ + (3 /4)ш/ 2 + ( l /6 )e / " = 0, with no constant of 
integration since / and / " vanish at infinity. Next we multiply the equation by / ' and 
integrate once more to obtain ((1 - A)/2) / 2 + (1 /4)ш/ 3 + (l /12)e/ ' 2 = 0. Again, 
there is no constant of integration. This equation can be written as ( l /3a ) / ' 2 = 
/ 2 [2(A - l)/ea - / ] . 

The solution of this equation that vanishes at infinity is readily verified to be 

f{x _ Ai) = 2 ( Л 1} sech2 3 ( A - 1 ) 
2e 

1/2 

(x - Xt) (10.3.107) 

If we set ä = 2(A — l)/e, the solution a(x, t) = af(x — Xt) can be written as 

a(x, t) = ä sech2 
1/2 г 

ea , 
x- (1 + y l * (10.3.108) 

with the solitary wave speed given as A = 1 + eä/2. 
At the time t = 0, the solitary wave a(x, t) has the form of a single hump. The 

maximum value of a(x, 0) occurs at x = 0 and equals ä. The waveform a(x, 0) 
is symmetric with respect to x = 0. This form travels to the right without change 
in shape at the speed A = 1 + eä/2. Thus as ä increases, so does the wave speed, 
and higher solitary waves move more rapidly than lower ones. This leads to some 
interesting problems regarding the interaction of two or more solitary waves moving 
at different speeds. Also, by modifying the foregoing discussion, it is possible to 
obtain exact periodic traveling wave solutions of the Korteweg-deVries equation. We 
do not discuss this here. 
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The Burgers, Korteweg-deVries, and nonlinear Schrödinger equations that were 
discussed in this and the preceding sections arise as the relevant approximate equations 
for a number of important problems of physical interest. Each of these equations can 
be solved exactly, and the study of the solution of these and related nonlinear PDEs 
has been the subject of intense investigation in recent years. 

Exercises 10.3 

10.3.1. Consider the equation е(иш(Х: t)—a2uxxt(x, t)) + uu(x, t) — c2uxx(x, t) = 
0, where a > a Letwi(x,i) = uu(x,t), V2(x,t) = uxt(x,t), and^3(x,i) = 
uxx(x: t) and express the equation foru(x, t) as the system e[ut(:r, t) + Aux(x, t)} + 
Bu(x,t) = 0, where u(a;, i) has the components v\(x, t), V2(x,t), and ьз(х,Ь). 
Construct a decomposition of this system based on two linearly independent null 
eigenvectors of the matrix В (i.e., the eigenvectors that correspond to the eigenvalue 
λ = 0). Hint: Each of these equations is a parabolic equation. 
10.3.2. Expresstheequationutt(x,t)—c2uxx(x,t)+euxxt(x,t)) = 0,asasystemby 
setting v{x, t) = ut{x, t) and w(x, t) = ux(x, t) and obtain ut{x, t) + Aux(x, t) + 
eBuxx(x,t) = 0, where u(x,t) has the components v(x, t) and w(x,t). Obtain 
a decomposition of the system based on the eigenvalues and eigenvectors of the 
matrix A. 

10.3.3. Obtain a Burgers' equation for left-traveling waves by using (10.3.62) and 
proceeding as in the text. 
10.3.4. Determine the shock wave (10.3.81) using the method of Section 2.3. 
10.3.5. Obtain a Korteweg-deVries equation for left-traveling waves by setting u(x, t) 
= a{x,t)r2 + eß(x,t)ri in the system (10.3.98). 
10.3.6. Show that (10.3.94) is the solution of (10.3.87) with λ and v0 given as in 
(10.3.91 )-( 10.3.92) and verify that it tends to (10.3.81) as ev -> 0. 
10.3.7. ThenonlinearhyperbolicsystemKT(CT,T)+Vr

(r(a,T) = W2(a,r)-V2(a,r), 
Wr(<7, r) — \νσ(σ, τ) = V2(a, τ) — W2(a, τ) represents a model for Boltzmann's 
equation in the kinetic theory of gases. Let V(a, r ) — 1 + ev(x, t), W(a, r ) = 
1 + ew(x,t), t = ет, x = ea, and obtain the system Cu(x,t) + е[щ{х, t) + 
Aux(x, t) 4- Bu(x, t)} = 0, where u(x, t) has the components v(x, t) and w(x, t), 
and the matrices A, B, and С are denned appropriately. Show that the matrix С has 
a null vector r T = [1,1]. Carry out a decomposition of the system corresponding to 
this vector and obtain a nonlinear parabolic equation as the approximating equation. 

10.3.8. The dispersive equation utt(x, t) — uxx(x, t) + e[ux(x, t)uxx{x, t) — uxxxx 

(x,t)] = 0 models the vibration of a nonlinear string. Let v(x, t) = Ut(x,t) 
and w(x,t) = ux(x,t), and express the equation in the form of a nonlinear sys-
tem ut(a;,i) + Aux(x,t) + e[Bux(x,t) + Cuxxx(x, t)] = 0, where uT(a;,i) = 
[v(x, f), w(x, t)] and the matrices Л, В, and С are defined appropriately. Show that 
the matrix A has eigenvalues λ = +1 and A = — 1 with orthogonal eigenvectors. 
Construct a decomposition of the system corresponding to the eigenvalue A = 1 and 
obtain a Korteweg-deVries equation as an approximation. 
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10.4 MAPLE METHODS 

The procedures RegPerturb, BoundLayer, and ParabolicEqMeth introduced in 
Chapter 9 to analyze regular and singular perturbation problems can also be used in 
dealing with the problems of Section 10.1. A number of new procedures relevant to 
the material in Sections 10.2 and 10.3 are presented below. 

Equations with a Large Parameter 

We consider the reduced wave equation V2u(x) + k2n2(x)u(x) = 0, in the region 
G, with к » 1. If the solution u(x) is expressed as u(x) = v(x) егкф(*\ and the 
phase term ф(х) satisfies the eiconal equation (V</>(x))2 = n2{x), then the amplitude 
term v(x) is a solution of гк[2Чф{х) ■ Vv(x) + u(x)V20(x)] + V2u(x) = 0. The 
transformation ik = 1/e converts this PDE into AmplEq = 2V</>(x) · Vw(x) + 
ν(χ)ν2φ(χ) + e V2t;(x) = 0. If v(x) = r(x) on the boundary S of G, the proce-
dure RegPerturb(AmplEq, [],[v = r(x)],v, [x], [x\s], [}, e, 1) yields the transport 
equations (10.1.12)—(10.1.13) for the first two terms v0(x) and ^i(x) in the pertur-
bation series v(x) = 2~ZjÜo u,(x)eJ, where e = ί/гк, with the boundary conditions 
v0(x)\s = r(x) andvi(x) | s = 0. 

The problems of Section 10.1 that require the introduction of boundary layers for 
their solution can be treated by the use the BoundLayer procedure. If the parabolic 
equation method can be applied, the ParabolicEqMeth procedure can be used. We 
do not consider any examples here. 

Propagation of Discontinuities and Singularities for 
Hyperbolic Equations 

We begin by considering representations of functions with jump discontinuities as 
given in Example 7.2. The procedure DiscFunct expresses piecewise smooth func-
tions with single jumps in the terms of expressions and series that involve Heaviside 
and piecewise-defined functions. On invoking DiscFunct([f(x), g{x)\ ,x,a,n),we 

Ì
f{x), x < a, 

. . with 

Q\X) OL <. X, 

a jump at x = a, in the form of the partial sum (if n > 1), F(x) = f(x) + 
E"=i[ffW(a) - /0)(c*)]tfj(a; - a). The Hj{x - a) are defined as in (7.2.41) 
and the sum corresponds to (7.2.42). If n = 0, the output is F(x) = f(x) + 
{g(x) — f(x))H(x — a) , which represents the piecewise-defined function F(x) in 
terms of the Heaviside function. As a specific example we consider the procedure 

г x, x < a, 
DiscFunct([x,x2],x, a, 2). The discontinuous function is F(x) = < 2 ^ 
as defined in (7.2.43). The output is F(x) = x + (a2 - a)H{x - a) + (2a - l)(x -
a)H(x — a) + (x — a)2H(x — a), which agrees with (7.2.44). 

DiscFunctMult([fi(x), f2{x), ■ ■ ■ ,fn{x)],x, [04,012, ■■■ ,an-i}) determines a 
representation of the piecewise continuous function F(x), defined as F(x) = fi(x) 
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for x < ot\, F(x) = fj(x) for ctj-x < x < ctj, j = 2,3,... ,n — I and F(x) = 
fn(x) for x > α„_ι, in terms of Heaviside functions. 

Next we consider the PDE = utt(x,t) - V · (p(x)Vu(x,t)) + 2Xut(x,t) + 
q(x)u(x,t) = 0, and the singularity expansion и = ^2<jL(>Vj(x,t)Sj^(x,t)], with 
Sj [ф] = S,_ i [ф\. ф(х, t) and Wj (x, t) satisfy the characteristic and transport equations 
(10.2.37) and (10.2.38), respectively. The Maple procedure SingularExp{PDE, 
depvar, [indvar], So [φ], φ, n) exhibits n + 1 terms in the singularity expansion. The 
dependent variable depvar and a list of independent variables [indvar] must be 
prescribed. If an arbitrary ф(х, t) is given, the characteristic equation for the PDE is 
exhibited. If a solution ф(х, t) of the characteristic equation is specified, the output is 
0 = 0. The transport equations for the first n + 1 terms of the singularity expansion 
are also displayed. 

As an example we consider the telegrapher's equation ТЕ = utt(x, t)— 72ωχχ(χ, t) 
+ 2\ut(x,t) = 0. Then SingularExp(TE,u,[x,t],H[fi(x,t)]^{x,t),l) yields 
the expansion u(x, t) « vo{x,ί)Η[φ(χ,ί)\ + ν\(χ,ί)Η[φ{χ,ί)]φ{χ,ί). The phase 
term φ(χ, t) must satisfy the characteristic equation and the terms VQ{X, t) and v\ (x, t) 
are solutions of the transport equations. If we set φ(χ, t) = x ± ηί ± 1 in the proce-
dure, φ(χ, t) is a solution of the characteristic equation, and the appropriate transport 
equations are given. 

Asymptotic Simplification of Equations 

To carry out the asymptotic simplification of the system of PDEs ut (x, t)+Aux (x, t )+ 
e N[u(x, t)] — 0, as given in (10.3.30), we must determine projection matrices asso-
ciated with the eigenspaces of the matrix A. The procedure Pro j Matrix determines 
these projection matrices, but it requires that the n x n matrix A has n linearly indepen-
dent eigenvalues and that one of the eigenspaces projected into be one-dimensional. 
(This is the case for the problems considered in Section 10.3.) In ProjMatrix(A), 
the matrix A must be expressed (for technical reasons) in the form used in the linalg 
package rather than the Linear Algebra package. That is, it must be expressed as 
a matrix or array rather than as a Matrix or Array. The output exhibits the 
matrix A, its characteristic polynomial, and a list of its eigenvalues and eigenvec-
tors. The global variable EVlist represents this list. The list may contain simple or 
multiple eigenvalues, but the procedure can only construct projection matrices if one 
of the eigenspaces projected into corresponds to a simple eigenvalue. If the simple 
eigenvalue is the nth element in EVlist, the procedure ProjMatrix(A, EVlist, n) 
determines two projection matrices Pi and P2, where P\ projects into the eigenspace 
associated with the simple eigenvalue and P2 projects into the complementary space. 
(The projection matrices are global variables.) 

As an example, we apply the procedure to A = 1 _ 

connection with the equations of shallow water theory. Then ProjMatrix(A) gives 
the characteristic polynomial λ2 — 1 and the list of eigenvalues and eigenvectors of 
A as EVlist = [[1,1, {[1,1]}], [ -1 ,1 , {[1, -1]}]]. This states that each eigenvalue 
λι = 1 and λ2 = - 1 has multiplicity 1 and gives the eigenvectors ri and Г2 as in 

, as given in (10.3.97) in 
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(10.3.99). If we express the solution u(a;,i) of the system (10.3.98) as u(x,t) = 
a(x, t)r\ + eß(x, t)r2, we must project into the eigenspace spanned by Γχ. We use 
ProjMatrix(A, EVlist, 1) since the first element of EVlist corresponds to λι 

" 1/2 1/2 " 
and r i . The output exhibits Αχ and ri and finds that Pi 1/2 1/2 P2 = 

1/2 - 1 / 2 
- 1 / 2 1/2 
In the general case we put u(a;, f) = v(a;,i) + ew(x,t), as in (10.3.31). v(x,t) 

is an element of the eigenspace spanned by the eigenvector ri associated with a 
simple eigenvalue Ai of A whose projection matrix is Pi. w(x,t) is an arbitrary 
vector in the complementary space spanned by the eigenvectors r 2 , . . . , rn , whose 
projection matrix is P^. Once the projection matrices have been found, we find 
the simplified systems associated with the vectors \(x, t) and vr(x, t) as in Section 
10.3. AsymptSimp(System, [depvar], [indvar], e,ri, Pi, [гг,. -. , r n] ,P2,n) de-
termines the simplified equations (10.3.37) and (10.3.34) with w expanded as in 
(10.3.35). The number of terms in the expansion is prescribed by the last argument 
n in the procedure. 

Next, we use AsymptSimp to determine the PDE's satisfied by a(x, t) and 

β(χ, t) in the shallow water equations. We express them as 5 = ди/dt + 
1 0 

ди/дх + e 
W 
0 

V 
W 

ди/дх+ « ) ■ d3u/dx2dt) = [0,0], with u 0 0 
0 - 1 / 3 

[V, W]. (For technical reasons we use capital letters for the arguments of u.) Then, us-
ing the eigenvectors and projection matrices found above, AsymptSimp(S, [V, W], 
[x,t],e, [1, l ] ,Pi , [[1, — 1]],P2,0) yields results that agree with those obtained in 
Section 10.3. 

Exercises 10.4 

10.4.1. Apply RegPerturb to the amplitude equation AmplEq given above to obtain 
the transport equations ( 10.1.12)-( 10.1.13). 
10.4.2. Use the procedure DiscFunct with n = 3 to obtain a Heaviside function 
representation for the function F(x) with a jump at x = a. Then specialize the result 
to the function F(x) defined above. 
10.4.3. Apply DiscFunctMult to the function given in (10.2.22)-( 10.2.23). 
10.4.4. Consider the telegrapher's equation and use SingularExp to obtain the result 
above and then specialize to the case(s) with ф(х, t) = x ± jt ± 1. 
10.4.5. Apply the procedure Proj Matrix to the matrix A that arises in shallow 
water theory and obtain the results given in the text. 
10.4.6. Apply the procedure AsymptSimp to the shallow water equations and obtain 
results that correspond to those given in Section 10.3. 
10.4.7. Carry out the asymptotic simplification of the Navier-Stokes equations, as 
given in (10.3.43), using ProjMatrix and AsymptSimp. Obtain the Burgers' and 
heat equation approximations. 



CHAPTER 11 

FINITE DIFFERENCE METHODS 

The method of finite differences is a numerical method for the solution of well- posed 
initial value, initial and boundary value, and boundary value problems for linear and 
nonlinear PDEs. Suppose that a problem is formulated for a function u(x, t). The 
difference method is based on the process of replacing the partial derivatives of u(x, t) 
by approximating difference quotients. A grid of discrete points in the coordinate 
space of the independent variables—appropriate to the region G in which the problem 
is formulated—is introduced. The PDE and the auxiliary conditions (should they 
involve partial derivatives) are represented in terms of difference quotients. At grid 
points where the auxiliary conditions specify the values of u(x, t), these values are 
used. (If the region does not have a simple form, special methods are needed to assign 
solution values at various grid points near initial and boundary regions.) This process 
yields a system of algebraic equations for the (approximate) solution й(х, t) of the 
given problem, determined at the grid points. The finite difference solution ù(x, t) 
approximates the solution u(x, t) at the grid points of G. Now, the solution methods 
presented in Chapters 2-10 (generally) yielded exact or approximate solutions at all 
points in G. By refining the grid and increasing the number of grid points, the finite 
difference result can be improved, so that u(x, t) approximates u(x, t) to a high level 
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of accuracy at any grid point in G. Then, approximate solution values at points outside 
the grid but within G can be obtained by interpolation. 

Whereas it is formally possible to replace any partial derivative by an approximat-
ing difference quotient, it turns out that not all algebraic systems obtained thereby 
yield accurate descriptions of the solution at the grid points. More precisely, the 
numerical solution does not approximate the exact solution of the problem (evaluated 
at the grid points) to an increasingly improved level of accuracy, as the grid is increas-
ingly refined. That is, the approximate solution fails to converge to the exact solution. 
Conditions must be placed on the finite difference approximations, such as consis-
tency of the difference equations with the given PDE and stability of the difference 
scheme, for convergence to take place. Whereas it is usually a straightforward matter 
to show that a finite difference scheme is consistent with a PDE, the conditions for the 
stability of the scheme are harder to obtain and verify in general, but, as will be seen 
below, they can be determined for a number of problems. Proof of the convergence of 
the finite difference result to the exact solution is the hardest of all. Fortunately, there 
is a general result due to Lax, known as the Lax equivalence theorem, that states that 
consistency and stability are equivalent to convergence, for linear difference schemes 
for well-posed initial and initial and boundary value problems. As a result, once a 
linear difference scheme is proven to be consistent and stable, the convergence of its 
(approximate) solution to the exact solution of the problem is guaranteed. The veri-
fication of the consistency of difference schemes and the determination of conditions 
for their stability are emphasized in our discussion below. 

The random walk models of Chapter 1 represent finite difference approximations 
to a large class of PDEs as was seen. The approach used in that chapter differs from 
that presented here, in that we obtained PDEs as limits of difference equations rather 
than constructing difference equations from PDEs, as will be done here. An important 
consequence of this is that questions relating to consistency, and even stability, did 
not arise for the problems considered there. The finite difference approximations 
introduced in this chapter greatly increase the number of difference equations that are 
related to a given PDE, but they also include the difference equations introduced on the 
basis of random walk models in Chapter 1. It will be seen that useful insights relating 
to consistency and stability considerations for finite difference approximations follow 
from random walk analogies. 

The replacement of derivatives by difference quotients in finite difference methods 
is referred to as a discretization process. In general, all derivatives are replaced by 
differences so that the resulting finite difference method is fully discrete. However, 
when dealing with time-dependent problems, it is often useful to employ a numerical 
method in which only the spatial partial derivatives are approximated by difference 
quotients. The time derivatives in the PDEs are not discretized. Thus, the numerical 
method is semi-discrete. This method gives rise to a system of coupled ODEs in the 
time variable, with prescribed initial conditions. The resulting system can either be 
solved exactly or can again be solved numerically, using any of numerical methods 
available for ODEs. (In the latter case, the method becomes fully discrete.) This 
approach is referred to as the method of lines and will be introduced below for the 
numerical treatment of parabolic and hyperbolic equations. 
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The use of a computer is indispensable for the numerical solution of problems for 
PDEs if a reasonable number of grid points is to be considered. To this end we have 
constructed a number of Maple procedures that solve the finite difference problems, 
enable graphical representations of the solutions, and deal with related questions, 
such as the stability of these problems. Procedures that deal with parabolic, elliptic, 
and hyperbolic PDEs, as well as hyperbolic systems of PDEs, are presented. We note 
that the built-in Maple procedure pdsolve for the solution of PDEs or systems of 
PDEs contains an option that permits a large class of time-dependent problems with 
one space variable to be solved numerically using finite difference methods. Many 
of the difference schemes presented in this chapter can be used, and the output can 
be presented in various forms. 

11.1 FINITE DIFFERENCE OPERATORS 

The basic finite difference operators or procedures that have been constructed, yield 
first order forward, backward and centered finite difference quotients. By iterating 
these operators, higher-order differences can be generated. We use these operators to 
approximate partial derivatives by difference quotients in the given PDEs or systems 
of PDEs. 

Forward, Backward, and Centered Differences: Maple Procedures 

The Maple procedures ForwDiff, BackwDiff, CentDiffand ShifiOp generate forward, 
backward, and centered differences and shifts, respectively, for functions in any num-
ber of variables. The difference and shift operators can be used, in combination, to 
approximate derivatives of any order. 

First order forward, backward and centered difference quotients for a function 
f(x, t) with a positive increment (or step size) h in the a;-variable are 

ForwDm,f{x,t)A^l^AAhAAA) = / ( χ + Μ ; | ~ / ( Μ ) , (n.i.i) 

BackwDiff{f{x,t),\x,t\,[x,t]AhAAx\) = f ^ ~ ^ ~ *' ° , (П-1-2) 

CentDiffif(x,t),[x,t},[^t},[h,0},[x}) = / ( * + M ) ~ / ( a : ~ M ) · (11.1.3) 

The first order shift operator is 

ShiftOp(f(x,t), [x,t], [x,t], [±/i,0]) = f{x ± h,t). (11.1.4) 

If h = 0, the shift operator is an identity operator. Clearly, the shift operator can be 
used to construct the three types of difference quotients. 

To obtain the forward difference quotient for a function f(x, t) with an increment 
к in the t-variable we invoke 

F o w D i # / ( M ) . [ M ] , M , [ 0 , *],[<]) = / ( * ' * + * ) - / ( * ' * ) . (Ц.1.5) 
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For functions /(x) = f(x\,..., Xj,..., xn) of n variables (where n > 2) we obtain 
first order forward difference quotients, with increment hj in Xj as, 

ForwDiMfi*), W, [x] ,[0, · · ·, hj,..., 0], [Xj]) 

J (3-1 , ■ ■ ■ ,Xj ~r tlj, ■ ■ ■ , Xn) — J (Xl, · · · , Xj, · ■ ■ , Xn) . 1 fi\ 

hj 

The same is true for the other first order difference operators. 
Next, we consider the accuracy of the approximation of the first order derivatives 

by the difference quotients. For the expressions in ( 11.1.1 )-( 11.1.3), this is done by 
applying the Taylor formula to each difference quotient and expanding around h = 0. 
This yields an expansion in powers of h with derivatives off(x, t) taken with respect to 
x. The (built-in) Maple procedure mtaylor, (which finds multi-dimensional Taylor 
series) with m as the number of terms to be exhibited in the output, truncates the 
Taylor series at the term of 0(hm). The terms in the expansion involve f{x,t) and 
its derivatives evaluated at (x, t). To obtain the Taylor formula we must replace x, 
in the argument of the 0(hm) term, by ξ, a variable that is unspecified but must 
satisfy x < ξ < x + h, for the case of a forward difference quotient. For a backward 
difference we have x — h < ξ < x, and for a centered difference x — h < ζ < x + h. 
The results are 

Forward difference: fx(x,t) - / ( Ж + М ) ~ / ( М ) = _ 1 д х ( ^ ) Л ) (ц.1.7) 
h 1 

Backward difference: fx{x, t) - / fo *) ~ / 0е ~ M ) = Ь (ξ5 ̂  (ц.1.8) 
h 2 

Centered difference: fx(x,t) - / ( * + M ) - 7 ( * - Μ ) = Afxxx{U)h\ 

(11.1.9) 
The term on the right side of each equation ( 11.1.7)-( 11.1.9) is called the truncation 
error for each of the difference formulas. As we are concerned with small values of h, 
we see that the centered difference quotient yields the best approximation to the first 
derivative. The truncation errors are 0(h) for the forward and backward differences, 
so we say that these approximations are first order accurate. The centered difference 
approximation whose truncation error is 0(h2) is second order accurate. 

Second and higher-order difference quotients are obtained by iterating the first 
order difference operators. However, second order difference quotients can also be 
obtained by a single application of each one of the three procedures. Thus, to obtain 
the second order centered difference quotient for f(x, t) with a positive increment 
(or step size) h in the ж-variable, we can invoke either of the following procedures: 
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„ ~ ^,, ч r ! г ! г, „i г n f(x + h,t) — 2f(x,t) + f(x — h,t) 
CentDiJftf(x,t),[x,t],[x,t],[bMx,x]) = — — fa2 — , 

(11.1.10) 

CentDiff(CentDiff(f(x,t), [x,t], [x,t], [A/2,0], [ж]), [χ,ί], [χ,ί], [/г/2,0], [*])) 

f(x + h,t)-2f(x,t) + f(x-h,t) 
h2 (11.1.11) 

[То obtain the form for the difference quotient given in ( 11.1.11 ), an increment ft/2 
was used in each CentDiff procedure.] The difference quotients approximate the 
second order x-derivative, and on using the Maple procedure mtaylor, we find that 
the truncation error is given as 

/«(*,*) - /(* + M)-2/(x,*) + / ( » - M ) = 0{h% {U112) 

Thus the centered difference approximation is second order accurate. 
The second order centered difference quotient for f(x, t) with positive increments 

h and к in the x- and t-variables, respectively, approximates the mixed partial deriva-
tive fxt(x, t). The use of 

CentDiff(f(x,t), [χ,ί], [x,t], [h,k], [x,t]) 

_ / ( x + h,t + k) - f(x - h,t + k) - f(x + h,t - k) + f(x -h,t-k) 
~ 4hk 

(11.1.13) 
yields the required result. Applying the Maple procedure mtaylor shows that the 
truncation error is given as 

, , „ f(x + h,t + k)-f{x-h,t + k)-f(x + h,t-k) + f{x-h,t-k) 
ЫхЛ) ш 

= 0(h2+k2), (11.1.14) 

so that the centered difference approximation is second order accurate. 

Example 11.1. Difference Approximations for a Prescribed Function. 
To compare the various levels of accuracy obtained from the variety of difference 
quotient approximations to first and second derivatives of a function, we apply them 
to the function f(x,y,z) = exy~z at the point (x,y,z) = (3 ,2 , -1) with the 
increment h = 0.0001, in all cases. [With regard to mixed partial derivatives, only 
/ x y (3 ,2 , —1) is determined.] The centered difference approximation to / x (3,2, —1) 
is found from the procedure CentDiff(e^-*2, [x, y, z], [3,2, - 1 ] , [0.0001,0,0], [x]) 
to be 296.83. (The third argument in the procedure prescribes the point at which the 
approximation is to be found.) All other approximations are determined by using 
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similar arguments in the appropriate procedures. The exact values of the partial 
derivatives are also found and the results are listed in tabular form. 

exy-z2 

Exact 
ForwDiff 
BackwDiff 
CentDiff 

_d_ 
дх 

296.82 
296.86 
296.8 

296.83 

_a_ 
ду 

445.23 
445.31 
445.17 
445.24 

д 
dz 

296.82 
296.84 
296.81 
296.83 

а2 

дх^ 

593.64 
590.0 
600.0 
590.0 

а2 

ду'2 

1335.7 
1340.0 
1340.0 
1330.0 

а2 

296.82 
300.0 
290.0 
300.0 

а2 

дх ду 

1038.9 
1040.0 
1050.0 
1040.0 

An inspection of the values given in the table shows that best overall results are 
obtained by using centered differences. 

While it appears that the smallest truncation errors with a corresponding improved 
accuracy are achieved by using centered difference quotients, we will see that on 
replacing derivatives by differences in PDEs, stability considerations preclude the 
use of certain difference approximations for specific derivatives, even if they yield 
the smallest truncation error. 

Exercises 11.1 

11.1.1 Use the procedures ForwDiff, BackwDiff, and CentDiff to obtain first order 
differences of f(x, t) in x and in t. 

11.1.2. Reproduce the results of Exercise 11.1.1 by using ShifiOp. 

11.1.3. Use the procedures ForwDiff, BackwDiff, and CentDiff to obtain all second 
order differences of f(x, t) in x and in t. 

11.1.4. Verify the truncation errors given in (11.1.7)-(11.1.9). 

11.1.5. Given the function f(x,y,z) = sin(cos(xyz)), the point (x,y,z) = (1,2,3), 
and the increment h = 0.001, construct a table as given in Example 11.1. 

11.2 FINITE DIFFERENCE METHODS FOR THE ONE-DIMENSIONAL 
HEAT EQUATION 

The one-dimensional nonhomogeneous heat or diffusion equation for the temperature 
or concentration u(x, t) of a substance is given as 

^ - * * ^ = F{z,t), (11.2.1) 

with a constant с > 0. Let h > 0 be an increment in x and к > 0 be an increment in 
t. We replace the partial derivatives by various (approximating) difference quotients, 
thereby creating a number of difference schemes. They can be used to solve Cauchy 
and initial and boundary value problems for (11.2.1), and a number of them are 
considered below. 
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Explicit Forward Difference Method for the One-Dimensional 
Heat Equation 

The most straightforward difference scheme for ( 11.2.1) is obtained by approximating 
щ(х, t) by a forward first order difference quotient in t and uxx(x, t) by a centered 
second order difference quotient in x. This yields 

и (x, t + k) — u(x,t) _ c2 (u(x + h,t) — 2u (x,t) +u (x — h, t)) . 
к ~ ~h2 + (Ж' У 

(11.2.2) 

We put r = kc2/h2 and express (11.2.2) as the difference scheme 
u(x,t + k) = (l- 2r)u(x,t) + ru(x + h,t)+ ru(x -h,t) + kF(x,t). (11.2.3) 

As will be seen, r represents a stability parameter for the difference scheme ( 11.2.3). 
The scheme ( 11.2.3) shows that if the values of the solution u(x, t) are known at the 
time t at the points x — h, x, x + h, they can be determined at the point x at the time 
t+k. In particular, if we consider a Cauchy problem and u(x,0) = f(x) is prescribed, 
u(x, t) at all points x = ih, i = 0, ± 1 , ± 2 , . . . at the times t = jk, j = 1,2,... can 
be found. The points (ih, jk) with г = 0, ± 1 , ± 2 , . . . and j = 0 ,1 ,2 , . . . represent 
the grid points for the difference scheme. The computational stencil is exhibited in 
Figure 11.1. 

Figure 11.1 The computational stencil. 

Next we determine the truncation error for the difference equation (11.2.2). Ap-
plying the Maple procedure mtaylor to (11.2.2) gives 

l i e 2 c2 

ut{x,t)-c2uxx(x,t)-F(x,t) « --uttk--utuk2+—uxxxxh
2 + -—uxxxxxxh

4. 
I o 12 ooU 

(11.2.4) 
The difference between the heat equation ( 11.2.1 ) and the difference equation ( 11.2.2) 
is of 0(k + h2). This is the order of the truncation error for the difference approx-
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imation. As h, к —» 0, so does the truncation error, so the difference approximation 
( 11.2.2) is consistent with the heat equation ( 11.2.1 ). 

A useful conclusion can be drawn from the representation ( 11.2.4). If F(x, t) = 0 
in ( 11.2.1 ), and we differentiate the equation with respect to t, it follows that uu = 

Then, if we set к = /i2/6c2in(11.2.4)[whereweputF(a;,i) = 0] 
the truncation error is reduced to 0(k2 + h4) with a concomitant improvement in the 
difference approximation. In terms of the stability parameter r = kc2/h2, this means 
thatr = 1/6. 

The difference scheme (11.2.3) is referred to as an explicit forward difference 
scheme. The solution at the time t + к is determined explicitly in terms of known 
solution values at the earlier time i. It is a forward scheme in that all the solution values 
can be determined by moving forward in time, step by step, starting from the initial 
time. Now, it may appear that the difference scheme yields a valid approximation to 
the solution without having to place a restriction on the parameter r = kc2/h2 or on h 
and k. To see that this is not so, in general, we put c2 = 10 and F(x, t) = 0 in ( 11.2.1 ), 
and take as the initial condition u(x, 0) = f(x) — 1/(1 + x2). Then with h = к = 
1/10, so that r = 100, the solution of difference equation at (x, t) = (0,1/10) is 
u(0,1/10) = -199 + 100/[1 + (1/10)2] + 100/[1 + (1/Ю)2] = -99/101. Now, 
it has been shown that the solution of the Cauchy problem with a bounded, positive 
initial value can never be negative. Thus, the negative solution value of u(0,1/10) 
has no meaning for the given problem. 

In the context of the random walk problem considered in Section 1.1, the equation 
(1.1.16) corresponds to (11.2.3) if we put F(z , t ) = 0 in (11.2.3), and r = k, δ = h, 
and r = p = q in (1.1.16), where p and q are probabilities. Since p + q < 1 and 
p+q = 2r, we conclude that we must haver < l/2ifthe probabilistic interpretation is 
to remain valid. Indeed, this restriction on r will be obtained below when the stability 
of the difference scheme is analyzed. Therefore, the random walk interpretation plays 
a role in the determination of the stability condition for the explicit forward difference 
scheme. 

If we are concerned with an initial and boundary value problem for (11.2.1 ), the 
ж-interval in which the problem is to be solved is of finite or semi-infinite extent. We 
restrict the following discussion to a finite interval 0 < x < I, with the initial condition 
given at t — 0 and the boundary conditions at x = 0 and x — I. The ж-interval is 
divided into n equal parts. The grid in (x, i)-space on which the solution is to be 
found is given as {xi,tj) = (il/n,jk) with г = 0 ,1 ,2 , . . . ,nand j = 0 ,1 ,2 , . . . ,m. 
The x step size is h = l/n and the time step or increment is k. The solution is to be 
determined at the time tm = mk, m > 1. The difference scheme (11.2.3) can be 
written as 

Uij+i = (1 - 2r)uitj + rui+ij + гщ-ij + kFij, (11.2.5) 

where Uij represents the approximation to the exact solution u(x, t) of the given 
problem at the point {xi,tj) = {il/n, jk), and where F, j = F(il/n, jk). We again 
have an explicit forward difference scheme. 
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With the initial condition given as u(x,0) = f{x), we have Uj,o = f{H/n) for 
г = 0 ,1 ,2 , . . . ,n. The boundary lines a; = Oanda: = I correspond to the values г = 0 
and г = п. if first kind conditions u(0,t) = g(t) and u(l,t) = s(t) are assigned 
on the boundaries, the values of uoj = g{jk) and unj = s(jk) are prescribed. 
Thus the solution of the difference equations has to be determined only at the points 
(x,, tj) = (il/n, jk), with г = 1,2,. . . , n — 1 and j > 1. [Compatibility questions 
for the initial and boundary data at the points (0,0) and (/,0) need to be addressed. In 
general, the values at these points are taken as the averages of the initial and boundary 
values at the points.] 

If second or third kind boundary conditions are prescribed, an ж-derivative term 
occurs in the boundary conditions and it must be replaced by a difference quotient for 
the difference scheme to be solvable. To accomplish this, we replace the first derivative 
term by a centered difference quotient in order to achieve the same level of accuracy 
attained for the centered difference approximation of the second derivative term in 
the PDE. We use (11.1.8), which yields ux(x, t) « (u(x + h,t) - u{x - h, t))/2h. 
At the boundary x = 0, this gives ^ (Ο , ί ) « {u(h,t) — u(—h,t))/2h, and at the 
boundary x = I, we have ux(l, t) « [u{l + h,t) — u(l — h, t))/2h. Now the values 
of u(x, t) are not known at x = —h and at x = I + h, as these points lie outside 
the given ж-interval. Additionally, in contrast to the Dirichlet problem, the values of 
the solution must be determined at x = 0 and x = I. As a result, the solution of 
the difference equations must now be found at the points (xi,tj) — (il/n,jk) with 
г = 0,1,2, . . . ,n — l , n a n d j > 1. 

To resolve this problem, we introduce a set of ghost points (x~\, tj ) and (xn+\, tj ) 
that are not elements of the given set of grid points. Now the difference equation 
(11.2.5) evaluated at г = 0 takes the form u0,j+i = (1 — 2r)uotj +ru\j +ru-ij + 
kFo,j, and at x = lweha.veun,j+i = (l — 2r)unj+run+ij + run-ij + kFnj. The 
terms u_i,j and un+i,j are evaluated at ghost points and must be eliminated. This is 
done by using the centered difference approximations to the first derivative (that occurs 
in the boundary condition) given above. For example, if there is a Neumann boundary 
condition at a; — /oftheformux(/,i) — s(t), the difference approximation for t = jk 
isux(l,jk) « un+ij—un-ij = 2hs(jk). Th\isun+ij = un-ij+2hs(jk),sothai 
un+ij (i.e., и evaluated at a ghost point) is expressed in terms of a prescribed value 
and a value of и at a grid point. The same approach works for a boundary condition 
of the third kind and for boundary conditions at x = 0. In all cases, a solvable system 
of difference equations for щ j at all grid points is obtained. (The ghost points no 
longer play a role in the difference scheme.) The approximate solution is determined 
at the boundary points as well. If there are mixed boundary conditions and there are 
Dirichlet conditions at x = 0, say, there is no need for ghost points to the left of the 
boundary at x = 0 and the solution щ^ is obtained for г = 1,2,.. . , n. 

The use of the explicit forward difference scheme to determine approximate solu-
tions of initial and boundary value problems for the one-dimensional heat or diffusion 
equation (11.2.1) over the interval a < x < b with boundary conditions of the first, 
second, third, or mixed kind, involves a significant number of steps and calculations 
if the grid is of a reasonable size. We have constructed the procedure NumHeatForw 
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to automate this process. ltisgi\enasNumHeatForw(c2,F(x,t),t = to..tf,f(x), 
x — a..b, bel, g(t), ber, s(t),n, fc). The initial condition is u(x, io) = f(x), and the 
solution is to be found at the time t = tf. The given interval (a, b) is divided into n 
equal parts, and the x step size is h = (b — a)/n. The time increment is specified to be 
a positive number fc, the last argument in the procedure. (If tf — io is not an integral 
multiple of k, the procedure determines the solution at the largest value of t that is 
an integral multiple of к but lies below tf.) The arguments bel and ber characterize 
the boundary conditions at x = a and x = b, respectively. If bel = dirichlet and 
ber = dirichlet, Dirichlet boundary conditions u(a,t) = g(t) and u(b,t) = s(t) 
are specified at the left and right end points. If bel and ber are both zero, Neumann 
boundary conditions ux(a, t) = —g(t) and ux(b, t) = s(t) are assigned at the left 
and right endpoints. Finally, if bel = a and ber = ß, Robin boundary conditions 
ux(a,t) — au(a,t) = — g(t) andux(ò, t) + ßu(b, t) = s(t) are assigned at the left or 
right endpoints. The boundary conditions can be mixed. Additionally, the procedure 
contains global variables that can be used to plot the finite difference solutions as 
curves or surfaces. This is demonstrated in the examples that are presented below. 

The initial and boundary value problem that is to be solved is displayed as part 
of the output of the procedure, as are the values of the increments h and k. The 
value of the stability parameter r = (?kjh2 is also displayed. As will be shown 
below, using the von Neumann stability analysis, we must have r < 1/2, otherwise, 
the method is unstable. If the parameter r exceeds 1/2, the output states that the 
difference method is unstable. (However, the results may still be valid.) The procedure 
represents derivative boundary conditions in the appropriate forms and displays the 
finite difference solution values at the points Xi; = a + i(b — a)jn, г = 0 , 1 , . . . , n at 
the time t = tf. 

Example 11.2. A Dirichlet Problem. The procedure NumHeatForw(l,0, t = 
0..0.5, s in^z) , x = 0..1, dirichlet, 0, dirichlet, 0,10, .005) obtains the numerical 
solution of the initial and boundary value problem described in the output of the 
procedure as given below. 

ut(x,t)-uxx(x,t)=0, x = 0..1,0<t, (11.2.6) 

u(x,0) = sm(nx), x = 0..l, u(0,t) = 0, u(l,t) = 0, 0 < t, (11.2.7) 

fc = 0.005, h = 1/10, N = 10, r = 0.500, t = 0.5. (11.2.8) 

The tenth argument of the procedure indicates that the interval 0 < x < 1 is divided 
into 10 equal subintervals so that h = 1/10 and the eleventh argument specifies 
the time increment as fc = 0.005. The parameter r equals 0.5, so that the scheme is 
stable. (If the parameter r > 0.5, the output ofthe procedure states that the difference 
method is unstable.) The last entry, t = 0.5, in (11.2.8) indicates that the solution is 
to be found at ί = 0.5. [We note that the initial and boundary values are compatible 
at the points (0,0) and (1,0).] 
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The procedure displays the solution in the following tabular form: 

X 

0.0 

0.10 

0.20 

0.30 

0.40 

0.50 

0.60 

0.70 

0.80 

0.90 

1.0 

и(ж,0.5) 

0.0 

0.002044630895 

0.003889119061 

0.005352913177 

0.006292726828 

0.006616564564 

0.006292726828 

0.005352913177 

0.003889119061 

0.002044630895 

0.0 

The global variable PList lists the grid values at t = 0.5. They are given as 
[[0,0], [0.1, .00204], [0.2, .00389], [.3, .00535], [.4, .00629], [.5, .00662], [.6, .00629], 
[.7, .00535], [.8, .00389], [.9, .00204], [1,0]]. The exact solution of the problem is 
u(x, t) = sin(7nc) exp(—π2ί). The values of the exact solution at the grid points 
with t = 0.5 is [0,0], [.1, .00222], [.2, .00423], [.3, .00582], [.4, .00684], [.5, .00719], 
[.6, .00684], [.7, .00582], [.8, .00423], [.9, .00222], [1,0]. 

The difference approximation to u(x, 0.5) can be plotted with plot(PList). A plot 
of a sequence of finite difference approximations for u(x, tj), as tj ranges through a 
set of times from t = 0 to t = 0.5, can be generated by invoking NumHeatForw 
with each of the tj as the final time. Each application of the procedure yields a global 
variable PList. If each of these is assigned a name PList(j), the solution curves 
are displayed with plot({PList(l), PList{2),...}). 

A plot of the finite difference solution as a function of a; and t can be generated by 
using the built-in Maple procedure surfdata(PList3dMod), where PListZdMod is 
a global variable for NumHeatForw that lists [XÌ, tj, U(XÌ, tj)] as the (xi, tj) range 
through all the grid values for the problem. The surfdata procedure is in Maple's 
plots package and generates a surface in (x, t, u)-space from a list of points given as 
its argument. We denote this plot by P I . The plot of the exact solution u(x, t) for 
0 < ί < 0.5 is given by P2 = plot3d{sin(Kx)exp(-K2t),x = 0..1,f = 0..0.5). 
Then, plots[display]({Pl, P2}) yields the plot shown in Figure 11.2. We observe 
that u(x, t) decays rapidly from its initial value u(x, 0) = sin(ffx). 

The agreement between the exact and the finite difference solution values could 
stand improvement. A more accurate finite difference result can be expected if the 
h and к in the procedure are chosen so that the stability parameter r = 1/6, as was 
indicated above. If we replace the last argument 0.005 by 1/600, so that к — 1/600, 
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Figure 11.2 The exact and finite difference solutions. 

the parameter r equals 1/6. In that case, the global variable PList yields the same 
values as for the exact solution. 

To exhibit the erratic behavior of the forward difference scheme in the case of in-
stability, we reapply the foregoing procedure and replace the last argument by 0.05 so 
that к = 0.05. This results in r = 5 as the value of the stability parameter, so that the 
scheme is unstable. Carrying out the procedure yields the solution values at t = 
0.5 as given by PList, [[0,0], [.1,-90.3], [.2,184.63], [.30,-290.81], [.4,418.6], 
[.50, -567.65], [.6,708.52], [.70, -774.33], [.80,686.02], [.9, -409.12], [1,0]].They 
have no relevance to the solution of the problem. 

Example 11.3. A Mixed Problem. The procedure NumHeatForw{l, 2tx2 -
2t2, t = 0..1,0, x = 0..1,0,0,1,3i2,4, .001) solves the following initial and bound-
ary value problem for the nonhomogeneous heat equation 

ut(x,t) -uxx(x,t) = 2tx2-2t2, x = 0..1,0<t, (11.2.10) 

with the conditions u(x,0) = 0, x = 0..1, ux(0,t) = 0, ux(l,t) + u(l,t) = 
3i2, 0 < t. The explicit forward difference method has the increments к = 0.001, h = 
1/4, with r = 0.016, and the solution is found at t = 1. 

The solution values at t = 1 given by PList are [[0, -.001765], [.25, .06069], 
[.50, .24794], [.75, .55998], [1.0, .99682]]. Since Neumann and Robin boundary con-
ditions are prescribed at the endpoints, the finite difference scheme determines ap-
proximate solution values not only at interior points but also at the endpoints. The 
exact solution of the problem is u(x, t) = x2t2, and its values at t = 1 are [[0., 0.], 
[.25, .062500], [.50, .25000], [.75, .56250], [1., 1.]]. The accuracy of the approxima-
tion can be improved if the size of the time step к is reduced from 0.001 to 0.0001, say. 
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This yields a significant decrease in the stability parameterr. plot({x2, PList}, x = 
0..1) plots the finite difference and exact solutions at t = 1. The plot is exhibited in 
Figure 11.3. 

02 04 0.8 0.6 

Figure 11.3 The exact and finite difference solutions at t = 1. 

It is of interest to express the explicit forward difference scheme in matrix form. 
It exhibits directly how the solution values of щ^+\ for all the (relevant) values of 
г in the grid (given in vector form) are expressed in terms of products of matrices 
and vectors that involve prescribed initial and boundary values. This representation 
is used in the matrix stability analysis of the difference scheme to be presented below. 

For Dirichlet boundary conditions with u(0,t) = g(t) and u(l,t) = s(t), the 
system of linear equations for the щ^ has the matrix form 

u J + i ^Buj+M/j, j>0, (11.2.11) 

where 

B = 

1 - 2 r r 
r l - 2 r 

0 
r 

l - 2 r 

w,· = 

fcFij + rgj 
kF2,j 

"'-* n—l,j ~r fSj 

(11.2.12) 

(11.2.13) 

with gj = g(jk) and Sj = s(jk). The matrix В in (11.2.12) is in tridiagonal 
form. That is, all the elements of the matrix below the subdiagonal and above the 
superdiagonal are zero. 
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With Neumann boundary conditions ux(0,t) = g(t) and ux(l,t) = s(t), the 
system of linear equations for the uitj again has the form ( 11.2.11 ) but with 

В 

l - 2 r 
r 

2r 
l - 2 r 

2r 

0 

r 
l - 2 r 

(11.2.14) 

Uo,j 

« l , j 

^ n , j 

w,· 

fcF0,j - 2hrgj 
kF2J 

kFnj + 2hrsj 

(11.2.15) 

The dimension of the matrix В is adjusted accordingly. The forms taken by the matrix 
В and the vectors Uj and Wj if the boundary conditions are of the third kind or are 
mixed are easily obtained. In each case, the Uj can be solved for recursively since Uo 
is prescribed. 

This concludes our discussion of the explicit forward difference scheme for the heat 
or diffusion equation. Although the procedure NumHeatForw is designed to deal with 
initial and boundary value problems, it can be used for initial value problems as well if 
the z-interval is chosen to be sufficiently large so that the boundary conditions (which 
can then be assigned arbitrarily) do not play a role in the solution at the time tj when 
the solution is to be found. The stability criterion, however, cannot be neglected. The 
stability condition r = kc2/h2 < 1/2 that must be satisfied for the explicit scheme to 
be stable implies that if we want to choose a small step size h to improve the accuracy 
of the result, it becomes necessary to decrease the time increment к correspondingly. 
This can give rise to an excessive number of time steps if the solution is to be found 
at a time that is not close to the initial time. The use of a large number of steps in 
carrying out the scheme can lead to significant round-off errors and can adversely 
affect the accuracy of the numerical results. 

This problem can be avoided by replacing the explicit forward difference scheme by 
an implicit backward difference scheme, which we present below. It has the advantage 
of being stable for all values of the stability index r = kc2/h2. However, because it 
is a backward scheme, the difference equations at each time step for all x values in the 
grid must be solved simultaneously rather than individually for each x value, as in the 
forward scheme. For this reason it can only be used for initial and (finite) boundary 
value problems. Nevertheless, because stability considerations do not restrict the size 
of the time increment—the scheme is stable for all values of the stability parameter 
r—and despite the need to solve a possibly large number of simultaneous equations 
(which can be carried out efficiently), the backward difference scheme is preferred 
over the forward difference scheme. 
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Implicit Backward Difference Method for the One-Dimensional 
Heat Equation 

We again consider the nonhomogeneous heat or diffusion equation (11.2.1) for the 
temperature or concentration u(x, t) in one dimension and let h > 0 be an increment 
in x and к > 0 be an increment in t. Now, however, we approximate щ(х, t) by a 
backward first order difference quotient in t and uxx (x, t) by a centered second order 
difference quotient in x. This yields 

u(x,t) — u(x,t — k) _ c2(u(x + h,t) - 2u{x,t) + u(x — h,t)) . 
к = h2 +*(*,*)■ 

(11.2.16) 
To determine the truncation error that results on replacing the heat equation 

( 11.2.1 ) by the difference equation ( 11.2.16), we apply the Maple procedure mtaylor 
to ( 11.2.16) and obtain 

1 c2 

ut(x, t) - c2uxx(x, t) - F(x, t) и -uttk - —uxxxxh
2. (11.2.17) 

The difference between the heat equation ( 11.2.1 ) and the difference equation ( 11.2.11 ) 
is of 0(k + h2), which is the truncation error for the difference approximation. The 
truncation error tends to zero as h, к —» 0, so that the difference approximation 
(11.2.16) is consistent with the heat equation (11.2.1). 

We again introduce the stability parameter r = kc2/h2 and express (11.2.16) as 
the difference scheme 

u(x,t-k) = (l + 2r)u{x,t) - ru{x + h,t)- ru(x - h,t) - kF(x,t). (11.2.18) 

If u(x, t — k) is known, we cannot determine u(x — h,t), u(x, t), and u(x + h, t) 
at the later time t from a single equation. Instead, ( 11.2.18) must be applied over the 
entire set of values of x in the grid for the problem. 

As indicated, we are concerned with an initial and boundary value problem for 
(11.2.1) over the finite interval 0 < x < I. The initial condition is given at t = 0 
and the boundary conditions at x = 0 and x — I. We divide the interval into n 
equal parts. The grid in (x, £)-space, on which the solution is to be found, is given as 
{xi,tj) = (il/n, jk) with г = 0 , 1 , 2 , . . . , n and j = 0 ,1 ,2 , . . . , m. The x step size 
is h = l/n and the time increment is k. The solution is to be determined at the time 
tm — mk. The difference scheme (11.2.18) can then be written in the form 

Uij-i = (1 + 2r)uij - гщ+ij - r u ,_ i j - kFij, (11.2.19) 

where щ^ represents the approximation to the exact solution u(x, t) of the given 
problem at the point u(xi,tj) = u(il/n,jk) and Fij = F(il/n,jk). This is an 
implicit backward difference scheme. It is unconditionally stable, as will be shown. 

The initial condition u(x,0) = f(x) yields щ$ = f(il/n) with г = 0 ,1 ,2 , . . . , n. 
The boundary lines x = 0 and x = I correspond to the values г = 0 and г = п. If 
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Dirichlet conditions u(0, t) = g(t) and u(l, t) = s(t) are assigned on the boundaries, 
the values of UQJ = g(jk) and unj = s{jk) are prescribed. The solution of the 
difference equations must be determined at the points (xi,tj) = (il/n,jk) with 
г = 1,2,.. . , n — 1 and j > 1. If Neumann or Robin conditions are prescribed, a 
derivative term occurs in the boundary conditions and must be replaced by a difference 
quotient for the difference scheme to be solvable. Then the approach presented above 
in our discussion of the explicit forward difference scheme is used, and the details 
will not be repeated here. 

The main problem is how to proceed from the initial time t — 0 where the solution 
u(x, 0) (i.e., гц,о) is prescribed, to the time t = к and onward. The first step is to 
determine щу\ for all г values for which it is unspecified and we do so by letting г range 
through all these values in (11.2.19). For example, if Dirichlet boundary conditions 
are given at both end points, the index г ranges from 1 to n — 1, while if Neumann or 
Robin boundary conditions are specified at the end points, the range of г extends from 
0 to n. Thus, in the former case (11.2.13) yields n — 1 simultaneous linear equations 
for the unknowns щу\ (г = 1,2,.. . , n — 1), while in the latter case there are n + 1 
simultaneous linear equations for the unknowns щ^ (г = 0 ,1 ,2 , . . . , n). Once the 
Uiti are determined, this process can be repeated to determine the ttj,2) Щ,з, ■ ■ ■, Щ,т-

For the case of Dirichlet boundary conditions with u(0, t) = g(t) and u(l, t) — 
s(t), the system of linear equations for the щ^ is represented in matrix form as 

Ли,- l l j - l + W j , j > l , (11.2.20) 

where 

A = 

l + 2r 
—r 

—r 
l + 2r 

-r 1 + Ir 

(11.2.21) 

« n - l , 

W,- = 

kFij + rgj 
kF2J 

kFn-ij + rsj 

(11.2.22) 

with gj = g(jk) and Sj — s{jk). 
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With Neumann boundary conditions ux(0,t) = g(t) and ux(l,t) = s(t), the 
system of linear equations for the Uij again has the form ( 11.2.20) but with 

A = 

1 + 2r - 2 r 
—r 1 + 2r —r 

0 

(11.2.23) 

m,j 
u l , j 

^n ,j 

w,-

—r 
- 2 r 1 + 2r 

kF0j - 2hrgi 

kF2J 

kFnj + 2hrsj 

(11.2.24) 

In the case of Robin boundary conditions ux (0, t) — cm(0, i) — g(t) and ux (l,t) + 
ßu(l, t) = s(t) with a > 0, ß > 0, the system of linear equations for the Uij again 
has the form ( 11.2.20), but with 

A = 

1 + 2r + 2hra 
—r 

- 2 r 
1 + 2r - r 

0 

0 - 2 r 1 + 2r + 2/ΙΓ/3 

(11.2.25) 

anduj andwj denned as in (11.2.24). The modifications needed for the case of mixed 
boundary conditions are easily found and are not presented here. 

All the coefficient matrices A in (11.2.20) are of tridiagonal form. In addition, 
they are (strictly) diagonally dominant. This means that if A is any m x m matrix 
with elements α^, then 

> Σ t = l , 2 , , m. (11.2.26) 

For the matrices A exhibited above, the diagonal dominance is apparent, and the same 
holds true for all matrices that occur in the implicit backward difference scheme. An 
important consequence of this property is that each matrix A has an inverse, so that 
the systems that arise at each step of the backward difference scheme are guaranteed 
to have a unique solution. If A~l is the inverse of A, the equation for щ can be 
written as 

u, = A lUj_i +A~ w ]' > 1 , (11.2.27) 
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and the u, can be solved for recursively since Uo is prescribed. Additionally, when 
solving the systems using Gaussian elimination, the diagonal dominance implies that 
no row interchanges are required. In combination with the fact that A is tridiagonal, 
the solution of the linear systems that arise at each step of the scheme becomes fairly 
easy. Nevertheless, much work is involved in finding approximate solutions via the 
implicit backward difference scheme. 

To automate the numerical solution process, we invoke the Maple procedure 
NumHeatBackw(c2,F(x,t),t = to-.tf,f(x),x — a..b,bcl,g(t),bcr,s(t),n,k,6). 
Each of the first 11 arguments in the procedure has the same meaning as in the pro-
cedure NumHeatForw presented above. The twelfth argument Θ is a parameter that 
can be assigned a value in the range 0 < Θ < 1. It corresponds to the values that 
can be prescribed for the general Θ difference scheme that will be presented below. 
For the present purposes, we put Θ = 1 and the procedure solves the problem using 
the implicit backward difference scheme. The output of the procedure has the same 
form as in NumHeatForw. The value of the stability parameter r is exhibited, but the 
scheme is stable (as will be shown) for all values of r. The procedure contains global 
variables that can be used to plot the finite difference solutions as curves or surfaces. 

We apply the procedure to the problem considered in Example 11.2. 

Example 11.4. A Dirichlet Problem. The procedure NumHeatBackw(\, 0, 
t = 0..0.5, sin(7r:r), x = 0.. 1, dirichlet, 0, dirichlet, 0,10, .005,1) obtains the nu-
merical solution of the initial and boundary value problem described in the output of 
the procedure: ut(x,t) — uxx{x,t) = 0, x = 0..1, 0 < t, u{x, 0) = s in^x) , x = 
0..1, ω(0,ί) = 0, w(l,i) = 0, 0 < t, к = 0.005, h = 1/10, N = 10, r = 
0.500, t = 0.5. The last argument Θ = 1 in the procedure causes Maple to use the 
implicit backward difference scheme to solve the problem. 

We invoke the global variable PList to generate a list of the solution values 
at the time t = 0.5 in the form [[0,0], [.1, .0026], [.2, .00494], [.3, .0068], [.4, .008], 
[.5, .00841], [.6, .008], [.7, .0068], [.8, .00494], [.9, .00260], [1,0]]. The exact solution 
is u(x, t) = sin(ux) exp(—π2ί). A list of exact solution values at the grid points with 
t = .5 is [[0,0], [.1, .0022], [.2, .0042], [.3, .0058], [.4, .0068], [.5, .0072], [.6, .00684], 
[.7, .00582], [.8, .00423], [.9, .00222], [1,0]]. Again, the agreement between the exact 
and the finite difference solution values could stand improvement. As in Example 
11.2, the global variable PListZdMod and the procedure surfdata(PList3dMod) 
can be used to plot the finite difference solution as a function of x and t. The result 
is similar to that given in Figure 11.1 and is not displayed here. 

To show that the implicit backward difference scheme does not exhibit instability, 
we reapply the foregoing procedure and replace the next-to-last argument by 0.05 so 
that к = 0.05. This results in r = 5 as the value of the stability parameter. The use of 
this value in Example 11.2 yields an unstable forward difference scheme, as was shown 
in Example 11.2. Carrying out the NumHeatBackw procedure yields the solution 
values att = 0.5 as given by PList, [[0.,0.], [.10, .00575], [.20, .01090], [.30, .01510], 
[.40, .01770]], [[.50, .0186], [.60, .01770], [.70, .01510], [.80, .01090], [.90, .00575], 
[1.0,0.]]. These values are certainly not as close to the exact solution values as 



FINITE DIFFERENCE METHODS FOR THE ONE-DIMENSIONAL HEAT EQUATION 7 5 9 

before, but they are far superior to the values obtained in Example 11.2 from the 
forward difference scheme. 

Additional Difference Methods for the One-Dimensional 
Heat Equation 

Much effort has been expended to create finite difference schemes that improve on the 
forward and backward difference schemes presented above. The most obvious method 
for improving the forward difference scheme is to replace the forward difference 
quotient approximation to щ (x, t ) in the heat equation by the more accurate centered 
difference approximation. This yields 

и(x,t + k) — и(x,t — k) c2 (u(x + h,t)— 2u(x,t)+u(x — h,t)) 
2k = h2 +*(*,«}■ 

(11.2.28) 
On applying the Maple procedure mtaylor to (11.2.28), we determine that the trun-
cation error is 0(k2 + h2), which improves on the truncation error 0(k + h2) for the 
explicit forward scheme. 

Using the notation introduced above, the difference scheme becomes 

Uij+i = Ui,j-_i + IT (Uj+ij - 2UÌJ + Щ-ij) + 2kFij. (11.2.29) 

Although this is an explicit forward scheme, in contrast to the above, it is a two-
step scheme. To obtain Uj,j+i w e must know щ^ and Uij-i. But only щ$ is 
prescribed for a given problem, so that the scheme cannot be used unless the relevant 
Uj,i are completely specified. One method for finding the щ^ is to use the explicit 
forward difference scheme for a single (time) step and then revert to the foregoing 
two-step method. Unfortunately, these efforts are in vain, since this two-step scheme 
is unstable for every value of the stability parameter r, so that it should never be 
used. We conclude that the consistency of a difference scheme with a PDE does not 
guarantee its validity in approximating the solution of a given problem for the PDE, 
as it may turn out to be unconditionally unstable. 

On the other hand, a stable difference scheme may not be consistent with a given 
PDE, yet its solution can yield a useful approximation to the solution of a problem 
for the PDE. An example of this is afforded by the DuFort-Frankel scheme for ap-
proximating solutions of the heat equation. This is an explicit difference scheme that 
is unconditionally stable for all values of the stability parameter r = c2k/h2. It is 
given as 

и (x, t + fc) — и (x, t — k) 

ί _ hi — 11 (T i Л- h\ -X- il ίτ — h t\\ 

+ F{x,t) 

2k 

c2 (u (x + h,t) — u(x,t — k) — u(x,t + k) + u(x — h, t)) 
h2 

(11.2.30) 
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As was done in ( 11.2.28), the щ (х, t) term in the heat equation is approximated by a 
centered difference quotient. However, instead of approximating the uxx(x, t) term 
by a centered difference quotient as in (11.2.28), the term 2u(x, t) in that difference 
quotient is replaced by an averaged representation u(x, t — k) + u(x, t + k). The 
procedure mtaylor applied to (11.2.30) yields щ(х, t) — c2uxx(x,t) — F(x,t) » 
—c2k2/h2uu — к2/6иш + c2h2/l2uxxxx — c2kA/\2h2utttt and shows that the 
truncation error is 0(k2 + h2 + k2/h2). Thus, the difference equation is consistent 
with the heat equation (11.2.1) only if к = o{h) as k, h —> 0. But if к = 0{h) 
as k,h —» 0, and we put к = Xh, the difference equation is consistent with the 
nonhomogeneous telegrapher's equation 

ut(x,t) - c2uxx(x,t)+c2\utt(x,t) = F(x,t). (11.2.31) 

The DuFort-Frankel scheme can be written as 

uitj+i = Uij-i + 2r(uj+i,j _ Uij-i -ui,j+\ +Ui-i,j) + 2kFitj. (11.2.32) 

It is an explicit forward two step scheme—as was (11.2.29)—but it unconditionally 
stable for all values of the parameter r. The relevant щ,1 can be specified in the 
manner indicated above for (11.2.29). Even though the difference scheme is not 
consistent with the heat equation for all choices of h and k, it can nevertheless be 
used to construct approximate solutions. In a similar fashion, it was shown in Section 
1.2 that the correlated random walk model, which is related to the telegrapher's 
equation, approximates the random walk and its related diffusion equation. We have 
not constructed a procedure that can be applied directly to the DuFort-Frankel scheme, 
but the procedure NumCorrRandomWalkConst of Section 1.5 can be adapted to 
deal with this scheme. 

An improvement in the implicit backward difference scheme [see ( 11.2.16)] can be 
achieved by averaging the right-hand side of ( 11.2.16) over its values at t and t — k. 
This yields the difference equation 

u(x,t) — u(x,t — k) c2(u(x + h,t) — 2u(x,t) +u(x — h,t)) 
к = 2h2 

(11.2.33) 

c2{u{x + h,t- k) - 2u{x,t - k) + u(x - h,t - k)) F{x,t) + F(x,t - k) 
+ 2h2 + 2 ' 

mtaylor yields ut(x, t) — c2uxx(x, t) — F(x, t) = 0(k2 + h2). The truncation error 
is 0(k2 + h2) compared to the truncation error 0{k + h2) for the implicit backward 
scheme, so that (11.2.33) is consistent with (11.2.1). 



FINITE DIFFERENCE METHODS FOR THE ONE-DIMENSIONAL HEAT EQUATION 7 6 1 

Using the notation above, the difference equation for щ j can be written as 

v к 
(1 + r)uij - - K + i , j + Ui-i j ) - -Fij 

V К 

= (1 - r )uj j_i + - (tii+i,j_i + Uj_ij_i) + ^-^J ' - i · (11.2.34) 

This is the Crank-Nicolson scheme. It is an implicit backward difference scheme and 
will be shown to be unconditionally stable. 

The forward, backward, and Crank-Nicolson one-step difference schemes can all 
be subsumed under what is referred to as the Θ scheme. It is obtained by replacing 
щ (x, i) in the heat equation ( 11.2.1 ) by a forward difference and uxx(x, t) and F(x,t) 
by a weighted average of centered differences evaluated at t and t + k. The difference 
equation is given as 

и (x, t + k) - и (x, t) _ c2 (it (x + h, t + k) — 2 и (x, t + к) + и {x — h, t + k)) 

к Л5 

+il_e)c4u(x + h,t)-2u(x,t)+u(x~h,t)) ) F M 

(11.2.35) 
To guarantee nonnegative weights, we require that 0 < Θ < 1. With Θ = 0, this 
reduces to the difference equation for the explicit forward scheme. For all other Θ 
values this yields an implicit scheme. With 0 = 1 and Θ = 1/2, it reduces to the 
equations for the backward and Crank-Nicolson difference schemes, respectively. 
The truncation error is 0(k + h2), except when Θ = 1/2 (the Crank-Nicolson case). 
The difference equation is consistent with (11.2.1). 

Again retaining the notation introduced above, we obtain 

(l+2re)uitj+i-reui+ij+i-r9ui-ij+i-keFiij+i 

= (l~ 2r(l - e))ui,j + r{\ - 6>K+ij + r ( l - 6)tti_ij + k{\ - 0)Fij (11.2.36) 

as the Θ scheme. It reduces to the explicit forward, implicit backward, and implicit 
Crank-Nicolson schemes for Θ = 0, Θ = 1, and Θ = 1/2, respectively. It will 
be shown that if 1/2 < Θ < 1, the scheme is unconditionally stable, whereas if 
0 < Θ < 1/2, the stability condition is r < 1/(2 - 40). Thus, with Θ = 0, when 
the Θ scheme reduces to the explicit forward scheme, the stability condition becomes 
r < 1/2. 

The construction of grids and the prescription of initial and boundary values for 
the Uij on using the Θ scheme to approximate solutions to initial and boundary value 
problems for the heat or diffusion equation proceeds as for the explicit and implicit 
methods considered above and is not be repeated here. 

For the case of Dirichlet boundary conditions with u(0, f) = g(t) and u(l, t) = 
s(t), the system of linear equations ( 11.2.36) for the u^j is represented in matrix form 
as 

Auj+1 = BUJ + w ( j J + 1 ) , 3 > 0, (11.2.37) 
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where 

1 + 2гв -гв 
-гв 1 + 2гв -гв 

B = 

-гв 
-гв 1 + 2τβ 

1 + 2гв - 2г -гв + г 
-гв + г 1 + 2гв-2г -тв + г 

^n—l,j 

(11.2.38) 

О 

-гв + г 
-гв + г 1 + 2гв - 2г 

(11.2.39) 

w (J.J + 1) 

kOFu+i + Ä(l - e)Fhj + гвдш + r ( l - 0)& 

keFn-lJ+l + k(l - 6)Fn-hj + resj+i + r ( l - 6)SJ 
(11.2.40) 

with gj = g{jk) and Sj = s(jk). With Θ — 0 and ö = 1, the matrices Л and 
В, respectively, reduce to identity matrices. Then, the matrix formulation agrees 
with that obtained previously in the cases of explicit forward and implicit backward 
schemes with Dirichlet boundary conditions. 

The matrix A is tridiagonal and diagonally dominant, so it has an inverse. If 
А~г is the inverse of A, the equation for a, can be written as 

Uj+i =A lBMj+A 1 w ( j ) i + 1 ) , J > 0 , (11.2.41) 

and the a, can be solved for recursively since Uo is prescribed. 
To automate the numerical solution process for the в scheme, we use NumHeat 

Backw(c2,F(x,t),t = to..tj,f(x),x = a..b, bel,g(t),bcr,s(t),n,k,e). The first 
11 arguments are as described above. The twelfth argument Θ must be assigned a 
value in the range 0 < в < 1 and corresponds to the value prescribed for the Θ 
difference scheme. If Θ = 0, Θ = 1/2 and в = 1, the explicit forward, Crank-
Nicolson, and implicit backward difference schemes, respectively, are used. Again, 
the procedure contains global variables that can be used to plot the finite difference 
solutions as curves or surfaces. 
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Example 11.5. A Mixed Problem. We reconsider the problem of Example 11.3. 
The procedure NumHeatBackw{\, 2tx2 - 2i2, t = 0..1,0, x = 0..1,0,0,1,3i2,4, 
.001,0) uses the explicit forward difference scheme as in Example 11.3. The solution 
values at t = 1 as given by PList are [[0, -.000204], [.25, .062291], [.50, .24978], 
[.75, .56228] ,[1.0, .99980]]. Even though the values of h and к are identical with those 
used in Example 11.3, the solution values differ because the solution is obtained in a 
slightly different manner. The exact solution of the problem is u(x,t) = x2t2, and 
the exact solution values at the time t = 1 are [[0.,0.], [.25, .06250], [.50, .25000], 
[.75, .56250], [1., 1.]]. The approximate solution is close to the exact solution. 

If the last argument in NumHeatBackw is replaced by the number 1/2, the 
Crank-Nicolson scheme is used. Then, the solution values at t = 1 as given by 
PList agree closely with the exact solution values. When the last argument in 
NumHeatBackw is replaced by the number 1, the implicit backward scheme is used. 
Then, the solution values at t = 1 as given by PList are [[0, .000203], [.25, .06271], 
[.50, .25022], [.75, .56272], [1,1.0002]]. The agreement with the exact result is not 
as good as for the Crank-Nicolson scheme. The use of NumHeatBackw with the 
last argument equal to 1/4 invokes a stable implicit Θ scheme whose stability con-
dition is r < 1 and whose stability parameter is r = 0.016. The solution values at 
t = 1 as given by PList are [[0, -.000102], [.25, .06240], [.50, .24989], [.75, .56239], 
[1, .99990]]. Finally, the use of NumHeatBackw with the last argument equal to 3/4 
invokes an unconditionally stable implicit Θ scheme. The solution values at t = 1 as 
given by PList are [[0, .000102], [.25, .0626], [.5, .25011], [.75, .5626], [1,1.0001]]. 

It is apparent that implicit forms of the Θ schemes yield improved numerical results, 
but the choice of the parameter Θ plays a significant role. Plots of the finite difference 
solutions can be obtained as before. 

Method of Lines for the One-Dimensional Heat Equation 

We consider initial and boundary value problems for the nonhomogeneous heat or 
diffusion equation ( 11.2.1 ) and replace uxx(x, t) by a centered second order difference 
quotient in x. We retain t as a continuous variable and the term щ(х, t) is not 
discretized. This yields 

du(x,t) _ c2{u{x + h,t)-2u(x,t) + u{x-h,t)) , „ , _ ̂  М Ю У ^ 
dt ~ h2 + П^). Ul.-i.42J 

The truncation error for this approximation (11.2.1) is clearly 0(h2), so that the 
semidiscrete difference scheme ( 11.2.42) is consistent with ( 11.2.1 ). 

We restrict our discussion to a finite interval 0 < x < I. The initial condition is 
given at t = 0 and the boundary conditions at x = 0 and x = I. The interval is divided 
into n equal parts. Since t is not discretized, the grid comprises the x values at which 
the solution is to be found, and is given as Xi = il/n with г = 0 ,1 ,2 , . . . , n. The x 
step size or increment is h = l/n. The approximate solution is to be determined at a 
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specified time t > 0. The scheme (11.2.42) can be written in the form 

duj(t) 
dt h2 (ui+1(t) - 2ui(t) + U i_i(i)) + Fi(t), (11.2.43) 

where Ui(t) approximates the exact solution u(x, t) of the problem at the point x^ = 
il/n at the time t, and where Fi(t) = F(il/n, t). 

The initial condition u(x, 0) = f(x) for the problem yields щ(0) — f(il/n) for 
г = 0 ,1 ,2 , . . . , n. The boundary lines x = 0 and x = I correspond to the values 
i = 0 and i = n. If Dirichlet conditions are prescribed, then uo(t) and un(t) are 
known for all t. Then (11.2.43) is a system of n — 1 coupled first order ODEs for 
Ui(t) at Xi = il/n with г = 1,2,. . . , n — 1. 

If Neumann or Robin boundary conditions are prescribed, an ^-derivative term 
occurs in the boundary conditions, and it must be replaced by a difference quotient 
if the difference scheme is to be solvable. This is done exactly as before, when we 
dealt with explicit and implicit difference schemes. For those cases, (11.2.43) is a 
system of n + 1 coupled first order differential equations for щ{€) at the values of 
Xi = il/n with г = 0 ,1 ,2 , . . . , n — 1, n. The approximate solution is then found 
on the boundary as well. If there are mixed boundary conditions, with Dirichlet 
conditions at x = 0, say, the system contains n differential equations for Ui(t) at 
Xi = il/n with i = 1,2,. . . , n. 

This scheme is known as the method of lines because the solution at each grid point 
Xi is determined along the line x = Xi with t > 0 in the (x, t)-plane, subject to initial 
conditions given at t = 0. Ideally, one would like to solve this initial value problem 
for (11.2.43) exactly, retaining t as a continuous variable. In general, this is not 
feasible and the system must be solved numerically. As a result, the time variable t is 
discretized. Thereby, the method of lines is converted to a fully discretized difference 
scheme, and stability questions for this scheme must be addressed. These are resolved 
by employing stability theories for systems of ODEs, in both the continuous and 
discrete cases. 

For the case of Dirichlet boundary conditions with u(0, t) = g(t) and u(l, t) = 
s(t), ( 11.2.43) for the m(t) is represented in matrix form as du(t)/dt = Au(t) + w(£), 
where 

(11.2.44) 

u(i) 

A-C~ 

«a(«) 

η - ΐ ( ί ) 

1 

" - 2 
1 -

0 

w = 

1 0 
-2 1 

1 
1 - 2 

ί 

■ F j ^ + c 2 ^ ) / / * 2 -

_ Fn_!( i )+C2
S( i ) / / l 2 _ 

(11.2.45) 
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The matrix A in (11.2.44) is in tridiagonal form. The eigenvalues of the (n — 1) x 
(n— 1) matrix A are given as Xj = 2 cos(jn/n) — 2, j = 1,2,... ,n—l, so that they 
are all negative. This implies the stability of the system of ODEs. If the time variable 
is discretized, further analysis is required, and the results depend on the method of 
discretization that is employed. 

Maple's built-in dsolve procedure can solve initial value problems for systems of 
ODEs exactly and numerically. The procedure NumHeatLines that we have created 
for solving initial and boundary value problems for (11.2.1) with general boundary 
conditions using the method of lines uses dsolve. But rather than ask Maple to try 
to find an exact solution of the system of ODEs generated by the method of lines, 
the procedure invokes Maple's default numerical method r/c/45, the Runge-Kutta-
Fehlberg method. The system is solved by Maple to a high level of accuracy, if 
possible. 

An optional argument may be entered that forces Maple to use a number of other 
numerical methods for solving ODEs that are available within Maple, such as Euler's 
method. The step sizes can be controlled by the user when these methods are used. 
The global variable SysODE exhibits the full system of ODEs together with the 
initial conditions. These can then be solved explicitly using dsolve if so desired 
and if possible. When derivative boundary conditions are given at the endpoints, 
the derivatives are expressed by the procedure as difference quotients in the manner 
presented above, and the solution is determined at these points as well. 

NumHeatLines is given as NumHeatLines{c2,F{x,t),t = to,f{x),x = 
a..b, bcl,g(t), ber, s(t), n). The first 10 arguments in the procedure are exactly as de-
scribed above for NumHeatForw, the only difference being that the third argument 
ί = io specifies only the initial time and not the final time. Boundary conditions 
of all three types can be treated by the procedure. The output is given as a Maple 
procedure proc(rkfA5jv)... endproc. The global variable SH can be used to exhibit 
the numerical solution values Ui(tf) (at the time t = tf) at all the x grid points, by 
invoking SH(tf). 

If an optional eleventh argument t = tf is added in the procedure, the numerical 
solution Ui(tf) at each x grid point is exhibited in tabular form. The global variable 
PList can also be employed to display a list of these solution values. If the op-
tional eleventh argument is type = numeric, a number of classical numerical solution 
methods for ODEs such as the forward Euler, Heun, lower-order Runge-Kutta, or 
predictor-corrector methods can be invoked for the solution of the system of ODEs. 
The step sizes used in these methods can be controlled, as can the form of the output. 
(To accomplish this, it is necessary to include additional optional arguments.) As was 
the case before, the procedure contains global variables that can be used to plot the 
finite difference solutions as curves or surfaces. 

Example 11.6. A Problem with Robin Boundary Conditions. The initial 
and mixed boundary value problem for the nonhomogeneous heat equation considered 
in Example 11.3 has the exact solution u(x, t) — x2t2 as was indicated above. We 
apply the method of lines to a problem with Robin boundary conditions that yield the 
same solution and obtain the numerical solution at t = 1. 
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On entering NumHeatLines{l, 2tx2 - 2t2, t = 0,0,x = 0..1,1,0,1,3i2,4), 
the output exhibits the PDE (11.2.10), the initial condition u{x, 0) = 0, and the 
Robin boundary conditions -ux(0, t) + u(0, t) = 0, ux(l, t) + u( l , t) — 3t2. The 
interval 0 < x < 1 for the problem is subdivided into four equal parts, so that the 
x increment h — 1/4. The final output of the NumHeatLines procedure is the 
Maple procedureproc(rkf45-x)... endproc. The global variable SH(t) exhibits the 
numerical solution values at the time t. 

If an eleventh argument t = 1 is added to the procedure, the numerical solution at 
t = 1 is exhibited in tabular form as 

x 

0.0 

0.25 

0.50 

0.75 

1.0 

и (х, 1) 

0.41725 10" 

0.06250 

0.25000 

0.56250 

1.00000 

PList yields the same values: [[0,0.41725 10"8], [.25, .0625], [.5, .25], [.75, .5625], 
[1,1]]. Alternatively, the numerical solution at t = 1 is given by SH(l) as [i = 
l.,uo(t) = .41725 НГ 8 , ui(i) = .0625, u2(t) = .25, u3(t) = .5625, uA{t) = 1.]. 
SH(0) yields [t = 0, u0(t) = 0, m(i) = 0, u2(i) = 0,ω3(ί) = 0, и4(*) = 0], 
which represents the (exact) initial values at the points [0, 1/4, 1/2.3/4, 1]. 

The numerical solution at t = 1 can be plotted by invoking plot(PList). The 
global variable PList3d modifies the output of PList given above, by inserting a 
second argument 1, (it corresponds to t = 1), in each element of the list. (In the general 
case, the value t = t/ of the procedure is entered in each term of PList.) To obtain a 
time dependent plot of the finite difference solution, we consider a sequence of values 
tj that extend from io to tj. Typically, we put tj — to + ( i / — to)j/m, j = 0 , . . . , m 
for some positive integer m. (In this example, io = 0 and tf = 1.) For each tj we 
carry out the procedure NumHeatLines, with the eleventh argument given as t = tj. 
Then we assign the name PList3d(j) to the PList3d output of each procedure in the 
sequence. Finally, the procedure surfdata([PList3d(0),..., PList3d(m)]) yields a 
time-dependent plot of the finite difference solution, as before. 

The global variable SysODE exhibits the coupled system of ODEs (11.2.43) 
appropriate for this problem together with the initial conditions. It has the form 
{u'0(t) = 32u i ( i ) -40u 0 ( i ) -2 i 2 , u[(t) = 16tt0(i)-32ui(i) + 16u2(i) + 3 i / 2 5 -
2t2,u'2{t) = 16u1(i)-32u2(i) + 16ti3(i)-l-i/2-2i2, u'4(t) = 32u3{t)-40u4(t) + 
22t2 + 2t,u'3(t) = 16u2(i)-32u3(i) + 16u4(t) + l l i / 1 0 - 2 i 2 , ω0(0) = 0,ui(0) = 
0, u2(0) = 0, из(0) = 0, U4(0) = 0}. Then, dsolve applied to this system, yields the 
exact solution u0{t) = 0,ui(t) = t2/16,u2(t) = t2/4,u3(t) = 9t2/16,Ui(t) = t2. 
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If we replace the eleventh argument t = 1 by type = numeric, method = 
classical[f or euler], stepsize = .00005, output = array{[l}), we obtain 

[t, U0(t), Ui(t), U2(t), U3(i), U4{t)} 

[ 1.0 -.5535710"5 0.06249 0.24999 0.56249 0.99999 ] 
(11.2.47) 

Maple uses the forward Euler method to approximate the solution of the system 
(11.2.43). The t step size is к = 0.0005 and the solution is given at t = 1. If 
the eleventh argument is type = numeric, method = classical[rk4\, stepsize = 
.001, output = array{\\\), we obtain 

[i, u0(t), ui{t), u2(t), u3(t), u4(t)] 

[ 1.0 - .3434210"1 2 0.06250 0.25000 0.56250 1.0000 ] 
(11.2.48) 

Maple uses the fourth order Runge-Kutta method to approximate the solution of the 
system (11.2.43). The step size in t is к = 0.001 and the solution is given at t = 1. 
Even though the step size is considerably larger than for the Euler method, the results 
are much better. 

Exercises 11.2 

11.2.1. Use mtaylor to verify the truncation error for the forward difference scheme 
given in (11.2.4). 

11.2.2. Show that if к = h2/6c2, the truncation error in (11.2.4) is 0(k2 + hA). 

11.2.3. Apply the procedure iVum.iieaiForiu(c2,F(:E,i),i — to..tf,f(x),x = 
a..b, bel, g(t), ber, s(t),n, k) in the general case with the following boundary condi-
tions at the endpoints. (a) Dirichlet conditions; (b) Neumann conditions; (c) Robin 
boundary conditions; (d) Mixed boundary conditions: Dirichlet conditions at x = a 
and Neumann conditions at x = b. 

11.2.4. Use pdetest io verify that u(x,t) — sin(nx)exp(—n2t) is the exact solution 
of the initial and boundary value problem (11.2.6)—(11.2.7). 

11.2.5. Use the procedure NumHeatForw to solve the initial and boundary value 
problem ( 11.2.6)-( 11.2.7) subject to the conditions given in ( 11.2.8). Generate the 
plot displayed in Figure 11.2 using the Maple procedures referred to in Example 11.2. 

11.2.6. Carry out the procedure NumHeatForw to solve the problem of Example 
11.2 with the increments chosen so that the stability parameter r = 1/6. 

11.2.7. Choose values of h and A; for the problem of Example 11.2 so that instability 
results and display the output given by NumHeatForw. 

11.2.8. Reproduce the results of Example 11.3. 
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11.2.9. Use mtaylor to verify the truncation error for the backward difference scheme 
given in (11.2.17). 

11.2.10. Verify the truncation relation of the text for the DuFort-Frankel difference 
scheme. 

11.2.11. Use the procedure NumHeatBackw to establish the results obtained in 
Example 11.4. 

11.2.12. Solve the mixed problem of Example 11.5 using NumHeatBackw with 
the five Θ values given in the example. Plot the five results. 

11.2.13. Reproduce the results given in Example 11.6 using NumHeatLines. 

11.2.14. Solve the problem of Example 11.6 using NumHeatLines if the Robin 
boundary conditions are replaced by Dirichlet conditions that yield the same exact 
solution. 

11.2.15. Solve the problem of Example 11.6 using NumHeatLines if the Robin 
boundary conditions are replaced by homogeneous Neumann conditions. 

11.3 FINITE DIFFERENCE METHODS FOR THE ONE-DIMENSIONAL 
WAVE EQUATION 

The one-dimensional nonhomogeneous wave equation is given as 

^ ^ - c 2 ^ f M = W ) , (11.3.1) 

with с > 0. Let h > 0 be an increment in x and к > 0 be an increment in t. 
As was done for the heat equation, we replace the partial derivatives by various 
(approximating) difference quotients as introduced in Section 11.1, thereby creating 
a number of difference schemes. They can be used to solve initial and boundary value 
problems for ( 11.3.1 ), and a number of them are presented below. The initial value 
problem for the homogeneous and nonhomogeneous wave equation has been shown 
to have an explicit solution, so that there is no need to consider difference methods 
for its approximate solution. 

Explicit Forward Difference Method for the One-Dimensional 
Wave Equation 

We begin our construction of difference schemes for (11.3.1) by approximating 
Utt(x,t) and uxx(x,t) by centered second order difference quotients in t and a;, 
respectively. This yields 

u(x, t + k) — 2u(x, t) + u(x, t — k) 

+ F(x,t). (11.3.2) 

k2 

c2 (u (x + h, t) — 2 и (х, t) +u(x - h, t)) 
h2 



FINITE DIFFERENCE METHODS FOR THE ONE-DIMENSIONAL WAVE EQUATION 7 6 9 

We put r = ck/h and express (11.3.2) as the difference scheme 

u(x, t+k) = 2{l-r2)u(x, t)+r2u(x+h, t)+r2u(x-h, t)-u(x, t-k)+k2F(x, t). 
(11.3.3) 

As demonstrated below, r represents a stability parameter for the difference scheme 
(11.3.3). The scheme (11.3.3) shows that if the values of the solution u(x, t) are 
known at the time t at the points x - h, x, x + h, and at the time ί - fc at the point 
x, they can be determined at the point x at the time t + k. Solution values must be 
known at two previous times t and ί — fc to advance the solution to the time t + fc, so 
that this is a two-step method. The computational stencil is exhibited in Figure 11.4. 

Figure 11.4 The computational stencil. 

This immediately poses the following problem. Suppose that initial conditions 
for (11.3.1) are prescribed at t — 0 as u(x,Q) = f(x) and ut(x, 0) = g(x). To 
find the values of u(x, 2k) at all points x = ih, г = 0, ± 1 , ± 2 , . . . , we must know 
the values of u(x, t) at t = к and at t = 0. However, the initial conditions supply 
the values of u(x, 0) but not u(x, fc). To resolve this problem and determine the 
u(x, fc) values, we replace the derivative ut(x, 0) by a difference quotient. The 
easiest approach is to replace the derivative by a forward difference quotient, so that 
ut {x, 0) = g(x) will give u(x, fc) in terms of u(x, 0), whose values are known. This 
approximation is rejected because it is only first order accurate, while the centered 
difference approximations used for (11.3.1) are second order accurate. As a result, 
we use a centered difference quotient to approximate ut(x, 0) and obtain u(x, fc) = 
u(x, —fc) + 2kg(x), which gives u(x, fc) in terms of u(x, -fc) whose value is not 
known. However, the difference equation ( 11.3.3) also yields an (approximate) value 
for u(x,k). Putting t = 0 in (11.3.3) gives u(x,-k) = 2(1 -г2)и(ж,0) +r2u(x + 
h, 0) + r2u(x — h, 0) - u(x, fc) + k2F(x, 0). From the initial condition u(x, 0) = 
/ (x) and u(x, fc) = u(x, —fc) + 2kg(x), we obtain the required result u(x, fc) = 
(1 - r2)f{x) + r2f(x + h)/2 + r2f{x - h)/2 + k2F{x, 0)/2 + kg(x). 
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Next we determine the truncation error that results on replacing the wave equation 
( 11.3.1 ) by the difference equation (11.3.2). Applying the Maple procedure mtaylor 
to (11.3.2) gives 

1 c2 

utt(x,t) - c2uxx(x,t) - F(x,t) « -—uuttk2 + —uxxxxh
2. (11.3.4) 

Thus, the difference between the wave equation (11.3.1) and the difference equation 
(11.3.2) is of 0(k2 + h2), and this is the order of the truncation error. As h,k —► 0 
the truncation error tends to zero, so that the difference approximation (11.3.2) is 
consistent with the wave equation ( 11.3.1). 

We use the difference scheme to solve initial and boundary value problems for 
(11.3.1) over the finite interval 0 < x < I. The initial conditions are prescribed 
at £ = 0 and were given above. The boundary conditions are given at x = 0 and 
x = I. We divide the interval into n equal parts. The grid in (x, £)-space, on which 
the solution is to be found, is given as (xi,tj) = (il/n,jk) with г = 0 ,1 ,2 , . . . , n 
and j = 0 ,1 ,2 , . . . , m. The x step size is h = l/n and the time increment is k. The 
solution is to be found at the time £m — mk. The difference scheme (11.3.3) can then 
be written in the form 

uiij+i = 2(1 - г2)щ^ + r2ui+ij + r2Ui-ij - Uij-i + k2Fi%j, (11.3.5) 

where mj represents the approximation to the exact solution u(x, t) of the given 
problem at the point u(xi,tj) — u(il/n,jk) and Fij = F(il/n,jk). This is a 
two-step explicit forward difference scheme. 

With the initial conditions u(x, 0) = f(x) and щ(х, 0) = g(x) we have Uj,o = 
f(il/n) and (as shown above) щл = (l-r2)fi + r2fi+1/2+r2fi-1/2 + k2Fiio/2 + 
kgi for г = 0 ,1 ,2 , . . . , n, with fi — f(il/n) and gt = g(il/n). The boundary lines 
x = 0 and x = I correspond to the values г = 0 and г = n. The range of values 
Xi = il/n at which the solution of the difference scheme is found depends, as before, 
on the type of boundary condition assigned at the endpoints. The determination of the 
x grid and the relevant boundary values is identical to that given for the heat equation 
and is not repeated here. We note that if a Neumann or Robin boundary condition is 
given at an endpoint, the values of /_ i and/or fn+\ require adjustment via the use of 
ghost points. 

The forward difference scheme (11.3.5) is stable if r = ck/h < 1 and unstable 
if r — ck/h > 1, as we demonstrate below. The stability condition can be given 
the following geometric interpretation. It was shown in Section 4.5 that the domain 
of dependence of the (exact) solution of the wave equation (11.3.1) at a grid point 
(il/n,jk) is a triangle with one vertex at the given point and the other two vertices 
at the points (il/n — cjk, 0) and (il/n + cjk, 0) on the ж-axis. The corresponding 
domain of dependence of the (numerical) solution of the difference scheme ( 11.3.5) 
at a point (il/n,jk) is readily found to be a triangle with one vertex at the given 
point and the other two vertices at the points (il/n — hj, 0) and (il/n + hj, 0) on the 
ж-axis. We see that the interval il/n — hj<x< il/n + hj on the z-axis contains or 
is identical with the interval il/n - cjk < x < il/n + cjk if ck < h or r < 1. This 
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signifies that the numerical domain of dependence includes the domain of dependence 
for the PDE. If r > 1, the reverse is true. Thus, the stability condition asserts that 
the numerical scheme must contain all the data that is required for the determination 
of the exact solution at the given point; otherwise, the numerical solution will fail to 
converge to the exact solution. This formulation of the stability condition was given 
by Courant, Friedrichs, and Lewy in the paper on difference methods for PDEs cited 
in Section 1.3 in connection with random walk problems. For this reason the stability 
condition r < 1 is often referred to as the CFL stability condition or the Courant 
stability condition. 

We have created the procedure NumWaveForw to automate the process of car-
rying out the explicit forward difference scheme for approximating solutions of ini-
tial and boundary value problems for the wave equation. It is given in the form 
NumWaveForw(c, F(x, t),t = to..tf, f(x), g(x), x = a-b, bel, l(t), ber, s(t), n, 
k). Apart from the addition of a fifth argument g(x), which specifies the initial condi-
tion ut (x, to) = g(x), the arguments are defined as in the procedure NumHeatForw 
presented above. [The first argument с is the speed of wave propagation in the wave 
equation (11.3.1).] The output of the procedure has the general form of that for 
NumHeatForw. 

Example 11.7. A Problem with a Variety of Boundary Conditions. We 
consider the nonhomogeneous wave equation 

utt(x,t) - 4uxx(x,t) = 3xt(x2 - 4<2)(2cos(z3i3) - 3sin(a;3i3)i3a;3) (11.3.6) 

over the interval 0 < x < 1 with the initial conditions u(x, 0) = 0, ut(x, 0) = 0. 
The function u(x, t) = sin(x3i3) satisfies (11.3.6) and the given initial conditions. 
Various boundary conditions that the given function satisfies at x = 0 and x = 1 
are introduced, and the resulting problems are solved numerically using the explicit 
forward difference scheme. The x interval is subdivided into 10 equal parts and we 
apply the procedure NumWaveForw to find the numerical solution at t — 1. The 
exact solution evaluated at the x grid points i/10, г = 0 ,1 ,2 , . . . , 10, has the values 
[0, .001, .008, .027, .06396, .12467, .2143, .33631, .48992, .66612, .84147]. 

We begin with the Dirichlet problem with u(0,t) = 0 and u( l , t ) = sin(i3). 
NumWaveForw(2,3xt{x2-4t2)(2cos(x43)-3sm(x3t3)t3x3),t = 0.. 1,0,0, x 
= 0..1., dirichlet, 0, dirichlet, sin(t3), 10, .1) determines the numerical solution at 
t = 1. The stability parameter r has the value r = 4, so that the difference scheme 
is unstable. The instability is confirmed by the output of PList, [[0,0], [.1, —.00283], 
[.2, 146.8], [.3, -1476.5], [.4, 72044], [.5, -22328],[.6, 48397], [.7, -75784], 
[.8, 83942], [.9, -56542], [1, .84147]]. If we replace the last argument in the proce-
dure for the Dirichlet problem (i.e., the t increment, by 0.01), we have r = 0.04, so 
that the difference scheme is stable. 

For the Neumann problem, the boundary values are given as ux(0, t) = 0 and 
iix(l , t) = 3t3cos(t3). NumWaveForw(2,3xt(x2-4t2){2cos{x43)-3sm(x3t3) 
t3x3),t = 0..1,0,0,x = 0..1., 0,0,0,3i3cos(i3), 10, .001) finds the numerical so-
lution at t = 1 with the stability parameter r = 0.0004. 
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Finally, we consider the mixed problem with the boundary conditions ux(0, t) = 
0 and ux(\,t) + u(l,t) = 3i3cos(i3) + sin(i3). NumWaveForw{2,3xt(x2 -
4i2)(2cos(z3i3) - 3sin(x3i3)i3x3),i = 0..1,0,0,z = О.Л.,0,0, l ,3 i 3 cos( t 3 )+ 
sin(i3), 10, .001) finds the numerical solution at t = 1 with the stability parameter 
r = 0.0004. 

The global variable PList lists the solution values at the grid points for each 
of the three foregoing procedures as Dirichlet =[[0., 0.], [Л, .00093], [.2, .0078], 
[.3, .02666], [.4, .06335],[.5, .12367],[.6, .2182], [.7, .3342], [.8, .4875], [.9, .66416], 
[1., .84147]]; Neumann =[[0.0, .001], [.1, .00099], [.2, .0068], [.3, .02448], [.4, .06], 
[.5, .119],[.6, .208], [.7, .329], [.8, .483], [.9, .662], [1., .8437]]; Mixed =[[0., .0018], 
[.1, .0018], [.2, .0077], [.3, .02562], [.4, .061458],[.5,.1211],[.6,.20987], [.7, .3315], 
[.8, .48590], [.9, .66496], [1., .84648]]. 

The piecewise linear curves determined by the foregoing point lists can be plot-
ted by invoking plot(PList) after applying NumWaveForw for each case. A 
time-dependent plot that yields an approximate finite difference solution surface for 
0 < £ < 1 , 0 < ί < 1 in each case can be generated from the output of global variable 
PlotListZdMod. The exact and approximate solutions can be plotted by entering 
P I =plot3d{sm(xH3),x = 0..1,i = 0..1). P2 = plots[surfdata](PList3dMod), 
and plots[display]({Pl, P2}). 

Implicit Backward Difference Methods for the One-Dimensional 
Wave Equation 

As for the heat equation, the introduction of backward implicit difference schemes 
for the solution of initial and boundary value problems for (11.3.1) has the effect of 
removing the stability restriction found for the forward difference scheme. We do 
this by introducing the ω difference scheme, whose construction parallels that used 
for the Θ difference scheme for ( 11.2.1 ). 

We again approximate uu(x, t) in (11.3.1) by a centered difference quotient but 
approximate uxx(x, t) by a weighted average of centered difference quotients evalu-
ated at t — k, t and t + k, with the respective nonnegative weights ω, 1 — 2ω, and 
ω. The nonhomogeneous term F(x, t) is also replaced by a corresponding weighted 
average. (We must have 0 < ω < 1/2 for the weights to be nonnegative.) It is readily 
shown that the resulting difference approximation is consistent with (11.3.1) with a 
truncation error of 0(k2 + h2). The ω difference scheme has the form 

Uij+i = 2UÌJ - Uij-i — 2r2ujUij+i + r2LJUi+ij+i + r2umi-ij+i + k2wFitj+\ 

- 2r2(l - 2uj)uuj + r 2 ( l - 2uj)ui+1J + r 2 ( l - г ^ К - ^ · + A;2(l - 2w)Fitj 

- 2r2LJUij-i +г2шщ+1 j _ i +r2u>Ui-i,j-i +fc2wFi,j-i· (11.3.7) 

We have retained the notation used for the explicit difference scheme, and the initial 
and boundary conditions are dealt with as before. When ω = 0, the ω difference 
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scheme reduces to the explicit forward scheme presented above. For all other admis-
sible values of ω, the scheme is implicit. The case with ω = 1/2 is referred to as the 
implicit backward scheme. As will be shown, if 0 < ω < 1/4 the stability condition 
for the ω difference scheme is r2 < 1/(1 — 4ω). If 1/4 < ω < 1/2, the scheme is 
unconditionally stable. 

For the case of Dirichlet boundary conditions with u(0, t) = l(t) and u(l, t) = 
s(t), the system of linear equations (11.3.7) for the щ j is represented in matrix form 
as 

Auj+i = BUJ + Auj-t + wu+i,j,j-i)> 3 > 1, (11.3.8) 

where 

A = 

1 + 2τ2ω о 

—r ω 
1 + 2r2u> —τ2ω 

B = 

'2r2(l - 2ω) - 2 - r 2 ( l - 2ω) 
- Γ 2 ( 1 - 2 ω ) 2 r 2 ( l - 2 w ) - 2 

wO'+i,j,j-i) -

-τ2ω 
-τ2ω 1 + 2r2u> 

(11.3.9) 

- r 2 ( l - 2ω) 
-Γ 2 (1-2ω) 2 Γ 2 ( 1 - 2 ω ) - 2 

(11.3.10) 

(11.3.11) 

w{k2Fhj+1 + k2Fia-X + r2lj+1 + r V i ) + (1 - 2w){k2Fhj + r2lj) 
w(Ä2F2 J + 1 + tfFij-i) + (1 - ^){k2F2j) 

u(k2Fn-1J+1 + fc2F„_1:j_i + r2sj+1 + r 2
S j _ i ) + (1 - 2u)(k2Fn-hj + r2

Sj) 

with lj = l(jk) and Sj = s(jk). (We do not exhibit the matrix forms that correspond 
to other boundary conditions.) The coefficient matrix of A of Uj+i in (11.3.8) is 
tridiagonal and diagonally dominant. As a result, A is invertible and (11.3.8) has a 
unique solution. In addition, if ω = 0, the matrix A reduces to the identity matrix 
and the ω scheme becomes an explicit scheme. For all other admissible values of ω, 
the scheme is implicit. If A~l is the inverse of the matrix A, we can write (11.3.8) as 

Uj+i = A lBiij + Uj_i + A ^ ( j + i ^ j - i ) , j > 1. (11.3.12) 
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The procedure NumWaveBackw carries out the ω difference scheme for approx-
imating solutions of initial and boundary value problems for the wave equation. It 
is given as NumWaveBackw(c, F(x,t),t = to..t/,f(x),g(x),x = a..b,bcl,l(t), 
ber, s(t), n, k,u)). The first 12 arguments are as in NumWaveForw given above. 
The thirteenth argument specifies the value of the parameter ω. If ω = 0, the scheme 
is explicit. If 0 < ω < 1/2, the scheme is implicit. The output of the procedure has 
the form of that for NumWaveForw. Plots of the results can be generated by using 
the global variables PList and PListZdMod, as was done for the explicit forward 
scheme. 

Example 11.8. A Problem with a Variety of Boundary Conditions. We 
reconsider the initial and boundary value problem for the nonhomogeneous wave 
equation (11.3.6) over the interval 0 < x < 1 with the initial conditions u(x, 0) = 0 
and ut{x, 0) = 0. The function u(x, t) = sin(x3i3) satisfies (11.3.6) and the given 
initial conditions. Various boundary conditions that the given function satisfies at x = 
0 and x = 1 are introduced, and the resulting problems are solved numerically using 
the ω difference scheme. The x interval is subdivided into 10 equal parts and we apply 
the procedure NumWaveBackw to find the numerical solution at t = 1. We recall 
that the exact solution evaluated at the x grid points г/10, г = 0 ,1 ,2 , . . . , 10 has the 
values [0, .001, .008, .027, .06396, .12467, .21432, .33631, .48992, .66612, .84147]. 

We begin with the Dirichlet problem. The boundary values are ω(0,ί) = 0 and 
u{l,t) = sin(i3). NumWaveBackw(2,Zxt(x2 - 4t2)(2cos(xH3) - 3sin(x3i3) 
i3x3), t = 0..1,0,0, x = 0.. 1., dirichlet, 0, dirichlet, sin(i3), 10, .01,0) determines 
the numerical solution at t = 1. The last argument states that ω = 0, so that this 
corresponds to the explicit difference scheme. The stability parameter r = 0.04 so 
that the scheme is stable. The global variable PList lists the solution values at the 
grid points as, [[0, 0], [.1, .00095], [.2, .008], [.3, .02743], [.4, .06523],[.5, .12731], 
[.6, .219], [.7, .34378], [.8, .50075], [.9, .68], [1., .84147]]. 

On replacing the penultimate argument in the procedure, the t increment, by 
0.1, we find that the stability parameter r = 4. Then, if the last argument is re-
placed by 1/4, the scheme is implicit and unconditionally stable. The output of 
PList is [[0, 0], [.1, .0008], [.2, .0096], [.3, .0342], [.4, .0823],[.5, .1615], [.6, .278], 
[.7, .43451], [.8, .62296], [.90, .81989], [1.0, .84147]]. The results are not as good 
as those found above but the wild instability exhibited by NumWaveForw in Example 
11.7 for the same value of the stability parameter is not present here. For the Neumann 
problem, the boundary values are ux(0,t) = 0 and ux(l,t) = 3i3cos(i3). Then 
NumWaveBackw(2,3xi(x2 - 4i2)(2 cos(x3i3) - 3sin(x3i3)i3x3), t = 0..1,0,0, 
x = O..l.,0,0,0,3t3cos(t3), 10,0.01,1/2) finds the numerical solution at t = 1 
with r = .04. The global variable PList lists the solution values at the grid points as 
[[0, 0.0044], [.1, .0045], [.2, .001], [.3, .029], [.4, .06667], [.5, .12854],[.6, .22046], 
[.7, .3461], [.8, .5051], [.9, .6881], [1, .87086]]. 

Finally, we examine the mixed problem with boundary conditions ux(0,t) — 0 
and ux(l,t) + u(l,t) = 3i3cos(i3) + sin(i3). NumWaveBackw(2,3xt(x2 -
4t2)(2cos(x3i3) - sin(x3i3)i3x3),i = Ο.Λ,Ο,Ο,χ = O..l.,0,0,0,3f3cos(i3) + 
sin(i3), 10, .001, .35) finds the numerical solution at t = 1 with r = 0.0004. The 
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scheme is implicit. The output of PList is [[0, 0.00180], [.1, .00179], [.2, .00773], 
[.3, .0256], [.4, .0615],[.5, .12Щ.6, .2099], [.7, .332], [.8, .486], [.9, .665], [1, .847]]. 

Method of Lines for the One-Dimensional Wave Equation 

To construct semi-discrete numerical approximations to the solutions of initial and 
boundary value problems for the nonhomogeneous wave equation (11.3.1), we re-
place uxx(x, t) by a centered second order difference quotient in x but retain t as a 
continuous variable, so that utt (x, t) is not discretized. Then 

d2u(x,t) c2{u{x + h,t)-2u{x,t)+u{x-h,t)) , τ?ι 

gp _ Jfi \-f{X,t) (ίί.ό.Ιά) 

and gives rise to the method of lines for the wave equation. The truncation error for 
this approximation to the wave equation is clearly 0(h2), so that the semidiscrete 
difference scheme ( 11.3.13) is consistent with the wave equation. 

As was done for the heat equation, we restrict our discussion to a finite interval 
given as 0 < x < I. The initial conditions are given at t = 0 and the boundary 
conditions at x = 0 and x = I. The interval is divided into n equal parts. Since t is 
not discretized, the grid comprises the x values at which the solution is to be found 
and is given as Xi = il/n with г = 0 ,1 ,2 , . . . , n. The x step size or increment is 
h = l/n. The approximate solution is to be determined at a specified time t > 0. 
The scheme (11.3.13) can be written as 

^ ™ = ^ (ui+1(t) - 2«i(i) + ΐϋ_!(ί)) + Fi(t), (11.3.14) 

where Ui{t) represents the approximation to the exact solution u(x, t) of the problem 
at the point x, = il/n at the time t and where F,(i) = F(il/n, t). 

The only difference between the formulation of this method for the wave and heat 
equations lies in the fact that two initial conditions u(x, 0) = f(x) and ut(x, 0) = 
g(x) must be prescribed for the wave equation, whereas only u(x, 0) = f(x) is 
specified for the heat equation. As a result, the initial conditions for the system 
(11.3.14)areui(0) = f(il/n) and и[(0) = g(il/n) for г = 0,1,2, . . . , n . Because t 
is not discretized, it is not necessary to approximate ut(x, 0) by a difference quotient, 
as was the case for the difference schemes considered above. The boundary lines 
x = 0 and x — I correspond to the values г = 0 and г = п. Boundary conditions of 
all three kinds and their effect on the number of equations to be solved are dealt with 
as was done for the heat equation. The discussion is not repeated here. 

The resulting approximation scheme is the method of lines for the wave equation 
with t > 0 in the (x, i)-plane. Again, it may be possible to solve the initial value prob-
lem for the system of ODEs (11.3.14) exactly, retaining t as a continuous variable. 
But this is not feasible in general and the system must be solved by using numerical 
methods, such as finite difference schemes. As a result, the time variable t is dis-
cretized. Thereby, the method of lines is converted to a fully discretized difference 
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scheme. Questions of stability for this scheme must also be addressed, and they are 
resolved by employing stability theories for systems of ODEs. 

For the case of Dirichlet boundary conditions with u(0,t) = g(t) and u(l,t) = 
s(t), the system of ODEs (11.3.14) for the Ui(t) has the matrix representation 

^-=Au(t) + w(t), (11.3.15) 

where the matrix A is defined as in (11.2.44), and u(i) and w(t) are given as in 
(11.2.45). The negativity of the eigenvalues of the matrix A implies the stability of 
the system (11.3.15). If the time variable is discretized, further analysis is required, 
based on the method of discretization that is employed. 

The procedure NumWaveLines solves initial and boundary value problem for the 
one-dimensional wave equation with general boundary conditions using the method 
of lines. As in the procedure NumHeatLines, rather than ask Maple to attempt to 
find an exact solution of the problem generated by the method of lines, the procedure 
invokes Maple's default numerical method rfc/45, the Runge-Kutta-Fehlberg method. 
Maple solves the problem to a high level of accuracy, if possible. An optional argument 
may be entered that forces Maple to use various other numerical methods for solving 
ODEs that are available within Maple, such as Euler's method. The step sizes can be 
controlled by the user when these methods are used. The global variable SysODE 
exhibits the full system of ODEs together with the initial conditions. These can then be 
solved explicitly using dsolve if so desired and if possible. When derivative boundary 
conditions are given at the endpoints, the derivatives are expressed as differences in 
the manner presented above, and the solution is determined at these points as well. 

NumWaveLines is given as NumWaveLines(c, F(x, t),t = to, f(x),g(x),x 
= a..b, bcl,g(t), ber, s(t),n). The first 11 arguments in the procedure are as described 
above for NumWaveForw. The only difference is that the third argument t = to 
specifies only the initial time. Boundary conditions of all three types can be treated. 
The output is given as a Maple procedure proc(rkfAò-x)... end proc. Then the 
global variable SW can be used to exhibit the numerical solution values Ui(tf) and 
u'^tf) at all the x grid points, by invoking SW(tf). If an optional twelfth argument 
t = tf is added, the numerical solution щ (t/ ) at each grid point is exhibited in tabular 
form. The global variable PList can also be used to display a list of these solution 
values. If an optional twelfth argumentfype = numeric is added, a numberof classical 
numerical solution methods for ODEs such as the forward Euler, Heun, lower order 
Runge-Kutta, or predictor-corrector methods can be invoked. The step sizes used 
in these methods can be controlled, as can the form of the output. (This is done by 
adding more optional arguments.) Solution plots can be constructed exactly as was 
done for NumHeatLines. 

Example 11.9. A Problem with Robin Boundary Conditions. We consider 
an initial and mixed boundary value problem for the nonhomogeneous wave equation 
that has the exact solution u(x, t) = x2t2. The method of lines is applied to a problem 
with Robin boundary conditions, and the numerical solution at t = 1 is found. 
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If we enter NumWaveLines{l,2x2 - 2t2,t = 0,0,0,a; = 0..1,1,0, l ,3i2,4), 
the output exhibits the PDE utt(x, t) — uxx(x, t) = 2x2 - 2t2, the initial conditions 
u(x,Q) = 0, щ(х,0) = 0, and the boundary conditions — ux(0,t) + u(0,t) = 
0, ux(l,t) + u(l,t) = 3t2. The interval 0 < x < 1 is subdivided into four equal 
parts so that the x increment is h = 1/4. The final output of the procedure is 
proc(rkf45-x)... end proc. Then SW(t) exhibits the numerical solution values at 
the time t. The numerical solution at t = 1 is given by SW(l) as [t = 1., uo(t) = 
.41725 x 10"8, u'Q(t) = .36445 x 10~8, tti(i) = .0625, u[(t) = .125,u2(t) = 
.25, u'2(t) = .5, u3(t) = .5625, u'3(t) = 1.125, uA{t) = 1, <( f ) = 2.]. We note 
that not only the solution but its first i-derivative are approximated at the grid points. 

When a twelfth argument t = 1 is added to the procedure, the numerical solution at 
t = 1 is exhibited in tabular form as for the procedure NumHeatLines. The global 
variable SysODE displays the coupled system of ODEs (11.3.14) appropriate for 
this problem together with the initial conditions. It has the form given in Example 
11.6 except that first derivatives are replaced by second derivatives in t. Also, an 
additional set of initial values is exhibited. They are {V0(0) = Ο,ΐί'^Ο) = 0,tt'2(0) = 
0, Ыз(0) = 0, г4(0) = 0}. On applying the procedure dsolve to this system, Maple 
obtains the exact solution uo(t) = 0, ui(i) = i2/16, u2(t) = i2 /4, из(4) = 
9ί2/16, Ui(t) — t2. We do not consider the application of NumWaveLines to this 
problem with the use of specific discretization schemes for the term utt {x,t), as was 
done in Example 11.6 for the heat equation. 

This concludes our presentation of difference schemes for the solution of the wave 
equation. Since the wave equation can be expressed as a system of two first order 
PDEs, the methods presented below for the numerical solution of hyperbolic systems 
of PDEs can be applied to the wave equation as well. 

Exercises 11.3 

11.3.1. Use mtaylor to verify the result (11.3.4). 

11.3.2. Use the procedure NumWaveForw to reproduce the results of 
Example 11.7. 

11.3.3. Reproduce the results given in Example 11.8 using NumWaveBackw. 

11.3.4. Use NumWaveLines to verify the results of Example 11.9. 

11.3.5. Introduce optional arguments for NumWaveLines to solve the problem 
given in Example 11.9 using (a) Euler's method; (b) Heun's method. 
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11.4 FINITE DIFFERENCE METHODS FOR TWO-DIMENSIONAL 
LAPLACE AND POISSON EQUATIONS 

Poisson's equation in two dimensions is 

uxx(x, y) + uyy(x, y) = F(x, y). (11.4.1) 

Let h > 0 and к > 0 be increments in x and y, respectively. We replace the partial 
derivatives by centered difference quotients. The resulting difference scheme will be 
used to solve boundary value problems for ( 11.4.1 ) in (bounded) rectangular regions 
in the (x, y)-plane. Although it is possible to deal with problems over more general 
regions by introducing a special treatment of the boundary conditions, we do not carry 
this out here. The finite element method, presented in Chapter 12, can handle fairly 
general boundaries. Boundary value problems for Laplace's and Poisson's equations 
in three dimensions are also treated below. 

On approximating uxx (x, y) and uyy (x,y) in ( 11.4.1 ) by centered second order 
difference quotients, we obtain the difference equation 

и (x + h, y) - 2 и (х, у) + и (x - h, y) 
h2 

| u(x,y + к) -2и{х,у) + и{х,у - к) = F ^ y) (iiA.2) 
К 

To determine the truncation error that results on replacing (11.4.1) by (11.4.2), 
we apply mtaylor to (11.4.2). This gives uxx(x,y) + uyy(x,y) — F(x,y) « 
(l/12)uxxxxh

2 — (1/I2)uyyyyk
2 and shows that the truncation error is 0(h2 + k2). 

As h, к —> 0, the truncation error tends to zero, so that (11.4.2) is consistent with 
(11.4.1). 

The points (xi,yj) = {a + ih,ß + jk) with i, j = 0, ± 1 , ± 2 , . . . , and a and/? as 
arbitrary constants represent the grid points for the general difference scheme ( 11.4.2). 
Let Ui.j represent the (numerical) approximation of the exact solution u(x, y) of a 
given boundary value problem at the point (xiy yj) [i.e., щ^ « U(XÌ, yj)], (11.4.2) 
can be given as 

h2 + P Fi'j' ( 1 L 4 - 3 ) 

with Fij = F(x,i,yj). Solving for itjj yields 

k2(ui+ij + Uj-ij) + h2(ujj+i + tt,,j-i) - h2k2Fjj 
2(h2 + k2) 

(11.4.4) 

If h = k, ( 11.4.4) becomes 

1 
i,j — T (u«+i,j + ui-\,j + Ui,j+i + ui,j-i) - ~r F%,j- (11.4.5) 
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With F(x, y) = 0, so that (11.4.1) becomes Laplace's equation, uij is given as the 
average of its four neighboring values in ( 11.4.5) and is a weighted average of its four 
neighboring values in (11.4.4). It is useful to rewrite (11.4.4) as 

( h2\ h2 

2 ( 1 + 7j2 ] Ui,j-(ui+i,j + Ui-i,j)~T2 (ui,j+i+Ui,j-i) = ~h2 Fij. (11.4.6) 

We consider boundary value problems of all three kinds for Laplace's or Poisson's 
equation in the rectangular region a < x < b, с < у < d. The x and у intervals are 
subdivided into nx and ny equal parts, respectively. Then the x and у increments are 
h = (ò — a)/nx and к = (d — c)/ny, respectively. Thus, the grid points are given 
as (xi, yj) — (a + ih,c + jk) with г — 0 ,1 ,2 , . . . , nx and j = 0 ,1 ,2 , . . . , ny. The 
sides of the rectangle are boundary lines, so that г = 0, г = nx, j = 0, j = ny 

correspond to x = a, x = b, у = с, у = d, respectively. If Dirichlet conditions are 
assigned on the boundary, the grid for the problem comprises only the interior points 
of the rectangular region, so that г = 1,2,.. . , nx — 1 and j = 1,2,. . . , ny — 1. 
If Neumann or Robin boundary conditions are prescribed on one or more sides of 
the rectangle, the derivative terms ux(x, y) and/or uy(x, y) are replaced by centered 
differences. The introduction of ghost points and their elimination proceeds as in 
the discussion presented above for the heat and wave equations. We do not repeat it 
here. Then, with a Neumann or Robin boundary condition problem, the grid points 
are г = 0 ,1 ,2 , . . . , nx and j = 0 ,1 ,2 , . . . , ny. With mixed boundary conditions, 
grid points that correspond to the sides of the rectangle where Dirichlet conditions 
are prescribed are eliminated from the solution grid set. 

In each of the foregoing cases, the difference scheme (11.4.6) is used. It gives rise 
to a system of simultaneous linear equations for the щj. The number of equations 
depends on the range of the indices i and j . For a Dirichlet problem, there are N = 
(nx — l)(ny — 1) equations for the Ujj, г = 1,2,... ,nx — 1, j = 1,2,.. .,ny — 1. 
For a Neumann or Robin problem there are M = nxny equations for the щ^, г = 
0 ,1 ,2 , . . . , ηχ, j = 0 ,1 ,2 , . . . , riy. The number of equations lies between N and M 
when dealing with a mixed problem. 

The difference scheme (11.4.6) can be represented in the matrix form An = w, 
where A is the matrix of coefficients of the linear system, u is a column vector 
whose elements are all the unknown mj and w is a column vector whose ele-
ments are known boundary values and values of F at grid points. The general 
form of system of difference equations and the matrix equation Ли = w varies 
with the type of boundary conditions assigned and the sizes of the x and у in-
crements. We use the Maple procedure LaplaceMatrix to display the appro-
priate results in a number of specific cases and then in the general case. It is 
given as LaplaceMatrix(F(x,y),x — a..b,lbcfactor,lbc,rbcfactor,rbc,y = 
cd, lobcf actor, lobe, ubc factor, ubc, nx, ny). Boundary value problems of all three 
kinds for Laplace's or Poisson's equation in the rectangle a < x <b, с < у < d can 
be considered. The last two arguments nx and ny specify the number of x and у subin-
tervals. The arguments Ibc, rbc, lobe, ubc represent the boundary values prescribed 
on x = a, x = b, у = с, у = d, respectively. The arguments Ibcfactor, rbefactor, 
lobefactor, ubefactor determine the type of the boundary condition on each side of 
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the rectangle. For example, if Ibcf actor = dirichlet and Ibc = g(y), the Dirichlet 
condition u(a, y) = g(y) is prescribed, lilobcf actor = 0 and lobe = h(x), the Neu-
mann condition —uy(x, c) = h(x) is assigned. If ubcf actor = λ and ubc = r(x), 
the Robin condition uy(x, d) + Xu(x, d) = r(x) is given. 

The output of the procedure exhibits the Laplace or Poisson equation that is to 
be solved, together with the boundary conditions. In addition, the explicit matrix 
form Ли = w of these equations is displayed. The global variable Syst displays 
the simultaneous linear system the Uij. (The procedure does not solve this system.) 
These equations can be solved either directly or by iteration. The global variable 
MSyst yields the matrix equation An = w and the global variables CoeffMatrix, UK, 
NonHTerm display the matrix A and the vectors и and w, respectively. 

Example 11.10. A Dirichlet Problem for Poisson's Equation. The pro-
cedure LaplaceMatrix(F(x,y), x = 0.. I, dirichlet, gi(y), dirichlet, g2{y), У = 
0..L, dirichlet, g3(x), dirichlet, g4{x), 3,3) solves the boundary value problem for 
Poisson's equation in the rectangle 

c{x,y) + uyy(x,y) = F(x,y), 0<x <l, 0<y < L, (11.4.7) 

with the Dirichlet boundary condition 

u(0,y) = gi(y), u(l,y) = g2(y), u(x,Q) = g3(x), u(x,L) = g4(x). (11.4.8) 

The x and у intervals are both subdivided into three equal parts and the step sizes 
are h = 1/3 and к = L/3. The Uij to be solved for and the u{x,y) values 
they approximate are given as ui,! = u(l/3, L/3),u2,i = u(2l/3,L/3),uit2 = 
u(l/3,2L/3), 112,2 = u(2l/3,2L/3). The matrix system Aa = w is given as 

2 + 2h2/k2 

- 1 
-h2/k2 

0 

- 1 
2 + 2h2/k2 

0 
~h2/k2 

-h2/k2 

0 
2 + 2h2/k2 

- 1 

0 
-h2/k2 

- 1 
2 + 2h2/k2 _ 

«1,1 
U2,l 

"1,2 
. W2,2 . 

gx(k) + h2g3(h)/k2-h2F(h,k) 
-h2F(2h, k) + g2(k) + h2 g3{2h)/k2 

h2g4(h)/k2+gi(2k) - h2F(h,2k) 
h2gi{2h)/k2 - h2F(2h, 2k) + g2{2k) 

(11.4.9) 

If h = k, which is often the choice for the increments, the diagonal terms of the matrix 
A all equal 4 and the off-diagonal terms equal — 1 or 0. The system of simultaneous 
linear equations for щ j is easily determined from ( 11.4.9) or can be found by entering 
the global variable Syst. 

We observe that the matrix A is essentially comprised of two submatrices 

(11.4.10) ' 2 + 2h2/k2 - 1 
- 1 2 + 2h2/k2 A — 

i л — 

' -h2/k2 

0 
0 

-h2/k2 
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in terms of which it assumes the block matrix form A 
A A 
Ä À 

By inspection, it can be seen that in the general case, the matrix A assumes the 
block tridiagonal form 

A = 

A 
Ä 

A 
À 

0 

A 
Ä A 

(11.4.11) 

with 

A = 

2 + 2h2/k2 - 1 0 
- 1 2 + 2h2/k2 - 1 

2/U2 -h2/k 

0 

-1 2 + 2h2/k2 

-h2/k2 

(11.4.12) 

(11.4.13) 

If h = k, the matrix A becomes —/, where / is the identity matrix. In the general 
case, it is possible to multiply the matrix A by k2 /h2 so that A is replaced by — / and 
A is appropriately modified. The matrix A is not strictly diagonally dominant since 
there may be some rows whose elements sum to zero. Thus, we cannot conclude 
on that basis, as was done before, that A is nonsingular. An additional condition 
satisfied by the matrix guarantees that the matrix is nonsingular. Alternatively, it may 
be shown that zero is not an eigenvalue of A. We conclude that Au = w has a unique 
solution. 

As a concrete example we consider Laplace's equation, 

y)+uyy(x,y) = 0, 0<x<l,0<y<l, (11.4.14) 

with the Dirichlet boundary condition 

u(0,y) = 1, u(l,y) = 0, u{x,Q) = 0 , u(x,l) = 0. (11.4.15) 

With four subdivisions of the x and у intervals, we use LaplaceMatrix(0, x = 
0. A, dirichlet, 1, dirichlet, 0,y — 0..1, dirichlet, 0, dirichlet, 0,4,4). The global 
variable Syst displays the system of equations for the щ^, which is not exhibited here. 
The solution of the system found by solve is «1,1 = 3/7, ui,2 = 59/112,^1,3 = 
3/7, «2,i = 3/16, «2,2 = 1/4, «2,3 = 3/16, «3,1 = 1/14, «з',2 = 11/112, u3',3 = 
1/14. 
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In terms of the random walk problems discussed in Section 1.3, the discrete prob-
lem associated with ( 11.4.14)-( 11.4.15) determines the probabilities u^j that a parti-
cle starting from an interior grid point (г/4, j/4) reaches a grid point (0, j/4) on the 
side x — 0 of the unit square, before it reaches a grid point on one of the other three 
sides where it is absorbed. As expected, the probabilities щ j decrease as г increases 
from 1 to 3, since the distance from x = 0 is thereby increased. 

Example 11.11. A Neumann Problem for Poisson 's Equation. The proce-
dure LaplaceMatrix{F(x,y),x = 0..l,0,gi(y),0,g2(y),y = O..L,Q,g3(x),0,g4 

(x), 1,1) solves the boundary value problem for Poisson's equation in the rectangle 
uXx(x,y)+Uyy(x,y) = F(x,y), 0<x<l,0<y< L, with the Neumann bound-
ary condition ux(0,y) = -gi(y),ux(l,y) = g2(y),uy(x,0) = -g3(x),uy(x,L) = 
gi(x). To simplify the presentation the x and у intervals are not subdivided, so that 
the step sizes are h — I and к = L. The mj to be solved for and the u(x, y) values 
they approximate are given as uo,o = it(0,0), u^o — u(l, 0), uo,i = u(0, L), щ^ = 
u(l, L). The four grid points coincide with the four vertices of the rectangle. 

The matrix system Au = w is given as 

' 2 + 2h2/k2 - 2 -2h2/k2 0 
- 2 2 + 2h2/k2 0 -2h2/k2 

-2h2/k2 0 2 + 2h2/k2 -2 
0 -2h2/k2 -2 2 + 2h2/k2 

2h9l(0) + 2h2g3(0)/k-h2F(0,0) 
~h2F(h, 0) + 2hg2(0) + 2h2 g3(h)/k 
2h2g4(Q)/k + 2hgi(k) - h2F(0, k) 
2hg2(k) - h2F(h, k) + 2h2g4(h)/k 

If h = k, the diagonal terms of the matrix A all equal 4 and the off-diagonal terms 
equal —2 or 0. The system of simultaneous linear equations for щ^ is found from 
( 11.4.16) or by entering the global variable Syst. 

The sum of the four rows of the matrix A is zero (i.e., the zero vector), so that 
A is singular. As a result, (11.4.16) has no solution unless the sum of the four 
elements of the vector w add up to zero. (This is the compatibility condition.) Then 
the solution is not unique and is determined up to a constant multiple of the vector 
[1,1,1,1]· The compatibility condition yields (l/2L)(gi(0) + g2(0) + gx(L) + 
02(Ь)) + (1/20(дз(0)+5з(0+54(0)+94(0) = (1 /4) (^(0 ,0)+Пг,0)+Г(0 ,Ь) + 
F(l, L)). Now it has been shown previously that the Neumann problem for Poisson's 
equation V2w = F in the region G with the boundary condition du/dn = g over 
the boundary dG has no solution unless the following compatibility condition is 
satisfied JdG g ds = JGF da. If this condition is met, the solution of the problem is 
determined only up to an arbitrary constant. It is easily verified that on numerically 
approximating the integrals in the integral compatibility condition by the trapezoidal 
rule, using the subdivision of the rectangle given above, the discrete compatibility 
condition results. 

UQ,0 

«1,0 
«0,1 
«1,1 
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As the number of grid points is increased, the resulting coefficient matrix A does not 
assume a form that is a straightforward generalization of ( 11.4.16). The main diagonal 
elements all equal 2 + 2h2/k2. The matrix is banded in the sense that only a fixed 
number of diagonals adjacent to the main diagonal contain nonzero elements. Their 
number increases with number of grid points, but the matrix becomes increasingly 
sparse (i.e., most of its elements are zero) as the grid points increase in number. 
Additionally, each matrix is singular because its column vectors sum to the zero 
vector, so that a compatibility condition that guarantees a solution of the system must 
be found. 

As an example we consider Poisson's equation with the Neumann boundary con-
dition 

uxx{x, y) + uyy(x, y) = 2y, 0 < x < 1, 0 < у < 1, 

«χ(0, y) = 0, ux(l,y) = 2y, uy(x, 0) = x2, uy{x, 1) = x2. (11.4.17) 

The exact solution of this problem is u(x, y) = x2y + c, where с is an arbitrary con-
stant. As a result, the compatibility condition is satisfied. With two subdivisions of the 
x and у intervals, we use the procedure LaplaceMatrix(2y, x = 0.. 1,0,0,0,2y, у = 
0..1,0, - x 2 , 0 , x2,2,2). The matrix system Ли = w is 

0 
- 1 / 4 

- 1 
- 1 / 4 
- 1 / 4 
3/4 

- 1 / 2 
- 1 / 4 
5/2 
(11.4.18) 

with Uij as an approximation to the exact solution u(i/2, j/2). 
The global variable Syst displays the system of equations for the щ^. The 

(nonunique) solution of the system found by the Maple procedure solve is щ,о — 
- 1 / 2 + с, и2,2 = 1/2 + c> "i,2 = - 1 / 4 + c, ui,o = - 1 / 2 + c, u2,i = c, u2,o = 
- 1 / 2 + с, иод = —1/2 + c, ui,i = - 3 / 8 + c, u0,2 = — 1/2 + с Here с is an 
arbitrary constant. If we put с = 1/2, the numerical solution values agree with the 
exact solution u(x, y) = x2y evaluated at the grid points. 

4 
-1 
0 
-1 
0 
0 
0 
0 
0 

- 2 
4 

- 2 
0 

- 1 
0 
0 
0 
0 

0 
- 1 
4 
0 
0 

- 1 
0 
0 
0 

- 2 
0 
0 
4 

- 1 
0 

- 2 
0 
0 

0 
- 2 
0 

- 2 
4 

- 2 
0 

- 2 
0 

0 
0 

- 2 
0 

- 1 
4 
0 
0 

- 2 

0 
0 
0 

- 1 
0 
0 
4 

- 1 
0 

0 
0 
0 
0 

- 1 
0 

- 2 
4 

- 2 

0 
0 
0 
0 
0 

- 1 
0 

- 1 
4 

UQ,0 

«1,0 
«2,0 
«0,1 
«1,1 
«2,1 
«0,2 
«1,2 

_ «2,2 

Example 11.12. A Robin Problem for Poisson 's Equation. The Maple pro-
cedure LaplaceMatrix(F(x, «), x = 0. .1, X, gi(y), X, g2(y), у = 0..L, A, g3{x), X, g4 

(ж), 1,1) solves the boundary value problem for Poisson's equation in the rect-
angle uxx(x,y) + Uyy(x,y) = F(x,y), 0 < x < I, 0 < у < L, with the 
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Robin boundary conditions — ux(0,y) + Xu(0,y) = <7i(«), ux(l,y) + Xu(l,y) = 
52(2/), -uy(x,0) + Xu(x,0) = дз(х), Uy{x,L) + Xu(x,L) = д^{х). Again, the 
x and у intervals are not subdivided and the step sizes are h = I and к = L. The 
Uij to be solved for and the u(x, y) values they approximate are given as «0,0 = 
«(0,0), uifi = u(l, 0), «0,1 = «(0, L), «1,1 = u(l, L). The four grid points lie on 
the four vertices of the rectangle. 

The matrix system Au = w for the problem above is given as 

" 2 + 2C(h,k,X) - 2 -2h2/k2 0 
- 2 2 + 2C{h,k,X) 0 -2h2/k2 

-2h2/k2 0 2 + 2C{h, k, X) - 2 
0 -2h2/k2 -2 2 + 2C(h,k,X) _ 

2hgi (0) + 2h2g3(0)/k - h2F(0,0) 
-h2F(h, 0) + 2hg2(0) + 2h2 g3{h)/k 
2h2g4(0)/k + 2hgi(k) - h2F{0, k) 
2hg2(k) - h2F(h, k) + 2h2

gi(h)/k 

where C{h, k, X) = (h2 + h2kX + hk2X)/k2. If h = k, the diagonal terms of the 
matrix A all equal 4 + hX and the off-diagonal terms equal —2 or 0. The system 
of simultaneous linear equations for u^j is easily determined from the above or can 
be found by entering the global variable Syst. The matrix A is (strictly) diagonally 
dominant for λ > 0 and is nonsingular, so that the matrix system has a unique 
solution. Increasing the grid points yields a coefficient matrix A whose form is not a 
straightforward generalization of the matrix above, as was the case for the Neumann 
problem. We do not discuss it here but note that it is a banded matrix and is nonsingular. 

We consider Poisson's equation uxx(x, y) + uyy (x,y) = 2y, 0 < x < 1, 0 < у < 
1 with the Robin boundary condition — ux(0, y) + w(0, y) = 0, ux(l, y) + u(l , y) = 
3y, —uy(x,0) + u(x,0) = — x2,uy(x, l) + u(x, 1) = 2a;2. The exact solution of this 
problem is u(x, y) = x2y. With two subdivisions of the x and у intervals, we use the 
procedure Laplace Matrix (2y,x = 0..1,1,0, l,3y, у = 0..1,1, — x2, l ,2x2,2,2). 
The output gives the matrix system Ли = w for the problem, which we do not display. 

The global variable Syst displays the system of equations for the Uij, which is 
not exhibited here. The solution of the system found by the Maple procedure solve 
ÌS M0,0 = 0, U2,2 = 1, «1,2 = 1/4, Ul,0 = 0, U2,0 = 0, Uo,l = 0, Ui,i = 1/8, Uo,2 = 
0, «2,1 = 1/2. The numerical solution values agree with the exact solution u(x, y) = 
x2y evaluated at the grid points. 

The procedure LaplaceMatrix can also handle problems with mixed boundary 
conditions but we do not present any examples here. LaplaceMatrix determines 
the linear system of difference equations that arise for each problem. The solution of 
this system can then be found by invoking Maple's solve procedure. This may not be 
practical if there are a large number of grid points and a corresponding large number 
of equations. Since LaplaceMatrix also obtains the matrix form of the system for 
each problem, it is possible to make use of the Linear Solve procedure from Maple's 

UQ,0 

«1,0 
«0,1 
«1,1 

, w = 
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Linear Algebra package in each case. This enables the use of special techniques 
such as LU Decomposition to find solutions of the matrix equations. To deal with this 
matter, a number of special iteration techniques have been developed for the solution 
of the system of difference equations and their matrix equation representations. They 
have proven to be extremely useful if the system contains a large number of equations. 
We present a number of these iteration methods in the next subsection. 

Jacobi, Gauss-Seidel, and Relaxation Methods for Two-Dimensional 
Laplace and Poisson Equations 

We begin by considering a linear system of equations Ax = b with n equations and 
n unknowns given as 

n n n 

22aiJxj = bi,^2a2,jxj — &2i - · 4^0n,j^j = bn. (11.4.19) 
j = l j = l J = l 

(We use single-subscript notation for the unknowns to simplify the presentation, but 
the results are valid for the all the difference schemes for Laplace's and Poisson's 
equations presented above.) The matrix A has the elements α^, i,j = 1,2,... ,n 
and we assume that the diagonal elements ац: г = 1,2,.. . , n are all nonzero. Then 
(11.4.19) can then represented in the form 

^ b i - Σ ^ α ^ - Σ ^ ! ^ i = i , 2 , . . . , „ . (11.4.20) 

The system is now in a form where it can readily be solved by iteration. To do 
so, we begin with an (arbitrarily chosen) initial approximation to the Xi which we 
denote as Xi(0), and substitute it in the right side of (11.4.20) to determine the next 
approximation Xi(l). We iterate this process, and the approximation after the fcth 
iteration is given as Xi(k). Three iteration schemes—the Jacobi, the Gauss-Seidel, 
and the SOR iteration methods—are presented below. Each of these schemes differs 
in how the Xi(k + 1) are determined from the Xj(fc) in the iteration process. 

The most obvious scheme is the Jacobi iteration method, given as 

Xi[k + 1} =
 bi - g ì ' W W - ^ = i + 1 ai'jXj{k), i = l,2,...,n. 

(11.4.21) 
Although an improved value of x\ is already known once approximate values of the 
Xi are substituted into the first equation of the system ( 11.4.20), this value is not used 
in finding X2- This approach is applied in the determination of all the X{ in a single 
iteration, as seen from (11.4.21). Once an iteration is complete, the new values of the 
Xi are used to obtain the next approximations. 
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A scheme that uses the improved values of the Xi as soon as they are computed 
within an iteration is the Gauss-Seidel iteration method. It is 

Xi(k + l) = 
bi - Σ)=\ aijXjjk + 1) - Σ?=ί+ι aiJxj(k) 

г = 1,2,... ,n. 

(11.4.22) 
We observe that if the Jacobi or Gauss-Seidel iteration scheme converges, so that 
lim^^oo Xi{k) = Xi, then Xi is a solution of (11.4.20). 

In an effort to accelerate the rate of convergence of the Gauss-Seidel iteration 
scheme, we note that the right side of ( 11.4.22) can be expressed as 

Xi{k + 1) — Xi(k) + 
bi 2^,j=iai,jXj(k + l) 2^ij=i+iai,jxj\'t) 

Xi{k) 

(11.4.23) 

The first term on the right of ( 11.4.23) is the previously determined value Xi(k) and the 
second term is the correction to that value determined by the Gauss-Seidel scheme. 
We introduce a parameter ω, known as the relaxation parameter, to interpolate or 
extrapolate between these two values. This yields 

ω Ы - Σ}=ι a-i,jXj(k + 1) - E L i + i ai,jXj(k)) 
Xi(k + 1) = (1 - w)Xi(k) + —i - — J-

(11.4.24) 
for г = 1,2,..., п. This modified iteration scheme, for which it is found that we must 
have 0 < ω < 2 for convergence, is referred to as a relaxation method. (Then, with 
ω < 1 and ω > 1, it is an under- and overrelaxation method, respectively.) If ω = 1, 
it reduces to the Gauss-Seidel method. It can be shown that we must take ω > 1, in 
general, to accelerate the convergence rate. For this reason, ( 11.4.24) is called the 
successive overrelaxation method or SOR method. Optimal values of the relaxation 
parameter ω can be determined for specific schemes that minimize the number of 
iterations required to achieve a certain level of accuracy. 

Each of the foregoing iteration methods can be formulated in matrix form. The 
matrix representation is useful in determining the stability and convergence properties 
of these schemes. Given the matrix equation Ax = b, we decompose the (square) 
matrix A into a diagonal matrix D and a lower and upper triangular matrix L and U, 
respectively. The diagonal elements of D are those of A. The elements of L below 
the main diagonal are those of A, and all the elements of L on or above the main 
diagonal are zero. The elements of U above the main diagonal are those of A and all 
the elements of U on or below the main diagonal are zero. Hence, A = L + D + U. 
For example, if A is a 2 x 2 matrix we have 

A=\ *" 
fl2,l 

01,2 
02,2 

,D = αι,ι 
0 

0 
02,2 

,L = 
0 

a.2,1 
,U «1,2 

0 
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We assume that all the diagonal elements of the matrix A and D are nonzero, so 
that D has an inverse. Then, Ax = (L + D + U)x = Dx+(L + U)x = b, yields 
x = -D~l(L + U)x + D _ 1 b . This corresponds to the system (11.4.20). 

The matrix version of the Jacobi method is 

x(k + 1) = -D~\L + U) x(k) + D~lb, (11.4.25) 

where x(k) is the fcth iteration. The Gauss-Seidel iteration scheme can be expressed 
as x(k + 1) = -D~lLx(k + 1) - D~lUx(k) + D _ 1 b . On multiplying across by 
D, solving for x(k + 1), and then multiplying across by (D + L)~l, we obtain the 
matrix version of the Gauss-Seidel method 

x(k + 1) = -(£> + D^U x(k) + (D + L)-^. (11.4.26) 

Since D + L is a lower triangular matrix with nonzero diagonal elements, it has a 
nonzero determinant and an inverse. Finally, the matrix version of the SOR method 
is found to be 

x(k + 1) = (D + UJL)-1 [(1 - ω)Ό - ωϋ] x{k) + u>{D + u;Z,)_1b. (11.4.27) 

Again, D + u)L is a nonsingular lower triangular matrix. 
We have created a procedure NumLaplace that uses the iteration methods pre-

sented above to solve the difference schemes presented in the preceding subsection. 
It is given as NumLaplace(F(x, y), x = a..b, Ibcf actor, Ibc, rbcf actor, rbc, у — 
cd,lobcfactor, lobe, ubcfactor, ubc, nx, ny, numits,inguess,err,par). As be-
fore, the first 13 arguments of the procedure prescribe the Laplace or Poisson equation, 
the rectangular region, the boundary conditions, and the number of x and у subdivi-
sions. The fourteenth argument determines the maximum number of iterations that 
are to be carried out. The fifteenth argument specifies the initial guess for the iteration 
scheme at each grid point. The sixteenth argument err assigns a numerical value that 
the maximum of the residual errors (to be defined below) at each grid point cannot 
exceed at the conclusion of each iteration. If the value of err is greater than each of 
the residual errors, the iteration process is stopped. (This is a closure or termination 
criterion for the procedure and the value of err determines an error tolerance.) The 
output of the procedure displays the total number of iterations carried out. The final 
argument determines which iteration method is used. If it is jacobi or Jacobi, the 
Jacobi method is used. If, instead, a relaxation parameter ω is entered, it must have 
a value between 0 and 2] otherwise, an error message is printed out. If ω = 1, the 
Gauss-Seidel method is used. Otherwise, the SOR method is employed. 

After NumLaplace is invoked, a plot of the finite difference solution can be gen-
erated by using the procedure PlotTab(Sol, x, y, Ih, Iv, z). The global variables Ih 
and lv list the points in the subdvisions of the x and у intervals, respectively. The 
global variable Sol, given as Sol(lh[i],lv[j}), yields the finite difference solution 
for the uh and jth points in the respective subdivisions. (The remaining arguments 
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determine what labels are to be used in the plot.) The procedure constructs a set of 
points in (x, y, z)-space and uses surf data to plot the surface. 

Each of the foregoing iteration schemes is applied to the difference equation 
(11.4.3). We define the residual ritj at a grid point (г, j) to be 

^2 + p bij- ( и · * " » ; 

If Uij is an exact solution of the system of difference equations, the residual vanishes. 
We use the absolute value of the residual as a measure of how close an approximate 
solution Uij(k), determined after the kth iteration, is to the exact solution mj. Ide-
ally, the difference between the approximate and exact solutions should be measured 
in some norm to determine the accuracy of the approximation, but the exact solution is 
unavailable. In addition, it may happen that an approximate solution has small resid-
uals but is not close to the exact solution. Nevertheless, the procedure NumLaplace 
evaluates the maximum absolute value of all the residuals after the feth iteration, and 
if its sixteenth argument err exceeds this value, the iteration process is terminated. 

To see the connection between the residual and the error more clearly, we return 
to the matrix form of the system Ax = b. Let X be an approximate solution of 
Ax = b, and define the (vector) residual to be r = AX - b. The difference between 
the approximate and exact solution X — x satisfies A(X — x) = AX — b = r, X — 
x = A~lr, with A~l as the inverse of A. Then it follows from a property of 
matrix and vector norms (some of these norms are presented in Section 11.6) that 
|| X - x || = || A~lr \\<\\ A~l || || r || . Thus, even if the residual vector r has a 
small norm, the absolute error || X — x || can have a large value if || A-1 || is large. 
Now, || b ||=|| Ax \\<\\ A \\\\ x || and 1/|| x || < || A ||/|| b ||. Thus, the relative 
e r r o r | | X - x | | / || x || is bounded by || X - x ||/|| x || < || A |||| A'1 |||| r ||/|| b ||. 
The condition number С (A) of amatrix A is defined as C(A) =|| A |||| Л - 1 ||. We 
see from this that even if the residual vector r has a small norm, a large condition 
number for the matrix can lead to a large relative error in the solution. If the condition 
number is close to 1, the magnitude of r gives a good indication of the size of the 
relative error in the solution. If the condition number is large, the problem is said to 
be ill-conditioned. 

Example 11.13 A Dirichlet Problem for Laplace's Equation. Each of the 
foregoing iteration methods is used to solve the problem ( 11.4.14)-( 11.4.15) of Exam-
ple 11.10. NumLaplace(0, x = 0. A, dirichlet, 1, dirichlet, 0, у = 0..1, dirichlet, 
0, dirichlet, 0,4,4,200,0,10~8, Jacobi) solves the difference scheme using the Ja-
cobi method. The maximum number of iterations permitted is 200 and the initial 
guess is 0. The maximum error allowed is 10~8. 

The output exhibits Laplace's equation and the boundary conditions, as well as 
the number of subdivisions and the maximum number of iterations. It declares that 
the Jacobi method was used and that 61 iterations were performed. The values of the 
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Uij are displayed in tabular form as 

' y\x 
0.0 
0.25 
0.50 
0.75 
1.0 

The first row and column of the table give the x and у values in the subdivisions, 
respectively. The remaining entries give the approximate solution values at these 
points. 

The global variable System exhibits the system of difference equations for the 
problem, and the global variable GridPoints identifies the (i, j) values with corre-
sponding (xi, yj) values. These values can then be entered into the global variable 
Sol in the form Sol (xi, yj ) to reproduce the solution values at each of the grid points. 
The solution values agree with the exact solution of the system of difference equations 
given in Example 11.10 if the exact solution values are converted to floating-point 
form. 

The global variables Ih and lv both equal Ih = Iv = [0., .25, .50, .75,1.0]. The 
procedure PlotTab(Sol, x, y, Ih, lv, z) yields a plot of the finite difference solution. 
It is exhibited in Figure 11.5. 

Figure 11.5 The finite difference solution. 

The procedure NumLaplace(0, x — 0..1, dirichlet, 1, dirichlet, 0, у = 0..1, 
dirichlet, 0, dirichlet, 0,4,4,200,0,10- 8,1) uses the Gauss-Seidel methodto solve 
the foregoing problem, since the last argument is 1. (Otherwise, everything is the 
same as before.) The solution agrees with that obtained via the Jacobi method, but 
only 31 iterations are required to accomplish this. If 0.5 is the last argument in the 
procedure, the SOR method is used but 104 iterations are needed to get the required 
result. But if 1.2 is the last argument, only 16 iterations are required. It is a general 
principle that the Gauss-Seidel method requires approximately half the number of 
iterations of the Jacobi method, as is the case here. The SOR method can reduce the 

0.0 
0.0 
1.0 
1.0 
1.0 
0.0 

0.25 
0.0 
0.429 
0.527 
0.429 
0.0 

0.50 
0.0 

0.187 
0.250 
0.187 
0.0 

0.75 
0.0 

0.0714 
0.0982 
0.0714 
0.0 

1.0 
0.0 
0.0 
0.0 
0.0 
0.0 

(11.4.29) 
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number of iterations even further, but that generally requires the relaxation parameter 
to exceed 1. It is possible to consider a sequence of values of the relaxation parameter 
to determine an approximate optimal value of ω. For this problem, if we replace 1.2 
by 1.21 in the SOR method, the number of iterations is reduced to 14. 

Alternating-Direction Implicit Method for Two-Dimensional Laplace and 
Poisson Equations 

The iteration schemes used in the Gauss-Seidel and SOR methods are carried out point 
by point over the grid appropriate to each problem. By simultaneously determining 
the new values in the iteration scheme over an entire row or column of grid points, an 
acceleration of the convergence rate of the scheme can be achieved. (This can also be 
done for the Jacobi method, but we do not treat it here.) As a result, the solution of 
a system of simultaneous linear equations must be found at each step (so that this is 
an implicit method). However, this does not present a significant problem since each 
system is of tridiagonal form and is easily solved. This approach yields Gauss-Seidel 
and SOR row or column iteration methods. A further improvement can be achieved 
if instead of determining only grid row or grid column values in each iteration, we 
first determine the grid row values, say, followed by a determination of the grid 
column values (using the values found from the grid row calculations), within each 
iteration. Since we alternate the direction from horizontal (rows) to vertical (columns) 
within each iteration step and the values along the rows and columns are determined 
implicitly, we obtain what is called the alternating-direction implicit method от ADI 
method. [We remark that Ujj corresponds tou(xi,yj), so that if we consider the mj 
to be the elements of a matrix and we put г = constant, we obtains the (horizontal) ith 
row of the matrix. Yet, in the (ar, y)-plane we have the values Xi - constant, which lie 
on a vertical line. The converse relationship exists for j = constant and yj = constant. 
Our use of horizontal and vertical in the above, refers to matrix notation.] 

The row and column iteration methods are carried out as follows. It is assumed 
that there are n rows and m columns in the (matrix) grid. On replacing (for notational 
clarity) the squared increments h2 and k2 by hx2 and hy2, respectively, in the differ-
ence equation approximation ( 11.4.3) to Poisson's equation, and solving for mj, we 
obtain 

_ Mt-i,j + Цг+i.j + {hx2/hy2){ui^-X + uiJ+1) - hx2Fjj / 1 1 / 1 Ч Пч 
UiJ - 2 + 2hx2/hy2 ' ( 1 1 ' 4 -Ò U ) 

To carry out row iterations, we assume that a set of values щ^ is prescribed on 
the grid. We perform a sweep along the n rows in the grid and determine a new set 
of values щ^ by solving the tridiagonal system (for each row) 

_ u j - i , j + Ui+i,j + (hx2/hy2)(ùjj-i + üjj+i) - hx2Fjj . _ 
U i , j _ 2 + 2hx2/hy2 , г - 1 , . . . , г г . 

(11.4.31) 
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A fixed value of г determines a row, and for each row the subscript j varies from 
1 to m, the number of columns. Hence, there are m equations (on the ith row) 
and the unknowns in each equation are щ^-\, щ^, uj j+i , assuming none of the 
conesponding grid points are boundary points. In the Gauss-Seidel method, which 
we consider here, the term Щ-ij has already been determined when solving for all 
values on the (г — l)st row. To obtain the SOR method we introduce the relaxation 
parameter ω and replace ùij by щ^ = ω ü , j + (1 — ω) щ^, as the (new) grid point 
values on each row. Then, everything proceeds as before. 

To carry out column iterations, we assume that a set of values Uij is prescribed 
on the grid. We perform a sweep along the m columns in the grid and determine a 
new set of values йij by solving the tridiagonal system (for each column) 

- _ uj-i,j + uj+i.j + (hx2/hy2)(üij-i + Ujj+ι) - hx2Fjj . 
Ui'j~ 2 + 2hx*/hy* , г - Ι , . . . , η . 

(11.4.32) 
A fixed value of j determines a column, and for each column the subscript г varies 
from 1 to n, the number of rows. Hence, there are n equations (on the jth column), 
and the unknowns in each equation are üi-ij, щ^, щ+ij, assuming that none of 
the corresponding grid points are boundary points. In the Gauss-Seidel method, the 
term üij-i has been determined when solving for all values on the (j — l)st row. To 
obtain the SOR method, we introduce the relaxation parameter ω and replace uij by 
щ j = ω üij + (1 — ω) uitj as the grid point values on each column. Then everything 
proceeds as before. 

If in each iteration we sweep through all the rows and then sweep through all 
the columns to determine new values for the щj, we obtain the ADI method. In all 
methods, an initial guess щ^ (0) is given for each grid point (at which the numerical 
solution is to be found) to start the iteration process. The new values found after 
each row, column, or dual sweep are used as the starting values for the next iteration. 
While the ADI method generally requires fewer iterations than are needed for the 
row or column method, it should be noted that within each iteration the sweep over 
the rows and the columns effectively doubles the number of iterations carried out in 
the method. An improvement is expected to be achieved because row sweeps may 
yield better results than column sweeps, and vice versa, for a particular problem, and 
both are used in each iteration. 

NumLaplaceRowColADI carries out the foregoing iteration methods for 
Laplace's or Poisson's equation, in the form NumLaplaceRowColADI(F(x, у), х = 
a..b, Ibcf actor, Ibc, rbcf actor, rbc, у = cd, lobcf actor, lobe, ubcf actor, ubc, nx, 
ny,numits,inguess,err,par, method). The first 16 arguments are identical to 
those for the procedure NumLaplace given above. The seventeenth argument is 
the value of the relaxation parameter ω and must lie between 0 and 2. (The op-
tion jacobi is not available for procedure.) The last argument method must take 
the value row, col or ADI, and determines which of the three iteration methods 
is to be used. Any problem that can be solved by NumLaplace can be solved by 
NumLaplaceRowColADI. 
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After NumLaplaceRowColADI is invoked, a plot of the finite difference so-
lution can be generated by using the procedure PlotTab(Sol, x, y, Ih, Iv, z). The 
global variables Ih and Iv list the points in the subdvisions of the x and у intervals, 
respectively. The global variable SolRC, given as SolRC(lh[i], lv[j}), yields the fi-
nite difference solution for the ith and jth points in the respective subdivisions. (The 
remaining arguments determine what labels are to be used in the plot.) The procedure 
constructs a set of points in (x, y, z)-space and uses surf data to plot the surface. 

Example 11.14. A Dirichlet Problem for Laplace's Equation. We recon-
sider the problem of Example 11.13. The procedure NumLaplaceRowColADI(0, x 
= 0..1, dirichlet, 1, dirichlet, 0, у = 0..1,dirichlet,0,dirichlet,0,4,4,200,0, 
10~7,ω,ρ) applies the Row, Column, or ADI iteration method to that problem 
using the acceleration factor ω and the error tolerance 10~7, according as p equals 
row, col, or ADI, respectively. The numerical output agrees with (11.4.29) and is 
not displayed here. The difference lies in the number of iterations required to achieve 
those values. 

With ω = 1, the Gauss-Seidel method is used. While 27 iterations are required 
with NumLaplace, only 16 iterations are needed with NumLaplaceRowColADI 
using the row or col option. The ADI method needs only nine iterations. If we set 
ω = 1.2, the SOR method is used. Then 13 iterations are required with NumLaplace, 
and 13 and 12 iterations are needed with NumLaplaceRowColADI using the row 
and col option, respectively. The ADI method needs only seven iterations. We do 
not consider other choices of the relaxation parameter and other boundary conditions. 

Exercises 11.4 

11.4.1. Use the procedure LaplaceMatrix to obtain the matrix system (11.4.9) 
associated with the Dirichlet problem for Laplace's equation (11.4.7)—( 11.4.8). 

11.4.2. Use Maple methods to obtain an exact solution of the system ( 11.4.9). 

11.4.3. Obtain the solution of (11.4.14)-(l 1.4.15) given in Example 11.10. 

11.4.4. Reproduce the results given in Example 11.11 for the Neumann problem 
(11.4.17). 

11.4.5. Obtain the matrix system and the solution of the problem in Example 11.12. 

11.4.6. Invoke Maple's Linear Algebra package and determine the form of the 3 x 3 
Hilbert matrix. Determine the condition number of the Hilbert matrix in various norms 
by using the procedure ConditionNumber. 

11.4.7. Use the procedure NumLaplace as given in Example 11.13 to solve the prob-
lem ( 11.4.14)-( 11.4.15) using (a) the Jacobi method; (b) the Gauss-Seidel method; 
(c) the SOR method with ω = 0.5; (d) the SOR method with ω = 1.2; (e) the SOR 
method with ω — 1.21. In each case, note the number of iterations used to obtain the 
final result. 
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11.4.8. Reconsider Exercise 11.4.7, where the initial guess in the iteration procedures 
was 0, and determine if a significant decrease in the number of iterations results if the 
initial guess is taken to be 0.25 or some other positive number between 0 and 1. 

11.4.9. Use the procedure NumLaplaceRowColADI to verify the results of 
Example 11.14. 

11.5 VON NEUMANN STABILITY OF DIFFERENCE METHODS FOR 
PDEs 

The concept of stability for linear (time-dependent) PDEs with constant coefficients 
was introduced in Section 3.5. It was shown that problems for PDEs that are well 
posed can be unstable. The concept of stability or instability, as defined for difference 
schemes, has more serious consequences. An unstable difference scheme yields an 
invalid numerical approximation to the exact solution of the given problem. That is, 
we do not expect the numerical solution to converge to the exact solution, even if the 
difference equation is consistent with the PDE. This follows from the Lax equivalence 
theorem stated above. There are several ways to define and characterize stability for 
difference schemes. The most commonly used definition, for difference schemes that 
result from time-dependent problems, is based on the von Neumann stability criterion. 
This approach makes use of Fourier analysis, as was the case in the stability analysis 
of Section 3.5. 

As we are dealing with a discrete problem, we make use of the discrete Fourier 
transform introduced in Section 5.8 and reformulate the results to fit our present 
needs. Given the interval 0 < x < I, we divide it into N equal parts and define 
xn — nl/N, n = 0 , 1 , . . . , N. The increment in x is given as h = l/N. The 
increment in t is k, and we have tm = mk. Then ttn,m corresponds to u(xn, tm) in 
our subscript notation. Also, xn±h = x„±\ and tm + к = <m+i. 

In terms of the grid of x values, we define the discrete Fourier transform of 
u{xn, tm) as 

1 / 2?7Γ4*7* \ 
cs(m) = —= 22 u{xn,tm)expl — - J , s = 0 , 1 , . . . ,N - 1, (11.5.1) 

with the cs(m) as the Fourier coefficients. (This set of values determines the trans-
form.) The inverse discrete Fourier transform is given as 

u{xn, tm) = -j= 2_, cs(m) exp ί —τ—^ j , n = 0 , 1 , . . . , N - 1. (11.5.2) 

The function u(xn, tm) is reproduced from the Fourier coefficients (or, equivalently, 
the transform values) cs{m). We note that и(х^, tm) = U(XQ, tm), so that u(xn, tm) 
is periodic. 
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The discrete Fourier transforms of u(xn ± h, tm) and u(xn, tm + k) are given as 
cs(m) exp(±2msh/l) and cs(m + 1), respectively, with similar results for higher 
increments. As a result, if we consider the difference equation 

u(xn,tm + k) = au(xn + h, tm) + bu(xn, tm) + cu(xn - h, tm), (11.5.3) 

its discrete Fourier transform yields the recursion relation 

cs{m + 1) = cs(m) [aexp(2insh/l) + b + cexp(—2insh/l)]. (11.5.4) 

The solution of the recursion relation is 

cs(m) = cs(0) [aexp(2insh/l) + b + cexp(-2insh/l)]m, (11.5.5) 

where cs(0) is the transform of the discrete initial conditions for the problem. The 
solution of the difference equation is 

1 N~X 

u(xn,tm) = -F= Σ c*(°) [aexp(2insh/l) + b + cexp{-2i7Tsh/l)]me{2insXn/l) 

(11.5.6) 
forn = 0 , l , . . . , 7 V - l . 

For stability we require that the terms [a exp(2msh/l) + b + cexp(-2insh/l)]m 

in (11.5.6) must be bounded in absolute value as m —» oo for all relevant s. As 
a result, the solution u(xn,tm) cannot grow (in absolute value) without bound as 
tm —у oo. This implies that 

\aexp(2insh/l) + b + cexp(-2insh/l)\ < 1 (11.5.7) 

for all relevant s, and this is the von Neumann stability condition. As the number 
of subdivisions N —> oo, the increment h = l/N tends to zero, and the expression 
2-Kshjl = 2-KS/N effectively ranges over the entire interval [0,2π]. Thus the von 
Neumann stability condition can be given as, with β = 2-Ksh/l, 

\a\ = \aexp(iß) + b + cexp(-iß)\<l, 0 < β < 2π. (11.5.8) 

If the PDE that is consistent with the foregoing difference scheme is unstable in the 
sense of Section 3.5, the von Neumann stability condition takes the form 

\a\ = \aexp(iß) + b + cexp(-iß)\<l + 0(k), 0 < β < 2π, (11.5.9) 

where к is the time increment. Furthermore, since xn = nl/N = nh we have 
2nsxn/l = 2-Kshn/l — ßn, so that exp(2insxn/l) — exp(ißn). Each of these 
terms in the sum (11.5.6) is multiplied by a term of the form am (apart from a 
constant multiple), as we have seen. 
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We have shown that u(xn, tm) is expressed as a sum (over n) of constant multiples 
of Qm exp(ißn), which may be referred to as Fourier modes. They are the analogs 
of the normal modes used in the analysis of stability for PDEs considered in Section 
3.5. We must show that the absolute value of each of the Fourier modes cannot 
grow without bound with increasing m to achieve stability for the difference scheme. 
Therefore, on applying a von Neumann stability analysis to a difference scheme, we 
substitute u(xn,tm) = amexp(ißn), into the difference equation. This yields an 
equation for a = a(ß), which is referred to as the amplification factor. The von 
Neumann stability criterion requires that we have 

\a\ < 1 or \a\<l + 0(k) (11.5.10) 

for stability. (This must be shown for all ß in the interval [0,2π].) Now, the ampli-
fication factor a is a function of the increments h and к that occur in the difference 
scheme. If (11.5.10) is satisfied without any restriction on h and fc, the scheme is 
unconditionally stable. If (11.5.10) is valid only if h and к are related in someway, 
the scheme is conditionally stable. If the condition (11.5.10) can never be met, the 
scheme is unstable. We remark that the stability analysis is always applied to the 
homogeneous version of the difference equations, that is, with the nonhomogeneous 
term equated to zero. 

The von Neumann stability condition is a necessary condition for the stability of a 
difference scheme, but it is not a sufficient condition for all problems. Thus, even if the 
condition is met, the scheme can be unstable in that it may fail to yield a satisfactory 
approximation to the exact solution of the given problem. One reason for this is 
that the von Neumann criterion does not take into account the boundary conditions 
assigned for the difference scheme. An alternative stability criterion based on the 
matrix representation of the difference scheme does take the boundary conditions 
into account and yields more reliable results. (It is presented below.) Nevertheless, 
the results of both methods are generally in agreement. 

von Neumann Stability for the Heat Equation 

In the following examples, we determine the von Neumann stability condition for a 
number of the difference schemes for the heat equation that were presented in Section 
11.2. Cases of conditional and unconditional stability, as well as instability, will be 
encountered. We begin by considering a conditionally stable difference scheme. 

Example 11.15. The Explicit Forward Difference Scheme. The explicit for-
ward difference equation for the homogeneous heat equation ( 11.2.1 ) with F(x,t) = 
0 is given as 

^ n , m + l 
= (1 - 2r)u„,TO + r"un+iiTO + run-itTn, (11.5.11) 

wherer = kc2/h2 [see (11.2.5)]. We insert un,m = ctm exp(ißn) into (11.5.11)and 
obtain а = 2r cos(/3) + 1 — 2r after some elementary simplification. For stability 
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we must have - l < a < l a s / ? ranges over the interval [0,2π]. Using elementary 
calculus to determine the maximum and minimum of α = α(β), we determine the 
critical points to be β — 0, π, 2π. The minimum equals 1 — Ar and the maximum is 1 
(we recall that r > 0). The condition 1 — 4r > —1 yields r < 1/2. Thus, the scheme 
is conditionally stable with the stability condition r = kc*/h2 < | . This result is 
consistent with that obtained in Section 11.2, based on a random walk analogy. 

Next, we present an unstable difference scheme. 

Example 11.16. An Unstable Forward Difference Scheme. The homoge-
neous version of the explicit two-step forward difference scheme (11.2.29) for the 
heat equation is given as 

+ 2r (u n + i , m - 2un,TO + ип-1г1П). (11.5.12) 

We insert u„,m = a m exp(ißn) into (11.5.12) and obtain the quadratic equation a2 + 
4r(l — cos(ß))a — 1 = 0, whose roots are a = 2r(cos(ß) — 1) ± ^/i+(2r(cos(/?)-i))2. 
If we pick the minus sign in the above and put β = π, we see immediately that 
Q < —1 for all positive r. Since we must have \a\ < 1 for all /?, we conclude that 
the scheme is unconditionally unstable. 

Next, we present a difference scheme for the heat equation with a radiation term 

ut(x, t) + bu(x, t) — c2uxx(x, t). (11.5.13) 

If the constante > 0,(11.5.13) characterizes heat conduction with radiation. Ifb < 0, 
the PDE is unstable. 

Example 11.17. An Explicit Forward Difference Scheme. We consider the 
following explicit forward difference scheme for ( 11.5.13) 

(1 - 2r)un%m + ru„ + i , m + run_i;TO - kbun,m, (11.5.14) 

with r = kc2/h2. Inserting u„,m = amexp(ißn) into (11.5.14) yields а = 
2rcos(/3) — 2r + 1 — kb. On proceeding as in Example 11.15, we find that the 
minimum of a equals 1 — Ar — kb and the maximum is 1 — kb. On using the Maple 
procedure solve({l — Ar - kb > — 1 - kb, 1 — kb < 1 — kb}, {r}), we find that 
r < 1/2, so that the stability condition \a\ < 1 + 0{k) of (11.5.10) yields r < 1/2 
as in Example 11.13. Thus, the scheme is conditionally stable. It may be noted that 
this result does not depend on the sign of b in ( 11.5.14). 
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The following scheme for the heat equation is unconditionally stable. 

Example 11.18. The Implicit Backward Difference Scheme. The implicit 
backward difference equation for (11.2.1) with F(x, t) = 0, is 

un,m = (1 + 2r)ii„,m+i - r t t n + i i m + i - r u n _ i , m + i , (11.5.15) 

wherer — kc2/h2 [see (11.2.18)]. We insert un,m = amexp(i/3n)into(11.5.15)and 
obtain а = 1/(1 + 2r(l — cos(/3))). Since cos(/3) < 1, we conclude immediately 
that 0 < а < 1 for all r and ß. Thus, the scheme is unconditionally stable. 

The foregoing approach applied to the Θ scheme of (11.2.36) determines that it is 
unconditionally stable if 1/2 < 0 < 1, while if 0 < Ö < 1/2 it is conditionally stable 
under the restriction r < 1/(2 — ΑΘ). The choice Θ = 1/2 gives the Crank-Nicolson 
scheme. We conclude our discussion of the heat equation with a stability analysis of 
the DuFort-Frankel difference scheme. 

Example 11.19. The DuFort-Frankel Difference Scheme. The DuFort-
Frankel explicit forward difference equation for the homogeneous heat equation 
(11.2.1) with F(x,t) = 0 is given as 

+ 2r (u n + i , m - u„,m_i - u„ ,m + i + Wn-i.m), (11.5.16) 

where r = kc2/h2 [see (11.2.32)]. We insert un ,m = am exp(ißn) into (11.5.16) 
and obtain the quadratic equation (1 + 2r)a2 — 4rcos(ß)a + 2?— 1 = 0 . The two 

roots are a = 2rcos(/3) ± ^ / l -4 r 2 s in 2 ( /3 ) /(1 + 2r). To determine the von 

Neumann stability condition, we consider two cases. From the quadratic equation we 
conclude that the product of the two roots equals (2r — 1 ) / (2r + 1 ) and this is bounded 
by 1 in absolute value for r > 0. Consequently, if the roots are complex valued, in 
which case they are complex conjugates, we have |a| < 1 for each root, regardless of 
the value of r. This case occurs if 4r2 sin2 (ß) > 1. If4r2sin2(/3) < 1, the radical 
in the numerator of the above is bounded by 1 and we find, on using the triangle 
inequality for each root, that |a | < (2r + l) /(2r -I-1) = 1. As the stability condition 
is satisfied without any restriction on r, the scheme is unconditionally stable. 

von Neumann Stability for the Wave Equation 

We determine the conditions for the stability of the explicit forward and implicit 
backward difference schemes for the homogeneous wave equation (11.3.1), [where 
we put F(x, t) — 0], presented in Section 11.3. 

Example 11.20. The Explicit Forward Difference Scheme. The explicit 
forward difference equation for the homogeneous wave equation is given as 

un,m+i = 2(1 - r2)un<m + r2un+it7n + r 2 « n _ i , m - u n , m _ i , (11.5.17) 
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where r = kc/h [see (11.3.5)]. On inserting it„iTO = amexp(z/3n) into (11.5.17), 
we obtain the quadratic equation 

a2 + (4r2 sin2(0/2) - 2) a + 1 = 0, (11.5.18) 

after some simplification. The two roots can be written as a = 1 — 2r2 sin2 (/3/2) ± 

sin (/3/2) - 1, since /3 6 [0,2π]. To determine the von Neumann 
stability condition we consider two cases. If r < 1, the two roots are complex conju-
gates and (11.5.18) shows that the product of the two roots equals 1. Consequently, 
each root has unit modulus, and we have \a\ = 1 for each root. If r > 1, we put 
/3 = π in the above and select the minus sign. This gives a = 1 — 2r2 — 2r\ /r2 — 1. 
This expression has the value — 1 at r = 1 and it has a negative derivative for r > 1, 
so that it is a decreasing function. As we have found a value of β for which a < — 1 
for all r > 1, we conclude that the forward difference scheme is conditionally stable, 
with r < 1 as the stability condition. This agrees with the CFL stability condition 
obtained in Section 11.3. 

Example 11.21. The Implicit Backward Difference Scheme. The implicit 
backward difference equation for the homogeneous wave equation is given as 

r2 

(1 + r 2 )u„,m +i = 2u„,m - (1 + r2)un,m-i + — u„+i ,m +i 

2 2 2 
*·*■ rp*· n·»*1 

+ T « n - l , m + l + y V l , m - l + у « п - 1 , т - 1 , (11 .5 .19) 

where r — kc/h [see (11.3.7)]. We insert un,m = ат ехр(г/3тг) into (11.5.19) and 
obtain the quadratic equation a2 — (2/(1 + 2rsin2(/3/2))a + 1 = 0 , after some 
simplification. The discriminant of this equation is 4/(1 + 2r sin2(/3/2))2 - 4, and it 
is clearly negative for all r > 0. Thus, the two roots are complex conjugates and the 
quadratic equation shows that the product of the two roots equals 1. Consequently, 
each root has unit modulus, so that we have \a\ = 1 for each root. We conclude that 
the backward difference scheme is unconditionally stable. 

Exercises 11.5 

11.5.1. Verify the von Neumann stability result obtained in Example 11.15. 

11.5.2. Verify that the difference scheme ( 11.5.12) is unconditionally von Neumann 
unstable. 

11.5.3. Verify that the difference scheme (11.5.14) is conditionally von Neumann 
stable. 
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11.5.4. Show that the implicit difference scheme (11.5.15) is unconditionally von 
Neumann stable. 

11.5.5. Determine that the von Neumann stability conditions for the ^-difference 
scheme (11.2.36), as Θ ranges from 0 to 1, are as given in the text. 

11.5.6. Verify that the DuFort-Frankel difference scheme ( 11.5.16) is unconditionally 
von Neumann stable. 

11.5.7. Show that the ω-difference scheme (11.3.7) (with F = 0) is unconditionally 
von Neumann stable if 1/4 < ω < 1. If 0 < ω < 1/4, the von Neumann stability 
condition is r2 < 1/(1 — 4ω). 

11.6 STABILITY AND CONVERGENCE OF MATRIX DIFFERENCE 
METHODS FOR PDES 

The one-step explicit and implicit Θ difference schemes for the nonhomogeneous heat 
equation presented in Section 11.2 can be expressed in matrix form [see (11.2.41)] 
as 

u(k+l)=Àu(k)+yr(k,k + l), fc>0, (11.6.1) 

with the matrix A independent of к and w(k, к + 1) as a known vector that depends 
on the nonhomogeneous term F(x, t) and the boundary conditions given for the 
problem. If the heat equation and the boundary conditions are homogeneous, then 
w(fc, к + 1) = 0. The vector u(0) represents the initial condition for the difference 
scheme. The difference scheme is said to be matrix stable if a solution with small 
initial conditions, as measured in some vector norm [say, | |u(0) 11 < e <C 1], remains 
small and does not grow without bound as к —» oo. 

Thus, a condition for stability is determined from the iteration problem 

n(k+l) = Àu(k), or equivalent^, u(A; + 1) = i f c + 1u(0). (11.6.2) 

To examine the growth of the iterations, we first assume that the n x n matrix A has 
n linearly independent eigenvectors rm that correspond to the eigenvalues Xm, with 
m = 1,2,.. . , n. Then u(0) can be expressed uniquely as a linear combination of 
the eigenvectors as 

n 

U(0) = Σ C^m, (11.6.3) 
m = l 

so that u(k + 1) = Ак+1и(0) = Y^n=1 cmX!^'1rm. It is apparent (no matter which 
vector norm is used) that unless |Am| < 1, m — 1,2,.. . , n, u(k) will grow without 
bound as n —» oo. Consequently, we conclude that the scheme is matrix stable if the 
spectral radius p(A) < 1, with the spectral radius defined as 

/9(i) = max(|Am|), m = 1,2,... ,n. (11.6.4) 
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(Here |Am| represents the modulus of the eigenvalue Xm, which may be complex 
valued.) If the matrix A has fewer than n linearly independent eigenvectors, it can 
be shown, using the Jordan canonical form for the matrix, that the modulus of at 
least one of the elements of Ak grows without bound as к —> oo unless p(A) < 1 is 
satisfied. For if the similarity transformation Q~lAQ — J yields the Jordan matrix 
J, we have Ak = Q~lJkQ. Then the matrix Jk is an upper triangular matrix whose 
diagonal elements are the fcth powers of all the eigenvalues of A. 

Since the matrix A incorporates the boundary conditions for the difference scheme, 
the matrix stability condition yields more precise results than the von Neumann sta-
bility condition, where boundary conditions play no role. For the most part, however, 
both methods yield similar results, and the von Neumann method is easier to apply. 
In addition, the matrix stability condition is defined for one-step difference schemes, 
so that two-step difference schemes such as the DuFort-Frankel method for the heat 
equation and the various difference methods for the wave equation appear to be ex-
cluded. Although it is possible to use an artifice to convert two or more step difference 
schemes to a one-step form, the analysis of the stability properties of the resulting 
schemes is not as straightforward as in the above. We do not present this approach. 
The von Neumann stability analysis can easily be carried out for two-step difference 
schemes, as we have seen. 

The matrix representations of the Jacobi, Gauss-Seidel and SOR iteration methods 
for Poisson's equation considered in Section 11.4 can be written in the general form 
u(fc + 1) = Au(fc) + b, к > 0. If the iteration scheme converges, it must converge 
to a solution u of the matrix equation u — Au + b. Thus, the error e(fc) after the fcth 
iteration is e(fc) = u — u(fc). Then 

e(fc + 1) = u - u(fc + 1) = i u - iu(fc) = ie(fc) = i f c + 1e(0), (11.6.5) 

where u(0) is the initial guess in the iteration method. For the iteration scheme to 
converge, we must have limfc_>00 e(n) = 0. This implies that liirifc^oo Ak — 0, and 
as shown above, the convergence condition is met if the spectral radius p(A) satisfies 
the inequality p(A) < 1. 

It is apparent that the smaller the spectral radius, the more rapid the convergence of 
the iteration scheme. This concept is made concrete in the following. We assume that 
e(0) can be expressed as in (11.6.3) in terms of the eigenvectors r m of the matrix A. 
As a result, we can write e(fc) — p{A)k Y^n=l

 cm{Xm/ p{A))krm. On introducing 
a vector norm for e(fc), we conclude that for large fc, ||e(fc)|| κ, cp(À)k, where с 
is independent of k. Consequently, ||e(fc + l)||/||e(fc)|| « p{A). To determine 
the number of additional iterations m that are needed to reduce the norm of the 
error (approximately) by 1/10, we put ||e(fc + m)||/||e(fc)|| « 1/10 and note that 
||e(fc + m)||/||e(fc)|| « p(À)m. This yields p(À)m « 1/10. Taking the log (to 
the base 10) of both sides, we obtain m « — 1/ log(p(A)). If p(A) < 1, its log is 
negative, so that the closer p(A) is to 1, the larger the value of m and the slower 
the convergence of the iteration scheme. The value of — \og{p(A)) is called the 
convergence rate for the iteration scheme. 
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The matrix stability condition for the heat equation requires that p(A) < 1 and the 
convergence condition for the iteration methods for Laplace's and Poisson's equations 
requires that p(A) < 1. For either case, it is not necessary to determine all the 
eigenvalues of the matrix A explicitly. Only the eigenvalue with largest modulus 
must be found or, more simply, we must show that its modulus is less than or equal to 
1 or strictly less than 1. A simple method for determining these bounds on the largest 
(in modulus) eigenvalue makes use of Gershgorin 's disk (or circle) theorem. It states 
that for the n x n matrix A with elements йу, every eigenvalue lies within one of 
the disks in the complex λ-plane with center and radius, Center = an, Radius = 
Y^=ij^i \àij\, г = 1,2,.. . , n. All the eigenvalues lie in the union of these disks. 

The proof of this result is straightforward. Suppose that λ is an eigenvalue of A. 
Then there exists a nonzero (column) eigenvector x = [x\,X2,..., xn]

T such that 
Ax = λχ. In component form we have (A — an) Xi = — Σ ? = ι ,-JJ äijXj, г = 
1,2,... , п. Pick a value of i such that |ж^| < \XÌ\, j = 1,2,.. . , n, j ф г. Then 
| λ - ά ϋ | < £"=1,^» |ау||х,-|/|а:»| < £ " = 1 > ^ |йу|. This completes the proof. 

A simple application of Gershgorin's theorem can be made to determine a matrix 
stability condition for the explicit forward difference scheme for the heat equation with 
Dirichlet conditions. The matrix В defined in (11.2.12) is relevant to that problem. 
Each diagonal element of В is 1 — 2r and the sum of the off-diagonal row elements 
equals r for the first and last row and 2r for the remaining rows. (Each off-diagonal 
element is nonnegative.) This yields two Gershgorin disks | A — (1 — 2r)| < r and 
[A — (1 — 2r)| < 2r. Since one disk is contained within the other disk, we find that 
all the eigenvalues must lie within |λ — (1 — 2r)| < 2r, and this is equivalent to 
1 - 4r < λ < 1. As we must have |λ| < 1 for each eigenvalue to guarantee stability, 
we conclude that 1 — Ar > — 1 or r < 1/2 is the condition that ensures the matrix 
stability of the difference scheme. This restriction on r agrees with that obtained 
using the von Neumann stability criterion. We remark that the Gershgorin result does 
not exclude the possibility that |A| < 1 if a larger disk than the foregoing is selected 
with a correspondingly larger value of r. The eigenvalues of the matrix В can be 
determined explicitly, and it then follows that the spectral radius condition p(B) < 1 
requires that r < 1/2. 

Matrix Stability for the Heat Equation 

The Θ difference scheme (11.2.36) (with 0 < Θ < 1) represents all the one-step 
schemes for the heat equation introduced in Section 11.2. It was seen to reduce to the 
explicit forward, implicit backward and Crank-Nicolson schemes if Θ = 0, Θ = 1, 
and Θ = 1/2, respectively. 

In the case of Dirichlet boundary conditions, the matrix representation of the Θ 
scheme is given in (11.2.41) with the matrices A and В defined in (11.2.38) and 
( 11.2.39). Using the special form of the matrices A and B, the eigenvalues of the 
matrix А~гВ can be shown to be 

ч _ , W(W(2(n + l)) m = l j 2 | . . . | n . ( u . 6 . 6 ) 
l+40r s in^m/ (2 (n + l)) 
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We must determine a condition on r such that — 1 < Xm < 1 for all the eigenvalues. 
Now the term s in 2 ^m/(2(n + 1)) > 0 for all 1 < m < n. As a result, each 
Xm < 1 for r > 0 and Θ > 0. To guarantee that all the Xm > —1 we must have 
(1 - 20) 4rsin2(nm/{2(n + 1)) < 2. Clearly, if 1/2 < 0 < 1, this condition is met 
for all r. If 0 < 0 < 1/2, we have 1 - 26» > 0, so that we obtain r < 1/(2 - 40). 
These conditions on r guarantee that the spectral radius р(А~гВ) < 1. As a result, 
we have the following matrix stability conditions for the 0 scheme in the case of 
Dirichlet boundary conditions. If 1/2 < 0 < 1, it is unconditionally stable. This 
includes the implicit backward and Crank-Nicolson schemes. If 0 < Θ < 1/2 it is 
conditionally stable with the stability condition r < 1/(2 — 40). With 0 = 0 we 
obtain the explicit forward difference scheme and the conditional stability condition 
r < 1/2. 

We do not exhibit general formulas for the eigenvalues of A~* В for the Θ scheme 
with general boundary conditions. Such formulas can be found if the matrices A 
and В can be expressed as linear combinations of simple matrices whose eigenvalues 
can be determined easily, as is the case for Dirichlet conditions. Instead, we use 
the Maple procedure HeatMatrix, which constructs the matrix form of a specific 0 
scheme and exhibits the corresponding matrices A and B. Then the Maple procedure 
HeatStability uses these matrices to determine the spectral radius p(A~lB) by 
finding the eigenvalues of A~lB. Thereby, the stability or instability of specific 
schemes can be established. 

The first procedure is given as HeatMatrix^, F(x, t), t = to, f(x),x = a..b, 
bel,g(t), ber, s(t),n, k,m, backward,Θ). The first 11 arguments are the same as 
those given for the procedures NumHeatForw and NumHeatBackw in Section 
11.2, with the exception that only an initial time t = t0 is entered. (We do not 
repeat the description of the arguments here.) The twelfth argument m prescribes 
the number of t steps in the scheme. If the thirteenth argument is backward, the 
Θ scheme is employed with the value of Θ prescribed in the fourteenth argument. 
The selection Θ = 0 in the fourteenth argument determines that the explicit forward 
difference scheme is used. The same result can be achieved by entering forward as 
the 13th argument and deleting the fourteenth argument. The output of the procedure 
displays the related initial and boundary value problem for the heat equation together 
with the values of A;, h, and r = k<?/h2, as is the case for NumHeatBackw, say. In 
addition, the matrix form of the difference scheme is displayed with r left unspecified. 
The final output of the procedure is the matrices A and B. (For the explicit forward 
scheme, A is always the identity matrix.) 

Once A and В are determined by the procedure HeatMatrix, the procedure 
HeatStability determines the spectral radius of the matrix A~lB by finding the 
eigenvalues of the matrix. Ithasiheform HeatStability(A,B) от HeatStability(B). 
The latter form can be used if A is the identity matrix. If Maple can determine the rel-
evant eigenvalues, and the output of the procedure, which is the value of the spectral 
radius, is less than or equal to 1, the schemes is stable. Otherwise, it is unstable. 
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Example 11.22. The Θ Difference Scheme: Dirichlet Conditions. The 
Maple procedure HeatMatrix(c2,F(x,t),t = 0,f(x),x = a..b,dirichlet,g(t), 
dirichlet, h(t), 5, к, 1, backward, Θ) applies the Θ difference scheme to the inho-
mogeneous heat equation (11.2.1) over the interval [o, b] with the initial condition 
u(x,0) = f(x) and the Dirichlet boundary conditions u(a,t) = g(i), u(b,t) = h(t). 
The x interval is divided into five equal parts and the time increment equals k. For 
this problem we have r = 25c2fc/(a — ò)2. 

The global variables LM and RM for the procedure determine the matrices A and 
B, and they agree with forms given in (11.2.38)—<11.2.39). (We are only interested 
in obtaining the matrices A and В in the matrix representation of the scheme.) On 
using Maple to determine the inverse of the matrix A and to obtain the eigenvalues 
of the matrix A~XB (invoking the procedure Eigenvalues in the Linear Algebra 
package) we find that the eigenvalues coincide with those given in (11.6.6), where 
we must put n — 4. 

We specialize the results by putting с = 1, a = 0, b = 1 and assigning spe-
cific values of Θ in the procedure. If we put Θ = 0, the explicit forward differ-
ence scheme results. The matrices A and В are determined by putting Θ — 0 in 
(11.217)—(11.218) and A is the identity matrix. The output of HeatStability(B) 
is maa;(|3.618r- 1|, |1.382i— 1|, |0 .38197r-1 | , |2.618r - 1|). This states that 
the spectral radius p(B) of В is the maximum of the absolute values of its four 
(listed) eigenvalues, and this maximum depends on the choice of r. The use of the 
Maple procedure solve(p(B) < 1) shows that forward difference scheme is stable 
if r < 0.55279. (The stability restriction r < 1/2 determined above applies as the 
number of x subdivisions increases without bound. If we increase the subdivisions 
for this problem, the upper bound for r decreases.) 

Next, we put Θ = 1/2 in the procedure and obtain the Crank-Nicolson difference 
scheme. The matrices A and В are determined by putting Θ = 1/2 in the foregoing 
results. The output of Heat Stability (A, B) (which we do not display) states that the 
spectral radius p{A~lB) of A~lB is the maximum of the absolute values of its four 
eigenvalues, which again depends on the choice of r. The use of the Maple procedure 
solve(p(A~1 B) < 1) determines that this inequality is satisfied for all r > 0. As a 
result the Crank-Nicolson scheme is unconditionally stable. 

Finally, we put 0 = 1/4 and obtain an implicit difference scheme. The matrices 
A and В are determined by putting 0 = 1/4 in the matrices LM and RM. The 
output of HeatStability(A, B) (which we do not display) states that the spectral 
radius p(A~1B) of А-1 В is the maximum of the absolute values of its four eigen-
values, which again depends on the choice of r. The use of the Maple procedure 
solve{p(A~lB) < 1) determines that this inequality is satisfied if r < 1.10557. For 
this range of r, the Θ = 1/4 difference scheme is stable. Again, the upper bound on 
r exceeds the stability bound 1 given above in our general discussion. 
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Example 11.23. The Θ Difference Scheme: Neumann and Robin Bound-
ary Conditions. The procedure HeatMatrix(c2, F(x, t), t = 0, f(x),x = 0..I, 
a, —g{t), ß, h(t), 5, k, 1, backward, Θ) applies the Θ difference scheme to the inho-
mogeneous heat equation (11.2.1) over the interval [0, /] with the initial condition 
u(x,0) = /(a;) and the boundary conditions— ux(0,t)+au(0,t) = —g(t), ux(l,t)+ 
ß u(l, t) = h(t). On setting a = ß = 0, we obtain Neumann boundary conditions. 
The x interval is divided into five equal parts and the time increment equals k. For 
this problem r = 25c2k/l2. We are only interested in obtaining the matrices A and 
В in the matrix representation of the scheme. The global variables LM and RM 
determine these matrices to have the following form, which we denote by C: 

~ l + 2re(l + f) -Ire 0 0 0 0 

-rè i + 2rè -rè о о о 
о -rè i + 2rè -rè о о 
о о -rè i + 2rè -rè о 
о о о -rè i + 2rè -rè 
0 0 0 0 -2гв l + 2rè(l + f) 

(11.6.7) 

If we set è = Θ, we have С = A, whereas if è = Θ — 1, we have С = В. With a = 0 
and /3 = 0, the matrices assume the forms appropriate for the Neumann problem. 

As in Example 11.22, we specialize the results by putting с = 1, a = 0, 6 = 1 
and assigning specific values of Θ, a, and β in the procedure. With Θ = 0, a = 
0, β — 0, the explicit forward difference scheme for the Neumann problem re-
sults. We insert these values in (11.6.7) and determine the matrices A = I and 
В for this problem. HeatStability(B) yields the spectral radius p(A_1B) as 
max([l., |.38197r - 1|, 11.3820т- - 1|, |4r - 1|, |3.6180r - 1|, |2.6180r - 1|). The 
use of solve(p(A~1 B) < 1) determines that this inequality is satisfied for r < 1/2, 
and this is the condition for stability. 

If we put Θ = 1, a = 0, β = 0, the implicit backward difference scheme for 
the Neumann problem results. Then, on using the appropriate matrices A and B, we 
obtain as the output of HeatStability(A, B), p(A~1B) = max(l., l . / | l + 4r|, .5| 
.7639r + 2\/\r2 + 3r + 1 | , .5|7.236r + 2|/|5r2 + 5r + 1|, .5|2.763r + 2|/|5r2 + 5r 
+ 1|, .5|5.236r + 2|/ |r2 + 3r + 1|). solve(\\i\ < 1) applied for each of the eigen-
values shows that p(A~1B) < 1 for all r > 0, so the scheme is unconditionally 
stable. Setting Θ = 1/2 in the above yields the Crank-Nicolson scheme. The spectral 
radius is given as max(l, 1 - 2 r / | l + 2r\, .5\2r2\ ± 8.9443r - 8|/|r2 +6r + 4|, 
.5|10r2 ± 8.9443т- - 8|/|5r2 + Юг + 4|), so р{А~1В) < 1 for all r > 0 and the 
scheme is unconditionally stable. 

The choice 0 = 0, a = 1, β = 1 yields the explicit forward difference scheme for 
a Robin boundary value problem. We insert these values into ( 11.6.7) to determine the 
matrix B. (The matrix A is the identity matrix.) The simplest method for determining 
the stability condition in this case is to determine the eigenvalues of the matrix В 
directly using the Maple procedure eigenvals from the linalg package. (The output 
from the procedure yields complex-valued eigenvalues with small imaginary parts, 
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which we equate to zero.) The list of absolute values of the eigenvalues is found 
to be [1.068558г - 1|, |3.7934r - l | , | 1 . 5381 r - l | , | . 52748r - l | , | 4 . 0943 r -
1|, |2.7782 г — 1|]. We use solve to determine the maximum value of r for which the 
absolute value of each eigenvalue is less than or equal to 1. This gives r < 0.48847 
as the stability condition for the difference scheme. 

We do not consider backward difference schemes for problems with Robin bound-
ary conditions. 

Convergence of Matrix Iteration Methods for Laplace's and Poisson's 
Equations 

The matrix forms of the Jacobi, Gauss-Seidel, and SOR iteration methods for Pois-
son's equation considered in Section 11.4 have the general form 

u(fc +1 ) = iu(fc) + b, k>0, (11.6.8) 

and the error was shown in (11.6.5) to be given as 

e(fc + 1) = u - u(k + 1) = i f c + 1e(0). (11.6.9) 

The iteration scheme converges if the spectral radius of Л is less than 1. An alternative 
condition for the convergence of the iteration scheme makes use of vector and matrix 
norms. 

The three basic vector norms are the Li, the Euclidean L?, and the maximum L^ 
norms. They are defined as 

Xl 

X2 IL· lb 

IWIi = y ] N i \\A\i = . У " № > ||x||oo = max |XÌ|, 
i = l \ i=\ 

(11.6.10) 
respectively. The corresponding induced matrix norms for an n x n matrix A with 
elements ац, can be shown to be given as 

1<1<п^—' » 1<г<п *—-■' 
i = l j=\ 

(11.6.11) 

where p(ATA) is the spectral radius of ATA. (For example, the matrix norm ||Α||ι 
corresponds to the vector norm | |x| 11.) For each norm we have the inequality ||Лх|| < 
||A||||x||. Weapplythisinequalityto(11.6.9)andobtain||e(A:-l-l)|| < | | i | | f e + 1 | |e(0)| | . 
Thus, if ||Л|| < 1 for any of the three norms, the iteration scheme converges. This 
is a useful result because it is generally easier to determine the L\ or L^ norm of a 
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matrix than its spectral radius. Nevertheless, we try to find the spectral radius A of the 
iteration scheme because it gives the sharpest result and determines the convergence 
rate of the scheme. 

The procedure LaplaceMatrix determines the matrix form Au = w for each of 
the finite difference schemes for Poisson 's equation presented in Section 11.4. The 
output of the procedure is the matrix A. (The global variable CoeffMatrix displays 
this matrix.) Then LaplaceConvergence(A, Method) constructs the matrix A in 
the equation u(k + 1) = Au(fc) + w that occurs in the Jacobi, Gauss-Seidel, or SOR 
iteration methods for the given difference scheme. The second argument, Method, 
in the procedure must be Jacobi, Gauss-Seidel, or SOR. If it is SOR, the relaxation 
parameter ω must be added as a third argument. It must satisfy 0 < ω < 2. The 
procedure finds and displays the spectral radius of A. If an arbitrary third argument 
is added for the Jacobi and Gauss-Seidel cases, and an arbitrary fourth argument is 
added in the SOR case, the L\, L2, and Loo norms of the matrix and the convergence 
rate of the iteration scheme are also displayed. 

Finally, we have constructed a procedure OptimalSOR(A, ωι, Increment) that 
determines an (approximate) optimal value of the parameter ω in the SOR scheme. 
This is accomplished by iterating the LaplaceConvergence procedure. The first 
argument in the procedure is the matrix A, which is the output of the LaplaceMatrix 
procedure. A (trial) value of the relaxation parameter ω, denoted by ω/, is entered, 
together with the value of the Increment, which we refer to as s. Then a sequence 
of LaplaceConvergence procedures is invoked, using the SOR scheme in which 
the relaxation parameter takes the set of values u>i + is, г = 1,2, This yields 
a sequence of spectral radii. The iteration ends when a newly determined spectral 
radius has a greater value than the one that precedes it in the sequence. When this 
happens, the spectral radius, the convergence rate, and the final (optimal) value of the 
relaxation parameter WF are displayed. To achieve the best results most rapidly, a 
larger value of s can be used on applying the procedure initially, say s = 0.1. Once the 
first approximate optimal value ωρ is found, the value ωρ — s with a new smaller value 
of the increment, say s = 0.01, is entered in the procedure. This process can then 
be iterated in an obvious way, to determine increasingly improved approximations to 
the optimal relaxation value. 

Example 11.24. A Dirichlet Problem for Laplace's Equation. The prob-
lem ( 11.4.14)-( 11.4.15) given in Example 11.10 was solved via iteration in Exam-
ple 11.13. We apply LaplaceMatrix(0,x = 0..1, dirichlet, 1, dirichlet, 0, у = 
0.. 1, dirichlet, 0, dirichlet, 0,4,4) to determine the coefficient matrix A for the 
difference scheme for this problem. The output of the procedure or of CoeffMa-
trix gives the matrix A, which we do not display. Next, we apply the procedure 
LaplaceConvergence to the matrix A. The use of LaplaceConvergence 
(A,Jacobi,r) yields \\À\\i = 1, | | i | | 2 = 0.70711, ||ijjoo = 1, Spectral Radius = 
0.70711, Convergence Rate = 0.15051 for the matrix A that arises in the Jacobi it-
eration scheme. (The arbitrary third argument in the procedure, r, causes Maple to 
display the additional information exhibited here.) Then, LaplaceConvergence 
(A, Gauss - Seidel,r) gives, for the Gauss-Seidel method, ||A||i = 0.86719, 
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| | i | | 2 = 0.61070, Hilloo = 0.81250, Spectral Radius = 0.5, Convergence Rate = 
0.30103. It is seen that the convergence rate for the Gauss-Seidel method is twice that 
for the Jacobi method. (This is the case in general.) Finally, LaplaceConvergence 
{A,SOR,l.2,r) gives, for the SOR method, \\À\\i = 0.8546, | | i | | 2 = 0.57638, 
||i||oo = 0.8600, Spectral Radius = 0.2, Convergence Rate = 0.69897, with the 
relaxation parameter ω = 1.2. The convergence rate for the SOR method is more 
than twice that of the Gauss-Seidel method. The foregoing results for the conver-
gence rates are consistent with those obtained in Example 11.13, where the number 
of iterations required for each of the three schemes (for a given error tolerance) was 
obtained. We observe that for each case, the spectral radius is less than or equal to 
each of the three matrix norms. 

To find an optimal value for the relaxation parameter in the SOR method we use the 
procedure Optimal SOR. We begin with ωχ = 1.2. The output of Optimal SOR 
(A, 1.2,0.01) gives 1.2 as the value of the relaxation parameter. Thus, the opti-
mal value is smaller than 1.2. With uij = 1.1, OptimalSОR(A, 1.1, .01) yields 
ωΡ = 1.18. Next, OptimalSOR(A, 1.17, .001) gives uF = 1.172. Finally, 
OptimalSOR(A, 1.171, .0001) finds that Spectral Radius = 0.17160, Convergence 
Rate = 0.76548, and ωρ = 1.1716. The convergence rate is now five times as great 
as that for the Jacobi method and more than two and one-half times great as that for 
the Gauss-Seidel method. 

Exercises 11.6 

11.6.1. Verify the numerical results of Example 11.22 using HeatMatrix and 
HeatStability. 

11.6.2. Verify the numerical results of Example 11.23 using HeatMatrix and 
HeatStability. 

11.6.3. Verify the numerical results of Example 11.24 using LaplaceMatrix, 
LaplaceConvergence, and OptimalSOR. 

11.7 FINITE DIFFERENCE METHODS FOR FIRST ORDER 
HYPERBOLIC EQUATIONS AND SYSTEMS 

Linear first order scalar PDEs and the exact and numerical solution of initial value and 
initial and boundary value problems for these PDEs have been considered a number of 
times in this book. In Chapter 1 it was shown that certain random walks are related to 
a class of finite difference schemes for the numerical solution of initial value problems 
for first order PDEs. In Chapter 2, numerical solution methods for first order scalar 
PDEs based on the method of characteristics were presented. First order hyperbolic 
systems of PDEs were studied in Chapter 3. Here we construct a number of difference 
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schemes for first order scalar PDEs, with constant coefficients, of the form 

ut(x, t) + aux(x, t) = bu(x, t) + F(x, t), (11.7.1) 

and systems of PDEs in matrix form with constant coefficient matrices 

ut(x,t) + Aux(x,t) = Bu{x,t)+F{x,t). (11.7.2) 

The scalar equation (11.7.1) can be solved exactly, as was shown in Section 2.2, 
so that there appears to be no need for numerical solution methods. Nevertheless, it 
useful to develop such methods for the insight it yields into the construction of cor-
responding methods for equations with variable coefficients. The numerical method 
of characteristics can be used for these PDEs, but the results do not determine the 
solution over a regular grid in (x, i)-space without additional effort. In the case of 
systems with constant coefficients, it is rarely possible to obtain exact solutions. 

A number of difference schemes will be constructed for ( 11.7.1 )-( 11.7.2) by re-
placing derivatives by difference quotients and introducing some modifications of the 
resulting expressions. The forward, backward, and centered differences defined in 
Section 11.1 will be used. 

First Order Scalar PDEs 

We assume in the following that A; is the t increment and h is the x increment in the 
difference approximations. Then, on approximating ut(x, t) by a forward difference 
quotient and ux(x, t) by a backward difference quotient in ( 11.7.1 ), we obtain 

u(x,t + k) = ( 1 - у + kbj u(x,t) + (ψ\ u(x -h,t) + kF{x,t). (11.7.3) 

Next, we determine the truncation error that results on replacing (11.7.1) by the 
difference equation (11.7.3). Applying the Maple procedure mtaylor to (11.7.3) 
gives 

ut{x,t) + aux(x,t)-bu(x,t)-F{x,t) « - - u t t k - -utttk
2 + -uxxh- -uxxxh

2. 

(11.7.4) 

Thus, the truncation error is of 0(k + h) and the difference equation is consistent 
with the first order PDE (11.7.1). 

With (xi,tj) = (ih, jk) we can write the difference equation ( 11.7.3) as 

Ui,j+i = (1 - r + kb)uitj + гщ-ij + kFij, (11.7.5) 

where r = ka/h. This is known as the explicit forward-backward difference scheme 
for the numerical solution of (11.7.1). The value of MJI J +I is known once щ^ and 
Щ-ij are determined. For an initial value problem for (11.7.1) with u(x,0) = f(x), 
wehaveuj,o = /(#i)· If a boundary condition u(0,i) = hit) is prescribed at a; = 0, 
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and the solution is to be found for x > 0, we have uoj = h(tj). In either case, the 
Ui,j, 3 > 1. can be determined step by step at the grid values for the problem. 

If a > 0 in (11.7.1), the characteristic that passes through the point (x», tj) = 
(ih,jk) is the straight line x — at — xi — atj = ih — ajk. It intersects the x-axis at 
the point x = Xi — atj = ih — ajk, which lies to the left of x^. Thus, the domain of 
dependence of the solution of the initial value problem for the PDE ( 11.7.1 ) at t = tj 
with x > Xi is given by the set of points in the (closed) region bounded on the left by 
the characteristic line, below by the interval [xi — atj,oo) on the x-axis, and above 
by the interval [x*, co) on the line t = tj. 

The corresponding domain of dependence of the solution mj of the explicit 
forward-backward difference scheme (11.7.3) at t = tj with x > x* is readily 
found to be set of grid points in the (closed) region bounded on the left by the line 
x—ht/k = Xi — htj/k = ih — hj, below by the interval [xi — htj/k, co) onthex-axis, 
and above by the interval [XJ, со) on the line t = tj. We see that if —htj/k < —atj 
or, equivalently, r = ak/h < 1, the numerical domain of dependence includes (or 
coincides with) the domain of dependence for the PDE. If r > 1, the reverse is true. 
The restriction r < 1 is the CFL stability condition or the Courant stability condition 
for this problem. It signifies that the numerical solution must make use of all the data 
that is required for the determination of the exact solution over the given interval; 
otherwise, the numerical solution will fail to converge to the exact solution. The 
domains of dependence for the PDE and numerical scheme in the unstable case are 
displayed in Figure 11.6. 

Figure 11.6 The unstable case: r > 1. 

The CFL stability condition r < 1 agrees with the result obtained for the random 
walk characterized by ( 1.4.7), which corresponds to the foregoing difference scheme 
if we set F(x, t) = 0 and ò = 0 in the problem. The von Neumann stability condition, 
to be obtained below, is also in agreement. 

Next, we approximate both ut(x, t) and ux(x, t) by forward difference quotients 
in (11.7.1) and obtain 

u{x,t + k)= (l + ^+kb\u(x,t)- (^\u(x + h,t) + kF(x,t). (11.7.6) 

The truncation error that results on replacing (11.7.1) by (11.7.6) is given as (on 
using the Maple procedure mtaylor) ut(x,t) + aux(x,t) — bu(x,t) — F(x,t) ~ 
— (1/2)иик - (1/6)ишк2 — (a/2)uxxh - (a/6)uxxxh

2. Thus, the truncation error 
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is of 0(k + h) and the difference equation is consistent with the first order PDE 
(11.7.1). 

Setting (xi,tj) = (ih, jk), we can write the difference equation ( 11.7.6) as 

Uij+i = (1 + r + kb)uij - гщ+ij + kFitj, (11.7.7) 

where r = ka/h. This is the explicit forward-forward difference scheme for the 
numerical solution of (11.7.1). The value of UjiJ+1 is known once uitj and щ+ij 
are determined. For an initial value problem for (11.7.1) with u(x,0) = f(x), 
we have ω^ο = f(xi)- If a boundary condition u(xN,t) = h(t) is prescribed at 
x = XN = Nh, N > 0, and the solution is to be found for x < XN, we have 
UJVJ = h(tj). In either case, the щ^, j > 1, can be determined step by step at the 
grid values for the problem. 

If о < 0 in (11.7.1), the characteristic that passes through the point (xi,tj) = 
(ih,jk) is a straight line x — at — Xi — atj = ih — ajk that intersects the x-axis at 
the point x — Xi — atj = ih — ajk, which lies to the right of Xi. Thus, the domain of 
dependence of the solution of the initial value problem for the PDE ( 11.7.1 ) at t — t j 
with x < Xi is given by the set of points in the (closed) region bounded on the right 
by the characteristic line, below by the interval (—oo, Xi — atj] on the x-axis, and 
above by the interval (-oo, Xi] on the line t = tj. 

The corresponding domain of dependence of the solution щ j of the explicit 
forward-forward difference scheme (11.7.3) at t = tj with x < Xi is readily found 
to be set of grid points in the (closed) region bounded on the right by the line 
x + ht/k = Xi + htj/k = ih + hj, below by the interval (—oo,ar, + htj/k] on 
the ж-axis, and above by the interval (—oo, Xi] on the line t = tj. We see that if 
htj/k > —atj or, equivalently, r = ak/h > — 1, the numerical domain of depen-
dence includes (or coincides with) the domain of dependence for the PDE. If r < — 1, 
the reverse is true. Thus, the CFL stability condition for this problem is r > — 1. The 
domains of dependence for the PDE and numerical scheme in the unstable case are 
displayed in Figure 11.7. 

Figure 11.7 The unstable case: r < —1. 

The CFL stability condition r > — 1 agrees with the result obtained for the random 
walk characterized by ( 1.4.8), which corresponds to our difference scheme if we set 
F(x, t) = 0 and ò = 0 in our problem. The von Neumann stability condition, to be 
obtained below, is also in agreement. 
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If we approximate ut(x,t) by a forward difference and ux(x, t) by a centered 
difference in ( 11.7.1 ), we obtain 

u(x,t + k) = (l + kb)u(x,t)-7£-(u(x + h,t)-u(x-h,t)) + kF(x,t). (11.7.8) 

The truncation error that results on replacing (11.7.1) by the difference equation 
(11.7.8) is obtained on applying the Maple procedure mtaylor to (11.7.8) which 
gives 

ut(x,t)+aux(x,t)-bu(x,t)-F(x,t) « --uuk--umk2--uxxxh
2. (11.7.9) 

I О О 

Thus, the truncation error is of 0(k + h2) and the difference equation is consistent 
with the first order PDE (11.7.1). 

With (xi, tj) = (ih, jk) we can write the difference equation (11.7.8) as 

Uij+i = (1 + Щщ^ - r/2(ui+ij - iti_i,j) + kFij, (11.7.10) 

where r = ka/h. This is the explicit forward-centered difference scheme for the 
numerical solution of (11.7.1). The value of щ^+\ is known once Uij, « i - i j ) and 
Ui+ij are determined. For an initial value problem for (11.7.1) with u(x,0) = f(x), 
we have гц,о = f(xi)· 

It follows from the above that CFL stability condition for this difference scheme 
is r < 1. If we set F = 0 and b = 0 in the foregoing difference scheme, it has no 
random walk interpretation since one of the coefficients in the difference equation is 
negative whether a is positive or negative. A von Neumann stability analysis shows 
that the scheme is unconditionally unstable. As a result, we conclude that the CFL 
stability condition can at best serve as a necessary condition for stability but is not 
sufficient to guarantee stability. 

The explicit forward-centered difference scheme can be modified to yield a condi-
tionally stable difference scheme. In the forward difference approximation of iti (x, t) 
we replace u(x, t) by [u(x + h,t) + u(x - h, i)]/2. Then 

u(x,t+k) = kbu(x,t)+(- - -£- j u(x+h,t)+(- + - ^ J u(x-h,t))+kF(x,t). 

(11.7.11) 

The truncation error that results on replacing ( 11.7.1 ) by ( 11.7.11 ) is of 0(k + h2 ), 
so that the difference equation is consistent with ( 11.7.1 ). 

With {xi,tj) = (ih, jk) we can write the difference equation (11.7.11) as 

Uij+i = kbuij + - ( 1 - r)ui+u + - ( 1 + r)ui-itj + kFitj, (11.7.12) 

where r = ka/h. This is the explicit Lax-Friedrichs difference scheme for the nu-
merical solution of (11.7.1). Proceeding as before, we find that the CFL stability 
condition is \r\ < 1. If we set F = 0 and 6 = 0 in the scheme, it agrees with the 
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random walk characterized by (1.4.9). It was shown that we must have \r\ < 1 for the 
validity of the random walk interpretation of ( 1.4.9). This result agrees with the von 
Neumann stability condition to be obtained below, so that the scheme is conditionally 
stable. 

A difference scheme with a reduced truncation error can be obtained by proceeding 
as follows. We use the Taylor series to obtain the approximation u(x, t + к) ~ 
u(x, t) + ut(x, t)k + (l/2)utt(x, t)k2 and differentiate the PDE (11.7.1) to obtain 
utt(x,t) = but(x,t) + Ft(x,t) — auxt{x,t). Substituting the foregoing equation and 
(11.7.1) into a Taylor approximation yields u(x, t + k) ÄS (1 + kb + k2b2/2)u(x, t) — 
(ka + k2ab)ux(x, t) + (k2a2/2)uxx(x, t) + (k + k2b/2)F(x, t) + (k2/2)Ft(x, t) -
(k2a/2)Fx(x, t). If we approximate ux(x, t) and uxx(x, t) in the above by centered 
differences, we obtain 

u(x, t + k) = {l-r2 + kb + k2b2/2)u(x, t) + ( - r / 2 + r2/2 - krb/2)u{x + h, t) 

a . . 

(11.7.13) 
+ (r/2+r2/2 + krb/2)u(x-h,t) + (k+k2b/2)F(x,t) + ^-Ft(x,t)-'^Fx(x,t), 

with r — ka/h. The truncation error can be shown to be of 0(k2 + h2). 
With (xi,tj) = (ih,jk) we can write the difference equation (11.7.13) as 

„2 , . , , 1 ,2,2\ . -Г + Г2+ krb 
Uij+i = l l - r +kb+-k b 1 mj H ui+1j 

+ Г + г2 + кгЬ
 Ui.hj + (k + ψ ) Fid + у [(Ft)itj - aiFJu], (11.7.14) 

where r = ka/h. This is the explicit Lax-Wendroffdifference scheme for the numer-
ical solution of (11.7.1). We again find that the CFL stability condition is |r| < 1. 
Next, we set F = 0 and b = 0 in the scheme and attempt to characterize the resulting 
difference equation as a random walk. This requires that each coefficient 1 — r2, 
(r2 — r)/2, and (r2 + r) /2 must be bounded below by 0 and above by 1, as it must 
represent a probability. From 1 - r2 > Owe conclude that \r\ < 1, which yields 
r2 < \r\. Then, if a > 0, so that r > 0, we see that the coefficient (r2 — r) /2 is 
negative. If о < 0, so that r < 0, the coefficient (r2 + r) /2 is negative. As a result, 
the Lax-Wendroff scheme has no random walk representation if F = 0 and 6 = 0 
for any nonzero r. Nevertheless, the von Neumann stability condition is found to be 
\r\ < 1, in agreement with the CFL result, so that the scheme is conditionally stable. 

We conclude from the above that the CFL stability condition is a necessary con-
dition for the stability of an explicit difference scheme. If the scheme has a random 
walk representation when F = 0 and ò = 0, subject to a restriction on the parameter 
r, this (apparently) determines a sufficient condition for the stability of the scheme. 
We expect the scheme to be stable in this case, because the coefficients yield weighted 
averages of the values of U(XÌ, tj + 1) = «i,j+i at the earlier time t = tj, and this 
prevents the unbounded growth of the initial values. (If b ф 0, some growth can be 
allowed.) Yet the possibility of constructing a related random walk representation for 
the scheme is not a necessary condition for the stability of a difference scheme. 
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There are implicit difference schemes that correspond to the explicit forward-
backward and forward-forward difference schemes introduced above. The implicit 
backward-backward difference scheme is obtained by approximating both щ(х, t) 
and ux(x,t) by a backward difference quotient in (11.7.1). This yields Uij = 
(1 + r — kb)uij+i - rui-\j+i — kFij+ι. The truncation error can be shown to be of 
0(k + h). The implicit backward-forward difference scheme is obtained by approxi-
mating ut(x, t) by a backward difference quotient and ux(x, t) by a forward difference 
quotient in (11.7.1). This yields Uij = (1 — r — кЬ)щ^+\ + rui+ij+i — kFitj+\. 
The truncation error can be shown to be of 0(k + h). 

In both implicit methods, the solution values щ^+\ and щ-\^+\ or щ+\^+\ must 
be determined in terms of the known solution value Uij. In the case of an initial value 
problem, this requires that an infinite number of simultaneous equations be solved 
to move from one time step to the next, even if the solution is required at a finite 
number of grid points. However, if an initial and boundary value problem is to be 
considered, the foregoing implicit methods can be used without having to solve a 
system of simultaneous equations. For example, if a > 0 and u(x, 0) = f(x) and 
u(0, t) = h(t) are prescribed (with the solution to be found for x > 0, t > 0), the 
implicit backward-backward difference scheme can be used to determine щ д in terms 
of the known values иод and u\$. Next, u2,i can be determined from known values, 
and so on. This process can be continued to determine u^j for alH > 1 and j > 1. 
A similar solution process can be carried out using the implicit backward-forward 
difference scheme if a < 0 and the solution is to be found for x < 0, t > 0. Both 
schemes are unconditionally stable. 

In general, the numerical solution of initial and boundary value problems for first 
order PDEs using the Lax-Friedrichs, Lax-Wendroff, or implicit difference schemes 
requires the introduction of an additional boundary condition, either to reduce the 
number of calculations to a manageable size or to carry out the scheme at all. How 
this can be done is not discussed here. It is touched upon in Section 11.10, where 
built-in Maple finite difference methods are presented. 

Each of the foregoing schemes is a one-step scheme in the time variable. If we 
approximate ut{x, t) and ux(x, t) by a centered difference quotient in (11.7.1), we 
obtain the two-step difference scheme 

Uij+i = Uij-i + r(ui_i,j - Ui+i,j) + 2kbuij + 2kFitj, (11.7.15) 

where r = ka/h. This explicit centered-centered difference scheme is also known 
as the leapfrog scheme. The truncation error can be shown to be of 0(k2 + h2). A 
von Neumann stability analysis shows that it is stable if \r\ < 1. If we apply this 
scheme to the initial value problem for the PDE, we need a method to determine the 
values Uj,i since only щ,о is given in terms ofthe initial data. Any of the explicit one-
step methods given above can be used to determine these values. Even the explicit 
forward-centered scheme can be used. Stability is not an issue, as we apply the 
method for only one step. 

NumHypSysExplicit([[a}}, [[&]], [F(x,t)],t = 0..r, [f(x)},x = 0..l,r/k,l/h, 
Method) constructs numerical solutions of (11.7.1) with the initial condition 
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u(x, 0) = f(x) over the interval [0,1} at the time t = т. The x and t increments 
are h and k, respectively. The last argument determines which of the above four 
one-step explicit methods is to be used in the procedure. It must be given as Forward-
Backward, Forward-Forward, Lax-Friedrichs, or Lax-Wendroff. The output of the 
procedure exhibits the initial value problem to be solved and the values of h and k. 
Also, the value of r = ka/h is displayed and we must have \r\ < 1 for stability. 
The values of щ^ are given as an array at the x grid points evaluated at the time 
tj = jk = т. The global variable ScalSol displays the x grid points together 
with the approximate solution values as a list. plot(ScalSol) plots the approximate 
solution. 

Example 11.25. An Initial Value Problem. The procedure NumHypSys 
Explicit([[4}}, [[-1]], [8xt-8x+A+xH-4t],t = 0..1, [ -х2+ехр(-ж/4)+8],х = 
0..1,5,30, Method) uses any of the four one-step methods introduced above. The 
first order PDE to be solved is 

ti((i,i) + 4tiI(2;1i) = —u(x,i) + 8a;i-8x-|-4-(-a;2i-4i, 0 < x < 1, (11.7.16) 

and the initial condition is 

u(x, 0) = -x2 + exp(-x/4) + 8. (11.7.17) 

The exact solution of the problem (11.7.16)—(11.7.17) is 

u(x, t) = (t- l)x2 + exp(-z /4) + 8 - 4t. (11.7.18) 

The numerical solution is to be found at t = 1 with h = 1/5 and к = 1/30. This 
gives r = ka/h = 4(5)/30 = 2/3. 

The following array displays the exact and numerical results at the time t = 1 at 
the listed values of x: 

X 

0 
0.2 
0.4 
0.6 
0.8 
1 

Exact 
5 

4.951 
4.905 
4.861 
4.819 
4.779 

F-B 
4.806 
4.756 
4.708 
4.663 
4.620 
4.579 

F-F 
-7.887 
15.06 

-2.176 
11.84 

-3.608 
16.90 

L - F 
4.708 
4.658 
4.609 
4.563 
4.519 
4.478 

L-W 
5.002 
4.953 
4.907 
4.862 
4.820 
4,780 

Each scheme is stable except for the forward-forward scheme. The instability ofthat 
scheme accounts for the wildly oscillatory values in the output of the procedure. As 
for the three other schemes, the Lax-Wendroff scheme yields the best agreement with 
the exact results. The results from the forward-backward scheme are better than those 
from the Lax-Friedrichs scheme. 
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Example 11.26. An Initial and Boundary Value Problem. We reconsider the 
problem of Example 11.25 and add a boundary condition u(0, t) = 9 — At at x = 0, 
with the solution to be found for a; > 0. The exact solution ofthe problem is (11.7.18), 
as given in Example 11.25. The procedure NumHypSysExplicit can solve ini-
tial and boundary value problems using the forward-forward and forward-backward 
schemes. Here we must use the forward-backward scheme. All the arguments used in 
Example 11.25 are retained and we add the additional tenth argument 9 - At, which 
represents the boundary condition at x = 0. We do not display the array that is 
the output of the procedure, but exhibit the output of the global variable ScalSol. 
It is [[0.,5.0], [.20,4.951], [.40,4.902], [.60,4.854], [.80,4.806], [1.0,4.759]], and it 
can be plotted using Maple's plot procedure. 

First Order Hyperbolic Systems 

Each of the four conditionally stable explicit one-step difference schemes introduced 
above for the scalar PDE (11.7.1) carries over to the hyperbolic system (11.7.2) with 
constant coefficient matrices. We recall that the system ( 11.7.2) is hyperbolic if all 
the eigenvalues of the n x n matrix A are real and there are n linearly independent 
eigenvectors. Although we are now working with vectors and matrices, we retain the 
notation introduced above in the scalar case. We represent the n x n identity matrix 
by / in our discussion. 

The analysis of first order hyperbolic systems is closely connected with the study 
of first order scalar PDEs as was shown in Section 3.3. Each hyperbolic system of 
the form (3.3.42) [where y, C, and d are replaced by t, B, and F, respectively, for our 
system (11.7.2)] can be represented in the normal form (3.3.45) or the characteristic 
form (3.3.46). We observe that if В = 0, the normal form (3.3.45) represents an 
uncoupled system of n first order scalar PDEs for the components of the vector v, 
since Л is a constant matrix. [The vector v in (3.3.45) is defined as v = Д - 1 и , where 
R is a matrix whose column vectors are the eigenvectors of A] Each component 
Vi(x, t), г = 1,2,.. . , n, of \(x, t) satisfies a first order PDE of the form (11.7.1), 
with a = Xi, the zth eigenvalue of A, b = 0, and F(x, t) defined appropriately. As a 
result, we can apply the foregoing difference schemes for each ofthe scalar equations 
satisfied by the components Vi(x, t). [Even if В ф 0 and the scalar equations for the 
Vi(x, t) are coupled, this can still be done, since the principal parts ofthe equations 
are uncoupled.] 

Each scalar equation can be dealt with separately, but we want to deal with all n 
equations simultaneously and apply the same difference scheme for each equation. 
Thus, the use of the explicit forward-backward difference scheme for each scalar 
equation would require that Xi > 0 and that n = kXi/h < 1 for each eigenvalue if 
the scheme is to be stable for each equation. Similarly, the use of the explicit forward-
forward difference scheme for each scalar equation would require that A* < 0 and that 
Ti = к Xi I h > — 1 for each eigenvalue if the scheme is to be stable for each equation. 
The use of the Lax-Friedrichs or Lax-Wendroff difference schemes for each scalar 
equation would require that ri = k\Xi\/h < 1 for each eigenvalue if the scheme is 
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to be stable for each equation. In keeping with these observations, we apply each 
of the four explicit difference schemes to the (unmodified) system ( 11.7.2) directly. 
In each case, except for the Lax-Wendroff scheme, the difference equations have the 
same general form as in the scalar case. 

The explicit forward-backward difference scheme for the numerical solution of 
(11.7.2) is given in increment form as 

( к А \ к А 

I - — + kB\ u(x, t) + -r- u(x - ft, t) + k¥(x, t), (11.7.20) 
and in subscript form as 

( kA \ kA 

I - — + kBjUij + — Ui-u + kFij. (11.7.21) 
The truncation error is again of 0(k + ft). The stability condition is λ, > 0 and 
ri = kXi/h < 1 for each eigenvalue of A. 

The explicit forward-forward difference scheme for the numerical solution of 
(11.7.2) is given in increment form as 

( kA \ kA 

I+ — + kB\ u{x,t)--r-u{x + h,t) + k¥{x,t), (11.7.22) 
and in subscript form as 

( kA \ kA 

1+ — +kB\ uitj - —Ui+u+kFij. (11.7.23) 
The truncation error is again of 0(k + h). The stability condition is Ai < 0 and 
ri — kXi/h > — 1 for each eigenvalue of A. 

The Lax-Friedrichs difference scheme for the numerical solution of (11.7.2) is 
given in subscript form as 

( I kA\ (1 kA\ 

2~lh) " i + l j + I 2 + 2ft ) Ui~hj + kFi'j- (1 L 7 ·2 4) 
The truncation error is of 0(k + h2). The stability condition is |r»| = k\\i\/h < 1 
for each eigenvalue of A. 

Finally, the Lax- Wendroff difference scheme for the numerical solution of ( 11.7.2) 
is given in subscript form as 

k2A2 , n k2B2 

"ij+i = I i - - T O - +kB + —— uitj 

( kA k2A2 k2(AB + BA)\ / &Β\„ , „ , „ « + Ы + -^ - 4/, ju^+r+— j F - ( η · 7 · 2 5 ) 

\ k2 fd¥\ k2A fd¥\ fkA k2A2 k2{AB + BA) 

2ft 2ft2 4ft 
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The truncation error is of 0(k2 + h2). The stability condition is |r-j| = k\Xi\/h < 1 
for each eigenvalue of A. 

We see that the. forward-backward ana forward-forward difference schemes can 
only be used if all the eigenvalues of A have the same sign. The Lax-Friedrichs and 
Lax-Wendroff difference schemes permit A to have positive, negative or even zero 
eigenvalues. It is a straightforward matter to extend the leap-frog difference scheme 
to systems. Similarly, implicit forward-backward and forward-forward difference 
schemes can be constructed. These schemes can be used for initial and boundary 
value problems. The number of boundary conditions imposed at a boundary line 
depends on the signs of the eigenvalues of the matrix A. Since the eigenvalues are all 
of one sign, by assumption, if the forward-backward and forward-forward difference 
schemes are to be stable, it is an easy matter to assign boundary conditions for these 
schemes, just as for the scalar case. We do not consider these matters here. 

The Maple procedure NumHypSysExplicit can also be used to construct nu-
merical solutions of the hyperbolic systems of first order PDEs (11.7.2) over the 
interval [0,/] at the time t = r, with the initial condition u(x, 0) = f(:r). The x 
increments equal h and the t increments are given as k. The first two arguments of 
the procedure are a list of lists that prescribe the coefficient matrices A and В for 
the system. The third and fifth arguments are lists that specify the inhomogeneous 
term F(x, t) and the initial value f(x), respectively, for the problem. As was the case 
before, the last argument of the procedure determines which of the four one-step 
explicit methods introduced above is to be used in the procedure. It must be given as 
Forward-Backward, Forward-Forward, Lax-Friedrichs, or Lax-Wendroff. 

The output of the procedure exhibits the initial value problem to be solved and the 
values of the increments h and k. Additionally, the eigenvalues of A and the stability 
condition for the discrete problem are displayed. The components of the numerical 
solution Ujj are given as an array that exhibits their values at the x grid points for the 
time tj = jk = т. 

The foregoing procedure is applied to a specific initial value problem in the 
Example 11.27. 

Example 11.27. An Initial Value Problem fora Hyperbolic System. The 
procedure NumHypSysExplicit([[3, - 1 ] , [-1,2]], [[-2,4], [1, -3]], [6x + 2x2 -
4ί2,2ί - 2x -x2 + 3t2],t = 0..1,[ж2,0],а; = 0..1,8,30,Method) constructs a 
numerical solution of the following initial value problem for the two-component 
vector u(x, t), where the Method must be prescribed: 

ut{x,t) + 3 - 1 
- 1 2 (x,t) = 

- 2 4 
1 - 3 u(x, i ) + 6x + 2x2 - 4i2 

2i - 2x 3t2 

u(x, t) — 
ui(x,t) 
u2(x,t) 

u(z,0) X 

0 
(11.7.26) 

As indicated by the arguments of the procedure, the x interval [0,1] is divided into 
eight equal parts, so that h = 0.125. The value of the time step is к — 1/30 and 
the numerical solution is to be found at t = 1. The exact solution of the initial value 
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problem is u (x, t) = [x2,t2]T. Weenter Forward—Backward for the method to be 
used in the procedure. Then the eigenvalues of A are found to be λι = 1.381966011 
and λ2 = 3.618033989 and the stability parameter has the value 0.9648091, so that 
the method is stable. 

As can be seen from the output of the procedure given below, and comparing the 
numerical and exact solution values, the agreement between the numerical and exact 
results is not that good: 

X 

0.0 
0.12 
0.25 
0.38 
0.50 
0.62 
0.75 
0.88 
1.0 

ui (x,1) 
0.1285 
0.1442 
0.1911 
0.2693 
0.3788 
0.5195 
0.6914 
0.8946 
1.129 

u2 (x, 1) 
0.9841 
0.9841 
0.9841 
0.9841 
0.9841 
0.9841 
0.9841 
0.9841 
0.9841 

(11.7.27) 

For example, at x = 0 the exact solution value of ui(x,t) equals 0, whereas the 
procedure yields 0.1285. The exact value of ω2(#, l)equals 1, whereas the procedure 
gives 0.9841. A comparison of all solution values shows the maximum error to be of 
0(h), with h = 0.125. 

Since the eigenvalues are both positive, the forward-forward scheme is unstable 
and the output of the procedure has no relation to the exact solution values. Finally, 
we use the Lax-Wendrojf scheme, and this yields 

X 

0.0 
0.12 
0.25 
0.38 
0.50 
0.62 
0.75 
0.88 
1.0 

ui (x,l) 
-0.0005062 
0.01519 
0.06214 
0.1403 
0.2498 
0.3905 
0.5624 
0.7656 
1.0 

u2 (x, 1) 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 

(11.7.28) 

The numerical results are now extremely accurate. 
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von Neumann Stability for First Order PDES and Hyperbolic 
Systems of PDEs 

The von Neumann stability condition for scalar difference schemes was introduced 
in Section 11.5. If ыи,т is a solution of a linear, homogeneous difference equation, 
we put un,m = amexp(ißn). The von Neumann stability condition requires that 
for all ß in the interval [0,2π], the amplification factor a must satisfy \a\ < 1 or 
|Q| < 1 + O(k), where к is the time increment. 

For vector difference schemes for и„ , т , we put un>m = am exp(ißn), where 
a m = [αψ, αψ,..., aJ}]T (the vector un>m has N components) into the difference 
equation. This yields an equation a m + 1 = M a m , where the amplification matrix 
M depends on ß, h, and k. Stability requires that Mm does not grow without bound 
a s m - ю о , as will be the case if the spectral radius p(M) satisfies p(M) < 1. This 
is the von Neumann stability condition. It requires that max(|Aj| < 1) for all the 
eigenvalues Aj. 

Example 11.28. The Forward-Backward and Backward-Backward Differ-
ence Schemes: The Scalar Case. The explicit forward-backward difference 
scheme with F = 0 is 

%,m+i = (1 - r + kb)un,m + ru„_i ,m , (11.7.29) 

where r = ka/h. On inserting un ,m = am exp(ißn) into (11.7.29), we obtain 

a = (1 - r ( l - cos(/?)) + fcò) - (rsin(/3))i, (11.7.30) 

on separating the exponential into real and imaginary parts. For stability the modulus 
of a must satisfy \a\ < 1. This yields, for the squared modulus, \a\2 = (1 — 
r( l - cos(/3)) + fcò)2 + (rsinCS))2 = 1 - 2r(cos(ß) - l)(r - 1) + 0(k) < 1. 
The inequality must be satisfied for all ß. Now, if β = π/2, the inequality becomes 
1 + 2r(r — 1) + 0(k) < 1. Then, if r < 0 or r > 1, the foregoing inequality is not 
valid. If 0 < r < 1, the inequality is valid [if we rewrite it as |a |2 < 1 + O(fc)] since 
cos(/3) - 1 < 0 for all β. [We note that if b = 0, the O(k) term is absent.] Thus, the 
von Neumann stability condition is that a > 0 and r = ka/h < 1. 

The implicit backward-backward difference scheme with F = 0 is 

Un,m = (1 + Г - kb)un,m+\ ~ run-i,m+i, (11 .7 .31) 

where r = ka/h. On inserting un,m = am exp(ißn) into ( 11.7.31 ), we obtain, after 
some simplification, l / | a | 2 — 1 + 2r(l - cos(ß))(r + 1) + O(k). The condition 
1 + 2r(l - cos(/3))(r + 1) > 1 results in \a\ < 1 + O(fc). If a > 0, the foregoing 
condition is satisfied for all r > 0, so that the implicit scheme is unconditionally 
stable. 
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Example 11.29. The Explicit Forward-Centered Difference Scheme: The 
Scalar Case. The explicit forward-centered difference scheme with F = 0 is 
given as 

" n , m + l = (1 + kb)un,rn - (r/2)(un+l,m ~ « n - l , m ) , (11 .7 .32) 

where r = ka/h. On inserting un<m = amexp(i/3n) into (11.7.32), we obtain 
Q = (l + kb) + (rsin(ß))i, so that we must have \a\2 = l + (rsin(/?))2+0(fc) < 1, 
for stability. If we put β = π/2, the stability condition cannot be satisfied for any r, 
so the scheme is unconditionally unstable. 

Example 11.30. The Explicit Forward-Backward Difference Scheme: The 
Vector Case. The explicit forward-backward difference scheme with F = 0 and 
В = 0 is given as 

( kA\ IkA\ 

I- -γ)αη,τη+ ( -г- ju„_i,m. (11.7.33) 
(We assume that В = 0.) We insert u„,m = am exp(ißn) into (11.7.33) and obtain 
a m+i = ( j _ (! _ cos(/?)) {kA/h) - г sin(/3) (fcA//i)) am, with J as the identity 
matrix. The coefficient of am is the amplification matrix M for the difference scheme. 
We must determine a condition that guarantees that all the eigenvalues of M are 
bounded by 1 in absolute value. Now the amplification matrix M is a linear function 
M = L(A) of the matrix A. It is easy to show that if λ^ is an eigenvalue of A, then 
L(Xj) is an eigenvalue of L(A). Thus, L(\j) = 1 - (1 — cos(/3))r, — г sin(ß)rj, 
where г,- = kXj/h. If we put r = rj and b = 0 in (11.7.30), the amplification factor 
Q has the same form as L(Xj). Therefore, it follows that the von Neumann stability 
condition is that all the eigenvalues Xj > 0 and that kXj/h < 1. 

Example 11.31. The Lax-Wendroff Difference Scheme: The Scalar Case. 
The explicit Lax-Wendroff difference scheme with F = 0 and ό = 0 is given as 

un,m+i = (l - r2) un ,m + - ( - r + r·2) u n + i , m + - (r + г2) u„_i ,m, (11.7.34) 

where r = fca//i. We insert i in ,m = a m exp(z,9n) into (11.7.34) and obtain a = 
1 — (1 — cos(/?))r2 — ir sin(/3). The condition given above on the amplification factor 
yields \a\2 = l + r2(r2 - l)(cos(/3) - l ) 2 < 1, Clearly, we must have \r\ < 1 if this 
is to be satisfied. Consequently, the Lax-Wendroff difference scheme is conditionally 
stable with \r\ < 1 as the von Neumann stability condition. 
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Exercises 11.7 

11.7.1. Verify the truncation errors (11.7.4) and (11.7.9). 

11.7.2. Find the truncation errors for the Lax-Friedrichs and Lax-Wendroff difference 
schemes. 

11.7.3. Determine the truncation error for the leapfrog scheme (11.7.15). 

11.7.4. Use the procedure NumHypSysExplicit to obtain the results given in the 
array (11.7.19) in Example 11.25. 

11.7.5. Use the forward-backward difference scheme in NumHypSysExplicit to 
solve the initial and boundary value problem given in Example 11.26, with the argu-
ments given in that example. Plot the exact and numerical solutions. 

11.7.6. Solve the initial value problem for the hyperbolic system given in Exam-
ple 11.27 using the procedure NumHypSysExplicit and invoking the forward-
backward difference scheme. 

11.7.7. Solve the initial value problem for the hyperbolic system given in Example 
11.27 using the procedure NumHypSysExplicit and invoking the forward-forward 
difference scheme. Note the exact solution as given in the example and observe that 
the output of the procedure indicates instability. 

11.7.8. Solve the initial value problem for the hyperbolic system given in Example 
11.27 using the procedure NumHypSysExplicit and invoking the Lax-Friedrichs 
difference scheme. 

11.7.9. Solve the initial value problem for the hyperbolic system given in Example 
11.27 using the procedure NumHypSysExplicit and invoking the Lax-Wendroff 
difference scheme. Obtain the array (11.7.28). 

11.7.10. Verify the von Neumann stability results obtained in Example 11.28. 

11.7.11. Verify the von Neumann stability results obtained in Example 11.29. 

11.7.12. Verify the von Neumann stability results obtained in Example 11.30. 

11.7.13. Verify the von Neumann stability results obtained in Example 11.31. 

11.8 FINITE DIFFERENCE METHODS FOR PDEs WITH 
VARIABLE COEFFICIENTS 

We have presented a number of finite difference methods for the solution of (linear) 
heat and wave equations and Laplace and Poisson equations. Now we extend some 
of these methods to deal with linear and semilinear parabolic, hyperbolic, and elliptic 
equations with variable coefficients. 
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The parabolic PDEs that we treat have the general form 

ut(x,t) - (a(x,t)ux(x,t))x + ß(x, t)ux(x,t) +~/(x,t)u(x,t) = F(x,t,u(x,t)). 
(11.8.1) 

Apart from the addition of the terms ß(x, t)ux (x, t), ( 11.8.1 ) has the general form of 
the parabolic PDEs considered in Chapter 4. The PDE is semilinear because of the 
term F(x, t, u(x, t)), but this is not the most general semilinear form that the PDE 
can take. The hyperbolic PDEs have the general form 

utt{x, t) - {a(x, t)ux(x,t))x + ß(x, t)ux(x, t) + η{χ, t)ut(x, t) + δ(χ,t)u(x,t) 

= F{x,t,u{x,t)). (11.8.2) 

Again, apart from the addition of the terms β(χ, t)ux(x, t) and7(x, t)ut(x, t), (11.8.2) 
has the general form of the hyperbolic PDEs considered in Chapter 4. [We note that 
the coefficients in ( 11.8.1)-(11.8.2) are not required to be independent of t as was the 
case in Chapter 4.] The semilinear elliptic PDEs are of the form 

a{x, y)uxx(x, y) + ß{x, y)uyy(x, y) + j(x, y)ux(x, y) + δ(χ, y)uy{x, y) 

+ oj(x,y)u(x,y) = F{x,y,u{x,y)). (11.8.3) 

Initial and boundary value problems for (11.8.1) and (11.8.2) will be solved by 
the method of lines, while iteration methods will be used to solve the boundary 
value problems for (11.8.3). As we have seen, characteristics play a significant role 
in the solution of problems for hyperbolic equations and systems. Consequently, we 
present a number of methods for the solution of problems for quasilinear second order 
hyperbolic PDEs and hyperbolic systems of first order PDEs that use the method of 
characteristics. 

Method of Lines for Linear and Semilinear Parabolic Equations 

The presentation of numerical solution methods for initial and boundary value prob-
lems for the parabolic equation (11.8.1) will be restricted to the semi-discrete method 
of lines. Fully discrete difference methods analogous to those given above for the 
heat equation can also be constructed for ( 11.8.1 ) but are not presented here. We have 
created a Maple procedure NumParabolicLinesSL for the solution of the system of 
first order ODE that arises in the method of lines. This system can be solved exactly, 
if possible, or approximately, by the use of finite difference methods for ODEs. 

To apply the method of lines to the parabolic equation ( 11.8.1 ) we replace deriva-
tives in x by difference quotients and leave the derivative in t intact. Centered differ-
ence quotients are used throughout except for the terms that involve a(x, t), where 
we use the difference approximation 



FINITE DIFFERENCE METHODS FOR PDEs WITH VARIABLE COEFFICIENTS 8 2 3 

, .u(x — h,t) — u(x,t) , . u(x — h, t) — 2u(x, t) + u(x + h, t) 
"(*-M)- 2h2 Κ''+«(^)Δ l i b ? ^ l 

, . u(x + h,t) — u(x,t) д ( , .du(x,t)\ ^/,o\ ,,„ „ ,ч 

+ α ( * + Μ μ — ^ - ^ = ш ( a M 4 ^ J + ° ( h ) · (11·8·4) 

With h as the increment in x and Xi = a + ih (with an arbitrary a), this yields the 
system of ODEs 

dujjt) _ OLi-i{t){uj^(t) -Uj(t)) ai(t)(ui+i(t) - 2uj(t) + Uj-i(t)) 
dt ~ 2h2 2h2 

t ai+1(t)(ui+1(t) - Uj(t)) ßi{t){ui+1{t) - Uj-i(t)) , n\,i?n\ 
+ ^2 2~h li\t)Ui{t) + ti{t), 

(11.8.5) 
where Ui(t) represents the approximation to the exact solution u(x, t) of the given 
problem at the point x^ at the time t, and ai(t) = a(a + ih,t), ßi(t) = ß(a + 
ih,t), 7i(i) = 7(a + ih,t), Fi(t) = F(a + ih,t). Given an initial and boundary 
value problem for the parabolic equation ( 11.8.1 ), the initial and boundary conditions 
for the related system of ODEs ( 11.8.5) are determined as in the method of lines for 
the heat equation, and is not be repeated here. 

Initial and boundary value problems are solved by the method of lines using 
NumParabolicLinesSL(a(x,t),ß(x,t),'j(x,t),F(x,t,u(x,t)),t = to,f(x),x = 
a..b, bel, g(t), ber, s(t), n). The first four arguments in the procedure determine the 
coefficients and the inhomogeneous term in the parabolic PDE (11.8.1). The remain-
ing arguments are as described above for the procedure NumHeatLines. Boundary 
conditions of all three types can be treated. The output is given as a Maple proce-
dure proc(rkf<i5-x)... endproc. The global variable SP can be used to exhibit the 
numerical solution values Ui(tf) at all the x grid points, by invoking SP(tf). If an 
optional thirteenth argument t = tf is added, the numerical solution Ui(tf) at each 
grid point is exhibited in tabular form. The global variable PList can also be used 
to display a list of these solution values. If an optional thirteenth argument type = 
numeric is added, a number of classical numerical solution methods for ODEs such 
as the forward Euler, Heun, lower order Runge-Kutta, or predictor-corrector methods 
can be invoked. The step sizes used in these methods can be controlled, as can the 
form of the output. (This is done by adding more optional arguments.) 

Example 11.32. A Semilinear Parabolic Equation. We consider two initial 
and boundary value problems for the semilinear parabolic equation 

tit (ж, t) - (xux(x, t))x = F(x, t, u(x, f )), 0 < x < 1, t > 0, (11.8.6) 

where F(x, t, u(x, t)) = u2{x, t) - ex(2 + t + xt + x + ex)/(t + l ) 2 . The function 
u(x, t) = ex/(t + 1) is an exact solution of (11.8.6). The initial condition for both 
problems is u(x, 0) = ex. In one problem, we introduce Dirichlet boundary condi-
tions at x = 0 and x = 1, and in the other problem Neumann boundary conditions 
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are used. The interval 0 < x < 1 is subdivided into five equal parts, and the solution 
at the grid points is to be found at t = 1. 

We invoke the procedure NumParabolieLinesSL(x,0,0,F(x,t,u(x,t),t = 
0,ex,x = 0..I, bel,g(t), ber, h(t),10, t = 1). For the Dirichlet problem we put 
bel = ber = dirichlet, r(t) = l/(t + 1) and s(t) = e/(t + 1). For the Neumann 
problem we put bel = ber = 0, r(t) = - 1 / ( ί + 1) and s(t) — e/(t + 1). The 
exact and numerical solution values (as given by the procedures) are displayed in the 
following array: 

x Exact Dirichlet Neumann 
0 

0.2 
0.4 
0.6 
0.8 
1 

.5000 

.6105 

.7460 

.9110 
1.113 
1.359 

.5000 

.6156 

.7508 

.9148 
1.115 
1.359 

.5000 

.5992 

.7284 

.8888 
1.087 
1.331 

Increasing the number of grid points will improve the numerical results. 

In Section 4.7 we applied nonlinear stability theory to an initial and boundary value 
problem for the semilinear parabolic equation (4.7.1). In the following example, we 
use the method of lines to analyze this problem. 

Example 11.33. Nonlinear Stability. We determine a numerical solution of the 
semilinear parabolic PDE 

ut(x,t) -uxx(x,t) - Xu(x,t){l -u2(x,t)), 0 <x <π, t>0, (11.8.8) 

with the initial and boundary conditions 

u(x,0)=esin(x), u(0,t) = 0, ω(π,ί) = 0 . (11.8.9) 

Here e is a small parameter which we fix as e — 0.01. It was shown in Section 4.7, 
using a perturbation approach, that the solution of (11.8.8)—(11.8.9) decays to zero 
as t —» oo if λ < Xc = 1, the critical value of the parameter. If λ « 1 but λ > 1, the 
solution does not grow unboundedly, as predicted by linear stability theory, but tends 
to a steady state. 

We begin by putting λ = 0.9 in ( 11.8.8). The interval is subdivided into 10 equal 
parts and the procedure NumParabolicLinesSL(l,0,0,0.9u(x, t)(l — u(x, i)2), 
t = 0,0.01 sin(:r), x = 0..7Γ, dirichlet, 0, dirichlet, 0,10) is invoked. [The x grid 
points are 0, π/10, 2π /10 , . . . , π.] The output is a procedure that yields the numeri-
cal solution at the grid points at prescribed values of t. It shows that the solution tends 
to zero with increasing t. For example, at t = 100 we have щ = .328 x 10 - 6 , U2 = 
.587 x 10-6 ,u3 = .859 x 10_ 6 ,и4 = .950 x 10"6,u5 = .106 x 10"6. The values 
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of ив, ■ ■ ■, UQ equal those of щ,..., иц in reverse order. (Here щ represents the 
numerical solution at x = π/10.) 

Next we set λ = 1.1 in (11.8.8) and apply NumParabolicLinesSL with the 
arguments given above, except that in the fourth argument we replace 0.9 by 1.1. It 
is found that for t > 80, the solution stabilizes around the values u\ = .1136, u-ι = 
.2151, u3 = .2942,m = .3442, tt5 = .3613, with the values of щ,... ,щ equal 
those of и i , . . . , Ы4 in reverse order. 

The steady-state result (as t grows large) given in (4.7.24) has the form u(x, t) « 

(V>ft)y[{ '(X - 1)/λ sin(x)ifweput/ì(a;) = sin(a;) in (4.7.24). We find that for large 
t, u{n/10,t) « .1076,U(2TT/10, Ì ) « .2046,ΐί(3π/10,ί) « .2816,«(4π/10,ί) « 
.331, и(5тг/10, t) »! .3481. The values of u(x, i) at x = 6π /10 , . . . , 9тг/10 equal 
the values at x = π / 1 0 , . . . , 4π/10 in reverse order. There is fairly good agreement 
between the perturbation and numerical results. The perturbation result indicates 
that the choice of h(x) in the initial value affects only the sign of the steady-state 
approximation. Although we have set h(x) = sin(a;) in the procedure, it can be 
shown that the numerical steady state result is independent of the choice of h(x), 
provided that h(x) is not orthogonal to sin(:r) over the interval (0, π). 

Method of Lines for Linear and Semilinear Hyperbolic Equations 

Numerical solution methods for initial and boundary value problems for the hyper-
bolic equation (11.8.2) are restricted to the semidiscrete method of lines. The proce-
dure NumHyperbolicLinesSL solves the system of first order ODEs that arises in 
the method of lines. This system can be solved exactly, or approximately by the use 
of finite difference methods for ODEs, as seen above. 

To apply the method of lines to ( 11.8.2), we replace derivatives in x by difference 
quotients and leave the t derivatives intact. Centered difference quotients are used 
throughout except for the terms that involve a(x, t), where we use the difference 
approximation (11.8.4). With h as the ж-increment and Xi = a + ih (with arbitrary 
a), this yields the system of ODEs 

,ЧЛ , /,x ,m ai-i(t)(Mj-i(t) - Uj(t)) , ai(t)(ui+i(t) - 2uj(t) + Uj-ijt)) 

, ai+1(t)(ui+i(t) - Uj(t)) ßj(t){ui+i{t) - m-xjt)) 
H ^2 2~X ài(t)Ui{t) + ti{t), 

(11.8.10) 
where щ(Ь) represents the approximation to the exact solution u(x, t) of the given 
problem at the point x^ at the time t, and Qj(i) = a(a + г/г, t), ßi(t) = ß(a + 
ih,t), 7i(i) = 7(a + ih,t), 5»(i) = S(a + ih,t), Fi(t) - F(a + ih,t). Given 
an initial and boundary value problem for (11.8.2), the determination of initial and 
boundary conditions for (11.8.10) follows that given above for the method of lines 
for the wave equation and is not repeated here. 
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The Maple procedure that solves initial and boundary value problems by the method 
of lines is NumHyperbolicLinesSL(a(x,t),ß(x,t),j(x,t),S(x,t),F(x,t,u 
(x,t)),t = to, f(x),g(x),x = a..b,bcl,g(t),bcr, s(t),n). The first five arguments 
in the procedure determine the coefficients and the inhomogeneous term in the hyper-
bolic PDE ( 11.8.2). The remaining arguments are as in NumWaveLines. Boundary 
conditions of all three types can be treated. The output is given as a Maple procedure 
proc(rkf45-x)... endproc. Then the global variable SH can be used to exhibit the 
numerical solution values Ui(tf), as well as approximate first order derivatives in t, 
at all the x grid points, by invoking SH(tf). If an optional fifteenth argument t = tf 
is added, the numerical solution щ (t j ) at each grid point is exhibited in tabular form. 
The global variable PList can also be used to display a list of these solution val-
ues. If an optional fifteenth argument type - numeric is added, a number of classical 
numerical solution methods for ODEs such as the forward Euler, Heun, lower order 
Runge-Kutta, or predictor-corrector methods, can be invoked. The step sizes used 
in these methods can be controlled, as can the form of the output. (This is done by 
adding more optional arguments.) 

We consider only one example and show that the solution of an initial and boundary 
value problem for a damped wave equation reduces to that of a related diffusion 
equation for large time. The relationship between these solutions has been discussed 
a number of times in this book. 

Example 11.34. A Damped Wave Equation and a Related Diffusion Equa-
tion. We consider an initial and boundary value problem for the damped wave 
equation 

utt(x, t) - uxx(x, t) + ut{x, t) = 0, (11.8.11) 

and for the related diffusion equation 

ut(x,t)-uxx{x,t) = 0, (11.8.12) 

given over the interval 0 < x < 1. The Dirichlet boundary conditions for both prob-
lems are ω(0,ί) = 1, u(l,t) = 0. The initial conditions are u(x,0) = x2, ut(x,0) = 
sin(7ra;), with the initial derivative prescribed only for (11.8.11 ). 

The unit interval is subdivided into five equal parts and the numerical solutions of 
both problems are obtained at ί = 15. WeuseNumHyperbolicLinesSL(l, 0,1,0,0, t = 
0, a;2,sin(7nE),:r = 0..1, dirichlet, 1, dirichlet, 0,5, t = 15) for(l 1.8.1 l)andiVum 
ParabolicLinesSL(l,0,0,0,t = Q,x2,x = 0..1, dirichlet, 1, dirichlet, 0,5, t = 
15) for (11.8.12) to determine the numerical solutions at t = 15. We obtain 

X 

0 
0.2 
0.4 
0.6 
0.8 
1 

Wave 
1. 

.7998 

.6000 

.4004 

.2004 
0. 

Diffusion 
1. 

.8000 

.6000 

.4000 

.2000 
0. 
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The results agree nicely, as expected. As t increases, the difference between corre-
sponding numerical solution values tends to zero. 

Second Order Quasilinear Hyperbolic Equations: Method of 
Characteristics for Initial Value Problems 

The quasilinear second order PDE 

auxx(x,t) + 2ßuxt(x,t) + 7 « H ( I , Ì ) = δ, (11.8.14) 

where a, β, η and δ are all functions of (x, t, u(x, t),ux(x, t),ut{x, t)), is of hy-
perbolic type at the points (x, t) where β2 - αη > 0. [Clearly, the classification 
of (11.8.14) depends not only on the point {x, t) but also on the solution u(x, t).] 
In Section 3.1 it was shown that if (11.8.14) is linear, its characteristics can be used 
to bring it into a simple canonical form. This simplification is not possible for the 
quasilinear case. Instead, we express the PDE in a characteristic form. 

Suppose that 7 φ 0 in (11.8.14) and assume, without loss of generality, that 7 is 
positive. Let the characteristic curves of ( 11.8.14) be expressed as x = x(t). Then it 
follows from (3.1.8), appropriately modified, that the two families of characteristics 
x = x(t) satisfy the equations 

dxjt) _ß±y/(P-onf 
— , (11.8.15) 

where a, ß, and 7 are all functions of (x(t),t,u(x(t),t),ux(x(t),t),ut(x(t),t)). 
Now, the chain rule for differentiation for a function z = z(x(t), t) gives dz/dt = 
dz/dt + (dx(t)/dt)dz/dx. We set v(t) = ux(x(t), t) and w(t) = ut{x{t), t). It is 
then easily verified that 

ß-VP-
7 

ß+Vß^-
Ί 

- αΊ dv{t) dw(t) _ δ dx(t) _β+^β*-αΊ 

dt dt 7 dt 7 > У ■ ■ ) 

- α 7 dv(t) , dw(t) δ dx(t) ß-s/ßi-αη 1лл a лпЛ 
; ; = — On : = . (11.б .1 Л 

dt dt -у dt 7 
[Since 7 > 0 by assumption, we find that the value of dx(t)/dt in (11.8.16) exceeds 
that in ( 11.8.17) at common points.] These equations correspond to the characteristic 
normal form (3.3.76) obtained in Section 3.3. 

Suppose that two points Q = (XQ, ÌQ) and R = (XR, ÌR) are specified at which 
the values of u, ux, and щ are known. These values determine two characteristic 
directions at each point Q and R from (11.8.15). Four characteristic curves are 
thereby determined. Of these, we choose those characteristics that issue from Q and 
R and intersect at some later value of t (i.e., the forward characteristics). It follows 
from the above, that this will (generally) be the case if we choose the plus sign in 
(11.8.15) at Q and the minus sign in (11.8.15) at i?. We denote the intersection point 



8 2 8 FINITE DIFFERENCE METHODS 

by P = (xp, tp) and seek to determine P and the values of u, ux, and ut at that 
point from (11.8.16)-(11-8.17). (UQ, UR, VQ, VR, WQ, гид are known.) No exact 
solution is generally available for the system, so we construct a numerical method for 
its approximate solution. Derivatives are replaced by difference quotients, and we 
obtain 

Xp -XQ 

tp - tQ 

Xp - XR 

_ß + JW-
7 

_ß-^[W-

- αη 

- αη 

Q 

tp-ÌR 

ß-y/W- - αη 

7 

ß + Vß2-- αη 

Vp -

Q 

VP-

R t p -

- VQ Wp - WQ δ 

-tQ tp-ÌQ 7 о 
(11.8.18) 

-VR Wp-WR _ 6 

-tR tP-tR 7 
(11.8.19) 

(The \Q and \R indicate that all the terms are evaluated at the points Q or R.) The 
four equations (11.8.18)-( 11.8.19) must be solved simultaneously for xP, tp, vp, 
and wp. 

Once a solution is obtained, the approximate intersection point P of the charac-
teristics is determined and approximate values of vp = ux and wp — щ are found. 
To obtain an approximate value for и at the point P (i.e., up), we can use either of 
the following approximations 

UpttUQ + -(VQ + VP)(xp - XQ) + -{WQ + WP)(tp - tQ), (11.8.20) 

Up И UR + -(VR + Vp)(xP - XR) + -{wR + WP){tP - tR). (11.8.21) 

The leading terms in the Taylor series of up yield VQ (xp — XQ) and WQ (tp — ÌQ) in 
( 11.8.20) and a corresponding expression in ( 11.8.21 ). The (improved) approximation 
to up given in (11.8.20)—(11.8.21) is obtained by averaging the values of v and w at 
the points Q, R, P, as shown. A similar averaging approach can be used to develop an 
iteration scheme that improves the accuracy of the approximate values of xp, tp, vp, 
and wp determined from (11.8.18)—(11.8.19). 

NumHypScalChar automates the foregoing numerical method of characteris-
tics. It is presented in two forms. If a noncharacteristic initial value problem is consid-
ered with the initial curve given as the line t = ÌQ and the initial values as u(x, tQ) = 
f(x) and ut(x,tQ) = g{x), two values of a; must be prescribed, x = XQ and x = 
XR. On using NumHypScalChar(a,ß,'y,S,f(x),g(x), \x,t,u,ux,ut], [XQ,ÌQ], 

[xR,tQ],n), the (hyperbolic) PDE (11.8.14) with the foregoing initial values, sup-
plemented by ux(x, ÌQ) — f'(x), is considered. These values are used to determine 
UQ,UR,VQ, WQ, VR, WR at the points Q and R specified in the procedure. The out-
put of the procedure exhibits the coordinates of the point P where the characteristics 
that issue from R and Q intersect. The values of up, vp, wp are also displayed. The 
last argument, n, in the procedure determines the number of iterations carried out if 
the errors from one step to the next exceed a built-in error tolerance. 
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If we wish to determine the solution at a point P using solution values given at the 
arbitrary points R and Q, as discussed above, we invoke NumHypScalChar(a, ß, 7, 
δ, [UQ,UR], [[VQ,WQ], [VR,WR]}, [x,t,u,ux,ut], [xQ,tQ], [xR,tR],n). The output 
has the form given by the foregoing procedure. For each form of the procedure, the 
output at two different points can be used to find the solution at a new point. Thereby 
a set of solution values can be found at a grid of points in the (x, i)-plane. In general, 
this grid is quite irregular, but if the principal part of the PDE has constant coefficients, 
so that the characteristics are straight lines, it is possible to determine solution values 
on a regular grid. 

Example 11.35. The Numerical Method of Characteristics for a Quasi-
linear Hyperbolic PDE. The procedure NumHypScalChar(-ux,0,u2,-exp 
(2x) s in2( l+i) —exp(3a;) s in3( l+i) , ехр(ж) sin(l), ехр(ж) cos(l), [x, t, u, ux, ut], 
[1.5,0], [1.6,0], 8) finds the intersection point of the two characteristics for the hy-
perbolic PDE —ux(x,t)uxx(x,t) + u2(x,t)utt{x,t) = -exp(2a;)sin2(l + t) — 
exp(3x) sin3(l + t), with the initial data u(x, 0) = ex sin(l), ut(x, 0) = ex cos(l) 
that issue from the points Q = (1.5,0) and R = (1.6,0). Maple's output is 

x t u(x,t) ux(x,t) ut(x,t) 
1.550607 0.101064 4.203614 4.202042 2.132819 (11.8.22) 

The point of intersection P is given as (xP,tP) = (1.550607,0.101064). The 
approximate values of и and its first derivatives at that point are also displayed. 

If we use the points Q = (1.6,0) and R = (1.7,0) in the procedure, the output is 

x t u(x,t) ux(x,t) ut(x,t) 
1.65061 0.106319 4.65799 4.65603 2.33245 (11.8.23) 

The exact solution of the initial value problem is u{x, t) = ex sin(l +1). Its values at 
the intersection points as determined from the procedure are u(l.550607, .101064) = 
4.20371 and tt(1.65061, .106319) = 4.65817. They are in excellent agreement with 
the values found from the procedure. 

The values obtained from the two procedures can be used to determine a new char-
acteristic intersection point P and approximate values for the solution and its deriva-
tives there. This is done by invoking NumHypScalChar(—ux, 0, и2, — ехр(2ж) 
sin2(l + t) - exp(3s)sin3(l + i), [4.2036,4.65799],[[4.20204,2.133], [4.65603, 
2.3325]], [x,t,u,ux,ut], [1.55061,-10106], [1.65061, .10632], 8). The intersection 
points found by the two foregoing procedures now play the role of Q and R. The 
values of u, ux and ut are entered in the fifth and sixth arguments of the procedure. 
The output is 

x t u(x,t) ux(x,t) Ut(x,t) 
1.60247 0.210176 4.64543 4.64219 1.749125 (11.8.24) 

The value of the exact solution at the intersection points determined from the proce-
dure, u(1.60247, .210176) = 4.64591, agrees nicely with the value found from the 
procedure. 
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A set of approximate solution values has been found at an irregular set of grid 
points. It is clearly possible to determine additional grid points and solution values 
at these points and thereby obtain an approximation to the solution for t > 0 within 
a range of x and t values. 

Method of Characteristics for Hyperbolic Systems of Two Quasilinear 
Equations in Two Unknowns 

We consider the quasilinear hyperbolic system of the form (3.3.73) 

Aux{x,t) + But(x,t)=c, (11.8.25) 

where 

A = ац ai2 
fl21 0,22 

B = 
Oil bn 
&21 &22 

С = 
Ci 

C2 
, u(x,i) = ui{x,t) 

u2(x,t) 

The elements of А, В, с can be functions of (x, t, щ (x, t),u2(x, t)). With λι and λ2 
as the (real) eigenvalues of the eigenvalue problem ATr = XBTr [they are the roots 
of det( A — XB) = 0] we obtain the characteristic normal form 

dui(t) du2{t) z 

Oil — л г σ,2 —т.— = ài dt dt on 
dx{t) 

dt 
= Xi, г = 1,2. (11.8.26) 

Here Ui(t) — Ui(x(t),t) and dx(t)/dt = λ, determines the characteristic curves for 
г = 1,2. 

The system of equations ( 11.8.26) is in the form of the system (11.8.16)-( 11.8.17). 
We proceed as before. Consider the two points Q = (XQ, ÌQ) and R = (XR, tu) at 
which the values of щ and U2 are known. We choose the characteristics that issue 
from Q and R and intersect at some later value of t (i.e., the forward characteristics). 
We denote the intersection point by P = (xp, tp) and seek to determine P and the 
values of ui and г*2 at that point, using (11.8.26). Again, we construct a numerical 
method for its approximate solution by replacing derivatives by difference quotients. 
This yields the four (linear) equations for xp, tp, vp, wp, 

XP -XQ _ > I 

Tp~^Q~-Xl^ 

XP-XR . , 

, Vp-VQ , Wp-WQ | 

| Vp - VR , Wp-WR i 

(11.8.27) 

(11.8.28) 
tp-ta * '« ' "ilitp-tR ■ ■ " ' « tp-tR 

where VQ, WQ, VR, WR, and vp, wp represent щ, ti2 evaluated at Q, R, and P, 
respectively. 

NumHypSystChar automates the foregoing numerical method of characteris-
tics. It is again presented in two forms. If a noncharacteristic initial value problem 
is considered with the initial curve given as the line t = ÌQ and the initial values as 
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UI(X,ÌQ) = f (x) and u2(x,tQ) = g(x), two values of a; must be prescribed, x = XQ 

and x = XR. On invoking the procedure NumHypSystChar(A, В, c, [f{x), g(x)), 
[u\, u2], [x, t\, [xQ,to\, [xR, tQ],n) the (hyperbolic) system (11.8.25) with the fore-
going initial values is considered. These values are used to determine VQ, WQ, VR, WR 
at the points Q and R specified in the procedure. The output of the procedure exhibits 
the coordinates of the point P where the characteristics that issue from R and Q inter-
sect. Also, the values of vp, wp are displayed. The last argument n in the procedure 
determines the number of iterations carried out in the procedure if the errors from one 
step to the next exceed a built-in error tolerance. 

If we wish to determine the solution at a point P using solution values given at the 
arbitrary points R and Q, the procedure takes the form NumHypSystChar(A, В, c, 
[[vQ,WQ],[vR,WR]],[u1,u2},[x,t},{xQ,tQ], [xR,tR],n). The output has the form 
given by the foregoing procedure. 

Example 11.36. The Numerical Method of Characteristics for a Quasi-
linear Hyperbolic System. NumHypSystChar([[u\,0], [5,u2]}, [[1,0], [0,1]], 
[[3wi + 2x7 exp(4i) - 2z2 exp(i)], [—it2 + 10z exp(i) - ZxH2 + 3x5 + 2t + t2 -
x3]], [x2, -x3], [щ, u2], [x, t], [1,0], [1.2,0], 25) solves the initial value problem for 
the system (11.8.25) [i.e., Aux + But = c] with 

3ui + 2x7e4t - 2x2é 
-u2 + 10xe* - ЪхН2 +3x5 + 2t + t2 -x3 J ' 

В = I (the identity matrix), [ui(x,0),u2(x,0)} = [x2, -x3], Q = (1,0), and R = 
(1.2,0). The exact solution of this problem is u\(x,t) — x2el, u2(x,t) = t2 — x3. 
Maple's output, 

X t U! (X,t) US(x,t) 1 , , 
1.1027 0.064050 1.3023 -1.3087 J ' in.o.-κ»; 

displays the point P where the forward characteristics intersect and the values of 
u\ and u2 at that point. The values of the exact solution at the point P found by 
the procedure are щ (1.1027,0.06405) = 1.296376981 and u2(1.1027,0.06405) = 
-1.336722674. 

The value of tp is greater than zero (the value of ÌQ) for this problem. If it turns 
out for a specific choice of Q and R that tp < 0, we put Q = R and R = Q and 
reapply the procedure. We do not consider an example where the values u\ and u2 

are known only at Q and R. 

Characteristic Difference Methods for Linear Hyperbolic Systems 

In the two preceding subsections, the method of characteristics was used to advance 
the numerical solution values in time, using given solution values at an earlier time. 
The point(s) at which the solution was found were not known a priori and had to 
be determined. Here we obtain an (approximate) numerical solution at a prescribed 

«? 0 
U2 
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point P = (xp, tp) in the (x, i)-plane, in terms of initial data for u(x, t) given at the 
earlier time t = ÌQ. We consider the linear hyperbolic system 

A(x, t)ux(x, t) + B(x, t)ut(x, t) = C(x, t)u(x, t) + d(x, t), (11.8.30) 

where A, B, C a r e n x n matrices andu, d are n-vectors. 
The method proceeds by first reducing ( 11.8.30) to a characteristic normal form 

specialized to the linear case, given as 

n , n , 

Σσίί~Λ!~ = Σ Ί ί ί η ί + δ ί o n л7 = λ < ' i = l,...,n. (11.8.31) 
j = l j = l 

[Although a further simplification, the characteristic form, is available for linear sys-
tems, we work with (11.8.31) since the numerical solution method we use is not much 
simpler when applied to the characteristic form of the system.] For the linear system 
(11.8.30), then equations for the characteristics dx(t)/dt = Xi(x(t),t), г = l , . . . ,n, 
can be solved independently of the equations for the m(x,t). For each characteristic 
x = Xi{t), we determine the point Qi = (XQ^ÌQ) where the characteristic curve 
that passes through the point P = (xp,tp) intersects the line t = ÌQ. Once the n 
intersection points Qi have been determined, the system of equations for the щ(х, t) 
is replaced by the linear (algebraic) system 

Hi — U 

Σ Γ i i 1 J J l Q ; ν ^ Γ I i i 

_ [<гц\p + on\Qi\ tp_fQ = Σ, [ > · \ P U J + Hi\QMQ., 
6i\p + 6i\Qi 

j=\ ^ j = l 

(11.8.32) 
with i = 1, ...,n, where Uj, j = 1, ...,n, represents the numerical solution values 
at the point P that are to be determined. [We have replaced derivatives in (11.8.31) 
by (forward) difference quotients and the coefficients and the nonhomogeneous term 
have been averaged over their values at P and the Qi-] 

The use of (11.8.32) to determine the Uj at the time t = tp requires that ex-
act or approximate values of u(x, t) are known at the points XQÌ at the time t = 
iq. If t = ÌQ represents the initial time for the initial value problem, it is (gen-
erally) assumed that the values U(X,ÌQ) are prescribed. However, if u(x, ÌQ) is 
only given for a set of values of x that differ from the XQÌ , the Maple procedure 
CurveFitting[PolynomialInterpolation] or CurveFitting[Spline] can be used 
to create an (approximate) vector function u(x, ÌQ). [The points x = XQÌ where the 
characteristics that issue from the point P intersect the line t = ÌQ can be used to 
determine the size of the ж-interval for which values of u(x, ÌQ) are needed.] Ad-
ditionally, if it desired to determine the solution values over a regular grid in the 
(x, t)-plane, the values of u(x,t) must be determined for t > tp. Since solution 
values are available only at grid points for t = tp, interpolation is unavoidable for 
this process to succeed. 

We have constructed the Maple procedure NumHypSystCharBack that finds 
the value of the solution vector u(x, t) at a prescribed point P = (xp,tp) in terms 
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of data given at a previous time t = ÌQ, using the foregoing method. It is assumed 
that u(x, ÌQ) is known. If u(a;, ÌQ) is given only on a set of points, interpolation 
must be used to create a vector function for the initial condition. The procedure 
solves the characteristic system numerically, using Maple's default ODE solver. The 
points x = XQÌ where the characteristics that issue from the point P intersect the line 
t = ÌQ are found and they can be displayed by invoking the global variable PSet. 
Interpolation can then be used to create a required vector function, as indicated above. 
Any number of equations can be treated by the procedure. The procedure takes the 
form NumHypSystCharBack(A,B,C,d,t = tp,x = xp,t = tQ,u(x,ÌQ)). 
This corresponds to the problem formulated above for the system (11.8.30). The 
output of the procedure displays the value of u(xp,tp) and the points x = XQ{. 
If a ninth argument print is added, additional information relating to the problem 
is exhibited. The procedure attempts to find an exact solution of the initial value 
problem if the ninth argument is exact. Also, other numeric ODE solvers can be 
invoked. 

Example 11.37. The Numerical Method of Characteristics for a 
Linear Hyperbolic System. The procedure NumHypSystCharBack(A, В, С, d, 
t = tp,x = xp,t = 0, [0,0]) applies the foregoing method of characteristics to solve 
the initial value problem for ( 11.8.30) with 

A = 
0 

—x 
- 1 ' 
0 ,B = I,C = 

' x 0 ' 
0 0 , d = 

' -2x2t2 

2x2 - 2xt2 , (11.8.33) 

tQ = 0, and the initial condition u( i , 0) = 0. The exact solution of this problem is 
u(x,t) = [ui(x,t),u2(x,t)\ = [2xt2,2x2t]. 

We apply the procedure three times with tp = 0.2 and xp = 0.3, 0.5, 0.7. This 
yields 

X 

0.5 0 

X t Ui %2 tQ XQÌ XQ2 

0.3 0.2 0.024826 0.035980 0.0 0.20046 0.41954 

t Uj U2 tQ XQI XQ2 

.2 0.040845 0.099980 0.0 0.36858 0.65142 

X t Ui U2 tQ XQi 

0.7 0.2 0.056858 0.19598 0.0 0.54267 0. 

, (1 

XQ2 
87733 

The exact solution values at these points are [uj = 0.024, ug = 0.036], [uj = 
0.040, u2 = 0.100], [uj = 0.056, u2 = 0.196], respectively. 

To determine the numerical solution at the point P = (0.5,0.4) by using the 
numerical results obtained at t = 0.2, we must use interpolation to construct a vector 
function whose values at t = 0.2 and x — 0.3, 0.5, 0.7 agree with those given by 
the procedure. On applying the NumHypSystCharBack procedure with the last 
four arguments given as ί = 0.4, x = 0.5, t = 0.2, [0,0], we determine that the 
characteristics intersect the line t = 0.2 within the ar-interval [0.3,0.7]. We construct 
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the components u\ and u2 of this function by using Maple's Spline procedure to 
generate the piecewise linear interpolation functions 

U i tf 
0.0005 + 0.081 x, z < 0 . 5 , Г -0.06 + 0.32 x, x < 0.5, 

+ 0.080 x, x > 0.5, " 2 = {-0.14 + 0.48 x, x > 0.5. 
(11.8.35) 

On replacing [0,0] in the foregoing by [ui, u2] as given in ( 11.8.35), the output of the 
procedure is 

X t Ui U2 tQ XQI XQ2 

0.5 0.4 0.1631 0.2032 0.2 0.3686 0.6514 

There is good agreement with the exact solution value. 

(11.8.36) 

Characteristic Difference Methods for Quasilinear Hyperbolic Systems 

We consider the quasilinear hyperbolic system of the form (3.3.73) 

Aux(x, t) + But (ж, t) = c, (11.8.37) 

where A and В are n x n matrices and u and с are n-component vectors. The 
elements of А, В, с can be functions of (x, t,ui(x,t), «2(1, i), · · · ,un(x,t)). As 
for the linear system considered above, we determine an (approximate) numerical 
solution at a prescribed point P = (xp, tp) in the (x, i)-plane, in terms of initial data 
for u(x, t) given at the earlier time t = ÌQ. 

We first reduce (11.8.37) to a characteristic normal form given as 

J '= l 
'u 

duj 
~~dT 

= Si on 
dx 
Tt=Xu Ι , . , . ,η. (11.8.38) 

In contrast to the linear system (11.8.30) considered above, the n equations for the 
characteristics dx(t)/dt — Xi(x(t),t), г = 1,..., n, cannot be solved independently 
of the equations for the щ(х, t). Nevertheless, for a particular solution u(x, i), each 
characteristic x = Xi(t) determines a point Q, = {XQV ÌQ) where the characteristic 
curve that passes through the point P = (xp,tp) intersects the line t = tQ. To 
determine these points and the solution at the point P numerically, we follow the 
approach used for the linear case that gave rise to ( 11.8.32). The system of equations 
(11.8.38) for the щ(х, t) and characteristics x = Xi(t) is replaced by the system 

Ui — Ui 

Σ ЫР+ σ « I« , ) L - l ? ' =δ*\ρ+Ä<U' 
XP - XQi 

Ачр + "Чсг4 

j = l 
tp - tQ tp — tQ 2 

(11.8.39) 
withi = 1, ...,n, where the и j , j = l,. . . ,n, represent the numerical solution values at 
the point P, and the XQ i, г — 1,..., n are to be determined. As for the linear problem, 
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u(x, ÌQ ) must be given or determined by interpolation. To extend the solution beyond 
t = tp, interpolation must be used as before. 

We have constructed the Maple procedure NumQuasiHypSystCharBack that 
finds the value of the solution vector u(x, t) at a prescribed point P = (xp, tp) in 
terms of data given at a previous time t = ÌQ , using the foregoing method. It is 
assumed that u(x, ÌQ) is known. If u(x, ÌQ) is given only on a set of points, inter-
polation must be used to create a vector function for the initial condition. The pro-
cedure takes the form NumQuasiHypSystCharBack{A, B, c, u, t = tp, x = xp, t = 
Ì Q , U ( X , Ì Q ) ) . (The term u represents a list of the dependent variables ui , i t2 , . . . ,un-) 
This corresponds to the problem formulated above for the system ( 11.8.37). The out-
put of the procedure displays the value of u{xp, tp) and the points x = XQ{. If 
an eighth argument print is added, additional information relating to the problem is 
exhibited. 

Example 11.38. The Numerical Method of Characteristics for a Quasi-
linear Hyperbolic System. NumQuasiHypSystCharBack(A, В, с, [щ,u2],t — 
.2, x = .5, t = 0, [0,0]) applies the foregoing method of characteristics to solve the 
initial value problem for ( 11.8.37) with the matrices A and В defined as in ( 11.8.33), 
с = [xu\ - 4x2t4, u\ - AxH2 + 2x2 - 2xt2}, tP = 0.2, xP = 0.5 and u(x, 0) = 0. 
The exact solution of the (full) initial value problem is u(x, t) = [2xt2,2x2t] and is 
identical with that of the problem in Example 11.37. The output of the procedure is 

X t t i l U2 tQ XQl XQ2 1 ( 1 1 8 4n i 
0.5 0.2 0.03687 0.1002 0.0 0.3686 0.6514 J ' l J 

It agrees fairly well with the result given in (11.8.34). 

Difference Methods for the Solution of BVPs for Semilinear Elliptic 
Equations with Variable Coefficients 

We consider the two-dimensional semilinear elliptic PDE 

a {x, y) uxx (x, y) + ß (x, y) uyy (x, y) + 7 (ж, у) их (х, у) 

+ δ (x, y) Uy (x, y)+w (x, у) и (x, y)=F {x, у, и (х, у)). (11.8.41) 

[It is assumed that a(x, у) ф 0 and ß(x,y) Ф 0 in the region of interest and that they 
both have the same sign, so that the PDE is of elliptic type. Although η(χ, y)u(x, y) 
can be included in F(x,y,u(x,y)), we use (11.8.41) for convenience.] Let/ι > Obe 
an increment in x and к > 0 be an increment in y. We replace the partial derivatives 
by centered difference quotients. The difference scheme generated thereby will be 
used to solve boundary value problems for ( 11.8.41 ) in (bounded) rectangular regions 
in the (x, y)-plane. It is 
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u{x + h,y)-2u(x,y) + u{x-h,y) u(x + h,y) -u(x - h,y) 
Ф,У) v +1(х,У) 2Λ 

, u(x, у + к) - 2u(x, у) + и{х, у - к) u(x,y + к) - u(x,y - к) 
+ ß(x,y) τ^ +δ(χ,ν) у; 

+ ω(χ, у)и(х, у) = F(x, у, и(х, у)). 
(11.8.42) 

The truncation error is 0(h2 + к2). 
As before, the points (ж», yj) = (a + ih, b + jk) with г = 0, ± 1 , ± 2 , . . . , and 

j = 0, ± 1 , ± 2 , . . . , and a and b as arbitrary constants, represent the grid points for the 
general difference scheme ( 11.8.42). Let щ^ represent the (numerical) approximation 
of the exact solution u(x, y) of a boundary value problem at the point (xi,yj) [i.e., 
mj ~ u(xi,yj)]. Then (11.8.42) can be written as 

_ k2aij (uj+ij +UJ-IJ) h2ßjj (tXjj+i + UJJ-I) 
J σ σ 

k2h-yij(ui+ij - Ui-hj) h?k6ij(uitj+i -Mj,j- i) h2k2Fitj . . . 
+ 2σ + 2a ~ ' {ПЯАЗ) 

where σ = 2k2ocij+2h2ßij — h2k2Uij, а.ц = a(xi,yj)—with the other coefficients 
defined similarly—andFj^· = F(xi,yj,utj). 

Boundary value problems of all three kinds are considered for the semilinear 
equation (11.8.41) in the rectangular region a < x < b, с < у < d. (We must keep 
in mind that not every boundary value problem has a solution and the consideration 
of a nonlinear PDE raises additional problems. We will assume that the problems 
we consider have unique solutions.) The x and у intervals are subdivided into nx 

and ny equal parts, respectively. The x and у increments are h = (b — a)/nx 

and к = (d — c)/ny, respectively. Thus, the grid points are given as {x%,yj) = 
(a + ih,b + jk) with i = 0,1,2,... ,nx and j = 0 ,1 ,2 , . . . , ny. The sides of the 
rectangle are the boundary lines so that i = 0, г = nx, j — 0, j = ny correspond 
to x = a, x = b, у = с, у — d. respectively. If Dirichlet conditions are assigned 
on the boundary, the grid for the problem comprises only the interior points of the 
rectangular region, so thati = 1,2,. . . , nx — 1 and j = 1,2,..., ny -1. If Neumann 
or Robin conditions are prescribed on one or more sides of the rectangle, the derivative 
terms ux(x, y) and/or uy (x, y) are replaced by centered differences. The introduction 
of ghost points and their elimination proceeds as in the discussion presented above 
for Poisson's equation and is not repeated here. Then, if we are dealing a Neumann 
or Robin problem, the grid points are г = 0 ,1 ,2 , . . .,nx and j = 0 ,1 ,2, . . .,ny. In 
the case of mixed boundary conditions, grid points that correspond to the sides of the 
rectangle where Dirichlet conditions are prescribed are eliminated from the solution 
grid set. 

For each of the foregoing boundary value problems, the difference scheme ( 11.8.43) 
is used. It gives rise to a system of simultaneous, possibly nonlinear equations for 
the Uij. The number of equations depends on the range of the indices г and j as 



FINITE DIFFERENCE METHODS FOR PDEs WITH VARIABLE COEFFICIENTS 8 3 7 

was indicated above. Although it may be possible to obtain an exact solution of the 
system, as was the case for Laplace's and Poisson's equations, we move directly to the 
iteration method for its solution. To that end, the equations in the difference scheme 
have been written in the form ( 11.8.43), for which it is straightforward to carry out an 
iteration process. The Jacobi, Gauss-Seidel, and SOR methods can each be applied 
to ( 11.8.43), and the general ideas presented above apply here as well. The details as 
they apply for our problem are not given here. Instead, we present a Maple procedure 
NumEllipticSL that automates the iteration process. However, it is restricted to the 
use of the Gauss-Seidel and SOR iteration methods. 

The procedure has the form NumEllipticSL(a, ß, 7, δ, ω, F(x, у, u(x, у)), и, х = 
а..Ь, Ibc factor, Ibc, rbc factor, rbc, у = cd, lobe factor, lobe, ubc factor, übe, nx, 
ny,numits, inguess, err, par). The first seven arguments prescribe the coefficients 
and the right-hand side of (11.8.41), and the remaining arguments have the same 
meaning as those in the procedure NumLaplace presented above. We consider two 
examples. 

Example 11.39. A Dirichlet Problem for a Linear Elliptic Equation. We 
consider the Dirichlet problem in the unit square 0 < x < 1, 0 < у < 1 for the 
following linear elliptic PDE: 

(2 + cos (y2)) uxx (x, y) + (l + x2 + y2) uyy (x, y) + ux (x, y) = x3yexy 

+ (2 + cos (y2)) (6xex y + 6x2yex y + x3y2exy) + (l + x2 + y2) x5exy + 3x2ex y 

(11.8.44) 

with the boundary conditions и (x, 0) = x3, и (x, 1) = x3ex, и (0, у) = 0, и (1, у) = 
ev. The exact solution of this problem is u(x, y) = x3exy. 

NumEllipticSL(2+cos(y2), l+x2+y2,1,0,0,F(x,у),и,х = 0..1,dirichlet, 
0, dirichlet, ey, у = 0..1, dirichlet, x3, dirichlet, x3ex, 10,10,1000,0, .0001,1) is 
used, where F(x, y) is the right side of (11.8.44). The x and у intervals are both sub-
divided into 10 equal parts. The maximum number of iterations allowed is 1000. The 
initial guess is u(x, y) = 0. The error tolerance is 0.0001 and the last argument in the 
procedure, the number 1, signifies that the Gauss-Seidel method is to be used. The 
output of the procedure is 

y\x 
0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1. 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0.10 
.0010 
.0012 
.0014 
.0016 
.0018 
.0019 
.0020 
.0020 
.0019 
.0016 
.0011 

0.20 
.008 
.009 
.009 
.009 
.010 
.010 
.011 
.011 
.011 
.011 
.010 

0.30 
.027 
.028 
.030 
.031 
.032 
.033 
.035 
.036 
.036 
.037 
.036 

0.40 
.064 
.067 
.070 
.074 
.077 
.081 
.084 
.087 
.091 
.093 
.095 

0.50 
.125 
.131 
.140 
.146 
.155 
.164 
.172 
.180 
.189 
.197 
.206 

0.60 
.216 
.229 
.245 
.259 
.278 
.293 
.311 
.333 
.352 
.373 
.393 

0.70 
.343 
.369 
.394 
.424 
.457 
.489 
.522 
.563 
.601 
.644 
.689 

0.80 
.512 
.557 
.602 
.653 
.704 
.766 
.827 
.901 
.969 
1.05 
1.14 

0.90 
.729 
.800 
.872 
.955 
1.05 
1.14 
1.25 
1.37 
1.49 
1.64 
1.79 

1.0 
1.0 
1.11 
1.22 
1.35 
1.49 
1.65 
1.82 
2.01 
2.23 
2.46 
2.72 
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The first row in the array lists the x grid values, and the first column lists the у 
grid values. The number of iterations carried out to get this result equals 150. The 
numerical solution is a good approximation to the exact solution. 

Example 11.40. A Linear and Nonlinear Stability Problem. We consider 
the stability problem of Exercise 4.7.6. The semilinear PDE is 

uxx (x,y) + Uyy (x,y) = -\u{x,y) (1 -u2{x,y)), (11.8.45) 

with 0 < ж < π, у > 0 (with A replaced by A), and the linearized PDE is 

uxx (x, y) + uVy (x, у) = -А и (x, y), (11.8.46) 

with the boundary conditions u (x,0) — eh(x), u(0,y) = 0, u(n,y) = 0, lim^-^o 
u(x, y) = 0. Although the problem considers the unbounded interval у > 0 and re-
quires that u(x, y) —> 0 as у —> oo, we must assign a finite range for у in order to 
apply the procedure NumEllipticSL to this problem. 

The critical value of the parameter is Ac = 1 and we put h(x) = sin(x) and 
e = 0.01. We use the procedures NumEllipticSL(l, 1,0,0,0, —Au(x, y),u,x = 
0..7Г, dirichlet, 0, dirichlet, 0, у = 0..100, dirichlet, .01 sin(x), dirichlet, .1,4,20, 
250,0, .0020,1.6) anàNumEllipticSL{l, 1,0,0,0, -Xu{x, y){l-u2{x, у)), и, х = 
0..7Г, dirichlet, 0, dirichlet, 0, у = 0..100, dirichlet, .01 sin(x), dirichlet, .1,4,20, 
250,0, .0020,1.6) for the linear PDE and the semilinear PDE, respectively. In each 
case a finite у interval [0,100] is used and a small but nonzero value u(x, 100) = 0.1 
is prescribed. We have u(x, 0) = 0.01 sin(x) and subdivide the x interval into four 
parts and the у interval into 20 parts. The SOR method with the relaxation parameter 
ω = 1.6 is used. 

First we put A = 0.9, which is below the critical value and apply both procedures. 
The full output of the procedures is not exhibited here. We use the global variable 
SE to obtain the numerical results at у = 60 with x = IT/A, π/2, 3π/4. They are 
[6.013 x 10-12,1.857 x 10"11,2.650 x 10"11], for both the linear and semilinear 
problem. The solution decays, as expected, for increasing y. [However, as у ap-
proaches 100 the solution nears the assigned boundary value u(x, 100) = 0.1 of the 
procedures.] 

Next we apply both procedures with A = 1.1, a value that exceeds the critical value. 
We again use the global variable SE to obtain the numerical results at у = 60 with 
x = 7Г/4, 7г/2, 3π/4. For the linear case they are [0.2927 x 1013,0.4463 x 1013, 
0.3403 x 1013], which is consistent with the instability of the linear problem. For the 
semilinear problem we obtain [.306, .424, .306]. They are the solution values given 
by the procedure for у = 15,20, . . . , 90. The solution does not grow without bound 
but appears to stabilize around the function u(x, y) « 0.4244 sin(x). Replacing the 
boundary value at у = 0 by u(x, 0) = 0.01χ(π — x) yields the same output as before, 
for у values away from у = 0 and у = 100. If the number of x intervals is increased, 
the numerical solution again exhibits stability, but the solution values differ from 
those given above at common points. 
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Exercises 11.8 

11.8.1. Consider the initial and boundary value problems for the semilinear parabolic 
PDE given in Example 11.32. Use the exact solution and the procedure NumPara — 
bolicLinesSL to obtain the values given in the array (11.8.7). 

11.8.2. Reproduce the results in Example 11.33 via NumParabolicLinesSL. 

11.8.3. Carry out Exercise 11.8.2 with the function h{x) = sm{irx) in Example 
11.33 replaced by h(x) = χ(π — x). 

11.8.4. Use NumHyperbolicLinesSL and NumParabolicLinesSL to obtain the 
results given in Example 11.34. 

11.8.5. Reproduce the results of Example 11.35 by invoking the procedure Num. — 
HypScalChar. 

11.8.6. Use the procedure NumHypSystChar to obtain the results of 
Example 11.36. 

11.8.7. Apply the procedure NumHypSystCharBack to obtain the results of 
Example 11.37. 

11.8.8. Use the procedure NumQuasiHypSystChar to obtain the results of 
Example 11.38. 

11.8.9. Use the procedure NumEllipticSL to reproduce the results of 
Example 11.39. 

11.8.10. Use the procedure NumEllipticSL to verify the stability results of 
Example 11.40. 

11.9 FINITE DIFFERENCE METHODS FOR HIGHER-
DIMENSIONAL PDEs 

In this section we extend a number of the numerical methods introduced above to 
problems in two or three spatial dimensions for the heat and wave equations and 
to three-dimensional problems for Laplace's and Poisson's equations. Forward and 
backward difference schemes in two dimensions and the method of lines in two 
and three dimensions are introduced for the numerical solution of the heat and wave 
equations. Iteration schemes are presented for the numerical solution of Laplace's and 
Poisson's equations in three dimensions. Maple procedures have been constructed 
to carry out each of these numerical schemes. Systems of hyperbolic equations and 
PDEs with variable coefficients are not considered. 
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Explicit Forward Difference Method for the Two-Dimensional 
Heat Equation 

The two-dimensional nonhomogeneous heat or diffusion equation is 

ut{x, y, t) - c2(uxx(x, y, t) + uyy(x, y, t)) = F(x, y, t). (11.9.1) 

Let hx > 0 and hy > 0 be increments in x and y, respectively, and к > 0 be an 
increment in t. We replace ut (x, y, t) by a forward first order difference quotient in 
t and a „ ( i , y, t) and uyy(x, y, t) by centered second order difference quotients in 
x and y, respectively. With rx = kc2/hx and ry = kc2/hy, we obtain the explicit 
forward difference scheme 

u(x, y, t + k) = (1 - 2rx - 2ry) u(x, t) + rx (u{x + hx, y, t) + u(x - hx, y, t)) 

+ry (u(x, у + hy, t) + u(x, у - hy, t)) + kF(x, y, t), (11.9.2) 

after some simplification. The truncation error is readily found to be 0(k + hx + hy), 
so that ( 11.9.2) is consistent with the heat equation ( 11.9.1 ). 

The points (xp,yj,tm) = (a+phx,b + jhy,t0 + mk), with p = 0, ± 1 , ± 2 , . . . , 
j = 0, ± 1 , ± 2 , . . . , m = 0 ,1 ,2 , . . . , and a, 6, and io as arbitrary constants, represent 
the grid points for the difference scheme ( 11.9.2). Let upjtrn represent the (numerical) 
approximation of the exact solution u(x, y, t) of a given boundary value problem at 
the point (xp, yj, tm). Then (11.9.2) can be given as 

'ΜρΛ,τη+Ι = (.t Δ Γ Χ ZTy)Up:jìrn ~г Τχχΐίρ+γ^^γη + Up—i^j^m) 

-г Ту {ΊΙρ^+ι,τη ι Upj—i,rn/ "г ™FpyjyTn, ^11.У.о) 

with F P j , m = F(xp,yj,tm). 
The difference equation ( 11.9.3) with F = 0 characterizes a two-dimensional 

random walk, with rx as the probability of a step to the right or left (i.e., in the x 
direction) and ry as the probability of a step up or down (i.e., in the у direction). 
For the coefficients in the resulting difference equation to represent probabilities, we 
must restrict the values of the nonnegative rx and ry so that rx + ry < 1/2. 

The von Neumann stability condition for the difference scheme is obtained by 
inserting 

Up,j,m = otm exp(i(ßp + aj)) (11.9.4) 

into ( 11.9.3) with F = 0. This yields a = 2rx cos(/3) + 2ry cos(cr) + 1 - 2rx - 2ry 

after some elementary simplification. For stability, the amplification factor a must 
satisfy — l < a < l a s / 3 and σ range over the interval [0,2π]. Using elementary cal-
culus to determine the maximum and minimum of a = α(β, σ), we easily conclude 
that the minimum equals 1 — 4rx — 4ry and the maximum is 1. This yields the stability 
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condition rx+ry < 1/2. Thus, the explicit forward difference scheme is conditionally 
stable with the stability condition 

rx + ry = kc2/h2
x + kc2/h2

y < 1/2. (11.9.5) 

We consider initial conditions at t = t0 and boundary conditions of all three kinds 
for the heat equation ( 11.9.1 ) in the rectangular region a < x < b, с < у < d. 
The x and у intervals are subdivided into nx and ny equal parts, respectively. The 
x and у increments are hx = (b — a)/nx and hy — (d — c)/ny, respectively, and 
the t increment is k. Thus, the x and у grid points are given as above, but with 
p = 0 ,1 ,2 , . . . , nx and j = 0 ,1 ,2 , . . . , ny. The sides of the rectangle are boundary 
lines (for each value of t) so that p = 0, p = nx, j = 0, j = ny correspond to 
x = a, x = b, у ■= с, у = d, respectively. The size of the grid depends on the type 
of boundary conditions assigned for the problem, as discussed in Section 11.4. 

We consider an initial and boundary value problem for the heat equation ( 11.9.1 ) 
in the region a < x < b, с < у < d, t > to with the initial condition u(x, y, to) = 
f(x, y). Boundary conditions of all three kinds can be prescribed on the four sides 
of the rectangular region. If Dirichlet conditions are assigned, for example, we have 
u(a, y, t) = g(y, t), u(b, y, t) = h{y, t), u(x, c, t) = r{x, t), u(x, d, t) = s(x, t). 

We have constructed the procedure NumHeatForw2d{c2, F(x, y, t), t = to--tf, 
f(x,y),x = a..b,lbcfactor,g(y,t),rbcfactor,h(y,t),y = cd, lobe factor, 
r(x, t), ubcf actor, s(x, t), nx,ny, k) for the numerical solution of the foregoing ini-
tial and boundary value problems. The second argument specifies the initial time 
t = to and the time t = tf when the solution is to be found. The last argument speci-
fies the time increment k. All other arguments are defined as in the LaplaceMatrix 
procedure of Section 11.4. 

We consider only one example. 

Example 11.41. A Neumann Problem for the Heat Equation. We consider 
an initial and boundary value problem for the homogeneous heat equation (11.9.1) 
with с = 1 and F(x, y, t) = 0. The initial condition is u(x, y, 0) = xy2 and we have 
0 < а : < 1 , 0 < 2 / < 1 with homogeneous Neumann boundary conditions prescribed 
on the boundary. The x and у intervals are both subdivided into 10 equal parts, and 
the solution is to be found at t = 5. It is expected that the solution will have reached 
a steady state at that time. We invoke the procedure NumHeatForw2d(l, 0, t = 
0..5., xy2, x = 0..1,0,0,0,0, у = 0..1,0,0,0,0,10,10, к). If we put к = 0.001, 
thenr^+Гу = 0.2 and the scheme is stable. The solution values at the grid points (with 
t = 5) are either 0.167 or 0.168. For example, the global variable SolHF determines 
that the numerical solution at (x,y,t) = (0,0.1,5) equals SolHF(0., 0.10) = 0.167. 
This represents the average of the initial temperature integrated over the unit square, 
which is given as J0f0xy2 dxdy = 0.1666666667. 

If we put к = 0.01, then rx + ry = 2 and the scheme is unstable. The global 
variable SolHF has the value So/#F(0.,0.10) = 0.159 x 10416. The solution 
values at all the other grid points are of the same order of magnitude. 
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Implicit Backward Difference Methods for the Two-Dimensional 
Heat Equation 

We replace щ (x, y, t) by a backward first order difference quotient ini andu^a; , y, t) 
and uyy (x, у, t) by centered second order difference quotients in x and y, respectively, 
in the heat equation (11.9.1). On retaining the notation introduced above, we obtain 
the implicit backward difference scheme 

^p,j,m—l = \ t "T &TX + ^fy)Up,j,m Τχ^p+l,j,m ι ^p— lij1m) 

^yV^P,J + l,m i Wp,j —l,mj "*■* p,j,m* ^ l l . y .O j 

The truncation error for the difference scheme is О (A: + hx + hy ), so that (11.9.6) is 
consistent with the heat equation ( 11.9.1 ). 

The von Neumann stability condition for the difference scheme is obtained by 
inserting (11.9.4) into (11.9.6), where we put F = 0. This yields 

1 (11.9.7) 
(2 - 2cos(/?))rx + (2 - 2cos{a))rx + 1 

after some simplification. Clearly, \a\ < 1 for all β and σ, so that the implicit 
backward difference scheme is unconditionally stable. 

The implicit Crank-Nicolson difference scheme for (11.9.1) is constructed analo-
gously to that for the one-dimensional heat equation. We obtain 

V V 
\L ~r Γχ ~r fy)Upjtm ^"Vup+l, j ,m T Up—ijm) ^~ lMp,.7 + l,m T Up,j — l,m) 

= ν^ ^x TyjUpJ^m — l "r ~^r\Up-\-l,j,m~ 1 ~r Up— ljtrn—l) 

'~iT\Up,j+l,m — 1 < ^p , j — l,m — 1 ) ~r ~^"p,j,m ' X-*p,,7,m —1· ^ l l . y . o j 

The truncation error for the difference scheme is 0(k2 + hx + hy), so that ( 11.9.8) is 
consistent with the heat equation (11.9.1). The difference scheme is unconditionally 
stable, but we do not demonstrate this. 

The procedure NumHeatBackw2d(c2, F(x, y, t), t = to--t/, f(x, y),x = a..b, 
Ibcf actor, g(y, t),rbcf actor, h(y, t), у — cd, lobcf actor, r(x, t), ubcf actor, 
s(x,t),nx,ny,k,par) constructs numerical solutions of the initial and boundary 
value problems discussed above. All arguments are as in the NumHeatForw2d 
except for the added last argument par, which must take the value 0.5 or 1. If the 
value is 0.5 the Crank-Nicolson scheme is used, and if the value is 1, the implicit 
backward difference scheme is invoked. 

Both implicit schemes require that a system of simultaneous linear equations be 
solved in moving from one time step to the next. They do not take on as simple a form 
as in the one-dimensional case. Alternating direction methods, which are presented 
below, introduce systems of simultaneous equations that are easier to solve. 
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We apply the procedure NumHeatBackw2d to the Neumann problem considered 
in Example 11.41, using the same arguments. Both of the foregoing implicit methods 
are used. For each choice of к prescribed above, the steady-state values 0.167 or 
0.168 are obtained at each grid point. 

Peaceman-Rachford and Douglas-Rachford ADI Difference Methods 
for the Two-Dimensional Heat Equation 

As indicated above, the use of the implicit backward and Crank-Nicolson difference 
schemes in two dimensions requires the solution of simultaneous linear systems that 
do not have the simple tridiagonal forms encountered in the one-dimensional versions 
of these schemes. To retain the simplicity of the one-dimensional schemes, Peaceman 
and Rachford developed a modification of the Crank-Nicolson scheme, and Dou-
glas and Rachford developed a modification of the implicit backward scheme. Both 
methods replace the two-dimensional schemes by two (effectively) one-dimensional 
schemes, one in the x direction and the other in the у direction. They are both im-
plicit methods. As such, they are referred to as alternating direction implicit {ADI) 
methods. Both methods are consistent with the nonhomogeneous heat equation and 
have the same truncation error as that of the scheme they modify, and they are both 
unconditionally stable. Each of these methods can be derived by factoring the dif-
ference operators that arise in the Crank-Nicolson and backward difference methods. 
We do not present their derivation but state the difference schemes directly. Their 
consistency and stability properties can then be verified directly. 

The Peaceman-Rachford alternating direction implicit difference scheme is given 
as 

7* A* 
V ~r Τχ) ^p,j,m ^Γ \№p+l,j,m ~r ̂ ρ—l,j,m/ T (,-**p,j,m— 1 "T ^ρ,^,τη) 

T 
= (1 - Гу) Upj , m _i + у (Up,j+l,m-l + t l P i j _ i , m _ i ) , (11.9.9) 

v A* 
\^ ' 1*y) ^Ρ^,τη ~л~ \Цр^+1,т ι ^p,j — Ι,τη) T \*p,j,m — l τ ■^,p1jim) 

V 
= (1 - Гх) Wpj,m + у (Wp+ij,m + Wp-ij,m) . (11.9.10) 

The Douglas-Rachford alternating direction implicit difference scheme is given as 

к 

\i + Τχ ) Wp^jm Vx {Wp+ij^m + Wp—\jm) -\- ~^fp,j,m 

— (1 - Гу) Upj,m-1 + Ту (Up,j + l ,m_l + U p , j_ i , m _ i ) , (11.9.11) 

к 

(I "г Ту) ΊΑρ^,τη Ту ν^ρ,^'+Ι,τη τ ^ρ^ — Ι,τη) <4-̂ p,j,m 

= ^PJ,"^ Ту (^ρ^-|_ιι?η_ι ZUpj^m—i -\- Up)j_i)Tn_iJ . ( l l .y . lZJ 
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The (subscript) notation used for the terms uPijtTn and wPijim is as before. At each 
time step t = tm, m > 1, it is assumed that uPij im_i is known. Then (11.9.9) and 
(11.9.11) yield simultaneous linear tridiagonal systems for wPtjtm. Once the wpj,m 

are determined, (11.9.10) and ( 11.9.12) yield simultaneous linear tridiagonal systems 
for upjtm. Each of the initial and boundary value problems considered above can be 
solved by either of these methods. 

The procedures NumHeatPRADI2d and NumHeatDRADI2d obtain numer-
ical solutions of initial and boundary value problems (of the form that were solved 
above by explicit forward and implicit backward difference methods) by the use of 
Peaceman-Rachford and Douglas-Rachford methods. The arguments for each pro-
cedure are the same as in the procedure NumHeatForw2d. 

Example 11.42. A Mixed Problem for the Heat Equation. We consider the 
initial and boundary value problem for the nonhomogeneous heat equation ut(x,y,t)— 
uxx(x,y,t) - Uyy(x,y,t) = cos^x) (-y2 + n2y2 - 2) e - t , with 0 < x,y < 
1, t > 0, the initial condition u(x, y, 0) = cos^x) y2, and the mixed boundary con-
dition ux(0,y,t) = 0, u(l,y,t) — - y 2 e _ t , uy(x,0,t)—u(x,0,t) = 0, u(x, l,<) = 
cos(7rx)e_t. The exact solution of this problem is u(x, y, t) = cos(7rx) y2e~*. 

We subdivide the x and у intervals into four equal parts, with the t increment 
equal to 0.01. The numerical solution is to be found at t = 1. We begin with 
the Peaceman-Rachford method and use NumHeatPRADI2d(l, cos(nx)(—y2 + 
■к2у2 - 2) e _ t , ί = 0..1., cos^x) y2, x = 0..1,0,0, dirichlet, -y2 e _ t , у = 0..1,1, 
0, dirichlet, οοδ(πχ) e _ t ) , 4,4, .01). The Maple output is 

t = 1 x 0.0 

У 
0.0 
0.25 
0.50 
0.75 
1.0 

0.00267 
0.0267 
0.0969 
0.212 
0.368 

0.25 

0.00225 
0.0193 
0.0689 
0.150 
0.260 

0.50 

0.00131 
0.00157 
0.00157 
0.00107 

-7.55 IO"11 

0.75 

0.000421 
-0.0160 
-0.0653 
-0.147 
-0.260 

1.0 

0.0 
-0.023 
-0.092 
-0.207 
-0.368 

(11.9.13) 
Next we use the Douglas-Rachford method and enter NumHeatDRADI2d with 

the same arguments as above. The Maple output is 

t = 1 x 0.0 

У 
0.0 
0.25 
0.50 
0.75 
1.0 

0.00113 
0.0254 
0.0968 
0.213 
0.368 

0.25 

0.00123 
0.0184 
0.0688 
0.151 
0.260 

0.50 

0.00157 
0.00173 
0.00140 
0.000666 

-7.55 IO"11 

0.75 

0.00230 
-0.0146 
-0.0657 
-0.149 
-0.260 

1.0 

0.0 
-0.0230 
-0.0920 
-0.207 
-0.368 

(11.9.14) 
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It may be noted that the exact solution vanishes when x = 0.5, whereas the nu-
merical solution values are small but not zero. The agreement between the numerical 
and exact solution values can be improved by increasing the number of subdivisions. 

Method of Lines for the Two-Dimensional Heat Equation 

We continue our discussion of numerical methods for the solution of initial and bound-
ary value problems for the nonhomogeneous heat equation ( 11.9.1 ). Let hx > 0 and 
hy > 0 be increments in x and y, respectively. We replace uxx (x, y, t) and uyy (x, y, t) 
by centered second order difference quotients in x and y, respectively, but retain t as a 
continuous variable. Our discussion is restricted to a rectangular region in the (x, y)-
plane given as 0 < ж < Z, 0 < у < L. The initial condition is given at t = 0, and 
boundary conditions of all three kinds can be given at x = 0, x = l, у = 0, у = L. 
The x and у intervals are divided into n and m equal parts, respectively. Since t is not 
discretized, the grid comprises the (a;, y) values at which the solution is to be found, 
and is given as xi = il/n, yj = jL/m with г = 0 ,1 ,2 , . . . , n, j = 0 ,1 ,2 , . . . , m. 
Thus hx = l/n and hy — L/m. The approximate solution is to be found at a given 
time t > 0. The semidiscrete difference scheme can then be written as 

C2 

+ — (Uij+i(t) - 2iüj(i) + Uij-i(i)) + Fi,j(t), (11.9.15) 
ny 

where щ j (t) represents the approximation to the exact solution u(x, y, t) of the given 
problem at the point (xi,yj) = (il/n,jL/m) at the time t, and where Fij(t) = 
F(il/n,jL/m,t). As before, the set of grid points at which the solution is to be 
found depends on the type of boundary conditions that are prescribed. Numerical 
solution values at boundary points are determined as above. The use of the coupled 
system of ODEs to solve a given initial and boundary value problem for the heat 
equation numerically is the two-dimensional version of the method of lines. 

NumHeatLines2d(c2, F(x,y,t),t — to,f(x,y),x = a..b,lbcfactor, g(y,t), 
rbcfactor, h(y, t),y = c.d, lobcfactor, r(x, t),ubcf actor, s(x, t), nx,ny) applies 
the method of lines to determine numerical solutions of the foregoing initial and 
boundary value problems. The arguments of the procedure are defined as in Num — 
HeatForw2d, with the following differences. The third argument specifies only the 
initial time t = to. An optional seventeenth argument can be entered. If it is omitted, 
the output is a procedure that permits the evaluation of the solution at arbitrary values 
of t. If there is a seventeenth argument t = tm, the output is an array of grid values 
at the time t = tm. Maple's default numerical solution method is used to solve the 
system of ODEs. As is the case for the procedure NumHeatLines that applies the 
method of lines to the heat equation in one dimension and was discussed in Section 
11.2, additional optional arguments can be introduced to force Maple to use alternative 
numerical methods to solve the system. 
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Example 11.43. A Neumann Problem for the Heat Equation. We recon-
sider the initial and boundary value problem presented in Example 11.41. The x and 
у intervals are both subdivided into 10 equal parts and the solution is to be found 
at t = 5. The solution is expected to have reached a steady state at that time. We 
invoke the procedure NumHeatLines2d(l, 0, t = 0, xy2, x = 0..1,0,0,0,0, у = 
0..1,0,0,0,0,10,10, t = 5). The solution values at the grid points (with t = 5) are 
either 0.167 or 0.168. They correspond to the steady-state values of the solution, 
as shown in Example 11.41. If the final argument t = 5 in NumHeatLines2d 
is removed, the output is a procedure that displays the numerical solution values at 
various times t. It can be used to determine the rate at which the numerical solution 
approaches a steady state. 

The foregoing results were obtained by Maple using its built-in numerical ODE 
solver. By inserting optional arguments in the procedure alternative numerical solu-
tions methods with fixed time increments can be used. For example, if we replace 
t = 5 by method = classical\foreuler], stepsize = 0.001, Maple uses Euler's method 
to solve the system of ODEs with the time increment given as к = 0.001. That is, 
the time derivatives in the system are replaced by forward difference quotients. The 
resulting difference scheme is stable and the output for t = 5 is again equal to the 
steady state-values. However, if we increase the value of к and put stepsize = 0.01, 
the difference scheme is unstable and the output is undefined. 

Explicit Forward Difference Method for the Two-Dimensional 
Wave Equation 

The two-dimensional nonhomogeneous wave equation for u(x, t/, t) is given as 

utt(x, y, t) - c2 (uxx(x, y, t) + uyy(x, y, t)) — F(x, y, t). (11.9.16) 

Let hx > 0 and hy > 0 be increments in x and y, respectively, and к > 0 be 
an increment in t. We replace utt(x, y, t), uxx(x, y, t) and uyy(x, y, t) by centered 
second order difference quotients. With rx = ck/hx and ry = ck/hy, we obtain the 
explicit forward difference scheme 

u(x,y, t + k) = 2(1 - r\ - r2) u(x, t) + r2 (u(x + hx,y,t) + u(x - hx,y, t)) 

+ r2 (u(x,y + hy,t) + u(x, y-hy,t))- u(x,y,t-k)+ k2F(x,y, t), (11.9.17) 

after some simplification. The truncation error is 0(k2 + h2 +h2) so that (11.9.17) 
is consistent with the wave equation ( 11.9.16). 

The points (xp, yj,tm) = (a + phx, b + jhy, to + mk) with p = 0, ± 1 , ± 2 , . . . , 
j = 0, ± 1 , ± 2 , . . . , and m = 0 ,1 ,2 , . . . , and a, b, and io as arbitrary constants 
represent the grid points for the difference scheme ( 11.9.17). Let up , j ,m represent the 
(numerical) approximation of the exact solution u(x, y, t) of a given boundary value 
problem at the point (a;p, yj,tm), then (11.9.17) becomes 
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Φ 

+r2(uP,j + l,m +«pj - l ,m) " «p,j,m-l + &2.Fptj,m, (11.9.18) 

Wltn Гр^^гп — -^ V^P' 2/j ? ^ m j * 

The von Neumann stability condition for the difference scheme is obtained by 
inserting upjtm = am exp(i(ßp + aj)) into (11.9.18) with F = 0. This yields the 
quadratic equation a2 + (4r2 sin2(/3/2) + 4r2 sin2(a/2) - 2) a + 1 = 0. The two 
roots can be given as a — 1 - 2r2 sin2 (/3/2) — 2r2sin2(a/2) ± 2 

(r2 sin2(/3/2) + r2 sin2(a/2) - l)(r2 sin2(/3/2) + r2 sin2(a/2)). 
If we set β = σ = ж in the above, and compare with (11.5.18) and the ensuing 

discussion for the one-dimensional wave equation, we conclude that if r2 + r2 > 1, 
the scheme is unstable. If r2 + r2 < 1, the roots are complex conjugates. Since 
the quadratic equation shows that the product of the roots equals 1, we conclude, for 
each root, that \a\ = 1, and this signifies stability. Consequently, the explicit forward 
difference scheme is conditionally stable with 

„21.2 _2ju2 

■^•ί-ΤΓ + τ Η 1 (ши9) 

as the von Neumann stability condition. 
To determine the CFL stability condition for the difference scheme, we recall that 

the domain of dependence of a point (ξ, η) at the time t at the initial time t = 0 is given 
bythediskc2*2 < (ж—£)2 + (г/—V2)· Now, iff = mk, the grid values whose distance 
from (ξ, η) at t = 0 is maximal are given as (ξ ± τηΙιχ,η ± mhy). For the domain 
of dependence of the wave equation to be contained within the numerical domain of 
dependence, we must require that c2k2m2 < m2h2 + m2h2. This yields the CFL 
stability condition 1 < 1/r2 + 1/r2. We note that if the von Neumann condition 
(11.9.19) is satisfied, so is the CFL condition, but the converse is not always true. If 
rx = ry = r, (11.9.19) gives r2 < 1/2 while the CFL condition yields r2 < 2. 
Additionally, if r2 — 1/2, r2 = 3/4, for example, the CFL condition is met but not 
the von Neumann condition. 

We consider an initial and boundary value problem for the wave equation ( 11.9.16) 
in the region a < x < b, с <y < d, t > to with the initial conditions 

u{x, y, t0) = / i(x, у), щ{х, у, t0) = h{x,y). (11.9.20) 

Boundary conditions of all three kinds can be prescribed on the four sides of the 
rectangular region, as was done for the heat equation. The explicit difference scheme 
is a two-step method, and the initial values at the first two time steps are prescribed as 
in the one-dimensional case. The boundary conditions used in the difference scheme 
are determined as for the two-dimensional heat equation. 

NumWaveForw2d(c,F(x,y,t),t = to--t/, fi{x, y), /2(2^, y),x = a..b,lbcfactor, 
g(y, t), rbcfactor, h(y, t),y = c.d, lobcfactor, r(x, t), ubcfactor, s(x, t),nx, ny, k) 
solves the foregoing initial and boundary value problems for the wave equation 
(11.9.16) numerically, using the explicit forward difference scheme. Except for the 
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addition of the fifth argument that specifies ut(x, y, to), the arguments are the same 
as those defined for the procedure NumHeatForw2d. 

Example 11.44. A Dirichlet Problem for the Wave Equation. We use 
the procedure NumWaveForw2d(l,2x2y2 - 2yH2 - 2x2t2,t = 0..1,0,0,a: = 
0..1, dirichlet,0, dirichlet, y2t2, у = 0..1, dirichlet, 0, dirichlet,x2t2,4,4, k). It 
solves the Dirichlet problem for the wave equation (11.9.16) with F(x,y,t) = 
2x2y2 — 2y2t2 — 2x2t2 and homogeneous initial conditions. The exact solution 
of the foregoing initial value problem is u(x, y, t) = x2y2t2. We consider the region 
0 < x,y < 1 and impose Dirichlet conditions on x = 0, x = 1, у = 0, у = 1 
for ί > 0 that equal the values of the exact solution on the boundaries. The x and у 
intervals are subdivided into four equal parts. The t increment к is to be specified, 
and the numerical solution is to be found at t = 1. 

First, we put к = 0.25, so that r2. = r2
y = 1, r2

x + r2 — 2, and \jr\ + \jr2
y = 

2. Consequently, the scheme satisfies the CFL condition but is not von Neumann 
stable. The solution values at the interior grid points with у = 0.75 are given as 
SolWF(.25, .75) = -.360,SoZWF(.50,.75) = 1.50,SOWF(.75, .75) = -1.49, 
on using the global variable SolWF. The values of the exact solution at these points 
areu(.25, .75,1) = .035,u(.50, .75,1) = .141,u(.75, .75,1) = .316. The results are 
far apart, indicating an instability. Next, we set к = 0.005. Then r2 + r2 = 0.0008, 
so that the difference scheme is von Neumann stable. The numerical solution values 
at the interior grid points with у = 0.75 are now given as SolWF(.25, .75) = 
.034, SolWF(.50, .75) = .139, SolWF(.75, .75) = .317. 

Implicit Backward Difference Method for the Two-Dimensional Wave 
Equation 

Whereas an entire family of implicit difference schemes was introduced for the one-
dimensional wave equation, we restrict ourselves to presenting a single implicit back-
ward difference scheme for the two-dimensional case. Centered difference quotients 
are again used to approximate all second derivative terms in the wave equation. The 
approximation of uu(x, y, t) involves the time values t + k, t, t-k, but uxx(x, y, t) 
and uyy(x, y, t) are both approximated by the average of their centered differences 
taken at the times t + k and t — k. The same is done for the nonhomogeneous term 
F(x, y, t). As a result, the values of u(x, y,t + k) must be determined implicitly. In 
the notation introduced above, the difference equation takes the form 

u p , j ,m+ l — ^Upjm Upjt1rn — i H — (Up- | - i j i m + l — ^p,j,m+l т Up—l,j,m+l) 

Г2 k2 

r\ 
~T~~^r\Up+l,j,m — 1 ~' *Upj^m — i -\-Up—itj^m — i) 

rl k2 

+ ~^Tup,j + l-,m-\ — 2Upjtm-i + Upj-itTn-i) + - r - -Fp , j ,m- l · (11 .9 .21) 
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This is the implicit backward difference scheme for the two-dimensional wave equa-
tion (11.9.16). The truncation error is 0(k2 + h\ + hy ) so that ( 11.9.21 ) is consistent 
with the wave equation (11.9.16). The difference scheme can be shown to be uncon-
ditionally stable. 

The implicit scheme can be used to solve initial and boundary value problems 
for the wave equation, as formulated above for the explicit scheme. However, as 
for the implicit schemes for the two-dimensional heat equation, it is necessary to 
solve a system of linear equations to determine the numerical solution at each time 
step. Alternating direction methods were introduced above to simplify this process 
for the heat equation. Related techniques have been developed for the wave equation, 
but they are not presented here. The Maple procedure NumW aveBackw2d solves 
the foregoing initial and boundary value problems for the wave equation (11.9.16) 
numerically using the implicit backward difference scheme. The arguments are the 
same as those denned for the procedure NumWaveForw2d. 

We apply NumWaveBackw2d to the problem of Example 11.44 with к = 0.25, 
which led to an unstable forward difference scheme in the example. Using the 
global variable SolWB yields SolWB{.25, .75) = .0021, SolW В (.50,.75) = 
-.00608, SolWB(.75, .75) = -.0056. 

Method of Lines for the Two-Dimensional Wave Equation 

We refer to our discussion of the method of lines for (11.9.1) and present the cor-
responding method for (11.9.16). We deal only with the rectangular region in the 
(x, y)-plane, given as 0 < x < I, 0 < у < L. Initial conditions (11.9.20) 
are given at t = 0, and boundary conditions of all three kinds can be given at 
x = 0, x = l, у = 0, у = L. The x and у intervals are divided into n and m 
equal parts, respectively. The t variable is not discretized, so that the grid is given as 
Xi = il In, yj = jL/m with i = 0,1,2,..., n, j = 0,1,2,... ,m. Thus hx = l/n 
and hy = L/m. The approximate solution is to be found at a specified time t > 0. 
The semidiscrete difference scheme is then given as 

c2 

c2 

+ -ri(uij+i(t) -2uij(t) +Uid-i(t)) + Fi,j(t), (11.9.22) 
hy 

where щ^ (t) is the approximation to the exact solution u(x,y,t) of the problem at the 
point (xi,yj) = (il/n,jL/m) at the time t, and where Fi j(t) = F(il/n,jL/m,t). 
As before, the grid points at which the solution is to be found depend on the boundary 
conditions prescribed. Numerical solution values at boundary points are determined 
as above. The use of the system of ODEs to solve a given initial and boundary value 
problem for the wave equation numerically is the two-dimensional version of the 
method of lines. 
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The procedure NumWaveLines2d(c,F(x,y,t),t = to,fi(x,y),f2(x,y),x = 
a..b, Ibcf actor, g(y, t), rbcf actor, h(y, t),y = cd, lobcf actor, r(x, t),ubcf actor, 
s(x, t),nx, riy) applies the method of lines to determine numerical solutions of the 
foregoing initial and boundary value problems. The arguments of the procedure are 
defined as in NumWaveForw2d with the following differences. The third argument 
specifies only the initial time t — t0. There is an optional eighteenth argument. If 
it is omitted, the output is a procedure that permits the evaluation of the solution at 
arbitrary values of t. If the eighteenth argument is t = tm, the output is an array of 
grid values at the time t = tm. Maple's default numerical solution method is used to 
solve the system of ODEs. As is the case for the procedure NumWaveLines that 
applies the method of lines to the wave equation in one dimension and was discussed 
in Section 11.3, additional optional arguments can be introduced to force Maple to 
use alternative numerical methods to solve the system. 

If we apply NumWaveLines2d (using the built-in Maple ODE solver) to the 
problem of Example 11.44, the global variable obtains the numerical solution values 
at t = 1: SolWL(.25, .75) = .0352, SolWL(.50, .75) = .141, SolWL(.75, .75) = 
.316. There is excellent agreement with the exact solution. 

Method of Lines for the Three-Dimensional Heat Equation 

We consider initial and boundary value problems for the three-dimensional nonho-
mogeneous heat equation 

ut{x,y, z, t) - c2V2u{x,y, z, t) = F{x, y, z, t). (11.9.23) 

The initial condition is u(x, y, z, to) = f(x, y, z). The spatial region (for any fixed 
value of t) is bounded by the planes ж = ai, x = b\, у = a-i, y = bz, z = as, z = 
ί>3, and boundary conditions of all three kinds can be assigned on each of the bounding 
planes. 

To determine the numerical solution of a problem, the three second order spatial 
derivatives in ( 11.9.23) are replaced by centered difference quotients with increments 
hx, hy and hz, and t is left intact. The grid points are given as (xi,yj,zi) = 
(a + ihx,ß + jhy,-y + lhz) with г = 0 , ± 1 , ± 2 , . . . , j = 0 , ± 1 , ± 2 , . . . , I = 
0, ± 1 , ± 2 , . . . , (where a, β, η are arbitrary constants). Then, Uijj(t) represents 
the (numerical) solution of an initial and boundary value problem for ( 11.9.23) at 
(xi,yj,zi, t). The resulting system of ODEs 

duijj(t) _ c ,2 
= FiJ4{t) + -- (ui+hjil(t) - 2uij,i{t) + Ui-ij.Kt)) (11.9.24) 

с 

dt W 4 y ' hi 

2 

+ ^(uij+iti(t)-2uijti(t)+uij-i^{t)) + -^(uijj+1{t)-2ui>j<i(t)+Uijti-i{t)), 

where Fij^t) = F{XÌ, yj,zi,t), represents the method of lines for the numerical 
solution of (11.9.23). 
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The Maple procedure ./Vum#eaiLmes3d(c2, F(x, y,z,t),t = to,f(x,y,z),x = 
ai..bi,btf,gi{y,z,t),rxf,g2(y,z,t),y = a2-b2,lyf,ri{x,z,t),ryf,r2{x,z,t), z = 
аз..оз, Izf, si(x, y, t), rzf, S2{x, y, t), nx, ny, nz) applies the method of lines to de-
termine numerical solutions of the foregoing initial and boundary value problems. 
The arguments of the procedure are as in NumHeatLines2d, except for the addi-
tional arguments relating to the z variable. Thus, if Izf = dirichlet, the boundary 
condition u(x, у, as) = s\ (x, y, t) is prescribed. If Izf = 0, the Neumann boundary 
condition uz(x,y, аз) = —si(x,y,t) is specified. If Izf = λ, the Robin boundary 
condition — иг(х, у, аз) + Хи(х, у, аз) = s\(x, y, t) is prescribed. There is an op-
tional twenty-third argument. If it is omitted, the output is a procedure that permits 
the evaluation of the solution at arbitrary values of t. If the twenty-third argument 
is t = tm, the output is a list of arrays of grid values at the time t = tm. Maple's 
default numerical solution method is used to solve the system of ODEs. As before, 
additional optional arguments can be introduced to force Maple to use alternative 
numerical methods to solve the system. 

Example 11.45. A Dirichlet Problem for the Heat Equation. The function 
u(x,y,z,t) = x2yze~i is a solution of the heat equation (11.9.23) with c2 = 1 
and F(x,y,z,t) = — (x2 + 2)yze~t. We construct an initial and boundary value 
problem for (11.9.23) in the unit cube 0 < x,y,z < 1 with the initial condition 
u(x, y, z, 0) = x2yz and Dirichlet boundary conditions determined by the values of 
u(x, y, z, t) = x2yze~l on the boundary. The x, y, z intervals are each divided into 
four equal parts. We apply N um Heat Line s3d to find the numerical solution of this 
problem at t = 1. The arguments are given in terms of u(x, y, z, t) as defined above. 
For example, we put f(x, y, z) = x2yz, a\ = 0, i>i = 1, Ixf = dirichlet, and 
gx(y,z,t) = 0. 

Adding a twenty-third argument t = 1 in the procedure, yields the output 

" t = 1.0 
г = 0.5 

У 
0.0 
0.25 
0.50 
0.75 
1.0 

which represents the numerical solution values at the time t = 1 and at the grid 
points (xi, yj, 0.5). Four additional arrays that give numerical solution values for 
z = 0, 0.25, 0.75, 1. are also displayed, but we do not exhibit them here. By 
invoking the global variable SolH3, the numerical solution at a given grid point 
(with t = 1) can be displayed. For example, SolHL3(.50, .25, .25) = 0.005748 
and the exact solution value is u(.50, .25, .25,1) = 0.005748. The global variable 
SH3(t) exhibits the numerical solution for various values of t. Thus, Sff3(l) yields 
a list grid values at t = 1. One of the values in this list is ui,2,2(0 = 0.005748, 
and this corresponds to the value of the exact solution u(.50, .25, .25,1) = 0.005748. 

x 0.0 0.25 0.50 0.75 1.0 

0.0 0.0 0.0 0.0 0.0 
0.0 0.00287 0.0115 0.0259 0.0460 
0.0 0.00575 0.0230 0.0517 0.0920 
0.0 0.00862 0.0345 0.0776 0.138 
0.0 0.0115 0.0460 0.103 0.184 
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If the twenty-third argument in NumHeatLinesZd is omitted, Maple's output is a 
procedure. Then the numerical solution can be displayed for various values of t. 

Method of Lines for the Three-Dimensional Wave Equation 

We consider initial and boundary value problems for the three-dimensional nonho-
mogeneous wave equation 

uu{x, У, z, t) - c2V2u{x, y, z, t) = F(x, y, z, t). (11.9.26) 

The initial conditions are u(x, y, z, t0) = fi(x,y,z), ut(x,y,z,t0) = h{x,y,z). 
The spatial region (for any fixed value of t) is bounded by the planes x = a i , x = 
61, у = a,2, у = &2, z — аз, z = Ò3 and boundary conditions of all three kinds can 
be assigned on each of the bounding planes. 

To solve a problem numerically, we replace second order spatial derivatives in 
(11.9.26) by centered difference quotients with increments hx, hy and hz, with t 
left intact. The grid points are (xi, yj,z{) = (a + ihx,ß + jhy, 7 + lhz) with г = 
0 , ± l , ± 2 , . . . , j = 0 , ± 1 , ± 2 , . . . , / = 0 , ± 1 , ± 2 , . . . (where a, 0,7 are arbitrary 
constants). Uijj(t) is the (numerical) solution of an initial and boundary value 
problem for ( 11.9.26) at (XÌ , y3■,, zi, t). The system of ODEs 

(fu i(t) C2 

— ^ ^ = Fij^t) + -^ (ui+1,A,(i) - 2uij,,(t) + щ-^iit)) (11.9.27) 

c2 c2 

+ ^{^J+l^(t)-2uiJj(t)+UiJ-14{t))+j^(uij<l+i(t)-2uijti(t)+Uijil-i{t)), 
where Fijti(t) = F(xi,yj,zi,t), represents the method of lines for the numerical 
solution of (11.9.26). 

NumWaveLines3d(c, F(x,y, z,t),t = to,fi(x,y,z),f2(x,y,z),x = a\..b\, 
lxf,gi{y,z,t),rxf,g2(y,z,t),y = a2..b2,lyf,ri(x,z,t),ryf,r2{x,z,t),z = 03..63, 
lzf,si(x,y,t),rzf,S2(x,y,t),nx,ny,nz) applies the method of lines to find numer-
ical solutions of the foregoing initial and boundary value problems. The arguments 
are as in NumWaveLines2d, except for additional arguments relating to the z vari-
able. (Arguments relating to boundary conditions are as in NumHeatLinesM.) If 
an optional twenty-fourth argument is omitted, the output is a procedure that permits 
the evaluation of the solution at arbitrary values of i. If the twenty-fourth argument 
ist = tm, the output is a list of arrays of grid values at the time t = tm. Maple's de-
fault numerical solution method is used to solve the system of ODEs. More optional 
arguments can be entered to cause Maple to use other numerical methods to solve the 
system. 
Example 11.46. A Neumann Problem for the Wave Equation. The function 
u(x, y, z, t) = x2y2z2t2 is a solution of the wave equation (11.9.26) with c2 = 
1 and F(x,y,z,t) = 2(x2y2z2 — y2z2t2 — x2z2t2 — y2x2t2). We construct an 
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initial and boundary value problem for (11.9.26) in the unit cube 0 < x,y,z < 
1 with the initial conditions u(x,y, z,0) = 0 and ut(x,y,z,0) = 0. Neumann 
conditions are determined from derivatives of x2y2z2t2 on the boundary. The x,y,z 
intervals are divided into four equal parts. We use NumWaveLines3d to find 
the numerical solution of this problem at t = 1, with arguments given in terms of 
x2y2z2t2. For example, we put fi{x,y,z) — f2(x,y,z) = 0, a\ = 0, b\ = 1, 
rxf = 0, g<i{y, z, t) = 2y2z2t2. Adding a twenty-fourth argument t = 1 generates 
five arrays that exhibit the numerical solution values at the time t = 1 and at the 
grid points (XÌ, yj, 0.5) for z — 0,0.25,0.5,0.75,1. They are not exhibited here. 
Invoking the global variable SolWL3 the numerical solution at a given grid point 
(with t = 1) is displayed. For example, SolWL3(.50, .25, .25) = 0.000977, in 
agreement with the exact solution value. The global variable SW3(t) exhibits the 
numerical solution for various values of t. Thus, SW3(l) yields a list grid values at 
t = 1. If the twenty-fourth argument is omitted, the output is a procedure that can 
find the numerical solution for various values of t. 

Difference Methods for the Three-Dimensional Laplace and 
Poisson Equations 

Poisson's equation in three dimensions is given as 

V2u(x,y,z)=F(x,y,z). (11.9.28) 

We consider the numerical solution of boundary value problems for (11.9.28) in 
rectangular regions in the (x, у, г)-р1апе. They are defined as in our discussion of 
the three-dimensional heat and wave equations. The partial derivatives in (11.9.28) 
are replaced by centered difference quotients with increments hx, hy, and hz. The 
truncation error for the difference approximation is 0(h2 + h2 + h2), so that it is 
consistent with Poisson's equation. 

The grid points are given (in general) as (XÌ , y0■., Zk ) — (a + ihx, β+jhy, 7 4- khz ) 
with г = 0, ± 1 , ± 2 , . . . , j = 0, ± 1 , ± 2 , . . . , к = 0, ± 1 , ± 2 , . . . , (where a, ß, 7 are 
arbitrary constants). Then, «i,j,fc represents the (numerical) solution of a boundary 
value problem for ( 11.9.28) at (x,, yj, Zk ) for an appropriate range of subscript values. 
The difference scheme can be given as 

_ ui-l,j,k + "i+l,j,fc + (hl/hl)(Uij-itk + Mj,j+l,fc) 
Щ*'к~ 2 + 2h2Jh2

y + 2h2/h2 

, (hl/h2
z){uu<k-i +uiJ<k+i) - hx2Fitjik niQ9(rt 

+ 2 + 2hl/hl + 2hl/hl ■ { U ^ > 

The boundary values of all three kinds are assigned as for the heat and wave equa-
tions. This determines the grid points (a;,, yj,Zk) at which щ^к is to be found. The 
difference equations yield a system of simultaneous linear equations for the щ^%к-
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Since a large number of equations must be solved in general, ( 11.9.29) has been given 
in a form suitable for solution by iteration. 

To solve the problem numerically, we assume, as for two dimensions, that a set of 
values щ^^ is prescribed on the relevant grid. This is the initial guess. Then, we let 
г, j , к range through all the grid values. We find ωι,ι,ΐ) ui,i,2> · · ·, ui,i,km> ui,2,i, 
"1,2,2, · · ·, uim,jm,km, where im,jm, km represent the extreme values of г, j , к in the 
grid. In the Gauss-Seidel method, once a new value of щ^^к is determined, it is 
used immediately in all ensuing calculations. In the SOR method, with relaxation 
parameter ω, once a new value of the numerical solution at i,j,k is determined—we 
call it ui,j,fc— we replace it by щ^^к = и Щ^гк + (1 — ω) Wi,j,fc as the (new) grid point 
value, where the coefficient of 1 — ω is the old value at i, j , k. Then щ^,к is used in all 
further calculations and entered on the right side of ( 11.9.29). In the Jacobi method, 
solution values on the right side of ( 11.9.29) are not updated with newly determined 
values until the next step in the iteration process begins. 

NumLaplace3d(F{x,y,z),x = ai..b1,lxf,g1(y,z),rxf,g2(y,z),y = a2..b2,lyf, 
ri (x, z), ryf, r2(x, z),z = a3..b3, Izf, si(x, y),rzf, s2(x, y), nx,ny, nz,numits, 
inguess, err, par) solves the foregoing problems for Poisson's equation numerically. 
The arguments correspond to those of NumLaplace in Section 11.4, with the bound-
ary conditions given as in the method of lines for the three-dimensional heat equation, 
say. The last argument, par, must satisfy 0 < par < 2. If par = 1, the Gauss-Seidel 
method is used. Otherwise, the SOR method is used. The Jacobi method is not carried 
out. 

As an example we consider a problem for Laplace's equation in the unit cube 
0 < x, y, z < 1 with the Dirichlet conditions u(0, y, z) = 1 and u(x, y, z) = 0 on the 
rest of the boundary. Weputnx = ny = nz — 2,sothat/ix = hy = hz = 1/2. Then, 
2 + 2hl/hl + 1h\lh\ = 6 and ( 11.9.29) characterizes the steady random walk of a 
particle with probability 1/6 of taking a step from the single interior point (.5, .5, .5) 
in any of six directions. After one step the boundary is reached. The problem asks for 
the probability that the particle reaches the boundary point on x = 0 before it reaches 
any of the other five boundary points where it is absorbed. The output of the procedure 
NumLaplaceZd with the appropriate arguments determines that ui,i,i = .1666667 
no matter what iteration method is used. This approximates the exact value of the 
probability u(.5, .5, .5) = 1/6. 

Exercises 11.9 

11.9.1. Show that the truncation error for (11.9.2) is 0(k + hl + h*). 

11.9.2. Verify the von Neumann stability condition (11.9.5). 
11.9.3. Use the procedure NumHeatForw2d to verify the results of Example 11.41. 
Consider the stable and unstable cases. 
11.9.4. Verify the von Neumann stability condition (11.9.7). 
11.9.5. Apply the procedure NumHeatBackw2d to the Neumann problem of Ex-
ample 11.41. Invoke the implicit backward scheme and the Crank-Nicolson scheme 
and obtain the steady-state solution. 
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11.9.6. Use NumHeatPRADI2d and NumHeatDRADI2d to obtain the results 
( 11.9.13) and ( 11.9.14) obtained in Example 11.42. 
11.9.7. Reproduce the results of Example 11.43 using NumHeatLines2d. 

11.9.8. Verify the von Neumann stability condition (11.9.19). 
11.9.9. Use the procedure NumWaveForw2d to verify the results of Example 
11.44. Consider the stable and unstable cases. 
11.9.10. Apply NumWaveBackw2d to the problem of Example 11.44 with к = 
0.25 and obtain the results given by SolWB. 

11.9.11. Apply NumWaveLines2d to the problem of Example 11.44 and obtain 
the results given by SolWL. 

11.9.12. Use NumHeatLines3d to reproduce the results of Example 11.45. 
11.9.13. Apply NumWaveLines3d to reproduce the results of Example 11.46. 
11.9.14. Use the procedure NumLaplace3d to solve Laplace's equation in the unit 
cube 0 < x, y, z < 1 with the Dirichlet boundary conditions u(0, y, z) = 1 and 
u(x, y, z) = 0 on the rest of the boundary. Put nx = ny = nz = 4 in the procedure 
and use the Gauss-Seidel method and the SOR method (with two choices for the 
relaxation parameter ω) to solve the problem. 
11.9.15. Reconsider the problem of Exercise 11.9.14 with the Dirichlet conditions 
u(x, y, z) = 0 replaced by Neumann conditions ди(х, у, z)/dn = 0. 

11.10 MAPLE FINITE DIFFERENCE METHODS FOR PARABOLIC AND 
HYPERBOLIC PDEs 

The basic built-in Maple procedure for the solution of PDEs is pdsolve. As indi-
cated previously, the procedure finds exact solutions of the PDEs or shows how to 
obtain exact solutions by separation of variables or other means, if that is possible. 
Whereas Maple's dsolve procedure treats initial and boundary value problems for 
ODEs, pdsolve does not construct analytical solutions of initial or initial and bound-
ary value problems for PDEs. However, in the case of time-dependent problems with 
one space variable, so that the PDEs contain two independent variables, Maple does 
obtain numerical solutions of initial and boundary value problems. If the PDE and 
appropriate initial and boundary conditions are entered in pdsolve, together with the 
option type=numeric or simply numeric, Maple employs finite difference methods 
for the solution of these problems. The basic PDE treated by the procedure contains 
only one time derivative. Problems with a higher-order time derivative are reduced 
(by Maple) to equivalent first order systems of PDEs. Maple's default solution 
method uses a second order (in space and time) centered, implicit finite difference 
scheme. Boundary conditions of all three kinds can be handled. 

The procedure takes the form pdsolve(PDE, ICBCs, numeric, options). The 
first and second arguments give the PDE and a set of initial and boundary conditions 
for the PDE. The third argument tells Maple to solve the problem numerically. In the 
default, Maple divides the (finite) x interval into 20 equal parts, and the time increment 
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к equals the spatial step size h. Optional arguments can be added to control the values 
of h and k. If the PDE is of first order in time, the finite difference method used to 
solve the problem can also be specified. If the method option is omitted, Maple uses 
its default difference scheme to solve the problem. Only problems given over a finite 
x interval can be solved. For problems with x derivatives of order two or higher, the 
interval is determined by the location of the boundary conditions. If the PDE is of 
first order in x (so that only one boundary condition is prescribed), an argument that 
gives the interval over which the solution is to be found must be added. The boundary 
condition for the problem is specified at one endpoint of this interval and an argument 
that prescribes a numerical boundary condition at the other endpoint of the interval 
must be provided. 

The output is a (Maple) module that permits the solution to be evaluated at all points 
within the specified interval, or to be plotted and animated. If a single PDE in two 
independent variables, first order in time is considered, one of 11 specific numerical 
methods, such as the Lax-Friedrichs or Crank-Nicolson method, can be prescribed 
for the numerical solution of the problem. A full description of the procedure and its 
implementation is given in the Maple help facility. Plots of numerical solutions and 
animations of plots can be generated by the module. 

Example 11.47. A Mixed Problem for the Heat Equation. We reconsider the 
problem presented in Examples 11.3 and 11.5. It is given as ut(x, t) — uxx(x, t) = 
2tx2 — 2 ί 2 , 0 < χ < 1 , 0 < ί , with the initial and mixed boundary conditions 
u(x, 0) = 0, 0 < x < 1, ux(0, t) = 0, ux(l, i) + u{\, i) = 3i2, 0 < t. The exact 
solution of the problem is u(x, t) = x2t2. We obtain the numerical solution of the 
problem using pdsolve with the numeric option. For each difference scheme used, 
the x interval is divided into four equal parts, so that h = 0.25 and we put к = 0.001. 
The solution values are found at t = 1. 

We invoke pdsolve(PDE, 1СВС's, numeric, spacestep = 0.25, timestep = 
0.001), where PDE and ICBCs represent the given PDE and auxiliary conditions, 
respectively. Maple uses its default implicit difference scheme to solve the problem, 
with the output moduleQ, exportplot,plot3d, animate, value, settings; end. The 
five listed quantities exported by the module permit the solution и(х, t) to be plotted or 
evaluated at various values of x and times t. If we assign a name smod to the module, 
the Maple command xval := smod : —value(t = 1) permits the evaluation of the 
numerical solution for all x within 0 < x < 1 with t = 1. (Maple uses interpolation 
to evaluate the solution at points x that are not in the grid.) For example, xval(.5) 
yields [x = 0.5, t = 1., u(x, t) = .2500]. 

The addition of the argument method = Euler in the procedure causes Maple 
to use the explicit forward difference scheme presented in Section 10.2 to solve the 
problem numerically using the specified values of h and k. If we now define smod 
and xval as above, we obtain for xval(.b) = [x = 0.5, t = 1., u(x, t) = .2498]. If, 
instead, we enter method = CrankNicholson, we obtain, on proceeding as before, 
xval(.5) = [x = 0.5, t = l.,u(x,t) = .2500]. Maple uses the implicit Crank-
Nicolson method to solve the problem. (Maple uses a variant spelling of Nicolson.) 
The introduction of method = BackwardEuler causes the implicit backward dif-
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ference scheme to be used and gives xval(.5) = [x = 0.5, t = 1., u(x, t) = .2502]. 
The use of the DuFort-Frankel scheme, which is invoked by entering method = 
DuFortFrankel, yields xval(.b) = [x = 0.5, t = l.,u(x, t) = .2500]. These re-
sults differ from the values obtained previously, because of differences in evaluation 
methods. 

Finally, we consider an initial and boundary value problem for a linear first order 
PDE. To solve the problem numerically using pdsolve, an x interval must be specified. 
An initial condition is prescribed and a boundary condition is given at one endpoint 
of the interval. Since the time derivative is of first order, the pdsolve numerical 
solution can be obtained using a number of the difference schemes introduced above. 
Depending on the difference scheme used to solve the problem, it may be necessary 
to include an additional boundary condition at the other endpoint of the x interval to 
determine the numerical solution, as indicated in Section 11.7. Exact solution values 
at the other endpoint are unavailable, and these values cannot be prescribed arbitrarily, 
as this would (generally) give rise to an ill-posed problem for the PDE. 

We assume that the grid points in the ж interval are x \,..., xn and that the boundary 
condition is assigned at the left endpoint x\. (A similar approach can be used if the 
reverse is true.) An indirect method is used to assign a solution value at the right 
endpoint xn. The simplest approach is to equate the numerical solution value at 
xn to that at xn-i. Other methods relate the solution value at xn to that at xn-i, 
and possibly other values at an earlier time, by replacing derivatives by difference 
quotients in the PDE at xn. The effect of each of these methods is to eliminate points 
Xi that lie outside the x grid and thereby generate a solvable finite number of linear 
equations for the numerical solution values at xi,..., xn. The additional condition 
placed on the endpoint value is not a part of the original formulation of the initial and 
boundary value problem, so it is called a numerical boundary condition. 

Example 11.48. An Initial and Boundary Value Problem for a First Order 
PDE. We examine the problem considered in Example 11.26. The first order PDE to 
besolvedisut(z,i)+4ux(:r,i) = — u(x,t)+8xt—8x+A+x2t—4i, 0 < x < l,and 
the initial and boundary conditions are u(x, 0) = —x2 + exp(—ж/4) + 8, u(0, t) = 
9 — At. The exact solution of the problem is u(x,t) = (t—l)x2 + exp(—x/4) + 8 — 4t. 
We put h = 1/5 and к = 1/30, and the numerical solution is to be found at t = 1. 

First we apply the proceàurepdsolve(PDE, I ВС, numeric, time = t, range = 
0..l,spacestep = \/b,timestep = 1/30), where PDE and IBC refer to the 
given PDE and the above initial and boundary values, respectively. Maple uses 
its default method to solve the problem numerically. As before, the output is a 
module. If we assign the name pds to the module, the Maple command xval := pds : 
—value(t = 1) permits the evaluation of the numerical solution at all points x with 
0 < x < 1 and with t = 1. Then, if we enter [seq(rhs(xval(i/5)[3}),i = 0..5)], the 
output is [5.000,4.951,4.904,4.859,4.817,4.777], for the numerical solution values 
at x = 0,0.2,0.4,0.6,0.8,1, respectively, with four decimals retained. The exact 
solution values at these points are [5.000,4.951,4.905,4.861,4.819,4.779]. 
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The optional argument method = ForwardTimelSpace[backward] in the pro-
cedure causes Maple to use the explicit forward-backward difference scheme (as 
denned in Example 11.26) to solve the problem. Proceeding as above yields the 
Maple output [5.000,4.951,4.902,4.854,4.806,4.760], which agrees with the result 
in Example 11.26. With the optional argument method — BackwardTimelSpace 
[backward], Maple uses the implicit backward-backward difference scheme to solve 
the problem. Again proceeding as above yields the same Maple output as before. For 
each case, if the x derivative is approximated by a forward difference, the procedure 
fails. 

The Lax-Friedrichs method can be applied to this problem only if a numeri-
cal boundary condition is given at x = 1. The optional arguments method -
LaxFriedrichs, numericalbcs = u[l, n] — u[l, n — 1],causes Maple to solve the prob-
lem using the Lax-Friedrichs method with the added numerical boundary condition 
that и at x = 1 has the same value as at a; — 0.8. Proceeding as before yields 
the Maple output [5.000,4.950,4.900,4.853,4.816,4.816]. The solution values at 
x = 0.8 and x = 1 are equal because of the assigned numerical boundary condition. 
With the exception of the value at x — 1, there is good agreement with the foregoing 
results. 

The numerical boundary condition numericalbcs =[BackwardTimelSpace 
[forward],n]usesthebackward-forwardmethodtoassigna\aluetouatx = 1. Now 
we obtain as the numerical solution values [5., 4.95,4.899,4.849,4.8,4.75], which 
is an improvement over the foregoing. Then, the use of numericalbcs =[Backward 
TimelSpace[backward], n] which uses the backward-backward method, yields es-
sentially the same result as before. 

The Lax-Wendroff method also cannot be applied directly to solve this problem 
without introducing a numerical boundary condition at a; = 1. The optional arguments 
method=LaxWendroff, numericalbcs = u[l,n] — u[l,n — 1] cause Maple to solve 
the problem using the Lax-Wendroff method with the added numerical boundary 
condition that и at x = 1 has the same value as at a; = 0.8. Proceeding as before 
yields [5.000,4.951,4.904,4.863,4.811,4.811]. With the exception of the solution 
value at a; = 1, there is an improved agreement with the foregoing results. The 
use of the numerical boundary conditions that correspond to the backward-forward 
and backward-backward methods yields essentially the same results as for the exact 
solution. 

Exercises 11.10 

11.10.1. Invoke help for pdsolve with the numeric option to determine precisely 
what PDEs can be solved numerically and to find several examples of how this nu-
merical procedure can be applied. 
11.10.2. Reproduce the results of Example 11.47. 
11.10.3. Reproduce the results of Example 11.48. 



CHAPTER 12 

FINITE ELEMENT METHODS IN TWO 
DIMENSIONS 

12.1 INTRODUCTION 

It was shown in Chapters 6 and 8 that the Rayleigh-Ritz and Galerkin methods can 
be used to construct approximate solutions to boundary value problems for Laplace's 
and Poisson's equations, in particular, and linear elliptic PDEs of second order in 
general. The Rayleigh-Ritz method applies to formally self-adjoint PDEs, while the 
Galerkin method can deal with more general PDEs. In each method, the PDE and 
the boundary conditions are replaced by integral relations with the property that they 
are equivalent to the given PDE with its boundary condition(s) if the solutions are 
smooth, (at least) twice continuously differentiable functions. The integral relations 
contain derivatives of the solution of at most first order. As a result, a meaning 
can be attached to solutions of the given boundary value problem that are at most 
piecewise continuously differentiable. In the terminology introduced previously, they 
are referred to as weak solutions of the problem. 

Because of its greater generality, we will deal exclusively with the Galerkin integral 
representation and method. Our discussion is restricted to problems in two spatial 
dimensions. The Galerkin integral representation for boundary value problems for 
second order elliptic PDEs is derived below, as are corresponding Galerkin integral 
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representations for initial and boundary value problems for second order hyperbolic 
and parabolic PDEs. The possibility of constructing weak solutions of each of the 
problems will be exploited and approximate solutions will be constructed using the 
Galerkin method. This method was introduced in Section 8.2 for Laplace's equation 
and is formulated below for each of the aforementioned problems. 

The Galerkin method constructs an approximate solution of the given problem as 
an expansion of a finite number of basis functions with coefficients that are to be 
determined. Each basis function must satisfy an admissibility condition appropriate 
for the problem. The basis functions can be chosen to be weak solutions of the 
Galerkin integral representation associated with the given problem. In the finite 
element method as we formulate it, the basis functions are chosen to be piecewise linear 
functions related to an approximate decomposition of the given region into a collection 
of triangles, or a triangulation of the region. Unless the region has a polygonal 
boundary, the mesh formed by the union of the triangles will only approximate the 
region. These triangles are ca\\ed finite elements. Each of the basis functions is chosen 
to be piecewise continuously differentiable. As will be seen, the number of basis 
functions corresponds to the number of vertices in the triangulation. (The vertices 
are often called nodes.) We will show how to triangulate a region, determine the 
corresponding basis functions, and use them to construct the Galerkin approximation 
to the solution of problems for PDEs of all three types. We have created a number of 
Maple procedures specifically for this purpose. 

Alternative decompositions of the region (such as into rectangles) can be made 
with corresponding basis functions. The finite element method can also be extended 
to PDEs of higher order and with more than two spatial dimensions. Various modi-
fications of the method have also been introduced. Maple does not have any built-in 
procedures related directly to the use of the finite element method. Matlab has a PDE 
Toolbox that includes the finite element method in two spatial variables. It carries 
out triangulations of various regions and uses the Galerkin method to approximate 
solutions. Many library packages are devoted to the finite element method. 

12.2 THE TRIANGULATION OF A REGION 

Let the bounded two-dimensional region in the (x, y)-plane over which the problem 
for a PDE of elliptic, hyperbolic, or parabolic type is given be denoted by G and its 
boundary by S. The first step in carrying out the finite element method for the solution 
of the problem is to triangulate the region G. This is done by subdividing the region 
G into a union of triangles. It must be carried out so that no triangle in the subdivision 
has a vertex on the side or edge of another triangle, unless it is also a vertex of the 
other triangle. The subdivision contains interior vertices (that lie in G) and boundary 
vertices (that lie on S). If S or a portion thereof is curved, it is replaced by a polygonal 
(piecewise linear) approximation determined by the placement of vertices on S. The 
full boundary S is approximated by a union of line segments that connect the chosen 
boundary vertices. (Some or a portion of these segments may be exterior to G.) Thus, 
the boundary S (if it is not already a polygon) is replaced by a polygon which we 
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denote by S. The region G is thereby replaced by the interior of S (if S is not a 
polygon), and we denote this approximation of the region by G. It is the polygonal 
region G that is triangulated. 

Each triangle in the subdivision is identified or specified by a list of its three 
vertices. The triangulation of a region is generated by constructing a list of triads 
(groups of three) of vertex points of the triangles. Some of the vertices lie in G, and 
some are on the boundary S. The vertices on the boundary are just the vertices of the 
polygon S. The union of all the triangles equals G. 

For any region G with boundary S, the triangulation can be carried out directly 
by prescribing a list of boundary and interior vertices and determining a list of triads 
for the triangles in the subdivision. This is generally a difficult task if a large-scale 
triangulation is needed, as is usually the case. Consequently, we have constructed 
a number of Maple procedures that automate the triangulation of regions based on 
the specification of interior and boundary vertices for these regions. Additionally, 
a number of procedures that generate useful and important information relating to 
the subdivision have also been constructed. This includes procedures that deal with 
the triangulation of rectangular, triangular, circular, or elliptical regions or portions 
thereof. They are not presented here, but we consider, instead, a procedure that 
triangulates a large class of polygons. (As indicated, to triangulate the interior of any 
non-polygonal region G, its boundary S must first be approximated by a polygon S 
and G replaced by the resulting polygonal region G.) 

Triangulation of a Polygon and Its Refinement 

The procedure PolygonTriang constructs a simple triangulation of convex poly-
gons and various arbitrarily shaped polygons. In the default, it finds the centroid 
of the polygon and constructs a triangulation of the polygonal region by connect-
ing all the vertices of the polygon to the centroid. (The x and у coordinates of the 
centroid are the averages of the x and у coordinates of the vertices of the polygon.) 
The method works if the centroid lies in the interior or is a boundary vertex point 
of the polygonal region, and all the triangles lie in G. The procedure is given as 
PolygonTriang([BPi, BP2,..., BPn}), where BPi, г — Ι,.,.,η represents a 
vertex [xi, y,] on the polygonal boundary S. (All vertices of the polygon must be 
listed.) If a second argument [x0, y0] (with [x0, yo] e G) is added to the procedure, 
all the vertices of the polygon are connected to the point [xo, yo] rather than the cen-
troid. The number of triangles in the subdivision equals the number of vertices of the 
polygon. The output of the procedure is a list of triads of the vertices of the triangles 
in the subdivision. The global variables VertL and BVertL reproduce the list of tri-
ads and boundary points, respectively. The piocedmeVertexlist(VertL, BVertL) 
determines and lists the number of interior and boundary vertices, with the list of 
interior vertices preceding that of the boundary vertices. 

Once an initial triangulation of the region G is constructed, the procedure Refine 
Triang refines the triangulation by replacing each triangle by four subtriangles whose 
vertices comprise the vertices and the midpoints of each of the edges of the original 
triangle. Thus, the procedure quadruples the number of triangles in the original 
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triangulation. It takes the form RefineTriang(VertTriadList,BVertlist,NumIts), where 
the first and second arguments are a list of triads and boundary vertices, respectively, 
for the original triangulation. The refinement process can be iterated (as part of the 
procedure), and the third argument of the procedure must be a positive integer that 
prescribes the number of times the triangulation is refined. The output is a list of 
triads of the vertices of the triangles in the refined subdivision. 

We begin with an example that illustrates the uses of the foregoing procedures. 

Example 12.1. The Triangulation of a Circle. We consider a circle with center 
at (0,0) and radius l and construct a triangulation of its interior. First, the circle 
is divided into four equal parts with the boundary vertices chosen as BPList = 
[[1,0], [0,1], [—1,0], [0, — 1]]. As a result, the circle is approximated by a diamond-
shaped quadrilateral. This represents the polygon S, and it is its interior G that is 
triangulated. 

PolygonTriang(BPList) gives the initial triangulation as [[1, 0], [0, 1], [0, 0], 
[0, 1], [-1,0], [0,0], [-1,0], [0, -1], [0,0], [0, -1], [1,0], [0,0]], which we denote as 
VertL. The 12 elements in the list represent a list of four triads of vertices of the four 
triangles in the subdivision. This list determines the triangulation. The four triangles 
are constructed by connecting the vertices of the quadrilateral with the centroid of the 
quadrilateral, which is the origin (0,0). [If a second argument [xo, 2/o] is added in the 
procedure, the triangles are constructed by connecting the vertices of the quadrilateral 
with the point (xo,yo)·] Vertexlist(VertL, BPList) yields InteriorVertices 
= 1, BoundaryVertices = 4, [[0,0], [1,0], [0,1], [-1,0], [0, -1]].The origin is the 
only interior vertex, and there are four boundary vertices. These are all displayed in 
the output. 

Next, we refine the triangulation by increasing the number of triangles in the sub-
division and invoke the procedure RefineTriang(VertL, BPList, 2). The third 
argument of the procedure indicates that we are carrying out a double refinement. 
The output, which we do not display, is a list of 64 triads that specify the vertices 
of the 64 triangles in the refined subdivision. The global variables MListMod and 
BPList Mod exhibit the (new) list of triads and boundary points, respectively. Then, 
V ertexlist(MListMod, BPListMod) states that there are 25 interior vertices and 
16 boundary vertices in the refined triangulation and lists these vertices. This ap-
proach has increased the number of triangles, but it is unsatisfactory in this case, 
because it retains the quadrilateral as an approximation to the circle, and this is a poor 
approximation. (RefineTriang increases the number of boundary points, but they lie 
on the quadrilateral and not on the circle, as would be desirable.) 

To improve the approximation to the unit disk by triangulation, we must increase 
the number of vertices on the circle in the initial use of PolygonTriang. To do so, we 
prescribe a list of n (equally spaced) vertices on the circle [cos(27ri/n), sin(27ri/n)], 
i = 0 , . . . , n—1, and enter it as the argument of PolygonTriang. Then, if we put n = 
16, for example, the initial triangulation obtained from PolygonTriang(BPList), 
where BPList is the foregoing list of boundary vertices, yields a list of 16 triads of 
vertices (which we do not display) of the 16 triangles in the subdivision. Next, we 
refine the triangulation by increasing the number of triangles in the subdivision and 



THE TRIANGULATION OF A REGION 8 6 3 

invoke the procedure RefineTriang(VertL, ВРList, 2) as before. The output is a list 
of 256 triads, denoted as MListMod, that specifies the vertices of the 256 triangles in 
the subdivision. The procedure Vertexlist(MListMod, BPListMod) states that 
there are 97 interior vertices and 64 boundary vertices in the refined triangulation and 
lists these vertices. 

Clearly it is possible to generate an extremely accurate triangulation of the disk 
using the procedures PolyTriang and RefineTriang. 

Plots of Triangulations 

If the boundary S of the region G is not polygonal, it must first be approximated by 
a polygonal boundary curve S before a triangulation can be introduced. The curves 
S and S can generally be plotted using built-in Maple procedures. 

As an example, we consider the region G bounded by the parabolas у = 1-х2 and 
у = x2 - 1. The points BV =[[1,0],[l/2,3/4], [0,1],[-1/2,3/4] ,[-1,0], [-l/2,-3/4],[0,-
1],[ 1/2,-3/4]] lie on the boundary S and determine the vertices of an approximating 
polygon S. The boundary S and the polygon S can be plotted using the Maple 
proceduresplot([l — x2, x2 - 1], x = —1..1) andplot(BVM), respectively, where 
BVM represents the list BV supplemented by the point [1,0]. If we assign the names 
PI and P2 to the plots of S and S, the procedure display({Pl, P2}) from the plots 
package exhibits both curves in a single display, as shown in Figure 12.1. 

Figure 12.1 The boundaries S and S. 

The interior of the polygon S represents the region G that is to be triangu-
lated. If a triangulation of G is constructed by any means and is represented by 
a list of triads VList, then TriangPlot{VList) displays a plot of the triangula-
tion. It uses the built-in Maple procedure polygonplot to plot the collection of 
polygons determined by the triads of vertices. Additionally, suppose that BVList 
represents an ordered list of the vertices of the polygon S, and the list of ver-
tices given as the output of Vertexlist(VList, BVList) is denoted by VVList. 
Then TriangPlot(VList, Triangles, VVList) displays a plot of the triangula-
tion in which the interior and boundary vertices are numbered and the n triangles 
T\, Τ2,..., Tn in the triangulation are identified. The numbering of the vertices and 
the naming of the triangles is carried out using the Maple procedure textplot. 
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To continue with our example, we construct an initial triangulation of G by using 
PolygonTriang(BV) and denote the resulting triad list by VList. (All the vertices 
of the polygon are connected with the origin, which is the centroid of the polygon.) 
The procedure TriangPlot(VList) generates a plot of the triangulation which is 
exhibited in Figure 12.2. 

Figure 12.2 The triangulation of G. 

We refine the triangulation once by using RefineTriang(VList,BV,l) and denote 
the new triad list by VListM and the modified boundary vertex list by BVM. Then, 
Vertexlist(VListM,BVM) finds that there are nine interior vertices and 16 boundary 
vertices in the refined triangulation. With WListM as the new vertex list, the procedure 
TriangPlot{VListM, Triangles, WListM) displays the refined triangulation as shown in 
Figure 12.3. 

Figure 12.3 The refined triangulation of G. 
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Maximum and Minimum Areas of the Triangles in a Triangulation 

When constructing a triangulation of a region using the foregoing procedures, it is 
generally the case that the triangles in the subdivision are not (roughly) uniform in 
size. Some triangles may have much larger dimensions and areas than others and 
this can lead to a loss of precision for the numerical solution in the region covered 
by these triangles. Additionally, the given problem for the PDE may require that an 
especially fine subdivision be created only for certain parts of the given region G but 
not for remaining part of G. (It is true that in all cases, the finer the subdivision, the 
better the approximation, but it is not necessary to go to extremes throughout G.) 

TriangArea{TriadList) determines the variation in the dimensions of the tri-
angles in a subdivision. The argument TriadList is a list of the triads of vertices 
that comprise the triangulation. The output gives the number of triangles in the tri-
angulation, as well as the mean and standard deviation of the areas of the triangles. 
Additionally, the minimum and maximum areas are displayed and the triangles that 
have these areas are identified. The triangles in the triad list are numbered consecu-
tively in groups of three and denoted by TI , T 2 , . . . , Tn, where n is the number of 
triangles in the triangulation. There are five global variables AList, AListSort, AWList, 
TMaxList, TMinList that display information about the areas of the triangles. Some 
of them are invoked in the following example. 

Example 12.2. The Triangulation of a Trapezoid. The list BTrapList = 
[[0,0], [1,0], [1,1], [0,2]] represents the vertices of a trapezoid, whose centroid is 
(1/2,3/4). We triangulate the trapezoid using PolygonTriang(BTrapList). Its 
output, which we denote by TrapList, gives the four triangles T l , T2, T3, ТА (iden-
tified by their vertices) obtained by connecting the four vertices to the centroid. 
The triangle T l , for example, has the vertices [0,0], [1,0], [1/2,3/4]. Vertexlist 
(TrapList, BTrapList), whose output we denote as VTrapList, lists the single 
interior vertex and the four boundary vertices in the triangulation. TriangPlot 
(TrapList, Triangles, VTrapList) plots the triangulation. The addition of the 
final two arguments in the procedure causes Maple to number the vertices and to 
identify the triangles in the triangulation, as shown in Figure 12.4. 

Figure 12.4 The triangulation of the trapezoid. 
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Next we invoke the procedure TriangArea(TrapList). The output states that 
there are four triangles in the triangulation, with mean area 0.375 and standard devia-
tion 0.08839. The triangle T2 has the minimum area 0.25, and T4 has the maximum 
area 0.5. The output of the global variable AList is [0.375,0.250,0.375,0.5], which 
represents a list of the areas of TI , T2, T3, ТА, respectively. It shows that T l 
and ТЪ each have the area 0.375. The global variable AListSort lists the areas in 
increasing order, while TMinList and TMaxList gives the numbers of the triangles that 
have the minimum and maximum areas, respectively. 

Location of a Point in a Triangulated Region 

The areas of the triangles in the triangulation of Example 12.2 are unequal and it 
may be of interest to construct a further triangulation of the triangle ТА, whose 
area is maximal, while leaving the remaining three triangles untouched. Addition-
ally, if a region G is triangulated and a particular portion of G, but not all of G, 
is deemed to require further triangulation, it is necessary to identify the triangles 
that comprise this portion. For a triangulation of a region G, with a given list 
of triads and boundary vertices TriadList and BVList, respectively, the proce-
dure FindTriangle(TriadList, BVList, [xQ, y0]) determines whether [xo, yo] lies 
within a specific triangle, on the edge of one or more triangles of the subdivision, or 
outside the triangulated region. 

Example 12.3. The Points in a Trapezoid. We consider the triangulation of the 
trapezoid obtained in Example 12.2 and apply the procedure FindTriangle to deter-
mine the location of a number of points Po = [^ο, Уо] · The triad list and the boundary 
vertex list given in Example 12.2 are used here. First we set Po = [.26,4.73], and 
the output is [.26,4.73] is not in the region. That is, Po is exterior to the trapezoid. 
Next, we put P0 = [.77, .68] and obtain Triangle(2) = [[1,0], [1,1], [1/2,3/4]], and 
[.77, .68] is an interior point. This means that Po is interior to the triangle T2 in 
the subdivision. (The vertices of T2 are displayed.) With P0 = [.5, .75] all four 
triangles are displayed together with their vertices, and the statement [.5, .75] is an 
interior vertex point. That is, [.5, .75] is a vertex for all four triangles. The choice 
Po = [1,0] results in the listing of T l and T2 and [1,0] is a boundary vertex point. 
With Po — [.77,0] it is determined that the point is on the boundary edge of the 
triangle T l and that the vertices at the ends of the edge are [0,0], [1,0]. Finally, the 
point Po = [1/4,3/8] is found to lie on the (interior) edge common to the triangles 
T l and Г4, with the vertices at the ends of the edge given as [0,0], [1/2,3/4]. 

Partial Refinement of a Triangulation 

Having determined which triangles are candidates for additional subdivision, Refine 
TriangST, Re fineTriangInterior, and Re fineTriangBound generate a trian-
gulation of a single triangle in varying forms. 
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RefineTriangST replaces a prescribed triangle by four triangles determined by 
connecting the midpoints of the sides. It also replaces each neighboring triangle that 
shares an edge with the given triangle, with two triangles constructed by connecting 
the opposite vertex to the midpoint of the edge. This is required to obtain a valid 
triangulation of the full region. 

RefineTrianglnterior creates three new (sub)triangles for one or more of a group of 
specified list of triangles of a given triangulation. This is done by finding the centroid 
of each triangle and connecting that point to each of the vertices of the triangle. If a list 
of triangles is omitted, each triangle in the full triangulation is modified. In contrast 
to the procedures RefineTriang and RefineTriangST, the boundary vertices and the 
original edges remain unchanged in the modified triangulation. Only new vertices 
and edges that are interior to existing triangles are added. As a result, neighboring 
triangles need not be modified. 

RefineTriangBound creates two new triangles for each of the specified triangles 
in a given triangulation that contain a boundary edge, by finding the center of each 
boundary edge and connecting that point with the opposite vertex of the triangle. The 
edge is determined by specifying its boundary vertices. If a list of lists of boundary 
vertices and triangles is omitted, the full boundary is modified. Again, neighbors of 
the specified triangles need not be modified. 

Example 12.4. The Modification of a Triangulated Trapezoid. We recon-
sider the triangulation of the trapezoid obtained in Example 12.2. It was found that 
the triangle ТА has the maximum area, and we construct an additional triangulation 
of ТА. The vertices of ТА are [0,2], [0,0], [1/2,3/4]. Since T4 has an edge on 
the boundary, each of the three procedures presented above can be used. The name 
BTrapList represents the list of vertices of the trapezoid, and TrapList is the list 
of triads for the triangulation given by PolygonTriang. 

RefineTriangST(TrapList,BTrapList, T4) triangulates ТА (it is represented by a triad 
of its vertices) in the manner described above. The triangle T4 is replaced by four 
(sub)triangles, and the triangles TI and T3 are replaced by two (sub)triangles. The 
list of vertices in the modified triangulation is [[1/4, 3/8], [1/2, 3/4], [1/4, 11/8], 
[0, 0], [1, 0], [1, 1], [0, 2], [0, 1]]. The first three points are the interior vertices and 
the last five are the boundary vertices, with [1/4,3/8], [1/4,11/8] as the new interior 
vertices and [0,1] as the added boundary vertex. The original triangle ТА is replaced 
by four triangles, T\ and T3 are replaced by two triangles each, and T2 is unchanged. 

RefineTriangInterior(TrapList, VTrapList, BTrapList, [ТА]), with the vertex 
list of the original triangulation given by VTrapList, subdivides ТА into three tri-
angles. The other three triangles and the boundary vertices are unchanged. The list 
of vertices in the modified triangulation of the trapezoid is [[1/2, 3/4], [1/6, 11/12], 
[0, 0], [1, 0], [1, 1], [0, 2]]. The first two points are the interior vertices and the 
last four are the boundary vertices, with [1/6,11/12] as the new interior vertex. If 
the fourth argument in the procedure is eliminated, all four triangles in the original 
subdivision are triangulated. 

Finally, RefineTriangBound(JrapList,VTrapList,BTrapList, [[[0,0], [0,2]]], [ТА]) 
subdivides ТА into two triangles. The boundary edge of ТА that connects the vertices 
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[0,0] and [0,2] is divided into two equal parts and a new boundary vertex [0,1] is 
introduced. The other three triangles are unchanged. The output of the procedure is 
a list of boundary vertices BVTMod. It is a modification of BTrapList to which 
the vertex [0,1] is added. The global variable VListMod gives the modified triad 
list. Then Vertexlist(VListMod,BVTMod) produces the list of vertices in the modi-
fied triangulation of the trapezoid, [[1/2,3/4], [0,0], [0,1], [1,0], [1,1], [0,2]], which 
we denote by MVT. The first point is the interior vertex and the last five are the 
vertices on the boundary, with [0,1] as the new boundary vertex. The procedure 
TriangPlot(VListMod, Triangles, MVT) displays a graph of the modified trian-
gulation. It is shown in Figure 12.5. 

Figure 12.5 The modified triangulation of the trapezoid. 

When the last two arguments in RefineTriangBound are removed, all four triangles 
in the original subdivision are triangulated. 

Bounding Lines for Triangles Determined by Vertices 

The triangles in the triangulation of a region have been prescribed above by lists of 
their vertices. It is of interest and is necessary for a number of operations relating to 
the triangles, such as graphics and integration, to describe them in terms of the three 
lines that constitute the bounds for each triangle. This is easily done by determining 
the equations of the lines that connect the vertices taken two at a time. 

The procedure ElementBounds(VList) determines the three bounding lines for 
a triangle determined by a list of its three vertices denoted by VList. Two sets of 
equations are given in the output. In one set the lines are given in the form у = ax + b 
or x = c, and in the other set they are given as x = äy + b or у = с, with specified 
coefficients in each case. (The procedure solves the linear equations that determine 
the constants.) 
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Example 12.5. The Bounding Lines for the Triangulated Trapezoid. We 
reconsider the triangulation of the trapezoid obtained in Examples 12.2 and 12.4, and 
recall that TrapList is the list of triads for the triangulation given by PolygonTriang. 
Then TrapList[1..3] yields a list of the first three vertices in TrapList and these 
are the vertices of the triangle T l . They are given as (0,0), (1,0), (1/2,3/4). We 
determine the bounding lines of T l by invoking ElementBounds{TrapList[\..Z\). 
This yields the two sets of lines 

ί 3ζ 3χ 3Ί f 2y „ 2y1 

(12.2.1) 
We observe that since the x-axis is one of the bounding lines for T l and it cannot be 
represented in the form x = f(y), the equation у = 0 is given as a bounding line in 
the second set of ( 12.2.1 ). 

Exercises 12.2 

12.2.1. Consider the triangle with the vertices [1,0], [2,3], [4,5]. (a) Apply the 
procedure PolygonTriang to construct a triangulation of the triangle and obtain a 
list of triads for the triangulation. (b) Use the procedure Vertexlist to determine the 
four vertices of the triangulation. Show that the interior vertex is the centroid of the 
triangle, (c) Invoke the procedure TriangPlot to obtain a plot of the triangulation 
that lists the vertices and the triangles in the triangulation. (d) Apply the procedure 
RefineTriang with the last argument equal to 2, so that a double refinement of the 
triangulation is carried out. (e) Again use the procedure Vertexlist to determine 
the interior and boundary vertices of the refined triangulation. (f) Use the procedure 
TriangPlot to generate a plot of the refined triangulation where the vertices and 
triangles are not numbered. 

12.2.2. Use the procedures PolygonTriang and RefineTriang to reproduce the 
results given in Example 12.1. Additionally, use TriangPlot to generate a plot for 
each of the triangulations. 

12.2.3. Consider the square with vertices [0,0], [1,0], [1,1], [0,1]. Divide each side 
of the square into four equal parts and take the resulting 16 points to represent boundary 
vertices for the square, (a) Apply the procedure PolygonTriang to construct a 
triangulation of the square (using the 16 boundary vertices) and obtain a list of triads 
for the triangulation. (b) Use the procedure Vertexlist to determine the vertices of 
the triangulation. Show that the interior vertex is the centroid of the square, (c) Invoke 
the procedure TriangPlot to obtain a plot of the triangulation that lists the vertices 
and the triangles in the triangulation. (d) Apply the procedure RefineTriang with 
the last argument equal to 2, so that a double refinement of the triangulation is carried 
out. (e) Again use the procedure Vertexlist to determine the interior and boundary 
vertices of the refined triangulation. (f) Use the procedure TriangPlot to generate 
a plot of the refined triangulation where the vertices and triangles are not numbered. 



8 7 0 FINITE ELEMENT METHODS IN TWO DIMENSIONS 

12.2.4. Use the procedures referred to in Example 12.2 to obtain all the results of 
that example. 

12.2.5. Apply FindTriangle to verify the results of Example 12.3. 

12.2.6. Reproduce the results of Example 12.4. 

12.2.7. Determine all the bounding lines for the triangulation of the trapezoid in 
Example 12.5 by using the procedure ElementBounds. 

12.2.8. Find all the bounding lines for the triangulation of the triangle obtained in 
part (a) of Exercise 12.2.1 by using the procedure ElementBounds. 

12.2.9. Use the procedure TriangArea to determine the areas of the triangles ob-
tained in part (a) of Exercise 12.2.1. 

12.2.10. Consider the points [1,1], [0,1], [0,1/2], [0,0], [1,0], [2,0], [2,1/2], [2,1], 
[2,2], [1,2]. (a) Form a list of lists of these points in which the point [1,1] is listed at 
the beginning and the end. Use plot to obtain a graph of the polygon with the points 
as vertices. (It is a backward L-shaped region.) (b) Apply PolygonTriang to the 
list of boundary vertices and generate a triangulation of the polygonal region, (c) 
Invoke Vertexlist to the triangulation and then TriangPlot to generate a plot of the 
triangulation that numbers the vertices and the triangles in the triangulation. (d) Add 
[1.3, .7] as the second argument of PolygonTriang in part (b) and obtain a modified 
triangulation of the region. Use TriangPlot to plot the modified triangulation. (e) 
Use TriangArea to determine the smallest and largest areas of the triangles obtained 
in parts (b) and (d). 

12.3 FINITE ELEMENT OPERATIONS 

Having determined how to triangulate a region, we now show how to represent func-
tions over triangulated regions G. We assume that the definitions of all functions 
given over the region G can be extended to the region G if G is a proper subset of 
G. Although prescribed continuous functions retain their values over all triangles in 
the triangulation of G, they will generally be approximated by constants over indi-
vidual triangles and boundary line segments of the triangulation. Additionally, some 
functions will be defined directly in piecewise form, with values prescribed over 
individual triangles. This means that we will be dealing, in general, with piecewise-
defined functions over the full triangulation. 

In the application of the finite element Galerkin methodforthe solution of boundary 
value and initial and boundary value problems for PDEs, it is necessary to carry out 
operations, such as multiplication, differentiation, and integration, on these piecewise 
defined functions, as well as to create such functions directly when constructing 
candidates for approximate solutions. Consequently, the finite element solutions that 
will be determined are piecewise-defined functions. Rather than represent the finite 
element functions in case form, where the function values are displayed (in equation 
form) for each triangle in the triangulation, we represent them as ordered lists. Each 
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member of the list determines a value of the function in a specific triangle of the 
triangulation. 

As we have seen in Section 12.1, the fundamental components of the finite element 
Galerkin method are the basis functions associated with a given triangulation. We 
now show how to construct these basis functions and carry out the operations needed 
to find an approximate finite element solution of a problem via the Galerkin method. 
This will be done directly for some simple cases, but in general, specially constructed 
Maple procedures will be used. 

Plane Elements for a Triangle 
We begin by showing how to construct plane elements for each triangle in the trian-
gulated subdivision of a region and for the entire triangulation. The plane elements 
have the general form ax + by + c, and they determine a plane z = ax + by + c. If the 
three vertices of a triangle are given as (x\,yi), (#2,2/2), and (хз,уз), we determine 
three planes for which z successively assumes the value 1 at one of the vertices and 
vanishes at the other two vertices. For example, one of these planes passes through 
the points (a;i, j/i, 1), (x2,2/2,0), (жз,2/3,0) in (x, y, z)-space. However, if we set 
z = 0 at all three vertices of the triangle, the corresponding plane element is 0 and the 
plane is given as z = 0. These plane elements will be used to construct the piecewise 
linear basis functions that occur in the Galerkin method for the solution of the given 
problem for the PDE using finite elements. 

The procedure PlaneElements([[xi,y\], [x2, y2], [#з, Уз]]) automates the solu-
tion process and obtains three nonzero plane elements for a triangle determined by 
the three listed vertices. Each element vanishes at two of the vertices and equals 1 
at the third vertex. If one of the vertices is given as the second argument, only the 
plane element for the triangle that is associated with the given vertex is displayed. 
By applying the procedure PlaneElements to each triad of a full triangulation for 
a region, the full set of plane elements can be determined. 

This can be done by invoking PlaneElementslist(TriadList). It constructs a 
complete list of triangles and their plane elements for a list of triads (i.e., TriadList) 
of vertices for full triangulation of a region. If a second argument Triangles is added, 
the triangles and the corresponding plane elements are listed. Otherwise, only the 
plane elements are listed. The global variables T\\i, г = l..n, give the vertices of 
the n triangles in the triangulation, while the global variables P\\i, г = l..n, give the 
plane elements for each region. 

Example 12.6. Plane Elements for the Triangulated Trapezoid. We refer 
to the triangulation of the trapezoid given in Example 12.2 and consider the triangle 
Г1, whose vertices are (0,0), (1,0), (1/2,3/4). The general equation of a plane [not 
perpendicular to the (x, y)-plane] is z = αχ + by + c. First we obtain the equation of 
the plane that passes through the points (0,0,1), (1,0,0), (1/2,3/4,0). These values 
of x, y, and z are substituted into z = ax + by + c, and the resulting linear system of 
three equations is solved for a, b, с to get z = —x — 2y/3 + 1. Similarly, we obtain 
z = x - 2y/3 for the points (0,0,0), (1,0,1), (1/2,3/4,0) and z = 4y/3 for the 
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points (0,0,0), (1,0,0), (1/2,3/4,1). The same process can be carried out for the 
vertices in each of the remaining triangles T2, Γ3, ТА. 

PlaneElements([[0,0], [l, 0], [1/2,3/4]]) automates the construction of the three 
nonzero plane elements for the triangle TI . The output is 

[0,0], - χ - ψ + ΐ, [1,0], 2y 
3 ' 

1 3 
2 ' 4 

4y 
3 ' 

(12.3.1) 

Each vertex of T l is listed together with the plane element that equals 1 at that vertex 
and vanishes at the other two vertices. The plane elements for the full triangulation 
of the trapezoid are given by PlaneElementslist(TrapList, Triangles), where 
TrapList lists the triads for the full triangulation of the trapezoid as given in Example 
12.4. The output is 

T\ = [0,0], - x - ^ + 1, [1,0], x - ^ , 

T2 = [1.0], - - У + - , [1,1], — + „ - - , 

1 3" 

1.2'4j 
"1 3" 

[21 4j 

Ay' 

' 3j ; 

-2a;+ 2 

T3 [1 il - + ^ 1 ' J' 3 3 i> [0,2], 
x 2y 
3 3 

ТА [0,2], - f + f, [0,0], - f 

1 
~ 3 ' 

+ 1, 

1 3 
2 ' 4 

Ax Ay 8 
ΊΓ _ T + 3 

1 3 
2'4 

, 2x (12.3.2) 

The added argument Triangles in the procedure causes Maple to identify the triangles 
in the triangulation and to list the vertices and the plane elements for each triangle. 
The output for each triangle is interpreted as before. 

Finite Element Basis Functions 

Once the plane elements for a triangulation have been determined using the procedure 
PlaneElementslist, we are in a position to use these elements to construct the basis 
functions for the finite element method. A basis function is constructed for each vertex 
in the triangulation, be it an interior or aboundary vertex. For a specified vertex, the 
basis function is chosen to equal 1 at the vertex and to vanish at all the other vertices in 
the full triangulation. The basis function is a piecewise planar function whose value 
in each triangle of the subdivision is given by one of the three nonzero plane elements 
associated with that triangle, as found above, or by the plane element 0. The specific 
element selected depends on the vertex values of the basis function in that triangle. If 
the specified vertex is not a vertex in a specific triangle of the subdivision, the plane 
element for that triangle is 0. 

FEBasisFunc(PEList, Po) constructs the piecewise planar finite element basis 
function defined over the entire domain associated with a prescribed list of plane 
elements PEList and a vertex P0. The function vanishes at the vertices of each 
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triangular element except at the vertex Po. where its value is 1. The first argument 
P E List is the output of the procedure PlaneElementslist as applied for the given 
triangulation. The planar function values can be reproduced by invoking Р||г(Ро). 
where г is the triangle number. 

Example 12.7. Basis Functions for the Triangulated Trapezoid. We re-
fer to the triangulation of the trapezoid obtained in Example 12.2. There are five 
vertices, one in the interior and four on the boundary. As a result, five basis func-
tions must be constructed. The plane elements for each of the four triangles in the 
triangulation are given in (12.3.2). To determine the basis function for the interior 
vertex (1/2,3/4), for example, we note that the last entry on the right side of each 
of the four equations in (12.3.2) gives the plane element associated with the ver-
tex (1/2,3/4) for each of the four triangles. Let the list of vertices be given as 
VPL = [(1/2,3/4), (0,0), (1,0), (1,1), (0,2)] and the corresponding basis func-
tions by Vi(x, у), г — 1 , . . . , 5. Thus, for example, the basis function for the vertex 
(1/2,3/4) is 

vi(x,y) 
4y Ax Ay 8 „ (12.3.3) 

The four entries in the list correspond to the plane elements for the four triangles 
T\,..., ТА, respectively, in the triangulation. That is, v\ (x, y) is a piecewise-defined 
function with values in each triangle given by the elements in (12.3.3). Each element 
equals 1 at the vertex (1/2,3/4) and vanishes at the two other vertices in each triangle. 
The basis function can be expressed in piecewise form as 

vi(x,y) = < 

4у/з, ( i , y ) e T i , 

-2ж + 2, {x,y)£T2, 

-Ax/3 - Ay/3 + 8/3, {x, y) e ГЗ, 

2x, (x,y)£TA. 

(12.3.4) 

For example, the vertices in T3 are (1,1), (0,2), (1/2,3/4), and its plane element 
is —Ax/3 — Ay/3 + 8/3. It vanishes at (1,1), (0,2) and assumes the value 1 at 
(1/2,3/4). 

As it is cumbersome to express basis functions and other finite element functions 
in piecewise form as in (12.3.4), especially when dealing with triangulations that 
contain a large number of triangles, we represent such functions in list form below, 
as was done in (12.3.3). Each element in the list is identified with a specific triangle 
in the triangulation. 

The foregoing can be obtained from FEBasisFunc(PEList, [1/2,3/4]), where 
PEList is the output of PlaneElementslist(TrapList). We do not display this 
result but apply instead FEBasisFunc(PEList, [0,2]) which yields 

Vertex = [0,2], Ti = 0, T2 = 0, T3 = -х/Ъ + 2у/3- 1/3, T4 = -3x/A + y/2, 
(12.3.5) 
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as the plane elements of the basis function v${x, y) for the vertex (0,2). Since T\ 
and Γ2 do not contain the vertex (0,2), the plane elements for these triangles are 
zero. The plane elements for T3 and Γ4 assume the correct values at the vertices. 

Plots of Basis Functions 

The finite element basis functions Vi(x, y) are piecewise planar functions whose graph 
z = Vi(x, y) can be characterized as a portion of a three-dimensional polygon. It is 
possible to use the Maple procedure plotM to plot z = Vi(x, y) if it is represented 
as a Maple piecewise function. However, because it is a polygonal surface, it is 
simpler to use the Maple procedure polygonplot3d from the plots package to gen-
erate the plot. Given a list of three-dimensional points (the vertices of the polygon), 
the procedure plots a polygonal surface determined by these points. The procedure 
ElementPlot(TriadList, Vi) plots the basis function Vi(x, y). The first argument 
is a list of triads for a given triangulation, and V, is the г-th vertex in the triangulation. 

Figure 12.6 The basis function v3(x,y). 

We refer to the triangulation displayed in Figure 12.3 and plot the basis func-
tion z = УЗ(Х, у) that corresponds to the vertex at the origin (0,0). The procedure 
ElementPlot(VListM, VVListM[3\) generates this plot and the result is exhib-
ited in Figure 12.6. The plot is characteristic of the shape of basis functions. The 
polygonal surface is continuous and piecewise continuously differentiable. We see 
that «з(0,0) = 1 and that Уз(х, у) = 0 at all other vertices. The projection of the 
surface on the (x, y)-plane reproduces the triangulation G. The plane elements for 
the triangles that do not contain the vertex (0,0) are all 0. The plane elements for the 
triangles that contain the vertex (0,0) all vanish along the edge that is opposite to the 
vertex. 

Full Set of Finite Element Basis Functions 

For a triangulation of a region G with n vertices and m triangles, the procedure 
FEBasisFuncFull(PEList, VList) determines all the finite element basis 
functions Vi (x, у), г = 1 , . . . ,n. The first argument P E List is defined as for the pro-
cedure FEBasisFunc, while the second argument VList is a list of all the vertices 
in the triangulation as given by the procedure Vertexlist, both of which were intro-
duced above. The global variable F\ \i(VP\ \j) gives the plane element in the triangle 
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T\\i, which has the value 1 at the vertex VP||j ' | | . The global variable vt\\i is a list 
whose components are the elements F\\i(VPl), F\\i(VP2), F | | i (VP3) , . . . , for 
each vertex VP\ | j , j = 1, . . . ,n , while vv||i is a list whose components are the ele-
ments Fl{VP\\i),F2(VP\\i),F3(VP\\i),... for each triangle T\\i, i=l,...,m. 

Example 12.8. The Full Set of Basis Functions for the Triangulated 
Trapezoid. We refer to the triangulation of the trapezoid in the preceding exam-
ples. The full list of vertices for initial triangulation is determined from the procedure 
Vertexlist(TrapList, BTrapList) and is denoted as VTrapList. Then the pro-
cedure FEBasisFuncFull(PEList, VTrapList) yields 

' vi(x 

v2(x 

i V3{X 

Vi{x 

v5(x 

,y) = 

,v) = 
,!/) = 

,y) = 

,y) = 

-- [4y/3, -2x + 2, 

--[-x-2y/3+l, 

-- \x - 2y/3, x/2 -

-4ж/3 - 4у/3 + 8/3, 2х] 

0, 0, -δχ/4 - у/2 + 1], 

- у + 1 / 2 , 

-- [0, 3x/2 + у - 3/2, 5ж/3 

= [0, 0, - ж / 3 + 2y/3 - 1/3 

0 , 0 ] , 

- 2у/3 -

-Зж/4 

- 4/3, 0] 

+ У/2], 

as the basis functions for the five vertices (1/2,3/4), (0,0), (1,0), (1,1), (0,2), 
respectively. Each basis function is a list of four plane elements for the four triangles 
T l , T2, T3, ΤΊ in the triangulation. The addition of a third argument, Triangles, 
in the procedure, results in an output that identifies the vertices and triangles as in 
(12.3.5). 

Now suppose that the n vertices in a given triangulation are (XÌ , yi), i = 1 , . . . , n, 
and that the corresponding piecewise-defined basis functions are denoted as Vi (x,y), 
г = 1 , . . . , n. As we have seen, each basis function has the property that ы(XJ ,yj) = 
Sij, where <5у is the Kronecker delta. That is, Vi(x,y) vanishes at all vertices 
(xj,Vj), j ф iandvi(xi,yi) = 1. Within each triangle of the triangulation, each ba-
sis function is linear in x and y, so it has derivatives of all orders. Each of the Vi (x, y) 
is continuous across a common edge of two adjacent triangles of the triangulation, 
because the values of the plane elements at the vertices at the ends of each edge are the 
same for both triangles. Since the planes determined by the plane elements intersect 
at the two vertices, they must intersect along the edge determined by these vertices, 
so that the basis function is continuous across the edge. As a result, all the Vi(x, y) 
are piecewise continuously differentiable functions in the full triangulated region and 
are integrable over the entire region. They are a linearly independent set because 
each Vi(x, y) = 1 at the vertex (xi,yi), while the remaining Vj(x, y) = 0, j ψ i at 
{xi,Vi). 
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Figure 12.7 The plot of a finite element function. 

Finite Element Representations in Terms of Basis Functions 
and Their Plots 

In the finite element method (which we base on the Galerkin method), the approxi-
mate solution ù(x, у) of a given problem for a (second order) PDE in a region G is 
represented by a linear combination of the basis functions for the triangulated region 
G in the form ù(x, у) = Σ " = 1 CÌVÌ(X, у). Some of the c, are prescribed and oth-
ers are to be determined, depending on the boundary conditions. (We are assuming 
in this discussion that the problem is time-independent. Otherwise, both ü and the 
Ci depend on t as well.) Once the a have been found, the values of ù(x, у) at the 
vertices (xi, yi) equal c*, as follows from the properties of the basis functions. The 
approximate solution ù(x, у) is thus given as a continuous piecewise planar surface. 

Alternatively, we see that the finite element solution determines a list of n points 
in space given as (xi,yi,ù(xi,yi)) ,i = 1 , . . . , n. To plot the approximate polygonal 
solution surface z = ù(x, у), we can use the Maple procedure pol ygonplotZd, as was 
indicated above, using the list of n points. (It is unnecessary to use Maple's plotZd pro-
cedure to plot the surface.) To create this list of points for a given triangulation, we use 
the procedure VertexSolution(VList, ValList), where VList is the list of vertices 
in the triangulation and ValList is a list of values to be assigned at the vertices. It com-
bines both lists into a single list of three-component elements that represent the vertices 
and the values. For example, if we use the vertex list for the triangulated trapezoid of 
Example 12.7,anduseVertexSolution([[l/2,3/4], [0,0], [1,0], [1,1], [0,2]], [a,c2, 
C3,C4,C5]),weobtain[[l/2,3/4,Cl],[0,0,C2],[l,0,C3],[l,l,C4],[0,2,C5]]. 

Let the triad list for the triangulation and the list of n points in space be denoted 
as TriadList and PointList, respectively. SolutionPlot(TriadList, PointList) 
uses polygonplot3d to plot the polygonal surface determined by these points. For 
the triangulated trapezoid of Example 12.7, the list of triads is given as TrapList. 
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If we assign values for the c, so that the foregoing list has the form PL = 
[[1/2,3/4,1], [0,0,2], [1,0, - 1 ] , [1,1,4], [0,2, -2]], then SolutionPlot(TrapList, 
PL) yields the plot shown in Figure 12.7. The polygonal surface is composed of four 
triangles and it is continuous and piecewise continuously differentiable. The vertex 
values are those assigned by the three-dimensional point list. 

Representation of a Function Over a Triangulated Region 
and Its Evaluation 

When solving a problem using the finite element method, not only the solution but 
also coefficients of the PDE and data for the problem may need to be represented 
as linear combinations of the basis functions Vi(x, y). As we have seen, each ba-
sis function is given as a list of plane elements that correspond to its representation 
in each of the triangles in the triangulation of the region. Thus, the linear combi-
nation of basis functions has the same form. Each basis function can be thought 
of as a vector with m components, where m is the number of triangles in the tri-
angulation. Thus, linear combinations of basis functions are constructed in the 
same manner as linear combinations of vectors. We note that for a given func-
tion w(x, y), the foregoing linear combination takes on the values of the function at 
each vertex but has the form of a planar element in each triangle of the subdivision. 
FEF(VertValues, BasisList, Vertexlist,[x,y\) automates the construction of 
the linear combination of basis functions. The second argument of FEF is a list 
of basis functions [v\ (x, y),..., vn (x, y)], and the third argument is a list of the n 
vertex points of the triangulation. The first argument can either be a list [c i , . . . , cn] 
of values to be assigned at vertices of the triangulation or a given function w(x, y). 
The output is a list of plane elements. 

Example 12.9. The Representation of a Function Over a Triangulated 
Trapezoid. We continue with our discussion of the triangulated trapezoid of 
Example 12.8. If we set VertValues = [c\, с?., сз, с^, С5] ana BasisList = [vi(x, y), 
V2{x, y),v3(x, y), Vi{x, y), v$(x, y)\, the procedure FEF'{VertValues, BasisList, 
VTrapList, [x, y]) yields the piecewise-defined function 

F{x,y) = [c3{x - 2y/3) + c2(l - x - 2y/3) + ci(4y/3), 

с4(Зж/2 + у - 3/2) + c3(a;/2 - у + 1/2) + ci(2 - 2x), 

cs ( -x /3 + 2y/3 - 1/3) + c4(5x/3 + 2y/3 - 4/3) + c i ( -4x /3 - Ay/3 + 8/3, 

c5(-3x/A + j//2 + с2(-5ж/4 - j//2 + 1) + ci(2a;)]. (12.3.7) 

In the triangle TI , for example, F(x, y) has the form сз(х — 2y/3) + сг(1 — x — 
2j//3) + ci(4i//3). If we substitute the vertices (1/2,3/2), (0,0), (1,0) of Г1 into 
F(x,y), we obtain c\, c2, C3, respectively. Similar results obtain for the triangles 
T2, T3, ТА. 
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Now, if we put VertValues = w(x, y) as the first argument in the procedure, the 
output retains the form of (12.3.7), but with c\ = w{l/2,3/4), c-i = ги(0,0), сз = 
w(l, 0), C4 = w(l, 1), es = w(0,2). The function w(x, y) is evaluated at the ver-
tices of the triangulated trapezoid. Within each triangle of the triangulation, F(x, y) 
assumes the values of w(x, y) when it is evaluated at the vertices. As a specific ex-
ample, we put w(x, y) = exp[cos(a;y — 4) + x3y] and plot it and its finite element 
representation F(x, y). The graphs of both functions are displayed in Fig. 12.8. 

Figure 12.8 A function and its piecewise planar representation. 

Once a piecewise planar finite element function has been prescribed and repre-
sented as a list of plane elements, if we want to evaluate it at a point in the triangu-
lated region we must first determine which triangle the point lies in. FindTriangle 
introduced in Section 12.2 does this. Then the plane element that corresponds 
to this triangle must be selected and evaluated at the given point. The procedure 
F E FValue(F E Function, TriadList, [x0, y0], [x, y]) automates this process. Here 
FEFunction represents the finite element function determined from the procedure 
FEF given above, and TriadList is the list of the triads in the given triangulation. 
The point [xo, yo] is where the function is to be evaluated. 

Example 12.10. Function Values in a Triangulated Trapezoid. We consider 
the function F(x,y) of (12.3.7) and enter it as the first argument in FEFValue. 
The second argument is TrapList. If we put [xo, yo] = [2,6], the output of the 
procedure is [2,6], is not in the region. The point (2,6) lies outside the trapezoid. 
With [XQ, yo) = [1/2,3/4], the interior vertex point, the output of the procedure is 
ci. Finally, if [x0,y0] = [1/3,1/6] we obtain the value 2/9 a + 5/9 c2 + 2/9 c3. 
The point (1/3,1/6) lies in the triangle T l , within which F{x, y) = c3(x - 2y/3) + 
c 2 ( l - z - 2 y / 3 ) + Cl(42,/3). 
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Finite Element Centroid- and Midpoint-Valued Functions 

The finite element method requires the evaluation of double integrals of functions 
over the triangles of the triangulated region and line integrals of functions over the 
polygonal boundary, as will be seen. In general, the integrands are products of 
coefficients, nonhomogeneous terms, or data for the given PDE with piecewise planar 
finite element functions of the form introduced above. For a large-scale triangulation, 
this can give rise to a large number of integrals that most often must be evaluated 
numerically. Since the dimensions of the triangles and the lengths of the boundary 
segments are expected to be small, the aforementioned functions can be expressed 
in a simplified form without a significant loss of accuracy in the final approximation 
to the solution. One method for doing so is to replace these functions by piecewise 
linear finite element functions, as was done above. This has the effect of introducing 
integrands that are, at worst, polynomials of degree four and can always be integrated 
in closed form. Yet the common practice is to simplify the integrands even further by 
approximating the coefficients, nonhomogeneous terms, or data by piecewise constant 
functions, that is, they assume constant values in the triangles of the triangulation and 
on the sides of the polygonal boundary. This generally has the effect of replacing 
continuous by piecewise continuous functions, but it does not affect their integrability 
properties. 

The approximation of a function over a triangle is made by replacing it by its value 
at the centroid of the triangle. This is done for each triangle in the triangulation. The 
approximation of a function over a side of polygonal boundary is made by replacing 
it by its value at the midpoint of the line segment that represents the side. This is done 
for each side of the boundary. The procedures FECentroid and FEBoundMidP 
carry out this process for a full triangulated region. The first procedure takes the 
form FECentroid(f(x,y), TriadList, [x,y]) and the second procedure is given 
as FEBoundMidP(f(x,y),BPList, [x,y]). As before, TriadList is a list of 
triads of vertices that determine the triangulation, and BPList is a list of the ver-
tices of the polygon that bounds the triangulated region. To get the correct result 
for FEBoundMidP, the first boundary vertex point must be listed twice, at the 
beginning and end of the list. 

Example 12.11. Approximations for a Triangulated Trapezoid. We begin 
with the centroid approximation for the function f(x, y) over the triangulation of 
the trapezoid introduced in the preceding examples. TrapList is defined as before 
and we use FECentroid(f(x,y), TrapList, [x,y]). The output is [/(1/2,1/4), 
/(5/6,7/12), / (1 /2 ,5/4) , /(1/6,11/12)]. It lists the values of f(x, y) at the cen-
troids of the four triangles T\, T2, T3, T4, respectively. 

FEBoundMidP{f{x,y), [[0,0], [1,0], [1,1], [0,2], [0,0]], [x,y]) has the output 
[/(1/2,0), / (1 ,1/2) , / (1 /2 ,3/2) , /(0,1)], which is a list of the values of f(x, y) at 
the midpoints of the four sides of the trapezoid. 
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Integral of a Finite Element Function Over a Triangulated Region 

The next step in the finite element method, after the region is triangulated and the 
basis functions and related piecewise defined functions are constructed, involves the 
integration of these functions and their products over the triangulated region. This 
includes double integration over individual triangles and line integration over the 
polygonal boundary. We begin with a discussion of double integration over a triangle. 

Let Г1, Γ 2 , . . . , Tm be the triangles in the triangulation of the region. To carry 
out a double integration of a function F(x, y) over a triangle Ti, we must determine 
the lines that bound the triangle and express the double integral as an iterated integral. 
The procedure ElementBounds introduced above determines these lines. Then the 
iterated integral(s) can be expressed in dx dy form or dy dx form. The procedure 
FEIntegral(f(x,y),Ti, [x,y]) automates the integration process. The integrals 
are always expressed in dy dx form. 

Example 12.12. Integration Over a Triangle in a Triangulated Trapezoid. 
It was found in Example 12.5 that the vertices of the triangle T\ of the triangulated 
trapezoid are (0,0), (1,0), (1/2,3/4). One set of bounding lines was obtained in 
(12.2.1) as {y = 0, у = Зж/2, у = -Зх/2 + 3/2}. Thus, 

г <·1/2 /·3χ/2 /.1 г— Зх /2+3 /2 

/ f{x,y)dA= / f(x,y)dydx+ / f{x,y)dydx. 
JTI JO JO J1/2J0 

(12.3.8) 
The output of FEIntegral(f (x, у), TI, [x, у], blank) is identical with the right side 
of ( 12.3.8). If the fourth argument in the procedure is omitted, the vertices of П and 
the bounding lines for Г1 are printed out. 

We cannot expect, in general, that the foregoing integrals can be evaluated (easily) 
in closed form. Numerical integration methods will have to be used. This can be a 
lengthy process when carried out over a large triangulation. A significant simplifi-
cation is achieved if the coefficients, nonhomogeneous terms, or data for the given 
PDE are replaced by centroid approximations, as was done above. This has the ef-
fect that all integrations over the triangles of the triangulation involve only constant 
multiples of the linear elements of basis functions and their products. As a result, the 
integrands are multivariate polynomials, and the integrals can always be evaluated in 
closed form. 

In fact, it is not even necessary to evaluate these integrals directly (using antideriva-
tives) because the following formula can be used. Consider the triangle Ts of a given 
triangulation with the vertices {xi,yi),{xj,yj),(xk,yk), and let the corresponding 
linear elements of the basis functions in Ts be ViS(x, y), VjS(x, y), vks(x, y) [i-e-, 
Vis(xi,yi) — 1, vis(xj,yj) = 0, vis(xk,yk) = 0, with corresponding results for 
vjs(x, y) and vks(x, y)]. Then 

I vie(x,yrvja(x,y)mvkB(x,yr dA = ™т1?Л(?а1, (12.3.9) 
JTS {2 + n + m + ry. 
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where n, m, r are positive integers or zero and A(Ts) is the area of the triangle 
Ts. The procedure TriangArea(Ts) determines the area of Ts if we set Ts = 
[[Xi,yi\,[Xj,yj],[xk,yk]]· 

This result (12.3.9) can be verified by transforming the integral using an (affine) 
coordinate transformation x = a\x + b\y + c\, у = a^x + b2y + c2, which takes the 
vertices {xi,yi),(xj,yj),(xk,yk) into the points (0,0), (1,0), (0,1), respectively. 
(It transforms the triangle Ts into a right triangle with the latter points as vertices.) 
This requirement on the vertices yields a system of six linear equations for the six 
unknowns. The system has a unique solution. The Jacobian of the transformation 
equals twice the area of Ts, and we obtain 

[ vis(x,y)nvjs(x,y)mvks(x,y)rdA = 2A(Ts) [ [ \l-x-y)nymxrdydx, 
JTS JO JO 

(12.3.10) 
where the domain of integration on the right is the right triangle. The linear function 
1 — x — у in the integrand, vanishes at the vertices (1,0) and (0,1) and equals 1 at 
the vertex (0,0). A related result is valid for the other two linear functions x and у 
in the integrand. Repeatedly integrating by parts in the iterated integral of (12.3.10) 
yields (12.3.9). 

Example 12.13. Integrals of Products of Linear Elements of Basis 
Functions. The vertices of the triangle T\ of the triangulated trapezoid are (0,0), 
(1,0), (1/2,3/4). Let the basis functions for these vertices be denoted as v\(x, y), 
У2(х,у),Уз(х,у), respectively. It was shown in (12.3.1) that the linear elements 
of the three basis functions in T l are vn(x,y) = —x — 2y/3 + 1, V2i(x,y) = 
x - 2y/3, t>3i(:r, y) = 4y/3. Then, on using FEIntegral or by direct integration, 
we obtain 

/ vn (x, y)S>21 (z, y)3v31 (x, yf dA = 1/184,800 = Л(Т1)/69,300. 
JT\ 

(12.3.11) 

The last result follows from (12.3.9). Invoking TriangleArea shows that A(T1) = 
3/8, so that (12.3.11) is verified. 

Given a triangulation of a region into the triangles T l , T 2 , . . . , Tm, we consider a 
function f(x,y) represented as a list [/i(x, y ) , . . . ,/m(x,y)]ofrn-elements. fi(x,y) 
is the representation of f(x, y) in the triangle Ti. Then the double integral of f(x, y) 
over the full triangulated region is the sum of the integrals of the fi(x,y) over the tri-
angles Ti for г — 1,2,. . . , т. FEIntegralFull(f(x, y),TriadList, [x, y\), where 
TriadList is a list of triads for the triangulation, automates this integration process. 
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Example 12.14. Integration Over the Full Triangulated Trapezoid. The 
triad list for the triangulated trapezoid is given by TrapList. Then F E Integral Full 
([/i(z,y), /2(2,у), 1з(х,у),/4(я,y)],TrapList, [x,у}) yields 

г 1/2 Λ 3 / 2 Ι r l /.-3/2X+3/2 

/ / fi(x,y)dydx+ / fi(x,y)dydx 
Jo Jo J1/2J0 

/■1 /-1/2+1/2X ,.1/2 / ·2-χ 
+ / / f2(x,y)dydx+ / / f3(x,y)dydx 

Jl/2J-3/2x+3/2 JO J2-5/2X 

/•1 /-2-х л1/2 /-2-5/2Х 
+ / / f3{x,y)dydx+ / f4(x,y)dydx. (12.3.12) 

Jl/2Jl/2+l/2x JO J3/2x 

The iterated integrals represent integration over the four triangles in the triangulation. 

Again, if centroid approximations are used in the finite element method, each of 
the fi(x, y) is given as a product of powers of linear elements of basis functions, as 
indicated above. As a result, each of the integrals can be evaluated in closed form 
(because the integrands are multivariate polynomials) or by using (12.3.9). 

Line Integral of a Finite Element Function Over a Full 
or Partial Boundary 

Finally, we consider line integration over the polygonal boundary of the triangulated 
region. Depending on the form of the boundary conditions for the problem, it may 
be necessary to integrate certain functions over the full boundary or only a part of 
it. In any case, the line integral is broken up into a sum of line integrals over the 
line segments that comprise the domain of line integration. Each line segment is 
determined by two adjacent vertices, say Pi and P2, on the polygon. If the integral 
extends from Pi to P2, the line segment can be expressed parametrically as x = 
(xi - x0)t + xo, у = (yi - y0)t + yo, 0 < t < 1, with Pi = (xQ,y0) and 
P2 = {x\, У\ )■ The line integral of a function f(x, y) is 

/•P2 /-1 

/ f{x,y)ds = L / / ( ( * i - a ; o ) i + a:o,(l/i-|ft>)t + !/b)<tó, (12.3.13) 
JPi JO 

where L is the length of the line segment connecting Pi to P^-
In general it is necessary to evaluate these integrals numerically. However, if the 

data or coefficients for the given problem that occur in the line integrals are replaced 
by midpoint approximations, as was done above, the integrals are greatly simplified. 
Then the functions f{(xi- xo)t + x0, (2/1 - yo)t + Уо) arise from linear elements of 
basis functions and their products, and they are all polynomials in t. Consequently, 
all the line integrals can be evaluated exactly. 

As was the case for integration over the triangles in the triangulation, there is a 
simple formula that can be used to determine the values of the latter line integrals 
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without finding antiderivatives of the integrands. Let TV represent the triangle and 
Sr the boundary edge of Tr over which the line integration is carried out. With 
(xi, yi) and (xj,yj) as the two boundary vertices that comprise the end points of 
Sr, let Vir(x,y) and Vjr(x,y) be the corresponding linear elements of the basis 
functions for the triangle Tr. [Thus, Vir(xi,yi) = 1, Vir(xj,yj) = 0, Vjr(xi,yi) = 
0, Vjr(xj,yj) = 1.] Then 

/ vir(x,y)nvjr(x, y)m ds = " ! ™IL[SV\., (12.3.14) 
Jsr (L + n + my. 

where L{Sr) = y/(x2 — xi)2 + (2/2 — У1)2 is the length of the line segment, n and 
m are positive integers, and the integration is taken in the positive direction with 
respect to the full polygonal boundary. The result (12.3.14) follows by noting that 
on proceeding as was done for the double integral (12.16), the transformed integral 
in this case assumes the form 

f vir(x,y)nvjr(x,y)mds = L(Sr) f {l-t)ntmdt. (12.3.15) 
JSr JO 

Integrating by parts repeatedly yields (12.3.14). 
In correspondence with FEIntegral and F E Integral Full presented above for 

integrating functions over specific triangles or over the full triangulation of a region, 
F E Boundary Integral and FEBoundarylntegralFull integrate finite element 
functions over only a portion of or over the full polygonal boundary of the triangu-
lated region. F E Boundary Integral is basically a subprocedure used in carrying 
out FEBoundarylntegralFull, so we discuss only the latter procedure. It has the 
formFEBoundaryIntegralFull(F(x, y), BPointList, TriadList, \x, y]), where 
F{x, y) = [/1 (x,y),..., fm(x, y)] with m as the number of triangles in the trian-
gulation. The second argument is a list of (at least two) consecutive vertices of the 
polygon. The line integration is carried out over the polygonal segments determined 
by these vertices. To obtain the line integral over the full polygon, the first vertex 
in the list must be appended at the end of the list of boundary points. As before, 
TriadList determines the triangulation of the region. 

Example 12.15. Integration Over the Boundary of the Triangulated 
Trapezoid. TrapList determines the triad list for the triangulation of the trape-
zoid, and then the procedure FEBoundaryIntegralFull([fi(x, y), /2(2:, y), fc(x, y), 
f4(x,y)], [[0,0], [1,0], [1,1], [0,2], [0,0}},Traplist, [х,у)) yields the line integral 
over the full polygonal boundary in the form 

f fi(t,0)dt+ [ f2(l,t)dt+y/2 [ f3{l-t,l + t)dt+2 [ f4(0,2-2t)dt. 
Jo Jo Jo Jo 

(12.3.16) 
Each integral represents integration over one of the four sides of the trapezoid and has 
the form given in ( 12.3.13). In each case the integral is multiplied by the length of the 
side being integrated over. To obtain only the line integral over the side determined 
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by the vertices (1,1), (0,2), we replace the second argument in the procedure by 
[[1,1], [0,2]], and the output is the third integral in (12.3.16). 

Next we integrate a prescribed function F(x, y) over the side of the trapezoid deter-
mined by the vertices (1,0) and (1,1). The corresponding triangle in the triangulation 
has the additional vertex (1/2,3/4). The (basis) plane elements x/2 — y + 1/2 and 
3x/2 + у — 3/2 correspond to the vertices (1,0) and (1,1). Indeed, they both vanish 
at (1/2,3/4) and at (1,1) and (1,0), respectively. At the remaining vertex they equal 
l.WeputF(x,y) = [0,{x/2-y+l/2)5(3x/2+y-3/2)2,0,0] in the first argument 
of the foregoing procedure and enter [[1,0], [1,1]] as the second argument. The output 
of the procedure is 1/168. The line integral corresponds to that in (12.3.14) with Sr 
as the side determined by the two vertices (xi,yi) = (1,1) and (xj,yj) = (1,0), and 
with vir = x/2 - у + 1/2, Vjr = 3x/2 + y — 3/2 and n = 5, m = 2. The length 
of Sr equals 1. The line integral is /„ (1 - f )5t2 dt = 1/168. 

This completes our discussion of the triangulation of regions and the construction 
of finite element basis functions, finite element functions, and operations on such 
functions. The foregoing results will be used in the application of the finite element 
method to the solution of boundary value problems for elliptic PDEs and initial and 
boundary value problems for hyperbolic and parabolic PDEs over finite regions in 
two dimensions. 

Exercises 12.3 

12.3.1. Apply the procedure PlaneElements to determine the plane elements for the 
four triangles T l , Г2, ТЗ, ТА of the triangulation of the trapezoid of 
Example 12.6. 

12.3.2. Use the procedure PlaneElementslist to obtain the plane elements given 
in (12.3.2). 

12.3.3. Use PlaneElementslist to obtain the plane elements for the full triangula-
tion obtained in Exercise 12.2.1(a). 

12.3.4. Construct the five basis functions that correspond to the vertices in the 
triangulation of the trapezoid obtained in Example 12.2 by using the procedure 
FEBasisFunc. [The basis function for the vertex [0,2] is given in equation ( 12.3.5) 
of Example 12.7.] 

12.3.5. Use ElementPlot to plot each of the basis function obtained in 
Exercise 12.3.4. 

12.3.6. Use the procedure FEBasisFuncFull to obtain the set of basis functions 
(12.3.6) given in Example 12.8. 

12.3.7. Apply FEBasisFuncFull to obtain the full set of basis functions for the 
triangulation obtained Exercise 12.2.3(a). 
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12.3.8. Use ElementPlot to plot the first five basis function obtained in the solution 
of Exercise 12.3.7. 
12.3.9. Apply the procedures Vertex Solution and SolutionPlot to generate the 
plot of the finite element function given in Figure 12.7. 
12.3.10. Consider the triangulation constructed in Exercise 12.2.1(a). Use the proce-
dures Vertexlist and Vertex Solution to assign an arbitrarily chosen set of values 
at the vertices. Then use SolutionPlot to generate the plot of the resulting finite 
element function. 
12.3.11. Consider the triangulation constructed in Exercise 12.2.3(d). Use the proce-
dures Vertexlist and Vertex Solution to assign an arbitrarily chosen set of values 
at the vertices. (The procedure randvector can be used to generate a set of vertex 
values.) Then use SolutionPlot to generate the plot of the resulting finite element 
function. 
12.3.12. Reproduce the results of Example 12.9 using the procedure FEF. Find 
the values of F(x, y) [i.e (12.3.7)] in each of the four triangles of the triangulation. 
Obtain the plot given in Figure 12.8. 
12.3.13. Consider the function F(x,y) given in (12.3.7). Verify the results of Ex-
ample 12.10 using the procedure FEFValue. 

12.3.14. Reproduce the results of Example 12.11. 
12.3.15. Carry out approximations of Example 12.11 if the triangulated trapezoid is 
replaced by the triangulated triangle of Exercise 12.2.1(a). 
12.3.16. Carry out approximations of Example 12.11 if the triangulated trapezoid is 
replaced by the triangulated square of Exercise 12.2.3(a). 
12.3.17. Use the procedure FEintegral to obtain the result (12.2.8) in Example 
12.12 and obtain corresponding integrals for the remaining three triangles in the 
triangulated trapezoid. 
12.3.18. Verify the results of Exercise 12.3.16 by using FEintegral Full as in 
Example 12.14 and obtaining the result (12.3.12). 
12.3.19. Confirm the validity of (12.3.10) in the special case (12.3.11). 

12.3.20. Reproduce the results of Example 12.15. 

12.4 THE FINITE ELEMENT METHOD FOR ELLIPTIC EQUATIONS IN 
TWO DIMENSIONS 

Galerkin Integrals for Elliptic Equations 

We consider the elliptic PDE in the two-dimensional region G: 

-(pux(x, y))x - (puy(x, y))y + ßux(x, у) + nfuy(x, у) + qu{x, у) = F. (12.4.1) 

It is assumed that p, q, ß, 7, F are functions of (x, y) and that p(x, y) > 0 in G. 
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The PDE has the form - V · (p(x, y)Vu(x, y)) + q(x, y)u(x, y) + [ß(x, y),f{x, y)] ■ 
Vu(x, y) = F(x, y). It is formally self-adjoint if ß(x, у) — 0 and 7(ж, у) = 0. If, 
in addition, p(x, y) = 1 and q(x, y) = 0, it reduces to Poisson 's equation. Then with 
F(x, y) = 0, it becomes Laplace's equation. Dirichlet, Neumann, Robin, or mixed 
boundary conditions are prescribed for u(x, y) on the boundary S of the region G. As 
in Section 4.1, the boundary is comprised of the union of the arcs Si, S2, and S3, with 
Dirichlet conditions given on Si, Neumann conditions on S2, and Robin conditions 
on S3. Either Si, S2, or S3 or combinations of two of them may be empty. The 
boundary values are 

u{x,y)\Si = / , u„(x,y)\S2 =g, ип(х,у)+аи(х,у)\3з = h, (12.4.2) 

where / , g, a, h are functions of (x, y). 
To determine the Galerkin integral relation for the problem, we multiply across 

in (12.4.1)by an arbitrary admissible function v(x, y), apply the divergence theorem 
(or Green's theorem in the plane) as in Chapter 7, and use the (mixed) boundary 
conditions given above. A function v(x, y) is admissible if it satisfies the condition 
vixi v)\s = 0 when Si is nonempty. Its values are unrestricted on S2 and S3. As a 
result, the line integral over Si that arises in the divergence theorem vanishes. This 
yields the following Galerkin relation for the mixed problem for the elliptic equation 
(12.4.1); 

/ p{uxvx + UyVy) + quv + v(ßux + 7%) dA + I pauv ds 
JG JS3 

= vFdA+ pvgds+ pvhds. (12.4.3) 
J G J S2 ** S3 

(The integrand in the first integral on the left can be given as pVu · Vu + quv + 
υ[β, 7] · Vit.) Each of the functions in the integral depends on (x, y). 

Now, if u(x, y) is a solution of the given boundary value problem for ( 12.4.1 ), the 
Galerkin relation ( 12.4.3) is satisfied for all admissible v(x, y). We reverse the process 
and use the fact that if the Galerkin relation is satisfied for all admissible v(x, y), the 
original boundary value problem is satisfied by u(x,y), in view of the arbitrariness 
of v(x, y). The advantage of using this approach is that in contrast to the original 
formulation of the problem, the solution u(x, y) in the Galerkin relation need not be 
twice differentiable. The same is true for the admissible functions. The Galerkin 
relation can be satisfied even if they have only piecewise continuous first derivatives. 
Thereby the concept of a solution to a given boundary value problem is extended and 
weakened, as has been done on a number of times in the book in various contexts. 
However, rather than constructing a weak solution and showing that it satisfies the 
Galerkin relation, we use this approach to construct an approximate weak solution 
for the given boundary value problem using the Galerkin method. 

The Galerkin method determines an approximate solution to the foregoing bound-
ary value problem as follows. We select a set of m linearly independent admissible 
basis functions Vj(x,y), j = 1 , . . . ,ra. As such, each Vj(x,y) must vanish on the 
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portion Si of the boundary of G but is otherwise arbitrary. In addition, we choose a 
function w(x, y) that is required to satisfy the boundary condition on Si for the given 
problem [i.e., w(x, y) — f(x, y) on Si] but is otherwise arbitrary. Then we represent 
the (approximate) solution as 

u{x, y) = w(x, y) + Σ CiViix, y), (12.4.4) 
i = l 

with arbitrary constant coefficients c, that are to be determined. This expansion is 
inserted into the Galerkin relation (12.4.3) where we consecutively set v(x,y) = 
vj(x> y)> j ' = 1) · · · >TO· This yields the following m simultaneous equations for the 
m constants a, for j = 1 , . . . , m, 

JG 

f. m <*. 
ÖW ^ - л OVi 

dx ^—i % dx 
i = l 

9VJ 

dx + 
aw ^-^ dvj 

' ду ду +Я 

L 
+ 

+ ß 

/ pa 
Js3 

ÖW y—^ 

7^ + l^' i = l 

dvj 
1 dx Vj+J 

dw v-^ dvi 
+ 2.^*7 dy dy 

m 

W + ^2 CiVi VjdA 
t = l 

Vj dA (12.4.5) 

+ ^2 CiVi Vj ds = I FVJ dA+ pvjg ds+ I pvjh ds. 
JG JS2 JS3 

On solving these equations and substituting the result in the expansion (12.4.4) for 
u(x,y), we obtain an approximate solution to the boundary value problem. This 
represents Galerkin's method for solving the foregoing boundary value problem ap-
proximately. Clearly, if the Vi(x, y) are members of a complete set of functions, we 
expect that the infinite series representation of u(x, y) in terms of these functions 
will yield a (possibly weak) solution of the boundary value problem. This solution is 
approximated by the finite sum (12.4.4). 

Finite Element Method for Elliptic Equations 

Vac finite element method for the solution of ( 12.4.1 )-( 12.4.2) employs the Galerkin 
method with the Vj (x, y) chosen as the finite element basis functions associated with 
a specific triangulation of the region G constructed as above. As a result, both the 
solution and the region undergo an approximation. We distinguish between interior 
and boundary vertices in the triangulation and between points on the boundary at 
which a Dirichlet condition is assigned and points that determine boundary segments 
where Neumann or Robin conditions are given. Each vertex gives rise to a piecewise 
planar basis function and we express the approximate solution и (х, у) of the boundary 
value problem as a linear combination of the basis functions. A basis function that 
corresponds to a Dirichlet boundary point is multiplied by f(x, y) evaluated at that 
point, whereas if it corresponds to an interior point, a Neumann condition, or a Robin 
condition boundary point, it is multiplied by an arbitrary constant. 
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Suppose that the triangulation has n vertices given as (xi,yi), i = I,... ,n, of 
which n — m (with г = m + 1 , . . . , n) are Dirichlet boundary point vertices. We 
express the approximate solution as 

n m 

u{x,y)= Σ f{xi,yi)Vi{x,y)-\-'Y^CiVi(x,y). (12.4.6) 
i = m + l i= l 

Since Vi(xi, yi) = 1 and Vi(x, y) = 0 at all other vertices, we find that U(XJ, yj) = 
f(xj,yj) if (xj,yj) is a Dirichlet vertex and u(xj,yj) = Cj if (xj,yj) is any other 
vertex. In the resulting system (12.4.5), we set w(x, y) = ^™ = m + 1 f{xi, yi)Vi{x, y) 
and the region G is replaced by the triangulated region G, while 5 2 and 5 3 represent the 
line segments on the polygonal boundary on which Neumann and Robin conditions 
are prescribed. The Vi(x,y) are piecewise-defined functions composed of plane 
elements, each of which is continuous and piecewise continuously difierentiable over 
G. The double integrals over G are a sum of integrals over the triangles that comprise 
the triangulation, and the line integrals over S2 and S3 are taken over appropriate line 
segments of the polygonal boundary of G. 

Each basis function w, (x, y) is a linear function of x and у in each of the triangles. 
Thus the x and у derivatives of w(x, y) and the Vi (x, y) are constants in each triangle. 
Exact integrations in ( 12.4.5) of terms that involve the products of the Vi(x, y) and their 
first derivatives, with the functionsp(x, y), q(x, y), ß(x, у), η{χ, у), а(х, у), д(х, у), 
h(x, у), and F(x, у), may be difficult to carry out. However, if these functions are 
replaced by their centroid approximations in the double integrals over triangles and 
by their midpoint approximations in the line integrals over the boundary, the resulting 
integrals contain polynomial integrands and can all be evaluated exactly. In fact, the 
integration formulas (12.3.10) and (12.3.14) can be used for their evaluation. 

Thus, to solve a boundary value problem for the elliptic equation (12.4.1) using 
the finite element method, we must first triangulate the region, determine the basis 
functions, evaluate the relevant double and line integrals in the Galerkin relation, and 
solve the resulting linear system for the constants that determine the approximate so-
lution. This is a rather lengthy process in general. We have created Maple procedures 
that automate the triangulation of a region, determine basis functions, and carry out 
additional required steps in setting up the system (12.4.5). 

Given a boundary value problem for an elliptic PDE of the form (12.4.1), the 
procedure NumEllipticFEMCM obtains an approximate solution of the problem 
via the finite element method. The list of triads and vertices for the triangulation of the 
approximating polygonal region G must be entered in the procedure, together with 
arguments that prescribe the coefficients, inhomogeneous term, and data for boundary 
conditions of the first, second, or third kind. The procedure determines centroid and 
midpoint values as required. The system (12.4.5) is set up, the double and line 
integrals are evaluated, and the resulting linear system is solved for the unknown Cj in 
( 12.4.6). As stated above, the a represent the values of the approximate finite element 
solution at the corresponding vertex points (X,,Ì/Ì) in the triangulation. Combined 
with prescribed Dirichlet boundary point values, we obtain (approximate) solution 
values at all vertex points. This corresponds to the construction of finite difference 
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solutions at a prescribed set of grid points. In the finite element method, however, the 
approximate solution (12.4.6) yields a piecewise planar approximation to the exact 
solution surface. Additionally, solution values in G at points that are not vertices can 
easily be found from (12.4.6). 

To see what is involved in the process of solving a boundary value problem with 
the finite element method, we consider a simple example in some detail. 

Example 12.16. A Mixed Problem for an Elliptic PDE. We consider a bound-
ary value for the elliptic PDE 

-uxx(x, y) - uyy(x, y) + xy u(x, y) = xy{x + y) (12.4.7) 

in the triangular region G bounded by the lines у = 0, x + у = 1, x = 0. The 
three sides determined by these lines are denoted by S\, S2, S3, respectively. Mixed 
boundary conditions 

u(x,y)\Sl =x, un(x,y)\Si = \/2, ип(х,у)+и(х,у)\3з = у - 1, (12.4.8) 

are prescribed. This means that Dirichlet, Neumann, and Robin boundary conditions 
are assigned on Si, S2, S3, respectively. The exact solution is u(x, y) = x + y, and 
we construct an approximate finite element solution. 

First, we triangulate the region G. It does not undergo any approximation be-
cause of its triangular boundary. The bounding (right) triangle for G has the ver-
tex list BVList = [[0,0], [1,0], [0,1]]. We use PolygonTriang(BVList) to tri-
angulate G. The triangulation yields three triangles, whose triad list is VList = 
[[0,0], [1,0], [1/3,1/3], [1,0], [0,1], [1/3,1/3], [0,1], [0,0], [1/3,1/3]]. Vertexlist 
(VList, BVList) then determines that there is one interior vertex and three boundary 
vertices in the triangulation. The vertex list is VVList =[[1/3, 1/3], [0, 0], [1, 0], 
[0, l]],with[l/3,1/3] as the interior vertex. It is the centroidofthe given triangle. The 
three triangles in the triangulation are given as, in terms of their vertices, T\ =[[0,0], 
[1,0], [1/3, 1/3]], Г2 =[[1,0], [0, 1], [1/3, 1/3]], and ГЗ =[[0,1], [0,0], [1/3, 1/3]]. 
The plot of the triangulation is given by TriangPlot(VList, Triangles, VVList) 
and is displayed in Figure 12.9. 

The procedure PlaneElementslist(VList, VVlist) determines the plane ele-
ments for each of the three vertices in each of the three triangles. We denote 
the output by VPEList. Then FEBasisFuncFull(VPEList,VVList) finds 
the four basis functions for the four vertices in the triangulation. These are the 
Vi(x, у), г = 1 , . . . , 4, for the problem. We order them according to the vertex list 
VVList given above, so that г — 1 corresponds to the interior vertex [1/3,1/3], for 
example. They are given as 

vi(x,y) = [3y, -3x-3y + 3,3x], v2(x,y) = [-X - 2y + 1,0, -2x - у + 1], 

v3(x,y) = [x-y,2x + y-l,0], v4(x,y) = [Q,x + 2y-l,-x + y]. (12.4.9) 

We see that each Vi(x, y) contains three plane elements that correspond to the three 
triangles in the triangulation. For example, v±(x,y) corresponds to the boundary 
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Figure 12.9 The triangulation of the triangle. 

vertex [0,1], which is a vertex of the triangles T2 and T3. As a result, the first 
linear element, which corresponds to T l , is 0. The second linear element, for T2, is 
x + 2y - 1 and its value at [0,1] is 1. The third linear element, for T3, is — x + у and 
its value at [0,1] is 1. 

The boundary segments Si, S2, S3, correspond to the line segments determined 
by the pairs of points [(0,0), (1,0)], [(1,0), (0,1)], [(0,1), (0,0)], respectively. The 
Dirichlet condition u(x,y) = x on Si implies that ω(0,0) = 0 and that u(l ,0) 
= 1. The value of u(x,y) at the remaining two vertices of the triangulation must 
be determined by the finite element method. Thus, in accordance with (12.4.6), the 
approximate solution is represented as u(x, y) = c\V\{x,y) +vs(x,y) + CiVi{x, y). 
We note that the vertex numbers are not ordered as in (12.4.6). [There is no v2{x, y) 
term since the Dirichlet condition is 0 there.] In piecewise form we have 

(3ciy+(x-y), ( x , » ) e T i , 

u{x, y) = { c i ( -3x - 3i/ + 3) + (2x + у - 1) + с4(ж + 2y- 1), (ж, у) e Г2, 

3cix + C4,(-x + y), (x,y)eT3. 

(12.4.10) 
It is easily seen that u(x, y) has the correct values at the vertex points. 

The foregoing expression for u(x, y) is inserted into (12.4.5), appropriately mod-
ified for the present problem. This yields the following two equations for c\ and C4: 

JG W дх дх дх ) дх \ ду ду ду ) ду \ 

+ ху («з + CiDi + C4U4) Vj dA+ (v3 + c\V\ + C4V4) Vj ds 
JG Js3 

= / xy(x + y)vjdA+ / V2vjds+ (y - 1)VJ ds, j = 1,4. (12.4.11) 
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Each integral over G is the sum of three double integrals over the triangles T\, T2, T3, 
in each of which the appropriate linear element of the v, must be used. The line 
integrals also require that the correct linear element of the Vi be used. It is possible, 
for this problem, to carry out all integrations exactly without introducing any further 
simplifications. Nevertheless, we apply the centroid approximation to the functions 
xy and xy(x + y), and the midpoint approximation to у — 1. The centroid values of 
xy and xy(x + y) for the triangles T b T2, T3 are [0.04938, 0.1975, 0.04938] and 
[0.02743, 0.1756, 0.02743], respectively. The midpoint value of y-1 on S3 is -0 .5 . 
These values must be inserted in the appropriate integrals in ( 12.4.11 ). Although there 
are only three triangles to integrate over, it is tedious to carry out all the integrations. 

As an example, we select the triangle T l and carry out the integrations for j = 1. 
From (12.4.9) we see that the plane element of v\ (ж, у) in TI is 3y. As a result, the 
corresponding elements of the first derivatives are dvi/дх = 0 and dv\/dy — 3. 
In the first integral in (12.4.11) over Г1, these terms are multiplied by the x- and y-
derivatives of the part of u(x, y) in T l , as given in (12.4.10). The ж-and y-derivatives 
equal 1 and 3ci — 1, respectively. The integrand for the integral over T l is 9ci - 3, 
so the integral evaluates to (9ci - 3)/6, since the area of the triangle is 1/6. On 
evaluating the other two double integrals over T l , xy and xy{x + y) must be replaced 
by their centroid values over T l . The line integral over S3 vanishes when j — 1. 
This follows since S3 is in the triangle T3 and (12.4.8) shows that the plane element 
of vi in that triangle equals 3x. But S3 lies on x = 0, so that the plane element on 
£3 is zero. 

The process of determining the equations for the Cj is extremely tedious and 
lengthy even for small-scale triangulation. We do not carry out any additional in-
tegrations but solve the problem using NumEllipticFEMCM. In the general case 
that corresponds to the mixed boundary value problem ( 12.4. l)-( 12.4.2), we have 
NumEllipticFEMCM (TriadList, VertexList,p, q, [ß, 7],F, [x, y], f, DBV, g, 
NBV,h,a,TKBV). The first two arguments represent the triad list for the tri-
angulation of G and the list of interior and boundary vertices, respectively. The 
arguments DBV, NBV, TKBV, are lists of boundary vertex points that determine 
the boundary line segments on which Dirichlet, Neumann, and Robin boundary con-
ditions, respectively, are given. The other arguments are related in an obvious manner 
to the terms given in ( 12.4.1 )—( 12.4.2). If one of the boundary conditions is absent, 
the corresponding argument is NONE and an empty list of points [ ] is entered. If 
there is no Robin boundary condition, NONE is entered twice. 

Example 12.17. A Mixed Problem for an Elliptic PDE. We use NumElliptic 
FEMCM{VList,VVList,l,xy,[0,0},xy{x + y),[x,y),x + y,BVList[l..2], 
v/2, BVList[2..3],y-l, 1, [BVList[3], BVList[l]]) to solve the problem of Exam-
ple 12.16. Here VList, VVList, and BVList represent the triad list, the vertex list, 
and the boundary vertex list for the triangulation that was constructed above. There 
are three boundary vertices, and BVList[1..2] lists the first two of these vertices 
while BVList[1] selects the first boundary vertex. The other arguments are given as 
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in the general case. The output is 

[[1/3,1/3,0.6328], [0,0,0], [1,0,1], [0,1,0.8990]]. (12.4.12) 

The first two arguments in each term of the four terms in the list are the coordinates 
of the four vertex points, and the third argument is the value of the solution at these 
points. Since (0,0) and (1,0) are Dirichlet vertex points, the solution values 0 and 
1 are exact at those points. The other two solution values are c\ = 0.6328 and 
c4 = 0.8990, and they correspond to the vertices (1/3,1/3) and (0,1). Since the 
exact solution is u(x, y) = x + y, the results are not so good. Improved results can 
be achieved if the triangulation is refined or if the integrations are carried out exactly 
rather than by using centroid or midpoint approximations. Such approximations lead 
to a poor result if there are large triangles in the triangulation, as is the case here. 

The global variable FEECM yields the piecewise linear representation of the 
finite element solution, 

{
x + 0.8985y, {x,y)eTl, 

1.001Z + 0.89952/ -0.00053, (x,y)eT2, (12.4.13) 
0.9995ж + 0.8990y, {x, y) 6 Γ3. 

(If the results were exact, each element would be x + y.) We can use (12.4.13) to 
evaluate u(x, y) at points other than the vertices in the trangulation. This can also be 
done by using FEFValue(FEECM,VList, [хо,Уо]> [ж>2/])· If the point (zo,t/o) 
lies outside the triangulated region, the output declares this fact. Otherwise, и (xo, у о ) 
is displayed. 

To improve our results, we refine the triangulation of the region. With VList 
and BVList defined as above, we apply RefineTriang(VList, BVList, 2) and 
obtain a new triad list that we call VList2. The modified list of boundary vertices is 
BPListMod. Then Vertexlist(VList2, BPListMod) determines a list of vertices 
that we call VVList2. It finds that the refined triangulation contains 19 interior ver-
tices and 12 boundary vertices. NumEllipticF EMC M(V List2, VVList2, l,xy, 
[0,0],xy(x + y), [x,y],x + y,BPListMod[l..S\,y/2,BPListMod[5..9\,у-1,1, 
[op(BPListMod[9.. 12] ), BPListMod[l]] ) obtains the corresponding finite element 
solution. 

We do not display the full output of the procedure, but only compare results with 
those given at the two non-Dirichlet vertex points in (12.4.12). The new values are 
[1/3,1/3,0.6655] and [0,1,0.9883], a considerable improvement on the values given 
in (12.4.12). The exact solution values are 2/3 and 1. 

The global variable VSolECM reproduces the list of points determined by Num 
EllipticFEMCM. PI = plot3d(x + y,y = 0..1 - x,x = 0..1) and P2 = 
SolutionPlot{VList2, VSolECM), together with display({Pl, P2}), yield plots 
of the exact and finite element solutions shown in Figure 12.10. 
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Figure 12.10 Plots of the exact and finite element solutions. 

Exercises 12.4 

12.4.1. Derive the Galerkin relation (12.4.3). 
12.4.2. Verify that u(x, y) = x + у is the exact solution of (12.4.7)-(12.4.8). 
12.4.3. Carry out all the steps in Example 12.16. 
12.4.4. Use the procedure NumEllipticFEMCM to obtain the finite element so-
lution (12.4.13) in Example 12.17. 
12.4.5. Obtain the finite element solution of the boundary value problem of Example 
12.17 using NumEllipticFEMCM if a double refinement of the initial triangula-
tion is introduced. Use SolutionPlot to plot the solution. 
12.4.6. Noting that u(x,y) = a; + у is an exact solution of (12.4.7), set up a Dirichlet 
problem in the triangular region G defined following (12.4.7) which has u(x, y) = 
x + у as its exact solution. Proceed as in Exercises 12.4.3 and 12.4.4 to obtain the 
finite element solution of the Dirichlet problem. 
12.4.7. Repeat Exercise 12.4.5 but replace the Dirichlet conditions by Robin bound-
ary conditions with the parameter h = 1. (That is, set up the correct boundary 
conditions and solve the problem using the finite element method.) 
12.4.8. The function и ( x, y) = cos(xy) is a solution of the elliptic PDE —(exux (x, y)) 
x-(e

xUy(x,y))y+sinh(x-y)ux(x,y)+Uy(x,y)/{l+x4) + (l+x2+y2)u(x,y) = 
exysin(xy) + exy2cos(xy)+exx2 cos(xy) — ysmh(x — y)sin(xy) — xsm(xy)/(l + 
x4) + (1 + x2 + y2) cos(xy). Consider the square defined in Exercise 12.2.3 and pre-
scribe u(x, y) = cos(xy) as the Dirichlet condition for the PDE on the square. Use 
the triangulation of Exercise 12.2.3(d) and NumEllipticFEMCM to obtain a finite 
element solution of the problem. Plot the exact and finite element solutions using 
plot3d and SolutionPlot. 

12.4.9. Solve the problem ( 11.4.14)-( 11.4.15) by the finite element method. Use the 
triangulation of Exercise 12.2.3(a) and introduce a single refinement viaRefineTriang. 
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Then invoke NumEllipticFEMCM and compare the finite element solution values 
at the points that correspond to those given in Example 11.10. Plot the finite element 
solution using SolutionPlot. 

12.4.10. The function u(x, y) = x + у + с, where с is an arbitrary constant, is 
an exact solution of Laplace's equation. Consider the unit square with vertices 
[0,0], [1,0], [1,1], [0,1] and set up a Neumann problem for Laplace's equation 
in the unit square that has the foregoing function as its nonunique solution. Solve 
this problem by the finite element method. Use PolygonTriang to triangulate the 
square using the four vertices of the square as the boundary points. (There will be only 
one interior point.) Then invoke NumEllipticFEMCM to determine a nonunique 
finite element solution. 

12.5 THE FINITE ELEMENT METHOD FOR PARABOLIC EQUATIONS 
IN TWO DIMENSIONS 

Galerkin Integrals for Parabolic Equations 

We consider the parabolic PDE in the two-dimensional spatial region G, 

put - {pux)x - {puy)y +qu + ßux + juy = pF, (12.5.1) 

where u, F are functions of (x, y, t), p, p, q, ß, 7 are functions of (x, y), with (x, y) 6 
G and t > t0. It is assumed that p(x, y) > 0 and p(x, y) > 0 in G. If ß(x, у) = 0, 
η{χ, у) — 0, р(х, у) = с2, р(х, у) = 1, and q(x, у) = 0, (12.5.1) is the nonhomoge-
neous heat or diffusion equation. An initial condition 

u{x,y,t0)=r(x,y), (x,y)£G, (12.5.2) 

is prescribed at t = to- Dirichlet, Neumann, or Robin boundary conditions, or 
mixed boundary conditions that combine the three types of boundary conditions, are 
prescribed for u(x, y, t) on the boundary Sof the region G for all t > to- As in Section 
4.1, the boundary for each t > tois comprised of the union of the arcs Si, S2, and 
S3, with Dirichlet conditions given on Si, Neumann conditions on S2, and Robin 
conditions on S3. Either Si, S2 or S3 or combinations of two of them may be empty. 
The boundary values are 

"(z.y.*)|5l = / , un(x,y,t)\S2=g, un{x,y,t) + a{x,y)u(x,y,t)\S3=h, 
(12.5.3) 

where / , g, h are functions of (x, y, t). 
To determine the Galerkin integral relation for the problem, we multiply across 

in (12.5.1) by an arbitrary admissible function v(x,y), apply Green's theorem in 
the plane as was done above for the elliptic PDE, and use the (mixed) boundary 
conditions given above. It is again required that all admissible v(x,y) satisfy the 
condition v(x,y)\s = 0, if Si is nonempty, but their values are unrestricted on S2 
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and S3. As a result, the line integral over 5Ί that arises in Green's theorem must 
vanish. This yields the following Galerkin relation for the mixed problem for the 
parabolic equation (12.5.1): 

/ pvut + p(uxvx + UyVy) + quv + v(ßux + ~fuy) dA + 
JG JS3 

pauv ds 

/ vpFdA+ i 
JG JS Js3 

pvg ds + I pvh ds (12.5.4) 

Now, if u(x, y, t) is a solution of the initial and boundary value problem ( 12.5.1 ) -
(12.5.3), the Galerkin relation (12.5.4) is satisfied for all admissible v(x, y). We 
reverse the process and use the fact that if the Galerkin relation is satisfied for all 
admissible v(x, y), the original initial and boundary value problem is satisfied by 
u(x, y, t), in view of the arbitrariness of v(x, y). Again, the Galerkin relation can be 
satisfied even if u(x, y, t) and v(x, y) have only piecewise continuous first deriva-
tives in x and y. Thereby the concept of a solution to a given initial and boundary 
value problem is extended and weakened. However, rather than constructing a weak 
solution and showing that it satisfies the Galerkin relation, we use this approach 
to construct an approximate weak solution for the given initial and boundary value 
problem using the Galerkin method. 

The Galerkin method determines an approximate solution to the foregoing initial 
and boundary value problem as follows. We select a set of m linearly independent 
admissible basis functions^ (x, y), j = 1 , . . . ,m. Eachvj(x,y) must vanish on the 
portion Si of the boundary of G but is otherwise arbitrary. In addition, we choose 
a function w(x, y, t) that is required to satisfy the boundary condition on Si for the 
given problem [i.e., w(x,y,t) = f(x,y,t) on Si] but is otherwise arbitrary. We 
represent the (approximate) solution as 

u{x, y, t) = w{x, y,t) + ^2 a(t)vi{x, y), (12.5.5) 

with arbitrary coefficients c,(i) that are to be determined. The expansion is in-
serted into the Galerkin relation (12.5.4), where we consecutively set v(x,y) = 
Vj(x,y), j = 1 , . . . , m. This yields the following system of m simultaneous first 
order ODEs for the m functions Cj(i): 

L wt + J2> Vj+P ™χ+Σ0ί 

ί = 1 

dvj 

dx dx + 
чг^ avi 

i=\ 

dvj_ 
dy 

dA 

L + Я 
IG 

+ Σ °ivi 

8 = 1 

Vj+ß 
a m a 
OW s—^ OVi 
dx ^ l dx 

Vj+Ί 
9W . -ST* OVi\ JA 

Js* + pa 
>s3 

w +Σ °iVi 

i = l 

Vj ds = I FpVjdA+ I pvjgds+ I pvjhds, 
J G J S2 ^ Ss 

(12.5.6) 
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for j = 1 , . . . , m. On solving these equations subject to appropriate initial condi-
tions and substituting the result in the expansion (12.5.5) for u(x,y,t), we obtain 
an approximate solution to the boundary value problem. This represents Galerkin's 
method for solving the foregoing initial and boundary value problem approximately. 

Finite Element Method for Parabolic Equations 

The finite element method for the (approximate) solution of (12.5.1)—(12.5.3) uses 
the Galerkin method with the Vj (x, y) chosen to be the finite element basis functions 
associated with a specific triangulation of the region G constructed as before. As a 
result, both the solution and the region undergo an approximation. We again distin-
guish between interior and boundary vertices in the triangulation and between points 
on the boundary at which a Dirichlet boundary condition is assigned and points that 
determine boundary segments where Neumann or Robin boundary conditions are 
given. Each vertex gives rise to a piecewise planar basis function. The approxi-
mate solution u{x, y, t) of the given initial and boundary value problem is given as 
a linear combination of the basis functions. Each basis function that corresponds to 
a Dirichlet boundary point is multiplied by f(x, y, t) evaluated at that point. Each 
basis function that corresponds to an interior point, or a Neumann or Robin boundary 
point, is multiplied by an arbitrary function of t. 

Suppose that there are n vertices in the triangulation given as (xt, yt ), г = 1 , . . . , η 
of which n — m (with г = т + 1 , . . . , ri) are Dirichlet boundary point vertices. Then 
we express the approximate solution as 

n m 

u(x,y,t)= Σ f(xi,yi,t)vi(x,y) + ^2ci{t)vi(x,y). (12.5.7) 
z = m + l г=1 

Since Vi(хг,Уг) = 1 and Vi(x, y) = 0 at all other vertices, we find that и(XJ, yj, t) = 
f(xj,yj,t) if (xj,yj) is a Dirichlet vertex and u(xj,yj,t) = Cj(t) if (xj,yj) is 
any other vertex. At the initial time t = to, we have u(x, y, to) = r(x, y), so that 
u(xj,yj,to) = Cj(to) = r(xj,yj), if (xj,yj) is not a Dirichlet vertex. This de-
termines a set of (initial) values Cj(io) = r(xi,yi). In the system (12.5.6), we set 
w(x,y,t) - Y^=m+1 f(xi,yi,t)vi(x,y) and the region G is replaced by the tri-
angulated region G, while S2 and S3 represent the line segments on the polygonal 
boundary on which Neumann and Robin boundary conditions are prescribed. The 
Vi(x, y) are piecewise-defined functions composed of plane elements that are contin-
uous and piecewise continuously differentiable over G. The double integrals over G 
are given as a sum of integrals over the triangles that comprise the triangulation, and 
the line integrals over S2 and S3 are line integrals over appropriate line segments of 
the polygonal boundary of G. 

The first integral in (12.5.6), JG p (dw/dt + Y™=i Vidci/dt) Vj dA, can be ex-
pressed as d/dt JG p (w + 53£Li VÌCÌ)VJ dA. Each basis function Vi(x,y) is a linear 
function of a; and у in each of the triangles, so that the x and у derivatives of w(x, y, t) 
and the Vi(x, y) are independent of x and у in each triangle. Exact integrations in 
(12.5.6) of terms that involve the products of the Vi(x, y) and their first derivatives with 
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p{x, y),q{x, y),ß{x, у), η{χ, у), a(x, y),g(x, y, t), h(x, y, t), and F(x, y, t) may be 
difficult to carry out. However, if these functions are replaced by their centroid approx-
imations in the double integrals over triangles and by their midpoint approximations 
in the line integrals over the boundary, the resulting integrals contain polynomial in-
tegrands and can all be evaluated exactly. Again, the integration formulas (12.3.10) 
and (12.3.14) can be invoked for their evaluation. Even though some of the integrands 
may depend on t, all integrations involve only the x and у variables, so that all the 
results presented above can be used here. 

Thus, to solve an initial and boundary value problem for the parabolic equation 
(12.5.1) using the finite element method, we must first triangulate the region, deter-
mine the basis functions, evaluate the relevant double and line integrals and solve the 
resulting initial value problem for the system of ODEs for the Ci(t) that determine 
the approximate solution. As for the elliptic PDE considered above, the process that 
leads to the system of ODEs is rather lengthy in general. An additional difficulty that 
occurs here is that a system of linear ODEs must be solved rather than a system of 
linear equations. 

For initial and boundary value problems for parabolic PDEs of the form (12.5.1), 
we have created a procedure NumParabolicFEMCM that obtains an approximate 
solution of the problem via the finite element method. The list of triads and vertices 
for the triangulation of the approximating polygonal region G must be entered in the 
procedure, together with arguments that prescribe the coefficients, inhomogeneous 
term, and data for initial conditions and for boundary conditions of the first, second, 
or third kind. The procedure determines centroid and midpoint values as required. 
The system (12.5.6) is set up, the double and line integrals are evaluated, and the 
resulting initial value problem for the linear system of ODEs is solved numerically 
for the unknown Ci(t) in (12.5.7). As stated above, the c,(i) represent the values of 
the approximate finite element solution at the corresponding vertex points {xi,yi) in 
the triangulation, at the time t. Combined with prescribed Dirichlet boundary point 
values, we obtain (approximate) solution values at all vertex points and for a range 
of values of t. In fact, the output of NumParabolicFEMCM is a procedure that 
permits the evaluation of the Ci (t) over a range of values of t > io as determined by 
the numerical method used by Maple to solve the system. The finite element approach 
corresponds to the construction of finite difference solutions for time-dependent prob-
lems at a prescribed set of grid points using the method of lines. In the finite element 
method, the approximate solution ( 12.5.7) yields a piecewise planar approximation to 
the exact solution surface at each time t. Additionally, solution values in G at points 
that are not vertices can easily be found from (12.5.7). 

In the general case, for the initial and boundary value problem (12.5.1 )—( 12.5.3), 
the procedure is NumParabolicFEMCM {TriadList, VertexList, p, p, q, [ß,7], 
F, [x,y],t = t0,r,f, DBV,g, NBV, h, a,TKBV). The first two arguments repre-
sent the triad list for the triangulation of the polygonal region G and the list of interior 
and boundary vertices. The arguments t = to and r prescribe the initial time and ini-
tial value. The arguments DBV, NBV, TKBV are lists of boundary vertex points 
that determine the boundary line segments on which Dirichlet, Neumann, and Robin 
boundary conditions, respectively, are prescribed. The other arguments are related 
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in an obvious manner to the terms given in (12.5.1)—(12.5.3). If one of the boundary 
conditions is absent, the related argument in the procedure is NONE, and an empty 
list [ ] is entered. If there is no Robin boundary condition, NONE is entered twice. 

Example 12.18. An Initial and Boundary Value Problem for a Parabolic 
PDE. We consider an initial and boundary value for the parabolic PDE 

ut - (1 + x){uxx + Uyy) - ux + —^- = 3(1 + xfyt2 (12.5.8) 

in the unit square 0 < a; < 1, 0 < у < 1, with и and its derivatives as functions of 
(x, y, t). An exact solution of (12.5.8) is u(x, y, i) = (1 + x)2yt3. We formulate an 
initial and Dirichlet boundary value problem for (12.5.8) based on this solution. At 
t = 0 we set u(x, y, 0) = 0. On the four sides of the square we have u(0, y, t) = 
yt3, u(l, y,t) = 4yt3, u{x, 0,t) = 0, u(x, 1, t) = (1 + x)2t3. 

First, we triangulate the square by using a boundary vertex list that comprises the 
four corners of the square and then invoking the procedure PolygonTriang. This 
yields the four triangles determined by connecting the centroid (1/2,1/2) with the 
four corners of the square. Next, the triangulation is refined using the procedure 
RefineTriang with one iteration. This results in a triangulation of the square with 
16 triangles. There are five interior vertices and eight boundary vertices given as the 
vertex list, which we denote as VL, [ [1/4,1/4], [3/4,1/4], [1/2, 1/2], [3/4,3/4], [1/4, 
3/4], [0,0], [1/2,0],[1,0], [1, 1/2], [1, 1], [1/2, 1], [0, 1], [0, 1/2] ]. 

NumParabolicFEMCM(TL, VL, 1,1+x, 4/(1+ж), [0,0], 3{l+x)2yt2, [x, y],t = 
0,0, (1 + x)2yt3, BVL, NONE, [ j , NONE, NONE, [ ]) is then applied to deter-
mine the finite element solution of the problem. The first two arguments are the list of 
triads TL given by RefineTriang and the vertex list VL given above. The argument 
BVL is a list composed of the last eight elements of VL. They represent the bound-
ary points in the refined triangulation. The output is [|, \, c\ (t)] , [|, \, ci (i)] , 
[hi c 3 ( i ) ] , [ f , | , C 4 ( i ) ] , [ i , f , c 5 ( i ) ] , [0,0,0], [1,0,0], [1,0,0], [ Ι , | , 2 ί 3 ] , 
[1,1,4ί3], [ | , l , f i 3 ] , [Ο,ΐ, ί3], [0, \,\t3} .The first five terms in the list repre-
sent the solution values at the five interior vertices, with the values of u(x, y, t) at those 
points given by the Cj(i), г = 1..5. They are left unspecified because each of them 
represents a Maple procedure and can be evaluated at a specified time t by using the 
global variable SParFECM(t). To determine the values at t = 1, for example, we 
enter SParFECM{\) and obtain [t = l ,ci(i) = 0.3918, c2(t) = 0.7667, c3(i) = 
1.135, c4(t) = 2.297, c5(t) = 1.174]. The exact solution values of u{x,y, 1) at the 
corresponding points are given as [0.3906,0.7656,1.125,2.297,1.172], so there is 
fairly good agreement. The global variable FESolParCM gives the piecewise 
planar finite element representation of the solution as a function of t. We do not 
exhibit it. 

VSolParTCM(l) yields the output of NumParabolicFEMCMbut with each third 
argument in the list evaluated at the time t = 1, using the values of SParFECM{\) 
for Ci(t). Then the procedures P I = plofÒd({\ + x)2y,x = 0..1,y = 0..1), 
P2 = SolutionPlot{VListl,VSolParTCM{l)) andplots[display]({Pl,P2}) 
generate the plots of the exact and finite element solutions at t = 1, as shown in 
Figure 12.11. These solution surfaces can also be animated. 
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Figure 12.11 Plots of the exact and finite element solutions at t = 1. 

Exercises 12.5 

12.5.1. Derive the Galerkin relation (12.5.4). 

12.5.2. Verify that u(x, y,t) = (1 + x)2yt3 is the exact solution of the initial and 
Dirichlet problem formulated for (12.5.8) in Example 12.18. 

12.5.3. Carry out all the steps in Example 12.18 

12.5.4. Use the finite element method to solve the initial and boundary value problem 
foTtheheatequauonut{x,y,t)-uxx(x,y,t)-uyy(x,y,t) = -(х+у)е~*, u(x,y, 0) 
= x + y,u(0,y,t) = y e - t , u(l,y,t) = ( l+? / )e _ t , u(x,0,i) =xe~l, u(x,l,t) = 
(1 + x)e~l. Use PolygonTriang to triangulate the unit square using only the bound-
ary vertices [0,0], [1,0], [1,1], [0,1]. (As a result, there is only one interior ver-
tex.) Apply NumParabolicF EM CM to determine the solution at the interior 
point as a function of t. Evaluate the solution at various values of t at the interior 
vertex point and compare with the values of the exact solution, which is given as 
u(x,y,t) = (х + у)е~К 

12.5.5. Reconsider the problem of Exercise 12.5.4 but with the Dirichlet conditions 
replaced by Neumann conditions. Choose these conditions so that u(x, y, t) = (x + 
y)e~l remains the exact solution of the problem. Triangulate the unit square as 
in Exercise 12.5.4 and obtain the finite element solution at all five vertices in the 
triangulation, for various values of t. Compare with the values of the exact solution. 

12.5.6. Reexamine the problem of Exercise 12.5.4 but with the Dirichlet conditions 
replaced by Robin conditions with the parameter h = 1. Choose these conditions so 
that u(x, y, t) = (x + y)e~l remains the exact solution of the problem. Triangulate 
the unit square as in Exercise 12.5.4 and obtain the finite element solution at all five 
vertices in the triangulation, for various values of t. Compare with the values of the 
exact solution. 
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12.6 FINITE ELEMENT SOLUTIONS FOR HYPERBOLIC EQUATIONS 
IN TWO DIMENSIONS 

Galerkin Integrals for Hyperbolic Equations 

We consider the hyperbolic PDE in the two-dimensional spatial region G 

putt - (pux)x - (puy)y + qu + ßux + juy = pF, (12.6.1) 

where u,F are functions of (x,y,t) and p,p,q,ß,^/ are functions of (x,y), with 
(x, y) G G and t > to. It is assumed that p(x, y) > 0 and p(x, y) > 0 in G. If 
ß{x,y) = 0,f(x,y) = 0,p(x,y) = c2,p(x,y) = 1, and q(x,y) = 0, (12.6.1) is the 
nonhomogeneous wave equation. The initial conditions 

u(x,y,t0)=r1(x,y), ut(x,y,t0) = r2(x,y), (x,y)eG, (12.6.2) 

are prescribed at t = io. Dirichlet, Neumann, Robin, or mixed boundary conditions 
that combine the three types of boundary conditions, are prescribed for u(x, y, t) on 
the boundary S of the region G for all t > to- As in Section 4.1, the boundary, for 
each t > to, is comprised of the union of the arcs S\, S2, and S3, with Dirichlet 
conditions given on Si, Neumann conditions on S2, and Robin boundary conditions 
on S3. Either Si, S2, or S3 or combinations of two of them may be empty. The 
boundary values are given as 

u(x,y,t)\Si = / , un(x,y,t)\S3 = g, un(x,y,t) + a(x,y)u{x,y,t)\S3 = h, 
(12.6.3) 

where / , g, h are functions of (x, y, t). 
To determine the Galerkin integral relation for the problem, we multiply across 

in (12.6.1) by an arbitrary admissible function v(x, y), apply Green's theorem in the 
plane, and use the (mixed) boundary conditions given above. It is again required that 
all admissible v(x, y) satisfy the condition v(x,y)\s = 0, if Si nonempty, but their 
values are unrestricted on S2 and S3. As a result, the line integral over Si that arises 
in the divergence theorem must vanish. This yields the following Galerkin relation 
for the mixed problem for the hyperbolic equation (12.6.1): 

/ pvutt +p{uxvx + UyVy) + quv + v(ßux +~fuy) dA + I pauv ds 
JG JS3 

= / vpFdA+ / pvgds+ / pvhds. (12.6.4) 
J G J S2 J S3 

Now, if u{x, y, t) is a solution of the given initial and boundary value problem 
(12.6.l)-( 12.6.3), the Galerkin relation ( 12.6.4) is satisfied forali admissible v(x, y). 
We again reverse the process and use the fact that if the Galerkin relation is satisfied for 
all admissible v(x, y), the original initial and boundary value problem is satisfied by 
u(x,y,t), in view of the arbitrariness of v(x, y). The Galerkin relation can be satisfied 
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even if u(x, y, t) and v(x, y) have only piecewise continuous first derivatives in x and 
y. Thereby the concept of a solution to a given initial and boundary value problem 
is extended and weakened. As before, rather than constructing a weak solution and 
showing that it satisfies the Galerkin relation, we use this approach to construct 
approximate weak solution for the given initial and boundary value problem using 
the Galerkin method. 

The Galerkin method for the initial and boundary value problem ( 12.6.1 )-( 12.6.3) 
proceeds as for the initial and boundary value problem of Section 12.5. We do not 
repeat all the details but note that, as before, the (approximate) solution takes the form 

U{X, У, t) = w{x, y,t) + ^2 Ci(t)Vi(x, y), (12.6.5) 

with arbitrary coefficients c,(i) that are to be determined. This expansion is in-
serted into the Galerkin relation (12.6.4), where we consecutively set v(x,y) = 
Vj(x, y), j = 1 , . . . , m. This yields the following system of m simultaneous second 
order ODEs for the m functions Cj(i): 

+ qìw + Σ av-

Vj+p 

Vi+ß 

w- +Σ< 1 дх дх + w, ■+Σ> 
i = l 

dvj 

dy 
9VJ 

dy 
dA 

aw s^ avi 
F)T L—< г)т 

i=\ 

νό+η 
Q m ti 

aw γ ^ avi 
Fill L—i f)-)i 

i= l 
dy dy 

Vj dA 

/ Pa 
Js3 

w 

TTL я p n 

+ 2_\CiVi v3 ds = I Fpvj dA + / pvjg ds + I pvjh ds, 

(12.6.6) 
for j = 1 , . . . , m. On solving these equations subject to appropriate initial condi-
tions and substituting the result in the expansion (12.6.5) for u(x,y,t), we obtain 
an approximate solution to the boundary value problem. This represents Galerkin's 
method for solving the foregoing initial and boundary value problem approximately. 

Finite Element Method for Hyperbolic Equations 

The finite element method for the (approximate) solution of ( 12.6. l)-( 12.6.3) uses 
the Galerkin method with the Vj (x, y) chosen to be the finite element basis functions 
associated with a specific triangulation of the region G constructed as before. The 
discussion parallels that given above for parabolic equations and will not be repeated, 
except for the introduction of some modifications. The approximate solution is given 
as 

n m 
u(x,y,t)= Σ /(a;i)№,i)wi(a;,2/) + X]ci(i)wi(a;

12/)· (12.6.7) 
i=m+\ i = l 

At the initial time t = to, wehaveu(x, j / , i0) = r\(x,y) anàut{x,y,to) = Г2(х,у), 
soüiatu(xj,yj,t0) = Cj{t0) = ri(xj,yj) andut{xj,yj,t0) = Cj{t0) = r2(xj,yj) 
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if (XJ , yj ) is not a Dirichlet vertex. This determines the set of initial values Cj (i0) and 
ci (io). In the system (12.6.6), we set w(x, y, t) = Σ"=™+ι /(x*> 2/ΐ> t)vi(x, у), and 
the region G is replaced by the triangulated region G, while S2 and S3 represent the 
line segments on the polygonal boundary on which Neumann and Robin boundary 
conditions are prescribed. 

The first integral in (12.6.6), JGp(d2w/dt2 + £™ x ViC1') Vj dA, can be ex-
pressed as d2/dt2 fGp(w + Σ ϋ ι VÌCÌ) VJ dA. Each basis function Vi{x, y) is a 
linear function of x and у in each of the triangles, so that the x and у derivatives 
of w(x, y, t) and the Vi(x, y) are independent of x and у in each triangle. Exact 
integrations in (12.6.6) of terms that involve the products of the Vi(x, y) and their 
first derivatives with p(x,y),q{x,y),ß(x,y),l(x,у),а(х,у),д(х,у,t),h(x,y,t), 
and F(x, y, t) may be difficult to carry out. If these functions are again replaced 
by their centroid approximations in the double integrals over triangles and by their 
midpoint approximations in the line integrals over the boundary, the resulting inte-
grals contain polynomial integrands and can all be evaluated exactly. The integration 
formulas (12.3.10) and (12.3.14) can be invoked for their evaluation. Even though 
some of the integrands may depend on t, all integrations involve only the x and у 
variables, so that all the results presented above can be used here. 

Thus, to solve an initial and boundary value problem for the hyperbolic equation 
(12.6.1) using the finite element method, we must first triangulate the region, deter-
mine the basis functions, evaluate the relevant double and line integral and solve the 
resulting initial value problem for the system of ODEs for the Cj(i) that determine 
the approximate solution. Everything proceeds as for the parabolic PDE considered 
above, except that the system of linear ODEs is of second order rather than first order. 

For an initial and boundary value problem for a hyperbolic PDE of the form 
(12.6.1), we have created a procedure NumHyperbolicFEMCM that obtains an 
approximate solution of the problem via the finite element method. The list of triads 
and vertices for the triangulation of the approximating polygonal region G must 
be entered in the procedure, together with arguments that prescribe the coefficients, 
inhomogeneous term, and data for initial conditions and for boundary conditions of the 
first, second, or third kind. The procedure determines centroid and midpoint values as 
required. The system ( 12.6.6) is set up, the double and line integrals are evaluated, and 
the resulting initial value problem for the linear system of ODEs is solved numerically 
for the unknown Cj(i) in (12.6.7). The a(t) represent the values of the approximate 
finite element solution at the corresponding vertex points (хг,Уг) in the triangulation, 
at the time t. Combined with prescribed Dirichlet boundary point values, we obtain 
(approximate) solution values at all vertex points and for a range of values of t. The 
output of NumHyperbolicFEMCM is a procedure that permits the evaluation of 
the Ci (t) over a range of values of t > to as determined by the numerical method used 
by Maple to solve the system. The foregoing finite element approach corresponds 
to the construction of finite difference solutions for time-dependent problems at a 
prescribed set of grid points using the method of lines. In the finite element method, 
the approximate solution (12.6.7) yields a piecewise planar approximation to the exact 
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solution surface at each time t. Additionally, solution values in G at points that are 
not vertices can easily be found from (12.6.7). 

In the general case that corresponds to problem ( 12.6. l)-( 12.6.3), we have Num 
HyperbolicFEMCM(TriadList,VertexList, p,p,q,[ß,j],F,[x,y],t = io. τ\, r2,f, 
DBV, g, NBV, h, a, TKBV). The meanings of the arguments in the procedure (and 
their modification for other boundary conditions) are the same as for the procedure 
NumParabolicFEMCM of Section 12.5, with the exception that two initial values 
r\ and Г2 must be entered. 

Example 12.19. An Initial and Boundary Value Problem fora Hyperbolic 
PDE. We consider an initial and boundary value problem for the hyperbolic PDE 

+ γ-^ = 6(1+ x)2yt (12.6.8) 

in the (right) triangle with vertices (0,0), ( 1,0), (0,1 ), with и and its derivatives given 
as functions of (x, y, t). The initial conditions are 

u(x,y,Q)=Q, щ(х,у,0) = 0. (12.6.9) 

Let the three sides of the triangle x + y = 1, у = 0, x = 0 be denoted by Si, S2, S3, 
respectively. The mixed boundary conditions are 

u |S i = (1 + x)2yt3, un\S2 = - ( 1 + x)2t3, un + и\8з = -yt3 (12.6.10) 

with и and its derivatives given as functions of (x, y, t). This problem has the exact 
solution u(x, y, t) = (1 + x)2ytz. 

We triangulate the triangle using a boundary vertex list [[0,0], [1,0], [0,1]] in the 
procedure PolygonTriang. This yields the three triangles determined by connecting 
thecentroid (1/3,1/3) with the three vertices of the triangle. Next, the triangulation is 
refined using the procedure RefineTriang with one iteration. This results in a modified 
triangulation with twelve triangles. There are four interior vertices and six bound-
ary vertices given as VL, [ ì , Ì] , [§, ì ] , [ ì , ±], [±, §],[0,0], [Ì.0], [1,0], Ц |] ,[0,1], 

Ml· 
NumHyperbolicFEMCM{TL, VL, 1,1+x, 4 / ( l+x) , [0,0], 6(l+a;) V , [x, y],t = 

0,0,0, (1 + x)2yt3, BVL[3..5], - ( 1 + x)2t3, BVL[1..3], -yt3,1, [op(BVX[5..6]), 
BVX[1]]) determines the finite element solution of the problem. The first two argu-
ments are the list of triads TL given by RefineTriang and the vertex list VL. The 
argument BVL is a list composed of the last six elements of VL, which represents 
the boundary points in the refined triangulation. The terms BVL[i..j] represent a 
list of boundary vertices extending from the ith to the jth vertex. The remaining 
arguments determine the coefficients, data and inhomogeneous terms of the PDE. 
The output of the procedure is [ | ,± ,c i ( i ) ] , [§,g,c2(i)] , [ | , | .сз(*)] , [|, f ,c4 

( i ) ] , [ 0 , 0 , c 5 ( i ) ] , [ è , 0 , c 6 ( i ) ] , [ l , 0 , 0 ] , [ i , ì , ^ ] , [ 0 , l , i 3 ] , [ 0 , ì , c 1 0 ( i ) ] . The 
first four terms in the list represent the solution values at the four interior vertices. 
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The values of u(x, y, t) at those points are given by the Ci(t), г = 1..4. The terms 
Cb(t), ce(t), c\o(t) represent solution values at vertices on the boundaries where 
Neumann and Robin boundary values are assigned. They are left unspecified because 
each of them represents a Maple procedure and can be evaluated at a specified time 
t by using the global variable SHypFECM(t). 

To determine the values at t = 0.5, we enter SHypFECM(OJ) and obtain 

[t = 0.5,ci(i) = 0.02856, c2(t) = 0.05569, c3(i) = 0.06630, c4(i) = 0.1164, 

c5(t) = -0.003699, c6(t) = 0.01650, cw(t) = 0.06496]. (12.6.11) 

The derivatives C; (0.5) are also approximated and displayed by the procedure, but we 
omit these values. The exact solution values of u(x, y, 0.5) at the corresponding points 
are given as [0.02836,0.05787,0.07407,0.1134,0,0,0.06250]. We observe that the 
results do not agree as nicely as in the parabolic problem of Example 12.18, where 
a larger value of t was used. The hyperbolic problem does not have the smoothing 
properties of the parabolic problem. The global variable FESolHypCM gives the 
piecewise planar finite element representation of the solution as a function of t. 

VSolHypTCM'(0.5) yields the output oiNumHyperbolicFEMCM but each third ar-
gument in the list evaluated at the time t = 0.5, using the values displayed in ( 12.6.11 ) 
forthecj(i). Finally, the procedures P I = plot3d((l+x)2y(.5)3,y = 0..l—x,x = 
0..1), PI = SolutionPlot(TL, VSolHypTCM(0.5)), and plots[display]({Pl, P2}) 
yield the plots of the exact and finite element solutions at t = 0.5. They are not dis-
played. The solution surfaces can also be animated. 

Exercises 12.6 

12.6.1. Derive the Galerkin relation (12.6.4). 

12.6.2. Reproduce the results of Example 12.19. 

12.6.3. Replace the heat equation of Exercise 12.5.4 by the nonhomogeneous wave 
equation utt{x, y, t) — uxx(x, y, t) - uyy(x, y, t) — (x + y)e~l, and add the initial 
condition ut{x, y, 0) = — x — y, while retaining the initial and boundary conditions 
given in that exercise. This problem again has the exact solution u(x, y, t) = (x + 
y)e~l. Proceed as in that exercise and obtain the finite element solution of foregoing 
problem by using the procedure NumHyperbolicFEMCM. 

12.6.4. Solve the problem of Exercise 12.5.5, replacing the heat equation by the wave 
equation of Exercise 12.6.3. 

12.6.5. Solve the problem of Exercise 12.5.6, replacing the heat equation by the wave 
equation of Exercise 12.6.3. 
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12.7 FINITE ELEMENT SOLUTIONS FOR PDE EIGENVALUE 
PROBLEMS IN TWO DIMENSIONS 

Galerkin Integrals for PDE Eigenvalue Problems 

We consider the eigenvalue problem for an elliptic PDE in the two-dimensional re-
gion ]G 

-{p{x, y)ux{x, y))x - (p(x, y)uy{x, y))y + q(x, y)u{x,y) = Xp(x, y)u(x, y), 
(12.7.1) 

with A as the eigenvalue parameter, and p(x, y) > 0 and p(x, y) > 0 in G. [The 
PDE has the formally self-adjoint form —V · (p(x, y)S7u(x, y)) + q(x, y)u(x, y) = 
Xp(x,y)u(x,y) and corresponds to the two-dimensional version of (8.1.1).] Homo-
geneous Dirichlet, Neumann, Robin, or mixed boundary conditions are prescribed 
for u(x, y) on the boundary S of the region G. As in Section 4.1, the boundary is 
comprised of the union of the arcs S\, 5г and S3, with Dirichlet conditions given 
on Si, Neumann conditions on S2, and Robin boundary conditions on S3. Either 
Si, S2, or S3 or combinations of two of them may be empty. The boundary values 
are given as 

u(x,y)\Si = 0 , un{x,y)\S2 = 0 , un(x,y) + а(х,у)и(х,у)\3з = 0. (12.7.2) 

To determine the Galerkin integral relation for the problem, we multiply across in 
( 12.7.1 ) by an arbitrary admissible function v(x, y) and apply Green's theorem in the 
plane and the (mixed) boundary conditions. It is required that all admissible v(x, y) 
satisfy the condition v(x, y) L = 0, if Si nonempty, but their values are unrestricted 
on S2 and S3. As a result, the line integral over Si that arises in the divergence 
theorem must vanish. This yields the following Galerkin relation for the eigenvalue 
problem (12.7.1H12.7.2): 

/ p{uxvx + UyVy) + quv dA+ pauv ds = A / pvu dA. (12.7.3) 
JG Js3 JG 

Each of the functions in the integrals depends on (x, y). 
Now, if A is an eigenvalue and u(x, y) is a (corresponding) eigenfunction for the 

eigenvalue problem ( 12.7.1 )-( 12.7.2), the Galerkin relation (12.7.3) is satisfied for all 
admissible v(x, y). We again reverse the process and use the fact that if the Galerkin 
relation is satisfied for all admissible v(x, y), then A is an eigenvalue and u(x, y) is 
an eigenfunction for the problem, owing to the arbitrariness of v(x, y). However, the 
Galerkin relation can be satisfied even if the eigenfunction u(x, y) is a weak solution 
that has only piecewise continuous first derivatives. We use this approach to construct 
approximate eigenvalues and (weak) eigenfunctions for the eigenvalue problem using 
the Galerkin method. 

The Galerkin method determines approximate eigenvalues and eigenfunctions 
as follows. We select a set of m linearly independent admissible basis functions 
Vj(x,y), j = 1 , . . . , m. As such, each Vj(x, y) must vanish on the portion Si of 
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the boundary of G but is otherwise arbitrary. Then we represent the (approximate) 
solution as u(x,y) = Y™^ CiVi{x,y), with arbitrary constant coefficients Q that 
are to be determined. This expansion is inserted into the Galerkin relation (12.7.3), 
where we consecutively set v(x, y) = Vj(x,y), j = 1 , . . . ,m. This yields the m 
linear simultaneous equations for the m constants Cj, 

m Г Г Г ~\ m Г 

2_\ ci I pV^i · Vuj + qViVj dA+ paViVj ds — λ VJ ĉ  / pviVj dA, 
i=l L^G JS3 J i = 1 JG 

(12.7.4) 
for j = 1 , . . . , m. The foregoing system corresponds to a generalized matrix eigen-
value problem of the form Ко. = XMc for the m x m matrices К and M whose 
elements Кц and M^ are given as 

Kij = / pVwj · VVJ + qv^j dA+ I paviVj ds, (12.7.5) 
JG JS3 

MÌJ = [ pviVj dA, (12.7.6) 
JG 

with λ as the eigenvalue and the column vector с = [c\, C2,. . . , cm]T as the eigen-
vector. [In engineering literature terminology, if q = a = 0 in (12.7.4), К is referred 
to as the stiffness matrix. Additionally, if p is a density, M is the mass matrix.] The 
matrices К and M are symmetric and M is positive definite. They correspond to the 
matrices A and В defined in (8.2.3)-(8.2.4). These matrix eigenvalue problems were 
discussed in Section 8.2. 

Each eigenvalue Л of Kc = XMc yields an approximate eigenvalue for the PDE 
eigenvalue problem ( 12.7. l)-( 12.7.2). On substituting the components Cj of the cor-
responding algebraic eigenvector into u(x, y) = Σ£1ι civi(xi 2/)» w e obtain an ap-
proximate eigenfimction. This represents Galerkin's method for solving the PDE 
eigenvalue problem approximately. It yields m approximate eigenvalues (counted 
with their multiplicities) and m approximate eigenfunctions. By increasing the num-
ber of basis functions, additional approximate eigenvalues and eigenfunctions can be 
found. 

Finite Element Method for the PDE Eigenvalue Problem 

The finite element method for the (approximate) solution of the eigenvalue problem 
(12.7.l)-( 12.7.2) uses the Galerkin method with the Vj(x, y) chosen to be the finite 
element basis functions associated with a specific triangulation of the region G. (As 
a result, not only the solution but also the region undergo an approximation, in gen-
eral.) The process of setting up the matrix eigenvalue problem parallels that for the 
construction of the finite element solution of an elliptic PDE as presented in Section 
12.4. The approximate eigenfunction u(x, y) is represented as a linear combination 
of the basis functions for the triangulation. Since the eigenfunction must vanish at all 
Dirichlet boundary points, only basis functions that correspond to an interior point or 
a Neumann or Robin condition boundary point occur in the representation. 
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We suppose that there are n vertices in the triangulation of the region, given as 
(хг,Уг), г = 1 , . . . , n of which n — m (with г = τη+ί,... ,n) are Dirichlet boundary 
point vertices. Then we express the approximate eigenfunction as 

m 

u{x, y) = ^2 CiVi{x, y), (12.7.7) 
i= l 

with the constant coefficients Cj to be determined. Since Vi(xi,yi) = landvi(x,y) = 
0 at all other vertices, we find that u(xj,yj) = 0 if (xj, y}; ) is a Dirichlet vertex and 
U(XJ, yj) = Cj if (XJ , yj) is any other vertex. In the resulting system (12.7.4), the re-
gion G is replaced by the triangulated region G, while S3 represents the line segments 
on the polygonal boundary on which Robin boundary conditions are prescribed. The 
Vi(x,y) are piecewise-defined functions composed of plane elements that are con-
tinuous and piecewise continuously differentiable over G. The double integrals over 
G are given as a sum of integrals over the triangles that comprise the triangulation, 
and the line integral over S3 is a line integral over appropriate line segments of the 
polygonal boundary of G. 

Again, each basis function Vi(x, y) is a linear function of x and у in each of the 
triangles, so that the x and у derivatives of the u,(x, y) are constants in each triangle. 
Exact integrations in (12.7.5) of terms that involve the products of the Vi(x, y) and their 
first derivatives with p(x, y), q(x, у), р(х, у), and а(х, у) may be difficult to carry 
out. If these functions are replaced by their centroid approximations in the double 
integrals over triangles and by their midpoint approximations in the line integrals 
over the boundary, the resulting integrals contain polynomial integrands and can be 
evaluated exactly, using the integration formulas (12.3.10) and (12.3.14). 

Thus, to solve eigenvalue problem (12.7.1)—(12.7.2) using the finite element method, 
we must first triangulate the region, determine the basis functions, and evaluate the 
relevant double and line integrals. (The process of evaluating and combining the 
values of the integrals over the triangles and boundary segments of the triangulation 
is referred to as assembling in the engineering literature.) The resulting linear sys-
tem represents a matrix eigenvalue problem that yields approximate eigenvalues and 
eigenfunctions. This is a rather lengthy process in general. 

The procedure NumEigenvalFEMCM automates the triangulation of a region, 
determines the necessary basis functions, and carries out additional steps required to 
set up the system (12.7.5). Then built-in Maple procedures for the determination of 
algebraic eigenvalues and eigenvectors are used to complete the finite element solution 
of the PDE eigenvalue problem. The dimension of the matrices in the algebraic 
eigenvalue problem equals the number of non-Dirichlet vertices in the triangulation. 
Typically, large matrices can occur and it may be of interest to determine only the 
leading eigenvalues for the problem. There are approximate methods for doing so. 

For the eigenvalue problem with the mixed boundary conditions (12.7.2), the proce-
dure has the form NumEigenvalFEMCMiTriadList, VertexList,p,q, [x,y], 
λ, 0, DBV, 0, NBV, 0, a, TKBV). The first two arguments represent the triad list 
for the triangulation of the polygonal region G and the list of interior and boundary 
vertices. The arguments DBV, NBV, and TKBV, are lists of boundary vertex 
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points that determine the boundary line segments on which Dirichlet, Neumann, and 
Robin boundary conditions, respectively, are prescribed. The three arguments 0 in 
the procedure signify that only zero Dirichlet, Neumann, or Robin boundary condi-
tions can be specified. If one of the boundary conditions is absent, the corresponding 
argument in the procedure is NONE and an empty list of points [] is entered. If there 
is no Robin boundary condition, NONE is entered twice. The remaining arguments 
relate in an obvious way to the coefficients in (12.7.1). 

In the following example we apply the finite element method to determine the 
(approximate) leading eigenvalues and eigenfunctions for the eigenvalue problem for 
the Laplacian operator in the unit square with Neumann boundary conditions. A 
simple triangulation of the square is introduced, and various aspects of the solution 
method are brought out. Problems that involve other equations, boundary conditions, 
and triangulations can be treated similarly. 

Example 12.20. An Eigenvalue Problem in the Unit Square. We apply the 
finite element method to the eigenvalue problem for the PDE 

-uxx(x, y) - uVy(x, y) = Xu(x, y) (12.7.8) 

in the unit square 0 < ж < 1 , 0 < $ / < 1 with homogeneous Neumann conditions 
и„(ж, у) = О assigned on the boundary. The exact eigenvalues for this problem are 
Anm = 7Г2 (n2 + m2), n, m = 0 ,1 ,2 , . . . , and a corresponding set of (unnormalized) 
eigenfunctions is unm(x, y) = cos(nnx)cos(nmy), n,m = 0,1,2, As has 
been shown previously, A = 0 is an eigenvalue, with u(x, y) = 1 as a corresponding 
eigenfunction. The eigenfunctions cos^a;) and cos(ny) correspond to the double 
eigenvalue A = π2, and so on. 

We proceed as in Example 12.18 and triangulate the square using the boundary 
vertex list BSL =[0,0],[1,0],[1,1],[0,1] and PolygonTriang. This yields the four 
triangles obtained by connecting the centroid (1/2,1/2) with the four corners of the 
square. ThetriadlistiSy5L=[[0,0],[l,0],[.5,.5],[l,0],[l,l],[.5,.5],[l,l],[0,1], 
[.5, .5], [0,1], [0,0], [.5, .5]]. Vertexlist(VSL, BSL) determines the list of vertices 
WSL=[[0.5,0.5],[0,0], [1,0], [1,1], [0,1]], of which the first is an interior vertex 
and the remaining four are boundary vertices. As we are dealing with a Neumann 
problem, (12.7.7) takes the form u(x, y) = 5Zi=1 CiVi(x, y). Consequently, К and 
M for this problem are both 5 x 5 matrices. Five eigenvalues will be found by the 
finite element method. 

On using NumEigenvalFEMCM{VSL,WSL,l,0,1,[x,y],X,NONE,[ ],0, 
[BSL, [0,0]], NONE, NONE, [ ]) we obtain the output 

Ai = -0.3785 x IO"14, A2 = 12.0, λ3 = 12.0, λ4 = 24.0, λ5 = 72.09. (12.7.9) 

The first eigenvalue λι clearly corresponds to exact eigenvalue A = 0 for the problem. 
The double eigenvalue A2 = Аз — 12 approximates the exact double eigenvalue A = 
7Г2 « 9.872, while X4 = 24 approximates the exact eigenvalue A = 2π2 « 19.74. It 
is seen that the approximations to the higher eigenvalues undergo a rapid decrease in 
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accuracy. (This is consistent with the results given by the Rayleigh-Ritz method.) A 
refinement of the triangulation increases the number of basis functions and eigenvalues 
that are determined. Then the leading algebraic eigenvalues approximate the exact 
eigenvalues more closely. 

For example, a double refinement of the foregoing triangulation obtained from 
the procedure RefineTriang yields 25 interior vertices and 16 boundary vertices. 
As a result, 41 eigenvalues are found by NumEigenvalFEMCM. The first four 
eigenvalues are 

λι = -0.485 x IO"13, λ2 = 10.135, λ3 = 10.135, λ4 = 20.714. (12.7.10) 

The improvement in the approximation to the exact eigenvalues is apparent. 
Next, we examine the eigenvectors determined by NumEigenvalFEMCM for 

the initial triangulation with five vertices. The global variable EVecList lists the 
eigenvectors determined by Maple for each of the five eigenvalues obtained above. For 
technical reasons, the eigenvectors are not listed in the same order as the eigenvalues 
in (12.7.9), but each eigenvector for the eigenvalue λ, is identified as EVec\{. For 
example, we obtain 

EVecXl = [-0.4474, -0.4474, -0.4474, -0.4474, -0.4474]. (12.7.11) 

This means that the eigenvector for Ai = —0.3785 x 10 - 1 4 (i.e., the zero eigenvalue) 
is a constant multiple of the vector [1,1,1,1,1], which we choose as the eigenvector. 
The components of the eigenvector determine the values of the Cj in (12.7.7). They 
all equal 1, so that the approximate eigenfunction is just u(x,y) = 1. This is an exact 
eigenfunction for the PDE eigenvalue problem. 

For the eigenvector that corresponds to X4 = 24.0, we have 

EVecX4 = [-0.44491 x 10 - 1 6 , -0.50, 0.50, -0.50, 0.50]. (12.7.12) 

As a result, we can effectively set c\ = 0 and c, = 0.5(—l)i_1, i = 2,3,4,5, in 
(12.7.7). The use of the procedures PlaneElementslist and FEF determines the 
finite element piecewise planar representation of the eigenfunction to be 

EFunCi = [x- 0.5, 0.5 - y, 0.5 - x, у - 0.5]. (12.7.13) 

It has the values [0, -0.5,0.5, -0.5,0.5] at the vertices [[.5, .5], [0,0], [1,0], [1,1], 
[0,1]], respectively. The eigenfunction (12.7.13) is an approximation to the exact 
eigenfunction u\\{x,y) = — 0.5cos(7nr)cos(7n/), whose exact eigenvalue is 2π2. 
The values of the approximate and exact eigenfunctions agree at the five vertices of 
the triangulation. 

The output of the global variable VSol of NumEigenvalFEMCM is the list 
[[xi, y\, c i ] , . . . , [xn, yn, cn}], where the (XJ, yi), г = 1 , . . . , n, are the coordinates 
of the vertices in the triangulation of the region. In addition, the global variable EV 
lists the eigenvalues, their multiplicity, and the eigenvectors of the related algebraic 
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eigenvalue problem. Then the procedure EFPlot(VSL, VSol, i, EV) plots the fi-
nite element eigenfunction determined by the ith eigenvalue and eigenvector. For 
our tnangulation we have n = 5 and we put i = 4. The eigenvalue is A4 = 24 and 
the eigenvector is given as in (12.7.12). The corresponding exact eigenvalue is 2π2, 
and the eigenfunction is иц(х, у) as defined above. The plot of u\\(x, y) is given 
by plot3d(uu(x, y), x = 0..1, t/ = 0..1), and we denote it as PI. With the plot of 
the finite element eigenfunction denoted by P2, plots[display]({Pl, Ρ2}) yields the 
plots of the exact and finite element eigenfunctions, as in Figure 12.12. 

Figure 12.12 Plots of the exact and finite element eigenfunction. 

Exercises 12.7 

12.7.1. Derive the Galerkin relation (12.7.3). 
12.7.2. Reproduce the results of Example 12.20. 
12.7.3. Reconsider Example 12.20 if the Neumann conditions are replaced by 
homogeneous Dirichlet conditions. 
12.7.4. Reconsider Example 12.20 if the Neumann conditions are replaced by 
homogeneous Robin conditions with the parameter h — 1. 
12.7.5. Approximate the leading eigenvalue (see Example 8.2) for the Dirichlet eigen-
value problem for Laplace's equation in the unit circle x2 -f y2 = 1 via the finite el-
ement method. Introduce the 100 boundary vertices [cos(27ri/n),sin(27ri/n)], i = 
0 , . . . , 99, and use PolygonTriang as in Example 12.1. This yields an interior point 
at the center of the circle. Apply the procedure NumEigenvalFEMCM and obtain 
an approximation to the leading eigenvalue. 
12.7.6. The points [0,0], [1/2,0], [1,0], [1,1/2], [1,1], [1/2,1/2] lie on the boundary 
of the right triangle with vertices [[0,0], [1,0], [1,1]]. Use PolygonTriang to obtain an 
initial tnangulation of the triangle and obtain a single and then a double refinement of 
the triangulation by applyng the procedureRefineTriang. Use these triangulations and 
NumEigenvalFEMCM to obtain a finite element approximation to the leading 
eigenvalue for the Dirichlet eigenvalue problem for Laplace's equation in the triangle. 
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convolution theorem, 257 
inversion formula, 256, 319 
of derivatives, 257 
Parseval equation, 257 

Riemann-Lebesgue lemma, 257 
Free space Green's function, 387, 389 

heat equation, 463 
Helmholtz equation, 390 
Laplace's equation, 477 
reduced wave equation, 643 
wave equation, 466 
heat equation, 481 
Klein-Gordon equation, 468, 480 
wave equation, 480 

Fresnel integral, 673 
Friedrichs, K.O., 30, 771 
Fundamental lemma of the calculus of variations, 

353 
Fundamental solution, 387, 391,411, 526 

diffusion equation, 295 
elliptic equation, 388 
Fokker-Planck equation, 43 
heat equation, 263, 385 
Helmhdltz equation, 390 
telegrapher's equation, 396 

G 
Galerkin integral relation 

elliptic PDE, 886 
hyperbolic PDE, 900 
parabolic PDE, 894 
PDE eigenvalue problem, 905 

Galerkin method, 511, 860, 886-887, 895-896, 
901,906 

Galerkin method, finite elements, 870 
Gaussian beam, linear, 680 

beam half-width, 680 
cylindrical beam, 682 
diffraction length, 681 
general plane wave, 681 
paraxial wave equation, 681 
Schrödinger equation, 681 

Gaussian beam, nonlinear, 687 
beam half-width, 688 
diffraction length, 693 
focal length, 689 
nonlinear Schrödinger equation, 695 
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self-focusing effect, 683 
self-trapped beam, 685 

Gaussian distribution, 7 
Gaussian elimination, 758 
Generalized functions, 259, 387, 393,409-410, 

425, 488 
derivatives, 428 
Fourier transforms, 433 
integral representation, 426 
linear space, 425 
of slow growth, 434 
power functions, 429 
products, 428,438 
regular, 426 
sequence, 425 
series, 435 
singular, 426 
values, 426 

Generalized solution, 72-74,78, 86,92, 167, 188, 
259-260, 334, 353-355, 357, 393-394, 
436, 438 

Geometrical optics, 64, 102, 108, 110, 642, 647, 
654, 663-665, 667-668, 670, 672, 
674-675, 678, 680, 687 

nonlinear, 683, 690 
Geometrical theory of diffraction, 642, 675, 680 

canonical problem, 675 
diffracted ray, 675-676,680 
diffraction coefficient, 675 

Gershgorin's disk theorem, 801 
Ghost points, 749 
Goldstein, S., 15, 17 
Goursat problem, 373 
Gram-Schmidt process, 513 
Green's function, 31,33,73, 259, 387, 389,409, 

416-417,443,462 
biharmonic equation, 546 
elliptic equation, 390-391,407, 410-411, 444, 

447 
heat equation, 462,481 
Helmholtz equation, 288, 390 
hyperbolic equation, 413^114,417-418, 420, 

456, 480 
Klein-Gordon equation, 467 
Laplace's equation, 31, 58, 293, 448,476, 482, 

532 
modified, 411,451^*54 
modified Helmholtz equation, 288 
modified telegrapher's equation, 468 
nonself-adjoint elliptic equation, 422 
nonself-adjoint hyperbolic equation, 423 
nonself-adjoint parabolic equation, 423 
ordinary differential equation, 260-261,418, 

432,445^146,448,489 
parabolic equation, 415-418,420,457 
reduced wave equation, 471, 642,644 

wave equation, 464 
Green's theorem, 31, 73, 93, 164,409,420, 545, 

886 
Grid points, 741 
Group velocity, 161, 310-311,538 

H 

Hadamard's method of descent, 284, 286 
Hadamard criteria, 155, 158 
Hadamard, J., 155-156 
Hankel transform, 291, 324, 383-384 

inversion formula, 291 
Harmonic function, 477,485 
Harmonic oscillator, 243 
Harmonic vibrations, 209 
Heat conduction, 177, 211, 213, 235 

infinite speed, 12, 263 
Heat equation, 159, 211-213,222,232,248, 261, 

263, 274, 276-277, 300, 325, 345,384, 
395-396,462-463,481^182, 528,577, 
730,752,755, 759, 795 

backward, 159,463,616 
nonlinear, 235 
steady state, 222,616 

Heaviside function, 51,266, 302, 319, 392-393, 
395,428^t29,432,436,465-466,480, 
488, 700, 703-705, 710, 738-739 

Heaviside, O., 303 
Helmholtz's equation, 287-288, 390-391, 

471-472,575,631,639 
modified, 287-288,472, 630 

Hermite: 
equation, 244 
function, 244 
polynomials, 244 

Hooke's law, 178, 337 
Hopf, E., 730 
Huygens' principle, 467 
Hyperbolic distance, 393, 712-713 
Hyperbolic equation, 126, 135, 156, 169, 178, 188, 

227, 335, 340, 347, 352, 354, 357,373, 
375, 385, 392-393,398,402,412-414, 
417,456,480, 523, 527, 572,580,582, 
606,625,628, 700-701,708,713, 822, 
825,900-902 

Hyperbolic system: 
characteristic form, 145 
characteristic normal form, 150 
normal form, 145 

I 

Implicit function theorem, 83 
Incorrectly posed problem, 155 
Index of refraction, 640,644, 647-648, 682-684 
Initial and boundary value problem, 154, 175 



Initial layer, 599-601, 603, 608, 610 
Initial strip, 106 
Initial value problem, 7, 19, 67, 83, 154, 159 
Inner product, 184, 343,426 

Hermitian, 192 
Integral relation, 73, 93, 338 

elliptic equation, 337 
Galerkin form, 886, 894,900, 905 
hyperbolic equation, 335, 360 
parabolic equation, 337 

Integral surface, 67,72, 82-83, 102, 104-106, 133 
Integral theorem, 410 

elliptic equation, 410 
hyperbolic equation, 412 
parabolic equation, 415 

Integral wave equation, 360, 377-378,406 
Interface, 342, 687-688 
Inversion, 483, 485 
Iteration method, 785 

Gauss-Seidel, 786 
Jacobi, 785 
optimal relaxation parameter, 786 
SOR, 786 

J 

Jacobian determinant, 67, 72, 76, 83 
Jump, 72-73, 92-96, 132-134, 196, 200, 256, 271, 

347,352,700-701,704 
Jump condition, 350-351, 374-376,388,446 

К 

Kac.M, 18 
Keller, J.B., 642, 675 
Kirchhoff's formula, 284 
Klein-Gordon equation, 162, 172, 308, 316, 

467^168,470, 581, 590, 592,711 
nonlinear, 580 

Korteweg-deVries equation, nonlinear, 592, 
735-736 

Kronecker delta function, 493 

L 

Laguerre: 
equation, 245 
function, 245 
polynomials, 245 

Laplace's equation, 29-30, 34,56,65, 128, 135, 
154, 156, 213, 265, 279, 292, 389,448, 
476, 482, 508, 532-533, 556, 586, 779, 
781,788,854,886 

Laplace transform, 298, 325 
Abelian asymptotic theories, 302 
convolution theorem, 299 
Heaviside expansion theorem, 303 
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inversion formula, 298 
Tauberian asymptotic theories, 302 

Laser beam, 682 
Lax equivalence theorem, 742 
Lax, P.D., 742 
Legendre: 

equation, 203 
polynomials, 204, 248 

Lewy,H.,30,771 
Linear functional, 425 
Linearization, 236, 549 

M 

Maple package: 
DEtools, 113 
DiscreteTransforms, 329 
inttrans, 318 
linalg, 170 
LinearAlgebra, 170 
PDEtools, 113 
plots, 751 
Student Calculus 1,328 

Maple procedure, 42 
Maple procedure, built-in: 

Approxlnt, 328 
assume, 169 
asympt, 408 
charstrip, 114 
convert, 244 
display, 46 
dsolve, 114 
eigenvals, 804 
Eigenvalues, 803 
FFr,331 
fourier, 319 
fouriercos, 321 
fouriersin, 321 
FourierTransform, 330 
hankel, 324 
(FFr,331 
int, 242 
InverseFourierTransform, 330 
invfourier, 319 
laplace, 325 
LU Decomposition, 785 
mtaylor, 744 
pdsolve, 113 
piecewise, 118 
plot, 47 
plotid, 874 
polygonplot, 863 
polygonplot3d, 874 
Polynomiallnterpolation, 832 
series, 245 
solve, 114 
Spline, 832 
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surfdata, 751 
Maple procedure, new: 

AdjOp, 490 
BackwDiff, 743 
BoundLayer, 636 
CentDiff, 743 
ClassHypSystChar, 172 
Class PDE2d, 168 
ClassSyst, 171 
ElementBounds, 868 
ElementPlot, 874 
Eta/wes, 242 
EVProbODE, 242 
FEBasisFunc, 872 
FEBasisFuncFull, 874 
FEBoundarylntegral, 883 
FEBoundarylntegralFull, 883 
FEBoundMidP, 879 
FECentroid, 879 
F£F, 877 
FEFunction, 878 
FEIntegral, 880 
FEIntegralFull, 881 
FindTriangle, 866 
FiniteFourierTransSeries, 248 
FiniteFourierTransSeriesMod, 251 
FiniteFourierTransTerm, 248 
ForwDiff, 743 
Fourier, 319 
FourierBesselCoeff, 247 
FourierBesselSeries, 247 
FourierCoeff, 245 
FourierCosineCoeff, 247 
FourierCosineSeries, 247 
FourierLegendreCoeff, 248 
FourierLegendreSeries, 248 
FourierSeries, 246 
FourierSineCoeff, 246 
FourierSineSeries, 246 
FundSolFP, 43 
GreensFuncODE, 489 
HankelTrans, 324 
HeatMatrix, 802 
HeatStability, 802 
IntWaveEqNum, 406 
InvFourier, 319 
LaplaceConvergence, 806 
LaplaceMatrix, 779 
LinPDEl, 114 

NumCorrRandomWalkConst, 51 
NumEigenvalFEMCM, 907 
NumEllipticFEMCM, 888 
NumEllipticSL, 837 
NumHeatBackw, 758 
NumHeatBackw2d, 842 
NumHeatDRADm, 844 

NumHeatForw, 749 
NumHeatForw2d, 841 
NumHeatLines, 765 
NumHeatLines2d, 845 
NumHeatUnes3d, 851 
NumHeatPRADI2d, 844 
NumHyperbolicFEMCM, 902 
NumHyperbolicLinesSL, 825 
NumHypSysExplicit, 813 
NumHypSystCharBack, 832 
NumLaplace, 787 
NumLaplaceid, 854 
NumLaplaceRowColADl, 791 
NumLinPDEl, 114 
NumMeanFirstPassTime, 55 
NumNonUnPDEl, 118 
NumParabolicFEMCM, 897 
NumParabolicLinesSL, 822 
NumQuasiHypSystCharBack, 835 
NumRandomWalkConst, 44 
NumRestRandomWalk, 60 
NumRestRandomWalkConst, 48 
NumSteadyRandomWalk, 54 
NumWaveBackw, 774 
NumWaveBackw2d, 849 
yVumWfave'Font', 771 
№imWavefoTO>2</, 847 
NumWaveLines, 776 
NumWaveLines2d, 850 
NumWaveLines3d, 852 
Output Array, 45 
ParabolicEqMeth, 638 
PDEFactor2d, 169 
PlaneElements, 871 
PlaneElementslist, 871 
PolygonTriang, 861 
RayleighRitzld, 565 
RayleighRitz2d, 566 
RayleighRitzJd, 567 
RayleighRitzEFld, 566 
RayleighRitzEF2d, 567 
RayleighRitzEF3d, 567 
RefineTriang, 861 
RefineTriangBound, 867 
RefineTrianglnterior, 867 
RefineTriangST, 867 
RegPerturb, 635 
SAi/top, 743 
5Aoc*Wave, 117 
SimCorrRandomWalkConst, 51 
SimMeanFirstPassTime, 55 
SimRandomWalkConst, 45 
SimRestRandomWalk, 60 
SimRestRandomWalkConst, 49 
SimSteadyRandomWalk, 54 
SingExp, 739 
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SingSolTel, 51 
SirMeth, 327 
SolutionPlot, 876 
StatPhase, 327 
SteadyStateSol, 251 
TriangArea, 865, 881 
TriangPlot, 863 
VertexZ/if, 861 
VertexSolution, 876 

Mass matrix, 906 
Matched asymptotic expansions, method of, 598 
Matching conditions, 334, 337-340, 343, 374, 

376-377 
Matching process, 600-601,610, 673 
Matrix form of difference schemes, 753-754, 756, 

761, 773,776, 779-780,782-784, 786, 
799, 801-803, 806, 808 

Matrix iteration method: 
ADI, 790 
column, 790 
convergence, 805 
Gauss-Seidel, 787 
Jacobi, 787 
optimal relaxation parameter, 806 
row, 790 
SOR, 787 

Matrix iteration scheme, 800, 805 
Matrix stability condition, 800-801 

heat equation, 801 
heat equation, Θ scheme, 802 

Matrix stability of a difference scheme, 799 
Matrix stability, amplification matrix, 819 
Matrix: 

banded, 783 
characteristic polynomial, 719 
condition number, 788 
diagonal, 138 
diagonally dominant, 757 
eigenspace, 719 
eigenvalues, 138 
eigenvectors, 138 
identity, 144 
ill-conditioned, 788 
inverse, 144 
Jordan canonical form, 800 
lower triangular, 786 
orthogonal, 138 
positive definite, 512 
projection, 719 
singular, 143 
sparse, 783 
symmetric, 138 
transpose, 166 
tridiagonal, 753 
upper triangular, 786 

Maximum and minimum principles, 11, 34, 491, 
528-529,531-532 

strong, 34, 530,533 
weak, 530,533 

Maxwell's equations, 556 
Mean square convergence, 193,256, 357,507-508 
Mean value property, 34,485, 528, 533 
Mean value theorem, 7, 275, 295, 381,427 
Method of characteristics, 66-67 
Method of finite parts, 431 
Method of images, 476,481, 644 
Method of lines, 742 

heat equation (ID), 764 
heat equation (2D), 845 
heat equation (3D), 850 
hyperbolic equation (ID), 825 
parabolic equation (ID), 822 
wave equation (ID), 775 
wave equation (2D), 849 
wave equation (3D), 852 

Mongecone, 103 
Moving boundary, 366 
Moving force, 376-378 
Multiple scales, method of, 577-578,585,635 

N 

Navier's equation, 559 
Neumann function, 390 
Newton's law 

of cooling, 177 
of motion, 12, 178, 207, 375,547 

Nonlinear optics, 682-683 
Norm: 

function, 184, 191-192, 199, 203, 345,496, 
506,508,513 

matrix, 805 
vector, 343, 799-800,805 

Normal distribution, 7 
Normal mode, 158-162, 236, 283, 309, 538 
Numerical method of characteristics: 

hyperbolic system of two quasilinear equations, 
830 

second order quasilinear hyperbolic equations, 
828 

Numerical methods for ODEs: 
Euler, 765 
Heun, 765 
Predictor-Corrector, 765 
Runge-Kutta-Fehlberg, 765 
Runge-Kutta, 765 

О 

Ocean acoustics, 471 
Odd function, 200 
Ornstein, L.S., 12, 17 
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Orthogonal functions, 184, 186, 192, 194, 204, 343 
set, 187, 192,449,543 

Orthonormal functions, 192 
set, 192, 195, 203, 245,449,455 

Outer region, 597, 600,602, 608 
Outgoing condition, 645, 658-659, 671, 677, 680 
Outgoing wave, 645, 659,670-671 

P 

Parabolic boundary layer, 627 
equation, 615, 626 

Parabolic equation, 135, 160, 177-178, 188, 337, 
341, 349, 354, 396,402,415-416,457, 
577, 685, 701, 822-823,895-897 

Parabolic equation method, 624,626, 628, 
637-638, 738 

Partial differential equation: 
linear mth order, 147 
linear first order, 66 
linear second order, 124 
nonlinear first order, 102 
nonlinear higher order, 148 
quasilinear first order, 82 
quasilinear higher order, 148 

Periodic boundary conditions, 198 
Periodic function, 200 
Perturbation problem 

regular, 572, 575, 577, 580, 582, 588, 606 
singular, 23,573, 597-598,600, 603,606,611, 

617,640,665 
Phase, 161, 307, 309, 311, 327,591, 641, 646, 

650, 652-653,659, 664,671, 677-678, 
680,682-683,687-688, 692, 738-739 

Phase shift, 670 
Phase velocity, 161, 309, 538, 591 
Phase 

speed, 309,591 
velocity, 538,591 

Plane wave, 107, 109-110, 118, 140, 283, 384, 
390, 640, 655, 671, 676,682, 685, 689 

general, 655, 661-662, 680-681,694 
Point source, 263, 380-389,391-393, 643-644 
Poisson's equation, 32,34, 57-58, 228, 249-250, 

483, 531,556, 778,780,782-783, 790, 
800, 806, 853-854, 886 

Poisson's integral, 484 
Poisson process, 18 
Poisson summation formula, 300 
Positive operator, 183 
Principal part, 124, 126, 137, 139, 147-148, 157, 

169, 171 
Projection matrix, 719, 739 
Projection operator, 719-720, 722 
Propagating wave, 210,365-366,383-384,437 

R 

Radiation condition of Sommerfeld, 261, 288, 408, 
471-473,485, 631,643-645, 658-659, 676 

Random walk stability condition, 38^tO, 44, 742, 
809,812 

Random walk: 
absorbing boundary, 9 
correlated, 15 
independent steps, 2 
reflecting boundary, 9 
restricted, 8 
time-independent, 27 
unrestricted, 2 

Rapidly oscillating data, 709 
Ray, 682 

coordinates, 653, 678 
diffracted, 680 
equation, 647, 649, 704 
incident, 678 
optics, 642 
reflected, 678 
tube, 653 

Rayleigh-Ritz method, 511-513, 517, 519, 565 
Rayleigh quotient, 495^97,501,508 
Reduced equation, 572,574, 590, 597, 606,611, 

613, 616-617, 619, 623, 625, 638, 719, 726 
Reduced problem, 573, 599 
Reduced system, 548 
Reduced wave equation, 390-391,471,485,631, 

639-642,645, 655-656,658,663,669, 
676, 682 

nonlinear, 682, 687 
Reflected wave, 341 
Relaxation method, 786 
Relaxation parameter, 786 
Renormalization, 577-578,580,582 
Residual, 788 
Resonance, 228 
Retarded potential, 284 
Riccati equation, 240 
Riemann's method, 371 
Riemann-Lebesgue lemma, 268 
Riemann function, 526 
Riemann problem, 95, 117 
Rodrigues' formula, 207 

s 
Schrödinger's equation, 139, 243,662,673, 681, 

693 
nonlinear, 695-696 

Schwartz, L., 425 
Secular behavior, 578-582, 584, 593, 598, 662, 

680, 689, 693, 726 
Self-adjoint operator, 185, 224, 353, 355,422, 

444-445,447,490, 527, 886 
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Self-adjoint 
equation, 202, 508 
problem, 183,511 

Separation of variables, 175, 180, 182, 207-208, 
212-213, 227, 237, 242-243, 253, 290, 
344, 448, 454, 502, 505, 514, 516, 542 

Shallow water theory, 734, 739-740 
Shock condition: 

entropy, 93 
Rankine-Hugoniot, 552 

Shock speed, 98, 733 
Shock structure, 732-733 
Shock velocity, 93 
Shock wave, 86, 93-95, 117, 731-733 

N wave, 98 
compression wave, 94 
stationary wave, 98 
triangular wave, 97 

Signaling problem, 365,572, 628 
Similarity solution, 396 
Similarity transformation, 145, 800 
Simple wave, 552, 570, 729 
Sine integral, 321 
Single-layer distribution, 374 
Singularities, propagation of, 639, 709 
Sirovich's method, 312-313, 327 
Sirovich, L., 312 
Solitary wave, 736 
Sommerfeld, A., 676 
Spacelike curve, 369 
Spectral radius, 799-806 
Speed of wave propagation, 284, 286, 309, 

369-370,376, 552, 560,591, 644, 771 
Spherical harmonics, 515 
Spherical mean, 283 
Spherical wave, 383-384, 391, 641, 655-656, 702 
Square integrable function, 192-195, 199, 256 
Stability index for PDEs, 159, 161, 236, 538 
Stability theory for PDEs: 

linear, 160, 162, 172,236,607 
nonlinear, 238 

Standing wave, 209-211, 302 
antinodes, 210 
nodes, 209 

Stationary inhomogeneities, 230 
Stationary phase, method of, 307-308, 538, 663, 

674 
Stationary point, 307 
Stefan problem, 380 
Stiffness matrix, 906 
Stochastic calculus: 

Ito, 24 
Stratonovich, 24 

Stokes' rule, 266, 282-283 
Stokes' theorem, 548 
Stratified medium, 647 

Stretching transformation, 599, 604,608, 613, 
618,631,636,662,665,672 

Sturm-Liouville problem, 175, 194, 196, 208 
regular, 191 
singular, 191,202-203 

Superposition of solutions, 158, 161-162, 187, 
263,283, 309, 540 

Symmetry of Green's function, 444, 447, 453, 457, 
463, 466 

T 

Taylor, G.I., 15 
Telegrapher's equation, 19-20, 22, 51, 53, 161, 

313, 316, 396, 468, 491, 533, 557-558, 
705,707-708,739,760 

modified, 468-470,480 
Test function, 425^t26,433^t34 

compact support, 425 
of rapid decay, 434-435 

Threshold of instability, 238 
Timelike curve, 369, 377 
Transmitted wave, 341 
Transport equations, 642, 652, 654, 678, 683, 

703-704,709,714,739 
Trigonometric interpolation, 328 
Truncation error, 744 
Type of scalar PDE: 

elliptic, 125, 138 
hyperbolic, 125, 138 
mixed, 128, 139 
parabolic, 125, 138 
ultrahyperbolic, 139 

Type of system of PDEs: 
elliptic, 143, 150 
hyperbolic, 144, 149 
parabolic, 144, 150 
strictly hyperbolic, 143 
totally hyperbolic, 143 

и 
Uhlenbeck, G.E., 12, 17 
Uniform convergence, 194, 209, 212,435 
Uniqueness of solutions, 67,69, 78, 83, 87, 155, 

266,387, 398^01,403-404, 531,533, 
558,647,757,781,784 

V 

Variational principle, 492, 508 
admissible functions, 494 
constraints, 494 

Variational problem, 497^98, 501-502, 506, 511 
Vibrating membrane, 178, 541 

steady state, 213 
Vibrating plate, 541 

circular, 542 
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clamped, 541 
Vibrating rod: 

lateral, 537,539 
longitudinal, 333 

Vibrating string, 71, 178, 210, 399 
loaded, 207, 375-376 

von Neumann stability, 793-795, 800 
first order equation 

explicit forward-backward scheme, 38, 819 
explicit forward-centered scheme, 811, 820 
explicit forward-forward scheme, 38 
implicit backward-backward scheme, 819 
Lax-Friedrichs scheme, 39 
Lax-Wendroff scheme, 812, 820 
leap-frog scheme, 813 

first order hyperbolic system 
explicit forward-backward scheme, 820 

heat equation (2D) 
Crank-Nicolson scheme, 842 
Douglas-Rachford ADI scheme, 843 
explicit forward scheme, 841 
implicit backward scheme, 842 
Peaceman-Rachford ADI scheme, 843 

heat equation 
Θ scheme, 797 
DuFort-Frankel scheme, 797 
explicit forward scheme, 796, 847 
implicit backward scheme, 797 
two step scheme, 796 

wave equation (2D) 
explicit forward scheme, 847 

implicit backward scheme, 849 
wave equation 

explicit forward scheme, 798 
implicit backward scheme, 798 

von Neumann stability, amplification factor, 795 

w 
Water waves, 734 
Watson's lemma, 303 
Wave equation, 19, 22, 64, 71, 127, 135, 140, 142, 

145, 162, 207, 209-211, 241, 250, 272, 
282-285,293, 309, 333, 341, 350-351, 
355, 360-361, 365-366, 369-370, 376, 
382, 390, 471, 480, 527, 537, 541, 
549-550,557-558,560, 582, 768, 
770-771, 775, 797-798, 846, 849, 852 

damped, 19, 64, 162 
Wave optics, 110,642 
Wave packet, 309-311 
Waveguide, 517 
Weak convergence, 358,426,435 
Weak solution, 167, 334,353-356,358,386,436, 

704, 859-860, 886, 895, 901, 905 
Well-posed problem, 155, 398,414,416,526, 538, 

625-627,741,793 
Whitham, G.B.,591 
WKB method, 697 

Y 

Young's modulus, 178, 337, 341 
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