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PREFACE

The present volume is slightly connected to the conference organized in
Budapest, January 2001 to the honour of Vera Sés and Andrds Hajnal
on the occasion of their 70th birthdays. Namely, we mainly asked the
invited speakers of that conference to write survey papers on their favorite
subjects. Therefore the volume contains strong and well-written surveys
in the areas of the celebrated colleagues: mostly in combinatorics, graph
theory, less in number theory and set theory. The authors gave the up-to-
date state of the art in their subjects, put the recent results into integral
framework. Examples are listed below. The other papers contain original
research results.

Matthias Beck, Xueqin Wang, and Thomas Zaslavsky find a nice, so-
called unifying generalization of different versions of Sperner’s theorem.
They found a uniform handling of several different generalizations.

Béla Bollobds and Alexander Scott summarize different results on dis-
crepancies of graphs and hypergraphs.

Eva Czabarka, Ondrej Sykora, Ldszl6 A. Székely and Imrich Vrto survey
some bounds on biplanar crossing numbers of graphs which is the sum of
the crossing numbers over all partitions of a graph into two planar graphs.

Andras Frank studies the different notions of edge-connectivity of
graphs, digraps and hypergraphs and uses properties of submodular func-
tions to get different theorems on them. He gives an extensive survey of the
results concerning orientations and connectivity augmentations in a general
setting.

Kélman Gyéry surveys when we can get (almost) complete powers as
the product of consecutive terms of an arithmetic progression or binomial
coefficients. The results are mostly negative as it turns out from the nice
overview of classical papers of Erdds and Selfridge as well as the recent ones
of the surveyer and others.

Istvan Juhdsz and Andrzej Szymanski present a purely topological gen-
eralization of Fodor’s theorem called “the pressing down lemma”. By means
of it, the authors prove a partial generalization of this framework of Solo-
vay’s celebrated stationary set decomposition theorem.
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In his extensive survey paper, Alexandr Kostochka summarizes the re-
sults on the minimum number of edges in color-critical graphs and hyper-
graphs.

Michael Krivelevich and Benny Sudakov give an extensive survey on
pseudo random graphs with emphasis on the results obtained by means of
the investigation of the eigenvalues of the adjacency matrix.

Jaroslav Nesetfil deals with questions and results concerning order-
theoretic properties of the homomorphism order of graphs, but the author
surveys upper bounds, suprema and maximal elements of the homomor-
phism order lattice in other interesting finite structures too. The author
also studies minor closed classes of graphs, shows how the order setting
captures Hadwiger conjecture and suggests some new problems too.

Andrds Recski and David Szeszlér investigate VLSI routing algorithms,
especially the influence of Gallai’s Algorithm on them. They show the
first forty years of the influence on VLSI design of the classic result on the
perfectness of interval graphs.

Andrés Sérkozy’s paper describes advance in a specific question, the
possible behaviour of representation functions. We take a set A of positive
integers, and consider ri(n), the number of representations of n as a sum of
k elements of A, or variants where the order is neglected or where an element
can be used only once. Typical questions are whether such a function can
be monotonic, or can be very near to a given regular function. The author
presents plenty of results and unsolved problems.

Andrew Thomason presents results and methods concerning the min-
imum number of edges guaranteeing a given graph minor. It turns out
that the extremal graphs are pseudo-random. The survey describes what is
known about the extremal function and discusses some related matters.

Robert Tijdeman’s survey covers a broad area, with main emphasis on
tilings and balanced words. We learn how words with small complexity
(that is, with a small number of different subwords of length n for every n)
are connected with balanced words, where the number of occurrences of
any fixed letter in subwords of given length is almost constant, and with
sequences given by the integer part of a linear function.

The organizers of the conference gratefully acknowledge the financial
support of the High Level Scientific Conferences program of the European
Union (contract No. HPCF-CT-2000-00419).

The editors
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A UNIFYING GENERALIZATION OF SPERNER’S
THEOREM

M. BECK, X. WANG and T. ZASLAVSKY™*

Dedicated to the memories of Pdl Erdés and Lev Meshalkin

Sperner’s bound on the size of an antichain in the lattice P(S) of subsets of a
finite set S has been generalized in three different directions: by Erdds to subsets
of P(S) in which chains contain at most r elements; by Meshalkin to certain
classes of compositions of S; by Griggs, Stahl, and Trotter through replacing
the antichains by certain sets of pairs of disjoint elements of P(S). We unify
these three bounds with a common generalization. We similarly unify their
accompanying LYM inequalities. Our bounds do not in general appear to be
the best possible.

1. SPERNER-TYPE THEOREMS

Let S be a finite set with n elements. In the lattice P(S) of all subsets of S
one tries to estimate the size of a subset with certain characteristics. The
most famous such estimate concerns antichains, that is, subsets of P(S)
in which any two elements are incomparable.

Theorem 1.1 (Sperner [11]). Suppose Ay, ..., Am C S such that Ay € A;
for k # 5. Then m < ( [7172 J). Furthermore, this bound can be attained for
any n.

We attain the bound by taking all | |-element subsets of S, or all
[5]-element subsets, but in no other way. There are many ways to prove

*Research supported by National Science Foundation grant DMS-0070729.
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Sperner’s bound and the near-uniqueness of the maximal example; several
of them will be found in the opening chapters of Anderson’s lovely intro-
ductory book [1]. The most famous approach is perhaps that of the “LYM
inequality”; see Theorem 2.1 below.

Sperner’s theorem has been generalized in many different directions.
Here are three: Erdés extended Sperner’s inequality to subscts of P(S) in
which chains contain at most 7 elements. Meshalkin proved a Sperner-like
inequality for families of compositions of S into a fixed number of parts, in
which the sets in each part constitute an antichain. Finally, Griggs, Stahl,
and Trotter extended Sperner’s theorem by replacing the antichains by sets
of pairs of disjoint elements of P(S) satisfying an intersection condition.
In this paper we unify the Erdds, Meshalkin, and Griggs-Stahl-Trotter
inequalities in a single generalization. However, except in special cases
(among which are generalizations of the known bounds), our bounds are
not the best possible.

For a precise statement of Erdds’s generalization, call a subset of P(5)
r-chain-free if its chains (i.e., linearly ordered subsets) contain no more
than 7 elements; that is, no chain has length 7.} In particular, an antichain
is 1-chain-free. The generalization of Theorem 1.1 to r-chain-free families is

Theorem 1.2 (Erdés [4]). Suppose {A1,...,An} C P(S) contains no
chains with r + 1 elements. Then m is bounded by the sum of the r largest
binomial coeflicients (2), 0 < k < n. The bound is attainable for every n

and r.

Sperner’s theorem is the case 7 = 1. To attain the bound take all subsets
of sizes |2+ | < k < |242=1 ] or all of sizes [o=rtl] <k < [24H=17; these
are the only ways.

Going in a different direction, Sperner’s inequality can be generalized
to certain ordered weak partitions of S. We define a weak partial com-
position of S into p parts as an ordered p-tuple (Ay, ..., Ay) of sets Ay,
possibly void (hence the word “weak”), such that Aj,..., A, are pairwise
disjoint and AjU---UA, C S. If A;U---UA, = S, we have a weak compo-
sition of S. A Sperner-like inequality suitable for this setting was proposed
by Sevast’yanov and proved by Meshalkin (see [9]). By a p-multinomial
coefficient for n we mean a multinomial coefficient ( o n a ), where a; > 0

--8p
and aj + -+ ap, = n. Let [p] := {1,2,...,p}.

'The term “r-family” or “k-family”, depending on the name of the forbidden length,
has been used in the past, but we think it is time for a distinctive name.
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Theorem 1.3 (Meshalkin). Let p > 2. Suppose (Aji,....Aj,) for j =
1,...,m are different weak compositions of S into p parts such that, for
each k € [p)], the set {A;; : 1 < j < m} (ignoring repetition) forms an
antichain. Then m is bounded by the largest p-multinomial coefficient for
n. Furthermore, the bound is attainable for every n and p.

This largest multinomial coefficient can be written explicitly as

((L3]+ 1)!5”(L%J,)p—/),

where p = n — pL%J. We attain the bound by choosing any set K C [p] of
size p and taking all weak compositions (A;1, ..., Ajp) in which |Ajx| = [7]
if k € K and |Ajx| = [J] if k ¢ K. Hochberg and Hirsch [6] showed that no
other family of weak compositions of S has maximum size. Meshalkin’s the-
orem and the completion by Hochberg and Hirsch are curiously neglected:
we have not seen them mentioned in any book except [7].

To see why Meshalkin’s inequality generalizes Sperner’s Theorem, sup-
pose Ay,...,A; C S form an antichain. Then S—A4;,...,S5— 4,, also form
an antichain. Hence the m weak compositions (4;,S — A4;) of S into two
parts satisfy Meshalkin’s conditions and Sperner’s inequality follows.

Yet another generalization of Sperner’s Theorem is

Theorem 1.4’ (Griggs-Stahl-Trotter [5]). Suppose {4jo, ..., Ajq} for j =
1,...,m are chains of size ¢ + 1 in P(S) such that Aj; ¢ Ay for all i and
l and all j # k. Then m < (L(n:“—:lgl/QJ)' Furthermore, this bound can be
attained for all n and q.

An equivalent, simplified form of this result (in which A; = Ajo, B; =
S — Ajq, and n replaces n — q) is

Theorem 1.4. Let n > 0. Suppose (A;, B;) are m pairs of sets such that
AjNBj =@ for all j, AjN By, # @ for all j # k, and all |A;| + |Bj| < n.
Then m < ( L'"v'/l? J) and this bound can be attained for every n.

Sperner’s inequality follows as the special case in which Ay,..., 4, C S
form an antichain and Bj = S — A;. To attain the bound in Theorem 1.4’
take {40} to consist of all subsets of [n — q] of size |*51], or all of size
[51]. Then let Aj. = AjoU{n—q+1,...,n—q+k}. In Theorem 14,
take A; = Ajo and Bj = [n] — 4;.
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Theorems 1.2, 1.3, and 1.4 are incomparable generalizations of Sperner’s
Theorem. We wish to combine (and hence further generalize) these gener-
alizations. To state our main result, we define a weak set composition as
a weak composition of any set S. Our generalization of Sperner’s inequality
is:

Theorem 1.5. Fix integers p > 2 and r > 1. Suppose (Aj1,...,Ajp)
for j = 1,...,m are different weak set compositions into p parts with the
condition that, for all k € [p] and all I C [m] with |I| = r + 1, there exist
distinct i,j € I such that either Ay, = Ajj, or

(1) AikﬂUAjl 75@¢AjkﬂUAu,
1k ' 1k

and let n := maxj<j<m (|Aj1l + -+ |4;p|). Then m is bounded by the
sum of the r? largest p-multinomial coefficients for integers less than or

equal to n.

Think of the p-multinomial coefficients as a sequence arranged in weakly
descending order. Then if 77 is larger than (r;p ), the number of p-
multinomial coefficients, we regard the sequence of coefficients as extended

by 0’s.

The reader may find the statement of this theorem somewhat difficult.
We would first like to show that it does generalize Theorems 1.2, 1.3, and 1.4
simultaneously. The last follows easily as the case r = 1, p = 2. Theorem
1.3 can be deduced by choosing » = 1 and restricting the weak compositions
to be compositions of a fixed set S with n elements. Finally, Theorem 1.2
follows by choosing p = 2 and the weak compositions to be compositions
of a fixed n-set into 2 parts. What we find most interesting, however, is
that specializing Theorem 1.5 yields three corollaries that generalize two at
a time of Theorems 1.2, 1.3, and 1.4 yet are easy to state and understand.
Section 4 collects these corollaries.

We came to Theorem 1.5 through seeking a common generalization of
Erdds’s and Meshalkin’s theorems (see Corollary 4.1); our original motiva-
tion was, in part, surprise at the lack of general awareness of Meshalkin’s
result. When we learned of the Griggs-Stahl-Trotter theorem, we could
not be satisfied until we succeeded in extending our result to include it as
well. (Fortunately for us, we did not encounter a fourth kind of Sperner
generalization.)

The condition of the theorem implies that each set A = {Ajk 1] €
[m]} (ignoring repetition) is r-chain-free. We suspect that the converse is
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not true in general. (It is true if all the weak set compositions are weak
compositions of the same set of order n, as in Corollary 4.1.)

All the theorems we have stated have each a slightly stronger companion,
an LYM inequality. In Section 2, we state these inequalities and show how
Theorems 1.1-1.5 can be deduced from them. The proofs of Theorem 1.5
and the corresponding LYM inequality are in Section 3. After the corollaries
of Section 4, in Section 5 we show that some, at least, of our upper bounds
cannot be attained.

2. LYM INEQUALITIES

In attempting to estimate the order of the free distributive lattice with
n generators, Yamamoto came up with the following result, which was
rediscovered by Meshalkin in the course of proving his Sperner generalization
(Theorem 1.3) and still later by Lubell with a classic short proof. In
the meantime Bollobds had independently proved even a generalization
(Theorem 2.4 below). The result is the famous LYM inequality, that has
given its name to a whole class of similar relations.

Theorem 2.1 (Yamamoto [12, §6], Meshalkin [9, Lemmal, Lubell [8]).
Suppose Ay, ..., Am C S such that Ay ¢ Aj for k # j. Then

m
1
Z ( n ) S L
k=1 \|Akl

Sperner’s inequality follows immediately by noting that max (2) =

An LYM inequality corresponding to Theorem 1.2 appeared to our
knowledge first in [10]:

Theorem 2.2 (Rota—Harper). Suppose {Ay,..., An} C P(S) contains no
chains with r + 1 elements. Then

5o

n ST
k=1 (lAkl)
Deducing Erdés’s Theorem 1.2 from this inequality is not as straight-

forward as the connection between Theorems 2.1 and 1.1. It can be done
through Lemma 3.1, which we also need in order to deduce Theorem 1.5.
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The LYM companion of Theorem 1.3 first appeared in []; again, Me-
shalkin’s Theorem 1.3 follows immediately.

Theorem 2.3 (Hochberg-Hirsch). Suppose (Aj1,...,Ajp) forj=1,...,m
are different weak compositions of S into p parts such that for each k € [p]
the set {Ajr : 1 < j < m} (ignoring repetitions) forms an antichain. Then

m 1
<1

j=1 (IAJ‘1|~,~‘7~|A]'P|)

The LYM inequality corresponding to Theorem 1.4 is due to Bollobas.

Theorem 2.4 (Bollobds [3]). Suppose (Aj, B;) are m pairs of sets such
that A; N B; = @ for all j and Aj N By # @ for all j # k. Then

m 1
> ATETE) sl

J=1 ( |41

Once more, the corresponding upper bound, the Griggs-Stahl-Trotter
Theorem 1.4, is an immediate consequence.

Naturally, there is an LYM inequality accompanying our main Theorem
1.5. Like its siblings, it constitutes a refinement.

Theorem 2.5. Let p > 2 and r > 1. Suppose (Aj1,...,Ajp) for j =
1,...,m are different weak compositions (of any sets) into p parts satisfying
the same condition as in Theorem 1.5. Then

m
1 ,
- <P
Z (lAjl|+"'+|Ajpl) -
Jj=1 |Aj1| vvvvv lAj})|

Example 2.1. The complicated hypothesis of Theorem 2.5 cannot be re-
placed by the assumption that each Ay is r-chain-free, because then there
is no LYM bound independent of n. Let n > p > 2, S = [n], and
A= {(A7 {(n},{n-1},....{n—p+2}) : A€ Al} where A; is a largest
r-chain-free family in [n — p + 1], specifically,

.Al = Upj([”_p—l-l])

Jjel
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where

n—p+1l-—r n—p+1-—r n—-p+1-r
I= , 1| —— —17.

The LYM sum is

1 Al
> T = 2 (A=)

Ae A, ([Al,l,....l) Ae A

:Z@?H) ey

Jel

_ypt ) (nmpyit)
— )
— o0 as n — 0.

There is no possible upper bound in terms of n.

3. PROOF OF THE MAIN THEOREMS

Proof of Theorem 2.5. Let S be a finite set containing all Ajp for
j=1,...,mand k=1,...,p, and let n = |S|. We count maximal chains
in P(S). Let us say a maximal chain separates the weak composition
(Ay,..., Ap) if there exist elements @ = Xo € X;; €--- C X;, = S of the
maximal chain such that A, C X, — X, _, for each k. There are

n
@) <|A1|+...+ 1A l>|A1“"'|Ap|!(n—IAII_...__|API)!
P

maximal chains separating (Ai,...,A4,). (To prove this, replace maximal
chains @ C {21} C {z1,22} C --- C S by permutations (1, z2,...,Zn)
of S. Choose |A;| + -+ |A4p]| places for A; U---U Ap; then arrange Aj in
any order in the first [A;] of these places, Ay in the next |As|, etc. Finally,
arrange S — (A1 U --- U A,) in the remaining places. This constructs all
maximal chains that separate (Ay, ..., 4p).)
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We claim that every maximal chain separates at most r” weak par-
tial compositions of |S|. To prove this, assume that there is a maximal
chain that separates N weak partial compositions (4;1,...,4;,). Con-
sider all first components Aj; and suppose r + 1 of them are different,
say A1, A21,...,Ar411. By the hypotheses of the theorem, there are
i,i' € [r+1] such that A;; meets some A;pr where !’ > 1 and A;; meets some
Aj where | > 1. By separation, there are q; and ¢} such that A;; C X, —Xo
and A;n C qul — Xo, and there are q_1, qi, gy _y, q such that ¢; < -1 < g,
Q1 < dpoy < g and

Ail (_: X," - )((”_1 and Aiq/ C qu/, - X,

Ty _y”

Since A;; meets A;y, there is an element a;; € X,]l// - X a0 it follows that
(-1

q_; < qi- Similarly, ¢—; < q;. But this is a contradiction. It follows
that, amongst the N sets Ajj, there are at most r different sets. Hence
(by the pigeonhole principle) there are [N/r] among the N weak partial
compositions that have the same first set Aj;.

Looking now at these [N/r] weak partial compositions, we can repeat
the argument to conclude that there are [ [N/r]/r] > [N/r?] weak partial
compositions for which both the A;;’s and the A;9’s are identical. Repeating
this process p — 1 times yields [N, /7*”_1] weak partial compositions into p
parts whose first p — 1 parts are identical. But now the hypotheses imply
that the last parts of all thesc weak partial compositions are at most r
different sets; in other words, there are at most 7 distinct weak partial
compositions. Hence [N/r?~1] < r, whence N < rP. (If we know that
all the compositions are weak—but not partial—compositions of S, then
the last parts of all these [N/rP~1] weak compositions are identical. Thus
N <rP7L)

Since at most 7P weak partial compositions of S are separated by each
of the n! maximal chains, from (2) we deduce that

m
; n
out2 3 (0 " Al A= Ll == )
o N4 jp
m
_Z 1‘4]1|+ +|A]p|)
|A]ll, IA]PI

The theorem follows. =
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To deduce Theorem 1.5 from Theorem 2.5, we use the following lemma,
which originally appeared in somewhat different and incomplete form in
[10], used there to prove Erdds’s Theorem 1.2 by means of Theorem 2.2,
and appeared in complete form in [7, Lemma 3.1.3]. We give a very short
proof, which seems to be new.

Lemma 3.1 (Harper-Klain-Rota). Suppose My, ..., My € R satisfy M; >
My > --- > My > 0, and let R be an integer with 1 < R < N. If
q1,---,qn € [0,1] have sum
i+ +qnv <R,
then
M+ -+ qvMy <My +---+ Mp.

Proof. By assumption,

Hence, by the condition on the M,

R
Z ak My < Mp Z (Ik<AIRZI_(Ik > (1= qi) My,
k=1

k=R+1 k=R+1 =
which is equivalent to the conclusion. m

Proof of Theorem 1.5. Let S be any finite set that contains all Aj;,. Write
down the LYM inequality from Theorem 2.5.

From the m weak partial compositions (Aj1,...,A;,) of S, collect
those whose shape is (a,...,ap) into the set C(ay,...,a,). Label the p-
multinomial coefficients for integers n’ < n as My, Mj,... so that M| >
My > - If M| is (’11 ) let q;, := |C(ay,...,ap)| /M. By Theorem
2.5, the ¢’s and M}’s batlbfy all the conditions of Lemma 3.1 with N re-

placed by the number of p-tuples (a1, ..., a,) whose sum is at most n, that
is (";p ), and R replaced by min(N,r?). Hence

.....

Y |Clar,...ap)| < Mj+-+ Mp.

ay+-+ap<n
The conclusion of the theorem now follows, since

m= Z IC(al,...,ap)l. ]

ap+--+ap<n
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4. CONSEQUENCES

As promised in Section 1, we now state special cases of Theorems 1.5/2.5
that unify pairs of Theorems 1.2, 1.3, and 1.4 as well as their LYM com-
panions.

The first special case unifies Theorems 1.2/2.2 and 1.3/2.3. (It is a
corollary of the proof of the main theorems, not of the theorems themselves.
See [2] for a very short, direct proof.)

Corollary 4.1. Suppose (Aj1, ..., Ajp) are m different weak compositions
of S into p parts such that for each k € [p — 1], the set {Ajr : 1 <j <m}
is -chain-free. Then
m
1
iy <P
j=1 (|Ajll ----- IAjpi)

Consequently, m is bounded by the sum of the rP~! largest p-multinomial
coefficients for n.

Proof. We note that, for a family of m weak compositions of S, the condi-
tion of Theorem 2.5 for a particular k € [p—1] is equivalent to {A;x}; being
r-chain-free. Thus by the hypothesis of the corollary, the hypothesis of the
theorem is met for k = 1,...,p — 1. Then the proof of Theorem 2.5 goes
through perfectly with the only difference, explained in the proof, that (even
without a condition on k = p) we obtain N < 7P~1. In the proof of Theorem
1.5, under our hypotheses the sets C(ay,...,ap) with a; + -+ ap <n are
empty. Therefore we take only the p-multinomial coefficients for n, labelled
M; > My > ---. In applying Lemma 3.1 we take R = min(N, rP~1) and
summations over aj + - -+ + a, = n. With these alterations the proof fits
Corollary 4.1. m

A good way to think of Corollary 4.1 is as a theorem about partial weak
compositions, obtained by dropping the last part from each of the weak
compositions in the corollary.

Corollary 4.2. Fixp > 2 andr > 1. Suppose (Aj1, ..., Ajp) are m different
weak partial compositions of an n-set S into p parts such that for each
k € [p), the set {A;; : 1 < j < m} is r-chain-free. Then m is bounded by
the sum of the rP largest (p + 1)-multinomial coefficients forn. m
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A difference between this and Theorem 1.5 is that Corollary 4.2 has a
weaker and simpler hypothesis but a much weaker bound. But the biggest
difference is the omission of an accompanying LYM inequality. Corollary 4.1
obviously implies one, but it is weaker than that in Theorem 2.5 because,
since the top number in the latter can be less than n, the denominators are
much smaller. We do not present in Corollary 4.2 an LYM inequality of the
kind in Theorem 2.5 for the very good reason that none is possible; that is
the meaning of Example 2.1.

The second specialization constitutes a weak common refinement of
Theorems 1.2/2.2 and 1.4/2.4. We call it weak because its specialization to
the case Bj = S — Aj;, which is the situation of Theorems 1.2/2.2, is weaker
than those theorems.

Corollary 4.3. Let  be a positive integer. Suppose (A;, B;) are m pairs
of sets such that Aj N Bj = @ and, for all I C [m] with |I| = r +1,
there exist distinct i,j € I for which A; N By # @ # Ay N Bj. Let
n = max; (|Aj| +|Bj|). Then

m

|
> BRE -3

Jj=1 IA]'I )
Consequently, m is bounded by the sum of the r largest binomial coefficients
(’L) for 0 < k < n' <n. This bound can be attained for all n and r.
Proof. Set p = 2 in Theorems 1.5/2.5. To attain the bound, let A; range
over all k-subsets of [n] and let B; = [n] — A;. =
The last special case of Theorems 1.5/2.5 we would like to mention is

that in which r = 1; it unifies Theorems 1.3/2.3 and 1.4/2.4.

Corollary 4.4. Suppose (4j1, ..., Ajp) are m different weak set composi-
tions into p parts with the condition that, for all k € [p] and all distinct
i,j € [m], either Ay, = Aji or
AianAjl #Q#AjanAil‘
1£k 1£k
and let n > max; (|Aj1| + -+ + |Ajp|). Then

m

1
_ <.
Z (IAle+"‘+|Ajp|) -
J=L VA | Agpl

Consequently, m is bounded by the largest p-multinomial coefficient for n.
The bound can be attained for every n and p.
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Proof. Everything follows from Theorems 1.5/2.5 except the attainability
of the upper bound, which is a consequence of Theorem 1.3. =

5. THE MAXIMUM NUMBER OF COMPOSITIONS

Although the bounds in all the previously known Sperner generalizations of
Section 1 can be attained, for the most part that seems not to be the case
in Theorem 1.5. The key difficulty appears in the combination of r-families
with compositions as in Corollary 4.1. (We think it makes no difference if
we allow partial compositions but we have not proved it.) We begin with a
refinement of Lemma 3.1. A weak set composition has shape (a1,...,ap)

if |Ag| = ay for all k.

Lemma 5.1. Given values of n, r, and p such that rP~1 < (":f;l), the
bound in Corollary 4.1 can be attained only by taking all weak compositions
of shape (ay,...,ap) that give p-multinomial coefficient larger than the
(rP~! + 1)-st largest such coefficient M,p-1,,, and none whose shape gives
a smaller coefficient than the (rP~!)-st largest such coefficient M, p-1.

Proof. First we need to characterized sharpness in Lemma 3.1. Our lemma
is a slight improvement on [7, Lemma 3.1.3].

Lemma 5.2. In Lemma 3.1, suppose that Mp > 0. Then there is equality
in the conclusion Iif and only if

qk:1if]\/fk>]VfR and (]k:Oif]Wk<]\/fR
and also, letting Mgy, and Mpg» be the first and last M}, ’s equal to Mg,

qri41+-+qpr=R-R. u

In Lemma 5.1, all My > 0 for k < (”;f;l). (We assume N is no larger

than (";f Il) The contrary case is casily derived from that one.) It is
clear that, when applying Lemma 3.1, we have to have in our set of weak

compositions all those of the shapes (a1, ..., a,) for which (a1 " a,,) > M, p—1
and none for which (a1 " a.,,) < M,p-1. The rest of the m weak compositions
can have any shapes for which (al ...a.,,) = Myp-1. If Mpp-1 > Mpp-14
this means we must have all weak compositions with shapes for which
(, " )>Mp-1yy. ®

a1,...,ap
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To explain why the bound cannot usually be attained, we need to define
the “first appearance” of a size a; in the descending order of p-multinomial
coeflicients for n.

Fixp>3and nandlet n =vp+p where 0 < p<p. In (a.l,?.l.,a,,)’ the a;
are the sizes. The multiset of sizes is the form of the coefficient. Arrange
the multinomial coefficients in weakly decreasing order: My > My > M3 >
-++. (There are many such orderings; choose one arbitrarily, fix it, and call

it the descending order of coefficients.) Thus, for example,

n n
M, = > My =
! (1/,...,1/) 2 (1/—}—1,1/,...,1/,1/—1)
3 ="

= Mp(p—1)+l if pln

since M3, ..., Mp-1)+1 have the same form as M, and

n .
M= ()= =My > Mg i

where the form of M; has p sizes equal to v + 1, so My, ..., M(p) all have

the same form. ’

As we scan the descending order of multinomial coefficients, each pos-
sible size kK, 0 < k < n, appears first in a certain M;. We call M;
the first appearance of x and label it L,. For example, if p | n,
L, = M > L,,+1 =L, = ]\42, while ifp f n then L, = L,,+1 = M;.
It is clear that L, > L,—1 > ... and L,4y1 > Ly42 > ..., but the way in
which the lower L,’s, where k < v, interleave the upper ones is not obvious.
We write L} for the k-th L, in the descending order of multinomial coeffi-
cients. Thus L} = L,; LY = L,41 and L = L, (or vice versa) if p | n,
and Ly = L,y if ptn while L = L,4o or L,_;.

Theorem 5.1. Given r > 2, p > 3, and n > p, the bound in Corollary 4.1
cannot be attained if Ly > M,p-1,,.

The proof depends on the following lemma.

Lemma 5.3. Let r > 2 and p > 3, and let Ky,...,K, be the first r sizes
that appear in the descending order of p-multinomial coefficients for n. The
number of all coefficients with sizes drawn from ki, ..., ky is less than rP™1

and their sum is less than M| + - -+ + M p-1.
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Proof. Clearly, k1,...,k, form a consecutive set that includes v. Let &

be the smallest and «’ the largest. One can verify that, in (N e Z) and

(P y), it is impossible for both z and y to lie in the interval [k, k'] as
longas (r—1)(p—2)>0. =

Proof of Theorem 5.1. Suppose the upper bound of Corollary 4.1 is
attained by a certain set of weak compositions of S, an n-element set. For
each of the first r sizes k1, ...,k that appear in the descending order of
p-multinomial coefficients, L, has sizes drawn from &1,..., . and at least
one size k;. Taking all coefficients M}, that have the same forms as the Ly,
k; will appear in each position j in some Mj. By hypothesis and Lemma
5.1, among our set of weak compositions, every k;-subset of S appears in
every position in the weak compositions. If any subset of S of a different
size from Ki,...,K, appeared in any position, there would be a chain of
length r in that position. Therefore we can only have weak compositions
whose sizes are among the first 7 sizes. By Lemma 5.3, there are not enough
of these to attain the upper bound. m

Theorem 5.1 can be hard to apply because we do not know M, ,-1,;. On
the other hand, we do know L, since it equals (H a;f“ a,,) where ag, ..., ap
are as nearly equal as possible. A more practical criterion for nonattainment
of the upper bound is therefore
Corollary 5.1. Givenr > 2, p > 3, and n > p, the bound in Corollary 4.1

*

cannot be attained if Ly > Ly, .

Proof. It follows from Lemma 5.3 that L* ., is one of the first 777! coeffi-

cients. Thus L} > L¥ | > M,p-1,; and Theorem 5.1 applies.

It seems clear that L* will almost always be larger than Ly, (if 7 > 3 or
p 1 n) so our bound will not be attained. However, cases of equality do exist.
For instance, take p = 3, 7 = 3, and n = 10; then Lz = L; = (51401) = 1260

and Ly = Lg = (6}2()‘2) = 1260. Thus if » = 5, Corollary 5.1 does not apply
here. (We think the bound is still not attained but we cannot prove it.) We
can isolate the instances of equality for each 7, but as r grows larger the
calculations quickly become extensive. Thus we state the results only for

small values of r.

Proposition 5.1. The bound in Corollary 4.1 cannot be attained if 2 <
r<5andp>3andn >r—1, except possibly when r = 2, p | n, and
p=3,4,5,orwhenr =4, p>4, andn=2p—1, or whenr =5, p=3, and
n = 10.
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Proof sketch. Suppose p t n. We have verified (by long but routine
calculations which we omit) that LT = L3 > L3 > L} > L} > L§ except
that L}y = Lyifp=p—landp>4andv=1and L = L whenp=v =3
and p = 1.

If p| nthen L} > L3 = L3 > Ly > Ly > L§. This implies the
proposition for r = 3, 4, or 5. We approach r = 2 differently. The largest
coefficients are

n n
A{ — ]‘4‘: = et
! (1/,...,1/)> 2 <u+1,u,...,1/,1/~1>

= Mpp-1)41 > Mpp-1)+2-

If p(p — 1) + 1 < P71 the bound is unattainable by Theorem 5.1. That is
the case when p > 6.

REFERENCES

[1] 1. Anderson, Combinatorics of Finite Sets, Clarendon Press, Oxford, 1987.

[2] M. Beck and T. Zaslavsky, A shorter, simpler, stronger proof of the Meshalkin—
Hochberg—Hirsch bounds on componentwise antichains, J. Combin. Theory Ser. A,
100 (2002), 196-199.

[3] B. Bollobés, On generalized graphs. Acta Math. Acad. Sci. Hung., 16 (1965), 447-
452.

[4] P.Erdés, On alemma of Littlewood and Offord, Bull. Amer. Math. Soc., 51 (1945),
898-902.

[5] J. R. Griggs, J. Stahl and W. T. Trotter, A Sperner theorem on unrelated chains
of subsets, J. Combinatorial Theory Ser. A, 36 (1984), 124-127.

[6) M. Hochberg and W. M. Hirsch, Sperner families, s-systems, and a theorem of
Meshalkin, Ann. New York Acad. Sci., 175 (1970), 224-237.

[7] D. A. Klain and G.-C. Rota, Introduction to Geometric Probability, Cambridge
University Press, Cambridge, Eng., 1997.

[8] D. A. Lubell, A short proof of Sperner’s theorem, J. Combinatorial Theory, 1
(1966), 209-214.

[9] L. D. Meshalkin, Generalization of Sperner’s theorem on the number of subsets of

a finite set (in Russian), Teor. Verojatnost. 1 Primenen, 8 (1963), 219-220. English
trans.: Theor. Probability Appl., 8 (1963), 203-204.



24

M. Beck, X. Wang and T. Zaslavsky

(10} G.-C. Rota and L. H. Harper, Matching theory, an introduction, in: P. Ney, ed.,
Advances in Probability and Related Topics, Vol. 1, pp. 169-215, Marcel Dekker,

New York, 1971.

[11] E. Sperner, Ein Satz iiber Untermengen einer endlichen Menge, Math. Z., 27

(1928), 544-548.

[12] K. Yamamoto, Logarithmic order of free distributive lattice, J. Math. Soc. Japan,

6 (1954), 343-353.

Matthias Beck

Department of Mathematical Sciences
Binghamton University (SUNY)
Binghamton, NY 13902-6000

U.S.A.

Present address:

Mathematical Sciences Research
Institute

17 Gauss Way, Berkeley

CA 94720-5070

U.S.A.

matthias@msri.org

Thomas Zaslavsky

Department of Mathematical Sciences
Binghamton University (SUNY)
Binghamton, NY 13902-6000

U.S.A.

zaslav@math.binghamton.edu

Xueqin Wang

Department of Mathematical Sciences
Binghamton University (SUNY)
Binghamton, NY 13902-6000

US.A.

Present address:
Department of Mathematics
University of Mississippi
P.O. Box 1848

University, MS 38677-1848
U.S.A.

xueqinQolemiss.edu



BOLYAI SOCIETY Conference on Finite
MATHEMATICAL STUDIES, 15 and Infinite Sets
Budapest, pp. 25-32.

A QUICK PROOF OF SPRINDZHUK’S DECOMPOSITION
THEOREM

Y. F. BILU and D. MASSER

Dedicated to the memory of V. G. Sprindzhuk

In [11] Sprindzhuk proved the following striking theorem.

Theorem 1 (Sprindzhuk [11]). Let F(z,y) € Q[z,y] be a Q-irreducible
polynomial satisfying

(1) F(0,0) =0, 8—F(0,0) £ 0.
Ay

Then for all but finitely many prime numbers p, the polynomial F(p,y) is
Q-irreducible.

Actually, prime numbers can be replaced by prime powers, as well as by
numbers of the form 1/t, where t € Z, t # 0: see Corollary 3.

In the subsequent paper [12] (see also [13, 14] for a more detailed ex-
position) Sprindzhuk obtained an even more amusing result. To formulate
it, recall that the height of a rational number o = a/b (where a and b are
coprime integers) is defined by

(2) H(a) = max {|al, |b]}.

One immediately verifies that

(3) H(a) = H max{l,]alv} = H max{l,]a|;1},

veMy veMq

where Mg is the set of all places of the field Q (that is, Mg = {primes} U
{o0})-
For a € Q put V(a) = {ve Mg : |al, < 1}.
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Theorem 2 (Sprindzhuk [12]). Let F(x,y) be as in Theorem 1 and € a pos-
itive number. For every o € Q let dy(c),...,dr(a) be the degrees of the Q-
irreducible factors of F(a,y) (so that di(a) + -+ + dp(a) = deg, F'). Then
for all but finitely many a € Q there is a partition V(a) = V1 U ... UV} such
that

(4) - ZveVi log lalv _ di(a)
log H(«) deg, F

We do not formally assert that the partition sets Vi,..., Vi are non-
empty. However, (4) implies that they are indeed non-empty when ¢ is
sufficiently small (in fact, when € < 1/ deg, F').

Theorem 1 easily follows from Theorem 2. Put Q = {prime powers} U
{1/t 1 tez, |t|>1}.

Corollary 3. Let F(z,y) be as in Theorem 1. Then F(w,y) is Q-irreducible
for all but finitely many w € Q.

Proof. As we observed above, the partition sets Vj,..., V; are non-empty
when ¢ is sufficiently small. But for every w € Q the set V(w) consists of
a single element, and cannot be partitioned into more than one non-empty

part. m

Here is another amazing consequence of Theorem 2 (the proof is imme-
diate).

Corollary 4. Let F(x,y) be as in Theorem 1 and let {q,}, {r,} be two
sequences of prime powers such that lim, . loggq,/logr, exists and is
irrational. Then F(q,ry,y) is Q-irreducible for all but finitely many v.
|

We invite the reader to invent many other corollaries of this wonderful
theorem.
Actually Sprindzhuk in [12] obtained a yet sharper version of Theorem 2

with € replaced by an error term of order ( log H(c)) 12 1o prove this he
used Siegel’s Lemma and some sophisticated machinery from the theory of
Diophantine approximation and transcendence such as the cancellation of
factorials and a zero estimate (Lemma 6 of [11]). He also used Eisenstein’s
theorem, which is easy when (1) is assumed.

In the final paragraph of the Russian edition of his book [13], Sprindzhuk
wrote that, while methods of Diophantine approximation are used in the
proof of Theorem 2, its formulation
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“...involves no concepts related to the theory of Diophantine
approximation. This gives hope that a different proof exists,
which is independent of the theory of Diophantine approxima-
tion.”

Indeed, such a proof was soon after found by Bombieri [1], who used the
machinery of Weil functions and Néron-Tate height. Weil functions were also
employed by Fried [9] in the prime-power case. It was Bombieri who pointed
out the connection with G-functions and Fuchsian differential operators of
arithmetic type. This connection was further developed by Deébes (and
Zannier) (3, 4, 5, 6].

The object of the present note is to point out that Theorem 2 itself can
be established rather quickly, also along the lines of Sprindzhuk’s original
articles, but without most of the sophisticated machinery. Our proof relies
only on the simplest properties of heights (see Proposition 5 below) and
Eisenstein’s theorem.

Recall the definition of the height of an algebraic number. This is

1/[K:Q]
H max{l,|a|LK":Q”]}> ,

vEM [

) Hi) = (

where K is a number field containing a and Mg is the set of valuations
on K, which are normalized to extend the standard valuations of Q. As
usual, K, and Q, stand for the topological completions with respect to
vE Mg.

It is straightforward to verify that the right-hand side of (5) does not
depend on the choice of the field K. Also (3) implies that this definition is
compatible with the definition of the height of a rational number from (2).

The product formula
[] 1@ =1  (aek)
vEM[E

implies that for any V C Mg and a € K* one has the following “Liouville
inequality”:

(6) [T 1ad @) 2 F(a) e,
veV

The following two well-known properties of the height function are (al-
most) immediate consequences of its definition (5).
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Proposition 5. Let «, 8 be algebraic numbers and F(z,y) a polynomial
with algebraic coefficients. Put m = deg, F' and n = deg, F'.

1. For v = F(a, ) one has H(y) < H(a)™H(B)".

2. Assume that F is not divisible by x — . Then F(a,) = 0 implies
that H(B) < H(a)™.

Constants implied by “«” depend only on the polynomial F.

Proof. Part “1” is straightforward. To prove “2”, write F'(z,y) = fa(z)y"+
.-+ fo(y). By the assumption, not all of the numbers fo(a),..., fa(a)
vanish. Put v = max {j : fj(e) # 0}.
Let K be a number field containing «, § and the coeflicients of F'. The
equality f,(@)B” + fo-1(@)B*"1 + -+ fo(a) = 0 implies that

max { 1, |ﬂ|v} < max { 1, |V|v}

max {1, | fu-1()/ fu(@)| -+ | fola)/ fu(a a)l,}  (ve M)

Using the product formula, we obtain

) < #@)( ] mox {1 fomr(@/ ] oo

vEME

| fol@)/ fu(a }“‘":Q"])

= o I] mex{lu(@ | (@],

vEM

1/[K:Q)

)1/[K:Q]

| fo(a)] J @ < H(a)™,

as wanted. m
Recall also Eisenstein’s theorem.

Theorem 6. Let Y(z) = ap + a1z + asx? + --- be a power series with co-
efficients in a number field K, algebraic over the field K(x). Then for
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every v € My there exists ¢, > 1 such that all but finitely many c, are
equal to 1, and

(7) lajl, < ¢, (ve Mg, j=1,2...).

Classically, Eisenstein’s theorem reads as follows: there exists a posi-
tive integer T such that T7a; are algebraic integers for j = 1,2,.... This
immediately implies Theorem 6. Indeed, for non-archimedean v one may
put ¢, = |T'|, . For archimedean v, the existence of ¢, follows from the fact
that the convergence radius of a complex algebraic power series is positive.

Eisenstein’s theorem goes back to Eisenstein’s paper [8]. See [10,
page 151] for an old-fashioned proof and [7] for a modern quantitative argu-
ment. See also [2, page 28] for an especially quick proof when K = Q, which
suffices for the present note. In addition, if ap =0 and F(z,Y(z)) =0,
where F(z,y) € Z[z,y] satisfies (1), then a very easy induction gives the

value T' = (OF/0y(0,0)) 2, and in fact this case suffices as well.

Proof of Theorem 2. Put m = deg, F' and n = deg, F. To prove the
theorem, it is sufficient to find a partition V(a) = V3 U ... UV} satisfying

(8) - Z’UGVi log lalv -<_ dl(a)
log H(a) n

+e  (i=1,...,k).

Indeed, by the second equality in (3),

k log |, d: (a
UGV v 1
; 1 B Z n

OO
1=1

Hence (8) implies that

- ZvEVi log |a|v > di(a) _
log H(«) T on

and (4) follows after redefining e.
It follows from (1) that there exists a power series Y (z) = ajz+asz’+- -
with rational coefficients satisfying F(z,Y (z)) = 0. Put

9) N = [dm(n—1)/e].
There is a non-zero polynomial G(z,y) € Q[z,y| satisfying
(10) deg, G <n—1, deg,G <N,

(11) ord;=o G(z,Y(z)) > nN.
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(Indeed, the vector space of polynomials satisfying (10) is of dimension
n(N + 1), while (11) is equivalent to nN linear relations.) In the sequel,
constants implied by “O(-)”, “<” and “>” may depend only on F', G and &.

Put U(z) = G(z,Y(z)). By Eisenstein’s theorem, for every v € Mg
there exists ¢, > 1 such that all but finitely many ¢, are equal to 1, and the
coefficients of the power series Y (z) = 3222 ajz? and U(z) = Y52\ bz’
satisfy

(12) |aj|v7 lbj|v < C{, (’U € ]\4@)
For a € Q put

<1/(2¢) if v = 00,
V'(a) = {v eV(a) : |af }, V'(a) =V(a)\V'(a).

Y<1/e, ifv<oo.

Since — Zvevu(a) log |a|, < 1, for all but finitely many o we have

— Z’UEV”(Q) loglalv < E
log H(«) -2

Hence it is sufficient to find a partition V'(a) = V] U... UV such that

- log |, :
(13) ZvéVi < dl(a)
log H(«) n

+

DN ™

for then putting, say, Vi = V] UV"(a) and V; = V/ for i > 2, we obtain (8).

Thus, fix a € Q and let F(a,y) = fi(y) - - fr(y) be the decomposition
of F(a,y) into Q-irreducible factors. We may assume (discarding finitely
many o at which the y-discriminant of F(z,y) vanishes) that the polyno-
mials f; are pairwise coprime. We put d; = deg f;.

For any v € V'(«) the series Y (z) converges v-adically at a. Its sum
in Q,, denoted by Y, (), is a zero of F(a,y). Define the partition V'(a) =
Vi U... UV} as follows:

V! ={veV'(a): Yy(a) is a zero of fi(y)} (i=1,...,k).

Now fix 7 and let 3 = 3; be a zero of f;(y). Again discarding finitely
many a, we may assume that 7:=G(a,[) #0. Indeed, since F(z,y)
is irreducible, and deg, G < deg, F', the system of algebraic equations
F(a,B) = G(a, 8) = 0 has only finitely many solutions.
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Extend every v € V; to the number field K = Q(8) to have Y,(a) = 8.
Notice that

(14) ]{v = Qv

for this extension of v. Then for v € V/ we have n = U, (), the v-adic sum
of U(z) at a. Using (11) and (12), we obtain

(15) Inl, < max {1,12],} (colef,)™  (we V).

The equality F(a,3) =0 together with Proposition 5: 2 implies that
H(B) < H(a)™ (since the polynomial F is irreducible, it is not divis-
ible by z —a). Now Proposition 5: 1 implies that H(n) < H(a)"*,
where v = (n — 1)m. Using (14) and “Liouville inequality” (6), we obtain

(16) [T Inl, = TT i@ > H@m) = > H(a)~®+%,
veV/ veV/

Combining this with (15) and (9), we conclude that
(17)

- Z log|al, < (1 + %) %logH(a)+O(1) < (1 + %) %logH(a)-l—O(l).

veV/
When H(«) is sufficiently large, we obtain

- Zvevil log ||,
log H(«x)

d;
18 < =
(18) <+

<
27

which is (13). =
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DISCREPANCY IN GRAPHS AND HYPERGRAPHS

B. BOLLOBAS and A. D. SCOTT*

Let G be a graph with n vertices and p(;) edges, and define the discrepancies

discj (G) = maxycv () {e(Y) - p('};')} and disc, (G) = maxycv(q) {p(“zll) -
e(Y)}. We prove that if p(1—p) > 1/n then disc] (G) disc; (G) > p(1—p)n®/6400.
We also prove a similar inequality for k-uniform hypergraphs, and give related
results concerning 2-colourings of k-uniform hypergraphs. Our results extend
those of Erdés, Goldberg, Pach and Spencer [6] and Erdds and Spencer [7].

1. INTRODUCTION

The discrepancy of a graph G is disc(G) = maxycy () |e(Y) - %(Igl)l,
where we write e(Y) = e(G[Y]) for the number of edges of G spanned
by Y. If G has edge density 1/2 then the discrepancy can be seen as a
measure of how uniformly the edges are distributed among the vertices; see
Sés [11] and Beck and Sés (1] for more discusssion and a general account
of discrepancy. Erdés and Spencer (7] showed that for some constant ¢ > 0
every graph G of order n satisfies disc (G) > en®2. More generally, they
showed that for every k > 3 there is a constant ¢, > 0 such that if H
is a k-uniform hypergraph of order n then disc(H) > cxn®**+1/2 where
disc (H) = maxy cy(u) Ie(Y) - %('{I) [ By considering random graphs they
showed that this bound is sharp up to the value of the constant.

Now suppose that G is a graph with e(G) = m = p(}g‘), where p < 1/2,

so that we expect a random subset Y C V(G) to span a subgraph with

*Research supported in part by NSF grant DSM 9971788 and DARPA grant F33615-
01-C-1900.
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p(lg') edges. Then a more appropriate measure of edge distribution is given
by the quantity disc,(G) = maxycy(q) |e(Y) - p(g)| Erdés, Goldberg,
Pach and Spencer [6] showed that in this case disc,(G) > c¢\/mn, where c is
an absolute constant.

A subset of vertices with large discrepancy can clearly be either more
or less dense than the whole graph. Let us define the positive discrep-
ancy by disc*(G) = maxycy g { (Y) - 1(|Y|)} and the negative discrep-
ancy by disc™(G) = machV(G){ (I ') (Y)} Then a random graph
G € G(n,1/2) shows that it is possible to have max { disc*(G), disc™ } <
en3/2. The one-sided discrepancy can be smaller: for instance, the complete
bipartite graph K, /2’,,1 /2 has positive discrepancy O(n), although its nega-
tive discrepancy is cn?. Similar ly, the graph 2K, /o has positive discrepancy
O(n) but negative dlsc1epancy cn?. These examples show that we can guar-
antee small discrepancy on one side provided we allow large discrepancy on
the other. In this paper we shall prove that positive discrepancy substan-
tially smaller than n3/2 guarantees negative discrepancy substantially larger
than n®/2; indeed, we shall quantify the trade-off between positive and neg-
ative discrepancies. Surprisingly, the correct measure turns out to be the
product disc’ (G) disc™(G).

We remark that a different type of negative discrepancy was considered
by Erdés, Faudree, Rousseau and Schelp [5] with the idea of showing that

graphs with small negative discrepancy contain complete subgraphs of fixed
size. For further recent results in this direction see Krivelevich [9] and

Keevash and Sudakov [8].
We begin with some definitions. For a k-uniform hypergraph G, a real
p€[0,1] and X C V(G) let

X
00 =) -5("})
For disjoint sets of vertices X and Y, let

dTJ(Xa Y) = €(X, Y) - PIXI IYI

Then we define

et () =
(1) disc, (G) = Xlél‘f}z(c) dp(X)
and
(2) disc, (G) = — min dy(X),

XcV(G)
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and set

discy(G) = Xlél‘f}i(c) |dp(X)| = max { disc;(G),disc;(G)}.

If p is not specified we assume p = 1/2, so for instance disc (G) = discy /5(G).
Note that the cases p = 0 and p = 1 are trivial, and that if ¢(G) = po (IGI)
we have disc,(G) > ldp(V(G)) ' =|p— p0|(|c2;|). We will therefore usually
take p with e(G) = p(lgl). Note that, for any p, discy (G) = discl‘_p(ﬁ) and
disc, (G) = discf_p(_@). We shall usually assume p < 1/2, since if p > 1/2
we may replace G by G and p by 1 —p.

We remark that it does not make much difference if we restrict the
definitions in (1) and (2) to sets X of size n/2 (or some other size cn): as
noted by Erdés, Goldberg, Pach and Spencer [6], this would change the
resulting discrepancy by at most a constant factor.

We shall frequently refer to a random bipartition V = X UY. Unless
otherwise stated, this means a random bipartition in which each vertex is
assigned independently to X or Y with equal probability. Throughout the
paper we shall use €; and p; for sequences of independent Bernoulli random
variables, with ¢; € {+1, =1} and p; € {0, 1}, each taking either value with
probability 1/2.

The rest of the paper is organized as follows. In section 2 we give
lower bounds on disc,(G) for graphs; in section 3 we turn our attention

to hypergraphs. Finally, in section 4, we consider some related results
concerning subgraphs of a fixed graph or hypergraph.

2. DISCREPANCY OF GRAPHS

In this section we prove our results on graph discrepancy. Let G be a graph
of order n and size p(5). If G is very sparse, say 0 < p < 1/(n — 1), then
taking the union of p(7)/2 edges from G gives a subgraph with at most p(%)
vertices, so disc; (G) > p(}) /2 —p(p(g))2/2 > pn?/5—p*n*/8 > pn?/20 for
sufficiently large n, while since G has average degree at most 1 it contains
an independent set of size at least n/2, and so disc_(G) > p("/ ) > pn2/ 9
for sufficiently large n. On the other hand, max{ disct(G), disc™( } <
e(G) < pn?/2. Thus disc; (G) and disc, (G) are both @(pn ). A similar
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argument applies if G is very dense, with p > 1—1/(n —1). (More precise
bounds are given by Erdés, Goldberg, Pach and Spencer [6].)

We therefore restrict our attention to graphs with p(1 —p) > 1/n. Our
main result is the following.

Theorem 1. Let G be a graph of order n and size p(5), where p(1-p) > 1/n.
Then

(3) disc, (G) disc, (G) > p(1 - p)n®/6400.
As an immediate corollary we get the following result of Erdds, Goldberg,
Pach and Spencer [6].

Corollary 2. Let G be a graph of order n and size p(g), where p(1 —p) >
1/n. Then
disc,(G) > v/p(1 = p)n®/2/80.

We remark that the result of Erdés and Spencer for graphs can easily be
deduced from Theorem 1: if 1/3 < p < 2/3 then disc (G) > 1( disc+(G) +

disc, (G)) > n%/2/160, while otherwise disc (G) > Ie(G) I >(5)/6>
n%?2/12.

We also remark that, for r > 2, the Turdn graph T(n) gives a bound
on the optlmal constant in (3). Defining p by t,(n) = e(T;(n)) =p(3), w
have p ~ 1 — 1. A little calculation shows that
(4) disc} (Ty(n)) = 5’83 +0(r),

and, for r even,

which implies

p(1 —p)n®

discy (Tr(n)) disc, (Tr(n)) < (14 0(1)) =57

Before turning to the proof of Theorem 1, we make some comments
about one-sided discrepancies. Since every graph with n vertices and t,(n)
edges contains a subgraph of order u and size at least t.(u) for every
1 < u < n, the Turén graphs 7T,(n) have minimal positive p-discrepancy
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among graphs of order n and size t,(n). Thus (4) gives an optimal bound
in these cases, which have density p ~ 1 — % To obtain a similar bound for
arbitrary densities, we define an extension of the Turan numbers for non-
integral r. Given an integer n > 1 and a real number r > 1, we can write
n = qr + s, where ¢ is an integer and 0 < s < r. We define the fractional
Turdn number ¢.(n) by

where

£.(n) =s<q;1> ; (r—s)(g>.

Note that this is consistent with the definition of Turdn numbers when r is
integral; it is convenient to work with the quantity ¢,(n) instead of ¢,(n).

A bound matching (4) will follow from the following result.

Lemma 3. Suppose that n > 1 is an integer and 1 < r < n. Let G be
a graph with n vertices and at least t,(n) edges. Then, for 2 < u < n, G
contains a subgraph with u vertices and at least t,(u) edges.

Proof. It is enough to prove the theorem when v = n — 1. Taking com-
plements, this is equivalent to showing that if e(G) < t,(n) then there is a
vertex v such that e(G \ v) < Z,(n — 1). We may also assume r > 1, or else
G is empty.

Adding edges if necessary, we may assume that

() e(G) = [t:(n)| =& (n) —n,

where 0 <7 < 1. Thus if n = gr + s,

() =s("3 ")+ r-9(1) -

(rq2 +(2s—r)q) — .

DN =

A short calculation shows that

o o]
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By (5) and (6), it is sufficient to show that

(7) g—1+ ]+nzzr(n)—zr(n-1).

If ¢ = 0 then we have a complete graph and are done immediately. Thus
we may assume that ¢ > 1. Now if s > 1, then it is easily seen that

tr(n) —t.(n—1) =gq,
while if 0 < s < 1, then a simple calculation shows that
(8) tr(n)—t.(n—1)=q¢g—1+s.

Now if s > 7 then ¢gs + s > 27, and so the left side of (7) is at least g + 7,
and thus (7) is satisfied. If s <7, however, then 0 < s < 1, so (8) holds. It

is then sufficient by (7) to show that

-2
"qs+s n] tn>s
qr + s
which holds provided
-2
sts—an_ g
qr+s

But gr + s =n and gs + s — 2 > —2n > —2, so this holds forn > 2. m

Calculating as in (4), we obtain the following result.

Corollary 4. For 0 < p < 1, every graph G with n vertices and p(g) edges
satisfies .

. pn
discy (G) > — + O(1 —

8 )

We now turn to the proof of Theorem 1. We shall need two simple
inequalities (these follow easily from the Littlewood-Khinchin inequality,
see [10], [12], [13]; however, we give short proofs at the end of the section).
Recall that ¢; and p; are i.i.d. Bernoulli with e; € {+1, -1} and p; € {0,1}.

Lemma 5. Forn > 1,

n

D

1=1

E > \/n/2.
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Lemma 6. Let a = (a;);_, be a sequence of real numbers, and A a real
number. Then

E

S A 2 all Vo

and

E > |||,/ V8n.

n
Zpiai - A
i=1

Our main tool in the proof of Theorem 1 is the following lemma, which
shows that in a random bipartition of a graph G, we do not expect the
vertex neighbourhoods to split too evenly.

Lemma 7. Let G be a graph of order n and size p(g‘), where p(1—p) > 1/n.
Let V(G) = X UY be a random bipartition. Then

EY |1 nY] - plv]| > Va(l—pn¥/20.
reX

Proof. We may assume p < 1/2 since we may take complements and replace
p by 1 —p. Suppose z € V(G) has degree d = d(z) = p(n — 1) + r(z). For
v # x, define e, = 1 if 2v € E(G) and e, = 0 otherwise. Then

PCE p)t

IE||F(3:)OY| —p|Y\{:L}|| =E

v#T
=E> Y (e —p)+ 5 Yocules 1)
it b €y — D 5 Evl€y — P
vV#T V#T

EY eulen - p)’},

1 1

> max{=|d—(n—1)p|, =
2 2

v#L

since ), ., (ey —p) = d — (n — 1)p and the distribution of ) ., €v(ev — p)
is symmetric about 0. Now, by Lemma 5,

d n—1
E Zev(ev—P)' =E/) e(l-p)+ ). Ez‘(—P)’
V#T i=1 i=d+1

> E Zei(l —P)’

i=1

> (1-p)Vd/2
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and so
IEIlF(a:) ﬂYl —p|Y\{x}]| > %maxﬂr(w)l,(l —p)\/d(a:)/Q}.

Now for z € V = V(G) let I(z) = 1if z € X and I(z) = 0 otherwise.
Then, since I(z) and |F )N Yl are independent random variables,

EY ||T(z)nY| -plY]| =E) I()||T(x)nY]| -p|Y \ {z}|]

reX zeV
= % Y E||T(z)nY| —p|Y\ {z}]|
zeV
1 /
Zmax{2| I,Z(I—P) d(ﬂf)/2}
eV zeV
1
> -

> =Y (Ir@)] + (1 -p)Vi@)/2).
zeV

Note that the first equality holds as Y =Y \ {z} if I(z) = 1. Furthermore,
|r(a:)l + (1 -p)4/d(z)/2 is minimized when r(z) =0 and sod(z) =p(n—1).
Thus

£ 32 (Ir@)] + (= VA/Z) 2 gl - PVl = 1)]2

zEV

> /p(1 — p)n®//20,
since p < 1/2 and we may assumen > 3. ®

After this preparation, we are ready to prove Theorem 1.

Proof of Theorem 1. Since (3) is symmetric in p and 1—p, we may replace
G by its complement G, and so we may assume that disc;,r (G) < disc, (G). If

disc; (G) > /p(1 - p)n3/? /80 we are done. Otherwise, suppose disc, (G) =
p(1 — p)n®?/80a, where o > 1. We shall show that

(9) disc, (G) > ay/p(1 — p)n®/2/80,
so disc} (G) disc;, (G) > p(1 — p)n®/6400.
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Let V(G) = X UY be a random bipartition. Then since p(1 —p) > 1/n,
it follows from Lemma 7 that

(10) EY ||T@) nY|-plY|| > v/p(1 - p)n®?/20.

zeX
Now let X* = {z€ X : [T(z)nY| >p|Y|} and X~ = X\ X*; s0
B(X,Y)= Y (|P@)nyY|=-plY])+ > (|T@)nY]|-p|Y]).
zeXt TEX™
Since Ed,(X,Y) = 0, we have
E Y |[T@nY|-plY||=E ) [|[T@)nY]|-plY]]
zeXt z€EX™
and so by (10)
(11) Edpy(X*,Y)=E Y (|T(x)nY]-p|Y]) > v/p(1 - p)n?/40.

zeXt

Now Ed,(Y) = 0, so (11) implies

(12) E(dp(X,Y) +adp(Y)) 2 /p(1 —p)n*/?/40.

Let X*, Y be a pair of sets achieving at least the expectation in (12)
and let Z be a random subset of X*, where each vertex of X* is chosen
independently with probability 1/c. Then it follows from (12) that

Edy(ZUY) =E(dp(Z) + dp(Z,Y) + dp(Y))

1 1
= —d(X) + ~dp(X,Y) +dy(Y)

1 1 .
> —5y(X) + —/p(1 = p)n*/? /0.
Since disc; (G) = /p(1 - p)n®/? /80a, this implies

X)/a® < =(1/a)y/p(1 = p)n®/?/80

and so d(X) < —a+/p(1 — p)n®2/80, which gives the desired lower bound
on disc, (G). =
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Finally in this section we give the proofs of Lemmas 5 and 6, postponed
from earlier.

Proof of Lemma 5. A simple calculation shows that for n = 2k we
have E| Y1 & = 21“2%(%) and for n = 2k + 1 we have E| YL & =

272k(2k + 1)(% = lEI Z" ] 51| Let s, EIZ; 151|/\/'_ Then, for
k> 1, sopro/sok = (k+ 5 /\/k—-l—l ) > 1 and, for k > 0, sopt3/Sok41 =
\/(k + 5)(k + —2-)/(k + 1) < 1. Thus (so)pe, is increasing and (Sok41)p=g
is decreasing; both converge to IE|N 0,1) | = \/m Therefore s, > sy =
1/vV2foralln. m

Proof of Lemma 6. We may clearly assume that all a; are nonnegative.
Since Y, €a; is symmetric about 0, the expectation is minimized for a
given a when A = 0. Now if a; # a; then let o] = a} = (a; + a;)/2; it is
easily checked that E|B + ¢;a; +€ja;| > E|B + ¢€;a; +£ja9| for every real B.
It follows that lE[ S siaii > IE! Sy Eial, where a = Y1 | a;/n. Thus,
by Lemma 5,

n
E Zaiai -
i=1

The second inequality follows directly from the first. =

> ay/nf2 = |al,/Van.

A ZCL]E ié‘i

1=1

Note that in fact proof of Lemma 5 implies the inequalities ]E| Yo ai| >

V2/mn|lall; if n is odd and E| i, ai| > (14 0(1)) v/2/7n]jall; for gen-

eral n.

3. HYPERGRAPH DISCREPANCY

In this section we turn our attention to hypergraphs. After defining a little
notation, we begin with a result for weighted hypergraphs; we then turn to
the consideration of unweighted hypergraphs.

If G is the complete k-uniform hypergraph with edge-weighting w and
X C V(G), we define
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As in definitions (1) and (2) we define disc*(G) = maxycy(g) d(X) and
disc™(G) = —minxcy gy d(X); we also define

disc (G) = max { disc™(G),disc™(G)}.
Note that this is consistent with the definitions for an unweighted hyper-
graph G by taking w(e) = 1 if e € E(G) and w(e) = —1 otherwise.

For disjoint sets X1,..., X; and integers ki, ..., k; such that Z:-:l ki =
k, we define

where the sum is over edges e with |e N X;| = k; for every i.

We can now state the first result of the section.

Theorem 8. Let G be the complete k-uniform hypergraph of order n with
edge-weighting w such that Y w(e) =0 and 3 |w(e)| = (}). Then

disct(G) disc™(G) > 91k ket

We shall need three lemmas. In the first lemma we use the fact that
if P(z) is a polynomial of degree k with sup,¢(o 1 |P(a:)| < 1 then every

coefficient of P(z) has absolute value at most 28k /k!. (Tamés Erdélyi
[4] pointed out to us that this is an elementary consequence of Markov’s
Inequality; see [3].)

Lemma 9. If G is a complete k-uniform hypergraph with edge-weighting
w and disc (G) < M then for disjoint subsets X, Y of V(G) and 0 <i <k,

|dip—i(X,Y)] < 22K M.

Proof. Let Z be a random subset of X, where each vertex is chosen
independently with probability p. Then

k
E(d(ZuY)) = Zpldi,k—i(X, Y).
i=0
Since disc (G) < M, it follows that maxg<p<i | Zf:o pid; p_i(X, Y)I <M
and so maxXp<i<k |di,k_,~(X, Y)| < MK /R < 26\ m

We also need an analogue of Lemma 7.
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Lemma 10. Let G be a complete k-uniform hypergraph of order n with
edge-weighting w. Let V(G) = U UW be a random bipartition. Then

E Y |de-a(K, W) 2k27%F Y w(L)|/v2n.

KeU®k-1) Lev(G)®

Proof. Let V = V(G) = UUW be a random bipartition. Given K € V=1,
it follows from Lemma 6 that

E|dg-11(K, W\ K)| > Z ,“’(KU{U})I/\@H'

veV\K

Since the event {K C U} and the random variable dj_; ; (K, W \ K) are
independent, and each edge L € V) occurs k times as K U {v}, we have

E Y |de-n(E W)= ) P CUE|de-11(K,W\K)

KeU(k-1) KeVy(k=1)
> Z g~k+1 Z ,w(KU{v})I/\/B—n
Kev(k-1) veV\K
=k27% > |w(L)|/V2n. m
LeV (k)

The following lemma will be useful several times.

Lemma 11. Let G be a k-uniform hypergraph of order n with edge-
weighting w. Suppose that a > 1 and X, Y are disjoint subsets of V(G)
with

(13) de_l(X, Y) + ad(Y) =M Z 0.

Then either
disct(G) > 27 M/a

or

disc™(G) > 273 Ma.
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Proof. If |di,k_i(X, Y)[ > 2% oM for some 0 < i < k then we are done by
Lemma 9. Otherwise, let Z be a random subset of X, obtained by choosing
each vertex of X independently with probability 1/a. Then

k
Ed(ZUY)=E) dix—i(ZY)
1=0

k
=Y dix-i(X,Y)/d’
i=0

k
> d(Y) +dij-1(X,Y)/a = > 27FaM/al
1=2

> M/a—(k-1)2""M/a
> 273 M /a.

Since some set Z must achieve this bound, we obtain the desired bound on
disct(G). m

We can now prove the main theorem of this section.

Proof of Theorem 8. As in the proof of Theorem 1, we may assume
that disct(G) < disc™(G). If disc™(G) > 2~k n(k+1)/2 we are done.
Otherwise, suppose disc* (G) = 2“7k2n(k+1)/2/a for some a > 1: we shall
show disc™(G) > 27 7F* ank+1)/2,

Note first that for disjoint sets X,Y C V(G), if
(14) di ko1 (X,Y) + ad(Y) > 2~ nk+D/2

then we are done by Lemma 11. It is therefore enough to find disjoint X,
Y satisfying (14).

Let V(G) = Xy U Wy_; be a random bipartition and let Wi_; =
X 1UWy_g,..., Wy = XoUW; be random bipartitions where, as usual, in
each bipartition each vertex is assigned independently to either vertex class
with probability 1/2. We define weightings w; on the i-sets in W; for each
1 by

(15) wi(K) =di1,. 1(K, Xig1, .-, Xk)-
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Let Wy, = V(G) and define wy, = w. Then for 1 <i < k and K € I/Vi(i)>
wi(K) =di1,. 1(K, Xit1, .., Xx)

= Z div1,.1 (K U{z}, Xiga, ..., Xx)

z€Xit1

= Z ’LUH_I(KU {CC})

T€EXi41

It therefore follows from Lemma 10 that given W;;, and w;y1,

(16) E Y |w()|>@+10270) 3" Jwy(L)]/ven.

Kew!" Lew{tV

It follows that

E D> |dia1({z}, Xo,o ., Xi) | =E ) |wn(a)

xeW reW

> ki2=(%) 3 Jun(x)|/(Var)*

Kew®
— jip- (3 (:) J(an) k=172,
Let X1+ = {:1: eWy :dy a(z,Xoy ..., X) > 0}, Then, as in (11),

(17)
B i O Xar. o X0) 2 gt CE) (1) fam) 072 -,

We partition the edges in Vp = X;- UUY_, X; that meet X" in exactly one
vertex as follows. For a nonempty S C {2,...,k}, let Vs = |J;cg Xi and
Es={KuU{z}:ze X}, Ke V&V |KNXi|>0VieS}. Let ds =
Y keps w(K) and note that dyp-1(XH,Vs) = Yogrcsdr and diy gy =

::::
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,,,,,

di,.1(X], Xa,...,Xk). Let Sp be minimal with |ds,| > (2k)~ kHS'd{ ,,,,, k)

max |dv k-1 (XT, 9)| > |di—1(XT, Vs,)|

> lds,l— 3 ldrl

0#£TCSo

|Sol—-1

.....

Thus it follows from (17) that

E max |d1k l(X1 ,V5)| 22"3“71('”’“)/2
Sc{2,...,

and so there is some S C {2,...,k} with
E|dl,k—l(Xil-a VS)‘ > 2—31»'2,”’(1»‘4—1)/2/216.

Now let Y = Vg and X7 = {”c €W dl,k—l({fﬁ}, Vs) > O}. Then, since
E dyj_1(W1,Vs) =0, we have

E dl.k—l(Xga Vs) > 2—3k2n(k+1)/2/2k+1 > 2—4k2n(k+1)/2_
Finally, since E d(Vs) = 0, we have
E dy 1 (X3, Vs) + ad(Vs) > 27 * (4172,
It follows that there are sets X, Y satisfying (14). m
We note that Theorem 8 implies the following bound on
disc, (G) disc, (G)

for unweighted hypergraphs G.
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Corollary 12. Let G be a k-uniform hypergraph with n vertices and p(};)
edges. Then

disc, (G) disc, (G) > 9 MKHH2p2(1 _ )2kt

Proof. The result is trivial if p = 0 or p = 1. Otherwise, let H be the

complete k-uniform hypergraph on the same vertex set as G with edge-

weighting w defined by w(e) = 1/2p if e € E(G) and w(e) = —1/2(1 — p)

otherwise. Then Y w(e) =0 and Y |w(e)| = (}), and so, by Theorem 8,
disc™ (H) disc™ (H) > 27 14K pk+1,

Now for Y C V(G),
400 =) -('y)

= Z (1xep@) — D)

Key®)
= Y, 2p(1-puw(K)
Key k)
= 2p(1 — p)d (V).
Thus
(18) disct (G) disc; (G) = 4p*(1 — p)* disc™ (H) disc™ (H),
which implies the required bound. =
We can, however, improve upon the p?(1 — p)2 term in Corollary 12 (at

the cost of a slightly worse constant) to obtain a bound similar te that in
Theorem 1. First, however, we need a version of Lemma 7 for unweighted

hypergraphs.

Lemma 13. Let G be a k-uniform hypergraph of order n with p('[) edges,
where p(1 —p) > 1/n and n > 2k. Let V(G) = X UY be a random

bipartition. Then

E S |de1a(,Y) = plY|| 2 272 /pT = p)n*~2.

KeXx(k-1)
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Proof. We follow the argument of Lemma 7. As before, we may assume
p<1/2. Let V =V(G) = XUY be a random bipartition. For K € V-1
let d(K) be the number of edges of G containing K and define 7(K) by
d(K)=p(n—k+1)+r(K). Let d = p(n — k+ 1). Then, as in Lemma 7,

]Eldk_lyl(K,Y\K) —p]Y\KH > %max{}r(K)],(l - p) d(K)/Q}.

For K € V*=B  we define I(K) = 1 if K ¢ X and I(K) = 0 otherwise.
Then I(K) and d—1,1(K,Y \ K) are independent random variables, so

E ) |de-11(KY)—plY||
Kex (k-1

=E Y I(K)|dp-1,1(K,Y \ K) —p|Y \ K||
KeV(k=1)

=271 S E|de1a(K Y \K) - plY \ K|

Kev (k=1
22_kmax{ Yo rm)|, > a-p d(K)/2}
KeV(k-1) KeVv(k-1) :

> 270D N (K| + (1 - p)Vd(K)/2.
Kev(k-1)

Since lr(K)l + (1 — p)\/d(x)/2 is minimized when 7(K) = 0 and d(K) =
p(n—k+1),
n ~(k
E Z ldk—l,l(Kvy)_pIYH > (k_1>2 ( +1)(1_p) p(n_k+1)/2
Kex (k=1

> 9%’ p(l1—p)n :. [ ]

Theorem 14. Let G be a k-uniform hypergraph of order n with p(',;) edges,
where p(1 — p) > 1/n. Then

disc; (G) disc, (G) > 9218 51 — p)nktl,
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Proof. Let H be the complete k-uniform hypergraph on V(G) with weight-
ing w(e) =1—pif e € E(G) and w(e) = —p otherwise. Then disc*(H) =
disc;(G) and disc™ (H) = disc, (G). Note that w(H) = 0. As usual we may
assume p < 1/2 and disc™(H) > disct(H) = 2“9’“2\/1)(1 —p)nktD/2/ 0
If « < 1 we are done, so we may assume a > 1. We will show that
disc™(H) > 2-9%% /p(1 — p)an +t1/2_If there are disjoint X,Y C V(H)
with

(19) dyp—1(X,Y) + ad(Y) > 276K \/p(T — p)ntk+1/2

then we are done by Lemma 11. Thus it is enough to find disjoint X, Y
satisfying (19).

As in the proof of Theorem 8, we define random sets Wy, = X D Wy_; D
.. D W), where the i-sets in W; are weighted as in equation (15). Then by
Lemma 13,

(20) E Y |uwa(K)| 2 27% V/p(1 —p)nk3,
Kewl*7V
while W1, ..., Wi_o satisfy (16). We have
EY |u@)]>k-11276 Y e (5)|/(v2n)

reW; KEW[SI_C__II)
and so, defining X as before, we can replace (17) by
(21) Edy. 1 (X;, Xa, ..., Xg) > 27% \/p(1 — p)nt+1/2,
The argument is completed as before (with all bounds changed by a factor
27%\/p(1—p)). =
The following corollary is immediate.

Corollary 15. Let G be a k-uniform hypergraph of order n with p(Z) edges,
where p(1 — p) > 1/n. Then

disc,(G) > 9~ 9k* p(1 - p)nk1/2,

We note that Corollaries 2 and 15 are best possible up to the value
of the constant 279, To see this, let G € G*)(n,p) be a random k-
uniform hypergraph, where each possible edge is present independently with
probability p, and let S C V(G). Let N = () and

h=(1+¢e)k!™2/2p(1 = p) In2n*+1/2,
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Then by standard bounds on the tail of the binomial distribution (see [2],
Theorem 1.3), provided p(1 — p) > cxn!™*, for any subset S of V(G) we
have

P(|dy(S)| > h) <P(|B(N,p) — Np| >h) <27"

for sufficiently large n. Thus there is some k-uniform hypergraph G of order
n with disc,(G) < h.

Let us also note that the gain from p%(1 — p)? to p(1—p) between Corol-
lary 12 and Theorem 14 comes because a “typical ” vertex in G has degree
p(Zj): so if p is small, then the weight around a typical vertex is con-
centrated in fairly few edges. We remark that no similar bound is possible
for the larger class of k-uniform hypergraphs with ) |w(e)t = ('Z) such
that 3 max {w(e),0} = p(}): consider a random k-uniform hypergraph

H € G®)(n,1/2), and let G be the weighted hypergraph obtained by giving
each edge weight 2p and each non-edge weight —2(1 — p). Then if e(H) =
%('Z) (which happens with probability at least c;cn‘k/2 if (2) is even) we
have Y |w(e)| = (}) and )" max {w(e),0} = p(}). On the other hand, it
follows from (18) that disc;r(G) disc, (G) = 4p2(1 — p)? disc™ (H) disc™ (H),
while disc* (H) and disc™ (H) are both O(n*+1)/2) with exponentially small
failure probability.

It is interesting to ask about the range in which Theorem 1 and Theorem
14 are sharp (up to the constant). For instance, in the case of graphs
the remarks above show that disc;' (G) and disc, (G) can both be around
c/p(1 — p)n®/2. When p is (about) 1/2, the complete bipartite graph and
its complement show that we can have discrepancy O(n) on one side (and
cn? on the other). Thus Theorem 1 is sharp in in middle of the the scale
from cn to ¢'n?, and (for p = 1/2) is sharp at the ends. How sharp is it at
other parts of the scale, or at the ends when p # 1/27

The constant in Theorem 14 is clearly not best possible. A more careful
version of the argument should improve it to 27¢!"*; it would be of interest
to know the correct order of magnitude. It would also be interesting to know
what happens in the range n'=% < p < 1/n.

4. SUBGRAPH DISCREPANCY

In previous sections we have been concerned with the discrepancy of sub-
graphs or, equivalently, 2-colourings of the complete graph. We begin this
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section by considering 2-colourings of an arbitrary graph: questions of this
form were raised by Sés in [11].

For a k-uniform hypergraph G, a subgraph H of G and a real number
p € [0, 1], we define

discy (H,G) = max. e(HS]) - pe(GS)

and

disc, (H,G) = Slcnva(xc)pe(G[S]) —e(H[S)).

Note that if G is the complete k-uniform hypergraph then these two defini-
tions agree with (1) and (2). We set

disc,(H, G) = max { disc; (H, G), disc, (H,G)}.

We begin with a fairly straightforward analogue to Theorem 8. Note
that arguing as in Corollary 12 gives a bound with p?(1 — p)2 in place of

p(1-p).

Theorem 16. Let G be a k-uniform hypergraph with n vertices and m
edges, and let H be a subgraph of G with pm edges, where p(1 —p) > 1/n.

Then
dlsc (H,G)disc, (H,G) > o~ 18k2 p(1 — p)ym?/nF1,

We first need a version of Lemma 13.

Lemma 17. Let G be a k-uniform hypergraph with n vertices and m
edges, and let H C G be a subhypergraph of G with pm edges, where
p(L—p) >1/n. Let V(G) = X UY be a random bipartition. Then

EY |df) (K, Y) - pd@ (5, V)| 2 276D eI = p)m/ V.

Kex (k-1

Proof. For a partition V(G) = X UY, let us write

G
[y =3 i (K Y) - pd®) (K, Y]
KeX (k-1

As in Lemma 13, we may assume that p < 1/2 or else replace H by its
complement in G. For K € V=1 let dy(K) be the number of edges of
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H containing K and let dg(K) be the number of edges of G containing K.
Define r(K) by dgy(K) = pdg(K) + r(K). Then, as in Lemma 13,

max{|r(K)|,(1——p)\/dH(K)/2}.

H G
Eldi_)l,l(K,Y\K)—pd,ﬁ_)lyl(K, Y)| >

DN —

Thus
Ef(X,Y)>27®) N 0 (K)| + (1 - p)Vdu(K) /2.

Kev (k=1

Now |7'(K)| + (1 = p)y/dr(K)/2 is minimized when 7(K) = 0 and so
dy(K) = pdg(K). Thus

Ef(X,Y)227®H) %7 (1-p)v/pdo(K) /2

Kev(k—-l)
> 270D N (1 - p)da(K)V/p/2n
KeV(k-1)

since dg(K) < n. Now ) k-1 dg(K) = km, so

Ef(X,Y) > 2" *VEkm(1 - p)y/p/2n
> 2~ (k+D /p(1 = p)ym/ /7. [

Theorem 16 now follows by a modification of the proof of Theorem 14.

Proof of Theorem 16. Let V = V(G). We may assume p < 1/2 or replace
H by its complement in G. We define, as in Theorem 14, an edge-weighting
won V® by w(K)=1-pif K € E(H), w(K)=-pif K € E(G)\ E(H)
and w(K) = 0 otherwise. Note that then w(V) = 0. We may assume
disc, (H,G) > disc; (H,G) = 279 /p(1 -—p)e(G)/\/ﬁk_la. If a <1 we
are done, so we may assume « > 1. If there are disjoint X,Y with

de—1(X,Y) + ad(Y) > 27 /p(1 = pym/n(k-D/2,

then we are done as before by Lemma 11. Once again, we define random
subsets Wy = X D Wy_; D --- D Wj. Applying Lemma 17 instead of
Lemma 13 to Wj_, we can replace (20) by

(22) E Y |we ()| =27 Vp(l=p)m/ V.

(k=1)
Kew ]
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As before, W1, ..., Wi_q satisfy (16); applying this £ — 2 times to (22), we
see that (instead of (21)) we obtain

Ed(X;, Xo, ..., Xn) > 27% /p(1 - pym/n*=1/2

and the argument is completed as before. m

Corollary 18. Let G be a k-uniform hypergraph with n vertices and m
edges, and H a subgraph of G with pm edges, where p(1 —p) > 1/n. Then

disc,(H,G) > 2‘9’°2\/p(1 — p)m/n(k—l)/g

We obtain stronger results when there is a restriction on the maximum
overlap between edges of positive and negative weights.

Theorem 19. Let G be a complete k-uniform hypergraph of order n with
edge-weighting w. Suppose in addition that, for some 1 < s <, ifw(e) > 0
and w(e') < 0 then lene'| < s. Let M = Y |w(e)| and m = Y w(e). If
m = (2p — 1)M, where p(1 — p) > 1/n, then

disc}(G) disc; (G) > 278 p?(1 — p)>M2/n~",

Proof. Suppose first that p = 1/2, and let £ = {e t w(e) #0}. Asin
the proof of Theorem 8, we may assume disc* (G) < disc”™(G). Suppose
disct(G) = 2-%¢(H)/n's~D/2q, where o > 1. If there are disjoint X,Y

with

dyp-1(X,Y) + ad(Y) > 2% ¢(H) /nls-D/2
then we are done by Lemma 11. Otherwise, define W, X; and w; as before,
and consider Wy and wg. Since w(e) > 0 and w(e’) < 0 implies [eNe’| < s,
we have, for K € Ws(s),

|lws(K)| = Y |w(e)]

eNW,=K, |enX;|=1Vi>s

and so

E Y |ws(K)| =E > |w(e)|.

Kew® eNWs|=s, |eNX;|=1Vi>s



Discrepancy in Graphs and Hypergraphs 55

Let A, be the event that [eN W;| = s and |[eNW;| =1 for all i > s. Then
PA, > 2% and so E> ws(K)l > 2K )1, Applying Lemma 10 as
in (16), we obtain that

E Z ldl,...,1<{x},X27-~,Xk), Z]E Z ,’ws(K)l/(\/2_Tl)s_l

zeW Kew!

Kew!®

> 2—2k2M/n(s—l)/2

The rest of the argument follows as in the proof of Theorem 8.

Now suppose p # 1/2. As in the proof of Corollary 12, we multiply all
positive edge-weights by 1/2p and all negative edge-weights by —1/2(1 — p)
to obtain a new edge-weighting w’. The result follows immediately. =

As an application of Theorem 19, let us consider the complete subgraphs
of a graph and its complement. For ¢t > 2 and a graph G, we write k;(G)
for the number of copies of K; of G. We write

disck, (G) = max II»L [S]) - kk(G[S])l

For instance, disc,(G) is just disc (G). Clearly, complete subgraphs of G
meet complete subgraphs of its complement in at most one vertex: applying
Theorem 19 to the k-uniform hypergraph of complete or independent k-sets
gives the following result.

Corollary 20. For every graph G of order n,
disck, (G) > cknk“%.
For instance, in some subset S,

|ks(G[S]) — k3(G | > end/2,

Considering random graphs shows that this result is best possible up to
the constant. A similar approach yields results in some cases for discy(G)
where H is not a complete graph (and discy is defined in the obvious way).
It would be interesting to determine the correct order of magnitude of discy
for all graphs H. When H is fairly dense, so that copies of H and H cannot
overlap very much, we obtain a lower bound on discy (G) using Theorem 19.
However, when H is sparse this gives a much weaker bound; for instance,
what can we say when H is a tree?
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BirLANAR CROSSING NUMBERS I:
A SURVEY OF RESULTS AND PROBLEMS

E. CZABARKA, O. SYKORA*, L. A. SZEKELY' and I. VRT'O!

This paper is dedicated to the 70th birthdays of Andrds Hajnal and Vera T. Sds

We survey known results and propose open problems on the biplanar crossing
number. We study biplanar crossing numbers of specific families of graphs, in
particular, of complete bipartite graphs. We find a few particular exact values
and give general lower and upper bounds for the biplanar crossing number. We
find the exact biplanar crossing number of Ks 4 for every gq.

1. INTRODUCTION

During WWII in a forced work camp, Paul Turdn [27] introduced the
crossing number problem, in particular the Brick Factory Problem, which
asks for the crossing number of complete bipartite graphs. The present
paper surveys the few known results and proposes open problems on a
variant of the crossing number, the biplanar crossing number, and solves
the biplanar version of the Brick Factory Problem for Ks, exactly.

Recall that a graph G is biplanar [5], if one can write G = G} U Gy,
where G and G are planar graphs. Let cr (G) denote the standard crossing
number of the graph G, i.e. the minimum number of crossings of its edges
over all possible drawings of G in the plane, under the usual rules for

*This research was supported in part by the EPSRC grant GR/R37395/01.
' This research was supported in part by the NSF contract Nr. 007 2187 and 0302307.
!This research was supported in part by the VEGA grant Nr. 2/3164/23.
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drawings for crossing numbers [20, 26]. Motivated by printed circuit boards,
Owens [15] introduced the biplanar crossing number of a graph G, that we
denote by cro(G). By definition cra(G) = min { cr (Gy) + cr (G2)}, where
the minimum is taken over all unions G = G1UG3. A biplanar drawing of a
graph G means drawings of two subgraphs, G; and Ga, of G, on two disjoint
planes under the usual rules for drawings for crossing numbers, such that
G1UG9 = G. Owens described a biplanar drawing of the complete graph
K, with cra(K,) < 7n?/1536 + O(n3). One can define cry(G) similarly for
any k > 2, making G a union of k subgraphs. Determining cri(G) would
have application to the design of multilayer VLSI circuits [1]; but perhaps
the case k = 2 is the most interesting, and even this simplest case is little
explored so far. Note that one always can realize cro(G) by drawing the
edges of G; and G5 on two different sides of the same plane, while identical
vertices of G and G9 are placed to identical locations on the plane on the
two sides.

The biplanar crossing number problem is related to the thickness and
book crossing number problems. The thickness ©(G) of G is the minimum
number of planar graphs whose union is G. By definition, cry(G) = 0 if
and only if ©(G) < 2, i.e. G is biplanar. The nature of the crossing number
and the biplanar crossing number problems seems different, since testing
whether cr (G) = 0 can be done in linear time, while testing biplanarity is
an NP-complete problem [12]. Asano’s result [3] implies that if a graph is
toroidal, then cro(G) = 0. Surveys on biplanar graphs and the thickness
problem can be found in [5, 13].

A k-book embedding of a graph G consists of placing vertices of G on
the spine of a book and drawing each edge on one of the k pages. The book
crossing number of G, denoted by vi(G), is the minimum total number of
crossings on all pages among all k-page book embedding of G [21]. One can
easily observe that cra(G) < v4(G).

We denote by n the order and by m the size of a graph, and we deviate
from this rule only for complete bipartite graphs.

We are indebted to an anonymous referee for their comments.
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2. GENERAL RESULTS

2.1. Variants of Euler’s formula

Little is known about the biplanar crossing number in general. Some of
the lower bounds for crossing numbers, mutatis mutandis apply to biplanar
crossing numbers. For example, the lower bound resulting from Euler’s
formula, cr (G) > m — 3n + 6 for n > 3, provides

(1) cro(G) > m — 6n + 12.

There is a strengthening of the lower bound resulting from Euler’s formula
for graphs G with girth > g, cr (G) > m — g(n —2)/(g — 2) for n > g; and
we get

(2) cra(G) > m —2 J 2(n -2)

g_

for n > g (it follows from combining Theorem 2.1 in [5] with the arguments
in [20]). Pach and Téth showed ([18] and personal communication from G.
T6th) that with n > 3

(3) cr (G) > 6m — 33n + 66,
and for triangle-free graphs with n > 4
(4) cr (G) > 6m — 27n + 54.

These results immediately imply their counterparts for the biplanar crossing
number:

(5) cro(G) > 6m — 66n + 132,
for n > 3; and for triangle-free graphs with n > 4

(6) cra(G) > 6m — 54n + 108.
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2.2. Other lower bounds

Using our (1) instead of formula (1) from [20] in the second proof of Theorem
3.2 in [20], one obtains the following biplanar counterpart of the Leighton
[10] and Ajtai et al. [2] bound: for all ¢ > 6, if m > cn, then

c—6 md
7 2(G) > —— - —.
( ) CI‘z( )— o3 n2

For somewhat denser graphs one can improve (7) using the Pach-Téth’s

results cited above.

Pach, Spencer and Téth [17] proved a conjecture of Simonovits, improv-
ing the bound of (7). If G has girth > 2r and m > 4n, then

(8) cr (G) =0 <’:—:f-> .

It is easy to see that (8) also hold for cry instead of cr, if m > 8n.

Lower bounds for the crossing number based on the counting method [20]
provide similar arguments setting lower bounds for the biplanar crossing
number. Since we are going to use it, we review the counting method.
Assume that we have a sample graph H. Take a graph G together with a
biplanar drawing which realizes its biplanar crossing number. Without loss
of generality we may assume that no adjacent edges cross and any two edges
cross at most once in the drawing [26]. If we find A copies of H in G, and
no crossing of the drawing belongs to more than B copies of H, then

cro(G) > crz(H)—g—.

However, important techniques as the embedding method [10] or the
bisection width method [16], [24] (see also the survey [20]) do not seem
to generalize to biplanar crossing numbers. Even worse, as Tutte noted
[5], the biplanar crossing number is not an invariant for homeomorphic
graphs; in fact, the edges of every graph can be subdivided such that the
subdivided graph is biplanar! Furthermore, Beineke [5] shows that the
minimum number of subdivisions needed to make a graph biplanar equals
the minimum number of edges whose deletion leaves a biplanar graph.

Open Problem 1. Find lower bound arguments for the biplanar crossing
number based on structural properties of graphs, not merely on the density
of graphs.
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J. Spencer [25] was the first to find such a lower bound. Say that a
graph of order n and size m has property (), if for every vertex set A
with n/6 < |A| < 5n/6, the number of edges between A and A is at least
m/10000. Spencer showed that if m > cn for a certain ¢, Y. d? = o(m?),
and the graph has the (%) property, then cro(G) = Q(m?). Since random
graphs have the (%) property, the biplanar crossing number of the random

graph is Q(p? ('2’)2) for p > ¢’/n. Bounded degree expander graphs also have
property ().

2.3. Drawings, upper bounds

We showed [23] using a randomized algorithin, that for all graphs G,

(9) cry(G) < gcr (G).

However, one cannot give an upper bound for cr(G) in terms of cro(G),
since there are graphs G of order n and size m, with crossing number
cr (G) = ©(m?) (i.e. as large as possible) and biplanar crossing number
cry(G) = ©(m3/n?) (i.e. as small as possible), for any m = m(n), where
m/n exceeds a certain absolute constant. As [23] shows, such graphs G can
be obtained from a certain graph H with cr (H) = ©(m?/n?), such that
vertices of H are identified with identically named vertices of H™, where
HT is obtained from H by permuting the vertices randomly.

Open Problem 2. What is the smallest number ¢* (in place of 3/8), with
which (9) is true?

Owens [15] came up with a conjectured crp-optimal drawing of K, which
has about 7/24 of the crossings of a conjectured cr-optimal drawing of K.
This might give some basis to conjecture that ¢* < 7/24. On the other hand,
we will show in (19) that cry(K,) > n*/952 for large n, and comparison
with cr(K,) < n*/64 [29] proves c* > 64/952. We used (9) to prove that
for any graph G, ©(G) — 2 = O( cr(G)‘4057) [23]. It is likely that .4057
can be replaced by smaller constants, perhaps with .25. The example of a
complete graph shows that the constant cannot be smaller than .25.

We see a curious phenomenon. Call a biplanar drawing realizing the
biplanar crossing number of a graph G self-complementary, if the subgraphs
G and G4 are isomorphic in the graph theoretic sense. Ky is biplanar, and
a self-complementary drawing shows it [5], and the same can be told about
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Ks12. Self-complementary biplanar drawings are very convenient to draw.
As G and G are isomorphic we only need to label the vertices by symbols
like (a : b), which means that the vertex in question is vertex a in the
drawing on the first plane, and is vertex b in the drawing on the second
plane. (See Figs. 1, 2, 3, 4.) Our drawing in Theorem 6 for the hypercube
Q. with even k—although clearly not optimal, but probably near-optimal—
is also self-complementary.

Open Problem 3. Show that if K, or K, , has an even number of edges,
then it has an optimal biplanar drawing, which is self-complementary.

Concerning upper bounds for cro(G), in terms of m, we proved in a
joint paper with Shahrokhi [21] a general upper bound for the k-page book
crossing numbers of graphs:

1 1 . m?
(G)< — [1- = | m? sl
(10) pi(G) < T <1 2k) m*+ O (kn) ,

which together with cro(G) < p4(G) gives a general upper bound on cra(G)

7 2 7712
- < —_ P .
(11) CIQ(G) 384777, + O ( >

3. RESULTS AND PROBLEMS ON COMPLETE BIPARTITE GRAPHS

The famous Zarankiewicz’s Crossing Number Conjecture or Turdn’s Brick
Factory Problem is as follows:

w55

Kleitman showed that (12) holds for ¢ < 6 [9] and also proved that the small-
est counterexample to the Zarankiewicz’s conjecture must occur for odd p
and q. Woodall used elaborate computer search to show that (12) holds for
K77 and K79. Thus, the smallest unsettled instances of Zarankiewicz’s con-
jecture are K71, and Kgg. The following remarkable construction suggests
Zarankiewicz’s conjecture: place |p/2] vertices to negative positions on the
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z-axis, [p/2] vertices to positive positions on the z-axis, |q/2] vertices to
negative positions on the y-axis, [q/2] vertices to positive positions on the

y-axis, and draw pq edges by straight line segments to obtain a drawing of
KP,(I‘

In this section we work towards a biplanar analogue of the Zarankiewicz’s
Conjecture and make conjectures for the cases ¢ = 6 and 8.

3.1. Lower bounds for complete bipartite Graphs

The girth formula (2) yields
(13) cra(Kpq) 2 pg—4(p+q—2).

One can use the counting argument with H = Kjg 10, G = K4, and the
fact that cro(K10,10) > 28 from (13), to obtain:

Theorem 1. For 10 < p < q, we have

(14) era(K ) > p(p = 12)9qo(q -1

For p < 9 we make a finer analysis of cro(Kpq).

3.2. Exact results for complete bipartite graphs

It is easy to see that Ky 4 is always biplanar. The result on the thickness
of complete bipartite graphs of Harary et al. [4] implies that for ¢ < 12,
O(Ks4) < 2 and O(K513) = 3. Hence cra(Ks13) > 1. Paterson [19]
observed that cro(Ks,13) = 1. Determining the biplanar crossing number of
Ks 4 for ¢ > 14 is the main result of this paper.

Theorem 2. For any q¢ > 1, we have

=[] 05[] -9)

and for even q there is an optimal drawing, which is self-complementary.
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Fig. 1. Self-complementary drawing of K 12

Proof. We provide a drawing first. Assume that ¢ = 12a +b, 0 < b < 12.
Partition the ¢ vertices into 12 consecutive arcs, which are as equal as
possible. Let these arcs be Si,So,...,S12. Clearly b arcs contain a + 1
vertices and 12 — b arcs contain a vertices. Consider the regular 12-gon
inscribed into the unit circle centered at (0,0), with one vertex placed in
(1,0). Fig. 1 shows a self-complementary biplanar drawing of K3 12, where
the 12 vertices are placed into the vertices of the regular 12-gon. To draw
K5 4, we place the 5 vertices into the locations as they take in Fig. 1. We use
small neighborhoods of the vertices of this regular 12-gon for the placement
of the 12 arcs on the circumscribed circle of the 12-gon, starting with S; at
(1,0), and going counterclockwise, i.e. put S; where the vertex is (i : 5 — 1)
on the figure. Now we describe a drawing of K5 4 on the first plane.

Place vy at (—2,0) and join it to Sy, Ss, Ss, S7, Sg, Sa, S1o.

Place vy at (0,——%) and join it to Sg, Sy, S0, S11, S12-

Place v3 at (0,0) and join it to Si2, S1, S2 and Se, S7, Sg.

Place v4 at (2,0) and join it to S1o, S11, S12, S1, S, S3, S4.

Place vs at (0, %) and join it to So, S3, S4, S5, S6.

On the second plane, place v; at (0, %), v at (2,0), vz at (0,0), vg at
(0, —%), and vs at (—2,0). Put S5_; (counting mod 12) where S; was in the
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first plane and and draw the remaining edges exactly with the same curves
that we used in the first plane.

In general, vertex (i : 5 — i) represents an arc with S; in the first plane
and an arc with S5_; in the second plane. Clearly the number of crossings—
as we made the necessary crossings only—is exactly

B(5) () ().

1=1

Substituting a = |¢/12] and b = q¢ — 12|q/12]| into the previous formula we
get the required upper bound.

We obtained above a self-complementary drawing of Ks 124. To make
this drawing self-complementary for every even g, the question is, where we
put the extra b = 2b’ vertices. Whenever we have to add two new vertices,
they must be added to arcs S; and Ss—; for some i. Note that the twelve
arcs make exactly 6 such pairs.

The lower bound is proved by induction on q. The claim is true for
12 < g < 24, as formula (2) gives a lower bound of ¢ — 12. Assume that
it is true for some ¢ > 24. Using the counting argument with H = Kjs g,
G = Ks441, we argue that

cra(Ksg11) — [9—;;—1J (q ~6 [9{—1J - 5)

G- 52 -1 -

e ool -9 -1 ol

To conclude the proof, one has to show that the expression inside the
big brackets of the last line is greater than —1. This can be done by
distinguishing two cases: whether ¢ = 11 (mod12), or not, and doing some
algebra. =

v

Other exact results that we know about cra(Kp 4) are summarized in the
following table. In some interesting cases we also included lower and upper
bounds.
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pvs.q| 78] 9 | 10 J11]12] 13 [14[15]16
6 0]0] 2 4 J6[8] 10 [12]14]16
7 1[4] 7 10 [13]16]19,21
8 48] 12 16 |20 |24 [ 29,32
9 7 [12]17,19 22,24
10 |[10]16[ 22,24 [ 28,32

All the lower bounds in the table follow from the lower bound (13).
Exactness for p = 6 follows from Theorem 3 in Subsection 3.3. Exactness
for p = 7 follows from the drawing Fig. 2 of K712 for ¢ = 12; and optimal
drawings for K74 for 8 < ¢ < 11 can be obtained from Fig. 2 by successively
erasing vertices 12, 11, 10, 9, in this order. Note that the drawings obtained
for K78, K710, and K7 are also self-complementary. Unfortunately, we
do not have a biplanar drawing of K7, that we would dare to think optimal.

Fig. 2. Self-complementary drawing of K7 12

Exactness for p = 8 follows from the self-complementary drawing Fig. 3
of Kg12; optimal drawings for Kg4 for 6 < g < 11 can be obtained from
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that drawing by e.g. successively erasing vertices 12, 1, 7, 6, 10, 3, in this
order.

Fig. 3. Self-complementary drawing of Kjs,12

One can get drawings for Ko, and Kjo, from the general drawing
described in Subsection 3.4. We know that as early as for Ki; 11 or K13,
the estimation (13) is no longer the best lower bound. This follows from
the arguments that lead to (6).

3.3. Conjectured exact results for complete bipartite graphs

Theorem 3. For any q > 1, we have

st <2[8](a-[2] 1)

This bound is optimal for any q < 16.

Proof. We provide two different drawings. First drawing. On both planes
we draw a “thinned out” copy of the drawing from the Zarankiewicz conjec-
ture. Place the vertices v;, v and v3 (resp. uj, ug and u3) on the positive
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(resp. negative) part of the z axis, in this order from the origin. Partition
the g vertices into 8 almost equal sets, Sy, So, S3, Sq and 11, T, T3, Ty.
Place Si(T;), i = 1,2, 3,4 consecutively from the origin toward infinity (mi-
nus infinity) on the y axis. On both planes we connect any v;, u; to all or
no vertices of any Sy or Tj, and all connections are straight line segments.
For the drawing on the first plane join v; and u; with Sy, So, T1, To; vy and
ug with So, S3, To, T3; vz and uz with S3, S4, T3, T4. For the drawing on
the second plane the locations of v;’s and wu;’s are the same. But place the
S;’s vertices in the order S3, Sy, S1, S, from the origin toward infinity; and
place the T;’s vertices in the order T3, Ty, T, T3, from the origin toward
minus infinity. Draw the remaining edges with straight line segments. The
number of crossings is precisely

a5y o((151) + (151) + (150) & (190) 4 ()
)+ (2)+(3)

Simple algebra shows that this is equal to the expresion in the statement
of the Theorem.

Second drawing. Fig. 4 shows a crossing-free self-complementary drawing
of Kgg. We explain how to extend it into a self-complementary drawing
with the same number of crossings as the first drawing. Assume first that
n = 8k. Substitute every lettered vertex in Fig. 4 with k vertices on a
very short straight line segment. We will join all three former neighbors
of a lettered vertex to all k successors of the lettered vertex. Join one of
the three from one side of the short straight line segment, and join the two
others from the other side of the short straight line segment. Clearly the
number of crossings is the same as in (15). If ¢ = 8k + 7 (1 < r < 3), then
use k + 1 successor vertices for 7 of the lettered vertices (a : a) and (c : c)
and (g:g). ff q=8k+4+r (1 <r <3), then use k + 1 successor vertices
for the lettered vertices (e : b) and (b : €) and (d : f) and (f : d); and also
use k + 1 successor vertices for r of the lettered vertices (a : a) and (c : c)
and (g : g). The number of crossings is—in all cases—the same as in (15)
again.

The optimality of the lower bound for ¢ < 16 follows from (2), which
gives a lower bound of 2¢ — 16. =

We would like to point out that if cra(Ks,q) is even for every g, then the
counting argument from the proof of Theorem 2, mutatis mutandis, can be
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Fig. 4. Self-complementary drawing of Ks g

repeated for Theorem 3. Note that if K¢, has an optimal biplanar drawing
in which G is isomorphic to G, as we conjecture, then cra(/g4) is even.

Theorem 4. For any q > 1, we have

et $4[2] o3[ 5)

This bound is optimal for any q < 12.

Proof. Place the vertices vy, ve, v3 and vy (resp. uj, ug, us and uq) on the
positive (resp. negative) part of the y axis, in this order from the origin.
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Partition the g vertices into 6 almost equal sets, S1, Sa, S3 and Ty, Ts, T5.
Place Si(T;), 1 = 1,2, 3, consecutively from the origin toward infinity (minus
infinity) on the z axis. On both planes we connect any v;, u; to all or no
vertices of any Sy or Tj, and all connections are straight line segments. For
the drawing on the first plane join v; and u; with Sy, T1; vy and ue with
Sy, So, 11, Ty; vs and us with So, S3, T, T3 and v4, ugq to S3, T3. For the
drawing on the second plane the locations of S;’s and T;’s are the same.
But place the v;’s vertices in the order vs, vy, v1, vo, from the origin toward
infinity; and place the wu;’s vertices in the order us, u4, uj, ug, from the
origin toward minus infinity. Draw the remaining edges with straight line
segments. The number of crossings is precisely

((3)(3) - (2)+(3)+ (2)+ (%)

The rest is similar as in the proof of Theorem 3. Optimality follows from
(2), which gives a lower bound of 4¢ —24. m

Open Problem 4. Prove that the upper bounds in Theorem 3 and in
Theorem 4 are optimal. Make a first step in this direction by proving that

cro(Keq) = (% + o(l))qQ.
3.4. The best known drawings for other complete bipartite graphs

Theorem 5. For any p > 6, ¢ > 8, we have

ety < 2] ] (23] [£] - 0[] -1 ]2] 1)

1
< m(zﬂr 5)(q+T7)(2pqg+4p+q—T7).

Proof. We generalize the drawings for (s, and Ky,. Partition the p
vertices into almost equal sets X1, Xo,...,Xs. Place X;, Xo, X3 (resp.
X4, X5, Xg) on the positive (negative) part of the x axis in this order from
the origin towards infinity (minus infinity). Partition the g vertices into
almost equal sets Y1,Ys, ..., Ys. Place Y1, Yo, Y3, Yy (resp. Y5, Y, Y7, Y3)
on the positive (negative) part of the y axis in this order from the origin
towards infinity (minus infinity).
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On both planes we connect all vertices of any X; to all or no vertices
of any Y}, and all connections are straight line segments. For the drawing
on the first plane join X; and Xy with Y3, Y5, Y5, Ys; Xo and X5 with Y5,
Y3, Y, Y7; X3 and Xg with Y3, Yy, Y7, Ys. For the drawing on the second
plane the locations of X;’s are the same. Place the Y;’s vertices in the order
Y3, Yy, Y1, Yo, from the origin towards infinity; and Y7, Ys, Vs, Ys, from
the origin towards minus infinity on the y axis. Draw the remaining edges
with straight line segments. By counting up of all kinds of crossings in the
drawing and by regrouping terms we get that the number of crossings is
precisely

(2 (5 + (%) + (%)

(V1] |Ya] + |Y3] |Ya| + |Y5| V6| + |Y7| |Y3])

o
N ((I?;?l) ; (l);s')) (1] 1] + [Yal [Ya] + [Y5| [Ya] + Y| [Y7))

conam s (5)+(5)+ () ()
conama (5)+(5)-(2)- (1)

First assume that p is divisible by 6 and ¢ is divisible by 8. One can easily
compute that the number of crossings is pg(2pq — 10p — 9q + 36)/144.

Now let p, q¢ be arbitrary numbers. Let p’ be the smallest number
divisible by 6 such that p’ > p and ¢’ be the smallest number divisible by 8
such that ¢’ > g. Then the number of crossings is at most p'q’(2p'q’ — 10p’ —
9¢' +36)/144. Noting that p’' = 6 |—’631 <p+5andq = 8[%] < q+7 we get
the claim. =

Open Problem 5. Make a conjecture showing a pattern for optimal bi-
planar drawings of K, 4, i.e. pose the biplanar version of the Zarankiewicz
conjecture. A good conjecture for K7, already seems to be hard to find.

Open Problem 6. Find an asymptotic formula for cry(Kp,) for small
fixed p.
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4. RESULTS AND PROBLEMS ON OTHER SPECIFIC FAMILIES GRAPHS

4.1. Complete graphs

Note that bounding cry(K,) is a Nordhaus-Gaddum type problem [14].
Owens gave an explicit biplanar drawing of K, with

Ty 3
n) <
cro(Ky) < 1536n + O(n?).

The same upper bound (up to the second order term), based on a different
drawing follows immediately from our work with Shahrokhi [21] by setting
G = K, in (11).

Harary et al. [4] and Tutte [28] showed that for n < 8, ©(K,) < 2 and
O(Kyg) = 3. Their construction actually also shows cra(Ky) = 1. Applying
the counting argument for H = K 10, G = Kp, and using cra(Kjo,10) > 28
from (13), we obtain

1 4 3
(16) cr2(Kn) 2 7zn" +O(n%).

We can do somewhat better than (16). Consider a biplanar drawing D
of K,. Then any subset of vertices induces a biplanar subdrawing, D’, of
the induced complete subgraph G’. Assume that G’ has order n’ and size
m' = (%). According to (5),

6m’ — 66mn' + 132 if n/>3

6m’ —66n' +132—-12 if n' =2

6m’' —66n’ +132—-66 if n' =1

6m’ —66n' +132 —132 if n' =0.

(17) crg(G') >

Pick now independently with probability p vertices of K, to obtain a random
G'. Taking expectation of the inequality of two random variables, (17), we
obtain:

n

(18) ptera(Ky) > 6mp? — 66np + 132 — 12(2

>p2(1 -p)"?

— 66np(1 —p)" ' —132(1 — p)™.
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Setting p = 30.073871/n in (18) yields that for n sufficiently large,

4

n
(19) cra(Ky) > 952"

It follows from the counting argument applied to G = K, and H =

Kn_1, that cr (Ky)/ (2) is a non-decreasing function of n, and hence has
finite limit. The same argument applies to cro(Ky) as well

Open Problem 7. Improve the lower bound in (19). Is

n 7T 24 7
lim cro(K. / L2 1y
alm crz(Kn) (4) 24 64 64
Find exact values for the biplanar crossing numbers of complete graphs for
small values n = 10,11, ... .

4.2. Hypercubes

For the k-dimensional hypercube Q, it is known that ©(Q7) < 2 and the
estimation (2) gives cro(Qs) > 8. We give a general upper bound for the
biplanar crossing number of hypercubes.

Theorem 6. For k > 8

165
512
176
512
Proof. Our biplanar drawing of Q) is based on the best known planar
drawing due to Faria and Figueiredo [6] satisfying

(20) cr(Qu) < Tt

Let 0 <7 < k. Observe that all edges belonging to the first « dimensions in
Qy induce 2¢ distinct hypercubes isomorphic to Qi_;. Draw these hyper-
cubes on the first plane and the 25~% hypercubes isomorphic to Q;, induced
by the last k — i dimensions on the second plane, using (20). We get a

biplanar drawing with
165 209 p2k—i 165 oh+i.

r2(Qr) < T4 1024
Finally, by setting i = [k/2], we get the result. ®

295k 4 O(k22%), if k is even,
cra(Qr) < \
——23%F 1 O(k22F), if k is odd.

— (2k% — 11k + 34)2F 3,
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Unfortunately, the lower bound formula (7) gives only a weak estimation
of order Q(k*2*), and even (8) improves it insignificantly to Q(k*2%). In
order to use (8), we have to note that we can keep a positive percentage
of edges of @, while destroying all 4-cycles by throwing out edges, see
[8]. We know that our drawing is not optimal: some edges between vertex
disjoint copies of Qi/2) (resp. Q[x/21) can be brought over from the other
plane without making new crossings, and in this way their old crossings are
eliminated.

Open Problem 8. Is the upper bound in Theorem 6 still the best possible
up to a constant multiplicative factor?

4.3. Meshes

In the standard plane crossing number theory one of the most studied graph
is the toroidal mesh, i.e. the Cartesian product of two cycles. See the recent
paper [7] for the almost complete exact solution. We will concentrate on
the biplanar crossing number of toroidal and ordinary meshes. It is an
easy exercise to show that the graph Cp, x Cy, X Cp, is biplanar for any
3 < n1,n9,n3. On the other hand Cy, x Cp, X Cp; x Cy, has thickness at
least 3. We do not know whether

Open Problem 9. Is it true that cra(P, X Cp X Cp X Cp) = 07

If it is nonzero, it is surprisingly small, since we have a biplanar drawing
showing that cra(P, x Cp x Cp x Cy) = O(n*), which is just linear in the
number of edges. (Put edges from the first two dimensions on the first plane,
and edges from the second two dimensions on the second plane.)

Theorem 7. For even k

k
k
cry (HC") < 235k 2,
i=1

Proof. Put the edges of the first k/2 dimensions on the first plane. They

k - . . £
induce 22 vertex disjoint subgraphs isomorphic to [[2;Cn. Place the
leftover edges on the second plane. Using the estimation

k
2
cr (H Cn) < 16nk2
i=1
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from [22] we get the result. m

We leave it to the Reader to prove an analogue of Theorem 7 for odd k.

Open Problem 10. Show that the upper bound in Theorem 7 is tight.

5. CONCLUSION

Our knowledge on biplanar crossing numbers is as rudimentary as it was
our knowledge on crossing numbers till Leighton’s work [10] in the 70’s.
Bisection width and graph embedding methods cannot be used, only the
counting method and density-based lower bounds are available. We hope
that the development of structure-based lower bounds for the biplanar
crossing numbers will shed light to some so far unknown properties of
ordinary crossing numbers as well.
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AN EXERCISE ON THE AVERAGE NUMBER OF REAL
ZEROS OF RANDOM REAL POLYNOMIALS

C. DOCHE and M. MENDES FRANCE

A Vera S6s et Andras Hajnal avec admiration et amitié

The average number of real zeros of random n degree real polynomials is well
known since M. Kac’s seminal article of 1943 [12] which states that it is logn +
O(1). Some fifty years later, A. Edelman and E. Kostlan found a beautiful
geometrical proof which allowed them to give many other related results [10].
Using their method we discuss the average number of real zeros of random real

polynomials
n
2 A
=0
where the A;’s are independent Gaussian variables with mean 0 and with variance
n\ _a
() = (1)n
J

where § € R is a given parameter. The average number of real zeros in the
interval (a,b) is shown to be

E(n;a,b) = %\/7_1 (Arctan — Arctan L) .

b
np/2 np/2

While discussing special polynomials we are led to show that under general
conditions, polynomials of the type

> AdX)(a:X +bi)"

1=1

have at most O(1) real zeros as n increases to infinity.
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1. THE GENERAL SETTING

Let A be a sequence of n + 1 integers Ag, A1, ..., An; Aj > 0, not necessarily
distinct. Consider the real polynomial

n
X)=Y a;xh
=0

where the coefficients a; are real independent Gaussian variables with mean
0 and standard deviation o(a;) = 1. The object of the paper is to compute
the expectation of the number of real zeros of P for a special sequence A
which we shall describe shortly.

At this point it should be observed that the result is independent of
the order of the A;’s in A since the a;’s are independent identical random
variables: any permutation on A leaves the expected number of real zeros

invariant.
Define
AUk = {0<j<n| N =k}
and
[Al =max};, 0<j<n
Then

ZXkZaJ

0<k<IA]  jea-1(k)

The random variables

> 4

JEAT1(K)

are independent Gaussian variables with mean 0 and with standard devia-
tion

o(Ar) = (card A7\ (k) /2.

The most natural and interesting case is when A = {0,1,...,n} and this is
the one studied by M. Kac [12, 13] and later by A. Edleman and E. Kostlan
[10]. For a short history we refer to the book of A. T. Bharuca-Reid and
M. Sambandham (3] or to (8].
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2. A SPECIAL CASE

The special case we wish to discuss is the following which even though it
may be thought as artificial, it seems to have some relevance in Quantum
Mechanics. This was already noticed in [10]. Let s(j) be the sum of the
binary digits of the integer 7 > 0. Choose

A = (s(0),s(1),s(2),...,s(2" = 1))

so that |A| = n. Then

P(X)= Y a;x*0

0<j<2n
- Y XY g= Y A
0<k<n  s(j)=k 0<k<n

Quite obviously

o= ()

so that the variance of Ay is (rk‘) This is precisely the case encountered
by the three physicists E. Bogomolny, O. Bohigas and P. Lebceuf [2] even
though the sum of the digits does not appear explicitly in their presentation.

Here we shall give a simple generalization of the above case. We are
given a real parameter § and we assume that the coefficients Ay of the

polynomial
> At
0<kn

are independent random Gaussian variables with mean 0 and variance

o2(Ag) = (’Z) n=Pk,

The parameter 8 can be thought of as an “order parameter” which intro-
duces some “noise” (inverse temperature) in the system. Negative noise or
negative temperatures should not surprise the physicists; see for example
[15, Chapter VI, §71].

As [ decreases from 400 to —oo, the standard deviation o(Ag), k > 1,
increases from 0 to +00. For large 3, the A;’s have small standard deviation
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and are to some extent well determined. On the contrary, when £ is in the
vicinity of —oo, the Ay’s have large standard deviation and as such, are
completely unpredictable. See also Figure 1.

o(Ax)
< -1
-1<p<0
|
I
| p=0
[
[
[
[
[
|
|
[
|
[
[
|
1 !
| 0<pB<1
; B>1
0 ni n k
2

Fig. 1

If |8| < 1, the graph k o(A) has a maximum in the open interval
]0,n[; the values § = £1 seem to play a special role.
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3. A FIRST RESULT

Theorem 1. Suppose Ao, Ai,...,An are (n + 1) centered independent
Gaussian variables with variance

o2(Ag) = <") n P 0<k<n
Then the average number of real zeros of the polynomial
n
> Apx*t
k=0
in the interval (a,b) is

1 b
E(n;a,b) = ;\/ﬁ <Arctan 7o Arctan #) .

In particular the average number of real zeros is independent of f:

E(n;R) = /n.

Proof. The proof is very simple since according to [10], the average number
of zeros in (a,b) is

1 [t/ 82 n 12
E(n;a,b) = —-/ —log ) o?(Ap)zFyF dt.
o \0zdy =

m r=y=t

In our case

Therefore

and the result follows. m
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4. COMMENTS

The density of probability is

and the normalized density is

1 1 nb/?

pn(t) = TP D= o

For a fixed large n Figure 2 displays the aspects of the graphs of the functions
t — pn(t). If B < 0is fixed and if n tends to infinity, p,(t) converges to
the Dirac measure at the origin. The zeros tend to concentrate on the

pn(t)
L—y
™
B8<0
1
m
B=0
] B8>0
_n_ﬁ/z
™
0

Fig. 2
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neighbourhood of 0. A hand-waving argument could have predicted this
behaviour. Indeed,

o*(Ajr1) _n—j1

o%(4;)  j+1nf

and therefore, since § < 0
2 A
lim a ( ]+1)
n—oo o%(4;)

Aj41 is infinitely more dispersed than A;. Divide the polynomial by Aj.
For large n it behaves like

0+0X+0X%+ .- +0X" !4 X"

= 400

and indeed, all the zeros are concentrated on X = 0.

In the same fashion, suppose § > 0. Then the graph ¢ — py(t) is close
to the horizontal axis. The zeros are well dispersed on R. This could have
been foreseen. Indeed

1 ifj=0
lim o(4;) =
n—teo 0 if0<y

so that for infinitely large n almost all polynomials coincide with
ap+0X +0X%+ -+ 0X™

The zeros have infinite size, i.e. they are not confined in a bounded set in
R. In other terms they appear dispersed within the real line.

Let us analyze our results differently. Let 0 < a < b. The average
number of zeros in the interval (a,b) is, as we showed

1
E(n;a,b) = ;\/ﬁ (Arctan # — Arctan #) .

When n increases to infinity, the limit of F(n;a,b) depends on f:

0 if < -1

1 /1 1

“(==2) if g=-1
w(a b) it p

lim E(n;a,b) = { 100 if —1<p<1

1

—(b—a) if g=1

™

{ if > 1.
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Two critical values appear § = £1. If |3| > 1 the limit vanishes for all
interval (a,b), and then of course the same conclusion holds for all interval
(=b,—a), 0 < a < b. Therefore, if the real zeros are sufficiently many, they
must all be close to 0. Comparing this result with our previous ones we
conclude that

a small neighbourhood of 0.

g < -1 The zeros are mostly in
n large

that for all ¢ > 0 E(n; —c,+c) = 0.

Bg>1 The zeros are so dispersed and sparse
n large

5. RANDOM SEQUENCES AND DETERMINISTIC SEQUENCES

In relationship with our initial discussion it may be interesting to test the
distribution of real zeros of the random polynomials

2"-1
Po(X) =Y +x°0)
=0

where the signs (£) are chosen randomly according to the uniform proba-
bility (%, %) We should expect \/n real zeros. However it is particularly
difficult to compute these polynomials for large n since they involve a huge
quantity of information. In practice it is hard to exceed the degree 30 for
a given sequence. We have done some computations for the deterministic

choice of signs a; = (—l)lﬂjJ which seem consistant with our expectation.

For well chosen sequences we can sometimes compute exactly the number
of real zeros. For example if aj = M for some real J, it is easily seen that

(1) S ovx = [ (1+x3%).

0<j<on 0<k<n

The zeros are all real: X = —)\‘Qk; k =0,1,...,n — 1. Another trivial
example is aj = ( —1)3(] ), the Thue-Morse sequence. Then clearly

Z (_1)5(1')Xs(j) =(1-X)"

0<j<2m
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and again the zeros are all real.

The Thue-Morse sequence is a special example of the so-called 2-
automatic sequences, i.e. sequences generated by a finite basis 2 automaton
(see [5, 6], [4] or [1] for the general theory of automatic sequences).

Another example is given by the Rudin-Shapiro sequence defined by
azj =a; and agjy1 = (—l)jaj.
It is possible to show that
Po(X)=1, PI(X)=14X and Pp(X)=(1-X)P—1(X)+2XP,_2(X).
Indeed
an -1

Pn(X) = -P'n—l(X) -+ Z a]Xs(])
j=2n—1

This last term is trivially equal to

211—1_1

k=0

Now from the definition of (a;) j>o it is easy to ensure that

ak+2n-—1 = Qk if 0 < k < 2“—2 - 1
<

Qppon-1 = —ap if 272 < k<21
so that
2n—2-] |
P(X)=Poa(X)+X > aX®—Xx Y ax®
k=0 k=9n-2

=Py 1(X)+ XPy—o(X)— XP,_1(X) + XP,—2(X)
= (1= X)Pp_1(X) + 2X Pr—o(X)

as claimed. Computations up to degree 200 with the polsturm command
of PARI suggest that the number of real roots of P,(X) is about n/2 more
precisely it seems to satisfy

) [n_‘ ~ (_1)n+l +1_

4 2



88 C. Doche and M. Mendés France

Unfortunately we are not able to establish this...

It is probable that 2-automatic sequences are too correlated to the
sequence of exponents s(j) to provide examples of polynomials which have
(1+ 0(1)) v/n real zeros as in the generic case.

The next example, namely the paperfolding sequence strengthens this
guess. This is a (£) sequence defined as [7, 9, 1]

Qo = (—1)n7 Qon41 = ap; n=0.
Let |

0gj<2n

In the next paragraph we establish that
(2) Pu(X)=(1-X)1+X)" ! +2X"

and by use of a general theorem which we shall prove we manage to show
that the number of real zeros of P,(X) is bounded independently of n.

6. THE PAPERFOLDING CASE AND A GENERAL THEOREM

We first establish Identity (2).

Py (X) = Z a2jxs(2j) + Z an]‘HXs(QjH)

0<j<271—1 0$j<2n—1

= > (X 4 XPoy(X).
0<j<2n—1

The first sum on the right hand side is (1 — X)(1 + X )*"2 as is clear from
Identity (1) with A = —1. Therefore

Pn(X) = XPn_l(X) + (1 - X)(l + X)n—2

from where we conclude that indeed

Po(X)

{Pn(X) =(1-X)1+X)" 42X, n>1
1
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The fact that the number of distinct real zeros of P,(X) is bounded
independently of n is a consequence of the following argument. Put Y =
1+ % The zeros of P,(X) satisfy Y™ —2Y™ ! 42 = 0. Descartes’ theorem
asserts that this polynomial has at most 2 real zeros if n is even and 3 if n is
odd. Actually for n > 4 these results are sharp. The zeros are distinct since
P, and P} have no common zero and therefore the number of real zeros is

0(1).

The above argument can be extended to establish the following result.

Theorem 2. Let k > 2 be a given integer and let Ajn(X), Aon(X),...,
Apn(X) be an infinite family of nonzero real polynomials (n = 0,1,2,...)
the degrees of which are bounded independently of n. Let ay,as,...,ak;
bi,bo, ..., br be 2k real numbers such that for all i # j a;b; — ajb; # 0.
Then the polynomials

k
Po(X) = Ain(X)(a:X +b)"

i=1
each have a number of real zeros which is bounded independently of n.
Proof. We prove the theorem by induction on k > 2. Let
Po(X) = Ap(X)(aX +b)" + Bp(X)(cX + d)"

with ad — bc # 0. Ignoring a finite number of real zeros, we can suppose
with no loss of generality that A,(X) is coprime with ¢X + d. So —d/c is
not a zero of P,.

Pa(X) = (cX + d)" [An(X) (“X i b>n + Bn(X)] .

cX +d
Put X+b dY +b
aX + —aY +
Y_cX+d’ X = cY —a
—dY +b —-dY +b
— n e n o
(3) Py (X) = (cX +4d) [An'<cY—a>Y +B"<cY—a>}
o+ a0+ B9

Ca(Y)
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where gn,(Y), En(Y), 5.,,,(1/) are polynomials. There is a 1-1 correspon-
dance between the real zeros of P,(X) and the real zeros of A (Y)Y +
By (Y) = Qn(Y'). The number of terms of the polynomials @, (Y’) is bounded
by the number of terms of An(Y) plus those of B,(Y). This number is
bounded independently of n. By a theorem of Descartes we conclude that
the number of zeros of P,(X) is bounded independently of n.

We now assume that the theorem is true for all values up to & — 1.
Consider

k
Po(X) =) An(X)(a:X +b;)"
i=1
b aX +b\"
(X b S A () (B0
(arX + by) ;A n( )(akX-i-bk)
Put
a1 X + b
- apX + b '

The zeros of P,(X) are obtained from those of

k

1
AV @Y + )" + Ap(Y),
1

1l

i

where the ;L-n(Y) are polynomials with degrees bounded independently of
n. By successive derivations, say d, the last polynomial Ax(Y") vanishes and
we are left with a polynomial

e

-1
Ain (Y)Y 4
1

<.
Il

which by induction hypothesis has a number of real zeros bounded inde-
pendently of n. By successive integrations (d in fact) we conclude that the
same is true for P,(X). =
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7. APOLOGY

One of the main ideas in the beautiful book of J. Harthong on probability
[11] is that basically random variables on bounded sets are always uniformly
distributed, and on R they are centered Gaussian variables with equal
standard deviation. But of course they may be submitted to constraints
in which case they are as uniform as can be given the extra conditions. In
other terms, they adhere to the maximal entropy principle.

In our case
on—1

Z a].XS(j)

j=0

the constraint comes from the fact that the exponents are not distinct. The
variance (Z) comes out naturally. The random variables

Ak= Z aj
s(j)=k

play the role of the main variables whereas the a;’s seem to be “hidden
variables”. ..

In any case, the variances

o?(Ay) = <7Z)

do not appear to be so artificial as first one might think. As for

) = ([ )n

we are afraid we can offer no convincing argument to justify the choice. ..
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EDGE-CONNECTION OF GRAPHS, DIGRAPHS, AND
HYPERGRAPHS

A. FRANK*

To the memory of C. St. J. A. Nash-Williams and W. T. Tutte who contributed
to the area with fundamental results.

In this work extensions and variations of the notion of edge-connectivity of
undirected graphs, directed graphs, and hypergraphs will be considered. We show
how classical results concerning orientations and connectivity augmentations may
be formulated in this more general setting.

1. INTRODUCTION

A digraph D = (V, E) is called strongly connected if there is a directed
path from every node to every other node. By an easy exercise, this is
equivalent to requiring that op(X) > 1 for every proper non-empty subset
X of V, where op(X), the indegree of X, denotes the number of edges
entering X. An undirected graph, (in short, a graph) G = (V, E) is called
2-edge-connected if there are two edge-disjoint paths from every node to
every other. It is not difficult to show that this is equivalent to requiring
that dg(X) > 2 for every proper non-empty subset X of V, where dg(X),
the degree of X, denotes the number of edges connecting X and V — X.

*The work was started while the author visited the Institute for Discrete Mathematics,
University of Bonn, July, 2000. Supported by the Hungarian National Foundation for
Scientific Research, OTKA T037547.
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The prototypes of theorems we are interested in concern strong-connectivity
and 2-edge-connectivity.

1. Augmentation [K. P. Eswaran and R. E. Tarjan] [12]. A digraph can
be made strongly connected by adding at most v new edges if and only if
there are no v + 1 disjoint sink-sets (:strongly-connected components with
no leaving edges) and there are no v + 1 disjoint source-sets (:strongly-
connected components with no entering edges). A connected undirected
graph can be made 2-edge-connected by adding at most v new edges if and
only if the number of ‘leaves’ is at most 2y, where a leaf is a minimal subset
X with dg(X) = 1.

2. Orientation [H. E. Robbins] [52]. An undirected graph has a strongly
connected orientation if and only if it is 2-edge-connected.

3. Constructive characterization [folklore]. A digraph is strongly con-
nected if and only if it can be built from a node by the following two opera-
tions: (i) add a new directed edge connecting existing nodes, (ii) subdivide
an existing edge by a new node. A graph is 2-edge-connected if and only if it
can be built from a node by the following two operations: (i) add a new edge
connecting existing nodes, (ii) subdivide an existing edge by a new node.
In both cases the two operations may be included into one: add a path (di-
rected, in case of digraphs) connecting two existing nodes (which may be
equal), an operation called adding an ear. Therefore these theorems are
often formulated in the form: a graph is 2-edge-connected or a digraph is
strongly connected if and only if it can be built from a node by adding ears.
The sequence of ears in such a construction is called an ear-decomposition
of the (2-edge-connected) graph or (strongly connected) digraph. Moreover,
such an ear-decomposition exists if the initial (di)graph is an arbitrary 2-
edge-connected (respectively, strongly connected) sub(di)graph.

We survey these types of results concerning higher edge-connection.
Here the word ‘edge-connection’ is used in its informal meaning to describe
the intuitive notion of a graph G = (V, E) or a digraph D = (V, A) being
‘pretty much connected by edges’. To capture this idea formally, there are
(at least) two distinct approaches, and both of them admit several versions.

The first approach requires the (di)graph to be not dismantleable into
smaller parts by leaving out only few edges. Here are four possible defini-
tions to make this intuition formal.
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(A1) A graph G = (V, E) is k-edge-connected if discarding less than
k edges leaves a connected graph. (This is easily seen to be equivalent to
requiring dg(X) > k whenever  C X C V)

(A2) A digraph D = (V, A) is k-edge-connected if discarding less
than k edges leaves a strongly connected digraph. (This is easily seen to
be equivalent to requiring op(X) > k whenever § C X C V.) For k =1,
k-edge-connectivity is just strong-connectivity.

(A3) G is k-partition-connected if discarding less than kq edges
leaves a graph with at most ¢ connected components for every ¢ = 1,2,...,
|[V|—1. Equivalently, there are at least kq edges connecting distinct parts for
every partition of V' into ¢+ 1 non-empty parts for every ¢, 1 < ¢ < |V]|—1.
Note that for k = 1, partition-connectivity is equivalent to connectivity.

(A4) D is rooted k-edge-connected if there is a root-node s so that
after discarding less than k edges every node keeps to be reachable from s.
(This is easily seen to be equivalent to requiring op(X) > k for every non-
empty subset X of V —s).

The second possible approach to capture the notion of high edge-
connection is requiring the graph or digraph to contain several edge-disjoint
‘simple’ connected constituents. Here are four possibilities.

(B1) In G there are k edge-disjoint paths between every pair u, v of
nodes.

(B2) In D there are k edge-disjoint directed paths from every node to
every other.

(B3) G contains k edge-disjoint spanning trees (in which case G is
called k-tree-connected).

(B4) D contains a node s so that there are k edge-disjoint spanning
arborescences rooted at s.

Some basic results of graph theory asserts the equivalence of the cor-
responding definitions. Namely, by the edge-versions of Menger’s theorem
[15], the definitions (A1) and (B1) [resp., (A2) and (B2)] are equivalent:

Theorem 1.1 (Menger). An undirected graph is k-edge-connected if and
only if there are k edge-disjoint paths between every pair of nodes. A
digraph is k-edge-connected if and only if there are k edge-disjoint paths
from every node to every other.

The equivalence of (A3) and (B3) was proved by W. T. Tutte [56].
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Theorem 1.2 (Tutte). A graph contains k edge-disjoint spanning trees
if and only if, for every partition {Vy,...,V;} of V, the number of edges
connecting distinct parts is at least k(t — 1).

Finally, the equivalence of definitions (A4) and (B4) was proved by
J. Edmonds [9].

Theorem 1.3 (Edmonds). A digraph D contains k edge-disjoint spanning
arborescences rooted at s if and only if op(X) > k for every non-empty
subset X of V —s.

We extend these notions even further. For non-negative integers [ < k,
a digraph D is (k,[)-edge-connected if D has a node s so that there are k
edge-disjoint paths from s to every other node and there are [ edge-disjoint
paths from every node to s. Equivalently, the digraph is I-edge-connected
and rooted k-edge-connected. Note that D is (k, k)-edge-connected exactly
if D is k-edge-connected, and (k, 0)-edge-connectivity is equivalent to rooted
k-edge-connectivity. We also remark that, by relying on max-flow min-cut
computations, it is possible to decide in polynomial time if a digraph is
(k, l)-edge-connected or not.

Another general notion is as follows. For two subsets S,T of nodes, D
is said to be k-edge-connected from S to T if there are k edge-disjoint
paths from every element of S to every element of 7. In the special case
S = T we briefly say that D is k-edge-connected in S. If S =T =V we
are back at k-edge-connectivity. If S = {s} and T'=V we arrive at rooted
k-edge-connectivity. Also, for an undirected graph G = (V, E) we say that
G is k-edge-connected in S C V if there are k edge-disjoint paths in G
between any two elements of S. A directed edge st with s € S, t € T will
be called an ST-edge.

We say that a partition of V into ¢ non-empty parts is a t-partition. For
a given partition P of V, the set of edges in a graph G = (V, E) connecting
distinct parts of P is called the border of P. An element of the border
is called a cross-edge of the partition. The border of a 2-partition is
traditionally called a cut. For an integer [ (which may be negative), we call
an undirected graph G = (V, E) (k,l)-partition-connected if the border
of every t-partition of V (¢t > 2) has at least k(t — 1) + [ elements. For
| > 0, this definition attempts to capture the intuitive notion for higher
edge-connection which requires that leaving out only few edges does not
result in too many components.
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A very first question concerning this notion is whether there exists a
polynomially checkable certificate for a graph being (k,!)-partition-con-
nected. The answer depends on whether [ < 0, or 1 <[ < k, or k < .
If | =0, we are back at k-partition-connectivity, and then the certificate
(by Tutte’s theorem) is a set of k disjoint spanning trees. When | = —v
is negative, we will prove (Theorem 2.10) that a graph is (k,l)-partition-
connected if and only if it is possible to add y new edges so that the resulting
graph contains k disjoint spanning trees. That is, in this case the certificate
for (k,)-partition-connectivity is k disjoint spanning trees whose union may
contain 7y new edges.

For | > k, we claim that (k,!)-partition-connectivity is equivalent to
(k+1)-edge-connectivity. Indeed, if G is (k, [)-partition-connected, then the
definition for ¢ = 2 implies that every cut contains at least k(t—1)+1 = k+I
edges, that is, G is (k+[)-edge-connected. Conversely, let G be (k+1)-edge-
connected and let P := {V1,...,V;} be a partition. By letting eg(P) denote
the number of cross-edges of P, we have eg(P) = Y.+ dg(V;)/2 > (k+1)t/2 =
tk+t(l—-k)/2>tk+ (l—k) = k(t—1)+1, and hence we conclude that G is
(k,l)-partition-connected. Therefore we will be interested in (k, [)-partition-
connectivity only if [ < k.

Finally, for 0 < I < k one has the following characterization (Theorem
4.5): a graph is (k,l)-partition-connected if and only if it has a (k,1)-edge-
connected orientation. Such an orientation may indeed serve as a certificate
for (k,l)-partition-connectivity since a digraph can be tested for (k,{)-edge-
connectivity by relying on Menger’s theorem.

Given a groundset V, by a co-partition (of V) we mean a family of
subsets consisting of the complementary sets of a partition of V. A family
F of subsets of V is called a sub-partition of V if F is a partition of a
subset of V. For a partition F of a non-empty proper subset Z of V, the
family {V—X : X € F} is called a co-partition of V — Z. For a subset X
and for two elements x and y, we say that X is an zg-set if z € X, y ¢ X.

For non-negative integers k, [, we call an undirected graph G (k, [)-tree-
connected if deleting any subset of at most [ edges leaves a k-tree-connected
graph. By Tutte’s theorem, G is (k,!)-tree-connected if and only if G is
(k, l)-partition-connected.

In a graph G = (V, E) the local edge-connectivity A(z,y; G) of nodes
z and y is the minimum cardinality of a cut separating z and y. By
Menger’s theorem, this is equal to the maximum number of edge-disjoint
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paths connecting = and y. eg(X) denotes the number of edges with at least
one endnode in X.

In a digraph D = (V, E) the local edge-connectivity A(z,y; D) from
node z to node y is the minimum number of edges entering a yZ-set. By
Menger’s theorem, this is equal to the maximum number of edge-disjoint
paths from z to y. o(X) denotes the number of edges entering X and
6(X) := o(V — X). For a graph or digraph H, iy(X) denotes the number
of edges induced by X.

Typically we will work with directed or undirected graphs and write
(di)graph when either of them is meant. Sometimes mixed graphs are also
considered which may contain both directed and undirected edges.

2. RELATIONS BETWEEN OLD RESULTS

The three motivating theorems mentioned at the beginning of the introduc-
tion represent, respectively, the following general problem classes.

1. In a connectivity augmentation problem we want to add some new
edges to a graph or digraph so that the resulting graph or digraph satisfies a
prescribed connectivity property. In a minimization problem the number
(or, more generally, the total cost) of new edges is to be minimized. In a
degree-specified problem, in addition to the connectivity requirement, the
(di)graph of the newly added edges must meet some (in)degree specification.
Another aspect of augmentation problems distinguishes between the type of
graphs of usable new edges. In a restricted augmentation the new edges
must be chosen from a specified graph. We speak of a free augmentation if
any possible edge is allowed to be added in any number of parallel copies.
In the directed case, ST-free augmentations will also be considered when
the new edges must be ST-edges.

2. In a connectivity orientation problem we want to orient the edges
of an undirected graph so that the resulting digraph satisfies a prescribed
connectivity property. The proof of Robbins’ theorem is fairly easy (say, by
ear-decomposition) but there are even easier orientation results: (A) a graph
G has a root-connected orientation (:every node is reachable from a root-
node) if and only if G is connected, and (B) G has an orientation in which a
specified node t is reachable from s if and only if s and t belong to the same



Edge-Connection of Graphs, Digraphs, and Hypergraphs 99

component of G. These are indeed so trivial that they deserve mentioning
only because they serve as a good ground for possible generalizations.

3. In a constructive characterization problem we are interested in
finding simple operations for a given connectivity property by which every
(di)graph with the property may be obtained from a small initial (di)graph.
It will turn out that this type of results often help proving connectivity
orientation results.

In earlier survey type works ([21] [22], [23]) I endeavored to overview
some aspects of connectivity orientations and augmentations with special
emphasis on their relationship to sub- and supermodular functions. There-
fore in the present paper those results are mentioned only when the overview
of the developments of the past decade requires them. Exhibiting this
progress is our main goal, with a special emphasis on some known and
some newly discovered links connecting the different problems. Some new
observations will also be outlined.

By comparing older results, this section is offered to demonstrate how
closely the orientation, augmentation, and characterization problems are re-
lated to each other. But first a small remark is in order. The augmentation
problem may be considered as one of finding a supergraph of a (di)graph
with certain connectivity properties. This is naturally related to the sub-
graph problem which consists of finding an optimal subgraph of a (di)graph
satisfying connectivity requirements (sometimes called generalized Steiner
network problem). The minimum cost versions of these problems are ac-
tually equivalent, and to explain this we invoke a specific subgraph versus
supergraph problem-pair. Subgraph problem: given a digraph D = (V, A)
with specified nodes s and ¢t endowed with a cost function ¢ on A, find a
minimum cost subdigraph D’ of D which is k-edge-connected from s to t.
Supergraph (=augmentation) problem: given a digraph D = (V,A) with
specified nodes s and t, moreover another digraph H = (V,F') endowed
with a cost function cr on F, find a minimum cost augmentation of D
which is k-edge-connected from s to t. Now if the subgraph problem is
tractable, then so is the supergraph problem: Let D; = (V, AU F') be the
union of G and H and define a cost function ¢; on AU F by ci(e) := 0
if e € A and ci(e) := cr(e) if e € F. Obviously, an optimal solution to
the subgraph problem on D; determines an optimal solution to the aug-
mentation problem. Conversely, the subgraph problem can be viewed as
an augmentation problem because it is equivalent to augment, at a mini-
mum cost, of the empty digraph (V,0) by using edges of D, (or wording
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differently, by using arbitrary edges but the ones not in D have cost +00).
Typically we use this equivalence in one direction: when the minimum cost
subgraph problem is tractable then so is the augmentation problem. In our
concrete case the subgraph problem is indeed solvable with the help of a
minimum cost flow algorithm. On the same ground, as the minimum cost
connected subgraph problem is solvable with the greedy algorithm, the min-
imum cost augmentation problem, to make a given graph connected, is also
solvable.

We hasten to emphasize however that in several cases the subgraph prob-
lem is NP-complete while the corresponding (free) augmentation problem
is nicely solvable. A prime example for this phenomenon is the problem
of finding a minimum cardinality 2-edge-connected subgraph of a graph G
which is known to be NP-complete as it includes the Hamiltonian circuit
problem (:the minimum is equal to V| if and only if G is Hamiltonian).
On the other hand, the second introductory problem on the corresponding
connectivity augmentation is solvable.

2.1. Splitting and augmentation

The following two splitting lemmas are central to several results. By split-
ting off a pair of undirected edges e = zu, f = zv we mean the operation
of replacing e and f by a new edge connecting v and v. In the directed case
directed edges uz and zv are replaced by a directed edge uv.

Theorem 2.1 (Lovéasz’s undirected splitting lemma [42]). Let k > 2 be an
integer and G = (V + z, E) an undirected graph with a special node z of
even degree. If G is k-edge-connected in V', then there is a pair of edges
e = zu, f = zv which can be split off without destroying k-edge-connectivity

mV.

Theorem 2.2 (Mader’s directed splitting lemma [46]). Let k > 1 be an
integer and D = (V + z, E) a directed graph with a special node z having
the same in- and out-degree. If D is k-edge-connected in V, then there is
a pair of edges e = zu, f = vz which can be split off without destroying
k-edge-connectivity in V.

Both lemmas may be used repeatedly, as long as there are edges incident
to z, and in this case we speak of a complete splitting. Sometimes by the
splitting lemma this complete version is meant: Under the same hypotheses,



Edge-Connection of Graphs, Digraphs, and Hypergraphs 101

there is a complete splitting at z so that the resulting (di)graph on node set
V is k-edge-connected.

An easy observation shows that the existence of a complete undirected
splitting that preserves k-edge-connectivity is equivalent to the following
degree-specified augmentation result [19]. Here and throughout the paper,
we use the notation m(X) := ) [m(v) cveX|.

Theorem 2.3. We are given an undirected graph G = (V| E), a degree-
specification m : V — Zy with m(V') even, and an integer k > 2. There is
a graph H = (V, F) so that dg(v) = m(v) for every node v € V and G + H
is k-edge-connected if and only if m(X) > k — dg(X) for every non-empty
subset X C V.

This result was used in [19] to exhibit a short derivation of T. Watanabe
and A. Nakamura’s [57] earlier solution to the minimization form of the
undirected edge-connectivity augmentation problem:

Theorem 2.4 (Watanabe and Nakamura). An undirected graph G can be
made k-edge-connected (k > 2) by adding at most y new edges if and only
if 3, [k —dg(Xi)] <2y for every subpartition {X1,..., X} of V.

Note that the last theorem fails to hold for £k = 1. On the other hand, for
this case, even the minimum cost version is solvable by the greedy algorithm
since it is equivalent to the min-cost spanning tree problem (while for k& > 2
the min-cost version is NP-complete.)

Mader’s directed splitting lemma is also easily seen to be equivalent to
the degree-specified directed edge-connectivity augmentation problem:

Theorem 2.5. We are given a directed graph D = (V,E), in- and out-
degree specifications m; : V. — Z, and m, : V — Z so that m;(V) =
mo(V). Let k > 1 be an integer. There is a digraph H = (V, F) so that
dp (v) = mo(v), o (v) = my(v) for every nodewv € V and so that D+ H is k-
edge-connected if and only if m;(X) > k—op(X) and my(X) > k—6dp(X)
holds for every non-empty subset X C V.

This implies the minimization form of directed edge-connectivity aug-
mentation [19]:

Theorem 2.6. A digraph D = (V, E) can be made k-edge-connected (k >
1) by adding at most vy directed edges if and only if )", [A - QD(Xi)] <7z
and ), [k - 5D(Xi)] <« hold for every subpartition {X1,..., X} of V.
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2.2. Connectivity orientation and augmentation

The easy orientation results mentioned above concerning strong-connectiv-
ity, connectivity from s to ¢, and s-rooted 1-edge-connectivity naturally raise
questions on higher connection: when does a graph G have an orientation
which is (a) k-edge-connected from s to ¢, (b) rooted k-edge-connected,
(c) k-edge-connected? Among these, the first one is easy (given Menger’s
theorem).

Theorem 2.7. For integers ki,ko > 0 and specified nodes s,t € V, an
undirected graph G = (V, E) has an orientation which is k1-edge-connected
from s to t and kq-edge-connected from t to s if and only if every cut of G
separating s and t has at least ki + kg edges.

Proof. The necessity of the condition is straightforward. The sufficiency
follows by observing that the condition implies, by Menger’s theorem, the
existence of k; + ko edge-disjoint paths between s and t. One can orient the
edges of k; paths toward ¢, the edges of the remaining ks paths toward s,
and the remaining edges arbitrarily. ™

The first non-trivial result concerning orientation is due to C. St. J. A.
Nash-Williams [47]. He proved the following extension of Robbins’ theorem
(actually in a much stronger form).

Theorem 2.8 (Nash-Williams: weak form). An undirected graph G has a
k-edge-connected orientation if and only if G is 2k-edge-connected.

By a straightforward induction, Lovész’s undirected splitting lemma
implies Nash-Williams’ theorem. When rooted k-edge-connectivity is the
target in the orientation problem, one has the following result.

Theorem 2.9. An undirected graph G = (V,E) has a rooted k-edge-
connected (that is, (k,0)-edge-connected) orientation if and only if G is

k-partition-connected.

The non-trivial “f’ part is an easy consequence of Theorem 1.2 on
disjoint trees since Tutte’s theorem implies that a k-partition-connected
graph contains k disjoint spanning trees and, by orienting each of these trees
away from the root (to become a spanning arborescence) while the remaining
edges arbitrarily, one obtains a rooted k-edge-connected orientation of G.

On the other hand, Theorem 2.9, when combined with Edmonds The-
orem 1.3, gives rise to Tutte’s Theorem 1.2. At this point the question
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naturally emerges: if the required orientations do not exist, then how many
new undirected edges have to be added so that the augmented graph admits
an orientation?

The answer is evident when the goal is to augment a graph so as to
become k-edge-connected orientable. Namely, by Nash-Williams’ theorem
this is equivalent to augmenting the graph to make it 2k-edge-connected, a
problem solved in Theorems 2.4 and 2.3. Suppose now we want to augment
G to become k-tree-connected (= k-partition-connected). For the special
case of free augmentation one has the following:

Theorem 2.10. Let G = (V, E) be an undirected graph, s € V a specified
node, and v a nonnegative integer. It is possible to add at most vy new
edges to G so that the enlarged graph has an s-rooted k-edge-connected
orientation if and only if G is (k,—y)-partition-connected. Moreover, all
the newly added edges may be chosen to be incident to s.

Proof. Recall that by definition G is (k, —7)-partition-connected if
(1) e(F) 2 k(t—1)—~

holds for every partition F := {V1,...,V;} of V, where e(F) denotes the
number of cross edges of F. For brevity we call an orientation good if it
is k-edge-connected from s. If there is a good orientation after adding =y
edges, then o(V;) > k holds for every subset V; C V not containing s and
hence e(F) + v > et (F) > k(t — 1), where e* refers to the enlarged graph,
proving the necessity of the condition.

To see the sufficiency, add a minimum number of new edges to G, each
incident to s so that the enlarged graph has a good orientation and let '
denote this minimum. Our goal is to prove 7' < .

Let o denote the in-degree function of the good orientation of the en-
larged graph G*. We may assume that o(s) = 0. Let us callaset X C V —s
tight, if o(X) = k. By standard submodular technique, we see that both
the intersection and the union of two tight sets with non-empty intersection
are tight. Let T denote the subset of nodes which can be reached from the
head of at least one new edge. Clearly, s ¢ T" and o(V —T') = 0.

Lemma 2.11. If Z is tight and ZNT # Q, then Z C T.

Proof. Suppose indirectly that Z ¢ T. Then for Y := V — T we have
k=0oY)+0(Z2)=0YNZ)+o(YUZ)+d*(Y,Z) > k+0+d*(Y,Z) > k,

where d* (Y, Z) denotes the number of edges of G connecting elements of
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Y —Zand Z-Y. Hence p(YUZ) =0 and d*(Y, Z) = 0. From the first
equality there is a new edge e = st for which ¢t € Z for otherwise no element
of ZNT would be reachable from the head of any new edge. But then, by
the existence of edge e, we have d* (Y, Z) > 0, a contradiction. m

There are two cases. If there is a node v in T which does not belong to
any tight set, then let st be a new edge for which there is a path P from ¢
to v. Reorient each edge of P and discard e. Since v does not belong to any
tight set the revised orientation is good, contradicting the minimality of +'.

In the second case every element of T belongs to a tight set. Let
Vi,...,V,_1 be maximal tight sets intersecting 7. These are pairwise dis-
joint and by the lemma they form a partition of 7. Let V; := V — T and
F :={V,...,Vi}. Since p(V;) = 0, and every new edge enters T', we get
k(t—1) =S [eVi) ti=1,...,¢t=-1)] = [eVi) : i =1,...,t] =
it(F) = e(F) ++'. This and (1) give rise to v = k(t — 1) —e(F) < v, as
required. ®

By combining Theorems 2.10 and 2.9, we obtain the following extension
of Tutte’s Theorem 1.2 which serves as a characterization of (k, l)-partition-
connected graphs in case [ < 0.

Theorem 2.12. An undirected graph G = (V, E) can be augmented by
adding v > 0 new edges so that the enlarged graph is k-tree-connected if
and only if G is (k,—~)-partition-connected. Moreover, the newly added
edges may be chosen to be incident to any given node in V.

The theorem shows that the free augmentation problem is tractable for
k-tree-connectivity as a target. This is, however, not surprising since, by
using matroid techniques, even the minimum cost version is solvable in
polynomial time. To see this, let G = (V, E) be an undirected graph and
let G, = (V,E,) be a graph, where E, is the set of edges usable in the
augmentation of G. Let ¢, : E, — Ry be a cost function. We want to
choose a subset F' of edges of G, of minimum total cost so that the increased
graph G* = (V,E + F) is k-tree-connected.

To this end, let us define a cost function ¢’ on the edge set of the union
G' = (V,E + E,) of G and G, so that ¢(e) :=0if e € E and c(e) = c(e) if
e € E,. Then the problem is equivalent to finding k disjoint spanning trees
of G! with minimum total cost. Since the edge-sets which are the union of
k disjoint spanning trees form the set of bases of a matroid, this problem is
solvable in polynomial time by using Edmonds’ matroid partition algorithm
and the greedy algorithm. This approach also shows that Edmonds’ matroid
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partition theorem does provide a characterization for the existence of the
required augmentation in Theorem 2.10. Our goal has simply been to show
a direct, graphical proof.

One may also consider the degree-specified version of the k-tree-con-
nected augmentation problem. This does not seem to be a matroid problem
and it does not follow from the previous material either. Section 4 includes
an answer even for the more general case of (k,[)-partition-connectivity.

2.3. Constructive characterization and splitting

Let G' = (V 4 2, E’) be an undirected graph with a special node z of even
degree and suppose that G’ is k-edge-connected in V. By the undirected
splitting lemma we know that there is a complete splitting at z so that the
resulting graph G = (V, E) is k-edge-connected. In other words, the d(z)
edges incident to z can be paired so that splitting off these j := d(z)/2
pairs (and discarding z) we obtain a k-edge-connected graph. In a directed
graph D' = (V +2, A’) a complete splitting at z consists of pairing the edges
entering z with those leaving z and then splitting off the pairs. Both in the
directed and in the undirected cases the inverse operation of a complete
splitting is as follows. Add a new node z, subdivide j existing edges by
new nodes and identify the j subdividing nodes with z. This will be called
pinching j edges (with z). When j = 0 this means adding a single
new node z, while in case 7 = 1 pinching an edge requires the edge to be
subdivided by a node z.

By the operation of adding a new edge to a (di)graph we always mean
that the new edge connects existing nodes. Unless otherwise stated, the
newly added edge may be a loop or may be parallel to existing edges.

After these definitions, we exhibit how the splitting lemmas give rise
to constructive characterizations of 2k-edge-connected graphs and k-edge-
connected digraphs. By using the easy observation that a minimally (with
respect to edge-deletion) K -edge-connected undirected graph (with at least
two nodes) always contains a node of degree K, one can easily derive from
the undirected splitting lemma the following constructive characterization
of 2k-edge-connected graphs.

Theorem 2.13 (Lovasz). An undirected graph G = (V, E) is 2k-edge-
connected if and only if G can be obtained from a single node by the
following two operations: (i) add a new edge, (ii) pinch k existing edges.
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By using a rather difficult theorem of Mader [44], stating that a mini-
mally (with respect to edge-deletion) k-edge-connected directed graph (with
at least two nodes) always contains a node of in-degree and out-degree k,
one can derive from the directed splitting lemma the following constructive
characterization of k-edge-connected digraphs.

Theorem 2.14 (Mader). A directed graph D = (V, E) is k-edge-connected
if and only if D can be obtained from a single node by the following two
operations: (i) add a new edge, (ii) pinch k existing edges.

It is useful to observe that Mader’s characterizaton in Theorem 2.14 for
k-edge-connected digraphs combined with Nash-Williams’ orientation result
give rise to Theorem 2.13. The same phenomenon will occur later as well:
with the help of an orientation result, a constructive characterization for
directed graphs may be used to derive its undirected counterpart.

By an easy reduction, Theorem 2.14 provides a constructive characteri-
zation of rooted k-edge-connected digraphs.

Theorem 2.15. A digraph D = (V| E) is rooted k-edge-connected if and
only if D can be built up from a root-node s by the following two operations:
(j) add a new edge, (jj) pinch i (0 <i <k — 1) existing edges with a new
node z, and add k — i new edges entering z and leaving existing nodes.

In [46] Mader showed that this characterization, in turn, can be used to
derive Edmonds’ Theorem 1.3 on disjoint arborescences. Combining Theo-
rems 2.9 and 2.15, one obtains the following constructive characterization.

Theorem 2.16. An undirected graph G = (V, E) is k-tree-connected (=
k-partition-connected) if and only if G can be built from a node by the
following two operations: (j) add a new edge, (jj) pinchi (0 <i<k—1)
existing edges with a new node z, and add k — i new edges connecting z
with existing nodes.

3. SPLITTING AND DETACHMENT

In this section first we exhibit extensions of the splitting lemmas of section 2
and of their applications. After that the notion of splitting will be extended
to detachments.
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3.1. Undirected splitting

As a significant generalization of Lovdsz’s undirected splitting lemma,
W. Mader [45] proved the following result. Recall (from the introduction)
the definition of local edge-connectivity A.

Theorem 3.1 (Mader). Let G = (V +z, E) be an undirected graph so that
there is no cut-edge incident to z and the degree of z is even. Then there
exists a complete splitting at z preserving the local edge-connectivities of
all pairs of nodes u,v € V.

Mader originally formulated his result in a slightly weaker form: If z is
not a cut-node of G = (V + z, E) and d(z) > 4, then there exists a pair of
edges incident to z which can be split off without lowering any local edge-
connecivity on V. However the two forms can be shown to be equivalent.
This and a relatively short proof of Mader’s theorem was given in [20].

3.1.1. Constructive characterizations. Mader [45] used his result to
characterize (2k + 1)-edge-connected graphs.

Theorem 3.2 (Mader). Let K = 2k + 1 > 3. An undirected graph
G = (U, FE) is K-edge-connected if and only if G can be constructed from
the initial graph of two nodes connected by K parallel edges by the following
three operations:

(i) add an edge,

(ii) pinch k edges with a new node z
an existing node,

" and add an edge connecting z' with

(iii) pinch k edges with a new node 2', pinch then again in the resulting
graph k edges with another new node z so that not all of these k edges are
incident to 2’, and finally connect z and z’ by a new edge.

The theorem is obviously equivalent to the first part of the following
result:

Theorem 3.3. An undirected graph G with more than two nodes is K-
edge-connected (K odd) if and only if G can be obtained from a (smaller)
K -edge-connected graph G' by one application of one of the operations (i),
(i), (iii). Moreover, for any node s of G, G’ can be chosen so as to contain s.
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Proof. It is not difficult to check that each of these operations preserves
K-edge-connectivity. (Note that if all the k edges to be pinched with 2’
in the second part of (iii) were adjacent to z, then only K — 1 = 2k edges
would leave the subset {z,z'}.)

For a subset X C V, the set of edges connecting X and V — X will
be denoted by [X,V — X]. We call a cut [X,V — X] trivial if |[X| =1 or
|V — X|=1. By a minimum cut we mean one with cardinality K.

Lemma 3.4. Suppose that X is a minimal subset of nodes of a K-edge-
connected graph G = (U, E) for which

(2) dg(X)=K and |X|>2.

Then any minimum cut B containing an edge e = zz' with 2,2’ € X Is
trivial (that is, B is [z,U — z] or [/, U — 2']).

Proof. Suppose indirectly that there is a subset Y for which z € Y,
ZeU-Y,dY)=K,|Y|] >2, |U~-Y| > 2 Then by the minimal
choice of X we have Y € X and U —Y ¢ X. But it is well-known (and
an easy exercise anyway to show) that in a K-edge-connected graph with
K odd there cannot exist two such crossing sets X, Y. (Indeed, we have
K+K=d(X)+d(Y)=d(XNY)+d(XUY)+2d(X,Y) > K+ K+0 from
which d(X NY) = K =d(XUY) and d(X,Y) = 0, where d(X,Y) denotes
the number of edges connecting X —Y and ¥ — X. Analogously, we obtain
for Y :==U—Y that d(XNY) = K =d(X UY) and d(X,Y) = 0. So if
a:=d(XNY,Y—X), then d(XNY, X-Y) = K—a=d(Y-X,U—(XUY))
from which K = d(Y) = d(XNY, X-Y)+d(Y -X,U—(XUY)) = 2K 20,
that is, K is even, a contradiction.) m

If there is an edge e so that G’ := G — e is. K-edge-connected, then
G arises from G’ by (i). So we may assume that G is minimally K-edge-
connected. We may assume that there is no node z which is connected only
with s since otherwise, then by the minimality, d(z) = K and then G arises
from G’ by operation (ii) where G’ is a graph arising from G by deleting 2
and adding k loops at s. (Clearly G’ is K-edge-connected.)

If every minimum cut is trivial, then let e = 2z’ be an arbitrary edge
not incident to s. If there are non-trivial minimum cuts, then there is a set
X satisfying (2). Since the complement of X also satisfies (2), there exists
a minimal set X satisfying (2) so that s ¢ X.

Let e = zz be an arbitrary edge induced by X. As X induces a
connected subgraph, such an e exists. Now e belongs to at most two
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minimum cuts, each is trivial. If e belongs to one minimum cut, than exactly
one of z and 2/, say z, is of degree K. Then G — e is K-edge-connected in
U—z. By Lovasz’s splitting lemma there is a complete splitting at z resulting
in a K-edge-connected digraph G’. Then G arises from G’ by operation (ii).

If both z and 2’ are of degree K, then G — e is K-edge-connected in
U - {z,2'}. It follows from Mader’s splitting Theorem 3.1 that there is
a complete splitting of G — e at z so that the resulting graph G; is K-
edge-connected in U — {2, 2’}. By applying the splitting lemma to G; (now
Lovész’s is enough), we obtain that there is a complete splitting at 2’ so
that the resulting graph G’ with node set U — {z, 2’} is K-edge-connected.
This construction shows that G arises from G’ by operation (iii).

Since in each case z and 2’ were chosen to be distinct from s, we have
also proved the second half of the theorem. m =

Operation (iii) may seem to be a bit too complicated and one’s natural
wish could be to try to simplify it. For example, a simpler, more symmetric
version could be as follows: (iii)’ choose two disjoint subsets F' and F”’ of
edges both having k elements, pinch the elements of F' with a new node
z, pinch the elements of F’ with another new node 2/, and finally connect
z and 2/. However, Mader in his original paper showed an example which
cannot be obtained with operations (i), (ii), (iii)’.

Fortunately, for K = 3, operations (iii) and (iii)’ coincide and it is
worthwile to formulate this special case separately:

Corollary 3.5. An undirected graph G with at least two nodes is 3-edge-
connected if and only if G can be built from a node by the following
operations:

(i) add an edge,
(ii) subdivide an existing edge e = uv by a new node z and connect z to an
existing node,

(iii) subdivide two existing edges by nodes z and z’' and connect z and 2z’
by a new edge.

3.1.2. Orientation. Lovész’s splitting lemma immediately implied Nash-
Williams’ orientation theorem (:a 2k-edge-connected graph always has a
k-edge-connected orientation). In [29] we observed that Mader’s splitting
theorem also rather easily gives rise to the following common generalization
of theorems 2.8 and 2.7.
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Theorem 3.6. Let ki, ko, k be non-negative integers with ky > k, ko > k.
An undirected graph G = (V, E) with two specified nodes s and t has a
k-edge-connected orientation which is ki-edge-connected from s to t and
ko-edge-connected from t to s if and only if G is 2k-edge-connected and G
is (k1 + k2)-edge-connected in {s,t}.

This immediately implies a characterization of (2k + 1)-edge-connected
graphs.

Theorem 3.7. An undirected graph G is (2k + 1)-edge-connected if and
only if, for every pair of nodes s and t, G has a k-edge-connected orientation
which is (k + 1)-edge-connected from s to t.

Given the easy way how Lovész’s splitting lemma implies the weak
form of Nash-Williams orientation theorem, one may expect that Mader’s
stronger splitting result implies immediately the following stronger orienta-
tion result of Nash-Williams [47]:

Theorem 3.8 (Nash-Williams: strong form). Every undirected graph G =

(V, E) has an orientation G for which Mz,y;G) > LA(x,y; G)/ZJ for all
x,y €V.

Mader was indeed able to derive Theorem 3.8 relying on his splitting
theorem but the derivation is not at all simple (as neither is Nash-Williams’
original proof).

In the introduction of his paper, Nash-Williams [48] remarks that his
orientation theorems ‘do not seem particularly closely related to much other
existing work in graph theory’. These words are painfully true even after
40 years as far as the strong form is concerned, and it remains a major
task to find a simple proof of Theorem 3.8 or at least to find some closer
link to the body of edge-connectivity problems. Note that by now pretty
much is known about the various connections of the weak form along with
its numerous strengthenings and extensions. Nash-Williams also remarks
that ‘these theorems seem to have a somewhat natural character which
would suggest that there must ultimately be a place for them in the overall
structure of graph theory’. Since then it has turned out that wherever this
place is located, it is not a lonely one.

Nash-Williams calls an orientation with the property given in the the-
orem well-balanced. He actually proved the existence of a well-balanced
orientation that is, in addition, near-Eulerian which means by definition
that IQ(’U) -6 (v)| < 1 for every node v of G. Nash-Williams also outlined
the proof of the following generalization of Theorem 3.8.
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Theorem 3.9 [47]. Let G be a graph and H a subgraph of G. Then G has
a well-balanced and near-Eulerian orientation with the additional property

that its restriction to H is a well-balanced and near-Eulerian orientation
of H.

Corollary 3.10. Let G = (V, E) be a 2k-edge-connected graph and H =
(V, F) an Eulerian subgraph of G. For any Eulerian orientation of H, the
edges in E—F can be oriented so as to obtain a k-edge-connected orientation

of G.

This implies that in order to find a k-edge-connected orientation of a
2k-edge-connected graph G one can pick up edge-disjoint circuits one after
the other and orient them around. The corollary ensures that the remaining
forest can always be oriented to get a k-edge-connected orientation of G.
It would be interesting to see a direct constructive proof of this fact which
does not rely on Theorem 3.9. We note that there is an easy alternative
proof of Corollary 3.10 relying on submodular flows.

3.1.3. Augmentation. Let us turn to the effect of Mader’s theorem on con-
nectivity augmentation. The same way as Lovész’s splitting lemma could
be used for solving (global) connectivity augmentation, Mader’s splitting
theorem gives rise to a solution of the local edge-connectivity augmenta-
tion problem. Let G = (V, E) be an undirected graph and 7 a non-negative
integer-valued function on unordered pairs {u,v} of distinct nodes of G,
called a requirement function. In the local edge-connectivity augmenta-
tion problem we want to augment G so that the local edge-connectivity in
the increased graph G* majorizes r. By Menger’s theorem this is equivalent
to requiring

(3) dg+(X) > R (X) for every subset X C V,
where
(4) R.(X) :=max{r(u,v) : ue X,veV - X}.

The following two results appeared in [19].

Theorem 3.11. Let G = (V, E) be an undirected graph. Let m : V — Z
be an integer-valued function so that m(V') is even and m(C) > 2 for each
component C of G. There is a set F of new edges so that the local edge-
connectivity in G = (V,E + F) is at least r and dp(v) = m(v) for every
node v if and only if

(5.10) m(X) 2 Rp(X) — da(X)
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for every X C V.

Let C(# V) be the node-set of a component of G and call C' a marginal
component (with respect to r) if R,(C) <1 and R,(X) < d¢(X) for every
proper subset X of C. Let ¢(X) := R.(X) —dg(X) for X C V.

Theorem 3.12. Suppose that there are no marginal components. There
is a set F' of at most v edges so that the local edge-connectivity in Gt =
(V,E+ F) is at least r if and only if

(5) ZQ(Xi) < 2y

holds for every sub-partition {Xi, Xa,..., X} of V.

In [1], J. Bang-Jensen, H. Gabow, T. Jordan and Z. Szigeti investigated
the augmentation problem when the possible set of new edges meets a
partition constraint. Among their numerous results, we cite here only one:

Theorem 3.13. Let G = (V, E) be an undirected graph and P = { P, ...,
P.} a partition of V into at least two non-empty parts. Let k > 2 be an
even Integer. It is possible to add at most v new edges to G each connecting
distinct parts of P so that the resulting graph is k-edge-connected if and
only if Y yer [k -dX) : X € .7:] < 2v holds for every subpartition F
of V,and ) xcr. [k -d(X): X e ]:i] < ~ holds for every subpartition F;
of P, (i=1,...,7).

It is not difficult to check that the conditions in the theorem are neces-
sary for even and odd k, as well. For odd k, however, they are not sufficient.
But [1] did provide a characterization even for this more complicated case.

3.2. Directed splitting

Can one extend Mader’s directed splitting lemma so as to preserve local
edge-connectivities in directed graphs? No such a general result is known
but some extensions of the directed splitting lemma are available. The
following is a consequence of a result in [22].

Theorem 3.14. Let k > | > 1 be integers and D = (V + z, E) a directed
graph with a special node z having the same in- and out-degree. If D is
(k,1)-edge-connected in V, then there is a pair of edges e = zu, f = vz
which can be split off without destroying (k,l)-edge-connectivity in V.
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This result was proved in [22] in a more general form concerning cover-
ings of crossing supermodular functions by digraphs. It can be used to solve
the free- and the degree-specified augmentation problem for digraphs when
the target is (k,!)-edge-connectivity. Let D = (V| E) be a digraph with a
root-node s and let 0 < ! < k be integers. Define py(X) := (k — op(X)) *
if0 C X CV—sand pu(X):=(I-op(X)) Titse X V.

Theorem 3.15. For in- and out-degree specifications m; : V — Z, and
me : V — Z4 with mi(V)) = my(V), there is a digraph H = (V, F) so that
dr (v) = my(v), op(v) = my(v) for every node v € V and so that D + H is
(k,1)-edge-connected with respect to root s if and only if m;(X) > pri(X)
and my(V — X) > pri(X) holds for every non-empty subset X C V.

Theorem 3.16. There is a digraph H = (V,F) of at most v edges so
that D + H is (k,l)-edge-connected with respect to root s if and only if
3 [pkl(X) X € ]:] <~vand}, [pkz(V—X) X € f] <« hold for every
partition F of V.

3.3. Undirected detachment

Let G = (V+z, E) be an undirected graph. We modify slightly the operation
of splitting off a pair of edges e = uz, f = vz as follows. Replace e and f by
a new edge h = uv and subdivide then h by a new node z’. More generally,
by a detachment of node z into p nodes we mean the following operation.
Replace z by p new nodes zi,...,2, and replace each edge uz by an edge
uz;. If the degree of each new node z; is required to be a specified number
d;, we speak of a degree-specified detachment of z. In order for this to make
sense we assume that di,...,d, add up to dg(z).

Theorem 3.17 (Nash-Williams, [50]). Let G = (U, E) be a graph with a
given positive integer p(z) at every node z. It is possible to detach each
node z into p(z) parts so that the resulting graph is connected if and only
if

(6) e(X) 2 p(X) + ca(X) - 1

holds for every non-empty subset X C V', wherep(X) := [p(v) tVE X] ,
e(X) is the number of edges having at least one end-node in X, and cg(X)
denotes the number of components of G — X.
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Note that Nash-Williams pointed out that this type of detachment can
be handled as a matroid partition problem.

Suppose now that we are given at each node z of a graph G = (U, E)
a degree specification dy(z),...,dy(;)(2). Nash-Williams showed that it is
possible to detach simultaneously all nodes so that there exists a degree-
specified detachment of all nodes so that the resulting graph is connected if
and only if (6) holds and d;(z) > 1 for each 7 and z € V.

What if we want a detachment which is k-edge-connected for k > 27
Clearly, for the existence of such detachment it is necessary that G be k-
edge-connected and that each d;(z) is at least k. This is not always sufficient
and we exhibit even two examples to show that. Let k£ be odd. First, suppose
G consists of just two nodes u and v connected with 2k parallel edges, and
di(u) = da(u) = k = d1(v) = da(v). Second, suppose that G has a cut node
z of degree 2k and d;(z) = da(z) = k. It is not difficult two check that no
k-edge-connected detachment exists in either case. Quite surprisingly, there
are no other bad cases:

Theorem 3.18 (Nash-Williams, [50]). Let G = (V, E) be an undirected
graph with a degree specification di(z),...,dp(,)(2) at each node z. It is
possible to detach each node z into p(z) nodes having specified degrees so
that the resulting graph is k-edge-connected if and only if G is k-edge-
connected, each requested degree d;(z) is at least k, except if k is odd and
G is one of the two exceptional examples mentioned above.

How is this result related to Lovasz’s undirected splitting lemma? They
are not really comparable (in the sense that neither implies the other.) The
splitting lemma detaches only one node, into nodes of degree two, and is
clearly not ‘interested’ in preserving k-edge-connectivity at the detached
nodes. But there is a very nice result of B. Fleiner [13] which is a general-
ization of Lovész’s splitting lemma on one hand and implies easily Theorem
3.18 on the other.

The splitting lemma asserted that if G was k-edge-connected on V' then
a k-edge-connectivity preserving splitting always existed. If there are odd
numbers in the degree-specification of the detachment, then this is not
necessarily true. Let G consist of two disjoint triangles plus a node z
connected to all the other six nodes. Then G is 3-edge-connected on V
(even the whole G is) but it is not possible to detach z into two nodes of
degree 3 so that the resulting graph keeps to be 3-edge-connected on V.
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Theorem 3.19 (Fleiner). Let G = (V +z, E) be an undirected graph with
a special node z and k > 2 an integer. Let dy, ..., d, be integers for which
di > 2,Y d; = dg(z). It is possible to detach z into p nodes of degree
di,...,dp, respectively, so that the resulting graph is k-edge-connected in
V if and only if G is k-edge-connected in V and G — z is k’-edge-connected
where

(7) Ki=k=> |di/2).
1=1

Note that if each d; is even, then G —z is automatically k’-edge-connected
so we do not have to explicitly require it, and this special case follows
immediately from the undirected splitting lemma. As Lovész’s splitting
lemma could be used to derive Watanabe and Nakamura’s Theorem 2.4 on
minimum k-edge-connected augmentation of a graph, Fleiner used his result
to prove the following generalization [13].

Theorem 3.20 (Fleiner). Let G = (V,E) be an undirected graph and
di,...,d, and k integers larger than one. It is possible to augment G by
adding p new nodes of degree d;, respectively, so that the enlarged graph
G™ is k-edge-connected on V' if and only if

(8) Y [(k=da(X)) : X € F] <> dy

holds for every sub-partition F of V, and
P
(9) Mu,v;G) > k=Y |di/2]
1=1

holds for every pair of nodes u,v € V, that is, G is k'-edge-connected, where

Vo= k= S0 /2.

So, Fleiner’s Theorem 3.19 is one generalization of the undirected split-
ting lemma while Mader’s Theorem 3.1 is another. Does there perhaps exist
a common generalization of these difficult theorems? Yes, T. Jordan and
Z. Szigeti proved the following theorem [34].

Theorem 3.21 (Jordan and Szigeti). Let G = (V + z, E) be a graph with
a special node z so that there is no cut-edge incident to z. Let dy,...,d,
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be integers for which d; > 2, )" d; = dg(z). Also, we are given a symmetric
function r(u,v) on the pairs of nodes in V. There is a detachment of z into
p nodes of degree dy, ..., dy, respectively, so that in the resulting graph G’
the local edge-connectivity A(u,v; G') is at least r(u,v) for every u,v € V if
and only if

(10) r(u,v) < AMu,v; G) and A(u,v; G — z) > r(u,v) — Z{_di/2j
i=1

for all u,v € V.

In the augmentation results so far we always added edges to an existing
graph G = (V, E). This may be interpreted as adding new nodes of degree
two so that the (local) edge-connectivity should attain a certain prescribed
value. It is quite natural to investigate an extension of the problem when
the newly added nodes are of prescribed degree, not necessarily two. The
following result of Jordédn and Szigeti [34] is a straight generalization of
Theorem 3.12. As in Theorem 3.12, we are given an undirected graph
G = (V, E) and a symmetric non-negative integer-valued function r(u, v) on
the pair of nodes, called local edge-connectivity requirement. Let R.(X) :=
max{r(u,v) cu € X,v € V—X} forevery X C V and let ¢(X) :=
R, (X) — dg(X). Recall the definition from (4) of R,(X), ¢(X) and a
marginal component of G.

Theorem 3.22 (Jordan and Szigeti [34]). Let G = (V, E) be an undirected
graph, r(u,v) a local edge-connectivity requirement function so that there
are no marginal components. Moreover, let dy,dy,...,d, be integers each
larger than 1. It is possible to add to G p new nodes of degree d;, respec-
tively, so that the enlarged graph G* satisfies A(u,v; G*) > r(u,v) for every
pair of nodes u,v € V if and only if

p

(11) S lax): XeF] <) di

1=1

holds for every sub-partition F of V', and

1d;/2)

p
=]

(12) Au,v; G) > r(u,v)

1

holds for every pair of nodes u,v € V.
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3.4. Directed detachment

In Mader’s directed splitting lemma, it was assumed for the specified node
z to have the same in- and outdegree. Without this restriction a splitting at
z preserving k-edge-connectivity in V' does not necessarily exist. However,
Berg, Jackson and Jorddn [5] found the following interesting extension of
the splitting lemma.

Theorem 3.23 (Berg, Jackson, Jorddn). Let k > 1 be an integer and
D = (V +z, E) adirected graph with a special node z for which p(z) > §(z).
If D is k-edge-connected on V', then for every edge zu there are t edges
V12,...,vz, where 1 <t < p(z) — §(z) + 1, entering z so that detaching z
into two nodes z' and z; results in a digraph which is k-edge-connected on
V', where z, has one outgoing edge z1u and t entering edges vy 21, ..., vt2].

By repeated applications of the theorem, one easily obtains a complete
detachment version: If k, D, z are the same as before, it is possible to
detach the edges at z into §(t) nodes so that each contains ezactly one edge
leaving it and so that the resulting digraph is k-edge-connected in V.

A directed counter-part of Nash-Williams’s detachment theorem was
obtained by Berg, Jackson and Jorddn [6]. Given a function r : V — Z,
by an r-detachment of a digraph D = (V, A) we mean a digraph arising
from D by ‘detaching’ simultaneously each node v into r(v) pieces so that
each edge leaving or entering v would leave or enter one of the pieces.

Theorem 3.24 ([6]). Let D = (V,E) be a digraph and let r : V — Z.
Then D has a k-edge-connected r-detachment if and only if

(a) D is k-edge-connected,

(b) o(v) > kr(v) and 6(v) > kr(v) for every v € V.

In addition, Berg, Jackson and Jordan proved that the in- and out-
degrees of every detached node v € V' can be arbitrarily specified provided
that at each node v of D all the values in the indegree specifications are
at least £ and add up to the indegree of v and similarly for the outdegree
specifications.
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4. UNCROSSING-BASED RESULTS

In the previous two sections we overviewed results evolving from the splitting
lemmas. Here some fruits of another fundamental technique, the uncrossing
procedure, will be surveyed. The rough idea of this approach is that for a
given family of sets with certain properties or parameters one can replace
two uncomparable (or intersecting, or crossing) sets by their intersection
and union so as to preserve the properties or parameters of the family. By
repeating this uncrossing step as long as possible, one arrives in a finite
number of steps at a nicer family (chain of scts, laminar, or cross-free),
preserving the essential properties or parameters of the initial one. To my
best knowledge, the first appearance of this approach that appeared in print
[39] was a solution of L. Lovéasz (a third-grade university student at that
time) to Problem 11 (posed by A. Rényi) of the Memorial Mathematical
Contest Miklds Schweitzer of the year 1968.

Later Lovdsz used the technique to provide a simple proof of the
Lucchesi-Younger theorem [41] and to prove his theorem on minimum 7*-
joins [40]. Since then the uncrossing method has proved to be an extremely
powerful proof technique. In this section we briefly overview some recent
results that were obtained this way.

4.0.1. A detour to the origin of uncrossing. Rényi’s Problem 11 was
to verify an inequality concerning the probabilities of some events in a finite
probability space. In his solution, Lovész first observed that the logarithm
of the probability of events is a submodular function (where product and
sum of events correspond to intersection and union, respectively), and he
then applied the uncrossing technique to derive the requested inequality.
Actually, Lovész’s proof uses nothing but the submodular property and
hence it provides the corresponding inequality for any submodular function:
we exhibit Lovész’s proof in this context. In order to do so, it is useful to
introduce the notion of linear extension of a set-function.

Let b be a set-function on a groundset S for which b(@) = 0. For any
vector ¢ € RIS arrange the elements of S in such a way that c(s1) >
.- > c(sp). Let Si == {s1,...,si} and define b(c) by b(c) := c(sn)b(Sn) +

?;11 [c(si) — c(si+1)] 0(S:). The function b : RS — R defined this way is
called the linear extension of b. It was introduced also by Lovasz in 1983
[43] and therefore often the term Lovdsz extension is used. It should be

noted that the correctness of the matroid greedy algorithm is equivalent to
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stating that the maximum c-weight of bases of a matroid with rank function
r equals 7(c), or more generally, Edmonds’ polymatroid greedy algorithm
is equivalent to the assertion that, given a fully submodular function b,
max {cz : z € B(b)} = b(c), where B(b) := {z € R® : 2(Z) < b(Z) for
every Z C S and z(S) = b(S)} is the so called base-polyhedron.

The solution of Lovész in [39] to Problem 11 contains implicitly the
following.

Lemma 4.1. Let b be a fully submodular function on a ground-set S and
b its linear extension. Then, for any collection {X1, X2, ..., X, } of subsets
of S,

m m

(13) > b(X) zb(ZxXi),
i i

where x, denotes the characteristic function of X.

Proof. Apply the uncrossing procedure to the family {Xi,..., X}, that
is, as long as there are two uncomparable sets in the current family, replace
them by their intersection and union. Due to the submodularity of b, the
sum of the b-values of the members never increases, while the sum of the
characteristic vectors of the members stay unchanged.

Since the number of uncomparable sets in the family during an uncross-
ing step strictly decreases, the uncrossing procedure terminates in a finite
number of steps. The final family is a chain {Z, C Z C --- C Z,} of
subsets for which ), xx, = >_;xz, and hence > . b(X;) > > .b(Z;) =

b( ZiXZi) = b( ZiXX")‘ "

The inequality in (13) may be called generalized submodular inequality.
(We note that the even more general inequality 3 b(c;) > 5( Zci) also
holds true for arbitrary vectors c¢1,...,cm € RS.) To see the usefulness of
(13), we make a little detour and derive in a few lines the following elegant
result on matroids from the partition theorem.

Theorem 4.2 (Greene és Magnanti). Let By and By be bases of a matroid
M and {Zy,Z,...,Zm} a partition of By. Then there is a partition
{Y1,...,Yn} of By for which By — Z; UY; is a basis for each subscript
1=1,...,m.
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Proof. We may assume that B; and By are disjoint for otherwise their
intersecion can be contracted and the theorem for the contracted matroid
implies that for M. Let k denote the rank of M. For each i, consider the
matroid M; = (B2, r;) arising from M by contracting first By — Z; and
restricting then the resulting matroid to By. For any subset X C Bs, let
Xi = B1—Z;UX. Then ), xx; = (m—1)x(B,ux)+Xy, and by (13) we have
Sr(X) 2 #(Sxx) = ALm = Dxgom + xx] = (m = r(BiUX) +
r(X) = (m=1)k+|X|. From r;(X) = 7(X;)—r(B1—Z;) = r(Xi)—|B1—Zil,
we obtain Y, ri(X) = X, [r(X:) — [B1 = Zi|] = ¥;r(Xa) — (km — k) >
(m—=1Dk+|X| - (km—k) =|X|.

By the matroid partition theorem of Edmonds and Fulkerson [11], Bs
can be partitioned into sets Y1,Ys, ..., Y, so that Y; is independent in M;.
By the definition of M;, |Y;| < |Z;| for each 7, and hence y_ |Z;| = >" |Yj|.
Therefore |Y;| = |Zi|, and then By — Z; UY; is a basis of M. m

4.1. Orientations and augmentations through submodular flows

A general and flexible framework concerning sub- or supermodular functions
is the notion of submodular flow. In [23] a rather exhaustive survey was
given to show how basic results on submodular flows can be applied to ori-
entation problems. By an orientation of a mixed graph M = (V, A + E),
with directed and undirected edge-sets A and FE respectively, we mean a di-
rected graph (V, A + E) arising from M by orienting each undirected edge
and leaving alone the directed ones.

Before exhibiting a characterization of mixed graphs having k-edge-
connected orientations, let us consider the special case k = 1.

4.1.1. Strongly connected orientation of mixed graphs. A straight-
forward generalization of Robbins’ theorem, with a fairly easy proof, is due
to F. Boesch and R. Tindell [7].

Theorem 4.3. A mixed graph M = (V, A+ E) has a strongly connected
orientation if and only if M has no cut-edge and no subset ) C X C V of
nodes so that neither directed nor undirected edges leave X.

Proof. We show that the undirected edges can be oriented greedily one by
one, taking care only to avoiding the creation of a directed cut. There is
nothing to prove if E is empty. Let e = uv € E be an undirected edge. If
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orienting e toward v (toward wu, respectively) creates a directed cut, then
there is a uv-set X (a vu-set Y) so that no directed edge leaves X (V)
and e is the only undirected edge leaving X (Y). Then neither X NY nor
V —(XUY) admits a leaving edge and hence they must be empty. Therefore
X and Y are complementary sets and e is the only edge connecting X and
Y, contradicting the assumption on the non-existence of cut-edges. m

The simplicity of this result may suggest that Nash-Williams’ Theo-
rem 2.8 on k-edge-connected orientability of 2k-edge-connected undirected
graphs can also be extended to mixed graphs in a straightforward way. But
this is not the case even for k = 2.

4.1.2. An example for k£ = 2. It turns out that in this case the natural
cut-type or partition-type necessary conditions are not sufficient anymore.
To see this, define a mixed graph M = (V4, A+ E) as follows. Let V4 =
{v1,v9,v3,v4}, let E consist of two edges e; = vjv2, ea = v3v4, and let A
consist of the following nine edges: vjvs, v1v3, V3V, VoU3, Vo3, U3V, VoUy,
V204, V4V9.

The digraph D = (V4, A) is strongly connected, that is, every in-deficient
set (with respect to 2-edge-connectivity) is of indegree one, and there are
exactly three such sets:

Xl = {Ul}v X2 = {’U],'UQ,'U;}}, X3 = {'U2,'U4}.

Let A3 := { X1, X9, X3}. In order to have a 2-edge-connected orientation of
M, one has two orient the two edges of G = (V4, F) so that each member of
As admits at least one newly oriented entering edge. An easy case checking
shows that no such orientation may exist. Note, however, that for every
two members of A3, there is an orientation of G' in which the indegree of
these two members is at least 1. This implies that any certificate of the
nonexistence of a 2-edge-conneced orientation of M which consists of in-
deficient sets must include all the three members of Ajz.

Note that A3 is neither a partition nor a co-partition of any subset of V.
The example therefore indicates why one needs more general families of sets
in the characterization of k-edge-connected orientable mixed graphs. The
result will also show that the use of submodular functions is unavoidable
in the solution of this purely graph-theoretic problem. The approach easily
extends to (k,!)-edge-connected orientability.
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4.1.3. Tree-compositions. For a proper non-empty subset S of V we
introduce the notion of a tree-composition of S. Let {Si,...,S4} be a
partition of S and {Z,...,Zs} a partition of V — S (a,3 > 1). Let
T = (U,F) be a directed tree such that U := {s1,...,Sq,21,...,23} and
each directed edge goes from a z; to an s;. For each edge f of the tree, let
Ty denote the set of nodes of that component of 7' — f which is entered by
f. The family A := {90 L : [ € F} is called a tree-composition of
S where p(v) = s; if v € S; and <p( v) = z; if v € Z;. We will also say that a
partition or a co-partition of V is a tree-composition of V. Note that a
tree-composition A of S is cross-free and every element of S belongs to the
same number ¢ of members of A and every element of V — .S belongs to t —1
members. (If @ = # = 1, then A consists of the single set S. If 3 =1 <
then A is a partition of S. If « = 1 < 3, then A is a co-partition of S.)

Let us consider the subset S := {v1,v2} in the example above. We claim
that the family A3 forms a tree-composition of S. This can be seen by
defining Sy := {v1}, S2 := {v2}, Z1 := {v3}, Z4 := {v4} and by letting T
be a directed tree on node set {s1, s, z1, 22} having three edges: f; = vzvy,
fo = v3va, f3 = vgva. Now Ty, = s1, Ty, = {22,520} and Ty, = {s1, 82,21}
Let ¢(v1) = 81, p(va2) = s2, p(v3) = 21, p(v4) = z2. Then Az indeed arises
in the form described in the definition of tree-composition.

Suppose now that G = (V, E) is an arbitrary undirected graph. Let A
be a tree-composition of a subset S C V and j = uv an edge of G. Let
ews(A) denote the number of uv-sets in A. That is, eus(A) is the number
of sets in A entered by the directed edge with tail v and head u. Let
e;(A) := max { ey5(A), eav(A)} and
(14) ec(A) =) _ei(A).

jEE
Note that leuf,(.A) —evﬁ(A)l < 1 with equality if and only if | Sn{u, v}| = 1.
The quantity e;(A) indicates the (maximal) possible contribution of an edge

j = wv to the sum 3 [0a(X) : X € A] for any orientation G of G. Hence
ec(A) measures the total of these contributions and we have

(15) Z QG ) < eg(A)

XeA

for any orientation G of G. Let D = (V, A) be a digraph and M = (V, A+ E)
a mixed graph. Let s be a root-node of M. For integers 0 < | < k define

pa(X) = (k= op(X)) T if 0 € X C V — s and p(X) = (I - ep(X)) " if
seXCV.
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Theorem 4.4 [23]. A mixed graph M has a (k,[)-edge-connected orienta-
tion (with respect to root-node s) if and only if

(16) Y [pu(X) : X € A] <D [ec(A) : e€ E]
holds for every tree-composition A.

In the example above, where k = | = 2, A3 violates (16) since pg(X) =1
for each X € A3z while eg(A3) = 2 since each of the two edges of G can
contribute to the indegree of the sets in .43 by one.

‘4.1.4. Special cases. While tree-compositions are inevitable in general,
in some important special cases they are not, as we have already seen in
Theorems 2.8 and 2.9. We now exhibit a common generalization of these
last two results when partition type conditions turn out to be sufficient. We
investigate the orientation problem when [-edge-connectivity and rooted
k-edge-connectivity are simultaneously required (that is, we want a (k,1)-
edge-connected orientation).

Theorem 4.5 [18]. Let 0 < | < k be integers. An undirected graph
G = (V, E) has a (k,l)-edge-connected orientation if and only if G is (k,l)-
partition-connected.

Another special case of the mixed graph (k,l)-edge-connected orienta-
tion problem when only partition type conditions are required is the case of
[ < 1. The case | = 0, which is a generalization of Theorem 2.9, appeared
in [16].

Theorem 4.6. A mixed graph D + G = (V, A+ E) with a root-node s has
a (k,0)-edge-connected (that is, s-rooted k-edge-connected) orientation if
and only if the number of cross-edges of G is at least

(17) Z [k —op(Vi)]

i=1
for every partition {Vo, V1,...,V;} of V into non-empty parts with s € Vq.
The case | = 1 appeared in [23].

Theorem 4.7. A mixed graph D + G = (V, A+ E) with a root-node s
has a (k, 1)-edge-connected orientation (that is, strongly connected and s-
rooted k-edge-connected) if and only if the number of cross-edges of G is
at least Z§=1 [k - QD(V,-)] +1 for every partition {Vy, Vi,....V;} of V into
non-empty parts with s € Vj.
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4.1.5. An augmentation result. The rooted edge-connectivity augmen-
tation problem (in digraphs) behaves nicely in the sense that even the min-
imum cost version is tractable. Suppose that we are given a digraph with a
special root-node s and we want to augment the digraph by adding a mini-
mum cost of new edges so as to have a rooted k-edge-connected digraph. At
the beginning of section 2, we mentioned that the minimum cost subgraph
problem is equivalent to the minimum cost augmentation problem, and in
this case the subgraph problem (:find in a digraph a minimum cost rooted k-
edge-connected subgraph) can be solved with the help of submodular flows,
see [17] and [54]. Here we mention only one consequence of this:

Theorem 4.8. Let D = (V,E) and H = (V, A) be two digraphs so that
their union D+ H = (V, EUA) is k-edge-connected from a root-node s. The
minimum number of edges of H whose addition to D results in a s-rooted
k-edge-connected digraph is equal to the maximum of [k — op(X)

X € ]7] , where the maximum is taken over all laminar families F of non-
empty subsets of V —s for which no edge of H enters more than one member

of F.

4.2. Connectivity orientation and augmentation combined

Now comes an account on some new developments making possible to com-
bine certain orientation and augmentation problems. In subsection 2.2 we
have already mentioned this type of results: Theorem 2.10 characterized
undirected graphs which can be augmented by adding at most v edges so
as to have a (k, 0)-edge-connected orientation. We also remarked that even
the minimum cost augmentation was tractable by using matroid techniques.
Here we consider the same problem for mixed graphs (where those matroid
techniques do not work.) Let us consider Theorem 4.6 and suppose that
the required orientation does not exists, that is, the necessary and sufficient
condition in (17) fails to hold. How many new undirected edges should be
added to M so as to have a (k, 0)-edge-connected orientation. Or more gen-
erally, what is the minimum cost of required new edges? By considering the
existing undirected edges having zero cost, this latter problem is equivalent
to the following.

Given a mixed graph with a root node s endowed with a non-negative
cost function on the set of undirected edges, delete a maximum cost of edges
so that the resulting mixed graph has a (k,0)-edge-connected orientation.
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S. Khanna, J. Naor and F. B. Shepherd [35] solved this problem in an even
more general form when the directed edges may also have costs and the two
possible directions ¢’ = uv and €’ = vu of an undirected edge uv may have
different costs.

To be more specific, let M = (V, A+ E) be a mixed graph consisting of
a digraph D = (V, A) and an undirected graph (V,E). Let s be a root-
node of M and let Ay := AU {e,¢" : e € E}. Furthermore we are
given a nonnegative cost function ¢ : A; — R,. We say that a subset
F C A, of directed edges (or the subdigraph D’ := (V, F)) is orientation-
constrained if F' may contain at most one of the two possible directions e’
and €” of any undirected edge e € E.

The (k,0)-orientable subgraph problem consists of finding a min-
imum cost (k,0)-edge-connected orientation-constrained subdigraph D’ =
(V, F) of Dl = (V, Al)

Khanna, Naor and Shepherd considered the following linear program:

(18) min}  [e(f)z(f) : f € Al

subject to

(19) 0<z(f) <1 forevery directed edge f € A,
(20) z(e') +x(e") <1 for every edge e€ E
1)

Z [x(f) : f e Ay, f enters Z] >k for every subset 0 C ZCV —s.

Let P denote the polytope described by the three constraints. Clearly,
an integer vector in P is actually 0 — 1-valued and the 0 — 1 vectors of
P are precisely the characteristic vectors of orientation constrained (k,0)-
edge-connected subdigraphs of D;.

The main result of [35] is as follows:

Theorem 4.9 (Khanna, Naor, and Shepherd). The vertices of polytope
P are 0 — 1 vectors, or equivalently, P is the convex hull of (characteristic
vectors) of orientation-constrained (k,0)-edge-connected subdigraphs of D;.

By relying on linear programming duality, this theorem provides a min-
max formula for the minimum cost of a solution. We avoid formulating
this since the result can be even further improved [29]. We emphasize,
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however, that the improvement uses only known ideas, and the main point
here is the recognition of Khanna, Naor, and Shepherd that even this general
framework is tractable by standard techniques.

Theorem 4.10. The linear inequality system of (19), (20), and (21) is
totally dual integral (implying the integrality of P). Moreover, P is a
submodular flow polyhedron.

This theorem enables us to solve the problem algorithmically by invoking
a submodular flow algorithm. Furthermore, one has a better structured
duality theorem. For the sake of simplicity we formulate it only for 0 — 1-
valued cost functions.

Theorem 4.11. Let M = (V,A + E) be a mixed graph with a root-node
s endowed with a 0 — 1 valued cost function ¢ : AUE — {0,1}. The
minimum cost of a mixed subgraph of M which has a (k, 0)-edge-connected
orientation is equal to the maximum of

th—ec(F) =Y [en(X) : X € F] +q(F),

where the maximum is taken over all laminar families F of t (t > 0) subsets
of V —s. Here G = (V, E) is the undirected part of M, eq(F) is defined
in (14), and q(F) denotes the number of (directed or undirected) edges of
cost 1 which enter at least one member of F.

This is a common generalization of Theorems 4.6 and 4.8. When c is
zero on all directed edges, we are back at our starting problem of finding a
smallest set of new undirected edges to be added to a mixed graph to have
a (k,0)-edge-connected orientation.

So, we can solve quite reassuringly the combined orientation/augmen-
tation problem in mixed graphs when the target is (k,0)-edge-connectivity.
Wouldn’t it be natural to lift our horizon to (k,l)-edge-connectivity? The
directed (k,l)-edge-connectivity augmentation problem is solved by The-
orem 3.16. The (k,[)-edge-connectivity orientation problem is solved for
undirected graphs by Theorem 4.5 (and even for mixed graphs by Theorem
4.4). We show now how to solve the problem of augmenting an undirected
graph by adding undirected edges so that the resulting graph has a (k,1)-
edge-connected orientation. Due to the relatively complicated nature of
tree-compositions in Theorem 4.4, so far we have not taken courage to try
to attack the corresponding augmentation problem for mixed graphs. And
even for undirected graphs the minimum cost version is out of question
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because the NP-complete problem of finding a Hamiltonian circuit prob-
lem is a special case. We consider the degree-specified and the minimum
augmentation problems as well. The following results are taken from [28].

Theorem 4.12. Let G = (V, E) be an undirected graph, k > | > 0 integers,
and m =V — Z_. a degree-specification for which m(V') is even. There
exists a graph H = (V, A) so that dg(v) = m(v) for every v € V and so
that G + H is (k,l)-tree-connected (= (k,l)-partition-connected = (k,1)-
edge-connected orientable) if and only if

(22) m(V)/2> (t =1k +1—eg(F)
and
(23) }}lei}%_m(v—X) > (t=1k+1—eq(F)

hold for every partition F of V intot > 2 non-empty parts.

Let us indicate briefly the proof of necessity. If G + H has a (k,1)-
edge-connected orientation, then it is (k,l)-partition-connected, that is,
eg+H(F) > k(t — 1) + 1 and hence eyg(F) > k(t — 1) + 1 — eq(F). If
H satisfies the degree-specification, then m(V)/2 = |A| > en(F) and
m(V —X) > en(F) for every X € F from which both (22) and (23) follow.

This result might be interesting even in the special case of [ = 0:

Corollary 4.13. Let G = (V, E) be an undirected graph, k > 1 an integer,
and m := V — Z, a degree-specification for which m(V) is even. There
exists a graph H = (V, A) so that dg(v) = m(v) for every v € V and so
that G + H is k-tree-connected if and only if

(24) m(V)/2 > (t = 1)k — eq(F)
and
(25) g(neil}m(V—X) > (t— 1)k — eq(F)

hold for every partition F of V intot > 2 non-empty parts.

The following theorem is a bit out of the main line of the paper since the
target of the augmentation is not a connectivity property. As a counterpart
to tree-packing in corollary 4.13, here our target is tree-covering:
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Theorem 4.14 [28]. Let G = (V,E) be an undirected graph, k > 1 an
integer, and m := V — Z, a degree-specification for which m(V') is even.
There exists a graph H = (V, A) so that dg(v) = m(v) for every v € V and
so that G + H is the union of k forests if and only if

(26) m(X) —m(V)/2 < k(1X]-1) —ig(X)

for every ) ¢ X C V, where ig(X) denotes the number of edges of G
induced by X.

Again it is useful to prove the necessity. If H is a graph for which G+ H
is the union of k forests, then eg+py < k(lX | — 1) holds for every subset
X C V, that is, ig(X) < k(|X] — 1) —ig(X). If H satisfies the degree-
specification, then |A] = m(V)/2 and at most m(V — X) edges may be
incident with an element of V — X. So at least m(V)/2 — m(V — X) edges
are induced by X in H and hence m(X)—-m(V)/2=m(V)/2—-m(V -X) <
i1 (X) < k(1X] = 1) ~ia(X).

To conclude this subsection, we cite a result from [28] on the minimiza-
tion form of (k,[)-tree-connectivity augmentation.

Theorem 4.15. Let G = (V, E) be an undirected graph. It is possible to
add at most v new edges to G so that the resulting graph G* is (k,1)-tree-
connected (that is, Gt has a (k,l)-edge-connected orientation) if and only
if

(27) y>k(t—1)+1—eq(F)
holds for every partition F of V with t members, and
(28) 2y > t1k +tal — ec(F)

holds whenever F is the union a partition F; of a subset Z C V and a
co-partition Fy of Z so that |F;| = t; (i = 1,2) and so that F; is a finer
partition of Z than partition {X : V — X € Fa}.
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4.3. Directed edge-connectivity augmentation

In [25] we proved a general min-max formula concerning minimum coverings
of a so-called bi-supermodular function by directed graphs. This result
implies Theorem 3.16 (which has had an independent and simpler proof)
and implies the following, as well.

Theorem 4.16. Let D = (V, A) be a directed graph and S, T two (not
necessarily disjoint) non-empty subsets. It is possible to add at most y ST-
edges so that the resulting digraph is k-edge-connected from S to T if and
only if

(29) Y [k—op(X): XeF] <y

holds for every family F of pairwise ST-independent sets, where two sets
X, Y are ST-independent if XNYNT =0 or S—(XUT)=0.

In sharp contrast with the existence of a good characterization in The-
orem 3.12 concerning local edge-connectivity augmentations of undirected
graphs, the directed counterpart of this problem is NP-complete [19] even
in the special case when the requirement is one between the nodes of a spec-
ified subset T of nodes and zero otherwise. (That is, given a digraph, add a
minimum number of new edges so that there is a path from every element
of T to every other element of T'.) Recently, however, I found the following
characterization for |T| = 2 [24]. (This result seems to be independent of
the rather general main theorem of [25].)

Theorem 4.17. Let D = (V, E) be a digraph with two specified nodes
s, t and let k, | be two non-negative integers. Let S, T' be non-empty
subsets of V so that every st-set X with op(X) < k and every t5-set X
with op(X) <l is entered by an ST-edge. D can be augmented by adding
at most «y (possibly parallel) ST-edges so that in the resulting digraph there
are k edge-disjoint paths from s to t and there are | edge-disjoint paths from
t to s if and only if y > k — pp(X) whenevert € X CV —s,v> 1l —pp(X)
whenever s € X C V —t, and v > (I — op(X)) + (k — op(Y)) holds
whenever s € X,t€Y and XNYNT =0 or XUY D S.
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5. CONSTRUCTIVE CHARACTERIZATIONS

We have already seen constructive characterizations of k-edge-connected
graphs and digraphs (Theorems 2.13, 3.2, 2.14), of (k,0)-edge-connected
digraphs (2.15) and k-tree-connected graphs (2.16). For integers 0 <1 < k
we offer the following:

Conjecture 5.1. A directed graph D is (k,l)-edge-connected if and only if
it can be built from a node by the following two operations: (j) add a new
edge, (jj) pinch i (I <1 < k) existing edges with a new node z, and add
k — i new edges entering z and leaving existing nodes. An undirected graph
is (k,1)-tree-connected (= (k,l)-partition-connected) if and only if it can be
built from a node by the following two operations: (j) add a new edge, (jj)
pinch i (I <i < k) existing edges with a new node z, and add k — 1 new
edges connecting z with existing nodes.

Note that by Theorem 4.5 the undirected version of the conjecture
follows from the directed one. As mentioned above, the case [ = 0 is settled
by Theorem 2.15. Jointly with Zoltdn Kirdly [27], we characterized (k, k—1)-
edge-connected digraphs (and hence (k, k — 1)-partition-connected graphs,
as well). At the other end of the range of I, recently in [31] we proved the
case | = 1. All other cases of the conjecture are open (for example, when
k=4,1=2).

The theorem in [27] concerning the case | = k — 1, in turn, can be used
to derive the following orientation result. Let G = (V, E) be an undirected
graph. A subset T of nodes is called G-even if |T'| +|E| is even. We call an
orientation of G T-odd if the indegree of a node v is odd precisely when v
belongs to T'. The following is taken from [27].

Theorem 5.2. An undirected graph G has a k-edge-connected and T-odd
orientation for every G-even subset T' if and only if G is (k+1,k)-partition-
connected.

Corollary 5.3. A (2k + 2)-edge-connected graph always admits a k-edge-
connected orientation in which the indegree of all nodes but possibly one
are odd.

As mentioned above, the proof is based on the constructive characteriza-
tion of (k+ 1, k)-partition-connected graphs. It would be interesting to have
a simple direct proof of the corollary, even for the special case k = 1 when it



Edge-Connection of Graphs, Digraphs, and Hypergraphs 131

asserts that a 4-edge-connected graph has a strongly connected orientation
in which every node but possibly one is of odd indegree.

The motivation behind such a theorem is the natural attempt to have
a better understanding of problems where both parity and connectivity
are involved. In Theorem 5.2 we charaterized graphs having a certain
orientation for every G-even subset 7. It would be interesting to know
the necessary and sufficient condition of the existence of a k-edge-connected
T-odd orientation of a graph G for one specified G-even subset T'. This is
open. However, the analogous question concerning k-tree-connectivity has
been settled in [26].

Theorem 5.4. Let G = (V, E) be a graph with a root-node s. Let T be
a G-even subset of V —s. G has a (k,0)-edge-connected (= s-rooted k-
edge-connected) T-odd orientation if and only if the number of cross edges
of every partition P := {Vi,...,V;} of V into at least two non-empty parts
is at least

k(t—1) + o(P),

where o(P) (which depends also on G, k, and T') denotes the number of
those parts X of P for which |X NT| —ig(X) — k is odd.

As a possible counterpart to Corollary 5.3, we can derive:

Corollary 5.5. Let G = (V, E) be an undirected graph with |E|+ |V| even.
If G is (k + 1)-tree-connected, then G has a (k,0)-edge-connected V-odd

orientation.

But this is straightforward anyway since we can take k + 1 edge-disjoint
trees, orient the edges of £ of these away from a root node s, orient the
remaining edges not in the last tree Fj,; arbitrarily, and finally, orient the
edges of Fi.41 so as to meet the parity prescription.

A problem related to the constructive characterization of k-edge-con-
nected digraphs is to find a characterization of (acyclic) digraphs whose all
directed cuts admit at least k edges. Such an approach could perhaps be
used to prove D. Woodall’s long-standing conjecture:

Conjecture 5.6. If every directed cut of a digraph D has at least k edges,
then the edge-set of D can be partitioned into k parts so that each part has
at least one edge from every directed cut.
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Woodall’s conjecture can easily be seen to be true for & = 2 but no
answer is known even for ¥ = 3 and for planar digraphs. (In which case,
after planar dualization, the conjecture reads as follows: in a simple pla-
nar digraph, the edge-set can be coloured by three colours so that every
directed triangle contains each colour.) A straightforward generalization
of Woodall’s conjecture concerning a crossing family of directed cuts was
disproved by A. Schrijver [53] even for k = 2.

We call a graph G = (V, E) nearly k-tree-connected if G + e is the
union of k edge-disjoint spanning trees for every possible new edge e = uv
(u,v € V). It follows that such a graph has exactly k(|V|—1) —1 edges and
that every subset X C V with |X| > 2 induces at most k(|X|—1) —1 edges.
A theorem of Nash-Williams [49] implies that these properties actually
characterize nearly k-tree-connected graphs.

This notion for k¥ = 2 (under different name) has been introduced in the
theory of graph rigidity. By combining theorems of L. Henneberg [33] and
of G. Laman [37], one obtains the following constructive characterization of
nearly 2-tree-connected graphs.

Theorem 5.7 (Henneberg and Laman). A graph G is nearly 2-tree-
connected if and only if G can be constructed from one (non-loop) edge
by the following two operations: (i) add a new node z and connect z to two
distinct existing nodes, (ii) subdivide an existing edge uv by a node z and
connect z to an existing node distinct from u and v.

Jointly with Laszlé Szegd [31], we were able to extend this result for
general k.

Theorem 5.8. A graph G is nearly k-tree-connected if and only if G can
be constructed from an initial graph, consisting of two nodes and k — 1
parallel edges, by the following operation: choose a subset F' of j existing
edges (0 < j < k — 1), pinch the elements of F with a new node z, and
add k — j new edges connecting z with other nodes so that there are no k
parallel edges among these new edges.

(k, 1)-tree-connectivity has meant that the graph has k disjoint spanning
trees even after deleting any edge. What can be said about graphs which
can be covered by k forests even after adding any new edge? We call such
a graph k-sparse. By a theorem of Nash-Williams, we know that a graph
G = (V, E) is k-sparse if and only if every subset X of nodes with at least
two elements induces at most k( X| - 1) — 1 edges. Note that k-sparse
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graphs with k( V|- 1) — 1 edges are exactly the nearly k-tree-connected

graphs.

Theorem 5.9 [31]. An undirected graph G = (V, E) is k-sparse if and only
if G can be built from a single node by applying the following operations.
(i) add a new node z and at most k new edges ending at z so that no k
parallel edges can arise, (ii) choose a subset F' of i existing edges (1 < i <
k —1), pinch the elements of F' with a new node z, and add k — i new edges
connecting z with other existing nodes so that there are no k parallel edges
in the resulting graph.

6. HYPERGRAPHS

So far our interest has been fully occupied by graphs and digraphs. In this
last section we let hypergraphs take over the center stage. A hypergraph
H = (V,F) consists of a ground-set V' and a family F of (not necessarily
distinct) subsets of V, called hyperedges. The cardinality |Z| of a hyperedge
Z is called its size. We are naturally back at undirected graphs when each
hyperedge is of size two. Such a hyperedge will be referred as a graph-edge.
The maximum size of a hyperedge is called the rank of H. Throughout we
will assume that the size of every hyperedge is at least two.

It is often useful to associate a bipartite graph B = By = (V,Ur; E)
with hypergraph H as follows. The elements of Ur correspond to the
hyperedges of H and a node v € V is connected to a node ux € Ugr
precisely if u € X. In this correspondence the size of a hyperedge Z will be
the degree of its corresponding node uz in B.

For a subset X C V let dy(V) denote the number of hyperedges of H
intersecting both X and V' — X. For a specified subset R C V, a hypergraph
H is called k-edge-connected in R if dy(X) > k for every subset X C V
separating R. (X is said to separate Rif XNR#0,R—X #0.) fR=V,
the hypergraph itself is called k-edge-connected. When k£ = 1 we simply
say that H is connected.

From the definitions it follows that H is k-edge-connected in R if and
only if the elements of R belong to one component of the graph arising from
the associated bipartite graph (V, Ur; E) by deleting at most £ —1 elements
of Ur. By a version of Menger’s theorem, it follows that B has this property
if and only if there are k paths between any pair of nodes u, v of R so that
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each node of Ur belongs to at most one of these paths (but the paths may
share freely elements of V).

This implies that a hypergraph H is k-edge-connected in R if and only
if there are k hyperedge-disjoint hyperpaths between every pair of nodes
u,v € R. Here a hyperpath means a sequence {u; := u, F1,ug, Fo, ..., us, Fy,
U1 = v} so that us, ui4 € F; € Ffori=1,...,t

Theorem 2.4 has been extended by J. Bang-Jensen and B. Jackson to
hypergraphs [2].

Theorem 6.1 (Bang-Jensen and Jackson). A hypergraph H = (V, A) can
be made k-edge-connected by adding at most v new graph-edges if and only
if Y(k—dp(X) : X € P) <2y holds for every sub-partition P of V and
¢(H') — 1 < v for every hypergraph H' = (V, A") arising from H by leaving
out k—1 hyperedges where c(H') denotes the number of components of H'.

In [4] we extended this to the case when the target is k-edge-connectivity
in a specified subset R C V.

For ¢ > 3, T. Kiraly [36] recently to characterized hypergraphs which
can be made k-edge-connected by adding at most v hyperedges of size at
most g. The special case, when H is already (k — 1)-edge-connected, was
solved by T. Fleiner and T. Jordan [14].

Let r be again a requirement function on the set of unordered pairs of
nodes, We say that H is r-edge-connected if there are at least r(u,v) edge-
disjoint hyperpaths between every pair of nodes u, v. Again by Menger’s
theorem, this is equivalent to requiring di (X)) > R,(X) for every non-empty
subset X C V.

Since local edge-connectivity augmentation is nicely tractable for undi-
rected graphs, one may want to extend this to hypergraphs and determine
the minimum number of new graph edges whose addition to H results in an
r-edge-connected hypergraph. However, B. Cosh, B. Jackson and Z. Kirdly
8] pointed out that this problem is NP-complete even if 7 is (1 — 2)-valued.
For 3-uniform hypergraphs, however, the local edge-connectivity augmenta-
tion problem is tractable in the case when the newly added hyperedges are
of size three or size two and for both types the number of new hyperedges
are specified. This follows from Theorem 3.22 of Jordén and Szigeti and
is based on the observation that intuitively says that the contribution of a
hyperedge {a, b, c} of size three to the edge-connectivity is the same as that
of a star graph with three edges, that is, a graph with node set {z,a,b,c}

and edge set {za, zb, zc}.
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Another interesting version of the local edge-connectivity augmentation
of hypergraphs was solved nicely by Z. Szigeti [55].

Theorem 6.2 (Szigeti). Given a requirement function r, a hypergraph H
can be made r-edge-connected by adding hyperedges with total size at most
v if and only if 3, (R-(Xi) — du(X;)) < v holds for every subpartition
Xl,...,Xt of V.

The material below is taken from [30]. A hypergraph H = (V,€) is
called connected if there is a hyperedge intersecting both X and V — X
for every non-empty, proper subset X of V. The hypergraph is partition-
connected if there are at least ¢ — 1 hyperedges intersecting at least two
parts for every t-partition of V. For graphs these two notions coincide but
for hypergraphs they do not (consider the hypergraph on three elements a,
b, ¢ having a single hyperedge {a, b, c}).

The connectivity of a hypergraph is equivalent to the connectivity of
the bipartite graph associated with H. Therefore deciding whether a hy-
pergraph is connected is an easy task. Testing a hypergraph for partition-
connectivity is not so straightforward. To this end we call a hypergraph
H = (V,F) wooded if it is possible to select two elements from each hy-
perdege of H so that the selected pairs, as graph edges, form a forest.

Theorem 6.3 (Lovész). A hypergraph H = (V,F) is wooded if and only
if H satisfies the strong form of the Hall condition, that is, the union of any
J hyperedges (j > 1) has at least j + 1 nodes.

Proof. (outline) The necessity is staightforward. To see the sufficiency,
consider the bipartite graph B = (V,U; E) associated with H. Since the
Hall condition is satisfied, there is a matching M of B covering the elements
of U. Let S denote the set of nodes not covered by M. Orient the elements
of M toward V while all other edges toward U. It follows from the strong
form of the Hall condition that each node of B is reachable from S. Hence
there is a spanning branching of B rooted at S and this determines the
required forest. m

Theorem 6.4 (Lorea, [38]). Given a hypergraph H = (V,£), the wooded
subhypergraphs of H form a family of independent sets of a matroid on
ground-set £.

Theorem 6.5 [30]. A hypergraph H = (V, £) is partition-connected if and
only if H contains a wooded subhypergraph (V, F) with |V|—1 hyperedges.
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A hypergraph is k-partition-connected if there are at least k(t — 1)
hyperedges intersecting at least two parts for every t-partition of V.

Tutte’s Theorem 1.2 characterizes those graphs that can be decomposed
into k edge-disjoint connected (or equivalently, partition-connected) span-
ning subgraphs, asserting that exactly the k-partition-connected graphs
have this property. The problems of decomposing a hypergraph into k
connected or into k partition-connected spanning subhypergraphs are not
equivalent anymore. The first one can be shown to be NP-complete, while
the second one is tractable.

Theorem 6.6 [30]. A hypergraph H = (V,F) can be decomposed into
k partition-connected subhypergraphs if and only if H is k-partition-con-
nected.

The following corollary is well-known for graphs (case g = 2).

Corollary 6.7. If a hypergraph H of rank at most q is (kq)-edge-connected,
then H can be decomposed into k partition-connected (and thus connected)
spanning subhypergraphs.

Proof. By Theorem 6.6 it suffices to show that H is k-partition-connected.
Let P = {Vi,...,V;} be a partition of V. There are at least kq hyperedges
intersecting both V; and its complement for each i. Since every hyperedge
is of cardinality at most ¢, the total number of hyperedges intersecting at
least two members of P is at least kqt/q = kt > k(t — 1). Therefore H is
indeed k-partition-connected and Theorem 6.6 applies. =

6.1. Directed hypergraphs

There may be several choices to define directed hypergraphs, we work with
the following definition. A directed hyperedge (Z, z) is a pair of a subset
Z of the ground-set V and an element z of Z. The element 7z is called the
head of Z. By a directed hypergraph we mean a collection of directed
hyperedges. This obviously generalizes the notion of directed graphs. A
disadvantage of this definition is that the symmetry between the head and
the tail of a directed graph edge is lost. On the positive side of this definition
is that several results concerning edge-connectivity of directed graphs can
be carried over nicely to directed hypergraphs.

We say that a directed hyperedge (Z,z) enters a subset X C V if
the head z is in X but Z — X # 0. A directed hypergraph is called
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k-edge-connected if there are at least k hyperedges entering each non-
empty proper subset of V. More generally, for integers 0 < [ < k, a directed
hypergraph is called (k,l)-edge-connected if there is a node s € V so that
each non-empty subset X C V' — s is entered by at least k hyperedges and
each subset X C V containing s is entered by at least ! hyperedges.

By orienting an (undirected) hypergraph we mean the operation that
consists of assigning a head to every hyperedge.

Theorem 6.8 [29]. A hypergraph has a (k,()-edge-connected orientation
if and only if there are at least kt — k + | hyperedges intersecting more than
one part of every t-partite partition of V.

Finally we mention that Edmonds’ Theorem 1.3 can also be carried over
to hypergraphs. To this end we say that a directed hypergraph H is a
spanning hyper-arborescence of root s if H has |V| — 1 hyperedges whose
heads are distinct elements of V — s and H is (1, 0)-edge-connected.

Theorem 6.9 [29]. A directed hypergraph contains k disjoint spanning
hyper-arborescences of root s if and only if H is (k,0)-edge-connected (with
respect to s).

Note that the special case [ = 0 of Theorem 6.8 combined with Theorem
6.9 immediately implies Theorem 6.6 (without using matroids).

The paper [5] of Berg, Jackson and Jorddn contains extensions of
Mader’s directed splitting lemma and of the directed augmentation The-
orem 2.6 to directed hypergraphs.
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PERFECT POWERS IN PrRODUCTS WITH CONSECUTIVE
TERMS FROM ARITHMETIC PROGRESSIONS

K. GYORY*

]. INTRODUCTION

There is an extensive literature on perfect powers and “almost” perfect
powers in products of the form

(1) n(n+d)...(n+ (k= 1)d)

where n, d, k are positive integers with ged(n,d) = 1 and k£ > 3. By an
“almost” perfect power we mean a number of the shape b times a perfect
power, where b is a positive integer having no prime factor greater than a
given number, say k. The classical case d = 1 has been completely settled.
Further, for d > 1, a lot of interesting partial results have been published.
For survey papers on results obtained before 1999 we refer to Tijdeman [41],
[42], Shorey and Tijdeman [37, 38], Shorey [33, 34] and Gyéry [19].

Since 1999, considerable progress has been made in the case d > 1.
Several results have been established on squares and “almost” squares of
the form (1), on those d for which (1) can be a perfect or an “almost”
perfect power, and on the situation when at least one of the factors n + id
is omitted from the product (1). For an account of these results we refer to
Shorey [35, 36].

Recently, it has been proved by Gyéry [19, case k = 3|, Gyéry, Hajdu
and Saradha [20, case k = 4,5] and Bennett, Gy6éry and Hajdu [2, case

*Research supported in part by the Hungarian Academy of Sciences, by the Nether-
lands Organization for Scientific Research, and by Grant 29330 from the Hungarian Na-
tional Foundation for Scientific Research.
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6 < k < 11] that apart from some exceptions, (1) cannot be a perfect or
an “almost” perfect power whenever k < 11. Further, Gyéry, Hajdu and
Saradha [20] showed, for each k, the finiteness of the numbers n, d for which
(1) is an “almost” perfect power. The purpose of the present paper is to give
an overview of the above-mentioned results of Bennett, Hajdu, Saradha and
the author. This article may be considered as a continuation of Sections 1
to 4 of Gyéry [19].

In the second section a brief survey is given on the most important results
obtained in the case d = 1. In the first part of Section III general finiteness
theorems are presented. The second part of Section III is devoted to recent
results which, for k£ < 11, provide all perfect or “almost” perfect powers of
the form (1). In Section IV we deal with an application to rational solutions
of a related superelliptic equation. Finally, in the last section some methods
will be discussed which were needed in our proofs. It will be pointed out that
ternary diophantine equations and the theory of Galois representations and
modular forms play a crucial réle in recent investigations concerning (1).

II. PRODUCTS OF CONSECUTIVE INTEGERS

The case d =1

It was an old conjecture from the 1820’s that equation
2) n@n+1)...(n+k—-1)=y" inintegers n>1, k,y,l>2

has no solution. After many special results, Erdés [9] and Rigge [28] con-
firmed the conjecture for [ = 2. Their proof was elementary and ingenious.
Erdés [10] and, independently, Rigge showed that for every [ > 2 there is
a kg = ko(l) such that for k& > ko, (2) is impossible. By means of the
Thue-Siegel method Erdés and Siegel proved in 1940 the conjecture for all
sufficiently large k. Their proof remained unpublished. Later, Erdés [12]
gave another, elementary proof for this theorem.

Using Erdés’ method, Erdés and Selfridge [13] proved the conjecture in
full generality.

Theorem A (Erdds and Selfridge, [13]). Equation (2) has no solution.
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Saradha and Shorey [31] recently showed that omitting one of the factors
n+i on the left hand side of (2), all the solutions of the equation so obtained

are
2-(2+2-1)=2" and 1-(1+1)-(1+3-1)=2%

The binomial equation

Consider now the equation

<n+k—1

(3) k ) =y' inintegers k,Ly>2,n>k+1.
For k = [ = 2, this leads to a Pell equation and hence it has infinitely many

solutions (n,y). For k = 3, I = 2, Meyl [23, n 0odd], and Watson [43, n even]

proved that
50
= 1407
(5)

Erdés [10] conjectured that for [ > 2, equation (3) has no solution. In
the same article he proved this for [ = 3 and for k > 2. The cases | = 4,5
were settled by Obléth [24].

Using his elementary method applied earlier to (2), Erdés [11] proved
that for k > 4, equation (3) has no solution.

is the only solution of (3).

For k < 4, the approach of Erdés does not work. By means of Baker’s
method Tijdeman [40] proved in an effective form that for £ = 2 and 3,
equation (3) has only finitely many solutions. Later Terai [39] showed that
in this case [ < 4250. We note that recently Terai derived a bound for [ also
in the case when in (3) 4! is replaced by py’ with an odd prime p.

Finally, in Gyéry [17] I succeeded to prove Erdds’ conjecture for the
remaining cases k = 2,3 and [ > 2. The proof is based on a combination of
some results of Gydry [15] and Darmon and Merel [6] on generalized Fermat
equations with a theorem of Bennett and de Weger [4] on binomial Thue
equations. In fact this was the first time that generalized Fermat equations
were used in the study of equations (3) and (4) and their generalizations.

Summing up the above results, we have the following.

Theorem B (Erdds, (11, case k > 4]; Gy6ry, [17, case k < 4]). Apart from
the cases (k,l) = (2,2),(3,2), equation (3) has no solution.
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A common generalization of equations (2) and (3)

Denote by P(b) the greatest prime factor of any integer b > 1, and let
P(1) = 1. The equation

(4)
n(n+1)...(n+k—1) = by’ in integers n,b,y > 1,k,1 > 2 with P(b) < k

is a common generalization of equations (2) and (3). For b = 1 this is just
equation (2), while for b = k! it gives equation (3).

For k = b = [ = 2, this is again a Pell equation, having infinitely many
solutions.

Let p¥) denote the least prime with p*) > k. As was pointed out
in Gyéry [19], n, k yield a solution of (4) with P(y) < k if and only if
n e {1, 2,...,pk) — k}. This means that for given k, equation (4) has only
finitely many solutions with P(y) < k and all these can be easily determined.
Hence, in what follows, we are interested only in those solutions for which
P(y) > k.

It was proved by Erdds and Selfridge [13] that under the restriction
P(b) < k, equation (4) has no solution with P(y) > k. However, this result
cannot be applied to equation (4) if k is prime.

The following theorem gives the complete solution of equation (4).

Theorem C (Saradha [30, case k > 4]; Gydry [18, case k < 4]). Apart
from the case (k,b,l) = (2,2,2), equation (4) has the only solution

48 -49 - 50 = 6 - 140?
with P(y) > k.

To prove this theorem for k > 4, Saradha [30] combined Erdés’ method
with a result of Shorey and Tijdeman and with some computations. Her
method of proof cannot be applied to the case k < 4. In Gyéry [18],
the results of Wiles [44], Ribet [27] and Darmon and Merel [6] concerning
generalized Fermat equations were used to resolve (4) for k = 2 and 3.

Theorems A and B are consequences of Theorem C; cf. Gy6ry [19].
Further, it is clear that Theorem C is valid also with P(b) < k replaced
by P(b) < pk),

In (4), P(y) > k implies that n > k'. Recently, Theorem C has been
refined by Saradha [30] for k > 9, Hanrot, Saradha and Shorey [22] for
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6 < k < 8 and Bennett [1] for 3 < k < 5. They proved that under the
assumptions [ > 3, n > k! and P(b) < p¥), equation (4) does not hold.

For 3 < k <5, a further refinement has been recently obtained by Gyéry
and Pintér [21]. They showed that (4) is impossible even if | > 3, n > k'
and P(b) < pg, where py, denotes the k-th prime. It is clear that p; > p*)
if k> 4.

I1I. PRODUCTS OF CONSECUTIVE TERMS IN ARITHMETIC
PROGRESSION

In this section we deal with the equations

(5) nn+d)...(n+(k-1)d) =y
and
(6) nn+d)...(n+ k-1)d) = by,

where n,d,b,y > 1 and k > 3, | > 2 are unknown integers such that
ged(n,d) =1 and P(b) < k.

Finiteness results

It is easy to see that both equations (5) and (6) have infinitely many
solutions if k = 2 or if (k,l) = (3,2). Tijdeman [41] showed that (6) has
infinitely many solutions with P(y) > k for (k,{) = (3,3) and (4,2), too.

Erdés conjectured that in (5) & must be bounded. Further, by a
conjecture of Tijdeman [41], the total number of solutions of (6) with
P(y) > k and k + [ > 6 is finite.

Using Faltings’ theorem [14] on rational points of curves of genus > 1,
Darmon and Granville [5] proved that for given k > 3, [ > 4, equation (5)
has only finitely many solutions. The following theorem refines this and
extends it to the case b > 1.

Theorem 1 (Gyéry, Hajdu, Saradha [20]). For given k > 3, I > 2 with
k + 1> 6, equation (6) has only finitely many solutions (n,d,b,y).



148 K. Gyéry

In view of Tijdeman’s result has infinitely many solutions for each

(6)

choice of k > 3,1 > 2 with k + [ < 6.

Shorey [33] proved that for I > 4, the abc conjecture implies Erdés’

conjecture on the boundedness of k. In fact, from the abc conjecture one
can deduce a more precise result.

Theorem 2 (Gydry, Hajdu, Saradha [20]). The abc conjecture implies that
(6) has only finitely many solutions (n,d,k,b,y,l) with k > 3, 1 > 4 and
d>1.

We note that the assumption d > 1 is necessary. For d = 1, (6) has the
solution n =y =1, b = k! for each k > 3.

On the resolution of equations (5) and (6)

First consider equation (5). As was mentioned above, (5) has infinitely
many solutions both for £ = 2 and for (k,!) = (3,2). Euler proved that for
(k,1) = (4,2), equation (5) has no solution. The same result was proved by
Obléth [25, 26] for (k) = (5,2),(3,3),(3,4) and (3,5).

Using results of Wiles, Ribet and Darmon and Merel on generalized
Fermat equations, Gyéry [19] showed that equation (5) is impossible for
k=3and > 2.

Recently, the following theorem has been established for £ < 11.

Theorem 3 (Gyéry, Hajdu, Saradha [20, case k < 5]; Bennett, Gydry,
Hajdu [2, case k > 6]). For 4 < k < 11, equation (5) has no solution.

We note that for 6 < k < 11 and | = 2, Theorem 3 was independently
proved by Hirata-Kohno and Shorey.
Summarizing the above results on equation (5) we have the, following.

Theorem D. Apart from the case (k,1) = (3,2), equation (5) is impossible
for 3 <k <11.

Conjecture 1. For k > 3 and (k,l) # (3,2), (5) has no solution.

Concerning equation (6), Gyéry [19] proved more generally that for
k=3, 1>2and P(b) < 2, (6) is not solvable. As Tijdeman’s result
[41] concerning the case (k,l) = (3,3) shows, the assumption on b cannot
be relaxed to P(b) < 3.

Recently Gyéry’s theorem [19] has been extended to the case k < 11.
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Theorem 4 (Bennett, Gyéry, Hajdu [2]). For4 <k <6, P(b) <2 and for
6 < k <11, P(b) < 3, equation (6) has no solution.

For k = 4 and 5, this was proved in a less precise form by Gyory, Hajdu
and Saradha [20]. When b = 1, Theorem 4 gives back Theorem 3.

The above results on (6) can be summarized as follows.

Theorem E. If 3 < k < 11, (k,l) # (3,2) and P(b) < 2, then (6) has no
solution.

We note that in Gydry, Hajdu and Saradha [20] and Bennett, Gyéry
and Hajdu [2], the results were extended to the case when n and b are not
necessarily positive integers. As will be seen in Section IV, this extension
is important for certain applications.

Conjecture 2. For k > 3, (k,1) # (3,2) and P(b) < 2, (6) has no solution.
The examples
2-9-16=2°-3*-1 and 1.2-3-4=2.3.1

show that for k£ = 3 and 4, the assumption P(b) < 2 cannot be replaced by
P(b) < 3. It is likely that for £ > 5, the assumption on the greatest prime
factor of b can be relaxed in Theorems 4, E and in Conjecture 2.

IV. AN APPLICATION OF THEOREMS 3 AND 4

The results concerning equations (5) and (6) can be applied to the superel-
liptic equation

(7) oz+1)...(z+k—-1) =2,

where the unknowns are now k, [, z, z with k,l > 2 and rational x, z. It
is clear that (z,z) = (—i,0) are solutions of (7) for i =0,...,k — 1. These
solutions are called trivial.

It follows from Faltings’ theorem [14] that for fixed k,l with kK + 1 > 6,
equation (7) has only finitely many solutions.

Sander [29] proved that if 2 < k < 4 and (k,1) # (2,2), then (7) has
only trivial solutions. Further he conjectured that except for the case
(k,1) = (2,2), (7) has no non-trivial solution.
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Putting x = n/d, z = y/u, with integers n,d,y,u such that d,u > 0,
n,y # 0 and ged(n,d) = ged(y,u) = 1, (7) leads to the equation

n(n+d)...(n+(k—1)d)=y[, ut = db

By applying now the extended version of Theorem 3 with not necessarily
positive n, the following theorem follows.

Theorem 5 (Gydry, Hajdu, Saradha [20, case 2 < k < 5, | > 3], Bennett,
Gy6ry, Hajdu [2, the other cases]). For 2 < k < 11, the only non-trivial
solutions of (7) are given by

(k,l,z,2)

2 2 4 2 3 3 7 105
- <3a37_§a _§> ) <3a3a —ga §> ) <4v2a-§7iz> ) <8a2a _Eviﬁ> .

As is seen, for (k,1) = (3,3) and (4,2) there exist non-trivial solutions
which are missing from the theorem and the conjecture of Sander. Hence
Sander’s conjecture should be modified accordingly.

We note that we proved Theorem 5 in a more general form, we solved
equation (7) with z! replaced by £2° - z!, where o € Z is also unknown.
Further, under the assumptions [ > 3 and ged(k,l) = 1, Theorem 5 has
been extended in Gyéry, Hajdu, and Saradha [20] to the case k < 18.

V. THE METHOD OF PROOFS OF THEOREMS 1 TO 4

We briefly present the basic ideas and the main tools used in the proofs of
Theorems 1, 2 and 4.

From the equation
(6) n(n+d)...(n+ (k—1)d) = by,

where n,d, b,y > 1 and k > 3, | > 2 are unknown integers with gcd(n, d) =
1 and P(b) < k, one can deduce that

(8) n+id=AX, i=0,...,k-1,

where A;, X; > 1 are unknown integers with P(A;) < k. It is obvious that
conversely, (8) implies (6). Depending on the situation investigated, we can
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choose the A;, X; such that either A; is I-th power free (when, for fixed k,
there are only finitely many possibilities for A;) or X; is free of prime factors
<k.

Using (8), (6) can be reduced to systems of equations consisting of
generalized Fermat equations. There are two possibilities:

1. For distinct integers 0 < p,q,7 < k — 1, one can easily find non-zero
integers Ap, A\q, Ar with absolute values < k such that

Ap(n+pd) + Ag(n 4 qd) = A (n + 7d).
Hence, in view of (8), we get an equation of the form
(9) Ax'+ BY!'=CZ' in coprime non-zero integers X,Y, Z,

where A, B, C are relatively prime non-zero integers with P(ABC) <
k.

2. For integers 0 <p<q<r<s<k—1withp+s=q+r, we deduce
that
(n 4 qd)(n + rd) — (n + pd)(n + sd) = (qr — ps)d>.

Thus, by (8), we obtain an equation of the shape
(10) AX'+ BY'=CZ? in coprime non-zero integers X,Y,Z,

where A, B, C are relatively prime non-zero integers with P(AB) < k
and |C| < (k —1)%

The basic ideas of the proofs of Theorems 1 and 2

To prove Theorem 1, we choose in (8) the A; to be I-th power free. Then
we arrived at equations of the form (9) with coeflicients which can be taken
fixed. For k = 3 and [ > 4, one can use Falting’s theorem to prove the
finiteness of the number of solutions of the equation (9) so obtained, whence
Theorem 1 follows. If k > 4, the situation is more complicated but a similar
argument can be applied in that case, too.

In the proof of Theorem 2 we may assume that (n,d, k) # (2,7,3). Then
a theorem of Shorey and Tijdeman [37] gives that P(y) > k. Under this



152 K. Gyéry

assumption Shorey [33] used the abc conjecture to prove that k is bounded.
So we can fix k. Then we reduce equation (6) to equations of the form (9),
where A, B, C are not fixed, but P(ABC) < k. The abc conjecture can be
applied to (9) in a well-known way to show that X, Y, Z and [ are bounded.
So we may assume that X!, Y' and Z! are fixed. Now (9) becomes an S-
unit equation in A, B, C for the set of primes S = {p | p < k}, hence, by
a theorem of Gyéry [16], max { |4[,|B|,|C|} is bounded. This implies that
max {n,d, b,y} is also bounded.

We note that using an effective version of the abc conjecture, the above
proof provides an effective upper bound for max {n,d, k,b,y,/}.

The main tools in the proof of Theorem 4
The proof of Theorem 4 is long and complicated.

The case | = 2. In the case [ = 2 one can reduce equation (6) to finding
rational points on some elliptic curves of rank 0. Then one can use the
program package MAGMA to find all rational points on the curves in
question.

The case I > 2. In this case we may assume that [ > 2 is a prime. After
having reduced equation (6) to (8), we have to distinguish several subcases,
according to the possible choices of the A;. If there are 0 < 4,5 <k —1
such that P(A;Ai4+1 ... Aitj) < j+ 1, then (6) reduces to the case when k
is replaced by j + 1 < k. However, this is not the case in general. Then,
as remarked above, equation (6) can be reduced to systems of equations
consisting of ternary equations of the form (9) and (10).

We applied different methods to deal with non-trivial solutions X, Y,
Z of (9) and (10), i.e. with solutions for which XY Z # 0, £1.

When 3 < | < 7, for certain choices of the A; we used local methods
and showed that at least one of the equations (9) and (10) involved is not
solvable (mod p) for some appropriate prime p.

For [ = 3, classical results of Selmer [32] and others can be used to prove
that some equations (9) coming from (6) have no non-trivial solutions.

For | = 5,7, one can use some results of Dirichlet, Lebesgue, Maillet
(cf. [8]), Dénes [7], Gydry [15] and Bennett, Gyéry and Hajdu [2] on the
equations of the form (9) with A= B =1.
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For [ > 7, the main ingredients are some recent results on ternary
equations of the form (9) and (10) whose proofs are based upon the theory
of Frey curves, Galois representations and modular forms.

It should be mentioned here the celebrated results of Wiles [44], Ribet
[27]), Darmon and Merel [6] and others on equations of the form (9). For
example, we utilize the fact that for A = B =1, C = 2%, « > 0 integer,
equation (9) has no non-trivial solutions.

Some results of Bennett and Skinner [3] and Bennett, Gy6ry and Hajdu
[2] play also an important réle in the proof of Theorem 4. For example, we
showed with Bennett and Hajdu that for P(AB) < 3 and C = 1, equation
(10) has no solutions with 5 | XY if { > 7, and with 7 | XY if { > 11.

Acknowledgements. The author is indebted to Professor A. Peth6 and
Dr. L. Hajdu for pointing out some typist’s errors in the manuscript.
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THE TOPOLOGICAL VERSION OF FODOR’S THEOREM

I. JUHASZ* and A. SZYMANSKI!

The following purely topological generalization is given of Fodor’s theorem from
[3] (also known as the “pressing down lemma”):

Let X be a locally compact, non-compact T3 space such that any two closed
unbounded (cub) subsets of X intersect [of course, a set is bounded if it has
compact closure]; call S C X stationary if it meets every cub in X. Then
for every neighbourhood assignment U defined on a stationary set S there is a
stationary subset 7' C S such that

ﬂ{U(z):xeT}#(b,

Just like the “modern” proof of Fodor’s theorem, our proof hinges on a notion
of diagonal intersection of cub’s, definable under some additional conditions.

We also use these results to present an (alas, only partial) generalization to
this framework of Solovay’s celebrated stationary set decomposition theorem.

1. INTRODUCTION

One of the most frequently used results in set-theory is Fodor’s theorem
(also known as the pressing down lemma) from [3]:

Theorem 1. Let a be an ordinal of uncountable cofinality. If S C « is
stationary in « [i.e. SN C # () for every closed unbounded (in short: cub)
subset C of a] and f : S — « is a regressive function on S [i.e. f(€) < &
whenever £ € S\ {0}] then there is a stationary subset T' C S and an ordinal

*Research supported by OTKA grant no. 37758.
tResearch supported by Charles University and the Czech Academy of Sciences.
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¢ € a with f(§) < ( for all ¢ € T. In particular, if « is (an uncountable)
regular cardinal then T and ( above may be chosen in such a way that
f§)=CforallEeT.

A precursor of Fodor’s result was Neumer’s theorem from [8] that, under
the same assumptions, yields the same conclusion with only an unbounded
T C S, instead of a stationary one.

Since a regressive function f defined on S C « is equivalent to the
neighbourhood assignment £ — ( f(f),&] in the ordinal space a [i.e.
considered with its natural order topology], and the conclusion of the above
results can be reformulated to state that the neighbourhoods assigned to
all elements of T" have non-empty intersection, both Fodor’s and Neumer’s
theorems can be viewed as purely topological statements about the ordinal
space a. This was clear to Fodor himself, and raises naturally the question
if these results could be generalized to a purely topological setting.

In [5] and [10] such generalizations were successfully achicved for the
case of Neumer’s result, but not for Fodor’s. In fact, both authors explicitly
stated the problem of finding a purely topological generalization of Fodor’s
theorem.

It should be mentioned that the authors of [2] took a completely different
approach to viewing Fodor’s and Neumer’s results as topological: they
viewed the regressive function f as one that assigns to the open set { =
[0,€) the compact subset [0, f (f)] . Still, for them the same phenomenon
occurred: they found a satisfactory generalization of Neumer’s theorem but

not that of Fodor’s.
Finally, we should like to note that the generalization of Fodor’s theorem

to finite products of uncountable regular cardinals given in [1], contrary to
the title of that paper, is a generalization towards partial orders rather than

topological spaces.

We hope to convince the reader that our generalization of Fodor’s theo-
rem, formulated and proved below, does provide a/the satisfactory solution
to the above problem.

2. THE THEOREM FOR LOCALLY COMPACT SPACES

Let us start with the basic definitions.
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Definition 1. Let X be a locally compact but non-compact T space. The
set A C X is called bounded in X if its closure A is compact, unbounded if it
is not bounded. It follows from our assumptions that X itself is unbounded.
We say that X is good if the intersection of any two closed unbounded (in
short: cub) subsets of X is non-empty. We shall denote by C(X) the family
of all cub sets in X.

It is easy to see that an ordinal space a is good exactly if it has un-
countable cofinality. A more general statement is formulated below.

Lemma 1. If X is good then X is countably compact.

Proof. Assume, indirectly that X is not countably compact, hence we have
an infinite set A C X with no accumulation point. But then every infinite
subset of A is cub, contradicting that X is good. =

Another easy but frequently used result is the following.

Lemma 2. Let X be a good, non-compact, locally compact T, space. Then
C,Cq € C(X) implies C1 N Cy € C(X)

Proof. Assume that C; N Cy ¢ C(X), hence actually C; N Cy is compact.
By the local compactness of X then there is a bounded open set U in X
with C1 NCy C U. However, then C; \ U and Cy \ U would be two disjoint
members of C(X), contradicting that X is good. =

Definition 2. Let X be a locally compact, noncompact 75 space. We say
that a set S C X is stationary in X if it meets every cub, i.e. every member
of C(X). We denote the family of all stationary subsets of X by St (X).

Now, the following are immediate from Lemma 2 and the definitions.

Lemma 3. Let X be as in Lemma 2. Then

(i) C(X) C St(X);
(ii) if C € C(X) and S € St(X) then CN S € St (X);
(iil) every stationary set is unbounded.

The following definition introduces two concepts that, for good spaces,
serve as generalizations of cofinality for ordinal spaces.
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Definition 3. Let X be as above. We set
c¢f(X) =min {|A| : A is unbounded}

and

o(X)=min{|C| : CCC(X)and NC=0}.

It is easy to see that c¢f(X) < p(X) holds for any good space X,
moreover for a good ordinal space o we have p(a) = cf(a). If X is the
well-known Ostaszewski space from [9] then clearly X is good and we have

cf(X)=w< o(X) = wr.
The next result on o(X) is a strengthening of Lemma 2.

Lemma 4. Let X be as above and let D C C(X) with |D| < o(X). Then
ND € C(X). Consequently, the union of fewer than o(X) non-stationary
sets Is non-stationary.

Proof. Assume that ND ¢ C(X) then ND is compact and hence can be
covered by a bounded open set U. But then the family {D\U : D € D} C
C(X) and has empty intersection, and is of cardinality less than o(X), a

contradiction. W

From this and Lemma 1 we now can directly conclude
Lemma 5. If X is as above then o(X) is an uncountable regular cardinal.

The Ostaszewski space, mentioned above, is an example showing that
this is not necessarily true for c¢f(X) for a good space X. However, we
do not have an example of a good space X for which cf(X) is a singular
cardinal.

If k is an uncountable regular cardinal and {C, : @ € K} is a k-sequence
of cub’s in « then their diagonal intersection is defined by

ACa:aer)={0en:3€()(Ca: aed}},

and is known to be cub. Our next goal is to generalize this concept to our
general setting for sequences of cub’s in X of length o(X). However, this
will only be possible under special circumstances.

To this end, let us recall (see e.g. [6]) that a free sequence in a space X
is a transfinite sequence P = {p, : @ € n} with the property that

{ps - Bea}n{ps: Ben\a}=0

for every a € 7. Clearly, if P is a free sequence in X then, as a subspace,
P is discrete.
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Definition 4. Let X be as above and assume, in addition, that P = { Pa -
a € o = o(X)} is a free sequence in X such that P has no complete
accumulation point in X. In this case we say that P is a spine of the good
space X.

For {Hy : a € p} C C(X) we set

Ap{Hq : aEQ}=U{P;ﬂﬂ{Hg:ﬁ€a} : aeg},

where P, = {pg : B € a} and P, is the derived set of P,, i.e. the set of all
limit points of P,.

Before we prove that this P-diagonal intersection Ap{H, : a € p} is
cub, let us first show that it is very closely related to the ordinary diagonal
intersection of cub’s on an uncountable regular cardinal k. Indeed, then
the sequence of all successor ordinals P = {p, = a+1 : a € k} is clearly a
free sequence in x with no complete accumulation point. Moreover, for any
limit ordinal § € k we have ¢ € P, if and only if a > §, hence clearly

§€Ap{Hy : a€r} b€ \{Hs: BES} — b€ A{H, : a€r}.

Lemma 6. Under the conditions of Definition 4, we have
H=Ap{H, : a € p} € C(X).

Proof. Let us note first of all that, as P is a discrete subspace in X, we
have P’ = P\ P and P, = P, \ P, for every a € p. The fact that P has no
complete accumulation point implies that every final segment P \ P, of P
is unbounded and so, as P is free and X is good, P, and consequently P
as well are compact, moreover P’ = |J{P), : o € p}.

To show that H is closed, consider any point y € X \ H. If y ¢ P,
then, as P’ is closed and H C P’, we have y ¢ H. If y € P’ then let
a € o be minimal such that y € P,. Then, however, y ¢ H implies that
y & ({Hp : B € a}, so we can choose an ordinal v € a with y ¢ H,. Since
H, is closed and by the minimality of a then y ¢ P as well, there is a
neighbourhood V' of y such that both VN H, =0 and VNP, = 0. But
then for every 8 < we have V N Py = § and for every 8 € ¢\ (v + 1) we
have VN({H, : v € B} =0, consequently V N H = (), showing again that
y¢H.

Finally, to conclude that H € C(X), it suffices to show that H cannot
be covered by any bounded open set. So let us fix U open with U compact.
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Then, as P has no complete accumulation point, there is a final segment

P\ Py, of P disjoint from U (or even of U).

Let us note now that for every unbounded set A C X we have A’
unbounded as well. Indeed, otherwise A" would be compact and if V is
open with V compact and A’ C V, then A\ V is infinite being unbounded
and (A\ V)" = 0, contradicting the countable compactness of X.

Applying this remark to A = P\ P,, and using Lemma 4, we can pick
a point yp in

(P\Pao)/ﬂﬂ{Hg : B € ap}.

Clearly, then there is an ordinal a; € p with a; > ap such that actually
Yo € (Pa1 \Pao) ' Repeating the above procedure then by a straightforward
recursion we may pick an increasing sequence of ordinals o, € p and points
yn such that

Yn € (Popyy \ Pay)’ ﬂﬂ{Hg : B € ayn)

for all n € w. Since (P\ P,,) NU = () we clearly have y,, € X \ U for every
n e w.

Now let @ = sup {an : n € w} € p and y be any limit point of the set
{yn : n € w}; y exists because X is countably compact. But then we clearly
have y € P! as well, moreover y € (\{Hg : f € a} because the sequence
{yn : n € w} is contained eventually in Hg for every 8 € a. Consequently,
we have

ye P,N(\{Hg: Bea}CH,

moreover y € U because {y, : n € w} C X \ U, hence H\ U # 0, as
required. W

After all this preparation, we are now ready to prove the main result of
this section.

Theorem 2. Let X be a locally compact, non-compact Ty space that is
good. If S C X is stationary and U is any neighbourhood assignment on
S [i.e. U(x) is an open set containing x for each x € S| then there is a
stationary subset T' C S such that

N{U(z) : = eT} #0.
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Proof. We distinguish two cases:

Case 1. There is an unbounded subset A of X with |A| < p = o(X), 1.
cf(X) < o(X). Then SN A is stationary and for every point z € SN A we
have U(z) N A # . But then, in view of Lemma 4, there is a point ¢ € A
for which the set

T={zeSNA:qeU(z)}

is stationary in X, and we are done.

Case 2. For every set A C X with |A| < p its closure A is compact,
Le. cf(X) = o(X). Then we can define a spine for X, i.e. a free sequence
P ={ps : a € p} as in Definition 4, as follows.

Let us first fix a sequence {F, : v € p} C C(X) such that {F,

v € p} =0 and v < p implies F, O F),, using the definition of o(X) and
Lemma 4. We then define points p, and ordinals v, € p inductively as
follows. If « € p and {pg : B € a}, {vg : B € a} have already been
defined then, by assumption, {pg : § € a} is compact, hence we can pick
va € 0\ U{vs : B € a} such that F,, N {pg : B € a} =0. Then p, € F,,
is picked arbitrarily. P = {p, : a € p} is a free sequence because for
every a € p we have {pg : # > a} C F,,. Moreover, P has no complete
accumulation point because ({F,, : @ € p} =0 and if z ¢ F,_ then

[P\ Ey| <ol <o,

i.e. the complement of F,,_ in X is a neighbourhood of the point z in X that
meets P in a set of size smaller than p.

Now, we claim that there is a point p, € P such that 7' = {:L €S :

pa € Uz } is stationary in X. Assume, indirectly, that for every a € p
there is a cub Hy € C(X) such that p, ¢ U(z) for every x € SN Hy. Set
H = Ap{Hy : a € p}, then H € C(X) by Lemma 5. Consequently
HNS # ( as S is stationary, so let ¢ € H N S. But then we have
q € PLNnN{Hp : B € a} for some a € p, hence on the one hand there
are (infinitely many) 8 € a such that pg € U(q), while on the other hand
q € HzN S implies pg ¢ U(q) for all B € a. This contradiction completes
the proof. =

For later use, let us note that the above proof actually established the
following somewhat stronger result: Using the notation

M( {qEX {’cGS qeU(x }GSt )}
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we have M(U)N A # 0 if ¢f(X) < o(X) and A is any unbounded set of
size less than g(X), moreover M(U)NP # 0 if cf(X) = o(X) and P is any
spine of X.

The following strengthening of Theorem 2 is now obtained as an easy
consequence.

Corollary. Let X, S, and U be as in Theorem 2. Then the set M(U) is
stationary in X.

Proof. Let C be any cub in X, then it is obvious that C as a subspace
of X is locally compact, non-compact, and good. Also, SN C' is stationary
in C and thus we may apply Theorem 2 to the neighbourhood assignment
V(z) = U(x)NC defined on SNC. Thus there is a set ' C SNC stationary
in C and therefore also in X and a point ¢ € C' with

qgen{U(z) : zeT},

hence ¢ € C N M(U). Since C € C(X) was arbitrary, we indeed have
MU)eSt(X). m

We conclude this section by a result which shows that the condition of
goodness for assuring the general Fodor-type result is not only natural, in
some sense it is also necessary. If X is a locally compact, non-compact T
space then let us denote by PDL(X) the statement that Fodor’s theorem
holds true for X, i.e. whenever S is stationary in X and U is a neighbourhood
assignment on S then there is a stationary 7' C S with N{U(x) : = € T} #
@0, or more concisely, M(U) # 0. Also, we denote by SPDL(X) the
statement that for S and U as before, M(U) = {q €X:{zes:

qgeU(z } € St ( )} is even stationary in X.

Theorem 3. Let X be a locally compact, non-compact Ty space. Then the
following three statements (i)—(iii) are equivalent.

(1) X is good;
(ii) X is normal and PDL(X);
(iii) SPDL(X).

Proof. If X is good and K, L are disjoint closed sets in X then one of them
must be compact, hence X is clearly normal. The implications (i) = (ii)
and (i) = (iii) now follow from Theorem 2 and its corollary, respectively.
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To see (ii) = (i) assume that X is normal but not good. Then we
have two disjoint cub’s, say K and L, and by normality we have disjoint
open sets V and W with K C V and L C W. Consider the neighbourhood
assignment U defined on X as follows:

1% if ze€ K;
Ulx)=(W if ze€lL;
X\(KUL) if t¢ KUL.

Then U witnesses the failure of PDL(X): indeed, if ¢ € V, then {z :
g€ U@} nL =0, 1fq€Wthen{:r :q €Uz }OK—Q) and if
g€ X\(KUL) {z : g€ U(z)} N(KUL) = 0, hence all three types of
sets are non-stationary in X.

Finally, to see (iii) = (i) assume that K and L are disjoint cub’s in
X and then define a neighbourhood assignment U on X with the following
stipulations:

X\K if z€L,
Uz) =
X\L if z¢L.

We claim that U is a witness for the failure of SPDL(X), i.e. M(U {q €
X:{zeX :qeU(x)} €St (X)} is non-stationary in X. Indeed, we
have L N M (U) = 0 since otherwise there is some ¢ € L N M (U) which, by
the definition of U implies {1: €eX :qeU(x } X\ K € St(X), clearly
a contradiction. m

3. A POSSIBLE GENERALIZATION

In this section we present a further generalization of our topological frame-
work for Fodor’s theorem, where local compactness is omitted and the no-
tion of boundedness is extended from the fixed ideal of sets having compact
closure. The precise definition is given below.

Definition 5. Let X be any topological space and I be any proper ideal
of subsets of X containing all finite sets. We shall call the elements of I
bounded and, of course, the subsets of X not in I unbounded. We say that
I is a good ideal on X if it satisfies the following four conditions:
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(i) If A € I then A € T as well (i.e. the closure of any bounded set is
bounded).

(ii) For every A € I there is an open set U € I with A C U (i.e. every
bounded set has a bounded neighbourhood).

(iii) Any two closed unbounded (in short: cub) sets have non-empty

intersection. (We shall use C(X,I) to denote the family of all cub
sets in this case.)

(iv) Setting
o(X,I)=min {|C| : C CC(X,I)and NC = 0},
we have
o(X,I)=min {|C| : C C C(X,I) and for every
A€ thereis C € C with ANC = 0}.

In other words, this says that whenever we have a subfamily of C(X, I)
such that every point in X is missed by an element of this family then
there is a (possibly different) subfamily of the same size for which
every member of I is missed by an element. Condition (ii) insures
that a subfamily with the latter property does exist.

In addition to o(X, I) we may again define as another generalization of
cofinality

cf(X,I) =non — I = min { |A| : A is unbounded}.

Clearly, if a set A meets every every member of a family C C C(X, I) having
the property that every bounded set is avoided by some member of C, then
A must be unbounded, hence by condition (iv) we have

cf (X, 1) < o(X,1).

Now, a subset of X is called [-stationary (or simply stationary, if I is
understood) if it meets every member of C(X,I) and St (X, I) denotes the
family of all I-stationary sets in X. From condition (ii) it is obvious that
the family C(X,I) is o(X, I)-complete, i.e. it is closed under intersections
subfamilies of size less than o(X, I), hence the union of fewer than o(X,I)
non-stationary sets is always non-stationary.
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Finally, PDL(X,I) denotes the statement that Fodor’s theorem holds
in this setting, i.e. for every neighbourhood assignment U defined on an
I-stationary subset S of X the set

MU)={g9eX : {z€S:qeU(x)} eSt(X,I)}

is non-empty. Moreover, SPDL(X,I) stands for the statement that for any
such neighbourhood assignment U the set M;(U) is even I-stationary.

Examples. (1) Of course, the motivating example for a space with a good
ideal is given by any good locally compact, non-compact space together with
the ideal of its subsets having compact closure.

(2) Now, let a be any ordinal number with cf(a) > w; and consider the
subspace

X={Bea:cf(B)>uw}

of the ordinal space a. Then X is neither locally compact, nor countably
compact, and the ideal I of all bounded subsets of X (in the sense of order)
is easily seen to be good.

(3) With « as in (2), let us now consider its subspace

Y={Bea:cf(f) =w}.

Then Y is countably compact but not locally compact, while the ideal of
order-bounded subsets of Y is again good.

(4) If I is a good ideal on a space X and S € St(X,I) is [-stationary
then obviously

I1S={Ael: AcCS}

(that is the restriction of I to S) is a good ideal on the subspace S of X.
Clearly, both (2) and (3) are particular cases of this.

We may now formulate a result of which theorem 2 is clearly a special
case by example (1) above. The proof will closely parallel that of Theorem
2, however the lack of countable compactness causes a bit of a complication.
The following lemma shows that a certain amount of “compactness” is still
present and this will be sufficient for the proof to go through.

Lemma 7. Let I be a good ideal on the T} space X. Then for every
unbounded set A its derived set A’ is also unbounded and hence cub.
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Proof. Let us start by fixing a family C = {C’g €€ p =X, I)} C
C(X,I) such that every bounded set misses some member of C, with the
additional property that C is strictly decreasing, i.e. & < n implies that C,,
is a proper subset of Cy.

Now assume, indirectly, that A’ is bounded and fix a bounded open set
G with A’ C G. Then B = A\ G is again unbounded with B’ = (), hence B
is a closed discrete set in X. In particular, then B is cub, hence we have
BNC¢ # 0 for all £ € p. Thus we can easily select two disjoint subsets D
and F of B such that both D and F intersect every member of C. But this
contradicts property (iii) of I because both D and E are cub. m

Now the promised generalization of Fodor’s theorem reads as follows.

Theorem 4. Let X be a T} topological space carrying a good ideal I. Then
(S)PDL(X,I) holds.

Proof. Let U be a neighbourhood assignment defined on the I-stationary
set S. If there is an unbounded set A with |A| < o(X, ) then clearly we
even have AN M;(U) # 0. Otherwise, that is if cf(X,I) = o(X,I), one
can easily construct an I-spine for X, that is a free sequence P = {pa :
a€po=o0X,1 )} which is unbounded, all its proper initial segments P,
are bounded, and has no complete accumulation point in X. We may also
assume without any loss of generality that p, € Cy holds for all & € ¢ where
the cub’s Cy, are chosen as in the proof of lemma 7.

Then exactly as in definition 4 we can define the P-diagonal intersection
of any p-sequence .

{Hqy : a € o}

of cub’s, and with the help of lemma 7 we will show that this P-diagonal
intersection

H=Ap{H, : CYGQ}:U{P(LOH{H[} e} (YEQ},

is again a cub. The proof that H is closed is the same as above. To prove
that it is unbounded we first need some notation.

For any a € o let us set P, = {ps : B € a} and Qq = P\ P,. Recall
that for any a € g we have P, N Q. = 0, moreover

P = U{P(’, D« € o).
For any point z € P’ we set

@(r) = min{a : x € P,}.
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Clearly we have Qo C C4, consequently also @), C C, for every a € p,
moreover ¢(z) > a implies € Q),, hence if sup { p(z) : z € A} = p holds
for a set A C P’ then A meets every C, and so is unbounded.

Let us now define by transfinite recursion on « points y, € P’ and
ordinals v, € g as follows. Assume that o € p and that both Y, = {yz :
B € a} and {vg : B € a} have already been defined. Then we set

va =sup{p(yg) : B€ cv}
and then choose
Yo € Qh, N[ {Hp : B € val.
The latter is possible because @), is cub by lemma 7.
It is easy to see from the construction that

©(Y8) < Va < ©(Ya)

whenever 3 < «, consequently the set Y = {y, : a € p} is unbounded
because sup { oly) ty € Y} = p. Thus to prove that H is unbounded, by
lemma 7, it suffices to show that Y’ € H. So let y € Y’ be any accumulation
point of Y. Then Y C P’ implies that y € P’, hence ¢(y) = v is defined. But
then y ¢ Q,, hence y ¢ {ya : ¥(ya) > I/}I and so y € {ya s o(ya) < u}/.
Now let ¢ be the smallest ordinal with y € Y}, where Y5 = {yo : a < d}.
Clearly d must be a limit ordinal because X is T3.

Note that then we have
vs = sup{cp(ya) ra< (5} = sup{v, : a < d},
and thus clearly y € P,ﬁo Moreover, the minimality of § implies that we
have
y€{ya : B<a<s)
for every 3 < ¢, consequently, as the final segment {y, : < a < §} of ¥j

is contained in (\{H¢ : £ < vg}, we also have y € (\{H¢ : € < vg}. Putting
all this together we indeed have

€ P,,n([{He : £<ws} CH.

We can now complete the proof of PDL(X, I) by repeating the analogous
argument given in the finishing part of the proof of Theorem 2 showing that
actually PN M;(U) # 0. Finally, SPDL(X,I) is then obtained as an easy
corollary again, by restricting both U and I to any cub C. We make use
here of the fact that the restriction of the ideal I to the subspace C is also
good. m



170 I Juhdsz and A. Szymanski

Examples (2) and (3) show that, at least formally, Theorem 4 is a genuine
extension of Theorem 2. However, we must admit that we don’t as yet have
an application of Theorem 4 which cannot be easily reduced to Theorem 2.
We emphasize, on the other hand, that the stationary decomposition results
of the next section work just as easily in the general framework of spaces
with a good ideal of bounded sets as in the restricted case of good locally
compact spaces.

4. STATIONARY SET DECOMPOSITION

Solovay proved that for every uncountable regular cardinal & if S is any
stationary subset of x then S can be decomposed into « disjoint stationary
subsets (see e.g. [7], theorem 85). As an immediate corollary, it follows that
if a is an ordinal with c¢f(a) > w then every stationary set in « is cf(a)-
decomposable. Our aim in this section is to generalize this result to our
topological setting. We start with a lemma that shows the relevance of our

Fodor-type results to this.

Lemma 8. Let X be a space and I be an ideal (of bounded sets) on X such
that for some set A C X we have

ANM(U)#0

whenever U is any neighbourhood assignment defined on an I-stationary
set. Assume moreover that for some S € St (X, I) there are a cardinal k
and a neighbourhood assignment V on S such that for every set B € [A]~"
we have

{zeS:BNV(x) =0} € St(X,I).
Then S is k-decomposable, i.e. it splits into k disjoint I-stationary sets.

Proof. By transfinite recursion on a € x we define points g, € A as follows:
If Qo = {qs : B € a} has already been defined, by our second assumption
the set

Sa={z€8:QuNV(z)=0}

is I-stationary. Thus applying our first assumption to the restriction of V
to S, we can pick g, from the non-empty set AN M;(V [ Sy). Now it is
obvious from our construction that the sets

Ta={.’l:€Sa : qaeV(.r)}
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are pairwise disjoint I-stationary subsets of S (for a € k), hence S is indeed
k-decomposable. m

The main result of this section is the following theorem that implies
Solovay’s decomposition theorem in many cases. Roughly, it says that
if I is a good ideal on X and all points in an I-stationary set S have
small character in X, then S is c¢f(X, I)-decomposable. We recall that the
character x(z, X) of the point = in the space X is defined as the smallest
size of a neighbourhood base for x in X. Note also that if « is an ordinal
space then for any § € a the character of the point 3 in « is equal to its

cofinality cf(3).

Theorem 5. Let I be a good ideal of bounded sets on a T} space X,
moreover set v = cf(X,I) = non — I. Then every I-stationary set S
satisfying

sup{x(a:,X) : xES} =pu<y

is y-decomposable.

Proof. For every point x € S let us fix first of all a neighbourhood base of
the form {Ua(z) : @ € p} (repetitions are permitted). Then we prove the
following claim: For every regular cardinal k < 7 there is an a € p such
that for every set @ € [X ]<* we have

{z€8:QNUs(z) =0} €St(X,I).

Indeed, assume indirectly that x = cf(k) < « but for every a € p there is
a set Qq € [X]<" for which

Aa={2 €S : QuNUy(x) =0}

is non-stationary. Set @ = |J{Qa : @ € u}, then |Q| < v follows from the
regularity of £ < v if 4 < k and from p < -y otherwise. Hence, by definition,
@ is a bounded set. On the other hand, since ; < v < p and so the union
of u non-stationary sets is again non-stationary, we have that the set

T =58\ J{4a : a.eu}

is stationary and so unbounded. But for any point x € T we have @ N
Ua(z) # 0 for all @ € p, which leads to the absurd conclusion that the
closure of the bounded set @, that is also bounded, contains the unbounded
set T
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Now, using lemma 8 we immediately conclude from this claim that S is
k-decomposable for every regular cardinal £ < 4. In particular, this finishes
the proof if «y is regular. Otherwise, if «y is singular and so c¢f(y) = k < v,
then we may first decompose S into k many disjoint stationary subsets {S, :
a € k} and note that the condition of the theorem is trivially inherited by
(stationary) subsets. Thus if we have

'YZZ{’)’Q:O‘EH}

with 74 < 7 for each a € & then every set Sy is yo-decomposable and hence
S itself is y-decomposable again. W

Note that if & = ™ is a successor cardinal then for every point 3 € «
the cofinality (i.e. the character) of 3 is at most u, hence in this case our
theorem applies. This particular case of Solovay’s decomposition result was
obtained by Fodor in [4].

We can get a decomposition result for our topological setting that yields
a complete - generalization of Solovay’s theorem if “a certain amount of
compactness” is assumed for our underlying space. However, the problem
with this result is that, unlike in the case of the generalized Fodor theorem
or Theorem 5, in its proof we have to make use of Solovay’s original theorem!
Still, for the sake of completeness, we present this result below. We recall
that a space X is said to be initially < p-compact iff every infinite set
Ae[X ]<9 has a complete accumulation point in X.

Theorem 6. Assume that I is a good ideal of bounded sets on a T} space
X that is initially < o = (X, I)-compact, moreover there is an I-spine
P ={py : a € o} in X with the property that for every bounded subset A
of P’ there is an o € o with A C PJ. Then every I-stationary subset of X

is p-decomposable.

Proof. Since, by lemma 7, the set P’ is cub, it suffices to show that any
stationary S C P’ is p-decomposable. To accomplish this we shall again
consider the map ¢ : P’ — p defined (in the proof of Theorem 4) for z € P’
by

¢(z) =min{a : x € P.}.

It is easy to see that this map ¢ is continuous because each P, is clopen in
P'. Next we show that ¢ is also a closed map, i.e. the p-image of any closed
set is closed.
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Indeed, assume indirectly that A C P’ is closed but B = ¢[A] is not.
Let a € B’ be the smallest limit point of B that is not in B. Then we may
choose a set Z C aN B that has order type cf(a) and is cofinal in . For
each ordinal ¢ € Z pick a point y. € A with p(yc) = ¢ and set

Y ={y : CeZ}.

Then |Y| = cf(a) < g, hence by our assumption there is a complete
accumulation point y of Y and y € A because A is closed. So if we can
show that ¢(y) = a then we get a contradiction because p(y) € B.

But the continuity of ¢ immediately implies that ¢(y) is in the closure
of Z, hence ¢(y) < a. On the other hand, we cannot have p(y) = f < a
because then P[’i would be a clopen neighbourhood of y in P’ such that

PynY ={yc : ¢ < B},

contradicting that y is a complete accumulation point of Y.

Now, let S be any I-stationary subset of P’. We claim that its image
T = ¢[S] is stationary in p. Indeed, let C be any cub in p. Then
by continuity ¢~!(C) is closed in P’ and it must also be unbounded by
our assumption on the I-spine P. Thus we have S N ¢~ 1(C) # 0 and
consequently TN C # ) as well.

But we also have the converse of this statement, i.e. for any stationary
subset T of p its inverse image S = ¢~ 1(T) is I-stationary; to prove this
we use that ¢ is a closed map. Indeed, for any cub C € C(X,I) with
C C P’ its image ¢[C] is clearly cub in g. Therefore we have TN ¢[C] # 0,
consequently o1 (T) N C # 0 as well.

To complete our proof, let us consider any I-stationary subset S of P’.
We may then apply Solovay’s theorem to the stationary set 7' = ¢[S] in p
and decompose T into the disjoint stationary sets {T}, : a € p}. But then
the family {cp‘l(Ta) P € g} forms a p-decomposition of S. m

Note that the existence of an I-spine as required in the above theorem
is insured by the very natural assumption cf(X,I) = po(X.I). This as-
sumption also occurs in the following conjecture that, if true, would provide
us with a purely topological version of Solovay’s theorem in the spirit of
Theorem 5.

Conjecture. Let I be a good ideal of bounded sets on a T} space X such
that ¢f(X,I) = o(X,I). Then every I-stationary set S with the property
that x(z, X) < o(X, I) holds for all points z € S is p(X, I)-decomposable.
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COLOR-CRITICAL GRAPHS AND HYPERGRAPHS WITH
FEw EDGES: A SURVEY

A. KOSTOCHKA*

The current situation with bounds on the smallest number of edges in color-
critical graphs and hypergraphs is discussed.

1. INTRODUCTION

The theory of graph and hypergraph coloring plays a central role in discrete
mathematics. It has applications in areas with seemingly little connection
to coloring. Coloring deals with the fundamental problem of partitioning
a set of objects into classes that avoid certain conflicts. Many timetabling,
sequencing, and scheduling problems are of this nature.

A hypergraph is color-critical if deleting any edge or vertex reduces
the chromatic number; a color-critical hypergraph with chromatic number
k is k-critical. Every k-chromatic hypergraph contains a k-critical hyper-
graph, so one can study chromatic number by studying the structure of
k-critical (hyper)graphs. There is vast literature on k-critical graphs and
hypergraphs. Many references can be found in [23, Chapters 5 and 1].

In this survey we concentrate on k-critical graphs and hypergraphs with
few edges. Lower bounds on, say, average degree of k-critical graphs can
be applied as follows. If we know that the average degree of every k-
critical graph in a family H is at least z, and the average degree of every
subgraph H' of a graph H € H is less than z, then we know that H is

*This work was partially supported by the NSF grant DMS-0099608.
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(k — 1)-colorable. For example, a theorem of Gallai (described in Section 4
below) says that [E(G)'/|V(G)‘ > 0.5(k -1+ 7—) when G is a k-
critical graph other than K. For & > 6 and albltraly g, this implies
that the problem of testing k-colorability is solvable in polynomial time
for graphs that embed on the orientable surface of genus g. If such a
graph is not k-colorable, then it has a (k + 1)-critical subgraph G’. Euler’s
Formula yields |E (G ' < 3(|V (G") I + 29 — 2), but Gallai’s Theorem
requires | E(G")| > Oo(k + m)’V(G')I. For k > 6, this requires
|V(G')| < 138(g — 1). Therefore, it suffices to test the k-colorability of
every subgraph of G having at most 138(g — 1) vertices.

Another application of such bounds to coloring of graphs on surfaces
appears in [7], and Krivelevich [36] presents interesting applications to
random graphs.

In connection with list coloring originated by Vizing [54] and Erdés,
Rubin, and Taylor [19], one can study also lst-k-critical (hyper)graphs.
Given a (hyper)graph G and a list assignment L for the vertices of G, G
is L-critical if there is no proper coloring of vertices of G from their lists,
but after deleting any edge or vertex, such a coloring does exist. A list
assignment L for the vertices of a (hyper)graph G is called t-uniform if
| L(v)| =t for every v € V(G).

Two basic questions will be discussed:

(a) what is the minimum possible number of edges in a k-critical (hy-
per)graph in a given class G7

(b) what is the minimum possible number of edges in a k-critical (hy-

per)graph on n vertices in a given class G7 In particular what is the inf l’—g—g—g—;—{

taken over k-critical (hyper)graph in a given class G?

In the next section we give proofs of a few basic facts. Then graph
questions are discussed in Sections 3, 4, and 5, and hypergraph questions in
Sections 6, 7, and 8.

2. PRELIMINARIES

It is well known that color-critical graphs and hypergraphs do not have
vertices of small degree. This is true also for list-critical hypergraphs. We
state this folklore observation as a proposition because of its importance.
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Proposition 1. Let L be a (k — 1)-uniform list for a hypergraph G and
let G be L-critical. Then deg;(v) > k — 1 for every v € V(G). Moreover,
for every v € V(G), there exist some k — 1 edges ey,...,e,_1 such that
e;Nej={v} forevery1 <i<j<k-1.

Proof. Let v € V(G). By definition, there is an L-coloring f of G — v, but
we cannot extend f to v. This means that for every a € L(v), there exists
an edge e, containing v such that all vertices of e, — v are colored with a.
And for distinct a, f € L(v), the sets e, — v and eg — v must be disjoint.
This proves the proposition. ®

Dirac [12] observed that k-critical hypergraphs have not only the mini-
mum degree at least k — 1, but also the edge-connectivity at least k — 1.

Proposition 2 [12]. Let G be a k-critical hypergraph. Then G is (k — 1)-
edge-connected.

Proof.! Assume that V(G) = WU U, WNU = 0, and the only edges
intersecting both W and U are ey, ...,es, where s < k—2. Forj=1,...,s,
let w; be some vertex in W Ne; and u; be some vertex in U Ne;. Since G is
k-critical, there exists a (k — 1)-coloring fw of G(W) and a (k — 1)-coloring
fu of G(U), both using colors 1,...,k — 1. We can change the names of
colors in fy in (k — 1)! ways, keeping the same partition of vertices. For a
given 7, in at most (k—2)! ways we will get the colors of w; and u; the same.
Thus, there are at least (kK —1)! = (k= 2)ls = (k=1 —s)(k — 2)! > 0 ways
to choose the names of colors in fy so that the resulting (k — 1)-coloring of
G will be proper. m V

In view of the simple proof of Proposition 2 above, it is a bit surprising
that for list colorings, this proposition does not hold.

Example 1. Let H(k) denote the graph with V(H(k)) = W U U, where
W = {wy,...,wx}, U = {uy,...,u}, such that the subgraphs of H(k)
induced by W and U are complete graphs and there is exactly one edge,
namely wyug, connecting W with U.

Define the list L for the H(k) by

{1,...,k—1}, if ve V(G)—{wk,uk};
L(v) =
{2,...,k}, if ve {'wk,uk}.

'I’ve learned this proof from Jacent Tokaz via Douglas West. Another short proof the
reader can find in [52].
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Assume that H(k) is L-colorable. Then all colors 1,....k — 1 should
be used on wy,...,wk_1, and the same holds for uy,...,ugr_1. Thus, both
wy and ug must be colored with k, a contradiction. It is also easy to check
that after deleting any edge, we get an L-colorable graph. Hence, H (k) is
L-critical and has connectivity 1.

3. DIRAC-TYPE BOUNDS

Critical graphs were first defined and used by Dirac [11] in 1951. Dirac was
interested in

F(k,n) = min {{ E(G)[ : G is k-critical and |V(G)| = n}

In view of Proposition 1, for every k-critical graph G on n vertices,

Z deg(v) > (k — 1)n.

veV(G)

Thus 2F(k,n) > (k — 1)n. This motivates introducing the ezcess

e(k,G)= ) (deg(v) —k+1)
veV(G)

and
(1) e(k,n) = min {e(k,G) | G is k-critical and |V (G)| = n}
=2F(k,n) — (k—1)n.

Brooks’ Theorem yields that e(k,n) > 1 for k > 4 and n > k+ 1. Dirac [13]
proved the following.

Theorem 3 [13]. Let k >4 and G be a k-critical graph. If G is not a K,
then e(k,G) > k — 3.

Shorter and more elegant proofs of this result were given by Kronk
and Mitchem [37] and Weinstein [56]. We present here a proof using ideas
from [10, 29].
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Proof of Dirac’s Theorem. Assume that G is a vertex minimum k-critical
graph distinct from K}, with €(k,G) < k — 4. For every v € V(G), define
ec(k,v) = degg(v) —k + 1. Then e(k, G) = 3 cv () €c(k,v).

Let w € V(G) and degg(v) = k — 1. Since G # Ky, there are non-
adjacent vertices z1,z9 € Ng(w). The graph G* obtained from G by
merging z; and zy into a new vertex z* is not (k — 1)-colorable, since every
its (k — 1)-coloring generates a (k — 1)-coloring of G. Hence G* contains a
k-critical subgraph G]. Note that z* € V(G}) (otherwise, G} would be a
subgraph of G). Since degg«(w) =k — 2, w # V(GY}).

Let V' = V(G]), Vi = V' —2* 4+ 21 + 29, and Vo = V(G*) - V}* =
V(G)—V1. Let E) 5 be the set of edges connecting V; with V5 in G. Assume
that G; # K. Then by the minimality of G, e(k,G;) > k — 3. Since every
edge in Ej o contributes 1 to Zvevl* (e (k,v) — ecy (k, v)), we have

(2) ek, G) 2 S eck,v) +e(k,G}) + [Bral - (k- 1),
veVy

where the last —(k — 1) reflects merging x; with z5. By Proposition 2,
|E12| > k — 1. Hence (2) yields €(k,G) > k — 3, a contradiction.

Thus G* contains a K} one of whose vertices is z*. In other words, G
contains a triple (M, y;,y2), where M is a clique of size k — 1 and y; and y;
are non-adjacent vertices with N ({y1,v2}) D M.

Among all such triples, choose a triple (M, y;,y2) with maximum
| Ne(y1) N M|.

Now, let 1 = y;1 if Ng(y1) N M contains a vertex w of degree k — 1,
and let £ = yo otherwise. Since e(k,G) < k — 4, in both cases there is
w € Ng(xz1) N M with deg;(w) = k — 1. Let z2 be a non-adjacent to
vertex in M of the smallest degree. Define graphs G* and G} and sets V}*,
Vi, Vo, and Ej o as above. Then again G} = K. Let M' = V(GY) — z*,
M* =M —zo+2*, My = M*NV(G7) and my = |M]|. Since every v € M}
has at least £k — 1 neighbors in G} and at least £ — 1 —m, neighbors outside
of G}, e(k,G) > (my — 1)(k — 1 —m;). Since w ¢ M7, in order to have
(my = 1)(k=1-=m;) <k —4, we need m; = 1, which means M} = {z*},
Le. M'NM* = 0.

Let | Ng(y1)NM| = m and | Ng(z1)NM| = m’. Then | Ng(z2)N M| >
k —1—m by the choice of y;. Hence degq(zy) > (k—2)+ (k—1-m). By
the choice of zg, eg(k,v) > k — 2 —m for every v € M — Ng(z;). Taking
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into account that all vertices in M’ U M — x5 are adjacent to z1 or x5, and
at least m’ of them to both, we have

(3) ek,G) > (k—=2-m)(k—=2-m') +m' — 1.

If z; = y;, then m’ = m and the minimum of (k —2 — m)2 +m — 1 over
integers m,1 < m < k — 2 is exactly k — 3. This contradicts the choice
of G. So, let 1 = y. In this case, y; is not adjacent to at least 3
vertices of degree k — 1 in M, and hence k —2 —m > 2. Then (3) yields
e(k,G) > 2(k—2—-m')+m' — 1>k — 3, again. This proves the theorem.
]

For k > 3, let D), denote the family of all graphs G whose vertex set
consists of three non-empty pairwise disjoint sets A, By, By with |B;| +
|Ba| = |A|+1 = k—1 and two additional vertices a, b such that A and BjUB,
are cliques in G not joined by any edge, Ng(a) = AUB; and Ng(b) = AUB,.
Obviously, such a graph G has 2k—1 vertices, deg,(z) = k—1 for all vertices
T # a,b, and e(k,G) = degg(a) + degg(b) — 2(k — 1) = kK — 3. That G is
k-critical was observed by Dirac [13] and by Gallai [20]. Thus Dirac’s bound
is sharp for every G € Dj.

In 1974, Dirac [14] extended Theorem 3 as follows.

Theorem 4 [14]. Let k > 4, and let G be a k-critical graph. If G'is neither
the K} nor a member of Dy, then

2 if k=4,

e(k,G) >
k-1 if k>5.
Shorter proofs of this result were found by Mitchem [40] and by Deuber
et. al. [10].

For k > 3, let F; denote the family of all graphs G whose vertex
set consists of four non-empty pairwise disjoint sets Ay, Az, B, By, where
|B1|+|B2| = |A1]+]A2| = k—1 and |Ag|+|Bs| < k—1, and one additional
vertex ¢ such that A = A; U Ay and B = B; U By are cliques in G,
Ng(c) = Aj U By, and a vertex a € A is joined to a vertex b € B by
an edge in G if and only if a € Ay and b € By. Every such graph G has
2k — 1 vertices and independence number 2. Consequently, G is not (k —1)-
colorable. Moreover, it is easy to check that the deletion of any edge results
in a (k — 1)-colorable graph. Therefore, G is k-critical. Clearly, G is in Dy
if and only if |A9] = 1 or |By| = 1. Moreover, D, C F.
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Kostochka and Stiebitz [29] improved the bounds of Theorem 4 as fol-
lows.

Theorem 5 [29]. Let k >4 and G be a k-critical graph. If G is neither a
K} nor a member of Fy, then e(k,G) > 2(k — 3).

The bounds of this result are tight not only for graphs on 2k —1 vertices.
There are examples of k-critical graphs G with €(k,G) = 2(k — 3) on
k+2,2k—2,2k —1, 2k and 3k — 2 vertices. However, for k > 4, it is possible
to show that e(k,n) = 2(k —3) if and only if n € {k + 2,2k — 2,2k, 3k — 2}.

The join of vertex disjoint graphs G| and Go, denoted by Gy V Go, is
the graph obtained from their union by adding edges joining each vertex of
G to each vertex of Go. It is evident that x(G; V G2) = x(G1) + x(G2).
Moreover, G; V Gy is critical if and only if both G; and G4 are critical.

In one of his seminal papers from 1963, Gallai [21] proved that every
k-critical graph with at most 2k — 2 vertices is the join of two other critical
graphs. This allowed him to find the minimum excess of k-critical graphs
with at most 2k — 1 vertices and to describe the extremal cases.

Theorem 6 [21]. Let k, p be integers satisfying k >4 and 2 <p <k —1.
If G is a k-critical graph with k + p vertices, then e(k,G) > p(k —p) — 2,
where equality holds if and only if G is the join of Ky_,_, and a graph in
Dyt

Since Proposition 1 holds for list coloring, one might expect that for
every (k — 1)-uniform list L, each L-critical graph G on n > k vertices
has e(k,G) > k — 3. But Example 1 shows an L-critical graph H (k) with
E(k,H(k)) = 2 for every k. On the other hand, if we forbid Kj as a
subgraph, the situation changes.

Theorem 7 [31]. Let k > 4. Let G be a hypergraph on n vertices not
containing Ky, and let L be a list for G with |L(v)| = k — 1 for every
v € V(G). If G is L-critical, then 2| E(G)| > (k—1)n+k—3. In particular,
if G is a graph, then e(k,G) > k — 3.

The above results determine the values of ¢(k,n) (and hence F(k,n))
for n < 2k and n = 3k — 2. Hajds construction with one of the graphs being
K}, yields that

(4) e(k,n+k—1)<elk,n)+k-3.
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Ore [42] suggested that (4) holds with equality for every n > k + 2 (see
also [23, p. 99]). In view of the above results, that would mean that

(5) lim 2F (k,m) 2 .
n—0o0 n k-1

The existing lower bounds are far from (5). The next section contains
more discussion on the topic.

4. GALLAI-TYPE BOUNDS

The results of the previous section give bounds on e(k, n) that do not depend
on n, while (5) (if true) would imply that €(k,n) grows asymptotically as
n(k — 3)/(k — 1). There is an attractive conjecture that for n > 6,

5n

(6) F(4,n) > [?J .

The first lower bound on £(k, n) depending on n was the abovementioned
theorem of Gallai [20].

Theorem 8 [20]. Let G be a k-critical graph. Then every block in the
subgraph of G induced by vertices of degree k — 1 is a complete graph or
an odd cycle. Furthermore, if k > 4 and G # K}, then

(7) 2|E(G)| = (k—l-t—l%—:_%)}V(G)].

In particular, if k >4 and n > k+ 2, then

k-3
K23

(8) e(k,n) 2

For n = 2k this gives only €(k,n) > 2 while Theorem 5 gives £(2n,n) >
2(k — 3); but in the long run the bound of Theorem 5 is much better.

Remark 1. The proof of Theorem 8 works for list coloring as well, so
Inequality (7) holds also for every L-critical graph G # K}, if Lis a (k—1)-
uniform list for G and k > 4.
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Theorem 8 yields F'(4,n) > (% + %)n while the conjecture (6) is that
F(4,n) is roughly (% + %)n

Krivelevich [35, 36], using a result of Stiebitz [49] on the structure of
critical graphs, improved this bound as follows.

Theorem 9 [35, 36]. Suppose k > 4, and let G be a k-critical graph on
more than k vertices. Then

k—3
>k — -
(9) 2| E(G)| > (k 1+ k2_2k_1> V(@)
In particular, if k> 4 and n > k+ 2, then
k-3
k,n) > —=————n.
(10) e(k,n) > o 1"

The improvement is better for small k. In particular, it gives F(4,n) >
(% + ﬁ)n for n > 6. Since Stiebitz’s result [49] does not hold for list
colorings, the proof of Theorem 9 does not generalize to list critical graphs.

Kostochka and Stiebitz [32] improved Krivelevich’s bound for k£ > 9.

Theorem 10 [32]. Suppose k > 6, and let G be a k-critical graph on more
than k vertices. Then

11 2/E@G)| > [ k—1+ - V(G)|.
In particular, if k > 4 and n > k + 2, then

(12) e(k,n) > 2(k = 3) .
k2 + 6k — 9 — 55

The technique of [32] generalizes to list colorings, with sufficiently weaker
bounds.

Theorem 11 [32]. Suppose k > 9, and let G be an L-critical graph, where
L is a (k — 1)-uniform list for G. If G # K}, then

1.2(k — 3)

. 4
th-d-g5

(13) 2| E(G)| > (k—1+ =

>|V(G)|.

There is still a gap of roughly %:——‘In between (12) and the known upper
bounds on e(k,n). And the conjecture (6) is an attractive challenge.
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5. CRITICAL GRAPHS WITH NO LARGE CLIQUES

It is natural to ask whether the bound on the number of edges in a k-
critical graph with n vertices can be improved when we have additional
restrictions on the structure of the graph. A possible direction is to ask
what is F'(k,n,s)—the minimum number of edges in a k-critical graph on
n vertices without cliques of size s + 1.

Together with Theorem 8, Dirac [13] proved the bound
2F(k,n,s) > (k—1)n+(k=3)+(k—s) if s<k<n-—2

Weinstein [56] improved the bound to 2F(k,n,s) > (k — 1)n + (k — 3) +
2(k — s), but the surplus over (k — 1)n still does not depend on n.

Krivelevich [36] improved the bound as follows.

Theorem 12 [36]. Let k and s be integers satisfying 3 < s < k. Let G be
a k-critical graph not containing a clique of size s + 1. Then

1. if s < 2k/3, then I [ > < —2]:—_:827—>|V(G)|,
2.if s > 2k/3, then |E(G)| > (% - 2(%(3’“__2?3_ 32)> |[V(G)];

Krivelevich [36] also gives a bit stronger bounds on the number of edges
for critical graphs without short odd cycles, and shows nice applications of
his bounds to other interesting problems.

The case of fixed s and large k was considered by Kostochka and Stieb-
itz [30].

Theorem 13 [30]. For every fixed s and sufficiently large k, every L-critical
graph G on n vertices without cliques of size s + 1 for any (k — 1)-uniform
list L has at least (k—o(k)) n edges. In particular, F(k,n,s) > (k—o(k))n.

This bound is almost twice larger than the previously mentioned bounds
for large k. The bad side of the theorem is that it works only for really large
k, when Johannson’s theorem on coloring of sparse graphs with given maxi-
mum degree works. The good side of it is that the theorem is asymptotically
(in k) tight even for graphs of arbitrary girth. A way to construct k-critical
graphs G of arbitrary girth with IE (G)] / | V(G)I < k—1 was shown in [24].
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Abbott, Hare, and Zhou (3] constructed k-critical graphs G with density
|E(G)|/|V(G)| < k—17/3 for girth 4 and density | E(G)|/|V(G)| < k—2
for girth 5. Kostochka and Nesettil [28] proved that there exist k-critical
graphs G with lE(G)l /| V(G)! < k — 2 and arbitrarily large girth.

But for small and moderate k, finding least possible average degree of a
triangle-free k-critical graph is an interesting open problem.

6. CRITICAL HYPERGRAPHS WITH FEW EDGES

Famous Local Lemma [18] implies that every k-critical r-uniform hyper-
graph has maximum degree at least (k — 1)"~!/4r. One might expect that
the average degree of k-critical r-uniform hypergraphs is also always super-
linear in k for fixed r. In fact, Erdés and Lovész [18, p. 612] conjectured
this for simple hypergraphs. But this is not the case.

Lovész [38, 39], Woodall [53], Seymour [47], and Burstein [9] proved
that |E(H )| > |V(H )| for every 3-critical hypergraph H. Kostochka and
Nesetril [28] extended results of Burstein [9] and of Abbott, Hare, and
Zhou [1, 3] by proving the following upper bound on the minimum of | E(H )|
in terms of | V(H)|.

Theorem 14 [28]. For eachr > 3, k > 4, g > 3 and € > 0, there
exists an r-uniform k-critical hypergraph H with girth at least g and
|EH)|/|V(H)| <k-2+e.

And for large k, this is almost matched by the following lower bound
due to Kostochka and Stiebitz [30].

Theorem 15 [30]. Let H be a hypergraph with no edges of size 2. If
H is L-critical for a k-uniform list assignment L, then |E(H)| /I V(H)| >

k(1-3/Vk).

The advantage of Theorem 15 is that it works for list coloring, and
not only for uniform hypergraphs. The girth is also not an issue. The
disadvantage is that it provides no information when k < 27.

Note that all known examples of r-uniform k-critical hypergraph with
small average degree have many vertices. Thus it makes sense to ask about
m(r, k)—the minimum number of edges in an r-uniform not k-colorable
hypergraph (with no restriction on the number of vertices). A first thought
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here would be that the complete r-uniform hypergraph on 1 + k(r — 1)
vertices gives the answer. And for r = 2 (ordinary graphs) this is the case.
But already for 7 = 3 the Fano plane with 7 edges beats K with 10 edges.
Erdds and Hajnal [17] suggested that if k is very large in comparison with
r, then the complete hypergraph still is the best construction, but Alon [4]
disproved this conjecture.

Finding good estimates on m(r, k), and especially on m(r,2), was one of
the favorite topics of Paul Erdés for a long time. He proved in [15, 16] the
first nontrivial bounds on m(r, 2):

2=t <m(r,2) < 122"

The proofs of both upper and lower bounds are simple, so we present them
here.

Lemma 16. For every r > 2 and k > 2,

(14) kK < m(r k) < 20r%kT Ink.

Proof. Suppose that an r-uniform hypergraph H = (V, E) has less than
k"~! edges. Consider a random coloring f of V' with k colors such that
every vertex gets colored with color ¢ with probability 1/k for every 1 <
i < k independently of all other vertices. Then for every edge e € E, the
probability that e is monochromatic is k=" and the expected number of
monochromatic edges is |E|k'~™" < 1. Thus there exists a k-coloring of V
with no monochromatic edges.

To prove the upper bound, let m = |20r2k" Ink]. If m > (
the complete hypergraph K7, witnesses the bound, so we assume the op-
posite. Consider a random hypergraph G(r,k,m) on a set V of kr? labelled

vertices, where every of (k:2) r-subsets of V belongs to E(G(r,k,m)) with

Hrkr), then
2, —1
probability p = O.Sm(k:z) independently of all other r-subsets. Note that
Pr{lE(G(r, k,m)) l > m} <1/2.

For a given W C V with |W| = r2, the probability that W is independent
is at most

(1-p)(7) < exp {- (:2) -0.5m (":2> _1} < exp {—();T} .
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Therefore, since m > 19.5r2k" Ink, the probability that there is some
independent W C V with |W| = r? is at most

kr? m 2 19.572Ink
- < r b
<r2 ) eXp{ 2ek7“} < (ek) exP{ 2 }

<exp{r*(l1+Ink)—3.5r%In k}.

The last expression is at most exp {—0.5r?} < 1/4, and with positive
probability G(r,k, m) has at most m edges and has no independent set
of size 72, which means that it is not k-colorable. This proves the lemma.
]

Remark 2. The proof of the lower bound works for list colorings as well.

Beck [8] improved the lower bound for m(r,2) to 2"r/3=¢ and Spencer
[48] presented a simpler proof of the Beck’s bound based on random re-
coloring. Recently, Radhakrishnan and Srinivasan [44] improved the lower
bound further.

Theorem 17 [44]. For every ¢ < 1/v/2, there exists an o = ro(c) such

that
m(r,2) > c2"\/r/Inr.

for every r > rg.

Remark 3. In fact, the proof of Theorem 17 also can be adapted for list
coloring. So, the result holds for L-critical r-uniform hypergraphs for every
2-uniform list L.

Erdés [16] and Erdés and Lovdsz [18] said that “perhaps, the order of
magnitude of m(r,2) is 72", The following result supports the insight of
Erdés.

Theorem 18 [25]. For every positive integer k, let ¢ = c(k) = exp {—4k?}
and 1, = exp {2c;;2}. Let n be a positive integer such that k > 2". Then
for every v > 1y,

n

m(r,k) > ck” (L) e

Inr

Note that the proof of Theorem 18 does not work for list coloring.
Mubayi and Tetali [41] have some other results for fixed k and large r.

Recall that the ratio of the RHS of (14) to the LHS is 20r%k In k. When
k is larger than r, then the factor k In k becomes more important than r2.
Alon [4] improved both bounds in (14) for k large in comparison with r.
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Theorem 19 [4]. For every positive integers r > 3 and k > 2,

k(r—1)+1> Inr [r —1<(k(r—1)+1>

T Inr—1 Llnr r

m(r, k) < (

Inrd

and

m(r k) > (r—1) H [’"‘1 SRS

r T e

Furthermore, if r — oo and k/r — oo, then

m(r, k) = O ((k(r —7"1) + 1>T1.5 - (%))

Note that when k is much larger than r, the complete hypergraph
K7 +h(r—1) gives a better upper bound than (14), but Alon’s bound is even
better. The proof of the lower bound is amazingly simple: he first colors
vertices of a hypergraph at random using most of the colors, but not all.
Then he uncolors a vertex in every monochromatic edge and spends a new
color for every r — 1 uncolored vertices. This proof does not work for list
coloring; thus it would be interesting to find a reasonable lower bound for
the number of edges in L-critical r-uniform hypergraphs for arbitrary k-
uniform lists L. Also, with respect to k, the upper and lower bounds are of
the same order, but with respect to r, the gap probably could be narrowed.

If a hypergraph H = (V, E) is not uniform but y_,c 5 271¢ < 1/2, then a
random 2-coloring (as in the proof of Lemma 16) with positive probability is
proper. Erdés and Lovéasz [18] conjectured that the minimum value ¢(n) of
Y oecE 2-lel over non-2-colorable hypergraphs with the minimum size of an
edge equal to n tends to infinity as n tends to infinity. Beck [8] proved this
conjecture. The lower bound on ¢(n) in his proof tends to infinity rather
slowly. It would be interesting to estimate the rate of growth of ¢(n).

7. ON CRITICAL SIMPLE HYPERGRAPHS

A hypergraph is called simple (sometimes, linear) if no two distinct edges
share more than one vertex. Let m*(r, k) denote the minimum number of
edges in an r-uniform not k-colorable simple hypergraph. Since Fano plane
is a simple hypergraph, m*(3,2) = m(3,2) = 7. But in general, m*(r, k)
grows much faster than m(r,k). In their seminal paper [18], Erdés and
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Lovéasz thoroughly studied m*(r, k). In fact, the celebrated Local Lemma
appeared in this paper and its first application was to give lower bounds on

m*(r, k).

Theorem 20 [18]. Let s > 2,7 >2 k> 2, n =420 1y32k(s=1)(r+1)
m = 4-205r352ks(+1) g = 20r2k"~1. Then there exists an r-uniform
hypergraph H on kn vertices with at most m edges and with degrees at
most d which does not contain any circuit of length < s and in which each
set of n vertices contains an edge. In particular, H is not k-colorable.

Since for a hypergraph being simple is the same as to have no 2-circuits,
pluging in s = 2 yields

(15) m*(r, k) < 1600722+,
and this is still the best known bound for r large in comparison with k.

Theorem 21 [18]. Let r > 2, k > 2. Then

k.2(r—2)
m*(r,k) > ——.
16r(r — 1)

This bound can be improved by a factor of r/2 as follows. Theorem 5
in [18] says that every simple (k + 1)-chromatic r-uniform hypergraph con-
tains at least k™=2 /4(r — 1) vertices with degree at least k"=2/4(r —1). Then
simply the sum of degrees of vertices is used. But one can be less gener-
ous. Let G be a (k+1)-chromatic r-uniform hypergraph. Order the vertices
v1, V9, ... of G so that degs(v1) > degg(ve) > ... and delete one by one
vertices in this order together with the incident edges. The degree of a ver-
tex v; at the moment of deletion is at least degs(v;) — (¢ — 1), because G
is simple. Thus by the cited above Theorem 5 in [18], after deleting vertex
Vgr-2/4(r—1) We have deleted at least

4(5:21) * (45:21) 1)+ <4(,::21) “2) e ﬁ

edges. This proves the bound.

For k = 2, the lower bound can be improved further. Szabé [50] proved
that for every € > 0 there exists ro(e) such that for r > ro(e) every 3-
chromatic r-uniform simple hypergraph has a vertex of degree at least 2"r~¢.
Using this result one gets along the lines of the proof of Theorem 5 in [18]
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and of the previous paragraph that for every € > 0 there exists ro(g) such
that
k?'r—2

m*(r,2) > —————
2 2r —1)%

for r > ro(e).

For k very large in comparison with 7, the bounds on m*(r, k) were
improved and generalized to partial (r,[)-systems. A partial (r,[)-system is
an r-uniform hypergraph in which every set of [ vertices is contained in at
most one edge. Let m(r, k,l) be the minimum number of edges in an (r,[)-
system that is not k-colorable. Thus, a simple r-uniform hypergraph is a
partial (r,2)-system and m*(r, k) = m(r, k, 2).

The works [43, 45, 22] on Steiner systems with small independence
number yield results for partial (r,[)-systems, and imply upper bounds
on m*(r, k) that improve (15) for k very large in comparison with 7. In
particular, Grable, Phelps and Rodl [22] constructed simple hypergraphs
(in fact, Steiner systems) with chromatic number at least £+ 1 and at most
c4"r2k?7=21n? k edges for every r and infinitely many k. Thus, for such r
and k,

(16) m*(r,k) < c4"r2k* 2 In% k.

Kostochka, Mubayi, Rodl, and Tetali [27] proved that for every r > 3,

1> 2,
3l

(2Tl)z-1
rr—1)...(r—=1+1)

-
m(r, k1) < (k" 1In3k)=T.

For fixed r and huge k, this bound was matched by the following lower
bound.

Theorem 22 [27]. Let r > > 2 be fixed. Then there exists C' depending
only on r and [ such that

m(r k1) > C (K" n k)Y,

The proof of Theorem 22 does not work for list coloring.
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8. VARIATIONS: PANCHROMATIC AND STRONG COLORINGS

One of reasonable generalizations of hypergraph coloring is the panchromatic
k-coloring—a k-coloring such that every edge meets every of k colors. Then
the ordinary 2-coloring is a panchromatic 2-coloring. Let p(r, k) denote the
minimum number of edges in an r-uniform hypergraph not admitting any
panchromatic k-coloring. By above, p(r,2) = m(r,2).

Theorem 3 in the already mentioned paper [18] by Erdés and Lovész
speaks on panchromatic colorings.

Theorem 23 [18]. If each edge of an r-uniform hypergraph H meets at
most k"1 /4(k — 1)" other edges, then H is panchromatically k-colorable.

This implies that

.r—1
k

k 1
. r/
p(r,k)>1+4(k_1)r>1+4ke .

Let N(k,r) denote the minimum number of vertices in a k-partite graph
with list chromatic number greater than r. Among other results, Erdds,
Rubin, and Taylor [19] proved that N (2, ) is closely connected with m(r, 2):

m(r,2) < N(2,r) <2m(r,2).

An interesting feature of this results is that ordinary coloring of r-
uniform hypergraphs relates to list coloring of bipartite graphs. This re-
lation can be easily extended to panchromatic colorings with more colors:

Theorem 24 [26]. Foreveryr > 2 and k > 2, p(r,k) < N(k,r) < k p(r, k).

It follows from Alon’s results in [5] that for some 0 < ¢; < ¢ and every
r>2andk > 2,

exp {cir/k} < N(k,r) < kexp {cor/k}.

Therefore, by Theorem 4 we get reasonable bounds on p(r, k) for fixed k

and large r:
exp {c1r/k}/k < p(r,k) < kexp {cor/k}.

Recall that Theorem 23 also yields the lower bound on p(r, k) with ¢; = 1/4
and thus itself implies the lower bound 1 + Zl;e’"/ kon N(k,r).



192 A. Kostochka

One can also define panchromatic list colorings: If each vertex v of H
is assigned a list L(v) of k colors, then a panchromatic L-coloring of H is
a coloring in which each vertex is given a color from its own list and each
edge contains vertices with at least k different colours.

Kostochka and Woodall [33] obtained bounds on the minimum number
of edges in hypergraphs being edge critical with respect to panchromatic
colorings.

Theorem 25 [33]. Let k > 2 and let H = (V, E) be a hypergraph in which
every edge has at least k vertices, and every vertex is given a list L(v) of k
colors. If H is not panchromatically L-colorable, but after deleting any edge
becomes panchromatically L-colorable, then |E| > (|V|+k —2)/(k — 1).
This bound is attained for every k > 2 for ordinary panchromatic colorings.

If the condition ‘every edge has at least k vertices’ is replaced with ‘k-
uniform’, then the inequality can be strengthened.

Theorem 26 [33]. Let k > 2 and let H = (V, E) be a k-uniform hypergraph
and every vertex is given a list L(v) of k colors. If H is not panchromat-
ically L-colorable, but after deleting any edge becomes panchromatically
L-colorable, then |E| > |V|(k + 2)/k%.

This bound is unlikely to be sharp. The following result says that even if
panchromatically critical hypergraphs are not dense themselves, they must
contain dense subgraphs.

Theorem 27 [33]. Let k > 4, k # 5, and let H = (V,E) be a k-uniform
hypergraph such that

KV = k+1

'C H(V' .
ERrTanCY whenever V' CV, E(H(V')) #0

|E(H(V")| <
Then H is panchromatically k-colorable. For k € {3, 5}, the same conclusion
follows if the final +1 in the numerator is omitted.

This bound is sharp if k ¢ {3,5}. Note that a panchromatic k-coloring
of a k-uniform hypergraph is a strong coloring, i.e. the coloring in which
every two distinct vertices sharing an edge must have different colors. Every
strong coloring of a hypergraph H corresponds to a proper edge coloring
of the hypergraph H* dual to H. The problem of estimating the edge
chromatic number of uniform hypergraphs with a given maximum degree
and moderate codegree attracted a lot of attention after Rodl’s solution
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of the Erdés-Hanani Problem. A remarkable sequence of significant papers
due to Rodl, Frankl, Pippenger, Spencer, Kahn, Grable, Alon, Kim, Molloy,
Reed, and Vu was devoted to this topic. Theorem 27 can be interpreted as
a (somewhat unusual) sufficient condition for the edge-chromatic number
of a hypergraph H to equal its trivial lower bound, the maximum vertex

degree A(H).

Theorem 28 [33]. Let H be a hypergraph with maximum degree T,
where r = 4 or r > 6. If every vertex subset S is incident with at least
((r* —2r +2)|S| +r — 1) /7 edges, then H is r-edge-colorable.

By the definition, the strong chromatic number of a hypergraph H =
(V. E) equals the chromatic number of its skeleton, S(H)—the graph on
V whose vertices are adjacent if and only if they share some edge in H.
Deletion of an edge from a hypergraph is a rather rough action with respect
to strong coloring: deletion of an edge of size r may reduce the strong
chromatic number by r — 1. A subtler operation is splitting: if H = (V, E)
is a hypergraph, v € e € E, and degy (v) > 2, then the (v, e)-splitting of H
is obtained by replacing the edge e by the edge e — v +v', where v/ is a new
vertex. Then deleting an edge e can be performed as a sequence of (v, e)-
splittings over the vertices v € e of degree at least two. The (v, e)-splitting
corresponds to cutting edge v in the dual hypergraph H* into two pieces,
one of which has size one.

Kostochka and Woodall [34] considered splitting-critical hypergraphs
with respect to strong coloring and strong list-coloring. It appears that
for £ > r + 2, the sparsest k-splitting-critical r-uniform hypergraphs are
obtained from sparse k-critical graphs by adding to every edge r — 2 new
vertices (of degree one in the resulting hypergraph). On the other hand, the
sparsest (7 + 1)-splitting-critical r-uniform hypergraphs cannot be obtained
this way. If k is large in comparison with 7 and the skeleton S(H) of a
k-splitting-critical r-uniform hypergraph H has no large cliques, then the
lower bound on the number of edges in H can be improved.

Theorem 29 [34]. Let s > r be positive integers and let k be sufficiently
large with respect to s. Let H be a list-k-splitting-critical r-uniform hyper-
graph with respect to strong coloring whose skeleton S(H) does not contain
a complete subgraph on s + 1 vertices. Then

|E(H)| > k(1-6(nk)") (|V(H)| - (r - 2)| E(H)|).
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As with Theorem 13, the bad side of the last theorem is that the proof
works only for really large k, and the good side of it is that the bound is
asymptotically (in k) sharp even for hypergraphs of large girth.

9. CONCLUDING REMARKS

Certainly, the survey is not full. Essentially, it describes problems I am
interested in. The reader might look into [23, Chapter 5] and [46] for more
problems on color-critical graphs and hypergraphs. Maybe some proofs of
the results above can be simplified using recent impressive results of Vu (see,
e.g., [55]). v

I thank Michael Stiebitz and Douglas Woodall for our discussions on
the topic and their helpful comments on a earlier version of this survey.
Some pieces of our joint works were used in this text. Thanks for helpful
comments are also due to Oleg Borodin and Bjarne Toft.

REFERENCES

[1] H. L. Abbott and D. R. Hare, Sparse color-critical hypergraphs, Combinatorica, 9
(1989), 233-243.

(2] H.L.Abbott, D. R. Hare and B. Zhou, Sparse color-critical graphs and hypergraphs
with no short cycles, J. Graph Theory, 18 (1994), 373-388.

[3) H.L.Abbott, D. R. Hare and B. Zhou, Color-critical graphs and hypergraphs with
few edges and no short cycles, Discrete Math., 182 (1998), 3-11.

[4] N. Alon, Hypergraphs with high chromatic number, Graphs and Combinatorics, 1
(1985), 387-389.

[5] N. Alon, Choice number of graphs: a probabilistic approach, Combinatorics, Prob-
ability and Computing, 1 (1992), 107-114.

[6] N. Alon, Restricted colorings of graphs, in: K. Walker, ed., “Surveys in Combi-
natorics, 1993”, London Math. Soc. Lecture Note Series, 187 (Cambridge Univ.
Press, Cambridge, UK, 1993), 1-33.

[7] D. Archdeacon, J. Hutchinson, A. Nakamoto, S. Negami and K. Ota, Chromatic
numbers of quadrangulations on closed surfaces, J. Graph Theory37 (2001), 100~

114.
[8] J. Beck, On 3-chromatic hypergraphs, Discrete Math., 24 (1978), 127-137.



Color-Critical Graphs and Hypergraphs with Few Edges: A Survey 195

(9]
(10]
1]

(12]
(13]

[14]

[15]
(16]

[17]

18]

(19]

[20]
21)
22
23

(24]

(25]
(26]
(27]

(28]

M. I. Burstein, Critical hypergraphs with minimal number of edges (Russian), Bull.
Acad. Sci. Georgian SSR, 83 (1976), 285-288.

W. A. Deuber, A. V. Kostochka and H. Sachs, A shorter proof of Dirac’s theo-
rem on the number of edges in chromatically critical graphs, Diskretnyi Analiz i
Issledovanie Operacii, 3 (1996), No. 4, 28-34 (in Russian).

G. A. Dirac, Note on the colouring of graphs, Math. Z., 54 (1951), 347-353.
G. A. Dirac, The structure of k-chromatic graphs, Fund. Math., 40 (1953), 42-55.

G. A. Dirac, A theorem of R. L. Brooks and a conjecture of H. Hadwiger, Proc.
London Math. Soc., (3) 7 (1957), 161-195.

G. A. Dirac, The number of edges in critical graphs, J. Reine u. Angew. Math.,
268/269 (1974), 150-164.

P. Erd8s, On a combinatorial problem, I, Nordisk Mat. Tidskrift, 11 (1963), 5-10.

P. Erdés, On a combinatorial problem, II, Acta Mathematica of the Academy of
Sciences, Hungary, 15 (1964), 445-447.

P. Erdés and A. Hajnal, On a property of families of sets, Acta Mathematica of the
Academy of Sciences, Hungary, 12 (1961), 87-123.

P. Erdés and L. Lovéasz, Problems and Results on 3-chromatic hypergraphs and
some related questions, in: Infinite and Finite Sets, A. Hajnal et. al., editors, Colloq.
Math. Soc. J. Bolyai, 11, North Holland, Amsterdam, 609-627, 1975.

P. Erdés, A. L. Rubin and H. Taylor, Choosability in graphs, in: Proc. West Coast
Conference on Combinatorics, Graph Theory and Computing, Arcata, 1979, Congr.
Numer., 26 (1980), 125-157.

T. Gallai, Kritische Graphen I, Publ. Math. Inst. Hungar. Acad. Sci., 8 (1963),
165-192.

T. Gallai, Kritische Graphen II, Publ. Math. Inst. Hungar. Acad. Sci., 8 (1963),
373-395.

D. Grable, K. Phelps and V R6dl, The minimum independence number for designs,
Combinatorica, 15 (1995), 175-185.

T. R. Jensen and B. Toft, Graph coloring problems, Wiley—Interscience, 1995.

A. V. Kostochka, Constructing strictly k-degenerate k-chromatic graphs of arbi-
trary girth, Abstracts of the V All-Union Conference on the Problems of Theoretical
Cybernetics, Novosibirsk, 1980, 130-131 (in Russian).

A. V. Kostochka, Coloring uniform hypergraphs with few colors, submitted.
A. V. Kostochka, On a theorem by Erdés, Rubin and Taylor, submitted.

A. V. Kostochka, D. Mubayi, V. Rédl and P. Tetali, On the chromatic number of
set-systems, Random Structures and Algorithms, 19 (2001), 87-98.

A. V. Kostochka and J. Nesetfil, Properties of Descartes’ construction of triangle-
free graphs with high chromatic number, Combinatorics, Probability and Comput-
ing, 8 (1999), 467-472.



196

A. Kostochka

[29]
30]
1]
32
33

34]

35
36
37
38
39
40

(41]
(42]
(43]

44
a5
46
47

(48]

A. V. Kostochka and M. Stiebitz, Excess in colour-critical graphs, Bolyai Society
Mathematical Studies, 7 (1999), 87-99.

A. V. Kostochka and M. Stiebitz, On the number of edges in colour-critical graphs
and hypergraphs, Combinatorica, 20 (2000), 521-530.

A. V. Kostochka and M. Stiebitz, A list version of Dirac’s theorem on the number
of edges in colour-critical graphs, Journal of Graph Theory, 39 (2002), 165-167.

A. V. Kostochka and M. Stiebitz, A new lower bound on the number of edges in
colour-critical graphs, to appear in J. Combinatorial Theory B.

A. V. Kostochka and D. R. Woodall, Density conditions for panchromatic colour-
ings of hypergraphs, Combinatorica, 21 (2001), 515-541.

A. V. Kostochka and D. R. Woodall, On the number of edges in hypergraphs
critical with respect to strong colourings, European Journal of Combinatorics, 21
(2000), 249-255.

M. Krivelevich, An improved bound on the minimal number of edges in color-
critical graphs, Electron J. Combin., 5 (1998), no. 1, Research Paper 4, 4 pp.

M. Krivelevich, On the minimal number of edges in color-critical graphs, Combi-
natorica, 17 (1997), 401-426.

H. V. Kronk and J. Mitchem, On Dirac’s generalization of Brooks’ theorem, Canad.
J. Math., 24 (1972), 805-807.

L. Lovdsz, A generalization of Konig’s theorem, Acta Math. Acad. Sci. Hungar.,
21 (1970), 443-446.

L. Lovéasz, Coverings and colorings of hypergraphs, in: Congressus Numer., 8
(1973), 3-12.

J. Mitchem, A new proof of a theorem of Dirac on the number of edges in critical
graphs, J. Reine u. Angew. Math., 299/300 (1978), 84-91.

D. Mubayi and P. Tetali, Generalizing Property B to many colors, manuscript.
O. Ore, The Four Colour Problem, Academic Press, New York, 1967.

K. Phelps, V Rédl, Steiner Triple Systems with Minimum Independence Number,
Ars combinatoria, 21 (1986), 167-172.

J. Radhakrishnan and A. Srinivasan, Improved bounds and algorithms for hyper-
graph two-coloring, Random Structures and Algorithms, 16 (2000), 4-32.

V. Rédl, E. Sinajovd, Note on Independent Sets in Steiner Systems, Random
Structures and Algorithms, 5 (1994), 183-190.

H. Sachs and M. Stiebitz, On constructive methods in the theory of colour-critical
graphs, Discrete Math., 74 (1989), 201-226.

P. D. Seymour, On the two-coloring of hypergraphs, Quart. J. Math. Ozford, 25
(1974), 303-312.

J. Spencer, Coloring n-sets red and blue, J. Comb. Theory Ser. A, 30 (1981),
112-113.



Color-Critical Graphs and Hypergraphs with Few Edges: A Survey 197

(49]
(50]
(51]

[52]

(53]
(54]
[55]

[56]

M. Stiebitz, Proof of a conjecture of T. Gallai concerning connectivity properties
of colour-critical graphs, Combinatorica, 2 (1982), 315-323.

Szabd, An application of Lovdsz’ Local Lemma—a new lower bound for the van
der Waerden number, Random Structures and Algorithms, 1 (1990), 344-360.

B. Toft, Colour-critical graphs and hypergraphs, J. Combin. Th. Ser. B, 16 (1974),
145-161.

B. Toft, Colouring, stable sets and perfect graphs, Graham, R. L. (ed.) et al.,
Handbook of combinatorics. Vol. 1-2. Amsterdam: Elsevier (North-Holland), 1995,
233-288.

D. R. Woodall, Property B and the four-color problem. Combinatorics. Institute
of Mathematics and its Applications, Southend-on-sea, England (1972), 322-340.

V. G. Vizing, Colouring the vertices of a graph with prescribed colours, Metody
Diskretnogo Analiza v Teorii Kodov i Skhem, No. 29 (1976), 3-10 (in Russian).

V. H. Vu, A general upper bound on the list chromatic number of locally sparse
graphs, Combinatorics, Probability and Computing, 11 (2002), 103-111.

J. Weinstein, Excess in critical graphs, J. Combin. Th.(B), 18 (1975), 24-31.

Alexandr Kostochka

University of Illinois at
Urbana-Champaign
Urbana

IL 61801

and

Institute of Mathematics
Novosibirsk 630090
Russia

kostochk@math.uiuc.edu






BOLYAI SOCIETY Conference on Finite
MATHEMATICAL STUDIES, 15 and Infinite Sets
Budapest, pp. 199-262.

PSEUDO-RANDOM (GRAPHS

M. KRIVELEVICH* and B. SUDAKOV'

1. INTRODUCTION

Random graphs have proven to be one of the most important and fruit-
ful concepts in modern Combinatorics and Theoretical Computer Science.
Besides being a fascinating study subject for their own sake, they serve
as essential instruments in proving an enormous number of combinatorial
statements, making their role quite hard to overestimate. Their tremen-
dous success serves as a natural motivation for the following very general
and deep informal questions: what are the essential properties of random
graphs? How can one tell when a given graph behaves like a random graph?
How to create deterministically graphs that look random-like? This leads
us to a concept of pseudo-random graphs.

Speaking very informally, a pseudo-random graph G = (V, E) is a graph
that behaves like a truly random graph G(|V|,p) of the same edge density
p = |E| / (“2/1). Although the last sentence gives some initial idea about
this concept, it is not very informative, as first of all it does not say
in which aspect the pseudo-random graph behavior is similar to that of
the corresponding random graph, and secondly it does not supply any
quantitative measure of this similarity. There are quite a few possible graph
parameters that can potentially serve for comparing pseudo-random and
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random graphs (and in fact quite a few of them are equivalent in certain,
very natural sense, as we will see later), but probably the most important
characteristics of a truly random graph is its edge distribution. We can
thus make a significant step forward and say that a pseudo-random graph
is a graph with edge distribution resembling the one of a truly random
graph with the same edge density. Still, the quantitative measure of this
resemblance remains to be introduced.

Although first examples and applications of pseudo-random graphs ap-
peared very long time ago, it was Andrew Thomason who launched system-
atic research on this subject with his two papers [79], [80] in the mid-eighties.
Thomason introduced the notion of jumbled graphs, enabling to measure in
quantitative terms the similarity between the edge distributions of pseudo-
random and truly random graphs. He also supplied several examples of
pseudo-random graphs and discussed many of their properties. Thomason’s
papers undoubtedly defined directions of future research for many years.

Another cornerstone contribution belongs to Chung, Graham and Wil-
son [26] who in 1989 showed that many properties of different nature are in
certain sense equivalent to the notion of pseudo-randomness, defined using
the edge distribution. This fundamental result opened many new horizons
by showing additional facets of pseudo-randomness.

Last years brought many new and striking results on pseudo-randomness
by various researchers, There are two clear trends in recent research on
pseudo-random graphs. The first is to apply very diverse methods from
different fields (algebraic, linear algebraic, combinatorial, probabilistic etc.)
to construct and study pseudo-random graphs. The second and equally en-
couraging is to find applications, in many cases quite surprising, of pseudo-
random graphs to problems in Graph Theory, Computer Science and other
disciplines. This mutually enriching interplay has greatly contributed to
significant progress in research on pseudo-randomness achieved lately.

The aim of this survey is to provide a systematic treatment of the
concept of pseudo-random graphs, probably the first since the two seminal
contributions of Thomason [79], [80]. Research in pseudo-random graphs
has developed tremendously since then, making it impossible to provide full
coverage of this subject in a single paper. We are thus forced to omit
quite a few directions, approaches, theorem proofs from our discussion.
Nevertheless we will attempt to provide the reader with a rather detailed
and illustrative account of the current state of research in pseudo-random
graphs.
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Although, as we will discuss later, there are several possible formal ap-
proaches to pseudo-randomness, we will mostly emphasize the approach
based on graph eigenvalues. We find this approach, combining linear al-
gebraic and combinatorial tools in a very elegant way, probably the most
appealing, convenient and yet quite powerful.

This survey is structured as follows. In the next section we will discuss
various formal definitions of the notion of pseudo-randomness, from the
so called jumbled graphs of Thomason to the (n,d, A)-graphs defined by
Alon, where pseudo-randomness is connected to the eigenvalue gap. We
then describe several known constructions of pseudo-random graphs, serving
both as illustrative examples for the notion of pseudo-randomness, and also
as test cases for many of the theorems to be presented afterwards. The
strength of every abstract concept is best tested by properties it enables to
derive. Pseudo-random graphs are certainly not an exception here, so in
Section 4 we discuss various properties of pseudo-random graphs. Section
5, the final section of the paper, is devoted to concluding remarks.

2. DEFINITIONS OF PSEUDO-RANDOM GRAPHS

Pseudo-random graphs are much more of a general concept describing some
graph theoretic phenomenon than of a rigid well defined notion — the fact
reflected already in the plural form of the title of this section! Here we
describe various formal approaches to the concept of pseudo-randomness.
We start with stating known facts on the edge distribution of random
graphs, that will serve later as a benchmark for all other definitions. Then
we discuss the notion of jumbled graphs introduced by Thomason in the mid-
eighties. Then we pass on to the discussion of graph properties, equivalent
in a weak (qualitative) sense to the pseudo-random edge distribution, as
revealed by Chung, Graham and Wilson in [26]. Our next item in this
section is the definition of pseudo-randomness based on graph eigenvalues
- the approach most frequently used in this survey. Finally, we discuss the
related notion of strongly regular graphs, their eigenvalues and their relation
to pseudo-randomness.

2.1. Random graphs
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As we have already indicated in the Introduction, pseudo-random graphs
are modeled after truly random graphs, and therefore mastering the edge
distribution in random graphs can provide the most useful insight on what
can be expected from pseudo-random graphs. The aim of this subsection is
to state all necessary definitions and results on random graphs. We certainly
do not intend to be comprehensive here, instead referring the reader to two
monographs on random graphs [20], [49], devoted entirely to the subject
and presenting a very detailed picture of the current research in this area.

A random graph G(n,p) is a probability space of all labeled graphs on
n vertices {1,...,n}, where for each pair 1 <i < j < n, (¢,7) is an edge
of G(n,p) with probability p = p(n), independently of any other edges.
Equivalently, the probability of a graph G = (V, E) with V = {1,...,n} in
G(n,p) is Pr[G] = p[E(G)l(l — p)(;)"E(G”. We will occasionally mention
also the probability space G, 4, this is the probability space of all d-regular
graphs on n vertices endowed with the uniform measure, see the survey of
Wormald [83] for more background. We also say that a graph property A
holds almost surely, or a.s. for brevity, in G(n,p) (Gn.q) if the probability
that G(n,p) (Gn.q4) has A tends to one as the number of vertices n tends to
infinity.

From our point of view the most important parameter of random graph
G(n,p) is its edge distribution. This characteristics can be easily handled
due to the fact that G(n,p) is a product probability space with independent
appearances of different edges. Below we cite known results on the edge
distribution in G(n, p).

Theorem 2.1. Let p = p(n) < 0.99. Then almost surely G € G(n,p) is
such that if U is any set of u vertices, then

e(U) - p(g)

Theorem 2.2. Let p = p(n) < 0.99. Then almost surely G € G(n,p) is
such that if U, W are disjoint sets of vertices satisfyingu = |U| < w = |W/|,
then

= O(u3/2pl/2 log1/2(2n/u)) .

le(U,W) — puw| = O(ul/21upl/2 log1/2(2n/w)) .

The proof of the above two statements is rather straightforward. Notice
that both quantities e(U) and e(U, W) are binomially distributed random
variables with parameters (f,f) and p, and ww and p, respectively. Applying
standard Chernoff-type estimates on the tails of the binomial distribution
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(see, e.g., Appendix A of [18]) and then the union bound, one gets the
desired inequalities.

It is very instructive to notice that we get less and less control over
the edge distribution as the set size becomes smaller. For example, in the
probability space G(n,1/2) every subset is expected to contain half of its
potential edges. While this is what happens almost surely for large enough
sets due to Theorem 2.1, there will be almost surely sets of size about 2log, n
containing all possible edges (i.e. cliques), and there will be almost surely
sets of about the same size, containing no edges at all (i.e. independent
sets).

For future comparison we formulate the above two theorems in the
following unified form:

Corollary 2.3. Let p = p(n) < 0.99. Then almost surely in G(n,p)
for every two (not necessarily) disjoint subsets of vertices UyW C V of
cardinalities |U| = u, |W| = w, the number e(U, W) of edges of G with one
endpoint in U and the other one in W satisfies:

(1) |e(U, W) — puw| =O(\/W).

(A notational agreement here and later in the paper: if an edge e belongs
to the intersection U N W, then e is counted twice in e(U, W).)

Similar bounds for edge distribution hold also in the space G, 4 of d-
regular graphs, although they are significantly harder to derive there.

Inequality (1) provides us with a quantitative benchmark, according to
which we will later measure the uniformity of edge distribution in pseudo-
random graphs on 7 vertices with edge density p = | E(G)| /(3).

It is interesting to draw comparisons between research in random graphs
and in pseudo-random graphs. In general, many properties of random
graphs are much easier to study than the corresponding properties of
pseudo-random graphs, mainly due to the fact that along with the almost
uniform edge distribution described in Corollary 2.3, random graphs possess
as well many other nice features, first and foremost of them being that they
are in fact very simply defined product probability spaces. Certain graph
properties can be easily shown to hold almost surely in G(n,p) while they
are not necessarily valid in pseudo-random graphs of the same edge density.
We will see quite a few such examples in the next section. A general line
of research appears to be not to use pseudo-random methods to get new
results for random graphs, but rather to try to adapt techniques developed
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for random graphs to the case of pseudo-random graphs, or alternatively to
develop original techniques and methods.

2.2. Thomason’s jumbled graphs

In two fundamental papers [79], [80] published in 1987 Andrew Thomason
introduced the first formal quantitative definition of pseudo-random graphs.
It appears quite safe to attribute the launch of the systematic study of
pseudo-randomness to Thomason’s papers.

Thomason used the term “jumbled” graphs in his papers. A graph
G = (V,E) is said to be (p, a)-jumbled if p, a are real numbers satisfying
0 < p <1< «aif every subset of vertices U C V satisfies:

e(U) —p<lgl>

The parameter p can be thought of as the density of G, while a controls the
deviation from the ideal distribution. According to Thomason, the word
“jumbled” is intended to convey the fact that the edges are evenly spread
throughout the graph.

The motivation for the above definition can be clearly traced to the
attempt to compare the edge distribution in a graph G to that of a truly
random graph G(n,p). Applying it indeed to G(n,p) and recalling (1) we
conclude that the random graph G(n, p) is almost surely O(\/n_p )-jumbled.

Thomason’s definition has several trivial yet very nice features. Observe
for example that if G is (p, )-jumbled then the complement G is (1 — p, @)-
jumbled. Also, the definition is hereditary — if G is (p, @)-jumbled, then so
is every induced subgraph H of G.

Note that being (p, ©(np))-jumbled for a graph G on n vertices and (g) P
edges does not say too much about the edge distribution of G' as the number
of edges in linear sized sets can deviate by a percentage from their expected
value. However as we shall see very soon if G is known to be (p, o(np))-
jumbled, quite a lot can be said about its properties. Of course, the smaller
is the value of a, the more uniform or jumbled is the edge distribution of
G. A natural question is then how small can be the parameter a = a(n,p)
for a graph G = (V, E) on |V| = n vertices with edge density p = |E|/(3)?
Erdés and Spencer proved in [35] that « satisfies o = Q(\/ﬁ) for a constant
p; their method can be extended to show a = Q(ﬁ?ﬁ) for all values of

< alU|.

(2)
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p = p(n). We thus may think about (p,O(,/np))-jumbled graphs on n
vertices as in a sense best possible pseudo-random graphs.

Although the fact that G is (p, @)-jumbled carries in it a lot of diverse
information on the graph, it says almost nothing (directly at least) about
small subgraphs, i.e. those spanned by subsets U of size |U| = o(a/p).
Therefore in principle a (p, a)-jumbled graph can have subsets of size |U| =
O(a/p) spanning by a constant factor less or more edges then predicted by
the uniform distribution. In many cases however quite a meaningful local
information (such as the presence of subgraphs of fixed size) can still be
salvaged from global considerations as we will see later.

Condition (2) has obviously a global nature as it applies to all subsets
of G, and there are exponentially many of them. Therefore the following
result of Thomason, providing a sufficient condition for pseudo-randomness
based on degrees and co-degrees only, carries a certain element of surprise
in it.

Theorem 2.4 [79]. Let G be a graph on n vertices with minimum degree
np. If no pair of vertices of G has more than np* + | common neighbors,
then G is (p, (p+ l)n)-jumbled.

The above theorem shows how the pseudo-randomness condition of (2)
can be ensured/checked by testing only a polynomial number of easily
accessible conditions. It is very useful for showing that specific constructions
are jumbled. Also, it can find algorithmic applications, for example, a very
similar approach has been used by Alon, Duke, Lefmann, Rodl and Yuster
in their Algorithmic Regularity Lemma [9].

As observed by Thomason, the minimum degree condition of Theorem
2.4 can be dropped if we require that every pair of vertices has (1+0(1)) np?
common neighbors. One cannot however weaken the conditions of the
theorem so as to only require that every edge is in at most np?+1 triangles.

Another sufficient condition for pseudo-randomness, this time of global
nature, has also been provided in [79], [80]:

Theorem 2.5 [79]. Let G be a graph of order n, let nn be an integer
between 2 and n — 2, and let w > 1 be a real number. Suppose that each
induced subgraph H of order nn satisfies |e(H) — p("y)| < mna. Then G is

(p, 7v/na/n/(1 - n))-jumbled. Moreover G contains a subset U C V(G) of

size |U| > (1 - - 380

m)n such that the induced subgraph G[U] is (p,wa)-

jumbled.
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Thomason also describes in [79], [80] several properties of jumbled
graphs. We will not discuss these results in details here as we will mostly
adopt a different approach to pseudo-randomness. Occasionally however we
will compare some of later results to those obtained by Thomason.

2.3. Equivalent definitions of weak pseudo-randomness

Let us go back to the jumbledness condition (2) of Thomason. As we have
already noted it becomes non-trivial only when the error term in (2) is
o(n?p). Thus the latter condition can be considered as the weakest possible
condition for pseudo-randomness.

Guided by the above observation we now define the notion of weak
pseudo-randomness as follows. Let (G,) be a sequence of graphs, where
G, has n vertices. Let also p = p(n) is a parameter (p(n) is a typical
density of graphs in the sequence). We say that the sequence (Gy) is weakly
pseudo-random if the following condition holds:

(3)  For all subsets U C V(G,), e(U) - p<’U'>| = o(n’p).

2

For notational convenience we will frequently write G = Gy, tacitly assum-
ing that (G) is in fact a sequence of graphs.

Notice that the error term in the above condition of weak pseudo-
randomness does not depend on the size of the subset U. Therefore it
applies essentially only to subsets U of linear size, ignoring subsets U of size
o(n). Hence (3) is potentially much weaker than Thomason’s jumbledness
condition (2).

Corollary 2.3 supplies us with the first example of weakly pseudo-random
graphs — a random graph G(n,p) is weakly pseudo-random as long as p(n)
satisfies np — oco. We can thus say that if a graph G on n vertices is weakly
pseudo-random for a parameter p, then the edge distribution of G is close
to that of G(n,p).

In the previous subsection we have already seen examples of conditions
implying pseudo-randomness. In general one can expect that conditions of
various kinds that hold almost surely in G(n,p) may imply or be equivalent
to weak pseudo-randomness of graphs with edge density p.

Let us first consider the case of the constant edge density p. This case
has been treated extensively in the celebrated paper of Chung, Graham and
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Wilson from 1989 [26], where they formulated several equivalent conditions
for weak pseudo-randomness. In order to state their important result we
need to introduce some notation.

Let G = (V, E) be a graph on n vertices. For a graph L we denote by
N¢ (L) the number of labeled induced copies of L in G, and by Ng(L) the
number of labeled not necessarily induced copies of L in G. For a pair of
vertices z,y € V(G), we set s(x,y) to be the number of vertices of G joined
to  and y the same way: either to both or to none. Also, codeg(z,y) is
the number of common neighbors of z and y in G. Finally, we order the
eigenvalues \; of the adjacency matrix A(G) so that |A1] > |[A2| > ... > |As].

Theorem 2.6 [26]. Let p € (0,1) be fixed. For any graph sequence (G)
the following properties are equivalent:

Pi(l):  For a fixed | > 4 for all graphs L on [ vertices,
N(L) = (1+ o(1)) nlplPB (1 — p) @)=L,
Py(t):  Let C; denote the cycle of length t. Let t > 4 be even,

e(Gp) = L o(n?) and Ng(Cy) < (np)' + o(n?).

P3: e(Gp) > P—ZB +o(n?) and A1 = (l+4o0(1))np, A2 =o(n).
Py: For each subset U C V(G), e(U) = BU[* + o(n?).

Ps: For each subset U C V(G) with |U| = L%J, we have
e(U) = (§ +o(1))n?.

P Coyev |s(z9) = (12 + (1)) n| = o(n®).
Pre 3 gev |codeg(x, y) — p2n| = o(n3).

Note that condition P; of this remarkable theorem is in fact identical
to our condition (3) of weak pseudo-randomness. Thus according to the
theorem all conditions P;—P3, P; — Pr are in fact equivalent to weak pseudo-
randomness!

As noted by Chung et al. probably the most surprising fact (although
possibly less surprising for the reader in view of Theorem 2.4) is that
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apparently the weak condition P»(4) is strong enough to imply weak pseudo-
randomness.

It is quite easy to add another condition to the equivalence list of the

above theorem: for all U,W C V, e(U, W) = p|U||W| + o(n?).

A condition of a very different type, related to the celebrated Szemerédi
Regularity Lemma has been added to the above list by Simonovits and Sés
in [73]. They showed that if a graph G possesses a Szemerédi partition in
which almost all pairs have density p, then G is weakly pseudo-random,
and conversely if G is weakly pseudo-random then in every Szemerédi par-
tition all pairs are regular with density p. An extensive background on
the Szemerédi Regularity Lemma, containing in particular the definitions
of the above used notions, can be found in a survey paper of Komlds and
Simonovits [55].

The reader may have gotten the feeling that basically every property
of random graphs G(n,p) ensures weak pseudo-randomness. This feeling
is quite misleading, and one should be careful while formulating properties
equivalent to pseudo-randomness. Here is an example provided by Chung
et al. Let G be a graph with vertex set {1,...,4n} defined as follows: the
subgraph of G spanned by the first 2n vertices is a complete bipartite graph
Ky n, the subgraph spanned by the last 2n vertices is the complement of
Ky, and for every pair (7,7),1 <i < 2n,2n+1 < j < 4n, the edge (4, ) is
present in G independently with probability 0.5. Then G is almost surely
a graph on 4n vertices with edge density 0.5. One can verify that G has
properties P;(3) and P(2t + 1) for every ¢t > 1, but is obviously very far
from being pseudo-random (contains a clique and an independent set of one
quarter of its size). Hence Py(3) and P»(2t + 1) are not pseudo-random
properties. This example shows also the real difference between even and
odd cycles in this context — recall that Property P»(2t) does imply pseudo-
randomness.

A possible explanation to the above described somewhat disturbing phe-
nomenon has been suggested by Simonovits and Sés in [74]. They noticed
that the above discussed properties are not hereditary in the sense that the
fact that the whole graph G possesses one of these properties does not im-
ply that large induced subgraphs of G also have it. A property is called
hereditary in this context if it is assumed to hold for all sufficiently large
subgraphs F of our graph G with the same error term as for G. Simonovits
and Sés proved that adding this hereditary condition gives significant extra
strength to many properties making them pseudo-random.
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Theorem 2.7 [74]. Let L be a fixed graph on [ vertices, and let p € (0,1)
be fixed. Let (G,) be a sequence of graphs. If for every induced subgraph
H C G on h vertices,

Ny (L) = pPOI 4 o(n'),
then (G,) is weakly pseudo-random, i.e. property Py holds.

Two main distinctive features of the last result compared to Theorem
2.6 are: (a) P1(3) assumed hereditarily implies pseudo-randomness; and (b)
requiring the right number of copies of a single graph L on [ vertices is
enough, compared to Condition P;(l) required to hold for all graphs on I
vertices simultaneously.

Let us switch now to the case of vanishing edge density p(n) = o(1).
This case has been treated in two very recent papers of Chung and Graham
[25] and of Kohayakawa, Rodl and Sissokho [50]. Here the picture becomes
significantly more complicated compared to the dense case. In particular,
there exist graphs with very balanced edge distribution not containing a
single copy of some fixed subgraphs (see the Erdés-Rényi graph and the
Alon graph in the next section (Examples 6, 9, resp.)).

In an attempt to find properties equivalent to weak pseudo-randomness
in the sparse case, Chung and Graham define the following properties in
[25]:

CIRCUIT(t): The number of closed walks wo, wr,...,w; = wp of length
tin Gis (1+o(1)) (np);

CYCLE(t): The number of labeled ¢-cycles in G is (1+ o(1)) (np)";

EIG: The eigenvalues A;, |A1] > |A2] > ... |An]|, of the adjacency matrix of
G satisfy:

M= (1+0(1))np,
[Ai] = o(np),7 > 1.
DISC: For all X, Y C V(G),

|e(X,Y) = plX|[Y]] = o(pn?).

(DISC here is in fact DICS(1) in [25]).
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Theorem 2.8 [25]. Let (G = G, : n — 00) be a sequence of graphs with
e(Gn) = (1+0(1))p(3)- Then the following implications hold for all t > 1:

CIRCUIT(2t) = EIG = DISC.

Proof. To prove the first implication, let A be the adjacency matrix of
G, and consider the trace Tr(A?). The (4,i)-entry of A% is cqual to the
number of closed walks of length 2¢ starting and ending at 7, and hence
Tr(A%) = (1+ o(1)) (np)*. On the other hand, since A is symmetric it
is similar to the diagonal matrix D = diag(A1, Ag, ..., An), and therefore
Tr(A%) = "% A2, We obtain:

Z M= (1+of 1)) (np)%

Since the first eigenvalue of G is easily shown to be as large as its average
degree, it follows that A\; > 2|E )I = (14 o(1)) np. Combining
these two facts we derive that A\ = (1 + o(1))np and [N| = o(np) as
required.

The second implication will be proven in the next subsection. =

Both reverse implications are false in general. To see why DISC # EIG
take a graph Go on n — 1 vertices with all degrees equal to (1 + o(1))n®!
and having property DISC (see next section for examples of such graphs).
Now add to G a vertex v* and connect it to any set of size n®8 in Gy, let G
be the obtained graph. Since G is obtained from Gg by adding 0(| E(G0)| )
edges, G still satisfies DISC. On the other hand, G contains a star S of size
n%8 with a center at v*, and hence A\ (G) > A1 (S) = Vn08 —1> | E(G)|/n
(see, e.g. Chapter 11 of [64] for the relevant proofs). This solves an open
question from [25].

The Erdés-Rényi graph from the next section is easily seen to satisfy
FEIG, but fails to satisfy CIRCUIT(4). Chung and Graham provide an
alternative example in [25] (Example 1).

The above discussion indicates that one probably needs to impose some
additional condition on the graph G to glue all these pieces together and to
make the above stated properties equivalent. One such condition has been
suggested by Chung and Graham who defined:

U(t): For some absolute constant ¢, all degrees in G satisfy: d(v) < cnp,

and for every pair of vertices z,y € G the number e;—;(z,y) of walks of

length ¢ — 1 from x to y satisfies: e;—1(x,y) < ent=2p'~1.
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—14+1/(t-1)

Notice that U(t) can only hold for p > ¢'n , where ¢’ depends

on c. Also, every dense graph (p = ©(1)) satisfies U(t).

As it turns out adding property U(t) makes all the above defined proper-
ties equivalent and thus equivalent to the notion of weak pseudo-randomness
(that can be identified with property DISC):

Theorem 2.9 [25]. Suppose for some constant ¢ > 0, p(n) > en~1+1/(t=1),
where t > 2. For any family of graphs Gy, [E(G,,)l = (1+ 0(1))p(g),
satisfying U(t), the following properties are all equivalent: CITRCUIT(2t),
CYCLE(2t), EIG and DISC.

Theorem 2.9 can be viewed as a sparse analog of Theorem 2.6 as it also
provides a list of conditions equivalent to weak pseudo-randomness.

Further properties implying or equivalent to pseudo-randomness, includ-
ing local statistics conditions, are given in [50].

2.4. Eigenvalues and pseudo-random graphs

In this subsection we describe an approach to pseudo-randomness based on
graph eigenvalues — the approach most frequently used in this survey. Al-
though the eigenvalue-based condition is not as general as the jumbledness
condition of Thomason or some other properties described in the previous
subsection, its power and convenience are so appealing that they certainly
constitute a good enough reason to prefer this approach. Below we first pro-
vide a necessary background on graph spectra and then derive quantitative
estimates connecting the eigenvalue gap and edge distribution.

Recall that the adjacency matriz of a graph G = (V, E) with vertex set
V = {1,...,n} is an n-by-n matrix whose entry a;; is 1 if (4,7) € E(G),
and is 0 otherwise. Thus A is a 0,1 symmetric matrix with zeroes along
the main diagonal, and we can apply the standard machinery of eigenvalues
and eigenvectors of real symmetric matrices. It follows that all eigenvalues
of A (usually also called the eigenvalues of the graph G itself) are real, and

we denote them by Ay > Ao > ... > A,. Also, there is an orthonormal
basis B = {x1,...,z,} of the euclidean space R" composed of eigenvectors
of A: Ar; = Niwy, ztz; = 1,4 =1,...,n. The matrix A can be decomposed

then as: A = Y I ; Aiz;izt — the so called spectral decomposition of A.
(Notice that the product zzt, z € R", is an n-by-n matrix of rank 1; if
z,y,2 € R" then y'(zz!)z = (y'z)(z'z)). Every vector y € R™ can be
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easily represented in basis B: y = Y i (y*x;)z;. Therefore, for y,z € R",
y'z = YLy (v'e) (') and ly|* = o'y = T, (v'e)”.

All the above applies in fact to all real symmetric matrices. Since the
adjacency matrix A of a graph G is a matrix with non-negative entries, one
can derive some important extra features of A, most notably the Perron-
Frobenius Theorem, that reads in the graph context as follows: if G is
connected then the multiplicity of A; is one, all coordinates of the first
eigenvector z; can be assumed to be strictly positive, and |\;| < A; for all
i > 2. Thus, graph spectrum lies entirely in the interval [—A1, \1].

For the most important special case of regular graphs Perron-Frobenius
implies the following corollary:

Proposition 2.10. Let G be a d-regular graph on n vertices. Let \; >
Ao > ... > A\, be the eigenvalues of G. Then A} = d and —d < \; < d for
all 1 <1 < n. Moreover, if G is connected then the first eigenvector x is
proportional to the all one vector (1....,1)" € R", and \; < d for all i > 2.

To derive the above claim from the Perron-Frobenius Theorem observe
that e = (1,...,1) is immediately seen to be an eigenvector of A(G) corre-
sponding to the eigenvalue d: Ae = de. The positivity of the coordinates of
e implies then that e is not orthogonal to the first eigenvector, and hence
is in fact proportional to x; of A(G). Proposition 2.10 can be also proved
directly without relying on the Perron-Frobenius Theorem.

We remark that )\, = —d is possible, in fact it holds if and only if the
graph G is bipartite.

All this background information, presented above in a somewhat con-
densed form, can be found in many textbooks in Linear Algebra. Readers
more inclined to consult combinatorial books can find it for example in a
recent monograph of Godsil and Royle on Algebraic Graph Theory [46].

We now prove a well known theorem (see its variant, e.g., in Chapter 9,
[18]) bridging between graph spectra and edge distribution.

Theorem 2.11. Let G be a d-regular graph on n vertices. Let d = A\ >
Ao > ... \n be the eigenvalues of G. Denote

A= max |\l
2<i<n

Then for every two subsets U,W C V,

— diu||W| < /\\/|U| |W| (1 — M) (1 — |_‘_/V_I>
n n n

(4) e(U, W)
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Proof. Let B = {z1,...,z,} be an orthonormal basis of R" composed from
eigenvectors of A: Ax; = \jx;, 1 < i < n. We represent A = ELI /\ixixﬁ.
Denote

¢
A = Mz,

n
£ = Z )\ixixﬁ,
1=2

then A= A; + €.

Let u = |U|, w = |W]| be the cardinalities of U, W, respectively. We
denote the characteristic vector of U by xy € R", i.e. xy(i) = 1ifi € U,
and xy(i) = 0 otherwise. Similarly, let xy € R™ be the characteristic
vector of W. We represent xy, xw according to B:

n n
XU = Zaﬂ?u @ = Xy, Zai? = |lxvl® =
i=1 i=1

n n
Xw = Zﬂixiy Bi = Xy i, 2512 = ||XW||2 =

1=1 1=1

It follows easily from the definitions of A, xy and yxw that the product
Xt Axw counts exactly the number of edges of G' with one endpoint in U
and the other one in W, i.e.

e(U, W) = xbAxw = xb Ao + x5 Exw.

Now we estimate the last two summands separately, the first of them will
be the main term for e(U, W), the second one will be the error term.
Substituting the expressions for yy, xw and recalling the orthonormality
of B, we get:

(5) XiAixw = (Zaz%) (Aizih) (Z[WJ

=3 Y whfi(atar)(zle;) = aBiAs.

i=1 j=1
Similarly,

6) xvéxw = (Zn:am) <Z)\ ;T )(Zﬂkﬂfk) = ;aiﬁi)\i

1=1
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Recall now that G is d-regular. Then according to Proposition 2.10,
A =dand z; = —j—ﬁ(l,...,l)t. We thus get: a; = xbz1 = u/y/n and
B1 = xbyz1 = w/y/n. Hence it follows from (5) that x}, Ajxw = duw/n.

Now we estimate the absolute value of the error term x},Exw. Recalling
(6), the definition of A and the obtained values of aj, 1, we derive, applying
Cauchy-Schwartz:

Za,ﬂz
=2/ (Il - ) (Iowl? - 82) = "\/(“ - u?;) (w - %2>

The theorem follows. m

IXpExw| =

The above proof can be extended to the irregular (general) case. Since
the obtained quantitative bounds on edge distribution turn out to be some-
what cumbersome, we will just indicate how they can be obtained. Let
G = (V,E) be a graph on n vertices with average degree d. Assume that
the eigenvalues of G satisfy A < d, with A as defined in the theorem. Denote

K=Y (dv)-
veV

The parameter K is a measure of irregularity of G. Clearly K = 0 if and

only if G is d-regular. Let e = #(1, ..., 1)!. We represent e in the basis

B = {z1,...,z,} of the eigenvectors of A(G):

n n
2
€= Z’Y:’-’Bi, v = eta, Z’Y? = [lef|* = 1.

Denote z = ﬁ(d(vl) —d,...,d(vy) — d)t, then ||z||> = K/n. Notice
that Ae = %(d( v1),- d(vn))t = de + 2, and therefore z = Ae — de =
o 17i(A — d)z;. This implies:

I( n n
— =l =D R i-d)* 2 Y A - )’
i=1 1=2
n
> (d= N2> A
1=2
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Hence Z?zg ’712 < ———H(df_(/\) . It follows that 71'2 =1- ?22 %,2 >1- n(dif/\)
and
K
>A2>1 - ——
MENE T @

Now we estimate the distance between the vectors e and z; and show that
they are close given that the parameter K is small.

le—z1|]* = (e— 1) (e —z1) = ele+ 2t — 2ela, =141 -2y, =22y,

2K
< —
n(d — )

We now return to expressions (5) and (6) from the proof of Theorem
2.11. In order to estimate the main term x{, A1 xw, we bound the coefficients
a1, B1 and \; as follows:

u
a1 = xpT1 = xpe+ xp(z1 —e) = 7n + Xt (z1 — €),

and therefore

[

Ku

n

d—X\"

u
a; — —=

NG

In a similar way one gets:

(7)

= |xb (@1 —e)| < llxull - llz1 — el <

2Kw
< n

(®) D

w
br- =
n

7

Finally, to estimate from above the absolute value of the difference between
A1 and d we argue as follows:

K n
= =l2l* =Y\ —d)® > (0 - d)?,
i=1

n

and therefore

2
) |A1—d|si\/zs—”—(d—jl— K
myn nd-AN"-KVn
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Summarizing, we see from (7), (8) and (9) that the main term in the product
XUAl xw is equal to d“w , just as in the regular case, and the error term is
governed by the parameter K.

In order to estimate the error term x},Exw we use (6) to get:

IXtExw| =

S a2 8 = Mol lowll = M. m
=1

Applying the above developed techniques we can prove now the second
implication of Theorem 2.8. Let us prove first that EIG implies K = o(nd?),
where d = (1 + o(1)) np is as before the average degree of G. Indeed, for
every vector v € R" we have ||Av|| < A1||v||, and therefore

A2n = A2efe > (Ae)'(Ae) Z d*(v
veV

Hence from EIG we get: Y ¢, d*(v) < (1+0(1))nd®. As Y, d(v) = nd,
it follows that:

K=Y (dv)-d)*=Y d*v)-2d d(v)+nd’

veV veV veV
= (1+0(1))nd®* - 2nd? + nd? = o(nd?),

as promised. Substituting this into estimates (7), (8), (9) and using A = o(d)
of EIG we get:

and therefore e
Xy Aixw = — + o(dn).
Also, according to EIG, A = o(d), wlnch implies:
Xu€xw = o(dv/uw) = o(dn),

and the claim follows. m
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Theorem 2.11 is a truly remarkable result. Not only it connects between
two seemingly unrelated graph characteristics — edge distribution and spec-
trum, it also provides a very good quantitative handle for the uniformity of
edge distribution, based on easily computable, both theoretically and prac-
tically, graph parameters — graph eigenvalues. According to the bound (4),
a polynomial number of parameters can control quite well the number of
edges in exponentially many subsets of vertices.

The parameter A in the formulation of Theorem 2.11 is usually called
the second eigenvalue of the d-regular graph G (the first and the trivial one
being A\; = d). There is certain inaccuracy though in this term, as in fact
A = max {Ag, — A, }. Later we will call, following Alon, a d-regular graph G
on n vertices in which all eigenvalues, but the first one, are at most A in
their absolute values, an (n,d, \)-graph.

Comparing (4) with the definition of jumbled graphs by Thomason we
see that an (n,d, A)-graph G is (d/n,A)-jumbled. Hence the parameter A
(or in other words, the so called spectral gap — the difference between d and
A) is responsible for pseudo-random properties of such a graph. The smaller
the value of A compared to d, the more close is the edge distribution of G to
the ideal uniform distribution. A natural question is then: how small can
be A7 It is easy to see that as long as d < (1 —¢e)n, A = Q(\/E) Indeed,
the trace of A? satisfies:

nd=2|E(G)| =Tr(A*) =Y N <d*+(n—1)A < (1—e)nd+ (n—1)\%,
1=1

and A = Q(\/E) as claimed. More accurate bounds are known for smaller
values of d (see, e.g. [69]). Based on these estimates we can say that an
(n,d, A)-graph G, for which \ = @(\/a), is a very good pseudo-random
graph. We will see several examples of such graphs in the next section.

2.5. Strongly regular graphs

A strongly regular graph srg(n,d,n, p) is a d-regular graph on n vertices in
which every pair of adjacent vertices has exactly 7 common neighbors and
every pair of non-adjacent vertices has exactly p common neighbors. (We
changed the very standard notation in the above definition so as to avoid
interference with other notational conventions throughout this paper and
to make it more coherent, usually the parameters are denoted (v, k, A, ).
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Two simple examples of strongly regular graph are the pentagon Cs that
has parameters (5,2,0,1), and the Petersen graph whose parameters are
(10,3,0,1). Strongly regular graphs were introduced by Bose in 1963 [21]
who also pointed out their tight connections with finite geometries. As
follows from the definition, strongly regular graphs are highly regular struc-
tures, and one can safely predict that algebraic methods are extremely use-
ful in their study. We do not intend to provide any systematic coverage
of this fascinating concept here, addressing the reader to the vast litera-
ture on the subject instead (see, e.g., [24]). Our aim here is to calculate
the eigenvalues of strongly regular graphs and then to connect them with
pseudo-randomness, relying on results from the previous subsection.

Proposition 2.12. Let G be a connected strongly regular graph with para-
meters (n,d,n, u). Then the eigenvalues of G are: A} = d with multiplicity

s1 =1,
/\2:%<n~u+ \/(n—u)2+4(d—u)>

A-=%(n m= \/ n—pu)’+4(d- u))

with multiplicities

and

(n—=1)(p—mn) —2d
V=) +4(d - p)

1
32=—2- n—1+

and
(n—1)(u— )-2d

(b —n)? u)7
\[

Proof. Let A be the adjacency matrix of A. By the definition of A and the
fact that A is symmetric with zeroes on the main diagonal, the (i, j)-entry
of the square A counts the number of common neighbors of »; and vj in G
if i # j, and is equal to the degree d(v;) in case i = j. The statement that
G is srg(n,d,n, ) is equivalent then to:

1
S3 = =< n—1-—

respectively.

(10) AJ=dJ, A =(d—p)I+puJ+(n—pA,

where J is the n-by-n all-one matrix and I is the n-by-n identity matrix.
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Since G is d-regular and connected, we obtain from the Perron-Frobenius
Theorem that A\; = d is an eigenvalue of G with multiplicity 1 and with
e = (1,...,1)t as the corresponding eigenvector. Let A # d be another
eigenvalue of G, and let x € R™ be a corresponding eigenvector. Then z is
orthogonal to e, and therefore Jr = 0. Applying both sides of the second
identity in (10) to = we get the equation: A2z = (d— p)z + (n— p) Az, which
results in the following quadratic equation for A:

N+ (p=mA+(p—d)=0.

This equation has two solutions Ao and A3 as defined in the proposition
formulation. If we denote by sy and s3 the respective multiplicities of Ao
and A3 as eigenvalues of A, we get:

1+ s9+ 83 =n, Tr(A) = d+ spha + s3A3 = 0.

Solving the above system of linear equations for so and s3 we obtain the
assertion of the proposition. m

Using the bound (4) we can derive from the above proposition that if
the parameters of a strongly regular graph G satisfy n =~ u then G has a
large eigenvalue gap and is therefore a good pseudo-random graph. We will
exhibit several examples of such graphs in the next section.

3. EXAMPLES

Here we present some examples of pseudo-random graphs. Many of them
are well known and already appeared, e.g., in [79] and [80], but there also
some which have been discovered only recently. Since in the rest of the
paper we will mostly discuss properties of (n,d, A)-graphs, in our examples
we emphasize the spectral properties of the constructed graphs. We will
also use most of these constructions later to illustrate particular points and
to test the strength of the theorems.

Random graphs.

1. Let G = G(n,p) be a random graph with edge probability p. If p
satisfies pn/logn — oo and (1 —p)nlogn — oo, then almost surely all
the degrees of G are equal to (1 + o(1))np. Moreover it was proved
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by Firedi and Komlds [44] that the largest eigenvalue of G is as.

(1+0(1)) np and that A(G) < (2+0(1)) \/p(1 — p)n. They stated this
result only for constant p but their proof shows that AMG) < O(\/—— )
also when p > polylogn/n.

. For a positive integer-valued function d = d(n) we define the model

Gp.q of random regular graphs consisting of all regular graphs on n
vertices of degree d with the uniform probability distribution. This
definition of a random regular graph is conceptually simple, but it is
not easy to use. Fortunately, for small d there is an efficient way to
generate G, g4 which is useful for theoretical studies. This is the so
called configuration model. For more details about this model, and
random regular graphs in general we refer the interested reader to two
excellent monographs [20] and [49], or to a survey [83]. As it turns
out, sparse random regular graphs have quite different properties from
those of the binomial random graph G(n,p),p = d/n. For example,
they are almost surely connected. The spectrum of G, ; for a fixed d
was studied in [38] by Friedman, Kahn and Szemerédi. Friedman [39]
proved that for constant d the second largest eigenvalue of a random
d-regular graph is A = (1+0( 1)) 2v/d — 1. The approach of Kahn and
Szemerédi gives only O(\/(i ) bound on A but continues to work also

when d is small power of n. The case d 3> n!/? was recently studied
by Krivelevich, Sudakov, Vu and Wormald [61]. They proved that in
this case for any two vertices u,v € G, 4 almost surely

| codeg(u,v) — d*/n| < Cd*/n® + 6d\/logn//n,

where C is some constant and codeg(u,v) is the number of common
neighbors of u, v. Moreover if d > n/logn, then C can be defined to be
zero. Using this it is easy to show that for d > n!/2, the second largest
eigenvalue of a random d-regular graph is o(d). The true bound for the
second largest eigenvalue of G, 4 should be probably (1+0(1))2vd — 1
for all values of d, but we are still far from proving it.

Strongly regular graphs.

3.

Let ¢ = p® be a prime power which is congruent to 1 modulo 4 so
that —1 is a square in the finite field GF(q). Let P, be the graph
whose vertices are all elements of GF(q) and two vertices are adjacent
if and only if their difference is a quadratic residue in GF(q). This
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graph is usually called the Paley graph. It is easy to see that P, is
(g — 1)/2-regular. In addition one can easily compute the number of
common neighbors of two vertices in P,. Let x be the quadratic residue
character on GF(q), i.e., x(0) =0, x(z) =1 if z # 0 and is a square
in GF(q) and x(z) = —1 otherwise. By definition, _, x(z) = 0 and
the number of common neighbors of two vertices a and b equals

Z <1+x(2a—:c)> (1+x(2b—a:)>

r#a,b

x#ab

Using that for z # b, x(b—z) = x((b— x)_l), the last term can be
rewritten as

> xla-ax(b-2)7") =3 X(Z:Q =2 X(”Z:D

r#a,b r#a,b x#a,b

x#0,1

Thus the number of common neighbors of @ and b is (¢ —3)/4 - x(a —
b)/2. This equals (¢ — 5)/4 if a and b are adjacent and (¢ — 1)/4
otherwise. This implies that the Paley graph is a strongly regular
graph with parameters (q,(q—1)/2, (¢—5)/4, (—1)/4) and therefore
its second largest eigenvalue equals (\/6 + 1) /2.

4. For any odd integer k let Hj denote the graph whose nj = 2¥~1 — 1
vertices are all binary vectors of length k with an odd number of ones
except the all one vector, in which two-distinct vertices are adjacent
iff the inner product of the corresponding vectors is 1 modulo 2.
Using elementary linear algebra it is easy to check that this graph
is (282 — 2)-regular. Also every two nonadjacent vertices vertices in
it have 2¥=% — 1 common neighbors and every two adjacent vertices
vertices have 2¥73 — 3 common neighbors. Thus Hj, is a strongly
regular graph with parameters (2""1 —1,2k-2_2 9k-3 _3 ok-3 _ 1)

and with the second largest eigenvalue A(Hy) =1+ 25",

5. Let q be a prime power an let V(G) be the elements of the two
dimensional vector space over GF(q), so G has ¢* vertices. Partition
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the ¢ + 1 lines through the origin of the space into two sets P and N,
where |P| = k. Two vertices x and y of the graph G are adjacent if
x — y is parallel to a line in P. This example is due to Delsarte and
Goethals and to Turyn (see [72]). It is easy to check that G is strongly
regular with parameters (k(g — 1), (k = 1)(k —2) + ¢ — 2,k(k — 1)).
Therefore its eigenvalues, besides the trivial one are —k and q — k.
Thus if k is sufficiently large we obtain that G is d = k(q — 1)-regular
graph whose second largest eigenvalue is much smaller than d.

Graphs arising from finite geometries.

6.

For any integer ¢ > 2 and for any power ¢ = p® of prime p let PG(q,t)
denote the projective geometry of dimension ¢ over the finite field
GF(q). The interesting case for our purposes here is that of large g
and fixed t. The vertices of PG(q,t) correspond to the equivalence
classes of the set of all non-zero vectors x = (o, ..., z¢) of length t+1
over GF(q), where two vectors are equivalent if one is a multiple of
the other by an element of the field. Let G denote the graph whose
vertices are the points of PG(q,t) and two (not necessarily distinct)
vertices x and y are adjacent if and only if zoyo + ... + 2y = 0.
This construction is well known. In particular, in case t = 2 this
graph is often called the Erdés-Rényi graph and it contains no cycles
of length 4. It is easy to see that the number of vertices of G is
ngt = (¢t —=1)/(g—1) = (14 0(1))¢" and that it is dy-regular
for dy, = (¢* —1)/(q —1) = (14 0(1)) ¢"~, where o(1) tends to zero
as ¢ tends to infinity. It is easy to see that the number of vertices of
G with loops is bounded by 2(¢* —1)/(q — 1) = (24 o(1)) ¢*~?, since
for every possible value of zg,...,z;—1 we have at most two possible
choices of z;. Actually using more complicated computation, which
we omit, one can determine the exact number of vertices with loops.
The eigenvalues of G are easy to compute (see [11]). Indeed, let A
be the adjacency matrix of G. Then, by the properties of PG(q,t),
A2 = AAT = uJ + (dgy — p)I, where p = (¢ 1 =1)/(q—1), J is
the all one matrix and I is the identity matrix, both of size ng s X ng.
Therefore the largest eigenvalue of A is d,; and the absolute value of
all other eigenvalues is \/dg ¢ — p = qt=172,

The generalized polygons are incidence structures consisting of points
P and lines £. For our purposes we restrict our attention to those in
which every point is incident to g + 1 lines and every line is incident



Pseudo-random Graphs 223

to ¢+ 1 points. A generalized m-gon defines a bipartite graph G with
bipartition (P, £) that satisfies the following conditions. The diameter
of G is m and for every vertex v € G there is a vertex u € G such
that the shortest path from u to v has length m. Also for every r < m
and for every two vertices u, v at distance r there exists a unique path
of length r connecting them. This immediately implies that every
cycle in G has length at least 2m. For ¢ > 2, it was proved by Feit
and Higman [36] that (q + 1)-regular generalized m-gons exist only
for m = 3,4,6. A polarity of G is a bijection 7 : PUL — PUL
such that m(P) = £, m(£) = P and 72 is the identity map. Also for
every p € P,l € L, 7(p) is adjacent to m(l) if and only if p and [
are adjacent. Given m we define a polarity graph G™ to be the graph
whose vertices are point in P and two (not necessarily distinct) points
p1, p2 are adjacent iff p; was adjacent to 7r(p2) in G. Some properties
of G™ can be easily deduced from the corresponding properties of G.
In particular, G™ is (q+ 1)-regular and also contains no even cycles of
length less than 2m.

For every q which is an odd power of 2, the incidence graph of the
generalized 4-gon has a polarity. The corresponding polarity graph
is a (q + 1)-regular graph with ¢3 + ¢°> + ¢ + 1 vertices. See [23],
[62] for more details. This graph contains no cycle of length 6 and
it is not difficult to compute its eigenvalues (they can be derived, for
example, from the eigenvalues of the corresponding bipartite incidence
graph, given in [78]). Indeed, all the eigenvalues, besides the trivial
one (which is ¢ + 1) are either 0 or /2q or —\/2q. Similarly, for every
q which is an odd power of 3, the incidence graph of the generalized
6-gon has a polarity. The corresponding polarity graplh is a (¢ + 1)-
regular graph with ¢° +¢% + - + ¢ + 1 vertices (see again [23], [62]).
This graph contains no cycle of length 10 and its eigenvalues can be
derived using the same technique as in case of the 4-gon. All these
eigenvalues, besides the trivial one are either /3¢ or —/3q or /g or

-Va
Cayley graphs.

8. Let G be a finite group and let S be a set of non-identity elements of
G such that S = S, i.e., for every s € S, s~} also belongs to S. The
Cayley graph T'(G, S) of this group with respect to the generating set
S is the graph whose set of vertices is G and where two vertices g and
g’ are adjacent if and only if g’g~! € S. Clearly, ['(G, S) is |S|-regular
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and it is connected iff S is a set of generators of the group. If G is
abelian then the eigenvalues of the Cayley graph can be computed in
terms of the characters of G. Indeed, let x : G — C be a character
of G and let A be the adjacency matrix of I'(G, S) whose rows and
columns are indexed by the elements of G. Consider the vector v
defined by v(g9) = x(g). Then it is easy to check that Av = av
with a = ) ¢ x(s). In addition all eigenvalues can be obtained in
this way, since every abelian group has exactly |G| different characters
which are orthogonal to each other. Using this fact, one can often give
estimates on the eigenvalues of I'(G, S) for abelian groups.

One example of a Cayley graph that has already been described earlier
is P,. In that case the group is the additive group of the finite field
GF(q) and S is the set of all quadratic residues modulo q. Next we
present a slightly more general construction. Let ¢ = 2kr + 1 be a
prime power and let I" be a Cayley graph whose group is the additive
group of GF(q) and whose generating set is S = {1 = y* | for some
y € GF(q)}. By definition, I is (¢ — 1)/k-regular. On the other
hand, this graph is not strongly regular unless & = 2, when it is the
Paley graph. Let x be a nontrivial additive character of GF(q) and
consider the Gauss sum 3, ccp(y) x(y*). Using the classical bound
| > yeGF () X(y"‘)| < (k—1)q"/? (see e.g. [63]) and the above connection
between characters and eigenvalues we can conclude that the second
largest eigenvalue of our graph I' is bounded by O(q'/?).

Next we present a surprising construction obtained by Alon [3] of a
very dense pseudo-random graph that on the other hand is triangle-
free. For a positive integer k, consider the finite field GF(2*), whose
elements are represented by binary vectors of length k. If a,b,c are
three such vectors, denote by (a,b,c) the binary vector of length 3k
whose coordinates are those of a, followed by coordinates of b and
then c. Suppose that k is not divisible by 3. Let Wy be the set
of all nonzero elements o € GF(2¥) so that the leftmost bit in the
binary representation of a7 is 0, and let W; be the set of all nonzero
clements a € GF(2%) for which the leftmost bit of a” is 1. Since 3
does not divide k, 7 does not divide 2¥ — 1 and hence |[Wy| = 28-1 —1
and |[W,| = 2k=1 " as when o ranges over all nonzero elements of
the field so does a’. Let G, be the graph whose vertices are all
n = 23 binary vectors of length 3k, where two vectors v and v’ are
adjacent if and only if there exist wg € Wy and w; € Wi so that
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10.

11.

v —v' = (wp, w3, wd) + (w1, w}, w?), where here powers are computed
in the field GF(2*) and the addition is addition modulo 2. Note that
Gy, is the Cayley graph of the additive group ng with respect to the
generating set S = Up+Uj, where Uy = { (wo, w3, wd) | wo € WO} and
Uy is defined similarly. A well known fact from Coding Theory (see
e.g., [66]), which can be proved using the Vandermonde determinant, is
that every set of six distinct vectors in Uy UUj is linearly independent
over GF(2). In particular all the vectors in Uy + U are distinct,
S = |Uo||U1] and hence G, is |S| = 2¥~1(2¥=1 — 1)-regular. The
statement that G, is triangle free is clearly equivalent to the fact that
the sum modulo 2 of any set of 3 nonzero clements of S is not a zero-
vector. Let ug+u1, up+u) and uj+uf be three distinct element of S,
where g, ug, ug € Up and uy, u},u] € Uy. By the above discussion, if
the sum of these six vectors is zero, then every vector must appear an
even number of times in the sequence (uo, ug, ug, u1,u}, u}). However,
since Up and U are disjoint, this is clearly impossible. Finally, as we
already mentioned, the eigenvalues of G,, can be computed in terms of
characters of ng. Using this fact together with the Carlitz-Uchiyama
bound on the characters of Z3* it was proved in [3] that the second
eigenvalue of G, is bounded by A <9 ok 4 3.9k/2 4 1/4.

The construction above can be extended in the obvious way as men-
tioned in [10]. Let h > 1 and suppose that k is an integer such that
2% — 1 is not divisible by 4h + 3. Let Wy be the set of all nonzero ele-
ments o € GF(2¥) so that the leftmost bit in the binary representation
of a*+3 i 0, and let W be the set of all nonzero elements o € GF (2")
for which the leftmost bit of o**3 is 1. Since 4h + 3 does not divide
2F —1 we have that |Wy| = 2¥~1—1 and [W;| = 2*~1, as when o ranges
over all nonzero elements of the field so does a*"*3. Define G to be the
Cayley graph of the additive group Zgzhﬂ)k with respect to the gener-
ating set S = Uy + Uy, where Uy = {(wo.wg, . ,wé"“) | wo € WO}
and U] is defined similarly. Clearly, G is a 2¥71(25=! — 1)-regular
graph on 2"+Dk vertices. Using methods from [3], one can show
that G contains no odd cycle of length < 2k + 1 and that the second
eigenvalue of G is bounded by O(2F).

Now we describe the celebrated expander graphs constructed by
Lubotzky, Phillips and Sarnak [65] and independently by Margulis
[68]. Let p and q be unequal primes, both congruent to 1 modulo
4 and such that p is a quadratic residue modulo q. As usual de-
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12.

note by PSL(2,q) the factor group of the group of two by two ma-
trices over GF(q) with determinant 1 modulo its normal subgroup
_ . 1 -
consisting of the two scalar matrices <0 (1)> and ( 01 01>. The
graphs we describe are Cayley graphs of PSL(2,q). A well known
theorem of Jacobi asserts that the number of ways to represent a
positive integer n as a sum of 4 squares is 824{(1 din d. This eas-
ily implies that there are precisely p + 1 vectors a = (ao, a1, az,a3),
where ag is an odd positive integer, a;,a9,a3 are even integers and
a2 +a?+ a2 + a3 = p. From each such vector construct the matrix M,

_1_((10+ia1 a2+7:a3

in PSL(2,q) where M, = 7\ —ay +ias ay— ia1> and ¢ is an inte-

ger satisfying i2 = —1(mod ¢). Note that, indeed, the determinant of
M, is 1 and that the square root of p modulo ¢ does exist. Let G4
denote the Cayley graph of PSL(2,q) with respect to these p+ 1 ma-
trices. In [65] it was proved that if ¢ > 2,/p then GP7 is a connected
(p 4 1)-regular graph on n = q(g* — 1)/2 vertices. Its girth is at least
Z2log,q and all the eigenvalues of its adjacency matrix, besides the
trivial one A\; = p+ 1, are at most 2,/p in absolute value. The bound
on the eigenvalues was obtained by applying deep results of Eichler
and Igusa concerning the Ramanujan conjecture. The graphs GP4
have very good expansion properties and have numerous applications
in Combinatorics and Theoretical Computer Science.

The projective norm graphs NGp; have been constructed in (17],
modifying an earlier construction given in [52]. These graphs are not
Cayley graphs, but as one will immediately see, their construction
has a similar flavor. The construction is the following. Let ¢t > 2
be an integer, let p be a prime, let GF(p)* be the multiplicative
group of the field with p elements and let GF (p'~1) be the field
with p'~! elements. The set of vertices of the graph NG is the set
V =GF(p~1) x GF(p)*. Two distinct vertices (X,a) and (Y,b) € V
are adjacent if and only if N(X 4+ Y) = ab, where the norm N is
understood over GF(p), that is, N(X) = X1+p++p""%  Note that
|V| = pt —pt~!. If (X,a) and (Y,D) are adjacent, then (X,a) and
Y # —X determine b. Thus NGp; is a regular graph of degree
pt~1 — 1. In addition, it was proved in [17], that NG, contains
no complete bipartite graphs K; ;_qy41. These graphs can be also
defined in the same manner starting with a prime power instead of
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the prime p. It is also not difficult to compute the eigenvalues of
this graph. Indeed, put ¢ = p'~! and let A be the adjacency matrix
of NGp;. The rows and columns of this matrix are indexed by the
ordered pairs of the set GF(q) x GF(p)*. Let ¢ be a character of the
additive group of GF(q), and let x be a character of the multiplicative
group of GF(p). Consider the vector v : GF(q) x GF(p)* — C
defined by v(X,a) = ¥(X)x(a). Now one can check (see [14], [76] for
more details) that the vector v is an eigenvector of A? with eigenvalue

|ZZ€GF(q),Z960 Y(Z)x(N(2)) lz and that all eigenvalues of A? have

this form. Set x'(Z) = x(N(Z)) for all nonzero Z in GF(q). Note
that as the norm is multiplicative, x’ is a multiplicative character of
the large field. Hence the above expression is a square of the absolute
value of the Gauss sum and it is well known (see e.g. [31], [20]) that
the value of each such square, besides the trivial one (that is, when
either v or x’ are trivial), is ¢. This implies that the second largest
eigenvalue of NG, is /g = pt"1)/2.

4. PROPERTIES OF PSEUDO-RANDOM GRAPHS

We now examine closely properties of pseudo-random graphs, with a special
emphasis on (n,d, A)-graphs. The majority of them are obtained using the
estimate (4) of Theorem 2.11, showing again the extreme importance and
applicability of the latter result. It is instructive to compare the properties of
pseudo-random graphs, considered below, with the analogous properties of
random graphs, usually shown to hold by completely different methods. The
set of properties we chose to treat here is not meant to be comprehensive or
systematic, but quite a few rather diverse graph parameters will be covered.

4.1. Connectivity and perfect matchings

The wvertez-connectivity of a graph G is the minimum number of vertices
that we need to delete to make G disconnected. We denote this parameter
by #(G). For random graphs it is well known (see, e.g., [20]) that the vertex-
connectivity is almost surely the same as the minimum degree. Recently
it was also proved (see [61] and [30]) that random d-regular graphs are d-
vertex-connected. For (n,d, A)-graphs it is easy to show the following.
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Theorem 4.1. Let G be an (n,d, \)-graph with d < n/2. Then the vertex-
connectivity of G satisfies:

K(G) > d — 36)?%/d.

Proof. We can assume that A < d/6, since otherwise there is nothing to
prove. Suppose that there is a subset S C V of size less than d — 36A2/d
such that the induced graph G[V — S] is disconnected. Denote by U the
set of vertices of the smallest connected component of G[V — S] and set
W =V —(SUU). Then |W| > (n—d)/2 > n/4 and there is no edge between
U and W. Also |U| + |S| > d, since all the neighbors of a vertex from U
are contained in S UU. Therefore |U| > 36A%/d. Since there are no edges
between U and W, by Theorem 2.11, we have that d|U||W|/n < A\/|U||W].

This implies that

A2n? _An
2\W|  d |W|

IN

A 1
d — 6 d d’

Ul <
Next note that, by Theorem 2.11, the number of edges spanned by U is at
most
dUI> NU| _ andlU|  NU|  MNUl AU
+ = +

+ o< =

om 2 d on 2~ 9 5 = MUI

e(U) <

As the degree of every vertex in U is d, it follows that
e(U,S) > d|U| — 2e(U) > (d —2\)|U| > 2d|U|/3.

On the other hand using again Theorem 2.11 together with the facts that
|U| > 36)2/d, |S| < d and d < n/2 we conclude that

d|U||S| a7 < 1, AU
e(U,S) < +M/0]1S] < d|U|+>\\/| R

_ du] AWdu|  d|U| . diU| _ 2d|U|
-2 6)/Vd 2 6 3

This contradiction completes the proof. m

The constants in this theorem can be easily improved and we make no
attempt to optimize them. Note that, in particular, for an (n,d, A)-graph
G with A = O(\/E) we have that (G) = d — ©(1).
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Next we present an example which shows that the assertion of Theorem
4.1 is tight up to a constant factor. Let G be any (n,d, A)-graph with
A= @(\/3 ) We already constructed several such graphs in the previous
section. For an integer k, consider a new graph Gy, which is obtained
by replacing each vertex of G' by the complete graph of order k and by
connecting two vertices of G by an edge if and only if the corresponding
vertices of G are connected by an edge. Then it follows immediately from
the definition that Gy has n’ = nk vertices and is d’-regular graph with
d' = dk+k—1. Let X' be the second eigenvalue of Gy. To estimate X’ note
that the adjacency matrix of G}, equals to Ag ® Jy + I @ Ak,. Here Ag
is the adjacency matrix of G, Jj is the all one matrix of size k x k, I, is
the identity matrix of size n x n and Ag, is the adjacency matrix of the
complete graph of order k. Also the tensor product of the m x n dimensional
matrix A = (a;;) and the s x t-dimensional matrix B = (by,) is the ms x nt-
dimensional matrix A® B, whose entry labelled ((¢,k)(5,1)) is ai;jbx. In case
A and B are symmetric matrices with spectrums {A1,..., A\n}, {1, ., e}
respectively, it is a simple consequence of the definition that the spectrum
of AQ Bis {Ajp : 1 =1,...,n,k =1,...,t} (see, e.g. [64]). Therefore
the second eigenvalue of Ag ® J. is kX. On the other hand I,, ® Ak, is the
adjacency matrix of the disjoint union of k-cliques and therefore the absolute
value of all its eigenvalues is at most k—1. Using these two facts we conclude
that A < Ak+k—1 and that Gy is (n’ = nk,d' = dk+k—1,\ = Mk+k—1)-
graph. Also it is easy to see that the set of vertices of G}, that corresponds
to a vertex in G has exactly dk neighbors outside this set. By deleting these
neighbors we can disconnect the graph G and thus

K(Gr) <dk =d — (k—1)=d - Q((X)*/d).

Sometimes we can improve the result of Theorem 4.1 using the informa-
tion about co-degrees of vertices in our graph. Such result was used in [61]
to determine the vertex-connectivity of dense random d-regular graphs.

Proposition 4.2 [61]. Let G = (V, E) be a d-regular graph on n vertices
such that /nlogn < d < 3n/4 and the number of common neighbors for
every two distinct vertices in G is (1 + o(1))d?*/n. Then the graph G is
d-vertex-connected.

Similarly to vertex-connectivity, define the edge-connectivity of a graph
G to be the minimum number of edges that we need to delete to make
G disconnected. We denote this parameter by '(G). Clearly the edge-
connectivity is always at most the minimum degree of a graph. We also say
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that G has a perfect matching if there is a set of disjoint edges that covers
all the vertices of G. Next we show that (n,d, \)-graphs even with a very
weak spectral gap are d-edge-connected and have a perfect matching (if the
number of vertices is even).

Theorem 4.3. Let G be an (n,d, \)-graph with d — A > 2. Then G is
d-edge-connected. When n is even, it has a perfect matching.

Proof. Let U be a subset of vertices of G of size at most n/2. To prove
that G is d-edge-connected we need to show that there are always at least d
edges between U and V(G) — U. If 1 < |U| < d, then every vertex in U has
at least d — (|U| — 1) neighbors outside U and therefore e(U, V(G) = U) >
|U|(d = |U|+1) > d. On the other hand if d < [U] < n/2, then using that
d — X > 2 together with Theorem 2.11 we obtain that

e(U,V(G) - U)
2 00 fotgn- i (1- ) (- 212)
S P N R

and therefore £'(G) = d.

To show that G contains a perfect matching we apply the celebrated
Tutte’s condition. Since n is even, we need to prove that for every nonempty
set of vertices S, the induced graph G[V — S] has at most |S| connected
components of odd size. Since G is d-edge-connected we have that there
are at least d edges from every connected component of G[V — S} to S.
On the other hand there are at most d|S| edges incident with vertices in
S. Therefore G[V — S] has at most |S| connected components and hence G
contains a perfect matching. ®

4.2. Maximum cut

Let G = (V, E) be a graph and let S be a nonempty proper subset of V.
Denote by (S,V — S) the cut of G consisting of all edges with one end in 5
and another one in V — . The size of the cut is the number of edges in it.
The MAX CUT problem is the problem of finding a cut of maximum size in
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G. Let f(G) be the size of the maximum cut in G. MAX CUT is one of the
most natural combinatorial optimization problems. It is well known that
this problem is NP-hard [45]. Therefore it is useful to have bounds on f(G)
based on other parameters of the graph, that can be computed efficiently.

Here we describe two such folklore results. First, consider a random
partition V = V; U V3, obtained by assigning each vertex v € V to Vi or V;
with probability 1/2 independently. It is easy to see that each edge of G has
probability 1/2 to cross between V; and V5. Therefore the expected number
of edges in the cut (V1, V) is m/2, where m is the number of edges in G.
This implies that for every graph f(G) > m/2. The example of a complete
graph shows that this lower bound is asymptotically optimal. The second
result provides an upper bound for f(G), for a regular graph G, in terms of
the smallest eigenvalue of its adjacency matrix.

Proposition 4.4. Let G be a d-regular graph (which may have loops) of
order n with m = dn/2 edges and let A\y > Ay > ... > A, be the eigenvalues
of the adjacency matrix of G. Then

m  Apn
f(G)S-é‘— 1

In particular if G is an (n,d, \)-graph then f(G) < (d + \)n/4.

Proof. Let A = (a;;) be the adjacency matrix of G = (V,E) and let
V ={1,...,n}. Let x = (21,...,2,) be any vector with coordinates £1.
Since the graph G is d-regular we have

Z (.'Ei — xj)2 = di :I,‘lz - Zaijmia:j =dn — XtAX.
i=1

(i,j)€E i,J

By the variational definition of the eigenvalues of A, for any vector z € R",
ztAz > Ap||z||>. Therefore

1) ) (zi—5)? =dn—x"Ax < dn = A|lx|* = dn — Mn.
(i,j)€E

Let V = V1 UV, be an arbitrary partition of V' into two disjoint subsets
and let e(V7, V) be the number of edges in the bipartite subgraph of G with
bipartition (V}, Va). For every vertex v € V(G) define z, = 1 if v € V7 and
x, = —1 if v € V4. Note that for every edge (i,j) of G, (x; — :I:j)2 =4 if
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this edge has its ends in the distinct parts of the above partition and is zero
otherwise. Now using (11), we conclude that

1 1
e(Vl’ViZ):Z Z (xi_xj)QS Z(dn—/\nn)-_—i_.—_. -
(i,5)€FE

This upper bound is often used to show that some particular results
about maximum cuts are tight. For example this approach was used in [5]
and [8]. In these papers the authors proved that for every graph G with m
edges and girth at least 7 > 4, f(G) > m/2+ Q(mﬁ) They also show,
using Proposition 4.4 and Examples 9, 6 from Section 3, that this bound is
tight for r = 4, 5.

4.3. Independent sets and the chromatic number

The independence number a(G) of a graph G is the maximum cardinality
of a set of vertices of G no two of which are adjacent. Using Theorem 2.11
we can immediately establish an upper bound on the size of a maximum
independent set of pseudo-random graphs.

Proposition 4.5. Let G be an (n,d, \)-graph, then

n
d+ M\

a(G) <

Proof. Let U be an independent set in G, then e(U) = 0 and by Theorem
2.11 we have that d|U|*/n < A|U|(1 — |U|/n). This implies that |U] <
An/(d+ ). =

Note that even when A = 0(\/8) this bound only has order of magni-

tude O(n/v/d). This contrasts sharply with the behavior of random graphs
where it is known (see [20] and [49]) that the independence number of ran-
dom graph G(n, p) is only ©(% logd) where d = (1+ o(1)) np. More strik-
ingly there are graphs for which the bound in Proposition 4.5 cannot be
improved. One such graph is the Paley graph P, with g = p* (Example 3
in the previous section). Indeed it is easy to see that in this case all ele-

ments of the subfield GF(p) C GF(p?) are quadratic residues in GF(p?).
This implies that for every quadratic non-residue 3 € GF (p?) all elements
of any multiplicative coset BGF(p) form an independent set of size p. As
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we already mentioned, P, is an (n,d, \)-graph with n = p?,d = (p? — 1)/2
and A = (p 4+ 1)/2. Hence for this graph we get a(P,;) = An/(d + A).

Next we obtain a lower bound on the independence number of pseudo-
random graphs. We present a slightly more general result by Alon et al.
[12] which we will need later.

Proposition 4.6 [12]. Let G be an (n,d, \)-graph such that A < d < 0.9n.
Then the induced subgraph G[U] of G on any subset U, |U| = m, contains
an independent set of size at least

n m(d — A)
a(G[U]) > 26— ln(n(/\+1) +1>.

In particular,

n (d=X)
a(G)22(d—)\) ln(()\-i-l) +1>.

Sketch of proof. First using Theorem 2.11 it is easy to show that if U is a
set of bn vertices of G, then the minimum degree in the induced subgraph
G[U] is at most db+ A(1 —b) = (d — A)b+ A. Construct an independent set
I in the induced subgraph G[U] of G by the following greedy procedure.
Repeatedly choose a vertex of minimum degree in G[U], add it to the
independent set I and delete it and its neighbors from U, stopping when the
remaining set of vertices is empty. Let a;, ¢ > 0 be the sequence of numbers
defined by the following recurrence formula:

apgp =m,
d—\

a a
ai+1=ai—(d—l+/\(1—-—l)+1>=(1-— )ai—(/\+1),‘v’i20.
n n
By the above discussion, it is easy to see that the size of the remaining set
of vertices after i iterations is at least a;. Therefore the size of the resulting
independent set I is at least the smallest index 7 such that a; < 0. By
solving the recurrence equation we obtain that this index satisfies:

, n m(d — A)
ZZQ(d—/\)ln(n(z\—l-l)+l>' [ |

For an (n,d, \)-graph G with A\ < d'~%, § > 0, this proposition implies
that a(G) > Q(% log d). This shows that the independence number of a
pseudo-random graph with a sufficiently small second eigenvalue is up to
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a constant factor at least as large as a(G(n,p)) with p = d/n. On the
other hand the graph Hj (Example 4, Section 3) shows that even when
A< O(\/E) the independence number of (n,d, A)-graph can be smaller
than a(G(n7 p)) with p = d/n. This graph has n = 2¥~1 — 1 vertices,
degree d = (1+ o(1))n/2 and A = @(\/3) Also it is easy to see that
every independent set in Hj, corresponds to a family of orthogonal vectors
in Z& and thus has size at most k = (1 + o(1)) logyn. This is only half of
the size of a maximum independent set in the corresponding random graph
G(n,1/2).

A wvertez-coloring of a graph G is an assignment of a color to each
of its vertices. The coloring is proper if no two adjacent vertices get the
same color. The chromatic number x(G) of G is the minimum number
of colors used in a proper coloring of it. Since every color class in the
proper coloring of G forms an independent set we can immediately obtain
that x(G) > |V(G)| /a(G). This together with Proposition 4.5 implies the
following result of Hoffman [48].

Corollary 4.7. Let G be an (n,d, \)-graph. Then the chromatic number
of G is at least 1 + d/\.

On the other hand, using Proposition 4.6, one can obtain the following
upper bound on the chromatic number of pseudo-random graphs.

Theorem 4.8 [12]. Let G be an (n,d, \)-graph such that A < d < 0.9n.
Then the chromatic number of G satisfies

6(d—\)
X@= In($53+1)

Sketch of proof. Color the graph G as follows As long as the remaining
set of vertices U contains at least n/In ( Tt 1) vertices, by Proposition
4.6 we can find an independent set of vertices in the induced subgraph G[U]
of size at least

n [U(d—\) ) n (d A )
1 1) > In +1].
20— N “<n(x+1) N T ES R G
Color all the members of such a set by a new color, delete them from

the graph and continue. When this plOCGSS terminates, the remaining
set of vertices U is of size at most n/In ( 1t 1) and we used at most

4(d—N)/In ( ot 1) colors so far. As we already mentioned above, for
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every subset U’ C U the induced subgraph G[U’] contains a vertex of degree
at most
U’ d—\ 2(d— A
v = tAs ((I—A ) -
In(§37 +1) In (531 +1)
Thus we can complete the coloring of G by coloring G[U] using at most
2(d—)\)/In ( yen iy 1) additional colors. The total number of colors used is

at most 6(d — \)/In (A+1 + 1) ]

(@d=XN"=+ A< (d- A)|U|+)\

For an (n,d, )\) graph G with A < d'=%,§ > 0 this proposition implies
that x(G) < O( ) This shows that the chromatic number of a pseudo-
random graph w1th a sufficiently small second eigenvalue is up to a constant
factor at least as small as X(G(n, p)) with p = d/n. On the other hand, the
Paley graph P, q = p?, shows that sometimes the chromatic number of a
pseudo-random graph can be much smaller than the above bound, even the
in case A = e(\/?i ) Indeed, as we already mentioned above, all elements

of the subfield GF(p) C GF(p?) are quadratic residues in GF(p?). This
implies that for every quadratic non-residue 8 € GF(p?) all elements of
a multiplicative coset SGF(p) form an independent set of size p. Also all
additive cosets of SGF(p) are independent sets in F,. This implies that
x(Py) £ 4 =p. In fact P, contains a clique of size p (all elements of a
subfield GF(p)), showing that x(Py) = /7 < q/logq. Therefore the bound
in Corollary 4.7 is best possible.

A more complicated quantity related to the chromatic number is the
list-chromatic number x;(G) of G, introduced in [34] and [82]. This is the
minimum integer k such that for every assignment of a set S(v) of k colors to
every vertex v of G, there is a proper coloring of G that assigns to each vertex
v a color from S(v). The study of this parameter received a considerable
amount of attention in recent years, see, e.g., [2], [57] for two surveys. Note
that from the definition it follows immediately that x;(G) > x(G) and it is
known that the gap between these two parameters can be arbitrarily large.
The list-chromatic number of pseudo-random graphs was studied by Alon,
Krivelevich and Sudakov [12] and independently by Vu [84]. In [12] and
[84] the authors mainly considered graphs with all degrees (1 + 0(1)) np and
all co-degrees (1 + 0(1)) np?. Here we use ideas from these two papers to
obtain an upper bound on the list-chromatic number of an (n, d, A)-graphs.
This bound has the same order of magnitude as the list chromatic number
of the truly random graph G(n,p) with p = d/n (for more details see [12],
[84]).



236 M. Krivelevich and B. Sudakov

Theorem 4.9. Suppose that 0 < 6 < 1 and let G be an (n,d, \)-graph
satisfying A < d'=% d < 0.9n. Then the list-chromatic number of G is

bounded by
d
< .
xu(G) <0 (Jlogd>

Proof. Suppose that d is sufficiently large and consider first the case when
d < n!=9%/4, Then by Theorem 2.11 the neighbors of every vertex in G span
at most d® /n+Ad < O(d?=9/%) edges. Now we can apply the result of Vu [84]
which says that if the neighbors of every vertex in a graph G with maximum
degree d span at most O(d?~9/%) edges then x;(G) < O(d/(6logd)).

1-8/4

Now consider the case when d > n For every vertex v € V, let
S(v) be a list of at least %‘é? colors. Our objective is to prove that there
is a proper coloring of G assigning to each vertex a color from its list. As
long as there is a set C of at least n'=9/2 vertices containing the same color
¢ in their lists we can, by Proposition 4.6, find an independent set of at
least % log n vertices in C, color them all by ¢, omit them from the graph
and omit the color ¢ from all lists. The total number of colors that can

be deleted in this process cannot exceed 3—1(;—‘;; (since in each such deletion

at least %% logn vertices are deleted from the graph). When this process

terminates, no color appears in more than nt=9/2 lists, and each list still
contains at least Mfgn > n1=9/2 colors. Therefore, by Hall’s theorem, we
can assign to each of the remaining vertices a color from its list so that
no color is being assigned to more than one vertex, thus completing the

coloring and the proof. ®

4.4. Small subgraphs

We now examine small subgraphs of pseudo-random graphs. Let H be a
fixed graph of order s with r edges and with automorphism group Aut(H).
Using the second moment method it is not difficult to show that for every
constant p the random graph G(n,p) contains

(1+0(1))p" (1~ m(z)—’m

induced copies of H. Thomason extended this result to jumbled graphs.
He showed in [79] that if a graph G is (p, a)-jumbled and p*n > 42as?
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then the number of induced subgraphs of G which are isomorphic to H is
(14 0(1)) p*(1 = p)&~"ns/| Aut(H)| .

Here we present a result of Noga Alon [6] that proves that every large
subset of the set of vertices of (n,d, \)-graph contains the “correct” number
of copies of any fixed sparse graph. An additional advantage of this result
is that its assertion depends not on the number of vertices s in H but only
on its maximum degree A which can be smaller than s. Special cases of
this result have appeared in various papers including [11], [13] and probably
other papers as well. The approach here is similar to the one in [13].

Theorem 4.10. [6] Let H be a fixed graph with r edges, s vertices and
maximum degree A, and let G = (V, E) be an (n,d, \)-graph, where, say,
d <0.9n. Let m < n satisfy m > )\(LJ)A. Then, for every subset V! C V
of cardinality m, the number of (not necessarily induced) copies of H in V'

is .
m® d
140()) 1| —| -
( ( )) |Aut(H)| (n)
Note that this implies that a similar result holds for the number of

induced copies of H. Indeed, if n > d and m > )\( ) ! then the number
of copies of each graph obtained from H by adding to it at least one edge
is, by the above Theorem, negligible compared to the number of copies of
H, and hence almost all copies of H in V' are induced. If d = ©(n) then,
by inclusion-exclusion, the number of induced copies of H in V' as above
is also roughly the “correct” number. A special case of the above theorem
implies that if A = O(\/c—i ) and d > n?/3, then any (n,d, \)-graph contains
many triangles. As shown in Example 9, Section 3, this is not true when
d= (% + 0(1))n2/ 3, showing that the assertion of the theorem is not far
from being best possible.

Proof of Theorem 4.10. To prove the theorem, consider a random one-
to-one mapping of the set of vertices of H into the set of vertices V'. Denote
by A(H) the event that every edge of H is mapped on an edge of G. In
such a case we say that the mapping is an embedding of H. Note that it
suffices to prove that

(12) Pr(a(m) = (1+00) (%)

n

We prove (12) by induction on the number of edges r. The base case
(r = 0) is trivial. Suppose that (12) holds for all graphs with less than r
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edges, and let uv be an edge of H. Let H,, be the graph obtained from
H by removing the edge uv (and keeping all vertices). Let H, and H,
be the induced subgraphs of H on the sets of vertices V(H) \ {v} and
V(H) \ {u}, respectively, and let H' be the induced subgraph of H on the
set of vertices V(H) \ {u,v}. Let r’ be the number of edges of H' and note
that 7 — ' < 2(A — 1) + 1 = 2A — 1. Clearly Pr(A(Hyy)) = Pr(A(Huw) |
A(H')) -Pr(A(H'")). Thus, by the induction hypothesis applied to Hyy and
to H':
d r—1-7'
Pr(A(Huv) | A(Hl)) = (1 +0(1)) (;i) :

For an embedding f’ of H', let v(u, f’') be the number of extensions of f’
to an embedding of H, in V'; v(v, f') denotes the same for v. Clearly,
the number of extensions of f’ to an embedding of Hy, in V' is at least
v(u, f)v(v, ) — min (v(u, '), v(v, f')) and at most v(u, f')v(v, f'). Thus

we have

v(u, f)v(v, f') — min (v(u, ), v(v, )
(m—s+2)(m—-s+1)

v(u, fv(v, f')
(m—-s+2)(m—-s+1)

< PT(A(Huv) | f/) <

Taking expectation over all embeddings f’ the middle term becomes
Pr(A(Huw) | A(H')), which is (1 + o(1))(2)" """
choice of the parameters and the well known fact that A = Q(\/E), the

expectation of the term min (v(u, f'), v(v, f')) (< m) is negligible and we
get

Note that by our

r—1-7r'
Ep(v(u, f)v(v, f') | AH')) = (1+ o(l))m2 <g> )

n

Now let f be a random one-to-one mapping of V(H) into V. Let f’ be a
fixed embedding of H'. Then

, d v(u, fv(v, f'
Pr(AH) | flvinuny = F') = (?i) (m—(su-i— 231(/75:,)— s)-l— 7yt

i ! i} ! .
where |0] < /\(—m—————%. This follows from Theorem 2.11, where we

take the possible images of u as the set U and the possible images of v as
the set W. Averaging over embeddings ' we get Pr( A(H) | A(H')) on the
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left hand side. On the right hand side we get (1 + o(1)) (%)T—Tl from the
first term plus the expectation of the error term §. By Jensen's inequality,
the absolute value of this expectation is bounded by

+0o(1)) =

(m—s+2)(m—s+1)=( m\n

VE(Wu £)v(0,1) A (a0
1 (4) .

Our assumptions on the parameters imply that this is negligible with re-
spect to the main term. Therefore Pr(A(H)) = Pr(A(H) | A(H')) -

Pr(A(H")) = (140(1)) (%)T, completing the proof of Theorem 4.10. m

If we are only interested in the existence of one copy of H then one
can sometimes improve the conditions on d and A in Theorem 4.10. For
example if H is a complete graph of order r then the following result was
proved in [11].

Proposition 4.11 [11]. Let G be an (n,d, \)-graph. Then for every integer
r > 2 every set of vertices of G of size more than

(i%l)—"(1+g-+...+(g>r_2>

contains a copy of a complete graph K.

In particular, when d > Q(n?3) and A < 0(\/8) then any (n,d, \)-
graph contains a triangle and as shows Example 9 in Section 3 this is tight.
Unfortunately we do not know if this bound is also tight for r > 4. It
would be interesting to construct examples of (n,d, A)-graphs with d =
@(n,l‘l/(QT‘B)) and A < O(\/E) which contain no copy of K.

Finally we present one additional result about the existence of odd cycles
in pseudo-random graphs.

Proposition 4.12. Let k > 1 be an integer and let G be an (n,d, \)-graph
such that d?* /n > A\**=1. Then G contains a cycle of length 2k + 1.

Proof. Suppose that G contains no cycle of length 2k + 1. For every two
vertices u, v of G denote by d(u,v) the length of a shortest path from u to
v. For every i > 1 let Ny(v) = {u | d(u,v) =i} be the set of all vertices in
G which are at distance exactly ¢ from v. In [32] Erdés et al. proved that
if G contains no cycle of length 2k + 1 then for any 1 < i < k the induced
graph G[N;(v)] contains an independent set of size |Ni(v)| /(2k —1). This
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result together with Proposition 4.5 implies that for every vertex v and for
every 1 < i <k, lNi(v)[ < (2k — 1)An/d. Since d®*/n > X\*~1 we have
that A = o(d). Therefore by Theorem 2.11

d 2 d (2k —1)An
C(Nz( )) < 2nl i(v)| +>\|Ni(v | < ’7?‘—2':],—|N | /\|N |

< 2kA| Ni(v)| = o(d| Ni(v)|).

|Ni+1(U)|
[N:(v)| =

(1- 0(1)) d?/A%. By the above discussion the number of edges spanned by
Ni(v) is o(d?) and therefore e( Ny(v), Na(v)) = d? — o(d*) = (1 — o(1)) d.
On the other hand, by Theorem 2.11

Next we prove by induction that for every 1 < ¢ < Kk,

(N (0), Na(v)) < 2| Ni(0)] [ Na(w)] + A/ | i) [ Naf)

d  (2k-1)A\n
< — A 2 fd| Na(o)

| No(v)]

v
= \d! + O(Md) = X\d + o(d?).
i PO =R )
Therefore [Na(v)| > (1-o0f1 d?/)\2. Now assume that AN > (1-—
[ N1 (v)] [N;-1(v)|

o(1)) d?/A%. Since the number of edges spanned by N;(v) is o(dl N;(v)] ) we
obtain

e(Ni(v), Ni1(v)) = d| Ni(v)| — 2¢(Ni(v)) = e(Ni-1(v), Ni(v))
> d| Ni(v)| — o(d| Ni(v)] ) = d| Niz1(v)]
> (1—o0(1))d| Ny(v)| = (1+ o(1)) d(A?/d?)| Ni(v)]
= (1-o(1))d| Ni(v)| — o(d| Ni(v)|)

= (1-o(1))d| Ni(v)] -
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On the other hand, by Theorem 2.11

e(Ni(v), Niy1(v)) < glNi(U)i | Nig1(v)| +/\\/| Ni(v)] | Nip1(v)]

d (2k = 1)A
<= (——#’Ni(vﬂ + /\\/] Ni(v)] | Nig1(v)]
l l+1 |
= O(A[N;(v)] ) + A| Ni(v
Ol + 2Ll
_ ' z+1 | )
= A| N;(v)| TN +o(d| Ni(v)| ).
Therefore %’l)—l > (1-o0(1))d?/ A% and we proved the induction step.
Finally note that
N‘L 2\ k-1
| Ni.(v) |—dHl “ > 1+o(1))d<%>

2k—1 AN

This contradiction completes the proof. m

This result implies that when d > AT and A < O(\/c_i) then any
(n,d, A)-graph contains a cycle of length 2k + 1. As shown by Example 10
of the previous section this result is tight. It is worth mentioning here that
it follows from the result of Bondy and Simonovits [22] that any d-regular
graph with d > n!/* contains a cycle of length 2k. Here we do not need to
make any assumption about the second eigenvalue A. This bound is known
to be tight for k = 2,3,5 (see Examples 6,7, Section 3).

4.5. Extremal properties

Turdn’s theorem [81] is one of the fundamental results in Extremal Graph
Theory. It states that among n-vertex graphs not containing a clique of
size t the complete (t — 1)-partite graph with (almost) equal parts has the
maximum number of edges. For two graphs G and H we define the Turdn
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number ex(G, H) of H in G, as the largest integer e, such that there is an
H-free subgraph of G with e edges. Obviously ex(G, H) < IE(G)], where
E(G) denotes the edge set of G. Turdn’s theorem, in an asymptotic form,

can be restated as
t—2 n
K, K;))=—— 1
caln ) = (12 +ot1)) (3).

that is the largest K;-free subgraph of K, contains approximately %—}%—
fraction of its edges. Here we would like to describe an extension of this
result to (n,d, \)-graphs.

For an arbitrary graph G on n vertices it is easy to give a lower bound on
ex(G, K;) following Turdn’s construction. One can partition the vertex set
of G into t — 1 parts such that the degree of each vertex within its own part
is at most t—_l—l-times its degree in G. Thus the subgraph consisting of the

edges of G connecting two different parts has at least a :—:—f—fraction of the
edges of G and is clearly Ki-free. We say that a graph (or rather a family of
graphs) is t-Turdn if this trivial lower bound is essentially an upper bound
as well. More precisely, G is t-Turdn if ex(G, K;) = (% + o(l))[E(G)'.

It has been shown that for any fixed ¢, there is a number m(t,n) such
that almost all graphs on n vertices with m > m(t,n) edges are t-Turan (see
[77], [51] for the most recent estimate for m(t,n)). However, these results are
about random graphs and do not provide a deterministic sufficient condition
for a graph to be t-Turdn. It appears that such a condition can be obtained
by a simple assumption about the spectrum of the graph. This was proved
by Sudakov, Szabé and Vu in [75]. They obtained the following result.

Theorem 4.13 [75]. Let t > 3 be an integer and let G = (V, E) be an
(n,d, \)-graph. If \ = o(d*"1/n'=2) then

t—2

ea(G, Kr) = (?_—1 ; 0(1)) B(G)|.

Note that this theorem generalizes Turdn’s theorem, as the second eigen-
value of the complete graph K, is 1.

Let us briefly discuss the sharpness of Theorem 4.13. For ¢ = 3, one can
show that its condition involving n, d and X is asymptotically tight. Indeed,
in this case the above theorem states that if d2/n > X, then one needs to
delete about half of the edges of G to destroy all the triangles. On the
other hand, by taking the example of Alon (Section 3, Example 9) whose
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parameters are: d = O(n?*?), A = ©(n!/3), and blowing it up (which means
replacing each vertex by an independent set of size k and connecting two
vertices in the new graph if and only if the corresponding vertices of G are
connected by an edge) we get a graph G(k) with the following properties:

|V(G(k)) | =ng =nk; G(k) is dj. = dk-regular; G(k) is triangle-free;
A(G(k)) =kx and A(G(k)) =Q(di/nk).

The above bound for the second eigenvalue of G(k) can be obtained by using
well known results on the eigenvalues of the tensor product of two matrices,
see [59] for more details. This construction implies that for ¢ = 3 and any
sensible degree d the condition in Theorem 4.13 is not far from being best
possible.

4.6. Factors and fractional factors

Let H be a fixed graph on n vertices. We say that a graph G on n vertices
has an H-factor if G contains n/h vertex disjoint copies of H. Of course,
a trivial necessary condition for the existence of an H-factor in G is that h
divides n. For example, if H is just an edge H = Ko, then an H-factor is a
perfect matching in G.

One of the most important classes of graph embedding problems is to
find sufficient conditions for the existence of an H-factor in a graph G,
usually assuming that H is fixed while the order n of G grows. In many
cases such conditions are formulated in terms of the minimum degree of G.
For example, the classical result of Hajnal and Szemerédi [47] asserts that if
the minimum degree §(G) satisfies §(G) > (1 - %)n, then G contains |[n/r|
vertex disjoint copies of K. The statement of this theorem is easily seen to
be tight.

It turns our that pseudo-randomness allows in many cases to significantly
weaken sufficient conditions for H-factors and to obtain results which fail
to hold for general graphs of the same edge density.

Consider first the case of a constant edge density p. In this case the
celebrated Blow-up Lemma of Komlés, Sarkézy and Szemerédi [54] can be
used to show the existence of H-factors. In order to formulate the Blow-up
Lemma we need to introduce the notion of a super-regular pair. Given e > 0
and 0 < p < 1, a bipartite graph G with bipartition (V1, Va), |Vi| = |Va| = n,
is called super (p, e)-regular if
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1. For all vertices v € V(G),

(p—e)n<d(v) < (p+e)n;

2. For every pair of sets (U, W), U c Vi, W C W, |U|,|W| > en,

uIwl - n?

eU. W) _|E@G)] ' ‘e

Theorem 4.14 [54]. For every choice of integers r and A and a real
0 < p < 1 there exist an € > 0 and an integer ng(e) such that the following
is true. Consider an r-partite graph G with all partition sets Vi,...,V; of
order n > ng and all (;) bipartite subgraphs G[V;, V;] super (p, ¢)-regular.
Then for every r-partite graph H with maximum degree A(H) < A and all
partition sets X1, ..., X, of order n, there exists an embedding f of H into
G with each set X; mapped onto V;,1=1,...,7r.

(The above version of the Blow-up Lemma, due to Rédl and Ruciniski
[71], is somewhat different from and yet equivalent to the original formula-
tion of Komlds et al. We use it here as it is somewhat closer in spirit to the
notion of pseudo-randomness).

The Blow-up Lemma is a very powerful embedding tool. Combined
with another “big cannon”, the Szemerédi Regularity Lemina, it can be
used to obtain approximate versions of many of the most famous embedding
conjectures. We suggest the reader to consult a survey of Komlés [53] for
more details and discussions.

It is easy to show that if G is an (n,d, A)-graph with d = ©(n) and
A = o(n), and h divides n, then a random partition of V(G) into h equal
parts Vi, ...,V produces almost surely (%) super (d/n,e)-regular pairs.
Thus the Blow-up Lemma can be applied to the obtained h-partite subgraph
of G and we get:

Corollary 4.15. Let G be an (n,d, \)-graph with d = ©(n), A = o(n). If
h divides n, then G contains an H-factor, for every fixed graph H on h
vertices.

The case of a vanishing edge density p = o(1) is as usual significantly
more complicated. Here a sufficient condition for the existence of an H-
factor should depend heavily on the graph H, as there may exist quite
dense pseudo-random graphs without a single copy of H, see, for example,
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the Alon graph (Example 9 of Section 3). When H = Kj, already a very
weak pseudo-randomness condition suffices to guarantee an H-factor, or a
perfect matching, as provided by Theorem 4.3. We thus consider the case
H = K3, the task here is to guarantee a triangle factor, i.e. a collection of
n/3 vertex disjoint triangles. This problem has been treated by Krivelevich,
Sudakov and Szabé [59] who obtained the following result:

Theorem 4.16 [59]. Let G be an (n,d, A)-graph. If n is divisible by 3 and

d3
A= - ,
0 (nz logn>

then G has a triangle factor.

For best pseudo-random graphs with A = @(\/3) the condition of the
above theorem is fulfilled when d > n%/51og?® n.

To prove Theorem 4.16 Krivelevich et al. first partition the vertex set
V(G) into three parts V1, Vi, V3 of equal cardinality at random. Then they
choose a perfect matching M between V; an V, at random and form an
auxiliary bipartite graph I" whose parts are M and V3, and whose edges are
formed by connecting e € M and v € V3 if both endpoints of e are connected
by edges to v in G. The existence of a perfect matching in I' is equivalent
to the existence of a triangle factor in G. The authors of [59] then proceed
to show that if M is chosen at random then the Hall condition is satisfied
for I with positive probability.

The result of Theorem 4.16 is probably not tight. In fact, the following
conjecture is stated in [59]:

Conjecture 4.17 [59]. There exists an absolute constant ¢ > 0 so that
every d-regular graph G on 3n vertices, satisfying A(G) < cd?/n, has a
triangle factor.

If true the above conjecture would be best possible, up to a constant
multiplicative factor. This is shown by taking the example of Alon (Section
3, Example 9) and blowing each of its vertices by an independent set of
size k. As we already discussed in the previous section (see also [59]), this
gives a triangle-free dj-regular graph G(k) on ny vertices which satisfies
MG(k) = 9(d}/ne).

Krivelevich, Sudakov and Szabé considered in [59] also the fractional
version of the triangle factor problem. Given a graph G = (V, E), denote
by T = T(G) the set of all triangles of G. A function f : T'— Ry is called
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a fractional triangle factor if for every v € V(G) one has ), ., f(t) = 1. If
G contains a triangle factor T, then assigning values f(t) = 1 for all t € Ty,
and f(t) = 0 for all other t € T produces a fractional triangle factor. This
simple argument shows that the existence of a triangle factor in G implies
the existence of a fractional triangle factor. The converse statement is easily
seen to be invalid in general.

The fact that a fractional triangle factor f can take non-integer values,
as opposed to the characteristic vector of a “usual” (i.e. integer) triangle
factor, enables to invoke the powerful machinery of Linear Programming to
prove a much better result than Theorem 4.16.

Theorem 4.18 [59]. Let G = (V, E) be a (n,d, \)-graph. If A < 0.1d*/n
then G has a fractional triangle factor.

This statement is optimal up to a constant factor — see the discussion
following Conjecture 4.17.

Already for the next case H = K4 analogs of Theorem 4.16 and 4.18
are not known. In fact, even an analog of Conjecture 4.17 is not available
either, mainly due to the fact that we do not know the weakest possible
spectral condition guaranteeing a single copy of Ky, or K, in general, for
r > 4.

Finally it would be interesting to show that for every integer A there
exist a real M and an integer ng so that the following is true. If n > ng and
G is an (n,d, A)-graph for which A < d(d/n)M, then G contains a copy of
any graph H on at most n vertices with maximum degree A(H) < A. This
can be considered as a sparse analog of the Blow-up Lemma.

4.7. Hamiltonicity

A Hamilton cycle in a graph is a cycle passing through all the vertices of
this graph. A graph is called Hamiltonian if it has at least one Hamilton
cycle. For background information on Hamiltonian cycles the reader can
consult a survey of Chvétal [28].

The notion of Hamilton cycles is one of the most central in modern
Graph Theory, and many efforts have been devoted to obtain sufficient con-
ditions for Hamiltonicity. The absolute majority of such known conditions
(for example, the famous theorem of Dirac asserting that a graph on n ver-
tices with minimal degree at least n/2 is Hamiltonian) deal with graphs
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which are fairly dense. Apparently there are very few sufficient conditions
for the existence of a Hamilton cycle in sparse graphs.

As it turns out spectral properties of graphs can supply rather powerful
sufficient conditions for Hamiltonicity. Here is one such result, quite general
and yet very simple to prove, given our knowledge of properties of pseudo-
random graphs.

Proposition 4.19. Let G be an (n,d, \)-graph. If

A2 n
d—36— > ——
36d Td+ N

then G is Hamiltonian.

Proof. According to Theorem 4.1 G is (d—36A?/d)-vertex-connected. Also,
a(G) < An/(d + )X), as stated in Proposition 4.5. Finally, a theorem of
Chvétal and Erdds [29] asserts that if the vertex-connectivity of a graph G
is at least as large as its independence number, then G is Hamiltonian. m

The Chvétal-Erd6s Theorem has also been used by Thomason in [79],
who proved that a (p,a)-jumbled graph G with minimal degree §(G) =
Q(a/p) is Hamiltonian. His proof is quite similar in spirit to that of the
above proposition.

Assuming that A = o(d) and d — oo, the condition of Proposition 4.19
reads then as: A < (1—0(1)) d?/n. For best possible pseudo-random graphs,
where A = @(\/c_i ), this condition starts working when d = Q(n?/3).

One can however prove a much stronger asymptotical result, using more
sophisticated tools for assuring Hamiltonicity. The authors prove such a
result in [58]:

Theorem 4.20 [58]. Let G be an (n,d, A)-graph. If n is large enough and

) < (loglogn)?
~ 1000 log n(logloglogn)

then G is Hamiltonian.

The proof of Theorem 4.20 is quite involved technically. Its main in-
strument is the famous rotation-extension technique of Posa [70], or rather
a version of it developed by Komlés and Szemerédi in [56] to obtain the ex-
act threshold for the appearance of a Hamilton cycle in the random graph
G(n,p). We omit the proof details here, referring the reader to [58].
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For reasonably good pseudo-random graphs, in which A < d*~¢ for some
€ > 0, Theorem 4.20 starts working already when the degree d is only poly-
logarithmic in n — quite a progress compared to the easy Proposition 4.19!
It is possible though that an even stronger result is true as given by the
following conjecture:

Conjecture 4.21 [58]. There exists a positive constant C' such that for
large enough n, any (n,d, \)-graph that satisfies d/A > C' contains a Hamil-
ton cycle.

This conjecture is closely related to another well known problem on
Hamiltonicity. The toughness t(G) of a graph G is the largest real ¢ so
that for every positive integer x > 2 one should delete at least tx vertices
from G in order to get an induced subgraph of it with at least = connected
components. G is t-tough if ¢(G) > t. This parameter was introduced by
Chvétal in [27], where he observed that Hamiltonian graphs are 1-tough
and conjectured that t-tough graphs are Hamiltonian for large enough ¢.
Alon showed in [4] that if G is an (n,d, A)-graph, then the toughness of G
satisfies t(G) > Q(d/A). Therefore the conjecture of Chvatal implies the
above conjecture.

Krivelevich and Sudakov used Theorem 4.20 in [58] to derive Hamiltonic-
ity of sparse random Cayley graphs. Given a group G of order n, choose
a set S of s non-identity elements uniformly at random and form a Cayley
graph I'(G, SUS™!) (see Example 8 in Section 3 for the definition of a Cay-
ley graph). The question is how large should be the value of t = t(n) so as
to guarantee the almost sure Hamiltonicity of the random Cayley graph no
matter which group G we started with.

Theorem 4.22 [58]. Let G be a group of order n. Then for every ¢ > 0
and large enough n a Cayley graph X(G,S U S™'), formed by choosing a
set S of clog® n random generators in G, is almost surely Hamiltonian.

Sketch of proof. Let A be the second largest by absolute value eigenvalue of
X(G, S). Note that the Cayley graph X (G, S) is d-regular for d > clog® n.
Therefore to prove Hamiltonicity of X (G, S), by Theorem 4.20 it is enough
to show that almost surely A/d < O(logn). This can be done by applying
an approach of Alon and Roichman [16] for bounding the second eigenvalue
of a random Cayley graph. =

We note that a well known conjecture claims that every connected
Cayley graph is Hamiltonian. If true the conjecture would easily imply
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that as few as O(logn) random generators are enough to give almost sure
connectivity and thus Hamiltonicity.

4.8. Random subgraphs of pseudo-random graphs

There is a clear tendency in recent years to study random graphs different
from the classical by now model G(n, p) of binomial random graphs. One of
the most natural models for random graphs, directly generalizing G(n, p),
is defined as follows. Let G = (V,E) be a graph and let 0 < p < 1. The
random subgraph G, if formed by choosing every edge of G independently
and with probability p. Thus, when G is the complete graph K, we get back
the probability space G(n,p). In many cases the obtained random graph G,
has many interesting and peculiar features, sometimes reminiscent of those
of G(n,p), and sometimes inherited from those of the host graph G.

In this subsection we report on various results obtained on random
subgraphs of pseudo-random graphs. While studying this subject, we study
in fact not a single probability space, but rather a family of probability
spaces, having many common features, guaranteed by those of pseudo-
random graphs. Although several results have already been achieved in
this direction, overall it is much less developed than the study of binomial
random graphs G(n,p), and one can certainly expect many new results on
this topic to appear in the future.

We start with Hamiltonicity of random subgraphs of pseudo-random
graphs. As we learned in the previous section spectral condition are in many
cases sufficient to guarantee Hamiltonicity. Suppose then that a host graph
G is a Hamiltonian (n,d, A)-graph. How small can the edge probability

= p(n) be chosen so as to guarantee almost sure Hamiltonicity of the
random subgraph G,? This question has been studied by Frieze and the
first author in [42]. They obtained the following result.

Theorem 4.23 [42]. Let G be an (n,d,\)-graph. Assume that A =

d5/2 . g - -
0 (W) Form a random subgraph G, of G' by choosing each edge

of G independently with probability p. Then for any function w(n) tending
to infinity arbitrarily slowly:

1. if p(n) = %( logn + loglogn — w(n)), then G, is almost surely not
Hamiltonian;
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2. if p(n) = %( logn+loglogn+w(n)), then G, is almost surely Hamil-
tonian.

Just as in the case of G(n,p) (see, e.g. [20]) it is quite easy to predict
the critical probability for the appearance of a Hamilton cycle in G,. An
obvious obstacle for its existence is a vertex of degree at most one. If such a
vertex almost surely exists in G, then Gy, is almost surely non-Hamiltonian.
It is a straightforward exercise to show that the smaller probability in the
statement of Theorem 4.23 gives the almost sure existence of such a vertex.
The larger probability can be shown to be sufficient to eliminate almost
surely all vertices of degree at most one in G),. Proving that this is sufficient
for almost sure Hamiltonicity is much harder. Again as in the case of G(n, p)
the rotation-extension technique of Posa [70] comes to our rescue. We omit
technical details of the proof of Theorem 4.23, referring the reader to [42].

One of the most important events in the study of random graphs was
the discovery of the sudden appearance of the giant component by Erdds
and Rényi [33]. They proved that all connected components of G(n,c/n)
with 0 < ¢ < 1 are almost surely trees or unicyclic and have size O(logn).
On the other hand, if ¢ > 1, then G(n, ¢/n) contains almost surely a unique
component of size linear in n (the so called giant component), while all
other components are at most logarithmic in size. Thus, the random graph
G(n,p) experiences the so called phase transition at p = 1/n.

Very recently Frieze, Krivelevich and Martin showed [43] that a very sim-
ilar behavior holds for random subgraphs of many pseudo-random graphs.
To formulate their result, for « > 1 we define @ < 1 to be the unique
solution (other than ) of the equation ze™* = ae™*.

Theorem 4.24 [43]. Let G be an (n,d, \)-graph. Assume that A = o(d).
Consider the random subgraph G g, formed by choosing each edge of G
independently and with probability p = a/d. Then:

(a) If o < 1 then almost surely the maximum component size is O(logn).

(b) If a > 1 then almost surely there is a unique giant component of
asymptotic size (1 - g)n and the remaining components are of size

O(logn).

Let us outline briefly the proof of Theorem 4.24. First, bound (4) and
known estimates on the number of k-vertex trees in d-regular graphs are used
to get estimates on the expectation of the number of connected components
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of size k in G, for various values of k. Using these estimates it is proved
then that almost surely G, has no connected components of size between
(1/ay)logn and yn for a properly chosen v = v(a). Define f(a) to be 1
for all @ < 1, and to be @/a for @ > 1. One can show then that almost
surely in G,/q the number of vertices in components of size between 1 and

d/3 is equal to nf(a) up to the error term which is O(n®%logn). This
is done by first calculating the expectation of the last quantity, which is
asymptotically equal to nf(a), and then by applying the Azuma-Hoeffding
martingale inequality.

Given the above, the proof of Theorem 4.24 is straightforward. For the
case @ < 1 we have nf(a) = n and therefore all but at most n%logn
vertices lie in components of size at most (1/ay)logn. The remaining
vertices should be in components of size at least ~n, but there is no room
for such components. If & > 1, then (@/a)n + O(n%%logn) vertices belong
to components of size at most (1/a7)logn, and all remaining vertices are
in components of size at least yn. These components are easily shown to
merge quickly into one giant component of a linear size. The detail can be
found in [43] (see also [7] for some related results).

One of the recent most popular subjects in the study of random graphs
is proving sharpness of thresholds for various combinatorial properties.
This direction of research was spurred by a powerful theorem of Friedgut—-
Bourgain [37], providing a sufficient condition for the sharpness of a thresh-
old. The authors together with Vu apply this theorem in [60] to show sharp-
ness of graph connectivity, sometimes also called network reliability, in ran-
dom subgraphs of a wide class of graphs. Here are the relevant definitions.
For a connected graph G and edge probability p denote by f(p) = f(G,p)
the probability that a random subgraph G, is connected. The function
f(p) can be easily shown to be strictly monotone. For a fixed positive con-
stant z < 1 and a graph G, let p, denote the (unique) value of p where
f(G,pz) = z. We say that a family (Gi)io; of graphs satisfies the sharp
threshold property if for any fixed positive € < 1/2

. pe(Gi)
lim ——— — 1.
il}oo plﬂe(Gi) -

Thus the threshold for connectivity is sharp if the width of the transition
interval is negligible compared to the critical probability. Krivelevich, Su-
dakov and Vu proved in [60] the following theorem.
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Theorem 4.25 [60]. Let (G;);2, be a family of distinct graphs, where G;
has n; vertices, maximum degree d; and it is k;-edge-connected. If

k; Inn;

lim

=00
i—moo  d; ’

then the family (G;);2, has a sharp connectivity threshold.

The above theorem extends a celebrated result of Margulis [67] on net-
work reliability (Margulis’ result applies to the case where the critical prob-
ability is a constant).

Since (n,d, \) graphs are d(1— o(1))-connected as long as A = o(d) by
Theorem 4.1, we immediately get the following result on the sharpness of
the connectivity threshold for pseudo-random graphs.

Corollary 4.26. Let G be an (n,d,\)-graph. If A = o(d), then the
threshold for connectivity in the random subgraph G, is sharp.

Thus already weak connectivity is sufficient to guarantee sharpness of
the threshold. This result has potential practical applications as discussed
in [60].

Finally we consider a different probability space created from a graph
G = (V,E). This space is obtained by putting random weights on the
edges of G independently. One can then ask about the behavior of optimal
solutions for various combinatorial optimization problems.

Beveridge, Frieze and McDiarmid treated in [19] the problem of esti-
mating the weight of a random minimum length spanning tree in regular
graphs. For each edge e of a connected graph G = (V, E) define the length
X, of e to be a random variable uniformly distributed in the interval (0, 1),
where all X, are independent. Let mst(G,X) denote the minimum length
of a spanning tree in such a graph, and let mst(G) be the expected value
of mst(G,X). Of course, the value of mst(G) depends on the connectiv-
ity structure of the graph G. Beveridge et al. were able to prove however
that if the graph G is assumed to be almost regular and has a modest edge
expansion, then mst(G) can be calculated asymptotically:

Theorem 4.27 [19]. Let a = a(d) = O(d~'/?) and let p(d) and w(d) tend
to infinity with d. Suppose that the graph G = (V, E) satisfies

d<d(w) < (l1+a)d foralveV(G),
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and

e(S,V\S)
5]

Then

> wd*logd for all S C V with d/2 < |$| < min {pd,|V|/2}.

mst(G) = (1+o(1)) 1T¢(3),

where the o(1) term tends to 0 asd — oo, and {(3) = Y 50,4i7% = 1.202... .

The above theorem extends a celebrated result of Frieze [40], who proved
it in the case of the complete graph G = K,.

Pseudo-random graphs supply easily the degree of edge expansion re-
quired by Theorem 4.27. We thus get:

Corollary 4.28. Let G be an (n,d, \)-graph. If A\ = o(d) then

mst(G) = (1+ o(1)) gc(:a).

Beveridge, Frieze and McDiarmid also proved that the random variable
mst(G, X) is sharply concentrated around its mean given by Theorem 4.27.

Comparing between the very well developed research of binomial random
graphs G(n,p) and few currently available results on random subgraphs of
pseudo-random graphs, we can say that many interesting problems in the
latter subject are yet to be addressed, such as the asymptotic behavior of the
independence number and the chromatic number, connectivity, existence of
matchings and factors, spectral properties, to mention just a few.

4.9. Enumerative aspects

Pseudo-random graphs on n vertices with edge density p are quite similar
in many aspects to the random graph G(n,p). One can thus expect that
counting statistics in pseudo-random graphs will be close to those in truly
random graphs of the same density. As the random graph G(n, p) is a prod-
uct proBability space in which each edge behaves independently, computing
the expected number of most subgraphs in G(n, p) is straightforward. Here
are just a few examples:

n

e The expected number of perfect matchings in G(n,p) is (T/"z)"z—n/? P2

(assuming of course that n is even);
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e The expected number of spanning trees in G(n, p) is n*~2p"~1;

e The expected number of Hamilton cycles in G(n, p) is (n— 1) ==

In certain cases it is possible to prove that the actual number of subgraphs
in a pseudo-random graph on n vertices with edge density p = p(n) is close
to the corresponding expected value in the binomial random graph G(n,p).

Frieze in [41] gave estimates on the number of perfect matchings and
Hamilton cycles in what he calls super e-regular graphs. Let G = (V, E) be
a graph on n vertices with (g)p edges, where 0 < p < 1 is a constant. Then
G is called super (p,€)-regular, for a constant € > 0, if

1. For all vertices v € V(G),
(p—e)n<dv) < (p+e)n

2. Foral UW cV, UNW =0, |U|,|W| > en,

(UW) IS

Thus, a super (p,¢)-regular graph G can be considered a non-bipartite ana-
log of the notion of a super-regular pair defined above. In our terminology,
G is a weakly pseudo-random graph of constant density p, in which all de-
grees are asymptotically equal to pn. Assume that n = 2v is even. Let
m(G) denote the number of perfect matchings in G and let h(G) denote
the number of Hamilton cycles in G, and let ¢(G) denote the number of
spanning trees in G.

Theorem 4.29 [41]. If ¢ is sufficiently small and n is sufficiently large
then

()
(=2 J <m(G) < (o426

(p—2¢)"n! < W(G) < (p+2¢)"n
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Theorem 4.29 thus implies that the numbers of perfect matchings and
of Hamilton cycles in super e-regular graphs are quite close asymptotically
to the expected values of the corresponding quantities in the random graph
G(n,p). Part (b) of Theorem 4.29 improves significantly Corollary 2.9 of
Thomason [79] which estimates from below the number of Hamilton cycles
in jumbled graphs.

Here is a very brief sketch of the proof of Theorem 4.29. To estimate
the number of perfect matchings in G, Frieze takes a randomn partition of
the vertices of G into two equal parts A and B and estimates the number
of perfect matchings in the bipartite subgraph of G between A and B. This
bipartite graph is almost surely super 2e-regular, which allows to apply
bounds previously obtained by Alon, Rodl and Ruciiiski [15] for such graphs.

Since each Hamilton cycle is a union of two perfect matchings, it follows
immediately that h(G) < m?(G)/2, establishing the desired upper bound
on h(G). In order to prove a lower bound, let fi. be the number of 2-factors
in G containing exactly k cycles, so that fi = h(G). Let also A be the
number of ordered pairs of edge disjoint perfect matchings in G. Then

[n/3]
(13) A= Z 2k fi..

For a perfect matching M in G let ap; be the number of perfect matchings
of G disjoint from M. Since deleting M disturbs e-regularity of G only
marginally, one can use part (a) of the theorem to get aps > (p — 2¢)” U,2,,.
Thus

2
B _ v n' _ n . 1
(14) 4= MZGGGM - <(p %) 1/!2'/) 2 (p=2e)n! 3nl/2’

Next Frieze shows that the ratio fr41/fx can be bounded by a polynomial
innforall<k<k =0@p2), fi <5 ® k) Zmax{frr1, i} for all
k> ko+2,ky =0O(p~3logn) and that the ratio (fk1+1 + oot flays )/f;t1

is also bounded by a polynomial in n. Then from (13), A < 0,(1) "0“ fr

and thus A < nOW f;. Plugging (14) we get the desired lower bound

One can also show (see [1]) that the number of spanning trees t(G) in
super (p, €)-regular graphs satisfies:

(P_ 2€)n—1n11—2 S f(G) S (p+2€)n—lnn—2’
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for small enough ¢ > 0 and large enough n. In order to estimate from
below the number of spanning trees in G, consider a random mapping f :
V(G) — V(G), defined by choosing for each v € V its neighbor f(v) at
random. Each such f defines a digraph Dy = (V, Ay), Ay = {(v,f(v)) :

v € V}. Each component of Dy consists of cycle C with a rooted forest
whose roots are all in C. Suppose that Ds has kf components. Then
a spanning tree of G can be obtained by deleting the lexicographically
first edge of each cycle in Dy, and then extending the ks components to a
spanning tree. Showing that Dy has typically O(\/r—z ) components implies
that most of the mappings f create a digraph close to a spanning tree of G,
and therefore:

t(G) > n"o(‘/ﬁ)lf VoV n"o(ﬁ)(p —e)n.

For the upper bound on t(G) let Q* = {f VoV (v, f(v) € E(G) for
v#1land f(1) = 1}. Then

HG) < 10| < ((p+e)n)" " < (p+2¢)"'n" 2,

To see this consider the following injection from the spanning trees of G
into Q*: orient each edge of a tree T towards vertex 1 and set f(1) = 1.
Note that this proof does not use the fact that the graph is pseudo-random.
Surprisingly it shows that all nearly regular connected graphs with the same
density have approximately the same number of spanning trees.

For sparse pseudo-random graphs one can use Theorem 4.23 to estimate
the number of Hamilton cycles. Let G be an (n,d, \)-graph satisfying the
conditions of Theorem 4.23. Consider the random subgraph Gy, of G, where
p = (logn + 2loglogn)/d. Let X be the random variable counting the
number of Hamilton cycles in Gp. According to Theorem 4.23, Gp has
almost surely a Hamilton cycle, and therefore E[X] > 1 —o(1). On the
other hand, the probability that a given Hamilton cycle of G appears in G
is exactly p". Therefore the linearity of expectation implies E[X] = h(G)p".
Combining the above two estimates we derive:

1-o(1) _ d i
MG) 2 o ((1 + o(1)) logn) P

We thus get the following corollary:
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Corollary 4.30 [42]. Let G be an (n,d, \)-graph with

A= o(d5/2/(n3/2(log n)3/2)).

Then G contains at least ( 0 d

n
m) Hamilton cycles.

Note that the number of Hamilton cycles in any d-regular graph on
n vertices obviously does not exceed d". Thus for graphs satisfying the
conditions of Theorem 4.23 the above corollary provides an asymptotically
tight estimate on the exponent of the number of Hamilton cycles.

5. CONCLUSION

Although we have made an effort to provide a systematic coverage of the
current research in pseudo-random graphs, there are certainly quite a few
subjects that were left outside this survey, due to the limitations of space
and time (and of the authors’ energy). Probably the most notable omission
is a discussion of diverse applications of pseudo-random graphs to questions
from other fields, mostly Extremal Graph Theory, where pseudo-random
graphs provide the best known bounds for an amazing array of problems.
We hope to cover this direction in one of our future papers. Still, we would
like to believe that this survey can be helpful in mastering various results
and techniques pertaining to this field. Undoubtedly many more of them
are bound to appear in the future and will make this fascinating subject
even more deep, diverse and appealing.
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BounDs AND EXTREMA FOR CLASSES OF GRAPHS AND
FINITE STRUCTURES

J. NESETRIL*

We consider the homomorphism (or colouring) order C induced by all finite struc-
tures (of a given type; for example graphs) and the existence of a homomorphism
between them. This ordering may be seen as a lattice which is however far from
being complete. In this paper we study (upper) bounds, suprema and maximal
elements in C of some frequently studied classes of structures (such as classes
of structures with bounded degree of its vertices, degenerated and classes deter-
mined by a finite set of forbidden substructures). We relate these extrema to cuts
and duality theorems for C. Some of these results hold for general finite relational
structures. In view of combinatorial problems related to coloring problems this
should be regarded as a surprise. We support this view also by sliowing both
analogies and striking differences between undirected and oriented graphs (i.e.
for the easiest types) This is based on our recent work with C. Tardif.

We also consider minor closed classes of graphs and we survey recent results
obtained by P. Ossona de Mendez and author. We show how the order setting
captures Hadwiger conjecture and suggests some new problems.

1. INTRODUCTION

Graph theory receives its mathematical motivation mostly from two areas
of mathematics: algebra and geometry (topology) and it is fair to say that
graphical notions stood at the birth of algebraic topology (in the begin-
ning called combinatorial topology). Consequently, various operations and
relations for graphs stress either its algebraic aspects (e.g. colourings and
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homomorphisms, various products and spaces associated with graphs) or
its geometrical aspects (e.g. drawings, contractions, embeddings). It is only
natural that the key place in modern graph theory is played by (fortunate)
mixtures of both approaches as exhibited best by various modifications of
the notion of graph minor. From the algebraic point of view perhaps the
most natural notion which captures comparision of two graphs is that of a
homomorphism.

A homomorphism G — H is a mapping f : V(G) — V(H) which
satisfies f(u)f(v) € E(H) for any edge uv € E(G). (We shall consider both
directed and undirected graphs. This will be always clearly specified. Some
of the results hold for general finite structures. Section 5 is devoted entirely
to them.)

The central notion of this paper is the quasiorder (and partial order)
induced by the existence of a homomorphism. This notion and its context
is illustrated on the example of graphs.

Given graphs G, H we denote by G < H the existence of a homomor-
phism G — H. Clearly < is a quasiorder. If we consider isomorphism types
of minimal retracts (or cores, see [16]) then we obtain a partial order. This
quasiorder (and partial order) is called colouring order (or homomorphism
order, [16]) and it is denoted by C. We denote by G ~ H the equivalence
given by G < H < G. We also denote by < the strict version of < (thus
G < Hiff G < H and G = H). For a graph H we denote by Cy the princi-
pal ideal determined by H: Cy = {G; G < H}. Cp is also called a colour
class. This name is justified by interpreting homomorphisms as generalized
colourings: Indeed, for undirected graphs a homomorphism G' — Ky is a
just a (proper) k-colouring of graph G and thus a homomorphism G — H is
also called a H-colouring. Consequently, Cy is the class of all H-colourable
graphs; hence the name colour class. It follows that the question whether
G < H is difficult to decide (and it is NP-complete in a very strong sense).
We refer to [14, 16, 6, 9] as a background information. Our graph-theory
terminology is standard.

It is perhaps surprising how many fine combinatorial questions are cap-
tured by order-theoretic properties of the colouring order C. In this paper
we concentrate on extremal elements of this order: greatest and maximal
elements, suprema and (upper) bounds in general. It appears that these
extremal graphs capture various problems which are as remote as duality
theorems ([23]) and celebrated Hadwiger conjecture. These interpretations
lead also to some, hopefully interesting, problems.



Bounds and Extrema for Classes of Graphs and Finite Structures 265

Given a class K of graphs it is usually a difficult question to find a graph
H which is maximal (or greatest, or even supremum) of K in C. Among
other things such result yields maximal chromatic number of a graph in K.
As these concepts are the subject of this paper we recall the corresponding
definitions in the setting of colouring order C:

A graph H is said to be mazimal of K if H € K and no graph G € K
satisfies H < G.

A graph H is said to be an (upper) bound of K if every graph G € K
satisfies H < G. If in addition H € K then H is said to be greatest graph
in K (or mazimum of ).

A graph H is said to be supremum of K if G < H for every G € K and
if for every graph H' < H there exists a graph G € K such that G £ H'.

For example, in this setting, the 4-colour theorem says that Ky is the
greatest graph in the class of all planar graphs. This obviously cannot be
improved. On the other hand, Grotzsch’s theorem says that K3 is an upper
bound of the class of all planar K3-free graphs. However, as we will see,
this may be improved as K3 fails to be a supremum of this class.

This is our motivating example. By proving that k is the maximal
chromatic number of a class K we claim that the graph K} is an upper
bound for K (in the coloring order C) while the graph Kj,_; fails to be such
upper bound. But the homomorphism order is dense and thus it is natural
to ask if there exists a smaller upper bound.

In this paper we determine suprema and greatest elements of some of
the frequently studied classes of graphs (compare [6]). These include classes
Forb (F) where F is a finite set of connected graphs: We denote by Forb (F)
the class of all finite graphs G which satisfy F £ G for every F € F.
Alternatively, Forb (F) is the class of all graphs which do not contain a
homomorphic image of a graph from F. Or we could say that Forb (F) is
the class of all F-free graphs. In yet another way we can say that Forb (F)
is the class of all graphs defined by forbidden homomorphisms from a finite
set of graphs F. In our context these are natural classes of graphs. A bit
surprisingly all related questions can be solved for classes Forb (F). For
undirected graphs this is much easier than for directed graphs where we use
strong results obtained jointly with C. Tardif [23, 24].

As an approximation to the minor closed classes we also consider ex-
trema relativized by classes of bounded degree graphs and classes of d-
degenerated graphs. While for degenerated graphs we have a full discussion
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of extremal properties for bounded degrees this seems to be a very difficult
problem.

In a way this line of research presents a development of inverse program
for graph colouring problems: while in the usual setting one investigates
chromatic number and similar characteristics of a given class of graphs here
we are interested in the structural properties of the bounds themselves.
Random graphs (and high-chromatic sparse) graphs provide us with rigidity
properties.

In this paper we also generalize some of the algebraic constructions
to finite relational models in the full generality. Such a generalizations
is not for its own sake. Homomorphisms of relational structures and the
corresponding H-coloring problem is equivalent to CSP problems and this
general approach led recently to a new approach to classical problems such
as dichotomy conjecture. For more on this see [9, 1, 13]. In Section 2 we
briefly introduce this general framework.

The paper is organized as follows: In Section 2 we start with general
systems of type A and in Section 3 we prove non-existence of proper suprema
for classes of bounded degree A-systems in the full generality. Sections 4,
and 5 deal with graphs. In Section 4 we consider d-degenerated graphs
and we display the striking difference between classes of d-degenerated
graphs and classes of bounded degree graphs. We determine the suprema
of degenerated classes in every color class. In Section 5 we consider minor
closed classes and show the relevance of a recent result [20] to Hadwiger
conjecture via our order-theoretic setting. It is also here where we introduce
the cuts and their characterization problem. In Section 6 we return to A-
systems and completely characterize extrema for classes of type Forb (F)
for a finite set F of connected graphs. This is related to our joint work with
C. Tardif ([23, 24]). In Section 5 we consider oriented graphs and we prove
the main result on classes Forb (F) and in Section 6 we conclude with some

remarks and problems.

2. RELATIONAL STRUCTURES

A relational structure of a given type generalizes the notion of a relation
and of a graph to more relations and to higher (non-binary) arities.

A type A is asequence (0;; @ € I) of positive integers. A relational system
A of type A is a pair (X, (Ri; i € I)) where X is a set and R; € X% that
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is R; is a d;-nary relation on X. In this paper we shall always assume that
X is a finite set (thus we consider finite relational systems only).

The type A = (d;; i € I) will be fixed throughout this paper. Note that
for the type A = (2) relational systems of type A correspond to oriented
graphs, the case A = (2,2) corresponds to oriented graphs with blue-green
colored edges. Relational systems (of type A) will be denoted by capital
letters A, B,C,.... A relational system of type A is also called a A-system.
If A= (X, (R;; i € I)) we also denote the base set X as A and the relation
R; by Ri(A). Let A= (X,(Ri; i € I)) and B = (Y,(Si; 1 € I)) be A-
systems. A mapping f : X — Y is called a homomorphism if for each i € I
holds: (z1,...,zs) € R; implies (f(z1),..., f(zs,)) € Si.

In other words a homomorphism f is any mapping F' : A — B which
satisfies f(Ri(A)) C Ri(B) for each i € I. (Here we extended the definition
of f by pUtting f(xly . .,ZE{,) = (f('rl)7 R f(xt)) )

For A-systems A and B we write A — B if there exists a homomorphism
from A to B. Hence the symbol — denotes a relation that is defined on the
class of all A-systems. This relation is clearly reflexive and transitive, thus
induces a quasi-ordering of all A-systems. As is usual with quasi-orderings,
it is convenient to reduce it to a partial order on classes of equivalent objects:
Two A-systems A and B are called homomorphically equivalent if we have
both A — B and B — A; we then write A ~ B.

The relation — induces an order on the classes of homomorphically
equivalent A-system, which we call the homomorphism order and we denote
it again by C (suppressing type A which will be clear from the context).
Other categorical notions which were introduced in Section 1 are defined
analogously as in the case of graphs. Particularly the core of a A-system
is defined analogously as for graphs. The operations of sum, product and
exponentiation reveal the rich categorical structure of the homomorphism
order:

e The sum A+ B of A and B has the property that for any A-system
C, we have A+ B — Cifand only if A— C and B — C.

o The product Ax B of A and B has the property that for any A-system
C, we have C — A x Bifand only if C - A and C — B.

It follows that the homomorphism order is a distributive lattice. This
categorical description will be more relevant to us that the actual (i.e. inner)
description of sums and products, which is bit technical though standard.
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Some further notions for graphs and their classes may be translated to
relational systems. So we shall speak about cores, classes Forb (F), bounds,
suprema etc. for A-systems. The type A will be always properly understood
from the context. We add the following two notions which relate A-systems
and graphs:

Let A = (X, (Ri; i € 1)) be a A-system. The graph-shadow of A is the
graph (X, E) where zy € FE providing there exists ¢ € I and (z,,...,2¢) € R;
such that z = z, and y = = for distinct indices a # b. The graph shadow of
A will be denoted sh(A). Note that sh(A) may have loops. We say that A-
system A is connected if its shadow sh(A) is connected. Alternatively, A is
connected if it cannot be written as a sum B + C. Degree of a vertex x € A
is the degree of = in sh(A). (This may sound as slightly unusual definition
but we are interested in bounded degrees of A- systems for a fixed type A
and thus our definition suffices.)

Given A-system A = (X, (Ri; 1 € I)) we also define incidence graph
Inc (A) as the bipartite graph (X Ui Ri, E) whereze € Eiffz € e € R;
for some ¢ € I. Here we denoted by » ;.; R; the disjoint union of sets
Ri; 1€ 1.

3. BOUNDED DEGREES

Let type A be fixed throughout this section. Denote by Ay the class of all
A-systems A with maximal degree < d. For a finite set F = {F,..., Ft}
of connected graphs denote also Ag(F) the class of all A-systems A € Ay
with F; -» G for i =1,...,t. Thus Ay(F) = Ag N Forb (F).

Celebrated Brooks theorem states that while K441 is a bound (and
indeed greatest element) of the class (2), by forbidding Ky, this may be
improved to a better bound K. It follows that K4y fails to be supremum
of the class (2),({Kat+1}) (which here means just graphs). This is not
an accident and a similar statement holds in general thus yielding a whole
hierarchy of Brook’s type bounds.

We say that a A is a proper supremum of a class K of A-systems if A is
supremum and 4 ¢ K (as we arc working with cquivalence classes the later
condition of course means that A ~ B for every A-system B € K). The
following is the main result of this section:
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Theorem 3.1. The class Ay(F) has no proper suprema for any d > 1 and
any finite set F of connected A-systems.

Motivated by the above interpretation of Brooks theorem Theorem 3.1
means that one cannot hope to prove the “best Brooks-type” bound. We
shall later see that this statement is in a sharp contrast with properties of
all structures and even of classes of d-degenerated graphs (see Section 3).

Advancing the proof of Theorem 3.1 we state first the following easy:

Lemma 3.2. Let B, B’ be bounds of a class K of A-systems. Then B x B’
is also a bound.

The key of the proof of Theorem 3.1 is the following construction which
extends [3, 8]:

Proposition 3.3. The class Ay(F) has a bound B € Forb (F).

Proof. Put F = {F},..., Fi}, let D denotes the maximal size of F;,i € I
and let 0 denotes maximal §;; 7 € I (i.e. the maximal arity of relation in
our A—systems). Put @ = dD and b = d***!. Let A= (X, (Ri; i€ 1)) €
A4(F). By our assumption all vertices of X have degree < d. Consider the
(auxiliar) graph defined by zy € E iff the distance of z and y in sh(A) is
at most 2a. It follows that that the graph (X, E) has all vertices of degree
< b and thus it may be properly colored by b colors. For the shadow graph
sh(A) this in turn means that there exists a coloring ¢ : X — {1,...,b}
such that any two vertices z, z of sh(A) at distance at most a get different
color. Particularly any subgraph of sh(A) induced by all vertices of sh(A)
at distance at most a from a fixed vertex is colored by distinct colors only.
This property may be used for a construction of a bound C € Forb (F):

(A 2a—ball is a A-structure A together with a fixed vertex r such that
all other vertices of A have distance < 2a from 7 in sh(A).)

The vertices of C are all 2a-balls (B,r) € Ay(F) where B C {1,...,b}.
We put ((Bi,71),-..,(Bs;,7s,)) € Ri(C) iff the following holds (for every
i€ I):

i (r1,...,75,) € Ry(Bj) forall j =1,...,4;.

i1. For any j,1 < j < ¢; all the vertices of B; of distance < a from r;
belong as well to any other By, 1 < j' < 6;;

Clearly C is a A-system. We already indicated all the essential fact

which yield that C is a bound of the class Ay(F): Given asystem A € Ay(F)
and a mapping ¢ : X — {1,...,b} as above we simply define the mapping
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f : X — B by putting f(z) = c(Baq, ) where (Byg, z) is the 2a—ball in A
induced by all vertices of distance < 2a from z and by ¢(Bag, x) we denoted
its image by the map ¢ (i.e. isomorphic copy of (Ba,, ) induced on the set
{c(y); y € By, })- It follows from conditions i. that f is a homomorphism
A—-C.

Now we prove that C' € Forb (F). Towards this end let f : FF— C be a
homomorphism for an F € F. Put F = {uy,...,u} and f(u;) = (4;,75).
According to the definition each of the vertices u; has distance < D from
u; and thus each of the vertice r1,...,7; is reached from 71 by a walk of
length < dD. According to the ii. we get that {ry,...,r¢} is a subset of
A, and thus (by 7. of the definition of edges of C) we get that f induces a
homomorphism F' — A; which is a contradiction. m

The statement of Theorem 3.1 will be proved in the following more
technical form:

Theorem 3.4. Let F be a finite set of connected A-structures. Let C' be a
bound for the class Ay(F), C & Ay(F). Then there exists a bound C' for
Ay(F) with C' < C.

Proof. In the situation of Theorem 3.4 let C' be a bound. If C' is connected
than we can consider the system F U {C} = F'. It is easy to see that
Forb (F) = Forb (F') and using Proposition 3.3 there exists a bound C" of
Ag4(F') in Forb (F'). But then obviously ¢’ < C.

Thus assume that C is a disconnected core. Let K be a component of C
such that K ¢ Ay(F). As before put F U {K} = F'. Applying Proposition
3.3 and Lemma 3.2, there exists a A-system C’ such that C’ is a bound
of Ag(F'), C'" € Forb (F'), and C' < C. But the definition of F' in fact
implies C’ < C. Thus it suffices to prove that C” is also a bound for the class
Ag(F). In fact we prove again Ag(F) = Ay(F’). One direction is clear:
Ag(F) D Ag(F') (as F C F'). In the reverse direction assume contrary: let
A€ Ag(F)\ Ag(F'). Tt is K < A < C and thus there exists a component L
of A such that K < L. Now A < C and thus K < L < K’ for a component
K' of C. However we assumed that C is a core and thus K = K’ and thus
also K = L. This is a contradiction as K ¢ Ay(F) while A and thus also

LeAy(F) m

It follows that for classes of form Ay N Forb (F) a supremum exists only
if there exists H € AgNForb (F) such that AgNForb (F) C Cy; this means
that H is the greatest elcment of Ay(F). However the structure of classes
A4 NCy is far from obvious. For example the following two problems have
been isolated;
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Problem 3.5 (Independence problem). Let d > 3. Is it true that for every
graph G € Ay, G < Ky there exists a graph G’ € Ay such that neither
G < G’ nor G' <G (i.e. graphs G and G’ are incomparable graphs in Ay)?

This problem is related to the complexity of H-colourings of bounded
degree graphs which have been studied e.g. in [5, 11].

Problem 3.6 (Pentagon problem). Does there exists an g such that any
cubic (i.e. 3-regular) graph G with girth g is homomorphic to Cs (i.e. is
Cs-colourable)?

Partial results related to this problem were obtained in [28, 10, 11, 7].
One should note that for Coy1, £ > 2, (instead of Cs) the answer is
negative.

4. DEGENERATED CLASSES OF GRAPHS

In this section we consider undirected graphs only. The degenerated graphs
are low-density graphs and as such they serve as an approximation for
coloring problems of bounded degree- and minor-restricted classes of graphs.
We shall see that their homomorphism behaviour differs very much from
these classes (which are discussed in Sections 3 and 5). Recall that a graph
G = (V,E) is said to be d-degenerated if there exists a linear ordering
vy < Vg < -+ < vy, of vertices of G such that for every 4 holds

|{’U]'; 7 <1, vjv; € E}‘ <d
Alternatively, a d-degenerated graph can be defined by the condition
5(G" <d

for every subgraph G’ of G (6(G) denotes the minimal degree of a vertex
of G). (Yet another way is to define d-degenerated graphs by the hereditary
edge-density.)

The class DEG) is just the class of all forests. For d > 1 these classes
are more interesting. Similarily as in the previous section we denote by
DEG4(F) the class of all d-degenerated graphs which belong to the class
Forb (F). While these definitions are formally similar the extremal proper-
ties of these classes are strikingly different.
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Theorem 4.1. Let d > 2. Then the following holds:
i. K441 is the greatest graph in DEG.

it. For every finite set F of non-bipartite connected graphs the class
DEGy(F) has supremum Kg41.

Corollary 4.2. For any d > 2 and any proper subclass DEG4(F) of
Ay (where F is a finite set of non-bipartite connected graphs) the class
DEGy(F) fails to be bounded by an F-free graph.

Note that for sets F which contain a bipartite graph the situation is
much simpler and different - K is a bound.

Proof. Clearly it suffices to prove . Let d > 2 and F be as assumed.
Let F' denotes the set of all non-bipartite blocks of graphs belonging to
F. As any graph F € F contains a non-bipartite block it follows that the
class DEGy(F') is a subclass of the class DEG4(F). Put | the maximal
number of vertices of a graph belonging to F'. Now let H be a graph,
H < K441 Put k = IV(H)I We shall construct a graph G with the
following properties:

1. G has girth > [ (and thus particularly F £ G for any F' € F' and
consequently also F' £ G for any F' € F).

2. G is d-degenerated;

3. Any homomorphic image of G with at most k vertices contains Kg1.

It follows from 3. that G £ H and thus H fails to be a bound of
DEGy(F).

The graph G will be constructed by means of Descartes-Tutte-type of
construction as follows (compare [10]):

We shall construct graphs Gi1,Go,...,Gas1; Gas1 will be the desired
graph G. Put G; = K; and G2 = K». In the induction step assume that
G; is constructed. Put IV(Gi)] = p; and let (X;4+1, Mit1) be p;-uniform
hypergraph without cycles of length < [ and with chromatic number > £ (it
exists by [4, 12]). For every M € M, take an isomorphic copy GM
of G; and assume V(GM)N X;11 = 0, V(GM)n V(GM) = 0, for all
M # M' € M;;,. Finally for every M € M;;; fix a bijection 77%—1 :
V(GM) — M. Define the graph Git1 = (Viy1, Ei1) as follows:

Visr = Xi1 U U (V(GzMﬁ M € Miy1)

Ein1 = (BGM); M € Miyy) U {oml(v); vE V(GM), M € My}
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Git+1 does not contain cycles of length < [ (in fact, by our choice of
G; and Gj it does not contain cycles of length < 3I; we do not optimize
here). We also prove by induction for 7 = 1,2,...,d + 1 that G; is an
(i — 1)-degenerated graph. In the induction step assume that G; has an
(1 — 1)-degenerated ordering. For V(Gjt+1) choose such an ordering which
satisfiles £ < v for all z € X;41 and v € V(G{”) and coincides on any
set V(GM) with (i — 1)-degenerated ordering (of GM). Clearly this is an
i-degenerated ordering of G4 1.

Finally, let f : V(Gy4+1) — H be a homomorphism, |V(H)| < k. By
the downward induction for j = d + 1,d,...,1 we prove that for every j
there exists M; € M; such that f restricted to the set M; is a constant.
However this is nearly obvious as the building blocks of our construction —
the hypergraphs (Xj, M;) - have all chromatic number > k. As every M;

is joined by an edge to all vertices of V(G;wjl) we get that the homomorphic

image of G under f contains Ky 41, which is a contradiction. ®

We use properties of degenerated classes of graphs again in Section 6.

5. MINOR CLOSED CLASSES OF GRAPHS

A class of graphs K is said to be minor closed if it contains all minors
of any of its member. We say that K is proper if it does not contain all
graphs. Note that all graphs in a proper minor closed class of graphs are
d-degenerated for a d = d(K) (by Mader’s Theorem). Consequently any
minor closed class of graphs is bounded (in C). However extremal graphs
are much more difficult for minor closed classes then for bounded degree and
d-degenerated classes. One of the few general results was obtained recently
[20] as a culmination of previous efforts [17, 18, 19]. It is the analogy of
Theorem 3.1 (for minor closed classes instead of classes of bounded degrees):

Theorem 5.1. Let K be any proper minor closed class of graphs. Let F
be a finite set of connected graphs. Then the class Forb (F) N K (of all F-
free graphs from K) is bounded by a graph from Forb (F) (i.e. by a F-free
graph).

Explicitly, there exists a graph H = H(F,K) with the following prop-
erties:

i. F £ H for every F € F;
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it. G < H for any G € K N Forb (F).

Additionally we may assume that the chromatic number of H is equal
to the maximal chromatic number of a graph in K.

The proof of this statement is presently not easy and in fact the proof
does not yield an explicite bound H. Let us just remark that Theorem
5.1 (and its special case proved already in [19]) implies that the Grotzsch’s
theorem (which asserts that K3 is a bound for all triangle-free planar graphs)
does not yield the best bound: By virtue of Theorem 5.1 there exists a bound
H satisfying H < K3. The bounds for minor closed classes are related to the
Hadwiger conjecture which we state in three ways: i. is the usual formulation
and 7i. is a formulation in the spirit of this paper. We also add a localised
version 4#1. of 74.. (A class of graphs is said to be principal ideal in the minor
order if the class consists from minors of a graph.)

Conjecture 5.2 (Hadwiger).

i. For every graph G holds x(G) < h(G) where h(G) is the maximal
complete graph which is a minor of G.

ii. Any proper minor closed class K of graphs has the greatest element
which is a complete graph.

iii. Any principal ideal of the minor quasiorder has greatest graph in
the homomorphism order and it is a complete graph.

iv. Any principal ideal of the minor quasiorder has greatest graph in the
homomorphism order.

It is easy to see that the first three forms of Hadwiger conjecture are
indeed equivalent: ii. = i. holds as for any graph G we can apply i. to
the corresponding principal ideal. If H is the greatest element of K then

x(G) < x(H) and thus 7. implies x(G) < h(G).

Converesely, assume i. and let K be a proper minor closed class. Let
H be a graph in K with the maximal chromatic number, put k = x(H).
Then K is bounded by K}, and by 4i. applied to the graph H we know that
K € K. The equivalence of i. and iii. follows similarly. The equivalence of
i. and iv. was recently (independently) observed by Ossona de Mendez and
author [19] and by Nasseraser and Nigussie [15]; see also [9].

In view of results of the previous two sections perhaps one could consider
the following weaker problems:

Does a proper minor closed class of graphs has a greatest element?

Does a proper minor closed class of graphs has a supremum?
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At some instances these weaker forms are more accessible and true.
However in the full generality there is an evidence that they are as difficult as
the Hadwiger conjecture. We formulate this more precisely in the following
statement. We say that a proper minor closed class K is connected if it is
determined by a set of connected forbidden minors. We then have

Proposition 5.3. For every connected proper minor closed class K are the
following three statements equivalent:

1. Hadwiger conjecture holds for K;
i1. K has a greatest element (in the coloring order C);

i13. K has a supremum (in the coloring order C).

Proof. Clearly i. implies both . and ¢i.. The equivalence of 4. and 7. is
a recent result of Nasseraser and Nigussie [15] and of [19]. We prove that
iti. implies i.. This will follow from the following which is perhaps of an
independent interest:

Claim. Every connected proper minor closed class K does not have a proper
supremum (in C).

We show that this is a consequence of Theorem 5.1: Assume contrary,
let H be a proper supremum of K, let K be a connected component of
H, K ¢ K. (K exists as K is a connected minor closed class). Put
K' = KN Forb ({K}). According to Theorem 5.1 there exists an K-free
bound H' of K" with H' < H. But then of course H' < H. It remains to
check that H' is also a bound for K. However K = K'. (This is similar to the
proof of Theorem 3.4: Assume there exists G € K\ K, by our assumptions
we may assume that G is connected. However then K < G < H but the
only possibility for the second inequality is G < K. Thus K ~ G and K € K
a contradicion.)

Let us also note that by Theorem 5.1 any proper minor closed class of
graphs is bounded by a graph H with clique number w(H) = h(K) where
h(K) is the largest clique contained in K which may be interpreted as yet
another approximation to Hadwiger conjecture.

Another interpretation of restricted extrema for classes of graph is by
means of cuts which are defined as follows:

Let K be a class of graphs. A finite subset C of K is said to be a cut if
for every graph G € K there exists a graph H € C such that either G < H
or H < G and C is minimal with this property. In the other words a set
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C is a cut if any graph in K is comparable with at least one element of C.
If |C| = 1 then C is called 1-cut. It is easy to see that {K;} and {K>} are
the only finite minimal cuts for the class of all (undirected) graphs. This
we state in the following form as

Theorem 5.4. Let G1,Go,...,G; be a set of non-bipartite graphs. Then
there exists a graph G such that G and G;, i = 1,2,...,t are incomparable.

Proof. Let | denotes the maximal number of vertices of graphs G;, i =
1,2,...,t. It suffices to consider any graph G with x(G) > [ and with the
girth > 1. m

In this context one should also mention the following result for countable
graph proved recently in [22]:

Theorem 5.5. K1, Ko and the infinite complete graph K, are the only
minimal 1-cuts for the class of all countable graphs.

As opposed to the finite case countable graphs allow finite cuts of any
size. And contrary to the 1-cuts, the minimal cuts of size t > 1 are abundant:

Theorem 5.6. For every t > 1 there are (for countable graphs) infinitely
many minimal cuts each of size t.

Proof. Let t > 1 be fixed. Let F}, F,...,F;_; be finite connected graphs
which are pairwise incomparable in C. We can use Theorem 5.4, a random
(t — 1)-tuple of graphs will do as well. Now we can apply a result of
[2] which gives the existence of a countable graph H which is universal
for the class Forb (Fy, Fy, ..., Fi_1) (when considered as the class of all
countable graphs). Explicitly: H is a graph such that Fj ¢ H for every
i=1,...,t —1 and if G is a countable graph satisfying F; £ G for every
i=1,...,t—1 then G is an induced subgraph of H. However then the set
C = {F,F,,...,F,_1,H} is obviously a cut in the class of all countable
graphs. It is also easy to check that C is a minimal cut. =

This proof is perhaps more interesting than the statement of Theorem
5.6: presently there are no other known minimal cuts for infinite graphs.
This suggest the following problem (which is also supported by some results
for oriented graphs (see Section 4):

Problem 5.7. Is it true that any minimal cut of size at least 2 for the class
of all countable graphs contains always a finite graph?
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6. BOUNDS, SUPREMA AND DUALITIES FOR FINITE STRUCTURES

In the previous two sections we considered undirected graphs only. It is
a special feature of this area that there is a big gap between directed and
undirected graphs. We briefly review some recent results for directed graph
which are relevant to the context of this paper. At the end we return to the
A-systems and prove some analogous results for this case.

First we consider classes Forb (F) (of all directed graphs G which do
not contain any F' € Forb(F) with F < G). While for the undirected
graphs these classes are bounded in trivial instances only for directed graphs
we have a much richer an interesting spectrum of results. Recall that an
oriented graph G is said to be balanced iff every cycle in G has the same
number of forwarding and backwarding arcs. In terms of homomorphisms
this is the same as to say that there exists a homomorphism G — P, where
P, is the directed path of length n (i.e. with n+ 1 vertices). For a balanced
graph G we also put al(G) = min {n; G — B,} (algebraic length of G).

We start with the following:

Theorem 6.1. For a finite set F of graphs the following statements are
equivalent:

i. The class Forb (F) is bounded;
1. At lest one of the graphs F' € F is balanced.

Proof. This is yet another version of sparse high chromatic graphs. ii.
implies i. as the chromatic number of graphs in Forb (F) is bounded by
1 + al(F) for a balanced FF € F. Conversely, suppose that no F € F
is balanced. Alternatively we know that any homomorphic image of any
F € F contains a cycle. Consider any orientation G of a high chromatic
graph G without short cycles. It follows that G € Forb (F) and thus there
is no bound for this class. =

The characterization of classes of form Forb (F) with a greatest element
is a more difficult result:

Theorem 6.2. For a finite set F of graphs the following statements are
equivalent:
i. The class Forb (F) has greatest element;

1. ' € F is a set of oriented trees.
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Theorem 6.2 is proved in [23] in a different context which we now outline:
Let F = {F, Fy,...,F;} be a finite set of graphs and suppose that H is
the greatest element of the class Forb (F). These facts may be expressed
equivalently by the validity of the following statement:

For every graph G holds

FF»G, i1=1...,t & G- H.

Such statement is called a Homomorphism Duality. H is called the dual
of the set {F,..., F;} (up to the homomorphism equivalence the dual is
uniquely determined). The main result of [23] characterizes all finite sets of
graphs which have dual graph — these are just sets of finite trees (and sets
which are homomorphically equivalent to them).

Let us remark that Theorem 6.2 may be seen as characterization of
all Gallai-Roy-Vitaver (and Hasse) - type theorems. (Gallai-Hasse-Roy—
Vitaver theorem corresponds to the case F = {ﬁn} In this case the dual
graph is the transitive tournament with n vertices.) This point of view is
taken in [24].

Let us finally discuss the existence of suprema for the classes Forb (F).
Here we have also a full solution which is perhaps surprising (and combines
several techniques described above):

Theorem 6.3. For a finite set F of connected graphs the following state-
ments are equivalent:

i. The class Forb (F) has supremum;

ii. At least one of the graphs F € F is balanced.

In the other words every bounded class Forb (F) of oriented graphs has
a supremum.

Proof. Clearly it suffices to prove . = i. Put F = {F1, Fy, ..., Fi}. Denote
also by F' the class of all homomorphic images of graphs F; which are trees.
F'is a non-empty set. Consider the class Forb (¥') and let H = Hz: be the
greatest element of Forb (F') (i.e. H is the dual of F'). We prove that H is
supremum of Forb (F). Clearly Forb (F) is a subclass of Forb (¥') and thus
G < H for every G € Forb (F). Now suppose that A is a graph satisfying
A < H; let k be the number of vertices of A. Let G be the graph with the
following properties:

1. G — H;

2. G-» A;
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3. G does not contain cycles of length < k.

The existence of graph G will not be proved here as it follows from
(oriented version of) Sparse Incomparability Lemma which has been isolated
in several papers, see e.g. [21, 25, 16]. It suffices to prove that G € Forb (F).
(This shows that A is not a bound of Forb(F) and thus H is indeed
supremum of the class Forb (F).) Assume contrary: let f : F; — G. The
homomorphic image f(F;) has at most k vertices and thus it induces a tree
in G. Therefore f(F;) € F'. It follows that also G ¢ Forb (F’) and thus (by
homomorphism duality) G -» H. This is a contradiction. m

At the end of this paper let us return to the general A-systems.

Let A = (;; © € I) be a fixed type, assume without loss of generality (of
this section) that §; > 2. A special role is played by the following A-system:
all-loop system is the system L where L = {1} and R;(L) = { (1,..., 1)} for
every i € I (the all-loop system will be always denoted by L). The all-loop
system is the only (up to homomorphism equivalence) absolute retract for
A-systems:

Proposition 6.4. A ~ L if and only if A contains L as a subsystem.

We say that a class K is bounded if there exists a A-system C ~ L such
that A < C for every A € K. Which classes K are bounded? This is a non-
trivial question even for finite undirected graphs (see e.g. problems stated in
[6, 11]). We can completely solve these questions for classes Forb (F) where
F is a finite set of connected A-systems. We shall need a generalization
of a balanced graph: We say that a A-system A = (X,(Ri; ¢ € I )
is balanced if it is homomorphic to a A-tree. (Recall, A is said to be a
tree if its incidence system Inc(A) is a tree. (Clearly for oriented graphs
both definitions coincide. One can devise also more explicite definition of a
balanced A-system but this will not be needed.)

Theorem 6.5. For a finite set F of A-systems the following statements are
equivalent:

i. The class Forb (F) is bounded;
1. At least one of the systems F € F is balanced.

Proof. i. implies 7i. similarly as in the proof of Theorem 6.1: Suppose
contrary, let every F' € F be an unbalanced A-system. Put n = max { |EJ;
FeF } and let the class Forb (F) be bounded by a system B with N
vertices. Denote by k the sum of all é;,7 € I, and consider a k-uniform
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hypergraph (X, M) with chromatic number > N not containing cycles with
at most n vertices. Modify (X, M) to a A-system A = (X,(R;; i € I))
by inserting for every edge M € M a collection of |I| mutually disjoint §;-
tuples, i € I. Clearly A -» B (as any homomorphism f : A — C toaa
system C with at most N points implies that C contains an all-loop). On
the other hand any subsystem of A with at most n points is necessarily a
system without cycles. Thus A € Forb (F), a contradiction.

Conversely assume that the class Forb (F) is unbounded. We use the
following family K (A, X,ig) of complete systems as our scale class: the
vertices of K = K (A, X,ip) is the set X and R;(K) = X% for all i # i
while R, (K) = X% \ {(z,...,2); = € X}. (Le. Riy(K) is the set of all
non-constant &;,-tuples). For X = {1,2,..., N} we put briefly K(N,) for
K(A, X,i). None of the systems K(N,1) is a bound of Forb (F). Thus for
every N, i there exists a A-system Any) € Forb (F) such that Ay ;) -
K(N,i). This implies that the shadow graph sh(A( N,i)) has chromatic
number > N but we shall need more. Let i € I be fixed. Fix two indices
1<a<b<é. By Ay (a,b) denote the oriented graph (X, Eqp) where
E, ; consists from all pairs (24, 2;) which appear in a d;-tuple (21,...,25,) €
Ri(A(n,))- It follows from A(y; - K(N,i) that x(A(N,i)(a,b)) > N.
From this follows that the graph Ay (a,b) fails to be degenerated and thus
it contains a subgraph with all out- and in-degrees > N/2. As N was
arbitrary we can repeat this argument and find (for every n) a subsystem
A of A( N(n).) for which all the graphs A’(a,b) have large in- and out-
degrees. We then repeat this argument for all ¢ € I. This may be then used
to find any A-tree with at most n vertices. Particularly, every balanced
F € F will for some A satisfying A - K(N,1), i € I, satisfy F' — A which
is again a contradiction. m

It is important that the main result of [23] solves the existence of greatest
elements in classes of type Forb (F) and this in turn can be used to char-
acterize those classes Forb (F) of A-structures which have suprema. We
combine these statement to a single statement:

Theorem 6.6.
1. For a finite set F of graphs the following statements are equivalent:

i. The class Forb (F) has greatest element;
it. F € F is a set of A-trees.

I1. For a finite set F of connected graphs the following statements are
equivalent:
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i. The class Forb (F) has supremum;
i1. At least one of the graphs F' € F is balanced.

As our above proofs were categorical we can use general results of [23]
and proceed analogously. We omit the details.

7. SUMMARY AND CONCLUDING REMARKS

The purpose of this paper is to initiate the study of graph bounds in a
homomorphism and partial order setting. From this point of view greatest
elements and suprema present tight bounds (which cannot be “improved”).
We have proved (Theorems 6.6) that classes which are defined by forbidden
homomorphisms from a finite set of connected systems have suprema if
and only if they are bounded. On the other hand the same classes when
relativized by small degrees are bounded but do not have suprema at all
(with a few isolated cases; see Theorem 3.1). Similar negative results
were obtained for minor closed classes. This is in a sharp contrast with
the situation for degenerated graphs where suprema are easy to describe
(and they form a chain). This perhaps sheds some light on questions like
Hadwiger conjecture which can be expressed in the same vein. Most of
the questions, theorems and proofs considered in this paper can be carried
over to more general situations. This provides a connection with universal
algebra and model theory. We hope to return to this in near future.

What we propose here is a global approach to extremal-theory esti-
mates (such as bounds for chromatic number) by means of coloring (homo-
morphism) order. We studied some local properties of the coloring order
(such as suprema and greatest elements). To present a good bound (i.e.
supremum) for a class of graphs is equivalent to finding a smallest finite ho-
momorphism universal graph. Whether this hom-universal graph can have
the same local properties as the class itself is one of the central questions
of this paper. We gave instances with both positive and negative answer.
A satisfactory solution we could provide for classes which are defined by
finitely many homomorphism obstructions. We relativized these results by
bounded degree-, degeneracy- and minor closed-restrictions. This leads to
some seemingly difficult problems but it also shows how these questions are
relevant and that global structure of colorings can capture some of the key
combinatorial conjectures.
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RELAXING PLANARITY FOR TOPOLOGICAL GRAPHS

J. PACH, R. RADOICIC and G. TOTH*

According to Euler’s formula, every planar graph with n vertices has at most
O(n) edges. How much can we relax the condition of planarity without violating
the conclusion? After surveying some classical and recent results of this kind, we
prove that every graph of n vertices, which can be drawn in the plane without
three pairwise crossing edges, has at most O(n) edges. For straight-line drawings,
this statement has been established by Agarwal et al., using a more complicated
argument, but for the general case previously no bound better than O(n®/?) was
known.

1. INTRODUCTION

A geometric graph is a graph drawn in the plane so that its vertices are
represented by points in general position (i.e., no three are collinear) and
its edges by straight-line segments connecting the corresponding points.
Topological graphs are defined similarly, except that now each edge can be
represented by any simple (non-selfintersecting) Jordan arc passing through
no vertices other than its endpoints. Throughout this paper, we assume
that if two edges of a topological graph G share an interior point, then at
this point they properly cross. We also assume, for simplicity, that no three
edges cross at the same point and that any two edges cross only a finite
number of times. If any two edges of G have at most one point in common
(including their endpoints), then G is said to be a simple topological graph.

*Janos Pach has been supported by NSF Grant CCR-00-98245, by PSC-CUNY Re-
search Award 63352-0036, and by OTKA T-032458. Géza Téth has been supported by
OTKA-T-038397 and by an award from the New York University Research Challenge
Fund.
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Clearly, every geometric graph is simple. Let V(G) and E(G) denote the
vertex set and edge set of G, respectively. We will make no notational
distinction between the vertices (edges) of the underlying abstract graph,
and the points (arcs) representing them in the plane.

It follows from Euler’s Polyhedral Formula that every simple planar
graph with n vertices has at most 3n — 6 edges. Equivalently, every topo-
logical graph with n vertices and more than 3n — 6 edges has a pair of
crossing edges. What happens if, instead of a crossing pair of edges, we
want to guarantee the existence of some larger configurations involving sev-
eral crossings? What kind of unavoidable substructures must occur in every
geometric (or topological) graph G having n vertices and more than Cn
edges, for an appropriate large constant C > 07

In the next four sections, we approach this question from four different
directions, each leading to different answers. In the last section, we prove
that any topological graph with n vertices and no three pairwise crossing
edges has at most O(n) edges. For simple topological graphs, this result
was first established by Agarwal-Aronov-Pach-Pollack-Sharir [1], using a
more complicated argument.

2. ORDINARY AND TOPOLOGICAL MINORS

A graph H is said to be a minor of another graph G if H can be obtained
from a subgraph of G by a series of edge contractions. If a subgraph of
G can be obtained from H by replacing its edges with independent paths
between their endpoints, then H is called a topological minor of G. Clearly,
a topological minor of G is also its (ordinary) minor.

If a graph G with n vertices has no minor isomorphic to Ks or to
K33, then by Kuratowski’s theorem it is planar and its number of edges
cannot exceed 3n — 6. It follows from an old result of Wagner that the same
conclusion holds under the weaker assumption that G has no K5 minor. A
few years ago Mader [16] proved the following famous conjecture of Dirac:

Theorem 2.1 (Mader). Every graph of n vertices with no topological K
minor has at most 3n — 6 edges.

If we only assume that G has no topological K; minor for some 7 > 5,
we can still conclude that G is sparse, i.e., its number of edges is at most
linear in n.



Relaxing Planarity for Topological Graphs 287

Theorem 2.2 (Komlés-Szemerédi [10], Bollobds-Thomason [4]). For any
positive integer r, every graph of n vertices with no topological K, minor
has at most cr’n edges.

Moreover, Komlds and Szemerédi showed that the above statement is
true with any positive constant ¢ > 1/4, provided that r is large enough.
Apart from the value of the constant, this theorem is sharp, as is shown by
the union of pairwise disjoint copies of a complete bipartite graph of size
roughly r2.

We have a better bound on the number of edges, under the stronger
assumption that G has no K, minor.

Theorem 2.3 (Kostochka [11], Thomason [31]). For any positive integer
r, every graph of n vertices with no K, minor has at most cr/logrn edges.

The best value of the constant ¢ for which the theorem holds was as-
ymptotically determined in [33]. The theorem is sharp up to the constant.
(Warning! The letters ¢ and C' used in several statements will denote unre-
lated positive constants.)

Reversing Theorem 2.3, we obtain that every graph with n vertices and
more than crv/logrn edges has a K, minor. This immediately implies that
if the chromatic number x(G) of G is at least 2cry/logr + 1, then G has
a K, minor. According to Hadwiger’s notorious conjecture, for the same
conclusion it is enough to assume that x(G) > r. This is known to be true
for 7 < 6 (see [28]).

3. QUASI-PLANAR GRAPHS

A graph is planar if and only if it can be drawn as a topological graph with
no crossing edges. What happens if we relax this condition and we allow r
crossings per edge, for some fixed r > 07

Theorem 3.1 [25]. Let r be a natural number and let G be a simple
topological graph of n vertices, in which every edge crosses at most r others.
Then, for any r < 4, we have ‘E(G)| <(r+3)(n-2).

The case 7 = 0 is Euler’s theorem, which is sharp. In the case r = 1,
studied in [25] and independently by Gértner, Thiele, and Ziegler (personal
communication), the above bound can be attained for all n > 12. The result



288 J. Pach, R. Radoi¢i¢ and G. Téth

is also sharp for r = 2, provided that n = 5 (mod 15) is sufficiently large
(see Fig. 1).

Fig. 1

However, for r = 3, we have recently proved that | E(G)| < 5.5(n — 2),
and this bound is best possible up to an additive constant [23]. For very
large values of r, a much better upper bound can be deduced from the
following theorem of Ajtai-Chvatal-Newborn-Szemerédi (2] and Leighton
[14]: any topological graph with n vertices and e > 4n edges has at least
constant times e3/n? crossings.

Corollary 3.2 [23]. Any topological graph with n vertices, whose each
edge crosses at most r others, has at most 4/rn edges.

One can also obtain a linear upper bound for the number of edges of
a topological graph under the weaker assumption that no edge can cross
more than 7 other edges incident to the same vertez. This can be further
generalized, as follows.

Theorem 3.3 [20]. Let G be a topological graph with n vertices which
contains no r + s edges such that the first r are incident to the same vertex
and each of them crosses the other s edges. Then we have |E (G)| < Cyrn,
where C; is a constant depending only on s.

In particular, it follows that if a topological graph contains no large
gridlike crossing pattern (two large sets of edges such that every element
of the first set crosses all elements of the second), its number of edges is at



Relaxing Planarity for Topological Graphs 289

most linear in n. It is a challenging open problem to decide whether the
same assertion remains true for all topological graphs containing no large
complete crossing pattern.

For any positive integer r, we call a topological graph r-quasi-planar if
it has no r pairwise crossing edges. A topological graph is z-monotone if
all of its edges are z-monotone curves, i.e., every vertical line crosses them
at most once. Clearly, every geometric graph is z-monotone, because its
edges are straight-line segments (that are assumed to be non-vertical). If
the vertices of a geometric graph are in convex position, then it is said to
be a conver geometric graph.

Theorem 3.4 [7]. The maximum number of edges of any r-quasi-planar
convex geometric graph with n > 2r edges is

2(r — 1)n — (”2_ 1).

Fig. 2. Construction showing that Theorem 3.4 is sharp (n = 13, r = 4)

Theorem 3.5 (Valtr [34]). Every r-quasi-planar z-monotone topological
graph with n vertices has at most C,nlogn edges, for a suitable constant
C, depending on .
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Theorem 3.6 [24]. For any r > 4, every r-quasi-planar simple topological

)2(T—3)

graph G with n vertices has at most C,n(logn edges, for a suitable

constant C, depending only on r.

In Section 6, we will point out that Theorem 3.6 remains true even if we
drop the assumption that G is simple, i.e., two edges may cross more than
once.

For 3-quasi-planar topological graphs we have a linear upper bound.

Theorem 3.7 [1]. Every 3-quasi-planar simple topological graph G with
n vertices has at most Cn edges, for a suitable constant C.

In Section 7, we give a short new proof of the last theorem, showing that
here, too, one can drop the assumption that no two edges cross more than
once (i.e., that G is simple). In this case, previously no bound better than
O(n®/?) was known. Theorem 3.7 can also be extended in another direction:
it remains true for every topological graph G with no r 4 2 edges such that
each of the first r edges crosses the last two and the last two edges cross
each other. Of course, the constant C in the theorem now depends on r [22].

All theorems in this section provide (usually linear) upper bounds on
the number of edges of topological graphs satisfying certain conditions. In
each case, one may ask whether a stronger statement is true. Is it possible
that the graphs in question can be decomposed into a small number planar
graphs? For instance, the following stronger form of Theorem 3.7 may hold:

Conjecture 3.8. There is a constant k such that the edges of every 3-quasi-
planar topological graph G can be colored by k colors so that no two edges
of the same color cross each other.

McGuinness [18] proved that Conjecture 3.8 is true for simple topological
graphs, provided that there is a closed Jordan curve crossing every edge
of G precisely once. The statement is also true for r-quasi-planar convex
geometric graphs, for any fixed r (see [12], [13]).

4. GENERALIZED THRACKLES AND THEIR RELATIVES

Two edges are said to be adjacent if they share an endpoint. We say that a
graph drawn in the plane is a generalized thrackle if any two edges meet an
odd number of times, counting their common endpoints, if they have any.
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That is, a graph is a generalized thrackle if and only if it has no two adjacent
edges that cross an odd number of times and no two non-adjacent edges that
cross an even number of times. In particular, a generalized thrackle cannot
have two non-adjacent edges that are disjoint. Although at first glance this
property may appear to be the exact opposite of planarity, surprisingly, the
two notions are not that different. In particular, for bipartite graphs, they
are equivalent.

Theorem 4.1 [15]. A bipartite graph can be drawn in the plane as a
generalized thrackle if and only if it is planar.

Using the fact that every graph G has a bipartite subgraph with at least
IE (G)| /2 edges, we obtain that if a graph G of n vertices can be drawn as
a generalized thrackle, then |E (G)| = O(n).

Theorem 4.2 (Cairns-Nikolayevsky [6]). Every generalized thrackle with
n vertices has at most 2n — 2 edges. This bound is sharp.

Fig. 8. A generalized thrackle with n vertices and 2n — 2 edges

A geometric graph G is a generalized thrackle if and only if it has no
two disjoint edges. (The edges are supposed to be closed sets, so that two
disjoint edges are necessarily non-adjacent.) One can relax this condition by
assuming that G has no r pairwise disjoint edges, for some fixed r > 2. For
r = 2, it was proved by Hopf-Pannwitz [9] that every graph satisfying this
property has at most n edges, and that this bound is sharp. For r = 3, the
first linear bound on the number of edges of such graphs was established by
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Alon-Erdés [3], which was later improved to 3n by Goddard-Katchalski-
Kleitman [8]. For general r, the first linear bound was established in [26].
The best currently known estimate is the following:

Theorem 4.3 (Té6th [32]). Every geometric graph with n vertices and no
r pairwise disjoint edges has at most 2°(r — 1)2n edges.

It is likely that the dependence of this bound on 7 can be further
improved to linear. If we want to prove the analogue of Theorem 4.3 for
topological graphs, we have to make some additional assumptions on the
structure of G, otherwise it is possible that any two edges of G cross each
other.

Conjecture 4.4 (Conway’s Thrackle Conjecture). Let G be a simple
topological graph of n vertices. If G has no two disjoint edges, then

|E(G)| <n.

For many related results, consult [15], [6], [35]. The next interesting
open question is to decide whether the maximum number of edges of a
simple topological graph with n vertices and no three pairwise disjoint edges

is O(n).

5. LOCALLY PLANAR GRAPHS

For any r > 3, a topological graph G is called r-locally planar if G has
no selfintersecting path of length at most r. Roughly speaking, this means
that the embedding of the graph is planar in a neighborhood of radius r/2
around any vertex. In [21], we showed that there exist 3-locally planar
geometric graphs with n vertices and with at least constant times nlogn
edges. Somewhat surprisingly (to us), Tardos [30] managed to extend
this result to any fixed 7 > 3. He constructed a sequence of r-locally
planar geometric graphs with n vertices and a superlinear number of edges
(approximately n times the |r/2] times iterated logarithm of n). Moreover,
these graphs are bipartite and all of their edges can be stabbed by the same
line.

The following positive result is probably very far from being sharp.

Theorem 5.1 [21]. The maximum number of edges of a 3-locally planar
topological graph with n vertices is O(n/?).
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For geometric graphs, much stronger results are known.

Theorem 5.2 [21]. The maximum number of edges of a 3-locally planar
x-monotone topological graph with n vertices is O(nlogn). This bound is
asymptotically sharp.

For 5-locally planar z-monotone topological graphs, we have a slightly
better upper bound on the number of edges: O(nlogn/loglogn). This
bound can be further improved under the additional assumption that all
edges of the graph cross the y-axis.

Theorem 5.3 [21]. Let G be an z-monotone r-locally planar topological
graph of n vertices all of whose edges cross the y-axis. Then, we have
,E(G’)l < cern(log n)l/w‘ZJ for a suitable constant c.

6. STRENGTHENING THEOREM 3.6

In this section, we outline the proof of

Theorem 6.1. Every r-quasi-planar topological graph with n vertices has
at most

fr(n) == Cyn(logn)*r=¥
edges, where r > 2 and C, is a suitable positive constant depending on .

Let G be a graph with vertex set V(G) and edge set E(G). The bisection
width b(G) of G is defined as the minimum number of edges, whose removal
splits the graph into two roughly equal subgraphs. More precisely, b(G)
is the minimum number of edges running between V) and Vs, over all
partitions of the vertex set of G into two disjoint parts V} U V5 such that
[Vi], [Va| > | V(G)| /3. The pair-crossing number PAIR-CR (G) of a graph G
is the minimum number of crossing pairs of edges in any drawing of G.

We need a recent result of Kolman and Matousek [17], whose analogue
for ordinary crossing numbers was proved in [24] and [29)].

Lemma 6.2 (Matousek). Let G be a graph of n vertices with degrees
di,do,...,d,. Then we have

b2(G) < c(logn)? (PAIR—CR (G) + Zn: d?),
i=1

where c Is a suitable constant.



294 J. Pach, R. Radoici¢ and G. Téth

We follow the idea of the original proof of Theorem 3.6. We establish
Theorem 6.1 by double induction on 7 and n. By Theorem 7.1 (in the next
section), the statement is true for 7 = 3 and for all n. It is also true for
any > 2 and n < n,, provided that C, is sufficiently large in terms of
n,, because then the stated bound exceeds (72’) (The integers n, can be

specified later so as to satify certain simple technical conditions.)

Assume that we have already proved Theorem 6.1 for some r > 3 and
all n. Let n > n,41, and suppose that the theorem holds for 7 + 1 and for
all topological graphs having fewer than n vertices.

Let G be an (r + 1)-quasi-planar topological graph of n vertices. For
simplicity, we use the same letter G to denote the underlying abstract graph.
For any edge e € E(G), let G, C G denote the topological graph consisting
of all edges of G that cross e. Clearly, Ge is r-quasi-planar. Thus, by the
induction hypothesis, we have

| E(G)] f-(n).

PAIR-CR (G) g% Y |EG.)| 5%

e€E(G)

Using the fact that i, d? < 2|E(G)|n holds for every graph G with

=1
degrees dy,ds, .. .,d,, Lemma 6.2 implies that

b(C) < (c(logn)?| E(G)| fr(m) "

Consider a partition of V(G) into two parts of sizes ny,ny < 2n/3 such
that the number of edges running between them is b(G). Obviously, both
subgraphs induced by these parts are (r 4+ 1)-quasi-planar. Thus, we can
apply the induction hypothesis to obtain

|E(G)| € fra1(n1) + fre1(n2) +0(G).

Comparing the last two inequalities, the result follows by some routine
calculation.

7. STRENGTHENING THEOREM 3.7

The aim of this section is to prove the following stronger version of Theorem
3.7.
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Theorem 7.1. Every 3-quasi-planar topological graph with n vertices has
at most Cn edges, for a suitable constant C.

Let G be a 3-quasi-planar topological graph with n vertices. Redraw G,
if necessary, without creating 3 pairwise crossing edges so that the number
of crossings in the resulting topological graph G is as small as possible.
Obviously, no edge of G crosses itself, otherwise we could reduce the number
of crossings by removing the loop. Suppose that G has two distinct edges
that cross at least twice. A region enclosed by two pieces of the participating
edges is called a lens. Suppose there is a lens £ that contains no vertex of G.
Consider a minimal lens £’ C ¢, by containment. Notice that by swapping
the two sides of ¢, we could reduce the number of crossings without creating
any new pair of crossing edges. In particular, G remains 3-quasi-planar.
Therefore, we can conclude that

Claim 1. Each lens of G contains a vertex.

We may assume without loss of generality that the underlying abstract
graph of G is connected, because otherwise we can prove Theorem 7.1

by induction on the number of vertices. Let ej,e,...,e,—1 € E(G) be
a sequence of edges such that ej,eg,...,e; form a tree T; C G for every
1 <1< n-1. Inparticular, ej,e9,...,e,_1 form a spanning tree of G.

First, we construct a sequence of crossing-free topological graphs (trees),
Ty, Ty, ..., Tn—1. Let T} be defined as a topological graph of two vertices,
con&stmg of the single edge e; (as was drawn in G). Suppose that T} has
already been defined for some 7 > 1, and let v denote the endpoint of e;;
that does not belong to 7j. Now add to 7} the piece of ej+1 between v and
its first crosqing with 7. More precisely, follow the edge €;41 from v up to
the point v’ where it hits 7} for the first time, and denote this piece of e;41
by €;4+1. If ¥/ is a vertex of Tl7 then add v and €;4; to T; and let Tz+1 be the
resulting topological graph. If v’ is in the interior of an edge e of T;, then
introduce a new vertex at v’. It divides e into two edges, € and e”. Add
both of them to T}, and delete e. Also add v and é;,1, and let Tj41 be the
resulting topological graph.

After n — 2 steps, we obtain a topological tree T' := Tj_;, which (1) is
crossing-free, (2) has fewer than 2n vertices, (3) contains each vertex of G,
and (4) has the property that each of its edges is either a full edge, or a
piece of an edge of G.

Let D denote the open region obtained by removing from the plane
every point belonging to T. Define a conver geometric graph H, as follows.
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Fig. 4. Constructing T from T

Travelling around the boundary of D in clockwise direction, we encounter
two kinds of different “features”: vertices and edges of 7. Represent each
such feature by a different vertex x; of H, in clockwise order in convex
position. Note that the same feature will be represented by several z;’s:
every edge will be represented twice, because we visit both of its sides, and
every vertex will be represented as many times as its degree in T. It is not
hard to see that the number of vertices z; € V(H) does not exceed 8n.

Next, we define the edges of H. Let E be the set of edges of G\T. Every
edge e € E may cross T at several points. These crossing points divide e
into several pieces, called segments. Let S denote the set of all segments of
all edges e € E. With the exception of its endpoints, every segment s € S
runs in the region D. The endpoints of s belong to two features along the
boundary of D, represented by two vertices z; and z; of H. Connect z;
and z; by a straight-line edge of H. Notice that H has no loops, because
if ; = x;, then, using the fact that T is connected, one can easily conclude
that the lens enclosed by s and by the edge of T corresponding to x; has no
vertex of G in its interior. This contradicts Claim 1.

Of course, several different segments may give rise to the same edge
z;z; € E(H). Two such segments are said to be of the same type. Observe
that two segments of the same type cannot cross. Indeed, as no edge
intersects itself, the two crossing segments would belong to distinct edges
e1,e3 € E. Since any two vertices of G are connected by at most one edge,
at least one of z; and z; corresponds to an edge (and not to a vertex) of T,
which together with e; and e; would form a pairwise intersecting triple of
edges, contradicting our assumption that G is 3-quasi-planar.

Claim 2. H is a 3-quasi-planar convex geometric graph.
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To establish this claim, it is sufficient to observe that if two edges of H
cross each other, then the “features” of T corresponding to their endpoints
alternate in the clockwise order around the boundary of D. Therefore,
any three pairwise crossing edges of H would correspond to three pairwise
crossing segments, which is a contradiction.

A segment s is said to be shielded if there are two other segments, s; and
s9, of the same type, one on each side of s. Otherwise, s is called ezposed.
An edge e € E is said to be ezposed if at least one of its segments is exposed.
Otherwise, e is called a shielded edge.

In view of Claim 2, we can apply Theorem 3.4 7] to H. We obtain that
|E(H)| < 4| V(H)| — 10 < 32n, that is, there are fewer than 32n different
types of segments. There are at most two exposed segments of the same
type, so the total number of exposed segments is smaller than 64n, and this
is also an upper bound on the number of exposed edges in E.

It remains to bound the number of shielded edges in E.
Claim 3. There are no shielded edges.

Suppose, in order to obtain a contradiction, that there is a shielded edge
e € E. Orient e arbitrarily, and denote its segments by s1,s9,...,5m € S,
listed according to this orientation. For any 1 < ¢ < m, let t; € S be the
(unique) segment of the same type as s;, running closest to s; on its left
side.

Since there is no self-intersecting edge and empty lens in G, the segments
t; and t;11 belong to the same edge f € E, for every i < m (see Fig. 5).
However, this means that both endpoints of e and f coincide, which is
impossible.

We can conclude that E has fewer than 64n elements, all of which are
exposed. Thus, taking into account the n — 1 edges of the spanning tree T,
the total number of edges of G is smaller than 65n.

t; Lit1

t; tit1

Fig. 5. t; and t;4+1 belong to the same edge
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Dedicated to the 70th birthday of Professors V. T. Sos and A. Hagnal

1. INTRODUCTION

1.1. CNS polynomials

Let P(z) = pgx® + -+ po € Z[z], with py=1. It is called a CNS
polynomial if every element of the factor ring R = Z[z]/P(z)Z(z) has a
unique representative of form

¢
(1) Y aat,  0<ai<|pl, 0<i<e
1=0

This definition is equivalent with the following one: for any A(z) € Z[z]
there exist uniquely integers £, 0 < a; < |pol, 0 < i < ¢, p; # 0if £ > 0, such
that

14

(2) Ax) = Za,-:ti (mod P).

1=0

In the sequel the polynomial staying on the right hand side of (2) will be
called the CN S representation of A(x).

*Research partially supported by Hungarian National Foundation for Scientific Re-
search Grant Nos 29330 and 38225.
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It is clear that there exist for any A(z) € Z[x] unique integers, Ao, ..., Aq,
such that
-1
(3) Alz)=>_ Aix'  (mod P).
i=0

-1
One gets ) A;z* from A(zx) by dividing it by P(z). In contrast one obtains
i=0

4 )
S a;z* from A(z) by a “backward” division process with P(z). More
i=0

m .

precisely, let A(z) = > Aiz* € Z[z], A; = 0 for all but finitely many
i=0

indices, and let

T(A) = i <Az’+1 = Pit1 [%J) z,

1=0

where |z denotes the integer part of z. Then
A
A(J}) = Ay — po lp—oJ + HIT(A)
0

To obtain the CNS representation of A one has to compute T'(A), T?(A), . ..
until T¢(A) = 0 for some £ > 0.

Unfortunately this “backward” division process often does not termi-
nate; it can become divergent (e.g. —1 for P(z) = 22 + 4z +2) or ultimately
periodic (e.g. —1 for P(z) = x — 2). Therefore the characterization of CN S
polynomials is not a trivial problem. In the sequel the set of CN.S polyno-
mials will be denoted by C.

The concept of CNS polynomials was introduced in [14] as a general-
ization of canonical number systems [7], [6], [8] or radix representations [5]
in algebraic number fields. Generalizing a result of [9] I gave the following
algorithmic characterization of square-free CN.S polynomials [14].

Theorem AR. Let P(z) € Z[z] be square-free. Let ai,...,aq and D
denote its zeroes and discriminant respectively. Then P(z) € C if and only
if

(i) |ag) >1and a; < =1, if o; €R, 1 <0 < d,
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-1
(ii) every A(z) = > Ajx* € Z]x] with
i=0

|4;| < |D|"2(dh(P)d_1)d/2 max -——Igjl—, i=0,...,d-1

has a CN S representation. Here h(P) denotes the maximum of the absolute
values of the coefficients of P(x).

This result was generalized for not necessarily square-free polynomials,
but without giving an explicit upper bound for the 4;'s in [3].

By changing the basis 1,z,...,2%1 of R to wy,ws,...,wy; where w; =

pa-jz’, i =1,...,d, H. Brunotte [4] realized that the CNS property of
j=0

polynomials can be characterized by properties of the mapping 7 : Z¢ — Z¢,

@ 7((a1,...,a0)") = <— [a1p1+~--+adde ,al,...,ad_1>T.

Po

i

His original algorithm was simplified in [3]. We give here the version
appeared in [1, Lemma 2.6].

Lemma B. Assume that E C Z% has the following properties

(iii) 7(E) € E,
(iv) for every e € E there exists some k € N with 7%(e) = 0.

Then P € C.

Akiyama and Rao [3] pointed out, that if all zeroes of P(z) are lying
outside the closed unit disc then 7 is ultimately contractive, i.e. there exists
a finite set E C Z4 satisfying (i)-(iii) of Lemma B. Their argument is based
on Theorem AR and the connection between the mappings 7" and 7. Here
we will give a direct proof of the following theorem.
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Theorem 1. Let P(x) be such that all of its zeroes are lying outside the
closed unit disc. Then there exists a constant ¢ depending only on d and
H(P) such that if

FE = {(al,...,ad)T ez max{|ai|, 1<i< d} < c}
then there exist for any b € Z¢ a positive integer k with 7F(b) € E.

In the case when P(z) is square-free, i.e. P(x) has no multiple roots, we
are able to give a nice explicit form for c.

Theorem 2. Let P(z) be square-free and denote ai, ..., oy its zeros. As-
sume that |o;| > 1, 1 <i < d. Then we may take

|C‘z|d_1
c= POZ ,zl_llpl !

where P'(x) denotes the derivative of P(x).

1.2. Integral interpolation

Let my,...,mq € Z be pairwise distinct and ai,...,aq € Z. We call
a=(ap,... ,ad)T € Z¢ integral interpolable by m = (my, ..., md)T if there
exists an I(z) € Z(x) such that

(5) I(m;)=a;, 1=1,...,d.

It is well known that there exists always an I(x) € Q[z] satisfying (5), but
very often I(z) has non-integer coefficients. The Chinese remainder theo-
rem (see e.g. Mignotte and Stefdnescu [12]) gives necessary and sufficient
condition for the solvability of the integral interpolation problem, but it is
usually very complicated. We are intend to give here an other condition
based on CN S polynomials.

The vector a € Z¢ is called simultaneously representable by m € Z% if
there exist integers 0 < qo, -..,qe < M = |my ... my| such that

14
(6) ai:qumf, i=1,...,d.
Jj=0

This concept was introduced by Indlekofer, Katai and Racské [11].

We start with a simple observation.
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Proposition 1. If a € Z¢ is simultaneously representable by m then it is
integral interpolable by m.

¢ .
Proof. If (6) holds then take I(z) = Y gz’ € Z[z], which satisfies obvi-
7=0

ously (5). m

The converse of Proposition 1 is not true. Take for example m; = 1,
mg = 2, then for any pair (a;, a«z)T € Z? the polynomial I(z) = (ag—a1)z+
(2a) — ag) satisfies (5). On the other hand, if a; or ay is negative, then (6)
can never hold, because its right hand side is always non-negative.

The next theorem connects integral interpolation, simultaneous repre-
sentation and C'N'S polynomials.

d
Theorem 3. Let P(z) = [[(x —m;) € C. Then a € Z¢ is simultaneously
i=1
representable by m if and only if it is integral interpolable by m.

Proof. By Proposition 1 it is enough to consider the case, when a is integral
interpolable by m. Then there exists an I(z) € Z[z] satisfying (5). As P(z)
is a CNS polynomial, whose constant term is (—1)“my ...my, there exist
integers 0 < qo,...,q¢ < M = |mj...my| such that

¢
I(z) = qu:rj (mod P(z)),
=0

which means

¢
I(z) = ) g;a’ + Q(z)P()
=0

with a Q(z) € Z[z]. Substituting here z = my,...,my and using (5) and
P(m;)=0,i=1,...,d we obtain (6). =

d
Remark that if P(z) = [](z — m;) ¢ C then there exist infinitely
i=1
many a € Z¢ which is integral interpolable by m, but not simultaneously
representable. Indeed, as P ¢ C there exists I(z) € Z[z] of degree less
then d, which does not have a CNS representation with respect to P(z).

Choosing a; = I(m;), i = 1,...,d the vector a = (ay,... ,ad)T is integral
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interpolable by m. If a would be simultaneously representable by m then
there would exist integers 0 < q1,...,q < M such that

14
ai=2qjmg, i=1,...,d
j=0

Taking J(z) = Z g;2’ then I(z) = J(z) (mod z —m;), i = 1,...,d hold
7=0

and as the polynomials x — m; are pairwise relatively primes I(z) = J(z)

(mod P(z)) by the Chinese remainder theorem. Hence J(z) would be the

CNS representation of I(x) with respect to P(x) which is a contradiction.

Hence a is not integral representable by m.

Let Q(z) = Z qiz* € Z[z] with 0 < ¢; < M. Then Ig(z) = Q(z) +
1=0

2" (z) does not have a CNS representation because T+ (Ip(z)) =
I(z). The set

S = {(an, oag,) tag, = Ig(my), Qas above}

is obviously infinite. The elements of S are not simultaneously representable

by m.
d
In the sequel we will prove under some assumptions that [](z — m;)
i=1

belongs to C.

Theorem 4. Let my,...,my < —2 be such that

|
BEES
i=1 [mi

d
Then P(z) = [] (z —m;) €C.

1=1

d
Proof. Let [ (z—m;) = 2%+pg_12%7 1+ -+po. By the assumptions all co-
i=1
efficients of P(z) are positive. We have p; = > fml, - ml;,_
1<iy < <ig_;<d J

j=0,...,d— 1. Further

2
(7) (%) > Pl Bl o, ,d-2
) (5
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hold by Newton’s inequality between symmetric means. (See [10, p. 52] or
the original work of I. Newton [13].)

We have
d

P1 1
Pl <1
Z|mi| =7

b

i.e. po > p1. Assume that we proved already po > p; > --- > p; for some
1 <j<d-2. Applying (7) we obtain

< (1) GL) () men
P=-1) G+1) \y) g PSP
The theorem is proved. m

In the next theorem we show that the same assertion is true if d is small.

Theorem 5. Let d < 4 and my,...,mg < —2 be pairwise distinct integers.
d
Then P(z) = [] (z —m;) € C.
j=1

To prove Theorem 5 we need a lemma.

Lemma 1. Let P(z) = z* + p3z® + pa® + p1z + po € Z[z] be such that

(i) p1 > po > p1—p2/2 +p3,
(ii) p1 < 2pg > 8p3, p3 < 3.
Then P(z) € C.

Proof. Consider the following set of quadruples

Eo = {(0,0,0,0),(0,0,0,1),(0,0,1,-2), (0,0,1,-1), (0,0, 1,0),
(0,1,-2,1),(0,1,-2,2),(0,1,-1,0), (0,1, —1,1), (0,1, —1,2), (0, 1,0, 1),
(1,-2,2,-2),(1,-2,2,-1),(1,-2,1,0), (1,-1,0,0), (1,-1,0,1),
(1,-1,1,-2),(1,-1,1,-1),(1,-1,1,0), (1,-1,2,-2), (1, -1,2, —1),
(1,0,-1,0),(1,0,-1,1),(1,0,-1,2),(1,0,0,—1),(1,0,0,0), (2, -2, 1,0),
(2,-2,2,-1),(2,-1,0,0), (2,-1,0,1), (2, -2,2,-2)}

and put E = Ey U —Ey. Notice that if (al,az,a3,a4)T € FE, then
@i0(i41) mod 4 < 0 and if a; = £2, then a;4) # 0. It is easy to see that
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E satisfies the conditions (i) and (ii) of Lemma B. It remains to show (iii)
and (iv), which will be done by considering several cases. If 7(e;) = e,

then we will write e; — ey. Further e A means that 7(e) belongs to case
A considered earlier.

I (0, 1,a3,a4) — (0,0, 1,(13) — (0,0, 0, 1) — 0

I ay < 0, (1,a2,a3,a4) — (0,1, a3, az) —

III a; > 0, (—1,(1,2,0,3,(14) e (l, —1,&2,&3) —IL)

I .
v (1 0 ) (_lalvoaa3) ‘!__1’ if T)1+a3p3+a4>p0
yU,03,04) —
(0,1,0,a3) L, otherwise

\Y (2,&2,0,3,04) - ("1,2,&2,(13) ﬂ)

VI (0,~1,a3,a4) — (1,0,-1,a3) ~5

VII (0,0, -1,a4) — (1,0,0,-1) 25

VIII (0,0,0,—1) — (1,0,0,0) <5
IX (-2,a2,a3,a4) — (2,-2,0a9,0a3) Y,
This shows that (iii) and (iv) hold for our set E, hence P(z) €C. m
Proof of Theorem 5. If Z;Ll IL < 1 then the assertion follows from

m;| —
Theorem 4.

If d < 3 then Zd — < 1 holds except when (mi,mg,m3) =

=1 my]
(=2, -3,-4), (-2, -3, -5). The corresponding polynomials 28 +912 4262+
24 and 23 4 1022 4 31z + 30 belong to C by Proposition 3.12 (3) and (1)
of [2].

Let d = 4. Then there are three infinite families
(my, ma, m3, mg) = (-2, -3, —4,-m),

(-2,-3,-5,—-m) and (-2,-3,-6,—m)
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with m > 5,6 and 7 respectively and 64 further values

4
for which Z:l |"+1| > 1.

8 <m <41,
9<m <23,
10<m <17,

11<m <14 and

12<m<13

It is easy to see that the corresponding polynomials satisfy the assump-
tions of Lemma 1, thus they belong to C. =

Using the method of the proof of Theorem 5 one could probably prove
the same assertion for d = 5 too. Unfortunately the number of cases, which
must be handled separately is much larger, one has three two parametric
and 64 one parametric families and a lot of sporadic cases. Hence we need

new ideals.

On the other hand, in light of Theorems 4 and 5 we do not see any
reason not to formulate the following conjecture.

Conjecture 1. Let my,...,mqg < —2 be pairwise distinct integers. Then

P(z) = Ijl(r —m;) €C.

1

2. PROOF OF THEOREMS 1 AND 2

To prove Theorems 1 and 2 we need some preparation from linear algebra
and from linear recurring sequences. More precisely we have to analyze the

mapping 7 defined by equation (4). For a € Z¢ let us define

if k=0,

r(t*Ya)), if k>0.
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Further let P € Z%*¢ be the matrix
=p1/Po - —Pd-1/Po —Pa/Po
e[
0 .. 1 0
With these definitions we have the following assertion

Lemma 2. Let a = (ay,. ..,ad)T € 7% and 1< k € Z. Then 7¥(a) € 24
and there exist —1 < dy,...,0; <0 such that

k
8(a) =P*a+ ) P*s;
j=1

holds, where 8; = (6;,0,...,0)T € R%.

Proof. Let k = 1. Then 7(a) € Z¢, which can be written in the form

T
aip1 + -+ aqpq
T(a)’—‘(— 1 0 dpd+5170'17---,ad—1> =Pa+ 4y,

where 6; = ((51,0,...,0)T € R% with -1 < §; <0.
Assume that the assertion is true for k — 1 > 0. Then 7*71(a) € Z¢,
thus 7%(a) € Z% is true by (4) too. Let 7871(a) = (agk_l), ey a&k—l))T €z¢

then
(k—1) (k-1) T
a _|_ PP Qa _ L
™(a) = (— [ N + de ,agk U,...,ag”_ll))

Po

(k—1) (k-1) T
a +--+a : - -
(_ 1 P1 ; d pd—}-ék,a(l’” 1)"."0’((11111)> ’
0

where ), satisfies the inequalities —1 < & < 0 by the definition of the
integer part function. Thus

*(a) = Pr*"1(a) + (6;,0,...,0)T

and by the induction hypothesis the assertion of the lemma follows. =
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Let {Gn},—, be the linear recurring sequence defined by the initial terms

Go=...G4g—9 =0, G4—; = 1 and by the difference equation
1 .
(8) Gn+d = —p_Gn+d—-1 — = &Gn
Po Po

Let further G, = (Gp+d-1, - - .,Gn)T and for n > d — 1 denote by G, the
d x d matrix, whose columns are Gy, ..., Gp_g+1. Then we have obviously

Go=PG,1 for n=d,d+1,....
This implies
9) Gnta—1=P" Gy_1 for n>0.
As G471 is a non singular matrix we obtain

(10) P" = G,ya-1G7 ")

On the other hand if f3,..., ), denote the distinct zeroes of the poly-
nomial

1
P*(x)=xd+&xd"l+~-+@=de<—>

Do Po z
with multiplicity e;,...,e, > 1, then
(11) Gn=gi1(n)B1 + -~ + gu(n)By

hold for any n > 0, where g;(z), 1 < i < h denote polynomials with
coefficients of the field Q(f, ..., 0) of degree at most e; — 1. (See [15].)

Denoting by pg.l), 1 <14, j <d, n >0 the entries of P" then (10) and
(11) imply

h
(12) PE?) = gije(n)Bf-
=1

Proof of Theorem 1. As we explained in the introduction it is enough to
consider polynomials of degree at most d — 1, say

d-1

ai..r’, a; € 7.

Az) =

1=0
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Let a = (ao, ... ,ad_l)T € 74, We have to prove that there exists a k > 0
such that 7%(a) € E. From the proof it will be clear how to choose the
constant c.

Let k > 1. Then there exist by Lemma 2 —1 < d,...,d; < 0 such that

k
(13) 8 (a) = Pfa+ Y P*5;.

J=1

In the sequel let 7%(a); denote the i-th coordinate of 7*(a). Then (13)
implies

d k
k k—j
= E :Pz('j)aj+ E :1’51 J)‘Sj'
=1 =1

Observe that by (9) the first column of P" is exactly Gn. Using this, (11),
(12) and the last equation we obtain

h h k-1

: a); = za] gije(k /BZ + Z Z‘Sk ]ge
j=1 =1 ¢=1 j=0
Thus
h k-1
(14)  |(a), ZI%IZIgz;e N 18el* + > 16kl | 9e(5)| 1Bel-
j=1 (=1 j=0

The roots of P*(x) are the reciprocal of the roots of P(x), hence |G| < 1,
1 < /¢ < h. If k is large enough then the first summand of (14) is less than 1.

Similarly, there exists a jo such that if j > jo then | ge( 7| 1Bl < | ﬁglj/ 2. As
0;| <1, j > 1 we can estimate the second summand of (14) as follows

h k-1 ' h  Jo ‘ h Jo )
1Gk—311ge )] 18 < 57 S g 18P+ D 187"
=1 j=0 =1 j=0 =1 j=jo+l
J |,8€|(]0+1
<Z Z | 96(5)| 18l + }j e

{=1 j=jo+1

Hence, taking

h  Jo jo+1)/

=14 > |geli)|1Be’ + [
T ! Z Iﬂlm

/=1 j=0
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then
|T*(a),| < ¢

and ¢ depends only on the height and degree of P(z). m

To prove Theorem 2 we need one more lemma

Lemma 3. Let the linear recurring sequence {Gp},>, be defined by (8).
Assume that P(z) is square-free and denote a1, ..., a4 its roots. Then

= ~Po Z

Proof. By a result of M. Ward [16] we have

zd: ﬁh

dn2

Asﬁh— ,h=1,...,dand
d L 1 (_1)2(1—1 d
P = -Bi) = ___>:_____ ap— Q). ]
=T =11 (- - ) = S Llen—e
J=1 Jj=1 L j=1
j#h j#h j#h

Proof of Theorem 2. We are using the notations introduced in the proof
of Theorem 1. As the roots of P(z) are simple the polynomials g;j¢(x) are
constants. Further 8, = 1/a;, h =1,...,d. After these preparations, using
also Lemma 3 inequality (14) can be rewritten as

ko d
|T ZlaJ|Z|gz]€| +Z

j=1 =1 j=0

k-1 it
-J
|0k—jpolT=—T ’P’ | |ae| ™.

Now there exists for any € > 0 a ko such that if k& > ko then the first
summand is less than €. For the second summand we obtain

d
Jou| o~
> Il Zm J||aeIJ<Z|pI|Pf T
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Hence

d d-1
*(a). ||
|7 (a),] SEHPOIZ;(lael—l)lP’(ae)I'

As 7* (a); € Z and € can be chosen arbitrary small we obtain

g~
IT 1 .<_ |p0|z |_1 lPlaél . N
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THE EVOLUTION OF AN IDEA — GALLAI’S ALGORITHM

A. RECSKI and D. SZESZLER

Vera T. Sés is probably the single most influential person for orienting the
research interest of many of the participants of this conference towards discrete
mathematics. It is appropriate to recall that the single most influential person
for orienting his interest towards discrete mathematics was his secondary school
math teacher, Tibor Gallai who achieved outstanding results in several areas of
graph theory. In this note the first forty years of the influence on VLSI design of
a classic result of Gallai about the perfectness of interval graphs is described.

1. INTRODUCTION

The first classic result in the topic of VLSI (Very Large Scale Integrated)
routing is probably Gallai’s linear time algorithm. From a graph-theoretical
viewpoint it is nothing else but an alternative proof of the fact that interval
graphs are perfect.

The design of VLSI circuits is a broad area, it covers a wide range of
substantially different problems that arise during the design process. One of
these problems is detailed routing which can be formulated in the following
way. Assume that the devices of the electric equipment have already been
placed on the four boundaries of a rectangular circuit board. Our task is
to interconnect certain given subsets (or nets) of the pins (or terminals) of
these devices by wires. Wires belonging to different nets must not intersect
or get closer to each other than a given distance. To this end, it is mostly
assumed that the wires must go on a given 3-dimensional rectangular grid
consisting of a number of planar layers, each of them parallel with the
circuit board. (In the 1-layer, that is, 2-dimensional case the problem is
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unsolvable in most cases.) Wires can leave a layer for a consecutive one at
any gridpoint. To sum it up from a graph-theoretical viewpoint, the detailed
routing problem consists of finding vertex-disjoint Steiner-trees (trees with a
given terminal vertex set) in a 3-dimensional rectangular grid graph. In this
context, the given vertex sets of the trees are the nets and the Steiner-trees
themselves are called wires.

Traditionally, detailed routing was considered a 2-dimensional problem
because the number of layers was very small compared to the length and
the width of the board. (Originally, in the ancient times of printed circuit
technology there were only two layers: the two sides of the board. Later the
number of layers was gradually extended to 3,4, . ..) Since recent technology
permits more and more layers (6, 8 or even more) a ‘real’ 3-dimensional
approach becomes reasonable. In this paper we first give a brief survey of
2-dimensional results with a special emphasis on those that use Gallai’s
algorithm or an idea similar to it. Then we turn our attention to 3-
dimensional routing and we survey a few related results.

2. 2-DIMENSIONAL ROUTING

2.1. Single Row Routing

Within detailed routing, the easiest special case is single row routing. In
a single row routing problem all the terminals of each net are situated on
one boundary (say, the upper boundary) of the circuit board. Hence the
specification of such a problem only fixes the number of columns of the
grid (the length of the problem). Therefore the usual formulation of single
row routing is to fix the number of layers and ask for the minimum width
routing, that is, a routing that occupies the minimum number of rows in

the grid.

A solution of a (not necessarily single row) routing problem is said to
belong to the Manhattan model if consecutive layers contain wire segments
of different directions only. That is, layers with horizontal (parallel with the
upper boundary) and vertical (perpendicular to the upper boundary) wire
segments alternate. This notion is motivated by the fact that for certain
technologies it is advantageous not to have long parallel wire segments
on two consecutive layers. Therefore there are many results that provide
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routings in the Manhattan model. If a solution does not belong to the
Manhattan model, it is said to be in the unconstrained model.

Gallai’s algorithm solves the single row routing problem with optimal
width in the 2-layer Manhattan model. Such a routing problem together
with a possible solution is shown in Fig. 1. In Fig. 1 solid dots denote
the terminals and sets of terminals marked with a common number form
the nets. Wire segments of the two layers are denoted by continuous and
dashed lines, respectively. Empty dots denote the edges of the wires that
join adjacent vertices of the two layers (these are called vias).

€
1 41 6({4 5 16 2 7 5 2 7 2 3 5 3
EEXIEREERXERNKERER
P S IS T T S O, N N . N N - N N
I e I o I I
S — 2
¢ © & )
Fig. 1

For every vertical line e that cuts the grid into two we define its conges-
tion c(e): it is the number of nets that are divided into two by e (that is,
the number of nets that have terminals both left to e and right to e). For
example, the congestion of the line e in Fig. 1 is ¢(e) = 3. The maximum
congestion of all vertical lines that cut the grid into two is called the density
of the problem. It is straightforward that the density is a lower bound on
the width of any routing (again, in the 2-layer Manhattan model).

Theorem 1 (T. Gallai) [3]. The minimum width of a solution of a single
row routing problem in the 2-layer Manhattan model is equal to the density
of the problem.

The proof involves a linear time algorithm (the ‘left edge algorithm’).
The connection between the above result and the perfectness of interval
graphs is almost straightforward. A horizontal interval is associated with
every net, stretching from its leftmost terminal to its rightmost terminal.
The density is equal to the clique number of the corresponding interval
graph. A colouring with an equal number of colours can easily be trans-
formed into an optimal width routing: nets belonging to a common colour
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class can be routed in a common row. In Fig. 2 the interval graph corre-
sponding to the routing problem of Fig. 1 is coloured using three colours;
the solution of the routing problem obtained from this colouring is shown
in Fig. 1.

Fig. 2

We mention that no polynomial time algorithm is known to find an op-
timum width solution for a single row routing problem in the unconstrained
2-layer model.

2.2. Channel Routing

By the channel routing problem we mean the special case of detailed routing
in which all the terminals of each net are situated on two opposite boundaries
of the grid (say, the upper and lower boundaries). Again, the usual setting
of the problem is to fix the number of layers and ask for the minimum width
routing, if at all a routing exists. However, channel routing is much more
complicated than single row routing as it is shown by the following theorem.

Theorem 2 (T. G. Szymanski, 1985) [12]. It is NP-complete to decide
whether a channel routing problem is solvable in the 2-layer Manhattan
model with width at most w (where w is part of the input).

Therefore it is worthwhile to look at this problem under less strict
conditions: either in the 2-layer unconstrained model, or in the multilayer
Manhattan model.

It is true that every channel routing problem is solvable in the 2-layer
unconstrained model in polynomial time (with a sufficiently large width).
This was first proved by M. Marek-Sadowska and E. Kuh [6]. Later
A. Recski and F. Strzyzewski found a linear time algorithm which also
uses Gallai’s algorithm as a ‘subroutine’.
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Theorem 3 (A. Recski and F. Strzyzewski, 1990) [8]. Every channel routing
problem can be solved in linear time in the 2-layer unconstrained model.

Their algorithm does not give an optimal width solution. The complex-
ity of the naturally arising question of finding a minimum width routing is
not known, but according to the widely accepted conjecture of D. S. Johnson
[5] it is NP-hard.

It is also true that every channel routing problem is solvable in the k-
layer Manhattan model for every k& > 3. This again can be proved by
a simple modification of Gallai’s algorithm. The complexity of finding a
minimum width routing is in this case known to be NP-hard [7].

2.3. Switchbox Routing

In the switchbox routing problem terminals may occur on all four boundaries
of the circuit board. Since the specification of such a problem fixes both the
length and the width of the board, the number of layers is to be optimized.
We suppose that the corners of the board are not occupied by a terminal
and routings must not use them either. We also suppose that the wires can
access the terminals on any layer.

We have seen that in case of single row and channel routing two layers
were always sufficient to solve any problem (and if we restrict ourselves to
the Manhattan model, three layers were needed in case of channel routing).
This, however, is not true for switchbox routing. Moreover, no fixed number
of layers suffice, which is shown by the following theorem.

Theorem 4 (S. E. Hambrusch, 1985) [4]. For every positive integer k there
exists a switchbox routing problem that cannot be solved on k layers in the
unconstrained model.

Proof. Consider the switchbox routing problem of Fig. 3. The congestion
of the line e is n + w, that is, each of the n + w nets have terminals on
both sides of e. Therefore the existence of a routing on k layers implies
n 4+ w < kw since there are w rows on every layer. From this we have
4 1 < k. The value of n and w can be chosen such that this inequality
does not hold, which proves the theorem. m

Obviously, the background of the phenomenon involved in the above
theorem is the fact that in case of switchbox routing both the length n and
the width w are given by the specification. Denote the ratio max (%, 37‘1’-) by
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m. The proof of the above theorem also includes the following statement:
[m] +1 is a lower bound on the minimum number of layers of a solution in
the worst case. A slight modification of the proof shows that if we restrict
ourselves to the Manhattan model then at least 2[m] + 1 layers are needed
in the worst case if m > 1 and 4 layers are needed if m = 1.

It is a natural question whether there is also an upper bound for the
necessary number of layers as a function of m? The following theorem
answers this question in the affirmative.

Theorem 5 (E. Boros, A. Recski and F. Wettl, 1995) [2]. Any switchbox
routing problem can be solved in linear time on at most 18 layers if m < 2
and on at most 2m + 14 layers if m > 2 in the unconstrained model.

Later the bounds given in the above theorem were improved. The
construction of the following result can also be regarded as a generalization
of Gallai’s method.

Theorem 6 (D. Szeszlér, 1997) [11]. Any switchbox routing problem can
be solved in linear time on at most 2[m] +4 layers in the Manhattan model.
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3. 3-DIMENSIONAL ROUTING

Although the solution of a switchbox problem can require arbitrarily many
layers, switchbox routing can still be regarded as a 2-dimensional problem:
the input consists of four sequences (the terminals on the four boundaries)
and the output consists of a fixed number of planar layers (provided that
the value of m defined in the previous section is fixed).

Due to the quick improvement of routing technology, research has re-
cently turned towards ‘real’ 3-dimensional routing. In the single active layer
routing problem (or SALRP for short) the terminals to be interconnected
are situated on a rectangular planar grid of size w x n and the routing should
be realized in a cubic grid of height h above the original grid that contains
the terminals. Evidently, the height h is to be optimized. Henceforth we
will use the term ‘vertical direction’ to refer to the direction of A (that is,
the direction perpendicular to the w x n rectangle) and not for the direction
of w.

One can easily see even in small instances like 4 x 1 or 2 x 2 that a
routing is usually impossible unless either the length n or the width w
may be extended by introducing extra rows or columns between rows and
columuns of the original grid.

By a spacing of s,, in direction n we are going to mean that we introduce
sp — 1 pieces of extra columns between every two consecutive columns (and
also to the right hand side of the rightmost column) of the original grid. A
spacing of sy, in direction w is defined analogously. This way the length of
the grid is extended to n’ = s, -n and the width is extended to w' = s, - w.

A very similar argument to that of Theorem 4 provides a lower bound
on the height h in the worst case.

Lemma 1. For any given n and s,, there exists a routing problem that
cannot be solved with height h smaller than —2-;7—“

Proof. Let, for simplicity, the width and the length be even, let w = 2a and
n = 2b. Consider the following example. Suppose that each net consists of
two terminals in central-symmetric position as shown in Fig. 4.

The number of nets is an. Since each net is cut into two by the central
vertical line e, any routing with width w’ = s, - w and height h must satisfy
w'h > an. Therefore h > (w/2w’)n, hence h > ﬁ [
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The following lemma, on the other hand, provides a trivial upper bound
for the height.

Lemma 2. If s, > 2 and s, > 2 then every routing problem can be solved
with height h < 5.

Proof. We assign a separate layer to each net. For every terminal we
introduce a vertical (parallel with the height) wire segment to connect the
terminal with the layer of its net. The interconnection of the terminals of
each net can now be performed trivially on its layer using the extra rows
and columns guaranteed by the spacing in both directions.

Since 1-terminal nets can be disregarded, the number of nets is at most
%nw thus h < %* follows immediately. m

The above lemma is a partial explanation for the phenomenon that the
nature of single active layer routing seems to depend fundamentally on
whether only one of the quantities s, and s, is at least 2 or both of them.

3.1. The s, =1 case

An alternative interpretation of Lemma 2 is that if we fix w then there is a
routing of height h = O(n), provided that sy, s, > 2. The truth of the same
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statement is not at all obvious in the s, = 1 case. However, the following
result shows that such a statement is true if s,, > 8 holds.

Theorem 7 [9]. If s, > 8 then for any fixed value of w and for any n a
single active layer routing problem can always be solved in time t = O(n)
and with height h = O(n) such that the length n is preserved or increased
by at most one. Both linear bounds are best possible.

Our algorithm gives t = O(w®n) and h = O(wn). (The straightforward
lower bound for the time is the length of the input, that is, ¢t = Q(wn).)

The proof of the above theorem is somewhat lengthy and highly tech-
nical. Nevertheless, the basic idea is again a 3-dimensional modification of
the Gallai algorithm. This is only illustrated by the following remarks.

Suppose at first that w = 1. Then what we have is essentially a single
row routing problem with density d. Each net determines an interval of
length at most n and these intervals can be packed in a vertex-disjoint
way into d parallel lines, usually called tracks, using the Gallai algorithm.
Using the classical 2-layer Manhattan model, we can arrange the tracks in a
horizontal plane, as shown in the top of Fig. 5, thus realizing a routing with
w' = d and h = 2. However, alternatively these tracks can occupy either a
vertical plane, leading to w’ = 2 and h = d, or two vertical planes, leading
to w’ = 3 and h = [d/2], see the middle and the bottom drawing of Fig. 5,
respectively. (Theoretically one can pack the tracks to more vertical planes
and thus ensure h = [3d/(2uw’)] for larger values of w' as well but it does
not seem to be interesting.) Throughout in Figures 5 and 6 continuous lines
denote wires while dotted lines are for the indication of coplanarity only.

Similarly, if w = 2 then we have a channel routing problem with density
d and using the same linear time algorithm we can always realize a routing
with w' =d+ 1 and h = 3 or with w’ = 3 and h = d + 1, see Fig. 6.

Actually, it is the right hand side of Fig. 6 that shows the essential idea
of the proof of Theorem 7.

3.2. The s,, sy > 2 case

We have seen in Lemma 2 that every SALRP problem can trivially be
solved with height h = % if sy, s, > 2. This provides an upper bound of
h = O(n?) in the n = w case. However, in 2000 Aggarwal et al. [1] proved
the following theorem using elaborate probabilistic methods.
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Theorem 8 (A. Aggarwal, J. Kleinberg and D. P. Williamson, 2000) [1].
If each net consists of two terminals only then the nets of an n x n SALRP
can be partitioned into O(nlog?n) classes such that each class of nets can
be routed on a copy of the grid (of size n x n).

An easy corollary of this theorem is that if s,y = s, = 2 and each net
consists of two terminals only than every SALRP can be solved with height
h = O(nlog?n). The following result shows that actually h = O(n) also
suffices, even if multiterminal nets are also allowed.

Theorem 9 [10]. Any SALRP can be solved with s, > [5%] + 1, sy = 2
and height h = 6n. Furthermore, if each net consists of two terminals only
then h = 3n also suffices.
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Since the role of n and w is symmetric, n > w can be assumed without
loss of generality and thus we obtain the following corollary.

Corollary 1 [10]. Any SALRP can be solved with s, = s, = 2 and
height h = 6 max (n,w). If each net consists of two terminals only then
h = 3max (n,w) also suffices.

The constructions of the above results can be performed by a polynomiaal
algorithm. (If w = ©(n) is assumed then the algorithms work in O(Ai)
time, where A = w - n is the size of the input.)

Acknowledgement. Research partially supported by the Hungarian Na-
tional Science Foundation (Grant Numbers OTKA 42559 and 44733).
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1. INTRODUCTION

The set of the integers, nonnegative integers, resp. positive integers is de-
noted by Z,N, and N. A, B, ... denote (finite or infinite) subsets of N,, and
their counting functions are denoted by A(n), B(n),... so that, e.g.,

An)=|{a:0<a<n, ac A}.
The asymptotic density d(.A) of the set A C N, is defined by

d(A) = lim Al)

n—+o00 nN

if this limit exists. A;+.As+- - -+ A, denotes the set of the integers that can
be represented in the form a;+ag+- - -+a, witha; € A,ag € A, ..., a; € Ayg;
in the special case A} = Ay = -+ = A = A we write

A+ A+t A=A+ A+ + A=A

*Partially supported by Hungarian National Foundation for Scientific Research, Grant
No. T 029759.
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For A C N,, k € N the number of solutions of the equations
ar+ay+---+ag=n, apag,...,a; € A,
a+ag+-+apr=n, ag<ay<---<ag aya...,a; € A,
a1 t+as+--+ap=n, ag<ay<---<ag a,a,...,a;€A

is denoted by r1(A,n,k), ro(A,n, k), resp. r3(A,n, k), and in the special
case k = 2 we write rj(n) = ri(4,n) = ri(A4A,n,2) for i = 1,2,3. For
k,g € N, Bi[g] denotes the class of all (finite or infinite) sets A C N, such
that for all n € N we have r9(A,n,k) < g, i.e., the equation

a1 +ay+---+ay,=n, a<ar<---<ag, ap,a,...,a; €A

has at most g solutions.
If F(n) = O(G(n)), then we write F(n) < G(n). cy,cp,... denote
positive absolute constants.

In [7], [8], [9] and [11] Paul Erdés, Vera T. Sés and I, and in [17] Vera
T. Sés and I studied the irregularity properties and the range of the additive
representation functions 7;(A, n, k). In this paper my goal is to give a survey
of these 5 papers and the most important related results. (We also studied
difference sets, Sidon sets and Ramsey type additive problems involving
general sequences in [10], [11], [12], [13] and [17]; these results have been
surveyed or will be surveyed elsewhere.)

2. THE EARLY DAYS

As an answer to a question of S. Sidon, in 1956 Erdés [3] proved the following

result:

Theorem 1. There is an infinite set A C N such that
(1) cilogn <ri(A,n) < cylogn for n>n,.
In two papers Erdés and I extended the problem by estimating
|r1(.,4, n) — F(n)|

for “nice” functions F(n). First we proved [5]:
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Theorem 2. If F(n) is an arithmetic function satisfying

@) F(n) — 400,

) F(n+1)>F(n) for n>mn,
and

(4) Fn)=o ((log n)2> |

then

) max r1(4,n) = F(n)] = o( (F(I)) 12

cannot hold.

Indeed, we proved this in the sharper form that (5) cannot hold in mean
square sense.

Later we proved [6] that if F(n) is a “nice” function, then there is an A

with
|ri(A,n) - F(n)| < (F(n)logn) 12,

Theorem 3. If F(n) is an arithmetic function satisfying
F(n) > 36logn for n > n,,

and there exist a real function g(z), defined for 0 < z < +oo, and real
numbers x,,ny, such that

(i) ¢'(z) exists and it is continuous for 0 < x < +o00,
(ir) ¢'(z) <0 for = > x,,
(i17) 0 < g(xz) <1 for = > x,,

n/2
(1v) ’F(n)-Q ({ g(z)g(n—1z) dx‘ < (F(n)logn) Y2 forn > ni, then there

exists a sequence A such that
|r1(A,n) — F(n)| <8(F(n)logn) Y2 for n> .

In particular, it follows from this theorem that
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(i) there is an A satisfying (1);

(17) if w(n) is a “smooth” increasing function with w(n) — +oo (say,
w(n) = loglogn), then there is an A with

r1(A,n) ~ w(n)logn;
(i71) for all 0 < a < 1, there is an A with

|r1(A,n) - no‘] < n®?(log n)1/2.

3. VERA JOINS US (AND A CURE FOR AN INCURABLE DISEASE)

In the January of 1984, not much after completing our papers [5], [6] with
Erdés, the two of us and Vera T. Sés travelled to India for a few weeks. It
was a long flight (18 hours or so), we had to transfer twice. Thus to spend
the time, soon we started to discuss mathematics. Vera asked Erdds and
me on our most recent results. We told her about our results quoted as
Theorems 2 and 3 above. After learning our results, she asked a few more
exciting new questions on the irregularities of the additive representation
functions r;(A, n). Unfortunately, after 1 or 2 hours I was forced to quit the
discussion since I did not feel well. Soon I realized that I had a bad case of
flu, my fever approaching 39C °.

Nearly one day later we arrived. When our plane landed in Madras,
a heavy monsoon rain had just endeed, the temperature was around 36—
37C °, and the tarmac of the airport was steaming. It was quite unpleasant,
however, soon I was feeling better, and in one hour my flu was completely
over (and it never returned again): the “steam bath” cured it! So that not
only we had a very pleasant and, as you will see, fruitful time in India, but
as a byproduct of our trip I also discovered the cure of the incurable disease
of the influenza. (Unfortunately, this discovery is of not much use: it is just
too costly, lengthy and complicated to travel to India for a cure, and while
you work on it, you have a good chance to recover spontaneously.)

Anyway, in India we continued the discussion, and we completed the

work after our return to Hungary. We ended up with 3 triple papers. First
in [7] we studied the following problem: what condition is needed to ensure

(6) lim sup ITl(.A, n+1)—r1(A4, n)] = +00?

n—-+00
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We gave such a condition in terms of the function
B(AN)=|{n:n<N,neA n-1¢A}:

Theorem 4. If
lim B(A,N)N"Y? = 40,

N—-+00

then (6) holds.
We also showed that this result is nearly sharp:

Theorem 5. For all € > O, there exists an infinite sequence A such that
B(A,N) > N1/2=¢
and r1(A, N) is bounded (so that |ri(A, N+1)—ri(A4, N)| is also bounded).

In [8] and [9] we studied the monotonicity properties of the three
representation functions ri(n), ra(n), r3(n). Let A be a set of posi-
tive integers which can be obtained from N by dropping finitely many
integers (i.e., N\ A is finite). Then clearly, each of the three functions
r1(A,n),r2(A,n),r3(A,n) is monotone increasing from a certain point on.
So the question is: are there any other “non-trivial” sets A (i.e., sets A for
which N\ A is infinite) so that the function r;(A,n) (i = 1,2, 3) is monotone
increasing from a certain point on? Somewhat unexpectedly, the answer
depends very much on that which of the three functions r;(A,n), ro(A4,n),
r3(A,n) is considered. First in [8] we proved:

Theorem 6. The function r1(A,n) is monotone increasing from a certain
point on for an infinite set A C N if and only if N\ A is finite.

Theorem 7. There is an infinite set A C N such that

13 for n>n,

An)<n—c3n
and r3(.A,n) is monotone increasing for n > n.

Theorem 8. If A C N is an infinite set with

then the functions ro(A,n) and r3(A,n) cannot be monotone increasing
from a certain point on.
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Later in [9] we improved on Theorem 8 in case of the function ro(A,n):

Theorem 9. If A C N is an infinite set such that

(7 lim n=4ln) = +o00,
n—oo logn

then the function ro(A,n) cannot be monotone increasing from a certain
point on.

Note that in [1] Balasubramanian (who learned on our results Theorems
6, 7 and 8 during our Indian visit) also proved Theorem 9 independently.
Interestingly enough, although his proof is different from ours, he has exactly
the same condition (7) in his theorem.

In [11] Erdés, Vera T. Sés and I studied the range of the additive
representation functions r;(4,n). For i =1,2,3 let R;(A) denote the range
of the function r;(A,n), i.e.,, R;(A) denotes the set of the integers m such
there is a number n € N with

(8) ri(A,n) =m,

and let R$°(A) denote the set of the integers m such that there are infinitely
many integers n satisfying (8). We proved:

Theorem 10. For a set B C N, there is a set A with
Ri(A)=8B, ACN
if and only if either B = {0,1} or {0,1,2} C B.
(The cases i = 2,3 could be handled similarly.)
Theorem 11. For each i = 1,2,3 and for all B C N,, the equation
R°(A) =B
can be solved.

In [17], one of the problems studied by Vera T. Sés and me was a
conjecture of Erdds and Freud [4]. They conjectured:

Conjecture 1. If A C N is an infinite set such that ro(A,n) is bounded,
then ro(A,n) must assume the value 1 infinitely often, i.e., there are infi-
nitely many integers n € 2A whose representation in the form

(9) a+d=n, ade€Ad a<d

is unique.
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Moreover, they wrote: “Probably there are “more” integers n with a
unique representation of the form (9) than integers n with more than one
representation”. We showed in [17] that this is not so, at least for A € Bs|g],
g3

Theorem 12. For every g € N,g > 2 there is an infinite set A C N, such
that A € Bslg] and for € > 0, n > n, we have

2
29g-3

[{n:n <N, ra(An) =1} | < (1+¢) [{n:n <N, ry(A,n) > 1}

On the other hand, we conjectured that the following sharpening of
Conjecture 1 is true:

Conjecture 2. If r5(.A, n) is bounded then we have

(10) lim sup |{n ns N r(An) = 1}| > 0.
N—-oo |{'I’l :n <N, 7’2(.A,7’l) > 1}'

In [17] we also showed that for any fixed finite set i/, there is an infinite
set A C N such that r9(A, n), apart from a “thin” set of integers n, assumes
only values from U with about the same frequency. For A C Nyu € N,
denote the set of the integers n € N with

ro(A,n) =u
by Su(A) (so that UF% S, (A) = 2A4).

Theorem 13. Let k € N and let u; < up < -+ < uj be positive integers.
Then there is an infinite set A C N, such that writing

B=N\ (u{”’:l Sui(A)>

we have N
Sy, (A,N) = T + O(N)
and
B(N) = O(N%)
with o = 1983

log4"
(Here S,,(A, N) denotes the counting function of Sy, (A).)
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4. RECENT DEVELOPMENTS AND UNSOLVED PROBLEMS

Cs. Séndor [15] disproved Conjectures 1 and 2 above and, indeed, he
constructed an infinite set A C N such that r9(A4,n) < 3 for all n but
ro(A,n) # 1 for n > n,. However, it is still possible that Conjecture 1 is
true if the upper bound for ro(A, n) is 2, i.e., A € Ba[2]:

Problem 1. Is it true that if A € By[2], then r2(A,n) must assume the
value 1 infinitely often?

G. Horvédth [14] extended Theorem 2 from sums a + a’ of 2 terms to
sums of k terms. Note that Theorem 3 has no similar extension to the k
term case (with £ > 2) yet. Namely, Theorem 3 (and all the other results of
similar nature) are proved by a probablisitic argument, and this approach
usually fails for k > 2 (because of the lack of independence of the events

involved).

Problem 2. Prove a result of type Theorem 3 for sums of k£ > 2 terms, i.e.,
a similar result with (A, n, k) in place of r1(A,n)( = r1(4,n,2)).

G. Dombi [2] constructed sequences A of density 1/2 for which r1(A,n, k)
is monotone for large n if & > 4. The point of his result is that he gave
constructions (using the Rudin-Shapiro and Thue-Morse sequences), while
in all the other known results of similar nature existence proofs are given
(using probability theory).

Finally, I will present a few further related unsolved problems selected
from [11], [16] and [17], and also a couple of new ones.

First a problem related to Theorems 2 and 3:

Problem 3. Does there exist an arithmetic function F(n) satisfying (2),
(3) and (4) and a set A C N such that

1/2
|r1(A,n) = F(n)| = o (F(n)) ?)
holds on a sequence of integers n whose density is 17

The next problem is the extension of (6) to the case of more than 2

summands:
Problem 4. For k € N, k > 2, what condition is needed to ensure

limsup |71 (A, n + 1,k) = r1(A, n, k)| = +00?

n—+00

Some problems related to Theorems 6, 7, 8 and 9:
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Problem 5. Does there exist a set A C N such that N\ A is infinite and
Tl(A, n+ 1) 2 T1 (.A, n)
holds on a sequence of integers n whose density is 17

Problem 6. Does there exist an infinite set A such that N\ A is infinite
and 73(A, n) is increasing from a certain point on?

Problem 7. Does there exist an infinite set .4 C N such that its lower (or
even upper) asymptotic density is less than 1, and 73(.A,n) is monotone
increasing from a certain point on?

Problem 8. What condition (on A) is needed to ensure that the function
ri(A,n) (i = 1,2,3) assumes infinitely many “locally small”, resp. “locally
large” values, i.e.,

ri(A,n) < min {ri(4,n—1),ri(4n+1)},

resp.

ri(A,n) > max{r,-(A,n -1),r(An+ 1)}?

Problem 9. What can one say on the monotonicity of the functions
ri(A,n,k) (i =1,2,3) in the case k > 2 7 In particular, I conjecture:

Conjecture.

(2) If k> 2 and ri(A,n, k) (i =1,2,3) is increasing (in n) from a certain
point on, then

A(n) = O(n¥*¢)
cannot hold.
(it) If k > 2, then there is a set A C N such that
A(n) = O(n2/*+e)
and ri(A,n, k) (i = 1,2,3) is increasing.

Problem 10. When and how the results on the monotonicity of r;(A,n)
(i = 1,2,3) can be extended from sums a; + ag + - -+ + aj to linear forms
biay + baag + - - - + bray where by, bo, ..., by are fixed positive integers?
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A LIFTING THEOREM ON FoORCING LCS SPACES

L. SOUKUP*

Denote by THIN () the statement that there is an LCS space of height o and
width w. We prove, for each regular cardinal k, that if there is a “natural” c.c.c
poset P such that 7HZA (k) holds in V¥ then there is a “natural” c.c.c poset
Q as well such that THZN (8) holds in V? for each § < x™.

1. INTRODUCTION

A topological space X is called scattered if its every non-empty subspace
has an isolated point. Denoting by I(Y") the isolated points of a subspace
Y C X for each ordinal o define the a'® Cantor-Bendizson level of the
space X, I,(X), as follows:

L(X) =T(X\U{Ig(X) : B<a}).

The minimal a with I,(X) = () is called the height of X and denoted by
ht (X). Define the width of X, wd(X), as follows: wd(X) = sup {IIQ(X)’ :

a < ht(X )} The cardinal sequence of X, CS(X), is the sequence of the
cardinalities of its Candor-Bendixson levels, i.e.

CS(X) = (|1a(X)| : & < ht(X)).

The following problem was first posed by R. Telgarsky in 1968 (unpub-
lished): Does there ezist a locally compact, scattered (in short: LCS) space

*The author was partially supported by Hungarian Foundation for Scientific Research,
grant No. 37758 and the Bolyai Scholarship of the Hungarian Academy of Sciences.
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with height wy and width w? After some consistency results Rajagopalan,
in [8], constructed such a space in ZFC.

To simplify the formulation of the forthcoming results denote by
THIN (a) the statement that there is an LCS space of height o and width
w. (A scattered space is called thin iff it has width w.)

In [4] I. Juhdsz and W. Weiss showed THIN (a) for cach a < ws.
W. Just proved, in [5], that this result is sharp in the following sense. Add wy
Cohen reals to a ZFC model satisfying CH. Then, in the generic extension,
2% = wy and THIN (wq) fails. So you can not prove THIN (a) for each
a < (2¥)" in ZFC.

Just’s result was improved in [3] by I. Juhdsz, S. Shelah, L. Soukup and
Z. Szentmikldssy: if we add Cohen reals to a model of set theory satisfying
CH, then, in the new model, every LCS space has at most w; many countable
levels.

The notion of A-function (see definition 1.1 below) was introduced in [2].
In that paper Baumgartner and Shelah proved that (a) the existence of a A-
function is consistent with ZFC, (b) if there is a A-function then 7HIN (w2)
holds in a natural c.c.c forcing extension. We will explain later, in Section 3,
what we mean under “natural poset”. Roughly speaking, “natural” means
that the elements of the posets are just finite approximations of the locally
compact right-separating neighbourhoods of the points of the desired space.
Building on their method, but using much more involved combinatorics,
Martinez [6] proved that if there is a strong A-function, then for each § < w;
there is a c.c.c poset Ps such that THZN (6) holds in V7. These results
naturally raised the following problem.

Problem 1. Does THZIN (ws) imply THIN (0) for each § < w3?

Although this question remains still open we prove a “lifting theorem”
claiming that if there is a natural poset P,, such that 7HZN (ws) holds in
VFvz then for each § < ws there is a natural poset Ps such that THZN (9)
holds in V7é: the posets used by Martinez can be constructed directly from
the poset applied by Baumgartner and Shelah without even mentioning the
A-function. Moreover, our lifting theorem works for each cardinal s, not
only for ws! Since there is no A-function on w3 you can not expect to apply
the method of Baumgartner and Shelah to prove THIN (w3). However, if
anybody can construct a “natural” c.c.c poset P such that THIN (w3) holds
in VP then our theorem gives immediately the consistency of THIN ()

for each a < wy.
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To formulate this statement more precisely we introduce some notation,
so we postpone the formulation of our main result till Theorem 3.15.

First we recall some definition and results.
Definition 1.1. Let f : [wo]® — [wa] = be a function with f{e, 8} C aNf
for {a, 8} € [wa)?.

(1) We say that two finite subsets z and y of wy are good for f provided
that fora € xNy, B € x\yand v € y \ z we always have

(a) a < B,y = a€ f{B,7},

(b) a < B = f{a,7} C f{B,7}
(¢) B<y= f{a, B} C fe,v}-

(2) The function f is a A-function if every uncountable family of finite
subsets of wy contains two elements = and y which are are good for f.

(3) The function f is a strong A-function if every uncountable family A
of finite subsets of wy contains an uncountable subfamily B such that any
two sets = and y from B are good for f.

Theorem (Velickovic). If O,, holds then there is a strong A-function.

For the proof see [1].

2. A METHOD TO FORCE THIN LCS SPACES WITH PRESCRIBED
CARDINAL SEQUENCE

Recall that given a topological space (X,7x) a function f : X — 7x is
called neighbourhood assignment iff z € f(z) for each z € X.

Assume that X is an LCS space. Define the function ht : X — ht (X)
by the formula z € Iy (;)(X). Since LCS spaces are 0-dimensional, we can
fix a neighbourhood-assignment U : X — 7x such that U (z) is a compact-
open neighbourhood of z with

U(z)\{z} C Lne (2)(X) = U { Ia(X) : @ <ht (1')} .

The family { U(z), X\ U(z) : € X} is a subbase of X.
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The space is coherent iff we can choose U in such a way that =z €
U (y) implies U(z) C U(y). Such a U is a called coherent neighbourhood
assignment.

If U is coherent then we can define a partial order < on X by taking
zayy iff © € U(y). Since clearly U(z) = {y € X : y<yz} we have that
qy determines the neighbourhood assignment U.

If < is an arbitrary partial order on X then define the topology 74 on X
generated by the family { Uq(z), X \ Uq(z) : = € X} as a subbase, where
Ug(z) = {y € X : y<x}. As we have seen if U witnesses that (X, 7) is
coherent then Tay =T

So the topologies of coherent LCS spaces are determined by partial or-
derings. We would like to determine certain properties of a partial ordering

in such a way that if some partial order (X,<) has those properties then
(X, 14) is an LCS-space with prescribed Cantor-Bendixson levels.

To formulate these properties we investigate some covering properties
of the family { U(z) : z € X }, where U is a coherent neighbourhood
assignment on some LCS-space X.

If z ¢ U(y) and y ¢ U (z) then

U)nU@) cJ{U(z) : 2€ U@ NU@)}.

<w

Since U (z)NU (y) is compact there is a finite set i{z,y} € [ U (z) N U (y)]
such that

U@)nU@y) cJ{U() : zei{z,y} }.
We will enumerate some properties of < and the function . Let § =
ht (X) and for o < 0 write X, = Io(X).
(I) if z € X, y € Xg and z<y then either x =y or a < g,
(1) ¥{z,y} € [X]* Vz € X((zqz A zqy) iff 3t € i{z, y}zat).
(II) if z € X, and B < « then the set {y € X : y<x} is infinite.
Proposition 2.1. Assume that {Xo : a <} is a partition of a given set
X, < is a partial order on X and i : [X I [X]<“ is a function satisfying

(I)~(IIT). Then X = (X,7q) is a (coherent) LCS space with Io(X) = Xq for
a < 4.
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Proof. X is right-separated, i.e. scattered, witnessed by any well-ordering
extending the well-founded partial ordering < because of (I).

For each z € X, the family
0(a) = { 0@\ J Ut F e [0\ (1]}

is a neighbourhood base of z. Indeed, if  # y then Uq(z) N Uy(y) = Ug(z)
provided z € Uq(y) and

Uel@) \ Ualy) = U()\ |J Ual2)

z€i{zy}

provided = ¢ Uq(y), where i{z,y} € [ Us(z) \ {z}] <.
Lemma 2.2. [,(X) = X,.

Proof. First we show by induction on a that if z € X, U € U(z) and 8 < «
then U N Xg # 0. For § = a we have x € U N X3 so we can assume [ < a.
Assume that U = Uq(2)\U { Ua(2) : z € F}, where F € [ Uy(z) \ {z}] <
Let p = max{v : FNX, # 0} and v = max {u, 8}. Since v < a by (III) we
can pick ¢t € (X, NUq(x)) \ F. Then Uqg(t) \U{ Uq(z) : z€ F} CU is a
neighbourhood of ¢ which intersects Xg by the inductive hypothesis because
teXyand <y <a.

Now prove the statement of the lemma by induction on a. Let Y =
X\ Upea I8(X) = X\ Upca Xp- If 2 € X4 then U(z) NY = {z}, so
Xo C I(Y). If z € X, for some 7 > « then for any neighbourhood of U
we have UN Xo # 0, ie. UNY # {z}, and so z ¢ I(Y). Thus I(Y) = X,
which was to be proved. =

Lemma 2.3. Uy(z) is compact in X.

Proof. We prove this statement by induction on ht (z). By Alexander’s
subbase lemma it suffices to show that any cover V of Uy(z) by members of
{ Udly) rye X } and their complements has a finite subcover. Let V € V
be such that x € V. If V = Ug(y) then Uq(z) C Uq(y) so we have a one
element covering. So we can assume that V = X \ Uq(y). Then

Uq(z) \ V = Uqg(z) NUa(y) = J{ Ual2) : 2 € i{z,}}.

For each z € i{z,y} we have ht(z) < ht(z) and so Uy(z) is compact,
and so Ug(z) \ V is compact as well. Thus there is a finite W C V with
Uq(z)\ V Cc UW. Hence WU {V} is a finite cover of Uy(z). m
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This completes the proof of Proposition 2.1. mq

We say that < is an LCS-order on X iff (X, 74) is an LCS-space.

So our strategy to force an LCS space with a prescribed cardinal se-
quence (Kq : a < 0) is the following. Let X, = {a} X k4 for & < d and put
X = J{Xq : @ < é}. Now we try to add generically a partial ordering <
on X and a function 7 : [X]* — [X]<“ satisfying (I)-(III) using finite ap-
proximations. That is, a typical forcing condition is a triple (a, <,7), where
a is a finite subset of X, < is a partial order on a, and i is a function on [a]?
such that (a, <,i) satisfies (I) and (II). (III) would be guaranteed by some

density argument. This type of forcing was introduced by Judy Roitmann
to get thin superatomic Boolean algebras (LCS spaces).

The main problem is that the poset of all the possible finite approxima-
tions may not satisfy c.c.c. That is the point where the A-function came
into the picture. Baumgartner and Shelah, and later Martinez, applied this
function to select a suitable subfamily of the conditions which satisfies c.c.c.
Our strategy will be different: we show that if there is a suitable poset which
introduces 7HZN (k) then for each 6 < k% there is a a suitable poset which
introduces THIN ().

This strategy will be carried out in the next section in a special situation.

3. LIFTING THEOREM

Fix a cardinal k > w and let 7 : kT x w — kT be the natural projection:

m({a,n)) = a.
Define the poset P? = (PP, <) as follows. The underlying set P° consists
of triples (a, <, 1) satisfying the following requirements:

(i) a€[xt xw

)
(i) < is a partial ordering on a,
(i) ¥{z,y} € [a] if = <y the 7(z) < 7(y),

(iv) i : [a)* = P(a) is a function,
(v) Y{z,y} € [a)? if 7(z) = 7(y) then i{z,y} =0,
1)

(vi) Y{z,y} € [a)? if < y then i{z,y} = {z}.
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Write p = (a?, <P, iP) for p € P°. Define the function h? : a? — P(aP) by
the formula h?(z) = {y € a? : y <P z}. For b C aP write h?[b] = |J { h*(z) :
T € b} .

Let p<q iff a% Ca?,
<I=<P N(a? x a?),
19 C P
Clearly < is a partial ordering on P°.
Let

P*={(a,<,i) € P : V{z,y} € [a*Vzea
(z<zAz<y)iff 3t € i{z,y} 2 < t}.
Fact 3.1. Forpe PY,

p € P*iff V{xz,y} € [aP)*hP(z) N hP(y) = hP[iP{z,y}].

The elements of P* can be considered as the natural finite approxima-
tions of an LCS-order on k™ x w and the witnessing function .

Definition 3.2. Two condition p,q € P are twins iff (i)-(ii) below hold,
where a = a”? Na®:

(i) <Pla=<9]aq,
(i) @ | [a]* =4 | [a]*.

Definition 3.3. Let p, g € P® be twins. A condition r € P° is an amalga-
mation of p and q iff

(a) a" =aPUa?
(b) <" is the partial ordering on a” generated by <P U <9,
(c) i" 2P UM,

Let
amalg (p,q) = {r : r is an amalgamation of p and ¢}.

When we speak about amalgamations of two conditions we will always
assume that these conditions are twins.
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Fact 3.4. If r € P° is an amalgamation of p and q, then
(1) <"faP =<P,
(2) r<pandr<g,

(3) If x € a and y € af then x <" y iff there is z € aP N a? such that
r<Pz<9y.

Fact 3.5. If r € P° is an amalgamation of p and q, moreover p,q € P*
then
¥{e,y} € @ UL (@) NI () = 1 [ifa,9)].

Proof. Assume that {z,y} € [0?)® and let z € (h"(z) N " (y)) Na? Then
there are u, v € aPNa? with z <7 u <P rand z <7v <P y. Since ¢ € P* there
is w € i7{u,v} with z <7 w. Since "{u,v} = i7{u,v} we have w € a? Naf.
Thus w € hP(x) N hP(y). Since q¢ € P*, there is t € ©P{z,y} with w <P t.
Thus z <9 w <Pt € P{z,y} = 1" {z,y} and hence z € h"[ir{a:,y}] . M35
For A C k™ let
Pi={pe P :ad’ C Axuw}.

Next we introduce three properties, (K¥), Df* and D4, of posets (P, <),
where P C P} for some A C x*. The first one is a strong version of property
(K), the two others are density requirements.

Definition 3.6. Let P C P*. The poset P = (P, <) has property (K" ) iff
VS € [P]“'3T € [S]'V{p,q} € [T]?

p and q have an amalgamation in P.

Definition 3.7. For a condition p € P° and z € (k% X w) \ a? define
g=pw{z}e PO as follows:

e a7 =aPU{z},
o <I=<P (z,2)},
o P C i,

o 9{z,y} =0 for y € aP.
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Fact 3.8. pw{z} € P} foreachp € P} andz € (A xw) \ a”.
Definition 3.9. Let P C P4. The poset P = (P, <) has property D{! iff
pw{z} € Pforeachp€e Pand z € (Axw)\d.

Definition 3.10. For p € P4, = € @, y0,91,.--,Yn-1 € (A X w) \ a?
with m(yo) < m(y1) < ...7(yn—1) < 7(z) define the condition ¢ = p W,
(Yo, -+, Yn-1) € PO as follows:

b a’qza'pu{ym"'ayn—l}y
. §q=§’u{(y,~,yj : i§j<n)} U{(yi,z) Pz €aP, xg”z},
o chlq,

hd iq{yia yj} = Ymin (4,)

yip if x <Pz
o 1y, z} = ~ for z €d”.
0 otherwise

Fact 3.11. If p € P, z € a”, yo,y1,---,Yn—1 € (A X w) \ a? with
m(yo) < m(y1) < ...7(Yn-1) < 7(z), then ¢ = pWy (2o,...,2n-1) € P}.

Definition 3.12. Let P C Pj. The poset P = (P, -<>' has property D2 iff

V{e, B} € A, a < B, there is a finite set of ordinals LP(a,f) =
{ag,...,an_1} € [A]*¥ such that a = ap < a1 < ...ap-1 < B and if
p € P, z € a? with n(z) = B and z; € (A X w) \ a? with 7(z;) = o
for i < n, then pW, (yo,...yn—1) € P.

Definition 3.13. Let A C k* and P C P*. The poset P = (P, <) is A-nice
iff P C P} and P has properties (K*), (D{!) and (D4'). For § < £ let
N AT (6) be the statement that there is é-nice poset Pj.

Proposition 3.14. If a poset P is é-nice then P has property (K) and
THIN (8) holds in VF.

Proof. By Fact 3.4(2) property (K ) implies property (K). Let G C P be a
generic filter. Put A ={a? : p€ G}, 1 =J{# : p € G} and <= J{=<":
p € G}. Then A = § x w by (D3). The partial ordering < satisfies (I)
because every p € P satisfies (iii). The function i : [§ x w]® — [§ x w]<¥
satisfies (II) because every element of P is in P*. Finally (III) holds because
(D$) can be applied in a suitable density argument. Thus (6 X w, 7<) is an
LCS space with levels {a} x w for @ < 4. m314
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After this preparation we are able to formulate the main lifting theorem.

Theorem 3.15. N AT (k) implies N AT (6) for each cardinal k and ordinal
§ <kt

First, in Lemma 3.16 below, we show that our lifting theorem works
downwards. Although THZIN (k) clearly implies T7HZN (§) for § < k we
should prove N AT (§) for § <  as well, because we will use the posets
witnessing this to prove N AT (v) for v > k.

Ifpe PO and I C % let
plI={a"N(Ixw),<Pl (I xw),i | [Ixw]).
Observe that
e plIePYiffi?{z,y} C I xw for each {z,y} € [a”ﬂ(I X w)] 2,
e ifpec P*andp|I¢€ P%thenp|I€ P*

Lemma 3.16. NAT (k) implies N AT () for ¢ < k.

Proof. Fix P, C P} such that P, = (P, <) has properties (K*), (Df)
and (D). Let Ps = (Ps, <), where Ps={p [0 : p € Px}.
We should check that Ps also has has properties (K*), (D?) and (D3).

(Kt): Let {p, [ § : v < w1} € [Ps]”". We can assume that for
each {v,p} € [w1]* p, and p, have an amalgamation 7, € P.. Hence
Ty, | 0 € Ps is an amalgamation of p, [ § and p, [ 6.

(DY) is easy: (p|6)W{z} = (pW{z}) | d for n(z) < 4.

(Dg) is also easy: (p [ 0) Wy (Yo, - - - yYn—1) = (P Wz (Yo, - - ayn—-1>) [
for m(z) < 6. W36
Proof of Theorem 3.15. Since we know the statement for § < x we prove
the theorem by induction on § > k. When we constructed Ps we will also
have P4 C P} for each A C x* with order type d such that P4 = (Pa, <)
has properties (K*), (D{!) and (D3}).

We will write LA(a, B) for LP4(a, B). Let L4(a, a) = 0.
Successor step:

Assume that Pj is constructed. Then we can get Psy; as follows.

A pisin Psy iff

(i) p € P51,
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(iii) V{z,y} € [a?)? if 7(z) < & and 7(y) = & then either i{x,y} = z (i.e.
z <Py)ori{z,y} =0 (ie. hP(z)NhP(y) = 0).

We show that Psy1 = (Ps, <) works, i.e. it satisfies properties (K1),
(D*Y) and (D3*).

Lemma 3.17. P, satisfles (K™).

Proof. Let {p, : v <wi} € [Ps11]*", pv = (av, <u,1u), hy = hP». Without
loss of generality

(a) Y{v,u} € [w1]*3r,, € Psry,, is an amalgamation of p, and p,,.
(b) 3ta, N ({0} xw) =t.
(c) {ay : v <w;} forms a A-system with kernel a.

(d) <yl a=<ula for each {v,u} € [wi]?

(ili) and (d) together imply that
(6) Vi, ) € [wn] ¥z € 9y € (a\ iu {2, 0} = iule, ).

Now for each {v, u} € [w1]? the conditions p, and p, are twins and we
can define r € P as follows:

e r is an amalgamation of p, and p,
rlé=r,,.

If {z,y} € [a")*\ ([¢")* U[a%?) then {z,y} € [a"+]*. Hence r,,, € P}
and Fact 3.5 imply that r € Py, ;. Thus 7 € Psy1. 317

Lemma 3.18. Ps,; satisfies (D3*1).
Straightforward.
Lemma 3.19. Ps, satisfies (Dg“).

Proof. For a < f<dlet L) = LY ;. For o < let L3 = {a}. m3
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The successor step is done.
Limit step:

Assume that § is limit ordinal, and P4 is constructed for each A C k™
with order type < 4.

FixacubC C 4, C={y :(< cf(5)}. Let Ic = [v¢,Yc+1) for
¢ < cf(9).
Let p : § — cf(8) s.t. p(a) =Ciff a € I¢.
Let p € Ps iff
(01) p € Py,
(62) p| C € P,
(63) p [ I¢ € Py, for each ¢ < cf(9),
)

(64) Vx,y € aPifx <Py, e < 7(x) < Ye41 < 7(y) then Ju € aPx <Pu <Py
and m(u) = s

(65) Vz,y € aP if £ <Py, () < v¢ < m(y) < Ye41 then Jv € aPx <P v <Py
and m(v) = ¢

(866) Vz,y € aP, v¢ < m(z) < Ye+1 < Ve S 7(Y) < Yet1, T £P y then
i”{x,y}CU{i”{u,v} cu <P av <Py m(u) =y, m(v) =Y}
We show that Ps = (P, <) works, i.e. it satisfies properties (K*), (DY)
and (D3).
Lemma 3.20. Pj satisfies (K).
Proof. Let {p, : v < w1} € [Bs]", p» = (a,<u,0), hy = hP. Let

= {n < cf(d) : e, N # ¢}. By thinning out the sequence {p, :
v < w)} we can assume that

(a) {a, : v € w1} forms a A-system with kernel d,

)
(b) there is a partial ordering <% on d such that <, [ d =<? for each v € wy,
(c) {cv : v <wi} forms a A-system with kernel c,

)

(d) Vn € c3epv € wiay, N ({m, 1y + 1} X w) = en,
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(e) Vn € cV{v,u} € [wi]? the conditions p, [ I and p, | I have an
amalgamation 77, = (@), <Py, iv,) in Py .

(f) Y{y,u} € [w1]2 the conditions p, [ C and p, | C have an amalgamation
=(a%,,<¢ ,i% ) in Pe.

r VL) =, l/[t

Vi
(¢) iv{z,y} = iu{z,y} for each {z,y} € [d)* and {v,u} € [w1)>.
To ensure (g) fix {z,y} € [d]>. If p(z) = p(y) = n then (g) holds by (e):

iw{z,y} = z“{:r, y}. If {n(z),7(y)} € [C]* then i,{z,y} = i {z,y} & Lf
iC{z,y} by (f). If n = p(zx) # p(y) = o then by (06) we have

iy} | {iv{u v} 1 u <y 20 <y, m(w) = Yy, T(0) = Y5 } C

U {iC{u,v} LU E e,V € e,,(y)},

i.e. i,{x,y} is a subset of a fixed finite set for each v € w;. So, by thinning
out our sequence we can guarantee that (g) holds.

Claim 3.20.1. p, and p, are twins for each {v,pu} € [wi]?.
Fix {v,pu} € [wl]z. Define 7 = (a, <,i) € PP as follows:

(rl) a =a, Uay,

(r2) < is the partial ordering on a generated by <, U <,

(r3)

ey} if {z,y} € (o),

i{z,y} if {z,9} € [a,)%,

i{z,y} = €0 {z,y} i {z,y} € [CP,

Badoy) it {z) € LR

(M (z,y) otherwise,

where
= U{i{u,v} {u,v} €[, u<z, v<y,

7!'(11,) = Yp(x)> W('U) = 7p(y)}'

Claim 3.20.2. r is an amalgamation of p, and p,,.
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Claim 3.20.3. <] C x w =<,.

Proof. Let z,y € aN(C'xw), z <y. We can assume that z € a, and y € ay,
and p(z) < p(y). Then, by Fact 3.4(3), there is z € d with z <, z <, v.
Then, applying (65) for x and z in p, there is v € a, such that z <, v <, 2z
and 7(v) = 7,(;). Since z € a we have p(z) € c and so v € e,;) C d. Thus

x SSN y because z <, v < yand v € dN(C xw). W33
Claim 3.20.4. r satisfies (02) and (43).

Proof. r[Iy=r), € Py, is clear for each n < cf(é) and r | C = T,fu € Pc
follows from Claim 3.20.3. W320.4

Claim 3.20.5. r satisfies (64).

Proof. Assume that {z,y} € [a]*, 2 <y, v, < 7(z) < Yp41 < 7(y). We can
assume that = € a, \ ay and y € ay \ a,. Pick z € d such that z <, 2 <), 9.

If v, < m(z) < 7yy+1 then applying (64) for the pair {z,y} in p, we
obtain u € a, such that z <, u <, y and 7(u) = vy41. Then this u works
for {z,y}.

If yp+1 < 7(z) then applying (04) for the pair {z, 2z} in p, we obtain
v € a, such that z <, v <, z and 7(v) = Yy41. W3205

Claim 3.20.6. r satisfies (65).

Proof. Assume that {z,y} € [a]2, <y, m(z) <y, <7(Yy) < Yp+1. We can
assume that = € a,, \ a, and y € a,, \ a,. Pick z € d such that x <, 2 <, y.

If v, < m(z) < 7y+1 then applying (65) for the pair {z,z} in p, we
obtain an u € a, such that z <, v <, z and 7(u) = 7,. Then this v works

for {z,y}.
If v,4+1 < 7(z) then applying (65) for the pair {z,y} in p, we obtain a
v € ay such that z <, v <,y and 7(v) =7v,. W3206

Claim 3.20.7. r satisfies (06).
Straightforward from the construction of s.
Claim 3.20.8. r satisfies (61): r € Py.

Proof. Write h = h". Let {z,y} € [a]® be <-incomparable elements. By
Fact 3.5 we can assume that z € a, \a, and y € a,\a,. Let z € h(z) Nh(y).

Case 1. p(z) = p(y).
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Let n = p(x). Since r [ I, =7}, € Py we can assume that m(z) < .
Applying (85) for the pairs {z,z} and {z,y} we obtain u and v, respectively,
such that 7(u) = 7(v) = v, 2 <u <z, 2<v<y. Sincen € ¢, Ney = c we
have {u,v} C d. Since z € h(u) N h(v) we have u = v by Fact 3.5. Hence
there is ¢ € i), {z,y} = i{z,y} with u <}, t. Thus z <t € i{z,y}.

Case 2. p(z) = p(T) < p(y)’ 7T(Z) = Yp(x)-

Applying (65) for the pair {z,y} there is u € a such that z < u <y and
m(u) = V(). Then i{z,u} = {2} and i{z,u} Ci{z,y}.

Case 3. p(z) = p(z) < p(y), 7(2) > Vp(a)-

Applying (64) for the pair {z,y} there is u € a such that z < u <y
and m(u) = Yyz)41- If u € ay, then there is w € d N (I)x) X w) such that
either z <, w <, uor z <, w <, x by Fact 3.4(3). Hence p(z) € ¢ and so
u € eyy) CdC ay. Thusu € ay. Thus z € hy(z)Nhy(u), hence by Fact 3.5
and by (06) we have v <, u. Hence x < y, contradiction, this case is not
possible.

Case 4. p(z) < p(z) < p(y).

Applying (64) for the pairs {z,z} and {z,y} we obtain u and v, respec-
tively, such that 7(u) = 7(v) =0 € C, 2 <u <z, z < v <y. Then
z € h(u) N h(v) so, by case 1, we have u = v. Applying (65) for the pairs
{u,2} and {u,y} we obtain t and w such that u < t < z, u < w < v,
(V) = Vp(z), T(W) = Yp(y)- Sincer [ C = r,(;:” € P there is s € i{t,w} with
u<s. Then z < s and s € i{z,y}. W323

Hence Pj satisfies (K). ®3.20
Lemma 3.21. Ps satisfies (D?).

Proof. Assume that p € Psand z € (§ X w) \ a”. Let ¢ = pw {x}. We need
to show that ¢ € Pj, i.e., q satisfies (61)—(66).

(01) follows from Fact 3.8.

If2z¢ Cxwtheng[[C=p[C € Pcbecausepe Ps. If z€ Cxw
then ¢ | C = (p | C)W{z} € Pc because p | C € Pc and Fg satisfies (D).
Hence (62) holds. Similar arguments work for (63).

As for (84), let {z,y} € [a9)® with = <7 y. Then {z,y} € [a”]* because
z and the elements of a? are <%incomparable. So we can apply property
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(04) for {z,y} in p to get a suitable u € a? C a?. Similar arguments work
for (65).

As for (66), let z,y € [a9% If z € {z,y} then i%{x,y} = 0 so the
required inclusion holds trivially. Otherwise {z,y} € [a?]* so we can use
property (06) for p to get the required inclusion. W329;

Lemma 3.22. Ps satisfies (D3).

Proof. If {a,8} € [I,,]2 for some 7 then let L*(a, ) = L (a, B). Other-
wise, if a € I), B € I, n < o, then let o™ = min (C'\ @+ 1) and put

L(a,B) = {e,a"} UL (o, %) UL (75, B).

Enumerate LP(a,8) as o = ap < a1 < -+ < ap—1 < B. Let p € Py,
z € aP with 7(z) = f and z; € (6 x w) \ a” with 7(z;) = o; for i < n. Let
qg=pY; (20,..-2n-1).

We should show that g € Py, i.e. ¢ satisfies (61)-(36).

We will consider only the harder case, i.e. when a € I,, B € I,
n < o. Fix 1 < m < n such that LC(a*,v,) = {a1,...,ar_1} and

L[a(’YUHB) = {aky s »am—l}» Le.

m=a<a=at =y < <am=7 < <ap-1 <P

(61) follows from Fact 3.11.
(02): If z ¢ C X w then

g1C=((p1C)w{z}) Wiz} - W{a} € Fc,

where £ =1if ap ¢ C and £ = 0 if ap € C, because Pc satisfies DIC.
If z€ C X w then

g1 C=(plp)¥; (z,...,2x) € Pc,

where £ = 1if ag ¢ C and £ =0 if ag € C, because P satisfies DQC .
(63): Let ¢ < cfd. If ( = o then

ql I, =(pl 1), (2ky .y 2n-1) € Py,
because Py, satisfies D5°. If 7 = o for some 7 € {0,...k — 1} then

gl Ic=(plI)w{a} € P
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because P1C satisfies D{C.
Otherwise g [ I =p [ I € Py,

(04): Let {z,y} € [a9)? with z <7 y and Yo < m(x) < Y1 < w(y). If
T € aP then y € a” so we can apply (04) in p the get a suitable u. So we
can assume that = € {zg,...,2p-1}. Since v < m(z) < Y41 < 7(y) we
have £ = zp or z € {241,...,2n-1}. If & = 20 then u = 2y works. If z = z
for some £k < ¢ < n then £ = ¢ s0 y,41 < 7(y) implies y € aP. Hence
Yo < m(2) < Yo41 < 7(y) and so applying (64) in p for the pair {z,y} we
get u € aP with z <P v <Y and 7(u) = ¥y41. Thus this u works for {z,y}
in q.

(65): Let {z,y} € [a9)? with z <7 y and 7(z) < Ye < m(Y) < Ve If
x € aP then y € a so we can apply 64 in p the get a suitable v. So we can
assume that z € {29,...,2,-1}.

If £ = o then v = z;, works.

If £ > o then z <P y and 7(2) = 75 < v¢ < 7(y) < Y41 50 We can apply
(05) in p for the pair {z,y} to get a suitable v.

If ¢ <o theny € {z1,... 2,1} SO v =y works.

(06): Let {z,y} € [aP)* If {z,y} € [a”]* then we can apply (86) for p to
get the required inclusion. We can assume that € {zp,....2n—1}. Then
i9{z,y} = 0 by the construction of ¢ = pW, (20, ..., z,-1) because z and y
are incomparable and so z ﬁp y. W39

Thus the limit step is done as well, which completes the inductive
construction, so Theorem 3.15 is proved. ™3 15

We conclude the paper with the result we quoted in the abstract.

Theorem 3.23. If there is a k-nice poset P for some regular cardinal k then
there is a c.c.c poset Q such that THIN (6) holds in V® for each § < k*.

Proof. Using Theorem 3.15 we fix, for each § < %, a d-nice poset P;.
Let Q be the finite-support product of {Ps : § < x*}. Since every P; has
property (K), so has Q.

Let G be a Q-generic filter and let 6 < % be arbitrary. Then G5 =
{p(6) : p€ GG €dom p} is a Ps-generic filter, hence THZN (4) holds in
V[Gs] winessed by some space Xs by Proposition 3.14. Since V[Gs] C V[G]
the space Xs witnesses THZIN (0) in V[G]. =
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EXTREMAL FUNCTIONS FOR GRAPH MINORS

A. THOMASON

The extremal problem for graph minors is to determine, given a fixed graph H,
how many edges a graph G can have if it does not have H as a minor. It turns
out that the extremal graphs are pseudo-random; the sense of this has best been
expressed by Vera T. Sés in a question answered by Joseph Myers.

This survey describes what is known about the extremal function and dis-
cusses some related matters.

1. INTRODUCTION

We say that the graph H is a minor or subcontraction of the graph G,
written G > H, if H can be obtained from G by deleting some vertices
and edges and by contracting some other edges. This is equivalent to the
statement that V(G) contains disjoint subsets W,,, u € V(H), such that the
subgraph G[W,,] induced by W), is connected for each v € V(H) and there
is an edge in G between W, and W, whenever wv € E(H).

This survey describes what is currently known about the fundamental
extremal question regarding graph minors, namely, how many edges are
needed in G to ensure that G > H? It is now possible to give a fairly
full answer to this question. In the first place, it turns out that there is
a close connection with the theory of random graphs and with the theory
of pseudo-random graphs. This connection is expressed best by a question
of Vera T. Sés; her question, and the answer subsequently given by Joseph
Myers, are discussed in §5. Secondly, the variation of the extremal function
with H can be described in terms of a structural property of H, reminiscent
of the way in which, in classical extremal graph theory, the extremal func-
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tion depends on the chromatic number. In the present case, the relevant
structural property is again a kind of partition of H, by means of weights,
that is defined in §1.2 and discussed in detail in §6.

We also describe briefly (in §8 and §9) some other extremal problems for
minors, such as what connectivity or girth forces a graph to have a given
minor. This area has enjoyed some substantial recent advances, but there
remain significant open questions about which little, as yet, is known.

1.1. Background

The source of the basic extremal problem for minors is, arguably, the
remarkable paper of Wagner [38], in which he proved that the Four Colour
Theorem is equivalent to the assertion that G > Kj for every graph G that
needs five colours to colour it. Hadwiger [10] in 1943 famously conjectured
that G > K, for every graph G that needs ¢ colours to colour it. This
assertion is trivial for ¢ < 3, and Hadwiger proved it for ¢ = 4. Much more
recently, Robertson, Seymour and Thomas [31] have proved the conjecture
for t = 6 by showing that it follows from the Four Colour Theorem. For a
good survey of Hadwiger’s conjecture see Toft [37].

In 1964 Wagner [39] proved that G > K; provided the chromatic number
of G is sufficiently large (2!3 will do). Mader [22] then developed the
idea that the chromatic number might not be the significant parameter;
he showed that G = K; provided merely that the average degree of G is
sufficently large. He therefore introduced the function

c(t) =min{c : e(G) > ¢|G| implies G > K},

proving that c(t) < 27 (see Lemma 2.1) and later [23] that c(t) <
8[tlogyt]. Thus we are led to the extremal problem for complete graph
minors.

In fact, for small ¢, much more precise information is available. Write
F +G for the join of two graphs F' and G, meaning their disjoint union with
all edges added between. Observe that the graph K;_o + K p_t+2 does not
have a K; minor, and neither does the graph K;_5 + P if P is a maximal
planar graph. These graphs all have (t — 2)|G| — (*3') edges. Dirac [7]
demonstrated that if ¢ < 5 then this is the exact maximum number of edges
in G if G ¥ Ky, and Mader [23] extended this to t < 7. But the seductive
pattern stops here; as Mader pointed out, the complete 5-partite graph
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with two vertices in each class has 40 = 6|G| — 20 edges and no Kg minor.
(Jorgensen [12] later proved that this is the maximum size of graphs with
no Kg minor, and characterized the extremal graphs. He could thereby
(see [11]) extend to t < 8 the cases in which the following conjecture is
known to hold: that if G has a partition into Vi,...,V; such that G[V; UVj]
is connected for ¢ # j, then G > K;. This conjecture is one of several,
related to Hadwiger’s conjecture, made by Las Vergnas and Meyneil [21].)

For larger values of t the divergence of the extremal function from the
simple pattern just described is much greater. Random graphs provide
examples showing that c(t) is of order at least ty/logt. This was noticed
by several people at about the same time (for example Kostochka [15, 16],
and also Fernandez de la Vega [9] based on Bollobés, Catlin and Erdés [2]).
Kostochka [15, 16] proved that the correct order of growth for c(t) is indeed

ty/Togt (see also [32]).

1.2. Recent developments

Recently, the asymptotic value of ¢(t) was determined.

Theorem 1.1 ([34]). There exists a constant o = 0.3190863 ... such that
c(t) = (a+0(1))t\/logt.

The constant « can be explicitly described (see §3); it is simply the best
constant that can be obtained from randomly generated lower bounds (note
that logarithms are natural unless stated otherwise).

It is evident from Theorem 1.1 that there is a connection between
random graphs and extremal functions for minors, though the connection
is still closer than first appears. The extremal graphs must be pseudo-
random graphs of specified order and density, or else a more-or-less disjoint
union of such graphs ([34, 27]). The connection has been captured best
by Vera T. Sés in a question which, loosely speaking, is this: if a graph
of positive density has no minor bigger than what might be found in a
random graph of the same density, must the graph itself be pseudo-random?
Myers [26] has given a positive answer to this question. We explain this
question more precisely, together with its answer, in §5.

Even more recently, the asymptotic value of the average degree that
implies a general H minor has been determined, and the strong connection
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with pseudo-random graphs persists. Let
¢(H) =min{c : e(G) > c|G| implies G > H},

so that ¢(t) = c(K;). The results about ¢(H) are expressed in terms of a
parameter y(H) of the graph H, defined as the minimum average vertex
weight amongst weightings satisfying a certain condition.

Definition 1.2. Let H be a graph of order t. We define

— min © . ~w(wu(v)
v(H) = min ~ Z w(u)  such that Z gl <
ueH weL(H)

where the minimum is over all assignments w : V(H) — R of non-negative
weights to the vertices of H.

A uniform weighting w shows that 0 < y(H) < 1 for all H and, more
generally, v(H) < /7 if H has at most |[H|'"" edges. In §6.2 we shall
describe ways of estimating y(H) fairly precisely, but it is worth pointing
out here that, amongst H with |H |1+T edges, almost all H and all regular H
satisfy y(H) ~ /7; indeed, v(H) will not be significantly smaller than this
unless H has some very restrictive structure.

The extremal result for H, if H has t vertices, is then this.

Theorem 1.3 ([28]). There exists a constant a = 0.3190863.. .. such that

c(H) = (y(H)a+ o(1)) ty/logt

for every graph H of order t, where the o(1) term is a term tending to zero
ast — oo.

1.3. Contents of this article

We begin in §2 with some preliminary remarks about the extremal function;
in particular, it is seen why only dense graphs are of importance in the
study of the extremal problem. There follows in §3 a discussion of minors of
random graphs and in §4 an explanation of what lies behind Theorem 1.1.
The discussion of S6s’s question in §5 should nevertheless be comprehensible
without first reading the earlier parts.
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After that, we go on in §6 to consider the general extremal problem
for contractions to a fixed graph H (not necessarily complete). In §7 we
comment on an application of the extremal problem to linking in graphs.
We finish with some remarks about other conditions on a graph that imply
it has large minors; in §8 it is seen how large girth can replace large minimal
degree as such a condition, and lastly in §9 we look at how large connectivity
might do the same.

2. INITIAL OBSERVATIONS

Here is a simple lemma that implies the existence of the function c(t).

Lemma 2.1. Let d be an integer and let G be minimal, with respect to
taking minors, in the class

{G : ¢(G) > dIG}.

Then every edge of G is In at least d triangles; in particular, if H is the
neighbourhood subgraph of some vertex, then e(H) > g|H |.

Proof. If G is minimal then G is non-empty and, for every edge uv, the
graph G/uv obtained by contracting uv satisfies e(G/uv) < d(|G| - 1).
Thus more than d edges are lost by contracting uv, meaning that uv is in at
least d triangles. So, if H is the neighbourhood graph of u, then §(H) > d.
]

The bound ¢(t) < 2¢3 follows at once from Lemma 2.1 by induction on ¢,
because a graph G with e¢(G) > 2!73|G| contracts to a graph containing a
vertex u joined to a graph H with H > K;_;.

Now if G is minimal in {G : €(G) > d|G|} then e(G) = d|G| (else just
remove an edge), so if u is a vertex of minimal degree then |H| = §(G) < 2d.
Thus, if we can find a large complete minor in any graph H with §(H) >
|H|/2, we can find a large complete minor in any graph at all. In fact, the
function c(t) is completely determined by minors of dense graphs, as we
explain in §4.

The simple idea of Lemma 2.1 can be exploited further by considering
graphs minimal in the class {G . e(G) > f(|G]), |G| > m} where f(n) is
an integer-valued function chosen so that f(m) > (’;) for some m. Then the
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class contains no graph of order m so a minimal graph must, by the argument
above, satisfy G = H where |[H| < 2f(|G|) and 6(H) > f(|G|) - f(|G|-1).
A couple of choices that are helpful in different contexts, both essentially
due to Mader [23], are these.

First, let f(|G|) = d|G| — kd. Provided k < d/2 we can take m = d.
This choice gives the same conclusion as Lemma 2.1 but with the extra
property that x(G) > k + 1, as can easily be shown. This choice is useful
when determining the extremal function c(t).

Secondly, with the choice f(G) = [ﬂd|G|(l + log (|G|/Bd) )/2], where
3 satisfies 1 = B(1 + log(2/8)), we can take m = [Bd]. The function is
chosen both so that f(|G|) — f(|G| — 1) is large for |G| < 2d and also so
that the graph H from Lemma 2.1, with |H| < 2d and 6(H) > d, lies in
the class. Applying the above arguments to this H produces, after a little
calculation, the following result.

Lemma 2.2. Let 3 = 0.37... be as above. Let G be a graph with
e(G) > d|G|. Then G ~ H, where |H| < d+2 and 26(H) > |H|+ |Bd] - 1.

The main point of this lemma is that the minimum degree is bounded
below away from |H|/2. This has useful consequences, as we describe in §7.

3. RANDOM GRAPHS

Let G(n, p) denote a graph of order n whose edges are chosen independently
and at random with probability p.

Theorem 3.1. Given € > 0 there exists T = T(e) with the following
property. Lett > T, let e < p < 1—¢€, let ¢q =1—p and let n =

|_(1 —¢)t\/logy/, tJ. Then G(n,p) > K; with probability less than €.

By choosing ¢ = A where A = 0.284668. .. is the root of the equation
1— A+ 2Xlog X = 0, we obtain from Theorem 3.1 graphs that have no K;
minor and that have average degree pn ~ aty/logt where a = (1 — \)/
21/log(1/X). This straightaway gives half of Theorem 1.1, namely c(t) >
(a+o(1)) tVIogt.

Theorem 3.1 is best possible, as shown by Bollobds, Catlin and Erdds 2],
in the sense that if n = (14 ¢€)t,/log;,t then G(n,p) almost surely has a
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Ky minor, but this follows in any case from the stronger Theorem 4.1 in §4.
For our purposes, random graphs are needed only as a supply of graphs
without H minors, for any specified H.

It is worth seeing what determines whether or not G(n,p) = H with
high probability. Let the vertices of G(n,p) be partitioned into sets Wy,
u € V(H). We need G[W,] to be connected and we need an edge between
W, and W, whenever wv € E(H). The first of these is, in practice, easily
arranged — it is the second condition that is the harder to satisfy. The
probability that it is satisfied for a particular partition is

11 (1_q|wu||wu|)zexp{_ 3 q|wu||wv|},

weE(H) weE(H)

So the partitions most likely to work are those where ) E(H) gWulWal g
minimized, and it is the way in which this sum minimizes, for a particular H,
that decides which random graphs have H minors and so, in turn, decides
the value of ¢(H).

By far the most common case is that where, in the minimizing choice,
all |W,| are equal; that is, |W,| = n/t where t = |H|. The expected number
of successful partitions is then around t" exp{ —e(H )q"z/ tz}, there being
about " possible partitions. For a graph with e(H) = t!*7 edges this
expected value is small or large according to whether n is less than, or

greater than, /T t, /log;,t, so this is the threshold value of n at which H

minors appear.

For general H, put w(u) = |W,|/,/log,/,t, and write W = n/t, /log; ), t

for the average value of w. Choosing |W,| to minimize the sum above
is the same as choosing w to minimize ) E(H) t~wWwl) - Writing M
for this minimum value, the expectation becomes t" exp(—M); since n =

wt,/logy/qt, the threshold region for n is when M is approximately ¢. It

can now be seen that the quantity W determining this threshold is precisely
the parameter v(H) defined in §1.2.

4. COMPLETE MINORS OF DENSE GRAPHS

The main theorem relevant to the extremal properties of complete minors
is the following one, a slightly weakened version of that appearing in [34].
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Theorem 4.1 ([34]). Given € > 0 there exists T' = T'(¢) with the following
property. Lett > T, let € < p < 1—¢, let ¢ =1—p and let n =

((1 + €)t, /logl/th. Then every graph G of order n and connectivity
k(G) > n(logloglogn)/(loglogn) has a K; minor.

Thus, every graph of positive density (except those which are nearly dis-
connected) has complete minors at least as large as those in random graphs
of the same density. Some kind of connectivity requirement is obviously re-
quired since, for example, the minors of a union of two disjoint graphs of
order n/2 and density 1/2 are the minors in the individual components, and
they would not be expected to correspond to the minors in a typical graph
of order n and density 1/4.

To prove Theorem 4.1 we must find a partition of V(G) into sets Wy,
u € V(Ky), such that each G[W,] is connected and such that there is an
edge between W, and W, whenever wv € E(I;). Just as in §3, the first
requirement can be arranged fairly straightforwardly, and it is the second
that needs care. A natural approach would be to take a random partition of
the n vertices into ¢ parts of size n/t each, in the hope that, even if not all
the required edges materialize, at most o(t) of them fail, and by dropping
any vertex of K, that is incident with one of these failed edges, we are still
left with a complete minor on ¢t — o(t) vertices, which is good enough.

The reason this approach does not succeed directly is because the degrees
in the graph G may vary wildly. In order for the argument to work it is
necessary that a randomly chosen part of size | = y/logt be joined to all
but not much more than ng' vertices; a second random part would then fail
to have an edge to the first random part with probability around g%, so
behaving much as if the graph were itself random. However, the expected
number of vertices not joined to our first random part is ) q(.r)l, where
z has q(z)n non-neighbours, and this expected value can be much larger

than ng' if the degrees differ.

It transpires that two properties of a randomly chosen part are needed
to make things work: both the part itself, and its set of non-neighbours,
must be spread uniformly throughout the vertices of different degrees; that
is, these sets must contain their fair share of the vertices of each degree,
in a sense that can be made precise. All but o(t) of the parts, which can
be discarded, have both these two properties, and between the remaining
parts, all but o(t) of the desired edges materialize, and so we can proceed
according to our initial strategy. (In the proof given in [34], the parts are in
fact chosen at random only from those that arc spread uniformly through
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the vertices, and so only the spread of the non-neighbours is an issue. On the
other hand, in the proof given in [28] of Theorem 6.2 below, which extends
Theorem 4.1 to general H, the parts are chosen entirely at random.)

4.1. The extremal function c(t)

The remaining half of Theorem 1.1, that is, the upper bound on ¢(t), can be
derived from Theorem 4.1 in this way. Writing d = at+/logt, it is enough to
show that if G is minimal in the class { G : e(G) > d|G|} then G > K. This
minimal graph G is either small and dense, or sparse but large. In the first
case, Theorem 4.1 implies straightaway that G > K;. In the second case,
we can assume by the arguments of §2 that G is reasonably well connected
and that each edge is in at least d triangles. A few judicious applications
of Theorem 4.1 then produce a large number of small minors that can be
combined to form a K; minor. In fact, a minor much larger than K; can be
formed, and from this it follows that extremal graphs arise only from the
first case, and they are therefore essentially disjoint unions of small dense
pieces.

4.2. Directed graphs

All the above arguments can be made to work for directed graphs, where the
minor being sought is DK}, the complete directed graph of order ¢t with an
edge in each direction between each pair of vertices. The extremal digraphs
turn out just to be those obtained from the undirected case by replacing
each edge by a double edge — details are in [34].

5. PSEUDO-RANDOMNESS AND SOS’S QUESTION

As indicated in the §4.1, the extremal graphs for the function ¢(t) are formed
by first taking random-like graphs of the appropriate order and density, and
then forming as large a graph as desired by taking (almost) disjoint unions
of the random-like pieces. Thus extremal graphs must be looked for in the
class of pseudo-random, or quasi-random, graphs as discussed by Chung,
Graham and Wilson [4] or in [33].
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Now it is not true that all pseudo-random graphs behave as well as
random graphs in terms of not having large minors. In fact, in [35] it
is shown that most of the standard examples of pseudo-random graphs
with n vertices have complete minors with ©(n) vertices, compared with
only G)(n/ \/1ogn) for random graphs. Indeed, Mader’s request [25] for
an explicit graph whose largest complete minor has o(n) vertices remains
unanswered; in general it seems hard to find a graph G whose largest minor
has o(8(G)) vertices. Alon [1] has nevertheless shown that random Cayley

graphs have minors no larger than @(n/ \/logn).

Sés has expressed the connection between the extremal theorems and
quasi-randomness in the most succinct way. Although quasi-randomness
does not preclude the presence of large minors, she asked whether quasi-
randomness is necessary for the absence of large minors. To be precise, she

asked whether a graph of density p and order ¢, /log, /, ¢, and having no K

minor, must necessarily be quasi-random.

The standard arguments about quasi-random graphs, even when prop-
erly quantified, are not quite strong enough to answer Sés’s question. The
issue has been settled by Myers [26] in the following way (at the same
time giving a more precise description of the extremal graphs for the func-
tion c(t).)

To understand Myers’ theorem, consider a graph G whose vertex set is
partitioned into two sets, X and Y, and define the three densities

_ e(X) _eX)Y) _elY)
bPx = (I/gl), Pxy = lXI IY| ) (’gl)

Py =

where e(X), e(Y) and e(X,Y) are the numbers of edges of G spanned
by X, spanned by Y and joining X to Y. Likewise define qx = 1 — px,
gxy = 1—pxy and qy = 1—py. It is the principal feature of quasi-random
graphs that G is quasi-random if and only if px: differs little from px for
every X' with |X'| = |X|, which of course implies that each of px, pxy
and py are close to p, the density of G. Note that, whether or not G is
quasi-random, the density of G satisfies

q = zqx + 2z(1 - z)gxy + (1 — 2)°qy

if G is large, where g = 1 — p and = = |X|/|G|.
Consider now a randomly generated graph G(n,z,px,pxy,Py), having
n vertices partitioned into two sets X and Y, where |X| = zn; the edges are



Extremal Functions for Graph Minors 369

chosen independently, with probability px inside X, pxy between X and Y
and py inside Y. The proof of Theorem 3.1 is readily modified to show
that the threshold value of n at which a K; minor almost surely appears in

G(TL, xaanpXYapY) is

n=(1+o0(1)) t, [logi/g«t  where ¢ = q§(2 q?f}(,l_x) q%’,z.

By taking logarithms and applying Jensen’s inequality it can be seen that

*

q2q

with equality if and only if gx = gxy = qy =¢.

Thus, so far as the sizes of complete minors are concerned, the con-
strained random graph G(n,z,px,pxy,py) of density 1 — ¢ behaves like
the ordinary but denser random graph G(n,1 — g¢*).

We can now state Myers’ generalization of Theorem 4.1.

Theorem 5.1 (Myers [26]). Given € > 0 there exists T = T(e) with the
following property. Lett > T, let e < p < 1—¢,let g =1—p and let

n = {(1 + €) t, /logl/qt-‘. Let G be a graph of order n and connectivity
k(G) > n(logloglogn)/(loglogn), having a vertex partition into X and Y
as described above, wheree < qx,qxy,qy < landq* < 1—¢. Then G = K

where
_ | [los(1/g*)
s = — 1.
log(1/q)
In other words, a graph G with a partition as described will have com-
plete minors at least as large as those found in G(n,1 — ¢*). It follows
immediately that if a graph as described in Theorem 4.1 has no minor sig-

nificantly larger than K; then gx is approximately equal to g for every
subset X of size xn, implying that G is quasi-random.

The proof of Theorem 5.1 is similar to that of Theorem 4.1, except that
the vertices of X and Y are ordered separately, and the parts W, are chosen
so that each is sure to contain a representative sample of both X and Y. The
principal difficulty is that the ordering of X, say, must respect the number
of neighbours a vertex has both in X and in Y; however, by ordering with
respect to a certain subtle parameter, a suitable linear order can be effected.
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6. THE EXTREMAL PROBLEM FOR GENERAL H

In this section we describe what is known about the function ¢(H) for
general H. Up until recently nothing was known, but although the situation
at the time of writing is still a little fluid, the following description should
be fairly accurate. Throughout this section ¢ will stand for the number of
vertices of H.

We would like to answer the following questions: (a) how does the
function ¢(H) behave, (b) is there some reasonable structural property that
determines its value and (c) do the extremal graphs continue to be pseudo-
random?

The answer to these questions appears to be that the function c¢(H)
behaves very similarly to ¢(t) (indeed, for most graphs H, ¢(H) is indis-
tinguishable from c(t)) and that, at least for graphs with more than t!*¢
edges, the extremal graphs behave in much the same way as before. When
asking for a structural property that determines ¢(H) we have in mind the
classical situation of the Erdés-Stone-Simonovits theorem [8], in which the
extremal function (for whether H must appear as an ordinary subgraph) is
determined by the chromatic number of H.

The fact that the extremal graphs here are pseudo-random, however,
makes the situation more complicated than the classical case, for two rea-
sons. First of all, the results must necessarily be of an asymptotic kind (that
is, as |H| — oo, as opposed to the classical case where perhaps n — oo but
H is allowed to be fixed). Secondly, the extremal function will be insensitive
to small changes in the structure of H, such as the addition of an edge, or a
handful of edges. This is because such a change in H will have a negligible
effect on whether H appears as a minor of a random graph, and random
graphs are the extremal graphs. This insensitivity to change is in marked
contrast to the classical case, where of course the addition of a single edge
can increase the chromatic number and so dramatically affect the extremal

function.

As evidenced by Theorem 1.3, ¢(H) can be described in terms of the
parameter v(H) defined in §1.2. The implication of the previous remarks
is that some leeway is possible in the definition; if 4/(H) were another
parameter with v/ (H) = y(H)+o0(1), where o(1) denotes something tending
to zero as t — oo, then 4/(H) could be used just as well as y(H) in all the
results. The definition given is chosen because it seems to be the cleanest
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one that works, and its form is easily related to the appearance of H as a
minor in G(n, p), as we noted in §3.

6.1. General H minors

Here are two theorems that generalize Theorems 3.1 and 4.1 to general H.
The way we state them, though, is slightly different to before.

Theorem 6.1 ([28]). Given € > 0 there exists T = T(¢) with the following
property.
Let H be a graph with t > T vertices and with y(H) > e. Let

e<p<l—-¢g letq=1—pandletn= L’y(H)t,/logl/th. Then H
is a minor of a random graph G(n,p — €) with probability less than .

The essence of the proof of this theorem has already been given in §3.
More work is needed to prove the next theorem, in which the density of G,
as usual, means | E(G)|/(3)-

Theorem 6.2 ([28]). Given ¢ > 0 there exists T = T'(e) with the following
property.
Let H be a graph with t > T vertices and with y(H) > €. Let

e<p<l—gletqg=1-pandletn= [v(H)t1 /logl/th. Let G be a graph

of order n, density p+¢ and connectivity k(G) > n(logloglogn)/(loglogn).
Then H is a minor of G.

Theorems 3.1 and 4.1 show that the threshold probability p at which
an H minor appears in G(n,p) is the threshold density at which H minors
appear in every reasonably connected graph of density p. This fact is at the
heart of why Theorem 1.3 is true.

The modification to the proof of Theorem 4.1 needed to prove Theo-
rem 6.2 is that the size of the parts W), varies, being in fact proportional to
the optimal weight w(u) that determines v(H). This is the reason behind
the change of approach remarked upon in §4.

Arguments similar to those in §4.1, in particular the separate treatment
of dense and sparse minimal graphs and the finding of large complete minors
in sparse minimal graphs, can be used to derive the extremal function c¢(H)
from Theorem 6.2, so proving Theorem 1.3. The discussion in §5 can also
be carried over to general H minors, showing that, apart from a change in
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constants, the extremal graphs have the same pseudo-random structure as
they do when H is complete.

6.2. Estimating v(H)

It is straightforward to evaluate v(H) when H is complete or complete
bipartite, but otherwise it appears to be difficult. We know, though, that
if H has t'*7 edges then assigning weight /7 to every vertex shows that
v(H) < /7. Suppose that w is an optimal weighting of V (H) that realizes
v¥(H). Then there cannot be a significant proportion of edges uv such that
w(u)w(v) < 7. So, if we group together vertices of roughly equal weight,
there will be almost no edges between the class containing u and the class
containing v if w(u)w(v) < 7. This leads us to approximate H as a subgraph
of a blowup of a small graph, in the following way.

A shape is defined to be a pair (F, f), where F is a graph (in which
loops, but not multiple edges, are allowed) and f : V(F) — R is a function
assigning non-negative numbers to the vertices such that acv(p) f (a) = 1.
We say that the graph H of order ¢ is an e-fit to shape (F, f) if there is
a partition of V(H) into sets V,, a € V(F), such that | f(a)t] < [Vo| <
[ f(a)t], and

|{uv€ E(H):u€eV, veEV,and ab¢E(F)}| <t ¢ |E(H)|.

So H is an e-fit to (F, f) if there is a partition of H into classes indexed
by V(F) and of sizes proportional to f, so that all but a tiny fraction of
the edges of H lie between classes corresponding to edges of F. The fact
that F' might have loops allows H to have edges within the corresponding
classes; in particular, every H fits the shape consisting of a single vertex
with a loop.

The parameter of the shape (F, f) that is related to y(H) is the para-
meter m(F, f), given by

m(F, f) = ;1}a:x1 ablelgl(lF) z(a)z(b).

Here the maximum is over all functions z € [0, oo)V(F ) of V(F), and z - f
stands for the standard inner product Y, z(a) f(a). This definition allows
z(a) > 1 even though we always have f(a) < 1. The constant function
z(a) = 1 satisfies = - f = 1 and so m(F, f) > 1 always holds. Also, if F" has
a single vertex a with a loop then f(a) =1 and m(F, f) = 1.
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Some calculation then supplies the crucial fact that, if H has t!*7 edges,
then H is an e-fit to some shape (F, f) with |F| < (1/e) and y(H) >
VT/m(F, f) — 4\/e. So a lower bound on y(H) can be given by checking
that H is not an e-fit to any small shape (F, f) with m(F, f) large. In so
doing it is necessary only to check critical shapes: these are shapes (F, f)
for which m(F’, f') < m(F, f) for any F’ resulting from F ecither by the
addition of an edge or by the merger of two vertices of F'. (The merger of
a,b € F is the replacement of a and b by a single vertex c joined to every
vertex previously joined to either a or b, with f'(¢) = f(a)+ f(b) and f' = f
on the other vertices of F’.) This is because if H is an e-fit to (F, f) then
it is also an e-fit to (F', f').

What makes these observations useful is that the check required is quite
short; there are very few critical shapes, and we can describe them explicitly.

Theorem 6.3 ([28]). A shape (F, f) with |F| = k+1 is critical if and only
if F is the half-graph of order k + 1 that is,

V(F)={0,1,...,k} and  E(F)={ij : i+j >k},
and moreover f satisfies

k) fk-1) S |(-1)/2])
F0) ~ fQ1) f(Lk=1)/2])

For these shapes,
k -2
w(rf) = { S VIR0 )
i=0

So, if we know the structure of H, it is fairly easy to check whether H is
an e-fit to a small critical shape, and hence to get a lower bound on v(H).
The simplest, and commonest, case is where H fails to fit any shape apart
from the shape with one vertex and a loop. This case can be reformulated in
the statement that H has a tail, which is a large subset 7" whose neighbours
lie almost entirely inside a smaller subset S; here is a precise version.

Theorem 6.4 ([28]). Let ¢ > 0 and let H be a graph of order t > 1/¢?
with t'*7 edges such that y(H) < \/T — 5. Then H has an e-tail —
that is, V(H) has a partition RUSUT, with |T| > |S| + et, such that
|E(T,TUR)| <t'77e,



374 A. Thomason

Now regular graphs cannot have a tail, nor indeed can graphs that are
almost regular, and this includes almost all graphs. We have the following
conclusion.

Corollary 6.5. All regular graphs and almost all graphs H of order t with
t1*7 edges have y(H) = /7 + o(1).

As a further corollary we can evaluate y(H) for, for example, complete
multipartite graphs; these all have y(H) =~ 1 unless the largest part has size
Bt with 8 > 1/2, in which case v(H) = \/48(1 - B).

It should be pointed out, however, that this method for approximating
v(H) can sometimes give a bound much less than the correct value. This
is because the property of being an e-fit to a shape is insensitive to the
introduction of a very sparse subgraph H*, though this subgraph might
be what actually determines v(H). The situation is analogous to that in
the classical extremal theory where the chromatic number of H might be
determined by x(H*) and not just by the chromatic number of some dense
subgraph. An example is when H is the union of ;g 7;/3 with a t1/2-regular
graph H* on the same vertex set. We know that y(Ky/g7¢/8) = V7/4+0(1)
whereas v(H*) = 1/V2 + o(1). So y(H) > max(v/7/4,1/V2) + o(1) =
1/v/240(1). But, for every € > 0, if ¢ is large this graph is an e-fit to a two
vertex shape with f = (1/8,7/8) and m(F, f) = 16/7, so our lower bound
method gives only v(H) > V7/4 + o(1).

We conclude this section with another lower bound on y(H) based just
on the density of the graph. This shows that y(H) can never be close to
zero for graphs of positive density.

Theorem 6.6 ([28]). Let H be a graph of order t > (1/&‘)1/6 and density p.
Then y(H) > p — 5/e.

7. LINKING

A graph G is said to be k-linked if, for any sequence si,..., 8k, t1,..., b

of distinct vertices, we can find s;—t; paths P; that are disjoint, 1 <7 <

k. Larman and Mani [20] and Jung [13] noticed that if x(G) > 2k and

G contains a subdivided complete graph of order 3k then G is k-linked.
k

Mader [22] proved that if the average degree of a graph exceeds 9(2) then it
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contains a subdivided Ky, and so, if £(G) is sufficiently large, G is k-linked.
(For a survey of subdivisions of graphs, see Mader [24].)

Robertson and Seymour [30], as part of their deep study of graph minors,
established a connection between linking and graph minors; they strength-
ened the above remarks by showing that G is k-linked if x(G) > 2k and
G > K. It follows from Theorem 1.1 that the connectivity required to
force k-linking is only O(ky/logk ).

Bollobds and Thomason [3] weakened the condition G > K3, still further
to G > H where H is any graph such that 26(H) > |H| + 4k — 2. In
consequence of Lemma 2.2 they could then show that G is k-linked provided
k(G) > 22F.

The reason we point this out in this survey is to contrast the average
degree required to obtain some specific H with 26(H) > |H| 4 4k — 2, with
that needed to achieve just some H. By Theorem 1.3 and Theorem 6.6 the
former would still require average degree © (k+/logk ), whereas Lemma 2.2
shows the latter to hold given average degree only ©(k).

Added in proof. Thomas and Wollan have recently shown that G is k-
linked if x(G) > 10k.

8. MINORS AND GIRTH

The simple fact underlying the observations in §2 is that contracting an
edge of a graph tends to increase the average degree unless the edge lies in
many triangles. In particular, if a graph has large girth then many edges
can be contracted, each contraction increasing the average degree.

Thomassen [36] made a systematic study of this phenomenon — his aim
was to show that many consequences of a graph having large average degree
could be derived also for graphs having minimum degree only three but
having large girth. His fundamental tool was the following theorem, whose
simple and elegant proof we include here. We use g(G) to denote the girth

of G.

Theorem 8.1 (Thomassen [36]). If §(G) > 3 and g(G) > 4k — 5 then
G ~ H where 6(H) > k.
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Proof. We may assume k > 4. Take a partition Aj,...,A; of V(G) with
t maximal such that G[A;] is connected and |4;] > 2k —3 for 1 < ¢ < t.
If G[A;] contains a cycle C, then |C| > 4k — 5, so by splitting C' into two
paths we can partition 4; into A} and A?, with G[A}] is connected and
|AL| > 2k — 3 for | = 1,2; the maximality of ¢ thus implies G[A4;] must in
fact be a tree. Suppose now we could find A; and A; with 1 <i<j <t
for which there were three edges between A; and A;. Then we could find
vertices u € A; and v € A; together with three disjoint u~v paths Py, Py, P3
in G[A; U 4;]. Any two of these paths have at least 4k — 5 edges between
them and so in particular two of them, say P} and P, must have length at
least 2k — 2. So we could partition A; U A; into three sets Al A% A3 with
A! containing 2k — 3 vertices from P, — {u,v}, | = 1,2, and A® containing
the rest of P; U Py U Py, such that G[Al] is connected and |A‘| > 2k — 3 for
[ = 1,2,3. Hence the maximality of ¢ implies that there are at most two
edges between A; and A; for 1 <1< j <t

Now, of course, we contract each A; to a single vertex a;. In the resultant
multigraph H*, every pair of vertices is joined by at most two edges; throw
away one edge from each double edge to obtain a graph H. The degree of
a vertex a; in H* is at least 3|A;| — 2(]4;] — 1) > 2k — 1, and so its degree
in H is at least [(Zk - 1)/2] =k, as desired. m

Diestel and Rempel [5] have reduced the girth required here to 6log, k +
4. More recently, Kiihn and Osthus [18] reduced it to 4logy k + 27. They
obtained results close to best possible for minors with specified minimum
degree and girth; an example is this.

Theorem 8.2 (Kiihn and Osthus [18]). Let k > 1 and d > 3 be integers,
and let ¢ = 4k + 3. If g(G) > g and 6(G) > d then G = H where

S(H) > (d—1)W0+D/4 /48,

As a further consequence of their methods they also show that Had-
wiger’s conjecture holds for graphs of girth at least 19 (Kawarabayashi [14]
also found this result).

One natural way of weakening the constraint of large girth is to forbid
K, as a subgraph, in the hope that this constraint still yields complete
minors in graphs of low average degree. (Note that forbidding a non-
bipartite subgraph will not help, since the extremal graphs for complete
minors contain bipartite subgraphs with at least half as many edges.) Kiihn
and Osthus [19] have investigated this condition, obtaining the following
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result, which is again close to best possible provided a standard conjecture
about the extremal function for Kj, is true..

Theorem 8.3 (Kiihn and Osthus [19]). Given s > 2 there exists a constant

¢ = c(s), such that every K s-free graph of average degree at least r has a
K; minor for t = Lcr1+2/(s‘1)(log r)_J_l.

As might be expected, the proofs of these results are much more sub-
stantial than the proof of Theorem 8.1.

9. MINORS AND CONNECTIVITY

Large average degree is the simplest property forcing a graph to have a
K; minor. Robertson and Seymour, in their series of papers on Graph
Minors, have investigated more complex structural properties that give rise
to minors; one of their fundamental results [29] is that a graph has large tree-
width if and only if it contains a large grid minor. Diestel, Jensen, Gorbunov
and Thomassen [6] gave a short proof of this result, and introduced the
notion of external connectivity: a set X C V(QG) is externally k-connected
if |X| > k and for all subsets Y,Z C X with |Y| = |Z| = k there are
|Y| disjoint Y-Z paths in G without inner vertices or edges inside X. A
large grid that has high external connectivity yields a large complete minor;
Kiihn [17] has shown that the same conclusion holds even if the large grid
is replaced by a large number of large disjoint binary trees, each having an
extra vertex joined to its leaves.

There is a simple, and as yet unsolved, problem relating (ordinary)
connectivity to complete minors. What connectivity is needed to force
a K; minor? Since k(G) < 6(G) with equality for random graphs, the
answer to this question is (2a + o(1))ty/logt, by Theorem 1.1. But the
only examples achieving this are pseudo-random graphs of bounded (in t)
order; the extremal graphs of larger order for Theorem 1.1 have very low
connectivity. It might well be that, for graphs of large order, a lower
connectivity will suffice for a K; minor. We therefore make the following
conjecture.

Conjecture 9.1. There is an absolute constant C' and a function n(t) such
that if |G| > n(t) and &(G) > Ct then G > K.
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Perhaps even k(G) > t + 1 is enough (though x(G) = t is not, as a 5-
connected planar graph joined to K;_5 shows). For t = 6 Jgrgensen [12]
(see also [31]) has a related conjecture, that every 6-connected graph with
no Kg minor has a vertex joined to all the others.

Myers [27] has a partial result in this area; if ¢ is odd, a (t+1)-connected
graph G, with a long sequence of cutsets S, Sy, ... of size t+1 such that S
separates Sy,...,Sj-1 from Sj;1,S;42,..., has a K;_3 minor if the G[S;]’s
are 2-edge-connected.

Added in proof. Bohme, Kawarayabashi, Maharry and Mohar have re-
cently shown that every large 23t-connected graph has a K; minor.
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PERIODICITY AND ALMOST-PERIODICITY
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Dedicated to Vera T. Sds

Periodicity and almost-periodicity are phenomena which play an important role in
most branches of mathematics and in many other sciences. This is a survey paper’
on my work in this area and on related work. I restrict myself to periodicity
questions in combinatorics on words (the main dish), but I start with a periodicity
problem from number theory (the entree) and at the end there is an Appendix
by Imre Ruzsa containing a partial answer to one of my problems (the dessert).
Sections 1-10 concern one-dimensional results and open problems. Sections 11—
16 deal with multi-dimensional analogues. I do not claim completcness in any
sense.

Books providing background material and additional references for this paper
are Lothaire 1 [30], Lothaire 2 [31], and the Marseille book [5].

1. ENTREE

It is a problem to characterise the periodic functions f : N — Z such that
Sy f—(nl) = 0. In his memoir [16] Dirichlet stated that every arithmetic
progression in which initial term and difference have no common factor,
includes infinitely many primes. The proof, which he completed few years
later (cf. [15], p. 1), is based on the fact that the Dirichlet L-series is non-zero
at 1. The Dirichlet series at s = 1 is of the form Y >, l(nl) with f periodic
modulo some positive integer g and completely multiplicative and such that

'This paper is an elaborate version of a talk given in Budapest on 10 June 2002 at a
workshop sponsored by the Netherlands Organization for Scientific Research (NWO) and
the Hungarian Organization for Scientific Research (OTKA).
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f(n) =0 if ged (n,q) > 1. A function f is called completely multiplicative
if f(mn) = f(m)f(n) for all positive integers m, n. The conditions under
which 3", f (" # 0 were studied by Chowla and Siegel. Baker, Birch and
Wirsing [2] showed that the sum is non-zero if ¢ is prime. Okada [38] gave a
necessary and sufficient condition for the vanishing of the sum. The author
(58] showed that it suffices that f is periodic and completely multiplicative so
that the condition that f(n) = 0 if ged (n,q) > 1 can be dropped. However,
the following problem (cf. [26]) still remains open:

Problem 1 (Eld(’Ss 1965). Does there exist an f : N — Z with period ¢
and 300, L% = 0 such that f(n) = 0 if gn and | f(n)| = 1 otherwise?.

The following recent result of Szabolcs Tengely shows that it is possible
that the sum vanishes if | f (n)l =1 for every n. This makes it more likely
that the answer to Problem 1 is yes, opposite to Erdés’ expectation.

Theorem 1 (Sz. Tengely) There exists a function f : N — {—1,1} with
period 36 such that Y oo 1 fn) — g,

n
Proof. The choice f(n) =1, -1, -1,-1,-1,1,1,1,-1,1, -1, -1, 1, -1,
1,-1,-1,1,1,1, -1,1, -1, =1, 1, =1, =1, -1, =1, 1, 1, 1, 1, 1, =1, 1 for
n=1,2,...,36 satisfies the conditions of [38], Theorem 10. m

Actually Tengely showed by an exhaustive search that 36 is the smallest
period for which such a solution exists.

ONE-DIMENSIONAL WORDS

2. TILINGS

Let A be a finite set of integers. The basic problem is to decide whether
there exists a set B C Z such that every integer n can be written in precisely
one way as a + b with a € A,b € B. We write Z= A® B and call A a tile
if such a decomposition of Z is possible.

Suppose A is a tile and A @ B = Z. Without loss of generality we
assume that 0 € AN B and that ged,ec4a = 1. In [52] I proved that if the
cardinality of A is n and h is an integer coprime to n then hA® B = Z.
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I used it to prove that if n is prime, then every element of B is divisible
by n. Actually it follows from a result of Sands [43] that if n is a prime
power p, then every element of B is divisible by p. An example of Szabé
[50] shows that this property need not hold for general n. Already in 1977
D. J. Newman [37] had given a necessary and sufficient condition for a finite
set A to be a tile when the cardinality n of A is a prime power. Recently
Coven and Meyerowitz [14] did so in case n has at most two prime factors.
The problem for general n is still open.

It follows from the box principle that if A is a tile, then B is periodic.
This principle yields that there is an upper bound for the minimal period
of B which is exponential in the diameter of A. However, the best example
I know has linear dependence on the diameter of A. For example, let m be
some positive integer and consider the tile A = {0,1,2m,2m + 1}. Then
every complementary set B has to have period at least 4m which is about
twice the diameter of A. An example of such a B is: {0,2,4,...,2m -2} @
4mZ. The gap between upper and lower bound is huge.

Problem 2. What is the best upper bound for the period in terms of
diam (A)?

During the workshop Imre Ruzsa found the wupper bound
exp (c\/DlogD) where D = diam (A) and c is some constant. The proof
of this result is given in the Appendix.

3. THE FINE AND WILF THEOREM

We consider functions f : I — X where I is Z or N or some finite block of
integers and X is arbitrary. Suppose f has period ¢, that is f(n+¢q) = f(n)
whenever n,n+q € I. We call ¢ the (minimal) period if no smaller ¢ has this
property. Actually f is now determined by its values at a block of length g.

Now suppose f has two periods, p and q. If the cardinality |I| of I is
large, then f has period ged (p, q), which implies that f has periods p and q.
Fine and Wilf [20] proved in 1965 that the minimal value of |I| for which
this holds equals p + ¢ — ged (p,q). Hence if p and g are coprime, then
there exists a non-constant word w of length p+ ¢ — 2 with periods p and gq.
By distinguishing different residue classes mod (p, ¢) it is no restriction to
assume that p and q are coprime.
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Example 1. Consider p = 16, ¢ = 9. According to the theorem of Fine and
Wilf there exists a non-constant word w with periods 16 and 9 of length 23,
but not of length 24. Because of the smaller period 9 it suffices to construct
the first 14 symbols:

w=-=edcbaihgfedcbalihgfedcba.

Moreover, the first 14 symbols should have periods 9 and 16 - 9 = 7, because
WE, = Wi416 = Wi+7 for k£ < 14. Hence h = a,t = b. Because of the period
7 it suffices to know the first 7 symbols;

w=gfedcbalgfedcbalbagfedchba.

By a similar reasoning as above we have period 2 there. Hence g = e =c=
a, f = d =0. Thus the extremal word reads:

w =abababaababababaabababda.

This is a non-constant word with periods 9 and 16 indeed. Note that this
procedure is closely related to the continued fraction expansion of 16/9:

2 7 1
—1=2, --3==:,
72 2

bl

=N ©

7
1=
9 9

4. BI-SPECIAL WORDS

The extreme Fine and Wilf words have several nice properties which make
them occur in various contexts. This explains that they have various names:
PER-sequences, Hedlund words, bi-special words. In the sequel we shall use
the latter expression which is nowadays the most common name. We state
some properties (cf. [32], [54], [24] Ch. 2).

1) If the places of the letters are numbered, then the places where the
a’s occur form a Beatty sequence (|an + (]). Of course, the same is true
for the places where the b’s occur. The value of a can be chosen by using
the euclidean algorithm to solve pr —qy = 1 with0 <y <p, 0 <z <gq
and then taking % or 5 or any number in between. If the solutions are
(z1,41) and (z2,y2), then the number of a’s in the extreme word equals
Ty + y2 — 1 and the number of b’s 1 + y; — 1. In Example 1 we have
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equation 16z — 9y = 1 with solution z; = 4,y; = 7. The places of the b’s

are given by L%J = [16#1_] for7=1,...,10. Similarly 16z — 9y = —1 has

5]

solution z9 = 5, y2 = 9 and the places of the a’s are given by [2’3‘—1 J =
= 13 a’s and

for « = 1,...,13. In the extreme word there are 5+ 9 — 1
44+7-1=100%s.

2) The extreme words are balanced. A word consisting of the letters
a and b is called balanced if the number of occurrences of a in any two
subwords of equal lengths differs by at most 1. It is called left-special if the
word is still balanced both when the word is extended on the left side by an
a and when it is extended on the left side by a b. Right-special is defined
analogously. If the word is both left-special and right-special, it is called bi-
special. The extreme Fine and Wilf words are bi-special and every bi-special
word is an extreme Fine and Wilf word for some coprime integers p and q.
The numbers p and ¢ can be computed from the numbers of a’s and b’s in
the bi-special word as follows: Let m — 1 be the number of a’s and n — 1
the number of b’s in the bi-special word. Solve the equation mz — ny = +1
in integers z,y with 0 < x < n,0 <y < m. Let (z1,y1) and (x2,y2) be the
solutions. Then the periods are x1 + y; and 2 + y2. In Example 1 we have
m = 14,n = 11. The equation 14z — 11y = £1 admits the solutions (4, 5)
and (7,9). This yields the periods 9 and 16.

3) Bi-special words are palindromes. It does not matter whether you
read them from left to right or from right to left.

4) [39]) If you extend a bi-special word on the right by ab and com-
pute the corresponding p and ¢ as in 2), then the first p — 2 letters form a
palindrome as well as the last ¢ + 2 letters. Only bi-special words have this
property. In Example 1 we have palindromes abababaabababa
andbaabababaaboflengths p—2 = 14 and ¢ + 2 = 11, respec-
tively. Of course, (a,p) and (b,q) can be interchanged: if we extend by
ba on the right then we can split into the palindromes a b a b a b a and
ababababaababababaoflengths q—2 =7 and p+ 2 = 16,
respectively.

5. BALANCED WORDS

Consider a word f : Z — {a,b}. As mentioned above f is called balanced
if for each two finite subwords of equal lengths the numbers of occurring
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a’s differ by at most 1. By the work of Morse and Hedlund [34], [35] and
of Coven and Hedlund [13] the balanced words are completely classified (cf.
[54]). It suffices to classify all balanced Z-words, since every subword of a
balanced word is obviously balanced and, conversely, every balanced I-word
can be extended to a balanced Z-word (see e.g. [24] Theorem 2.3). The word
f is given by the sequence of the places where an a is read. There are three
classes of balanced words:

(a) (periodic case)
The places form a Beatty sequence ([an + ﬂj) nel, antpel with a € Qs,
B €R,;

(b) (irrational case)
The places form a sturmian sequence ( |an + () nez.ontper OF

( [an + ﬁ])nel,an-i—ﬁél with o € R>1 \Q7 ﬁ €R;

(c) (skew case)
The places form a periodic Beatty sequence apart from one irregularity.
Skew words correspond two-to-one to bi-special words. The latter words
are by definition words of length p + q¢ — 2 with two coprime periods p, q.
Skew words are obtained by extending a bi-special word on one side with a b,
on the other side with b a, and subsequently extending into both directions
with period p + q.

Example 2. Let p =4 and ¢ = 7. Then the corresponding bi-special word

is isomorphic to
aabaaabaa.

Therefore the corresponding skew Z-words are isomorphic to

...baaabaaabaabaaabaaabaaabaabaaabaaab...

and

...abaabaaabaaabaabaaabaabaaabaaabaaba....

In the former word there is a triple a a a too many, in the latter word such
a triple is missing, when comparing the words with the periodic word with
periodic partt aaabaaabaab.

A classical way to construct balanced sequences is by approximating a
line in the plane as well as possible by a discrete line. The principle of the
so-called cutting line is as follows (cf. [45]). Let the line y = ax + 8 in
the z-y-plane be given where o € Rsg and 3 € R. Start at some integer
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point (zg,yo) under the line, but at distance less than 1 from the line. If
yo + 1 < axo + B then move to (zg,yo + 1) and write an a, otherwise move
to the point (zo+1,yo) and write a b. Iterate the procedure. Of course, the
word can also be extended into the negative direction so forming a Z-word.
If o is rational, then this yields a word from class (a). If a is irrational,
then we obtain a word from class (b) with the | | brackets. If we require
yo + 1 < azp + O instead, then we get a word from class (b) with the [ |
brackets. The skew case is the case where « is rational and the line passes
through an integer point where on the one hand of that point the strict
inequality criterion is used and on the other hand the <-criterion.

6. FRAENKEL WORDS

It is obvious that if a word of a’s and b’s is balanced with respect to
a, then it is also balanced with respect to b. We call a general word
f : I — A balanced if the word is balanced with respect to each letter
from A. All balanced words on two letters a,b have been classified in the
previous section. We have seen that the letter a always has some density
and that every density in [0,1] can occur. Hence there are uncountably
many balanced words on two letters.

What are the balanced words f : Z — A when | f (Z)| > 2?7 Obviously
each letter has again a density. If the densities of two letters are equal, then
they can first be identified as one letter with double density, and then the
latter letter can be replaced alternately by the first and second letter. It
is therefore a crucial question to determine the balanced words the letters
of which have distinct densities, so-called Fraenkel words. The following
conjecture of Fraenkel suggests that Fraenkel words are very rare.

Problem 3 ([21], [18] p. 19). Prove that for n = 3,4, ... the only balanced
word on n letters having distinct densities is isomorphic to the periodic word
with periodic part F, inductively defined by

F1=]., Fn,ZFn_lnFn_l for TL=2,3,....

So for n = 3 we find the periodic part 1213121 and for n = 4 the periodic
part 121312141213121. Graham [23] showed that the densities of a Fraenkel
word have to be rational. The Fraenkel conjecture has been proved in case
n = 3 by Morikawa [33], cf. [53], in case n = 4 by Altman, Gaujal, and
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Hordijk [1], and in case n = 5,6 by the author [56]. Related results have
been obtained by a.o. Fraenkel, Morikawa, and Simpson, cf. [57].

Recently Fagnot and Vuillon [19] have studied balancedness with respect
to subwords of given length instead of letters.

7. STIFF WORDS

Another way to measure the regularity of a word is to compute its com-
plexity. For n = 1,2,... the complexity P(n) of a word is defined as the
number of distinct subwords of length n. In our notation we suppress the
dependence of P on the word.

Example 3. We apply the substitution a — ab, b — a starting with an a:
a

ab

aba

abaab

abaababa

This leads to the limit word
abaababaabaababaababaabaababaabaab....

This is the famous Fibonacci word. The density of the a’s is successively 1,
1/2, 2/3, 3/5, 5/8 with the limit value (v/5 — 1) /2. Hence the word is not
periodic. In fact it is a sturmian word (class (b)). For the complexity we
find: P(2) = 3,P(3) =4,...,P(n) =n+1,.... Coven and Hedlund [13]
proved:

if P(n) <n for some n, then the word is ultimately periodic.
So the Fibonacci word is a non-periodic word with minimal complexity.

We call a word stiff if P(n) < n+1 for all n. Thus the Fibonacci word
is stiff. In fact all balanced words are stiff. Again we only have to study
stiff Z-words, since on the one hand it is obvious that a subword of a stiff
word is stiff, and on the other hand it is true that every stiff /-word can be
extended to a stiff Z-word ([24], Theorem 2.4). Apart from the balanced
and therefore stiff words, which have been classified in Section 5, there is
one class of unbalanced stiff Z-words (cf. [54], [24] Theorem 2.6):
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(d) (Hedlund case)
Extreme Fine and Wilf words which extend into one direction with the one
period and into the other direction with the other. So again we start with
a bi-special word f of length p + ¢ — 2 where p and q are coprime and f
has periods p and ¢q. Then we extend into the positive and the negative
direction with the different periods.

Example 4. Let again p = 4 and ¢ = 7. Then the corresponding bi-special
word is isomorphic to
aabaaabaa.

Therefore the corresponding Hedlund words are isomorphic with
...0caabaaabaaabaaabaaabaabaaabaabaaaba...

and its reversed word. A Hedlund word has a left density of a’s which is
different from the right density of the a’s. Therefore the word cannot be
balanced.

Following a suggestion of Jean-Paul Allouche I shall call a word f repet-
itive (instead of recurrent) if every subword w occurs infinitely often and
uniformly repetitive (instead of uniformly recurrent or almost periodic) if
for every subword there exists a number C' such that every subword of length
C contains w as a subword, i.e. the “distance” between occurrences of any
subword w is bounded. It is easy to check that in the given classification
the classes (a) and (b) contain only uniformly repetitive words, but that the
words from classes (c) and (d) are not even repetitive, since they contain
only one copy of the bi-special word we started with.

Many stiff words are ultimately periodic. By the mentioned theorem of
Coven and Hedlund non-periodic stiff words have to satisfy P(n) = n+1
for all n. The class (b) is the only class of stiff words which is not ultimately
periodic. The classes (c) and (d) are ultimately periodic, but nevertheless
they satisfy P(n) =n + 1 for all n. If we restrict our attention to N-words,
then class (b) is the only class with P(n) = n + 1 for all n.

8. THREE DISTANCES THEOREMS

The following construction method for sturmian words is very useful for the
study of the structure of such words. Let a > 1 and [ be real numbers.
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Denote by {z} the fractional part z— |z | of z. For n € Z write an a at place
nif {na+ B} < a and otherwise b. This yields a Z-word f which is sturmian
if « is irrational and a periodic balanced word if «a is rational. From the
definition it is clear that the letter at place m equals a or b according to
whether [na + 8] — | (n = 1)a + 8] equals 1 or 0.

Suppose a is irrational. An easy argument shows that the complexity
of f equals P(n) = n+ 1 for every n: Consider {0}, {a},...,{na}. These
n+1 points split the torus [0, 1], where the points 0 and 1 are identified, into
n + 1 half-open intervals. Observe that the sequence fin, fm+1, - - fm4n—1
of letters of f at places m,m +1,...,m +n — 1 is completely determined
by to which half-open interval ma + § belongs. Hence there are at most
n + 1 distinct subwords of length n. It follows from the theorem of Coven
and Hedlund that P(n) > n, since otherwise f would be ultimately periodic
which is impossible in view of the irrational density.

A remarkable fact occurs when one studies the lengths of the half-open
intervals. As Sés [47] and also others observed at most three distinct lengths
occur, one being the sum of the two others.

The relevance of this fact for the structure of Sturmian words becomes
clear from the following result. Let n be a positive integer and f : Z —
{a,b} a sturmian word. Consider the n + 1 distinct subwords of length n
of f. Compute the densities of a in these words. Then there are at most
three distinct densities, one being the sum of the others. Berthé [4] has
given explicit expressions for the occurring frequencies and the cardinality
of each frequency.

9. LINEAR COMPLEXITY WORDS

In fact the three densities result in the last paragraph of the previous
section is a special case of the following result of Boshernitzan [9]: Let
f : Z.— {a,b} be a repetitive word of complexity P. Then the densities of
the subwords of length n attain at most 3( P(n + 1) — P(n)) values.

Many papers have been written on non-periodic words having linear
complexity. Words having complexity function P(n) = n + k for some
constant k were already studied by Coven [12] in 1975. Such words are said
to be of minimal block growth and the minimal k is called the stiffness of
the word. Coven characterised the structure of non-repetitive Z-words of



Periodicity and Almost-Periodicity 391

minimal block growth. Heinis [24], Ch. 3, has given explicit formulas for
the stiffness of words of minimal block growth.

Let t be any positive integer. It is easy to construct a word f : Z —
{a,b} such that f has complexity P(n) = tn + 1 for all n. Hence for every
positive integer ¢ there exists a word f the complexity of which satisfies

lim.,,,_.oo%n) = t. It was a surprise when Heinis [24] showed that there are

no words f such that its complexity P satisfies lim,_ Pl) ¢ (1,2). He

n
Pgn) Pn) > 2 and that

also showed that if liminf, . = 3 then limsup,_, -
the value % is optimal. It is an open question whether there are words for
which the limit exists and attains a non-integral value:

P(n) ¢ . . .
,fl"), if it exists, necessarily an

Problem 4. Is the limit value limy,_
integer?

The definition of complexity can be extended to words f : Z — A
where A = {1,2,...,q} is an alphabet on ¢ > 2 letters. For every positive
integer ¢ > 1 there are words on ¢ letters with complexity function P(n) =
(g —1)n+1 for every n. For ¢ = 2 this is the case for sturmian sequences,
for ¢ = 3 for example for the so-called Arnoux-Rauzy sequences. More
precisely, for every pair of positive integers q, ¢ with ¢ < ¢ there exist words
on q letters such that the irrationality degree of the densities of the q letters
is t and the complexity of the word equals P(n) = (n — 1)(¢t — 1) + ¢ for
every n. Such a word can be constructed in a similar way as sketched at
the beginning of the previous section. The following result shows that the
mentioned complexity is minimal [55]. If f : Z — A is a word such that it
contains ¢ distinct letters and the irrationality degree of the densities of the
letters equals ¢, then

P(n)2(n—-1)(t-1)+q

for every n. For q = t = 2 this reduces to the theorem of Coven and
Hedlund.

Other notions to measure complexity have also been proposed. Let
P (n) denote the number of distinct subwords of length n which occur in-
finitely often in the given word f. Both Nakashima, Tamura and Yasutomi
[36] and Heinis and Tijdeman [25] have studied this asymptotic complexity.
The former authors gave characterizations of both N-words and Z-words
having small Py-complexity. They showed that in the case of N-words
there is no difference between “asymptotically balanced” and “asymptoti-
cally stiff”. The latter authors characterized all N-words which are asymp-
totically stiff, that is, satisfy Py < n + 1 for every n:
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(i) The N-word f = f1fa... with rational density « is asymptotically stiff
if and only if there ezists an ultimately monotonic sequence {gn}ne; with
gn+1 — gn — 0 as n — oo such that f, = |na~! + g,] forn e N.

(i) The N-word f with irrational density a is asymptotically stiff if and only
if there ezists a sequence {gn}ne; With gny1 — gn — 0 as n — 0o such that
fo=|na"l+gn] forneN.

Kamae and Zamboni [28] studied complexity not referring to a block of
places, but to a fixed pattern of places. Let f : N — {0,1} be a word. Let
P*(k1,kg, ..., ky) denote the number of distinct vectors

(f(m+ k1), f(m+ka),..., f(m+ky))

for m € N and define the pattern complexity as
P*(n) = supy, . P (k1, .. kn).

Kamae and Zamboni showed that if P*(n) < 2n for some n, then the word
is ultimately periodic, that every sturmian word satisfies P*(n) = 2n for
every n, but that there exist non-sturmian words with P*(n) = 2n for every
n. Again sturmian words are minimal non-periodic words, but the complete
set of non-periodic words which are minimal in this sense is not yet known.

Problem 5 (Kamae). Characterize all words having P*(n) = 2n for
every n.

10. FINE AND WILF WORDS FOR SEVERAL PERIODS

Let pi,...,pr be positive integers. Let w = wj...w, be a word with
periods pi,...,pr. This means that w4, = w; for i = 1,...,n — p and
p€{p1,...,pr}. Suppose that w does not have period ged (p1, ..., p;). The
case 7 = 2 has been treated in Section 3. In 1999 Castelli, Mignosi and
Restivo [11] studied the case r = 3. They defined some function h(z,y, 2)
such that if a word f has periods p;, p2, ps and length > h(p1,p2,p3),
then f has period ged (py,p2, p3). They further showed that under suitable
conditions their bound h(z,y,z) is the best possible. They also showed
that the set of subwords of these maximal words coincides with the set of
factors of the Arnoux-Rauzy sequences. Justin [27] generalized the results
of Castelli, Mignosi and Restivo to words with more than three periods.
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Notice that the periods pi,...,p, can only induce relations between
letters at places ¢ and 7 when 7 and j are in the same residue class modulo
ged (p1, ..., pr). It is therefore no restriction to consider such a residue class.
Hence we may assume without loss of generality that ged (p1,...,p,) =
1. We shall do so in the sequel. If the maximal length of w under the
gcd-condition is m, then the maximal length in the general case equals
(n+1)ged(p1,...,pr) — 1.

Tijdeman and Zamboni [59] have developed an algorithm to compute the
extreme n and w for any given periods py, ..., p, subject to ged (p1,...,pr) =
1. Here we illustrate the algorithm by an example. Starting from the six pe-
riods 127, 189, 222, 235, 243, 248 the method reveals that the non-constant
word of maximal length having these periods has length m = 254, that an
extreme word can have at most three distinct letters and in that case has to
be isomorphic with the constructed word. In Table 1 each time the smallest
positive period is underlined and subtracted from the others. Its index is
written in the column g[k] and the subtracted number is added in the column
m[k]. The procedure is continued until in all columns with an underlined
number the value is at most 1. The last found value of m[k] is the sought
maximal length m. Subsequently the column for n[k] is filled by computing
nlk] := m—m[k] for every k. In Example 5 we have m = m[9] = n[0] = 254.

Example 5. We construct the extremal word for periods

P11 = 127, D2 = 189, pP3 = 222, Pg = 235, D5 = 243, Ps = 248.

pi[k] | pa[k] | p3[k] | palk] | ps[k] | pe[k] | k | g[k] | m[K] | n[k]
127 | 189 222 235| 243 | 248]0 0] 254
127| 62| 95| 108 116| 121|1| 1| 127|127
65| 62| 33| 46| 54| 59|2| 2| 189 65
32| 29| 33| 13| 21| 26(3| 3| 222| 32
191 16| 20| 13| 8| 13|4| 4| 235| 19
11| 8| 12| 5| 8| 5(5| 5| 243 11
6 3 7 ) 3 06 4| 248 6
3 3 4 2 0] =-3|7 2| 251 3
1| 1| 2| 2| —2| -5|8| 4] 253| 1
1] o| 1| 1| =3| —6|9| 1| 254| o0

Table 1: Computation of the maximal length

The extreme word is found as follows. Write down the column number
of the lowest underlined number. In each next step compare the underlined
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number [ one row higher with the number of letters in the already con-
structed word f[k]. If the latter number is smaller, then write the column
number of the underlined number [ as next letter of the word and repeat
f[k]. Otherwise repeat the last [ letters of f[k]. By | we indicate the stage
reached after each step; the symbols | are not part of the word. The number
of added letters at level k equals n[k] — n[k + 1]. Therefore the number of
letters of f[k] equals n[k] for k = K — 1, K — 2,...,0, respectively. Thus
the resulting extremal word has length m = n[0].

1|41|141]41141|14141141|4114114141141|3
141 141 41141 14141141 4114114141141
141 41141 14141141 4114114141141 3
141 141 41141 14141141 4114114141141
141 141 41141 14141141 4114114141141 3
141 141 41141 14141141 4114114141141
141 41141 14141141 4114114141141 3
141 141 41141 14141141 4114114141141

Extreme word expressed in letters 1, 3, 4

In [59] it is shown that the word found by the algorithm is indeed
the non-constant word of maximal length and among such words with a
maximum number of distinct letters. Furthermore, it is proved that the
extreme word is a palindrome and unique apart from isomorphy. The
case that the number of letters in the extreme word equals the number
of periods is precisely the case in which Castelli, Mignosi and Restivo in
case of three periods and Justin in case of more than three periods proved
that their bounds are the best possible ones. It is interesting that the
multi-dimensional continued fraction corresponding with the algorithm also
occurs in the study of ergodic properties of a dynamical system arising from
percolation theory.

MULTIDIMENSIONAL WORDS

From now on we consider multi-dimensional words f : ZF — Q where we
usually will have k =2, Q = {0,1}.
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11. TILINGS

Let A be a finite set in Z2. The problem is to decide whether for a given
set A there exists a set B such that A ® B = Z*. There are many results
about this problem most of which require that A has some connectedness or
convexity property. A rather general result is due to Beauquier and Nivat
[3] who characterized all tilings in case A is a polyomino and proved that
in that case B is periodic. We call a set B in Z* periodic if there exists a
U # 0 such that B + ¥ = B. I state two open problems.

Problem 6 (cf. Lagarias and Wang [29]). Is it true that for every finite
set A C Z* it is possible to determine whether there is a set B such that
A® B = ZF in time bounded in terms of diam (A4)?

Problem 7 (Periodic Tiling Conjecture [29]). Is it true that for every tile
A C ZF there exists a periodic set B such that A @® B = Z*?

The answer to both problems is yes if £ = 1, as mentioned in Section 2.
Szegedy [51] has provided algorithms for Problem 6 if |A| equals 4 or is a
prime number. In these cases the Periodic Tiling Conjecture holds true.

When more than one distinct tile may be used, then non-perodic sets B
are possible. This leads to the theory of quasi-crystals.

12. BALANCEDNESS

We call a word f : Z¥ — {a,b} balanced if for any two k-dimensional
finite blocks with hyperfaces parallel to the axes and of the same shape,
the number of symbols a occurring in them differs by at most 1. Berthé
and Tijdeman [6] have given a complete characterisation of balanced words.
They prove that for each & > 1 there are only finitely many isomorphy
classes of balanced words and that all of them with density « of a not equal
to 0 or 1 are fully periodic, that is, have k linearly independent period
vectors. In fact, @ has to be rational with denominator in {1,2,3,5} where
the 5 can only occur when k = 2.

From this result it follows that f has to be unbalanced if the letter a
has irrational density in f. It is not clear how unbalanced such a word has
to be.
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Problem 8. Consider f : Z? — {a,b} such that the density of a’s tends
to some irrational number 6 when considering blocks [—my, ma) X [—=n;,ny)
with mqy,mg,n;,ny — oo in any way. What is the minimal measure of
unbalancedness as a function of m; + mg and ny + no?

13. COMPLEXITY

Let f : Z2 — {a,b}. Define the complexity P(m,n) of f to be the number
of distinct patterns of f(z,y) of size m X n, that is, the number of distinct
arrays (f(:r y)) h<z<kim, I1<y<lin for k,l € Z. The following problem is still
open:

Problem 9 (Nivat-Vuillon). Suppose P(m,n) < mn for some m,n € N.
Does it follow that f is periodic?

The answer in case m = 1 is yes because of the theorem of Coven and
Hedlund. Sander and Tijdeman [42] showed that the answer is also yes in
case m = 2. For m > 2 the answer is open. Epifanio, Koskas and Mignosi
[17] proved the slightly weaker result that if P(m,n) < g5 for some m, n,
then f is periodic. Sander (cf. [41] Example 5) gave a simple example that
the corresponding question has a negative answer when k > 2:

Example 6. Let k > 2 and let m; > 1 for 1 < <k be given integers. Let
a= {(al,...,ak) ezZF0<a;<m; (1 Sigk)}.
Hence A is a k-dimensional block with volume [A| = M := Hle m;. Define
f : Z* — {a,b} by setting for ¥ = (z1,...,z),
f@) =1l x1=20--=2-1 =0 or z9=my, T3=---=1x;, =0,

It is easy to see that

M M
|P(A)] = —+ —+1.
my  my
Consequently we have ‘P(A)! < |A| for my > 2. But apparently f is not

periodic.

Sander and Tijdeman [41] also studied the multi-dimensional analogue
of pattern complexity. Cassaigne [10] characterised all two-dimensional
words with complexity P(m,n) = mn + 1. This can be compared with
the classification of stiff words in the one-dimensional case.
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14. FINE AND WILF WORDS

In this section some results are mentioned which generalise those mentioned
in Section 3. Here we consider functions f : V — {a,b} where V C Z* has
period vectors vy, . .., v;. Whereas in Section 3 we assumed without loss of
generality that the periods were coprime, we assume in this section that the
period vectors generate the full lattice Z*.

Initially only periodicity lemmas were obtained. A periodicity lemma is
a statement that a function f defined on the integer points in some region
and having certain period vectors has to be constant, without indicating
how far the region can be reduced without affecting the conclusion. Papers
by Amir and Benson, Galil and Park and recently Mignosi, Restivo and Silva
provided periodicity lemmas for parallelograms and similar domains in R2.
Regnier and Rostami provided a framework for the study of periodicity
lemmas in case of multi-dimensional patterns. Simpson and Tijdeman [46]
obtained the following periodicity lemma for arbitrary dimension:

Suppose v1,. .., 0j € Z* generate ZF and vy € ZF given by
Vo = 01 + -+ v with p; >0 for i=1,...,k
18 an nteger point. Put
Vi={\vi+ -+ M E€ZF 0< N <1}

where l; > 14+ p; fori=1,...,k. Let f be periodic modulo vy, ...,v} on
V*. Then f is constant on V*.

It is an obvious question to ask how much V* can be reduced without
affecting the conclusion, in other words, what the k-dimensional generali-
sation of the Fine and Wilf theorem is. Giancarlo and Mignosi [22] gave
a multi-dimensional generalisation of this theorem for connected subsets of
Cayley graphs. Simpson and Tijdeman [46] gave a generalisation of the
Fine and Wilf theorem of the following type. We use the notation as above.
Define

W={Xvo+M01+ 4+ M0 : 0< <1, ye€Rfori=0,...,k}.

Then some explicitly given set V C W N Z* with cardinality equal to the
Lebesgue measure of W has the property that if f : V — {a,b} has period
vectors 09, . . ., Uj, generating Z¥, then f is constant. The assertion remains
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true if one point of V' is removed, but it is no longer true if two points of V
are removed which do not differ by some v;. For & = 1 the result coincides
with the Fine and Wilf theorem.

Problem 10. Let v, ..., vj € Z* be given. How small in size can V C ZF
be if only constant functions f : V — {a,b} admit periods vi,..., v on V?

15. FROBENIUS' LINEAR DIOPHANTINE PROBLEM

In Frobenius’ classical Linear Diophantine Problem, also known as the
Postage Stamp Problem and as the Coin-changing Problem, we are given
positive integers ao, . . . , ax, with greatest common divisor 1, and asked to find
the least integer n such that every integer greater than n can be written as
a sum of non-negative multiples of ay, ..., a. In the case k = 1 the answer
n = ng := aga; — ag — a; is due to Sylvester [49]. The case k = 2 has
been settled by Selmer and Beyer [44], see also Rodseth [40]. For k > 2 the
answer is only known in special cases and various estimates exist for the
general case.

Suppose v, . . ., V) defined as above generate Z* and have the property
that 0 cannot be written as a non-trivial non-negative linear combination
of vy, ..,V. In other words, the period vectors vy, ..., v are on the same
side of some hyperplane. Let dy be the smallest positive integer for which
positive integers dj, . .., di exist with

dovy = d1v7 + -+ - + dUg.

As an application of the results mentioned in the previous section Simpson
and Tijdeman [46] derived the following generalisation of Sylvester’s formula
in case of k + 1 vectors in ZF:

Put @ = doup — (Vo + - - - + Vk). Every point in

X = {S1v_i+---+8kv_1}+117:81>0,...,sk>0}ﬂZk

can be written as \gUy=+- -+ -+Ax U where Ag, . . ., Ak are non-negative integers,
but an integer point of the form s1vi+- - -+ spUi +w with s3 > 0,..., sk > 0,
$189- - Sk = 0 can be written in this way unless and only unless sy, ..., sk €

Z.
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For k = 1 the obtained value is the one due to Sylvester. In general X
is an open sector with corner point @ the shape of which is determined by
the outer vectors vy, ..., U.

16. BV-wWORDS

By approxim%ting a plane in Z3 by a discrete plane as well as possible in
a similar way as explained at the end of Section 5 for a discrete line, one
obtains a two-dimensional analogue of Sturmian sequences. This kind of
words have been studied by Berthé and Vuillon [60], [7], [8], and are often
called BV-words. BV-words are words f : Z? — {a,b,c} such that the
densities of the letters a, b, ¢ are linearly independent over Q. Vuillon [60]
proved that the complexity of the BV-words satisfy P(m,n) = mn+m+n
for every m,n. He also derived a formula for the complexity on a triangle
in place of a rectangle. Berthé and Vuillon [7] characterised the doubly
uniformly repetitive words f : Z? — {a,b} with complexity P(m,n) =
mn + n for all large m. These words are obtained by identifying two letters
in a BV-word. They further showed that these words f are the only non-
periodic words from Z? to {a,b} such that the density of a is irrational and
the complexity satisfies P(m,2) < 2m + 2. They also classified all words
having complexity P(m,n) = m+n. One of the results of [8] deals with the
distribution of the frequencies of the various subwords of size m X n and is
in the same vein as the three frequencies theorem in Section 8.

Problem 11. Let f : ZF — {1,2,...,k} such that the densities of the
letters exist and are linearly independent over Z. Compute lower bounds
for the complexity of f.

From the beginning on, in 1772 by Bernoulli, the study of sturmian
sequences has been closely related with the theory of continued fractions.
In fact, the continued fraction expansion of a number a provides a recipe
to construct sturmian words in which the letter a has density «, as a limit
of finite words. See e.g. the survey paper of Stolarsky [48]. In a similar
way BV-words can be constructed as a limit of finite two-dimensional words
where each finite word is defined on the fundamental domain of a lattice and
where the sequence of lattices has to do with multi-dimensional continued
fractions. The construction, which can be given for any dimension, is subject
of a paper by Berthé and Tijdeman. (See added in Proof.)
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APPENDIX BY I. Z. RUZSA

Proof of the result stated at the end of Section 2.

Let A C Z be a tile. Then there is a B C Z such that A® B = Z, that is,
every integer is represented exactly once as a sum of an element of A and a
element of B. Assume that the smallest element of A is 0. Let

BT = BN|0,00),

and let
C={n€Z:n>0,n=a+b, a€ A beB, b<0}.
Put
f@)y=Y 2% g(x)=) 1’ h(z)=) a°
a€A beB ceC
We have
1

(1) [(@)9(2) + h(z) = —.

Note that f and h are polynomials. An integer k is a period of B if
g(z)(1 — z*) is a polynomial. We know that such a k exists. We want
to show that there is a small one. Let n be the largest element of A. Then
deg f = n. By (1) we have

= —h(@)  1-(1-2)h(z) pla)

@ W= T Aol @)
where p, q are coprime polynomials. Hence
o p@) (=)
g(@)(1-a*) = B
So
(3) q(z) | 1 - 2* =[] va(=)
dlk

where 104 is the d-th cyclotomic polynomial. Therefore

a(z) = [] vul),

deD
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where D is a set of divisors of k. Conversely, if (3) holds and we define
k=1lem[d : d € D], then q(k) | 1 — z*, so

1—2*

q(z)

9(2)(1 - 2*) = p(x)
is a polynomial. By (2) and (3) we have

n+12>deqq= Zdegwd = Z¢(d).

deD deD
Let p}',...,p% be the prime powers > L dividing k; we will specify

L later. Each p{* divides some d € D. By a repeated application of the
inequality xy > x + y, valid for z,y > 2, we find that

. 1 .
n+ 12 o) 2 5w
(we assume L > 2, which yields ¢(p;*) > 2). Hence r < 2(n+1)/L and
Hp 7’1 +1 2(n+1)/L < ncm/L.
Consequently

k< Hp?”' lem [l : 1< L—1] < ne/bee2k < pcav/nTogn

if L =+/nlogn.
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Added in proof (May 2005)

Section 2 and Appendix: A further improvement of Ruzsa’s result has
been obtained by Andrds Bird in a paper entitled: Divisibility of integer
polynomials and tilings of the integers. In this paper the bound for log & is
improved to n3*e for any positive € and n > ny(e).

Section 6: Fraenkel’s conjecture for n = 7 has been proved in J. Barat
and P. P. Varji, Partitioning the positive integers to seven Beatty sequences,
Indag. Math. N.S., 14 (2003), 149-161.

Section 9: A. Heinis has shown that in Problem 4 the limit value cannot
be in the open interval (2, 3) (personal communication).

Section 13: The result by Epifanio, Koskas and Mignosi has been im-
proved by A. Quas and L. Zamboni in the paper Periodicity and local com-
plexity, Theor. Comput. Sc., 319 (2004), 169-174.

Section 16: The construction mentioned in the last sentence of the
section can be found in V. Berthé and R. Tijdeman, Lattices and multi-
dimensional words, Theor. Comput. Sc., 319 (2004), 177-204.
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