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Preface

The concept of equilibrium plays a central role in various applied sciences,
such as physics (especially, mechanics), chemistry, biology. In terms of the
classical mechanics, for example, the equilibrium state for a system means
that

(a) the impact of all the forces on this system equals zero;

and

(b) this state can be maintained for an indefinitely long period.

Thus, one can formulate the equilibrium problem mathematically, i.e.
in the form of a mathematical model, and the solutions of the correspond-
ing problem can be used for forecasting the future behavior of the system
and, also, for correcting the deviation between the current state of the sys-
tem and the equilibrium state. The standard mathematical model for the
equilibrium state is a system of equations, which often admits finding a
solution in an explicit (closed) form. Observe that solution sets of most
of these problems possess certain vector space properties or represent its
regular transformation, such as a manifold, and their analysis relies upon
these properties. Even the classical equilibrium concepts enable us to solve
many difficult problems in natural applied sciences. However, the neces-
sity of investigation of more complicated problems, which are essentially
nonlinear ones, requires generalizations of these concepts. Of course, the
equilibrium approach has certain restrictions, i.e. it is not applicable to ar-
bitrary systems. For example, systems with rapidly changing states should
be investigated with the help of some other tools. However, in each field we
can observe many systems which exist without essential changes for a long
time or admit some stable modifications in their state. It is very essential
to note that the generalized concept of equilibrium is not restricted by the
static problems only; hence, one can consider the equilibrium trajectories
which correspond to dynamic equilibrium. Such systems can be investi-
gated via just the generalized equilibrium approach, but now one can not
expect the derivation of explicit solutions or manifold type properties, so
that this will also require new mathematical models and methods.

v



vi PREFACE

We spoke about the situation in natural sciences, but in the socio-
economical sciences the equilibrium approach may be even more powerful
and fruitful. The point is that these sciences, in contrast to the natural
ones, do not admit in fact other kinds of modeling with the exception of
the mathematical one. Hence, suitable formulations of equilibrium models
enable us to make non-trivial conclusions on the behavior of very compli-
cated systems which are considered in socio-economical sciences. Thus,
the first key problem is to find suitable formulations of equilibrium mod-
els in these fields. It should be noted that equilibrium models were very
developed traditionally in economics. Many Nobel Prize winners, such
as K.J. Arrow, G. Debreu, L.V. Kantorovich, T. Koopmans, W. Leontief,
H. Markovitz, J.F. Nash et al., were awarded just for their contributions in
this field. Nevertheless, even in economics, there exist a number of various
kinds of equilibrium models, even different concepts of equilibrium. These
models are investigated and applied separately and for this reason they re-
quire different tools both for the theory and for the construction of solution
methods. This course can be regarded as an attempt to present a unifying
look on equilibrium concepts in economics. Such an approach will require
certain extensions of the usual concept of equilibrium and a presentation of
unifying tools for investigating and solving equilibrium models which may
have in principle very different initial sources. Moreover, it forces us to give
simplified versions of many results and methods and to drop some details in
particular models which however may be very interesting and deep within
these models. At the same time, we include several models from related
sciences which demonstrate very broad fields of possible applications of the
equilibrium approach.

Of course, together with formulations of equilibrium problems, there
are many very essential issues to be investigated and resolved, such as
the existence and uniqueness of solutions, stability of equilibria, existence
of suitable and transparent mechanisms for attaining equilibrium states,
and creating effective algorithms for finding equilibrium solutions. We also
discuss them in this book, but also in connection with the unified framework
of equilibrium models. For this reason, we describe mostly methods which
rely upon the generic properties revealed in the models. Observe that the
above questions are usually investigated and answered separately for each
particular model and field of applications. Therefore, existence of such a
unified system of equilibrium models yields a great support for creating
successful and effective tools for resolving all the basic questions.

This book is based upon the lecture courses presented by the author
at Kazan University, Bergamo University, and Oulu University. It involves
some results obtained within the scientific work at Kazan University and
Informatics Problems Institute, AS RT.
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Chapter 1

Introduction

We intend to consider equilibrium concepts and their applications in eco-
nomics and related fields describing very complicated systems. Neverthe-
less, even very simple models can give a non-trivial information about a
system under consideration if they take into account its essential features.
In order to illustrate our approach to the development of equilibrium con-
cepts, we start from the simplest one-dimensional models.

Let us consider a market where consumers and producers buy and sell,
respectively, a homogeneous commodity, their reaction depending on the
current commodity price, i.e. it is a completely aggregated model. More
precisely, given a price p, the consumers determine their total demand D(p)
and the producers determine their total supply S(p), so that the excess
demand of the market is then the following

E(p) = D(p) − S(p).

Clearly, if we consider certain amount of transactions between consumers
and producers then there exists the equality between the partial supply
and demand at each price level, but the problem is to find the price which
implies the equality between the total supply and demand, i.e. when

E(p∗) = 0. (1.1)

It is called an equilibrium price and corresponds to the classical static equi-
librium concept, where the impact of all the forces equals zero, i.e. it is the
same as in mechanics. Moreover, this price implies constant clearing of the
market and may be maintained for an indefinitely long period. This means
that we are able to describe the behavior of the market and its economic
agents. The first problem is to find conditions ensuring the existence of
equilibrium prices, i.e. solutions of equation (1.1). However, such a classi-
cal formulation of the problem is not complete since it does not take into

1



2 1. INTRODUCTION

account the possible restrictions on prices. First of all, formulation (1.1) as-
sumes tacitly the absolute flexibility of price, but it must be non-negative,
and we obtain the non-classical problem

p∗ ≥ 0, E(p∗) = 0, (1.2)

instead of (1.1). Next, many real markets may include two-side price rigidi-
ties, and we should then replace (1.1) by the following problem

p′ ≤ p∗ ≤ p′′, E(p∗) = 0. (1.3)

Of course, we can begin our considerations from the simplest case (1.1),
where the desired conditions may be derived from the well-known Cauchy
theorem. That is, if there exists a segment [a, b] such that

E(a)E(b) ≤ 0

and E is continuous, then there exists a solution of equation (1.1), or
equivalently, the mapping p �→ T (p) with T (p) = p + λE(p), λ > 0, has a
fixed point on the segment [a, b], i.e.

p∗ = T (p∗). (1.4)

By imposing certain assumptions on the behavior of consumers and produc-
ers, we can ensure the existence of such a segment. Usually, these conditions
are deduced from monotonicity properties of the functions (mappings) D
and S on their domain or at least on some subsets containing the boundary
of the feasible set. The classical conditions say that the demand tends to
infinity and the supply tends to zero if the price drives to zero, conversely,
the demand tends to zero and the supply tends to infinity if the price drives
to infinity, i.e.

{
D(p) → +∞ and S(p) → 0 if p → 0,
D(p) → 0 and S(p) → +∞ if p → +∞.

(1.5)

Clearly, if we choose a close to zero and b large enough, (1.5) implies
E(a) > 0 and E(b) < 0, i.e. both (1.1) and (1.2) have solutions, moreover,
(1.5) shows that we can neglect the non-negativity constraint and simply
consider only the classical equation (1.1); see Figure 1.1.

However, (1.5) may not hold for many real markets due to the bound-
edness of both supply and demand, moreover, they may be bounded away
from zero as well, which does not ensure the existence of a solution, at least
for problem (1.2); see Figure 1.2.

Of course, in order to establish the existence of solutions for problem
(1.3), we have to overcome even more essential difficulties, since in general
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Figure 1.1:

�

�

pp∗

D(p)

S(p)

Figure 1.2:

�

�

p

D(p)

S(p)



4 1. INTRODUCTION

we have to find the corresponding segment [a, b] inscribed in [p′, p′′], or
equivalently, to find λ > 0 and the segment [a, b] ⊂ [p′, p′′] such that T
maps [a, b] onto itself for the case (1.4). Observe that −D and S are
supposed to usually possess global monotonicity properties, i.e.

D(p1) ≥ D(p2) and S(p1) ≤ S(p2) if p1 ≤ p2,

but they do not ensure existence of solutions for (1.2) or (1.3) in gen-
eral, as Figure 1.2 illustrates; although somewhat strengthened properties
may in principle yield the existence of solutions for (1.2); see Figure 1.1.
Clearly, the existence of equilibrium prices for market models with many
commodities will require stronger assumptions which enable us to omit the
restrictions and to consider only classical equations like (1.1), but they may
appear non-realistic. For this reason, we should present extended equilib-
rium concepts, which lead to problems whose solvability may be obtained
under comparatively mild and natural assumptions.

Namely, we will replace (1.2) by the problem of finding p∗ such that

p∗ ≥ 0, E(p∗) ≤ 0, p∗E(p∗) = 0; (1.6)

which is called the complementarity problem with the cost mapping −E.
Note that its solution satisfies (1.2) if p∗ > 0, but p∗ = 0 in (1.6) only
implies the non-positivity of excess demand at 0. Similarly, (1.3) can be
replaced by the following problem: Find p∗ ∈ [p′, p′′] such that

E(p∗)

⎧
⎨
⎩

≤ 0 if p∗ = p′,
= 0 if p∗ ∈ (p′, p′′),
≥ 0 if p∗ = p′′;

(1.7)

or equivalently,

E(p∗)(p∗ − p) ≥ 0 ∀p ∈ [p′, p′′]. (1.8)

Exercise 1.1. Prove the equivalence of (1.7) and (1.8).

Problem (1.8) is called the variational inequality with the cost mapping
−E and the feasible set [p′, p′′]. Again, any solution p∗ of (1.7) may differ
from that of (1.3) only if either p∗ = p′ or p∗ = p′′, where only non-
positivity (respectively, non-negativity) of excess demand is required. It
means that the corresponding restrictions prevent for the current price to
pass through the boundary of the feasible set although the excess demand
is non-zero, and we obtain an extended concept of equilibrium. In fact, if
−D and S are monotone, then the decrease (respectively, increase) of the
current price at p′ (respectively, at p′′) would drive the excess demand to
zero. Observe also that (1.7) (or (1.8)) becomes equivalent to (1.6) if p′ = 0
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and p′′ = +∞. At the same time, (1.6) and (1.7) are solvable under much
more general conditions than those in (1.2) and (1.3), respectively.

For instance, suppose that E is continuous. Then (1.6) is solvable if
there exists a point p̃ ≥ 0 such that E(p̃) ≤ 0. In fact, E(0) ≤ 0 implies
that 0 solves (1.6), otherwise we have E(0) > 0, i.e. there is a point
p∗ ∈ [0, p̃] such that E(p∗) = 0. Similarly, we can derive simple solvability
conditions for problem (1.7).

Exercise 1.2. Suppose that E is continuous and prove that (1.7) is solvable
if −∞ < p′ ≤ p′′ < +∞. Find sufficient solvability conditions for (1.7) if
either p′ = −∞ or p′′ = +∞.

This approach to formulating the static equilibrium admits further ex-
tensions for more complicated systems where their structure is taken into
account explicitly or implicitly and may yield additional relations in the
model. For instance, if we consider a set of regional markets joined by a
transportation network, capacities of nodes and roads and shipment costs
are taken into account and lead to some other equilibrium conditions, which
do not ensure the pure price equilibrium for each separate market.

Let us now turn to dynamical processes corresponding to the static
equilibrium of forms (1.1)–(1.3) or to their extensions given in (1.6)–(1.7).
The role of dynamical processes is two-fold. On the one hand, they describe
real changes in the system and we can investigate stability issues of these
processes reflecting the same properties of the initial system. On the other
hand, stable and rapid processes may serve as bases for computation of
equilibrium points. Also, we may utilize both continuous and discrete time
models for these purposes.

For simplicity, we consider the model with affine functions of demand
and supply, i.e. let

D(p) = α − βp, S(p) = γ + δp where α, β, γ, δ > 0. (1.9)

Then −D and S are clearly (strictly) monotone and (1.1) yields the explicit
formula for the equilibrium price

p∗ =
α − γ

β + δ
, (1.10)

i.e. p∗ is defined uniquely and positive if α > γ. It means that the initial
value of demand at zero has to be greater than the same value of supply.
Then we can consider the well-known “cobweb” process

D(pk) = S(pk−1), k = 0, 1, . . . , (1.11)
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Figure 1.3:
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for modeling behavior of prices or the negotiation procedure, where pk

denotes the price at the k-th time segment. On account of (1.9), we have

pk =
α − γ

β
−

δ

β
pk−1, k = 0, 1, . . . , (1.12)

hence

pk − pk−1 =
δ

β
(pk−2 − pk−1)

and we obtain the clear global criterion of convergence:

δ/β < 1, (1.13)

i.e. the growth ratio of supply has to be less than that of negative demand.
In fact, (1.13) implies |pk − pk−1| → 0 as k → ∞ and (1.12) now yields
p′ = p∗ for the limit point p′ of the sequence {pk}. Thus, condition (1.13)
ensures stable and rather rapid convergence of process (1.12) to the equi-
librium point regardless of the choice of the starting price p0; see Figure
1.3. Observe that process (1.11) has rather clear interpretation and means
that the current prices result from the equality of demand and supply, but
in different time periods. Namely, the price adjustment is immediate for
demand, but has one period delay for supply. We should draw our atten-
tion to the fact that neither existence of the unique equilibrium point nor
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Figure 1.4:

�

�

p

�
�

�
�

�
�

�
�

�
��

��������������������

�
�

� �

p0p1 p2

D(p)

S(p)

strengthened monotonicity properties of −D and S ensure the convergence
of the dynamical process (1.11) if condition (1.13) is not satisfied. In fact,
the reverse condition

δ/β > 1 (1.14)

leads to the divergent sequence {pk} for an arbitrary starting point; see
Figure 1.4. Also, the equality δ = β gives the cyclic procedure pk+1 = pk−1

for k = 1, 2, . . ., i.e. the behavior of the process is stable, but it is not
convergent. Observe that the “reverse” process to (1.11) is written as
follows

D(pk−1) = S(pk), k = 0, 1, . . . ,

and, due to (1.9), has the reverse convergence condition (1.14), whereas
(1.13) yields its divergence and the equality δ = β yields the same cyclic
property.

From this simple analysis we can conclude that stable convergence to
an equilibrium state requires additional conditions to those ensuring the
existence of such equilibrium states, i.e. the existence and even uniqueness
of equilibrium do not ensure convergence. At the same time, we can even
interpret any dynamic process with continuous functions as stable in the
sense that there exists a fixed formula joining system states in different
time periods. For instance, (1.12) describes the stable relation between pk
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Figure 1.5:
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and pk−1 although their values may vary and their behavior may change for
different relations between δ and β, i.e. (1.12) is a stable dynamic process
in this extended sense.

If we consider nonlinear functions of demand and supply as in Figure
1.1, we obtain the same conclusions on the behavior of the cobweb process
(1.11) in general, it may be additionally dependent of the choice of the
starting price p0, as Figure 1.5 illustrates. In fact, the process with starting
point p′ converges, but this is not the case for the starting point p′′.

This is not so easy to give a suitable continuous formulation for process
(1.11). Let us consider some other dynamic process which admits both
formulations. Its continuous form is the following:

dp(t)

dt
= E(p(t)), p(0) = p0,

and we obtain the discrete form similarly

pk+1 = pk + λkE(pk), λk > 0, k = 0, 1, . . .

That is the price increases (respectively, decreases) if the current value of
excess demand is positive (respectively, negative). This process also seems
very natural.
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In the affine case, we have

dp(t)

dt
= (α − γ) − (β + δ)p(t), p(0) = p0,

and

pk+1 = pk + λk [(α − γ) − (β + δ)pk] , λk > 0, k = 0, 1, . . . ,

respectively. The continuous trajectory may be determined explicitly:

p(t) = (p0 − p∗)e−(β+δ)t + p∗

and has the unique stable stationary point p∗ from (1.10). However, the
discrete process converges to the solution p∗ if the stepsize λk is small
enough.

Of course, the analysis in the case of many commodities and in the
presence of additional restrictions is more complicated but it in general
leads to similar conclusions, where monotonicity type properties play the
crucial role. The task is to formulate a suitable general equilibrium problem
and to reveal properties in particular models, which are useful for analysis
of this problem.

One of the most suitable and general formats for investigating and solv-
ing various equilibrium models is known to be the variational inequality
problem. The single-valued variational inequality problem (VI) is the prob-
lem of finding a point x∗ ∈ X such that

(x − x∗)T G(x∗) ≥ 0 ∀x ∈ X, (1.15)

where X is a nonempty convex set of a Euclidean space E, G : X → E
is a given mapping; cf. (1.8). Here and below, all the vectors are column
ones, the superscript T denotes transpose, i.e. aT denotes a row vector. It
means that aT b = 〈a, b〉 denotes the inner (or scalar) product of vectors. If
we take E to be the n-dimensional Euclidean space R

n, then

aT b =
n∑

i=1

aibi.

We recall that the set X is said to be convex if for each pair of points
x, y ∈ X, the segment [x, y] is contained in X, i.e. αx + (1 − α)y ∈ X for
all α ∈ [0, 1]. Also, the set X is said to be a cone if x ∈ X implies αx ∈ X
for all α > 0.

VI’s are closely related with many general problems of Nonlinear Analy-
sis, such as complementarity, fixed point and optimization problems. The
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simplest example of VI is the problem of solving a system of equations. It
is easy to see that if X = E in (1.15), then VI (1.15) is equivalent to the
problem of finding a point x∗ ∈ E such that

G(x∗) = 0.

If the mapping G is affine, i.e., G(x) = Ax− b, then the above problem is
equivalent to the classical system of linear equations

Ax∗ = b.

Let us consider the case when X is a convex cone in E. Then VI (1.15)
is equivalent to the complementarity problem (CP for short):

x∗ ∈ X,G(x∗) ∈ X ′, (x∗)T G(x∗) = 0, (1.16)

where X ′ = {z ∈ E | xT z ≥ 0 ∀x ∈ X} is the dual cone to X. For
instance, if we set E to be R

n and X to be the non-negative orthant
R

n
+ = {x ∈ R

n | xi ≥ 0 ∀i = 1, . . . , n} in R
n, CP(1.16) can be rewritten

in the standard form:

x∗
i ≥ 0, Gi(x

∗) ≥ 0, x∗
i Gi(x

∗) = 0 ∀i = 1, . . . , n;

cf. (1.6). The linear complementarity problem (LCP for short) corresponds
to the case when G is affine, i.e., G(x) = Ax − b.

Next, if the mapping G is defined by G(x) = x − T (x), where T maps
X into itself, then problem (1.15) coincides with the fixed point problem:
Find a point x∗ ∈ X such that

x∗ = T (x∗).

Moreover, if the mapping G is the gradientmap of a real-valued func-
tion f : X → R, then problem (1.15) represents a necessary condition of
optimality for the following optimization problem of finding a point x∗ ∈ X
such that

f(x∗) ≤ f(x) ∀x ∈ X,

or briefly,
min → {f(x) | x ∈ X}.

Also, if the function f is convex, then the reverse assertion is true. Thus,
all these problems can be viewed as particular cases of VI. Similarly, we
can define VI with multi-valued cost mapping G and its related problems.

The theory and solution methods for various kinds of VIs are developed
rather well and allow one to choose a suitable way to investigate each par-
ticular problem under consideration. So, the problem is to show that many
applied problems can be easily formulated as VIs or their subproblems.
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In this part, we describe several different classes of equilibrium models
and their mathematical formulations as optimization, complementarity and
variational inequality problems. We show that revealing essential features
of the initial economic model and utilizing this additional information may
give non-trivial and deep results in comparison with those in the general
case. At the same time, the derivation of such results for most non-linear
models requires the corresponding theoretical background and will be given
in the next parts.
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Chapter 2

Linear Models in Economics

We recall that input-output analysis is the study of qualitative relations
between the output levels of the various sectors of an economy, which is
used for national accounting and planning. W. Leontief presented input-
output analysis in application to the United States economy (see Leontief
(1966)).

Following this approach, the economy is divided into n production sec-
tors, each of them produces a homogeneous commodity. For a fixed time
period, if the i-th sector produces vi units of the i-th commodity, then the
j-th sector uses yij units for its own production and yi units are used for
final demand. Hence, we can present the simple balance table for the time
period indicated for each commodity:

vi =

n∑

j=1

yij + yi for i = 1, . . . , n.

Dividing the inputs by output, we obtain the so-called input-output coef-
ficients

aij =
yij

vj
,

which indicate the amount of the i-th commodity for production of one
unit of the j-th commodity. The key assertion of the input-output analysis
is that these coefficients are constant that tacitly assumes the absence of
technological revolutions in the economy. Then, these coefficients can be
used for forecasting and planning in the next time period.

15
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2.1 Open input-output model

First we consider the so-called open input-output model which considers the
question of satisfying a given final demand in the next time period.

Suppose that the values of the final demand for each commodity are
known and represented by the vector y = (y1, . . . , yn)T , and that the
coefficients aij are constant. The problem is to find output values x =
(x1, . . . , xn)T which satisfy this final demand. In other words, the problem
is to find x ∈ R

n such that

xi −
n∑

j=1

aijxj = yi and xi ≥ 0 for i = 1, . . . , n. (2.1)

This problem can be rewritten equivalently as

(I − A)x = y, x ≥ 0, (2.2)

where I is the n×n unit matrix, A is the n×n matrix with the entries aij .
Thus, we have obtained a somewhat unusual mathematical problem, since
it involves the classical system of linear equations and the nonnegativity
constraints.

Observe that the linear equations in (2.1) can be regarded as equi-

librium conditions between the supply xi and the demand
n∑

j=1

aijxj + yi

(which involves the production and final demand) for each i-th commod-
ity. In order to solve problem (2.1) we first consider this system of linear
equations without nonnegativity constraints. The existence of a solution
for the arbitrary final demand vector y is guaranteed if the matrix (I −A)
is invertible. Then

x = (I − A)
−1

y. (2.3)

Observe that

(I − A)
(
I + A + A2 + . . . + Ak−1

)
= I − Ak

for each k. If

lim
k→∞

Ak = Θ, (2.4)

where Θ denotes the n × n zero matrix, then

lim
k→∞

[
(I − A)

k−1∑

i=0

Ai

]
= lim

k→∞

(
I − Ak

)
= I,
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i.e., by definition,

(I − A)
−1

=

∞∑

k=0

Ak. (2.5)

Next, we recall that A is the matrix of input-output coefficients so that in
the standard situation we can suppose that they are nonnegative. Hence,
each its degree Ak is also nonnegative and so is (I − A)−1 due to (2.5).
Thus, if there exists a solution to the system

(I − A)x = y

for each nonnegative right-hand side vector y, it has to be nonnegative, i.e.
it solves also the initial problem (2.2). Thus, using the special property of
the input-output matrix A, we have shown that the conditions x ≥ 0 are
superfluous in (2.2).

The question whether condition (2.4) is satisfied or not can be answered
by using the well-known Perron-Frobenius theory of nonnegative matrices.

Theorem 2.1. (Perron-Frobenius; e.g. see Nikaido (1968), Chapter 2,
Theorem 7.1). If A is an nonnegative n × n matrix, then

(i) it has a nonnegative eigenvalue λA with a nonnegative eigenvector,
such that λA ≥ |µ| for any eigenvalue µ of A;

(ii) the matrix (I−A)−1 exists and is nonnegative if and only if λA < 1.

Observe that (ii) follows from (i) and (2.4). This property can be re-
placed with a somewhat simpler condition.

Theorem 2.2. (Hawkins-Simon; e.g. see Nikaido (1968), Chapter 2, The-
orem 6.1). If A is an nonnegative n×n matrix, then the matrix (I −A)−1

exists and is nonnegative if and only if the n sequential principal minors of
(I − A) are positive.

Let us now consider simple examples of such matrices.

Example 2.1. Set n = 2, then both the conditions in Theorems 2.1 (ii)
and 2.2 are not satisfied for the matrix

A =

(
1 1
1 1

)
,

but they are satisfied for the matrix

A =

(
1/2 1/2
1/3 1/3

)
.
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Exercise 2.1. Check the conditions of Theorems 2.1 and 2.2 for the matrix

A =

(
1/2 1/3
1/3 1/2

)
.

However, the necessary and sufficient conditions of productivity given
in Theorems 2.1 and 2.2 seem too complicated for their verification in
economic applications, especially due to the usual high dimensionality of
these problems. Therefore, we have to suggest some other conditions which
are only sufficient ones, but more suitable for utilization. In fact, since aij

are input-output coefficients, it is natural to suppose that aij ≤ 1. But
this condition is not sufficient as the following example illustrates.

Example 2.2. Set n = 2 and

A =

(
1/2 1/2
1/2 1/2

)
,

then any condition in Theorems 2.1 (ii) and 2.2 is not satisfied.

Let us consider somewhat strengthened conditions:

n∑

j=1

aij < 1 for i = 1, . . . , n (2.6)

and
n∑

i=1

aij < 1 for j = 1, . . . , n. (2.7)

Condition (2.6) means that the amount of each commodity which is used for
production of one unit of all the commodities is less than one unit, whereas
condition (2.7) means that the total amount of commodities which is used
for production of one unit of each commodity is also less than one unit.
These properties show that there are opportunities for creating inventories
and satisfying the final demand.

Theorem 2.3. Suppose that A is an n×n nonnegative matrix and that at
least one of the conditions (2.6) or (2.7) holds. Then the matrix (I −A)−1

exists and it is nonnegative.

Proof. It follows from (2.5) that we have to show that λA < 1. We restrict
ourselves only with the case (2.7). Let xA be the eigenvector of A which
corresponds to the eigenvalue λA, then it is nonnegative and

AxA = λAxA.
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Denote by e = (1, . . . , 1)T the unit vector in R
n, then we have

eT AxA = λA

n∑

i=1

(xA)i.

Next, using (2.7), we obtain

eT AxA =

n∑

j=1

[
n∑

i=1

aij

]
(xA)j <

n∑

j=1

(xA)j . (2.8)

Therefore, λA < 1, and the result follows now from Theorem 2.1.

Exercise 2.2. Prove the assertion of Theorem 2.3 under condition (2.6).

Using a modification of the Perron-Frobenius theorem, we can some-
what strengthen the above result under additional assumptions on the
economy model.

Definition 2.1. Let A be an n × n matrix. Then A is said to be inde-
composable, if there is no index set J ⊆ {1, . . . , n} such that aij = 0 as
i �∈ J, j ∈ J .

Thus, if A is an indecomposable matrix, it can not be rearranged into
the form (

A1 A2

0 A3

)
,

where A1 and A3 are square submatrices. If A is also an input-output
matrix, it means that there are no isolated production subsectors in the
economy. In fact, otherwise for each j ∈ J , the j-th producer does not
utilize any i-th commodity if i �∈ J . In other words, if the input-output
matrix is indecomposable, then all the commodities have either direct or
indirect relations to each other. Now we recall the specialization of the
Perron-Frobenius theorem for indecomposable matrices.

Theorem 2.4. (Perron-Frobenius; e.g. see Nikaido (1968), Chapter 2,
Theorems 7.3 and 7.4). Suppose A is an indecomposable nonnegative n×n
matrix. Then:

(i) it has a positive eigenvalue λA with a positive eigenvector, which
is defined uniquely (up to scalar multiples), such that λA ≥ |µ| for any
eigenvalue of A;

(ii) the matrix (I − A)−1 exists and positive if and only if λA < 1.
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The indecomposability of A allows us to replace the conditions (2.6)
and (2.7) with the following:

n∑

j=1

aij ≤ 1 for i = 1, . . . , n (2.6′)

and
n∑

i=1

aij ≤ 1 for j = 1, . . . , n. (2.7′)

More precisely, the sufficient condition for productivity is now formulated
as follows.

Theorem 2.5. Suppose that A is an indecomposable nonnegative n × n
matrix and that either (2.6′) holds and at least one of the inequalities is
strict or (2.7′) holds and at least one of the inequalities is strict. Then the
matrix (I − A)−1 exists and is positive.

Proof. On account of Theorem 2.4 it suffices to prove that λA < 1. This
fact is obtained along the lines of the proof of Theorem 2.3. Observe that
xA is now positive, hence (2.8) is also true.

Exercise 2.3. Prove the inequality λA < 1 in Theorem 2.5.

Exercise 2.4. Prove that an n×n matrix A is indecomposable if, for each
pair (i, j),i �= j, there exist indices i1, i2, . . . , is−1 such that ail−1il

> 0 for
l = 1, 2, . . . , s, where i0 = i, is = j.

Thus, this connection between all the branches of an economy allows
for satisfaction of any final demand if it is possible to create inventories for
at least one commodity. Of course, this result strengthens essentially that
in the general case.

2.2 Generalizations

So, system (2.1), which represents the classical model, can be reduced to
the problem of solving the system of linear equations. This is mainly due
to the fact that the matrix A has nonnegative entries (see (2.5)), hence the
solution can be found from the explicit formula (2.3) which admits the de-
tailed analysis of the problem, involving sensitivity issues. However, even
small modifications of the model caused by the peculiarities of the real
economic system require more general models and more powerful meth-
ods of their analysis, respectively. This does not mean that equilibrium
disappears, but it has to be redefined in a new format.
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For example, if we take into account environmental aspects, the nonneg-
ativity of all input-output coefficients aij does not hold. Such a model was
suggested by W. Leontief and D. Ford. In fact, aij determines the amount
of the i-th commodity which is used for production of the j-th commod-
ity. However, the production process results in by-products which are not
used by other processes and require special utilization procedures since
otherwise they pollute the environment. Nevertheless, these by-products
should be included in the input-output model, but the coefficient aij then
becomes nonpositive if the index i corresponds to the commodity which is
a by-product in producing the j-th commodity. Due to (2.5), it means that
the matrix (I − A)−1 need not have only nonnegative entries, hence the
model (2.1) can not be reduced to a system of linear equations in general.
In this case the concept of a solution may be redefined in a more suitable
format.

The next problem is possible limitations for outputs and resources. In
fact, if we have certain values of outputs x̃ for the previous period, the
outputs in the next period should be in a segment [x′, x′′] containing x̃,
since the technological processes do not admit large deviations. Then the
system (2.1) (or (2.2)) should be replaced with the following:

(I − A)x = y, x′ ≤ x ≤ x′′. (2.2′)

Exercise 2.5. Write down the extension of the input-output model for the
case (2.2′).

The usual resource constraints are of the form:
n∑

j=1

cijxj ≤ di i = 1, . . . , m; (2.9)

where di is the total inventory of the i-th factor (resource) and cij is the
stock of the i-th factor employed per unit of the j-th product. Usually,
there are limitations on a capital stock and a labor force. The corresponding
model can be formally written as the system (2.2), (2.9) or (2.2′), (2.9), but
it can be inconsistent, hence the concept of a solution should be redefined.

For instance, one can consider the optimization problem

max → α

subject to

x − Ax ≥ αy,

lT x ≤ L, x ≥ 0;

where l is the vector of labor coefficients, L is the total labor force. This
model maintains the proportions among commodities in final demand and
maximizes the level of the final demand.
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It is possible to consider also the problem of minimizing the total
amount of some resources employed in production processes under the con-
straints of form (2.2′). Moreover, some technologies may be nonlinear, i.e.
the model will involve a nonlinear map A(x) instead of the linear map
Ax of the production demands. Anyway, the modified models require new
mathematical tools for their investigation and solution. These tools will
be based on new concepts of solutions and will provide new conditions for
existence and uniqueness results and algorithms for finding solutions.

2.3 Closed input-output model

The closed version of the input-output model corresponds to the case when
the final demand is zero, i.e. the total output for each commodity is equal
to its industrial demand. This model describes a closed system and is also
called the linear exchange model or the international trade model. In the
latter case, the input-output coefficient aij indicates the part of the total
income of the j-th country for purchasing goods of the i-th country, i.e.
it is supposed that the proportions between these parts are fixed from the
previous time period. From the definition it follows that

aij ≥ 0 for i, j = 1, . . . , n
and

n∑
i=1

aij = 1 for i = 1, . . . , n;
(2.10)

where n denotes the number of countries involved in the international trade
system. Denote by πi the total income of the i-th country, then

πi ≥ 0 and πi ≤
n∑

j=1

aijπj for i = 1, . . . , n. (2.11)

It means that the income is due to the international trade only. Observe
that (2.10) in fact implies the equalities in (2.11). Conversely, suppose that
there exists an index s such that

πs <
n∑

j=1

asjπj ,

then

πi ≤
n∑

j=1

aijπj for i �= s.
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Summing up all these inequalities, we obtain

n∑
i=1

πi <
n∑

i=1

(
n∑

j=1

aijπj

)
=

n∑
j=1

(
n∑

i=1

aijπj

)

=
n∑

j=1

πj

(
n∑

i=1

aij

)
=

n∑
j=1

πj

due to (2.10). However, this is a contradiction.
Thus, the problem is to find

πi ≥ 0 such that πi −
n∑

j=1

aijπj = 0

for i = 1, . . . ,m;
(2.12)

or equivalently,
(I − A)π = 0, π ≥ 0, (2.12′)

where π = (π1, . . . , πn)T (cf. (2.1) and (2.2)). We have obtained a particu-
lar case of the open input-output model, but the additional property (2.10)
of the matrix A enables us to provide a thorough analysis of its solution in
a somewhat different way.

It is clear that system (2.12) (or (2.12′)) always has the trivial zero
solution but it corresponds to the absence of any income for every country.
Therefore, we have to answer the following two questions:

(Q1) When system (2.12) has a nontrivial solution, i.e. there exist
countries with positive incomes?

(Q2) When system (2.12) has a positive solution, i.e. all the countries
have positive incomes?

First we note that the matrix A has eigenvalue 1. In fact, set e =
(1, . . . , 1)T ∈ R

n, then
AT e = (eT A)T = e,

since

[eT A]i =
n∑

j=1

aij = 1 for i = 1, . . . , n

because of (2.10). It means that 1 is an eigenvalue of AT , but the sets of
eigenvalues for matrices A and AT coincide. It follows that

|I − A| = 0,

i.e. the system

(I − A)π = 0 (2.13)
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has nontrivial solutions. We thus have to show that system (2.13) has the
nontrivial solutions belonging to the set

R
n
+ = {x ∈ R

n |xi ≥ 0 i = 1, . . . , n} .

This assertion requires some additional results.
First we recall the well-known separability property of convex sets; see

e.g. Nikaido (1968), Chapter 1, Theorem 3.2.

Proposition 2.1. (Existence of a separating hyperplane) Suppose L is a
nonempty, convex, and closed subset of R

n. If a /∈ L, then there exists an
element y �= 0 such that

aT y < lT y for every l ∈ L.

We utilize this property in the following lemma of the alternative.

Lemma 2.1. Let B be a square n × n matrix. Then, either
(i) BT x = 0 for some x ≥ 0, x �= 0;
or
(ii) By > 0 for some y.

Proof. Let bi denote the i-th row of the matrix B. Then bi ∈ R
n and the

set

L = conv
{
bi
}

i=1,...,n

=

{
z ∈ R

n z =
n∑

i=1

µib
i,

n∑

i=1

µi = 1, µi ≥ 0 i = 1, . . . , n

}

is nonempty, convex, and closed. We consider two cases which are mutually
exclusive: 0 ∈ L and 0 �∈ L. In the first case (see Figure 2.1) we have

0 =
n∑

i=1

µib
i,

n∑
i=1

µi = 1, µi ≥ 0 for i = 1, . . . , n and simply set x =

(µ1, . . . , µn)T , then (i) is true.
In the second case (see Figure 2.2), using Proposition 2.1, we obtain

lT y > 0 for every l ∈ L,

i.e.
(bi)T y > 0 for i = 1, . . . , n;

or equivalently,
By > 0

and (ii) is true.
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Figure 2.1: 0 ∈ L
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Exercise 2.6. Prove that the solution set of problem (2.12) is a convex
cone.

We are now ready to give answers to both the questions.

Theorem 2.6. If (2.10) holds, then system (2.12) always has a nontrivial
solution.

Proof. We argue by contradiction. Suppose that there is no such an element
π ≥ 0, π �= 0, that (I−A)π = 0. Applying Lemma 2.1 with B = (I−A)T ,
we have that there exists an element y ∈ R

n such that (I − A)T y > 0, or
equivalently,

n∑

i=1

yia
i < y (2.14)

where ai denotes the i-th row of A. Besides, (2.10) gives

n∑

i=1

ai = e = (1, . . . , 1)T . (2.15)

Without loss of generality we suppose that y1 is the smallest component of
y, i.e.

µ = y1 = min
i=1,...,n

yi.

Multiplying (2.15) by µ and subtracting it from (2.14), we obtain the vector
inequality

n∑

i=2

(yi − y1)a
i < y − y1e.

The first scalar inequality here is the following

0 ≤
n∑

i=2

(yi − y1)ai1 < y1 − y1 = 0.

Hence, the assertion of the theorem is true.

Thus, for each matrix A satisfying (2.10) there exists an international
trade plan which guarantees positive incomes for some countries, i.e. the
answer to (Q1) is positive. This result can be strengthened under an addi-
tional condition.

Theorem 2.7. If the matrix A is indecomposable and satisfies (2.10), then
system (2.12) has a positive solution which is defined uniquely up to scalar
multiples.
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Proof. From Theorem 2.6 it follows that there exists an element π ≥ 0, π �=
0, such that (I − A)π = 0. Suppose that πj > 0 for j ∈ J and πj = 0 for
j ∈ J ′ and J ′ �= ∅. Then J ∩ J ′ = ∅, J ∪ J ′ = {1, . . . , n} and (2.12) gives

n∑

j=1

aijπj =
∑

j∈J

aijπj = πi = 0 for every i ∈ J ′.

Since πj > 0 for j ∈ J , it follows that

aij = 0 for each pair (i, j) ∈ J ′ × J.

Transposing rows and columns of the matrix A, we obtain then the matrix

(
A1 A2

0 A3

)
}J
}J ′

︸︷︷︸
J

︸︷︷︸
J ′

where A1 and A3 are square matrices. It means that A is decomposable, a
contradiction, i.e. the first assertion of the theorem is true. Next, suppose
that there exists a positive vector π′ �= π, which also satisfies (2.12). Set
µ = min

i=1,...,n
πj/π′

j and, without loss of generality, suppose that µ = π1/π′
1.

Then clearly µ > 0 and

π′′
j = πj − µπ′

j

{
= 0 if j = 1,
≥ 0 if j > 1.

Moreover, Aπ′′ = Aπ−µAπ′ = π−µπ′ = π′′, i.e. π′′ �= 0 also solves (2.12),
but this contradicts the first part of the theorem since each nontrivial
solution of (2.12) can not have zero components. Hence π′′ = 0, i.e. π = µπ′

and the proof is complete.

Thus, if there are direct or indirect trade relationships between all the
countries (no closed trade groups), then Theorem 2.7 says that all the
countries receive positive incomes. It follows that even comparatively sim-
ple models can reveal deep relationships in the real system and support the
world level decisions.
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Chapter 3

Linear Dynamic Models of an

Economy

In the previous chapter, we considered economic models for a fixed time
period. However, we can also investigate the behavior of an economy for
a comparatively long time, which corresponds to a model with the infinite
number of time periods. For simplicity, we chose the models with discrete
time. Again, we are interested in finding conditions which provide a stable
or balanced work of the whole system. First we consider an extension of
the open input-output model described in Section 2.1.

3.1 Extended dynamic input-output model

In the model, the economy is divided into n pure production sectors, each
of them produces a homogeneous commodity. Recall that aij denotes the
quantity of the i-th commodity for production of one unit of the j-th com-
modity, and these coefficients are supposed to be constant. It means that
there are no significant changes in the production technologies. The static
input-output model is then given in (2.1) (or (2.2)) and is rewritten as
follows: For a given final demand y = (y1, . . . , yn)T , find an output vector
x = (x1, . . . , xn)T such that

(I − A)x = y, x ≥ 0, (3.1)

where I is the n×n unit matrix, A is the n×n matrix with the entries aij .
In Section 2.1, several sufficient conditions, which provide the existence
of nontrivial solutions of this system for an arbitrary nonnegative value
of the final demand, were presented. In the dynamic model, we consider
the problem of existence of a satisfactory level of output which covers the

29
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industrial demand instead of (3.1). In other words, the problem is to find
an output vector x such that

(I − A)x ≥ 0, x ≥ 0. (3.2)

Together with the natural balance in (3.2), we can consider its price coun-
terpart, which can be formulated as follows: Find the price vector p =
(p1, . . . , pn)T such that

(I − A)T p ≤ 0, p ≥ 0; (3.3)

or equivalently

pj ≤
n∑

i=1

aijpi for j = 1, . . . , n.

The j-th inequality means that the price of the j-th commodity does not
exceed the cost of all the commodities which are used for production of one
unit of the j-th commodity, i.e. there is no profit for each commodity.

Now we consider the infinite sequence of equal time periods so that xt

and pt will denote the output and price vectors for the t-th time period,
respectively. We suppose that the production in the (t + 1)-th period uses
only the commodities which were produced in the previous t-th period.
Then the dynamic extension of the system (3.2) and (3.3) is the following

{
xt ≥ Axt+1, xt ≥ 0,
pt+1 ≤ AT pt, pt ≥ 0,

for t = 0, 1, . . . ; (3.4)

where the starting values x0 and p0 are given. System (3.4) describes an
economic system with non-decreasing outputs and non-increasing prices.
Clearly, it always has the trivial solution, hence we are interested in finding
nontrivial solutions. Observe that non-increasing prices and the absence
of profits do not prevent the existence of such a system for an indefinitely
long time while the input-output coefficients are constant.

For example, if one produces an output x′ in the t-th period so that

c = (pt)T x′ > (pt+1)T x′,

then it is possible to purchase commodities for producing any j-th com-
modity in the next (t+1)-th period such that

pt+1
j =

n∑

i=1

aijp
t
i.

It means that the producer maintains the same capital value c in the next
period, but he will be able to purchase a greater amount of commodities
and thus support the extending level of production.
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Thus, (3.4) describes a system which may be in an equilibrium state
for a long time. This corresponds to the concept of a dynamic equilib-
rium. Moreover, we can investigate the specialized problem of existence of
balanced trajectories {xt} and {pt} where the outputs and prices in neigh-
boring periods differ only in scalar ratios. This problem will be solved for
a somewhat more general economic model.

3.2 The von Neumann model of an expanding

economy

In the mid-1930’s, John von Neumann suggested a dynamic model of an
economy, which extends the dynamic input-output model above. In de-
scribing this model, we follow Lancaster (1968) and Nikaido (1968).

The economy involves n commodities, but, unlike the usual input-
output models, also m technologies of production and m �= n in general.
The unit level of the j-th technology requires aij units of the i-th com-
modity and produces bij units of the i-th commodity, so that the system
is determined with the help of the two n × m matrices A and B which
represent pure industry consumption and production, respectively. For the
infinite sequence of equal time periods, xt ∈ R

m and pt ∈ R
n will denote

the activity levels and price vectors for the t-th period, respectively.

For clarity, we write analogues of conditions (3.4) in an expanded form:

m∑
j=1

aijx
t+1
j ≤

m∑
j=1

bijx
t
j i = 1, . . . , n; xt

j ≥ 0

j = 1, . . . ,m;
(3.5)

m∑
i=1

aijp
t
i ≥

m∑
i=1

bijp
t+1
i j = 1, . . . , m; pt

i ≥ 0

i = 1, . . . , n;
(3.6)

for t = 0, 1, . . . , with the known vectors x0 and p0. The first series of in-
equalities in (3.5) says that, for each i-th commodity, its industrial demand
does not exceed its output in the previous time period. Also, the first series
of inequalities in (3.6) says that the total cost of commodities produced per
unit of each activity does not exceed the total cost of commodities utilized
for one unit of this activity, i.e. the profits are absent for all technologies.

The system (3.5), (3.6) is expanded by including two conservation rules:

n∑

i=1

m∑

j=1

aijp
t+1
i xt+1

j =

n∑

i=1

m∑

j=1

bijp
t+1
i xt

j (3.7)
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and

m∑

j=1

n∑

i=1

aijp
t
ix

t+1
j =

m∑

j=1

n∑

i=1

bijp
t+1
i xt+1

j . (3.8)

Equality (3.7) says that the total cost of the industrial demand in the
(t + 1)-th period is equal to the total industrial income for commodities
produced in the previous period, i.e. the industrial income is used only for
satisfying the industrial demand. Equality (3.8) says that the industrial
expenses in the (t + 1)-th period (for the previous period prices) are equal
to the total cost of outputs in this period, i.e. the total amount of money
is constant.

We rewrite the system (3.5)–(3.8) in the equivalent form:

Axt+1 ≤ Bxt, (pt+1)T Axt+1 = (pt+1)T Bxt, xt ≥ 0;
AT pt ≥ BT pt+1, (pt)T Axt+1 = (pt+1)T Bxt+1, pt ≥ 0;

(3.9)

for t = 0, 1, . . . Clearly, this system always has the trivial solution, hence we
intend to find nontrivial solutions. Moreover, we will consider the balanced
growth long-run trajectory which possesses the following properties:

xt+1 = λxt and pt+1 = µ−1pt, (3.10)

where λ > 0 and µ > 0. It means that all the activities have the same
growth ratio λ − 1 and that all the prices decrease with the same ratio
µ − 1. Using (3.10) in (3.9) yields

λAx ≤ Bx, λpT Ax = pT Bx, x ≥ 0;
µAT p ≥ BT p, µpT Ax = pT Bx, p ≥ 0;

(3.11)

where xt = λtx and pt = µ−tp, and we also have to present conditions
which provide existence of nontrivial solutions to system (3.11). Observe
that (3.11) can be equivalently rewritten as the linear complementarity
problem

z ≥ 0, Qz ≥ 0, zT Qz = 0,

where z = (x, p),

Q =

(
0 (µA − B)T

B − λA 0

)
,

and Q is skew-symmetric if λ = µ = α, i.e. QT = −Q.
John von Neumann was the first who gave the existence theorem for the

above problem. Afterwards, the sufficient conditions in this theorem were
somewhat relaxed by J.G. Kemeny, O. Morgenstern, and G.L. Thompson.
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These conditions seem very natural and are the following.
(A1) The matrices A and B contain only nonnegative entries.
(A2) The matrix A does not contain zero columns (i.e. each activity

utilizes a positive amount of at least one commodity).
(A3) The matrix B does not contain zero rows (i.e. production of each

commodity requires a positive level of at least one technology).

The result is based on the following two lemmas.

Lemma 3.1. Suppose C is an arbitrary n × m matrix. Then either
(i) pT C ≤ 0 for some p ≥ 0, p �= 0,

or
(ii) Cx > 0 for some x > 0.

Proof. Let ci denote the i-th row of the matrix C. By definition, ci ∈ R
m.

Also, denote by ei the i-th coordinate vector in R
m, i.e.

ei
j =

{
0 if i �= j,
1 if i = j.

Set

L = conv{c1, . . . , cn, e1, . . . , em}.

By definition, the set L is nonempty, convex and closed. We consider two
cases which are mutually exclusive: 0 ∈ L and 0 �∈ L. In the first case there
exist numbers αi ≥ 0 for i = 1, . . . , n and βj ≥ 0 for j = 1, . . . , m such that

n∑

i=1

αi +

m∑

j=1

βj = 1 (3.12)

and
n∑

i=1

αic
i +

m∑

j=1

βje
j = 0,

or equivalently,

n∑

i=1

αicij + βj = 0 for j = 1, ...,m. (3.13)

Set p = (α1, . . . , αn)T ≥ 0. If p = 0, then (3.13) gives βj = 0 for j =
1, . . . , n, which contradicts (3.12). Therefore p �= 0. From (3.13) we also
obtain

n∑

i=1

αicij ≤ 0 for j = 1, . . . , m,
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or equivalently, pT C ≤ 0, i.e. (i) holds.
In the second case we use Proposition 2.1 and obtain

lT y > 0 for all l ∈ L.

Setting x = y and using this inequality with l = ei gives xi > 0. Then
using the above inequality with l = ci gives

(ci)T x > 0 for i = 1, . . . , n,

i.e. Cx > 0 and (ii) holds.

Clearly, Lemma 3.1 extends Lemma 2.1 from square matrices. Let us
consider two optimization problems:

max → λ (3.14)

subject to
λAx ≤ Bx, x ≥ 0, x �= 0, λ > 0

and

min → µ (3.15)

subject to
µpT A ≥ pT B, p ≥ 0, p �= 0, µ > 0.

Lemma 3.2. (i) Problems (3.14) and (3.15) always have solutions (λ∗, x∗)
and (µ∗, p∗).

(ii) It holds that λ∗ ≥ µ∗.

Proof. First we replace (3.14) and (3.15) with the equivalent ones:

max → λ (3.14′)

subject to
λAx ≤ Bx, x ≥ 0, eT x = 1, λ > 0,

and
min → µ (3.15′)

subject to
µpT A ≥ pT B, p ≥ 0, eT p = 1, µ > 0;

where e is the corresponding vector of units. That is, if (λ̄, x̄) and (µ̄, p̄)
solve (3.14′) and (3.15′), they also solve (3.14) and (3.15). Conversely, if
(λ∗, x∗) and (µ∗, p∗) solve (3.14) and (3.15), then (λ∗, x̄) and (µ∗, p̄) with
x̄ = 1

eT x∗
x∗ and p̄ = 1

eT p∗
p∗ solve (3.14′) and (3.15′), respectively.
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Next, due to (A3), B contains only nonzero rows, hence there is a vector
x ≥ 0, x �= 0 such that Bx > 0. Choosing λ small enough, we obtain
λAx ≤ Bx, i.e. the feasible sets in (3.14) and (3.14′) are nonempty. Take
an arbitrary point x ∈ R

m such that x ≥ 0 and eT x = 1. Denote by l the
number of its maximal component, i.e. xl = max

i=1,...,m
xi. Since A contains

only nonzero columns, each column of the matrix (B − λA) will contain a
negative element which is greater than the sum of the positive entries of
the same row, if we choose λ large enough. Hence, there exists a number i
such that the negative element has the numbers (i, l). It follows that

m∑

j=1

(bij − λaij)xj < 0,

and the variable λ is bounded from above. Therefore, problem (3.14′) as
well as (3.14) is solvable.

Noticing that (3.15) is equivalent to the problem:

max → τ

subject to

pT A ≥ τpT B, p ≥ 0, p �= 0, τ > 0,

we obtain the existence of a solution to (3.15) along the same lines by using
(A2) instead of (A3). So, assertion (i) is true.

Let us consider the system

(B − λ∗A)x > 0.

If it has a nonnegative solution x̃, then x̃ �= 0 and

(B − λ′A)x̃ ≥ 0

for some λ′ > λ∗, which contradicts the definition of λ∗. Using now Lemma
3.1 with C = B − λ∗A, we conclude that there exists a vector p ≥ 0, p �= 0
such that

pT (B − λ∗A) ≤ 0,

i.e. the pair (λ∗, p) is feasible in (3.15). From the definition of µ∗ we obtain
µ∗ ≤ λ∗, i.e. assertion (ii) is also true.

We are now ready to establish the basic existence and uniqueness results
for system (3.11).
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Theorem 3.1. There exist a number α > 0 and vectors x ∈ R
m, p ∈ R

n

such that

x ≥ 0, x �= 0, αAx ≤ Bx, pT (αA − B)x = 0,
p ≥ 0, p �= 0, αpT A ≥ pT B.

(3.16)

Proof. By Lemma 3.2, there exist solutions (λ∗, x∗) and (µ∗, p∗) of prob-
lems (3.14) and (3.15), respectively, such that λ∗ ≥ µ∗. Take any α ∈
[µ∗, λ∗], then x∗ ≥ 0, x∗ �= 0, p∗ ≥ 0, p∗ �= 0 and we have

αAx∗ ≤ λ∗Ax∗ ≤ Bx∗ and α(p∗)T A ≥ µ∗(p∗)T A ≥ (p∗)T B.

It follows that

(αA − B)x∗ ≤ 0 and (p∗)T (αA − B) ≥ 0.

Multiplying these inequalities by (p∗)T and x∗, respectively, we obtain

0 ≥ (p∗)T (αA − B)x∗ ≥ 0,

and the result follows.

Thus, within assumptions (A1)–(A3), the economic system has a sta-
tionary long-run path which can be regarded as an example of a dynamic
equilibrium. Moreover, this path admits the same ratio both for the bal-
anced growth of production and for the balanced decrease of all prices.
Recall that the vectors x and p in (3.11) (or (3.16)) represent the starting
activity levels and prices.

We can somewhat strengthen the above result under the additional
indecomposability assumption.

Definition 3.1. The set of matrices (A,B) is said to be indecomposable,
if there are no nonempty index subsets K ⊆ {1, ..., n} and J ⊆ {1, ...,m}
such that ∑

j∈J

aij =
∑

j∈J

bij = 0 for each i /∈ K.

The indecomposability of (A,B) means that there is not a nonempty
subset of commodity indices such that they can be produced without at
least one commodity from the complement of this subset. In other words,
there are either direct or indirect relations between all the commodities
involved in this economy. This property enables us to establish the unique-
ness of the ratio α for each starting pair (x, p).

Theorem 3.2. If the set of the matrices (A,B) is indecomposable, then
there exist x ∈ R

m, p ∈ R
n and α > 0 satisfying (3.16) with α being

uniquely defined for each pair (x, p).
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Proof. The existence of x, p, α satisfying (3.16) has been proved in Theorem
3.1. By definition, x ≥ 0, x �= 0, hence (bi)T x ≥ 0 for i = 1, . . . , n, where bi

denotes the i-th row of the matrix B. Since B contains only nonzero rows,
there exists an index l such that (bl)T x > 0. Suppose there exists an index
k such that (bk)T x = 0, then, using (3.16), we have

0 = (bk)T x ≥ α(ak)T x ≥ 0,

i.e. (ak)T x = 0. It follows that the set of matrices (A,B) is decomposable
with K = {1, . . . , n}\{k} since the k-th commodity does not participate in
this system of technologies. By contradiction, we thus obtain (bi)T x > 0
for each i = 1, . . . , n, hence

pT Bx > 0 and pT Ax > 0

since α > 0. Thus, α = (pT Bx)/(pT Ax) is unique.

Observe that the vectors x and p in (3.16) may be multiplied by any
positive scalars without any changes for α. Under certain additional as-
sumptions, the inequality α > 1 may be also established.

Let us now consider the dynamic input-output model. Of course, we
can also add the conservation rules to inequalities (3.4), then the problem
becomes precisely the particular case of (3.9) where B = I, A is an n × n
matrix. The stationary problem (3.11) can be then rewritten as follows:
Find x, p ∈ R

n and λ, µ > 0 such that

λAx ≤ x, λpT Ax = pT x, x ≥ 0, x �= 0;
µAT p ≥ p, µpT Ax = pT x, p ≥ 0, p �= 0.

If we suppose that A has only nonnegative entries and does not contain
zero columns, then conditions (A1)–(A3) will be satisfied.

Exercise 3.1. Prove that the indecomposability of the set (A, I) is equiv-
alent to the indecomposability of the non-negative matrix A.

Hence, Theorem 3.1 then states that, under the general assumptions,
there exist a number α > 0 and vectors x, p ∈ R

n such that

x ≥ 0, x �= 0, αAx ≤ x, pT (αA − I)x = 0,
p ≥ 0, p �= 0, αpT A ≥ pT .

Due to Theorem 3.2, the number α in this system is uniquely defined for
each pair x, p, if A is indecomposable.

Thus, the results above give a basis for indicating conditions of existence
of stable equilibria for dynamic systems. Their extensions can be found e.g
in the books by Morishima (1964) and Nikaido (1968).
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Chapter 4

Optimization and Equilibria

Linear programming is known as one of the most effective tools for formu-
lation and solution of many optimization type problems arising in various
fields of applications; see e.g. Dantzig (1963) and Schrijver (1986) and ref-
erences therein. We are interested in considering economic applications of
linear programming which are regarded as a bridge to more general eco-
nomic equilibrium problems.

4.1 Linear programming problems

We begin our considerations from the classical problem of income maxi-
mization subject to resource limitations. In this model we are given a firm
that may produce n commodities for a fixed time period and utilize m
factors (resources). Next, cj denotes the price of the j-th commodity, bi

denotes the endowment of the i-th resource, and aij denotes the amount
of the i-th resource for producing one unit of the j-th commodity, and all
these values are supposed to be fixed for the time period. Then the problem
above can be written as follows:

max →
n∑

j=1

cjxj (4.1)

subject to

n∑

j=1

aijxj ≤ bi for i = 1, . . . ,m;

xj ≥ 0 for j = 1, . . . , n;

(4.2)

where xj denotes the unknown output of the j-th commodity. Prob-
lem (4.1), (4.2) is nothing but the classical linear programming problem

39
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in the standard form. We can define the vectors c = (c1, . . . , cn)T , x =
(x1, . . . , xn)T and b = (b1, . . . , bm)T and the m × n matrix A with the
entries aij , and rewrite (4.1), (4.2) briefly:

max → cT x (4.1′)

subject to
Ax ≤ b, x ≥ 0. (4.2′)

By definition, the utility function in (4.1) gives the total cost of com-
modities, whereas the first series of inequalities in (4.2) shows that the
industrial demand of each factor can not exceed its endowment, and the
second series simply determines the firm as producer of commodities.

In order to formulate optimality conditions for linear programming
problems, one can utilize results of the duality theory. For instance, the
dual problem of (4.1),(4.2) is written as follows

min →
m∑

i=1

biyi (4.3)

subject to

m∑

i=1

aijyi ≥ cj for j = 1, . . . , n;

yi ≥ 0 for i = 1, . . . , m.

(4.4)

Using the notation y = (y1, . . . , ym)T we also can rewrite the above problem
briefly:

min → bT y (4.3′)

subject to
AT y ≥ c, y ≥ 0. (4.4′)

The rules for creating a dual problem are clear: we replace the coef-
ficients in the cost function and the right-hand sides of constraints, the
number of dual variables corresponds to the number of constraints in the
primal problem, we use the opposite operation for the cost function and
the opposite inequality signs in constraints. Following these formal rules,
we notice that the dual problem of (4.3),(4.4) is equivalent to (4.1),(4.2),
hence both the problems can be termed as a primal-dual pair of linear pro-
gramming problems. In what follows, we will use the following notation:

D = {x ∈ R
n | Ax ≤ b, x ≥ 0}

and
D̃ = {y ∈ R

m | AT y ≥ c, y ≥ 0}
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for the feasible sets of the primal and dual problems. We denote by D∗ and
D̃∗ the solutions sets of these problems, respectively. Also, we denote by
ai and Aj the i-th row and the j-th column of the matrix A, respectively.

Lemma 4.1. For arbitrary points x ∈ D and y ∈ D̃, it holds that

cT x ≤ bT y. (4.5)

Proof. Fix x ∈ D and y ∈ D̃. Then, by definition,

cT x =
n∑

j=1

cjxj ≤
n∑

j=1

(
m∑

i=1

aijyi

)
xj

=

m∑

i=1

⎛
⎝

n∑

j=1

aijxj

⎞
⎠ yi ≤

m∑

i=1

biyi = bT y,

(4.6)

i.e. (4.5) holds.

This simple lemma yields several very useful properties, including a
sufficient condition of optimality.

Theorem 4.1. If x∗ ∈ D and y∗ ∈ D̃ and

cT x∗ = bT y∗, (4.7)

then x∗ ∈ D∗ and y∗ ∈ D̃∗.

The proof follows directly from (4.7) and (4.5).

Theorem 4.2. (i) If the cost function in (4.1) is not bounded from above

on the feasible set, then D̃ = ∅.
(ii) If the cost function in (4.3) is not bounded from below on the feasible

set, then D = ∅.

The proof can be obtained by contradiction from Lemma 4.1.

Exercise 4.1. Prove the assertions of Theorems 4.1 and 4.2.

The derivation of necessary conditions of optimality is not so easy and
is usually based on a suitable version of the Farkas Lemma. We follow
the approach from Eremin (1998).

Proposition 4.1. (See Eremin (1998), Theorem 5.2 and also Schrijver

(1986), Corollary 7.1 H). let the system Ãx ≤ b̃ be consistent for an l × n

matrix Ã, and a vector b̃ ∈ R
l. Then, for a number α > 0, the implication

Ãx ≤ b̃ =⇒ cT x ≤ α
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holds if and only if

cT x − α ≡
l∑

i=1

yi

(
(ãi)T x − b̃i

)
− y0

for some yi ≥ 0, i = 0, . . . , l.

We are now ready to establish the basic theorem of duality.

Theorem 4.3. If x∗ solves the problem (4.1),(4.2), then there exists a
solution y∗ of the dual problem (4.3),(4.4), so that (4.7) holds.

Proof. Applying Proposition 4.1 with α = cT x∗,

Ã =

(
A
−I

)
and b̃ =

(
b
0

)
,

we see that

cT x − α ≡
m∑

i=1

y∗
i

(
(ai)T x − bi

)
−

n∑

j=1

v∗
j xj − y∗

0

where y∗
i ≥ 0 for i = 0, 1, . . . ,m and v∗

j ≥ 0 for j = 1, . . . , n. If we suppose
that y∗

0 > 0, it follows that

x ≥ 0, Ax ≤ b =⇒ cT x ≤ cT x∗ − y∗
0 < cT x∗

for every x, which is a contradiction. Therefore, y∗
0 = 0 and we have

c − AT y∗ = −v∗ ≤ 0 and cT x∗ = bT y∗.

Thus, y∗ ∈ D̃ and Theorem 4.1 now gives y∗ ∈ D̃∗.

The optimality condition (4.7) in Theorems 4.1 and 4.3 can be replaced
with the so-called complementarity slackness conditions:

x∗
j

[
(Aj)T y∗ − cj

]
= 0 for j = 1, . . . , n;

y∗
i

[
(ai)T x∗ − bi

]
= 0 for i = 1, . . . ,m.

(4.8)

In fact, if x∗ ∈ D, y∗ ∈ D̃ and (4.8) holds, then all the inequalities in (4.6)
with x = x∗ and y = y∗ are transformed into equalities and we obtain
(4.7). Conversely, if x∗ ∈ D, y∗ ∈ D̃ and (4.7) holds, then this implies the
equalities in (4.6) with y = y∗, x = x∗ and we obtain (4.8). For simplicity,
we shall formulate the corresponding result in a somewhat weakened, but
symmetric form.
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Theorem 4.4. Points x∗ ∈ R
n and y∗ ∈ R

m solve problems (4.1),(4.2)
and (4.3),(4.4), respectively, if and only if

x∗ ≥ 0, Ax∗ ≤ b, (y∗)T [Ax∗ − b] = 0;
y∗ ≥ 0, AT y∗ ≥ c, (x∗)T [AT y∗ − c] = 0.

(4.9)

Similarly to the stationary growth problem, this system can be equiva-
lently rewritten as the linear complementarity problem:

z∗ ≥ 0, Qz∗ − q ≥ 0, (z∗)T (Qz∗ − q) = 0; (4.10)

where z∗ = (x∗, y∗) ∈ R
n+m,

q =

(
c
−b

)
, Q =

(
0 AT

−A 0

)
.

Observe that the matrix Q is skew-symmetric.

4.2 Economic interpretation of optimality conditions

The optimality conditions given in Theorems 4.1 – 4.3 allow us to explain
the economic sense of all the components of the dual problem. In fact, con-
dition (4.7) shows that the utility function in the dual problem (4.3),(4.4)
also indicates the cost value. Moreover, if we consider endowments of fac-
tors as variables, then

f∗(b) = cT x∗ = bT y∗

and
∂f∗(b)

∂bi
= y∗

i ,

i.e. y∗
i determines the sensitivity of the maximal income with respect to

small changes of the i-th factor. It means that yi can be defined as the cost
(shadow price) of one unit of the i-th factor. Then, each j-th constraint in
(4.4) means that the price of the j-th commodity cannot exceed the total
cost of factors utilized for producing one unit of this commodity. Thus, the
dual problem (4.3),(4.4) consists in minimizing the total cost of resources
under the above constraints, including also the nonnegativity conditions
for factor costs.

Using these definitions as a basis, we are now in a position to give
an economic interpretation of optimality conditions (4.9). Of course, first
two columns in (4.9) give the usual feasibility conditions of both the linear
programming problems. The third column in (4.9), which is now equivalent
to (4.8), gives just the complementarity slackness conditions of optimality
for feasible points. Namely, if the j-th commodity is included in the optimal
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output (x∗
j > 0), then the price of this commodity is equal to the total cost

of factors per unit of this commodity, and, conversely, if the price is less
than the total cost of factors per unit, then the j-th commodity is not
included in the optimal output. Next, if the shadow price of i-th factor is
positive, then the precise balance holds between the industry demand and
the endowment of this factor, and, conversely, if the industry demand is
less than the endowment, then the shadow price of the factor is zero, this
corresponds to the incomplete utilization of the i-th factor.

Moreover, the set of optimality conditions (4.9) can be regarded as a
separate equilibrium model. Developing this approach, let us introduce an
auxiliary vector p = (p1, . . . , pm)T of factors’ prices. Next, suppose that the
vectors c and b are not fixed in general, but commodity prices are in general
dependent of outputs, and resource endowments are in general dependent
of prices of factors. In other words, it is assumed that there exist mappings
c : R

n
+ → R

n and b : R
m
+ → R

m. The equilibrium conditions can be then
rewritten as follows:

x∗ ≥ 0, Ax∗ ≤ b(p∗), (y∗)T [Ax∗ − b(p∗)] = 0;

y∗ ≥ 0, AT y∗ ≥ c(x∗), (x∗)T [AT y∗ − c(x∗)] = 0;

with addition of the coincidence rule between shadow and market prices
of factors: p∗ = y∗. This is nothing but the direct extension of conditions
(4.9). Thus, we can apply this approach for much more general problems.
It is suitable to determine the equilibrium conditions only for the pair
(x∗, y∗):

x∗ ≥ 0, y∗ ≥ 0;
AT y∗ − c(x∗) ≥ 0, b(y∗) − Ax∗ ≥ 0;
(x∗)T [AT y∗ − c(x∗)] = 0, (y∗)T [b(y∗) − Ax∗] = 0.

(4.11)

This system can be equivalently rewritten as the nonlinear complementarity
problem:

z∗ ≥ 0, F (z∗) ≥ 0, (z∗)T F (z∗) = 0; (4.12)

cf. (4.10), where z = (x, y) ∈ R
n+m, F (z) = Qz − q(z), and

q(z) =

(
c(x)
−b(y)

)
, Q =

(
0 AT

−A 0

)
.

If a pair (x∗, y∗) solves system (4.11), then it solves system (4.9) where
b = b(y∗) and c = c(x∗). This means that x∗ and y∗ are solutions of
problems (4.1′), (4.2′) and (4.3′), (4.4′), respectively, with b = b(y∗) and
c = c(x∗), which may be treated as implicit optimization problems since
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the coefficients in the cost functions and the right-hand side of constraints
depend on the unknown solutions. We see that problem (4.11) represents a
model of the system whose behavior and structure may change, i.e. they de-
pend on certain external parameters. Therefore, unlike the previous “pure”
optimization models (4.1′), (4.2′) and (4.3′), (4.4′) with fixed parameters
c and b, one must take into account the reaction of the system, and the
optimal solution now corresponds to a kind of an equilibrium state of the
system. Many general equilibrium problems, which will be described in the
next chapters, reduce to the format of system (4.11). It follows that the
theory and methods of complementarity problems may serve as a basis for
investigation of these equilibrium models.

4.3 Economic interpretation of the solution method

Being based on the optimality conditions, we can construct an iterative
solution method for solving problems (4.1),(4.2) or (4.3),(4.4). Let us con-
sider a simple numerical example with linear programming problems.

Example 4.1. Set m = n = 2, c = (2, 3)T , b = (7, 18)T ,

A =

(
1 2
4 3

)
,

i.e. the primal problem is the following:

max → 2x1 + 3x2

subject to

x1 + 2x2 ≤ 7,

4x1 + 3x2 ≤ 18,

x1 ≥ 0, x2 ≥ 0.

This problem can be solved by the graphical method (see Figure 4.1).
The feasible set is represented by the polygon OABC. The maximal

value of the cost function is attained at the extremal point B (3, 2) and
results in 12. Let us consider the dual problem:

min → 7y1 + 18y2

subject to

y1 + 4y2 ≥ 2,

2y1 + 3y2 ≥ 3,

y1 ≥ 0, y2 ≥ 0.
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Figure 4.1:
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Since the optimal outputs x∗
1, x∗

2 are positive, (4.8) yields
{

y∗
1 + 4y∗

2 = 2,
2y∗

1 + 3y∗
2 = 3.

This system has the unique solution y∗ = (1.2, 0.2)T . Since y∗ is nonnega-
tive it has to be a solution to the dual problem. In fact,

7y∗
1 + 18y∗

2 = 12

and (4.7) holds.

Exercise 4.2. Find a solution to the following linear programming prob-
lem:

max → 2x1 + x2

subject to

3x1 + 7x2 ≤ 21,

6x1 + 3x2 ≤ 18,

8x1 + 7x2 ≤ 28,

x1 ≥ 0, x2 ≥ 0;

and a solution to its dual.



This simple example suggests an idea of a solution method for the lin-
ear programming problem in the general case. In the two-dimensional case,
the feasible set is always polygonal, hence if the problem is solvable, then
solutions are common points of the feasible set and the corresponding tan-
gent level line. Obviously, these solutions must contain an extreme point.
In the general case, the feasible set D is polyhedral and each level set

{x | cT x = α}

is a hyperplane, therefore, if the solution set D∗ is nonempty, it also must
contain an extreme point of D. The number of such extreme points is
always finite, hence we have to examine only the extreme points of the
feasible set with ascent of the cost function if possible and we obtain a
finite solution method for general linear programming problems. This is
the key idea of the famous simplex method (see Dantzig (1963) for details).
Using the example, we can even suggest a way of generating extreme points.
In fact, we can rewrite the primal problem in the so-called canonical form

max → 2x1 + 3x2

subject to

x1 + 2x2 + u1 = 7,

4x1 + 3x2 + u2 = 18,

x1 ≥ 0, x2 ≥ 0, u1 ≥ 0, u2 ≥ 0;

by introducing the auxiliary variables u1 and u2. The coefficient matrix

A =

(
1 2 1 0
4 3 0 1

)

of this problem has rank 2. If we choose two independent columns of this
matrix as the basic ones, then setting the other (non-basic) variables to
be zero yields a (unique) solution of the system of linear equations corre-
sponding to some extreme point. In general, we can include the auxiliary
variables xn+i, i = 1, . . . , m in (4.2), thus obtaining the problem:

max →
n∑

j=1

cjxj

subject to

n∑

j=1

aijxj + xn+i = bi for i = 1, . . . , m;

xj ≥ 0 for j = 1, . . . , n + m;

4.3. ECONOMIC INTERPRETATION OF THE SOLUTION
METHOD

47



48 4. OPTIMIZATION AND EQUILIBRIA

then the m × (n + m) matrix Ã = (A | I) has rank m. We call the index

set B basic if it contains indices of m linearly independent columns of Ã.
A basic set B is called feasible if the system

∑

j∈B

xjÃ
j = b (4.13)

has a nonnegative solution.
We now give an economic description of the simplex method. Each

iteration begins from a feasible basic set B, i.e. we have a basic collection of
m commodities, whose production demands do not exceed the endowment,
i.e. (4.13) holds. We set xj = 0 for j /∈ B and find shadow prices of factors
for the current basic collection of commodities from the system

(Ãj)T y = cj for j ∈ B,

which also has a unique solution. For this pair (x, y) we have

cT x =
∑

j∈B

cjxj =
∑

j∈B

xj(Ãj)T y = bT y,

hence if the dual vector satisfies the dual constraints which are now the
following:

ÃT y ≥ c,

but in fact it suffices to verify only the part of inequalities:

(Ãj)T y ≥ cj for j /∈ B,

then x is a solution to the initial problem. It means that the total costs of
factors per unit of all nonbasic commodities with utilizing current shadow
prices are not less then the prices of these commodities. Otherwise, there

exists at least one commodity k /∈ B, such that (Ãk)T y < ck, then we can
increase the total income by including this commodity and re-distributing
the resources. We determine the subset

B+ =

⎧
⎨
⎩i ∈ B gik > 0, where

∑

j∈B

gikÃi = Ãk

⎫
⎬
⎭ .

This subset indicates the basic commodities which can be in principle re-
placed with the k-th commodity with nondecreasing total income. Note
that the situation B+ = ∅ means that the cost function is not bounded
from above. We choose the index l ∈ B+ with the property:

θ =
xl

glk
= min

i∈B+

xi

gik
,



whose removing yields the maximal profit, then we obtain the new feasible
basic set B′ = B\{l}

⋃
{k} and the new output

x′
i =

⎧
⎨
⎩

xi − θgik if i ∈ B,
θ if i = k,
0 if i /∈ B and i �= k.

It follows that
cT x′ = cT x + θ[ck − Ãky] > cT x,

i.e. the total income increases at the new extreme point, which corresponds
to the new basic collection of commodities.

From the above result we also deduce that despite the possible value
of n, we can always provide the maximal income by producing only basic
commodities. It follows that there exist rather simple procedures for solving
affine problems and these procedures do not require additional assumptions
for finding a solution. However, if the affine problems do not represent a
satisfactory approximation of the real system, they are replaced with more
complicated nonlinear models which need new methods of investigation and
solution.

4.3. ECONOMIC INTERPRETATION OF THE SOLUTION
METHOD
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Chapter 5

Nonlinear Economic

Equilibrium Models

In this chapter, we consider several classes of nonlinear economic equilib-
rium models, which can be regarded as some extensions and modifications
of the equilibrium conditions for linear programming problems.

5.1 Cassel-Wald type economic equilibrium models

We first consider a class of economic equilibrium models, which can be
viewed as a modification of the known Cassel-Wald model.

The model describes an economic system which deals in n commodities
and m pure factors of production. In what follows, ck denotes the price of
the k-th commodity, bi denotes the total inventory of the i-th factor, and
aij denotes the consumption rate of the i-th factor which is required for
producing one unit of the j-th commodity, so that we set c = (c1, . . . , cn)T ,
b = (b1, . . . , bm)T , A = (aij)m×n. Next, xj denotes the output of the
j-th commodity and pi denotes the (shadow) price of the i-th factor, so
that x = (x1, . . . , xn)T and p = (p1, . . . , pm)T . The vector b is fixed, but
this is not the case for c, i.e. it is assumed that there exists a mapping
c : R

n
+ → R

n
+. This means that prices are dependent of outputs.

The pair (x∗, p∗) is said to be in equilibrium if the following relations
hold:

x∗ ≥ 0, p∗ ≥ 0;
AT p∗ − c(x∗) ≥ 0, b − Ax∗ ≥ 0;
(x∗)T [AT p∗ − c(x∗)] = 0, (p∗)T [b − Ax∗] = 0.

(5.1)

This system is a particular case of the equilibrium problem (4.11). Obvi-
ously, in the case where the vector c is also fixed, system (5.1) becomes

51
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equivalent to the following pair of linear programming problems:

max → cT x and min → bT p
subject to subject to

Ax ≤ b, x ≥ 0; AT p ≥ c, p ≥ 0.

However, in the general case, we can rewrite (5.1) equivalently as follows:

(x∗ − x)T c(x∗) + (Ax − Ax∗)T p∗ ≥ 0 ∀x ≥ 0;

(p − p∗)T (b − Ax∗) ≥ 0 ∀p ≥ 0;

this is nothing but the optimality condition for the variational inequality
problem: Find x∗ ∈ D such that

(x∗ − x)T c(x∗) ≥ 0 ∀x ∈ D, (5.2)

where
D = {x ∈ R

n | Ax ≤ b, x ≥ 0};

see Proposition 11.6. Hence, we can first find the solution x∗ of (5.2) and
afterwards find p∗ as a solution of the linear programming problem:

min → bT p
subject to

AT p ≥ c, p ≥ 0

where c = c(x∗) is fixed.

Exercise 5.1. By using the results of Section 11.2, find existence and
uniqueness conditions for the Cassel-Wald model.

5.2 General price equilibrium models

A great number of economic models are adjusted to investigating the con-
ditions which balance supply and demand of commodities, i.e., they are
essentially equilibrium models. As a rule, the concept of economic equi-
librium can be written in terms of a complementarity relation between
the price and the excess demand for each commodity. Therefore, these
economic equilibrium models can be written as complementarity (or vari-
ational inequality) problems. To illustrate this assertion, we now describe
one of the most general economic models originated by L. Walras; see
Walras (1874).

So, it is assumed that our economy deals in n commodities and that
there are m economics agents dealing with these commodities. Let M =
{1, . . . , m}. We divide M into two subsets Ms and Mc which correspond
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to sectors (producers) and consumers, respectively. Given a price vector
p ∈ R

n
+, the j-th producer determines his supply Sj(p) ∈ R

n
+ and the i-th

consumer determines his demand Di(p) ∈ R
n
+. For simplicity, we suppose

the mappings Sj and Di are single-valued. Set

S(p) =
∑

j∈Ms

Sj(p),D(p) =
∑

i∈Mc

Di(p).

Then we can define the excess demand mapping

E(p) = D(p) − S(p).

A vector p∗ is said to be an equilibrium price if it satisfies the following
conditions:

p∗ ∈ R
n
+, −E(p∗) ∈ R

n
+, (p∗)T E(p∗) = 0; (5.3)

i.e. the equilibrium problem obviously coincides with complementarity
problem (1.16), where G = −E, X = R

n
+. Therefore, one could derive the

existence and uniqueness conditions for this problem directly from those
for general complementarity problems and variational inequalities. More-
over, a number of additional existence and uniqueness results, essentially
exploiting features of economic equilibrium models, have been obtained.

We now present a specialization of this very general class of economic
equilibrium problems, which can be viewed as some extension of the model
suggested by H. Scarf; see Scarf and Hansen (1973). The model also
considers an n-commodity market under perfect competition and includes
production with linear technology and consumption. Given prices p ∈ R

n
+,

the total demand of the consumers is also defined as D(p), whereas the
supply of the j-th producer is defined as Sj(p) = xja

j , where aj is the j-th
row of the l×n technology matrix A and xj is the activity level of the j-th
producer, which can be determined as a solution to the one-dimensional
optimization problem:

max
α≥0

→ {αpT aj − fj(α)}, (5.4)

where fj is the cost function of the j-th producer, which is supposed to be
differentiable and dependent of the activity level of the j-th producer, for
j = 1, . . . , l. We can replace (5.4) with the optimality conditions

xj ≥ 0, [cj(xj) − pT aj ] ≥ 0, xj [cj(xj) − pT aj ] = 0;

where cj(xj) = f ′
j(xj).

Exercise 5.2. Derive the above optimality conditions for problem (5.4).
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Then the total supply of producers is determined by the conditions

S(p) = AT x, x ≥ 0, c(x) − Ap ≥ 0, xT [c(x) − Ap] = 0.

Suppose that the initial endowments of consumers are represented by a
non-negative vector r. Then the excess demand is given by E(p) = D(p)−
S(p) − r. Taking into account (5.3), we conclude that the equilibrium of
this model will be represented by a pair (p∗, x∗) such that

p∗ ≥ 0, r + AT x∗ − D(p∗) ≥ 0, (p∗)T [r + AT x∗ − D(p∗)] = 0; (5.5)

and

x∗ ≥ 0, c(x∗) − Ap∗ ≥ 0, (x∗)T [c(x∗) − Ap∗] = 0. (5.6)

Observe that the known Scarf model corresponds to the case where c ≡ 0
(i.e. f is a constant function). Evidently, this model can be viewed as a
particular case of problem (4.11).

Following this approach, we can derive the equilibrium model (4.11) as
a particular case of this very general class of Walrasian equilibrium models,
i.e. we present the reverse derivation process. Let us consider an m-factor
market under perfect competition, which includes supply and industrial
demand. Given factor prices y ∈ R

m
+ , the total supply is defined as b(y),

whereas the total demand of the producers is defined as d(y). A vector
y∗ ∈ R

m is said to be an equilibrium factor price if it satisfies the following
conditions:

y∗ ≥ 0; b(y∗) − d(y∗) ≥ 0, (y∗)T [b(y∗) − d(y∗)] = 0. (5.7)

Suppose that the factors are used for producing n commodities for a fixed
time period, cj denoting the price of the j-th commodity and aij denoting
the amount of the i-th factor for producing one unit of the j-th commodity.
Next, xj denotes the unknown output of the j-th commodity and fj(xj)
denotes the value of the income function of this commodity, i.e. cj(xj) =
f ′

j(xj) can be viewed as the marginal income, which is dependent only of
the output of the j-th commodity. The output xj of the j-th commodity
yields the factor demand xjA

j , where Aj is the j-th column of the m ×
n technology matrix A, and the optimal output can be determined as a
solution to the one-dimensional optimization problem:

min
α≥0

→ {αyT Aj − fj(α)},

i.e. we have

xj ≥ 0, yT Aj − cj ≥ 0, xj(y
T Aj − cj) = 0.
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Since c = c(x), the total factor demand is determined by the conditions

d(y) = Ax, x ≥ 0, AT y − c(x) ≥ 0, xT [AT y − c(x)] = 0.

Combining these conditions with (5.7), we conclude that the equilibrium
of this model will be represented by a pair (x∗, y∗) such that

x∗ ≥ 0, y∗ ≥ 0;
AT y∗ − c(x∗) ≥ 0, b(y∗) − Ax∗ ≥ 0;
(x∗)T [AT y∗ − c(x∗)] = 0, (y∗)T [b(y∗) − Ax∗] = 0.

Clearly, these conditions coincide with (4.11). Similarly, the fixed vectors
b and c yield the optimality conditions for linear programming problems.

5.3 Spatial price equilibrium models

In these models, which are generalizations of transportation optimization
problems, the spatial location of economic agents (markets) is taken into
account.

In the single commodity market model, there are l agents (sites) con-
nected by transport communications. Let pi denote the price of the com-
modity at site i, and fij be the export from site i to site j. If the prices
at all sites p = (p1, . . . , pl)

T and the export vector f = (f11, . . . , fll)
T are

given, we can determine the cost of shipping one unit of the commodity
from site i to site j, which is denoted by cij , and the capacity (or excess
demand) di of site i (if di > 0, it is a consuming market; if di < 0, then it is
a supplying market). In general, c and d are some mappings, i.e. c = c(f)
and d = d(p).

The equilibrium conditions in this model have the form of a system of
complementarity problems:

f∗
ij ≥ 0, p∗i ≥ 0,

cij(f
∗) − p∗j + p∗i ≥ 0,

l∑

j=1

f∗
ji −

l∑

j=1

f∗
ij − di(p

∗) ≥ 0, (5.8)

f∗
ij

(
cij(f

∗) − p∗j + p∗i
)

= 0, p∗i

⎛
⎝

l∑

j=1

f∗
ji −

l∑

j=1

f∗
ij − di(p

∗)

⎞
⎠ = 0,

for all i, j = 1, . . . , l. The first series of constraints in (5.8) is obvious in view
of the meaning of f∗

ij and p∗i . The second series ensures the absence of profit
in shipping the commodity from site i to site j and imposes restrictions on
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import-export volumes. The third series of constraints shows that shipping
a positive volume of the commodity from site i to site j is possible only
if the incomes are equal and that a positive commodity price at site i is
possible only if there is a balance between the import-export volume and
the capacity at the given site. Similarly, if the vectors c and d are fixed,
then problem (5.8) can be replaced with the following pair of transportation
type problems:

min →
l∑

i=1

l∑

j=1

cijfij max →
l∑

i=1

dipi

l∑
j=1

fji −
l∑

j=1

fij ≥ di cij − pj + pi ≥ 0

for i = 1, . . . , l; for i, j = 1, . . . , l;
fij ≥ 0 for i, j = 1, . . . , l; pi ≥ 0 for i = 1, . . . , l.

It is clear that these problems are mutually dual in the sense of linear
programming theory.

Exercise 5.3. Show that the transportation problems are particular cases
of (4.1′), (4.2′) and (4.3′), (4.4′).

Since problem (5.8) is a system of complementarity problems, it can be
rewritten in the form of a system of variational inequalities: Find f∗ ≥ 0
and p∗ ≥ 0 such that

l∑

i=1

l∑

j=1

(cij(f
∗) − p∗j + p∗i )(fij − f∗

ij) ≥ 0 ∀f ≥ 0,

l∑

i=1

⎡
⎣

l∑

j=1

f∗
ji −

l∑

j=1

f∗
ij − di(p

∗)

⎤
⎦ (pi − p∗i ) ≥ 0 ∀p ≥ 0.

Exercise 5.4. By using the results of Section 11.2, find existence and
uniqueness conditions for the model with fixed capacities.

We now give a network formulation of the spatial price equilibrium
model.

The model is determined on a transportation network with the set of
nodes N and the set of arcs A. For each node i, yi denotes the price of
a homogeneous commodity and di(y) denotes the excess demand at this
node where y = (yi)i∈N . For each arc a ∈ A, fa denotes the flow and ca(f)
denotes the transportation cost for shipping the commodity for this arc,
where f = (fa)a∈A. Next, we denote by W the set of all origin-destination
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pairs in the net, then Pw denotes the set of paths joining pair w and
P =

⋃
w∈W Pw denotes the set of all the paths. For each path p ∈ P , xp

denotes the flow and Cp(x) denotes the transportation cost for this path,
where x = (xp)p∈P . Set C(x) = (Cp(x))p∈P and c(f) = (ca(f))a∈A, then
clearly

f = Bx and C(x) = BT c(f), (5.9)

where B is the arc-path incidence matrix, i.e. B = (bap),

bap =

{
1 if path p involves arc a,
0 otherwise.

A flow-price pattern (f∗, y∗) is said to be an equilibrium if it satisfies the
following conditions:

y∗
i ≥ 0,

∑

w=(k,i)∈W

∑

p∈Pw

x∗
p −

∑

w=(i,j)∈W

∑

p∈Pw

x∗
p − di(y

∗) ≥ 0, (5.10)

y∗
i

⎡
⎣ ∑

w=(k,i)∈W

∑

p∈Pw

x∗
p −

∑

w=(i,j)∈W

∑

p∈Pw

x∗
p − di(y

∗)

⎤
⎦ = 0 ∀i ∈ N ;

and

x∗
p ≥ 0,

y∗
i − y∗

j + Cp(x
∗) ≥ 0, (5.11)

x∗
p

[
y∗

i − y∗
j + Cp(x

∗)
]

= 0 ∀p ∈ Pw, ∀w = (i, j) ∈ W ;

where f∗ = Bx∗. Conditions (5.10) represent equilibrium between input-
output flows and prices at each market, whereas conditions (5.11) represent
equilibrium between export flows and profits of shipping for each pair of
origin-destination markets. Since these conditions are obviously comple-
mentarity problems, they can be equivalently rewritten as the system of
variational inequalities: Find x∗ ≥ 0 and y∗ ≥ 0 such that

∑
i∈N

[
∑

w=(k,i)∈W

∑
p∈Pw

x∗
p −

∑
w=(i,j)∈W

∑
p∈Pw

x∗
p − di(y

∗)

]
(yi − y∗

i ) ≥ 0

∀yi ≥ 0, i ∈ N ;

and ∑
w∈W

∑
p∈Pw

[
(y∗

i − y∗
j ) + Cp(x

∗)
]
(xp − x∗

p) ≥ 0

∀xp ≥ 0 p ∈ Pw, w ∈ W.
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These models can be extended to the multicommodity case.

Let us consider a generalization of the spatial price equilibrium model
for the dynamic case, i.e., when the equilibrium trajectory of the entire
system on a given time interval is analyzed.

The main difference, in addition to the inclusion of a time parameter, is
in the allowance for the cost of the commodity storage. For simplicity, we
consider a discrete time; i.e., we divide the time interval into subintervals
t = 1, 2, . . . , T . Let fij,t be the supply from site i to site j at time interval
t, vi,t be the volume of the commodity stored at the i-th site at the time
intervals from (t − 1)-th to t-th, and pi,t be the price of the commodity at
the i-th site during time interval t. As before, there are l agents (sites or
markets), and the supply from the i-th to the j-th site at any interval of time
is non-negative for all i, j = 1, . . . , l. If the vectors f = (f11,1, . . . , fll,T )T ,
v = (v1,1, . . . , vl,T )T and p = (p1,1, . . . , pl,T )T are known, one can determine
the transportation cost cij,t of a unit commodity from the i-th to the j-th
site at the t-th time interval, the cost ri,t of storing a unit commodity at
the i-th site at the time intervals from (t − 1)-th to t-th, and the capacity
di,t of the i-th site during time interval t. We suppose that c, r, and d are
mappings; i.e., cij,t = cij,t(f), ri,t = ri,t(v), di,t = di,t(p). This means that
the transportation cost of a unit of the commodity between two sites can
depend on the volumes of transportation, the cost of storing a unit of the
commodity at each site can depend on the amount of stored goods, and
that its capacity can depend on the prices at the sites (for each interval
of time). A trajectory is called equilibrium if it is defined by the vectors
f∗, v∗ and p∗ such that

f∗
ij,t ≥ 0, cij,t(f

∗) + p∗i,t − p∗j,t ≥ 0,
f∗

ij,t[cij,t(f
∗) + p∗i,t − p∗j,t] = 0;

(5.12)

for all i, j = 1, . . . , l and t = 1, . . . , T ;

v∗
i,t ≥ 0, ri,t(v

∗) + p∗i,t−1 − p∗i,t ≥ 0,
v∗

i,t

[
ri,t(v

∗) + p∗i,t−1 − p∗i,t
]

= 0
(5.13)

for all i = 1, . . . , l and t = 1, . . . , T (p∗i,0 = 0 are fixed for all i = 1, . . . , l);

p∗i,t ≥ 0,

l∑

j=1

f∗
ji,t −

l∑

j=1

f∗
ij,t + v∗

i,t − v∗
i,t+1 − di,t(p

∗) ≥ 0, (5.14)

p∗i,t

⎡
⎣

l∑

j=1

f∗
ji,t −

l∑

j=1

f∗
ij,t + v∗

i,t − v∗
i,t+1 − di,t(p

∗)

⎤
⎦ = 0;
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for all i = 1, . . . , l and t = 1, . . . , T (v∗
i,T+1 = 0 are fixed for all i = 1, . . . , l).

It is easy to see that relations (5.12) represent the usual complemen-
tarity conditions between export flows and profits of shipping for each pair
of sites. Next, conditions (5.13) indicate that it is not advantageous to
store commodities and a positive amount can be stored only if the prices
at the t-th and (t + 1)-th intervals with account for the cost of storage are
balanced. Similarly, (5.14) imposes constraints on the import-export and
shows that a positive commodity price at the i-th site at time t is possible
only if there is an exact balance between the import-export volume (with
account for the storage cost) and the capacity at this site.

As in the static model, system (5.12)–(5.14) is reduced to a system of
variational inequalities. More precisely, problem (5.12) is equivalent to the
following one: Find a point f∗ ≥ 0 such that

T∑

t=1

l∑

i=1

l∑

j=1

[
cij,t(f

∗) + p∗i,t − p∗j,t
]
(fij,t − f∗

ij,t) ≥ 0

∀fij,t ≥ 0,

(5.15)

for all i, j = 1, . . . , l and t = 1, . . . , T . The complementarity problem (5.13)
is reduced to the following variational inequality: Find a point v∗ ≥ 0 such
that

T∑

t=1

l∑

i=1

[
ri,t(v

∗) + p∗i,t−1 − p∗i,t
]
(vi,t − v∗

i,t) ≥ 0

∀vi,t ≥ 0

(5.16)

for all i = 1, . . . , l and t = 1, . . . , T . Due to the independence of the vari-
ables f and v, we can replace system (5.15), (5.16) by the single variational
inequality: Find points w∗ ≥ 0 and v∗ ≥ 0 such that

T∑

t=1

l∑

i=1

l∑

j=1

[
cij,t(f

∗) + p∗i,t − p∗j,t
]
(fij,t − f∗

ij,t)

+

T∑

t=1

l∑

i=1

[
ri,t(v

∗) + p∗i,t−1 − p∗i,t
]
(vi,t − v∗

i,t) ≥ 0 (5.17)

∀fij,t ≥ 0 and ∀vi,t ≥ 0

for all i, j = 1, . . . , l and t = 1, . . . , T . Furthermore, the complementarity
problem (5.14) is equivalent to the following variational inequality: Find a
point p∗ ≥ 0 such that
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T∑

t=1

l∑

i=1

⎡
⎣

l∑

j=1

f∗
ji,t −

l∑

j=1

f∗
ij,t + v∗

i,t − v∗
i,t+1

− di,t(p
∗)

]
(pi,t − p∗i,t) ≥ 0 ∀pi,t ≥ 0 (5.18)

for all i = 1, . . . , l and t = 1, . . . , T .
There exist various modifications and extensions of spatial price equi-

librium models; see Harker (1985), Miller, Friesz, and Tobin (1996), and
Nagurney (1999).

5.4 Imperfectly competitive equilibrium models

We now consider the problem of finding market equilibria for the case of
a few economic agents (producers). It means that actions of each separate
agent can change the state of the whole system. These oligopolistic equilib-
rium models originated by A. Cournot belong to imperfectly competitive
systems; see Cournot (1838).

In the classical oligopoly model, it is assumed that there are n firms
supplying a homogeneous product and that the price p depends on its
quantity σ, i.e. p = p(σ) is the inverse demand function. In other words,
p(σ) is the price at which consumers will purchase a quantity σ. Next, the
value hi(xi) represents the i-th firm total cost of supplying xi units of the
product. If each i-th firm supplies xi units of the product, then the total
supply in the market is defined by

σx =
n∑

i=1

xi,

and the i-th firm’s profit is defined by

fi(x) = xip(σx) − hi(xi),

where x = (x1, x2, . . . , xn)T . Of course, each output level is nonnegative,
i.e., xi ≥ 0 for i = 1, . . . , n. Naturally, each firm seeks to maximize its
own profit by choosing the corresponding production level. However, since
the profit of each firm is dependent of outputs of all the firms, whose
interests may be rather different, we can consider this problem as a non-
cooperative game of n players, where the i-th player has the strategy set R+

and the utility function fi(x). Therefore, in order to define a solution in this
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market structure we use the Nash equilibrium concept for non-cooperative
games; see e.g. Okuguchi and Szidarovszky (1990) and Aubin (1998). By
definition, a nonnegative vector of output levels x∗ = (x∗

1, x
∗
2, . . . , x

∗
n)T is

said to constitute a Nash equilibrium solution for the oligopolistic market,
provided x∗

i maximizes the profit function fi of the i-th firm given that the
other firms produce quantities x∗

j , j �= i, for each i = 1, . . . , n.

That is, for x∗ = (x∗
1, x

∗
2, . . . , x

∗
n)T to be a Nash equilibrium, x∗

i must
be an optimal solution to the problem

max
xi≥0

→ {xip(xi + σ∗
i ) − hi(xi)}, (5.19)

where σ∗
i =

n∑
j=1,j �=i

x∗
j for each i = 1, . . . , n. At the same time, this problem

can be transformed into an equivalent variational inequality or complemen-
tarity problem if each i-th profit function fi is concave in xi. This assump-
tion conforms to the usually accepted economic behavior and implies that
(5.19) is a concave maximization problem. In addition, we assume for
simplicity that the price function p(σ) and all the cost functions hi(xi) are
continuously differentiable. Namely, set Gi(x) = −p(σx)−xip

′(σx)+h′
i(xi)

for i = 1, . . . , n, thus defining the mapping G : R
n
+ → R

n. Under the as-
sumptions above, each optimization problem (5.19) is equivalent to the
complementarity problem:

x∗
i ≥ 0, Gi(x

∗) ≥ 0, x∗
i Gi(x

∗) = 0; (5.20)

or to the variational inequality: Find x∗
i ≥ 0 such that

Gi(x
∗)(xi − x∗

i ) ≥ 0 ∀xi ≥ 0;

for each i = 1, . . . , n. However, this system of partial variational inequality
problems is equivalent to the usual variational inequality: Find x∗ ≥ 0 such
that

(x − x∗)T G(x∗) ≥ 0 ∀x ≥ 0; (5.21)

see also Section 7.1.
It should be noticed that many problems in economics and social sci-

ences may be formulated as game equilibrium models; see e.g. von Neu-
mann and Morgenstern (1953), Moulin (1981), Okuguchi and Szidarovszky
(1990), and Aubin (1998). Therefore, following the above approach, they
can be investigated with the help of the corresponding equivalent varia-
tional inequality problem.

We illustrate this model with some examples. We start from the case
considered by A. Cournot.
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Example 5.1. Let n = 2, the functions p and hi be affine, i.e.,

p(σ) = α − βσ, α ≥ 0, β > 0;

hi(xi) = γxi + δ, γ ≥ 0, δ ≥ 0 for i = 1, 2.

It means that both the producers have equal opportunities, i.e. we have
obtained the classical Cournot duopoly. Suppose that α > γ (i.e. the
starting price is greater than the marginal expenses) and set τ = (α−γ)/β.
Then we can drop the nonnegativity constraints in (5.20) and consider the
system of equations

Gi(x) = 0 for i = 1, 2;

or, equivalently, {
2x1 + x2 = τ
x1 + 2x2 = τ.

This system has clearly the unique and symmetric solution:

x∗
1 = x∗

2 = τ/3.

The solution can be explained from the game theoretic point of view (see
Figure 5.1). In fact, if the output x2 of the second player is known, the best
choice of the first player can be found from the one-dimensional equation:
p(x1 + x2) + x1p

′(x1 + x2) − h′
1(x1) = 0 or, equivalently, 2x1 + x2 = τ . It

follows that the optimal reaction of the first player is x1(x2) = (τ − x2)/2.
Similarly, if the output x1 of the first player is known, the best choice of
the second player can be found from the equation: x1 + 2x2 = τ , i.e.,
the optimal reaction of the second player is x2(x1) = (τ − x1)/2. The
intersection of these reaction lines corresponds to the equilibrium point x∗,
where the reactions coincide with outputs.

Now we consider a somewhat more general case.

Exercise 5.5. Let the functions p and hi be affine, i.e.,

p(σ) = α − βσ, α ≥ 0, β > 0;

hi(xi) = γixi + δi, γi ≥ 0, δi ≥ 0 for i = 1, . . . , n.

Then,
fi(x) = xi(α − βσx) − γixi − δi.

Find the value of G(x) and show that the oligopolistic equilibrium model
becomes equivalent to the problem of minimizing a strongly convex quadra-
tic function subject to the nonnegativity constraints.
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Figure 5.1:
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Another approach to modeling imperfect competition markets was pro-
posed by J. Bertrand. Following this approach, one also considers a
market where n firms supply a homogeneous product, but they announce
prices rather than volumes. More precisely, if each i-th firm indicates its
price pi, i = 1, . . . , n, then consumers are able to determine the demand
quantities qi for each i = 1, . . . , n and qi = qi(p) where p = (p1, . . . , pn)T .
Then hi(qi) represents the i-th firm’s total cost of supplying qi units of the
product, and the i-th firm’s profit is defined by

fi(p) = piqi(p) − hi[qi(p)] for i = 1, . . . , n.

Again, the profit of each firm depends on prices of all the firms in general
and we can use the Nash equilibrium concept in the non-cooperative game
of n players, where the i-th player has the utility function fi(p) and the
strategy set R+, as a solution of the Bertrand oligopoly model. Usually, each
function qi(p) is supposed to be decreasing in pi and increasing in other
variables, which corresponds to the usually accepted economic behavior of
consumers, and, under certain additional assumptions, the problem can be
also reduced to a complementarity problem or a variational inequality.

In fact, p∗ = (p∗1, . . . , p
∗
n)T is a Nash equilibrium point if and only if p∗i
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is a solution to the optimization problem

max
pi≥0

→
{
piqi(p

∗
1, . . . , p

∗
i−1, pi, p

∗
i+1, . . . , p

∗
n)

−hi

[
qi(p

∗
1, . . . , p

∗
i−1, pi, p

∗
i+1, . . . , p

∗
n)
]}

for i = 1, . . . , n.

(5.22)

If fi is differentiable and convex in pi, (5.22) becomes a system of concave
differentiable maximization problems and equivalent to the complementar-
ity problem

p∗i ≥ 0, Gi(p
∗) ≥ 0, p∗i Gi(p

∗) = 0 for i = 1, . . . , n

(cf. (5.20)) or to the variational inequality: Find p∗ ≥ 0 such that

(p − p∗)T G(p∗) ≥ 0 ∀p ≥ 0

(cf. (5.21)), where

Gi(p) = −
∂fi(p)

∂pi
for i = 1, . . . , n;

on account of Corollary 11.2 and Proposition 7.1.

Example 5.2. Let qi(p) = αi

(
∑
j �=i

pj/pi

)
− βi, hi(t) = γit + δi with

αi, βi, γi, δi > 0 for i = 1, . . . , n. Then

fi(p) = αi

∑

j �=i

pj − βipi − γi

⎡
⎣αi

⎛
⎝∑

j �=i

pj/pi

⎞
⎠− βi

⎤
⎦− δi

is concave and differentiable in pi on intRn
+. Hence we can replace the

Nash equilibrium problem by the complementarity problem (or variational
inequality) above.

In the case when the system

Gi(p) = 0 for i = 1, . . . , n (5.23)

has positive solutions, they are clearly equilibrium points. This approach
may be useful if G is not defined at points including zero coordinates.

Exercise 5.6. Set n = 2, qi(p) = αp3−i/pi − β, hi(t) = γt + δ with
α, β, γ, δ > 0 for i = 1, 2 and find the equilibrium point via solution of
system (5.23).
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Figure 5.2: p∗ = p3
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There exist more general oligopolistic equilibrium models which take
into account the spatial locations of producers and markets and involve
many commodities; see e.g. Miller, Friesz, and Tobin (1996), Nagurney
(1999), and Facchinei and Pang (2003).

We now describe another class of imperfectly competitive equilibrium
models related to auction type markets. More precisely, the first model
represents an auction of n traders where the total bid is fixed and denoted
by b. In the simplified formulation, each i-th trader indicates his maximal
offer βi and price pi, thus determining the total supply function. Then the
equilibrium price p∗ can be found very easily. Without loss of generality
we suppose that i < j implies pi ≤ pj . It suffices to find k such that

∑

i<k

βi < b and
∑

i≤k

βi ≥ b,

and afterwards set p∗ = pk, xi = βi if i < k and xk = min{βk, b −
∑
i<k

βi};

see Figure 5.2.

However, we are interested in more complicated models which involve
prices depending on offer values. If xi is the offer value of trader i and
pi : R

n
+ → R+ is his inverse supply function whose value pi(x) may depend



66 5. NONLINEAR ECONOMIC EQUILIBRIUM MODELS

on all offers, then the equilibrium conditions are written as follows:

x∗ ∈ X, pi(x
∗)

{
= λ if x∗

i > 0,
≥ λ if x∗

i = 0,
for i = 1, . . . , n, (5.24)

where

X =

{
x ∈ R

n
+

n∑

i=1

xi = b

}
,

λ is the (unknown) auction clearing price.
However, conditions (5.24) are equivalent to a variational inequality, as

the following proposition states.

Proposition 5.1. A point x∗ ∈ R
n satisfies conditions (5.24) if and only

if it solves the problem: Find x∗ ∈ X such that

(x − x∗)T p(x∗) ≥ 0 ∀x ∈ X. (5.25)

Proof. Let x∗ satisfy (5.24). Take any x ∈ X and set

I0 = {i | x∗
i = 0} and I+ = {i | x∗

i > 0} .

Then we have

(x − x∗)T p(x∗) =

n∑

i=1

(xi − x∗
i )pi(x

∗)

=
∑

i∈I0

pi(x
∗)(xi − 0) +

∑

i∈I+

λ(xi − x∗
i )

≥ λ

n∑

i=1

(xi − x∗
i ) = λ(b − b) = 0,

i.e. x∗ solves (5.25). Conversely, let x∗ solve (5.25), then x∗ ∈ X. Take
any indices k and l such that pk(x∗) > pl(x

∗) and determine the point x̃
by the rule:

x̃i =

⎧
⎨
⎩

x∗
i if i �= k or i �= l,

x∗
l + x∗

k if i = l,
0 if i = k,

for i = 1, . . . , n.

Then x̃ ∈ X and

0 ≤ (x̃ − x∗)T p(x∗) = pk(x∗)(x̃k − x∗
k) + pl(x

∗)(x̃l − x∗
l )

= x∗
k [pl(x

∗) − pk(x∗)] ≤ 0,

hence x∗
k = 0. It means that conditions (5.24) are fulfilled.
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Observe that formulation (5.25) allows us to find the unknown auction
price p∗ by setting

p∗ = min
i=1,...,n

pi(x
∗).

This model appears close to the costless migration equilibrium models; see
Nagurney (1999). Here its statement seems very natural.

Exercise 5.7. By using the theorems of Section 11.2, find existence and
uniqueness results for problem (5.25).

This model can be extended in several directions. For instance, let us
consider the case where each i-th trader has the minimal and maximal offer
volumes, denoted by αi and βi, respectively. Then conditions (5.24) are
replaced by the following:

x∗ ∈ X̃, pi(x
∗)

⎧
⎨
⎩

≥ λ if x∗
i = αi,

= λ if x∗
i ∈ (αi, βi),

≤ λ if x∗
i = βi,

for i = 1, . . . , n,

(5.26)

where

X̃ =

{
x ∈ R

n
n∑

i=1

xi = b, αi ≤ xi ≤ βi for i = 1, . . . , n

}
.

Nevertheless, these conditions are equivalent to the following variational
inequality: Find x∗ ∈ X̃ such that

(x − x∗)T p(x∗) ≥ 0 ∀x ∈ X̃ (5.27)

(cf. (5.25)). This property can also be deduced from the fact that rela-
tions (5.26) represent optimality conditions for constrained problems; see
Chapter 11.

Exercise 5.8. Deduce the equivalence of (5.26) and (5.27) from Propo-
sition 11.7. By using the theorems of Section 11.2, find existence and
uniqueness results for problem (5.27).

Due to equivalent formulations (5.25) and (5.27), the equilibrium quan-
tities and clearing price can be found rather easily.

Exercise 5.9. Find solutions of problem (5.26) when n = 2, α1 = 1,
β1 = 2, α2 = 1, β2 = 3, p1(x1) = 2x1 − 1, p2(x2) = 0.5x2 + 1 for b = 3 and
for b = 5 and give their graphical illustration.
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Observe that auctions of n buyers with the fixed total offer can be
considered similarly. It is sufficient to utilize the opposite inequality signs
in all the relations (5.24)–(5.27).

We can extend this approach for modeling the auction market involving
both traders and buyers. Let xi denote the offer value of trader i for
i = 1, . . . , n and let yj denote the bid value of buyer j for j = 1, . . . ,m.
Given vectors x ∈ R

n and y ∈ R
m, each i-th trader determines his price

(inverse supply) gi(x, y) and each j-th buyer determines his price (inverse
demand) hj(x, y). We define the feasible set

Z =

⎧
⎨
⎩(x, y) ∈ R

n
+ × R

m
+

n∑

i=1

xi =
m∑

j=1

yj

⎫
⎬
⎭ (5.28)

and the variational inequality: Find (x∗, y∗) ∈ Z such that

n∑
i=1

gi(x
∗, y∗)(xi − x∗

i ) −
m∑

j=1

hj(x
∗, y∗)(yj − y∗

j ) ≥ 0

∀(x, y) ∈ Z.
(5.29)

Writing optimality conditions for this problem (see Proposition 11.7) gives
(x∗, y∗) ∈ Z,

gi(x
∗, y∗)

{
= λ if x∗

i > 0,
≥ λ if x∗

i = 0,
for i = 1, . . . , n,

and

hj(x
∗, y∗)

{
= λ if y∗

j > 0,
≤ λ if y∗

j = 0,
for j = 1, . . . ,m,

for some λ. Clearly, these conditions define the equilibrium state of this
market and λ is precisely the auction clearing price.

Exercise 5.10. By using the theorems of Section 11.2, find the general
existence result for problem (5.28), (5.29).

Similarly, we can formulate equilibrium conditions for the case when
bids and offers are restricted by upper and lower bounds.



Chapter 6

Transportation and Migration

Models

Together with economic applications of equilibrium models we will consider
similar models in related fields.

6.1 Network equilibrium models

Flow equilibrium problems in transportation and communication systems
constitute rather a new but broad and rapidly developing area of appli-
cations of variational inequalities. An essential feature of such problems
consists mainly in the fact that they are determined on an oriented graph,
each its arc being associated with some flow (for instance, traffic) and some
expense (for instance, the time of motion, the time of delay, or cost etc),
which depends on the values of arc flows. It is expected that increasing the
value of flow for some arc increase the expense for this arc and perhaps for
several neighbor arcs, which in turn implies redistribution of flows resulting
in some equilibrium state. This means that they are close to spatial price
equilibrium models.

There are a great number of various formulations of network equilib-
rium problems; see e.g. Patriksson (1994), Giannessi and Maugeri (1995),
Nagurney (1999), and Facchinei and Pang (2003). We first consider a mul-
ticommodity formulation.

The model is determined on a transportation network given by a set of
nodes N and a set of arcs A. We denote by D the subset of destination
nodes, D ⊆ N . The variable xl

a denotes the flow on arc a with destination
l ∈ D, so that we have

xl = (xl
a)a∈A and x = (xl)l∈D.

69
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Similarly, the variable tli denotes the minimal cost to reach destination l
from node i, so that we have

tl = (tli)i∈N and t = (tl)l∈D.

For each pair (l, i) ∈ D × N , dl
i denotes the flow demand, i.e. the minimal

demand for transportation from node i to node l, which is supposed to
be fixed. For each i ∈ N , A+

i and A−
i denote the sets of outgoing and

incoming arcs at i. Next, for each arc a, ca denotes the flow cost on this
arc, which is dependent of the flow vector

f =
∑

l∈D

xl.

The pair (x̃, t̃) is said to be in equilibrium if the following conditions hold:

x̃l
e ≥ 0, t̃li ≥ 0;

t̃lj − t̃li + ce(f̃) ≥ 0,
∑

a∈A+
i

x̃l
a −

∑
a∈A−

i

x̃l
a − dl

i ≥ 0; (6.1)

x̃l
e

[
t̃lj − t̃li + ce(f̃)

]
= 0, t̃li

[
∑

a∈A+
i

x̃l
a −

∑
a∈A−

i

x̃l
a − dl

i

]
= 0;

for all e = (i, j) ∈ A, l ∈ D and for all i ∈ N, l ∈ D, where f̃ =
∑
l∈D

x̃l.

The first pair of relations represents the non-negativity of flows and costs.
The second pair of inequalities in (6.1) means that the difference of minimal
costs at any two nodes cannot exceed the flow cost on the corresponding arc
and that the flow demand cannot exceed the difference between outgoing
and incoming flows. The third pair of relations in (6.1) means that the
positive flow on each arc (respectively, the positive minimal cost at each
node) yields the equality in the previous series of conditions. Hence, if it
is necessary to provide the flow balance at each node:

∑

a∈A+
i

x̃l
a −

∑

a∈A−

i

x̃l
a = dl

i,

one has to simply guarantee the positivity of the transportation costs. It
is clear that conditions (6.1) determine a nonlinear complementarity prob-
lem, hence they may be rewritten in the form of a system of variational
inequalities: Find (x̃, t̃) ≥ 0 such that

∑

a∈A

ca(f̃)(fa − f̃a)

+
∑

a=(i,j)∈A

∑

l∈D

(t̃lj − t̃li)(x
l
a − x̃l

a) ≥ 0 ∀x ≥ 0,
(6.2)
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∑

i∈N

∑

l∈D

⎡
⎣ ∑

a∈A+
i

x̃l
a −

∑

a∈A−

i

x̃l
a − dl

i

⎤
⎦ (tli − t̃li) ≥ 0

∀t ≥ 0;

(6.3)

where f̃ =
∑
l∈D

x̃l. Obviously, this system also represents optimality condi-

tions for the variational inequality problem: Find x̃ ∈ X such that

f̃ =
∑

l∈D

x̃l,
∑

a∈A

ca(f̃)(fa − f̃a) ≥ 0 ∀f ∈ F,

where

F =

{
f f =

∑

l∈D

xl, x ∈ X

}

and

X =

⎧
⎨
⎩x ≥ 0

∑

a∈A+
i

xl
a −

∑

a∈A−

i

xl
a ≥ dl

i ∀i ∈ N,∀l ∈ D

⎫
⎬
⎭ .

We now consider a path flow formulation of the same network equilib-
rium problem.

Let us given a graph with a finite set of nodes N and a set of oriented
arcs A which join the nodes so that an arc a = (i → j) has the origin i
and the destination j. Next, among all the pairs of nodes of the graph
we extract a subset of pairs W of the form w = (i → j), where i is the
origin node and j is the destination node. Besides, each pair w ∈ W is
associated with a positive number dw which gives the flow demand from i
to j. Denote by Pw the set of paths in the graph which connect the origin
and destination, for the pair w ∈ W . Also, denote by xp the path flow for
the path p. Then, the feasible set of flows X can be defined as follows:

X =

⎧
⎨
⎩x

∑

p∈Pw

xp = dw, xp ≥ 0 p ∈ Pw;w ∈ W

⎫
⎬
⎭ , (6.4)

i.e.
X =

∏

w∈W

Xw,

where

Xw =

⎧
⎨
⎩x

∑

p∈Pw

xp = dw, xp ≥ 0 p ∈ Pw

⎫
⎬
⎭ .
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If we set m to be the number of origin-destination pairs and nw to be the
number of paths joining the nodes of the pair w, then the total number of
variables in this problem equals

n = n1 × . . . × nm.

Next, if the flow vector x is known, we can determine the value of the arc
flow fl for each arc l ∈ A:

fl =
∑

w∈W

∑

p∈Pw

αplxp,

where

αpl =
{

1 if arc l belongs to path p,
0 otherwise.

If the values of arc flows are known, one can determine the value of expenses
(costs) for each arc as follows:

tl = Tl(f), (6.5)

which in general depends on flows for other arcs and uses some mapping
T that is defined in the space of flows. Then one can compute the value of
expenses for each path p as follows:

gp = Gp(x) =
∑

l∈A

αpltl. (6.6)

The feasible flow vector x∗ ∈ X is said to be an equilibrium vector if it
satisfies the following conditions:

∀q ∈ Pw, x∗
q > 0 =⇒ Gq(x

∗) = minp∈Pw
Gp(x

∗)
for all w ∈ W.

(6.7)

In other words, positive values of flow for any origin - destination pairs
must correspond to paths with minimal costs. It is known that the condi-
tions (6.4)–(6.7) can be equivalently rewritten in the form of the variational
inequality: Find a point x∗ ∈ X such that

(x − x∗)T G(x∗) ≥ 0 ∀x ∈ X, (6.8)

where the inner product is defined in the n-dimensional space of paths
joining all the nodes from W .

Theorem 6.1. A vector x∗ solves the problem (6.8) if and only if it satisfies
the conditions (6.4)–(6.7).
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Proof. Let x∗ be an equilibrium vector. For every w ∈ W , set

λw = minp∈Pw
Gp(x

∗),
P ′

w = {p ∈ Pw | Gp(x
∗) = λw}, P ′′

w = Pw\P
′
w,

and take any feasible flow vector x ∈ X. Then we have

(x − x∗)T G(x∗) =
∑

w∈W

∑

p∈Pw

Gp(x
∗)(xp − x∗

p)

=
∑

w∈W

⎡
⎣∑

p∈P ′

w

Gp(x
∗)(xp − x∗

p) +
∑

p∈P ′′

w

Gp(x
∗)xp

⎤
⎦

≥
∑

w∈W

λw

⎡
⎣∑

p∈P ′

w

(xp − x∗
p) +

∑

p∈P ′′

w

xp

⎤
⎦

=
∑

w∈W

λw

∑

p∈Pw

(xp − x∗
p) =

∑

w∈W

λw(dw − dw) = 0,

i.e. x∗ solves variational inequality (6.8).
Conversely, let x∗ solve variational inequality (6.8). Choose an arbitrary

pair w ∈ W and arbitrary paths u, v ∈ Pw such that Gu(x∗) > Gv(x∗).
Define the flow vector x̃ as follows:

x̃p =

{
x∗

p if p �= u and p �= v,
x∗

u + x∗
v if p = v,

0 if p = u.

By construction, x̃p ≥ 0. For each pair w′ ∈ W , w′ �= w, we have

∑

p∈Pw′

x̃p =
∑

p∈Pw′

x∗
p = dw′ .

Besides, ∑

p∈Pw

x̃p =
∑

p�=u,p �=v

x∗
p + x∗

u + x∗
v = dw.

Therefore, x̃ ∈ X. Next, by definition,

∑

w∈W

∑

p∈Pw

Gp(x
∗)(x̃p − x∗

p) ≥ 0,

but
∑

w∈W

∑

p∈Pw

Gp(x
∗)(x̃p − x∗

p)
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= Gu(x∗)(x̃u − x∗
u) + Gv(x∗)(x̃v − x∗

v)

= Gu(x∗)(−x∗
u) + Gv(x∗)x∗

u

= x∗
u(Gv(x∗) − Gu(x∗)) ≤ 0.

Therefore, x∗
u = 0 and the result follows.

Exercise 6.1. By using the results of Section 11.2, find existence condi-
tions for this model.

6.2 Migration equilibrium models

We now consider a migration equilibrium model, which can be regarded as
a somewhat simplified version of the model suggested by A. Nagurney; see
Nagurney (1999).

The model involves a set of nodes (locations) N, for each i ∈ N, bi

denotes the initial fixed population in location i. Let hij denote the value
of the migration flow from origin i to destination j, and let xi denote the
current population in location i. We can associate with each location i the
utility ui and with each pair of locations i, j the migration cost cij . Set
x = (xi | i ∈ N) and h = (hij | i, j ∈ N, i �= j), then the feasible set can
be defined as follows:

H =

{
(x,h) h ≥ 0,

∑
j �=i

hij ≤ bi,

xi = bi +
∑
j �=i

hji −
∑
j �=i

hij , ∀i ∈ N

}
.

(6.9)

Exercise 6.2. Prove that H is bounded.

The rules in (6.9) reflect the conservation of flows and prevent any chain
migration. Also, clearly, the migration flow has to be non-negative.

The equilibrium conditions for the scalar migration model are more
complicated than those in network equilibrium models. Suppose that the
utility depends on the population, i.e. ui = ui(x), and that the migration
cost depends on the migration flows, i.e. cij = cij(h). We say that a pair
(x∗,h∗) ∈ H is in equilibrium if

ui(x
∗) − uj(x

∗) + cij(h
∗) + µi

{
= 0 if h∗

ij > 0,
≥ 0 if h∗

ij = 0;
(6.10)

for all i, j ∈ N and

µi

⎧
⎨
⎩

≥ 0 if
∑
s �=i

h∗
is = bi,

= 0 if
∑
s �=i

h∗
is < bi,

(6.11)



6.2. MIGRATION EQUILIBRIUM MODELS 75

for each i ∈ N.
The set of equilibrium conditions (6.10), (6.11) can be equivalently

rewritten in the form of the variational inequality: Find a pair (x∗,h∗)
such that

∑

i∈N

(x∗
i − xi)ui(x

∗)

+
∑

i,j∈N, i �=j

(hij − h∗
ij)cij(h

∗) ≥ 0 ∀(x,h) ∈ H.
(6.12)

This equivalence result follows from the fact that (6.10), (6.11) represent
an analogue of Karush-Kuhn-Tucker conditions for variational inequality
(6.12); see Sections 11.1 and 12.5.

Exercise 6.3. By using the results of Section 11.2, find existence condi-
tions for this model.

Further analysis of the problem relies upon the properties of the map-
pings u and c. It is possible to utilize the results of the general theory for
investigating various kinds of applications.
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The complementarity problems (CP’s for short) can be viewed as a sub-
class of the variational inequalities (VI’s for short) where the feasible set
is a cone or a cone segment. These essential features of CP’s enable one to
develop very effective tools for their investigation and solution. More pre-
cisely, many existence and uniqueness results and solution methods for CP’s
were established and substantiated under essentially weaker assumptions
than those for general VI’s. At the same time, various classes of equilib-
rium problems, which are formulated as CP’s, were described in Part I. In
this part, we present some of basic results in this field and discuss their
applications to the models described in the previous part.
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Chapter 7

Complementarity with Z

Properties

This chapter is devoted to the general theory of CP’s and to its specializa-
tions for problems whose cost mappings possess so-called Z or off-diagonal
antitone properties. These problems also admit very effective solution
methods.

7.1 Classes of complementarity problems

Let X be a nonempty, closed and convex cone in a finite - dimensional
Euclidean space E, G : X → E a continuous mapping. Denote by X ′ =
{z ∈ E | xT z ≥ 0 ∀x ∈ X} the dual (conjugate) cone to X. Then (see
(1.16)) we can define the general CP as the problem of finding a point
x∗ ∈ E such that

x∗ ∈ X,G(x∗) ∈ X ′, (x∗)T G(x∗) = 0. (7.1)

This problem can be equivalently rewritten as VI with the cost mapping
G and the feasible set X, as the following proposition states.

Proposition 7.1. CP (7.1) is equivalent to VI: Find a point x∗ ∈ X such
that

(x − x∗)T G(x∗) ≥ 0 ∀x ∈ X. (7.2)

Proof. If x∗ solves problem (7.1), then for each x ∈ X, we have

(x − x∗)T G(x∗) = xT G(x∗) ≥ 0

81
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since G(x∗) ∈ X ′. Conversely, let x∗ solve problem (7.2). If we suppose
that (x∗)T G(x∗) > 0, then letting x = 0 in (7.2) gives the contradiction

0 > −(x∗)T G(x∗) = (0 − x∗)T G(x∗) ≥ 0,

hence (x∗)T G(x∗) ≤ 0. If (x∗)T G(x∗) < 0, then letting x = αx∗ ∈ X with
α > 1 in (7.2) again gives the contradiction

0 > (α − 1)(x∗)T G(x∗) = (x − x∗)T G(x∗) ≥ 0.

It follows that (x∗)T G(x∗) = 0, hence

(x − x∗)T G(x∗) = xT G(x∗) ≥ 0

for each x ∈ X, i.e. G(x∗) ∈ X ′ and x∗ solves CP (7.1).

Among various classes of CP’s, the following ones are most investigated.
The standard complementarity problem corresponds to the case where E =
R

n and X is the non-negative orthant R
n
+ = {x ∈ R

n | xi ≥ 0 ∀i =
1, . . . , n} in R

n. Then CP(7.1) can be rewritten in the standard form:

x∗
i ≥ 0, Gi(x

∗) ≥ 0, x∗
i Gi(x

∗) = 0 ∀i = 1, . . . , n. (7.3)

Exercise 7.1. Prove that problem (7.3) is equivalent to CP (7.1) with
X = R

n
+.

The linear complementarity problem (LCP for short) corresponds to
the case when G is affine, i.e. G(x) = Ax + b, where A is an n× n matrix,
b is a fixed element in R

n.
The standard problem (7.3) involves only the nonnegativity constraints

for all the variables whereas many applied CPs contain also either some
unrestricted variables or even two-side box constraints. There exists a very
suitable and common format for such problems. Set

X =

n∏

i=1

[αi, βi], −∞ ≤ αi < βi ≤ +∞ for i = 1, . . . , n; (7.4)

and consider the box-constrained VI (7.2), (7.4). This problem is also called
the mixed complementarity problem (MCP for short). Clearly, it becomes
equivalent to CP (7.3) if αi = 0 and βi = +∞ for each i = 1, . . . , n. At the
same time, bearing in mind Proposition 7.1 and the formulation (7.3), we
can write it in more suitable forms.

Proposition 7.2. VI (7.2), (7.4) is equivalent to each of the following
problems:
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(i) Find x∗ ∈ X from (7.4) such that

Gi(x
∗)(xi − x∗

i ) ≥ 0 ∀xi ∈ [αi, βi] ∀i = 1, . . . , n;

and
(ii) Find x∗ ∈ X from (7.4) such that

Gi(x
∗)

⎧
⎨
⎩

≥ 0 if x∗
i = αi,

= 0 if x∗
i ∈ (αi, βi),

≤ 0 if x∗
i = βi,

for i = 1, . . . , n.

Exercise 7.2. Prove the assertions of Proposition 7.2.

Now we turn to the general existence results for CP’s. To this end, we
give some results from Chapter 11, which are established for general VI’s
(Theorems 11.2 and 11.3).

Theorem 7.1. Let X be a nonempty, convex and closed subset of a finite
- dimensional Euclidean space E and let G : X → E be a continuous
mapping. Suppose that there exists a nonempty bounded subset Y of X
such that for every x ∈ X\Y there is y ∈ Y with

(x − y)T G(x) > 0. (7.5)

Then VI (7.2) is solvable.

Observe that we can set X = Y if X is bounded, but the corresponding
result can be used only for bounded MCP’s.

Corollary 7.1. Suppose that −∞ < αi < βi < +∞ for each i = 1, . . . , n
and that G : X → E is continuous. Then MCP (7.2), (7.4) has a solution.

Coercivity condition (7.5) allows us to apply the assertion of Theorem
7.1 to all kinds of CP’s, which usually involve unbounded feasible sets. In
this case, applying certain additional properties of the cost mapping G and
the feasible set, we can transform it into a more suitable format.

7.2 Classes of square matrices and their properties

In this section, we consider some classes of matrices whose properties are
strongly related to the corresponding LCP’s, moreover, they appear to be
very useful for better understanding of properties of nonlinear CP’s, which
will be presented in this part. An interested reader can find more details in
Cottle, Pang and Stone (1992), Ortega and Rheinboldt (1970), and Nikaido
(1968); see also the references therein.
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Definition 7.1. Let A be an n × n matrix. The matrix A is said to be
(a) a Z-matrix if it has non-positive off-diagonal entries;
(b) a P -matrix if all the principal minors of A (i.e. the deferminants of

submatrices of A whose entries lie in k selected rows and columns of A for
a given k) are positive;

(c) a P0-matrix if all the principal minors of A are nonnegative;
(d) positive definite if xT Ax > 0 for each nonzero vector x ∈ R

n;
(e) positive semidefinite if xT Ax ≥ 0 for each x ∈ R

n;
(f) an M -matrix if it is a P - and Z-matrix;
(g) an M0-matrix if it is a P0- and Z-matrix.

From the definitions we obtain the following obvious implications

(g) =⇒ (c), (g) =⇒ (a), (f) =⇒ (b), (f) =⇒ (a),

but the reverse assertions are not true. Moreover, it will be shown that
(e) =⇒ (c) and (d) =⇒ (b), but the reverse assertions are also not true in
general.

Exercise 7.3. Give examples of P -matrices (respectively, P0-matrices)
which are not positive definite (respectively, positively semidefinite).

We now give another characterization of P -matrices; see Cottle, Pang,
and Stone (1992), Theorem 3.3.4.

Proposition 7.3. Let A be an n×n matrix. Then the following assertions
are equivalent:

(i) A is a P -matrix,
(ii) A reverses the sign of no nonzero vector, i.e.

n∑

j=1

aijxixj ≤ 0 for all i = 1, . . . , n =⇒ x = 0;

(iii) all real eigenvalues of A are positive.

Proof. Clearly, (i) ⇒ (ii) for n = 1. Using induction, we suppose that this
implication holds for n − 1 with n > 1 and that the n × n P -matrix A
reverses the sign of a nonzero vector z ∈ R

n. If zi = 0 for some i, then
there exists a principal submatrix Ã of A, which is also a P -matrix, but
reverses the sign of a subvector z̃ of z. Since this is a contradiction, no
component of z is zero. Set

di =
1

zi

n∑

j=1

aijzj ≤ 0 for i = 1, . . . , n
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and define the diagonal matrix D with the diagonal entries d1, . . . , dn. It
follows that (A − D)z = 0, but the matrix A − D has to be nonsingular, a
contradiction, Hence, (i) ⇒ (ii).

Suppose that (ii) holds and choose an arbitrary real eigenvalue λ of A
and an associate eigenvector z. The vector z must be nonzero and, as λ
is real, we can take z to be real. By definition, Az = λz, but A does not
reverse the sign of z, hence λ > 0, and (ii) ⇒ (iii).

Next, let (iii) hold. Recall that the determinant of A is equal to the
product of all its eigenvalues, but the complex eigenvalues of real matri-
ces appear in conjugate pairs. It follows that (i) holds, and the proof is
complete.

Similarly, one can establish another characterization of P0-matrices; see
Cottle, Pang, and Stone (1992), Theorem 3.4.2.

Proposition 7.4. Let A be an n×n matrix. Then the following assertions
are equivalent:

(i) A is a P0-matrix,
(ii) for each x �= 0, there exists an index k such that xk �= 0 and

n∑

j=1

akjxkxj ≥ 0;

(iii) all real eigenvalues of A are non-negative.

Exercise 7.4. Following the proof of Proposition 7.3, establish the result
of Proposition 7.4.

Taking into account part (ii) of Propositions 7.3 and 7.4, we obtain the
relationships between P (P0)- and positive (semi)definite matrices.

Corollary 7.2. If A is an n × n positive definite (respectively, positive
semidefinite) matrix, then it is a P -matrix (respectively, P0-matrix).

Observe that the sum of P0(P )-matrices, unlike that of positive (semi)
definite ones, is not a P0(P )-matrix in general.

Example 7.1. The matrices

A =

(
1 5
0 2

)

and

B =

(
2 0
5 1

)
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are clear P -matrices, but they are not positive semidefinite. Their sum

C = A + B =

(
3 5
5 3

)

is not a P - (or P0-) matrix.

We recall that even the smallest perturbations of a positive semidefinite
matrix with the help of the unit matrix convert it into a positive definite
matrix. We now show that the same property holds true for P0- and P -
matrices.

Proposition 7.5. An n×n matrix A is a P0-matrix if and only if A + εI
is a P -matrix for each ε > 0.

Proof. If A is a P0-matrix, then, by Proposition 7.4, for each x �= 0, there
exists an index k such that xk �= 0 and

n∑

j=1

akjxkxj ≥ 0,

hence
n∑

j=1

akjxkxj + εx2
k > 0

if ε > 0. It means that A + εI reverses the sign of no nonzero vector and,
by Proposition 7.3, it is a P -matrix. Conversely, fix x �= 0. Since A + εI is
a P -matrix for each ε > 0, there exists an index i, which may depend on
ε, such that

n∑

j=1

aijxjxi + εx2
i > 0.

Take a sequence {εk} ց 0, then there exists an index s such that

n∑

j=1

asjxjxs + εkl
x2

s > 0

if εkl
> 0 for an infinite subsequence {kl}. Since xs �= 0, taking the limit

kl → +∞ in this inequality yields

n∑

j=1

asjxjxs ≥ 0,

therefore, A is a P0-matrix.
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Thus, P0- and P -matrices maintain some basic properties of positive
semidefinite and positive definite matrices. We now give an additional
property of these matrices which is traditionally used in existence theory
for LCP’s.

Proposition 7.6. If an n × n matrix A is a P -matrix (respectively, P0-
matrix), then there exists a vector x ∈ R

n such that

x > 0, Ax > 0 (7.6)

(respectively, x ≥ 0, x �= 0, Ax ≥ 0).

Proof. If A is a P -matrix, but (7.6) does not hold, then, using Lemma 3.1
of the alternative, we see that there exists a vector z �= 0 such that AT z ≤ 0
and z ≥ 0. It means that AT reverses the sign of z, i.e., by Proposition
7.3, AT is not a P -matrix. Then A is not also a P -matrix.

Next, if A is a P0-matrix, then, by Proposition 7.5, A + εI is a P -
matrix for each ε > 0. Choose a sequence {εk} ց 0, then, for each εk,
there exists xk > 0 such that Axk > −εkxk and, without loss of generality
we can suppose that ‖xk‖ = 1. Then there exists a subsequence {xks}
converging to a point x ≥ 0, x �= 0. Taking the corresponding limit, we
obtain Ax ≥ 0.

Observe that the matrix

A =

(
1 2
2 1

)

satisfies (7.6) with x = (1, 1)T , but it is not a P0-matrix, so that the reverse
assertions are not true.

Now we turn to the consideration of M -matrices. Being based on the
previous results, we can establish an interesting property of their inverses.

Proposition 7.7. Let A be an arbitrary n × n Z-matrix. Then A is an
M -matrix if and only if the inverse matrix A−1 exists and contains only
nonnegative entries.

Proof. If A is an arbitrary n × n Z-matrix, then it can be represented as
follows

A = ρI − B,

where B is an n × n matrix with non-negative entries, ρ ≥ 1 is some
number. Set Ã = I −ρ−1B. Then, by Theorem 2.2 (Hawkins-Simon), Ã−1

exists and is nonnegative if and only if all the principal minors of Ã are
non-negative. However, minors of A and Ã have the same signs. It follows
that A−1 exists and nonnegative if and only if all the principal minors of
A are nonnegative.
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We can now conclude that the problem

Ax = b, x ≥ 0,

where A is an M -matrix and b is a non-negative vector, is equivalent to
the standard system of linear equations

Ax = b,

which admits the explicit form of its solution. Note that this property was
used in the analysis of the open input-output model; see Section 2.1. In
other words, the “non-classical” part of the problem becomes superfluous if
A is an M -matrix, and this formulation of various applied problems is very
popular; see e.g. Ortega and Rheinboldt (1970). Moreover, this approach
of the tacit elimination of “non-classical” constraints may be extended to
some general nonlinear problems and is developed in degree theory. At the
same time, it was noticed in Section 2.2, that even small modifications of
the model create serious difficulties for this approach and force us to study
more “stable” models of equilibrium, such as CP’s.

7.3 Complementarity problems with Z cost mappings

The concept of a Z-mapping is a direct extension of that of a Z-matrix.
Denote by ej the j-th coordinate vector in R

n, i.e.

ej
i =

{
0 if i �= j,

1 if i = j.

Definition 7.2. A mapping G : X → R
n is said to be

(a) a Z-mapping, if, for each x ∈ X, the function µij(τ) = Gi(x + τej)
is nonincreasing for all i �= j;

(b) off-diagonally antitone, if, for each pair of points x′, x′′ ∈ X such
that x′ ≥ x′′, it holds that Gk(x′) ≤ Gk(x′′) for each k such that x′

k = x′′
k .

Although the classes of Z-mappings and off-diagonally antitone map-
pings seem somewhat different, they in fact coincide as the following propo-
sition states.

Proposition 7.8. The classes of Z- and off-diagonally antitone mappings
coincide.

Proof. Suppose that G : X → R
n is a Z-mapping. Choose an arbitrary

pair of points x′, x′′ ∈ X, such that x′ ≥ x′′, then x′ = x′′ +
n∑

j=1

τje
j where
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τj ≥ 0. It follows that Gi(x
′) = Gi(x

′′ +
∑
j �=i

τje
j) ≤ Gi(x

′′) for each index

i such that x′
i = x′′

i , i.e. G is off-diagonally antitone. Conversely, if G
is off-diagonally antitone and x′ = x′′ + τej for fixed j with τ > 0, then
x′ ≥ x′′. Taking any index i �= j, we obtain x′

i = x′′
i and Gi(x

′) ≤ Gi(x
′′),

i.e. G is a Z-mapping.

Thus, Proposition 7.8 presents another characterization of Z-mappings.
From the definition we obtain some other characterization in the differen-
tiable case. Then there exists the Jacobian of G at x, denoted by ∇G(x),

whose entries are partial derivatives ∂Gi(x)
∂xj

for i, j = 1, . . . , n.

Proposition 7.9. A differentiable mapping G : R
n → R

n is a Z-mapping
if and only if its Jacobian ∇G is a Z-matrix at each point x ∈ R

n.

Exercise 7.5. Prove the assertion of Proposition 7.9.

If G is an affine mapping, i.e. G(x) = Ax + b, then, by Proposition 7.9,
G is a Z-mapping if and only if A is a Z-matrix.

We shall consider the standard CP (7.3) in the case when G is a Z-
mapping. The essential features of such problems enable us to present
special tools for their investigation and solution finding. First we define
the auxiliary (or otherwise, feasible) set of CP (7.3) as follows:

D = {x ∈ R
n | x ≥ 0, G(x) ≥ 0} .

CP is said to be feasible if D is nonempty.
It appears D possesses certain vector lattice properties. For each pair of

points x, y ∈ R
n, we can define their component-wise minimal point (meet)

z = min{x, y} as follows:

zi = min{xi, yi} for i = 1, . . . , n.

Lemma 7.1. If G : R
n
+ → R

n is a Z-mapping, then the set D contains
min{x, y} for arbitrary points x, y ∈ D.

Proof. Fix x, y ∈ D and set z = min{x, y}. Then clearly z ≥ 0. Define
the index sets I1 = {i | xi < yi} and I2 = {i | xi ≥ yi}. If I1 = ∅, then
z = y ∈ D and similarly if I2 = ∅, then z = x ∈ D. Let us consider the case
when I1 �= ∅ and I2 �= ∅. If i ∈ I1, then zi = xi, but z ≤ x and, in view of
Proposition 7.8, Gi(z) ≥ Gi(x) ≥ 0. Similarly, if i ∈ I2, then zi = yi, but
z ≤ y and Gi(z) ≥ Gi(y) ≥ 0. Therefore, G(z) ≥ 0 and z ∈ D.

For the set D, we can define its minimal element

min D = {z ∈ D | z ≤ x ∀x ∈ D} .

From the definition it follows that minD is unique.
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Lemma 7.2. If the set D is nonempty, G : R
n
+ → R

n is a continuous
Z-mapping, then the optimization problem

min
x∈D

→
n∑

i=1

xi (7.7)

has a solution, which coincides with min D.

Proof. Since D is nonempty, take an arbitrary point y ∈ D. Set µ(x) =
n∑

i=1

xi and for an arbitrary number γ > µ(y) define the set

Dγ = D
⋂

{x ∈ R
n | µ(x) ≤ γ} .

Clearly, D is bounded and also closed since G is continuous. Due to the
Weierstrass theorem, the function µ attains its minimal value on Dγ , hence,
on D as well. Thus, problem (7.7) has a solution, say u. If u �= min D,
then there exist a point v ∈ D and at least one index i such that vi < ui.
Set z = min{u, v}, then z ∈ D on account of Lemma 7.1, but µ(z) < µ(u),
a contradiction. Therefore, min D exists and is a (unique) solution to
(7.7).

We are now ready to establish an existence result for CP (7.3).

Theorem 7.2. If the set D is nonempty, G : R
n
+ → R

n is a continuous
Z-mapping, then CP (7.3) has a solution, which coincides with min D.

Proof. From Lemma 7.2 we have that the element z = min D exists. Sup-
pose that there exists an index k such that

zk > 0 and Gk(z) > 0.

Then, due to the continuity of G, we have

zk − ε ≥ 0 and Gk(z − εek) ≥ 0

for ε > 0 sufficiently small. However, z ≥ z − εek and

Gi(z − εek) ≥ Gi(z) ≥ 0 for each i �= k,

hence z − εek ∈ D, which contradicts the definition of z. Therefore

ziGi(z) = 0 for all i = 1, . . . , n,

and z solves CP (7.3).
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Figure 7.1:
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Observe that CP (7.3) may have many solutions even under the condi-
tions of Theorem 7.2, as the following example illustrates.

Example 7.2. Let us consider the following LCP:

x∗ ≥ 0, Ax∗ + b ≥ 0, (x∗)T (Ax∗ + b) = 0,

where

x∗ = (x∗
1, x

∗
2)

T , A =

(
a11 a12

a21 a22

)

with a12 ≤ 0, a21 ≤ 0, and b = (b1, b2)
T .

(a) If we set

A =

(
2 −1
−1 2

)
, b = (4,−2)T ,

when

D = {x ≥ 0 | 2x1 − x2 + 4 ≥ 0,−x1 + 2x2 − 2 ≥ 0}

and

min D = (0, 1)T .

This LCP has clearly the unique solution minD; see Figure 7.1.



92 7. COMPLEMENTARITY WITH Z PROPERTIES

Figure 7.2:
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(b) If we set

A =

(
0 −1
−1 0

)
, b = (0, 2)T ,

when
D = [0, 2] × {0},

i.e. it coincides with the solution set and clearly

min D = (0, 0)T ∈ D.

This LCP has clearly the infinite number of solutions; see Figure 7.2.

Thus, Z properties allow us to obtain some other existence result of
solutions, which is based on the feasibility of the initial problem. In order
to ensure feasibility, we can make use of some other properties of the cost
mapping.

Exercise 7.6. Derive from Proposition 7.6 the feasibility of LCP (7.3)
with G(x) = Ax + b, where A is a P -matrix.

It follows that such a LCP with A being an M -matrix always has a
solution, moreover, this solution is the minimal element of its feasible set.

At the same time, there exists a different way of proving the result of
Theorem 7.2 which is based upon constructing an iterative sequence.
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For the sake of brevity, set

(x−i, α) = (xi, . . . , xi−1, α, xi+1, . . . , xn)T

for a point x = (x1, . . . , xn)T , a number α, and an index i. Let us consider
the following Jacobi type iterative algorithm.

Algorithm (Jacobi). Choose a point x0 ∈ D. At the k-th iteration,
k = 0, 1, . . . , we have a point xk and compute the next iterate xk+1 com-
ponentwise. Namely, for each index i = 1, . . . , n, we set xk+1

i = 0 if
Gi(x

k
−i, 0) ≥ 0, otherwise we set xk+1

i to be the number in (0, xk
i ] such

that Gi(x
k
−i, x

k+1
i ) = 0.

Theorem 7.3. If the set D is nonempty, G : R
n
+ → R

n is a continuous Z-
mapping, then the above algorithm is well-defined and generates a sequence
{xk} converging to a solution of CP (7.3).

Proof. Since D �= ∅, we can choose a starting point x0 in D. We now
proceed to show that

0 ≤ xk+1 ≤ xk, xk ∈ D,xk+1
i Gi(x

k
−i, x

k+1
i ) = 0

∀i = 1, . . . , n,
(7.8)

for k = 0, 1, . . . In fact, the first and third relations in (7.8) are fulfilled
by construction. Next, xk+1 ≤ (xk

−i, x
k+1
i ), but G is a Z-mapping, hence

Gi(x
k+1) ≥ Gi(x

k
−i, x

k+1
i ) ≥ 0, i.e. xk+1 ∈ D if xk ∈ D. Moreover, if

Gi(x
k) ≥ 0 and Gi(x

k
−i, 0) < 0, then, by continuity of G, there exists a

number xk+1
i ∈ (0, xk

i ) such that Gi(x
k
−i, x

k+1
i ) = 0. It means that the

algorithm is well-defined, but the sequence {xk} must converge to a point
x∗ in view of the first relation in (7.8). Taking the limits in the other
relations in (7.8) gives

x∗ ∈ D,x∗
i Gi(x

∗) = 0 for i = 1, . . . , n;

hence x∗ is a solution to CP (7.3).

We can now deduce the assertion of Theorem 7.2 from Theorem 7.3 and
Lemma 7.2.

Corollary 7.3. If the set D is nonempty, G : R
n
+ → R

n is a continuous
Z-mapping, then the minimal element min D exists and solves CP (7.3).
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Proof. From Lemma 7.2 it follows that min D exists, hence we can take
x0 = min D in the above algorithm. Then the sequence {xk} converges to
a solution x∗ of CP (7.3) due to Theorem 7.3, but, on account of (7.8), we
have

x∗ ≤ min D, hence x∗ = min D,

since min D is determined uniquely.

Thus, the Jacobi algorithm can be applied to finding solutions of fea-
sible CP’s with Z-mappings. Moreover, the results of this section can be
extended to MCP (7.2), (7.4) with the corresponding modifications of the
auxiliary set D and the Jacobi algorithm.

Exercise 7.7. Define

D = {x ∈ X | xi < βi ⇒ Gi(x) ≥ 0 ∀i = 1, . . . , n}

for MCP (7.2), (7.4) and show that the assertion of Theorem 7.2 remains
true if αi > −∞ for i = 1, . . . , n and R

n
+ is replaced with X. Make the

modification of the Jacobi algorithm which allows for obtaining the result
of Theorem 7.3.

Together with the Jacobi algorithm one can apply also similar exten-
sions of other known algorithms of solving systems of equations.



Chapter 8

Applications

In the chapter, we consider applications of CP’s with Z - mappings, which
were presented in Chapter 7, to input-output and price equilibrium models.

8.1 Input-output models

First we consider the open input-output model described in Section 2.1.
Recall that the classical formulation of this model (see (2.2)) corresponds
to the system:

(I − A)x∗ = y, x∗ ≥ 0, (8.1)

where I is the n × n unit matrix, A is the n × n input-output matrix
with entries aij , y = (y1, . . . , yn)T is a given final demand vector, and
x∗ = (x∗

1, . . . , x
∗
n)T is a vector of unknown outputs. In Section 2.1, several

sufficient conditions, which are based on the Perron-Frobenius theorems
for nonnegative matrices, were presented; see Theorems 2.2, 2.3, and 2.5.
They ensure for system (8.1) to be consistent. However, after a suitable
extension of this system, one can guarantee existence of a solution under
more general conditions. Namely, let us consider the following LCP: Find
x∗ ∈ R

n such that

x∗ ≥ 0, (I − A)x∗ − y ≥ 0, (x∗)T [(I − A)x∗ − y] = 0; (8.2)

which is clearly a particular case of CP (7.3) where

G(x) = (I − A)x − y. (8.3)

By definition, the input-output coefficients aij are nonnegative, hence the
Jacobian ∇G(x) = I −A is a Z-matrix, i.e., by Proposition 7.9, G is now a
Z-mapping. Therefore, we can apply the results of Chapter 7 to establish

95
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existence of solutions of problem (8.2). In fact, the following assertion is a
direct consequence of Theorem 7.2.

Theorem 8.1. Suppose that the set

D = {x ∈ R
n | x ≥ 0, x − Ax − y ≥ 0} (8.4)

is nonempty. Then LCP (8.2) has a solution, which coincides with min D.

In comparison with system (8.1), problem (8.2) provides the equality

x∗
i −

n∑

j=1

aijx
∗
j = yi

only for commodities with positive outputs, i.e. in case x∗
i > 0. This ap-

proach becomes much more suitable in the presence of two-side constraints
(see (2.2′)), which seem very natural for input-output problems. However,
the Perron-Frobenius theory then does not guarantee the consistency of
the system (2.2′), but we can replace it by the MCP: Find x∗ ∈ X such

(x − x∗)T G(x∗) ≥ 0 ∀x ∈ X, (8.5)

where X = [x′, x′′] and G is defined in (8.3) (see also Proposition 7.2 for
related formulations of this problem). Then, using Exercise 7.7, we can
obtain similar existence results for problem (8.5) as well.

Exercise 8.1. Replace D in (8.4) by

D =

{
x ∈ X xi < x′′

i =⇒ xi −
n∑

j=1

aijxj − yi ≥ 0 for i = 1, . . . , n

}

and show that the assertion of Theorem 8.1 remains true for problem (8.5).

Moreover, Theorem 7.3 justifies the application of the Jacobi algorithm
to find a solution of problem (8.2), which can be also adjusted for (8.5).

Algorithm (Jacobi). Choose a point x0 ∈ D, where D is defined in
(8.4). At the k-th iteration, k = 0, 1, . . ., we have a point xk and compute
the next iterate xk+1 componentwise. Namely, for each index i = 1, . . . , n,
we set xk+1

i = 0 if ∑

j �=i

aijx
k
j + yi ≤ 0,

otherwise we set xk+1
i to be the number in (0, xk

i ] such that

xk+1
i = aiix

k+1
i +

∑

j �=i

aijx
k
j + yi.
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The above computational procedure is very simple and does not dif-
fer essentially from the well-known Jacobi algorithm for systems of linear
equations. The economical sense of this algorithm is also very clear. Being
based on the current output vector xk, each branch of the economy com-
putes its own output separately for finding equilibrium in its commodity,
which coincides with the balance equation if the output is positive. The
reactions of all the branches constitute the next iterate xk+1 and so on.
Theorem 7.3 ensures the convergence of this natural process.

Theorem 8.2. If the set D in (8.4) is nonempty, the above Jacobi algo-
rithm is well-defined and generates a sequence {xk} converging to a solution
of LCP (8.2).

Similarly, taking into account Exercises 7.7 and 8.1, we can adjust the
Jacobi algorithm to MCP (8.3), (8.5).

Exercise 8.2. Describe the modification of the Jacobi algorithm for MCP
(8.3), (8.5) and prove its convergence.

The classical input-output model is based upon the linear technology
assumptions, i.e. the industrial demand Ax depends linearly on the output
vector x. However, some technologies may be nonlinear, then we have to
replace the map x �→ Ax with x �→ A(x). Let us consider the following
property of industrial demand.

Definition 8.1. A mapping A : X → R
n is said to be isotone, if, for each

pair of points x′, x′′ ∈ X such that x′ ≥ x′′, it holds that A(x′) ≥ A(x′′).

Since the input-output coefficients aij are assumed to be non-negative,
the mapping x �→ Ax is clearly isotone, and this property seems very
natural even for a nonlinear industrial demand mapping A(x). At the
same time, this is sufficient for applying the results of Section 7, as the
following proposition states.

Proposition 8.1. If A : X → R
n is an isotone mapping, then the mapping

B : X → R
n, defined by

B(x) = x − A(x),

is a Z-mapping.

Proof. Take an arbitrary pair of points x′, x′′ ∈ X such that x′ ≥ x′′ and
choose any index k such that x′

k = x′′
k . Since A is isotone, we have

Bk(x′) − Bk(x′′) = [x′
k − Ak(x′)] − [x′′

k − Ak(x′′)]

= Ak(x′′) − Ak(x′) ≤ 0,
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i.e. B is off-diagonally antitone. By Proposition 7.8, it means that B is a
Z-mapping.

Therefore, if the industrial demand is represented by a nonlinear isotone
mapping A : R

n
+ → R

n, we can consider the following extension of model
(8.2) in the form of CP: Find x∗ ∈ R

n
+ such that

x∗ ≥ 0, x∗ − A(x∗) − y ≥ 0, (x∗)T [x∗ − A(x∗) − y] = 0, (8.6)

which is also a particular case of CP (7.3) where

G(x) = x − A(x) − y (8.7)

with G being a Z-mapping due to Proposition 8.1. For this reason, we can
apply Theorems 7.2 and 7.3 to obtain existence results and to construct
iteration sequences converging to its solution.

Theorem 8.3. Suppose that A : R
n
+ → R

n is a continuous isotone mapping
and that the set

D = {x ∈ R
n | x ≥ 0, x − A(x) − y ≥ 0}

is nonempty. Then:
(i) problem (8.6) has a solution, which coincides with min D;
(ii) the Jacobi algorithm, described in Section 7.3, is well-defined and

generates a sequence {xk} converging to a solution of problem (8.6).

Exercise 8.3. Prove the assertions of Theorem 8.3.

Similarly, using the VI formulation (8.5) with G in (8.7), we can give
the nonlinear input-output model in the presence of two-side constraints
on outputs. The analysis in this case extends the previous results for the
case of the linear industrial demand.

8.2 Price equilibrium models

Let us consider the Walrasian price equilibrium model from Section 5.2.
This model describes an economy with perfect competition, which deals in
n commodities. In the model, the equilibrium price vector p∗ ∈ R

n satisfies
the following conditions (see (5.3)):

p∗ ≥ 0, E(p∗) ≤ 0, (p∗)T E(p∗) = 0, (8.8)

where
E(p) = D(p) − S(p)
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describes the excess demand at price p, so that D(p) and S(p) are the
values of demand and supply at price p, respectively. Obviously (8.8) is a
particular case of CP (7.3) with G(p) = −E(p).

One of the most popular assumptions on demand or excess demand is
the gross substitutability; see Arrow and Hahn (1971), Morishima (1964),
and Nikaido (1968).

Definition 8.2. Let X be a box constrained set in R
n
+, i.e.

X =
n∏

i=1

[αi, βi], 0 ≤ αi < βi ≤ +∞ i = 1, . . . , n. (8.9)

A mapping A : X → R
n is said to be gross substitutable (or briefly, a

GS-mapping), if, for each pair of points x′, x′′ ∈ X such that x′ ≥ x′′ and
I(x′, x′′) = {i | x′

i = x′′
i } is nonempty, there exists an index k ∈ I(x′, x′′)

with Ak(x′) ≥ Ak(x′′).

Observe that the gross substitutability of (excess) demand means that
any transition to a greater price vector implies the non decrease of (excess)
demand for at least one commodity whose price does not change. In other
words, each subset of commodities in such a market contains substitutable
ones. There exists a simple relationship between GS- and Z-mappings.

Proposition 8.2. Let A : X → R
n be a mapping with X being defined in

(8.9). Then:
(i) if −A is a Z-mapping, then A is a GS-mapping;
(ii) if A is a continuous GS-mapping, then −A is a Z-mapping.

Proof. Assertion (i) follows from the definitions and Proposition 7.8. Con-
versely, suppose that A is a continuous GS-mapping. Choose arbitrary
points x′, x′′ ∈ X such that x′ ≥ x′′, x′ �= x′′ and any index k ∈ I(x′, x′′).
Define the points y′, y′′ as follows:

y′
i =

{
x′

i + ε if i ∈ I(x′, x′′), i �= k, x′
i < βi,

x′
i otherwise;

y′′
i =

{
x′′

i − ε if i ∈ I(x′, x′′), i �= k, x′′
i > αi,

x′′
i otherwise;

Then y′, y′′ ∈ X for ε > 0 small enough, y′ ≥ y′′, but y′
i > y′′

i if i �= k. Since
A is a GS-mapping, then Ak(y′) ≥ Ak(y′′). Taking the limit ε → 0, we
then obtain Ak(x′) ≥ Ak(x′′) by continuity. Since k was taken arbitrarily,
if follows that −Ai(x

′) ≤ −Ai(x
′′) for each i ∈ I(x′, x′′), i.e. −A is a

Z-mapping.
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We can give another definition of gross substitutability for differentiable
mappings.

Definition 8.3. Let X be defined in (8.9). A differentiable mapping A :
X → R

n is said to be gross substitutable (or a GS-mapping) if its Jacobian
∇A(x) has non-negative off-diagonal entries.

Exercise 8.4. Taking into account Proposition 8.2 (see also Proposition
7.9) show that the concept of the GS-mapping in Definition 8.3 is equivalent
to that in Definition 8.2 if A is differentiable.

Obviously, the concept from Definition 8.3 is more suitable for verifica-
tion. Nevertheless, Proposition 8.2 says that we can in principle apply all
the results of Section 7.3 to equilibrium problem (8.8) if E is a GS-mapping.

However, some classes of price equilibrium problems possess special
properties which may require deeper considerations for obtaining similar
results. For instance, the domain of E does not usually include the bound-
ary of R

n
+, i.e. the (excess) demand may be undefined for zero prices. At the

same time, they may include the third relation in (8.8) as axiom (Walras
law), which holds for each price vector p > 0. These conditions do not pre-
vent from the application of the Jacobi algorithm, described in Section 7.3,
for finding a solution of CP (8.8). In fact, if E(p) is undefined at some point
p from the boundary of R

n
+ and there exists a sequence {pk} converging

to p, such that pk ∈ R
n
> = {p ∈ R

n | p > 0}, then lim
k→∞

Ei(p
k) = +∞ for

some i. This set R
n
> is called the positive orthant and clearly R

n
> = intRn

+.
It follows that the feasible set

D = {p ∈ R
n | p ≥ 0, E(p) ≤ 0}

does not intersect the boundary of R
n
+ and that E can be supposed to be

continuous on D. Therefore, the results of Section 7.3 remain true.

In particular, we see that the k-th iteration of the Jacobi algorithm
consists in equilibrating the excess demand for each separate commodity
by driving the price for this commodity, considering other current prices as
fixed. Theorem 7.3 establishes convergence of this natural price adjustment
process to an equilibrium vector.

Moreover, if the equilibrium model involves price rigidities, then the
constraint p ≥ 0 is replaced with p ∈ X, where X is defined in (8.9) and
αi > 0 for i = 1, . . . , n. Then (8.8) should simply be replaced with (8.5),
G = −E is usually continuous on X and, taking into account Exercise 7.7,
we can apply both existence results and the Jacobi algorithm to this model.
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8.3 A pure trade market model

We now consider a specialization of the previous Walrasian price equilib-
rium model. This model also describes a market structure dealing in n com-
modities without production, i.e. it is an exchange or a pure trade model.
So, there are m economic agents, who are both consumers and traders. The

i-th economic agent possesses the endowments w(i) = (w
(i)
1 , . . . , w

(i)
n )T ≥ 0

and is supposed to have the Cobb-Douglas utility function

ui(x) = xσi1
1 × · · · × xσin

n ,

where σ(i) = (σi1, . . . σin)T ≥ 0 represents the vector of commodities
weights, and without loss of generality we suppose that

n∑

j=1

σij = 1.

Therefore, the supply is fixed, i.e. S(p) ≡ S where the total endowment of
the j-th commodity is given by

Sj =

m∑

i=1

w
(i)
j for j = 1, . . . , n.

Additionally, we suppose that each economic agent possesses at least one
commodity, i.e. w(i) �= 0 for i = 1, . . . , m. Then, given a price vector
p = (p1, . . . , pn) > 0, the demand of the i-th agent is determined as the
unique solution xi of the optimization problem:

max → ui(x)

subject to

pT x ≤ pT w(i), x ≥ 0.

Namely, the solution is the following:

xi
j =

1

pj
σijp

T w(i) for j = 1, . . . , n. (8.10)

Exercise 8.5. Prove formula (8.10).

It follows that the market demand for the j-th commodity is given by

Dj(p) =
1

pj

m∑

i=1

σijp
T w(i)
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and that the market excess demand for this commodity is given by

Ej(p) =
1

pj

m∑

i=1

σijp
T w(i) − Sj for j = 1, . . . , n. (8.11)

Although the classical version (8.8), (8.11) of this model was investi-
gated rather intensively for a long period from somewhat different points
of view, we now describe this model only to illustrate applications of the
concept of the Z-mapping and related results.

First we note that E is defined on R
n
> and it is differentiable, so that

∂Ej(p)

∂pl
=

1

pj

m∑

i=1

σijw
(i)
l ≥ 0 if j �= l,

hence, by Definition 8.3 and Exercise 8.4, E is a GS-mapping. Also, by
Proposition 7.9, −E is a Z-mapping. Moreover,

pT E(p) =
n∑

j=1

pjEj(p) =
n∑

j=1

m∑

i=1

σijp
T w(i) −

n∑

j=1

pjSj

=

m∑

i=1

pT w(i) −
n∑

j=1

pjSj = pT S − pT S = 0,

i.e. the Walras law holds. It means that feasibility and solvability for
the classical model (8.8), (8.11) are equivalent. Nevertheless, the Jacobi
algorithm can be applied to find its equilibrium vectors. Of course, we can
first consider the system of linear equations

m∑

i=1

σijp
T w(i) − pjSj = 0 for j = 1, . . . , n

instead of (8.8), (8.11) and find its positive solutions. However, if we con-
sider the slightly modified model with price rigidities, e.g. when p ∈ X
with X being defined in (8.9) and αi > 0 for i = 1, . . . , n, then (8.8),
(8.11) is replaced with (8.5) and G = −E, defined in (8.11). Both the
existence results and the Jacobi algorithm become rather useful for this
model. These results may be applied to the extended model with addi-
tional “single-commodity” consumers and producers, which is described in
Section 10.1.

8.4 Price oligopoly models

We now describe applications of the results of Chapter 7 to the imperfectly
competitive equilibrium model in the sense of Bertrand described in Section
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5.4. In this model, there are n firms supplying a homogeneous product.
If each i-th firm announces its price pi, then its profit is defined by

fi(p) = piqi(p) − hi[qi(p)],

where p = (p1, . . . , pn)T , qi : R
n
+ → R

n is the market demand function for
the i-th firm and hi : R+ → R is its industrial cost function, i = 1, . . . , n.
As indicated in Section 5.4, the equilibrium point is defined as the Nash
equilibrium in the n-person non-cooperative game, where the i-th player
has the utility function fi and the strategy set R+; see (5.22).

We consider a class of functions qi and hi such that the above Nash
equilibrium problem is replaced by the CP of form (7.3) where

Gi(p) = −
∂fi(p)

∂pi
for i = 1, . . . , n

and show that G possesses Z properties. Suppose that the cost functions
hi are affine, i.e.

hi(t) = γit + δi where γi > 0, δi > 0,

and that

qi(p) = αi [η(p1, . . . , pi−1, pi+1, . . . , pn)/pi]
κ − βi,

where αi > 0, βi > 0, κ ∈ (0, 1], η : R
n−1 → R+ is a non-negative differen-

tiable function, which is non-decreasing in each variable. For instance, we
can take

η(p1, . . . , pi−1, pi+1, . . . , pn) =
∑

j �=i

µjpj

with µj ≥ 0 for j �= i.

Exercise 8.6. Show that fi is concave in pi under the above assumptions.

Since fi is concave and differentiable in pi, Corollary 11.2 yields that
the Nash equilibrium problem is equivalent to the following CP:

p∗i ≥ 0, Gi(p
∗) ≥ 0, p∗i Gi(p

∗) = 0 for i = 1, . . . , n, (8.12)

where

Gi(p) = βi − καiγip
−1
i [η(p−i)/pi]

κ − (1 − κ)αi [η(p−i)/pi]
κ

for i = 1, . . . , n, with p−i = (p1, . . . , pi−1, pi+1, . . . , pn). The mapping G
is defined and differentiable on R

n
>, moreover, it is easy to see that its
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Jacobian ∇G(p) is a Z-matrix. Therefore, by Proposition 7.9, G : R
n
> →

R
n
+ is a Z-mapping and we can utilize the results from Section 7.3 for

establishing existence and for computation of its solution. Let us define
the auxiliary set of CP (8.12) as follows

D = {p ∈ R
n | p ≥ 0, G(p) ≥ 0} .

Although G may be undefined on the boundary of R
n
+, we see that then

Gi(p
k) → −∞ for any sequence {pk} converging to a point p′ ∈ R

n
+ with

p′i = 0. It follows that D is contained in the domain of G. Applying
Theorem 7.2, we conclude that CP (8.12) has a solution, which coincides
with min D if there exists a point p̃ ≥ 0 such that G(p̃) ≥ 0. Moreover,
due to Theorem 7.3, the Jacobi algorithm with the starting point p̃ will
converge to a solution. Observe that its iteration sequence corresponds to
the very natural dynamic adjustment process, where, given a current vector
pk, each i-th firm finds the next price pk+1

i as the optimal reaction for pk,
i.e. it maximizes the profit function

αi

[
η(pk

−i)
]κ

p1−κ
i − αiγi

[
η(pk

−i)
]κ

p−κ
i

over R+.

Exercise 8.7. Write down the specialization of the Jacobi algorithm for
the described price oligopoly model.



Chapter 9

Complementarity with P

Properties

In Chapter 7, several kinds of square matrices were introduced, including
Z- and P -matrices. Being based on the concept of a Z-matrix, we in-
troduced its extension for nonlinear mappings, which implied very useful
results in theory and solution methods for corresponding CP’s. In this
chapter, we consider P type mappings, which can be viewed as extensions
of such concepts for matrices.

9.1 Existence and uniqueness results

We start our considerations from the introduction of several concepts of
order monotone mappings.

Definition 9.1. Let X be a box constrained set in R
n of form (7.4). A

mapping G : X → R
n is said to be

(a) a P0-mapping, if for each pair of points x′, x′′ ∈ X, x′ �= x′′, there
exists an index i such that x′

i �= x′′
i and

(x′
i − x′′

i ) [Gi(x
′) − Gi(x

′′)] ≥ 0;

(b) a P -mapping, if for each pair of points x′, x′′ ∈ X, x′ �= x′′, it holds
that

max
1≤i≤n

(x′
i − x′′

i ) [Gi(x
′) − Gi(x

′′)] > 0;

(c) a strict P -mapping, if there exists ε > 0 such that G − εI is a
P -mapping;

(d) an M0-mapping, if it is a P0- and Z-mapping;
(e) an M -mapping, if it is a P - and Z-mapping.

105
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From the above definitions we obtain the following obvious implications

(e) =⇒ (d) =⇒ (a), (e) =⇒ (b) =⇒ (a), and (c) =⇒ (b),

but the reverse assertions are not true in general.
We now give some relationships between these concepts and the corre-

sponding classes of matrices. First we consider the affine case when G is of
the form

G(x) = Ax + b, (9.1)

where A is an n × n matrix, b is a fixed vector in R
n.

Proposition 9.1. Suppose G is of form (9.1). Then G is a P0-(respectively,
P -) mapping if and only if A is a P0-(respectively, P -) matrix.

This assertion follows from Propositions 7.4 and 7.3. Taking into ac-
count Example 7.1, we now conclude that the classes of P0- and P -mappings
are not closed with respect to addition.

Exercise 9.1. Taking into account Propositions 7.9 and 9.1, prove that a
mapping G of form (9.1) is an M0-(respectively, M -)mapping if and only
if A is an M0-(respectively, M -) matrix.

We now turn to the differentiable case.

Proposition 9.2. (Facchinei and Pang, Proposition 3.5.9) Let G : X →
R

n be a continuously differentiable mapping on a rectangle set X ⊆ R
n.

Then the following assertions hold:
(i) If ∇G(x) is a P -matrix for all x ∈ X, then G is a P -mapping.
(ii) If ∇G(x) is a P0-matrix for all x ∈ X, then G is a P0-mapping.
(iii) If X is open and G is a P0-mapping, then ∇G(x) is a P0-matrix

for all x ∈ X.

Observe that the reverse assertion of part (i) is not true in general
even for the open set X. It suffices to consider the single-dimensional map
G(α) = α3, which is clearly a P -mapping, but G′(α) = 3α2, i.e. the
Jacobian is zero at the zero point.

Combining Propositions 7.9 and 9.2, we obtain similar properties of
differentiable M type mappings.

Corollary 9.1. Let G : X → R
n be a continuously differentiable mapping

on a rectangle set X ⊆ R
n. Then the following assertions hold:

(i) If ∇G(x) is an M -matrix for all x ∈ X, then G is an M -mapping.
(ii) If ∇G(x) is an M0-matrix for all x ∈ X, then G is an M0-mapping.
(iii) If X is open and G is an M0-mapping, then ∇G(x) is an M0-matrix

for all x ∈ X.
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We now consider the class of strict P -matrices. The next assertion can
be viewed as an extension of Proposition 7.5 from affine maps.

Proposition 9.3. Let X be a rectangle set in R
n of form (7.4). If G :

X → R
n is a P0-mapping, then for any ε > 0, G+εI is a strict P -mapping.

Proof. First we show that G(ε) = G + εI is a P -mapping for each ε > 0.
Choose x′, x′′ ∈ X, x′ �= x′′, set I = {i | x′

i �= x′′
i } and fix ε > 0. Since G is

a P0-mapping, there exists an index k ∈ I such that

(x′
k − x′′

k) [Gk(x′) − Gk(x′′)] = max
1≤i≤n

(x′
i − x′′

i ) [Gi(x
′) − Gi(x

′′)] ≥ 0,

but x′
k �= x′′

k and

ε(x′
k − x′′

k)(x′
k − x′′

k) > 0.

Adding these inequalities gives

(x′
k − x′′

k)
[
G

(ε)
k (x′) − G

(ε)
k (x′′)

]
> 0,

i.e. G(ε) is a P -mapping. Choose arbitrary values 0 < ε′′ < ε′, then
G(ε′′) = G(ε′) − (ε′ − ε′′)I = G + ε′′I is a P -mapping. It means that G(ε)

is a strict P -mapping.

Thus, we can obtain a strict P -mapping from an arbitrary P0-mapping
by using a small perturbation. However, in the differentiable case, strict
P -mappings ensure the converse of part (i) in Proposition 9.2.

Proposition 9.4. Let G : X → R
n be a continuously differentiable map-

ping on an open rectangle set X ⊆ R
n. If G is a strict P -mapping, then

∇G(x) is a P -matrix for all x ∈ X.

Proof. Since G is a strict P -mapping, there exists ε > 0 such that H =
G − εI is a P -mapping, hence its Jacobian ∇H is a P0-matrix. Since
G = H + εI, using Proposition 7.5 gives that ∇G(x) is a P -matrix.

Let us consider the standard CP (7.3). For the convenience of the
reader, we recall that the problem is to find a point x∗ ∈ R

n such that

x∗
i ≥ 0, Gi(x

∗) ≥ 0, x∗
i Gi(x

∗) = 0 for i = 1, . . . , n; (9.2)

where G : R
n
+ → R

n is a given mapping.

Proposition 9.5. Suppose that G is a P -mapping. Then CP (9.2) has at
most one solution.
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Proof. On the contrary, suppose that there exist at least two distinct solu-
tions x′ and x′′ of CP (9.2). Then we have

Gi(x
′)(x′′

i − x′
i) ≥ 0

and

Gi(x
′′)(x′

i − x′′
i ) ≥ 0

for all i = 1, . . . , n. Addition of these inequalities gives

[Gi(x
′) − Gi(x

′′)] (x′
i − x′′

i ) ≤ 0 for i = 1, . . . , n;

i.e. G is not a P -mapping.

This uniqueness result yields additional properties of CP’s with M cost
mappings. For example, if all the assumptions of Theorem 7.2 hold, and in
addition G is a P -mapping (i.e., it is a continuous M -mapping), then CP
(7.3) (or (9.2)) has a unique solution, which coincides with minD and the
Jacobi algorithm from Section 7.3 then converges to minD.

Exercise 9.2. Prove that the assertion of Proposition 9.5 remains true, if
we replace CP (9.2) by MCP (7.2) (7.4).

We are now ready to establish the basic existence and uniqueness result.

Theorem 9.1. Let G : R
n
+ → R

n be a continuous strict P -mapping. Then
CP (9.2) has a unique solution.

Proof. Due to Proposition 9.5, it suffices to show that CP (9.2) is solvable.
Given a number ρ > 0, set

Xρ = {x ∈ R
n | 0 ≤ xi ≤ ρ i = 1, . . . , n}

and consider the following MCP: Find xρ ∈ Xρ such that

(x − xρ)T G(xρ) ≥ 0 ∀x ∈ Xρ.

Taking into account Corollary 7.1 and Exercise 9.2, we conclude that this
MCP always has the unique solution xρ for each ρ > 0. We now proceed to
show that ‖xρ‖ < ρ for ρ > 0 large enough. Assume for contradiction that
‖xρ‖ → ∞ as ρ → +∞. Choose an arbitrary sequence {ρs} → +∞ and
set ys = xρs . Also, define the index set J = {i | ys

i → +∞ as s → +∞}
and set

zs
i =

{
ys

i if i �∈ J,
0 if i ∈ J ;
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for i = 1, . . . , n. Then we have

(ys
is
− zs

is
)
[
Gis

(ys) − Gis
(zs) − ε(ys

is
− zs

is
)
]

= max
1≤i≤n

(ys
i − zs

i ) [Gi(y
s) − Gi(z

s) − ε(ys
i − zs

i )] > 0

for some ε > 0. Since the index set {1, . . . , n} is fixed, without loss of
generality we can assume that so is is, i.e. is = l. It follows that l ∈ J and

ys
l Gl(y

s) > ε(ys
l )

2 + ys
l Gl(z

s).

Since {zs} is bounded, we have

ε(ys
l )

2 + ys
l Gl(z

s) → +∞ as s → ∞,

i.e. ys
l Gl(y

s) > 0 for k large enough. But 0 ∈ Xρ and, in view of Proposi-
tion 7.2, this inequality contradicts the definition of ys. It follows that there
exists a number s′ such that ‖ys‖ < ρs, hence 0 ≤ ys

i < ρs for i = 1, . . . , n,
if s ≥ s′. Take an arbitrary point x ∈ R

n
+. Then there exists a number

δ > 0 such that 0 ≤ ys
i + δ(xi − ys

i ) < ρs. Applying Proposition 7.2, we see
that

[ys
i + δ(xi − ys

i ) − ys
i ] Gi(y

s) ≥ 0,

or equivalently,
(xi − ys

i )Gi(y
s) ≥ 0

for i = 1, . . . , n, if s ≥ s′. Since ys ∈ R
n
+, using Proposition 7.1 and

Exercise 7.1, we conclude that ys now solves CP (9.2).

This existence result allows us to replace the condition D �= ∅ in The-
orem 7.3 with the strict P property of G. Then, the Jacobi algorithm will
converge to the unique solution minD of CP (7.3). This combination of
properties seems very natural for economic applications.

We give additionally existence and uniqueness results, which are similar
to those in Section 7.3, under usual (norm) monotonicity assumptions on
G, although such properties are mostly used for general VI’s; see Chapter
11.

Definition 9.2. Let X be a convex set in R
n. A mapping G : X → R

n is
said to be

(a) monotone, if, for each pair of points x′, x′′ ∈ X, it holds that

(x′ − x′′)T [G(x′) − G(x′′)] ≥ 0;

(b) strictly monotone, if, for each pair of points x′, x′′ ∈ X, x′ �= x′′, it
holds that

(x′ − x′′)T [G(x′) − G(x′′)] > 0
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From the definitions it follows that monotonicity (strict monotonicity)
is stronger than the P0(P ) property.

Exercise 9.3. Let X be a set of form (7.4). Prove that G : X → R
n

is a P0-(respectively, P -) mapping, if it is monotone (respectively, strictly
monotone), but the reverse assertions are not true.

Next, let us consider the affine case when G is defined in (9.1). Then
monotonicity becomes closely related with positive (semi)definiteness of A.

Exercise 9.4. Suppose that G is of form (9.1). Prove that G is monotone
(respectively, strictly monotone) if and only if A is positive semidefinite
(respectively, positive definite).

These assertions are similar to those in Proposition 9.1, hence Exercise
9.3 can be viewed as an extension of Corollary 7.2. It means that CP (9.2)
with G being strictly monotone has also at most one solution.

Theorem 9.2. (i) If G : X → E is a continuous and monotone mapping
and there exists a point y ≥ 0 such that G(y) > 0, then CP (9.2) has a
solution.

(ii) If G : X → E is a continuous and strictly monotone mapping and
there exists a point y ≥ 0 such that G(y) ≥ 0, then CP (9.2) has a unique
solution.

Proof. Take an arbitrary x ∈ R
n
+. Then, by monotonicity,

(x − y)T G(x) ≥ xT G(y) − yT G(y).

Since G(y) > 0, there exists a number β > 0 such that the right-hand side
of the above inequality is positive, if x ∈ R

n
+\Y , where

Y =

{
x ≥ 0

n∑

i=1

xi ≤ β

}
.

Assertion (i) follows now from Theorem 7.1 with X = R
n
+.

In case (ii), it suffices to prove that the conditions of part (i) hold. Fix
a number β > 0. Then Theorem 7.1 with X = K guarantees the existence
of a solution x̃ ∈ K for the following VI:

(z − x̃)T [G(x̃) − G(y)] ≥ 0 ∀z ∈ K,

where

K =

{
z ≥ y

n∑

i=1

zi =

n∑

i=1

yi + β

}
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is clearly nonempty, convex, and compact. It follows that

zT [G(x̃) − G(y)] ≥ x̃T [G(x̃) − G(y)] ∀z ∈ K.

Since x̃ �= y, we have

(x̃ − y)T [G(x̃) − G(y)] > 0,

therefore,

(z − y)T [G(x̃) − G(y)] ≥ (x̃ − y)T [G(x̃) − G(y)] > 0 ∀z ∈ K.

It follows that G(x̃) > 0, i.e. the conditions of part (i) hold for y = x̃ and
(ii) is also true.

Exercise 9.5. Prove the extensions of Theorems 9.1 and 9.2 for MCP
(7.2), (7.4).

9.2 Solution methods for CP’s with P properties

There exist several different approaches to compute a solution of CP (9.2)
with G being a P type mapping; see e.g. Facchinei and Pang (2003). Most
of them consist in introduction of an artificial function (or a mapping)
which enables one to convert the initial CP into a system of nonlinear
equations or into an optimization problem since a great number of effective
solution methods were developed for just these classes of problems. In such
a way, one can choose a suitable algorithm for solving the initial problem.
We consider one of the simplest approaches, which is related with a so-
called regularized merit function.

Let us consider CP (9.2) where G : R
n
+ → R

n is a continuously differ-
entiable mapping. Recall that it means that, for each x ∈ R

n
+, there exists

the Jacobian of G, denoted by ∇G(x), whose entries are partial derivatives
∂Gi(x)

∂xj
for i, j = 1, . . . , n, and that ∇G is continuous. Next, let us con-

sider the regularized merit function, suggested by M. Fukushima, which is
defined as follows:

ϕα(x) = max
y∈R

n
+

{
(x − y)T G(x) − (2α)−1‖x − y‖2

}
,

where α > 0 is a fixed number. This function can be equivalently re-
defined as follows:

ϕα(x) =
n∑

i=1

max
yi≥0

{
(xi − yi)Gi(x) − (2α)−1(xi − yi)

2
}

(9.3)

=

n∑

i=1

{
(xi − yα

i )Gi(x) − (2α)−1(xi − yα
i )2
}

,
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i.e., yα
i is the unique solution of the i-th one-dimensional quadratic pro-

gramming problem in (9.3) and it can be computed explicitly: yα
i =

max{0, xi − αGi(x)}.
Set yα(x) = (yα

1 , . . . , yα
n)T , then we have

yα(x) = π+ [x − αG(x)] , (9.4)

where π+(·) denotes the projection mapping onto R
n
+; see Section 11.2.

Exercise 9.6. By using the projection properties, prove the formulas for
computation of yα

i and yα(x).

The basic properties of the function ϕα are collected in the next propo-
sition.

Proposition 9.6. (i) ϕα(x) ≥ 0 for all x ≥ 0.
(ii) The following statements are equivalent:

(a) ϕα(x∗) = 0 and x∗ ≥ 0,
(b) x∗ solves CP (9.2),
(c) x∗ = yα(x∗).

Proof. By definition, for each x ≥ 0, we have

ϕα(x) ≥ (x − x)T G(x) − (2α)−1‖x − x‖2 = 0,

hence assertion (i) is true. In case (ii), if x∗ solves CP (9.2), then, by
Propositions 7.1 and 7.2,

(y − x∗)T G(x∗) ≥ 0 ∀y ≥ 0, (9.5)

hence,

ϕα(x∗) = max
y≥0

{
(x∗ − y)T G(x∗) − (2α)−1‖x∗ − y‖2

}
≤ 0,

it follows that ϕα(x∗) = 0 due to (i). Next, in view of (9.4), we can apply
Proposition 11.12 (ii) with x = x∗ − αG(x∗) and Y = R

n
+ and obtain

(y − yα(x∗))
T

[yα(x∗) − x∗ + αG(x∗)] ≥ 0 ∀y ≥ 0, (9.6)

hence

ϕα(x∗) = (x∗ − yα(x∗))T G(x∗) − (2α)−1‖x∗ − yα(x∗)‖2

≥ (2α)−1‖x∗ − yα(x∗)‖2

and ϕα(x∗) = 0 now implies x∗ = yα(x∗). However, if x∗ = yα(x∗), then
(9.6) implies (9.5), and, on account of Proposition 7.1, x∗ solves CP (9.2).
Thus, part (ii) is also true.
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The results of Proposition 9.6 show that ϕα is a merit (or gap) function
for CP (9.2), i.e. it is equivalent to the optimization problem:

min
x≥0

→ ϕα(x). (9.7)

However, ϕα is non-convex in general, i.e. problem (9.7) may have local
minima which are not solutions of (9.2). Therefore, we should introduce
additional conditions ensuring the property that each local minimizer in
(9.7) is a solution of CP (9.2). First we note that ϕα is a differentiable
function, and, using the formula for derivatives of max type functions (e.g.
see Facchinei and Pang (2003), Theorem 10.2.1), we have

∇ϕα(x) = G(x) +
[
∇G(x) − α−1I

]T
(x − yα(x)).

Moreover, since the projection mapping is continuous (see e.g. Proposition
11.12 (iii)), (9.4) implies that the mapping x �→ yα(x) is also continuous.
Therefore, ϕα is a continuously differentiable function. Let us consider the
problem of finding a stationary point x∗ ≥ 0 for (9.7) in the form of VI:

(y − x∗)T∇ϕα(x∗) ≥ 0 ∀y ≥ 0. (9.8)

Due to Proposition 7.1, it can be equivalently rewritten as CP:

x∗ ≥ 0, ∇ϕα(x∗) ≥ 0, (x∗)T∇ϕα(x∗) = 0.

Theorem 9.3. Suppose that ∇G(x) is a P -matrix for all x ≥ 0. Then
problems (9.2), (9.7), and (9.8) have the same solution set.

Proof. The equivalence between (9.2) and (9.7) is given in Proposition 9.6.
Theorem 11.1 yields the implication (9.7) =⇒ (9.8). Suppose that x∗ solves
(9.8), then

(yα
i − x∗

i )Gi(x
∗) + α−1(yα

i − x∗
i )

2 ≥ (yα
i − x∗

i )
[
∇G(x∗)T (yα − x∗)

]
i

for i = 1, . . . , n, where yα = yα(x∗). Applying now (9.6) with y = x∗ gives

(yα
i − x∗)

[
∇G(x∗)T (yα − x∗)

]
i
≤ 0 for i = 1, . . . , n,

but ∇G(x∗) is a P -matrix and Proposition 7.3 yields yα(x∗) = x∗. On
account of Proposition 9.6, it follows that x∗ solves (9.7).

Thus, Theorem 9.3 allows us to replace the initial CP (9.2) with a VI (or
CP), which is an optimality condition for the optimization problem (9.7),
i.e. its cost mapping is the gradient of the merit function ϕα. Being based
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on this property, we can suggest the simplest gradient projection algorithm
for CP (9.2).

Algorithm (gradient projection). Choose a point x0 ∈ R
n
+, numbers

α > 0, λ > 0, β ∈ (0, 1), γ ∈ (0, 1), and set k = 0.
At the k-th iteration, we have a point xk ∈ R

n
+, compute yα(xk),

zk = π+

[
xk − λ∇ϕα(xk)

]
,

and set dk = zk − xk. Afterwards, find m as the smallest non-negative
integer such that

ϕα(xk + γmdk) ≤ ϕα(xk) − βγm(dk)T∇ϕα(xk),

set µk = γm, xk+1 = xk + µkdk, and k = k + 1.

The convergence result for this method follows from Theorems 9.3 and
13.4.

Theorem 9.4. Suppose that ∇G(x) is a P -matrix for all x ∈ R
n
+, and that

the set L0 =
{
x ∈ R

n
+ | ϕα(x) ≤ ϕα(x0)

}
is bounded. Then the sequence

{xk} generated by the above algorithm is well-defined and converges to a
unique solution of CP (9.2).

Note that the above merit function and algorithm can be also adjusted
for MCP (7.2), (7.4).



Chapter 10

Applications

In this chapter, we give examples of applications of the results of the previ-
ous chapter concerning theory and methods of CP’s with P type mappings.

10.1 Walrasian price equilibrium models

We recall that the general Walrasian price equilibrium model describes an
economy with perfect competition. This model was considered in Sections
5.2, 8.2, and 8.3. The economy deals in n commodities, and given a price
vector p ≥ 0, the demand and supply are determined as vectors D(p) and
S(p), respectively, hence one can define the excess demand

E(p) = D(p) − S(p).

The equilibrium price vector is defined to satisfy the complementarity con-
ditions (see (5.3)):

p∗ ≥ 0, E(p∗) ≤ 0, (p∗)T E(p∗) = 0, (10.1)

i.e. it solves CP (7.3) with G(p) = −E(p). We denote by P ∗ the set of
equilibrium prices. In Section 8.2, this problem was considered under gross
substitutability of (excess) demand, which yielded CP’s with Z-mappings.
We now consider some additional properties which ensure for −E to be a
P0 (or even an M0) type mapping.

Definition 10.1. Let X be a box constrained set in R
n
+. A mapping

A : X → R
n is said to be positively homogeneous with degree m, if for each

x ∈ X and for each λ > 0 such that λx ∈ X, it holds that A(λx) = λmA(x).

Namely, combining these properties, we obtain that −E is a P0-mapping.

115
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Proposition 10.1. Let X be a cone contained in R
n
+. If A : X → R

n

is positively homogeneous with degree 0 and a GS-mapping, then −A is a
P0-mapping. If in addition A is continuous, then −A is a M0-mapping.

Proof. Choose arbitrary points x′, x′′ ∈ X, x′ �= x′′. First we consider the
case when there exists i such that x′

i > x′′
i . Set θ = max

i=1,...,n
(x′

i/x′′
i ) > 1,

then θx′′ ≥ x′ and there exists at least one index k such that x′
k = θx′′

k

and, by the GS property,

Ak(x′) ≤ Ak(θx′′) = Ak(x′′).

It follows that x′
k > x′′

k and

− [Ak(x′) − Ak(x′′)] (x′
k − x′′

k) ≥ 0.

The case when there exists i such that x′
i < x′′

i can be considered similarly.
It means that −A is a P0-mapping. If A is continuous, the result follows
from Proposition 8.2 and Definition 9.1 (d).

Observe that positive homogeneity of degree 0 is a very popular prop-
erty of (excess) demand in classical economic equilibrium models; see e.g.
Morishima (1964), Nikaido (1968), and Arrow and Hahn (1971). It follows
usually from the insatiability of consumers and also means that money is
neutral in such models. Note that the utility functions of consumers from
the pure trade market model, given in Section 8.3, satisfy this property
and the excess demand functions in (8.11) are positively homogeneous of
degree 0, i.e. −E is a M0-mapping. However, we can not apply directly the
existence and uniqueness results from Section 9.1 to these models since the
(excess) demand is then undefined for prices with zero coordinates, which
also follows from insatiability of consumers. Besides, we recall that, due to
the Euler theorem, see e.g. Nikaido (1968), Lemma 18.4, it holds that

∇E(p)p = 0 ∀p ∈ R
n
>

if E : R
n
> → R

n is differentiable and positively homogeneous of degree 0.
This means that the Jacobian ∇E(p) is always degenerate, i.e. −E can not
be a P -(or M -) mapping and that the equilibrium price in (10.1) can not be
unique. This fact can be deduced directly from the positive homogeneity
of degree m, since each solution p∗ of (10.1) must be in R

n
> that implies

E(p∗) = 0, hence any vector p = λp∗ with λ > 0 is also a solution of
(10.1). There are a great number of works devoted to existence results for
Walrasian price models; see e.g. Nikaido (1968), Arrow and Hahn (1971),
and Border (1985). Some results under positive homogeneity will be given
in Section 12.3. For the convenience of the reader, we now give one of such
formulations (see Theorem 12.2) here as well.



10.1. WALRASIAN PRICE EQUILIBRIUM MODELS 117

Proposition 10.2. Suppose that E : R
n
> → R

n is continuous, positively
homogeneous with degree 0, and satisfies the Walras law, i.e.

pT E(p) = 0 ∀p ∈ R
n
>.

Suppose also that for every sequence {pk} ⊂ R
n
> converging to p, it holds

that

Ei(p
k) =

{
→ +∞ if pi = 0,
≥ C > −∞ if pi > 0;

as k → ∞. Then problem (10.1) has a solution which also solves the
problem

p∗ > 0, E(p∗) = 0. (10.2)

At the same time, if there are price rigidities in the economy, model
(10.1) should be replaced with MCP (8.5), where the feasible box - con-
strained set X is defined in (8.9) and G = −E. For instance, if 0 < αi <
βi < +∞ for i = 1, . . . , n, then G is finite on X and is usually continuous.
The existence result for such a problem follows from Corollary 7.1. Next,
following the regularization approach, we can replace the excess demand
mapping with the perturbed mapping

Ẽ(p) = E(p) − εp with ε > 0, (10.3)

then −Ẽ becomes a strict P -mapping if E is positively homogeneous with
degree 0 and gross substitutable because of Propositions 10.1 and 9.3.
Hence, if αi > 0 for i = 1, . . . , n, then, due to Theorem 9.1, the per-
turbed price equilibrium problem will have a unique solution. For ε small
enough, this solution is close to the equilibrium price in the initial model.

The results of Section 9.2 can also be applied to Walrasian equilibrium
models. Theorem 9.4 says that the gradient projection algorithm, being
applied to problem (10.1) requires certain additional assumptions for its
convergence. In order to obtain the desired P property, we can again
apply the regularization approach and replace the initial price equilibrium
problem by its approximation via applying the perturbed mapping Ẽ from
(10.3). Also, the same algorithm can be applied for finding equilibrium
prices under price rigidities. The economic interpretation of the gradient
projection algorithm of Section 9.2 is not so easy since it is based upon the
artificial merit function, hence it represents quite a complicated control
procedure. At the same time, the simplified process, which is based upon
the somewhat different direction finding procedure

pk+1 = π+

[
pk + λkE(pk)

]
, λk > 0, (10.4)
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which is also known as the Walras tâtonnement process, admits a very
clear interpretation. In fact, for each commodity i, (10.4) means that the
positive excess demand Ei(p

k) forces the current price pi to increase and
the negative excess demand forces the price to decrease. In both the cases,
the absolute value |Ei(p

k+1)| will decrease and even tends to zero under a
suitable choice of the stepsizes. For example, we can choose λk as follows:

λk =
αk

‖E(pk)‖
,

∞∑

k=0

αk = ∞,
∞∑

k=0

α2
k < ∞. (10.5)

Then, under the above conditions, algorithm (10.4)–(10.5) generates a se-
quence of prices {pk} which converges to an equilibrium price. It is known
that this convergence result is due to the revealed preference condition
(10.6) (see Arrow and Hahn (1971) and Nikaido (1968)), which means geo-
metrically that in the presence of the Walras law, the angle between the
excess demand vector E(p) at an arbitrary non-equilibrium price vector
p and the direction p∗ − p to each equilibrium price is acute, and can be
deduced e.g. from Theorem 13.3. Conditions (10.5) determine a compro-
mise between too slow and too rapid convergence of stepsizes to zero and
are fulfilled if we set

αk =
α

k + 1
with α > 0.

We now show that the desired condition ensuring the convergence of the
tâtonnement process to an equilibrium price vector is fulfilled under certain
positive homogeneity and gross substitutability properties. For simplicity,
we utilize a somewhat strengthened property (cf. Definition 8.2).

Definition 10.2. Let X be a box constrained set in R
n
+. A mapping

A : X → R
n is said to be strict gross substitutable (or a strict GS-mapping)

if, for each pair of points x′, x′′ ∈ X such that x′ ≥ x′′, x′ �= x′′, and
I(x′, x′′) = {i | x′

i = x′′
i } is nonempty, there exists an index k ∈ I(x′, x′′)

with Ak(x′) > Ak(x′′).

Theorem 10.1. Suppose that all the assumptions of Proposition 10.2 are
fulfilled, and that E : R

n
> → R

n is a strict GS-mapping. Then:
(i) the equilibrium price vector p∗ exists and is defined uniquely up to

positive scalar multiples, i.e.

P ∗ = {p ∈ R
n
> | p = λp∗, λ > 0};

(ii) it holds that

(p∗)T E(p) > 0,∀p ∈ R
n
>\P

∗,∀p∗ ∈ P ∗. (10.6)
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Proof. From Proposition 10.2 it follows that P ∗ �= ∅. Suppose that p∗, p̃ ∈
P ∗ and p̃ �= αp∗ for any α > 0. Then E(p∗) = E(p̃) = 0 and there exists
a number β > 0 such that p̃ ≥ βp∗ and p̃k = βp∗k for at least one k. Since
p̃ �= βp∗, there exists an index j such that 0 = Ej(βp∗) < Ej(p̃) = 0, which
is a contradiction. Hence, part (i) is true. Next, take p∗ ∈ P ∗ such that

n∑

i=1

p∗i = 1

and set

ϕ(p) = (p∗)T E(p).

From the properties of E we deduce that the function ϕ is continuous and
bounded below on R

n
>, moreover, it attains the minimal value at a point p̃

of R
n
>. Suppose that p̃ �∈ P ∗, then there exists the maximal number α > 0

such that q = αp∗ ≤ p̃, hence I(p̃, q) = {j | p̃j = qj} �= ∅, but q �= p̃. Since
E is a strict GS-mapping, there exists an index j ∈ I(p̃, q) such that

Ej(p̃) > Ej(q) = Ej(p
∗) = 0.

Choose δ > 0 small enough and set

q̃i =

{
p̃i if i �= j,
p̃i + δ if i = j.

Then q̃ = (q̃1, . . . , q̃n) ∈ R
n
> and ϕ(p̃) ≤ ϕ(q̃). For brevity, set di =

Ei(p̃) − Ei(q̃). By using the Walras law, we have

n∑

i=1

dip̃i =

n∑

i=1

Ei(p̃)p̃i −
n∑

i=1

Ei(q̃)p̃i = −
n∑

i=1

Ei(q̃)p̃i

and

0 =
n∑

i=1

q̃iEi(q̃) = δEj(q̃) +
n∑

i=1

p̃iEi(q̃),

hence
n∑

i=1

dip̃i = δEj(q̃),

or equivalently,

dj p̃j = δEj(q̃) −
∑
i�=j

dip̃i. (10.7)
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At the same time, we have

n∑

i=1

dip
∗
i ≤ 0,

or

djp
∗
j ≤ −

∑

i�=j

dip
∗
i .

Multiplying this inequality by α and subtracting it from (10.7), we obtain

dj(p̃j − αp∗j ) ≥ δEj(q̃) −
∑

i�=j

di(p̃i − αp∗i ).

Due to Proposition 8.2, −E is a Z-mapping on R
n
>, therefore di ≤ 0 for

every i �= j, but p̃i − αp∗i ≥ 0 for i = 1, . . . , n and we can choose δ > 0
small enough so that Ej(q̃) > 0 due to continuity of E. It follows that
dj(p̃j − αp∗j ) > 0, i.e. p̃j �= αp∗j , which is a contradiction. This means that
part (ii) is true.

It is known that the strict GS property of E in Theorem 10.1 can be
replaced by the usual GS property, however, the substantiation is then
essentially longer; see e.g. Nikaido (1968), Section 18.3.

Now we consider a modification of the classical Walrasian model above.
Namely, divide all the economical agents into two parts. The first part

consists of classical consumers whose total demand mapping D : R
n
> → R

n

is continuous, gross substitutable, and positive homogeneous with degree
0. They may also possess some endowments of commodities and the total
endowments are given by the vector S ∈ R

n
+. An example of such eco-

nomic agents was presented in the pure trade market model from Section
8.3. Besides, we suppose that the market involves a number of “single-
dimensional” consumers and producers so that each of them either demands
or supplies a single commodity, and these values may only depend on the
price of just this commodity. Then, without loss of generality we can sup-
pose that the behavior of the second part can be described by the diagonal
excess demand mapping

B(p) = (B1(p1), . . . , Bn(pn))
T

and that each function Bi : R+ → R is non-increasing and continuous for
i = 1, . . . , n. Then we can define the total excess demand mapping

E(p) = D(p) + B(p) − S, (10.8)
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and the equilibrium price vector can be defined from (10.1). The market
structure described need not be closed, i.e. the Walras law does not hold
in general. It follows from Proposition 10.1 that −D is a M0-mapping,
moreover, −B is monotone by definition, i.e. it is a P -mapping. It was
noticed in Section 9.1 that the classes of P0- and P -mappings are not
additive, but in this special case we can establish P type properties of the
mapping G = −E.

Definition 10.3. A function ϕ : R → R is said to be strongly decreasing
with modulus τ > 0, if, for each pair of numbers x′, x′′ ∈ R, it holds that

[ϕ(x′) − ϕ(x′′)] (x′ − x′′) ≤ −τ(x′ − x′′)2.

Together with the usual monotonicity properties of the functions Bi, we
shall describe the behavior of the second part of economic agents with the
help of such strengthened conditions. As a result, we obtain strengthened
P properties of the mapping G.

Proposition 10.3. If each function Bi : R+ → R is non-increasing (re-
spectively, decreasing, strongly decreasing), then the mapping −E : R

n
> →

R
n, defined in (10.8), is a P0-mapping (respectively, a P -mapping, a strict

P -mapping).

Exercise 10.1. Prove the assertion of Proposition 10.3.

Proposition 10.3 enables us to apply the results of Chapter 9 to the
above equilibrium model. Let us consider its extended form (8.5) with the
feasible set X being defined in (8.9) and G = −E. If 0 < αi < βi < +∞ for
i = 1, . . . , n, then, on account of Corollary 7.1, we see that the equilibrium
price vector exists, and if additionally Bi is decreasing for i = 1, . . . , n, then
it is defined uniquely because of Proposition 9.5. Next, applying Theorem
9.1, we see that MCP (8.5), (8.9) has a unique solution if αi > 0 and Bi

is strongly decreasing for each i = 1, . . . , n. Moreover, the algorithm from
Section 9.2 can be utilized to find equilibrium prices.

10.2 Oligopolistic equilibrium models

We now describe applications of the results of Chapter 9 to the imperfectly
competitive equilibrium model from Section 5.4. In this model, there are
n firms supplying a homogeneous product. Unlike Section 8.4, we consider
here the Cournot oligopoly. If the i-th firm supplies xi units of the
product, then its profit is defined by

fi(x) = xip(σx) − hi(xi),
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where x = (x1, . . . , xn), hi : R+ → R is the cost function, p : R+ → R is

the inverse demand (or price) function of the market, and σx =
n∑

i=1

xi is the

total supply in the market. As indicated in Section 5.4, the solution x∗ can
be defined as the Nash equilibrium point of the n-person non-cooperative
game, where the i-th player has the utility function fi and the strategy set
R+; see (5.19).

We shall consider this problem under the following blanket assumptions.
Suppose that the cost functions hi are convex, the inverse demand function
p is non-increasing, and that the industry revenue function µ(σ) = σp(σ)
is concave on R+. These assumptions conform to the usually accepted
economic behavior; see e.g. Okuguchi and Szidarovszky (1990). Besides,
for the sake of simplicity, we also suppose that all the functions p and hi

are twice continuously differentiable.
The above condition on µ was proposed by F.H. Murphy, H.D. Sherali,

and A.L. Soyster, they noticed that it implies the concavity of each utility
function fi in xi.

Lemma 10.1. The i-th firm profit function fi is concave in xi for i =
1, . . . , n.

Proof. Set ϕ(α) = αp(α + β), then, by assumption,

ϕ′′(α) = 2p′(α + β) + αp′′(α + β)

= [(α + β)p(α + β)]
′′ − βp′′(α + β),

also, we have p′(α+β) ≤ 0. If we suppose that ϕ′′(α) > 0, then, for β > 0,
we obtain

αp′′(α + β) > 0 and − βp′′(α + β) > 0,

a contradiction. Since hi convex, we now conclude that fi is concave in xi

on R+.

This property enables us to replace the Nash equilibrium problem with
CP (9.2), where

Gi(x) = h′
i(xi) − p(σx) − xip

′(σx), i = 1, . . . , n, (10.9)

or with problem (7.2), where X = R
n
+; see (5.20) and (5.21). The equiva-

lence result follows now from Corollary 11.2.

Theorem 10.2. Under the above assumptions, the Nash equilibrium prob-
lem (5.19) is equivalent to CP (9.2) (or (5.20)), (10.9).

Exercise 10.2. Prove the assertion of Theorem 10.2.
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We intend to establish P type properties of the mapping G. Its Jacobian
∇G(x) can be written as follows:

∇G(x) = An(x) + H(x),

where H(x) is the n × n diagonal matrix with diagonal entries h′′
i (xi) for

i = 1, . . . , n, and

An(x) =

⎛
⎜⎜⎜⎝

β + α1 α1 α1 . . . α1

α2 β + α2 α2 . . . α2

...
...

...
. . .

...
αn αn αn . . . β + αn

⎞
⎟⎟⎟⎠ ,

where we set β = −p′(σx) and αi = −p′(σx) − xip
′′(σx) for brevity. It

follows that it is sufficient to consider only the principal minors detAk(x)
of the matrix An(x).

Lemma 10.2. It holds that

det Ak(x) = (−p′(σx))
k−1

[
−(k + 1)p′(σx) −

(
k∑

i=1

xi

)
p′′(σx)

]
.

Proof. By definition,

det Ak(x) =

∣∣∣∣∣∣∣∣∣

β + α1 α1 α1 . . . α1

α2 β + α2 α2 . . . α2

...
...

...
. . .

...
αk αk αk . . . β + αk

∣∣∣∣∣∣∣∣∣
.

Adding all the rows to the first one and subtracting the first column from
others yields

det Ak(x) =

∣∣∣∣∣∣∣∣∣∣∣

β +
k∑

i=1

αi 0 0 . . . 0

α2 β 0 . . . 0
...

...
...

. . .
...

αk 0 0 . . . β

∣∣∣∣∣∣∣∣∣∣∣

= βk−1(β +
k∑

i=1

αi).

Hence,

det Ak(x) = (−p′(σx))k−1

[
−(k + 1)p′(σx) −

(
k∑

i=1

xi

)
p′′(σx)

]
.
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Therefore, non-negativity of the principal minors ensures the desired
properties.

Proposition 10.4. (i) G : R
n
+ → R

n in (10.9) is a P0-mapping.
(ii) If in addition hi, i = 1, . . . , n, are strictly convex, then G is a P -

mapping.
(iii) If in addition hi, i = 1, . . . , n, are strongly convex, then G is a

strict P -mapping.

Proof. By assumption, p′(σ) ≤ 0. Fix x ∈ R
n
+. If p′′(σx) ≤ 0, then it

follows from Lemma 10.2 that all the principal minors of An(x) are non-
negative. Otherwise, we have p′′(σx) > 0 and

detAk(x) = (−p′(σx))k−1

×

[
−(k − 1)p′(σx) − µ′′(σx) +

(
n∑

i=k+1

xi

)
p′′(σx)

]
≥ 0,

because µ′′(σx) ≤ 0 by assumption. Again, all the principal minors of
An(x) are non-negative. Since An(x) = ∇F (x), where

Fi(x) = −p(σx) − xip
′(σx), i = 1, . . . , n, (10.10)

F : R
n
+ → R

n is a P0-mapping because of Proposition 9.2. Moreover, all the
derivatives h′′

i (xi) are non-negative. Hence, assertion (i) is true. In case (ii)
(respectively, (iii)), we see that each h′

i is strictly monotone (respectively,
strongly monotone) on account of Proposition 11.3. It follows that these
assertions are true.

By imposing additional conditions on the inverse demand and industry
revenue functions we can also obtain strengthened P properties of G.

Proposition 10.5. (i) If p′(σ) < 0 and either µ′′(σ) < 0 or p′′(σ) ≤ 0 for
all σ ≥ 0, then ∇G(x) is a P -matrix for every x ≥ 0.

(ii) If there exists δ > 0 such that p′(σ) ≤ −δ and either µ′′(σ) < −δ
or p′′(σ) ≤ 0 for all σ ≥ 0, then G is a strict P -mapping.

Proof. Since the matrix H(x) is diagonal with non-negative entries, it suf-
fices to establish the above properties for the mapping F from (10.10) and
for its Jacobian. In case (i), following the proof of Proposition 10.4, we
see from Lemma 10.2 that all the principal minors of ∇F (x) = An(x) are
positive. By definition, ∇F (x) is a P -matrix and so is ∇G(x). In case (ii),
fix ε ∈ (0, δ), then

det(Ak(x) − εI)
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=

∣∣∣∣∣∣∣∣∣

β + α1 − ε α1 α1 . . . α1

α2 β + α2 − ε α2 . . . α2

...
...

...
. . .

...
αk αk αk . . . β + αk − ε

∣∣∣∣∣∣∣∣∣

= (β − ε)k−1

(
β − ε +

k∑

i=1

αi

)
.

Hence,
det(Ak(x) − εI) = (−p′(σx) − ε)k−1

×

[
−(k + 1)p′(σx) − ε −

(
k∑

i=1

xi

)
p′′(σx)

]
.

If p′′(σx) ≤ 0, it follows that det(Ak(x) − εI) > 0. By definition, F is a
strict P -mapping, and so is G.

These properties enable us to establish several existence and uniqueness
results for the oligopolistic equilibrium problem by utilizing the correspond-
ing results from Section 9.1.

Theorem 10.3. Suppose that at least one of the following conditions holds:
(a) hi, i = 1, . . . ,m, are strictly convex;
(b) p′(σ) < 0 and either µ′′(σ) < 0 or p′′(σ) ≤ 0 for all σ ≥ 0.
Then CP (9.2), (10.9) has at most one solution.

The result follows from Propositions 10.4 (ii), 10.5 (i), and 9.5.

Theorem 10.4. Suppose that at least one of the following conditions holds:
(a) hi, i = 1, . . . ,m, are strongly convex;
(b) there exists δ > 0 such that p′(σ) ≤ −δ and either µ′′(σ) ≤ −δ or

p′′(σ) ≤ 0 for all σ ≥ 0.
Then CP (9.2), (10.9) has a unique solution.

The result follows from Propositions 10.4 (iii), 10.5 (ii), and Theorem
9.1.

By introducing an additional coercivity condition, we can somewhat
strengthen the above results.

Definition 10.4. Industry output is said to be bounded if there exists a
compact subset K of R

n
+ such that

Gi(x) > 0 i = 1, . . . , n for every x ∈ R
n
+\K.

This condition was suggested by C.D. Kolstad and L. Mathiesen and
has rather explicit economic sense. In fact, this means that there exists an
output level for which marginal profits are negative for all producers.
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Theorem 10.5. Suppose that industry output is bounded. Then CP (9.2),
(10.9) is solvable. If in addition the conditions of Theorem 10.3 are fulfilled,
then CP (9.2), (10.9) has a unique solution.

Proof. Without loss of generality we can suppose that 0 ∈ K, then condi-
tion (7.5) holds, and Theorem 7.1 now implies that problem (7.2), (10.9)
with X = R

n
+ is solvable.

All the above results can be adjusted for the case when outputs of
producers are bounded, i.e., xi ∈ [0, βi], βi < +∞ for i = 1, . . . , n. Then
CP (9.2), (10.9) can be clearly replaced with MCP (7.2), where

X = [0, β1] × · · · × [0, βn].

Exercise 10.3. Extend Theorems 10.2–10.5 for the case of bounded out-
puts.

These results allow us to apply the gradient projection algorithm, de-
scribed in Section 9.2, to finding solutions of the oligopolistic equilibrium
problems. Although this algorithm relies upon the computation of the gra-
dient of the artificial gap function ϕα (see (9.3)), its descent direction at
xk is close to the vector −G(xk) where Gi(x

k) is defined in (10.9), and can
be also viewed as a dynamical game process, which strengthens stability
properties of the usual projection process:

xk+1 = π+

[
xk − λkG(xk)

]
,

i.e., xk+1
i = max{xk

i − λkGi(x
k), 0} for i = 1, . . . , n. In fact, given an out-

put vector xk, the difference between the marginal profit p(σxk)+xk
i p′(σxk)

and the marginal cost h′
i(x

k
i ) is determined. If this value is positive (neg-

ative), then the output of the i-th producer increases (decreases) in the
simplified process, which corresponds to the natural behavior of players.
Under certain additional assumptions, this somewhat modified process will
converge to a solution. Behavior of other dynamical game processes are
described in the book by Okuguchi and Szidarovszky (1990).

Exercise 10.4. Give the sufficient conditions of convergence of the algo-
rithm of Section 9.2 for CP (9.2), (10.9).

Of course, there exist specialized tools for investigation and solution
of particular classes of economic equilibrium problems. Nevertheless, the
rather general approach presented can be always considered as a good start-
ing point for developing very efficient methods.
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The variational inequalities constitute a very general class of problems
in Nonlinear Analysis and are very suitable for formulation of various equi-
librium models. In this part, we present relationships between variational
inequalities and other basic nonlinear problems, existence and uniqueness
results, basic solution methods and their applications to the previous equi-
librium models.
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Chapter 11

Theory of Variational

Inequalities

In this chapter, we consider some elements of theory of variational in-
equality problems with continuous single-valued mappings under a finite-
dimensional space setting.

11.1 Variational inequalities and related problems

In this section, we give some facts from the theory of variational inequality
problems and their relations with other problems of Nonlinear Analysis.

Let X be a nonempty, closed and convex subset of a finite-dimensional
Euclidean space E, G : X → E a continuous mapping. The usual varia-
tional inequality problem (VI for short) is the problem of finding a point
x∗ ∈ X such that

(x − x∗)T G(x∗) ≥ 0 ∀x ∈ X; (11.1)

see Figure 11.1. Its solution set will be denoted by X∗.
We first recall definitions of monotonicity for mappings.

Definition 11.1. Let X be a convex set in E and let Q : X → E be a
mapping. The mapping Q is said to be

(a) strongly monotone on X with constant τ > 0 if for each pair of
points x, y ∈ X, it holds that

(x − y)T [Q(x) − Q(y)] ≥ τ‖x − y‖2;

(b) strictly monotone on X if for all distinct x, y ∈ X, it holds that

(x − y)T [Q(x) − Q(y)] > 0;

131
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Figure 11.1:
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(c) monotone on X if for each pair of points x, y ∈ X, it holds that

(x − y)T [Q(x) − Q(y)] ≥ 0.

It follows from the definitions that the following implications hold:

(a) =⇒ (b) =⇒ (c).

Observe that all these properties are additive. In addition, we give the
known monotonicity criteria for continuously differentiable mappings; see
e.g. Facchinei and Pang (2003), Proposition 2.3.2.

Proposition 11.1. Let Y be an open convex subset of X and let Q : X →
E be continuously differentiable on Y .

(i) Q is monotone on Y if and only if ∇Q is positive semidefinite on
Y ;

(ii) Q is strictly monotone on Y if ∇Q is positive definite on Y ;
(iii) Q is strongly monotone on Y with constant τ if and only if it holds

that
(p)T∇Q(x)p ≥ τ‖p‖2 ∀p ∈ E, x ∈ Y.

Note that the Jacobian of a differentiable strictly monotone mapping
need not be positive definite.
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The simplest example of VI is the problem of solving a system of equa-
tions. It is easy to see that if X = E in (11.1), then VI (11.1) is equivalent
to the problem of finding a point x∗ ∈ E such that

G(x∗) = 0.

If the mapping G is affine, i.e., G(x) = Ax − b, then the above problem is
equivalent to the classical system of linear equations

Ax∗ = b.

The case when X is a convex cone in E was considered in Part II. Then
VI (11.1) is equivalent to the complementarity problem (CP for short):

x∗ ∈ X,G(x∗) ∈ X ′, (x∗)T G(x∗) = 0, (11.2)

where X ′ = {z ∈ E | xT z ≥ 0 ∀x ∈ X} is the dual cone to X. This
problem can be viewed as a particular case of VI, as showed in Proposition
7.1.

Next, let X be again an arbitrary convex closed set in E and let T be a
continuous mapping from X into itself. The fixed point problem is to find
a point x∗ ∈ X such that

x∗ = T (x∗). (11.3)

This problem can be also converted into a VI format.

Proposition 11.2. If the mapping G is defined by

G(x) = x − T (x), (11.4)

then problem (11.1) coincides with problem (11.3).

Proof. If x∗ solves problem (11.3), then clearly G(x∗) = 0 and x∗ solves
problem (11.1), (11.4). Conversely, let x∗ solve problem (11.1), (11.4).
Then T (x∗) ∈ X and letting x = T (x∗) in (11.1) gives −‖x∗−T (x∗)‖2 ≥ 0,
i.e. x∗ = T (x∗).

The reverse transformation based on the projection mapping is de-
scribed in Proposition 11.13.

Now, we consider the well-known optimization problem. Let f : X → R

be a real-valued function. Then we can define the following optimization
problem of finding a point x∗ ∈ X such that

f(x∗) ≤ f(x) ∀x ∈ X,
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or briefly,

min → {f(x) | x ∈ X}. (11.5)

We denote by Xf the solution set of this problem.
Recall the definitions of convexity type properties for functions.

Definition 11.2. Let X be a convex set in E and let ϕ : X → R be a
differentiable function. The function ϕ is said to be

(a) strongly convex on X with constant τ > 0 if for each pair of points
x, y ∈ X and for all α ∈ [0, 1], it holds that

ϕ(αx + (1 − α)y) ≤ αϕ(x) + (1 − α)ϕ(y) − 0.5α(1 − α)τ‖x − y‖2;

(b) strictly convex on X if for all distinct x, y ∈ X and for all α ∈ (0, 1),
it holds that

ϕ(αx + (1 − α)y) < αϕ(x) + (1 − α)ϕ(y);

(c) convex on X if for each pair of points x, y ∈ X and for all α ∈ [0, 1],
it holds that

ϕ(αx + (1 − α)y) ≤ αϕ(x) + (1 − α)ϕ(y).

The function ϕ : X → R is said to be strongly concave with constant τ
(respectively, strictly concave, concave) on X, if the function −ϕ is strongly
convex with constant τ (respectively, strictly convex, convex) on X.

It follows directly from the definitions that the following implications
hold:

(a) =⇒ (b) =⇒ (c).

The reverse assertions are not true in general.
We now state the relationships between convexity of functions and (gen-

eralized) monotonicity of their gradients; see e.g. Polyak (1983), Chapter
1, Section 1.4.

Proposition 11.3. Let Y be an open convex subset of X. A differ-
entiable function f : X → R is strongly convex with constant τ (re-
spectively, strictly convex, convex) on Y , if and only if its gradient map
∇f : X → E is strongly monotone with constant τ (respectively, strictly
monotone, monotone) on Y .

Similarly, we recall the basic property of the convex differentiable func-
tions; see e.g. Polyak (1983), Chapter 1, Section 1.4, Lemma 3.
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Proposition 11.4. Let Y be an open convex subset of X. A differentiable
function f : X → R is convex on Y , if and only if for each point x ∈ Y ,
we have

f(y) ≥ f(x) + (y − x)T∇f(x) ∀y ∈ Y.

We now give the well-known optimality condition for problem (11.5).

Theorem 11.1. Suppose that f : R
n → R is a differentiable function.

Then:
(i) Xf ⊆ X∗, i.e., each solution of (11.5) is a solution of VI (11.1),

where

G(x) = ∇f(x); (11.6)

(ii) if f is convex and G is defined by (11.6), then X∗ ⊆ Xf .

Proof. Part (ii) follows directly from Proposition 11.4. In case (i), assume,
for contradiction, that there exists x∗ ∈ Xf\X

∗, i.e., there is a point y ∈ X
such that

(y − x∗)T∇f(x∗) < 0.

Then, for α > 0 small enough, we must have yα = x∗ + α(y − x∗) =
αy + (1 − α)x∗ ∈ X and

f(yα) = f(x∗) + α(y − x∗)T∇f(x∗) + o(α) < f(x∗),

i.e., x∗ /∈ Xf , which is a contradiction.

Thus, optimization problem (11.5) can be reduced to VI (11.1) with the
monotone underlying mapping G if the function f in (11.5) possesses the
corresponding convexity property. However, VI which expresses the opti-
mality condition in optimization enjoys additional properties in comparison
with the usual VI. For instance, if f is twice continuously differentiable,
then its Hessian matrix ∇2f = ∇G is symmetric. Conversely, if the map-
ping ∇G : E → E × E is symmetric, then for any fixed y there exists the
function

f(x) =

1∫

0

(x − y)T G(v + τ(x − y))dτ

such that (11.6) holds. It is obvious that the Jacobian ∇G of the mapping
G in (11.1) is in general asymmetric.

Next, consider the case of the convex optimization problem (11.5). In
other words, let the function f be convex and differentiable. Then, accord-
ing to Theorem 11.1, (11.5) is equivalent to (11.1) with G being defined in
(11.6). Due to Proposition 11.3, the mapping ∇f is monotone.
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Saddle point problems are closely related to optimization as well as to
noncooperative game problems. Let U be a convex closed set in R

l and
let V be a convex closed set in R

m. Suppose that L : R
l × R

m → R is a
differentiable convex-concave function, i.e., L(·, v) is convex for each v ∈ V
and L(u, ·) is concave for each u ∈ U . The saddle point problem is to find
a pair of points u∗ ∈ U , v∗ ∈ V such that

L(u∗, v) ≤ L(u∗, v∗) ≤ L(u, v∗) ∀u ∈ U,∀v ∈ V. (11.7)

In particular, the problem of solving a zero-sum two-person game is written
in the form (11.7). Set n = l + m, X = U × V and define the mapping
G : R

n → R
n as follows:

G(x) = G(u, v) =

(
∇uL(u, v)
−∇vL(u, v)

)
. (11.8)

From Theorem 11.1 we now obtain the following equivalence result.

Corollary 11.1. Problems (11.7) and (11.1), (11.8) are equivalent.

It should be noted that G in (11.8) is also monotone; see Corollary 11.3.
Saddle point problems are proved to be a useful tool for “eliminating”
functional constraints in optimization. Let us consider the optimization
problem

min → {f0(u) | u ∈ D}, (11.9)

where

D = {u ∈ U | fi(u) ≤ 0 i = 1, . . . , m}, (11.10)

fi : R
l → R, i = 0, . . . , m are convex differentiable functions,

U = {u ∈ R
l | uj ≥ 0 ∀j ∈ J}, J ⊆ {1, . . . , l}. (11.11)

Then we can define the Lagrange function associated to problem (11.9) –
(11.11) as follows:

L(u, v) = f0(u) +
m∑

i=1

vifi(u). (11.12)

To obtain the relationships between problems (11.9) – (11.11) and (11.7),
(11.12), we need certain constraint qualification conditions. Namely, con-
sider the following assumption.

(C) Either all the functions fi, i = 1, . . . , m are affine, or there exists
a point ū ∈ U such that fi(ū) < 0 for all i = 1, . . . , m.
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Proposition 11.5. (Karush-Kuhn-Tucker; e.g. see Nikaido (1968), Chap-
ter 1, Theorems 3.16 and 3.17)

(i) If (u∗, v∗) is a saddle point of the function L in (11.12) with V = R
m
+ ,

then u∗ is a solution to problem (11.9) – (11.11).

(ii) If u∗ is a solution to problem (11.9) – (11.11) and condition (C)
holds, then there exists a point v∗ ∈ V = R

m
+ such that (u∗, v∗) is a solution

to the saddle point problem (11.7), (11.12).

By using Corollary 11.1, we now see that optimization problem (11.9) –
(11.11) can be replaced by VI (11.1) (or equivalently, by CP (11.2) since X
is a convex cone), where X = U ×V , V = R

m
+ , f(u) = (f1(u), . . . , fm(u))T ,

and

G(x) =

(
∇f0(u) +

∑m
i=1 vi∇fi(u)

−f(u)

)
(11.13)

with G being monotone; see Corollary 11.3.

Similarly, we can convert VI with functional constraints into VI (or CP)
with simple constraints. Let us consider the following problem of finding
u∗ ∈ D such that

(u − u∗)T F (u∗) ≥ 0 ∀u ∈ D, (11.14)

where F : R
l → R

l is a continuous mapping, D is the same as in (11.10),
(11.11).

Proposition 11.6. (i) If x∗ = (u∗, v∗) is a solution to (11.1) with

X = U × V, V = R
m
+ ,

G(x) = G(u, v) =

(
F (u) +

∑m
i=1 vi∇fi(u)

−f(u)

)
,

(11.15)

then u∗ is a solution to problem (11.14), (11.10), (11.11).

(ii) If condition (C) holds and u∗ is a solution to problem (11.14),
(11.10), (11.11), then there exists a point v∗ ∈ V = R

m
+ such that (u∗, v∗)

is a solution to (11.1), (11.15).

Proof. (i) Let (u∗, v∗) be a solution to (11.1), (11.15), or equivalently, to
the following system:

(u − u∗)T [F (u∗) +
m∑

i=1

v∗
i ∇fi(u

∗)] ≥ 0 ∀u ∈ U,

(v − v∗)T [−f(u∗)] ≥ 0 ∀v ∈ V = R
m
+ .

(11.16)
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The last relation implies u∗ ∈ D and [f(u∗)]T v∗ = 0, so that, using the
first relation in (11.16) and Proposition 11.4, we have

0 ≤ (u − u∗)T F (u∗) +

m∑

i=1

v∗
i (fi(u) − fi(u

∗))

≤ (u − u∗)T F (u∗) ∀u ∈ D,

i.e., u∗ is a solution to problem (11.14), (11.10), (11.11).

(ii) If u∗ is a solution to problem (11.14), (11.10), (11.11), it is a solution
to the following convex optimization problem

min → {uT F (u∗) | u ∈ D},

and due to Proposition 11.5 (ii), there exists a point v∗ ∈ V = R
m
+ such that

(u∗, v∗) is a saddle point of the function L̃(u, v) = uT F (u∗)+
∑m

i=1 vifi(u).

Now the left inequality in (11.7) with L = L̃ implies the second inequality
in (11.16), whereas the right inequality in (11.7) with L = L̃ implies that
u∗ is a solution to the following convex optimization problem:

min → {uT F (u∗) +

m∑

i=1

v∗
i fi(u) | u ∈ U},

which is equivalent to the first relation in (11.16) due to Theorem 11.1.
Therefore, (u∗, v∗) is a solution to (11.1), (11.15).

We can specialize the above results for various kinds of constraints. For
instance, we establish similar results for the case when all the constraint
functions are affine. Let us consider the problem of finding u∗ ∈ D̃ = D

⋂
B

such that

(u − u∗)T F (u∗) ≥ 0 ∀u ∈ D̃, (11.17)

where F : R
l → R

l is a continuous mapping, D is the same as in (11.10),
(11.11),

B = {u ∈ R
l | hi(u) = 0 i = 1, . . . , k}, (11.18)

hi : R
l → R, i = 1, . . . , k are continuous functions.

Proposition 11.7. Suppose fi and hi are affine, i.e. fi(u) = (ai)T u − αi

for i = 1, . . . , m, and hi(u) = (bi)T u − βi for i = 1, . . . , k.
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(i) If x∗ = (u∗, v∗, w∗) is a solution to (11.1) with

X = U × R
m
+ × R

k,

G(x) = G(u, v, w) (11.19)

=

⎛
⎝

F (u) +
∑m

i=1 via
i +
∑k

j=1 wjb
j

−f(u)
−h(u)

⎞
⎠ ,

h(u) = (h1(u), . . . , hk(u))T , then u∗ is a solution to problem (11.17),
(11.18), (11.10), (11.11).

(ii) If u∗ is a solution to problem (11.17), (11.18), (11.10), (11.11),
then there exist points v∗ ∈ R

m
+ and w∗ ∈ R

k such that (u∗, v∗, w∗) is a
solution to (11.1), (11.19).

This result can be deduced rather easily from Proposition 11.6.

Exercise 11.1. Prove the assertion of Proposition 11.7.

These results can be extended in several directions. Together with the
saddle point problem and the problem of solving a zero-sum two-person
game we can consider the general case of an m-person noncooperative game.
Recall that such a game consists of m players, each of which has a strategy
set Xi ⊆ R

ni and a utility function fi : X → R, where

X = X1 × . . . × Xm.

A point x∗ = (u∗
1, . . . , u

∗
m)T ∈ X is said to be a Nash equilibrium point for

this game, if

fi(u
∗
1, . . . , u

∗
i−1, vi, u

∗
i+1, . . . , u

∗
m) ≤ fi(x

∗)
∀vi ∈ Xi, i = 1, . . . ,m;

(11.20)

see e.g. Aubin (1998). Set

Ψ(x, y) = −
m∑

i=1

fi(u1, . . . , ui−1, vi, ui+1, . . . , um), (11.21)

x = (u1, . . . , um)T , y = (v1, . . . , vm)T ,

with n =
m∑

i=1

ni and

Φ(x, y) = Ψ(x, y) − Ψ(x, x), (11.22)

then the Nash equilibrium problem (11.20) becomes equivalent to the gen-
eral equilibrium problem (EP for short) which is the problem of finding a
point x∗ ∈ X such that

Φ(x∗, y) ≥ 0 ∀y ∈ X. (11.23)
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Exercise 11.2. Prove the equivalence of problems (11.21) – (11.23) and
(11.20).

Let us define the mapping G : R
n → R

n as follows:

G(x) = ∇yΦ(x, y)|y=x . (11.24)

From Theorem 11.1 we also obtain the equivalence result.

Corollary 11.2. Suppose that Φ(x, x) = 0 and Φ(x, ·) is convex and dif-
ferentiable for each x ∈ X. Then problems (11.23) and (11.1), (11.24) are
equivalent.

So, the Nash equilibrium problem can be replaced with a suitable VI.
We now give a sufficient condition for monotonicity of the mapping G

defined in (11.24), which is due to R.T. Rockafellar and S.P. Uryas’yev.

Proposition 11.8. Let Φ : R
n × R

n → R be a bifunction such that
Φ(x, x) = 0 for every x ∈ X. Suppose that Φ(x, ·) and −Φ(·, y) are convex
and differentiable for all x, y ∈ X. If G is defined by (11.24), then it is
monotone on X.

Proof. Fix x, y ∈ X. Take any α ∈ (0, 1) and set xα = αx + (1− α)y. It is
clear that xα ∈ X since X is convex. Due to concavity of Φ(·, xα), we have

0 = Φ(xα, xα) ≥ αΦ(x, xα) + (1 − α)Φ(y, xα)

or equivalently,

α [Φ(x, xα) − Φ(x, x)] ≤ (1 − α) [Φ(y, y) − Φ(y, xα)] . (11.25)

On the other hand, by definition and Proposition 11.4, we obtain

Φ(x, xα) − Φ(x, x) ≥ (xα − x)T G(x)

and
Φ(y, xα) − Φ(y, y) ≥ (xα − y)T G(y).

Using these inequalities together with (11.25) yields

α(xα − x)T G(x) ≤ α [Φ(x, xα) − Φ(x, x)]

≤ (1 − α) [Φ(y, y) − Φ(y, xα)]

≤ (1 − α)(y − xα)T G(y).

Since xα − x = (1 − α)(y − x) and y − xα = α(y − x), it follows that

α(1 − α)(y − x)T G(x) ≤ α(1 − α)(y − x)T G(y),

or equivalently,
(y − x)T [G(y) − G(x)] ≥ 0.

Hence, G is monotone on X.
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It is clear that the saddle point problem (11.7) is a particular case of
EP (11.23) if we set

Φ(x, y) = L(u′, v) − L(u, v′), x = (u, v)T , y = (u′, v′)T .

If L : R
l×R

m → R is (strictly, strongly) convex in u and (strictly, strongly)
concave in v, then the bifunction Φ will be (strictly, strongly) concave-
convex. It means that Corollary 11.1 may be deduced from Corollary 11.2.
Moreover, we obtain easily the monotonicity of the mapping G in (11.8)
associated with the saddle point problem.

Corollary 11.3. If L : R
l × R

m → R is a differentiable convex-concave
bifunction, then the mapping G in (11.8) is monotone.

It follows that G in (11.13) is monotone, if fi : R
l → R, i = 0, . . . ,m

are convex differentiable functions.
Let us now consider another generalization of the primal-dual system

(11.1), (11.15), or equivalently, (11.16), where U is defined in (11.11), and
V is a convex closed subset of R

m
+ . The problem is to find a pair (u∗, v∗) ∈

U × V such that

(u − u∗)T [F (u∗) +
m∑

i=1

v∗
i ∇fi(u

∗)] ≥ 0 ∀u ∈ U,

(v − v∗)T [b(v∗) − f(u∗)] ≥ 0 ∀v ∈ V,
(11.26)

where b : R
m
+ → R

m is a continuous mapping. It is equivalent to VI (11.1)
with X = U × V ,

G(x) = G(u, v) =

(
F (u) +

∑m
i=1 vi∇fi(u)

b(v) − f(u)

)
. (11.27)

Proposition 11.9. Suppose that fi : R
l → R, i = 1, . . . ,m are convex

differentiable functions. If the mappings F : U → R
l and b : V → R

m are
(strictly, strongly) monotone, then the mapping G in (11.27) is (strictly,
strongly) monotone on X = U × V .

Proof. Choose arbitrary points x = (u, v) ∈ X and y = (u′, v′) ∈ X. Then

(x − y)T [G(x) − G(y)] = (u − u′)T [F (u) − F (u′)]

+(u − u′)T

[
m∑

i=1

vi∇fi(u) −
m∑

i=1

v′
i∇fi(u

′)

]

+(v − v′)T [b(v) − b(v′)] + (v − v′)T [f(u′) − f(u)].

By Proposition 11.4, we obtain

(u − u′)T∇fi(u) ≥ fi(u) − fi(u
′)
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and
(u − u′)T∇fi(u

′) ≤ fi(u) − fi(u
′).

Therefore,

(x − y)T [G(x) − G(y)] ≥ (u − u′)T [F (u) − F (u′)]

+(v − v′)T [b(v) − b(v′)],

and monotonicity of G follows from monotonicity of F and b. The (strict,
strong) monotonicity of G can be deduced similarly.

Note that we have also a monotonicity criterion for G in (11.15) if we
set b(v) ≡ 0 in (11.27).

Exercise 11.3. Prove the assertion of Proposition 11.9 for the strictly and
strongly monotone cases.

It follows from Proposition 11.6 that this problem also solves (11.16),
(11.11) with perturbations of the right-hand side of constraints, i.e. it
depends on the optimal value of the dual variables.

Proposition 11.10. If x∗ = (u∗, v∗) is a solution to (11.16), (11.11) with
V = R

m
+ , then u∗ is a solution to the problem of finding u∗ ∈ D̃ such that

(u − u∗)T F (u∗) ≥ 0 ∀u ∈ D̃, (11.28)

D̃ = {u ∈ U | fi(u) ≤ bi(v
∗) i = 1, . . . ,m},

U is the same as in (11.11).

By definition, problem (11.28) belongs to so-called implicit VI’s. Under
certain additional assumptions, it can be converted into a saddle point
problem. In fact, let us consider problem (11.7) where

L(u, v) = f0(u) +
m∑

i=1

vifi(u) − ϕ(v) (11.29)

and suppose that F (u) = ∇f0(u), b(v) = ∇ϕ(v) and that ϕ : R
m
+ → R and

fi : R
l → R, i = 0, . . . , m are convex differentiable functions.

Exercise 11.4. Show that the saddle point problem (11.7), (11.29) is
equivalent to the system (11.26), (11.11) with F (u) = ∇f0(u), b(v) =
∇ϕ(v) under the above assumptions.

The main motivation for studying this extended primal-dual system
(11.26), (11.11) stems from the fact that it contains formulations of many
equilibrium type problems described in Part I. However, this problem may
be investigated as a usual VI and both the theory and solution methods of
VI’s are applicable for all these equilibrium problems.
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11.2 Existence and uniqueness results

Most existence results of solutions for VI’s are proved by using various
fixed-point theorems. We will also use the famous Brouwer fixed-point
theorem; e.g. see Nikaido (1968), Chapter 1, Theorem 4.3.

Proposition 11.11. Every continuous mapping T which maps a nonempty
convex and compact set X into itself has a fixed point.

In order to apply this result to VI’s we need several properties of the
projection mapping. Given a point x and a set X in E, we denote by πX(x)
the projection of x onto X:

πX(x) ∈ X, ‖x − πX(x)‖ = min
y∈X

‖x − y‖.

Proposition 11.12. Suppose Y is a nonempty convex closed set in E, and
x is an arbitrary point in E. Then:

(i) There exists the unique projection p = πY (x) of any point x onto
the set Y .

(ii) A point p ∈ Y is a projection of x onto Y if and only if

(p − x)T (y − p) ≥ 0 ∀y ∈ Y. (11.30)

(iii) The projection mapping πY (·) is non-expansive and

(x′′ − x′)T [πY (x′′) − πY (x′)]
≥ ‖πY (x′′) − πY (x′)‖2 ∀x′, x′′ ∈ E.

(11.31)

Proof. It is clear that the point p = πY (x) is a solution of the following
convex optimization problem:

min → {ϕ(y) | y ∈ Y },

where ϕ(y) = 0.5‖y−x‖2. Due to Theorem 11.1, this problem is equivalent
to the variational inequality (11.30), i.e., assertion (ii) holds. Moreover, this
problem is equivalent to the following optimization problem:

min → {ϕ(y) | y ∈ Y, ‖y − x‖ < r},

where

r > inf
y∈Y

‖y − x‖ ≥ 0;

which is solvable due to the well-known Weierstrass theorem. Take arbi-
trary points x′, x′′ ∈ E and set p′ = πY (x′), p′′ = πY (x′′). Applying (11.30)
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with x = x′, p = p′, y = p′′ and with x = x′′, p = p′′, y = p′, respectively,
gives

(p′ − x′)T (p′′ − p′) ≥ 0

and
(p′′ − x′′)T (p′ − p′′) ≥ 0.

Adding these inequalities and applying the Cauchy-Schwarz inequality, we
obtain

(p′′ − p′)T (p′′ − p′) ≤ (x′′ − x′)T (p′′ − p′) ≤ ‖x′′ − x′‖‖p′′ − p′‖,

i.e., (11.31) holds, moreover,

‖p′′ − p′‖ ≤ ‖x′′ − x′‖.

Therefore, the mapping πY (·) is non-expansive. This property yields the
uniqueness of the projection, i.e. assertion (i) is also true.

Note that assertion (iii) implies that the mapping πY (·) is continuous.
We now obtain an equivalent fixed-point formulation of VI (11.1).

Proposition 11.13. Let X be a nonempty, closed and convex subset of a
finite - dimensional Euclidean space E. A point x∗ ∈ X solves VI (11.1)
if and only if

x∗ = πX [x∗ − θG(x∗)] (11.32)

for some θ > 0.

Proof. If (11.32) holds, then, applying (11.30) with p = x∗, x = x∗ −
θG(x∗), and X = Y , gives

(x∗ − [x∗ − θG(x∗)])T (y − x∗) ≥ 0 ∀y ∈ X,

hence x∗ ∈ X∗. Conversely, let x∗ ∈ X∗, but x∗ �= x̃ = πX(x∗ − θG(x∗)).
Using (11.30) with p = x̃, x = x∗ − θG(x∗), y = x∗, and Y = X, we have

(x̃ − [x∗ − θG(x∗)])T (x∗ − x̃) ≥ 0,

or
(x̃ − x∗)T [θG(x∗)] ≤ −‖x̃ − x∗‖2 < 0,

i.e. x∗ /∈ X∗, a contradiction.

We are now ready to establish an existence result for VI (11.1) by simple
combining Propositions 11.11 and 11.13.
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Theorem 11.2. Let X be a nonempty, convex and compact subset of a
finite - dimensional Euclidean space E and let G : X → E be a continuous
mapping. Then VI (11.1) is solvable.

For obtaining existence results on unbounded sets, we have to utilize a
coercivity condition.

Theorem 11.3. Let X be a nonempty, convex and closed subset of a finite
- dimensional Euclidean space E and let G : X → E be a continuous
mapping. Suppose that there exists a nonempty bounded subset Y of X
such that for every x ∈ X\Y there is y ∈ Y with

(x − y)T G(x) > 0.

Then VI (11.1) has a solution.

Proof. It suffices to consider only the unbounded case. Let Br denote the
closed ball (under the norm) of E with center at 0 and radius r > 0.
Choose r large enough so that r > ‖y‖ for every y ∈ Y . Then Theorem
11.2 guarantees the existence of a solution xr ∈ X ∩ Br for the following
VI:

(z − xr)
T G(xr) ≥ 0 ∀z ∈ X ∩ Br.

Moreover, we must have ‖xr‖ < r due to the coercivity condition. Take
an arbitrary x ∈ X. Then there exists ε > 0 small enough such that
xr + ε(x − xr) ∈ X ∩ Br. It follows that

[xr + ε(x − xr) − xr]
T G(xr) ≥ 0.

Dividing ε on both sides of the above inequality, we obtain

(x − xr)
T G(xr) ≥ 0,

which shows that xr is the solution to VI (11.1) and the result follows.

In general, VI can have more than one solution. We now recall a simple
condition which provide the uniqueness of a solution for VI (11.1).

Proposition 11.14. If G is strictly monotone, then VI (11.1) has at most
one solution.

Proof. Suppose that there exist at least two solutions x′ and x′′ of VI
(11.1). Then, by definition,

(x′′ − x′)T G(x′) ≥ 0
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and
(x′ − x′′)T G(x′′) ≥ 0.

Adding these inequalities gives

(x′′ − x′)T [G(x′) − G(x′′)] ≥ 0.

Since G is strictly monotone, it follows that x′ = x′′.

Monotonicity properties enable us to specialize coercivity conditions.
For instance, the strong monotonicity provides the existence and unique-
ness result.

Theorem 11.4. Let X be a nonempty, convex and closed subset of a finite
- dimensional Euclidean space E and let G : X → E be a strongly monotone
and continuous mapping. Then VI (11.1) has a unique solution.

Proof. Due to Proposition 11.14 and Theorem 11.2, it suffices to show that
VI (11.1) is solvable if X is unbounded. Fix a point x̃ ∈ X. Then, for each
x ∈ X, we have

(x − x̃)T G(x) ≥ (x − x̃)T G(x̃) + τ‖x − x̃‖2 → +∞

as ‖x − x̃‖2 → +∞. Therefore, the coercivity condition in Theorem 11.3
holds, i.e. VI (11.1) is solvable.

In view of Theorem 11.1 and Proposition 11.3, the above properties
yield similar existence and uniqueness results for the optimization problem
(11.5) where f is differentiable and strictly (strongly) convex. However,
these results remain valid without differentiability.

Proposition 11.15. Let X be a nonempty, convex and closed subset of a
finite - dimensional Euclidean space E.

(i) If f : X → R is strictly convex, then (11.5) has at most one solution.
(ii) If f : X → R is strongly convex and continuous, then (11.5) has a

unique solution.

Proof. In case (i), suppose that there exist at least two distinct solutions x′

and x′′ of (11.5). Then f(x′) = f(x′′) = f∗, and, by setting x̃ = 0.5(x′+x′′)
and using the strict convexity, we have

f(x̃) < 0.5f(x′) + 0.5f(x′′) = f∗,

which is a contradiction.
In case (ii), it suffices to show that (11.5) is solvable in the case when

X is unbounded because of (i). Fix z ∈ X and take an arbitrary sequence
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{xk} ⊂ X such that ‖xk‖ → ∞ as k → ∞. Set zk = αkxk +(1−αk)z with
αk = ‖xk − z‖−1, then ‖zk − z‖ = 1 and f(zk) − f(z) ≥ γ > −∞ because
of continuity of f . Since f is strongly convex, we have

f(zk) ≤ αkf(xk) + (1 − αk)f(z) − 0.5αk(1 − αk)τ‖xk − z‖2;

hence

f(xk) − f(z) ≥ α−1
k [f(zk) − f(z)] + 0.5(1 − αk)τα−2

k

≥ α−1
k γ + 0.5(1 − αk)τα−2

k → +∞

as k → ∞. It follows that the level set

L(z) = {x ∈ X | f(x) ≤ f(z)}

is bounded. The existence of a solution of (11.5) follows from the Weier-
strass theorem. This proves assertion (ii).
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Chapter 12

Applications

In this chapter, we consider applications of the theory of variational in-
equalities from the previous chapter to equilibrium models described in
Part I.

12.1 Cassel-Wald equilibrium models

The model was described in Section 5.1. Recall that the corresponding
economic system deals in n commodities and m pure factors of production.
Let ck denote the price of the k-th commodity, bi the total inventory of
the i-th factor, and aij the consumption rate of the i-th factor which is
required for producing one unit of the j-th commodity. Also, let xj denote
the output of the j-th commodity. Set c = (c1, . . . , cn)T , x = (x1, . . . , xn)T ,
b = (b1, . . . , bm)T , and A = (aij)m×n and assume that prices are dependent
of outputs, i.e. there exists a mapping c : R

n
+ → R

n
+. Then (see (5.2)), the

equilibrium point solves VI: Find x∗ ∈ D such that

(x∗ − x)T c(x∗) ≥ 0 ∀x ∈ D, (12.1)

where
D = {x ∈ R

n | Ax ≤ b, x ≥ 0}.

It means that the optimal outputs yield the maximal value of income sub-
ject to resource constraints when the prices are fixed at these outputs.
Clearly, (12.1) is a particular case of VI (11.1). Moreover, the set D is
clearly convex and closed. Also, it is nonempty if A and b contain only
non-negative entries.

Exercise 12.1. Prove that D is bounded if A and b contain only non-
negative entries and there is no zero column in A.

149
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Then D is nonempty, convex, and compact, and, due to Theorem 11.1,
VI (12.1) is solvable if c is continuous.

Also, we can write the optimality condition for (12.1) in the form of a
system of primal-dual VIs: Find x∗ ≥ 0 and p∗ ≥ 0 such that

(x∗ − x)T c(x∗) + (Ax − Ax∗)T p∗ ≥ 0 ∀x ≥ 0;
(p − p∗)T (b − Ax∗) ≥ 0 ∀p ≥ 0;

(12.2)

or equivalently, in the form of a system of CPs (see (5.1)). Here p =
(p1, . . . , pm)T is the vector of factors prices. Due to Proposition 11.6, we
conclude that solvability of (12.1) implies the solvability of (12.2), more-
over, p∗ then gives the equilibrium factor prices.

It is rather natural to suppose that increase of outputs (supply) leads
to decrease of prices. It means that the mapping −c will be monotone
in general and even its strengthened monotonicity properties may be de-
rived. As to the primal-dual VI (12.2), its cost mapping then may be only
monotone because b is constant; see Proposition 11.9. Thus, the general
theory appears useful for the Cassel-Wald models.

12.2 Walrasian equilibrium models and their

modifications

Let us now consider economic models based on equilibrium relations be-
tween supply and demand depending on prices. Such models were sug-
gested by L. Walras and are usually formulated as CP; see (5.3). More
precisely, the economy with perfect competition deals in n commodities.
Given a price vector p = (p1, . . . , pn)T ∈ R

n
+, the producers (sectors) deter-

mine their total supply S(p) ∈ R
n, whereas the consumers determine their

total demand D(p) ∈ R
n. For simplicity, both the mappings S and D are

supposed to be single-valued. Then we can define the excess demand

E(p) = D(p) − S(p).

Recall that a vector p∗ is said to be an equilibrium price if it satisfies the
following conditions:

p∗ ∈ R
n
+, −E(p∗) ∈ R

n
+, (p∗)T E(p∗) = 0; (12.3)

which obviously coincide with the usual CP with the cost mapping G = −E
and the basic cone X = R

n
+; see (11.2). Due to Proposition 7.1, it is

equivalent to the following VI: Find p∗ ∈ R
n
+ such that

(p∗ − p)T E(p∗) ≥ 0 ∀p ∈ R
n
+. (12.4)
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Observe that many popular Walrasian type equilibrium models utilize order
monotonicity properties, some of them were presented in Part II. Moreover,
their excess demand mapping does not possess the continuity properties
over the set R

n
+; this causes the necessity of developing certain special

techniques for their substantiation; see e.g. Arrow and Hahn (1971), Mor-
ishima (1964), and Nikaido (1968). Nevertheless, we intend to first present
examples of some other models that admit the techniques presented in
Chapter 11.

Let us consider the supply mapping. Usually, the supply of a sepa-
rate producer is represented as a solution set of the following optimization
problem:

max → pT y (12.5)

subject to
y ∈ Y,

where Y is the technology set, which is assumed to be nonempty, convex,
and compact. Then problem (12.5) is solvable, but we introduce an addi-
tional condition, which ensures the uniqueness of its solution, for the sake
of simplicity of exposition.

The set Y is said to be strictly convex, if for each pair of points x, y ∈ Y
and for each number α ∈ (0, 1), the point αx + (1 − α)y lies in int Y .

Proposition 12.1. If the set Y is nonempty, strictly convex and compact
and p �= 0, then (12.5) has a unique solution.

Exercise 12.2. Prove the assertion of Proposition 12.1.

Moreover, then the supply mapping possesses other useful properties.

Proposition 12.2. If the set Y is nonempty, strictly convex and compact,
then the supply mapping p �→ y(p) is continuous, positively homogeneous of
degree 0, and monotone on R

n
+ \ {0}.

Exercise 12.3. Prove the assertion of Proposition 12.2.

Observe that the mapping p �→ y(p) maintains in fact certain basic
useful properties at 0, but it simply becomes multi-valued. Since all the
properties given in Propositions 12.1 and 12.2 are additive, they remain
the same for the arbitrary number of producers, hence the total supply
mapping p �→ S(p) will possess these properties.

We now consider similar properties of demand. Each consumer’s de-
mand may be represented as a mapping p �→ x(p), where x(p) solves the
optimization problem

max → ϕ(x) (12.6)
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subject to

pT x ≤ ω, x ∈ X;

where ϕ is the utility function, X is a convex cone representing the set
of possible collections of commodities, and ω > 0 is the value of his/her
budget, which is assumed to be fixed. Then we have a useful representa-
tion of the demand mapping; its substantiation is taken from the book by
Polterovich (1990), Chapter 3, Lemma 1.

Lemma 12.1. Suppose that
(a) ϕ : X → R is positively homogeneous of degree α > 0;
(b) there is x ∈ X such that ϕ(x) > 0.
Then, the point x(p) solves problem (12.6) if and only if it solves the

problem

max →
ω

α
ln ϕ(x) − pT x (12.7)

subject to

x ∈ X.

Proof. From condition (a) it follows that pT x(p) = ω. Suppose that there
exists a point x̃ ∈ X such that f(x̃) > f(x(p)), where f(x) = ω

α ln ϕ(x) −
pT x. Then ϕ(x̃) > 0, hence pT x̃ > 0, otherwise the cost function in (12.6)
is not bounded above. Set y(τ) = τx(p) for τ > 0, then the function

f(y(τ)) =
ω

α
ln [ταϕ(x(p))] − τpT x(p)

= ω ln τ +
ω

α
ln ϕ(x(p)) − τω

attains its maximum at τ = 1. Hence,

f(x̃) > f
[
(ω−1pT x̃)x(p)

]
,

which is equivalent to

ϕ
[
ω(pT x̃)−1x̃

]
> ϕ(x(p)),

thus contradicting the definition of x(p), since the point y = ω(pT x̃)−1x̃
satisfies all the constraints of problem (12.6). Conversely, let x̃ solve prob-
lem (12.7). If pT x̃ ≤ 0, then each point τ x̃ is feasible if τ > 0 and

f(τ x̃) =
ω

α
ln [ταϕ(x̃)] − τpT x̃

= ω ln τ +
ω

α
ln ϕ(x̃) − τpT x̃ → +∞
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as τ → +∞, thus contradicting the fact that it attains its maximum at
τ = 1. Hence, pT x̃ > 0, but the above expression attains its unique
maximum at τ = ω/pT x̃ and we obtain pT x̃ = ω. Take any x such that
pT x ≤ ω, x ∈ X. Then

f(x̃) =
ω

α
ln ϕ(x̃) − ω ≥ f(x) ≥

ω

α
ln ϕ(x) − ω.

If ϕ(x) > 0, then ϕ(x̃) ≥ ϕ(x). This means that x̃ is a solution of (12.6).
Therefore, the assertion is true.

This property yields the monotonicity of the mapping p �→ −x(p).

Proposition 12.3. If the assumptions of Lemma 12.1 are fulfilled and ϕ
is strictly convex, then the mapping p �→ −x(p) defined by (12.6) is single-
valued and monotone.

Proof. Note that strict convexity of ϕ ensures the uniqueness of a solution
for (12.6). Take any p′, p′′ ∈ R

n
+ and set x′ = x(p′), x′′ = x(p′′). Then, by

Lemma 12.1, we have

ω

α
ln ϕ(x′) − (p′)T x′ ≥

ω

α
ln ϕ(x′′) − (p′)T x′′

and
ω

α
ln ϕ(x′′) − (p′′)T x′′ ≥

ω

α
ln ϕ(x′) − (p′′)T x′.

Adding these inequalities yields

(p′′ − p′)T (x′ − x′′) ≥ 0,

i.e., the mapping p �→ −x(p) is monotone.

Exercise 12.4. Prove that the mapping p �→ x(p) is continuous on R
n
+ \

{0}.

Again, since these properties are additive, they are the same for each
finite number of consumers and the total demand mapping p �→ D(p) will
also possess these properties. Therefore, the mapping p �→ −E(p) will
be continuous and monotone on R

n
+ \ {0}. In general, it is sufficient for

applying the results of Chapter 11 to this equilibrium model. However,
in order to provide the correctness of such a result, we should somewhat
modify the basic problem. In fact, instead of CP (12.3) or VI (12.4) we
then introduce the slightly modified VI: Find p∗ ∈ P such that

(p∗ − p)T E(p∗) ≥ 0 ∀p ∈ P, (12.8)
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where
P = {p ∈ R

n | pi ≥ p′i > 0 for i = 1, . . . , n} .

Thus, we obtain an equilibrium model with lower positive restrictions on
prices; see also Sections 8.2 and 10.1. Then the cost mapping becomes
well-defined, monotone and continuous over the feasible set.

There exist some other models of supply and demand which differ from
those in (12.5) and (12.6). For instance, another demand mapping is pre-
sented in extended Scarf’s equilibrium model described in Section 5.2; see
(5.5) and (5.6). The equilibrium in this model is represented by a pair
(p∗, x∗) such that

p∗ ≥ 0, r + AT x∗ − D(p∗) ≥ 0,
(p∗)T [r + AT x∗ − D(p∗)] = 0;

x∗ ≥ 0, c(x∗) − Ap∗ ≥ 0, (x∗)T [c(x∗) − Ap∗] = 0;
(12.9)

where x = (x1, . . . , xl)
T is the activity level vector of l producers, the j-

th row aj of the l × n technology matrix A gives the output of the j-th
producer with the unit activity level, c(x) = (c1(x1), . . . , cl(xl))

T is the
marginal cost vector of producers, and r = (r1, . . . , rn)T ≥ 0 is the total
endowment vector of consumers. It means that the supply is defined by

S(p) = AT x + r,

and that the third row in (12.9) gives the optimal levels of activity under
the prices p∗, whereas the first and second rows in (12.9) represent a spe-
cialization of the equilibrium conditions (12.3). Since (12.9) is a system
of CPs, it can be equivalently rewritten as the system of VIs: Find a pair
(p∗, x∗) ∈ R

n
+ × R

l
+ such that

(p − p∗)T [r − D(p∗) + AT x∗] ≥ 0 ∀p ∈ R
n
+,

(x − x∗)T [c(x∗) − Ap∗] ≥ 0, ∀x ∈ R
l
+;

(12.10)

which is clearly a particular case of the extended primal-dual VI (11.26);
see also (4.11). Note that the case of zero marginal cost used in the initial
model also leads to positive homogeneity of degree 0 of supply.

By construction, the marginal cost mapping c(x) is monotone and di-
agonal, i.e. there exists a continuous convex function

f(x) =
l∑

j=1

fj(xj) with f ′
j(xj) = cj(xj);

see also (5.4). Next, if we suppose that behavior of consumers is represented
by the model (12.6) with fixed budgets, then, by Proposition 12.3, the map-
ping −D(p) is monotone and in fact the gradientmap of a convex function
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ψ(p). By Proposition 11.9, system (12.10) is then a monotone VI, and it is
also equivalent to the saddle point problem: Find (p∗, x∗) ∈ R

n
+ ×R

l
+ such

that
L(p∗, x) ≤ L(p∗, x∗) ≤ L(p, x∗) ∀p ∈ R

n
+,∀x ∈ R

l
+.

where
L(p, x) = rT p + ψ(p) + Ax − f(x),

which is convex-concave. If the model involves additional restrictions on
prices and activity levels (see (12.8)), then they can be handled easily by
replacing R

n
+ and R

l
+ with the corresponding feasible sets P ⊆ R

n
+ and

X ⊆ R
l
+. Thus, most results of the general theory can be applied to this

model.
It has been mentioned that the extended Scarf model is written as the

primal-dual system (4.11) or (4.12), which is a particular case of the sys-
tem (11.26) with the affine constraint functions. Therefore, all the models
formulated as system (4.11): Find a pair (x∗, y∗) such that

x∗ ≥ 0, y∗ ≥ 0;
AT y∗ − c(x∗) ≥ 0, b(y∗) − Ax∗ ≥ 0;
(x∗)T [AT y∗ − c(x∗)] = 0, (y∗)T [b(y∗) − Ax∗] = 0;

(12.11)

can be investigated and solved by using the results of Chapter 11. Several
examples of such models are given in Part I. They include all the spatial
price equilibrium models from Section 5.3 and the multicommodity formu-
lation of the network equilibrium model from Section 6.1.

Let us now consider some other economic equilibrium model which
seems intermediate between Cassel-Wald and Scarf ones; such kinds of
models can be found in the books by Ahn (1979) and by Arrow, Hurwicz,
and Uzawa (1958), Chapter 15. The model describes an n-commodity mar-
ket and includes consumption and production with linear technology. The
consumption sector is described by its demand mapping d : R

n
+ → R

n.
The production sector is described with the help of the m× l industry con-
sumption matrix A and n× l industry output matrix Q; i.e. it is similar to
that in the model from Section 3.2. It means that, given an activity levels
vector of technologies x = (x1, . . . , xl)

T , the resource consumption is Ax
and the output is Qx. Moreover, if c = (c1, . . . , cl)

T is the costs of unit
level technologies, the total cost is given by cT x. Therefore, the model can
be rewritten as the implicit optimization problem:

min → cT x (12.12)

subject to

Ax ≤ b,



156 12. APPLICATIONS

Qx ≥ d(p∗),

x ≥ 0,

where b ∈ R
m is the vector of resource endowments, p∗ ∈ R

n
+ is the (un-

known) price equilibrium vector. This means that the production sector
seeks to the optimal plan of activity levels, which minimizes pure produc-
tion expenses subject to resource constraints so that the supply values can
not be less than the equilibrium demand ones. To make the sense of this
problem more explicit, we fix p∗ temporarily, i.e. set d = d(p∗). Then
(12.12) becomes a linear programming problem. By using the optimality
conditions for this problem (see Theorems 4.3 and 4.4), we see that (12.12)
is then equivalent to the problem of finding (x∗, u∗, v∗) ∈ R

n × R
m × R

m

such that

x∗ ≥ 0, c + AT u∗ − QT v∗ ≥ 0, (x∗)T (c + AT u∗ − QT v∗) = 0;

u∗ ≥ 0, b − Ax∗ ≥ 0, (u∗)T (b − Ax∗) = 0; (12.13)

v∗ ≥ 0, Qx∗ − d ≥ 0, (v∗)T (Qx∗ − d) = 0;

with adding the equilibrium condition p∗ = v∗ and d = d(p∗). If we set
c̃ = c − QT v∗, the same optimality conditions imply that the first and
second rows in (12.13) are equivalent to the optimization problem

min → c̃T x

subject to
Ax ≤ b, x ≥ 0;

or equivalently,

(x − x∗)T (c − QT v∗) ≥ 0 ∀x ∈ D,

where

D =
{
x ∈ R

n
+ | Ax ≤ b

}
. (12.14)

In this problem, the production sector simply minimizes its total loss sub-
ject to the resource constraints. Moreover, since Qx∗ = S(p∗) is the indus-
trial demand, the third row in (12.13) is nothing but the usual equilibrium
conditions (12.3). Combining all these properties, we conclude that the ini-
tial model is written as the system of VI’s: Find a pair (p∗, x∗) ∈ R

n
+ × D

such that

(p − p∗)T (Qx∗ − d(p∗)) ≥ 0 ∀p ∈ R
n
+,

(x − x∗)T (c − QT p∗) ≥ 0 ∀x ∈ D;
(12.15)

which is also a particular case of the system (11.26).
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12.3 Existence results in Walrasian equilibrium

models

We now return to the problem of establishing existence results in economic
equilibrium models formulated as CP (12.3) in the case when the excess
demand mapping E does not possess continuity properties on R

n
+. In sev-

eral previous models, E is not defined at 0, in some other models, described
in Chapters 8 and 10, it is not defined on the boundary of R

n
+. Then we

can not apply directly the results of Chapter 11. However, under certain
natural assumptions, these results may be adjusted to CP (12.3) without
continuity on R

n
+.

Our considerations are based on the following simple property.

Lemma 12.2. Suppose that
(a) E : R

n
+ \ {0} → R

n is positively homogeneous of degree 0, i.e.
E(λp) = E(p) for all λ > 0 and p ∈ R

n
+ \ {0}.

(b) The Walras law holds, i.e.

pT E(p) = 0 ∀p ∈ R
n
+ \ {0}.

Then CP (12.3) is equivalent to the following VI: Find p∗ ∈ Q such that

(p∗ − p)T E(p∗) ≥ 0 ∀p ∈ Q, (12.16)

where

Q =

{
p ∈ R

n
+

n∑

i=1

pi = 1

}

in the sense that Q∗ = P ∗
⋂

Q, where P ∗ and Q∗ denote the solution sets
of CP (12.3) and VI (12.16), respectively.

Proof. Let p∗ �= 0 solve CP (12.3), then p̃ = (
n∑

i=1

p∗i )
−1p∗ ∈ Q and is also a

solution of CP (12.3), hence it solves VI (12.4) due to Proposition 7.1. We
see that p̃ also solves (12.16) and P ∗

⋂
Q ⊆ Q∗. Conversely, if p∗ solves

(12.16), then (b) yields

pT E(p∗) ≤ 0 ∀p ∈ Q.

Denote by ei the i-th coordinate vector in R
n, i.e.

ei
j =

{
1 if i = j,
0 if i �= j.

Then, setting p to be ei, we obtain Ei(p
∗) ≤ 0 for i = 1, . . . , n. Therefore

p∗ solves CP (12.3) and Q∗ ⊆ P ∗
⋂

Q.
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Observe that both conditions (a) and (b) are usual for most Walrasian
equilibrium models presented in Parts I and II.

Theorem 12.1. Suppose that the excess demand mapping E : R
n
+ \ {0} →

R
n is continuous on R

n
+\{0}, positive homogeneous of degree 0, and satisfies

the Walras law. Then CP (12.3) has a solution.

Proof. From Theorem 11.2 it follows that VI (12.16) is solvable, but Lemma
12.2 shows that each its solution also solves CP (12.3), as desired.

We now consider the case when E is undefined on the boundary of R
n
+.

Theorem 12.2. Suppose that the excess demand mapping E : R
n
+ → R

n is
continuous and positive homogeneous of degree 0 on intRn

+, and the Walras
law holds on intRn

+. Suppose also that, for any sequence {pk} ⊂ intRn
+

converging to p, it holds that

Ei(p
k)

{
→ +∞ if pi = 0,
≥ C > −∞ if pi > 0,

as k → ∞. Then CP (12.3) has a solution, which also solves the problem

E(p∗) = 0, p∗ > 0. (12.17)

Proof. For any ρ > 0, set

Qρ = {p ∈ Q | pi ≥ ρ for i = 1, . . . , n} .

Then E is continuous on Qρ and the problem of finding p(ρ) ∈ Qρ such
that

(p(ρ) − p)T E(p(ρ)) ≥ 0 ∀p ∈ Qρ (12.18)

has a solution due to Theorem 11.2. We proceed to show that there exists
ρ′ > 0 small enough such that pi(ρ

′) > ρ′ for i = 1, . . . , n. On the contrary,
suppose that {qk} → q′ ∈ Q \ intRn

+ where qk = p(ρk) for some sequence
{ρk} → 0. Then we take p = (1, . . . , 1)T and (12.18) together with the
Walras law yield

n∑

i=1

Ei(q
k) ≤ 0,

a contradiction. Set p∗ = p(ρ′) and choose an arbitrary point p ∈ Q. If
p ∈ Qρ′ , then (12.16) holds. If p /∈ Qρ′ , there exists µ ∈ (0, 1) such that
µp + (1 − µ)p∗ ∈ Qρ′ and (12.18) now gives

[p∗ − µp − (1 − µ)p∗]
T

E(p∗) ≥ 0,
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i.e.
(p∗ − p)T E(p∗) ≥ 0.

It means that p∗ solves VI (12.16), hence it solves CP (12.3), which is proved
along the lines of the second part of Lemma 12.2. However, p∗ ∈ intRn

+

and (12.3) now implies (12.17).

Observe that many price equilibrium models described in Sections 8.2,
8.3, and 10.1, satisfy the above conditions.

12.4 Imperfect competition models

This model given in Section 5.4 describes an oligopolistic market involving
n firms supplying a homogeneous product and represents a non-cooperative
game, where the i-th player has the strategy set R+ and the utility function

fi(x) = xip(σx) − hi(xi), (12.19)

where x = (x1, . . . , xn), xi is the supply of the i-th firm, hi : R+ → R is
the cost function, p : R+ → R is the inverse demand (or price) function of

the market, and σx =
n∑

i=1

xi is the total supply in the market.

This problem is reduced to the equivalent VI under rather general as-
sumptions; see Theorem 10.2 and Corollary 11.2. This is the case if the
i-th firm profit function fi is concave in xi for i = 1, . . . , n. In order to
satisfy this condition we can suppose that the cost functions hi are con-
vex, the inverse demand function p is non-increasing, and that the industry
revenue function µ(σ) = σp(σ) is concave on R+; see Lemma 10.1. Under
the corresponding differentiability conditions on the functions p and hi, the
equivalent CP (9.2) (or VI) has the cost mapping G : R

n
+ → R

n defined by

Gi(x) = h′
i(xi) − p(σx) − xip

′(σx), i = 1, . . . , n; (12.20)

see (10.9). In Section 10.2, various existence and uniqueness results for the
oligopolistic equilibrium problem were obtained by using order monotonic-
ity properties of the mapping G. They remain valid if there exist lower and
upper bounds for output levels, then each i-th player strategy set is the
segment [αi, βi] with 0 ≤ αi < βi ≤ +∞ for i = 1, . . . , n and, by Corollary
11.2, the equilibrium problem becomes equivalent to VI (11.1), (12.20),
where the feasible set X is given in (7.4), or to MCP (see Proposition
7.2). However, the applied problem may contain additional restrictions on
outputs, which leads to more general VI (11.1), (12.20), where the order
monotonicity properties are not sufficient in general. For this reason, we
intend to investigate the usual monotonicity properties of the mapping G
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in (12.20). By definition, G is also defined by formula (11.24) where the
bifunction Φ is defined by (11.21), (11.22), and (12.19). Therefore, we can
deduce the monotonicity of G from the assertion of Proposition 11.8. It
suffices to show that the bifunction

Φ(x, y) =
∑n

i=1 [fi(x) − fi(x1, . . . , xi−1, yi, xi+1, . . . , xn)] (12.21)

is concave-convex. Clearly, Φ(x, ·) is convex since each function fi(x) is
concave in xi. The concavity of Φ(·, y) requires an additional assumption.

Proposition 12.4. Under the assumptions above and the convexity of p :
R+ → R, the function Φ(·, y) in (12.21) is concave for each y ∈ R

n
+.

This property can be deduced from the consideration of the separate
functions in (12.21), (12.19).

Exercise 12.5. Prove the assertion of Proposition 12.4.

Corollary 12.1. Under the above assumptions and the convexity of p :
R+ → R, the mapping G in (12.20) is monotone.

The result follows from Propositions 12.4 and 11.8.
In Section 5.4, the general equilibrium model for auction markets was

described and formulated as VI (5.28), (5.29). Hence, its analysis may be
based upon properties presented in Chapter 11.

Exercise 12.6. Establish monotonicity criteria of the cost mapping and
find existence and uniqueness results for VI (5.28), (5.29).

12.5 Network and migration equilibrium models

We now discuss applicability of the results of Chapter 11 to the models
described in Chapter 6. Although the multicommodity formulation of the
network equilibrium model is a particular case of the primal-dual system
(12.11), the path flow formulation (6.8) is a special case of VI (11.1). By
definition, its solution x∗ ∈ X satisfies the variational inequality:

∑

l∈A

Fl(f
∗)(fl − f∗

l ) ≥ 0, f = Bx, ∀x ∈ X, (12.22)

where f∗ = Bx∗,

X =
∏

w∈W Xw,

Xw =
{

x
∑

p∈Pw
xp = dw, xp ≥ 0 p ∈ Pw

}
,

w ∈ W ;

(12.23)
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f = (fl)l∈A is the vector of flow costs (delays), x = (xp)p∈Pw,w∈W is the
vector of path flows, B is the arc-path incidence matrix, A is the set of arcs
in the transportation network, W is the set of origin-destination pairs of
nodes, Pw is the set of paths joining pair w, dw ≥ 0 is the traffic demand
for this pair. Also, Fl determines the cost for arc l, which depends on the
distribution of flows. Note that (12.22) may be rewritten as follows:

∑
w∈W

∑
p∈Pw

Gp(x
∗)(xp − x∗

p)

= (x − x∗)T [BT F (Bx∗)] ≥ 0 ∀x ∈ X.
(12.24)

Clearly, the feasible set X in (12.23) is nonempty, convex, and compact. If
F is continuous, then problem (12.22), (12.23) is solvable due to Theorem
11.2.

Exercise 12.7. Prove that the monotonicity of F implies the monotonicity
of G.

It should be noted that a similar assertion on strict (strong) monotonic-
ity is not true.

The migration equilibrium model (6.9), (6.12) is also a special case of VI
(11.1). Moreover, its feasible set is clearly nonempty, convex and closed,
but it is also bounded; see Exercise 6.2. Then the existence result for this
problem may be deduced from Theorem 11.2 under only continuity of the
utility and migration cost mappings.

We now show that equivalence between (6.9), (6.12) and (6.9)–(6.11)
follows from Proposition 11.7. For the sake of convenience, we rewrite (6.9),
(6.12) here. It is the problem of finding a pair (x∗,h∗) ∈ H such that

∑

i∈N

(x∗
i − xi)ui(x

∗)

+
∑

i,j∈N, i �=j

(hij − h∗
ij)cij(h

∗) ≥ 0 ∀(x,h) ∈ H,

where

H =

{
(x,h) h ≥ 0,

∑
j �=i

hij ≤ bi,

xi = bi +
∑
j �=i

hji −
∑
j �=i

hij , ∀i ∈ N

}
,

x = (xi | i ∈ N), h = (hij | i, j ∈ N, i �= j), and N is the set of nodes. From
Proposition 11.7 we obtain the following necessary and sufficient optimality
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conditions for the VI: Find (x∗,h∗, λ, µ) such that

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−ui(x
∗) − λi = 0 i ∈ N;

h∗
ij ≥ 0, cij( h∗) − λi + λj + µi ≥ 0,

h∗
ij(cij( h∗) − λi + λj + µi) = 0 i, j ∈ N, i �= j;

bi +
∑
j �=i

h∗
ji −

∑
j �=i

h∗
ij = 0 i ∈ N;

µi ≥ 0,
∑
j �=i

h∗
ij − bi ≤ 0, µi(

∑
j �=i

h∗
ij − bi) = 0 i ∈ N.

Setting λi = −ui(x
∗) in the second and third rows gives (6.10), whereas

the fourth and fifth rows give (6.9) and (6.11), respectively. Therefore, the
migration equilibrium conditions are represented by VI.

The monotonicity properties of the negative utility and migration cost
mappings seem very natural, but they imply the monotonicity of the prob-
lem (6.9), (6.12). Therefore, most results of the theory of VIs can be applied
to these equilibrium problems.



Chapter 13

Projection Type Methods

The role of iterative methods for equilibrium problems is twofold. First of
all, they are considered as a basis for construction of efficient computational
procedures of finding equilibrium points. However, they can also be treated
as models of dynamic processes in the systems under consideration, hence,
their convergence properties then describe stability of these systems and
enable us to evaluate efficiency of the control procedures. For this reason,
investigation of properties of some methods, which may be inefficient from
the computational point of view, but seem very natural dynamic processes,
may give non-trivial conclusions about behavior of real systems. In this
chapter, we consider the projection method and its extensions for VI (11.1),
which is very popular due to its simplicity, clarity, and likeness to natural
dynamical processes such as the Walras tâtonnement (see Section 10.1). At
the same time, its convergence properties serve as a basis for understanding
more complicated methods. The detailed description of various solution
methods for VIs can be found in the books by Facchinei and Pang (2003),
Konnov (2001), and Patriksson (1999).

13.1 The classical projection method

Let us consider VI (11.1) where X is a nonempty, closed and convex subset
of a finite-dimensional Euclidean space E and G : X → E is a continuous
mapping. As before, X∗ denotes the solution set of this problem. In the
usual projection method, the iteration sequence is constructed in conformity
with the rule:

xk+1 = πX [xk − λkG(xk)], λk > 0, (13.1)

where xk is the current iteration point, x0 ∈ X, and πX(·) is the projection
mapping onto X; see also Figure 13.1. It follows now from Proposition

163
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11.12 that iteration (13.1) is well-defined, moreover, xk+1 is also the unique
solution of the following auxiliary VI: Find xk+1 ∈ X such that

(x − xk+1)T [G(xk) + λ−1
k (xk+1 − xk)] ≥ 0 ∀x ∈ X. (13.2)

Exercise 13.1. By using Proposition 11.12 (ii), prove the equivalence
between (13.1) and (13.2).

To obtain convergence results for the projection method, we need cer-
tain additional assumptions, together with those in Definition 11.1.

Definition 13.1. A mapping Q : X → E is said to be
(a) Lipschitz continuous with constant L, if for each pair of points x, y ∈

X, we have
‖Q(x) − Q(y)‖ ≤ L‖x − y‖;

(b) co-coercive (or inverse strongly monotone) with constant µ > 0, if
for each pair of points x, y ∈ X, we have

(x − y)T [Q(x) − Q(y)] ≥ µ‖Q(x) − Q(y)‖2.

One of the strongest convergence results for method (13.1) can be for-
mulated as follows.

Theorem 13.1. Suppose that G : X → E is strongly monotone with con-
stant τ > 0 and Lipschitz continuous with constant L. If a sequence {xk}
is constructed by the projection method (13.1) with λk = λ ∈ (0, 2τ/L2),
then it converges geometrically to the unique solution x∗ of VI (11.1), i.e.

‖xk+1 − x∗‖ ≤ ν‖xk − x∗‖, ν ∈ (0, 1). (13.3)

Proof. First we note that VI (11.1) has now a unique solution because of
Theorem 11.4. Using Propositions 11.12 and 11.13, we have

‖xk+1 − x∗‖
2

= ‖πX [xk − λkG(xk)] − πX [x∗ − λkG(x∗)]‖2

≤ ‖(xk − x∗) − λk[G(xk) − G(x∗)]‖
2

= ‖xk − x∗‖
2
− 2λk(xk − x∗)T [G(xk) − G(x∗)]

+ λ2
k‖G(xk) − G(x∗)‖2.

(13.4)

Now, using the assumptions of the theorem, we obtain

‖xk+1 − x∗‖
2

≤ ‖xk − x∗‖
2
− 2λτ‖xk − x∗‖

2

+λ2L2‖xk − x∗‖
2

= (1 − λ(2τ − λL2))‖xk − x∗‖
2

= ν2‖xk − x∗‖
2
.
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From the definition of λ it follows that ν =
√

1 − λ(2τ − λL2) ∈ (0, 1),
hence (13.3) is fulfilled.

However, the conditions of Theorem 13.1 may appear too strong for
applications (see Chapters 10–12) and we intend to prove similar results
under weaker assumptions. In fact, we can replace the above conditions
by co-coercivity of G. Observe that co-coercivity of G is equivalent to
strong monotonicity of the inverse mapping G−1 and implies the Lipschitz
continuity of G with constant 1/µ. Moreover, the conditions of Theorem
13.1 imply that G is co-coercive with constant µ = τ/L2. At the same
time, a co-coercive mapping need not be even strictly monotone in general.

Exercise 13.2. Let G(x) = Ax + b, where A is a symmetric positive
semidefinite n × n matrix, b ∈ R

n. Prove that G is co-coercive.

Let us consider the auxiliary mapping

T (x) = x − πX [x − λG(x)] . (13.5)

Due to Proposition 11.13, its zeros coincide with X∗.

Lemma 13.1. If G is co-coercive with constant µ > 0, then T in (13.5) is
co-coercive with constant µ′ = 1 − λ

4µ where λ ∈ (0, 4µ).

Proof. Choose arbitrary points x′, x′′ ∈ X and set t′ = T (x′), t′′ = T (x′′).
Then, using Proposition 11.12, we have

[(x′ − t′) − (x′′ − t′′)]
T

([t′ − λG(x′)] − [t′′ − λG(x′′)])

= (πX [x′ − λG(x′)] − πX [x′′ − λG(x′′)])
T

× ([x′ − λG(x′)] − [x′′ − λG(x′′)])

−‖πX [x′ − λG(x′)] − πX [x′ − λG(x′′)]‖2 ≥ 0.

It follows that

(t′ − t′′)T (x′ − x′′)

≥ ‖t′ − t′′‖2 + λ(x′ − x′′)T [G(x′) − G(x′′)]

−λ(t′ − t′′)T [G(x′) − G(x′′)]

≥ ‖t′ − t′′‖2 + λµ‖G(x′) − G(x′′)‖2

−λ(t′ − t′′)T [G(x′) − G(x′′)]

= (1 −
λ

4µ
)‖t′ − t′′‖2

+

∥∥∥∥∥

√
λ

4µ
(t′ − t′′) −

√
λµ[G(x′) − G(x′′)]

∥∥∥∥∥

2

≥ µ′‖t′ − t′′‖2,
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as desired.

This property ensures the convergence result.

Theorem 13.2. Suppose that G : X → E is co-coercive with constant
µ > 0 and that VI (11.1) is solvable. If a sequence {xk} is constructed by
the projection method (13.1) with λk = λ ∈ (0, 2µ), it converges to a point
of X∗.

Proof. Following (13.4) and using Lemma 13.1, we have

‖xk+1 − x∗‖2 =
∥∥[xk − T (xk)] − [x∗ − T (x∗)]

∥∥2 ,

= ‖xk − x∗‖2 − 2(xk − x∗)T [T (xk) − T (x∗)]

+‖T (xk) − T (x∗)‖2

≤ ‖xk − x∗‖2 − (2µ′ − 1)‖T (xk) − T (x∗)‖2

= ‖xk − x∗‖2 − (2µ′ − 1)‖T (xk)‖2

≤ ‖xk − x∗‖2

for an arbitrary solution x∗ of VI (11.1) since

2µ′ − 1 = 1 + (1 −
λ

2µ
) − 1 > 0.

It follows that the sequence {xk} is bounded, hence it has limit points,
moreover,

lim
k→∞

T (xk) = 0.

Taking an arbitrary limit point x̃ of {xk}, we now obtain T (x̃) = 0 by
continuity of G and the projection mapping. Due to Proposition 11.13, it
means that x̃ ∈ X∗, i.e. we can replace x∗ by x̃ in the above inequalities
and the monotone decrease of the distance ‖xk − x̃‖ yields

lim
k→∞

xk = x̃.

We now present another way of weakening the conditions of Theorem
13.1. Let us consider the acute angle condition:

∀x ∈ X \ X∗,∀x∗ ∈ X∗, (x − x∗)T G(x) > 0. (13.6)

In fact, it means that the angle between the vectors −G(x) and x∗ − x is
acute at each non-optimal point x, i.e. the ray {z | z = x − λG(x)} leads
to decrease of the distance to any optimal point x∗; see Figure 13.1. A
proper choice of the stepsize then yields convergence of method (13.1), as
the following theorem states.
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Figure 13.1:
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Theorem 13.3. Suppose that VI (11.1) is solvable and that (13.6) holds.
If a sequence {xk} is constructed by the projection method (13.1), where

λk =
αk

‖G(xk)‖
,

∞∑

k=0

αk = ∞,

∞∑

k=0

α2
k < ∞, (13.7)

then it either converges to a point of X∗ or terminates at a point of X∗.

Proof. Clearly, if G(xk) = 0, then xk ∈ X∗. Consider the case when
G(xk) �= 0 for k = 0, 1, . . . Fix x∗ ∈ X∗, then, by construction,

‖xk+1 − x∗‖2 ≤
∥∥πX [xk − λkG(xk)] − πX [x∗]

∥∥

≤ ‖xk − x∗‖2 − 2λk(xk − x∗)T G(xk)

+λ2
k‖G(xk)‖2

≤ ‖xk − x∗‖2 + α2
k.

Due to (13.7), we see that the sequence {xk} is bounded, hence it has limit
points, moreover,

lim
k→∞

‖xk − x∗‖ = d ≥ 0. (13.8)

In fact, the numerical sequence {δk}, δk = ‖xk −x∗‖2, also has limit points
due to its boundedness. If δ′ and δ′′ are two different limit points of {δk}
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and δ′ < δ′′, then we can choose n such that
∞∑

k=n

α2
k < (δ′′ − δ′)/4 and

N ≥ n such that |δN − δ′| < (δ′′ − δ′)/4. Then, by (13.7), for each k > N
we have

δk ≤ δN +

k−1∑

i=N

α2
i ≤ δ′ + |δN − δ′| +

k−1∑

i=n

α2
i < δ′ + 0.5(δ′′ − δ′)

= δ′′ − 0.5(δ′′ − δ′),

which is a contradiction since δ′′ is a limit point of {δk}. Therefore, δ′ = δ′′

and (13.8) holds.
Suppose that d > 0 and set µk = (xk − x∗)T G(xk)/‖G(xk)‖ > 0. If

µk ≥ µ′ > 0 for k = 0, 1, . . . ,

then, by the above inequalities,

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2αkµ′ + α2
k

≤ ‖x0 − x∗‖2 − 2µ′

k∑

i=0

αi +
k∑

i=0

α2
i < 0

for sufficiently large k, a contradiction. Therefore, there exists a sequence
{ks} such that µks

→ 0 as ks → +∞. Then, taking a subsequence, if
necessary, we obtain

0 = lim
ks→∞

µks
= lim

ks→∞

[
(xks − x∗)T G(xks)/‖G(xks)‖

]

= (x′ − x∗)T G(x′)/‖G(x′)‖,

where x′ is the corresponding limit point of {xks}. It follows now from
(13.6) that x′ ∈ X∗. Since x∗ ∈ X∗ was taken arbitrarily, we conclude that
d = 0 in (13.8), i.e.

lim
k→∞

‖xk − x′‖ = 0,

and the result follows.

Observe that condition (13.6) can be viewed as an extension of the
revealed preference condition (10.6), and the process (13.1), (13.7) is the
corresponding extension of the Walras tâtonnement (cf. (10.4), (10.5)). It
is easy to see that strict monotonicity of G implies (13.6), however, co-
coercivity and the acute angle conditions do not imply each other. A more
detailed description of properties of the classical projection method and its
extensions under these conditions can be found in the book by Gol’shtein
and Tret’yakov (1989).
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Figure 13.2:
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It should be also observed that the projection method (13.1) does not
provide convergence in the case when G is a general monotone mapping;
see e.g. Konnov (2001), Example 1.2.1.

Example 13.1. Set E = X = R
2, G(x) = (x2,−x1)

T . Then G is clearly
monotone and X∗ = {(0, 0)T }. For any λk > 0, we have

‖xk − λkG(xk)‖2 = (xk
1 − λkxk

2)2 + (xk
2 + λkxk

1)2

= (1 + λ2
k)‖xk‖2 > ‖xk‖2;

i.e., the distance to the solution may only increase regardless of the stepsize
rule; see Figure 13.2.

This property is caused by the fact that the angle between −G(xk) and
x∗ − xk need not be acute in the general monotone case (cf. (13.6)).

Exercise 13.3. Prove that assumption (13.6) is not fulfilled if G(x) =
Ax + b, where A is an arbitrary skew-symmetric matrix.

At the same time, many equilibrium problems are formulated as VIs
without strengthened monotonicity assumptions. Some methods ensuring
convergence for such VIs will be described in Chapters 15 and 16.
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13.2 The projection methods with linesearch

We now describe a way of constructing projection-based iterations (13.1)
with incorporation of a suitable linesearch procedure. This approach does
not require a priori knowledge of constants of G, such as Lipschitz continu-
ity, co-coercivity and strong monotonicity ones. However, such a linesearch
procedure requires a merit function. For this reason, we first consider the
case when G is integrable, i.e.

G(x) = ∇f(x) (13.9)

for a function f : R
n → R, see Section 11.1. Let us consider the auxiliary

mapping

Z(x) = πX [x − λ∇f(x)] (13.10)

for some λ > 0.
The next lemma collects the basic properties of Z, which ensure con-

vergence of the gradient projection method.

Lemma 13.2. Let Z be defined by (13.10) and let (13.9) hold. Then:
(i) x �→ Z(x) is continuous;
(ii) x∗ ∈ X∗ ⇐⇒ x∗ = Z(x∗);
(iii) x ∈ X =⇒ (Z(x) − x)T∇f(x) ≤ −λ‖Z(x) − x‖2.

Proof. The continuity of Z follows from the continuity of G and πX(·).
Proposition 11.12 shows that (13.10) is equivalent to

Z(x) ∈ X,
[y − Z(x)]T

(
∇f(x) + λ−1[Z(x) − x]

)
≥ 0 ∀y ∈ X

(13.11)

(cf. (13.1) and (13.2)). Therefore, x∗ = Z(x∗) gives x∗ ∈ X∗ by definition.
Next, setting y = x in (13.11) yields

−λ−1‖x − Z(x)‖2 ≥ (Z(x) − x)T∇f(x),

i.e. (iii) holds true, and x �= Z(x) implies x �∈ X∗. Hence, (ii) is also
true.

We now describe the descent gradient projection algorithm for VI (11.1),
(13.9).

Algorithm (descent gradient projection). Choose a point x0 ∈ X,
numbers β ∈ (0, 1), γ ∈ (0, 1), λ > 0, and set k = 0.
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At the k-th iteration, we have a point xk ∈ X, compute zk = Z(xk)
and set dk = zk − xk. If dk = 0, stop. Otherwise, find m as the smallest
non-negative integer such that

f(xk + γmdk) ≤ f(xk) + βγm(dk)T∇f(xk), (13.12)

set µk = γm, xk+1 = xk + µkdk, and k = k + 1.

According to the description, the method finds a solution to VI in the
case of its finite termination, i.e. dk = 0 implies xk ∈ X∗ on account of
Lemma 13.2 (ii). For this reason, in what follows we shall consider only
the case of the infinite sequence {xk}. The convergence of this method can
be established under rather weak additional assumptions.

Theorem 13.4. Suppose that (13.9) holds and that the set L0 = {x ∈
X | f(x) ≤ f(x0)} is bounded. Then the sequence {xk} generated by the
above algorithm is well-defined and have limit points, moreover, all these
limit points are solutions of VI (11.1), (13.9).

Proof. First we note that f is continuous due to (13.9), hence, by the
Weierstrass theorem, there exists a solution of the optimization problem
(11.5), and Theorem 11.1 now yields solvability of VI (11.1), (13.9). Next,
since f is differentiable, applying the Taylor formula gives

f(x + µdk) − f(xk) = µ(dk)T∇f(xk) + o(µ)

for µ ≥ 0 and Lemma 13.2 (iii) yields (dk)T∇f(xk) < 0. Hence, there
exists µ′ > 0 such that

f(xk + µdk) − f(xk) ≤ βµ(dk)T∇f(xk)

for all µ ∈ (0, µ′) and the linesearch procedure with condition (13.12) is
well-defined. It follows that the sequence {f(xk)} is decreasing and that
the sequence {xk} is contained in the bounded set L0, hence {xk} has limit
points. Suppose that lim

k→∞
dk �= 0, then there exists a subsequence {µks

}

such that {µks
} → 0 as {ks} → +∞. Then, for k = ks large enough, we

have
f(xk + (µk/γ)dk) − f(xk) > β(µk/γ)(dk)T∇f(xk)

or equivalently,

(µk/γ)
[
f(xk + (µk/γ)dk) − f(xk)

]
> β(dk)T∇f(xk).

Taking the limit k = ks → +∞ and a subsequence, if necessary, we obtain

d̃T∇f(x̃) ≥ βd̃T∇f(x̃),
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where x̃ and d̃ are the corresponding limit points of {xk} and {dk}, hence
d̃T∇f(x̃) ≥ 0. But d̃ �= 0 and x̃ does not solve VI (11.1), (13.9), i.e.
d̃T∇f(x̃) < 0 because of Lemma 13.2, a contradiction. Therefore,

lim
k→∞

(Z(xk) − xk) = 0,

and Lemma 13.2 now gives that all the limit points of {xk} belong to
X∗.

Theorem 13.4 shows that the integrability of the mapping G enables
us to construct a converging iteration sequence without any monotonicity
assumptions. However, the integrability seems too strong for many VIs
arising in economic equilibrium problems. In order to construct such a
descent method in the general case we need an artificial merit function and
certain strengthened monotonicity conditions for its convergence.

Let us consider VI (11.1) where G : X → R
n is a continuously differen-

tiable mapping. Observe that the so-called primal merit function

ϕ(x) = sup
y∈X

(x − y)T G(x)

provides the equivalence between VI (11.1) and the optimization problem

min
x∈X

→ ϕ(x),

however, it is not so easy to find a suitable algorithm for the latter problem
due to the absence of convexity and differentiability of ϕ. The regularized
merit function suggested by M. Fukushima possesses better differentiability
properties. It is defined as follows:

ϕλ(x) = max
y∈X

{
(x − y)T G(x) − (2λ)−1‖x − y‖2

}
(13.13)

for a fixed number λ > 0. Since the inner problem in (13.13) is a strongly
concave maximization one, it has a unique solution, which is denoted by
Zλ(x). In fact, writing the necessary and sufficient condition of optimality
for this problem from Theorem 11.1, we see that Zλ(x) ∈ X and

(y − Zλ(x))T (G(x) + λ−1[Zλ(x) − x]) ≥ 0 ∀y ∈ X, (13.14)

but Proposition 11.12 now gives

Zλ(x) = πX [x − λG(x)] (13.15)

(cf. (13.10)). Therefore, solving the inner problem in (13.13) is equiva-
lent to the projection iteration (13.15), hence the mapping x �→ Zλ(x) is
continuous.

We now show that ϕλ can serve as merit function for VI (11.1).
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Proposition 13.1. (i) ϕλ(x) ≥ 0 for all x ∈ X.
(ii) The following statements are equivalent:

(a) ϕλ(x∗) = 0 and x∗ ∈ X,
(b) x∗ solves VI (11.1),
(c) x∗ = Zλ(x∗).

Proof. By definition,

ϕλ(x) ≥ (x − x)T G(x) − (2λ)−1‖x − x‖2 = 0 ∀x ∈ X,

i.e. (i) is true. Next, the equivalence of (b) and (c) has been proven in
Proposition 11.13. Moreover, (c) clearly implies (a). Conversely, let (a)
hold true. Then, using (13.14) with x = y = x∗, we have

0 = ϕλ(x∗)

= (x∗ − Zλ(x∗))T G(x∗) − (2λ)−1‖x∗ − Zλ(x∗)‖2

≥ (2λ)−1‖x∗ − Zλ(x∗)‖2 ≥ 0,

i.e. x∗ = Zλ(x∗) and (c) holds. The proof is complete.

Proposition 13.1 enables us to replace VI (11.1) by the optimization
problem

min
x∈X

→ ϕλ(x). (13.16)

However, Theorem 13.4 says that the descent methods ensure convergence
only to solutions of the associated VI: Find x∗ ∈ X such that

(y − x∗)T∇ϕλ(x∗) ≥ 0 ∀y ∈ X. (13.17)

Under the above assumptions, ϕλ is a differentiable function, and using the
formula for the derivative of max type functions (see e.g. Facchinei and
Pang (2003), Theorem 10.2.1), we have

∇ϕλ(x) = G(x) + [∇G(x) − λ−1I]T (x − Zλ(x)). (13.18)

We are now ready to obtain the equivalence result.

Proposition 13.2. If G is differentiable and ∇G(x) is positive definite for
each x ∈ X, then problems (11.1), (13.16), and (13.17) are equivalent.

Proof. The equivalence of (11.1) and (13.16) has been proven in Proposition
13.1, moreover, Theorem 11.1 yields (13.16) =⇒ (13.17). Suppose that x∗

solves (13.17), then

(Zλ(x∗) − x∗)T∇ϕλ(x∗)
= (Zλ(x∗) − x∗)T G(x∗)
+(Zλ(x∗) − x∗)T∇G(x∗)T (x∗ − Zλ(x∗))
+λ−1‖x∗ − Zλ(x∗)‖2 ≥ 0.

(13.19)



174 13. PROJECTION TYPE METHODS

Applying (13.14) with y = x∗, x = x∗, we obtain

(Zλ(x∗) − x∗)T∇G(x∗)T (x∗ − Zλ(x∗)) ≥ 0,

hence x∗ = Zλ(x∗) and x∗ solves (11.1) because of Proposition 13.1.

Therefore, applying the usual gradient projection method with respect
to problem (13.17), i.e. replacing f by ϕλ, we can obtain an iterative
sequence converging to a solution of the initial VI (11.1) if ∇G(x) is positive
definite and the set L0 = {x ∈ X | ϕλ(x) ≤ ϕλ(x0)} is bounded. In fact,
the positive definiteness of ∇G(x) implies the strict monotonicity of G on
account of Proposition 11.1 (ii), i.e. the uniqueness of the solution of VI
(11.1) because of Proposition 11.14. Following Theorem 13.4, we conclude
that the iterative sequence converges to this unique solution. However,
(13.19) and (13.14) then imply

(Zλ(x) − x)T∇ϕλ(x) = (Zλ(x) − x)T G(x)
+(Zλ(x) − x)T∇G(x)T (x − Zλ(x)) + λ−1‖x − Zλ(x)‖2

< (Zλ(x) − x)T
[
G(x) + λ−1(Zλ(x) − x)

]
< 0

if ∇G(x) is positive definite and Zλ(x) �= x, hence Zλ(x) − x is also a
descent direction for ϕλ at each non-optimal point x. Being based on this
observation, we can propose a descent projection algorithm.

Algorithm (descent projection). Choose a point x0 ∈ X, numbers
β ∈ (0, 1), γ ∈ (0, 1), λ > 0, and set k = 0.

At the k-th iteration, we have a point xk ∈ X, compute zk = Zλ(xk)
and set dk = zk − xk. If dk = 0, stop. Otherwise, find m as the smallest
non-negative integer such that

ϕλ(xk + γmdk) ≤ ϕλ(xk) + βγm(dk)T∇ϕλ(xk), (13.20)

set µk = γm, xk+1 = xk + µkdk, and k = k + 1.

Since dk = 0 implies xk ∈ X∗, we shall consider only the case of the
infinite sequence {xk}. Taking into account Theorem 13.4 and the above
observations, we can obtain the following convergence property of this al-
gorithm.

Theorem 13.5. Suppose that the set L0 = {x ∈ X | ϕλ(x) ≤ ϕλ(x0)} is
bounded and that ∇G(x) is positive definite at each point x of X. Then
the sequence {xk} generated by the above algorithm is well-defined and con-
verges to a unique solution of VI (11.1).

Exercise 13.4. Prove the assertion of Theorem 13.5.
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We see that the computation of the descent direction in the above al-
gorithm does not require the computation of the Jacobian ∇G(x), however
this is not the case for the verification of rule (13.20); see (13.18). Under
the strong monotonicity assumption, we can construct the modified descent
algorithm without computation of the Jacobian.

Algorithm (modified descent projection). Choose a point x0 ∈ X,
numbers β ∈ (0, 1), γ ∈ (0, 1), λ > 0, and set k = 0.

At the k-th iteration, we have a point xk ∈ X, compute zk = Zλ(xk)
and set dk = zk − xk. If dk = 0, stop. Otherwise, find m as the smallest
non-negative integer such that

ϕλ(xk + γmdk) ≤ ϕλ(xk) − βγm‖dk‖2, (13.21)

set µk = γm, xk+1 = xk + µkdk, and k = k + 1.

First we establish the basic descent property similar to that in Lemma
13.2 (iii).

Lemma 13.3. If G is strongly monotone with constant τ , then

(Zλ(x) − x)T∇ϕλ(x) ≤ −τ‖Zλ(x) − x‖2 ∀x ∈ X. (13.22)

Proof. By definition,

(Zλ(x) − x)T∇ϕλ(x) = (Zλ(x) − x)T G(x)

+(Zλ(x) − x)T∇G(x)T (x − Zλ(x))

+λ−1‖x − Zλ(x)‖2

≤ (Zλ(x) − x)T∇G(x)T (x − Zλ(x))

≤ −τ‖Zλ(x) − x‖2,

where the first inequality follows from (13.4) with y = x, and the second
inequality follows from Proposition 11.1 (iii). Therefore, (13.22) is true.

We additionally establish the error bound using the merit function ϕλ.

Lemma 13.4. If G is strongly monotone with constant τ , then there exists
a number σ > 0 such that

ϕλ(x) ≥ σ‖x − x∗‖2 ∀x ∈ X. (13.23)

where x∗ is the unique solution of VI (11.1).
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Proof. First we note that VI (11.1) has now the unique solution x∗ due to
Theorem 11.4. Choose α ∈ (0, 1) and an arbitrary point x ∈ X and set
yα = αx∗ + (1 − α)x. By definition, we have

ϕλ(x) ≥ (x − yα)T G(x) − (2λ)−1‖x − yα‖
2

= α(x − x∗)T G(x) − α2(2λ)−1‖x − x∗‖2,

The strong monotonicity of G gives

(x − x∗)T G(x) ≥ (x − x∗)T G(x∗) + τ‖x − x∗‖2

≥ τ‖x − x∗‖2,

hence

ϕλ(x) ≥ α
(
τ − α(2λ)−1

)
‖x − x∗‖2

for arbitrary α ∈ (0, 1), i.e. (13.23) holds with

σ =

{
τ − (2λ)−1 if τ ≥ 1/λ,
τ2λ/2 if τ < 1/λ.

These results provide convergence of the above algorithm. Again, we
shall consider only the case of the infinite sequence {xk}.

Theorem 13.6. Suppose that the mapping G is continuously differentiable
and strongly monotone with constant τ > 0. Then the sequence {xk} gen-
erated by the above algorithm with β < τ is well-defined and converges to
a unique solution of VI (11.1).

Proof. Again, Theorem 11.4 yields the existence and uniqueness of the
solution of VI (11.1). Since ϕλ is now differentiable, applying the Taylor
formula gives

ϕλ(xk + µdk) − ϕλ(xk) = µ(dk)T∇ϕλ(xk) + o(µ)

for µ ≥ 0 and (13.22) yields (dk)T∇ϕλ(xk) < −τ‖dk‖2. Hence, there exists
µ′ > 0 such that

ϕλ(xk + µdk) − ϕλ(xk) ≤ −βµ‖dk‖2

for all µ ∈ (0, µ′) and the linesearch procedure with condition (13.21) is
always finite, i.e. the algorithm is well-defined. Rule (13.21) implies that
the sequence {ϕλ(xk)} is decreasing, but the set L0 = {x ∈ X | ϕλ(x) ≤
ϕ(x0)} is bounded due to (13.23). Hence, the sequence {xk} has limit
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points. Suppose that lim
k→∞

dk �= 0, then there exists a subsequence {µks
} →

0 as {ks} → +∞. Then, for k = ks large enough, we have

ϕλ(xk + (µk/γ)dk) − ϕλ(xk) > −β(µk/γ)‖dk‖2

≥ β(µk/γ)τ−1(dk)T∇ϕλ(xk)

due to (13.22), hence

(µk/γ)
[
ϕλ(xk + (µk/γ)dk) − ϕλ(xk)

]
> (β/τ)(dk)T∇ϕλ(xk).

Taking the limit k = ks → +∞ and a subsequence, if necessary, we obtain

(d̃)T∇ϕλ(x̃) ≥ (β/τ)(d̃)T∇ϕλ(x̃),

where x̃ and d̃ are the corresponding limit points of {xk} and {dk}, hence

(d̃)T∇ϕλ(x̃) ≥ 0.

But d̃ �= 0 and (13.22) yields

(d̃)T∇ϕλ(x̃) ≤ −τ‖d̃‖2 < 0,

a contradiction. Therefore, lim
k→∞

dk = 0 and, on account of the continuity

of Zλ, each limit point of {xk} is a solution of VI (11.1). However, the
solution point is unique and {xk} must converge to this point.

13.3 Modifications and extensions

The projection method described in the previous sections admits modifica-
tions and extensions in several directions. One of them consists in replacing
the simplest affine approximation of the mapping G at the current point
xk, given in (13.2), by more general expressions. In fact, we can consider
the method where the next iteration point is a solution of the following
auxiliary VI: Find xk+1 ∈ X such that

(x − xk+1)T [G(xk) + λ−1
k Ak(xk+1 − xk)] ≥ 0 ∀x ∈ X, (13.24)

where Ak is an n × n matrix, so that the projection method corresponds
to the choice Ak ≡ I. If Ak is positive definite, then the mapping G̃k(x) =
G(xk) + λ−1

k Ak(x − xk) is strongly monotone and VI (13.24) has a unique
solution; see Theorem 11.4. Then the method becomes well-defined. For
instance, if G is strongly monotone, then, by Proposition 11.1 (iii), its
Jacobian ∇G(x) is positive definite and we can set Ak = ∇G(xk) and
obtain a version of the well-known Newton method, which possesses very
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fast local convergence. Therefore, taking Ak as a suitable approximation of
∇G(xk), we can obtain a number of so-called quasi-Newton methods, whose
properties are intermediate between the projection and Newton methods.
Their convergence results are based partially on the techniques utilized
in the substantiation of the projection method, but construction of more
efficient versions requires a more complicated and deeper analysis. The
detailed description of such methods is presented in the books by Ortega
and Rheinboldt (1970), Patriksson (1999), and Facchinei and Pang (2003).

Another approach to extending the projection iteration (13.1) consists
in replacing the projection mapping πX(·) with a somewhat more gen-
eral mapping possessing the properties indicated in Propositions 11.12 and
11.13. Then the corresponding extension of the projection method will
have similar convergence properties.

Let Q : X → R
n be a monotone continuous mapping and let λ > 0 be a

fixed number. Then, for each point x ∈ R
n, there exists a unique solution

of the following VI: Find P (x) ∈ X such that

(y − P (x))T
(
Q[P (x)] + λ−1[P (x) − x]

)
≥ 0 ∀y ∈ X, (13.25)

thus determining the so-called proximal mapping x �→ P (x) with respect
to the mapping Q; this mapping was first introduced by J.J. Moreau for
the case when Q is integrable. In fact, the mapping Q(z) + λ−1(z − x)
is strongly monotone and continuous and the above assertion follows from
Theorem 11.4.

We now obtain the basic properties of the proximal mapping.

Proposition 13.3. Let P : R
n → X be the proximal mapping with respect

to a monotone continuous mapping Q and λ > 0. Then P is non-expansive
and continuous, and

(x′′ − x′)T [P (x′) − P (x′′)] ≥ ‖P (x′) − P (x′′)‖2

∀x′, x′′ ∈ R
n.

(13.26)

Proof. Choose arbitrary points x′, x′′ ∈ R
n and set p′ = P (x′), p′′ = P (x′′).

Then, by (13.25), we have

(p′′ − p′)T [Q(p′) + λ−1(p′ − x′)] ≥ 0

and
(p′ − p′′)T [Q(p′′) + λ−1(p′′ − x′′)] ≥ 0.

Adding these inequalities gives

(p′′ − p′)T (x′′ − x′)

≥ λ(p′′ − p′)T [Q(p′′) − Q(p′)] + ‖p′′ − p′‖2

≥ ‖p′′ − p′‖2,
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i.e. (13.26) holds true. Next, applying the Cauchy-Schwarz inequality in
(13.26) yields

‖x′′ − x′‖ ≥ ‖P (x′′) − P (x′)‖,

i.e. P is non-expansive, which in turn implies the continuity of P . The
proof is complete.

Now, let us consider the initial VI (11.1) and suppose that

G(x) = F (x) + Q(x), (13.27)

where Q : X → R
n is a monotone continuous mapping and F is a continu-

ous mapping. Then we can replace (13.1) by the following rule:

xk+1 = P [xk − λF (xk)], (13.28)

and, due to (13.25), (13.28) is then rewritten as follows: Find xk+1 ∈ X
such that

(y − xk+1)T
[
F (xk) + λ−1(xk+1 − xk)

+Q(xk+1)
]
≥ 0 y ∈ X;

(13.29)

cf. (13.2). Both rules (13.28) and (13.29) represent the same method,
which is explicit with respect to F and implicit with respect to Q. It
is called the forward-backward splitting method and is due to P.L. Lions
and B. Mercier. Observe that setting Q ≡ 0 in (13.27) and (13.29)
leads to the previous projection method since G = F . Thus, the splitting
method is an extension of the projection method, but its implementation
requires that the auxiliary problem (13.29) would be solved rather easily.
The next property shows that the initial VI (11.1) is equivalent to a fixed
point problem defined with the help of the proximal mapping.

Proposition 13.4. If Q : X → R
n is a monotone continuous mapping,

then a point x∗ ∈ X is a solution of VI (11.1), (13.27) if and only if

x∗ = P [x∗ − λF (x∗)]. (13.30)

Proof. If (13.30) holds, then (13.25) with x = x∗ − λF (x∗) gives

(y − x∗)T [Q(x∗) + F (x∗)] ≥ 0 ∀y ∈ X,

i.e. x∗ is a solution of VI (11.1), (13.27). Conversely, the above inequality
implies

(y − x∗)T [Q(x∗) + λ−1 (x∗ − (x∗ − λF (x∗)))] ≥ 0 y ∈ X,

i.e. x∗ = P [x∗ − λF (x∗)] because of (13.25).
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The above properties of the proximal mapping are similar to those of
the projection mapping in Propositions 11.12 and 11.13. Therefore, we can
obtain the convergence of the splitting method (13.28) (or (13.29)) with
fixed stepsize along the lines of Theorems 13.1 and 13.2.

Theorem 13.7. Suppose that (13.27) holds, where Q : X → R
n is contin-

uous and monotone and F : X → R
n is Lipschitz continuous with constant

L and strongly monotone with constant τ . If a sequence {xk} is constructed
by the splitting method (13.28) with λ ∈ (0, 2τ/L2), then it converges geo-
metrically to a unique solution of VI (11.1), (13.27).

Exercise 13.5. Prove the assertion of Theorem 13.7 along the lines of the
proof of Theorem 13.1.

Similarly, we can obtain convergence of the above method under the
co-coercivity of F .

Theorem 13.8. Suppose that (13.27) holds, where Q : X → R
n is contin-

uous and monotone and F : X → R
n is co-coercive with constant µ > 0,

and that VI (11.1), (13.27) is solvable. If a sequence {xk} is constructed by
the splitting method (13.28) with λ ∈ (0, 2µ), then it converges to a solution
of VI (11.1), (13.27).

Exercise 13.6. Prove the assertion of Theorem 13.8 along the lines of the
proofs of Theorem 13.2 and Lemma 13.1.

Observe that the splitting method enables us to weaken the conditions
on the part Q of the cost mapping G. Moreover, the same convergence
results can be obtained even for the case when Q is a multi-valued monotone
mapping. The detailed description of various splitting methods and their
convergence properties is given e.g. in the books by Cottle, Pang, and
Stone (1992), Patriksson (1999), and Facchinei and Pang (2003).



Chapter 14

Applications of the Projection

Methods

In this chapter, we discuss possible applications of the projection type
methods to equilibrium problems described mostly in Part I. Some of them
have been presented in Chapter 10. Now our analysis are based on the
properties given in Chapters 11–13.

14.1 Applications to variational inequalities

We first consider the models that are formulated as the usual VI: Find
x∗ ∈ X such that

(x − x∗)T G(x∗) ≥ 0 ∀x ∈ X, (14.1)

where X is a nonempty, convex and closed subset in R
n, G : X → R

n is a
continuous mapping. The application of the projection method (13.1) tac-
itly assumes that the projection onto X can be implemented rather easily.
Such equilibrium models were presented in Part I and analyzed in Chapter
12. Namely, the Cassel-Wald model (see (12.1)), the Walrasian type mod-
els (12.4) and (12.8), the oligopolistic model (11.1), (12.20), the path flow
formulation of the network equilibrium model (12.22), (12.23), and the mi-
gration equilibrium model (6.9), (6.12) reduce to VI (14.1) with the desired
properties of the feasible set X. Moreover, under rather natural assump-
tions, the corresponding cost mapping G then possesses the monotonicity
properties; see Chapter 12. Therefore, we can apply the projection method
(13.1) both for finding their solutions and for describing dynamic processes
in there models.
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For instance, in the Cassel-Wald model (12.1), x denotes the vector
of outputs of commodities, and G(x) = −c(x), where c(x) denotes the
price vector at x. Therefore, the (strengthened) monotonicity properties
of −c(x) seem very natural but they imply convergence of the projection
method. Since the feasible set is defined by the linear constraints, i.e.,

X = {x ∈ R
n | Ax ≤ b, x ≥ 0},

the projection onto X is implementable in the sense that it can be always
computed in the finite number of operations.

If we consider the projection method (13.1) as a model of the dynamic
process, it can be interpreted as a process with reaction only on the current
state xk and its estimate G(xk). For the Cassel-Wald model, it means that
the change of the prices c only depends on the current output xk without
taking into account the history of the system. The results of Chapter 13
describe the conditions of stability of this process.

Exercise 14.1. Give interpretations of the projection method for the Wal-
rasian type models (12.4) and (12.8), the oligopolistic model (11.1), (12.20),
the auction market model (5.28), (5.29), the path flow formulation of the
network equilibrium model (12.22), (12.23), and the migration equilibrium
model (6.9), (6.12).

Most convergence theorems for the projection method require the streng-
thened monotonicity properties of G. In general, if G is only monotone,
we should make use of some other methods described in the next chapters.
At the same time, Theorem 13.4 says that the monotonicity may be in
principle replaced by the integrability. For instance, this is the case if G is
diagonal, i.e.

G(x) = (G1(x1), . . . , Gn(xn))T , (14.2)

or G is an affine mapping with symmetric matrix, i.e.

G(x) = Ax + b, where
A is a n × n symmetric matrix.

(14.3)

Exercise 14.2. Prove that both (14.2) and (14.3) imply (13.9), i.e. the
integrability of G.

For instance, if the price ci of the i-th commodity in the Cassel-Wald
model only depends on the output xi of just this commodity, then G(x) =
−c(x) is diagonal, and the convergence of the projection method in this
case follows from Theorem 13.4.
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Exercise 14.3. Give the interpretation of the diagonal property of the
cost mappings in the models indicated in Exercise 14.1.

Let us consider additionally the path flow formulation of the network
equilibrium model (12.22), (12.23). It was noticed in Section 12.5 that
(12.22) may be rewritten equivalently as VI (14.1), where

G(x) = BT F (Bx), (14.4)

B is the arc-path incidence matrix, x is the vector of path flows, F (y) is the
vector value of flow costs depending on the arc flows y; also, X in (12.23) is
nonempty, convex, and compact; see (12.24). It is natural to suppose that
the mapping F is (strongly, strictly) monotone, but this is not the case for
G, however, G maintains both monotonicity and integrability of F . We
refer to Exercise 12.7 for the monotone case.

Exercise 14.4. Prove that the integrability of F implies the integrability
of G in (14.4).

Let now F be strongly monotone with constant τ and Lipschitz con-
tinuous with constant L. Since B is not a square matrix and contains
zero entries, G in (14.4) need not be strongly monotone, but possesses
co-coercivity with constant

µ = τ/(L‖B‖)2.

In fact, fix x′, x′′ ∈ X and set y′ = Bx′, y′′ = Bx′′. Then we have

(x′ − x′′)T [G(x′) − G(x′′)]

= (y′ − y′′)T [F (y′) − F (y′′)]

≥ τ‖y′ − y′′‖2 ≥ (τ/L2)‖F (y′) − F (y′′)‖2

≥ (τ/(L‖B‖)2)‖BT F (y′) − BT F (y′′)‖2

= µ‖G(x′) − G(x′′)‖2,

as desired. In this case the convergence of the projection methods follows
from Theorem 13.2.

Let us now consider the Walrasian equilibrium model (12.8) with the
cost mapping G = −E, so as E represents the excess demand, i.e.

E(p) = D(p) − S(p),

and D(p) (respectively, S(p)) is the value of demand (respectively, sup-
ply) at the current price vector p. Suppose that each producer determines
its supply as a solution of problem (12.5), then, by Proposition 12.2, its
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supply mapping is monotone on P , and so is the total supply mapping
S, but it need not be strictly (strongly) monotone. Next, suppose that
the negative demand mapping −D is co-coercive, then the cost mapping
G(p) = −E(p) = S(p) − D(p) is clearly monotone, but may not be co-
coercive. Hence, the usual projection (tâtonnement) process, defined by

pk+1 = πP [pk + λkE(pk)], λk > 0,

does not ensure convergence in general. Nevertheless, Theorem 13.8 says
that the splitting method, where the next iteration pk+1 ∈ P satisfies the
auxiliary VI:

(p − pk+1)T [S(pk+1) + λ−1(pk+1 − pk)
−D(pk)] ≥ 0 ∀p ∈ P,

(14.5)

generates the sequence {pk} converging to an equilibrium price vector. Ob-
serve that (14.5) may be interpreted as a modified version of the cobweb
process and involves different velocities for supply and demand. It means
that the price adjustment is slow for demand whereas it is immediate(rapid)
for supply, but this dynamic process is stable. Conversely, in the same
Walrasian model (12.8), we can apply the other splitting method, where
pk+1 ∈ P satisfies the auxiliary VI:

(p − pk+1)T [S(pk) + λ−1(pk+1 − pk) − D(pk+1)] ≥ 0
∀p ∈ P,

which corresponds to the slow price reaction for supply and the rapid price
reaction for demand and may be useful if the total supply of producers is at
least co-coercive. Therefore, the slow price reaction requires strengthened
monotonicity for ensuring the stability of the dynamic process.

14.2 Applications to systems of variational

inequalities

Many equilibrium problems considered in Part I are formulated as exten-
sions of the primal-dual system of VI’s given in (4.11). In fact, this is the
case for the extended Scarf model (5.5), (5.6), for the spatial price equilib-
rium models from Section 5.3, and for the multicommodity formulation of
the network equilibrium problem from Section 6.1. Moreover, if we intend
to remove complicated constraints determining the feasible set of VI, we can
replace this VI by the primal -dual formulation, which leads to the system
of VIs with simple constraints on variables. This approach can be applied
to the linear programming problems (see (4.9)), to the Cassel-Wald model
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(see (5.1)), and to the migration equilibrium model from Section 6.2. The
corresponding systems are also particular cases of (4.11). We now consider
a somewhat more general primal-dual system of VIs presented in (11.26).
The problem is to find a pair of points (u∗, v∗) ∈ U × V such that

(u − u∗)T [F (u∗) +
m∑

i=1

v∗
i ∇fi(u

∗)] ≥ 0 ∀u ∈ U,

(v − v∗)T [b(v∗) − f(u∗)] ≥ 0 ∀v ∈ V,
(14.6)

where F : U → R
l and b : V → R

m are continuous mappings, fi : R
l →

R, i = 1, . . . , m are convex differentiable functions,

f(u) = (f1(u), . . . , fm(u))T ,

U =
{
u ∈ R

l | uj ≥ 0 ∀j ∈ J
}

, J ⊆ {1, . . . , l},

V is a nonempty, convex and closed subset of R
m, for instance, we can

set V = R
m
+ . Problem (14.6) covers the optimality conditions for con-

vex programming problems, which correspond to the case when b(v) ≡ 0,
F (u) = ∇f0(u) for a convex function f0 : R

l → R (see Proposition 11.5);
the optimality conditions for constrained VIs, which correspond to the case
when b(v) ≡ 0 (see Proposition 11.6); and the primal-dual system (4.11)
in the case when fi, i = 1, . . . , m are affine functions. At the same time,
system (14.6) is equivalent to VI (14.1) where x = (u, v),X = U × V ,

G(x) =

(
F (u) +

∑m
i=1 vi∇fi(u)

b(v) − f(u)

)
, (14.7)

and we can apply the projection method (13.1) to find its solution. It can
be specialized as follows. Given the current iterate xk = (uk, vk) ∈ U × V ,
the next iterate xk+1 ∈ U × V solves the auxiliary problem

(u − uk+1)T

[
F (uk) +

m∑

i=1

vk
i ∇fi(u

k)

+ λ−1
k (uk+1 − uk)

]
≥ 0 ∀u ∈ U,

(v − vk+1)T
[
b(vk) − f(uk) + λ−1

k (vk+1 − vk)
]
≥ 0 ∀v ∈ V.

(14.8)

In case F (u) = ∇f0(u), b(v) ≡ 0, i.e. when (14.6) is the optimality
conditions for the optimization problem (11.9)–(11.11), this method was
proposed by K.J. Arrow and L. Hurwicz for finding saddle points of the
Lagrange functions; see Arrow, Hurwicz, and Uzawa (1958), Chapter 6.

Exercise 14.5. Write down method (14.8) for system (4.11), for the spatial
price equilibrium models from Section 5.3, and for the multicommodity
formulation of the network equilibrium problem form Section 6.1.



186 14. APPLICATIONS OF THE PROJECTION METHODS

If both the mappings F and b are strongly (strictly) monotone, then so
is G in (14.7) due to Proposition 11.9 and, on account of Theorems 13.1,
13.3, 13.5, and 13.6, there exist rules for choice of λk ensuring convergence
of the corresponding method to a solution of (14.6). Similarly, if F and
b are co-coercive, then so is G and we can then apply Theorem 13.2 for
providing convergence.

Exercise 14.6. Give an interpretation of (strong, strict) monotonicity and
co-coercivity properties of F and b for the models indicated in Exercise 14.5.

Observe that the mapping G in (14.7) can not be integrable, hence
Theorem 13.4 is not applicable. At the same time, we can replace the
projection method with the splitting one (see (13.29)), which is explicit
with respect to F and b and ensures convergence under the same condition
on these mappings.

Exercise 14.7. Write down the indicated splitting method for system
(14.6).

If even at least one of the mappings F or b does not possess strengthened
monotonicity properties, we can not guarantee these properties for G and
it becomes very difficult to obtain convergence of the projection method.
But this is case for system (12.15) and for primal-dual systems which are
optimality conditions for constrained problems, where we have b(v) ≡ 0;
see Gol’shtein and Tret’yakov (1989), Chapter 6 for more details. However,
using the method with different iterations in the variables u and v, we can
obtain a suitable approach to finding solutions of the initial system (14.6).

Let us consider the case when F : U → R
l is a strongly monotone

mapping with constant τ > 0, and f : R
l → R

m is a Lipschitz continuous
mapping with constant Lf . Then, for each v ∈ R

m
+ , there exists the unique

solution u(v) ∈ U of the VI in the primal variables

(u − u(v))T

[
F (u(v)) +

m∑

i=1

vi∇fi(u(v))

]
≥ 0 ∀u ∈ U. (14.9)

Set

Q(v) = −f(u(v)),

thus defining the mapping Q : R
m
+ → R

m.

Proposition 14.1. Under the above assumptions the mapping Q is co-
coercive with constant µ = τ/L2

f .
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Proof. Fix v′, v′′ ∈ R
m
+ and set u′ = u(v′), v′′ = u(v′′). Using (14.9), we

have

(u′′ − u′)T [F (u′) +
m∑

i=1

v′
i∇fi(u

′)] ≥ 0

and

(u′ − u′′)T [F (u′′) +

m∑

i=1

v′′
i ∇fi(u

′′)] ≥ 0.

Adding these inequalities gives

m∑

i=1

v′
i(u

′′ − u′)T∇fi(u
′) +

m∑

i=1

v′′
i (u′ − u′′)T∇fi(u

′′)

≥ (u′′ − u′)T [F (u′′) − F (u′)]

≥ τ‖u′′ − u′‖2.

Since the functions fi, i = 1, . . . ,m, are convex, using Proposition 11.4 now
yields

(v′′ − v′)T [Q(v′′) − Q(v′)]

=

m∑

i=1

v′
i[fi(u

′′) − fi(u
′)] +

m∑

i=1

v′′
i [fi(u

′) − fi(u
′′)]

≥ τ‖u′′ − u′‖2 ≥ (τ/L2
f )‖f(u′′) − f(u′)‖2

= µ‖Q(v′′) − Q(v′)‖2,

i.e. Q is co-coercive, as desired.

Observe that system (14.6) is now equivalent to the following VI in the
dual variables: Fix v∗ ∈ V such that

(v − v∗)T [b(v∗) + Q(v∗)] ≥ 0 ∀v ∈ V, (14.10)

as the following proposition states.

Proposition 14.2. Let the above assumptions hold. If (u∗, v∗) solves
(14.6), then v∗ solves (14.10) and u∗ = u(v∗). Conversely, if v∗ solves
(14.10), then the pair (u∗, v∗), where u∗ = u(v∗) solves (14.6).

Exercise 14.8. Prove the assertion of Proposition 14.2.

The projection method (13.1) applied to (14.10) consists in finding the
next iterate vk+1 ∈ V from the VI

(v − vk+1)T [b(vk) + Q(vk) + λ−1
k (vk+1 − vk)] ≥ 0

∀v ∈ V,
(14.11)
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In case F (u) = ∇f0(u), b(v) ≡ 0, which corresponds to the optimality
conditions for optimization problems, this dual method was proposed by
H. Uzawa; see Arrow, Hurwicz, and Uzawa (1958), Chapter 7. We now
give a convergence result under the co-coercivity of b, note that this is the
case if b is a constant mapping.

Theorem 14.1. Suppose that all the above assumptions are fulfilled, sys-
tem (14.6) is solvable, and b : R

m
+ → R

m is co-coercive with constant
µ̃ > 0. Then any sequence {vk}, generated by method (14.11) with λk =
λ ∈ (0, 2µ′), µ′ = min{µ, µ̃}, converges to a point v∗ ∈ V , and the sequence
{uk}, with uk = u(vk), converges to a point u∗ ∈ U such that u∗ solves
(14.10) and (u∗, v∗) solves (14.6).

Proof. For brevity, set H(v) = b(v) + Q(v). Then, for an arbitrary pair of
points v′, v′′ ∈ V , we have

(v′ − v′′)T [H(v′) − H(v′′)]

≥ µ̃‖b(v′) − b(v′′)‖2 + µ‖Q(v′) − Q(v′′)‖2

≥ µ′‖H(v′) − H(v′′)‖2,

i.e. H is co-coercive with constant µ′. On account of Theorem 13.2, {vk}
converges to a point v∗ which is a solution of VI (14.10). Since Q is co-
coercive, it is continuous, hence so is the mapping v �→ u(v). Therefore,
the sequence {uk} with uk = u(vk) has limit points, but all these points
coincide with u∗ = u(v∗), hence lim

k→∞
uk = u∗. By Proposition 14.2, (u∗, v∗)

is a solution of (14.6).

It has been noticed that the equilibrium model (4.11), the extended
Scarf model (5.5)–(5.6), and system (12.15) are particular cases of system
(14.6). If we choose y as the dual variable in (4.11), then method (14.11)
will correspond to the tâtonnement process due to (5.7) (cf. (10.4)). This
is also the case for systems (5.5)–(5.6), and (12.15) if we choose the prices
p as dual variables.

Exercise 14.9. Write down method (14.11) for systems (4.11), (5.5)–(5.6),
and (12.15) and establish its convergence properties.

By using the other theorems from Chapter 13, we can obtain several
convergence results for method (14.11) under the other assumptions on b.

Exercise 14.10. Prove similar convergence results for method (14.11) for
the cases when b is strongly monotone and strictly monotone.
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We can somewhat weaken the assumptions for convergence by using
the splitting method (13.29). This method applied to (14.10) consists in
finding the next iterate vk+1 ∈ V from the VI

(v − vk+1)T [b(vk+1)
+λ−1

k (vk+1 − vk) + Q(vk)] ≥ 0 ∀v ∈ V,
(14.12)

i.e. it is implicit with respect to b and explicit with respect to Q. If
b(v) ≡ b, (14.12) clearly coincides with (14.11). Combining Theorem 13.8
and Propositions 14.1 and 14.2, we can obtain the convergence theorem for
this method.

Exercise 14.11. Write down method (14.12) for systems (4.11), (5.5)–
(5.6), and (12.15).

Theorem 14.2. Suppose that all the assumptions above are fulfilled, sys-
tem (14.6) is solvable, and b : R

m
+ → R

m is monotone. Then any sequence
{vk} generated by the method (14.12) with λk = λ ∈ (0, 2µ), converges to
a point v∗ ∈ V , and the sequence {uk}, with uk = u(vk), converges to a
point u∗ ∈ U such that v∗ solves (14.10), and (u∗, v∗) solves (14.6).

Exercise 14.12. Prove the assertion of Theorem 14.2.
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Chapter 15

Regularization Methods

In was noticed in Chapter 13 that the projection method (13.1) does not
ensure convergence to a solution of VI in the case when its cost mapping is
only monotone, but does not possess strengthened monotonicity properties;
see Example 13.1 and Exercise 13.3. At the same time, these strengthened
properties do not hold in many equilibrium models; see Chapter 12. More-
over, the corresponding cost mappings are not integrable, thus preventing
the application of the descent approach described in Theorem 13.4. There-
fore, we should present iterative methods for the general monotone case,
which can be also regarded as more stable dynamic processes in comparison
with those in Chapters 13–14.

Throughout this and the next chapter, we shall consider the following
VI: Find a point x∗ ∈ X such that

(x − x∗)T G(x∗) ≥ 0 ∀x ∈ X, (15.1)

where X is a nonempty, convex, and closed subset in R
n, G : X → R

n

is a continuous monotone mapping. As before, X∗ denotes the solution
set of this problem. First we consider regularization type methods which
replace the initial monotone VI (15.1) with a sequence of auxiliary VI’s
with strengthened monotonicity properties.

15.1 The classical regularization method and its

modifications

The most popular and simple regularization method was proposed by
A.N. Tikhonov; see Tikhonov and Arsenin (1977). This method consists

191
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in replacing VI (15.1) by a sequence of auxiliary VI’s of the form: Find
xε ∈ X such that

(x − xε)T [G(xε) + εxε] ≥ 0 ∀x ∈ X, (15.2)

where ε > 0 is a parameter. Since G is monotone, G + εI is strongly
monotone and, by Theorem 11.4, (15.2) has a unique solution, which can
be found by one of the versions of the projection method from Chapter 13
within a given accuracy. The basic approximation property of the sequence
{xε} is formulated as follows.

Theorem 15.1. If VI (15.1) is solvable, the sequence {xεk} obtained from
(15.2) with {εk} → 0 converges to the solution x∗

n of (15.1) nearest to
origin.

Proof. Take an arbitrary solution x∗ of VI (15.1). Then, by definition, we
have

(xε − x∗)T G(xε) ≥ (xε − x∗)T G(x∗) ≥ 0

and
(x∗ − xε)T [G(xε) + εxε] ≥ 0.

Adding these inequalities gives (x∗)T xε ≥ ‖xε‖2, i.e.

‖x∗‖ ≥ ‖xε‖ ∀x∗ ∈ X∗. (15.3)

It follows that the sequence {xεk} is bounded, hence it has limit points.
Taking the limit k → ∞ in (15.2), we obtain that each limit point of {xεk}
belongs to X∗. At the same time, the monotonicity of G implies that, for
all x ∈ X, we have

(x − x∗)T G(x) ≥ 0 ∀x∗ ∈ X∗.

Hence X∗ is convex and closed, and, by Proposition 11.12, there exists the
unique projection x∗

n of origin onto X∗. Applying (15.3) now gives

‖x∗
n‖ ≥ ‖x′‖, x′ ∈ X∗

for an arbitrary limit point x′ of {xεk}, i.e. all these limit points coincide
with x∗

n.

Thus, combining the approximate solution of perturbed problems (15.2),
which possess the strong monotonicity, with driving the regularization pa-
rameter ε to zero, we can obtain a solution of the initial monotone VI.
Therefore, the dynamic processes with reactions on the perturbed map-
ping appears more stable in comparison with the processes without such
perturbations.
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The regularization approach admits various modifications. One of them
was proposed by A.B. Bakushinskii and B.T. Polyak and is called the it-
erative regularization. The idea of this approach consists in simultaneous
changes of the regularization parameters and the stepsizes of an approx-
imation method. If we take the projection method (13.1) as a basis, the
corresponding iterative procedure can be described as follows:

xk+1 = πX(xk − λk[G(xk) + εkxk]), εk > 0, λk > 0; (15.4)

where

lim
k→∞

εk = 0, lim
k→∞

(λk/εk) = 0,

lim
k→∞

εk − εk+1

λkε2
k

= 0,

∞∑

k=0

(εkλk) = ∞.
(15.5)

Proposition 15.1. (see Bakushinskii and Goncharskii (1989), Theorem
3.1) If there exists a constant L such that

‖G(x)‖ ≤ L(1 + ‖x‖) ∀x ∈ X,

then any sequence {xk} generated in conformity with rules (15.4) – (15.5)
converges to the point x∗

n.

Observe that the conditions in (15.5) are fulfilled if we set

λk = (k + 1)−1/2, εk = (k + 1)−τ , τ ∈ (0, 1/2).

15.2 The proximal point method

The proximal point method represents some other way of constructing a
sequence of perturbed problems, where the regularization parameter may
be fixed. This method was first proposed by B. Martinet. Observe that
the projection method does not ensure convergence for the initial monotone
VI (15.1), hence its convergence may be very slow if it is applied to the
perturbed VI (15.2) where ε is small enough, but tending ε to zero is
necessary for convergence of the regularization method. Therefore, the
fixed regularization parameter yields certain advantages.

The proximal mapping has been considered in Section 13.3. We now
recall its properties with respect to G, i.e. we consider the case when
F ≡ 0 in (13.27). Given a point x ∈ R

n, there exists a unique solution of
the following VI: Find P (x) ∈ X such

(y − P (x))T
(
G[P (x)] + λ−1[P (x) − x]

)
≥ 0 ∀y ∈ X. (15.6)
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where λ > 0 is a fixed number, since G is monotone and continuous. The
proximal method consists in generating a sequence {xk} as follows:

xk+1 = P (xk). (15.7)

Its convergence properties can be deduced from Theorem 13.8, but we give
some other proof for the clarity of exposition. First we recall the properties
of the proximal mapping obtained in Propositions 13.3 and 13.4.

Lemma 15.1. (i) The mapping P is non-expansive and continuous and

(x′′ − x′)T [P (x′) − P (x′′)] ≥ ‖P (x′) − P (x′′)‖2 ∀x′, x′′ ∈ R
n.

(ii) A point x∗ ∈ X is a solution of VI (15.1) if and only if x∗ = P (x∗).

For each point x ∈ R
n, set

H(x) = λ−1[x − P (x)],

thus defining the mapping H : R
n → R

n. We intend to show that H is
co-coercive with constant λ.

Lemma 15.2. For each pair of points x′, x′′ ∈ R
n, it holds that

(x′′ − x′)T [H(x′′) − H(x′)] ≥ λ‖H(x′′) − H(x′)‖2.

Proof. Fix x′, x′′. Then, using Lemma 15.1 (i), we have

(x′′ − x′)T [H(x′′) − H(x′)]

= λ[H(x′′) − H(x′)]T [H(x′′) − H(x′)]

+[P (x′′) − P (x′)]T [H(x′′) − H(x′)]

= λ‖H(x′′) − H(x′)‖2

+λ−1
[
(x′′ − x′)T [P (x′′) − P (x′)] − ‖P (x′′) − P (x′)‖2

]

≥ λ‖H(x′′) − H(x′)‖2,

and the result follows.

We now observe that (15.7) coincides with the simple iteration

xk+1 = xk − λH(xk) (15.8)

applied to finding a solution of the equation

H(x∗) = 0. (15.9)

Theorem 15.2. Any sequence {xk} satisfying (15.7) converges to a solu-
tion of VI (15.1) for an arbitrary λ > 0.
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Proof. If {xk} is generated in conformity with (15.7), we obtain (15.8)
by definition. Taking into account Lemma 15.2, we conclude that {xk}
converges to a solution x∗ of equation (15.9) due to Theorem 13.2. It
follows now from Lemma 15.1 (ii) that x∗ is a solution of VI (15.1).

Thus, the proximal point method involves a solution of the auxiliary
strongly monotone VI (15.6) for x = xk at each iteration. The exact
solution of this problem may be too hard in implementation but it then can
be replaced by an inexact solution within certain prescribed accuracy. Such
inexact versions maintain the basic convergence properties; see Gol’shtein
and Tret’yakov (1989) and Facchinei and Pang (2003) for more details.
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Chapter 16

Direct Iterative Methods for

Monotone Variational

Inequalities

In this chapter, we also consider iterative solution methods for VI (15.1)
with the monotone and continuous cost mapping G. These methods are
based on modifying direction finding procedures, i.e. unlike the regulariza-
tion methods, they do not utilize perturbations of the initial problem.

16.1 Extrapolation methods

It was noticed in Chapter 13 that the projection method, which represents
a dynamic process with reactions on the current state of the system, does
not ensure convergence to a solution of VI (15.1) under the above general
assumptions. In particular, this is the case for its specialization (14.8),
which is known as the Arrow-Hurwicz method, when F and b in (14.6) are
only monotone, see Example 13.1 and Exercise 13.3. Clearly, this is also
the case for the primal-dual system (4.9) related to linear programming
problems. However, if we replace method (14.8) with the reaction on the
current state by a method with the reaction on the extrapolated state,
then it can ensure convergence to a solution. This property was noticed
by T. Kose and modified and extended by K.J. Arrow and R. Solow; see
Arrow, Hurwicz, and Uzawa (1958), Chapter 11, for more details. For the
general VI of form (15.1) such a method was proposed by G.M. Korpelevich
and it is called the extragradient method. Its iteration is as follows:

xk+1 = πX [xk − λkG(yk)],
yk = πX [xk − λkG(xk)], λk > 0.

(16.1)

197
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The convergence property of method (16.1) for the monotone VI (15.1) is
based on the fact that the angle between −G(yk) and x∗−xk can be made
acute for any x∗ ∈ X∗, so that the iteration process (16.1), under a suitable
choice of the stepsize λk, becomes convergent to a solution of VI (15.1).
Observe that the extragradient method involves the same stepsize for both
steps in (16.1). For instance, we can set λk = λ ∈ (0, 1/L), where L is the
Lipschitz constant for G or utilize a linesearch procedure: see Gol’shtein
and Tret’yakov (1989), Chapter 5 and Facchinei and Pang (2003), Chapter
12 for more details.

We now consider another way of providing convergence via extrapola-
tion steps, which was proposed by the author of this book and called the
combined relaxation method. In this method, the first part of each iter-
ation serves for computing parameters of a hyperplane separating strictly
the current iterate and the solution set X∗, whereas the second part con-
sists in making the projections on this hyperplane and on the feasible set,
if necessary. As a result, we obtain the monotone decrease of the distance
to all solutions. The first part of the iteration may be in principle based on
an iteration on most relaxation methods, but now we present the simplest
projection-based iteration which is close to the extragradient method; see
Konnov (2001), Facchinei and Pang (2003), and references therein.

Algorithm (feasible combined relaxation). Choose a point x0 ∈ X,
numbers α ∈ (0, 1), β ∈ (0, 1), γ ∈ (0, 2), λ > 0, and set k = 0.

Step 1 (Auxiliary procedure): Compute zk = πX [xk − G(xk)] and set
pk = zk − xk. If pk = 0, stop. Otherwise determine m as the smallest
non-negative integer such that

(pk)T G(xk + βmpk) ≤ α(pk)T G(xk), (16.2)

set θk = βm, yk = xk + θkpk. If G(yk) = 0, stop.
Step 2 (Main iteration): Set

gk = G(yk), ωk = (gk)T (xk − yk),
xk+1 = πX [xk − γ(ωk/‖gk‖2)gk],

(16.3)

k = k + 1 and go to Step 1.

According to the description, the algorithm finds a solution to VI in the
case of its finite termination. Therefore, in what follows we shall consider
only the case of the infinite sequence {xk}.

The basic properties of the algorithm are collected in the next lemma.

Lemma 16.1. (i) The linesearch procedure in Step 1 is always finite.
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(ii) It holds that

(gk)T (xk − x∗) ≥ ωk ≥ αθkλ−1‖pk‖2 > 0 (16.4)

and

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − γ(2 − γ)(ωk/‖gk‖)2 (16.5)

for each x∗ ∈ X∗.

Proof. If we suppose that the linesearch procedure is infinite, then (16.2)
holds for m → ∞, hence, by continuity of G,

(1 − α)(zk − xk)T G(xk) ≤ 0.

On the other hand, by Proposition 11.12,

(y − zk)T
[
G(xk) + λ−1(zk − xk)

]
≥ 0 ∀y ∈ X, (16.6)

hence

(xk − zk)T
[
G(xk) + λ−1(zk − xk)

]
≥ 0,

and

(xk − zk)T G(xk) ≥ λ−1‖xk − zk‖2. (16.7)

It now follows that xk = zk, which contradicts the construction of the
algorithm. Hence, (i) is true.

Next, by using (16.2), (16.3), and (16.7) and the monotonicity of G, we
have

(gk)T (xk − x∗)

= (xk − yk)T G(yk) + (yk − x∗)T G(yk)

= ωk + (yk − x∗)T G(yk) ≥ ωk (16.8)

= θk(xk − zk)T G(yk)

≥ αθk(xk − zk)T G(xk) ≥ αθkλ−1‖xk − zk‖2,

i.e. (16.4) is also true. By (16.4) and the projection properties, we have

‖xk+1 − x∗‖2 ≤ ‖xk − γ(ωk/‖gk‖2)gk − x∗‖2

= ‖xk − x∗‖2 − 2γ(ωk/‖gk‖2)(gk)T (xk − x∗)

+(γkωk/‖gk‖)2

≤ ‖xk − x∗‖2 − 2γ(2 − γ)(ωk/‖gk‖)2,

i.e. (16.5) is fulfilled, as desired.
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Figure 16.1:
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Thus, the above algorithm is well-defined and relation (16.4) says that
the vector gk and the number ωk > 0 determines the family of hyperplanes

Hk(γ) =
{
y ∈ R

n | (gk)T (xk − y) = γωk

}

such that Hk(1) separates xk and X∗. Moreover, the point x̃k+1 = xk −
γ(ωk/‖gk‖2)gk is nothing but the projection of xk onto Hk(γ), hence the
distance from x̃k+1 to each point X∗ decreases and the same assertion is
true for xk+1 due to (16.5); see Figure 16.1. This result yields immediately
very useful properties of {xk}.

Lemma 16.2. Suppose that a sequence {xk} is generated by the above
algorithm. Then:

(i) {xk} is bounded.

(ii)
∞∑

k=0

(ωk/‖gk‖)2 < ∞.

(iii) For each limit point x∗ of {xk} such that x∗ ∈ X∗ we have

lim
k→∞

xk = x∗.

We are now ready to obtain convergence of the algorithm.
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Theorem 16.1. If a sequence {xk} is generated by the above algorithm,
then

lim
k→∞

xk = x∗ ∈ X∗.

Proof. By Lemma 16.2 (i), {xk} is bounded, hence so are {zk} and {yk}
because of (16.7). Let us consider two possible cases.
Case 1: lim

k→∞
θk = 0.

Set ỹk = xk + (θk/β)pk, then (pk)T G(ỹk) > α(pk)T G(xk). Select conver-
gent subsequences {xkq} → x′ and {zkq} → z′, then {ỹkq} → x′ since {xk}
and {zk} are bounded. By continuity, we have

(1 − α)(z′ − x′)T G(x′) ≥ 0,

but taking the same limit in (16.7) gives

(x′ − z′)T G(x′) ≥ λ−1‖x′ − z′‖2,

i.e., x′ = z′ and (16.6) now yields

(y − x′)T G(x′) ≥ 0 ∀y ∈ X, (16.9)

i.e., x′ ∈ X∗.
Case 2: lim sup

k→∞

θk ≥ θ̃ > 0.

It means that there exists a subsequence {θkq
} such that θkq

≥ θ̃ > 0.
Combining this property with Lemma 16.2 (ii) and (16.8) gives

lim
q→∞

‖xkq − zkq‖ = 0.

Without loss of generality we can suppose that {xkq} → x′ and {zkq} → z′,
then x′ = z′. Again, taking the corresponding limit in (16.6) yields (16.9),
i.e. x′ ∈ X∗. The assertion of the theorem follows from Lemma 16.2
(iii).

Combined relaxation methods may utilize iterations of various algo-
rithms as bases of the auxiliary procedure for computing the parameters of
the separating hyperplane and different rules for determining this hyper-
plane. To illustrate this assertion, we present now some other combined
relaxation method.

Algorithm (infeasible combined relaxation). Choose a point x0 ∈
R

n, numbers α ∈ (0, 1), β ∈ (0, 1), γ ∈ (0, 2), λ > 0, and a sequence of
of mappings {F (k) : R

n → R
n} such that each F (k) is strongly monotone
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with constant τ ′ > 0 and Lipschitz continuous with constant τ ′′ > 0 for
k = 0, 1, . . . Set k = 0.

Step 1 (Auxiliary procedure): Find m as the smallest non-negative in-
teger such that

(xk − zk,m)T [G(xk) − G(zk,m)]
≤ (1 − α)(λβm)−1(xk − zk,m)T

[
F (k)(xk) − F (k)(zk,m)

]
,

where zk,m is a solution of the auxiliary problem

(y − zk,m)T
(
G(xk) + (λβm)−1

[
F (k)(zk,m) − F (k)(xk)

])
≥ 0

∀y ∈ X.

Set θk = βmλ, yk = zk,m. If xk = yk or G(yk) = 0, stop.
Step 2 (Main iteration): Set

gk = G(yk) − G(xk) − θ−1
k

[
F (k)(yk) − F (k)(xk)

]
,

ωk = (gk)T (xk − yk),

xk+1 = xk − γ(ωk/‖gk‖2)gk,

k = k + 1 and go to Step 1.

Observe that we can set for example F (k)(x) = Akx, where Ak is a
positive definite matrix and the choice Ak ≡ I in this algorithm leads to
the usual auxiliary projection iteration, but the algorithm utilizes some
other linesearch strategy and the rule for determining the parameters gk

and ωk. Also, it involves the assumption that G is defined on the whole
space R

n, i.e. G : R
n → R

n, then the iteration sequence {xk} is infeasible.
Nevertheless, the parameters gk and ωk also ensure the crucial property
that Hk(1) separates xk and X∗. As a result, the above algorithm has
similar convergence properties. This approach can be extended for various
classes of VIs, including multi-valued and generalized monotone ones; see
Konnov (2001) for more details.

16.2 The ellipsoid method

We also consider VI (15.1) with the monotone and continuous cost mapping
G. The idea of the ellipsoid method consists in construction of a sequence
of ellipsoids {Ek}, such that each Ek contains a point of X∗, with vol(Ek)
tending to zero as k → ∞. Here vol(Ek) denotes the volume of Ek. The
implementation of the method is based on the following observations.



16.2. THE ELLIPSOID METHOD 203

Let z be a point in R
n and let A be an n × n positive definite matrix.

Then one can define the ellipsoid ell(A, z) as follows:

ell(A, z) = {x ∈ R
n | (x − z)T A−1(x − z) ≤ 1}.

It is clear that ell(I, 0) = {x ∈ R
n | ‖x‖ ≤ 1}.

Proposition 16.1. (Schrijver (1986), Theorem 13.1) The ellipsoid
ell(A′, z′), where

z′ = z −
1

n + 1

Aq√
qT Aq

,

A′ =
n2

n2 − 1

(
A −

2

n + 1

AqqT AT

qT Aq

)
,

(16.10)

has the minimal volume among all those containing the half-ellipsoid

ell(A, z)
⋂

{x ∈ R
n | (x − z)T q ≤ 0}.

Moreover,

vol[ ell(A′, z′)]

vol[ ell(A, z)]
=

(
n2

n2 − 1

)n−1
2

×

(
n

n + 1

)
< e−

1
2(n+1) . (16.11)

Thus, the volume of the ellipsoid ell(A′, z′) will reduce if we make use
of (16.10) to find the next ellipsoid. Next, given a point z ∈ R

n, we can
choose the element q in (16.10) as follows

q ∈ Q(z) =

{
{G(z)} if z ∈ X,
{p ∈ R

n | (y − z)T p ≤ 0 ∀y ∈ X} if z /∈ X.

If ell(A, z) contains a point x∗ ∈ X, then

x∗ ∈
{
x ∈ R

n | (x − z)T q ≤ 0
}

hence x∗ ∈ ell(A′, z′). Taking these properties as a basis, we can construct
an iteration sequence.

Algorithm (ellipsoid). Choose a point x0 ∈ R
n, a number λ > 0 such

that ‖x0 − x∗‖ ≤ λ for some x∗ ∈ X∗ and set A0 = λ2I. At the k-th
iteration, k = 0, 1, . . ., choose qk ∈ Q(xk), set

xk+1 = xk −
1

n + 1

Akqk

√
(qk)T Akqk

,

Ak+1 =
n2

n2 − 1

(
Ak −

2

n + 1

Akqk(Akqk)T

(qk)T Akqk

)
,
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and k = k + 1.

To justify the above algorithm, it suffices to observe that the recurrence
(16.10) preserves the positive definiteness of Ak+1. By description, Ek =
ell(Ak, xk). Therefore, we must have x∗ ∈ ell(Ak, xk), and, by (16.11),
vol ( ell(Ak, xk)) tends to zero in a linear rate. These properties yield the

convergence of the sequence {xk} to a solution.

Exercise 16.1. Find several first steps of the ellipsoid algorithm applied
to VI (15.1) where n = 2, G(x) = (x2,−x1)

T ,

X = {x ∈ R
2 | x2 ≥ 0, x1 − x2

2 ≥ 0},

utilizing the starting values x0 = (1, 0)T , λ = 2 and give their graphical
illustration.

Also, the ellipsoid algorithm admits extensions for multi-valued and
monotone VIs. It was first proposed by D.B. Yudin and A.S. Nemirovskii
and by N.Z. Shor for convex optimization problems. We refer to the books
by Polyak (1983), Schrijver (1986), and Konnov (2001) and to the bibli-
ography therein for a more detailed description of the properties of this
method.



Chapter 17

Solutions to Exercises

We consider here mostly exercises whose solution may cause certain theo-
retical difficulties.
Chapter 1

Exercise 1.1 Prove the equivalence of (1.7) and (1.8).

Let p∗ solve (1.7). Then, for each p ∈ [p′, p′′], we have

(p∗ − p)

{
≤ 0 if p∗ = p′,
≥ 0 if p∗ = p′′.

Using (1.7), we see that

E(p∗)(p∗ − p) ≥ 0,

i.e. (1.8) holds. Conversely, let p∗ solve (1.8). Then p∗ ∈ (p′, p′′) implies
E(p∗) = 0, similarly, p∗ = p′ (p∗ = p′′) implies E(p∗) ≤ 0 (E(p∗) ≥ 0) and
(1.7) holds. �

Exercise 1.2 Suppose that E is continuous and prove that (1.7) is solvable
if −∞ < p′ ≤ p′′ < +∞. Find sufficient solvability conditions for (1.7) if
either p′ = −∞ or p′′ = +∞.

If either E(p′) ≤ 0 or E(p′′) ≥ 0, then p∗ = p′ (respectively, p∗ = p′′).
Otherwise we have E(p′) > 0 and E(p′′) < 0. Since E is continuous,
applying the mean value theorem we see that there exists p∗ ∈ (p′, p′′) such
that E(p∗) = 0.

205
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Next, if p′ = −∞ and there exists p̃ ≤ p′′ such that E(p̃) ≥ 0, then (1.7)
is solvable. In fact, E(p′′) ≥ 0 implies that p′′ solves (1.7). Otherwise we
have E(p′′) < 0 and by the mean value theorem, there exists p∗ ∈ [p̃, p′′]
such that E(p∗) = 0. Similarly, if p′′ = +∞ and there exists p̃ ≥ p′ such
that E(p̃) ≤ 0, then (1.7) is solvable. �

Chapter 2

Exercise 2.2 Prove the assertion of Theorem 2.3 under condition (2.6).

Replacing A by its transpose AT in the proof of Theorem 2.3 and utilizing
(2.6) instead of (2.7), we obtain λAT < 1, but the matrices A and AT have
the same set of eigenvalues, hence λA < 1 and the result follows. �

Exercise 2.3 Prove the inequality λA < 1 in Theorem 2.5.

By Theorem 2.4, xA is now positive. Hence, following the proof of Theorem
2.3, we see that the crucial inequality (2.8) holds in case (2.7′). Similarly,
we should replace A by its transpose AT in case (2.6′). �

Exercise 2.4 Prove that an n×n matrix A is indecomposable if, for each
pair (i, j), i �= j, there exist indices i1, i2, . . . , is−1 such that ail−1il

> 0 for
l = 1, 2, . . . , s, where i0 = i, is = j.

We prove this assertion by contradiction. If A is decomposable, then there
exists an index set J ⊂ {1, . . . , n} such that akl = 0 as k /∈ J , l ∈ J . If we
take i0 /∈ J, is ∈ J , then there exists a pair (il−1, il) such that ail−1il

> 0,
but il−1 /∈ J , il ∈ J , and the result follows. �

Exercise 2.5 Write down the extension of the input-output model for the
case (2.2′).

The problem is to find x∗ ∈ [x′, x′′] such that

(x − x∗)T [(I − A)x∗ − y] ≥ 0 ∀x ∈ [x′, x′′].

In fact, if x∗ solves this problem and x′ < x∗ < x′′, then (I −A)x∗ − y = 0
(cf. (2.2)). The more detailed consideration is given in Sections 7.1 and
8.1. �

Exercise 2.6 Prove that the solution set of problem (2.12) is a convex
cone.
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If π solves (2.12) (or equivalently, (2.12′)), then so is λπ for any λ ≥ 0,
hence the solution set is a cone. Next, if π′ and π′′ are solutions of (2.12)
and α ∈ (0, 1), then

(I − A) (απ′ + (1 − α)π′′)
= α(I − A)π′ + (1 − α)(I − A)π′′ = 0

and
απ′ + (1 − α)π′′ ≥ 0,

i.e. απ′+(1−α)π′′ also solves (2.12), and the solution set is a convex cone.
�

Chapter 3

Exercise 3.1 Prove that the indecomposability of the set (A, I) is equiv-
alent to the indecomposability of the non-negative matrix A.

By definition, the set (A, I) is indecomposable, if there are no nonempty
index subsets K ⊆ {1, . . . , n} and J ⊆ {1, . . . , n} such that

∑

j∈J

aij = 0 for each i /∈ K,

where K
⋂

J = ∅ since B = I. But this is equivalent to the indecompos-
ability of the matrix A. �

Chapter 4

Exercise 4.1 Prove the assertions of Theorems 4.1 and 4.2.

Combining (4.7) and (4.5) gives

cT x ≤ bT y∗ = cT x∗ ∀x ∈ D

and
bT y ≥ cT x∗ = bT y∗ ∀y ∈ D̃,

hence x∗ ∈ D∗ and y∗ ∈ D̃∗, as desired.
Next, if the feasible set D̃ is nonempty, then the cost function in (4.1)

can not be bounded from above due to (4.5). Similarly, if the feasible set
D is nonempty, then the cost function in (4.3) can not be bounded from
below due to (4.5). Therefore, the assertions are true. �
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Figure 17.1:
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Exercise 4.2 Find a solution to the following linear programming prob-
lem:

max → 2x1 + x2

subject to

3x1 + 7x2 ≤ 21,

6x1 + 3x2 ≤ 18,

8x1 + 7x2 ≤ 28,

x1 ≥ 0, x2 ≥ 0;

and a solution to its dual.

The primal problem can be solved by the graphical method (see Figure
17.1). The feasible set is represented by the polygon OABCD. The maximal
value of the cost function is attained at the each point of the segment [C,D],
where C = (7/3, 4/3)T , D = (3, 0)T and results in 6. Let us consider the
dual problem:

min → 21y1 + 18y2 + 28y3

subject to

3y1 + 6y2 + 8y3 ≥ 2,
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7y1 + 3y2 + 7y2 ≥ 1,

y1 ≥ 0, y2 ≥ 0, y3 ≥ 0.

Since 3x∗
1 + 7x∗

2 < 21, (4.8) yields y∗
1 = 0 and

{
6y∗

2 + 8y∗
3 = 2,

3y∗
2 + 7y∗

3 = 1.

This system has the unique solution y∗
2 = 1/3, y∗

3 = 0. Since y∗ is nonneg-
ative it has to be a solution to the dual problem. In fact,

21y∗
1 + 18y∗

2 + 28y∗
3 = 6

and (4.7) holds. �

Chapter 5

Exercise 5.1 By using the results of Section 11.2, find existence and
uniqueness conditions for the Cassel-Wald model.

The problem is to find x∗ ∈ D such that

(x∗ − x)T c(x∗) ≥ 0 ∀x ∈ D,

where

D = {x ∈ R
n | Ax ≤ b, x ≥ 0}.

Since A is the consumption rates matrix and b is the endowments vector,
they contains only non-negative entries. Then D is clearly nonempty, con-
vex and closed. Moreover, it is natural to suppose that production of each
commodity requires some positive amount of at least one resource, i.e. the
matrix A has no zero column. Then D is bounded (see Exercise 12.1),
hence compact. If the price mapping c is continuous on R

n
+, then, by The-

orem 11.2, the above problem has a solution, i.e. there exists at least one
equilibrium point. Moreover if we suppose additionally that −c is strictly
monotone, then, by Proposition 11.14, this solution is unique. �

Exercise 5.2 Derive the above optimality conditions for problem (5.4).

Setting ϕ(α) = fj(α) − αpT aj , we can rewrite (5.4) as follows:

min
α≥0

→ ϕ(α),



210 17. SOLUTIONS TO EXERCISES

so that ϕ′(α) = cj(α) − pT aj . Combining Theorem 11.1 and Proposition
7.1, we obtain the optimality conditions at xj :

xj ≥ 0, ϕ′(xj) ≥ 0, xjϕ
′(xj) = 0;

and the result follows. �

Exercise 5.3 Show that the transportation problems are particular cases
of (4.1′), (4.2′) and (4.3′), (4.4′).

We note that we have two linear programming problems:

max →
l∑

i=1

dipi min →
l∑

i=1

l∑
j=1

cijfij

pj − pi ≤ cij

l∑
j=1

fji −
l∑

j=1

fij ≥ di

i, j = 1, . . . , l; i = 1, . . . , l;
pi ≥ 0 i = 1, . . . , l; fij ≥ 0 i, j = 1, . . . , l;

since all the cost and constraint functions are affine. Moreover, the basic re-
lationships between the numbers of variables and constraints, and between
the coefficients of the cost functions and right-hand sides of constraints are
fulfilled. Also, their basic constraints have opposite signs. The constraint
matrix A has the dimensionality l2× l, where the (i, j)-th row contains two
nonzero components a(ij),j = 1 and a(ij),i = −1. But the transposed ma-
trix AT then determines the constraint coefficients of the second problem.
Therefore, the problems are mutually dual. �

Exercise 5.4 By using the results of Section 11.2, find existence and
uniqueness conditions for the model with fixed capacities.

Let us consider the variational inequality: Find f∗ ∈ D such that

l∑

i=1

l∑

j=1

cij(f
∗)(fij − f∗

ij) ≥ 0 ∀f ∈ D, (17.1)

where

D =

⎧
⎨
⎩f ∈ R

l×l
+

l∑

j=1

fji −
l∑

j=1

fij ≥ di i = 1, . . . , l

⎫
⎬
⎭ .
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If VI (17.1) has a solution f∗, then, applying Proposition 11.6 (ii), we see
that there exists a point p∗ ∈ R

l
+ such that

l∑

i=1

l∑

j=1

(
cij(f

∗) − p∗j + p∗i
)
(fij − f∗

ij) ≥ 0 ∀f ≥ 0,

l∑

i=1

⎡
⎣

l∑

j=1

f∗
ji −

l∑

j=1

f∗
ij − di

⎤
⎦ (pi − p∗i ) ≥ 0 ∀p ≥ 0;

i.e. the pair (f∗, p∗) is an equilibrium point for the model with fixed ca-
pacities. Let us turn to VI (17.1). The feasible set D is convex and closed.
It is natural to suppose that D is nonempty. Due to Proposition 11.14, if
c is strictly monotone, then VI (17.1) has at most one solution. Next, due
to Theorem 11.4, if c is continuous and strongly monotone, then VI (17.1)
has a unique solution. �

Exercise 5.5 Let the functions p and hi be affine, i.e.,

p(σ) = α − βσ, α ≥ 0, β > 0;

hi(xi) = γixi + δi, γi ≥ 0, δi ≥ 0 for i = 1, . . . , n.

Then,

fi(x) = xi(α − βσx) − γixi − δi.

Find the value of G(x) and show that the oligopolistic equilibrium model
becomes equivalent to the problem of minimizing a strongly convex quadratic
function subject to the nonnegativity constraints.

By definition,

Gi(x) = −p(σx) − xip
′(σx) + h′

i(xi)

= −α + βσx + βxi + γi

for i = 1, . . . , n, where σx =
n∑

j=1

xj . Hence,

G(x) = β(Ax − b),

where

A =

⎛
⎜⎜⎜⎝

2 1 . . . 1
1 2 . . . 1
...

...
. . .

...
1 1 . . . 2

⎞
⎟⎟⎟⎠ ,
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b = (b1, . . . , bn)T , bi = (α − γi)/β for i = 1, . . . , n. From Corollary 11.2
it follows that the oligopolistic equilibrium problem is equivalent to the
following VI: Find x∗ ≥ 0 such that

(x − x∗)T (Ax∗ − b) ≥ 0 ∀x ≥ 0,

however, Ax−b = ∇ϕ(x), where ϕ(x) = 0.5xT Ax−xT b since A is symmet-
ric. Moreover, A is positive definite and ϕ must be strongly convex. Due
to Theorem 11.1, the above VI is equivalent to the optimization problem

min
x≥0

→ ϕ(x).

On account of Proposition 11.15 (ii) it has a unique solution. �

Exercise 5.6 Set n = 2, qi(p) = αp3−i/pi − β, hi(t) = γt + δ with
α, β, γ, δ > 0 for i = 1, 2 and find the equilibrium point via solution of
system (5.23).

By definition,

fi(p) = αp3−i − βpi − γ (αp3−i/pi − β) − δ

and
Gi(p) = β − αγp3−i/p2

i for i = 1, 2.

System (5.23) is specialized as follows:

{
βp2

1 − αγp2 = 0,
βp2

2 − αγp1 = 0.

It has the unique solution p1 = p2 = αγ/β. �

Exercise 5.7 By using the theorems of Section 11.2, find existence and
uniqueness results for problem (5.25).

The problem is to find x∗ ∈ X such that

(x − x∗)T p(x∗) ≥ 0 ∀x ∈ X,

where

X =

{
x ∈ R

n
+

n∑

i=1

xi = b

}
.

Clearly, X is a nonempty, convex, and compact set. If the mapping p is con-
tinuous on X, then, by Theorem 11.2, the problem is solvable. Moreover,
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if we suppose additionally that p is strictly monotone, then, by Proposition
11.14, its solution is unique. �

Exercise 5.8 Deduce the equivalence of (5.26) and (5.27) from Propo-
sition 11.7. By using the theorems of Section 11.2, find existence and
uniqueness results for problem (5.27).

From Proposition 11.7 we obtain the necessary and sufficient optimality
conditions for VI (5.27): (x∗, λ) ∈ [α, β] × R and

n∑

i=1

(pi(x
∗) − λ)(xi − x∗

i ) ≥ 0 ∀xi ∈ [αi, βi], i = 1, . . . , n;

(
n∑

i=1

x∗
i − b

)
(µ − λ) ≥ 0 ∀µ ∈ R;

where α = (α1, . . . , αn)T , β = (β1, . . . , βn)T . The first inequality is equiv-
alent to (5.26); see Proposition 7.2. At the same time, the second relation

is rewritten as
n∑

i=1

x∗
i = b, i.e. x∗ ∈ X̃.

Next, X̃ is convex and compact. If X̃ is nonempty and p is continuous on
X̃, then, by Theorem 11.2, VI (5.27) is solvable. If we suppose additionally
that p is strictly monotone, then, by Proposition 11.14, (5.27) has a unique
solution. �

Exercise 5.9 Find solutions of problem (5.26) when n = 2, α1 = 1,
β1 = 2, α2 = 1, β2 = 3, p1(x1) = 2x1 − 1, p2(x2) = 0.5x2 +1 for b = 3 and
for b = 5 and give their graphical illustration.

We first consider the reduced problem
{

pi(x
∗
i ) = λ i = 1, 2,

x∗
1 + x∗

2 = b

and then check whether its solution satisfies the offer bounds.
In case b = 3 we have the system

⎧
⎨
⎩

2x∗
1 − 1 = λ,

0.5x∗
2 + 1 = λ,

x∗
1 + x∗

2 = 3;

which has the unique solution x∗
1 = 1.4, x∗

2 = 1.6, λ = 1.8. This point
satisfies the bounds and solves also the initial problem. Its graphical inter-
pretation is given in Figure 17.2.
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Figure 17.2:
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O
x1 + x2 = 3 (balance line)

4x1 − x2 = 4 (equal price line)

x∗
1

x∗
2

x1

x2

In case b = 5 we have the system

⎧
⎨
⎩

2x̃1 − 1 = λ,
0.5x̃2 + 1 = λ,
x̃1 + x̃2 = 5;

which has the unique solution x̃1 = 1.8, x̃2 = 3.2, λ = 2.6, but it is
infeasible for the second trader. We reduce its offer by setting x∗

2 = 3, then
x∗

1 = 2. Observe that p1(x
∗
1) = 3 and p2(x

∗
2) = 2.5, hence we set λ = 3 and

obtain pi(x
∗
i ) ≤ λ, x∗

i = βi for i = 1, 2, and (5.26) is fulfilled. Figure 17.3
gives the graphical illustration. �

Exercise 5.10 By using the theorems of Section 11.2, find the general
existence result for problem (5.28), (5.29).

The feasible set Z, defined by (5.28), is nonempty, convex, and closed.
Since 0 ∈ Z, we specialize Theorem 11.3 by setting y = 0 there. Suppose
that the price mappings gi and hj are continuous and that there exists a
bounded set Y ⊆ Z such that 0 ∈ Y and

n∑

i=1

gi(x, y)xi −
m∑

j=1

hj(x, y)yj > 0 for every (x, y) ∈ Z \ Y.
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Figure 17.3:
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O

x1 + x2 = 5 (balance line)

4x1 − x2 = 4 (equal price line)

x∗
1

x∗
2

x1

x2

Then problem (5.28), (5.29) has a solution. �

Chapter 6

Exercise 6.1 By using the results of Section 11.2, find existence condi-
tions for the path flow formulation of the network equilibrium model.

The feasible set X, defined by (6.4), is nonempty, convex, and compact.
If we suppose that the cost mappings Tl in (6.5) are continuous, then, by
Theorem 11.2, problem (6.4)–(6.6), (6.8) has a solution. �

Exercise 6.2 Prove that H in (6.9) is bounded.

Due to the constraints

h ≥ 0,
∑

j �=i

hij ≤ bi,

the feasible flows h are bounded. Hence the population volumes

xi = bi +
∑

j �=i

hji −
∑

j �=i

hij , i ∈ N,
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have to be bounded and the result follows. �

Exercise 6.3 By using the results of Section 11.2, find existence condi-
tions for the migration equilibrium model.

By definition, the set H in (6.9) is nonempty, convex, and closed, moreover,
it is bounded due to Exercise 6.2. If the utility mappings ui and the mi-
gration cost mappings cij are continuous, then, by Theorem 11.2, problem
(6.9), (6.12) has a solution. �

Chapter 7

Exercise 7.1 Prove that problem (7.3) is equivalent to CP (7.1) with
X = R

n
+.

Setting X = R
n
+ in (7.1) and noticing that (Rn

+)′ = R
n
+, we obtain

x∗ ≥ 0, G(x∗) ≥ 0, (x∗)T G(x∗) = 0.

Since x∗
i Gi(x

∗) ≥ 0, we see that the third equality is equivalent to the
sequence of equalities: x∗

i Gi(x
∗) = 0 for i = 1, . . . , n. Therefore, the above

problem coincides with CP (7.3). �

Exercise 7.2 Prove the assertions of Proposition 7.2.

Obviously, for each i = 1, . . . , n, the inequality

Gi(x
∗)(xi − x∗

i ) ≥ 0 ∀xi ∈ [αi, βi]

is rewritten equivalently as follows:

Gi(x
∗)

⎧
⎨
⎩

≥ 0 if x∗
i = αi,

= 0 if x∗
i ∈ (αi, βi),

≤ 0 if x∗
i = βi;

see also Exercise 1.1. Hence (i) and (ii) are equivalent. Next, if x∗ ∈ X
satisfies the sequence of inequalities

Gi(x
∗)(xi − x∗

i ) ≥ 0 ∀xi ∈ [αi, βi], ∀i = 1, . . . , n;

then their summing gives that x∗ solves VI (7.2), (7.4). Conversely, if x∗

solves VI (7.2), (7.4), for each k, we can take the point

x̃ = (x∗
1, . . . , x

∗
k−1, xk, x∗

k+1, . . . , x
∗
n) ∈ X
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with any xk ∈ [αk, βk] and, setting x = x̃ in (7.2), we obtain

Gk(x∗)(xk − x∗
k) ≥ 0,

hence x∗ solves the above sequence of inequalities, and the result follows.
�

Exercise 7.4 Following the proof of Proposition 7.3, establish the result
of Proposition 7.4.

Clearly, (i) ⇒ (ii) for n = 1. Using induction, we suppose that this impli-
cation holds for n − 1 with n > 1 and that there exist a P0-matrix A and
a nonzero vector z ∈ R

n such that

n∑

j=1

akjzkzj < 0 for each k with zk �= 0.

If zi = 0 for some i, then there exists a principal submatrix Ã of A, which
is also a P0-matrix such that

∑

j∈J

ãkj z̃kz̃j < 0 for each k with z̃k �= 0.

and for a subvector z̃ of z, where J is the corresponding subset of indices.
Since this is a contradiction, no component of z is zero. Set

di =
1

zi

n∑

j=1

aijzj < 0 for i = 1, . . . , n

and define the diagonal matrix D with the diagonal entries d1, . . . , dn. It
follows that (A − D)z = 0, but the matrix A − D has to be nonsingular, a
contradiction, Hence, (i) ⇒ (ii).

Suppose that (ii) holds and choose an arbitrary real eigenvalue λ of A
and an associate eigenvector z. The vector z must be nonzero and, as λ is
real, we can take z to be real. By definition, Az = λz and there exists an
index k such that zk �= 0 and

0 ≤
n∑

j=1

akjzkzj = λz2
k,

hence λ ≥ 0 and (ii)⇒ (iii).
Next, let (iii) hold. The determinant of A is equal to the product of

all its eigenvalues, but the complex eigenvalues of real matrices appear in
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conjugate pairs. It follows that A is a P0-matrix, i.e. (i) holds, and the
proof is complete. �

Exercise 7.6 Derive from Proposition 7.6 the feasibility of LCP (7.3)
with G(x) = Ax + b, where A is a P -matrix.

By Proposition 7.6, there exists x > 0 such that Ax > 0. For arbitrary b,
there exists λ > 0 such that A(λx) + b ≥ 0. Hence, the point x̃ = λx is
feasible. �

Exercise 7.7 Define

D = {x ∈ D | xi < βi ⇒ Gi(x) ≥ 0 ∀i = 1, . . . , n}

for MCP (7.2), (7.4) and show that the assertion of Theorem 7.2 remains
true if αi > −∞ for i = 1, . . . , n and R

n
+ is replaced with X. Make the

modification of the Jacobi algorithm which allows for obtaining the result
of Theorem 7.3.

Since D is then bounded below, we should follow the proofs of Lemmas
7.1, 7.2 and Theorem 7.2 in general. In the modified Jacobi algorithm,
we also compute the next iterate componentwise. For each index i =
1, . . . , n, we set xk+1

i = αi if Gi(x
k
−i, αi) ≥ 0 and xk+1

i = βi if xk
i = βi and

Gi(x
k
−i, βi) ≤ 0. Otherwise we set xk+1

i to be the number in (αi, x
k
i ] such

that Gi(x
k
−i, x

k+1
i ) = 0. �

Chapter 8

Exercise 8.1 Replace D in (8.4) by

D =

{
x ∈ X xi < x′′

i =⇒ xi −
n∑

j=1

aijxj − yi ≥ 0 for i = 1, . . . , n

}

and show that the assertion of Theorem 8.1 remains true for problem (8.3),
(8.5).

Since the cost mapping x �→ (I −A)x− y is Z, follow the lines of Exercise
7.7. �

Exercise 8.2 Describe the modification of the Jacobi algorithm for MCP
(8.3), (8.5) and prove its convergence.

Follow the lines of the solution to Exercise 7.7. �
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Exercise 8.3 Prove the assertions of Theorem 8.3.

The result follows directly from Proposition 8.1 and Theorems 7.2 and 7.3.
�

Exercise 8.5 Prove formula (8.10).

Observe that xi is the unique solution of the optimization problem:

max →
n∑

j=1

σij ln xj

subject to

pT x ≤ pT w(i), x ≥ 0.

Clearly, if we set

xi
j =

1

pj
σijp

T w(i) for j = 1, . . . , n,

then xi is non-negative, moreover, the optimality conditions

σij

xi
j

− λpj = 0 for j = 1, . . . , n; pT xi = pT w(i)

hold true with λ = 1/pT w(i); see Proposition 11.7. Hence xi in (8.10)
solves the optimization problem. �

Exercise 8.6 Show that fi is concave in pi under the above assumptions.

By definition,

fi(p1, . . . , pn)

= αipi [η(p1, . . . , pi−1, pi+1, . . . , pn)/pi]
κ − βipi

−αiγi [η(p1, . . . , pi−1, pi+1, . . . , pn)/pi]
κ

+ γiβi + δi,

where αi > 0, βi > 0, κ ∈ (0, 1], η : R
n−1 → R+ is a non-negative

differentiable function, which is non-decreasing in each variable. It follows
that the partial derivative

∂fi(p)

∂pi
= καiγip

−1
i [η(p−i)/pi]

κ
+ (1 − κ)αi [η(p−i)/pi]

κ − βi
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with p−i = (p1, . . . , pi−1, pi+1, . . . , pn) is non-increasing in pi, hence fi is
concave in pi. �

Chapter 9

Exercise 9.3 Let X be a set of form (7.4). Prove that G : X → R
n

is a P0-(respectively, P -) mapping, if it is monotone (respectively, strictly
monotone), but the reverse assertions are not true.

Clearly, if the sum

n∑

i=1

(x′
i − x′′

i )[Gi(x
′) − Gi(x

′′)]

is non-negative (positive), then so is the expression

(x′
i − x′′

i )[Gi(x
′) − Gi(x

′′)]

for at least one i. On the second part, see Exercise 7.3 and Example 7.1.�

Exercise 9.4 Suppose that G is of form (9.1). Prove that G is monotone
(respectively, strictly monotone) if and only if A is positive semidefinite
(respectively, positive definite).

If G(x) = Ax + b, then

(x′ − x′′)T [G(x′) − G(x′′)] = (x′ − x′′)T A(x′ − x′′)

and the result follows from the definitions. �

Exercise 9.5 Prove the extensions of Theorems 9.1 and 9.2 for MCP
(7.2), (7.4).

The assertion of Theorem 9.1 remains true for the general MCP (7.2), (7.4)
with small modifications of the proof. Now we turn to Theorem 9.2 and
consider MCP (7.2), (7.4) under the following boundedness condition:

αi > −∞ for i = 1, . . . , n.

Next, set

J = {i | βi = +∞}.
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Theorem 17.1. (i) If G : X → E is a continuous and monotone mapping
and there exists a point y ∈ X such that Gi(y) > 0 for i ∈ J , then MCP
(7.2), (7.4) has a solution.

(ii) If G : X → R
n is a continuous and strictly monotone mapping and

there exists a point y ∈ X such that Gi(y) ≥ 0 for i ∈ J , then MCP (7.2),
(7.4) has a unique solution.

Proof. The case J = ∅ is trivial since the results follow from Theorem 11.2
and Proposition 11.14. Let J �= ∅. Take an arbitrary x ∈ X. Then, by
monotonicity,

(x − y)T G(x) ≥ xT G(y) − yT G(y).

Since Gi(y) > 0 for all i ∈ J , there exists a number γ > 0 such that the
right-hand side of the above inequality is positive, if x ∈ X\Y , where

Y =

{
x ∈ X

n∑

i=1

xi ≤ γ

}
.

Assertion (i) follows now from Theorem 11.3.
In case (ii), it suffices to prove that the conditions of part (i) are fulfilled.

Fix a number γ > 0 so that the set

K =

{
z ∈ X z ≥ y,

n∑

i=1

zi =
n∑

i=1

yi + γ

}

is nonempty. Since K is convex and compact, Theorem 11.2 with X = K
guarantees the existence of a solution x̃ ∈ K for the following VI:

(z − x̃)T [G(x̃) − G(y)] ≥ 0 ∀z ∈ K.

Since x̃ �= y, we have

(x̃ − y)T [G(x̃) − G(y)] > 0,

therefore,

(z − y)T [G(x̃) − G(y)] > 0 ∀z ∈ K.

If we take z ∈ K such that zj = yj for j �∈ J , the above inequality gives
Gi(x̃) > 0 for all i ∈ J and the result follows.

Exercise 9.6 By using the projection properties, prove the formulas for
computation of yα

i and yα(x).
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By definition, yα(x) solves the optimization problem

min
y∈R

n
+

→ (2α)−1‖x − y‖2 − (x − y)T G(x),

which can be replaced by VI (see Theorem 11.1):

(z − yα(x))T (yα(x) − [x − αG(x)]) ≥ 0 ∀z ∈ R
n
+.

Due to Proposition 11.12, this means that yα(x) = π+[x − αG(x)]. On
account of (9.3), it can be computed componentwise, i.e. yα

i = max{0, xi−
αGi(x)}. �

Chapter 10

Exercise 10.2 Prove the assertion of Theorem 10.2.

Utilize Corollary 11.2, Lemma 10.1 and Exercise 11.2. �

Exercise 10.3 Extend Theorems 10.2–10.5 for the case of bounded out-
puts.

We should simply replace CP (9.2) by MCP (7.2), (10.9), with the bounded
feasible set

X = [0, β1] × · · · × [0, βn].

Of course, the extension of Theorem 10.2 is trivial. Next, by Theorem 11.2,
this MCP is solvable and the conditions of Theorem 10.3 and 10.4 yield
also the uniqueness of this solution. �

Exercise 10.4 Give the sufficient conditions of convergence of the algo-
rithm of Section 9.2 for CP (9.2), (10.9).

Under the assumptions of either Proposition 10.4 (iii) or Proposition 10.5
(i), ∇G(x) is a P -matrix. If we suppose also that ϕα has bounded level
sets, then the algorithm ensures the convergence to a solution. �

Chapter 11

Exercise 11.1 Prove the assertion of Proposition 11.7.

Replacing each i-th equality hi(u) = 0 with two inequalities hi(u) ≤ 0
and hi(u) ≥ 0 and applying Proposition 11.6, we see that the optimality
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conditions are written as follows: Find (u∗, v∗, p∗, q∗) ∈ U ×R
m
+ ×R

k
+×R

k
+

such that

(u − u∗)T

⎡
⎣F (u∗) +

m∑

i=1

v∗
i ai +

k∑

j=1

p∗j b
j −

k∑

j=1

q∗j bj

⎤
⎦ ≥ 0

∀u ∈ U,

(v − v∗)T [−f(u∗)] ≥ 0 ∀v ∈ R
m
+ ,

(p − p∗)T [−h(u∗)] ≥ 0 ∀p ∈ R
k
+,

(q − q∗)T [h(u∗)] ≥ 0 ∀q ∈ R
k
+.

Of course, it we set w = p − q ∈ R
k and w∗ = p∗ − q∗ ∈ R

k, then the last
two inequalities become equivalent to the following

(w − w∗)T [−h(u∗)] ≥ 0 ∀w ∈ R
k,

and the system coincides with (11.1), (11.19). �

Exercise 11.2 Prove the equivalence of problems (11.21)–(11.23) and
(11.20).

Clearly, summation of the inequalities in (11.20) gives (11.23). Conversely,
if x∗ = (u∗

1, . . . , u
∗
m) solves (11.21)–(11.23), then setting

y = (u∗
1, . . . , u

∗
i−1, vi, u

∗
i+1, . . . , u

∗
m)

in (11.23) for any vi ∈ Xi and for an arbitrary index i gives (11.20). �

Exercise 11.4 Show that the saddle point problem (11.7), (11.29) is
equivalent to the system (11.26), (11.11) with F (u) = ∇f0(u), b(v) =
∇ϕ(v) under the above assumptions.

Apply Corollary 11.1. �

Chapter 12

Exercise 12.1 Prove that D is bounded if A and b contain only non-
negative entries and there is no zero column in A.

By definition,

D = {x ∈ R
n | Ax ≤ b, x ≥ 0} ,
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and for each j there is i such that aij > 0. Hence

0 ≤ xj ≤
1

aij

⎛
⎝bi −

∑

k �=j

aikxk

⎞
⎠ ≤ bi/aij

and D is bounded. �

Exercise 12.2 Prove the assertion of Proposition 12.1.

Since Y is nonempty and compact, problem (12.5) has a solution. Suppose
that y′ and y′′ are two different solutions of (12.5), then pT y′ = pT y′′ = µ
and ỹ = αy′ + (1 − α)y′′ is also a solution of (12.5) if α ∈ (0, 1). But
ỹ ∈ intY and there exists δ > 0 such that ỹ+δp/‖p‖ ∈ Y . Then we obtain
a contradiction, since

pT (ỹ + δp/‖p‖) = pT ỹ + δ‖p‖2 = µ + δ‖p‖2 > µ.

�

Exercise 12.3 Prove the assertion of Proposition 12.2.

Clearly, y(λp) = y(p) for every λ > 0, hence the mapping p �→ y(p) is
positively homogeneous of degree 0. Take any p′, p′′ ∈ R

n
+ \ {0} and set

y′ = y(p′), y′′ = y(p′′). Then we have

(p′)T (y′ − y′′) ≥ 0 and (p′′)T (y′′ − y′) ≥ 0,

hence

(p′ − p′′)T (y′ − y′′) ≥ 0

and the mapping is monotone. Next, take a sequence {pk} → p̃ ∈ R
n
+ \ {0}

and set yk = y(pk). Then yk ∈ Y and

(pk)T (yk − y) ≥ 0 ∀y ∈ Y.

Since {yk} is bounded, we can take the limit k → ∞ and a subsequence, if
necessary, and obtain

(p̃)T (ỹ − y) ≥ 0 ∀y ∈ Y,

where ỹ is a limit point of {yk}. It follows that ỹ ∈ Y and ỹ = y(p̃). Since
y(p̃) is determined uniquely, we have ỹ = lim

k→∞
yk and the result follows.�
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Exercise 12.4 Prove that the mapping p �→ x(p) is continuous on R
n
+ \

{0}.

Utilize Lemma 12.1 and follow the lines of the above proof. �

Exercise 12.5 Prove the assertion of Proposition 12.4.

Since each cost function hi is convex and each function

θi(x, yi) = −yip

⎛
⎝∑

j �=i

xj + yi

⎞
⎠

is concave in x, it suffices to prove that the function ϕ(x) = σxp(σx) is
concave. Since the industry revenue function µ(σ) = σp(σ) is concave, we
see that, for all x′, x′′ ∈ R

n
+ and for each λ ∈ (0, 1), it holds that

ϕ(λx′ + (1 − λ)x′′) = µ(λσx′ + (1 − λ)σx′′)

≥ λµ(σx′) + (1 − λ)µ(σx′′)

= λϕ(x′) + (1 − λ)ϕ(x′′),

i.e. ϕ is concave and the result follows. �

Exercise 12.6 Establish monotonicity criteria for the cost mapping and
find existence and uniqueness results for VI (5.28), (5.29).

Being based on Proposition 11.1, we can obtain directly the monotonicity
properties of the mapping

(x, y) �→ (g(x, y),−h(x, y))

via consideration of positive (semi) definiteness of its Jacobian. The general
existence result for continuous mappings g and h is given in Exercise 5.10.
If the cost mapping is strictly monotone, then, by Proposition 11.14, VI
(5.28), (5.29) has at most one solution. If the cost mapping is continuous
and strongly monotone, then, by Theorem 11.4, the problem has a unique
solution. �

Exercise 12.7 Prove that the monotonicity of F implies the monotonicity
of G.

By definition,
G(x) = BT F (Bx).
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Choose x′, x′′ and set y′ = Bx′, y′′ = Bx′′. Then

(x′ − x′′)T [G(x′) − G(x′′)]

= (x′ − x′′)T
[
BT F (y′) − BT F (y′′)

]

= (y′ − y′′)T [F (y′) − F (y′′)] ≥ 0,

i.e. G is monotone. �

Chapter 13

Exercise 13.2 Let G(x) = Ax + b, where A is a symmetric positive
semidefinite n × n matrix, b ∈ R

n. Prove that G is co-coercive.

In this case, there exists a matrix Q such that A = QT Q and ‖QT ‖2 = ‖A‖.
Then, for arbitrary x, y ∈ R

n, we have

(x − y)T [G(x) − G(y)]

= (x − y)T A(x − y) = ‖Q(x − y)‖2

≥ ‖QT ‖−2‖QT Q(x − y)‖2 =
1

‖A‖
‖A(x − y)‖2

=
1

‖A‖
‖G(x) − G(y)‖2,

and the result follows. �

Exercise 13.3 Prove that assumption (13.6) is not fulfilled if G(x) =
Ax + b, where A is an arbitrary skew-symmetric matrix.

If x∗ ∈ X∗, then for every x ∈ X, we have

(x − x∗)T G(x)

= (x − x∗)T [G(x) − G(x∗)] + (x − x∗)T G(x∗)

= (x − x∗)T A(x − x∗) + (x − x∗)T G(x∗)

= (x − x∗)T G(x∗).

Hence (13.6) does not hold if there is a point x ∈ X such that (x −
x∗)T G(x∗) = 0. �

Chapter 14

Exercise 14.2 Prove that both (14.2) and (14.3) imply (13.9), i.e. the
integrability of G.
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In case (14.2) we have

f(x) =

n∑

i=1

fi(xi),

where fi(xi) =
xi∫
0

Gi(τ)dτ for i = 1, . . . , n. In case (14.3) we have

f(x) = 0.5xT Ax + xT b.

�

Exercise 14.4 Prove that the integrability of F implies the integrability
of G in (14.4).

If F (y) = ∇ϕ(y), then, by using the formula for the derivative of a com-
posite function, we have G(x) = ∇f(x), where f(x) = ϕ(Bx). �
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