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Preface

“Sharkovsky’s Theorem,” the “Period 3 implies chaos” result of Li and
Yorke, and the “(3x+1)-Conjecture” are beautiful and deep results show-
ing the rich periodic character of first-order, non-linear difference equations.
During the last ten years, we have been fascinated discovering non-linear dif-
ference equations of order greater than one which for certain values of their
parameters have one of the following characteristics:

1. Every solution of the equation is periodic with the same period.

2. Every solution of the equation is eventually periodic with a
prescribed period.

3. Every solution of the equation converges to a periodic solution
with the same period.

Our goal in this monograph is to bring to the attention of the mathematical
community these equations, together with some thought-provoking ques-
tions and a great number of open problems and conjectures which
we strongly believe are worthy of investigation.

We would also like to begin the investigation of the global character of
solutions of these equations for other values of their parameters and to attempt
to see a more complete picture of the global behavior of their solutions.

We believe that the results in this monograph place a few more stones in
the foundation of the “Basic Theory of Nonlinear Difference Equations of
Order Greater Than One,” where at the beginning of the third millennium,
we surprisingly know so little.

xi
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Chapter 1

PRELIMINARIES

1.1 Introduction

In this chapter we present some definitions and state some known results
which will be useful in the subsequent chapters. For further details and ad-
ditional references, see [5], [6], [33], [36], [37], [61], [62], [72], [101], [112], and
[115].

The reader may simply glance at the results in this chapter and return
for the details when they are needed in the sequel. In this way, this is a
self-contained monograph, and the main prerequisite that the reader needs
to understand the material in this book and to be able to attack the open
problems and conjectures is a solid foundation in analysis.

1.2 Definitions of Stability and Linearized Stability
A difference equation of order (k + 1) is an equation of the form
Tn41 :f(mnaxn—la---axn—k) ) n=20,1,... (11)

where fis a continuous function which maps some set J**! into J. The set J
is usually an interval of real numbers, or a union of intervals, but it may even
be a discrete set such as the set of integers Z = {...,-1,0,1,...}.

A solution of Eq.(1.1) is a sequence {z,}52 , which satisfies Eq.(1.1) for
all n > 0. If we prescribe a set of (k + 1) initial conditions

T fy T ftlye--, 20 € J
then
I = f(.’L'o,.’L'_l,...,.CE_k)

I9 = f(.’L'l,.’L'o, .. -:x—k+1)
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2 PERIODICITIES IN DIFFERENCE EQUATIONS

and so the solution {z,}>° . of Eq.(1.1) exists for all n > —k and is uniquely
determined by the initial conditions.

A solution of Eq.(1.1) which is constant for all n > —k is called an equilib-
rium solution of Eq.(1.1). If

Tn =1 for all n> —k

is an equilibrium solution of Eq.(1.1), then Z is called an equilibrium point, or
simply an equilibrium, of Eq.(1.1).

DEFINITION 1.1 (Stability)

(i) We say that an equilibrium point T of Eq.(1.1) is locally stable if for
every € > 0, there exists § > 0 such that if {x,}52_, is a solution of
Eq.(1.1) with

|T—f —Z |+ |21k — T |+ -+ |20 —F| <0,
then
|z, —z|<e forall n>—k.

(i) We say that an equilibrium point T of Eq.(1.1) is locally asymptotically
stable if T is locally stable, and if in addition there exists v > 0 such
that if {x,}2 . is a solution of Eq.(1.1) with

| o ) —Z|+ T pp1 —Z |+ -+ |20 —T| <7,

then

lim z, = Z.
n—0o0
(i) We say that the the equilibrium point T of Eq.(1.1) is a global attractor
if for every solution {x,}>2 of Eq.(1.1), we have

n=—k

lim z, = Z.
n—o0

(iv) We say that the the equilibrium point T of Eq.(1.1) is globally asymp-
totically stable if T is locally stable, and T is also a global attractor of
Eq.(1.1).

(v) We say that the the equilibrium point T of Eq.(1.1) is unstable if T is
not locally stable.

(vi) We say that the the equilibrium point T of Eq.(1.1) is a source if there
exists r > 0 such that for every solution {x,}>_, of Eq.(1.1) with

0<|.Z'7k—i'|+|$7k+1—.f'|+"'+|.’170—l—"<T,
there exists N > 1 such that

|zny —Z| > 7.
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PRELIMINARIES 3

Clearly a source is an unstable equilibrium point of Eq.(1.1).

Suppose f is continuously differentiable in some open neighborhood of Z.

Let o/
pi=6Ui(§c,£,...,;§) for i=0,1,...,k
denote the partial derivative of f(ug,u1,-..,ur) with respect to u; evaluated

at the equilibrium point Z of Eq.(1.1). Then the equation

Ynt1 = PoZn +P12n—1+ -+ PrzZn—k , n=0,1,... (1.2)

is called the linearized equation of Eq.(1.1) about the equilibrium point T, and
the equation

N — oA — - —pp A = = 0 (1.3)

is called the characteristic equation of Eq.(1.2) about T.

The following well-known result, called the Linearized Stability Theorem,
is very useful in determining the local stability character of the equilibrium
point Z of Eq.(1.1). See [6], [36], [62], and [72].

THEOREM 1.1

(The Linearized Stability Theorem)

Suppose [ is a continuously differentiable function defined on some open neigh-
borhood of T. Then the following statements are true:

1. If all the roots of Eq.(1.8) have absolute value less than one, then the
equilibrium point T of Eq.(1.1) is locally asymptotically stable.

2. If at least one root of Eq.(1.3) has absolute value greater than one, then
the equilibrium point T of Eq.(1.1) is unstable.

3. If all the roots of Eq.(1.3) have absolute value greater than one, then the
equilibrium point T of Eq.(1.1) is a source.

The equilibrium point Z of Eq.(1.1) is called hyperbolic if no root of Eq.(1.3)
has absolute value equal to one. If there exists a root of Eq.(1.3) with absolute
value equal to one, then Z is called non-hyperbolic.

The equilibrium point Z of Eq.(1.1) is called a sink if every root of Eq.(1.3)
has absolute value less than one. Thus a sink is locally asymptotically stable,
but the converse need not be true.

The equilibrium point Z of Eq.(1.1) is called a saddle point equilibrium
point if it is hyperbolic, and if in addition, there exists a root of Eq.(1.3) with

Copyright © 2005 CRC Press, LLC



4 PERIODICITIES IN DIFFERENCE EQUATIONS

absolute value less than one and another root of Eq.(1.3) with absolute value
greater than one. In particular, a saddle point equilibrium point is unstable.

A solution {z,}>° , of Eq.(1.1) is called periodic with period p (or a period-
p solution) if there exists an integer p > 1 such that
Tpyp =2n forall n>—k (1.4)

We say that the solution is periodic with prime period p if p is the smallest
positive integer for which Eq.(1.4) holds. In this case, a p-tuple

(mn—i-la Tn42;y---, mn—i—p)

of any p consecutive values of the solution is called a p-cycle of Eq.(1.1).

A solution {z,}5° _, of Eq.(1.1) is called eventually periodic with period p
if there exists an integer N > —k such that {z,}52  is periodic with period
p; that is,

Tpgp = Tp for all n> N.

The following lemma describes when a solution of Eq.(1.1) converges to a
periodic solution of Eq.(1.1).

LEMMA 1.1

Let {x,}52 | be a solution of Eq.(1.1), and let p > 1 be a positive integer.

Suppose there exist real numbers ly,l1,...,1,_1 € J such that
nh_)rréox,mﬂ:lj for all i=0,1,...,p—1.

Finally, let {yn}>> _, be the period-p sequence of real numbers in J such that

for every integer j with 0 < j <p—1, we have
Ypnti = 1; for all n=0,1,....
Then the following statements are true:
1. {yn}S2 _, is a period-p solution of Eq.(1.1).

2. lim xpnij =y; for every j>—k.

n—oo

PROOF It suffices to show that {y,}2° _, is a solution of Eq.(1.1). Note
that for 7 > 0, we have

Yi+1 = nli—{%oxpn—‘rj—i_l = nli_)ng-of(mpn-}—jampn-‘rj—la"'7mpn+j—k)
= fWjYi-15--- Yj—k)- I
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PRELIMINARIES )

We now state Theorem 1.2 which explains the significance of Eq.(1.3) having
root(s) with absolute value less than one and also root(s) with absolute value
greater than one. We shall use Theorem 1.2 to show that when this occurs,
even though the equilibrium Z is unstable, there still exist non-trivial solutions
which converge to it, and so in particular, there exist non-trivial, bounded
solutions of Eq.(1.1).

Our presentation is extracted from the treatment of this topic found in
[112].

We first need some notation.

Let V be a non-empty open subset of R¥*! and let T : V — RF*! be a
(not necessarily invertible) C™ map, where 1 < m < oc.

Let € V be an equilibrium point of 7. Suppose that at least one eigenvalue
of Jr(p) has absolute value less than one and at least one eigenvalue of Jr ()
has absolute value greater than one.

Given an open subset V7 of V with g € Vi, the local stable manifold for p
in the neighborhood V; is defined as follows:

S@V1,T) ={qde V1 :T™q) € V1 for all n > 0 and

IT™(q) — pll = 0}-

Define a past history of a point § to be a sequence of points {¢g_,}52, such
that §o = ¢ and T(¢—n—1) = g for all n > 0. The local unstable manifold
for 7 in the neighborhood V; is defined as follows:

lim
n—00

UP,V1,T) = {q € V1 :there exists a past history {§_,}>2, C V1 of ¢ such that
Jim |[7°7(@ - 7 = 0.

Let S be the eigen-space of Jr(p) which corresponds to eigenvalues with ab-
solute value less than one, and let U be the eigen-space of Jr(§) which corre-
sponds to eigenvalues with absolute value greater than one.

THEOREM 1.2

There exists an open subset Vi of V with p € Vi such that S(p,V1,T) and
UP,V1,T) are C™ manifolds. The tangent space of S(7,V1,T) at P is S, and
the tangent space of U(P,V1,T) at P is U.

Theorem 1.2 can be extended in a straightforward fashion to the case where
P is a periodic point of T.

Copyright © 2005 CRC Press, LLC



6 PERIODICITIES IN DIFFERENCE EQUATIONS

We apply Theorem 1.2 to Eq.(1.1) as follows:

Suppose [ is an open sub-interval of J with the equilibrium point z € I. Let
T, 122, be a solution of Eq.(1.1). For n > 0, set
n=—=~k q )
u?b = Tp—k, u; = Tp—k41s +--> uﬁ_l =Tp_1, uﬁ = Zn.

Then for n > 0, we have
0o _ _ 1
Upt1 = Tn—k+1 = Uy
1 — 2
Upiy = Tnoki2 = U

k—1 _ — .k
un+1—xn—un

ub = f(@n, Tty Taegk) = fluk,ub 0 uf)

and so T : I*+1 — ¥+ ig given by

u? ut

ul u?

T = :

uk—1 uk
T
x

Thus the eigenvalues of the Jacobian Jr : at the equilibrium point z

T
T

of Eq.(1.1) are the roots of Eq.(1.3).

The following three theorems give readily verifiable necessary and sufficient
conditions for all the roots of a real polynomial of degree two, three, or four,
respectively, to have modulus less than one.

THEOREM 1.3
Consider the second-degree polynomial equation

)\2+a1)\+a0:0 (].5)
where ag and ay are real numbers. Then the following statements are true:

1. A necessary and sufficient condition for both roots of Eq.(1.5) to lie
inside the open disk |\ <1 is

la1] < 14 ag < 2.

Copyright © 2005 CRC Press, LLC



PRELIMINARIES 7

2. A necessary and sufficient condition for Eq.(1.5) to have one root with
absolute value less than one and the other with absolute value greater
than one is

a3 —4ag > 0 and la1] > |1 + aol-

3. A necessary and sufficient condition for both roots of Eq.(1.5) to have
absolute value greater than one is

lag] > 1 and la1] < |1 + ao-

THEOREM 1.4
Consider the third-degree polynomial equation

A3 + az)\z +aiA+ay=0 (16)

where ag, a1, and as are real numbers. Then a necessary and sufficient con-
dition that all roots of Eq.(1.6) lie in the open disk |\| <1 is

laz +ag|l <14+a1 , |az—3ap|<3—a1 , and a3+a1—aoa2<1.

THEOREM 1.5
Consider the fourth-degree polynomial equation

A + 03)\3 + a2/\2 +aiA+ay=0 (17)

where ag, a1, a2, and az are real numbers. Then a necessary and sufficient
condition that all roots of Eq.(1.7) lie in the open disk |\ <1 is

lar +asz| <1l+ap+ax , |ar—a3|<2(1—ag) , az—3ap<3
and
ag + as + ag + a% + a(z)ag + aoag < 1+ 2agas + aia3 + apgaasz + ag.
The next result, which was given by C.W. Clark in [25] in his investigation of

baleen whale populations, provides a sufficient condition that the equilibrium
point Z of Eq.(1.1) be a sink.

THEOREM 1.6
Assume that po,p1,-...,Pr are Teal numbers such that

[po| +|p1|+---+[pe| <1

Then all roots of Eq.(1.3) lie inside the open unit disk |A| < 1.

Copyright © 2005 CRC Press, LLC



8 PERIODICITIES IN DIFFERENCE EQUATIONS
The following Comparison Theorem, the proof of which follows by induc-

tion and will be omitted, will often be useful in establishing bounds for the
solutions of Eq.(1.1).

THEOREM 1.7

(Comparison Theorem)

Let m be a non-negative integer, let ag, o, ...,y be non-negative real num-
bers, and let B be a real number. Suppose that {zn}S>_,., {yn}S_,,, and
{zn}52 _,, are sequences of real numbers such that

Tn < Yn < 2Zn for all -m<n<0

and such that

Tnt1 < ATy + U Tn—1 ++* + UpTn—m + B
Yn4+1 = aOyn+alynfl+"'+amynfm+B fOT all n:O,l,... -
Zn+1 > Qop + 01 2p—1 + O Zp_m + ﬂ

Then

1.3 Semi-cycle Analysis

Assume that Z is an equilibrium point of Eq.(1.1), and let {z,}5>_, be a
solution of Eq.(1.1).

A positive semi-cycle of {x, }>2 _, consists of a “string” of terms {z, x141,...,%m},
all greater than or equal to Z, with [ > —k and m < oo such that

either |=—k or [>—-kandxz_;<7ZT
and

either m =00 or m < oo and zp,41 < 7.

A negative semi-cycle of {x,, }°° , consists of a “string” of terms {z;, Zi11,...,Zm},
all less than Z, with [ > —k and m < oo such that

Copyright © 2005 CRC Press, LLC



PRELIMINARIES 9

either | =—k or [>—-kandxz_1>7
and

either m = o0 or m < oo and zp,41 > 7.

A solution {z,}2 _, of Eq.(1.1) is called non-oscillatory about z if there
exists N > —k such that

either x, > Z for all n > N
or

T, <x foralln>N.

Otherwise, {z,}52_, is called oscillatory about Z.

A solution {z,}52 _, of Eq.(1.1) is called strictly oscillatory about Z if for
every N > —k there exist m,n > N such that z,, < Z and z,, > Z.

We say that a positive solution {z,}>2 . of Eq.(1.1) persists (or is persis-
tent) if there exists a positive constant m such that

m < x, for all n > —k.

Eq.(1.1) is said to be permanent if there exist positive real numbers m and
M such that for every solution {z,}>2 . of Eq.(1.1) there exists an integer
N > —k (which depends upon the initial conditions z_g,Z_f+t1,.-.,Z—1,Zo)
such that

m<xz, <M for all n > N.

The importance of permanence for biological systems was thoroughly reviewed
by Hutson and Schmitt. See [66].

1.4 Full Limiting Sequences

The following theorem treats the method of Full Limiting Sequences. See
[40], [70], [71], and [111]. On several occasions we shall utilize the method
of Full Limiting Sequences to establish that all solutions of a given difference
equation converge to the equilibrium of that equation.
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10 PERIODICITIES IN DIFFERENCE EQUATIONS

THEOREM 1.8
Consider the difference equation

Tnt1 = [(Tny Tne1y-- s Tn—k) (1.8)
where f € C[J**Y, J] for some interval J of real numbers and some non-
negative integer k. Let {x,}5° _, be a solution of Eq.(1.8). Set I = liminf z,

n—oo
and S = limsup z,, and suppose that I,S € J. Let Ly be a limit point of the

n—oo
sequence {x,}5° . Then the following statements are true:

1. There ezists a solution {L,}3L_., of Eq.(1.8), called a full limiting
sequence of {x,}52 ., such that Lo = Lo, and such that for every N €
{-..,=1,0,1,...}, Ly is a limit point of {x,};> . In particular,

I<Ly<S forall Ne{..,-1,0,1,...}.

2. For every ig € {...,—1,0,1,...}, there exists a subsequence {z,,}5°, of
{Zn} _,, such that

Ly = lim 4N  for every N >ig.
11— 00

PROOF Since I = lirginf Zn € J and S = limsup z,, € J, there exist con-
n—00 n—oo
stants A, B € J such that

A<z,<B for all n > —k.

We shall first show that there exists a solution {l,,}5° _, ; of Eq.(1.8) such
that ly = Lo, and such that for every N > —k — 1, Iy is a limit point of

{zn}nl_s-
To this end, observe that there exists a subsequence {z,; }52, of {z,}7> _,
such that
111’1’1 Tn; = ,Co.
1— 00
Now the subsequence {z,, 1}32; of {z,}52_, also lies in the interval [A, B],
and so it has a limit point, which we denote by £_;. It follows that there exists
a further subsequence {zy; }324 of {zn, }{2¢ such that lim z,; 1 = £_1. Thus
j—o0
we see that
lim z,,_, =L, and lim z,, = Lo.
j—oo j—oo
It follows similarly to the above that after re-labeling, if necessary, we may
assume that

lim 2, 1 =L g1, lim zp; =L g, ..., lim z,, = Lo.
j—oo j—oo j—oo
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PRELIMINARIES 11

Consider the solution {I,}>° , , of Eq.(1.8) with initial conditions

l_1 = E_l, l_2 = 5_2, ey l—k—l = L—k—l-
Then
lo = f(ﬁfl,,cfg, .. .,,C,k,1) = lim]‘_)oo f(xnj,l,x"j,g, .. .,Z'nj,kfl)
:limj_mo .’L'nj = ,C().

It follows by induction that the solution {/,,}5> _, ; of Eq.(1.8) has the desired
property that lp = Lo, and that {x is a limit point of {z,}>2 , for every
N>-k-1

Let S be the set of all solutions {L,}2_ of Eq.(1.8) such that the fol-
lowing statements are true.

(i) —co<—m < —k—1.
(i) L, =1, foralln > —k — 1.

(iii) For every jo € domain{L,}
of {x,}° . such that

o - o
o _m» there exists a subsequence {z,, }i2,

Ly = llim Tp 4N for all N > jo.
—00

Clearly {ln}22 441 € S, and so S # 0. Given y,z € S, we say that y < 2
if y C z. It follows that (S, =) is a partially ordered set which satisfies the
hypotheses of Zorn’s Lemma, and so we see that S has a maximal element,

which clearly is the desired solution {L,}5% _ .

1.5 Convergence Theorems

The following lemma, provides sufficient conditions for establishing the bound-
edness of solutions of certain equations.

LEMMA 1.2

Let J be an interval of real numbers, and assume that f € C[J**1J] is non-
decreasing in each of its arguments. Suppose also that every point ¢ in J is
an equilibrium point of Eq.(1.1); that is,

fle,ey...,c)=c  for every cel.
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12 PERIODICITIES IN DIFFERENCE EQUATIONS

Let {z,}2 . be a solution of Eq.(1.1). Set
m=min{Z_ g, T_gt1,---,%o} and M =max{T_k,T_gt1,-..,%0}
Then
m<ax, <M for all n > —k.
PROOF (learly
m<z, <M for all —k<n<0.
Now z1 = f(zo,2-1,...,2_}), and
m= f(m,m,...,m) < f(zo,x_1,...,2_p) < f(M,M,...,M)= M.

It follows by induction that m < z,, < M for all n > —k. I

The following convergence result will provide some powerful applications in
certain rational equations. See [40] and [41].

THEOREM 1.9
Let J be an interval of real numbers. Assume that the following statements
are true:

1. f € C[J*¥*1 J] is non-decreasing in each of its arguments.

2. f(z1,22,-..,2k+1) 48 strictly increasing in each of the arguments z;,, 2, - . -
where 1 <141 < iy < ... <4 < k+1, and where i1,12, .. .,% are relatively
prime.

3. Every point ¢ in J is an equilibrium point of Eq.(1.1).
Then every solution of Eq.(1.1) has a finite limit.

PROOF Let {z,}>° _, be a solution of Eq.(1.1). It suffices to show that

there exists £ € J such that lim =z, = Z.
n—oo

We know by Lemma 1.2 that
m<x, <M for all n > —k
where
m=min{z_g, T gt1,---,%To} and M =max{Z g, T g41,---,%0}-
To complete the proof, it suffices to show that

liminf 2, = lim sup z,,.
n—00 n—oco

Copyright © 2005 CRC Press, LLC
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PRELIMINARIES 13

So for the sake of contradiction, suppose that

liminf z, < limsup .
n—oo n—o0

It follows by Theorem 1.8 that there exists a full limiting sequence {L,,}°2
of {xp}22 . with Ly = lirr_1>inf Zy. Note that Ly < L_,, foreveryn =0,1,....
n—oo

We claim that there exists an integer N < 0 such that
Lo=Ln=Ln_1=---=Ln_4.

Proof of the claim:
Since fis non-decreasing in each of its arguments, we see that

Lo = f(Lo,Lo,...,Lo) < f(L_1,L_o,...,L_}) = Lo

and hence

f(Lo,Lg,...,Lo) = f(L_1,L_o,...,L_g).
So as fis strictly increasing in each of the arguments 2;,, 2i,, - - - , 24, it follows
that

Lo=L ;=L j=---=L_.

Given py,pa, ..., 0 € {0,1,...}, set
n = p1iy + Paiz + - + Pils

and suppose that
Lo=L_,.

Then
Lyo=L ,=f(L pn1,L pn 2,-..;L y ) > f(Lo,Lo,...,Lo) = Lo

and so as before,

LO = L—n—z’1 = L—n—i2 == L—'I’L—il'
Thus
Lo = L*[(171+1)i1+l32i2+"'+131il]
= L*[2511'1+(I32+1)i2+"'+131il]
= L*[131i1+132i2+---+(171+1)il]'
It follows by induction that given py,ps,...,p € {0,1,...},

Lo = L—(P1i1+p2iz+---+mi1) .
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14 PERIODICITIES IN DIFFERENCE EQUATIONS

Now iy,1%2,...,% are relatively prime, and so there exist non-zero integers
)\1, /\2, caey /\l such that

Arir + Apdg + - 4+ Nip =1,
Set
N = —k(J\]ir + [Aalia + - - + | Ai]in)-
For 0 < j<kand1<s<I, define
Pl = k[As| + 5\
Then for 0 < j<kand1<s<]
p>0

is a non-negative integer, and

—(pli1 + Phin + -+ pli5) = —(k[Aulin + jhain) — (k[Aaliz + jAaiz)
— - — (K| Ali 4 i)
—N—j

Thus
Ly=Ly=LN_1=---=Ln_4

and so the claim is true.
Now
Ly =f(Ln,Ln-1,---,Ln_%) = f(Lo, Lo, -..,Lo) = Lo.
It follows by induction that

L(]:L_1=L_2="'=L_k.

By Theorem 1.8, there exists a subsequence {z,,}3°, of {z,}5° , such that
zl—l>rgo Tri—j = Loj = Lo
for every 0 < j < k. So as Lo = liminf z,,, there exists a positive integer s
n— oo
such that r; > 0 and

1/. .
max { Ty, , Tr,—1,---,Lry—k} < = | limsupz, + liminfx, | .
2 n—oco n—oo
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1
It follows by Lemma, 1.2 that x,, < 2 (lim sup , + lim inf xn> for all n > ry,
n—o0

n—0o0
and so
1
limsupz, < = (hm sup x,, + lim inf xn) < limsup z,,.
n—00 2 n—00 n—oo n—00
This is a contradiction, and so the proof is complete. I

The following convergence result is due to Hautus and Bolis. See [63] and
Theorem 2.6.2 in [73].

THEOREM 1.10
Consider the difference equation

Tpy1 = F(@nyTn 1, Tn k) , n=0,1,... (1.9)
where F € C(I**' R), and where I is an open interval of real numbers. Let
z* € T be an equilibrium solution of Eq.(1.9). Finally, suppose that F satisfies
the following two conditions:

1. F is non-decreasing in each of its arguments.

2. F satisfies the negative feedback property

(u—2")[F(u,u,...,u) —u] <0 for all uel—{z*}.
Then the equilibrium point z* is a global attractor of all solutions of Eq.(1.9).

PROOF First note by Condition 2 on F that «* is the only equilibrium
solution of Eq.(1.9).

Let {z,}22 _, be a solution of Eq.(1.9) with zo,2_1,...,2_x € I. Set

m = min{z*,z9,2_1,...,2_} and M =max{z*, x0,z 1,...,2_}.
Then by Conditions f and 2 on F, it follows that
m< F(m,m,...,m) <z < F(M,M,...,M) <M,

and hence by induction on n that m < z,, < M for all n > —k. In particular,
since [m, M] C I, we see that z,, € I for all n > —k.

Let

A = liminf z, and p = limsup x,,.
n—oo n—00

Copyright © 2005 CRC Press, LLC



16 PERIODICITIES IN DIFFERENCE EQUATIONS
It suffices to show A = z* = p.

Now m < A < p < M. Since Iis an open interval of real numbers and
[m, M] C I, it follows that there exists € > 0 such that [m —e,M +¢] C I.
Hence there exists N > 0 such that A — ¢ < z,,_, for all n > N. Thus for
n > N, we see that

FA—e,A—¢,...,A =€) < F(xp,Tp-1,---yTn—t) = Tpt1-

It follows that F(A—¢e,A—¢,...,A —¢) < A, and hence by the continuity of
F that F(\ A, ..., A) < A Thus we see by Condition 2 on F that z* < A. It
follows similarly that p < x*, and so we see that A = x* = p.

The following global attractivity results from [78] are very useful in estab-
lishing convergence results in a wide spectrum of difference equations.

THEOREM 1.11
Let g : [a,b] x [a,b] — [a,b] be a continuous function, where a and b are real
numbers with a < b, and consider the difference equation

Tnt1 = 9(Tn, Tn-1) , n=0,1,.... (1.10)
Suppose that g satisfies the following conditions:

1. g(z,y) is non-decreasing in x € [a, b] for each fized y € [a,b], and g(x,y)
is non-decreasing in y € [a,b] for each fized x € [a,b];

2. If (m, M) is a solution of the system
m = g(m,m) and M =g(M,M)
then m = M.

Then there exists exactly one equilibrium T of Eq.(1.10), and every solution
of Eq.(1.10) converges to .

THEOREM 1.12
Let g : [a,b] % [a,b] — [a,b] be a continuous function, where a and b are real
numbers with a < b, and consider the difference equation

ZTrt1 = 9(Tn, Trn_1) , n=0,1,.... (1.11)
Suppose that g satisfies the following conditions:

1. g(z,y) is non-increasing in x € [a, b] for each fized y € [a,b], and g(x,y)
is non-decreasing in y € [a,b] for each fized x € [a,b];
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2. If (m, M) is a solution of the system
m=g(M,m) and M =g(m,M)
then m = M.

Then there exists exactly one equilibrium T of Eq.(1.11), and every solution
of Eq.(1.11) converges to T.

THEOREM 1.13
Let g : [a,b] X [a,b] — [a,b] be a continuous function, where a and b are real
numbers with a < b, and consider the difference equation

ZTnt1 = (T, Tn_1) , n=0,1,.... (1.12)

Suppose that g satisfies the following conditions:

1. g(z,y) is non-decreasing in z € [a,b] for each fized y € [a,b], and g(x,y)
is mon-increasing in y € [a,b] for each fized x € [a,b];

2. If (m, M) is a solution of the system
m=g(m,M) and M =g(M,m)
then m = M.

Then there exists exactly one equilibrium T of Eq.(1.12), and every solution
of Eq.(1.12) converges to Z.

THEOREM 1.14
Let g : [a,b] % [a,b] — [a,b] be a continuous function, where a and b are real
numbers with a < b, and consider the difference equation

ZTpt1 = 9(Tp, Tn_1) , n=0,1,.... (1.13)
Suppose that g satisfies the following conditions:

1. g(z,y) is non-increasing in x € [a, b] for each fized y € [a,b], and g(x,y)
is non-increasing in y € [a,b] for each fized x € [a, b];

2. If (m, M) is a solution of the system
m=g(M,M) and M = g(m,m)

then m = M.
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18 PERIODICITIES IN DIFFERENCE EQUATIONS

Then there exists exactly one equilibrium T of Eq.(1.18), and every solution
of Eq.(1.13) converges to .

REMARK 1.1 It is interesting to note that Assumption 2 of Theorem
1.11 is equivalent to assuming that Eq.(1.10) has a unique equilibrium in [a, b,
while Assumption 2 of Theorem 1.12 is equivalent to assuming that Eq.(l.lZE|
has no solutions which are periodic with prime period 2.

The following result extends and unifies Theorems 1.11, 1.12; 1.13, and
1.14.

THEOREM 1.15

Let g : [a,b]**! — [a,b] be a continuous function, where k is a positive inte-
ger, and where [a,b] is an interval of real numbers. Consider the difference
equation

Tnt1 = 9(Tn, Tn—1,---, Tn—k) , n=0,1,.... (1.14)
Suppose that g satisfies the following conditions:
1. For each integer i with 1 < i < k + 1, the function g(z1, 22, -, 2k+1) 18
weakly monotonic in z; for fized 21,22, ... ,2i1,%i41,-- -3 Zkt1-
2. If (m, M) is a solution of the system
m=g(mi,ma,...,mps1) and M =g(Mi,Ms,..., Mii1)

then m = M, where for each i =1,2,...,k+ 1, we set

m if g is non— decreasing in z;
m; =
M if g is non—increasing in z;
and
M if g is non—decreasing in z;
M; =
m if g is non—increasing in z;.

Then there exists exactly one equilibrium T of Eq.(1.14), and every solution
of Eq.(1.1}) converges to Z.

Theorem 1.15 can be easily adapted to systems. As an example, we give
Theorem 1.16. See [79].
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THEOREM 1.16
Let [a,b] and [c,d] be intervals of real numbers, and let

f1:[a,b] x [e,d] = [a,b] and f2 1 [a,b] x [¢,d] = [e,d]

be continuous functions. Consider the system of difference equations

Tnt1 = f1($nayn)
, n=20,1,... (1.15)
Ynt+1 = f2(mnayn)

with initial condition (zo,yo) € [a,b] X [¢,d]. Suppose that the following state-
ments are true:

1. fi(z,y) is non-decreasing in x and is non-increasing in y.
2. fa(z,y) is non-increasing in z and is non-decreasing in y.

3. If (m1, My, ma, Ms) € [a,b]? x [c,d]? is a solution of the system of equa-
tions

my = fi(my, Mz) , My = fi(My,ms)
ma = fo(Mi,mz) , My = fo(m1, M)

then mi; = My and ma = M.

Then there exists exactly one equilibrium point (Z,4) of System (1.15),
and every solution of System (1.15) converges to (Z, 7).
PROOF Note that by the Brouwer fixed point theorem, the function
T :[a,b] x [¢,d] = [a,b] x [c,d]

given by
T(w,y) = [fl(xay)af2($ay)]

has a fixed point (Z,7) which is clearly an equilibrium point of System (1.15),
and so it is true that System (1.15) has at least one equilibrium point.

Let {(%n,yn)}>2o be a solution of System (1.15). It suffices to show that

r}ggo(wn,yn) = (z,7).

Set m{ = a, MY = b,m9 = ¢, M = d, and for each i > 0, let

mzi+1 = fl(miaMé) ) M{.+1 = fl(Mlzam;)
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20 PERIODICITIES IN DIFFERENCE EQUATIONS

and _ o ' . .
mz2+1 = f2(M117ml2) ) M;—’_l = f2(m?laM21)

Then

and

mg =cC S fQ(Mfamg) S fl(m(l)aMg) S d= M{)
and so we see that

m <mp <M{ <MY and  my<my <My <M.

N =

We similarly have

my = fi(md, M3) < fi(mi, My) < fr(M{,m3) < fi (M7, m3) = M
and

my = fo(M7,m3) < fo(My,m3) < fa(my, My) < fo(m?, M3) = Mj
and so we see that

mi <mp <mi < M7 <Mj <M and my <my <mj<M; <My <M.

Note that

m)=a<z,<b=M) and md=c<y,<d=M] for all n > 0.

For all n > 0, we have
m% = fl(m(l)aMg) < fi(zn,yn) < fl(M?Jm(z)) = le1

and
my = fo(M{,m3) < fo(n,yn) < fo(my, M) = Mj

and so

m; <z, <M} and mi <y, <M, forall n>1.

For all n > 1, we have
m% = fl(m}7M21) S fl(wnayn) S fl(Mllamé) = M12

and
m2 = fo(Mi,ml) < fo(zn,yn) < fo(mi, M}) = M2
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and so

m?<z, <M} and mi<y, <M? forall =n>2.

It follows by induction that for ¢ > 0, the following statements are true:

) a =md<mi<--<mit<mi <M{<M{T << M <MY
= b
(i) ¢ =mf<my<---<my™ <mh <Mj<My' <o < My < MY
= d.
(iii) m¢ < =z, < M} for all n > 1.
(iv) mi <y, < M for all n>i.
Set
my = limm} , M; = lim M{ , my= lim m} and My = lim M.
i—00 i—00 i—00 i—00
Then

agmlnggb and c§m2§M2§d.

By the continuity of f; and f2, we have

my = fi(my, Ma) ; My = f1(My,ms)
ma = fo(Mi,ma) ,  Ma= fa(mi, M>)
and hence
mp = M1 and mo = M2
from which the proof follows. I
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Chapter 2

EQUATIONS WITH PERIODIC
SOLUTIONS

2.1 Introduction

Our aim in this chapter is to present a wealth of examples of difference
equations with the property that every solution of each equation is periodic
with the same period. These are examples which we believe everyone
should be exposed to for enrichment and appreciation of the fascinating world
of difference equations and their richness in periodicities. See for
further results on periodic solutions.

A question of fundamental importance is the following. What is it
that makes every solution of a difference equation periodic with the
same period? Is there an easily verifiable necessary and sufficient
condition that can be used to test for this property?

2.2 What Do the Following Equations Have in Common?

n = — y =0,1,.... 2.1
Tp41 o n ( )
1
Tpt1 = P , n=0,1,.... (2.2)
1
Tpy1 = , n=0,1,.... (2.3)
Tp—-1
1
Tpy1 = * Tn , n=0,1,.... (2.4)
Tn—1
Tnp1 = In . n=01,.... (2.5)
Tn—1

23
Copyright © 2005 CRC Press, LLC



24 PERIODICITIES IN DIFFERENCE EQUATIONS

1+ _
.Z'n+1: % . n:O,l,____ (26)
n—
TpLn—
Tny1 = 5—215—3; ., n=0,1,... (2.7)

The answer is that every solution of each of the above equations is
periodic with the same period.

Every solution of Eq. is periodic with period 2.

Every solution of Eq. is periodic with period 3.
Every solution of Eq. is periodic with period 4.
Every solution of Eq. is periodic with period 6.

is periodic with period 8.

(2.1)
(2.2)
(2.3)
Every solution of Eq.(2.4) is periodic with period 5.
(2:5)
Every solution of Eq.(2.6) is
(2.7)

Every solution of Eq. is periodic with period 10.

Indeed, if the initial condition of Eq.(2.1) is a non-zero real number denoted
by
To =«

then the solution of Eq.(2.1) is the period-2 sequence

Q= .

Q|+

If the initial conditions are non-zero real numbers denoted by
T =« and o =f

then the solution of Eq.(2.2) is the period-3 sequence

a:ﬂ;@:"';

the solution of Eq.(2.3) is the period-4 sequence
11

o, B, —, =

a’ B
the solution of Eq.(2.4) is the period-5 sequence

aﬂ1+51+a+51+a
) ) a ) a/B ) ﬂ 2"

and the solution of Eq.(2.5) is the period-6 sequence

QIQ

o, B,

)"

QIQ

11
a?ﬂ?
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EQUATIONS WITH PERIODIC SOLUTIONS 25
If the initial conditions of Eq.(2.6) are the non-zero real numbers
T_o = q, T_1 =0, and To =1y

then the solution of Eq.(2.6) is the period-8 sequence

1+8+y 1+a+B+v+ay
a’ﬂ377 3 a/B ?

a

(l+a+B)(1+B8+7) l+a+B+y+ay 1+a+p
afy ’ By ’ Y T

Finally, if the initial conditions of Eq.(2.7) are the non-zero real numbers
T_3=aq, T_o = f3, T_1 =", o =0
then the solution of Eq.(2.7) is the period-10 sequence

61111
a;ﬂ,%&ﬂ— DR INE I 2

What is it that makes every solution of a difference equation
periodic with the same period?

Is there an easily verifiable test that we can apply to determine
whether or not this is true?

REMARK 2.1

1. It is interesting to note that Egs.(2.1) and (2.2) follow a pattern. In
fact, for every k € {0,1,...}, every solution of the difference equation

1
n = — = 0, 1, A 2.8
Tnt TnTn—1-""Tn—*k " ( )

is periodic with period (k + 2).

Indeed, if the initial conditions of Eq.(2.8) are the non-zero real numbers
Tk, T_kt1,---, Lo, then the solution of Eq.(2.8) is the period-(k + 2)
sequence

1

Ly L fogdyees s Loy —————————5eun s
LToL—1°** T—g
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2. Note that Eqs.(2.5) and (2.7) also follow a pattern. Given a non-negative
integer k > 0, every solution of the equation

LnTn—2°**Tn—2k
Tni41 = ) n=0,1,... (29)
Ln—-1TLn—-3*** Ln—(2k+1)

is periodic with period (4k + 6).
Indeed, if the initial conditions of Eq.(2.9) are the non-zero real numbers
T_2k—_1,T—_2k,--.,To, then the solution of Eq.(2.9) is the period-

(4k + 6) sequence

LoL_2*** T2k

L—2k—19yL—2ky--->L0y ’
L-1L—-3°** LT—2k—1

1 1 1 L1l —-3*** L —-2k—1

9 9 b
L—2k—1 T2k Zo LoL—2*** LT -2k

3. In view of the periodicities of Egs.(2.1), (2.4), and (2.6), we might be
misled into believing that Eqgs.(2.1), (2.4), and (2.6) also follow a pattern
and, in particular, that every solution of the difference equation

1+, +Tno1+ Tn-
Tny1 = - . 2 s n=0,1,... (2.10)
n—3

is periodic with period 11. Unfortunately, Egs.(2.1), (2.4), and (2.6) do
not follow any obvious pattern. If {x,}52 _ 5 is the solution of Eq.(2.10)
with initial conditions £ _3 = £_2 = x_1 = 1, we see that the first 12
terms of {x,}52 _, are

23 101 313 29,498
1’ 15 1, 1’ 4a 7, 13, 257 "o ! 14 a1 ?
2 14 91 ° 31,850

and so {z,}52 _4 is not periodic with period 11. I
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2.3 What Do the Following Equations Have in Common?

1
Tptl = M , n=0,1,... (2.11)
Tn—1
ny 1
Tnt1 = max{z,, 1} , n=0,1,... (2.12)
TnTn—1
a 1
Topr = % . n=0,1,... (2.13)
w'n,"En—l
2
1
Tny1 = max{zy, 1} , n=0,1,... (2.14)
TnTn—1
2
1
Tnyl = % , n=0,1,... (2.15)
ThTn—1

The answer is that every positive solution of each of the the above
difference equations is periodic with the same period.

Every solution of Eq.(2.11) is periodic with period 5.
Every solution of Eq.(2.12) is periodic with period 7.
Every solution of Eq.(2.13) is periodic with period 8.
Every solution of Eq.(2.14) is periodic with period 9.

Every solution of Eq.(2.15) is periodic with period 12.

For example, the proof that every positive solution of Eq.(2.12) is periodic
with period 7 is evident from the following table. The proof in the other
cases follows similarly.
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Case 1 Case 2 Case 3 Case 4
z1=a<l r1=a>1 z1=a<l1 rT1=a>1
zo=p5<1 Zo=p<1 =421 To=p42>1
1 1 1 1
T = — T = — T = — T = —
! af ! af T a 'Ta
1 1} 1 a
Iy = — T2 = Max 4§ &, - ro = — o = —
B B B B
z3 = af z3 = af 3 = af z3 = max{a, 8}
1 1 { 1} B
Ty = — Ty = — T4 = maxq f, — Ty = —
o Q «a «a
1 1 1 1
Ty = — Iy = — Ty = — Ts = —
ap B ap B
Tg = Q Tg = Tg = Q Tg = Q
7 =3 7 =p3 7 = p 7 =P

Are there any other values of k£ and [ for which every positive
solution of the difference equation

max {x 1}

B L

Tpt1 = , n=0,1,... (2.16)

is periodic with the same period? What are they? Is there an easily
applicable test to determine this? What is it?

2.4 Lyness’ Equation
Eq.(2.4), that is, the equation

1
Tnt+1 = + on , n=20,1,... (24)

n—1

Copyright © 2005 CRC Press, LLC




EQUATIONS WITH PERIODIC SOLUTIONS 29

was introduced by Lyness in 1942, see [97], while he was working on a problem
in number theory. See also [12], [51], [52], [53], [73], [75], [84], [114], and [117].

As we mentioned in Section 2.2, every positive solution of Eq.(2.4) is
periodic with period 5. Indeed if

zo1=a and zo=p

are positive initial conditions, then the solution {z,}32 _; is the period-5
sequemnce

1
a?ﬂ? +ﬁ71+a+ﬂ71+a""
o af B
Eq.(2.4) arises in frieze patterns, see [27]. An example of a frieze pattern is
the following.

(2.17)

...2 92 2 92 92...

31 3 1

The property which defines a frieze pattern is that except for possible bor-
ders of zeros and ones, every four adjacent numbers forming a rhombus

q
pr
s

are positive and satisfy the unimodular equation
pr—qs = 1.

Coxeter, see [28], has shown that every frieze pattern is periodic. For ex-
ample, the frieze pattern shown below is periodic with period 5.

1 1 1 1 1
I Zs3 Ty T2 Ty -
- Ty T2 X4 I I3

1 1 1 1 1.
If z;1 = a and z» = 8 are arbitrary positive numbers, then from the defini-
tion of frieze patterns it follows that
1+ l+a+4 1+a
= Ty = ——F—, and x5 = .
Qa af B8

T3
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Therefore, the above pattern is generated by Eq.(2.4).

REMARK 2.2 It is an amazing fact that Eqgs.(2.11) and (2.4) have great
similarities. The solution of Eq.(2.11) with positive initial conditions

T_1 =« and o =0
is the period-5 sequence

max {1,4} max{l,a,8} max{l,a}
) a ) aﬂ b IB 72" "

Compare this with the period-5 solution in (2.17).

o,

What is it that these two equations have in common? Are there
other pairs of equations with similar behavior?

In the sequel, the equation

gy = 25T 01, (2.18)

n—1

will be referred to as Lyness’ Equation.

For a given positive number a, what are all the positive periodic
solutions that Eq.(2.18) possesses?

Clearly Eq.(2.18) has the unique positive equilibrium point

1++1+4a
—

T =
In the remainder of this section, we shall establish the following three prop-

erties of Lyness’ equation:

1. Eq.(2.18) possesses an invariant. That is, there exists a non-trivial
function F(zp_1,2y,) such that for every solution {x,}52 _; of Eq.(2.18),

F(xp_1,Zn) = constant = F(x_1,x0) for all n > 0.

2. Every positive solution of Eq.(2.18) is bounded and persists.

3. No non-trivial solution of Eq.(2.18) has a limit.
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THEOREM 2.1
Let {x,}22_, be a positive solution of Eq.(2.18). Then

1
) (1 + —) = constant for all n > 0. (2.19)

Tn

(a +-’L'n—1 +§En) (1 +
Tn—1

PROOF Indeed for n > 0,

1 1
1+—) (1
(a+:cn+:cn+1)( +$n)( +xn+1)
1 _
:(a+xn+a+x")(1+—) (1+ In-l )

n—1 n a+ Ty

a+zx 1 1
:( L )<1+—>(a+wn—|—wn_1)
a+ T, Tp_1 Tn

1 1
=(a+xn_1+mn)<1+ ><1+—).
Tn—1 Tn

The proof follows by induction. I

1 1
(a4 Zn_1+zn) <1+ > <1+—>
Tn—1 Tn

is called an invariant, or first integral, of Eq.(2.18).

The quantity

The proof of the next theorem follows directly from Theorem 2.1 and will
be omitted.

THEOREM 2.2
Every positive solution of Eq.(2.18) is bounded and persists.

The following lemma states that the only eventually constant solution of
Eq.(2.18) is the trivial solution.

LEMMA 2.1
Let {x,}5° _, be a positive solution of Eq.(2.18) which is eventually constant.
Then

Tn =17 for all n>—1.

PROOF  The proof follows from the fact that Eq.(2.18) has the unique
positive equilibrium point Z, as well as the fact that for n > 0,
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The next lemma describes the nature of the semi-cycles of the non-trivial
solutions of Eq.(2.18).

LEMMA 2.2
Let {z,}52_; be a positive, non-trivial solution of Eq.(2.18). Then the fol-
lowing statements are true:

1. Every semi-cycle of {x,}52_, has at most three terms.

2. The maximum of every positive semi-cycle occurs in either the first or
second term, and the minimum of every negative semi-cycle occurs in
either the first or second term.

3. {xn}SL_; is strictly oscillatory about Z.

PROOF  We shall first show that every positive semi-cycle of {z,}52_;
has at most three terms, and that the maximum of every positive semi-cycle
occurs in either the first or second term. With this in mind, suppose there
exists V > 0 such that Z < zy_; and T < z, where at least one of the two
inequalities is strict. Then

a+zx e 1 241
TNt = NZIUN(EN <zn | = =2zN.
TN-1 TN-1 T

It suffices to assume that Z < zny41. Then

a+rNy1 _a+zIN _a+T  _
IN42 = < < — =1
IN N x

The proof that every negative semi-cycle has at most three terms, and that
the minimum of every negative semi-cycle occurs in either the first term or
the second term is similar and will be omitted.

Finally, we shall show that {z,,}32 _, is strictly oscillatory about Z. For the
sake of contradiction, suppose that this is not the case. Then it follows by the
above that without loss of generality, we may assume that z_; < &, ©¢9 = Z,
and z1 < Z. Thus we have

a+ xo a+T a+zT
>z = = > =1z,

r_1 r_1 X

which is a contradiction, and the proof is complete. I
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THEOREM 2.3

No non-trivial solution of Eq.(2.18) has a limit.

PROOF For the sake of contradiction, suppose {z,}52 _, is a non-trivial
solution of Eq.(2.18) which converges to a limit. Then as Z is the unique
positive equilibrium point of Eq.(2.18), the limit is clearly Z. Suppose N > 0.
By Theorem 2.1, we see that

(a+zn_1+2N) (1-"3:;_1) (1+$> = (a+22) (1+%>2.

It follows that

2a + 2 a
(zn_1 + D)z + [m}"v_l - (25: +2+——+ 52) TN-1+(a+ 1)] Tp
(2.20)
+ (2% 1+ (a+ Dzy_1 +a) = 0.

We view Eq.(2.20) as a quadratic equation in z . The discriminant of Eq.(2.20)
is

2
2a + 2 a
+ {2) ry-1+ (a+ 1)]

Dy = [x?v_l— <2w+2+ =

—4(zn—1 +1)(@R_y + (a+ Day-1 +a).

With this in mind, for > 0, set

2a + 2 2
- +i.)x+(a+1)]

T z2

D(z) = [a:2 - <2z~+2+

—4(z +1)(2* + (a + 1)z + a).

2a+2 a
- +_—2)x+(a+1)]x
z z

D'(z) = 2 [;ﬁ — (2:z~+2+

0t2, 3;12)]—4[3:2 +a+)z+d -4+ )2+ (a+1)]

T

[2:0— (2x+2+
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and

2a + 2 2
D”(a:):2[2:1:—(2§:+2+ a; +§2)]

2 + 2
+4[m2—<2§7+2+ a; +§%)x+(a+1)]

—24x — 8a — 16.

It follows by computation that D(z) = 0, D'(Z) = 0, and D"(Z) < 0. Thus we
see that D(z) < 0 for z sufficiently close to Z but with = # Z. So as {z,}°2
is a non-trivial solution of Eq.(2.18) which converges to Z, it follows by Lemma,
2.1 that there exists N > 0 such that Dy < 0. This is a contradiction, and
the proof is complete. I

2.5 Todd’s Equation
Eq.(2.6), that is, the equation

1+zp+ 21 _
$n+1=—m ) n=0,1,...
n—2

is called Todd’s Equation. See [98]. As we saw in Section 2.2, every positive
solution of Eq.(2.6) is periodic with period 8. See [73]. Indeed, if

T_o=a, x_1 =0, and g =7y

are given positive initial conditions, then it follows by a computation that the
solution {z,}52_, of Eq.(2.6) is the period-8 sequence

. B,y 1+8+y 1+a+B+v+ay 1+a+B8)(1+8+7)
Y ) ’ 3 ? aﬂ’Y

a af
l+a+f+y+ay 1+a+p
5 I

)

Are there values of g, other than a = 1, such that every positive
solution of the equation

a+ Tp~+ Ty
Tpy1 = AFInt Tnot ;_: n-l , n=0,1,... (2.21)
n—

is periodic? Does Eq.(2.21) possess a positive non-periodic solution?
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One can see that Eq.(2.21) possesses the invariant

1 1 1
(a+Tp_ o+ Tpn1+xy) (1 + ) (1 + ) (1 + —) = constant,
Tp—2 Tp—1 Tn

for all n > 0 and, in general, for a € (0,00) and k € {0,1,...}, the equation

a+ Ty + -+ Ty (f—
Tpy1 = — k”(k” . n=0,1,... (2.22)
o

possesses the invariant

1
(a+zp_p+--+zy) (1 + ) (1 + —) = constant for all n > 0.

Tn—k Tn

It follows by using the invariant that every positive solution of Eq.(2.22) is
bounded and persists.

2.6 The Gingerbreadman Equation

The gingerbreadman difference equation is the piecewise linear differ-
ence equation

Tppt = |Tn| —Tn1+1  ,  n=0,1,... (2.23)

which was investigated by Devaney, see [32], and was shown to be chaotic in
certain regions and stable in others. The name of this equation is due to the
fact that the orbits of certain points in the plane fill a region that looks like
a “gingerbreadman.”

If you use a computer to plot the orbit of the solution {z,,}5° _; of Eq.(2.23)

with initial conditions )
(x-1, o) = <_E’ 0)

the computer may predict that after 100,000 iterations, the solution is still
not periodic. See [110]. Although a computer may be fooled due to round-off
and truncation errors, one can show that the orbit of the solution of Eq.(2.23)

with initial condition .
(x_1, 0) = (—E, 0)

is periodic with period 126. An easy way to see this is to make the
substitution

Tn = Eyn

Then Eq.(2.23) is transformed into the difference equation
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Ynt1 = |Yn| — Yn—1+10 n=0,1,... (2.24)

1
and the initial conditions (z_1, x¢) = (_ﬁ’ 0) of the solution {z,}5> _; of

Eq.(2.23) are transformed into

(Y1, ¥o) = (=1, 0).

Let {yn}22_; be the solution of Eq.(2.24) with initial conditions (y_1, yo) =
(=1, 0). Then the values of y, for —1 < n < 126 are given as follows:

y1=—-1y =0

y1=11 y2=21 y3=20 ya=9 ys=-1 ye=2 y;=13
ys =21 yo=18 wy10=7 yuu=-1lwyia=4 wyi13=15 y1a=21
yi5 =16 y16=5 yir=-1 918 =6 Y19 =17 y20=21 y =14
Y22 =3 Y3 =—1 Y24 =8 w25 =19 yog =21 yor =12 y3 =1
y20 = —1 y30 =10 931 =21 y32 =21 y33 =10 y3z4=—-1y35 =1
Y6 =12 y3r =21 y38=19 y39=8 weo=-1 yuu =3 ypr=14
Y43 =21 ysa =17 Y5 =6 Y6 =197 =95 ysg =16 y49 =21
yso =15 ys1 =4 yso=—1 ys3 =7 ysa =18 y55 =21 y56 =13
yst =2 yss=—1 ys0 =9 weo =20 ye1 =21 wye2 =11 ye3 =0
Yoa = =1 yes =11 yge =22 wer =21 yes =9 Ye9 = —2 yr0 =3
yn =15 yr2 =22 yr3=17 yu=5 yn=-2 yr6=7 yrr =19
yrs =22 yro =13 yso = ys1 = —2 yg2 =11 yg3 = 23 ysq = 22
yss =9  yse = —3 ysr =4 yss =17 ygg =23 yoo =16 yo1 =3
Yo2 = —3 Yo3 =10 yos =23 w95 =23 yos =10 w97 = —3 yos = 3
Yoo = 16 y100 =23 Y101 =17 Y102 =4 Y103 = —3 Y104 =9 Y105 =22
y106 = 23 Y107 = 11 Y108 = =2 9100 = 1 y110 = 13 Y111 =22 y112 =19
Y113 =7 Y114 = —2y115 =5 Y116 = 17 y117 = 22 y118 = 15 y110 = 3
Y120 = —2y121 = 9 Y122 = 21 y123 = 22 y1a4 = 11

Y125 = —1 y126 = 0.

Therefore, the sequence {y,}52_; (and hence also {z,}32_,) is periodic
with prime period 126.

It is interesting to note that the gingerbreadman difference equation is a
special case of the max difference equation

max {z2, A
Tnt1 = M , n=0,1,.... (2.25)
Tnln—1

Indeed the change of variables, see [83],
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A2 if A>1

if A=1

A" if0< A<
reduces Eq.(2.25) to the difference equation
Yni1 = [Un| —=Un_1+6  , n=0,1,...
where
—1if A>1
0= 0if A=1

1if A< 1.

To see this, observe that if a, 8 € R, then

minfa,8) = J(a+B—|a—p)) and  maxfa,8) = J(a+B+|aB)).

Let {z,}22 _; be a positive solution of Eq.(2.25) and suppose 0 < A < 1.
Then

1—yn41 max {Al_y" , A} Amin{lfyn,l} A%(2*yn*| yn |)
2 = 2—Yn—Yp—1 = 2—Yn —Yp—1 = 2—yYn—Yp—1

A== A== A 2

A

— A%(_l Yn [+yn—1)

and so
Yn+1 = |yn | — Yn—1 + 1.
The proof in the other cases is similar and will be omitted.
Note that Eq.(2.25) with
Aec(0, 1)
reduces to the gingerbreadman difference equation (2.23).

When
A=1

Eq.(2.25) reduces to Eq.(2.14) which by the above change of variables is trans-
formed into the difference equation
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Yn+1 = |yﬂ| —Yn—1 ) n=0,1,.... (226)
Hence every solution of Eq.(2.26) is periodic with period 9.

What is the set of initial conditions (z_1, o) € (0,00) X (0, 00)
through which the solutions of Eq.(2.23) are periodic?

Are there values of A, other than A = 1, for which every solu-
tion of Eq.(2.25) is periodic with the same period? What do the
solutions of Eq.(2.25) do for values of A not equal to 17

2.7 The Generalized Lozi Equation

Lozi’s map is the system of difference equations

Tny1 =1 —alzy| +yn
, n=20,1,...
Ynt+1 = bxn

introduced by Lozi, see [96], in 1978 as a piecewise linear analogue of the
Hénon map

Tpy1 =1 —az? +y,
, n=0,1,....
yn+1:bmn

The Hénon map was introduced by the theoretical astronomer Hénon, see
[64], in 1976 to illuminate the strange attractor which was observed by the
meteorologist Lorenz, see [95], in 1963 in the simple-looking non-linear system
of differential equations

(dx

= 10y —

7 = 0 - )
dy

Y a8~ ) =
<dt z(28—2)—y
dz _ . _8
\dt_xy 3Z

which Lorenz used in his research to model weather patterns.

When Lorenz used Euler’s method to integrate this system numerically in
his Royal-McBee LGP-30 computer, the solutions of this system exhibited
extremely complicated behavior. The solutions exhibited sensitive de-
pendence upon initial conditions about which Lorenz coined the phrase
butterfly effect. If a butterfly flaps its wings in Tokyo, Japan, this may
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cause it to rain in Kingston, Rhode Island four days later. This is bad news
for numerical methods, and means that we should be suspicious of what we
“see in the computer” until we establish it by a rigorous proof.

The solutions oscillate irregularly, never exactly repeating but always re-
maining in a bounded region in the (z,y,z) space, and they settle onto a
complicated set resembling an owl’s mask or a pair of butterfly wings, which
we now call a strange attractor, strange because its boundary is a fractal
(with dimension between 2 and 3). All solutions approach the attractor quite
rapidly, and there are no periodic or asymptotically periodic solutions. The
term strange attractor was coined by Ruelle and Takens, see [113], in 1971.

The Lozi map is the first system for which it was established (by Misi-
urewicz, see [106], in 1980) that it possesses a strange attractor. For the
Hénon map, the existence of a strange attractor was established by Benedicks
and Carleson, see [17], in 1991. The existence of a strange attractor for the
Lorenz equations was established by Warwick Tucker. See [121] and [122].

By eliminating the variable y,,, Lozi’s map reduces to the second-order
piecewise linear difference equation

Tpy1 =1 —al|zy| + by 1, n=0,1,... (2.27)

where a and b are real numbers.
Several of the equations which we have recently investigated, and which
exhibit an interesting periodic character, are of the form

koA
oy = AT AL (2.28)

Il ,m
TnTn_1

where
k,lmeZ and A ,x_1,z9 € (0,00).

Some special cases of this equation were investigated in [13], [67], [82], and
[83] and were found to have very interesting dynamics. See also

As we have seen, when A = 1 and m = 1, every solution of Eq.(2.28) is
periodic with period

ifk=0andl=1
ifk=0andl=0
ifk=1landl=0
ifk=0and!=-1
fk=1landl=1
ifk=1landl =2
9ifk=2andl =2
12if k=2and ! = 3.

0 O Ut i W

It follows easily that the change of variables, see [83],
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1+yn

A7 if A>1
=4 e* fA=1
1-—yn

A7 if A<l

together with the observation that

min{o, §} = (@ +f) ~la—pll  and  max{a,5) = J[(a+8)+|a— ]

transforms Eq.(2.28) into the piecewise linear equation

k k
Ynt1 = 5 lyn| + (5 — l> Yn — MYn_1+0 n=0,1,... (2.29)

where
k—1—-1l-m ifA>1
0= 0 ifA=1

—(k—-1-1-m)if A<1.
We call Eq.(2.29) the generalized Lozi’s equation. See [83].

Are there other values of k and 1 for which every solution of
Eq.(2.29) with m = 1 and § = 0 is periodic with the same period?

a + BTn + YTn—1
A + Bwn + Cwn—l

2.8 When Is Every Solution of z,y; =
Periodic with the Same Period?

Consider the non-linear second-order rational difference equation

a+ BT, +YTn-1
A+ Bz, + Cxp_q ’

where the parameters «, 3,7, A, B, C are non-negative real numbers with B +
C > 0, and where the initial conditions z_; and zy are non-negative real
numbers such that the right-hand side of Eq.(2.30) is well defined for all
n > 0.

Tnt1 = n=20,1,... (2.30)
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The following four special examples of Eq.(2.30)

Tpt1 = — n=20,1,... (2.31)
T
1
Tpy1 = , n=01,... (2.32)
Tn—1
1
T = I 01, (2.33)
Tn—1
Tpp1 = 2 p=0,1,... (2.34)
Tn—1

are remarkable in the following sense.

Every positive solution of Eq.(2.31) is periodic with period 2.
Every positive solution of Eq.(2.32) is periodic with period 4.
Every positive solution of Eq.(2.33) is periodic with period 5.
Every positive solution of Eq.(2.34) is periodic with period 6.

The following result characterizes all possible special cases of equations of
the form of Eq.(2.30) with the property that every solution of the equation
is periodic with the same period. See [78].

THEOREM 2.4
Let p > 2 be a positive integer, and assume that every positive solution of
Eq.(2.30) is periodic with period p. Then the following statements are true:

1. Suppose that C > 0. Then A= B =~v=0.
2. Suppose that C = 0. Then v(a + ) = 0.

PROOF  Consider the solution {z,}5_; of Eq.(2.30) with
z 1=1 and 1z € (0,00).
Then clearly
Tp_1=z_1=1 and Tp = To
and so by Eq.(2.30)
a+ B+ yxp_2

:EO::EP:A-FB-FCZUP_Q'

Thus we see that

(A+ B)zg + (Czg —Y)zp2 = a0+ . (2.35)
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(a) Assume C > 0. Then we claim that
A=B=0. (2.36)

Otherwise, A + B > 0. So by choosing
a+p l}

a:0>ma.x{A+B,C

we see that Eq.(2.35) is impossible. Hence Eq.(2.36) is true. In addition
to Eq.(2.36), we now also claim that

~v=0. (2.37)

If not, then v > 0. So by choosing

:170<min{M ’y}

A+B'C
we see again that Eq.(2.35) is impossible. Thus Eq.(2.37) also holds.

(b) Assume C = 0 and for the sake of contradiction, suppose that y(a+48) >
0. Then again by choosing x sufficiently small, we see that Eq.(2.35) is
impossible.

The following corollary of Theorem 2.4 states that Egs.(2.31), (2.32), (2.33),
and (2.34) are the only special cases of Eq.(2.30) with the property that every
positive solution is periodic with the same period. See [78].

COROLLARY 2.1
Letp € {2,3,4,5,6}. Assume that B+ C > 0, and that every positive solution
of Eq.(2.30) is periodic with period p. Then up to a change of variables of the
form
Tn = NJn

Eq.(2.30) reduces to one of the Egs.(2.81), (2.32), (2.33), and (2.34).

For the more general difference equation

o+ Ty + -+ ORIy

n = , = ,1,... 2.
It S A Az + - + ApTn n=0 (2.38)

with non-negative initial conditions and non-negative parameters, what are
all special equations with the property that every solution is peri-
odic with the same period? In addition to Eqgs.(2.31)-(2.34) and Todd’s
Eq.(2.6), are there any other surprises?
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o« + ﬂmn + YLn—-1
A + Bwn + Cwn—l

2.9 Period-2 Solutions of z,41 =

Consider the difference equation
a+ Bxn, +yTn_1
A+ Bz, +Cz,_1

with non-negative parameters and non-negative initial conditions. To avoid
degenerate cases, we shall assume that

Tnt1 = , n=20,1,... (2.39)

a+B+v,B+C,8+ B,y+C € (0,00).

We also assume that the parameters and initial conditions are chosen in such
a way that the denominator of Eq.(2.39) is always positive. See [55] and [56].

There are now 30 equations with positive parameters which are included in
Eq.(2.39) as special cases.

For some choices of the non-zero parameters of Eq.(2.39), six of these equa-
tions have a multitude of prime period-two solutions, six have a unique two-
cycle, and two have one or the other of the above properties, depending upon
the particular values of the non-zero parameters. See [56] and [78].

2.9.1 The Case C =0.
In the case C' = 0, Eq.(2.39) assumes the form

a+ BT, +Yrn-1

= =0,1,... 2.40
Tn+1 A + an ) n )+ ( )
and exhibits the following trichotomy character when B > 0. See|Chapter 5

for a proof.

v < B+ A = every solution converges;
v = f + A = every solution converges to a period — 2 solution;

v > B+ A = there exist unbounded solutions.

When

y=B8+A4
every prime period-2 solution of Eq.(2.40) is given by

Boyp =a+p(¢+¢) with  ¢,9 €[0,00) and ¢ # 9.
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REMARK 2.3 In the sequel, when we say that “every solution of a
difference equation converges to a periodic solution with period p,” we mean
that every solution of the equation converges to a periodic solution of the
equation with (not necessarily prime) period p, and that there exist solutions

of the equation with prime period p.

2.9.2 The Case C >0

In the case C > 0, a necessary condition for Eq.(2.39) to have a prime

period-2 solution is
v>0

and so we can rewrite Eq.(2.39) in the normalized form

o+ BTy + Tr_1
A+ Bz, +xnh_q

Tnt1 = ) n=20,1,...

with non-negative parameters and non-negative initial conditions.

2.9.2.1 Subcase (a)

Suppose a = 3 = 0.

In this case Eq.(2.41) is the equation

Tp—1
A+ Bz, + 2,1

Tntl =
with
Ae€el0,00) and B>0.
Eq.(2.42) has prime period-2 solutions if and only if
A<l
Furthermore when (2.43) holds, the following statements are true:

(a) When
B=1

every prime period-2 solution
e, B,
of Eq.(2.42) is given by

p+¢v=1—-A with ¢,9 €[0,00) and ¢ # .
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(b) When
B#1

Eq.(2.42) has the unique period-2 solution

01— A, ... (2.44)
and the solution (2.44) of Eq.(2.42) is locally asymptotically stable when

B>1
and is unstable when
0<B<1.
2.9.2.2 Subcase (b)
Suppose
a+p3>0. (2.45)

In this case Eq.(2.41) has prime period-2 solutions if and only if

B+A<1, B>1, and 4da<(1-B—A)[B1-B-A)—(1+38—A4)]
(2.46)

Furthermore, when Eq.(2.45) and Eq.(2.46) hold, Eq.(2.41) has the unique
prime period-2 solution

O R (2.47)

where the values of ¢ and v are the two positive and distinct roots of the
quadratic equation

a+p(1l-p-—A)
B-1

t?—(1-B8—-At+ =0. (2.48)

2.9.3 Equations with a Unique Prime Period-Two Solution

It follows from Sections 2.9.1 and 2.9.2 that after some obvious renormal-
izations, the only equations of the type of Eq.(2.39) with a unique prime
period-two solution are the following nine equations with positive parame-
ters. See also [56] and [78].

Case 1 (See [78], p.18)

Yn—-1
=" n=01,... 2.49
Yntt p+yn71 ( )
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Case 2 (See [78], p.60)

Yn—1
Ynt1 = — ) n=0,1,...
T pyn + yna

Case 3 (See [76] and [78], p.92)

y IZM n=0.1
T G F Y T

Case 4 (See [78], p.113 and [81])

yosy = PUn T Ynms o1
T Y o

Case 5 (See [78], p.133)

yn—l
= — s n:(],].,...
I Wn + Un 1

Case 6 (See [78], p.149)

D + qYn—1

_— , n=20,1,...
1+ Yn +rYn1

Ynt+1 =

Case 7 (See [78], p.158)

ynﬂzm , n=0,1,...
"+ qYn + Yn—1

Case 8 (See [78], p.175)

y 1=w n=0.1
n+ qyn+yn—1 ) PSR

Case 9 (See [78], p.184)

yn+1:w ’ n=01,....
T+ 8Yn + Yn—1

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)

It is surprising that even the local asymptotic stability character of the
prime period-2 solutions of Egs.(2.55), (2.56), and (2.57) has not yet been

determined.
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2.10 The Riccati Difference Equation

The Riccati difference equation is the difference equation

a+ bz,
c+dz,

where the parameters a, b, ¢, d are given real numbers, and the initial condi-
tion zg is an arbitrary real number.

Znt1 = , n=0,1,... (2.58)

To avoid degenerate cases, we assume throughout this section without fur-
ther mention that

la| +16| #0  and  |e|+ |d| #0.

We shall also assume throughout this section, unless otherwise mentioned,
that
d#0 and bc—ad#0.

Indeed, when d = 0, Eq.(2.58) is a linear equation, while if
d#0 and bc—ad=0
Eq.(2.58) reduces to the trivial difference equation

be

Z+bzp, blct+dz,) b

_d = n_— =
T Az, dctdz) d 0.L,....

Suppose Z is an equilibrium point of Eq.(2.58). Then
dz* +(c—b)zZ—a=0.

Thus we see that Eq.(2.58) has exactly two equilibrium points if (b—c)?+4ad >
0, exactly one equilibrium point if (b—c)?+4ad = 0, and no equilibrium points
if (b—c)? +4ad < 0.

For the results in this section, see [57].

THEOREM 2.5
The following statements are true:

1. Eq.(2.58) has a prime period-2 solution if and only if b+ c=0.

2. Suppose b+ ¢ = 0. Then every solution {z,}52, of Eq.(2.58) with
20 # —2 is periodic with period 2.
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Let G be the set of all initial conditions zg € R such that the solution
{2zn}n=0 of Eq.(2.58) exists for all n > 0, and set F =R — G.

Thus F is the set of all zp € R such that the solution of Eq.(2.58) with
initial condition zg fails to exist after a finite number of terms. G is called the
good set of Eq.(2.58), and F is called the forbidden set of Eq.(2.58).

When b+ ¢ = 0, the forbidden set of Eq.(2.58) is the singleton

c
F={-3}

while in the degenerate case d(bc — ad) = 0, the forbidden set of Eq.(2.58) is

the empty set.

Throughout the remainder of this section we shall assume that

d#0, bc—ad #0, and b+c#0. (2.59)

The change of variables
_b+ec c

Zn = T’U)n - E
transforms Eq.(2.58) into the difference equation with one parameter
R

wnp=1--= , n=01... (2.60)

where the parameter R, which we call the Riccati number of Eq.(2.58), is the

non-zero real number
__bc—ad

R=0ro

and where the initial condition wg of Eq.(2.60) is

w _dzm+c
7 Thye

We make the further change of variables

Un+1

wy, = nt forn=0,1,...
Un

Uug = 1

which reduces Eq.(2.60) to the second order linear difference equation

Upt2 — Unt1 + Ruy, =0 n=20,1,... (2.61)
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with initial conditions
ug =1 and up = wy.

The characteristic equation of Eq.(2.61) is

M-A+R=0 (2.62)
with characteristic roots
1—-+4/1—-4R 1++v1—-4R
A= — and Ay = —

THEOREM 2.6 1
Assume that (2.59) holds, and that R < T Then the forbidden set F of
Eq.(2.58) is given as follows:
b +c )\1)\3 - )\2)\{L C
= —=:n>1;.
() -
For any solution {z,}°2, of Eq.(2.58) with zo € G, we have

b+c cl/\{H'1 —}—cz/\g+1 c
= ¢ 1l -0,1,...
8 d [ AT + CoND g Jrdlom
where
o = A2(b+¢) — (dzg + ) ond o= (dzog +¢) — A (b+¢)

(b+C)()\2 —)\1) (b+C)()\2 —)\1)

1
REMARK 2.4 Suppose Eq.(2.59) holds, and that R < T Then the fol-

lowing statements are true:

1. % is the smaller of the two equilibrium points of Eq.(2.58).
2. % is the larger of the two equilibrium points of Eq.(2.58).

A(b+c¢)—c d)\z(b+c)—c

In particular, p an p are elements of G. I

COROLLARY 2.2 .
Assume that Eq.(2.59) holds, and that R < T Let {2,}52 be a solution of

Eq.(2.58) with z9 € G — {%} . Then
lim 2, = 20+ ¢
n—o0 d

Copyright © 2005 CRC Press, LLC



50 PERIODICITIES IN DIFFERENCE EQUATIONS

THEOREM 2.7 1
Assume that Fq.(2.59) holds, and that R = i Then the forbidden set F of

Eq.(2.58) is given as follows:
F = {”(b_c)_(HC) ‘n > 1}.

2dn

For any solution {z,}2, of Eq.(2.58) with zo € G, we have

b+c [(b-l—c)+(n+1)(2d2’0+(0—b))] _

> 0.
20+ ©) + 2n(2dz + (c — b)) for all = n 20

¢
d

=
holds, and that R = ~. Then *— i
olds, an a = - Then 54 is
—C

—deg- |:|

REMARK 2.5 Suppose Eq.(2.59)
the unique equilibrium point of Eq.(2.58). In particular,

COROLLARY 2.3 .
Assume that Eq.(2.59) holds, and that R = T Let {2,152 be a solution of

Eq.(2.58) with z9 € G. Then

lim z, = b-c
n—oo " 2d
THEOREM 2.8 1
Assume that Eq.(2.59) holds, and that R > T Let 0 € (0, g) be chosen such
that
1 ) VAR — 1
cosf = — and sinf = ———.
2VR 2VR

Then the forbidden set F of Eq.(2.58) is given as follows:

f:{b;dc— (b+c)2d4R_1cotn0:n21 and sian#O}.

For any solution {z,}°2, of Eq.(2.58) with zy € G, we have

VR (cos(n + 1)6 + L’O L sin(n + 1)8

zn:b+c ( T ) < for all n>0
d cosnb + \/‘Lsm né d

where wy = dz +c
7 Thte
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COROLLARY 2.4 .
Assume that Eq.(2.59) holds, and that R > T Let {2,152, be a solution of
Eq.(2.58) with zo € G. Then the following statements are true:

1. Suppose that 6 = gw, where p and q are positive, relative prime integers.
p
Then {z,}52 is a periodic solution of Eq.(2.58) with prime period p.

2. Suppose that 8 is not a rational multiple of w. Then the orbit of {zn}5L,
is dense in R.

REMARK 2.6 Let us summarize the asymptotic behavior and the peri-
odic nature of the solutions of the Riccati difference equation Eq.(2.58) with
initial condition in the good set G under the assumption that

d#0 and bc — ad # 0.
1. Every solution is periodic with period 2 if and only if

b=—c.

2. When
b# —c

the the following statements are true:

(a) Every solution of Eq.(2.58) has a finite limit if and only if

1
< -.
R< 4
(b) When
1

R>Z

either every solution of Eq.(2.58) is periodic with the same prime
period p > 3, or else every solution of Eq.(2.58) is dense in the real
line R. The precise character of the solutions of Eq.(2.58) depends
upon the value of 6 € (0, %), where
1 AR -1
cosf) = — and sinf = ————.

2R 2vVR

(i) Suppose that 6§ = gw, where p and ¢ are positive, relatively

prime integers. Then every solution of Eq.(2.58) is periodic
with prime period p.

(if) Suppose that € is not a rational multiple of 7. Then the orbit
of every solution of Eq.(2.58) is dense in R. I
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2.11 Sharkovsky’s Theorem

Throughout this monograph, we deal almost exclusively with difference
equations of order greater than one. For a first-order difference equation of
the form

Tnt1 = Flzn) n=0,1,... (2.63)

where
F:I>1

is a continuous function mapping some interval of real numbers I into it-
self, the most glorified result known about periodic solutions of Eq.(2.63) is
known as Sharkovsky’s Theorem. See [116]. For a good reference for this
and other related theorems, read the historical remarks by M. Misiurewicz in
[107]. See also [11].

Before stating the theorem, we introduce the so-called Sharkovsky ordering
of the set of positive integers N = {1,2,...}.

3<5<7<--<3-2<5-2<7-2<---<3-22<5-2237.22< ...
<2t < 028 < 22 492 1.

THEOREM 2.9
(Sharkovsky’s Theorem) Let I be an interval of real numbers. Then the fol-
lowing statements are true.

1. Let F : I — I be a continuous function, and let k be a positive integer.
Suppose there exists a point p € I which has minimal period k. Let 1
be a positive integer such that k < I in the Sharkovsky ordering. Then
there exists a point q € I such that g has minimal period L

2. Let 1 be a positive integer. Then there exists a continuous function G :
I — I such that the following statements are true.
(a) There ezists a point p € I which has minimal period .
(b) If k is a positive real integer such that k < | in the Sharkovsky

ordering, then there exists no point ¢ € I having minimal period k.

3. There exists a continuous function H : I — I such that for every positive
integer m, H has a point p € I of minimal period 2™, but there are no
points q € I of any other period.
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2.12 Period 3 Implies Chaos

A special case of Sharkovsky’s Theorem is the celebrated theorem of Li and
Yorke, Period 3 Implies Chaos, see [94], in which it was shown that if
I'is an interval of real numbers and F' € C[I,I], and if Eq.(2.63) possesses
a periodic solution of prime period 3, then Eq.(2.63) possesses solutions of
prime period p for every positive integer p. In the theorem, F? stands for F
composed with itself, F? is F' composed with F?2, and in general for n > 1,
F™ (the nt" iterate of F) is F composed with F"~1,

THEOREM 2.10
(Period 3 Implies Chaos)
Let I be an interval of real numbers, and let F : I — R be a continuous
function. Assume there is a point a € I such that
F3(a) < a < F(a) < F?(a)

or

F3(a) > a> F(a) > F?(a).

Then the following statements are true:

1. For every k € {1,2,...}, there is a point py € I having minimal period
k (i-e., F*(p) = pr, and F™(p) # px for 1 <n < k).

2. There is an uncountable set of aperiodic points S C I which satisfies the
following conditions:

(a) For every p,q € S with p # q,

limsup |F™(p) — F™(g)| > 0

n— oo

and
liminf |F™(p) — F"(¢)| = 0.
n—oo
(b) For every point p € S and every periodic point q € I,
lim sup |F™(p) — F™(q)| > 0.

n—o0
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REMARK 2.7 Two comments are in order about Theorem 2.10.

1. Suppose b € I is a point of minimal period 3. Then the hypoth-
esis about the existence of the point @ € I is automatically satis-
fied. To see this, first re-label {b, F(b), F?(b)}, if necessary, to have
b = min{b, F(b), F2(b)}. Then if

b< F(b) < F*(b),
take a = b and observe that
F3(a) =a < F(a) < F?(a)

while if
b< F2(b) < F(b),

then take a = F'(b) and observe that
F3(a) =a > F(a) > F?(a)
and so period 3 really does imply chaos.

2. The second fact to mention is that in practice, it is much easier to find
a point a satisfying either

F3(a) =a < F(a) < F?(a)

or
F3(a) =a > F(a) > F?(a)

than it is to find a point b of period 3, and hence the condition on a is
extremely practical. I

Example 2.1
A simple example of a first-order difference equation which possesses prime
period solutions of every period is the “logistic equation”

Tnt1 =4z, (1 —2,) n=20,1,... (2.64)

with initial condition zo € [0, 1].

Solution: -
Let 0 € [O, 5] , and take 29 = sin” 6. Then it follows by induction on n that

z, =sin’(2"9) for n=0,1,....

In particular when 6 = g,
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. o T
g = SIn- —
9

. 9 2m
T1 = sin® —
9
. o 4m
Ty = sin” —
9
. o 8

T3 = Sin ?:IE().

Thus z¢ is a point of period 3, and so by Theorem 2.9, Eq.(2.64) possesses
periodic solutions of every period.

2.13 Open Problems and Conjectures

OPEN PROBLEM 2.1
Assume that f : (0,00) — (0,00) is a continuous function, and that every
positive solution of the equation

Tn,Ln—
g = LEEz) g
Tr,

is periodic with period p > 5. Find f. See [2], [3], [4], and [103].

CONJECTURE 2.1
Assume that f € C*[(0,00) x (0,00), (0,00)], and that every positive solution
of the equation

Ly Lp—
xn+1=7f( - Zl) ., n=0,1,...
o

is periodic with period 8. Show that f(z,y) =1+ z +y. See [2] and [4].

CONJECTURE 2.2
Assume A € (0,00). Show that no positive non-equilibrium solution of the
equation

max{A, Zn, Tn_1}
Tnt1 = . , n=20,1,...
n—2

has a limit. Extend and generalize.
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OPEN PROBLEM 2.2
Find aoll values of k and | such that every positive solution of

max {z¥,1}

Tpt1 = , n=0,1,...

zhx, 4

is periodic. See [1] and [83].

CONJECTURE 2.3
Show that for no value of a other than a = 1 is every positive solution of
a+x,

Tn+1 = , TL:O,].,...
n—1

periodic.

CONJECTURE 2.4
Show that for no value of a other than a = 1 is every positive solution of

a+ Ty + Tpn-1
Tnt1 = ——————— ) n=20,1,...
Tn—2

periodic.
CONJECTURE 2.5
Show that for no value of A other than A =1 is every positive solution of

max{zn, A}
Tptl = ——— ) n=0,1,...
ITnTn—1

periodic.
CONJECTURE 2.6
Show that for no value of A other than A =1 is every positive solution of

max{zn, A}

Tni1 = ) n=0,1,...

221

periodic.

Copyright © 2005 CRC Press, LLC



EQUATIONS WITH PERIODIC SOLUTIONS 57

CONJECTURE 2.7
Show that for no value of A other than A =1 is every positive solution of

2
_max{xn,A} _o1
Tp1 = — , n=0,1,...
ITnTn—1

periodic.

CONJECTURE 2.8
Show that for no value of A other than A =1 is every positive solution of
max{z}, A}

3 , n=0,1,...
xnm’ﬂ—l

Tnt1 =

periodic.

OPEN PROBLEM 2.3
Assume k, A € [0,00). Show that every positive solution of the equation

k
max{zF A}
Tnt1 = — "1’ , n=0,1,...
n—

is bounded if and only if k € [0,2). See [68].

OPEN PROBLEM 2.4
Assume k, A € [0,00). Show that every positive solution of the equation

k
_ max{z;,A} — 01
Tpyl = ————— , n=20,1,...
InIn—1

is bounded if and only if k € [0,3). See [68].

OPEN PROBLEM 2.5
For the difference equation

o+ BTy + YTn_1 + 0Tp
A+ Bz, +Czxp_1+Dxp_s

Tpyl = , n=0,1,...

with non-negative parameters and positive initial conditions, find all special
cases with the property that every positive solution is periodic with the same
period. Extend this result to higher order equations.

CONJECTURE 2.9
Assume that a € (0,00) and k € {1,2,...}. Show that no positive non-
equilibrium solution of the equation

G+ Tp +Tp-1+---+ Tn—(k—1)

Tnt1 = - , n=20,1,...
n
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has a limit. Hint: You may need to use the fact that this equation possesses
the invariant

1 1
(a+zp+- - +2p_(k—1)) (1 + —) (1 + 7) = constant for all n > 0.
In Tn—(k—1)

OPEN PROBLEM 2.6
Find all values of a € (0,00) and k € {1,2,...} for which every positive
solution of

a+ T, +--- +$n—(k—1)

Tnt1 = P y n=0,1,...
n—

is periodic and determine the period.

REMARK 2.8 A Generalized Riccati Equation.
Recall that every solution of the Riccati equation

Tn
Ty — 1 ’

Tnt1 = n=20,1,... (2.65)
with
Io 75 —1

is defined for all n > 0 and is periodic with period two.
It is interesting to note that Eq.(2.65) is a special case of the difference
equation

Tn o Tn—k
p— = 0 ]. ... 2-66
Intl InTn—1"" "Tn—k 1 ’ " o ( )

with &£ > 0. Indeed, one can see that every solution of Eq.(2.66) which is
defined for all n > 0 is periodic with period (k + 2). This follows from the

observation that
_Tot+T_1+- -+ Tp

ol _1-""T_f — 1

Z1

and so by a simple computation

"E0+"E*1”'+$7k§
Lol -1 " "T—k -1

To+T_1- -+ T
xo...m_k_]_

+xo+ -+ T g1

Ty = =T _.

‘37055'—1"‘37—19+1—1

An interesting property of every well-defined solution {z,}5° , of Eq.(2.66)
is that

Tyl +Tn 4+ Tk = Tpp1Tn - Tn_k for all n>0. I
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OPEN PROBLEM 2.7

Determine the good set G of Eq.(2.66). That is, find the set G of all initial
conditions (_g,-..,Zo) such that the solution of Eq.(2.66) is well defined for
all n > 0.

OPEN PROBLEM 2.8
Investigate the good set and the character of the solutions of the difference
equation

Tn+Tp—1+ -+ Tpn_g
TnTn—1-" " Tn—k + A

Tpyl = , n=0,1,...

where A is a real parameter.

CONJECTURE 2.10
Show that the unique prime period-2 solution of Eq.(2.55) is locally asymptot-
ically stable.

CONJECTURE 2.11
Show that the unique prime period-2 solution of Eq.(2.56) is locally asymptot-
ically stable.

CONJECTURE 2.12
Show that the unique prime period-2 solution of Eq.(2.57) is locally asymptot-
ically stable.
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Chapter 3

EQUATIONS WITH
EVENTUALLY PERIODIC
SOLUTIONS

3.1 Introduction

In this chapter we present various examples of difference equations which
have the property that every solution is eventually periodic with a pre-
scribed period. We believe that these are fascinating examples which need to
be brought to the attention of the general mathematical community. See also

A question of great importance is the following. What is it that makes all
the solutions of a difference equation be eventually periodic with the
same period? Is there an easily verifiable necessary and sufficient
condition that can be used to test for this property?

3.2 The Equation z,; = max {i, A }

Ln Tn—1

In this section we discuss the periodic character of solutions of the difference
equation

1 A
= — =0,1,... 3.1
Tn+1 max { T ) Tn1 } ) n P ( )

with positive parameter A and with positive initial conditions. The main
result which we establish is the following theorem. See [9].

61
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THEOREM 3.1
Assume A € (0,00). Then every positive solution of Eq.(3.1) is eventually
periodic with period

2if A<1
Jif A=1

4if A>1.

REMARK 3.1 Before we present the proof of Theorem 3.1, we make the
observation that the periodic character of the solutions of Eq.(3.1) depends
upon whether the parameter A is dominated by 1, equals 1, or dominates 1.
In all cases it seems that the the dominant term in Eq.(3.1) determines the
period of the solutions. We really do not understand what is going on, or why.

For example, when A is dominated by 1 (when A < 1), every solution of
Eq.(3.1) is eventually periodic with period 2. Note that the “dominating”
difference equation

1
Tpp1=— , n=0,1,... (3.2)

n
has the property that every solution is periodic with period 2. When 4 > 1,
every solution of Eq.(3.1) is eventually periodic with period 4, and every
solution of the “dominating” difference equation

A
Tpt1 = , n=0,1,... (3.3)
Tn—1

has period 4. Finally, when A = 1, every solution of Eq.(3.1) is eventually
periodic with period 3, the average of the periods of the solutions of Eqs.(3.2E|
and (3.3).
PROOF

(i) Suppose 0 < A < 1. For each n > —1, set x,, = AY". Then Eq.(3.1) is
transformed into the difference equation

Yn+1 = min{_yn; 1- ynfl} ) n=0,1,... (34)

1 1
where y_1 = 1 Inz_; and yg = 1 In zq are real numbers. It suffices to

show that {y,}52 _, is eventually periodic with period 2.

n=—1

Set

Copyright © 2005 CRC Press, LLC



EQUATIONS WITH EVENTUALLY PERIODIC SOLUTIONS 63

Case 1.  Suppose (y_1,y0) € S.
Then {y,}32_, is clearly periodic with period 2.

Case 2. Suppose (y—1,%0) € S.
Note that {y,}$2 _; oscillates about zero, and so, without loss of generality,
we may assume that y_; > 0 and yo < 0.

Set
L ={(a,—a):a€R}.

We claim there exists N € {0,1,...} such that (yn,yn+1) € L.

For the sake of contradiction, suppose this claim is false. Then {y,}32
satisfies the difference equation

Ynt1=1—Yn—1 n=0,1,... (3.5)

as well as the difference inequality

—Yn > 1 —yn_1 , n=0,1,.... (3.6)
It follows from Eq.(3.5) that {y,}32 _, is periodic with period 4, while

n=

it follows from Inequality (3.6) that

lim y, = —o0.
n—o0

This is a contradiction, and so we see that there does exist NV > 0 so
that (y~,y~t1) € L.

The proof follows from Case 1 if (yn,yn+1) € S.

1
So suppose that (yn,yny1) € L — S. Note that if yy < —g3 then

1
YN+1 > 2 and hence

yn+2 = min{—yni1,1 —yn} = —yn1-
Hence it follows that without loss of generality we may assume that

1
y-1> 3 and that (y_1,y0) € L. The first five terms of {y,}52 _, are

Y-1,-Y-1, 1- Y-1,Y-1 — 17 1- Y-1-
Thus (y_1,y0) and (y2,ys) are elements of L, and the distance between
1
(y—_1,y0) and (y2,y3) is V2. Now y_; > 2 and the length of S is /2, and

so we see that (y2,y3) is closer to S than (y_1,y0) is. So as the length
of S is v/2, it follows that there exists M > 0 such that (yar, yars1) € S,
and the proof follows from Case 1.
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(ii) Suppose A = 1. It is easy to see that {z,}2__, contains two consecutive
terms each greater than or equal to 1, and so without loss of generality
we may assume that z_ 4 > 1 and z¢ > 1. Then {z,}32 _; is either

1
T-1,20,  —H»T-1,T—1, —HT—1;---
X x

or
1 1
T-1,Z0, —>20,L05 —_—>L05--- -
o Zo

Hence in either case {z,}52; is periodic with period 3.

(iii) Suppose A > 1. For each n > —1, set z, = A¥ 2. Then Eq.(3.1) is
transformed into the difference equation

Ynt1 = max{—1 —yp, —Yn_1} , n=20,1,... (3.7)
_lnz_; 1 _lnme 1
where y_;1 = mA 3 and yo = A 5 e real numbers.
Set
B={(a,p): o] +]6 <1}
and

T={(a,—a—1):a <0}

It is easy to see that {y,}°2 _; is of the form

Y-1,Y%0, ~Y—-1,"Y0,Y-1,Y05- - -

if and only if (y—1,y0) € B, and so it suffices to consider the case where
(y-1,%0) ¢ B.

It is easy to see that {y,}>__; contains two consecutive non-negative
terms, and so without loss of generality we may assume that y_; > 0
and yo > 0. Then since y_1 +yo > 1, we see that either y; = —1—yp and
y2 = —1—y; or y1 = —y_1 and yo = —1 — y;. In either case (y1,y2) €
T — B. Finally, suppose that (yy,yny1) € T — B for some N > 1.
Clearly yny < —1, and so

YN+2 = —YN,YN+3 = L + YN, yN+4 = —2 — yN.

Note that (yn+3,yn+4) € T, and that the distance between (yn,yn+1)
and (yni3,Ynt4) is V2. Moreover, the point (yni3,ynta) = (1 +
yn,—2 —yn) is closer to B than the point (yn,ynv+1) = (yn,—1 —yn)
is. So as the length of BN T is \/i, it follows that there exists ng > 4
such that (yng, Yne+1) € BNT. I
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3.3 Max Equations with Periodic Coefficients

Recall from Section 3.2 that every positive solution of the difference equa-
tion

1 A
= — =0,1,... 3.1
Tn+1 max{mnjxn—l} ) n » Ly ( )

where A € (0,00), is eventually periodic with period
2if A<1
3if A=1

4if A>1.

The above result was extended in [14], [15], and [54] to the difference equation

1 A,
= — =0,1,... 3.8
Tpi1 max { xn, s } ; n s 4y ( )

where the coefficient sequence {A,}5, is periodic, either with period 2 or
with period 3.
For positive period-2 coeflicients {4, }52, with

Ap if n is even
A, =

Ap if n is even

it was shown in [15] that every positive solution of Eq.(3.8) is eventually
periodic with period

2if Agd; < 1
6if AgA; =1

4if AgA; > 1.

For positive period-3 coefficients {A,}52,, the following results were ob-
tained in [14] and [54]:

1. Suppose A, € (0,1) for all n > 0. Then every positive solution of
Eq.(3.8) is eventually periodic with period 2.

2. Suppose A, € (1,00) for all n > 0. Then every positive solution of
Eq.(3.8) is eventually periodic with period 12.
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3. Suppose there exists ¢ > 0 such that 4;,7 < 1 < A;. Then Eq.(3.8) has
unbounded solutions.

4. In all other cases, every positive solution of Eq.(3.8) is eventually peri-
odic with period 3.

The proofs of the above results are given in| Chapter 7

What is it that determines the periodic nature of solutions of
Eq.(3.8) when the coefficient sequence {A,}22  is a positive con-
stant or a periodic sequence with a given period? Can we extend
the predictions to equations with more terms? This is a fascinating
problem of paramount difficulty and complexity which may not be possible
to resolve in our lifetime.

3.4 The (3z + 1) Conjecture

This is the well-known and famous, but still not confirmed, conjecture that
every solution of the difference equation

nt1, .
sz 2+ if I, is odd

Tnt1 = , n=0,1,.... (3.9)

— if Ty is even

with initial condition
To € {1,2,...}

is eventually the two-cycle (1, 2).

On the other hand, it is conjectured that every solution {z,}>2, of Eq.(3.9)
with initial condition
To € {0, -1, -2,.. .},
is eventually either the one-cycle (0), the one-cycle (—1), the three-cycle
(=5, =7, —10), or the eleven-cycle (—17, —25, —37, —55, —82, —41, —61,
—91, —136, —68, —34).

The (3z + 1) conjecture is also known as the Collatz Problem, the Syracuse
Problem, Kakutani’s Problem, Ulam’s Problem, and Hasse’s Algorithm. Ac-
cording to Paul Erdds, mathematics is not yet ready for such problems.

See the interesting paper [93] by J.C. Lagarias for the history of the (3z+1)
conjecture, and for a survey on the literature of this problem up until the year
1985. In fact, the following beautiful excerpt comes from [93].
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Is the (3x+1) problem intractably hard? The problem of settling the (3x+1)
problem seems connected to the fact that it is a deterministic process that
simulates “random” behavior. We face this dilemma: On the one hand, to the
extent that the problem has structure, we can analyze it—yet it is precisely
this structure that seems to prevent us from proving that it behaves “ran-
domly.” On the other hand, to the extent that the problem is structureless
and “random,” we have nothing to analyze and consequently cannot rigor-
ously prove anything. Of course there remains the possibility that someone
will find some hidden regularity in the (3x+1) problem that allows some of
the conjectures about it to be settled.

If the (3x+1) problem is intractable, why should one bother to study it? One
answer is provided by the following aphorism: “No problem is so intractable
that something interesting cannot be said about it. Study of the (3x+1)
problem has uncovered a number of interesting phenomena; I believe further
study of it may be rewarded by the discovery of other new phenomena.”

See also [125] and the references cited therein.

3.5 Periodicities in the Spirit of the (3z + 1) Conjecture
Motivated by the (3z + 1) conjecture, we looked at the difference equation

axy + Brn,_1 . .
il URL e U R | T R 1 is even

Tn+l = 2 n = 0’1,‘” (310)

YLy + 0Ly if Tn+ Tn1 is odd
with
a,f,v,0 € {-1,1} andx_ 1,20 €Z=1{...,-1,0,1,...}

and discovered some fascinating results, as well as several open problems and
conjectures, in the spirit of the (3z + 1) conjecture. For references, see [8]

and [26]. Here we state some known results about Eq.(3.10), while the open
problems and conjectures are stated at the end of Section 3.6. See also
for the proofs of the results which are stated here.

Note that if {z,,}22 _, is a solution of Eq.(3.10), then {—=z,}$° _, is also a
solution of Eq.(3.10). The change of variables

Ton—1 = Yan—-1 and Ton = —Yon

reduces the 16 possible cases of Eq.(3.10) to 8, because the study of the
solutions of Eq.(3.10) in the case of a given set of parameters (a, 3,7,9) is
similar to that of the case of (—a, 8, —7, 9).
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Given integers p,q € Z, let gcod(p,q) denote the greatest common odd
divisor of p and ¢.

1. The equation

Tn + Tn—1 . .
— if Tpn + Tp_1 is even

ITnt1 =
Ty + Ty if Ty + Tp_1 is odd

THEOREM 3.2
See [8]. The following statements are true:

1. There exist solutions of Eq.(3.11) which are eventually constant,
and there exist solutions of Eq.(3.11) which are not eventually con-
stant.

2. Let {zp}.2 | be a solution of Eq.(3.11) which is not eventually

n=-—1

constant. Then either lim z, = —oo0 or lim z, = occ.
n— oo n—0o0

2. The equation

Ty + Tn-1

5 if Ty + Tp_1 is even

Int1 = , n=0,1,....
Ty — Tpq if Ty + Tyt is odd
(3.12)

THEOREM 3.3
(D. Clark and J.T. Lewis) See [26]. Let {x,}5° _, be a solution of
Eq.(3.12). Suppose that x_; # xo and that gcod(x_1,20) = 1. Then
{zn}S2_ is either eventually the constant 1, the constant —1, or the

siz-cycle (1, 3, 2, —1, =3, —2).

3. The equation

W—* if Ty + Tyt is even
Intl = , n=0,1,....
— Ty + Ty if Ty + Tpn1 is odd
(3.13)
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THEOREM 3.}
See [8]. Let {xp}5> 1 be a solution of Eq.(3.18). Suppose that
Z_1 # xo and that gcod(z_1,20) = 1. Then {x,}22_, is either
eventually the constant 1, the constant —1, the four-cycle (1,2,—1,3),
the four-cycle (—1,—2,1,—3), or the siz-cycle (1,0,1,—1,0,-1).

4. The equation

w if x,+x,_1 iseven
Int1 = , n=0,1,....
Ty + Tyt if Ty + Tpo1 is odd
(3.14)
For Eq.(3.14), see Conjecture 3.6.
5. The equation
W% if x,+x,1 iseven
Int1 = , n=0,1,....
—Tp — Tp_1 if Ty + Tpo1 is odd
(3.15)

THEOREM 3.5
See [8]. Let {xp}5>_, be a solution of Eq.(3.15). Suppose that
Z_1 # xo and that gcod(z_1,20) = 1. Then {x,}32_, is either
eventually the constant 1, the constant —1, the three-cycle (1, 0, —1),

or the three-cycle (-1, 0, 1).

6. The equation

Tp —Tp-1 . .
— if Ty + Tp_1 is even
Int1 = , n=0,1,....

Ty — Lp—1 if Ty + Tpo1 is odd
(3.16)

THEOREM 3.6
See [8]. Let {xn}>2_4 be a solution of Eq.(3.16). Suppose that
Z_1 # xo and that gcod(z_1,20) = 1. Then {x,}32_, is eventually
the siz-cycle (1, 1, 0, —1, —1, 0).
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7. The equation

Tpn —Tp—1 . .
— if Ty + Tp_1 is even

Int1 = , n=0,1,....
—Zp + Ty if Ty + Tyt is odd

THEOREM 3.7

See [8]. Let {xp}52_, be a solution of Eq.(3.17). Suppose that

T_1 # xo and that gcod(z_1,20) =1 and £_1 # xo. Then {z,}52_;
is eventually the eight-cycle (1, 1, 0, 1, —1, —1, 0, —1).

8. The equation

In —Tp—1 . .
— if Ty + Tp_1 is even

Int1 = , n=0,1,....
—Tp — Tp_1 if Ty + Tpo1 is odd
(3.18)

For Eq.(3.18), see Open Problem 3.5.

3.6 Open Problems and Conjectures

We first pose some open problems and conjectures about the so-
lutions of the non-autonomous Eq.(3.8) when {A4,}52, is a periodic
sequence of positive real numbers. See [16].

OPEN PROBLEM 3.1

Let {Ap}52 be a periodic sequence of positive real numbers with period
k > 3. Find necessary and sufficient conditions for each of the following
statements to be true:

(i) Every positive solution of Eq.(3.8) is bounded.

(i) Every positive solution of Eq.(3.8) is eventually periodic. In this
case, determine all possible such periods.
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CONJECTURE 3.1

Let {A,}52, be a periodic sequence of positive real numbers with period
k > 2. Assume that A, € (0,1) for all n > 0. Then every positive
solution of Eq.(3.8) is eventually periodic with period 2.

For the cases £ = 2 and 3, the above conjecture was shown to be true
in [15] and [14], respectively.

CONJECTURE 3.2

Let {Ap}52, be a periodic sequence of positive real numbers with prime
period k > 2. Assume that A, € (1,00) for alln > 0. Then every positive
solution of Eq.(3.8) is eventually periodic with period

2k if k is even

4k if k is odd.

For the cases £ = 2 and 3, the above conjecture was shown to be true
in [15] and [54], respectively.

CONJECTURE 3.3

Let {A,}52, be a periodic sequence of positive real numbers with prime
period k > 3.

(i) Assume k is not a multiple of 8. Then every positive solution of
Eq.(3.8) is eventually constant or eventually periodic with prime
period p € {2, k, 2k, 4k}, and p is independent of the initial
conditions.

(i1) Assume k is a multiple of 3. Then one of the following statements
18 true:

(a) Every positive solution of Eq.(3.8) is eventually constant or
eventually periodic with prime period p € {2, k, 2k, 4k}, and
p is independent of the initial conditions.

(b) Every positive solution of Eq.(3.8) is eventually constant or
unbounded.

In the case k = 3, the above conjectures were established in [54].

Motivated by Theorem 3.1, we pose some open problems and con-
jectures about the behavior of the solutions of the difference equation
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Ao A A
mn+1=max{—0, Lo 2R } ., n=0,1,... (3.19)
Tn Tp-1 Tn—k
where the parameters Ag, A1,..., A are real numbers and where the

initial conditions are nonzero real numbers. See [89] and [120].

CONJECTURE 3.4

Assume that Ao, Ay,...,Ax—1 € [0,00) and A € (0,00). Then every
positive solution of Eq.(3.19) is eventually periodic with period

pe{2 3,..., 2k+ 1)k

It is fascinating to observe how the period in the above conjecture is
determined by the “dominant” parameter among Ag, A1, ..., Ag. For ex-
ample, if for some jo € {0,1,...,k}, Aj, > max{A; : j # jo}, then every
positive solution of Eq.(3.19) is eventually periodic with period 2(jo+1).
Also, if some consecutive string of the parameters Ag, A1,..., Ay are
equal and dominate the remaining ones, then every positive solution of
Eq.(3.19) is eventually periodic with period equal to the average of the
periods of the “dominating difference equations.” In particular, it can
be easily shown that every positive solution of the difference equation

1 1 1

:U,H_l:max{—, R
Tn Tp—1 Tn—k

} ., n=0,1,... (3.20)

is eventually periodic with period (k+2). Note that (k+2) is the average
eventual period of the k + 1 difference equations
1

Yn+1 = , n=20,1,...
n—j

for j =0,1,...,k.

CONJECTURE 3.5

Assume that Ag, A1, ..., A € R. Then every bounded solution of Eq.(3.19)
is eventually periodic.

OPEN PROBLEM 3.2

Assume that Ag, A1,...,Ar € R. Obtain necessary and sufficient con-
ditions for every solution of Eq.(8.19) to be unbounded.
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OPEN PROBLEM 3.3

Assume that Ay, A1,..., Ar € R. Investigate the periodic character of
the solutions of Eq.(3.19).

We next pose some open problems and conjectures about the solutions
of Eq.(3.10) for the various values of «, 3, v, and § which remain to be
studied.

OPEN PROBLEM 3.4

Find all points (x_1, xo) € Z x Z through which the solution {z,}5> _,
of Eq.(3.11) is eventually constant.

CONJECTURE 3.6

See [8]. Let {zn}5>_, be a solution of Eq.(3.14). Suppose that gcod(x_1,0) =
1. Then {z,}52_; is either eventually the three-cycle (0, 1, 1), the three-
cycle (0, —1, —1), or the ten-cycle (3, 2, 5, 7, 1, =3, =2, =5, =7, —1).

OPEN PROBLEM 3.5
See [8]. Determine the character of the solutions of Eq.(3.18).

Similar problems are of interest for the equation

Tnt ool i 3 Givides , + 7, 1

Tnpr = neo01,.... (321

)

Ty + Tp_1 otherwise
where z_1,z¢ € Z.
CONJECTURE 3.7
The following statements are true.

(i) Every positive solution of Eq.(3.21) which is not eventually a 3-cycle
converges to oo.

(ii) Eq.(3.21) has an unbounded solution.
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Chapter 4

CONVERGENCE TO PERIODIC
SOLUTIONS

4.1 Introduction

In this chapter we present a few simple examples of difference equations
with the property that every solution of the equation converges to a periodic
solution. Some quite general results of difference equations with the property
that their solutions converge to periodic solutions are given in

What is it that makes every solution of a difference equation
converge to a periodic solution with period £?

4.2 A Trichotomy Result for the Equation z,11 = a + Tn-1
Tn
Consider the difference equation
wn+1:a+w;_1 . n=0,1,... (4.1)

where a € [0, 00), and where the initial conditions z_; and zq are arbitrary
positive real numbers.

Clearly, the only equilibrium point of Eq.(4.1) is T = a + 1.
The main result of this section is that Eq.(4.1) possesses the following

period-2 trichotomy. See [7].

THEOREM 4.1
The following statements are true:

1. Every positive solution of Eq.(4.1) converges to T if and only if a > 1.

2. Every positive solution of Eq.(4.1) converges to a period-2 solution of
Eq.(4.1) if and only if a = 1.

3. There exist unbounded positive solutions of Eq.(4.1) if and only if 0 <
a<l.

75
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REMARK 4.1 It is interesting to note that what we shall actually es-
tablish during the proof of Theorem 4.1 is the following;:

1. Suppose a > 1. Then Z is a globally asymptotically stable equilibrium
point of Eq.(4.1).

2. Suppose @ = 1. Then every positive solution of Eq.(4.1) converges to
a period-2 solution of Eq.(4.1), and there exist positive solutions of
Eq.(4.1) which are periodic with prime period 2.

3. Every positive solution of Eq.(4.1) is bounded if and only if a > 1.

4. Suppose 0 < a < 1. Then Z is an unstable saddle point equilibrium of
Eq.(4.1). Thus by the Stable Manifold Theorem, Eq.(4.1) also has pos-
itive solutions which converge to Z, and so, in particular, are bounded.

[

4.2.1 Preliminaries

The linearized equation of Eq.(4.1) about the unique equilibrium point Z =

a+1is
+ L 1 0 0,1
— = n = ...
Yn+1 a+12/n a+1yn 1 ) )L
with characteristic equation
1 1
Ny~ 0. (4.2)

a+1 a+1:

THEOREM 4.2
The following statements are true:

1. Suppose a > 1. Then T is a locally asymptotically stable equilibrium
point of Eq.(4.1).

2. Suppose 0 < a < 1. Then T is an unstable saddle point equilibrium of
Eq.(4.1).

PROOF

(i) Suppose a > 1. Then

<2

1 1| 2
a+1 a+1| a+1

and so it follows by Theorem 1.6 that Z is a locally asymptotically stable
equilibrium point of Eq.(4.1).
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(ii) Suppose 0 < a < 1.Let h: R — R be given by

1 1
BN =2+ — - .
(V) +oz+1 a+1
Then
h(1) = 1 >0
1
h(0) _—a+1<0
a—1
h(—1 =
(=1) a+1 <0

Hm h(A) = oo.

A——00

Thus we see that Eq.(4.2) has the two roots A\; and A, with

AM<-1<0<X<1

from which the result follows. See I

The proofs of the following three lemmas follow from simple computations
and will be omitted.

LEMMA 4.1
The following statements are true:

1. Eq.(4.1) has positive prime period-2 solutions if and only if a = 1.

2. Suppose o = 1. Let {x,}22 _, be a positive solution of Eq.(4.1). Then
-1

Tr_1 -1

{xn}22_4 is periodic with period 2 if and only if x_1 > 1 and xg =

LEMMA 4.2
Let {zp}22_; be a positive solution of Eq.(4.1) which is eventually constant.
Then {x,}52 4 is the trivial solution

T, =a+1 for n=-10,....
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LEMMA 4.3
Let {z,}52_, be a positive solution of Eq.(4.1), and let L > a. Then the
following statements are true:

. . . . L
1. nh_}rrgo Top = L if and only if nlgr;o Top+1 = I-1
. . . . L
2. lim ®op41 =1L if and only if lim z9, = ——.
n—»00 n—»00 L—-1

4.2.2 Analysis of the Semi-cycles of Eq.(4.1)

LEMMA 4.4
Let {x,}22_; be a positive solution of Eq.(4.1) which consists of a single
semi-cycle. Then {x,}52 ;| converges monotonically to %.

PROOF Suppose0 < z, < a+1 for all n > —1. The case where x,, > a+1
for all n > —1 is similar and will be omitted. Note that for n > 0,

0<a+t o=t =Zpy1 <a+1
n
and so
O<zp1 <z, <a+1
from which the result follows. I
LEMMA 4.5

Let {x,}52 _; be a positive solution of Eq.(4.1) which consists of at least two
semi-cycles. Then {x,}°2_, oscillates about T. Moreover, with the possible
exception of the first semi-cycle, every semi-cycle has length 1, and every term
of {xn}2_, is strictly greater than «, and with the possible exception of the
first two semi-cycles, no term of {z,}52 _, is equal to o + 1.

PROOF It suffices to consider the following two cases:

Case 1. Suppose z_1 < a+ 1 < zy. Then

a:1=a+x;1<a+1 and x2=a+x—0>a+1.
Zo z1

Case 2.  Suppose g < @+ 1 < z_1. Then

T_ T
—1>a+1 and x2:a+—0<a+1. 0
Zo T

T =a+
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The next lemma will be useful in determining the limiting behavior of the
positive solutions of Eq.(4.1).

LEMMA 4.6
Let {z,}52 1 be a positive solution of Eq.(4.1), and let N > 0 be a non-
negative integer. Then the following statements are true:

1. Ny > TN if and only if TN_1 +taxy —xny_1zN > 0.
2. TNy1 = TN-1 if and only if TN_1 +taxny —xny_12zny = 0.
3 TNt1 < TN-1 if and only if TN_1 +oarxy —xnv_12zN < 0.

PROOF The proof follows from the computation
:EN_l) QTN + TN-1 — IN-1TN 0
—IN-1 = .
N

ITN4+1 —ITN-1 = (a + o
4.2.3 The Case 0<a<1

We consider the case where 0 < a < 1, and we show that there exist positive
solutions of Eq.(4.1) which are unbounded.

THEOREM 4.3
Let 0 < a < 1, and let {z,}52_, be a solution of Eq.(4.1) such that 0 <

-1 <1 and xg > 1o Then the following statements are true:
—«

1. lim 29, = oo.
n—0o0

2. lim 941 = a.
n—0o0

1
PROOF Note that 1 >a+1,and so zg > a+ 1.

—a
So as -
$2n+1=a+£ for all n>0
Tan
it suffices to show that
z1 € (o, 1] and To > o+ xg.

Indeed

T1
r=a+— >a.
Zo
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Also )
m1=a+m;1§a+—§a+(1—a)=1
Zo Zo
and so
z1 € (a,1].
Hence -
x2:a+—02a+xo. |:|
T

4.2.4 The Case a=1

We consider the case where a = 1, and we show that every solution of
Eq.(4.1) converges to a period-2 solution of Eq.(4.1).

Clearly when « = 1, the unique equilibrium point of Eq.(4.1) is
T =2
Note also that in this case Eq.(4.1) reduces to

T =1+ n=01,.... (4.3)
n

THEOREM 4.4
Suppose o = 1. Let {xp}32_; be a positive solution of Eq.(4.3). Then the
following statements are true:

1. Suppose {x,}32 ;| consists of a single semi-cycle. Then {z,}52_; con-

verges monotonically to T = 2.

2. Suppose {x,}52 | consists of at least two semi-cycles. Then {zn}22
converges to a prime period-2 solution of Eq.(4.3).

PROOF We know by Lemma 4.4 that if {z,}>2_; consists of a single
semi-cycle, then {z,}52 _; converges monotonically to Z = 2. So it suffices to
consider the case where {z,}52_; consists of at least two semi-cycles.

So assume that {z,}32_; consists of at least two semi-cycles. Then it
follows by Lemma 4.5 that {z,}52_, is oscillatory about Z = 2. It also follows
by Lemma, 4.5 that without loss of generality we may assume that every semi-
cycle of {z,}52 _; has length 1, and that every term of {z,}32_, is greater

than 1. Finally, we may also assume that the first semi-cycle of {x,}32_, is
a negative semi-cycle.

Now observe that for n > 0
Tp-1+Tp —Tp_1Tn
Tn

Tn + Tntl — TpTny1 =
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and so by Lemma 4.6, the following three statements are true:
1. Suppose 1 < z_; < 1 < 2. Then
<z 1<z <2$3<---<2

and
2< g <Tg <--- .

2. Suppose 1 < x_; = x; < 2. Then
I<zg=x0=24 <-+-<2

and
2<Tg=To =24 ="--".

3. Suppose 1 < 1 < x_1 < 2. Then
1< - <rx3<zr1<T_1<2

and
2< < xy <o < T

The proof of the theorem follows from Lemma 4.3 and statements 1, 2, and 3
above.

4.2.5 The Casea >1

We consider the case @ > 1, and we show that the equilibrium point z =
a + 1 of Eq.(4.1) is globally asymptotically stable. We first give a lemma
which will be useful in the sequel.

LEMMA 4.7
Suppose a > 1, and let {x,}52_, be a solution of Eq.(4.1). Then
a-1 . . 2
a+ —— <liminfz, <limsupz, <
« n—o0o n—00 a—1

PROOF It follows by Lemmas 4.4 and 4.5 that we may assume that every
semi-cycle of {z,}52 _; has length one, that a < z,, for all n > —1, and that
a<zry<a+l<z_g.

2

We shall first show that lim sup z,, <

n—r00 a_]-

Note that for n > 0,

Ton—1
Top+1 < o+ T
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So as every solution of the difference equation

1
ym+1:a+aym ’ m=0,1,...

2 2
a . . a
converges to , it follows that lim sup z,, <

-1
We shall next show that o+ i <liminfx,. Let ¢ > 0. Clearly there

8] n—oo
exists V > 1 such that for all n > N,
a?+e
Tan—1 < .
a—1
Let n > N. Then
Ton— a—1 a® +ae+ala-1
$2n=a+ﬂ>a+a<2 ): 5 ( )
T2n—1 a®+e a‘+¢
and thus 5
-1
liminf z,, > a +a82+ (e )
n—o0 o+ €
So as € is arbitrary, we have
3 -1 -1
liminf:anL(Qa)za-l-a . I
n—o0 o a

THEOREM 4.5
Leta> 1. Thenz = a+1 is a globally asymptotically stable equilibrium point

of Eq.(4.1).
PROOF We know by Theorem 4.2 that Z = a + 1 is a locally asymptoti-
cally stable equilibrium point of Eq.(4.1).
So let {z,,}22_; be a positive solution of Eq.(4.1). It suffices to show that
lim z, =a+1.
n—oo

Let € > 0, and set

2
a=u« and b=a+€.
a—1

Then it follows by Lemma 4.7 that without loss of generality we may assume
that
Zn € [a,b] for all n> -1

For z,y € [a,b], set
Y
9(z,y) =a+=.
x
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Then g is a continuous function which is decreasing in = € [a, b] for each fixed
y € [a,b], and g is increasing in y € [a, b] for each fixed = € [a, b]. Note that

o +e + o— 1 >
a = o -
INaz1 o?+¢

and
o +e +1 a? +¢ a3+s<a3+e-a o +e¢
o, —— ) =a+—- = — = .
I\* a1 a a-—1 o? — o a2 —a a—1
Hence
a< gz )<0£2+[3 forall =z,y€ aa2+5
9(@,y) < — WE o —|

Finally, recall by Lemma 4.1 that Eq.(4.1) has no positive prime period-2
solutions, and so by Theorem 1.11,
lim z, = a+ 1. I

n—oo

Tn—1

4.3 The Equation z,; =1+

Tn—2

THEOREM 4.6
See [108]. Every positive solution of the difference equation

Tp+1 =1+ In-1 , n=0,1,... (4.4)
Tn—2

converges to a periodic solution of Eq.(4.4) with period-2.

PROOF Let {z,}32_, be a positive solution of Eq.(4.4). Then forn > 5

X T x 1 + = x
Tpo = 1+ n—4 = 1+ n—4 . n—6 = 1+ Tn-7 n—6
Tn—5 Tn—6 Tn-—> Tn—6 Tn—5
1 1 Ty 1 1
=1+ ( + ) LR + :
Tn—6 Tn-7/) Tn—5 Tn—5 xn—7(mn—3 - ]-)
and so
Lp—
Tpt1 =1+ T n-l T

Copyright © 2005 CRC Press, LLC



84 PERIODICITIES IN DIFFERENCE EQUATIONS

Let f:(0,00)* = (0,00) be given by
<1

1+ L2+ o

Z4(Zg—1)

for (21,22,23,214) € (0,00)%.

f(21,22,23,24) = 1+

Then for n > 3

Zon+1 = f(Ton—1,Ton—3,Tan—5, Tan—_7)

and
Zont2 = f(Ton, Tan—2,Tan—a, Tan_s)-

The proof follows by Theorem 1.9. I

The reader should notice the elegant and distinct character of the proofs
of Theorems 4.4 and 4.6, and should compare them with the equally elegant
but entirely different proof given in|Chapter 5|about a quite general rational

difference equation.

. Ty
4.4 The Equation z,41 = p. + 1
Tn
Consider the difference equation
T
Tnp1 =Dn+ 2=,  n=0,1,... (4.5)
In

where the parameter {p,}°2, is the positive period-2 sequence

«a if n is even

Pn =
B if n is odd.

and where the initial conditions z_; and z( are positive real numbers.

Note that Eq.(4.5) is Eq.(4.1) with a period-2 coefficient. See [79] and [80].

4.4.1 Decoupling the Even and Odd Terms
Note that for n > 0,

T2n—1 T2n
Topt1 =+ —— and Toapnto = B8+

Zon Ton+1

and so
Toapt1 > « and Topto > ﬂ
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For n > 0, set
Yn = —Q+ Tap_1 and  z, = =B+ Tap.

Then for n > 1, we have

To2n—3 Ton—2
Yn = and 2Zn =
Ton—2 Ton—1
and so
y L= Tan—1 — Yn +a — (yn + (1)2 — yn(yn + a)2
n+ T2n B+ =2  Bypn+a)+zam—2  Byn(yn+a) + Yn-1 + )
a+yn
and
Zraq = Zan _ Zn + B _ (zn + ﬂ)z _ zn(zn + 5)2
" Tonpt ag % a(zn + ) +Tan—1 azn(zn + ) + (2n-1 +5)
Zn
Thus
yn(yn + a)2
- . n=1,2, 4.6
I = Gt a) G T ) (16)
Zn(zn + ﬂ)2
Z = , n=1,2, 4.7
O oGt B) + (2t £ ) @0
and

yn >0 and 2, >0 for n > 1.

4.4.2 Local Stability of Eqgs.(4.6) and (4.7)
Zero is always an equilibrium point of both Egs.(4.6) and (4.7).

When
a=p=1

every non-negative real number § > 0 is an equilibrium point of Eq.(4.6), and
every non-negative real number zZ > 0 is an equilibrium point of Eq.(4.7). It
follows by Theorem 4.4 that every solution of Eq.(4.5) converges to a period-2
solution of Eq.(4.5).

When
la =1+ |8=1]>0

Eq.(4.6), and similarly, Eq.(4.7), has, in addition to the zero equilibrium point,
a positive equilibrium point if and only if

(a=1)(B-1)>0
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in which case, the positive equilibrium point of Eq.(4.6) is

__a-—1
i=51

while the the positive equilibrium point of Eq.(4.7)
__B-1
i= 7

The linearized equation of Eq.(4.6) about the zero equilibrium point § = 0
has the characteristic roots

0 and Q.

Thus the zero equilibrium point § = 0 of Eq.(4.6) is a sink when
a<l,
is a non-hyperbolic equilibrium point when
a=1,
and is an unstable saddle-point equilibrium point when

a>1.

Similarly, the zero equilibrium point Z = 0 of Eq.(4.7) is a sink when
B <1,

is a non-hyperbolic equilibrium point when

g=1,
and is an unstable saddle-point equilibrium point when
8> 1.
The linearized equation of Eq.(4.6) about the positive equilibrium point
Y= g : i is
Wnis — 3—2a—2,8—aﬂ+a2,8+a52wn+ (a—=1)(B— 1)wn_1 —0.
(@B —1)? (@B -1y

a—1
By applying Theorem 1.3, we see that the positive equilibrium point § = /3—

—

of Eq.(4.6) is locally asymptotically stable when

a>1 and g>1
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and is an unstable saddle-point when

a<l and 8 < 1.

-1
a—1

We similarly see that the positive equilibrium point z = of Eq.(4.7) is

locally asymptotically stable when
a>1 and B>1
and is an unstable saddle-point when
a<l and 8 <1
In summary, we have established the following results for Egs.(4.6) and
(4.7).
THEOREM 4.7

The following statements are true:

1. The zero equilibrium point of Eq.(4.6) is locally asymptotically stable
when
O<axl.

2. The zero equilibrium point of Eq.(4.6) is a non-hyperbolic equilibrium
point when
a=1.
3. The zero equilibrium point of Eq.(4.6) is an unstable saddle-point when

a>1.

a—1
B8—1

4. Suppose (a—1)(8—1) > 0. Then the positive equilibrium point § =
of Eq.(4.6) is locally asymptotically stable when

a>1 and g>1
and is an unstable saddle-point when

0<axl1 and 0<p<l.
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THEOREM 4.8
The following statements are true:

1. The zero equilibrium point of Eq.(4.7) is locally asymptotically stable

when
0<B8<1.

2. The zero equilibrium point of Eq.({.7) is a non-hyperbolic equilibrium
point when

B =1
3. The zero equilibrium point of Eq.(4.7) is an unstable saddle-point when
8> 1.

-1
4. Suppose (a—1)(B—1) > 0. Then the positive equilibrium point zZ = %

of Eq.(4.7) is locally asymptotically stable when
a>1 and g>1

and is an unstable saddle-point when

0<axl and 0<p<l.

4.4.3 Period-2 Solutions of Eq.(4.5)

Let
¢, 8,1, ...

be a prime period-2 solution of Eq.(4.5). Then

¢:a+$ and 1/}:ﬂ+%

with ¢,9 € (0,00) and ¢ # . Hence
ap+¢ =P+
and so
(a—1)yp = (8-1)¢.
It follows that Eq.(4.5) has a prime period-2 solution if and only if
a,f€(0,1) or af€(l,0),
in which case Eq.(4.5) has the unique prime period-2 solution

af—-1 af—-1 af—-1 af -1

4.
B-1"a—-1"B-1"a—-1" (4.8)
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4.4.4 Global Asymptotic Stability of the Period-2 Solution

In this section, we show that the prime period-2 Solution (4.8) of Eq.(4.5)
is globablly asymptotically stable when a > 1 and 8 > 1.

LEMMA 4.8
Assume that a > 1 and 8 > 1. Choose

ap aB
> — >
U_ﬁ—l and V_a—l

and for (u,v) € [a,U] x [3,V], let fi(u,v) and fo(u,v) be given by

fi1(u,v) :a+%

and
v

falu,v) =B+ -
Ot+5

Then the following statements are true:
1 fi:[o, Ul x [B,V] = o, U] and  fo:[a, U] % [8,V] = [B,V].
2. If (m1, M1, ma, M) € [a,U]? x [8,V]? is a solution of the system of

equations
m M
m = atge M=t oo
2 2
m M (4.9)

my =B+ ——g My =+ ——;

a+ — at -

mo M,

then m1 = Mi and ms = Ms.

PROOF  Note that ﬂo‘ﬂ a op

Let (u,v) € [a,U] x [8,V].
(i) Clearly
a<a+ “ <a+ v <U
v B

and v
B<Bt—r <B+—m0 <V
OZ+E o+ —

and so we see that

fi:[e, Ul x [8,V] = [, U] and foila Ul x[B,V] = [8,V].
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(ii) Suppose that (my, My, mz, Ma) € [a, U]? x[B, V]? is a solution of System

(4.9). Then in particular, m; = a + m and M1 =a + ! and so
M2 mo

mi M;
m=a+— ,Mi=a+—
! My Mo

mo
Mo = — , M, = —
2 =0+ a0 B+
from which it follows by a simple computation that

af —1
B-1 wd o me=Me=c o 1

m1=M1=

THEOREM 4.9

Assume that « > 1 and 8 > 1. Then the prime period-2 solution (4.8) of
Eq.(4.5) is globally asymptotically stable.

PROOF We know by Theorems 4.7 and 4.8 that Solution (4.8) is a locally
asymptotically stable solution of Eq.(4.5).

Thus it suffices to show that Solution (4.8) is a global attractor of Eq.(4.5).

So let {z,}22_; be a solution of Eq.(4.5). It suffices to show that

. af —1 . af —1
nlgréo Top—1 = ﬂﬂ— 1 and nh_{réo Top = aﬂ— T
For n > 0, set
Up = Tap—1 and Up = Tap.-
Then by Eq.(4.5), we see that
U
Upt1 = @+ —_
, n=20,1,... (4.10)
v
Un+1 = ﬂ_}— n’LLn
a+ —
Un

Choose U and V so that

-1 -1
UZmax{xl,L} and VZmaX{HJo;aﬂ }
B8—-1 a—1

The proof now follows by Theorem 1.16 and Lemma 4.8. I
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4.4.5 Existence of Unbounded Solutions

In this section, we present sufficient conditions for Eq.(4.5) to have un-
bounded solutions.

THEOREM 4.10

Suppose that either a € (0,1) or 8 € (0,1). Then Eq.(4.5) possesses un-
bounded solutions.

PROOF There are two cases to consider.

Case 1:  Suppose 0 < a < 1. Let {z,}32_, be a solution of Eq.(4.5) such that
1
O0<z_1<1 and $0>—a.
Then

_ 1
Tl catr—<at+(l-a)=1
Zo Zo

1 = a+
z

x2:,6’+x—0 > B+ x9 > T
1

X1 1 1
3= a+— <a+—< a+— <1
) ) Zo

z
2= B+ > B4z > o
T3
It follows by induction that

0<zop41 <1 for all n>0

and that

{z2n}52, is a strictly monotonically increasing sequence.

We claim that {z2,}72 diverges to infinity. For the sake of contradic-
tion, suppose that this is not the case. Then we see that there exists
L > 0 such that

lim zs, = L.
n—oo

Hence there exists N > 0 such that

O0<L—z,<p for all n > N.
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12N >ﬂ+$2N>L.

In particular, L > zan42 = 8 +
T2N+1

This is a contradiction, and so we see that the claim is true. In partic-
ular, it follows that

lim 29, = and lim zop41 = a.
n— oo n—oo

Case 2:  Suppose 0 < 8 < 1. Let {z,}52_; be a solution of Eq.(4.5) such that

1
T_1>—— and 0<zg<1.

1-5
Then

T-1
—2>a+xT_1> T_1
Zo

1 =+

T 1 1
= B+ =2 < f+— <f+—<1
1 X1 1

1
r3=a+— > at+zx1 > T
)

T 1 1
= B+ 2 < B+— < B+— <1
x3 z3 I

It follows similarly to the proof in Case 1 that

lim 9,41 = 0 and lim zs, = . U
n—oo n—oo

4.4.6 Comparison of Limits

Suppose that either o, 8 € (0,1) or @, B € (1, 00). In this section we address
the question of whether periodicity in the model is beneficial or deleterious to
the equilibrium solution. We shall compare the average value

af—-1 af -1
-1 a-1 (4.11)
2
of the two terms of the period-2 Solution (4.8) of Eq.(4.5) to the “average”
equilibrium
a;ﬂ+1 (4.12)

of the associated autonomous equation.
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The following identity, the proof of which follows by a simple computation
and will be omitted, clearly shows that (4.11) is always greater than (4.12),
and so periodicity in the model is always helpful to the equilibrium solution:

af—-1 af -1

+
B—1 . a—1 _(a;—ﬁ+1):

Ao A + ... ﬂ

4.5 The Equation z,41 = — + +
Tn Tn—1 Tn—k+1
Consider the equation
A A Ap_
Cpp1 = — 4 L 4.4 L =01, (4.13)
Tn Tn—1 Tn—k+1
k—1
where 4; € [0,00) for i =0,1,...,k— 1, and where A= 4; > 0.
=0

In this section we give a detailed description of the global character of all
positive solutions of Eq.(4.13). See [40] and [41].

Clearly Eq.(4.13) has the unique equilibrium point Z = v/A.

LEMMA 4.9
The equilibrium point & = VA of Eq.(4.13) is locally stable.

PROOF Let e > 0. It suffices to show that there exists § > 0 such that if
{@n}5>_py1 is a solution of Eq.(4.13) with

|2—k1 — Z| <O, [Tpt2 —F[ < 6,...,[v0 — Z[ <6,

then
|z, — % <e forall n>-k+1.

Let fi, f2,..., fr € C [(0,00)¥,(0,00)] be given by
A A A
0 —1 +...+ k—1

T, T—1y0--y & =—+
fi@o, T 1, .., T k1) 7 Tz, P
and inductively for 2 < j <k,
fil@o,z 1,2 p11) = filFfi-1, Fim2s -5 f1,%0, %1, -+, T gtj)
[where we have adopted the notation f; = fi(zo,Z_1,...,Z_rs1)]-
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Note that f;(Z,Z,...,Z) = & for all 1 < j < k. Thus there exists € (0,¢)
such that if

|ZU_]¢+1 _‘7_;| < 67|$—k+2 _57| < 65---7|$0 _57| < 6;
then
|fj($0,$_1,...,$_k+1)—.’f'| <e for all 1<j<k.
We claim this is the required ¢ > 0. With this in mind, let {z,}32_,,, be
a solution of Eq.(4.13) with
|23_k+1 —3_3| < 5,|CL'_k+2 —IZ'| < 6,...,'.’150 —IZ'| < 4.

Note that for 1 < j <k,

Tj = fj($05x—17 s ax—k-i-l)
and so
|z; —Z| <e  forall —k+1<j<k.
For n > k, we have
A A Ay
Tnyr = 20 A oy Tk
Tpn  Tp_i Tn—k+1
Ao Ay Ar
A Ar—1 A Ap—1 A Ap—1
e Tt e et tmoo znor Tt T
Let F : (0,00)%F — (0,00) be given by
AO Al
F(Z1 22...Z2k): +
ERE A Ay A Ap_
20 LSkl 20 Bk
) ZE41 23 Zk+2
Apa
A Ap_
0 L ... 4 Bkl
Zk+1 22k
Then
Tl = F(Tp,Tn1, ..o, Tnokt1) for n=kk+1,....
It follows by Lemma 1.2 that
lzn, —Z| <& for all n > —k+ 1. I
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Let Jbe a non-empty set of positive integers. We denote by (J) the greatest
common divisor of the elements of J.

LEMMA 4.10
Let J be a non-empty set of positive integers, and set L = {i+j:i,j € J}.
Then the following statements are true.

1. Fither (L) = (J) or (L) =2(J).

2. Suppose (J) =1 and (L) = 2. Then every element in J is odd.

PROOF

(i) Without loss of generality, we may assume that (J) = 1 and that (L) =
d > 1. Let p be any prime divisor of d. Since (J) = 1, there exists j € J
such that p does not divide j. Note that as 25 € L, we have 25 = 0
(mod d). Therefore, 2j = 0 (mod p), and so as p does not divide j, we
must have p = 2. Thus there exists a positive integer m > 1 such that
d = 2™, and so in particular 2j = 0 (mod 2™). Now p = 2 does not
divide j, and so it follows that m = 1, and hence that d = 2.

(ii) For the sake of contradiction, suppose there exists [ € {1,2,...} such
that 2] € J. Then after rewriting the elements of J, if necessary, we may
assume that J = {21, jo, ..., j,}. Hence

L={41,20+jo,....2L+ jg,- -, 24q}-
So as (L) = 2, we see that, in particular, 2 is a common divisor of

J2,J3,- -+, Jq- Hence (J) > 2. This is a contradiction, and the proof is
complete. I

We are now ready for the main result of this section.

THEOREM 4.11

See [{1]. Let Ao, A1,...,Ar_1 be non-negative real numbers, and suppose
that the set J = {j > 1: Aj_1 > 0} is not empty. Set L={i+j:i,j € J},
and let

1 i (L) ={J)

2(J) if (L) # (J)-

Then every positive solution of Eq.(4.13) converges to a periodic solution of
Eq.(4.13) with (not necessarily prime) period p. Moreover, there exist solu-
tions of Eq.(4.13) which are periodic with prime period p.
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PROOF  Let {z,};> ,., be a positive solution of Eq.(4.13). We first
shall show that {z,};2 _,,, converges to a periodic solution of Eq.(4.13)
with period p.

Case 1. Suppose (J) = 1. Then for n > k, we have
A A Ap_
Topl = —0 + — oo p
Tn  Tp_1 Tn—k+1
Ap Aq
— + + -
A Ap_1 A Ap_1
e Tt n o et tanoo
Ar
A Ap_1
mnr Tt T

Let F : (0,00)%% — (0,00) be given by

Ao A
F(Zl,ZQ,...,sz) =
Ag L Akmr T A o Ak
z2 + + Ze+1 z3 + + Zk+42
Ap_
ot +’“1 —
Zk41 Z2k
Then
Tpy1 = F(@n,Tn-1,-- -, Tnoky1) for n=kk+1,.... (4.14)
It is easy to see that F'(z1,22,...,22) depends exactly on those argu-
ments z; for which j € L, and that it is strictly increasing in those
arguments.

It is also clear that F'(c¢,c,...,c) = ¢ for every ¢ € (0,00). Finally, if
we set
m =min{Tg, Tr—1,.-.,T1,L0,L—1,---,Lkt1}

and
M =max{zy, Tr—1,---, 1,20, L1, -, T—kt1}

then it follows by Lemma 1.2 that m <z, < M for alln > —k + 1.
Suppose (L) = 1. Then p = 1, and so it suffices to show that

lim z, = VA.

n—oe
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It follows by Theorem 1.9 applied to Eq.(4.14) that there exists a €
[m, M] with

lim z, = a.

n—oo

So as Eq.(4.13) has the unique equilibrium point v/A, we see that

lim z, = VA

n—0o0

and the proof is complete.

Suppose (L) # 1. Then it follows by Lemma 4.10 that (L) = 2, and
so p = 2. Thus we must show that {z,}32 _, , converges to a solution
of Eq.(4.13) with period 2.

Now since (L) = 2, there exist positive integers 41,42, ..., % such that
L = {2iy,2is,...,2i;}.

Recall that F(z1,29,...,2a) depends only on those arguments z, for
which q € L. Let G : (0,0)* — (0,00) be given by

G(v1,v2,...,v8) = F(Lv,Lvs, ..., 1,05).
Then
Tl = G(Tp—1,%n-3,- -+, Tn—2k+1) for n=kk+1,....
Thus if we make the substitution za, = u, and z2,4+1 = v,, we see that
Unt1 = G(UpnyUp—1, -+ Un—p+1) and vpp1 = G(Up, Upn—1s- -+ Vn—kt1)-

Now G(v1,v2,...,v) depends only upon those arguments v, for which
2q € L, and G is strictly increasing in those arguments. So as (L) = 2,
it follows from Theorem 1.9 that there exist positive real numbers a,b €
[m, M] such that

lim 29, = a and lim z9p41 =0
n—oo n—oo

and so it is true that {z,}52 _,,, converges to a solution of Eq.(4.13)
with period 2.

Finally, by Lemma 4.10, we know that all the elements in J are odd;
that is, A; > 0 only if s is even. Thus we see that b = é, and that
{zn}52 141 is a periodic solution of Eq.(4.13) if and only if there exists
a € (0,00) such that z,, = a if n > —k + 1 is even, while z,, = 4 if

a
n > —k + 1 is odd. In particular, there do exist periodic solutions of
Eq.(4.13) with prime period 2, and so the proof is complete.
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Case 2.  Suppose (J) = g > 1. Then there exist positive integers
1,82, .. .,4; with ({i1,42,...,4;}) =1 such that J = {qi1, gia,...,qi;}.

Hence we see that for 1 < j < ¢, we have

A A A,
Tgsrj = gh=l el 0 Tabl for s=0,1,....
Lo(s—ir)+i Lq(s—iz)+j La(s—ir)+j

For1<j<q,1<r<l,and 0 <s, set
U‘; = mq(s—l)-l—j and Air—l = Aqir—l-

Then for 1 < j < ¢, we have

- A; A, _ A;
W=t I for s =k kL,
Us_(i1—1) Ys—(ia—1) Us_(i1—1)

(4.16)

Forie€ {0,1,...,k—1}—{i1 — 1,42 —1,...,4; — 1}, set A; = 0. Then
Ag+ A+ + A1 =Ag+ A1+ + Ay = A
The corresponding set J = {j : A;_; > 0} for Eq.(4.16) is
J = {i1,i2, ..., i}

Now (J) = 1, and so we may apply Case 1 of the current theorem. As
(J) = g, it follows by Lemma 4.10 that either (L) = ¢ or (L) = 2q.

Let us first consider the case (L) = q. Then p = 1, and so it suffices to
show that lim z, = Z.
n— oo

Now (L) =1, where the set L = {i +j : 4,5 € J}, and so it follows by

Case 1 that foreach 1 < j < g, lim ui = %, and hence that lim z, = Z,
§— 00 n— oo

as was to be shown.

Next assume that (L) = 2¢q. Then p = 2¢, and so we must show that
{Zn}5> 441 converges to a periodic solution of Eq.(4.13) with period
2q. In this case, (L) = 2, and so it follows by Case 1 that for each
1 < j < g, there exists a; € (0,00) such that {u?}2, converges to the

period 2 solution
A A
Qjy — 3 Qjy— e -
Jo o %gs T
J aj

Copyright © 2005 CRC Press, LLC



CONVERGENCE TO PERIODIC SOLUTIONS 99

of Eq.(4.16). It follows that {z,}>> _, , converges to the periodic so-
lution

A A
al,az,...,aq,a,a,...,a,.... (417)
of Eq.(4.13) with period 2q. It is also clear that there exist positive
solutions of Eq.(4.13) which are periodic with prime period 2q. The
proof is complete. I

The following example shows that the non-trivial periodic solutions of Eq.(4.13)
need not be periodic with prime period 2q.

Example 4.1
Consider the difference equation
1 1

+ . n=01,.... (4.18)
Tn—5 Tn—17

Tpt1 =

For this difference equation J = {6,18} and L = {12,24,36}, and so every
positive periodic solution of Eq.(4.18) is periodic with period 12 and is given
as follows:

In particular if 0 < a < v/2, then
2 2 2
a,\/i,—,ﬁ,a,ﬁ,a,ﬁ,a,ﬁ,a,\/ﬁ,...
a

is a positive solution of Eq.(4.18) which is periodic with prime period 4.  []

4.6 Convergence of Solutions of Systems to Period-2
Solutions

Consider the system of difference equations

a N b
T = — 4+ —
n+1 T, Un
,m=0,1,... (4.19)
S
Ynil = Tn Yn
where
a,b,c,d € (0,00)
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We say that a solution {(z,,y,)}52, of Eq.(4.19) is a positive solution if
Tn, >0 and y, >0 for all n>0.

The proof of Lemma 4.11 follows by a computation and will be omitted.

LEMMA 4.11
The following statements are true:

1. Let {(zn,yn) 152, be a positive solution of Eq.(4.19). Then {(2n,yn)} g
is a period-2 solution of Eq.(4.19) if and only if

ays + (b — ¢)zoyo — dxi = 0.
2. There exist positive prime period-2 solutions of Eq.(4.19).

The following result was established in [57]. See also [99] and [100].

THEOREM 4.12
See [57]. Every positive solution of Eq.(4.19) converges to a period-2 solution

of Eq.(4.19).

PROOF  Let {(zn,yn)}>2, be a positive solution of Eq.(4.19). It suffices
to show that

lim z, and lim vy,
n— 00 n— 00

exist and are finite numbers.
Set

In
Yn

Then by dividing the first equation in Eq.(4.19) by the second equation, it
follows that {z,}22, satisfies the Riccati difference equation

Zp = for n=20,1,....

a+bz,
n = y =, ]., . 4.2
Aokl =0 +dzp, n=0 (4.20)
with Riccati number
R = be — ad < 1
N (b+c¢)? 4

It follows by Theorem 2.6 that

_b+ec (cl)\?"‘l + e Ap Tt

- for all >0
=Ty TSy ) oral . n=
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where
A\ _1-vV1-4R /\_1+\/1—4R
e 2 ’ 2 2
and
. _ Xa(b+c) = (dzo +¢) . _(dz+c)=M(b+0)
b+ —N) T b+ — M)
Set
b+ec cl)\?"'l —}—02)\’2“'1 c
P, = b - = fi =0,1,....
n=at [ d ( AT+ oD d or  n=01,
Then
Tn
TpTpt1 =a+b— = P, forn=0,1,...
Yn
and so
P
Top42 = Zn+l To, forn=0,1,...
P2n
and
B,
T2n+3 = 2 +2£U2n+1 forn = 0,1,. e .
Pyt
Therefore,
n
Py
Tont2 =T fi =0,1,....
2n+2 0 1:[ o orn
k=0
and
k+2
T =z =0,1,....
2n+3 1 H 2k+1
Set
P _
up = Pors = Pk for k=0,1,...
Py,
and
P. P
v = Z2kA2 T 2kl e b — 0,1,.
Py
Then
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o0
Jlim 23542 = To kl:[O (1 +up)

and

oo
nh—>ngo ZTont+3 = I1 kl:[O (]‘ + vk) -

It remains to show that these two infinite products converge. We shall estab-
lish this for the first infinite product. The proof for the second is similar and
will be omitted. To this end observe that

b(b+ ¢)(1 — 4R) 1
d ‘ cide (/\_1)2k+1 + 1+ oAy (&)219-}—1

co A2 c1 A1

| Pogy1 — Pog| = ‘

and because |A1| < |A2], it follows by the limit comparison test that the series

oo
Z | Pa+1 — Pag| converges absolutely. Note that

k=1
1 1
lim |—| = € (0,00
O P | = | v o (B =gy | € (&0
o0
from which it is now clear by the limit comparison test that the series Z U
k=0
converges absolutely. I
4.7 Open Problems and Conjectures
CONJECTURE 4.1
(A Period-4 Trichotomy) Consider the difference equation
Tny1 = Pt qTn ¥ rTn-2 (4.21)

Tn—1

with p € [0,00) and g, € (0,00). Show that the following statements are true:

(i) Every positive solution of Eq.(4.21) converges to the positive equilibrium
of Eq.(4.21) if and only if ¢ > 7.
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(11) Ewvery positive solution of Eq.(4.21) converges to a solution of Eq.(4.21)
which is periodic with period 4 if and only if g = 7.

(i1i) Eq.(4.21) has unbounded solutions if and only if ¢ < r.

See [21] and [119] where Statement (ii) has been confirmed.

CONJECTURE 4.2
(A Period-6 Trichotomy) Consider the difference equation

P+ Tn
Tpy1 = ——2 | p=0,1,... 4.22
+ qTpn—1 + Tn—2 ( )

with p,q € [0,00). Show that the following statements are true:
(i) Every positive solution of Eq.(4.22) converges to the positive equilibrium
of Eq.(4.22) if and only if pg®> > 1.
(11) FEwvery positive solution of Eq.(4.22) converges to a solution of Eq.(4.22)
which is periodic with period 6 if and only if pg®> = 1.

(iii) Eq.(4.22) has unbounded solutions if and only if pg® < 1.

CONJECTURE 4.3
Show that every positive solution of the equation
1 1

Tpp1 = + ,  n=0,1,...
TnTn—1 Tpn—3Tn—4

converges to a period-8 solution. See [35].

The above conjecture seems to be a special case of the following more general
conjecture.

CONJECTURE 4.4
Show that every positive solution of the difference equation

1 1
Tnyl = —% + =5 ) n=0,1,... (4.23)
[Timo #n—1 Hj(:k+2) Tn—j

converges to a periodic solution with period (k + 2). See [35].
For k=0, FEq.(4.23) reduces to the equation
1 1
Tpyo = — + , n=20,1,...
Tn Tn—2

for which the result is known. See [34].
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OPEN PROBLEM 4.1
Consider the rational equation

a+ Bry +YCp—1 + 0Tp_2
= =0,1,... 4.24
Tnt1 A+B(L’n +C.’L’n71 +D(E",2 ) n s 4y ( )

with non-negative parameters and non-negative initial conditions. For each
pe€ {2,4,5,6}

obtain necessary and sufficient conditions on «, 38,7, 9, A, B,C, D so that every
solution of Eq.(4.24) converges to a (not necessarily prime) period-p solution

of Eq.(4.24).

OPEN PROBLEM 4.2
Assume that p,q € (0,00). Investigate the periodic character and the asymp-
totic behavior of the positive solutions of the difference equation

PZn
Tpg1= ——2 . n=0,1,....
qQTp—1 + Tp_2

OPEN PROBLEM 4.3
Assume that p,q € (0,00). Investigate the periodic character and the asymp-
totic behavior of the positive solutions of the difference equation

Tntl =~ ) n=0,1,....

OPEN PROBLEM 4.4
Assume that p,q € (0,00). Investigate the periodic character and the asymp-
totic behavior of the positive solutions of the difference equation

Ln—2
$n+1=7pn R n=0,1,....
q$n+mn71

OPEN PROBLEM 4.5
Assume that p,q € (0,00). Investigate the periodic character and the asymp-
totic behavior of the positive solutions of the difference equation

_ DTp_1 +QqTp_2 _
Tntl = ———————— , n=0,1,....
Tn

OPEN PROBLEM 4.6
Assume that p,q € (0,00). Investigate the periodic character and the asymp-
totic behavior of the positive solutions of the difference equation

_ PTp A+ qTn_

$n+1—7x ; , n=20,1,....
"
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OPEN PROBLEM 4.7

Assume that p,q € (0,00). Investigate the periodic character and the asymp-
totic behavior of the positive solutions of the difference equation

_ pTp +qTn— _
Tn41 = — 5 n —-O,lw...
Tpn—2

For the second-order rational difference Eq.(2.30) with non-negative coeffi-
cients and positive initial conditions, we offer the following conjecture.

CONJECTURE 4.5
Assume that

C>0.
Then every solution of Eq.(2.30) is bounded.

CONJECTURE 4.6
Assume that

aij € (0,00)  for  i,j€{l,2,...,k}.

Show that every positive solution of the system

( ail a2 a1k
1

Tpp1 = 7+ o+
:L.'ﬂ n ‘rn

a21 a22 a2k
2=+ —+ -+
ntl zl x2 Tk

< n " n , n=20,1,... (4.25)

Qg1 Q2 Qkk

Ty = g bt
\ Ty, Ty, T,

converges to a solution which is periodic with period 2. See [102] for the case
k=3.

OPEN PROBLEM 4.8
It is known that every positive solution of the difference equation
Tpn-1

Tpy1 =1+ - , n=0,1,...
n

converges to a solution which is periodic with period 2.

Given a positive solution {x,}>2_, of the above equation, determine the
limiting period-2 solution explicitly in terms of the initial conditions x_1,x¢.
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OPEN PROBLEM 4.9
It is known that every positive solution of the difference equation
Tn—1

xn+1=1+z , , n=0,1,...
n—

converges to a solution which is periodic with period 2.
Given a positive solution {x,}52 _, of the above equation, determine the
limiting period-2 solution explicitly in terms of the initial conditions x_2,2_1, Tg.

OPEN PROBLEM 4.10
It is known that every positive solution of the difference equation (with A, B €

(0,00)) 4+ B
Tpy1 = — + , n=20,1,...
Tn Tn—2

converges to a solution which is periodic with period 2.
Given a positive solution {x,}52_, of the above equation, determine the
limiting period-2 solution explicitly in terms of the initial conditions x _2,2_1, Tg.

OPEN PROBLEM 4.11
It is known that every positive solution of the difference equation
Ty + Tpn_
Ty = 22 p=0,1,...
Tn—1
converges to a solution which is periodic with period 4.
Given a positive solution {x,}32_, of the above equation, determine the
limiting period-4 solution explicitly in terms of the initial conditions x _2,x_1,Zg-

OPEN PROBLEM 4.12
It is known that every positive solution of the difference equation

142,
:L'n_H:M , n=20,1,...
Tn
converges to a solution which is periodic with period 5.
Given a positive solution {x,}32_, of the above equation, determine the
limiting period-5 solution explicitly in terms of the initial conditions x_o,T_1,Zo.

OPEN PROBLEM 4.13
It has been conjectured that every positive solution of the difference equation

1+z,
Tn1 = N — y TL:O,].,...
Tpn—1+ Tp—2

converges to a solution which is periodic with period 6.

Copyright © 2005 CRC Press, LLC



CONVERGENCE TO PERIODIC SOLUTIONS 107

Given a positive solution {x,}°2_, of the above equation, determine the
limiting period-6 solution explicitly in terms of the initial conditions x_o,2_1,xq.

OPEN PROBLEM 4.14
It is known that every positive solution of the difference equation
1+z Tp—
nyy = I T Inck g
Tp—(k—1)
converges to a solution which is periodic with period (2k). See [119].
Given a positive solution {x,}5° _, of the above equation, determine the
limiting period-(2k) solution explicitly in terms of the initial conditions
Lk Lh+15---520-

OPEN PROBLEM 4.15
It is known that every positive solution of the difference equation

Tn—k
1+zp+ -+ Tp(r-1)

Tpy1 = , n=20,1,...

converges to a solution which is periodic with period (k + 1).

Given a positive solution {x,}>2 _, of the above equation, determine the
limiting period-(k + 1) solution explicitly in terms of the initial conditions
LT—kyTk41y---5T0-

OPEN PROBLEM 4.16
It is known that every positive solution of the difference equation

1+ Tp—1+Tp_2
1+,

Tptl = , n=20,1,...
converges to a solution which is periodic with period 2.

Given a positive solution {x,}52_, of the above equation, determine the
limiting period-2 solution explicitly in terms of the initial conditions x_2,2_1, Tg.

OPEN PROBLEM 4.17
It is known that every positive solution of the difference equation

1 + Tn—1

=0,1,...
1+$n ’ n Pt ]

Tnt1 =

converges to a solution which is periodic with period 2.
Given a positive solution {x,}>2_, of the above equation, determine the
limiting period-2 solution explicitly in terms of the initial conditions x_1,x¢.
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OPEN PROBLEM 4.18
It is known that every positive solution of the difference equation
Tn—1
x = n=20,1,...
n+1 Tn1 ¥ T2 ) )y
converges to a solution which is periodic with period 2.

Given a positive solution {x,}>2_, of the above equation, determine the
limiting period-2 solution explicitly in terms of the initial conditions x_o,2_1, .

OPEN PROBLEM 4.19
It is known that every positive solution of the difference equation

Tptl = Tp—1€ " , n=0,1,...

converges to a solution which is periodic with period 2.
Given a positive solution {x,}>2_, of the above equation, determine the
limiting period-2 solution explicitly in terms of the initial conditions x_1,x¢.

OPEN PROBLEM 4.20
It is known that every positive solution of the system of difference equations
(with r > 0)

An—i-l:Jn
,n=0,1,...

Jng1 = Aper—(Antdn)

converges to a solution which is periodic with period 2.
Given a positive solution {(An, Jn)}52, of the above system, determine the
limiting period-2 solution explicitly in terms of the initial condition (Ao, Jo)-

OPEN PROBLEM 4.21
It is known that every positive solution of the system of difference equations
(with A;; > 0)

A A
Tpil = i_i_ﬁ
Tn Yn
,m=0,1,...
A A
popy = A2y Az
Tn Yn

converges to a solution which is periodic with period 2.
Given a positive solution {(zn,yn) 152, of the above system, determine the
limiting period-2 solution explicitly in terms of the initial condition (zo,yo).
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OPEN PROBLEM 4.22
It has been conjectured that every positive solution of the difference equation
1 1

Tn4l = + , n=20,1,...
ITnTn—1 Tp—3Tn—4

converges to a solution which is periodic with period 3.

Given a positive solution {x,}>2_, of the above equation, determine the
limiting period-3 solution explicitly in terms of the initial conditions ©_4,x_3,
T_2,T—-1,T0-

OPEN PROBLEM 4.23
Let Ag, Ay, ..., Ar_1 > 0 be non-negative real numbers, and suppose that the
set J={j>1:A;_1 >0} is not empty. Set L={i+j:i,j € J}. Let (J)
denote the greatest common divisor of the elements of J, and let (L) denote the
greatest common divisor of the elements of L. It is known that every positive
solution of the difference equation

A, A Ag—1

mn+1:_+ +ort— 3 TLZO,].,...
Tn Tn—1 Tn—k+1

has a finite limit if and only if {J) = (L), and that every solution of the above
equation converges to a solution which is periodic with period 2 {J) if and only
if (J) #(L).

Given a positive solution {zn}> _, ., of the above equation when (J) #
(L), determine the limiting periodic solution explicitly in terms of the initial
conditions T_j41,T—k42,---,L0-
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Chapter 5

THE EQ UATION Tpy1 = Q + YT (2k41) T 0Trn_21

A + Ln—21

5.1 Introduction and Preliminaries

In this chapter, we investigate the periodic character, the boundedness na-
ture, and the global asymptotic stability of the rational difference equation

a+ YTy (2k41) T 0Tn_2
= n=01,... 5.1

A+ 0o ’ " -0

where k£ and [ are non-negative integers, the parameters a,,d, A are non-
negative real numbers, and the initial conditions are non-negative real num-
bers such that the denominator in Eq.(5.1) is always positive. See [60].

Two special cases of Eq.(5.1) are the rational difference equations

Tn41

a+ Bxy + YTp—1
n = , =0V, ]., . 2
Tn+1 A Tz, n 0 (5 )

and

a+YTp 1+ 0z, o
A + Tp-2
with non-negative parameters and non-negative initial conditions. The fol-
lowing trichotomy results describe the character of the solutions of Egs.(5.2)

and (5.3). See also and @

THEOREM 5.1
See [49] and [50], or see [78]. The following statements are true:

, n=0,1,... (5.3)

Tnt1 =

1. Every solution of Eq.(5.2) has a finite limit if and only if

y<B+A (5.4)

2. Every solution of Eq.(5.2) converges to a period-2 solution if and only
if

v=8+A. (5.5)

3. Eq.(5.2) has positive unbounded solutions if and only if

v> B+ A (5.6)

111
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THEOREM 5.2
See [23]. Assume
v+d+A>0. (5.7)

Then the following statements are true:

1. Every solution of Eq.(5.3) has a finite limit if and only if

v <O+ A (5.8)

2. Every solution of Eq.(5.8) converges to a period-two solution if and only

if
vy=0+A (5.9)

3. Eq.(5.8) has positive unbounded solutions if and only if

>4+ A (5.10)

When (5.4) holds, Eq.(5.2) may have a single equilibrium, which may be
either zero or positive, or else Eq.(5.2) has two equilibria, one zero and the
other positive. When Eq.(5.2) has a single equilibrium and (5.4) holds, the
unique equilibrium is globally asymptotically stable. When Eq.(5.2) has two
equilibria and (5.4) holds, the zero equilibrium is unstable, and the positive
equilibrium is locally asymptotically stable, and is a global attractor with
basin of attraction all positive solutions of Eq.(5.2).

When we say in Statement 2 of Theorem 5.1 that every solution {z,}32
of Eq.(5.2) converges to a period-2 solution, we mean that there exists a
period-2 solution

RO X R
of Eq.(5.2) such that
lim x9,-1 =¢ and lim zo, =9
n—oo n—0o0

and that these limits ¢ and v are not always equal, although they may some-
times be equal. In fact, when (5.5) holds, Eq.(5.2) possesses infinitely many
solutions which are periodic with prime period-2.

When (5.6) holds, Eq.(5.2) has a positive equilibrium Z > 0 which is an
unstable saddle-point equilibrium. Thus by the Stable Manifold Theorem,
Eq.(5.2) also has solutions which converge to %, and so, in particular, are
bounded.
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A + Tn—21
It is also interesting to note that the trichotomy character of the solutions
of Eq.(5.2) is a non-linear phenomenon, and is not true when the term z,, is
missing from the denominator of Eq.(5.2).

THE EQUATION zp41 = 113

Our goal in this chapter is to extend the above results for Egs.(5.2) and
(5.3) to the quite general Eq.(5.1). In fact we shall show that the positive
solutions of Eq.(5.1) exhibit a trichotomy character depending upon how the
parameter v compares with the sum ¢ + A.

Let d be defined as follows:
d=<k+1 f a=6=0 andA>0

ged(k + 1,214+ 1) otherwise.

The main result of this chapter is that Eq.(5.1) exhibits the following period-2d
trichotomy:

THEOREM 5.3
The following statements are true:
1. Every positive solution of Eq.(5.1) has a finite limit if and only if

vy <+ A

2. Every positive solution of Eq.(5.1) converges to a non-negative periodic
solution of Eq.(5.1) with period 2d (and there exist non-negative periodic
solutions of Eq.(5.1) with prime period 2d) if and only if

y=4+A.

3. There exist unbounded solutions of Eq.(5.1) if and only if

y>d0+ A

This result generalizes the period-2 trichotomy results in [7], [23], [48], [50],
[58], [78], and [108].

REMARK 5.1 Eq.(5.1) always has at least one non-negative equilib-
rium point. It sometimes has two equilibrium points, one zero and the other
positive. It is interesting to note that under the condition v < & + A, we
shall establish the following: When Eq.(5.1) has a single equilibrium point,
every positive solution of Eq.(5.1) converges to the equilibrium point. When
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Eq.(5.1) has two equilibrium points, one zero and the other positive, every
positive solution of Eq.(5.1) converges to the positive equilibrium point.

The proof of Theorem 5.3 is quite involved and, for the sake of clarity
and completeness, we first consider several special cases of Eq.(5.1) whose
asymptotic behavior and periodic nature are instrumental in establishing the
complete result.

Throughout this chapter, we set
K = max{2k + 1, 2}.

5.2 The Equation z,,, = A+ Tn—(2k41)
14+ 2,2

Consider the difference equation

O+ Tn—(2k+1)
T+z, 2
where k and [ are non-negative integers, « is a positive parameter, and the

initial conditions are non-negative real numbers.

Tpt1 = , n=20,1,... (5.11)

The study of the periodic nature of the solutions of Eq.(5.11) will be instru-
mental in the proof that solutions of Eq.(5.1) converge to periodic solutions
of Eq.(5.1).

Here a > 0,v=1,0 =0,and A =1, and so
d=gecd(k+1,214+1).
In agreement with our goal, in this section we show that every solution of
Eq.(5.11) converges to a periodic solution with period 2d, and that there exist

periodic solutions of Eq.(5.11) with prime period 2d.

The case k = 0 and [ = 0 was investigated in [48], and the case k¥ = 0 and
I =1 was investigated in [23]. See also [7], [78], and [108].

Note that Eq.(5.11) has the unique positive equilibrium point z = v/a.
Note also that if {z,}32 _, is a solution of Eq.(5.11) with non-negative

initial conditions, then z,, > 0 for all n > 1. For this reason it follows that
without loss of generality we need only consider positive solutions of Eq.(5.11).
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5.2.1 Preliminaries

The following four lemmas will be useful in this section.

LEMMA 5.1
Let {xn}22 i be a positive solution of Eq.(5.11). Choose positive real num-
bers m and M with mM = «, and such that

m <min{z_x,T_xt1,---,%0} and max{z_x,T_xt1,---,T0} < M.

Then
m<xz, <M  for all n > —K.

M
a+m andM:OH_

PROOF Note that m = Y] T+m

, and so

m_a+m a+$_(2k+1)<a+M_
C14M - 1429 — 14m

That is, m < xz; < M. Tt follows by induction that

m<x, <M for all n > —K. I

REMARK 5.2 Let {z,}52 _, be a positive solution of Eq.(5.11). Note
that by Lemma 5.1,

0 <m <liminf z, <limsupz, < M.

n—00 n—00
In particular, lim inf z,, and lim sup z,, are positive real numbers. I
n—00 n—oo

LEMMA 5.2
Let {zp}2 i be a positive solution of Eq.(5.11). Set I = 1irr_1>infmn and
n oo

S =limsupx,. Then
n— oo

IS = a.

PROOF By Theorem 1.8, there exist full limiting sequences {I,,}2
and {Sp}o2L_ of {z,}32 _ such that

—00

Iy=1 and So=S.

Thus
. OC+S,(2]9+2) < a+S

S =29 =
TS gy 1+
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and so S+ SI < a+ S. That is,

ST < a.
Also,
R
Hence we also have IS > a, and so IS = . I

REMARK 5.3 Suppose {z,}52_, is a positive solution of Eq.(5.11).
Throughout this section, we set

I =liminf z,, and S = lim sup z,,.
n—00 n—oo

Note that as IS = a, we have

a+1 a+S
“13s ™ S=ETT
That is, I,S,1,S,... is a periodic solution of Eq.(5.11) with period-2. Thus
if it is not true that lim =z, = %, then I,S,1,S,... is a periodic solution of
n—oo

Eq.(5.11) with prime period-2. I

LEMMA 5.3

Let {x,}5° _ i be a positive solution of Eq.(5.11), and let {L,}5>_ . be a full
limiting sequence of {x,}52 . Suppose j is an integer such that L; € {I,S}.
Then the following statements are true:

1. Lj = Lj-s(kt1)-

(0%
2. 7 Lj—(2141)-

PROOF Suppose L; = I. The case where L; = S is similar, and will be

omitted. Note that
a+ Lj_pky1)

I=1L;=
T+ L
and so
I+ ILj7(2l+1) =+ L]',Q(]H_l).
Thus
0>1—Lj oey1) =a—IL;_(941) = I(S — Lj_(2141)) >0
and hence

I= Lj*?(k-i—l) and S = Lj7(2l+1)' |:|
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LEMMA 5.4
Let {z,}22 _, be a positive solution of Eq.(5.11), and let {L,}32_ be a

full limiting sequence of {xn}S° - such that Lo = I. For every pair of non-
negative integers r > 0 and s > 0, set

Iy = L [@iv1)2ri26+1)s) 0nd S(rs) = L [@2i41)@r+1)+2(k+1)s]-
Then for every pair of non-negative integers r > 0 and s > 0,

I = I(r,s) and S = S(r,s)-

PROOF The proof is by double induction on r and s.
For every integer s > 0, let P(s) be the following proposition:

For every integer r > 0, let Q,(r) be the following proposition:
I = I(r,s) and S = S(r,s)-

We first show that P(0) is true.

We shall first show that Qg(0) is true.
Now I = Lg. Hence

I=L_[e111)2-042(k+1)-0) = L(0,0)-
Since I = Lo, we have by Lemma 5.3 that S = L_ (341, and hence that
S = L_(2141) = L_[@2141)(2-041)+2(k+1)-0] = S(0,0)
Thus Q(0) is true.

Suppose r > 0, and Qo(r) is true. We shall show that Qg(r + 1) is true.
N0W7 by QO (T)J

S = L_[@r1)@rr1)+2(k+1)-0] = L 241)(2r41)

and so by Lemma, 5.3,

I'=L_[oinyer)+ei+)] = Lo@irnee+1) = Loj@irn2e+1)+2k+1)0] = Lr41,0)-

Also, I = L_(2141)2(r+1), and so by Lemma 5.3,

S = L@ n)2(r41)+@i+1)] = Lo[@ir1)2((rr1)+1)+2(k+1)-0] = S(r+1,0)-

Thus we see that Qg(r + 1) is true, and so P(0) is true.
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Next suppose that s > 0 is a non-negative integer, and that P(s) is true.
We shall show that P(s + 1) is true.

We shall first show that Q41(0) is true. Now Q,4(0) is true, and so
I'=L_[@irn@o)+2k+1)s] = Lo2(kt1)s

and hence by Lemma 5.3, we see that

I'=L ppry1yst2k+1)) = Lo2kr1)(s+1) = L0,541)-

In particular, by Lemma 5.3 we see that

S = L_pa(k41)(s+1)+(204+1)] = Lo (2141)(2:-041)=2(k+1) (s+1) = S(0,5+1)

and so Q,1(0) is true.

Finally, suppose that r > 0 is a non-negative integer and that Q1 (r) is
true. We shall show that Qg1 (r + 1) is true.

Now since Q4(r + 1) is true, we see that
I = L_j2141)2(r+1)+2(k+1)s]

and
S = Lf[(zl+1)(2(r+1)+1)+2(k+1)s]-

Hence by Lemma 5.3
S = L_[@i4+1)2(r+1)+1)+2(k+1) s+2(k+1)] = L[(204+1)(2(r+1)+1)+2(k+1) (s+1)]
= S(r+1,s+1)-
Also, as Qgy1(r) is true,
S = L_[(2141)(2r+1)+2(k+1)(s+1)]

and so by Lemma 5.3 we have

I'=L_[eir1)@r1)+20k41) (s+1)+2141)] = Lo[@ir1)@(r41)+2(k+1) (s41)]

= I(r+1,s+1)

and so Qgy1(r + 1) is true. I

5.2.2 Period-2 Solutions

In this section we consider the case where the greatest common divisor of
k+1and 214+ 1 is 1, and we show that every positive solution of Eq.(5.11)
converges to a periodic solution of Eq.(5.11) with period-2, and that there
exist periodic solutions of Eq.(5.11) with prime period-2.
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Note that the periodic solutions of Eq.(5.11) with prime period-2 are the
sequences

o, «

“5¢5_5¢5_J“‘

o 9
with ¢ > 0 and ¢ # a.
LEMMA 5.5

Let k and | be non-negative integers such that d = ged(k + 1,21+ 1) = 1. Let

{zn}2 x be a positive solution of Eq.(5.11), and suppose that {L,}32_
is a full limiting sequence of {xn}>2 i such that Ly € {I,S}. Then for all
ned..,—1,0,1...}

a
L2n = LO and L2n+1 = L_
0

PROOF Suppose that Ly = I. The proof when Lg = S is similar and will
be omitted.

Claim: There exists integers NV < 0 and jo > K + 2 such that

Ly=I,Lny_1=8Lny_2=ILy_3=S5,...,LN_jo41 =1I,Ln_j, =S.

Proof of the claim: As k + 1 and 2! + 1 are relatively prime, there exists
0 € {—1,1} and positive integers p and v such that

pk+1) — (20 +1) = 4.

For non-negative integers r > 0 and s > 0, recall the definition and properties
from Lemma 5.4 of

Itvsy = L jiy1)2rt2(k41)s)  and  Sgrsy = L_[241)(2r41)+2(k+1)s]-

Set a = max{k + 1,2l + 1}. Now it follows by Lemma 5.4 that for all r > 0
and s > 0, we have

I(T,s) =1 and S(r,s) =5
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and that
L_(a141)2a0 = I(av,0)
L_(2141)2av+26] = L_[(2141)2av+2u(k+1)—20(21+1)]
= L_[2141)2(a—1)v+2(k+1)4]
= li(a-1)wu]

L (+1)2av-+2(a-1)8] = L-[(2141)200+2(a=D)a(k+1)~2(a=1)w(21+1)]
= L_[@1+1)20+2(k+1)(a—1)4]

= I, (a-1u)
L—[(2l+1)2au+2a6] = L—[(2l+1)2au+2au(k+1)—2a1/(2l+1)]
= I_[(2141)2-0-v4+2(k+1)ay]
= I(Ovaﬂ) .
Thus we see that
I= L—(2l+1)2a1/ = L—[(2l+1)2au+26] == L—[(2l+1)2au+2a6]-

It also follows by Lemma 5.4 that

L_(o141)(2av+1) = S(ar,0)

L _@i41)(2av+1)+26)] = L _[2141)2av+1)+2u(k+1)—20(204+1)]
= L_[2141)(2(a—1)v+1)+2(k+1)4]
= S(a-1)ru]

L_[241)2av+1)+2(a=1)6] = L[(2141)(2av+1)+2(a—1) p—2(a—1)w(20+1)]
= L_2141) 2v+1)+2(k+1)n(a—1)]
= S, (a-1)4]

L _(2141)(2av+1)+248) = L_[(2141)(2av+1)+2ap(k-+1) —2a1(21+1))]
= L_((2141)(2-0-v+1)+2ap(k+1)]
= S[0,(k+1)]

and so we see that it is also the case that

S = L_@i1)@av+1) = Loj@ir1)@av+1)+25] = = = L_[@2141)(2av+1)4245]-
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Suppose § = 1. Then

(2141)2av
(2141)2av—2

~

=L_
=L_

—(2l+1)2av—21

—(2l4+1)2av—(21+1)
—(2l4+1)2av—2(1+1)
—(
—(
—(

I
SESESESESR

20++1)2av—[(214+1)+2]
20+1)2av—2(1+2)
20+1)2av—[(214+1)+4]

U~~~
1

L_ (2141)2av—2a
L_(2141)200—(2a+1)
L_(2141)2a0—(20+3)

nn~
I

S = L_(2141)2a0—[2a+(2141)]-
In this case, we take N = —(2] 4+ 1)2av — 2 and jo = 2a + 1 — 2I. Note that

jo=2a+1-2l=a+[a—(20-1)]>K+2.

Suppose § = —1. Then

I= L—(2l+1)2au+2a
I L7(2l+1)2au+2(a71)

—(2141)2av—2142a
—(2141)2av—(21+1)+2a
—(214+1)2av—2142(a—1)
—(2141)2av—(214+1)+2(a—1)
—(2141)2av—2142(a—2)

~N Ty~ Y~
I
SESESESES

I =L _(241)2a0

S =L_(a141)2a0-1

S = L_(2141)2av-3

S = L_(2141)2a0—(2041)+2
S = L_(21+1)2au—(2l+1)'

Here we take N = —(2[4+1)2av—2l42a, and once again we take jo = 2a+1-21.
As before, jo > K + 2.

Copyright © 2005 CRC Press, LLC



122 PERIODICITIES IN DIFFERENCE EQUATIONS

Thus the claim is correct.

Note that
a+Ly_(k+1)  a+ S
L = = = S
N T T Y Iy 1+1
and
a+ Ly_op a+1
Lyyo = = =

1+LN—(2l71) T 1487

It follows by induction, both forwards and backwards, that the proof is com-
plete.

LEMMA 5.6

Let k and | be non-negative integers such that ged(k + 1,21 + 1) = 1, and
suppose that {z,}32 - is a positive solution of Eq.(5.11). Let Lo be a limit
point of {xn}>2 . Then Lo € {I,S}.

PROOF For the sake of contradiction, suppose that Lo ¢ {I,S}. Then
we have I < Ly < S, and so, in particular, I < S.

Let {L,}32 . be a full limiting sequence of {z,}7° ;. such that Ly = Lo.

It follows by Lemma 5.5 that L, ¢ {I,S} for alln € {...,-1,0,1...}. Now
S = % by Lemma 5.2, and so there exists € > 0 such that

L€ (I+E,IL+E> forall —K<j<O0.

By Theorem 1.8, there exists a subsequence {z,, }>2, of {z,}°° _, such that

lim x4 = L; for all - K<

72—>00

It follows that there exists N > 0 such that

[0
IN-K; TN—(k—1)s---»ZN € | I +¢, T+e

and hence by Lemma 5.1 that

(8
Ie |l —.
[ +E’I+6]

This is a contradiction, and the proof is complete. I
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THEOREM 5.4

Let k and | be non-negative integers such that ged(k+1,2l+1) = 1. Then every
positive solution of Eq.(5.11) converges to a periodic solution of Eq.(5.11) with
period-2, and there exist periodic solutions of Eq.(5.11) with prime period-2.

PROOF Note that the periodic solutions of Eq.(5.11) with period-2 are
the sequences

b1, 0,9, ...

with ¢, € (0,00) such that ¢p = a. Thus there do exist periodic solutions
of Eq.(5.11) with prime period-2.

Let {z,}52_) be a positive solution of Eq.(5.11). It suffices to show that
{zn}22 _ converges to a periodic solution of Eq.(5.11) with period-2.

If I = S, then 11rn T, = T, and the proof is complete. So without loss of
generality, suppose I < S.

NowIS=aand I < S. Thus0< I <+ /a<S§.

By Theorem 1.8, there exists a full limiting sequence { L, }52 _  of {zn}52
with Ly = I and a subsequence {zp, }$2, such that

lim zp,4;=L; forall j>-K.
1— 00

It follows by Lemma 5.5 that there exists ig > 0 such that

Tn,—2r <Va forall r>0 suchthat 0<2r <K

and
Ty —(2r41) > Va forall >0 suchthat0<2r+1<K.
Now
a+Tn, —(2k41) _ a++a
T, = 0 > =+a
Mot T Tt an, w1+ ya Ve
and
a+ Tp; —2k a+
xni0+2 = o \/_ \/a

1+ 2, —(2-1) <1 + Va
It follows by induction that for all n > 0,

Tniy+2n < \/E and Tnig+2n+1 > \/E

Let £ be a limit point of {2, t2n}5eq- Then £ < y/a. So, as I and S are
the only limit points of {z,}2° . and I < y/a < S, we see that £ = I. Thus
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{Tn;y+2n}nlo is a bounded sequence with the single limit point I, and so it
follows that

lim z,, =1.
n—o0o nig+2n

We similarly have lim z,, t2n,+1 = S, and so the proof is complete. I
n— o0

5.2.3 Period-2d Solutions

We are now ready for the main result of this section.

THEOREM 5.5

Let k and | be non-negative integers such that gcd(k+1,2l+1) = d. Then every
positive solution of Eq.(5.11) converges to a periodic solution of Eq.(5.11) with
period 2d, and there exist periodic solutions of Eq.(5.11) with prime period 2d.

PROOF Let {2,}5° , be a positive solution of Eq.(5.11). We shall show
that {z,}32 , converges to a periodic solution of Eq.(5.11) with period 2d.

There exist non-negative integers k¥’ and I’ with ged(k¥' + 1,2I' + 1) = 1 such
that
k+1=d(k' +1) and 2/+1=d2I'+1).

Hence for all0 < j <d—1and m > 0,

O+ Ta(m+1)+j-1-(2k+1) _ &+ Ta(m+1)+5-2(k+1)
1+ Za(m1)+j-1-2 1+ Za(ma1)+5—(2141)

Td(m+1)+j =

A+ Ta[mt1)—2k'+1)]+i _ X+ Tdlm—(2k'+1)]+j

1+ Zg4)(ma1)— @0+1)]+j 1+ Z4m 21+

Set K' = max{k' + 1,2l' + 1}, and for each j =0,1,...,d -1, let
) = Tdm+j for m>-K.

Then for each 5 =0,1,...,d—1, {y%) o __x is a solution of the difference
equation

O+ Ym—(2k"+1)

., m=0,1,.... 5.12
1+ Ym—21' ( )

Ym+1 =

So as k' + 1 and 2" + 1 are relatively prime, it follows by Theorem 5.4 that
{y%) o0 _ o converges to a periodic solution of Eq.(5.12) with period-2, from
which the proof follows.
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Finally, observe that the periodic solutions of Eq.(5.11) with period 2d are
the sequences

b0, P15+, Pa—1,%0,%1,- -, Va-1,%0,P1,---,Pa—1,%0,%1,-- -, Pa—1,---

where for 0 < j < d — 1, we have

THE EQUATION zp41 = 125

¢, € (0,00)  and @0 = a.

Thus there do exist periodic solutions of Eq.(5.11) with prime period 2d. []

REMARK 5.4 Let k and ! be non-negative integers such that ged(k +
1,21+1) = d. It is interesting to note that it follows from the proof of Theorem
5.5 that there exists a periodic solution of Eq.(5.11) with prime period P if
and only if P = 2d’ for some divisor d’ of d.

O+ Ty (2k+1)
A + Ln—21

In this section we study the global behavior of the difference equation

5.3 The Equation z,41 =

o+ Ty (2k+1)

s n=20,1,... 5.13
A+ Tn—21 ( )

Tnt+1 =

where k and [ are non-negative integers, a and A are non-negative parameters,
and the initial conditions are non-negative real numbers chosen such that the
denominator in Eq.(5.13) is always positive. The study of the asymptotic
character of the solutions of Eq.(5.13) will be instrumental in the proof of
Theorem 5.3.

The case k = 0 and | = 1 was investigated in [10] and [23].
5.3.1 Local Stability Character of the Equilibrium Point
Eq.(5.13) has the non-negative equilibrium point

(1—A)+ /(T - A2+ 4o
> .

T =

Z is the only equilibrium point of Eq.(5.13) when « is positive, or when « is
zero and A > 1.

When o = 0 and 0 < A < 1, then in addition to the positive equilibrium
point Z, zero is also an equilibrium point of Eq.(5.13).
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THEOREM 5.6

Suppose a = 0 and 0 < A < 1. Then the zero equilibrium point & = 0 is an
unstable equilibrium point of Eq.(5.13).

PROOF The linearized equation of Eq.(5.13) about & =0 is

Znt1 = FAn—(2k+1) T 0-2p—y=0 , n=01,...
with characteristic equation

AmJ_%Ma@Hn+UAbﬂ:o_ (5.14)

The result follows by Theorem 1.1. (1

THEOREM 5.7
The following statements are true:

1. Suppose 1 < A. Then T is a locally asymptotically stable equilibrium
point of Eq.(5.13).

2. Suppose 0 < A < 1. Then T is an unstable equilibrium point of Eq.(5.13)

whose characteristic equation has ot least one root with modulus less than
1 and at least one root with modulus greater than 1.

PROOF The linearized equation of Eq.(5.13) about Z is

1 T
Zn4l — A+j_zn—(2k+1)+A+i_zn—2l:0 , n=0,1,...
with characteristic equation
A+ 1 AC—(@k+1) T \k-2 _ (5.15)
A+z A+z ' '

It follows by Theorem 1.6 that Z is a locally asymptotically stable equilibrium
point of Eq.(5.13) when 1 < A.

When 0 < A < 1, it is easy to see that Eq.(5.15) has a root in (—oo,—1). On
the other hand, the product of the roots of Eq.(5.15) has modulus less than
1, and so Eq.(5.15) also has a root with modulus less than 1.
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532 The Casea=A=0

THEOREM 5.8
Suppose oo = A = 0. Then there exist positive solutions of Eq.(5.13) which
are neither bounded nor persist.

PROOF The substitution z, = e*» transforms Eq.(5.13) into the linear
equation

Znt1 + 221 — Zp-(2k+1) =0, n=0,1,... (5.16)

with characteristic equation

NCHL | \K=2 _ \K=(2k+1) _ . (5.17)

It is easy to see that Eq.(5.17) has a negative root A\; < —1, from which the
result follows. I

533 The Case0<aand 1< A

THEOREM 5.9

Suppose 0 < a and 1 < A. Then the equilibrium point T is a globally asymptot-
ically stable equilibrium point of Eq.(5.18) with basin of attraction the positive
solutions of Eq.(5.13).

PROOF We know by Theorem 5.7 that Z is a locally asymptotically stable
equilibrium point of Eq.(5.13), and so it suffices to show that Z is a global
attractor of Eq.(5.13). So let {x,}5° , be a positive solution of Eq.(5.13).

It suffices to show that lim z, = Z.
n—oo

Set I = liminf z,, and S = limsup z,,. Note that for n > 0
n—oo n—oco
At Tn_(2k+1) @

1
:I’.Tb+1 - A + mn—Ql A + Zmn_(2k+1)

and so as 1 < A, it follows by Theorem 1.7 that there exists B > 0 such that
0 < z, < B for all n > —K. Hence for n > 0 we also have

O+ Ty (2k+1) a
A+ 1z, 9 A+ B

Tnt1 =

and so 0 < I < S < oo. It suffices to show that I = S.
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By Theorem 1.8, there exist solutions {I,}5> __ and {S,}52_ of the dif-
ference equation

o+ Zp—(2k+1)

Zn41 = At 20w , ne{. ..,-1,0,1,...}
with Ip = I and Sy = S such that for all n € {...,—1,0,1,...}, we have
I1<I,<S and I<S,<S.
Note that
I_(op. -
Ton- TR gl e sosoGigemeiih
Hence
a+I—-AI<IS<a+S5-AS
and thus
(A-1DS<(A-1)I.
So as 1 < A, we have I = S, as was to be shown. I

534 The Case0<aand 0< A1

In this section we show that when 0 < a and 0 < A < 1, there exist positive
solutions of Eq.(5.13) which are neither bounded nor persist.

The proof of Lemma 5.7 is straightforward and will be omitted.

LEMMA 5.7
Suppose 0 < a and 0 < A < 1. Then the following statements are true:
1. Sy ose(l—A)+L<$ Then0< —— _ <1-A
- OUPP 1-4°" z—(1-A) '
2. Suppose 1 — A < z and ﬁ < y. Then jii <y.

THEOREM 5.10
Suppose 0 < o and 0 < A < 1. Then there exist positive solutions of Eq.(5.13)
which are neither bounded nor persist.

PROOF Recall that K = max{2k + 1, 2[}.
Let r be the largest non-negative integer such that 0 < 2r+1 < K, let s be
the largest non-negative integer such that 0 < 2s < K, and let {z,}° _, be
a solution of Eq.(5.13) such that
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o
(1 —A) + m LT op 1 <Topy1 << T_3<T_1

and
o

T_gr—1— (1 - A)

< Te<T g< < T 9599<T 9, < (1—2A).

Note that such a choice of initial conditions is possible by Lemma 5.7.

We claim that for each integer j with 0 < j < k,
{Z2j—2k—14n(2k+2) }oro is @ monotonically increasing subsequence of {z, }52
and

{T2j_2k4n(2k+2) } 5o is @ monotonically decreasing subsequence of {z,, }52 _x-.

Proof of the claim:

Case 1. Suppose 0 < k < [. Then

o+ T 91
N =———>a+ T op_1> T_ok_
1 A+ 7 + T _2k—1 2k—1
because 0< A+4+2x2_9 <1
o+ T_op
To = < T_op
A+z_ 941
«a
because (1—A)+-—— <z 941
1-A4
o
and < X_op
ZT_opp1 — (1 — A)
If £ > 1, then
a+ T_okt1
T3 = ——————— >0+ T op41 > T_2k+1
A+ z_o149 + *

because 0< A+ 942<1
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a+ T ok
Ty = < T_2k42
A+z 943 *
a
because (1—A) + -4 < T_oit3
d = <
an T —2k42
T_si43 — (1 —A) *
x __atTs >a+zr_3>z
-1 -3 -3

because 0< A+ 2op_o—o <1

a4+ T_o

Top = < T2
A4 mop_911
«a
because (1 —A)+ —— < Top—21—1
1-A
«a
and <x_ 9.
Tog—21—1 — (1 — A)
Thus in any event, for k > 0 we have
a+xr_q
x =—>a+rT 1 >T_
2k+l = P 1 1

because 0 < A+ xop_9 <1

o+ Xo <
Topy2 = —— < Tp
+ A+ zop_o141

because (1 — A) + IL < Tok—21+1

Q
Tog—2+1 — (1 — A)

and < Zg-
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It follows that

A + Tn—21

. a—+ 1z a+T_op_1 .
2k43 = =z
A4 2op_2142 Atz _y
x o+ To o+ T_op :1:
2htd = =T
A+ zop_oi43 A4z
T = & Trkn at T =z >
4k43 = = Topt1 > T_q
A4 zyp_oi42 A+ Top—2
x = o+ Tokta @+ Zo =T <z
Akt = = Tt < Zo.
A4 zyp_o143 A+ Top—2q1

The proof of the claim in this case follows by induction.

Case 2.  Suppose 0 =1 < k.

a+T_okp—1

T = —F———— >+ T_2p-1>T_ 21

A+.’L‘0

because 0< A+ 29 <1

2 — a+x_op <z
2 A+ —2k
«a
because (1—A)+ —— <z 951 <1
1-A4
and a < a <z
—92k-
21— (1—A4) 291 —(1-4) ’
Ifk>1,
o+ T_2k+1
= > _ >x_
T3 A+ 2 a+T_2k+1 > L2841
because 0< A+za < A+z_9; <1
Q+ T_2k42
= — < T_
T4 A+ 23 T 2§42
«a
because (1 —A)+ -4 < T _opy1 < T3
and a < @ <z
_2k+42.
23— (L—A) ~ Z_opp1 — (1 — A) k2
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Ifk>2,
a+ T _2r43
Ty = —————">a+z_ >z
5 A+ 4 2k+3 2k+3
because 0< A+ 24 <A+2_o542<1
Q+ T_2k+4
Tg = ————— < x_
6 A+t 2k+4
Q
because (1— A) + -4 < T _gpy3 < Ty
and a < a <z
—2k+4
25— (1—A)  Z_opgs — (1— A) +
i NS
Top1 = ———>a+xT_ T_
2k-1 = 7 Ton 3 3
because 0< A4+ 2oy o0 <A+2_4<1
IL' otz 2
2 T AT Ton -2
because
a
1-A)+ 1-A4 <x_3 < Tog—1
and @ a < T_g

o —(-4) “7,-(1-4)

a+T_
T2k+1 =1 >a+r_1>r
+ A+ zop,

because 0< A+ xop <A+z 9<1

o+ xo

— < X
A+ zopp

T2k4+2 =

because (1—A)+ ﬁ <zT_1 < Tog+1

(6] < (67
Top+1 + (1 - A) xr_q — (1 - A)

and < xg.
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THE EQUATION zp41 = 133

Thus in any event, for k£ > 0 we have

a+zx o+ T _gp_
1o 2k—1 _

Tok4+3 = Z1
+ A+ Topyo A+ xg
+
x o+ To < o+ T_o T
2%k+4 = 2
+ A+ Tok4+3 A+
T ot Tokr1 otz T >z
4k+3 = = T2k+1 -1
A+ Tapqo A+ zop,
o+ T2k+2 o+ X
Tak+4a = < = Z2k+2 < Zo-

A+ ZTapys A+ Topy1

The proof of the claim in this case follows by induction.

Case 3. Suppose 0 < [ < k.

There exist integers m and ¢ with m > 1 and 0 < ¢ < [ such that

k=ml+1.
We have
a+ T 251
= > _9k—1 > T_9k—
T Atz a+T ok 1 2k—1
because 0<A+z_9 <1
a+T_op
— < xT_
2= + T 2141 o2k
«
because (1— A) + 1= < %2+
and @ < X_2k-

T g1 — (1 - A)
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a+ To—2k—3
Toi—1 = T Arz. >+ Toy—2k-3 > T2A—2k-3
—2

because 0< A+z_2<1

Q + Toj—2k—2

Ty = ———————= < Toy_ok—
21 Atz . 20— 2k—2
o
because (1 — A) + 14 <z
d a <
and ——— < To; 9k
s 1—(1-4) 20— 2k—2
a+ To 2k—1
Loyl = ————— > @+ Xo—2k—1 > T—2k—1

A+ xg
because 0< A+ xz9 <1

_a+To_ag
Tol42 = m < Toj—2k

because (1 —A)+ ﬁ < T op 1 < X1

a a

and < < To_
T — (1= A)  z_op_q— (1= A) 22

a + To(m—1)1—2k—1
A+ T2 (m—2)1

To(m—1)I+1 = >+ Tom-1)1-2k-1 > T2(m—1)I—2k—1

because
0<A+oopm_2y <1 if 1<m<2
while if m > 3, then
4 +20+2<6l <2ml+2i =2k
and so

0<A+zymoy=A+Top-a1-2i <A+2 g 22 < A+z 9 <1
Also,

. _a + Ta(m—1)1—2k <z
2(m—1)I+2 —A+$2(m—2)l+1 2(m—2)I—2k
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because if 1 <m < 2, then

a
1-A4)+ 1—4 <z 251 < Ta(m—2)i4+1

and

a a

< < Dot 1)1
To(m—2)i41 — (1 —A) ~ z_9p1 — (1 - A) Hm—1)i—2k

while if m > 3, then

a
(1—-A)+ 14 < Tog1—2i—1 < T2k—4l—2i+1 = T2(m—2)I+1

and

a a

< < XTa(m—1)1—1
Tom—2yt1 — (1 —A)  T_g21—(1-A) 2m—1)i-2k

a + Toami—2k—3

2 > a+ Tomi—2k-3 > Tami—2k—3
+ To(m—1)i-2

Toami—1 =
because if m = 1, or if m =2 and | = 1, then
0<A+2om_1y—2 <1
while otherwise

0<A+zom_1)—2 <A+ Tom_1)—2k-4 =A+T 2 2;-4<1

a+ Tami—2k—2

Taml =
™A+ To(m—1)I—1
because if m = 1, then

a
(1-A)+ T4 <%-1= Txm-1)i-1

and
a

ZT2(m—-1)I1-1 — (1 - A) B 1 — (1 -
while if m > 1, then

<z —2k—
A) 2ml—2k—2

!
(1-4)+ 1= 4 ST-2-2i-8 < T2k-2-2i-1 = Ta(m-1)I-1
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and
a o
<
To(m—1)i—1 — (1 —A) " T 9 95 3—(1—

Y < ZT_2j—2 = Tami—2k—2-

In any event,

Q + Toml—2k—1

> o+ Tomi—2k—1 > Tami—2k—1
A+ x2(m—1)l " "

T2ml+1l =
because if m = 1, then
0<A+zom_1y <1
while if m > 2, then

0 <A+ zomo1y < A+ Tom_1yi—2k—2 <1

Q + Tomi—2k

——————— < Zomi—2k
A+ To(m_1)i41

Tomil+2 =
because

a
1-A+ 1= 4 S T-21-2i-1 < P2k-21-2i41 = To(m—1)I+1

and
o o

<
To(m-1yi+1 — (1 —A) "z 9 20 — (1 -

) < Toaml—2k

a+T_q

— >a+x_1>T
A+ zop—2

L2p+1 =
because if k =1, then
O0<A+zop_ 9y =A+z9<1
while if & > [, then

0<A+oop_ g <A+z_9_9<1
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Ln—21
T __atx .
k42 T L ok o1 0
@
because (1 —A)+ 14 < T_9i—1 < Tog—a2+1
d c < c <
an Zo.
Zog—2i—1 — (1 — A) T_g—1— (1 —A) 0
Thus
. _ a+ T >a+x72k71_$
2R3 T A+ T2k—20+2 A+ x_o 1
o+ o a4+ T _op
Tokt4 = = Z3.

A+ zop_oys  A+z_oq1

The proof of the claim in this case follows by induction.
Thus we see that the claim is true.

It follows by induction from the claim that for each non-negative integer
jwith 0 <j <k,

T(2j41)4n(2k+2) > (N + D+ T(g541)—(2k42) for n>0.

Hence we see that
lim Tont+l = X0
n—0o0

and thus that

lim Toan42 = 0. |:|
n—00

5.3.5 The Case a=0and A >0

When a =0 and A > 0, Eq.(5.13) reduces to the equation
Tn—(2k+1)
= —— =0,1,.... 5.18
Tn+1 A + T2l ) n P ( )

In agreement with our goal, in this section we shall establish the following
result.
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THEOREM 5.11
The following statements are true:

1. Suppose A > 1. Then the zero equilibrium of Eq.(5.18) is globally asymp-

totically stable.

2. Suppose A = 1. Then every non-negative solution of Eq.(5.18) converges
to a non-negative periodic solution of Eq.(5.18) with period 2(k+1), and
there exist non-negative periodic solutions of Eq.(5.18) with prime period

2(k + 1).

3. Suppose 0 < A < 1. Then there exist solutions of Eq.(5.18) which are

neither bounded nor persist.

PROOF It follows by Theorem 5.7 that the zero equilibrium point of

Eq.(5.18) is locally asymptotically stable when A > 1.

We consider the cases A > 1 and A = 1 together.

Let {z,}22 x be a non-negative solution of Eq.(5.18). For n > 0, we have

_ Tp(2k+1) 1
Tpy1 = ———>

A+ z, o
Thus
T (2k+1) 2= T1 =2 T1y(2k+2)
Ti—(2k+1) = T2 2 Tog(2k+2)

Togp—(2k+1) 2= T2k+1 = T(2k41)+(2k+2)

T(2k41)—(2k+1) = T2k+2 = T(2k4-2)+(2k+2)

and so we see that for each 0 < j < 2k + 1, the sequence {4 (25+2)n fre—1 i8
a decreasing subsequence of {z,}°2 . It follows that there exists a periodic

>

>

< 7 En—(2k+1) < Tp(2k41)-

T14(2k42)2

T4 (2k+2)2

T(2k+1)+2(2k+2)2

L(2k2)(2k+2)2

v

\%

>

solution {£,}52 . with period 2(k + 1) of the difference equation

Ly (2k41)

Ly = —n=Chtl)
et A + Ln72l ’

such that

lim Tjp(2k+2)n — ﬁj for

n—oo
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+ A + Ln—21
Hence r
Lo=Lopp2=——r—
0 2T A4 Lop+1-21

and so we see that either
Lo=0

or
Lo >0 and A+ ,Cgk_;,_l_gl =1.

Suppose A > 1. Then it follows that Lo = 0. We similarly have

Li=Ly=" = Lot
and thus
lim z, =0
n—oo

as was to be shown.

Suppose A = 1. Let ¢o, ¢1,- .., Par+1 be distinct positive real numbers. It
follows that the sequence

---7¢0;07¢1707---;¢2k+1707¢0707¢170;---7¢2k+1;07---

is a periodic solution of Eq.(5.19) with prime period 2(k + 1), from which the
proof follows.

Finally, consider the case 0 < A < 1.
Eq.(5.18) has the unique positive equilibrium point Z =1 — A.

Let r be the largest non-negative integer such that 0 < 2r 4+ 1 < X, and let s
be the largest non-negative integer such that 0 < 2s < K.

Let {,}5° ) be a solution of Eq.(5.18) such that the initial conditions are

as follows:
0<Z_(2r41),T—(2r-1);--»T-1 <1—A
and
1-A<2z 95,T_(25-2),---,T0-
Observe that
T—(2k+1) T—(2k+1)

0<1E1=

= <1—A
Atz o SA+(1—A) T_(2k41) S

and

Ti_ T1_(:
2y = 1-2k41) o F1-(2k+1)

- =1 1- A
Atz o = At (1-4) "k >
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It follows by induction that for all n» > 0 and 0 < j < k, we have

T2j1(2k42)(n+1) > L2j4(2k2)n > 1 — A

and
0 < T(2j41)+2k+2)(n+1) < T(2j4+1)+2k+2)n < 1 — A
Hence for each 0 < j < k

Jim 2(41)+ 2k42)n = L2j41 €[0,1-A) and Jim @954 (2k42)n = L5 € (1-A, 0]
We claim that for each 0 < j <k, L9j41 = 0.
For the sake of contradiction, suppose there exists j € {0,1,...,k} with

£2j+1 (S (0, 1-— A)

Then

C — Y L(2j4+1)+(2k+2)n
2j+1 = MM T (2541)4(2k+2)+(2k+2)n = 11T A .
n—00 n—o0 A + Tojy(2k+2)+(2k+2)n—21

So, as
Jm Zoj11)12k42)n = L2j41 € (0,1 - 4)

and {T2j1 (2k-42)+(2k+2)n } oo 18 & positive, strictly increasing sequence bounded
from below by 1 — A, it follows that

nlggo T2jt(2k42)+(2k+2)n—20 = La2j_21 € (1 — A, 00)
and

Laj+1

Lajrr = A4 Lojo

So, as Laj4+1 > 0, we see that
1<A+4+ Ly =1
which is a contradiction.
Thus it is true that for each 0 < j <k, £5j41 =0, and so
lim z9,41 = 0.
n—oo
We now claim that for each 0 < j <k, La; = 0.

For the sake of contradiction, suppose there exists j € {0,1,...,k} with

[:2]' € (1 — A,OO).
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+ A + Ln—21
Then
. . Z2j+(2k+2)n Lo;
Lo; = lim xy; » = lim _ =2
2T oo T RREAT(RE) n—00 A + Toji (2k+1)+(2k+2)n—21 A
and so
A=1
which is a contradiction. Hence
lim x5, = 00
n—oo
and the proof is complete. I

5.3.6 The Trichotomy Result for Eq.(5.13)

The following theorem is the main result of this section.

THEOREM 5.12
Let o and A be non-negative real numbers. Setd =k + 1 if a =0, and set
d=gcd(k+ 1,21+ 1) if a > 0. Then the following statements are true:

1. Suppose A > 1. Then every solution of Eq.(5.13) converges.

2. Suppose A = 1. Then every solution of Eq.(5.13) converges to a periodic
solution of Eq.(5.13) with period 2d, and there exist periodic solutions
of Eq.(5.20) with prime period 2d.

3. Suppose 0 < A < 1. Then there erist unbounded solutions of Eq.(5.13).

PROOF  The proof follows by Theorems 5.5, 5.8, 5.9, 5.10, and 5.11.  [I

_ YTp—(2k+1) T Tn—2

.4 The E i 1 =
5 e Equation z,, 4, Ato

In this section we study the global behavior of the difference equation

:U  YTn—(2k+1) T Tn—21
1=
s A4z, o

where k£ and [ are non-negative integers, v > 0 is a positive parameter, A
is a non-negative parameter, and the initial conditions are non-negative real
numbers chosen such that 0 < A + z,_9; for all n > 0.

., n=0,1,... (5.20)

The case k = 0 and | = 1 was investigated in [23] and [59].
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5.4.1 Attracting Intervals of Eq.(5.20)

We first establish the fact that every non-negative solution of Eq.(5.20)
eventually enters and remains in the interval [0,1) when 0 < v < A, and
that every positive solution of Eq.(5.20) eventually enters and remains in the
interval (1,00) when 0 < A < 7.

The following lemma, the proof of which is straightforward and will be
omitted, gives three identities that will be useful in the study of Eq.(5.20).

LEMMA 5.8
Suppose v > 0 and A > 0 are positive real numbers, and let {x,}5> _,- be a
non-negative solution of Eq.(5.20). Then the following statements are true:

; 1 v [xn—(2k+1) - %] ;i 0 n>0

R or all n > 0.

+ A + Yn—21

(1- ) zp_o + V[T (2k41) — 1]
A + Tn—21

2. Tpy1— % = for all n > 0.

(v = A)zp_2k41) +[1 = Tn_(2k+1)]Tn—2
A+ Tn—21

3. Tyl — Tp_(2k41) =

for all n > 0.

LEMMA 5.9
Suppose that 0 < v < A. Let {z,}}2 _, be a non-negative solution of
Eq.(5.20), and suppose that there exists a non-negative integer N > 0 such
that
zny < 1.

Then
TNt(2k42)n <1 for all n > 1.

PROOF Observe that

YN + TN (2k+1)—21 < A+ TNyorny-a 1

TN+ (2k+2) =
TRk T A LN (2k-+1)—2 A+ TNkt -2

The proof follows by induction. I
THEOREM 5.13

Suppose that 0 < v < A. Let {z,}22 i, be a non-negative solution of
Eq.(5.20). Then there exists N > 0 such that

Tn, <1 for all n > N.
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PROOF Let M > 0. It follows by Lemma 5.9 that it suffices to show that
there exists nys > 0 such that z p (2p42)n,, < 1. For the sake of contradiction,
suppose that

THE EQUATION zp41 = 143

TM4(2k4+2)n > 1 for all n > 0.

Then, in particular, x5 > 1. Hence by Lemma 5.8.2, we see that x4 (2p42) > %,
and so by Lemma 5.8.1, we have x5; > % > 1. It follows by Lemma 5.8.2 that
A
$M+(2k+2)n > ; >1 for all n Z 0.

We claim that

; < ZM4(2k+2)(nt+1) < TM+(2k+2)n for all n > 0.
Indeed, by Lemma 5.8.3, given n > 0,

TM > TM4(2k+2) > > TMA(2k+2)n
and the proof of the claim follows by induction.
Thus there exists L > % > 1 such that
nlg%o TM4(2k+2)n = L.

Now for n > 0, we have

a: YT MA2k+2)n T T MA(2k+2)n+(2k+1)—21

M+(2k+2)(n+1) =
+EEED D) A+ Ty (2k42)nt(2h41)—21
from which it follows that
YT M4@k+2)n — ATMy(2k42)(nt1)
LM (2k4+2)n+(2k+1)—21 = 1 .
TMA(2k+2) (n+1) —
Hence as L > 1 and v < A, we have
. _Liv—-4)
1}1—>H;o TM+@h+2)nt+ k1) -2 = —f 7 < 0,

which is a contradiction, and the proof is complete. I

LEMMA 5.10
Suppose that 0 < A < 7. Let {x,}5° _ . be a positive solution of Eq.(5.20),
and suppose that there exists a non-negative integer N > O such that

Ty > 1.

Then
TN+ (2k4+2)n > 1 for all n > 1.
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PROOF Observe that

VYIN + TN4(2k+1)—2 S Y+ TN (2k+1)—2

=1.
A+ TN (2k41) -2 Y + TN+ (2k+1)—21

TN+ (2k+2) =
The proof follows by induction. I

THEOREM 5.14
Suppose that 0 < A < 7. Let {x,}52 _ . be a positive solution of Eq.(5.20).
Then there exists N > 0 such that

Tn>1 for all n > N.

PROOF We first consider the case A = 0.

In this case, Eq.(5.20) reduces to the equation

Ly _
Tppr = 1 4 L2n=CRHD 1, (5.21)

Tn—21
and so the result is clear.
We next consider the case A > 0.
Let M > 0. It follows by Lemma 5.10 that it suffices to show that there
exists nyr > 0 such that Zpq(ory2)n,, = 1. For the sake of contradiction,

suppose that
Tary(2k42)n < 1 for all n > 0.

In particular, 0 < zpr < 1. We also have zpry(ar42) < 1, and so by Lemma
A
5.8.1, we see that xp < ? < 1. It follows by Lemma 5.8.1 that
A
$M+(2k+2)n < ; < 1 fOI‘ all n 2 0
We claim that
A
0< T MA4(2k4+2)n < T M4 (2k+2) (n+1) < ? for all n Z 0.
Indeed, by Lemma 5.8.3, given n > 0,

O<zypy < Tar+(2k+2) < 7" < TM+(2k+2)n

and the proof of the claim follows by induction.
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Thus there exists L € (0, ;1—7] such that

lim $M+(2k+2)n =L.

n—00
Now for n > 0, we have

VYT M+(2k+2)n T T M+(2k+2)n+(2k+1)—21

z ntl) =
M+ 2k 2)(n+1) A+ YrM(2k+2)nt-(2k+1)—21

from which it follows that

YEM4(2k+2)n — ATM4(2k42)(nt1)

A _ =
M+(2k+2)n+(2k+1)—21 TM4(2k42)(n41) — 1

A
ThusasO<L§$<1andA<7,weseethat

_ Liy=4)
Jim 2t @rrnreky-a = — 7 <0,

which is a contradiction, and the proof is complete.

5.4.2 Stability Character of the Equilibrium Points

145

Z = 0 is an equilibrium point of Eq.(5.20) if and only if A > 0. Furthermore,
when v+ 1 < A, then & = 0 is the only equilibrium point of Eq.(5.20). How-
ever, when v+ 1 > A > 0, then Eq.(5.20) has the unique positive equilibrium

point =7y +1— A.

5.4.2.1 The Stability Character of the Zero Equilibrium & = 0 of

Eq.(5.20)

The following theorem describes the local stability character of the zero

equilibrium point of Eq.(5.20).

THEOREM 5.15
Let 0 < v and 0 < A. Then the following statements are true:

1. Suppose A > v+ 1. Then & = 0 is a locally asymptotically stable equi-

librium point of Eq.(5.20).

2. Suppose A =+ 1. Then & = 0 is a locally stable equilibrium point of

Eq.(5.20).

3. Suppose 0 < A <~y + 1. Then § = 0 is an unstable equilibrium point of

Eq.(5.20).
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PROOF The linearized equation of Eq.(5.20) about # = 0 is

1
Znt1 — %an(2k+1) - gFn-u o, n= 0,1,...

with characteristic equation

A+ %AK7(2k+1) _ %/\chzl —0.

It follows by Theorem 1.6 that £ = 0 is a locally asymptotically stable equi-
librium point of Eq.(5.20) when v+ 1 < A.

Let ¢: R — R be given by

_yK4+1 _ Yy K- (2k+1) _ 1 ko
c(\) = A R R
A— 1
Note that if 0 < A < y+1, then ¢(1) = A-(+1)

we see that ¢ has a positive root greater than 1. It follows by Theorem 1.1
that § = 0 is an unstable equilibrium point of Eq.(5.20) when 0 < A < v+ 1.

< 0,and soas lim ¢(\) = oo,
A—00

Finally, suppose A = v + 1. We shall show that & = 0 is a locally stable
equilibrium point of Eq.(5.20). Let ¢ > 0, and suppose that {z,}22 _, is a
non-negative solution of Eq.(5.20) such that

0<2z_ k<0< 2 k41<¢g,...,0<zy <e.
It suffices to show that 0 < z1 < . Now

X_ +x_ X _ +x_
0< 2 = VT—(2k+1) 21 < YT (2k+1) A _yEte _ N 0
Y+ +z o v+1 7 +1

THEOREM 5.16
Let v and A be positive real numbers such that v+ 1 < A. Then £ =0 is a
globally asymptotically stable equilibrium point of Eq.(5.20).

PROOF We know by Theorem 5.15 that Z = 0 is a locally stable equilib-
rium point of Eq.(5.20), and so it suffices to show that Z = 0 is a global at-
tractor of Eq.(5.20). So let {z,}22 _, be a non-negative solution of Eq.(5.20).
It suffices to show that nh_)rr;o z, = 0. We distinguish between the following two
cases.

Suppose A > v + 1.
Observe that for all n > 0, we have

.  YTp—(2k+1) T Tn—2
1=
n+ Atz, o

o 1
< {Tn-(2k+1) T Z T2
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Let {z,}22 i be the solution of the difference equation
=2 +1 =0,1 (5.22)
Zn41 = Azn,(2k+1) Azn_2l , n=u1,... .
with initial conditions z_x = x_x,2—x41 = T—K+1,- - -, 20 = Zg. It follows by

Theorem 1.7 that
Tn < Zn for all n > —K.

Now by Theorem 1.6, we see that

lim 2z, =0
n— o0

and thus that it is also the case that

lim z, =0.
n— oo

Suppose A = v + 1.
Now A =~ +1 > ~, and so by Theorem 5.13, there exists N > o such that

T, <1 for all n > N.

Thus we see that

1
S =limsupz, <1< l

n— o0 Y

It follows by Theorem 1.8 that there exists a solution {L,}32__ of the dif-

ference equation

—0o0

VZn—(2k+1) T Zn—21
A+ 2y o

Znt1 = , ne{..,-1,0,1,...}

with Ly = S such that
0<L,<S forall ne{..,—1,0,1,...}.

1
Note that as S < L, we have
v

YL_(2k42) + L_(2141) < YS+Logy _ (v+1)S

S=1Ly= ;
0~ (y+1) + L_(41) Y+ +L_ 41y ~ (y+1)+ S

This implies that
(Y+1)S+8*<(v+1)S

and so S? < 0. Hence S = 0, and so the proof is complete. I
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5.4.2.2 The Stability Character of the Positive Equilibrium Z of
Eq.(5.20)

Recall that there exists a positive equilibrium point Z of Eq.(5.20) if and
only if 0 < A < v+1, and that if 0 < A < v+ 1, then the positive equilibrium
point Z of Eq.(5.20) is

T=7+1-A.

The following theorem describes the local stability character of the positive
equilibrium point Z of Eq.(5.20).

THEOREM 5.17
Suppose 0 < v and 0 < A < v+ 1. Then the following statements are true:

1. The positive equilibrium point T of Eq.(5.20) is locally asymptotically
stable when
y—1<A<y+1.

2. The positive equilibrium point T of Eq.(5.20) is an unstable equilibrium
point whose characteristic equation has at least one root with modulus
less than 1 and at least one root with modulus greater than 1 when

0<A<y-1.

PROOF The linearized equation of Eq.(5.20) about the positive equilib-
rium Z is

Zn—(2k+1) T Z/ﬁznfﬂ =0 , n=0,1,... (5.23)

~
Zn41 v +1
with characteristic equation
A+ _ v AC—(2k+1) 7= A)\IC—ZI —0.
7+1 y+1

Suppose Y —1 < A <vy+ 1.
Then it follows by Theorem 1.6 that Z is a locally asymptotically stable
equilibrium point of Eq.(5.20).

Suppose 0 < A <~y —1.
Let ¢: R — R be given by

c(\) = A+ 2 AC—(@k+1) 7= A)\chzz‘
v+1 vy+1
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Then |¢(0)] < 1 and )\lim ¢(—1)c(A) = —oo. It follows that there exists a
——00

THE EQUATION zp41 = 149

root A\; with |A;] < 1 and a second root Ay with Ay < —1, and so the proof is
complete.

THEOREM 5.18

Let 0 <y and 0 < A, and suppose that v —1 < A < v+ 1. Then the positive
equilibrium point T of FEq.(5.20) is globally asymptotically stable with basin of
attraction the eventually positive solutions of Eq.(5.20).

PROOF We know by Theorem 5.17 that Z is a locally asymptotically
stable equilibrium point of Eq.(5.20). Let {z,}32 . be a positive solution of
Eq.(5.20). It suffices to show that

lim z, = T.
n—o0

The proof of Theorem 5.18 is a direct result of the following five lemmas.

Let g : (0,00)2 — (0, 00) be given by

_yu+twv
T A+vu”

9(u,v)
Then
Tny1 = 9(Tn—(2k41), Tn—2)  forall  n>0.

The proof of Lemma, 5.11 follows by a simple computation and will be omitted.

LEMMA 5.11
Suppose v and A are positive real numbers. Let u,v € (0,00). Then the
following statements are true:

Jg

1. — .
6u(u,v) >0
A
2. 9 (y0) = 77(7 ~u)
TovT (A+wv)? -~
LEMMA 5.12

Suppose v and A are positive real numbers such that v < A < v+ 1. Let
m € (0,Z], and suppose that u,v € [m,1]. Then g(u,v) € [m,1].

PROOF Notethatasy<A<~y+1,wehaveZ=v+1—-A4¢€ (0,1).
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Now, v < A and u,v € [m, 1], and so by Lemma 5.11

yu+v _ y+w v+1
= < <1.
A4+v —A+v ~ A+1

0 < g(u,v)

Asm < =~v+1- A, it follows that m < g(m,m). Finally, v < A and
u,v € [m, 1], and so again by Lemma 5.11, we see that

g(m,m) < g(u,v)

and thus the proof is complete. I

LEMMA 5.13
Let v and A be positive real numbers such that v < A <~y + 1. Then

lim z, = Z.
n—00

PROOF By Theorem 5.13, there exists N > 0 such that 0 < z, < 1 for
all n > N. Let m = min{Z, zN,ZN+1,.-.- TN+ }- It follows by Lemma 5.12
that 4

0<m <liminfz, <limsupz, <1< —.
n—0o0 n—00 Y
Set I =liminf,,_,. y, and S = limsup,,_, ., Yn- It suffices to show that I = S.
By Theorem 1.8, there exist solutions {I,} and {Sp}2 of the dif-

oo
n=—oo n=—oo
ference equation

_ YZn—(2k+1) T Zn-21

z = , ned..,—10,1,...
nH A+ 2, 9 { }

with Ipn = I and Sy = S such that for alln € {...,-1,0,1,...},
I<I,<S and I1<S5,<8S.
Thus by Lemma 5.11

Y _(2ky2) + 1_(2141) S Y+ 12141 S NI+T  (y+1)I

I=1I,= =
° A+T (2141 T A+T () T A+I A+1T
and
g_g — YS_(2k+2) + S—(2+1) < S+ S (41 < ¥S5+S5 _ (v+1)S
° AT S o1y A+ S 4y A+S T A+S
Hence
S<y+1-A<I
and the proof is complete. I
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LEMMA 5.14
Let v and A be positive real numbers such that A =~. Then

lim z, = T.
n—oo

PROOF Since v = A, we see that Z = 1. Now by Lemma 5.8 we have

Y (wn—(2k+1) - 1)
Y+ Tn2

Tpt1 — 1= forall n>0

and

(1- xnf(2k+1))$n—2l
Y+ Tn-2

Tnt1 — T (2k41) = for all n>0

from which it follows that {z,}32 , converges to a positive periodic solution
{#n}22 i of Eq.(5.20) with period 2k + 2.

Suppose 0 < j < 2k + 1. Then

2 (akgn) = 21 = VZj-(2k+1) T Zj—2
j—(2k+1) = <j+1 —
J Y+ Zj—a

and thus
VZj—(2k+1) T Zj—21%j—(2k+1) = VZj—(2k+1) T Zj—21-
Hence
Rj—21%j—(2k+1) = Zj—21-
It follows that z;11 = 2;_(2x41) = 1, and so we see that

lim z, = 1. I
n—o0

LEMMA 5.15
Let 0 <y and 0 < A, and suppose that v —1 < A <. Then

limsupz, < ——.
n—>oop n_A+1—’)’

PROOF By Theorem 5.14, there exists N > 0 such that
Tp>1 for all n > N.
Note that for n > N + K, it follows by Lemma 5.11 that

B . Y e L T 2 Bk S B o
R IS A+1 T AUk T T
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Let {z,}22 5 be the solution of the difference equation

1

Y
Znbl = ] Pn(2k41) + ari "7 0,1,... (5.24)

with initial conditions 2y = TN, 2N+1 = TN41,- - -, ZN+K = EN+K-
It follows by Theorem 1.7 that

Tn < Zn for all n > N.

Hence 1

Bmsupen < M0 = 41—
and the proof is complete. I
LEMMA 5.16

Let 0 < v and 0 < A, and suppose that v — 1 < A < . Then

lim z, = 7.
n—0o0

PROOF By Theorem 5.14 and Lemma 5.15, we have

1 <liminfz, <limsupz, < —.
= nse T n—>oop n_A+1_’Y

Set I =liminfz, and S = limsup z,. It follows by Theorem 1.8 that there

n—00 n—00

exist solutions {I,}22 . and {S,}52_ of the difference equation

o= PEn—(2k41) + Zn—21
1=
mr A + Zn—21

, ne{..,-1,0,1,...}

with Ipn = I and Sy = S such that for alln € {...,-1,0,1,...},

I<I,<S and I<S,<S8S.
. A
Since 0 < ; < 1, we see by Lemma, 5.11 that

_ ey H iy AL+ S

I=1,=
0 A+I_(2l+1) - A"—S
and s +S S+T
S=28,= VO —(2k+2) —(2141) < ¥ + .
A+ S_(2l+1) A+1T
Hence

AI+IS>~I+8
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and
AS+IS<~S+1I.
Thus we have
YI+S—-AI<IS<~S+1-AS
and hence
[A-(y-DIS<[A-(y- DI
Therefore, I = S, and the proof is complete. I
The proof of Theorem 5.18 is now complete. I

5.4.3 Periodic Solutions of Eq.(5.20)

THEOREM 5.19

Suppose that v = A+ 1. Then every eventually positive solution of Eq.(5.20)
converges to a positive periodic solution of Eq.(5.20) with period 2 - gcd(k +
1,2l + 1), and there exist positive periodic solutions of Eq.(5.20) with prime
period 2 - ged(k + 1,20+ 1).

PROOF Since vy = A+ 1 > A, we see by Theorem 5.14 that every
positive solution of Eq.(5.20) eventually enters and remains in the interval
(1,00). Hence the change of variables

Tn =142,
reduces Eq.(5.20) to the equation

1
37 T Zn—(2k+1)

, n=20,1,...
142z, 9

Zn41 =
with positive initial conditions. The proof follows by Theorem 5.5. I

5.4.4 Existence of Unbounded Solutions When v > A +1

In this section, we show that there exist unbounded solutions of Eq.(5.20)
when v > A + 1.

THEOREM 5.20
Suppose v > A+ 1. Then there exist solutions of Eq.(5.20) which are not
bounded.
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PROOF Let rbe the largest non-negative integer such that 0 < 2r+1 < K,
and let s be the largest non-negative integer such that 0 <2s < K.

Let {2,}5>_x be a solution of Eq.(5.20) such that the initial conditions are
as follows:
1< _(2r41);T_(2r—1)5-+-,T-1 <7 — A

_A 2
,57_17_)14 S Zo25,T (25-2)5--+,%0-

and

Then it suffices to show

lim 25, = and lim z9,41 = 1.
n—o0 n—0oo
Note that 4 e
0 S — <1< u
¥ y-1-A

It follows by Lemma 5.10 that
Tp >1 for all n > K.

Set m = min{k, !}, and note that
2m— (2k+1)<2k—-2k—1=-1 and 2m—-20<20-2[=0
and so for 0 < j <m — 1, it follows by Lemma, 5.11 that

(y=4)*

i i —A)+ 2_~yA—A
1< 221 = VP2j= k) ¥ Taj o < 10 ) X;PA = (y—A) (72 . )
A+ oo A+SY__T)A 2 —~vA—A
and
YE2j—2k + Taj—(2-1) _ VT2j2k + (7 —A) _ yToj 2k +1
Toiro = > > = ZToi_9ok+—.
2+2 A+.Z'2j_(21_1) A+’Y— A Y 2j—2 Y
Note also that we have
_A)?
o YTam—(2k+1) T Tam—21 < vy —A4) + 9_1_),4 = (y—4) Y2—qyA-A A
mt A+ Tom - A4 =42 2 —yA— A

y—1—A
and since 2m — (21 — 1) < 2m + 1,
YT2m—2k + Tam—(20-1) S JTam—2k +(y—4) S YTam—2k + 1

Tamir = A+ Zam (211 N A+vy-A Y B w2m72k+;'
It follows by induction that

lim 25, =

n—oo
from which the proof follows. I
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5.4.5 The Trichotomy Result for Eq.(5.20)

THE EQUATION zp41 = 155

The following theorem is the main result of this section.

THEOREM 5.21
Let v be a positive real number and A a non-negative real number. Then the
following statements are true:

1. Suppose that v+ 1 < A. Then every solution of Eq.(5.20) converges to
Z2=0.

2. Suppose v —1 < A < v+ 1. Then every eventually positive solution of
Eq.(5.20) converges toT =+v+1— A..

3. Suppose A =~ — 1. Then every eventually positive solution of Eq.(5.20)
converges to a positive periodic solution of Fq.(5.20) with period 2 -
ged(k+1,20+ 1), and there exist positive periodic solutions of Eq.(5.20)
with prime period 2 - ged(k + 1,21 4+ 1).

4. Suppose 0 < A < v — 1. Then there exist solutions of Eq.(5.20) which
are not bounded.

PROOF The proof follows by Theorems 5.16, 5.18, 5.19, and 5.20. (

5.5 The Remaining Cases of Eq.(5.1)

In this section we establish Theorem 5.3 for the remaining cases of Eq.(5.1).

Recall that a + v+ 0 > 0.

55,1 The Case y=6=A=0
Suppose ¥ =& = A = 0. Then Eq.(5.1) reduces to the equation
Tpp1 = — . n=0,1,... (5.25)

Tn—21

every positive solution of which is periodic with period 2(2! + 1), and there
exist positive periodic solutions of Eq.(5.1) with prime period 2(20 + 1).

5.5.2 The Case y=0and §+A4 >0
Suppose ¥ =0 and § + A > 0. Then Eq.(5.1) reduces to the equation

a+0Tn_9

QT 9Tn—2 n=0,1,.... 5.26
A4 xp_o (5:26)

Tnt+1 =
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which decomposes into 2/ + 1 equations, each of which is essentially a Riccati
equation with Riccati number

0A —« 1
R=Grae <1

and so it follows that every positive solution of Eq.(5.26) converges to the

equilibrium point
0—A++/(0—A)?2+4a
7 .

xr =

See [57].

5.5.3 The Case v >0
5.5.3.1 TheCasea=06=A=0
Suppose ¥ > 0 and @« = § = A = 0. Then Eq.(5.1) reduces to the equation

an:%;(%’;fl) . n=0,1,.... (5.27)

The substitution z,, = e** in Eq.(5.27) yields the equation

Zn+1 + 2p_91 — Z’n—(2k+1) =0 ; n = 07 1, . (528)

with characteristic equation

NCHL | \K=21 _ K= (2k+1) _ . (5.29)

Since Eq.(5.29) has a negative real root Ay < —1, it follows that there exist
positive solutions of Eq.(5.27) which are neither bounded nor persist.

5.5.3.2 The Casea=0d=0and A >0

Suppose v and A are positive real numbers and o = § = 0. Then Eq.(5.1)
reduces to the equation

_ VTn—(2k+1)

= =0,1,... .
Tn+1 A T, o n 5 4y (5 30)

The change of variables z, = vy, transforms Eq.(5.30) into the equation

_ Yn—(2k+1)

Ynt1 = ,n=20,1,... (5.31)
" %+yn—2l

which was treated in Theorem 5.11.
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5.5.3.3 The Casea=A=0and § >0
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Suppose v and § are positive and @« = A = 0. Then Eq.(5.1) reduces to the
equation
Ty + 02—
PR o L el P S T (5.32)

Tn—21

which was treated in Theorem 5.21 (with A = 0).

5.5.34 The Case d = A=0and a >0
Suppose v and « are positive and 6 = A = 0. Then Eq.(5.1) reduces to the

equation

+ YT, —
Tpg1 = %{;MH) , n=0,1,... (5.33)

which was treated in Theorem 5.10 (with A = 0).

5.5.3.5 The Case @ =0 and 4, A € (0,00)
Suppose v, d, A are positive and a = 0. Then Eq.(5.1) reduces to the equa-

tion
- _ VTn(2k41) + O0Tn_n
e A+ Tn—21

which was treated in Theorem 5.21.

., n=0,1,... (5.34)

5.5.3.6 The Case § =0 and a, A € (0,00)

Suppose v, a, A are positive and § = 0. Then Eq.(5.1) reduces to the equa-
tion
O+ YTy (2k+1)
Tpy1 = ————=CkD 0~ 0,1, 5.35
o A + Tn—21 ( )

which was treated in Theorem 5.12.

5.5.3.7 The Case A =0 and o, 4 € (0,00)

Suppose A = 0 and «,7,0 are positive. Then Eq.(5.1) reduces to the
equation

a+ YT, — + 0z
Ty = 0n (;’”;) 2 n=0,1,.... (5.36)
e

The change of variables z;, = dy,, transforms Eq.(5.36) into

3+ FYn— + Yn—
Yopr = £ 09 y@’““’ Yoz p=o1,.... (5.37)
n—21
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Therefore, given n > 0, we have

a v
5 + Eyn—(2k+1)yn—2l0
>

Yn+1 — 1=
and so we see that y,+1 > 1. We next make the change of variables
Yn =2p +1 for n>1,

which reduces Eq.(5.37) to

(5 +3) + F2n—(orr)
1+ zp_o

Zng1 = ., n=12.... (5.38)

Finally, we make the change of variables z, = %wn, which transforms Eq.(5.38)
into the equation
(% + %) + Wr—(2k+1)

)
5t Wn—2

Wnp4+1 = , n = 1,2,... (539)

which was treated in Theorem 5.12.

5.5.3.8 The Case «,9, A € (0,00)

Let {z,}22 _, be asolution of Eq.(5.1). Note that without loss of generality,
we may assume that z, > 0 for all n > —K.

Case 1.  We first consider the case a < (v + §) A.

Let 7 be the positive root of the equation
2+ (y+d—At—a=0.
Let h: R — R be given by
ht)=t*+(y+6— At —a.

Then as
h(A)=A?+ (y+5—-A)A-a>0

it follows that r < A.

For n > —K, set
Tp+T

d+r

Wnp =

Then it follows that

5 Wi (2k+1) T Wn—21
Wn+1 = A—r
S+7r + wn72l

for all n=20,1,....
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+ A + Tn—21
Let A
5y -7
sy md Q=5
Then {wy,}52 _x is a positive solution of the difference equation
Pzp_(2k+1) + Zn—21
Zn+1 = , n=0,1,...
+ Q + Zn—21
where P > 0 and Q > 0.
Consider the difference equation
PYn—(2k+1) + Yn—21
Ynt1 = ; n=20,1,... (5.40)

q+Yn—2
where p > 0, ¢ > 0, and the initial conditions are non-negative.

It follows by Theorem 5.21 in Section 5.4 that the following statements
are true:

1. Suppose that p + 1 < ¢q. Then every non-negative solution of
Eq.(5.40) converges to § = 0.

2. Suppose p—1 < ¢ < p+ 1. Then every eventually positive solution
of Eq.(5.40) convergesto y =p+1 —gq.

3. Suppose p — 1 = ¢q. Then every eventually positive solution of
Eq.(5.40) converges to a periodic solution of Eq.(5.40) with pe-
riod 2d, and there exist periodic solutions of Eq.(5.40) with prime
period 2d.

4. Suppose 0 < g < p— 1. Then there exist positive unbounded solu-
tions of Eq.(5.40).

Note that
0<Q<P+1 ifandonlyif —— <« -—T 4+1
- Y o+r o+r
A~y
if and only if +‘5 <r
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and so we see that it is always the case that

0<9<P+1.

We also have

P-1<Q if and only if

and so we see that

P-1<Q ifandonlyif ~<d§+A.

It follows similarly to the above that
P—-1=Q ifandonlyif ~vy=§+4

and
0<Q<P-1 ifandonlyif ~>d+a.

Case 2.  We next consider the case a > (y + ) A.

For n > 0, we have

(= 0A) +VTn (2841
A + Tp—a1

Tnt1 —-6=

and so
Tp, >0 forall n>1.

For n > —K, set
Wy, = Ty — O.

Then it follows that

atnd-A0 o Wn—(2k+1) for all 0.1
w 1= n=4u.1l,
i % + Wyp—9;
Let
p= a+ v — Ad _ A+9

Then {wy,}52 _ i is a positive solution of the difference equation

P+ wn—(2k41)
Q+ wp-2

where P > 0 and Q > 0.

Wni1 = ) n=20,1,....

Copyright © 2005 CRC Press, LLC



a+ VYTn—(2k+1) T 0Tn—2

THE EQUATION xp41 = 161
+ A + Tn—21
Consider the difference equation
+ Yn—
Yy = D n=@ERD g (5.41)

q+Yn—2au
where p > 0, ¢ > 0, and the initial conditions are positive. Note that

l-g+v(1—-g?*+4p
5 .

Eq.(5.41) has the unique equilibrium point § =

It follows by Theorem 5.12 in Section 5.3 that the following statements
are true:

1. Suppose ¢ > 1. Then every solution of Eq.(5.41) converges to .

2. Suppose ¢ = 1. Then every solution of Eq.(5.41) converges to a pe-
riodic solution of Eq.(5.41) with period 2d, and there exist periodic
solutions of Eq.(5.41) with prime period 2d.

3. Suppose 0 < g < 1. Then there exist positive unbounded solutions
of Eq.(5.41).

The proof of Theorem 5.3 is now complete.

5.6 Open Problems and Conjectures

In many sections throughout this book we have discussed the periodic na-
ture of the solutions of rational difference equations of the form
a+ aoTp + -+ ApTn—p
b+ boxn + -+ bpTp_s

with non-negative parameters and non-negative initial conditions.

Tny1 = ., n=0,1,... (5.42)

A thorough investigation of the periodic character of the solutions of Eq.(5.42)
for all values of the parameters and all possible initial conditions is a problem
of paramount difficulty whose complete solution we may not see in our lifetime.

Eq.(5.42) offers a rich potential for serious research investigation. Through-
out this book we have posed several open problems and conjectures dealing
with various special cases of Eq.(5.42) which we believe will result in some
deep and beautiful results on the long-term character of solutions of such
equations.

When is every solution of Eq.(5.42) periodic?
When does every solution of Eq.(5.42) converge to a periodic solution?

When is every non-equilibrium solution of Eq.(5.42) periodic with prime
period p > 17
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When does Eq.(5.42) possess a unique p-cycle?

When does Eq.(5.42) possess a finite number of periodic solutions with
distinct prime periods p > 17

Can Eq.(5.42) possess a p-cycle and a ¢-cycle when p and g are relatively
prime integers greater than one?

When Eq.(5.42) possesses a unique p-cycle, when does every solution of
Eq.(5.42) converge to the equilibrium or the p-cycle?

What is it that makes every solution of Eq.(5.42) converge to a periodic
solution?

Recall the trichotomy results, Theorems 5.1 and 5.2, respectively, for Egs.(5.2)
and (5.3).
Another trichotomy result was recently established for the equation

o+ YTr_1
A+ Bz, + Dx,_-

Tnt1 = , n=20,1,.... (5.43)
See [24]. More precisely, the following result is true when y+ A+ B > 0:
1. Every solution of Eq.(5.43) has a finite limit if and only if

v < A
2. Every solution of Eq.(5.43) converges to a period-two solution of Eq.(5.43)
if and only if v = A.

3. There exist positive unbounded solutions of Eq.(5.43) if and only if
v > A

These equations are special cases of the third-order rational difference equa-
tion

a+ BTy +YTn 1+ 0T o
A+ Bz, + Dx,_» ’

Tpi1 = n=0,1,... (5.44)

with non-negative parameters and with non-negative initial conditions. See

[20].
One can see that Eq.(5.44) possesses prime period-2 solutions if and only if

y=p8+0+A (5.45)
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OPEN PROBLEM 5.1
Obtain necessary and sufficient conditions on a,,7,6, A, B, and D so that
Eq.(5.44) possesses the following trichotomy:

(i) Every solution of Eq.(5.44) has a finite limit if and only if

y<B+6+ A

(11) Every solution of Eq.(5.44) converges to a (not necessarily prime) period-
two solution of Eq.(5.44) if and only if

y=pF+6+ A

(i13) Eq.(5.44) has positive unbounded solutions if and only if

v>pB+6+ A

CONJECTURE 5.1
Show that when
y>B+0+A4

Eq.(5.44) has both bounded and unbounded solutions, and that every bounded
solution of Eq.(5.44) converges to an equilibrium point of Eq.(5.44).

OPEN PROBLEM 5.2
In the special case of Eq.(5.44) where

=0 and B+d+A>0

under what additional conditions on «a, 8,9, A, B, and D is it true that every
solution of the equation
a+ B, + 6r,_o

Tn+1 A+an +D$n72 ) n s 4y ( )

has a finite limit?

Note that in the special case where
v=0 and B+d+A=0
Eq.(5.44) reduces to

[e%

- =0,1,... 5.47
B$n+D$n_2 ) n PSS ( )

Tn+1 =
for which Statement (ii) of Open Problem 5.1 is true if and only if

B> 0.
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In the special case of Eq.(5.46) where
B=A=D=0 and a>0

a necessary and sufficient condition for period-2 trichotomy is § = 0. When
& > 0, the resulting equation is of the form

Yo = 2TY2 01, (5.48)

Yn

with p > 0, for which it was shown in [21] that every positive solution of
Eq.(5.48) converges to a period-5 solution if and only if p = 1. See also [18].
In [18], the following results were also established about the positive solutions
of Eq.(5.48).

1. Every positive solution of Eq.(5.48) converges to the equilibrium if p > 2.

2. Eq.(5.48) has positive unbounded solutions if and only if p < 1.

CONJECTURE 5.2
Show that when

1<p<?2

every positive bounded solution of Eq.(5.48) converges to the equilibrium of
Eq.(5.48).

OPEN PROBLEM 5.3
Assume that

y=B8+d+A , A>0 and B+ D >0.
Is it true that every solution of Eq.(5.44) converges to a period-2 solution?

In light of the above discussion in this section, the remaining cases of
Eq.(5.44) are the following 28 equations with positive parameters. For each
of these equations, the question of paramount importance is whether the tri-
chotomy result, and in particular the result on period-2 convergence, is true.
When the trichotomy result fails to hold, what is the region of parameters
where local asymptotic stability of the equilibrium implies global asymptotic
stability? See [20] and [22].
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Tyl = at o+ 7::"71 022 , n=0,1,... (5.49)
n

oy = 2T +;:_”2‘1 FoTn-z 01 (5.50)
gy = 2B J:ﬁf;l Tz L 01, (551)
onyr = 2 ﬂxnzli;:l; On—2 01, (5.52)
gy = 2T 5?37: 1:”5;2:5”:”*2 . n=0,1,... (553
npr = 2T fi" ;;ﬁg;ff"” . n=0,1,... (5.54)
Fnpr = 25 52’:27“"‘1 . n=0,1,... (555
Ty = & +§ﬁt‘;jz’”‘1 . n=01,... (5.56)
Tpy1 = a;mimi j);:j; . n=0,1,... (557
Tpg1 = j:gzz i ’Z)m:n__lz , n=0,1,... (5.58)
gy = EF DT £ 0Tz (5 59)

T
Tnpr = 25 7”}:;5”3"‘2 . n=01,... (5.60)
gy = EETm1 0T (56

Bz, +Dx, >

a4+ YL, 1+ 0Ty 2
n = 5 = ,1,... .62
Tl = A By, + Dans n=0 (5.62)

n n— 5117
T = P2 +7$$1+ T2 p=0,1,... (563
n

IR I
wn+1=ﬂx"+7“;" L ¥ 00— , n=0,1,... (5.64)
n—2
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BT + YTn—1 + 0Tpn_2

Tpt1 = Ata, , n=0,1,... (5.65)
Tpg1 = ban +XT;1:Z6$"_2 , n=0,1,... (5.66)
Tpyq = D%n z;rng::;;jn_2 . n=01,... (5.67)
Zppy =2 2"j;;’:: Z;j:fj . n=0,1,... (5.68)
Tpt1 = Bon + 101 , n=0,1,... (5.69)

Tn—2
P % , n=0,1,... (5.70)
Tny1 = % . n=01,... (571
Tot1 = f”;;t 1””{;;272 . n=0,1,... (5.72)
Tpa1 = Y1+ 00n 2 , n=0,1,... (5.73)

T

Ty = % . n=01,... (5.74)
Tpt1 = % , n=0,1,... (5.75)
Bpyy = Tn=tF OTns . n=0,1,... (5.76)

A+ Bz, +Dx,_o
OPEN PROBLEM 5.4

For those cases among FEqs.(5.49) through (5.76) where
y<B+6+A

is mot a necessary and sufficient condition for the local asymptotic stability of
the equilibrium of Eq.(5.44), determine the region of local asymptotic stability,
and in particular the value v* > 0 (if it exists) such that the equilibrium of
the equation is locally asymptotically stable for

Y <y<B+I+ A
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0<y<y*

and the trichotomy behavior in the interval [y*, 00).

OPEN PROBLEM 5.5

When does the difference equation

a+ Br, + YTp—1 + 0Lpn_9
A+ Ty + Tp—o

Tpy1 = , n=0,1,... (5.77)
possess the following period-2 trichotomy?
(i) Every solution of Eq.(5.77) has a finite limit if and only if

y< B+6+ A

(11) Every solution of Eq.(5.77) converges to a period-2 solution if and only
if
Yy=B8+0+A

(i5) Eq.(5.77) has positive unbounded solutions if and only if

v>pF+0+ A

CONJECTURE 5.3
Show that except for Eqs.(5.2), (5.3), and (5.43), no other special case of

Eq.(5.44) may possess the trichotomy character described in Open Problem
5.1.

OPEN PROBLEM 5.6
Consider the rational difference equation

a+ Bry +YTp—1 + 0Tp_2
A+ Bz, +Czyp_ 1+ Dxp_o

Tpt1 = , n=20,1,... (5.78)

with non-zero parameters and non-zero initial conditions. Let p be a given pos-
itive integer. Obtain necessary and sufficient conditions on p and the param-
eters of Eq.(5.78) so that every solution of Eq.(5.78) converges to a periodic
solution of with period p.

When p € {4,5,6}, the following are special cases of Eq.(5.78) where every
solution converges to a periodic solution with period p.
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Every positive solution of

fppr = ST IR I2 g (5.79)
Tn—-1

converges to a period-4 solution.

Every positive solution of

1+ @
$n+1:% . n=0,1,... (5.80)
n

converges to a period-5 solution.

Every positive solution of

1+ 2z,
=T =0,1,... 5.81
ot Tp-1+ Tp2 " ( )

converges to a period-6 solution.

OPEN PROBLEM 5.7
For p > 7, are there any non-trivial examples of Eq.(5.78) where every non-
negative solution converges to a periodic solution with period p?

OPEN PROBLEM 5.8

Assume that k,l,m are non-negative integers. Investigate the asymptotic be-
havior, the periodic nature, and the boundedness character of the solutions of
the difference equation

o+ YTn—(2k+1)
A+ an—Ql + ZTn—2m

Tnyl = , n=20,1,...
with non-negative parameters and non-negative initial conditions.

For the case k =1=0 and m = 1, see [24].

A period-2 convergence result and the existence of unbounded solutions
were recently established for the equation

a+ BTn + YTn—1 +0Tn_o
A+x,

Tnp1 = ., n=0,1,.... (5.82)

See [22]. More precisely, the following results were established.
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THEOREM 5.22
Assume that
y=p+d+A and B+ A>0.

Then every solution of Eq.(5.82) converges to a (not necessarily prime) period-
2 solution of Eq.(5.82).

THEOREM 5.23
Assume that
y>pF+6+ A

Then Eq.(5.82) has unbounded solutions. More precisely, let k be a number
chosen such that

O<k<y—p-6-4A
and let {z,}5° _, be any solution of Eq.(5.82) with

—A
x_2,%0 € (0,7 — A) and T_1 > %.
Then SA
lim z9,41 = 00 and lim zs, = 5’)’;
n—o0o n—so0o v — )

An obvious problem which was not investigated in [22] is the following:

OPEN PROBLEM 5.9
Investigate the character of the solutions of Eq.(5.82) when

y<B+d+ A
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Chapter 6

MAX EQUATIONS WITH
PERIODIC SOLUTIONS

6.1 Introduction

In this chapter we investigate the periodic character and the boundedness
nature of the solutions of some autonomous difference equations of the form

max {xk A}
= tvm] =0,1,... 6.1
Tn+41 -Z'lnxnfl y n ( )

where A is a positive real number, k¥ and [ are natural numbers, and where
the initial conditions 1 and zg are arbitrary positive real numbers.

As we saw in Section 2.7, these equations can be transformed into piecewise
linear difference equations of the form

k k
yn+1:§|yn|+(§—l>yn—yn—1+5 , n=0,1,...

where
k—=1-2 if A>1

—(k—-1-2)if A<
Eq.(6.1) was investigated in [43] and [67] when & = 1 and [ = 0, in [45]
when k =1and ! =1, in [32] when k¥ =2 and [ = 1, and in [69] when k =1
and I = 2. See also [13], [29], [31], [67], [68], [83], and [117].

. max {x,, A
6.2 The Max Equation z,4; = max {2, A}
Tn—1
Consider the difference equation
A
$n+1:M , n=0,1,... (6.2)

Tn—-1

171
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where the parameter A is a positive real number and the initial conditions
T_1,To are arbitrary positive constants. See [43] and [67].

The study of this equation was motivated by a problem in [42]. Given a
positive integer v, it was shown in [42] that every solution of

Qptv = Max{@ni1,Ani2, .-, 0niv-1,0} —an n=0,1,... (6.3)
with monotonic initial conditions {ag,a1,...,a,—1} is periodic with period
3v — 1. In particular, it follows that for v = 2, every solution of

Gnt2 = max{an41,0} —a, , n=20,1,... (6.4)

is periodic with period 5. The change of variables
Tp_1 = €% for n>0

reduces Eq.(6.4) to Eq.(6.2) with A = 1. This is the max variant of Lyness’
equation
T, + A

Tpy1 = , n=0,1,... (6.5)
Tn-1

every solution of which is periodic with period 5 if and only if A = 1. Eq.(6.5)
has been thoroughly investigated, and a wealth of information is known about
its solutions. See p.138 of [73], [74], and the references cited
within.

6.2.1 Boundedness and Persistence of Solutions

The following result shows that Eq.(6.2) possesses the invariant

1 1
max {1, }ma.x {1, —} max{A,Z,_1,%,} = constant for all n >0.
Tn—1 x

n

This invariant is an indispensable tool for showing, among other things, that
every positive solution of Eq.(6.2) is bounded and persists.

LEMMA 6.1
Let {x,}22_, be a solution of Eq.(6.2), and for n > 0, set

1 1
I, =max{1, }max{l,—}max{A,wnlmn}.
Tpn—1 T

n

Then I, = Iy for all n > 0.
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PROOF Observe that for n > 0,

1
max {1, }maX{A,xn,xn+1}
Tn+1

max {1 %7_1} max {max{wn,A}, w}

"max{z,, A} Tp—1

1
max{x,, A} max {1, }
Tp—1

{n)
{n)

:max{Li} max{max{A4,z,}, 7, 1}
{a)

T max{z,, A}
1 1
= max4 1, — » max{z,, A, 2, 1} maxq 1,
In Tn—1
=1,
from which the result follows. (

THEOREM 6.1
Every solution of Eq.(6.2) is bounded and persists.

PROOF The proof follows immediately from Lemma 6.1. I

6.2.2 Oscillation of Solutions

The proofs of the next two lemmas follow directly by computation.

LEMMA 6.2

Eq.(6.2) has a unique positive equilibrium point T. Furthermore,
1 if A<1

VA if A>1.

LEMMA 6.3

Let {z,}52 _; be a solution of Eq.(6.2), and suppose that there exists N > —1
such that ©,, = % for alln > N. Then z, = T for alln > —1.

In the following lemma, we describe the semi-cycle character of the solutions
of Eq.(6.2).
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LEMMA 6.4
Let {x,}52_; be a non-trivial solution of Eq.(6.2). Then the following state-
ments are true:

1. With the possible exception of the first semi-cycle, a positive semi-cycle
has at least two terms and the second term is greater than T.

2. Ewvery positive semi-cycle has at most four terms, and if a positive semi-
cycle TN_1, TN, TN41,ZN+2 does have four terms, then A <1 and

IN_1 =IN42 =T <IN = ITNy1-

3. If A > 1, then every negative semi-cycle has at most two terms. Fur-
thermore, if a negative semi-cycle has exactly one term and is preceded
by a positive semi-cycle with at least two terms, then the term imme-
diately preceding it is T, and the term immediately following it is also
Z.

4. If A <1, then every negative semi-cycle has at most three terms. Every
negative semi-cycle which follows a positive semi-cycle has exactly two
terms, and the second term is greater than or equal to the first term.

5. With the possible exception of the first semi-cycle, a positive semi-cycle
has the property that the mazimum term occurs in either the first or
second term, and the terms in the positive semi-cycle after the mazimum
are non-increasing.

PROOF

max{zy, A} S max{Z, A} :1_7

(i) Supposexzn_1 < Z < zn.Thenznii =
IN-—-1 x

(ii) Suppose Tn§_1,ZN,TN+1,ZN+2 € [T,00).
We claim that A < 1.
For the sake of contradiction, suppose A > 1. Then # = v/A > 1. Now

max{zy, A}
TN+1 = T

Suppose max{zy, A} = zx.

. . N
Then in particular, zxy > A. Now zx41 = , and so
TN-1
TN
. max{zny, A} M { o1’ A} max{zy,zNn_1A4}
N+2 = = = .
TN TN IN-1TN
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Suppose max{zy,zny_1A4} = zx. Then

N L o 1cx
IN4o = = < — T
+ IN_1ZN  TN-1 VA ’

which is impossible. Thus max{zy,zn_14} = zn_14, and so

VA <oy, = N4 4 g

TN-1TN TN

Hence zxy = v/A, which is also impossible because we have assumed
that zn > A > VA.

Thus we must have max{zy, A} = A.

Hence

\/Z S ENi1 = max{xN,A} _ A S \/Z

ITN-1 IN-1

and S0 TN_1 = TN41 = V/A. Therefore, as {zp}$_, is a non-trivial
solution of Eq.(6.2), we see that zn > V/A. Hence

N+2 TN TN IN ’

which is also impossible.

Thus we see that the claim is true, and so A < 1. In particular,
TN_1,TN,TN+1, LN+2 € [1,00).

Therefore,

max{zn,1} ( TN )
max{xN+1,1} o TN+1 TN_1 TN-1 1

1< IN42 =
- + TN N N N IN-1

and so we see that

IN_1 =2ZN42=1=1.
Hence
max{zy,1} TN
ITN+1 = = =N
TN-1 TN-1

and so, as {z,}%° _, is a non-trivial solution of Eq.(6.2), it follows that

IN-1 =2ZN42 =% <IN = TN41-
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(iii) Suppose A > 1, and that zx_1,zx € (0,Z). Then

TN-1 TN-1

IN41 =
and so 41 is the first term of a positive semi-cycle.

Suppose TN_1,ZN,LN+2 € [E,00) and 41 < Z. Then

\/ZSwmz:Ms A _ /A
N

N

and so
IN+2 = \/Z
In particular,
max{z A A
\/Z:,CL‘N+2 = —{ N+1) } = —
N N
and thus

IN = \/Z
(iv) Suppose A < 1.

We first suppose that zy_1,zx € (0,1). Then

. max{zn41, A} max{zn, A, xn_14}
N+42 = =
IN IN-1TN
max{zy, A TN 1 _
= {on, 4} > = >1=1
ITN-1TN ITN-1TN IN-1

and so every negative semi-cycle has at most three terms.

We next suppose xy < 1 < zxy_1. Then

max{zy, A} < 1

N1 = <L
ITN-1 TN-1
Also,
max{zy, A max{zy, A
$N+1: {Nﬂ }Z {Nﬂ }Z:L,N
IN_-1 1
and

max{x A T T

A x{zN11, A} S INHL S IN
N TN TN

and so every negative semi-cycle preceded by a positive semi-cycle has

exactly two terms, and the second term is greater than or equal to the

first term.
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(v) Suppose zy_1 < Z < zp.
By Statements (i) and (ii) of this theorem, it suffices to assume that zn
is the first term in a positive semi-cycle of length either two or three,
and to show that
IN42 < TNA1-

Case 1  Suppose A < 1.
Then £ = 1. Thus zxy_1 <1 <z, and so

max{zy, A} S IV

z = =z
N+1 P 1 N
and ( A)
max{zy x
INt2 = s = N < ITN41-
N N
Case 2 Suppose A > 1.
Then Z = VA, and so zn_1 < VA < zn.
Case 2 (a) Suppose zy > A.
Then
max{zy, A} TN
$N+1 = =
TN-1 TN-1
and so

max{zni1,A} max{zn,rN_1A}

ITN42 =
TN IN-1TN

Note that if zxy_1A > z, then as zx > A, we have
zn_14 A
.’L’N+2:N71=—S1<\/Z<$N+1
IN-1TN N
and so it suffices to consider the case zxy_1A4 < zn. Hence
N 1 N

TN42 = = < = TN41-
IN-1TN TN-1 ITN-1

Case 2 (b)  Suppose VA < zx < A.

Then
max{xn, A} A
$N+1 = =
IN-1 IN-1
and so
- _ max{zny1,A}  max{A,Arn_.}
N+2 = =
TN IN—-1TN
max{A, Azy_1} 1 zn_1
= ——————ITN41 — max§ —, ITN+1
SL'NA N IN
< TN41- |:|
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The next theorem follows immediately from Lemma 6.4.

THEOREM 6.2
Every non-trivial solution of Eq.(6.2) is strictly oscillatory about Z.

6.2.3 Periodicity of Solutions of Eq.(6.2)

THEOREM 6.3

Suppose A = 1. Let {z,}32_1 be a solution of Eq.(6.2). Then {x,}5> 4
is periodic with period 5. In fact, after re-labeling {x,}S> _,, if necessary,
{zn}52_; is of the following form:

1 1 1
r_1, g, L1 = ——, Ty = y, 3 = —, T4 =T -1, 5 = TLQy--- - (66)
Tr_1 r_1%9 o

PROOF  Let {yn}>2_4 be a solution of Eq.(6.2). Then

_ ma‘x{yoa 1}
Y )

Case 1  Suppose 0 < yo < 1. Then

1
Y= —
Y-
and
1
max{y—, 1}
Y2 =
Yo

Case 1(a)  Suppose 1 <y 1.
Then 0 < yo <1 <y_1, and so

1
ma,x{y—o,l} Y-1

1
Y2 = — ) Yys = 1 = —
Yo Py Yo
max 4 11
{ vo } max{y 1,1}
Y=——7 =Y ) Y= —3 — = Yo
y_o Yo

Therefore, if {z,}22_, is the solution of Eq.(6.2) with z_1 = yo
and z¢ = y1, then {z,}°L _, satisfies (6.6).
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Case 1(b)  Suppose 0 <y_; < 1.
Then 0 <y 1 <1 and 0 < yo < 1. Hence

1
max{y_lyo y 1} _ 1

1
Y2 = ) Y3=——31 = -
Y-1Y0 V-1 Yo
1
max {31} ma{y_1,1}
Ya = 1 =Y ) Ys = 1 =Yo
Y-1Y0 Yo

Therefore, if {z,}52 _; is the solution of Eq.(6.2) with z_; = y_1
and zg = yo, then {z,}22 ;| satisfies (6.6).

Case 2 Suppose 1 < yo. Then

Y-1
and
max { Yo 1}
Y
Y2 =
Yo
Case 2(a)  Suppose yo < y—_1.
Then 1 < yo < y_1. Hence
max{ +,1
1 Yo’ Y-1
y2 = — ) y3 = Yo - —
Yo Y1 Yo
max{y_—l,l} max{:c_l,l}
y4 - 1 = y—l ) y5 = Y—1 = y

Therefore, if {z,}>2_, is the solution of Eq.(6.2) with z_; = y;

n=

and zg = yo, then {z,}22 | satisfies (6.6).

Case 2(b)  Suppose 0 < y_1 < yo-
Then 0 <y_; < yo and 1 < yo. We have

1
Yo = —
Y1
and
1
Ys = ——Qo -
Y-1
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Case 2(b)(i)  Suppose 1 <y_;.
Then 1 < y_; < yo, and so

Y—
Yy_1 max{y—ol,l} _ max{z_y,1}
Yy =" Ysa = 1 =Y-1, Y5=—"35x — = Yo-
Yo y_1 Yo

Therefore, if {2,}52 _; is the solution of Eq.(6.2) with z_; =
y2 and xg = ys3, then {z,}52 _, satisfies (6.6).

Case 2(b)(ii)  Suppose 0 < y_1 < 1.
Then 0 < y_1 <1 < yg, and so

1
max {301} max{y_1,1}
=Y-1, Ys = 1 =%

1
Ys = —» Ysa = 1 1
Y-1 Yo

Yo
Therefore, if {2, }52 _; is the solution of Eq.(6.2) with z_; =
ys and zo = ya, then {z,}52_, satisfies (6.6). [

REMARK 6.1 Suppose A = 1. Let {y,}32_; be a non-trivial solution
of Eq.(6.2). Then it is of some interest to note that the re-labeling process
in the proof of Theorem 6.3 is as follows: regardless of the choice of initial
conditions (y_1,%0) € (0,00) x (0,00) of {yn}>2_;, there exists an integer N
with —1 < N < 3 such that

Yn € (071]7 YNt1 € (07 1]7 Y-1Y0 < ]-7 Yny2 € [1700)7 Yn43 € (]-700)

YN+4 € [1,00)
and x_; and z( are chosen such that
1 =YN and o = YN+1- |:|

If A>1,set
Py ={(u,v)}:1<u<A and 1<v< A}
CPy = (0,00) x (0,00) — Py

while if 0 < A < 1, set
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Note that if A > 1, then
(z,z) = (V'A,V/A) is an interior point of Py,
while if 0 < A < 1, then

(z,z) = (1,1) is an interior point of Ps.

The next two theorems state that Eq.(6.2) has an invariant rectangle of
solutions with period 4 if A > 1, while Eq.(6.2) has an invariant hexagon of
solutions with period 6 if A < 1.

THEOREM 6.4
Suppose A > 1. Let {x,}52_, be a solution of Eq.(6.2). Then the following
statements are true:

1. Suppose (x_1,%0) € Ps. Then (zn,Zny1) € Py for all n > 0. Moreover,
{zn}52 _, is periodic with period 4 and is given by

A A
Z—1,Zo, 7x_7w717m07"' .
0

2. Suppose (x_1,x9) € CP4. Then (xn,Tny1) € CPy for all n > 0. Fur-
thermore there exist sub-sequences {Tm; 152, and {xpr, }320 of {zn}S_4
such that

Tm; <1 and zp, > A for all i>0. (6.7)

PROOF

(i) Suppose that (z_1,z¢) € Ps. Then

A
A} A max iz Ay 4
Iry = 711133{{:1:0, } = — € [laA] ] Ty = { } =— € [I’A]
T_1 r_1 Zo Zo
A
max w_’A A
x3=%=$_1€[1,14] 7:64:%:;506[1,14]
T—1 Zo

and so we see that {z, }52 _, is periodic with period 4, and that (2, Zn41) €
Py for all n > —1.
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(ii) Suppose that (z_1,z9) € CPy.

We shall first show that (z,,%,+1) € CPy4 for all n > —1. For the sake
of contradiction, suppose that there exists an integer N > 0 such that
(IL‘N,JIIN+1) € P4. Then

max{zy,A} A

IN41 =
TN-1 ITN-1
and so 4
IN_1 = S [l,A,].
TN+1

Hence (xn—1,zn) € Ps. It follows by induction that (z_1,z¢) € Py,
which is a contradiction.

Thus we see that it is true that (2,,Z,41) € CP4 for all n > —1.

To complete the proof, we must show that there exist sub-sequences
{Tm; }20 and {zp, }32, of {z,}52_; such that (6.7) holds.

We shall first prove the existence of the sub-sequence {z,,,}$2,. For
the sake of contradiction, suppose that there exists an integer ng > —1
such that

Tp>1 for all n > ng.

Then for n > ng, we have

max{z A
Tpt2 = % S max{$n+1,A}. (68)
n
Suppose there exists n > ng such that z, < A. Then by (6.8), we
see that z,41 < A, and so it follows by Statement (i) of this theorem
that (z_1,z¢) € Py. This is impossible, and so we see that z,, > A for
all n > ng. This is also impossible since {z,}32 _, is strictly oscillatory

about z = v/A, and the proof is complete.

We shall next prove the existence of the sequence {z s }52,. For the
sake of contradiction, suppose that there exists an integer ng > —1 such
that

T, < A for all n > ng.

Then, given n > ng, we see that

max{z A A
$n+2 — {xn+17 } — :L._ Z 1
n n
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It follows that (zng+1,Tne+2) € Pa, and hence by by Statement (i) of
this theorem that (z_1,x¢) € P4. This is a contradiction, and the proof
is complete.

THEOREM 6.5

Suppose 0 < A < 1. Let {z,}5_1 be a solution of Eq.(6.2). Then the
following statements are true:

1. Suppose (x_1,x0) € Pg. Then (zy,Tnt1) € Ps for all n > 0. Moreover,
{zn}22_, is periodic with period 6 and is given by

Io 1 1 r_1
LT_1,L0y 9y 53533 L_1,L0y+ - -
r—1 -1 X9 Xo

2. Suppose (x_1,z0) € CPs. Then (xyn,Tni1) € CPg for all n > 0.

PROOF

(i) Suppose (z_1,2q) € Ps.

T
It suffices to show that z; = x—o’ and that (zg,z1) € Ps. Now
-1
max{zg, A} xo
rH=—">=—.
r_1 r_1

Note that
T
A< 2% since Az_1 <z

T 1 .
0 < — since Axg < 1T_1
r_q1 A

T ) 1
Az < 0 since z_4 <=
r_1 A

1 .
— < —mpgsince A<z,
r_1 A
and so (zg,z1) € Ps-

(ii) Suppose (z_1,z0) € CPs.

We shall show that (z,,Z,+1) € CPg for all n > —1. For the sake of con-
tradiction, suppose there exists an integer N > 0 such that (zn,ZN11) €
PG- Then

max{a:N, A} - N

IN41 =
TN-1 ITN-1
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and so
TN
IN—1 = .
ITN+1
Now by Statement 1 of this theorem,
IN+6 TN

IN4+1 = TN4+7T = =
ITN+5 IN+5

and hence
N

IN4+5 = =TN-1-

ITN+1
Thus (zn-1,2N8) = (ZN+5,ZN+6) € Pes. It follows by induction that
(x_-1,20) € Pg. This is a contradiction, and the proof is complete. [

The proof of Corollary 6.1 follows directly from Theorems 6.3, 6.4, and 6.5.

COROLLARY 6.1
The equilibrium T of Eq.(6.2) is stable but is not locally asymptotically stable.

REMARK 6.2 It is interesting to note that the proof of Corollary 6.1
was accomplished by using only elementary methods. It is known that the
equilibrium of Lyness’ Eq.(2.4) is also stable but is not locally asymptotically
stable. The proof of this, however, is quite subtle, and uses, among other
things, the powerful and deep technique known as KAM Theory. See [75]. I

THEOREM 6.6
No non-trivial solution of Eq.(6.2) has a limit.

PROOF By Theorems 6.3, 6.4, and 6.5, we need only consider the case
where A < 1, and where {z,}22 _, is a solution of Eq.(6.2) with (z_1,z¢) €
CPs.

So assume A < 1, and let {z,}22 _; be a solution of Eq.(6.2) with (z_1,z0¢) €

n=

CPg. It suffices to show that {z,}5> _; has no limit.

By Lemma 6.4, it follows that without loss of generality we may assume
that in each positive semi-cycle of {z,}52 _;, the maximum term of {z,}32 _,
is greater than 1. Let 237, be the maximum term in the i** positive semi-cycle.

Set
1 1
Iy = max {1, —} max {1, w_} max{1l,2_1,%o}.
0

-1
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Then for ¢ > 0, it follows by Lemma, 6.4 that

Hla,X{.Z'M“ 1} _ Tm;

TM;+1 TM;+1

T, > 1 and T -1 = >1

and so it follows by Lemma 6.1 that
Ty = IMi = Io.
Thus we see that Iy > 1, and that

lim sup z,, = Iy.
n—oo

Now since {2, }52 _; is strictly oscillating about Z = 1, we see that

liminfz, <1

n—o0

and the proof is complete. (1

. max {T,, A
6.3 The Max Equation z,4; = max {zn, A}
LTnLn—1
Consider the difference equation

A

Tpt1 = M , n=0,1,... (6.9)

TnTn—1

where A is a real parameter and the initial conditions z_1, ¢ are non-zero real
numbers. In this section, we study the asymptotic behavior, the oscillatory
character, and the periodic nature of the solutions of Eq 6.9. See [45].

Note that when A = 0, every non-trivial solution of 6.9 is positive, and is
periodic with prime period four.

When A > 0, the change of variables

Altyn if A >1
Ty = ey ifA=1

A if A <1

reduces Eq.(6.9) to the piecewise linear difference equation
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yM4=%WM—%%—wmq+6 ,  n=0,1,... (6.10)
where
—2if A>1
§={ 0ifA=1

2 ifA<1

which is a special case of Lozi’s map. See [96].

6.3.1 The Case Where A is Positive

In Section 6.3.1, we consider the case where A is positive. The proofs of
the following two lemmas follow directly by computation.

LEMMA 6.5
Suppose A > 0. Then Eq.(6.9) has a unique equilibrium point . Furthermore,
1 if A<L1
T =
VAif A>1.

LEMMA 6.6
Suppose A > 0. Let {x,}52_; be a solution of Eq.(6.9), and suppose there
erists N > —1 such that x, = T for alln > N. Then

T, =%  for all n>—1.

REMARK 6.3 Suppose A > 0. Then Lemma 6.6 states that the only
eventually trivial solution of Eq.(6.9) is the trivial solution itself.

6.3.1.1 The Case A =1

THEOREM 6.7
Suppose A =1. Let {x,}52_; be a positive, non-trivial solution of Eq.(6.9).
Then {z,}S 4 is periodic with prime period 7.

PROOF Let a =x_; and 8 = zg. The proof of the theorem follows from
the fact that the first nine terms of {z,}52_, are given as follows:
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la g1
> > < = ~2g P ‘
Casel a>1,8>1, anda<B. {z,} __, = {a’ﬂ’a’ﬂ’ﬂ’a’ﬂ’a’ﬂ}
Case2 a>1, B> 1, anda> B {ea}, = dap 2, % 0,2 L a8
ase a2z 1, z 4 a «a s WWnfp=—1— % ’a’ﬂ’ aa;ﬂ; ) .
Case3 a>1, 8< 1, and af < 1. {z,}] —{aﬂilaﬁllaﬂ}
— 5 I - n =—1 Jaﬂaﬂa 704767 ) -
11
Cased a>1, <1, and aff > 1. {an}n— 1= {a B,—ﬁ,a, af, ,ﬂ,a,ﬂ}.
Case5 a<1, f>1, andaf > 1. {za)e 1 = Lo, 2,1 08,8 2,08
aseb a ,8>1, andaf > 1. {zp},—_1 = o 5P e .
7 11 1
Case6 a< ]'7 /82 ]‘ and aﬂ <1 {.’L‘n} =1 =\ ﬂ>_7_7aﬂa_7_aaa/8

1 11
_’a J— _
B

Q
=
Q
Q
e

1
Case7 a<1landf<1. {Ib”n}:l:_l = {a,ﬂ; @a

The proof is complete. I

6.3.1.2 Boundedness and Persistence of Solutions

In Theorem 6.8, we show that Eq.(6.9) possesses an invariant, and we use
this invariant to prove that every positive solution of Eq.(6.9) is bounded and
persists.

THEOREM 6.8
Suppose A > 0, and let {x,}52_; be a solution of Eq.(6.9). For eachn >0,
set

1
I, :max{A,:cn_l,:cn}max{l, }
TnTn—1

Then
I, =1, for all n > 0.
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PROOF Letn > 0. Then

1
I+1 = max{A,x,,T,+1} max {1, }

Tn+1Tn
A 1
= max{ A, mmax{xn, } max<{ 1, ———
TnTn_1 max{z, A}
Tn—1
max{a,, A} _
nyA n—1, nrA
= max { max{z,, A}, max{,, A} | maxien1, 2, 4}
TnTn_1 max{z,, A}
= max{l, }max{xn 1,Tn, A}
InTn—1
., u

COROLLARY 6.2
Suppose A > 0, and let {z,}52_, be a positive solution of Eq.(6.9). Then
{zn}22_, is bounded and persists. Moreover,

1
Ty € [—,IO] for all n > 1.
Iy

PROOF Suppose n > 0. Then

max{z,, A} max{A,z, 1,z,}max {1, } > Ty Xpo1-1

TnTn-1
and so
s = max{z,, A} S 1 _1 1
n - - — — .
TnTn -1 max{A,z, 1,T,} max{l, znzln_l } I, Iy
Also,

1
ZTny1 < max{A, 2,2, 1} max {1, } =Ip = Ip.[
Tn+1Tn
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6.3.1.3 Invariant Regions

Set 1
R, = {(.”C;y) 1T,y € [Z’A] and zy > 1}

and

Ry = {(:c,y) 1,y € [A, %]}

THEOREM 6.9
The following statements are true:

1. Suppose A > 1. Then Ry is an invariant region. Furthermore, if {x,}5L _,
is a non-trivial solution of Eq.(6.9) with (x_1,x9) € Ry, then {z,}52 4
is periodic with prime period 3.

2. Suppose 0 < A < 1. Then Ry is an invariant region. Furthermore, if
{zn}22_, is a non-trivial solution of Eq.(6.9) with (x_1,%0) € Ra, then

{zn}S2 _, is periodic with prime period 4.

PROOF
(i) Suppose A > 1, and let (z_1,z¢) € R;. Then

max{xo, A} A

T = € R;.
Lol -1 Tox -1
We also have
A > A 1
Tox1 = — > — =
01 v .24
and so (zg,x1) € Ry. It follows similarly that
A A
Iy = =z_, and T3 = =2
T1Zo T2T1

from which the proof is immediate.
(ii) Suppose 0 < A < 1, and let (z_1,20) € R2. Then

wzie[z‘l 1]-

r = —
TT_1 T_ T A

In particular, (xg,z1) € Ry. It follows similarly that
1 1 1 1 1
$2—$—0€|:A,Z:|, .Z'3—E—.'E1€|:A,Z:|, $4—E—$0€|:A

and the proof is complete. I
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REMARK 6.4 Note that if A > 1, then (z,z) = (V/A, V/A) is an interior
point of R;, while if 0 < A < 1, then (Z,Z) = (1,1) is an interior point
of Rs. The proof of the following corollary follows directly from this fact,
together with the closed form of the solutions of Eq.(6.9) given in the proofs
of Theorems 6.7 and 6.9.

COROLLARY 6.3

Suppose A > 0. Then the equilibrium % of Eq.(6.9) is stable, but is not locally
asymptotically stable.

6.3.1.4 The Case A >1

REMARK 6.5 Suppose A > 1, and that {z,}22 _,; is a positive solu-
tion of Eq.(6.9) with (z_1,20) ¢ R:. The following two lemmas characterize
{zn}52_; by giving a partial closed form solution.

Set

R={(z,9):0<z<Aand 0<y < A}

LEMMA 6.7

Suppose A > 1. Let {x,}5_; be a positive solution of Eq.(6.9) such that
(xNn—1,ZN) € R for some non-negative integer N > 0. Then there exists a
positive integer [ > 0 such that

A—1—2l <IN S A1_2l.

Furthermore, for k =0,1,...,1 —1,

IN_-1 .
< Al 2k

TN47k—1 = A2k
2k 1
Ny = A%y < 1
A
TNtTht1 = ——— > A
ITN-1TN
1

ON+Th+2 = o > A
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- _ IN1TN 1
N+Tht3 = = < 7
A2k+2
TN Thtd = > A
ITN-1
A
x =— > A
N+Th+s =
Moreover,
IN— 1
TN471-1 = A—Qll < 2
and
TN+71 =A2I.Z'N S l A
+ A, -
PROOF  The proof is by induction and will be omitted. I
Set

C={(z,y):0<z<A, A <y< A, and zy < 1}.

REMARK 6.6 Note that the solution {z,}2_; of Eq.(6.9) in Lemma 6.7

has the property that (zn47i-1,2Zn471) € C; that is, {z,}52_; also satisfies
the hypotheses of Lemma 6.8. I

LEMMA 6.8

Suppose A > 1. Let {x,}5° _; be a positive solution of Eq.(6.9) such that
(zn_1,zN) € C for some non-negative integer N > 0. Then there exists a
positive integer m > 0 such that

1 <zn(zy_1zNy)™ P < A and zn(zy_1zN)™ <

Furthermore, for k=10,1,...,m —1,

1
IN43k = (xN—lflfN)kiUN € (Z’A]

A
TN43k+1 = NN > A

1 1
z =—FF—€ |—,A).
N+4+3k+2 (.’L'N_l.’L'N)k.Z'N |:A7 )
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Moreover
IN-—-1 1
=N Z A
TN+3m—1 N 178" € [A’ )
and
1
TN4+3m (zn_1zn)™ < 1
PROOF  The proof is by induction and will be omitted. I

REMARK 6.7 Note that the solution {z,}° _; of Eq.(6.9) in Lemma
6.8 has the property that (zn43m—1,ZN+3m) € R; that is, {z,}32_; also
satisfies the hypotheses of Lemma, 6.7.

Define the following sets:
S ={(z,y) eR" xRT:2 < A~! and zy > 1}
T ={(z,y) e R* xRt : A<y <z}
U={(z,y) eR" xRt :2z>Aand zy < 1}
V={(z,y) e R" xRt :y> A and zy < 1}
W=A{(z,y) e Rt xRt : A<z <y}
Z ={(z,y) e R* xRt :y < A=! and zy > 1}
D={(z,y) eR* xRT: A"l <z < Aandy > A4}
E ={(z,y) e Rt xRt:z>Aand A~ ! <y < A}.

The proof of the next lemma follows directly from Lemmas 6.7 and 6.8.

LEMMA 6.9

Suppose A > 1. Let {z,}32 _, be a positive solution of Eq.(6.9) such that
(xN—1,ZN) € R for some non-negative integer N > 0. Then there exist posi-
tive integers | > 0 and m > 0 such that

A—1—21 <zy < A1—2l
and

< xN(mN,lmN)mfl <A and zn(zny_1zN)™ <

SNES
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Furthermore, for k =0,1,...,1 —1,

(*N47h—1,ZN47k) € R
(TN47k, EN47R41) € S
(EN+7k41, TN47R42) € T
(EN+7k4+2, TN47R43) € U
(TN47k+3, TN17h4) € V
(EN+7k+4, TN47R45) €W
(TN47k+5; EN+Th+6) € Z
while for k=0,1,...,m —1,
(TN471+3k—1, TNy7I+38) € C
(TN47143%, TN4T143k4+1) € D
(TN47143k41, TNy 714 3k42) € E
(TN47143k+2, TNy 7143k4+3) € R.

6.3.1.5 TheCase 0 < A1

REMARK 6.8 Suppose 0 < A < 1, and that {,}°2_, is a positive solu-
tion of Eq.(6.9) with (z_1,20) ¢ R2. The following two lemmas characterize
{zn}22_, by giving a partial closed form solution.

Set

F={(z,y):0<z< A, A7' <y, and zy < 1}.

LEMMA 6.10
Suppose 0 < A < 1. Let {x,}32_; be a positive solution of Eq.(6.9) such
that (xn_1,ZN) € F for some non-negative integer N > 0. Then there exists
a positive integer 1 > 0 such that
AT < gy < ATV

Furthermore, for k =0,1,...,
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IN4Th—1 = IN-1 < A
2k L
ENyTE = AN > 1 A
1 1
x = > - > A
N+7k+1 . 2
1 A
x = —_—
N+Tk+2 A%y
TNtrhes = AR Floy oy < AL <A
1 1
T = > - > A
N+7k+4 . 2
1 1
=~ > A1 >
TN+Tk+5 A gy ian =
Moreover,
TNyi-1 = TN-1 < A
and
21 L
TNyl = A%gy € A, —- ).
A
PROOF The proof is by induction and will be omitted. I
Set

M={(z,y) eRT xRt :2<Aand A<y < A™'}.

REMARK 6.9 Note that the solution {z,}2_; of Eq.(6.9) in Lemma

6.10 has the property that (zyi7-1,Zn+71) € M; that is, {z,}52 , also
satisfies the hypotheses of Lemma, 6.11.

LEMMA 6.11

Suppose 0 < A < 1. Let {x,}5>_ be a positive solution of Eq.(6.9) such that
(zN—1,ZN) € M for some non-negative integer N > 0. Then there exists a
positive integer m > 0 such that

AL A\ < 1 d A" > 1
= \Zns TN A an N1 IN Z A.

Furthermore, for k =0,1,...,m —1,
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TN+4k

IN+4k+1 =

TN44k4+2 =

TN+4k+3 =

Moreover,

WITH PERIODIC SOLUTIONS

Ak 1
A=
mfv_lmN € [ ’A)
1 1
— A
IN-1 > A >
k
Th_1 1
A=
Arzy ( ’A]
rN—1 < A.

TN4am—1 = Tn-1 < A

and

Am

1
TN44m = > 1T

m
TN-1

195

REMARK 6.10 Note that the solution {z,}232 _; of Eq.(6.9) in Lemma
6.11 has the property that (ZN4am—1,ZNt+am) € F; that is, {z,}32_; also
satisfies the hypotheses of Lemma 6.10.

Define the following sets:
G ={(z,y) eR"
H = {(z,y) € RT
I ={(z,y) e RT
J ={(z,y) e RT
K ={(z,y) e R*
L ={(z,y) e R
O ={(z,y) e R*
P ={(z,y) eRT

Q ={(z,y) e R
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xRt :zy>1and y < A}
xRt:z<Aandy< A}
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xRT: A7 <z and zy <1}
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The next result follows directly from Lemmas 6.10 and 6.11.

LEMMA 6.12

Suppose 0 < A < 1. Let {x,}2 _, be a positive solution of Eq.(6.9) such
that (xn—1,2N) € F for some non-negative integer N > 0. Then there exist
positive integers | > 0 and m > 0 such that

A1—2l S TN < A—1—2l

and

A<IL”N( 4 >m_1<l and :UN( A )m>l_
- TN-1 A TN-1 — A
Furthermore, for k=0,1,...,1—1,

(TN47h-1,ZN47K) € F

(TN+7ks TN4TR+1) € G

(TN47ht1, TN y7R42) € H

(TN47ht2, TNy7R3) € T

(TN 7k+3, TNy7R+4) € J

(TN 7h+4, TN47h45) € K

(EN4+7k+5, TN47k+6) € L
while for k=0,1,...,m —1,

(T N47144k—1, TN4TI44R) € M
(TNt 7144k TN4TI44k+1) € O
(XN471+4k+1 EN4TI+4k+2) € P
(TNt 71+ak+2, TN T4k +3) € Q

(EN+71+4k+3, EN+7I+4k+4) € F.
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The proof of the following lemma is straightforward and will be omitted.

LEMMA 6.13
Assume that A > 0. Let {x,}32_; be a positive, non-trivial solution of
Eq.(6.9). Then the following statements are true:

1. Suppose 0 < A < 1. Then every positive semi-cycle of {zn}2_, has at
most three terms. With the possible exception of the first positive semi-
cycle of {x,}22 _,, every positive semi-cycle of {x,}32 | has at least
two terms. Furthermore, if a positive semi-cycle of {xp,}52_, has three
terms, then the first and third terms in the Deni-cycle are each equal to
the equilibrium T = 1.

2. Suppose A > 1. Then every positive semi-cycle of {z,}52 ;| has at
most two terms. Moreover, with the possible exception of the case where
z_1 =% and oy < T, every positive semi-cycle has a term strictly greater

than T.

3. FEwvery negative semi-cycle of {x,}>_; has at most two terms.

As an immediate consequence of Lemma, 6.13, we have the following result.

THEOREM 6.10
Assume A > 0. Then every non-trivial solution of Eq.(6.9) is strictly oscilla-
tory about T.

Recall by Theorem 6.8 that every solution of Eq.(6.9) is bounded from
above by a bound Iy given in terms of its initial conditions. Our next result
shows that the solutions outside of the invariant regions actually achieve this
upper bound.

THEOREM 6.11

Assume A > 0 is a positive real number not equal to one. Let {z,}°2_, be a
solution of Eq.(6.9). Suppose that the initial conditions (x_1,20) of {zn}5>_4
are as follows:

(26_1,.730) ¢ Ry Zf A>1
and
(.Z'_l,.’Eo) ¢ Ryif 0<A<1

Then with the possible exception of the first positive semi-cycle, every positive
semi-cycle of {xn}2 _, contains a term equal to Iy.

PROOF We consider the case A > 1. The case 0 < A < 1 is similar and
will be omitted.
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Let z,, be the maximum term in a positive semi-cycle, where m > 0. It
suffices to show that
Ty = I().

Recall that the positive semi-cycle of which z,, is a member has at most two
terms.

Case 1  Suppose Tpi1 > VA. Then
2 2
TmTmgl > Tryyq > A3 > 1

and so T, > A since (T, Tmy1) ¢ Ri. Hence

1
Iy = Ipy1 = max{A, Ty, Tm41 } max {1, 7} = ZTpm-
TmTm41

Case 2 Suppose z,, 1 > v A. Then
2 2
Tm—1Tm 2 L1 2 Az >1

and so &, > A since (m—1,Zm) ¢ R1. Thus

1
Iy=1I,= max{A,xm_l,xm}max{l, 7} = Tp.
Tm—1Tm
Case 3 Suppose T, 1,Zmy1 < VA.
We claim that z,, > A.

For the sake of contradiction, suppose z,, < A. Now it follows by Lemma

6.13 that
Tm > \3/Z
Thus
YA > 2 = max{x,,, A} _ A
" TmITm—1 ITmTm—1
and hence

T Tm—1 > A3 > 1.

So, as (£m—1,Zm) ¢ R1, we must have ,,_1 < So

Z-
L

1:A

A>zpm_12m > 1,

which is a contradiction.

Thus it is true that
Ty > A.
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Thus
SA> = max{zm,, A} __Tm 1
" ITmIm—1 TmTm—1 Tm—1
and so
Tm_1 € (A*%,A%).
Hence
1 2
Ton—1Tm > AT3A=A3 >1
and so
1
Iy=1, :max{A,xm_l,mm}max{l,i} = Tum. [
TmnTm—1

The following theorem shows that there are periodic solutions of Eq.(6.9)
other than those in the invariant regions R; and Rs.

THEOREM 6.12
Let k > 2 be an integer. Then the following statements are true:

1. Suppose A > 1, and the initial conditions of {x,}52_, are chosen such
that

1
= AF —,Al.
T_1 and To € [A’ ]
Then {xp}2 _, is periodic with prime period

Tk —1 if k is even

k-1
2

if k is odd.

2. Suppose 0 < A < 1, and the initial conditions of {x,}5L_, are chosen
such that

z_1 € [AF, AR and zo = AF.
Then {z,}2 _, is periodic with prime period
Tk +1 if k is even

Tk+1
2

if k is odd.

PROOF We give the proof for the case A > 1 and k = 2] + 1 is an odd
integer greater than or equal to 3. The proof for the other cases is similar and
will be omitted.

Copyright © 2005 CRC Press, LLC



200 PERIODICITIES IN DIFFERENCE EQUATIONS

X_q1 = A2l+1
1
X9 € |:Z,A
max{a:o,A} A
Iy = =
.’II()AQH'I $0A2l+1
A
. Y
ToA2ITT)
Ty = : — A2+
2o AT 0

max {421, A} goA2H1

563 = - A =
A20+1 — e A
and
2141
max { EOAA , A} 1
Ty = =
zoA2tL 4014 A2l+1
o A
1
_ max{—A2,+1,A} B A2
T5 = 1 zgA2I+L - 1'_
ATFT T A 0
max { ‘;1—2, A}
_ 20+1
Tg = Ve 1 A +
To AZIFT
max { A2+, A} Ty
€T = _— —_ _
7 A204+1 A% A?
Zo
i max { %, A} A3
8 = =
%A2l+1 T A2+1

A3
max { ToAZFT> A}
Ty = A3 To
ToAZIFT A2

A2l+1

max {A2l+1,A} B x0A2l+1

Z1i0 = =
A3 3
A2 A

Thus we see that if | = 1, then {z,}2_, is periodic with prime period 10. In
general for [ > 1, it follows by induction that
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r_q1 = A2l+1
1
o € |:Z,A
ma,x{ar:o,A} A
Iy = =
IL'0A21+1 :L.OAQI—}—I
A
e { o fier, A
ZoA2IFT) }
Ty = T = A2+
AT L0

max{A2l+1,A} B :cOA2H'1

T3 = =
2041___ A
A + ToAZTFT A

and for 0 <<l -1

Tat7i = ﬁ
A2i+2
T5+7i = 2o
Teyri = AT
Tr4ri = A;?‘_Q
A2i+3

T8+7i = —oi1
T g A2

Toyrg = A
onzl-i-l
T104+7i = TA2i+3
from which the proof follows. I

6.3.1.6 The Third Quadrant

In this section we see that the period-7 phenomenon is unique to the first
quadrant. The proof of the next lemma follows by computation and will be
omitted.
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LEMMA 6.14

Let A > 0, and suppose that {x,}>2_, is a solution of Eq.(6.9). Then the
following statements are true:

1. Suppose that x_1 < 0 and xg < 0. Then x1 > 0, x5 <0, and 3 < 0.
2. Suppose that t_1 < 0 and x9 > 0. Then x1 <0, 29 <0, and z3 > 0.
3. Suppose that x_1 > 0 and xg < 0. Then z1 <0, x5 > 0, and 3 < 0.

From Lemma, 6.14, we see that if we wish to study those solutions of Eq.(6.9)
for which one or both of the initial conditions are negative, it suffices to
consider the case where both initial conditions are negative.

The following theorem implies that some solutions of Eq.(6.9) have the
property that one sub-sequence diverges to negative infinity, while a second
sub-sequence converges to zero.

THEOREM 6.13

Suppose that A > 0. Let {x,}5>_, be a solution of Eq.(6.9) with xz_1 < 0 and
2o < 0 such that x_1xo < 1. Then for each k > 0, the following statements

are true:
T3 = (m—lafo)kﬂfo
A
T3p+1 = 7170
1
T3pt2 = 77—~ -
+ (.’L'_lmo)k.l'()

PROOF The result clearly holds for k¥ = 0. So suppose that & > 0 and
that the result holds for k& — 1. It suffices to show that the result holds for k.
Now,

1
max{ —— A
_ {(371350)'“1370 } _ k
T3 = T i = (x_120)"m0o

(.'L'_l.'lio)k_lm(] T_1Z9

max{(:c_lxg)karo,A} _ A

T kp 1
( 1$0) Zo (.’L'_l.’lfo)k71$0

T3p+1 =
+ 129
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A
max{ ,A}
T3k4o = T-1%0 = ! I
+2 = A R Y
($71$0)k$0 (z_1%0)* 20
T_1X0

The next result shows that all other solutions of Eq.(6.9) which begin in
the third quadrant are periodic with prime period 3.

THEOREM 6.14
Suppose that A > 0. Let {z,}52_, be a solution of Eq.(6.9) with z_1 < 0 and
xo < 0 such that x_y1z9 > 1. Then {x,}2_, is periodic with prime period 3.

PROOF  As the only equilibrium point of Eq.(6.9) is positive, it suffices
to show that {z,}52 _, is periodic with period 3. Now,

max{xg, A} A
a:l = =
ToT -1 ToT -1
A
max { Ton }
Iy = = X_1
A
oL -1
max{z_1,A}
3= ———F3x — = %o
T-1 ToT -1
and the proof is complete. I

6.3.2 The Case Where A is Negative

Throughout the remainder of this section, we shall assume that A is neg-
ative. One can see that when A < 0 and z_1,z¢ € (—00,0), the change of

variables ) )

#n=—— and B=--
Yn A
reduces Eq.(6.9) to the equation

max{y,, B
yn+l:7{ n, B} , n=0,1,...
YnYn—-1
with parameter B > 0 and initial conditions y_1,yo > 0. Thus the behavior of
the solutions of Eq.(6.9) with negative initial conditions can be easily deduced
from our previous investigations.
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6.3.2.1 Solutions Outside the Third Quadrant

Note that Eq.(6.9) has the unique positive equilibrium point & = 1.

THEOREM 6.15
Assume that A < 0, and that {z,}>2_, is a non-trivial solution of Eq.(6.9)
with _1,%0 € (0,00). Then {z,}22_4 is periodic with prime period 4.

PROOF Asz 1,z > 0,it follows by a simple computation that {z,}5

is given by
1 1
ZT_1,%0, s 3T —1,%0,y-- -
x Zo

from which the proof follows. I

When A < 0 and {z,}32 _, is a solution of Eq.(6.9) with z_1z < 0, we see
that {(zn_1,%n) : n > 0} alternates between the second and fourth quadrant.
Hence without loss of generality, we shall assume that

r_1 <0 and zo > 0.

The proof of the next theorem follows by simple computation, and will be
omitted.

THEOREM 6.16
Assume that A < 0, and let {x,}52_; be a non-trivial solution of Eq.(6.9)
with x_1 < 0 and xg > 0. Then the following statements are true:

1. Assume that x_1 = —1.
(a) Suppose A < —1 and zog = 1. Then {z,}52_, is periodic with
prime period 2.

(b) Suppose A < —1 and zq # 1. Then {z,}52_, is periodic with
prime period 4.

(c) Suppose A > —1. Then {x,}5>_, is periodic with prime period 4.

2. Assume that x_1 # —1.

1
(a) Suppose min {xl, —} > A. Then {z,}52 _, is periodic with prime
x

period 4.

1
(b) Suppose min {:c_l, E} < A. Then {z,}S2 _, is neither bounded,
nor does it persist.
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max {z2, A}

LnTn—1

6.4 The Max Equation z,4+1 =

As we saw in Section 2.7, the max equation

2 A
Tpt1 = maxizy, 4} ,  n=0,1,... (6.11)
TnTn—-1

can be transformed into the difference equation

Ynt1 = |yn| — Yn-1 +4 ’ n=0,1,... (612)
where

—1lif A>1
0= 0if A=1

1if A< 1.

The case § = 0, or equivalently, the case A = 1, was investigated in [29]
where it was shown that every solution of the difference equation

Ynt1 = |yn| —Yn-1 ) n = 07 17 s (613)
and so also every positive solution of
max {z2,1
Tyl = M , n=0,1,... (6.14)
ITnTn—1
is periodic with period 9.
The case § = 1, or equivalently the case A < 1, was investigated in [32].
This is the so-called gingerbreadman equation

Ynt+1 = |Yn| — Yn-1 +1 , n=0,1,... (6.15)

and it was shown in [32] that Eq.(6.15) was chaotic in certain regions of the
plane, and was stable in other regions of the plane. It was also shown in [32]
that every solution of Eq.(6.15) is bounded.

The case § = —1, or equivalently the case A > 1, has not yet been investi-
gated.

Some of the interesting questions we wish to ask about Eq.(6.11) are the
following;:

Does Eq.(6.11) possess an invariant?

Can we give a straightforward direct and analytic proof that every
positive solution of Eq.(6.11) is bounded?
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max {z,, A}
x2x, 4

6.5 The Max Equation z, 41 =

An interesting feature of this equation is the fact that every solution of the
equation is periodic with period 8 if and only if A = 1. We first discuss how
this equation was discovered. The non-autonomous difference equation of the
Lyness-type

D L S (6.16)
Yn—1

was investigated in [69], with
ap if n is even bo if n is even

anp = and by =
aq if n is odd by if n is odd

and ag, a1, bo, b1 € [0,00) with ag + bo > 0 and a; + by > 0, and where the
initial conditions y_; and yq are arbitrary positive real numbers.
From Eq.(6.16) with by = 0 and a; > 0, we have

aoYan

Yontl = —— , n=0,1,... (6.17)
Yon—1
and ;
Yanta = max{a;yz"“’ S R (6.18)
2n

After substituting Eq.(6.17) into Eq.(6.18) and making the change of variables

Yont1 = v/ adar Tn, for n=-1,0,...
we see that A
max{z
a:HHZ# ., n=0,1,... (6.19)
mnx’nfl
b
where A = ——— and where z_1,zo € (0, 00).
3/.2_ 4
Apay

In Theorem 6.17, we show that Eq.(6.19) possesses an invariant.

THEOREM 6.17
Let {x,}22_, be a positive solution of Eq.(6.19), and for n > 0, set

1 A 1
I, = max , y — 3 Tp—1Zn ¢ -
Tn—1 Tp—1Tn Tn

Then I, = Iy for all n > 0.
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PROOF Observe that for n > 0,

1 A 1
ITH—I = max4§ —, — Ipdpt1

J
Tn TpIpn+l Tn+l

1 A 1 max{x,, A}
=max{ —, Tn
max{zn,A} ’ max{zn,A}’ 2
In T T2 Tn—1 T2Tn—1 Tnn-1

z, max{z,, A}’ max{z,, A}’ T,T, 1

{ 1 Azpz,_1 T2Tn_1 max{xn,A}}
= max )

Case 1  Suppose z, > A. Then

? ?

1 Az,z, 1 xiwn,l Tn
Iy1 = max{ —

)
Tn Tn Tn TnTn—1
1 1
=max< —, Az, 1, TpTn_1,
Tn Tn—1

1 1
= max§ —,Tnplp_1,
Tn Tn—1

{ 1 A 1 }
= max — ., Tp_1%p = I,.

3 )
Tp—1 Tp—1Tn Tn

Case 2 Suppose 0 < z,, < A. Then

2
I _ 1 AzpXn_1 Z5Tn—1 A
n+l = Max ) A ) A )
Ty TnTn—1
1 ximn,l A
=max<{ —,TpTn_1, , .
T A TpTp—1
1 A
=max§ —,TnTn-1,
In ITpTp—1
1 A 1 i
= max , y —, Tn_1Tn = I,.
In-1 Tpn—-1Tn Tpn

The proof of Theorem 6.18 follows directly from Theorem 6.17 and will be
omitted.
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THEOREM 6.18
Every positive solution of Eq.(6.19) is bounded and persists.

The following remark is easily proved.

REMARK 6.11 The following statements are true:
1. Every positive solution of Eq.(6.19) is periodic with period 3 if A = 0.
2. Every positive solution of Eq.(6.19) is periodic with period 8 if A = 1.

When A ¢ {0,1}, we pose the following Conjecture:

CONJECTURE 6.1
Let {z,}2 _, be a solution of Eq.(6.19) with 1 = 1 and xo = A*, where
ke {0,1,...} and A € (0,1)U(1,00). Then the following statements are true:

(i) Suppose 0 < A < 1. Then {z,}5>_, is periodic with period 3 for k =
1 and is periodic with period 8k + 1 for k = 2,3,.... When k = 0,
{zn}22_, is identically equal to 1.

(i) Suppose A > 1. Then {x,}5° _, is periodic with period 7 for k = 0,
while for k=1,2,..., {x,}5° _, is periodic with period

8k —1 if k or k— 1 is a multiple of 3

8k —1

if k— 2 is a multiple of 3.

. 'n,A'n
6.6 The Max Equation z,4+1 = M

LTn—1

Consider the difference equation
ax{Tn, An
pp = BT A} g (6.20)
Tn—-1
where

Ap if n is even
A, =
Ay if nis odd

with Ag, A1 € (0,00) and with z_1,z¢ € (0,00). See [69].
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Our first result shows that Eq.(6.20) possesses an invariant.

THEOREM 6.19
Let {x,}52 _; be a positive solution of Eq.(6.20), and for each n > 0, set

A
In = maX{An+1, T n

n—1

} max {An, A;“ } max{ApApi1, AnTn_1, Apni17n}-

n

Then
I, =1, for all n > 0.

PROOF Suppose n > 0 is an integer. Then

An+1 An+2
It1 = max {An+2, max | Any1, X
Tn Tn+1

X maX{An+1An+2; Ani1%n, Ant2ZTnp1 }

Apt ApTn_
= Anpty, —F——
e {An’ Tn } e { i max{zn, An} } *

X max {An+1An, Api1Tn,

_ An—i—l An+1 max{a:n, An} Anxn—l
- max {An’ n }max{ max{z,,A,} ~max{z,,A,} %

Ap max{x,, Ap} }

Tn—1

X max {An+1 max{A,,z,}, A"L{HJ"A"}}

Tn—-1

A
= max {An; ;_H } maX{An-i-lxn: Any14n, Anmn—l}x

n

= max {An: Ant1 } maX{An-i-l T, Any1An, AnTn_1 } x
x

n

xmax{An+1, An } = In |:|
x

n—1

The proof of the following result is a direct consequence of Theorem 6.19
and will be omitted.

THEOREM 6.20
Every positive solution of Eq.(6.20) is bounded and persists.
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6.7 The Max Equation x, 4, = max {zn, An}

LTnn—1

Consider the difference equation

max{x,, A
an:M , n=0,1,... (6.21)
TnTn—1
where {4,}°2, is a sequence of positive real numbers, and where the initial
conditions x_1 and zq are arbitrary positive real numbers.
The case where the sequence {A,}52, is constant was investigated in Sec-
tion 6.3.

6.7.1 Boundedness and Persistence of Solutions of Eq.(6.21)

In this section we show that under appropriate hypotheses, Eq.(6.21) pos-
sesses an invariant, or more generally, an energy function, which can be used
to show that all solutions of Eq.(6.21) are bounded and persist.

LEMMA 6.15
Let {x,}52_; be a positive solution of Eq.(6.21), and let {Py}2, be a se-
quence of positive real numbers. For each integer n > 1, set

Pnfl Pn PnAnfl
En = max s Ty n+1$n—1;P’n+2mn; —_— .
Tpn—-1 Tn Tn—1Tn
Then for allm > 1,
Pn+3 Pn Pn+3An
En+1 = max {—a _:Pn+1$n—lapn+2xn; — (-
Tpn-1 n ITp-1Tn

PROOF Suppose n > 1 is a positive integer. Then

_ Pn Pn+1xn71$n max{a:n, An} Pn+1$n71An
E"+1 =max4y —, 7‘4 ,P"+2$", P"+3 , A
Zpn max{x,,An} TnTr—1 max{zn, An}

P, Pn+1$nfl
= max{ — — " " max{x,, A}, Phaox
{a:n’max{mn,An} {on, An}, Priodn,

Poy3z, PnizAp }
, .
Tpn—1Tn Tn—1Tn

[

The proof of Theorem 6.21 is a direct consequence of Lemma 6.15.
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THEOREM 6.21
Let {P,}52, be a sequence of positive real numbers such that

Pz < Puq forn>1

Pn+3An < PnAn—l fOT n > 1
and
P < P, forn>0

for some P € (0,00). Then the following statements are true:
1. By < E, for alln > 1.

2. Every positive solution of Eq.(6.21) is bounded and persists.

COROLLARY 6.4
Let A € (0,00) be a positive real number, and assume that one of the following
conditions is true:

1. A<A, 4 <A, for n>0.

2. A, < Anyy for n >0 and A2 < A, 1Anys for
n > 1.

3 A<A, <A1 for n>0.

Then every positive solution of Eq.(6.21) is bounded and persists.

PROOF The proof of Statement 1 follows from Theorem 6.21 with P = A,
and with P, = A, for n > 0.

The proof of Statement 2 follows from Theorem 6.21 with P = Ay, and with
1
P, = T for n > 0.

n

1
The proof of Statement 3 follows from Theorem 6.21 with P, = 1. for
n—3

n > 4. I

Lemma 6.16 states that Eq.(6.21) has an invariant when {A4,}22, is a se-
quence of positive real numbers which is periodic with period 4.
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LEMMA 6.16

Assume that {An}52 is a sequence of positive real numbers which is periodic
with period 4, and let {x,}32 _, be a positive solution of Eq.(6.21). For each
n >0, set

I, = max{ ,— Apnt1Tn_1, AnyoTn,
Tn—1 n Tn—1Tn

An 1 A An—lAn}
Then I, = Iy for all n > 0.

PROOF Suppose n > 0 is an integer. Then

A An+1 AnAn—i-l
I, 1 = max { s Ant2Tn, Any 3Ty, ———
Tn $n+ TnTn41
_ A An—i—lmnmn 1 A z An_1 max{mn; An} AnAn+1mn37n—1
- 2
Tn, ma,x{xn, Ap}’ 2 TpTn1 "z, max{z,A,}
— max A An—i—lmnxn 1 Ao Any max{:cn, An} ApAny1Tn_1
Tn max{z,, An}’ 2t TnTn1 " max{z,A,}
— max { A Appizn g max{z,, A,} A or Ap g max{z,, A} }
- n+24n
max{z,, A,} ’ TnTn—1
_ An A A An—l An—lAn
=max§ —, An4+1Tn—1, An4+2Tn, T
n ITpn—1 TnTp-—1

COROLLARY 6.5

Assume that {Ap}32, is a sequence of positive real numbers which is peri-
odic with period 4. Then every positive solution of Eq.(6.21) is bounded and
persists.
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6.7.2 Periodicity

In this section we show that under appropriate conditions, every solution of
Eq.(6.21) with initial conditions in certain regions is periodic with the same
period.

THEOREM 6.22
Assume that for some A € (0,1)

0<A4, <4 for all n > 0.

r=[a1]-w.

Let {xn}22_, be a solution of Eq.(6.21) with x_1,x0 € Z. Then {z,}>2_, is
periodic with prime period-4.

PROOF Note that for alln >0

1 1 1 1
X_1,%9,—,— € |:A —:| C |:A :|

r_1 Xg ’ A m A
and so
max{xg, Ao} Zo 1
:El = = = —
o1 ol -1 r_1
max{x1, A1} z1 1
3}2 = = = —
T1%o T1Xo Zo
from which the proof follows. I

THEOREM 6.23
Assume that {Ap}52, is a period-2 sequence of positive real numbers such

that
AO;AI (S (1,00)
Let
. A? . A3 Ag Ay
p_mln{Al,A—l} , q—mln{Ao,A—O} , r—max{A—l,A—O
and set

S={(z,y):0<zxz<p, 0<y<ygq, and xy > r}.

Let {2,}22_; be a solution of Eq.(6.21) with (x_1,z9) € S. Then {z,}5_4
is periodic with period-6.
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PROOF
maXyZg AO AO
T = {20, Ao} = because o < Ay
oL -1 oL -1
Ag
max{ Al}
Tox—1"’ Al A
Ty = 1 = ——x_; because x_1x9 > =0
——L 2 Ao Ay
ToT—1
Ay
T3 = maX{Aow_l,AO} = on because z_; < A%
3 — Al A — i 40 -1 >
41 40
AO.CE_l ToT—1 Al Al
Ao A
max A, To, A1 Al A%
T4 = A AL = because z¢ < 1
A_1x0 A—OSL'_l ZToT -1 0
max { 7417, 4o | 4
T5 = = x_; because x_1xz¢9 > —
A1 Ao, A
o —1 A1 0
max{z_1, 4o
Te = {—A;} = 29 because z_; < A;. I
x_lzoz_l

THEOREM 6.24
Assume that for some A € (0,1], we have

1. .
1 if n is even
A, =

A if nis odd
and let {z,}5>_, be a positive solution of Eq.(6.21). Then the following
statements are true:
1. Suppose 1 = A =x_; = xg. Then {z,}5L_; is identically equal to the

equilibrium point T = 1.

2. Suppose A =1 and (x_1,20) # (1,1). Then {z,}5L_; is periodic with
prime period 7.

3. Suppose A #1 and x_1,19 € (0,00) — (A%) . Then {z,}5L _, is peri-

odic with prime period 1/.

PROOF We consider the case z_1,z¢ € (0, A]. The other cases are similar
and will be omitted. Now,
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- max{xo,%} _ 1 l
te LoT_1 Azox_1 — A
1
2y = max {z1, A} _ 1 > L
T1Zo To A
1
max |2, 4 1
563:7)({ 27A} = — :ASL'(]IL'_l SA
21 x1
oy — max {z3, A} _ A _ 1 S 1
! T3T2 Ax_4 xr_1 — A
1
max (T4, 5 1 1 1
T5 = M - - = >=>A
T4T3 T3 Argr_1 — A
A 1 1
26 = max {zs5, A} = - = 2, <A<-—
IT5L4 T4 A
1
& 1
2 = maX{ZUGaA} _ = 5 <A
.’1:6.%5 AA_J)O -

Clearly this solution is constantly equal to one if 1 = A = z_; = 2 and is
periodic with prime period 7 if A =1 and (z_1,z0) # (1,1).

Thus it remains to consider the case 0 < A < 1.

o — max {z7, A} _ A S A _ 1
8 T7Tg Tor_1 A? A
LS CITS 3 N N A
9 TyT7 T Zo - A~
- max{zg, A} _ 1 _ 310 <A—2—A<l
10 T9Xg g A - A — A
i max{xlo,%} B % o 1 > 1 > A
T11 = = STl T 5. 2 12
109 A zo T-1
- max {211, A} 1 A S 1
2= = JEE— = > —
T11710 T10 T ymg — A

Copyright © 2005 CRC Press, LLC



216 PERIODICITIES IN DIFFERENCE EQUATIONS

1
max 12, 5 1
T13 = M — R =z_1 S A
12211 T11
Inax{$13rA} A
T13T12 .'E_lm
from which the result follows. (

6.8 Open Problems and Conjectures

OPEN PROBLEM 6.1
Assume that A € (0,00), and that r1 and r2 are positive rational numbers.
Investigate the periodic nature of the solution of the difference equation

max {z,, A}
Tpyl = ———— , n=20,1,...
Tn—1

with initial conditions x_1 = A™ and o = A™.

OPEN PROBLEM 6.2
Assume that A € (0,00), and that r1 and r2 are positive rational numbers.
Investigate the periodic nature of the solution of the difference equation

_ max{z,, A} —0.1
Tnt+1 = — 5 n=u1,...
TnTn—1

with initial conditions x_1 = A™ and xg = A™.
OPEN PROBLEM 6.3

Assume that A € (0,00), and that ry and ro are positive rational numbers.
Investigate the periodic nature of the solution of the difference equation

2
_ max {22,A} _ o1
Tp1 = ——— ) n=20,1,...
TnTn—1

with initial conditions x_1 = A™ and x9 = A™.
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OPEN PROBLEM 6.4
Assume that A € (0,00), and that ry and ro are positive rational numbers.
Investigate the periodic nature of the solution of the difference equation

_ max{z,, A} —0.1
Tnt+1 = D) ; n=u1,...
TpTn—1

with initial conditions x_1 = A™ and o = A™.

OPEN PROBLEM 6.5

Assume that A € (0,00), k and I are natural numbers, and that r1 and ro are
positive rational numbers. Investigate the periodic nature of the solution of
the difference equation

max {z¥, A}

; , n=20,1,...
TpTn—1

Tpt1 =

with initial conditions x_1 = A™ and xg = A™.
CONJECTURE 6.2
Let {x,}52_; be a solution of the initial value problem

max{z,, A}
$n+1=7m ’ R n=0,1,...
n—1

z_1=1and 3o = Am
where k and m are positive, relatively prime integers such that either
k=m=1 or 0<m<k.

Then the following statements are true:

(i) If 0 < A <1, then {x,}S>_, is periodic with prime period 5k + m.

(i) If A > 1, then {z,}S° _, is periodic with prime period 5k —m.

REMARK 6.12 The following lemma, the proof of which follows by
computation and will be omitted, shows that a consequence of Conjecture

6.2 being true is that in the case 0 < A < 1, the equation in Conjecture 6.2
possesses periodic solutions of all orders greater than 114.
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LEMMA 6.17

Let n be a positive integer n ¢ P = {1,2,3,4,5,7,8,9,10,12,13,14,15,18, 19,
20,22,24,25,30,32,33,34,42,44, 48,54, 55, 78,80, 84, 114}. Then there exist pos-
itive integers k and m such that

n=>5k+m ,(k,m)=1 and

either O<m<k or k=m=1

CONJECTURE 6.3
Assume that A € (0,00), and that k is a rational number. Show that every
positive solution of the equation

k
B max {z¥, A} B
$n+1—7m ) , n=0,1,...
.

is periodic if and only if 0 < k < 1. See [68].

CONJECTURE 6.4
Assume that A € (0,00), and that k is a rational number. Show that every
positive solution of the equation

k
_ max {xn,A} o1
Tp1 = ——— ) n=20,1,...
InTn—1

is periodic if and only if 0 < k < 3. See [68].

OPEN PROBLEM 6.6
Let r and s be real numbers. Obtain necessary and sufficient conditions so
that every positive solution of the equation

max {z], z3}
Tntl = ——————— ) n=20,1,...
Tn—1

is periodic. See [65].
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Chapter 7

MAX EQUATIONS WITH
PERIODIC COEFFICIENTS

7.1 Introduction

Our aim in this chapter is to investigate the periodic character and the
boundedness behavior of the solutions of the difference equation

1 A

Tng1 :max{—, n } , n=0,1,... (7.1)
ITn Tp-1

where {4,,}22 , is a periodic sequence of positive real numbers, and where the

initial conditions z_; and x¢ are arbitrary positive real numbers.

Eq.(7.1) has been investigated in [9] when {A4,}52, is a constant sequence,
in [14] and [15] when {4,}22, is a periodic sequence with period 2, and in
[64] when {A,}52, is a periodic sequence with period 3. In Sections 7.2 and
7.3 we present these known results about Eq.(7.1), and in Section 7.4 we
discuss some open problems and conjectures about Eq.(7.1) when {4,}52, is
a periodic sequence of positive real numbers with period greater than or equal
to 4, or simply an arbitrary sequence of positive real numbers.

7.2 The Case Where {A,.} is a Period-2 Sequence

In this section we study the equation

1 A,
T = max<{ — n=20,1,... 7.2
n+1 X{mn’xnl} ) ] ( )
where the initial conditions z_; and z¢ are positive, and where {A4,}32 , is a
positive periodic sequence of period 2. See [15]. The case where 49 = A; was
studied in [9].

219
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The following lemma plays a key role in our analysis of the long-term behavior
of the positive solutions of Eq.(7.2).

LEMMA 7.1
Assume Ag, A1 € (0,00), and let {z,}52_, be a positive solution of Eq.(7.2).
Then the following statements are true.

1. Assume Agxo < x_1. Then xox1 = 1.
2. Assume t_1 < Aoz and AgA1 < x_1x9. Then z125 = 1.
3. Assume x_1 < Apxg, T_120 < AoA1, and Arx_1 < xo. Then zox3 = 1.

4. Assume x_1 < Agxo, T 129 < AgA1, xg < A1z 1, and z_1x9 < 1.
Then x3xy = 1.

5. Assume r_1 < AgTo, T_120 < AgAi, To < A1x_1, and 1 < z_1x0.
Then {x,}5> _, is periodic with period 4.
PROOF
(i) Assume Agzg < z_1. Then
{ 1 A } 1
Ty =maxq —,—— » = —.
ro T_-1 o

(ii) Assume z_1 < Agzo and AgA; < x_120. Then

T-1

{ 1 A } Ao
1 =maxy —,—— ¢ =
o T_-1

and

. 1 A ax d Z1 Ay T 1
ZTo =max{ —,— p =max{ —, — » = —.
2 2317.2130 A07.’L’0 Ao

(iii) Assume z_1 < Agxo, T_1Z0 < AgA;, and Ajzx_; < x9. Then

AO { 1 Al} {.’17_1 Al} A1
T = —, To=MmMaxy —,— ¢ =MaAXy —F—,— ¢ = —,
1 o Ap " xo Zo

and

I3 = mMax 1 AO = max o x L
3 — $2ax1 - Al’ —1 —Al-
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(iv) Assume z_1 < Ao, v_170 < AgA1, To < A1z 1, and z_129 < 1.
Then

AO 1 A1 r_1 A1 A1
Ty = ——, T2 =mMaxX4§ —,— ¢ =MaxX A—,— = —,
-1 I1 o 0 <o Zo

1 AO Zo
g —=MmMaxy —,— ¢ =mMax§ —,L—_1 ¢ =T_-1,
ro2 I A1

Ty =MaAX{ —,— ¢ =mMaxXy —,Lyg ¢ = —.
xr3 Io xr 1 A |

(v) Assume z_1 < Agxo, v_120 < AgA1, 19 < A1x_1, and 1 < z_;1m0.
Then {z,}22 , is periodic with period 4.

AO {1 Al} {.’L’_l Al} A1
ry = ——, T2 =MaX4§ —,— ¢ =MaxX —_— = —,

and

Ao’ xo Zo

1 AO Zo
X3 =maxy —,— ¢ =mMax4q —,T_1,p =T_1,
T2 T Aq

and
o o) = {om)
Ty =MmMax§ —,— ¢ =MmMax4y —,Tg ¢ = T,
I3 T2 r_1
from which the proof follows, since minus 1 and 3 are both odd. I

REMARK 7.1 Hypothesis (v). in Lemma 7.1 implies that AgA; > 1, and
so is vacuous if AgA; < 1. However in the case where AgA; > 1, Hypothesis

1
(v). can be satisfied. For example, let 4g = 3 A1 =10,z 1 =1, and zg = 3.

Then
1 0} { }
—, —— ¢ = max =
rg T_1
10
2 = —
2,20} 1
3
“1y=1
R

Ty = max{—,—} = max{1,3} = 3

and it follows that {z,}2 _; is periodic with prime period 4, and, moreover,
that z,_12, # 1 for all n > 0. I

Wl
N | =
N | =

1=
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7.2.1 The Case Where 0 < AgA; < 1

It was shown in [9] that if 49 = A; € (0, 1), then every positive solution of
Eq.(7.2) is eventually periodic with period 2. The extension of this result to
Eq.(7.2) is as follows.

THEOREM 7.1
Assume Ag, A1 € (0,00) and AgA; € (0,1). Then every positive solution of
Eq.(7.2) is eventually periodic with period 2.

PROOF  Let {z,}52_, be a positive solution of Eq.(7.2). We shall show
that {z,}52 _, is eventually periodic with period 2.

It follows by Lemma 7.1 that without loss of generality, we may assume that
129 = 1.

The proof will be given in the following three lemmas.

LEMMA 7.2 1
Suppose x_1 € (0, \/AO) and vg = ——. Then {z,}2_, is eventually peri-

T—1
odic with period 2.

PROOF Note that

e R S
rp =max§ —, —— ¢ = Imax .Z',l,m— = —,

Choose k € {0,1,...} such that
Ao(AoAl)k+1 < $2_1 < Ao(AoAl)k.

-1 (Ag4
Suppose k = 0. Then z4 = max { x—l, (Ao 1)
AO r_1

plete, since 1 and 3 are both odd.

T_
} = ==L and the proof is com-
Ao

Suppose k > 1.
k-1

Let m be the largest integer less than or equal to . Note that if £ is odd,
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then k = 2m + 1, while if k is even, then k = 2m + 2.

Claim: If 0 < j < m, then the following equalities are true.

Teiis = Ao (AOAl)j Teisy = T-1 Teira = Ao (AOAl)j
6+t T_1 A Ag (AgAr)’ o T_1
and
L (AOAl)jJrl o T o (AOAl)j+1
Toi+d = x_1 Toite = (AoAl)H_1 » Tote = o1

Moreover, if k is even, then

poey = Ao CAod)™  a
+ r—1 ’ * AO (A()Al)m_l_l,
A (AgAp)™H
and x3p43 = %.

Proof of the claim:

. { 1 Al} _ {.CL'_l (A()Al)} _ (A()Al)
T4 —=IMAX Yy —,— ¢ =MaX 4§ —/, = s

T3 T2 0 T-1 T_1

T ma, { ! AO} ma, { T x } T
= Xy —,— = Xy 77—, T— = R
¥ T4 I3 (AOAI) ! (AOAI)

26 :max{i,é} :max{(AoAl) ”f;l} _ (Aod)

T5 T4

Suppose 1 < j < m, and that the claim is true for j — 1. Then
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r_1 Ao (A()Al)j A() (A()Al)j
Tej+1 = max o =,
(A()Al)] -1 T_1
T = ma; Tl I
— X = -
or+e A0A1 " Ao (AoA; )~ Ao (AgA,Y
Ag A0A1 o1 Ao (A9 A)’
T6j43 = max =),
-1 A()Al) -1
T_y (Ao A )t (AoA; )"t
T6j4+4 = mMax ) =)
A() AOA1 T—-1 -1
A (A Al e (Aod,)! (Ao
(140141)1'—’_1 ZT_1 (140141)]‘—’_1
Zej+6 = MaxX , 5 =
-1 Ag (A()Al) -1

Finally, if £ is even, then (recall that 3k +1=6m +7)

Ty

3 o1 Ag(AgA)™ | Ag (4oA)™
T3k+1 = Max m+1’ - ’
(A(]Al) T_1

:L' — max T_1 T_1 _ Tr—1
shtz = Ao (AgAD)™ 7 Ag (ApAr)™ Ag (AgAy)™ Y

Ag (AgAy)™ T_q } _ Ag (AgAy)™H

ZT = max
3k+3 { , (AOAl)m+1

T—1
and the proof of the claim is complete.

Case 1  Suppose k =2m + 1. Then 3k + 1 = 6m + 4, and so

r _ (140141)m+1 r _ T_1
3k+1 T, y L3k+2 (AOAl)m+1
(AgA;)™H!
T3k+3 7 )
T_4 Ag (AgAy)™H z_q
T = max s = ,
3k+4 (AOAl)m+1 T_q (AOA]_)m+1
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and the proof is complete, since 3k + 1 and 3k + 3 are both even.

Case 2 Suppose k = 2m + 2. Then

z . AO (AoAl)m+1 z o r_1
3k+1 T_1 » L3k+2 AO (AOAl)m-H’
Ag (AgAy)™H!
Lp43 = —
T—-1
T3p1q4 = MAX Il 4 (AOAl)m+1
* Ao (AoAl)m+1 ’ T_1
J— L1
Ag (AgAr)™H!
and the proof is complete, since 3k + 1 and 3k + 3 are both odd. I
LEMMA 7.3
1 1
Suppose x_1 € |\/Ag, —| and to = ——. Then
pp 1 [ 0 \/A_1] 0 71

{zn}S2_; is periodic with period 2.

1
PROOF Since zg = —, we see that

T-1

ErE T e
1 = max§ —,—— ¢ = maX $_1,x— =T_1

o T-1 _
and
o ) E T
To =maxq —,— p =max{ —, A1z 1 p = —
T1 o r—1 Tr_1
from which it follows that {z,}2° _, is periodic with period 2. I
LEMMA 7.4
1 1
A that x_ — dzo=——"."Th nfoe_q & tuall
ssume that x_1 € \//Tl,oo) and zo = ~— en {x,}52_, is eventually

periodic with period 2.

PROOF
Case 1 Suppose Ag < A;. Then, in particular, we have Ay < 1.
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1
Suppose A; < 1. Then 1 < z_1. Also Agzg < zg = — < z_1, and so it fol-
T-1

1 1
lows by Lemma 7.1 that x¢ox; = 1. Now, x¢ = a:— <A < \/A_’ and so
the result follows by applying Lemmas 7.2 and 7.3 to the solution {Z,}>_,

of Eq.(7.2), where & 1 = 2o and Zo = 2.

So, we are left with the case A; > 1. We shall show that {z,}52_; becomes

periodic with period 2 at the (3k +2)"? term, and that 342 = . Note
T3k+1
that
1
Ao < A_1 < .Z'2_1,
and so
Ty =MmMax§y—,—— ¢ =Max§T—-1, —— ¢ =T-1,
o T-1 -1
1 1
Iy = max{—, —1} = max{—,Ala:_l} = Ala:_l,
1 Xo r_q
1 A() 1 0 1
T3 =maxy —,— ¢ = INax ,—— p =
3 2 I3 Alel r_1 Al.fll',l
1 A 1
Ty = max{—, —1} = max {Ala:_l, —} = A1£L'_1
r3 I2 r_1

Choose k € {0,1,...} such that

(AoAl)k+1 Alxal <1< (A()Al)k Al-'L'Q,l-

1 1
Suppose k = 0. Then x5 = maxq ——,(ApA;)x_1 p = ——, and the
Az Ajz_y

proof is complete, since 2 and 4 are both even.

Suppose k£ > 1.

-1
Let m be the largest integer less than or equal to . Note that if k is odd,
then k = 2m + 1, while if £ is even, then k = 2m + 2.
Claim: If 0 < j < m, then the following equalities are true.

1

zejra = (AoA1) Az 4, wejp3 = ——————,
oj+2 = (Aodr)’ A1z_1, Zej43 (Ag) Az

Tejya = (A0A1)j Arx_q,

and
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1

i1
Tej+5 = (AOAl)] T—-1, T6j+6 — 7 31
J ’ J (AOAl)J+1 r_,

?

1
Tej+7 = (A()Al)] r—1.
Moreover, if k is even, then

1
(AOAl)m+1 Arz_q ’

m—+1
Zgpyo = (Aodr) A1x_1, Tapys =

T3pta = (on‘h)mJrl Az,

Proof of the claim:

1 A 1
Iy = max{—, —0} = max{ ,(A()A]_).Z‘]_} = (AoAl).'E,l,
Al.’L'_l

T4 I3
o — ma { 1 Al} N { 1 1 } 1
= X —_—, — = max —_— Y, —— =Y
6 Ty T4 (A(]Al).’E_l r_1 (AoAl).’E_l
1 A 1
Ty = max{a, ;{;_Z} = max {(A()Al)xl, m} = (AoAl).'E,l.

Suppose 1 < j < m, and that the claim is true for j — 1. Then

1 , .
P E— (A0A1)] A1$—1} = (AOAI)] Arz_q,

X6 = max
6j+2 {(AoAl)] 71

1 1 1
(AOAl)j Az ’ (140141)1171 Az } - (AOAl)j Az ’

Tej43 = MMax {

1

Tgj4a = Max AAjAa:_,i.
65+4 {( 0A1) Ajz (AoAr) 71

} = (AoAr)’ Arz_y,

1

(Ao A1) Az (Ao Ar)"*! “7—1} = (AoAr) " 2y,

Zej+5 = ma,x{

1 1 1
Tgj+6 = IMaxX 7 ) 7 = 7 )
! { (on‘h)ﬁ_1 -1 (Agdr) 24 } (AoAl)H_l T-1
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1

Tgjpr = max< (AgA)Y g, ———
6j+7 {( 0A1) 1 (Aody) Arzs

} = (AoA]_)j+1 r_q1-
Finally, if k is even, then (recall that 3k + 2 = 6m + 8)

1

Gty (o™

T3k+2 = max{

= (Ao A" Ayz 4,

1 1
z = max , -
e { (AOAl)m+1 All’_l (A(]Al) Alx—l }

1
(AOAl)m+1 A1z 4 ’

T34 = MAX {(140141)m+1 A_jz_q,(AgAy)™ A1$71}

= (AgA)™ ! Ayx_y,

and the proof of the claim is complete.
Case 1(a)  Suppose k = 2m + 1. Then 3k + 2 = 6m + 5, and so
1
(140141)m+1 T—1

1
L3k+5 = (Ao A1) Az,

and the proof is complete, since 3k + 2 and 3k + 4 are both odd.

1
Tapy2 = (Aod1)™ x4, T3p43 =

)

Tapra = (Aod1)" Mz,

Case 1(b)  Suppose k = 2m + 2. Then 3k + 2 = 6m + 6, and so

1
(AoAl)m+1 Al.’L',l ’

m+1
Zgpyo = (ApAr) Arz_q, T3p+3 =

T3k+4 = (140141)7”—’_1 Arz_q,

1
(AoA)™ " Az

ZT3k+5 = Max { ,(ApA)™H? 331}
1
(AOAl)m+1 Arz_q ’
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and the proof is complete, since 3k + 2 and 3k + 4 are both even.

Case 2. Suppose A; < Ag. Then as 1 < Ajz?2, and Ag4; < 1, we see
Ap < z%,. Tt follows by Lemma 7.1 that zoz; = 1. The proof follows by
applying Case 1 to the solution {%,}2_; of Eq.(7.2), where &_; = z¢ and
.’i‘o =T- |:|

The proof of Theorem 7.1 is complete. I

7.2.2 The Case Where ApA; =1

It was shown in [9] that if Ag = A; = 1, then every positive solution of
Eq.(7.2) is eventually periodic with period 3. The extension of this result to
Eq.(7.2) is as follows.

THEOREM 7.2
Assume Ag,A; € (0,00) and AgA; = 1. Then every positive solution of
Eq.(7.2) is eventually periodic with period 6.

PROOF Let {z,}° _,; be a positive solution of Eq.(7.2). We shall show

n=
that {z,}52 _, is eventually periodic with period 6.

It follows by Lemma 7.1 that without loss of generality, we may assume that
129 = 1.

T3 = max
T2 r_1 r_1
1 A1 r_1 1 1

T4y =Mmax{ —,— p =m —_—— 7 = ,
Ir3 T2 Ao r_1 r_1
1 A

Ty =max{ —,— p =max{r_ 1,r 1} =21,
T4 T3

{ 1 A]_ } { 1 Tr_1 } 1
Tg=maxq —,— ¢ =max{ —,——— p = ——
T T4 1 A T_1
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and the proof is complete, since minus 1 and 5 are both odd.

Suppose r_; € [\/Ao,oo) . Then

= ,Z'_17
g T-1 r_1
1 1 1 Tr_1 Tr_1
To =MaX{ —,— ¢ =MaxX{ —,—— ¢ = ——
x1 xo z 1 Ao Ay’
1 A 0 0 Ao
T3 =max{ —,— ¢ =max§ —,— p = —,
T2 X1 T_1 -1 xr_1
1 1 r_1 1 r_1
T4 = max{ —,— » =maxs —,— » = —,
T3 T2 0 T-1 0
1 A 0
Ty = mMax{ —,— p =maxy —,T_ 1 p =T_1,
T4 T3 1

from which the result follows, as minus 1 and 5 are both odd. I

7.2.3 The Case Where 1 < AgA;

It was shown in [9] that if 49 = A; € (1,00), then every positive solution
of Eq.(7.2) is eventually periodic with period 4. The extension of this result
to Eq.(7.2) is as follows.

THEOREM 7.3
Assume Ag, A1 € (0,00) and AgA; € (1,00). Then every positive solution of
Eq.(7.2) is eventually periodic with period 4.

PROOF Let {z,}52_; be a positive solution of Eq.(7.2). We shall show

n=—1
that {z,}52 _; is eventually periodic with period 4.

It follows by Lemma 7.1 that without loss of generality, we may assume that
r_1Tp = 1.

The proof will be given in the following three lemmas.

LEMMA 7.5

1
Suppose x_1 € (0, and £g = —. Then {x,}32 ;| is eventually peri-

odic with period 4.
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PROOF Note that 4;2?, < 1 and 22, < Ap. Note also that

{1 AO} { Ao} Ap
Ty =maxq —,—— p =MmMaxr_qi,— ¢ = —

Io ’ r_1 r_q Ir_q ’
1 A1 r_1
Tp2 =IMaxq —, — ¢ =Inax —,Al.’L‘_l = Al.Z'_l,
1 Xo AO

1 A 1 1
T3 =max4q —,— ¢ =max Tr_ -
3 SL'Q’ X1 Ala:_l’ ! A1£L'_1 ’

{1 Al} { 1} 1
T4 = max{ —,— ¢ = max Alw_l’x— = —,

r3 I2 — r_1
1 A
Iy = max{—, —0} = max{m,l, (A()Al)."[},l} = (AoAl).Z',l.
T4 XT3

Choose k € {0,1,...} such that
(A()A]_)kAl.’E2_1 S 1< (AgAl)k+1A1.ZL‘2_1.

Suppose k& = 0. Then
— - = —_— A — = A —
T max{%, 71 } ma,x{(AoAl)x_l, 1T 1} 1T—1,

1 A 1 1 1
Ty =MaX{ —,— ¢ =MaxXy ——, —— ¢ = y
7 Tg Iy Al.'E,l Tr_1 Alel

and the proof is complete, since 2 and 6 are both even.
Suppose k£ > 1.

k-1

Let m be the largest integer less than or equal to . Note that if & is

odd, then k = 2m + 1, while if £ is even, then k = 2m + 2.
Claim: If 0 < 57 < m, then the following equalities are true.

1 1
P67+ = A A)i Aoy "9 T (AoA)io_y

j+1
Tej+5 = (A(]Al)]+ T 1,
and

1 1
T6j+6 = m, Toj+7 = m;

Tojrs = (AoA1) T Ajz_y.
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Moreover, if k is even, then

1 1
T3k+3 = (AoA) ™ Az, T3k44 = —(AoAl)m+1$_1’

Tapts = (AoA1)™ 2z _y.

Proof of the claim:

T ma; { 1 Al} max{ 1 Az } 1
= X —, = > _ =,
6 rs T4 (A()Al).’ll_l ! ! (A()Al)f[}_l

1 A 1 1
T7 = mMax { a, g} = max {(A(]Al);l)‘l, Al.’L'fl } = A1$71’
1 A
g =MmMaxy —, — ¢ = max{Ala:_l, (A()Al)."[}_l} = (A()Al)m_l.
T7 Tg

Suppose 1 < j < m, and that the claim is true for j — 1. Then

1 . 1
o= - - J - -
T6j43 max{(AoA1)jA1£E_1 , (AoAr) 331} (oA ) Az’
Tgjra = max < (AgA;) Az L = L
6j+4 — 0411 14—-1, (A(]Al)jm_l - (A()Al)jm_l’

Tej+5 = max{(AoAl)jl’—l; (AOAl)j+1$—1} = (AoAl)jHSU—l;

1 ; 1
- - - J - -
Z6j+6 —max{( A 1,(AoAl) A1£L'_1} = (AoA )tz

1 1
(A()Al)jAlil?,l } o (A(]Al)jAlel’

Tgj+7 — MNax {(AoAl)j+1$_1,
T6j4+8 = MaAX {(AoAl)jAl.'lT,l, (A()Al)j+1A1$,1} = (AoAl)j+1A1(L',1.
Finally, if £ is even, then (recall that 3k + 3 = 6m + 9)

1 1
_ A A m+1 B —
T3k4+3 = MMaxX { (AgAl)m+1A1~'17—1 a( 0 1) z 1} (AoAl)m+1A1IL'_17

1 1
(AgA)mHlz_ }  (AoA)mtiz_y’

T3k+4+4 = Max {(AoAl)m+1A1$1,

$3k+5 — max {(AoAl)m+1$_1, (AoAl)m+2$_1} = (AoAl)m+2.'L'_1

and the proof of the claim is complete.
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Case 1  Suppose k =2m + 1. Then 3k +2 = 6m + 5, and so

1

Tapy2 = (AoA)™ o1, sz = (AoA) iz’

1

_ _ = (AgA;)™" T Az
T3k+4 (AOAl)mALfU_l, T3k+5 ( 0 1) 1L—-1,

1
T3k+6 = max{(AoAl)m“Alxl

,<A0A1)m+lx_1}

= (AgA)" T z_y,

1 1
T3k+7 = IMax { (AOAl)m+1.’I}'_1’ (AOAl)m+1.Z'_1 }

1
(AgAy)mHiz o’
and the proof is complete, since 3k + 2 and 3k + 6 are both odd.

Case 2.  Suppose k = 2m + 2. Then 3k + 2 = 6m + 8, and so
Tapp2 = (Aodr)™ M Ayz_y,

1 1
T3k+3 = (Ao A" A1z T3k4+4 = —(AoAl)m+1$_1’

Tarts = (AoAr1) "2z _y,

1 m+1
T3k+6 = max{m, (AgA)™F A1x1}

= (AoA1)™" 1 Az,

1 1
T3k+7 = max{ (AOAl)mJ’_lAl.'L'_l, (AOAl)m+1A1x_1}

1
(AgAq)mH A1z,

and the proof is complete, since 3k + 2 and 3k + 6 are both even. 0
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LEMMA 7.6

1 1
S 1 € |—==,VA dxg=——.Th
uppose T _q [\/14_1 0] and xg . en

{zn}22_, is periodic with period /.

1
PROOF Note that 1 < A;z7 and 22 ; < Ap. Since g = ——, we see that

T—1
1 A Ag Ao

Tl —=MaXy —,—— ¢ =MaxX§T_1,—— ¢ = —,
rg T_-1 r_q Ir_q

1 A _
Io :max{—,—l} :max{m—l,Alx_l} = A1(L'_1,
1’ To Ao

ET S R Etal
T3 = mMax§ —, — ¢ = mMax w1 ¢ = %1,
2 I3 A1.TC,1

{1 A1} { 1 1 } 1
T4 =MaX{ —,— ¢ =mMaAX{ ——,—— ¢ = — = Ip.

3 T2 r_1 T_1 r_q1

So as minus 1 and 3 are both odd, we see that {z,}52_, is periodic with

period 4. [

LEMMA 7.7 )

Assume that z_; € (\/Ao,oo) and xo = P Then {z,}52_4 is eventually
-1

periodic with period 4.

1 .
PROOF Note that 1 < Ag < 2%, and so in particular, 1 < A;2” . Note
1

also that
Tl —=MaX§—,—— ¢ =MaxX§T_1,—— ¢ =T_1,
To T_1 T_1

1 A 1
X2 :max{—,—l} :max{x—,Ala:_l} = Al.’L’_l,

1 Zo

{ 1 AO} { 1 0 } A
T3 =maxy —, — ¢ = Inax ,—— = —,
T2 T1 Arz_1 r_1

r—1 ’ r_1

{1 Al} { 1 (AgAr)
Tg = max{ —,— ¢ =max{ —
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Choose k € {0,1,...} such that
(AogA1)"Ag < a2 < (AgA1)H 4.

Suppose k = 0. Then

x ma { 1 AO} max{ Tt 0 } Ao
= Xy ~"7Hh (= s (T T
7 g s (A()Al) r_1 r_1

T ma; L max R Il
= X _ — = _ = —
8 .’L'7’ Zg AO ’.CL',l AO ’

and the proof is complete, since 3 and 7 are both odd.

Suppose k > 1.
— 1. Note that if & is

Let m be the largest integer less than or equal to
odd, then k£ = 2m + 1, while if & is even, then k = 2m + 2.

Claim: If 0 < j < m, then the following equalities are true.

@ e (AgA)TH
VT Ag(Ao AT TV (A TV T e
and
e @ Ao(Aod)™
T (Ao AT TR T Ag(Ag Ayt T T e
Moreover, if k = 2m + 2, then
z _ r_1 =z _ r_1 z _ (AoAl)m+2
3k+4 — A()(A()Al)m—’_l’ 3k+5 — (AOAl)m—'_l, 3k+6 — ,’L’_—l .

Proof of the claim:

T ma { 1 AO} ma { Tt 0 } il
= X —, — = X , —— = y
T T s (AOAI) -1 (AOAI)

7 Te T—1 0 Ao ’
_ { 1 Ao} _ { Ag AO(AOAI)} _ Ao(Ao4y)
Zg = max{ —, — » = max{ —, = )
g T7 T_1 ZT_1 r_1

Suppose 1 < j < m, and that the claim is true for j — 1. Then

1 (AOAl)j } Z—1

Toj+4 = MAX { Ao(AoAr)i7 x4 ~ 4 (AgAy)d’
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o AO(AoAl)j T-1 T
6]+5 - 1_71 9 (A()Al)] - (AOAl)j’

(AoAr)! (AgAs)*! } _ (AoAy)it!

Tejt+6 = max{ ;

T_1 ’ r_1 r_1
_ T_1 A0A1
Toje = MAX ) A0A1 -
o—m (140141)””rl 3
Tgj+s = Max o A0A1 - A0A1
_ Ao(AoA1) Ao AoA1 A0A1 i+l
Tgj+9 = MAX =

Finally, if k is even, then (recall that 3k + 4 = 6m + 10)

x = max Tt (Ao A1)™"! = Tt
St Ag(AgA)mtl”  zy © Ag(AgAy)mtr?
— ma Ao(AoAl)m+1 r_1 _ r_1
.'L'3k+5 = max T_1 3 (AoAl)m+1 - (AOAl)erl,

(AOAl)m+1 (AOAl)m+2 } 3 (AOAl)m+2

T3k+6 = MaX ;
r_1 r_1

ZT_1

and the proof of the claim is complete.

Case 1  Suppose k =2m + 1. Then 3k + 3 = 6m + 6, and so

. (AoAl)m+1 o r_1 _ T_1
T3k+3 = T, T3k4+4 = W, T3k4+5 = m,
Ag(AgAy)m™Ht
T3k+6 = Ta

?

r_1 (AoAl)m+1 } _ (AoAl)m+1

T3k+7 :maX{AO(AOAl)m_l_la T

-1

—m T_1 T_1 B Tr—1
T3k4+8 = ax (AOAl)m-i_l, (AOAl)m+1 - (A()A]_)m—"_l,

and the proof is complete, since 3k + 3 and 3k + 7 are both even.
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Case 2 Suppose k = 2m + 2. Then 3k +3 = 6m + 9, and so

_ AO(AOAl)m+1 z _ T—1
T3k+3 = 7:3,1 y T3k+4 = —Ao(AoAl)m“Ll’
Tr_1 _ (AoAl)m+2
L3k+5 = W; L3k+6 = Ta
_ T—1 Ao(AoAl)m+1 _ Ao(AOAl)m+1
T3k+7 = Max (A0A1)m+2’ 1 - 1 )

= max T -1 = 1
Takts = Ag(AgAr)m 17 Ag(AgAr)m+1 [ Ag(AgAy)m+t’
and the proof is complete, since 3k + 3 and 3k + 7 are both odd. I

The proof of Theorem 7.3 is complete. I

7.3 Period-3 Coefficients

In this section we study the difference equation

1 A,
Tyl = Max { —, } (7.3)

Tp Tp—1

where {4,}52 is a sequence of positive real numbers which is periodic with
prime period 3, and we prove the following results.

1. If A,, € (0,1) for all n > 0, then every positive solution of Eq.(7.3) is
eventually periodic with period 2.

2. If A, € (1,00) for all n > 0, then every positive solution of Eq.(7.3) is
eventually periodic with period 12.

3. If Aiy1 <1 < A; for some i € {0,1,2}, then every positive solution of
Eq.(7.3) is unbounded.

4. In all other cases, every positive solution of Eq.(7.3) is eventually peri-
odic with period 3.
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7.3.1 Eventually Periodic Solutions with Period 2

Assume that {A,}22, is a sequence of positive real numbers which is peri-
odic with prime period 3 such that A, € (0,1) for all n > 0. It was shown in
[14] that in this case, every positive solution of Eq.(7.3) is eventually periodic
with period 2.

The case where the sequence {A,}52, is identically equal to a positive
constant was investigated in [9], and the case where {A,}52, is a sequence of
positive real numbers which is periodic with prime period 2 was investigated
in [15].

Observe that Eq.(7.3) has the unique equilibrium point Z = 1.

LEMMA 7.8

Let {Ap}52, be a sequence of positive real numbers which is periodic with
prime period 8 such that A,, € (0,1) for alln > 0. Let {z,}2_, be a positive
solution of Eq.(7.3) which is not eventually constant. Then x, # 1 for all
n>1.

PROOF For the sake of contradiction, suppose there exists N > 0 such
that IN+1 = 1. Then

o)
1l =2n41 = max{ —,
IN TN-1

and so we see that xy > 1 since {z,}32_; is not eventually constant. Thus

iy =4 Al Ly Ava ]y
N2 IN+1 TN TN ’

which is a contradiction. (

LEMMA 7.9

Let {An}S2, be a sequence of positive real numbers which is periodic with
prime period 8 such that A, € (0,1) for alln > 0. Let {z,}52_; be a positive
solution of Eq.(7.3), and let m > 0 be a non-negative integer. Then one of
the following statements is true:

1. Ty 12 = 1.
2. TmTm+1 = 1.
3. Tm4+1Lm+2 = 1.

4. ITm+2Lm+3 = 1.
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PROOF Suppose Tp 1Tm # 1, TmTmy1 # 1, and Tpy1Tmyo # 1. It
suffices to show that z,,422,,+3 = 1. So for the sake of contradiction, suppose
Tm+2Tme3 7 1. Since

1 A
Tyl = max{—, m } and T, Tpy1 £ 1
Tm Tm—1
we see that
x — Am
+1 —
" Tm—-1
and that z
mL <A
Tm
Similarly,
1 Am+1 Tm—1 Am+1
T2 = Max , —— » = max 1
Tm41 Tm m ITm
and so 4
Tmiz = 2 and  Zpo1Zm < Am At
m
Thus
1 Am+2 _ Tm Am+2$m—1 _ Am+2$m—1
.Z'm+3 = max y = max A , A = A
Tm+2 Tmtl m+1 m m
and
Tm < Am+1Am+2
Tm—1 Am
Hence
Tmot o Am oy
Tm Amt+1Am+2 "
which is a contradiction. I

7.3.1.1 Analysis of the Semi-cycles of Eq.(7.3)

In this section we give some results about the semi-cycles of the solutions
of Eq.(7.3) which shall be useful in the sequel.

Let {z,}22_; be a positive solution of Eq.(7.3). Recall the following defi-
nitions.

A positive semi-cycle of {z,, }52_; consists of a “string” of terms {z;, Z;41,.- ., Zm },
all greater than or equal to z = 1, with [ > —1 and m < oo, such that

either[=—1 or [>—-landz;_; <1

and
either m =00 or m < oo and Zpy41 < 1.
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A negative semi-cycle of {z,, }52 _; consists of a “string” of terms {z;, Zi41,-..,Zm},
all less than £ = 1, with I > —1 and m < oo, such that

either[=—1 or [ >—-1landx;_;>1

and
either m =00 or m < oo and zp41 > 1.

{z,}52 _; is called non-oscillatory if there exists N > —1 such that either
zp,>1 foralln>N

or
zn <1 foralln > N.

{zn}52 _; is called oscillatory if it is not non-oscillatory.

LEMMA 7.10

Let {An}52, be a sequence of positive real numbers which is periodic with
prime period 8 such that A, € (0,1) for alln > 0. Let {x,}S>_, be a positive
solution of Eq.(7.3) which is not eventually constant. Then the following
statements are true:

1. {z,}52 _; oscillates about the positive equilibrium point T = 1 of Eq.(7.3).

2. With the possible exception of the first negative semi-cycle, every nega-
tive semi-cycle of {xp}S_; has length equal to 1.

1

Tpn-1

3. Letn > 1 be such that ©,,_o > 1 and x,_1 < 1. Then x,, =

4. Every positive semi-cycle of {xn,}S>_; has length at most 2.

PROOF Recall by Lemma 7.8 that z,, # 1 for all n > 1.

(i) Statement 1 follows from Lemma 7.9.

(ii) Suppose there exists N > 0 such that zny_1 > 1 and zy < 1. Then

1 A 1
.Z'N+1=max{—, N }=—>1.
IN ITN-1 N

1 A, 1
(iil) zp =max{ - 1}

, .
ITn—-1 Tp-—2 Tn—1
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(iv) Suppose there exists N > 0 such that zy_1 > 1 and zy > 1. Then

1 A
xN+1:max{—, N }51.
IN TN-1

Now we know by Lemma 7.8 that zx4+1 # 1, and so zn41 < 1. I

LEMMA 7.11

Let {Ap}52, be a sequence of positive real numbers which is periodic with
prime period 3 such that A, € (0,1) for alln > 0. Let {z,}32_; be a positive
solution of Eq.(7.8) which is not eventually constant. Then the following
statements are true:

1. With the possible exception of the first positive semi-cycle, every positive
semi-cycle of {xp}S2_; has a strict mazimum which occurs in the first

term of the positive semi-cycle.

2. With the possible exception of the first positive semi-cycle, the first term
of every positive semi-cycle is less than or equal to the last term of the
preceding positive semi-cycle.

PROOF It suffices to assume there exists n > 2 such that
Tpn—2 > 17 Tp—1 < 1; Tn > 1

and to show that
Tn41 < Zp S Tn—2-

1

We know by Lemma 7.10 that z,, =

Tn-1

1 An72 }

We shall first show that z,, < z,_s. Note that x,_1 = max{ ,
Tpn—2 Tnp-3

1
Case 1  Suppose z,_1 = .
Tn—2
1
Then z,, = =T, 3.
Tn—1
1
Case 2 Suppose ,_1 # .
Tn—2
A, 1 An_
Then 2,1 = —=2  and < =2
Tn—3 Tn—2 Tn-3

Ty
from which it follows that 2, = —— = =" 8 < Tn_o.

Tn—-1 An72
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1 A
We shall next show that ,,1 < . Now 11 = max { —, - } .
In Tn—1

1
Case 1  Suppose Tp41 = —.
Tn

Then z,41 < 1, and so zp41 < 1 < zp.

1
Case 2 Suppose Tpt1 # —.
Tp
A
Then 2,41 = —— = Ap2, < Tp. I
Tn—1

7.3.1.2 The Main Result

Here we show that every positive solution of Eq.(7.3) is eventually periodic
with period 2.

LEMMA 7.12

Let {An}52, be a sequence of positive real numbers which is periodic with
prime period 3 such that A, € (0,1) for alln > 0. Let {,}52_; be a positive
solution of Eq.(7.8). Suppose there exists N > 0 such that the following
statements are true:

1. IN_1TN = 1.

2. ma.x{\/A_o,\/A_l,\/A_g}SxNgmin{\/fTo,\/Z_l,\/A_z}.

Then {x,}52 _, is periodic with period 2.

PROOF Since the least common multiple of 2 and 3 is 6, it is clear that
it suffices to show that {xn}ZE%ﬂ is periodic with period 2. Now,

1
IN-1= —-
TN

With this in mind, we make the following computations, from which the proof

follows.
1 Apn 1
ITN4+1 = MaAX § — = maXx —,AN.'L‘N = —
IN TN-1 TN
1 Anyr N+1
TN42 — Max , = max4§ TN, =N
IN+1 TN TN

1 Anio 1 1
ITN43 = Max , = maXx —,AN+2.'L‘N = —
IN+2 TN+1 TN
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1 Angys An i
TN44 = MAXq ——, ——— p = MAX TN, — =N
IN4+3 TN42 TN

We are now almost ready for Theorem 7.4 which is the main result of this
section. The proof of Theorem 7.4 is by contradiction and requires Lemma
7.13, which is given next. The reader should be alert to the fact that Lemma
7.13 is given for technical reasons only, and, in fact, in view of Theorem 7.4,
has contradictory hypotheses.

LEMMA 7.13

Let {Ap}52, be a sequence of positive real numbers which is periodic with
prime period 3 such that A, € (0,1) for all n > 0. Suppose there ezists a
positive solution {x,}>2_, of Eq.(7.3) which is not eventually periodic with
period 2. Then there exists a subsequence {zn, }72, of {zn}5%, such that for
each k > 0, the following four statements are true:

1. Tpp—1 < 1.
1
2. xp, = .
wnk—l
1
3. Tnp+1 = Ankxnk ;é -
Ty,
1
4' Tnp4+2 = .
xnk—l—l

PROOF Suppose that the lemma is false. Then there exists M > 1 such
that for every n > M, it is false that each of the following four statements is

true.
(1) Tp_1 < 1.
.. 1
i) , = .
(ii) p—

1
(i) Tnt1 = Anzn # —.
Tn

1

mn—i—l

(iv) Tpy2 =

Claim: Suppose N > M such that zy_ o > 1 and zx_; < 1. Then

1 1
and TNy1 = —-
IN-1 TN

ry =

Proof of the claim:
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As usual,

?

1 AN_I}_ 1

N = max s
IN—-1 TN-2

IN-1
and so in order to complete the proof of the claim, we need only show

that
1
T = —.
N41 N

Loy =] v
TN41 = Maxq —, =max4q —,ANTN ¢ .
TN

IN ITN-1

Now,

It suffices to consider the case zny11 = ANZN.

Note that

1 Anp1 1 AnAni: 1
TN42 = max , —— ¢ = max R =
IN+1 TN TN+1 ITN+1 TN+1

and so it follows (since it must be the case that Statement (iii) above is

1
false) that zn41 = —.
TN

Thus we see that the claim is true.

Now by Lemma 7.10, there exists N > M such that xy_2 > 1 and zny_1 <
1. It follows by the claim that {x,}° x_, is periodic with period 2. This
contradicts our assumption that {z,}>% y_, is not eventually periodic with

period 2, and so the proof of the lemma is complete. I

THEOREM 7.4

Let {An}52, be a sequence of positive real numbers which is periodic with
prime period 8 such that A, € (0,1) for alln > 0. Let {z,}S>_, be a positive
solution of Eq.(7.8). Then {x,}5>_, is eventually periodic with period 2.

PROOF It follows by Lemma 7.11 that the terms of the positive semi-
cycles of {z,}52 _ form an eventually non-increasing subsequence of {z,}52_;
which we shall denote by {zy, }32,. Thus there exists L > 1 such that

lim z,, =L
k—o0

and there exists N > 0 such that

Zn, > L forall k> N.
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Claim: There exists K > N such that z,, = L.

Proof of the claim: For the sake of contradiction, suppose that x,, > L
for all £ > N.

Since {z,}32 _; is not eventually periodic with period 2, it follows by
Lemma 7.12 that

1 1 1
L > min , , .
- {\/Ao VA \/AQ}

Re-label {0, 1,2} as {ig,%1,i2} such that

1 1 1
< < .
VAie T VA T VA
Note that A;, = max{Ao, A1, A2} . Let € be the smallest positive ele-
ment of the set

{(l—AiO)L ‘L 1 ‘L 1 ‘L 1 }
Aiq ’ VA | VAL VA | T
Clearly there exists K > N such that for k > K,
L <z, <L+e.
It follows by Lemma 7.13 that we may also assume that
1 1
Tng—1 < 1, ITng = » Tng+1 = A'ﬂKx'ﬂK # —
-'L'anl an
1
d z, = .
and T, 42 P

We claim z,,,+1 < 1. For the sake of contradiction, suppose that x,, 41 >
1. Then z,, . 41 is itself a term in a positive semi-cycle, and so z,,, 1 > L.
But we also have

(1-A;)L

Tng+1 = Anxmnx < Aio (L+6) = Ai0L+Ai06 < Ai0L+Ai0 A,
i

=1L,
0

which is impossible.

So it is true that z,,+1 < 1, and hence that zp, 42 > L.
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Note that

1 1 A 1
— # AannK = Tng+1 = max{— — :} = max{—aAnK'an} )
Ty

)
Ty Tng Tng—1

1
and so it follows that A,, zn, > ——. That is,

1
ng > ——- 7.4
o > e (1.4
Claim (a).
1
ApL> . .
el (7.5

The proof of Claim (a) is a consequence of the following three cases.

1 1
<L<

VA, T A

We claim tha

(a) Suppose

Ang = A4;,.

For the sake of contradiction, suppose that A, # A4;,. Then there
exists j € {1,2} such that A,, = A;; < A;,. Thus by (7.4),

1 1
Ty > —ee = >L

VAng Ag;

and so

1 1 1
ne — L=\ Tngx — —L —L>e¢,
Tng <a: X \/A_zj>+< i, >> x, > €

which is impossible.

1
Thus it is true that A,, = A;,, and so L? > 1=

10 nK

1 1
<L<

VA, T A,

We claim tha
Any # A,

For the sake of contradiction, suppose that A,, = A;,. Then by
(7.4) we have

(b) Suppose

1 1
Ty > ——— = >L

VAng Ay
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and so

1 1 1
— L= — — L —L>
ni = L ( ¢A—>+<¢A— >> T, T

which is impossible.

1
Ap’

Thus it is true that A,, # Aj;,, and hence that L? >

1
VA, T

Then clearly L? >

L.

(¢) Suppose
1

nK

Thus the proof of Claim (a) is complete.

Hence by (7.5),

1
$nK+1 = AnK:L.nK > ATLKL 2 Z
and so
1
L> =z =z > L
Trptl nx+2 N(K+1) )

which is a contradiction.

Thus the claim is true, and so there does exist K > N such that z,, = L.

Then because {zn, }32, is non-increasing, we must have
ZTpn, =L forall k> K.

It follows by Lemma, 7.11 that each positive semi-cycle of {z,}52,,  consists

of a single term which is equal to L. Hence for £ > K we have

Ty, = L Z 1 y LTng+1 <1 y  Tpp+2 = mn(k+1) =L Z 1
and so
1 A 1
L=2x,, 42 :max{ ) "’“H} = .
Tng+1 Ty, Tng+1
Thus we see that {z,}52,,, is periodic with period 2. I
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7.3.2 Eventually Periodic Solutions with Period 12

Throughout this section we assume that {4,}52, is a sequence of positive
real numbers which is periodic with prime period 3 such that

Ap € (1,00) for all n>0

and we show that every positive solution of Eq.(7.3) is eventually periodic
with prime period 12. The following lemmas will be useful in the sequel.

LEMMA 7.14
Let {A,}52, be a sequence of positive real numbers which is periodic with
prime period 3 such that A, € (1,00) for all n > 0. Then every positive
solution of the difference equation

An

T+l = , n=20,1,...
Tn-1

is periodic with prime period 12.
PROOF The proof follows easily by computation. I

LEMMA 7.15

Let {An}52, be a sequence of positive real numbers which is periodic with
prime period 3 such that A, € (1,00) for all n > 0, and let {z,}52_; be a
positive solution of Eq.(7.3). Suppose there exists N € {0,1,2,...} such that

1 1
and INt1L = —- (7.6)
TN

IN =
TN-1

Then
ANt

IN42 = .
TN

PROOF For the sake of contradiction, suppose that xx42 = - . Then
N+1
by (7.6),
e R C ey
IN-1 = ZN41 —MaAX§ —, =max\§ IN-_1,
IN ITN-1 ITN-1
and so we see that
Ay <X ;. (7.7)

We similarly have

1 1 1 Anpt 1
= =X N42 = Max ,—— ¢ =maxq ——, Anj12ZN_1
ITN-1 TN+1 ITN41 N IN-1
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and hence

(7.8)

It follows by (7.7) and (7.8) that 1 < zx_1 < 1, which is a contradiction. [

REMARK 7.2 Let {z,}52_; be a positive solution of Eq.(7.3). In order

to prove that {z,}°2 _; is eventually periodic with period 12, it follows by

n=
Lemmas 7.14 and 7.15 that without loss of generality, we may assume that

1
r_1=— and x1=Apxg.
Zo

Observe that in this case,

1 A 1
Agzg = 21 :max{—,—o} :max{x—,Aozco}
0

o T

and so we see that

{1 Al} { 1 Al} Aq
T = mMax{ —, — » = max — = —. I

1 Zo Apzo ’ Zo Zo

Moreover,

LEMMA 7.16

Let {A,}22, be a periodic sequence of positive real numbers with prime period
3 such that A, € (1,00) for all n > 0, and suppose there exists m € {0,1,2}
such that

1< Am+1 S Am+2 S Am-

Let {x,}22 ;| be a positive solution of Eq.(7.3) such that

1
r_1=— and x1 = Agxg.
Zo

Then there exists p € {0,1,2,...} with p = m(mod 3) such that

Tp = and  Tpy1 = ApTp.

Tp—1

PROOF By Remark 7.2, we know that

A
ong >1 and x9 = -1
Zo

The proof will follow from the following three cases.
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Case 1  Suppose m = 0. Then
1< Ay <Ay < A
Note that

Trog = — and r1 = A().’L'o
ZT_1

and so the result follows with p = 0.

Case 2 Suppose m = 1. Then

1< Ay <Ap <A

A
So as A_2 < 1, there clearly exists k € {0,1,2,...} such that

1
AT A, < Agxg < AT A,

Note that if & = 0, we have

& S Aoﬂfg < A1A2
Ay

and so

T ma. 1 2 ma. o A2
= X< —, — = X4 —, —— =
s zy’ Ay’ Aoz

2 = ma 1 A max Apzo Aoxo
= X —,. — » = =
4 I3 ’ T2 Az ’ A1

As
AO Zo

AO o
As

{ 1 Al} { A2 A()Alib'o} A()Alflfo
Ty —mMaxq —, — ¢ = Max =

A()."L'(] ’ A2

and thus the result follows with p = 4.

A

(7.9)

(7.10)

Z3

= A1z

So suppose k > 1. It follows by induction from (7.9) and (7.10) that for

alo<n<k-1,

A?‘ i)
I3n—1 = —— I3n = — I3n+1 =
o ) A? ’ +
while
Alf Zo
I3p—1 = — and I3 = TR
o Al
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Note that

1 As AY Agzg
T3pt1 = Max{ —, = max{ —, .
T3k T3k—1 zo  AF

Ak
We first suppose that 35,1 = —. Then
Zo

_ b
T3k+1 = P
Moreover,
Aozl < Aozl < AZFH1 Ay
and so

k+1 k41

_ 1 A3k+1 _ Io A1+ A1+
T3pt2 =MaAX\ — ¢ =9 % . (— =A1333k+1

T3k+1 T3k A7z Zo

and thus the result follows with p = 3k + 1.

Agzo

We next suppose that z3x41 = e
1

. It follows by (7.9) and (7.10) that

L3k+4+2 = INax

Aoz

Aoz

T3k+4 — MaxX

{ 1 A3k+2 } { ) Alng } Alng
T3k+3 = MaAX = max =1
1

1

L3k+3

1 Aspys }

{AlfAz Apzo }_ Aoz
)
T3k+4 T3k+3

L3k+5 = ma,x{

= A1$3k+4

and so the result follows with p = 3k + 4.
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Case 3  Suppose m = 2. Then

1<A05A15A2.

A
We first suppose that Agzi < A_2 Then
1

ﬂAz} _A2

(7.11)

Apzo

oot =
x4:max{i,_3}:max{z40$o ono} _ Aoz
o) =]

Aq A0A1IL'0}_ Ay 1

Apzo T4

{1 A5} {A()ZL'O A1A2} A1A2
Tg = Max q —, — ¢ = Max , = = Asxs

and so the result follows with p = 5.

Agzo

A
We next suppose that Aomg > A—2 There clearly exists k € {0,1,2,...}

1
such that

AR 4,y < Azl < AT A, (7.12)

It follows by induction from (7.11) and (7.12) that for all 0 < n < k,

_ AT _ T
m3n—1 - SL'O ) $3n - A? b
while
k+1 k
T3k42 = Al T3k4+3 = A1A2
+ .'E(] 7 + AO(L’O
Note that

T3k+5 = MaX { )
T3k+4 T3k+3

1 Aspya } m
k1

We first suppose that x5 = —-
A().’L'()

Copyright © 2005 CRC Press, LLC

Aozo
T3n+1l = ———
Af

A()CL'()
T3k+4 = — 777 -
’ k+1
A7

AIIH_I A()."L'o
ax{ ——, .
Apzo’ AFT1 A,

1

. Then T3k+5 = —, and
T4
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LM}z

L3k+6 = max{ )
T3k+5 T3k+4

= A2T3py5.

The result follows with p = 3k + 5.

AO o A2 AIIH_I
ax s =
ARFL7 Agzg

Ay Akt
ono

Aozo
Next suppose that z3g15 = — Then
AT Ay
1 A3k+5 AR 4, Ay AR Ay AR
T3k4+6 = MaAX{ —— i 1 = )
$3k+5 $3k+4 020 0Zo 0Z0
k-1 k—1
T _ maX{ 1 A3k+6 01‘0 A2A1 _ A2A1
3k4+7 = — , =
T3kt6 w3k+5 A ARz Aozo
Tag _ max{ 1 A3k+7 } { Ao.’L'() } _ Zo
3k+8 = — ) - -
T3k+7 T3kt Ak 17 Ay Af Ay Ak
1
T3k+7
1 A Ap ARL
T3kt = max{ 3k+8 } = max 2771 o S
3k+9 = — T (= Ay = %=1
T3k+s T3k+7 zg AFT! Akt

= Asx3pys.

The result follows with p = 3k + 8.

LEMMA 7.17

Let {A,,}22, be a periodic sequence of positive real numbers with prime period
3 such that A, € (1,00) for all n > 0, and suppose there exists m € {0,1,2}

such that

1<Apy2 < Apgr < Ap

Let {z,}22_, be a positive solution of Eq.(7.3) such that

r_1 =—
Zo

Then there exists g € {0,1,2,..
1

Tg—1

Z'q:
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PROOF By Remark 7.2, we know that

A
Apz2 >1 and =z, = =
Lo

The proof will follow from the following three cases.
Case 1  Suppose m = 0. Then
1< Ay < Ay < A
The proof is identical to the proof of Case 2 in Lemma 7.16.
Case 2 Suppose m = 1. Then
1< Ag <Ay <A
We shall show that there exists ¢ € {0,1,2,...} with ¢ = 2 (mod 3) such

that
A

and x4 = —.
Tg-1 Zq

Since Agz3 > 1, there exists k € {0,1,2,...} such that

Ty =

AP Ay < Agag < AT Ay,

If k=0 and A% > A3A 22, the result follows with ¢ = 5.

If k > 1, A2F < Agx2, and A?*=1 A3 > A222, then the result follows
with ¢ = 3k + 5.

In all other cases, by direct computation and induction it can be shown
by a proof which is identical to that of the proof of Case 2 in Lemma
7.16 that there exists p € {0,1,2,...} with p = 1 (mod 3) such that

Ty = and zp1 = Arzp.

Tp—1
Therefore Ala:f, > 1, and so there exists [ € {0,1,2,...} such that

AT A < Ay < AT A,

A
Suppose | = 0. Then we have A—O < Alm?, < Ay Aq. Hence
2

Ap . Alilfp . 1 . and Tpps = AZAlwp
Ao

= = A2$
p+4-
1Zp Ao Tp+3
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As p =1 (mod 3), the result follows with ¢ = p+ 4 = 2 (mod 3).

Thus it suffices to consider the case [ > 1. By a direct computation when
[ =1, and by induction when [ > 2, it follows that for all 0 <n <[ -1,

Ag Tp Al.Z'p
L3n+p—-1 = ——>» L3n+p = v L3n+pt+l = (5
Tp A Aj
and that .
A T
2 _ Zp
Z34p—1 = — and Zgi4p = — .
]
Tp A
Note that

1 A3l+ Al Az
4 2 14p
T3l+4+p+1 = Max { 5 =maxy —,—5— ¢ -

L3l+p TL3l+p-1 zp  Ab

Al
We first suppose that z3;4pr1 = 22 Then ZT3l4pt1 =
Tp T31+p

and

I+1 I+1
1 Aspgpir | _ zp, Ay | _ A
T3l+p+2 = MAX ) = max4 —7, =
T3i+p+1  T3l+p Ay xp Tp

= AsZ314pt1-

As p =1 (mod 3), the result follows with ¢ = 3l + p+ 1 = 2 (mod 3).

Al.’L'
Next suppose that z3;4p41 = A—lp. Then
2
I 141 41
B A3l+p+1 _ Ay A _ A
Z3l4p+2 = = max 2 , =
T3i4pr1 T3lep 1Zp  Tp Tp
1
Tatanrs = { A3l+p+2} ~ max { Tp AoAlz} Aoy
o3 = = =
T34pt2 T3lbptl AP Ay, Az,
T _ { A3l+p+3 } — max { Al.iL'p Alrcp } _ Al.’L'p
3l+p+a = = ’ = =
T34pt+3  T3l4pt2 AgAL7 ALY AgAS!

L3l+p+3

1 A3l+p+4 } — max { A()AZQ Ala;p } o Al.'L'p

] - Y — - —
T34pida T314pt3 Az, AgAST! AoAy!
= AoZ3i4pta.

T3l4+p+5 = max{

As p =1 (mod 3), the result follows with ¢ =3l + p+ 1 = 2 (mod 3).
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Case 3  Suppose m = 2. Then
1< A <Ap< A,

The proof is identical to that of the proof of Case 1 in Lemma 7.16. ]

We are now ready for the main result of this section.

THEOREM 7.5

Let {A,}22, be a periodic sequence of positive real numbers with prime period
3 such that A, € (1,00) for alln > 0. Then every positive solution of Eq.(7.3)
is eventually periodic with period 12.

PROOF  Let {z,}52_, be a positive solution of Eq.(7.3). We shall show
that {z,}52 _, is eventually periodic with period 12. By Remark 7.2, it
suffices to consider the case where

r—1 = — and T = Ao.’L'(),
Lo

in which case it follows that

A
Apzi>1 and 2o = i
To

Let m € {0,1,2}. It suffices to consider the following cases.

Case 1  Suppose

1< Aerl < Am+2 < Am (713)

By Lemma 7.16, there exists p € {0,1,2,...} with p = m (mod 3) such
that

Tp = and  Tpy1 = ApZp.

.Z'pfl

, A
We first suppose that Amwf, > Am+2 . There clearly exists k € {0,1,2,...}
m+1
such that

AN Ay < Apal < A2V Ap . (7.14)

By direct computation when k = 0, and by induction when k& > 1, it
follows from (7.13) and (7.14) that for all 0 <n < k,
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n
_ Ana _ Zp _Apzp
T3n4+p—1 = y L3n+p = n I3n4p+1 = n
¥4 m—+1 m—+1
and that
k+1 k
Amt A2 Ar Ammp
L3k+p+2 = » Lh+p+3 = — 4 Tk+p+4 = 337
Zp Anxp Am++1
A Ao AFE Ao AFL
— mLp _ Amy2 m+1 _ Amy2An g
L3k4p+5 = k1 o L3k+pt6 = 714 y L3k4p+7 = —
Am+2Am+1 mTp Ty
k
__ Anzy _Tp _ Amp2An
T3k+p+8 = & k> L3k+p+9 = y L3k+p+10 = ——
Am+2Am+1 Am+1 Zp
and
Ak 1
_ Tm+41 _
T3k+4+p+11 = = T3k+p—1 and T3k+4p+12 = Ak = T3k+p-
p m+1

Thus we see that {z,};23;,,_; is periodic with period 12.

Am+2

Next suppose that Ammf, <
that

. Then there exists | € {1,2,...} such
Am+1

Ami2 A
m—+1 m—+1
By a direct computation when [ = 1, and by induction when [ > 2, it

follows that for all 4 <n <1+ 3,

n—3
Am+1Amxp Am+2 Am+2
L3ntp-1 = A . T3n+p = ﬁ ) L3n4p+1 = Ar
m+2 m—+143mTp m+1-77p
and that
I+1
AL +1Ammp _ 4l P
L3l+p+11 = A y L3l+p+12 = Ay 11 Tp » T3l4+p+13 = —7q7
m+2 ATy
1 _Al+1 _Al—l A
T3l4+p+14 = A’ 1 » L3l4p+15 = Ap11Tp » T3l4p+16 = A1 AmTp
+1Zp
1 Am+2
gl
L34p+17 = Al ) L3l+p+18 = W » L3l+p+19 = Am+1Am$p
+1Tp m+1
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and

Al Anx A

+143meLp m—+2
T3gpt20 = —————— = T34prs and T3ypro1 = 7 = T314p49-
P Am+2 P P Alm+1Am-7:p P
Thus we see that {z,};% 3, is periodic with period 12.
Case 2 Suppose that
1< Am+1 < Am+2 < Am (715)

By Lemma 7.17, there exists p € {0,1,2,...} with p = (m + 1) (mod 3)
such that

ZTq = and Ty = Amt1%,.

Tg—1

The proof will follow from the following cases.

Case 2(a)  Suppose that Am+1m3 > —" . There clearly exists k € {0,1,2,...}
m—+2
such that
A A < Azl < AZEE A (7.16)

By direct computation when k& = 0, and by induction when k£ > 1,
it follows from (7.15) and (7.16) that for all 0 <n < k,

_ Ango _ 4 _ Ampzy
L3n+g—1 = — 5> L3ntq = An » L3n+q+1 = TAn
Lq m+2 m+2
and that
k+1 k
_ Am+2 _ AmAm+2 _ Am+11'q
L3k+q+2 = » L3k+q+3 = A Lz T3k+q+4 = —  fr1
g m+1Lq ALt
k+1 k—1
Az A AREL _ ApAk
L3k+q+5 = m ) L3k+q+6 = Az L3ktq+7 = —
mLy 4o m+1Tq Tq
k
_ Am1zg _ %4 _ AmAmio
L3k+q+8 = A Ak L3k+q+9 = F » L3k+¢+10 = T
m+im+2 m+2 q
and
Ak x
m—+2 q
T3ktqt1l = = Z3ptq—1 and Tagpqgqt12 = TF = Tshta
q m—2

Thus we see that {zn}72 3, ,_; is periodic with period 12.

Copyright © 2005 CRC Press, LLC



MAX EQUATIONS WITH PERIODIC COEFFICIENTS 259

Case 2(b)  Suppose that —"— < Am+1x§ < —™__ Then there exists [ €
m—+1 Am+2
{1,2,...} such that
A A
e < A1zl < —
2041 — “mtley 21—1
Amj_|-2 Am+2

By direct computation when [ = 1, and by induction when [ > 2,
it follows that for all 4 <n <[+ 3,

-3
. AL A1y . A . A
3ntg—1= — 5 > Tn+qe = T3 4 . o L3nte+l = o3
Am AnsAmt1zg Aniatq
and that
I+1
_ Am+2Am+1$q — gl
T3l4q+11 = — i T31+q+12 = Appodyq
m
A 1
T3l+q+13 = 741 y T3l4+q+14 = — 77
A aTq AT
_ gl g4l
T3i4q+15 = Aoy s T3l4q+16 = Ay foAmt124
1 A
T3l4q+17 = 7 y T3l4q418 = —q=q
Ajny2%q A i Ami1zg

1
T314g+19 = ApyoAmt1Tg

and
_ A£n+2Am+1$q _
L314-q+20 = - 4 T31+q+8
m
and 4
m
T3l4q421 = 7 = T3i4q+9-
Ay Am12

Thus we see that {zn}52 3, is periodic with period 12.

m

A
Case 2(c)  Suppose that azg < . Then :vg < , and so follows

A
that there exists r € {0,1,2, ...} such that

AnAyy o Andly,
A2r+4 —xq A27'+2 °
m+1 m+1

By direct computation when r = 0, and by induction when r > 1,
it follows that for all 0 <n <,
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260
n+1
Tomiord = A 1% Taniars = Ao Tamtars = AnAmia
n+q = » L3n+4q — A n+l s L3n+4q = nt1
Ame2 AT A1
and
Tappr = A:ntfl:z:q
T = T
Am+2
Thus we see that
r4+1
_ 1 Ami2 _ Amo Am+1mq
T3r4q+8 = max ; = max () ’ A -
T3r4+q+7 T3r+4q+6 Am+1.’L'q m
Case 2(c)(i) S hat 22 < AmAmtz
ase 2(c)(i) uppose that z; < — s Now,
m+1

3 2
AnAs o AnAs 5
27+5 — 2r+4 — 7q
Am+1 Am+1

and so there exists s € {1,2,...} such that

2s5+1 2543
Anfniy g2 o AmAnis
A r+5 — *q A2T+5
m m—+1

By direct computation when s = 1, and by induction when
s > 2, it follows that for all 0 < n < s,

n+1 r42
_ Anis _ A 1%
T3(ntr)tat8 = rga o T3(ndr)betd T Tyagl
m~+14q m-+2

and
+3
_ Am+1xq
T3(n+r)+q+10 = Tt
m—2

It follows by computation from the above that {zn}72 5,1 o4 445
is periodic with period 12.
Case 2(c)(ii)  Suppose that

AR A A

2 m4im+2 2 m

Tg 2 —j2rt3 and g > A AT
m+1 m+2m41

Then it follows by computation that {Zn},—3(r1s)+¢+s IS Pe-
riodic with period 12.
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Case 2(c)(iii) ~ Suppose that

AnA A
oy > o and o < i
Am+1 Am+2Am+1
Then there exists s € {1,2,...} such that
A A
Azs+1Z2r+1 <y < A2s—lz2r+1'
m+2 ‘" m+1 m—+2“ m+1

By direct computation when s = 1, and by induction when
s > 2, we see that for all 0 < n < s,

n r+1
_ Am+2Am+1$q
T3(n4r)+q+8 = 4
m
An
ZL3(ntr)+q+9 = 1
A2 A 1%
and 4
m
L3(n4r)+q+10 = 5 - .
A2 AL 112

It follows by computation from the above that {zn }32 5,1 514 448
is periodic with period 12. i

7.3.3 Unbounded Solutions

In this section, we assume that {4,}32, is a periodic sequence of positive
real numbers with prime period 3 such that for some ¢ € {0, 1,2},

Ai+1 <1< A,

and we prove that every positive solution of Eq.(7.3) is unbounded. We first
establish some useful lemmas.

LEMMA 7.18
Let {A,}22, be a periodic sequence of positive real numbers with prime period
3. Suppose there exists i € {0,1,2} such that A; > 1. Let {x,}>2 _, be a pos-

itive solution of Eq.(7.8). Suppose there exists N > 0 such that xn41 = —.
N
Then exactly one of the following two statements is true:

1. A, =1 , A; <1forje{1,2,3}—{i} and =z, =1 for all
n > N.

2. There exists a positive integer k > 1 such that

AN—Hc 1
IN+k+1 = > .
TN+k—1 TN+
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1

PROOF Consider the case Ay = 1 and x5 = —. The proofs in the other
x1

cases are similar and will be omitted.

In this case, we have N = 1. It suffices to assume that

1

Tl4k+1l = —— for 1 S k S 6.
Titk
Now,
. 1
(i) =z = o x3.
1 1 1 A 1
(11) — = — =I4 = max{—, —3} = max{—,onl}
Z1 z3 X3 X9 1

and thus 1 > Agz?.
1 1 Ay Ay
(i) 1 = — = o5 = max{ —, — » = max<{ z;, —
Iy T4 T3 I
and hence 22 > A;. So as A; > 1, it follows that 22 > 1, and thus

Ag < 1.
1 1 1 A 1
(iv) —=—=ux6= max{—, —5} = max{—,Ale}
T Ts5 Ty T4 1
and thus 1 > Asz?. In particular, As < 1.
(V) Iry = % =27
1 A 1 A
(vi) g = ma.x{—, —7} = max{—,Alazl} =Ajz; = o
X7 Tg X1 Z6
from which the proof follows. I
LEMMA 7.19

Let {A,}22, be a periodic sequence of positive real numbers with prime period
3. Suppose there exists i € {0,1,2} such that A; > 1, and that it is not the
case that Ao, A1, As € (1,00). Let {z,}22 _, be a positive solution of Eq.(7.3).

N Then there emists a

Suppose there exists N > 0 such that TNy =
TN-1

positive integer k > 1 such that
1

TN+k

TN+k+1 =
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A

PROOF Consider the case A; > 1and z; = 20 The proofs in the other
T_1

cases are similar and will be omitted.

In this case, we have N = 0. It suffices to assume that

Thit = Ak for 1<k<12.
Tkp—-1
Now,
. Ao
(i) .77—_1 =1
LA
(i) P Z2.
i) Az2or Az
AO - I -
(iv) Aozo _ A5 _ z
Ay B T2 -
) AgAq Ay a 1 Ay ax Ay AgA
= — — Irx — max _—, — = 1. —_—, .
M Azili_l I3 5 .7347 I3 A(].?Io, A2£L'_1

and so we see that Ayz | < A3x.

( i) A1A2 A5
= — = Tg-
v Aozo Ty ¥
( ii) Agm_l A6 = ma 1 AG max A().Z'() AQ.Z'_l
—_— = o X _ =
M A1 Is 7 Te ’ Is A1A2 ’ A1

and so we see that Agzy < A3z ;.

Aomg _ ﬁ
A2 B Te

(viii) = z3.
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L A Ag

(x) 2L =28 g
r_1 i
A A

x) === =uap
) Irg

. A1 1 Ay Zo
(xi) z—1 = — =11 = maxq{ —,— ¢ = max A—,;E_l
Zg ZTi0 T9 2

and so we see that zo < Ayz 1. Thus 2o < Az < A2z, and so

Ao > 1.

. _An
(xil) zg = — = z12.
T10

... Ao Aro 1 Aips 1 A
(xiil) — = — =233 = max{ —,—— p =maxq —, —

T—1 T11 T12 T11 To T-1

and thus z_; < Agzg. So Agzg < A2z < A2Aqz0, and hence

As > 1.

It follows that without loss of generality, we may assume that A; = 1. Hence

. Ao
1) — =x;.
ZT_1
1 Ay
(ll) :L'_O = E = T2
i) A2z A2
AO o 1 -
A
(iv) Aozo = =2 = 24
P
A A
(v) =22 =2 — g
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(vi) Ay A5 m 1 45 — max Asz_1 A
vi = = T = max , = 4 Aoz

Aoz w4 Ts T4

and so we see that
T_1ZT9 < 1.

(Vii) Azx_l = — =27
Ts
(viii) A0%o _ A7 _
V. —_— = .
A2 Te 8
1 A
(ix) — == =,
r_1 i
A A
x) = ===
i) xIg
A
(Xl) r—1 = i =T
Zg

.. A 1 Ap 1
(xii) £p = — = r12 = max{ —, —— » = max w—,xo
1

3
Z10 Z11 Ti1o0

and so we also have 1 < x_1xg. Hence z_;x¢ = 1; that is,

1
Tog = —.
-1

In particular,

1 1 1

To4114+1 =212 = o= — = — =
T_1 Z11 Zo+11

and the proof is complete. 0

Copyright © 2005 CRC Press, LLC



266 PERIODICITIES IN DIFFERENCE EQUATIONS

REMARK 7.3 Let {z,}52_; be a positive solution of Eq.(7.3). In view
of Lemmas 7.18 and 7.19, without loss of generality, for the remainder of this
section we shall assume that

1 1
Tr_1=— and x1 = Aozo > —
Zo Zo
from which it follows that
A()JJ% > 1. |:|
LEMMA 7.20
Let {Ap}22, be a periodic sequence of positive real numbers with prime period
3 such that
A <1< Ag.

Let {x,}22_, be a positive solution of Eq.(7.3). Then there existsp € {0,1,2,...}
with with p = 0 (mod 3) such that
1

Tp = and  Tpy1 = Aozp.
Tp—1

PROOF The proof is an immediate consequence of Remark 7.3 and will

be omitted. U
LEMMA 7.21

Let {Ap}22, be a periodic sequence of positive real numbers with prime period
3 such that

Az <1 S Al, A()Al < ]., and A2 Z A%ZC%

Let {x,}22_, be a positive solution of Eq.(7.3). Then there existsp € {0,1,2,...}
with with p = 1 (mod 3) such that
1

Tp = and oy = Arzp.
Tp—1

1
PROOF By Remark 7.3, we have x_; = powy and 1 = Apxg.
0
Note that as Ay < 1 < A; and ApgA; < 1, we see that it is also the case
that AgAs < 1.
Case 1  Suppose
A2 < A24y23
Then
—L T —i T _ono_i and = _AOAle
_A()(Eo’ 3_140.%'()7 47 A2 _.’L'37 > A2

The result follows with p = 4.

Io = A1£E4.
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Case 2 Suppose
A% A x? < A3,

Clearly there exists k € {1,2,...} such that
A2 < AZA 22 < AZF (7.17)

By direct computation when & = 1, and by induction when k& > 2, it
follows from (7.17) that for all 1 <n <k,

Ag’_l Ag AO'Z'O
T3n—-1 = )  L3n = ) L3n+1 = pra
A()JIO ono A2

First suppose that A2¥+" < A222. Then

Alzc Ao.’IJO
Tokt2 = gy A Tokes = Ty
k
and so
oAk Ay
Tahts = - — = and  X3py5 = 1 = A1%3p44.
0T0  T3k+3 0o

The result follows with p = 3k + 4.
Next suppose that A2z2 < AZF1. Then

Ak Abt1
x = and =z =
k2 = o k3 = g
and so
x _ Aoz 1 andx _ Aodizo _ Az
Shtd At @k St At e
The result again follows with p = 3k + 4. I
LEMMA 7.22
Let {A,}2° , be a periodic sequence of positive real numbers with prime period
3 such that

Ay <1 < Al, A0A1 <1, and As < Aé.’],‘(z)

Let {x,}52_; be a positive solution of Eq.(7.3). Then there existsp € {0,1,2,...}
with with p = 1 (mod 3) such that

Tp = and  Tpy1 = Aizp.

Tp—1
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1
PROOF By Remark 7.3, we have z_; = — and z1 = Agz] > 1.
Zo
Note that Ay < 1 since 4gA; < 1 < A;. Tt follows by computation that

1
h A(){E(]

To and 3 = Agxg.

Since Ay < A2z2 and Ag < 1 < Agz, we see that there exist k,l € {1,2,...}
such that
A2RH202 < Ay < A2k gl

and
A2 <1 < A2,

We consider the following two cases.

Case 1  Suppose k + 1 <. It follows by induction that for all 0 < n < k,

Tap—1 = ﬁ; T3n = ABxo, T3nt1 = Afzg
o +0
and
_ 1 A _ A§+1m0
T3k42 = A§+1$0, T3k+3 = Ag_,_lxo, T3k+4 = i,

First suppose that 1 < A2**24,22. Then result follows with p = 3k +4.

Next suppose that A2**2A;z2 < 1. Then there exist r,s € {1,2,...}
such that the following two inequalities are true:

AT < AP A mg < AP

and
2541 2k+2 .2 25—1
AT S ATTrg < AT

If r < s, the result follows with p = 3(k +r) + 1.
If s < r, the result follows with p = 3(k + s) + 4.

Case 2 Suppose ! < k. By direct computation when [ = 1, and by induction
when 2 <[, it follows that for all 0 <n <1 -1,

1
— —_ n — n+1
Tgn—1 = sy Tan = Afzo, X3nt1 = AgT o
0 %o
and 1
1
Ty-1= 77—, Tz = AgTo, Tz = —7—-
AO:EO A0$0

First suppose that A2!z2 < A;. Then the result follows with p = 31 + 1.
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Next suppose that A; < A2lz2. Then there exist r,s € {1,2,...} such
that the following inequalities are true:

A AT xy < Ay < AFAT ag

and
AV AT 2 <1 < AR AT,

If r < s, then the result follows with p = 3(l +r) + 1.

If s <7, then the result follows with p = 3(l + s) + 1. I
LEMMA 7.23
Let {A,}22, be a periodic sequence of positive real numbers with prime period
3 such that

Ay <1< Ay and 1< A()Al.

Let {x,}52_; be a positive solution of Eq.(7.3). Then there existsp € {0,1,2,...}
with with p = 1 (mod 3) such that
1

Tp = and  Tpy1 = Aizp.
Tp—1

1
PROOF By Remark 7.3, we have z_; = — o= Agzg, and Agzd > 1.
0

Note also that as Agz3 > 1, there exists k € {0,1,2,...} such that

AT Ay < Agrg < AT A,

Suppose k = 0. Then Agz2 < A1 A,.

{ 1 A } { 1 A } Ay

Ty =maxy —,— p = max , — —

1 o Agzo’ o ofy)
T N

Io ’ Iy - Al ’ Ao.Z'O - Ao.’EO

—m i é - m Ao.fl;‘o Ao.CL‘o _ A()iEo _ i
T4 = mmax T3 @ | ax Ay, 7T A Ay x3

i ﬂ} _ ma,X{ A2 AoAl.’L'()} _ A()Alilﬁ()

Ts = max = A1y

A().Z'O ’ A2 A2

and the proof is complete.

So suppose 1 < k. We shall consider the following two cases.
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Case 1  Suppose
Ao.Z’% < A%k

Clearly there exists 1 <[ < k such that

2k—21 2 2k—21+2
AZR=2 < fog2 < AZR20H2

By direct computation when & = 1, and by induction when k& > 2, it

follows that for all 0 <n <k —1,

AP To Aozo
I3n—1 = E7 I3n = A_{“ I3n+1 = A7 .
Then
AR+ 2o
T3(k—1)4+2 = zg T3(k—0)+3 — W
and
Ak—l+1 1 Ak_l+2
1
T3(k—1)+4 = = and T3k_g)45 = = A1T3(h—1)44-
(k=¥ To T3(k—1)+3 (k=D To (k=0 +
The result follows with p = 3(k — 1) + 4.
Case 2 Suppose that
A2 < A2,
It follows by induction that for all 0 < n < k,
_ AT _ Zo i Aozo
T3n—1 = g; T3n = A_{“ T3n+1l = A—?
T3k42 = AIICH T3k+3 = Aid,
+ ? + ono
and
T Aoz L and = Aoz Az
3k+4 = S = 3k+5 = — o1, — “A1T3k44-
T AR A, T waks * Ab=1 4, *

The result follows with p = 3k + 4.
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LEMMA 7.24
Let {A,}22, be a periodic sequence of positive real numbers with prime period
3 such that

Ag <1< As.

Let {x,}22_, be a positive solution of Eq.(7.8). Then there existsp € {0,1,2,...}
with p = 2 (mod 3) such that

Tp = and  Tpy1 = Ajz,.

Tp—1

PROOF  The proof is similar to those of Lemmas 7.17, 7.21, 7.22, and
7.23 and will be omitted.

LEMMA 7.25
Let {A,}22, be a periodic sequence of positive real numbers with prime period
3 such that for some i € {0,1,2},

A1 <1< A4; and A4 <1

Let {x,}22 _, be a positive solution of Eq.(7.3). Then {x,}32 _, is unbounded.

PROOF In view of Lemmas 7.20, 7.21, 7.22, 7.23, and 7.24, it suffices to
consider the case

. 1
1=0, z_1=—, and 1z = Apxo.

We consider the following two cases.

Case 1  Suppose
AQ S.Agwa

It follows by induction that for all n > 0,

1
- — AN _ An+1
T3n—-1= ) IL3n = AGTo, T3ng1 = Ao Zo
A0$0

and so {z,}5° _; is unbounded.

n=

Case 2 Suppose
.A%$g <.A2.

Then there exists k € {1,2,...} such that

Akl < Ay < AZFF2g2
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By direct computation when k = 1, and by induction when k > 2, it
follows that for all 1 <n <k,

1 A +1
T3pn—1 = m, T3n = m, T3n4+1 = AS‘ Zo
and so {z,}5 _; is unbounded. I
LEMMA 7.26

Let {A,}22 be a periodic sequence of positive real numbers with prime period
3 such that for some i € {0,1,2},

Ai+1 <l<A; and 1< AiAi—H-
Let {xn}52_, be a positive solution of Eq.(7.3). Then {xn}22_, is unbounded.

PROOF In view of Lemmas 7.20, 7.21, 7.22, 7.23, and 7.24, it suffices to
consider the case

) 1
1=0, z_1=—, and 1z = Apxo-

We consider the following two cases.

Case 1  Suppose
A1A2 S Ao.’L'é
It follows by induction that for all n > 0,

At

To Aozo
T3n—-1 = Za T3n = A_{" T3nt1 =

0 AL
and so {z,}52_; is unbounded.

Case 2 Suppose
Ao.’IIg < A1A2.

Then as A; < 1 < Agz?, it follows that 1 < As. Thus

z A1 " A2 r Ao.fl?()
Io ’ A().’L'() ’ A1

= ma 1 A1 ma A1 A() A1 i)
= X —_—, — = X .
5 x4’ T3 Apzg’ A

The proof will follow from the following two sub-cases.

and
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Case 2(a)  Suppose

It follows by induction that for all n > 2,

A()A?ilxo A2 A2
T3n—1 = — » L3n =7 -1 > L3n+l = 1
A2 A()A? o A? Zo

and so {z,}52 _; is unbounded.

Case 2(b)  Suppose
Agl’% < AQ.

We know that Aozy < A1A42 and 1 < Ay, and so it follows that
there exists k € {1,2,...} such that

A(z)k_l.fb'g < Ai{A, < A%k+1$g. (718)

Since 1 < ApA; and A; < Ay, it follows that exactly one of the
following two inequalities is true.

AP 252 < AZA, < AZR2 7.19)
0 0 1 0 0
A2kz2 < AZA, < AZFT242 (7.20)

First suppose that (7.19) holds. When k = 1, it follows by induc-
tion that for all n > 2,

AIL71 _ A()Z'O _ A(Z).'E()
T3n = F; L3n+1 = Ar—1
1 1

T3n—1 =
and so {z,}52 _; is unbounded.

When k > 2, by direct computation when k& = 2, and by induction
when k > 3, it follows from (7.18) and (7.19) that for all2 < n < k,

A1 A1A2 ASLIL'O
—— T3 =7, T3nfl = .
— ) n — ) n
AP~ APt Aq

T3n—1 =

It then follows by induction that for all n > k+ 1,

—k k k+1
A? AO Io _ AO Io

I3n—-1 = — I3n = ——¢
Ag.’L‘O ’

and so {z,}52 _; is unbounded.
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Next suppose that (7.20) holds. By direct computation when & =1,
and by induction when k > 2, it follows from (7.18) and (7.20) that
forall2<n<k+1,

A]_ z . AlAg T . Ag.’L‘o
Ag_lwoa 3n — Ag_lxoa 3n+1 — Al .

T3n—1 =

It then follows by induction that for all n > k + 2,

_AkAT ) g B A,
L3n—-1 = A—Q’ L3n = m
and
L3n+1 = 4o
Al AT,
and so {x,}52 _; is unbounded. I

The following theorem is the main result of this section.

THEOREM 7.6
Let {A,}22 , be a periodic sequence of positive real numbers with prime period
3 such that for some i € {0,1,2},

A1 <1< A
Let {x,}22_; be a positive solution of Eq.(7.3). Then {x,}32 _, is unbounded.

7.3.4 Eventually Periodic Solutions with Period 3

Throughout this section we assume that {A,}5°, is a periodic sequence of
positive real numbers with prime period 3, and we examine those cases which
have not been dealt with in the previous sections. That is, we assume that
one of the following cases holds

(a)A0<1,A2<1andA1:1\
(b) A0<1,A2:1andA1>0
(C) A0=1,A2<1andA1§1
\ (7.21)
(d)Aozl,AgzlandA1>0

() Ag >1,Ay>0and A; =1

(f)Ag>1,Ay=1and A; > 1

and we show that every solution of Eq.(7.3) is eventually periodic with period
3.
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REMARK 7.4 Let {4,,}52_, be a periodic sequence sequence of positive
real numbers with prime period 3 such that (7.21) holds, and let {z,}5o _,
be a positive solution of Eq.(7.3). In view of Lemmas 7.18 and 7.19, without
loss of generality, for the remainder of this section we shall assume that

1 1
Tr_1=— and z1 = Agg > —
X9 Zo

from which it follows that

A().'L'% > 1. |:|

LEMMA 7.27

Let {A,}22_, be a periodic sequence sequence of positive real numbers with
prime period 3 such that

Ag<1=2A4, and AgA; < 1.

Let {z,}52_; be a positive solution of Eq.(7.3). Then {x,}52_, is eventually
periodic with period-3.
PROOF It follows by Remark 7.4 that we may assume that

1 1
r_1=— , x1 = Agxg > — and A()Z'(Q) > 1.
o) Zo

Thus there exists k € {0,1,...} such that either
AR <1< ATHGZ or AZMR2 <1 < ABM2R
(i)  Suppose
A3k+2.7:(2, <1< Agkﬂzg.

By direct computation when k = 0, and by induction when k& > 1, it
follows that for all 0 < n < k,

1
T3n—-1 =
n Agu’ﬁo ’

T3p = Ag’aio and T3n+4+1 = A6L+1.’E0.

In particular,
— Ak _ Ak+1
T3 = A0$0 and T3k+1 = A0+ )

and so
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Aspi

T3k4+2 = IMax

{ 1 Al} o
T3p41 Tk Aktlg,” Afxo Afttazg

1 1
Ak+1:c , } =
{ 0 A§+1.CL'0 A§+1 To

maX{Ak+l$0,Ak+2$0} _ Ak+1 Zo
1
).
{AkJrl To

Casel Suppose A2¥*2 4,22 < 1. Then z3445 =

Aspyo

T3k+3 = IMax

$3k+2 T3k+1

e o}
e A
e
Eribn A

T3k4+4 = INax
333k+3 T3k+2

T3k4+5 = IMax

714’““3:0 ,and 80 T34 =

0
Z3k44 and Tzpy2 = T3p4s. It follows from the fact that {A,}52, is pe-
riodic with period-3 that {z,}32 4, is periodic with period-3.

Case 2 Suppose A2*"2 4,22 > 1. In particular, A; > 1. Now z3j45 =
AFT Az, and thus

1 Asprs 1 1 1
T3pyg = Max{ ——, — 1> 5 = max , =
T3k45 T3ktd AbL Ayxy” A2y Ab Lz,

1 Aszpge
$3k+7=max{— S0 L —  max A§+1m0,

k1
) - AO Zo
T3k+6 T3k+5

AgAl.’L'() }
and 50 {Zn}92 5;, 3 is periodic with period-3.

(ii)  Suppose
AZHSE <1 < AT

By direct computation when & = 0, and by induction when k£ > 1, it
follows that for all 0 < n <k,

1

_ An+1 _ _ An+1
Zany1 = AFT  T3nt2 = T Zanys = AgT o
0 0

In particular,

1

— _ pAk+1
T3k+2 = TRl and T3k+3 = AO Zo-
A0+ o

Copyright © 2005 CRC Press, LLC



MAX EQUATIONS WITH PERIODIC COEFFICIENTS 277

Case 1  Suppose A2F+232 < A;.

Then
Azgys 1 1
_ _ k42 _
T3htda = max{ = max YA g ¢ = ——
T3k+3 T3kt A+ Al
Asy, A A
+4 k41 1 1
T3k+5 = max{ = max { Ay " zo, k+1 = kL
T3k+a T3kt AgT xo AgT xo
Asgys Atz
T3kt6 = rnax{ U = max 07,14]5"'1:1:0 = Ag+1w0
T3kts T3hid Ay
1 A3k+6 1 A§+2ZE0 1
T3p47 =MAXy ——, —— p = mMax , =
T3k+6  T3k+5 Ablgy” A ARz,

and so we see that {z,}72 3,5 is periodic with period-3.

Case 2 Suppose A; < A§k+2x0
Then

1
=max§ — 7 >4 .'170} = —I
{A§+1$0 Ag+1.’ll0

A

— k+1 ! _ Akl

= max{AO L0, ~ 7t = Ag" xo
A o

T3k4+4 = IMaX
1'3k+3 T3k+2

1
T3k = MaAX = ma.x{i,Ango = A§+1:c0
Zo

$3k+5 T3k+4

1 Aspge

T3k+7 — Max

{ |
el
{ |

{ 1 1 } 1
, = max§ ———, 7+ = 71—
T3k16 T3k+5 Abttay” Afxo Atz

and s0 {75 }52 35, 5 is periodic with period-3. I
LEMMA 7.28
Let {A,}22_, be a periodic sequence sequence of positive real numbers with

prime period 3 such that
A() <1l= AQ and AOA1 Z 1.

Let {z,}52_; be a positive solution of Eq.(7.3). Then {z,}52_, is eventually
periodic with period-3.
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PROOF It follows by Remark 7.4 that we may assume that

1 1
T_1 = — , T = Ao.’L‘O > — and Ao.’L‘g > 1.
) Zo

Now Ag < 1 and Agx3 > 1, and so we see that zo > 1. Since A; > 1 and
Aoz > 1, it follows that there exists k € {0,1,...} such that either

A% < Agxd < ABRTL or  ABRTL < A2 < ATRT2

Note that in either case, Agz < (AOAl)Aka, and so

2 2k+3
x5 < A7V

Since zo > 1, it follows by direct computation when k£ = 0, and by induction
when k > 1, that for all 0 < n < k, we have

A{" o d Ao.fl?o
T3n—1 = —— T3n = —7 an T3nt1l = —7 -
T ’ n + AP

Case 1  Suppose A3F < Agz3 < AZFHL,
Then

T3k+2 = Max

Aozo’ 2o Zo

I3k+3 — Max

EaRTE
()
SSPPURN S % B g
(o) e
(o ) o

T3k+5 — Max

T3k+6 — Max

and so we see that {z,}3° 5,5 is periodic with period-3.
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Case 2 Suppose A2F+T < Agz2 < AZk+2
Then

T3k+2 = Max

Aoy’ 2o Zo

T3k+3 = Max

Zo Zo
)
Alf+2 Alf'H

k+1
Zgkir = Max L Asite = max AT Aoz
3k47 = — =

zo  ARF2

Zo
k+1
Ay

k+1
Al

and so we see that {z,}72 3,5 is periodic with period-3. I

The proofs of the next three lemmas are similar to those of Lemmas 7.27
and 7.28 and will be omitted.

LEMMA 7.29
Let {A,}22 ;| be a periodic sequence sequence of positive real numbers with
prime period 3 such that

A <1=A4,.
Let {z,}52 _; be a positive solution of Eq.(7.8). Then {x,}3L_4 is eventually
periodic with period-3.

LEMMA 7.30
Let {A,}2° _, be a periodic sequence sequence of positive real numbers with
prime period 3 such that

Ay <1 =4 and Apg < 1.

Let {152 _; be a positive solution of Eq.(7.8). Then {x,}32_, is eventually
periodic with period-3.
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LEMMA 7.31
Let {A,}52_, be a periodic sequence sequence of positive real numbers with
prime period 3 such that

Ay <1 =4, and A()Zl
Let {z,}52 _; be a positive solution of Eq.(7.3). Then {z,}52 _, is eventually
periodic with period-3.

LEMMA 7.32
Let {An}22 ;| be a periodic sequence sequence of positive real numbers with
prime period 3 such that

A0=1<A2 and A]_S].

Let {z,}52 _; be a positive solution of Eq.(7.8). Then {x,}32_, is eventually
periodic with period-three.

PROOF 1t follows by Remark 7.4 that we may assume that

T_1 = — , T1 =X > — and z2 > 1.
0
Zo o

Case 1 Suppose that

xy < Ap
Then

E R ey

To —MmMaxqy —,— ¢ = mMaxq —, — =
1 Zo To To gy
o R

Tz =MmMax§ —, — ¢ = IMax4§ Tgo, — = —
Ty X1 Zo Zo
) S Fnl

T4 —=MmMaxy —,— ¢ = MmMaXxy§ —,Tg = Zo
r3 I2 A2
{ 1 4} { 1 A]_.CL'()}

Ty = max4q —,— ¢ = max§ —, —
T4 T3 zo A Zo

and so {z,}52; is periodic with period-3.

Copyright © 2005 CRC Press, LLC



MAX EQUATIONS WITH PERIODIC COEFFICIENTS 281

Case 2 Suppose that

1‘% > A2.
Then
{ 1 A1} { 1 Al} 1
Tog =MmMaxy —,— ¢ =MmMax{ —, — ¢ = —
1 o To Zo X9
B e ey
T3 =mMaxq§ —,— ¢ = Max{ To, —
T2 I1 To
and so {z,}52 _, is periodic with period-3. I
LEMMA 7.33

Let {An}22 ;| be a periodic sequence sequence of positive real numbers with
prime period 3 such that

Ag=1< 4 < A,
Let {x,}52 _; be a positive solution of Eq.(7.8). Then {x,}32_, is eventually
periodic with period-3.

PROOF 1t follows by Remark 7.4 that we may assume that

1 1
Tr_1=— , x1 = Aoxg > — and Aol’% > 1.
o) Zo

Case 1 Suppose zg§ > A; As.
There exists k € {0,1,...} such that either

AP Ay <22 < A3FP2 4y or AP A, <ol < ATFTI A,

By direct computation when & = 0, and by induction when k£ > 1, it
follows that for all 0 < n <k,

A? Zo d Zo
T3n—1 = — T3n = — an I3n41 = —-
o An T A
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Hence
1 Asppa Ak AR Akt
T3kr2 = Max = max{ —,—— =
T3k+1 T3k To Zo Zo
SUPURNO (T % DR I 7
3k+3 = = — > = —
T3k+2 T3kl AR g AL
k+1
T3pta = max{ ! A3k+3} = max AT %o o
3kt+4 = = ;
T3k+3  T3k+2 zo AN Abt1
1 Aspya AbFL o gkt2 A2
Z3k45 = Max = max{ ——,—— =
T3k+4 T3k+3 To To Zo
{ 1 A3k+5} Ak+1A ARt A,
T3k+6 — Max = s =
T3k+5 T3k+4 A’““ Zg
SRR G T 7 DR o}_ 2
3k4+7 = = —05
T3kt+6 T3k+5 Ak“A Ak+2 A2
k2
Tors = max{ ! AW} At
3k+8 =
T3k+7  T3k+6 AkAz
Case 1(a) Suppose that
2k+1 2 242
A1+AQS!IJ0<A1+A2.
Then
Allc+2
L3k+8 = -
+ o
1 A3k+8 Io Alf+2A2 Alf+2A2
T3p49 = MAX| —, —— = max k2 =
T3k+8  T3k47 A7 To Zo
sprto = max{ 1 A3k+9} _ max{ Zo Zo } o
3k+10 = — 0 = ) =
T3k+9 T3k+8 A2 4,7 Abt2 A2
k+2 k+2
_ 1 Azppi0)| _ ATt Zo AT
T3k+11 = MAX § ——, ———— ¢ = MNaAX P kL =
T3k+10  T3k49 zo ~ATT Ay Zo
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Case 1(b)

Then

and so

T3k49

T3k+10

T3k411

T3k412

T3k+13

T3k+14 =
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and 50 {Z,}52 5, 7 is periodic with period-three.
Suppose that
A4y < < AT A,
T =20
3k+8 — AlfAQ
{ 1 Aspys } AkA, AMZA, AbT2 2,
max{ ——, ——— max , =
T3k+8 T3k+7 To Zo Zo
1 A3k+9 o Zo AlfAz - o
max{ ——,——— » = max SR = —73
T3k+9 T3k+8 AT Ay wo AT Ay
1 Aspp10)| AbF2 4, _ Aft?4,
max = max 5 +1 =
T3k+10  Z3k+9 To A A,y Zo
{ 1 Aspyn } o A’““AZ A’f+2A2
max = max = = .
T3k+11 T3k+10 Aj A2
max{ 1 Aspt12 } _ ma,x{ Zo } _ o
T3k4+12  T3k+411 AkHA2 Ak+2A2 A’f+2A2
1 Aspyis Abt2 2, AbT2 2,
max , — =} = max k+ 1 S0 =
T3k+13 T3k+12 To A A3 Zo

and so {5 }55, 10 is periodic with period-3.

Case 2

Then

Suppose 73 < A1 As.
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{ 1 Al} { 1 Al} A
T2 = mMax s = max4q —, — = —
1 Zo To Xo Zo
a 1 Az Zo

I3 = max
3 .732 I Al

{ 1 A3} {.730 IL'() } SL'()
4 = IMaX
x3’ T2

Ay’ Al Al
{ 1 A4 {Al A1 ) }
Ts = max = ’
334 I3 To

Case 2(a) Suppose that

x> Ap
Then

z A1 )

5 4,

and hence

Iy = max

— max A1$0 Zo A1£E0
A

Tg = Immax

_} —max{ zo A }_ Ay
zg x5 | AAy” Ajmo | Ajao

= max{i,fhwo} = Almo
AliL'o

10 = mMax

{

{
e

{

{

ma 1 As Ay
X =
AIZ'O, Aqzg Aqzo

5|~

&2

——
Il

= m L @ = m Alxo i _ AI'CUO
T e ’ B . Ay 7z A

and so {z,}52 ; is periodic with period-3.
Case 2(b)  Suppose that

1’% < A,.
Then

Copyright © 2005 CRC Press, LLC



MAX EQUATIONS WITH PERIODIC COEFFICIENTS 285

Ax
Iy = —
Zo
{ 1 5 } { Zo A1A2 } A1A2
g = mMax4q —,— ¢ —mMmaxq —, = s
Iy T4 A’ g X0
{1 AG} {1 Aﬁ} {Al mo} Io
Ty =maxy —, — = maxq—, — =max§ —, — -
6 Ts zg Ty zo A Ay
{ 1 A7} {Al } A1
Tg =max{ —,— = maxq —Ay = -
7 Tg Zo xo
and so {z,}52, is periodic with period-3. I
LEMMA 7.34

Let {A,}22 _, be a periodic sequence sequence of positive real numbers with
prime period 8§ such that

Ag=1< Ay < Ay
Let {z,}52 _, be a positive solution of Eq.(7.3). Then {z,}52 _, is eventually

periodic with period-3.

PROOF It follows by Remark 7.4 that we may assume that

1 2
T 1= — , T =29 > — and g > 1.
Zo Zo
We have
r_1 = —
Zo
o = Zo
ry = X9

{1 Al} {1 Al} A
Ty = maxy —,— ¢ = maxy —, — = —

{ 1 A2 } { o A2 }
T3 =maxy —,— ¢ =mMmaxy ——,— ¢ -
X9 Iy A’ xo

Case 1  Suppose that
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There exists k € {0,1,...} such that either
AL A, <32 < ATFP24,  or  ANTRA, <l < AZFP3 A,

By direct computation when k& = 0, and by induction when k > 1, it
follows that for all 0 < n < k, we have

A? Io d Lo
T3n—1 = —— T3n = —, an T3n41 = — -
N ’ ? + A?

Thus

L3k+2 = max{ >
T3k4+1 T3k To o To

s ) o )
3h+3 = , = —TT = —T
T3k+2 T3k+1 ALY Ab+L

k+1
_ 1 Aspys | _ APt xg
T3k+4 = MAX , =max{ ——, 5 o -
T3k+3  T3k+2 zo A7

Case 1(a) Consider the case

1 A Ab Ak Al
3k+1}: max{—l,l—} _ 4

AT Ay < zh < AT A5,

Case 1(a)(i) Suppose that
AL, < o < A2,
There exists [ € {0,1,...} such that either

2041, 2 2k+3 2042, 2 2042, 2 2k+3 20432
Ay Ty < ATPTT < AT or A5y < AP < AT

It follows by induction that for all 0 < n </,

AbH Ab+2 q At
T3k+4+43n = —, T3k+5+43n = 5, an T3k+6+3n — — 717
+4+3n Agwo ’ +5+3n Agﬂﬁo +6+3n AllH_l

In particular,

k+1 k+2 +1
T3k44+431 = AT T3k45431 = AT and  Zspyey3 = Az 20
- , = = i
Aéxo Aéwo A’f+1
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Hence

kt1
T3}, ;= max{ 1 A3k+6+3l} = max Ay A2m0
3k+7+31 = ; =

T3k4+6430 T3k+5431 A“r1 A’“+2

Case 1(a)(i)(1) Suppose that

204+1,,2 2k+3 242, 2
AT ag < A7 < A5 g
Then

T3k+7+31 =

Thus

Al AT
k+1 l+1
Al AZ

A?2+1 Zo
k+1
Al

= max

1 Aspyr 31
max{ el

IT3k4+8+431 = y
T3k+7+31 x3k+6+3l

T3k+8+31 x3k+7+3l

k+1 k+1 k+1
AL gk A

- _ max{ 1 A3k+9+3l — max
3k+10431 = ; =
T3k+9431 333k+8+3l A2y’ Al;rl Aty

1 A3k+10+31 Alflg,  AF? Ao

B 1 A3k+8+31 _ AT AP Ao
T3k4+9+3] = IMaAX ) = max A12+1$0’ Ak+1 Alls+1

T3k+11431 = maX{ )
T3k410431 $3k+9+3l AR A2, Ak+

and 50 {Z,}52 5, 7,3 is periodic with period-3.

Case 1(a)(i)(2) Suppose that
A2 < AZRHS o g20H152

Then
T3k+7+31 = Aéxo
+7+30 = T o
A7

and so

Copyright © 2005 CRC Press, LLC



288 PERIODICITIES IN DIFFERENCE EQUATIONS

k42
Al

Aszpyr431
T3k+8+31 = Max

-733k+7+31 L3k+6+31

e
o { Askrsal }
i B

Ak+2 Ak+2
A

! .730 Al+1.’IJ0 Alz.CL'O

2:170 Ak+2 Alf+2.’l,'0
T3k+9+31 = = ) = 1
T3k48+431 T3kt7+31 ARF27 ALy AL
-1 ) 1
" _ A3k+9+3l — max A, Abxzo | Abzo
3410431 = = =
T3k+9+31 $3k+8+3l ’“+2 o Ak+2 A2
k42 -1 k42
- — max { 1 A3k+10+3l Ay A, A
3411430 = =
T3k410431 $3k+9+3l A’ To Ak+1x0 Abzg

and 50 {Zn}52 5, 7,3 is periodic with period-3.
Case 1(a)(ii) Suppose that

AT < < AT A5,
There exists [ € {0,1,...} such that either

A%k—i—lAgH-l S :1:(2) < A%k+1A§l+2 or Aik+1A§l+2 S IL'% < A%k+1A§l+3.

It follows by induction that for all 0 < n <1,

k+1 gn+1
T = il T =2 and =z = A A
3k+4+3n = %11 am 3k+5+3n = % an 3k+6+3n = ——
Afttag AfA 20
In particular,
Zo Zo d AI{:+1A.l2+1
T3k+4431 = — 737 7 T3k4+54+31 = — 3 5 an T3k4+6431 = ——— -
ARl Ak AL To
Thus

k Al
- m { 1 A3k+6+3l} _ { To Aj Az} _ To
3k+7+31 = Max ; = T = AR gL

T3k+6+31 T3k+5431 ARFLALFLT g AR ALY

and

T3k4-8431 = {

E+1 gl41

1 A3k+7+3l} _ Al A2 Zo
3 - 9 k Al+1

T3k4+7431 T3k464-31 Zo AT A,
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Case 1(a)(ii)(1) Suppose that
AP AZHL g2 o AL 4242

Then
Allc-‘rl Al2+1

T3k4+8431 =
+8+ Zo

and

B4l 4142
_ 1 Askys+3r | _ Zo AFtT ALY
T3k4+9+31 = IMmax = max

7 )
T3k+8+31 T3k+7+31 ARFL ALY o
kbl gl+2
— Al A2
o
- _ max{ 1 Ask+o431 } _ max{ To To }
3k+10+31 — ) - )
T3k+9+31 T3k+8+31 AR ALF2 ARHL gLEL
Zo
- k+1 4l+1
Al A2

k41 gl+1
_ 1 Aszgyi0431 | AYTALE Zo
T3k+11+31 = Max = max

) )
T3k+10+31  T3k+9+31 o ARFL ALY
k1 4l
— Al A2
Zo

and 50 {Zn}52 55, 7,3 is periodic with period-3.

Case 1(a)(ii)(2) Suppose that
AZWHL 2142 < 2 o pZKFL 2043
Then

Zo

T3k+8+31 = W

and so
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T3k49431

1 Aspysia AR AL AR gl
_ max{ , +8+ — max 1432 ’ 1 2
T3k+8+431 T3k+T74+31 Zo Zo

k+1 4142
— Al A2

Zo

k gL+
- —m { 1 Aspto431 } —m Tg AR ALF
3k-+10431 = MAaxX ; = max ;
T3k+9+31 T3k+8+31 ARFLALR2 g

k Al+1
_ Arab
Zo
- —max{ 1 A3k+10+3l}_ max{ Zo Zo }
3k+11+4+31 — ) - )
T3k+10+31  T3k+9+31 Ak ALFL? Ak plt2
Zo
T Ak gl
A1A2
141
_ 1 Aspq1i4s | ARASTY g
T3k+12+431 = MaxX ) = Mmaxy — —— 25
T3k4+11+431  T3k+10+31 T AT A
= Akl
A1A2

kgl k pl+1
_ 1 Askyi243 | _ Ak AL Ak AL
T3k+13+31 = Max ) = maxq{ ———,————
L3k+124+31 L3k+11+431 Zo Zo

_ Ap4H

To

k+1
_ 1 Aspq1zysr | Zo AL AL
T3k+14+431 = Max = max

)
T3k4+134+31 T3k+12+31

T Ak Al+1
Al A2

and s0 {5 }52 3541043 is periodic with period-3.

Case 1(b)  Suppose that

A2 Ay < af < AT A5,
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Then
Zo

T3k+a = AR
1

and so

1 A3k+4 Ak+1 Ak+2 Ak+2
T3k+5 =maX{ ) } = max 1—;1— = L
T3k+4 T3k+3 Zo Zo Zo
1 A3k+5 Io Ak+1A Ak+1A
T3k+6 — Max = max >
T3kts T3ktd A2
X = max 1 A3k+6 = max o
3k+7 = =
T3hi6 T3kts A’““A Ak+2 Ak+1A
k+1
X max { 1 A3k+7 } = max A1+ A2
3k+8 = =
T3kt7 T3k+6 AkAz AkA2
1 Aspys Ak A, Ak+1A2 Ak+1A§
T3k+9 = INax = max
T3k+8 T3k+7 Zo
T —max{ 1 A3k+9} —max{ }
3k+10 = = .
T3kt+9 T3k+8 A'f“A2

Case 1(b)(i) Suppose that
AT Ay < af < ATHHS,
There exists [ € {1,2,...} such that either
APHAY <of < ATFPTATHT or APMPLATY < of < ATFHI AT,

It follows by induction that for all 0 < n <1,

_ Zo _ Zo nd _ Allﬂ-i-lAg-H
T3k+4+3n = A’f“Ag » T3k+5+3n = Ak A7 a L3k+6+3n — P -
In particular,

k+1 4l41
T3htd43l = kivio  T3kysisl = —T0_ and T3k+6431 = A Ay
AP AL Ab AL o
Thus

kAl
- _ ma,x{ 1 Ask+6+31 } _ ma.x{ Zg ATAY }
3k+7+31 = ; = ; .
T3k+6+31 T3k+5+31 ARFL ALY g
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Case 1(b)(i)(1) Suppose that

2k+1 421 2 2k+1 42141
AZRHLAZ < g2 o AL 2141

Then

T3k+7+31 =

and so

1 Aszpyr431

T3k+8431 = max{

T Ak Al
Aj 4

’
L3k+7+31 T3k+6+31

1 Az ys13

L3k+9+31 = max{

Zo
T pk gl-1
AT A;

’
T3k+8+31 T3k+7+31

1 Askro431

T3k4+10431 = max{

k Al
_ b4l
Zo

’
T3k+9+31 T3k+8+3l

1 A3k 10431

T3k+11431 = max{

T Ak Al
Aj 4

)
T3k+104+31 T3k4+9431

AVA)

{ Zo Zo }
maxs ————, 5 7+
kAl”? +1
A1A2 AII‘:AQ

max TR S
zo ~ AkALT

To To

o { Ak ALt Abd, }

) om0 ATTAGT
ARAL T g

and 50 {Tn}52 55, 7,3 18 periodic with period-3.

Case 1(b)(i)(2) Suppose that

2k+1 42041 2 2k+1 42042
AZRHL Q2T < g2 o 2041 42142

Then

T3k+74+31 = 717 471
Allc+1A12+1

and so
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’ k Al+1
Ak AL

B4l 4141
_ 1 Asky7431 _ Aftr AL To
T3k+8+31 =— Max = max

A’f“ A12+2 }

AFFLASHYT @

7
T3k+7+31  T3k-+6+31 Zo
k+1 4i+1
— Al A2
Zo
_ 1 Ask+s+3l _ To
T3k++9+31 = MaX > = max
T3k+8+31 T3k+7+31
k1 gl+2
— Al A2
Zg
B 1 Ask+9+31 _ T
T3k+10+4-31 = Max > = max
T3k4+9+31 T3k+8+31
T pk+1 441
AT A

Zo }
k+1 Al42° gk+1 4141
Al A2 Al A2

T3k4+11431 = max{

J
Z3k+10+31 L3k+9+31 Zo

k+1 ql41
_ AR
Zo

and s0 {532 35, 745 is periodic with period-3.
Case 1(b)(ii)  Suppose that
AT < af < AP A,

There exists [ € {1,2,...} such that either

APHAS < af < ATFHRATTY or APMTTATT < <
For 0 <n </,
Zo Zo d
T3k+443n = — 301 1. 0 L3k+543n = ., A T3k46+43n =
+4+3n A]f_i_lAga +5+3n Alng +6+3n

In particular,

Zo

T3pdy3l = , X3k4543l = —A'fAlz and Z3py6431 =

Zo
k+1 41
AT A
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Thus

k Al
T = max { 1 Askvs } = max { il Ar 4, }
3k+7+31 — ) - ) .
T3k+6 T3k+5 AR AL g

Case 1(b)(ii)(1)  Suppose that
AT AT < af < AT AT

Then
AT A

T3k+7+31 =

and so

1 Azpy7431 }

Lo Lo
T3k+8+31 = IMax { > = max { TR AL 7}
T3k4+7+431  T3k+6+31 AR AL Ak AL

= Ak Al
A1A2
kAl
1 Ask+s+31 ATA;,

T3k+9+31 = IMax > = max ' Tk Al=1

T3k+8+31 T3k+T7+31 zo AFA,
Zo
T pk gl-1
A1A2

kAl-1  pk 4l

_ 1 Ask+9+31 _ AjAy " ATA,
T3k+10431 = Max ) = maxq———,——
L3k+9+31 T3k+8+31 Zo Zo

koAl
_ Ak
Zo

k41 41—1
1 A3k+10+3l} _ max{ To A1+ A }

T3k+11431 = max{ ,
T3k+104+31  T3k4+9431

T Ak Al
Aj 4,

and 50 {Zn}52 55,7, 3 IS periodic with period-3.

Case 1(b)(ii)(2) Suppose that

2k+1 42141 2 2k+1 42042
AZRHL Q2L < g2 o g2k 2142
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Then
To

L3k+7+31 = %1 4I41
AiT A,

and so

E41 4141
_ 1 Asktra | _ AftLAlt To
T3k+8+31 — Max , = max * TR AL
T3k+7+31  T3k+6+31 Zo ATV A

k+1 4141
_ Al A2

Zo

B4l 442
_ 1 Askys+31 _ Zg ATTLALY
T3k4+9+4+31 = Max = max

? 7
T3k+8+31 T3k+7+31 AL AL To

T Ak gl-1
AT Ay

kogl-1
T3k+10+31 = max{ ! Askyo-a } = max Aidy 20
- b - )
T3k+9+431 T3k+8+31 zo AL ALY

T k41 4l41
Al A2

1 A Ak+1Al+1 Ak+1Al—1
3k+10+3l} — max{ 1 2 , 1 2

T3k+11431 = max{ s
T3k+104+31 T3k4+9431 Zo Zo

k1 4l+1
— AT A
Zo

and 50 {Zn}52 5, 7,3 is periodic with period-3.

Case 2 Suppose that

IL'é < A1A2.
Then
As
r3g = —
Zo
and so

Z4 = ma 1 4 max { 22 %o 2o
= X —, — p = X —., — = —
4 3 X9 Ay’ Ay Ay

{ 1 A4 } {A2 Almo }
Ty —MmMaxy —,— ¢ =Max{ —, -
T4 I3 Zo A2
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Case 2(a)  Suppose that
A3 < Agxp.
There exists [ € {1,2,...} such that either
AZ < Ayl < A3 or AT < g < A2
It follows by induction that for all 0 <n <1 -1,

+1
All'o Ag

To
T3np2 = ) T3n43 = and  ZT3p44= 7.
ASL Zo Ag+
In particular,
A1$0 Al2+1 d Zo
T31—-1 = —7 » L3l = an T3I+1 = —7-
A2 Zo A2

Case 2(a)(i) Suppose that

A2 < Agad < AZH

T3j4+2 = MmMax

— max A_lz A1.CL'0 _A1.730
- .Z'O’ Al2 h Al2

1 +1 I+1
A2 A2 — A2

T3]+3 = Max
Alx(), o

Zo

I3l+4 = MaxX

T3i+5 — MmMax

T3j+6 — Max

T3j47 = Max

1 A31+7} _

T3]+8 = IMax { 5
T314+7 23146
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Case 2(a)(ii)

Suppose that

AL < Ayzf < AP

_ 1 Ay | A Ajzg | Aimo
T3i+2 = mMax = max§—, 1 1
T34l T3 zo A A,
I+1 I+1
1 Asziyo AL ALF ALF
T31+3 = mMax ) = max A =
T31+2 T3l1+1 1Zo o Zo
Tais = max{ 1 A3!+3} _ max{ oy A } @
= , = , =
T31+3 L3042 ALFY Ag g ALt
I+1 I+1
_ 1 Aza| AFY Az | AL
ZT3l45 = MaX = max L (T
T3i+4 L3143 xo ~ Aj Zo
1+2 142
_ 1 Asgs )| zo AN AT
T3146 = Max ) = max 117 =
L3145 T314+4 A Zo Zo
- —max{ 1 A3l+6}—max{ Zo  To }_ Zo
3l4+7 — ) - ) -
T3it6  T3i+s ALF27 AL ALt
1 A3[+7 A12+1 Almo A12+1
T3]4+8 = Max y = max » 42 =
L3147 Z3i46 Zo ~Aj Zo
and 50 {z,}52 5, 4 is periodic with period-3.
Case 2(b)  Suppose that
Ty < A3
Then
As 1
Ty = — = —
Zo T4
and so
A5 Io Ag Ag
Tg =mMax{ —,— p = max{ —, —» = —=
Is T4 A2 Io Io
Ag o Aizo Zo
Ty =Max{ —,— p —=MAX{ —5, —5— ¢ = —
Tg ’ Iy A% ’ A% AQ
A7 A2 Al."L'() AQ
Tg =Max{ —,— o =MaX{ —, —5— 0 = —
X7 Tg Io A2 )
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and so {z,}52, is periodic with period-3. The proof is complete. I

The proofs of the next three lemmas are similar to those of Lemmas 7.32,
7.33, and 7.34 and will be omitted.

LEMMA 7.35
Let {An}22 ;| be a periodic sequence sequence of positive real numbers with
prime period 3 such that

A =1 < A,.

Let {z,}52_; be a positive solution of Eq.(7.3). Then {x,}52_, is eventually
periodic with period-3.

LEMMA 7.36
Let {A,}22_, be a periodic sequence sequence of positive real numbers with
prime period 3 such that

Ay =1 < Ay and AgA < 1.
Let {xp};2 | be a positive solution of Eq.(7.3). Then {x,}>2 4, is periodic
with period-3.

LEMMA 7.37
Let {A,}52_, be a periodic sequence sequence of positive real numbers with

prime period 3 such that
Ay =1< A and AgAq > 1.

Let {x,}52 _, be a positive solution of Eq.(7.3). Then {x,}52_, is eventually
periodic with period-3.

LEMMA 7.38
Let {A,}22 1 be a periodic sequence sequence of positive real numbers with
prime period 8 such that

A0=A2=1 and A1<1.

Let {z,}2_, be a positive solution of Eq.(7.3). Then {x,}°2_ is periodic
with period-3.

PROOF 1t follows by Remark 7.4 that we may assume that

T =— , r1 =19 > — and zi > 1.
Zo Zo
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We have
{ 1 Al} { 1 Al} 1
o =mMAX4y —,— ¢ =Maxqy —,— ¢ = —
I1 Zo To Lo Zo
Ete R )
T3 =maxy —,— ¢ = Inaxy§ ro, — = Xo
T2 1 Zo
and so {z,}52 4 is periodic with period-3. I
LEMMA 7.39

Let {A,}22_, be a periodic sequence sequence of positive real numbers with
prime period § such that

A0=A2=1 and A1>1.
Let {x,}52 _, be a positive solution of Eq.(7.3). Then {x,}52_, is eventually
periodic with period-3.

PROOF It follows by Remark 7.4 that we may assume that

r—1 = — s X1 =2%g > — and IL'Z > 1.
0
Zo Io

Since A; > 1 and z > 1, there exists k € {0,1,...} such that either

AP <aB < AT op AT G2 g3,

Case 1  Suppose that
AR < oy < ATFHL

By direct computation when k£ = 0, and by induction when k > 1, it follows
that for all 0 < n <k, we have

A? Zo d Zo
I3pn—1 = — I3n = —/— an I3 1= —.
n To ) n AiL n+ A?
In particular,
A’f Zo d Zo
T3k—1 = — T3k = — 7 an T3k+1 = -
o Ak LT Ak
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Hence
1 Aspt1 Ak A’f“ A'f“
T3k4+2 = IMax , = max<{ —, =

T3k+1 T3k To Zo To

k k

_ 1 Asgya)| Zg 1l _ Af
T3f+3 — Max ’ = max k+1° . ( — .
T3k+2 T3k+1 A7 Zo Zo

- - max{ 1 Aspys } _ max{ To o } T
3k+4 — ) - DV - L
T3k43 T3k42 L Lk Ak

. —max{ ! A3k+4}—max{ I @ }— 2
3k+5 — ) - U] — - —
T3kta T3k+3 zo Ak-1 ARt

k=1 4k k

1 Aspts A7 AT | AT

L3k+6 = Max > = max T (T T
T3k+5 T3k+4 To To o

k—1

1 Aspge o Af _ Zo

T3g+7 = MaAX ) = maxq — = Ak
T3k+6 T3k+5 1 o 1

and 50 {Zn}52 4, 5 is periodic with period-3.

Case 2 Suppose
AFL < g2 o p2k42,

By direct computation when k£ = 0, and by induction when k& > 1, it follows
that for all 0 < n <k, we have

A? Io d Lo
I3pn—1 = — T3n = —/— an I3 1= -
n To ) n A? n+ A?
In particular,
A{g Zo d Zo
T3p—1 = —— T3k = —% an T3k+1 = % -
20 AF AF
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Thus

T3k+2 — Max

T3k+3 — Max

) )
{-’173k+2 T3k+1 } AL g ARt
k+1 k+1
1 Aspgs ATTY g AFt
z = max = max =
3k+4 ) » k1L
T3k+3  T3k+2 xo A7 To
k+2 k+2
1 Aspqa zo APt Art
T3k+5 — MaX = max =
+ ) k1’
T3k+4 T3k+3 Af Zo Zo
z = max{ L Asess } = max{ o o } S
3k+6 = , = ; =
T3k45 T3kid ARFTZ? gkl Akt
k+1 k+1
1 Aspys Aj To A7
z = max — > = max =
3k+7 ) ) TR2
T3k+6 T3k+5 To A To
and 50 {Zn}52 4, 5 is periodic with period-3. I

The proofs of the next three lemmas are similar to those of Lemmas 7.38
and 7.39 and will be omitted.

LEMMA 7.40
Let {A,}2° _, be a periodic sequence sequence of positive real numbers with
prime period 3 such that

Let {x,}52_; be a positive solution of Eq.(7.3). Then {x,}52_, is eventually
periodic with period-3.

LEMMA 7.41
Let {An}22 1 be a periodic sequence sequence of positive real numbers with
prime period § such that

A=A =1 and A < 1.

Let {z,}52 _; be a positive solution of Eq.(7.8). Then {x,}32_, is eventually
periodic with period-3.
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LEMMA 7.42
Let {A,}52_, be a periodic sequence sequence of positive real numbers with
prime period 3 such that

Al =4, =1 and Ag > 1.

Let {xp}52 _, be a positive solution of Eq.(7.3). Then {x,}52_, is eventually

periodic with period-3.

The following theorem, the proof of which follows directly from Lemmas
7.27-7.42, is the main result of this section.

THEOREM 7.7

Let {An}22_; be a periodic sequence sequence of positive real numbers with
prime period 8 which satisfies (7.21). Then every positive solution of Eq.(7.3)
is eventually periodic with period-3.

7.4 Open Problems and Conjectures

Several open problems and conjectures on max equations with periodic
coefficients were posed in Section 3.6. Hopefully the proofs which we presented
in this chapter will improve the reader’s ability to handle the simple-looking
but quite sophisticated problems mentioned in Section 3.6.

The following result was established in [124].

THEOREM 7.8
Consider the difference equation

A B c
Tpy1 = Max q —, ,
Tn Tpn—1 Tn-—2

., n=0,1,... (7.22)

where
A7 B7 CJ T_2,T-1,Tg € (07 OO)

Then every solution of Eq.(7.22) is eventually periodic with periodp € {2,3,4,5,6}.
More precisely, every solution is eventually periodic with period

1.2 4f A > max{B,C};

2.3if A=B>C;

3. 4 if either B> max{A,C} or A=C>B or A=B=C,
4.5if B=C > A;

5.6 if C > max{A, B}.
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OPEN PROBLEM 7.1

Extend and generalize the above result for Eq.(7.22) to similar difference equa-
tions of order 4 and higher.

OPEN PROBLEM 7.2
Extend Theorem 7.8 to difference equations where the parameters are replaced
by period-2 sequences of positive real numbers. Extend and generalize.
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Chapter 8

EQUATIONS IN THE SPIRIT OF
THE (3z + 1) CONJECTURE

8.1 Introduction

We are all familiar with the (3x+1) conjecture, also called the Collatz Prob-
lem, which was introduced in Section 3.4, and which states that every solu-
tion of the difference equation

3z, + 1, .
> if z,, is even
Tnt1 = y n:0,1,...
In if g, is odd
2
with
T € {1,2,...}

is eventually the two cycle
1,2,1,2,....

In this chapter we investigate the periodic character and the boundedness
nature of the solutions of the following sixteen piecewise linear difference equa-
tions which were mentioned in Section 3.5.

(%7 +B$nfl . .
— 5 if ¢, +x,-1 iseven
Tnt1 = , n=0,1,...

YTp + 0Tp—1 if X, +2x,—1 is odd
where z_1,20 € Z=1{...,-1,0,1,...} and o, 3,7,0 € {-1,1}.

The case a = B = v = 1 and § = —1 was investigated in [26]. We denoted
the above equation by (C) to indicate that this is a Collatz-type difference
equation.

305
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8.2 Preliminaries

The following lemmas will be useful in the sequel. The proofs of the first
four lemmas are simple computations and are left to the reader.

LEMMA 8.1
The following statements are true:

1. The trivial solution T = 0 is an equilibrium solution of Eq.(C).

2. The only solution of Eq.(C) which is eventually equal to zero is the trivial
solution T = 0.

3. Any odd multiple of a solution of Eq.(C) is also a solution of Eq.(C).
In particular, the negative of a solution of Eq.(C) is also a solution of
Eq.(C).

The following lemma reduces the number of equations to be studied from
sixteen to eight.

LEMMA 8.2

(Duality Lemma)

Let {xn}zo:_l be a sequence of integers. For each n > 0, set yap,—1 = Tap-1
and Yo, = —T2,. Then

{zn},2 | is a solution of Eq.(C)
if and only if

{yn}or, is a solution of the equation

ZQYn T PYn-1 +2 Byn-1 if Yn+yn_1 is even
Yn+1 = n=0,1,... (c*)

’

—YYn + 0Yn—1 i Yn +Yn—1 is odd

Given two integers m and n, we let gcod(m,n) denote the greatest common
odd divisor of m and n.

LEMMA 8.3
Let {z,},. _, be a solution of Eq.(C). Then

geod(zp—1,x,) = geod(z-1,20) for all n=0,1,....
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An even semi-cycle of a solution {z,}52_; of Eq.(C) consists of a “string”
of terms {z;, Zj41,--.,%m}, all even integers, with [ > —1 and m < oo, such
that

either /| = —1,0or [ > —1 and x; 1 is odd
and
either m = oo, or m < oo and z,,41 is odd.

An odd semi-cycle of a solution {z,}52_; of Eq.(C) consists of a “string” of
terms {z;, Zi41,---,ZTm}, all odd integers, with [ > —1 and m < oo, such that

either [ = —1,or I > —1 and x;_; is even
and

either m = oo, or m < oo and z,, 41 is even.

LEMMA 8.4
Let {z,},2_, be a solution of Eq.(C). Then the following statements are
true.

1. Except for possibly the first semi-cycle, every even semi-cycle has exactly
one term.

2. Except for possibly the first semi-cycle, every odd semi-cycle has at least
two terms.

LEMMA 8.5

Let{z,}5> _, be a solution of Eq.(C). Suppose there exists N > —1 such that
either x.,, is even for allm > N, or x,, is odd for allm > N. Then the following
statements are true.

1. Suppose o= =1. Then x, = zn for alln > N.

(a) If xN is even, then x, = xN for alln > —1.

(b) Suppose N >0, xn_1 is even, and xx is odd. Then the following
statements are true:
(i) if vy =1, then xtny_1 = 0.

2
(i) if v = —1, then tn_1 = %

2. Suppose B = —1. Then x, =0 for alln > —1.
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PROOF Clearly x,+x,_1isevenforallm > N+1, and so forn > N +1,

Ty, + ﬂwnfl

Tnt1 = D)

Case 1  Suppose a = # = 1. Then

$n+1=% for n>N+1

and so there exist constants ¢; and ¢y such that
1 n
Ty, =C1 <—§> +cy for n>N.

So, as {z,}52_; is an integer valued sequence, we see that ¢; = 0, and
hence that
T, =xzn for n> N.

1(a) Suppose zy is even and N > 0. It suffices to show that z_1 is
also even. If z_; were odd, then

TNy1 =7YTN +0TN_1

which is impossible, since zy4+1 and x are even, and zx_; was
assumed to be odd.

1(b) Suppose N >0, xn_1 is even, and zy is odd.
1(b)(i) Suppose v = 1. Then
TN =TN41 = TN +I0TN_1

and so we see that zny_1 = 0.
1(b)(ii)  Suppose v = —1. Then

TN =ZN+1 = —ZN +0TN_1

and so we see that
" _ 2-77N
N-1= =

Case 2.  Suppose f = —1. Then

lim z, =0.
n—oo

So as {z,}22 _, is an integer valued sequence, it follows by Lemma 8.1
that x, = 0 for all n > 0.
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LEMMA 8.6

Let {zp}52_, be a solution of Eq.(C). Suppose |z_1| < z1, |xo| < 21, and
either axg < x1 or fx_1 < x1. Then x1 = yro + dx_1, T1 s odd, yro > 0,
and éz_1 > 0.

LEMMA 8.7
Let {x,}22_; be a solution of Eq.(C). Suppose oo = 1. Then there exists
ng > 0 with p,_12,, > 0.

PROOF It clearly suffices to consider the case when {z,}5> _, is not
eventually constant. If v-§ = 1, the result is true by Lemmas 8.1 and 8.6. So
suppose v -9 = —1.

Case 1. Suppose y=1and § = —1.
For the sake of contradiction, suppose there exists no n > 0 such that

Tpn—1ZTn > 0.

Then for all n > 0, we have x, 12, < 0.
It follows that z,,_1 + x,, is even for all n > 0.
Hence by Lemma 8.5, {z,}5>_, is eventually constant.

This is a contradiction.

Case 2.  Suppose y=—-1and § =1.
Then by Lemmas 8.1 and 8.4, it follows that we may assume that z_1 > 0
is odd, and that z¢ < 0 is even. So

1
21 = —To+2_1 >0isodd, #2 = 2290—2_1 < 0is odd, and 23 = §(m2+ﬂx1).

If 8 = —1, then

1
X3 = 5(.’13'2 —331) < 0,

while if § =1, then

1 1
xr3 = 5(:112 +£II1) = §IIJO < 0. |:|

8.3 Boundedness of Solutions

The following lemma is due to Clark and Lewis. See [26].
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LEMMA 8.8

Suppose o = = v =1 and 6 = —1. Let {z,},__, be a solution of
Eq.(C). Finally, suppose that x_1x9 > 0. Then |z,| < max{|z_1|,|zo|} for
alln > —1.

PROOF By Statement 3 of Lemma 8.1, it suffices to consider the case
where z_1 > 0 and xo > 0.
Let M = max{z_1,z0}. It suffices to establish the following claim.

Claim: There exists NV > 1 such that the following statements are true:
1. |zp| <M forall -1 <n < Nj;
2. zn_1zny > 0.

There are four cases to consider.

1.  Suppose r_; + xg is even.
Then 0 < z; = %(:1:_1 + x0) < M, and so the claim is true with N = 1.

2.  Suppose r_1 < g and z_1 + 2o is odd.
Then 0 < 1 = g — z—1 < 9 = M, and so the claim is true with
N =1.

3.  Suppose x_1 > xg, x_1 is odd, and ¢ is even.
Then —M < z1 = x9g—2—1 < 0 and zo = —x_1 = —M, and so the
claim is true with N = 2.

4. Suppose z_1 > g, £_1 is even, and z is odd.
Then there exist k,! € {0,1,...} such that z_; = (2k+1) + (20 +1) and
xo = (2k + 1). In this case, M = z_1 = (2k + 1) + (2l + 1).
Suppose k —1 = 0. Then z_; = 2(2k + 1) and 2o = (2k + 1). Hence
z1 = —(2k + 1), o = 0, and so the claim is true with N =1 .
So it suffices to consider the case where k —1 # 0.

Note that 0 > z1 = —(214+ 1) > —M, and |z2| = |k — 1] < M. So if
T2 < 0, then the claim is true with NV = 2. So suppose z2 > 0.

Then z, = k —1 > 0, and thus we see that 0 > z; = —(20+1) > —1M,
and 0 < x5 < %M

Suppose now that there exists ng > 1 such that the following statements

are true:

(a) (-1)"z, >0 for 1 <n < ng;
(b) =z, is odd for 1 < n < nyg;
(¢) |zn] < AM for1 <n <mg+1.
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For example, this is true for ng = 1. It follows by Statement 1(b)(i) of
Lemma 8.5 that the proof of the claim follows from the fact that one of
the following three statements is true:

(i) (_1)n0xno+1 >0, |xno+1| < %M’ and LnoTno+1 > 0;

(ii) (_1)n0+1xn0+1 > 0, Zpo41 is even, |$no+2| = |$no+1 - xno' <
|$"0+1| + |mno| < M, and Tpo41Tne+2 > 0;
(iii) (—1)"0+1$n0+1 > 0, Tno+1 is Odda and |mno+2| = %"'Eno-l‘l +
1
LEMMA 8.9

Let {zn}. | be a solution of Eq.(C). Suppose « =~ =1 and § = —1. Then
|2n| < |z1] + |®0| for alln > —1.
PROOF We shall prove by induction that for every n > 0,
|Zn—1;[2nl, [0 — 21| € [0,[z-1] + [xo]].
The claim is clearly true for n = 0. So suppose n > 0 and that
|Zn—1; [2nl, [€n = 2n_1| € [0, [z 1] + [2o]-
We shall show that
||, [Enta], [Znp1 — 2| € [0, [21] + [2o]]-

Now |z,| € [0, |z_1|+]|zo|] by the inductive hypothesis. Recall that if 2, +z,_1
is even, then

Tn + an—l

1 1
2 S §|xn|+§|$n—1|a

|Znt1| =

while if z,, + z,,_1 is odd, then

[Tnt1| = |Tn — Tn-1],

and so in either case,

|Znt1| < |zol + |21l
It remains to show that |z,41 — x| < |2o| + |2_-1|- If 2, + 2,1 is even, then

ZTn + BTn_1

—Tpn + BTn_1
|mn+1 - xnl = f — dn - a5

2

IA

en] + =[]
51Tn 51Tn—1];
2 2 !
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while if z,, + z,_1 is odd, then

|Znt1 = Tn| = |(Tn — Tn-1) = Tn| = | = Tn-1| = |Tn-1],
and so in either case, |Zn 1 — Tn| < |zo| + |2_1]- I
LEMMA 8.10

Let {xn},o_, be a solution of Eq.(C). Suppose o = § = 1, and v = —1.
Then |zp| < |x—1| + 2|zo| for all n > —1.

PROOF For each n > 0, let P(n) be the following proposition:
(i) if zp—1 is odd and z,, i s odd, then |zp_1]|,|zn| < |z_1| + 2|z0].

(ii) if zp—1 is even and z, is odd, then |zn_1], |Zn|, | — Zn—1 + 2n| < 21| +
2|$0|

(iii) if 1 is odd and =, is even, then
[Zrn—1l, [Zal, | = Tn1 + @nl, | = Tn1 + 22| < [z 1] + 2|0]-

We shall show by induction that P(n) is true for all n > 0. Clearly P(0) is
true. Suppose n is a nonnegative integer and P(k) is true for £k = 0,1,...n
It suffices to show that P(n + 1) is true.

Case 1.  Suppose z,, 1 and z,, are both odd. Then |z, 1|, |zs| < |2_1|+2|z0|,
and
Tn + an—l
Tn4+1 = f

Note that

ZTn + Brn_1

1
5 < glzal + |znal) < fz-a] + 2|zl

|Tnt1] =

Case 1(a)  Suppose that 2,41 is odd.
Then z,, and z,41 are both odd.
Thus P(n + 1) is the statement |z,|, |Znt1| < |2-1| + |2|20], and
nothing remains to be shown.

Case 1(b)  Suppose x,1 is even.
Then z,, is odd and x,; is even, and so P(n + 1) is the statement
(@l [2ns1ls] = T + Doy = @ + 2051] < [21] + 2aol.
It remains to show | — Z,, + Zn41l, | — Tn + 2&n41] < |2_1| + 2|20 ]

Now,
Tn +an_1)‘ < |2a|

x
|—.'1]'n+xn+1| = ‘_-'L'n“‘ ( 2 +| n— 1|

5 5 < |z_1|+2|z0,

and
| —2n + 22p41| = | — 2n + (@n + B2n—1)| = |Tn-1] < |2_1] + 2|z0|-
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Case 2.  Suppose z,_1 is even and x,, is odd. Then
|$"*1|a |mn|7 | —Zp-1+ mnl < |:I"71| + 2|$0|7

and z,41 = —%p, + Tp—1. In particular, z,, is odd and z,1 is odd.
Thus
P(n+1) is the statement |z, |, |Zn41| < |2—1|+2|20|, which follows from

the fact that
[Znt1| = = Zn + Tp-1| = | = Tn1 + zn| < [z_1] + 220]-
Case 3.  Suppose x,_1 is odd and =z, is even.
Then
|$n—1|a |xn|7 | —Zp-1+ wnl; | —Tp-1+ 2$n| < |IL‘_1| + 2|$0|7

and z,41 = —%, + T,_1. In particular, z,, is even and z,,41 is odd.

Hence P(n+1) is the statement |z,|, |Znt1], |—Zn+Znt1| < [2-1]+2|20],
and so it remains to show that | — x5, + Zp41| < |2-1] + 2|20].

But
| — Tn +$n+1| = | —Tpn — Tn +xn—1| = |xn—1 - 2$n| = | —Zp-1+ 2$n|
< [ 1] + 2[aol- 0
LEMMA 8.11
Let {zn},2 | be a solution of Eq.(C) such that every even semi-cycle has
length 1. Suppose a = =1, and v = § = —1. Then the following statements
are true.

1. If n > —1 and z, is even, then |x,| < |x_1| + |20l
2. Ifn>0, x,_1 is even, and x,, is odd, then |z,| <2 (Jz_1| + |zol)-

3. Ifn>0, z,_1 is odd, and z,, is odd, then |z,| < |z_1| + |zo|.

PROOF Clearly |z_1| < |z_1| + |2o| and |zo| < |z_1| + |20|. For each
n > 1, let P(n) be the following proposition:

(i) if n > —1 and z, is even, then |z,| < |z_1| + |zo|.

(i) if n > 0, z,,—1 is even, and x,, is odd, then |z,| < 2(|z_1| + |zo|) and
|Zn—1 + zn| < |z_1]| + |20

(iii) if n > 0, zp—1 is odd, and =z, is odd, then |z,| < |z_1| + |zo| and
[T+ 2n| < 2(J2—1] + |20])-
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The proof will be by induction on n > 1.

To show:P(1) is true. Suppose x1 is even. Then z¢ and z_; are both odd,
and |z1] = 1|20 + z_1| < |z_1| + |20

Suppose z; is odd.

(i) Suppose zg is even.

Then

r_qisodd,and ;1 = —zg —x_1.

Thus

21| < [@_1]+|zo| < 2(Jx—1|+|20]), and |zo+21| = [—2_1] < |2_1]+]o].

(ii)  Suppose z¢ is odd.

Then
|z1] < [zo + 21| < |z_1] + |zol, and |z + 1| < Fwo| + x| <
2(|zo| + |z—1])-

Thus P(1) is true.

Suppose n > 1 and P(1), P(2),...,P(n) are all true. To show: P(n +1) is
true.
(i)  Suppose z,41 is even.

We must show |2pq1| < |2_1| + |2o|. We know z,, and z,_; are both
odd.

Thus by the inductive hypothesis,

|Zn+an—1] < 2(|z-1]+|zo]), and 50 |Tr41] = F|Tn+@a—1| < z_1]+|zo]-
(ii)  Suppose T, is odd and z,, is even.

We must show

|Znt1| < 2(|z—1] + |2o|) and |zn + Tpga| < |21+ [2ol.

Clearly =, 1 and z,_ o are both odd. Since z, 1 and z, o are both
odd, we have

|Zn—1] < |2_1] + [o].
Since x,, is even, we also have that

|Zn| < J2-1] + 0.

Hence

|~'Un+1| = | —Tn — $n71| < 2(|'Z'71| + |$0|)
and

|Znt1 + @n| = | = @p-1]| < |z_1] + |20l
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(iii)  Suppose z,; is odd and =z, is odd.
We must show that

[Znt1| < 21| + [@o| and |zn + Znia| < 2(|z—1] + |2o])-

(a)  Suppose z,_1 is even.
Then
Tptl = —Tp — Tp—1-
We have |z,-1 + 2| < [z_1] + |20]

and so

[Znt1] = |Tn + Tn-1] < [2-1] + |20]-

Also,

|Zn + Tnt1] = | = Tn-1| < [z-1] + |Zo| < 2(|2—1] + |20])-

(b)  Suppose z,_1 is odd.
Then

Tnt1 = %(mn + mn—l)-

(1) Suppose z,_» is even.

Then
|Zn—1| < 2(|z -1 + [o])-
Also
2] <[z 1|+ |zo| and |z, 1 + 2| < 2(|z 1] + |20]).-
Thus
|Znt1] = 3lEn + 2n-1| < lo—1] + |20l
and
|-73n + xn+1| = |mn + %(xn + mn—l)' < |mn| + %|mn—1 + mnl <
2(Jz 1] + |xol)-
(2)  Suppose x,_2 is odd.
Now
Zp—o and x,_1 are odd, and so |zn,—1| < |T_1] + |Zo].
Also,
Zn—1 and z, are odd, and so |z,| < |z_1| + |Zo].
Thus
|Zn41] = 5lon + 2n1| < F(1@n| + |2n-1]) < |2-1] + |20
and
|Zn+Tni1| = |$n+%(mn+mn—1)| < %|mn|+%|$n—1| < 2(|z-a|+
|ol)-

[
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8.4 The Equations
8.4.1 Eq.(1)
Eq.(1) Consider the AE

Tn + Tp—1 . .
— if z,+x,_1 is even

Tnt1 = , n=0,1,... (8-1)
Tp+ 2p_1 if 2, +2x,—1 is odd

where £_1,29 € Z.

Clearly every integer is an equilibrium solution of Eq.(8.1).

THEOREM 8.1
The following statements are true:

1. There ezist solutions of Eq.(8.1) which are eventually constant, and
there exist solutions of Eq.(8.1) which are not eventually constant.

2. Let {z,}.— | be a solution of Eq.(8.1) which is not eventually constant.

n=-1

Then either lim z,, = —oo or lim z,, = oco.
n—o0 n—oo

PROOF

(i) Statement 1 follows from the fact that every integer is an equilibrium
solution, and from Lemma 8.5. In particular,if z_; -9 > 0 and z_; #
g, then {z,} 7 _, is not eventually constant.
(ii) Let {z,},. _; be asolution of Eq.(8.1) which is not eventually constant.
Clearly there exists N > —1 such that either z,, > 0 for all n > N or
z, < 0for alln > N. From the above and Lemma 8.5, it follows without
loss of generality that we may assume that x_; is an odd positive integer
and that zo is an even positive integer. Then the solution {z,} >~ |
congsists of an odd semi-cycle Oy followed by an even semi-cycle F;
followed by an odd semi-cycle O;, etc. After Og, every odd semi-cycle
O,, has at least two terms. Every even semi-cycle F,, has exactly one
term, which in an abuse of notation we shall also refer to as E,,. For each
integer n > 0, the first two terms of O,, are each the sum of E,, with a
positive odd integer, and hence are strictly greater than E,,, while every
other term (if any) of O, is the average of two odd integers each strictly
greater than E,, and hence is strictly greater than E,. Since E, 1 is

Copyright © 2005 CRC Press, LLC



EQUATIONS IN THE SPIRIT OF THE (3z+1) CONJECTURE 317

the average of two elements of O,,, we see that F,, < E,1. It follows

that lim z, = oo. I
n—o0

Eq.(1%) Consider the AE

—In + Tn—1 . .
— 5 if z,+x,_1 is even

Tnt1 = , n=0,1,... (1%)
—Zp + Tp_1 if zp+2xH_1 is odd

where £_1,29 € Z.

Clearly = 0 is the only equilibrium solution of Eq.(1*).

COROLLARY 8.1
The following statements are true:

1. Eq.(1*) possesses bounded solutions, and Eq.(1*) possesses unbounded
solutions.

2. Every bounded solution of Eq.(1*) is eventually a two-cycle (a, —a).

3. Every unbounded solution of Eq.(1*) consists of two subsequences, one
of which diverges to oo and the other of which diverges to —oc.

8.4.2 Eq.(2)

The following theorem is due to D. Clark and J.T. Lewis. A proof is given
for the sake of completeness.

Eq.(2) Consider the AE

Tn + Tn—1 . .
— if ¢, +x,—1 is even

Tnt1 = n=0,1,... (82)
Tp — Tp—1 if z, +xp—1 is odd

where £_1,29 € Z.

Clearly every real number Z € Z is an equilibrium solution of Eq.(8.2).

THEOREM 8.2

Let {x,}52_1 be a solution of Eq.(8.2). Suppose that gcod(z_1,29) =1 and
z_1 # xo. Then {zp}52_, is either eventually the constant 1, the constant
—1, or the siz-cycle (-2,1,3,2,—1,—3).
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PROOF If {z,}°2 _, is eventually constant, it follows by Lemmas 8.3 and
8.5 that {z,}52 _, is eventually either the constant 1 or the constant —1.

So suppose {z,}%2 _; is not eventually constant. By Lemmas 8.7 and 8.8,
we know that {z,}52_; is a bounded, integer valued solution of Eq.(8.2),
and hence is eventually periodic. So without loss of generality, we assume
{zn}22_, is periodic. Hence there exists an integer M > 0 such that —M <
z, < M for all n > —1. Because the negative of a solution of Eq.(8.2) is
also a solution of Eq.(8.2), without loss of generality we may also assume that
To <21 =M.

Suppose 1 = 0. Then as gcod(z_1,z9) = 1, we see that zg = 1, and so
{zn}5>_; = (0,1,1,...). This is impossible because we are assuming that
{z,}52 _; is not eventually constant.

Suppose £g = 0. Then z; = 1, and so it follows that

{wn}?f:fl = (_1707 17 ]-7 - )

which also contradicts the assumption that {z,}52_; is not eventually con-
stant.

Thus we see that z_; - 2o # 0. Since {2, }52_; is not eventually constant and
9 < 1 = M, it follows easily by Lemma 8.6 that M = 1 = zo —x_1 is odd,
—M<z 1<0,and 0 < zg < M.

Claim: The following statements are true.
(i) z_1 iseven,and —M < z_; < 0;
(ii) =z is odd, and 0 < zg < M;
(i) 1 = M is odd;

(v

(vi

3 is odd, and —M < z3 < 0;

)
)
)
(iv) x2 is even, and 0 < zy < M;
)
) Ty = —M;
We shall first show that x_; is even and zg is odd.
For the sake of contradiction, suppose that z_; is odd and z is even.
Then

1 =xg —x—1 is odd, 2 = —z_; > 0 is odd, and so

1 1
T3 = 5(.’172 +.’L’1) = 51’0 —z_1>0.
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It follows by Lemma 8.8 that #1 = 2o — z_1 < max{|z,|, |z3|} = Ltzo —z_1.
Thus
2o = 0. This contradicts the fact that x_jxz¢ # 0.

So we see that it is true that x_; is even, and x¢ is odd.

Thus there exist integers p € {1,2,...} and k,l € {0,1,...} such that z_; =
—2P(2k + 1) and zo = (20 + 1).

We claim p = 1.

For the sake of contradiction, suppose that p > 1.
Then

1= 20+ 1) +2P(2k + 1), 2 = 3(z1 + 7o) = (2l + 1) + 2P71(2k + 1), and
3= (20 +1)+ (271 +2772)(2k + 1).
It follows by Lemma 8.6 that

(20+1)+2P(2k+1) = 21 < max{|za|, |z3|} = (21 +1)+(2P71+2P72)(2k+1),
and so (2k+1) = 0. This is a contradiction, and so we see that it is true that
p=1.

Hence z_1 = —2(2k+ 1) € (—-M,0), 2o = (2l +1) € (0, M), z1 = (21 + 1) +
22k+1) =M,z =2l +1)+ (2k+1) € (0, M), z3 = —(2k + 1) € (—M,0),
x4 =—(20+1) —2(2k + 1) = —M, and so the claim is true.

It follows by the claim applied to —x4 = M that x5 is even. Thus

-1 =-212k+1) € (—M,0),
zo = (204+1) € (0, M),
z = (20 +1)+2(2k+1) =M,
z2 =2+1)+2k+1) € (0, M),
r3 = _(2k+1) € (_M7 )7
Ty = (21+1) -2(2k+1) =-M,
5 =—1[20+1)+3(2k+1)] € (—M,0),
zg =3[(2l+1)+2k+1)] € (0,M),
zr = 20+1)+2(2k+1) = M,
%(2l+1)+g(2k+1) 2z + 22
rg = 2 = 1 .

It follows that given i € {1,2,...},

o + (22i—1 + 22i—3 + ... 23 + 21).'131
Teit+2 = 92

It also follows that z,, = z; if and only if n = 6i+1 for some i € {0,1,...}. In
particular, there exists i € {1,2,...} such that {z,}22_, is periodic of prime
period P = 6i. Thus
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o + (221'—1 + 221’—3 4t 23 + 21),’61
924 ’

T2 = Tei+2 =

and so

(2% —1)@p = (221 +2% 3 4. 4 28 4 21) 2y,
Thus

(22i—1+22i—2+___+21 +20) Ty = (22i—1+22i—3+___+23+21) z1,

and hence

(221’71 _}_221'73_’_____}_23_}_21) (ml_mQ): (221’72_'_221'74_}_____}_22_}_20) .
That is,

(27142270 4 204 27) (2h41) = (2277 4 2 4 127 4 20) (2A42642).
Thus

(2042272 4 4 20 £ 22) b (2271 4223 4. 4 93 4 o)

= (2271 4223 4 ... 4 93 4 21) (I + k)

+ (2271 42273 ... 23 4 91)

It follows that

(¥ -2 422 2N = (220 4220 4 123 1 200

Hence we see that

(22i—1 + 22i—3 Lt 23 + 21) k= (22i—1 + 22i—3 4t 23 + 21) l,
from which it follows that £ = [. So by the gcod condition, k¥ =1 = 0. Thus
we have the cycle (-2,1,3,2,-1,-3).

Eq.(2%) Consider the AE

—Zn + Tn—1 . .
— g if z,+x,_1 is even

Tnt1 = , n=0,1,... (2%)
—Zp — Tp_1 if zp+2xHp_1 is odd

where £_1,x9 € Z.

Clearly Z = 0 is the only equilibrium solution of Eq.(2*).
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COROLLARY 8.2

Let {z,}2_; be a solution of Eq.(2*), and suppose that gecod(z_1,z9) =
1. Then {x,}S2_, is either eventually the two-cycle (1,—1), the three-cycle
(2,1,-3), or the three-cycle (-2, —1, 3).

8.4.3 Eq.(3)
Eq.(3) Consider the AE

%& if z,+z,_1 iseven
Tny1 = . n=0,1,... (83
—Zp + Tp1 if Ty +x0-1 is odd

where z_1,x9 € Z.

Clearly every real number Z € Z is an equilibrium solution of Eq.(8.3).

THEOREM 8.3
Let {z,}52_1 be a solution of Eq.(8.3). Suppose gcod(z_1,20) = 1 and
x_1 # xo. Then {xp}2 _, is either eventually the constant 1, the constant
—1, the four-cycle (2,-1,3,1), the four-cycle (—2,1,—3,—1), or the siz-cycle
(1,0,1,-1,0, —1).

PROOF If {z,}°2 _, is eventually constant, it follows by Lemmas 8.3 and
8.5 that {z,}52 _, is either eventually the constant 1 or the constant —1.

So suppose {z,}52 _; is not eventually constant. By Lemma 8.10, we know
that {2, }52 _; is a bounded, integer valued solution of Eq.(8.3), and hence is
eventually periodic. So without loss of generality, we assume {z,}52 _; is pe-
riodic. It follows that there exists an integer M > 0 such that - M <z, <M
for all n > —1. Because the negative of a solution of Eq.(8.3) is also a solution

of Eq.(8.3), without loss of generality we may also assume that xq < x; = M.

Suppose z_1 = 0. Then as gcod(x_1,2¢) = 1, we see that £o = —1, and that
{:L'n}%o:_l =(0,-1,1,0,1,-1,0,-1,1,0,1,-1,...).

Suppose £g = 0. Then z; = 1, and so it follows that
{zn}or_,=(1,0,1,-1,0,-1,1,0,1,-1,0,-1,...).

Suppose z_1 - zg # 0.
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It follows by Lemma 8.6 that 1 > 0, 9 < 0, and that M =21 = —xg+2_1
is odd. We claim that z_; is even and xg is odd. For the sake of contradiction,
suppose there exist p € {1,2,...} and k,l € {0,1,...} such that z_; =2l +1
and zg = —2P(2k + 1). Then {z,}52 _, is given (arranged in even and odd
semi-cycles) as follows:

.%'_1:2l+1

zo = —2P(2k + 1)

M=z, =222k +1) + (2L +1)
2y = =201 (2% +1) — (20 + 1)
This is impossible, because M < 2PT1(2k + 1) + (21 + 1).

Hence there do exist p € {1,2,...} and k,! € {0,1,...} such that z_; =
2P(2k + 1) and o = —(21 + 1).

We claim p = 1. For the sake of contradiction, suppose p > 1. Then {z,}°2_,
is given (arranged in even and odd semi-cycles) as follows:

T 1 =202k +1)

g = —(21 + ].)

M =gz =20+1)+2°(2k + 1)

Ty = 2071 (2k + 1)

z3=20+1)+ (2P -=2P"1)(2k+1) = (20 + 1) + 27712k + 1)

T4 = —(2l + 1)
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The next term is x5 = 2P~2(2k + 1), and so by Lemma 8.10

M = (214+1)+2P(2k+1) < (21+1)+2-2P72(2k+1) = (20 + 1)+ 2771 (2k + 1),

which is impossible. Thus it is true that p = 1. So {z,}52 _, is given (arranged
in even and odd semi-cycles) as follows:

z_1 =2(2k + 1)

g = —(2l+ ].)

M=mz =(20+1)+2(2k +1)
Ty = (2k+1)

The next term is z3 =1+3k+2=(1+k+1)+ (2k+1). Weclaim [+ k +1
is odd. For the sake of contradiction, suppose that [ + k + 1 is even. Then
{zp}52 _, is given (arranged in even and odd semi-cycles) as follows:

z_1 =2(2k + 1)

g = —(2l+ ].)

M=mz =(2+1)+2(2k+1)
o = (2k+1)

z3=(+k+1)+(2k+1)

The next term is z4 = £(I+k+ 1) + (2k + 1). If 24 were even, then we would
have z5 = $ (I + k + 1), and so

1 1 3 Tk 5
M = (214+1)+2(2k+1) < §(l +Ek+1)+(2k+1) +2-§(l+k+1) =5t5+g
which is impossible. Thus it must be that x4 is odd, and hence that
3l+k+1
Ty = %%_(Qk_}_l)_
If x5 were even, then we would have zg = —Hlf%l, and so
M=(@+1)+22k+1) < W+(2k+l) +2-l+’fT+1,

which is impossible. Thus z5 is odd.
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Suppose now that there exists N > 1 such that the following statements are
true for all 0 <n < N:

() Tapn = [3— é (—%)n] (+k+1)+(2k+1)

(il) x4y is odd.

Then we claim that

2 1/ 1\
T4H(N+1) = 376\ 72

and that x4 (v41) is odd.

(I+k+1)+(2k+1)

Proof of the claim: Note that

Ta4N + TayN-1
Ta4(N41) = - 9

12 1/ 1\Y 2 1
= — |- = —= + - — =
23 6\ 2 3 6

(I+k+1)+(2k+1)

2 1/ 1V
B4

and so we need only show that z4(n41) is odd. So for the sake of contradic-
tion, suppose that z4y(n41) is even.

Then
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Ta+(N+2) = —T44(N+1) T TaN

Then as N > 1,

M= (20 +1)+2(2k +1)

< zagviny| + 2)Tay (v

([
) )
@6

<({U+k+1)+(2k+1).

2

(I+k+1)+ (2k+1)

This is impossible, and so the claim is true.

325

N+1
(l+k+1)+(2k+1)>+(1) I+k+1)

23
(I+k+D)+@k+1) = Z(+k+1)+(2k+1)

But this means that {z,}22_,; is odd for n > 0, and so by Lemma 8.5,
{zn}22_, is constant for n > 0. This contradicts the assumption that

{z,}52 _; is not eventually constant.

Thus it is the case that I + k + 1 is odd. So {z,}52_, is given (arranged in

even and odd semi-cycles) as follows:
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T, =2(2k+1)

.’L'()=—(2l+1)
M=z1=020+1)+22k+1)=2(—k) +3(2k+1)

To = (2k+ 1)

w5 = (1— k) +2(2k + 1)

2 =—(1—k) — (2k+1)
M = x5 =21 — k) + 3(2k + 1)

x6:%(l—k)+(2k+1)

and so in particular, we see that for all n > 0

T4n_1 1S even

T4y is odd

Tany2 is odd

It follows easily by induction that for n > 1,

Lan—1)

Ton—-1 = 4717_1@ — k) + 2(2](7 + 1)

F(4" +2)

Tan = =S~ k) = (2k+1)
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Lgn 1
Tont2 = %(Z —k)+(2k+1)

So in particular, for n > 1,

1

(4" -1)
S gnt C3.4n-1

(z—k)+2(2k+1)=§(z—k) (k) + 2k +1).

4

n—oo

is an integer, and thus for all n > 1,

1

gt h
is also an integer, from which we see that [ — k = 0. So as gcod(z_1,20) =1,
it follows that {z,}2> , = (2,-1,3,1,2,-1,3,1,...). I

Eq.(3*%) Consider the AE

—Zp + Tp—1

2 if z,+x,_1 is even

Tnt1 = , n=0,1,... (3*)

Ty +Tp1 if x, +2x,_1 isodd

where z_1,z¢ € Z.
Clearly Z = 0 is the only equilibrium solution of Eq.(3*).

COROLLARY 8.3
Let {z,}2_; be a solution of Eq.(3*), and suppose that gecod(z_1,z9) =
1. Then {x,}32 4 is either eventually the two-cycle (1,—1), the three-cycle
(1,0,1), the three-cycle (—1,0,—1), the four cycle (2,1,3,—1), or the four-
cycle (—2,—-1,-3,1).

REMARK 8.1 Near the end of the proof of Theorem 8.3, we had es-
tablished that for n > 3, {z,}52_; was given (arranged in even and odd
semi-cycles) as follows:
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w3 = (I — k) + 2(2k + 1)

wa=—(1— k) — 2k +1)
w5 =21 — k) + 3(2k + 1)

1

s =-(—-k)+(2k+1)

[\V]

Ty = (l—k)+(2k+1)

N

os = —Z(l—k)—(2k+1)
!

zo =2(1— k) +3(2k + 1)
)
T10 = g(l—k) +(2k+ ].)
21
r11 = E(l—k) + (2k+1)
11
Tia = —E(l —k)—(2k+1)

213 =2(1—k) +3(2k+1)

21
Tig = 3—2(l —k)+(2k+1)

85
T15 = 6—4(l — k‘) + (2k+ 1)

43

T1e — —6—4(l - k) - (2]6 + ].)

217 =2(1 — k) +3(2k + 1)
85

T18 = m(l —k)+(2k+1)
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Thus a reasonable guess for a closed form solution for {z,,}°2 _, is (forn > 1)

Tan 1 = 4:: (I—k) +22k+1)
bn
Tin === k)= @k+1D)

Tanp1 = 2(1— k) +3(2k + 1)

an
S 2.4n-1
where {a,}52; and {b,}52, are solutions, respectively, of the IVPs

Tan42 = (l — k’) — (2k + 1)

an+1 = 4an, +1

, n=0,1,...
ai =1
bn+1:4bn_1

, n=0,1,...
by =1

It follows that the corresponding solutions are (for n > 1)

1
-6
and so our trial for a closed form solution for {z,}32_, is (for n > 1)

1
an:§(4”—1),bn (4" +2)

$(an -1
t(am+2

Tang1 = 2(1 — k) + 3(2k + 1)

Tanpo = —%(z —k)—(2k+1) = —w(z —k)-@k+1) 0
8.4.4 Eq.(4)

Eq.(4) Consider the AE
Tp+ Tp-1 . .

— if zp,+x,-1 is even
Tnt1 = , n=0,1,... (84

—Tp — Tp_1 if x, +2Hp—1 is odd

where £_1,x9 € Z.
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Clearly every real number Z € Z is an equilibrium solution of Eq.(8.4).

THEOREM 8.4

Let {z,}32_; be a solution of Eq.(8.4). Suppose gcod(z_1,z9) = 1 and
z_1 # xo. Then {zp}52_, is either eventually the constant 1, the constant
—1, the three-cycle (—1,0,1), or the three-cycle (1,0,—1).

PROOF If {z,}52 _, is eventually constant, it follows by Lemmas 8.3 and

n=—1
8.5 that {z,}52 _; is either eventually the constant 1 or the constant —1.

So suppose {z,}%2 _; is not eventually constant. By Lemma 8.11, we know
that {z,}52 _, is a bounded, integer valued sequence, and hence is eventu-
ally periodic. So without loss of generality, we assume {z,}5° _; is periodic.
Hence there exists an integer M > 0 such that —M <z, < M for alln > —1.
Without loss of generality, we may assume that zo < z1 = M. It follows by
Lemma 8.6 that x_; <0, o <0, and that M =1 = —x_1 — xo > 0 is odd.

Case 1 Suppose z_; is even and zg is odd. We claim that z_; = 0. For the
sake of contradiction, suppose z_; # 0.
Then there exist k € {1,2,...} and m,l € {0,1,...} such that

z 1 ==2"2m+1) and zo=—(20+1).

It follows that {z,}>2_, is given (arranged in even and odd semi-cycles)
as follows:

—2k(2m +1)

—(20+1)
M= (20+1)+2%2m +1).

The next term is 2¥~1(2m + 1). Suppose k > 2. Then {z,}5_, is given
(arranged in even and odd semi-cycles) as follows:
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r_1 = —-2F2m +1)

To = —(21+ 1)
M=z =@ +1)+2¢@m+1)

zy =281 (2m + 1)

z3=—(20+1) — (2F +25"1)(2m + 1)

But then |z3| = (20 + 1) + (2¥ + 25=1)(2m + 1) > M. This is impossible.
Hence k = 1. So {z,}52_, is given (arranged in even and odd semi-cycles)
as follows:

—2(2m + 1)

—@2l+1)
M=(2+1)+202m+1)

(2m+1)

and so

32m+1) + (21 + 1)

5 =3m+1+2=02m+1)+ (m+1+1).

x3 =
Now there exist integers p, ¢ > 0 such that (m + 1+ 1) = 27(2¢ + 1).

We claim p = 0. For the sake of contradiction, suppose p > 0.

We first suppose that p is even. Then there exists an integer r > 0 such

that p = 2r. So {z,}>2_, is given (arranged in even and odd semi-cycles) as
follows:
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—2(2m + 1)

—(2+1)
M= (20 +1)+2(2m +1)

(2m+1)

(2m +1) +2%"(2¢ + 1)

(2m +1) +2%"1(2¢ + 1)

(2m +1) 4+ (22771 +227"2)(2¢ + 1)
(2m+1) + (22771 +22773)(2¢ + 1)

(2m + 1) + (22771 42273 4 927=4)(2¢ 4 1)
(2m + 1) + (2271 42273 1 927-5) (2 + 1)

2m+1)+ (22771 + 2273 ... 4+ 25 + 2%)(2¢ + 1)
2m+1)+ (2271 + 2213 ... 4+ 25+ 21)(2¢ + 1)

2m+1)+ (2271 + 2213 ... 4+ 25 + 21 + 20)(2¢ + 1)

—2(2m+1) — (277 + 2272 4 ... + 20 + 22 4 20)(2¢ + 1)
(2m +1) + (227 —22r—1 4 22r=2 _ 22r=3 4 ... 4 22 _ 21)(2¢ + 1)
The next term is
—+[@m+1)+ [(221 + 22773 4. 4+ 21) +20] (29 + 1)]
=—[m+ @22 +27 4 4+...22421)(2¢+1) — ¢ |.
But

|(2m+1)+(22’r'_22r—1+22’r—2_221'—3_'__‘__*_22_21)(2(1_}_1)'
= [m (2272 427 27 1 21) (20 + 1) — g] |
— (2m+1)+m+[22r+(_22r—1 +22r—2+22r—2)+(_22r—3+22r—4+22r—4)
+o (-2 +224+22) 4 (-2 +2Y)](2¢+ 1) — ¢
2m+1)+m+222¢+1)=Cm+1)+m+(m+I1+1)=22m+1) +1

<
<22m+1)+ (20 +1) = M.
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This is impossible by Statement 3 of Lemma 8.11, since z; = M is odd, and
by assumption, zq is also odd.

We next suppose that p is odd. Then there exists an integer r» > 0 such that
p=(2r+1). So {z,}2_, is given (arranged in even and odd semi-cycles) as
follows:

—2(2m + 1)

—@2l+1)

M =202m+1)+ (20 +1)

(2m+1)

(2m + 1) + 2%+ (2g + 1)

(2m +1) + 2% (2¢ + 1)

(2m + 1) + (227 + 227" 1)(2¢ + 1)

(2m +1) + (227 + 227 2)(2¢ + 1)

(2m + 1) + (227 422772 4 2273)(2¢ + 1)
(2m + 1) + (227 4+ 22772 4 2274)(2¢ + 1)

(2m+1)+ (227 + 2272 4 ... + 2 + 2%)(2¢ + 1)
(2m+1)+ (227 + 2272 + ... + 24 + 2%)(2¢ + 1)

@m+1)+ (2274222 4+ 20 422 4+ 21)(2¢ + 1)

(2m+1)+ (227 +2277 2 + ... + 24 422 4+ 20)(2¢ + 1)

—2(2m +1) — (22r+1 4 22r=1 4 ... 4 25 4 23 4 21 4 20)(2¢ + 1)

(2m+1)+(22r+1_227'_,’_227'71_227'72_’_‘“+25_24+23_22+21)(2q+1)
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It follows that Tpexy = 2[—(2m+1)+[(—22" — 227=2 — ... — 24 —22) — 20)] (2¢+
1)]. It is not clear whether zpeyt is even or odd, but in either event,

|T1next| < (2m + 1) + (2271 — 227 . 92r—1 _92r=2 4 ... 4 23 22 4 21)(2¢ + 1)
—1@m+1) - (223 4 42 DY (2¢ + 1)
%(2m + 1) + (221‘+1 _ 227’ _ 221‘—2 . 22 _ %)(2(] + 1)’

and so

|Znext| + |T1next| < 2(@m +1) + (22771 42273 ... + 21 + 1)(2¢ 4+ 1)
+%(2m + 1) + (22r+1 _ 221‘ _ 22r—2 . 22 _ %)(2q + 1)
<@2m+1)+227H(2q+1)=2m+ 1)+ (m+1+1)
<2@2m+1)+ (2 +1) = M.

This is impossible by Statement 3 of Lemma 8.11, since z; = M is odd, and
by assumption, zq is also odd.

Thus we see that p =0, and so m+1+1 = (2¢+1). In particular, z3 is even,
and so {z,}52 _, is given (arranged in even and odd semi-cycles) as follows:

—2(2m + 1)

—(20+1)
M =202m+1)+ (20 +1)

(2m+1)

Cm+1)+(m+1+1)

—2(2m+1)—(m+1+1)
(2m+1)

Thus we see that

Buest = 3= (2m+ 1) = (m-+ 14 1)] = = [2m+ 1) + 20+ 1)] = ~(m+g+1)
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and so

|$—1+next| + |xnext| = (2m+ 1) + (m+q+ 1) = 3m+q+2
m+1 Tm 1
=3m+ (20

<4dm+20+3=22m+1)+ 21 +1) =M.

This is impossible by Lemma 8.11 (iii), since ; = M is odd, and by assump-
tion, z¢ is also odd.

Hence if _; is even and xg is odd, we must have z_; = 0, and so the solution
{zn}52 _; is the three cycle (0,—1,1).

Case 2.  Suppose z_; is odd and zq is even. We claim that g = 0. For
the sake of contradiction, suppose that zg # 0. Then there exist integers
ke {1,2,...} and m,l € {0,1,...} such that z_; = — (2l + 1) and zo =
—2%(2m + 1). Tt follows that {z,}3> , is given (arranged in even and odd
semi-cycles) as follows:

—@2l+1)

—2k(2m + 1)

M = (21 +1) +2F(2m + 1)
—(21+1)

2k=1(2m + 1)

(204 1) — 21 (2m + 1)
—(20+1)

—2k-2(2m + 1)

20+ 1) +2¥2(2m + 1)
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—@2l+1)

2k=3(2m + 1)

(=1)*=122(2m + 1)

(20+1) — (=1)F122(2m + 1)
—(2+1)

(=1)*2(2m + 1)

20+ 1) — (=D)F2(2m + 1)
—(21+1)
(=1)k(2m + 1)

Recall by Statement 2 of Lemma 8.11 that we must have

M <2|-20+1)] +2/(-1)"(2m + 1)].
Note that
M=20+1)+2F2m +1) <220 + 1) +2(2m + 1)
if and only if
A+1+ 2 m 42k <4l +2+4m+2
if and only if
(25 — 4ym < 21 — (2F - 3)

and so we see that

either k =1
or

1
k>1andm<ml<l.
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Suppose k = 1. It follows that {z,}°2 _, is given (arranged in even and odd
semi-cycles) as follows:

— (@2l +1)

—2(2m + 1)

M= (20 +1) +2(2m + 1)
—@21+1)

(2m+1)

The next term is m — [, and so

@I+ +22m+1)<22m+1)+2/m—1|.

Thus we see that 20 +1 < 2|m —I|. If m —1 < 0, then we would have
2l + 1 < 2] — 2m which is impossible. Hence

m—1>0.

So {z,}22_, is given (arranged in even and odd semi-cycles) as follows:

—20+1)

—2(2m + 1)

M=(2+1)+202m+1)
—(@21+1)

(2m+1)
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and the next term is m — [ > 0. Now there exist integers p,q > 0 such that
(m—=1)=2P(2q+1).

Suppose p = 0. Then {z,}°2 _, is given (arranged in even and odd semi-
cycles) as follows:

—@2+1)

—2(2m + 1)

M=20+1)+22m+1)
—(20+1)

(2m+1)

(2¢+1)

Suppose p > 0. Then {z,}32 _, is given (arranged in even and odd semi-
cycles) as follows:

—@2l+1)

—2(2m + 1)

M=20+1)+2(2m+1)
—(20+1)
(2m+1)

2 (2 + 1)

—(@2m+1) — 2°(2q + 1)

Copyright © 2005 CRC Press, LLC



EQUATIONS IN THE SPIRIT OF THE (3z+1) CONJECTURE 339

(2m+1)

—2r1(2¢ +1)

—(2m+1)+2° 1 (2¢+ 1)
2m+1)

—(2m+1) + (=1)P122(2¢ + 1)
(2m+1)

(=1)P712(2¢ + 1)

—2m+1) — (=1)P12(2¢ + 1)
(2m+1)
(-DP(2¢ +1)

Thus whether p = 0 or p > 0, {,}32_; eventually has the two consecutive
odd terms

(2m+1)
(~1)7(2q+ 1)
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The next term is

2m+ 1)+ (=1)P(2¢+1)  2P(2m+1) + (=1)P(m —1)

2 9p+1

Note that

2°@2m+1)+ (-1)P(m —1)
op+1

2|(-1)P(2¢+1)|+2

2P(2m + 1) + (-1)?(m — 1)
_2 2P(2g + 1) + 27 (2m + 1)21 (=1)P(m —1)
_2(m—-1)+2"(2m ipl) + (=1)P(m —1)

_ 22t 4 (—1)1’]72;— [2+ (=1)P]1 + 2P

=2(2¢+1)+

and

[2 4+ 2P + (=1)PJm — [2+ (=1)P]l + 2P
2P

<@+1)+22m+1)=M
if and only if
[2+2PF! 4 (=1)P]m — [2+ (—1)P]I + 2P < 2PF1] 4+ 22 4 3. 2P
which is true. This is impossible.
Thus we see that

1
k22 and m<ml<l

Hence {z,}52_ is given (arranged in even and odd semi-cycles) as follows:

—@2l+1)

—2k(2m + 1)

M= (20+1)+2%2m + 1)
—(20+1)
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2k=1(2m, + 1)
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(=1)*2(2m + 1)

(21 +1) — (=1)F2(2m + 1)
—(20+1)

(=D (2m +1)

Suppose k is odd. Then the next term is m — I which is negative.
Note that

M=20+1)+2*@2m+1) <2(2m+1) +2(I — m)
if and only if
20+ 142k 428 < 4m + 24 21 — 2m
if and only if
(k1 —2ym <1 - 2F

which is impossible.

Suppose k is even. Then the next term is —(m +1+1) which is negative. Note

that
M=+ +2*Cm+1)<22m+1)+2m+1+1)
if and only if
A+1+26 428 <dm +24+2m + 20+ 2

if and only if (2¥*! — 6)m + (2F - 3) <0
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which is also impossible.

Thus it is true that zo = 0, and so {z,}5° _, is the three cycle (—1,0,1). [
Eq.(4%) Consider the AE

—Tn + Tn-1

2 if z,+x,_1 is even

Tnt1 = , n=0,1,... (4%)

Ty — Tp—1 if x, +2x,-1 is odd

where £_1,x9 € Z.

Clearly Z = 0 is the only equilibrium solution of Eq.(4*).

COROLLARY 8.4
Let {z,}2_; be a solution of Eq.(4*), and suppose that gecod(z_1,z9) =
1. Then {z,}52_, is either eventually the two-cycle (1,—1) or the siz-cycle
(_15 07 ]-5 ]-a 05 _1)

8.4.5 Eq.(5)
Eq.(5) Consider the AE
%;ﬁ if z,+zp_1 is even
Tnt1 = n=0,1,... (8.5)
Tp +2p_1 if z, +x,-1 is odd

where £_1,z9 € Z.

Clearly Z = 0 is the only equilibrium solution of Eq.(8.5).

CONJECTURE 8.1

Suppose gcod(x_1,x0) = 1. Then every solution of Eq.(8.5) is either even-
tually the three-cycle (0,1,1), the three-cycle (0,—1,—1), or the ten-cycle
(2,5,7,1,-3,-2,—5,—7,—1,3).

Eq.(5%) Consider the AE

_mn j—

n—1 . .
2 if z,+2x,_1 is even

Tnt1 = , n=0,1,... (5%)

—Zp + Tp_1 if zp+2xH_1 is odd

where £_1,x9 € Z.
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Clearly Z = 0 is the only equilibrium solution of Eq.(5*).

CONJECTURE 8.2
Let {z,}52_, be a solution of Eq.(5*), and suppose that gcod(xz_1,z0) = 1.
Then {z,}52 4 is either eventually the five-cycle (2,—5,7,—1,—3), the five-

cycle (—2,5,-7,1,3), or the siz-cycle (—1,1,0,1,—1,0).

8.4.6 Eq.(6)
Eq.(6) Consider the AE

Tn — Tp—1 . .
——if z,+2x,_1 iseven

Tnt1 = n=0,1,... (8.6)
Ty — Tp—1 if T, +T,—1 is odd

where ©_1,x9 € Z.

Clearly Z = 0 is the only equilibrium solution of Eq.(8.6).

THEOREM 8.5
Let {x,},2 _, be a solution of Eq.(8.6). Suppose that gcod(z_1,z0) = 1.
Then {z,},. _, is eventually the siz-cycle (—1,0,1,1,0,—1).

PROOF  Since geod(z_1,z9) = 1, it follows that {z,},- ;| is not even-
tually constant. By Lemma 8.9, {z,},—_, is a bounded, integer valued se-
quence, and hence is eventually periodic. So without loss of generality, we
assume {z, },- _, is periodic. Hence there exists an integer M > 0 such that
—M < x, < M for all n > —1. Without loss of generality, we may assume
that o < 1 = M. Tt follows by Lemma 8.6 that z_; < 0, g > 0, and that
T1 = 2o — T_1 is odd.

We claim that z_12¢ = 0.
For the sake of contradiction, suppose that x_ 1z # 0. For each n > 0, let
P(n) be the following proposition:

. T-1 .
(i) x_143n = (—1)”2—n and x_j113, is even;

(i) @30 = (~1)" (wo _ 2”2; 1 .x_l);

(111) T143n = (—1)" (a]'() - 1'71).

We shall show by induction that P(n) is true for all n > 0.
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We shall first show that P(0) is true. It suffices to show that z_; is even.
For the sake of contradiction, suppose that z_; is odd. Then z_; is odd, xg

is even, z1 is odd, z3 = &y —xo = —x_1 is odd, and so z3 = J(z2 — 21) =
$(—x_1 — 2o+ 2_1) = —3zo. Hence by Lemma 89,0 < z1 = 29 — 21 <
|z2| + |73 = —7_1 + $x0, and so we see that zp = 0. This contradicts our

hypothesis that z_12¢ # 0. Thus we see that x_; is even, and so P(0) is true.

We next suppose that n > 0 and P(0) is true, and we shall show that
P(n +1) is true. Since x_143, is even, we see that

T143n — T3n

T—143(n+1) = L2430 = 2
= 3 [0 - - v (w0 - T e )|
= %(—1)’”r1 <x1 — o + To — 2n2; 1171)
= (4)”“%.

We shall next show that z_;43(,41) is even. So for the sake of contradiction,
suppose that £_;13(,41) is odd. Then
2" —
an
— n . _ n+t1 T—1 .
T1y3n = (—1)" (2o — 1) is odd, and z_143(n41) = (—1) onT 18 odd.
It follows that

. 1 .
T_ 143, 1S even , x3, = (—1)" (mo — z_1 | is odd,

T_1+43(n+1) — T—2+43(n+1) _ T—1+43(n+1) — L1+3n
L3(n+1) 2 = 2

n Z_1 n 1 n L1
(D)™ T = (1) (w0 —2-1)) = 5(-1)"* (55 + 70— 71

(_1)n+l 2n+1 -1
= <.’L‘0 - -58_1).

N | =

2 2n+1

Thus by Lemma 8.9,

O0<z1=20—2_1

IN

1T 143(n+1)| + [T3(ns1)l

x.q, 1 P | 1
:_W+§ U =—$—1+§-7J0>
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and so we see that g = 0. This contradicts our assumption that x_;xq # 0.
Thus it is true that z_;43(p41) is even. The rest of the proof that P(n + 1)
is true is a simple computation and is left to the reader.

nT-1

So in particular for n > 0, z_143, = (—1)" =, from which we see that

2_1 = 0. This contradicts our assumption that z_;xg # 0.

Thus the claim that z_;1z9 = 0 is true. So as gcod(z_1,z9) = 1, it follows
that {z,}52 _, is the six-cycle (—1,0,1,1,0,—1).

Eq.(6%) Consider the AE

—Tpn — Tp—1

5 if z, +x,-1 is even

Tnt1 = , n=0,1,... (6*)

— Ty — Tp_1 if z,+ 2,1 is odd
where £_1,29 € Z.

Clearly Z = 0 is the only equilibrium solution of Eq.(6*).

COROLLARY 8.5
Let {zp}° be a solution of Eq.(6*), and suppose that gcod(x_1,z9) = 1.

n=—1

Then {zy}oo | is eventually either the three cycle (1,0, —1) or the three cycle
(-1,0,1).

8.4.7 Eq.(7)
Eq.(7) Consider the AE

Tp — Tp—1 . .
— if z, +x,-1 is even

Intl = , n=0,1,... (8.7)
—Tn+ 2Ty if z, +2Hp_1 is odd

where £_1,29 € Z.

Clearly Z = 0 is the only equilibrium solution of Eq.(8.7).

THEOREM 8.6
Let {x,}52_; be a solution of Eq.(8.7). Suppose gcod(z_1,z0) = 1. Then
{zn}22_, is eventually the eight-cycle (0,—1,1,1,0,1,—-1,-1).
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PROOF Since gcod(z_1,z0) = 1, it follows by Lemma 8.1 that {z,}5>_,
is not eventually constant. By Lemma 8.10, we know that {z,}52 _; is a
bounded, integer valued sequence, and hence is eventually periodic. So with-
out loss of generality, we assume that {z,}22 _, is periodic. Hence there exists
a constant M > 0 such that —M < z,, < M for all n > —1. Without loss of
generality, we may assume that zg < 1 = M. It follows by Lemma 8.6 that
1 =—z9+2x_1 is odd, o <0, and z_; > 0,

We claim that z_;29 = 0. For the sake of contradiction, suppose x_jxo 7 0.
We shall first show that x¢ is odd. For the sake of contradiction, suppose

that zo is even. Then there exist £ € {0,1,...} and I € {1,2,...} such that
{z,}52 _, is given (arranged in even and odd semi-cycles) as follows:

r_1 = (2k + 1)

rog = —21

I :2l+(2k+1)
Ty = —4] — (2k+ 1)

It follows that | = 0, which is a contradiction.
Thus z¢ is odd.

So there exist k,1 € {0,1,...} and ¢ € {1,2,...} such that z_; =292k + 1)
and o = —(20 + 1).

We claim that ¢ = 1. For the sake of contradiction, suppose ¢ > 1. Then
there exists p € {0,1,...} such that ¢ € {4p+ 2,4p + 3,4p + 4,4p + 5}.

Suppose ¢ = 4p + 2. Then {z,}S2_; is given (arranged in even and odd
semi-cycles) as follows:

247+2(2k + 1)
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—(20+1)
(20 + 1) + 297+2(2k + 1)
(20 + 1) + 271 (2k + 1)

347

—27(2k + 1)

(20 + 1) + (24742 — 29P)(2k + 1)
—(21+1) — 2%7+2(2k + 1)
—(20+ 1) + (=21P+2 4 21P71) (2 + 1)

24P=2(2k + 1)

—(20 4 1) 4 (—2%7F2 4 29P-2)(2k + 1)
(20 + 1) +297*2(2k + 1)
(20 + 1) + (24742 — 2%-3)(2k + 1)

—24P=4(2) 4 1)

22(2k + 1)

—(21+ 1) + (=2%+2 4 22)(2k + 1)
(20 + 1) + 29P*2(2k + 1)

(20 + 1) + (24742 - 21)(2k + 1)
—20(2k +1).
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The next term is
Tnext = 5[~ (2k+1) = (2 +1) + (2 - 27+%)(2k + 1)]

(—2k —1—21 — 1+ 4k + 2 — 2'P+3 — 24P+2)

N[

= 1(2k — 2'PH3f — 2] — 29P+2)

= (1-2+2) — [ - 2Pt1,
( )k —1

Suppose Tnex is 0dd. Then z1 next = 5[—I+(—2*P2+1)k—24P1+(2k+1)],
and so
(20 4+ 1) +2772(2k + 1) < |Tnext| + 2|T1 1next|
= [I+ (272 — 1)k + 2%7+1]
+[I+ (2412 — 1)k + 297+ — (2k + 1))
= 2] + (24712 — 2) . 2k + (24712 — 1)
which is impossible.

Suppose Tpext is even. Then

Trnext = L+ (2712 — 1)k + 2+ — (2 + 1) = [ + (2742 — 3)k + (271 — 1),
Bopnext = —20 + (3 — 29PF2 24042 4 )k 4 (24 F2 4 1)
= 20 + (4 — 2473 4 (=2%P+2 1 1),

and

T3inext = 5[—31 + (7 — 24P+3 — 24p+2) 4 (—24p+2 4 1 _ 24p+l 4 1))
= _%l + (% — 242 _ gpt1) 4 (1 — 29 F1 _ 2%p)

=3(k—1) + (2 — 2%PF+2 — 20+l 4 (1 — 24P+1 — 2%p),

Suppose T3ynext i even. Then
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Taqnext = S(1 — k) + (24772 4 297+ — Q) + (2971 4 2% — 1) — 20 + (4 — 273k
+(=217%2 4 1)

= L4+ k) + (—24F3 4 20042 4 9tet] | 1) 4 (2942 4 %etl 4 ote)
Tstnext = 3(I+ k) + (29PF3 — 2942 _ 24p+1 _ 1) 4 (29742 — 24P H1 _ 21p)
+3(k = 1) + (2 — 207+2 — 2P+ 4 (1 — 2% HL _ 2p)
= —l4 (=272 4+ 3)k 4 (1 — 2%+1),

and

T6+next = %[—l + (—24p+2 + 3)k; + (1 _ 24p+1)
+%(l +k)+ (24p+3 — 94p+2 _ odp+1 _ 1)k + (24p+2 _ otpHl _ 24p)]

= 2[3(k = 1) + (=2P+! 4 2)k + (1 — 27P)].

Now |-751| < |$5+next| + 2|$6+next| = —Z54ynext T+ 2|-'L'6+next .

Suppose Tgrnext < 0. Then

(20 + 1) + 27722k + 1) <1+ (29772 = 3)k + (27T - 1)
+1(1— k) + (2% - 2)k + (2% - 1)
= 3]+ (2%+2 201 _ I)p 4 (2% 4 20 9.
This is impossible.

Suppose Tgqpere > 0. Then p = 0, and so the inequality

1
(2141)+2%P+2(2k4+1) < l+(24”+2—3)k+(24p+1—1)+5(k—l)+(2—24p+1)k+(1—24”)
reduces to the inequality

1
(21+1) +4@2k+ 1) <L+ k+1+4 (k=)

which is also impossible.

Copyright © 2005 CRC Press, LLC



350 PERIODICITIES IN DIFFERENCE EQUATIONS

Suppose T3ypext is 0dd. Then

Tagnext = S[3(k — 1) + (2 — 24P+2 — 24P+ 4 (1 — 24P +1 _ 2%p)
+21 4 (2713 — 4)k 4 (24212 — 1)]

= L[L(k 4 1) + (29743 — 24042 _ 94p+1 _ 1)} 4 (24042 _ 24+ _ 94p))
and so (since T34next < 0),
(20 + 1) + 2%772(2k + 1) < |Z3next| + 2|Tatnext| = —T34next + 2T4-next
=31 — k) + (2'7F2 4+ 29PH1 — Q) 4 (291 4 2% — 1)
+ $(k+1) + (2113 —24+2 _ 20+l _ 1)k
+ (24p+2 — 94p+1 _ 241))

=20+ (273 — )k + (29712 - 1)

which is impossible. Thus q # 4p + 2.

Suppose ¢ = 4p + 3. Then {z,}52 _, is given (arranged in even and odd
semi-cycles) as follows:

24P+3(2k + 1)

—(20+1)
(20 + 1) +29P13(2k + 1)
(20 + 1) +29PF2(2k + 1)

24P+ (2k 4 1)

(21 + 1) + (2%2+3 — 24PH1) (2% 4 1)
—(20 + 1) — 2*7+3(2k + 1)
—(20+ 1) + (—2%F3 1 297)(2k + 1)

Copyright © 2005 CRC Press, LLC



EQUATIONS IN THE SPIRIT OF THE (3z+1) CONJECTURE

24P=1(2k + 1)

351

—(20 + 1) + (=243 y 22~ 1)(2k + 1)
(20 + 1) +29PF3(2k + 1)
(21 + 1) + (24PF3 — 29P=2)(2k + 1)

—2P=3(2k 4 1)

27(2k + 1)

—(20 4+ 1) 4 (=273 + 27)(2k + 1)
(20 + 1) +29PF3(2k + 1)

(20 + 1) + (24743 — 25)(2k + 1)

—25(2k + 1)

(20 + 1) + (2*7+3 - 25)(2k + 1)
—(20+1) — 2*7+3(2k + 1)
—(20 4+ 1) 4 (=2*7F3 + 24)(2k + 1)

23(2k + 1)

—(20 4+ 1) 4 (=273 4+ 23)(2k + 1)
(20 + 1) + 2%7+3

(20 + 1) + (24743 — 22)(2k + 1)
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—21(2k + 1)

(204 1) + (24743 — 21)(2k + 1)
—(20+1) — 2%73(2k + 1)

—(20+1) + (=23 +1)(2k + 1)

—(2k+1)
—(20+1) + (—2%+3 4 21)(2k + 1)

The next term is
Tnext = 5[—(20 + 1) — 2P+3(2k + 1) + 3(2k + 1)]
= 1[-21 — 1 — 2%P+if — 29743 4 6 + 3]
= —1— (2773 —_3)k — (2772 —1).

Suppose Tpext is 0dd. Then

[(=1 — (2%PF3 = 3)k — (21P+2 — 1)) + (21 + 1) + (2%PF3 — 2)(2k + 1))]

Z14next = %
= L[(—1 = 2973k 4 3k — 2742 1 1) 4 (20 + 1 + 274k — 4k + 29743 _ 2)]
= L[l + (29PF3 — 1)k 4 24PF2]

and so

(2l =+ 1) + 24p+3(2k + 1) S |-'L'next| + 2|x1+next|
= (I + (213 = 3)k + (29712 - 1))
+(1+ (29713 — 1)k + 2'7+2)

=20 + (291 — g)k + (2973 - 1)

which is impossible.
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Suppose Tpexs i even.

T1qnext = ([ + (2712 —3)k + (24712 — 1)) + (= (20 + 1) + (=273 +2)(2k + 1))
=1+ 23k — 3k +24P+2 — 1 — 2] — 1 — 24P+ 4 4 — 2443 1 2
= —]— (23 1)k — 2%P+2,

and

Tonext = (I + 2PF3k — k + 24PF2) 4 (] — 2943 4 3k — 21P+2 1 1)
=2k +1.

Hence

(20 + 1) + 27732k + 1) < |Z14next| + 2|Z24next|
= (1 + (2773 — 1)k + 2%7+2) 4 (4k + 2)
=1+ (2973 + 3)k + (29712 + 2)

which is impossible. Thus ¢q # 4p + 3.

Suppose ¢ = 4p + 4. Then {z,}52_; is given (arranged in even and odd
semi-cycles) as follows:

220+4(2k + 1)

—(20+1)
(20 + 1) + 27T (2k + 1)

(20 + 1) + 29732k + 1)

—24P+2(2k 4 1)

(20 + 1) + (291 — 292 (2K + 1)
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—(20 + 1) — 2%7+4(2k + 1)

—(20+ 1) + (2% 4 29P+1) (2 + 1)

247(2k + 1)

—(20 + 1) + (=2%+1 4+ 2%P)(2k + 1)
(20 + 1) + 297+ (2k + 1)
(21 + 1) + (2%pF1 — 27— 1)(2k 4+ 1)

—24P2(2] 4 1)

(21 + 1) + (24pF1 — 297=2)(2k 4 1)
—(20 + 1) — 2%7+4(2k + 1)

—(20+ 1) + (—2%+* 4 29P73)(2k + 1)

24P=4(2k + 1)

28(2k + 1)

—(20 4 1) 4 (=271 + 28)(2k + 1)
(20 + 1) +29P+4(2k + 1)
(204 1) + (24741 - 27)(2k + 1)

—26(2k + 1)
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(20 + 1) + (2%7+1 — 25)(2k + 1)
—(21+ 1) — 2%r+4 (2% + 1)

— (204 1) 4 (=274 4 25)(2k + 1)

24(2k + 1)

—(20+ 1) + (—2%+* 1 24)(2k + 1)
(20 + 1) + 297+4(2k + 1)

(20 + 1) + (2*7+1 — 23)(2k + 1)

—22(2k + 1)

(20 + 1) + (24741 - 22)(2k + 1)
—(20 + 1) — 2*7+4(2k + 1)
— (204 1) 4 (=274 1+ 21)(2k + 1)

(2k +1).

The next term is
Tnext = S[(2k + 1) + (20 + 1) + (274 — 2)(2k + 1))]
=12k + 1+ 20 +1 + 29745k — 4k + 2%+ — 2)

=1+ (21 — 1)k + 21PF3,

Suppose Znext is 0dd. Then @1 ynext = (I + (24714 — 1)k 4 24713 — (2k + 1)),
and so

(20 + 1) + 2444 (2K + 1) < (I + (27+4 — 1)k + 247+3)
F(+ (24 1)k + 2443 — (2% + 1))

= 2 + (2P+5 — )k + (29P+4 1)
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which is impossible.
Suppose Tpexs is even. Then
Tiqnext = [—1+ (=271 + 1)k — 2P+3] 4 (2k + 1)
== — (2% = 3)k — (273 - 1),
Topnext = [+ (271 = 3)k + (2973 — 1)) + [I + (2977 — 1)k + 297F3]
=20 + (2175 — 4)k 4 (29H1 - 1),
and
T3tnexs = S[(20 + (24715 — 4k + (29744 — 1)) + (1 + 2%+ — 3)k + (2743 — 1))]

= 1[31 + (21P+5 4 204 _ 7k 4 (294 4 21P+3 _ 9)].

Suppose T3ynext is odd. Then
1.1

Z[S[31+ (275 4 24P 1) | 4 (24P 4 24P _ 9))]
—(20 + (2775 — )k + (2% — 1)),

T44next =

1 1
— 2] — (94p+3 _ Z\p — 9ir+2
2l ( 2)k

Il

1
2
and so

(20 + 1) + 297+ (2% + 1) < 31+ (2024 4 29F3 — Ty 4 (2943 4 20042 _ )
+314 (29743 — L)k + 24p+2

=20 + (2%PT5 — 4)k + (2'P+1 - 1),

which is impossible.

Suppose T3ynext i even.

Tatnext = — ol — (2974 4 29743 _ Ty (24P43 4 P42 _ 1)
+21 + (2475 — 4)k + (20711 - 1)
= %l + (2443 — %)k + 24pH2

T54next — _%l - (24p+3 - l)k — 24pt2
+%l + (24p+4 + 24p+3 _ %)k + (24p+3 + 24p+2 _ 1)

=1+ (21 - 3)k + (29713 — 1),
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1 1 1
Lo-+next = 5 [(l + (2% = 3)k + (2712 — 1)) — (El + (29713 — E)k + 24p+2)]
= 1 l 4p+3 _ § 4p+2
=3 [21+(2 2)k+(2 1)
and so

20+ 1) + 242k +1) < 1+ (2T = 3)k + (2973 - 1)
+11+ (2943 — Bk + (2442 — 1),

which is impossible. Hence q # 4p + 4.

Suppose ¢ = 4p + 5. Then {z,}52 _, is given (arranged in even and odd
semi-cycles) as follows:

24p+5

—(20+1)
(20 + 1) + 297152k + 1)

(20 + 1) + 2974 (2k + 1)

—24P+3(2k + 1)

(21 + 1) + (24PF5 — 2P+3)(2k + 1)
—(21+1) — 2*7+5(2k + 1)

—(20 4 1) 4 (—2%PF5 + 21P+2)(2k + 1)

24741 (2% + 1)

—(20 + 1) + (—=2%+5 £ 29P+1)(2k + 1)
(204 1) + 29752k + 1)
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(21 + 1) + (24P+5 — 29)(2k + 1)

—247-1(2k 4 1)

21(2k + 1)

—(20 4+ 1) + (=2*7%5 + 21)(2k + 1)
(20 + 1) + 29P+5(2k + 1)

(20 + 1) + (275 — 20)(2k + 1)

(2k+1)
(20 + 1) + (24745 — 21)(2k + 1).

The next term is
Tnext = S[(20 + 1) + (247%5 — 21)(2k + 1) — (2k + 1)]
=22+ 1+ 2P0k — 4k + 29715 — 2 — 2k — 1)
= 1[21 + (2746 — 6)k + (21P+° — 2)]
=1+ (2715 — 3k + (27+* - 1).

Suppose Tpext is 0dd.

[+ (2'7%° = 3)k + 27+ — 1)) — (21 +1) + (2'7° — 2)(2k + 1)))]

N[—=

T14next =
= %(l 4+ 245 3k 4 2% t4 1 9] — 1 — 24PFOL 4 4f — 24PH5 4 2)
= L(l— 245k 4 k- 2t

= _%[l + (29P+5 — 1)k 4 24P+,
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and so

(214+1)4+2PF5(2k+1) < (142775 —3)k+ (2P —1)) 4 (14 (2975 —1) k4-21PH1)
which is impossible.

Suppose Tnext iS even. Then

Tiqnext = —1 + (=275 £ 3k + (=274 1 1) + (20 + 1) + (2*P15 — 2)(2k + 1)
=1 - 2t5 4 3k — 24P+t 1 1 421 + 1 4 24PH6k — 4k 4 29P+5 2

=1+ (2915 — 1) 4 24P,

Totnext = —[l + (29PF5 — 1)k 4 24PH4] 4 [1 + (24715 — 3)k + (24P — 1))
=== 2P0k 4 | — 24P 4 [ 4 29O — 3k 4 29714 — 1

= —(2k+1)

and so

(20 +1) + 227752k + 1) < (14 (2775 — 1)k + 2711 + 2(2k 4+ 1)

which is impossible.

Thus ¢ = 1. Hence {z,}52 _; is given (arranged in even and odd semi-cycles)
as follows:

2(2k +1)

— (@2l +1)
(20 + 1) +2(2k + 1)

20+1) + 2k + 1)
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(2k+1)

(21 + 1).

The next term is ZTpext = | — k.
Suppose [ — k < 0. Then

@I+1)+202k+1) < 2+ 1) +2(k—1) = (2k+ 1)

which is impossible.

Hencel — k > 0.
So
(214+1)+2(2k+1) < (21 +1)+2(I — k) from which it follows that 3k+1 <.

Suppose Tpext is even. Then
Tiqnext = —(I—k)+ (2l +1) =1+ Kk +1,
T24next = _(l +k+ 1) + (l — k) = —(2k + ]_)7

Tanext = 2~k +1) — (I +k+1)] = -3k +1+2),

andso (20 +1)+2(2k+1) < (2k+ 1)+ Bk +1+2).
Thus

20+1+4k+2<5k+1+3

from which it follows that [ < k. This is impossible.

Hence Tpex is 0dd, and $0 Tyqnest = 5[ — k) — (2L +1)] = =3[ + k + 1].
Thus

@I+ +22k+1)<(-k)+({+Ek+1)=(2+1).

This is impossible.

Thus our claim z_;z9 = 0is true. Soasz_1 > 0,19 < 0,1 = gcod(z_1,z0) =
gcod(zo, 1), and z1 = M is odd, it follows that {z,}32 _, is the eight-cycle
(0,-1,1,1,0,1,-1,—1). I

Eq.(7*) Consider the AE
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—Tp — Tp—1 . .
n 5 " if z, +T,_1 iS even

Tnt1 = , n=0,1,... ()
Tp+ Tp—1 if xp +Tp_1 is odd

where z_1,x9 € Z. Clearly Z = 0 is the only equilibrium solution of Eq.(7*).

COROLLARY 8.6
Let {x,}52_, be a solution of Eq.(7*), and suppose that gcod(z_1,x0) = 1.
Then {x,}5> _, is eventually the eight-cycle (0,—1,-1,1,0,1,1,—1).

8.4.8 Eq.(8)
Eq.(8) Consider the AE

Tp — Tp—1 . .
i oz, + T, 1S even

Intl = , n=0,1,... (8.8)
— Ty — Tp_1 if z, +x,-1 is odd

where £_1,%9 € Z.

Clearly Z = 0 is the only equilibrium solution of Eq.(8.8).

OPEN PROBLEM 8.1
Determine the character of the solutions of Eq.(8.8).

Eq.(8%) Consider the AE

—Tp — Tp—1 . .
— if z, +x,-1 is even

Int1 = , n=0,1,... (8*)
Ty — Tp—1 if x, +2x,—1 is odd

where z_1,x9 € Z.

Clearly Z = 0 is the only equilibrium solution of Eq.(8*).

CONJECTURE 8.3
Let {x,}52_, be a solution of Eq.(8*), and suppose that gcod(z_1,z0) = 1.
Then {x,}S 4 is eventually either the four-cycle (1,0, —1,—1), the four-cycle

(-1,0,1,1), or the siz-cycle (1,-2,-3,-1,2,3).
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8.5 Open Problems and Conjectures

In addition to the conjectures stated in Sections 8.4.5 and 8.4.8, we pose
the following open problems and conjectures:

OPEN PROBLEM 8.2
Consider Eq.(8.2). Determine the set of all initial conditions (x—_1, o) € ZXZ
with gcod(x—_1,x0) = 1 such that each of the following statements is true:

(i) {xn}°2_ is eventually the constant 1;

(i1) {xn}>2_ is eventually the constant minus 1;
(i1i) {xn}°2_, is eventually the siz-cycle (—2,1,3,2,—1,-3).
OPEN PROBLEM 8.3

Consider Eq.(2*). Determine the set of all initial conditions (x_1,x0) € ZXZ
with gcod(x_1,20) = 1 such that each of the following statements is true:

(i) {zn}S>_ is eventually the two-cycle (1,—1);

(i1) {xn}>2_ is eventually the three-cycle (2,1, —3);
(iii) {xn}S2_, is eventually the three-cycle (—2,—1,3).
OPEN PROBLEM 8.4

Consider Eq.(8.3). Determine the set of all initial conditions (x—_1,xo) € ZXZ
with gcod(x_1,z0) = 1 such that each of the following statements is true:

(i) {zn}S>_ is eventually the constant I;

(i1) {xn}22 _ is eventually the constant minus 1;
(iii) {xn}2_, is eventually the four-cycle (2,-1,3,1).

() {z,}5_4 is eventually the four-cycle (—2,1,-3,—1).
(v) {x,}2 _, is eventually the siz-cycle (1,0,1,—1,0,—1).
OPEN PROBLEM 8.5

Consider Eq.(3*). Determine the set of all initial conditions (x_1,x0) € ZXZ
with gcod(x_1,x9) = 1 such that each of the following statements is true:

(i) {zn}S>_ is eventually the two-cycle (1,—1);
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(it) {zn}>2_, is eventually the three-cycle (1,0,1);

(i1i) {xn}22_, is eventually the three-cycle (—1,0,—1).

() {x,}5L_, is eventually the three-cycle (2,1,3,-1).
(=

(v) {zn}S> 4 is eventually the three-cycle (—2,-1,-3,1).

OPEN PROBLEM 8.6
Consider Eq.(8.4). Determine the set of all initial conditions (x—_1, o) € ZXZ
with gcod(x—_1,x0) = 1 such that each of the following statements is true:

(i) {xn}32_; is eventually the constant 1;

(i1) {xn}>L_ is eventually the constant minus 1;
(11i) {xn}32_, is eventually the three-cycle (—1,0,1).
() {zn}SL_, is eventually the three-cycle (1,0,—1).
OPEN PROBLEM 8.7

Consider Eq.(4*). Determine the set of all initial conditions (x_1,x0) € ZXZ
with gcod(x_1,z0) = 1 such that each of the following statements is true:

(i) {xn}32_ is eventually the two-cycle (1,—1);
(it) {zn}22_, is eventually the siz-cycle (—1,0,1,1,0,—1);
OPEN PROBLEM 8.8
Consider Eq.(8.6). Determine the set of all initial conditions (x_1,x0) €

Z x Z with gcod(z_1,x9) = 1 such that {zx,}52_, is eventually the siz-cycle
(_17 07 17 17 07 _1)

OPEN PROBLEM 8.9
Consider Eq.(6*). Determine the set of all initial conditions (x_1,x0) € ZXZ
with gcod(x_1,z0) = 1 such that each of the following statements is true:

(i) {xn}32_, is eventually the three-cycle (1,0, —1);
(it) {zn}L_4 is eventually the three-cycle (—1,0,1);
OPEN PROBLEM 8.10
Consider Eq.(8.7). Determine the set of all initial conditions (x_1,x0) €

Z x Z with gcod(z_1,x0) = 1 such that {x,}5>_, is eventually the eight-cycle
(0,-1,0,1,1,0,1,—1,—1).
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OPEN PROBLEM 8.11

Consider Eq.(7*). Determine the set of all initial conditions (x—_1,20) € Z X
Z with gcod(x_1,x0) = 1 such that {z,}5>_, is eventually the eight-cycle

(0,-1,-1,1,0,1,1,—1).

Motivated by the results in Section 3.5, we present here some conjectures
on the following eight difference equations where the parameter « is an integer

greater than 2. See [46].

Tn + Tn—1 .
_ if
Tn — Tn—1
Tp —Tp-1

if

Tn — Tn—1

In + Tn—1 .
_ if
—Tn +Tp_1
Tp — Tpn-1 .
on en—2 if

—ZTn + Tn-1

Tn + Tn-1 .
e if

Tp + Tn-1 .

InTon-l g
Tnt1 = { @

Tp+Tpa

—Tp —Tp-1
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o| Ty +Tn1

otherwise

oty —Tp1

otherwise

alzy +xn_1

otherwise

alzy, + 21

otherwise

o| Ty —Tp_1

otherwise

a|zy + 2n_1

otherwise

n=20,1,...
n=20,1,...
n=20,1,...
n=20,1,...
n=20,1,...

n=0,1,...

(8.10)

(8.11)

(8.12)

(8.13)

(8.14)
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Tp — Tp—1 f
— if alzn,—2p-1
Tnir = om0, (819
—Tp — Tp_1 otherwise
In —Tn-1 .
_ if alz,—zp-1
_ «a
Tnp1 = , n=0,1,... (816)
Ty + Tpno1 otherwise

The following two theorems were established in [44].

THEOREM 8.7
The following statements are true:

1. Every non-trivial solution of Eq.(8.9) is eventually periodic with prime
period 6.

2. Every non-trivial solution of Eq.(8.10) is eventually periodic with prime
period 6.

Let Fy denote the Nth Fibonacci number. That is, F; = 1, F; = 1, and
Foiy1=F,+F,_, forn>0.

THEOREM 8.8

Let o > 4. Let {x,}22_, be a solution of Eq.(8.12), and suppose there exist
integers No > 0 and N > —1 such that xn,—1 = Fny1 and zn, = Fn.
Finally, suppose that one of the following statements is true:

1. «a does not divide Fy 2.

F
2, 1‘52 = Fy_1 for all0< M < N.

Then {x,}52 4 is eventually the siz-cycle (1,0,1,—1,0,—1).
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CONJECTURE 8.4
The following statements are true:

(i) If a = 3, every non-trivial solution of Eq.(8.11) is either eventually a
three-cycle or is unbounded.

(i) If a = 5,every non-trivial solution of Eq.(8.11) is either eventually a
siz-cycle or is unbounded.

(i#5) For o = 4 and for all other values of a > 5, every non-trivial solution
of Eq.(8.11) is unbounded.

CONJECTURE 8.5
The following statements are true:

(i) Suppose o = 3. Then every non-trivial solution of Eq.(8.12) is eventually
periodic with period 6.

(i) Suppose o > 4. Let {x,}52_; be a non-trivial solutions of Eq.(8.12)
which is not of the type mentioned in Theorem 8.8. Then {x,}5>_, is
unbounded.

CONJECTURE 8.6
The following statements are true:

(i) Suppose a = 3. Then every non-trivial solution of Eq.(8.13) is eventually
periodic with period 6.

(1) Suppose oo = 4. Then every non-trivial solution of Eq.(8.18) is eventually
periodic with period 20.

(i5) Suppose o > 5. Then every non-trivial solution of Fq.(8.13) is un-
bounded.

CONJECTURE 8.7
Every non-trivial solution of Eq.(8.14) is eventually periodic with prime period
3.

CONJECTURE 8.8
Every non-trivial solution of Eq.(8.15) is eventually periodic with prime period
3.
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CONJECTURE 8.9
The following statements are true:

(i) Suppose o = 3. Then every non-trivial solution of Eq.(8.16) is either
eventually a 12-cycle or is unbounded.

(i) Suppose a = 4. Then every non-trivial solution of Eq.(8.16) is either
eventually a 24-cycle or is unbounded.

(i#3) Suppose a > 7. Then every non-trivial solution of Eq.(8.16) is either
eventually an 18-cycle or is unbounded.

(i) For all other values of a > 4 with a # 7, every non-trivial solution of
Eq.(8.16) is unbounded.
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