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Introduction

Since a real univariate polynomial does not always have real roots, a very
natural algorithmic problem, is to design a method to count the number of real
roots of a given polynomial (and thus decide whether it has any). The “real
root counting problem” plays a key role in nearly all the “algorithms in real
algebraic geometry” studied in this book.

Much of mathematics is algorithmic, since the proofs of many theorems
provide a finite procedure to answer some question or to calculate something.
A classic example of this is the proof that any pair of real univariate poly-
nomials (P, @) have a greatest common divisor by giving a finite procedure
for constructing the greatest common divisor of (P, @), namely the euclidean
remainder sequence. However, different procedures to solve a given problem
differ in how much calculation is required by each to solve that problem.
To understand what is meant by “how much calculation is required”, one
needs a fuller understanding of what an algorithm is and what is meant by
its “complexity”. This will be discussed at the beginning of the second part of
the book, in Chapter 8.

The first part of the book (Chapters 1 through 7) consists primarily of
the mathematical background needed for the second part. Much of this back-
ground is already known and has appeared in various texts. Since these results
come from many areas of mathematics such as geometry, algebra, topology
and logic we thought it convenient to provide a self-contained, coherent expo-
sition of these topics.

In Chapter 1 and Chapter 2, we study algebraically closed fields (such as
the field of complex numbers C) and real closed fields (such as the field of real
numbers R). The concept of a real closed field was first introduced by Artin
and Schreier in the 1920’s and was used for their solution to Hilbert’s 17th
problem [6, 7]. The consideration of abstract real closed fields rather than the
field of real numbers in the study of algorithms in real algebraic geometry is
not only intellectually challenging, it also plays an important role in several
complexity results given in the second part of the book.



2 Introduction

Chapters 1 and 2 describe an interplay between geometry and logic for
algebraically closed fields and real closed fields. In Chapter 1, the basic geo-
metric objects are constructible sets. These are the subsets of C™ which are
defined by a finite number of polynomial equations (P = 0) and inequations
(P +#0). We prove that the projection of a constructible set is constructible.
The proof is very elementary and uses nothing but a parametric version of
the euclidean remainder sequence. In Chapter 2, the basic geometric objects
are the semi-algebraic sets which constitute our main objects of interest in
this book. These are the subsets of R™ that are defined by a finite number
of polynomial equations (P = 0) and inequalities (P > 0). We prove that
the projection of a semi-algebraic set is semi-algebraic. The proof, though
more complicated than that for the algebraically closed case, is still quite
elementary. It is based on a parametric version of real root counting tech-
niques developed in the nineteenth century by Sturm, which uses a clever
modification of euclidean remainder sequence. The geometric statement “the
projection of a semi-algebraic set is semi-algebraic” yields, after introducing
the necessary terminology, the theorem of Tarski that “the theory of real
closed fields admits quantifier elimination.” A consequence of this last result is
the decidability of elementary algebra and geometry, which was Tarski’s initial
motivation. In particular whether there exist real solutions to a finite set of
polynomial equations and inequalities is decidable. This decidability result
is quite striking, given the undecidability result proved by Matijacevi¢ [113]
for a similar question, Hilbert’s 10-th problem: there is no algorithm deciding
whether or not a general system of Diophantine equations has an integer
solution.

In Chapter 3 we develop some elementary properties of semi-algebraic sets.
Since we work over various real closed fields, and not only over the reals, it is
necessary to reexamine several notions whose classical definitions break down
in non-archimedean real closed fields. Examples of these are connectedness
and compactness. Our proofs use non-archimedean real closed field exten-
sions, which contain infinitesimal elements and can be described geometrically
as germs of semi-algebraic functions, and algebraically as algebraic Puiseux
series. The real closed field of algebraic Puiseux series plays a key role in the
complexity results of Chapters 13 to 16.

Chapter 4 describes several algebraic results, relating in various ways
properties of univariate and multivariate polynomials to linear algebra, deter-
minants and quadratic forms. A general theme is to express some properties of
univariate polynomials by the vanishing of specific polynomial expressions in
their coefficients. The discriminant of a univariate polynomial P, for example,
is a polynomial in the coefficients of P which vanishes when P has a mul-
tiple root. The discriminant is intimately related to real root counting, since,
for polynomials of a fixed degree, all of whose roots are distinct, the sign
of the discriminant determines the number of real roots modulo 4. The dis-
criminant is in fact the determinant of a symmetric matrix whose signature
gives an alternative method to Sturm’s for real root counting due to Hermite.
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Similar polynomial expressions in the coefficients of two polynomials are
the classical resultant and its generalization to subresultant coefficients. The
vanishing of these subresultant coefficients expresses the fact that the greatest
common divisor of two polynomials has at least a given degree. The resul-
tant makes possible a constructive proof of a famous theorem of Hilbert,
the Nullstellensatz, which provides a link between algebra and geometry in
the algebraically closed case. Namely, the geometric statement ‘an algebraic
variety (the common zeros of a finite family of polynomials) is empty’ is
equivalent to the algebraic statement ‘1 belongs to the ideal generated by these
polynomials’. An algebraic characterization of those systems of polynomial
equations with a finite number of solutions in an algebraically closed field
follows from Hilbert’s Nullstellensatz: a system of polynomial equations has
a finite number of solutions in an algebraically closed field if and only if the
corresponding quotient ring is a finite dimensional vector space. As seen in
Chapter 1, the projection of an algebraic set in affine space is constructible.
Considering projective space allows an even more satisfactory result: the pro-
jection of an algebraic set in projective space is algebraic. This result appears
here as a consequence of a quantitative version of Hilbert’s Nullstellensatz,
following the analysis of its constructive proof. A weak version of Bezout’s
theorem, bounding the number of simple solutions of polynomials systems is
a consequence of this projection theorem.

Semi-algebraic sets are defined by a finite number of polynomial inequali-
ties. On the real line, semi-algebraic sets consist of a finite number of points
and intervals. It is thus natural to wonder what kind of geometric finite-
ness properties are enjoyed by semi-algebraic sets in higher dimensions. In
Chapter 5 we study various decompositions of a semi-algebraic set into a finite
number of simple pieces. The most basic decomposition is called a cylindrical
decomposition: a semi-algebraic set is decomposed into a finite number of
pieces, each homeomorphic to an open cube. A finer decomposition provides a
stratification, i.e. a decomposition into a finite number of pieces, called strata,
which are smooth manifolds, such that the closure of a stratum is a union
of strata of lower dimension. We also describe how to triangulate a closed
and bounded semi-algebraic set. Various other finiteness results about semi-
algebraic sets follow from these decompositions. Among these are:

— a semi-algebraic set has a finite number of connected components each of
which is semi-algebraic,

— algebraic sets described by polynomials of fixed degree have a finite
number of topological types.

A natural question raised by these results is to find explicit bounds on these
quantities now known to be finite.
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Chapter 6 is devoted to a self contained development of the basics of
elementary algebraic topology. In particular, we define simplicial homology
theory and, using the triangulation theorem, show how to associate to semi-
algebraic sets certain discrete objects (the simplicial homology vector spaces)
which are invariant under semi-algebraic homeomorphisms. The dimensions of
these vector spaces, the Betti numbers, are an important measure of the topo-
logical complexity of semi-algebraic sets, the first of them being the number
of connected components of the set. We also define the Euler-Poincaré char-
acteristic, which is a significant topological invariant of algebraic and semi-
algebraic sets.

Chapter 7 presents basic results of Morse theory and proves the classical
Oleinik-Petrovsky-Thom-Milnor bounds on the sum of the Betti numbers of
an algebraic set of a given degree. The basic technique for these results is
the critical point method, which plays a key role in the complexity results of
the last chapters of the book. According to basic results of Morse theory, the
critical points of a well chosen projection on a line of a smooth hypersurface
are precisely the places where a change in topology occurs in the part of
the hypersurface inside a half space defined by a hyperplane orthogonal to
the line. Counting these critical points using Bezout’s theorem yields the
Oleinik-Petrovsky-Thom-Milnor bound on the sum of the Betti numbers of
an algebraic hypersurface, which is polynomial in the degree and exponential
in the number of variables. More recent results bounding the individual Betti
numbers of sign conditions defined by a family of polynomials on an algebraic
set are described. These results involve a combinatorial part, depending on
the number of polynomials considered, which is polynomial in the number
of polynomials and exponential in the dimension of the algebraic set, and
an algebraic part, given by the Oleinik-Petrovsky-Thom-Milnor bound. The
combinatorial part of these bounds agrees with the number of connected com-
ponents defined by a family of hyperplanes. These quantitative results on
the number of connected components and Betti numbers of semi-algebraic
sets provide an indication about the complexity results to be hoped for when
studying various algorithmic problems related to semi-algebraic sets.

The second part of the book discusses various algorithmic problems in
detail. These are mainly real root counting, deciding the existence of solutions
for systems of equations and inequalities, computing the projection of a semi-
algebraic set, deciding a sentence of the theory of real closed fields, eliminating
quantifiers, and computing topological properties of algebraic and semi-alge-
braic sets.

In Chapter 8 we discuss a few notions of complexity needed to analyze
our algorithms and discuss basic algorithms for linear algebra and remainder
sequences. We perform a study of a useful tool closely related to remainder
sequence, the subresultant sequence. This subresultant sequence plays an
important role in modern methods for real root counting in Chapter 9, and
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also provides a link between the classical methods of Sturm and Hermite
seen earlier. Various methods for performing real root counting, and com-
puting the signature of related quadratic forms, as well as an application to
counting complex roots in a half plane, useful in control theory, are described.

Chapter 10 is devoted to real roots. In the field of the reals, which
is archimedean, root isolation techniques are possible. They are based on
Descartes’s law of signs, presented in Chapter 2 and properties of Bernstein
polynomials, which provide useful constructions in CAD (Computer Aided
Design). For a general real closed field, isolation techniques are no longer
possible. We prove that a root of a polynomial can be uniquely described
by sign conditions on the derivatives of this polynomial, and we describe
a different method for performing sign determination and characterizing real
roots, without approximating the roots.

In Chapter 11, we describe an algorithm for computing the cylindrical
decomposition which had been already studied in Chapter 5. The basic
idea of this algorithm is to successively eliminate variables, using subresul-
tants. Cylindrical decomposition has numerous applications among which
are: deciding the truth of a sentence, eliminating quantifiers, computing a
stratification, and computing topological information of various kinds, an
example of which is computing the topology of an algebraic curve. The huge
degree bounds (doubly exponential in the number of variables) output by
the cylindrical decomposition method give estimates on the number of con-
nected components of semi-algebraic sets which are much worse than those
we obtained using the critical point method in Chapter 7.

The main idea developed in Chapters 12 to 16 is that, using the critical
point method in an algorithmic way yields much better complexity bounds
than those obtained by cylindrical decomposition for deciding the existential
theory of the reals, eliminating quantifiers, deciding connectivity and com-
puting connected components.

Chapter 12 is devoted to polynomial system solving. We give a few results
about Grobner bases, and explain the technique of rational univariate repre-
sentation. Since our techniques in the following chapters involve infinitesimal
deformations, we also indicate how to compute the limit of the bounded solu-
tions of a polynomial system when the deformation parameters tend to zero.
As a consequence, using the ideas of the critical point method described in
Chapter 7, we are able to find a point in every connected components of
an algebraic set. Since we deal with arbitrary algebraic sets which are not
necessarily smooth, we introduce the notion of a pseudo-critical point in order
to adapt the critical point method to this new situation. We compute a point
in every semi-algebraically connected component of a bounded algebraic set
with complexity polynomial in the degree and exponential in the number of
variables. Using a similar technique, we compute the Euler-Poincaré char-
acteristic of an algebraic set, with complexity polynomial in the degree and
exponential in the number of variables.
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In Chapter 13 we present an algorithm for the existential theory of the reals
whose complexity is singly exponential in the number of variables. Using the
pseudo-critical points introduced in Chapter 12 and perturbation methods to
obtain polynomials in general position, we can compute the set of realizable
sign conditions and compute representative points in each of the realizable
sign conditions. Applications to the size of a ball meeting every connected
component and various real and complex decision problems are provided.
Finally we explain how to compute points in realizable sign conditions on an
algebraic set taking advantage of the (possibly low) dimension of the algebraic
set. We also compute the Euler-Poincaré characteristic of sign conditions
defined by a set of polynomials. The complexity results obtained are quite
satisfactory in view of the quantitative bounds proved in Chapter 7.

In Chapter 14 the results on the complexity of the general decision problem
and quantifier elimination obtained in Chapter 11 using cylindrical decom-
position are improved. The main idea is that the complexity of quantifier
elimination should not be doubly exponential in the number of variables but
rather in the number of blocks of variables appearing in the formula where the
blocks of variables are delimited by alternations in the quantifiers 3 and V. The
key notion is the set of realizable sign conditions of a family of polynomials
for a given block structure of the set of variables, which is a generalization
of the set of realizable sign conditions, corresponding to one single block.
Parametrized versions of the methods presented in Chapter 13 give the tech-
nique needed for eliminating a whole block of variables.

In Chapters 15 and 16, we compute roadmaps and connected components
of algebraic and semi-algebraic sets. Roadmaps can be intuitively described
as an one dimensional skeleton of the set, providing a way to count con-
nected components and to decide whether two points belong to the same
connected component. A motivation for studying these problems comes from
robot motion planning where the free space of a robot (the subspace of the
configuration space of the robot consisting of those configurations where the
robot is neither in conflict with its environment nor itself) can be modeled as
a semi-algebraic set. In this context it is important to know whether a robot
can move from one configuration to another. This is equivalent to deciding
whether the two corresponding points in the free space are in the same con-
nected component of the free space. The construction of roadmaps is based
on the critical point method, using properties of pseudo-critical values. The
complexity of the construction is singly exponential in the number of vari-
ables, which is a complexity much better than the one provided by cylindrical
decomposition. Our construction of parametrized paths gives an algorithm
for computing coverings of semi-algebraic sets by contractible sets, which
in turn provides a single exponential time algorithm for computing the first
Betti number of semi-algebraic sets. Moreover, it gives an efficient algorithm
for computing semi-algebraic descriptions of the connected components of a
semi-algebraic set in single exponential time.
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1 Warning This book is intended to be self contained, assuming only that the
reader has a basic knowledge of linear algebra and the rudiments of a basic
course in algebra through the definitions and basic properties of groups, rings
and fields, and in topology through the elementary properties of closed, open,
compact and connected sets.

There are many other aspects of real algebraic geometry that are not con-
sidered in this book. The reader who wants to pursue the many aspects of
real algebraic geometry beyond the introduction to the small part of it that
we provide is encouraged to study other text books [26, 95, 5]. There is also
a great deal of material about algorithms in real algebraic geometry that we
are not covering in this book. To mention but a few: fewnomials, effective
positivstellensatz, semi-definite programming, complexity of quadratic maps
and quadratic sets, ...

2 References We have tried to keep our style as informal as possible. Rather
than giving bibliographic references and footnotes in the body of the text,
we have a section at the end of each chapter giving a brief description of the
history of the results with a few of the relevant bibliographic citations. We
only try to indicate where, to the best of our knowledge, the main ideas and
results appear for the first time, and do not describe the full history and
bibliography. We also list below the references containing the material we
have used directly.

3 Ezisting implementations In terms of existing implementation of the algo-
rithms described in the book, the current situation can be roughly summarized
as follows: algorithms appearing in Chapters 8 to 12, or more efficient versions
based on similar ideas, have been implemented (see a few references below).
For most of the algorithms presented in Chapter 13 to 16, there is no imple-
mentation at all. The reason for that is that the methods developed are well
adapted to complexity results but are not adapted to efficient implementation.

Most algorithms from Chapters 8 to 11 are quite classical and have been
implemented several times. We refer to [40] since it is a recent implemen-
tation based directly on [20]. It uses in part the work presented in [29]. A
very efficient variant of the real root isolation algorithm in the monomial
basis in Chapter 10 is described in [138]. Cylindrical algebraic decomposi-
tion discussed in Chapter 11 has also been implemented many times, see for
example [46, 30, 151]. We refer to [71] for an implementation of an algorithm
computing the topology of real algebraic curves close to the one we present
in Chapter 11. About algorithms discussed in Chapter 12, most computer
algebra systems include Grobner basis computations. Particularly efficient
Grdébner basis computations, based on algorithms not described in the book,
can be found in [59]. A very efficient rational univariate representation can
be found in [135]. Computing a point in every connected component of an
algebraic set based on critical point method techniques is done efficiently in
[143], based on the algorithms developed in [8, 144].
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4 Comments about the second edition An important change in content
between the first edition [20] and the second one is the inversion of the order
of Chapter 12 and Chapter 11. Indeed when teaching courses based on the
book, we felt that the material on polynomial system solving was not nec-
essary to explain cylindrical decomposition and it was better to make these
two chapters independent for teaching purposes. For the same reason, we
also made the real root counting technique based on signed subresultant coef-
ficients independent of the signed subresultant polynomials and included it
in Chapter 4 rather than in Chapter 9 as before. Some other chapters have
been slightly reorganized. Several new topics are included in this second edi-
tion: results about normal polynomials and virtual roots in Chapter 2, about
discriminants of symmetric matrices in Chapter 4, a new section bounding
the Betti numbers of semi-algebraic sets in Chapter 7, an improved complexity
analysis of real root isolation, as well as the real root isolation algorithm
in the monomial basis, in Chapter 10, the notion of parametrized path in
Chapter 15 and the computation of the first Betti number of a semi-alge-
braic set in single exponential time. We also included a table of notation
and completed the bibliography and bibliographical notes at the end of the
chapters. Various mistakes and typos have been corrected, and new ones
introduced, for sure. As a result of the changes, the numbering of Defini-
tions, Theorems etc. are not identical in the first edition [20] and the second
one. Also, Algorithms now have their own numbering.

According to our contract with Springer-Verlag, we have had the right to
post updated versions of the first edition of the book on our websites since
December 2004. Currently an updated version of the first edition is available
online as bpr-postedl.pdf. We are going to update on a regular basis this
posted version. Here are the various url where these files can be obtained
through http:// at
www.math.gatech.edu/ ~ saugata/bpr-postedl.html
www.math.nyu.edu/faculty/pollack/bpr-postedl.html
perso.univ-rennesl.fr/marie-francoise.roy/bpr-postedl.html

An implementation of algorithms from Chapters 8 to 10 and part of
Chapter 11 written in Maxima by Fabrizio Caruso, as well as a version of Jean-
Charles Faugere [59] and Fabrice Rouillier [135] software illustrating part of
Chapter 12, can also be downloaded at bpr-postedl-annex.

Note that the second edition has been prepared inside TEXj;acg- The
TEXyracs files have been initially produced from classical latex files of the
first edition. Even though some manual changes in the latex files have been
necessary to obtain correct TEXyracs files, the translation into TEXyacg Was
made automatically, and it has not been necessary to retype the text and
formulas, besides a few exceptions.
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After eighteen months of the publication of the current edition of the book,
we will post the second edition online and it will be available for downloading
from the same url as above.

5 Interactive version of the book Another possibility is to get the book as
a TEXyracg Project by downloading bpr-postedi-int. In the TEXyacg Pro-
ject version, you are able to travel in the book by clicking on references,
to fold/unfold proofs, descriptions of the algorithms and parts of the text.
You can use the open-source maxima code corresponding to algorithms of
Chapters 8 to 10 and part of Chapter 11 written by Fabrizio Caruso [40]: check
examples, read the source code and make your own computations inside the
book. You can also use the part of [59] and [135] provided by Jean-Charles
Faugére and Fabrice Rouillier to illustrate part of Chapter 12 directly in the
book. These functionalities are still experimental. You are welcome to report
to the authors’ email addresses any problem you might meet in using them.

In the future, TEXy;acg versions of the book will include other interactive
features, such as being able to find all places in the book where a given theorem
is quoted.

6 FErrors If you find remaining errors in the book, we would appreciate it if
you would let us know

email: saugata.basu@math.gatech.edu
pollack@cims.nyu.edu

marie-francoise.roy@univ-rennesl.fr

A list of errors identified in this version will be found at

www.math.gatech.edu/ ~ saugata/bpr_book/bpr-ed2-errata.html.

7 Acknowledgment We thank Michel Coste, Greg Friedman, Laureano Gon-
zalez-Vega, Abdeljaoued Jounaidi, Henri Lombardi, Dimitri Pasechnik, Fab-
rice Rouillier for their advice and help. We also thank Solen Corvez, Gwenael
Guérard, Michael Kettner, Tomas Lajous, Samuel Leliévre, Mohab Safey,
and Brad Weir for studying preliminary versions of the text and helping
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Our source for Section 3.1, Section 3.2 and Section 3.3 of Chapter 3 is [26]. Our
sources for Chapter 4 are: [63] for Section 4.1, [94] for Theorem 4.47 in Section
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Our sources for Chapter 7 are [117, 26, 17|, and for Section 7.5 [62, 21]. Our
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Algebraically Closed Fields

The main purpose of this chapter is the definition of constructible sets and
the statement that, in the context of algebraically closed fields, the projection
of a constructible set is constructible.

Section 1.1 is devoted to definitions. The main technique used for proving
the projection theorem in Section 1.3 is the remainder sequence defined in
Section 1.2 and, for the case where the coefficients have parameters, the tree
of possible pseudo-remainder sequences. Several important applications of
logical nature of the projection theorem are given in Section 1.4.

1.1 Definitions and First Properties

The objects of our interest in this section are sets defined by polynomials with
coefficients in an algebraically closed field C.

A field C is algebraically closed if any non-constant univariate polyno-
mial P(X) with coefficients in C has a root in C, i.e. there exists z € C such
that P(x)=0.

Every field has a minimal extension which is algebraically closed and this
extension is called the algebraic closure of the field (see Section 2, Chapter 5
of [102]). A typical example of an algebraically closed field is the field C of
complex numbers.

We study the sets of points which are the common zeros of a finite family
of polynomials.

If D is a ring, we denote by D[X3, ..., X] the polynomials in k vari-
ables X,..., X§ with coefficients in D.

Notation 1.1. [Zero set] If P is a finite subset of C[X7,..., Xs] we write the
set of zeros of P in C* as
Zer(P,CF) = {z € CF| /\ P(x)=0}.
Pep

These are the algebraic subsets of CF.
The set CF is algebraic since C*¥ = Zer({0}, C¥). O
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Exercise 1.1. Prove that an algebraic subset of C is either a finite set or
empty or equal to C.

It is natural to consider the smallest family of sets which contain the alge-
braic sets and is also closed under the boolean operations (complementation,
finite unions, and finite intersections). These are the constructible sets.
Similarly, the smallest family of sets which contain the algebraic sets, their
complements, and is closed under finite intersections is the family of basic
constructible sets. Such a basic constructible set S can be described as a
conjunction of polynomial equations and inequations, namely

S ={zeCk| /\ P(x)=0A /\ Q(x)#0}

PeP QeQ
with P, Q finite subsets of C[X7,..., X].

Exercise 1.2. Prove that a constructible subset of C is either a finite set or
the complement of a finite set.

Exercise 1.3. Prove that a constructible set in C¥ is a finite union of basic
constructible sets.

The principal goal of this chapter is to prove that the projection from C*+1
to CF that is defined by “forgetting" the last coordinate maps constructible
sets to constructible sets. For this, since projection commutes with union, it
suffices to prove that the projection

{yeCr3zeC A Ply,x)=0n N\ Q(y,z)+#0}
pPecP QeQ
of a basic constructible set,

{(y0)€CH] A\ Ply.a)=0A N\ Q(y,)#0}
PepP QeQ
is constructible, i.e. can be described by a boolean combination of polynomial
equations (P =0) and inequations (P+#0) in Y = (Y1,..., Y).
Some terminology from logic is useful for the study of constructible sets.
We define the language of fields by describing the formulas of this language.
The formulas are built starting with atoms, which are polynomial equations
and inequations. A formula is written using atoms together with the logical
connectives “and", “or", and “negation" (A, V, and —) and the existential and
universal quantifiers (3, V). A formula has free variables, i.e. non-quantified
variables, and bound variables, i.e. quantified variables. More precisely, let
D be a subring of C. We define the language of fields with coefficients
in D as follows. An atom is P = 0 or P # 0, where P is a polynomial
in D[X1,..., Xi]. We define simultaneously the formulas and Free(®), the set
of free variables of a formula ®, as follows

— an atom P =0 or P+ 0, where P is a polynomial in D[X7, ..., X}] is a
formula with free variables {X1,..., Xi},
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— if &1 and P, are formulas, then &1 A P and &V P, are formulas with
Free(®; A ®3) =Free(®; V @) = Free(®1) U Free(P2),
— if ® is a formula, then —(®) is a formula with
Free(—(®)) = Free(®),
— if ® is a formula and X € Free(®), then (3X) ® and (VX) ® are formulas
with
Free((3X) @) =Free((VX) &) =Free(®)\ {X }.

If ® and ¥ are formulas, ® = ¥ is the formula —(®) Vv V.

A quantifier free formula is a formula in which no quantifier appears,
neither 3 nor V. A basic formula is a conjunction of atoms.

The C-realization of a formula ¢ with free variables contained
in {Y1, ..., Y3}, denoted Reali(®, C*), is the set of y € C¥ such that ®(y)
is true. It is defined by induction on the construction of the formula, starting
from atoms:

Reali(P =0,C*
Reali(P # 0, C*
Reali(®; A @y, CF
Reali(®; V &y, CF

= {yeCF| P(y)=0},

— [yeC| P(y)£0),

= Reali(®1, C*) N Reali(Ps, C*),

= Reali(®1, C*) U Reali(®s, C*),
Reali(—=®,C*) = CF\ Reali(®, C*),

Reali((3X) ®,C*) = {yeCk|3z€C (z,y)€Reali(®,CF1)},

Reali((VX) ®,C*) = {yeCk|VzeC (z,y)€Reali(®,C**1)}

~— — — — — —

Two formulas ® and ¥ such that Free(®) = Free(¥) = {Yy, ..., Yi} are
C-equivalent if Reali(®, C*) = Reali(¥, C¥).

If there is no ambiguity, we simply write Reali(®) for Reali(®, C*) and
talk about realization and equivalence.

Ezample 1.2. The formulas ®=((3Y) XY —1=0) and ¥ = (X #0) are two
formulas of the language of fields with coefficients in Z and

Free(®) =Free(¥)={X }.

Note that the formula ¥ is quantifier free. Moreover, ® and ¥ are C-equivalent
since

Reali(®,C) = {z€C|IyeC zy—1=0}

= {zeC|z+#0}
= Reali(?,C).
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It is clear that a set is constructible if and only if it can be represented as the
realization of a quantifier free formula.

It is easy to see that any formula ® with Free(®) = {Y1, ..., Y%} in the
language of fields with coeflicients in D is C-equivalent to a a formula

(Qule)...(Qume) B(Xl, ...,Xm, Yl, Yk)

where each Qu; € {V,3} and B is a quantifier free formula involving polyno-
mials in D[X7, ..., X;,,, Y1,...Yy]. This is called its prenex normal form (see
Section 10, Chapter 1 of [115]). The variables X7, ..., X, are called bound
variables.

If the formula ® has no free variables, i.e. Free(®) =10, then it is called a
sentence, and it is either C-equivalent to true, when Reali(®), {0}) = {0},
or C-equivalent to false, when Reali(®), {0}) = ). For example, 0 =0 is C-
equivalent to true, and 0 =1 is C-equivalent to false.

Remark 1.3. Though many statements of algebra can be expressed by a sen-
tence in the language of fields, it is necessary to be careful in the use of this
notion. Consider for example the fundamental theorem of algebra: any non
constant polynomial with coefficients in C has a root in C, which is expressed
by

Y P €C[X] deg(P)>0, 3X €C P(X)=0.

This expression is not a sentence of the language of fields with coefficients
in C, since quantification over all polynomials is not allowed in the definition
of formulas. However, fixing the degree to be equal to d, it is possible to
express by a sentence ¥, the statement: any monic polynomial of degree d
with coefficients in C has a root in C. We write as an example

o= (VY1) (VY2) (3X) X2+ YiX + Y2 =0).

So the definition of an algebraically closed field can be expressed by an
infinite list of sentences in the language of fields: the field axioms and the
sentences @4, d > 1. O

Exercise 1.4. Write the formulas for the axioms of fields.

1.2 Euclidean Division and Greatest Common Divisor

We study euclidean division, compute greatest common divisors, and show
how to use them to decide whether or not a basic constructible set of C is
empty.

In this section, C is an algebraically closed field, D a subring of C and K
the quotient field of D. One can take as a typical example of this situation the
field C of complex numbers, the ring Z of integers, and the field Q of rational
numbers.



1.2 Euclidean Division and Greatest Common Divisor 15

Let P be a non-zero polynomial
P=qa,X?+--+a1 X +apeD[X]

with a, # 0.

We denote the degree of P, which is p, by deg (P). By convention,
the degree of the zero polynomial is defined to be —oo. If P is non-zero,
we write cof;(P) = a; for the coefficient of X/ in P (which is equal to 0
if j > deg(P)) and Icof(P) for its leading coefficient a, = cofyc, (p)(P). By
convention lcof(0) = 1.

Suppose that P and @ are two polynomials in D[X]. The polynomial @ is
a divisor of P if P=AQ for some A €K[X]. Thus, while every P divides 0,
0 divides 0 and no other polynomial.

If @ # 0, the remainder in the euclidean division of P by @,
denoted Rem(P, @), is the unique polynomial R € K[X] of degree smaller
than the degree of @ such that P = A Q + R with A € K[X]. The quo-
tient in the euclidean division of P by @, denoted Quo(P, @), is A.

Exercise 1.5. Prove that, if @ # 0, there exists a unique pair (R, A) of
polynomials in K[X] such that P=AQ + R, deg(R) < deg(Q).

Remark 1.4. Clearly, Rem(a P,bQ)=aRem(P, Q) for any a,beK with b=£0.
At a root z of @, Rem(P, Q)(z) = P(x). O

Exercise 1.6. Prove that z is a root of P in K if and only if X — z is a divisor
of P in K[X].

Exercise 1.7. Prove that if C is algebraically closed, every P € C[X] can be
written uniquely as

P=a(X —x)" (X —xp)H*,
with 1, ..., 2} distinct elements of C.

A greatest common divisor of P and (), denoted ged (P, @), is a
polynomial G € K[X] such that G is a divisor of both P and @, and any divisor
of both P and @ is a divisor of G. Observe that this definition implies that P
is a greatest common divisor of P and 0. Clearly, any two greatest common
divisors (say G1,G2) of P and @ must divide each other and have equal degree.
Hence G1 = a G5 for some a € K. Thus, any two greatest common divisors
of P and @ are proportional by an element in K\ {0}. Two polynomials are
coprime if their greatest common divisor is an element of K\ {0}.

A least common multiple of P and @, lem(P, @) is a polyno-
mial G € K[X] such that G is a multiple of both P and @, and any multiple
of both P and @ is a multiple of G. Clearly, any two least common mul-
tiples Ly, Ly of P and @ must divide each other and have equal degree.
Hence Ly = a Ly for some a € K. Thus, any two least common multiple
of P and @ are proportional by an element in K\ {0}.
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It follows immediately from the definitions that:

Proposition 1.5. Let P € K[X] and Q € K[X], not both zero. Then PQ/G
s a least common multiple of P and Q).

Corollary 1.6.
deg(lem(P, Q)) = deg(P) + deg(Q) — deg(ged (P, Q)).

We now prove that greatest common divisors and least common multiple exist
by using euclidean division repeatedly.

Definition 1.7. [Signed remainder sequence] Given P, ) € K[X], not
both 0, we define the signed remainder sequence of P and @,

SRemS(P, Q) =SRemSy(P, @), SRemS;(P, Q), ..., SRemS;(P, Q)
by

SRemSy(P,Q) = P,

SRem$: (P, Q) = @,

SRemS3(P, Q) = —Rem(SRemSy(P, Q),SRemS;(P, Q)),

SRemSy(P, Q) : —Rem(SRemSy, _2(P, Q),SRemS;_1(P, Q)) #0,
SRemSk41(P, Q) = —Rem(SRemS;_1(P, @), SRemS,(P,Q))=0.

The signs introduced here are unimportant in the algebraically closed case.

They play an important role when we consider analogous problems over real
closed fields in Chapter 2. d

In the above, each SRemS;(P,Q) is the negative of the remainder in the
euclidean division of SRemS;_o(P,Q) by SRemS,; _1(P, Q) for2<i<k-+1, and
the sequence ends with SRemSy(P, Q)when SRemSy41(P, Q) =0, for k> 0.

Proposition 1.8. The polynomial SRemSk(P, Q) is a greatest common
divisor of P and Q.

Proof: Observe that if a polynomial A divides two polynomials B, C' then it
also divides UB + VC for arbitrary polynomials U, V. Since

SRemSy+1(P, Q) = —Rem(SRemSy_1(P, @), SRemS,(P, Q)) =0,
SRemS (P, Q) divides SRemSy_1(P, Q) and since,
SRemSy, _2(P, Q) = —SRemSy(P, Q) + ASRemS;,_1(P, Q),

SRemSg(P, Q) divides SRemSy, _o(P, Q) using the above observation. Contin-
uing this process one obtains that SRemSy(P, Q) divides SRemS;(P, Q)= Q
and SRemSy(P, Q)= P.
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Also, if any polynomial divides SRemSy(P, @), SRemS;(P, Q) (that
is P, Q) then it divides SRemSa(P, @) and hence SRemSs(P, @) and so
on. Hence, it divides SRemSy(P, Q). O

Note that the signed remainder sequence of P and 0 is P and when (@ is
not 0, the signed remainder sequence of 0 and @ is 0, Q.

Also, note that by unwinding the definitions of the SRemS;(P, @), we can
express SRemSy(P, Q) =gcd(P, Q) as UP + V(Q for some polynomials U,V
in K[X]. We prove bounds on the degrees of U,V by elucidating the preceding
remark.

Proposition 1.9. If G is a greatest common divisor of P and Q, then there
exitst U and V with

UP+VQ=G.

Moreover, if deg(G) = g, U and V can be chosen so that deg(U) < ¢ — g,
deg(V)<p-—y.

The proof uses the extended signed remainder sequence defined as follows.

Definition 1.10. [Extended signed remainder sequence]
Given P, @ € K[X], not both 0, let

SRemUy(P, Q) = 1,
SRemV((P,Q) = 0,
SRemU;(P,Q) = 0,
SRemV,(P,Q) = 1

Aiy1 = Quo(SRemS;_1(P,Q),SRemS;(P, Q)),
P,Q) = —SRemS;_1(P, Q)+ Aiy1SRemS;(P, Q),

SRemU,;1(P,Q) = —SRemU,;_1(P, Q)+ A;+1 SRemU;(P, Q),

SRemV;1(P,Q) = —SRemV,_1(P, Q)+ Ait+1SRemV,(P, Q)

—_ —

for 0 <i <k where k is the least non-negative integer such that SRemSy41=0.
The extended signed remainder sequence Ex(P, Q) of P and Q is
Exo(P,Q),...,Exix(P, Q) with

The proof of Proposition 1.9 uses the following lemma.
Lemma 1.11. For 0<:<k+1,
SRemS;(P, Q) =SRemU; (P, Q)P + SRemV,; (P, Q)Q.

Let d; = deg(SRemS; (P, Q)) For 1 <i<k, deg(SRemU;;+1(P,Q))=q—d;,
and deg(SRemV,;1(P,Q)) =



18 1 Algebraically Closed Fields

Proof: It is easy to verify by induction on ¢ that, for 0<:<k+1,
SRemS;(P, Q) =SRemU, (P, Q)P + SRemV,(P, Q) Q.

Note that d; < d;—1. The proof of the claim on the degrees proceeds by
induction. Clearly, since

SRemUy(P,Q) = —1
SRemUs(P, Q) = —Quo(SRemS;(P, Q),SRemSs(P, Q)),
deg(SRemUs(P, Q)) = ¢ —dx,
deg(SRemUs(P, Q)) = q—ds.
Similarly,
deg(SRemVQ(Pa Q)) = p_db
deg(SRemV3(P,Q)) = p—da.
Using the definitions of SRemU; (P, @),SRemV,;11(P, Q) and the induction
hypothesis, we get
deg(SRemU,; _1(P,Q)) = q—di_a,
deg(SRemU;(P,Q)) = q—di—1
deg(Ai_H SRemUi(P, Q)) = di—l — di +q— di—l
= qg—di>q—di_o.
Hence, deg(SRemU, 1) = ¢ — d;. Similarly,
deg(SRemV;_1(P,Q)) = p—di—o,
deg(SRemV;(P, Q)) p—di—1
deg(AH_l SRemVl(P, Q)) d/i—l —di—f'p_d/i—l
=p—di>p—di—a.
Hence, deg(SRemV;11(P,Q))=p—d;. O

Proof of Proposition 1.9: The claim follows by Lemma 1.11 and Proposi-
tion 1.8 since SRemSy(P, @) is a ged of P and @, taking

U =SRemU(P, @),V =SRemV(P, Q),
and noting that p —dy_1<p—9¢, ¢—dr-1<q—g. O

The extended signed remainder sequence also provides a least common
multiple of P and Q.

Proposition 1.12. The equality
SRemUy1(P, Q) P=—SRemV1(P, Q) Q.

holds and SRemUj 41 (P, Q)P = —SRemVy41 (P, Q)Q is a least common
multiple of P and Q.
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Proof: Since di = deg(ged(P, Q)), deg(SRemUy41(P, Q)) = q¢ — dp,
deg(SRemV (P, Q)) =p — di, and

SRemUy4+1(P, Q) P+ SRemVy4+1 (P, Q)Q =0,
it follows that
SRemUg 41 (P, Q)P =—SRemV41 (P, Q)Q

is a common multiple of P and @ of degree p+ g — dj, hence a least common
multiple of P and Q. O

Definition 1.13. [Greatest common divisor of a family] A greatest
common divisor of a finite family of polynomials is a divisor of all the
polynomials in the family that is also a multiple of any polynomial that divides
every polynomial in the family. A greatest common divisor of a family can be
obtained inductively on the number of elements of the family by

ged(@) = 0,
ged(PU{P}) = gcd(P,ged(P)).

Note that

— x€Cis aroot of every polynomial in P if and only if it is a root of ged(P),

— x€Cis not aroot of any polynomial in Q if and only if it is not a root of
11 0co @ (with the convention that the product of the empty family is 1),

— every root of P in Cis a root of @ if and only if ged(P, Q18 (")) = P (with
the convention that Q°5(*) = ).

With these observations the following lemma is clear:

Lemma 1.14. If P, Q are two finite subsets of D[X], then there is an x € C

such that
(/\ P(x)zO)/\( A Q(x)#O)

PeP QeQ
if and only if

deg(ged(ged(P), [ @)+ deg(ged(P)),
QeQ

where d is any integer greater than deg(ged(P)).

Note that when Q = 0, since HQGV) @ =1, the lemma says that there
is an z € C such that A,_, P(r) = 0 if and only if deg(gcd(P)) # 0.

Note also that when P = (), the lemma says that there is an x € C such
that A\ 5o Q@) #0 if and only if deg([[ .o @) =0, ie. 1¢ Q.

Exercise 1.8. Design an algorithm to decide whether or not a basic con-
structible set in C is empty.



20 1 Algebraically Closed Fields

1.3 Projection Theorem for Constructible Sets

Now that we know how to decide whether or not a basic constructible set
in C is empty, we can show that the projection from C**! to CF of a basic
constructible set is constructible. We shall do this by viewing the multivariate
situation as a univariate situation with parameters. Viewing a univariate
algorithm parametrically to obtain a multivariate algorithm is among the
most important paradigms used throughout this book.

More precisely, the basic constructible set S € Ck¥*! can be described as

S={zeC!| N\ P()=0A N\ Q(2)#0}

PeP Qe

with P, Q finite subsets of C[Y7,..., Yy, X], and its projection 7(S) (forgetting
the last coordinate) is

m(S)={yeC¥3zeC ( \ Ply,2)=0A A\ Q(y,2)#0)}.

PeP QeQ

We can consider the polynomials in P and Q as polynomials in the single
variable X with the variables (Y73, ..., Y%) appearing as parameters. For a
specialization of Y to y=(y1,..., yx) € C*, we write P,(X) for P(y1,..., yx, X).
Hence,

7(S)={yeCHIreC (A Plo)=0A A\ Q,x)#0)}.

PeP QeQ

and, for a particular y € C* we can decide, using Exercise 1.8, whether or not

e (N Pe)=0A N\ Qyx)#0)
is true. rer ee

Defining
Sy={zeC| \ Pyx)=0n N\ Qy(x)#0},

PeP QeQ

what is crucial now is to partition the parameter space C* into finitely many
parts so that the decision algorithm testing whether S, is empty or not is the
same (is uniform) for all y in any given part. Because of this uniformity, it
will turn out that each part of the partition is a constructible set. Since 7(.5)
is the union of those parts where Sy = ), 7(.S) is constructible being the union
of finitely many constructible sets.

We next study the signed remainder sequence of P, and @, for all possible
specialization of Y to y € C*. This cannot be done in a completely uniform
way, since denominators appear in the euclidean division process. Neverthe-
less, fixing the degrees of the polynomials in the signed remainder sequence, it
is possible to partition the parameter space, C*, into a finite number of parts
so that the signed remainder sequence is uniform in each part.
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Example 1.15. We consider a general polynomial of degree 4. Dividing by its
leading coeflicient, it is not a loss of generality to take P to be monic. So let
P=X*+a X3+ 3X?+~X +4. Since the translation X — X — /4 kills the
term of degree 3, we can suppose P=X*+a X?+bX +c.

Consider P=X*+a X%+ b X + c and its derivative P’ =4X3+2a X +b.
Their signed remainder sequence in Q(a, b, ¢)[X] is

P = X*+aX’+bX+c
P = 4X342aX+0

Sy = —Rem(P, P’)
N
= 2aX 4bX c
S3 = —Rem(P’,S)
(8ac—90*—2a*) X b(120—|—a2)
= a2 - a2
S4 = —Rem(Sg,Sg)
_1a%(256¢°—128a%c?+144acb® —16a" c —2Tb* — 4b%a®)
4 (8ac—9b2—2a3)?

Note that when (a, b, ¢) are specialized to values in C? for which a = 0
or 8ac—9b?—2a®=0, the signed remainder sequence of P and P’ for these
special values is not obtained by specializing a, b, ¢ in the signed remainder
sequence in Q(a, b, c)[X]. O

In order to take into account all the possible signed remainder sequences
that can appear when we specialize the parameters, we introduce the following
definitions and notation.

We get rid of denominators appearing in the remainders through the
notion of signed pseudo-remainders. Let

P = apXP+--+apeD[X],
Q = bg X9+ +boeD[X],

where D is a subring of C. Note that the only denominators occurring in
the euclidean division of P by @ are biq, i <p—q+ 1. The signed pseudo-
remainder denoted PRem(P, )), is the remainder in the euclidean division
of b‘; P by @, where d is the smallest even integer greater than or equal
to p— g+ 1. Note that the euclidean division of b‘éP by @ can be performed
in D and that PRem(P, Q) € D[X]. The even exponent is useful in Chapter 2
and later when we deal with signs.

Notation 1.16. [Truncation] Let Q =b, X9+ -+ + bg € D[X]. We define
for 0 <i < g, the truncation of @ at i by

Trui(Q) :lel-i- + bo.
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The set of truncations of a non-zero polynomial @ € D[Yy, ..., Yi][X],
where Y7, ..., Y}, are parameters and X is the main variable, is the finite subset
of D[Y1, ..., Y%|[X] defined by

_[{Q} if lcof(Q) € D or deg(Q) =0,
Tru(Q) = { {Q}UTru(Trugeg (@)—1(Q)) otherwise.

The tree of possible signed pseudo-remainder sequences of two poly-
nomials P, @ € D[Y7, ..., Y3][X], denoted TRems(P, Q) is a tree whose root R
contains P. The children of the root contain the elements of the set of trunca-
tions of Q. Each node N contains a polynomial Pol(N) € D[Y7, ..., Y;][X]. A
node N is a leaf if Pol(N)=0. If N is not a leaf, the children of N contain the
truncations of —PRem(Pol(p(N)), Pol(N)) where p(N) is the parent of N.OJ

Example 1.17. As in Example 1.15, we consider P=X*+a X2 +bX +c and
its derivative P’ =4X?3+2a X +b. Denoting

Sy = —PRem(P, P’)

— _8aX2—12bX — 16,
S; = —PRem(P’,S5)

= 64((8ac—9b2—2a%X —b(12c+a?)),
Si1 = —PRem(S3, 5)

= 16384 a® (25603— 128a’c*+ 144 ab’c+16a*c — 27b4—4a3b2),
u = —PRem(P’,(S2))
= 768b(—27b*+72acb*+ 256 ¢*)

the tree TRems(P, P’) is the following.

P

L,
/ \\

Tl"ul(Sg TI"UQ

\ /\ |

Trup(Ss3) 0 1|L 0 0
b

Ss
/\
Sy 0
(')

Define

s = 8ac—9b%—
t = —b(12¢c+a?)
§ = 256¢®—128a%c?+144ab?c+ 16a*c — 27b* — 4 a3 b2
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The leftmost path in the tree going from the root to a leaf, namely the
path P, P’ S5, S3,54,0 can be understood as follows: if (a, b, ¢) € C3 are
such that the degree of the polynomials in the remainder sequence of P and P’
are 4,3,2,1,0, i.e. when a#0,s#0,0+#0 (getting rid of obviously irrelevant
factors), then the signed remainder sequence of P=X*+a X2?+bX +cand P’
is proportional (up to non-zero squares of elements in C) to P, P’, S5, 53,540

Notation 1.18. [Degree| For a specialization of Y = (Y1, ..., %) to y € CF,
and @ € D[Y1, ..., Yi][X], we denote the polynomial in C[X] obtained by
substituting y for Y by Q,. Given Q@ C D[Y1, ..., Y3][X], we define @, C C[X]
as {Q,| Q€ Q).

Let Q = by X7 + -+ + by € D[V, ..., Y3][X]. We define the basic for-
mula degx(Q) =1 as

bq:0/\.../\bi+1:0/\bi7£0 when 0<i<gq,
bg#0 when i =g,
bg=0A...ANbg=0 when i = —o0,

so that the sets Reali(degx(Q) =1) partition C¥ and y € Reali(degx(Q) = 1)
if and only if deg (Q,) =1.
Note that PRem(Py, Q,) = PRem(P, Tru;(Q)), where degx(Q,) =1.
Given a leaf L of TRems(P, @), we denote by By, the unique path from
the root of TRems(P, @) to the leaf L. If N is a node in By, which is not a
leaf, we denote by ¢(N) the unique child of N in Br. We denote by Cj, the
basic formula

degx(Q) = degx(Pol(c(R)))A
/\ degx(—PRem(Pol(p(N)),Pol(N))) = degx(Pol(¢(N)))
NeBL,N#R
O

It is clear from the definitions, since the remainder and pseudo-remainder of
two polynomials in C[X] are equal up to a square, that

Lemma 1.19. The Reali(Cy) partition Ck. Moreover, y € Reali(Cy) implies
that the signed remainder sequence of P, and Q, is proportional (up to a
square) to the sequence of polynomials Pol(N), in the nodes along the path B,
leading to L. In particular, Pol(p(L))y is ged (Py, Qy).

We will now define the set of possible greatest common divisors of a
family P C D[Y, ..., Y][X], called posgcd(P), which is a finite set con-
taining all the possible greatest common divisors of P, which can occur as
y ranges over CF. We define it as a set of pairs (G,C) where G € D[Y1, ..., Y3[X]
and C is a basic formula with coefficients in D so that for each pair (G,C),
y € Reali(C) implies ged(P,) = G,. More precisely, we shall make the def-
inition so that the following lemma is true:
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Lemma 1.20. For all y € C*, there exists one and only one (G, C) €
posged(P) such that y € Reali(C). Moreover, y € Reali(C) implies that G,
is a greatest common divisors of P,.

The set of possible greatest common divisors of a finite family of
elements of K[Y3,...,Y;][X] is defined recursively on the number of elements
of the family by

posged() = {(0,1#0)}
posged(PU{P}) = {(Pol(p(L)),CACL)|(Q,C) € posged(P)
and L is a leaf of TRems(P, Q)}.

It is clear from the definitions and Lemma 1.19 that Lemma 1.20 holds.

FEzxample 1.21. Returning to Example 1.17, and using the corresponding nota-
tion, the elements of posged(P, P’) are (after removing obviously irrelevant
factors),

S1, a£0As£0AG#0),
3, aF0As#£0AI=0),

(Trup(S3), a£0As=0At+0),
(S2, a£0As=t=0),

(u, a=0Ab+£0AU#0),
(Trui(S2), a=0Ab#0Au=0),

S2), a=b=0Ac#0),

(P, a=b=c¢=0).
The first pair, which corresponds to the leftmost leaf of TRems(P, P’) can be
read as: if a#0, s#0, and § #0 (i.e. if the degrees of the polynomials in the
remainder sequence are 4, 3,2, 1,0), then ged (P, P’) = S4. The second pair,
which corresponds to the next leaf (going left to right) means that if a # 0,
s#0,and §=0 (i.e. if the degrees of the polynomials in the remainder sequence
are 4,3,2,1), then gcd(P, P')=S3.
If P=X*+aX?+bX +c, the projection of

{(a,b,c,x) € C*| P(x)=P'(z) =0}

to C3 is the set of polynomials (where a polynomial is identified with its
coefficients (a, b, ¢)) for which deg(ged(P, P’)) > 1. Therefore, the for-
mula 3z P(z) = P’(z) =0 is equivalent to the formula

(a#£0As+0A6=0)

V (a#£0As=t=0)
V (a=0Ab#+0Au=0)
V (a=b=c=0).
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The proof of the following projection theorem is based on the preceding con-
structions of possible ged.

Theorem 1.22. [Projection theorem for constructible sets] Given a
constructible set in C*t1 defined by polynomials with coefficients in D, its

projection to CF is a constructible set defined by polynomials with coefficients
in D.

Proof: Since every constructible set is a finite union of basic constructible
sets it is sufficient to prove that the projection of a basic constructible set is
constructible. Suppose that the basic constructible set S in CF+1 is

{(g,0)eC*xC| \ Ply.0)=0n \ Qy.2)#0)

PeP QeQ

with P and Q finite subsets of D[Y7,..., Y%, X].
Let

L=posged({P|3C (P,C)eposgcd(P)}U{ H Q)
QeEQ

where d is the least integer greater than the degree in X of any polynomial
in P.

For every (G, C) € L, there exists a unique (G1,C;) € posged(P) with C;
a conjunction of a subset of the atoms appearing in C. Using Lemma 1.14,
the projection of S on C* is the union of the Reali(C A degx(G) # degx(G1))
for (G,C) in £, and this is clearly a constructible set defined by polynomials
with coefficients in D. |

Exercise 1.9.

a) Find the conditions on (a,b,c) for P=a X?+bX +cand P'=2a X +b
to have a common root.

b) Find the conditions on (a,b,c) for P=a X?+b X + ¢ to have a root which
is not a root of P’.

1.4 Quantifier Elimination and the Transfer Principle

Returning to logical terminology, Theorem 1.22 implies that the theory of
algebraically closed fields admits quantifier elimination in the language of
fields, which is the following theorem.

Theorem 1.23. [Quantifier Elimination over Algebraically Closed
Fields] Let ®(Y3, ..., Y2) be a formula in the language of fields with free
variables {Y1,...,Ys}, and coefficients in a subring D of the algebraically closed
field C. Then there is a quantifier free formula (Y1, ...,Ys) with coefficients
in D which is C-equivalent to ®(Y1,...,Yy).
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Notice that an example of quantifier elimination appears in Example 1.2.

The proof of the theorem is by induction on the number of quantifiers,
using as base case the elimination of an existential quantifier which is given
by Theorem 1.22.

Proof of Theorem 1.23: Given a formula O(Y) = (3X) B(X,Y), where B
is a quantifier free formula whose atoms are equations and inequations
involving polynomials in D[X, Y7, ..., Yi], Theorem 1.22 shows that there
is a quantifier free formula Z(Y) with coefficients in D that is equivalent
to O(Y), since Reali(O(Y'), C¥), which is the projection of the constructible
set Reali(B(X,Y),CF*1), is constructible, and constructible sets are realiza-
tions of quantifier free formulas. Since (VX) @ is equivalent to —((3X) —(®)),

the theorem immediately follows by induction on the number of quantifiers. [J

Corollary 1.24. Let ®(Y) be a formula in the language of fields with coeffi-
cients in C. The set {ye€ CF|®(y)} is constructible.

Corollary 1.25. A subset of C defined by a formula in the language of fields
with coefficients in C is a finite set or the complement of a finite set.

Proof: By Corollary 1.24, a subset of C defined by a formula in the language
of fields with coefficients in C is constructible, and this is a finite set or the
complement of a finite set by Exercise 1.2. O

Exercise 1.10. Prove that the sets N and Z are not constructible subsets
of C. Prove that the sets N and Z cannot be defined inside C by a formula of
the language of fields with coefficients in C.

Theorem 1.23 easily implies the following theorem, known as the transfer
principle for algebraically closed fields. It is also called the Lefschetz Principle.

Theorem 1.26. [Lefschetz principle] Suppose that C’ is an algebraically
closed field which contains the algebraically closed field C. If ® is a sentence
in the language of fields with coefficients in C, then it is true in C if and only
if it 1s true in C'.

Proof: By Theorem 1.23, there is a quantifier free formula ¥ which is C-equiv-
alent to ®. It follows from the proof of Theorem 1.22 that ¥ is C’-equivalent
to ® as well. Notice, too, that since ¥ is a sentence, V¥ is a boolean combination
of atoms of the form ¢=0 or ¢+£ 0, where c € C. Clearly, VU is true in C if and
only if it is true in C’. O

The characteristic of a field K is a prime number p if K contains Z/pZ
and 0 if K contains Q. The meaning of Lefschetz principle is essentially that
a sentence is true in an algebraic closed field if and only if it is true in any
other algebraic closed field of the same characteristic.
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Let C denote an algebraically closed field and C’ an algebraically closed
field containing C.

Given a constructible set S in C¥, the extension of S to C’, denoted
Ext(S, C’) is the constructible subset of C’* defined by a quantifier free for-
mula that defines S.

The following proposition is an easy consequence of Theorem 1.26.

Proposition 1.27. Given a constructible set S in CF, the set Ext(S,C’) is
well defined (i.e. it only depends on the set S and not on the quantifier free
formula chosen to describe it).

The operation S — Ext(S, C’) preserves the boolean operations (finite
intersection, finite union and complementation).

If S C T, then Ext(S,C’) CExt(T,C’), where T is a constructible set
in CF.

Exercise 1.11. Prove proposition 1.27.

Exercise 1.12. Show that if S is a finite constructible subset of CF,
then Ext(S,C’) is equal to S. (Hint: write a formula describing S).

1.5 Bibliographical Notes

Lefschetz’s principle (Theorem 1.26) is stated without proof in [105]. Indi-
cations for a proof of quantifier elimination over algebraically closed fields
(Theorem 1.23) are given in [156] (Remark 16).
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Real Closed Fields

Real closed fields are fields which share the algebraic properties of the field
of real numbers. In Section 2.1, we define ordered, real and real closed fields
and state some of their basic properties. Section 2.2 is devoted to real root
counting. In Section 2.3 we define semi-algebraic sets and prove that the
projection of an algebraic set is semi-algebraic. The main technique used is
a parametric version of real root counting algorithm described in the second
section. In Section 2.4, we prove that the projection of a semi-algebraic set is
semi-algebraic, by a similar method. Section 2.5 is devoted to several applica-
tions of the projection theorem, of logical and geometric nature. In Section 2.6,
an important example of a non-archimedean real closed field is described: the
field of Puiseux series.

2.1 Ordered, Real and Real Closed Fields

Before defining ordered fields, we prove a few useful properties of fields of
characteristic zero.
Let K be a field of characteristic zero. The derivative of a polynomial

P=a,XP+.+a; X"+ +ao€K[X]
is denoted P’ with
P'=pa, XP 14 +iag; X' 71+ +ai.
. . . /
The i-th derivative of P, P®), is defined inductively by P = (P(l_l)) It
is immediate to verify that
(P+Q) = P+,
(PQ) = P'Q+PQ"
Taylor’s formula holds:

Proposition 2.1. [Taylor’s formula] Let K be a field of characteristic zero,

P=a,XP+..4+a; X"+ +ageK[X] and z € K.
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Then,

— ).

deg(P)
=2

=0

Proof: We prove Taylor’s formula holds for monomials X? by induction on p.

The claim is clearly true if p=0. Suppose that Taylor’s formula holds for p —1:
p—1

(p=D! 1 :

X — )t

D I

Then, since X =z + (X — z),

XPr = {Ep_l_i(X—;E)i

*M

_1_2 '7/'

P P

S A
2 (p—i)!i!x
since

I V- Y P!
(p—i)tdl (p=i)GE-1! (p—1=-9)!E-1)I

Hence, Taylor’s formula is valid for any polynomial using the linearity of
derivation. 0

Let x € K and P € K[X]. The multiplicity of x as a root of P is the
natural number p such that there exists @ € K[X] with P = (X — z)* Q(X)
and Q(z)#0. Note that if z is not a root of P, the multiplicity of = as a root
of P is equal to 0.

Lemma 2.2. Let K be a field of characteristic zero. The element x €K is a
root of P € K[X] of multiplicity p if and only if

PW(z) 40, PH=Y(z)=...= P(z) = P'(z) =0.
Proof: Suppose that P= (X —x)*Q and Q(x) #0. It is clear that P(z)=0
The proof of the claim is by induction on the degree of P. The claim is obvi-

ously true for deg(P)=1. Suppose that the claim is true for every polynomial
of degree < d. Since

P'=(X-2)" 1 (pQ+(X —2)Q"),
and pQ(x) =0, by induction hypothesis,
P'(z)=--=PrV(z)=0, P (z)+0.
Conversely suppose that

P(z)=P'(z)=--=Pr " V(z)=0, P (x)£0.
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By Proposition 2.1 (Taylor’s formula) at z, P= (X —z)* @, with
Q) = PW)(a)/u 0. O

A polynomial P € K[X] is separable if the greatest common divisor of P
and P’ is an element of K\ {0}. A polynomial P is square-free if there is no
non-constant polynomial A € K[X] such that A% divides P.

Exercise 2.1. Prove that P € K[X] is separable if and only if P has no
multiple root in C, where C is an algebraically closed field containing K. If
the characteristic of K is 0, prove that P € K[X] is separable if and only P is
square-free.

A partially ordered set (A, < ) is a set A, together with a binary
relation =< that satisfies:

— = is transitive, i.e. a=band a ¢ = a=<c,
— = isreflexive, i.e. a <Xa,
— = is anti-symmetric, i.e. a <band b<a = a=0b.

A standard example of a partially ordered set is the power set
24={B|BC A},

the binary relation being the inclusion between subsets of A.

A totally ordered set is a partially ordered set (A, <) with the addi-
tional property that every two elements a, b € A are comparable, i.e. a <b
or b < a. In a totally ordered set, a < b stands for a <b,a # b, and a > b
(resp. a>b) for b<a (resp. b<a).

An ordered ring (A, <) is aring, A, together with a total order, <, that
satisfies:

<y = x+z2<y+z
0<z, 0y = 0<Zzy.

An ordered field (F, <) is a field, F, which is an ordered ring.

An ordered ring (A, <) is contained in an ordered field (F,<)if ACF
and the inclusion is order preserving. Note that the ordered ring (A, <) is
necessarily an ordered integral domain.

Exercise 2.2. Prove that in an ordered field —1 < 0.

Prove that an ordered field has characteristic zero.

Prove the law of trichotomy in an ordered field: for every a in the field,
exactly one of a <0, a=0, a >0 holds.

Notation 2.3. [Sign] The sign of an element a in ordered field (F, <) is
defined by

sign(a)=0 if a=0,

sign(a)=1 if a>0,

sign(a)=—-1 if a<O0.
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When a >0 we say a is positive, and when a <0 we say a is negative.
The absolute value |a| of a is the maximum of ¢ and —a and is non-
negative. 0

The fields Q and R with their natural order are familiar examples of
ordered fields.

Exercise 2.3. Show that it is not possible to order the field of complex
numbers C so that it becomes an ordered field.

In an ordered field, the value at x of a polynomial has the sign of its leading
monomial for x sufficiently large. More precisely,

Proposition 2.4. Let P = a, X? + - + ag, ap # 0, be a polynomial
with coefficients in an ordered field F. If |x| is bigger than 2 20<z<p I‘ZI‘I )
then P(z) and a,xP have the same sign.

Proof: Suppose that

wl>2 S 1%,
0Si<p |
which implies || > 2. Since
P(:C) = 1+ &xi—P
apxP ’

<p1

P(z) |a’1| |z [i~
apa? 0<z<p 1 lay] vl

( - ><|:c|-1+|x| Pt o] )

0<i<p | p|

L= g (L]~ oo a7 )
_ L—|a|7?
- 1) e

We now examine a particular way to order the field of rational functions R(X).

For this purpose, we need a definition: Let F C F/ be two ordered fields.
The element f € F’is infinitesimal over F if it is a positive element smaller
than any positive f € F. The element f €F’is unbounded over F if it is a
positive element greater than any positive f € F.

v

IV vV
— [\D

\]

O

Notation 2.5. [Order 0] Let F be an ordered field and ¢ a variable. There
is one and only one order on F(¢), denoted 04, such that ¢ is infinitesimal
over F. If

Pe)=apeP+ap_1eP 1+ +ampr1e™ T +a,e™
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with a,, # 0, then P(¢) > 0 in this order if and only if a, > 0.
If P(e)/Q(e) €F(e), P(e)/Q(e) >0 if and only if P(e) Q(e) > 0.

Note that the field F(e) with this order contains infinitesimal elements
over F', such as €. The field also contains elements which are unbounded over
F such as 1/e. O

Exercise 2.4. Show that 04 is an order on F(¢) and that it is the only order
in which ¢ is infinitesimal over F.

We define now a cone of a field, which should be thought of as a set of
non-negative elements. A cone of the field F is a subset C of F such that:

zeC,yeC = z+yelC
zeC,yeC = zyel
reF = 2?2€C.

The cone C is proper if in addition —1¢C.
Let (F,<) be an ordered field. The subset C ={z €F|x >0}is a cone, the
positive cone of (F,<).

Proposition 2.6. Let (F, < ) be an ordered field. The positive cone C
of (F,<) is a proper cone that satisfies C U —C = F. Conversely, if C is
a proper cone of a field ¥ that satisfies C U —C = F, then F is ordered
byr<yesy—zelC.

Exercise 2.5. Prove Proposition 2.6.

Let K be a field. We denote by K the set of squares of elements of K and
by > K@ the set of sums of squares of elements of K. Clearly, > K®

is a cone contained in every cone of K.
A field K is a real field if —1¢ 5> K.

Exercise 2.6. Prove that a real field has characteristic 0.
Show that the field C of complex numbers is not a real field.
Show that an ordered field is a real field.

Real fields can be characterized as follows.

Theorem 2.7. Let F be a field. Then the following properties are equivalent

a) F is real.

b) F has a proper cone.

¢) F can be ordered.

d) For every x1,...,xn, in F, 37" | 2?=0=>r=-=x,=0.

The proof of Theorem 2.7 uses the following proposition.

Proposition 2.8. Let C be a proper cone of F, C is contained in the positive
cone for some order on F.
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The proof of Proposition 2.8 relies on the following lemma.

Lemma 2.9. Let C be a proper cone of F. If —agC, then

Cla|={z+ay|z,yeC}

is a proper cone of F.

Proof: Suppose —1 =z +ay with z,y€C. If y=0 we have —1 € C which is
impossible. If y#0 then —a=(1/y*) y (1 +z) €C, which is also impossible. [J

Proof of Proposition 2.8: Since the union of a chain of proper cones is a
proper cone, Zorn’s lemma implies the existence of a maximal proper cone C
which contains C. It is then sufficient to show that C U —C = F, and to
define x <y by y —z €C. Suppose that —aZC. By Lemma 2.9, C[a] is a proper
cone and thus, by the maximality of C, C=_Cla] and thus a €C. 0

Proof of Theorem 2.7:
a) = b) since in a real field F, 3 F®) is a proper cone.
)

b) = ¢) by Proposition 2.8.

¢) = d) since in an ordered field, if x1# 0 then )" | 27> %> 0

d) = a), since in a field 0 # 1, so 4 implies that 1 + 1" | 27 = 0 is
impossible. O

A real closed field R is an ordered field whose positive cone is the set
of squares R(®) and such that every polynomial in R[X] of odd degree has a
root in R.

Note that the condition that the positive cone of a real closed field R is R(?)
means that R has a unique order as an ordered field, since the positive cone
of an order contains necessarily R®.

Ezample 2.10. The field R of real numbers is of course real closed. The real
algebraic numbers, i.e. those real numbers that satisfy an equation with
integer coeflicients, form a real closed field denoted R,j, (see Exercise 2.11) O

A field R has the intermediate value property if R is an ordered
field such that, for any P € R[X], if there exist a € R, b € R, a < b such
that P(a) P(b) <0, there exists = € (a,b) such that P(z)=0.

Real closed fields are characterized as follows.

Theorem 2.11. If R is a field then the following properties are equivalent:

a) R is real closed.

) R[i] =RI[T]/(T?+1) is an algebraically closed field.

¢) R has the intermediate value property.

d) R is a real field that has no non-trivial real algebraic extension, that is
there is no real field Ry that is algebraic over R and different from R.

b
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The following classical definitions and results about symmetric polynomials
are used in the proof of Theorem 2.11.

Let K be a field. A polynomial Q(X1,..., Xx) € K[X1,..., Xi] is symmetric
if for every permutation o of {1,...,k},

Q(Xo(1)s s Xor)) = Q(X1, ..., Xi).

Exercise 2.7. Denote by Sy the group of permutations of {1,...,k}.
If X*=X7" ... X", denote Xg'= X7y X5y and Mo = Yes, Xo- Prove

that every symmetric polynomial can be written as a finite sum Y co M,.

For i=1,..., k, the i-th elementary symmetric function is
E= ) Xy X
1<j1<-<j4i <k

Elementary symmetric functions are related to coefficients of polynomials as
follows.

Lemma 2.12. Let Xy,..., X}, be elements of a field K and
P=(X-X1) (X - Xp)=XF+C  XF 14+ Cy,
then C; = (—1)'E;.
Proof: Identify the coefficient of X* on both sides of
(X =X1) (X =Xp) =X +C1 Xk 14 + O O

Proposition 2.13. Let K be a field and let
Q(Xl7 (Ez) Xk?) € K[X17 ) Xk]
be symmetric. There exists a polynomial
R(Ty,...,Tx) €eK[Th,..., Tk

such that Q(X1, ..., Xi) = R(F, ..., F).

The proof of Proposition 2.13 uses the notion of graded lexicographical
ordering. We define first the lexicographical ordering, which is the order of
the dictionary and will be used at several places in the book.

We denote by M, the set of monomials in k variables. Note that M} can
be identified with N* defining X®= X{"... X*.

Definition 2.14. [Lexicographical ordering] Let (B, <) be a totally or-
dered set. The lexicographical ordering , <. , on finite sequences of k
elements of B is the total order <)oy defined by induction on k by

b<iex ' & bl
(b1, ..y bi) <tex (D15 b)) = (by <V V (by=by A (ba, ..., br) <iex (bh, ..., b))
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We denote by My the set of monomials in k variables X7, ..., X§. Note that
M, can be identified with N* defining X* = X{ ... X{**. Using this identifi-
cation defines the lexicographical ordering <j.x on My. In thelexicographical
ordering, X1 >gilex ... >grlex Xk- LThe smallest monomial with respect to the
lexicographical ordering is 1, and the lexicographical ordering is compatible
with multiplication. Note that the set of monomials less than or equal to a
monomial X in the lexicographical ordering maybe infinite. O

Exercise 2.8. Prove that a strictly decreasing sequence for the lexicograph-
ical ordering is necessarily finite. Hint: by induction on k.

Definition 2.15. [Graded lexicographical ordering] The graded lexi-
cographical ordering , <g1cx, on the set of monomials in £ variables M,
is the total order X <gyiex X P defined by

X <grlex XA & (deg(X®) <deg(XP))Vv (deg(Xo‘) =deg(XP) A a <iex B)

with a = (ay, ..., ), B=(B1,..., Br), X = X1 X2 X=X x P,

In the graded lexicographical ordering above, X1 >griex ... >grlex Xk The
smallest monomial with respect to the graded lexicographical ordering is 1,
and the graded lexicographical ordering is compatible with multiplication.
Note that the set of monomials less than or equal to a monomial X in the
graded lexicographical ordering is finite. g

Proof of Proposition 2.13: Since Q(X7, ..., Xx) is symmetric, its leading
monomial in the graded lexicographical ordering ¢, X* = ¢, X7t -+ X"
satisfies oy > ... > aj. The leading monomial of ¢, Ef* ... E* 7' “* ER* in
the graded lexicographical ordering is also ¢, X*=cq X7 X",

Let Q1= Q(X1,..., X) — co B ™. EYF 1 B2 Tf Q1 =0, the proof is
over. Otherwise, the leading monomial with respect to the graded lexicograph-
ical ordering of @ is strictly smaller than X1 --- X;*, and it is possible to
iterate the construction with (1. Since there is no infinite decreasing sequence
of monomials for the graded lexicographical ordering, the claim follows. [

Proposition 2.16. Let P € K[X], of degree k, and x1,...,x) be the roots of P
(counted with multiplicities) in an algebraically closed field C containing K. If
a polynomial Q(X7,..., Xy) € K[X1,..., Xi| is symmetric, then Q(x1,...,xx) €EK.

Proof: Let e;, for 1 <1i <k, denote the i-th elementary symmetric function
evaluated at x1, ..., xx. Since P € K[X], Lemma 2.12 gives ¢; € K. By
Proposition 2.13, there exists R(Th,...,Tx) € K[T1,..., Tx] such that

Q(X1, ... Xp) = R(En, ..., Ey).
Thus, Q(z1,...,zx) = R(ey,...,ex) €EK. O

With these preliminaries results, it is possible to prove Theorem 2.11.
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Proof of Theorem 2.11: a)=-b) Let P € R[X] a monic separable polynomial
of degree p=2""n with n odd. We show by induction on m that P has a root
in RJ[4].
If m=0, then p is odd and P has a root in R, since R is real closed.
Denote by z1, ..., z, the roots of P in an algebraically closed field C. Let
Z be a new indeterminate and Q(Z,Y’) the monic polynomial having as roots
the x; +x; + Z x;x; where i < j.

QZY)=]] (¥ — (wi+z;+ Zzixy)).
i<j
The coefficients of Q(Z,Y") can be explicitly computed as polynomials of the
coefficients of P, using Proposition 2.16, thus Q(Z,Y) € R[Z,Y]. The degree
of Q(Z,Y)inY and Z is p(p—1)/2.
Ordering lexicographically the couples (i, j), i < j, we define the discrim-
inant of @) as

D(z) = H (zitzj+Z zimj) — (2 + 20+ Z g 20))?

i<j,k<¢
(i,5) <(k,&)

= JI (wjre+ZBi;n50?
i<j, k<t
(i,7)<(k,£)

where o j ke = (z;i + 2 — xp + x0), B j 60 = Tix; — Tpxe. Note that by
Proposition 2.16, D(Z) € R[Z].
Since all the roots of P are distinct, we get the following implication

i<j, k<l (i,j)<(k,0),z;xj=xrxy = ;+x;%#Tk+ T

So every factor «; j k¢ + Z B .k, is nonzero. It follows that D(Z) is not
identically zero.

Taking a value z € N such that D(z)=0, the polynomial Q(z,Y") is a square
free polynomial since all its roots are distinct.

We prove now that it is possible to express, for every 1 <i¢ < j <p, z;+x;
and z; x; rationally in terms of v; j=z;+x;+ 2z z; x;.

Indeed let

F(Z,)Y) = 0Q/oY(Z,Y)
- Z H (Y = (zx + 20+ Z 2170))

< ks
G(Z,)Y) = Z (i + ;) H (Y = (zp+ae+ Zarxy)) |,
7;<j k<2_ )
(k,€)#(i,5)
H(Z,Y) = Z Ti X H (Y—(l‘k+xg+Zl‘kxg)) .
i<j k<t
(k,€)#(i,7)

Note that by Proposition 2.16, f(Z,Y),G(Z,Y) and H(Z,Y) are elements
of R[Z,Y].
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Then, for every 1 <1< j <p,

F(z,viy) = JI  (vs—w0,

k<t

(k. 0)# (i, 5)
G(z,7i5) = (@itz) [ (i =m0,
P
H(z,v) = (@) [ (=m0
(k,e’;;(ei,j)
If follows that
(Z Yir4)
T, +x; = =,
’ ’ (Z Vi, J)
H(z, v, J)
T; x; =
v F(Z ”Yw)

In other words, the roots of the second degree polynomial

F(Z, ’}/iyj)XQ - G(Z, F)/i,j)X + H(Z, 'Yi,j)
are roots of P.

The polynomial Q(z,Y) is of degree p(p —1)/2, i.e. of the form 2™~ 1n’
with n’ odd. By induction hypothesis, it has a root 7 in R[i]. Since the classical
method for solving polynomials of degree 2 works in R[] when R is real closed,
the roots of the second degree polynomial

F(z,7)X?-G(z,7)X +H(z,7)

are roots of P that belong to R[i]. We have proved that the polynomial P
has a root in R[].

For P = ap, X? + - + ag € R[i][X], we write P =
Since PP € R[X], PP has a root z in R[i]. Thus P(z)=0
first case we are done and in the second, P(Z)=0.

b) = ¢) Since C =R][i] is algebraically closed, P factors into linear factors
over C. Since if ¢+ 1id is a root of P, ¢ —id is also a root of P, the irreducible
factors of P are linear or have the form

(X —e)?’+d*=(X —c—id) (X —c+id), d#0.

CTXP—F -+ ap.
or P(z)=0. In the

If P(a) and P(b) have opposite signs, then Q(a) and Q(b) have opposite signs
for some linear factor @ of P. Hence the root of Q is in (a,b).

c) = a) If y is positive, X2 — y takes a negative value at 0 and a positive
value for X big enough, by Proposition 2.4. Thus X2 — 4 has a root, which
is a square root of y. Similarly a polynomial of odd degree with coeflicients
in R takes different signs for a positive and big enough and b negative and
small enough, using Proposition 2.4 again. Thus it has a root in R.
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b) = d) Since R[i] =R[T]/(T?+1) is a field, T? + 1 is irreducible over R.
Hence —1 is not a square in R. Moreover in R, a sum of squares is still a square:
let a,b€R and ¢,d € R such that a+ib=(c+1id)? then a®+ b= (c* +d?)2.
This proves that R is real. Finally, since the only irreducible polynomials of
R[X] of degree >1 are of the form

(X —e)?’+d*>=(X —c—id)(X —c+id), d+0,

and R[X]/((X —¢)?+ d?) =R]i], the only non-trivial algebraic extensions of R
is R[i], which is not real.
d) = a) Suppose that a € R. If a is not a square in R, then

R[v/a] =R[X]/(X?—a)

is a non-trivial algebraic extension of R, and thus R[y/a] is not real. Thus,

n

-1 =) (@it Vay)
i=1
n n

-1 = Zx%—!—czz y? €R.
i=1 i=1

Since R is real, —1# 37" | a7 and thus y=3""_| y7 # 0. Hence,

This shows that R®) U — > R® =R and thus that there is only one possible
order on R with R®) = > R® as positive cone.

It remains to show that if P € R[X] has odd degree then P has a root
in R. If this is not the case, let P be a polynomial of odd degree p > 1 such
that every polynomial of odd degree < p has a root in R. Since a polynomial
of odd degree has at least one odd irreducible factor, we assume without loss
of generality that P is irreducible. The quotient R[X]/(P) is a non-trivial
algebraic extension of R and hence —1=3"" | H?+ PQ with deg (H;) < p.
Since the term of highest degree in the expansion of Z?:l H? has a sum
of squares as coefficient and R is real, 2?21 H? is a polynomial of even
degree <2p —2. Hence, the polynomial @) has odd degree < p — 2 and thus
has a root # in R. But then —1 =" | H;(z)? which contradicts the fact
that R is real. ]

Remark 2.17. When R = R, a) = b) in Theorem 2.11 is nothing but an
algebraic proof of the fundamental theorem of algebra. O
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Notation 2.18. [Modulus] If R is real closed, and R[i| = R[T]/(T? + 1),
we can identify R[i] with R%. For 2 =a+ib € R[i],a € R,b € R, we define
the conjugate of z by z=a — i b. The modulus of z =a + i b € RJi

is |z| =Va® + b?. g

Proposition 2.19. Let R be a real closed field, P € R[X]. The irreducible
factors of P are linear or have the form

(X —e)’+d?=(X —c—id)(X —c+id),d#+0
with ¢, d € R.

Proof: Use the fact that R[¢] is algebraically closed by Theorem 2.11 and that
the conjugate of a root of P is a root of P. O

Exercise 2.9. Prove that, in a real closed field, a second degree polynomial
P=aX?+bX+c, a#0

has a constant non-zero sign if and only if its discriminant b — 4 a ¢ is
negative. Hint: the classical computation over the reals is still valid in a real
closed field.

Closed, open and semi-open intervals in R will be denoted in the usual way:

(a,b) = {reR|a<z<b},

[a, b] {reR|a<z<b},

(a,b] = {zeR|a<z<b},
(a,+00) {reR|a<z},

Proposition 2.20. Let R be a real closed field, P € R[X] such that P does
not vanish in (a,b), then P has constant sign in the interval (a,b).

Proof: Use the fact that R has the intermediate value property by The-
orem 2.11. g

This proposition shows that it makes sense to talk about the sign of a
polynomial to the right (resp. to the left) of any a € R. Namely, the sign
of P to the right (resp. to the left) of a is the sign of P in any interval (a,b)
(resp. (b, a)) in which P does not vanish. We can also speak of the sign
of P(+00) (resp. P(—00)) as the sign of P(M) for M sufficiently large (resp.
small) i.e. greater (resp. smaller) than any root of P. This coincides with the

sign of lcof(P) (resp. (—1)%°& (P)1cof(P)) using Proposition 2.4.

Proposition 2.21. Ifr is a root of P of multiplicity u in a real closed field R
then the sign of P to the right of r is the sign of P(“)(r) and the sign of P to
the left of r is the sign of (—1)*P")(r).



2.1 Ordered, Real and Real Closed Fields 41

Proof: Write P = (X —r)"* Q(x) where Q(r) # 0, and note that

sign(Q(r)) =sign(P*(r)).
]

We next show that univariate polynomials over a real closed field R share
some of the well known basic properties possessed by differentiable functions
over R.

Proposition 2.22. [Rolle’s theorem] Let R be a real closed field, P e R[X],
a,b€R with a<b and P(a)= P(b)=0. Then the derivative polynomial P" has
a root in (a,b).

Proof: One may reduce to the case where a and b are two consecutive roots of
P, i.e. when P never vanishes on (a,b). Then P=(X —a)™ (X —b)"Q, where
@ never vanishes on [a, b]. Thus @ has constant sign on [a, b] by Proposition
2.20. Then P'=(X —a)™ (X —b)"~' Q1, where

Qi=m (X -b0)Q+n(X—a)Q+ (X —a)(X -0 Q.

Thus Q1(a) =m (a —b) Q(a) and Q1(b) =n (b — a) Q(b), and hence Q1(a)
and @Q1(b) have opposite 51gns By the intermediate value property, ()1 has a

root in (a,b), and so does P". O

Corollary 2.23. [Mean Value theorem] Let R be a real closed field,
PeR[X], a,beR with a<b. There exists c€ (a,b) such that

/

P(b) - P(a) = (b—a) P'(c).

Proof: Apply Rolle’s theorem (Proposition 2.22) to
Q(X)=(P(b) — P(a)) (X —a) = (b—a) (P(X) — P(a)). 0

Corollary 2.24. Let R be a real closed field, P € R[X], a,b€R with a <b.
If the derivative polynomial P’ is positive (resp. negative) over (a,b), then P
is increasing (resp. decreasing) over [a,b).

The following Proposition 2.28 (Basic Thom’s Lemma) which will have
important consequences in Chapter 10. We first need a few definitions.

Definition 2.25. Let Q be a finite subset of R[X7,..., X]. A sign condition
on Q is an element of {0, 1, —1}<, i.e. a mapping from Q to {0, 1, —1}.
A strict sign condition on Q is an element of {1, —1}<, i.e. a mapping
from Q to {1, —1}. We say that Q realizes the sign condition o at z € R*

i Ao sign(Qr) =o(Q).
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The realization of the sign condition o is

Reali(o) = {z € R* | /\ sign(Q(z)) =0(Q)}.

QeQ

The sign condition o is realizable if Reali(c) is non-empty. 0

Notation 2.26. [Derivatives| Let P be a univariate polynomial of degree p
in R[X]. We denote by Der(P) the list P, P, ..., P(P). O

Proposition 2.27. [Basic Thom’s Lemma] Let P be a univariate poly-
nomial of degree p and let o be a sign condition on Der(P) Then Reali(o) is
either empty, a point, or an open interval.

Proof: The proof is by induction on the degree p of P. There is nothing
to prove if p = 0. Suppose that the proposition has been proved for p — 1.
Let o € {0, 1, —=1}P"(®) be a sign condition on Der(P), and let o’ be its
restriction to Der(P’). If Reali(o’) is either a point or empty, then

Reali(c) =Reali(c’) N{z € R|sign(P(x)) =0c(P)}

is either a point of empty. If Reali(c’) is an open interval, P’ has a constant
non-zero sign on it. Thus P is strictly monotone on Reali(c’) so that the
claimed properties are satisfied for Reali(o). O

Proposition 2.27 has interesting consequences. One of them is the fact
that a root x € R of a polynomial P of degree d with coefficients in R may be
distinguished from the other roots of P in R by the signs of the derivatives
of P at x.

Proposition 2.28. [Thom encoding] Let P be a non-zero polynomial of
degree d with coefficients in R. Let x and x’ be two elements of R, and denote
by o and o’ the sign conditions on Der(P) realized at x and x'. Then:
— Ifo=0' witho(P)=0¢'(P)=0 then x=x'.
— Ifo#0’, one can decide whether x <z’ or x>z’ as follows. Let k be the
smallest integer such that o(PY~®)) and o’(PY=")) are different. Then
_ O,(P(d—k+1)) _ O,/(P(d—k-i-l)) 7/: 0.
_ If O,(P(d—k-i-l)) — O,/(P(d—k-i-l)) =1,

z>z' & o(PUTR)> /(PR
_ [fO'(P(d_k+1)):O'I(P(d_k+1)):—1,

>z & (PR <o/ (PA-F),

Proof: The first item is a consequence of Proposition 2.27. The first part of
the second item follows from Proposition 2.27 applied to PUE=k+1) The two
last parts follow easily since the set

{zeR|sign(PY(z))=c(PD),i=d—k+1,--,n—1}
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is an interval by Proposition 2.28 applied to P=k+1) "and, on an interval,
the sign of the derivative of a polynomial determines whether it is increasing
or decreasing. O

Definition 2.29. Let P € R[X] and o € {0,1, —1}P*") 4 sign condition on
the set Der(P) of derivatives of P. The sign condition o is a Thom encoding
of xR if o(P)=0 and Reali(c) ={z}, i.e. o is the sign condition taken by
the set Der(P) at x. O

Ezxample 2.30. In any real closed field R, P = X2 — 2 has two roots, charac-
terized by the sign of the derivative 2 X: one root for which 2 X >0 and one
root for which 2 X < 0. Note that no numerical information about the roots
is needed to characterize them this way. O

Any ordered field can be embedded in a real closed field. More precisely,
any ordered field F possesses a unique real closure which is the smallest real
closed field extending it. The elements of the real closure are algebraic over F
(i.e. satisfy an equation with coefficients in F'). We refer the reader to [26] for
these results.

Exercise 2.10. If F is contained in a real closed field R, the real closure of
F counsists of the elements of R which are algebraic over F. (Hint: given «
and (3 roots of P and @ in F[X], find polynomials in F[X] with roots a+ /3
and « 3, using Proposition 2.16).

Exercise 2.11. Prove that R,j, is real closed. Prove that the field R, is the
real closure of Q.

The following theorem proves that any algebraically closed field of char-
acteristic zero is the algebraic closure of a real closed field.

Theorem 2.31. If C is an algebraically closed field of characteristic zero,
there exists a real closed field R C C such that Rli] = C.

Proof: The field C contains a real subfield, the field Q of rational numbers.
Let R be a maximal real subfield of C. The field R is real closed since it has
no nontrivial real algebraic extension contained in C (see Theorem 2.11).
Note that C \ R cannot contain a ¢ which is transcendental over R since
otherwise R(t) would be a real field properly containing R. O

An ordered field F is archimedean if, whenever a, b are positive elements
of F, there exists a natural number n € N so that na > b.

Real closed fields are not necessarily archimedean and may contain
infinitesimal elements. We shall see at the end of this chapter an example of
a non-archimedean real closed field when we study the field of Puiseux series.
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2.2 Real Root Counting

Although we have a very simple criterion for determining whether a polyno-
mial P € C[X] has a root in C (namely, if and only if deg(P)#0), it is much
more difficult to decide whether a polynomial P € R[X] has a root in R. The
first result in this direction was found more than 350 years ago by Descartes.
We begin the section with a generalization of this result.

2.2.1 Descartes’s Law of Signs and the Budan-Fourier Theorem

Notation 2.32. [Sign variations] The number of sign variations,
Var(a), in a sequence, a = ag, -, ap, of elements in R \ {0} is defined by
induction on p by:

Var(ag) = 0
{Var(al,-~~,ap)+1 if apa1 <0

Var(ag, -, ap) = Var(ai, - a,)  if aga;>0

This definition extends to any finite sequence a of elements in R by considering
the finite sequence b obtained by dropping the zeros in a and defining

Var(a) = Var(b), Var()) =0.
For example Var(1,—1,2,0,0,3,4,—5,—2,0,3) =4. |

Let P = ap, XP + -+ 4+ ap be a univariate polynomial in R[X]. We
write Var(P) for the number of sign variations in ay, ..., ap and pos(P) for
the number of positive real roots of P, counted with multiplicity.

Theorem 2.33. [Descartes’ law of signs]|

— Var(P) > pos(P)
— Var(P) —pos(P) is even.

We will prove the following generalization of Theorem 2.33 (Descartes’s law
of signs) due to Budan and Fourier.

Notation 2.34. [Sign variations in a sequence of polynomials at a
Let P =Py, Py, ..., Py be a sequence of polynomials and let a be an element
of R U {—00, +o0}. The number of sign variations of P at a, denoted
by Var(P;a), is Var(Py(a), ..., Ps(a)) (at —oco and +oo the signs to consider
are the signs of the leading monomials according to Proposition 2.4).

For example, if P=X5% X2-1,0,X?—1,X+2,1, Var(P;1)=0.

Given a and b in RU{—o00, 400}, we denote

Var(P; a,b)=Var(P;a) — Var(P; b).
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We denote by num(P; (a, b]) the number of roots of P in (a, b] counted
with multiplicities.

Theorem 2.35. [Budan-Fourier theorem] Let P be a univariate polyno-
mial of degree p in R[X]. Given a and b in RU{—o0,+o0}

— Var(Der(P);a,b) > num(P; (a, b)),
— Var(Der(P);a,b) — num(P; (a, b)) is even.

Theorem 2.33 (Descartes’s law of signs) is a particular case of Theorem 2.35
(Budan-Fourier).

Proof of Theorem 2.33 (Descartes’ law of signs): The coefficient of
degree 7 of P has the same sign as the p —i-th derivative of P evaluated at 0.
Moreover, there are no sign variations in the signs of the derivatives at +oo.
So that Var(P)= Var(Der(P);0,+00). O

The following lemma is the key to the proof of Theorem 2.35 (Budan-
Fourier).

Lemma 2.36. Let ¢ be a root of P of multiplicity ;1> 0. If no P®), 0<k <p,
has a root in [d,c)U (c,d’], then

a) Var(Der(P); d,c) — u is non-negative and even,
b) Var(Der(P);c,d’) =

Proof: We prove the claim by induction on the degree of P. The claim is true
if the degree of P is 1.

Suppose first that P(¢) = 0, and hence p > 0. By induction hypothesis
applied to P/,

a) Var(Der(P’);d,c) — (1 — 1) is non-negative and even,

b) Var(Der(P’);c,d’) =

The sign of P at the left of ¢ is the opposite of the sign of P’ at the left of ¢

and the sign of P at the right of ¢ is the sign of P’ at the right of ¢. Thus
Var(Der(P);d) = Var(Der(P’);d)+1, (2.1)
Var(Der(P);c) = Var(Der(P’);c),
Var(Der(P);d’) = Var(Der(P');d’),

and the claim follows.

Suppose now that P(c)# 0, and hence p1=0. Let v be the multiplicity of ¢
as a root of P’. By induction hypothesis applied to P’

a) Var(Der(P’);d,c) — v is non-negative and even,
b) Var(Der(P');c,d’) =

There are four cases to consider.
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If v is odd, and sign(P®**+V(¢) P(c)) >0,
Var(Der(P);d) = Var(Der(P’);d) +1, (2.2)
Var(Der(P);c) = Var(Der(P’);c),
Var(Der(P); d") Var(Der(P’); d’).

If v is odd, and sign(P“*Y(c) P(c)) <0,
Var(Der(P);d) = Var(Der(P’);d), (2.3)
Var(Der(P);c) = Var(Der(P’);c)+1,
Var(Der(P);d’) = Var(Der(P');d

<

~
+
=

If v is even, and sign(P”*V(c) P(c)) >

Var(Der(P);d) = Var(Der(P');d), (2.4)
Var(Der(P);c) = Var(Der(P’);c),
Var(Der(P);d’) = Var(Der(P');d’).

If v is even, and sign(P*+V(¢) P(c)) <

Var(Der(P);d) = Var(Der(P’);d)+1, (2.5)
Var(Der(P);c) = Var(Der(P');c)+1,
Var(Der(P);d’) = Var(Der(P');d’) +1.

The claim is true in each of these four cases. O

Proof of Theorem 2.35: It is clear that, for every c€ (a,b),

num(P; (a,b]) = num(P;(a,])+num(P;(c,b])
Var(Der(P);a,b) = Var(Der(P);a,c)+ Var(Der(P);c,b).

Let ¢1 <+ < ¢, be the roots of all the polynomials P(j), 0<j<p-—1,in the
interval (a,b) and let a=co,b=c,11, d; € (¢;, ¢i+1) so that

a=co<dop<c1<-<cp<dp<cpy1=>b.

Since,
num(P; (a,b]) = Z num(P; (¢;, d;]) + num(P; (d;, ¢; 1)),
Var(Der(P);a,b) = Z Var(Der(P); ¢;,d;) + Var(Der(P); d;, ¢it1),

the claim follows immediately from Lemma 2.36. ]

In general it is not possible to conclude much about the number of roots
on an interval using only Theorem 2.35 (Descartes’s law of signs).
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Ezample 2.37. The polynomial P = X2 — X 4 1 has no real root,
but Var(Der(P); 0, 1) = 2. It is impossible to find ¢ € (0, 1] such
that Var(Der(P);0,a) =1 and Var(Der(P);a, 1) =1 since otherwise P would
have two real roots. This means that however we refine the interval (0, 1],
we are going to have an interval (the interval (a, b] containing 1/2) giving 2
sign variations. |

However, there are particular cases where Theorem 2.35 (Budan-Fourier)
gives the number of roots on an interval:

Exercise 2.12. Prove that

— If Var(Der(P);a,b) =0, then P has no root in (a,b].

— If Var(Der(P); a, b) = 1, then P has exactly one root in (a, b], which is
simple.

Remark 2.38. Another important instance, used in Chapter 8, where The-
orem 2.35 (Budan-Fourier) permits a sharp conclusion is the following. When
we know in advance that all the roots of a polynomial are real, i.e. when
num(P; (—oo, +00)) = p, the number Var(Der(P);a,b) is exactly the number
of roots counted with multiplicities in (a, b]. Indeed the number Var(Der(P);
—00,400), which is always at most p, is here equal to p, hence

num(P; (—o0,a]) < Var(Der(P); —o0,a)
Var(Der(P);a,b)
Var(Der(P); b, +00)

,b). 0

num(F; (a, b))
num (P; (b, +00))
);a

imply num(P, (a, b]) = Var(Der(P

7

We are going now to describe situations where the number of sign varia-
tions in the coeflicients coincides exactly with the number of real roots.
The first case we consider is obvious.

Proposition 2.39. Let P € R[X] be a monic polynomial. If all the roots of
P have non-positive real part, then Var(P)=0.

Proof: Obvious, using the decomposition of P in products of linear factors
and polynomials of degree 2 with complex conjugate roots, since the product
of two polynomials whose coefficients are all non-negative have coefficients
that are all non-negative. g

The second case we consider is the case of normal polynomials. A polyno-
mial A=a, XP+ -+ ag with non-negative coeflicients is normal if

a) ap>0,
b) ai > ap_1ap+1 for all index k,
¢) ap, >0 and a; >0 for indices j < h implies a;4+1>0,...,an—1 >0

(with the convention that a; =0 if ¢ <0 or i > p).
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Proposition 2.40. Let P € R[X] be a monic polynomial. If all the roots
of P belong to the cone B of the complex plane (see Figure 2.1) defined by

Bz{a+ib||b|<—\/§a}, then P is normal.

v

Fig. 2.1. Cone B
The proof of Proposition 2.40 relies on the following lemmas.
Lemma 2.41. The polynomial X — x is normal if only if  <O0.
Proof: Follows immediately from the definition of a normal polynomial. [

Lemma 2.42. A quadratic monic polynomial A with complex conjugate roots
is normal if and only if its roots belong to the cone B.

Proof:
Let a+7b and a — b be the roots of A. Then

A=X?-2aX + (a®+b?)
is normal if and only if
a) —2a>0,
b) a®+b% >0,
c) (—2a)®>a®+ b
that is if and only if a <0 and 4 a? > a? +b?, or equivalently a+ibcB. O

Lemma 2.43. The product of two normal polynomials is normal.

Proof: Let A =a, X? + .- + ap and B = b,X? + --- 4+ by be two normal
polynomials. We can suppose without loss of generality that 0 is not a root
of A and B, i.e. that all the coefficients of A and B are positive.

Let C=AB=cpt ¢ XPT1+ ... +cp. It is clear that all the coefficients of C
are positive.

It remains to prove that c% > Cl—1Ck+t1-
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Using the partition of {(h,j)€Z*|h>j} in {(j+1,h—1)€Z*|h<j}
and {(h,h—1)|he€Z}.

2
Ch— Ck—1Ckt1 = E ahajb/c—hbk—j—i—g apajby_pbr—;

h<j h>j
- Z anajbr_—h41bp—j—1— Z anajbr_pt1br—j-1
h<j h>j
= Z ahajblc—hbk—j‘f'z ajr1ap-1bg—j 1bg 1
h<j h<j

+§ ahah—lbk—hbk—hﬂ—E apap—1bg—phi1be—n

h I
—g ahajbk—h—&-lblc—j—l_g ajr1ap—1bk— b _n

W< W<
= E (anaj—an—1a;j41) (br—jbr—n —br—j_1bx—ny1)-
h<j

Since A is normal and ay, ..., ap are positive, one has

Ap—1 ap—2 ao

p p

—_—z Z..z—,
ap ap—1 a

and ap a; — ap—1 ajy1>0, for all k& < j. Similar inequalities hold for the
coefficients of B and finally ¢ — cx_1 cr41 is non-negative, being a sum of
non-negative quantities. (|

Proof of Proposition 2.40: Factor P into linear and quadratic polynomials.
By Lemma 2.41 and Lemma 2.42 each of these factors is normal. Now use
Lemma 2.43. |

Finally we obtain the following partial reciprocal to Descartes law of signs.
Proposition 2.44. If A is normal and >0, then Var(A (X —x))=1.

Proof: We can suppose without loss of generality that that 0 is not a root of
A, that it that all the coefficients of A are positive.

Then
Ap—1 Ap—2 ao
p p
2 > 2_7
ap ap—1 a1
and

Ap— Ap