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PREFACE

The book is about number theory and modern cryptography. More specically, it is about
computational number theory and modern public-key cryptography based on number theory.
It consists of four parts. The first part, consisting of two chapters, provides some preliminaries.
Chapter 1 provides some basic concepts of number theory, computation theory, computational
number theory, and modern public-key cryptography based on number theory. In chapter 2, a
complete introduction to some basic concepts and results in abstract algebra and elementary
number theory is given.

The second part is on computational number theory. There are three chapters in this part.
Chapter 3 deals with algorithms for primality testing, with an emphasis on the Miller-Rabin
test, the elliptic curve test, and the AKS test. Chapter 4 treats with algorithms for integer
factorization, including the currently fastest factoring algorithm NFS (Number Field Sieve),
and the elliptic curve factoring algorithm ECM (Elliptic Curve Method). Chapter 5 discusses
various modern algorithms for discrete logarithms and for elliptic curve discrete logarithms.
It is well-known now that primality testing can be done in polynomial-time on a digital
computer, however, integer factorization and discrete logarithms still cannot be performed
in polynomial-time. From a computational complexity point of view, primality testing is
feasible (tractable, easy) on a digital computer, whereas integer factorization and discrete
logarithms are infeasible (intractable, hard, difficult). Of course, no-one has yet been able to
prove that the integer factorization and the discrete logarithm problems must be infeasible
on a digital computer.

Building on the results in the first two parts, the third part of the book studies the modern
cryptographic schemes and protocols whose security relies exactly on the infeasibility of the
integer factorization and discrete logarithm problems. There are four chapters in this part.
Chapter 6 presents some basic concepts and ideas of secret-key cryptography. Chapter 7
studies the integer factoring based public-key cryptography, including, among others, the
most famous and widely used RSA cryptography, the Rabin cryptosystem, the probabilistic
encryption and the zero-knowledge proof protocols. Chapter 8 studies the discrete logarithm
based cryptography, including the DHM key-exchange protocol (the world’s first public-key
system), the ElGamal cryptosystem, and the US Government’s Digital Signature Standard
(DSS), Chapter 9 discusses various cryptographic systems and digital signature schemes
based on the infeasibility of the elliptic curve discrete logarithm problem, some of them
are just the elliptic curve analogues of the ordinary public-key cryptography such as elliptic
curve DHM, elliptic curve ElGamal, elliptic curve RSA, and elliptic curve DSA/DSS.



xii Preface

It is interesting to note that although integer factorization and discrete logarithms can-
not be solved in polynomial-time on a classical digital computer, they all can be solved in
polynomial-time on a quantum computer, provided that a practical quantum computer with
several thousand quantum bits can be built. So, the last part of the book is on quantum compu-
tational number theory and quantum-computing resistant cryptography. More speciffically,
in Chapter 10, we shall study efficient quantum algorithms for solving the Integer Factoriza-
tion Problem (IFP), the Discrete Logarithm Problem (DLP) and the Elliptic Curve Discrete
Logarithm Problem (ECDLP). Since IFP, DLP and ECDLP can be solved efficiently on a
quantum computer, the IFP, DLP and ECDLP based cryptographic systems and protocols can
be broken efficiently on a quantum computer. However, there are many infeasible problems
such as the coding-based problems and the lattice-based problems that cannot be solved in
polynomial-time even on a quantum computer. That is, a quantum computer is basically a
special type of computing device using a different computing paradigm, it is only suitable
or good for some special problems such as the IFP, DLP and ECDLP problems. Thus, in
chapter 11, the last chapter of the book, we shall discuss some quantum-computing resistant
cryptographic systems, including the coding-based and lattice-based cryptographic systems,
that resist all known quantum attacks. Note that quantum-computing resistant cryptogra-
phy is still classic cryptography, but quantum resistant. We shall, however, also introduce a
truly quantum cryptographic scheme, based on ideas of quantum mechanics and some DNA
cryptographic schemes based on idea of DNA molecular computation.

The materials presented in the book are based on the author’s many years teaching and
research experience in the field, and also based on the author’s other books published in the
past ten years or so, particularly the following three books, all by Springer:

[1] Number Theory for Computing, 2nd Edition, 2002.
[2] Cryptanalytic Attacks on RSA, 2007.
[3] Primality Testing and Integer Factorization in Public-Key Cryptography, 2nd Edition,

2009.

The book is suited as a text for final year undergraduate or first year postgraduate courses in
computational number theory and modern cryptography, or as a basic research reference in
the field.

Corrections, comments and suggestions from readers are very welcomed and can be sent
via email to songyuanyan@gmail.com.

Song Y. Yan
London, England

June 2012
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Part I
Preliminaries

In this part, we shall first explain what are number theory, computation theory, computational
number theory, and modern (number-theoretic) cryptography are. The relationship betweeen
them may be shown in the following figure:

Number
theory

Computation
theory

Computational
number theory

Modern cryptography
(number-theoretic cryptography)

Then we shall present an introduction to the elementary theory of numbers from an algebraic
perspective (see the following figure), that shall be used throughout the book.

Divisibility
theory

Algebraic
structures

Elliptic
curves

Elementary number theory

Primitive
roots

Arithmetic
functions

Congruence
theory

Computational Number Theory and Modern Cryptography, First Edition. Song Y. Yan.
© 2013 Higher Education Press. All rights reserved. Published 2013 by John Wiley & Sons Singapore Pte. Ltd.
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1
Introduction

In this chapter, we present some basic concepts and ideas of number theory, computation
theory, computational number theory, and modern (number-theoretic) cryptography. More
specifically, we shall try to answer the following typical questions in the field:

� What is number theory?
� What is computation theory?
� What is computational number theory?
� What is modern (number-theoretic) cryptography?

1.1 What is Number Theory?

Number theory is concerned mainly with the study of the properties (e.g., the divisibility) of
the integers

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .},

particularly the positive integers
Z+ = {1, 2, 3, . . .}.

For example, in divisibility theory, all positive integers can be classified into three classes:

1. Unit: 1.
2. Prime numbers: 2, 3, 5, 7, 11, 13, 17, 19, · · ·.
3. Composite numbers: 4, 6, 8, 9, 10, 12, 14, 15, · · ·.

Recall that a positive integer n > 1 is called a prime number, if its only divisors are 1 and n,
otherwise, it is a composite number. 1 is neither prime number nor composite number. Prime
numbers play a central role in number theory, as any positive integer n > 1 can be written
uniquely into the following standard prime factorization form:

n = pα1
1 pα2

2 · · · pαk
k (1.1)

Computational Number Theory and Modern Cryptography, First Edition. Song Y. Yan.
© 2013 Higher Education Press. All rights reserved. Published 2013 by John Wiley & Sons Singapore Pte. Ltd.



4 Computational Number Theory and Modern Cryptography

Table 1.1 π (x) for some large x

x π (x)

1015 29844570422669
1016 279238341033925
1017 2623557157654233
1018 24739954287740860
1019 234057667276344607
1020 2220819602560918840
1021 21127269486018731928
1022 201467286689315906290
1023 1925320391606803968923
1024 18435599767349200867866

where p1 < p2 < · · · < pk are primes and α1, α2, · · · , αk positive integers. Although prime
numbers have been studied for more than 2000 years, there are still many open problems
about their distribution. Let us investigate some of the most interesting problems about prime
numbers.

1. The distribution of prime numbers.
Euclid proved 2000 years ago in his Elements that there were infinitely many prime
numbers. That is, the sequence of prime numbers

2, 3, 5, 7, 11, 13, 17, 19, · · ·

is endless. For example, 2, 3, 5 are the first three prime numbers, whereas 243112609 − 1
is the largest prime number to date, it has 12978189 digits and was found on 23 August
2008. Let π (x) denote the prime numbers up to x (Table 1.1 gives some values of π (x)
for some large x), then Euclid’s theorem of infinitude of primes actually says that

π (x) →∞, as x →∞.

A much better result about the distribution of prime numbers is the Prime Number theorem,
stating that

π (x) ∼ x/ log x . (1.2)

In other words,

lim
x→∞

π (x)

x/ log x
= 1. (1.3)

Note that the log is the natural logarithm loge (normally denoted by ln), where
e = 2.7182818 . . .. However, if the Riemann Hypothesis [3] is true, then there is a refine-
ment of the Prime Number theorem

π (x) =
∫ x

2

dt

log t
+O

(
xe−c

√
log x
)

(1.4)
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to the effect that

π (x) =
∫ x

2

dt

log t
+O (√x log x

)
. (1.5)

Of course we do not know if the Riemann Hypothesis is true. Whether or not the Riemann
Hypothesis is true is one of the most important open problems in mathematics, and in
fact it is one of the seven Millennium Prize Problems proposed by the Clay Mathematics
Institute in Boston in 2000, each with a one million US dollars prize [4]. The Riemann
hypothesis states that all the nontrivial (complex) zeros ρ of the ζ function

ζ (s) =
∞∑

n=1

1

ns
, s = σ + i t, σ, t ∈ R, i = √−1 (1.6)

lying in the critical strip 0 < Re(s) < 1 must lie on the critical line Re(s) = 1
2 , that is,

ρ = 1
2 + it, where ρ denotes a nontrivial zero of ζ (s). Riemann calculated the first five

nontrivial zeros of ζ (s) and found that they all lie on the critical line (see Figure 1.1), he
then conjectured that all the nontrivial zeros of ζ (s) are on the critical line.

ζ(1/2 + itn) = 0

1. 2− (14.13...)i

1/2 + (14.13...)i

−2 11/20

1/2 + (21.02...)i

1/2 + (25.01...)i

1. 2− (25.01...)i

1. 2− (21.02...)i

−4

1/2 + (32.93...)i
1/2 + (30.42...)i

1. 2− (30.42...)i
1. 2− (32.93...)i

it

σ

30i

10i

20i

−10i

−20i

−30i

ζ(−2n) = 0, n > 1

Figure 1.1 Riemann hypothesis



6 Computational Number Theory and Modern Cryptography

Table 1.2 Ten large twin prime pairs

Rank Twin primes Digits Discovery date

1 65516468355 · 2333333 ± 1 100355 Aug 2009
2 2003663613 · 2195000 ± 1 58711 Jan 2007
3 194772106074315 · 2171960 ± 1 51780 Jun 2007
4 100314512544015 · 2171960 ± 1 51780 Jun 2006
5 16869987339975 · 2171960 ± 1 51779 Sep 2005
6 33218925 · 2169690 ± 1 51090 Sep 2002
7 22835841624 · 754321 ± 1 45917 Nov 2010
8 12378188145 · 2140002 ± 1 42155 Dec 2010
9 23272426305 · 2140001 ± 1 42155 Dec 2010

10 8151728061 · 2125987 ± 1 37936 May 2010

2. The distribution of twin prime numbers.
Twin prime numbers are of the form n ± 1, where both numbers are prime. For example,
(3, 5), (5, 7), (11, 13) are the first three smallest twin prime pairs, whereas the largest twin
primes so far are 65516468355 · 2333333 ± 1, discovered in August 2009, both numbers
having 100355 digits. Table 1.2 gives 10 large twin prime pairs. Let π2(x) be the number
of twin primes up to x (Table 1.3 gives some values of π2(x) for different x), then the
twin prime conjecture states that

π2(x) →∞, as x →∞.

If the probability of a random integer x and the integer x + 2 being prime were statistically
independent, then it would follow from the prime number theorem that

π2(x) ∼ x

(log x)2
, (1.7)

or more precisely,

π2(x) ∼ c
x

(log x)2
, (1.8)

with

c = 2
∏
p≥3

(
1− 1

(p − 1)2

)
. (1.9)

Table 1.3 π2(x) for some large values

x 106 107 108 109 1010 1011

π2(x) 8169 58980 440312 3424506 27412679 224376048
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As these probabilities are not independent, so Hardy and Littlewood conjectured that

π2(x) = 2
∏
p≥3

p(p − 2)

(p − 1)2

∫ x

2

dt

(log t)2

≈ 1.320323632
∫ x

2

dt

(log t)2
. (1.10)

The infinite product in the above formula is the twin prime constant; this constant was es-
timated to be approximately 0.6601618158 . . .. Using very complicated arguments based
on sieve methods, in his work on the Goldbach conjecture, the Chinese mathematician
Chen showed that there are infinitely many pairs of integers (n, n + 2), with n prime
and n + 2 a product of at most two primes. The famous Goldbach conjecture states that
every even number greater than 4 is the sum of two odd prime numbers. It was con-
jectured by Goldbach in a letter to Euler in 1742. It remains unsolved to this day. The
best result for this conjecture is due to Chen, who announced it in 1966, but the full
proof was not given until 1973 due to the chaotic Cultural Revolution, that every suffi-
ciently large even number is the sum of one prime number and the product of at most two
prime numbers, that is, E = p1 + p2 p3, where E is a sufficiently large even number and
p1, p2, p3 are prime numbers. As a consequence, there are infinitely many such twin num-
bers (p1, p1 + 2 = p2 p3). Extensions relating to the twin prime numbers have also been
considered. For example, are there infinitely many triplet primes (p, q, r ) with q = p + 2
and r = p + 6? The first five triplets of this form are as follows: (5, 7, 11), (11, 13, 17),
(17, 19, 23), (41, 43, 47), (101, 103, 107). The triplet prime problem is much harder than
the twin prime problem. It is amusing to note that there is only one triplet prime (p, q, r )
with q = p + 2 and r = p + 4. That is, (3, 5, 7). The Riemann Hypothesis, the Twin
Prime Problem, and the Goldbach conjecture form the famous Hilbert’s 8th Problem.

3. The distribution of arithmetic progressions of prime numbers.
An arithmetic progression of prime numbers is defined to be the sequence of primes
satisfying:

p, p + d, p + 2d, · · · , p + (k − 1)d (1.11)

where p is the first term, d the common difference, and p + (k − 1)d the last term of the
sequence. For example, the following are some sequences of the arithmetic progression
of primes:

3 5 7
5 11 17 23
5 11 17 23 29

The longest arithmetic progression of primes is the following sequence with 23 terms:
56211383760397+ k ·44546738095860 with k = 0, 1, · · · , 22. Thanks to Green and Tao
who proved in 2007 that there are arbitrary long arithmetic progressions of primes
(i.e., k can be any arbitrary large natural number), which enabled, among others,
Tao to receive a Field Prize in 2006, the equivalent to a Nobel Prize for Mathe-
matics. However, their result is not about consecutive primes; we still do not know



8 Computational Number Theory and Modern Cryptography

if there are arbitrary long arithmetic progressions of consecutive primes, although
Chowa proved in 1944 that there exists an infinity of three consecutive primes of arith-
metic progressions. Note that an arithmetic progression of consecutive primes is a se-
quence of consecutive primes in the progression. In 1967, Jones, Lal, and Blundon
found an arithmetic progression of five consecutive primes 1010 + 24493+ 30k with
k = 0, 1, 2, 3, 4. In the same year, Lander and Parkin discovered six in an arithmetic
progression 121174811+ 30k with k = 0, 1, 2, 3, 4, 5. The longest arithmetic progres-
sion of consecutive primes, discovered by Manfred Toplic in 1998, is 507618446770482 ·
193#+ x77+ 210k, where 193# is the product of all primes ≤ 193, that is, 193# =
2 · 3 · 5 · 7 · · · 193, x77 is a 77-digit number 545382416838875826681897035901
10659057865934764604873840781923513421103495579 and k = 0, 1, 2, · · · , 9.

It should be noted that problems in number theory are easy to state, because they are mainly
concerned with integers with which we are very familiar, but often very hard to solve!

Problems for Section 1.1

1. Show that there are infinitely many prime numbers.
2. Prove or disprove there are infinitely many twin prime numbers.
3. Are there infinitely many triple prime numbers of the form p, p + 2, p + 4, where

p, p + 2, p + 4 are all prime numbers? For example, 3, 5, 7 are such triple prime
numbers.

4. Are there infinitely many triple prime numbers of the form p, p + 2, p + 6, where
p, p + 2, p + 6 are all prime numbers? For example, 5, 7, 11 are such triple prime
numbers.

5. (Prime Number Theorem) Show that

lim
x→∞

π (x)

x/ log x
= 1.

6. The Riemann ζ -function is defined as follows:

ζ (s) =
∞∑

n=1

1

ns

where s = σ + it is a complex number. Riemann conjectured that all zeroes of ζ (s) in
the critical strip 0 ≤ σ ≤ 1 must lie on the critical line σ = 1

2 . That is,

ζ

(
1

2
+ it

)
= 0.

Prove or disprove the Riemann Hypothesis.
7. Andrew Beal in 1993 conjectured that the equation xa + yb = zc has no positive integer

solutions in x, y, z, a, b, c, where a, b, c ≥ 3 and gcd(x, y) = (y, z) = (x, z) = 1. Beal
has offered $100 000 for a proof or a disproof of this conjecture.
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8. Prove or disprove the Goldbach conjecture that any even number greater than 6 is the
sum of two odd prime numbers.

9. A positive integer n is perfect if σ (n) = 2n, where σ (n) is the sum of all divisors of n.
For example, 6 is perfect since σ (6) = 1+ 2+ 3+ 6 = 2 · 6 = 12. Show n is perfect if
and only if n = 2p−1(2p − 1), where 2p − 1 is a Mersenne prime.

10. All known perfect numbers are even perfect. Recent research shows that if there exists
an odd perfect number, it must be greater than 10300 and must have at least 29 prime
factors (not necessarily distinct). Prove or disprove that there exists at least one odd
perfect number.

11. Show that there are arbitrary long arithmetic progressions of prime numbers

p, p + d, p + 2d, · · · , p + (k − 1)d

where p is the first term, d the common difference, and p + (k − 1)d the last term of
the sequence, and furthermore, all the terms in the sequence are prime numbers and k
can be any arbitrary large positive integer.

12. Prove or disprove that there are arbitrary long arithmetic progressions of consecutive
prime numbers.

1.2 What is Computation Theory?

Computation theory, or the theory of computation, is a branch that deals with whether and
how efficiently problems can be solved on a model of computation, using an algorithm. It
may be divided into two main branches: Computability theory and computational complexity
theory. Generally speaking, computability theory deals with what a computer can or cannot
do theoretically (i.e., without any restrictions), whereas complexity theory deals with what
computer can or cannot do practically (with e.g., time or space limitations). Feasibility
or infeasibility theory is a subfield of complexity theory, which concerns itself with what a
computer can or cannot do efficiently in polynomial-time. A reasonable model of computation
is the Turing machine, first studied by the great British logician and mathematician Alan
Turing in 1936, we shall first introduce the basic concepts of Turing machines, then discuss
complexity, feasibility, and infeasiblity theories based on Turing machines.

Definition 1.1 A standard multitape Turing machine, M (see Figure 1.2), is an algebraic
system defined by

M = (Q, �, �, δ, q0,�, F) (1.12)

where

1. Q is a finite set of internal states;
2. � is a finite set of symbols called the input alphabet. We assume that � ⊆ � − {�};
3. � is a finite set of symbols called the tape alphabet;
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Finite State
Control Unit

Tape 1

Read-Write Heads

Tape 2

Tape k

Figure 1.2 k-tape (k ≥ 1) Turing machine

4. δ is the transition function, which is defined by
(i) if M is a deterministic Turing machine (DTM), then

δ : Q × �k → Q × �k × {L , R}k (1.13)

(ii) if M is a nondeterministic Turing machine (NDTM), then

δ : Q × �k → 2Q×�k×{L ,R}k (1.14)

where L and R specify the movement of the read-write head left or right. When k = 1,
it is just a standard one-tape Turing machine;

5. � ∈ � is a special symbol called the blank;
6. q0 ∈ Q is the initial state;
7. F ⊆ Q is the set of final states.

Thus, Turing machines provide us with the simplest possible abstract model of computation
for modern digital (even quantum) computers.

Any effectively computable function can be computed by a Turing machine, and there is
no effective procedure that a Turing machine cannot perform. This leads naturally to the
following famous Church–Turing thesis, named after Alonzo Church (1903–1995) and Alan
Turing (1912–1954):

The Church–Turing thesis: Any effectively computable function can be computed by a
Turing machine.

The Church–Turing thesis thus provides us with a powerful tool to distinguish what is
computation and what is not computation, what function is computable and what function



Introduction 11

Figure 1.3 Probabilistic k-tape (k ≥ 1) Turing machine

is not computable, and more generally, what computers can do and what computers cannot
do. From a computer science and particularly a cryptographic point of view, we are not
just interested in what computers can do, but in what computers can do efficiently. That is,
in cryptography we are more interested in practical computable rather than just theoretical
computable; this leads to the Cook–Karp thesis.

Definition 1.2 A probabilistic Turing machine is a type of nondeterministic Turing machine
with distinct states called coin-tossing states. For each coin-tossing state, the finite control
unit specifies two possible legal next states. The computation of a probabilistic Turing
machine is deterministic except that in coin-tossing states the machine tosses an unbiased
coin to decide between the two possible legal next states.

A probabilistic Turing machine can be viewed as a randomized Turing machine, as
described in Figure 1.3. The first tape, holding input, is just the same as conventional
multitape Turing machine. The second tape is referred to as random tape, containing ran-
domly and independently chosen bits, with probability 1/2 of a 0 and the same probability
1/2 of a 1. The third and subsequent tapes are used, if needed, as scratch tapes by the
Turing machine.

Definition 1.3 P is the class of problems solvable in polynomial-time by a deterministic
Turing machine (DTM). Problems in this class are classified to be tractable (feasible) and
easy to solve on a computer. For example, additions of any two integers, no matter how big
they are, can be performed in polynomial-time, and hence are is in P .

Definition 1.4 NP is the class of problems solvable in polynomial-time on a nondeter-
ministic Turing machine (NDTM). Problems in this class are classified to be intractable
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Easy

P

?

NP

?

NPC

Very Hard

Hard

Figure 1.4 The P Versus NP problem

(infeasible) and hard to solve on a computer. For example, the Traveling Salesman Problem
(TSP) is in NP , and hence it is hard to solve.

In terms of formal languages, we may also say that P is the class of languages where
the membership in the class can be decided in polynomial-time, whereas NP is the class
of languages where the membership in the class can be verified in polynomial-time. It
seems that the power of polynomial-time verifiable is greater than that of polynomial-time
decidable, but no proof has been given to support this statement (see Figure 1.4). The
question of whether or not P = NP is one of the greatest unsolved problems in computer
science and mathematics, and in fact it is one of the seven Millennium Prize Problems
proposed by the Clay Mathematics Institute in Boston in 2000, each with one-million US
dollars.

Definition 1.5 EXP is the class of problems solvable by a deterministic Turing machine
(DTM) in time bounded by 2ni

.

Definition 1.6 A function f is polynomial-time computable if for any input w, f (w) will
halt on a Turing machine in polynomial-time. A language A is polynomial-time reducible to
a langauge B, denoted by A ≤P B, if there exists a polynomial-time computable function
such that for every input w,

w ∈ A ⇐⇒ f (w) ∈ B.

The function f is called the polynomial-time reduction of A to B.
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Definition 1.7 A language/problem L is NP-complete, denoted by NPC, if it satisfies the
following two conditions:

(1) L ∈ NP ,
(2) ∀A ∈ NP , A ≤P L .

Definition 1.8 A problem D is NP-hard, denoted by NPH, if it satisfies the following
condition:

∀A ∈ NP, A ≤P D

where D may be in NP , or may not be in NP . Thus, NP-hard means at least as hard as
any NP-problem, although it might, in fact, be harder.

Definition 1.9 RP is the class of problems solvable in expected polynomial-time with one-
sided error by a probabilistic (randomized) Turing machine (PTM). By “one-sided error”
we mean that the machine will answer “yes” when the answer is “yes” with a probabil-
ity of error < 1/2, and will answer “no” when the answer is “no” with zero probability
of error.

Definition 1.10 ZPP is the class of problems solvable in expected polynomial-time with
zero error on a probabilistic Turing machine (PTM). It is defined by ZPP = RP ∩ co-RP ,
where co-RP is the complement of RP . By “zero error” we mean that the machine will
answer “yes” when the answer is “yes” (with zero probability of error), and will answer
“no” when the answer is “no” (also with zero probability of error). But note that the machine
may also answer “?”, which means that the machine does not know if the answer is “yes”
or “no.” However, it is guaranteed that in at most half of simulation cases the machine will
answer “?.” ZPP is usually referred to as an elite class, because it also equals to the class of
problems that can be solved by randomized algorithms that always give the correct answer
and run in expected polynomial-time.

Definition 1.11 BPP is the class of problems solvable in expected polynomial-time with
two-sided error on a probabilistic Turing machine (PTM), in which the answer always has
probability at least 1

2 + δ, for some fixed δ > 0 of being correct. The “B” in BPP stands for
“bounded away the error probability from 1

2 ”; for example, the error probability could be 1
3 .

It is widely believed, although no proof has been given, that problems in P are computa-
tionally tractable, whereas problems not in (beyond) P are computationally intractable. This
is the famous Cook–Karp thesis, named after Stephen Cook and Richard Karp:

The Cook–Karp thesis. Any computationally tractable problem can be computed by a
Turing machine in deterministic polynomial-time.
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Figure 1.5 Conjectured relationships among classes P ,
NP and NPC, etc.

Thus, problems in P are tractable whereas problems in NP are intractable. However, there
is not a clear cut line between the two types of problems. This is exactly the P versus NP
problem, mentioned earlier.

Similarly, one can define the classes of problems of P-Space, NP-Space, P-Space Com-
plete, and P-Space Hard. We shall use NPC to denote the set of NP-Complete problems,
PSC the set ofP-Space Complete problems,NPH the set ofNP-Hard problems, andPSH
the set of P-Space Hard problems. The relationships among the classes P , NP , NPC, PSC,
NPH, PSH, and EXP may be described as in Figure 1.5.

It is clear that a time class is included in the corresponding space class since one unit is
needed for the space by one square. Although it is not known whether or not P = NP , it is
known that PSPACE = NPSPACE . It is generally believed that

P ⊆ ZPP ⊆ RP ⊆
(BPP

NP
)
⊆ PSPACE ⊆ EXP . (1.15)

Besides the proper inclusion P ⊂ EXP , it is not known whether any of the other inclusions
in the above hierarchy is proper. Note that the relationship of BPP and NP is not known,
although it is believed that NP �⊆ BPP .
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Problems for Section 1.2

1. Explain why the Church–Turing thesis cannot be proved to be true.
2. Explain why, if any one of the problems in NPC can be solved in P , then all the

problems in NP can be solved in P .
3. Show that PSPACE = NPSPACE .
4. Prove or disprove P �= NP .
5. In number theoretic computation, it is reasonable to measure how many bit operations a

number theoretic algorithm requires, rather than just how many arithmetic operation it
requires. Let a and b both have β (or at least one of them has β) bits. Show that the bit
operations for the multiplication of two β numbers can be as follows:
1. O(β2) if an ordinary method is used;
2. O(β log2 3) if a simple divide-and-conquer method is used;
3. O(β log β log log β) = O(β1+ε) if a fast method (e.g., Fourier transforms) is used.

6. Show that the addition, subtraction, and division of two integers can be done in
polynomial-time.

7. Show that the polynomial factorization (not integer factorization) can be done in
polynomial-time.

8. Show that matrix multiplications can be done in polynomial-time.

1.3 What is Computational Number Theory?

Computational number theory is a new branch of mathematics. Informally, it can be regarded
as a combined and disciplinary subject of number theory and computer science, particu-
larly computation theory, including the theory of classical electronic computing, quantum
computing, and biological computing:

Computational Number Theory := Number Theory ⊕ Computation Theory
⇓ ⇓ ⇓

Primality Testing Elementary Number Theory Computability Theory
Integer Factorization Algebraic Number Theory Complexity Theory
Discrete Logarithms Combinatorial Number Theory Infeasibility Theory
Elliptic Curves Analytic Number Theory Computer Algorithms
Conjecture Verification Arithmetic Algebraic Geometry Computer Architectures
Theorem Proving Probabilistic Number Theory Quantum Computing

Applied Number Theory Biological Computing
...

...
...

Basically, any topic in number theory where computation plays a central role can be regarded
as a topic in computational number theory. Computational number theory aims at either using
computing techniques to solve number-theoretic problems, or using number-theoretic tech-
niques to solve computer science problems. We concentrate in this book on using computing
techniques to solve number-theoretic problems that have connections and applications in
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modern public-key cryptography. Typical questions or problems in this category of compu-
tational number theory include:

1. Primality Testing Problem (PTP). PTP can be formally defined as follows:

PTP
def=

⎧⎪⎪⎨⎪⎪⎩
Input : n > 1

Output :

{
Yes : n ∈ Primes

No : Otherwise

(1.16)

Theoretically speaking, PTP can be solved in polynomial-time, that is, PTP can be solved
efficiently on a computer. However, it may still be difficult to decide whether or not a
large number is prime. Call a number a Mersenne prime if it is of the form

Mp = 2p − 1 (1.17)

where p is prime and 2p − 1 is also prime. To date, only 47 such p have been found (see
Table 1.4); the first 4 were found 2500 years ago. Note that 243112609 − 1 is not only the
largest known Mersenne prime, but also the largest known prime in the world to date. The

Table 1.4 The 47 known Mersenne primes Mp = 2p − 1

No p Digits(Mp) Time No p Digits(Mp) Time

1 2 1 – 2 3 1 –
3 5 2 – 4 7 3 –
5 13 4 1461 6 17 6 1588
7 19 6 1588 8 31 10 1750
9 61 19 1883 10 89 27 1911

11 107 33 1913 12 127 39 1876
13 521 157 1952 14 607 183 1952
15 1279 386 1952 16 2203 664 1952
17 2281 687 1952 18 3217 969 1957
19 4253 1281 1961 20 4423 1332 1961
21 9689 2917 1963 22 9941 2993 1963
23 11213 3376 1963 24 19937 6002 1971
25 21701 6533 1978 26 23209 6987 1979
27 44497 13395 1979 28 86243 25962 1982
29 110503 33265 1988 30 132049 39751 1983
31 216091 65050 1985 32 756839 227832 1992
33 859433 258716 1994 34 1257787 378632 1996
35 1398269 420921 1996 36 2976221 895932 1997
37 3021377 909526 1998 38 6972593 2098960 1999
39 13466917 4053946 2001 40 20996011 6320430 2003
41 24036583 7235733 2004 42 25964951 7816230 2005
43 30402457 9152052 2005 44 32582657 9808358 2006
45 37156667 11185272 2008 46 42643801 12837064 2009
47 43112609 12978189 2008 48 ? ? ?
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search for the largest Mersenne prime and/or the largest prime has always been a hot topic
in computational number theory. EFF (Electronic Frontier Foundation) has offered in total
550 000 US dollars to the first individual or organization who can find the following large
primes:

Prizes Conditions for the New Primes

$50000 at least 1000000 digits
$100000 at least 10000000 digits
$150000 at least 100000000 digits
$250000 at least 1000000000 digits

The first prize was claimed by Nayan Hajratwala in Michigan in 1996, who found the
38th Mersenne prime 26972593 − 1 with 2098960 digits, the second prize was claimed by
Edson Smith at UCLA in 2008, who found the 46th Mersenne prime 242643801 − 1 with
12837064 digits. The remaining two prizes remain unclaimed. Of course, we still do not
know if there are infinitely many Mersenne primes.

2. Integer Factorization Problem (IFP). IFP can be formally defined as follows:

IFP
def=
{

Input : n > 1

Output : a | n, 1 < a < n.
(1.18)

The IFP assumption is that given the positive integer n > 1, it is hard to find its nontrivial
factor(s), that is,

{n = ab} hard−→ {a, 1 < a < n}.

Note that in IFP, we aim at finding just one nontrivial factor a (not necessarily a prime
factor) of n. The Fundamental Theorem of Arithmetic asserts that any positive integer
n > 1 can be uniquely written into the following standard prime factorization form:

n = pα1
1 pα2

2 · · · pαk
k , (1.19)

where p1 < p2 < · · · < pk are primes, and α1, α2, · · · , αk are positive integers. Clearly,
recursively performing the operations of primality testing and integer factorization, n can
be eventually written in its standard prime factorization form, say, if we wish to factor
123457913315, the recursive process can be shown in Figure 1.6. So, if we define the
Prime Factorization Problem (PFP) as follows:

PFP
def=
{

Input : n > 1

Output : pα1
1 , pα2

2 , · · · , pαk
k

(1.20)

then

PFP
def= PTP⊕ IFP.
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123457913315

187 660202745

11 17 5 132040549

Figure 1.6 Prime factorization
of 123457913315

Although PTP can be solved efficiently in polynomial-time, IFP cannot be solved in
polynomial-time. Finding polynomial-time factoring algorithms is one of the most im-
portant research topics in computational number theory. At present, no polynomial-time
algorithm for factoring has been found and no one has yet proved that such an algorithm
exists. The current world record for integer factorization is the RSA-768 (a number with
768 bits and 232 digits):

123018668453011775513049495838496272077285356959533479219732245
215172640050726365751874520219978646938995647494277406384592519
255732630345373154826850791702612214291346167042921431160222124
0479274737794080665351419597459856902143413
=
33478071698956898786044169848212690817704794983713768568912431
388982883793878002287614711652531743087737814467999489
×
3674604366679959042824463379962795263227 9158164343087642676032
283815739666511279 233373417143396810270092798736308917.

It was factored on 9 Dec 2009. The factoring process requires about 1020 operations and
would need about 2000 years of computation on a single core 2.2 GHz AMD Opteron.

3. Discrete Logarithm Problem (DLP). According to historical records, logarithms over the
set of real numbers R were first invented in the 16th century by the Scottish mathematician
John Napier (1550–1617). We define k to be the logarithm to the base x of y

k = logx y (1.21)

if and only if

xk = y. (1.22)

So the Logarithm Problem (LP) over R may be defined as follows:

LP
def=
{

Input : x, y

Output : k such that y = xk .
(1.23)
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For example, log3 19683 = 9, since 39 = 19683. LP over R is easy to solve, since

logx y = ln y

ln x
(1.24)

where the natural logarithms can be calculated efficiently by the following formula (of
course, depending on their accuracy):

ln x =
∞∑

n=1

(−1)n+1 (x − 1)n

n
. (1.25)

For example,

log2 5 = ln 5

ln 2
≈ 1.609437912

0.692147106
≈ 2.321928095.

We can always get a result at certain level of accuracy. The Discrete Logarithm Problem
over the multiplicative group Z∗n , discussed in this book, is completely different from the
traditional one we just discussed. Let

Z∗n = {a : 1 ≤ a ≤ n, gcd(a, n) = 1}, x ∈ Z∗n. (1.26)

DLP may be defined as follows:

DLP
def=
{

Input : x, n, y

Output : k such that y ≡ xk (mod n).
(1.27)

The DLP assumption is that

{x, n, y ≡ xk (mod n)} hard−→ {k}.

The following are some small and simple examples of DLP:

log3 57 ≡ k (mod 1009) =⇒ k does not exist;

log11 57 ≡ k (mod 1009) =⇒ k = 375;

log3 20 ≡ k (mod 1009) =⇒ k = {165, 333, 501, 669, 837, 1005}.

As can be seen, in the first example, the required discrete logarithm does not exist, whereas
in the last example, the required discrete logarithms are not unique. In what follows, we
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give a somewhat larger example of DLP: Let

p = (739 · 7149 − 736)/3,
7a ≡ 127402180119973946824269244334322849749382042586931621654

557735290322914679095998681860978813046595166455458144280
588076766033781 (mod p),

7b ≡ 180162285287453102444782834836799895015967046695346697313
025121734059953772058475958176910625380692101651848662362
137934026803049 (mod p).

Find 7ab. To compute 7ab, we need either to find a from 7a mod p or b from 7b mod p,
so that we can calculate 7ab = (7a)b = (7b)a . This problem was proposed by McCurley
in 1990 and solved by Weber in 1998. The answer to 7ab is:

7ab = 381272804111900141380783915079296341939986435510186702850
563756150455239669294039221021725140532709288726394263700
63532797740808.

It is obtained by first finding

a = 618586908596518832735933316520379042679876430695217134591
462221849525998156144877820757492182909777408338791850457
946749734 (mod p − 1).

4. Elliptic Curve Discrete Logarithm Problem (ECDLP). Elliptic Curve Discrete Log-
arithm Problem (ECDLP) is a very natural generalization of the Discrete Logarithm
Problem (DLP) from multiplication group Z∗n to the elliptic curve groups E(Q), E(Zn),
or E(Fp). Let E be an elliptic curve

E : y2 = x3 + ax + b (1.28)

over a field K, denoted by E\K. A straight line (nonvertical) L connecting points P and
Q intersects the elliptic curve E at a third point R, and the point P ⊕ Q is the reflection
of R in the X -axis. That is, if R = (x3, y3), then P ⊕ Q = (x3,−y3) is the reflection of
R in the X -axis. Note that a vertical line, such as L ′ or L ′′, meets the curve at two points
(not necessarily distinct), and also at the point at infinity OE (we may think of the point at
infinity as lying far off in the direction of the Y -axis). The line at infinity meets the curve
at the point OE three times. Of course, the nonvertical line meets the curve at three points
in the XY plane. Thus, every line meets the curve at three points. The algebraic formula
for computing P3(x3, y3) = P1(x1, y1)+ P2(x2, y2) on E is as follows:

(x3, y3) = (λ2 − x1 − x2, λ(x1 − x3)− y1), (1.29)

where

λ =

⎧⎪⎪⎨⎪⎪⎩
3x2

1 + a

2y1
if P1 = P2

y2 − y1

x2 − x1
otherwise.

(1.30)
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Given E and P ∈ E , it is easy to find Q = k P , which is of course also in E . For example,
to compute Q = 105P , we first let

k = 105 = (1101001)2

and then perform the operations as follows:

1: Q ← P + 2Q ⇒ Q ← P ⇒ Q = P
1: Q ← P + 2Q ⇒ c ← P + 2P ⇒ Q = 3P
0: Q ← 2Q ⇒ Q ← 2(P + 2P) ⇒ Q = 6P
1: Q ← P + 2Q ⇒ Q ← P + 2(2(P + 2P)) ⇒ Q = 13P
0: Q ← 2Q ⇒ Q ← 2(P + 2(2(P + 2P))) ⇒ Q = 26P
0: Q ← 2Q ⇒ Q ← 2(2(P + 2(2(P + 2P)))) ⇒ Q = 52P
1: Q ← P + 2Q ⇒ Q ← P + 2(2(2(P + 2(2(P + 2P))))) ⇒ Q = 105P .

This gives the required result Q = P + 2(2(2(P + 2(2(P + 2P))))) = 105P . As can be
seen, given (E\K, k, P) it is easy to compute

Q = k P. (1.31)

However, it is hard to find k given (E\K, P, Q). This is the Elliptic Curve Discrete
Logarithm Problem (ECDLP), which may be formally defined as follows (let E be an
elliptic curve over finite field Fp):

ECDLP
def=
{

Input : E\Fp, (P, Q) ∈ E(Fp)

Output : k > 1 such that Q ≡ k P (mod p).
(1.32)

The ECDLP assumption asserts that

{(P, Q ≡ k P (mod p)) ∈ E(Fp)} hard−→ {k}.

Suppose that we are given

(190, 271) ≡ k(1, 237) (mod1009)

with

E : y2 ≡ x3 + 71x + 602 (mod1009)

then it is easy to find

k = 419

since the finite field Fp is small. However, when the finite field is large, such as

Q(xQ, yQ) ≡ k P(xP , yP ) (mod p)
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Table 1.5 Some Certicom ECDLP challenge problems

Curves Bits Operations Prizes (US Dollars) Status

ECCp-97 97 3.0 · 1014 $5000 1998
ECCp-109 109 2.1 · 1016 $10 000 2002

ECCp-131 131 3.5× 1019 $20 000 ?
ECCp-163 163 2.4× 1024 $30 000 ?
ECCp-191 191 4.9× 1028 $40 000 ?
ECCp-239 239 8.2× 1035 $50 000 ?
ECC2p-359 359 9.6× 1053 $100 000 ?

on E\Fp, where

p = 1550031797834347859248576414813139942411,
a = 1399267573763578815877905235971153316710,
b = 1009296542191532464076260367525816293976,
xP = 1317953763239595888465524145589872695690,
yP = 434829348619031278460656303481105428081,
xQ = 1247392211317907151303247721489640699240,
yQ = 207534858442090452193999571026315995117.

In this case, it is very hard to find k. Certicom Canada offered 20000 US dollars to the first
individual or organization to find the correct value of k. More Certicom prize problems,
along with this line, may be found in Table 1.5 (the above-mentioned $20000 prize curve
corresponds to ECCp-131, as p has 131-bits in this example):

5. The Root Finding Problem (RFP). The k-th Root Finding Problem (RFP), or RFP for
short, may be defined as follows:

kRFP
def= {k, N , y ≡ xk (mod N )} find−→ {x ≡ k

√
y (mod N )}. (1.33)

If the prime factorization of N is known, one can compute the Euler function φ(N ) and
solve the linear Diophantine equation ku − φ(N )v = 1 in u and v, and the computation
x ≡ yu (mod N ) gives the required value. Thus, if IFP can be solved in polynomial-time,
then RFP can also be solved in polynomial-time:

IFP
P=⇒ RFP.

The security of RSA relies on the intractability of IFP, and also on RFP; if any one of the
problems can be solved in polynomial-time, RSA can be broken in polynomial-time.

6. The Square Root Problem (SQRT) Let y ∈ QRN , where QRN denotes the set of
quadratic residues modulo N , which should be introduced later. The SQRT Problem
is to find an x such that

x2 ≡ y (mod N ) or x ≡ √y (mod N ). (1.34)

That is,

SQRT
def= {N ∈ Z+>1, y ∈ QRN , y ≡ x2 (mod N )} find−→ {x}. (1.35)
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When N is prime, the SQRT Problem can be solved in polynomial-time. However, when
N is composite one needs to factor N first. Thus, if IFP can be solved in polynomial-time,
SQRT can also be solved in polynomial-time:

IFP
P=⇒ SQRT.

On the other hand, if SQRT can be solved in polynomial-time, IFP can also be solved in
polynomial-time:

SQRT
P=⇒ IFP.

That is,

SQRT
P⇐⇒ IFP.

It is precisely this intractability of SQRT Problem that Rabin used to construct his cryp-
tosystem in 1979.

7. Modular Polynomial Root Finding Problem (MPRFP). It is easy to compute the integer
roots of a polynomial in one variable over Z:

p(x) = 0 (1.36)

but the following Modular Polynomial Root Finding Problem (MPRFP), or the MPRFP
for short, can be hard:

p(x) ≡ 0 (mod N ), (1.37)

which aims at finding integer roots (solutions) of the modular polynomial in one variable.
This problem can, of course, be extended to find integer roots (solutions) of the modular
polynomial in several variables as follows:

p(x, y, · · ·) ≡ 0 (mod N ). (1.38)

Coppersmith, in 1997, developed a powerful method to find all small solutions x0 of
the modular polynomial equations in one or two variables of degree δ using the lattice
reduction algorithm LLL (we shall discuss Coppersmith’s method later). Of course, for
LLL to be run in a reasonable amount of time for finding such x0’s, the values of δ cannot
be large.

8. The Quadratic Residuosity Problem (QRP). Let N ∈ Z+>1, gcd(y, N ) = 1. Then y is a
quadratic residue modulo N , denoted by y ∈ QRN, if the quadratic congruence

x2 ≡ y (mod N ), (1.39)

has a solution in x . If the congruence has no solution in x , then y is a quadratic nonresidue
modulo N , denoted by y ∈ QRN . The Quadratic Residuosity Problem (QRP), or QRP for
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short, is to decide whether or not y ∈ QRN :

QRP
def= {n ∈ Z+>1, x2 ≡ y (mod N )} decide−−−−→ {y ∈ QRN }. (1.40)

If N is prime, or the prime factorization of N is known, then QRP can be solved simply
by evaluating the Legendre symbol L(y, N ). If n is not a prime then one evaluates
the Jacobi symbol J (y, N ) which, unfortunately, does not reveal if y ∈ QRN , that is,
J (y, N ) = 1 does not imply y ∈ QRN (it does if N is prime). For example, L(15, 17) = 1,
so x2 ≡ 15 (mod 17) is soluble, with x = ±21 being the two solutions. However, although
J (17, 21) = 1 there is no solution for x2 ≡ 17 (mod 21). Thus, when N is composite, the
only way to decide whether or not y ∈ QRN is to factor N . Thus, if IFP can be solved in
polynomial-time, QRP can also be solved in polynomial-time:

IFP
P=⇒ QRP.

The security of the Goldwasser–Micali probabilistic encryption scheme is based on the
intractability of QRP.

9. Shortest Vector Problem (SVP). Problems related to lattices are also often hard to solve.
Let Rn denote the space of n-dimensional real vectors a = {a1, a2, · · · , an}with usual dot
product a · b and Euclidean Norm or length ||a|| = (a · a)1/2. Zn is the set of vectors in
Rn with integer coordinates. If A = {a1, a2, · · · , an} is a set of linear independent vectors
in Rn , then the set of vectors{

n∑
i=1

ki ai : k1, k2, · · · , kn ∈ Z

}
(1.41)

is a lattice in Rn , denoted by L(A) or L(a1, a2, · · · , an). A is called a basis of the lattice. A
set of vectors in Rn is a n-dimensional lattice if there is a basis V of n linear independent
vectors such that L = L(V ). If A = {a1, a2, · · · , an} is a set of vectors in a lattice L ,
then the length of the set A is defined by max(||ai ||). A fundamental theorem, due to
Minkowski, is as follows.

Theorem 1.1 (Minkowski) There is a universal constant γ , such that for any lattice L
of dimension n, ∃v ∈ L , v �= 0, such that

||v|| = γ
√

n det (L)1/n. (1.42)

The determinant det(L) of a lattice is the volume of the n-dimensional fundamental
parallelepiped, and the absolute constant γ is known as Hermite’s constant.

A natural problem concerned with lattices is the Shortest Vector Problem (SVP), or the
SVP for short:

Find the shortest nonzero vector in a high dimensional lattice.
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Minkowski’s theorem is just an existence-type theorem and offers no clue on how to find
a short or the shortest nonzero vector in a high dimensional lattice. There is no efficient
algorithm for finding the shortest nonzero vector, or finding an approximate short nonzero
vector. The lattice reduction algorithm LLL can be used to find short vectors, but it is
not effective in finding short vectors when the dimension n is large, say, for example,
n ≥ 100. This allows lattices to be used in the design of cryptographic systems and in fact,
several cryptographic systems, such as NTRU and the Ajtai–Dwork system, are based on
the intractability of finding the shortest nonzero vector in a high dimensional lattice.

In this book, we are more interested in those number-theoretic problems that are com-
putationally intractable, since the security of modern public-key cryptography relies on the
intractability of these problems. A problem is computationally intractable if it cannot be
solved in polynomial-time. Thus, from a computational complexity point of view, any prob-
lem beyond P is intractable. There are, however, different types of intractable problems
(see Figure 1.7).

(1) Provable intractable problems: Problems that are Turing computable but can be shown
in PS (P-Space), NPS (NP-Space), EXP (exponential time) and so on, of course
outside NP , are provably and certainly intractable. Note that although we do not know
if P = NPS , we know PS = NPS .

(modular exponentiation)

EXP

NP

Presumably intractable

Conjectured intractable
(IFP)

Tractable

Computable

PS = NPS

P
P ?

= NP

(TSP)

Provably intractable

Figure 1.7 Tractable and intractable problems
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(2) Presumably intractable problems: Problems in NP but outside of P , particularly those
problems in NPC (NP-complete) such as the Traveling Salesman Problem, the Knap-
sack Problem, and the Satisfiability Problem, are presumably intractable, since we do
not know whether or not P = NP . If P = NP , then all problems in NP will no longer
be intractable. However, it is more likely that P �= NP . From a cryptographic point of
view, it would be nice if encryption schemes could be designed to be based on some
NP-complete problems, since these types of schemes can be difficult to break. Expe-
rience, however, tells us that very few encryption schemes are based on NP-complete
problems.

(3) Conjectured intractable problems: By conjectured intractable problems we mean that the
problems are currently in NP-complete, but no-one can prove they must be in NP-
complete; they may be inP if efficient algorithms are invented for solving these problems.
Typical problems in this category include the Integer Factorization Problem (IFP), the
Discrete Logarithm Problem (DLP), and the Elliptic Curve Discrete Logarithm Problem
(ECDLP). Again, from a cryptographic point of view, we are more interested in this type
of intractable problem and, in fact, the IFP, DLP, and ECDLP are essentially the only
three intractable problems that are practical and widely used in commercial cryptography.
For example, the most famous and widely used RSA cryptographic system relies for its
security on the intractability of the IFP problem.

The difference between the presumably intractable problems and the conjectured in-
tractable problems is important and should not be confused. For example, both TSP and
IFP are intractable, but the difference between TSP and IFP is that TSP has been proved
to be NP-complete whereas IFP is only conjectured to be NP-complete. IFP may be
NP-complete, but also may not be NP-complete.

Finally, we present a complexity measure of number-theoretic problems in big-O notation.

Definition 1.12 Let

f, g : Z+ → R. (1.43)

Define

f = O(g) (1.44)

if there exists c ∈ R>0 with

| f (n)| ≤ cg(n), for all n. (1.45)

Definition 1.13 Let

Ln(α, c) = exp(c(log n)α(log log n)1−α), (1.46)

where α ∈ [0, 1], c ∈ R>0.
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(1) If a problem can be solved by an algorithm in expected running time

T (n) = O(Ln(0, c)), (1.47)

then the algorithm is polynomial-time algorithm (or efficient algorithm), and the corre-
sponding problem is an easy problem (i.e., the problem can be solved easily).

It is also often the case thatO((log n)k) is used with k constant to represent polynomial-
time complexity. For example, the multiplication of two log n-bit numbers by ordinary
method takes time O((log n)2), the fastest known multiplication method has a running
time of

O(log n log log n log log log n) = O((log n)1+ε).

(2) If a problem can be solved by an algorithm in expected running time

T (n) = O(Ln(1, c)), (1.48)

then the algorithm is an exponential-time algorithm (or an inefficient algorithm), and the
corresponding problem is a hard problem (i.e., the problem is hard to solve).

Note that since log n is the length of input,O((log n)12) is polynomial-time complexity,
whereas O((n)0.1) is not, since O((n)0.1) = O(20.1 log n), an exponential complexity.

(3) An algorithm is of subexponential-time complexity if

T (n) = O(Ln(α, c)), 0 < α < 1. (1.49)

Subexponential-time complexity is an important and interesting class between the two
extremes, and in fact, many of the number theoretic algorithms discussed in this book,
such as the algorithms for integer factorization and discrete logarithms, fall into this
special class, which is slower than polynomial-time but faster than exponential-time.

Subexponential-time complexity is an important complexity class in computational
number theory and, in fact, the best algorithms for IFP and DLP run in subexponential-
time. For ECDLP, we even do not have a subexponential-time algorithm.

Problems for Section 1.3

1. Prove or disprove that
(1) there are infinitely many Mersenne prime numbers;
(2) there are infinitely many Mersenne composite numbers.

Find the 48th Mersenne prime.
2. What is the difference between the Integer Factorization Problem and the Prime Factor-

ization Problem?
3. What is the difference between the Discrete Logarithm Problem and the Elliptic Discrete

Logarithm Problem.
4. Show that solving the Square Root Problem is equivalent to that of the Integer Factor-

ization Problem.
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5. Show that solving the Quadratic Residuosity Problem is equivalent to that of the Integer
Factorization Problem.

6. Find all the prime factors of the following numbers:
(1) 11111111111 (the number consisting of eleven 1)
(2) 111111111111 (the number consisting of twelve 1)
(3) 1111111111111 (the number consisting of thirteen 1)
(4) 11111111111111 (the number consisting of fourteen 1)
(5) 111111111111111 (the number consisting of fifteen 1)
(6) 1111111111111111 (the number consisting of sixteen 1)
(7) 11111111111111111 (the number consisting of seventeen 1)
(8) Can you find any pattern for the prime factorization of the above numbers?

7. Do you think the Integer Factorization Problem, or more generally the Prime Factoriza-
tion Problem, are hard to solve? Justify your answer.

8. Can you find some problems that have similar properties or difficulties to the Integer
Factorization Problem (we shall explain this in detail in the next section)?

9. Find the discrete logarithm k

k ≡ log2 3 (mod 11)

such that

2k ≡ 3 (mod 11),

and the discrete logarithm k

k ≡ log123456789 962 (mod 9876543211)

such that

123456789k ≡ 962 (mod 9876543211).

10. Find the square root y

y ≡
√

3 (mod 11)

such that

y2 ≡ 3 (mod 11),

and the square root y

y ≡
√

123456789 (mod 987654321)

such that

y2 ≡ 123456789 (mod 987654321).
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1.4 What is Modern Cryptography?

Cryptography, one of the main topics of this book, is the art and science of secure data com-
munications over insecure channels. It is a very old subject, as old as our human civilization.
The basic scenario of cryptography is that Alice wishes to send a message M to Bob over
the insecure public channel, but Eve can eavesdrop on the communications from the public
channel:

Alice
Sends Message M−−−−−−−−−−−−−−→ Bob�⏐⏐⏐�

Eve

(Eve can easily get M)

To stop Eve to reading/understanding the message M (note that no one can stop Even
eavesdroping M), Alice first encrypts the plaintext M to ciphertext C , and then sends C to
Bob:

Alice
Sends ciphertext C of M−−−−−−−−−−−−−−−−→ Bob�⏐⏐⏐�

Eve

(Eve cannot easily recover M from C)

As we just mentioned, cryptography is an old subject, and in fact it has at least 5000 years
of history, however, in this book we are more interested in modern cryptography. By modern
cryptography, we mean the cryptography studied and invented mainly after the 1970s. Often
these types of cryptography are based on advanced and sophisticated mathematics, so we call
it mathematical cryptography. More specifically, we call it number-theoretic cryptography
if its construction and security are based on the concepts and results in number theory.
Of course, modern cryptography may also be based on, say for example, quantum physics
and molecular biology, in which case, we may call it quantum cryptography, or biological
(DNA) cryptography. Traditionally, cryptography is meant to be secret-key cryptography,
in which the encryption and decryption use the same key. By the same key, we mean the
encryption key, say, e and the decryption key, say d are polynomial-time computable. That
is, given e, d = 1/e can be computed easily in polynomial-time. In other words, e and d
are polynomial-time equivalent but not physically equivalent. In public-key cryptography,
however, e and d are different, as given e, d = 1/e cannot be computed in polynomial-time.
Of course, they can be computed in exponential-time. So, in public-key cryptography, e
and d are not polynomial-time equivalent. Other significant difference between secret-key
cryptography and public-key cryptography is that public-key cryptography is normally not
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cryptography

Cryptography

Mathematical Physical

cryptography cryptography cryptography

Biological

Secret-key Public-key Digital

cryptography signatures

Figure 1.8 Types of cryptography

only useful for encryption, but is also useful for digital signatures. Figure 1.8 shows the
types of cryptography and the relationships among the different types of cryptography.

Now let us take RSA as an example to illustrate the classification of different type of
cryptography. First of all, RSA is a type of mathematical cryptography, more specifically it is
a type of number-theoretic cryptography, as its construction and security are all based on the
infeasible number-theoretic problem – the Integer Factorization Problem. Secondly, RSA is
public-key cryptography and, in fact, it is the first practical, widely used, and still unbreakable
public-key cryptography and was invented in 1977 by Rivet, Shamir, and Adleman, then all
at MIT. Let M be a plaintext message. To encrypt the M , one computes

C ≡ Me (mod n), (1.50)

where e is the encryption key, and both e and n are public. (The notation a ≡ b (mod n)
reads “a is congruent to b modulo n.” Congruences will be studied in detail in Section 2.4.)
To decrypt the encrypted message C , one computes

M ≡ Cd (mod n), (1.51)

where d is the private decryption key satisfying

ed ≡ 1 (mod φ(n)), (1.52)

where φ(n) is Euler’s φ-function (φ(n), for n ≥ 1, is defined to be the number of positive
integers not exceeding n which are relatively prime to n; see Definition 2.31). By (1.52),
we have ed = 1+ kφ(n) for some integer k. By Euler’s theorem (see Theorem 2.112),
Mφ(n) ≡ 1 (mod n), we have Mkφ(n) ≡ 1 (mod n). Thus,

Cd ≡ Med ≡ M1+kφ(n) ≡ M (mod n). (1.53)
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For those who do not have the private key but can factor n, say for example, n = pq, they
can find d by computing

d ≡ e−1 (mod φ(n)) ≡ e−1 (mod (p − 1)(q − 1)), (1.54)

and hence, decrypt the message.
Remarkably enough, RSA can also be easily used to obtain digital signatures: Just use the

encryption key e and decryption key d in the opposite direction:

1. Signature generation;

S ≡ Md (mod n), (1.55)

where S is the digital signature, which can only be generated by the one who has the
private key d.

2. Signature verification;

M ≡ Se (mod n), (1.56)

Anyone can easily verify the signature S, as the verification key is the public key e.

Problems for Section 1.4

1. Why can secret-key cryptography not be used for obtaining digital signatures?
2. Can all the public-key cryptographic schemes be used for obtaining digital signatures?
3. In term of computational complexity, explain why d cannot be computed from e in

polynomial-time, given ed ≡ 1 (mod φ(n)) where n = pq with p, q prime numbers.
4. Explain why the security of RSA relies on the infeasibity of the prime factorization of the

modulus n.
5. Explain why RSA is only computationally unbreakable, not absolutely unbreakable.
6. Can the RSA encryption exponent e be 2? Justify your answer.
7. Modify RSA to allow e = 2.
8. Is RSA is unbreakable? Justify your answer.
9. Although the cryptographic schemes discussed this book are mainly based on the hard

number-theoretic probems, there are some other cryptographic schemes whose security
is based on some other difficult problems. Write essays on
(1) DNA-based cryptography
(2) chaos-based cryptography
(3) optical cryptography
(4) quantum cryptography.
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1.5 Bibliographic Notes and Further Reading

In this chapter, we have given a general picture of number theory, computation theory,
computational number theory, and modern number-theoretic cryptography, each of them in
their own right large, well-established, and important subjects.

For more information on number theory, readers may consult [1–3, 5–12, 14–23]. For more
information on computation theory, particularly computability, complexity, and infeasibiity,
see e.g., [24–39]. For more information on computational number theory, see for example,
[13, 14, 23, 27, 38, 40–50]. For more information on cryptography, it is suggested readers
consult [51–66].
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2
Fundamentals

In this chapter, we provide some basic concepts and results in elementary number theory that
shall be used throughout the book, including

� Basic algebraic structures
� Divisibility theory
� Congruence theory
� Theory of elliptic curves

2.1 Basic Algebraic Structures

Definition 2.1 A group, denoted by G, is a nonempty set G of elements together with
a binary operation ∗ (e.g., the ordinary addition or multiplication), such that the following
axioms are satisfied:

(1) Closure: a ∗ b ∈ G, ∀a, b ∈ G.
(2) Associativity: (a ∗ b) ∗ c = a ∗ (b ∗ c), ∀a, b, c ∈ G.

(3) Existence of identity: There is a unique element e ∈ G, called the identity, such that
e ∗ a = a ∗ e = a, ∀a ∈ G.

(4) Existence of inverse: For every a ∈ G there is a unique element b such that a ∗ b =
b ∗ a = e. This b is denoted by a−1 and called the inverse of a.

The group G is called a commutative group if it satisfies a further axiom:
(5) Commutativity: a ∗ b = b ∗ a, ∀a, b ∈ G.

A commutative group is also called an Abelian group, in honor of the Norwegian mathe-
matician N. H. Abel (1802–1829).

Example 2.1 The set of all positive integers (also called natural numbers), Z+, with
operation + is not a group, since there is no identity element for + in Z+. The set Z+ with
operation · is not a group; there is an identity element 1, but no inverse of 3.

Example 2.2 The set of all non-negative integers, Z≥0, with operation + is not a group;
there is an identity element 0, but no inverse for 2.
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Example 2.3 The sets Q+ and R+ of positive numbers and the sets Q∗, R∗ and C∗ of
nonzero numbers with operation · are Abelian groups.

Definition 2.2 If the binary operation of a group is denoted by +, then the identity of a
group is denoted by 0 and the inverse a by −a; this group is said to be an additive group. If
the binary operation of a group is denoted by ∗, then the identity of a group is denoted by 1
or e; this group is said to be a multiplicative group.

Definition 2.3 A group is called a finite group if it has a finite number of elements; otherwise
it is called an infinite group. The number of elements in G is called the order of G and is
denoted by |G| or #(G).

Example 2.4 The order of Z is infinite, that is, |Z| = ∞. However, the order of Z11 is
finite, since |Z11| = 11.

Definition 2.4 A nonempty set G ′ of a group G which is itself a group, under the same
operation, is called a subgroup of G.

Definition 2.5 Let a be an element of a multiplicative group G. The elements ar , where
r is an integer, form a subgroup of G, called the subgroup generated by a. A group G is
cyclic if there is an element a ∈ G such that the subgroup generated by a is the whole of
G. If G is a finite cyclic group with identity element e, the set of elements of G may be
written {e, a, a2, . . . , an−1}, where an = e and n is the smallest such positive integer. If G is
an infinite cyclic group, the set of elements may be written {. . . , a−2, a−1, e, a, a2, . . .}.

By making appropriate changes, a cyclic additive group can be defined. For example, the
set {0, 1, 2, . . . , n − 1} with addition modulo n is a cyclic group, and the set of all integers
with addition is an infinite cyclic group.

Example 2.5 The congruences modulo n form a group. If we take a + b ≡ c (mod 6), then
we get the following complete addition table for the additive group modulo 6 (see Table 2.1):

Table 2.1 Additive group modulo 6

⊕ 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4
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Definition 2.6 A ring, denoted by (R,⊕,�), or simply R, is a set of at least two elements
with two binary operations ⊕ and �, which we call addition and multiplication, defined on
R such that the following axioms are satisfied:

(1) The set is closed under the operation ⊕:

a ⊕ b ∈ R, ∀a, b ∈ R, (2.1)

(2) The associative law holds for ⊕:

a ⊕ (b ⊕ c) = (a ⊕ b)⊕ c, ∀a, b, c ∈ R, (2.2)

(3) The commutative law holds for ⊕:

a ⊕ b = b ⊕ a, ∀a, b ∈ R, (2.3)

(4) There is a special (zero) element 0 ∈ R, called the additive identity of R, such that

a ⊕ 0 = 0⊕ a = a, ∀a ∈ R, (2.4)

(5) For each a ∈ R, there is a corresponding element −a ∈ R, called the additive inverse of
a, such that:

a ⊕ (−a) = 0, ∀a ∈ R, (2.5)

(6) The set is closed under the operation �:

a � b ∈ R, ∀a, b ∈ R, (2.6)

(7) The associative law holds for �:

a � (b � c) = (a � b)� c, ∀a, b, c ∈ R, (2.7)

(8) The operation � is distributive with respect to ⊕:

a � (b ⊕ c) = a � b ⊕ a � c, ∀a, b, c ∈ R, (2.8)

(a ⊕ b)� c = a � c ⊕ b � c, ∀a, b, c ∈ R. (2.9)

From a group theoretic point of view, a ring is an Abelian group, with the additional
properties that the closure, associative, and distributive laws hold for �.

Example 2.6 (Z,⊕,�), (Q,⊕,�), (R,⊕,�), and (C,⊕,�) are all rings.



38 Computational Number Theory and Modern Cryptography

Definition 2.7 A commutative ring is a ring that further satisfies:

a � b = b � a, ∀a, b ∈ R. (2.10)

Definition 2.8 A ring with identity is a ring that contains an element 1 satisfying:

a � 1 = a = 1� a, ∀a ∈ R. (2.11)

Definition 2.9 An integral domain is a commutative ring with identity 1 �= 0 that satisfies:

a, b ∈ R & ab = 0 =⇒ a = 0 or b = 0. (2.12)

Definition 2.10 A division ring is a ring R with identity 1 �= 0 that satisfies:

for each a �= 0 ∈ R, the equations ax = 1 and xa = 1 have solutions in R.

Definition 2.11 A field, denoted by K , is a division ring with commutative multiplication.

Example 2.7 The integer set Z, with the usual addition and multiplication, forms a
commutative ring with identity, but is not a field.

It is clear that a field is a type of ring, which can be defined more generally as follows:

Definition 2.12 A field, denoted by (K ,⊕,�), or simply K , is a set of at least two elements
with two binary operations ⊕ and �, which we call addition and multiplication, defined on
K such that the following axioms are satisfied:

(1) The set is closed under the operation ⊕:

a ⊕ b ∈ K , ∀a, b ∈ K , (2.13)

(2) The associative law holds for ⊕:

a ⊕ (b ⊕ c) = (a ⊕ b)⊕ c, ∀a, b, c ∈ K , (2.14)

(3) The commutative law holds for ⊕:

a ⊕ b = b ⊕ a, ∀a, b ∈ K , (2.15)
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(4) There is a special (zero) element 0 ∈ K , called the additive identity of K , such that

a ⊕ 0 = 0⊕ a = a, ∀a ∈ K , (2.16)

(5) For each a ∈ K , there is a corresponding element −a ∈ K , called the additive inverse
of a, such that:

a ⊕ (−a) = 0, ∀a ∈ K , (2.17)

(6) The set is closed under the operation �:

a � b ∈ K , ∀a, b ∈ K , (2.18)

(7) The associative law holds for �:

a � (b � c) = (a � b)� c, ∀a, b, c ∈ K , (2.19)

(8) The operation � is distributive with respect to ⊕:

a � (b ⊕ c) = a � b ⊕ a � c, ∀a, b, c ∈ K , (2.20)

(a ⊕ b)� c = a � c ⊕ b � c, ∀a, b, c ∈ K . (2.21)

(9) There is an element 1 ∈ K , called the multiplicative identity of K , such that 1 �= 0 and

a � 1 = a, ∀a ∈ K , (2.22)

(10) For each nonzero element a ∈ K there is a corresponding element a−1 ∈ K , called the
multiplicative inverse of a, such that

a � a−1 = 1, (2.23)

(11) The commutative law holds for �:

a � b = b � a, ∀a, b ∈ K . (2.24)

Again, from a group theoretic point of view, a field is an Abelian group with respect
to addition and also the nonzero field elements form an Abelian group with respect to
multiplication.

Remark 2.1 An alternative definition of a field is:

If all the elements of a ring, other than the zero, form a commutative group under �, then it
is called a field.
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Commutative
rings

Integral domains

Fields
identity

Rings with

Figure 2.1 Containment of various rings

Example 2.8 The integer set Z, with the usual addition and multiplication, forms a
commutative ring with identity.

Figure 2.1 gives a Venn diagram view of containment for algebraic structures having two
binary operations.

Example 2.9 Familiar examples of fields are the set of rational numbers, Q, the set of real
numbers, R, and the set of complex numbers, C; since Q, R, and C are all infinite sets, they
are all infinite fields. The set of integers Z is a ring but not a field, since 2, for example, has
no multiplicative inverse; 2 is not a unit in Z. The only units (i.e., the invertible elements) in
Z are 1 and−1. Another example of a ring which is not a field is the set K [x] of polynomials
in x with coefficients belonging to a field K .

Theorem 2.1 Z/nZ is a field if and only if n is prime.

What this theorem says is that whenever n is prime, the set of congruence classes modulo
n forms a field. This prime field Z/pZ will be specifically denoted by Fp.

Definition 2.13 A finite field is a field that has a finite number of elements in it; we call the
number the order of the field.

The following fundamental result on finite fields was first proved by Évariste Galois
(1811–1832):

Theorem 2.2 There exists a field of order q if and only if q is a prime power (i.e., q = pr)
with p prime and r ∈ N. Moreover, if q is a prime power, then there is, up to relabelling,
only one field of that order.

A finite field of order q with q a prime power is often called a Galois field, and is denoted
by GF(q), or just Fq .
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Example 2.10 The finite field F5 has elements {0, 1, 2, 3, 4} and is described by the
following addition and multiplication tables (see Table 2.2):

Table 2.2 Addition and multiplication for F5

⊕ 0 1 2 3 4 � 0 1 2 3 4

0 0 1 2 3 4 0 0 0 0 0 0
1 1 2 3 4 0 0 1 1 2 3 4
2 2 3 4 0 1 0 2 2 4 1 3
3 3 4 0 1 2 0 3 3 1 4 2
4 4 0 1 2 3 0 4 4 3 2 1

Let F be a ring. A polynomial with coefficients in F is an expression

f (x) = an xn + an−1xn−1 + · · · + a1x + a0

where ai ∈ F for i = 0, 1, 2, . . . , n and x is a variable. The set of all polynomials f (x)
with coefficients in F is denoted by F[x]. In particular, if F is taken to be Zp, Z, Q,
R, or C, then the corresponding polynomial sets are denoted by Zp[x], Z[x], Q[x], R[x],
C[x], respectively. The degree of the polynomial f (x) = an xn + an−1xn−1 + · · · + a1x + a0

is n if an �= 0. an is called the leading coefficient, and if an = 1 then the polynomial is
called monic. Two polynomials f (x) and g(x) in F[x] are equal if they have the same
degree and all their coefficients are identical. If f (a) = 0, then a is called a root of f (x)
or zero of f (x). Two polynomials f (x) = am xm + am−1xm−1 + · · · + a1x + a0 and g(x) =
bn xn + bn−1xn−1 + · · · + b1x + b0, with n > m, can be added, subtracted, and multiplied as
follows:

f (x)± g(x) = (a0 ± b0)+ (a1 ± b1)x + · · · + (am ± bm)xm

+ bm+1xm+1 + · · · + bn xn

=
m∑

i=1

(ai ± bi )x
i +

n∑
j=m+1

b j x
j .

f (x)g(x) = a0b0 + (a0b1 + a1b0)x + · · · + ambn xm+n

=
m∑

i=0

n∑
j=0

ai b j x
i+ j .

Example 2.11 Let f (x) = 2x5 + x − 1 and g(x) = 3x2 + 2. Then

f (x)+ g(x) = 2x5 + 3x2 + x + 1,

f (x)− g(x) = 2x5 − 3x2 + x − 3.



42 Computational Number Theory and Modern Cryptography

Let f (x) = 1+ x − x2 and g(x) = 2+ x2 + x3. Then

f (x)g(x) = 2+ 2x − x2 + 2x3 − x5.

The division algorithm and Euclid’s algorithm for integers can be extended naturally to
polynomials.

Theorem 2.3 (Division algorithm for polynomials) Let F be a field, f (x) and p(x)
(p(x) �= 0) polynomials in F[x]. There are unique polynomials q(x) and r (x) such that

f (x) = p(x)q(x)+ r (x)

where either r (x) = 0 or deg(r (x)) < deg(p(x)).

Example 2.12 Let f (x) = 2x5 + x − 1 and p(x) = 3x2 + 2. Then

2x5 + x − 1 = (3x2 + 2)

(
2

3
x3 − 4

9
x

)
+
(
−1+ 17

9
x

)
in Q[x],

2x5 + x − 1 = (3x2 + 2)(3x3 + 5x)+ 5x + 6 in Z7[x].

Theorem 2.4 (Euclid’s algorithm for polynomials) Let f and g be nonzero polynomials
in F[x]. Euclid’s algorithm for polynomials runs in exactly the same way as that for integers

f = gq0 + r1

g = r1q1 + r2

r1 = r2q2 + r3

r2 = r3q3 + r4

...

rn−2 = rn−1qn−1 + rn

rn−1 = rnqn + 0

Then, gcd( f, g) = rn. Moreover, if d(x) is the greatest common divisor of f (x) and g(x),
then there are polynomials s(x) and t(x) such that

d(x) = s(x) f (x)+ t(x)g(x).

Example 2.13 Let

f (x) = x5 + x3 − x2 − 1,

g(x) = x3 + 3x2 + x + 3.
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Then

d(x) = x2 + 1,

s(x) = − 1

28
,

t(x) = 1

28
x2 − 3

28
x + 9

28
.

For polynomials, the analog to prime number is that of irreducible polynomials. A poly-
nomial f (x) of degree at least one in F[x] is called irreducible over F if it cannot be written
as a product of two nonconstant polynomials in F[x] of lower degree. For example, in
Q[x], f (x) = x2 + 1 is irreducible, since there is no factorization of f (x) into polynomials
both of degree less than 2 (of course, x2 + 1 = 1

2 (2x2 + 2), but 1
2 is unit in Q). x2 − 2 is

irreducible in Q[x] since it has no rational root. However, x2 − 2 is reducible in R[x] as
x2 − 2 = (x −√2)(x +√2). Factoring polynomials over rings with zero divisors can lead
to some strange behaviors. For example, in Z6, 3 is a zero divisor, not a unit, since 1/3 mod 6
does not exist. So if we consider the polynomial 3x + 3 in Z6[x], then we can factor it in
several ways

3x + 3 = 3(x + 1) = (2x + 1)(3x + 3) = (2x2 + 1)(3x + 3).

However, if F is a field, say for example, Z5, then 3x + 3 can be uniquely factored into
reducible polynomials in Z5[x].

Theorem 2.5 (Unique factorization in F[x]) Every nonconstant polynomial f (x) in F[x]
with F a field is the product of irreducible polynomials

f (x) = c
k∏

i=1

pi (x)

where c is the constant, pi (x) for i = 1, 2, . . . , k are irreducible polynomials in F[x].

Definition 2.14 Let θ be a complex number and

f (x) = an xn + an−1xn−1 + · · · + a1x + a0 ∈ Q[x]. (2.25)

If θ is the root of the polynomial f (x), then θ is called an algebraic number. If f (x) is
irreducible over Q and an �= 0, then θ is of degree n.

Example 2.14 i = √−1,
√

2 are the algebraic numbers of degree 2, since they are roots of
the polynomials x2 + 1 and x2 − 2, whereas 5

√
3 is an algebraic number with degree 5, since

it is the root of the polynomial x5 − 3.
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Every rational number is an algebraic number since a
b is the root of the linear polynomial

x − a
b ∈ Q[x]. The set of all algebraic numbers is a field with respect to the operations of

complex addition and multiplication. In particular, if α and β are algebraic numbers, then
α + β, α − β, and α

β
with β > 0 are all algebraic numbers.

Requiring a number to be a root of a polynomial with rational coefficients is the same as
asking for it to be a root of a polynomial with integer coefficients. The rational number a

b
is the root of bx − a ∈ Z[x] as well as of x − a

b ∈ Q[x]. So every algebraic number α is a
root of the same polynomial

f (x) = an xn + an−1xn−1 + · · · + a1x + a0 ∈ Z[x]. (2.26)

If the leading coefficient of f (x) ∈ Z[x] is 1 (i.e., an = 1), then α is an algebraic integer.

Example 2.15
√

2, −1+√−3
2 and

√
7+√11 are algebraic integers. Every ordinary

integer a is an algebraic integer since it is a root of x − a ∈ Z[x].

Let a, b ∈ Z, then a + bi is an algebra integer of degree 2 as it is the root of x2 − 2ax +
(a2 + b2). The set of all a + bi is denoted by Z[i] and is called a Gaussian integer. Similarly,
the elements in set Z are called rational integers, In Z, the numbers 2, 3, 5, 7, 11, 13, 17 are
primes. However, in Z[i], the numbers 2, 5, 13, 17 are not primes, since

2 = (1+ i)(1− i)

5 = (2+ i)(2− i) = (1+ 2i)(1− 2i) = −i(2+ i)(1− 2i)

13 = (3+ 2i)(3− 2i)

17 = (4+ i)(4− i)

In fact, any prime in Z of the form p ≡ 1 (mod 4) can always be factored into the form
−i(a + bi)(b + ai). To distinguish these, we call the primes in Z rational primes, and
primes in Z[i] Gaussian primes. Also we define the norm of a + b

√
m to be N (a + b

√
m) =

a2 + mb2, so N (−22+ 19i) = 845.
Every algebraic integer is an algebraic number, but not vice versa.

Definition 2.15 Let α be algebraic over a field F . The unique, monic, irreducible polynomial
f in F[x] with α as a zero is called minimal polynomial of α over F . The degree of α over
F is defined to be the degree of f . For example, the minimal polynomial 3

√
2 ∈ Q( 3

√
2) over

Q is x3 − 2.

Theorem 2.6 An algebraic number is an algebraic integer if and only if its minimal
polynomial has integer coefficients.

Example 2.16 The number 3

√
5
7 is an algebraic number but not an algebraic integer since

its minimal polynomial is x3 − 5
7 .
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Remark 2.2 The elements of Z are the only rational numbers that are algebraic integers,
since a

b has minimal polynomial x − a
b and this only has integer coefficients if a

b ∈ Z.

Theorem 2.7 The set of algebraic numbers forms a field, and the set of algebraic integers
forms a ring.

Problems for Section 2.1

1. Let G = {a, b, c, d, e, f } and let ⊕ be defined as follows:

⊕ e a b c d f

e e a b c d f
a a e d f b c
b b f e d c a
c c d f e a b
d d c a b f c
f f b c a e d

Show that G is a noncommutative group.
2. Show that Z∗n = {a : a ∈ Zn, gcd(a, n) = 1} is a multiplicative group.
3. Let

G =
{(

a b
c d

)
: a, b, c, d ∈ R, ad − bc = 1

}
Show that G is a group under the usual matrix multiplication. Note: This group is usually
denoted by SL(2, R) and is called the special linear group of order 2.

4. Let

G =
{(

1 n
0 1

)
: n ∈ Z

}
Show that (G, ∗) is commutative group, where ∗ is the usual matrix multiplication.

5. Show that Z = {0,±1,±2,±3, . . .} is a ring.
6. Show that Zn = {0, 1, 2, 3, . . . , n − 1} is a ring.
7. Let R be a multiplicative ring and a, b ∈ R. Show that for all n ∈ Z+,

(a + b)n =

an +
(

n
1

)
an−1b + · · · +

(
n
r

)
an−r br + · · · +

(
n

n − 1

)
abn−1 + bn.
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8. Show that the set of all rational numbers forms a field.
9. Show that if p is a prime, then Zp is a field.

10. Show that the multiplicative group is isomorphic group modulo 9 to the additive group
modulo 6.

11. Show that any two cyclic groups of order n are isomorphic.
12. Show that the set of all rational numbers forms a field.
13. Prove that for any prime p > 2, the sum

a

b
= 1

13
+ 1

23
+ 1

33
+ · · · + 1

(p − 1)3

has the property that

p | a.

14. Show that there exists an irreducible polynomial of arbitrary degree n over Zp with p
prime.

15. Show that if m and n are positive integers such that m | n, then Fpn contains a unique
subfield Fpm , pm − 1 | pn − 1, whence x pm−1 − 1 | x pn−1 − 1 and so x pm−1 − x |
x pn−1 − x .

16. Let F be a field containing Zp and f (x) be a polynomial over Zp. Show that if c ∈ F is
a root of f (x), then cp is also a root of f (x).

2.2 Divisibility Theory

Divisibility has been studied for at least 3000 years. The ancient Greeks considered problems
about even and odd numbers, perfect and amicable numbers, and the prime numbers, among
many others; even today a few of these problems are still unsolved (amazing!).

Definition 2.16 Let a and b be integers with a �= 0. We say a divides b, denoted by a | b,
if there exists an integer c such that b = ac. When a divides b, we say that a is a divisor
(or factor) of b, and b is a multiple of a. If a does not divide b, we write a � b. If a | b and
0 < a < b, then a is called a proper divisor of b.

Note that it is usually sufficient to consider only positive divisors of an integer.

Example 2.17 The integer 200 has the following divisors:

1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 200.

Thus, for example, we can write

8 | 200, 50 | 200, 7 � 200, 35 � 200.
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Definition 2.17 A divisor of n is called a trivial divisor of n if it is either 1 or n itself. A
divisor of n is called a nontrivial divisor if it is a divisor of n, but is neither 1, nor n.

Theorem 2.8 (Division algorithm) For any integer a and any positive integer b, there
exist unique integers q and r such that

a = bq + r, 0 ≤ r < b, (2.27)

where a is called the dividend, q the quotient, and r the remainder. If b � a, then r satisfies
the stronger inequalities 0 < r < b.

Proof: Consider the arithmetic progression

. . . ,−3b,−2b,−b, 0, b, 2b, 3b, . . .

then there must be an integer q such that

qb ≤ a < (q + 1)b.

Let a − qb = r , then a = bq + r with 0 ≤ r < b. To prove the uniqueness of q and r ,
suppose there is another pair q1 and r1 satisfying the same condition in 2.27, then

a = bq1 + r1, 0 ≤ r1 < b.

We first show that r1 = r . For if not, we may presume that r < r1, so that 0 < r1 − r < b,
and then we see that b(q − q1) = r1 − r , and so b | (r1 − r ), which is impossible. Hence,
r = r1, and also q = q1.

Definition 2.18 Consider the following equation

a = 2q + r, a, q, r ∈ Z, 0 ≤ r < 2. (2.28)

Then if r = 0, then a is an even, whereas if r = 1, then a is an odd.

Definition 2.19 A positive integer n greater than 1 is called a prime if its only divisors are
n and 1. Otherwise, it is called a composite.

Example 2.18 The integer 23 is prime since its only divisors are 1 and 23, whereas 22 is
composite since it is divisible by 2 and 11.
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Prime numbers have many special and nice properties, and play a central role in the
development of number theory. Mathematicians throughout history have been fascinated by
primes. The first result on prime numbers is from Euclid:

Theorem 2.9 (Euclid) There are infinitely many primes.

Proof: Suppose that p1, p2, . . . , pk are all the primes. Consider the number N =
p1 p2 · · · pk + 1. If it is a prime, then it is a new prime. Otherwise, it has a prime fac-
tor q. If q were one of the primes pi , i = 1, 2, . . . , k, then q | (p1 p2 · · · pk), and since
q | (p1 p2 · · · pk + 1), q would divide the difference of these numbers, namely 1, which is
impossible. So q cannot be one of the pi for i = 1, 2, . . . , k, and must therefore be a new
prime. This completes the proof.

Theorem 2.10 If n is a composite, then n has a prime divisor p such that p ≤ √n.

Proof: Let p be the smallest prime divisor of n. If n = rs, then p ≤ r and p ≤ s. Hence,
p2 ≤ rs = n. That is, p ≤ √n.

Theorem 2.10 can be used to find all the prime numbers up to a given positive integer x ;
this procedure is called the Sieve of Eratosthenes, attributed to the ancient Greek astronomer
and mathematician Eratosthenes of Cyrene. To apply the sieve, list all the integers from 2 up
to x in order:

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, . . . , x .

Starting from 2, delete all the multiples 2m of 2 such that 2 < 2m ≤ x :

2, 3, 5, 7, 9, 11, 13, 15, . . . , x .

Starting from 3, delete all the multiples 3m of 3 such that 3 < 3m ≤ x :

2, 3, 5, 7, 11, 13, . . . , x .

In general, if the resulting sequence at the kth stage is

2, 3, 5, 7, 11, 13, . . . , p, . . . , x .

then delete all the multiples pm of p such that p < pm ≤ x . Continue this exhaustive
computation, until p ≤ �√x�, where �√x� denotes the greatest integer ≤ √x , for example,
�0.5� = 0 and �2.9� = 2. The remaining integers are all the primes between �√x� and x and
if we take care not to delete 2, 3, 5, . . . , p ≤ �√x�, the sieve then gives all the primes less
than or equal to x .
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Table 2.3 Sieve of Eratosthenes for numbers up to 100

2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Algorithm 2.1 (The Sieve of Eratosthenes) Given a positive integer n > 1, this algorithm
will find all prime numbers up to n.

[1] Create a list of integers from 2 to n.
[2] For prime numbers pi (i = 1, 2, . . .) from 2, 3, 5 up to �√n�, delete all the multiples

mpi from the list, with pi < mpi ≤ n, m = 1, 2, . . . .

[3] List the remaining integers.

Example 2.19 Suppose we want to find all primes up to 100. First note that up to
√

100 = 10,
there are only 4 primes 2, 3, 5, 7. Thus in a table containing all positive integers from 2 to
100: Retain 2, 3, 5, 7, but cross all the multiples of 2, 3, 5, 7. After the sieving steps, the
remaining numbers are the primes up to 100, as shown in Table 2.3.

Theorem 2.11 Every composite number has a prime factor.

Proof: Let n be a composite number. Then

n = n1n2

where n1 and n2 are positive integers with n1, n2 < n. If either n1 or n2 are prime, then the
theorem is proved. If n1 and n2 are not prime, then

n1 = n3n4

where n3 and n4 are positive integers with n3, n4 < n1. Again if n3 or n4 are prime, then the
theorem is proved. If n3 and n4 are not prime, then we can write

n3 = n5n6

where n5 and n6 are positive integers with n5, n6 < n3. In general, after k steps we write

n2k−1 = n2k+1n2k+2
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where n2k+1 and n2k+2 are positive integers with n2k+1, n2k+1 < n2k−1. Since

n > n1 > n3 > n5 > · · · n2k−1 > 0

for any value k, the process must terminate. So there must exist an n2k−1 for some value of
k, that is prime. Hence, every composite has a prime factor.

Prime numbers are the building blocks of positive integers, as the following theorem
shows:

Theorem 2.12 (Fundamental Theorem of Arithmetic) Every positive integer n greater
than 1 can be written uniquely as the product of primes:

n = pα1
1 pα2

2 · · · pαk
k =

k∏
i=1

pαi
i (2.29)

where p1, p2, . . . , pk are distinct primes, and α1, α2, . . . , αk are natural numbers.

Proof: We shall first show that a factorization exists. Starting from n > 1, if n is a prime, then
it stands as a product with a single factor. Otherwise, n can be factored into, say, ab, where
a > 1 and b > 1. Apply the same argument to a and b: Each is either a prime or a product of
two numbers both > 1. The numbers other than primes involved in the expression for n are
greater than 1 and decrease at every step; hence eventually all the numbers must be prime.

Now we come to uniqueness. Suppose that the theorem is false and let n > 1 be the
smallest number having more than one expression as the product of primes, say

n = p1 p2 . . . pr = q1q2 . . . qs

where each pi (i = 1, 2, . . . , r ) and each q j ( j = 1, 2, . . . , s) is prime. Clearly both r and
s must be greater than 1 (otherwise n is prime, or a prime is equal to a composite). If for
example p1 were one of the q j ( j = 1, 2, . . . , s), then n/p1 would have two expressions as
a product of primes, but n/p1 < n so this would contradict the definition of n. Hence p1

is not equal to any of the q j ( j = 1, 2, . . . , s), and similarly none of the pi (i = 1, 2, . . . , r )
equals any of the q j ( j = 1, 2, . . . , s). Next, there is no loss of generality in presuming that
p1 < q1, and we define the positive integer N as

N = (q1 − p1)q2q3 · · · qs = p1(p2 p3 · · · pr − q2q3 · · · qs).

Certainly 1 < N < n, so N is uniquely factorable into primes. However, p1 � (q1 − p1),
since p1 < q1 and q1 is prime. Hence one of the above expressions for N contains p1 and
the other does not. This contradiction proves the result: There cannot be any exceptions to
the theorem.

Definition 2.20 Let a and b be integers, not both zero. The largest divisor d such that
d | a and d | b is called the greatest common divisor (gcd) of a and b. The greatest common
divisor of a and b is denoted by gcd(a, b).
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Example 2.20 The sets of positive divisors of 111 and 333 are as follows:

1, 3, 37, 111

1, 3, 9, 37, 111, 333

so gcd(111, 333) = 111. But gcd(91, 111) = 1, since 91 and 111 have no common divisors
other than 1.

The next theorem indicates that gcd(a, b) can be represented as a linear combination of a
and b.

Theorem 2.13 Let a and b be integers, not both zero. Then there exist integers x and y
such that

d = gcd(a, b) = ax + by. (2.30)

Proof: Consider the set of all linear combinations au + bv, where u and v range over all
integers. Clearly this set of integers {au + bv} includes positive, negative, as well as 0.
It contains a smallest positive element, say, m, such that m = ax + by. Use the division
algorithm, to write a = mq + r , with 0 ≤ r < m. Then

r = a − mq = a − q(ax + by) = (1− qx)a + (−qy)b

and hence r is also a linear combination of a and b. But r < m, so it follows from the
definition of m that r = 0. Thus a = mq , that is, m | a; similarly, m | b. Therefore, m is a
common divisor of a and b. Since d | a and d | b, d divides any linear combination of a and
b. Since d = gcd(a, b), we must have d = m.

Corollary 2.1 If a and b are integers, not both zero, then the set

S = {ax + by : x, y ∈ Z}

is precisely the set of all multiples of d = gcd(a, b).

Proof: It follows from Theorem 2.13, because d is the smallest positive value of ax + by
where x and y range over all integers.

Definition 2.21 Two integers a and b are called relatively prime if gcd(a, b) = 1. We
say that integers n1, n2, ..., nk are pairwise relatively prime if, whenever i �= j , we have
gcd(ni , n j ) = 1.

Example 2.21 91 and 111 are relatively prime, since gcd(91, 111) = 1.

The following theorem characterizes relative primes in terms of linear combinations.
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Theorem 2.14 Let a and b be integers, not both zero, then a and b are relatively prime if
and only if there exist integers x and y such that ax + by = 1.

Proof: If a and b are relatively prime, so that gcd(a, b) = 1, then Theorem 2.13 guarantees
the existence of integers x and y satisfying ax + by = 1. As for the converse, suppose that
ax + by = 1 and that d = gcd(a, b). Since d | a and d | b, d | (ax + by), that is, d | 1. Thus
d = 1. The result follows.

Theorem 2.15 If a | bc and gcd(a, b) = 1, then a | c.

Proof: By Theorem 2.13, we can write ax + by = 1 for some choice of integers x and y.
Multiplying this equation by c we get

acx + bcy = c.

Since a | ac and a | bc, it follows that a | (acx + bcy). The result thus follows.

For the greatest common divisor of more than two integers, we have the following result.

Theorem 2.16 Let a1, a2, . . . , an be n integers. Let also

gcd(a1, a2) = d2

gcd(d2, a3) = d3
...

gcd(dn−1, an) = dn

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.31)

Then

gcd(a1, a2, . . . , an) = dn. (2.32)

Proof: By (2.31), we have dn | an and dn | dn−1. Since dn−1 | an−1 and dn−1 | dn−2, dn | an−1

and dn | dn−2. Continuing in this way, we finally have dn | an , dn | an−1, · · ·, dn | a1, so
dn is a common divisor of a1, a2, . . . , an . Now suppose that d is any common divisor of
a1, a2, . . . , an , then d | a1 and d | d2. Observe the fact that the common divisor of a and b
and the divisor of gcd(a, b) are the same, so d | d2. Similarly, we have d | d3, . . . , d | dn .
Therefore, d ≤ |d| ≤ dn . So, dn is the greatest common divisor of a1, a2, . . . , an .

Definition 2.22 If d is a multiple of a and also a multiple of b, then d is a common multiple
of a and b. The least common multiple (lcm) of two integers a and b, is the smallest of the
common multiples of a and b. The least common multiple of a and b is denoted by lcm(a, b).

Theorem 2.17 Suppose a and b are not both zero (i.e., one of the a and b can be zero, but
not both zero), and that m = lcm(a, b). If x is a common multiple of a and b, then m | x.
That is, every common multiple of a and b is a multiple of the least common multiple.
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Proof: If any one of a and b is zero, then all common multiples of a and b are zero, so the
statement is trivial. Now we assume that both a and b are not zero. Dividing x by m, we get

x = mq + r, where 0 ≤ r < m.

Now a | x and b | x and also a | m and b | m; so by Theorem 2.8, a | r and b | r . That is, r
is a common multiple of a and b. But m is the least common multiple of a and b, so r = 0.
Therefore, x = mq and the result follows.

For the least common multiple of more than two integers, we have the following result.

Theorem 2.18 Let a1, a2, . . . , an be n integers. Let also

lcm(a1, a2) = m2,

lcm(m2, a3) = m3,
...

lcm(mn−1, an) = mn.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.33)

Then

lcm(a1, a2, . . . , an) = mn. (2.34)

Proof: By (2.33), we have mi | mi+1, i = 2, 3, . . . , n − 1, and a1 | m2, ai | mi , i =
2, 3, . . . , n. So, mn is a common multiple of a1, a2, . . . , an . Now let m be any common
multiple of a1, a2, . . . , an , then a1 | m, a2 | m. Observe the result that all the common multi-
ples of a and b are the multiples of lcm(a, b). So m1 | m and a3 | m. Continuing the process
in this way, we finally have mn | m. Thus, mn ≤ |m|. Therefore, mn = lcm(a1, a2, . . . , an).

One way to calculate the gcd(a, b) or the lcm(a, b) is to use the standard prime factoriza-
tions of a and b. That is:

Theorem 2.19 If

a =
k∏

i=1

pαi
i , αi ≥ 0,

and

b =
k∏

i=1

pβi
i , βi ≥ 0,
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then

gcd(a, b) =
k∏

i=1

pγi

i (2.35)

lcm(a, b) =
k∏

i=1

pδi
i (2.36)

where γi = min(αi , βi ) and δi = max(αi , βi ) for i = 1, 2, . . . , k.

Proof: It is easy to see that

gcd(a, b) =
k∏

i=1
pγi

i , where γi is the lesser of αi and βi ,

lcm(a, b) =
k∏

i=1
pδi

i , where δi is the greater of αi and βi .

The result thus follows.

Corollary 2.2 Suppose a and b are positive integers, then

lcm(a, b) = ab

gcd(a, b)
. (2.37)

Proof: Since γi + δi = αi + βi , it is now obvious that

gcd(a, b) · lcm(a, b) = ab.

The result thus follows.

Example 2.22 Find gcd(240, 560) and lcm(240, 560). Since the prime factorizations of
240 and 560 are

240 = 24 · 3 · 5 = 24 · 31 · 51 · 70

560 = 24 · 5 · 7 = 24 · 30 · 51 · 71,
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we get

gcd(240, 560) = 2min(4,4) · 3min(1,0) · 5min(1,1) · 7min(0,1)

= 24 · 30 · 51 · 70

lcm(240, 560) = 2max(4,4) · 3max(1,0) · 5max(1,1) · 7max(0,1)

= 24 · 31 · 51 · 71

Of course, if we know gcd(240, 560) = 80, then we can find lcm(240, 560) by

lcm(240, 560) = 240 · 560/80 = 1680.

Similarly, if we know lcm(240, 560), we can find gcd(240, 560) by

gcd(240, 560) = 240 · 560/1680 = 80.

There is an efficient method, due to Euclid, for finding the greatest common divisor of two
integers.

Theorem 2.20 (Division theorem) Let a, b, q, r be integers with b > 0 and 0 ≤ r < b
such that a = bq + r . Then gcd(a, b) = gcd(b, r ).

Proof: Let X = gcd(a, b) and Y = gcd(b, r ), it suffices to show that X = Y . If integer c is
a divisor of a and b, it follows from the equation a = bq + r and the divisibility properties
that c is a divisor of r also. By the same argument, every common divisor of b and r is a
divisor of a.

Theorem 2.20 can be used to reduce the problem of finding gcd(a, b) to the simpler
problem of finding gcd(b, r ). The problem is simpler because the numbers are smaller, but
it has the same answer as the original one. The process of finding gcd(a, b) by repeated
application of Theorem 2.20 is called Euclid’s algorithm which proceeds as follows:

a = bq0 + r1, 0 ≤ r1 < b (dividing b into a),
b = r1q1 + r2, 0 ≤ r2 < r1 (dividing r1 into b),
r1 = r2q2 + r3, 0 ≤ r3 < r2 (dividing r2 into r1),
r2 = r3q3 + r4, 0 ≤ r4 < r3 (dividing r3 into r2),

...
...

...
rn−2 = rn−1qn−1 + rn, 0 ≤ rn < rn−1 (dividing rn−1 into rn−2),
rn−1 = rnqn + 0, rn+1 = 0 (arriving at a zero-remainder)
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or, diagrammatically,

a

−bq0 q0 b
——–

r1 q1 −r1q1

———
−r2q2 q2 r2

———
r3 q3 −r3q3

...
...

...
rn−1 qn−1 −rn−1qn−1

—————–
−rnqn qn rn

————
rn+1 = 0

Then the greatest common divisor gcd of a and b is rn . That is,

d = gcd(a, b) = rn. (2.38)

We now restate it in a theorem form.

Theorem 2.21 (Euclid’s algorithm) Let a and b be positive integers with a ≥ b. If b | a,
then gcd(a, b) = b. If b � a, then apply the division algorithm repeatedly as follows:

a = bq0 + r1, 0 < r1 < b,

b = r1q1 + r2, 0 < r2 < r1,

r1 = r2q2 + r3, 0 < r3 < r2,

r2 = r3q3 + r4, 0 < r4 < r3,

...
...

rn−2 = rn−1qn−1 + rn, 0 < rn < rn−1,

rn−1 = rnqn + 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.39)

Then rn, the last nonzero remainder, is the greatest common divisor of a and b. That is,

gcd(a, b) = rn. (2.40)
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Values of x and y in

gcd(a, b) = ax + by (2.41)

can be obtained by writing each ri as a linear combination of a and b.

Proof: The system of equations is obtained by the series divisions:

a

b
,

b

r1
,

r1

r2
, · · ·

The process stops whenever ri = 0 for i = 1, 2, . . . , n.
We now prove that rn is the greatest common divisor of a and b. By Theorem 2.20, we

have

gcd(a, b) = gcd(a − bq0, b)

= gcd(r1, b)

= gcd(r1, b − r1q1)

= gcd(r1, r2)

= gcd(r1 − r2q2, r2)

= gcd(r3, r2)

Continuing by mathematical induction, we have

gcd(a, b) = gcd(rn−1, rn) = gcd(rn, 0) = rn.

To see that rn is a linear combination of a and b, we argue by induction that each ri

is a linear combination of a and b. Clearly, r1 is a linear combination of a and b, since
r1 = a − bq0, so does r2. In general, ri is a linear combination of ri−1 and ri−2. By the
inductive hypothesis we may suppose that these latter two numbers are linear combinations
of a and b, and it follows that ri is also a linear combination of a and b.

Algorithm 2.2 (Euclid’s algorithm) Given integers a and b with a > b > 0, this algorithm
will compute gcd(a, b).

[1] (Initialization) Set

r−1 ← a

r0 ← b

i = 0.

[2] (Decision) If ri = 0, Output ri−1 = gcd(a, b) and Exit.
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[3] (Computation)

qi ← �ri−1/ri�
ri+1 ← ri−1 − qi · ri

i ← i + 1

go to step [2].

Remark 2.3 Euclid’s algorithm is found in Book VII, Proposition 1 and 2 of his Elements,
but it probably wasn’t his own invention. Scholars believe that the method was known up to
200 years earlier. However, it first appeared in Euclid’s work and, more importantly, it is the
first nontrivial algorithm to have survived to this day.

Remark 2.4 It is evident that the algorithm cannot recur indefinitely, since the sec-
ond argument strictly decreases in each recursive call. Therefore, the algorithm always
terminates with the correct answer. More importantly, it can be performed in polynomial
time. That is, if Euclid’s algorithm is applied to two positive integers a and b with a ≥ b,
then the number of divisions required to find gcd(a, b) is O(log b), a polynomial-time
complexity.

Example 2.23 Use Euclid’s algorithm to find the gcd of 1281 and 243. Since

1281

−1215 5 243
———–

66 3 −198
——–

−45 1 45
——

21 2 −42
——–

−21 7 3
——

0

we have gcd(1281, 243) = 3.

Theorem 2.22 If a and b are any two integers, then

Qka − Pkb = (−1)k−1rk, k = 1, 2, . . . , n (2.42)
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where

P0 = 1, P1 = q0, Pk = qk−1 Pk−1 + Pk−2

Q0 = 0, Q1 = 1, Qk = qk−1 Qk−1 + Qk−2

}
(2.43)

for k = 2, 3, . . . , n.

Proof: When k = 1, 2.42 is clearly true, since Q1a − P1b = (−1)1−1r1 implies a − q0b =
r1. When k = 2, r2 = −(aq1 − b(1+ q0q1)). But 1+ q0q1 = q2 P1 + P0, q1 = q1 · 1+ 0 =
q1 Q1 + Q0, therefore, Q2a − P2b = (−1)2−1r2, P2 = q1 P1 + P0, Q2 = q1 Q1 + Q0. As-
sume (2.42) and (2.43) hold for all positive integers ≤ k, then

(−1)krk+1 = (−1)k(rk−1 − qkrk)

= (Qk−1a − Pkb)+ qk(Qka − Pkb)

= (qk Qk + Qk−1)a − (qk+1 Pk + Pk+1)b.

Thus, Qk+1a − Pk+1b = (−1)krk+1, where Pk+1 = qk Pk + Pk−1, Qk+1 = qk+1 Qk + Qk−1.
By induction, the result is true for all positive integers.

Euclid’s algorithm for computing the greatest common divisor of two integers is intimately
connected with continued fractions.

Definition 2.23 Let a and b be integers and let Euclid’s algorithm run as

a = bq0 + r1,

b = r1q1 + r2,

r1 = r2q2 + r3,

r2 = r3q3 + r4,

...

rn−2 = rn−1qn−1 + rn,

rn−1 = rnqn + 0.
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That is,

a

−bq0 q0 b
———

r1 q1 −r1q1

———
−r2q2 q2 r2

————
r3 q3 −r3q3

...
...

...
rn−1 qn−1 −rn−1qn−1

—————–
−rnqn qn rn

—————
rn+1 = 0

Then the fraction
a

b
can be expressed as a simple continued fraction:

a

b
= q0 + 1

q1 + 1

q2 + 1

. . . qn−1 + 1

qn

(2.44)

where q0, q1, . . . , qn−1, qn are taken directly from Euclid’s algorithm expressed in (2.39),
and are called the partial quotients of the continued fraction. For simplicity, the continued

fraction expansion (2.44) of
a

b
is usually written as

a

b
= q0 + 1

q1+
1

q2+ · · ·
1

qn−1+
1

qn
(2.45)

or even more briefly as

a

b
= [q0, q1, q2, . . . qn−1, qn]. (2.46)

If each qi is an integer, the continued fraction is called simple; a simple continued fraction
can either be finite or infinite. A continued fraction formed from [q0, q1, q2, . . . qn−1, qn] by
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neglecting all of the terms after a given term is called a convergent of the original continued

fraction. If we denote the kth convergent by Ck = Pk

Qk
, then

(1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C0 = P0

Q0
= q0

1
;

C1 = P1

Q1
= q0q1 + 1

q1
;

...

Ck = Pk

Qk
= qk Pk−1 + Pk−2

qk Qk−1 + Qk−2
, for k ≥ 2.

(2) If Pk = qk Qk−1 + Qk−2 and Qk = qk Pk−1 + Pk−2, then gcd(Pk, Qk) = 1.
(3) Pk Qk−1 − Pk−1 Qk = (−1)k−1, for k ≥ 1.

The following example shows how to use Euclid’s algorithm to express a rational number
as a finite simple continued fraction.

Example 2.24 Expand the rational number
1281

243
as a simple continued fraction. First let

a = 1281 and b = 243, and then let Euclid’s algorithm run as follows:

1281

−1215 5 243
————

66 3 −198
——–

−45 1 45
———

21 2 −42
——–

−21 7 3
——–

0

So
1281

243
= [5, 3, 1, 2, 7]. Thus

1281

243
= 5+ 1

3+ 1

1+ 1

2+ 1

7

.

Of course, as a by-product, we also find that gcd(1281, 243) = 3.
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Theorem 2.23 Any finite simple continued fraction represents a rational number. Con-
versely, any rational number can be expressed as a finite simple continued fraction, in exactly
two ways, one with an odd number of terms and one with an even number of terms.

Proof: The first assertion is proved by induction. When n = 1, we have

[q0, q1] = q0 + 1

q1
= q0q1 + 1

q1

which is rational. Now we assume for n = k the simple continued fraction [q0, q1, . . . , qk] is
rational whenever q0, q1, . . . , qk are integers with q1, . . . , qk positive. Let q0, q1, . . . , qk+1

be integers with q1, . . . , qk+1 positive. Note that

[q0, q1, . . . , qk, qk+1] = a0 + 1

[q1, . . . , qk, qk+1]
.

By the induction hypothesis, [q1, q2, . . . , qk, qk+1] is rational. That is, there exist two integers
r and s with s �= 0 such that

[q1, q2, . . . , qk, qk+1] = r

s
.

Thus,

[q0, q1, . . . , qk, qk+1] = a0 + 1

r/s
= q0r + s

r

which is rational.
Now we use Euclid’s algorithm to show that every rational number can be written as a

finite simple continued fraction. Let a/b be a rational number with b > 0. Euclid’s algorithm
tells us that

a = bq0 + r1, 0 < r1 < b,

b = r1q1 + r2, 0 < r2 < r1,

r1 = r2q2 + r3, 0 < r3 < r2,

r2 = r3q3 + r4, 0 < r4 < r3,

...
...

rn−2 = rn−1qn−1 + rn, 0 < rn < rn−1,

rn−1 = rnqn + 0.
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In these equations, q1, q2, . . . , qn are positive integers. Rewriting these equations, we obtain

a

b
= q0 + r1

b
b

r1
= q1 + r2

r1
r1

r2
= q2 + r3

r2

...
rn−1

rn
= qn

By successive substitution

a

b
= q0 + 1

b
r1

= q0 + 1

q1 + 1
r1
r2

...

= q0 + 1

q1 + 1

q2 + 1

. . . qn−1 + 1

qn

This shows that every rational number can be written as a finite simple continued fraction.
Further, it can be shown that any rational number can be expressed as a finite simple

continued fraction in exactly two ways, one with an odd number of terms and one with an
even number of terms; we leave this as an exercise.

Definition 2.24 Let q0, q1, q2, . . . be a sequence of integers, all positive except possibly
q0. Then the expression [q0, q1, q2, . . .] is called an infinite simple continued fraction and is
defined to be equal to the number lim

n→∞[q0, q1, q2, . . . , qn−1, qn].

Theorem 2.24 Any irrational number can be written uniquely as an infinite simple continued
fraction. Conversely, if α is an infinite simple continued fraction, then α is irrational.

Proof: Let α be an irrational number. We write

α = [α]+ {α} = [α]+ 1
1
{α}
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where [α] is the integral part and {α} the fractional part of α, respectively. Because α is
irrational, 1/{α} is irrational and greater than 1. Let

q0 = [α], and α1 = 1

{α} .

We now write

α1 = [α1]+ {α1} = [α1]+ 1
1
{α1}

where 1/{α1} is irrational and greater than 1. Let

q1 = [α1], and α2 = 1

{α1} .

We continue inductively

q2 = [α2], and α3 = 1

{α2} > 1 (α3 irrational)

q3 = [α3], and α4 = 1

{α3} > 1 (α3 irrational)

...

qn = [αn], and αn = 1

{αn−1} > 1 (α3 irrational)

...

Since each αn , n = 2, 3 · · · is greater than 1, then qn−1 ≥ 1, n = 2, 3, . . . . If we substitute
successively, we obtain

α = [q0, α1]

= [q0, q1, α2]

= [q0, q1, q2, α3]
...

= [q0, q1, q2, . . . , qn, αn+1]
...
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Next we shall show that α = [q0, q1, q2, . . .]. Note that Cn , the nth convergent to
[q0, q1, q2, . . .] is also the nth convergent to [q0, q1, q2, . . . , qn, αn+1]. If we denote the
(n + 1)st convergent to this finite continued fraction by P ′n+1/Q′

n+1 = α, then

α − Cn =
P ′n+1

Q′
n+1

− Pn

Qn
= (−1)n+1

Q′
n+1 Qn

.

Since Qn and Q′
n+1 become infinite as n →∞, then

lim
n→∞(α − Cn) = lim

n→∞
(−1)n+1

Q′
n+1 Qn

= 0

and

α = lim
n→∞Cn = [q0, q1, . . .].

The uniqueness of the representation, as well as the second assertion are left as an
exercise.

Definition 2.25 A real irrational number which is the root of a quadratic equation ax2 +
bx + c = 0 with integer coefficients is called quadratic irrational.

For example,
√

3,
√

5,
√

7 are quadratic irrationals. For convenience, we shall denote
√

N ,
with N not a perfect square, as a quadratic irrational. Quadratic irrationals are the simplest
possible irrationals.

Definition 2.26 An infinite simple continued fraction is said to be periodic if there ex-
ists integers k and m such that qi+m = qi for all i ≥ k. The periodic simple continued
fraction is usually denoted by [q0, q1, . . . , qk, qk+1, qk+2, . . . , qk+m]. If it is of the form
[q0, q1, . . . , qm−1], then it is called purely periodic. The smallest positive integer m satisfy-
ing the above relationship is called the period of the expansion.

Theorem 2.25 Any periodic simple continued fraction is a quadratic irrational. Conversely,
any quadratic irrational has a periodic expansion as a simple continued fraction.

Proof: The proof is rather lengthy and left as an exercise.

We are now in a position to present an algorithm for finding the simple continued fraction
expansion of a real number.
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Theorem 2.26 (Continued fraction algorithm) Suppose x is irrational, and let x0 = x.
Then x can be expressed as a simple continued fraction

[q0, q1, q2, . . . , qn, qn+1, . . .]

by the following process:

x0 = x

q0 = �x0�, x1 = 1

x0 − q0

q1 = �x1�, x2 = 1

x1 − q1

...
...

qn = �xn�, xn+1 = 1

xn − qn

qn+1 = �xn+1�, xn+2 = 1

xn+1 − qn+1

...
...

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.47)

Proof: Follows from Theorem 2.24.

Algorithm 2.3 (Continued fraction algorithm) Given a real number x , this algorithm
will compute and output the partial quotients q0, q1, q2, . . . , qn of the continued fraction x .

[1] (Initialization) Set

i ← 0,
xi ← x ,
qi ← �xi�,
print(qi ).

[2] (Decision) If xi = qi , Exit.
[3] (Computation)

xi+1 ← 1
xi − qi

,

i ← i + 1,
qi ← �xi�,
print(qi ),
go to Step [2].
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Example 2.25 Let x = 160523347/60728973. Then by applying Algorithm 2.3, we get
160523347/60728973 = [2, 1, 1, 1, 4, 12, 102, 1, 1, 2, 3, 2, 2, 36]. That is,

160523347

60728973
= 2+ 1

1+ 1

1+ 1

1+ 1

4+ 1

12+ 1

102+ 1

1+ 1

1+ 1

2+ 1

3+ 1

2+ 1

2+ 1

36

Theorem 2.27 Each quadratic irrational number
√

N has a periodic expansion as an
infinite simple continued fraction of the form

[q0, q1, q2, . . . , qk, qk+1, . . . , qk+m].

Example 2.26 Expand
√

3 as a periodic simple continued fraction. Let x0 =
√

3. Then we
have

q0 = �x0� = �
√

3� = 1

x1 = 1

x0 − q0
= 1√

3− 1
=
√

3+ 1

2

q1 = �x1� =
⌊√

3+ 1

2

⌋
=
⌊

1+
√

3− 1

2

⌋
= 1

x2 = 1

x1 − q1
= 1√

3+ 1

2
− 1

= 1√
3− 1

2

= 2(
√

3+ 1)

(
√

3− 1)(
√

3+ 1)
=
√

3+ 1

q2 = �x2� = �
√

3+ 1� = 2

x3 = 1

x2 − q2
= 1√

3+ 1− 2
= 1√

3− 1
=
√

3+ 1

2
= x1

q3 = �x3� =
⌊√

3+ 1

2

⌋
=
⌊

1+
√

3− 1

2

⌋
= 1 = q1
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x4 = 1

x3 − q3
= 1√

3+ 1

2
− 1

= 1√
3− 1

2

= 2(
√

3+ 1)

(
√

3− 1)(
√

3+ 1)
=
√

3+ 1 = x2

q4 = �x3� = �
√

3+ 1� = 2 = q2

x5 = 1

x4 − q4
= 1√

3+ 1− 2
= 1√

3− 1
=
√

3+ 1

2
= x3 = x1

q5 = �x5� = �x3� = 1 = q3 = q1

...

So, for n = 1, 2, 3, . . ., we have q2n−1 = 1 and q2n = 2. Thus, the period of the continued
fraction expansion of

√
3 is 2. Therefore, we finally get

√
3 = 1+ 1

1+ 1

2+ 1

1+ 1

2+ 1

. . .

= [1, 1, 2].

Definition 2.27 The algebraic equation with two variables

ax + by = c (2.48)

is called a linear Diophantine equation, for which we wish to find integer solutions in x
and y.

Theorem 2.28 Let a, b, c be integers with not both a and b equal to 0. If d � c, then the
linear Diophantine equation

ax + by = c

has no integer solution. The equation has an integer solution in x and y if and only if d | c.
Moreover, if (x0, y0) is a solution of the equation, then the general solution of the equation
is

(x, y) =
(

x0 + b

d
· t, y0 − a

d
· t
)

, t ∈ Z. (2.49)

Proof: Assume that x and y are integers such that ax + by = c. Since d | a and d | b, d | c.
Hence, if d � c, there is no integer solution of the equation.
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Now suppose d | c. There is an integer k such that c = kd. Since d is a sum of multiples
of a and b, we may write

am + bn = d.

Multiplying this equation by k, we get

a(mk)+ b(nk) = dk = c

so that x = mk and y = nk is a solution.
For the “only if” part, suppose x0 and y0 is a solution of the equation. Then

ax0 + by0 = c.

Since d | a and d | b, then d | c.

Theorem 2.29 Let the convergents of the finite continued fraction of a/b be as follows:[
P0

Q0
,

P1

Q1
, . . . ,

Pn−1

Qn−1
,

Pn

Qn

]
= a

b
. (2.50)

Then the integer solution in x and y of the equation ax − by = d is

x = (−1)n−1 Qn−1,

y = (−1)n−1 Pn−1.

}
(2.51)

Remark 2.5 We have already seen a method to solve the linear Diophantine equations
by applying Euclid’s algorithm to a and b and working backwards through the resulting
equations (the so-called extended Euclid’s algorithm). Our new method here turns out to be
equivalent to this since the continued fraction for a/b is derived from Euclid’s algorithm.
However, it is quicker to generate the convergents Pi/Qi using the recurrence relations than
to work backwards through the equations in Euclid’s algorithm.

Example 2.27 Use the continued fraction method to solve the following linear Diophantine
equation:

364x − 227y = 1.

Since 364/227 can be expanded as a finite continued fraction with convergents[
1, 2,

3

2
,

5

3
,

8

5
,

85

53
,

93

58
,

364

227

]
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we have

x = (−1)n−1qn−1 = (−1)7−158 = 58,

y = (−1)n−1 pn−1 = (−1)7−193 = 93.

That is,

364 · 58− 227 · 93 = 1.

Example 2.28 Use the continued fraction method to solve the following linear Diophantine
equation:

20719x + 13871y = 1.

Note first that

20719x + 13871y = 1 ⇐⇒ 20719x − (−13871y) = 1.

Now since 20719/13871 can be expanded as a finite simple continued fraction with
convergents [

1,
3

2
,

118

79
,

829

555
,

947

634
,

1776

1189
,

2723

1823
,

4499

3012
,

20719

13871

]
,

we have

x = (−1)n−1qn−1 = (−1)8−13012 = −3012,

y = (−1)n−1 pn−1 = (−1)8−14499 = −4499.

That is,

20719 · (−3012)− 13871 · (−4499) = 1.

Remark 2.6 To find the integral solution to equation ax + by = d, the equation

(−1)n−1aqn−1 − (−1)n−1bpn−1 = d

for ax − by = d must be changed to

(−1)n−1aqn−1 + (−1)(−1)n−1bpn−1 = d.
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That is,

(−1)n−1aqn−1 + (−1)nbpn−1 = d (2.52)

Thus a solution to equation ax + by = d is given by{
x = (−1)n−1qn−1,

y = (−1)n pn−1.
(2.53)

Generally, we have the following four cases:{
x = (−1)n−1qn−1,

y = (−1)n−1 pn−1

for ax − by = d. (2.54)

{
x = (−1)n−1qn−1,

y = (−1)n pn−1

for ax + by = d. (2.55)

{
x = (−1)nqn−1,

y = (−1)n−1 pn−1

for− ax − by = d. (2.56)

{
x = (−1)nqn−1,

y = (−1)n pn−1

for− ax + by = d. (2.57)

All the above four cases are, in fact, of the same type of linear Diophantine equations.

Example 2.29 Use the continued fraction method to solve the following bilinear Diophan-
tine equation:

9x + 16y = 1.

Since 9/16 can be expanded as a finite continued fraction with convergents[
0, 1,

1

2
,

4

7
,

9

16

]
then we have {

x = (−1)n−1qn−1 = (−1)4−17 = −7,

y = (−1)n pn−1 = (−1)44 = 4.

That is,

9 · (−7)+ 16 · 4 = 1.
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Problems for Section 2.2

1. In bases 2 ≤ b ≤ 12, the number 1010101 are always composite:

10101012 = 1 · 26 + 1 · 24 + 1 · 22 + 1 · 20 = 85 = 5 · 17

10101013 = 1 · 36 + 1 · 34 + 1 · 32 + 1 · 30 = 820 = 22 · 5 · 41

10101014 = 1 · 46 + 1 · 44 + 1 · 42 + 1 · 40 = 4369 = 17 · 257

10101015 = 1 · 56 + 1 · 54 + 1 · 52 + 1 · 50 = 16276 = 22 · 13 · 313
...

101010110 = 1 · 106 + 1 · 104 + 1 · 102 + 1 · 100 = 1010101 = 73 · 101 · 137

101010111 = 1 · 116 + 1 · 114 + 1 · 112 + 1 · 110 = 1786324 = 22 · 61 · 7321

101010112 = 1 · 126 + 1 · 124 + 1 · 122 + 1 · 120 = 3006865 = 5 · 29 · 89 · 233

(1) Show that in any basis the number 1010101 cannot be prime.
(2) How about the number 11010101? Can this number be always composite in any

basis b ≥ 2? For 2 ≤ b ≤ 100, list the numbers 11010101b which are not composite.
2. A number is a perfect square, sometimes also called a square number, if it is of the form

n2 for some integer n, e.g., 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 122, 144, 169, 196 are
the first 15 perfect squares.
(1) Show that the product of four consecutive positive integers a, a + 1, a + 2, a + 3

cannot be a perfect square.
(2) Are there infinitely many primes p such that p − 1 is a perfect square? This is one

of the four problems proposed by the German number theorist Edmund Landau
(1877–1938) in 1921; it is unsolved to this day.

(3) Show that there is a prime number between two consecutive perfect squares n2

and (n + 1)2 for every positive integer n. This is the famous Legendre conjecture,
unsolved to this day.

(4) Show that there is a prime number between consecutive perfect squares n2 and
(n + 1)2 for every positive integer n. (This is the famous Legendre conjecture; it
was unproven as of 2008. However, partial results have been obtained. For example,
a result due to Ingham shows that there is a prime between n3 and (n + 1)3 for every
positive integer n, and the Chinese Mathematician J. R. Chen showed in 1975 that
there always exists a number P which is either a prime or product of two primes
between the consecutive perfect squares n2 and (n + 1)2.)

(5) Are there infinitely many primes p such that p − 1 is a perfect square? In other
words: Are there infinitely many primes (called generalized Fermat primes) of the
form n2 + 1? (This is one of the four problems about prime numbers proposed by
the German mathematician Edmund Landau in the 1912 International Congress of
Mathematicians. Although the problem has still not been settled, some progress has
been made, for example, the famous The Bombieri–Friedlander–Iwaniec theorem
shows that infinitely many primes are of the form x2 + y4.)

(6) Show that a perfect square cannot be a perfect number.
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3. A positive integer that has no perfect square divisors except 1 is called square-free,
for example,10 is square-free but 18 is not, as it is divisible by 9 = 32. The first 25
square-free numbers are as follows:

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38.

(1) Show that n is square-free if and only if in every factorization n = ab, gcd(a, b) = 1.
(2) The radical of an integer is always square-free. (The radical of a positive integer n

is defined to be the product of the prime numbers dividing n:

Rad(n) =
∏
p|n

p

e.g., n = 600 = 23 · 3 · 52, Rad(n) = 2 · 3 · 5 = 30.)
(3) Show that each odd prime p can be written as the difference of two perfect squares.

4. Show that 7 | (147 + 247 + 347 + 447 + 547 + 647
)
.

5. Let pk be the kth prime. Prove that

pk = 1+
2k∑

m=1

⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎣
k

1+
m∑

j=2

⌊
( j − 1)!+ 1

j
−
⌊

( j − 1)!

j

⌋⌋
⎥⎥⎥⎥⎥⎥⎥⎥⎦

1/k⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

6. Use mathematical induction to prove that when n ≥ 1,

F0 F1 F2 · · · Fn−1 = Fn−2 (2.58)

where Fi = 22i + 1, i = 0, 1, 2, 3, . . . are the Fermat numbers. Use (2.58) to prove that
if m and n are distinctive positive integers, then

gcd(Fm, Fn) = 1. (2.59)

Furthermore, use (2.59) to prove that there are infinitely many primes.
7. Let n be a positive integer. Find

gcd

((
2n
1

)
,

(
2n
3

)
,

(
2n
5

)
, . . . ,

(
2n

2n − 1

))
where (

n
k

)
= n!

k!(n − k)!

is the binomial coefficient.
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8. Find the inverse of the matrix (
1 1
6 1

)
(mod 26).

Find also all the values of b mod 26 such that(
1 1
b 1

)
(mod 26)

is invertible.
9. Let p be prime and n a positive integer. An integer n ≥ 2 is called a powerful number

if p | n implies p2 | n. That is, n is of the form n = a2b3, where a and b are positive
integers. Find all the powerful numbers up to 1000, and prove that every sufficiently
large integer is a sum of at most three powerful numbers. (this result was proved by
Heath-Brown of Oxford University in 1987).

10. Prove that none of the following numbers is prime:

12321, 1234321, 123454321, 12345654321, 1234567654321,

123456787654321, 12345678987654321

11. For any positive integers a and b, prove that

ab = gcd(a, b)lcm(a, b).

12. Prove that if Euclid’s algorithm runs with a = fk+2 and b = fk+1, then exactly
k divisions are needed for computing gcd(a, b), where f0 = 0, f1 = 1, and fn =
fn−1 + fn−2 for n ≥ 2 are defined to be the Fibonacci numbers beginning with num-
bers 0, 1, 1, 2, 3, 5, 8, 13, . . . ..

13. Use the continued fraction method to solve 377x − 120y = −3 and 314x ≡ 271 (mod
11111).

14. Prove that if α is an irrational number, then there exist infinitely many rational numbers
p

q
such that

∣∣∣∣α − p

q

∣∣∣∣ <
1

q2
.

15. Prove that if α is an irrational number and
Pi

Qi
the i th convergent of the continued

fraction of α, then ∣∣∣∣α − Pi

Qi

∣∣∣∣ <
1

Qi Qi+1
.
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16. Prove that if α is an irrational number and
c

d
is a rational number with d > 1 such that

∣∣∣α − c

d

∣∣∣ <
1

2d2
,

then
c

d
is one of the convergents of the infinite continued fraction of α.

17. Let π = 3.14159926 · · ·. Prove that the first three convergents to π are
22

7
,

333

106
and

355

113
. Verify that

∣∣∣∣π − 355

113

∣∣∣∣ < 10−6.

18. Prove that the denominators Qn in the convergents to any real number θ satisfy that

Qn ≤
(

1+√5

2

)n−1

.

19. Prove that if m < n, then

(22m + 1) � (22n + 1), gcd((22m + 1), (22n + 1)) = 1.

20. Find the integer solution (x, y, z) to the Diophantine equation 35x + 55y + 77z = 1.

2.3 Arithmetic Functions

This section discusses some of the most useful arithmetic functions such as
σ (n), τ (n), φ(n), λ(n), and μ(n).

Definition 2.28 A function f is called an arithmetic function or a number-theoretic function
if it assigns to each positive integer n a unique real or complex number f (n). Typically, an
arithmetic function is a real-valued function whose domain is the set of positive integers.

Example 2.30 The equation

f (n) = √n, n ∈ Z+ (2.60)

defines an arithmetic function f which assigns the real number
√

n to each positive
integer n.



76 Computational Number Theory and Modern Cryptography

Definition 2.29 A real function f defined on the positive integers is said to be multiplicative
if

f (m) f (n) = f (mn), ∀m, n ∈ Z+, (2.61)

where gcd(m, n) = 1. If

f (m) f (n) = f (mn), ∀m, n ∈ Z+, (2.62)

then f is completely multiplicative. Every completely multiplicative function is multiplica-
tive.

Theorem 2.30 Let

n =
k∏

i=1

pαi
i

be the prime factorization of n and let f be a multiplicative function, then

f (n) =
k∏

i=1

f (pαi
i ).

Proof: Clearly, if k = 1, we have the identity, f (pαi
i ) = f (pαi

i ). Assume that the represen-

tation is valid whenever n has r or fewer distinct prime factors, and consider n =
r+1∏
i=1

f (pαi
i ).

Since gcd

(
r∏

i=1
pαi

i , pαr+1
r+1

)
= 1 and f is multiplicative, we have

f (n) = f

(
r+1∏
i=1

pαi
i

)

= f

(
r∏

i=1

pαi
i · pαr+1

r+1

)

= f

(
r∏

i=1

pαi
i

)
· f
(

pαr+1
r+1

)
=

r∏
i=1

f
(

pαi
i

) · f
(

pαr+1
r+1

)
=

r+1∏
i=1

f
(

pαi
i

)
.
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Theorem 2.31 If f is multiplicative and if g is given by

g(n) =
∑
d|n

f (d) (2.63)

where the sum is over all divisors d of n, then g is also multiplicative.

Proof: Since f is multiplicative, if gcd(m, n) = 1, then

g(mn) =
∑
d|mn

f (d)

=
∑

d1|m d2|n
f (d1d2)

=
∑

d1|m d2|n
f (d1) f (d2)

=
∑
d1|m

f (d1)
∑
d2|n

f (d2)

= g(m)g(n).

Theorem 2.32 If f and g are multiplicative, then so is

F(n) =
∑
d|m

f (d)g
(n

d

)
.

Proof: If gcd(m, n) = 1, then d | mn if and only if d = d1d2, where d1 | m and d2 | n,
gcd(d1, d2) = 1 and gcd(m/d1, n/d2) = 1. Thus,

F(mn) =
∑
d|mn

f (d)g
(mn

d

)
=
∑
d1|m

∑
d2|n

f (d1d2)g

(
mn

d1d2

)

=
∑
d1|m

∑
d2|n

f (d1) f (d2)g

(
m

d1

)
g

(
n

d2

)

=
⎡⎣∑

d1|m
f (d1)g

(
m

d1

)⎤⎦⎡⎣∑
d2|m

f (d2)g

(
n

d2

)⎤⎦
= F(m)F(n).
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Definition 2.30 Let n be a positive integer. Then the arithmetic functions τ (n) and σ (n)
are defined as follows:

τ (n) =
∑
d|n

1, σ (n) =
∑
d|n

d. (2.64)

That is, τ (n) designates the number of all positive divisors of n, and σ (n) designates the sum
of all positive divisors of n.

Example 2.30 By Definition 2.30, we have

n 1 2 3 4 5 6 7 8 9 10 100 101 220 284

τ (n) 1 2 2 3 2 4 2 4 3 4 9 2 12 6
σ (n) 1 3 4 7 6 12 8 15 13 18 217 102 504 504

Lemma 2.1 If n is a positive integer greater than 1 and has the following standard prime
factorization form

n =
k∏
i

pαi
i ,

then the positive divisors of n are precisely those integers d of the form

d =
k∏
i

pβi
i ,

where 0 ≤ βi ≤ αi .

Proof: If d | n, then n = dq. By the Fundamental Theorem of Arithmetic, the prime fac-
torization of n is unique, so the prime numbers in the prime factorization of d must occur
in p j , ( j = 1, 2, . . . , k). Furthermore, the power β j of p j occurring in the prime factoriza-
tion of d cannot be greater than α j , that is, β j ≤ α j . Conversely, when β j ≤ α j , d clearly
divides n.

Theorem 2.33 Let n be a positive integer. Then

(1) τ (n) is multiplicative. That is,

τ (mn) = τ (m)τ (n) (2.65)

where gcd(m, n) = 1.
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(2) If n is a prime, say p, then τ (p) = 2. More generally, if n is a prime power pα , then

τ (pα) = α + 1. (2.66)

(3) If n is a composite and has the standard prime factorization form, then

τ (n) = (α1 + 1)(α2 + 1) · · · (αk + 1) =
k∏

i=1

(αi + 1). (2.67)

Proof:

(1) Since the constant function f (n) = 1 is multiplicative and τ (n) =∑
d|n

1, the result follows

immediately from Theorem 2.31.
(2) Clearly, if n is a prime, there are only two divisors, namely, 1 and n itself. If n = pα ,

then by Lemma 2.1, the positive divisors of n are precisely those integers d = pβ , with
0 ≤ β ≤ α. Since there are α + 1 choices for the exponent β, there are α + 1 possible
positive divisors of n.

(3) By Lemma 2.1 and Part (2) of this theorem, there are α1 + 1 choices for the exponent β1,
α2 + 1 choices for the exponent β2, · · ·, αk + 1 choices for the exponent βk . From the
multiplication principle it follows that there are (α1 + 1)(α2 + 1) · · · (αk + 1) different
choices for the β1, β2, . . . , βk , thus that many divisors of n. Therefore, τ (n) = (α1 + 1)
(α2 + 1) · · · (αk + 1).

Theorem 2.34 The product of all divisors of a number n is∏
d|n

d = nτ (n)/2. (2.68)

Proof: Let d denote an arbitrary positive divisor of n, so that

n = dd ′

for some d ′. As d ranges over all τ (n) positive divisors of n, there are τ (n) such equations.
Multiplying these together, we get

nτ (n) =
∏
d|n

d
∏
d ′ |n

d ′.

But as d runs through the divisors of n, so does d ′, hence∏
d|n

d =
∏
d ′ |n

d ′.



80 Computational Number Theory and Modern Cryptography

So,

nτ (n) =
⎛⎝∏

d|n
d

⎞⎠2

,

or equivalently

nτ (n)/2 =
∏
d|n

d.

Example 2.32 Let n = 1371, then

τ (1371) = 4.

Therefore ∏
d = 13714/2 = 1879641.

It is of course true, since

d(1371) = {1, 3, 457, 1371}

implies that

∏
d = 1 · 3 · 457 · 1371 = 1879641.

Theorem 2.35 Let n be a positive integer. Then

(1) σ (n) is multiplicative. That is,

σ (mn) = σ (m)σ (n) (2.69)

where gcd(m, n) = 1.
(2) If n is a prime, say p, then σ (p) = p + 1. More generally, if n is a prime power pα , then

σ (pα) = pα+1 − 1

p − 1
. (2.70)
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(3) If n is a composite and has the standard prime factorization form, then

σ (n) = pα1+1
1 − 1

p1 − 1
· pα2+1

2 − 1

p2 − 1
· · · pαk+1

k − 1

pk − 1

=
k∏

i=1

pαi+1
i − 1

pi − 1
. (2.71)

Proof:

(1) The results follows immediately from Theorem 2.31 since the identity function f (n) = n
and σ (n) can be represented in the form σ (n) =∑

d|n
d.

(2) Left as an exercise; we prove the most general case in Part (3).
(3) The sum of the divisors of the positive integer

n = pα1
1 pα2

2 · · · pαk
k

can be expressed by the product(
1+ p1 + p2

1 + · · · + pα1
1

) (
1+ p2 + p2

2 + · · · + pα2
2

)
· · · (1+ pk + p2

k + · · · + pαk
k

)
.

Using the finite geometric series

1+ x + x2 + · · · + xn = xn+1 − 1

x − 1,

we simplify each of the k sums in the above product to find that the sum of the divisors
can be expressed as

σ (n) = pα1+1
1 − 1

p1 − 1
· pα2+1

2 − 1

p2 − 1
· · · pαk+1

k − 1

pk − 1

=
k∏

i=1

pαi+1
i − 1

pi − 1
. (2.72)

Definition 2.31 Let n be a positive integer. Euler’s (totient) φ-function, φ(n), is defined to
be the number of positive integers k less than n which are relatively prime to n:

φ(n) =
∑
0≤k<n

gcd(k,n)=1

1. (2.73)
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Example 2.33 By Definition 2.31, we have

n 1 2 3 4 5 6 7 8 9 10 100 101 102 103

φ(n) 1 1 2 2 4 2 6 4 6 4 40 100 32 102

Lemma 2.2 For any positive integer n,∑
d|n

φ(d) = n. (2.74)

Proof: Let nd denote the number of elements in the set {1, 2, . . . , n} having a greatest
common divisor of d with n. Then

n =
∑
d|n

nd =
∑
d|n

φ
(n

d

)
=
∑
d|n

φ(d).

Theorem 2.36 Let n be a positive integer and gcd(m, n) = 1. Then

(1) Euler’s φ-function is multiplicative. That is,

φ(mn) = φ(m)φ(n) (2.75)

where gcd(m, n) = 1.
(2) If n is a prime, say p, then

φ(p) = p − 1. (2.76)

(Conversely, if p is a positive integer with φ(p) = p − 1, then p is prime.)
(3) If n is a prime power pα with α > 1, then

φ(pα) = pα − pα−1. (2.77)

(4) If n is a composite and has the standard prime factorization form, then

φ(n) = pα1
1

(
1− 1

p1

)
pα2

2

(
1− 1

p2

)
· · · pαk

k

(
1− 1

pk

)
= n

k∏
i=1

(
1− 1

pi

)
. (2.78)
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Proof:

(1) Use Theorem 2.32 and Lemma 2.2. (A nicer way to prove this result is to use the Chinese
Remainder theorem, which will be discussed in Section 2.4.)

(2) If n is prime, then 1, 2, . . . , n − 1 are relatively prime to n, so it follows from the
definition of Euler’s φ-function that φ(n) = n − 1. Conversely, if n is not prime, n has a
divisor d such that gcd(d, n) �= 1. Thus, there is at least one positive integer less than n
that is not relatively prime to n, and hence φ(n) ≤ n − 2.

(3) Note that gcd(n, pα) = 1 if and only if p � n. There are exactly pα−1 integers between 1
and pα divisible by p, namely,

p, 2p, 3p, . . . , (pα−1)p.

Thus, the set {1, 2, . . . , pα} contains exactly pα − pα−1 integers that are relatively prime
to pα , and so by the definition of the φ-function, φ(pα) = pα − pα−1.

(4) By Part (1) of this theorem, φ-function is multiplicative, thus

φ(n) = φ
(

pα1
1

)
φ
(

pα2
2

) · · ·φ (pαk
k

)
.

In addition, by Part (3) of this theorem and Theorem 2.30, we have

φ(n) = pα1
1

(
1− 1

p1

)
pα2

2

(
1− 1

p2

)
· · · pαk

k

(
1− 1

pk

)
= pα1

1 pα2
2 · · · pαk

k

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(

1− 1

pk

)
= n

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(

1− 1

pk

)

= n
k∏

i=1

(
1− 1

pi

)
.

Definition 2.32 Carmichael’s λ-function, λ(n), is defined as follows

λ(p) = φ(p) = p − 1 for primep,

λ(pα) = φ(pα) for p = 2 and α ≤ 2,

and for p ≥ 3

λ(2α) = 1

2
φ(2α) for α ≥ 3

λ(n) = lcm
(
λ(pα1

1 ), λ(pα2
2 ), . . . , λ(pαk

k )
)

if n =
k∏

i=1
pαi

i .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.79)
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Example 2.34 By Definition 2.32, we have

n 1 2 3 4 5 6 7 8 9 10 100 101 102 103

λ(n) 1 1 2 2 4 2 6 2 6 4 20 100 16 102

Example 2.35 Let n = 65520 = 24 · 32 · 5 · 7 · 13, and a = 11. Then gcd(65520, 11) = 1
and we have

φ(65520) = 8 · 6 · 4 · 6 · 12 = 13824,

λ(65520) = lcm(4, 6, 4, 6, 12) = 12.

Definition 2.33 Let n be a positive integer. Then the Möbius μ-function, μ(n), is defined
as follows:

μ(n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if n = 1,

0, if n contains a squared factor,

(−1)k, if n = p1 p2 · · · pk is the product of

k distinct primes.

(2.80)

Example 2.36 By Definition 2.80, we have

n 1 2 3 4 5 6 7 8 9 10 100 101 102

μ(n) 1 −1 −1 0 −1 1 −1 0 0 1 0 −1 −1

Theorem 2.37 Let μ(n) be the Möbius function. Then

(1) μ(n) is multiplicative, that is, for gcd(m, n) = 1,

μ(mn) = μ(m)μ(n). (2.81)

(2) Let

ν(n) =
∑
d|n

μ(d). (2.82)
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Then

ν(n) =
{

1, if n = 1,

0, if n > 1.
(2.83)

Proof:

(1) If either p2 | m or p2 | n, p is a prime, then p2 | mn. Hence, μ(mn) = 0 = μ(m)μ(n). If
both m and n are square-free integers, say, m = p1 p2 · · · ps and n = q1q2 · · · qt . Then

μ(mn) = μ(p1 p2 · · · psq1q2 · · · qt )

= (−1)s+t

= (−1)s(−1)t

= μ(m)μ(n).

(2) If n = 1, then ν(1) =∑
d|n

ν(d) = μ(1) = 1. If n > 1, since ν(n) is multiplicative, we need

only to evaluate ν on prime to powers. In addition, if p is prime,

ν(pα) =
∑
d|pα

μ(d)

= μ(1)+ μ(p)+ μ(p2)+ · · · + μ(pα)

= 1+ (−1)+ 0+ · · · + 0

= 0.

Thus, ν(n) = 0 for any positive integer n greater than 1.

The importance of the Möbius function lies in the fact that it plays an important role in the
inversion formula given in the following theorem. The formula involves a general arithmetic
function f which is not necessarily multiplicative.

Theorem 2.38 (The Möbius inversion formula) If f is any arithmetic function and if

g(n) =
∑
d|n

f (d), (2.84)

then

f (n) =
∑
d|n

μ
(n

d

)
g(d) =

∑
d|n

μ(d) g
(n

d

)
. (2.85)
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Proof: If f is an arithmetic function and g(n) =∑
d|n

f (d). Then

∑
d|n

μ(d)g
(n

d

)
=
∑
d|n

μ(d)
∑

a|(n/d)

f (a)

=
∑
d|n

∑
a|(n/d)

μ(d) f (a)

=
∑
a|n

∑
d|(n/a)

f (a)μ(d)

=
∑
a|n

f (a)
∑

d|(n/a)

μ(d)

= f (n) · 1
= f (n).

The converse of Theorem 2.38 is also true and can be stated as follows:

Theorem 2.39 (The converse of the Möbius inversion formula) If

f (n) =
∑
d|n

μ
(n

d

)
g(d), (2.86)

then

g(n) =
∑
d|n

f (d). (2.87)

Note that the functions τ and σ

τ (n) =
∑
d|n

1 and σ (n) =
∑
d|n

d

may be inverted to give

1 =
∑
d|n

μ
(n

d

)
τ (d) and n =

∑
d|n

μ
(n

d

)
σ (d)

for all n ≥ 1. The relationship between Euler’s φ-function and Möbius’ μ-function is given
by the following theorem.
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Theorem 2.40 For any positive integer n,

φ(n) = n
∑
d|n

μ(d)

d
. (2.88)

Proof: Apply Möbius inversion formula to

g(n) = n =
∑
d|n

φ(d)

we get

φ(n) =
∑
d|n

μ(d)g
(n

d

)
=
∑
d|n

μ(d)

d
n.

Problems for Section 2.3

1. Let

�(n) =
{

log p, if n is a power of a prime p

0, otherwise

Evaluate ∑
d|n

�(d).

2. Evaluate ∑
d|n

μ(d)σ (d)

in terms of the distinctive prime factors of n.
3. Let n > 1 and a run over all integers with 1 ≤ a ≤ n and gcd(a, n) = 1. Prove that

1

n3

∑
a3 = 1

4
φ(n)

(
1+ (−1)k p1 p2 · · · pk

n2

)
,

where p1, p2 · · · pk are the distinct prime factors of n.
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4. (Ramanujan sum) Let m, n be positive integers and d run over all divisors of gcd(m, n).
Prove that

∑
dμ
(n

d

)
=

μ
(

n
gcd(m, n)

)
φ(n)

φ

(
n

gcd(m, n)

)

5. (Lambert series) Prove that

∞∑
n=1

φ(n)xn

1− xn
= x

(1− x)2
.

6. Prove that

∑
n≤x

φ(n)

n
= 6x

π2
+O(log x).

7. Let p1, p2, . . . , pk be distinct primes. Show that

(p1 + 1)(p2 + 1) · · · (pk + 1)

p1 p2 · · · pk
≤ 2 ≤ p1 p2 · · · pk

(p1 − 1)(p2 − 1) · · · (pk − 1)

is the necessary condition for

n = pα1
1 pα2

2 · · · pαk
k

to be a perfect number.
8. Show that τ (n) is odd if and only if n is a perfect square, and that σ (n) is odd if and only

if n is a square or two times a square.
9. Show that for n > 2,

φ(n)∑
k=1

gcd(k,n)=1

1

k

cannot be an integer.
10. Prove that for each positive integer n,

n∑
k=1

gcd(k,n)=1

k = n

2
φ(n)+ n

2

∑
d|n

μ(d).
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n∑
k=1

gcd(k,n)=1

k2 = n2

3
φ(n)+ n2

2

∑
d|n

μ(d)+ n

6

∏
p|n

(1− p).

n∑
k=1

gcd(k,n)=1

k3 = n3

4
φ(n)+ n3

2

∑
d|n

μ(d)+ n2

4

∏
p|n

(1− p).

2.4 Congruence Theory

The notion of congruences was first introduced by Gauss, who gave their definition in his
celebrated Disquisitiones Arithmeticae in 1801, though the ancient Greeks and Chinese had
the idea first.

Definition 2.34 Let a be an integer and n a positive integer greater than 1. We define
“a mod n” to be the remainder r when a is divided by n, that is

r = a mod n = a − �a/n�n. (2.89)

We may also say that “r is equal to a reduced modulo n”.

Remark 2.7 It follows from the above definition that a mod n is the integer r such that
a = �a/n�n + r and 0 ≤ r < n, which was known to the ancient Greeks 2000 years ago.

Example 2.37 The following are some examples of a mod n:

35 mod 12 = 11,

−129 mod 7 = 4,

3210 mod 101 = 79,

141213115 mod 12349 = 1275.

Given the well-defined notion of the remainder of one integer when divided by another, it
is convenient to provide a special notion to indicate equality of remainders.

Definition 2.35 Let a and b be integers and n a positive integer. We say that “a is congruent
to b modulo n”, denoted by

a ≡ b (mod n) (2.90)

if n is a divisor of a − b, or equivalently, if n | (a − b). Similarly, we write

a �≡ b (mod n) (2.91)
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if a is not congruent (or incongruent) to b modulo n, or equivalently, if n � (a − b). Clearly,
for a ≡ b (mod n) (resp. a �≡ b (mod n)), we can write a = kn + b (resp. a �= kn + b) for
some integer k. The integer n is called the modulus.

Clearly,

a ≡ b (mod n) ⇐⇒ n | (a − b) ⇐⇒ a = kn + b, k ∈ Z

and

a �≡ b (mod n) ⇐⇒ n � (a − b) ⇐⇒ a �= kn + b, k ∈ Z

So, the above definition of congruences, introduced by Gauss in his Disquisitiones Arithmeti-
cae, does not offer any new idea other than the divisibility relation, since “a ≡ b (mod n)”
and “n | (a − b)” (resp. “a �≡ b (mod n)” and “n � (a − b)”) have the same meaning, al-
though each of them has its own advantages. However, Gauss did present a new way (i.e.,
congruences) of looking at the old things (i.e., divisibility); this is exactly what we are in-
terested in. It is interesting to note that the ancient Chinese mathematician Ch’in Chiu-Shao
(1202–1261) had already noted the idea of congruences in his famous book Mathematical
Treatise in Nine Chapters in 1247.

Definition 2.36 If a ≡ b (mod n), then b is called a residue of a modulo n. If 0 ≤ b ≤ n − 1,
b is called the least non-negative residue of a modulo n.

Remark 2.8 It is common, particularly in computer programs, to denote the least non-
negative residue of a modulo n by a mod n. Thus, a ≡ b (mod n) if and only if a mod n =
b mod n, and, of course, a �≡ b (mod n) if and only if a mod n �= b mod n.

Example 2.38 The following are some examples of congruences or incongruences.

35 ≡ 11 (mod 12) since 12 | (35− 11)
�≡ 12 (mod 11) since 11 � (35− 12)
≡ 2 (mod 11) since 11 | (35− 2).

The congruence relation has many properties in common with the of equality relation. For
example, we know from high-school mathematics that equality is

(1) reflexive: a = a, ∀a ∈ Z;
(2) symmetric: if a = b, then b = a, ∀a, b ∈ Z;
(3) transitive: if a = b and b = c, then a = c, ∀a, b, c ∈ Z.
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We shall see that congruence modulo n has the same properties:

Theorem 2.41 Let n be a positive integer. Then the congruence modulo n is

(1) reflexive: a ≡ a (mod n), ∀a ∈ Z;
(2) symmetric: if a ≡ b (mod n), then b ≡ a (mod n), ∀a, b ∈ Z;
(3) transitive: if a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n), ∀a, b, c ∈ Z.

Proof:

(1) For any integer a, we have a = 0 · n + a, hence a ≡ a (mod n).
(2) For any integers a and b, if a ≡ b (mod n), then a = kn + b for some integer k. Hence

b = a − kn = (−k)n + a, which implies b ≡ a (mod n), since −k is an integer.
(3) If a ≡ b (mod n) and b ≡ c (mod n), then a = k1n + b and b = k2n + c. Thus, we

can get

a = k1n + k2n + c = (k1 + k2)n + c = k ′n + c

which implies a ≡ c (mod n), since k ′ is an integer.

Theorem 2.41 shows that congruence modulo n is an equivalence relation on the set of
integers Z. But note that the divisibility relation a | b is reflexive, and transitive but not
symmetric; in fact if a | b and b | a then a = b, so it is not an equivalence relation. The
congruence relation modulo n partitions Z into n equivalence classes. In number theory, we
call these classes congruence classes, or residue classes.

Definition 2.37 If x ≡ a (mod n), then a is called a residue of x modulo n. The residue
class of a modulo n, denoted by [a]n (or just [a] if no confusion will be caused), is the set
of all those integers that are congruent to a modulo n. That is,

[a]n = {x : x ∈ Z and x ≡ a (mod n)} = {a + kn : k ∈ Z}. (2.92)

Note that writing a ∈ [b]n is the same as writing a ≡ b (mod n).

Example 2.39 Let n = 5. Then there are five residue classes, modulo 5, namely the sets:

[0]5 = {. . . ,−15,−10,−5, 0, 5, 10, 15, 20, . . .},
[1]5 = {. . . ,−14,−9,−4, 1, 6, 11, 16, 21, . . .},
[2]5 = {. . . ,−13,−8,−3, 2, 7, 12, 17, 22, . . .},
[3]5 = {. . . ,−12,−7,−2, 3, 8, 13, 18, 23, . . .},
[4]5 = {. . . ,−11,−6,−1, 4, 9, 14, 19, 24, . . .}.

The first set contains all those integers congruent to 0 modulo 5, the second set contains all
those congruent to 1 modulo 5, · · ·, and the fifth (i.e., the last) set contains all those congruent
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to 4 modulo 5. So, for example, the residue class [2]5 can be represented by any one of the
elements in the set

{. . . ,−13,−8,−3, 2, 7, 12, 17, 22, . . .}.

Clearly, there are infinitely many elements in the set [2]5.

Example 2.40 In residue classes modulo 2, [0]2 is the set of all even integers, and [1]2 is
the set of all odd integers:

[0]2 = {. . . ,−6,−4,−2, 0, 2, 4, 6, 8, . . .}
[1]2 = {. . . ,−5,−3,−1, 1, 3, 5, 7, 9, . . .}

Example 2.41 In congruence modulo 5, we have

[9]5 = {9+ 5k : k ∈ Z} = {9, 9± 5, 9± 10, 9± 15, . . .}
= {. . . ,−11,−6,−1, 4, 9, 14, 19, 24, . . .}.

We also have

[4]5 = {4+ 5k : k ∈ Z} = {4, 4± 5, 4± 10, 4± 15, . . .}
= {. . . ,−11,−6,−1, 4, 9, 14, 19, 24, . . .}.

So, clearly, [4]5 = [9]5.

Example 2.42 Let n = 7. There are seven residue classes, modulo 7. In each of these seven
residue classes, there is exactly one least residue of x modulo 7. So the complete set of all
least residues x modulo 7 is {0, 1, 2, 3, 4, 5, 6}.

Definition 2.38 The set of all residue classes modulo n, often denoted by Z/nZ or Z/nZ,
is

Z/nZ = {[a]n : 0 ≤ a ≤ n − 1}. (2.93)

Remark 2.9 One often sees the definition

Z/nZ = {0, 1, 2, . . . , n − 1}, (2.94)
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which should be read as equivalent to (2.93) with the understanding that 0 represents [0]n ,
1 represents [1]n , 2 represents [2]n , and so on; each class is represented by its least non-
negative residue, but the underlying residue classes must be kept in mind. For example, a
reference to −a as a member of Z/nZ is a reference to [n − a]n , provided n ≥ a, since
−a ≡ n − a (mod n).

The following theorem gives some elementary properties of residue classes:

Theorem 2.42 Let n be a positive integer. Then we have

(1) [a]n = [b]n if and only if a ≡ b (mod n);
(2) Two residue classes modulo n are either disjoint or identical;
(3) There are exactly n distinct residue classes modulo n, namely, [0]n, [1]n, [2]n,

[3]n, . . . , [n − 1]n, and they contain all of the integers.

Proof:

(1) If a ≡ b (mod n), it follows from the transitive property of congruence that an integer
is congruent to a modulo n if and only if it is congruent to b modulo n. Thus, [a]n = [b]n .
To prove the converse, suppose [a]n = [b]n . Because a ∈ [a]n and a ∈ [b]n , Thus, a ≡ b
(mod n).

(2) Suppose [a]n and [b]n have a common element c. Then c ≡ a (mod n) and c ≡ b
(mod n). From the symmetric and transitive properties of congruence, it follows that
a ≡ b (mod n). From part (1) of this theorem, it follows that [a]n = [b]n . Thus, either
[a]n and [b]n are disjoint or identical.

(3) If a is an integer, we can divide a by n to get

a = kn + r, 0 ≤ r < k.

Thus, a ≡ r (mod n) and so [a]n = [r ]n . This implies that a is in one of the residue
classes [0]n, [1]n, [2]n, . . . , [n − 1]n, Because the integers 0, 1, 2, . . . , n − 1 are incon-
gruent modulo n, it follows that there are exactly n residue classes modulo n.

Definition 2.39 Let n be a positive integer. A set of integers a1, a2, . . . , an is called a
complete system of residues modulo n, if the set contains exactly one element from each
residue class modulo n.

Example 2.43 Let n = 4. Then {−12, 9,−6,−1} is a complete system of residues modulo
4, since −12 ∈ [0], 9 ∈ [1], −6 ∈ [2], and −1 ∈ [3]. Of course, it can be easily verified
that {12,−7, 18,−9} is another complete system of residues modulo 4. It is clear that the
simplest complete system of residues modulo 4 is {0, 1, 2, 3}, the set of all non-negative least
residues modulo 4.
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Example 2.44 Let n = 7. Then

{x, x + 3, x + 32, x + 33, x + 34, x + 35, x + 36}
is a complete system of residues modulo 7, for any x ∈ Z. To see this let us first evaluate the
powers of 3 modulo 7:

3 32 ≡ 2 (mod 7) 33 ≡ 6 (mod 7)
34 ≡ 4 (mod 7) 35 ≡ 5 (mod 7) 36 ≡ 1 (mod 7)

hence, the result follows from x = 0. Now the general result follows immediately, since
(x + 3i )− (x + 3 j ) = 3i − 3 j .

Theorem 2.43 Let n be a positive integer and S a set of integers. S is a complete system
of residues modulo n if and only if S contains n elements and no two elements of S are
congruent, modulo n.

Proof: If S is a complete system of residues, then the two conditions are satisfied. To
prove the converse, we note that if no two elements of S are congruent, the elements of S
are in different residue classes modulo n. Since S has n elements, all the residue classes
must be represented among the elements of S. Thus, S is a complete system of residues
modulo n.

We now introduce one more type of system of residues, the reduced system of residues
modulo n.

Definition 2.40 Let [a]n be a residue class modulo n. We say that [a]n is relatively prime
to n if each element in [a]n is relatively prime to n.

Example 2.45 Let n = 10. Then the ten residue classes, modulo 10, are as follows:

[0]10 = {. . . ,−30,−20,−10, 0, 10, 20, 30, . . .}
[1]10 = {. . . ,−29,−19,−9, 1, 11, 21, 31, . . .}
[2]10 = {. . . ,−28,−18,−8, 2, 12, 22, 32, . . .}
[3]10 = {. . . ,−27,−17,−7, 3, 13, 23, 33, . . .}
[4]10 = {. . . ,−26,−16,−6, 4, 14, 24, 34, . . .}
[5]10 = {. . . ,−25,−15,−5, 5, 15, 25, 35, . . .}
[6]10 = {. . . ,−24,−14,−4, 6, 16, 26, 36, . . .}
[7]10 = {. . . ,−23,−13,−3, 7, 17, 27, 37, . . .}
[8]10 = {. . . ,−22,−12,−2, 8, 18, 28, 38, . . .}
[9]10 = {. . . ,−21,−11,−1, 9, 19, 29, 39, . . .}.

Clearly, [1]10, [3]10, [7]10, and [9]10 are residue classes that are relatively prime to 10.
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Proposition 2.1 If a residue class modulo n has one element which is relatively prime to
n, then every element in that residue class is relatively prime to n.

Proposition 2.2 If n is prime, then every residue class modulo n (except [0]n) is relatively
prime to n.

Definition 2.41 Let n be a positive integer, then φ(n) is the number of residue classes
modulo n, which is relatively prime to n. A set of integers {a1, a2, . . . , aφ(n)} is called a
reduced system of residues, if the set contains exactly one element from each residue class
modulo n which is relatively prime to n.

Example 2.46 In Example 2.45, we know that [1]10, [3]10, [7]10, and [9]10 are residue classes
that are relatively prime to 10, so by choosing −29 from [1]10, −17 from [3]10, 17 from
[7]10 and 39 from [9]10, we get a reduced system of residues modulo 10: {−29,−17, 17, 39}.
Similarly, {31, 3,−23,−1} is another reduced system of residues modulo 10.

One method of obtaining a reduced system of residues is to start with a complete system
of residues and delete those elements that are not relatively prime to the modulus n. Thus,
the simplest reduced system of residues (mod n) is just the collections of all integers in the
set {0, 1, 2, . . . , n − 1} that are relatively prime to n.

Theorem 2.44 Let n be a positive integer, and S a set of integers. Then S is a reduced
system of residues (mod n) if and only if

(1) S contains exactly φ(n) elements;
(2) no two elements of S are congruent (mod n);
(3) each element of S is relatively prime to n.

Proof: It is obvious that a reduced system of residues satisfies the three conditions. To prove
the converse, we suppose that S is a set of integers having the three properties. Because no
two elements of S are congruent, the elements are in different residues modulo n. Since the
elements of S are relatively prime n, there are in residue classes that are relatively prime
n. Thus, the φ(n) elements of S are distributed among the φ(n) residue classes that are
relatively prime n, one in each residue class. Therefore, S is a reduced system of residues
modulo n.

Corollary 2.3 Let {a1, a2, . . . , aφ(n)} be a reduced system of residues modulo m, and
suppose that gcd(k, n) = 1. Then {ka1, ka2, . . . , kaφ(n)} is also a reduced system of residues
modulo n.

Proof: Left as an exercise.

The finite set Z/nZ is closely related to the infinite set Z. So it is natural to ask if it
is possible to define addition and multiplication in Z/nZ and do some reasonable kind of
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arithmetic there. Surprisingly, the addition, subtraction, and multiplication in Z/nZ will be
much the same as that in Z.

Theorem 2.45 For all a, b, c, d ∈ Z and n ∈ Z>1, if a ≡ b (mod n) and c ≡ d (mod n).
then

(1) a ± b ≡ c ± d (mod n);
(2) a · b ≡ c · d (mod n);
(3) am ≡ bm (mod n), ∀m ∈ Z+.

Proof:

(1) Write a = kn + b and c = ln + d for some k, l ∈ Z. Then a + c = (k + l)n +
b + d. Therefore, a + c = b + d + tn, t = k + l ∈ Z. Consequently, a + c ≡ b + d
(mod n), which is what we wished to show. The case for subtraction is left as an
exercise.

(2) Similarly,

ac = bd + bln + knd + kln2

= bd + n(bl + k(d + ln))

= bd + n(bl + kc)

= bd + sn

where s = bl + kc ∈ Z. Thus, a · b ≡ c · d (mod n).
(3) We prove Part (3) by induction. We have a ≡ b (mod n) (base step) and am ≡ bm

(mod n) (inductive hypothesis). Then by Part (2) we have am+1 ≡ aam ≡ bbm ≡ bm+1

(mod n).

Theorem 2.45 is equivalent to the following theorem, since

a ≡ b (mod n) ⇐⇒ a mod n = b mod n,

a mod n ⇐⇒ [a]n,

b mod n ⇐⇒ [b]n.

Theorem 2.46 For all a, b, c, d ∈ Z, if [a]n = [b]n, [c]n = [d]n, then

(1) [a ± b]n = [c ± d]n,
(2) [a · b]n = [c · d]n,
(3) [am]n = [bm]n, ∀m ∈ Z+.

The fact that the congruence relation modulo n is stable for addition (subtraction) and
multiplication means that we can define binary operations, again called addition (subtraction)
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and multiplication on the set of Z/nZ of equivalence classes modulo n as follows (in case
only one n is being discussed, we can simply write [x] for the class [x]n):

[a]n + [b]n = [a + b]n (2.95)

[a]n − [b]n = [a − b]n (2.96)

[a]n · [b]n = [a · b]n (2.97)

Example 2.47 Let n = 12, then

[7]12 + [8]12 = [7+ 8]12 = [15]12 = [3]12

[7]12 − [8]12 = [7− 8]12 = [−1]12 = [11]12

[7]12 · [8]12 = [7 · 8]12 = [56]12 = [8]12.

In many cases, we may still prefer to write the above operations as follows:

7+ 8 = 15 ≡ 3 (mod 12)

7− 8 = −1 ≡ 11 (mod 12)

7 · 8 = 56 ≡ 8 (mod 12).

We summarize the properties of addition and multiplication modulo n in the following
two theorems.

Theorem 2.47 The set Z/nZ of integers modulo n has the following properties with respect
to addition:

(1) Closure: [x]+ [y] ∈ Z/nZ, for all [x], [y] ∈ Z/nZ;
(2) Associative: ([x]+ [y])+ [z] = [x]+ ([y]+ [z]), for all [x], [y], [z] ∈ Z/nZ;
(3) Commutative: [x]+ [y] = [y]+ [x], for all [x], [y] ∈ Z/nZ;
(4) Identity, namely, [0];
(5) Additive inverse: −[x] = [−x], for all [x] ∈ Z/nZ.

Proof: These properties follow directly from the stability and the definition of the operation
in Z/nZ.

Theorem 2.48 The set Z/nZ of integers modulo n has the following properties with respect
to multiplication:

(1) Closure: [x] · [y] ∈ Z/nZ, for all [x], [y] ∈ Z/nZ;
(2) Associative: ([x] · [y]) · [z] = [x] · ([y] · [z]), for all [x], [y], [z] ∈ Z/nZ;
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(3) Commutative: [x] · [y] = [y] · [x], for all [x], [y] ∈ Z/nZ;
(4) Identity, namely, [1];
(5) Distributivity of multiplication over addition: [x] · ([y])+ [z]) = ([x] · [y])+ ([x] · [z]),

for all [x], [y], [z] ∈ Z/nZ.

Proof: These properties follow directly from the stability of the operation in Z/nZ and the
corresponding properties of Z.

The division a/b (we assume a/b is in lowest terms and b �≡ 0 (mod n)) in Z/nZ, however,
will be more of a problem; sometimes you can divide, sometimes you cannot. For example,
let n = 12 again, then

3/7 ≡ 9 (mod 12) (no problem),
3/4 ≡⊥ (mod 12) (impossible).

Why is division sometimes possible (e.g., 3/7 ≡ 9 (mod 12)) and sometimes impossible
(e.g., 3/8 ≡⊥ (mod 12))? The problem is with the modulus n; if n is a prime number, then
the division a/b (mod n) is always possible and unique, whilst if n is a composite then the
division a/b (mod n) may be not possible or the result may be not unique. Let us observe
two more examples, one with n = 13 and the other with n = 14. First note that a/b ≡ a · 1/b
(mod n) if and only if 1/b (mod n) is possible, since multiplication modulo n is always
possible. We call 1/b (mod n) the multiplicative inverse (or the modular inverse) of b
modulo n. Now let n = 13 be a prime, then the following table gives all the values of the
multiplicative inverses 1/x (mod 13) for x = 1, 2, . . . , 12:

x 1 2 3 4 5 6 7 8 9 10 11 12
1/x (mod 13) 1 7 9 10 8 11 2 5 3 4 6 12

This means that division in Z/13Z is always possible and unique. On the other hand, if
n = 14 (the n now is a composite), then

x 1 2 3 4 5 6 7 8 9 10 11 12 13
1/x (mod 14) 1 ⊥ 5 ⊥ 3 ⊥ ⊥ ⊥ 11 ⊥ 9 ⊥ 13

This means that only the numbers 1, 3, 5, 9, 11 and 13 have multiplicative inverses modulo
14, or equivalently only those divisions by 1, 3, 5, 9, 11 and 13 modulo 14 are possible. This
observation leads to the following important results:

Theorem 2.49 The multiplicative inverse 1/b modulo n exists if and only if gcd(b, n) = 1.

But how many b’s satisfy gcd(b, n) = 1? The following result answers this question.
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Corollary 2.4 There are φ(n) numbers b for which 1/b (mod n) exists.

Example 2.48 Let n = 21. Since φ(21) = 12, there are twelve values of b for which 1/b
(mod 21) exists. In fact, the multiplicative inverse modulo 21 only exists for each of the
following b:

b 1 2 4 5 8 10 11 13 16 17 19 20
1/b (mod 21) 1 11 16 17 8 19 2 13 4 5 10 20

Corollary 2.5 The division a/b modulo n (assume that a/b is in lowest terms) is possible
if and only if 1/b (mod n) exists, that is, if and only if gcd(b, n) = 1.

Example 2.49 Compute 6/b (mod 21) whenever it is possible. By the multiplicative
inverses of 1/b (mod 21) in the previous table, we just need to calculate 6 · 1/b (mod 21):

b 1 2 4 5 8 10 11 13 16 17 19 20
6/b (mod 21) 6 3 12 18 6 9 12 15 3 9 18 15

As can be seen, addition (subtraction) and multiplication are always possible in Z/nZ,
with n > 1, since Z/nZ is a ring. Note also that Z/nZ with n prime is an Abelian group
with respect to addition, and all the nonzero elements in Z/nZ form an Abelian group with
respect to multiplication (i.e., a division is always possible for any two nonzero elements in
Z/nZ if n is prime); hence Z/nZ with n prime is a field. That is:

Theorem 2.50 Z/nZ is a field if and only if n is prime.

The above results only tell us when the multiplicative inverse 1/a modulo n is possible,
without mentioning how to find the inverse. To actually find the multiplicative inverse, we
let

1/a (mod n) = x, (2.98)

which is equivalent to

ax ≡ 1 (mod n). (2.99)

Since

ax ≡ 1 (mod n) ⇐⇒ ax − ny = 1. (2.100)



100 Computational Number Theory and Modern Cryptography

Thus, finding the multiplicative inverse 1/a (mod n) is the same as finding the solution of
the linear Diophantine equation ax − ny = 1, which, as we know, can be solved by using
the continued fraction expansion of a/n or by using Euclid’s algorithm.

Example 2.50 Find

(1) 1/154 (mod 801),
(2) 4/154 (mod 801).

Solution

(1) Since

1/a (mod n) = x ⇐⇒ ax ≡ 1 (mod n) ⇐⇒ ax − ny = 1,

we only need to find x and y in

154x − 801y = 1.

To do so, we first use the Euclid’s algorithm to find gcd(154, 801) as follows:

801 = 154 · 5+ 31

154 = 31 · 4+ 30

31 = 30 · 1+ 1

3 = 1 · 3.

Since gcd(154, 801) = 1, by Theorem 2.49, the equation 154x − 801y = 1 is soluble.
We now rewrite the above resulting equations

31 = 801− 154 · 5
30 = 154− 31 · 4

1 = 31− 30 · 1

and work backwards on the above new equations

1 = 31− 30 · 1
= 31− (154− 31 · 4) · 1
= 31− 154+ 4 · 31

= 5 · 31− 154

= 5 · (801− 154 · 5)− 154

= 5 · 801− 26 · 154

= 801 · 5− 154 · 26.
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So, x ≡ −26 ≡ 775 (mod 801). That is,

1/154 mod 801 = 775.

(2) By Part (1) above, we have

4/154 ≡ 4 · 1/154

≡ 4 · 775

≡ 697 (mod 801).

The above procedure used to find the x and y in ax + by = 1 can be generalized to find
the x and y in ax + by = c; this procedure is usually called the extended Euclid’s algorithm.

Congruences have much in common with equations. In fact, the linear congruence ax ≡
b (mod n) is equivalent to the linear Diophantine equation ax − ny = b. That is,

ax ≡ b (mod n) ⇐⇒ ax − ny = b. (2.101)

Thus, linear congruences can be solved by using the continued fraction method just as for
linear Diophantine equations.

Theorem 2.51 Let gcd(a, n) = d. If d � b, then the linear congruence

ax ≡ b (mod n) (2.102)

has no solution.

Proof: We will prove the contrapositive of the assertion: If ax ≡ b (mod n) has a solution,
then gcd(a, n) | b. Suppose that s is a solution. Then as ≡ b (mod n), and from the definition
of the congruence, n | (as − b), or from the definition of divisibility, as − b = kn for some
integer k. Since gcd(a, m) | a and gcd(a, n) | kn, it follows that gcd(a, n) | b.

Theorem 2.52 Let gcd(a, n) = d. Then the linear congruence ax ≡ b (mod n) has solutions
if and only if d | b.

Proof: Follows from Theorem 2.51.

Theorem 2.53 Let gcd(a, n) = 1. Then the linear congruence ax ≡ b (mod n) has exactly
one solution.
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Proof: If gcd(a, n) = 1, then there exist x and y such that ax + ny = 1. Multiplying by b
gives

a(xb)+ n(yb) = b.

As a(xb)− b is a multiple of n, or a(xb) ≡ b (mod n), the least residue of xb modulo
n is then a solution of the linear congruence. The uniqueness of the solution is left as
an exercise.

Theorem 2.54 Let gcd(a, n) = d and suppose that d | b. Then the linear congruence

ax ≡ b (mod n). (2.103)

has exactly d solutions modulo n. These are given by

t, t + n

d
, t + 2n

d
, . . . , t + (d − 1)n

d
(2.104)

where t is the solution, unique modulo n/d, of the linear congruence

a

d
x ≡ b

d

(
mod

n

d

)
. (2.105)

Proof: By Theorem 2.52, the linear congruence has solutions since d | b. Now let t be be such
a solution, then t + k(n/d) for k = 1, 2, . . . , d − 1 are also solutions, since a(t + k(n/d)) ≡
at + kn(a/d) ≡ at ≡ b (mod n).

Example 2.51 Solve the linear congruence 154x ≡ 22 (mod 803). Notice first that

154x ≡ 22 (mod 803) ⇐⇒ 154x − 803y = 22.

Now we use the Euclid’s algorithm to find gcd(154, 803) as follows:

803 = 154 · 5+ 33

154 = 33 · 4+ 22

33 = 22 · 1+ 11

22 = 11 · 2+ 0.

Since gcd(154, 803) = 11 and 11 | 22, by Theorem 2.31, the equation 154x − 801y = 22 is
soluble. Now we rewrite the above resulting equations

33 = 803− 154 · 5
22 = 154− 33 · 4
11 = 33− 22 · 1
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and work backwards on the above new equations

11 = 33− 22 · 1
= 33− (154− 33 · 4) · 1
= 33− 154+ 4 · 33

= 5 · 33− 154

= 5 · (803− 154 · 5)− 154

= 5 · 803− 26 · 154

= 803 · 5− 154 · 26.

So, x ≡ −26 ≡ 777 (mod 803). By Theorems 2.53 and 2.54, x ≡ −26 ≡ 47 (mod 73) is the
only solution to the simplified congruence:

154/11 ≡ 22/11 (mod 803/11) =⇒ 14x ≡ 2 (mod 73),

since gcd(14, 73) = 1. By Theorem 2.54, there are, in total, eleven solutions to the congruence
154x ≡ 11 (mod 803), as follows:

x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

777
47
120
193
266
339
412
485
558
631
704

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Thus,

x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

751
94
240
386
532
678
21
167
313
459
605

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
are the eleven solutions to the original congruence 154x ≡ 22 (mod 803).
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Remark 2.10 To find the solution for the linear Diophantine equation

ax ≡ b (mod n) (2.106)

is equivalent to finding the quotient of the modular division

x ≡ b

a
(mod n) (2.107)

which is, again, equivalent to finding the multiplicative inverse

x ≡ 1

a
(mod n) (2.108)

because if 1
a modulo n exists, the multiplication b · 1

a is always possible.

Theorem 2.55 (Fermat’s little theorem) Let a be a positive integer and gcd(a, p) = 1.
If p is prime, then

a p−1 ≡ 1 (mod p). (2.109)

Proof: First notice that the residues modulo p of a, 2a, . . . , (p − 1)a are 1, 2, . . . , (p − 1)
in some order, because no two of them can be equal. So, if we multiply them together, we
get

a · 2a · · · (p − 1)a ≡ [(a mod p) · (2a mod p) · · · (p − 1)a mod p)] (mod p)

≡ (p − 1)! (mod p).

This means that

(p − 1)!a p−1 ≡ (p − 1)! (mod p).

Now we can cancel the (p − 1)! since p � (p − 1)!, and the result thus follows.

There is a more convenient and more general form of Fermat’s little theorem:

a p ≡ a (mod p), (2.110)

for a ∈ N. The proof is easy: If gcd(a, p) = 1, we simply multiply (2.109) by a. If not, then
p | a. So a p ≡ 0 ≡ a (mod p).

Fermat’s theorem has several important consequences which are very useful in compos-
iteness; one of the these consequences is as follows:
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Corollary 2.6 (Converse of the Fermat little theorem, 1640) Let n be an odd positive
integer. If gcd(a, n) = 1 and

an−1 �≡ 1 (mod n), (2.111)

then n is composite.

Remark 2.11 In 1640, Fermat made a false conjecture that all the numbers of the form
Fn = 22n + 1 were prime. Fermat really should not have made such a “stupid” conjecture,
since F5 can be relatively easily verified to be composite, just by using his own recently
discovered theorem – Fermat’s little theorem:

322 ≡ 81 (mod 4294967297)

323 ≡ 6561 (mod 4294967297)

324 ≡ 43046721 (mod 4294967297)

325 ≡ 3793201458 (mod 4294967297)
...

3232 ≡ 3029026160 (mod 4294967297)

�≡ 1 (mod 4294967297).

Thus, by Fermat’s little theorem, 232 + 1 is not prime!

Based on Fermat’s little theorem, Euler established a more general result in 1760:

Theorem 2.56 (Euler’s theorem) Let a and n be positive integers with gcd(a, n) = 1.
Then

aφ(n) ≡ 1 (mod n). (2.112)

Proof: Let r1, r2, . . . , rφ(n) be a reduced residue system modulo n. Then ar1, ar2, . . . , arφ(n)

is also a residue system modulo n. Thus we have

(ar1)(ar2) · · · (arφ(n)) ≡ r1r2 · · · rφ(n) (mod n),

since ar1, ar2, . . . , arφ(n), being a reduced residue system, must be congruent in some order
to r1, r2, . . . , rφ(n). Hence,

aφ(n)r1r2 · · · rφ(n) ≡ r1r2 · · · rφ(n) (mod n),

which implies that aφ(n) ≡ 1 (mod n).
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It can be difficult to find the order1 of an element a modulo n but sometimes it is possible
to improve (2.112) by proving that every integer a modulo n must have an order smaller than
the number φ(n) – this order is actually a number that is a factor of λ(n).

Theorem 2.57 (Carmichael’s theorem) Let a and n be positive integers with
gcd(a, n) = 1. Then

aλ(n) ≡ 1 (mod n), (2.113)

where λ(n) is Carmichael’s function, given in Definition 2.32.

Proof: Let n = pα1
1 pα2

2 · · · pαk
k . We shall show that

aλ(n) ≡ 1 (mod pαi
i )

for 1 ≤ i ≤ k, since this implies that aλ(n) ≡ 1 (mod n). If pαk
k = 2, 4 or a power of an odd

prime, then by Definition 2.32, λ(αk) = φ(αk), so aλ(p
αi
i ) ≡ 1 (mod pαi

i ). Since λ(pαi
i ) | λ(n),

aλ(n) ≡ 1 (mod pαi
i ). The case that pαi

i is a power of 2 greater than 4 is left as an exercise.

Note that λ(n) will never exceed φ(n) and is often much smaller than φ(n); it is the value
of the largest order it is possible to have.

Example 2.52 Let a = 11 and n = 24. Then φ(24) = 8, λ(24) = 2. So,

11φ(24) = 118 ≡ 1 (mod 24),

11λ(24) = 112 ≡ 1 (mod 24).

That is, ord24(11) = 2.

In 1770 Edward Waring (1734–1793) published the following result, which is attributed
to John Wilson (1741–1793).

Theorem 2.58 (Wilson’s theorem) If p is a prime, then

(p − 1)! ≡ −1 (mod p). (2.114)

Proof: It suffices to assume that p is odd. Now to every integer a with 0 < a < p there
is a unique integer a′ with 0 < a′ < p such that aa′ ≡ 1 (mod p). Further if a = a′ then
a2 ≡ 1 (mod p) whence a = 1 or a = p − 1. Thus the set 2, 3, . . . , p − 2 can be divided into

1The order of an element a modulo n is the smallest integer r such that ar ≡ 1 (mod n); we shall
discuss this later in Section 2.5.
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(p − 3)/2 pairs a, a′ with aa′ ≡ 1 (mod p). Hence we have 2 · 3 · · · (p − 2) ≡ 1 (mod p), and
so (p − 1)! ≡ −1 (mod p), as required.

Theorem 2.59 (Converse of Wilson’s theorem) If n is an odd positive integer greater
than 1 and

(n − 1)! ≡ −1 (mod n), (2.115)

then n is a prime.

Remark 2.12 Prime p is called a Wilson prime if

W (p) ≡ 0 (mod p), (2.116)

where

W (p) = (p − 1)!+ 1

p

is an integer, or equivalently if

(p − 1)! ≡ −1 (mod p2). (2.117)

For example, p = 5, 13, 563 are Wilson primes, but 599 is not since

(599− 1)!+ 1

599
mod 599 = 382 �= 0.

It is not known whether there are infinitely many Wilson primes; to date, the only known
Wilson primes for p < 5 · 108 are p = 5,13,563. A prime p is called a Wieferich prime,
named after A. Wieferich, if

2p−1 ≡ 1 (mod p2). (2.118)

To date, the only known Wieferich primes for p < 4 · 1012 are p = 1093 and 3511.

In what follows, we shall show how to use Euler’s theorem to calculate the multiplicative
inverse modulo n, and hence the solutions of a linear congruence.
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Theorem 2.60 Let x be the multiplicative inverse 1/a modulo n. If gcd(a, n) = 1, then

x ≡ 1

a
(mod n) (2.119)

is given by

x ≡ aφ(n)−1 (mod n). (2.120)

Proof: By Euler’s theorem, we have aφ(n) ≡ 1 (mod n). Hence

aaφ(n)−1 ≡ 1 (mod n),

and aφ(n)−1 is the multiplicative inverse of a modulo n, as desired.

Corollary 2.7 Let x be the division b/a modulo n (b/a is assumed to be in lowest terms).
If gcd(a, n) = 1, then

x ≡ b

a
(mod n) (2.121)

is given by

x ≡ b · aφ(n)−1 (mod n). (2.122)

Corollary 2.8 If gcd(a, n) = 1, then the solution of the linear congruence

ax ≡ b (mod n) (2.123)

is given by

x ≡ baφ(n)−1 (mod n). (2.124)

Example 2.53 Solve the congruence 5x ≡ 14 (mod 24). First note that because
gcd(5,24) = 1, the congruence has exactly one solution. Using (2.124) we get

x ≡ 14 · 5φ(24)−1 (mod 24) = 22.
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Example 2.54 Solve the congruence 20x ≡ 15 (mod 135). First note that as d =
gcd(20,135) = 5 and d | 15, the congruence has exactly five solutions modulo 135. To
find these five solutions, we divide by 5 and get a new congruence

4x ′ ≡ 3 (mod 27).

To solve this new congruence, we get

x ′ ≡ 3 · 4φ(27)−1 ≡ 21 (mod 27).

Therefore, the five solutions are as follows:

(x0, x1, x2, x3, x4) ≡
(

x ′, x ′ + n

d
, x ′ + 2n

d
, x ′ + 3n

d
, x ′ + 4n

d

)
≡ (21, 21+ 27, 21+ 2 · 27, 21+ 3 · 27, 21+ 4 · 27)

≡ (21, 48, 75, 102, 129) (mod 135).

Next we shall introduce a method for solving systems of linear congruences. The method,
widely known as the Chinese Remainder theorem (or just CRT, for short), was discovered
by the ancient Chinese mathematician Sun Tsu (who lived sometime between 200 B.C. and
200 A.D.).

Theorem 2.61 (The Chinese Remainder theorem CRT) If m1, m2, · · ·, mn are pairwise
relatively prime and greater than 1, and a1, a2, · · ·, an are any integers, then there is a
solution x to the following simultaneous congruences:

x ≡ a1 (mod m1),

x ≡ a2 (mod m2),

...

x ≡ an (mod mn).

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(2.125)

If x and x ′ are two solutions, then x ≡ x ′ (mod M), where M = m1m2 · · ·mn.

Proof: Existence: Let us first solve a special case of the simultaneous congruences (2.125),
where i is some fixed subscript,

ai = 1, a1 = a2 = · · · = ai−1 = ai+1 = · · · = an = 0.
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Let ki = m1m2 · · ·mi−1mi+1 · · ·mn . Then ki and mi are relatively prime, so we can find
integers r and s such that rki + smi = 1. This gives the congruences:

rki ≡ 0 (mod ki ),

rki ≡ 1 (mod mi ).

Since m1, m2, . . . , mi−1, mi+1, . . . mn all divide ki , it follows that xi = rki satisfies the
simultaneous congruences:

xi ≡ 0 (mod m1),

xi ≡ 0 (mod m2),

...

xi ≡ 0 (mod mi−1).

xi ≡ 1 (mod mi ).

xi ≡ 0 (mod mi+1).

...

xi ≡ 0 (mod mn).

For each subscript i , 1 ≤ i ≤ n, we find such an xi . Now to solve the system of the simultane-
ous congruences (2.125), set x = a1x1 + a2x2 + · · · + an xn . Then x ≡ ai xi ≡ ai (mod mi )
for each i , 1 ≤ i ≤ n, such that x is a solution of the simultaneous congruences.

Uniqueness: Let x ′ be another solution to the simultaneous congruences (2.125), but
different from the solution x , so that x ′ ≡ x (mod mi ) for each xi . Then x − x ′ ≡ 0 (mod mi )
for each i . So mi divides x − x ′ for each i ; hence the least common multiple of all the m j ’s
divides x − x ′. But since the mi are pairwise relatively prime, this least common multiple is
the product M . So x ≡ x ′ (mod M).

Remark 2.13 If the system of the linear congruences (2.125) is soluble, then its solution
can be conveniently described as follows:

x ≡
n∑

i=1

ai Mi M ′
i (mod m) (2.126)

where

m = m1m2 · · ·mn,

Mi = m/mi ,

M ′
i = M−1

i (mod mi ),

for i = 1, 2, . . . , n.
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Example 2.55 Consider the Sun Zi problem:

x ≡ 2 (mod 3),
x ≡ 3 (mod 5),
x ≡ 2 (mod 7).

By (2.126), we have

m = m1m2m3 = 3 · 5 · 7 = 105,

M1 = m/m1 = 105/3 = 35,

M ′
1 = M−1

1 (mod m1) = 35−1 (mod 3) = 2,

M2 = m/m2 = 105/5 = 21,

M ′
2 = M−1

2 (mod m2) = 21−1 (mod 5) = 1,

M3 = m/m3 = 105/7 = 15,

M ′
3 = M−1

3 (mod m3) = 15−1 (mod 7) = 1.

Hence,

x = a1 M1 M ′
1 + a2 M2 M ′

2 + a3 M3 M ′
3 (mod m)

= 2 · 35 · 2+ 3 · 21 · 1+ 2 · 15 · 1 (mod 105)

= 23.

The congruences ax ≡ b (mod m) we have studied so far are a special type of con-
gruence; they are all linear congruences. In this section, we shall study the higher degree
congruences, particularly the quadratic congruences.

Definition 2.42 Let m be a positive integer, and let

f (x) = a0 + a1x + a2x2 + · · · + an xn

be any polynomial with integer coefficients. Then a high-order congruence or a polynomial
congruence is a congruence of the form

f (x) ≡ 0 (mod n). (2.127)

A polynomial congruence is also called a polynomial congruential equation.

Let us consider the polynomial congruence

f (x) = x3 + 5x − 4 ≡ 0 (mod 7).
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This congruence holds when x = 2, since

f (2) = 23 + 5 · 2− 4 ≡ 0 (mod 7).

Just as for algebraic equations, we say that x = 2 is a root or a solution of the congruence.
In fact, any value of x which satisfies the following condition

x ≡ 2 (mod 7)

is also a solution of the congruence. In general, as in linear congruence, when a solution x0

has been found, all values x for which

x ≡ x0 (mod n)

are also solutions. But by convention, we still consider them as a single solution. Thus, our
problem is to find all incongruent (different) solutions of f (x) ≡ 0 (mod n). In general, this
problem is very difficult, and many techniques of solution depend partially on trial-and-error
methods. For example, to find all solutions of the congruence f (x) ≡ 0 (mod n), we could
certainly try all values 0, 1, 2, . . . , n − 1 (or the numbers in the complete residue system
modulo n), and determine which of them satisfy the congruence; this would give us the total
number of incongruent solutions modulo n.

Theorem 2.62 Let M = m1m2 · · ·mn, where m1, m2, . . . , mn are pairwise relatively prime.
Then the integer x0 is a solution of

f (x) ≡ 0 (mod M) (2.128)

if and only if x0 is a solution of the system of polynomial congruences:

f (x) ≡ 0 (mod m1)

f (x) ≡ 0 (mod m2)

...

f (x) ≡ 0 (mod mn).

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(2.129)

If x and x ′ are two solutions, then x ≡ x ′ (mod M), where M = m1m2 · · ·mn.

Proof: If f (a) ≡ 0 (mod M), then obviously f (a) ≡ 0 (mod mi ), for i = 1, 2, . . . , n. Con-
versely, suppose a is a solution of the system

f (x) ≡ 0 (mod mi ), for i = 1, 2, . . . , n.
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Then f (a) is a solution of the system

y ≡ 0 (mod m1)

y ≡ 0 (mod m2)

...

y ≡ 0 (mod mn)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
and it follows from the Chinese Remainder theorem that f (a) ≡ 0 (mod m1m2 · · ·mn). Thus,
a is a solution of f (x) ≡ 0 (mod M).

We now restrict ourselves to quadratic congruences, the simplest possible nonlinear poly-
nomial congruences.

Definition 2.43 A quadratic congruence is a congruence of the form:

x2 ≡ a (mod n) (2.130)

where gcd(a, n) = 1. To solve the congruence is to find an integral solution for x which
satisfies the congruence.

In most cases, it is sufficient to study the above congruence rather than the following more
general quadratic congruence

ax2 + bx + c ≡ 0 (mod n) (2.131)

since if gcd(a, n) = 1 and b is even or n is odd, then the congruence 2.131 can be reduced
to a congruence of type (2.130). The problem can even be further reduced to solving a
congruence of the type (if n = pα1

1 pα2
2 · · · pαk

k , where p1, p2, . . . pk are distinct primes, and
α1, α2, . . . , αk are positive integers):

x2 ≡ a (mod pα1
1 pα2

2 · · · pαk
k ) (2.132)

because solving the congruence (2.132) is equivalent to solving the following system of
congruences:

x2 ≡ a (mod pα1
1 )

x2 ≡ a (mod pα2
2 )

...

x2 ≡ a (mod pαk
k ).

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(2.133)



114 Computational Number Theory and Modern Cryptography

In what follows, we shall be only interested in quadratic congruences of the form

x2 ≡ a (mod p) (2.134)

where p is an odd prime and a �≡ 0 (mod p).

Definition 2.44 Let a be any integer and n a natural number, and suppose that gcd(a, n) = 1.
Then a is called a quadratic residue modulo n if the congruence

x2 ≡ a (mod n)

is soluble. Otherwise, it is called a quadratic non-residue modulo n.

Remark 2.14 Similarly, we can define the cubic residues, and fourth-power residues, etc.
For example, a is a kth power residue modulo n if the congruence

xk ≡ a (mod n) (2.135)

is soluble. Otherwise, it is a kth power non-residue modulo n.

Theorem 2.63 Let p be an odd prime and a an integer not divisible by p. Then the
congruence

x2 ≡ a (mod p) (2.136)

has either no solution or exactly two congruence solutions modulo p.

Proof: If x and y are solutions to x2 ≡ a (mod p), then x2 ≡ y2 (mod p), that is, p | (x2 −
y2). Since x2 − y2 = (x + y)(x − y), we must have p | (x − y) or p | (x + y), that is, x ≡
±y (mod p). Hence, any two distinct solutions modulo p differ only by a factor of −1.

Example 2.56 Find the quadratic residues and quadratic nonresidues for moduli
5, 7, 11, 15, 23, respectively.

(1) Modulo 5, the integers 1, 4 are quadratic residues, whilst 2, 3 are quadratic nonresidues,
since

12 ≡ 42 ≡ 1, 22 ≡ 32 ≡ 4.

(2) Modulo 7, the integers 1, 2, 4 are quadratic residues, whilst 3, 5, 6 are quadratic non-
residues, since

12 ≡ 62 ≡ 1, 22 ≡ 52 ≡ 4, 32 ≡ 42 ≡ 2.
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(3) Modulo 11, the integers 1, 3, 4, 5, 9 are quadratic residues, whilst 2, 6, 7, 8, 10 are
quadratic nonresidues, since

12 ≡ 102 ≡ 1, 22 ≡ 92 ≡ 4, 32 ≡ 82 ≡ 9,

42 ≡ 72 ≡ 5, 52 ≡ 62 ≡ 3.

(4) Modulo 15, only the integers 1 and 4 are quadratic residues, whilst
2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 are all quadratic nonresidues, since

12 ≡ 42 ≡ 112 ≡ 142 ≡ 1, 22 ≡ 72 ≡ 82 ≡ 132 ≡ 4.

(5) Modulo 23, the integers 1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18 are quadratic residues, whilst
5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22 are quadratic nonresidues, since

12 ≡ 222 ≡ 1, 52 ≡ 182 ≡ 2, 72 ≡ 162 ≡ 3,

22 ≡ 212 ≡ 4, 112 ≡ 122 ≡ 6, 102 ≡ 132 ≡ 8,

32 ≡ 202 ≡ 9, 92 ≡ 142 ≡ 12, 62 ≡ 172 ≡ 13,

42 ≡ 192 ≡ 16, 82 ≡ 152 ≡ 18.

The above example illustrates the following two theorems:

Theorem 2.64 Let p be an odd prime and N (p) the number of consecutive pairs of
quadratic residues modulo p in the interval [1, p − 1]. Then

N (p) = 1

4

(
p − 4− (−1)(p−1)/2

)
. (2.137)

Proof: (Sketch) The complete proof of this theorem can be found in [1] and [2]; here we
only give a sketch of the proof. Let (RR), (RN), (NR) and (NN) denote the number of pairs
of two quadratic residues, of a quadratic residue followed by a quadratic non-residue, of a
quadratic non-residue followed by a quadratic residue, of two quadratic non-residues, among
pairs of consecutive positive integers less than p, respectively. Then

(RR)+ (RN) = 1

2

(
p − 2− (−1)(p−1)/2

)
(NR)+ (NN) = 1

2

(
p − 2+ (−1)(p−1)/2)

(RR)+ (NR) = 1

2
(p − 1)− 1

(RN)+ (NN) = 1

2
(p − 1)

(RR)+ (NN)− (RN)− (NR) = −1
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(RR)+ (NN) = 1

2
(p − 3)

(RR)− (NN) = −1

2

(
1+ (−1)(p−1)/2

)
Hence (RR) = 1

4
(

p − 4− (−1)(p−1)/2
)
.

Remark 2.15 Similarly, let ν(p) denote the number of consecutive triples of quadratic
residues in the interval [1, p − 1], where p is odd prime. Then

ν(p) = 1

8
p + E p, (2.138)

where |E p| < 1
8
√

p + 2.

Example 2.57 For p = 23, there are five consecutive pairs of quadratic residues, namely,
(1, 2), (2, 3), (3, 4), (8, 9), and (12, 13), modulo 23; there is also one consecutive triple of
quadratic residues, namely, (1, 2, 3), modulo 23.

Theorem 2.65 Let p be an odd prime. Then there are exactly (p − 1)/2 quadratic residues
and exactly (p − 1)/2 quadratic nonresidues modulo p.

Proof: Consider the p − 1 congruences:

x2 ≡ 1 (mod p)

x2 ≡ 2 (mod p)

...

x2 ≡ p − 1 (mod p).

Since each of the above congruences has either no solution or exactly two congruence
solutions modulo p, there must be exactly (p − 1)/2 quadratic residues modulo p among
the integers 1, 2, . . . , p − 1. The remaining

p − 1− (p − 1)/2 = (p − 1)/2

positive integers less than p − 1 are quadratic nonresidues modulo p.

Example 2.58 Again for p = 23, there are eleven quadratic residues, and eleven quadratic
nonresidues modulo 23.
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Euler devised a simple criterion for deciding whether an integer a is a quadratic residue
modulo a prime number p.

Theorem 2.66 (Euler’s criterion) Let p be an odd prime and gcd(a, p) = 1. Then a is a
quadratic residue modulo p if and only if

a(p−1)/2 ≡ 1 (mod p).

Proof: Using Fermat’s little theorem, we find that(
a(p−1)/2 − 1

) (
a(p−1)/2 + 1

) ≡ a p−1 − 1 ≡ 0 (mod p)

and thus a(p−1)/2 ≡ 1 (mod p). If a is a quadratic residue modulo p, then there exists an
integer x0 such that x2

0 ≡ a(mod p). By Fermat’s little theorem, we have

a(p−1)/2 ≡ (x2
0 )(p−1)/2 ≡ x p−1

0 ≡ 1 (mod p).

To prove the converse, we assume that a(p−1)/2 ≡ 1 (mod p). If g is a primitive root modulo
p (g is a primitive root modulo p if order(g, p) = φ(p); we shall formally define primitive
roots in Section 2.5), then there exists a positive integer t such that gt ≡ a (mod p). Then

gt(p−1)/2 ≡ a(p−1)/2 ≡ 1 (mod p)

which implies that

t(p − 1)/2 ≡ 0 (mod p − 1).

Thus, t is even, and so

(gt/2)2 ≡ gt ≡ a (mod p)

which implies that a is a quadratic residue modulo p.

Euler’s criterion is not very useful as a practical test for deciding whether or not an integer
is a quadratic residue, unless the modulus is small. Euler’s studies on quadratic residues were
further developed by Legendre, who introduced the Legendre symbol.

Definition 2.45 Let p be an odd prime and a an integer. Suppose that gcd(a, p) = 1. Then

the Legendre symbol,

(
a

p

)
, is defined by

(
a

p

)
=
{

1, if a is a quadratic residue modulop,

−1, if ais a quadratic non-residue modulo p.
(2.139)
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We shall use the notation a ∈ Q p to denote that a is a quadratic residue modulo p; similarly,
a ∈ Q p will be used to denote that a is a quadratic nonresidue modulo p.

Example 2.59 Let p = 7 and

12 ≡ 1 (mod 7), 22 ≡ 4 (mod 7), 32 ≡ 2 (mod 7),

42 ≡ 2 (mod 7), 52 ≡ 4 (mod 7), 62 ≡ 1 (mod 7).

Then (
1

7

)
=
(

2

7

)
=
(

4

7

)
= 1,

(
3

7

)
=
(

5

7

)
=
(

6

7

)
= −1.

Some elementary properties of the Legendre symbol, which can be used to evaluate it, are
given in the following theorem.

Theorem 2.67 Let p be an odd prime, and a and b integers that are relatively prime to p.
Then

(1) If a ≡ b (mod p), then

(
a

p

)
=
(

b

p

)
;

(2)

(
a2

p

)
= 1, and so

(
1

p

)
= 1;

(3)

(
a

p

)
≡ a(p−1)/2 (mod p);

(4)

(
ab

p

)
=
(

a

p

)(
b

p

)
;

(5)

(−1

p

)
= (−1)(p−1)/2.

Proof: Assume p is an odd prime and gcd(p, a) = gcd(p, b) = 1.

(1) If a ≡ b (mod p), then x2 ≡ a (mod p) has a solution if and only if x2 ≡ b (mod p) has

a solution. Hence

(
a

p

)
=
(

b

p

)
.

(2) The quadratic congruence x2 ≡ a2 (mod p) clearly has a solution, namely a,

so

(
a2

p

)
= 1.

(3) This is Euler’s criterion in terms of Legendre’s symbol.
(4) We have (

ab

p

)
≡ (ab)(p−1)/2 (mod p) (by Euler’s criterion) (2.140)
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≡ a(p−1)/2b(p−1)/2 (mod p) (2.141)

≡
(

a

p

)(
b

p

)
(2.142)

(5) By Euler’s criterion, we have (−1

p

)
= (−1)(p−1)/2.

This completes the proof.

Corollary 2.9 Let p be an odd prime. Then(−1

p

)
=
{

1 if p ≡ 1 (mod 4)

−1 if p ≡ 3 (mod 4).
(2.143)

Proof: If p ≡ 1 (mod 4), then p = 4k + 1 for some integer k. Thus,

(−1)(p−1)/2 = (−1)((4k+1)−1)/2 = (−1)2k = 1,

so that

(−1

p

)
= 1. The proof for p ≡ 3 (mod 4) is similar.

Example 2.60 Does x2 ≡ 63 (mod 11) have a solution? We first evaluate the Legendre

symbol

(
63

11

)
corresponding to the quadratic congruence as follows:

(
63

11

)
=
(

8

11

)
by (1) of Theorem 2.67

=
(

2

11

)(
22

11

)
by (2) of Theorem 2.67

=
(

2

11

)
· 1 by (2) of Theorem 2.67

= −1 by “trial and error”.

Therefore, the quadratic congruence x2 ≡ 63 (mod 11) has no solution.

To avoid the “trial-and-error” in the above and similar examples, we introduce in the
following the so-called Gauss’s lemma for evaluating the Legendre symbol.
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Definition 2.46 Let a ∈ Z and n ∈ N. Then the least residue of a modulo n is the integer
a′ in the interval (−n/2, n/2] such that a ≡ a′ (mod n). We denote the least residue of a
modulo n by LRn(a).

Example 2.61 The set {−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5} is a complete set of of the
least residues modulo 11. Thus, LR11(21) = −1 since 21 ≡ 10 ≡ −1 (mod 11); similarly,
LR11(99) = 0 and LR11(70) = 4.

Lemma 2.3 (Gauss’s lemma) Let p be an odd prime number and suppose that gcd(a, p) =
1. Further let ω be the number of integers in the set{

1a, 2a, 3a, . . . ,

(
p − 1

2

)
a

}
whose least residues modulo p are negative, then(

a

p

)
= (−1)ω. (2.144)

Proof: When we reduce the following numbers (modulo p){
a, 2a, 3a, . . . ,

(
p − 1

2

)
a

}
to lie in set {

±1,±2, . . . , ±
(

p − 1

2

)}
,

then no two different numbers ma and na can go to the same numbers. Further, it cannot
happen that ma goes to k and na goes to −k, because then ma + na ≡ k + (−k) ≡ 0 (mod
p), and hence (multiplying by the inverse of a), m + n ≡ 0 (mod p), which is impossible.
Hence, when reducing the numbers{

a, 2a, 3a, . . . ,

(
p − 1

2

)
a

}
we get exactly one of−1 and 1, exactly one of−2 and 2, · · ·, exactly one of−(p − 1)/2 and
(p − 1)/2. Hence, modulo p, we get

a · 2a · · ·
(

p − 1

2

)
a ≡ 1 · 2 · · ·

(
p − 1

2

)
(−1)ω (mod p).
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Cancelling the numbers 1, 2, . . . , (p − 1)/2, we have

a(p−1)/2 ≡ (−1)ω (mod p).

By Euler’s criterion, we have
(

a
p

)
≡ (−1)ω (mod p). Since

(
a
p

)
≡ ±1, we must have(

a
p

)
= (−1)ω.

Example 2.62 Use Gauss’s lemma to evaluate the Legendre symbol
(

6
11

)
. By Gauss’s

lemma,
(

6
11

) = (−1)ω, where ω is the number of integers in the set

{1 · 6, 2 · 6, 3 · 6, 4 · 6, 5 · 6}

whose least residues modulo 11 are negative. Clearly,

(6, 12, 18, 24, 30) mod 11 ≡ (6, 1, 7, 2, 8) ≡ (−5, 1,−4, 2,−3) (mod 11)

So there are 3 least residues that are negative. Thus, ω = 3. Therefore,
(

6
11

) = (−1)3 = −1.
Consequently, the quadratic congruence x2 ≡ 6 (mod 11) is not solvable.

Remark 2.16 Gauss’s lemma is similar to Euler’s criterion in the following ways:

(1) Gauss’s lemma provides a method for direct evaluation of the Legendre symbol;
(2) It has more significance as a theoretical tool than as a computational tool.

Gauss’s lemma provides, among many other things, a means for deciding whether or not
2 is a quadratic residue modulo and odd prime p.

Theorem 2.68 If p is an odd prime, then

(
2

p

)
= (−1)(p2−1)/8 =

{
1, if p ≡ ±1 (mod 8)

−1, if p ≡ ±3 (mod 8).
(2.145)

Proof: By Gauss’s lemma, we know that if ω is the number of least positive residues of the
integers

1 · 2, 2 · 2, . . . ,
p − 1

2
· 2
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that are greater than p/2, then
(

2
p

)
= (−1)ω. Let k ∈ Z with 1 ≤ k ≤ (p − 1)/2. Then

2k < p/2 if and only if k < p/4; so [p/4] of the integers 1 · 2, 2 · 2, . . . ,
p−1

2 · 2 are less
than p/2. So there are ω = (p − 1)/2− [p/4] integers greater than p/2. Therefore, by
Gauss’s lemma, we have (

2

p

)
= (−1)

p−1
2 −[ p

4 ].

For the first equality, it suffices to show that

p − 1

2
−
[ p

4

]
≡ p2 − 1

8
(mod 2).

If p ≡ 1 (mod 8), then p = 8k + 1 for some k ∈ Z, from which

p − 1

2
−
[ p

4

]
= (8k + 1)− 1

2
−
[

8k + 1

4

]
= 4k − 2k = 2k ≡ 0 (mod 2),

and

p2 − 1

8
= (8k + 1)2 − 1

8
= 64k2 + 16k

8
= 8k2 + 2k ≡ 0 (mod 2),

so the desired congruence holds for p ≡ 1 (mod 8). The cases for p ≡ −1,±3 (mod 8) are
similar. This completes the proof for the first equality of the theorem. Note that the cases
above yield

p2 − 1

8
=
{

even, if p ≡ ±1 (mod 8)

odd, if p ≡ ±3 (mod 8)

which implies

(−1)(p2−1)/8 =
{

1, if p ≡ ±1 (mod 8)

−1, if p ≡ ±3 (mod 8)

This completes the second equality of the theorem.

Example 2.63 Evaluate

(
2

7

)
and

(
2

53

)
.

(1) By Theorem 2.68, we have

(
2

7

)
= 1, since 7 ≡ −1 (mod 8). Consequently, the quadratic

congruence x2 ≡ 2 (mod 7) is solvable.
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(2) By Theorem 2.68, we have

(
2

53

)
= −1, since 53 ≡ −3 (mod 8). Consequently, the

quadratic congruence x2 ≡ 2 (mod 53) is not solvable.

Using Lemma 2.3, Gauss proved the following theorem, which is one of the great results
of mathematics:

Theorem 2.69 (Quadratic reciprocity law) If p and q are distinct odd primes, then

(1)

(
p

q

)
=
(

q

p

)
if one of p, q ≡ 1 (mod 4);

(2)

(
p

q

)
= −

(
q

p

)
if both p, q ≡ 3 (mod 4).

Remark 2.17 This theorem may be stated equivalently in the form

(
p

q

)(
q

p

)
= (−1)(p−1)(q−1)/4. (2.146)

Proof: We first observe that, by Gauss’s lemma,
( p

q

) = 1ω, where ω is the number of lattice
points (x, y) (that is, pairs of integers) satisfying 0 < x < q/2 and −q/2 < px − qy < 0.
These inequalities give y < (px/q)+ 1/2 < (p + 1)/2. Hence, since y is an integer, we see
ω is the number of lattice points in the rectangle R defined by 0 < x < q/2, 0 < y < p/2,
satisfying −q/2 < px − qy < 0 (see Figure 2.2). Similarly,

( q
p

) = 1μ, where μ is the
number of lattice points in R satisfying −p/2 < qx − py < 0. Now it suffices to prove
that (p − 1)(q − 1)/4− (ω + μ) is even. But (p − 1)(q − 1)/4 is just the number of lattice
points in R satisfying that px − qy ≤ q/2 or qy − px ≤ −p/2. The regions in R defined
by these inequalities are disjoint and they contain the same number of lattice points, since
the substitution

x = (q + 1)/2− x ′,

y = (p + 1)/2− y′

furnishes a one-to-one correspondence between them. The theorem follows.

Remark 2.18 The Quadratic Reciprocity Law was one of Gauss’s major contributions
to mathematics. For those who consider number theory “the Queen of Mathematics,” this
is one of the jewels in her crown. Since Gauss’s time, over 150 proofs of it have been
published; Gauss himself published no less than six different proofs. Among the eminent
mathematicians who contributed to the proofs are Cauchy, Jacobi, Dirichlet, Eisenstein,
Kronecker, and Dedekind.
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Figure 2.2 Proof of the quadratic reciprocity law

Combining all the above results for Legendre symbols, we get the following set of formulas
for evaluating Legendre symbols:

(
a

p

)
≡ a(p−1)/2 (mod p) (2.147)(

1

p

)
= 1 (2.148)(−1

p

)
= (−1)(p−1)/2 (2.149)

a ≡ b (mod p) =⇒
(

a

p

)
=
(

b

p

)
(2.150)(

a1a2 · · · ak

p

)
=

(
a1

p

)(
a2

p

)
· · ·
(

ak

p

)
(2.151)(

ab2

p

)
=

(
a

p

)
, forp � b (2.152)(

2

p

)
= (−1)(p2−1)/8 (2.153)(

p

q

)
= (−1)(p−1)(q−1)/4

(
q

p

)
(2.154)
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Example 2.64 Evaluate the Legendre symbol

(
33

83

)
.

(
33

83

)
=
(−50

83

)
by (2.150)

=
(−2

83

)(
52

83

)
by (2.151)

=
(−2

83

)
by (2.152)

= −
(

2

83

)
by (2.149)

= 1 by (2.153)

It follows that the quadratic congruence 33 ≡ x2 (mod 83) is soluble.

Example 2.65 Evaluate the Legendre symbol

(
46

997

)
.

(
46

997

)
=
(

2

997

)(
23

997

)
by (2.151)

= −
(

23

997

)
by (2.153)

= −
(

997

23

)
by (2.154)

= −
(

8

23

)
by (2.150)

= −
(

22 · 2
23

)
by (2.151)

= −
(

2

23

)
by (2.152)

= −1 by (2.153)

It follows that the quadratic congruence 46 ≡ x2 (mod 997) is not soluble.

Gauss’s Quadratic Reciprocity Law enables us to evaluate the values of Legendre symbols(
a
p

)
very quickly provided a is a prime or a product of primes, and p is an odd prime.

However, when a is a composite, we must factor it into its prime factorization form in order
to use Gauss’s quadratic reciprocity law. Unfortunately, there is no efficient algorithm so
far for prime factorization (see Chapter 3 for more information). One way to overcome the
difficulty of factoring a is to introduce the following Jacobi symbol (in honor of the German
mathematician Carl Gustav Jacobi (1804–1851), which is a natural generalization of the
Legendre symbol:
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Definition 2.47 Let a be an integer and n > 1 an odd positive integer. If n = pα1
1 pα2

2 · · · pαk
k ,

then the Jacobi symbol,
(a

n

)
, is defined by

(a

n

)
=
(

a

p1

)α1
(

a

p2

)α2

· · ·
(

a

pk

)αk

, (2.155)

where

(
a

pi

)
for i = 1, 2, . . . , k is the Legendre symbol for the odd prime pi . If n is an odd

prime, the Jacobi symbol is just the Legendre symbol.

The Jacobi symbol has some similar properties to the Legendre symbol, as shown in the
following theorem.

Theorem 2.70 Let m and n be any positive odd composites, and gcd(a, n) = gcd(b, n) = 1.
Then

(1) If a ≡ b (mod n), then
(a

n

)
=
(

b

n

)
;

(2)
(a

n

)(b

n

)
=
(

ab

n

)
;

(3) If gcd(m, n) = 1, then
( a

mn

) ( a

m

)
=
(a

n

)
;

(4)

(−1

n

)
= (−1)(n−1)/2;

(5)

(
2

n

)
= (−1)(n2−1)/8;

(6) If gcd(m, n) = 1, then
(m

n

) ( n

m

)
= (−1)(m−1)(n−1)/4.

Remark 2.19 It should be noted that the Jacobi symbol
(

a
n

) = 1 does not imply that a is
a quadratic residue modulo n. Indeed a is a quadratic residue modulo n if and only if a is a
quadratic residue modulo p for each prime divisor p of n. For example, the Jacobi symbol(

2
3599

) = 1, but the quadratic congruence x2 ≡ 2 (mod 3599) is actually not soluble. This is
the significant difference between the Legendre symbol and the Jacobi symbol. However,(

a
n

) = −1 does imply that a is a quadratic nonresidue modulo n. For example, the Jacobi
symbol

(
6

35

)
=
(

6

5

)(
6

7

)
=
(

1

5

)(−1

7

)
= −1,
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and so we can conclude that 6 is a quadratic nonresidue modulo 35. In short, we have

(
a

p

)
=
{

1, a ≡ x2 (mod p) is soluble

−1, a ≡ x2 (mod p) is not soluble

(a

n

)
=
{

1, a ≡ x2 (mod n) may or may not be soluble

−1, a ≡ x2 (mod n) is not soluble

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(2.156)

Combining all the above results for Jacobi symbols, we get the following set of formulas
for evaluating Jacobi symbols: (

1

n

)
= 1 (2.157)(−1

n

)
= (−1)(n−1)/2 (2.158)

a ≡ b (mod p) =⇒
(a

n

)
=
(

b

n

)
(2.159)(a1a2 · · · ak

n

)
=

(a1

n

) (a2

n

)
· · ·
(ak

n

)
(2.160)(

ab2

n

)
=

(a

n

)
, for gcd(b, n) = 1 (2.161)(

2

n

)
= (−1)(n2−1)/8 (2.162)(m

n

)
= (−1)(m−1)(m−1)/4

( n

m

)
(2.163)

Example 2.66 Evaluate the Jacobi symbol

(
286

563

)
.

(
286

563

)
=
(

2

563

)(
143

563

)
by (2.160)

= −
(

143

563

)
by (2.162)

=
(

563

143

)
by (2.163)

=
(−32

143

)
by (2.149)

= −
(

32

143

)
by (2.158)

= −1 by (2.161)

It follows that the quadratic congruence 286 ≡ x2 (mod 563) is not soluble.
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Example 2.67 Evaluate the Jacobi symbol

(
1009

2307

)
.(

1009

2307

)
=
(

2307

1009

)
by (2.163)

=
(

289

1009

)
by (2.159)

=
(

172

1009

)
by (2.160)

= 1 by (2.161)

Although the Jacobi symbol

(
1009

2307

)
= 1, we still cannot determine whether or not the

quadratic congruence 1009 ≡ x2 (mod 2307) is soluble.

Remark 2.20 Jacobi symbols can be used to facilitate the calculation of Legendre symbols.
In fact, Legendre symbols can be eventually calculated by Jacobi symbols. That is, the
Legendre symbol can be calculated as if it were a Jacobi symbol. For example, consider
the Legendre symbol

(
335

2999

)
, where 335 = 5 · 67 is not a prime (of course, 2999 is prime,

otherwise, it would not be a Legendre symbol). To evaluate this Legendre symbol, we first
regard it as a Jacobi symbol and evaluate it as if it were a Jacobi symbol (note that once it is
regarded as a Jacobi symbol, it does not matter whether or not 335 is prime; it even does not
matter whether or not 2999 is prime, but anyway, it is a Legendre symbol).(

335

2999

)
= −

(
2999

335

)
= −

(−16

335

)
= −

(−1 · 42

335

)
= −

(−1

335

)
= 1.

Since 2999 is prime,
(

335
2999

)
is a Legendre symbol, and so 355 is a quadratic residue modulo

2999.

Example 2.68 In Table 2.4, we list the elements in (Z/21Z)∗ and their Jacobi symbols.
Incidentally, exactly half of the Legendre and Jacobi symbols

(
a
3

)
,
(

a
7

)
and

(
a
21

)
are equal to

1 and half equal to −1. Also for those Jacobi symbols
(

a
21

) = 1, exactly half of the a’s are

Table 2.4 Jacobi Symbols for a ∈ (Z/21Z)∗

a ∈ (Z/21Z)∗ 1 2 4 5 8 10 11 13 16 17 19 20

a2 mod 21 1 4 16 4 1 16 16 1 4 16 4 1(a

3

)
1 −1 1 −1 −1 1 −1 1 1 −1 1 −1(a

7

)
1 1 1 −1 1 −1 1 −1 1 −1 −1 −1( a

21

)
1 −1 1 1 −1 −1 −1 −1 1 1 −1 1
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indeed quadratic residues, whereas the other half are not. (Note that a is a quadratic residue
of 21 if and only if it is a quadratic residue of both 3 and 7.) That is,

(a

3

)
=

⎧⎪⎨⎪⎩
1, for a ∈ {1, 4, 10, 13, 16, 19} = Q3

−1, for a ∈ {2, 5, 8, 11, 17, 20} = Q3

(a

7

)
=

⎧⎪⎨⎪⎩
1, for a ∈ {1, 2, 4, 8, 11, 16} = Q7

−1, for a ∈ {5, 10, 13, 17, 19, 20} = Q7

( a

21

)
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, for a ∈ {1, 4, 5, 16, 17, 20}

⎧⎪⎨⎪⎩
a ∈ {1, 4, 16} = Q21

a ∈ {5, 17, 20} ⊂ Q21

−1, for a ∈ {2, 8, 10, 11, 13, 19} ⊂ Q21.

Problems for Section 2.4

1. Solve the following system of linear congruences:⎧⎪⎨⎪⎩
2x ≡ 1 (mod 3)

3x ≡ 1 (mod 5)

5x ≡ 1 (mod 7).

2. Prove that n is prime if gcd(a, n) = 1 and

an−1 ≡ 1 (mod n)

but

am �≡ 1 (mod n)

for each divisor m of n − 1.
3. Show that the congruence

x p−1 ≡ 1 (mod pk)

has just p − 1 solutions modulo pk for every prime power pk .
4. Show that for any positive integer n, either there is no primitive root modulo n or there

are φ(φ(n)) primitive roots modulo n. (Note: Primitive roots are defined in Definition
2.49.)
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5. Let D be the sum of all the distinct primitive roots modulo a prime p. Show that

D ≡ μ(p − 1) (mod n).

6. Let n be a positive integer such that n ≡ 3 (mod 4). Show that there are no integer
solutions in x for

x2 ≡ −1 (mod n).

7. Show that for any prime p,

p−1∑
j=1

≡ −1 (mod 4).

8. Suppose p ≡ 3 (mod 4) is prime. Show that(
p − 1

2

)
≡ ±1 (mod n).

9. Let p be a prime. Show that for all positive integer j ≤ p − 1, we have(
p
j

)
≡ 0 (mod p).

10. Prove if gcd(ni , n j ) = 1, i, j = 1, 2, 3, . . . , k, i �= j , then

Z/nZ ∼= Z/n1Z⊕ Z/n2Z⊕ · · · ⊕ Z/nkZ.

11. Find the x in 2x2 + 3x + 1 ≡ 0 (mod 7) and 2x2 + 3x + 1 ≡ 0 (mod 101).
12. Compute the values for the Legendre symbol:(

1234

4567

)
,

(
1356

2467

)
.

13. Which of the following congruences have solutions? If they have, then how many do
they have?

x2 ≡ 2 (mod 61), x2 ≡ −2 (mod 61),

x2 ≡ 2 (mod 59), x2 ≡ −2 (mod 59),

x2 ≡ −1 (mod 61), x2 ≡ −1 (mod 59),

x2 ≡ 5 (mod 229), x2 ≡ −5 (mod 229),

x2 ≡ 10 (mod 127), x2 ≡ 11 (mod 61).
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14. Let p be a prime and gcd(a, p) = gcd(b, p) = 1. Prove that if x2 ≡ a (mod p), and
x2 ≡ b (mod p) are not soluble, then x2 ≡ ab (mod p) is soluble.

15. Prove that if p is a prime of the form 4k + 1 then the sum of the quadratic residue
modulo p in the interval [1, p) is p(p − 1)/4.

16. Prove that if r is the quadratic residue modulo n > 2, then

rφ(n)/2 ≡ 1 (mod n).

17. Let p, q be twin primes. Prove that there are infinitely many a such that p | (a2 − q) if
and only if there are infinitely many b such that q | (b2 − p).

18. Prove that if gcd(a, p) = 1 and p an odd prime, then

p∑
n=1

(
n2 + a

p

)
= −1.

19. Prove that if gcd(a, p) = gcd(b, p) = 1 and p an odd prime, then

p∑
n=1

(
an + b

p

)
= −1.

20. Let p be an odd prime, and let N++(p) be the number of n, 1 ≤ n < p − 2 such that(
n

p

)
=
(

n + 1

p

)
= 1.

Prove that

N++(p) =
⎛⎝ p −

(−1
p

)
− 4

4

⎞⎠ .

2.5 Primitive Roots

Definition 2.48 Let n be a positive integer and a an integer such that gcd(a, n) = 1. Then
the order of a modulo n, denoted by ordn(a) or by ord(a, n), is the smallest integer r such
that ar ≡ 1 (mod n).

Remark 2.21 The terminology “the order of a modulo n” is the modern algebraic term
from group theory (the theory of groups, rings, and fields will be formally introduced in
Section 2.1). The older terminology “a belongs to the exponent r” is the classical term from
number theory as used by Gauss.
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Table 2.5 Values of ai mod 11, for 1 ≤ i < 11

a a2 a3 a4 a5 a6 a7 a8 a9 a10

1 1 1 1 1 1 1 1 1 1

2 4 8 5 10 9 7 3 6 1

3 9 5 4 1 3 9 5 4 1

4 5 9 3 1 4 5 9 3 1

5 3 4 9 1 5 3 4 9 1

6 3 7 9 10 5 8 4 2 1

7 5 2 3 10 4 6 9 8 1

8 9 6 4 10 3 2 5 7 1

9 4 3 5 1 9 4 3 5 1

10 1 10 1 10 1 10 1 10 1

Example 2.69 In Table 2.5, values of ai mod 11 for i = 1, 2, . . . , 10 are given.
From Table 2.5, we get

ord11(1) = 1

ord11(2) = ord11(6) = ord11(7) = ord11(8) = 10

ord11(3) = ord11(4) = ord11(5) = ord11(9) = 5

ord11(10) = 2

We list in the following theorem some useful properties of the order of an integer
a modulo n.

Theorem 2.71 Let n be a positive integer, gcd(a, n) = 1, and r = ordn(a). Then

(1) If am ≡ 1 (mod n), where m is a positive integer, then r | m;
(2) r | φ(n);
(3) For integers s and t, as ≡ at (mod n) if and only if s ≡ t (mod n);
(4) No two of the integers a, a2, a3, . . . , ar are congruent modulo r;

(5) If m is a positive integer, then the order of am modulo n is
r

gcd(r, m)
;

(6) The order of am modulo n is r if and only if gcd(m, r ) = 1.

Definition 2.49 Let n be a positive integer and a an integer such that gcd(a, n) = 1. If the
order of an integer a modulo n is φ(n), that is, order(a, n) = φ(n), then a is called a primitive
root of n.

Example 2.70 Determine whether or not 7 is a primitive root of 45. First note that
gcd(7, 45) = 1. Now observe that



Fundamentals 133

71 ≡ 7 (mod 45) 72 ≡ 4 (mod 45)
73 ≡ 28 (mod 45) 74 ≡ 16 (mod 45)
75 ≡ 22 (mod 45) 76 ≡ 19 (mod 45)
77 ≡ 43 (mod 45) 78 ≡ 31 (mod 45)
79 ≡ 37 (mod 45) 710 ≡ 34 (mod 45)

711 ≡ 13 (mod 47) 712 ≡ 1 (mod 45).

Thus, ord45(7) = 12. However, φ(45) = 24. That is, ord45(7) �= φ(45). Therefore, 7 is not a
primitive root of 45.

Example 2.71 Determine whether or not 7 is a primitive root of 46. First note that
gcd(7, 46) = 1. Now observe that

71 ≡ 7 (mod 46) 72 ≡ 3 (mod 46)
73 ≡ 21 (mod 46) 74 ≡ 9 (mod 46)
75 ≡ 17 (mod 46) 76 ≡ 27 (mod 46)
77 ≡ 5 (mod 46) 78 ≡ 35 (mod 46)
79 ≡ 15 (mod 46) 710 ≡ 13 (mod 46)

711 ≡ 45 (mod 46) 712 ≡ 39 (mod 46)
713 ≡ 43 (mod 46) 714 ≡ 25 (mod 46)
715 ≡ 37 (mod 46) 716 ≡ 29 (mod 46)
717 ≡ 19 (mod 46) 718 ≡ 41 (mod 46)
719 ≡ 11 (mod 46) 720 ≡ 31 (mod 46)
721 ≡ 33 (mod 46) 722 ≡ 1 (mod 46).

Thus, ord46(7) = 22. Note also that φ(46) = 22. That is, ord46(7) = φ(46) = 22. Therefore
7 is a primitive root of 46.

Theorem 2.72 (Primitive roots as residue system) Suppose gcd(g, n) = 1. If g is a
primitive root modulo n, then the set of integers {g, g2, g3, . . . , gφ(n)} is a reduced system of
residues modulo n.

Example 2.72 Let n = 34. Then there are φ(φ(34)) = 8 primitive roots of 34, namely,
3, 5, 7, 11, 23, 27, 29, 31. Now let g = 5 such that gcd(g, n) = gcd(5, 34) = 1. Then

{g, g2, . . . , gφ(n)} = {5, 52, 53, 54, 55, 56, 57, 58, 59, 510, 511, 512, 513, 514, 515, 516} mod 34

= {5, 25, 23, 13, 31, 19, 27, 33, 29, 9, 11, 21, 3, 15, 7, 1}
= {1, 3, 5, 7, 9, 11, 13, 15, 19, 21, 23, 25, 27, 29, 33, 31}



134 Computational Number Theory and Modern Cryptography

which forms a reduced system of residues modulo 34. We can of course choose g = 23 such
that gcd(g, n) = gcd(23, 34) = 1. Then we have

{g, g2, . . . , gφ(n)}
= {23, 232, 233, 234, 235, 236, 237, 238, 239, 2310, 2311, 2312, 2313, 2314,

2315, 2316} mod 34

= {23, 19, 29, 21, 7, 25, 31, 33, 11, 15, 5, 13, 27, 9, 3, 1}
= {1, 3, 5, 7, 9, 11, 13, 15, 19, 21, 23, 25, 27, 29, 33, 31}

which again forms a reduced system of residues modulo 34.

Theorem 2.73 If p is a prime number, then there exist φ(p − 1) (incongruent) primitive
roots modulo p.

Example 2.73 Let p = 47, then there are φ(47− 1) = 22 primitive roots modulo 47,
namely,

5 10 11 13 15 19 20 22 23 26 29
30 31 33 35 38 39 40 41 43 44 45

Note that no method is known for predicting what will be the smallest primitive root of
a given prime p, nor is there much known about the distribution of the φ(p − 1) primitive
roots among the least residues modulo p.

Corollary 2.10 If n has a primitive root, then there are φ(φ(n)) (incongruent) primitive
roots modulo n.

Example 2.74 Let n = 46, then there are φ(φ(46)) = 10 primitive roots modulo 46,
namely,

5 7 11 15 17 19 21 33 37 43

Note that not all moduli n have primitive roots; in Table 2.6 we give the smallest primitive
root g for 2 ≤ n ≤ 911 that has primitive roots.

The following theorem establishes conditions for moduli to have primitive roots:

Theorem 2.74 An integer n > 1 has a primitive root modulo n if and only if

n = 2, 4, pα, or 2pα, (2.164)

where p is an odd prime and α is a positive integer.
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Corollary 2.11 If n = 2α with α ≥ 3, or n = 2α pα1
1 · · · pαk

k with α ≥ 2 or k ≥ 2, then there
are no primitive roots modulo n.

Example 2.75 For n = 16 = 24, since it is of the form n = 2α with α ≥ 3, there are no
primitive roots modulo 16.

Although we know which numbers possess primitive roots, it is not a simple matter to find
these roots. Except for trial and error methods, very few general techniques are known. Artin
in 1927 made the following conjecture (Rose [5]):

Conjecture 2.1 Let Na(x) be the number of primes less than x of which a is a primitive
root, and suppose a is not a square and is not equal to −1, 0 or 1. Then

Na(x) ∼ A
x

ln x
, (2.165)

where A depends only on a.

Hooley in 1967 showed that if the extended Riemann Hypothesis is true then so is Artin’s
conjecture. It is also interesting to note that before the age of computers Jacobi in 1839 listed
all solutions {a, b} of the congruences ga ≡ b(mod p) where 1 ≤ a < p, 1 ≤ b < p, g is
the least positive primitive root of p and p < 1000.

Another very important problem concerning the primitive roots of p is the estimate of the
lower bound of the least positive primitive root of p. Let p be a prime and g(p) the least
positive primitive root of p. The Chinese mathematician Yuan Wang [3] showed in 1959 that

(1) g(p) = O(p1/4+ε);
(2) g(p) = O((log p)8), if the Generalized Riemann Hypothesis (GRH) is true.

Wang’s second result was improved to g(p) = O((log p)6) by Victor Shoup [4] in 1992.
The concept of index of an integer modulo n was first introduced by Gauss in his Disqui-

sitiones Arithmeticae. Given an integer n, if n has primitive root g, then the set

{g, g2, g3, . . . , gφ(n)} (2.166)

forms a reduced system of residues modulo n; g is a generator of the cyclic group of the
reduced residues modulo n. (Clearly, the group (Z/nZ)∗ is cyclic if n = 2, 4, pα, or2pα , for
p odd prime and α positive integer.) Hence, if gcd(a, n) = 1, then a can be expressed in the
form:

a ≡ gk (mod n) (2.167)

for a suitable k with 1 ≤ k ≤ φ(n). This motivates our following definition, which is an
analog of the real base logarithm function.
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Definition 2.50 Let g be a primitive root of n. If gcd(a, n) = 1, then the smallest positive
integer k such that a ≡ gk (mod n) is called the index of a to the base g modulo n and is
denoted by indg,n(a), or simply by indga.

Clearly, by definition, we have

a ≡ gindga (mod n). (2.168)

The function indga is sometimes called the discrete logarithm and is denoted by logg a so
that

a ≡ glogg a (mod n). (2.169)

Generally, the discrete logarithm is a computationally intractable problem; no efficient algo-
rithm has been found for computing discrete logarithms and hence it has important applica-
tions in public key cryptography.

Theorem 2.75 (Index theorem) If g is a primitive root modulo n, then gx ≡ gy (mod n) if
and only if x ≡ y (mod φ(n)).

Proof: Suppose that x ≡ y (mod φ(n)). Then, x = y + kφ(n) for some integer k. Therefore,

gx ≡ gy+kφ(n) (mod n)

≡ gy · (gφ(n))k (mod n)

≡ gy · 1k (mod n)

≡ gy (mod n).

The proof of the “only if” part of the theorem is left as an exercise.

The properties of the function indga are very similar to those of the conventional real base
logarithm function, as the following theorems indicate:

Theorem 2.76 Let g be a primitive root modulo the prime p, and gcd(a, p) = 1. Then
gk ≡ a (mod p) if and only if

k ≡ indga (mod p − 1). (2.170)

Theorem 2.77 Let n be a positive integer with primitive root g, and gcd(a, n) = gcd(b, n) =
1. Then

(1) indg1 ≡ 0 (mod φ(n));
(2) indg(ab) ≡ indga + indgb (mod φ(n));
(3) indgak ≡ k · indga (mod φ(n)), if k is a positive integer.
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Example 2.76 Compute the index of 15 base 6 modulo 109, that is, 6ind615 mod 109 = 15.
To find the index, we just successively perform the computation 6k (mod 109) for k =
1, 2, 3, . . . until we find a suitable k such that 6k (mod 109) = 15:

61 ≡ 6 (mod 109) 62 ≡ 36 (mod 109)
63 ≡ 107 (mod 109) 64 ≡ 97 (mod 109)
65 ≡ 37 (mod 109) 66 ≡ 4 (mod 109)
67 ≡ 24 (mod 109) 68 ≡ 35 (mod 109)
69 ≡ 101 (mod 109) 610 ≡ 61 (mod 109)

611 ≡ 39 (mod 109) 612 ≡ 16 (mod 109)
613 ≡ 96 (mod 109) 614 ≡ 31 (mod 109)
615 ≡ 77 (mod 109) 616 ≡ 26 (mod 109)
617 ≡ 47 (mod 109) 618 ≡ 64 (mod 109)
619 ≡ 57 (mod 109) 620 ≡ 15 (mod 109).

Since k = 20 is the smallest positive integer such that 620 ≡ 15 (mod 109), ind615 (mod
109) = 20.

In what follows, we shall study the congruences of the form xk ≡ a (mod n), where n is
an integer with primitive roots and gcd(a, n) = 1. First of all, we present a definition, which
is the generalization of quadratic residues.

Definition 2.51 Let a, n, and k be positive integers with k ≥ 2. Suppose gcd(a, n) = 1,
then a is called a kth (higher) power residue of n if there is an x such that

xk ≡ a (mod n). (2.171)

The set of all kth (higher) power residues is denoted by K (k)n . If the congruence has no
solution, then a is called a kth (higher) power nonresidue of n. The set of such a is denoted
by K (k)n . For example, K (9)126 would denote the set of the 9th power residues of 126,
whereas K (5)31 the set of the 5th power nonresidue of 31.

Theorem 2.78 (kth power theorem) Let n be a positive integer having a primitive root,
and suppose gcd(a, n) = 1. Then the congruence (2.171) has a solution if and only if

aφ(n)/ gcd(k,φ(n)) ≡ 1 (mod n). (2.172)

If 2.171 is soluble, then it has exactly gcd(k, φ(n)) incongruent solutions.

Proof: Let x be a solution of xk ≡ a (mod n). Since gcd(a, n) = 1, gcd(x, n) = 1. Then

aφ(n)/ gcd(k,φ(n)) ≡ (xk)φ(n)/ gcd(k,φ(n))

≡ (xφ(n))k/ gcd(k,φ(n))

≡ 1k/ gcd(k,φ(n))

≡ 1 (mod n).



Fundamentals 139

Conversely, if aφ(n)/ gcd(k,φ(n)) ≡ 1 (mod n), then r (indr a)φ(n)/ gcd(k,φ(n)) ≡ 1 (mod n). Since
ordnr = φ(n), φ(n) | (indr a)φ(n)/ gcd(k, φ(n)), and hence gcd(k, φ(n)) | indr a because
(indr a)/ gcd(k, φ(n)) must be an integer. Therefore, there are gcd(k, φ(n)) incongruent so-
lutions to k(indr x) ≡ (indr a) (mod φ(n)) and hence gcd(k, φ(n)) incongruent solutions to
xk ≡ a (mod n).

If n is a prime number, say, p, then we have

Corollary 2.12 Suppose p is prime and gcd(a, p) = 1. Then a is a kth power residue of p
if and only if

a(p−1)/ gcd(k,(p−1)) ≡ 1 (mod p). (2.173)

Example 2.77 Determine whether or not 5 is a sixth power of 31, that is, decide whether
or not the congruence

x6 ≡ 5 (mod 31)

has a solution. First of all, we compute

5(31−1)/ gcd(6,31−1) ≡ 25 �≡ 1 (mod 31)

since 31 is prime. By Corollary 2.12, 5 is not a sixth power of 31. That is, 5 �∈ K (6)31.
However,

5(31−1)/ gcd(7,31−1) ≡ 1 (mod 31).

So, 5 is a seventh power of 31. That is, 5 ∈ K (7)31.

Now let us introduce a new symbol
(

a
p

)
k
, the kth power residue symbol, analogous to the

Legendre symbol for quadratic residues.

Definition 2.52 Let p be an odd prime, k > 1, k | p − 1 and q = p − 1

k
. Then the

symbol

(
α

p

)
k

= αq mod p (2.174)

is called the kth power residue symbol modulo p, where αq mod p represents the absolute
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smallest residue of αq modulo p. (The complete set of the absolute smallest residues modulo
p are: −(p − 1)/2, . . . ,−1, 0, 1, . . . , (p − 1/2)).

Theorem 2.79 Let
(

α
p

)
k be the kth power residue symbol. Then

(1) p | a =⇒
(

a

p

)
k

= 0;

(2) a ≡ a1 (mod p) =⇒
(

a

p

)
k

=
(

a1

p

)
k

;

(3) For a1, a2 ∈ Z =⇒
(

a1a2

p

)
k

≡
(

a1

p

)
k

(
a2

p

)
k

;

(4) indga ≡ b (mod k), 0 ≤ b < k =⇒
(

a

p

)
k

≡ gaq (mod p);

(5) a is the kth power residue of p ⇐⇒
(

a

p

)
k

= 1;

(6) n = pα1
1 pα2

2 · · · pαl
l =⇒

(
n

p

)
k

=
(

p1

p

)α1

k

(
p2

p

)α2

k

· · ·
(

pl

p

)αl

k

.

Example 2.78 Let p = 19, k = 3 and q = 6. Then

(−1

19

)
3

=
(

1

19

)
3

= 1(
2

19

)
3

= 7

(
3

19

)
3

=
(−16

19

)
3

≡
(−1

19

)
3

(
16

19

)
3

≡
(−1

19

)
3

(
2

19

)4

3

=
(

2

19

)
3

= 7

(
5

19

)
3

=
(

24

19

)
3

≡
(

2

19

)3

3

(
3

19

)
3

=
(

3

19

)
3

= 7

(
7

19

)
3

=
(

45

19

)
3

≡
(

3

19

)2

3

(
5

19

)
3

= 73 ≡ 1(
11

19

)
3

=
(

30

19

)
3

≡
(

2

19

)
3

(
3

19

)
3

(
5

19

)
3

= 73 ≡ 1(
13

19

)
3

=
(

32

19

)
3

≡
(

2

19

)
3

= −8(
17

19

)
3

=
(−2

19

)
3

≡
(−1

19

)
3

(
2

19

)
3

= 7

All the above congruences are modular 19.
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Problems for Section 2.5

1. Find the primitive roots for primes 3, 5, 7, 11, 13, 17, 23.
2. Prove a2 ≡ 1 (mod p) if and only if a ≡ −1 (mod p).
3. Show that the numbers 1k, 2k, 3k, . . . , (p − 1)k form a reduced residue system modulo

p if and only if gcd(k, p − 1) = 1.
4. Prove that if g and g′ are primitive roots modulo an odd prime p, then gg′ is not a

primitive root modulo p.
5. Let g be a primitive root modulo a prime p. Show that

(p − 1)! ≡ g · g2 · g3 · · · g p−1 ≡ g p(p−1)/2 (mod p).

Use this to prove the Wilson theorem:

(p − 1)! ≡ −1 (mod p).

6. Prove that if a and n > 1 be any integers such that an−1 ≡ 1 (mod n), but ad �≡ 1 (mod n)
for every proper divisor d of n − 1, then n is a prime.

7. For any positive integer n, prove that the arithmetic progression

n + 1, 2n + 1, 3n + 1, . . .

contains infinitely many primes.
8. Show that if n > 1, then n � (2n − 1).
9. Determine how many solutions each of the following congruence have.

x12 ≡ 16 (mod 17), x48 ≡ 9 (mod 17),

x20 ≡ 13 (mod 17), x11 ≡ 9 (mod 17).

10. (Victor Shoup) Let g(p) be the least positive primitive root modulo a prime p. Show
that g(p) = O((log p)6).

2.6 Elliptic Curves

The study of elliptic curves is intimately connected with the the study of Diophantine
equations. The theory of Diophantine equations is a branch of number theory which deals
with the solution of polynomial equations in either integers or rational numbers. As a solvable
polynomial equation always has a corresponding geometrical diagram (e.g., curves or even
surfaces). thus to find the integer or rational solution to a polynomial equation is equivalent
to find the integer or rational points on the corresponding geometrical diagram, this leads
naturally to Diophantine geometry, a subject dealing with the integer or rational points on



142 Computational Number Theory and Modern Cryptography

curves or surfaces represented by polynomial equations. For example, in analytic geometry,
the linear equation

f (x, y) = ax + by + c (2.175)

represents a straight line. The points (x, y) in the plane whose coordinates x and y are integers
are called lattice points. Solving the linear equation in integers is therefore equivalent to
determining those lattice points that lie on the line; The integer points on this line give
the solutions to the linear Diophantine equation ax + by + c = 0. The general form of the
integral solutions for the equation shows that if (x0, y0) is a solution, then there are lattice
points on the line:

x0, x0 ± b, x0 ± 2b, . . . . (2.176)

If the polynomial equation is

f (x, y) = x2 + y2 − 1 (2.177)

then its associate algebraic curve is the unit circle. The solution (x, y) for which x and y are
rational correspond to the Pythagorean triples x2 + y2 = 1. In general, a polynomial f (x, y)
of degree 2

ax2 + bxy + cy2 + dx + ey + f = 0 (2.178)

gives either an ellipse, a parabola, or a hyperbola, depending on the values of the coefficients.
If f (x, y) is a cubic polynomial in (x, y), then the locus of points satisfying f (x, y) = 0 is
a cubic curve. A general cubic equation in two variables is of the form

ax3 + bx2 y + cxy2 + dy3 + ex2 + f xy + gy2 + hx + iy + j = 0. (2.179)

Again, we are only interested in the integer solutions of the Diophantine equations, or
equivalently, the integer points on the curves of the equations.

The above discussions lead us very naturally to Diophantine geometry, a subject dealing
with the integer or rational points on algebraic curves or even surfaces of Diophantine
equations (a straight line is a special case of algebraic curves).

Definition 2.53 A rational number, as everybody knows, is a quotient of two integers. A
point in the (x, y)-plane is called a rational point if both its coordinates are rational numbers.
A line is a rational line if the equation of the line can be written with rational numbers; that
is, the equation is of the form

ax + by + c = 0 (2.180)

where a, b, c are rational numbers.
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Definition 2.54 Let

ax2 + bxy + cy2 + dx + ey + f = 0. (2.181)

be a conic. Then the conic is rational if we can write its equation with rational numbers.

We have already noted that the point of intersection of two rational lines is rational point.
But what about the intersection of a rational line with a rational conic? Will it be true
that the points of intersection are rational? In general, they are not. In fact, the two points
of intersection are rational if and only if the roots of the quadratic equation are rational.
However, if one of the points is rational, then so is the other.

There is a very general method to test, in a finite number of steps, whether or not a given
rational conic has a rational point, due to Legendre. The method consists of determining
whether a certain congruence can be satisfied.

Theorem 2.80 (Legendre) For the Diophantine equation

ax2 + by2 = cz2, (2.182)

there is an integer n, depending on a, b, c, such that the equation has a solution in integers,
not all zero, if and only if the congruence

ax2 + by2 ≡ cz2 (mod n) (2.183)

has a solution in integers relatively prime to n.

An elliptic curve is an algebraic curve given by a cubic Diophantine equation

y2 = x3 + ax + b. (2.184)

More general cubics in x and y can be reduced to this form, known as Weierstrass normal
form, by rational transformations.

Example 2.79 Two examples of elliptic curves are shown in Figure 2.3 (from left to right).
The graph on the left is the graph of a single equation, namely E1 : y2 = x3 − 4x + 2; even
though it breaks apart into two pieces, we refer to it as a single curve. The graph on the
right is given by the equation E2 : y2 = x3 − 3x + 3. Note that an elliptic curve is not an
ellipse; a more accurate name for an elliptic curve, in terms of algebraic geometry, is an
Abelian variety of dimension one. It should also be noted that quadratic polynomial equations
are fairly well understood by mathematicians today, but cubic equations still pose enough
difficulties to be topics of current research.
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Figure 2.3 Two examples of elliptic curves

Definition 2.55 An elliptic curve E : y2 = x3 + ax + b is called nonsingular if its dis-
criminant

�(E) = −16(4a3 + 27b2) �= 0. (2.185)

Remark 2.22 By elliptic curve, we always mean that the cubic curve is nonsingular. A cubic
curve, such as y2 = x3 − 3x + 2 for which � = −16(4(−3)3 + 27 · 22) = 0, is actually not
an elliptic curve; such a cubic curve with �(E) = 0 is called a singular curve. It can be
shown that a cubic curve E : y2 = x3 + ax + b is singular if and only if �(E) = 0.

Definition 2.56 Let K be a field. Then the characteristic of the field K is 0 if

1⊕ 1⊕ · · · ⊕ 1︸ ︷︷ ︸
n summands

is never equal to 0 for any n > 1. Otherwise, the characteristic of the field K is the least
positive integer n such that

n∑
i=1

1 = 0.

Example 2.80 The fields Z, Q, R, and C all have characteristic 0, whereas the field Z/pZ
is of characteristic p, where p is prime.

Definition 2.57 Let K be a field (either the field Q, R, C, or the finite field Fq with q = pα

elements), and x3 + ax + b with a, b ∈ K be a cubic polynomial. Then
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(1) If K is a field of characteristic �= 2, 3, then an elliptic curve over K is the set of points
(x, y) with x, y ∈ K that satisfy the following cubic Diophantine equation:

E : y2 = x3 + ax + b, (2.186)

(where the cubic on the right-hand side has no multiple roots) together with a single
element, denoted by OE = (∞,∞), called the point at infinity.

(2) If K is a field of characteristic 2, then an elliptic curve over K is the set of points (x, y)
with x, y ∈ K that satisfy one of the following cubic Diophantine equations:

E : y2 + cy = x3 + ax + b,

E : y2 + xy = x3 + ax2 + b,

}
(2.187)

(here we do not care whether or not the cubic on the right-hand side has multiple roots)
together with a point at infinity OE .

(3) If K is a field of characteristic 3, then an elliptic curve over K is the set of points (x, y)
with x, y ∈ K that satisfy the cubic Diophantine equation:

E : y2 = x3 + ax2 + bx + c, (2.188)

(where the cubic on the right-hand side has no multiple roots) together with a point at
infinity OE .

In practice, we are actually more interested in the elliptic curves modulo a positive integer
N .

Definition 2.58 Let N be a positive integer with gcd(n, 6) = 1. An elliptic curve over
Z/nZ is given by the following cubic Diophantine equation:

E : y2 = x3 + ax + b, (2.189)

where a, b ∈ Z and gcd(N , 4a3 + 27b2) = 1. The set of points on E is the set of solutions
in (Z/nZ)2 to equation 2.189, together with a point at infinity OE .

Remark 2.23 The subject of elliptic curves is one of the jewels of 19th-century mathemat-
ics, originated by Abel, Gauss, Jacobi, and Legendre. Contrary to popular opinion, an elliptic
curve (i.e., a nonsingular cubic curve) is not an ellipse; as Niven, Zuckerman, and Mont-
gomery remarked, it is natural to express the arc length of an ellipse as an integral involving
the square root of a quadratic polynomial. By making a rational change of variables, this
may be reduced to an integral involving the square root of a cubic polynomial. In general,
an integral involving the square root of a quadratic or cubic polynomial is called an elliptic
integral. So, the word elliptic actually came from the theory of elliptic integrals of the form

∫
R(x, y)dx (2.190)
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Figure 2.4 Geometric composition laws of an elliptic curve

where R(x, y) is a rational function in x and y, and y2 is a polynomial in x of degree 3
or 4 having no repeated roots. Such integrals were intensively studied in the 18th and 19th
centuries. It is interesting to note that elliptic integrals serve as a motivation for the theory of
elliptic functions, whilst elliptic functions parametrize elliptic curves. It is not our intention
here to explain fully the theory of elliptic integrals and elliptic functions; interested readers
are recommended to consult some more advanced texts.

The geometric interpretation of addition of points on an elliptic curve is quite straightfor-
ward. Suppose E is an elliptic curve as shown in Figure 2.4. A straight line L connecting
points P and Q intersects the elliptic curve at a third point R, and the point P ⊕ Q is the
reflection of R in the X -axis.

As can be seen from Figure 2.4, an elliptic curve can have many rational points; any
straight line connecting two of them intersects a third. The point at infinity OE is the third
point of intersection of any two points (not necessarily distinct) of a vertical line with the
elliptic curve E . This makes it possible to generate all rational points out of just a few.

The above observations lead naturally to the following geometric composition law of
elliptic curves.

Proposition 2.3 (Geometric composition law (See 2.4)) Let P, Q ∈ E , L be the line
connecting P and Q (tangent line to E if P = Q), and R be the third point of intersection
of L with E . Let L ′ be the line connecting R and OE (the point at infinity). Then P ⊕ Q is
the point such that L ′ intersects E at R, OE , and P ⊕ Q.
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The points on an elliptic curve form an Abelian group with the addition of points as the
binary operation on the group.

Theorem 2.81 (Group laws on elliptic curves) The geometric composition laws of elliptic
curves have the following group-theoretic properties:

(1) If a line L intersects E at the (not necessary distinct) points P, Q, R, then

(P ⊕ Q)⊕ R = OE .

(2) P ⊕OE = P, ∀P ∈ E.
(3) P ⊕ Q = Q ⊕ P, ∀P, Q ∈ E.
(4) Let P ∈ E, then there is a point of E, denoted �P, such that

P ⊕ (�P) = OE .

(5) Let P, Q, R ∈ E, then

(P ⊕ Q)⊕ R = P ⊕ (Q ⊕ R).

In other words, the composition law makes E into an Abelian group with identity element
OE . We further have

(6) Let E be defined over a field K, then

E(K) = {(x, y) ∈ K2 : y2 = x3 + ax + b} ∪ {OE }.

is a subgroup of E.

Example 2.81 Let E(Q) be the set of rational points on E . Then E(Q) with the addition
operation defined on it forms an Abelian group.

We shall now introduce the important concept of the order of a point on E .

Definition 2.59 Let P be an element of the set E(Q). Then P is said to have order k if

k P = P ⊕ P ⊕ · · · ⊕ P︸ ︷︷ ︸
k summands

= OE (2.191)

with k ′P �= OE for all 1 < k ′ < k (that is, k is the smallest integer such that k P = OE ). If
such a k exists, then P is said to have finite order, otherwise, it has infinite order.

Example 2.82 Let P = (3, 2) be a point on the elliptic curve E : y2 = x3 − 2x − 3 over
Z/7Z (see Example 2.87). Since 10P = OE and k P �= OE for k < 10, P has order 10.
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Example 2.83 Let P = (−2, 3) be a point on the elliptic curve E : y2 = x3 + 17 over Q
(see Example 2.31). Then P apparently has infinite order.

Now let us move on to the problem as to how many points (rational or integral) are there
on an elliptic curve? First let us look at an example:

Example 2.84 Let E be the elliptic curve y2 = x3 + 3x over F5, then

OE , (0, 0), (1, 2), (1, 3), (2, 2), (2, 3), (3, 1), (3, 4), (4, 1), (4, 4)

are the 10 points on E . However, the elliptic curve y2 = 3x3 + 2x over F5 has only two
points:

OE , (0, 0).

How many points are there on an elliptic curve E : y2 = x3 + ax + b over Fp? The
following theorem answers this question:

Theorem 2.82 Let |E(Fp)| with p prime be the number of points on E : y2 = x3 + ax + b
over Fp. Then

|E(Fp)| = 1+ p +
∑
x∈Fp

(
x3 + ax + b

p

)
= 1+ p + ε (2.192)

points on E over Fp, including the point at infinity OE , where
(

x3+ax+b
p

)
is the Legendre

symbol.

The quantity ε in (2.192) is constrained in the following theorem, due to Hasse (1898–
1979) in 1933:

Theorem 2.83 (Hasse)

|ε| ≤ 2
√

p. (2.193)

That is,

1+ p − 2
√

p ≤ |E(Fp)| ≤ 1+ p + 2
√

p. (2.194)

Example 2.84 Let p = 5, then |ε| ≤ 4. Hence, 1+ 5− 4 ≤ |E(F5)| ≤ 1+ 5+ 4, that is,
we have between 2 and 10 points on an elliptic curve over F5. In fact, all the possibilities
occur in the elliptic curves given in Table 2.7.
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Table 2.7 Number of points on elliptic curves over F5

Elliptic curve Number of points Elliptic curve Number of points

y2 = x3 + 2x 2 y2 = x3 + 4x + 2 3
y2 = x3 + x 4 y2 = x3 + 3x + 2 5
y2 = x3 + 1 6 y2 = x3 + 2x + 1 7
y2 = x3 + 4x 8 y2 = x3 + x + 1 9
y2 = x3 + 3x 10

A more general question is: How many rational points are there on an elliptic curve
E : y2 = x3 + ax + b over Q? Louis Joel Mordell (1888–1972) solved this problem in
1922:

Theorem 2.84 (Mordell’s finite basis theorem) Suppose that the cubic polynomial f (x, y)
has rational coefficients, and that the equation f (x, y) = 0 defines an elliptic curve E. Then
the group E(Q) of rational points on E is a finitely generated Abelian group.

In elementary language, this says that on any elliptic curve that contains a rational point,
there exists a finite collection of rational points such that all other rational points can be
generated by using the chord-and-tangent method. From a group-theoretic point of view,
Mordell’s theorem tells us that we can produce all of the rational points on E by starting
from some finite set and using the group laws. It should be noted that for some cubic curves,
we have tools to find this generating set, but unfortunately, there is no general method (i.e.,
algorithm) guaranteed to work for all cubic curves.

The fact that the Abelian group is finitely generated means that it consists of a finite
“torsion subgroup” Etors, consisting of the rational points of finite order, plus the subgroup
generated by a finite number of points of infinite order:

E(Q) � Etors ⊕ Zr .

The number r of generators needed for the infinite part is called the rank of E(Q); it is zero
if and only if the entire group of rational points is finite. The study of the rank r and other
features of the group of points on an elliptic curve over Q are related to many interesting
problems in number theory and arithmetic algebraic geometry. One of such problems is the
Birch and Swinerton-Dyer conjecture (BSD conjecture), which shall be dicussed later.

The most important and fundamental operation on an elliptic curve is the addition of points
on the curve. To perform the addition of points on elliptic curves systematically, we need an
algebraic formula. The following gives us a convenient computation formula.

Theorem 2.85 (Algebraic computation law) Let P1 = (x1, y1), P2 = (x2, y2) be points
on the elliptic curve:

E : y2 = x3 + ax + b, (2.195)
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then P3 = (x3, y3) = P1 ⊕ P2 on E may be computed by

P1 ⊕ P2 =
{OE , if x1 = x2 & y1 = −y2

(x3, y3), otherwise.
(2.196)

where

(x3, y3) = (λ2 − x1 − x2, λ(x1 − x3)− y1) (2.197)

and

λ =

⎧⎪⎪⎨⎪⎪⎩
(3x2

1 + a)

2y1
, if P1 = P2,

(y2 − y1)

(x2 − x1)
, otherwise.

(2.198)

Example 2.86 Let E be the elliptic curve y2 = x3 + 17 over Q, and let P1 = (x1, y1) =
(−2, 3) and P2 = (x2, y2) = (1/4, 33/8) be two points on E . To find the third point P3 on
E , we perform the following computation:

λ = y2 − y1

x2 − x1
= 1

2
,

x3 = λ2 − x1 − x2 = 2,

y3 = λ(x1 − x3)− y1 = −5.

So P3 = P1 ⊕ P2 = (x3, y3) = (2,−5).

Example 2.87 Let P = (3, 2) be a point on the elliptic curve E : y2 = x3 − 2x − 3 over
Z/7Z. Compute

10P = P ⊕ P ⊕ · · · ⊕ P︸ ︷︷ ︸
10 summands

(mod 7).

According to (2.197), we have:

2P = P ⊕ P = (3, 2)⊕ (3, 2) = (2, 6),

3P = P ⊕ 2P = (3, 2)⊕ (2, 6) = (4, 2),

4P = P ⊕ 3P = (3, 2)⊕ (4, 2) = (0, 5)

5P = P ⊕ 4P = (3, 2)⊕ (0, 5) = (5, 0)

6P = P ⊕ 5P = (3, 2)⊕ (5, 0) = (0, 2)

7P = P ⊕ 6P = (3, 2)⊕ (0, 2) = (4, 5)

8P = P ⊕ 7P = (3, 2)⊕ (4, 5) = (2, 1)

9P = P ⊕ 8P = (3, 2)⊕ (2, 1) = (3, 5)

10P = P ⊕ 9P = (3, 2)⊕ (3, 5) = OE
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Example 2.88 Let E : y2 = x3 + 17 be the elliptic curve over Q and P = (−2, 3) a point
on E . Then

P = (−2, 3)

2P = (8,−23)

3P =
(

19

25
,

522

125

)
4P =

(
752

529
,
−54239

12167

)
5P =

(
174598

32761
,

76943337

5929741

)
6P =

(−4471631

3027600
,
−19554357097

5268024000

)
7P =

(
12870778678

76545001
,

1460185427995887

669692213749

)
8P =

(−3705032916448

1556248765009
,

3635193007425360001

1941415665602432473

)
9P =

(
1508016107720305

1146705139411225
,
−1858771552431174440537502

38830916270562191567875

)
10P =

(
2621479238320017368

21550466484219504001
,

412508084502523505409813257257

100042609913884557525414743999

)
11P =

(
983864891291087873382478

455770822453576119856081
,
−1600581839303565170139037888610254293

307694532047053509350325905517943271

)
12P =

(
17277017794597335695799625921

4630688543838991376029953600
,

2616325792251321558429704062367454696426719

315114478121426726704392053642337633216000

)

Suppose now we are interested in measuring the size (or the height of point on elliptic
curve) of points on an elliptic curve E . One way to do this is to look at the numerator and
denominator of the x-coordinates. If we write the coordinates of kP as

kP =
(

Ak

Bk
,

Ck

Dk

)
, (2.199)

we may define the height of these points as follows

H (kP) = max(|Ak |, |Bk |). (2.200)

It is interesting to note that for large k, the height of kP looks like:

D(H (kP)) ≈ 0.1974k2, (2.201)

H (kP) ≈ 100.1974k2

≈ (1.574)k2
(2.202)

where D(H (kP)) denotes the number of digits in H (kP).
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Remark 2.24 To provide greater flexibility, we may also consider the following form of
elliptic curves:

E : y2 = x3 + ax2 + bx + c. (2.203)

In order for E to be an elliptic curve, it is necessary and sufficient that

�(E) = a2b2 − 4a3c − 4b3 + 18abc − 27c2 �= 0. (2.204)

Thus,

P3(x3, y3) = P1(x1, y1)⊕ P2(x2, y2),

on E may be computed by

(x3, y3) = (λ2 − a − x1 − x2, λ(x1 − x3)− y1) (2.205)

where

λ =
{

(3x2
1 + 2a + b)/2y1, if P1 = P2

(y2 − y1)/(x2 − x1), otherwise.
(2.206)

The problem of determining the group of rational points on an elliptic curve E : y2 = x3 +
ax + b over Q, denoted by E(Q), is one of the oldest and most intractable in mathematics,
and it remains unsolved to this day, although vast numerical evidences exist. In 1922, Louis
Joel Mordell (1888–1972) showed that E(Q) is a finitely generated (Abelian) group. That is,
E(Q) ≈ E(Q)tors ⊕ Zr , where r ≥ 0, E(Q)tors is a finite Abelian group (called torsion group).
The integer r is called the rank of the elliptic curve E over Q, denoted by rank(E(Q)). Is there
an algorithm to compute E(Q) given an arbitrary elliptic curve E? The answer is not known,
although E(Q)tors can be found easily, due to a theorem of Mazur in 1978: #(E(Q)tors) ≤ 16.
The famous Birch and Swinnerton-Dyer conjecture [6], or BSD conjecture for short, asserts
that the size of the group of rational points on E over Q, denoted by #(E(Q)), is related to
the behavior of an associated zeta function ζ (s), called the Hasse–Weil L-function L(E, s),
near the point s = 1. That is, if we define the incomplete L-function L(E, s) (we called it
incomplete because we omit the set of “bad” primes p | 2 ) as follows:

L(E, s) :=
∏
p�2 

(1− ap p−s + p1−2s)−1,

where  = −16(4a3 + 27b2) is the discriminant of E , Np := #{rationalsolutionsofy2 ≡
x3 + ax + b (mod p)} with p prime and ap = p − Np. This L-function converges for
Re(s) > 3

2 , and can be analytically continued to an entire function. It was conjectured by
Birch and Swinnerton-Dyer in the 1960s that the rank of the Abelian group of points over
a number field of an elliptic curve E is related to the order of the zero of the associated
L-function L(E, s) at s = 1:
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BSD Conjecture (Version 1): ords=1 L(E, s) = rank(E(Q)).

This amazing conjecture asserts particularly that

L(E, 1) = 0 ⇐⇒ E(Q) is infinite.

Conversely, if L(E, 1) �= 0, then the set E(Q) is finite. An alternative version of BSD, in
term of the Taylor expansion of L(E, s) at s = 1, is as follows:

BSD Conjecture (Version 2): L(E, s) ∼ c(s − 1)r , where c �= 0 and r = rank(E(Q)).

There is also a refined version of BSD for the complete L-function L∗(E, s):

L∗(E, s) :=
∏
p|2 

(1− ap p−s)−1 ·
∏
p�2 

(1− ap p−s + p1−2s)−1.

In this case, we have:

BSD Conjecture (Version 3): L∗(E, s) ∼ c∗(s − 1)r , with

c∗ = |IIIE |R∞w∞
∏
p| 

wp/|E(Q)tors|2,

where |IIIE | is the order of the Tate–Shafarevich group of elliptic curve E , the term R∞ is an
r × r determinant whose matrix entries are given by a height pairing applied to a system of
generators of E(Q)/E(Q)tors, the wp are elementary local factors and w∞ is a simple multiple
of the real period of E .

The eminent American mathematician, John Tate commented on BSD in 1974 that “· · · this
remarkable conjecture relates the behaviour of a function L at a point where it is at present
not known to be defined to the order of a group III which is not known to be finite.” So it was
hoped that a proof of the conjecture would yield a proof of the finiteness of IIIE . Using the
idea of Kurt Heegner (1893–1965), Birch and his former PhD student Stephens established
for the first time the existence of rational points of infinite order on certain elliptic curves
over Q, without actually writing down the coordinates of these points, and naively verifying
that they had satisfied the equation of the curves. These points are now called Heegner points
on elliptic curves (a Heegner point is a point on modular elliptic curves that is the image of
a quadratic imaginary point of the upper half-plane). Based on Birch and Stephens’ work,
particular on their massive computation of the Heegner points on modular elliptic curves,
Gross at Harvard and Zagier at Maryland/Bonn obtained a deep result in 1986, now widely
known as the Gross–Zagier theorem, which describes the height of Heegner points in terms of
a derivative of the L-function of the elliptic curve at the point s = 1. That is, if L(E, 1) = 0,
then there is a closed formula to relate L ′(E, 1) and the height of the Heegner points on
E . More generally, together with Kohnen, Gross and Zagier showed in 1987 that Heegner
points could be used to construct rational points on the curve for each positive integer n, and
the heights of these points were the coefficients of a modular form of weight 3/2. Later, in
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1989, the Russian mathematician Kolyvagin further used Heegner points to construct Euler
systems, and used this to prove much of the Birch–Swinnerton-Dyer conjecture for rank 1
elliptic curves. More specifically, he showed that if the Heegner points are of infinite order,
then rank(E(Q)) = 1. Other notable results in BSD also include S. W. Zhang’s generalization
of Gross–Zagier theorem for elliptic curves to Abelian varieties, and M. L. Brown’s proof of
BSD for most rank 1 elliptic curves over global fields of positive characteristic. Of course,
all these resolutions are far away from the complete settlement of BSD. Just as Riemann’s
Hypothesis, the BSD conjecture was also chosen to be one of the seven Millennium Prize
Problems [7].

Problems for Section 2.6

1. Describe an algorithm to find a point on an elliptic curve E : y2 = x3 + ax + b over Q.
Use your algorithm to find a point on the E : y2 = x3 − 13x + 21 over Q.

2. Find all the rational points on the elliptic curve y2 = x3 − x .
3. Find all the rational points on the elliptic curve y2 = x3 + 4x .
4. Describe an algorithm to find the order of a point on an elliptic curve E : y2 = x3 +

ax + b over Q. Let P = (2, 4) be a point on E : y2 = x3 − 13x + 21 over Q. Use your
algorithm to find the order of the point on E .

5. Find all the torsion points of the elliptic curve E : y2 = x3 − 13x + 21 over Q.
6. Find the point of infinite order on the elliptic curve E : y2 = x3 − 2x over Q.
7. Determine the number of points of the elliptic curve E : y2 = x3 − 1 for all odd primes

up to 100.
8. Let P = (0, 0) be a point on the elliptic curve E : y2 = x3 + x2 + 2x . Compute 100P

and 200P .
9. Derive an addition formula for rational points on the elliptic curve

E : y2 = x3 + ax2 + bx + c.

10. Show that P = (9/4, 29/8) is a point on the elliptic curve E : y2 = x3 − x + 4.
11. Let P = (1, 1) be a point on the elliptic curve E : y2 = x3 − 6x + 6 over Z4247. Compute

100P on E(Z4727).
12. Let n be a positive integers greater than 1, and P a point on an elliptic curve E(Z4727).

Prove that there are some integers s and t such that s P = t P .
13. Prove or disprove the BSD conjecture.

2.7 Bibliographic Notes and Further Reading

This chapter was mainly concerned with the elementary theory of numbers, including Eu-
clid’s algorithm, continued fractions, the Chinese Remainder theorem, Diophantine equa-
tions, arithmetic functions, quadratic and power residues, primitive roots, and the arithmetic
of elliptic curves. It also includes some algebraic topics such as groups, rings, fields, poly-
nomials, and algebraic numbers. The theory of numbers is one of the oldest and most
beautiful parts of pure mathematics, and there are many good books and papers in this field.
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It is suggested that readers consult some of the following references for more information:
[8–28].

Elliptic curves are used throughout the book for primality testing, integer factorization,
and cryptography. We have only given an brief introduction to the theory and arithmetic of
elliptic curves. Readers who are interested in elliptic curves and their applications should
consult the following references for more information: [29–33]. Also, the new version of
Hardy and E. M. Wright’s famous book [14] also contains a new chapter on elliptic curves
at the end of the book.

Abstract algebra is intimately connected to number theory and, in fact, many of the
concepts and results of number theory can be described in algebraic language. Readers who
wish to study number theory from the algebraic perspective are specifically advised to consult
the following references: [34–48].
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Part II
Computational Number Theory

Computational number theory is a new branch of mathematics. Informally, it can be regarded
as a combined and disciplinary subject of number theory and computer science, especially
the theory of computation:

Computational Number Theory := Number Theory⊕ Computation Theory

Numerical verifications

Algebraic number theory

Analytic number theory

Combinatorial number theory

Computation theory

Probabilistic number theory

Arithmetic algebraic geometry

Number theory

Computability theory

Complexity theory

Quantum computing theory

Biological computing theory

Analysis of algorithms

Computational number theory

Primality testing

Integer factorization

Discrete logarithms

Elliptic curves

The purposes of computational number theory are two-fold: (1) using computing techniques
to solve number theoretic problems, and (2) using number theoretic techniques to solve
computer science problems. In this part of the book, we shall concentrate on using computing
techniques to solve number theoretic problems that have connections and applications in
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modern cryptography. More specifically, we shall study computational methods (algorithms)
for solving the:

1. Primality Testing Problem (PTP)
2. Integer Factorization Problem (IFP)
3. Discrete Logarithm Problem (DLP)
4. Elliptic Curve Discrete Logarithm Problem (ECDLP)

with a special emphasis on the last three infeasible (intractable) number theoretic problems,
as they play a central role in the security of the cryptographic schemes and protocols in the
next part of the book.



3
Primality Testing

Primality testing, possibly first studied by Euclid 2500 years ago but first identified as an
important problem by Gauss in 1801, is one of the two important problems related to the
computation of prime numbers. In this chapter we shall study various modern algorithms for
primality testing, including

� Some simple and basic tests of primality, usually run in exponential-time EXP .
� The Miller–Rabin test, runs in random polynomial-time RP .
� The elliptic curve test, runs in zero-error probabilistic polynomial-time ZPP .
� The AKS test, runs in deterministic polynomial-time P .

3.1 Basic Tests

The Primality Test Problem (PTP) may be described as follows:

PTP :=
⎧⎨⎩

Input : n ∈ Z>1

Output :

{
Yes : n ∈ Primes
No : Otherwise

(3.1)

The following theorem is well-known and fundamental to primality testing.

Theorem 3.1 Let n > 1. If n has no prime factor less than or equal to �√n�, then n is
prime.

Thus the simplest possible primality test of n is by trial divisions of all possible prime
factors of n up to �√n� as follows (the Sieve of Eratosthenes for finding all prime numbers
up to

√
n is used in this test).

Primality test by trial divisions:

Test(pi )
def= p1, p2, . . . , pk ≤ �

√
n�, pi � n

⇑ (3.2)

Eratosthenes Sieve
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Thus, if n passes Test(pi ), then n is prime:

n passes Test(pi ) =⇒ n ∈ Primes. (3.3)

Example 3.1 To test whether or not 3271 is prime, we only need to test the primes up to
�√3271� = 57. That is, we will only need to do at most 16 trial divisions as follows:

3271

2
,

3271

3
,

3271

5
,

3271

7
, . . . ,

3271

47
,

3271

53
.

As none of these division gives a zero remainder, so 3271 is a prime number. However, for
n = 3273, we would normally expect to do the following trial divisions:

3273

2
,

3273

3
,

3273

5
,

3273

7
, . . . ,

3273

47
,

3273

53
.

but fortunately we do not need to do all these trial divisions as 3273 is a composite, in fact,
when we do the trial division 3273/3, it gives a zero remainder, so we conclude immediately
that 3273 is a composite number.

This test, although easy to implement, is not practically useful for large numbers since
it needs O (2(log n)/2

)
bit operations. In other words, it runs in exponential-time, EXP . In

the next sections, we shall introduce some modern and fast primality testing methods in
current use. From a computational complexity point of view, the PTP has been completely
solved since we have various algorithms for PTP, with the fastest runs in deterministic
polynomial-time (see Figure 3.1).

In 1876 (although it was published in 1891), Lucas discovered a type of converse of the
Fermat little theorem, based on the use of primitive roots.

Theorem 3.2 (Lucas’ converse of Fermat’s little theorem, 1876) Let n > 1. Assume that
there exists a primitive root of n, i.e., an integer a such that

(1) an−1 ≡ 1 (mod n),
(2) a(n−1)/p �≡ 1 (mod n), for each prime divisor p of n − 1.

Then n is prime.

Proof: Since an−1 ≡ 1 (mod n), Part (1) of Theorem 2.71 (see Chapter 1) tells us that
ordn(a) | (n − 1). We will show that ordn(a) = n − 1. Suppose ordn(a) �= n − 1. Since
ordn(a) | (n − 1), there is an integer k satisfying n − 1 = k · ordn(a). Since ordn(a) �= n − 1,
we know that k > 1. Let p be a prime factor of k. Then

xn−1/q = xk/q·ordn (a) = (xordn (a)
)k/q ≡ 1 (mod n).
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Figure 3.1 Algorithms/Methods for PTP

However, this contradicts the hypothesis of the theorem, so we must have ordn(a) = n − 1.
Now, since ordn(a) ≤ φ(n) and φ(n) ≤ n − 1, it follows that φ(n) = n − 1. So finally by
Part (2) of Theorem 2.36, n must be prime.

Lucas’ theorem can be converted to rigorous primality test as follows:

Primality test based on primitive roots:

Test(a)
def= an−1 ≡ 1 (mod n),

a(n−1)/p �≡ 1 (mod n),∀p | (n − 1). (3.4)

If n passes the test, then n is prime:

n passes Test(a) =⇒ n ∈ Primes. (3.5)
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Primality test based on primitive roots is also called n − 1 primality test, as it is based on
the prime factorization of n − 1.

Example 3.2 Let n = 2011, then 2011− 1 = 2 · 3 · 5 · 67. Note first 3 is a primitive root
(in fact, the smallest) primitive root of 2011, since order(3, 2011) = φ(2011) = 2010. So,
we have

32011−1 ≡ 1 (mod 2011),

3(2011−1)/2 ≡ −1 �≡ 1 (mod 2011),

3(2011−1)/3 ≡ 205 �≡ 1 (mod 2011),

3(2011−1)/5 ≡ 1328 �≡ 1 (mod 2011),

3((2011−1)/67 ≡ 1116 �≡ 1 (mod 2011).

Thus, by Theorem 3.2, 2011 must be prime.

Remark 3.1 In practice, primitive roots tend to be small integers and can be quickly
found (although there are some primes with arbitrary large smallest primitive roots), and the
computation for an−1 ≡ 1 (mod n) and a(n−1)/p �≡ 1 (mod n) can also be performed very
efficiently. However, to determine if n is prime, the above test requires the prime factorization
of n − 1, a problem of almost the same size as that of factoring n, and a problem that is much
harder than the primality testing of n.

Note that Theorem 3.2 is actually equivalent to the following theorem:

Theorem 3.3 If there is an integer a for which the order of a modulo n is equal to φ(n)
and φ(n) = n − 1, then n is prime. That is, if

ordn(a) = φ(n) = n − 1, (3.6)

or

Z+n = Z∗n, (3.7)

then n is prime.

Thus, we have the following primality test.

Primality test based on ordn(a)

Test(a)
def= ordn(a) = φ(n) = n − 1 (3.8)
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Thus, if n passes the test, then n is prime:

n passes Test(a) =⇒ n ∈ Primes. (3.9)

Example 3.3 Let n = 3779. We find, for example, that the integer a = 19 with
gcd(19, 3779) = 1 satisfies

(1) ord3779(19) = 3778,
(2) φ(3779) = 3778.

That is, ord3779(19) = φ(3779) = 3778. Thus by Theorem 3.3, 3779 is prime.

Remark 3.2 It is not a simple matter to find the order of an element a modulo n, ordn(a), if
n is large. In fact, if ordn(a) can be calculated efficiently, the primality and prime factorization
of n can be easily determined. At present, the best known method for computing ordn(a)
requires one to factor n.

Remark 3.3 If we know the value of φ(n), we can immediately determine whether or
not n is prime, since by Part (2) of Theorem 2.36 we know that n is prime if and only
if φ(n) = n − 1. Of course, this method is not practically useful, since to determine the
primality of n, we need to find φ(n), but to find φ(n), we need to factor n, a problem even
harder than the primality testing of n.

Remark 3.4 The difficulty in applying Theorem 3.3 for primality testing lies in finding
the order of an integer a modulo n, which is computationally intractable. As we will show
later, the finding of the order of an integer a modulo n can be efficiently done on a quantum
computer.

It is possible to use different bases ai (rather than a single base a) for different prime
factors pi of n − 1 in Theorem 3.2:

Theorem 3.4 If for each prime pi of n − 1 there exists an integer ai such that

(1) an−1
i ≡ 1 (mod n),

(2) a(n−1)/pi

i �≡ 1 (mod n).

Then n is prime.

Proof: Suppose that n − 1 =
k∏

i=1
pαi

i , with αi > 0, for i = 1, 2, . . . , k. Let also ri = ordn(ai ).

Then ri | (n − 1) and ri � (n − 1)/pi gives that pαi
i | ri . But for each i , we have ri | φ(n) and

hence pαi
i | φ(n). This gives (n − 1) | φ(n), so n must be prime.
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Example 3.4 Let n = 997, then n − 1 = 22 · 3 · 83. We choose three different bases 5, 7, 11
for the prime factors 2, 3, 83, respectively, and get

5997−1 ≡ 1 (mod 997),

5(997−1)/2 ≡ −1 �≡ 1 (mod 997),

7(997−1)/3 ≡ 304 �≡ 1 (mod 997),

11(997−1)/83 ≡ 697 �≡ 1 (mod 997).

Thus, we can conclude that 997 is prime.

The above tests require the factorization of n − 1, a problem even harder than the primality
test of n. In 1914, Henry C. Pocklington (1870–1952) showed that it is not necessary to know
all the prime factors of n − 1; part of them will be sufficient, as indicated in the following
theorem.

Theorem 3.5 (Pocklington, 1914) Let n − 1 = mj, with m = pα1
1 pα2

2 · · · pαk
k , m ≥ √n,

and gcd(m, j) = 1. If for each prime pi , i = 1, 2, . . . , k, there exists an integer a such that

(1) an−1 ≡ 1 (mod n),
(2) gcd(a(n−1)/pi − 1, n) = 1.

Then n is prime.

Proof: Let q be any one of the prime factors of n, and ordn(a) the order of a modulo
n. We have ordn(a) | (q − 1) and also ordn(a) | (n − 1), but ordn(a) � (n − 1)/pi . Hence,
pαi

i | ordn(a). Since ordn(a) | (q − 1), the result thus follows.

As already pointed out by Pocklington, the above theorem can lead to a primality test:

Pocklington’s Test

Test(a, pi )
def= n − 1 = mj, m = pα1

1 pα2
2 · · · pαk

k , m ≥ √n, gcd(m, j) = 1

an−1 ≡ 1 (mod n), gcd(a(n−1)/pi − 1, n) = 1. (3.10)

Thus, if n passes the test, then n is prime:

n passes Test(a, pi ) =⇒ n ∈ Primes. (3.11)

Example 3.5 Let also n = 997, and n − 1 = 12 · 83, 83 >
√

997. Choose a = 3 for
m = 83. Then we have

3997−1 ≡ 1 (mod 997),

gcd(3(997−1)/83 − 1, 997) = 1.
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Thus, we can conclude that 997 is prime.

There are some other rigorous, although inefficient, primality tests, for example one of
them follows directly from the converse of Wilson’s theorem (Theorem 2.59)

Wilson’s test

Test(n)
def= n > 1odd, (n − 1)! ≡ −1 (mod n) (3.12)

Thus, if n passes the test, then n is prime:

n passes Test(n) =⇒ n ∈ Primes. (3.13)

Remark 3.5 Unfortunately, very few primes satisfy the condition, in fact, for p ≤ 5 · 108,
there are only three primes, namely, p = 5, 13, 563. So the Wilson test is essentially of no
use in primality testing, not just because of its inefficiency.

Pratt’s primality proving
It is interesting to note that, although primality testing is difficult, the verification (proving)
of primality is easy, since the primality (as well as the compositeness) of an integer n can be
verified very quickly in polynomial-time:

Theorem 3.6 If n is composite, it can be proved to be composite in O((log n)2) bit
operations.

Proof: If n is composite, there are integers a and b with 1 < a < n, 1 < b < n and n = ab.
Hence, given the two integers a and b, we multiply a and b, and verify that n = ab. This
takes O((log n)2) bit operations and proves that n is composite.

Theorem 3.7 If n is prime, then it can be proved to be prime in O((log n)4) bit operations.

Theorem 3.7 was discovered by Pratt [3] in 1975; he interpreted the result as showing that
every prime has a succinct primality certification. The proof can be written as a finite tree
whose vertices are labeled by pairs (p, gp) where p is a prime number and gp is primitive
root modulo p; we illustrate the primality proving of prime number 2557 in Figure 3.2.
In the top level of the tree, we write (2557, 2) with 2 the primitive root modulo 2557. As
2557− 1 = 22 · 32 · 71, we have in the second level three vertices (2, 1), (3, 2), (71, 7). Since
3, 71 > 2, we have in the third level the child vertices (2, 1) for (3, 2), (2, 1), (5, 2) ,and (7, 3)
for (71, 7). In the fourth level of the tree, we have (2, 1) for (5, 2), (2, 1) and (3, 2) for (7, 3).
Finally, in the fifth level we have (2, 1) for (3, 2). The leaves of the tree now are all labeled
(2, 1), completing the certification of the primality of 2557.

Remark 3.6 It should be noted that Theorem 3.7 cannot be used for finding the short proof
of primality, since the factorization of n − 1 and the primitive root a of n are required.



166 Computational Number Theory and Modern Cryptography

(2, 1)

(2557, 2)

(71, 7)(3, 2)

(5, 2)(2, 1)(2, 1)

(2, 1)

(7, 3)

(3, 2)(2, 1)

(2, 1)

Figure 3.2 Certificate of primality for n = 2557

Note that for some primes, Pratt’s certificate is considerably shorter. For example, if
p = 22k + 1 is a Fermat number with k ≥ 1, the p is prime if and only if

3(p−1)/2 ≡ −1 (mod p). (3.14)

This result, known as Papin’s test, gives a Pratt certificate for Fermat primes. The work in
verifying (3.14) is just O(p), since 2k − 1 = �log2 p� − 1. In fact, it can be shown that every
prime p has an O(p) certificate. More precisely, we can have:

Theorem 3.8 For every prime p there is a proof that it is prime which requires for its
certification (5/2+ o(1)) log2 p multiplications modulo p.

Problems for Section 3.1

1. Use the Primality test based on primitive roots defined in (3.4) to prove that 1299709 is
prime (choose a = 6).

2. Use the primality test based on Pocklington’s theorem defined in (3.10) to prove that
179424673 is prime.

3. Prove that if p > 1 is an odd integer and{
a(p−1)/2 ≡ −1 (mod p)
a(p−1)/2q �≡ −1 (mod p), for every odd prime q | (p − 1)

(3.15)
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Then p is prime. Conversely, if p is an odd prime, then every primitive root a of p
satisfies conditions (3.15).

4. Prove or disprove that there are infinitely many Wilson primes (i.e., those primes p
satisfying the condition (p − 1)! ≡ −1 (mod p)).

5. Prove that if⎧⎪⎪⎨⎪⎪⎩
F >

√
n

n − 1 = FR, the complete prime factorization of F is known
an−1 ≡ 1 (mod n)
gcd(a(n−1)/q − 1, n) = 1 for every prime q | F.

Then p is prime.
6. (Brillhart, Lehmer, and Selfridge). Suppose⎧⎪⎪⎨⎪⎪⎩

3
√

n ≤ F ≤ √n
n − 1 = FR, the complete prime factorization of F is known
an−1 ≡ 1 (mod n)
gcd(a(n−1)/q − 1, n) = 1 for every prime q | F.

Represent a as a base F form n = c2 F2 + c1 F + 1, where c1, c2 ∈ [0, F − 1]. Show
that p is prime if and only if c2

1 − 4c2 is not a square.
7. (Proth, 1878). Let n = 2km + 1, with 2 � m, 2k > m, and suppose that

(a
n
) = −1. Then

n is prime if and only if

a(n−1)/2 ≡ −1 (mod n).

8. Use Proth’s result to prove that the following three numbers are prime:

4533471823554859405148161 = 60 · 276 + 1,

62864142619960717084721153 = 52 · 280 + 1,

18878585599102049192211644417 = 61 · 288 + 1.

9. (Pocklington, 1914). Let n = pkm + 1, with p prime and p � m, Show that if for some
a we have {

an−1 ≡ −1 (mod n),

gcd(a(n−1)/p − 1, n) = 1,
(3.16)

then each prime factor of n is of the form spk + 1 for some s.
10. Use the Pratt tree to prove the primality of 123456791.
11. Show that for any positive integer n > 4, the following three statements are equivalent:

(1) n is composite,
(2) (n − 1)! ≡ 0 (mod n),
(3) (n − 1)! �≡ −1 (mod n).
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12. Let ⎧⎪⎪⎨⎪⎪⎩
p be an odd prime,

p � b(b2 − 1),

n = b2p − 1
b2 − 1

.

Then n is a based b pseudoprime.

3.2 Miller–Rabin Test

The Miller–Rabin test[1, 2], also known as the strong pseudoprimality test, or more pre-
cisely, the Miller–Selfridge–Rabin test, is a fast and practical probabilistic primality test;
its probabilistic error can be reduced to as small as we desire, but not to zero. In terms of
computational complexity, it runs in RP . The test is also some times called strong pseudo-
primality test. The test was first studied by Miller in 1976 and Rabin in 1980, but was used
by Selfridge in 1974, even before Miller and Rabin published their result.

Theorem 3.9 Let p be a prime. Then

x2 ≡ 1 (mod p) (3.17)

if and only if x ≡ ±1 (mod p).

Proof: First notice that

x2 ≡ ±1 (mod p) ⇐⇒ (x + 1)(x − 1) ≡ 0 (mod p)

⇐⇒ p | (x + 1)(x − 1)

⇐⇒ p | (x + 1) or p | (x − 1)

⇐⇒ x + 1 ≡ 0 (mod p) or x − 1 ≡ 0 (mod p)

⇐⇒ x ≡ −1 (mod p) or x ≡ 1 (mod p).

Conversely, if either x ≡ −1 (mod p) or x ≡ 1 (mod p) holds, then x2 ≡ 1 (mod p).

Definition 3.1 The number x is called a nontrivial square root of 1 modulo n if it satisfies
(3.17) but x �≡ ±1 (mod n).

Example 3.6 The number 6 is a nontrivial square root of 1 modulo 35. Since x2 = 62 ≡
1 (mod 35), x = 6 �≡ ±1 (mod 35).

Corollary 3.1 If there exists a nontrivial square root of 1 modulo n, then n is composite.
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Example 3.7 Show that 1387 is composite. Let x = 2693. We have x2 = (2693)2 ≡ 1 (mod
1387), but x = 2693 ≡ 512 �≡ ±1 (mod 1387). So, 2693 is a nontrivial square root of 1 modulo
1387. Then by Corollary 3.4, 1387 is composite.

Theorem 3.10 (Miller–Rabin Test) Let n be an odd prime number: n = 1+ 2 j d, with d
odd. Then the b-sequence defined by

{bd , b2d , b4d , b8d , . . . , b2 j−1d , b2 j d} mod n (3.18)

has one of the following two forms:

(1, 1, . . . , 1, 1, 1, . . . , 1), (3.19)

(?, ?, . . . , ?,−1, 1, . . . , 1), (3.20)

reduced to modulo n, for any 1 < b < n. (The question mark “?” denotes a number different
from ± 1.)

The correctness of the above theorem relies on Theorem 3.9: If n is prime, then the only
solutions to x2 ≡ 1 (mod n) are x ≡ ±1. To use the strong pseudoprimality test on n, we
first choose a base b, usually a small prime. Then compute the b-sequence of n; write n − 1
as 2 j d where d is odd, compute bd mod n, the first term of the b-sequence, and then square
repeatedly to obtain the b-sequence of j + 1 numbers defined in (3.18), all reduced to modulo
n. If n is prime, then the b-sequence of n will be of the form of either (3.19) or (3.20). If the
b-sequence of n has any one of the following three forms

(?, . . . , ?, 1, 1, . . . , 1), (3.21)

(?, . . . , ?, ?, ?, . . . ,−1), (3.22)

(?, . . . , ?, ?, ?, . . . , ?), (3.23)

then n is certainly composite. However, a composite can masquerade as a prime for a few
choices of base b, but should not be “too many.” The above idea leads naturally to a very
efficient and also a practically useful algorithm for (pseudo) primality testing:

Algorithm 3.1 (Miller–Rabin test) This algorithm will test n for primality with high
probability:

[1] Let n be an odd number, and the base b a random number in the range 1 < b < n. Find
j and d with d odd, so that n − 1 = 2 j d .

[2] Set i ← 0 and y ← bd (mod n).
If i = 0 and y = 1, or y = n − 1, then terminate the algorithm and output “n is probably
prime.” If i > 0 and y = 1 go to [5].
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[4] i ← i + 1. If i < j , set y ≡ y2 (mod n) and return to [3].
[5] Terminate the algorithm and output “n is definitely not prime.”

Theorem 3.11 The strong pseudoprimality test above runs in time O((log n)3).

Definition 3.2 A positive integer n with n − 1 = d · 2 j and d odd, is called a base-b strong
probable prime if it passes the strong pseudoprimality test described above (i.e., the last term
in sequence (3.18) is 1, and the first occurrence of 1 is either the first term or is preceded
by −1). A base-b strong probable prime is called a base-b strong pseudoprime if it is a
composite.

If n is prime and 1 < b < n, then n passes the test. The converse is usually true, as shown
by the following theorem.

Theorem 3.12 Let n > 1 be an odd composite integer. Then n passes the strong test for at
most (n − 1)/4 bases b with 1 ≤ b < n.

Proof: The proof is rather lengthy, we thus only give a sketch of the proof. A more detailed
proof can be found either in Section 8.4 of Rosen [44], or in Chapter V of Koblitz [37].
First note that if p is an odd prime, and α and q are positive integers, then the number of
incongruent solutions of the congruence

xq−1 ≡ 1 (mod pα)

is gcd(q, pα−1(p − 1)). Let n − 1 = d · 2 j , where d is an odd positive integer and j is a
positive integer. For n to be a strong pseudoprime to the base b, either

bd ≡ 1 (mod n)

or

b2i d ≡ −1 (mod n)

for some integer i with 0 < i < j − 1. In either case, we have

bn−1 ≡ 1 (mod n).

Let the standard prime factorization of n be

n = pα1
1 pα2

2 · · · pαk
k .
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By the assertion made at the beginning of the proof, we know that there are

gcd
(
n − 1, pαi

i (pi − 1)
) = gcd(n − 1, pi − 1)

incongruent solutions to the congruence

xn−1 ≡ 1
(
mod pαi

i

)
, i = 1, 2, . . . , k.

Further, by the Chinese Remainder theorem, we know that there are exactly

k∏
i=1

gcd(n − 1, pi − 1)

incongruent solutions to the congruence

xn−1 ≡ 1 (mod n).

To prove the theorem, there are three cases to consider:

(1) the standard prime factorization of n contains a prime power pαr
r with exponent αr ≥ 2;

(2) n = pq, with p and q distinct odd primes;
(3) n = p1 p2 · · · pk , with p1, p2, . . . , pk distinct odd primes.

The second case can actually be included in the third case. We consider here only the first
case. Since

pr − 1

pαr
r

= 1

pαr−1
r

− 1

pαr
r

≤ 2

9
,

we have

k∏
i=1

gcd(n − 1, pi − 1) ≤
k∏

i=1

(pi − 1)

≤

⎛⎜⎝ k∏
i=1
i �=r

pi

⎞⎟⎠(2

9
pαr

r

)

≤ 2

9
n

≤ n − 1

4
for n ≥ 9.
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Thus, there are at most (n − 1)/4 integers b, 1 < b < n − 1, for which n is a base-b strong
pseudoprime and n can pass the strong test.

A probabilistic interpretation of Theorem 3.12 is as follows:

Corollary 3.2 Let n > 1 be an odd composite integer and b be chosen randomly from
{2, 3, . . . , n − 1}. Then the probability that n passes the strong test is less than 1/4.

From Corollary 3.2, we can construct a simple, general purpose, polynomial time primality
test which has a positive (but arbitrarily small) probability of giving the wrong answer.
Suppose an error probability of ε is acceptable. Choose k such that 4−k < ε, and select
b1, b2, . . . , bk randomly and independently from {2, 3, . . . , n − 1}. If n fails the strong test
on bi , i = 1, 2, . . . , k, then n is a strong probable prime.

Theorem 3.13 The strong test (i.e., Algorithm 3.1) requires, for n − 1 = 2 j d with d odd
and for k randomly selected bases, at most k(2+ j) log n steps. If n is prime, then the
result is always correct. If n is composite, then the probability that n passes all k tests is at
most 1/4k .

Proof: The first two statements are obvious, only the last statement requires proof. An error
will occur only when the n to be tested is composite and the bases b1, b2, . . . , bk chosen
in this particular run of the algorithm are all nonwitnesses. (An integer a is a witness to
the compositeness of n if it is possible using a to prove that n is composite, otherwise it
is a nonwitness). Since the probability of randomly selecting a nonwitness is smaller than
1/4 (by Corollary 3.2), then the probability of independently selecting k nonwitnesses is
smaller than 1/4k . Thus the probability that with any given number n, a particular run of the
algorithm will produce an erroneous answer is smaller than 1/4k [2].

Problems for Section 3.2

1. Show that there are infinitely many base 2 strong pseudoprime numbers.
2. Show that there are infinitely many base b strong pseudoprime numbers.
3. Show that there are infinitely many base 2 Euler pseudoprime numbers.
4. Show that there are infinitely many base b Euler pseudoprime numbers.
5. Show that if n is an odd composite number, then there exists an integer b such that

gcd(b, n) = 1 and n is not a base b Euler pseudoprime.
6. Show that if n is a base b strong pseudoprime, then n is also a base b Euler pseudoprime.
7. Let n > 1 be an odd integer. Show that n is prime if and only if

∀a ∈ Z∗n, a(n−1)/2 ≡
(a

n

)
(mod n).

8. Let n > 1 be an odd integer. Show that n is prime if and only if

∀a ∈ Z∗n, a(n−1)/2 ≡ ±1 (mod n),

∃a ∈ Z∗n, a(n−1)/2 ≡ −1 (mod n).
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9. Let Rn be the set

{b ∈ Z∗ : bn−1 �≡ 1 (mod n) or ∃t ≥ 0, 1 < gcd(b(n−1)/2t − 1, n) < n}

where n − 1 = 2ku, u odd, and ∃t is restricted to t ≤ k. Prove that for all odd composite
integer n > 9,

|Z∗n − Rn|
φ(n)

≤ 1

4
.

10. Prove the following theorem: Let n = FR+ 1, where 0 < R < F . If for some a we
have {

an−1 ≡ 1 (mod n),

gcd
(
a(n−1)/q − 1, n

) = 1, for each distinct prime q | F.

Then n is a prime.
11. Prove Selfridge’s theorem: Let n > 1 be an odd integer. If

n − 1 =
k∏

i−1

pαi
i

where pi , i = 1, 2, . . . , k are primes and each pi there exists an ai such that{
an−1

i ≡ 1 (mod n),

a(n−1)/pi

i �≡ 1 (mod n).

Then n is a prime.

3.3 Elliptic Curve Tests

In the last 20 years or so, there have been some surprising applications of elliptic curves to
problems in primality testing, integer factorization and public-key cryptography. In 1985,
Lenstra [4] announced an elliptic curve factoring method (the formal publication was in
1987), just one year later, Goldwasser and Kilian in 1986 [5] adapted Lenstra’s factoring
algorithm to obtain an elliptic curve primality test, and Miller in 1986 [6] and Koblitz in
1987 [7] independently arrived at the idea of elliptic curve cryptography. In this section, we
discuss fast primality tests based elliptic curves. These tests, though, are still probabilistic,
with zero error. In terms of computational complexity, they run in ZPP .

First we introduce a test based on Cox in 1989 [8].

Theorem 3.14 (Cox) Let n ∈ N with n > 13 and gcd(n, 6) = 1, and let E : y2 ≡ x3 +
ax + b (mod n) be an elliptic curve over Z/nZ. Suppose that

(1) n + 1− 2
√

n ≤ |E(Zn)| ≤ n + 1+ 2
√

n.
(2) |E(Zn)| = 2q, with q an odd prime.
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If P �= OE is a point on E and q P = OE , then n is prime.

Proof: See pp. 324–325 of Cox in 1989 [8].

Example 3.8 Suppose we wish to prove that n = 9343 is a prime using the above elliptic
curve test. First notice that n > 13 and gcd(n, 6) = 1. Next, we choose an elliptic curve
y2 = x3 + 4x + 4 over Z/nZ with P = (0, 2), and calculate |E(Z/nZ)|, the number of
points on the elliptic curve E(Z/nZ), Suppose we use the numerical exhaustive method, we
then know that there are 9442 points on this curve:

No. Points on the curve No. Points on the curve

1 OE 2 (0,2)
3 (0,9341) 4 (1,3)
5 (1,9340) 6 (3,1264)
7 (3,8079) 8 (7,3541)
9 (7,5802) 10 (10,196)
...

...
...

...
9439 (9340,4588) 9440 (9340,4755)
9441 (9341,3579) 9442 (9341,5764)

Thus, |E(Z9343)| = 9442. Now we are ready to verify the two conditions in Theorem 3.14.
For the first condition, we have:

�n + 1− 2
√

n� = 9150 < 9442 < 9537 = �n + 1+ 2
√

n�.

For the second condition, we have:

|E(Z9343)| = 9442 = 2q, q = 4721 ∈ Primes.

So, both conditions are satisfied. Finally and most importantly, we calculate q P over the
elliptic curve E(Z9343) by tabling its values as follows:

2P = (1,9340) 4P = (1297,1515)
9P = (6583,436) 18P = (3816,7562)

36P = (2128,1972) 147P = (6736,3225)
295P = (3799,4250) 590P = (7581,7757)

1180P = (5279,3262) 2360P = (3039,4727)
4721P = OE

Since P ∈ E(Z9343) and P �= OE , but q P ∈ E(Z9343) and q P = OE , we conclude that
n = 9343 is a prime number!

The main problem with the above test is the calculation of |E(Zn)|; when n becomes
large, finding the value of |E(Zn)| is as difficult as proving the primality of n [9]. Fortu-
nately, Goldwasser and Kilian found a way to overcome this difficulty [5]. To introduce the
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Goldwasse-Kilian method, let us first introduce a useful converse of Fermat’s little theorem,
which is essentially Pocklington’s theorem:

Theorem 3.15 (Pocklington’s theorem) Let s be a divisor of n − 1. Let a be an integer
prime to n such that

an−1 ≡ 1 (mod n)

gcd
(
a(n−1)/q , n

) = 1

}
(3.24)

for each prime divisor q of s. Then each prime divisor p of n satisfies

p ≡ 1 (mod s). (3.25)

Corollary 3.3 If s >
√

N − 1, then n is prime.

The Goldwasser–Kilian test can be regarded as an elliptic curve analog of Pocklington’s
theorem:

Theorem 3.16 (Goldwasser–Kilian) Let n be an integer greater than 1 and prime to 6, E
an elliptic curve over Z/nZ, P a point on E, m and s two integers with s | m. Suppose we
have found a point P on E that satisfies m P = OE , and that for each prime factor q of s,
we have verified that (m/q)P �= OE . Then if p is a prime divisor of n, |E(Zp)| ≡ 0 (mod s).

Corollary 3.4 If s > ( 4
√

n + 1)2, then n is prime.

Combining the above theorem with Schoof’s algorithm [11] which computes |E(Zp)| in
time O ((log p)8+ε

)
, we obtain the following Goldwasser–Kilian algorithm ([5, 10]).

Algorithm 3.2 (Goldwasser–Kilian Algorithm) Given a probable prime n, this algorithm
will show whether or not n is indeed prime.

[1] Choose a non-singular elliptic curve E over Z/nZ, for which the number of points m
satisfies m = 2q , with q a probable prime;

[2] If (E, m) satisfies the conditions of Theorem 3.16 with s = m, then n is prime, otherwise
it is composite;

[3] Perform the same primality proving procedure for q;
[4] Exit.

The running time of the Goldwasser–Kilian algorithm is given in the following two
theorems [12]:

Theorem 3.17 Suppose that there exist two positive constants c1 and c2 such that the number
of primes in the interval [x, x +√2x], where (x ≥ 2), is greater than c1

√
x(log x)−c2 , then

the Goldwasser–Kilian algorithm proves the primality of n in expected time O ((log n)10+c2
)
.
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Theorem 3.18 There exist two positive constants c3 and c4 such that, for all k ≥ 2, the
proportion of prime numbers n of k bits for which the expected time of Goldwasser–Kilian
is bounded by c3((log n)11) is at least

1− c42−k
1

log log k
.

A serious problem with the Goldwasser–Kilian test is that Schoof’s algorithm seems
almost impossible to implement. In order to avoid the use of Schoof’s algorithm, Atkin and
Morain [12] in 1991 developed a new implementation method called ECPP (elliptic curve
primality proving), which uses the properties of elliptic curves over finite fields related to
complex multiplication. We summarize the principal properties of ECPP as follows:

Theorem 3.19 (Atkin–Morain) Let p be a rational prime number that splits as the product
of two principal ideals in a field K: p = ππ ′ with π , π ′ integers of K. Then there exists an
elliptic curve E defined over Zp having complex multiplication by the ring of integers of K,
whose cardinality is

m = NK(π − 1) = (π − 1)(π ′ − 1) = p + 1− t (3.26)

with |t | ≤ 2
√

p (Hasse’s theorem) and whose invariant is a root of a fixed polynomial HD(X )
(depending only upon D) modulo p.

For more information on the computation of the polynomials HD , readers are referred to
Cox [8] and Morain ([14, 16]). Note that there are also some other important improvements
on the Goldwasser–Kilian test, notably the Adleman–Huang’s primality proving algorithm
[17] using hyperelliptic curves.

The Goldwasser–Kilian algorithm begins by searching for a curve and computes its number
of points, but the Atkin–Morain ECPP algorithm does exactly the opposite. The following is
a brief description of the ECPP algorithm.

Algorithm 3.3 (Atkin–Morain ECPP) Given a probable prime n, this algorithm will show
whether or not n is indeed prime.

[1] (Initialization) Set i ← 0 and N0 ← n.
[2] (Building the sequence)

While Ni > Nsmall

[2.1] Find a Di such that Ni = πiπ
′
i inK = Q(

√−Di );
[2.2] If one of the w(−Di ) numbers m1, ..., mw(mr = NK (ωr − 1) where ωr is a con-

jugate of π ) is probably factored go to step [2.3] else go to [2.1];
[2.3] Store {i, Ni , Di , ωr , mr , Fi }where mr = Fi Ni+1. Here Fi is a completely factored

integer and Ni+1 a probable prime; set i ← i + 1 and go to step [2.1].
[3] (Proving)

For i from k down to 0
[3.1] Compute a root j of HDi (X ) ≡ 0 (mod Ni );
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[3.2] Compute the equation of the curve Ei of the invariant j and whose cardinality
modulo Ni is mi ;

[3.3] Find a point Pi on the curve Ei ;
[3.4] Check the conditions of Theorem 3.19 with s = Ni+1 and m = mi .

[4] (Exit) Terminate the execution of the algorithm.

For ECPP, only the following heuristic analysis is known [14].

Theorem 3.20 The expected running time of the ECPP algorithm is roughly proportional
to O ((log n)6+ε

)
for some ε > 0.

Corollary 3.5 The ECPP algorithm is in ZPP .

Thus, for all practical purposes, we could just simply use a combined test of a probabilistic
test and an elliptic curve test as follows:

Algorithm 3.4 (Practical primality testing) Given a random odd positive integer n, this
algorithm will make a combined use of probabilistic tests and elliptic curve tests to determine
whether or not n is prime:

[1] (Primality Testing – Probabilistic Testing) Use a combination of the strong pseudopri-
mality test and the Lucas pseudoprimality test to determine if n is a probable prime.
(This has been implemented in Maple function isprime.) If it is, go to [2], else report that
n is composite and go to [3].

[2] (Primality Proving – Elliptic Curve Proving) Use an elliptic curve test (e.g., the ECPP
test) to verify whether or not n is indeed a prime. If it is, then report that n is prime,
otherwise, report that n is composite.

[3] (Exit) Terminate the algorithm.

Problems for Section 3.3

1. Prove Cox’s Theorem, (i.e., Theorem 3.14) for elliptic curve primality test.
2. Prove the following theorem: Let n = F R + 1, where 0 < R < F . If for some a we

have {
an−1 ≡ 1 (mod n),

gcd
(
a(n−1)/q − 1, n

) = 1, for each distinct prime q | F.

Then n is a prime.
3. (Selfridge) Let n > 1 be an odd integer. Show that if

n − 1 =
k∏

i−1

pαi
i
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where pi , i = 1, 2, . . . , k are primes and each pi there exists an ai such that{
an−1

i ≡ 1 (mod n),

a(n−1)/pi

i �≡ 1 (mod n),

then n is a prime.
4. Prove the Goldwasser–Kilian theorem (Theorem 3.16) and its corollary (Corollary 3.4).
5. Show that the Goldwasser–Kilian elliptic curve test algorithm is a ZPP algorithm.
6. Show that the Atkin–Morain ECPP algorithm is a ZPP algorithm.
7. Use Cox’s test (Theorem 3.14) to prove that 26869 is a prime.
8. Use the Goldwasser–Kilian elliptic curve test to show that 907 is a prime.
9. Use some variant of ECPP to prove the following four numbers are prime:

(1) 23539 + 1
3 ,

(2) 2177580 + 5802177,

(3) 44052638 + 26384405,

(4) 109999 + 33603.

3.4 AKS Test

On 6 August 2002, Agrawal, Kayal, and Saxena in the Department of Computer Science and
Engineering, Indian Institute of Technology, Kanpur, proposed a deterministic polynomial-
time test (AKS test for short) for primality [18], relying on no unproved assumptions. That
is, AKS runs in P . It was not a great surprise that such a test existed,1 but the relatively easy
algorithm and proof was indeed a big surprise. The key to the AKS test is in fact a very
simple version of Fermat’s little theorem:

Theorem 3.21 Let x be an indeterminate and gcd(a, n) = 1 with n > 1. Then

n ∈ Primes ⇐⇒ (x − a)n ≡ (xn − a) (mod n). (3.27)

Proof: By the binomial theorem, we have

(x − a)n =
n∑

r=0

(
n
r

)
xr (−a)n−r .

If n is prime, then n | (n
r

)
(i.e.,

(
n
r

) ≡ 0 (mod n)), for r = 1, 2, . . . , n − 1. Thus, (x − a)n ≡
(xn − an) (mod n) and (3.27) follows from Fermat’s little theorem. On the other hand, if n
is composite, then it has a prime divisor q . Let qk be the greatest power of q that divides n.

1Dixon [19] predicated in 1984 that “the prospect for a polynomial-time algorithm for proving primality
seems fairly good, but it may turn out that, on the contrary, factoring is NP-hard.”
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Then qk does not divide
(

n
q

)
and is relatively prime to an−q , so the coefficient of the term xq

on the left of (x − a)n ≡ (xn − a) is not zero, but it is on the right.

Remark 3.7 In about 1670 Leibniz (1646–1716) used the fact that if n is prime then n
divides the binomial coefficient

(
n
r

)
, r = 1, 2, . . . , n − 1 to show that if n is prime then n

divides (a1 + a2 + · · · + am)n − (an
1 + an

2 + · · · + an
m). Letting ai = 1, for i = 1, 2, . . . , m,

Leibniz proved that n divides mn − m for any positive integer m.

Example 3.9 Let a = 5 and n = 11. Then we have:

(x − 5)11 = x11 − 55x10 + 1375x9 − 20625x8 + 206250x7 − 1443750x6

+ 7218750x5 − 25781250x4 + 64453125x3 − 107421875x2

+ 107421875x − 48828125

≡ x11 − 5 (mod 11).

However, if we let n = 12, which is not a prime, then

(x − 5)12 = x12 − 60x11 + 1650x10 − 27500x9 + 309375x8 − 2475000x7

+ 14437500x6 − 61875000x5 + 193359375x4 − 429687500x3

+ 644531250x2 − 585937500x + 244140625

�≡ x12 − 5 (mod 12).

Theorem 3.21 provides a deterministic test for primality. However, the test cannot be done
in polynomial-time because of the intractability of (x − a)n; we need to evaluate n coefficients
in the left-hand side of (3.27) in the worst case. A simple way to avoid this computationally
intractable problem is to evaluate both sides of (3.27) modulo a polynomial2 of the form
xr − 1: For an appropriately chosen small r . Thus, we get a new characterization of primes

n ∈ Primes =⇒ (x − a)n ≡ (xn − a) (mod xr − 1, n), (3.28)

for all r and n relatively prime to a. A problem with this characterization is that for particular
a and r , some composites can satisfy (3.28), too. However, no composite n satisfies (3.28)
for all a and r , that is,

n ∈ Composites =⇒ ∃a, r such that

(x − a)n �≡ (xn − a) (mod xr − 1, n). (3.29)

2By analog with congruences in Z, we say that polynomials f (x) and g(x) are congruent modulo
h(x) and write f (x) ≡ g(x) (mod h(x)), whenever f (x)− g(x) is divisible by h(x). The set (ring) of
polynomials modulo h(x) is denoted by Z[x]/h(x). If all the coefficients in the polynomials are also
reduced to n, then we write f (x) ≡ g(x) (mod h(x)) as f (x) ≡ g(x) (mod h(x), n), and Z[x]/h(x) as
Zn[x]/h(x) (or Fp[x]/h(x) if n is a prime p).
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Example 3.10 Let n = 6 and a = r = 5. Then

(x − 5)6 ≡ 3x4 − 2x3 + 3x2 + x + 1 (mod x5 − 1, 6),
x6 − 5 ≡ x + 1 (mod x5 − 1, 6),
(x − 5)6 �≡ x6 − 5 (mod x5 − 1, 6).

The main idea of the AKS test is to restrict the range of a and r enough to keep the com-
plexity of the computation polynomial, while ensuring that no composite n can pass (3.28).

Theorem 3.22 (Agrawal–Kayal–Saxena) Let n ∈ Z+. Let q and r be prime numbers. Let
S be a finite set of integers. Assume that

(1) q | (r − 1),

(2) n(r−1)/q �≡ 0, 1 (mod r ),

(3) gcd(a − a′, n) = 1, for all distinct a, a′ ∈ S,

(4) binom| S | +q − 1| S | ≥ n2�√r�,
(5) (x − a)n ≡ (xn − a) (mod xr − 1, n), for all a ∈ S.

Then n is a prime power.

Proof: We follow the streamlined presentation of Bernstein [20]. First find a prime fac-
tor p of n, with p(r−1)/q �≡ 0, 1 (mod r ) and q | (r − 1). If every prime factor p of n has
p(r−1)/q ≡ 0, 1 (mod r ), then n(r−1)/q ≡ 0, 1 (mod r ). By assumption, we have (x − a)n ≡
(xn − a) (mod xr − 1, p) for all a ∈ S. Substituting xni

for x , we get (xni − a)n ≡ (xni+1 − a)
(mod xni r − 1, p), and also (xni − a)n ≡ (xni+1 − a) (mod xr − 1, p). By induction,
(x − a)ni ≡ (xni − a) (mod xr − 1, p) for all i ≥ 0. By Fermat’s little theorem,
(x − a)ni p j ≡ (xni − a)p j ≡ (xni p j − a) (mod xr − 1, p) for all j ≥ 0. Now consider the
products ni p j , with 0 ≤ i, j ≤ �√r� and 1 ≤ ni p j ≤ n2�√r�. There are (1+ �√r�)2 > r
such (i, j) pairs, so there are (by the pigeon-hole principle) distinct pairs (i1, j1) and (i2, j2)
for which t1 ≡ t2 (mod r ) where t1 = ni1 p j1 , t2 = ni2 p j2 . So, xt1 ≡ xt2 (mod xr − 1, p),
therefore, (x − a)t1 ≡ (xt1 − a) ≡ xt2 − a ≡ (x − a)t2 (mod xr − 1, p) for all a ∈ S. Next
find an irreducible polynomial h(x) in Fp[x] dividing (xr − 1)/(x − 1) such that (x − a)t1 ≡
(x − a)t2 (mod h(x), p) for all a ∈ S. Define G as a subgroup of (Fp[x]/h(x))∗ generated
by {x − a : a ∈ S}, then gt1 = gt2 for all g ∈ G. Since G has at least (|S|+q−1

|S| ) elements (by
some combinatorics and the elementary theory of cyclotomic polynomials), we have

|t1 − t2| < n�
√

r� p�
√

r� ≤ n2�√r� ≤
( |S| + q − 1

|S|
)
≤ |G|,

so, t1 = t2, as desired.

Remark 3.8 There are some new interesting developments and refinements over the above
result. The American Institute of Mathematics had a workshop on 24–28 March 2003 on
“Future Directions in Algorithmic Number Theory”; the institute has made the lecture notes
and a set of problems of the workshop available through http://www.aimath.org.
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To turn the above theorem into a deterministic polynomial-time test for primality, we first
find a small odd prime r such that n(r−1)/q ≡ 0, 1 (mod r ) and (q+s−1

s ) > n2�√r�; here q is the
largest prime factor of r − 1, and s is any moderately large integer. A theorem of Fouvry [21]
from analytic number theory implies that a suitable r exists on the order O((log n)6) and s
on the order O((log n)4). Given such a triple (q, r, s), we can easily test that n have no prime
factors < s and that (x − a)n = xn − b (mod xr − 1, n) for all a ∈ {0, 1, 2, . . . , s − 1}. Any
failure of the first test reveals a prime factor of n and any failure of the second test proves
that n is composite. If n passes both tests then n is a prime power. Here is the algorithm.

Algorithm 3.5 (The AKS algorithm) Give a positive integer n > 1, this algorithm will
decide whether or not n is prime in deterministic polynomial-time.

[1] If n = ab with a ∈ N and b > 1, then output COMPOSITE.
[2] Find the smallest r such that ordr (n) > 4(log n)2.
[3] If 1 < gcd(a, n) < n for some a ≤ r , then output COMPOSITE.
[4] If n ≤ r , then output PRIME.
[5] For a = 1 to �2√φ(r ) log n� do

if (x − a)n �≡ (xn − a) (mod xr − 1, n),
then output COMPOSITE.

[6] Output PRIME.

The algorithm is indeed very simple and short (with only 6 statements), possibly the
shortest algorithm for a (big) unsolved problem ever!

Theorem 3.23 (Correctness) The above algorithm returns PRIME if and only if n is prime.

Proof: If n is prime, then the steps 1 and 3 will never return COMPOSITE. By Theorem 3.21,
the for loop in step 5 will also never return COMPOSITE. Thus, n can only be identified to
be PRIME in either step 4 or step 6. The “only if” part of the theorem left as an exercise.

Theorem 3.24 The AKS algorithm runs in time O((log n)12+ε).

Proof (Sketch): The algorithm has two main steps, 2 and 5. Step 2 finds a suitable r (such
an r exists by Fouvry [21] and Baker and Harman [22]), and can be carried out in time
O((log n)9+ε). Step 5 verifies (3.28), and can be performed in time O((log n)12+ε). So, the
overall runtime of the algorithm is O((log n)12+ε).

Remark 3.9 Under the assumption of a conjecture on the density of the Sophie Germain
primes, the AKS algorithm runs in time O((log n)6+ε). If a conjecture of Bhatacharjee and
Pandey3 is true, then this can be further reduced to O((log n)3+ε). Of course, we do not know
if these conjectures are true.

3Bhatacharjee and Pandey conjectured in 2001 [23] that if r ∈ Primes and gcd(r, n) = 1, and (x − 1)n ≡
xn − 1 (mod xr − 1, n), then either n is prime or n2 ≡ 1 (mod r ).
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Remark 3.10 The AKS algorithm is a major breakthrough in computational number theory.
However, it can only be of theoretical interest, since its current runtime is in O((log n)12+ε),
which is much higher than O((log n)6+ε) for ECPP and O((log n)3) for Miller–Rabin’s test.
For all practical purposes, we would still prefer to use Miller–Rabin’s probabilistic test [2]
in the first instance and the zero-error probabilistic test ECPP in the last step of a primality
testing process.

Remark 3.11 The efficiency of the AKS algorithm for test primality does not have (at
least at present) any obvious connections to that of integer factorization, although the two
problems are related to each other. The fastest factoring algorithm, namely the Number Field
Sieve [25], has an expected running time O(exp(c 3

√
log n 3

√
(log log n)2)). We do not know

if the simple mathematics used in the AKS algorithm for primality testing can be used for
other important mathematical problems, such as the Integer Factorization Problem.

Remark 3.12 The efficiency of the AKS algorithm has not yet become a threat to the
security of the factoring base (such as the RSA) cryptographic systems, since the security of
RSA depends on the computational intractability of the Integer Factorization Problem.

At the end of this section on AKS test, and also the end of this chapter on primality
testing, we have given a comparison of some general purpose primality tests in terms of
computational complexity (running time).

Recall that multiplying two log n bit integers has a running time of

O((log n)2)

and the fastest known algorithm, the Schönhage–Strassen algorithm, has a running time of

O(log n log log n log log log n) = O((log n)1+ε)

= Õ(log n).

Thus, if we let O((log n)μ) be the running time of integer multiplication, then

O((log n)μ)
u=2=⇒ O((log n)2) use practical multiplication algorithm

u=1+ε=⇒ O((log n)1+ε) use fast multiplication algorithm.

The Miller–Rabin test runs in time

O((log n)1+μ) ⇒ O((log n)3)

⇒ O((log n)2+ε)

= Õ((log n)2)

so it is a very fast (polynomial-time) primality test, as its degree of complexity is just one more
than integer multiplications. A drawback of the Miller–Rabin test is that it is probabilistic,
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not deterministic, that is, there will be a small error of probability when it declares an integer
to be prime. However, if we assume the Generalized Riemann Hypothesis (GRH), then the
Miller–Rabin test can be made deterministic with running time in

O((log n)3+μ) ⇒ O((log n)5)

⇒ O((log n)4+ε)

= Õ((log n)4)

It still has polynomial-time complexity, just two degrees higher than its probabilistic version.
The AKS (Agrawal, Kayal, and Saxena) test takes time

O((log n)6(1+μ)) ⇒ O((log n)18)

⇒ O((log n)12+ε)

= Õ((log n)12).

That is, by practical multiplication algorithm, AKS runs in O((log n)18) whereas by
SchönhageStrassen algorithm in Õ((log n)12). It can be show that [13] the AKS algorithm
cannot be expected to be proved to run faster than

O ((log n)6(1+μ)
)
.

However, in practice, it is easy to find a suitable prime of the smallest possible sizeO((log n)2),
thus, the practical running time of the AKS algorithm is

O ((log n)3(1+μ)
)
.

It also can be shown that one cannot find a deterministic test that runs faster than
O((log n)3(1+μ)). That is, O((log n)3(1+μ)) is the fastest possible running time for a determin-
istic primality test. Recently, H. Lenstra and Pomerance showed that a test having running
time in

O ((log n)(3+ε)(1+μ)
)

is possible, but which is essentially the same as the practical running time O((log n)3(1+μ)).
Of course, if one is willing to accept a small error of probability, a randomized version of
AKS is possible and can be faster, but this is not the point, as if one is willing to use a
probabilistic test, one would prefer to use the Miller–Rabin test.

The APR (Adleman, Pomerance, and Rumely) cyclotomic (or Jacobi sum) test is a deter-
ministic and nearly polynomial-time test, and it runs in time

O((log n)c log log log n), c > 0.
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Table 3.1 Running time comparison of three general primality tests

Test Practical running time Fast running time

Miller–Rabin O((log n)3) Õ((log n)2)
AKS O((log n)18) Õ((log n)12)
ECPP O((log n)6) Õ((log n)4)

In fact, Odlyzko and Pomerance have shown that for all large n, the running time is in the
interval [O((log n)c1 log log log n),O((log n)c2 log log log n)

]
,

where c1, c2 > 0. This test was further improved by Lenstra and Cohen, hence the name
APRCL test. It can be used to test numbers of several thousand digits in less than, say, ten
minutes.

The elliptic curve test ECPP of Atkin and Morain, based on earlier work Goldwasser and
Kilian, runs in time

O((log n)2+2μ) ⇒ O((log n)6)

⇒ O((log n)4+ε)

= Õ((log n)4).

That is, it runs in O((log n)6) if a practical multiplication algorithm is used and Õ((log n)4)
if a fast multiplication algorithm is employed. ECPP is a probabilistic algorithm but with
zero error; other names for this type of probabilistic algorithms are the ZPP algorithm or Las
Vegas algorithm.

In what follows, Table 3.1 summarizes the running times for all the different tests men-
tioned in this section.

Brent [24] at Oxford University (now at the Australian National University) did some
numerical experiments for the comparison of the Miller–Rabin, ECPP, and AKS tests on a
1GHz machine for the number 10100 + 267. Table 3.2 gives times for Magama (a computer

Table 3.2 Times for various tests for 10100 + 267

Test Trials Time

Miller–Rabin 1 0.003 second
Miller–Rabin 10 0.03 second
Miller–Rabin 100 0.3 second
ECPP 2.0 seconds
Maple Test 2.751 seconds
(Miller–Rabin + Lucas)
AKS 37 weeks (Estimated)
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algebra system) implementation of of the Miller–Rabin, ECPP, and AKS tests, plus our
experiment on a Fujitsu P7230 Laptop computer, all for the number 10100 + 267.

Finally, we wish to mention that there is a practical primality test specifically for Mersenne
primes numbers:

Algorithm 3.6 (Lucas–Lehmer test for Mersenne primes)

Initialize the value for p ∈ Primes
L ← 4

for i from 1 to p − 2 do

L ← L2 − 2 (mod (2p − 1))

if L = 0 then 2p − 1 is prime

else 2p − 1 is composite

Remark 3.13 The above Lucas–Lehmer test for Mersenne primes is very efficient, since
the major step in the algorithm is to compute

L = L2 − 2 (mod (2p − 1))

which can be performed in polynomial-time. But still, the computation required to test a
single Mersenne prime Mp increases with p to the order of O(p3). Thus, to test M2r+1 would
take approximately eight times as long as to test Mr with the same algorithm (Slowinski
[26]). Historically, it has required about four times as much computation to discover the next
Mersenne prime as to re-discover all previously known Mersenne primes. The search for
Mersenne primes has been an accurate measure of computing power for the past 200 years
and, even in the modern era, it has been an accurate measure of computing power for new
supercomputers.

Problems for Section 3.4

1. (Binomial Theorem) Prove that

(x + y)n =
n∑

i=0

(
n
r

)
xi yn−i

where (
n
r

)
= n!

i!(n − i)!
and m! = m(m − 1)(m − 2) · · · 3 · 2 · 1.

2. Prove that

(x + y)n ≡ xn + yn (mod n)

for all variables x and y and primes n.
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3. Prove that n is prime if and only if

(x + 1)n ≡ xn + 1 (mod n)

in Z[x].
4. Show that if a square root x of 1 modulo n which is neither 1 nor−1, then n is composite.
5. It is easy to find a square modulo an odd prime p, however, it is hard to find a nonsquare

modulo an odd prime p. Show that, by the Extended Riemann Hypothesis, there is a
nonsquare less than or equal to 2(log p)2.

6. (AKS) Let n ≥ 2 be an integer, r a positive integer < p, for which n has order greater
than (log n)2 modulo r . Then n is prime if and only if
(1) n is not a perfect power,
(2) n does not have any prime divisor less than or equal to r ,
(3) (x + a)n = xn + a (mod n, xr − 1) for each integer a, 1 ≤ a ≤ √r log n.

7. (Bernstein) Let f (x) be a monic polynomial f (x) ∈ Z[x] of degree d ≥ 1 and n positive
integer. Z[x]/(n, f (x) is called an almostfield with parameters (e, v(x)) if
(1) e | nd − 1, with e positive integer,
(2) v(x)nd−1 ≡ 1 (mod n, f (x)),
(3) v(x)(nd−1)/q − 1 is a unit in Z[x]/(n, f (x)) for all prime q | e.

If n is a prime and f (x) modulo n is irreducible, then Z[x]/(n, f (x) is a field.
Moreover, any generator v(x) of the multiplicative group of elements of this field satisfies
(2) and (3) for each e satisfying (1).

Prove that for n > 2 and let Z[x]/(n, f (x)) be an almostfield with parameters (e, v(x))
where e > (2d log n)2, then n is prime if and only if
(a) n is not a perfect power,
(b) (t − 1)nd ≡ tbd

(mod n, f (x), t e − v(x))inZ[x, t].
8. (Lenstra, 1985) Add one more condition (4) in Problem 7:

(4) g(T ) :=
d−1∏
i=0

(T − v(x)ni
) ∈ (Z[x]/(n, f (x)))[T ].

Show that p ≡ n j (mod e) for some j, 0 ≤ j ≤ d − 1, and for each prime p | n.
9. (Lenstra–Pomerance) Let f (x) be a monic polynomial f (x) ∈ Z[x] of degree d ≥ 1 and

n positive integer. Z[x]/(n, f (x) is called a pseudofield if
(1) f (xn) ≡ 0 (mod n, f (x)),
(2) xnd − x ≡ 0 (mod n, f (x)),
(3) xnd/q − x is a unit in Z[x]/(n, f (x)) for all prime q | d.

Prove that for n ≥ 2 and let Z[x]/(n, f (x)) be a pseudofield with f (x) a monic
polynomial of degree d in ((log n)2, n), then n is prime if and only if
(a) n is not a perfect power,
(b) n does not have any prime divisor less than or equal to d,
(c) (x + a)n ≡ xn + q (mod n, f (x)), for each integer a, 1 ≤ a ≤ √d log n.

10. (AKS) Let n ≥ 2 be an integer, r a positive integer < p, for which n has order greater
than (log n)2 modulo r . Then n is prime if and only if
(1) n is not a perfect power,
(2) n does not have any prime divisor less than or equal to r ,
(3) (x + a)n = xn + a (mod n, xr − 1) for each integer a, 1 ≤ a ≤ √r log n.



Primality Testing 187

11. (Pomerance–Odlyzko) Let f (n) be the least positive square-free integer such that the
product of all primes q , q − 1 | f (n) exceeds

√
n. Show that there exists positive absolute

constants c1, c2 such that for all integers n ≥ 2,

(log n)c1 log log log n < f (n) < (log n)c2 log log log n.

12. (Adleman–Pomerance–Rumely) Let T (n) be the number of bit operations needed by the
APR test. Show that there exists positive absolute constants c3, c4 such that

(log n)c3 log log log n < f (n) < (log n)c4 log log log n.

13. Prove the following theorem. Let p and q be primes with p | (q − 1), ζpq the primitive
pqth roots of unity in C, g the generator of (Qq )∗. Let also χ be a character of (Qq )∗

with order p. Define the Gauss sum as follows

τ (χ ) =
q−1∑
a=1

χ (a)ζ a
q ∈ Z[ζpq ].

If n is a prime, then

τ (χ )n p−1 ≡ χ (n) (mod nZ[ζpq ]).

14. Prove that if

τ (χ )n p−1 ≡ χ (n) (mod nZ[ζpq ]).

is true, then for any prime divisor r of n, there is a number b modulo p, such that

χ (n)b = χ (r ).

3.5 Bibliographic Notes and Further Reading

Primality testing is a large topic in computational number theory. Although primality testing
problems are now proved to be solvable in polynomial-time, there is still a room for improve-
ment to make it practically efficient. For general references on primality testing, including
the historical development of efficient algorithms for primality, see, [8, 13, 17, 19, 27–49].

The original sources for the Miller–Rabin test and many other types of probabilistic
primality tests (pseudoprimality tests) can be found in, for example, [1–3, 24, 50–56].

The elliptic curve primality test was first proposed by Goldwasser and Kilian in [5, 10,
57], but the most practical and fastest version of elliptic curve primality test, ECPP, was
proposed and improved in [12, 14–16]. Gross [58] discussed the application of elliptic curve
test for Mersenne primes.
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The AKS deterministic polynomial-time primality test was proposed by Agrawal, Kayal,
and N. Saxena in [18]. More discussions and improvements of AKS test may be found in
[20, 23, 59, 60]. Prior to AKS, the super-polynomial-time primality test APR was proposed
by Adleman, Pomerance, and Rumely in 1983 [61], and subsequently improved by Cohen
and Lenstra in 1984 [62].
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4
Integer Factorization

The Integer Factorization Problem (IFP) is one of the most important infeasible problems
in computational number theory, for which there is still no polynomial-time algorithm for
solving it. In this chapter we discuss several important modern algorithms for factoring,
including

� Pollard’s ρ and p − 1 Methods;
� Lenstra’s Elliptic Curve Method (ECM);
� Pomerance’s Quadratic Sieve (QS), and
� The currently fastest method, Number Field Sieve (NFS).

4.1 Basic Concepts

The Integer Factorization Problem (IFP) may be described as follows:

IFP :=
{

Input : n ∈ Composites

Output : f such that f | n & 1 < f < n
(4.1)

Clearly, if there is an algorithm to test whether or not an integer n is a prime, and an algorithm
to find a nontrivial factor f of a composite integer n, then by recursively calling the primality
testing algorithm and the integer factorization algorithm, it should be easy to find the prime
factorization of

n = pα1
1 pα2

2 · · · pαk
k .

Generally speaking, the most useful factoring algorithms fall into one of the following
two main classes:

Computational Number Theory and Modern Cryptography, First Edition. Song Y. Yan.
© 2013 Higher Education Press. All rights reserved. Published 2013 by John Wiley & Sons Singapore Pte. Ltd.
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(A) General purpose factoring algorithms, which has running time that depends mainly on
the size of N , the number to be factored, and is not strongly dependent on the size of
the factor p found. Examples are:
(1) Lehman’s method, which has a rigorous worst-case running time bound O (n1/3+ε

)
.

(2) Shanks’ SQUare FOrm Factorization methodSQUFOF, which has expected running
time O (n1/4

)
.

(3) Shanks’ class group method, which has running time O (n1/5+ε
)
.

(4) Continued FRACtion (CFRAC) method, which under plausible assumptions has
expected running time

O
(

exp
(

c
√

log n log log n
))
= O

(
nc
√

log log n/ log n
)

,

where c is a constant (depending on the details of the algorithm); usually c = √2 ≈
1.414213562.

(5) Multiple Polynomial Quadratic Sieve (MPQS), which under plausible assumptions
has expected running time

O
(

exp
(

c
√

log n log log n
))
= O

(
nc
√

log log n/ log n
)

,

where c is a constant (depending on the details of the algorithm); usually c =
3

2
√

2
≈ 1.060660172.

(6) Number Field Sieve (NFS), which under plausible assumptions has the expected
running time

O
(

exp
(

c 3
√

log n 3
√

(log log n)2
))

,

where c = (64/9)1/3 ≈ 1.922999427 if GNFS (a general version of NFS) is used
to factor an arbitrary integer n, whereas c = (32/9)1/3 ≈ 1.526285657 if SNFS
(a special version of NFS) is used to factor a special integer n such as n = re ± s,
where r and s are small, r > 1 and e is large. This is substantially and asymptotically
faster than any other currently known factoring method.

(B) Special purpose factoring algorithms: The running time depends mainly on the size of
p (the factor found) of n. (We can assume that p ≤ √n.) Examples are:
(1) Trial division, which has running time O (p(log n)2

)
.

(2) Pollard’s ρ Method (also known as Pollard’s “rho” algorithm), which under plau-
sible assumptions has expected running time O (p1/2(log n)2

)
.

(3) Lenstra’s Elliptic Curve Method (ECM), which under plausible assumptions has
expected running time

O
(

exp
(

c
√

log p log log p
)
· (log n)2

)
,

where c ≈ 2 is a constant (depending on the details of the algorithm).
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The term O((log n)2) is for the cost of performing arithmetic operations on numbers
which are O(log n) or O ((log n)2

)
bits long; the second can be theoretically replaced

by O((log n)1+ε) for any ε > 0.

Note that there is a quantum factoring algorithm, first proposed by Shor, which can run in
polynomial-time

O((log n)2+ε).

However, this quantum algorithm requires running on a practical quantum computer with
several thousand quantum bits, which is not available at present.

In practice, algorithms in both categories are important. It is sometimes very difficult to
say whether one method is better than another, but it is generally worth attempting to find
small factors with algorithms in the second class before using the algorithms in the first class.
That is, we could first try the trial division algorithm, then use some other method such as
NFS. This fact shows that the trial division method is still useful for integer factorization,
even though it is simple. In this chapter we shall introduce some most the useful and widely
used factoring algorithms.

From a computational complexity point of view, the IFP is an infeasible (intractable)
problem, since there is no polynomial-time algorithm for solving it; all the existing algorithms
for IFP run in subexponential-time or above (see Figure 4.1).

Figure 4.1 Algorithms/Methods for IFP
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Problems for Section 4.1

1. (Sierpinski) Prove that there are infinitely many integers k such that

n = k · 2n + 1, n = 1, 2, 3, . . .

are all composite. Find three such composites.
2. Show that the sequence 22n + 3, n = 1, 2, 3, . . . contains infinitely many composites.
3. Suppose n = pq with p, q prime and p < q < 2p. Let δ be the number defined by

q/p = 1+ δ such that 0 < δ < 1. Show that the number of steps used in the Fermat
factoring method is approximately pδ2/8.

4. Let n = pq = 18886013 such that ∣∣∣∣ p

q
− 3

∣∣∣∣ <
1

100
.

Find the factorization of n.
5. Explain why general purpose factoring algorithms are slower than special purpose fac-

toring algorithms, or why the special numbers are easy to factor than general numbers.
6. Show that addition of two log n bit integers can be performed in O(log n) bit operations.
7. Show that multiplication of two log n bit integers can be performed in O((log n)2) bit

operations.
8. Show that there is an algorithm which can multiply two log n bit integers in

O(log n log log n log log log n) = O((log n)1+ε)

bit operations.
9. Show that if P = NP , then IFP ∈ P .

10. Prove or disprove that IFP ∈ NP-complete.

4.2 Trial Divisions Factoring

The simplest factoring algorithm is perhaps the trial division method, which tries all the
possible divisors of n to obtain its complete prime factorization:

n = p1 p2 · · · pt , p1 ≤ p2 ≤ · · · ≤ pt . (4.2)

The following is the algorithm:

Algorithm 4.1 (Factoring by trial divisions) This algorithm tries to factor an integer
n > 1 using trial divisions by all the possible divisors of n.

[1] [Initialization] Input n and set t ← 0, k ← 2.
[2] [n = 1?] If n = 1, then go to [5].
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[3] [Compute Remainder]

q ← n/k and r ← n (mod k).

If r �= 0, go to [4].

t ← t + 1, pt ← k, n ← q, go to [2].

[4] [Factor Found?]

If q > k, then k ← k + 1, go to [3].

t ← t + 1; pt ← n.

[5] [Exit] Terminate the algorithm.

Exercise 4.1 Use Algorithm 4.1 to factor n = 2759.

An immediate improvement of Algorithm 4.1 is to make use of an auxiliary sequence of
trial divisors:

2 = d0 < d1 < d2 < d3 < · · · (4.3)

which includes all primes ≤ √n (possibly some composites as well if it is convenient to do
so) and at least one value dk ≥ √n. The algorithm can be described as follows:

Algorithm 4.2 (Factoring by Trial Division) This algorithm tries to factor an integer
n > 1 using trial divisions by an auxiliary sequence of trial divisors.

[1] [Initialization] Input n and set t ← 0, k ← 0.
[2] [n = 1?] If n = 1, then go to [5].
[3] [Compute Remainder]

q ← n/dk and r ← n (mod dk).

If r �= 0, go to [4].

t ← t + 1, pt ← dk , n ← q, go to [2].

[4] [Factor Found?]

If q > dk , then k ← k + 1, and go to [3].

t ← t + 1; pt ← n.

[5] Exit: terminate the algorithm.

Exercise 4.2 Use Algorithm 4.2 to factor n = 2759; assume that we have
the list L of all primes ≤ �√2759� = 52 and at least one ≥ √n, that is, L =
{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53}.
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Theorem 4.1 Algorithm 4.2 requires a running time in

O (max
(

pt−1,
√

pt
))

.

If a primality test between steps [2] and [3] were inserted, the running time would then be in

O(pt−1), or O(
pt−1

ln pt−1
) if one does trial division only by primes, where pt−1 is the second

largest prime factor of n.

The trial division test is very useful for removing small factors, but it should not be used
for factoring completely, except when n is very small, say, for example, n < 108.

Algorithm 4.2 seems to be very simple, but its analysis is rather complicated. For example,
in order to analyse the average behavior of the algorithm, we will need to know how many
trial divisions are necessary and how large the largest prime factor pt will tend to be.

Let π (x) be the primes ≤ x . Then, if the Riemann Hypothesis is true, it would imply that

π (x) = L(x)+O(
√

x log x) (4.4)

where L(x) = ∫ x
2 dt/ ln t . In 1930, Karl Dickman investigated the probability that a random

integer between 1 and x will have its largest prime factor≤ xα . He gave a heuristic argument
to show that this probability approaches the limiting value F(α) as x →∞, where F can be
calculated from the functional equation

F(α) =
∫ α

0
F

(
t

1− t

)
dt

t
, for 0 ≤ α ≤ 1; F(α) = 1 for α ≥ 1. (4.5)

His argument was essentially this: Given 0 < t < 1, the number of integers less than x whose
largest prime factor is between xt and xt+dt is x F ′(t)dt . The number of prime p in that
range is

π (xt+dt )− π (xt ) = π (xt + (ln x)xt dt)− π (xt ) = xt dt/t. (4.6)

For every such p, the number of integers n such that “np ≤ x and the largest prime fac-
tor of n is ≤ p” is the number of n ≤ x1−t whose largest prime factor is ≤ (x1−t )t/(1−t),
namely x1−t F(t/(1− t)). Hence x F ′(t)dt = (xt dt/t)(x1−t F(t/(1− t))) and (4.5) follows
by integration.

If 1
2 ≤ α ≤ 1, formula (4.5) simplifies to

F(α) = 1−
∫ 1

α

F

(
t

1− t

)
dt

t
= 1−

∫ 1

α

dt

t
= 1+ ln α. (4.7)

Thus, for example, the probability that a random positive integer ≤ x has a prime factor
>
√

x is 1− F( 1
2 ) = ln 2 ≈ 0.6931, In all such cases, Algorithm 4.2 must work hard. So,

practically, Algorithm 4.2 will give the answer rather quickly if we want to factor a 6-digit
integer; but for large n, the amount of computer time for factoring by trial division will
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rapidly exceed practical limits, unless we are unusually lucky. The algorithm usually finds
a few small factors and then begins a long-drawn-out search for the large ones that are left.
Interested readers are referred to [4] for more detailed discussion.

By an argument analogous to Dickman’s, it has been shown that the second largest prime
factor of a random integer x will be ≤ xβ with approximate probability G(β), where

G(β) =
∫ β

0

(
G

(
t

1− t

)
− F

(
t

1− t

))
dt

t
, for 0 ≤ β ≤ 1

2
. (4.8)

Clearly, G(β) = 1 for β ≥ 1
2 .

The total number of prime factors, t is obviously 1 ≤ t ≤ log N , but these lower and upper
bounds are seldom achieved. It is possible to prove that if n is chosen at random between 1
and x , the probability that t ≤ ln ln x + c

√
ln ln x approaches

1√
2π

∫ c

−∞
e−u2/2du (4.9)

as x →∞, for any fixed c. In other words, the distribution of t is essentially normal, with
mean and variance ln ln x ; about 99.73 % of all the large integers ≤ x have |t − ln ln x | ≤
3
√

ln ln x . Furthermore, the average value of t − ln ln x for 1 ≤ n ≤ x is known to approach

γ +
∑

p prime

(ln(1− 1/p)+ (1/(p − 1)) = 1.034653881897438. (4.10)

It follows from the above analysis that Algorithm 4.2 will be useful for factoring a
6-digit integer, or a large integer with small prime factors. Fortunately, many more efficient
factorization algorithms have been developed since 1980, requiring fewer bit operations than
the trial division method; with the fastest being the Number Field Sieve (NFS), which will
be discussed later.

Problems for Subsection 4.2

1. (Hardy and Littlewood, 1918) Show that there is a positive real constant c such that

π (x) >

∫ x

2

dt

log t
+ c
√

x
log log log x

log x

for infinitely many x .
2. Let pt be the largest prime factor of a random integer n between 1 and x . What is the

probability that n has its largest prime factor ≤ √x?
3. Let pt−1 be the second largest prime factor of a random integer n between 1 and x . What

is the probability that n has its second largest prime factor ≤ x0.217?
4. Let t be the total number of prime factors of n between 1 and x . What is the probability

that t ≤ log log x + c
√

log log x for any fixed c, as x →∞?
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5. Suppose n = pq with p, q prime and p < q < 2p. Let δ be the number defined by
q/p = 1+ δ such that 0 < δ < 1. Show that the number of steps used in the Fermat
factoring method is approximately pδ2/8.

6. Let p be an od prime and n �= kp for k = 1, 2, 3, . . .. Show that the number of solutions
of (x, y) to x2 − n ≡ y2 (mod p) with 0 ≤ x < p is equal to (p ± 1)/2.

7. Let n be an odd integer. Show that if n can be factored as

n = ab, 1 ≤ a ≤ b,

then n can be written as a difference of the two squares x2 and y2, where

x = b + a

2
, y = b − a

2
.

8. The Fermat factoring method is based on the fact that if n is a difference of the two
squares such as x2 and y2, then n can be factored as n = (x − y)(x + y). Use the Fermat
factoring method to factor the numbers 1254713 and 2027651281.

9. Show that the Fermat factoring method is of the complexity O(n1/2).

4.3 ρ and p − 1 Methods

In 1975 John M. Pollard proposed a very efficient Monte Carlo method [2], now widely
known as Pollard’s “rho” or ρ Method, for finding a small nontrivial factor d of a large
integer n. Trial division by all integers up to

√
n is guaranteed to factor completely any

number up to N . For the same amount of work, Pollard’s “rho” Method will factor any
number up to n2 (unless we are unlucky).

The method uses an iteration of the form

x0 = random(0, n − 1),

xi ≡ f (xi−1) (mod n), i = 1, 2, 3, . . .

}
(4.11)

where x0 is a random starting value, n is the number to be factored, and f ∈ Z[x] is a
polynomial with integer coefficients; usually, we just simply choose f (x) = x2 ± a with
a �= −2, 0. Then starting with some initial value x0, a “random” sequence x1, x2, x3, . . . is
computed modulo n in the following way:

x1 = f (x0),
x2 = f ( f (x0)) = f (x1),
x3 = f ( f ( f (x0))) = f ( f (x1)) = f (x2),

...
xi = f (xi−1).

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(4.12)

Let d be a nontrivial divisor of n, where d is small compared with n. Since there are relatively
few congruence classes modulo d (namely, d of them), there will probably exist integers
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xi and x j which lie in the same congruence class modulo d, but belong to different classes
modulo N ; in short, we will have

xi ≡ x j (mod d),
xi �≡ x j (mod n).

}
(4.13)

Since d | (xi − x j ) and n � (xi − x j ), it follows that gcd (xi − x j , n) is a nontrivial factor of
n. In practice, a divisor d of n is not known in advance, but it can most likely be detected by
keeping track of the integers xi , which we do know; we simply compare xi with the earlier
x j , calculating gcd (xi − x j , n) until a nontrivial gcd occurs. The divisor obtained in this
way is not necessarily the smallest factor of n and indeed it may not be prime. The possibility
exists that when a gcd greater that 1 is found, it may also turn out to be equal to n itself,
though this happens very rarely.

Example 4.1 For example, let n = 1387 = 19 · 73, f (x) = x2 − 1 and x1 = 2. Then the
“random” sequence x1, x2, x3, . . . is as follows:

2, 3, 8, 63, 1194, 1186, 177, 814, 996, 310, 396, 84, 120, 529, 1053, 595, 339

where the repeated values are overlined. Now we find that

x3 ≡ 6 (mod 19)
x3 ≡ 63 (mod 1387)

x4 ≡ 16 (mod 19)
x4 ≡ 1194 (mod 1387)

x5 ≡ 8 (mod 19)
x5 ≡ 1186 (mod 1387)

...
So we have

gcd (63− 6, 1387) = gcd (1194− 16, 1387) = gcd (1186− 8, 1387) = · · · = 19.

Of course, as mentioned earlier, d is not known in advance, but we can keep track of the
integers xi which we do know, and simply compare xi with all the previous x j with j < i ,
calculating gcd (xi − x j , n) until a nontrivial gcd occurs:

gcd (x1 − x0, n) = gcd (3− 2, 1387) = 1,

gcd (x2 − x1, n) = gcd (8− 3, 1387) = 1,

gcd (x2 − x0, n) = gcd (8− 2, 1387) = 1,

gcd (x3 − x2, n) = gcd (63− 8, 1387) = 1,

gcd (x3 − x1, n) = gcd (63− 3, 1387) = 1,

gcd (x3 − x0, n) = gcd (63− 2, 1387) = 1,

gcd (x4 − x3, n) = gcd (1194− 63, 1387) = 1,
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gcd (x4 − x2, n) = gcd (1194− 8, 1387) = 1,

gcd (x4 − x1, n) = gcd (1194− 3, 1387) = 1,

gcd (x4 − x0, n) = gcd (1194− 2, 1387) = 1,

gcd (x5 − x4, n) = gcd (1186− 1194, 1387) = 1,

gcd (x5 − x3, n) = gcd (1186− 63, 1387) = 1,

gcd (x5 − x2, n) = gcd (1186− 8, 1387) = 19.

So after 13 comparisons and calculations, we eventually find the divisor 19.

As k increases, the task of computing gcd (xi − x j , n) for all j < i becomes very time-
consuming; for n = 1050, the computation of gcd (xi − x j , n) would require about 1.5 · 106

bit operations, as the complexity for computing one gcd is O((log n)3). Pollard actually used
Floyd’s method to detect a cycle in a long sequence 〈xi 〉, which just looks at cases in which
xi = x2i . To see how it works, suppose that xi ≡ x j (mod n), then

xi+1 ≡ f (xi ) ≡ f (x j ) ≡ x j+1 (mod d),
xi+2 ≡ f (xi+1) ≡ f (x j+1) ≡ x j+2 (mod d),

...
xi+k ≡ f (xi+k−1) ≡ f (x j+k−1) ≡ x j+k (mod d).

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4.14)

If k = j − i , then x2i ≡ xi (mod d). Hence, we only need look at x2i − xi (or xi − x2i )
for i = 1, 2, . . .. That is, we only need to check one gcd for each i . Note that the sequence
x0, x1, x2, . . . modulo a prime number p, say, looks like a circle with a tail; it is from this
behavior that the method gets its name (see Figure 4.2 for a graphical sketch; it looks like
the Greek letter ρ).

x2

xi−1

xi xj

xi+1
xi+2

xj−1

xi+3

xi+4

xj−3

xj−2

x0

x1

Figure 4.2 Illustration of the ρ Method
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Example 4.2 Again, let n = 1387 = 19 · 73, f (x) = x2 − 1, and x1 = 2. By comparing
pairs xi and x2i , for i = 1, 2, . . ., we have:

gcd (x1 − x2, n) = gcd (3− 8, 1387) = 1,

gcd (x2 − x4, n) = gcd (8− 1194, 1387) = 1,

gcd (x3 − x6, n) = gcd (63− 177, 1387) = 19.

So after only three comparisons and gcd calculations, the divisor 19 of 1387 is found.

In what follows, we shall show that to compute yi = x2i , we do not need to compute
xi+1, xi+2, . . . , x2i−1 until we get x2i . Observe that

y1 = x2 = f (x1) = f ( f (x0)) = f ( f (y0)),

y2 = x4 = f (x3) = f ( f (x2)) = f ( f (y1)),

y3 = x6 = f (x5) = f ( f (x4)) = f ( f (y2)),

...

yi = x2i = f ( f (yi−1)).

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(4.15)

So at each step, we compute

xi = f (xi−1) (mod n),

yi = f ( f (yi−1) (mod n).

}
(4.16)

Therefore, only three evaluations of f will be required.

Example 4.3 Let once again n = 1387 = 19 · 73, f (x) = x2 − 1, and x0 = y0 = 2. By
comparing pairs xi and x2i , for i = 1, 2, . . ., we get:

f (y0) = 22 − 1 = 3,
f ( f (y0)) = 32 − 1 = 8 = y1

=⇒ gcd (y1 − x1, N ) = gcd (3− 8, 1387) = 1
f (y1) = 82 − 1 = 63,
f ( f (y1)) = 632 − 1 = 1194 = y2

=⇒ gcd (y2 − x2, N ) = gcd (8− 1194, 1387) = 1
f (y2) = 11942 − 1 mod 1387 = 1186,
f ( f (y2)) = 11862 − 1 mod 1387 = 177 = y3

=⇒ gcd (y3 − x3, N ) = gcd (63− 177, 1387) = 19.

The divisor 19 of 1387 is then found.
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Remark 4.1 There is an even more efficient algorithm, due to Richard Brent [3], that looks
only at the following differences and the corresponding gcd results:

x1 − x3 =⇒ gcd (x1 − x3, n),

x3 − x6 =⇒ gcd (x3 − x6, n),

x3 − x7 =⇒ gcd (x3 − x7, n),

x7 − x12 =⇒ gcd (x7 − x12, n),

x7 − x13 =⇒ gcd (x7 − x13, n),

x7 − x14 =⇒ gcd (x7 − x14, n),

x7 − x15 =⇒ gcd (x7 − x15, n),
...

and in general:

x2n−1 − x j , 2n+1 − 2n−1 ≤ j ≤ 2n+1 − 1. (4.17)

Brent’s algorithm is about 24% faster than Pollard’s original version.

Now we are in a position to present an algorithm for the ρ Method.

Algorithm 4.3 (Brent–Pollard’s ρ Method) Let n be a composite integer greater than 1.
This algorithm tries to find a nontrivial factor d of n, which is small compared to

√
n. Suppose

the polynomial to use is f (x) = x2 + 1.

[1] (Initialization) Choose a seed, say x0 = 2, a generating function, say f (x) = x2 + 1
(mod n). Choose also a value for t not much bigger than

√
d, perhaps t < 100

√
d .

[2] (Iteration and Computation) Compute xi and yi in the following way:

x1 = f (x0),

x2 = f ( f (x0)) = f (x1),

x3 = f ( f ( f (x0))) = f ( f (x1)) = f (x2),
...

xi = f (xi−1).

y1 = x2 = f (x1) = f ( f (x0)) = f ( f (y0)),

y2 = x4 = f (x3) = f ( f (x2)) = f ( f (y1)),

y3 = x6 = f (x5) = f ( f (x4)) = f ( f (y2)),
...

yi = x2i = f ( f (yi−1)).

and simultaneously compare xi and yi by computing d = gcd (xi − yi , n).
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[3] (Factor Found?) If 1 < d < n, then d is a nontrivial factor of n, print d, and go to Step
[5].

[4] (Another Search?) If xi = yi (mod n) for some i or i ≥ √t , then go to Step [1] to choose
a new seed and a new generator and repeat.

[5] (Exit) Terminate the algorithm.

Example 4.4 The 8th Fermat number F8 = 228 + 1 was factored by Brent and Pollard in
1980 by using Brent–Pollard’s “rho” Method:

228 + 1 = 2256 + 1 = 1238926361552897 · p63.

Now let us move to consider the complexity of the ρ Method. Let p be the smallest
prime factor of N , and j the smallest positive index such that x2 j ≡ x j (mod p). Making
some plausible assumptions, it is easy to show that the expected value of j is O(

√
p). The

argument is related to the well-known “birthday” paradox: Suppose that 1 ≤ k ≤ n and that
the numbers x1, x2, . . . , xk are independently chosen from the set {1, 2, . . . , n}. Then the
probability that the numbers xk are distinct is(

1− 1

n

)
·
(

1− 2

n

)
· · ·
(

1− k − 1

n

)
∼ exp

(−k2

2n

)
. (4.18)

Note that the xi ’s are likely to be distinct if k is small compared with
√

n, but unlikely to
be distinct if k is large compared with

√
n. Of course, we cannot work out xi mod p, since

we do not know p in advance, but we can detect x j by taking greatest common divisors. We
simply compute d = gcd (x2i − xi , n) for i = 1, 2, . . . and stop when a d > 1 is found.

Conjecture 4.1 (Complexity of the ρ Method) Let p be a prime dividing n and
p = O(

√
p ), then the ρ algorithm has expected running time

O(
√

p ) = O(
√

p (log n)2) = O(n1/4(log n)2) (4.19)

to find the prime factor p of n.

Remark 4.2 The ρ Method is an improvement over trial division, because in trial division,
O(p) = O(n1/4) divisions are needed to find a small factor p of n. But of course, one
disadvantage of the ρ algorithm is that its running time is only a conjectured expected value,
not a rigorous bound.

In 1974, Pollard [40] also invented another simple but effective factoring algorithm, now
widely known as Pollard’s “p − 1” Method, which can be described as follows:

Algorithm 4.4 (Pollard’s “p − 1” Method) Let n > 1 be a composite number. This
algorithm attempts to find a nontrivial factor of n.
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[1] (Initialization) Pick out a ∈ Z/nZ at random. Select a positive integer k that is divisible
by many prime powers, for example, k = lcm(1, 2, . . . , B) for a suitable bound B (the
larger B is the more likely the method will be to succeed in producing a factor, but the
longer the method will take to work).

[2] (Exponentiation) Compute ak = ak mod n.
[3] (Compute GCD) Computing d = gcd (ak − 1, n).
[4] (Factor Found?) If 1 < d < N , then d is a nontrivial factor of n, output d and go to Step

[6].
[5] (Start Over?) If d is not a nontrivial factor of n and if you still want to try more

experiments, then go to Step [1] to start all over again with a new choice of a and/or a
new choice of k, else go to Step [6].

[6] (Exit) Terminate the algorithm.

The “p − 1” algorithm is usually successful in the fortunate case where n has a prime
divisor p for which p − 1 has no large prime factors. Suppose that (p − 1) | k and that p � a.
Since |(Z/pZ)∗| = p − 1, we have ak ≡ 1 (mod p), thus p | gcd (ak − 1, n). In many cases,
we have p = gcd (ak − 1, n), so the method finds a nontrivial factor of n.

Example 4.5 Use the “p − 1” Method to factor the number n = 540143. Choose B = 8
and hence k = 840. Choose also a = 2. Then we have

gcd (2840 − 1 mod 540143, 540143) = gcd (53046, 540143) = 421.

Thus 421 is a (prime) factor of 540143. In fact, 421 · 1283 is the complete prime factorization
of 540143. It is interesting to note that by using the “p − 1” method Baillie in 1980 found
the prime factor

p25 = 1155685395246619182673033

of the Mersenne number M257 = 2257 − 1. In this case

p25 − 1 = 23 · 32 · 192 · 47 · 67 · 257 · 439 · 119173 · 1050151.

In the worst case, where (p − 1)/2 is prime, the “p − 1” algorithm is no better than trial
division. Since the group has fixed order p − 1 there is nothing to be done except try a
different algorithm. Note that there is a similar method to “p − 1,” called “p + 1,” that was
proposed by H. C. Williams in 1982. It is suitable for the case where N has a prime factor p
for which p + 1 has no large prime factors.

Problems for Section 4.3

1. Let f be a random function in a set of p elements, and x0 a random element. Define
iteratively that xi+1 = f (xi ), i = 1, 2, . . . , t , t = 1+ �(2λp)1/2� for a given real number
λ. Show that the probability x0, x1, . . . , xt are pairwise different ≤ eλ.

2. Show that the complexity of the ρ Method for factoring a general number n is O(n1/4).
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3. Let n = 3161 and x0 is the seed with f (x) = x2 + 1. Use the ρ Method to factor n.
4. Use p − 1 method to find the smallest prime factor of the 9th Fermat number F9 = 229 + 1.
5. Use p − 1 method to find three prime factors of 271 − 1.
6. Use the ρ Factoring Method to factor 4087 using x0 = 2 and f (x) = x2 − 1.

7. Let xi = f (xi−1), i = 1, 2, 3, . . .. Let also t, u > 0 be the smallest numbers in the se-
quence xt+i = xt+u+i , i = 0, 1, 2, . . ., where t and u are called the lengths of the ρ tail
and cycle, respectively. Give an efficient algorithm to determine t and u exactly, and
analyze the running time of your algorithm.

4.4 Elliptic Curve Method

In this section, we shall introduce a factoring method depending on the use of elliptic curves.
The method is actually obtained from Pollard’s “p − 1” algorithm: If we can choose a
random group G with order g close to p, we may be able to perform a computation similar
to that involved in Pollard’s “p − 1” algorithm, working in G rather than in Fp. If all prime
factors of g are less than the bound B then we find a factor of n. Otherwise, we repeat this
procedure with a different group G (and hence, usually, a different g) until a factor is found.
This is the motivation of the ECM method, invented by H. W. Lenstra in 1987 [42].

Algorithm 4.5 (Lenstra’s Elliptic Curve Method) Let n > 1 be a composite number,
with gcd (n, 6) = 1. This algorithm attempts to find a nontrivial factor of n. The method
depends on the use of elliptic curves and is the analog to Pollard’s “p − 1” Method.

[1] (Choose an Elliptic Curve) Choose a random pair (E, P), where E is an elliptic curve
y2 = x3 + ax + b over Z/nZ, and P(x, y) ∈ E(Z/nZ) is a point on E . That is, choose
a, x, y ∈ Z/nZ at random, and set b ← y2 − x3 − ax . If gcd (4a3 + 27b2, n) �= 1, then
E is not an elliptic curve, start all over and choose another pair (E, P).

[2] (Choose an Integer k) Just as in the “p − 1” Method, select a positive integer k that
is divisible by many prime powers, for example, k = lcm(1, 2, . . . , B) or k = B! for a
suitable bound B; the larger B is the more likely the method will succeed in producing
a factor, but the longer the method will take to work.

[3] (Calculate k P) Calculate the point k P ∈ E(Z/nZ). We use the following formula to
compute P3(x3, y3) = P1(x1, y1)+ P2(x2, y2) modulo n:

(x3, y3) = (λ2 − x1 − x2 mod n, λ(x1 − x3)− y1 mod n)

where

λ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m1

m2
≡ 3x2

1 + a

2y1
(mod n), if P1 = P2

m1

m2
≡ y1 − y2

x1 − x2
(mod n), otherwise.

The computation of k P mod n can be done in O(log k) doublings and additions.
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[4] (Computing GCD) If k P ≡ OE (mod n), then compute d = gcd (m2, n), else go to Step
[1] to make a new choice for “a” or even for a new pair (E, P).

[5] (Factor Found?) If 1 < d < n, then d is a nontrivial factor of n, output d and go to Step
[7].

[6] (Start Over?) If d is not a nontrivial factor of n and if you still wish to try more elliptic
curves, then go to Step [1] to start all over again, else go to Step [7].

[7] (Exit) Terminate the algorithm.

As for the “p − 1” method, one can show that a given pair (E, P) is likely to be successful
in the above algorithm if n has a prime factor p for which Z/pZ is composed of small primes
only. The probability for this to happen increases with the number of pairs (E, P) that
one tries.

Example 4.6 Use the ECM method to factor the number n = 187.

[1] Choose B = 3, and hence k = l cm(1, 2, 3) = 6. Let P = (0, 5) be a point on the elliptic
curve E : y2= x3 + x + 25 which satisfies gcd (N , 4a3 + 27b2)=gcd (187, 16879)=1
(note that here a = 1 and b = 25).

[2] Since k = 6 = 1102, we compute 6P = 2(P + 2P) in the following way:
[a] Compute 2P = P + P = (0, 5)+ (0, 5):⎧⎪⎪⎨⎪⎪⎩

λ = m1

m2
= 1

10
≡ 131 (mod 187)

x3 = 144 (mod 187)
y3 = 18 (mod 187)

So 2P = (144, 18) with m2 = 10 and λ = 131.
[b] Compute 3P = P + 2P = (0, 5)+ (144, 18):⎧⎪⎪⎨⎪⎪⎩

λ = m1

m2
= 13

144
≡ 178 (mod 187)

x3 = 124 (mod 187)
y3 = 176 (mod 187)

So 3P = (124, 176) with m2 = 144 and λ = 178.
[c] Compute 6P = 2(3P) = 3P + 3P = (124, 176)+ (124, 176):

λ = m1

m2
= 46129

352
≡ 127

165
≡ OE (mod 187).

This time m1 = 127 and m2 = 165, so the modular inverse for 127/165 modulo 187
does not exist; but this is exactly what we want! – this type of failure is called a
“pretend failure.”

[3] Compute d = gcd (n, m2) = gcd (187, 165) = 11. Since 1 < 11 < 187, 11 is a (prime)
factor of 187. In fact, 187 = 11 · 17.
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Example 4.7 To factor n = 7560636089, we calculate k P = k(1, 3) with k =
l cm(1, 2, 3, . . . , 19) on y2 ≡ x3 − x + 7 (mod n):

3P = (1329185554, 395213649) 6P = (646076693, 5714212282)
12P = (5471830359, 5103472059) 24P = (04270711, 3729197625)
49P = (326178740, 3033431040) 99P = (5140727517, 2482333384)
199P = (1075608203, 3158750830) 398P = (4900089049, 2668152272)
797P = (243200145, 2284975169) 1595P = (3858922333, 4843162438)
3191P = (7550557590, 1472275078) 6382P = (4680335599, 1331171175)
12765P = (6687327444, 7233749859) 25530P = (6652513841, 6306817073)
51061P = (6578825631, 5517394034) 102123P = (1383310127, 2036899446)
204247P = (3138092894, 2918615751) 408495P = (6052513220, 1280964400)
816990P = (2660742654, 3418862519) 1633980P = (7023086430, 1556397347)
3267961P = (5398595429, 795490222) 6535923P = (4999132, 4591063762)
13071847P = (3972919246, 7322445069) 26143695P = (3597132904, 3966259569)
52287391P = (2477960886, 862860073) 104574782P = (658268732, 3654016834)
209149565P = (6484065460, 287965264) 418299131P = (1622459893, 4833264668)
836598262P = (7162984288, 487850179) 1673196525P = OE .

Now, 1673196525P is the point at infinity since 5398907681/1016070716 mod n is impos-
sible. Hence, gcd (1016070716, 7560636089) = 15121 gives a factor of n.

Example 4.8 The following are some ECM factoring examples. In 1995 Richard Brent at
the Australian National University completed the factorization of the 10th Fermat number
using ECM:

2210 + 1 = 21024 + 1 = 45592577 · 6487031809 · p40 · p252

where the 40-digit prime p40 was found using ECM, and p252 was proved to be a 252-digit
prime. Brent also completed the factorization of the 11th Fermat number (with 617-digit)
F11 = 2211 + 1 using ECM:

F11 = 319489 · 974849 · 167988556341760475137 · 3560841906445833920513 · p564

where the 21-digit and 22-digit prime factors were found using ECM, and p564 is a 564-digit
prime. Other recent ECM-records include a 38-digit prime factor (found by A. K. Lenstra
and M. S. Manasse) in the 112-digit composite (11118 + 1)/(2 · 61 · 193121673), a 40-digit
prime factor of 26126 + 1, a 43-digit prime factor of the partition number p(19997), and a
44-digit prime factor of the partition number p(19069) in the RSA Factoring Challenge List,
and a 47-digit prime in c135 of 528 + 1 = 2 · 1655809 · p38 · c135.

Both Lenstra’s ECM algorithm and Pollard’s “p − 1” algorithm can be sped up by the
addition of a second phase. The idea of the second phase in ECM is to find a factor in the
case that the first phase terminates with a group element P �= I , such that |〈P〉| is reasonably
small, say O(n2)), here 〈P〉 is the cyclic group generated by P . There are several possible
implementations of the second phase. One of the simplest uses a pseudorandom walk in 〈P〉.
By the birthday paradox argument, there is a good chance that two points in the random
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walk will coincide after O(
√|〈P〉|) steps, and when this occurs a nontrivial factor of n can

usually be found (see [6] and [5] for more detailed information on the implementation issues
of the ECM.

Conjecture 4.2 (Complexity of the ECM method) Let p be the smallest prime dividing
n. Then the ECM method will find p of n, under some plausible assumptions, in expected
running time

O
(

exp
(√

(2+ o(1)) log p log log p
)
· (log n)2

)
(4.20)

In the worst case, when n is the product of two prime factors of the same order of magnitude,
we have

O
(

exp
(√

(2+ o(1)) log n log log n
))

= O
(

n
√

(2+o(1)) log log n/ log n
)

. (4.21)

Remark 4.3 The most interesting feature of ECM is that its running time depends very
much on p (the factor found) of n, rather than N itself. So one advantage of the ECM is that
one may use it, in a manner similar to trial divisions, to locate the smaller prime factors p of
a number n which is much too large to factor completely.

Problems for Section 4.4

1. Show that #(a, b) = p2 − p, where #(a, b) denotes the number of integer pairs (a, b) such
that 0 ≤ a, b < p, for which 4a3 �≡ 27b2 (mod p) is exactly p2 − p.

2. Show that if p > 3, 4a3 + 27b2 ≡ 0 (mod p), p � a, then the root r of the congruence
−2ar ≡ 3b (mod p) is a repeated rood modulo p of the polynomial x3 − ax − b.

3. Let p > 2 be prime. Suppose that x and y are integers such that

x2 + y2 ≡ 1 (mod p), x �≡ 1 (mod p).

Let u be determined by the congruence

(1+ x)u ≡ y (mod p).

Show that

u2 + 1 ≡ 0 (mod p).

4. Canfield–Erdös–Pomerance theorem: Let n be a positive integer which is not a prime
power and not divisible by 2 or 3. if α is a real number, then the probability that a random
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positive integer s ≤ x has all its prime factors ≤ L(x)α is L(x)−1/(2α)+o(1) for x →∞,
where L(x) = e

√
log x log log x with x a real number > e.

We also need the following conjecture: Let x = p, the probability that a random
integer has all its prime factors ≤ L(x)α in the small interval (x + 1−√x, x + 1+√x)
is L(p)−1/(2α)+o(1) for p →∞.

By the Canfield–Erdös–Pomerance theorem and the conjecture, show that
(1) the probabilistic time estimate for ECM to find the smallest prime factor p of n is

e
√

2+o(1) log p log log p

(2) the probabilistic time estimate for ECM to find n is

e
√

1+o(1) log n log log n.

5. Use Algorithm 4.5 to factor the three integers 17531, 218548425731 and
190387615311371.

6. Modify and improve Algorithm 4.5 to a practical factoring algorithm for large integer n.
7. Modify and improve Algorithm 4.5 to a parallel practical factoring algorithm for large

integer n.

4.5 Continued Fraction Method

The Continued Fraction Method is perhaps the first modern, general purpose integer factor-
ization method, although its original idea may go back to M. Kraitchik in the 1920s, or even
earlier to A. M. Legendre. It was used by D. H. Lehmer and R. E. Powers to devise a new
technique in the 1930s, however the method was not very useful and applicable at the time
because it was unsuitable for desk calculators. About 40 years later, it was first implemented
on a computer by M. A. Morrison and J. Brillhart [7], who used it to successfully factor the
seventh Fermat number

F7 = 227 + 1 = 59649589127497217 · 5704689200685129054721

on the morning of 13 September 1970.
The Continued FRACtion (CFRAC) method looks for small values of |W | such that x2 ≡

W (mod n) has a solution. Since W is small (specifically W = O(
√

n )), it has a reasonably
good chance of being a product of primes in our factor base FB. Now if W is small and
x2 ≡ W (mod n), then we can write x2 = W + knd2 for some k and d, hence (x/d)2 − kn =
W/d2 will be small. In other words, the rational number x/d is an approximation of

√
kn.

This suggests looking at the continued fraction expansion of
√

kn, since continued fraction
expansions of real numbers give good rational approximations. This is exactly the idea behind
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the CFRAC method! We first obtain a sequence of approximations (i.e., convergents) Pi/Qi

to
√

kn for a number of values of k, such that

∣∣∣∣√kn − Pi

Qi

∣∣∣∣ ≤ 1

Q2
i

. (4.22)

Putting Wi = P2
i − Q2

i kn, then we have

Wi = (Pi + Qi

√
kn)(Pi − Qi

√
kn) ∼ 2Qi

√
kn

1

Qi
∼ 2
√

kn. (4.23)

Hence, the P2
i mod n are small and more likely to be smooth, as desired. Then, we try

to factor the corresponding integers Wi = P2
i − Q2

i kn over our factor base FB; with each
success, we obtain a new congruence of the form

P2
i ≡ Wi ⇐⇒ x2 ≡ (−1)e0 pe1

1 pe2
2 · · · pem

m (mod n). (4.24)

Once we have obtained at least m + 2 such congruences, by Gaussian elimina-
tion over Z/2Z we have obtained a congruence x2 ≡ y2 (mod n). That is, if
(x1, e01, e11, · · · , em1), · · · , (xr , e0r , e1r , · · · , emr ) are solutions of (4.24) such that the vector
sum

(e01, e11, · · · , em1)+ · · · + (e0r , e1r , · · · , emr ) = (2e′0, 2e′1, · · · , 2e′m) (4.25)

is even in each component, then

x ≡ x1x2 · · · xr (mod n) (4.26)

y ≡ (−1)e′0 p
e′1
1 · · · p

e′m
m (mod n) (4.27)

is a solution to

x2 ≡ y2 (mod n), 0 < x < y < n, x �= y, x + y �= n, (4.28)

except for the possibility that x ≡ ±y (mod n), and hence (usually) a nontrivial factoring of
n, by computing gcd (x ± y, n).

Example 4.9 We now illustrate, by an example, the idea of CFRAC factoring. Let n = 1037.
Then

√
1037 = [32, 4, 1, 15, 3, 3, 15, 1, 4, 64]. The first ten continued fraction approxima-

tions of
√

1037 are:
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Convergent P/Q P2 − n · Q2 := W

32/1 −13 = −13
129/4 49 = 72

161/5 −4 = −22

2544/79 ≡ 470/79 19 = 19
7793/242 ≡ 534/242 −19 = −19

25923/805 ≡ 1035/805 4 = 22

396638/12317 ≡ 504/910 −49 = −72

422561/13122 ≡ 502/678 13 = 13
2086882/64805 ≡ 438/511 −1 = −1

133983009/4160642 ≡ 535/198 13 = 13

Now we search for squares on both sides, either just by a single congruence, or by a
combination (i.e., multiplying together) of several congruences and find that

1292 ≡ 72 ⇐⇒ gcd (1037, 129± 7) = (17, 61)

10352 ≡ 22 ⇐⇒ gcd (1037, 1035± 2) = (1037, 1)

1292 · 10352 ≡ 72 · 22 ⇐⇒ gcd (1037, 129 · 1035± 7 · 2) = (61, 17)

1612 · 5042 ≡ (−1)2 · 22 · 72 ⇐⇒ gcd (1037, 161 · 504± 2 · 7) = (17, 61)

5022 · 5352 ≡ 132 ⇐⇒ gcd (1037 502 · 535± 13) = (1037, 1).

Three of them yield a factorization of 1037 = 17 · 61.

It is clear that the CFRAC factoring algorithm is essentially just a continued fraction
algorithm for finding the continued fraction expansion [q0, q1, · · · , qk, · · ·] of

√
kn, or the

Pk and Qk of such an expansion. In what follows, we shall briefly summarize the CFRAC
method just discussed above in the following algorithmic form:

Algorithm 4.6 (CFRAC factoring) Given a positive integer n and a positive integer k such
that kn is not a perfect square, this algorithm tries to find a factor of n by computing the
continued fraction expansion of

√
k N .

[1] Let n be the integer to be factored and k any small integer (usually 1), and let the
factor base, FB, be a set of small primes {p1, p2, · · · , pr } chosen such that it is pos-
sible to find some integer xi such that x2

i ≡ kn (mod pi ). Usually, FB contains all
such primes less than or equal to some limit. Note that the multiplier k > 1 is needed
only when the period is short. For example, Morrison and Brillhart used k = 257 in
factoring F7.

[2] Compute the continued fraction expansion [q0, q1, q2, · · · , qr ] of
√

kn for a number of
values of k. This gives us good rational approximations P/Q. The recursion formulas to
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use for computing P/Q are as follows:

P0

Q0
= q0

1
,

P1

Q1
= q0q1 + 1

q1
,

...
Pi

Qi
= qi Pi−1 + Pi−2

qi Qi−1 + Qi−2
, i ≥ 2.

This can be done by a continued fraction algorithm such as Theorem 2.26 introduced
earlier.

[3] Try to factor the corresponding integer W = P2 − Q2kn in our factor base FB. Since
W < 2

√
kn, each of these W is only about half the length of kn. If we succeed, we get

a new congruence. For each success, we obtain a congruence

x2 ≡ (−1)e0 pe1
1 pe2

2 · · · pem
m (mod n),

since, if Pi/Qi is the i th continued fraction convergent to
√

kn and Wi = P2
i − N · Q2

i ,
then

P2
i ≡ Wi (mod n). (4.29)

[4] Once we have obtained at least m + 2 such congruences, then by Gaussian
elimination over Z/2Z we obtain a congruence x2 ≡ y2 (mod n). That is, if
(x1, e01, e11, · · · , em1), · · · , (xr , e0r , e1r , · · · , emr ) are solutions of (4.24) such that the
vector sum defined in (4.25) is even in each component, then{

x ≡ x1x2 · · · xr (mod n)

y ≡ (−1)e′0 p
e′1
1 · · · p

e′m
m (mod n)

is a solution to x2 ≡ y2 (mod n), except for the possibility that x ≡ ±y (mod N ), and
hence we have

(d1, d2) = (gcd (x + y, n), gcd (x − y, N )) ,

which are then possibly nontrivial factors of N .

Conjecture 4.3 (The complexity of the CFRAC Method) If n is the integer to be factored,
then under certain reasonable heuristic assumptions, the CFRAC method will factor n in time

O
(

exp
(

(
√

2+ o(1))
√

log N log log N
))

= O
(

N
√

(2+o(1)) log log N/ log N
)

. (4.30)
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Remark 4.4 This is a conjecture, not a theorem, because it is supported by some heuristic
assumptions which have not been proven.

Problems for Section 4.5

1. Let

x = 1+ 1

4+ 1

1+ 1

1+ 1

8+ 1

1+ 1

3+ 1

2+ 1

1+ 1

14+ 1

1+ 1

2+ 1

22

be the continued fraction expansion of x . Find the successive convergents Pi/Qi of this
continued fraction.

2. Let the successive convergents Pi/Qi of the continued fraction of x be as follows:[
2, 3,

14

5
,

17

6
,

65

23
,

82

29
,

967

342
,

1049

371
,

7261

2568
,

15571

5507
,

925950

327481
,

3719371

1315431

]
.

Find the continued fraction expansion of x .
3. Let n be a positive integer that is not a perfect square. Let Pk/Qk the kth convergent of

the simple continued fraction expansion of
√

n. Then

P2
k − nQ2

k = (−1)k Wk+1, 0 < Wi < 2
√

n.

4. Let

x2 ≡ (−1)e0 pe1
1 pe2

2 · · · pek
k . (4.31)

If

(x1, e01, e11, . . . , em1), . . . , (xr , e0r , e1r , . . . , emr )

are solutions to (4.31) such that

(e01, e11, . . . , em1)+ · · · + (e0r , e1r , . . . , emr ) = 2(e′1, e′2, . . . , e′m),
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then {
x ≡ (x1, x2, . . . , xr ) (mod n)

y ≡ (−1)e′1 p
e′2
1 · · · p

e′m
m (mod n)

is a solution to

x2 ≡ y2 (mod n), x �≡ ±y (mod n).

5. Give a heuristic analysis of the running time of the CFRAC method

O(exp(
√

2 log n log log n)).

6. Implement the CFRAC algorithm on a computer.
7. Use your CFRAC program above to factor the integers 1037, 193541963, and

19354196373153173137.

4.6 Quadratic Sieve

The idea of the quadratic sieve (QS) was first introduced by Carl Pomerance in 1982 [8]. QS
is somewhat similar to CFRAC except that instead of using continued fractions to produce
the values for Wk = P2

k − n · Q2
k , it uses expressions of the form

Wk = (k + �√n�)2 − n ≡ (k + �√n�)2 (mod n). (4.32)

Here, if 0 < k < L , then

0 < Wk < (2L + 1)
√

n + L2. (4.33)

If we get

t∏
i=1

Wni = y2, (4.34)

then we have x2 ≡ y2 (mod n) with

x ≡
t∏

i=1

(�√n� + ni ) (mod n). (4.35)

Once such x and y are found, there is a good chance that gcd (x − y, n) is a nontrivial factor
of n.

Example 4.10 Use the Quadratic Sieve Method (QS) to factor n = 2041. Let W (x) =
x2 − n, with x = 43, 44, 45, 46. Then we have:
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W (43) = −26 · 3
W (44) = −3 · 5 · 7
W (45) = −24

W (46) = 3 · 52

p W (43) W (44) W (45) W (46)

−1 1 1 0
2 0 0 0
3 1 0 1
5 0 0 0

which leads to the following congruence:

(43 · 45 · 46)2 ≡ (−1)2 · 210 · 32 · 52 = (25 · 3 · 5)2.

This congruence gives the factorization of 2041 = 13 · 157, since

gcd (2041, 43 · 45 · 46+ 25 · 3 · 5) = 157, gcd (2041, 43 · 45 · 46− 25 · 3 · 5) = 13.

For the purpose of implementation, we can use the same set FB as that used in CFRAC
and the same idea as that described above to arrange (4.34) to hold.

The most widely used variation of the quadratic sieve is perhaps the Multiple Polynomial
Quadratic Sieve (MPQS), first proposed by Peter Montgomery in 1986. The idea of the
MPQS is as follows: To find the (x, y) pair in

x2 ≡ y2 (mod n) (4.36)

we try to find triples (Ui , Vi , Wi ), for i = 1, 2, . . ., such that

U 2
i ≡ V 2

i Wi (mod n) (4.37)

where W is easy to factor (at least easier than N ). If sufficiently many congruences (4.37)
are found, they can be combined, by multiplying together a subset of them, in order to get
a relation of the form (4.36). The version of the MPQS algorithm described here is based
on [9].

Algorithm 4.7 (Multiple Polynomial Quadratic Sieve) Given a positive integer n > 1,
this algorithm will try to find a factor N using the multiple polynomial quadratic sieve.

[1] Choose B and M , and compute the factor base FB.
Note: M is some fixed integer so that we can define: U (x) = a2x + b, V = a and

W (x) = a2x2 + 2bx + c, x ∈ [−M, M), such that a, b, c satisfy the following relations:

a2 ≈
√

2n/M, b2 − n = a2c, |b| < (a2)/2. (4.38)

Note: The potential prime divisors p of a given quadratic polynomial W (x) may be
characterized as: If p | W (x), then

a2W (x) = (a2x + b)2 − n ≡ 0 (mod p). (4.39)
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That is, the congruence t2 − n ≡ 0 (mod p) should be solvable. So, the factor base FB
(consisting of all primes less than a bound B) should be chosen in such a way that
t2 ≡ n (mod p) is solvable. There are L primes p j , j = 1, 2, . . . , L in FB; this set of
primes is fixed in the whole factoring process.

[2] Generate a new quadratic polynomial W (x).
Note: The quadratic polynomial W (x) in

(U (x))2 ≡ V (x)W (x) (mod n) (4.40)

assumes extreme values in x = 0,±M such that |W (0)| ≈ |W (±M)| ≈ M
√

n/2. If
M $ n, then W (x) $ n, thus W (x) is easier to factor than n.

[3] Solve W (x) ≡ 0 (mod q) for all q = pe < B, for all primes p ∈ FB, and save the
solutions for each q .

[4] Initialize the sieving array SI[−M, M) to zero.
[5] Add log p to all elements SI( j), j ∈ [−M, M], for which W ( j) ≡ 0 (mod q), for all

q = pe < B, and for all primes p ∈ PFB.
Note: Now we can collect those x ∈ [−M, M) for which W (x) is only composed of

prime factors < B.
[6] Select those j ∈ [−M, M) for which SI( j) is closed to log(n/2

√
n/2).

[7] If the number of W (x)-values collected in Step 6 is < L + 2, then go to Step 2 to
construct a new polynomial W (x).

Note: If at least L + 2 completely factorized W -values have been collected, then the
(x, y)-pairs satisfying (4.36) may be found as follows: For xi , i = 1, 2, . . . , L + 2,

W (xi ) = (−1)αi0

L∏
j=1

p
αi j

j , i = 1, 2, . . . , L + 2. (4.41)

[8] Perform Gaussian elimination on the matrix of exponents (mod 2) of W (x).
Note: Associated with each W (xi ), we define the vector αi as follows

αT
i = (αi0, αi1, . . . , αi L ) (mod 2). (4.42)

Since we have more vectors αi (at least L + 2) than components (L + 1), there exists at
least one subset S of the set {1, 2, . . . , L + 2} such that

∑
i∈S

αi ≡ 0 (mod 2), (4.43)

so that

∏
i∈S

W (x) = Z2. (4.44)
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Hence, from (4.40) it follows that

[∏
i∈S

(a2xi + b)

]
≡ Z2

∏
i∈S

a2 (mod n) (4.45)

which is of the required form x2 ≡ y2 (mod n).
[9] Compute gcd.

Note: Now we can calculate gcd (x ± y, n) to find the prime factors of n.

Example 4.11 MPQS has been used to obtain many spectacular factorizations. One such
factorization is the 103-digit composite number

2361 + 1

3 · 174763
= 6874301617534827509350575768454356245025403 · p61.

The other record of the MPQS is the factorization of the RSA-129 in April 1994, a 129 digit
composite number:

RSA-129 = 1143816257578888676692357799761466120102182967212423_
6256256184293570693524573389783059712356395870505898_
9075147599290026879543541

= p64 · q65

= 3490529510847650949147849619903898133417764638493387_
843990820577 · 32769132993266709549961988190834461413_
177642967992942539798288533.

It was estimated in Gardner [23] in 1977 that the running time required to factor numbers
with about the same size as RSA-129 would be about 40 quadrillion years using the best
algorithm and fastest computer at that time. It was factorized by Derek Atkins, Michael Graff,
Arjen Lenstra, Paul Leyland, and more than 600 volunteers from more than 20 countries,
on all continents except Antarctica. To factor this number, they used the double large prime
variation of the Multiple Polynomial Quadratic Sieve Factoring Method. The sieving step
took approximately 5000 mips years.

Conjecture 4.4 (The complexity of the QS/MPQS Method) If n is the integer to be
factored, then under certain reasonable heuristic assumptions, the QS/MPQS method will
factor n in time

O
(

exp
(

(1+ o(1))
√

log n log log n
))

= O
(

n(1+o(1))
√

log log n/ log n
)

. (4.46)
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Problems for Section 4.6

1. Show that

nc(log log n/ log n)1/2 = exp(c(log n log log n)1/2).

2. Show that

(log n)c log log log n = exp(c log log n log log log n).

3. Show that if n = pk with p prime and k ≥ 1, then (p − 1) | (n − 1).
4. Let n = p1 p2 · · · pk , where p1, p2, . . . , pk are distinct odd primes. Let also

y ∈ (Z/nZ)∗. Then the congruence

x2 ≡ y2 (mod n)

has exact 2k solutions modulo n, two of them are

x =
{

y,

−y.

5. Let x and y be randomly chosen so that

x2 ≡ y2 (mod n).

Show that the chance of

x �≡ ±y (mod n)

is greater than 1/2. That is, the chance for

1 < gcd (x − y, n) < n, and gcd (x − y, n) | n

is greater than 1/2.
6. Find a suitable pair of integers (x, y) such that

x2 ≡ y2 (mod 139511931371319137)

and then factor 139511931371319137.
7. A number is smooth if all of its prime factors are small; a number is B-smooth if all

of its prime factors are ≤ B. Let π (B) the numbers of primes in the interval [1, B] and
u1, u2, . . . , uk be positive B-smooth integers with k > π (B). Show that some nonempty
subset of {ui } has product which is a square.

8. Let ε be an arbitrary small positive integer, and

L(x) = exp(
√

log x log log x).
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Show that if L(x)
√

2+ε is chosen from [1, x] independently and uniformly, then the
probability that some nonempty subset product is a square tends to 1 as x →∞, whereas
the probability that some nonempty subset product is a square tends to 0 as x →∞ if
L(x)

√
2−ε is chosen.

9. Let ψ(x, y) be y-smooth numbers up to x . Show that the expected number of choices of
random integers in [1, x] to find one y-smooth number is

x

ψ(x, y)

and to find π (y)+ 1 such y-smooth numbers is

x(π (y)+ 1)

ψ(x, y)
.

10. Let u1, u2, . . . be y-smooth number, and let each be factored as follows

ui = 2αi,1 3αi,2 · · · pαi,k

k .

Show that ∏
i∈I

ui = β2, for some positive integer β

if and only if ∑
i∈I

(αi,1, αi,2, . . . , αi,k) = 0

as a vector in (Z/2Z)k . Moreover, such a nontrivial subset is guaranteed amongst
u1, u2, . . . , uk+1.

11. Let ε be any fixed, positive real number. Show that

ψ(x, L(x)ε) = x L(x)−1/(2ε)+o(1), as x →∞.

12. Deduce that the Quadratic Sieve is a deterministic factoring algorithm with the following
conjectured complexity

exp((1+ o(1))(log n log log n)1/2).

4.7 Number Field Sieve

Before introducing the Number Field Sieve (NFS), it is interesting to briefly review some
important milestones in the development of the factoring methods. In 1970, it was barely
possible to factor “hard” 20-digit numbers. In 1980, by using the CFRAC method, factoring
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of 50-digit numbers was becoming commonplace. In 1990, the QS method had doubled the
length of the numbers that could be factored by CFRAC, with a record having 116 digits. In
the spring of 1996, the NFS method had successfully split a 130-digit RSA challenge number
in about 15% of the time the QS would have taken. At present, the Number Field Sieve (NFS)
is the champion of all known factoring methods. NFS was first proposed by John Pollard
in a letter to A. M. Odlyzko, dated August 31 1988, with copies to R. P. Brent, J. Brillhart,
H. W. Lenstra, C. P. Schnorr, and H. Suyama, outlining an idea of factoring certain big
numbers via algebraic number fields. His original idea was not for any large composite,
but for certain “pretty” composites that had the property that they were close to powers. He
illustrated the idea with a factorization of the seventh Fermat number F7 = 227 + 1 which
was first factored by CFRAC in 1970. He also speculated in the letter that “if F9 is still
unfactored, then it might be a candidate for this kind of method eventually?” The answer
now is of course “yes,” since F9 was factored by using NFS in 1990. It is worthwhile pointing
out that NFS is not only a method suitable for factoring numbers in a special form like F9,
but also a general purpose factoring method for any integer of a given size. There are, in fact,
two forms of NFS (Huizing [10], and Lenstra and Lenstra [11]): the special NFS (SNFS),
tailored specifically for integers of the form N = c1r t + c2su , and the general NFS (GNFS),
applicable to any arbitrary numbers. Since NFS uses some ideas from algebraic number
theory, a brief introduction to some basic concepts of algebraic number theory is in order.

Definition 4.1 A complex number α is an algebraic number if it is a root of a polynomial

f (x) = a0xk + a1xk−1 + a2xk−2 · · · + ak = 0 (4.47)

where a0, a1, a2, . . . , ak ∈ Q and a0 �= 0. If f (x) is irreducible over Q and a0 �= 0, then k is
the degree of x .

Example 4.12 Two examples of algebraic numbers are as follows:

(1) rational numbers, which are the algebraic numbers of degree 1.
(2)

√
2, which is of degree 2 because we can take f (x) = x2 − 2 = 0 (

√
2 is irrational).

Any complex number that is not algebraic is said to be transcendental such as π and e.

Definition 4.2 A complex number β is an algebraic integer if it is a root of a monic
polynomial

xk + b1xk−1 + b2xk−2 · · · + bk = 0 (4.48)

where b0, b1, b2, . . . , bk ∈ Z.
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Remark 4.5 A quadratic integer is an algebraic integer satisfying a monic quadratic
equation with integer coefficients. A cubic integer is an algebraic integer satisfying a monic
cubic equation with integer coefficients.

Example 4.13 Some examples of algebraic integers are as follows:

(1) ordinary (rational) integers, which are the algebraic integers of degree 1. That is they
satisfy the monic equations x − a = 0 for a ∈ Z.

(2) 3
√

2 and 5
√

3, because they satisfy the monic equations x3 − 2 = 0 and x3 − 5 = 0,
respectively.

(3) (−1+√−3)/2, because it satisfies x2 + x + 1 = 0.
(4) Gaussian integer a + b

√−1, with a, b ∈ Z.

Clearly, every algebraic integer is an algebraic number, but the converse is not true.

Proposition 4.1 A rational number r ∈ Q is an algebraic integer if and only if r ∈ Z.

Proof: If r ∈ Z, then r is a root of x − r = 0. Thus r is an algebraic integer Now suppose
that r ∈ Q and r is an algebraic integer (i.e., r = c/d is a root of (4.48), where c, d ∈ Z; we
may assume gcd (c, d) = 1). Substituting c/d into (4.48) and multiplying both sides by dn ,
we get

ck + b1ck−1d + b2ck−2d2 · · · + bkdk = 0.

It follows that d | ck and d | c (since gcd (c, d) = 1). Again since gcd (c, d) = 1, it follows
that d = ±1. Hence r = c/d ∈ Z. It follows, for example, that 2/5 is an algebraic number
but not an algebraic integer.

Remark 4.6 The elements of Z are the only rational numbers that are algebraic integers.
We shall refer to the elements of Z as rational integers when we need to distinguish them
from other algebraic integers that are not rational. For example,

√
2 is an algebraic integer

but not a rational integer.

The most interesting results concerned with the algebraic numbers and algebraic integers
are contained in the following theorem.

Theorem 4.2 The set of algebraic numbers forms a field, and the set of algebraic integers
forms a ring.

Proof: See pp. 67–68 of Ireland and Rosen [12].
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Lemma 4.1 Let f (x) be an irreducible monic polynomial of degree d over integers and
m an integer such that f (m) ≡ 0 (mod n). Let α be a complex root of f (x) and Z[α] the
set of all polynomials in α with integer coefficients. Then there exists a unique mapping
� : Z[α] %→ Zn satisfying

(1) �(ab) = �(a)�(b), ∀a, b ∈ Z[α];
(2) �(a + b) = �(a)+�(b), ∀a, b ∈ Z[α];
(3) �(za) = z�(a), ∀a ∈ Z[α], z ∈ Z;
(4) �(1) = 1;
(5) �(α) = m (mod n).

Now we are in a position to introduce the Number Field Sieve (NFS). Note that there are
two main types of NFS: NFS (general NFS) for general numbers and SNFS (special NFS)
for numbers with special forms. The idea, however, behind the GNFS and SNFS is the same:

[1] Find a monic irreducible polynomial f (x) of degree d in Z[x], and an integer m such
that f (m) ≡ 0 (mod n).

[2] Let α ∈ C be an algebraic number that is the root of f (x), and denote the set of polyno-
mials in α with integer coefficients as Z[α].

[3] Define the mapping (ring homomorphism): � : Z[α] %→ Zn via �(α) = m which ensures
that for any f (x) ∈ Z[x], we have �( f (α)) ≡ f (m) (mod n).

[4] Find a finite set U of coprime integers (a, b) such that∏
(a,b)∈U

(a − bα) = β2,
∏

(a,b)∈U

(a − bm) = y2 (4.49)

for β ∈ Z[α] and y ∈ Z. Let x = �(β). Then

x2 ≡ �(β)�(β)

≡ �(β2)

≡ �

⎛⎝ ∏
(a,b)∈U

(a − bα)

⎞⎠
≡

∏
(a,b)∈U

�(a − bα)

≡
∏

(a,b)∈U

(a − bm)

≡ y2 (mod n)

which is of the required form of the factoring congruence, and hopefully a factor of n
can be found by calculating gcd (x ± y, n).
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There are many ways to implement the above idea, all of which follow the same pattern as
we discussed previously in CFRAC and QS/MPQS: By a sieving process one first tries to find
congruences modulo n by working over a factor base, and then does a Gaussian elimination
over Z/2Z to obtain a congruence of squares x2 ≡ y2 (mod n). We give in the following a
brief description of the NFS algorithm [13].

Algorithm 4.8 Given an odd positive integer n, the NFS algorithm has the following four
main steps in factoring n:

[1] (Polynomials Selection) Select two irreducible polynomials f (x) and g(x) with small
integer coefficients for which there exists an integer m such that

f (m) ≡ g(m) ≡ 0 (mod n) (4.50)

The polynomials should not have a common factor over Q.
[2] (Sieving) Let α be a complex root of f and β a complex root of g. Find pairs (a, b) with

gcd (a, b) = 1 such that the integral norms of a − bα and a − bβ:

N (a − bα) = bdeg(f) f (a/b), N (a − bβ) = bdeg(g)g(a/b) (4.51)

are smooth with respect to a chosen factor base. (The principal ideals a − bα and a − bβ
factor into products of prime ideals in the number field Q(α) and Q(β), respectively.)

[3] (Linear Algebra) Use techniques of linear algebra to find a set U = {ai , bi } of indices
such that the two products ∏

U

(ai − biα),
∏
U

(ai − biβ) (4.52)

are both squares of products of prime ideals.
[4] (Square Root) Use the set S in (4.52) to find algebraic numbers α′ ∈ Q(α) and β ′ ∈ Q(β)

such that

(α′)2 =
∏
U

(ai − biα), (β ′)2 =
∏
U

(ai − biβ) (4.53)

Define �α : Q(α) → Zn and �β : Q(β) → Zn via �α(α) = �β(β) = m, where m is the
common root of both f and g. Then

x2 ≡ �α(α′)�α(α′)

≡ �α((α′)2)

≡ �α

(∏
i∈U

(ai − biα)

)

≡
∏
U

�α(ai − biα)
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≡
∏
U

(ai − bi m)

≡ �β(β ′)2

≡ y2 (mod n)

which is of the required form of the factoring congruence, and hopefully, a factor of N can
be found by calculating gcd (x ± y, n).

Example 4.14 We first give a rather simple NFS factoring example. Let n = 14885 =
5 · 13 · 229 = 1222 + 1. So we put f (x) = x2 + 1 and m = 122, such that

f (x) ≡ f (m) ≡ 0 (mod n).

If we choose |a|, |b| ≤ 50, then we can easily find (by sieving) that

(a, b) Norm(a + bi) a + bm

...
...

...
(−49, 49) 4802 = 2 · 74 5929 = 72 · 112

...
...

...
(−41, 1) 1682 = 2 · 292 81 = 34

...
...

...

(Readers should be able to find many such pairs of (ai , bi ) in the interval, that are smooth up
to e.g., 29.) So, we have

(49+ 49i)(−41+ i) = (49− 21i)2,

f (49− 21i) = 49− 21m

= 49− 21 · 122

= −2513,

&
x

5929 · 81 = (22 · 7 · 11)2

= 6932

⇒ 693.

&
y

Thus,

gcd (x ± y, n) = gcd (−2513± 693, 14 885)

= (65, 229).
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In the same way, if we wish to factor n = 84101 = 2902 + 1, then we let m = 290, and
f (x) = x2 + 1 so that

f (x) ≡ f (m) ≡ 0 (mod n).

We tabulate the sieving process as follows:

(a, b) Norm(a + bi) a + bm

...
...

...
−50, 1 2501 = 41 · 61 240 = 24 · 3 · 5

...
...

...
−50, 3 2509 = 13 · 193 820 = 22 · 5 · 41

...
...

...
−49, 43 4250 = 2 · 53 · 17 12421 = 12 421

...
...

...
−38, 1 1445 = 5 · 172 252 = 22 · 32 · 7

...
...

...
−22, 19 845 = 5 · 132 5488 = 24 · 73

...
...

...
−118, 11 14045 = 5 · 532 3072 = 210 · 3

...
...

...
218, 59 51005 = 5 · 1012 17328 = 24 · 3 · 192

...
...

...

Clearly, −38+ i and −22+ 19i can produce a product square, since

(−38+ i)(−22+ 19i) = (31− 12i)2,

f (31− 12i) = 31− 12m

= −3449,

&
x

252 · 5488 = (23 · 3 · 72)2

= 11762,

&
y

gcd (x ± y, n) = gcd (−3449± 1176, 84 101)

= (2273, 37).
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In fact, 84101 = 2273× 37. Note that−118+ 11i and 218+ 59i can also produce a product
square, since

(−118+ 11i)(218+ 59i) = (14− 163i)2,

f (14− 163i) = 14− 163m

= −47256,

&
x

3071 · 173288 = (27 · 3 · 19)2

= 72962,

&
y

gcd (x ± y, n) = gcd (−47 256± 7296, 84 101)

= (37, 2273).

Example 4.15 Next we present a slightly more complicated example. Use NFS to factor
n = 1098413. First notice that n = 1098413 = 12 · 453 + 173, which is in a special form
and can be factored by using SNFS.

[1] (Polynomials Selection) Select the two irreducible polynomials f (x) and g(x) and the
integer m as follows:

m = 17

45
,

f (x) = x3 + 12 =⇒ f (m) =
(

17

45

)3

+ 12 ≡ 0 (mod n),

g(x) = 45x − 17 =⇒ g(m) = 45

(
17

45

)
− 17 ≡ 0 (mod n).

[2] (Sieving) Suppose after sieving, we get U = {ai , bi } as follows:

U = {(6,−1), (3, 2), (−7, 3), (1, 3), (−2, 5), (−3, 8), (9, 10)}.

That is, the chosen polynomial that produces a product square can be constructed as
follows (as an exercise, readers may wish to choose some other polynomial which can
also produce a product square):

∏
U

(ai + bi x) = (6− x)(3+ 2x)(−7+ 3x)(1+ 3x)(−2+ 5x)(−3+ 8x)(9+ 10x).
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Let α = 3
√−12 and β = 17

45 . Then

∏
U

(a − bα) = 7400772+ 1138236α − 10549α2

= (2694+ 213α − 28α2)2

=
(

5610203

2025

)
= 2707292,∏

U

(a − bβ) = 28 · 112 · 132 · 232

312 · 54

=
(

52624

18225

)2

= 8755392.

So, we get the required square of congruence:

2707292 ≡ 8755392 (mod 1098413).

Thus,

gcd (270729± 875539, 1098413) = (563, 1951).

That is,

1098413 = 563 · 1951.

Example 4.16 Finally, we give some large factoring examples using NFS.

(1) SNFS examples: One of the largest numbers factored by SNFS is

n = (12167 + 1)/13 = p75 × p105

It was announced by P. Montgomery, S. Cavallar, and H. te Riele at CWI in Amsterdam on
September 3 1997. They used the polynomials f (x) = x5 − 144 and g(x) = 1233x + 1
with common root m ≡ 12134 (mod n). The factor base bound was 4.8 million for f
and 12 million for g. Both large prime bounds were 150 million, with two large primes
allowed on each side. They sieved over |a| ≤ 8.4 million and 0 < b ≤ 2.5 million. The
sieving lasted 10.3 calendar days; 85 SGI machines at CWI contributed a combined
13027719 relations in 560 machine-days. It took 1.6 more calendar days to process the
data. This processing included 16 CPU-hours on a Cray C90 at SARA in Amsterdam to
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process a 1969262× 1986500 matrix with 57942503 nonzero entries. The other large
number factorized by using SNFS is the 9th Fermat number:

F9 = 229 + 1 = 2512 + 1 = 2424833 · p49 · p99,

a number with 155 digits; it was completely factored in April 1990. The most wanted
factoring number of special form at present is the 12th Fermat number F12 = 2212 + 1;
we only know its partial prime factorization:

F12 = 114689 · 26017793 · 63766529 · 190274191361 · 1256132134125569 · c1187

and we want to find the prime factors of the remaining 1187-digit composite.
(2) GNFS examples: Three large general numbers RSA-130 (in April 1996), RSA-140

(in February 1999), RSA-155 (August 1999), and RSA-174 (December 2003) were
factorized using GNFS:
(a) RSA-130 = p65 · q65:

39685999459597454290161126162883786067576449112810064832555157243_
45534498646735972188403686897274408864356301263205069600999044599,

(b) RSA-140 = p70 · q70:
33987174230284385545301236276138758356339864959695974234_
90929302771479,
62642001874012850961516549482644422193020371786235090191_
11660653946049,

(c) RSA-155 = p78 · q79:
10263959282974110577205419657399167590071656780803806680_
3341933521790711307779,
10660348838016845482092722036001287867920795857598929152_
2270608237193062808643,

(d) RSA-174 = p87 · q87:
39807508642406493739712550055038649119906436234252670840_
6385189575946388957261768583317,
47277214610743530253622307197304822463291469530209711645_
9852171130520711256363590397527.

Remark 4.7 Prior to the NFS, all modern factoring methods had an expected running time
of at best

O
(

exp
(

(c + o(1))
√

log n log log n
))

.

For example, Dixon’s Random Square Method has the expected running time

O
(

exp
(

(
√

2+ o(1))
√

log n log log n
))

.
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whereas the Multiple Polynomial Quadratic Sieve (MPQS) takes time

O
(

exp
(

(1+ o(1))
√

log log n/ log n
))

.

Because of the Canfield-Erdös-Pomerance theorem, some people even believed that this
could not be improved upon except maybe for the term (c + o(1)), but the invention of the
NFS has changed all this.

Conjecture 4.5 (Complexity of NFS) Under some reasonable heuristic assumptions, the
NFS method can factor an integer N in time

O
(

exp
(

(c + o(1)) 3
√

log n 3
√

(log log n)2
))

(4.54)

where c = (64/9)1/3 ≈ 1.922999427 if GNFS is used to factor an arbitrary integer N ,
whereas c = (32/9)1/3 ≈ 1.526285657 if SNFS is used to factor a special integer N .

Problems for Section 4.7

1. (General Factoring Challenge Problems) Try to complete the prime factorization, either
individually or in group, of the following RSA challenge numbers (Note that in these
numbers, the value for x in RSA-x represents the number of bits, not the number of digits;
this is just the RSA convention for these numbers):

(1) RSA-704 (212 digits, 704 bits)
7403756347956171282804679609742957314259318888923128908493623_
2638972765034028266276891996419625117843995894330502127585370_
1189680982867331732731089309005525051168770632990723963807867_
10086096962537934650563796359,

(2) RSA-768 (232 digits, 768 bits)
1230186684530117755130494958384962720772853569595334792197322_
4521517264005072636575187452021997864693899564749427740638459_
2519255732630345373154826850791702612214291346167042921431160_
2221240479274737794080665351419597459856902143413,

(3) RSA-896 (270 digits, 896 bits)
4120234369866595438555313653325759481798116998443279828454556_
2643387644556524842619809887042316184187926142024718886949256_
0931776375033421130982397485150944909106910269861031862704114_
8808669705649029036536588674337317208131041051908642547932826_
01391257624033946373269391,

(4) RSA-1024 (309 digits, 1024 bits)
1350664108659952233496032162788059699388814756056670275244851_
4385152651060485953383394028715057190944179820728216447155137_
3680419703964191743046496589274256239341020864383202110372958_
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7257623585096431105640735015081875106765946292055636855294752_
1350085287941637732853390610975054433499981115005697723689092_
7563,

(5) RSA-1536 (463 digits, 1536 bits)
1847699703211741474306835620200164403018549338663410171471785_
7749106516967111612498593376843054357445856160615445717940522_
2971773252466096064694607124962372044202226975675668737842756_
2389508764678440933285157496578843415088475528298186726451339_
8633649319080846719904318743812833635027954702826532978029349_
1615581188104984490831954500984839377522725705257859194499387_
0073695755688436933812779613089230392569695253261620823676490_
316036551371447913932347169566988069,

(6) RSA-2048 (617 digits, 2048 bits)
2519590847565789349402718324004839857142928212620403202777713_
7836043662020707595556264018525880784406918290641249515082189_
2985591491761845028084891200728449926873928072877767359714183_
4727026189637501497182469116507761337985909570009733045974880_
8428401797429100642458691817195118746121515172654632282216869_
9875491824224336372590851418654620435767984233871847744479207_
3993423658482382428119816381501067481045166037730605620161967_
6256133844143603833904414952634432190114657544454178424020924_
6165157233507787077498171257724679629263863563732899121548314_
3816789988504044536402352738195137863656439121201039712282212_
0720357.

2. (Knuth’s Factoring Challenge Problem) Knuth in 1998 proposed the following 211 digits
factoring challenge number [4], marked its difficulty degree as 50, one of the hardest
problems in his book:

7790302288510159542362475654705578362485767620973983941084402_
2221357287251170999858504838764813194434051093226513681516857_
4119934775586854274094225644500087912723258574933706185395834_
0278434058208881085485078737.

Try to complete the prime factorization, either individually or in group, of the above
Knuth factoring challenge number.

3. (Rivest’s Factoring Challenge Problem) In April 1999, when the MIT Laboratory for
Computer Science celebrated its 35 anniversary, Prof Ron Rivest proposed the following
factoring challenge problem as a part of his Secret-Key Computing Challenge Problem:

n = 63144660830728888937993571261312923323632988_
18330841375588990772701957128924885547308446_
05575320651361834662884894808866350036848039_
65881713619876605218972678101622805574753938_
38308261759713218926668611776954526391570120_
69093997368008972127446466642331918780683055_
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20679512530700820202412462339824107377537051_
27344494169501180975241890667963858754856319_
80550727370990439711973361466670154390536015_
25433739825245793135753176536463319890646514_
02133985265800341991903982192844710212464887_
45938885358207031808428902320971090703239693_
49199627789953233201840645224764639663559373_
67009369212758092086293198727008292431243681.

Try to complete the prime factorization, either individually or in group, of the above
Rivest’s factoring challenge number.

4. In this problem, we list the smallest unfactored (not completely factored) Fermat numbers
for you to try to find the complete factorization for each of these numbers:

F12 = 114689 · 26017793 · 63766529 · 190274191361 ·
1256132134125569 · c1187,

F13 = 2710954639361 · 2663848877152141313 · 36031098445229199 ·
319546020820551643220672513 · c2391,

F14 = c4933,

F15 = 1214251009 · 2327042503868417 ·
168768817029516972383024127016961 · c9808,

F16 = 825753601 · 188981757975021318420037633 · c19694,

F17 = 31065037602817 · c39444,

F18 = 13631489 · 81274690703860512587777 · c78884,

F19 = 70525124609 · 646730219521 · c157804,

F20 = c315653,

F21 = 4485296422913 · c631294,

F22 = c1262612,

F23 = 167772161 · c2525215,

F24 = c5050446.

4.8 Bibliographic Notes and Further Reading

In this chapter, we discussed some of the most popular algorithms for integer factorization.
For general references in this field, it is suggested that readers consult, for example, [14–38].
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Shanks’ Square Forms Factorization was studied in [39]. The p − 1 Factoring Method
was proposed by Pollard in [40] and ρ Factoring Method in [2], respectively. An improved
version of ρ was proposed by Brent in [3]. The p + 1 Factoring Method was proposed by
Williams in [41].

The ECM factoring method was first proposed by Lenstra in [42]. More information
on ECM may be found in [5, 6]. The CFRAC factoring method was first proposed and
implemented in [7]. The QS factoring method was first proposed by Pomerance in the 1980s
[9, 43, 44]. The idea of NFS was first proposed by Pollard and subsequently improved by
many authors; more information about the NFS can be found in [11, 45, 46]. Readers who
are interested in parallel and distributed factoring may consult [47–50].
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5
Discrete Logarithms

The Discrete Logarithm Problem (DLP) and the Elliptic Curve Discrete Logarithm Problem
(ECDLP), along with the Integer Factorization Problem (IFP), are the three most important
infeasible computational problems in computational number theory and modern cryptog-
raphy. In this chapter we discuss several popular and widely used modern algorithms for
DLP/ECDLP, including:

� Baby-step Giant-step Method for DLP
� Pohlig–Hellman Algorithm for DLP/ECDLP
� The index calculus for DLP
� The xedni calculus for ECDLP.

5.1 Basic Concepts

The Discrete Logarithm Problem (DLP) can be described as follows:

Input : a, b, n ∈ Z+

Output : x ∈ Z>1 with ax ≡ b (mod n)

if such an x exists

⎫⎪⎪⎬⎪⎪⎭ (5.1)

where the modulus n can either be a composite or a prime.
According to Adleman [1], the Russian mathematician Bouniakowsky developed a clever

algorithm to solve the congruence ax ≡ b (mod n), with the asymptotic complexity O(n)
in 1870. Despite its long history, no efficient algorithm has ever emerged for the Discrete
Logarithm Problem. It is believed to be hard, a little bit harder than the Integer Factorization
Problem (IFP) even in the average case. The best known algorithm for DLP at present, using
NFS and due to Gordon [2], requires an expected running time

O (exp
(
c(log n)1/3(log log n)2/3

))
.
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There are essentially three different categories of algorithms in use for computing discrete
logarithms:

(1) Algorithms that work for arbitrary groups, that is, those that do not exploit any specific
properties of groups; Shanks’ Baby-step Giant-step Method, Pollard’s ρ Method (an
analogue of Pollard’s ρ Factoring Method) and the λ Method (also known as wild and
tame Kangaroos) are in this category.

(2) Algorithms that work well in finite groups for which the order of the groups has no large
prime factors; more specifically, algorithms that work for groups with smooth orders. A
positive integer is called smooth if it has no large prime factors; it is called y-smooth
if it has no large prime factors exceeding y. The well-known Silver–Pohlig–Hellman
algorithm based on the Chinese Remainder theorem is in this category.

(3) Algorithms that exploit methods for representing group elements as products of elements
from a relatively small set (also making use of the Chinese Remainder theorem); the
typical algorithms in this category are Adleman’s index calculus algorithm and Gordon’s
NFS algorithm.

In this chapter, we shall introduce the basic ideas of the algorithms in each of these three
categories; more specifically, we shall introduce Shanks’ Baby-step Giant-step algorithm, the
Silver–Pohlig–Hellman algorithm, Adleman’s index calculus algorithm, as well as Gordon’s
NFS algorithm for computing discrete logarithms. In the last section of this chapter, we shall
also deal with algorithms for ECDLP.

Problems for Section 5.1

1. What are the main differences between the familiar logarithms over R and the discrete
logarithms?

2. Let

ln x =
∞∑

n=1

(−1)n+1 (x − 1)n

n
,

then

loga b = ln b

ln a
.

Find the logarithm k over R:

k = log2 5.

3. Use the exhaustive method to find the following discrete logarithms k over Z∗1009, if there
exists:
(1) k ≡ log3 57 (mod 1009).
(2) k ≡ log11 57 (mod 1009).
(3) k ≡ log3 20 (mod 1009).
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4. Use the exhaustive method to find the following elliptic curve discrete logarithms k over
E(F1009):

(190, 271) ≡ k(1, 237) (mod 1009),

that is,

k ≡ log(1,237)(190, 271) (mod 1009).

where E is the elliptic curve defined by

E : y2 ≡ x3 + 71x + 602 (mod 1009).

5.2 Baby-Step Giant-Step Method

The Baby-step Giant-step Method is a meet-in-the-middle algorithm for computing the
discrete logarithm. It was first studied in 1968 to calculate the class number of an imaginary
quadratic field [3]. Let G be a finite cyclic group of order n, a a generator of G and b ∈ G.
The obvious algorithm for computing successive powers of a until b is found takes O(n)
group operations. For example, to compute x = log2 15 (mod 19), we compute 2x mod 19
for x = 0, 1, 2, . . . , 19− 1 until 2x mod 19 = 15 for some x is found, that is:

x 0 1 2 3 4 5 6 7 8 9 10 11

ax 1 2 4 8 16 13 7 14 9 18 17 15

So log2 15 (mod 19) = 11. It is clear that when n is large, the algorithm is inefficient. In
this section, we introduce a type of square root algorithm, called the baby-step giant-step
algorithm, for taking discrete logarithms, which is better than the above mentioned obvious
algorithm. The algorithm works for every finite cyclic group.

Let m = �√n�. The baby-step giant-step algorithm is based on the observation that if
x = loga b, then we can uniquely write x = i + jm, where 0 ≤ i, j < m. For example, if
11 = log2 15 mod 19, then a = 2, b = 15, m = 5, so we can write 11 = i + 5 j for
0 ≤ i, j < m. Clearly here i = 1 and j = 2 so we have 11 = 1+ 5 · 2. Similarly, for
14 = log2 6 mod 19 we can write 14 = 4+ 5 · 2, for 17 = log2 10 mod 19 we can write
17 = 2+ 5 · 3, etc. The following is a description of the algorithm:

Algorithm 5.1 (Shanks’ baby-step giant-step algorithm) This algorithm computes the
discrete logarithm x of y to the base a, modulo n, such that y = ax (mod n):

[1] (Initialization) Computes s = �√n�.
[2] (Computing the Baby Step) Compute the first sequence (list), denoted by S, of pairs

(yar , r ), r = 0, 1, 2, 3, . . . , s − 1:

S = {(y, 0), (ya, 1), (ya2, 2), (ya3, 3), . . . , (yas−1, s − 1) mod n} (5.2)

and sort S by yar , the first element of the pairs in S.
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[3] (Computing the Giant Step) Compute the second sequence (list), denoted by T , of pairs
(ats, ts), t = 1, 2, 3, . . . , s:

T = {(as, 1), (a2s, 2), (a3s, 3), . . . , (as2
, s) mod n} (5.3)

and sort T by ats , the first element of the pairs in T .
[4] (Searching, comparing and computing) Search both lists S and T for a match yar = ats

with yar in S and ats in T , then compute x = ts − r . This x is the required value of
loga y (mod n).

This algorithm requires a table with O(m) entries (m = �√n�, where n is the modulus).
Using a sorting algorithm, we can sort both the lists S and T in O(m log m) operations. Thus
this gives an algorithm for computing discrete logarithms that uses O(

√
n log n) time and

space for O(
√

n) group elements. Note that Shanks’ idea was originally for computing the
order of a group element g in the group G, but here we use his idea to compute discrete
logarithms. Note also that although this algorithm works on arbitrary groups, if the order of
a group is larger than 1040, it will be infeasible.

Example 5.1 Suppose we wish to compute the discrete logarithm x = log2 6 mod 19 such
that 6 = 2x mod 19. According to Algorithm 5.5, we perform the following computations:

[1] y = 6, a = 2 and n = 19, s = �√19� = 4.
[2] Computing the baby step:

S = {(y, 0), (ya, 1), (ya2, 2), (ya3, 3) mod 19}
= {(6, 0), (6 · 2, 1), (6 · 22, 2), (6 · 23, 3) mod 19}
= {(6, 0), (12, 1), (5, 2), (10, 3)}
= {(5, 2), (6, 0), (10, 3), (12, 1)}.

[3] Computing the giant step:

T = {(as, s), (a2s, 2s), (a3s, 3s), (a4s, 4s) mod 19}
= {(24, 4), (28, 8), (212, 12), (216, 16) mod 19}
= {(16, 4), (9, 8), (11, 12), (5, 16)}
= {(5, 16), (9, 8), (11, 12), (16, 4)}.

[4] Matching and computing: The number 5 is the common value of the first element in
pairs of both lists S and T with r = 2 and st = 16, so x = st − r = 16− 2 = 14. That
is, log2 6 (mod 19) = 14, or equivalently, 214 (mod 19) = 6.

Example 5.2 Suppose now we wish to find the discrete logarithm x = log59 67 mod 113,
such that 67 = 59x mod 113. Again by Algorithm 5.1, we have:

[1] y = 67, a = 59 and n = 113, s = �√113� = 10.
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[2] Computing the baby step:

S = {(y, 0), (ya, 1), (ya2, 2), (ya3, 3), . . . , (ya9, 9) mod 113}
= {(67, 0), (67 · 59, 1), (67 · 592, 2), (67 · 593, 3), (67 · 594, 4),

(67 · 595, 5), (67 · 596, 6), (67 · 597, 7), (67 · 598, 8),

(67 · 599, 9) mod 113}
= {(67, 0), (111, 1), (108, 2), (44, 3), (110, 4), (49, 5), (66, 6),

(52, 7), (17, 8), (99, 9)}
= {(17, 8), (44, 3), (49, 5), (52, 7), (66, 6), (67, 0), (99, 9),

(108, 2), (110, 4), (111, 1)}.

[3] Computing the giant-step:

T = {(as, s), (a2s, ss), (a3s, 3s), . . . (a10s, 10s) mod 113}
= {(5910, 10), (592·10, 2 · 10), (593·10, 3 · 10), (594·10, 4 · 10),

(595·10, 5 · 10), (596·10, 6 · 10), (597·10, 7 · 10), (598·10, 8 · 10),

(599·10, 9 · 10) mod 113}
= {(72, 10), (99, 20), (9, 30), (83, 40), (100, 50), (81, 60),

(69, 70), (109, 80), (51, 90), (56, 100)}
= {(9, 30), (51, 90), (56, 100), (69, 70), (72, 10), (81, 60), (83, 40),

(99, 20), (100, 50), (109, 80)}.

[4] Matching and computing: The number 99 is the common value of the first element in
pairs of both lists S and T with r = 9 and st = 20, so x = st − r = 20− 9 = 11. That
is, log59 67 (mod 113) = 11, or equivalently, 5911 (mod 113) = 67.

Remark 5.1 Shanks’ baby-step giant-step algorithm is a type of Square Root Method
for computing discrete logarithms. In 1978 Pollard [4] also gave two other types of Square
Root Methods, namely the ρ Method (an analogue of Pollard’s ρ Factoring Method) and the
λ Method (also known as the Wild Kangaroo Method) for computing discrete logarithms.
Pollard’s methods are probabilistic but remove the necessity of precomputing the lists S and
T , as with Shanks’ Baby-step Giant-step Method. Again, Pollard’s algorithm requires O(n)
group operations and hence is infeasible if the order of the group G is larger than 1040.

Problems for Section 5.2

1. Use the baby-step giant-step algorithm to find the following DLP(k):
(1)

k ≡ log3 5 (mod 29).
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(2)

k ≡ log3 17 (mod 29).

(3)

k ≡ log3 26 (mod 29).

2. Use the baby-step giant-step algorithm to find the following DLP(k):
(1)

k ≡ log2 11 (mod 29).

(2)

k ≡ log2 12 (mod 53).

(3)

k ≡ log3 26 (mod 227).

3. Use the baby-step giant-step algorithm to compute DLP(k):

k ≡ log5 96 (mod 317).

4. Use the baby-step giant-step algorithm to compute DLP(k):

k ≡ log37 15 (mod 123).

5. Use the baby-step giant-step algorithm to compute DLP(k):

k ≡ log5 57105961 (mod 58231351).

6. Implement the baby-step giant-step algorithm to compute DLP(k) over a large finite field.
7. Explain how to modify the baby-step giant-step algorithm to find the order of an integer

a modulo a prime number p.

5.3 Pohlig–Hellman Method

In 1978, Pohlig and Hellman [5] proposed an important special algorithm, now widely known
as the Silver–Pohlig–Hellman algorithm for computing discrete logarithms over GF(q) with
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O(
√

p) operations and a comparable amount of storage, where p is the largest prime factor
of q − 1. Pohlig and Hellman showed that if

q − 1 =
k∏

i=1

pαi
i , (5.4)

where the pi are distinct primes and the αi are natural numbers, and if r1, . . . , rk are any real
numbers with 0 ≤ ri ≤ 1, then logarithms over GF(q) can be computed in

O
(

k∑
i=1

(
log q + p1−ri

i

(
1+ log pri

i

) ))

field operations, using

O
(

log q
k∑

i=1

(
1+ pri

i

))

bits of memory, provided that a precomputation requiring

O
(

k∑
i=1

pri
i log pri

i + log q

)

field operations is performed first. This algorithm is very efficient if q is “smooth,” that is,
all the prime factors of q − 1 are small. We shall give a brief description of the algorithm as
follows:

Algorithm 5.2 (Silver–Pohlig–Hellman Algorithm) This algorithm computes the discrete
logarithm

x = loga b mod q. (5.5)

[1] Factor q − 1 into its prime factorization form:

q − 1 =
k∏

i=1

pα1
1 pα2

2 · · · pαk
k . (5.6)

[2] Precompute the table rpi , j for a given field:

rpi , j = a j(q−1)/pi mod q, 0 ≤ j < pi . (5.7)

This only needs to be done once for any given field.
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[3] Compute the discrete logarithm of b to the base a modulo q, that is, compute x =
loga b mod q:
[3-1] Use an idea similar to that in the baby-step giant-step algorithm to find the in-

dividual discrete logarithms x mod pαi
i : To compute x mod pαi

i , we consider the
representation of this number to the base pi :

x mod pαi
i = x0 + x1 pi + · · · + xαi−1 pαi−1

i , (5.8)

where 0 ≤ xn < pi − 1.
(a) To find x0, we compute b(q−1)/pi which equals rpi , j for some j , and set x0 = j

for which

b(q−1)/pi mod q = rpi , j . (5.9)

This is possible because

b(q−1)/pi ≡ ax(q−1)/p ≡ ax0(q−1)/p mod q = rpi ,x0 . (5.10)

(b) To find x1, compute b1 = ba−x0 . If

b
(q−1)/p2

i
1 mod q = rpi , j , (5.11)

then set x1 = j . This is possible because

b
(q−1)/p2

i
1 ≡ a(x−x0)(q−1)/p2

i

≡ a(x1+x2 pi+···)(q−1)/pi

≡ ax1(q−1)/p mod q

= rpi ,x1 .

(c) To obtain x2, consider the number b2 = ba−x0−x1 pi and compute

b
(q−1)/p3

i
2 mod q.

The procedure is carried on inductively to find all x0, x1, . . . , xαi−1.
[3-2] Use the Chinese Remainder theorem to find the unique value of x from the

congruences x mod pαi
i .

We now give an example of how the above algorithm works:

Example 5.3 Suppose we wish to compute the discrete logarithm x = log2 62 mod 181.
Now we have a = 2, b = 62 and q = 181 (2 is a generator of F∗181). We follow the compu-
tation steps described in the above algorithm:
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[1] Factor q − 1 into its prime factorization form:

180 = 22 · 32 · 5.

[2] Use the following formula to precompute the table rpi , j for the given field F∗181:

rpi , j = a j(q−1)/pi mod q, 0 ≤ j < pi .

This only needs to be done once for this field.
(a) Compute

rp1, j = a j(q−1)/p1 mod q = 290 j mod 181 for 0 ≤ j < p1 = 2 :

r2,0 = 290·0 mod 181 = 1,

r2,1 = 290·1 mod 181 = 180.

(b) Compute

rp2, j = a j(q−1)/p2 mod q = 260 j mod 181 for 0 ≤ j < p2 = 3 :

r3,0 = 260·0 mod 181 = 1,

r3,1 = 260·1 mod 181 = 48,

r3,2 = 260·2 mod 181 = 132.

(c) Compute

rp3, j = a j(q−1)/p3 mod q = 236 j mod 181 for 0 ≤ j < p3 = 5 :

r5,0 = 236·0 mod 181 = 1,

r5,1 = 236·1 mod 181 = 59,

r5,2 = 236·2 mod 181 = 42,

r5,3 = 236·3 mod 181 = 125,

r5,4 = 236·4 mod 181 = 135.

Construct the rpi , j table as follows:

j

pi 0 1 2 3 4

2 1 180
3 1 48 132
5 1 59 42 125 135

This table is manageable if all pi are small.
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[3] Compute the discrete logarithm of 62 to the base 2 modulo 181, that is, compute x =
log2 62 mod 181. Here a = 2 and b = 62:
[3-1] Find the individual discrete logarithms x mod pαi

i using

x mod pαi
i = x0 + x1 pi + · · · + xαi−1 pαi−1

i , 0 ≤ xn < pi − 1.

(a-1) Find the discrete logarithms x mod pα1
1 , that is, x mod 22:

x mod 181 ⇐⇒ x mod 22 = x0 + 2x1.

(i) To find x0, we compute

b(q−1)/p1 mod q = 62180/2 mod 181 = 1 = rp1, j = r2,0

hence x0 = 0.
(ii) To find x1, compute first b1 = ba−x0 = b = 62, then compute

b
(q−1)/p2

1
1 mod q = 62180/4 mod 181 = 1 = rp1, j = r2,0

hence x1 = 0. So

x mod 22 = x0 + 2x1 =⇒ x mod 4 = 0.

(a-2) Find the discrete logarithms x mod pα2
2 , that is, x mod 32:

x mod 181 ⇐⇒ x mod 32 = x0 + 2x1.

(i) To find x0, we compute

b(q−1)/p2 mod q = 62180/3 mod 181 = 48 = rp2, j = r3,1

hence x0 = 1.
(ii) To find x1, compute first b1 = ba−x0 = 62 · 2−1 = 31, then compute

b
(q−1)/p2

2
1 mod q = 31180/32

mod 181 = 1 = rp2, j = r3,0

hence x1 = 0. So

x mod 32 = x0 + 2x1 =⇒ x mod 9 = 1.

(a-3) Find the discrete logarithms x mod pα3
3 , that is, x mod 51:

x mod 181 ⇐⇒ x mod 51 = x0.
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To find x0, we compute

b(q−1)/p3 mod q = 62180/5 mod 181 = 1 = rp3, j = r5,0

hence x0 = 0. So we conclude that

x mod 5 = x0 =⇒ x mod 5 = 0.

[3-2] Find the x in

x mod 181,

such that ⎧⎨⎩
x mod 4 = 0,

x mod 9 = 1,

x mod 5 = 0.

To do this, we just use the Chinese Remainder theorem to solve the following
system of congruences: ⎧⎨⎩

x ≡ 0 (mod 4),
x ≡ 1 (mod 9),
x ≡ 0 (mod 5).

The unique value of x for this system of congruences is x = 100. (This can
be easily done by using, for example, the Maple function chrem([0,1,0],
[4,9,5]).) So the value of x in the congruence x mod 181 is 100. Hence
x = log2 62 = 100.

Problems for Section 5.3

1. Use the Silver–Pohliq–Hellman algorithm to solve the DLP

k ≡ log7 12 (mod 41)

such that

7k ≡ 12 (mod 41).

2. Use the Silver–Pohliq–Hellman algorithm to solve the DLP

k ≡ log5 57105961 (mod 58231351)
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such that

5k ≡ 57105961 (mod 58231351).

3. Use the Silver–Pohliq–Hellman algorithm to find the discrete logarithm k such that

3k ≡ 2 (mod 65537).

4. Use the Silver–Pohliq–Hellman algorithm to find the discrete logarithm k:

k ≡ log11 2 (mod 65537).

5. Suppose that g and h are primitive roots modulo n. Show that

logh y ≡ logh g logg y (mod φ(n)).

6. Let the prime factorization of n = p − 1 be given. Give a complete computational com-
plexity analysis of the Silver–Pohliq–Hellman algorithm for the DLP.

5.4 Index Calculus

In 1979, Adleman [1] proposed a general purpose, subexponential algorithm for computing
discrete logarithms, called the index calculus, with the following expected running time:

O
(

exp
(

c
√

log n log log n
))

.

The index calculus is, in fact, a wide range of methods, including CFRAC, QS, and NFS for
IFP. In what follows, we discuss a variant of Adleman’s index calculus for DLP in (Z/pZ)∗.

Algorithm 5.3 (Index calculus for DLP) This algorithm tries to find an integer k such
that

k ≡ logβ α (mod p) or α ≡ βk (mod p). (5.12)

[1] Precomputation
[1-1] (Choose Factor Base) Select a factor base �, consisting of the first m prime

numbers,

� = {p1, p2, . . . , pm}, (5.13)

with pm ≤ B, the bound of the factor base.
[1-2] (Compute βe mod p) Randomly choose a set of exponent e ≤ p − 2, compute

βe mod p, and factor it as a product of prime powers.
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[1-3] (Smoothness) Collect only those relations βe mod p that are smooth with respect
to B. That is,

βe mod p =
m∏

i=1

pi
ei , ei ≥ 0. (5.14)

When such relations exist, get

e ≡
m∑

j=1

e j logβ p j (mod p − 1). (5.15)

[1-4] (Repeat) Repeat [1-3] to find at least m such e in order to find m relations as in
(5.15) and solve logβ p j for j = 1, 2, . . . , m.

[2] Compute k ≡ logβ α (mod p)
[2-1] For each e in (5.15), determine the value of logβ p j for j = 1, 2, . . . , m by solving

the m modular linear equations with unknown logβ p j .
[2-2] (Compute αβr mod p) Randomly choose exponent r ≤ p − 2 and compute

αβr mod p.
[2-3] (Factor αβr mod p over �)

αβr mod p =
m∏

j=1

p j
ri , r j ≥ 0. (5.16)

If (5.16) is unsuccessful, go back to to Step [2-2]. If it is successful, then

logβ α ≡ −r +
m∑

j=1

r j logβ p j (mod p − 1). (5.17)

Example 5.4 (Index calculus for DLP) Find

x ≡ log22 4 (mod 3361)

such that

4 ≡ 22x (mod 3361).

[1] Precomputation
[1-1] (Choose Factor Base) Select a factor base �, consisting of the first 4 prime num-

bers,

� = {2, 3, 5, 7},

with p4 ≤ 7, the bound of the factor base.
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[1-2] (Compute 22e mod 3361) Randomly choose a set of exponent e ≤ 3359, compute
22e mod 3361, and factor it as a product of prime powers:

2248 ≡ 25 · 32 (mod 3361),

22100 ≡ 26 · 7 (mod 3361),

22186 ≡ 29 · 5 (mod 3361),

222986 ≡ 23 · 3 · 52 (mod 3361).

[1-3] (Smoothness) The above four relations are smooth with respect to B = 7. Thus

48 ≡ 5 log22 2+ 2 log22 3 (mod 3360),

100 ≡ 6 log22 2+ log22 7 (mod 3360),

186 ≡ 9 log22 2+ log22 5 (mod 3360),

2986 ≡ 3 log22 2+ log22 3+ 2 log22 5 (mod 3360).

[2] Compute k ≡ logβ α (mod p)
[2-1] Compute

log22 2 ≡ 1100 (mod 3360),

log22 3 ≡ 2314 (mod 3360),

log22 5 ≡ 366 (mod 3360),

log22 7 ≡ 220 (mod 3360).

[2-2] (Compute 4 · 22r mod p) Randomly choose exponent r = 754 ≤ 3659 and com-
pute 4 · 22754 mod 3361.

[2-3] (Factor 4 · 22754 mod 3361 over �)

4 · 22754 ≡ 2 · 32 · 5 · 7 (mod 3361).

Thus,

log22 4 ≡ −754+ log22 2+ 2 log22 3+ log22 5+ log22 7

≡ 2200.

That is,

222200 ≡ 4 (mod 3361).

Example 5.5 Find k ≡ log11 7 (mod 29) such that βk ≡ 11 (mod 29).

[1] (Factor Base) Let the factor base � = {2, 3, 5}.
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[2] (Compute and Factor βe mod p) Randomly choose e < p, compute and factor βe mod
p = 11e mod 29 as follows:

(1) 112 ≡ 5 (mod 29) (success),
(2) 113 ≡ 2 · 13 (mod 29) (fail),
(3) 115 ≡ 2 · 7 (mod 29) (fail),
(4) 116 ≡ 32 (mod 29) (success),
(5) 117 ≡ 23 · 3 (mod 29) (success),
(6) 119 ≡ 2 · 7 (mod 29) (success).

[3] (Solve the systems of congruences for the quantities logβ pi )

(1) log11 5 ≡ 2 (mod 28),
(4) log11 3 ≡ 3 (mod 28),
(6) log11 2 ≡ 9 (mod 28),
(5) 2 · log11 2+ log11 3 ≡ 7 (mod 28),

log11 3 ≡ 17 (mod 28).

[4] (Compute and Factor αβe mod p) Randomly choose e < p, compute and factor αβe mod
p = 7 · 11e mod 29 as follows:

7 · 11 ≡ 19 (mod 29) (fail),
7 · 112 ≡ 2 · 3 (mod 29) (success).

Thus

log11 7 ≡ log11 2+ log11 3− 2 ≡ 24 (mod 28).

This is true since

1124 ≡ 7 (mod 29).

For more than ten years since its invention, Adleman’s method and its variants were the
fastest algorithms for computing discrete logarithms. But the situation changed in 1993
Gordon [2] proposed an algorithm for computing discrete logarithms in GF(p). Gordon’s
algorithm is based on the Number Field Sieve (NFS) for integer factorization, with the
heuristic expected running time

O (exp
(
c(log p)1/3(log log p)2/3

))
,

the same as that used in factoring. The algorithm can be briefly described as follows:

Algorithm 5.4 (Gordon’s NFS) This algorithm computes the discrete logarithm x such
that ax ≡ b (mod p) with input a, b, p, where a and b are generators and p is prime:

[1] (Precomputation): Find the discrete logarithms of a factor base of small rational primes,
which must only be done once for a given p.

[2] (Compute Individual Logarithms): Find the logarithm for each b ∈ Fp by finding the
logarithms of a number of “medium-sized” primes.
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[3] (Compute the Final Logarithm): Combine all the individual logarithms (by using the
Chinese Remainder theorem) to find the logarithm of b.

Problems for Section 5.4

1. Let the factor base � = {2, 3, 5}. Use the index calculus method to find the discrete
logarithm k:

k ≡ log11 7 (mod 29).

2. Let the factor base � = {2, 3, 5, 7}. Use the index calculus method to find the discrete
logarithm k:

k ≡ log2 37 (mod 131).

3. Use the index calculus with factor base � = (2, 3, 5, 7, 11) to solve the DLP problem

k ≡ log7 13 (mod 2039).

4. Let

p = 31415926535897932384626433832795028841971693993751058209

= 74944592307816406286208998628034825342117067982148086513

= 282306647093844609550582231725359408128481237299,

x = 2,

y = 27182818284590452353602874713526624977572470936999595749

66967627724076630353547594571382178525166427427466391932

003059921817413596629043572900334295260595630738.

Use Gordon’s index calculus method (Algorithm 5.4) to compute the k such that

y ≡ xk (mod p).

5. Give a heuristic argument for the expected running time

O (exp
(
c(log p)1/3(log log p)2/3

))
of Gordon’s index calculus method (based on NFS) for DLP.

6. Let the group G = (Z/pZ)∗ with p prime, let also x, y ∈ G such that y ≡ xk (mod p).
Use smooth numbers to show that the discrete logarithm k ≡ logx y (mod p) can be
computed in expected time L(p)

√
2+o(1).
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5.5 Elliptic Curve Discrete Logarithms

The Elliptic Curve Discrete Logarithm Problem (ECDLP) is of fundamental importance to
ECC (elliptic curve cryptography): Let E/Fp be an elliptic curve over a finite field Fp, say,
given by a Weierstrass equation

E : y2 ≡ x3 + ax + b (mod p), (5.18)

P and Q the two points in the elliptic curve group E(Fp). Then the ECDLP is to find the
integer k (assuming that such an integer k exists)

k ≡ logT S (mod p) (5.19)

such that

Q ≡ k P (mod p). (5.20)

Formally, the Elliptic Curve Discrete Logarithm Problem (ECDLP) could be defined as
follows:

Input : P, Q ∈ E(Fp)

Output : k ∈ Z>1 with Q ≡ k P (mod q)

if such a k exists.

⎫⎪⎪⎬⎪⎪⎭ (5.21)

The ECDLP is little bit more difficult than the DLP, on which the elliptic curve digital
signature algorithm/elliptic curve digital signature standard (ECDSA/ECDSS) [37] is based
on. As ECDLP is the generalization of DLP, which extends, for example, the multiplicative
group F∗p to the elliptic curve group E(Fp), many methods for DLP, even for IFP, can
be extended to ECDLP, for example, the Baby-step Giant-step for DLP, Pollard’s ρ and λ

Methods for IFP and DLP; the Silver–Pohlig–Hellman Method for DLP, can also be naturally
extended to ECDLP. In what follows, we present an example of solving ECDLP by an analog
of the Silver–Pohlig–Hellman Method for elliptic curves over F∗p.

Example 5.6 Let

Q ≡ k P (mod 1009)
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where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

E : y2 ≡ x3 + 71x + 602 (mod 1009)

P = (1, 237)

Q = (190, 271)

order(E(F1009)) = 1060 = 22 · 5 · 53

order(P) = 530 = 2 · 5 · 53

Find k.

[1] Find the individual logarithm modulo 2: as (530/2) = 265, we have⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

P2 = 265P = (50, 0)

Q2 = 265Q = (50, 0)

Q2 = P2

k ≡ 1 (mod 2)

[2] Find the individual logarithm modulo 5: as 530/5 = 106, we have⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

P5 = 106P = (639, 160)

Q5 = 106Q = (639, 849)

Q5 = −P5

k ≡ 4 (mod 5)

[3] Find the individual logarithm modulo 53: as 530/53 = 10, we have⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

P53 = 10P = (32, 737)

Q53 = 10Q = (592, 97)

Q53 = 48P53

k ≡ 48 (mod 53)

[4] Use the Chinese Remainder theorem to combine the individual logarithms to get the final
logarithm:

CHREM([1, 4, 48], [2, 5, 53]) = 419.

That is,

(190, 271) ≡ 419(1, 237) (mod 1009),
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or alternatively,

(190, 271) ≡ (1, 237)+ · · · + (1, 237)︸ ︷︷ ︸
419 summands

(mod 1009).

The index calculus for DLP is however generally not suitable for ECDLP as it is not for
general groups. In what follows, we introduce a method, called xedni calculus for ECDLP.
The xedni calculus was first proposed by Joseph Silverman in [42] and [44], and analyzed
in [45]. It is called xedni calculus because it “stands index calculus on its head.” The xedni
calculus is a new method that might be used to solve the ECDLP, although it has not yet been
tested in practice. It can be described as follows:

[1] Choose points in E(Fp) and lift them to points in Z2.
[2] Choose a curve E(Q) containing the lift points; use Mestre’s Method (in reverse) to make

rank E(Q) small.

Whilst the index calculus works in reverse:

[1] Lift E/Fp to E(Q); use Mestre’s Method to make rank E(Q) large.
[2] Choose points in E(Fp) and try to lift them to points in E(Q).

A brief description of the xedni algorithm is as follows.

Algorithm 5.5 (Xedni calculus for the ECDLP) Let Fp be a finite field with p elements
(p prime), E/Fp an elliptic curve over Fp, say, given by

E : y2 + ap,1xy + ap,3 y = x3 + ap,2x2 + ap,4x + ap,6. (5.22)

Np the number of points in E(Fp), S and T the two points in E(Fp). This algorithm tries to
find an integer k

k = logT S (5.23)

such that

S = kT in E(Fp). (5.24)

[1] Fix an integer 4 ≤ r ≤ 9 and an integer M which is a product of small primes.
[2] Choose r points:

PM,i = [xM ,i , yM,i , zM,i ], 1 ≤ i ≤ r (5.25)

having integer coefficients and satisfying
[a] the first 4 points are [1, 0, 0], [0, 1, 0], [0, 0, 1], and [1, 1, 1].
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[b] for every prime l | M , the matrix B(PM,1, . . . , PM,r ) has maximal rank modulo l.
Further choose coefficients uM,1, uM,2, . . . , uM,10 such that the points

PM,1, PM,2, . . . , PM,r satisfy the congruence:

uM,1x3 + uM,2x2 y + uM,3xy2 + uM,4 y3 + uM,5x2z + uM,6xyz + uM,7 y2z

+ uM,8xz2 + uM,9 yz2 + uM,10z3 ≡ 0 (mod M). (5.26)

[3] Choose r random pair of integers (si , ti ) satisfying 1 ≤ si , ti < Np, and for each 1 ≤
i ≤ r , compute the point Pp,i = (x p,i , yp,i ) defined by

Pp,i = si S − ti T in E(Fp). (5.27)

[4] Make a change of variables in P2 of the form⎛⎝ X ′

Y ′

Z ′

⎞⎠ =
⎛⎝a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞⎠⎛⎝ X
Y
Z

⎞⎠ (5.28)

so that the first four points become

Pp,1 = [1, 0, 0], Pp,2 = [0, 1, 0], Pp,3 = [0, 0, 1], Pp,4 = [1, 1, 1].

The equation for E will then have the form:

u p,1x3 + u p,2x2 y + u p,3xy2 + u p,4 y3 + u p,5x2z + u p,6xyz

+ u p,7 y2z + u p,8xz2 + u p,9 yz2 + u p,10z3 = 0. (5.29)

[5] Use the Chinese Remainder theorem to find integers u′1, . . . , u′10 satisfying

u′i ≡ u p,i (mod p) and u′i ≡ uM,i (mod M), (5.30)

for all 1 ≤ i ≤ 10.
[6] Lift the chosen points to P2(Q). That is, choose points

Pi = [xi , yi , zi ], 1 ≤ i ≤ r, (5.31)

with integer coordinates satisfying

Pi ≡ Pp,i (mod p) and Pi ≡ PM,i (mod M), (5.32)

for all 1 ≤ i ≤ r . In particular, take

P1 = [1, 0, 0], P2 = [0, 1, 0], P3 = [0, 0, 1], P4 = [1, 1, 1].
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[7] Let B = B(P1, . . . , Pr ) be the matrix of cubic monomials defined earlier. Consider the
system of linear equations:

Bu = 0. (5.33)

Find a small integer solution u = [u1, . . . , u10] to (5.33) which has the additional
property

u ≡ [u′1, . . . , u′10] (mod Mp), (5.34)

where u′1, . . . , u′10 are the coefficients computed in Step [5]. Let Cu denote the associated
cubic curve:

Cu : u1x3 + u2x2 y + u3xy2 + u4 y3 + u5x2z + u6xyz

+ u7 y2z + u8xz2 + u9 yz2 + u10z3 = 0. (5.35)

[8] Make a change of coordinates to put Cu into standard minimal Weierstrass form with
the point P1 = [1, 0, 0] the point at infinity, O. Write the resulting equation as

Eu : y2 + a1xy + a3 y = x3 + a2x2 + a4x + a6 (5.36)

with a1, . . . , a6 ∈ Z, and let Q1, Q2, . . . , Qr denote the images of P1, P2, . . . , Pr under
this change of coordinates (so in particular, Q1 = O). Let c4(u), c6(u), and �(u) be the
usual quantities in Silverman (2000) associated to the equation (5.36).

[9] Check if the points Q1, Q2, . . . , Qr ∈ Eu(Q) are independent. If they are, return to
Step [2] or [3]. Otherwise compute a relation of dependence

n2 Q2 + n3 Q3 + · · · + nr Qr = O, (5.37)

set

n1 = −n2 − n3 − · · · − nr , (5.38)

and continue with the next step.
[10] Compute

s =
r∑

i=1

ni si and t =
r∑

i=1

ni ti . (5.39)

If gcd(s, n p) > 1, go to Step [2] or [3]. Otherwise compute an inverse ss ′ ≡ 1 (mod Np).
Then

logT S ≡ s ′t (mod Np), (5.40)

and the ECDLP is solved.
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Table 5.1 Algorithms for IFP, DLP, and ECDLP

IFP DLP ECDLP

Trial divisions Baby-step Giant-step Baby-step Giant-step
Pollard’s ρ Method Pollard’s ρ, λ Methods Pollard’s ρ, λ Mmethods
CFRAC/MPQS Index calculus
NFS NFS
Xedni calculus Xedni calculus Xedni calculus
Quantum algorithms Quantum algorithms Quantum algorithms

As can be seen, the basic idea in the above algorithm is that we first choose points
P1, P2, . . . , Pr in E(Fp) and lift them to points Q1, Q2, . . . , Qr having integer coordinates,
then we choose an elliptic curve E(Q) that goes through the points Q1, Q2, . . . , Qr , and
finally check if the points Q1, Q2, . . . , Qr are dependent. If they are, the ECDLP is almost
solved. Thus, the goal of the xedni calculus is to find an instance where an elliptic curve has
smaller than expected rank. Unfortunately, a set of points Q1, Q2, . . . , Qr as constructed
above will usually be independent. So, it will not work. To make it work, a congruence
method, due to Mestre, is used in reverse to produce the lifted curve E having smaller than
expected rank.1 Again unfortunately, Mestre’s Method is based on some deep ideas and
unproved conjectures in analytic number theory and arithmetic algebraic geometry, it is not
possible for us at present to give even a rough estimate of the algorithm’s running time. So,
we know virtually nothing about the complexity of the xedni calculus. We also do not know
if the xedni calculus will be practically useful; it may be completely useless from a practical
point of view. Much needs to be done before we will have a better understanding of the
xedni calculus.

The index calculus is probabilistic, subexponential-time algorithm applicable for both the
Integer Factorization Problem (IFP) and the finite field Discrete Logarithm Problem (DLP).
However, there is no known subexponential-time algorithm for the Elliptic Curve Discrete
Logarithm Problem (ECDLP); the index calculus will not work for the ECDLP. The xedni
calculus, on the other hand, is applicable to ECDLP (it is in fact also applicable to IFP and
DLP), but unfortunately its complexity is essentially unknown. From a computability point
of view, xedni calculus is applicable to IFP, DLP, and ECDLP, but from a complexity point of
view, the xedni calculus may turn out to be useless (i.e., not at all practical). As for quantum
algorithms, we now know that IFP, DLP, and ECDLP can all be solved in polynomial-time
if a quantum computer is available for use. However, the problem with quantum algorithms
is that a practical quantum computer is out of reach in today’s technology. We summarize
various algorithms for IFP, DLP, and ECDLP in Table 5.1.

Finally, we conclude that we do have algorithms to solve the IFP, DLP, and ECDLP; the
only problem is that we do not have an efficient algorithm, nor has any one proved that
such an efficient algorithm exists. From a computational complexity point of view, a P-type
problem is easy to solve, whereas an NP-type problem is easy to verify [7], so the IFP, DLP,
and ECDLP are clearly in NP . For example, it might be difficult (indeed, it is difficult at
present) to factor a large integer, but it is easy to verify whether or not a given factorization

1Mestre’s original method is to produce elliptic curves of large rank.
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is correct. If P = NP , then two types of the problems are the same, the factorization is
difficult only because no one has yet been clever enough to find an easy/efficient algorithm
(it may turn out that the integer factorization problem is indeed NP-hard, regardless of
the cleverness of the human beings). Whether or not P = NP is one of the biggest open
problems in both mathematics and computer science, and it is listed in the first of the seven
Millennium Prize Problems by the Clay Mathematics Institute in Boston of May 24 2000
[6]. The struggle continues and more research needs to be done before we can say anything
about whether or not P = NP!

Problems for Section 5.5

1. As Shank’s Baby-step Giant-step Method works for arbitrary groups, it can be extended,
of course, to elliptic curve groups.
(1) Develop an elliptic curve analog of Shank’s algorithm to solve the ECDLP.
(2) Use the analog algorithm to solve the following ECDLP, that is, to find k such that

Q ≡ k P (mod 41)

where E/F41 : y2 ≡ x3 + 2x + 1 (mod 41), P = (0, 1) and Q = (30, 40).
2. Poland’s ρ and λ Methods for IFP/DLP can also be extended to ECDLP.

(1) Develop an elliptic curve analog of Poland ρ algorithm to solve the ECDLP.
(2) Use the analog algorithm to solve the following ECDLP: Find k such that

Q ≡ k P (mod p)

where EF1093 : y2 ≡ x3 + x + 1 (mod 1093), P = (0, 1) and Q = (413, 959).
3. (Extend the Silver–Pohlig–Hellman Method)

(1) Develop an elliptic curve analog of Silver-Pohlig-Hellman method for ECDLP.
(2) Use this analog method to solve the following ECDLP: Find k such that

Q ≡ k P (mod p)

where EF599 : y2 ≡ x3 + 1 (mod 1093), P = (60, 19) and Q = (277, 239).
4. In 1993, Menezes, Okamota, and Vanstone developed an algorithm for ECDLP over Fpm

with pm prime power. Give a description and complexity analysis of this algorithm.
5. Let E\Fp be the elliptic curve E over Fp with p prime, where E is defined by

y2 = x3 + ax + b.

(1) Let P, Q ∈ E with P �= ±Q are two points on E . Find the addition formula for
computing P + Q.

(2) Let P ∈ E with P �= −P . Find the addition formula for computing 2P .
(3) Let E\F23 be as follows:

E\F23 : y2 ≡ x3 + x + 4 (mod 23).
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Find all the points, E(F23), including the point at infinity, on the E .
(4) Let P = (7, 20) and Q = (17, 14) be in E\F23 defined above, find P + Q and 2P .
(5) Let Q = (13, 11) and P = (0, 2) such that Q ≡ k P (mod 23). Find k =

logP Q (mod 23), the discrete logarithm over E(F23).
6. Let the elliptic curve be as follows:

E\F151 : y2 ≡ x3 + 2x (mod 151)

with order 152. A point P = (97, 26) with order 19 is given. Let also Q = (43, 4) such
that

Q ≡ k P (mod 151).

Find k = logP Q (mod 151), the discrete logarithm over E(F151).
7. Let the elliptic curve be as follows:

E\F43 : y2 ≡ x3 + 39x2 + x + 41 (mod 43)

with order 43. Find the ECDLP

k = logP Q (mod 43),

where P = (0, 16) and Q = (42, 32).
8. Let the elliptic curve be as follows:

E\F1009 : y2 ≡ x3 + 71x + 602 (mod 1009).

Find the ECDLP

k ′ = log′P Q′ (mod 53)

in

Q′ = (529, 97) = k ′(32, 737) = k ′P ′

in the subgroup of order 53 generated by P ′ = (32, 737).
9. In November 1997, Certicom, a computer security company in Waterloo, Canada (see

the official webpage:
http://www.certicom.com/index.php?action=ecc,ecc_

challenge) introduced the Elliptic Curve Cryptosystem (ECC) Challenge.
These problems aim at increasing industry understanding and appreciation of the
difficulty of ECDLP and encouraging and stimulating further research in the security
analysis of ECC. The challenge is to compute the ECC private keys from the given
list of ECC public keys and associated system parameters. This is the type of problem
facing an adversary who wishes to attack ECC. These problems are defined on curves
either over F2m or over Fp with p prime (see Table 5.2 and Table 5.3). Also there are
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three levels of difficulty associated with the curves: Exercise level (with bits less than
109), rather easy level (with bits 109–131), and very hard level (with bits 163–359).
Readers who are interested in solving real-world ECDLP problems are suggested to
try to solve the problems listed in Table 5.2 and Table 5.3, particularly those with the
question marks “?” as they are still open.

Table 5.2 Elliptic curves over F2m

Field size Estimated number Prize Status
Curve (in bits) of machine days in US dollars

ECC2K-95 97 8637 $5000 May 1998
ECC2-97 97 180448 $5000 Sept 1999
ECC2K-108 108 1.3× 106 $10000 April 2000
ECC2-109 109 2.1× 107 $10000 April 2004

ECC2K-130 131 2.7× 109 $20000 ?
ECC2-131 131 6.6× 1010 $20000 ?
ECC2-163 163 2.9× 1015 $30000 ?
ECC2K-163 163 4.6× 1014 $30000 ?
ECC2-191 191 1.4× 1020 $40000 ?
ECC2-238 239 3.0× 1027 $50000 ?
ECC2K-238 239 1.3× 1026 $50000 ?
ECC2-353 359 1.4× 1045 $100000 ?
ECC2K-358 359 2.8× 1044 $100000 ?

Table 5.3 Elliptic curves over Fp

Field size Estimated number Prize Status
Curve (in bits) of machine days in US dollars

ECCp-97 97 71982 $5000 March 1998
ECCp-109 109 9× 107 $10000 Nov 2002

ECCp-131 131 2.3× 1010 $20000 ?
ECCp-163 163 2.3× 1015 $30000 ?
ECCp-191 191 4.8× 1019 $40000 ?
ECCp-239 239 1.4× 1027 $50000 ?
ECC2p-359 359 3.7× 1045 $100000 ?

10. In ECCp-109, given

E(Fp) : y2 ≡ x3 + ax + b (mod p),

p = 564538252084441556247016902735257,

a = 321094768129147601892514872825668,

b = 430782315140218274262276694323197,

x p = 97339010987059066523156133908935,
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yp = 149670372846169285760682371978898,

xq = 44646769697405861057630861884284,

yq = 522968098895785888047540374779097,

show that the following value of k

k = 281183840311601949668207954530684

is the correct value satisfying

Q(xq , yq ) ≡ k · P(x p, yp) (mod p).

11. In ECCp-131, given

E(Fp) : y2 ≡ x3 + ax + b (mod p),

p = 1550031797834347859248576414813139942411,

a = 1399267573763578815877905235971153316710,

b = 1009296542191532464076260367525816293976,

x p = 1317953763239595888465524145589872695690,

yp = 434829348619031278460656303481105428081,

xq = 1247392211317907151303247721489640699240,

yq = 207534858442090452193999571026315995117,

find the correct value of k such that

Q(xq , yq ) ≡ k · P(x p, yp) (mod p).

5.6 Bibliographic Notes and Further Reading

In this chapter, we presented some important modern algorithms for the Discrete Logarithm
Problem (DLP) and the Elliptic Curve Discrete Logarithm Problem (ECDLP).

For general references on DLP and methods for solving DLP, it is suggested that readers
consult: [8–26].

The Baby-step and Giant-step Method for DLP was originally proposed by Shanks in
1971 [3]. Pohlig–Hellman method of DLP was proposed in [5]. The ρ and λ Methods were
proposed by Pollard in [4].

The currently most powerful method, the index calculus, for DLP is discussed in many
references such as [1, 2, 27, 28]. Generally speaking, the index calculus belongs to a wide
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range of methods, such as the Continued FRACtion Method (CFRAC), Quadratic Sieve
(QS), and Number Field Sieve (NFS). As far as Number Field Sieve is concerned, there is
an analog method, called Function Field Sieve, based on the algebraic function field which
is just an analog of the number field. FFS, just the as NFS, can be used for solving both IFP
and DLP. For more information on FFS, see [29, 30].

The ECDLP and methods for ECDLP are discussed in, for example, [31–43]. In particular,
the xedni calculus for ECDLP was proposed in [44] and analyzed in [45].
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Part III
Modern Cryptography

Cryptography (from the Greek Kryptós, “hidden”, and gráphein, “to write”) is the study of
the principles and techniques by which information can be concealed in ciphertexts and later
revealed by legitimate users employing the secret key, but in which it is either impossible
or computationally infeasible for an unauthorized person to do so. Cryptanalysis (from the
Greek Kryptós and analýein, “to loosen”) is the science (and art) of recovering information
from ciphertexts without knowledge of the key. Both terms are subordinate to the more
general term cryptology (from the Greek Kryptós and lógos, “word”). That is,

Cryptology := Cryptography⊕ Cryptanalysis
↙ ↘

Public-Key Secret-Key
Cryptography Cryptography

↙ ↘
Encryption Decryption

(Public-Key) (Private-Key)
Signature Generation Signature Verification

(Private-Key) (Public-Key)

The history of cryptography, more specifically, secret-key cryptography, is at least as old as
the human civilization. The history for public-key cryptography is, however, rather short,
and the official date of birth of public-key cryptography as well as digital signatures was
in fact 1976 when Diffie and Hellman published their seminal paper New Directions in
Cryptography. In this part of the book, we emphasize modern public-key cryptography and
digital signatures. Our approach to cryptography will be more on the combined nature of
mathematics and computer science; this can be seen from the following figure:

Modern cryptography

Computer scienceMathematics

Computational
number theory

Computation theory

Computational Number Theory and Modern Cryptography, First Edition. Song Y. Yan.
© 2013 Higher Education Press. All rights reserved. Published 2013 by John Wiley & Sons Singapore Pte. Ltd.
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6
Secret-Key Cryptography

Cryptography starts from secret-key cryptography. After a brief introduction to the basic
concepts of cryptography and cryptanalysis, various types of secret-key cryptography shall
be discussed in this chapter.

6.1 Cryptography and Cryptanalysis

Cryptography (from the Greek Kryptós, “hidden” or “secret”, and gráphein, “writing”) is the
study of the processes of encryption (mapping the original message, called the plaintext, into
a secret form, called the the ciphertext, using the encryption key), and decryption (inverting
the ciphertext back to the plaintext, using the corresponding decryption key), in such a way
that only the intended recipients can decrypt and read the original messages.

Cryptography
def= Encryption⊕ Decryption

The methods of encryption are often also called ciphers. Cryptanalysis (from the Greek
Kryptós and analýein, “loosening”), on the other hand, is the study of breaking the encryptions
without the knowledge of the key:

Cryptanalysis
def= Cryptanalytic Attacks on Encryptions

Cryptology (from the Greek Kryptós and lógos, “word”) consists of both cryptography and
cryptanalysis:

Cryptology
def= Cryptography⊕ Cryptanalysis

The idea of encryption, decryption, cryptanalysis, and secure communications over an inse-
cure channel, usually a computer network and particularly the Internet, can be depicted as
in Figure 6.1. Throughout the book, we shall assume that Bob sends a message to Alice, but
Eve wants to cryptanalyze the message:

Bob Message−−−−−→ Alice.
↑↓

Eve

(6.1)

Computational Number Theory and Modern Cryptography, First Edition. Song Y. Yan.
© 2013 Higher Education Press. All rights reserved. Published 2013 by John Wiley & Sons Singapore Pte. Ltd.
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M
Cryptanalyst/Enemy

Message
Message

DecryptionEncryption

M = Dk(C)

Key source
(Secret key)

Public and also insecure

channel

Secure channel

MM C = Ek(M)

Figure 6.1 Cryptography and cryptanalysis

Modern cryptography, however, is the study of the mathematical systems of encryption and
decryption, to solve the security, particularly the network security, problems as follows:

(1) Confidentiality or privacy: To stop Eve understanding Bob’s message to Alice even if
she can intercept and get the message.

(2) Integrity: To make sure that Bob’s message has not been modified by Eve.
(3) Authentication or authorization: To make sure the message received by Alice is indeed

from Bob, not from Eve.
(4) Nonrepudiation: To stop Bob later denying the sending of his message. Nonrepudiation

is particularly important in electronic commerce since we need to make sure that a
consumer cannot deny the authorization of a purchase. It must be noted that in some
applications, however, such as in electronic voting, the nonrepudiation feature should,
in fact, be avoided, since the voter does not want to disclose the authorization of a vote
regardless whether of not he actually did the vote.

Such a mathematical system is called the cryptographic system, or cryptosystem for short.

Definition 6.1 A conventional secret-key cryptosystem, SKC, may be formally defined as
follow: (depicted in Figure 6.2):

SKC = (M, C,K, M, C, k, E, D) (6.2)

where

(1) M is the set of plaintexts, called the plaintext space.
(2) C is the set of cipherexts, called the ciphertext space.
(3) K is the set of keys, called the key space.
(4) M ∈M is a piece of plaintext.
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MM

Alice

(receiver)

Public/insecure channel Eve (cryptanalyst)

Ciphertext

Plaintext

Bob

(sender)

Plaintext Encryption Decryption

C →M
?
= M

M = Dk(C)C = Ek(M)

C

k

Key source

Figure 6.2 Secret-key cryptography

(5) C ∈ C is a piece of ciphertext.
(6) k ∈ K is the key for both encryption and decryption.
(7) E is the encryption function

Ek : M %→ C (6.3)

where M ∈M maps to C ∈ C, using the key k, such that

C = Ek(M) (6.4)

(8) D is the decryption function

Dk : C %→ M (6.5)

where C ∈ C maps to M ∈M, using the same key k again such that

M = Dk(C) (6.6)

satisfying

Ek Dk = 1 and Dk(C) = Dk(Ek(M)) = M. (6.7)

Cryptanalysis , on the other hand, is the study of the cryptanalytic attacks on cryptosystems,
aiming at breaking the cryptosystems without using/knowing the keys, but according to
the Kerckhoff principle, the cryptanalyst who wants to break the cryptosystem knows the
cryptosystem. For example, the following is a ciphertext presented by Édouard Lucas at
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the 1891 meeting of the French Association for Advancement of Science (see page 388 of
Williams 1998) [1]), based on Étienne Bazeries’ cylindrical cryptography (see pages 244–
250 of Kahn 1976 [2]); it has never been decrypted, and hence is suitable as a good challenge
to the interested reader:

XSJOD PEFOC XCXFM RDZME

JZCOA YUMTZ LTDNJ HBUSQ

XTFLK XCBDY GYJKK QBSAH

QHXPE DBMLI ZOYVQ PRETL

TPMUK XGHIV ARLAH SPGGP

VBQYH TVJYJ NXFFX BVLCZ

LEFXF VDMUB QBIJV ZGGAI

TRYQB AIDEZ EZEDX KS

The security or the unbreakability of any cryptographic system is of paramount importance.
There are several different types of security measures for a cryptographic system:

(1) Unconditionally secure: A cryptosystem is unconditionally secure if a cryptanalyst can-
not determine how to find the plaintext M regardless of how much ciphertext C and
computer time/resources he has available to him. A one-time pad (OTP) can be shown to
be unconditionally secure, as the key is used only one time (i.e., there are at least as many
keys as the plaintexts), the key string is a random string, and the key size is at least as long
as the plaintext string. Unconditional security for cryptosystems is called perfect secrecy,
or information-theoretic security. A cryptosystem S is unconditionally unbreakable if
S is unconditionally secure. In general, cryptosystems do not offer perfect secrecy, in
particular public-key cryptosystems, such as the RSA cryptosystem described in later
sections, cannot be unconditionally secure/breakable since once a ciphertext C is given,
its corresponding plaintext M can in principle be recovered by computing all possible
plaintexts until C is obtained, an attack called forward search, which will be discussed
later. Nevertheless, unconditionally unbreakable cryptosystems exist; it was first proved
by Shannon in his 1949 seminal paper in modern cryptography “Communication Theory
of Secrecy Systems” [3]. Thus the prominent English mathematician J. E. Littlewood
(1885–1977) commented:

The legend that every cipher is breakable is of course absurd, though still widespread
among people who should know better.

(2) Computationally secure: A cryptosystem S is computationally secure or polynomially
secure if a cryptanalyst cannot decrypt C to get M in polynomial-time (or space). A
cryptosystem S is computationally unbreakable, if it is unbreakable in polynomial-
time, that is, it is computationally secure. According to the Cook–Karp thesis, any
problem that cannot be solved in polynomial-time is computationally infeasible, thus,
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if the cryptanalytic attack on a cryptosystem is computationally infeasible, then the
cryptosystem is computationally secure and computationally unbreakable. There are
several types of computationally security:
(a) Provably secure: A cryptosystem S is provably secure if the difficulty of breaking it

can be shown to be essentially as difficult as solving a well-known and supposedly
difficult mathematical problem such as the Integer Factorization Problem, IFP, or the
Discrete Logarithm Problem, DLP. For example, the Rabin cryptosystem described
later is provably secure, as the security of the Rabin cryptosystem is equivalent to
the IFP.

(b) Practical/conjectured secure: A cryptosystem S is practical secure if the breaking of
the system S is conjectured to be as difficult as solving a well-known and supposedly
difficult mathematical problem such as the IFP or the DLP. For example, breaking
the most popular public-key cryptosystem, RSA, is conjectured as being as hard
as solving the IFP, but so far this has never been proved or disproved. Most of the
public-key and secret-key cryptosystems in current use are of this type.

There are several types of possible cryptanalytic attacks on a cryptosystem S, depending
on what information the cryptanalyst might already have regarding S:

(1) Ciphertext-only attack: Only a piece of ciphertext C is known to the cryptanalyst whose
goal is to find the corresponding plaintext M and/or the key k. This is the most difficult
type of attack; any cryptosystem vulnerable to this type of attack is considered to be
completely insecure.

(2) Known-plaintext attack: The cryptanalyst has a piece of plaintext M and the correspond-
ing ciphertext C . The goal is the find the key k so that other ciphertexts using the same
encryption/key may be decrypted.

(3) Chosen-plaintext attack: The cryptanalyst has gained temporary access to the encryption
machinery, so he can choose a piece of plaintext M and construct the corresponding
ciphertext C . The goal here is to find the key k.

(4) Chosen-ciphertext attack: The cryptanalyst has gained temporary access to the decryption
machinery, so can choose a piece of ciphertext C and construct the corresponding
plaintext M . The goal here is also to find the key k.

A good cryptosystem should resist all of these types of attacks, so that it is impossible for a
cryptanalysis to get the key k or to find the plaintext M in polynomial-time.

Remark 6.1 Public-key cryptosystems, such as the RSA cryptosystem described in later
sections, give rise to the chosen-ciphertext attack, since the cryptanalyst may specify/obtain
some ciphertext using the public key and learn the corresponding plaintext. In fact, all public-
key cryptographic systems are vulnerable to a chosen-ciphertext attack, which, however, can
be avoided by adding appropriate redundancy or randomness (padding or salting) prior to
encryption.

Compared to secret-key cryptography, public-key cryptography, or asymmetric key cryp-
tography (see Figure 6.3), is surprisingly almost the same (although the idea is different)
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MM

Alice

(receiver)

Public/insecure channel Eve (cryptanalyst)

Ciphertext

Plaintext

Bob

(sender)

Plaintext Encryption Decryption

C →M
?
= M

C

Key source Key source

e d

(e, d) ∈ k

M = Ee(C) C = Dd(M)

Figure 6.3 Public-key cryptography

as the secret-key cryptography, or symmetric key cryptography, except that the keys k for
encryption and decryption are different. That is, we need two keys, ek and dk , such that ek

is used for encryption and dk for decryption, respectively. As ek is only used for encryp-
tion, it can be made public; only dk must be kept a secret for decryption. To distinguish
public-key cryptosystems from secret-key cryptosystems, ek is called the public key, and
dk the private key; only the key used in secret-key cryptosystems is called the secret key.
Remarkably enough, secret-key cryptography has a very long history, almost as long as our
human civilization; whereas public-key cryptography has a rather short history. In fact, as
mentioned above, the official date of birth of public-key cryptography was 1976, when Diffie
and Hellman, then both at Stanford University, published their seminal paper New Directions
in Cryptography [4] (see the first page of the paper in Figure 6.4). It was in this seminal
paper that they first publicly proposed the completely new idea of public-key cryptography
as well as digital signatures. Although Diffie and Hellman did not have a practical imple-
mentation of their idea, they did propose [4] an alternative key-exchange scheme over the
insecure channel, based on the intractability of the DLP problem and using some of the ideas
proposed earlier (although published later) by Merkle [5] (published in 1978, but submitted
in 1975; see the first page of this paper in Figure 6.5).

Shortly after the publication of Diffie and Hellman’s paper, in 1977 Rivest, Shamir,
and Adleman, then all at Massachusetts Institute of Technology (MIT), proposed a first
workable and practical public-key cryptosystem in 1977 ([6–8]), see the first page of
the paper in Figure 6.6. The system is now known as RSA; it was first made public to
the world and became famous probably because of Gardner’s 1978 paper in Scientific
American [7].

It is interesting to note that the British cryptographers Ellis, Cocks, and Williamson at
the UK government’s Communications-Electronics Security Group (CESG) of the Govern-
ment Communications Headquarters (GCHQ) also claimed that they secretly discovered
the public-key encryption years before the US scientists [9–13]. There are of course two
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Figure 6.4 First page of Diffie and Hellman’s paper (Courtesy of IEEE)

different universes of cryptography: public (particularly for people working in academic
institutions) and secret (particularly for people working for militaries and governments).
Ellis-Cocks-Williamson certainly deserve some credit for their contribution to the develop-
ment of public-key cryptography. It should be noted that Hellman and his colleagues not only
invented the public-key encryption, but also digital signatures which were not mentioned in
any of Ellis-Cocks-Williamson’s documents/papers.

The implementation of public-key cryptosystems is based on trapdoor one-way functions.
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Figure 6.5 First page of Merkle’s paper
(Courtesy of ACM)

Definition 6.2 Let S and T be finite sets. A one-way function

f : S → T (6.8)

is an invertible function satisfying

(1) f is easy to compute, that is, given x ∈ S, y = f (x) is easy to compute.
(2) f −1, the inverse function of f , is difficult to compute, that is, given y ∈ T , x = f −1(y)

is difficult to compute.
(3) f −1 is easy to compute when a trapdoor (i.e., a secret string of information associated

with the function) becomes available.

A function f satisfying only the first two conditions is also called a one-to-one one-way
function. If f satisfies further the third condition, it is called a trapdoor one-way function.
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Figure 6.6 First page of RSA’s paper (Courtesy of ACM)

Example 6.1 The following functions are one-way functions:

(1) f : pq %→ n is a one-way function, where p and q are prime numbers. The function f
is easy to compute since the multiplication of p and q can be done in polynomial time.
However, the computation of f −1, the inverse of f is hard (this is the IFP).
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(2) f : x %→ gx mod N is a one-way function. The function f is easy to compute since the
modular exponentiation gx mod N can be performed in problem polynomial time. But
the computation of f −1, the inverse of f is hard (this is the DLP problem).

(3) f : x %→ xk mod N is a trapdoor one-way function, where N = pq with p and q primes,
and kk ′ ≡ 1(mod φ(N )). It is obvious that f is easy to compute since the modular
exponentiation xk mod N can be done in polynomial time, but f −1, the inverse of f
(i.e., the kth root of x modulo N ) is difficult to compute. However, if k ′, the trapdoor is
given, and f can be easily inverted, since (xk)k ′ = x .

Now we are in a position to introduce the formal definition of public-key cryptography.

Definition 6.3 A public-key cryptosystem , PKC, may be formally defined as follows:

PKC = (M, C,K, M, C, e, d, E, D) (6.9)

where

(1) M is the set of plaintexts, called the plaintext space.
(2) C is the set of cipherexts, called the ciphertext space.
(3) K is the set of keys, called the key space.
(4) M ∈M is a piece of particular plaintext.
(5) C ∈ C is a piece of particular ciphertext.
(6) e �= d and (e, d) ∈ K is the key.
(7) E is the encryption function

Eek : M %→ C (6.10)

where M ∈M maps to C ∈ C, using the public-key ek , such that

C = Eek (M) (6.11)

(8) D is the decryption function

Ddk : C %→ M (6.12)

where C ∈ C maps to M ∈M, using the private key dk such that

M = Ddk (C) (6.13)

satisfying

Eek Ddk = 1 and Ddk (C) = Ddk (Eek (M)) = M. (6.14)

The main task in public-key cryptography is to find a suitable trap-door one-way function,
so that both encryption and decryption are easy to perform for authorized users, whereas
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decryption, the inverse of the encryption, should be computationally infeasible for an unau-
thorized user. One of the major advantages of public-key cryptography is that it can be
used not only for encryption busting also for digital signatures, a feature which is useful for
Internet security and which is not provided by the traditional secret-key cryptography. Recall
that in public-key cryptography, we perform

C = Eek (M), (6.15)

where M is the message to be encrypted, for message encryption, and

M = Ddk (C), (6.16)

where C is the encrypted message that needs to be decrypted, for decryption. In digital
signatures, we perform the operations in exactly the opposite direction. That is, we perform
(see also Figure 6.7)

S = Ddk (M), (6.17)

where M is the message to be signed, for signature generation,

M = Eek (S), (6.18)

where S is the signed message that needs to be verified, for signature verification.
Now we are able to give a formal definition for digital signatures using public-key cryp-

tography.

Definition 6.4 A digital signature system, DSS, may be formally defined as follows:

DSS = (M, C,K, M, C, e, d, E, D) (6.19)

M
Cryptanalyst/enemy

M

Message

M
Message

Key source 2

channel

Public and also insecure

Encryption key

(Public key)(Private key)

Decryption key

Key source 1

M = Eek(S)

VerificationSigning

S = Ddk (M)

Figure 6.7 Digital signatures
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where

(1) M is the set of plain documents to be signed, called the plain document space.
(2) S is the set of signed documents, called the signed document space.
(3) K is the set of keys, called the key space.
(4) M ∈M is a piece of particular plain document.
(5) S ∈ S is a piece of particular signed document
(6) e �= d and (e, d) ∈ K is the key.
(7) D is the signature generation function

Ddk : M %→ S (6.20)

where M ∈M maps to S ∈ S, using the private key dk , such that

S = Ddk (M). (6.21)

(8) E is the signature verification function

Eek : S %→ M (6.22)

where S ∈ S maps to M ∈M, using the public key ek such that

M = Eek (M) (6.23)

satisfying

Ddk Eek = 1 and Eek (S) = Eek (Ddk (M)) = M. (6.24)

Problems for Section 6.1

1. Explain the following basic concepts in cryptography:
(1) Cryptography;
(2) Cryptanalysis;
(3) Cryptology;
(4) Public-key cryptography;
(5) Secret-key cryptography;
(6) Encryption;
(7) Decryption;
(8) Digital Signatures.

2. Explain the following four basic concepts in information security:
(1) Confidentiality;
(2) Integrity;
(3) Authentication;
(4) Nonrepudiation.



Secret-Key Cryptography 277

3. Explain the main difference between secret-key cryptography and public-key crypto-
graphy.

4. Explain the main difference between public-key cryptography and digital signatures.
5. Explain why the encryption key and the decryption key are the same key in secret-key

cryptography, whereas the encryption key and the decryption key are the two different
keys in public-key cryptography.

6. Write an essay on the history and the development of public-key cryptography.

6.2 Classic Secret-Key Cryptography

Earlier cryptosystems were based on transforming each letter of the plaintext into a different
letter to produce the ciphertext. Such ciphers are called character, substitution or mono-
graphic ciphers, since each letter is shifted individually to another letter by a substitution.
First of all, let us define the numerical equivalents, as in Table 6.1, of the 26 English capital
letters, since our operations will be on the numerical equivalents of letters, rather than the
letters themselves. The following are some typical character ciphers.

(1) Caesar cipher: A simple Caesar cipher uses the following substitution transformation:

f3 = E3(m) ≡ m + 3 (mod 26), 0 ≤ m ∈M ≤ 25, (6.25)

and

f −1
3 = D3(c) ≡ c − 3 (mod 26), 0 ≤ c ∈ C ≤ 25, (6.26)

where 3 is the key for both encryption and decryption. Clearly, the corresponding letters
of the Caesar cipher will be obtained from those in Table 6.1 by moving three letters
forward, as described in Table 6.2. Mathematically, in encryption we just perform a
mapping m %→ m + 3 mod 26 on the plaintext, whereas in decryption we perform a
mapping c %→ c − 3 mod 26 on the ciphertext.

Table 6.1 Numerical equivalents of English capital letters

A B C D E F G H I J K L M
& & & & & & & & & & & & &
0 1 2 3 4 5 6 7 8 9 10 11 12

N O P Q R S T U V W X Y Z
& & & & & & & & & & & & &
13 14 15 16 17 18 19 20 21 22 23 24 25
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Table 6.2 The corresponding letters of the Caesar cipher

M A B C D E F G H I J K L M
& & & & & & & & & & & & &

Shift 3 4 5 6 7 8 9 10 11 12 13 14 15
& & & & & & & & & & & & &

C D E F G H I J K L M N O P

M N O P Q R S T U V W X Y Z
& & & & & & & & & & & & &

Shift 16 17 18 19 20 21 22 23 24 25 0 1 2
& & & & & & & & & & & & &

C Q R S T U V W X Y Z A B C

(2) Shift transformations: Slightly more general transformations are the following so-called
shift transformations:

fk = Ek(m) ≡ m + k (mod 26), 0 ≤ k, m ≤ 25, (6.27)

and

f −1
k = Dk(c) ≡ c − k (mod 26), 0 ≤ k, c ≤ 25, (6.28)

(3) Affine transformations: More general transformations are the following so-called affine
transformations:

f(a,b) = E(a,b)(m) ≡ am + b (mod 26), (6.29)

with a, b ∈ Z the key, 0 ≤ a, b, m ≤ 26 and gcd(a, 26) = 1, together with

f −1
(a,b) = D(a,b)(c) ≡ a−1(c − b) (mod 26), (6.30)

where a−1 is the multiplicative inverse of a modulo 26 (even more generally, the mod-
ulus 26 could be any number greater than 26, but normally chosen to be a prime
number).
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Example 6.2 In character ciphers, we have

E3(IBM) = LEP,
E4(NIST) = RMWX,
E7(ENCRYPTION) = LUJYFWAPVU.

D4(GEPMJSVRME) = CALIFORNIA,
D5(JSLQFSI) = ENGLAND,
D6(JKIXEVZOUT) = DECRYPTION.

Exercise 6.1 Decrypt the following character ciphertexts:

D7(JVTTBUPJHAPVU),
D9(BNLDARCH).

Example 6.3 Use the following affine transformations

f(7,21) ≡ 7m + 21 (mod 26)

and

f −1
(7,21) ≡ 7−1(c − 21) (mod 26)

to encrypt the message SECURITY and decrypt the message VLXIJH. To encrypt the
message, we have

S = 18, 7 · 18+ 21 mod 26 = 17, S ⇒ R,
E = 4, 7 · 4+ 21 mod 26 = 23, E ⇒ X ,
C = 2, 7 · 2+ 21 mod 26 = 9, C ⇒ J ,
U = 20, 7 · 20+ 21 mod 26 = 5, U ⇒ F ,
R = 17, 7 · 17+ 21 mod 26 = 10, R ⇒ K ,
I = 8, 7 · 8+ 21 mod 26 = 25, I ⇒ Z ,
T = 19, 7 · 19+ 21 mod 26 = 24, T ⇒ Y ,
Y = 24, 7 · 24+ 21 mod 26 = 7, Y ⇒ H .

Thus, E(7,21)(SECURITY) = RXJFKZYH. Similarly, to decrypt the message VLXIJH, we
have

V = 21, 7−1 · (21− 21) mod 26 = 0, V ⇒ A,
L = 11, 7−1 · (11− 21) mod 26 = 6, L ⇒ G,
X = 23, 7−1 · (13− 21) mod 26 = 4, X ⇒ E ,
I = 8, 7−1 · (8− 21) mod 26 = 13, I ⇒ N ,
J = 9, 7−1 · (9− 21) mod 26 = 2, J ⇒ C ,
H = 7, 7−1 · (7− 21) mod 26 = 24, H ⇒ Y .

Thus, D(7,21)(VLXIJH) = AGENCY.
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Exercise 6.2 Use the affine transformation

f(11,23) = 11m + 23 (mod 26)

to encrypt the message THE NATIONAL SECURITY AGENCY. Use also the inverse
transformation

f −1
(11,23) = 11−1(c − 23) (mod 26)

to verify your result.

Monographic cryptography can be made more secure by splitting the plaintext into groups
of letters (rather than a single letter) and then performing the encryption and decryption on
these groups of letters. This block technique is called block ciphering. Block ciphers are also
called a polygraphic cipher. Block ciphers may be described as follows:

(1) Split the message M into blocks of n-letters (when n = 2 it is called a digraphic cipher)
M1, M2, · · · , M j ; each block Mi for 1 ≤ i ≤ j is a block consisting of n letters.

(2) Translate the letters into their numerical equivalents and form the ciphertext:

Ci ≡ AMi + B (mod N ), i = 1, 2, · · · , j (6.31)

where (A, B) is the key, A is an invertible n × n matrix with gcd(det(A), N ) = 1,
B = (B1, B2, · · · , Bn)T , Ci = (c1, c2, · · · , cn)T and Mi = (m1, m2, · · · , mn)T . For sim-
plicity, we just consider

Ci ≡ AMi (mod 26). (6.32)

(3) For decryption, we perform

Mi ≡ A−1(Ci − B) (mod N ), (6.33)

where A−1 is the inverse matrix of A. Again, for simplicity, we just consider

Mi ≡ A−1Ci (mod 26). (6.34)

Example 6.4 Let

M = YOUR PIN NO IS FOUR ONE TWO SIX

be the plaintext and n = 3. Let also the encryption matrix be

A =
⎛⎝ 11 2 19

5 23 25
20 7 17

⎞⎠ .
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Then the encryption and decryption of the message can be described as follows:

(1) Split the message M into blocks of 3-letters and translate these letters into their numerical
equivalents:

Y O U R P I N N O I S F
& & & & & & & & & & & &
24 14 20 17 15 8 13 13 14 8 18 5

O U R O N E T W O S I X
& & & & & & & & & & & &
14 20 17 14 13 4 19 22 14 18 8 23

(2) Encrypt these nine blocks in the following way:

C1 = A

⎛⎝ 24
14
20

⎞⎠ =
⎛⎝22

6
8

⎞⎠ , C2 = A

⎛⎝ 17
15
8

⎞⎠ =
⎛⎝5

6
9

⎞⎠ ,

C3 = A

⎛⎝ 13
13
14

⎞⎠ =
⎛⎝19

12
17

⎞⎠ , C4 = A

⎛⎝ 8
18
5

⎞⎠ =
⎛⎝11

7
7

⎞⎠ ,

C5 = A

⎛⎝ 14
20
17

⎞⎠ =
⎛⎝23

19
7

⎞⎠ , C6 = A

⎛⎝14
13
4

⎞⎠ =
⎛⎝22

1
23

⎞⎠ ,

C7 = A

⎛⎝ 19
22
14

⎞⎠ =
⎛⎝25

15
18

⎞⎠ , C8 = A

⎛⎝ 18
8

23

⎞⎠ =
⎛⎝ 1

17
1

⎞⎠ .

(3) Translating these into letters, we get the ciphertext C :

22 6 8 5 6 9 19 12 17 11 7 7
& & & & & & & & & & & &
W G I F G J T M R L H H

23 19 7 22 1 23 25 15 18 1 17 1
& & & & & & & & & & & &
X T H W B X Z P S B R B

(4) To recover the message M from C , we first compute A−1 modulo 26:

A−1 =
⎛⎝ 11 2 19

5 23 25
20 7 17

⎞⎠−1

=
⎛⎝10 23 7

15 9 22
5 9 21

⎞⎠ .
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and then perform Mi = A−1Ci as follows:

M1 = A−1

⎛⎝22
6
8

⎞⎠ =
⎛⎝24

14
20

⎞⎠ , M2 = A−1

⎛⎝5
6
9

⎞⎠ =
⎛⎝17

15
8

⎞⎠ ,

M3 = A−1

⎛⎝19
12
17

⎞⎠ =
⎛⎝ 13

13
14

⎞⎠ , M4 = A−1

⎛⎝ 11
7
7

⎞⎠ =
⎛⎝ 8

18
5

⎞⎠ ,

M5 = A−1

⎛⎝23
19
7

⎞⎠ =
⎛⎝ 14

20
17

⎞⎠ , M6 = A−1

⎛⎝ 22
1

23

⎞⎠ =
⎛⎝14

13
4

⎞⎠ ,

M7 = A−1

⎛⎝ 25
15
18

⎞⎠ =
⎛⎝ 19

22
14

⎞⎠ , M8 = A−1

⎛⎝ 1
17
1

⎞⎠ =
⎛⎝18

8
23

⎞⎠ .

So, we have:

24 14 20 17 15 8 13 13 14 8 18 5
& & & & & & & & & & & &
Y O U R P I N N O I S F

14 20 17 14 13 4 19 22 14 18 8 23
& & & & & & & & & & & &
O U R O N E T W O S I X

which is the original message.

Exercise 6.3 Let

A =

⎛⎜⎜⎝
3 13 21 9
15 10 6 25
10 17 4 8
1 23 7 2

⎞⎟⎟⎠ and B =

⎛⎜⎜⎝
1
21
8
17

⎞⎟⎟⎠ .

Use the block transformation

Ci ≡ AMi + B (mod 26)



Secret-Key Cryptography 283

to encrypt the following message

PLEASE SEND ME THE BOOK, MY CREDIT CARD NO IS

SIX ONE TWO ONE THREE EIGHT SIX ZERO

ONE SIX EIGHT FOUR NINE SEVEN ZERO TWO.

Use

Mi ≡ A−1(Ci − B) (mod 26)

to verify your result, where

A−1 =

⎛⎜⎜⎝
23 13 20 5
0 10 11 0
9 11 15 22
9 22 6 25

⎞⎟⎟⎠ .

Problems for Section 6.2

1. The matrix encryption was studied by Lester S. Hill the in late 1920s [14] and early 1930s
[15], based on some ideas from linear algebra. Such a cipher (cryptographic system) is
now called Hill cipher. If the plaintext is grouped into sets of n letters and encrypted by
an n× matrix with integer entries, then the Hill cipher is referred to as the Hill n-cipher.
Show that
(1) A square matrix A with entries in Zn is inventible modulo n if and only if the residue

of det(A) modulo n has a multiplicative inverse (reciprocal) modulo n.
(2) A square matrix A with entries in Zn is inventible modulo n if and only if n and the

residue of det(A) modulo n has no common prime factors.
(3) A square matrix A with entries in Z26 is inventible modulo 26 if and only if the

residue of det(A) modulo 26 is not divisible by 2 or 3.
2. Let p1, p2, . . . , pn be linear independent plaintext vector, and let c1, c2, . . . , cn be the

corresponding ciphertext vectors. If

P =

⎛⎜⎜⎜⎜⎜⎜⎝
pT

1

pT
2

...

pT
n

⎞⎟⎟⎟⎟⎟⎟⎠
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is the n × n matrix with row vector pT
1 , pT

2 , . . . , pT
n and if

C =

⎛⎜⎜⎜⎜⎜⎜⎝
cT

1

cT
2

...

cT
n

⎞⎟⎟⎟⎟⎟⎟⎠
is the n × n matrix with row vector cT

1 , cT
2 , . . . , cT

n , then the sequence of elementary row
operations that reduces C ti I transforms P to (A−1)T .

3. Give a complete complexity analysis of the Hill cipher.
4. Let the Hill encryption matrix be as follows:

A =
⎛⎝ 1 2 3

0 5 1
2 0 1

⎞⎠

(1) Find the inverse A−1 mod 26.
(2) Find the ciphertext of the plaintext SENDTANKS, using the above encryption matrix.

5. (A challenge problem) As mentioned in Section 6.1, the following cryptogram has never
been decrypted, and hence is suitable as a challenge to the interested reader.

XSJOD PEFOC XCXFM RDZME
JZCOA YUMTZ LTDNJ HBUSQ
XTFLK XCBDY GYJKK QBSAH
QHXPE DBMLI ZOYVQ PRETL
TPMUK XGHIV ARLAH SPGGP
VBQYH TVJYJ NXFFX BVLCZ
LEFXF VDMUB QBIJV ZGGAI
TRYQB AIDEZ EZEDX KS

6. Stream cipher is another simple cryptosystem, in which the message units are bits, and
the key is usually produced by a random bit generator (see Figure 6.8).

The plaintext is encrypted on a bit-by-bit basis:

M 0 1 1 0 0 0 1 1 1 1 1 1 1 0 1 0 1 0 · · ·
K 1 0 0 1 1 0 0 1 0 0 0 1 0 1 1 1 0 1 · · ·
C 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 1 1 · · ·

The key is fed into the random bit generator to create a long sequence of binary signals.
This “key stream” K is then mixed with the plaintext stream M , usually by a bit-wise
XOR (Exclusive-OR, or modulo-2 addition) to produce the ciphertext stream C . The
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Key source (secret key)

Key KKey K

DecryptionEncryption

MC

Pseudorandom
bit generator

PlaintextCiphertextPlaintext

Pseudorandom
bit generator

M ++

Figure 6.8 Stream cipher

decryption is done by XORing with the same key stream, using the same random bit
generator and seed:

C 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 1 1 · · ·
K 1 0 0 1 1 0 0 1 0 0 0 1 0 1 1 1 0 1 · · ·
M 0 1 1 0 0 0 1 1 1 1 1 1 1 0 1 0 1 0 · · ·

Show that
(1) The steam cipher can be easily converted to be a One-Time Pad, satisfying

(a) The key K is randomly generated.
(b) The key K can only be used once.
(c) The key size must be at least as long as the plaintext M .

(2) Show that the One-Time Pad defined above is absolutely and unconditionally
unbreakable.

6.3 Modern Secret-Key Cryptography

The exponentiation cipher, invented by Pohlig and Hellman in 1976, may be described
as follows. Let p be a prime number, M the numerical equivalent of the plaintext, where
each letter of the plaintext is replaced by its two digit equivalent, as defined in Table 6.3.
Subdivide M into blocks Mi such that 0 < Mi < p. Let k be an integer with 0 < k < p and
gcd(k, p − 1) = 1. Then the encryption transformation for Mi is defined by

Ci = Ek(Mi ) ≡ Mk
i (mod p), (6.35)
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Table 6.3 Two digit equivalents of letters

, A B C D E F G H I J K L M
& & & & & & & & & & & & & &
00 01 02 03 04 05 06 07 08 09 10 11 12 13
N O P Q R S T U V W X Y Z
& & & & & & & & & & & & &
14 15 16 17 18 19 20 21 22 23 24 25 26

and the decryption transformation by

Mi = Dk−1 (Ci ) ≡ Ck−1

i ≡ (Mk
i )k−1 ≡ Mi (mod p), (6.36)

where k · k−1 ≡ 1 (mod p − 1).

Example 6.5 Let p = 7951 and k = 91 such that gcd(7951− 1,91) = 1. Suppose we wish
to encrypt the message

M = ENCRYPTION REGULATION MOVES TO A STEP CLOSER

using the exponentiation cipher. First, we convert all the letters in the message to their
numerical equivalents via Table 6.3

05 14 03 18 25 16 20 09 15 14 00 18 05 07 21 12 01 20 09 15 14 00
13 15 22 05 19 00 20 15 00 01 00 19 20 05 16 00 03 12 15 19 05 18

and group them into blocks with four digits

0514 0318 2516 2009 1514 0018 0507 2112 0120 0915 1400
1315 2205 1900 2015 0001 0019 2005 1600 0312 1519 0518

Then we perform the following computation

C1 = 051491 mod 7951 = 2174 C2 = 031891 mod 7951 = 4468
C3 = 251691 mod 7951 = 7889 C4 = 200991 mod 7951 = 6582
C5 = 151491 mod 7951 = 924 C6 = 001891 mod 7951 = 5460
C7 = 050791 mod 7951 = 7868 C8 = 211291 mod 7951 = 7319
C9 = 012091 mod 7951 = 726 C10 = 91591 mod 7951 = 2890
C11 = 140091 mod 7951 = 7114 C12 = 131591 mod 7951 = 5463
C13 = 220591 mod 7951 = 5000 C14 = 190091 mod 7951 = 438
C15 = 201591 mod 7951 = 2300 C16 = 000191 mod 7951 = 1
C17 = 001991 mod 7951 = 1607 C18 = 200591 mod 7951 = 3509
C19 = 160091 mod 7951 = 7143 C20 = 031291 mod 7951 = 5648
C21 = 151991 mod 7951 = 3937 C22 = 051891 mod 7951 = 4736.

So, the ciphertext of M is

2174 4468 7889 6582 0924 5460 7868 7319 0726 2890 7114
5463 5000 0438 2300 0001 1607 3509 7143 5648 3937 5064.
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To decrypt the ciphertext C back to the plaintext M , since the secret key k = 91 and the
prime modulus p = 7951 are known, we compute the multiplicative inverse k−1 of k modulo
p − 1 as follows:

k−1 ≡ 1

k
(mod p − 1) ≡ 1

91
(mod 7950) ≡ 961 (mod 7950).

Thus, we have

M1 = 2174961 mod 7951 = 514 M2 = 4468961 mod 7951 = 318
M3 = 7889961 mod 7951 = 2516 M4 = 6582961 mod 7951 = 2009
M5 = 924961 mod 7951 = 1514 M6 = 5460961 mod 7951 = 18
M7 = 7868961 mod 7951 = 507 M8 = 7319961 mod 7951 = 2112
M9 = 726961 mod 7951 = 120 M10 = 2890961 mod 7951 = 915
M11 = 7114961 mod 7951 = 1400 M12 = 5463961 mod 7951 = 1315
M13 = 5000961 mod 7951 = 2205 M14 = 438961 mod 7951 = 1900
M15 = 2300961 mod 7951 = 2015 M16 = 1961 mod 7951 = 1
M17 = 1607961 mod 7951 = 19 M18 = 3509961 mod 7951 = 2005
M19 = 7143961 mod 7951 = 1600 M20 = 5648961 mod 7951 = 312
M21 = 3937961 mod 7951 = 1519 M22 = 4736961 mod 7951 = 518.

Therefore, we have recovered the original message.

Remark 6.2 In the next chapter, we shall see that exponential cryptography is the base of
the first practical RSA public-key cryptography, where the modulus is a product of several
(the simplest being two) prime numbers rather than just one prime number.

The most popular secret-key cryptographic scheme in use (by both governments and
private companies) is the Data Encryption Standard (DES) — DES was designed at IBM
and approved in 1977 as a standard by the US National Bureau of Standards (NBS), now
called the National Institute of Standards and Technology (NIST). This standard, first issued
in 1977 (FIPS 46 – Federal Information Processing Standard 46), is reviewed every five
years. It is currently specified in FIPS 46-2. NIST is proposing to replace FIPS 46-2 with
FIPS 46-3 to provide for the use of Triple DES (TDES) as specified in the American
National Standards Institute (ANSI) X9.52 standard. Comments were sought from industry,
government agencies, and the public on the draft of FIPS 46-3 before April 15 1999.

The standard (algorithm) uses a product transformation of transpositions, substitutions,
and nonlinear operations. They are applied for 16 iterations to each block of a message; the
message is split into 64-bit message blocks. The key used is composed of 56 bits taken from
a 64-bit key which includes 8 parity bits. The algorithm is used in reverse to decrypt each
ciphertext block and the same key is used for both encryption and decryption. The algorithm
itself is shown schematically in Figure 6.9, where the⊕ is the “exclusive or” (XOR) operator.
The DES algorithm takes as input a 64-bit message (plaintext) M and a 56-bit key K , and
produces a 64-bit ciphertext C . DES first applies an initial fixed bit-permutation (IP) to M
to obtain M ′. This permutation has no apparent cryptographic significance. Second, DES
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Input - plaintext (64-bits)

Initial permutation

Permuted
input

+ f

+ f

...
...

K1

L0 R0

R1 = L0 + f(R0,K1)L1 = R0

Output - ciphertext (64-bits)

Inverse initial permutation

Preoutput

R16 = L15 + f(R15,K16) L16 = R15

K16

K15

L15 = R14 R15 = L14 + f(R14,K15)

R14 = L13 + f(R14,K14)L14 = R13

+ f

Figure 6.9 The Data Encryption Standard (DES) algorithm
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divides M ′ into a 32-bit left half L0 and 32-bit right half R0. Third, DES executes the
following operations for i = 1, 2, · · · , 16 (there are 16 “rounds”):

Li = Ri−1,

Ri = Li−1 ⊕ f (Ri−1, Ki ),

}
(6.37)

where f is a function that takes a 32-bit right half and a 48-bit “round key” and produces a
32-bit output. Each round key Ki contains a different subset of the 56-bit key bits. Finally, the
pre-ciphertext C ′ = (R16, L16) is permuted according to IP−1 to obtain the final ciphertext
C . To decrypt, the algorithm is run in reverse: a permutation, 16 XOR rounds using the
round key in reverse order, and a final permutation that recovers the plaintext. All of this
extensive bit manipulation can be incorporated into the logic of a single special-purpose
microchip, so DES can be implemented very efficiently. However, the DES cracking project
being undertaken by the Electronic Frontier Foundation is able to break the encryption for
56 bit DES in about 22 hours. As a result, NIST has recommended that businesses use Triple
DES1 (TDES), which involves three different DES encryption and decryption operations.
Let EK (M) and DK (C) represent the DES encryption and decryption of M and C using
DES key K , respectively. Each TDES encryption/decryption operation (as specified in ANSI
X9.52) is a compound operation of DES encryption and decryption operations. The following
operations are used in TDES:

(1) TDES encryption operation: the transformation of a 64-bit block M into a 64-bit block
C is defined as follows:

C = EK3 (DK2 (EK1 (M))). (6.38)

(2) TDES decryption operation: the transformation of a 64-bit block C into a 64-bit block
M is defined as follows:

M = DK1 (EK2 (DK3 (C))). (6.39)

There are three options for the TDES key bundle (K1, K2, K3):

(1) K1, K2, and K3 are independent keys.
(2) K1, K2 are independent keys and K3 = K1.
(3) K1 = K2 = K3.

1Triple DES is a type of multiple encryption. Multiple encryption is a combination technique aimed at
improving the security of a block algorithm. It uses an algorithm to encrypt the same plaintext block
multiple times with multiple keys. The simplest multiple encryption is the so-called double encryption
in which an algorithm is used to encrypt a block twice with two different keys – first encrypt a block
with the first key, and then encrypt the resulting ciphertext with the second key: C = Ek2 (Ek1 (M)). The
decryption is just the reverse process of the encryption: M = Dk1 (Dk2 (C)).
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For example, if option 2 is chosen, then the TDES encryption and decryption are as follows:

C = EK1 (DK2 (EK1 (M))), (6.40)

M = DK1 (EK2 (DK1 (C))). (6.41)

Interested readers are suggested to consult the current NIST report FIPS 46-3 [32] for the
new standard of the TDES.

It is interesting to note that some experts say DES is still secure at some level in
e-commerce when used properly. However, Edward Roback at the NIST has said that the
DES, which uses 56-bit encryption keys, is no longer sufficiently difficult to decrypt. For
example, in February 1998, a team of engineers used a distributed “brute force” decryption
program to break a 56-bit DES key in 39 days, about three times faster than it took another
team just the year before, and more recently, the team cracked DES in just over 22 hours
earlier this year.

The U.S. Department of Commerce’s NIST issued a formal call on 12 September 1997
for companies, universities, and other organizations to submit algorithm proposals for a new
generation encryption standard for protecting sensitive data well into the 21st century. This
new Advanced Encryption Standard (AES) will replace the DES and support encryption key
size up to 256 bits and must be available royalty-free throughout the world. On 20 August 1998
at the First AES Candidate Conference (AES1), NIST announced fifteen (15) official AES
candidate algorithms submitted by researchers from twelve (12) different countries, including
the United States, Australia, France, Germany, Japan, Norway, and the United Kingdom.
Since then, cryptographers have tried to find ways to attack the different algorithms, looking
for weaknesses that would compromise the encrypted information. Shortly after the Second
AES Candidate Conference (AES2) on 22–23 March 1999 in Rome, Italy, NIST announced
on 9 August 1999 that the following five (5) contenders had been chosen as finalists for the
AES; all are block ciphers:

(1) MARS: Developed by International Business Machines (IBM) Corporation of Armonk,
New York, USA.

(2) RC6: Developed by RSA Laboratories of Bedford, Massachusetts, USA.
(3) Rijndael: Developed by Joan Daemen and Vincent Rijmen of Belgium.
(4) Serpent: Developed by Ross Anderson, Eli Biham and Lars Knudsen of the United

Kingdom, Israel, and Norway, respectively.
(5) Twofish: Developed by Bruce Schneier, John Kelsey, Doug Whiting, David Wagner,

Chris Hall and Niels Ferguson, of Counterpane Systems, Minneapolis, USA.

These five finalist algorithms received further analysis during a second, more in-depth re-
view period (August 1999–May 2000) in the selection of the final algorithm for the FIPS
(Federal Information Processing Standard) AES. On 2 October 2000, the algorithm Rijn-
dael, developed by Joan Daemen (Proton World International, Belgium) and Vincent Rijmen
(Katholieke Universiteit Leuven, Belgium) was finally chosen to be the AES [16]. The strong
points of Rijndael are a simple and elegant design, it is efficient and fast on modern proces-
sors, but also compact in hardware and on smartcards. These features make Rijndael suitable
for a wide range of applications. It will be used to protect sensitive but ‘unclassified’ elec-
tronic information of the US government. During the last year, a large number of products
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and applications has been AES-enabled. Therefore, it is very likely to become a worldwide
de facto standard in numerous other applications such as Internet security, bank cards, and
ATMs.

Problems for Section 6.3

1. Let p = 9137 and k = 73 so that gcd(p − 1, k) = 1 and k−1 mod (p − 1) = 750.
(1) Use the exponentiation transformation C ≡ Mk(mod p) to encrypt the following

plaintext message:

THE CESG IS THE UK NATIONAL TECHNICAL AUTHORITY
ON INFORMATION SECURITY.
THE NSA IS THE OFFICIAL INTELLIGENCE-GATHERING
ORGANIZATION OF THE UNITED STATES.

(2) Use M = Ck−1
mod p to verify your result.

2. Show that DES is conditionally unbreakable.
3. Show that AES is conditionally unbreakable.
4. Show that OTP is unconditionally unbreakable.

6.4 Bibliographic Notes and Further Reading

Cryptography is essentially the only automated tool for secure data communication. With
the advent of modern Internet, it has become more and more important in network and
information security. Today cryptography is used everywhere, from governments to private
companies and individuals. It is suggested that everyone using the Internet should have
certain knowledge about cryptography and information security. In recent years, there is an
increasingly large number of references in cryptography and information security. Readers
may consult the following references for more information about the basic concepts and
history of cryptography, both secret-key and public-key: [17–31, 33–51].
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7
Integer Factorization Based
Cryptography

This chapter studies the IFP-based cryptographic systems and protocols, including:

� The famous RSA cryptographic system
� The factoring-equivalent Rabin cryptographic system
� The quadratic residuosity based probabilistic encryption
� The zero-knowledge proof protocol.

7.1 RSA Cryptography

In 1977, Rivest, Shamir, and Adleman (see Figure 7.1), then all at MIT, proposed the first
practical public-key cryptosystem, now widely known as the RSA public-key cryptosystem
(see [1, 2]). The Association for Computing Machinery, ACM, offered the Year 2002 A. M.
Turing Award, regarded as a Nobel Prize in computer science, to Adleman, Rivest, and Shamir
for their contribution to the theory and practical application of public-key cryptography,
particularly the invention of the RSA cryptosystem, as the RSA cryptosystem now

“has become the foundation for an entire generation of technology security products and has
also inspired important work in both theoretical computer science and mathematics.”

The RSA cryptosystem is based on the following assumption:

RSA assumption: It is easy to find two large prime numbers, but it is hard to factor a large
composite number into its prime factorization form.

The RSA cryptosystem (see Figure 7.2) works as follows:

C ≡ Me (mod n)

M ≡ Cd (mod n)

}
(7.1)

Computational Number Theory and Modern Cryptography, First Edition. Song Y. Yan.
© 2013 Higher Education Press. All rights reserved. Published 2013 by John Wiley & Sons Singapore Pte. Ltd.
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Figure 7.1 Shamir, Rivest, and Adleman in the 1970s
(Courtesy of Prof Adleman)

where

(1) M is the plaintext;
(2) C is the ciphertext;
(3) n = pq is the modulus, with p and q large and distinct primes;
(4) e is the public encryption exponent (key) and d the private decryption exponent (key),

with ed ≡ 1 (mod φ(n)). 〈n, e〉 should be made public, but d (as well as φ(n)) should be
kept secret.

Clearly, the function f : M → C is a one-way trapdoor function, since it is easy to
compute by the fast exponentiation method, but its inverse f −1 : C → M is difficult to

C ≡Me (mod n)

(e, n) public

Alice Bob

and ed ≡ 1 (mod φ(n))
such that n = pq

Alice chooses primes p, q

M ≡ Cd (mod n)

Figure 7.2 RSA cryptosystem
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compute, because for those who do not know the private decryption key (the trapdoor
information) d, they will have to factor n and compute φ(n) in order to find d. However, for
those who know d , then the computation of f −1 is as easy as of f . This is the whole idea of
the RSA cryptography.

Suppose now the sender, for example, Alice wants to send a message M to the receiver,
for example Bob. Bob will have already chosen a one-way trapdoor function f described
above, and published his public-key (e, n), so we can assume that both Alice and any
potential adversary know (e, n). Alice splits the message M into blocks of �log n� bits or
less (padded on the right with zeros for the last block), and treats each block as an integer
x ∈ {0, 1, 2, . . . , n − 1}. Alice computes

y ≡ xe (mod n) (7.2)

and transmits y to Bob. Bob, who knows the private key d, computes

x ≡ yd (mod n) (7.3)

where ed ≡ 1 (mod φ(n)). An adversary who intercepts the encrypted message should not be
able to decrypt it without knowledge of d . There is no known way of cracking the RSA system
without essentially factoring N , so it is clear that the security of the RSA system depends
on the difficulty of factoring N . Some authors, for example Woll in 1987 [3], observed that
finding the RSA decryption key d is the random polynomial-time equivalent to factorization,
and Pinch in 1997 [4] showed that an algorithm A(n, e) for obtaining d given n and e can be
turned into an algorithm which obtains p and q with positive probability.

Example 7.1 Suppose the message (plaintext) to be encrypted is “PLEASE WAIT FOR
ME.” Let n = 5515596313 = 71593 · 77041. Let also e = 1757316971 with gcd(e, n) =
1. Then d ≡ 1/1757316971 ≡ 2674607171 (mod (71593− 1)(77041− 1)). To encrypt the
message, we first translate the message into its numerical equivalent by the letter-digit
encoding scheme defined by A → 01, B → 02, . . . , Z → 26 and space → 00:

M = 1612050119050023010920061518001305.

Then we split it into 4 blocks, each with 10 digits, padded on the right with zeros for the last
block:

M = (M1, M2, M3, M4) = (1612050119 0500230109 2000061518 0013050000).

Now, we have

C1 ≡ 16120501191757316971 ≡ 763222127 (mod 5515596313),

C2 ≡ 05002301091757316971 ≡ 1991534528 (mod 5515596313),

C3 ≡ 20000615181757316971 ≡ 74882553 (mod 5515596313),

C4 ≡ 00130500001757316971 ≡ 3895624854 (mod 5515596313).
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That is,

C = (C1, C2, C3, C4) = (763222127, 1991534528, 74882553, 3895624854).

To decrypt the ciphertext, we perform:

M1 ≡ 7632221272674607171 ≡ 1612050119 (mod 5515596313),

M2 ≡ 19915345282674607171 ≡ 500230109 (mod 5515596313),

M3 ≡ 748825532674607171 ≡ 2000061518 (mod 5515596313),

M4 ≡ 38956248542674607171 ≡ 13050000 (mod 5515596313).

By padding the necessary zeros on the left of some blocks, we get

M = (M1, M2, M3, M4) = (1612050119 0500230109 2000061518 0013050000)

which is “Please wait for me,” the original plain-text message.

Example 7.2 We now give a reasonably large RSA example. In one of his series of
Mathematical Games, Martin Gardner [5] reported an RSA challenge with US$100 to decrypt
the following message C :

9686961375462206147714092225435588290575999112457431987469512093

0816298225145708356931476622883989628013391990551829945157815154.

The public-key consists of a pair of integers (e, n), where e = 9007 and N is a “random”
129-digit number (called RSA-129):

1143816257578888676692357799761466120102182967212423625625618429

35706935245733897830597123563958705058989075147599290026879543541.

The RSA-129 was factored by Derek Atkins, Michael Graff, Arjen K. Lenstra, Paul Leyland
et al. on April 2 1994 [6] to win the $100 prize offered by RSA in 1977. Its two prime factors
are as follows:

3490529510847650949147849619903898133417764638493387843990820577,

32769132993266709549961988190834461413177642967992942539798288533.

They used the double large prime variation of the Multiple Polynomial Quadratic Sieve
(MPQS) factoring method. The sieving step took approximately 5000 mips years, and was
carried out in 8 months by about 600 volunteers from more than 20 countries, on all continents
except Antarctica. As we explained in the previous example, to encrypt an RSA-encrypted
message, we only need to use the public-key (n, e) to compute

xe ≡ y (mod n).
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But decrypting an RSA-message requires factorization of N if one does not know the secret
decryption key. This means that if we can factor n, then we can compute the secret key d,
and get back the original message by calculating

yd ≡ x (mod n).

Since we now know the prime factorization of n, it is trivial to compute the secret key
d = 1/e mod φ(n), which in fact is

1066986143685780244428687713289201547807099066339378628012262244

96631063125911774470873340168597462306553968544513277109053606095.

So we shall be able to compute

Cd ≡ M (mod n)

without any problem. To use the fast exponential method to compute Cd mod N , we first
write d in its binary form d1d2 · · · dsize (where size is the number of the bits of d) as follows:

d = d1d2 · · · d426 =
100111011001111110010100110010001000001000001110100111100100110

010011110100111000000000000011111110100001101010110001011101111

010100001111101100000010000011101101010101111010101001111110110

110100001111110100000011110100110001011001011001101001010001100

100111010110000101110100101011010000011100000001110001110101010

011011101000111101001110001101011010101010010011101010001001111

000000100111010011000110111110101100100011001111

and perform the following computation:

M ← 1

for i from 1 to 426 do

M ← M2 mod n

if di = 1 then M ← M · C mod n

print M

which gives the plain-text M :

2008050013010709030023151804190001180500191721050113091908001519

19090618010705
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and hence the original message:

THE MAGIC WORDS ARE SQUEAMISH OSSIFRAGE

via the encoding alphabet , = 00, A = 01, B = 02, . . . , Z = 26. Of course, by the public
encryption key e = 9007, we can compute Me ≡ C (mod n); first write e in the binary form
e = e1e2 · · · e14 = 10001100101111, then perform the following procedure:

C ← 1

for i from 1 to 14 do

C ← C2 mod n

if ei = 1 then C ← C · M mod n

print C

which gives the encrypted text C at the beginning of this example:

9686961375462206147714092225435588290575999112457431987469512093

0816298225145708356931476622883989628013391990551829945157815154.

Remark 7.1 In fact, anyone who can factor the integer RSA-129 can decrypt the message.
Thus, decrypting the message is essentially factoring the 129-digit integer. The factorization
of RSA-129 implies that it is possible to factor any random 129-digit integer. It should be
also noted that, as we mentioned earlier, the current best known general factoring record is
the RSA-768 (a 768-bit and 232-digit number). It follows that the composite number (i.e.,
the modulus) n used in the RSA cryptosystem should have more than 232 digits.

A better example [7] of a trapdoor one-way function of the form used in the RSA cryp-
tosystem would use Carmichael’s λ-function rather than Euler’s φ-function, and is as follows:

y = f (x) ≡ xe (mod n) (7.4)

where

n = pq(p and q are two large primes),

e > 1, gcd(e, λ) = 1,

λ(n) = lcm (p − 1, q − 1) = (p − 1)(q − 1)
gcd(p − 1, q − 1).

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (7.5)

We assume that e and n are publicly known but p, q and λ(n) are not. The inverse function
of f (x) is defined by

x = f −1(y) ≡ yd (mod n) with ed ≡ 1 (mod λ). (7.6)
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To show it works, we see

x ≡ yd ≡ (xe)d ≡ xed ≡ xkλ(n)+1

≡ (xλ(n))k · x ≡ 1k · x (by Carmichael’s theorem)

≡ x (mod n).

It should be easy to compute f −1(y) ≡ yd (mod n) if d is known, provided that f −1(y) exists
(note that f −1(y) may not exist). The assumption underlying the RSA cryptosystem is that it
is hard to compute f −1(y) without knowing d . However, knowledge of p, q, or λ(n) makes
it easy to compute d .

Algorithm 7.1 (Construction of the above trapdoor function) This algorithm constructs
the trapdoor function and generates both the public and the secret keys suitable for RSA
cryptography:

[1] Find two large primes p and q , each with at least 100 digits such that:
[a] |p − q| is large;
[b] p ≡ −1 (mod 12), q ≡ −1 (mod 12);
[c] The following values of p′, p′′, q ′, and q ′′ are all primes:

p′ = (p − 1)/2,

p′′ = (p + 1)/12,

q ′ = (q − 1)/2,

q ′′ = (q + 1)/12.

⎫⎪⎪⎬⎪⎪⎭ (7.7)

[2] Compute n = pq and λ = 2p′q ′.
[3] Choose a random integer e relatively prime to λ such that e − 1 is not a multiple

of p′ or q ′.
[4] Apply the extended Euclidean algorithm to e and λ to find d and λ′ such that 0 < d < λ

and

ed + λλ′ = 1. (7.8)

[5] Destroy all evidence of p, q , λ, and λ′.
[6] Make (e, n) public but keep d secret.

According to the Prime Number theorem, the probability that a randomly chosen integer in
[1, n] is prime is∼ 1/ ln n. Thus, the expected number of random trials required to find p (or
p′, or p′′; assume that p, p′, and p′′ are independent) is conjectured to be O ((log n)3

)
. Based

on this assumption, the expected time required to construct the above one-way trapdoor
function is O ((log n)6

)
.
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Problems for Section 7.1

1. The RSA function M %→ C mod n is a trapdoor one-way, as it is computationally in-
tractable to invert the function if the prime factorization n = pq is unknown. Give your
own trapdoor one-way functions that can be used to construct public-key cryptosystems.
Justify your answer.

2. Show that

M ≡ Med (mod n),

where ed ≡ 1 (mod φ(n)).
3. Let the ciphertexts C1 ≡ Me

1 (mod n) and C2 ≡ Me
2 (mod n) be as follows, where

e = 9137 and n is the following RSA-129 number:

46604906435060096392391122387112023736039163470082768

24341038329668507346202721798200029792506708833728356

7804532383891140719579,

65064096938511069741528313342475396648978551735813836

77796350373814720928779386178787818974157439185718360

8196124160093438830158.

Find M1 and M2.
4. Let

e1 = 9007,

e2 = 65537,

n = 114381625757888867669235779976146612010218296721242362

562561842935706935245733897830597123563958705058989075

147599290026879543541,

C1 ≡ Me1 (mod n),

≡ 10420225094119623841363838260797412577444908472492959

12574337458892652977717171824130246429380783519790899

45343407464161377977212,

C2 ≡ Me2 mod n

≡ 76452750729188700180719970517544574710944757317909896

04134098748828557319028078348030908497802156339649075

9750600519496071304348.

Find the plain-text M .
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5. (Rivest) Let

k = 22t
(mod n)

where

n = 63144660830728888937993571261312923323632988

18330841375588990772701957128924885547308446

05575320651361834662884894808866350036848039

65881713619876605218972678101622805574753938

38308261759713218926668611776954526391570120

69093997368008972127446466642331918780683055

20679512530700820202412462339824107377537051

27344494169501180975241890667963858754856319

80550727370990439711973361466670154390536015

25433739825245793135753176536463319890646514

02133985265800341991903982192844710212464887

45938885358207031808428902320971090703239693

49199627789953233201840645224764639663559373

67009369212758092086293198727008292431243681,

t = 79685186856218.

Find k.
6. The original version of the RSA cryptosystem:

C ≡ Me (mod n), M ≡ Cd (mod n),

with

ed ≡ 1 (mod φ(n))

is a type of deterministic cryptosystem, in which the same ciphertext is obtained for the
same plaintext even at a different time. That is,

M1
Encryption at Time 1−−−−−−−−−−−→C1,

M1
Encryption at Time 2−−−−−−−−−−−→C1,

...

M1
Encryption at Time t−−−−−−−−−−−→C1.
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A randomized cryptosystem is one in which different ciphertext is obtained at a different
time even for the same plaintext

M1
Encryption at Time 1−−−−−−−−−−−→C1,

M1
Encryption at Time 2−−−−−−−−−−−→C2,

...

M1
Encryption at Time t−−−−−−−−−−−→Ct ,

with C1 �= C2 �= · · · �= Ct . Describe a method to make RSA a randomized cryptosystem.
7. Describe a man-in-the-middle attack on the original version of the RSA cryptosystem.
8. Show that cracking RSA is generally equivalent to solving the IFP problem.

7.2 Cryptanalysis of RSA

The most straightforward attacks on RSA are the integer factorization attack and discrete
logarithm attack. If there are efficient algorithms for the integer factorization problem and
the discrete logarithm problem, then RSA can be completely broken in polynomial-time.
Unfortunately, there are no such efficient algorithm exists yet. The search for such an
efficient algorithm is the most important unsolved problem in computational number theory.
In this section, we introduce some elementary attacks on RSA, based on some elementary
number-theoretic properties and the weakness of RSA. Of course, such weaknesses can be
avoided if RSA is used properly.

Our first type of elementary algorithmic attack is concerned with attacks on guessing the
values of the plaintext M . Suppose (e, n, C) is given, and the cryptanalyst, Eve, wishes to
find M . That is,

{e, n, C ≡ Me (mod n)} find−−−−−−−−−→
guessing M

{M}.

If the plaintext space M = {M1, M2, · · · , Mk} is small or predicable, Eve can decrypt C by
simply encrypting all possible plaintext messages M1, M2, · · · , Mk to get C ′

1, C ′
2, · · · , C ′

k ,
and check, at each step, if C ′

i = C . If yes, then M = Mi , the plaintext M is found. This
simple process can be described as follows:

C ′
1 ≡ (M1)e (mod n), if C ′

1 = C, then M = M1,

C ′
2 ≡ (M2)e (mod n), if C ′

2 = C, then M = M2,

...
...

C ′
k ≡ (Mk)e (mod n), if C ′

1 = C, then M = Mk .
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This attack is known as a forward search attack, or a guessing plaintext attack. The attack
will be impractical if the message space M is large. So to prevent such an attack, the message
space M is necessarily very large.

A closely related attack to the forward search attack is the short plaintext attack. If the
plaintext message M is small although the corresponding C can be as big as N (this is the
general case for public-key cryptography as it is usually only used to encrypt short massages
particularly the encryption keys used for secret-key cryptographic systems such as DES and
AES [8]), then the cryptanalyst can perform two sequences of the operations as follows:

U ≡ Cx−e (mod n), for all 1 ≤ x ≤ 199

V ≡ ye (mod n), for all 1 ≤ y ≤ 199

If for some of the pair (x, y), we have U = V , then C ≡ (xy)e (mod n). Thus M = xy. This
attack is much more efficient than the forward attack that would try all 1017 possible values
of M , because it only needs to perform 2× 109 computations and to compare the elements
in the two sequences up to 109 times.

The above two attacks can be easily prevented by a salting process (i.e., appending some
random digits to the plaintext message M prior to encryption), or by a padding process (i.e.,
adjoin some random digits to the beginning and the end of the plaintext message M prior
to encryption) such as the one discussed in [9], so that a large random plaintext M can be
formed; these randomly added digits can be simply removed after decryption.

Our second type of elementary algorithmic attacks is on RSA signatures. Suppose (e, n, M)
is given, and the cryptanalyst, Eve, wishes to find the digital signature S. That is,

{e, n, M ≡ Se (mod n)} find−−−−−−−−−→
forging S

{S}. (7.9)

The RSA function enjoys a certain kind of self-reducibility [10], which, on the one hand is
good (as it provides assurance that all random ciphertexts are equally hard to decrypt) but on
the other hand is bad (as it provides an avenue for an attacker, Eve, to gain information about
the decryption of one ciphertext from the decryption of other ciphertexts). The following
attack, called the blinding attack [11] is based, unfortunately, on this self-reducibility and
can be used to obtain someone’s valid digital signature.

Let (e, N ) and (d, n) be Bob’s public and secret keys, respectively. Suppose the crypt-
analyst, Eve, wants to know Bob’s signature S on a message M ∈ Z∗n , which is computed
by:

S ≡ Md (mod n).

Then Eve can try the following:

[1] Eve picks up a random number r ∈ Z∗n , and computes M ′ ≡ re M (mod n).
[2] Even asks Bob to sign the random message (looks like a hashed value, as usual) M ′.
[3] Suppose Bob is willing to sign the message M ′, which means that Eve can get

S′ ≡ (M ′)d (mod n).
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[4] Now it is simple for Eve to get Bob’s valid signature S as follows:

S ≡ S′/r (mod n),

which is so because

Se ≡ (S′/r )e

≡ (S′)e/re

≡ ((M ′)d )e/re

≡ M ′/re

≡ (re M)/re

≡ M (mod n).

Thus, Eve can forge Bob’s valid signature without knowing his private exponent d, and Bob
will not detect the forgery since M ≡ Se (mod n), as we have just shown.

Again, this chosen plaintext attack can be avoided by using random padding techniques.
Note that the random padding techniques are also countermeasures against the following
chosen-ciphertext attack [12]. Suppose the cryptanalyst, Eve, intercepts a ciphertext C from
Bob to Alice. Then Eve chooses at random a positive integer r , computes M̃ ≡ C · re (mod n)
and sends it to Alice. Alice then decrypts the ciphertext C̃ ≡ M̃e ≡ Cd · r (mod n). Suppose
now Eve can get this C̃ , then she can get the original plaintext M by computing

M ≡ r−1Cd · r (mod n).

Our third type of attack is based on the fact that if one can guess the value of φ(N ), one
can recover the RSA plaintext M from its corresponding ciphertext C in polynomial-time.
That is,

φ(N )
P=⇒ {M}. (7.10)

First of all, we show that the computation of φ(n) and the factorization of N , IFP(n), are
deterministic polynomial-time equivalent.

Theorem 7.1 (The equivalence of φ(n) and IFP(n))

φ(n)
P⇐⇒ IFP(n). (7.11)

Proof: Note first that if (N , φ(n)) is known and n is assumed to be the product of two primes
p and q, then N can be easily factored. Assume

n = pq,
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then

φ(n) = (p − 1)(q − 1),

thus

pq − p − q + 1− φ(n) = 0 (7.12)

substituting q = n/p into (7.12) gives

p2 − (n − φ(n)+ 1)p + n = 0. (7.13)

Let A = n − φ(n)+ 1, then

(p, q) = A ±√A2 − 4n

2

will be the two roots of (7.13), and hence, the two prime factors of n.
On the other hand, if the two prime factors p and q of n are known, then φ(n) = (p −

1)(q − 1) immediately from

φ(n) = n
k∏

i=1

(
1− 1

pi

)

if

n =
k∏

i=1

pαi
i .

What this theorem says is that if an enemy cryptanalyst could compute φ(n) then he
could break RSA by computing d as the multiplicative inverse of e modulo φ(n). That is,
d ≡ 1/e (mod φ(n)). On the other hand, the knowledge of φ(n) can lead to an easy way of
factoring n, since

p + q = n − φ(N )+ 1,

(p − q)2 = (p + q)2 − 4n,

p = (p + q)+ (p − q)

2
,

q = (p + q)− (p − q)

2
.

In other words, computing φ(N ) is no easier than factoring n.
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Example 7.3 Let

n = 74153950911911911.

Suppose the cryptanalyst knows by guessing, interception or whatever that

φ(n) = 74153950339832712.

Then

A = n − φ(n)+ 1

= 74153950911911911− 74153950339832712+ 1

= 572079200

Thus

p2 − 572079200p + 74153950911911911 = 0.

Solving this equation gives the two roots

{p, q} = {198491317, 373587883},

and hence the complete prime factorization of n

n = 74153950911911911

= 198491317 · 373587883.

Theorem 7.2 The RSA encryption is breakable in polynomial-time if the cryptanalyst knows
φ(n). That is,

φ(n)
P=⇒ RSA(M). (7.14)

Proof: If φ(n) is known, then d ≡ 1/e (mod φ(n)), hence recovers M from C : M ≡ Cd

(mod n).

Thus, we have:

IFP(n)
P⇐⇒ φ(n)

P=⇒ RSA(M). (7.15)

Thus, breaking the RSA encryption by computing φ(n) is no easier than breaking the RSA
encryption by factoring n. However, if someone can intelligently and efficiently guess/find
the value of φ(n), or someone already knows φ(n) by some means, then he can break RSA
completely without factoring.
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Our fourth attack is the guessing d attack. We show that given the RSA private exponent
d, the prime factorization of n can be made in polynomial-time.

Theorem 7.3 (Coron and May [13]) Let n = pq with p and q prime numbers. Let also e
and d be the public and private exponent, respectively, satisfying ed ≡ 1 (mod φ(n)).

(1) If p and q have the same bit size and 1 < ed ≤ n3/2, then given (n, e, d), the prime
factorization of N can be computed deterministically in time O((log n)2).

(2) If p and q have the same bit size and 1 < ed ≤ n2, then given (n, e, d), the prime
factorization of n can be computed deterministically in time O((log n)9).

(3) Let β and 0 < δ ≤ 1/2 be real numbers such that 2βδ(1− δ) ≤ 1. Let n = pq with p
and q primes such that p < nδ and q < 2n1−δ . Let 1 < ed ≤ nβ . Then given (n, e, d),
the prime factorization of n can be computed deterministically in time O((log n)9).

Proof: The results follow by applying Coppersmith’s technique [14] of finding small solu-
tions to the univariable modular polynomial equations using lattice reduction [15]. For more
details, see [13].

Corollary 7.1 If d is known, then the prime factorization n can be found in deterministic
polynomial-time. That is,

{d} P=⇒ IFP(n). (7.16)

Combining Theorem (7.3) and Corollary (7.1), we have

Theorem 7.4 (The equivalence of RSA(d) and IFP(n)) Computing the private exponent
d by giving the prime factorization N and computing the prime factorization of n by giving
the private exponent d are deterministic polynomial-time equivalent. That is,

{d} P⇐⇒ IFP(n). (7.17)

Remark 7.2 It was known from the moment the RSA cryptographic system was designed
in 1977, that if the RSA private exponent d is given, then the prime factorization of the
RSA modulus n can be computed in random polynomial-time by using Miller’s techniques
developed in 1976 [16]. That is,

{d} RP=⇒ IFP(n). (7.18)

The proof proceeds as follows. First note that

ed ≡ 1 (mod φ(n)).
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then

ed = tφ(n)+ 1, t ∈ Z.

Pick at random x ∈ Z�=0, this is guaranteed to satisfy

xed−1 ≡ 1 (mod n).

Then computing y1 of 1 modulo N yields:

y1 ≡
√

xed−1 ≡ x (ed−1)/2 (mod n).

Therefore,

y2
1 − 1 ≡ 0 (mod n).

Thus, n can be factorized by computing

gcd(y1 ± 1, n).

But this will only work when y1 �≡ ±1 (mod n). Suppose we are unlucky and obtain y1 ≡
±1 (mod n) rather than a factor of n. If y1 ≡ −1 (mod n), we return to the beginning and
pick another integer x . If y1 ≡ 1 (mod n), we take another square root of one via

y2 ≡ √y1

≡ x (ed−1)/4 (mod n).

Hence,

y2
2 − 1 ≡ 0 (mod n).

Computing

gcd(y2 ± 1, n).

Again, this will give a factor of n unless

y2 ≡ ±1 (mod n).

If we are unlucky, repeat the above process again (and again) until we have either factorized
n or found 2 � (ed − 1)/2s for some s ∈ Z. Clearly, the above process can be done in random
polynomial-time. On the other hand, if IFP(n) is known then one can easily and determin-
istically find d in polynomial-time just by computing d ≡ 1/e (mod (p − 1)(q − 1)).

Finally, we show that if the prime factorization of the RSA modulus n is known, the RSA
plaintext M can be computed in polynomial-time from the corresponding ciphertext C .
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Theorem 7.5 If the prime factorization of the RSA modulus N is known, then RSA can be
broken in polynomial-time. That is,

IFP(n)
P=⇒ M. (7.19)

Proof: By Theorem 7.3, if the prime factorization of n is known, then d can be calculated in
polynomial-time. Once d is found, then the following decryption process

M ≡ Cd (mod n),

can be done in polynomial-time, as (C, n) is known.

This is the same as saying that computing d from the public key (e, N ) is as hard as
factoring the modulus N .

Example 7.4 Let

e = 17579,

n = 63978486879527143858831415041,

d = 10663687727232084624328285019.

We wish to find the prime factors p and q of N from the secret key d. We follow the procedure
given in the proof of Theorem 7.2. Let x = 2 and perform the following computations:

for i from 2 to 100 do

si := (e ∗ d − 1)/ i

yi := 2t
i mod n

print (i, si , yi , gcd(yi − 1, n))

end do

We find that only those numbers when i = 13, 26, 39, 52, 65, 78, 81, 91 for i ≤ 100 are
lucky and give rise to yi �≡ 1 (mod n) and hence each leads to the complete prime factorization
of n = 145295143558111 · 440334654777631:⎧⎨⎩

s13 = (ed − 1)/13 = 14419766658231755047005147873000
y13 ≡ xs13 (mod n) = 8844029226054068856172959205
gcd(y13 − 1, n) = 440334654777631

⎧⎨⎩
s26 = (ed − 1)/26 = 7209883329115877523502573936500
y26 ≡ xs26 (mod n) = 2759802260459053691546680286
gcd(y13 − 1, n) = 440334654777631
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⎧⎨⎩
s39 = (ed − 1)/39 = 4806588886077251682335049291000
y39 ≡ xs39 (mod n) = 14087419621751444280492087156
gcd(y39 − 1, n) = 440334654777631

⎧⎨⎩
s52 = (ed − 1)/52 = 3604941664557938761751286968250
y52 ≡ xs52 (mod n) = 33661945935813861391560228598
gcd(y52 − 1, n) = 440334654777631

⎧⎨⎩
s65 = (ed − 1)/65 = 2883953331646351009401029574600
y65 ≡ xs65 (mod n) = 59017354193359494219779573422
gcd(y65 − 1, n) = 440334654777631

⎧⎨⎩
s78 = (ed − 1)/78 = 2403294443038625841167524645500
y78 ≡ xs78 (mod n) = 9564171122158182570859195332
gcd(y78 − 1, n) = 440334654777631

⎧⎨⎩
s81 = (ed − 1)/81 = 2314283537740898958161320029000
y81 ≡ xs81 (mod n) = 35590500523696621176391909559
gcd(y81 − 1, n) = 145295143558111

⎧⎨⎩
s91 = (ed − 1)/91 = 2059966665461679292429306839000
y91 ≡ xs91 (mod n) = 42591321163720779552095944636
gcd(y91 − 1, n) = 440334654777631

The unlucky values of i in the range give rise to either yi ≡ 1 (mod n) or si �∈ Z.

Thus, to avoid the guessing d attack, N must be large, and d should be chosen from a
large set such that the cryptanalyst cannot easily choose the correct d from the large set.

The fifth type of elementary attack is the common modulus attack The four RSA param-
eters {d, p, q, φ(n)} form the RSA trapdoor. These four pieces of information are equally
important. Knowledge of any one of them reveals the knowledge of the remaining three,
and hence break the RSA encryption completely. If RSA is not used properly, however,
it may well be possible to break the RSA encryption without use of any knowledge of
{d, p, q, φ(n)}. One such improper use is the use of common modulus n in RSA encryption.
Suppose that Bob sends Alice two ciphertexts C1 and C2 as follows:

C1 ≡ Me1 (mod n)

C2 ≡ Me2 (mod n)
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where gcd(e1, e2) = 1. Then as the following theorem shows, Eve can recover the plaintext
M without factoring N and without using any of the trapdoor information {d, p, q, φ(n)}.

Theorem 7.6 Let n1 = n2 and M1 = M2 but e1 �= e2 and gcd(e1, e2) = 1 such that

C1 ≡ Me1 (mod n)

C2 ≡ Me2 (mod n)

Then M can be recovered easily; that is,

{[C1, e1, n], [C2, e2, n]} P=⇒ {M} (7.20)

Proof: Since gcd(e1, e2) = 1, then e1x + e2 y = 1 with x, y ∈ Z, which can be done by the
extended Euclid’s algorithm (or the equivalent continued fraction algorithm) in polynomial-
time. Thus,

Cx
1 C y

2 ≡ (Me1
1 )x (Me2

2 )y

≡ Me1x+e2 y

≡ M (mod n)

Example 7.5 Let

e1 = 9007,

e2 = 65537,

M = 19050321180920251905182209030519.

n = 114381625757888867669235779976146612010218296721242362

562561842935706935245733897830597123563958705058989075

147599290026879543541

Then

C1 ≡ Me1 mod n

≡ 10420225094119623841363838260797412577444908472492959

12574337458892652977717171824130246429380783519790899

45343407464161377977212

C2 ≡ Me2 mod n

≡ 76452750729188700180719970517544574710944757317909896

04134098748828557319028078348030908497802156339649075

9750600519496071304348
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Now we determine x and y in

9007x + 65537y = 1.

First, we get the continued fraction expansion of 9007/65537 as follows:

9007/65537 = [0, 7, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 7].

Then we get the convergents of the continued fraction of 9007/65537 as follows:[
0,

1

7
,

3

22
,

4

29
,

7

51
,

11

80
,

18

131
,

29

211
,

76

553
,

105

764
,

181

1317
,

286

2081
,

467

3398
,

1220

8877
,

9007

65537

]
Thus, {

x = (−1)k−1qk−1 = (−1)138877 = −8877,

y = (−1)k pk−1 = (−1)141220 = 1220.

Therefore,

M ≡ Cx
1 C y

2

≡ 10420225094119623841363838260797412577444908472492959

12574337458892652977717171824130246429380783519790899

45343407464161377977212−8877 ·
76452750729188700180719970517544574710944757317909896

04134098748828557319028078348030908497802156339649075

97506005194960713043481220

≡ 19050321180920251905182209030519 (mod n)

So, we can recover the plaintext M without factoring N and/or using any of the trapdoor
information d, p, q, φ(n).

This attack suggests that to defend RSA, one should never use common modulus in RSA
encryption.

Finally we discuss the short d attack, based on the fact that if the RSA private expo-
nent d that is chosen is too small, for example, d < N 0.25, then by Weiner’s Diophantine
attack [17], d can be efficiently recovered (in polynomial-time) from the public exponent e.
That is,

{e, n} P−−−−−−−−−−−→
d<N 0.25

{d} (7.21)

Weiner’s idea is based on the properties of continued fractions and the idea of Diophantine
approximation. In about 1842 Dirichlet showed that:
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Theorem 7.7 For any real α and any integer Q > 1, there exist integers p and q with
0 < q < Q such that

|qα − p| ≤ 1

Q
. (7.22)

This can be generalized to:

Corollary 7.2 For any irrational α, there exist infinitely many integers p/q with q > 0
such that ∣∣∣∣α − p

q

∣∣∣∣ <
1

q2
. (7.23)

Theorem 7.8 For any real α, each convergent p/q satisfies∣∣∣∣α − p

q

∣∣∣∣ <
1

2q2
. (7.24)

Moreover,

p

q
= pi

qi
, for some i. (7.25)

Theorem 7.9 Let n = pq with p, q primes and q < p < 2q. Let 1 < e, d < φ(n) with
ed ≡ 1 (mod φ(n)). If d < 1

3
4
√

n, then d can be computed in polynomial-time.

First we give a lemma relating to a property of continued fraction expansion of a rational
number.

Lemma 7.1 Suppose that gcd(e, n) = gcd(k, d) = 1 and∣∣∣∣ en − k

d

∣∣∣∣ <
1

2d2
.

Then k/d is one of the convergents of the continued fraction expansion of e/n.

Proof: Let n = pq with p, q prime and 1 < p < 2q. Let also the private exponent d be
small, say, for example,

d <
1

3
4
√

n.

Then, as we shall show, d will be the denominator of a convergent to the continued fraction
expansion of e/n.
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Theorem 7.10 (Weiner) Let n = pq with p and q primes such that

{
q < p < 2q

d < 1
3 t 4
√

n
(7.26)

then given e with ed ≡ 1 (mod φ(n)), d can be efficiently calculated.

Proof: Since ed ≡ 1 (mod φ(n)),

ed − kφ(n) = 1

for some k ∈ Z. Therefore ∣∣∣∣ e

φ(n)
− k

d

∣∣∣∣ = 1

dφ(n)
.

Since n = pq > q2, we have q <
√

n. Also since φ(n) = n − p − q + 1,

0 < n − φ(n) = p + q − 1 < 2q + q − 1 < 3q < 3
√

n.

Now, ∣∣∣∣ en − k

d

∣∣∣∣ = ∣∣∣∣ed − kn

dn

∣∣∣∣
=
∣∣∣∣ed − kn + kφ(n)− kφ(n)

dn

∣∣∣∣
=
∣∣∣∣1− k(n − φ(N ))

dn

∣∣∣∣
<

3k
√

n

dn

= 3k

d
√

n

<
1

2d2
.

Thus, by Lemma 7.1, k/d must be one of convergents of the simple continued fraction e/n.
Therefore, if d < 1

3
4
√

n, the d can be computed via the elementary task of computing a few
convergent of e/N , which can be done in polynomial-time.
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Theorem 7.10 tells us that the private key d should be large enough (nearly as many
bits as the modulus N ); or otherwise, by the properties of continued fractions, the private
key d can be found in time polynomial in the length of the modulus n, and hence decrypt
RSA(M).

Example 7.6 Suppose that n = 160523347 and e = 60728973. Then the continued fraction
expansion of e/n is as follows:

e

N
= 0+ 1

2+ 1

1+ 1

1+ 1

1+ 1

4+ 1

12+ 1

102+ 1

1+ 1

1+ 1

2+ 1

3+ 1

2+ 1

2+ 1

36
= [0, 2, 1, 1, 1, 4, 12, 102, 1, 1, 2, 3, 2, 2, 36]

and the convergents of the continued fraction are as follows:

[
0,

1

2
,

1

3
,

2

5
,

3

8
,

14

37
,

171

452
,

17456

46141
,

17627

46593
,

35083

92734
,

87793

232061
,

298462

788917
,

684717

1809895
,

1667896

4408707
,

60728973

160523347

]
.

If condition (7.26) is satisfied, then the unknown fraction k/d is a close approximation to
the known fraction of e/n. Lemma 7.1 tells us that k/d must be one of the covergents of the
continued fraction expansion of e/n. As can be seen, there are 15 such convergents; we need
to find the “right” one. There are two methods to find the right value for d.

(1) The first method is to use the following trial-and-error procedure: If k/d is a convergent
of e/N , then we compute φ(n) = (ed − 1)/k and solve the quadratic equation p2 −
(n − φ(n)+ 1)p + n = 0, and check if it leads to a factorization of n. If yes, use the
factors p and q just found to compute d ≡ 1/e (mod φ(n)) and to recover M from C .
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If no, then pick up the next convergent of e/n and try again. The following is the trial
process starting from the second convergents:

Suppose k
d =

1
2 , then

φ(n) = ed − 1
k = 60728973 · 2− 1 = 121457945,

p2 − (n − φ(n)+ 1)p + n = 0

=⇒ p = 39065403
2 −

√
1526105069459021

2
which is impossible, thus d �= 2.

Suppose k
d =

1
3 , then

φ(n) = ed − 1
k = 60728973 · 3− 1 = 182186918,

p2 − (n − φ(n)+ 1)p + n = 0

=⇒ p = −10831785−√117327405762878

which is impossible, thus d �= 3.

Suppose k
d =

2
5 , then

φ(N ) = ed − 1
k = 60728973 · 5− 1

2 = 151822432,

p2 − (n − φ(n)+ 1)p + n = 0

=⇒ p = 4350458− 3
√

2102924920713

which is impossible, thus d �= 5.

Suppose k
d =

3
8 , then

φ(n) = ed − 1
k = 60728973 · 8− 1

3 = 485831783
3 ,

p2 − (n − φ(n)+ 1)p + n = 0

=⇒ p = −4261739
6 − 18156640463629

6
which is impossible, thus d �= 8.

Suppose k
d =

14
37 , then

φ(n) = ed − 1
k = 60728973 · 37− 1

14 = 160498000,

p2 − (n − φ(n)+ 1)p + n = 0

=⇒ p = 12347, q = n/p = 13001.

Sucessful, since n = pq = 12347 · 13001 = 160523347.

Given p, q, we can now find d ≡ 1/e ≡ 37 (mod (12347− 1)(13001− 1)) easily, and
hence find the plaintext M . Of course, the above procedure to find d by finding (p, q)
after the convergents of e/N is known is not the only possible procedure.
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(2) The second possible method is to test whether or not aed ≡ a (mod n) for some randomly
chosen a, since d should be one of the denominators

{2, 3, 5, 8, 37, 452, 46141, 46593, 92734, 232061, 788917,

1809895, 4408707, 160523347}

of the e/n convergents, but of course we do not know which one. Thus, we can simply
test:

260728973·2 mod 160523347 = 137369160 �= 2

260728973·3 mod 160523347 = 93568289 �= 2

260728973·5 mod 160523347 = 73692312 �= 2

260728973·8 mod 160523347 = 30860603 �= 2

260728973·37 mod 160523347 = 2

which gives d = 37, as required.

Remark 7.3 The above attack in fact gives all the trapdoor information {d, φ(n), p, q} as
follows:

φ(n) = (ed − 1)/pi

= (60728973 · 37− 1)/14

= 160498000,

{p, q} ⇐ x2 − (N − φ(n)+ 1)+ n

⇒ x2 − (160523347− 160498000+ 1)x + 160523347

⇒ {p, q} = 12347 · 13001

Thus, for n = 160523347, Wiener’s attack works well for

d <
4
√

n

3
≈ 37.52.

Example 7.7 Let

n = 28562942440499

e = 7502876735617.

Then the continued fraction expansion of e/n is as follows:

e

n
= [0, 3, 1, 4, 5, 1, 1, 3, 16, 1, 7, 1, 7, 1, 4, 1, 1, 2, 1, 1, 3, 3, 4, 2, 2, 4, 12, 3, 2, 1, 2]
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and the convergents of the continued fraction are as follows:[
0,

1

3
,

1

4
,

5

19
,

26

99
,

31

118
,

57

217
,

202

769
,

3289

12521
,

3491

13290
,

27726

105551
,

31217

118841
,

246245

937438
,

277462

1056279
,

1356093

5162554
,

1633555

6218833
,

2989648

11381387
,

7612851

28981607
,

10602499

40362994
,

18215350

69344601
,

65248549

248396797
,

213960997

814534992
,

921092537

3506536765
,

2056146071

7827608522
,

5033384679

19161753809
,

22189684787

84474623758
,

271309602123

1032857238905
,

836118491156

3183046340473
,

1943546584435

7398949919851
,

2779665075591

10581996260324
,

7502876735617

28562942440499

]
.

So the required d must be one of the denominates of the above covergents, but we do not
know which one, so we just try

(37502876735617)3 ≡ 17387646817554 �≡ 3 (mod 28562942440499)

(37502876735617)4 ≡ 7072755623312 �≡ 3 (mod 28562942440499)

(37502876735617)19 ≡ 11902526494611 �≡ 3 (mod 28562942440499)

(37502876735617)99 ≡ 5513494147015 �≡ 3 (mod 28562942440499)

(37502876735617)118 ≡ 8201089526821 �≡ 3 (mod 28562942440499)

(37502876735617)217 ≡ 8739051274402 �≡ 3 (mod 28562942440499)

(37502876735617)769 ≡ 3 (mod 28562942440499)

So, d = 769. Clearly, for n = 28562942440499, Wiener’s attack works well for

d <
4
√

n

3
≈ 770.6.

Problems for Section 7.2

1. Show that given n, N ∈ Z+, with N > 1, n > N , then there exists a unique r ∈ Z≥0 such
that Nr ≤ n ≤ Nr+1.

2. (RSA conjecture) Cryptanalyzing RSA is as hard as solving the Integer Factorization
Problem. Prove or disprove this conjecture.

3. Reduce factoring integers to cracking RSA in probabilistic polynomial-time.
4. Prove or disprove that solving the Integer Factorization Problem (IFP) is equivalent to

breaking the RSA cryptosystem.
5. Let 0 ≤ x < N . If

xek ≡ x (mod N ), k ∈ Z+
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then x is called the fixed-point of RSA(e, N ) and k is the order of the fixed-point. Suppose
C is the fixed-point of RSA(e, N ) with order k:

Cek ≡ C (mod N ), k ∈ Z+.

Show that

Cek−1 ≡ M (mod N ), k ∈ Z+

(Note: The above result gives rise to an attack, called the fixed-point attack.)
6. (Coppersmith) Let n = pq be a β-bit RSA modulo such that p has about β/2-bits. Show

that if either β/4 least (or most) significant bits of p is given, then n can be efficiently
factored in polynomial-time, and hence, RSA can be efficiently broken in polynomial-
time.

7. (Boneh, et al.) Show that if d/4 least significant bits of d are given, then d can be computed
in time O(e log e), where e is the RSA public exponent.

8. Show that the following three problems are polynomial-time equivalent:
(1) Factoring n.
(2) Computing φ(n).
(3) Computing d ∈ Z+ such that ed ≡ 1 (mod φ(n)), where the pair (e, n) is given.

9. Explain why all the known attacks on RSA do not actually threaten the security of RSA.
Justify your answer.

7.3 Rabin Cryptography

As can be seen from the previous sections, RSA uses Me for encryption, with e ≥ 3 (3 is the
smallest possible public exponent in RSA); in this way, we might call RSA encryption Me

encryption. In 1979, Michael Rabin [18] proposed a scheme based on M2 encryption rather
than the Me for e ≥ 3 encryption used in RSA. A brief description of the Rabin cryptosystem
is as follows (see also Figure 7.3).

[1] Key generation: Let n = pq with p, q odd primes satisfying

p ≡ q ≡ 3 (mod 4). (7.27)

[2] Encryption:

C ≡ M2 (mod n). (7.28)

[3] Decryption: Use the Chinese Remainder theorem to solve the system of congruences:{
Mp ≡

√
C (mod p)

Mq ≡
√

C (mod q)
(7.29)
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M = {±Mp,±Mq}

p ≡ q ≡ 3 (mod 4)
(p, q) secret

Mp ≡
√
C (mod p)

Mq ≡
√
C (mod q)

Alice chooses primes p, q such that

C ≡M2 (mod n)

n public

BobAlice

Figure 7.3 Rabin cryptosystem

to get the four solutions: {±Mp,±Mq}. The true plaintext M will be one of these four
values.

[4] Cryptanalysis: A cryptanalyst who can factor n can compute the four square roots of
C modulo n, and hence can recover M from C . Thus, breaking the Rabin system is
equivalent to factoring n.

Example 7.8 Let M = 31.

[1] Key generation: Let n = 11 · 19 be the public key, but keep the prime factors p = 11
and q = 19 of n secret.

[2] Encryption:

C ≡ 312 ≡ 125 (mod 209).

[3] Decryption: Compute {
Mp ≡

√
125 ≡ ±2 (mod p)

Mq ≡
√

125 ≡ ±7 (mod q).

Now use the Chinese Remainder theorem to solve{
M ≡ 2 (mod 11)
M ≡ 7 (mod 19)

=⇒ M = 178{
M ≡ −2 (mod 11)
M ≡ 7 (mod 19)

=⇒ M = 64
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{
M ≡ −2 (mod 11)
M ≡ 7 (mod 19)

=⇒ M = 145{
M ≡ −2 (mod 11)
M ≡ −7 (mod 19)

=⇒ M = 31

The true plaintext M will be one of the above four values, and in fact, M = 31 is the true
value.

Unlike the RSA cryptosystem, whose security was only conjectured to be equivalent to
the intractability of IFP, the security of Rabin system, and its variants such as the Rabin–
Williams system, is proved to be equivalent to the intractability of IFP. First notice that there
is a fast algorithm to compute the square roots modulo N if n = pq is known. Consider the
following quadratic congruence

x2 ≡ y (mod p) (7.30)

there are essentially three cases for the prime p:

(1) p ≡ 3 (mod 4),
(2) p ≡ 5 (mod 8),
(3) p ≡ 1 (mod 8).

All three cases may be solved by the following process:

⎧⎪⎨⎪⎩
if p ≡ 3 (mod 4), x ≡ ±y

p+1
4 (mod p),

if p ≡ 5 (mod 8),

{
if y

p+1
4 = 1, x ≡ ±y

p+3
8 (mod p)

if y
p+1

4 �= 1, x ≡ ±2y(4y)
p−5

8 (mod p).

(7.31)

Algorithm 7.2 (Computing square roots modulo pq) Let n = pq with p and q odd
prime and y ∈ QRn . This algorithm will find all the four solutions in x to congruence
x2 ≡ y (mod pq) in time O((log p)4).

[1] Use (7.31) to find a solution r to x2 ≡ y (mod p).
[2] Use (7.31) to find a solution s to x2 ≡ y (mod q).
[3] Use the Extended Euclid’s algorithm to find integers c and d such that cp + dq = 1.
[4] Compute x ≡ ±(rdq ± scp) (mod pq).

On the other hand, if there exists an algorithm to find the four solutions in x to x2 ≡
y (mod n), then there exists an algorithm to find the prime factorization of n. The following
is the algorithm.
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Algorithm 7.3 (Factoring via square roots) This algorithm seeks to find a factor of n by
using an existing square root finding algorithm (namely, Algorithm 7.2).

[1] Choose at random an integer x such that gcd(x, n) = 1, and compute x2 ≡ a (mod n).
[2] Use Algorithm 7.5 to find four solutions in x to x2 ≡ a (mod n).
[3] Choose one of the four solutions, say y such that y �≡ ±x (mod n), then compute

gcd(x ± y, n).
[4] If gcd(x ± y, n) reveals p or q , then go to Step [5], or otherwise, go to Step [1].
[5] Exit.

Theorem 7.11 Let N = pq with p, q odd prime. If there exists a polynomial-time algorithm
A to factor n = pq, then there exists an algorithm B to find a solution to x2 ≡ y (mod n),
for any y ∈ QRN .

Proof: If there exists an algorithm A to factor n = pq, then there exists an algorithm (in fact,
Algorithm 7.2), which determines x = ±(rdq ± scp) (mod pq), as defined in Algorithm
7.2, for x2 ≡ y (mod n). Clearly, Algorithm 7.2 runs in polynomial-time.

Theorem 7.12 Let n = pq with p, q odd prime. If there exists a polynomial-time algorithm
A to find a solution to x2 ≡ a (mod n), for any a ∈ QRn, then there exists a probabilistic
polynomial time algorithm B to find a factor of n.

Proof: First note that for n composite, x and y integer, if x2 ≡ y2 (mod n) but x �≡ ±y (mod
n), then gcd(x + y, n) are proper factors of n. If there exists an algorithm A to find a solution
to x2 ≡ a (mod n) for any a ∈ QRn , then there exists an algorithm (in fact, Algorithm 7.3),
which uses algorithm A to find four solutions in x to x2 ≡ a (mod n) for a random x
with gcd(x, n) = 1. Select one of the solutions, say, y �≡ ±x (mod n), then by computing
gcd(x ± y, n), the probability of finding a factor of N will be ≥ 1/2. If Algorithm 7.3 runs
for k times and each time randomly chooses a different x , then the probability of not factoring
n is ≤ 1/2k .

So, finally, we have

Theorem 7.13 Factoring integers, computing the modular square roots, and breaking the
Rabin cryptosystem are computationally equivalent. That is,

IFP(n)
P⇐⇒ Rabin(M). (7.32)

Williams [19] proposed a modified version of the RSA cryptographic system, particularly
Rabin’s M2 system, in order to make it suitable as a public-key encryption scheme (Rabin’s
original system was intended to be used as a digital signature scheme). A description of



Integer Factorization Based Cryptography 323

Williams’ M2 encryption is as follows (suppose Bob wishes to send Alice a ciphertext
C ≡ M2 (mod n)):

[1] Key generation: Let n = pq with q and q primes such that{
p ≡ 3 (mod 8),
q ≡ 7 (mod 8).

(7.33)

So, n ≡ 5 (mod 8) and (n, 2) is used as the public key. The private key d is defined by

d = (p − 1)(q − 1)

4
+ 1. (7.34)

[2] Encryption: Let M be plaintext space containing all possible plaintexts M such that

2(2M + 1) < n (7.35)

if the Jacobi symbol (
2M + 1

n

)
= −1, (7.36)

and

4(2M + 1) < n (7.37)

if the Jacobi symbol (
2M + 1

n

)
= 1. (7.38)

The first step in encryption is for all M ∈M, put

M ′ = E1(M)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2(2M + 1)

if the Jacobi symbol
(

2M + 1
n

)
= −1,

4(2M + 1)

if the Jacobi symbol
(

2M + 1
n

)
= 1.

(7.39)

The last step in encryption is just the same as Rabin’s encryption:

C ≡ (M ′)2 (mod n). (7.40)
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[3] Decryption: On the reverse order of the encryption, the first step in decryption is as
follows:

C ′ = D2(C) ≡ Cd (mod n) (7.41)

and the last step in decryption is defined by:

M = D1(C ′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M ′
4 − 1

2 if M ′ ≡ 0 (mod 4)

N − M ′
4 − 1

2 if M ′ ≡ 1 (mod 4)

M ′
2 − 1

2 if M ′ ≡ 2 (mod 4)

N − M ′
2 − 1

2 if M ′ ≡ 3 (mod 4).

(7.42)

The whole process of encryption and decryption is as follows:

M
E1−→ M ′ E2−→ C

D2−→ M ′ D1−→ M.

[4] Cryptanalysis: A cryptanalyst who can factor n can find d, and hence can recover M
from C . Thus, breaking the Williams’ system is equivalent to factoring n.

Theorem 7.14 (Correctness of Williams’ M2 encryption) Let M ∈M. Then

M = D1(D2(E2(E1(M)))). (7.43)

Theorem 7.15 (Equivalence of Williams(M) and IFP(n)) Breaking Williams’ M2 en-
cryption (i.e., finding M from C) is equivalent to factoring the modulus n. That is,

IFP(n)
P⇐⇒ Williams(M). (7.44)

Just the same as Rabin’s system, Williams’ M2 encryption is also provably secure, as
breaking the Williams’ M2 mod n encryption is equivalent to factoring n, where the N is
a special form of N = pq, with p, q primes and p ≡ 3 (mod 8) and q ≡ 7 (mod 8). Note
that this special integer factorization problem is not the same as the general IFP, although
there is no any known reason to believe this special factoring problem is any easier than
the general factoring problem. But unlike Rabin’s system, Williams’ M2 encryption can be
easily generalized to the general Me encryption with e > 2, as in RSA. Thus, Williams’ M2

encryption is not just a variant of Rabin system, but also a variant of the general RSA system.
Williams’ M2 encryption improved Rabin’s M2 encryption by eliminating the 4 : 1 ci-

phertext ambiguity problem in decryption without adding extra information for removing
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the ambiguity. Williams in [20] also proposed a M3 encryption variant to Rabin but elimi-
nated the 9 : 1 ciphertext ambiguity problem. The encryption is also proved to be as hard as
factoring, although it is again still not the general IFP, since n = pq was chosen to be

p ≡ q ≡ 1 (mod 3) (7.45)

and

(p − 1)(q − 1)

9
≡ −1 (mod 3). (7.46)

Problems for Section 7.3

1. Let M = 31, n = pq = 11 · 19 and b = 187. Let also the Rabin encryption be as follows:

C ≡ M2 + bM (mod n).

then M should be recovered by solving the quadratic congruence

M2 + bM − c ≡ 0 (mod n).

(1) Find C .
(2) Use the Chinese Remainder theorem to find the four possible values M (the correct

value should be one of the four possible values).
2. Show that breaking the Rabin encryption is equivalent to factoring the Rabin modulo n.
3. Give a method to eliminate the 4 : 1 ciphertext ambiguity problem in deciphering Rabin’s

codes without adding extra information.
4. Show that breaking the Williams M2 encryption is equivalent to factoring the Williams

modulo n.
5. Generalize Williams’ M2 encryption to Me (e ≥ 3) encryption.
6. Let

n = 21290246318258757547497882016271517497806703963277216278233

3832153847057041325010289010897698254819258255135092526096

02369983944024335907529

C ≡ M2 (mod n)

= 51285205060243481188122109876540661122140906807437327290641

6063392024247974145084119668714936527203510642341164827936

3932042884271651389234

Find the plaintext M .
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7.4 Residuosity Based Cryptography

The RSA cryptosystem discussed in the previous sections is deterministic in the sense that
under a fixed public key, a particular plaintext M is always encrypted to the same ciphertext
C . Some of the drawbacks of a deterministic scheme are:

[1] It is not secure for all probability distributions of the message space. For example, in
RSA encryption, the messages 0 and 1 always get encrypted to themselves, and hence
are easy to detect.

[2] It is easy to obtain some partial information about the secret key (p, q) from the public
modulus n (assume that n = pq). For example, when the least-significant digit of n is 3,
then it is easy to obtain the partial information that the least-significant digits of p and q
are either 1 and 3 or 7 and 9, and are indicated as follows:

183 = 3 · 61 253 = 11 · 23

203 = 7 · 29 303 = 3 · 101

213 = 3 · 71 323 = 17 · 19

[3] It is sometimes easy to compute partial information about the plaintext M from the
ciphertext C . For example, given (C, e, n), the Jacobi symbol of M over n can be easily
deduced from C : (

C

n

)
=
(

Me

n

)(
M

n

)e

=
(

M

n

)
. (7.47)

[4] It is easy to detect when the same message is sent twice.

Probabilistic encryption, or randomized encryption, however, utilizes randomness to attain
a strong level of security, namely, the polynomial security and semantic security, defined as
follows:

Definition 7.1 A public-key encryption scheme is said to be polynomially secure if no
passive adversary can, in expected polynomial-time, select two plaintexts M1 and M2 and
then correctly distinguish between encryptions of M1 and M2 with a probability significantly
greater that 1/2.

Definition 7.2 A public-key encryption scheme is said to be semantically secure if, for all
probability distributions over the message space, whatever a passive adversary can compute
in expected polynomial-time about the plaintext given the ciphertext, it can also be computed
in expected polynomial-time without the ciphertext.

Intuitively, a public-key encryption scheme is semantically secure if the ciphertext does
not leak any partial information whatsoever about the plaintext that can be computed in
expected polynomial time. That is, given (C, e, n), it should be intractable to recover any



Integer Factorization Based Cryptography 327

information about M . Clearly, a public-key encryption scheme is semantically secure if and
only if it is polynomially secure.

In this section, we shall introduce a semantically secure cryptosystem based on the
quadratic residuosity problem. Recall that an integer a is a quadratic residue modulo
n, denoted by a ∈ Qn , if gcd(a, n) = 1 and there exists a solution x to the congruence
x2 ≡ a (mod n), otherwise a is a quadratic nonresidue modulo n, denoted by a ∈ Qn . The
Quadratic Residuosity Problem may be stated as:

Given positive integers a and n, decide whether or not a ∈ Qn .

It is believed that solving QRP is equivalent to computing the prime factorization of n, so it
is computationally infeasible. If n is prime then

a ∈ Qn ⇐⇒
(a

n

)
= 1, (7.48)

and if n is composite, then

a ∈ Qn =⇒
(a

n

)
= 1, (7.49)

but

a ∈ Qn �⇐=
(a

n

)
= 1, (7.50)

however

a ∈ Qn ⇐=
(a

n

)
= −1. (7.51)

Let Jn = {a ∈ (Z/nZ)∗ :
(a

n
) = 1}, then Q̃n = Jn − Qn . Thus, Q̃n is the set of all pseu-

dosquares modulo n; it contains those elements of Jn that do not belong to Qn . Readers may
wish to compare this result to Fermat’s little theorem, namely (assuming gcd(a, n) = 1),

n is prime =⇒ an−1 ≡ 1 (mod n), (7.52)

but

n is prime �⇐= an−1 ≡ 1 (mod n), (7.53)

however

n is composite ⇐= an−1 �≡ 1 (mod n). (7.54)

The Quadratic Residuosity Problem can then be further restricted to:

Given a composite n and an integer a ∈ Jn , decide whether or not a ∈ Qn .
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For example, when n = 21, we have J21 = {1, 4, 5, 16, 17, 20} and Q21 = {1, 4, 16}, thus
Q̃21 = {5, 17, 20}. So, the QRP problem for n = 21 is actually to distinguish squares
{1, 4, 16} from pseudosquares {5, 17, 20}. The only method we know for distinguishing
squares from pseudosquares is to factor n; since integer factorization is computationally
infeasible, the QRP is computationally infeasible. In what follows, we shall present a cryp-
tosystem whose security is based on the infeasibility of the Quadratic Residuosity Problem;
it was first proposed by Goldwasser and Micali in 1984 [21] in 1984, under the term proba-
bilistic encryption.

Algorithm 7.4 (Quadratic residuosity based cryptography) This algorithm uses the
randomized method to encrypt messages and is based on the Quadratic Residuosity Problem
(QRP). The algorithm divides into three parts: Key generation, message encryption, and
decryption.

[1] Key generation: Both Alice and Bob should do the following to generate their public and
secret keys:
[a] Select two large distinct primes p and q , each with roughly the same size, say, each

with β-bits.
[b] Compute n = pq.

Select a y ∈ Z/nZ, such that y ∈ Qn and
( y

n

)
= 1. (y is thus a pseudosquare

modulo n).
[c] Make (n, y) public, but keep (p, q) secret.

[2] Encryption: To send a message to Alice, Bob should do the following:
[a] Obtain Alice’s public key (n, y).
[b] Represent the message m as a binary string m = m1m2 · · ·mk of length k.
[c] For i from 1 to k

[d-1] Choose at random an x ∈ (Z/nZ)∗ and call it xi .
[d-2] Compute ci :

ci =
{

x2
i mod n, if mi = 0, (r.s.)

yx2
i mod n, if mi = 1, (r.p.s.),

(7.55)

where r.s. and r.p.s. represent random square and random pseudosquare,
respectively.

Send the k-tuple c = (c1, c2, . . . , ck) to Alice. (Note first that each ci is an integer
with 1 ≤ ci < n. Note also that since n is a 2β-bit integer, it is clear that
the ciphertext c is a much longer string than the original plaintext m.)

[3] Decryption: To decrypt Bob’s message, Alice should do the following:
[1] For i from 1 to k

[a-1] Evaluate the Legendre symbol:

e′i =
(

ci

p

)
. (7.56)
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[a-2] Compute mi :

mi =
{

0, if e′i = 1
1, if otherwise.

(7.57)

That is, mi = 0 if ci ∈ Qn , otherwise, mi = 1.

Finally, get the decrypted message m = m1m2 · · ·mk .

Remark 7.4 The above encryption scheme has the following interesting features:

(1) The encryption is random in the sense that the same bit is transformed into different
strings depending on the choice of the random number x . For this reason, it is called
probabilistic (or randomized) encryption.

(2) Each bit is encrypted as an integer modulo n, and hence is transformed into a 2β-bit
string.

(3) It is semantically secure against any threat from a polynomially bounded attacker, pro-
vided that the QRP is hard.

Example 7.9 In what follows we shall give an example of how Bob can send the message
“HELP ME” to Alice using the above cryptographic method. We use the binary equivalents
of letters as defined in Table 7.1. Now both Alice and Bob proceed as follows:

[1] Key generation:
� Alice chooses (n, y) = (21, 17) as a public key, where n = 21 = 3 · 7 is a composite,

and y = 17 ∈ Q̃21 (since 17 ∈ J21 but 17 �∈ Q21), so that Bob can use the public key
to encrypt his message and send it to Alice.

Table 7.1 The binary equivalents of letters

Letter Binary code Letter Binary code Letter Binary code

A 00000 B 00001 C 00010
D 00011 E 00100 F 00101
G 00110 H 00111 I 01000
J 01001 K 01010 L 01011
J 01001 K 01010 L 01011
M 01100 N 01101 O 01110
P 01111 Q 10000 R 10001
S 10010 T 10011 U 10100
V 10101 W 10110 X 10111
Y 11000 Z 11001 , 11010
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� Alice keeps the prime factorization (3, 7) of 21 secret; since (3, 7) will be used as
a private decryption key. (Of course, here we just show an example; in practice, the
prime factors p and q should be at last 100 digits.)

[2] Encryption:
� Bob converts his plaintext HELP ME to the binary stream M = m1m2 · · ·m35:

00111 00100 01011 01111 11010 01100 00100.

(To save space, we only consider how to encrypt and decrypt m2 = 0 and m3 = 1; it
is suggested that readers encrypt and decrypt the whole binary stream.)

� Bob randomly chooses integers xi ∈ (Z/21Z)∗. Suppose he chooses x2 = 10 and
x3 = 19 which are elements of (Z/21Z)∗.

� Bob computes the encrypted message C = c1c2 · · · ck from the plaintext M =
m1m2 · · ·mk using Equation (7.55). To get, for example, c2 and c3, Bob performs:

c2 = x2
2 mod 21 = 102 mod 21 = 16, since m2 = 0,

c3 = y · x2
3 mod 21 = 17 · 192 mod 21 = 5, since m3 = 1.

(Note that each ci is an integer reduced to 21, i.e., mi is a bit, but its corresponding ci

is not a bit but an integer, which is a string of bits, determined by Table 7.1.)
� Bob then sends c2 and c3 along with all other ci ’s to Alice.

[3] Decryption: To decrypt Bob’s message, Alice evaluates the Legendre symbols
( ci

p

)
and( ci

q

)
. Since Alice knows the prime factorization (p, q) of n, it should be easy for her to

evaluate these Legendre symbols. For example, for c2 and c3, Alice first evaluates the
Legendre symbols

( ci
p

)
:

e′2 =
(

c2

p

)
=
(

16

3

)
=
(

42

3

)
= 1,

e′3 =
(

c3

p

)
=
(

5

3

)
=
(

2

3

)
= −1.

then she gets

m2 = 0, since e′2 = 1,

m3 = 1, since e′3 = −1.

Remark 7.5 The scheme introduced above is a good extension of the public-key idea, but
encrypts messages bit by bit. It is completely secure with respect to semantic security as well
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as bit security.1 However, a major disadvantage of the scheme is the message expansion by a
factor of log n-bit. To improve the efficiency of the scheme, Blum and Goldwasser proposed
in 1984 another randomized encryption scheme, in which the ciphertext is only longer than
the plaintext by a constant number of bits; this scheme is comparable to the RSA scheme,
both in terms of speed and message expansion.

Several other cryptographic schemes, including digital signature schemes and authentica-
tion encryption schemes, are based on the Quadratic Residuosity Problem (QRP).

Problems for Section 7.6

1. RSA encryption scheme is deterministic and not semantically secure, but it can be made
semantically secure by adding randomness to the encryption process. Develop an RSA
based probabilistic (randomized) encryption scheme that is semantically secure.

2. The number a is a quadratic residue modulo n if gcd(a, n) = 1 and there is a solution to
the congruence x2 ≡ a (mod n). If p is an odd prime, then

a(p−1)/2 ≡
(

a

p

)
(mod p)

where
(

a
p

)
is the Legendre symbol. Based on the above facts, design an efficient algorithm

that takes O((log p)3)-bit operations to decide if a is a quadratic residue modulo p.
3. Show that the Jacobi symbol can be computed in O((log p)2) bit operations using Gauss’

Quadratic Reciprocity Law.
4. Show that if the integer factorization problem can be solved in polynomial-time, then the

quadratic residuosity problem can be solved in polynomial-time.
5. Show that QRP is computationally equivalent to the IFP.
6. Use the binary-letter table in Exercise 7.9 to code the plaintext “HELP ME TO GET OUT

OF THE DARK PLACE”, then follow the steps in Algorithm 7.4 to encrypt the plaintext
and decrypt the corresponding ciphertext. You need of course to choose the suitable values
for p, q, and y.

7.5 Zero-Knowledge Proof

Zero-knowledge proof, originally studied by Goldwasser, Micali, and Rackoff [22] is a
technique by which one can convince someone else that one has a certain knowledge (e.g.,
the two prime factors of n) without revealing any information about that knowledge (e.g.,
the prime factorization of n). To get a better understanding of the zero-knowledge technique,
let us look at an example of a zero-knowledge proof based on the Square Root Problem
(SQRTP). Recall that finding square roots modulo n is hard and equivalent to factoring.

1Bit security is a special case of semantic security. Informally, bit security is concerned not only that the
whole message is not recoverable but also that individual bits of the message are not recoverable. The
main drawback of the scheme is that the encrypted message is much longer than its original plaintext.
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Algorithm 7.5 (Zero-knowledge proof) Let n = pq be product of two large prime num-
bers. Let also y ≡ x2 (mod n) with gcd(y, n) = 1. Now suppose that Alice claims to know
x , the square root of y, she does not want to reveal the x . Now Bob wants to verify this.

[1] Alice first chooses two random numbers r1 and r2 with

r1r2 ≡ x (mod n). (7.58)

(She can do so by first choosing r1 with gcd(r1, n) = 1 and then letting r2 ≡ xr−1
1 (mod

n)). She then computes

x1 ≡ r2
1 , x2 ≡ r2

2 (mod n) (7.59)

and sends x1 and x2 to Bob.
[2] Bob checks that x1x2 ≡ y (mod n), then chooses either x1 or x2 and asks Alice to supply

a square root of it. He then checks that it is indeed a square root.

Example 7.10 Let n = pq = 31 · 61 = 1891. Let also
√

56 ≡ x (mod 1891). Now suppose
that Alice claims to know x , the square root of 56, but she does not want to reveal it. Bob
then wants to prove that Alice really knows x .

[1] Alice chooses r1 = 71 such that gcd(71, 1891) = 1. Then she finds r2 ≡ x(1/r1) ≡
408(1/71) ≡ 1151 (mod 1891) (because Alice knows x = 408).

[2] Alice computes x1 ≡ r2
1 ≡ 712 ≡ 1259 (mod 1891), x2 ≡ r2

2 ≡ 11512 ≡ 1101 (mod
1891).

[3] Alice sends x1 and x2 to Bob.
[4] Bob checks x1x2 ≡ 1259 · 1101 ≡ 56 (mod 1891).
[5] Bob chooses either x1 = 1259 or x2 = 1101 and asks Alice to provide a square root of

either x1 or x2.
[6] On request from Bob, Alice sends either r1 = 71 or r2 = 1151 to Bob, since√

1259 ≡ 71 (mod 1891) and
√

1101 ≡ 1151 (mod 1891), i.e., 1259 ≡ 712 (mod 1891)
and 1101 ≡ 11512 (mod 1891).

[7] Bob is now convinced that Alice really knows x , or otherwise she could not tell the
square root of x1 or x2.

Algorithm 7.6 (Zero-knowlege identification scheme) Let n = pq be the product of
two large prime numbers. Let also Alice have the secret numbers s1, s2, . . . , sk and vi ≡
s−2

i (mod n) with gcd(si , n) = 1. The numbers vi are sent to Bob. Bob tries to verify that
Alice knows the numbers s1, s2, . . . , sk . Both Alice and Bob proceed as follows:

[1] Alice first chooses a random number r , computes

x ≡ r2 (mod n) (7.60)

and sends x to Bob.
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[2] Bob chooses numbers {b1, b2, . . . , bk} ∈ {0, 1}. He sends these to Alice.
[3] Alice computes

y ≡ rsb1
1 sb2

2 · · · sbk
k (mod n) (7.61)

and sends these to Bob.
[4] Bob checks that

x ≡ y2v
b1
1 v

b2
2 · · · vbk

k (mod n). (7.62)

[5] Repeat Steps [1] to [4] several times (e.g., 20–30 times), each time with a different r .

The zero-knowledge technique is ideally suited to identification of an owner A (who e.g.,
has a ID number) of a smart card by allowing A to convince a merchant Bob of knowledge
S without revealing even a single bit of S. Theoretically, the zero-knowledge technique can
be based on any computationally intractable problem such as the IFP, DLP, ECDLP, KRTP,
and SQRTP. The following is just an example.

Example 7.11 In this identification scheme, we assume that there is a smart card owned
by, for example, Alice, a card reader machine owned by, for example, a bank, and a third
party, called the third trust party (TTP).

[1] The TTP first chooses n = pq, where p and q are two large primes and p ≡ q ≡
3 (mod 4), and computes the PIN number for Alice’s smart card such that

PIN ≡ s2 (mod n). (7.63)

(ID is the quadratic residues of both q and q .)
[2] The TTP computes the square root s of ID (he can do so because he knows the prime

factorization of n), and stores s in a segment of memory of the smart card that is not
accessible from the outside world. The TTP should also made n public, but keep p and
q secret. By now the smart card has the information (PIN, n, s), and the card reader has
the information n.

[3] The Smart Card or the card holder Alice makes the PIN number to the card reader:

Card/Alice
PIN−−−−−−−→Card Reader. (7.64)

[4] Card/Alice generates a random r and computes t ≡ r2 (mod n), and sends t to Bob:

Card/Alice
t−−−−−−−→Card Reader. (7.65)

[5] The Card Reader selects a random e ∈ {0, 1} and sends to Alice:

Card/Alice
e−−−−−−−→Card Reader. (7.66)
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[6] Card/Alice computes

u ≡ r · se (mod n) (7.67)

and sends it to the Card Reader:

Card/Alice
u−−−−−−−→Card Reader. (7.68)

[7] The Card Reader checks whether or not

u2 ≡ t · PINe (mod n). (7.69)

[8] Repeat Steps [4]–[7] for different r . If each time,

u2 ≡ t · PINe (mod n), (7.70)

then the card is indeed issued by the TTP. That is, the Card Reader has been convinced
that the Card has stored s, the square root of PIN modulo n.

Problems for Section 7.7

1. Suppose Alice knows:

k1 ≡ logx1
y1 (mod n)

k2 ≡ logx2
y2 (mod n)

α = k1 = k2

where n = pq. Suppose now that Alice wishes to convince Bob that she knows (k1, k2, α)
as above. Design a zero-knowledge protocol that will convince Bob of what Alice claims.

2. Suppose Alice knows:

M ≡ Cd (mod n)

where

C ≡ Me (mod n)

ed ≡ 1 (mod φ(n)))

n = pq

(n, e, C) public

Suppose now that Alice wishes to convince Bob that she knows M . Design a zero-
knowledge protocol that Bob should be convinced that Alice knows M .
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3. Let n = pq with p, q primes. Given y, Alice wants to convince Bob that she knows
x such that x2 ≡ y (mod n). Design a zero-knowledge protocol that will enable Bob to
believe that Alice indeed knows x .

4. Design a zero-knowledge proof system based on the DLP problem.
5. Develop a zero-knowledge proof system based on the ECDLP problem.

7.6 Bibliographic Notes and Further Reading

This chapter discussed some of the most important and widely used public-key cryptographic
systems, including the RSA, Rabin, probabilistic cryptography, and the zero-knowledge proof
protocol, whose security relies on the infeasibility of the Integer Factorization Problem (IFP).
For more information on IFP-based cryptography, readers are advised to consult: [23–58].
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8
Discrete Logarithm Based
Cryptography

In this chapter, we shall introduce some of the well-known and widely used public-key
cryptographic systems and protocols whose security relies on the infeasibility of the DLP;
these include:

� The Diffie–Hellman–Merkle key-exchange protocol
� The ElGamal cryptographic system
� The Massey–Omura cryptographic system
� The US government’s Digital Signature Standard.

8.1 Diffie–Hellman–Merkle Key-Exchange Protocol

In 1976 Diffie and Hellman [1] proposed for the first time the concept and idea of public-key
cryptography, and the first public-key system based on the infeasible Discrete Logarithm
Problem (DLP). Their system is not a public-key cryptographic system, but a public-key
distribution system based on Merkle’s seminal work in 1978 [2] (Figure 8.1 shows the DHM
crypto years in the 1970s). Such a public-key distribution scheme does not send secret mes-
sages directly, but rather allows the two parties to agree on a common private key over public
networks to be used later in exchanging messages through conventional secret-key cryptog-
raphy. Thus, the Diffie–Hellman–Merkle scheme has the nice property that a very fast en-
cryption scheme such as DES or AES can be used for actual encryption (just using the agreed
key), yet it still enjoys one of the main advantages of public-key cryptography. The Diffie–
Hellman–Merkle key-exchange protocol works in the following way (see also Figure 8.2):

[1] A prime q and a generator g are made public (assume all users have agreed upon a finite
group over a fixed finite field Fq ),

[2] Alice chooses a random number a ∈ {1, 2, . . . , q − 1} and sends ga mod q to Bob,
[3] Bob chooses a random number b ∈ {1, 2, . . . , q − 1} and sends gb mod q to Alice,
[4] Alice and Bob both compute gab mod q and use this as a private key for future commu-

nications.

Computational Number Theory and Modern Cryptography, First Edition. Song Y. Yan.
© 2013 Higher Education Press. All rights reserved. Published 2013 by John Wiley & Sons Singapore Pte. Ltd.
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Figure 8.1 Merkle, Hellman and Diffie (Courtesy of Prof
Hellman)

Clearly, an eavesdropper has g, q , ga mod q , and gb mod q, so if he can take discrete
logarithms, he can calculate gab mod q and understand the communications. That is, if
the eavesdropper can use his knowledge of g, q , ga mod q, and gb mod q to recover the
integer a, then he can easily break the Diffie–Hellman–Merkle system. So, the security of
the Diffie–Hellman–Merkle system is based on the following assumption:

gab mod q

Alice chooses a Bob chooses b

(g, q)

ga mod q

gb mod q

Alice Bob

(gb)a mod q (ga)b mod q

Figure 8.2 DHM key-exchange protocol
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Diffie–Hellman–Merkle assumption : It is computationally infeasible to compute gab mod
q from g, q, ga mod q and gb mod q. That is,

{g, q, ga mod q, gb mod q} hard to find−−−−−−−−−→{gab mod q}.

The Diffie–Hellman–Merkle assumption, in turn, depends on the following Discrete Log-
arithm Problem assumption, that is,

{g, q, ga mod q} hard to find−−−−−−−−→{a},

or

{g, q, gb mod q} hard to find−−−−−−−−→{b}.

In theory, there could be a way to use knowledge of ga mod q and gb mod q to find gab mod
q. But at present, we simply cannot imagine a way to go from ga mod q and gb mod q to
gab mod q without essentially solving the following Discrete Logarithm Problem:

{g, q, ga mod q} find−−−→{a},

or

{g, q, gb mod q} find−−−→{b}.

If either a or b can be found efficiently, then DHM can be broken easily, since

{g, q, b, ga mod q} easy to find−−−−−−−−→{(ga)b ≡ gab (mod q)},

or

{g, q, a, gb mod q} easy to find−−−−−−−−→{(gb)a ≡ gab (mod q)}.

Example 8.1 The following DHM challenge problem was proposed in [3].

[1] Let p be following prime number:

p = 204706270385532838059744535166974274803608394340123459

695798674591526591372685229510652847339705797622075505

069831043486651682279.

[2] Alice chooses a random number a modulo p, computes 7a (mod p), and sends the result
to Bob, keeping a secret.
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[3] Bob receives

7a ≡ 12740218011997394682426924433432284974938204258693162

16545577352903229146790959986818609788130465951664554

58144280588076766033781 (mod p).

[4] Bob chooses a random number residue b modulo p, computes 7b (mod p), and sends
the result to Alice, keeping b secret.

[5] Alice receives

7b ≡ 18016228528745310244478283483679989501596704669534669

73130251217340599537720584759581769106253806921016518

48662362137934026803049 (mod p).

[6] Now both Alice and Bob can compute the private key 7ab (mod p).

McCurley offered a prize of $100 in 1989 to the first person or group to find the private key
constructed from the above communication.

Example 8.2 McCurley’s 129-digit discrete logarithm challenge was actually solved on
January 25 1998 using the NFS method, by two German computer scientists, Weber at the
Institut für Techno-und Wirtschaftsmathematik in Kaiserslautern and Denny at the Debis IT
Security Services in Bonn [4]. Their solution to McCurley’s DLP problem is as follows.

a ≡ 38127280411190014138078391507929634193998643551018670285

56137516504552396692940392210217251405327092887266394263

70063532797740808 (mod p),

(7b)a ≡ 61858690859651883273593331665203790426798764306952171345

91462221849525998156144877820757492182909777408338791850

457946749734.

As we have already mentioned earlier, the Diffie–Hellman–Merkle scheme is not intended
to be used for actual secure communications, but for key-exchanges. There are, however,
several other cryptosystems based on discrete logarithms that can be used for secure message
transmissions.

Problems for Section 8.1

1. Suppose Alice and Bob decide to use DHM to establish a secret key for later secure
communications. They first agree that

g = 64783087731,
p = 80000000000000001239.

Then each of them chooses at random a secret random number

a = 476388475629 by Alice,
b = 2243552788 by Bob.



Discrete Logarithm Based Cryptography 341

You are asked to compute

x = ga (mod p);

ka ≡ xb (mod p),

x = gb (mod p),

kb ≡ ya (mod p),

and then to check if

ka ≡ kb (mod p).

2. In McCurley’s DLP, we have

7b ≡ 18016228528745310244478283483679989501596704669534669

73130251217340599537720584759581769106253806921016518

48662362137934026803049 (mod p),

p = 204706270385532838059744535166974274803608394340123459

695798674591526591372685229510652847339705797622075505

069831043486651682279.

(1) Find the discrete logarithm b.
(2) Compute (7a)b mod p.
(3) Verify if your result (7a)b mod p agrees with Weber and Denny’s result, that is, check

if (7a)b ≡ (7b)a (mod p).
3. Let the DHM parameters be as follows:

p = 10000000000000000000000000000000000000000000000000000

00000000000000000002047062703855328380597445351669742

74803608394340123459695798674591526591372685229510652

847339705797622075505069831043486651682889,

13x ≡ 10851945926748930321536897787511601536291411551215963

73579741375470500284577824376666678872677612280593569,

52326614812573203747209862136106492028547633310541581

30244119857377415713708744163529915144626 (mod p),

13y ≡ 52200208400156523080484387248076760362198322255017014

26725687374586670774992277718809198697784982872783584

83829459489565477648733256999972723227753686571233058

30747697800417855036551198719274264122371 (mod p).

(1) Find the discrete logarithm x .
(2) Find the discrete logarithm y.
(3) Compute (13x )y (mod p).
(4) Compute (13y)x (mod p).
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4. The man-in-the-middle attack is one of the attacks on DHM. Explain
(1) What is the man-in-the-middle attack?
(2) How does the man-in-the-middle attack work on DHM? (Use diagrams and mathe-

matical formulas whenever possible.)
(3) How can the man-in-the-middle attack on DHM can be prevented and detected?

8.2 ElGamal Cryptography

In 1985, ElGamal [5], then a PhD student of Hellman at Stanford, proposed the first DLP-
based public-key cryptosystem, since the plaintext M can be recovered by taking the follow-
ing discrete logarithms

M ≡ logMe M (mod n).

The ElGamal cryptosystem can be described as follows (see also Figure 8.3).

[1] A prime q and a generator g ∈ F∗q are made public.
[2] Alice chooses at random a private integer

a ∈ {1, 2, . . . , q − 1}. (8.1)

This a is the private decryption key. The public encryption key is {g, q, ga mod q}.

(g, q) public

ga mod q

(gb,Mgab) mod q

M ≡Mgab/(gb)a mod q

Alice Bob

Alice chooses a Bob chooses b

Figure 8.3 ElGamal Cryptography
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[3] Suppose now Bob wishes to send a message to Alice. He chooses a random number
b ∈ {1, 2, . . . , q − 1} and sends Alice the following pair of elements of Fq :

(gb, Mgab)

where M is the message.
[4] Since Alice knows the private decryption key a, she can recover M from this pair by

computing gab (mod q) and dividing this result into the second element. That is,

M ≡ Mgab/(gb)a (mod q).

[5] Cryptanalysis: Find the private a by solving the DLP

a ≡ logg x (mod q − 1)

such that

x ≡ ga (mod q).

Remark 8.1 Anyone who can solve the discrete logarithm problem in Fq breaks the
cryptosystem by finding the secret decryption key a from the public encryption key ga . In
theory, there could be a way to use knowledge of ga and gb to find gab and hence break
the cipher without solving the discrete logarithm problem. But as we have already seen in
the Diffie–Hellman–Merkle scheme, there is no known way to go from ga and gb to gab

without essentially solving the discrete logarithm problem. So, the ElGamal cryptosystem is
equivalent to the Diffie–Hellman–Merkle key-exchange system.

Problems for Section 8.2

1. In ElGamal cryptosystem, Alice makes (p, g, ga) public with p prime p:

p = 10000000000000000000000000000000000000000000000000000

00000000000000000002047062703855328380597445351669742

74804608394340123459695798674591526591372685229510652

847339705797622075505069831043486651683281

g = 137

ga ≡ 15219266397668101959283316151426320683674451858111063

45767690506157955692567935509944285656491006943855496

14388735928661950422196794512676225936419253780225375

37252639984353500071774531090027331523676
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where a ∈ {1, 2, · · · , p} must be kept as a secret. Now Bob can send Alice an encrypted
message C = (gb, Mgab) to Alice by using her public-key information, where

gb ≡ 595476756014583223023656041337202206960527469404733

550460497441379143741421836340432306536590708164674

624666369043843820015287699252117300810066542493564

12826389882146691842217779072611842406374051259

Mgab ≡ 495878618828151138304304184476649075302372644536032

944798495277367215335577078643146863306446245996605

600878341476511290381062014910855601264849526683408

83323263742065525535496981642865216817002959760

(1) Find the discrete logarithm a, and compute (gb)a mod p.
(2) Find the discrete logarithm b, and compute (ga)b mod p.
(3) Decode the ciphertext C by computing either

M ≡ Mgab/(gb)a (mod p)

or

M ≡ Mgab/(ga)b (mod p).

2. The ElGamal encryption can be randomized by the random choice of b or a. Describe a
randomized version of the ElGamal cryptosystem.

3. The ElGamal can be implemented in any cyclic group. Describe a version of ElGamal
cryptosystem in a class group of binary quadratic forms or more generally in a class group
of algebraic number fields.

4. Suppose, in ElGamal cryptosystem, the random number b is revealed. Explain how the
private key can be determined.

5. Compared to RSA, what is the disadvantage of ElGamal.

8.3 Massey–Omura Cryptography

The Massey–Omura cryptosystem is another popular public-key cryptosystem based on
discrete logarithms over the finite field Fq , with p = pr prime power. It was proposed by
James Massey and Jim K. Omura in 1982 [6] as a possible improvement over Shamir’s
original three-pass cryptographic protocol was developed around 1980, in which the sender
and the receiver do not exchange any keys, however, the protocol does require the sender
and receiver to have two private keys for encrypting and decrypting messages. Thus, the
Massey–Omura cryptosystem works in the following steps (see Figure 8.4):
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M Alice
MeA ( mod q−1)−−−−−−−−−−−−→ Bob

MeAeB ( mod q−1)−−−−−−−−−−−−−→ Alice

MeAeBdA (mod q − 1)

⏐
⏐
⏐
⏐

Bob

MeAeBdAdB (mod q − 1)

⏐
⏐
⏐
⏐

M

Figure 8.4 The Massey-Omura Cryptography

[1] All the users have agreed upon a finite group over a fixed finite field Fq with q a prime
power.

[2] Each user secretly selects a random integer e between 0 and q − 1 such that gcd(e, q − 1)
= 1, and computes d = e−1 mod (q − 1) by using the extended Euclidean algorithm. At
the end of this step, Alice gets (eA, dA) and Bob gets (eB, dB).

[3] Now suppose that user Alice wishes to send a secure message M to user Bob, then they
follow the following procedure:
[a] Alice first sends MeA to Bob,
[b] On receiving Alice’s message, Bob sends MeAeB back to Alice (note that at this point,

Bob cannot read Alice’s message M),
[c] Alice sends MeAeB dA = MeB to Bob,
[d] Bob then computes MdB eB = M , and hence recovers Alice’s original message M .

[4] Cryptanalysis: Eve shall be hard to find M from the three-pass protocol between Alice
and Bob unless she can solve the Discrete Logarithm Problem involved efficiently.

The Massey–Omura cryptosystem is also be described in detail in Figure 8.5 (suppose
Alice wants to send Bob a secret message M , with Eve, the attacker in the middle).

Example 8.3 Let

p = 80000000000000001239,

M = 20210519040125 (Tuesday),

eA = 6654873997,

eB = 7658494001.

Then

dA ≡ 1

eA
≡ 70094446778448900393 (mod p − 1),

dB ≡ 1

eB
≡ 14252518250422012923 (mod p − 1),

MeA ≡ 56964332403383118724 (mod p),
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Alice
sends ciphertext C of M−−−−−−−−−−−−−−−−−−−→ Bob

⏐
⏐
⏐

Eve wants to get M

Alice and Bob Agree a Finite Field q←−−−−−−−−−−−−−−−−−−−−−−−−−−−→
⏐
⏐
⏐
⏐

⏐
⏐
⏐
⏐

Alice performs: Bob performs:
Chooses eA ∈ [0, q − 1] Chooses eB ∈ [0, q − 1]

such that gcd(ea, q − 1) = 1 such that gcd(ea, q − 1) = 1
Computes dA = e−1

A (mod q − 1) Computes dB = e−1
B (mod q − 1)

Pass 1 :
MeA ( mod q−1)−−−−−−−−−−−−−→

Pass 2 :
MeAeB ( mod q−1)←−−−−−−−−−−−−−−

Pass 3 :
MeAeBdA ( mod q−1)−−−−−−−−−−−−−−−−→

⏐
⏐
⏐
⏐

Bob gets :

M ≡ MeAeBdAdB (mod q − 1)

⏐
⏐
⏐
⏐

Eve finds it hard to get M

Figure 8.5 The Massey–Omura three-pass cryptographic protocol

MeAeB ≡ 37671804887541585024 mod p,

MeAeB dA ≡ 50551151743565447865 mod p,

MeAeB dAdB ≡ 20210519040125 (mod p),

↓
M
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Problems for Section 8.3

1. Is the Massey–Omura cryptosystem a public-key cryptosystem? What are the public key
and secret key, respectively, in the Massey–Omura cryptosystem?

2. Explain why the security of Massey–Omura cryptosystem depends on the infeasibility of
the Discrete Logarithm Problem.

3. Design a discrete logarithm attack on the Massey–Omura cryptosystem.
4. Let

p = 14197,

(eA, dA) = (13, 13105),

(eB, dB) = (17, 6681),

M = 1511 (OK),

Find

MeA mod p,

MeAeB mod p,

MeAeB dA mod p,

MeAeB dAdB mod p.

and check if M ≡ MeAeB dAdB (mod p).
5. Let

p = 20000000000000002559,

M = 201514042625151811 (To New York),

eA = 6654873997,

eB = 7658494001.

(1) Find

dA ≡ 1/eA (mod p − 1),

dB ≡ 1/eB (mod p − 1).

(2) Find

MeA mod p,

MeAeB mod p,

MeAeB dA mod p,

MeAeB dAdB mod p.

(3) Check if M ≡ MeAeB dAdB (mod p).
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8.4 DLP-Based Digital Signatures

In this section, we shall introduce a very influential signature scheme based on ElGamal’s
cryptosystem; the security of such a signature scheme depends on the intractability of discrete
logarithms over a finite field.

Algorithm 8.1 (ElGamal signature scheme) This algorithm tries to generate a digital
signature S = (a, b) for message m. Suppose that Alice wishes to send a signed message to
Bob.

[1] [ElGamal key generation] Alice does the following:
[1-1] Choose a prime p and two random integers g and x , such that both g and x are

less than p.
[1-2] Compute y ≡ gx (mod p).
[1-3] Make (y, g, p) public (both g and p can be shared among a group of users), but

keep x secret.
[2] [ElGamal signature generation] Alice does the following:

[2-1] Choose at random an integer k such that gcd(k, p − 1) = 1.
[2-2] Compute

a ≡ gk (mod p),

b ≡ k−1(m − xa) (mod (p − 1)).

⎫⎬⎭ (8.2)

Now Alice has generated the signature (a, b). She must keep the random integer, k,
secret.

[3] [ElGamal signature verification] To verify Alice’s signature, Bob confirms that

yaab ≡ gm (mod p). (8.3)

In August 1991, the US Government’s National Institute of Standards and Technology
(NIST) proposed an algorithm for digital signatures. The algorithm is known as DSA, for
digital signature algorithm. The DSA has become the US Federal Information Processing
Standard 186 (FIPS 186). It is called the Digital Signature Standard (DSS) [13], and is the first
digital signature scheme recognized by any government. The role of DSA/DSS is expected
to be analogous to that of the Data Encryption Standard (DES). The DSA/DSS is similar to a
signature scheme proposed by Schnorr; it is also similar to a signature scheme of ElGamal.
The DSA is intended for use in electronic mail, electronic funds transfer, electronic data
interchange, software distribution, data storage, and other applications which require data
integrity assurance and data authentication. The DSA/DSS consists of two main processes:

(1) Signature generation (using the private key).
(2) Signature verification (using the public key).
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A one-way hash function is used in the signature generation process to obtain a condensed
version of data, called a message digest. The message digest is then signed. The digital
signature is sent to the intended receiver along with the signed data (often called the message).
The receiver of the message and the signature verifies the signature by using the sender’s
public key. The same hash function must also be used in the verification process. In what
follows, we shall give the formal specifications of the DSA/DSS.

Algorithm 8.2 (Digital signature algorithm, DSA) This is a variation of the ElGamal
signature scheme. It generates a signature S = (r, s) for the message m.

[1] [DSA key generation] To generate the DSA key, the sender performs the following:
[1-1] Find a 512-bit prime p (which will be public).
[1-2] Find a 160-bit prime q dividing evenly into p − 1 (which will be public).
[1-3] Generate an element g ∈ Z/pZ whose multiplicative order is q, that is,

gq ≡ 1 (mod p).
[1-4] Find a one-way function H mapping messages into 160-bit values.
[1-5] Choose a secret key x , with 0 < x < q.
[1-6] Choose a public key y, where y ≡ gx (mod p). Clearly, the secret x is the discrete

logarithm of y, modulo p, to the base g.
[2] [DSA signature generation] To sign the message m, the sender produces his signature as

(r, s), by selecting a random integer k ∈ Z/qZ and computing

r ≡ (gk (mod p)
)

(mod q),

s ≡ k−1(H (m)+ xr ) (mod q).

⎫⎬⎭ (8.4)

[3] [DSA signature verification] To verify the signature (r, s) for the message m from the
sender, the receiver first computes:

t ≡ s−1 (mod q), (8.5)

and then accepts the signature as valid if the following congruence holds:

r ≡ (gH (m)t yrt (mod p)
)

(mod q). (8.6)

If the congruence (8.6) does not hold, then the message either may have been incorrectly
signed, or may have been signed by an impostor. In this case, the message is considered
to be invalid.

There are, however, many responses solicited by the (US) Association of Computing
Machinery (ACM), positive and negative, to the NIST’s DSA. Some positive aspects of the
DSA include:

(1) The US government has finally recognized the utility and the usefulness of public-key
cryptography. In fact, the DSA is the only signature algorithm that has been publicly
proposed by any government.
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(2) The DSA is based on reasonably familiar number-theoretic concepts, and it is especially
useful to the financial services industry.

(3) Signatures in DSA are relatively short (only 320-bits), and the key generation process
can be performed very efficiently.

(4) When signing, the computation of r can be done even before the message m is available,
in a “precomputation” step.

Whilst some negative aspects of the DSA include:

(1) The DSA does not include key exchanges, and cannot be used for key distribution and
encryption.

(2) The key size in DSA is too short; it is restricted to a 512-bit modulus or key size, which
is too short and should be increased to at least 1024-bits.

(3) The DSA is not compatible with existing international standards; for example, the inter-
national standards organizations such as ISO, CCITT, and SWIFT all have accepted the
RSA as a standard.

Nevertheless, the DSA is the only publicly known government digital signature standard.

Problems for Section 8.4

1. According to [7], the following numbers 26, 12, 22, 58, 61 are the signature of a former
Special Agent for the FBI in the 1960s. It has been encoded using the agent’s private key,
which is none of your business. Find the signature by using their RSA public key (e, n) =
(7, 77). (As usual, the alphabetic-numeric encoding is just A → 1, B → 2, . . . , Z → 26.)

2. Suppose, in the ElGamal cryptosystem, the random number k is chosen to sign two
different messages. Let

b1 ≡ k−1(m1 − xa) (mod (p − 1)),

b2 ≡ k−1(m2 − xa) (mod (p − 1))

where

a ≡ gk (mod p).

(1) Show that k can be computed from

(b1 − b2)k ≡ (m1 − m2) (mod (p − 1)).

(2) Show that the private key x can be determined from the knowledge of k.
3. There are many variations to the ElGamal signature scheme by modifying the equation

b ≡ k−1(m − xa) (mod (p − 1)).

Propose three such variations.
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4. The US government’s digital signature algorithm (DSA) is a variant of the ElGamal
cryptosystem based on the intractability of the DLP.
(1) Give a complete description of DSA.
(2) Write an essay on the cryptanalytic attacks on DSA.

5. Just the same as encryption, digital signatures can be based on DLP, and also can be based
on IFP. Design variations of RSA and Rabin digital signature schemes.

8.5 Bibliographic Notes and Further Reading

This chapter discussed some of the most important and widely used public-key cryptographic
systems and digital signatures, whose security relies on the infeasibility of the Discrete
Logarithm Problem (DLP). The first public-key system, namely, the key-exchange scheme,
was first proposed by Diffie and Hellman in 1976 in [1], based on an idea of Merkle’s [2]
(although published later). The first Discrete Logarithm Problem based cryptographic system
and digital signature scheme were proposed by ElGamal in 1985 [5]. For general references
on Discrete Logarithm Problem based cryptographic systems and digital signature systems,
it is suggested that readers consult [8–42].
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9
Elliptic Curve Discrete Logarithm
Based Cryptography

In this chapter, we shall give an account of the elliptic curve discrete logarithm-based
(ECDLP-based, for short) pubic-key cryptosystems and digital signatures, these include:

� Elliptic curve Diffie–Helman–Meerkle key-exchange
� Elliptic curve Massey–Omura three-pass protocol
� Elliptic curve ElGamal cryptography
� Elliptic curve RSA cryptosystem
� Menezes–Vanstone elliptic curve cryptography
� Elliptic curve digital signature algorithm (ECDSA).

9.1 Basic Ideas

Elliptic curve is ubiquitous in mathematics and computing, for example, we have seen
in this book that elliptic curves have novel applications to primality testing and integer
factorization. However, the applications of elliptic curves to cryptography were not found
until the following two seminal papers were published:

[1] Victor Miller [1], “Uses of Elliptic Curves in Cryptography”, Lecture Notes in Computer
Science, 218, Springer, 1986, pp. 417–426.

[2] Neal Koblitz [2]:1987ECC, “Elliptic Curve Cryptography”, Mathematics of Computa-
tion, 48, 1987, pp. 203–209.

Since then, elliptic curves have been studied extensively for the purpose of cryptography, and
many practically more secure encryption and digital signature schemes have been developed
based on elliptic curves. Now elliptic curve cryptography (ECC) is a standard term in the
field. There is even a computer company in Canada, Certicom, which is a leading provider
of cryptographic technology based on elliptic curves. Now we will move on to discussing
the basic ideas and computational methods of elliptic curve cryptography.

Computational Number Theory and Modern Cryptography, First Edition. Song Y. Yan.
© 2013 Higher Education Press. All rights reserved. Published 2013 by John Wiley & Sons Singapore Pte. Ltd.
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To implement elliptic curve cryptography, we need to do the following precomputations:

[1] Embed messages on elliptic curves: Our aim here is to do cryptography with elliptic
curve groups in place of Fq . More specifically, we wish to embed plaintext messages as
points on an elliptic curve defined over a finite field Fq , with q = pr and p ∈ Primes.
Let our message units m be integers 0 ≤ m ≤ M , let also κ be a large enough integer for
us to be satisfied with an error probability of 2−κ when we attempt to embed a plaintext
message m. In practice, 30 ≤ κ ≤ 50. Now let us take κ = 30 and an elliptic curve
E : y2 = x3 + ax + b over Fq . Given a message number m, we compute a set of values
for x :

x = {mκ + j, j = 0, 1, 2, . . .} = {30m, 30m + 1, 30m + 2, · · ·}

until we find x3 + ax + b is a square modulo p, giving us a point (x,
√

x3 + ax + b)
on E . To convert a point (x, y) on E back to a message number m, we just compute
m = �x/30�. Since x3 + ax + b is a square for approximately 50% of all x , there is only
about a 2−κ probability that this method will fail to produce a point on E over Fq . In what
follows, we shall give a simple example of how to embed a message number by a point
on an elliptic curve. Let E be y2 = x3 + 3x , m = 2174 and p = 4177 (in practice, we
select p > 30m). Then we calculate x = {30 · 2174+ j, j = 0, 1, 2, . . .} until x3 + 3x
is a square modulo 4177. We find that when j = 15:

x = 30 · 2174+ 15

= 65235,

x3 + 3x = (30 · 2174+ 15)3 + 3(30 · 2174+ 15)

= 277614407048580

≡ 1444 mod 4177

≡ 382.

So we get the message point for m = 2174:

(x,
√

x3 + ax + b) = (65235, 38).

To convert the message point (65235, 38) on E back to its original message number m,
we just compute

m = �65235/30� = �2174.5� = 2174.

[2] Multiply points on elliptic curves over Fq : We have discussed the calculation of k P ∈ E
over Z/nZ. In elliptic curve public-key cryptography, we are now interested in the
calculation of k P ∈ E over Fq , which can be done in O(log k(log q)3)-bit operations
by the Repeated Doubling Method. If we happen to know N , the number of points
on our elliptic curve E , and if k > N , then the coordinates of k P on E can be com-
puted in O((log q)4)-bit operations; recall that the number N of points on E satisfies
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N ≤ q + 1+ 2
√

q = O(q) and can be computed by René Schoof’s algorithm in
O((log q)8)-bit operations.

[3] Compute elliptic curve discrete logarithms: Let E be an elliptic curve over Fq , and B
a point on E . Then the discrete logarithm on E is the problem, given a point P ∈ E ,
find an integer x ∈ Z such that x B = P if such an integer x exists. It is likely that the
discrete logarithm problem on elliptic curves over Fq is more intractable than the discrete
logarithm problem in Fq . It is this feature that makes cryptographic systems based on
elliptic curves even more secure than those based on the discrete logarithm problem.
In the rest of this section, we shall discuss elliptic curve analogs of some important
public-key cryptosystems.

In what follows, we shall present some elliptic curve analogs of four widely used public-
key cryptosystems, namely the elliptic curve DHM, the elliptic curve Massey–Omura, the
elliptic curve ElGamal, the elliptic curve RSA, and elliptic curve digital signature algorithm
(ECDSA).

Problems for Section 9.1

1. Describe the advantages of ECC (elliptic curve cryptography) over integer factoring based
and discrete logarithm based cryptography.

2. Give the complexity measures for the fastest known general algorithms for
(1) the Integer Factorization Problem (IFP)
(2) the Discrete Logarithm Problem (DLP)
(3) the Elliptic Curve Discrete Logarithm Problem (ECDLP).

3. Give the complexity measures for
(1) the Integer Factorization Problem (IFP)-based cryptosytems
(2) the Discrete Logarithm Problem (DLP)-based cryptosytems
(3) the Elliptic Curve Discrete Logarithm Problem (ECDLP)-based cryptosytems.

4. The exponential cipher, invented by Pohlig and Hellman in 1978 and based on the mod
p arithmetic, is a secret-key cryptosystem, but it is very close to the RSA public-key
cryptosystem based on mod n arithmetic, where n = pq with p, q pime numbers. In
essence, the Pohlig–Hellman cryptosystem works as follows:
[1] Choose a large prime number p and the encryption key k such that 0 < k < p and

gcd(k, p − 1) = 1.
[2] Compute the decryption key k ′ such that k · k ′ ≡ 1(mod p − 1).
[3] Encryption: C ≡ Mk(mod p).
[4] Decryption: M ≡ Ck ′(mod p).
Clearly, if you change the modulo p to modulo n = pq, then the Pohlig–Hellman cryp-
tosystem is just the RSA cryptosystem.
(1) Design an elliptic curve analog of the Pohlig–Hellman cryptosystem.
(2) Explain why the original Pohlig–Hellman cryptosystem is easy to break whereas the

elliptic curve Pohlig–Hellman cryptosystem is hard to break.
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9.2 Elliptic Curve Diffie–Hellman–Merkle Key Exchange Scheme

The Diffie–Hellman–Merkle key-exchange scheme over a finite field Fp can be easily ex-
tended to elliptic curve E over a finite field Fp (denoted by E\(Fp)); such an elliptic curve
analog may be described as follows (see Figure 9.1).

[1] Alice and Bob publicly choose a finite field Fq with q = pr and p ∈ Primes, an elliptic
curve E over Fq , and a random base point P ∈ E such that P generates a large subgroup
of E , preferably of the same size as that of E itself. All of this is public information.

[2] To agree on a secret key, Alice and Bob choose two secret random integers a and b.
Alice computes a P ∈ E and sends a P to Bob; Bob computes bP ∈ E and sends bP to
Alice. Both a P and bP are, of course, public but a and b are not.

[3] Now both Alice and Bob compute the secret key abP ∈ E , and use it for further secure
communications.

[4] Cryptanalysis: For the eavesdropper Eve to get abP , she has to either to find a from
(abP, P) or b from (bP, P).

As everybody knows, there is no known fast way to compute abP if one only knows P ,
a P and bP – this is the infeasible Elliptic Curve Discrete Logarithm Problem (ECDLP).

abP mod q

Alice chooses a Bob chooses b

(E,P, q)

aP mod q

bP mod q

Alice Bob

a(bP mod q) b(aP mod q)

Figure 9.1 Elliptic curve Diffie–Hellman–Merkle
key-exchange scheme
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Example 9.1 The following is an elliptic curve analog of the DHM scheme. Let

E\F199 : y2 ≡ x3 + x − 3,

P = (1, 76) ∈ E(F199),

a = 23

b = 86

Then

a = 23 b = 86�⏐� �⏐�
Alice

23P mod 199=(2,150)−−−−−−−−−−−−−−−−→Bob

Alice
86P mod 199=(123,187)←−−−−−−−−−−−−−−−−Bob⏐⏐⏐⏐�

⏐⏐⏐⏐�
86P mod 199 = (123, 187) 23P mod 199 = (2, 150)⏐⏐⏐⏐�

⏐⏐⏐⏐�
23 · 86P mod 199 = (156, 75) 86 · 23P mod 199 = (156, 75)

↘ ↙
↘ ↙

k = (156, 75)

Clearly, anyone who can find the discrete logarithm a or b such that

(2, 150) ≡ a(1, 76) (mod 199), (123, 187) ≡ b(1, 76) (mod 199)

can get the key abP ≡ (156, 75) (mod 199).

Example 9.2 We illustrate another example of the elliptic curve analog of the DHM scheme.
Let

E\F11027 : y2 ≡ x3 + 4601x + 548,

P = (9954, 8879) ∈ E(F11027)

a = 1374

b = 2493



358 Computational Number Theory and Modern Cryptography

Then

a = 1374 b = 2493�⏐� �⏐�
Alice

1374P mod 11027=(8326,8369)−−−−−−−−−−−−−−−−−−−−→Bob

Alice
2493P mod 11027=(2651,6701)←−−−−−−−−−−−−−−−−−−−−Bob⏐⏐⏐⏐�

⏐⏐⏐⏐�
2493P mod 11027 = (2651, 6701) 1374P mod 11027 = (8326, 8369)⏐⏐⏐⏐�

⏐⏐⏐⏐�
1374(2493P) mod 11027 = (3432, 1094) 2493(1374P) mod 11027 = (3432, 1094)

↘ ↙

↘ ↙

k = (3432, 1094)

Anyone who can find the discrete logarithm a or b such that

(8326, 8369) ≡ a(9954, 8879) (mod 11027)

or

(2651, 6701) ≡ b(9954, 8879) (mod 11027)

can get the key abP ≡ ((3432, 1094)) (mod 11027).

Problems for Section 9.2

1. Koyama et al. [3] proposed three trapdoor one-way functions; one of the functions claimed
to be applicable to zero-knowledge identification protocols. Give an implementation of the
elliptic curve trapdoor one-way function for the zero-knowledge identification protocol.
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2. Suppose that Alice and Bob want to establish a secret key for future encryption in EC
DHM key-exchange. Both Alice and Bob perform as follows:

Alice
Establish Common Key←−−−−−−−−−−−−−−−Bob

E: y2≡x3−4 ( mod 211), P=(0,−4)∈E←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→⏐⏐⏐⏐�
⏐⏐⏐⏐�

Alice performs: Bob performs:

Chooses a secretly Chooses b secretly
Computes a P (mod 211) Computes bP (mod 211)

aP mod 211−−−−−−−→
bP mod 211←−−−−−−−

Alice computes: Bob computes:
a(bP) (mod 211) b(a P) (mod 211)⏐⏐⏐⏐�

⏐⏐⏐⏐�
↘ ↙
↘ ↙

abP (mod 211)

Find the actual values for
(1) a P mod 211.
(2) bP mod 211.
(3) abP mod 211.
(4) ba P mod 211.

Verify if abP ≡ ba P (mod 211).
3. Let the elliptic curve analog of a DHM scheme be as follows.

E\F11027 : y2 ≡ x3 + 4601x + 548

P = (2651, 6701) ∈ E(F11027)
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a b�⏐� �⏐�
Alice

a P mod 11027=(177,8610)−−−−−−−−−−−−−−−−−−−−→Bob

Alice
bP mod 11027=(1055,2617)←−−−−−−−−−−−−−−−−−−−−Bob⏐⏐⏐⏐�

⏐⏐⏐⏐�
bP mod 11027 = (1055, 2617) a P mod 11027 = (177, 8610)⏐⏐⏐⏐�

⏐⏐⏐⏐�
a(bP) mod 11027 = (9089, 10631) b(a P) mod 11027 = (9089, 10631)

↘ ↙

↘ ↙

k = (3432, 1094)

(1) Find the discrete logarithm a such that

a P mod 11027 = (177, 8610).

(2) Find the discrete logarithm b such that

bP mod 11027 = (1055, 2617).

9.3 Elliptic Curve Massey–Omura Cryptography

Recall that the Massey–Omura cryptographic scheme is a three-pass protocol for sending
messages, allowing Alice to securely send a message to Bob without the need to exchange
or distribute encryption keys. Let E be an elliptic curve over Fq with q a prime power, and
M = P ∈ E(Fq ) the original message point. Then the elliptic curve analog of the Massey–
Omura cryptosystem may be described as follows (see also Figure 9.2).

[1] Alice and Bob publicly choose an elliptic curve E over Fq with q = pr , a large prime
power; as usual, we assume q = p and we suppose also that the number of points on
E\Fq (denoted by N ) is publicly known.
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Set-up:

Assume Alice P−−→ Bob

P ∈ E( q),

|E( q)| = N

Alice generates (eA, dA) such that eAdA ≡ 1 (mod N)

Bob generates (eB , dB) such that eBdB ≡ 1 (mod N)
⏐
⏐
⏐
⏐

Alice
eAP ( mod q)−−−−−−−−−→ Bob

eAeBP ( mod q)−−−−−−−−−−−−→ Alice

eAeBdAP (mod q)

⏐
⏐
⏐
⏐

Bob

eAeBdAdBP (mod q)

⏐
⏐
⏐
⏐

P

Figure 9.2 Elliptic Curve The Massey–Omura cryptography

[2] Alice chooses a secret pair of numbers (eA, dA) such that dAeA ≡ 1 (mod N ). Similarly,
Bob chooses (eB, dB) such that dBeB ≡ 1 (mod N ).

[3] If Alice wants to send a secret message-point P ∈ E to Bob, then the procedure should
be as follows:
[a] Alice sends eA P mod q to Bob,
[b] Bob sends eBeA P mod q to Alice,
[c] Alice sends dAeBeA P mod q = eB P to Bob,
[d] Bob computes dBeB P = P and hence recovers the original message point.

Note that an eavesdropper would know eA P , eBeA P , and eB P . So if he could solve the
elliptic curve discrete logarithm problem on E , he could determine eB from the first two
points and then compute dB = e−1

B mod q and hence get P = dB(eB P).

Example 9.3 We follow closely the steps in the above discussed elliptic curve Massey–
Omura cryptography. Let

p = 13,

E\F13 : y2 ≡ x3 + 4x + 4 (mod 13)

|E(F13)| = 15

M = (12, 8)),
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(eA, dA) ≡ (7, 13) (mod 15),

(eB, dB) ≡ (2, 8) (mod 15).

Then

eA M ≡ 7(12, 8) (mod 13),

≡ (1, 10) (mod 13),

eAeB M ≡ eB(1, 10) (mod 13),

≡ 2(1, 10) (mod 13),

≡ (12, 5) (mod 13),

eAeBdA M ≡ dA(12, 5) (mod 13),

≡ 13(12, 5) (mod 13),

≡ (6, 6) (mod 13),

eAeBdAdB M ≡ dB(6, 6) (mod 13),

≡ 8(6, 6) (mod 13),

≡ (12, 8) (mod 13),

↓
M.

Example 9.4 Let

p = 13,

E\F13 : y2 ≡ x3 + x (mod 13)

|E(F13)| = 20

M = (11, 9)),

(eA, dA) ≡ (3, 7) (mod 20),

(eB, dB) ≡ (13, 17) (mod 20).

Then

eA M ≡ 3(11, 9) (mod 13),

≡ (7, 5) (mod 13),

eAeB M ≡ eB(7, 5) (mod 13),

≡ 13(7, 5) (mod 13),

≡ (11, 4) (mod 13),

eAeBdA M ≡ dA(11, 4) (mod 13),

≡ 17(11, 4) (mod 13),

≡ (7, 5) (mod 13),
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eAeBdAdB M ≡ dB(7, 5) (mod 13),

≡ 17(7, 5) (mod 13),

≡ (11, 9) (mod 13),

↓
M.

Problems for Section 9.3

1. In RSA public-key cryptosystem, (e, n) is the public key whereas d is the private key.
What are the public key and secret key, respectively, in the Massey–Omura cryptosystem?

2. Consider the elliptic curve E

E : y2 = x3 + x − 3

over the field F199. Let M = (1, 76) ∈ E(F199) and (eA, eB) = (23, 71).
(1) Find the number of points, N , in E(F199).
(2) Find

eA P mod q,

eAeB M mod q,

(3) Find

eAeBdA M mod q,

eAeBdAdB M mod q.

(4) Check if eAeBdAdB M mod q = P?
3. Consider the elliptic curve E

E : y2 = x3 + 1441x + 611

over the field F2591. Let P = (1619, 2103) ∈ E(F2591), (eA, eB) = (107, 257).
(1) Find the number of points, N , in E(F2591).
(2) Find

eA P mod q,

eA(eB M) mod q.

(3) Find

dA(eAeB)M mod q,

dB(dAeAeB M) mod q.

(4) Check if eAeBdAdB P mod q = M?
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4. Let p be a 200-digit prime number as follows:

p = 10000000000000000000000000000000000000000000000000

00000000000000000000000000000000000000000000000000

00000000000000000000000000000000000000000000000000

00000000000000000000000000000000000000000000000153

Let the elliptic curve over Fp be as follows:

E\Fp : y2 ≡ x3 + 105x + 78153 (mod p),

with a point order:

N = 10000000000000000000000000000000000000000000000000

00000000000000000000000000000000000000000000000000

06789750288004224118080314365460277641928049641888

39991591392960032210630561760029050858613689631753

(1) Let eA = 179, compute dA ≡ 1
eA

mod N .

(2) Let eB = 983, compute dB ≡ 1
eB

mod N .
5. Let p be a prime number

p = 12345678901234567890123456789065483337452508596673

7125236501

Let the elliptic curve over Fp be as follows:
y2 ≡ x3+
112507913528623610837613885503682230698868883572599681384335x
−112507913528623610837613885503682230698868883572599681384335
(mod p).

with order |E(Fp)| = N as follows:

123456789012345678901234567890123456789012345678901234568197.

Let
(7642989232975292895356351754903278029804860223284406315749,

100181741322448105444520871614464053169400529776945655771441)
be the plaintext point M . Suppose Alice wishes to send M to Bob.
Let

eA = 3,
dA = 82304526008230452600823045260082304526008230452600823045465,
eB = 7,
dB = 17636684144620811271604938270017636684144620811271604938314,

all modulo N . Compute:
(1) eA M mod p.
(2) eB(eA M) mod p.
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Alice chooses a Bob chooses b

(E,P, q) public

aP mod q

(bP,M + b(aP )) mod q

M ≡M + b(aP )− a(bP ) (mod q)

Alice Bob

Figure 9.3 Elliptic curve ElGamal cryptography

(3) dA(eBeA M) mod p.
(4) dB(dAeBeA M) mod p.
(5) Check if dB(dAeBeA M) mod p = M .

9.4 Elliptic Curve ElGamal Cryptography

Just the same as many other public-key cryptosystems, the famous ElGamal cryptosystem
also has a very straightforward elliptic curve analog, which may be described as follows (see
also Figure 9.3).

[1] Suppose Bob wishes to send a secret message to Alice:

Bob
Secrete Message−−−−−−−−−−−→Alice.

Alice and Bob publicly choose an elliptic curve E over Fq with q = pr a prime power,
and a random base point P ∈ E . Suppose they also know the number of points on E ,
that is, they know |E(Fq )| = N .

[2] Alice chooses a random integer a, computes a P mod q, and sends it to Bob.
[3] Encryption: Bob chooses at random an integer b and computes bP mod q. Bob also

computes M + b(a P) mod q . Then Bob sends the secret encrypted message (bP, M +
b(a P)) mod q to Alice.
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[4] Decryption: Since Alice has the secret key a, she can compute a(bP) mod q and get

M ≡ M + a(bP)− b(a P) (mod q), (9.1)

the original plaintext message.
[5] Cryptanalysis: Eve, the eavesdropper, can only get M if she can solve the Elliptic Curve

Discrete Logarithm Problem. That is, she can get M if she can find a from a P mod q
or b from bP mod q . But, as everybody knows, there is no efficient way to compute the
elliptic curve discrete logarithms, so the ElGamal cryptosystem system is secure.

Example 9.5 Suppose Bob wishes to send Alice a secret message M by using the elliptic
curve ElGamal cryptographic scheme.

[1] Set-up;

E\F29 : y2 ≡ x3 − x + 16 (mod 29),

N = |E(F29)| = 31,

P = (5, 7) ∈ E(F29),

M = (28, 25).

[2] Public-key generation: Assume Bob sends the secret message M to Alice, so Alice:

Chooses a random secret integer a = 23,

Computes a P = 23P = (21, 18) (mod 29),

Sends a P = (21, 18) (mod 29) to Bob.

[3] Encryption: Bob

Chooses a random secret integer b = 25,

Computes bP = 25P = (13, 24) (mod 29),

b(a P) = 17(23P) = 17(21, 18) = (1, 25) (mod 29),

M + b(a P) = (28, 25)+ (1, 25) = (0, 4) (mod 29),

Sends (bP = (1, 25), M + b(a P) = (0, 4)) to Alice.

[4] Decryption: Alice computes

a(bP) = 23(25P) = 23(13, 24) = (1, 25),

M = M + b(a P)− a(bP)

= (0, 4)− (1, 25)

= (0, 4)+ (1,−25)

= (28, 25).

So, Alice recovers the original secret message M = (28, 25).
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Example 9.6 Now we give one more example on the elliptic curve ElGamal cryptosystem.

[1] Set-up;

E\F523 : y2 ≡ x3 + 22x + 153 (mod 523),

P = (167, 118) ∈ E(F523),

M = (220, 287) is the plaintext.

[2] Public-key generation: Assume Bob sends the secret message M to Alice, so Alice:

Chooses a random secret integer a = 97,

Computes a P = 97(167, 118) = (167, 405) (mod 523),

Sends a P = (167, 405) (mod 523) to Bob.

[3] Encryption: Bob

Chooses a random secret integer b = 263,

Computes bP = 263(167, 118) = (5, 503) (mod 523),

b(a P) = 263(167, 405) = (5, 20) (mod 523),

M + b(a P) = (220, 287)+ (5, 20)

= (36, 158) (mod 523),

Sends (bP = (5, 503), M + b(a P) = (36, 158)) to Alice.

[4] Decryption: Alice computes

a(bP) = 97(5, 503) = (5, 20),

M = M + b(a P)− a(bP)

= (36, 158)− (5, 20)

= (36, 158)+ (5, 503)

= (220, 287).

So, Alice recovers the original secret message M = (220, 287).

Problems for Section 9.4

1. Suppose that Alice wants to send Bob a secret message M = (10, 9) using elliptic curve
ElGamal cryptography. Both Alice and Bob perform as follows:
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Alice
M=(10,9)−−−−−−−−−−−→ Bob

E: y2≡x3+x+6 ( mod 11), P=(2,7)∈E←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→⏐⏐⏐⏐�
⏐⏐⏐⏐�

Chooses a = 3 secretly Chooses b = 7secretly
Computes a P (mod 11) Computes bP (mod 11)

bP mod 11←−−−−−−−
{aP, M+a(bP)} mod 11−−−−−−−−−−−−−−→ ⏐⏐⏐⏐�

M ≡ M + a(bP)− b(a P) (mod 11)

Compute the actual values for
(1) a P mod 11.
(2) bP mod 11.
(3) b(a P) mod 11.
(4) a(bP) mod 11.
(5) M + a(bP) mod 11.
(6) M + a(bP)− b(a P) (mod 11).

Check if M + a(bP)− b(a P) (mod 11) = (10, 9)?
2. Suppose that Alice wants to send Bob a secret message M = (562, 201) in elliptic curve

ElGamal cryptography. Both Alice and Bob perform the following:

Alice
M=(562,201)−−−−−−−−−−−→ Bob

E: y2≡x3−x+188 ( mod 751), P=(0,376)∈E←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→⏐⏐⏐⏐�
⏐⏐⏐⏐�

Chooses a = 386 secretly Chooses b = 517 secretly
Computes a P (mod 751) Computes bP (mod 751)

bP mod 751←−−−−−−−
{aP,M+a(bP)} mod 751−−−−−−−−−−−−−−→ ⏐⏐⏐⏐�

M ≡ M + a(bP)− b(a P) (mod 751)
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Compute the actual values for
(1) a P mod 751.
(2) bP mod 751.
(3) a(bP) mod 751.
(4) b(a P) mod 751.
(5) M + a(bP) mod 751.
(6) M + a(bP)− b(a P) mod 751.

Check if M + a(bP)− b(a P) mod 751 = (562, 201)?
3. Suppose that Alice wants to send Bob a secret message M = (316, 521) in elliptic curve

ElGamal cryptography. Both Alice and Bob perform the following:

Alice
(316,521)−−−−−−−−−−−→ Bob

E: y2≡x3+6x+167 ( mod 547), P=(61,440)∈E←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→⏐⏐⏐⏐�
⏐⏐⏐⏐�

Chooses a secretly Chooses b secretly
Computes a P (mod 547) Computes bP (mod 547)

= (483, 59) = (168, 341)

bP mod 547=(168,341)←−−−−−−−−−−−−−−
{aP, M+a(bP)} mod 547={(483,59),(49,178)}−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→⏐⏐⏐⏐�

M ≡ M + a(bP)− b(a P) (mod 547)

≡ (49, 178)+ (143,−443) (mod 547)

≡ (316, 521) (mod 547)

Find
(1) a such that a P mod 547 = (483, 59).
(2) b such that bP mod 547 = (168, 341).
(3) a(bP) mod 547.
(4) b(a P) mod 547.
(5) Check if a(bP) ≡ b(a P) (mod 547).
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9.5 Elliptic Curve RSA Cryptosystem

The most widely used RSA cryptosystem can not only be used for both encryption and digital
signatures, but also has a natural analog of elliptic curve cryptography, and in fact, several
elliptic curve RSA cryptosystems have been developed. In what follows, we describe one of
the analogs.

[1] N = pq is a public key which is the product of the two large secret primes p and q.
[2] Choose two random integers a and b such that E : y2 = x3 + ax + b defines an elliptic

curve both mod p and modq .
[3] To encrypt a message-point P , just perform eP mod N , where e is the public (encryption)

key. To decrypt, one needs to know the number of points on E modulo both p and q.

The above are some elliptic curve analogs of certain public-key cryptosystems. It should
be noted that almost every public-key cryptosystem has an elliptic curve analogue; it is of
course possible to develop new elliptic curve cryptosystems which do not rely on the existing
cryptosystems.

It should be also noted that the digital signature schemes can also be analoged by elliptic
curves over Fq or over Z/nZ with n = pq and p, q ∈ Primes in exactly the same way as
that for public-key cryptography; several elliptic curve analogs of digital signature schemes
have already been proposed, for example [4].

Problems for Section 9.5

1. The following is an elliptic curve version of the RSA cryptosystems developed by Koyama,
Maurer, Okamoto, and Vanstone. Suppose Bob wishes to send Alice a message. Both Bob
and Alice perform as follows:
(1) Key generation: Bob first selects two large distinct primes p and q such that p ≡

q ≡ 2 (mod 3) and computes n = pq, then he selects integers e and d such that
ed ≡ 1 (mod lcm(p + 1, q + 1)), finally he announces (n, e) as his public key, but
keeps (d, p, q) secret.

(2) Encryption: Alice represents her message

M ≡ (m1, m2) (mod n),

where M is a point on the elliptic curve

y2 ≡ x3 + b (mod n)

with

b ≡ m3
2 − m3

1 (mod n).

Alice then computes C ≡ (em1, em2) (mod n). Finally she sends C to Bob.
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(3) Decryption: Bob computes

M ≡ dC ≡ (dem1, dem2) ≡ (m1.m2).

Suppose now that Eve does not know the prime factorization of n but she knows in
some way d . Show that she can factor n with high probability.

2. In 1993 Demytko [5] proposed an elliptic curve RSA cryptosystem, which uses a fixed
randomly chosen elliptic curve E over Zn , where n = pq is an RSA modulus. Give a full
description of the Demytko cryptosystem, and extend it to a semantically secure elliptic
curve RSA.

9.6 Menezes–Vanstone Elliptic Curve Cryptography

A serious problem with all the above mentioned elliptic curve cryptosystems is that the
plaintext message units m lie on the elliptic curve E , and there is no convenient method
known of deterministically generating such points on E . Fortunately, Menezes and Vanstone
discovered a more efficient variation [6]; in this variation which we shall describe below, the
elliptic curve is used for “masking,” and the plaintext and ciphertext pairs are allowed to be
in F∗p × F∗p rather than on the elliptic curve.

[1] Key generation: Alice and Bob publicly choose an elliptic curve E over Fp with p > 3
prime and a random base point P ∈ E(Fp) such that P generates a large subgroup H of
E(Fp), preferably of the same size as that of E(Fp) itself. Assume that randomly chosen
k ∈ Z|H | and a ∈ N are secret.

[2] Encryption: Suppose now Alice wants to send message

m = (m1, m2) ∈ (Z/pZ)∗ × (Z/pZ)∗ (9.2)

to Bob, then she does the following:
[a] β = a P , where P and β are public;
[b] (y1, y2) = kβ;
[c] c0 = k P;
[d] c j ≡ y j m j (mod p) for j = 1, 2;
[e] Alice sends the encrypted message c of m to Bob:

c = (c0, c1, c2). (9.3)

[3] Decryption: Upon receiving Alice’s encrypted message c, Bob calculates the following
to recover m:
[a] ac0 = (y1, y2);
[b] m = (c1 y−1

1 (mod p), c2 y−1
2 (mod p)

)
.
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Example 9.7 The following is a nice example of the Menezes–Vanstone cryptosystem [8].

[1] Key generation: Let E be the elliptic curve given by y2 = x3 + 4x + 4 over F13, and
P = (1, 3) be a point on E . Choose E(F13) = H which is cyclic of order 15, generated
by P . Let also the private keys be k = 5 and a = 2, and the plaintext m = (12, 7) =
(m1, m2).

[2] Encryption: Alice computes:

β = a P = 2(1, 3) = (12, 8),

(y1, y2) = kβ = 5(12, 8) = (10, 11),

c0 = k P = 5(1, 3) = (10, 2),

c1 ≡ y1m1 ≡ 10 · 2 ≡ 3 (mod 13)

c2 ≡ y2m2 ≡ 11 · 7 ≡ 12 (mod 13).

Then Alice sends

c = (c0, c1, c2) = ((10, 2), 3, 12)

to Bob.
[3] Decryption: Upon receiving Alice’s message, Bob computes:

ac0 = 2(10, 2) = (10, 11) = (y1, y2),

m1 ≡ c1 y−1
1 ≡ 12 (mod 13),

m2 ≡ c2 y−1
2 ≡ 7 (mod 13).

Thus, Bob recovers the message m = (12, 7).

Problems for Section 9.6

1. Let E\F2m be the elliptic curve E over F2m with m > 1, where E is defined by

y2 + xy = x3 + ax2 + b.

(1) Let P, Q ∈ E with P �= ±Q be two points on E . Find the addition formula for
computing P + Q.

(2) Let P ∈ E with P �= −P . Find the addition formula for computing 2P .
(3) Let E\F2m be as follows:

E\F24 : y2 ≡ x3 + α4x2 + 1 (mod 24).

Find all the points, E(F24 ), including the point at infinity, on the E .
(4) Let P = (α6, α8) and Q = (α3, α13) be in E\F24 defined above, find P + Q and 2P .
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2. Give an implementation, in any programming language, of the Menezes–Vanstone cryp-
tosystem.

3. Develop an effective attack on the Menezes–Vanstone cryptosystem.

9.7 Elliptic Curve DSA

We have already noted that almost every public-key cryptosystem has an elliptic curve
analog. It should also be noted that digital signature schemes can also be represented by
elliptic curves over Fq with q a prime power or over Z/nZ with n = pq and p, q ∈ Primes.
In exactly the same way as that for public-key cryptography, several elliptic curve analogs of
digital signature schemes have already been proposed (see, for example, Meyer and Müller
[4]). In what follows we shall describe an elliptic curve analog of the DSA/DSS, called the
ECDSA [7].

Algorithm 9.1 (Elliptic curve digital signature algorithm) Let E be an elliptic curve
over Fp with p prime, and let P be a point of prime order q (note that the q here is just a
prime number, not a prime power) in E(Fp). Suppose Alice wishes to send a signed message
to Bob.

[1] [ECDSA key generation] Alice does the following:
[1-1] select a random integer x ∈ [1, q − 1],
[1-2] compute Q = x P ,
[1-3] make Q public, but keep x secret.
Now Alice has generated the public key Q and the private key x .

[2] [ECDSA signature generation] To sign a message m, Alice does the following:
[2-1] select a random integer k ∈ [1, q − 1],
[2-2] compute k P = (x1, y1), and r ≡ x1 (mod q). If r = 0, go to step [2-1].
[2-3] compute k−1 mod q .
[2-4] compute s ≡ k−1(H (m)+ xr ) (mod q), where H (m) is the hash value of the

message. If s = 0, go to step [2-1].
The signature for the message m is the pair of integers (r, s).

[3] [ECDSA signature verification] To verify Alice’s signature (r, s) of the message m, Bob
should do the following:
[3-1] obtain an authenticated copy of Alice’s public key Q;
[3-2] verify that (r, s) are integers in the interval [1, q − 1], computes k P = (x1, y1),

and r ≡ x1 (mod q).
[3-3] compute w ≡ s−1 (mod q) and H (m).
[3-4] compute u1 ≡ H (m)w (mod q) and u2 ≡ rw (mod q).
[3-5] compute u1 P + u2 Q = (x0, y0) and v ≡ x0 (mod q).
[3-6] accept the signature if and only if v = r .

As a conclusion to elliptic curve cryptography (ECC), we provide two remarks about the
comparison of ECC and other types of cryptography, particularly the famous and widely
used RSA cryptography.
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Table 9.1 Key size comparison between RSA and ECC

Security level RSA ECC

Low 512-bits 112-bits
Medium 1024-bits 161-bits
High 3027-bits 256-bits
Very high 15360-bits 512-bits

Remark 9.1 ECC provides a high level of security using smaller keys than that used in
RSA. A comparison between the key sizes for an equivalent level of security for RSA and
ECC is given in the following Table 9.1.

Remark 9.2 Just the same as there are weak keys for RSA, there are also weak keys
for ECC, for example, as an acceptable elliptic curve for cryptography, it must satisfy the
following conditions:

1. If N is the number of integer coordinates, it must be divisible by a large prime r such that
N = kr for some integer k.

2. It the curve has order p modulo p, then r must not be divisible by pi − 1 for a small set
of i , say, 0 ≤ i ≤ 20.

3. Let N be the number of integer coordinates and p = E(Fp), then N must not be equal to
p. The curve that satisfies the condition p = N is called the anomalous curve.

Problems for Section 9.7

1. The elliptic curve digital signature algorithm (ECDSA) is the elliptic curve analog of the
digital signature algorithm (DSA).
(1) Give a complete description of the elliptic curve analog of the digital signature

algorithm, ECDSA.
(2) Explain the main advantages and features of ECDSA over DSA.
(3) Give a critical analysis of the security of ECDSA.

2. Give an implementation, in any programming language, of the elliptic curve digital
signature algorithm (ECDSA).

3. Give an elliptic curve version of the RSA digital signature system.
4. Give an elliptic curve version of Rabin’s digital signature system.

9.8 Bibliographic Notes and Further Reading

This chapter introduced elliptic curve cryptography (ECC) and the digital signature algo-
rithm (ECDSA), whose security are based on the infeasibility of the Elliptic Curve Discrete
Logarithm Problem. Some of the most important and widely used public-key cryptographic
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systems and the idea of using elliptic curves, more specifically the Elliptic Curve Discrete
Logarithm Problem as the basis to construct cryptographic systems, were independently
proposed by Miller [1] and Koblitz [2]. The following references provide more information
on elliptic curves and elliptic curve cryptography: [4, 8–42].
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Part IV
Quantum Resistant Cryptography

Quantum computers have gained widespread interest because some problems of particular
cryptographic interest are known to be in bounded error quantum polynomial-time (BQP),
but suspected to be outside polynomial-time (P). The following figure shows the conjectured
relationship of BQP to other common complexity classes. For example, the following three
infeasible problems can all be solved in BQP on a quantum computer, but can only be solved
in subexponential-time on a classical computer:

BQP

NP-complete
NP

PSPACE

P

� Integer Factorization Problem (IFP),
� Discrete Logarithm Problem (DLP),
� Elliptic Curve Discrete Logarithm Problem (ECDLP).

Of course, the quantum algorithms for solving these problems are necessarily to be run
on a practical quantum computer. Thus, once a practical quantum computer can be built,
all the cryptographic schemes based on IFP, DLP, and ECDLP will be insecure. In this
chapter, we shall first show some quantum algorithms for solving IFP, DLP, and ECDLP,
and hence for breaking IFP-, DLP-, and ECDLP-based cryptography. Then we shall present
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some quantum-computing resistant cryptographic schemes. By quantum-computing resistant
cryptography, we mean that the quantum-computing attacks are invalid against these cryp-
tographic schemes. This is possible, because quantum computers are not just faster versions
of classical electronic computers, but use a different paradigm for computation. They would
speed-up some problems such as IFP and DLP by a large factor and others problems such as
the Linear Coding Problem not at all.



10
Quantum Computational
Number Theory

This chapter gives an account of efficient algorithms for solving the three important infeasi-
ble problems in computational number theory: the Integer Factorization Problem (IFP), the
Discrete Logarithm Problems (DLP), and the Elliptic Curve Discrete Logarithm Problem
(ECDLP). As the security of many cryptographic systems and protocols relies on the infea-
sibility of IFP, DLP, and ECDLP, the quantum algorithms for IFP, DLP, and ECDLP form
efficient attacks on the IFP-, DLP-, and ECDLP-based cryptographic systems and protocols
(see Figure 10.1). In this chapter, we shall discuss the quantum algorithms for solving the
infeasible number theoretic problems IFP, DLP, and ECDLP.

10.1 Quantum Algorithms for Order Finding

Definition 10.1 Let G = Z∗n be a finite multiplicative group, and x ∈ G a randomly chosen
integer (element). Then an order of x in G, or an order of an element a modulo n, sometimes
denoted by order(x, n), is the smallest positive integer r such that

xr ≡ 1 (mod n). (10.1)

Definition 10.2 The Order Finding Problem (OFP) may be defined as follows:

OFP
def=
{

Input : n ∈ Z+>1, x ∈ Zn,

Output : r such that xr ≡ 1 (mod n).
(10.2)

Just the same as IFP, OFP is infeasible, as no efficient algorithm has been found for
solving it.

Example 10.1 Let 5 ∈ Z∗104. Then order(5, 104) = 4, since 4 is the smallest positive integer
satisfying

54 ≡ 1 (mod 104).

Computational Number Theory and Modern Cryptography, First Edition. Song Y. Yan.
© 2013 Higher Education Press. All rights reserved. Published 2013 by John Wiley & Sons Singapore Pte. Ltd.
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Figure 10.1 Quantum computing and quantum attacks

Theorem 10.1 Let G be a finite group and suppose that x ∈ G has finite order r . If xk = 1,
then r | k.

Example 10.2 Let 5 ∈ Z∗104. As 524 ≡ 1 (mod 104), so, 4 | 24.

Definition 10.3 Let G be a finite group, then the number of elements in G, denoted by |G|,
is called the order of G.

Example 10.3 Let G = Z∗104. Then there are 48 elements in G that are relatively prime to
104 (two numbers a and b are relatively prime if gcd(a, b) = 1), namely;

1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 41, 43
45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 67, 69, 71, 73, 75, 77, 79, 81
83, 85, 87, 89, 93, 95, 97, 99, 101, 103

Thus, |G| = 48. That is, the order of the group G is 48.

Theorem 10.2 (Lagrange) Let G be a finite group. Then the order of an element x ∈ G
divides the order of the group G.

Example 10.4 Let G = Z∗104. Then the order of G is 48, whereas the order of the element
5 ∈ G is 4. Clearly 4 | 24.

Corollary 10.1 If a finite group G has order r , then xr = 1 for all x ∈ G.
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Example 10.5 Let G = Z∗104 and |G| = 48. Then

148 ≡ 1 (mod 104)

348 ≡ 1 (mod 104)

548 ≡ 1 (mod 104)

748 ≡ 1 (mod 104)
...

10148 ≡ 1 (mod 104)

10348 ≡ 1 (mod 104).

Now, we are in a position to present our two main theorems as follows.

Theorem 10.3 Let C be the RSA ciphertext, and order(C, n) the order of C ∈ Z∗n. Then

d ≡ 1/e (mod order(C, n)). (10.3)

Corollary 10.2 Let C be the RSA ciphertext, and order(C, n) the order of C ∈ Z∗n. Then

M ≡ C1/e ( mod order(C,n)) (mod n). (10.4)

Thus, to recover the RSA M from C , it suffices to just find the order of C modulo n.
Now we return to the actual computation of the order of an element x in G = Z∗n . Finding

the order of an element x in G is, in theory, not a problem: Just keep multiplying until we get to
“1,” the identity element of the multiplicative group G. For example, let n = 179359, x = 3 ∈
G, and G = Z∗179359, such that gcd(3, 179359) = 1. To find the order r = order(3, 179359),
we just keep multiplying until we get to “1”:

31 mod 179359 = 3
32 mod 179359 = 9
33 mod 179359 = 27

...
31000 mod 179359 = 31981
31001 mod 179359 = 95943
31002 mod 179359 = 108470

...
314716 mod 179359 = 99644
314717 mod 179359 = 119573
314718 mod 179359 = 1.

Thus, the order r of 3 in the multiplicative group G = n(Z/179359Z)∗ is 14718, that is,
ord179359(3) = 14718.
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Example 10.6 Let

n = 5515596313

e = 1757316971

C = 763222127

r = order(C, n) = 114905160

Then

M ≡ C1/e mod r (mod n)

≡ 7632221271/1757316971 mod 114905160 (mod 5515596313)

≡ 1612050119

Clearly, this result is correct, since

Me ≡ 16120501191757316971

≡ 763222127

≡ C (mod 5515596313)

It must be noted, however, that in practice, the above computation for finding the order
of x ∈ (Z/nZ)∗ may not work, since for an element x in a large group G with n having
more than 200 digits, the computation of r may require more than 10150 multiplications.
Even if these multiplications could be carried out at the rate of 1000 billion per second on a
supercomputer, it would take approximately 3 · 1080 years to arrive at the answer. There is
however a “quick” way to find the order of an element x in the multiplicative group G modulo
n if the order |G| (where |G| = |(Z/NZ)∗| = φ(n)) of G as well as the prime factorization of
|G| are known, since, by Lagrange’s theorem, r = ordn(x) is a divisor of |G|. Of course, as we
know, the number λ(n) is the largest possible order of an element x in the group G. So, once
we have the value of λ(n), it is relatively easy to find ordn(x), the order of the element x ∈ G.
For example, let n = 179359, then λ(179359) = 29436. Therefore, ord179359(3) ≤ 29436.
In fact, ord179359(3) = 14718, which of course is a divisor of 29436. However, there are no
efficient algorithms at present for calculating either φ(n) or λ(n). Therefore, the “quick” ways
for computing ordn(x) by either φ(n) or λ(n) are essentially useless in practice. This partly
explains why integer factorization is difficult. Fortunately, Shor [9] discovered in 1994 an
efficient quantum algorithm to find the order of an element x ∈ (Z/nZ)∗ and hence a quick
way to factor n. The main idea of Shor’s method is as follows [56].

First of all, we create two quantum registers for our quantum computer: Register-1 and
Register-2. Of course, we can create just one single quantum memory register partitioned into
two parts. Second, we create in Register-1 a superposition of the integers a = 0, 1, 2, 3, · · ·
which will be the arguments of f (a) = xa (mod n), and load Register-2 with all zeros. Third,
we compute in Register-2, f (a) = xa (mod n) for each input a. (Since the values of a are
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kept in Register-1, this can be done reversibly.) Fourth, we perform the discrete Fourier
transform on Register-1. Finally we observe both registers of the machine and find the order
r that satisfies xr ≡ 1 (mod n). The following is a brief description of the quantum algorithm
for the order finding problem.

Algorithm 10.1 (Quantum order finding attack) Given RSA ciphertext C and modulus
n, this attack will first find the order, r , of C in Z∗n , such that Cr ≡ 1 (mod n), then recover
the plaintext M from the ciphertext C . Assume the quantum computer has two quantum
registers: Register-1 and Register-2, which hold integers in binary form.

[1] (Initialization) Find a number q , a power of 2, say 2t , with n2 < q < 2n2.
[2] (Preparation for quantum registers) Put in the first t-qubit register, Register-1, the uniform

superposition of states representing numbers a (mod q), and load Register-2 with all
zeros. This leaves the machine in the state |�1〉:

|�1〉 = 1√
q

q−1∑
a=0

| a〉 | 0〉 . (10.5)

(Note that the joint states of both registers are represented by |Register-1〉 and
|Register-2〉). What this step does is put each qubit in Register-1 into the superpo-
sition

1√
2

(| 0〉 + | 1〉) .

[3] (Power creation) Fill in the second t-qubit register, Register-2, with powers Ca (mod n).
This leaves the machine in state |�2〉:

|�2〉 = 1√
q

q−1∑
a=0

| a〉 ∣∣Ca (mod n)
〉
. (10.6)

This step can be done reversibly since all the a’s were kept in Register-1.
[4] (Perform a quantum FFT) Apply FFT on Register-1. The FFT maps each state | a〉 to

1√
q

q−1∑
c=0

exp(2π iac/q) | c〉 . (10.7)

That is, we apply the unitary matrix with the (a, c) entry equal to 1√
q exp(2π iac/q). This

leaves the machine in the state |�3〉:

|�3〉 = 1

q

q−1∑
a=0

q−1∑
c=0

exp(2π iac/q) | c〉 ∣∣Ca (mod n)
〉
. (10.8)
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[5] (Periodicity detection in Ca) Observe both | c〉 in Register-1 and |Ca (mod n)〉 in
Register-2 of the machine, measure both arguments of this superposition, obtaining
the values of | c〉 in the first argument and some |Ck (mod n)〉 as the answer for the
second one (0 < k < r ).

[6] (Extract r ) Extract the required value of r . Given the pure state |�3〉, the prob-
abilities of different results for this measurement will be given by the probability
distribution:

Prob(c, Ck (mod n)) =

∣∣∣∣∣∣∣
1

q

q−1∑
a=0

Ca≡ak ( mod N )

exp(2π iac/q)

∣∣∣∣∣∣∣
2

=
∣∣∣∣∣ 1q

�(q−k−1)/r�∑
B=0

exp(2π i(br + k)c/q)

∣∣∣∣∣
2

=
∣∣∣∣∣ 1q

�(q−k−1)/r�∑
B=0

exp(2π ib{rc}/q)

∣∣∣∣∣
2

(10.9)

where {rc} is rc mod N . Since

−r

2
≤ {rc} ≤ −r

2
=⇒ −r

2
≤ rc − dq ≤ −r

2
, for some d

=⇒ Prob(c, Ck (mod n)) >
1

3r2
. (10.10)

then we have ∣∣∣∣ c

q
− d

r

∣∣∣∣ ≤ 1

2q
. (10.11)

Since c
q were known, r can be obtained by the continued fraction expansion of c

q .

[7] (Code breaking) Once the order r , r = order(C, n), is found, then compute:

M ≡ C1/e mod r (mod n). (10.12)

Hence, this decodes the RSA code C .

Theorem 10.4 (Complexity of quantum order finding attack) Quantum order attack
can find order(C, n) and recover M from C in time O((log n)2+ε).

Remark 10.1 This quantum attack is for particular RSA ciphertexts C . In this special case,
the factorization of the RSA modulus n is not needed. In the next section, we shall consider
the more general quantum attack by factoring n.
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Problems for Section 10.1

1. Let n = pq be an odd integer with p and q distinct prime factors. Show that for a randomly
chosen number x ∈ (Z/nZ)∗ with multiplicative order r modulo n, the probability that r
is even and xr/2 �≡ −1 (mod n) is at least 1/2.

2. Let n > 1 be an odd integer with k distinct prime factors. Show that for a randomly chosen
number x ∈ (Z/nZ)∗ with multiplicative order r modulo n, the probability that r is even
and xr/2 �≡ −1 (mod n) is at least 1− 1/2k−1.

3. Let n = pq with p and q prime. Use the Chinese Remainder theorem to show that with
probability at least 3/4, the order r of a modulo n is even. If r is even, show the probability
that xr/2 ≡ ±1 (mod n) is at most 1/2.

4. Griffiths and Niu in 1996 [1] proposed a network of only one-qubit gates for performing
quantum Fourier transforms. Construct a quantum circuit to perform the quantum Fourier
transforms on two and four qubits, respectively.

5. Let u/v and s/t be two distinct rational numbers, with 0 < v, t < d. Show that∣∣∣u
v
− s

t

∣∣∣ >
1

d2
.

6. Show that ∣∣∣∣∣∣
∑
q=1s

exp

(
2π ipqr

m

)∣∣∣∣∣∣
2

= sin2 πpr (s+1)
m

sin2 πpr
m

.

10.2 Quantum Algorithms for Integer Factorization

The previous section introduced a quantum algorithm for group order finding in order to
break an IFP-based, particularly RSA, cryptosystem. Instead of finding the order of the
ciphertext C in Z∗n , one can take this further to a more general case: Find the order of an
element x in Z∗n , denoted by order(x, n), where n is the RSA modulus. Once the order of an
element x in Z∗n is found, and it is even, there will be a good chance to factor n, of course in
polynomial-time, by just calculating{

gcd(xr/2 + 1, n), gcd(xr/2 − 1, n)
}
.

For instance, for x = 3, r = 14718 and n = 179359, we have{
gcd(314718/2 + 1, 179359), gcd(314718/2 − 1, 179359)

} = (67, 2677),

and hence the factorization of n:

n = 179359 = 67 · 2677.

The following theorem shows that the probability for r to work is high.
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Theorem 10.5 Let the odd integer n > 1 have exactly k distinct prime factors. For a
randomly chosen x ∈ Z∗n with multiplicative order r , the probability that r is even and that

xr/2 �≡ −1 (mod n) (10.13)

is least 1− 1/2k−1. More specifically, if n has just two prime factors (this is often the case
for the RSA modulus n), then the probability is at least 1/2.

Algorithm 10.2 (Quantum algorithm for integer factorization) Given integers x and
N , the algorithm will

� find the order of x , that is, the smallest positive integer r such that

xr ≡ 1 (mod n),

� find the prime factors of N and compute the decryption exponent d,
� decode the RSA message.

Assume the machine has two quantum registers: Register-1 and Register-2, which hold
integers in binary form.

[1] (Initialization) Find a number q , a power of 2, say 2t , with n2 < q < 2n2.
[2] (Preparation for quantum registers) Put in the first t-qubit register, Register-1, the uniform

superposition of states representing numbers a (mod q), and load Register-2 with all
zeros. This leaves the machine in the state |�1〉:

|�1〉 = 1√
q

q−1∑
a=0

| a〉 | 0〉 . (10.14)

(Note that the joint state of both registers are represented by |Register-1〉 and
|Register-2〉). What this step does is put each qubit in Register-1 into the superpo-
sition

1√
2

(| 0〉 + | 1〉) .

[3] (Base selection) Choose a random x ∈ [2, n − 2] such that gcd(x, n) = 1.
[4] (Power creation) Fill in the second t-qubit register, Register-2, with powers xa (mod n).

This leaves the machine in state |�2〉:

|�2〉 = 1√
q

q−1∑
a=0

| a〉 | xa (mod n)〉. (10.15)
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This step can be done reversibly since all the a’s were kept in Register-1.
[5] (Perform a quantum FFT) Apply FFT on Register-1. The FFT maps each state | a〉 to

1√
q

q−1∑
c=0

exp(2π iac/q) | c〉 .

That is, we apply the unitary matrix with the (a, c) entry equal to 1√
q exp(2π iac/q).

This leaves the machine in the state |�3〉:

|�3〉 = 1

q

q−1∑
a=0

q−1∑
c=0

exp(2π iac/q) | c〉 ∣∣ xa (mod n)
〉
. (10.16)

[6] (Periodicity detection in xa) Observe both | c〉 in Register-1 and | xa (mod n)〉 in Register-
2 of the machine, measure both arguments of this superposition, obtaining the values
of | c〉 in the first argument and some | xk (mod n)〉 as the answer for the second one
(0 < k < r ).

[7] (Extract r ) Extract the required value of r . Given the pure state |�3〉, the probabilities
of different results for this measurement will be given by the probability distribution:

Prob(c, xk (mod n)) =

∣∣∣∣∣∣∣
1

q

q−1∑
a=0

xa≡ak ( mod N )

exp(2π iac/q)

∣∣∣∣∣∣∣
2

=
∣∣∣∣∣ 1q

�(q−k−1)/r�∑
B=0

exp(2π i(br + k)c/q)

∣∣∣∣∣
2

=
∣∣∣∣∣ 1q

�(q−k−1)/r�∑
B=0

exp(2π ib{rc}/q)

∣∣∣∣∣
2

(10.17)

where {rc} is rc mod n. Since

−r

2
≤ {rc} ≤ −r

2
=⇒ −r

2
≤ rc − dq ≤ −r

2
, for some d

=⇒ Prob(c, xk (mod n)) >
1

3r2
.

then we have ∣∣∣∣ c

q
− d

r

∣∣∣∣ ≤ 1

2q
. (10.18)

Since c
q were known, r can be obtained by the continued fraction expansion of c

q .
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[8] (Resolution) If r is odd, go to Step [3] to start a new base. If r is even, then try to
compute. Once r is found, the factors of n can be found possibly

{gcd(xr/2 − 1, n), gcd(xr/2 + 1, n)} (10.19)

Hopefully, this will produce two factors of n.
[9] (Computing d) Once N is factored and p and q are found, then compute

d ≡ 1/e (mod (p − 1)(q − 1)). (10.20)

[10] (Code break) As soon as d is found, RSA ciphertext encrypted by the public key (e, n),
can be decrypted by this d as follows:

M ≡ Cd (mod n). (10.21)

Theorem 10.6 (Complexity of quantum factoring) The quantum factoring algorithm can
factor the RSA modulus N and break the RSA system in time O((log n)2+ε).

Remark 10.2 The quantum fatoring attack discussed in Algorithm 10.2 is more general
than that in Algorithm 10.1. Algorithm 10.2 also implies that if a practical quantum computer
can be built, then the RSA cryptosystem can be completely broken, and a quantum resistent
cryptosystem must be developed and used to replace the RSA cryptosystem.

Example 10.7 On 19 December 2001, IBM made the first demonstration of the quantum
factoring algorithm [2], that correctly identified 3 and 5 as the factors of 15. Although the
answer may appear to be trivial, it may have good potential and practical implication. In this
example, we show how to factor 15 quantum-mechanically.

[1] Choose at random x = 7 such that gcd(x, N ) = 1. We aim to find r = order157 such that
7r ≡ 1 (mod 15).

[2] Initialize two 4-qubit registers to state 0:

|�0〉 = | 0〉 | 0〉 .

[3] Randomize the first register as follows:

|�0〉 → |�1〉 = 1√
2t

2t−1∑
k=0

| k〉 | 0〉 .
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[4] Unitarily compute the function f (a) ≡ 13a (mod 15) as follows:

|�1〉 → |�2〉 = 1√
2t

2t−1∑
k=0

| k〉 ∣∣ 13k (mod 15)
〉

= 1√
2t

[| 0〉 | 1〉 + | 1〉 | 7〉 + | 2〉 | 4〉 + | 3〉 | 13〉 +
| 4〉 | 1〉 + | 5〉 | 7〉 + | 6〉 | 4〉 + | 7〉 | 13〉 +
| 8〉 | 1〉 + | 9〉 | 7〉 + | 10〉 | 4〉 + | 11〉 | 13〉 +
+ · · ·]

[5] We now apply the FFT to the second register and measure it (it can be done in the first),
obtaining a random result from 1, 7, 4, 13. Suppose we incidently get 4, then the state
input to FFT would be

√
4

2t
[| 2〉 + | 6〉 + | 10〉 + | 14〉 + · · ·] .

After applying FFT, some state

∑
λ

αλ | λ〉

with the probability distribution for q = 2t = 2048. The final measurement gives
0, 512, 1024, 2048, each with probability almost exactly 1/4. Suppose that λ = 1536
was obtained from the measurement. Then we compute the continued fraction
expansion

λ

q
= 1536

2048
= 1

1+ 1
3

, with convergents

[
0, 1,

3

4
,

]

Thus, r = 4 = order15(7). Therefore,

gcd(xr/2 ± 1, N ) = gcd(72 ± 1, 15) = (5, 3).

Remark 10.3 Quantum factoring is still in its very earliest stages and will not threaten
the security of RSA at least at present, as the current quantum computer can only factor a
number with just 2 digits, such as 15, which is essentially hopeless.
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Problems for Section 10.2

1. Show that if in Shor’s factoring algorithm, we have∣∣∣∣ c

2m
− d

r

∣∣∣∣ <
1

2n2

and ∣∣∣∣ c

2m
− d1

r1

∣∣∣∣ <
1

2n2
,

then

d

r
= d1

r1
.

2. There are currently many pseudo-simulations of Shor’s quantum factoring algorithm; for
example, the paper by Schneiderman, Stanley, and Aravind [3] gives one of the simulations
in Maple, whereas Browne [15] presents an efficient classical simulation of the quantum
Fourier transform based on [3]. Construct your own Java (C/C++, Mathematica, or Maple)
program to simulate Shor’s quantum factoring algorithm and discrete logarithm algorithm.

3. Show that in case r � 2n , Shor’s factoring algorithm [4] needs to be repeated only
O(log log r ) steps in order to achieve a high probability of success.

4. The ECM (Elliptic Curve Method) factoring algorithm is very well suited to parallel
implementation. Give a quantum parallel implementation of the ECM method.

5. The NFS (Number Field Sieve) factoring algorithm is also very well suited to parallel
implementation. Give a quantum parallel implementation of the NFS method.

10.3 Quantum Algorithms for Discrete Logarithms

The quantum algorithms for order finding and factoring can be used, with some small
modifications, to solve the Discrete Logarithm Problem (DLP) efficiently in polynomial-
time. In this section, we give a brief description of a quantum algorithm for DLP.

Algorithm 10.3 (Quantum algorithm for discrete logarithms) Given g, x ∈ Fp with p
prime, this algorithm will find the integer r

r ≡ logg x (mod p) (10.22)

such that

gr ≡ x (mod p) (10.23)

if r exists. The algorithm uses three quantum registers.
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[0] Initializing three required quantum registers as follows:

|�0〉 = | 0, 0, 0〉 . (10.24)

[1] Find q, a power of 2, such that q is close to p, that is, p < q < 2p.
[2] Put in the first two registers of the quantum computer the uniform superposition of all

| a〉 and | b〉 (mod p − 1), and compute ga x−b (mod p) in the third register. This leaves
the quantum computer in the state |�1〉:

1

p − 1

p−2∑
a=0

p−2∑
b=0

∣∣ a, b, ga x−b (mod p)
〉
. (10.25)

[3] Use the Fourier transform Aq to map | a〉 → | c〉 and | b〉 → | d〉 with probability ampli-
tude

1

q
exp

(
2π i

q
(ac + bd)

)
.

Thus, the state | a, b〉 will be changed to the state:

1

q

q−1∑
c=0

q−1∑
d=0

exp

(
2π i

q
(ac + bd)

)
| c, d〉 . (10.26)

This leaves the machine in the state |�2〉:

1

(p − 1)q

p−2∑
a,b=0

q−1∑
c,d=0

exp

(
2π i

q
(ac + bd)

) ∣∣ c, d, ga x−b (mod p)
〉
. (10.27)

[4] Observe the state of the quantum computer and extract the required information. The
probability of observing a state | c, d, gk (mod p)〉 is∣∣∣∣∣∣∣

1

(p − 1)q

∑
a,b

a−rb≡k ( mod p−1)

exp

(
2π i

q
(ac + bd)

)∣∣∣∣∣∣∣
2

(10.28)

where the sum is over all (a, b) such that

a − rb ≡ k (mod p − 1). (10.29)

[5] Use the relation

a = rb + k − (p − 1)

⌊
br + k

p − 1

⌋
. (10.30)
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to substitute in (10.28) to get the amplitude on | c, d, gk (mod p)〉:

1

(p − 1)q

p−2∑
b=0

exp

(
2π i

q

(
brc + kc + bd − c(p − 1)

⌊
br + k

p − 1

⌋))
. (10.31)

This finally leaves the machine in the state |�3〉:

1

(p − 1)q

p−2∑
b=0

exp

(
2π i

q

(
brc + kc + bd − c(p − 1)

⌊
br + k

p − 1

⌋))
∣∣ c, d, gk (mod p)

〉
. (10.32)

The probability of observing the above state | c, d, gk (mod p)〉 is thus:

∣∣∣∣∣ 1

(p − 1)q

p−2∑
b=0

exp

(
2π i

q

(
brc + kc + bd − c(p − 1)

⌊
br + k

p − 1

⌋))∣∣∣∣∣
2

. (10.33)

Since exp(2π ikc/q) does not change the probability, (10.50) can be rewrite algebraically
as follows:

∣∣∣∣∣ 1

(p − 1)q

p−2∑
b=0

exp

(
2π i

q
bT

)
exp

(
2π i

q
V

)∣∣∣∣∣
2

, (10.34)

where

T = rc + d − r

p − 1
{c(p − 1)}q , (10.35)

V =
(

br

p − 1
−
⌊

br + k

p − 1

⌋)
{c(p − 1)}q . (10.36)

The notation {z}q here denotes z mod q with −q/2 < {z}q < q/2.
[6] Finally, deduce r from (c, d). Let j be the closest integer to T/q and b ∈ [0, p − 2], then

|{T }q | = |rc + d − r

p − 1
{c(p − 1)}q − jq| ≤ 1

2
. (10.37)

Further, if

|{c(p − 1)}q | ≤ q

12
, (10.38)
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then

|V | ≤ q

12
. (10.39)

Therefore, given (c, d), r can be easily calculated with a high probability.

Remark 10.4 When p is smooth, there is an easy version of the DLP over Fp, which can
be solved in polynomial-time on a classical computer. The case here is the general one, for
which the DLP is over Fq with p ≤ q ≤ 2p.

Remark 10.5 The quantum discrete logarithm algorithm discussed in this section can also
be used to solve the Elliptic Curve Discrete Logarithm Problem (ECDLP) in polynomial-
time, which shall be discussed in the next section.

Problems for Section 10.3

1. Pollard’s ρ Method for DLP (Discrete Logarithm Problem) admits parallelism, and in fact
there are some parallel versions of the ρ Method for DLP. Develop a quantum version of
the ρ method for DLP.

2. Pollard’s λ Method for DLP is also very well suited to parallel implementation. Give a
quantum implementation of the λ Method for DLP.

3. Develop a new quantum algorithm for DLP, based on an idea different from Shor’s
algorithm or Pollard’s algorithms or any other known algorithms.

10.4 Quantum Algorithms for Elliptic Curve Discrete Logarithms

Shor’s quantum algorithms for integer factorization and discrete logarithms can also be
used to solve the elliptic curve discrete logarithms in BQP . First, we introduce an quan-
tum algorithm, due to Proos and Zalka in 2003 [5], to solve the ECDLP over Fp with p
prime.

Algorithm 10.4 (Quantum algorithm for ECDLP in Fp). The quantum algorithm tries
to find

r ≡ logP Q (mod p) (10.40)

such that

Q ≡ r P (mod p), (10.41)
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where P, Q ∈ E(Fp), and E : y2 ≡ x2 + ax + b (mod p), for p > 3.

[0] Initialize three required quantum registers as follows:

|�0〉 = | 0, 0, 0〉 . (10.42)

[1] Write q = 2m , a power of 2, such that q is close to p.
[2] Put in the first two registers of the quantum computer the uniform superposition of all | a〉

and | b〉 (mod p − 1), and compute a P + bQ (mod p) in the third register. This leaves
the quantum computer in the state |�1〉:

1

2n

2n−1∑
a=0

2n−1∑
b=0

| a, b, a P + bQ (mod p)〉 (10.43)

Note that a P + bQ (mod p) can be done classically as follows:

1

2n

2n−1∑
a=0

2n−1∑
b=0

∣∣∣ a, b,
∑

ai Pi +
∑

bi Qi (mod p)
〉
, (10.44)

where a =∑i ai 2i , b =∑i yi 2i , and Pi = 2i P, Qi = 2i Q.
[3] Use the Fourier transform Aq to map | a〉 → | c〉 and | b〉 → | d〉 with probability ampli-

tude

1

q
exp

(
2π i

q
(ac + bd)

)
.

Thus, the state | a, b〉 will be changed to the state:

1

q

q−1∑
c=0

q−1∑
d=0

exp

(
2π i

q
(ac + bd)

)
| c, d〉 . (10.45)

This leaves the machine in the state |�2〉:

1

(p − 1)q

p−2∑
a,b=0

q−1∑
c,d=0

exp

(
2π i

q
(ac + bd)

)
| c, d, a P + bQ (mod p)〉 . (10.46)

[4] Observe the state of the quantum computer and extract the required information. The
probability of observing a state | c, d, k P (mod p)〉 is∣∣∣∣∣∣∣

1

(p − 1)q

∑
a,b

a−rb≡k ( mod p−1)

exp

(
2π i

q
(ac + bd)

)∣∣∣∣∣∣∣
2

(10.47)
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where the sum is over all (a, b) such that

a P + bQ ≡ k P (mod p − 1). (10.48)

[5] Use the relation

a = rb + k − (p − 1)

⌊
br + k

p − 1

⌋
. (10.49)

to substitute in (10.47) to get the amplitude on | c, d, k P (mod p)〉:

1

(p − 1)q

p−2∑
b=0

exp

(
2π i

q

(
brc + kc + bd − c(p − 1)

⌊
br + k

p − 1

⌋))
. (10.50)

This finally leaves the machine in the state |�3〉:

1

(p − 1)q

p−2∑
b=0

exp

(
2π i

q

(
brc + kc + bd − c(p − 1)

⌊
br + k

p − 1

⌋))
| c, d, k P (mod p)〉 . (10.51)

The probability of observing the above state | c, d, k P (mod p)〉 is thus:
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(
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q

(
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2

. (10.52)

Since exp(2π ikc/q) does not change the probability, (10.50) can be rewrite algebraically
as follows: ∣∣∣∣∣ 1

(p − 1)q

p−2∑
b=0

exp

(
2π i

q
bT

)
exp

(
2π i

q
V

)∣∣∣∣∣
2

, (10.53)

where

T = rc + d − r

p − 1
{c(p − 1)}q , (10.54)

V =
(

br

p − 1
−
⌊

br + k

p − 1

⌋)
{c(p − 1)}q . (10.55)

The notation {z}q here denotes z mod q with −q/2 < {z}q < q/2.
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[6] Finally, deduce r from (c, d). Let j be the closest integer to T/q and b ∈ [0, p − 2], then

|{T }q | = |rc + d − r

p − 1
{c(p − 1)}q − jq| ≤ 1

2
. (10.56)

Further, if

|{c(p − 1)}q | ≤ q

12
, (10.57)

then

|V | ≤ q

12
. (10.58)

Therefore, given (c, d), r can be easily calculated with a high probability.

Remark 10.6 The quantum ECDLP for E(Fp) algorithm is essentially that for DLP
over Fp.

Remark 10.7 Cheung et al. in 2008 [6] considered an optimization of the quantum algorithm
for the elliptic curve discrete logarithm problem over F2n . They first constructed a quantum
state

|�〉 = 1

2n

2n−1∑
a=0

2n−1∑
b=0

| a, b, a P + bQ (mod p)〉 (10.59)

then performed a two-dimensional quantum Fourier transform over the first two registers.
The point addition for a P and bQ can be done classically by the standard “double-addition”
method for each 2P and 2i Q with 0 ≤ i ≤ n. The multiplications over F2n are performed on
quantum circuits (see Figure 10.2 for a particular example, but the general techniques are
applicable to any primitive polynomial), with depth O(m2), previously O(m3).

Problems for Section 10.4

1. The fastest known algorithm for solving the Elliptic Curve Discrete Logarithm Problem
(ECDLP) in F(Fp) is Pollard’s ρ Method, which runs in O(

√
q) steps. Give a quantum

implementation of the ρ for ECDLP.
2. Extend Proos and Zalka’s quantum ECDLP algorithm [5] for E(Fp) to E(F2m ), or more

generally to E(Fpm ).
3. Propose a new quantum algorithm, based on a different idea from that of Proos and Zalka,

for solving the ECDLP problem in polynomial-time.
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Figure 10.2 F24 multiplier with P(x) = x4 + x + 1 (see [6])

10.5 Bibliographic Notes and Further Reading

In this chapter, we discussed quantum polynomial-time algorithms for solving the three
infeasible number-theoretic problems: IFP, DLP, and ECDLP. Feynman is considered to
have been the first to investigate the new quantum computing paradigm [7] and Deutsch
the first to study the quantum Turing machine [8]. The world was surprised when Shor
demonstrated in 1994 that the infeasible IFP and DLP can be solved in polynomial-time
on a quantum computer [9]. Shor’s algorithm was later extended to solve ECDLP [5]. For
more information on quantum computing, particularly on quantum factoring and quantum
discrete logarithms, including computability especially computability and complexity aspects
of quantum computing, it is suggested that readers consult: [10–63].
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11
Quantum Resistant Cryptography

Once a practical quantum computer with several thousand quantum bits can be built, all
the IFP-, DLP-, and ECDLP-based cryptographic systems and protocols can be broken in
polynomial-time and hence are no more secure. However, there are still many problems that
cannot be solved by a quantum computer in polynomial-time. These problems form a class of
quantum-computing (or quantum-attack) resistant problems, and the cryptographic systems
and protocols based on these problems will be quantum-computing resistant. In this chapter,
we shall introduce:

� A coding-based quantum-computing resistant cryptographic system
� A lattice-based quantum-computing resistant cryptographic system
� A cryptographic protocol based on the idea of quantum mechanics
� DNA Based Biological Cryptography.

11.1 Coding-Based Cryptography

We first introduce the most famous code-based cryptosystem, the McEliece system, invented
by McEliece in 1978 [1]. One of the most important features of the McEliece system is that
it has resisted cryptanalysis to date; it is even quantum computer resistant. The idea of the
McEliece system is based on coding theory and its security is based on the fact that decoding
an arbitrary linear code is NP-complete.

Algorithm 11.1 (McEliece’s coding-based cryptography) Suppose Bob wishes to send
an encrypted message to Alice, using Alice’s public key. Alice generates her public key and
the corresponding private key. Bob uses her public key to encrypt his message and sends it
to Alice, Alice uses her own private key to decrypt Bob’s message.

[1] Key generation: Alice performs:
[1-1] Choose integers k, n, t as common system parameters.
[1-2] Choose a k × n generator matrix G for a binary (n, k)-linear code which can

correct t errors and for which an efficient decoding algorithm exists.
[1-3] Select a random k × k binary nonsingular matrix S.
[1-4] Select a random k × k permutation matrix P .
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[1-5] Compute the k × n matrix Ĝ = SG P .
[1-6] Now (Ĝ, t) is Alice’s public key whereas (S, G, P) is Alice’s private key.

[2] Encryption: Bob uses Alice’s public key to encrypt his message to Alice. Bob performs:
[2-1] Obtain Alice’s authentic public key (Ĝ, t).
[2-2] Represent the message in binary string m of length k.
[2-3] Choose a random binary error vector z of length n having at most t 1’s.
[2-4] Compute the binary vector c = mĜ + z.
[2-5] Send the ciphertext c to Alice.

[3] Decryption: Alice receives Bob’s message m and uses her private key to recover c from
m. Alice performs:
[3-1] Compute ĉ = cP−1, where P−1 is the inverse of the matrix P .
[3-2] Use the decoding algorithm for the code generated by G to decode ĉ to m̂.
[3-3] Compute m = m̂ Ŝ−1. This m is thus the original plaintext.

Theorem 11.1 (Correctness of McEliece’s cryptosystem) In McEliece’s cryptosystem,
m can be correctly recovered from c.

Proof: Since

ĉ = cP−1

= (mĜ + z)P−1

= (mSG P + z)P−1

= (mS)G + z P−1, (z P−1 is a vector with at most t 1’s)

the decoding algorithm for the code generated by G corrects ĉ to m̂ = mS. Now applying
S−1 to m̂, we get mSS−1 = m, the required original plaintext.

Remark 11.1 The security of McEliece’s cryptosystem is based on error-correcting codes,
particularly the Goppa; if the Goppa code is replaced by other error-correcting codes, the
security will be severely weakened. The McEliece’s cryptosystem has two main drawbacks:

(1) the public key is very large and
(2) there is a message expansion by a factor of n/k.

It is suggested that the values for the system parameters should be n = 1024, t = 50, and
k ≥ 644. Thus for these recommended values of system parameters, the public key has about
219-bits, and the message expansion is about 1.6. For these reasons, McEliece’s cryptosys-
tem receives little attention in practice. However, as McEliece’s cryptosystem is the first
probabilistic encryption and, more importantly, it has resisted all cryptanalysis including
quantum cryptanalysis, it may be a good candidate to replace RSA in the post-quantum
cryptography age.
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Problems for Section 11.1

1. Compare the main parameters (such as encryption and decryption complexity, crypto-
graphic resistance, ease of use, secret-key size, and public-key size, etc.) of RSA and
McEliece systems.

2. Show that decoding a general algebraic code is NP-complete.
3. Write an essay on all possible attacks for the McEliece coding-based cryptosystem.

11.2 Lattice-Based Cryptography

Cryptography based on ring properties and particularly lattice reduction is another promis-
ing direction for post-quantum cryptography, as lattice reduction is a reasonably well-
studied hard problem that is currently not known to be solved in polynomial-time, or even
subexponential-time on a quantum computer. There are many types of cryptographic systems
based on lattice reduction [2–4]. In this section, we give a brief account of one if the lattice
based cryptographic systems, the NTRU encryption scheme. NTRU is rumored to stand for
Nth-degree TRUncated polynomial ring, or Number Theorists eRe Us. Compared with RSA,
it is a rather young cryptosystem, developed by Hoffstein, Pipher, and Silverman [5] in 1995.
We give a brief introduction to NTRU, more information can be found in [6].

Algorithm 11.2 (NTRU encryption scheme) The NTRU encryption scheme works as
follows:

[1] Key generation:
[1-1] Randomly generate polynomials f and g in D f and Dg , respectively, each of the

form:

a(x) = a0 + a1x + a2x2 + · · · + ak−2xk−2 + ak−1xk−1. (11.1)

[1-2] Invert f in Rp to obtain f p, and check that g is invertible in fq .
[1-3] The public key is h ≡ p · g · fq (mod q). The private key is the pair ( f, f p).

[2] Encryption:
[2-1] Randomly select a small polynomials r in Dr .
[2-2] Compute the ciphertext

c ≡ r · h + m (mod q). (11.2)

[3] Decryption:
[3-1] Compute a = center( f · c),
[3-2] Recover m from c by computing m ≡ f p · a (mod q). This is true since

a ≡ p · r · ≡ + f · m (mod q). (11.3)

In Table 11.1, we present some information comparing NTRU to RSA and McEliece.
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Table 11.1 Comparison among NTRU, RSA, and McEliece

NTRU RSA McEliece

Encryption speed n2 n2 ≈ n3 n2

Decryption speed n2 n3 n2

Public key n n n2

Secret key n n n2

Message expansion logp q − 1 1− 1 1− 1.6

Problems for Section 11.2

1. Give a critical analysis of the computational complexity of the NTRU cryptosystem.
2. NTRU is currently considered quantum resistant. Show that NTRU is indeed quantum

resistant, or may not be quantum resistant.
3. Lattice-based cryptography is considered to be quantum resistant. However, if not de-

signed properly, it may be broken by traditional mathematical attacks without using any
quantum techniques. For example, the Cai–Cusick lattice-based cryptosystem [8] was re-
cently cracked completely by Pan and Deng [9]. Show that the Cai–Cusick lattice-based
cryptosystem can be broken in polynomial-time by classical mathematical attacks.

4. It is widely considered that multivariate public key cryptosystems (MPKC, see [7]) are
quantum resistant. The usual approach to polynomial evaluation is FFT-like, whereas
quantum computation makes good use of FFT to sped-up the computation. With this in
mind, show that MPKC may not be quantum resistant.

11.3 Quantum Cryptography

It is evident that if a practical quantum computer is available, then all public-key cryptographic
systems based on the difficulty of IFP, DLP, and ECDLP will be insecure. However, the
cryptographic systems based on quantum mechanics, called quantum cryptography, will still
be secure even if a quantum computer is available. So, quantum cryptography is a type of
cryptography using quantum mechanics against quantum mechanics. In this section some
basic ideas of quantum cryptography are introduced. More specifically, a quantum analog
of the Diffie–Hellman–Meikle key-exchange/distribution system, proposed by Bennett and
Brassard in 1984 [10], will be addressed.

First let us define four polarizations as follows:

{0◦, 45◦, 90◦, 135◦} def= {→,↗,↑,↖}. (11.4)

The quantum system consists of a transmitter, a receiver, and a quantum channel through
which polarized photons can be sent. By the law of quantum mechanics, the receiver can
either distinguish between the rectilinear polarizations {→,↑}, or reconfigure to discriminate
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between the diagonal polarizations {↗,↖}, but in any case, cannot distinguish both types.
The system works in the following way:

[1] Alice uses the transmitter to send Bob a sequence of photons, each of them should be
in one of the four polarizations {→,↗,↑,↖}. For instance, Alice could choose, at
random, the following photons

↑ ↗ → ↖ → → ↗ ↑ ↑

to be sent to Bob.
[2] Bob then uses the receiver to measure the polarizations. For each photon received from

Alice, Bob chooses, at random, the following type of measurements {+, ×}:

+ + × × + + × × × +

[3] Bob records the result of his measurements but keeps it secret:

↑ → ↗ ↖ → ↗ ↗ ↗ ↑

[4] Bob publicly announces the type of measurements he made, and Alice tells him which
measurements were of correct type:

√ √ √ √ √

[5] Alice and Bob keep all cases in which Bob measured the correct type. These cases are
then translated into bits {0, 1} and thereby become the key:

↑ ↖ → ↗ ↑
1 1 0 0 1

[6] Using this secret key formed by the quantum channel, Bob and Alice can now encrypt
and send their ordinary messages via the classic public-key channel.

An eavesdropper is free to try to measure the photons in the quantum channel, but,
according to the law of quantum mechanics, he cannot in general do this without disturbing
them, and hence, the key formed by the quantum channel is secure.

Problems for Section 11.3

1. Explain what the main features of quantum cryptography are.
2. Explain why the quantum key distribution is quantum computing resistant.
3. Use the idea explained in this section to simulate the quantum key distribution and to

generate a string of 56 characters for a DES key.
4. Use the idea explained in this section to simulate the quantum key distribution and to

generate a stream of 128 or 256 characters for an AES key.
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11.4 DNA Biological Cryptography

The world was shocked by a paper [12] of Adleman (the “A” in the RSA) , who demon-
strated that an instance of the NP-complete problem, more specifically, the Hamiltonian Path
Problem (HPP), can be solved in polynomial-time on a DNA biological computer (for more
information on biological computing, see for example, [13] and [14]. The fundamental idea
of DNA-based biological computation is that of a set of DNA strands. Since the set of DNA
strands is usually kept in a test tube, the test tube is just a collection of pieces of DNA. In
what follows, we shall first give a brief introduction to the DNA biological computation.

Definition 11.1 A test tube (or just tube for short) is a set of molecules of DNA (i.e., a
multi-set of finite strings over the alphabet � = {A, C, G, T }). Given a tube, one can perform
the following four elementary biological operations:

(1) Separate or Extract: Given a tube T and a string of symbols S ∈ �, produce two tubes
+(T, S) and −(T, S), where +(T, S) is all the molecules of DNA in T which contain
the consecutive subsequence S and −(T, S) is all of the molecules of DNA in T which
do not contain the consecutive sequence S.

(2) Merge: Given tubes T1, T2, produce the multi-set union ∪(T1, T2):

∪ (T1, T2) = T1 ∪ T2 (11.5)

(3) Detect: Given a tube T , output “yes” if T contains at least one DNA molecule (sequence)
and output “no” if it contains none.

(4) Amplify: Given a tube T produce two tubes T ′(T ) and T ′′(T ) such that

T = T ′(T ) = T ′′(T ). (11.6)

Thus, we can replicate all the DNA molecules from the test tube.

These operations are then used to write “programs” which receive a tube as input and
return either “yes” or “no” or a set of tubes.

Example 11.1 Consider the following program:

(1) Input(T)
(2) T1 = −(T, C)
(3) T2 = −(T1, G)
(4) T3 = −(T2, T )
(5) Output(Detect(T3))

The model defined above is an unrestricted one. We now present a restricted biological
computation model:
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Definition 11.2 A tube is a multi-set of aggregates over an alphabet � which is not
necessarily {A, C, G, T }. (An aggregate is a subset of symbols over �). Given a tube, there
are three operations:

(1) Separate: Given a tube T and a symbol s ∈∑, produce two tubes +(T, s) and −(T, s)
where +(T, s) is all the aggregates of T which contains the symbols s and −(T, s) is all
of the aggregates of T which do not contain the symbol s.

(2) Merge: Given tube T1, T2, produce

∪ (T1, T2) = T1 ∪ T2 (11.7)

(3) Detect: Given a tube T , output “yes” if T contains at least one aggregate, or output “no”
if it contains none.

Example 11.2 (3-colorability problem) Given an n vertex graph G with edges e1, e2, · · · , ez ,
let

� = {r1, b1, g1, r2, b2, g2, · · · , rn, bn, gn}.

and consider the following restricted program on input

T = {α|α ⊆ �

α = {c1, c2, · · · , cn}
[ci = ri or ci = bi or ci = gi ], i = 1, 2, · · · , n}

(1) Input(T).
(2) for k = 1 to z. Let ek = 〈i, j〉:

(a) Tred = +(T, ri ) and Tblue or green = −(T, ri ).
(b) Tblue = +(Tblue or green, bi ) and Tgreen = −(Tblue or green, bi ).
(c) T good

red = −(Tred, r j ).
(d) T good

blue = −(Tblue, b j ).
(e) T good

green = −(Tgreen, g j ).
(f) T ′ = ∪(T good

red , T good
blue ).

(g) T = ∪(T good
green, T ′).

(3) Output(Detect(T)).

Theorem 11.2 (Lipton, 1994) Any SAT problem in n variables and m clauses can be solved
with at most O(m + 1) separations, O(m) merges, and one detection.

The above theorem implies that biological computation can be used to solve all problems
in NP , although it does not mean all instances of NP can be solved in a feasible way. From
a computability point of view, neither the quantum computation model nor the biological
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computation model has more computational power than the Turing machine. Thus we have
an analog of the Church–Turing Thesis for quantum and biological computations:

Quantum and biological computation thesis: An arithmetic function is computable or a
decision problem is decidable by a quantum computer or by a biological computer if and
only if it is computable or decidable by a Turing machine.

This means that from a complexity point of view, both the quantum computation model and
the biological computation model do indeed have some more computational power than the
Turing machine. More specifically, we have the following complexity results about quantum
and biological computations:

(1) Integer factorization and discrete logarithm problems are believed to be intractable
in Turing machines; no efficient algorithms have been found for these two classical,
number-theoretic problems, in fact, the best algorithms for these two problems have the
worst-case complexity �

(
(log n)2(log log n)(log log log n)

)
. But however, both of these

two problems can be solved in polynomial-time by quantum computers.
(2) The famous Boolean Formula Satisfaction Problem (SAT) and directed Hamiltonian Path

Problem (HPP) are proved to be NP-complete, but these problems, and in fact any other
NP-complete problems, can be solved in polynomial biological steps by biological
computers.

Now we are in a position to discuss the DNA-based cryptography. We first study a DNA
analog of one-time pad (OTP) encryption; its idea may be described as follows.

(1) Plaintext encoding: The plaintext: M is encoded in DNA strands.
(2) Key generation: Assemble a large OTP in the form of DNA strands.
(3) OTP substitution: Generate a table that randomly maps all possible strings of M → C

such that there is a unique reverse mapping M ← C .
(4) Encryption: Substitute each block of M with the ciphertext C given by the table, to get

M → C .
(5) Decryption: Reverse the substitutions to get C → M .

The DNA implementation of the above scheme may be as follows:

(1) Plaintext in DNA: Set one test tube of short DNA strands for M .
(2) Ciphertext in DNA: Set another test tube of different short DNA strands for C .
(3) Key generation: Assemble a large OTP in the form of DNA strands.
(4) OTP substitution: Map M to C in a random yet reversible way.
(5) Encryption – DNA substitution OTDs: Use long DNA one-time pads containing many

segments; each contains a cipher word followed by a plaintext word. These word-pair
DNA strands are used as a lookup table in conversion of plaintext into ciphertext for
M → C .

(6) Decryption; Just do the opposite operation to the previous step for C → M .
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Just the same as stream cipher, we could use the operation XOR, denoted by⊕ to implement
the DNA OTP encryption as follows.

(1) DNA plaintext test tube: Set one test tube of short DNA strands for M .
(2) DNA ciphertext test tube: Set another test tube of different short DNA strands for C .
(3) Key Generation: Assemble a large OTP in the form of DNA strands.
(4) Encryption: Perform M ⊕ OTPs to get cipher strands; remove plaintext strands.
(5) Decryption: Perform C ⊕ OTPs to get back plaintext strands.

Problems for Section 11.4

1. Explain how DNA computing can be used to solve the Hamiltonian Path Problem (HPP).
2. Explain what the main features of DNA biological cryptography are.
3. Explain why DNA biological cryptography is quantum computing resistant.
4. DNA molecular biologic cryptography, for example, Reif’s one-time pad DNA cryptosys-

tem developed in 2004 [41], is a new development in cryptography. Give a description of
the Reif’s DNA-based one-time pads.

5. Write an essay to compare the main features of classic, quantum and DNA cryptography.

11.5 Bibliographic Notes and Further Reading

Quantum-computing resistant, or quantum-attack resistant, or just quantum resistant cryp-
tography is an important research direction in modern cryptography, since once a practical
quantum computer can be built, all the public-key cryptography based on IFP, DLP, and
ECDLP can be broken in polynomial-time. As Bill Gates noted in his book [11]:

We have to ensure that if any particular encryption technique proves fallible, there is a way
to make an immediate transition to an alternative technique.

We need to have quantum resistant cryptographic systems ready at hand, so that we can
use these cryptosystems to replace these quantum attackable cryptosystems. In this chap-
ter, we only discussed some quantum resistant cryptographic systems, including quantum
cryptography, interested readers should consult the following references for more informa-
tion: [19–39]. Note that in the literature, quantum-computing resistant cryptography is also
called post-quantum cryptography. Springer publishes the proceedings of the post-quantum
cryptography conferences [42–45].

Just the same as quantum computing and quantum cryptography, DNA molecular compu-
tation is another type of promising computing paradigm and cryptographic scheme. Unlike
the traditional computing model, DNA molecular computing is analog, not digital, so it opens
a completely different phenomena to solve the hard computational problem. As can be seen
from our above discussion, DNA computing has the potential to solve the NP-completeness
problems such as the famous Hamiltonian Path Problem (HPP) and the Satisfiability Problem
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(SAT). Of course there is a long way to go to truly build a practical DNA computer. The
reader may consult the following references for more information on DNA computing and
cryptography: [46–54].

Chaos-based cryptography [16–18] may be another good candidate for quantum resistant
cryptography; it is suggested that readers consult [15] for more information.
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character cipher, 277
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chosen plaintext attack, 304
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ciphertext, 265
ciphertext-only attack, 269
closure, 35
coding-based cryptography, 401
coin-tossing states, 11
common modulus attack, 310

Computational Number Theory and Modern Cryptography, First Edition. Song Y. Yan.
© 2013 Higher Education Press. All rights reserved. Published 2013 by John Wiley & Sons Singapore Pte. Ltd.



414 Index

common multiple, 52
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Order Finding Problem (OFP), 379
order of a modulo n, 131
order of a field, 40
order of a group, 380
order of a point on an elliptic curve, 147
order of an element a in group G, 379
order of an element x modulo n, 379

P
padding process, 303
partial quotients, 60
perfect secrecy, 268
perfect square, 72
period, 65
periodic simple continued fraction, 65
plaintext, 265
Pocklington’s theorem, 175
Pohlig–Hellman cryptosystem, 355
point at infinity, 145
polarization, 404
Pollard’s ρ factoring algorithm, 202
Pollard’s ρ Method, 192
polygraphic cipher, 280
polynomial, 41
polynomial congruence, 111
polynomial congruential equation, 111
polynomial security, 326
polynomial-time algorithm, 27
polynomial-time computable, 12
polynomial-time equivalent, 29
polynomial-time reducible, 12
polynomially secure, 268
positive integers, 3
post-quantum cryptography, 409
powerful number, 74
practical secure, 269
practical/conjectured secure, 269

Pratt’s primality proving, 165
presumably intractable problems, 26
Primality test based on order of integers, 162
Primality test based on primitive roots, 161
Primality test by trial divisions, 159
Primality Test Problem (PTP), 159
Primality Testing Problem (PTP), 16
prime factor, 49
Prime Factorization Problem (PFP), 17
prime field, 40
prime number, 47
Prime Number theorem, 4
prime numbers, 3
prime power, 40
primitive root of n, 132
privacy, 266
private key, 270
probabilistic encryption, 326, 328
probabilistic Turing machine (PTM), 11
proper divisor, 46
provable intractable problems, 25
provably secure, 269
pseudofield, 186
public key, 270
public-key cryptography, 269
public-key cryptosystem, 274
purely periodic simple continued fraction, 65

Q
quadratic congruence, 113
quadratic integer, 221
quadratic irrational, 65
quadratic non-residue, 114
Quadratic reciprocity law, 123
quadratic residue, 114
quadratic residuosity based cryptosystem, 328
Quadratic Residuosity Problem (QRP), 23,

327
Quadratic Sieve (QS), 214
quantum algorithm for discrete logarithms, 390
quantum algorithm for integer factorization,

386
quantum algorithms for elliptic curve discrete

logarithms, 393
quantum computational number theory, 378
quantum cryptographic protocol, 401
quantum cryptography, 29, 404
quantum factoring attack, 388
Quantum Integer Factorization, 385
quantum order finding, 379
quantum order finding attack, 383
quantum register, 383, 386
quantum resistant cryptography, 401
qubit, 383, 386
quotient, 47
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Rabin cryptosystem, 319
Rabin’s M2 encryption, 319
randomized cryptosystem, 302
randomized encryption, 326
randomized Turing machine (RTM), 11
rank of an elliptic curve, 149
rank of elliptic curve, 152
rational integer, 44
rational integers, 221
rational line, 142
rational number, 142
rational numbers, 62
rational point, 142
rational prime, 44
real base logarithm, 136
real number, 65
real-valued function, 75
rectilinear polarization, 404
reduced system of residues modulo n, 95
reflexive, 91
relatively prime, 51
remainder, 47
Repeated Doubling Method, 354
residue, 90
residue class, 91
residue classes, 91
residue of x modulo n, 91
RFP, 22
Riemann hypothesis, 4
ring, 37
ring with identity, 38
Rivest’s Factoring Challenge Problem, 230
Root Finding Problem (RFP), 22
root of polynomial, 41
RSA assumption, 293
RSA Cryptography, 293
RSA cryptosystem, 293
RSA numbers, 228

S
salting process, 303
secret key, 270
secret-key cryptography, 29, 270
secret-key cryptosystem, 266
security, 268
semantic security, 326
Shanks’ baby-step giant-step method for discrete

logarithms, 237
Shanks’ class group method, 192
Shanks’ SQUFOF method, 192
shift transformation, 278
short plaintext attack, 303
Shortest Vector Problem (SVP), 24
Sieve of Eratosthenes, 48, 159

signature generation, 349
signature verification, 349
Silver–Pohlig–Hellman algorithm, 240
simple continued fraction, 60
singular curve, 144
size of point on elliptic curve, 151
smooth number, 218
SNFS (Special Number Field Sieve), 222
special purpose factoring algorithms, 192
SQRT Problem, 23
square number, 72
square root method, 239
Square Root Problem (SQRT), 22
strong probable prime, 170
strong pseudoprimality test, 168
strong pseudoprime, 170
strong psudoprimality test, 168
subexponential-time complexity, 27
subgroup, 36
substitution cipher, 277
succinct primality certification, 165
SVP, 24
symmetric, 91
symmetric key cryptography, 270

T
test tube, 406
the short d attack, 312
theory of computations, 9
torsion group, 152
torsion subgroup, 149
transitive, 91
trapdoor, 272
trapdoor one-way function, 271, 272
trial division, 192
Triple DES (TDES), 289
triple prime numbers, 8
triplet primes, 7
trivial divisor, 47
Turing machine, 9
twin prime conjecture, 6
twin prime constant, 7
twin prime numbers, 6

U
unbreakability, 268
unconditionally secure, 268
unconditionally unbreakable, 268
US National Institute of Standards and Technology

(NIST), 349

W
Williams’ M2 encryption, 323
Williams’ M3 encryption, 325
Wilson’s primality test, 165
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Wilson’s theorem, 106
witness, 172

X
xedni calculus for ECDLP, 253

Z
zero of polynomial, 41
zero-knowledge proof, 331
zero-knowledge technique, 333
zero-knowlege Identification, 332
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