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Preface

Forty years ago (1966), Ronald L. Graham formally introduced approximation algorithms. The idea was
to generate near-optimal solutions to optimization problems that could not be solved efficiently by the
computational techniques available at that time. With the advent of the theory of NP-completeness in the
early 1970s, the area became more prominent as the need to generate near optimal solutions for NP-hard
optimization problems became the most important avenue for dealing with computational intractability.
As it was established in the 1970s, for some problems one can generate near optimal solutions quickly,
while for other problems generating provably good suboptimal solutions is as difficult as generating optimal
ones. Other approaches based on probabilistic analysis and randomized algorithms became popular in
the 1980s. The introduction of new techniques to solve linear programming problems started a new wave
for developing approximation algorithms that matured and saw tremendous growth in the 1990s. To
deal, in a practical sense, with the inapproximable problems there were a few techniques introduced in
the 1980s and 1990s. These methodologies have been referred to as metaheuristics. There has been a
tremendous amount of research in metaheuristics during the past two decades. During the last 15 or so
years approximation algorithms have attracted considerably more attention. This was a result of a stronger
inapproximability methodology that could be applied to a wider range of problems and the development
of new approximation algorithms for problems in traditional and emerging application areas.

As we have witnessed, there has been tremendous growth in field of approximation algorithms and
metaheuristics. The basic methodologies are presented in Parts I–III. Specifically, Part I covers the basic
methodologies to design and analyze efficient approximation algorithms for a large class of problems,
and to establish inapproximability results for another class of problems. Part II discusses local search,
neural networks and metaheuristics. In Part III multiobjective problems, sensitivity analysis and stability
are discussed.

Parts IV–VI discuss the application of the methodologies to classical problems in combinatorial opti-
mization, computational geometry and graphs problems, as well as for large-scale and emerging applica-
tions. The approximation algorithms discussed in the handbook have primary applications in computer
science, operations research, computer engineering, applied mathematics, bioinformatics, as well as in
engineering, geography, economics, and other research areas with a quantitative analysis component.

Chapters 1 and 2 present an overview of the field and the handbook. These chapters also cover basic
definitions and notation, as well as an introduction to the basic methodologies and inapproximability.
Chapters 1–8 discuss methodologies to develop approximation algorithms for a large class of problems.
These methodologies include restriction (of the solution space), greedy methods, relaxation (LP and SDP)
and rounding (deterministic and randomized), and primal-dual methods. For a minimization problem
P these methodologies provide for every problem instance I a solution with objective function value
that is at most (1 + ε) · f ∗(I ), where ε is a positive constant (or a function that depends on the instance
size) and f ∗(I ) is the optimal solution value for instance I . These algorithms take polynomial time
with respect to the size of the instance I being solved. These techniques also apply to maximization

vii
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problems, but the guarantees are different. Given as input a value for ε and any instance I for a given
problem P , an approximation scheme finds a solution with objective function value at most (1 + ε)· f ∗(I ).
Chapter 9 discusses techniques that have been used to design approximation schemes. These approximation
schemes take polynomial time with respect to the size of the instance I (PTAS). Chapter 10 discusses
different methodologies for designing fully polynomial approximation schemes (FPTAS). These schemes
take polynomial time with respect to the size of the instance I and 1/ε. Chapters 11–13 discuss asymptotic
and randomized approximation schemes, as well as distributed and randomized approximation algorithms.
Empirical analysis is covered in Chapter 14 as well as in chapters in Parts IV–VI. Chapters 15–17 discuss
performance measures, reductions that preserve approximability, and inapproximability results.

Part II discusses deterministic and stochastic local search as well as very large neighborhood search.
Chapters 21 and 22 present reactive search and neural networks. Tabu search, evolutionary compu-
tation, simulated annealing, ant colony optimization and memetic algorithms are covered in Chap-
ters 23–27. In Part III, I discuss multiobjective optimization problems, sensitivity analysis and stability of
approximations.

Part IV covers traditional applications. These applications include bin packing and extensions, pack-
ing problems, facility location and dispersion, traveling salesperson and generalizations, Steiner trees,
scheduling, planning, generalized assignment, and satisfiability.

Computational geometry and graph applications are discussed in Part V. The problems discussed in
this part include triangulations, connectivity problems in geometric graphs and networks, dilation and
detours, pair decompositions, partitioning (points, grids, graphs and hypergraphs), maximum planar
subgraphs, edge disjoint paths and unsplittable flow, connectivity problems, communication spanning
trees, most vital edges, and metaheuristics for coloring and maximum disjoint paths.

Large-scale and emerging applications (Part VI) include chapters on wireless ad hoc networks, sensor
networks, topology inference, multicast congestion, QoS multimedia routing, peer-to-peer networks, data
broadcasting, bioinformatics, CAD and VLSI applications, game theoretic approximation, approximating
data streams, digital reputation and color quantization.

Readers who are not familiar with approximation algorithms and metaheuristics should begin with
Chapters 1–6, 9–10, 18–21, and 23–27. Experienced researchers will also find useful material in these basic
chapters. We have collected in this volume a large amount of this material with the goal of making it as
complete as possible. I apologize in advance for omissions and would like to invite all of you to suggest
to me chapters (for future editions of this handbook) to keep up with future developments in the area. I
am confident that research in the field of approximations algorithms and metaheuristics will continue to
flourish for a few more decades.

Teofilo F. Gonzalez

Santa Barbara, California
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About the Cover

The four objects in the bottom part of the cover represent scheduling, bin packing, traveling salesperson,
and Steiner tree problems. A large number of approximation algorithms and metaheuristics have been
designed for these four fundamental problems and their generalizations.

The seven objects in the middle portion of the cover represent the basic methodologies. Of these seven,
the object in the top center represents a problem by its solution space. The object to its left represents
its solution via restriction and the one to its right represents relaxation techniques. The objects in the
row below represent local search and metaheuristics, problem transformation, rounding, and primal-dual
methods.

The points in the top portion of the cover represent solutions to a problem and their height repre-
sents their objective function value. For a minimization problem, the possible solutions generated by an
approximation scheme are the ones inside the bottommost rectangle. The ones inside the next rectangle
represent the one generated by a constant ratio approximation algorithm. The top rectangle represents the
possible solution generated by a polynomial time algorithm for inapproximable problems (under some
complexity theoretic hypothesis).
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Free University of Brussels
Brussels, Belgium

Mario Szegedy
Rutgers University
Piscataway, New Jersey

Chuan Yi Tang
National Tsing Hua University
Taiwan, Republic of China

Giri K. Tayi
University at Albany—State

University of New York
Albany, New York

Tami Tamir
The Interdisciplinary Center
Herzliya, Israel

Hui Tian
University of Science and

Technology of China
Hefei, China

Balaji Venkatachalam
University of California, Davis
Davis, California

Cao-An Wang
Memorial University

of Newfoundland
St. John’s, Newfoundland, Canada

Lan Wang
Old Dominion University
Norfolk, Virginia

Yu Wang
University of North Carolina

at Charlotte
Charlotte, North Carolina

Weizhao Wang
Illinois Institute of Technology
Chicago, Illinois

Bang Ye Wu
Shu-Te University
Taiwan, Republic of China

Weili Wu
University of Texas at Dallas
Richardson, Texas

Zhigang Xiang
Queens College of the City

University of New York
Flushing, New York

Jinhui Xu
State University of New York

at Buffalo
Buffalo, New York

Mutsunori Yagiura
Nagoya University
Nagoya, Japan

Rong-Jou Yang
Wufeng Institute of Technology
Taiwan, Republic of China

Yinyu Ye
Stanford University
Stanford, California

Neal E. Young
University of California

at Riverside
Riverside, California

Alexander Zelikovsky
Georgia State University
Atlanta, Georgia

Hu Zhang
McMaster University
Hamilton, Canada

Jiawei Zhang
New York University
New York, New York

Kui Zhang
University of Alabama

at Birmingham
Birmingham, Alabama

Si Qing Zheng
University of Texas at Dallas
Richardson, Texas

An Zhu
Google
Mountain View, California

Joviša Žunić
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1.1 Introduction

Approximation algorithms, as we know them now, were formally introduced in the 1960s to generate
near-optimal solutions to optimization problems that could not be solved efficiently by the computa-
tional techniques available at that time. With the advent of the theory of NP-completeness in the early
1970s, the area became more prominent as the need to generate near-optimal solutions for NP-hard op-
timization problems became the most important avenue for dealing with computational intractability.
As established in the 1970s, for some problems one can generate near-optimal solutions quickly, while
for other problems generating provably good suboptimal solutions is as difficult as generating optimal
ones. Other approaches based on probabilistic analysis and randomized algorithms became popular in
the 1980s. The introduction of new techniques to solve linear programming problems started a new wave
for developing approximation algorithms that matured and saw tremendous growth in the 1990s. To
deal, in a practical sense, with the inapproximable problems, there were a few techniques introduced
in the 1980s and 1990s. These methodologies have been referred to as metaheuristics and include sim-
ulated annealing (SA), ant colony optimization (ACO), evolutionary computation (EC), tabu search
(TS), and memetic algorithms (MA). Other previously established methodologies such as local search,
backtracking, and branch-and-bound were also explored at that time. There has been a tremendous
amount of research in metaheuristics during the past two decades. These techniques have been evalu-
ated experimentally and have demonstrated their usefulness for solving practical problems. During the
past 15 years or so, approximation algorithms have attracted considerably more attention. This was a
result of a stronger inapproximability methodology that could be applied to a wider range of problems
and the development of new approximation algorithms for problems arising in established and emerg-
ing application areas. Polynomial time approximation schemes (PTAS) were introduced in the 1960s
and the more powerful fully polynomial time approximation schemes (FPTAS) were introduced in the
1970s. Asymptotic PTAS and FPTAS, and fully randomized approximation schemes were introduced
later on.

Today, approximation algorithms enjoy a stature comparable to that of algorithms in general and the
area of metaheuristics has established itself as an important research area. The new stature is a by-product
of a natural expansion of research into more practical areas where solutions to real-world problems
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are expected, as well as by the higher level of sophistication required to design and analyze these new
procedures. The goal of approximation algorithms and metaheuristics is to provide the best possible
solutions and to guarantee that such solutions satisfy certain important properties. This volume houses
these two approaches and thus covers all the aspects of approximations. We hope it will serve as a valuable
reference for approximation methodologies and applications.

Approximation algorithms and metaheuristics have been developed to solve a wide variety of problems.
A good portion of these results have only theoretical value due to the fact that their time complexity is a
high-order polynomial or have huge constants associated with their time complexity bounds. However,
these results are important because they establish what is possible, and it may be that in the near future
these algorithms will be transformed into practical ones. Other approximation algorithms do not suffer
from this pitfall, but some were designed for problems with limited applicability. However, the remaining
approximation algorithms have real-world applications. Given this, there is a huge number of important
application areas, including new emerging ones, where approximation algorithms and metaheuristics have
barely penetrated and where we believe there is an enormous potential for their use. Our goal is to collect
a wide portion of the approximation algorithms and metaheuristics in as many areas as possible, as well
as to introduce and explain in detail the different methodologies used to design these algorithms.

1.2 Overview

Our overview in this section is devoted mainly to the earlier years. The individual chapters discuss in detail
recent research accomplishments in different subareas. This section will also serve as an overview of Parts
I, II, and III of this handbook. Chapter 2 discusses some of the basic methodologies and applies them to
simple problems. This prepares the reader for the overview of Parts IV, V, and VI presented in Chapter 2.

Even before the 1960s, research in applied mathematics and graph theory had established upper and
lower bounds for certain properties of graphs. For example, bounds had been established for the chro-
matic number, achromatic number, chromatic index, maximum clique, maximum independent set, etc.
Some of these results could be seen as the precursors of approximation algorithms. By the 1960s, it was
understood that there were problems that could be solved efficiently, whereas for other problems all their
known algorithms required exponential time. Heuristics were being developed to find quick solutions
to problems that appeared to be computationally difficult to solve. Researchers were experimenting with
heuristics, branch-and-bound procedures, and iterative improvement frameworks and were evaluating
their performance when solving actual problem instances. There were many claims being made, not all
of which could be substantiated, about the performance of the procedures being developed to generate
optimal and suboptimal solutions to combinatorial optimization problems.

1.2.1 Approximation Algorithms

Forty years ago (1966), Ronald L. Graham [1] formally introduced approximation algorithms. He analyzed
the performance of list schedules for scheduling tasks on identical machines, a fundamental problem in
scheduling theory.

Problem: Scheduling tasks on identical machines.
Instance: Set of n tasks (T1, T2, . . . , Tn) with processing time requirements t1, t2, . . . , tn, partial order

C defined over the set of tasks to enforce task dependencies, and a set of m identical machines.
Objective: Construct a schedule with minimum makespan. A schedule is an assignment of tasks to

time intervals on the machines in such a way that (1) each task Ti is processed continuously for
ti units of time by one of the machines; (2) each machine processes at most one task at a time; and
(3) the precedence constraints are satisfied (i.e., machines cannot commence the processing of a
task until all its predecessors have been completed). The makespan of a schedule is the time at which
all the machines have completed processing the tasks.

The list scheduling procedure is given an ordering of the tasks specified by a list L . The procedure finds
the earliest time t when a machine is idle and an unassigned task is available (i.e., all its predecessors have
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been completed). It assigns the leftmost available task in the list L to an idle machine at time t and this
step is repeated until all the tasks have been scheduled.

The main result in Ref. [1] is proving that for every problem instance I , the schedule generated by
this policy has a makespan that is bounded above by (2 − 1/m) times the optimal makespan for the
instance. This is called the approximation ratio or approximation factor for the algorithm. We also say that
the algorithm is a (2 − 1/m)-approximation algorithm. This criterion for measuring the quality of the
solutions generated by an algorithm remains one of the most important ones in use today. The second
contribution in Ref. [1] is establishing that the approximation ratio (2 − 1/m) is the best possible for list
schedules, i.e., the analysis of the approximation ratio for this algorithm cannot be improved. This was
established by presenting problem instances (for all m and n ≥ 2m − 1) and lists for which the schedule
generated by the procedure has a makespan equal to 2 −1/m times the optimal makespan for the instance.
A restricted version of the list scheduling algorithm is analyzed in detail in Chapter 2.

The third important result in Ref. [1] is showing that list scheduling procedures schedules may have
anomalies. To explain this, we need to define some terms. The makespan of the list schedule, for instance,
I , using list L is denoted by fL (I ). Suppose that instance I ′ is a slightly modified version of instance I .
The modification is such that we intuitively expect that fL (I ′) ≤ fL (I ). But that is not always true, so
there is an anomaly. For example, suppose that I ′ is I , except that I ′ has an additional machine. Intuitively,
fL (I ′) ≤ fL (I ) because with one additional machine tasks should be completed earlier or at the same
time as when there is one fewer machine. But this is not always the case for list schedules, there are problem
instances and lists for which fL (I ′) > fL (I ). This is called an anomaly. Our expectation would be valid
if list scheduling would generate minimum makespan schedules. But we have a procedure that generates
suboptimal solutions. Such guarantees are not always possible in this environment. List schedules suffer
from other anomalies. For example, relaxing the precedence constraints or decreasing the execution time
of the tasks. In both these cases, one would expect schedules with smaller or the same makespan. But,
that is not always the case. Chapter 2 presents problem instances where anomalies occur. The main reason
for discussing anomalies now is that even today numerous papers are being published and systems are
being deployed where “common sense”-based procedures are being introduced without any analytical
justification or thorough experimental validation. Anomalies show that since we live for the most part in
a “suboptimal world,” the effect of our decisions is not always the intended one.

Other classical problems with numerous applications are the traveling salesperson, Steiner tree, and
spanning tree problems, which will be defined later on. Even before the 1960s, there were several well-
known polynomial time algorithms to construct minimum-weight spanning trees for edge-weighted
graphs [2]. These simple greedy algorithms have low-order polynomial time complexity bounds. It was
well known at that time that the same type of procedures do not always generate an optimal tour for the
traveling salesperson problem (TSP), and do not always construct optimal Steiner trees. However, in 1968
E. F. Moore (see Ref. [3]) showed that for any set of points P in metric space L M < L T ≤ 2L S , where L M ,
L T , and L S are the weights of a minimum-weight spanning tree, a minimum-weight tour (solution) for
the TSP and minimum-weight Steiner tree for P , respectively. Since every spanning tree is a Steiner tree,
the above bounds show that when using a minimum-weight spanning tree to approximate a minimum
weight Steiner tree we have a solution (tree) whose weight is at most twice the weight of an optimal Steiner
tree. In other words, any algorithm that generates a minimum-weight spanning tree is a 2-approximation
algorithm for the Steiner tree problem. Furthermore, this approximation algorithm takes the same time as
an algorithm that constructs a minimum-weight spanning tree for edge-weighted graphs [2], since such an
algorithm can be used to construct an optimal spanning tree for a set of points in metric space. The above
bound is established by defining a transformation from any minimum-weight Steiner tree into a TSP tour
with weight at most 2L S . Therefore, L T ≤ 2L S [3]. Then by observing that the deletion of an edge in an
optimum tour for the TSP results in a spanning tree, it follows that L M < L T . Chapter 3 discusses this
approximation algorithm in detail. The Steiner ratio is defined as L S/L M . The above arguments show
that the Steiner ratio is at least 1

2 . Gilbert and Pollak [3] conjectured that the Steiner ratio in the Euclidean
plane equals

√
3

2 (the 0.86603 . . . conjecture). The proof of this conjecture and improved approximation
algorithms for different versions of the Steiner tree problem are discussed in Chapters 42.
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The above constructive proof can be applied to a minimum-weight spanning tree to generate a tour for
the TSP. The construction takes polynomial time and results in a 2-approximation algorithm for the TSP.
This approximation algorithm for the TSP is also referred to as the double spanning tree algorithm and is
discussed in Chapters 3 and 31. Improved approximation algorithms for the TSP as well as algorithms for
its generalizations are discussed in Chapters 3, 31, 40, 41, and 51. The approximation algorithm for the
Steiner tree problem just discussed is explained in Chapter 3 and improved approximation algorithms and
applications are discussed in Chapters 42, 43, and 51. Chapter 59 discusses approximation algorithms for
variations of the spanning tree problem.

In 1969, Graham [4] studied the problem of scheduling tasks on identical machines, but restricted
to independent tasks, i.e., the set of precedence constraints is empty. He analyzes the longest processing
time (LPT) scheduling rule; this is list scheduling where the list of tasks L is arranged in nonincreasing
order of their processing requirements. His elegant proof established that the LPT procedure generates a
schedule with makespan at most 4

3 − 1
3m times the makespan of an optimal schedule, i.e., the LPT schedul-

ing algorithm has a 4
3 − 1

3m approximation ratio. He also showed that the analysis is best possible for all
m and n ≥ 2m + 1. For n ≤ 2m tasks, the approximation ratio is smaller and under some conditions
LPT generates an optimal makespan schedule. Graham [4], following a suggestion by D. Kleitman and
D. Knuth, considered list schedules where the first portion of the list L consists of k tasks with the longest
processing times arranged by their starting times in an optimal schedule for these k tasks (only). Then
the list L has the remaining n − k tasks in any order. The approximation ratio for this list schedule using
list L is 1 + 1−1/m

1+�k/m� . An optimal schedule for the longest k tasks can be constructed in O(kmk) time by
a straightforward branch-and-bound algorithm. In other words, this algorithm has approximation ratio
1 + ε and time complexity O(n log m + m(m − 1 − εm)/ε). For any fixed constants m and ε, the algorithm
constructs in polynomial (linear) time with respect to n a schedule with makespan at most 1 + ε times the
optimal makespan. Note that for a fixed constant m, the time complexity is polynomial with respect to n,
but it is not polynomial with respect to 1/ε. This was the first algorithm of its kind and later on it was called
a polynomial time approximation scheme. Chapter 9 discusses different PTASs. Additional PTASs appear in
Chapters 42, 45, and 51. The proof techniques presented in Refs. [1,4] are outlined in Chapter 2, and have
been extended to apply to other problems. There is an extensive body of literature for approximation algo-
rithms and metaheuristics for scheduling problems. Chapters 44, 45, 46, 47, 73, and 81 discuss interesting
approximation algorithms and heuristics for scheduling problems. The recent scheduling handbook [5]
is an excellent source for scheduling algorithms, models, and performance analysis.

The development of NP-completeness theory in the early 1970s by Cook [6] and Karp [7] formally
introduced the notion that there is a large class of decision problems (the answer to these problems is a
simple yes or no) that are computationally equivalent. By this, it is meant that either every problem in
this class has a polynomial time algorithm that solves it, or none of them do. Furthermore, this question
is the same as the P = NP question, an open problem in computational complexity. This question is
to determine whether or not the set of languages recognized in polynomial time by deterministic Turing
machines is the same as the set of languages recognized in polynomial time by nondeterministic Turing
machines. The conjecture has been that P �= NP, and thus the hardest problems in NP cannot be solved
in polynomial time. These computationally equivalent problems are called NP-complete problems. The
scheduling on identical machines problem discussed earlier is an optimization problem. Its corresponding
decision problem has its input augmented by an integer value B and the yes-no question is to determine
whether or not there is a schedule with makespan at most B . An optimization problem whose corresponding
decision problem is NP-complete is called an NP-hard problem. Therefore, scheduling tasks on identical
machines is an NP-hard problem. The TSP and the Steiner tree problem are also NP-hard problems. The
minimum-weight spanning tree problem can be solved in polynomial time and is not an NP-hard problem
under the assumption that P �= NP. The next section discusses NP-completeness in more detail. There
is a long list of practical problems arising in many different fields of study that are known to be NP-hard
problems [8]. Because of this, the need to cope with these computationally intractable problems was
recognized earlier on. This is when approximation algorithms became a central area of research activity.
Approximation algorithms offered a way to circumvent computational intractability by paying a price
when it comes to the quality of the solution generated. But a solution can be generated quickly. In other
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words and another language, “no te fijes en lo bien, fijate en lo rápido.” Words that my mother used to
describe my ability to play golf when I was growing up.

In the early 1970s Garey et al. [9] as well as Johnson [10,11] developed the first set of polynomial time
approximation algorithms for the bin packing problem. The analysis of the approximation ratio for these
algorithms is asymptotic, which is different from those for the scheduling problems discussed earlier. We
will define this notion precisely in the next section, but the idea is that the ratio holds when the optimal
solution value is greater than some constant. Research on the bin packing problem and its variants has
attracted very talented investigators who have generated more than 650 papers, most of which deal with
approximations. This work has been driven by numerous applications in engineering and information
sciences (see Chapters 32–35).

Johnson [12] developed polynomial time algorithms for the sum of subsets, max satisfiability, set cover,
graph coloring, and max clique problems. The algorithms for the first two problems have a constant ratio
approximation, but for the other problems the approximation ratio is ln n and nε . Sahni [13,14] developed
a PTAS for the knapsack problem. Rosenkrantz et al. [15] developed several constant ratio approximation
algorithms for the TSP. This version of the problem is defined over edge-weighted complete graphs that
satisfy the triangle inequality (or simply metric graphs), rather than for points in metric space as in Ref. [3].
These algorithms have an approximation ratio of 2.

Sahni and Gonzalez [16] showed that there were a few NP-hard optimization problems for which the
existence of a constant ratio polynomial time approximation algorithm implies the existence of a polyno-
mial time algorithm to generate an optimal solution. In other words, for these problems the complexity
of generating a constant ratio approximation and an optimal solution are computationally equivalent
problems. For these problems, the approximation problem is NP-hard or simply inapproximable (under
the assumption that P �= NP). Later on, this notion was extended to mean that there is no polynomial
time algorithm with approximation ratio r for a problem under some complexity theoretic hypothesis.
The approximation ratio r is called the in-approximability ratio, and r may be a function of the input size
(see Chapter 17).

The k-min-cluster problem is one of these inapproximable problems. Given an edge-weighted un-
directed graph, the k-min-cluster problem is to partition the set of vertices into k sets so as to minimize
the sum of the weight of the edges with endpoints in the same set. The k-maxcut problem is defined as
the k-min-cluster problem, except that the objective is to maximize the sum of the weight of the edges
with endpoints in different sets. Even though these two problems have exactly the same set of feasible
and optimal solutions, there is a linear time algorithm for the k-maxcut problem that generates k-cuts
with weight at least k−1

k times the weight of an optimal k-cut [16], whereas approximating the k-min-
cluster problem is a computationally intractable problem. The former problem has the property that a
near-optimal solution may be obtained as long as partial decisions are made optimally, whereas for the
k-min-cluster an optimal partial decision may turn out to force a terrible overall solution.

Another interesting problem whose approximation problem is NP-hard is the TSP [16]. This is not
exactly the same version of the TSP discussed above, which we said has several constant ratio polynomial
time approximation algorithms. Given an edge-weighted undirected graph, the TSP is to find a least weight
tour, i.e., find a least weight (simple) path that starts at vertex 1, visits each vertex in the graph exactly once,
and ends at vertex 1. The weight of a path is the sum of the weight of its edges. The version of the TSP
studied in Ref. [15] is limited to metric graphs, i.e., the graph is complete (all the edges are present) and the
set of edge weights satisfies the triangle inequality (which means that the weight of the edge joining vertex
i and j is less than or equal to the weight of any path from vertex i to vertex j ). This version of the TSP is
equivalent to the one studied by E. F. Moore [3]. The approximation algorithms given in Refs. [3,15] can be
adapted easily to provide a constant-ratio approximation to the version of the TSP where the tour is defined
as visiting each vertex in the graph at least once. Since Moore’s approximation algorithms for the metric
Steiner tree and metric TSP are based on the same idea, one would expect that the Steiner tree problem
defined over arbitrarily weighted graphs is NP-hard to approximate. However, this is not the case. Moore’s
algorithm [3] can be modified to be a 2-approximation algorithm for this more general Steiner tree problem.

As pointed out in Ref. [17], Levner and Gens [18] added a couple of problems to the list of problems
that are NP-hard to approximate. Garey and Johnson [19] showed that the max clique problem has the
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property that if for some constant r there is a polynomial time r -approximation algorithm, then there is
a polynomial time r ′-approximation algorithm for any constant r ′ such that 0 < r ′ < 1. Since at that
time researchers had considered many different polynomial time algorithms for the clique problem and
none had a constant ratio approximation, it was conjectured that none existed, under the assumption that
P �= NP. This conjecture has been proved (see Chapter 17).

A PTAS is said to be an FPTAS if its time complexity is polynomial with respect to n (the problem
size) and 1/ε. The first FPTAS was developed by Ibarra and Kim [20] for the knapsack problem. Sahni
[21] developed three different techniques based on rounding, interval partitioning, and separation to
construct FPTAS for sequencing and scheduling problems. These techniques have been extended to other
problems and are discussed in Chapter 10. Horowitz and Sahni [22] developed FPTAS for scheduling
on processors with different processing speed. Reference [17] discusses a simple O(n3/ε) FPTAS for the
knapsack problem developed by Babat [23,24]. Lawler [25] developed techniques to speed up FPTAS for
the knapsack and related problems. Chapter 10 presents different methodologies to design FPTAS. Garey
and Johnson [26] showed that if any problem in a class of NP-hard optimization problems that satisfy
certain properties has a FPTAS, then P = NP. The properties are that the objective function value of every
feasible solution is a positive integer, and the problem is strongly NP-hard. Strongly NP-hard means that
the problem is NP-hard even when the magnitude of the maximum number in the input is bounded by a
polynomial on the input length. For example, the TSP is strongly NP-hard, whereas the knapsack problem
is not, under the assumption that P �= NP (see Chapter 10).

Lin and Kernighan [27] developed elaborate heuristics that established experimentally that instances of
the TSP with up to 110 cities can be solved to optimality with 95% confidence in O(n2) time. This was an
iterative improvement procedure applied to a set of randomly selected feasible solutions. The process was to
perform k pairs of link (edge) interchanges that improved the length of the tour. However, Papadimitriou
and Steiglitz [28] showed that for the TSP no local optimum of an efficiently searchable neighborhood
can be within a constant factor of the optimum value unless P = NP. Since then, there has been quite
a bit of research activity in this area. Deterministic and stochastic local search in efficiently searchable as
well as in very large neighborhoods are discussed in Chapters 18–21. Chapter 14 discusses issues relating
to the empirical evaluation of approximation algorithms and metaheuristics.

Perhaps the best known approximation algorithm is the one by Christofides [29] for the TSP defined over
metric graphs. The approximation ratio for this algorithm is 3

2 , which is smaller than the approximation
ratio of 2 for the algorithms reported in Refs. [3,15]. However, looking at the bigger picture that includes
the time complexity of the approximation algorithms, Christofides algorithm is not of the same order as
the ones given in Refs. [3,15]. Therefore, neither set of approximation algorithms dominates the other as
one set has a smaller time complexity bound, whereas the other (Christofides algorithm) has a smaller
worst-case approximation ratio.

Ausiello et al. [30] introduced the differential ratio, which is another way of measuring the quality of the
solutions generated by approximation algorithms. The differential ratio destroys the artificial dissymmetry
between “equivalent” minimization and maximization problems (e.g., the k-max cut and the k-min-
cluster discussed above) when it comes to approximation. This ratio uses the difference between the worst
possible solution and the solution generated by the algorithm, divided by the difference between the worst
solution and the best solution. Cornuejols et al. [31] also discussed a variation of the differential ratio
approximations. They wanted the ratio to satisfy the following property: “A modification of the data that
adds a constant to the objective function value should also leave the error measure unchanged.” That is, the
“error” by the approximation algorithm should be the same as before. Differential ratio and its extensions
are discussed in Chapter 16, along with other similar notions [30]. Ausiello et al. [30] also introduced
reductions that preserve approximability. Since then, there have been several new types of approximation
preserving reductions. The main advantage of these reductions is that they enable us to define large classes
of optimization problems that behave in the same way with respect to approximation. Informally, the class
of NP-optimization problems, NPO, is the set of all optimization problems � that can be “recognized”
in polynomial time (see Chapter 15 for a formal definition). An NPO problem � is said to be in APX,
if it has a constant approximation ratio polynomial time algorithm. The class PTAS consists of all NPO

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C001 March 20, 2007 11:43

Introduction, Overview, and Notation 1-7

problems that have PTAS. The class FPTAS is defined similarly. Other classes, Poly-APX, Log-APX, and
Exp-APX, have also been defined (see Chapter 15).

One of the main accomplishments at the end of the 1970s was the development of a polynomial time
algorithm for linear programming problems by Khachiyan [32]. This result had a tremendous impact on
approximation algorithms research, and started a new wave of approximation algorithms. Two subsequent
research accomplishments were at least as significant as Khachiyan’s [32] result. The first one was a faster
polynomial time algorithm for solving linear programming problems developed by Karmakar [33]. The
other major accomplishment was the work of Grötschel et al. [34,35]. They showed that it is possible
to solve a linear programming problem with an exponential number of constraints (with respect to the
number of variables) in time which is polynomial in the number of variables and the number of bits used
to describe the input, given a separation oracle plus a bounding ball and a lower bound on the volume of
the feasible solution space. Given a solution, the separation oracle determines in polynomial time whether
or not the solution is feasible, and if it is not it finds a constraint that is violated. Chapter 11 gives an
example of the use of this approach. Important developments have taken place during the past 20 years.
The books [35,36] are excellent references for linear programming theory, algorithms, and applications.

Because of the above results, the approach of formulating the solution to an NP-hard problem as an
integer linear programming problem and then solving the corresponding linear programming problem
became very popular. This approach is discussed in Chapter 2. Once a fractional solution is obtained, one
uses rounding to obtain a solution to the original NP-hard problem. The rounding may be deterministic
or randomized, and it may be very complex (metarounding). LP rounding is discussed in Chapters 2, 4,
6–9, 11, 12, 37, 45, 57, 58, and 70.

Independently, Johnson [12] and Lovász [37] developed efficient algorithms for the set cover with
approximation ratio of 1 + ln d , where d is the maximum number of elements in each set. Chvátal [38]
extended this result to the weighted set cover problem. Subsequently, Hochbaum [39] developed an
algorithm with approximation ratio f , where f is the maximum number of sets containing any of the
elements in the set. This result is normally inferior to the one by Chvátal [38], but is more attractive for the
weighted vertex cover problem, which is a restricted version of the weighted set cover. For this subproblem,
it is a 2-approximation algorithm. A few months after Hochbaum’s initial result,1 Bar-Yehuda and Even [40]
developed a primal-dual algorithm with the same approximation ratio as the one in [39]. The algorithm
in [40] does not require the solution of an LP problem, as in the case of the algorithm in [39], and its time
complexity is linear. But it uses linear programming theory. This was the first primal-dual approximation
algorithm, though some previous algorithms may also be viewed as falling into this category. An application
of the primal-dual approach, as well as related ones, is discussed in Chapter 2. Chapters 4, 37, 39, 40, and
71 discuss several primal-dual approximation algorithms. Chapter 13 discusses “distributed” primal-dual
algorithms. These algorithms make decisions by using only “local” information.

In the mid 1980s, Bar-Yehuda and Even [41] developed a new framework parallel to the primal-dual
methods. They call it local ratio; it is simple and requires no prior knowledge of linear programming. In
Chapter 2, we explain the basics of this approach, and recent developments are discussed in [42].

Raghavan and Thompson [43] were the first to apply randomized rounding to relaxations of linear
programming problems to generate solutions to the problem being approximated. This field has grown
tremendously. LP randomized rounding is discussed in Chapters 2, 4, 6–8, 11, 12, 57, 70, and 80 and
deterministic rounding is discussed in Chapters 2, 6, 7, 9, 11, 37, 45, 57, 58, and 70. A disadvantage of
LP-rounding is that a linear programming problem needs to be solved. This takes polynomial time with

1Here, we are referring to the time when these results appeared as technical reports. Note that from the journal
publication dates, the order is reversed. You will find similar patterns throughout the chapters. To add to the confusion,
a large number of papers have also been published in conference proceedings. Since it would be very complex to
include the dates when the initial technical report and conference proceedings were published, we only include the
latest publication date. Please keep this in mind when you read the chapters and, in general, the computer science
literature.

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C001 March 20, 2007 11:43

1-8 Handbook of Approximation Algorithms and Metaheuristics

respect to the input length, but in this case it means the number of bits needed to represent the input.
In contrast, algorithms based on the primal-dual approach are for the most part faster, since they take
polynomial time with respect to the number of “objects” in the input. However, the LP-rounding approach
can be applied to a much larger class of problems and it is more robust since the technique is more likely
to be applicable after changing the objective function or constraints for a problem.

The first APTAS (asymptotic PTAS) was developed by Fernandez de la Vega and Lueker [44] for the
bin packing problem. The first AFPTAS (Asymptotic FPTAS) for the same problem was developed by
Karmakar and Karp [45]. These approaches are discussed in Chapter 16. Fully polynomial randomized
approximation schemes (FPRAS) are discussed in Chapter 12.

In the 1980s, new approximation algorithms were developed as well as PTAS and FPTAS based on
different approaches. These results are reported throughout the handbook. One difference was the appli-
cation of approximation algorithms to other areas of research activity (very large-scale integration (VLSI),
bioinformatics, network problems) as well as to other problems in established areas.

In the late 1980s, Papadimitriou and Yannakakis [46] defined MAXSNP as a subclass of NPO. These
problems can be approximated within a constant factor and have a nice logical characterization. They
showed that if MAX3SAT, vertex cover, MAXCUT, and some other problems in the class could be ap-
proximated in polynomial time with an arbitrary precision, then all MAXSNP problems have the same
property. This fact was established by using approximation preserving reductions (see Chapters 15 and 17).
In the 1990s, Arora et al. [47], using complex arguments (see Chapter 17), showed that MAX3SAT is hard
to approximate within a factor of 1 + ε for some ε > 0 unless P = NP. Thus, all problems in MAXSNP
do not admit a PTAS unless P = NP. This work led to major developments in the area of approximation
algorithms, including inapproximability results for other problems, a bloom of approximation preserving
reductions, discovery of new inapproximability classes, and construction of approximation algorithms
achieving optimal or near optimal approximation ratios.

Feige et al. [48] showed that the clique problem could not be approximated to within some constant
value. Applying the previous result in Ref. [26] showed that the clique problem is inapproximable to within
any constant. Feige [49] showed that the set cover is inapproximable within ln n. Other inapproximable
results appear in Refs. [50,51]. Chapter 17 discusses all of this work in detail.

There are many other very interesting results that have been published in the past 15 years. Goemans
and Williamson [52] developed improved approximation algorithms for the maxcut and satisfiability
problems using semidefinite programming (SDP). This seminal work opened a new venue for the de-
sign of approximation algorithms. Chapter 15 discusses this work as well as recent developments in this
area. Goemans and Williamson [53] also developed powerful techniques for designing approximation
algorithms based on the primal-dual approach. The dual-fitting and factor revealing approach is used
in Ref. [54]. Techniques and extensions of these approaches are discussed in Chapters 4, 13, 37, 39, 40,
and 71.

In the past couple of decades, we have seen approximation algorithms being applied to traditional
combinatorial optimization problems as well as problems arising in other areas of research activity. These
areas include VLSI design automation, networks (wired, sensor and wireless), bioinformatics, game theory,
computational geometry, and graph problems. In Section 2, we elaborate further on these applications.

1.2.2 Local Search, Artificial Neural Networks, and Metaheuristics

Local search techniques have a long history; they range from simple constructive and iterative improvement
algorithms to rather complex methods that require significant fine-tuning, such as evolutionary algorithms
(EAs) or SA. Local search is perhaps one of the most natural ways to attempt to find an optimal or suboptimal
solution to an optimization problem. The idea of local search is simple: start from a solution and improve
it by making local changes until no further progress is possible. Deterministic local search algorithms
are discussed in Chapter 18. Chapter 19 covers stochastic local search algorithms. These are local search
algorithms that make use of randomized decisions, for example, in the context of generating initial solutions
or when determining search steps. When the neighborhood to search for the next solution is very large,
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finding the best neighbor to move to is many times an NP-hard problem. Therefore, a suboptimal solution
is needed at this step. In Chapter 20, the issues related to very large-scale neighborhood search are discussed
from the theoretical, algorithmic, and applications point of view.

Reactive search advocates the use of simple sub symbolic machine learning to automate the parameter
tuning process and make it an integral (and fully documented) part of the algorithm. Parameters are
normally tuned through a feedback loop that many times depends on the user. Reactive search attempts
to mechanize this process. Chapter 21 discusses issues arising during this process.

Artificial neural networks have been proposed as a tool for machine learning and many results have been
obtained regarding their application to practical problems in robotics control, vision, pattern recognition,
grammatical inferences, and other areas. Once trained, the network will compute an input/output mapping
that, if the training data was representative enough, will closely match the unknown rule that produced
the original data. Neural networks are discussed in Chapter 22.

The work of Lin and Kernighan [27] as well as that of others sparked the study of modern heuristics,
which have evolved and are now called metaheuristics. The term metaheuristics was coined by Glover [55]
in 1986 and in general means “to find beyond in an upper level.” Metaheuristics include Tabu Search
(TS), Simulated Annealing (SA), Ant Colony Optimization, Evolutionary Computation (EC), iterated
local search (ILC), and Memetic Algorithms (MA). One of the motivations for the study of metaheuristics
is that it was recognized early on that constant ratio polynomial time approximation algorithms are not
likely to exist for a large class of practical problems [16]. Metaheuristics do not guarantee that near-optimal
solutions will be found quickly for all problem instances. However, these complex programs do find near-
optimal solutions for many problem instances that arise in practice. These procedures have a wide range
of applicability. This is the most appealing aspect of metaheuristics.

The term Tabu Search (TS) was coined by Glover [55]. TS is based on adaptive memory and responsive
exploration. The former allows for the effective and efficient search of the solution space. The latter is used
to guide the search process by imposing restraints and inducements based on the information collected.
Intensification and diversification are controlled by the information collected, rather than by a random
process. Chapter 23 discusses many different aspects of TS as well as problems to which it has been applied.

In the early 1980s Kirkpatrick et al. [56] and, independently, Černý [57] introduced Simulated Annealing
(SA) as a randomized local search algorithm to solve combinatorial optimization problems. SA is a local
search algorithm, which means that it starts with an initial solution and then searches through the solution
space by iteratively generating a new solution that is “near” it. Sometimes, the moves are to a worse solution
to escape local optimal solutions. This method is based on statistical mechanics (Metropolis algorithm).
It was heavily inspired by an analogy between the physical annealing process of solids and the problem of
solving large combinatorial optimization problems. Chapter 25 discusses this approach in detail.

Evolutionary Computation (EC) is a metaphor for building, applying, and studying algorithms based on
Darwinian principles of natural selection. Algorithms that are based on evolutionary principles are called
evolutionary algorithms (EA). They are inspired by nature’s capability to evolve living beings well adapted
to their environment. There has been a variety of slightly different EAs proposed over the years. Three
different strands of EAs were developed independently of each other over time. These are evolutionary
programming (EP) introduced by Fogel [58] and Fogel et al. [59], evolutionary strategies (ES) proposed by
Rechenberg [60], and genetic algorithms (GAs) initiated by Holland [61]. GAs are mainly applied to solve
discrete problems. Genetic programming (GP) and scatter search (SS) are more recent members of the EA
family. EAs can be understood from a unified point of view with respect to their main components and
the way they explore the search space. EC is discussed in Chapter 24.

Chapter 17 presents an overview of Ant Colony Optimization (ACO)—a metaheuristic inspired by the
behavior of real ants. ACO was proposed by Dorigo and colleagues [62] in the early 1990s as a method for
solving hard combinatorial optimization problems. ACO algorithms may be considered to be part of swarm
intelligence, the research field that studies algorithms inspired by the observation of the behavior of swarms.
Swarm intelligence algorithms are made up of simple individuals that cooperate through self-organization.

Memetic Algorithms (MA) were introduced by Moscato [63] in the late 1980s to denote a family of
metaheuristics that can be characterized as the hybridization of different algorithmic approaches for a
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given problem. It is a population-based approach in which a set of cooperating and competing agents
are engaged in periods of individual improvement of the solutions while they sporadically interact. An
important component is problem and instance-dependent knowledge, which is used to speed-up the search
process. A complete description is given in Chapter 27.

1.2.3 Sensitivity Analysis, Multiobjective Optimization, and Stability

Chapter 30 covers sensitivity analysis, which has been around for more than 40 years. The aim is to study
how variations affect the optimal solution value. In particular, parametric analysis studies problems whose
structure is fixed, but where cost coefficients vary continuously as a function of one or more parameters.
This is important when selecting the model parameters in optimization problems. In contrast, Chapter 31
considers a newer area, which is called stability. By this we mean how the complexity of a problem depends
on a parameter whose variation alters the space of allowable instances.

Chapters 28 and 29 discuss multiobjective combinatorial optimization. This is important in practice since
quite often a decision is rarely made with only one criterion. There are many examples of such applications
in the areas of transportation, communication, biology, finance, and also computer science. Approximation
algorithms and a FPTAS for multiobjective optimization problems are discussed in Chapter 28. Chapter 29
covers stochastic local search algorithms for multiobjective optimization problems.

1.3 Definitions and Notation

One can use many different criteria to judge approximation algorithms and heuristics. For example the
quality of solution generated, and the time and space complexity needed to generate it. One may measure the
criteria in different ways, e.g., we could use the worst case, average case, median case, etc. The evaluation
could be analytical or experimental. Additional criteria include characterization of data sets where the
algorithm performs very well or very poorly; comparison with other algorithms using benchmarks or
data sets arising in practice; tightness of bounds (for quality of solution, time and space complexity); the
value of the constants associated with the time complexity bound including the ones for the lower order
terms; and so on. For some researchers, the most important aspect of an approximation algorithm is that
it is complex to analyze, but for others it is more important that the algorithm be complex and involve
the use of sophisticated data structures. For researchers working on problems directly applicable to the
“real world,” experimental evaluation or evaluation on benchmarks is a more important criterion. Clearly,
there is a wide variety of criteria one can use to evaluate approximation algorithms. The chapters in this
handbook use different criteria to evaluate approximation algorithms.

For any given optimization problem P , let A1, A2, . . . be the set of current algorithms that generate a
feasible solution for each instance of problem P . Suppose that we select a set of criteria C and a way to
measure it that we feel is the most important. How can we decide which algorithm is best for problem P with
respect to C ? We may visualize every algorithm as a point in multidimensional space. Now, the approach
used to compare feasible solutions for multiobjective function problems (see Chapters 28 and 29) can also
be used in this case to label some of the algorithms as current Pareto optimal with respect to C . Algorithm
A is said to be dominated by algorithm B with respect to C , if for each criterion c ∈ C algorithm B is “not
worse” than A, and for at least one criterion c ∈ C algorithm B is “better” than A. An algorithm is said
to be a current Pareto optimal algorithm with respect to C if none of the current algorithms dominates it.

In the next subsections, we define time and space complexity, NP-completeness, and different ways to
measure the quality of the solutions generated by the algorithms.

1.3.1 Time and Space Complexity

There are many different ways one can use to judge algorithms. The main ones we use are the time and
space required to solve the problem. This can be expressed in terms on n, the input size. It can be evaluated
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empirically or analytically. For the analytical evaluation, we use the time and space complexity of the
algorithm. Informally, this is a way to express the time the algorithm takes to solve a problem of size n and
the amount of space needed to run the algorithm.

It is clear that almost all algorithms take different time to execute with different data sets even when the
input size is the same. If you code it and run it on a computer you will see more variation depending on
the different hardware and software installed in the system. It is impossible to characterize exactly the time
and space required by an algorithm. We need a short cut. The approach that has been taken is to count
the number of “operations” performed by the algorithm in terms of the input size. “Operations” is not an
exact term and refers to a set of “instructions” whose number is independent of the problem size. Then
we just need to count the total number of operations.

Counting the number of operations exactly is very complex for a large number of algorithms. So we
just take into consideration the “highest”-order term. This is the O notation.

Big “oh” notation: A (positive) function f (n) is said to be O(g (n)) if there exist two constants c ≥ 1
and n0 ≥ 1 such that f (n) ≤ c · g (n) for all n ≥ n0.

The function g (n) is the highest-order term. For example, if f (n) = n3 +20n2, then g (n) = n3. Setting
n0 = 1 and c = 21 shows that f (n) is O(n3). Note that f (n) is also O(n4), but we like g (n) to be the
function with the smallest possible growth. The function f (n) cannot be O(n2) because it is impossible
to find constants c and n0 such that n3 + 20n2 ≤ cn2 for all n ≥ n0.

The time and space complexity of an algorithm is expressed in the O notation and describes their
growth rate in terms of the problem size. Normally, the problem size is the number of vertices and edges
in a graph, the number of tasks and machines in a scheduling problem, etc. But it can also be the number
of bits used to represent the input.

When comparing two algorithms expressed in O notation, we have to be careful because the constants
c and n0 are hidden. For large n, the algorithm with the smallest growth rate is the better one. When two
algorithms have similar constants c and n0, the algorithm with the smallest growth function has a smaller
running time. The book [2] discusses in detail the O notation as well as other notation.

1.3.2 NP-Completeness

Before the 1970s, researchers were aware that some problems could be computationally solved by algo-
rithms with (low) polynomial time complexity (O(n), O(n2), O(n3), etc.), whereas other problems had
exponential time complexity, for example, O(2n) and O(n!). It was clear that even for small values of n,
exponential time complexity equates to computational intractability if the algorithm actually performs
an exponential number of operations for some inputs. The convention of computational tractability being
equated to polynomial time complexity does not really fit well, as an algorithm with time complexity
O(n100) is not really tractable if it actually performs n100 operations. But even under this relaxation
of “tractability,” there is a large class of problems that does not seem to have computationally tractable
algorithms.

We have been discussing optimization problems. But NP-completeness is defined with respect to decision
problems. A decision problem is simply one whose answer is “yes” or “no.” The scheduling on identical
machines problems discussed earlier is an optimization problem. Its corresponding decision problem has
its input augmented by an integer value B and the yes-no question is to determine whether or not there is
a schedule with makespan at most B . Every optimization problem has a corresponding decision problem.
Since the solution of an optimization problem can be used directly to solve the decision problem, we say
that the optimization problem is at least as hard to solve as the decision problem. If we show that the
decision problem is a computationally intractable problem, then the corresponding optimization problem
is also intractable.

The development of NP-completeness theory in the early 1970s by Cook [6] and Karp [7] formally
introduced the notion that there is a large class of decision problems that are computationally equivalent.
By this we mean that either every problem in this class has a polynomial time algorithm that solves it, or
none of them do. Furthermore, this question is the same as the P = NP question, an open problem in
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computational complexity. This question is to determine whether or not the set of languages recognized
in polynomial time by deterministic Turing machines is the same as the set of languages recognized in
polynomial time by nondeterministic Turing machines. The conjecture has been that P �= NP, and thus
the problems in this class do not have polynomial time algorithms for their solution. The decision problems
in this class of problems are called NP-complete problems. Optimization problems whose corresponding
decision problems are NP-complete are called NP-hard problems.

Scheduling tasks on identical machines is an NP-hard problem. The TSP and Steiner tree problem are
also NP-hard problems. The minimum-weight spanning tree problem can be solved in polynomial and it
is not an NP-hard problem, under the assumption that P �= NP. There is a long list of practical problems
arising in many different fields of study that are known to be NP-hard problems. In fact, almost all the
optimization problems discussed in this handbook are NP-hard problems. The book [8] is an excellent
source of information for NP-complete and NP-hard problems.

One establishes that a problem Q is an NP-complete problem by showing that the problem is in NP
and giving a polynomial time transformation from an NP-complete problem to the problem Q.

A problem is said to be in NP if one can show that a yes answer to it can be verified in polynomial
time. For the scheduling problem defined above, you may think of this as providing a procedure that given
any instance of the problem and an assignment of tasks to machines, the algorithm verifies in polynomial
time, with respect to the problem instance size, that the assignment is a schedule and its makespan is
at most B . This is equivalent to the task a grader does when grading a question of the form “Does the
following instance of the scheduling problem have a schedule with makespan at most 300? If so, give a
schedule.” Just verifying that the “answer” is correct is a simple problem. But solving a problem instance
with 10,000 tasks and 20 machines seems much harder than simply grading it. In our oversimplification, it
seems that P �= NP. Polynomial time verification of a yes answer does not seem to imply polynomial time
solvability.

A polynomial time transformation from decision problem P1 to decision problem P2 is an algorithm
that takes as input any instance I of problem P1 and constructs an instance f (I ) of P2. The algorithm
must take polynomial time with respect to the size of the instance I . The transformation must be such
that f (I ) is a yes-instance of P2 if, and only if, I is a yes-instance of P1.

The implication of a polynomial transformation P1αP2 is that if P2 can be solved in polynomial time,
then so can P1, and if P1 cannot be solved in polynomial time, then P2 cannot be solved in polynomial
time.

Consider the partition problem. We are given n items 1, 2, . . . , n. Item j has size s ( j ). The problem is to
determine whether or not the set of items can be partitioned into two sets such that the sum of the size of the
items in one set equals the sum of the size of the items in the other set. Now let us polynomially transform
the partition problem to the decision version of the identical machines scheduling problem. Given any
instance I of partition, we define the instance f (I ) as follows. There are n tasks and m = 2 machines.
Task i represents item i and its processing time is s (i). All the tasks are independent and B = ∑i=n

i=1 s (i)/2.
Clearly, f (I ) has a schedule with maskespan B iff the instance I has a partition.

A decision problem is said to be strongly NP-complete if the problem is NP-complete even when all the
“numbers” in the problem instance are less than or equal to p(n), where p is a polynomial and n is the
“size” of the problem instance. Partition is not NP-complete in the strong sense (under the assumption
that P �= NP) because there is a polynomial time dynamic programming algorithm to solve this problem
when

∑
s (i) ≤ p(n) (see Chapter 10). An excellent source for NP-completeness information is the book

by Garey and Johnson [8].

1.3.3 Performance Evaluation of Algorithms

The main criterion used to compare approximation algorithms has been the quality of the solution
generated. Let us consider different ways to compare the quality of the solutions generated when measuring
the worst case. That is the main criterion discussed in Section 1.2.
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For some problems, it is very hard to judge the quality of the solution generated. For example, approxi-
mating colors, can only be judged by viewing the resulting images and that is subjective (see Chapter 86).
Chapter 85 covers digital reputation schemes. Here again, it is difficult to judge the quality of the solution
generated. Problems in the application areas of bioinformatics and VLSI fall into this category because, in
general, these are problems with multiobjective functions.

In what follows, we concentrate on problems where it is possible to judge the quality of the solution
generated. At this point, we need to introduce additional notation. Let P be an optimization problem and
let A be an algorithm that generates a feasible solution for every instance I of problem P . We use f̂ A(I )
to denote the objective function value of the solution generated by algorithm A for instance I . We drop A
and use f̂ (I ) when it is clear which algorithm is being used. Let f ∗(I ) be the objective function value of
an optimal solution for instance I . Note that normally we do not know the value of f ∗(I ) exactly, but we
have bounds that should be as tight as possible.

Let G be an undirected graph that represents a set of cities (vertices) and roads (edges) between a pair
of cities. Every edge has a positive number called the weight (or cost) and represents the cost of driving
(gas plus tolls) between the pair of cities it joins. A shortest path from vertex s to vertex t in G is an st-path
(path from s to t) such that the sum of the weight of the edges in it is the “‘least possible among all possible
st-paths.” There are well-known algorithms that solve this shortest-path problem in polynomial time [2].
Let A be an algorithm that generates a feasible solution (st-path) for every instance I of problem P . If for
every instance I , algorithm A generates an st-path such that

f̂ (I ) ≤ f ∗(I ) + c

where c is some fixed constant, then A is said to be an absolute approximation algorithm for problem P
with (additive) approximation bound c . Ideally, we would like to design a linear (or at least polynomial)
time approximation algorithm with the smallest possible approximation bound. It is not difficult to see
that this is not a good way of measuring the quality of a solution. Suppose that we have a graph G and
we are running an absolute approximation algorithm for the shortest path problem concurrently in two
different countries with the edge weight expressed in the local currency. Furthermore, assume that there is
a large exchange rate between the two currencies. Any approximation algorithm solving the weak currency
instance will have a much harder time finding a solution within the bound of c , than when solving the strong
currency instance. We can take this to the extreme. We now claim that the above absolute approximation
algorithm A can be used to generate an optimal solution for every problem instance within the same time
complexity bound.

The argument is simple. Given any instance I of the shortest-path problem, we construct an instance Ic+1

using the same graph, but every edge weight is multiplied by c +1. Clearly, f ∗(Ic+1) = (c +1) f ∗(I ). The
st-path for Ic+1 constructed by the algorithm is also an st-path in I with weight f̂ (I ) = f̂ (Ic+1)/(c + 1).
Since f̂ (Ic+1) ≤ f ∗(Ic+1) + c , then by substituting the above bounds we know that

f̂ (I ) = f̂ (Ic+1)

(c + 1)
≤ f ∗(Ic+1)

c + 1
+ c

c + 1
= f ∗(I ) + c

c + 1

Since all the edges have integer weights, it then follows that the algorithm solves the problem optimally.
In other words, for the shortest path problem any algorithm that generates a solution with (additive)
approximation bound c can be used to generate an optimal solution within the same time complexity
bound. This same property can be established for almost all NP-hard optimization problems. Because of
this, the use of absolute approximation has never been given a serious consideration.

Sahni [14] defines as an ε-approximation algorithm for problem P an algorithm that generates a feasible
solution for every problem instance I of P such that

| f̂ (I ) − f ∗(I )

f ∗(I )
| ≤ ε

It is assumed that f ∗(I ) > 0. For a minimization problem, ε > 0 and for a maximization problem,
0 < ε < 1. In both cases, ε represents the percentage of error. The algorithm is called an ε-approximation
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algorithm and the solution is said to be an ε-approximate solution. Graham’s list scheduling algorithm [1]
is a 1−1/n-approximation algorithm, and Sahni and Gonzalez [16] algorithm for the k-maxcut problem is
a 1

k -approximation algorithm (see Section 1.2). Note that this notation is different from the one discussed
in Section 1.2. The difference is 1 unit, i.e., the ε in this notation corresponds to 1 + ε in the other.

Johnson [12] used a slightly different, but equivalent notation. He uses the approximation ratio ρ to

mean that for every problem instance I of P , the algorithm satisfies f̂ (I )
f ∗(I ) ≤ ρ for minimization problems,

and f ∗(I )
f̂ (I )

≤ ρ for maximization problems. The one for minimization problems is the same as the one given

in Ref. [1]. The value for ρ is always greater than 1, and the closer to 1, the better the solution generated
by the algorithm. One refers to ρ as the approximation ratio and the algorithm is a ρ-approximation
algorithm. The list scheduling algorithm in the previous section is a (2 − 1

m )-approximation algorithm
and the algorithm for the k-maxcut problem is a ( k

k−1 )-approximation algorithm. Sometimes, 1/ρ is
used as the approximation ratio for maximization problems. Using this notation, the algorithm for the
k-maxcut problem in the previous section is a 1 − 1

k -approximation algorithm.
All the above forms are in use today. The most popular ones are ρ for minimization and 1/ρ for

maximization. These are referred to as approximation ratios or approximation factors. We refer to all these
algorithms as ε-approximation algorithms. The point to remember is that one needs to be aware of the
differences and be alert when reading the literature. In the above discussion, we make ε and ρ look as
if they are fixed constants. But, they can be made dependent on the size of the problem instance I . For
example, it may be ln n, or nε for some problems, where n is some parameter of the problem that depends
on I , e.g., the number of nodes in the input graph, and ε depends on the algorithm being used to generate
the solutions.

Normally, one prefers an algorithm with a smaller approximation ratio. However, it is not always the
case that an algorithm with smaller approximation ratio always generates solutions closer to optimal than
one with a larger approximation ratio. The main reason is that the notation is for the worst-case ratio
and the worst case does not always occur. But there are other reasons too. For example, the bound for
the optimal solution value used in the analysis of two different algorithms may be different. Let P be the
shortest-path minimization problem and let A be an algorithm with approximation ratio 2. In this case,
we use d as the lower bound for f ∗(I ), where d is some parameter of the problem instance. Algorithm
B is a 1.5-approximation algorithm, but f ∗(I ) used to establish it is the exact optimal solution value.
Suppose that for problem instance I the value of d is 5 and f ∗(I ) = 8. Algorithm A will generate a path
with weight at most 10, whereas algorithm B will generate one with weight at most 1.5 × 8 = 12. So the
solution generated by Algorithm B may be worse than the one generated by A even if both algorithms
generate the worst values for the instance. One can argue that the average “error” makes more sense than
worst case. The problem is how to define and establish bounds for average “error.” There are many other
pitfalls when using worst-case ratios. It is important to keep all this in mind when making comparisons
between algorithms. In practice, one may run several different approximation algorithms concurrently
and output the best of the solutions. This has the disadvantage that the running time of this compound
algorithm will be the one for the slowest algorithm.

There are a few problems for which the worst-case approximation ratio applies only to problem instances
where the value of the optimal solution is small. One such problem is the bin packing problem discussed
in Section 1.2. Informally, ρ∞

A is the smallest constant such that there exists a constant K < ∞ for which

f̂ (I ) ≤ ρ∞
A f ∗(I ) + K

The asymptotic approximation ratio is the multiplicative constant and it hides the additive constant K .
This is most useful when K is small. Chapter 32 discusses this notation formally. The asymptotic notation
is mainly used for bin packing and some of its variants.

Ausiello et al. [30] introduced the differential ratio. Informally, an algorithm is said to be a δ differential
ratio approximation algorithm if for every instance I of P

ω(I ) − f̂ (I )

ω(I ) − f ∗(I )
≤ δ
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where ω(I ) is the value of a worst solution for instance I . Differential ratio has some interesting properties
for the complexity of the approximation problems. Chapter 16 discusses differential ratio approximation
and its variations.

As said earlier, there are many different criteria to compare algorithms. What if we use both the ap-
proximation ratio and time complexity? For example, the approximation algorithms in Ref. [15] and the
one in Ref. [29] are current Pareto optimal with respect to these criteria for the TSP defined over metric
graphs. Neither of the algorithms dominates the others in both time complexity and approximation ratio.
The same can be said about the simple linear time approximation algorithm for the k-maxcut problem in
Ref. [16] and the complex one given in Ref. [52] or the more recent ones that apply for all k.

The best algorithm to use also depends on the instance being solved. It makes a difference whether we
are dealing with an instance of the TSP with optimal tour cost equal to a billion dollars and one with
optimal cost equal to just a few pennies. Though, it also depends on the number of such instances being
solved.

More elaborate approximation algorithms have been developed that generate a solution for any fixed
constant ε. Formally, a PTAS for problem P is an algorithm A that given any fixed constant ε > 0, it

constructs a solution to problem P such that | f̂ (I ) − f ∗(I )
f ∗(I ) | ≤ ε in polynomial time with respect to the

length of the instance I . Note that the time complexity may be exponential with respect to 1/ε. For
example, the time complexity could be O(n(1/ε)) or O(n + 4O(1/ε)). Equivalent PTAS are also defined

using different notation, for example, based on f̂ (I )
f ∗(I ) ≤ 1 + ε for minimization problems.

One would like to design PTAS for all problems, but that is not possible unless P = N P . Clearly, with
respect to approximation ratios, the PTAS is better than the ε-approximation algorithms for some ε. But
their main drawback is that they are not practical because the time complexity is exponential on 1/ε.
This does not preclude the existence of a practical PTAS for “natural” occurring problems. However, a
PTAS establishes that a problem can be approximated for all fixed constants. Different types of PTAS are
discussed in Chapter 9. Additional PTAS are presented in Chapters 42, 45, and 51.

A PTAS is said to be an FPTAS if its time complexity is polynomial with respect to n (the problem size)
and 1/ε. FPTAS are for the most part practical algorithms. Different methodologies for designing FPTAS
are discussed in Chapter 10.

Approximation schemes based on asymptotic approximation and on randomized algorithms have been
developed. Chapters 11 and 45 discuss asymptotic approximation schemes and Chapter 12 discusses
randomized approximation schemes.
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[38] Chvátal, V., A greedy heuristic for the set-covering problem, Math. Oper. Res., 4(3), 233, 1979.
[39] Hochbaum, D. S., Approximation algorithms for set covering and vertex covering problems, SIAM

J. Comput., 11, 555, 1982.
[40] Bar-Yehuda, R. and Even, S., A linear time approximation algorithm for the weighted vertex cover

problem, J. Algorithms, 2, 198, 1981.

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C001 March 20, 2007 11:43

Introduction, Overview, and Notation 1-17

[41] Bar-Yehuda, R. and Even, S., A local-ratio theorem for approximating the weighted set cover problem,
Ann. of Disc. Math., 25, 27, 1985.

[42] Bar-Yehuda, R. and Bendel, K., Local ratio: A unified framework for approximation algorithms, ACM
Comput. Surv., 36(4), 422, 2004.

[43] Raghavan, R. and Thompson, C., Randomized rounding: A technique for provably good algorithms
and algorithmic proof, Combinatorica, 7, 365, 1987.

[44] Fernandez de la Vega, W. and Lueker, G. S., Bin packing can be solved within 1 + ε in linear time,
Combinatorica, 1, 349, 1981.

[45] Karmakar, N. and Karp, R. M., An efficient approximation scheme for the one-dimensional bin
packing problem, Proc. FOCS, 1982, p. 312.

[46] Papadimitriou, C. H. and Yannakakis, M., Optimization, approximation and complexity classes,
J. Comput. Syst. Sci., 43, 425, 1991.

[47] Arora, S., Lund, C., Motwani, R., Sudan, M., and Szegedy, M., Proof verification and hardness of
approximation problems, Proc. FOCS, 1992.

[48] Feige, U., Goldwasser, S., Lovasz, L., Safra, S., and Szegedy, M., Interactive proofs and the hardness
of approximating cliques, JACM, 43, 1996.

[49] Feige, U., A threshold of ln n for approximating set cover, JACM, 45(4), 634, 1998. (Prelim. version
in STOC’96.)

[50] Engebretsen, L. and Holmerin, J., Towards optimal lower bounds for clique and chromatic number,
TCS, 299, 2003.

[51] Hastad, J., Some optimal inapproximability results, JACM, 48, 2001. (Prelim. version in STOC’97.)
[52] Goemans, M. X. and Williamson, D. P., Improved approximation algorithms for maximum cut and

satisfiability problems using semidefinite programming, JACM, 42(6), 1115, 1995.
[53] Goemans, M. X. and Williamson, D. P., A general approximation technique for constrained forest

problems, SIAM J. Comput., 24(2), 296, 1995.
[54] Jain, K., Mahdian, M., Markakis, E., Saberi, A., and Vazirani, V. V., Approximation algorithms for

facility location via dual fitting with factor-revealing LP, JACM, 50, 795, 2003.
[55] Glover, F., Future paths for integer programming and links to artificial intelligence, Comput. Oper.

Res., 13, 533, 1986.
[56] Kirkpatrick, S., Gelatt, C. D., Jr. and Vecchi, M. P., Optimization by simulated annealing, Science,

220, 671, 1983.
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2.1 Introduction

In Chapter 1 we presented an overview of approximation algorithms and metaheuristics. This serves as
an overview of Parts I, II, and III of this handbook. In this chapter we discuss in more detail the basic
methodologies and apply them to simple problems. These methodologies are restriction, greedy methods,
LP rounding (deterministic and randomized), α vector, local ratio and primal dual. We also discuss in
more detail inapproximability and show that the “classical” version of the traveling salesperson problem
(TSP) is constant ratio inapproximable. In the last three sections we present an overview of the application
chapters in Parts IV, V, and VI of the handbook.

2.2 Restriction

Chapter 3 discusses restriction which is one of the most basic techniques to design approximation algo-
rithms. The idea is to generate a solution to a given problem P by providing an optimal or suboptimal
solution to a subproblem of P . A subproblem of a problem P means restricting the solution space for
P by disallowing a subset of the feasible solutions. The idea is to restrict the solution space so that it
has some structure, which can be exploited by an efficient algorithm that solves the problem optimally
or suboptimally. For this approach to be effective the subproblem must have the property that, for every
problem instance, its optimal or suboptimal solution has an objective function value that is “close” to
the optimal one for P . The most common approach is to solve just one subproblem, but there are al-
gorithms where more than one subproblem is solved and then the best of the solutions computed is the
solution generated. Chapter 3 discusses this methodology and shows how to apply it to several prob-
lems. Approximation algorithms based on this approach are discussed in Chapters 35, 36, 42, 45, 46, 54,
and 73. Let us now discuss a scheduling application in detail. This is the scheduling problem studied by
Graham [1,2].

2-1
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2.2.1 Scheduling

A set of n tasks denoted by T1, T2, . . . , Tn with processing time requirements t1, t2, . . . , tn have to be
processed by a set of m identical machines. A partial order C is defined over the set of tasks to enforce
a set of precedence constraints or task dependencies. The partial order specifies that a machine cannot
commence the processing of a task until all of its predecessors have been completed. Each task Ti has to
be processed for ti units of time by one of the machines. A (nonpreemptive) schedule is an assignment
of tasks to time intervals on the machines in such a way that (1) each task Ti is processed continuously
for ti units of time by one of the machines; (2) each machine processes at most one task at a time; and
(3) the precedence constraints are satisfied. The makespan of a schedule is the latest time at which a task is
being processed. The scheduling problem discussed in this section is to construct a minimum makespan
schedule for a set of partially ordered tasks to be processed by a set of identical machines. Several limited
versions of this scheduling problem has been shown to be NP-hard [3].

Example 2.1

The number of tasks, n, is 8 and the number of machines, m, is 3. The processing time requirements for the
tasks, and the precedence constraints are given in Figure 2.1, where a directed graph is used to represent
the task dependencies. Vertices represent tasks and the directed edges represent task dependencies. The
integers next to the vertices represent the task processing requirements. Figure 2.2 depicts two schedules
for this problem instance.

In the next subsection, we present a simple algorithm based on restriction to generate provable good
solutions to this scheduling problem. The solution space is restricted to schedules without forced “idle
time,” i.e., each feasible schedule does not have idle time from the time at which all the predecessors of
task Ti (in C ) are completed to the time when the processing of task Ti begins, for each i .

1

2 3

7 8

4 5 6

5

39 9

2 8

6 4

FIGURE 2.1 Precedence constraints and processing time requirements for Example 2.1.
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6 83

26 195 14

2

18 85 17

7

(a) (b)

FIGURE 2.2 (a) and (b) represent two different AAT schedules for Example 2.1. Schedule (b) is a minimum makespan
schedule.
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2.2.2 Partially Ordered Tasks

Let us further restrict the scheduling policy to construct a schedule from time zero till all the tasks have
been assigned. The scheduling policy is: whenever a machine becomes idle we assign one of the unassigned
tasks that is ready to commence execution, i.e., we have completed all its predecessors. Any scheduling
policy in this category can be referred to as a no-additional-delay scheduling policy. The simplest version
of this scheduling policy is to assign any of the tasks (AAT) ready to be processed. A schedule generated by
this policy is called an AAT schedule. These schedules are like the list schedules [1] discussed in Chapter 1.
The difference is that list schedules have an ordered list of tasks, which is used to break ties. The analysis
for both types of algorithms is the same since the list could be any list.

In Figure 2.2 we give two possible AAT schedules. The two schedules were obtained by breaking ties
differently. The schedule in Figure 2.2(b) is a minimum makespan schedule. The reason for this is that the
machines can only process one of the tasks T1, T5, or T8 at a time, because of the precedence constraints.

Figure 2.2 suggests that an optimal schedule can be generated by just finding a clever method to break
ties. Unfortunately, one cannot prove that this is always the case because there are problem instances for
which all minimum makespan schedules are not AAT schedules.

The makespan of an AAT schedule is never greater than 2 − 1
m times the one of an optimal schedule for

the instance. This is expressed by

f̂ I

f ∗
I

≤ 2 − 1

m

where f̂ I is the makespan of any possible AAT schedule for problem instance I and f ∗
I is the makespan

of an optimal schedule for I . We establish this property in the following theorem:

Theorem 2.1

For every instance I of the identical machine scheduling problem, and every AAT schedule, f̂ I
f ∗

I
≤ 2 − 1

m .

Proof
Let S be any AAT schedule for problem instance I with makespan f̂ I . By construction of the AAT schedules
it cannot be that at some time 0 ≤ t ≤ f̂ I all machines are idle. Let i1 be the index of a task that finishes
at time f̂ I . For j = 2, 3, . . . , if task Ti j−1 has at least one predecessor in C , then define i j as the index
of a task with latest finishing time that is a predecessor (in C) of task Ti j−1 . We call these tasks a chain
and let k be the number of tasks in the chain. By the definition of task Ti j , it cannot be that there is an
idle machine from the time when task Ti j completes its processing to the time when task Ti j−1 begins
processing. Therefore, a machine can only be idle when another machine is executing a task in the chain.
From these two observations we know that

m f̂ I ≤ (m − 1)
k∑

j=1

ti j +
n∑

j=1

t j

Since no machine can process more than one task at a time, and since not two tasks, one of which
precedes the other in C , can be processed concurrently, we know that an optimal makespan schedule
satisfies

f ∗
I ≥ 1

m

n∑

j=1

t j and f ∗
I ≥

k∑

j=1

ti j

Substituting in the above inequality, we know that f̂ I
f ∗

I
≤ 2 − 1

m .

The natural question to ask is whether or not the approximation ratio 2 − 1
m is the best possible for

AAT schedules. The answer to this question is affirmative, and a problem instance for which this bound is
tight is given in Example 2.2.
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FIGURE 2.3 (a) AAT schedule. (b) Optimal schedule for Example 2.2.

Example 2.2

There are 2m − 1 independent tasks. The first m − 1 tasks have processing time requirement m − 1, the
next m − 1 tasks have processing time requirement one, and the last task has processing time requirement
equal to m. An AAT schedule with makespan 2m − 1 is given in Figure 2.3(a), and in Figure 2.3(b) we give
a minimum makespan schedule.

Note that these results also hold for the list schedules [1] defined in Chapter 1. These type of schedules
are generated by a no-additional-delay scheduling rule that is augmented by a list that is used to decide
which of the ready-to-process tasks is the one to be assigned next.

Let us now consider the case when ties (among tasks that are ready) are broken in favor of the task with
smallest index (Ti is selected before Tj if both tasks are ready to be processed and i < j ). The problem
instance IA given in Figure 2.4 has three machines and eight tasks. Our scheduling procedure (augmented
with a tie-breaking list) generates a schedule with makespan 14. In Chapter 1, we say that list schedules
(which are this type of schedules) have anomalies. To verify this, apply the scheduling algorithm to instance
IA, but now there are four machines. One would expect a schedule for this new instance to have makespan
at most 14, but you can easily verify that this is not the case. Now apply the scheduling algorithm to the
instance IA where every task has a processing requirement decreased by one unit. One would expect a
schedule for this new instance to have makespan at most 14, but you can easily verify that is not the case.
Apply the scheduling algorithm to the problem instance IA without the precedence constraints from task

T1

T2

T3

T4

T9

T5

T6

T7

T8

53

4 6 11

13

14

5

8

1

9 5 6 7 8

5 5 3 3

2 3 4

3 4 3

FIGURE 2.4 (a) Problem instance with anomalous behavior. (b) AAT schedule with tie-breaking list.
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4 to 5 and task 4 to 6. One would expect a schedule for this instance to have makespan at most 14, but
that is not the case. These are anomalies. Approximation algorithms suffer from this type of anomalous
behavior. We need to be aware of this fact when using approximation algorithms.

As in the case of Example 2.2, the worst case behavior arises when the task with longest processing time
is being processed while the rest of the machines are idle. Can a better approximation bound be established
for the case when ties are broken in favor of a task with longest processing time (LPT)? The schedules
generated by this rule are called LPT schedules. Any LPT schedule for the problem instance in Figure 2.3
is optimal. Unfortunately, this is not always the case and the approximation ratio in general is the same as
the one for the AAT schedules. To see this just partition task 2m −1 in Example 2.2 (see Figure 2.3[a]) into
a two-task chain. The first one has processing requirement of ε, for some 0 < ε < 1, and the second one
m − ε. The schedule generated by the LPT rule will schedule first all the tasks with processing requirement
greater than 1 and then the two tasks in the chain.

The problem with the LPT rule is that it only considers the processing requirements of the tasks ready
to process, but ignores the processing requirements of the tasks that follow it. We define the weight of a
directed path as the sum of the processing time requirements of the tasks in the path. Any directed path that
starts at task t with maximum weight among all paths that start at task t is called a critical path for task t.
The critical-path (CP) schedule is defined as a no-additional-delay schedule where the decision of which
task to process next is a task whose CP weight is largest among the ready-to-be processed tasks. The CP
schedule is optimal for the problem instance that was generated by replacing the last task in Example 2.2
by two tasks. However, Graham constructed problem instances for which the makespan of the CP schedule
is 2 − 1/m times the length of an optimal schedule.

It is not known whether or not a polynomial-time algorithm exists with a smaller approximation
ratio even when the processing time requirements for all the tasks are identical and m ≥ 3. There is
a polynomial-time algorithm that generates an optimal schedule when m = 2, but the problem with
different task processing times is NP-hard. In the next subsection we present an algorithm with a smaller
approximation ratio for scheduling independent task.

2.3 Greedy Methods

Another way to generate suboptimal solutions is to apply greedy algorithms. The idea is to generate a
solution by making a sequence of irrevocable decisions. Each of these decisions is a best possible choice at
that point, for example, select an edge of least weight, select the vertex of highest degree, or select the task
with longest processing time. Chapter 4 discusses greedy methods. The discussion also includes primal-
dual approximation algorithms falling into this category. Chapter 5 discusses the recursive greedy method.
This methodology is for the case when making the best possible decision is an NP-hard problem. A large
portion of the bin packing algorithms are greedy algorithms. Bin packing and its variants are discussed in
Chapters 32–35. Other greedy methods appear in Chapters 36, 38, 39, 44–46, 49, 50, 58, 59, and 69. Let us
now discuss the LPT scheduling rule for scheduling independent tasks on identical machines.

2.3.1 Independent Tasks

Another version of this scheduling problem that has received considerable attention is when the tasks
are independent, i.e., the partial order between the tasks is empty. Graham’s [2] elegant analysis for LPT
scheduling has become a classic. In fact, the analysis of quite a few subsequent exact and approximation
scheduling algorithms follow the same approach.

First, we analyze the LPT scheduling rule. For this case there is only one possible schedule, modulo the
relabeling of the tasks. We call this a “greedy method” because of the ordering of the tasks with respect
to their processing requirements. This tends to generate schedules where the shortest tasks end up being
processed last and the resulting schedules tend to have near-optimal makespan. However as we shall see,
one may obtain the same approximation ratio by just scheduling the tasks using a list where the 2m task
with longest processing time appear first (in sorted order) and the remaining tasks appear next in any
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order. This approach could be called “limited greedy.” We discuss other approximation algorithms for this
problem after presenting the analysis for LPT schedules.

Let I be any problem instance with n independent tasks and m identical machines. We use f̂ I , as the
makespan for the LPT schedule for I and f ∗

I as the one for an optimal schedule. In the next theorem we
establish the approximation ratio for LPT schedules.

Theorem 2.2

For every scheduling problem instance I with n independent tasks and m identical machines, every LPT
schedule satisfies f̂ I

f ∗
I

≤ 4
3 − 1

3m .

Proof
It is clear that LPT schedules are optimal for m = 1. Assume that m ≥ 2. The proof is by contradiction.
Suppose the above bound does not hold. Let I be a problem instance with the least number of tasks for which
f̂ I
f ∗
I

> 4
3 − 1

3m . Let n the number of tasks in I , m the number of machines, and assume that t1 ≥ t2 ≥ · · · ≥ tn.

Let k be the smallest index of a task that finishes at time f̂ I . It cannot be that k < n, as otherwise the
problem instance T1, T2, . . . , Tk is also a counterexample and it has fewer tasks than instance I , but by
assumption problem instance I is a counterexample with the least number of tasks. Therefore, k must be
equal to n.

By the definition of LPT schedules, we know that there cannot be idle time before task Tn begins
execution. Therefore,

n∑

i=1

ti + (m − 1)tn ≥ m f̂ I

This is equivalent to

f̂ I ≤ 1

m

n∑

i=1

ti +
(

1 − 1

m

)

tn

Since each machine cannot process more than one task at a time, we know that f ∗
I ≥ ∑n

i=1 ti /m.
Combining these two bounds we have

f̂ I

f ∗
I

≤ 1 +
(

1 − 1

m

)
tn
f ∗

I

Since I is a counterexample for the theorem, this bound must be greater than 4
3 − 1

3m . Simplifying we
know that f ∗

I < 3tn. Since tn is the task with smallest processing time requirement it must be that in an
optimal schedule, for instance, I none of the machines can process three or more tasks. Therefore, the
number of tasks n is at most 2m.

For problem instance I , let S∗ be an optimal schedule with least
∑

f 2
i , where fi is the makespan in

S∗ for machine i . Assume without loss of generality that the tasks assigned to each machine are arranged
from largest to smallest with respect to their processing times. All machines have at most two tasks, as S∗
is an optimal schedule for I which by definition is a counterexample for the theorem.

Let i and j be two machines in schedule S∗ such that fi > f j , machine i has two tasks and machine
j has at least one task. Let a and b be the task index for the last task processed by machine i and j ,
respectively. It cannot be that ta > tb , as otherwise applying the interchange given in Figure 2.5(a) results

(a) (b)

i

j

a

a

i

j

a

b

b

a

FIGURE 2.5 Schedule transformations.
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in an optimal schedule with smaller
∑

f 2
i . This contradicts the fact that S∗ is an optimal schedule with

least
∑

f 2
i . Let i and j be two machines in schedule S∗ such that machine i has two tasks. Let a be the

task index for the last task processed by machine i . It cannot be that fi − ta > f j as otherwise applying
the interchange given in Figure 2.5(b) results in an optimal schedule with smaller

∑
f 2
i . This contradicts

the fact that S∗ is an optimal schedule with least
∑

f 2
i .

Since the transformations given in Figure 2.5(a) and Figure 2.5(b) cannot apply, the schedule S∗ must
be of the form shown in Figure 2.6 after renaming the machines, i.e., machine i is assigned task Ti

(if i ≤ n) and task T2m−i+1 (if 2m − i + 1 ≤ n). But this schedule is an LPT schedule and f̂ =
f ∗. Therefore, there cannot be any counterexamples to the theorem. This completes the proof of the
theorem.

For all m there are problem instances for which the ratio given by Theorem 2.2 is tight. In Figure 2.7 we
give one of such problem instance for three machines.

The important properties needed to prove Theorem 2.2 are that the longest 2m tasks need to be scheduled
via LPT, and either the schedule will be optimal for the 2m task or at least three tasks will be assigned to a
machine. The first set of m tasks, the ones with longest processing time, will be assigned to one machine
each, so the order in which they are assigned is not really important. The next set of m tasks need to be
assigned from longest to shortest processing times as in the LPT schedule. The remaining tasks can be
assigned in any order as long as whenever a machine finishes a task the next task in the list is assigned
to that machine. Any list schedule whose list follows the above ordering can be shown to have makespan
at most 4

3 − 1
3m times the one of an optimal schedule. These type of schedules form a restriction on the

solution space.
It is interesting to note that the problem of scheduling 2m independent tasks is an NP-hard problem.

However, in polynomial time we can find out if there is an optimal schedule in which each machine has at
most two tasks. And this is all that is needed to establish the 4

3 − 1
3m approximation ratio. One of the first

.  .  .

.  .  . .  .  .

2

1

i

i+1

m−1

m m+1

m+2

n−1

n

FIGURE 2.6 Optimal schedule.
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FIGURE 2.7 (a) LPT schedule. (b) Optimal schedule.
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avenues of research explored was to see if the same approach would hold for the longest 3m tasks. That is,
give a polynomial-time algorithm that finds an optimal schedule in which each machine has at most three
tasks. If such an algorithm exists, we could use it to generate schedules that are within 5

4 − 1
4m times the

makespan of an optimal schedule. This does not seem possible as Garey and Johnson [3] established that
this problem is NP-hard.

Other approximation algorithms with improved performance were subsequently developed. Coffman
et al. [4] introduced the multifit (MF) approach. A k attempt MF approach is denoted by MFk . The MFk

procedure performs k binary search steps to find the smallest capacity c such that all the tasks can be
packed into a set of m bins when packing using first fit with the tasks sorted in nondecreasing order of
their processing times. The tasks assigned to bin i correspond to machine i and c is the makespan of
the schedule. The approximation ratio has been shown to be 1.22 + 2−k and the time complexity of the
algorithm is O(n log n + kn log m). Subsequent improvements to 1.2 + 2−k [5] and 72

61 + 1
2k [6] were

possible within the same time complexity bound. However, the latter algorithm has a very large constant
associated with the big “oh” bound.

Following a suggestion by D. Kleitman and D. E. Knuth, Graham [2] was led to consider the following
scheduling strategy. For any k ≥ 0 an optimal schedule for the longest k tasks is constructed and then the re-
maining tasks are scheduled in any order using the no-additional-delay policy. He shows that this algorithm
has an approximation ratio 1 + 1−1/m

1+�k/m� and takes O(n log m + kmk) time when there is a fixed number of
machines. This was the first polynomial-time approximation scheme for any problem. This polynomial-
time approximation scheme, as well as the ones for other problems are explained in more detail in Chapter 9.
Fully polynomial-time approximation schemes are not possible for this problem unless P = NP [3].

2.4 Relaxation: Linear Programming Approach

Let us now consider the minimum-weight vertex cover, which is a fundamental problem in the study of
approximation algorithms. This problem is defined as follows

Problem: Minimum-weight vertex cover.
Instance: Given a vertex weighted undirected graph G with the set of vertices V = {v1, v2, . . . , vn},

edges E = {e1, e2, . . . , em} and a positive real number (weight) wi assigned to each vertex vi .
Objective: Find a minimum-weight vertex cover, i.e., a subset of vertices C ⊂ V such that every edge

is incident to at least one vertex in C . The weight of the vertex cover C is the sum of the weight of
the vertices in C .

It is well known that the minimum-weight vertex cover problem is an NP-hard problem. Now consider
the following simple greedy algorithm to generate a vertex cover. Assume without loss of generality that
the graph G does not have isolated vertices, i.e., vertices without any edges. An edge is said to be uncovered
with respect to a set of vertices C if both of its endpoints are vertices in V\C , i.e., if both endpoints are
not in C .

Algorithm Min-Weight(G)
Let C = ∅;
while there is an uncovered edge do

Let U be the set of vertices adjacent to at least one uncovered edge;
Add to C a least weight vertex in set U ;

endwhile
end

Algorithm Min-Weight is not a constant-ratio approximation algorithm for the vertex cover problem.
Consider the family of star graphs K each with l + 1 nodes, l edges, the center vertex having weight k and
the l leaves having weight 1, for any positive integers k ≥ 2 and l ≥ 3. For each of these graphs Algorithm
Min-Weight generates a vertex cover that includes all the leaves in the graph and the weight of the cover
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is l . For all graphs in K with k = 2, an optimal cover has weight 2 and includes only the center vertex.
Therefore, Algorithm Min-Weight has an approximation ratio of at least l/2, which cannot be bounded
above by any fixed constant.

Algorithm Max-Weight is identical to Algorithm Min-Weight, but instead of selecting the vertex in set
U with least weight, it selects one with largest weight. Clearly, this algorithm constructs an optimal cover
for the graphs identified above where Algorithm Min-Weight performs badly. For every graph in K, this
algorithm selects as its vertex cover the center vertex which has weight k. Now for all graphs in K with
l = 2, an optimal cover consists of both leaf vertices and it has weight 2. Therefore, the approximation
ratio for Algorithm Max-Weight is at least k/2, which cannot be bounded above by any fixed constant.

All of the graphs identified above, where one of the algorithms performs badly, have the property that
the other algorithm constructs an optimal solution. A compound algorithm that runs both algorithms
and then selects the better of the two vertex covers may be a constant-ratio algorithm for the vertex cover
problem. However, this compound algorithm can also be easily fooled by just using a graph consisting
of two stars, where each of the individual algorithms failed to produce good solutions. Therefore, this
compound algorithm fails to generate constant-ratio approximate solutions. One may now argue that we
could partition the graph into connected components and apply both algorithms to each component. For
these “two-star” graphs the new compound algorithm will generate an optimal solution. But in general
this new approach fails to produce a constant-ratio approximate solution for all possible graphs. Adding
an edge between the center vertex in the “two-star” graphs gives rise to problem instances for which the
new compound algorithm fails to provide a constant ratio approximate solution.

A more clever approach is a modified version of Algorithm Min-Weight, where instead of selecting a
vertex of least possible weight in set U , one selects a vertex v in set U with least w(v)/u(v), where u(v) is the
number of uncovered edges incident to vertex v. This seems to be a better strategy because when vertex v is
added to C it covers u(v) edges at a total cost of w(v). So the cost (weight) per edge of w(v)/u(v) is incurred
when covering the uncovered edges incident to vertex v. This strategy solves optimally the star graphs in
K defined above. However, even when all the weights are equal, one can show that this is not a constant
ratio approximation algorithm for the weighted vertex cover problem. In fact, the approximation ratio for
this algorithm is about log n. Instances with a simple recursive structure that asymptotically achieve this
bound as the number of vertices increases can be easily constructed. Chapter 3 gives an example of how
to construct problem instances where an approximation algorithm fails to produce a good solution.

Other approaches to solve the problem can also be shown to fail to provide a constant-ratio approx-
imation algorithm for the weighted vertex cover. What type of algorithm can be used to guarantee a
constant-ratio solution to this problem? Let us try another approach.

Another way to view the minimum-weight vertex cover is by defining a 0/1 variable xi for each vertex vi

in the graph. The 0/1 vector X defines a subset of vertices C as follows. Vertex vi is in C if and only if xi = 1.
The set of vertices C defined by X is a vertex cover if and only if for every edge {i, j } in the graph xi +x j ≥ 1.
The vertex cover problem is expressed as an instance of the 0/1 integer linear programming (ILP) as follows:

minimize
∑

i∈V
wi xi (2.1)

subject to xi + x j ≥ 1 ∀{i, j } ∈ E (2.2)

xi ∈ {0, 1} ∀i ∈ V (2.3)

The 0/1 ILP is also an NP-hard problem.
An important methodology for designing approximation algorithms is relaxation. In this case one relaxes

the integer constraints for the xi values. That is, we replace constraint (2.3) (xi = {0, 1}) by 0 ≤ xi ≤ 1
(or simply xi ≥ 0, which in this case is equivalent). This means that we are augmenting the solution space
by adding solutions that are not feasible for the original problem. This approach will at least provide us
with what appears to be a good lower bound for the value of an optimal solution of the original problem,
since every feasible solution to the original problem is a feasible solution to the relaxed problem (but the
converse is not true). This relaxed problem is an instance of the linear programming (LP) problem which
can be solved in polynomial time. Let X∗ be an optimal solution to the LP problem. Clearly, X∗ might
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not be a vertex cover as the x∗
i values may be noninteger. The previous interpretation for the X∗ values

has been lost because it does not make sense to talk about a fractional part of a vertex being part of a
vertex cover. To circumvent this situation, we need to use the X∗ vector to construct a 0/1 vector X̂ that
represents a vertex cover. For a vector X̂ to represent a vertex cover it needs to satisfy inequality (2.2) (i.e.,
x̂ i + x̂ j ≥ 1), for every edge ek = {i, j } ∈ E . Clearly, the inequalities hold for X∗. This means that for
each edge ek = {i, j } ∈ E at least one of x∗

i or x∗
j has value at least greater than or equal to 1

2 . So the vector

X̂ defined from X∗ as x̂ i = 1 if x∗
i ≥ 1

2 (rounding up) and x̂ i = 0 if x∗
i < 1

2 (rounding down) represents a
vertex cover. Furthermore, because of the rounding up the objective function value for the vertex cover X̂
is at most 2

∑
wi x∗

i . Since
∑

wi x∗
i value is a lower bound for an optimal solution to the weighted vertex

cover problem, we know that this procedure generates a vertex cover whose weight is at most twice the
weight of an optimal cover, i.e., it is a 2-approximation algorithm. This process is called (deterministic) LP
rounding. Chapters 6, 7, 9, 11, 37, 45, 57, 58, and 70 discuss and apply this methodology to other problems.

Another way to round is via randomization, which means in this case that we flip a biased coin (with
respect to x∗

i and perhaps other factors) to decide the value for x̂ i . The probability of X̂ is a vertex cover and
its expected weight can be computed. By repeating this randomization process several times, one can show
that a cover with weight at most twice the optimal one will be generated with very high probability. In this
case it is clear that randomization is not needed. However, for other problems it is justified. Chapters 4,
6, 7, 11, 12, 57, 70, and 80 discuss LP randomized rounding, and Chapter 8 discusses more complex
randomized rounding for semidefinite programming (SDP).

The above rounding methods have the disadvantage that an LP problem needs to be solved. Experimental
evaluations over several decades have shown that the Simplex method solves quickly (in poly time) the LP
problem. But the worst-case time complexity is exponential with respect to the problem size. In Chapter 1
we have discussed the Ellipsoid algorithm and more recent ones that solve LP problems. Even though these
algorithms have polynomial-time complexity, there is a term that depends on the number of bits needed
to represent the input. Much progress has been made in speeding up these procedures, but the algorithms
are not competitive with typical O(n2) time algorithms for other problems.

Let us now discuss another approximation algorithm for the minimum vertex cover problem that it is
“independent” of LP, and then we discuss a local-ratio and a primal-dual approach to this problem.

We call this approach the α-vector approach. For every vertex i ∈ V , we define δ(i) as the set of edges
incident to vertex i . Let α = (α1, α2, . . . , αm) be any vector of m nonnegative real values, where m = |E |
is the number of edges in the graph. For all k multiply the kth edge inequality by αk ,

αk xi + αk x j ≥ αk ∀ek = {i, j } ∈ E (2.4)

The total sum of these inequalities can be expressed as
∑

i∈V

∑

ek∈δ(i)

αk xi ≥
∑

ek∈E

αk (2.5)

Define βi = ∑
ek∈δ(i) αk for every vertex i ∈ V . In other words, βi be the sum of the α values of all the

edges incident to vertex i . Substituting in the above inequality we know that
∑

i∈V

βi xi ≥
∑

ek∈E

αk (2.6)

Suppose that the α vector is such that wi ≥ βi for all i . Then it follows that
∑

i∈V

wi xi ≥
∑

i∈V

βi xi ≥
∑

ek∈E

αk (2.7)

In other words any vector α such that the resulting vector β computed from it satisfies wi ≥ βi provides
us with the lower bound

∑
ek∈E αk for the objective function value of every vector X that represents a

vertex cover. In other words, if we assign a positive weight to each edge in such a way that the sum of the
weight of the edges incident to each vertex i is at most wi , then the sum of the weight of the edges is a
lower bound for an optimum solution.
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This is a powerful lower bound. To get maximum strength we need to find a vector α such that
∑

ek∈E αk

is maximum. But finding this vector is as hard as solving the LP problem described earlier. What if we find a
maximal vector α, i.e., a vector that cannot possibly be increased in any of its components? This is a simple
task. It is just a matter of starting with an α vector with all entries being zero and then increasing one of its
components until it is no longer possible to do so. We keep on doing this until there are no edges whose
α value can be increased. In this maximal solution, we know that for each edge in the graph at least one
of its endpoints has the property that βi = wi , as otherwise the maximality of α is contradicted. Define
the vector X̂ from the α vector as follows: xi = 1 if βi = wi , and xi = 0, otherwise. Clearly, X̂ represents
a vertex cover because for every edge in the graph we know that at least one of its vertices has βi = wi .
What is the weight of the vertex cover represented by X̂? We know that

∑
wi x̂i = ∑

βi x̂ i ≤ 2
∑

αk

because each αk can contribute its value to at most two βi s. Therefore, we have a simple 2-approximation
algorithm for the weighted vertex cover problem. Furthermore, the procedure to construct the vertex cover
takes linear time with respect to the number of vertices and edges in the graph.

This algorithm was initially developed by Bar-Yehuda and Even [7] using the LP relaxation and its
dual. This approach is called the primal-dual approach. It will be discussed later in this section. The above
algorithm can be proven to be a 2-approximation algorithm without using the ILP formulation. That is,
the same result can be established by just using simple combinatorial arguments [8].

Another related approach, called local ratio, was developed by Bar-Yehuda and Even [9]. Initially, each
vertex is assigned a cost which is simply its weight and it is referred to as the remaining cost. At each step the
algorithm makes a “down payment” on a pair of vertices. This has the effect of decreasing the remaining
cost of each of the two vertices. Label the edges in the graph {e1, e2, . . . , em}. The algorithm considers one
edge at a time using this ordering. When the kth edge ek = {i, j } is considered, define γk as the minimum
of the remaining cost of vertex i and vertex j . The edge makes a down payment of γk to each of its two
endpoints and each of the two vertices has its remaining cost decreased by γk . The procedure stops when
we have considered all the edges. All the vertices whose current cost is zero have been paid for completely
and they are yours to keep. The remaining ones have not been paid for and there are “no refunds” (not
even if you talk to the store manager). The vertices that have been paid for completely form a vertex cover.
The weight of all the vertices in the cover generated by the procedure is at most twice

∑
ek∈E γk , which is

simply the sum of the down payments made. What is the weight of an optimal vertex cover? The claim is
it is equal to

∑
ek∈E γk . The reason is simple. Consider the first step when we introduce γ1 for edge e1. Let

I0 be the initial problem instance and I1 be the resulting instance after deleting edge e1 and reducing the
cost of the two endpoints of edge e1 by γ1. One can prove that f ∗(I0) = f ∗(I1) + γ1, and inductively that
f ∗(I0) = ∑

ek∈E γk [10]. The algorithm is a 2-approximation algorithm for the weighted vertex cover.
The approach is called local ratio because at each step one adds 2γk to the value of the solution generated
and one accounts for γk value of an optimal solution. This local-ratio approach has been successfully
applied to quite a few problems. The best feature of this approach is that it is very simple to understand
and does not require any LP background.

The primal-dual approach is similar to the previous ones, but it uses the foundations of LP theory. The
LP relaxation problem is

minimize
∑

i∈V
wi xi (2.8)

subject to xi + x j ≥ 1 ∀ek = {i, j } ∈ E (2.9)

xi ≥ 0 ∀i ∈ V. (2.10)

The LP problem is called the primal problem. The corresponding dual problem is

maximize
∑

ek∈E
yk (2.11)

subject to
∑

ek∈δ(i)
yk ≤ wi ∀i ∈ V (2.12)

yk ≥ 0 ∀ek ∈ E (2.13)
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As you can see the Y vector is simply the α vector defined earlier, and the dual is to find a Y vector with
maximum

∑
i∈V yi . Linear programming theory [11,12] states that any feasible solution X to the primal

problem and any feasible solution Y to the dual problem are such that
∑

ek∈E

yk ≤
∑

i∈V

wi xi

This is called weak duality. Strong duality states that
∑

ek∈E

y∗
i =

∑

i∈V

wi x∗
i

where X∗ is an optimal solution to the primal problem and Y ∗ is an optimal solution to the dual problem.
Note that the dual variables are multiplied by weights which are the right-hand side of the constraints in
the primal problem. In this case all of them are one.

The primal-dual approach is based on the weak duality property. The idea is to first construct a feasible
solution to the dual problem. That solution will give us a lower bound for the value of an optimal vertex
cover, in this case. Then we use this solution to construct a solution to the primal problem. The idea is
that the difference of the objective function value between the primal and dual solutions we constructed
is “small.” In this case we construct a maximal vector Y (as we did with the α vector before). Then we
note that since the Y vector is maximal, then for at least one of the endpoints (say i) of every edge must
satisfy Inequality 2.12 tight, i.e.,

∑
ek∈δ(i) yk = wi . Now define vector X with xi = 1 if inequality (2.12) is

tight in the dual solution. Clearly, X represents a feasible solution to the primal problem and its objective
function value is at most 2

∑
k yk . It then follows by weak duality that an optimal weighted vertex cover

has value at least
∑

k yk and we have a 2-approximation algorithm for the weighted vertex cover. It is
simple to see that the algorithm takes linear time (with respect to the number of vertices and edges in the
graph) to solve the problem.

There are other ways to construct a solution to the dual problem. In Chapters 4 and 13 another method
is discussed for finding a solution to the dual problem. Note the difference in the time required to construct
the solution. Chapter 13 discusses a “distributed” version of this algorithm. This algorithm makes decisions
by using only “local” information. Chapters 37, 39, 40, and 71 discuss several approximation algorithms
based on variations of the primal dual approach. Some of these methods are not exactly primal dual, but
may be viewed this way.

Linear programming has also been used as a tool to compute the approximation ratio of some algorithms.
This type of research may eventually be called the automatic analysis of approximation algorithms. Chapter 3
discusses an early approach to compute the approximation ratio, and Chapter 39 discusses a more recent
one. In the former case, a set of LP needed to be solved. Once this was computed it gave the necessary
insight on how to prove it analytically. In the latter case, one just formulates the problem and finds bounds
for the value of an optimal solution to the LP problem.

2.5 Inapproximability

Sahni and Gonzalez [13] established that constant-ratio polynomial time approximation algorithms exist
for some problems only if P = NP. In other words, finding a suboptimal solution to some problems
is as hard as finding an optimal solution. Any polynomial-time algorithm that generates k-approximate
solution can be used to find an optimal solution to the problem in polynomial-time. One of these problems
is the “classical” version of the TSP defined in Chapter 1, not the restricted one defined over metric graphs.
To prove this result we show that an NP-complete problem, called the Hamiltonian Cycle (HC) problem,
can be solved in polynomial time if there is a polynomial-time algorithm for the TSP that generates a
k-approximate solution, for any fixed constant k. The HC problem is given an undirected graph, G =
(V, E ), determine whether on not the graph has a HC. A HC for an undirected graph G is a path that
starts at vertex 1, visits each vertex exactly once, and ends at vertex 1.
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To prove this result a polynomial transformation (Chapter 1 and [3]) is used. Let G = (V, E ) be any
instance of the HC problem with n = |V |. Now construct an instance G ′ = (V ′, E ′, W′) of the TSP as
follows. The graph G ′ has n vertices and it is complete (all the edges are present). The edge {i, j } in E ′
has weight 1 if the edge {i, j } is in E , and weight Z otherwise. The value of Z is (k − 1)n + 2 > 1. It
will be clear later on why it was defined this way. If the graph G has a HC, then we know that the graph
G ′ has a tour with weight n. However, if G does not have a HC, then all tours for the graph G ′ have
weight greater than or equal to n − 1 + Z . A k-approximate solution (tour) when f ∗(G ′) = n must have
weight at most f̂ (G ′) ≤ k f ∗(G ′) = kn. When G does not have a HC, the best possible tour that can be
found by the approximation algorithm is one with weight at least n − 1 + Z = kn + 1. Therefore, if the
approximation algorithm returns a tour with weight at most kn, then G has a HC, otherwise (the tour
returned has weight > kn) G does not have a HC. Since the algorithm takes polynomial-time with respect
to the number of vertices and edges in the graph, it then follows that the algorithm solves in polynomial
time the HC problem. So we say that the TSP is inapproximable with respect to any constant ratio. It is
inapproximable in the sense that a polynomial-time constant-ratio approximation algorithm implies the
solution to a computational complexity question. In this case it is the P = NP question.

In the last 15 years there have been new inapproximability results. These results have been for constant,
ln n, and nε approximation ratios. The techniques to establish some of these results are quite complex,
but an important component continues to be reducibility. Chapter 17 discusses all of this work in detail.

2.6 Traditional Applications

We have used the label “traditional applications” to refer to the more established combinatorial optimiza-
tion problems. Although some of the problems falling into the other categories also fall into this category
and vice versa. The problems studied in this part of the handbook fall into the following categories: bin
packing, packing, facility dispersion and location, traveling salesperson, Steiner tree, scheduling, planning,
generalized assignment, and satisfiability. Let us briefly discuss these categories.

One of the fundamental problems in approximations is the bin packing problem. Chapter 32 discusses
online and offline algorithms for one-dimensional bin packing. Chapters 33 and 34 discuss variants of the
bin packing problem. This include variations that fall into the following type of problems: the number of
items packed is maximized while keeping the number of bins fixed; there is a bound on the number of
items that can be packed in each bin; dynamic bin packing, where each item has an arrival and departure
time; the item sizes are not known, but the ordering of the weights is known; items may be fragmented
while packing them into fixed capacity bins, but certain items cannot be assigned to the same bin; bin
stretching; variable sized bin packing problem; and the bin covering problem.

Chapter 35 discusses several ways to generalize the bin packing problem to more dimensions. Two-
and three-dimensional strip packing, bin packing in dimensions two and higher, vector packing, and
several other variations are discussed. Primal-dual approximation algorithms for packing and stabbing (or
covering) problems are covered in Chapter 37. Cutting and packing problems with important applications
in the wood, glass, steel, and leather industries as well as in very large-scale integration (VLSI) design,
newspaper paging, and container and truck loading are discussed in Chapter 36. For several decades,
cutting and packing has attracted the attention of researchers in various areas including operations research,
computer science, manufacturing, etc.

Facility dispersion problems are covered in Chapter 38. Dispersion problems arise in a number of
applications, such as locating obnoxious facilities, choosing sites for business franchises, and selecting
dissimilar solutions in multiobjective optimization. The facility location problem that model the placement
of “desirable” facilities such as warehouses, hospitals, and fire stations are discussed in Chapter 39. These
algorithms are called “dual fitting and factor revealing.”

Very interesting approximation algorithms for the prize collecting TSP is studied in Chapter 40. In this
problem a salesperson has to collect a certain amount of prizes (the quota) by visiting cities. A known
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prize can be collected in every city. Chapter 41 discusses branch-and-bound algorithms for the TSP. These
algorithms have been implemented to run in a multicomputer environment. A general software tool for
running branch and bound algorithms in a distributed environment is discussed. This framework may
be used for almost any divide-and-conquer computation. With minor adjustments, this tool can take any
algorithm defined as a computation over directed acyclic graph, where the nodes refer to computations
and the edges specify a precedence relation between computations, and run in a distributed environment.

Approximation algorithms for the Steiner tree problem are discussed in Chapter 42. This problem has
applications in several research areas. One of these areas is VLSI physical design. In Chapter 43, practical
approximations for a restricted Steiner tree problem are discussed.

Meeting deadline constraints is of great importance in real-time systems. In situations when this is not
possible, it is often more desirable to execute some parts of every task, than to give up completely the
execution of some tasks. This model allows for the trade-off of the quality of computations in favor of
meeting the deadline constraints. Every task is logically decomposed into two subtasks, mandatory and
optional. This type of scheduling problems fall under the imprecise computation model. These problems are
discussed in Chapter 44. Chapter 45 discussed approximation algorithms for the malleable task scheduling
problem. In this model, the processing time of a task depends on the number of processors allotted to
it. A generalization of both the bin packing and TSP is the vehicle scheduling problem. Approximation
algorithms for this problem are discussed in Chapter 46.

Automated planning consists of finding a sequence of actions that transforms an initial state into one
of the goal states. Planning is widely applicable, and has been used in such diverse application domains
as spacecraft control, planetary rover operations, automated nursing aides, image processing, computer
security, and automated manufacturing. Chapter 47 discusses approximation algorithms and heuristics
for problems falling into this category.

Chapter 48 presents heuristics and metaheuristics for the generalized assignment problem. This problem
is a natural generalization of combinatorial optimization problems including bipartite matching, knapsack
and bin packing problems; and has many important applications in flexible manufacturing systems, facility
location, and vehicle routing problems.

Chapter 49 examines probabilistic greedy heuristics for maximization and minimization versions of the
satisfiability problem.

2.7 Computational Geometry and Graph Applications

The problems falling into this category have applications in several fields of study, but can be viewed as
computational geometry and graph problems. The problems studied in this part of the handbook fall
into the following categories: 2D and 3D triangulations, connectivity problems, design and evaluation
of geometric networks, pair decompositions, minimum edge length partitions, digital geometry, disjoint
path problems, graph partitioning, graph coloring, finding subgraphs or trees with certain properties, etc.

Triangulation is not only an interesting theoretical problem in computational geometry, it also has many
important applications, such as finite element methods for computer-aided design (CAD) and physical sim-
ulations. Chapter 50 discusses approximation algorithms for triangulations in two and three dimensions.

Chapter 51 examines approximation schemes for various geometric minimum-cost k-connectivity
problems and for geometric survivability problems, giving a detailed tutorial of the novel techniques
developed for these algorithms.

Geometric networks arise in many applications. Road networks, railway networks, telecommunication,
pattern matching, bioinformatics—any collection of objects in space that have some connections between
them can be modeled as a geometric network. Chapter 52 considers the problem of designing a “good”
network and the dual problem, i.e., evaluating how “good” a given network is. Chapter 53 gives an overview
of several proximity problems that can be solved efficiently using the well-separated pair decomposition
(WSPD). A WSPD may be regarded as a “small” set of edges that approximates the dense complete
Euclidean graph.
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Approximation algorithms for minimum edge length partitions of rectangles with interior points are
discussed in Chapter 54. This problem has applications in the area of CAD of integrated circuits and
systems. Chapter 55 considers partitions of finite d-dimensional integer grids by lines in two-dimensional
space or by hyperplanes and hypersurfaces in an arbitrary dimension. Some of these problems arise in
the areas of digital image processing (analysis) and neural networks. Chapter 56 discusses the problem of
finding a planar subgraph of maximum weight in a given graph. Problems of this form have applications
in circuit layout, facility layout, and graph drawing.

Finding disjoint paths in graphs is a problem that has attracted considerable attention from at least
three perspectives: graph theory, VLSI design, and network routing/flow. The corresponding literature
is extensive. Chapter 57 explores offline approximation algorithms for problems on general graphs as
influenced from the network flow perspective.

Chapter 58 surveys approximation algorithms and hardness results for different versions of the gen-
eralized Steiner network problem in which we seek to find a low-cost subgraph that satisfies prescribed
connectivity requirements. These problems include the following well-known problems: min-cost k-flow,
min-cost spanning tree, traveling salesman, directed/undirected Steiner tree, Steiner forest, k-edge/node-
connected spanning subgraph, and others.

Besides numerous network design applications, spanning trees also play an important role in several
newly established research areas, such as biological sequence alignments and evolutionary tree construc-
tion. Chapter 59 explores the problem of designing approximation algorithms for spanning-tree problems
under different objective functions. It focuses on approximation algorithms for constructing efficient
communication spanning trees.

Graph partitioning problem arises in a wide range of applications. Due to the complexity of the problem,
heuristics have to be applied to partition large graphs in a reasonable amount of time. Chapter 60 discusses
different approaches to the graph partitioning problem. The k-way partitioning of a hypergraph problem
seeks to minimize a given cost function of such an assignment. A standard cost function is net cut, which
is the number of hyperedges that span more than one partition, or, more generally, the sum of weight of
such edges. Constraints are typically imposed on the solution, and make the problem difficult. Several
heuristics for this problem are discussed in Chapter 61.

In many applications such as design of transportation networks, one often needs to identify a set of
regions/sections whose damage will cause the greatest increase in transportation cost within the network.
Once identified, extra protection can be deployed to prevent them from being damaged. A version of
this problem is finding the most vital edges whose removal will cause the greatest damage to a particular
property of the graph. The problems are traditionally referred to as prior analysis problems in sensitivity
analysis and it is discussed in Chapter 62.

Stochastic local search algorithms for the classical graph coloring problem are discussed in Chapter 63.
This problem arises in many real-life applications like register allocation, air traffic flow management,
frequency assignment, light wavelengths assignment in optical networks, or timetabling. Chapter 64 dis-
cusses ant colony optimization (ACO) for solving the maximum disjoint paths problems. This problem
has many applications including the establishment of routes for connection requests between physically
separated network endpoints.

2.8 Large-Scale and Emerging Applications

The problems arising in the areas of wireless and sensor networks, multicasting, multimedia, bioinformatics
VLSI CAD, game theory, data analysis, digital reputation, and color quantization may be referred to as
problems in “emerging” applications and normally involve large-scale problems instances. Some of these
problems also fall in the other application areas.

Chapter 65 describes existing multicast routing protocols for ad hoc and sensor networks, and analyze
the issue of computing minimum cost multicast trees. The multicast routing problem, and approximation
algorithms for mobile ad hoc networks (MANETs) and wireless sensor networks (WSNs) are presented.

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C002 March 20, 2007 11:48

2-16 Handbook of Approximation Algorithms and Metaheuristics

Since flat networks do not scale, it is important to overlay a virtual infrastructure on a physical network.
The design of the virtual infrastructure should be general enough so that it can be leveraged by a multitude
of different protocols. Chapter 66 proposes a novel clustering scheme based on a number of properties
of diameter-2 graphs. Extensive simulation results have shown the effectiveness of the clustering scheme
when compared to other schemes proposed in the literature.

Ad hoc networks are formed by collections of nodes which communicate with each other through radio
propagation. Topology control problems in such networks deal with the assignment of power values to the
nodes so that the power assignment leads to a graph topology satisfying some specified properties. The
problem is to minimize a specified function of the powers assigned to the nodes. Chapter 67 discusses some
known approximation algorithms for this type of problems. The focus is on approximation algorithms
with proven performance guarantees.

An important requirement of wireless ad hoc networks is that they should be self-organizing. Energy
conservation and network performance are probably the most critical issues in wireless ad hoc networks,
because wireless devices are usually powered by batteries only and have limited computing capability and
memory. Many proposed methods apply computational geometry technique (specifically, geometrical
spanner) to achieve power efficiency. In Chapter 68, approximation algorithms of power spanner for ad
hoc networks are reviewed.

As networks continue to grow explosively both in size and internal complexity, the ever-increasing
tremendous traffic load and applications drive researchers to develop techniques for analyzing network
performance and managing network resources. To accomplish this, one needs to know the current internal
structure of the network. Discovery of internal information such as topology and localized lossy links plays
an important role in resource management, loss recovery, and congestion control. Chapter 69 proposes a
way to identify this via message multicasting.

Due to the recently rapid development of multimedia applications, multicast has become the critical
technique in many network applications. In multicasting routing, the main objective is to send data from
one or more sources to multiple destinations to minimize the usage of resources such as bandwidth,
communication time, and connection costs. Chapter 70 discusses contemporary research concerning
multicast congestion problems in different type of networks.

Recent progress in audio, video, and data storage technologies has given rise to a host of high-bandwidth
real-time applications such as video conferencing. These applications require Quality of Service (QoS)
guarantees from the underlying networks. Thus, multicast routing algorithms, which manage network
resources efficiently and satisfy the QoS requirements, have come under increased scrutiny in recent years.
Chapter 71 considers the problem of finding an optimal multicast tree with certain special characteristics.
This problem is a generalization of the classical Steiner tree problem.

Scalability is especially critical for peer-to-peer systems. The basic idea of peer-to-peer systems is to
have an open self-organizing system of peers that does not rely on any central server and where peers can
join and leave, at will. This has the benefit that individuals can cooperate without fees or an investment
in additional high-performance hardware. Also, peer-to-peer systems can make use of the tremendous
amount of resources (such as computation and storage) that otherwise sit idle on individual computers
when they are not in use by their owners. Chapter 72 seeks ways of implementing join, leave, and route
operations so that for any sequence of join, leave, and route requests can be executed quickly; the degree,
diameter, and stretch factor of the resulting network are as small as possible; and the expansion of the
resulting network is as large as possible. Good approximate solutions to this multiobjective optimization
problem are discussed in Chapter 72.

Scheduling problems modeling the broadcasting of data items over wireless channels are discussed in
Chapter 73. The chapter covers exact and heuristic solutions for variants of this problem.

Microarrays have been evolving rapidly, and are among the most novel and revolutionary new biotech-
nologies. They allow us to monitor the expression of thousands of genes at once. With a single experiment
billions of individual hypotheses can be tested. Chapter 74 presents three illustrative examples in the
analysis of microarray data sets.
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Chapter 75 considers two problems from computational biology, namely, primer selection and planted
motif search. The closest string and the closest substring problems are closely related to the planted motif
search problem. Representative approximation algorithms for these problems are discussed.

There are interesting algorithmic issues that arise when length constraints are taken into account in
the formulation of a variety of problems on string similarity, particularly in the problems related to
local alignment. Chapter 76 discusses these types of problems which have their roots and most striking
applications in computational biology. Chapter 77 discusses approximation algorithms for the selection of
robust tag single nucleotide polymorphisms (SNPs). This is a problem in human genomics that arises in
the current experimental environment. Chapter 78 considers a sphere packing problem. Recent interest on
this problem was motivated by medical applications in radiosurgery. Radiosurgery is a minimally invasive
surgical procedure that uses radiation to destroy tumors inside the human body.

VLSI has produced some of the largest combinatorial optimization problems ever considered. Placement
is one of the most difficult of these problems. Placement problems with over 10 million variables and
constraints are not unusual, and problem sizes continue to grow with Moore’s law. Realistic objectives
and constraints for placement incorporate complex models of signal timing, power consumption, wiring
routability, manufacturability, noise, temperature, etc. Chapter 79 considers VLSI placement algorithms.

Due to delay scaling effects in deep-submicron technologies, interconnect planning and synthesis are
becoming critical to meeting VLSI chip performance targets with reduced design turnaround time. In
particular, the global routing phase of the design cycle is receiving renewed interest, as it must efficiently
handle increasingly more complex constraints for increasingly larger designs. Chapter 80 presents an
integrated approach for congestion and timing-driven global routing, buffer insertion, pin assignment,
and buffer/wire sizing. This is a multiobjective optimization problem.

Chapters 81–83 discuss game theory problems related to the Internet and scheduling. They deal with ways
of achieving equilibrium. Issues related to algorithmic game theory, approximate economic equilibrium
and algorithm mechanism design are discussed.

Over the last decade, the size of data seen by a computational problem has grown immensely. There
appears to be more web pages than human beings, and web pages have been successfully indexed. Routers
generate huge traffic logs, in the order of terabytes, in a short time. The same explosion of data is felt
in observational sciences because our capabilities of measurement have grown significantly. Chapter 84
considers a processing mode where input items are not explicitly stored and the algorithm just passes over
the data once.

A virtual community can be defined as a group of people sharing a common interest or goal who
interact over a virtual medium, most commonly the Internet. Virtual communities are characterized by
an absence of face-to-face interaction between participants which makes the task of measuring the trust-
worthiness of other participants harder than in nonvirtual communities. This is because of the anonymity
that the Internet provides, coupled with the loss of audiovisual cues that help in the establishment of trust.
As a result, digital reputation management systems are an invaluable tool for measuring trust in virtual
communities. Chapter 85 discusses various systems which can be used to generate a good solution to this
problem.

Chapter 86 considers the problem of approximating “colors.” Several algorithmic methodologies are
presented and evaluated experimentally. These algorithms include dimension weighted clustering approx-
imation algorithms.
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3.1 Introduction

Restriction is one of the most basic techniques to design approximation algorithms. The idea is to generate
a solution to a given problem P by providing an optimal or suboptimal solution to a subproblem of P .
By a subproblem of a problem P we mean restricting the solution space for P by disallowing a subset of
the feasible solutions. The most common approach is to solve one subproblem, but there are algorithms
that first solve several subproblems and the algorithm outputs the best of these solutions. An optimal or
suboptimal solution to the subproblem(s) is generated by any of the standard methodologies.

This approach is in a sense the opposite of “relaxing a problem,” i.e., augmenting the feasible
solution space by including previously infeasible solutions. In this case one needs to solve a superprob-
lem of P . An approximation algorithm for P solves the superproblem (optimally or suboptimally) and
then transforms such solution to one that is feasible for P . Approximation algorithms based on the
linear programming methodology fall under this category. There are many different conversion tech-
niques including rounding, randomized rounding, etc. Chapters 4, 6, 7, and 12 discuss this approach
in detail. Approximation algorithms based on both restriction and relaxation exist. These algorithms
first restrict the solution space and then relaxes it. The resulting solution space is different from the
original one.

In this chapter we discuss several approximation algorithms based on restriction. When designing
algorithms of this type the question that arises is which of the many subproblems should be selected to
provide an approximation for a given problem? One would like to select a subproblem that “works best.”
But what do we mean by a subproblem that works best? The one that works best could be a subproblem,
which results in an approximation algorithm with smallest possible approximation ratio, or it could be a
subproblem whose solution can be computed the fastest, or one may use some other criteria, for example,
any of the ones discussed in Chapter 1. Perhaps “works best” should be with respect to a combination
of different criteria. But even when using the approximation ratio as the only evaluation criteria for an
algorithm, it is not at all clear how to select a subproblem that can be solved quickly and from which a
best possible solution could be generated. These are the two most important properties when choosing a
subproblem. By studying several algorithms based on restriction one learns why it works for these cases
and then it becomes easier to find ways to approximate other problems.

3-1
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The problems that we will discuss in this chapter to illustrate “restriction” are Steiner trees, the traveling
salesperson, covering points by squares, rectangular partitions, and routing multiterminal nets. The Steiner
tree and traveling salesperson problems (TSPs) are classical problems in combinatorial optimization. The
algorithms that we discuss for the TSPs are among the best known approximation algorithms for any
problem.

A closely related approach to restriction is transformation-restriction. The idea is to transform the prob-
lem instance to a restricted instance of the same problem. The difference is that the restricted problem
instance is not a subproblem of original problem instance as in the case of restriction, but it is a “simpler”
problem of the same type. In Section 3.5 we present algorithms based on this approach for routing multi-
terminal nets and embedding hyperedges in a cycle. The fully polynomial-time approximation scheme for
the knapsack problem, based on rounding discussed in Chapter 10, is based on transformation-restriction.
In Section 3.8 we summarize the chapter, and briefly discuss other algorithms based on restriction for path
problems arising in computational geometry.

3.2 Steiner Trees

The Steiner tree problem is a classical problem in combinatorial optimization. Let us define the Steiner
tree problem over an edge-weighted complete metric graph G = (V, E , w), where V is the set of n
vertices, E the set of m = n2−n

2 edges, and w : E → R+ the weight function for the edges. Since the
graph is metric the set of weights satisfies the triangle inequality, i.e., for every pair of vertices i, j , w(i, j )
is less than or equal to the sum of the weight of the edges in any path from vertex i to vertex j . The
Steiner tree problem consists of a metric graph G = (V, E , W) and a subset of vertices T ⊆ V . The
problem is to find a tree that includes all the vertices in T plus some other vertices in the graph such that
the sum of the weight of the edges in the tree is least possible. The Steiner tree problem in an NP-hard
problem.

When T = V the problem is called the minimum-weight (cost) spanning tree problem. By the 1960s
there were several well-known polynomial-time algorithms to construct a minimum-weight spanning
tree for edge-weighted graphs [1]. These simple greedy algorithms have low-order polynomial-time
complexity bounds.

Given an instance of the metric graph Steiner tree problem (G = (V, E , W), T) one may construct
a minimum-weight spanning tree for the subgraph G ′ = (T, E ′, W ′), where E ′ and W ′ include only
the edges joining vertices in T . Clearly, this minimum-weight spanning tree is a restricted version of the
Steiner tree problem and it seems a natural way to approximate the Steiner tree problem. This approach was
analyzed in 1968 by E. F. Moore (see Ref. [2]) for the Steiner tree problem defined in metric space. The metric
graph problem, we just defined, includes only a subset of all the possible points in metric space. E. F. Moore
presented an elegant proof of the fact that in metric space (and also for metric graphs) L M < L T ≤ 2L S ,
where L M , L T , and L S are the weight of a minimum-weight spanning tree, a minimum-weight tour
(solution) for the TSP and minimum-weight Steiner tree for any set of points P , respectively. We will define
the TSP in the next section. Since every spanning tree is a Steiner tree, the above bounds show that when
using a minimum-weight spanning tree to approximate the Steiner tree results in a solution whose weight is
at most twice the weight of an optimal Steiner tree. In other words, any algorithm that generates a minimum-
weight spanning tree is a 2-approximation algorithm for the Steiner tree problem. Furthermore, this
approximation algorithm takes the same time as an algorithm that constructs a minimum-weight spanning
trees for edge-weighted graphs [1], since such an algorithm can be used to construct an optimal spanning
tree for a set of points in metric space. The above bound is established by defining a transformation from any
minimum-weight Steiner tree into a TSP tour in such a way that L T ≤ 2L S [2]. Then by observing that the
deletion of an edge in an optimum tour to the TSP results in a spanning tree, one has L M < L T . The proof is
identical to the one given in the next section where we show this result, but starting from a minimum-weight
spanning tree.
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3.3 Traveling Salesperson Tours

The TSP has been studied for several decades [3]. There are many variations of this problem. One of the
simplest versions of the problem consists of an edge-weighted complete graph and the problem is to find a
minimum-weight tour that starts and ends at vertex one and visits every vertex exactly once. The weight of
a tour is the sum of the weight of the edges in the tour. Sahni and Gonzalez [4] (see Chapter 1) show that
the constant-ratio approximation problem is NP-hard, i.e., if for any constant c there is a polynomial-time
algorithm with approximation ratio c then P =NP. In this section we discuss approximation algorithms for
the TSP defined over complete metric graphs. These algorithms are among the best known approximation
algorithms for any problem. The “double-minimum-weight spanning tree” (DMWST) approximation
algorithm that we discuss in this section is widely known, and it is based on the constructive proof for
the approximation algorithm discussed in the previous section developed for the Steiner tree problem by
E. F. Moore. Additional constant-ratio approximation algorithms for this version of the TSP were developed
by Rosenkrantz et al. [5]. These algorithms as well the DMWST algorithm have an approximation ratio
of 2 − 1/n and take O(n2) time. Since the graph is complete, the time complexity is linear with respect
to the number of edges in the graph. After presenting this result we discuss the improved approximation
algorithm by Christofides [6]. This algorithm has a smaller approximation ratio, but its time complexity
grows faster than that of the previous algorithms.

In the literature you will find that the TSP is also defined with tours visiting each vertex at least once. We
now show that both versions of the TSP defined over metric graphs are equivalent problems. Consider any
optimal tour R where some vertices are visited more than once. Let vertex i be a vertex visited more than
once. Let vertices j and k be visited just before and just after vertex i . Delete from the tour the edges { j, i}
and {i, k} and add edge { j, k}. Because the graph is metric the tour weight will stay the same or decrease. If
it decreases, then it contradicts the optimality of R. So the weight of the tour must be the same as before.
After applying this transformation until it is no longer possible we obtain a tour R′ in which every vertex
is visited exactly once and the weight of R′ is identical to that of R. Since every tour that visits every vertex
exactly once also visits every vertex at least once, it follows that both versions of the problem for metric
graphs have the same optimal tour weight, i.e., both problems are equivalent. Since for the TSP defined
over metric graphs both versions of the problem are equivalent, for convenience we use the definition of
tours to visit each vertex at least once.

Now suppose that you have an optimal tour S for an instance I of the TSP. Applying the above transfor-
mation we obtain an optimal tour S ′ in which every vertex is visited exactly once. Deleting an edge from
the tour results in a spanning tree. Therefore, the weight of a minimum-weight spanning tree is a lower
bound for the weight of an optimal tour. The questions are: How good of a lower bound is it? How can
one construct a tour from a spanning tree?

How can we find a tour from a spanning tree T ? Just draw the spanning tree in the plane with a vertex
as its root and construct a tour by visiting each edge in the tree T twice as illustrated in Figure 3.1. A more

1

FIGURE 3.1 Spanning tree (solid lines) and tour constructed (broken lines).
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formal approach is to construct an Euler circuit in the multigraph (graph with multiple edges between
vertices) consisting of two copies of the edges in T . An Euler tour (or circuit) is a path that starts and
ends at the same vertex and visits every edge in the multigraph once. An Euler tour always exists for the
multigraphs we have defined because these multigraphs are connected and all their nodes are of even
degree (the number of edges incident to each vertex is even). These multigraphs are called Eulerian, and
an Euler tour can be constructed in linear time with respect to the number of nodes and edges in the
multigraph [7].

The approximation algorithm, which we refer to as DMWST, constructs a minimum weight spanning
tree, makes a copy of all the edges in the tree, and then generates a tour from this tree with weight equal to
twice the weight of a minimum weight spanning tree. We established before that an optimal tour has weight
greater than the weight of a minimum weight spanning tree, it then follows that the weight of the tour that
the DMWST algorithm generates is at most twice the weight of an optimal tour for G . Therefore, algorithm
DMWST generates 2-approximate solution. Actually the ratio is 2−1/n, which can be established when the
edge deleted for an optimal tour to obtain a spanning tree is one with largest weight. The time complexity
of the algorithm is bounded by the time complexity for generating a minimum weight spanning tree, since
an Euler tour can be constructed in linear time with respect to the number of edges in the spanning tree.
We formalize these results in the following theorem.

Theorem 3.1

For the metric traveling salesperson problem, algorithm DMWST generates a tour with weight at most (2−1/n)
times the weight of an optimal tour. The time complexity of the algorithm is O(n2) time, which is linear time
with respect to the number of edges in the graph.

Proof
The proof for the approximation ratio follows from the above discussion. As Fredman and Tarjan [8] point
out, implementing Prim’s minimum weight spanning tree algorithm by using Fibonacci heaps results in
a minimum weight spanning tree algorithm that takes O(n log n + m) time. Since the graph is complete,
the time complexity is O(n2), which is linear with respect to the number of edges in the graph.

So what is the restriction in the above algorithms? We are actually restricting tours for the TSP to traverse
the least possible number of different edges, though a tour may traverse some of these edges more than
once. The minimum number of different edges in G is n − 1 and they form a spanning tree. It is therefore
advantageous to select the edges in a spanning tree of least possible total weight. This justifies the use of a
minimum-weight spanning tree. This is another way to think about the design of the DMWST algorithm.

Christofides [6] modified the above approach so that the tours generated have total weight within
1.5 times the weight of an optimal tour. However, the currently fastest implementation of this procedure
takes O(n3) time. His modification is very simple. First observe that there are many different ways to
transform a spanning tree into an Eulerian multigraph. All possible augmentations must include at least
one edge incident to every odd degree vertex in the spanning tree. Let N be the set of odd degree vertices
in the spanning tree. Christofides, idea is to transform the spanning tree into an Eulerian multigraph by
adding the least number of edges with the least possible total weight. He showed that such set of edges
is a minimum weight complete matching on the graph G N induced by the set of vertices N in G . A
matching is a subset of the edges in a multigraph, no two of which are incident upon the same vertex.
A matching is complete if every node has an edge in the matching incident to it, and the weight of a
matching is the sum of the weights of the edges in it. A minimum weight complete matching can be
constructed in polynomial time. The edges in the complete matching plus the ones in the spanning tree
form an Eulerian multigraph, and Christofides’ algorithm generates as its solution an Euler tour of this
multigraph.

To establish the 1.5 approximation bound we observe that an optimal tour can be transformed without
increasing its total weight into another tour that visits only the vertices in N because the graph is metric.
One can partition the edges in this restricted tour into two sets such that each set is a complete matching
for the restricted graph. One set contains the even-numbered edges in the tour and the other set the
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odd-numbered edges. Since a minimum weight complete matching for G N has total weight smaller than
the above two matchings, it then follows that the minimum weight complete matching has total weight at
most half of the weight of an optimal tour. Therefore, the edges in the tour constructed by Christofides’
algorithm have weight at most 1.5 times the weight of an optimal tour. The time complexity for Christofides’
algorithm is O(n3) and it is dominated by the time required to construct a minimum weight complete
matching [9,10]. We formalize this result in the following theorem whose proof follows from the above
discussion.

Theorem 3.2 [6]

For the metric traveling salesperson problem, Christofides’ algorithm generates a tour with weight at most
1.5 times the weight of an optimal tour. The time complexity of the algorithm is O(n3).

This approach is similar to the one employed by Edmonds and Johnson [11] for the Chinese Postman
Problem. Given an edge-weighted connected undirected graph, the Chinese Postman problem is to con-
struct a minimum-weight cycle, possibly with repeated edges, which contains every edge in the graph. The
currently best algorithm to solve this problem takes O(n3) time, and it uses shortest paths and weighted
matching algorithms. There are asymptotically faster algorithms when the graphs are sparse and weight
of the edges are integers.

3.4 Covering Points by Squares

Given a set of n points, P = {(x1, y1), (x2, y2), . . . , (xn, yn)}, in two-dimensional space and an integer
D, the C S2 problem is to find the least number of D × D squares to cover P . The C S2 problem as well
as the problem of covering by disks have been shown to be NP-hard [12]. Approximation algorithm for
these problems as well as their generalizations to multidimensional space have been developed [13,14]. All
of these problems find applications in several research areas [12,15,16]. The most popular application is
to find the least number of emergency facilities such that every potential patient lives at a distance at most
D from at most one facility. This application corresponds to covering by the least number of disks with
radius D.

We discuss in this section a simple approximation algorithm based on restriction for the C S2 problem.
Assume without loss of generality that xi ≥ 0 and yi ≥ 0 and that at least one of the points has x-coordinate
value of zero. Define the function Ix (Pi ) = �xi /D�. For k ≥ 0, band k consists of all the points with
Ix (Pi ) = k.

The restriction to the solution space is to only allow feasible solutions where each square covers points
from only one band. Note that an optimal solution to the C S2 problem does not necessarily satisfy this
property. For example, the instance with P1 = (0.1, 1.0), P2 = (0.1, 2.0), P3 = (1.1, 0.9), P4 = (1.1, 2.1),
and D = 1 has two squares in optimal cover. The first square covers points P1 and P3, and the second
covers P2 and P4. However an optimal cover for the points in band 0 (i.e., P1 and P2) is one square and the
one for the points in band 1 (i.e., P3 and P4) is two squares. So an optimal cover to the restricted problem
has three squares, but an optimal cover for the C S2 problem has two squares.

One reason for restricting the solution space in this way is that an optimal cover for any given band can
be easily generated by a greedy procedure in O(n log n) time [14]. A greedy approach places a square as
high as possible provided it includes the bottommost point in the band as well as all other points in the
band at a vertical distance at most 1 from a bottommost point. All the points covered by this square are
removed and the procedure is repeated until all the points have been covered. One can easily show that
this is an optimal cover by transforming any optimal solution for the band, without increasing the number
of squares, to the cover generated by the greedy algorithm. By using elaborate data structures, Gonzalez
[14] showed that the greedy algorithm can be implemented to take (n log s ), where s is the number of
squares in an optimal solution. Actually a method that uses considerable more space can be used to solve
the problem in O(n) time [14].
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The solution generated by our algorithm for the whole problem is the union of the covers for each of
the bands generated by the greedy method. Let f̂ = E + O be the total number of squares, where E (O)
is the number of squares for the even (odd-)-numbered bands. We claim that an optimal solution to the
C S2 problem has at least max{E , O} squares. This follows from the fact that an optimal solution for the
even (odd-)-numbered bands is E (O) because it is not possible for a square to cover points from two
different even (odd-)-numbered bands. Therefore, f̂ I

f ∗
I

≤ 2, where f ∗
I is the number of squares in an

optima solution for problem instance I . This result is formalized in the following theorem whose proof
follows from the above discussion.

Theorem 3.3

For the CS2 problem the above procedure generates a cover such that f̂ I
f ∗
I

≤ 2 in O(n log s ) time, where s is
the number of squares in an optimal solution.

A polynomial-time approximation scheme for the generalization of the CS2 to d dimensions (the CSd

problem) is discussed in Chapter 9. The idea is to generate a set of solutions by shifting the bands by
different amounts and then selecting as the solution the best cover computed by the algorithm. This
approach is called shifting and was introduced by Hochbaum and Maass [13].

3.5 Rectangular Partitions

The minimum edge-length rectangular partition, RGP problem has applications in the area of computer-
aided design of integrated circuits and systems. Given a rectangle R with interior points P , the RGP

problem is to introduce a set of interior lines segments with least total length such that every point in
P is in at least one of the partitioning line segments, and R is partitioned into rectangles. Figure 3.2(a)
shows a problem instance I and Figure 3.2(b) shows an optimal rectangular partition for the problem
instance I .

A rectangular partition E is said to have a guillotine cut if one of the vertical or horizontal line segments
partitions the rectangle into two rectangles. A rectangular partition E is said to be a guillotine partition
if either E is empty, or E has a guillotine cut and each of the two resulting rectangular partitions is a
guillotine partition.

Finding an optimal rectangular partition is an NP-hard problem [17]. However, an optimal guillotine
partition can be constructed in polynomial time. Therefore, it is natural to restrict the solution space to
guillotine partitions when approximating rectangular partitions.

In Chapter 54 we prove that an optimal guillotine partition has total edge length, which is at most
twice the length of an optimal rectangular partition. Gonzalez and Zheng [18] presented a complex proof
that shows that bound is just 1.75. In Chapter 54 we also explain the basic ideas behind the proof of the
approximation ratio of 1.75. This approach has been extended to the multidimensional version of this
problem by Gonzalez et al. [19].

(a) (b) (c)

FIGURE 3.2 (a) Instance I of the RG P problem. (b) Rectangular partition for the instance I . (c) Guillotine partition
for the instance I .
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An optimal guillotine partition can be constructed in O(n5) time via dynamic programming. When n
is large this approach is not practical. Gonzalez et al. [20] showed that suboptimal guillotine partitions
that can be constructed in O(n log n) time generate solutions with total edge length at most four times
the length of an optimal rectangular partition. As in the case of optimal guillotine partitions this result
has been extended to the multidimensional version of the problem [20]. Clearly, neither of the methods
dominates the other when considering both the approximation ratio and the time complexity bound.

Chapter 42 discusses how more general guillotine cuts can be used to develop a polynomial time
approximation scheme (PTAS) for the TSP in two-dimensional space. Chapter 51 discusses this approach
for the TSP and Steiner tree problems.

3.6 Routing Multiterminal Nets

Let R be a rectangle whose sides lie on the two-dimensional integer grid. A subset of grid points on the
boundary of R that do not include the corners of R is denoted by S and its grid points are called terminal
points. Let n be the number of terminal points, i.e., the cardinality of set S, and let N1, N2, . . . , Nm a
partition of S such that each set Ni includes at least two terminal points. Each set Ni is called a net and
the problem is to make all the terminal points electrically common by introducing a set wire segments.
Terminal points from different nets should not be made electrically common. The wire segment must be
along the grid lines outside R with at most one wire segment assigned to each grid edge. When the grid
edges incident to a grid point belong to wire segments from two nets, the two wires must cross. In other
words, dog-legs (wires from two nets bending at a grid point) are not allowed. The main reasons are that
dog-legs would complicate the layer assignment without improving the layout area.

There are two layers available for the wires. Since dog-legs are not allowed, the layer assignment for the
wire segments is straightforward. All horizontal wire segments are assigned to one layer and all the vertical
ones are assigned to the other. A vertical and horizontal wire segment with a common grid point can be
made electrically common by introducing a via for the connection of the wires at that grid point.

The Multiterminal net routing Around a Rectangle (MAR) problem is given a rectangle R and a set of
nets, find a layout, subject to the constraints defined above, that fits inside a rectangle with least possible
area. Constructing a layout in this case reduces to just finding the wire segments for each net along the
grid lines (without dog-legs) outside R, since the layer assignment is straightforward.

Developing a constant-ratio approximation algorithm for this problem is complex because the objec-
tive function depends on the product of two values, rather than just one value as in most other problems.
Gonzalez and Lee [21] developed a linear-time algorithms for the MAR problem when every net consists
of two terminal points. It is conjectured that the problem is NP-hard when the nets have three terminal
points each. Gonzalez and Lee [21,22] developed constant-ratio approximation algorithms for the MAR
problem [22,23]. The approximation ratios for these algorithms are 1.69 [22] and 1.6 [23]. The approach
is to partition the set of nets into groups and then route each group of nets independently of each other.
Some of the groups are routed optimally. Since the analysis of the approximation ratio for these algo-
rithms is complex, in this section we only analyze the case when the nets contain one terminal point on the
top side of R and one or more terminal points on the bottom side of R. The set of these nets is called NTB.
The algorithm to route the NTB nets is based on restriction and it is quite interesting. Readers interested
in additional details are referred to Refs. [22,23].

Let nTB be the number of NTB nets. Let E be an optimal area layout for all the nets and let D be E
except that the set of nets in NTB are all connected by a path that crosses the left side of R. In this case the
layout for the nets NTB is restricted (only paths that cross the left side of R are allowed). We use HE (TB)
(HD(TB)) to denote the height of the layout E (D) on the top plus the corresponding height on the bottom
side of R. To simplify the analysis, let us assume that every net in NTB is connected in E by a path that
either crosses the left or right (but not both) sides of R. Gonzalez and Lee [23] explain how to modify the
analysis when some of these nets are connected by paths that cross both the left and right sides of R.

By reversing the connecting path for a net in NTB we mean to connect the net by a path that crosses the
opposite side of R, i.e., if it crossed the left side of R it will now cross the right side, or vice versa. When we
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reverse the connecting path for a net the height on the top side plus the bottom side of R increases by at most
two. We say that connecting paths for two NTB nets cross on the top side of R when their contribution to the
height of the assignment is two for at least one point in between two terminal points. When we interchange
the connecting paths for two NTB nets that cross on the top side of R we mean reversing both connecting
paths. An interchange increases by at most two the height on the top side plus the bottom side of R.

We transform E to D by reversals to quantify the difference in heights between E and D. The largest
increase in height is when all the NT B nets are connected in E by paths that cross the right side of R. In this
case we need to reverse all the connecting paths for the NTB nets, so HD(TB) ≤ HE (TB) + 2nTB. When
one plugs this in the analysis for the whole problem it results in an algorithm with an approximation ratio
greater than 2.

A better approach is to use the following restriction. All the connecting paths for the NTB nets are
identical, and either they cross the left or the right side of R. In this case we construct two different layouts.
Let Dl (Dr ) be E except that all the nets in NTB are connected by a path crossing the left (right) side of R.
Let M be a minimum area layout between Dl and Dr . In E let l(r ) be the number of NTB nets connected
by a path crossing the left (right) side of R. By reversing the minimum of {l , r } paths it is possible to
transform E to Dl or Dr . Therefore, HM(TB) ≤ HE (TB) + nTB, which is better by 50% than for the
assignment D defined above.

It is obvious that by trying more alternatives one can obtain better solutions. Let us partition the set of
nets NTB into two groups, Sl and Sr . The set Sl contains the nTB

2 nets in NTB whose terminal point on the
top side of R is closest to the left side of R, and set Sr contains the remaining ones. For i, j ∈ {l , r } let Di j

be E except that all the nets in Sl are connected by paths that cross the “i” side of R and all the nets in Sr

are connected by paths that cross the “ j ” side of R. Let P be a minimum area layout among Dll , Dlr , Drl,
and Drr . Let l1(r1) be the number of nets in Sl connected by a path that crosses the left side of R. We define
l2 and r2 similarly, but using set Sl . We show in the following lemma that HP (TB) ≤ HE (TB) + 3

4 nTB.

Lemma 3.1

Let P and E be the assignments defined above. Then HP (TB) ≤ HE (TB) + 3
4 nTB.

Proof
The proof is by contradiction. Suppose that HP (TB) > HE (TB) + 3

4 nTB. There are two cases depending
on the values of r1 and l2.

Case 1: r1 ≥ l2. To transform assignment E to Dlr we need to interchange l2 connecting paths that cross
on the top side of R and reverse r1 − l2 connecting paths. Therefore, HDlr (TB) ≤ HE (TB) + 2r1. Since
HDlr (TB) ≥ HP (TB) > HE (TB) + 3

4 nTB, we know that 2r1 > 3
4 nTB, which is equivalent to r1 > 3

8 nTB.
Since r1 + l1 = 1

2 nTB, we know that l1 < 1
8 nTB.

To transform assignment E to Dr r we need to reverse l1 + l2 connecting paths. Therefore, HDr r (TB) ≤
HE (TB)+2l1+2l2. Since HDr r (TB) ≥ HP (TB) > HE (TB)+ 3

4 nTB, we know that l1+l2 > 3
8 nTB. Applying

the same argument to assignment Dr l , we know l1 + r2 > 3
8 nTB. Adding these two last inequalities and

substituting the fact that l2 + r2 = 1
2 nTB, we know that l1 > 1

8 nTB. This contradicts our previous finding
that l1 < 1

8 nTB.

Case 2: r1 < l2. A contradiction in this case can be obtained applying similar arguments.
It must then be that HP (TB) ≤ HE (TB) + 3

4 nTB.

For three groups, rather than two, Gonzalez and Lee [22] showed that HP (TB) ≤ HE (TB) + 2
3 nTB,

where P is the best of the eight assignments generated. This is enough to prove the approximation
ratio of 1.69 for the MAR problem. If instead of three groups one uses six, one can prove HP (TB) ≤
HE (TB) + 0.6nTB, where P is the best of the 64 assignments generated. In this case, the approximation
ratio for the MAR problem is 1.6. Interestingly, partitioning into more groups results in smaller bounds for
this group, but does not reduce the approximation ratio for the MAR problem because the routing of other
nets becomes the bottleneck. We state Gonzalez and Lee’s theorem without a proof. Readers interested in
the proof are referred to Ref. [23].
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Theorem 3.4

For the MAR problem the procedure given in Ref. [23] generates a layout with area at most 1.6 times the area
of an optimal layout in O(nm) time.

An interesting observation is that the proof that the bound HP (TB) ≤ HE (TB) + (1.6)nTB holds can
be carried out automatically by solving a set of linear programming problems. The linear programming
problems find the ratios for li and ri such that the minimum increase from E to one of the layouts is
maximized. Note that some of the “natural” constraints of the problem are in terms max{r1, l2}, which
makes the solution space nonconvex. However by replacing it with inequalities of the form r1 ≤ l2

and r1 > l2 we partition the optimization region into several convex regions. By solving a set of linear
programming problems (one for each convex region) the maximum possible increase can be computed.

3.7 Variations on Restriction

A closely related approach to restriction is to generate a solution by solving a restricted problem instance
constructed from the original instance. We call this approach transformation-restriction. For example,
consider the routing multiterminal nets around a rectangle discussed in Section 3.6. Remember that there
are n terminal points and m nets. Suppose that we break every net i with ki points into ki nets with two
terminal points each. The k nets consist of adjacent terminal points of the net. In order for these ki nets to
have different terminal points we make a copy of each terminal point at half-integer points next to the old
ones. Note that a new grid needs to be redefined to include the half-integer points without introducing
more horizontal (vertical) routing tracks above or below (to the left or right) of R. Figure 3.3(b) shows the
details. The resulting 2-terminal net problems can be solved in linear time using the optimal algorithm
developed by Gonzalez and Lee [21]. A solution to this problem can be easily transformed into a solution to
the original problem after deleting the added terminal points as well as some superfluous connections. This
algorithm generates a layout whose total area is at most 4 times the area of an optimal layout. Furthermore,
the layout can be constructed in O(n) time. With respect to the approximation ratio Gonzalez and Lee’s
algorithms [22,23] are better, but these algorithms take O(nm) time, whereas the simple algorithm in this
section takes linear time.

3.7.1 Embedding Hyperedges in a Cycle

In this subsection we present an approximation algorithm for Embedding Hyperedges in a Cycle so as
to Minimize the Congestion (EHCMC). As pointed out in Chapter 70, this problem has applications in
the area of design automation and parallel computing. As input we are given a hypergraph G = (V, H),
where V = {v1, v2, . . . , vn} is the set vertices and H = {h1, h2, . . . , hm} the set of hyperedges (or subsets
with at least two elements of the set V). Traversing the vertices v1, v2, . . . , vn in the clockwise direction
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FIGURE 3.3 (a) Net with k-terminal points. (b) Resulting k 2-terminal nets.
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forms a cycle, which we call C . Let vt and vs be two vertices in hi such that vs is the next vertex in hi in
clockwise direction from vt . Then the pair (vs , vt ) for hyperedge hi defines the connecting path for hi that
begins at vertex vs then proceeds in the clockwise direction along the cycle until reaching vertex vt . Every
edge e in the cycle that is visited by the connecting path formed by pair (vs , vt ) is said to be covered by the
connecting path. The EHCMC problem consists of finding a connecting path ci for every hyperedge hi

such that the maximum congestion of an edge in C is least possible, where the congestion of an edge e in
cycle C is the number of connecting paths that include edge e .

Ganley and Cohoon [24] showed that when the maximum congestion is bounded by a fixed constant
k, the EHCMC problem is solvable in polynomial time. But, the problem is NP-hard when there is no
constant bound for k. Frank et al. [25] showed that when the hypergraph is a graph the EHCMC problem
can be solved in polynomial time. We call this problem the Embedding Edges in a Cycle to Minimize
Congestion (EECMC). In this section we present the simple linear-time algorithm with an approximation
ratio of 2 for the EHCMC problem developed by Gonzalez [26].

The algorithm based on transformation-restriction for this problem is simple and uses the same approach
as in the previous subsection. This general approach also works for other routing problems. A hyperedge
with k vertices x1, x2, . . . , xk , appearing in that order around the cycle C is decomposed into the following
k edges {x1, x2}, {x2, x3}, . . . , {xk−1, xk}, {xk , x1}. Note that in this case we do not need to introduce
additional vertices as in the previous subsection because a vertex may be part of several hyperedges. The
decomposition transforms the problem into an instance of the EECMC problem, which can be solved by
the algorithm given in Ref. [25]. From this embedding we can construct an embedding for the original
problem instance after deleting some superfluous edges in the embedding. The resulting embedding can
be easily shown to have congestion of at most twice the one in an optimal solution X . This is because there
is a solution S to the EECMC problem instance in which every connecting path Y in X can be mapped
to a set of connecting paths in S with the property that if the connecting path Y contributes one unit to
the congestion of an edge e , then the set of connecting paths in S contributes 2 units to the congestion
of edge e . Furthermore, each connecting path in S appears in one mapping. The time complexity of the
algorithm is O(n).

3.8 Concluding Remarks

We have seen several approximation algorithms based on restriction. As we have seen the restricted
problem may be solved optimally or suboptimally as in Section 3.5. One generates solutions closer to
optimal, whereas the other generates the solutions faster. These are many more algorithms based on
this technique. For example, some computational geometry problems where the objective function is in
terms of distance have been approximated via restriction [27–30]. These type of problems allow feasible
solutions to be any set of points along a given set of line segments. A restricted problem allows only a set
of points (called artificial points) to be part of a feasible solution. The more artificial points, the smaller
the approximation ratio of the solution; however, it will take longer to solve the restricted problem.

There are problems for which it is not known whether or not there is a constant-ratio approximation
algorithm. However, heuristics based on restriction are used to generate good solutions in practice. One
such problems is discussed in Chapter 73.

A closely related approach to restriction is transformation-restriction. The idea is to transform the
problem instance to a restricted instance of the same problem. The difference is that the restricted problem
instance is not a subproblem of original problem instance as in the case of restriction. In this chapter we
applied this approach to a couple of problems.

Approximations algorithms that are based on restriction and relaxation exist. These algorithms first
restrict the solution space and then relaxes it resulting in a solution space that is different from the original
one. Gonzalez and Gonzalez [31] have applied this approach successfully to the minimum edge length
corridor problem.
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4.1 Introduction

Greedy algorithms can be used to solve many optimization problems exactly and efficiently. Examples
include classical problems such as finding minimum spanning trees and scheduling unit length jobs
with profits and deadlines. These problems are special cases of finding a maximum- or minimum-weight
basis of a matroid. This well-studied problem can be solved exactly and efficiently by a simple greedy
algorithm [1,2].

Greedy methods are also useful for designing efficient approximation algorithms for intractable (i.e.,
NP-hard) combinatorial problems. Such algorithms find solutions that may be suboptimal, but still satisfy
some performance guarantee. For a minimization problem, an algorithm has approximation ratio α, if, for
every instance I , the algorithm delivers a solution whose cost is at most α × OPT(I ), where OPT(I ) is the
cost of an optimal solution for instance I . An α-approximation algorithm is a polynomial-time algorithm
with an approximation ratio of α.

In this chapter, we survey several NP-hard problems that can be approximately solved via greedy
algorithms. For a couple of fundamental problems, we sketch the proof of the approximation ratio. For
most of the other problems that we survey, we give brief descriptions of the algorithms and citations to
the articles where these results were reported.

4.2 Set Cover

We start with SET COVER, perhaps one of the most elementary of the NP-hard problems. The problem
is defined as follows. The input is a set X = {x1, x2, . . . , xn} of elements and a collection of sets S =
{S1, S2, . . . , Sm} whose union is X . Each set Si has a weight of w(Si ). A set cover is a subset S ′ ⊆ S such

4-1
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that
⋃

S j ∈S ′ S j = X. Our goal is to find a set cover S ′ ⊆ S so as to minimize w(S ′) = ∑
Si ∈S ′ w(Si ). In

other words, we wish to choose a minimum-weight collection of subsets that covers all the elements.
Intuitively, for a given weight, one prefers to choose a set that covers most of the elements. This suggests

the following algorithm: Start with an empty collection of sets, then repeatedly add sets to the collection,
each time adding a set that minimizes the cost per newly covered element (i.e., the set that minimizes the
weight of the set divided by the number of its elements that are not yet in any set in the collection).

4.2.1 Algorithm for Set Cover

Next we prove that this algorithm has approximation ratio H(|Smax|), where Smax is the largest set in
S and H the harmonic function, defined as H(d) = ∑d

i=1 1/ i . For simplicity, assume each set has
weight 1.

We use the following charging scheme: when the algorithm adds a set S to the collection, let u denote the
number of not-yet-covered elements in S and charge 1/u to each of those elements. Clearly, the weight of the
chosen sets is at most the total amount charged. To finish, we observe that the total amount charged is at
most OPT × H(|Smax|). To see why this is so, let S∗ = {es , es−1, . . . , e1} be any set in OPT. Assume that
when the greedy algorithm chooses sets to add to its collection, it covers the elements in S∗ in the order
given (each ei is covered by the time ei−1 is). When the charge for an element ei is computed (i.e., when the
greedy algorithm chooses a set S containing ei for the first time) at least i elements (ei , ei−1, ei−2, . . . , e1)
in S∗ are not yet covered. Since the greedily chosen set S contains at least as many not-yet-covered elements
as S∗, the charge to ei is at most 1/ i . Thus, the total charge to elements in S∗ is at most

1

s
+ 1

s − 1
+ · · · + 1

2
+ 1 = H(s ) ≤ H(|Smax|)

Thus, the total charge to elements covered by OPT is at most OPT × H(|Smax|). Since every element is
covered by OPT, this means that the total charge is at most OPT × H(|Smax|). This implies that the greedy
algorithm is an H(|Smax|)-approximation algorithm.

These results were first reported in the mid-1970s [3–6]. Since then, it has been proven that no
polynomial-time approximation algorithm for set cover has a significantly better approximation ratio
unless P = NP [7].

The algorithm and approximation ratio extend to a fairly general class of problems called minimizing a
linear function subject to a submodular constraint. This problem generalizes set cover as follows. Instead of
asking for a set cover, we ask for a collection of sets C such that some function f (C) ≥ f (X). The function
f (C) should be increasing as we add sets to C and it should have the following property: if C ⊂ C ′, then
for any set S, f (C ′ ∪ {S ′}) − f (C ′) ≤ f (C ∪ {S}) − f (C). In terms of the greedy algorithm, this means
that adding a set S to the collection now increases f at least as much as adding it later. (For set cover, take
f (C) to be the number of elements covered by sets in C .) See Ref. [8] for details.

4.2.2 Shortest Superstring Problem

We consider an application of the set cover problem, SHORTEST SUPERSTRING problem. Given an alphabet
�, and a collection of n strings S = {s1, . . . , sn}, where each si is a string from the alphabet �, find
a shortest string s that contains each si as a substring. There are several constant-factor approximation
algorithms for this problem [9]; here we simply want to illustrate how to reduce this problem to the set
cover problem. The reduction is such that an optimal solution to the set cover problem has weight at most
twice the length of a shortest superstring.

For each si , s j ∈ S and for each value 0 < k < min (|si |, |s j |), we first check to see if the last k symbols
of si are identical to the first k symbols of s j . If so, we define a new string βi j k obtained by concatenating
si with s k

j , the string obtained from s j by deleting the first k characters of s j . Let C be the set of strings
βi j k . For a string π we define S(π) = {s ∈ S|s is a substring of π}. The underlying set of elements of the
set cover is S. The specified subsets of S are the sets S(π) for each π ∈ S ∪ C. The weight of each set S(π)
is |π |, the length of the string.
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We can now apply the greedy set cover algorithm to find a collection of sets S(πi ) and then simply
concatenate the strings πi to find a superstring. The approximation factor of this algorithm can be shown
to be 2H(n).

4.3 Steiner Trees

The STEINER TREE problem is defined as follows. Given an edge-weighted graph G = (V, E ) and a set of
terminals S ⊆ V , find a minimum-weight tree that includes all the nodes in S. (When S = V , then this
is the problem of finding a minimum-weight spanning tree. There are several very fast greedy algorithms
that can be used to solve this problem optimally.) The Steiner tree problem is NP-hard and several greedy
algorithms have been designed that give a factor 2 approximation [10,11]. We briefly describe the idea
behind one of the methods. Let T1 = {s1} (an arbitrarily chosen terminal from S). At each step, Ti+1 is
computed from Ti as follows: attach the vertex from S − Ti that is the “closest” to Ti by a path to Ti and
call the newly added special vertex si+1. Thus Ti always contains the vertices s1, s2, . . . , si . It is clear that
the solution produces a Steiner tree. It is possible to prove that the weight of this tree is at most twice the
weight of an optimal Steiner tree.

Zelikovsky [12] developed a greedy algorithm with an approximation ratio of 11/6. This bound has
been further improved subsequently, but by using more complex methods.

A generalization of Steiner trees called NODE-WEIGHTED STEINER TREES is defined as follows. Given a
node-weighted graph G = (V, E ) and a set of terminals S ⊂ V , find a minimum-weight tree that includes
all the nodes in S. Here, the weight of a tree is the sum of the weights of its nodes. It can be shown that
this problem is at least as hard as the set cover problem to approximate [13]. Interestingly, this problem is
solved via a greedy algorithm similar to the one for the set cover problem with costs. We define a “spider”
as a tree on � terminals, where there is at most one vertex with degree more than 2. Each leaf in the tree
corresponds to a terminal. The weight of the spider is simply the weight of the nodes in the spider. The
algorithm at each step greedily picks a spider with minimum ratio of weight to number of terminals in it.
It collapses all the terminals spanned by the spider into a single vertex, makes this new vertex a terminal
and repeats until one terminal remains. The approximation guarantee of this algorithm is 2 ln |S|. Further
improvements appear in Ref. [14]. For more on the Steiner tree problem, see the book by Hwang et al. [15].

4.4 K -Centers

The K -CENTER problem is a fundamental facility location problem and is defined as follows: given an
edge-weighted graph G = (V, E ), find a subset S ⊆ V of size at most K such that each vertex in V is
close to some vertex in S. More formally, the objective function is defined as follows:

min
S⊆V

max
u∈V

min
v∈S

d(u, v)

where d is the distance function. For example, one may wish to install K fire stations and minimize the
maximum distance (response time) from a location to its closest fire station.

Gonzalez [16] describes a very simple greedy algorithm for the basic K -center problem and proves that
it gives an approximation factor of 2. The algorithm works as follows. Initially, pick any node v0 as a center
and add it to the set C . Then for i = 1 to K do the following: in iteration i , for every node v ∈ V , compute
its distance di (v, C) = minc∈C d(v, c) to the set C . Let vi be a node that is farthest away from C , i.e., a node
for which di (vi , C) = maxv∈V d(v, C). Add vi to C . Return the nodes v0, v1, . . . , vK −1 as the solution.

The above greedy algorithm is a 2-approximation for the K -center problem. First note that the radius of
our solution is d K (vK , C), since by definition vK is the node that is farthest away from our set of centers.
Now consider the set of nodes v0, v1, . . . , vK . Since this set has cardinality K + 1, at least two of these
nodes, say vi and v j , must be covered by the same center c in the optimal solution. Assume without loss
of generality that i < j . Let R∗ denote the radius of the optimal solution. Observe that the distance from
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each node to the set C does not increase as the algorithm progresses. Therefore d K (vK , C) ≤ d j (vK , C).
Also we must have d j (vK , C ) ≤ d j (v j , C ), otherwise we would not have selected node v j in iteration j .
Therefore,

d(c , vi ) + d(c , v j ) ≥ d(vi , v j ) ≥ d j (v j , C) ≥ d K (vK , C)

by the triangle inequality and the fact that vi is in the set C at iteration j . But since d(c , vi ) and d(c , v j )
are both at most R∗, we have the radius of our solution = d K (vK , C) ≤ 2R∗.

4.5 Connected Dominating Sets

The connected dominating set (CDS) problem is defined as follows. Given a graph G = (V, E ), find
a minimum size subset S of vertices, such that the subgraph induced by S is connected and S forms a
dominating set in G . Recall that a dominating set is one in which each vertex is either in the dominating
set or adjacent to some vertex in the dominating set. The CDS problem is known to be NP-hard.

We describe a greedy algorithm for this problem [17]. The algorithm runs in two phases. At the start of
the first phase all nodes are colored white. Each time we include a vertex in the dominating set, we color
it black. Nodes that are dominated are colored gray (once they are adjacent to a black node). In the first
phase, the algorithm picks a node at each step and colors it black, coloring all adjacent white nodes gray. A
piece is defined as a white node or a black connected component. At each step we pick a node to color black
that gives the maximum (nonzero) reduction in the number of pieces.

It is easy to show that at the end of this phase if no vertex gives a nonzero reduction to the number of
pieces, then there are no white nodes left.

In the second phase, we have a collection of black connected components that we need to connect.
Recursively, connect pairs of black components by choosing a chain of vertices, until there is one black
connected component. Our final solution is the set of black vertices that form the connected component.

Key Property: At the end of the first phase if there is more than one black component, then there is always
a pair of black components that can be connected by choosing a chain of two vertices.

It can be shown that the CDS found by the algorithm is of size at most (ln � + 3) · |OPTCDS|, where �

is the maximum degree of a node.
Let ai be the number of pieces left after the ith iteration, and a0 = n. Since a node can connect up

to � pieces, |OPTCDS| ≥ a0
�

. (This is true if the optimal solution has at least two nodes.) Consider the
(i + 1)th iteration. An optimal solution can connect ai pieces. Hence, the greedy procedure is guaranteed
to pick a node which connects at least 	 ai|OPTCDS| 
 pieces. Thus, the number of pieces will reduce by at least
	 ai|OPTCDS| 
 − 1. This gives us the recurrence relation

ai+1 ≤ ai −
⌈

ai

|OPTCDS|
⌉

+ 1 ≤ ai

(

1 − 1

|OPTCDS|
)

+ 1

Its solution is

ai+1 ≤ a0

(

1 − 1

|OPTCDS|
)i

+
i−1∑

j=i

(

1 − 1

|OPTCDS|
) j

Notice after |OPTCDS| ln a0|OPTCDS| iterations, the number of pieces left is less than 2|OPTCDS|. After
this, for each node we choose, we will decrease the number of pieces by at least one until the number
of black components is at most |OPTCDS|, thus at most |OPTCDS| more vertices are picked. So after
|OPTCDS| ln a0|OPTCDS| + |OPTCDS| iterations at most |OPTCDS| pieces are left to connect. We connect the
remaining pieces choosing chains of at most two vertices in the second phase. The total number of nodes
chosen is at most |OPTCDS| ln a0|OPTCDS| + |OPTCDS| + 2|OPTCDS|, and since � ≥ a0|OPTCDS| , the solution
found has at most |OPTCDS|(ln � + 3) nodes.
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4.6 Scheduling

We consider the following simple scheduling problem [18]. There are k identical machines. We are given
a collection of n jobs. Job J i is specified by the vector: (ri , di , pi , wi ). The job has a release time of ri , a
deadline of di and a processing time of pi . The weight of the job is wi . Our goal is to schedule a subset of the
jobs such that each job starts after its release time and is completed by its deadline. If S is a subset of jobs
that are scheduled, then the total profit due to set S is

∑
J i ∈S wi . We do not get any profit if the job is not

completed by its deadline. Our objective is to find a maximum-profit subset of jobs that can be scheduled
on the k machines. The jobs are scheduled on one machine, with no preemption. In other words, if job J i

starts on machine j at time si , then ri ≤ si and si + pi ≤ di . Moreover, each machine can be executing
at most one job at any point of time.

A number of algorithms for the problem are based on linear program (LP) rounding [18]. A special case
of interest is when all jobs have unit weight (or identical weight). In this case, we simply wish to maximize
the number of scheduled jobs. The following greedy algorithm has the property that it schedules a set of
jobs such that the total number of scheduled jobs is at least ρk times the number of jobs in an optimal
schedule. Here ρk = 1 − 1

(1+ 1
k )k . Observe that when k = 1, then ρk = 1

2 , and this bound is tight for the
greedy algorithm.

The algorithm considers each machine in turn and finds a maximal set of jobs to schedule for the
machine; it removes these jobs from the collection of remaining jobs, then recurses on the remaining set
of jobs. Now we discuss how a maximal set of jobs is chosen for a single machine. The idea is to pick a job
that can be finished as quickly as possible. After we pick this job, we schedule it, starting it at the earliest
possible time. Making this choice might force us to reject several other jobs. We then consider starting a
job after the end of the last scheduled job, and again pick one that we can finish at the earliest possible
time. In this way, we construct the schedule for a single machine.

4.7 Minimum-Degree Spanning Trees

In this problem, the input is a graph G = (V, E ), with nonnegative weights w : E �→ R+ on its edges. We
are also given an integer d > 1. The objective of the problem is to find a minimum-weight spanning tree
of G in which the degree of every node is at most d . It is a generalization of the Hamiltonian path problem,
and is therefore NP-hard. It is known that the problem is not approximable to any ratio unless P = N P
or the approximation algorithm is allowed to output a tree whose degree is greater than d . Approximation
algorithms try to find a tree whose degree is as close to d as possible, but whose weight is not much more
than an optimal degree-d tree.

Greedy algorithms usually select one edge at a time, and once an edge is chosen, that decision is never
revoked and the edge is part of the output. Here we add a subset S of edges at a time (e.g., a spanning forest),
where S is chosen to minimize a relaxed version of the objective function. We get an iterative solution
and the output is a union of the edges selected in each of the steps. This approach typically provides a
logarithmic approximation. For minimum-degree spanning trees (MDST), the algorithm finds a tree of
degree O(d log n), whose weight is within O(log n) of an optimal degree-d tree, where the graph has n
vertices. The ideas have appeared in Refs. [19,20]. Such algorithms in which two objectives (degree and
weight) are approximated are called bicriteria approximation algorithms.

A minimum-weight subgraph in which each node has degree at most d and at least 1 can be computed
using algorithms for matching. Except for possibly being disconnected, this subgraph satisfies the other
properties of an MDST: degree constraints and weight at most OPT. A greedy algorithm for MDST works
by repeatedly finding d-forests, where each d-forest is chosen to connect the connected components left
from the previous stages. The number of components decreases by a constant factor in each stage, and, in
O(log n) stages, we get a tree of degree at most d log n.
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4.8 Maximum-Weight b -Matchings

In this problem, we are interested in computing a maximum-weight subgraph of a given graph G in which
each node has degree at most b. The classical matching problem is a b-matching with b = 1. This problem
can be solved optimally in polynomial time, but the algorithms take about O(n3) time. We discuss a
1/2-approximation algorithm that runs in O(b E + E log E ) time. The edges are sorted by weight, with
the heaviest edges considered first. Start with an empty forest as the initial solution. When an edge is
considered, we see if adding it to the solution violates the degree bound of its end vertices. If not, we add it
to our solution. Intuitively, each edge of our solution can displace at most 2 edges of an optimal solution,
one incident to each of its end vertices, but of lesser weight.

4.9 Primal-Dual Methods

In this section we study a powerful technique, namely the primal-dual method, for designing approxi-
mation algorithms [21]. Duality provides a systematic approach for bounding OPT, a key task in proving
any approximation ratio. The approach underlies many approximation algorithms. In this section, we
illustrate the basic method via a simple example.

A closely related method, one that we do not explore here, is the “local-ratio” method developed by
Bar-Yehuda [22]. It seems that most problems that have been solved by the primal-dual method, appear
amenable to attack by the local-ratio method as well.

We use as our example another fundamental NP-hard problem, the VERTEX COVER problem. Given a
graph G = (V, E ) with weights on the vertices given by w(v), we wish to find a minimum-weight vertex
cover. A vertex cover is a subset of vertices, S ⊆ V , such that for each edge (u, v) ∈ E , either u ∈ S or
v ∈ S or both. This problem is equivalent to the special case of the set cover problem, where each set
contains exactly two elements.

We describe a 2-approximation algorithm. First, write an integer linear program (ILP) for this problem.
For each vertex v in the given graph, the program has a binary variable xv ∈ {0, 1}. Over this space of
variables, the problem is to find

min
{∑

v∈V

w(v)xv : xu + xv ≥ 1 (∀(u, v) ∈ E )
}

It is easy to see that an optimal solution to this integer program gives an optimal solution to the original
vertex cover problem. Thus, the integer program is NP-hard to solve. Instead of solving it directly, we relax
ILP to an LP, which is to optimize the same objective function over the same set of constraints, but with
real-valued variables xv ∈ [0, 1].

Each LP has a dual. Let N(v) denote the neighbor set of v. The dual of LP has a variable y(u,v) ≥ 0 for
each edge (u, v) ∈ E . Over this space of variables, the dual of LP is to find

max
{ ∑

(u,v)∈E

yu,v :
∑

u∈N(v)

y(u,v) ≤ w(v) (∀v ∈ V)
}

The key properties of these programs are the following:

1. Weak duality: The cost of any feasible solution to the dual is a lower bound on the cost of any
feasible solution to LP. Consequently, the cost of any feasible solution to the dual is a lower bound
on the cost of any feasible solution to ILP.

2. If we can find feasible solutions for ILP and the dual, where the cost of our solution to ILP is at
most α times the cost of our solution to the dual, then our solution to ILP has cost at most α OPT.

One way to get an approximate solution is to solve the vertex cover LP optimally (e.g., using a network
flow algorithm [23]), and then round the obtained fractional solution to an integral solution. Here we
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describe a different algorithm—a greedy algorithm that computes solutions to both ILP and the dual. The
solutions are not necessarily optimal, but will have costs within a factor of 2.

The dual solution is obtained by the following simple heuristic: Initialize all dual variables to 0, then
simultaneously and uniformly raise all dual variables, except those dual variables that occur in constraints that
are currently tight. Stop when all constraints are tight. The solution to ILP is obtained as follows: Compute
the dual solution above. When the constraint for a vertex v becomes tight, add v to the cover. (Thus, the
vertices in the cover are those whose constraints are tight.)

The constraint for vertex v is tight if
∑

u∈N(v) y(u,v) = w(v). When we start to raise the dual variables,
the sum increases at a rate equal to the degree of the vertex. Thus, the first vertices to be added are those
minimizing w(v)

d(v) . These vertices and their edges are effectively deleted from the graph, and the process
continues.

The algorithm returns a vertex cover because, in the end, for each edge (u, v) at least one of the two
vertex constraints is tight. By weak duality, to see that the cost of the cover is at most 2OPT, it suffices
to see that the cost of the cover S is at most twice the cost of the dual solution. This is true because each
node’s weight can be charged to the dual variables corresponding to the incident edges, and each such dual
variable is charged at most twice:

∑

v∈S

w(v) =
∑

v∈S

∑

u∈N(v)

y(u,v) ≤ 2
∑

(u,v)∈E

y(u,v)

The equality above follows because w(v) = ∑
u∈N(v) y(u,v) for each vertex added to the cover. The

inequality follows because each dual variable y(u,v) occurs at most twice in the sum.
To implement the algorithm, it suffices to keep track of the current degree D(v) of each vertex v as well

as the slack W(v) remaining in the constraint for v. In fact, with a little bit of effort the reader can see that
the following pseudocode implements the algorithm described above, without explicitly keeping track of
dual variables. This algorithm was first described by Clarkson [24]:

GREEDY-VERTEX-COVER(G , S)
1 for all v ∈ V do W(v) ← w(v); D(v) ← deg (v)
2 S ← ∅
3 while E �= ∅ do

4 Find v ∈ V for which W(v)
D(v) is minimized.

5 for all u ∈ N(v) do
6 E ← E \ (u, v)

7 W(u) ← W(u) − W(v)
D(v) and D(u) ← D(u) − 1

8 end
9 S ← S ∪ {v} and V ← V \ {v}

10 end

More sophisticated applications of the primal-dual method require more sophisticated proofs. In some
cases, the algorithm starts with a greedy phase, but then has a final round in which some previously added
elements are discarded. The key idea is to develop the primal solution hand in hand with the dual solution
in a way that allows the cost of the primal solution to be “charged” to the cost of the dual.

Because the vertex cover problem is a special case of the set cover problem, it is also possible to solve
the problem using the greedy set cover algorithm. This gives an approximation ratio of at most H(|V |),
and in fact there are vertex cover instances for which that greedy algorithm produces a solution of cost
�(H(|V |)) OPT. The greedy algorithm described above is almost the same; it differs only in that it
modifies the weights of the neighbors of the chosen vertices as it proceeds. This slight modification yields
a significantly better approximation ratio.
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4.10 Greedy Algorithms via the Probabilistic Method

In their book on the probabilistic method, Alon et al. [25] describe probabilistic proofs as follows:

In order to prove the existence of a combinatorial structure with certain properties, we construct an
appropriate probability space and show that a randomly chosen element in the space has the desired
properties with positive probability.

The method of conditional probabilities is used to convert those proofs into efficient algorithms [26].
For some problems, elementary probabilistic arguments easily prove that good solutions exist. In some

cases (especially when the proofs are based on iterated random sampling), the probabilistic proof can be
converted into a greedy algorithm. This is a fairly general approach for designing greedy algorithms. In
this section we give some examples.

4.10.1 Max Cut

Given a graph G = (V, E ), the MAX-CUT problem is to partition the vertices into two sets S and S so as
to maximize the number of edges “cut” (crossing between the two sets). The problem is NP-hard.

Consider the following randomized algorithm: For each vertex, choose the vertex to be in S or S indepen-
dently with probability 1/2. We claim this is a 1/2-approximation algorithm, in expectation. To see why,
note that the probability when any given edge is cut is 1/2. Thus, by linearity of expectation, in expectation
|E |/2 edges are cut. Clearly an optimal solution cuts at most twice this many edges.

Next, we apply the method of conditional probabilities [25,26] to convert this randomized algorithm into
a deterministic one. We replace each random choice made by the algorithm by a deterministic choice that
does “as well” in a precise sense. Specifically, we modify the algorithm to maintain the following invariant:

After each step, if we were to take the remaining choices randomly, then the expected number of
edges cut in the end would be at least |E|/2.

Suppose decisions have been made for vertices Vt = {v1, v2, . . . , vt}, but not yet for vertex vt+1. Let
St denote the vertices in Vt chosen to be in S. Let St = Vt − St denote the vertices in Vt chosen to be
in S. Given these decisions, the status of each edge in Vt × Vt is known, while the rest still have a 1/2
probability of being cut. Let xt = |E ∩ (St × St )| denote the number of those edges that will definitely
cross the cut. Let et = |E − Vt × Vt | denote the number of edges which are not yet determined. Then,
given the decisions made so far, the expected number of edges that would be cut if all remaining choices
were to be taken randomly would be

φt
.= xt + et/2

The xt term counts the edges cut so far, while the et/2 term counts the et edges with at least one undecided
endpoint: each of those edges will be cut with probability 1/2.

Our goal is to replace the random decisions for the vertices with deterministic decisions that guarantee
φt+1 ≥ φt at each step. If we can do this, then we will have |E |/2 = φ0 ≤ φ1 ≤ · · · ≤ φn, and, since φn is
the number of edges finally cut, this will ensure that at least |E |/2 edges are cut.

Consider deciding whether the vertex vt+1 goes into St+1 or St+1. Let s be the number of vt+1’s
neighbors in St . Let s be the number of vt+1’s neighbors in St+1. By calculation

φt+1 − φt =
{

s/2 − s/2 if vt+1 is added to St+1

s/2 − s/2 otherwise

Thus, the following strategy ensures φt+1 ≥ φt : if s ≤ s , then put vt+1 in St+1; otherwise put vt in St+1.
By doing this at each step, the algorithm guarantees that φn ≥ φn−1 ≥ · · · ≥ |E |/2.

We have derived the following greedy algorithm: Start with S = S = ∅. Consider the vertices in turn. For
each vertex v, put the vertex v in S or S, whichever has fewer of v’s neighbors. We know from the derivation
that this is a 1/2-approximation algorithm.
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4.10.2 Independent Set

Although the application of the method of conditional probabilities is somewhat technical, it is routine,
in the sense that it follows a similar form in every case. Here is another example.

The problem of finding a MAXIMUM INDEPENDENT SET in a graph G = (V, E ) is one of the most basic
problems in graph theory. An independent set is defined as a subset S of vertices such that there are no
edges between any pair of vertices in S. The problem is NP-hard. Turan’s theorem states the following:
Any graph G with n nodes and average degree d has an independent set I of size at least n/(d + 1). Next,
we sketch a classic proof of the theorem using the probabilistic method. Then we apply the method of
conditional probabilities to derive a greedy algorithm.

Let N̂(v) = N(v) ∪{v} denote the neighbor set of v, including v. Consider this randomized algorithm:
Start with I = ∅. Consider the vertices in a random order. When considering v, add it to I if N̂(v) ∩ I = ∅.

For a vertex v to be added to I , it suffices for v to be considered before any of its neighbors. This happens
with probability |N̂(v)|−1. Thus, by linearity of expectation, the expected number of vertices added to I
is at least

∑

v

|N̂(v)|−1

A standard convexity argument shows this is at least n/(d + 1), completing the proof of Turan’s theorem.
Now we apply the method of conditional probabilities. Suppose the first t vertices Vt = {v1, v2, . . . , vt}

have been considered. Let It = Vt ∩ I denote those that have been added to I . Let Rt = V \ (Vt ∪ N̂(It ))
denote the remaining vertices that might still be added to I and let N̂t (v) = N̂(v) ∩ Rt denote the
neighbors of v that might still be added. If the remaining vertices were to be chosen in random order, the
expected number of vertices in I by the end would be at least

φt
.= |It | +

∑

v∈Rt

|N̂t (v)|−1

We want the algorithm to choose vertex vt+1 to ensure φt+1 ≥ φt . To do this, it suffices to choose the
vertex w ∈ Rt minimizing |N̂t (w)|, for then

φt+1 − φt ≥ 1 −
∑

v∈N̂t (w)

|N̂t (v)|−1 ≥ 1 −
∑

v∈N̂t (w)

|N̂t (w)|−1 = 0

This gives us the following greedy algorithm: Start with I = ∅. Repeat until no vertices remain: Choose
a vertex v of minimum degree in the remaining graph; add v to I and delete v and all of its neighbors from
the graph. Finally, return I . It follows from the derivation that this algorithm ensures n/(d + 1) ≤ φ0 ≤
φ1 ≤ · · · ≤ φn, so that the algorithm returns an independent set of size at least n/(d + 1), where d is the
average degree of the graph.

As an exercise, the reader can give a different derivation leading to the following greedy algorithm (with
the same performance guarantee): Order the vertices by increasing degree, breaking ties arbitrarily. Let I
consist of those vertices that precede all their neighbors in the ordering.

4.10.3 Unweighted Set Cover

Next we illustrate the method on the set cover problem.
We start with a randomized rounding scheme that uses iterated random sampling to round a fractional

set cover (a solution to the relaxed problem) to a true set cover. We prove an approximation ratio for the
randomized algorithm, then apply the method of conditional probabilities to derive a deterministic greedy
algorithm.

We emphasize that, in applying the method of conditional probabilities, we remove the explicit depen-
dence of the algorithm on the fractional set solution. Thus, the final algorithm does not in fact require
solving the relaxed problem first.
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Recall the definition of the set cover problem from the beginning of the chapter. For this section, we
will assume all weights w(Si ) are 1.

Consider the following relaxation of the problem: assign a value zi ∈ [0, 1] to each set Si so as to
minimize

∑
i zi subject to the constraint that, for every element x j ,

∑
i :x j ∈Si

zi ≥ 1. We call a z meeting
these constraints a fractional set cover.

The optimal set cover gives one possible solution to the relaxed problem, but there may be other
fractional set covers that give a smaller objective function value. However, not too much smaller. We
claim the following: Let z be any fractional set cover. Then there exists an actual set cover C of size at most
T = 	ln(n)|z|
, where |z| = ∑

i zi .
To prove this, consider the following randomized algorithm: given z, draw T sets at random from the

distribution p defined by p(Si ) = zi /|z|. With nonzero probability, this random experiment yields a set
cover. Here is why. A calculation shows that, with each draw, the chance that any given element e is covered
is at least 1/|z|. Thus, the expected number of elements left uncovered after T draws is at most

n(1 − 1/|z|)T < n exp(−T/|z|) ≤ 1

Since on average less than one element is left uncovered, it must be that some outcome of the random
experiment covers all elements.

Next we apply the method of conditional probabilities. Suppose that t sets have been chosen so far, and
let nt denote the number of elements not yet covered. Then the conditional expectation of the number of
elements left uncovered at the end is at most

φt
.= nt (1 − 1/|z|)T−t

We want the algorithm to choose each set to ensure φt ≤ φt−1, so that in the end φT ≤ φ0 < 1 and the
chosen sets form a cover.

Suppose the first t sets have been chosen, so that φt is known. A calculation shows that, if the next set
is chosen at random according to the distribution p, then E [φt+1] ≤ φt . Thus, choosing the next set to
minimize φt+1 will ensure φt+1 ≤ φt . By inspection, choosing the set to minimize φt+1 is the same as
choosing the set to minimize nt+1.

We have derived the following greedy algorithm: Repeat T times: add a set to the collection so as to
minimize the number of elements remaining uncovered. In fact, it suffices to do the following: Repeat
until all elements are covered: add a set to the collection so as to minimize the number of elements remain-
ing uncovered. (This suffices because we know from the derivation that a cover will be found within
T rounds.)

We have proven the following fact: The above greedy algorithm returns a cover of size at most minz

	ln(n)|z|
, where z ranges over all fractional set covers. Since the minimum-size set cover OPT corresponds
to a z with |z| = |OPT|, we have the following corollary: The above greedy algorithm returns a cover of size
at most 	ln(n)OPT
.

This algorithm can be generalized to weighted set cover, and slightly stronger performance guarantees
can be shown [3–6]. This particular greedy approach applies to a general class of problems called
“minimizing a linear function subject to a submodular constraint” [8].

Comment: In many cases, applying the method of conditional probabilities will not yield a greedy algo-
rithm, because the conditional expectation φt will depend on the fractional solution in a nontrivial way.
In that case, the derandomized algorithm will first have to compute the fractional solution (typically by
solving a linear program). That is Raghavan and Thompson’s standard method of randomized rounding
[27]. The variant we see here was first observed in Ref. [28]. Roughly, to get a greedy algorithm, we should
apply the method of conditional probabilities to a probabilistic proof based on repeated random sampling
from the distribution defined by the fractional optimum.
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4.10.4 Lagrangian Relaxation for Fractional Set Cover

The algorithms described above fall naturally into a larger and technically more complicated class of
algorithms called Lagrangian relaxation algorithms. Typically, such an algorithm is used to find a structure
meeting a given set of constraints. The algorithm constructs a solution in small steps. Each step is made
so as to minimize (or keep from increasing) a penalty function that approximates some of the underlying
constraints. Finally, the algorithm returns a solution that approximately meets the underlying constraints.

These algorithms typically have a greedy outer loop. In each iteration, they solve a subproblem that is
simpler than the original problem. For example, a multicommodity flow algorithm may solve a sequence
of shortest-path subproblems, routing small amounts of flow along paths chosen to minimize the sum of
edge penalties that grow exponentially with the current flow on the edge.

Historical examples include algorithms by von Neumann, Ford and Fulkerson, Dantzig-Wolfe decom-
position, Benders’ decomposition, and Held and Karp. In 1990, Shahrokhi and Matula proved a polynomial
time bound for such an algorithm for multicommodity flow. This sparked a long line of work generalizing
and strengthening this result (e.g., [29–31]). See the recent text by Bienstock [32]. These works focus
mainly on packing and covering problems—LPs and ILPs with nonnegative coefficients.

As a rule, the problems in question can also be solved by standard linear programming algorithms such
as the simplex, the ellipsoid, or interior-point algorithms. The primary motivation for studying Lagrangian
relaxation algorithms has been that, like other greedy algorithms, they can often be implemented without
explicitly constructing the full underlying problem. This can make them substantially faster.

As an example, here is a Lagrangian relaxation algorithm for fractional set cover (given an instance of the
set cover problem, find a fractional set cover z of minimum size |z| = ∑

i zi ; see the previous subsection
for definitions). Given a set cover instance and ε ∈ [0, 1/2], the algorithm returns a fractional set cover of
size at most 1 + O(ε) times the optimum:

1. Let N = 2 ln(n)/ε2, where n is the number of elements.
2. Repeat until all elements are sufficiently covered (min j c( j ) ≥ N).

3. Choose a set Si maximizing
∑

x j ∈Si
(1 − ε)c( j ), where c( j ) denotes the number of times any set

containing element x j has been chosen so far.
4. Return z, where zi is the number of times Si was chosen divided by N.

The naive implementation of this algorithm runs in O(nM log(n)/ε2) time, where M = ∑
i |Si |

is the size of the input. With appropriate modifications, the algorithm can be implemented to run in
O(M log(n)/ε2) time.

For readers who are interested, we sketch how this algorithm may be derived using the probabilistic
framework. To begin, we imagine that we have in hand any fractional set cover z∗, to which we apply the
following randomized algorithm: Define probability distribution p on the sets by p(Si ) = z∗

i /|z∗|. Draw
sets randomly according to p until every element has been covered (in a drawn set) at least N = 2 ln(n)/ε2

times. Return z, where zi is the number of times set Si was drawn, divided by N. (The reader should keep in
mind that the dependence on z∗ will be removed when we apply the method of conditional probabilities.)

Claim: With nonzero probability, the algorithm returns a fractional set cover of size at most (1 + O(ε))|z∗|.

Next we prove the claim. Let T = |z∗|N/(1 − ε). We will prove that, with nonzero probability, within T
draws each set will be covered at least N times. This will prove the claim because then the size of z is at
most T/N = |z∗|/(1 − ε).

Fix a given element x j . With each draw, the chance that x j is covered is at least 1/|z∗|. Thus, the expected
number of times x j is covered in T draws is at least T/|z∗| = N/(1 − ε). By a standard Chernoff bound,
the probability that x j is covered less than N times in T rounds is at most exp(−ε2 N/2(1 − ε)) < 1/n.

By linearity of expectation, the expected number of elements that are covered less than N times in T
rounds is less than 1. Thus, with nonzero probability, all elements are covered at least N times in T rounds.

This proves the claim. Next we apply the method of conditional probabilities to derive a greedy algorithm.
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Let X j t be an indicator variable for the event that x j is covered in round t, so that for any j the X j t ’s
are independent with E [X j t ] ≥ 1/|z∗|. Let µ = N/(1 − ε). The proof of the Chernoff-bound bounds
Pr[

∑
t X j t ≤ (1 − ε)µ] by the expectation of the following quantity:

(1 − ε)
∑

t
X j t

(1 − ε)(1−ε)µ
= (1 − ε)

∑
t

X j t

(1 − ε)N

Thus, the proof of our claim above implicitly bounds the probability of failure by the expectation of

φ =
∑

j

(1 − ε)
∑

t
X j t

(1 − ε)N

Furthermore, the proof shows that the expectation of this quantity is less than 1.
To apply the method of conditional probabilities, we will choose each set to keep the conditional expec-

tation of the above quantity φ below 1.
After the first t sets have been drawn, the random variables X j s for s ≤ t are determined, while X j s for

s > t are not yet determined. Using the inequalities from the proof of the Chernoff bound, the conditional
expectation of φ given the choices for the first t sets is at most

φt
.=

∑

j

∏
s≤t (1 − ε)X j s × ∏

s>t (1 − ε/|z∗|)
(1 − ε)N

This quantity is initially less than 1, so it suffices to choose each set to ensure φt+1 ≤ φt . If the t + 1st
set is chosen randomly according to p, then E [φt+1] ≤ φt . Thus, to ensure φt+1 ≤ φt , it suffices to
choose the set to minimize φt+1. By a straightforward calculation, this is the same as choosing the set Si

to maximize
∑

x j ∈Si
(1 − ε)�s≤t X j t . This gives us the algorithm in question (at the top of this section).

From the derivation, we know the following fact: The algorithm above returns a fractional set cover of size
at most (1 + O(ε)) minz∗ |z∗|, where z∗ ranges over all the fractional set covers.

4.11 Conclusions

In this chapter we surveyed a collection of problems and described simple greedy algorithms for several of
these problems. In several cases, the greedy algorithms described do not represent the state of the art for
these problems. The reader is referred to other chapters in this handbook to read in more detail about the
specific problems and the techniques that yield the best worst-case approximation guarantees. In many
instances, the performance of greedy algorithms may be better than their worst-case bounds suggest. This
and their simplicity make them important in practice.

For some problems (e.g., set cover), it is known that a greedy algorithm gives the best possible approxi-
mation ratio unless N P ⊂ DTIME(nlog log n). But for some problems no such intractability results are yet
known. In these cases, instead of proving hardness of approximation for all polynomial-time algorithms,
one may try something easier: to prove that no greedy algorithm gives a good approximation. Of course this
requires a formal definition of the class of algorithms. (A similar approach has been fruitful in competitive
analysis of online algorithms.) Such a formal study of greedy algorithms with an eye toward lower bound
results has been the subject of several recent papers [33].

For additional information on combinatorial optimization, the reader is referred to books by
Papadimitriou and Steiglitz [2], Cook et al. [34], and a series of three books by Schrijver [35]. For more
on approximation algorithms, there is a book by Vazirani [23], lecture notes by Motwani [36], and a book
edited by Hochbaum [37]. There is a chapter on greedy algorithms in several textbooks, such as Kleinberg
and Tardos [38], and Cormen et al. [39]. More on randomized algorithms can be found in a book by
Motwani and Raghavan [40], and a survey by Shmoys [41].
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5.1 Introduction

Greedy algorithms are often the first algorithms that one considers for various optimization problems,
and, in particular, covering problems. The idea is very simple: try to build a solution incrementally by
augmenting a partial solution. In each iteration, select the “best” augmentation according to a simple
criterion. The term greedy is used because the most common criterion is to select an augmentation that
minimizes the ratio of “cost” to “advantage.” We refer to the cost-to-advantage ratio of an augmentation
as the density of the augmentation.

In the set-cover (SC) problem, every set S has a weight (or cost) w(S). The “advantage” of a set S with
respect to a partial cover {S1, . . . , Sk} is the number of new elements covered by S, i.e., |S \ (S1 · · · Sk)|.
In each iteration, a set with a minimum density is selected and added to the partial solution until all the
elements are covered. In the SC problem, it is easy to find an augmentation with minimum density simply
by recomputing the density of every set in every iteration.

In this chapter, we consider problems for which it is NP-hard to find an augmentation with minimum
density. From a covering point of view, this means that there are exponentially many sets. However, these
sets are succinctly represented using a structure with polynomial complexity. For example, the sets can be
paths or trees in a graph. In such problems, applying the greedy algorithm is a nontrivial task. One way
to deal with such a difficulty is to try to approximate a minimum density augmentation. Interestingly,
the augmentation itself is computed using a greedy algorithm, and this is why the algorithm is called the
recursive greedy algorithm.

The recursive greedy algorithm was presented by Zelikovsky [1] and Kortsarz and Peleg [2]. In Ref. [1],
the directed Steiner tree (DST) problem in acyclic graphs was considered. In the DST problem, the input
consists of a directed graph G = (V, E ) with edge weights w(e), a subset X ⊆ V of terminals, and a
root r ∈ V . The goal is to find a minimum-weight subgraph that contains directed paths from r to every
terminal in X . In Ref. [2], the bounded diameter Steiner tree (BDST) problem was considered. In the
BDST problem, the input consists of an undirected graph G = (V, E ) with edge costs w(e), a subset of
terminals X ⊆ V , and a diameter parameter d . The goal is to find a minimum-weight tree that spans

5-1
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X with diameter bounded by d . In both papers, it is proved that, for every ε > 0, the recursive greedy
algorithm achieves an O(|X|ε) approximation ratio in polynomial time. The recursive greedy algorithm
is still the only nontrivial approximation algorithm known for these problems.

The presentation of the recursive greedy algorithm was simplified and its analysis was perfected by
Charikar et al. [3]. In Ref. [3], the recursive greedy algorithm was used for the DST problem. The improved
analysis gave a poly-logarithmic approximation ratio in quasi-polynomial time (i.e., running time is
O(nc log n), for a constant c).

The recursive greedy algorithm is a combinatorial algorithm (i.e., no linear programming or high
precision arithmetic is used). The algorithm’s description is simple and short. The analysis captures the
intuition regarding the segments during which the greedy approach performs well. The running time of
the algorithm is exponential in the depth of the recursion, and hence, reducing its running time is an
important issue.

We present modifications of the recursive greedy algorithm that enable reducing the running time. Un-
fortunately, these modifications apply only to the restricted case in which the graph is a tree. We demonstrate
these methods on the Group Steiner (GS) problem [4] and its restriction to trees [5]. Following Ref. [6],
we show that for the GS problem over trees, the recursive greedy algorithm can be modified to give a poly-
logarithmic approximation ratio in polynomial time. Better poly-logarithmic approximation algorithms
were developed for the GS problem; however, these algorithms rely on linear programming [5,7].

5.1.1 Organization

In Section 5.2, we review the greedy algorithm for the SC problem. In Section 5.3, we present three
versions of DST problems. We present simple reductions that allow us to focus on only one version.
Section 5.4 constitutes the heart of this chapter; in it the recursive greedy algorithm and its analysis are
presented. In Section 5.5, we consider the GS problem over trees. We outline modifications of the recursive
greedy algorithm that enable a poly-logarithmic approximation ratio in polynomial time. We conclude in
Section 5.6 with open problems.

5.2 A Review of the Greedy Algorithm

In this section we review the greedy algorithm for the SC problem and its analysis.
In the SC problem we are given a set of elements, denoted by U = {1, . . . , n} and a collection R of

subsets of U . Each subset S ∈ R is also given a nonnegative weight w(S). A subset C ⊆ R is an SC if⋃
S ′∈C S ′ = {1, . . . , n}. The weight of a subset of R is simply the sum of the weights of the sets in R. The

goal in the SC problem is to find a cover of minimum weight. We often refer to a subset of R that is not a
cover as a partial cover.

The greedy algorithm starts with an empty partial cover. A cover is constructed by iteratively asking an
oracle for a set to be added to the partial cover. This means that no backtracking takes place; every set that
is added to the partial cover is kept until a cover is obtained. The oracle looks for a set with the lowest
residual density, defined as follows.

Definition 5.1

Given a partial cover C, the residual density of a set S is the ratio

ρC(S)
�= w(S)

|S \ ⋃
S ′∈C S ′|

Note that the residual density is nondecreasing (and may even increase) as the greedy algorithm accu-
mulates sets. The performance guarantee of the greedy algorithm is summarized in the following theorem
(see Chapter 4).
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Theorem 5.1

The greedy algorithm computes a cover whose cost is at most (1 + ln n)·w(C∗), where C∗ is a minimum-weight
cover.

There are two main questions that we wish to ask about the greedy algorithm:

Question 1: What happens if the oracle is approximate? Namely, what if the oracle does not return a set
with minimum residual density, but a set whose residual density is at most α times the minimum
residual density? How does such an approximate oracle affect the approximation ratio of the greedy
algorithm? In particular, we are interested in the case that α is not constant (e.g., α depends on
the number of uncovered elements). We note that in the SC problem, an exact oracle is easy to
implement. But we will see a generalization of the SC problem in which the task of an exact oracle
is NP-hard, and hence we will need to consider an approximate oracle.

Question 2: What happens if we stop the execution of the greedy algorithm before a complete cover is
obtained? Suppose that we stop the greedy algorithm when the partial cover covers β ·n elements in
U . Can we bound the weight of the partial cover? We note that one reason for stopping the greedy
algorithm before it ends is that we simply run out of “budget” and cannot “pay” for additional sets.

The following lemma helps answer both questions. Let x denote the number of elements that are not
covered by the partial cover. We say that the oracle is α(x)-approximate if the residual density of the set it
finds is at most α(x) times the minimum residual density.

Lemma 5.1 (Charikar et al. [3])

Suppose that the oracle of the greedy algorithm is α(x)-approximate and that α(x)/x is a nonincreasing
function. Let Ci denote partial cover accumulated by the greedy algorithm after adding i sets. Then,

w(Ci )

w(C∗)
≤

∫ n

n−|∪S′∈Ci
S ′|

α(x)

x
dx

Proof
The proof is by induction on n. When n = 1, the algorithm simply returns a set S such that w(S) ≤
α(1) ·w(C∗). Since α(x)/x is nonincreasing, we conclude that α(1) ≤ ∫ 1

0
α(x)

x dx , and the induction basis
follows.

The induction step for n > 1 is proved as follows. Let Ci = {S1, . . . , Si }. When the oracle computes
S1, its density satisfies: w(S1)/|S1| ≤ α(n) · w(C∗)/n. Hence, w(S1) ≤ |S1| · α(n)

n · w(C∗). Since α(x)/x

is nonincreasing, |S1| · α(n)
n ≤ ∫ n

n−|S1|
α(x)

x dx . We conclude that

w(S1) ≤
∫ n

n−|S1|
α(x)

x
dx · w(C∗) (5.1)

Now consider the residual set system over the set of elements {1, . . . , n}\S1 with the sets S ′ = S\S1.
We keep the set weights unchanged, i.e., w(S ′) = w(S). The collection {S ′

2, . . . , S ′
i } is the output of the

greedy algorithm when given this residual set system. Let n′ = |S ′
2 ∪ · · · ∪ S ′

i |. Since C∗ induces a cover of
the residual set with the same weight as w(C∗), the induction hypothesis implies that

w(S ′
2) + · · · + w(S ′

i ) ≤
∫ n−|S1|

n−(n′+|S1|)
α(x)

x
dx · w(C∗). (5.2)

The lemma follows now by adding Eq. (5.1) and Eq. (5.2).
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FIGURE 5.1 Reduction of SC instance to DST instance.

We remark that for a full cover, since
∫ 1

0 dx/x is not bounded, one could bound the ratio by α(1) +∫ n
1

α(x)
x dx . Note that for an exact oracle α(x) = 1, this modification of Lemma 5.1 implies Theorem 5.1.

Lemma 5.1 shows that the greedy algorithm also works with approximate oracles. If α(x) = O(log x),
then the approximation ratio of the greedy algorithm is simply O(α(n) · log n). But, for example, if
α(x) = xε , then the lemma “saves” a factor of log n and shows that the approximation ratio is 1

ε
· nε . So

this settles the first question.
Lemma 5.1 also helps settle the second question. In fact, it proves that the greedy algorithm (with an

exact oracle) is a bicriteria algorithm in the following sense.

Claim 5.1

If the greedy algorithm is stopped when β · n elements are covered, then the cost of the partial cover is bounded
by ln ( 1

1−β
) · w(C∗).

The greedy algorithm surly does well with the first set it selects, but what can we say about the remaining
selections? Claim 5.1 quantifies how well the greedy algorithm does as a function of the portion of the
covered elements. For example, if β = 1 − 1/e , then the partial cover computed by the greedy algorithm
weighs no more than w(C∗). (We ignore here the knapsack-like issue of how to cover “exactly” β · n
elements, and assume that, when we stopped the greedy algorithm, the partial cover covers β ·n elements.)
The lesson to be remembered here is that the greedy algorithm performs “reasonably well” as long as “few”
elements have been covered.

The DST problem is a generalization of the SC problem. In fact, every SC instance can be represented
as a DST instance over a layered directed graph with three vertex layers (see Figure 5.1). The top layer
contains only a root, the middle layer contains a vertex for every set, and the bottom layer contains a vertex
for every element. The weight of an edge from the root to a set is simply the weight of the set. The weight of
all edges from sets to elements are zero. The best approximation algorithm for SC is the greedy algorithm.
What form could a greedy algorithm have for the DST problem?

5.3 Directed Steiner Problems

In this section, we present three versions of DST problems. We present simple reductions that allow us to
focus on only the last version.

Notation and Terminology
We denote the vertex set and edge set of a graph G by V(G) and E (G), respectively. An arborescence T
rooted at r is a directed graph such that (i) the underlying graph of T is a tree (i.e., if edge directions are
ignored in T , then T is a tree), and (ii) there is a directed path in T from the root r to every node in T. If an
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arborescence T is a subgraph of G , then we say that T covers (or spans) a subset of vertices X if X ⊆ V(T).
If edges have weights w(e), then the weight of a subgraph G ′ is simply

∑
e∈E (G ′) w(e). We denote by Tv

the subgraph of T that is induced by all the vertices reachable from v (including v).

5.3.1 The Problems

The DST Problem
In the DST problem the input consists of a directed graph G , a set of terminals X ⊆ V(G), positive edge
weights w(e), and a root r ∈ V(G). An arborescence T rooted at r is a DST if it spans the set of terminals
X . The goal in the DST problem is to find a minimum-weight DST.

The k-DST Problem
Following Ref. [3], we consider a version of the DST problem, called k-DST, in which only part of the
terminals must be covered. In the k-DST problem, there is an additional parameter k, often called the
demand. An arborescence T rooted at r is a k-partial DST (k-DST) if |V(T) ∩ X| ≥ k. The goal in the
k-DST problem is to find a minimum-weight k-partial DST. We denote the weight of an optimal k-partial
DST by DS∗(G , X, k). (Formally, the root r should be a parameter, but we omit it to shorten the notation.)
We encode DST instances as k-DST instances simply by setting k = |X|.
The �-Shallow k-DST Problem
Following Ref. [2], we consider a version of the k-DST problem in which the length of the paths from
the root to the terminals is bounded by a parameter �. A rooted arborescence in which every node is at
most � edges away from the root is called an �-layered tree. (Note that we count the number of layers of
edges; the number of layers of nodes is � + 1.) In the �-shallow k-DST problem, the goal is to compute a
minimum k-DST among all �-layered trees.

5.3.2 Reductions

Obviously, the k-DST problem is a generalization of the DST problem. Similarly, the �-shallow k-DST
problem is a generalization of the k-DST problem (i.e., simply set � = |V | − 1). The only nontrivial
approximation algorithm we know is for the �-shallow k-DST problem; this approximation algorithm is
a recursive greedy algorithm. Since its running time is exponential in �, we need to consider reductions
that result with as small as possible values of �.

For this purpose we consider two well-known transformations: transitive closure and layering. We now
define each of these transformations.

Transitive Closure
The transitive closure of G is a directed graph TC(G) over the same vertex set. For every u, v ∈ V , the
pair (u, v) is an edge in E (TC(G)) if there is a directed path from u to v in G . The weight w ′(u, v) of an
edge in E (TC(G)) is the minimum weight of a path in G from u to v.

The weight of an optimal k-DST is not affected by applying transitive closure namely,

DS∗(G , X, k) = DS∗(TC(G), X, k) (5.3)

This means that replacing G by its transitive closure does not change the weight of an optimal k-DST.
Hence, we may assume that G is transitively closed, i.e., G = TC(G).

Layering
Let � denote a positive integer. We reduce the directed graph G into an �-layered directed acyclic graph
L G� as follows (see Figure 5.2). The vertex set V(L G�) is simply V(G) × {0, . . . , �}. The j th layer
in V(L G�) is the subset of vertices V(G) × { j }. We refer to V(G) × {0} as the bottom layer and to
V(G) × {�} as the top layer. The graph L G� is layered in the sense that E (L G�) contains only edges
from the V(G) × { j + 1} to V(G) × { j }, for j < �. The edge set E (L G�) contains two types of
edges: regular edges and parallel edges. For every (u, v) ∈ E (G) and every j < �, there is a regular
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V × {�}

V × {1}

V × {0}

V × {� − 1}

(u, �)

(u, � − 1) (v, � − 1)

(v, �)

(u, 1) (v, 1)

(u, 0) (v, 0)

w(u, v)

w(u, v)

0 0

0 0

FIGURE 5.2 Layering of a directed graph G . Only parallel edges incident to images of u, v ∈ V(G) and regular edges
corresponding to (u, v) ∈ E (G) are depicted.

edge (u, j + 1) → (v, j ) ∈ E (L G�). For every u ∈ V and every j < �, there is a parallel edge
(u, j + 1) → (u, j ) ∈ E (L G�). All parallel edges have zero weight. The weight of a regular edge is
inherited from the original edge, namely, w((u, j + 1) → (v, j )) = w(u, v). The set of terminals X ′ in
V(L G�) is simply X × {0}, namely, images of terminals in the bottom layer. The root in L G� is the node
(r, �). The following observation shows that we can restrict our attention to layered graphs.

Observation 5.1

There is a weight- and terminal-preserving correspondence between �-layered r -rooted trees in G and (r, �)-
rooted trees in L G�. In particular, w(L T∗

� ) = DS∗(L G�, X ′, k), where L T∗
� denotes a minimum-weight

k-DST among all �-layered trees.

Observation 5.1 implies that if we wish to approximate L T∗
� , then we may apply layering and assume

that the input graph is an �-layered acyclic graph in which the root is in the top layer and all the terminals
are in the bottom layer.

Limiting the Number of Layers
As we pointed out, the running time of the recursive greedy algorithm is exponential in the number of
layers. It is therefore crucial to be able to bound the number of layers. The following lemma bounds the
penalty incurred by limiting the number of layers in the Steiner tree. The proof of the lemma appears in
Appendix A and uses notation introduced in Section 5.4. (A slightly stronger version appears in Ref. [8],
with the ratio 21−1/� · � · k1/�.)

Lemma 5.2 (Zelikovsky [1], corrected in Helvig et al. [8])

If G is transitively closed, then w(L T∗
� ) ≤ �

2 · k2/� · DS∗(G , X, k).

It follows that an α-approximate algorithm for an �-shallow k-DST is also an αβ-approximation algo-
rithm for k-DST, where β = �

2 · k2/�. We now focus on the development of an approximation algorithm
for the �-shallow k-DST problem.
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5.4 A Recursive Greedy Algorithm for �-Shallow k-DST

This section presents a recursive greedy algorithm for the �-shallow k-DST problem. Based on the layering
transformation, we assume that the input graph is an �-layered acyclic directed graph G . The set of
terminals, denoted by X , is contained in the bottom layer. The root, denoted by r , belongs to the top layer.

5.4.1 Motivation

We now try to extend the greedy algorithm to the �-shallow k-DST problem. Suppose we have a directed
tree T ⊆ G that is rooted at r . This tree only covers part of the terminals. Now we wish to augment T so
that it covers more terminals. In other words, we are looking for an r -rooted augmenting tree Taug to be
added to the T . We follow the minimum density heuristic, and define the residual density of Taug by

ρT (Taug )
�= w(Taug )

|(Taug ∩ X)\(T ∩ X)|
All we need now is an algorithm that finds an augmenting tree with the minimum residual density.

Unfortunately, this problem is by itself NP-hard. Consider the following reduction: Let G denote the
two-layered DST instance mentioned above to represent an SC instance. Add a layer with a single node r ′
that is connected to the root r of G . The weight of the edge (r ′, r ) should be large (say, n times the sum of
the weights of the sets). It is easy to see that every minimum density subtree must span all the terminals.
Hence, every minimum density subtree induces a minimum-weight SC, and finding a minimum density
subtree in a three-layered graph is already NP-hard. We show in Section 5.4.3 that for two or less layers,
one can find a minimum density augmenting tree in polynomial time.

We already showed that the greedy algorithm also works well with an approximate oracle. So we try
to approximate a subtree with minimum residual density. The problem is how to do it? The answer is by
applying a greedy algorithm recursively!

Consider an �-layered directed graph and a root r . The algorithm finds a low-density �-layered aug-
menting tree by accumulating low-density (� − 1)-layered augmenting trees that hang from the children
of r . These trees are found by augmenting low-density trees that hang from grandchildren of r , and so on.
We now formally describe the algorithm.

5.4.2 The Recursive Greedy Algorithm

Notation
We denote the number of terminals in a subgraph G ′ by k(G ′) (i.e., k(G ′) = |X ∩ V(G ′)|). Similarly, for
a set of vertices U , k(U ) = |X ∩ U |. We denote the set of vertices reachable in G from u by desc(u). We
denote the layer of a vertex u by layer (u) (e.g., if u is a terminal, then layer (u) = 0).

Description
A listing of the algorithm DS(u, k, X) appears as Algorithm 5.1. The stopping condition is when u belongs
to the bottom layer or when the number of uncovered terminals reachable from u is less than the demand
k (i.e., the instance is infeasible). In either case, the algorithm simply returns the root {r }.

The algorithm maintains a partial cover T that is initialized to the single vertex u. The augmenting tree
Taug is selected as the best tree found by the recursive calls to the children of u (together with the edge from
u to its child). Note that the recursive calls are applied to all the children of u and all the possible demands
k′. After Taug is added to the partial solution, the terminals covered by Taug are erased from the set of
terminals so that the recursive calls will not attempt to cover terminals again. Once the demand is met,
namely, k terminals are covered, the accumulated cover T is returned.

The algorithm is invoked with the root r , the demand k, and the set of terminals X . Note that if the
instance is feasible (namely, at least k terminals are reachable from the root), then the algorithm never
encounters infeasible subinstances during its execution.
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Algorithm 5.1 DS(u, k, X)—A recursive greedy algorithm for the Directed Steiner Tree Problem. The
graph is layered and all the vertices in the bottom layer are terminals. The set of terminals is denoted by
X . We are searching for a tree rooted at u that covers k terminals.

1: stopping condition: if layer (u) = 0 or k(desc(u)) < k then return ({u}).
2: initialize: T ← {u}; Xr es ← X .
3: while k(T) < k do
4: recurse: for every v ∈ children(u) and every k′ ≤ min{k − k(T), |desc(v) ∩ Xres)|}

Tv,k′ ← DS(v, k′, Xres).

5: select: Let Taug be a lowest residual density tree among the trees Tv,k′ ∪ {(u, v)}, where
v ∈ children(u) and k′ ≤ k − k(T).

6: augment & update: T ← T ∪ Taug ; Xres ← Xres\V(Taug ).
7: end while
8: return (T).

5.4.3 Analysis

Minimum Residual Density Subtree
Consider a partial solution T rooted at u accumulated by the algorithm. A tree T ′ rooted at u is a candidate
tree for augmentation, if (i) every vertex v ∈ V(T ′) in the bottom layer of G is in Xres (i.e., T ′ covers only
new terminals) and (ii) 0 < k(T ′) ≤ k − k(T) (i.e., T ′ does not cover more terminals than the residual
demand). We denote by T ′

u a tree with minimum residual density among all the candidate trees.
We leave the proof of the following lemma as an exercise.

Lemma 5.3

Assume that wi , ki > 0, for every 0 ≤ i ≤ n. Then, mini
wi
ki

≤
∑

i
wi∑

i
ki

≤ maxi
wi
ki

.

Corollary 5.1

If u is not a terminal, then we may assume that u has a single child in T ′
u.

Proof
We show that we could pick a candidate tree with minimum residual density in which u has a single child.
Suppose that u has more than one child in T ′

u . To every edge e j = (u, v j ) ∈ E (T ′
u) we match a subtree

Aej of T ′
u . The subtree Ae j contains u, the edge (u, v j ), and the subtree of T ′

u hanging from v j . The
subtrees {Ae j }e j form an edge-disjoint decomposition of T ′

u . Let w j = w(Ae j ) and k j = k(Ae j\T). Since
u is not a terminal, the subtrees {Ae j }e j partition the terminals in V(T ′

u), and k(T ′
u) = ∑

j k j . Similarly,
w(T ′

u) = ∑
j w j . By Lemma 5.3, it follows that one of the trees Ae j has a residual density that is not

greater than the residual density of T ′
u . Use this minimum residual density subtree instead of T ′

u , and the
corollary follows.

Density
Note that edge weights are nonnegative and already covered terminals do not help in reducing the residual
density. Therefore, every augmenting tree Taug covers only new terminals and does not contain terminals
already covered by T . It follows that every terminal in Taug belongs to Xres and, therefore, k(Taug ) =
|Taug ∩ Xres|. We may assume that the same holds for T ′

u ; namely, T ′
u does not contain already covered

terminals. Therefore, where possible, we ignore the “context” T in the definition of the residual density
and simply refer to density, i.e., the density of a tree T ′ is ρ(T ′) = w(T ′)/|V(T ′) ∩ X|.
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Notation and Terminology
A directed star is a one-layered rooted directed graph (i.e., there is a center out of which directed edges
emanate to the leaves). We abbreviate and refer to a directed star simply as a star. A flower is a two-layered
rooted graph in which the root has a single child.

Bounding the Density of Augmenting Trees
When layer (u) = 1, if u has least k terminal neighbors, then the algorithm returns a star centered
at u. The number of edges emanating from r in the star equals k, and these k edges are the k lightest
edges emanating from r to terminals. It is easy to see that in this case the algorithm returns an optimal
k-DST.

The analysis of the algorithm is based on the following claim that bounds the ratio between the densities
of the augmenting tree and T ′

u .

Claim 5.2 (Charikar et al. [3])

If layer (u) ≥ 2, then, in every iteration of the while loop in an execution of DS(u, k), the subtree Taug satisfies

ρ(Taug) ≤ (layer (u) − 1) · ρ(T ′
u)

Proof
The proof is by induction on layer (u). Suppose that layer (u) = 2. By Corollary 5.1, T ′

u is a flower that
consists of a star Sv centered at a neighbor v of u, the node u, and the edge (u, v). Moreover, Sv contains the
k(T ′

u) closest terminals to v. When the algorithm computes Taug it considers all stars centered at children
v′ of u consisting of the k′ ≤ k −k(T) closest terminals to v′. In particular, it considers the star Sv together
with the edge (u, v). Hence, ρ(Taug) ≤ ρ(T ′

u), as required.
We now prove the induction step for layer (u) > 2. Let i = layer (u). The setting is as follows: During

an execution of DS(u, X), a partial cover T has been accumulated, and now an augmenting tree Taug is
computed. Our goal is to bound the density of Taug .

By Corollary 5.1, u has a single child in T ′
u . Denote this child by u′. Let Bu′ denote the subtree of T ′

u that
hangs from u′ (i.e., Bu′ = T ′

u \{u, (u, u′)}). Let k′ = k(T ′
u).

We now analyze the selection of Taug while bearing in mind the existence of the “hidden candidate” T ′
u

that covers k′ terminals. Consider the tree Tu′,k′ computed by the recursive call DS(u′, k′, Xres). We would
like to argue that Tu′,k′ should be a good candidate. Unfortunately, that might not be true! However, recall
that the greedy algorithm does “well” as long as “few” terminals are covered. So we wish to show that a
“small prefix” of Tu′,k′ is indeed a good candidate. We now formalize this intuition.

The tree Tu′,k′ is also constructed by a sequence of augmenting trees, denoted by {A j } j . Namely,
Tu′,k′ = ⋃

j A j . We identify the smallest index � for which the union of augmentations A1 ∪ · · · ∪ A�

covers at least k′/(i − 1) terminals (recall that i = layer (u)). Formally,

k




�−1⋃

j=1

A j



 <
k′

(i − 1)
≤ k




�⋃

j=1

A j





Our goal is to prove the following two facts. Fact (1): Let k′′ = k(
⋃�

j=1 A j ), then the candidate

tree Tu′,k′′ = DS(u′, k′′, Xres) equals the prefix
⋃�

j=1 A j . Fact (2): The density of Tu′,k′′ is small, i.e.,
ρ(Tu′,k′′) ≤ (i − 1) · ρ(Bu′).

The first fact is a “simulation argument” since it claims that the union of the first � augmentations
computed in the course of the construction of Tu′,k′ is actually one of the candidate trees computed
by the algorithm. This simulation argument holds because, as long as the augmentations do not meet
the demand, the same prefix of augmentations is computed. Note that k′′ is the formalization of “few”
terminals (compared to k′). Using k′/(i −1) as an exact measure for a few terminals does not work because
the simulation argument would fail.

The second fact states that the density of the candidate Tu′,k′′ is smaller than (i − 1) · ρ(Bu′). Note
that Bu′ and A1 ∪ · · · ∪ A�−1 may share terminals (in fact, we would “like” the algorithm to “imitate”
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Bu′ as much as possible). Hence, the residual density of Bu′ may increase as a result of adding the trees
A1, . . . , A�−1. However, since k(A1 ∪ · · · ∪ A�−1) < k′/(i − 1), it follows that even after accumulating
A1 ∪ · · · ∪ A�−1, the residual density of Bu′ does not grow much. Formally, the residual density of Bu′
after accumulating A1 ∪ · · · ∪ A�−1 is bounded as follows:

ρ(T∪A1∪···∪A�−1)(Bu′) = w(Bu′)

k′ − k(A1 ∪ · · · A�−1)

≤ w(Bu′)

k′ · (1 − 1
i−1 )

=
(

i − 1

i − 2

)

· ρ(Bu′) (5.4)

We now apply the induction hypothesis to the augmenting trees A j (for j ≤ �), and bound their residual
densities by (layer (u′) − 1) times the “deteriorated” density of Bu′ . Formally, the induction hypothesis
implies that when A j is selected as an augmentation tree its density satisfies:

ρ(A j ) ≤ (i − 2) · ρ(T∪A1···∪A j−1)(Bu′)

≤ (i − 1) · ρ(Bu′) (by Eq. (5.4))

By Lemma 5.3, ρ(
⋃�

j=1 A j ) ≤ max j=1...� ρ(A j ). Hence, ρ(Tu′,k′′) ≤ (i − 1) · ρ(Bu′), and the second
fact follows.

To complete the proof, we need to deal with the addition of the edge (u, u′).

ρ({(u, u′)} ∪ Tu′,k′′) = w(u, u′) + w(Tu′,k′′)

k′′

≤ w(u, u′)
k′ · (i − 1) + ρ(Tu′,k′′)

(

since k′′ ≥ k′

i − 1

)

≤ (i − 1) · ρ({(u, u′)} ∪ Bu′) (by fact [2])

= (i − 1) · ρ(T ′
u)

The claim follows since {(u, u′)} ∪ Tu′,k′′ is only one of the candidates considered for the augmenting tree
Taug and hence ρ(Taug) ≤ ρ({(u, u′)} ∪ Tu′,k′′).

Approximation Ratio
The approximation ratio follows immediately from Lemma 5.1.

Claim 5.3

Suppose that G is �-layered. Then, the approximation ratio of Algorithm DS(r, k, X) is O(� · log k).

Running Time
For each augmenting tree, Algorithm DS(u, k, X) invokes at most n · k recursive calls from children of u.
Each augmentation tree covers at least one new terminal, so there are at most k augmenting trees. Hence,
there are at most n · k2 recursive calls from the children of u. Let time (�) denote the running time of
DS(u, k, X), where � = layer (u). Then the following recurrence holds: time (�) ≤ (n · k2) · time (� − 1).
We conclude that the running time is O(n� · k2�).

5.4.4 Discussion

Approximation of k-DST
The approximation algorithm is presented for �-layered acyclic graphs. In Section 5.3.2, we presented a
reduction from the k-DST problem to the �-shallow k-DST problem. The reduction is based on layering
and its outcome is an �-layered acyclic graph. We obtain the following approximation result from this
reduction.
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Theorem 5.2 (Charikar et al. [3])

For every �, there an O(�3 · k2/�)-approximation algorithm for the k-DST problem with running time
O(k2� · n�).

Proof
The preprocessing time is dominated by the running time of DS(r, k, X) on the graph after it is transitively
closed and layered into � layers.

Let R∗ denote a minimum residual density augmenting tree in the transitive closure of the graph
(without the layering). Let T ′

k∗ denote a minimum residual subtree rooted at u in the layered graph among
the candidate trees that cover k(R∗) terminals. By Lemma 5.2, w(T ′

k∗) ≤ �/2 · k(R∗)�/2 · w(R∗), and
hence, ρ(T ′

k∗) ≤ �/2 · k(R∗)�/2 · ρ(R∗). Since ρ(T ′
u) ≤ ρ(T ′

k∗), by Claim 5.2 it follows that ρ(Taug ) ≤
(� − 1) · �/2 · k2/� · ρ(R∗).

We now apply Lemma 5.1. Note that
∫

x2/�

x dx = �
2 · x2/�. Hence, w(T) = O(�3 · k2/�), where T is the

tree returned by the algorithm, and the theorem follows.

We conclude with the following result.

Corollary 5.2

For every constant ε > 0, there exists a polynomial-time O(k1/ε)-approximation algorithm for the k-DST
problem. There exists a quasi-polynomial-time O(log3 k)-approximation algorithm for the k-DST problem.

Proof
Substitute � = 2/ε and � = log k in Theorem 5.2.

Preprocessing
Computing the transitive closure of the input graph is necessary for the correctness of the approximation
ratio. Recall that Lemma 5.2 holds only if G is transitively closed.

Layering, on the other hand, is used to simplify the presentation. Namely, the algorithm can be described
without layering (see Refs. [2,3]). The advantage of using layering is that it enables a unified presentation
of the algorithm (i.e., there is no need to deal differently with one-layered trees). In addition, the layered
graph is acyclic, so we need not consider multiple “visits” of the same node. Finally, for a given node u,
we know from its layer what the recursion level is (i.e., the recursion level is � − layer (u)) and what the
height of the tree we are looking for is (i.e., current height is layer (u)).

Suggestions for Improvements
One might try to reduce the running time by not repeating computations associated with the computations
of candidate trees. For example, when computing the candidate Tv,k−k(T) the algorithm computes a
sequence of augmenting trees that is used to build also other candidates rooted at v that cover fewer
terminals (we relied on this phenomenon in the simulation argument used in the proof of Claim 5.2).
However, such improvements do not seem to reduce the asymptotic running time; namely, the running
time would still be exponential in the number of layers and the basis would still be polynomial. We discuss
other ways to reduce the running time in the next section.

Another suggestion to improve the algorithm is to zero the weight of edges when they are added to the
partial cover T (see Ref. [1]). Unfortunately, we do not know how to take advantage of such a modification
in the analysis and, therefore, keep the edge weights unchanged even after we pay for them.

5.5 Improving the Running Time

In this section, we consider a setting in which the recursive greedy algorithm can be modified to obtain
a poly-logarithmic approximation ratio in polynomial time. The setting is with a problem called the GS
problem, and only part of the modifications are applicable also to the k-DST problem. (Recall that the
problem of finding a polynomial-time poly-logarithmic approximation algorithm for k-DST is still open.)
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Motivation
We saw that the running time of the recursive greedy algorithm is O((nk2)�), where k is the demand (i.e.,
number of terminals that needs to be covered), the degree of a vertex can be as high as n−1 (since transitive
closure was applied), and � is the bound on the number of layers we allow in the k-DST.

To obtain polynomial running times, we first modify the algorithm and preprocess the input so that its
running time is log(n)O(�). We then set � = log n/ log log n. Note that

(log n)
log n

log log n = n

Hence, a polynomial running time is obtained.
Four modifications are required to make this idea work:

1. Bound the number of layers—we already saw that the penalty incurred by limiting the number of
layers can be bounded. In fact, according to Lemma 5.2, the penalty incurred by � = log n/ log log n
is poly-logarithmic (since � · k2/� = (log n)O(1)).

2. Degree reduction—we must reduce the maximum degree so that it is poly-logarithmic, otherwise
too many recursive calls are invoked. Preprocessing of GS instances over trees achieves such a
reduction in the degree.

3. Avoid small augmenting trees—we must reduce the number of iterations of the while loop. The
number of iterations can be bounded by (log n)c if we require that every augmenting tree must
cover at least a poly-logarithmic fraction of the residual demand.

4. Geometric search—we must reduce the number of recursive calls. Hence, instead of considering all
demands below the residual demand, we consider only demands that are powers of (1 + ε).

The GS Problem over Trees
We now present a setting where all four modifications can be implemented. In the GS problem over trees,
the input consists of: (1) an undirected tree T rooted at r with nonnegative edge edges w(e), and (2) groups
gi ⊆ V(T) of terminals. A subtree T ′ ⊆ T rooted at r covers k groups if V(T ′) intersects at least k groups.
We refer to a subtree that covers k groups as a k-GS tree. The goal is to find a minimum-weight k-GS tree.

We denote the number of vertices by n and the number of groups by m. For simplicity, assume that
every terminal is leaf of T and that every leaf of T is a terminal. In addition, we assume that the groups gi

are disjoint. Note that the assumption that the groups are disjoint implies that
∑m

i=1 |gi | ≤ n.

Bounding the Number of Layers
Lemma 5.2 applies also to GS instances over trees, provided that transitive closure is used. Before transitive
closure is used, we direct the edges from the node closer to the root to the node farther away from the
root. As mentioned above, limiting the number of layers to � = log n/ log log n incurs a poly-logarithmic
penalty.

However, there is a problem with bounding the number of layers according to Lemma 5.2. The problem
is that we need to transitively close the tree. This implies that we lose the tree topology and end up with
an directed acyclic graph instead. Unfortunately, we only know how to reduce the maximum degree of
trees, not of directed acyclic graphs. Hence, we need to develop a different reduction that keeps the tree
topology.

In Ref. [6], a height reduction for trees is presented. This reduction replaces T by an �-layered tree T ′.
The penalty incurred by this reduction is O(nc/�), where c is a constant. The details of this reduction
appear in Ref. [6].

Reducing the Maximum Degree
We now sketch how to preprocess the tree T to obtain a tree ν(T) such that: (i) There is a weight preserving
correspondence between k-GS trees in T and in ν(T). (ii) The maximum number of children of a vertex
in ν(T) is bounded by an integer β ≥ 3. (iii) The number of layers in ν(T) is bounded by the number of
layers in T plus �logβ/2 n. We set β = �log n�, and obtain the required reduction.
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We define a node v ∈ V(T) to be β-heavy if the number of terminals that are descendents of v is at
least n/β; otherwise v is β-light.

Given a tree T rooted at u and a parameter β, the tree ν(T) is constructed recursively as follows. If u is a
leaf, then the algorithm returns u. Otherwise, the star induced by u and its children is locally transformed
as follows. Let v1, v2, . . . , vk denote the children of u.

1. Edges between u and β-heavy children vi of u are not changed.
2. The β-light children of u are grouped arbitrarily into minimal bunches such that each bunch (except

perhaps for the last) is β-heavy. Note that the number of leaves in each bunch (except perhaps for
the last bunch) is in the half-closed interval [nu/β, 2nu/β). For every bunch B , a new node b is
created. An edge (u, b) is added as well as edges between b and the children of u in the bunch B .
The edge weights are set as follows: (a) w(u, b) ← 0, and (b) w(b, vi ) ← w(u, vi ).

After the local transformation, let v′
1, v′

2, . . . , v′
j be the new children of u. Some of these children are

the original children and some are the new vertices introduced in the bunching. The tree ν(T) is obtained
by recursively processing the subtrees Tv′

i
, for 1 ≤ i ≤ j , in essence replacing Tv′

i
by ν(Tv′

i
).

The maximum number of children after processing is at most β because the subtrees {Tv′
i
}i partition

the nodes of V(Tu) − {u} and each tree except, perhaps one, is β-heavy. The recursion is applied to
each subtree Tv′

i
, and hence ν(T) will satisfies the degree requirement, as claimed. The weight preserving

correspondence between k-GS trees in T and in ν(T) follows from the fact that the “shared” edges (u, b)
that were created for bunching together β-light children of u have zero weight.

We now bound the height of ν(T). Consider a path p in ν(T) from the root r to a leaf v. All we need
to show is that p contains at most logβ/2 n new nodes (i.e., nodes corresponding to bunches of β-light
vertices). However, the number of terminals hanging from a node along p decreases by a factor of at least
β/2 every time we traverse such a new node, and the bound on the height of ν(T) follows.

The Modified Algorithm
We now present the modified recursive greedy algorithm for GS over trees. A listing of the modified
recursive greedy algorithm appears as Algorithm 5.2.

Algorithm 5.2 Modified-GS(u, k, G)—Modified recursive greedy algorithm for k-GS over trees.

1: stopping condition: if u is a leaf then return ({u}).
2: Initialize: cover ← {u} and Gres ← G.
3: while k(cover) < k do
4: recurse: for every v ∈ children(u) and

for every k′ power of (1 + λ) in [γr · (k − k(cover)), k − k(cover)]

Tv,k′ ← Modified-GS(v, k′, Gres).

5: select: (pick the lowest density tree)

Taug ← MIN-DENSITY
{

Tv,k′ ∪ {(u, v)}} .

6: augment & update: cover ← cover ∪ Taug ; Gres ← Gres\{gi : Taug intersects gi }.
7: keep k/h(Tu)-cover: if first time k(cover) ≥ k/h(Tu) then coverh ← cover.
8: end while
9: return (lowest density tree ∈ {cover, coverh}).

The following notation is used in the algorithm. The input is a rooted undirected tree T that does not
appear as a parameter of the input. Instead, a node u is given, and we consider the subtree of T that hangs
from u. We denote this subtree by Tu . The partial cover accumulated by the algorithm is denoted by cover.
The set of groups of terminals is denoted by G. The set of groups of terminals not covered by cover is
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denoted by Gres. The number of groups covered by cover is denoted by k(cover). The height of a tree Tu is
the maximum number of edges along a path from u to a leaf in Tu . We denote the height of Tu by h(Tu).

Two parameters λ and γv appear in the algorithm. The parameter λ is set to equal 1/h(T). The parameter
γv satisfies 1/γv = |children (v)| · (1 + 1/λ) · (1 + λ).

Lines that are significantly modified (compared to Algorithm 5.1) are underlined. In line 4, two mod-
ifications take place. First, the smallest demand is not one, but a poly-logarithmic fraction of the residual
demand (under the assumption that the maximum degree and the height is poly-logarithmic). Second,
only demands that are powers of (1+λ) are considered. In line 7, the algorithm also stores the partial cover
that first covers at least 1/h(Tu) of the initial demand k. This change is important for the simulation ar-
gument in the proof. Since the algorithm does not consider all the demands, we need to consider also the
partial cover that the simulation argument points to. Finally, in line 9, we return the partial cover with the
best density among cover and coverh . Again, this selection is required for the simulation argument.

Note that modified-GS(u, k, G) may return now a cover that covers less than k groups. If this happens
in the topmost call, then one needs to iterate until a k-GS cover is accumulated.

The following claim is proved in Ref. [6]. It is analogous to Claim 5.2 and is proved by rewriting the
proof while taking into account error terms that are caused by the modifications. Due to lack of space, we
omit the proof.

Claim 5.4 (Chekuri et al. [6])

The density of every augmenting tree Taug satisfies

ρ(Taug ) ≤ (1 + λ)2h(Tu) · h(Tu) · ρ(T ′
u)

The following theorem is proved in Ref. [6]. The assumptions on the height and maximum degree are
justified by the reduction discussed above.

Theorem 5.3

Algorithm modified-GS(r, k, G) is a poly-logarithmic approximation algorithm with polynomial running
time for G S instances over trees with logarithmic maximum degree and O(log n/ log log n) height.

5.6 Discussion

In this chapter, we presented the recursive greedy algorithm and its analysis. The algorithm is designed for
problems in which finding a minimum density augmentation of a partial solution is an NP-hard problem.
The main advantages of the algorithm are its simplicity and the fact that it is a combinatorial algorithm.
The analysis of the approximation ratio of the recursive greedy algorithm is nontrivial and succeeds in
bounding the density of the augmentations.

The recursive greedy algorithm has not been highlighted as a general method, but rather as an algorithm
for Steiner tree problems. We believe that it can be used to approximate other problems as well.

Open Problems
The quasi-polynomial-time O(log3 k)-approximation algorithm for DST raises the question of finding
a polynomial-time algorithm with a poly-logarithmic approximation ratio for DST. In particular, the
question is whether the running time of the recursive greedy algorithm for DST can be reduced by
modifications or preprocessing.
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Appendix A

Proof of Lemma 5.2

We prove that given a k-DST T in a transitive closed directed graph G , there exists a k-DST T ′ such that:
(i) T ′ is �-layered and (ii) w(T ′) ≤ �

2 · k2/� · w(T). The proof uses the notation introduced in Section 5.4.

Notation
Consider a rooted tree T . The subtree of T that consists of the vertices hanging from v is denoted by
Tv . Let α = k2/�. We say that a node v ∈ V(T) is α-heavy if k(Tv) ≥ k(T)/α. A node v is α-light if
k(Tv) < k(T)/α. A node v is minimally α-heavy if v is α-heavy and all its children are α-light. A node v

is maximally α-light if v is α-light and its parent is α-heavy.

Promotion
We now describe an operation called promotion of a node (and hence the subtree hanging from the node).
Let G denote a directed graph that is transitively closed. Let T denote a rooted tree at r that is a subgraph
of G . Promotion of v ∈ V(T) is the construction of the rooted tree T ′ over the same vertex set with the
edge set: E (T ′) �= E (T) ∪ {(r, v)}\{( p(v), v)}. The promotion of v simply makes v a child of the root.

Height Reduction
The height reduction procedure is listed as Algorithm 5.3. The algorithm iteratively promotes minimally
α-heavy nodes that are not children of the root, until every α-heavy node is a child of the root. The
algorithm then proceeds with recursive calls for every maximally α-light node. There are two types of
maximally α-light nodes: (1) children of promoted nodes, and (2) α-light children of the root (that have
not been promoted).

Algorithm 5.3 HR(T, r, α)—A recursive height reduction algorithm. T is a tree rooted at r , and α > 1
is a parameter.

1: stopping condition: if V(T) = {r } then return ({r }).
2: T ′ ← T .
3: while ∃v ∈ V(T ′) : v is minimally α-heavy & dist(r, v) > 1 do
4: T ′ ← promote(T ′, v)
5: end while
6: for all maximally α-light nodes v ∈ V(T ′) do
7: T ′ ← tree obtained from T ′ after replacing T ′

v by HR(T ′
v , v, α).

8: end for
9: return (T ′).

The analysis of the algorithm is as follows. Let hα(k(T)) denote an upper bound on the height of the
returned tree as a function of the number of terminals in T . The recursion is applied only to maximally
α-light trees that are one or two edges away from the current root. It follows that hα(k(T)) satisfies the
recurrence

hα(k′) ≤ hα(k′/α) + 2

Therefore, hα(k′) ≤ 2 logα k′.
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Bounding the Weight
We now bound the weight of the tree T ′ returned by the height reduction algorithm. Note that every edge
e ′ ∈ E (T ′) corresponds to a path path (e ′) ∈ T . We say that an edge e ∈ E (T) is charged by an edge
e ′ ∈ E (T ′) if e ∈ path (e ′). If we can prove that every edge e ∈ E (T) is charged at most β times, then
w(T ′) ≤ β · w(T).

We now prove that every edge e ∈ E (T) is charged at most α · logα k(T) times. It suffices to show that
every edge is charged at most α times in each level of the recursion. Since the number of terminals reduces
by a factor of at least α in each level of the recursion, the recursion depth is bounded by logα k(T). Hence,
the bound on the number of times that an edge is charged follows.

Consider an edge e ∈ E (T) and one level of the recursion. During this level of the recursion, α-heavy
nodes are promoted. The subtrees hanging from the promoted nodes are disjoint. Since every such subtree
contains at least k(T)/α terminals, it follows that the number of promoted subtrees is at most α. Hence,
the number of new edges (r, v) ∈ E (T ′) from the root r to a promoted node v is at most α. Each such
new edge charges every edge in E (T) at most once, and hence every edge in E (T) is charged at most α

times in each recursive call. Note also that the recursive calls in the same level of the recursion are applied
to disjoint subtrees. Hence, for every edge e ∈ E (T), the recursive calls that charge e belong to a single
path in the recursion tree.

We conclude that the recursion depth is bounded by logα k(T) and an edge is charged at most α times
in each recursive call. Set � = 2 logα k(T), and then α logα k(T) = �

2 · k2/�. The lemma follows.

References

[1] Zelikovsky, A., A series of approximation algorithms for the acyclic directed Steiner tree problem,
Algorithmica, 18, 99, 1997.

[2] Kortsarz, G. and Peleg, D., Approximating the weight of shallow Steiner trees, Discrete Appl. Math.,
93, 265, 1999.

[3] Charikar, M., Chekuri, C., Cheung, T., Dai, Z., Goel, A., Guha, S., and Li, M., Approximation
algorithms for directed Steiner problems, J. Algorithms, 33, 73, 1999.

[4] Reich, G. and Widmayer, P., Beyond Steiner’s problem: a VLSI oriented generalization, Proc. of
Graph-Theoretic Concepts in Computer Science (WG-89), Lecture Notes in Computer Science, Vol. 411,
Springer, Berlin, 1990, p. 196.

[5] Garg, N., Konjevod, G., and Ravi, R., A polylogarithmic approximation algorithm for the group
Steiner tree problem, J. Algorithms, 37, 66, 2000. Preliminary version in Proc. of SODA, 1998, p. 253.

[6] Chekuri, C., Even, G., and Kortsarz, G., A greedy approximation algorithm for the group Steiner
problem, Discrete Appl. Math., 154(1), 15, 2006.

[7] Zosin, L. and Khuller, S., On directed Steiner trees, Proc. of SODA, 2002, p. 59.
[8] Helvig, C. H., Robins, G., and Zelikovsky, A., Improved approximation scheme for the group Steiner

problem, Networks, 37(1), 8, 2001.

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C006 March 20, 2007 12:7

6
Linear Programming

Yuval Rabani
Technion—Israel Institute
of Technology

6.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1
6.2 Rounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2
6.3 Randomized Rounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6
6.4 Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7

6.1 Introduction

In this chapter we discuss the role of linear programming (LP) in the design and analysis of combinatorial
approximation algorithms. Our emphasis is on NP-hard problems in combinatorial optimization. One
aspect of their computational hardness is that such problems lack a good characterization of optimal
solutions. Thus, approximating the optimum often involves finding a tight-as-possible bound on the
optimal value that can be computed efficiently. LP is a powerful tool in deriving such bounds. The starting
point is usually a formulation of the combinatorial optimization problem as an integer linear program.
As a concrete example, consider the problem of VERTEX COVER. Given an undirected graph G = (V, E)
with nonnegative weights on the vertices w : V → N, we wish to find a minimum-weight set of vertices
V ′ ⊂ V such that for every e ∈ E , e ∩ V ′ �= ∅. This is a well-known NP-hard problem (see Ref. [1]),
and here is a natural way to express it as an integer linear program. For every i ∈ V assign an indicator
variable xi ∈ {0, 1}, indicating whether or not i ∈ V ′. The constraints e ∩ V ′ �= ∅ can be expressed as
xi + x j ≥ 1, where e = {i, j }. The resulting program is

minimize
∑

i∈V w(i)xi

subject to xi + x j ≥ 1 ∀{i, j } ∈ E (6.1)

xi ∈ {0, 1} ∀i ∈ V (6.2)

An ideal bound on the optimum can be derived by optimizing the same objective function over the
convex hull of the integer solutions. As the vertices of the convex hull are integer solutions, this would yield
an optimal solution. Unfortunately, the fact that VERTEX COVER is NP-hard implies that we are not aware of
a concise representation of this linear program. In particular, the convex hull has an exponential number
of facets, corresponding to an exponential number of linear constraints. A polynomial-time algorithm
that, given a vector x ∈ R

V , finds a violated constraint or verifies that x is in the convex hull (a so-called
separation oracle) is unlikely to exist. However, we can compute a lower bound on the optimum by relaxing
the integrality constraints (6.2). Thus we get the following linear programming relaxation for VERTEX COVER:

minimize
∑

i∈V w(i)xi

subject to xi + x j ≥ 1 ∀{i, j } ∈ E

xi ≥ 0 ∀i ∈ V (6.3)

Notice that in an optimal solution there is no reason to set any variable xi to a value greater than 1, so we
do not have to add explicitly the inequalities xi ≤ 1, ∀i ∈ V .

6-1
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There are several ways in which such a bound can be used to derive an approximation algorithm. The
most straightforward method is to solve the linear program, getting an assignment of potentially fractional
values to the variables, then use these values to generate an integral solution. Such a procedure is called
rounding. This chapter’s focus is on rounding procedures. Other methods merely use the LP relaxation (or
its dual) as a tool for analyzing the performance of an algorithm that does not explicitly solve the linear
program. The performance of the approximation algorithm is compared with the solution to the linear
program, rather than to the optimal solution of the NP-hard optimization problem. We will not discuss
such methods (including the primal-dual schema and dual fitting) here. These methods are discussed in
Chapters 2, 4, 13, 37, 39, 40, 71, and 82. Additional LP rounding applications are discussed in Chapters 7,
9, 11, 12, 70, and 80.

An important invariant of an LP relaxation is its integrality ratio, which is the worst-case ratio, over all
possible inputs to the combinatorial optimization problem, between the linear program’s optimal value
and the optimization problem’s optimal value. Unless the relaxation is used in conjunction with other
techniques, the integrality ratio usually determines our expectation as to the best guarantee that can be
achieved by an approximation algorithm relying on the relaxation.

In the following section, we review some of the methods used to derive approximation algorithms from
LP relaxations, following the example of VERTEX COVER and many other examples.

6.2 Rounding

How tight is the lower bound min
{∑

i∈V w(i)xi : (6.1) and (6.3)
}

? Consider the clique Kn with unit
weights on the vertices. Clearly, any n − 1 vertices form a vertex cover, and if at least two vertices are
excluded from the solution, then there will be at least one edge that is not covered. Thus, the cost of an
optimal vertex cover is n − 1. In contrast, assigning xi = 1

2 to all vertices i is a feasible solution to VC-LP,
and its cost is n

2 . So the integrality ratio of VC-LP is at least 2 − 2
n . The following theorem proves that this

is essentially tight.

Theorem 6.1 (Nemhauser and Trotter [2])

Every basic feasible solution to the system of linear inequalities consisting of (6.1) and (6.3) is half-integral.

Proof
Consider a feasible solution x that is not half-integral. We may assume that no entry of x exceeds 1, otherwise
it is not a basic solution. Let V− = {i ∈ V : 0 < xi < 1

2 } and let V+ = {i ∈ V : 1
2 < xi < 1}. At least

one of these sets is not empty. Let ε > 0 be a real number such that for every i ∈ V−, 0 < xi ± ε < 1
2 ,

and for every i ∈ V+, 1
2 < xi ± ε < 1. Put

x−
i =






xi + ε, i ∈ V−
xi − ε, i ∈ V+
xi , i ∈ V\(V− ∪ V+)

and

x+
i =






xi − ε, i ∈ V−
xi + ε, i ∈ V+
xi , i ∈ V\(V− ∪ V+)

Both x− and x+ are feasible solutions, x− �= x+, and x = 1
2 (x− + x+). Therefore, x cannot be a basic

solution.

Theorem 6.1 immediately leads to the following approximation algorithm, due to Hochbaum [3]. Solve
the above linear program obtaining a basic optimal solution x∗. Set V ′ = {i ∈ V : x∗

i ≥ 1
2 }. Clearly V ′

is a vertex cover. (In fact, we do not even need half-integrality. Every feasible solution x has the property
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that for every edge {i, j } ∈ E , either xi ≥ 1
2 or x j ≥ 1

2 .) Also, by the choice of V ′ we have that
∑

i∈V ′
w(i) ≤ 2

∑

i∈V

w(i)x∗
i

Therefore, the above algorithm gives a 2 approximation to VERTEX COVER.
Half-integral relaxations that can be rounded easily are rare. In most cases where rounding works, it

requires far greater effort and sophistication. Consider the problem of scheduling jobs on a set of unrelated
machines so as to minimize the makespan, or R||Cmax in standard scheduling theory notation. The input
to this problem consists of m machines and n jobs; job j is a sequence of p1 j , p2 j , . . . , pmj , where
pi j ∈ N ∪ {∞} denotes the processing time of job j on machine i . The goal is to find an assignment of
jobs to machines ϕ : {1, 2, . . . , n} → {1, 2, . . . , m} that minimizes the makespan (i.e., the maximum load
on a machine), which is

max
i

∑

j∈ϕ−1(i)

pi j

Clearly, this problem can be solved by the combination of binary search on the minimum makespan M,
and a procedure to decide if a solution with makespan at most M exists and provide such a solution if it
exists. An obvious formulation of the decision problem as an integer solution to a set of linear constraints
uses indicator variables xi j ∈ {0, 1}, where xi j = 1 if and only if job j is assigned to machine i . Formally,
the set of constraints is

∑

i

xi j ≥ 1 ∀ j (6.4)

∑

j

pi j xi j ≤ M ∀i (6.5)

xi j ∈ {0, 1} ∀i, j (6.6)

The first set of constraints (6.4) ensures that every job is assigned to a machine. The second set of con-
straints (6.5) ensures that the load on each machine is at most the target M. A 0–1 vector x that satisfies
all of the above constraints corresponds to a solution with makespan at most M. As R||Cmax is NP-hard,
finding a feasible solution x is NP-hard. We thus relax the integrality constraints (6.6), replacing them by
the constraints

xi j ≥ 0 ∀i, j (6.7)

One last modification is necessary to make this relaxation useful. A fractional solution may assign a fraction
of a job j to a machine i for which pi j > M. This clearly cannot happen in an integer solution, but might
happen in a fractional solution. We therefore eliminate from the inequalities all variables xi j for which
pi j > M.

A 2-approximation algorithm for R||Cmax based on solving the resulting system of linear inequalities is
a trivial consequence of the following theorem.

Theorem 6.2 (Lenstra et al. [4])

Any basic solution to the above system of linear inequalities can be rounded in polynomial time to give an
assignment of jobs to machines such that the load on any machine does not exceed 2M.

Proof
The number of constraints (6.4) and (6.5) is n + m, so a basic solution x has at most n + m nonzero
entries. Any job j that is assigned fractionally to two or more machines contributes at least two nonzero
entries. Therefore, at most m jobs are assigned fractionally. To round the fractional solution, assign job j
to machine i whenever xi j = 1. Let the set of remaining jobs be J. As explained, |J | ≤ m. Find a matching
ϕ : J → {1, 2, . . . , m}, where a job j ∈ J is matched to a machine i = ϕ( j ) such that xi j > 0. (The proof
that such a matching exists is rather involved. We do not include it here.) Assign the jobs in J according to
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the matching ϕ. The analysis of the performance guarantee is quite simple. Assume that a fractional basic
solution x exists. The load due to the jobs not in J is at most the fractional load, which is at most M. A
job j ∈ J adds a load of at most M to ϕ( j ), because xi j > 0 implies that pi j ≤ M. Therefore, the total
load on any machine is at most 2M.

Another useful tool is filtering, which is a technique to exclude some nonzero expensive entries in
a fractional solution, leaving a “critical mass” that can be rounded with provable performance. This
technique was first proposed by Lin and Vitter [5]. Here we demonstrate its use in getting a constant factor
approximation algorithm for METRIC FACILITY LOCATION, following the work of Shmoys et al. [6]. For the
sake of simplifying the presentation, we do not try to optimize the performance guarantee. In one simple
version of METRIC FACILITY LOCATION we are given a finite metric space (X, d) and a cost function on the
points f : X → N. The points represent both clients, each having a unit demand, and potential locations
for facilities. The cost of constructing a facility at i ∈ X is f (i). Each client j ∈ X is served by the closest
facility i at cost d(i, j ). The goal is to minimize the total construction cost plus the total service cost. Here
is one way to express the problem using mixed integer programming.

minimize
∑

i∈X f (i)xi + ∑
i, j∈X d(i, j )yi j

subject to yi j ≤ xi ∀i, j ∈ X (6.8)
∑

i∈X yi j ≥ 1 ∀ j ∈ X (6.9)

xi ∈ {0, 1} ∀i ∈ X (6.10)

The obvious LP relaxation replaces the integrality constraints (6.10) with

xi ≥ 0 ∀i ∈ X (6.11)

This relaxation can be used to derive a constant factor approximation algorithm for METRIC FACILITY

LOCATION, as the following theorem states.

Theorem 6.3

There is a polynomial-time algorithm that computes, for every vectors x , y that satisfy the constraints (6.8),
(6.9), and (6.11), integral vectors x ′, y ′ satisfying the same constraints, such that

∑

i∈X

f (i)x ′
i +

∑

i, j∈X

d(i, j )y ′
i j ≤ 4




∑

i∈X

f (i)xi +
∑

i, j∈X

d(i, j )yi j





Proof
We may assume that for every j ∈ X ,

∑
i∈X yi j = 1, otherwise we can scale y∗ j without violating the

constraints and without increasing the cost of the solution. For every j ∈ X , let ρ j = ∑
i∈X d(i, j )yi j

be the expected service cost for client j under the distribution y∗ j . By Markov’s Inequality, at least 1
4 of

the mass of the distribution lies on potential facility locations i with d(i, j ) ≤ 4
3ρ j . We would like to

choose the cheapest of these facility locations to open a facility there and serve client j . However, the
problem with this idea is that the sets of close facilities for different clients may overlap partially, thus
we may charge the same probability mass several times. To overcome this difficulty, we consider a set of
clients that have disjoint sets of close facilities. Sort the clients by nondecreasing order of ρ j , then select a
maximal sequence of clients J such that the balls B( j, 4ρ j /3) = {i ∈ X : d(i, j ) ≤ 4ρ j /3}, for all j ∈ J ,
are all disjoint. In each ball, select the cheapest location i and set x ′

i = 1 for all such i . Set x ′
i = 0 for all

other i . Finally, for every j ∈ X , set y ′
i j = 1 for a location i with x ′

i = 1 which is closest to j , and set
y ′

i j = 0 for all other locations i . We have that

∑

i∈X

f (i)x ′
i ≤ 4

∑

j∈J

∑

i∈B( j,ρ j )

f (i)xi ≤ 4
∑

i∈X

f (i)xi
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Consider j ∈ J . Let i ′ be the location with y ′
i ′ j = 1. The cost of serving j is

d(i ′, j ) ≤ 4

3
ρ j = 4

3

∑

i∈X

d(i, j )yi j

Finally, consider j �∈ J . There exists j ′ ∈ J such that ρ j ′ ≤ ρ j and B( j ′, 4ρ j ′/3) ∩ B( j, 4ρ j /3) �= ∅. Let
i ′ be the location with y ′

i ′ j = 1. Then,

d(i ′, j ) ≤ 4

3
ρ j + 8

3
ρ j ′ ≤ 4ρ j = 4

∑

i∈X

d(i, j )yi j

This concludes the proof.

We conclude this section with a brief description of Jain’s iterative rounding method, which he used
to derive a 2-approximation algorithm for the GENERALIZED STEINER NETWORK problem [7]. The input to
this problem is an undirected graph G = (V, E ), edge costs c : E → N, and connectivity requirements
r : V × V → N. The goal is to find a subgraph G ′ = (V, E ′) of minimum total edge cost

∑
e∈E ′ c(e), such

that for every i, j ∈ V there are at least r (i, j ) edge-disjoint paths connecting i and j in G ′. (Clearly, we
may assume that r is symmetric, that is, r (i, j ) = r ( j, i).) The basis for Jain’s algorithm is the following
formulation of GENERALIZED STEINER NETWORK. Let f : 2V → Z be defined by f (S) = maxi∈S, j �∈S r (i, j ).
Thus, f (S) denotes the connectivity requirement across the cut (S, V\S). For every e ∈ E , let xe ∈ {0, 1}
be an indicator variable that will be set to 1 if and only if e is included in the solution E ′. Then, GENERALIZED

STEINER NETWORK can be expressed as follows:

minimize
∑

e∈E c(e)xe

subject to
∑

e :|e∩S|=1 xe ≥ f (S) ∀S ⊂ V (6.12)

xe ∈ {0, 1} ∀e ∈ E (6.13)

The function f that is used here is weakly supermodular, which means that f (V) = 0, and for every
A, B ⊆ V , either f (A) + f (B) ≤ f (A\B) + f (B\A) or f (A) + f (B) ≤ f (A ∩ B) + f (A ∪ B) (or
both). In fact, Jain’s approximation algorithm works for any weakly supermodular function f . It is based
on the obvious LP relaxation of the above integer program, replacing the integrality constraints (6.13) by

0 ≤ xe ≤ 1 ∀e ∈ E (6.14)

Note that the resulting linear program has an exponential number of constraints. However, often an
efficient separation oracle can be designed, so the linear program can be solved in polynomial time. This
is the case with GENERALIZED STEINER NETWORK; the separation oracle computes for every pair of nodes
i, j ∈ V a minimum cut in G with edge capacities x and checks if the cut capacity is at least r (i, j ). The
approximation algorithm is based on the following theorem.

Theorem 6.4 (Jain [7])

If f is weakly supermodular, then for every basic solution x to the inequalities (6.12) and (6.14) there exists
e ∈ E such that xe ≥ 1

2 .

The proof of this theorem is quite complicated and is therefore not included here. Given an optimal
basic solution x , we generate an integer solution x ′ as follows. For every e ∈ E such that xe ≥ 1

2 , we set
x ′

e = 1. Let E 1 = {
e ∈ E : xe ≥ 1

2

}
. Then we recompute a basic fractional solution x1 with the added

condition that the edges in E 1 must be picked. To compute x1, we solve the following linear program:

minimize
∑

e∈E \E 1
c(e)xe

subject to
∑

e : |e∩S|=1xe ≥ f (S) − |{e ∈ E 1 : |e ∩ S| = 1}| ∀S ⊂ V (6.15)

0 ≤ xe ≤ 1 ∀e ∈ E \E 1 (6.16)
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It can be shown easily that if f is weakly supermodular then so is the function g given by g (S) =
f (S) − |{e ∈ E 1 : |e ∩ S| = 1}|, so Theorem 6.4 applies to x1. We continue to round the solution
iteratively and recompute a basic fractional solution to the remaining problem until no more edges need
to be taken. This gives a 2 approximation for GENERALIZED STEINER NETWORK.

6.3 Randomized Rounding

Consider the problem of MAXIMUM COVERAGE. The input is a collection of subsets S1, S2, . . . , Sm over the
base set {1, 2, . . . , n}, and a positive integer k ∈ {1, 2, . . . , m}. The goal is to find k subsets Si1 , Si2 , . . . , Sik

such that their union
⋃k

j=1 Si j has maximum cardinality. The following is a standard formulation of the
problem:

maximize
∑n

j=1z j

subject to z j ≤ min
{

1,
∑

i : j∈Si
xi

}
∀ j ∈ {1, 2, . . . , n} (6.17)

∑m
i=1xi = k (6.18)

xi ∈ {0, 1} ∀i ∈ {1, 2, . . . , m} (6.19)

Here the variable xi is the indicator for including the set Si in the solution. The variable z j gets set to 1
if and only if j is covered by the sets taken in the solution. In the obvious LP relaxation, these variables
are set to values in the interval [0, 1]. One interpretation of the relaxation is that now xi stands for the
probability of including Si in the solution and z j for the probability of covering j . However, we have no
guarantee that a sample space with the desired probabilities exists. Nevertheless, this interpretation proves
to be fruitful. Consider the following probabilistic algorithm. Pick k sets at random by sampling k times
independently from the distribution Pr given by Pr[Si ] = xi

k . (Note that
∑

i Pr[Si ] = 1, so this is indeed
a distribution over the sets.) Let E j denote the event that j is covered by the random choice of k sets. We
have that

Pr[E j ] = 1 − Pr[Ē j]

= 1 −


1 − 1

k

∑

i : j∈Si

xi





k

≥ 1 −
(

1 − z j

k

)k

≥ e − 1

e
z j

This implies an approximation guarantee of e−1
e as the expected number of elements covered is e−1

e

∑
j z j ,

and
∑

j z j is an upper bound on the optimal value.
Often, bounds on large deviations are useful in the context of randomized rounding. Let X1, X2, X3, . . . ,

Xn be independent indicator random variables with Pr[Xi = 1] = pi . Let X = ∑n
i=1 Xi . By the

linearity of expectation, E[X] = ∑n
i=1 pi . The following Chernoff-like bound is attributed to Spencer

(see Ref. [8]).

Lemma 6.1

For every ε > 0,

Pr [X > (1 + ε)E[X]] <

(
eε

(1 + ε)1+ε

)E[X]

For an application, consider Raghavan and Thompson’s [9] problem of integral multicommodity flow
CONGESTION MINIMIZATION that we present here in its simplest unit capacities version. Given a (directed)
graph G = (V, E ) and a list of source–destination pairs (s1, t1), (s2, t2), . . . , (sk , tk) (also called
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commodities), find, for every i ∈ {1, 2, . . . , k}, a path pi in G from si to ti , minimizing the maxi-
mum number of paths that cross a single arc. Consider the following equivalent integer programming
formulation. For i ∈ {1, 2, . . . , k}, let Pi denote the set of all simple paths in G from si to ti . (Note that
|Pi | might be exponentially large in the input size. We will deal with this issue later.)

minimize u

subject to
∑

p∈Pi
f i

p = 1 ∀i ∈ {1, 2, . . . , k} (6.20)
∑k

i=1

∑
p∈Pi : p�e f i

p ≤ u ∀e ∈ E (6.21)

f i
p ∈ {0, 1} ∀i ∈ {1, 2, . . . , k}, ∀p ∈ Pi (6.22)

If we relax the integrality constraints (6.22), we get a linear program whose solution assigns, for every
commodity i ∈ {1, 2, . . . , k}, a probability distribution f i over Pi . (In other words, we get a fractional
multicommodity flow solution.) As mentioned, the number of variables in this linear program is ex-
ponential in the input size. It is nevertheless possible to solve it in time polynomial in the input size
using a separation oracle for the dual. A more standard approach is to replace this linear program with a
polynomial-size linear program that has arc flow variables and flow conservation constraints. The com-
puted flows can be decomposed into a polynomial number of flow paths (see, e.g., the book [10]). Either
way, we will get distributions f i that have polynomial-size support. Note that max{1, u} is a lower bound
for MINIMUM CONGESTION, as the optimal value is at least 1. We will use this bound in analyzing the
following approximation algorithm.

The algorithm applies randomized rounding. For every commodity i ∈ {1, 2, . . . , k}, we choose at
random a single path p according to the distribution f i (i.e., the probability of choosing p is f i

p). Consider
an arc e ∈ E . Clearly, the probability that the path for a commodity i uses e is precisely qi = ∑

p∈Pi : p�e f i
p .

Let Xi be an indicator random variable that is set to 1 if and only if commodity i uses e . Thus, the load on
e is given by X = ∑k

i=1 Xi . We have that

E[X] =
k∑

i=1

qi =
k∑

i=1

∑

p∈Pi : p�e

f i
p

which is exactly the load on e in the linear program. Unfortunately, if there is more than one arc in the
graph we cannot guarantee that all the arcs simultaneously will not be loaded more than the expectation.
However, by Lemma 6.1, for a constant c > 0,

Pr

[

X > c
log |E |

log log |E | max{1, E[X]}
]

<
1

2|E |

Therefore, with probability at least 1
2 , every arc carries at most c log |E |

log log |E | max{1, u} paths. In fact, if u
is large, then the approximation guarantee improves. For example, if u = log |E |, we can apply Lemma 6.1
with a constant ε to get a constant factor approximation. As u grows further, the approximation guarantee
approaches 1.

6.4 Metric Spaces

Some problems in combinatorial optimization, most notably problems involving cuts in undirected
graphs, can be interpreted naturally as optimization over a class of metric spaces. For example, con-
sider the MINIMUM MULTICUT problem, introduced by Klein et al. [11]. The input to this problem is a
graph G = (V, E ) with nonnegative edge capacities c : E → N, a positive integer k, and a set of k pairs of
nodes T = {{s1, t1}, {s2, t2}, . . . , {sk , tk}} called terminal pairs. The goal is to find a set of edges F ⊂ E of
minimum total capacity c(F ) = ∑

e∈F c(e) whose removal disconnects every pair of terminals in T . This
problem can be formalized as the following integer program. Let P denote the set of paths in G connecting
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si and ti , for some i ∈ {1, 2, . . . , k}.

minimize
∑

e∈E c(e)xe

subject to
∑

e∈p xe ≥ 1 ∀p ∈ P (6.23)

xe ∈ {0, 1} ∀e ∈ E (6.24)

As usual, an LP relaxation is derived by replacing the integrality constraints (6.24) with

xe ≥ 0 ∀e ∈ E (6.25)

Note that the resulting linear program may have an exponential number of constraints. However, this
can be dealt with using the same methods explained in the discussion on CONGESTION MINIMIZATION

in the previous section. Let x be any feasible solution to the linear program. One way to interpret the
solution is the following. Define a semi-metric1 d on V by setting d(u, v) to be the shortest path be-
tween u and v under edge weights given by x . Then the constraints (6.23) put d(si , ti ) ≥ 1 for all
i ∈ {1, 2, . . . , k}. In fact, every such metric d corresponds to a feasible solution x by setting, for every
e = (u, v) ∈ E , xe = d(u, v). Our hope is to find a way to “round” the semi-metric d to a multicut
without increasing the objective function too much. Note that a multicut F corresponds to a semi-metric
δ on V that satisfies the constraints (6.23) and also has δ(u, v) ∈ {0, 1} for every u, v ∈ V . More specif-
ically, δ(u, v) = 0 if and only if u and v are in the same connected component after removing the edges
in F .

Indeed, Garg et al. [12] analyzed such a rounding procedure which is based on earlier work of Leighton
and Rao [13] on SPARSEST CUT, a problem that will be discussed below.

Theorem 6.5 (Garg et al. [12])

There is a polynomial-time algorithm that, given input x ∈ R
E that satisfies the constraints (6.23) and (6.25),

finds a multicut F such that c(F ) = O(
∑

e∈E c(e)xe log k).

Proof
Let d be the semi-metric on V that is derived from x . Let w ∈ V be a terminal (i.e., v = si or v = ti for
some i ∈ {1, 2, . . . , k}). For ρ ∈ [0, ∞), let Eρ denote the set of edges {u, v} such that d(u, w) ≤ ρ and
d(v, w) > ρ. Consider the function f ′ : [0, ∞) → N that is given by f ′(ρ) = ∑

e∈Eρ
c(e). Let f (ρ) =

1
k

∑
e∈E c(e)xe +∫ ρ

0 f ′(ξ) dξ , so f ′(ρ) = d f (ρ)
dρ

. Note that for every ρ ∈ [0, ∞), f (ρ) ≤ 2
∑

e∈E c(e)xe .
Now,

∫ 1/3

0

f ′(ρ)

f (ρ)
dρ = ln

(
f (1/3)

f (0)

)

≤ ln k

Therefore, there exists ρ ∈ [0, 1/3] such that f ′(ρ) ≤ 3f (ρ) ln k. (Such ρ is easily found in polyno-
mial time.) Note that as ρ ≤ 1

3 , it is impossible that for any i ∈ {1, 2, . . . , k} both d(w , si ) ≤ ρ and
d(w , ti ) ≤ ρ.

The multicut F is generated inductively as follows. Pick a terminal w = w1. Find ρ = ρ1 as explained
above, and eliminate from G the set {v ∈ V : d(v, w1) ≤ ρ1}. Let G 1 = (V 1, E 1) denote the remaining
graph. Suppose that w1, w2, . . . , wt have been picked already. Pick a terminal w = wt+1 in G t (i.e.,
d(wt+1, ws ) > ρs for all s ∈ {1, 2, . . . , t}). If there is no such terminal, then output F = ∪t

s=1(Eρs ∩ E s ).
Otherwise, find ρ = ρt+1 in G t as explained above, and eliminate from G t the set {v ∈ V t : d(v, wt+1) ≤
ρt+1} to create G t+1. Note that t never exceeds k.

1A semi-metric d on a set V is a function d : V × V → R that satisfies the following conditions : (i) d(v, v) = 0, for
every v ∈ V ; (ii) δ(u, v) = δ(v, u), for every u, v ∈ V ; and (iii) δ(u, v) + δ(v, w) ≥ δ(u, w), for every u, v, w ∈ V .
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By the above discussion, F is a multicut. For ρ ∈ [0, ρs ], let f ′
s (ρ) = ∑

e∈Eρs ∩E s c(e). As

t∑

s=1

(
1

k

∑

e∈E

c(e)xe +
∫ ρs

0
f ′
s (ξ) dξ

)

≤ 2
∑

e∈E

c(e)xe

the O(log k) bound on the approximation guarantee follows.

Consider the problem of SPARSEST CUT. Given an undirected graph G = (V, E ) with edge capacities
c : E → N and a demand function h : V × V → N, the goal is to find a cut (S, S̄) that minimizes the cut
ratio ∑

e : |S∩e|=1c(e)
∑

u∈S∧v∈S̄ h(u, v)

Leighton and Rao [13] gave an O(log |V |) approximation algorithm for the case that h is uniform (i.e.,
h(u, v) = 1 for every pair of nodes u, v ∈ V), using the “region growing” technique discussed above in
the context of MINIMUM MULTICUT. We now discuss the general case.

A cut (S, S̄) in G partitions the node set V into two nonempty parts S and S̄. We can associate with (S, S̄)
a cut semi-metric δS on V . The semi-metric δS is defined by δS (x , y) = 1 if x �= y and |{x , y} ∩ S| = 1;
otherwise δS (x , y) = 0. The cone of linear combinations of cut semi-metrics on V with nonnegative
coefficients is precisely the cone of |V |-point subsets of L 1. Useful polytopes can be derived from this cone
by adding linear constraints that normalize the maximum or average distance. In particular, SPARSEST CUT

can be formalized as follows:

minimize
∑

{u,v}=e∈E c(e)
∑

∅�=S⊆V δS (u, v)λS

subject to
∑

u,v∈V h(u, v)
∑

∅�=S⊆V δS (u, v)λS = 1

λS ≥ 0 ∀∅ �= S ⊆ V

This is a linear program with an exponential number of variables. (Note that the solution might be a
convex combination of optimal cuts.) In view of the NP-hardness of SPARSEST CUT, it is unlikely that
this LP can be solved in time polynomial in the size of G . A polynomial-time solvable relaxation can be
derived by extending the optimization over all semi-metrics, not just nonnegative linear combinations of
cut semi-metrics. This gives the following LP relaxation for SPARSEST CUT:

minimize
∑

{u,v}=e∈E c(e)d(u, v)

subject to
∑

u,v∈V h(u, v)d(u, v) = 1 (6.26)

d is a semi-metric on V

The following lemma is crucial.

Lemma 6.2 (Bourgain [14])

There is a constant κ > 0 such that the following holds. Let d be a semi-metric on a finite set of points X.
Then, there exists n ∈ N and a mapping ϕ : X → R

n such that for every x , y ∈ X,

1

κ log |X|d(x , y) ≤ ‖ϕ(x) − ϕ(y)‖1 ≤ d(x , y)

Let supp(h) denote the support of the demand function h, i.e., the set of pairs u, v ∈ V such that
h(u, v) > 0.

Theorem 6.6 (Aumann and Rabani [15]; Linial et al. [16])

There exists a constant κ > 0 such that the following holds. Let d be a semi-metric on V that satisfies the
constraint (6.26). Then, one can find in polynomial time a cut (S, S̄) in G such that

∑

{u,v}=e∈E

c(e)d(u, v) ≤
∑

e : |S∩e|=1c(e)
∑

u∈S∧v∈S̄ h(u, v)
≤ κ ·

∑

{u,v}=e∈E

c(e)d(u, v) log |supp(h)|
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Proof
Use a modification of Bourgain’s Lemma 6.2 to map d and L 1 semi-metric such that the distances between
pairs of points in supp(h) do not shrink by more than a factor of O(log |supp(h)|) and no distance expands.
Then use the fact that any L 1 semi-metric can be expressed as a nonnegative linear combination of cut
semi-metrics to find a cut with a good ratio.

We note that the bounds in Theorems 6.5 and 6.6 asymptotically match the known integrality gaps. The
bad examples are constructed using bounded degree expander graphs. See Refs. [12,13,15,16] for more
details.

We conclude this section and the chapter with a discussion of spreading metrics, a class of relaxations
introduced by Even et al. [17]. We will demonstrate the technique with the problem of MINIMUM LINEAR

ARRANGEMENT. Given an undirected graph G = (V, E ), the goal is to find a bijection ϕ : V → {1, 2, . . . ,
|V |} that minimizes

∑
{u,v}∈E |ϕ(u) − ϕ(v)|. Note that one property of any such bijection is that every

subset of nodes U ⊆ V must be “well spread” in the sense that for every u ∈ U ,
∑

v∈U |ϕ(u) − ϕ(v)| ≥
1
4 (|U |2 − 1). This is precisely the property that the spreading metric relaxation for MINIMUM LINEAR

ARRANGEMENT exploits. Rather than optimizing over all bijections (which is NP-hard), we optimize over
all metrics that satisfy the spreading constraints. Formally, we solve the following LP relaxation:

minimize
∑

{u,v}∈E d(u, v)

subject to
∑

v∈U d(u, v) ≥ 1
4 (|U |2 − 1) ∀U ⊆ V, ∀u ∈ U (6.27)

d is a metric on V

Note that the number of constraints is exponential in the size of the input graph G . However, given a
metric d that does not satisfy all the constraints (6.27), it is easy to find a violated constraint in polynomial
time by examining all the polynomially many combinatorially distinct balls in d . Thus, the relaxation can
be solved in polynomial time.

Theorem 6.7 (Rao and Richa [18])

Given a metric d on V that satisfies all the constraints (6.27), one can find in polynomial time a bijection
ϕ : V → {1, 2, . . . , |V |} such that

∑

{u,v}∈E

|ϕ(u) − ϕ(v)| ≤ O(log |V |) ·
∑

{u,v}∈E

d(u, v)

Proof
We describe the “rounding” algorithm. If G is not connected, we can deal with each connected component
separately, so we may assume without loss of generality that G is connected. Consider a node s ∈V . Define
levels with respect to s that are indexed by i ∈ N. We say that an edge {u, v} ∈ E is at level i if and only
if d(s , u) ≤ i and d(s , v) > i . The weight wi of level i is the total number of edges at level i . We say that
level i has label k if and only if 2k < wi ≤ 2k+1. Note that due to constraints (6.27), there are at least 1

4 |V |
levels with strictly positive weight. Thus, putting D = ∑

{u,v}∈E d(u, v), there is a label k such that at least
1

4 log D |V | levels are labeled with k. Let these levels be i1, i2, . . . , im. Let H0 denote the subgraph induced
by the nodes v ∈ V such that d(s , v) ≤ i1. For j = 1, 2, . . . , m − 1, let Hj denote the subgraph induced
by the nodes v ∈ V such that i j < d(s , v) ≤ i j+1. Finally, let Hm denote the subgraph induced by the
nodes v ∈ V such that im < d(s , v). Recursively apply the above procedure to each of the subgraphs
Hj , j ∈ {0, 1, 2, . . . , m}. The output linear arrangement is composed of the concatenation of the linear
arrangements for these subgraphs.

The analysis of the performance guarantee follows by devising a charging scheme, stating the charged
cost as a recurrence relation and bounding the recurrence solution. The analysis is rather technical and
therefore it is excluded here.
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[4] Lenstra, J. K., Shmoys, D. B., and Tardos, É., Approximation algorithms for scheduling unrelated

parallel machines, Math. Program., 46, 259, 1990.
[5] Lin, J.-H. and Vitter, J. S., ε-Approximations with minimum packing constraint violation, Proc. of

STOC, 1992, p. 771.
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7.1 Introduction

Many combinatorial optimization problems can be cast as integer linear programming problems. A linear
programming relaxation of an integer program provides a natural lower bound (in case of minimization
problems) on the value of the optimal integral solution. An optimal solution to the linear programming
relaxation may not necessarily be integral. If there exists a procedure to obtain an integral solution “close”
to the fractional solution then we have an approximation algorithm. This process of obtaining the integral
solution from the fractional one is referred to as “rounding.” Our goal is to present an ensemble of rounding
techniques (which is by no means complete) that have enjoyed some success. On occasion, for detailed
correctness of proofs, we refer the reader to the original paper.

Rounding techniques can be broadly divided into two categories: those that round variables nondeter-
ministically (also called as randomized rounding), and those that round variables deterministically. The
randomized rounding techniques presented typically yield solutions whose expected value is bounded. At
times, the rounding steps can be made deterministic (derandomized) by using the method of conditional
expectation due to Erdős and Selfridge [1]. We refer the reader to Alon and Spencer ([2], Chapter 15) for
the method of conditional expectation. Both randomized as well as deterministic rounding can be further
classified into techniques that round the variables independently, and those that round the variables in
groups (dependently). Our presentation is along similar lines; in Section 7.2 we discuss nondeterministic
rounding techniques due to Raghavan and Thompson [3], Goemans and Williamson [4], Bertsimas et al.
[5], Goemans and Williamson [6], and Arora et al. [7]. We discuss deterministic rounding techniques
due to Lin and Vitter [8], Jain [9], Ageev and Sviridenko [10], and Gaur et al. [11] in Section 7.3. Finally
we conclude with a discussion. For other applications of rounding we refer the reader to the books by
Hochbaum [12] and Vazirani [13].

Next, we define the performance ratio of an approximation algorithm. Associated with every instance
I of an NP-optimization problem P is a nonempty set of feasible solutions S . To each solution S ∈ S ,
we assign a number called its value. For a minimization (maximization) problem, the goal is to determine
the solution with the minimum (maximum) value. The solution with the minimum (maximum) value is
denoted as OPT(I) or simply as OPT when there is no ambiguity. Let A be an algorithm whose running
time is bounded by a polynomial in the length of the input. ALG(I) (or simply ALG) denotes the value
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of the solution returned by algorithm A on problem P . For a minimization (maximization) problem, the
performance ratio of A is defined as α = maxI(ALG(I)/OPT(I)) (α = minI(ALG(I)/OPT(I))). For
minimization (maximization) problems α ≥ 1 (α ≤ 1). The other commonly used convention is to define
α = minI(OPT(I)/ALG(I)) for a minimization problem (in which case, α ≤ 1).

7.2 Nondeterministic Rounding

7.2.1 Independent Rounding

In this section we illustrate the technique due to Raghavan and Thompson [3]. They developed the first
constant-factor approximation algorithm for the minimum-width routing problem in two dimensions.
Here we illustrate their technique on the Set Cover problem, basing our presentation on Vazirani [13].
Given a collection S = {S1, S2, . . . , Sm} of subsets of some universe U = {1, 2, . . . , n}, the problem is to
determine the minimum number of sets from S that cover all the elements of U . Let x j be the variable
associated with set S j . Given below is the integer program IP and the corresponding linear programming
relaxation LP for the set cover problem. The first constraint in the IP ensures that each element i ∈ U is
covered by some set in S, and the second constraint stipulates that the sets are picked integrally.

IP: minimize
∑

j∈[1,m] x j

subject to:
∑

j :i∈S j
x j ≥ 1 ∀i ∈ U

x j ∈ {0, 1} ∀i ∈ U

LP: minimize
∑

j∈[1,m] x j

subject to:
∑

j :i∈S j
x j ≥ 1 ∀i ∈ U

0 ≤ x j ≤ 1 ∀i ∈ U

Let x∗ be the optimal solution to the linear programming relaxation above. In each iteration, we round
each variable x j to 1 with probability x∗

j and to 0 with probability 1 − x∗
j . Each set S j for which x j = 1 is

picked in the solution. The probability that element i ∈ U is not covered in an iteration is
∏

j :i∈S j
(1−x∗

j ).
If the element i ∈ U occurs in the k sets Si1 , Si2 , . . . , Sik , the values x∗

i1
, x∗

i2
, . . . , x∗

ik
are constrained by the

inequality
∑k

j=1 x∗
i j

≥ 1, since the element i ∈ U is covered by the optimal LP solution. The probability∏k
j=1(1 − x∗

i j
) is then minimized when each value x∗

i j
takes the value 1/k. Thus, the probability that ele-

ment i ∈ U is not covered in an iteration is at least (1−1/k)k ≥ 1/e . Thus the probability that i ∈ U is not
covered after c log n iterations is (1/e)c log n ≤ 1/(4n) for some constant c . Equivalently, the probability
that the solution computed after c log n iterations is not a valid cover is at most

∑n
i=1 1/(4n) = 1/4.

Furthermore, the expected number of sets in the solution computed is (
∑

j∈[1,m] x∗
j )c log n. The prob-

ability that the number of sets is more than four times this expected value is at most 1/4 (follows from
the Markov inequality). Therefore, with probability at least 1/2, the algorithm returns a cover with cost at
most (

∑
j∈[1,m] x∗

j )4c log n, implying that the performance ratio is O(log n). Srinivasan [14], observing
that the constraints in the set cover problem are positively correlated, showed that the performance ratio
of the randomized rounding algorithm is log (|U |/OPT) + O(log log (|U |/OPT)) + O(1).

Next, we consider an interesting idea due to Goemans and Williamson [4], in which two randomized
rounding algorithms are run on each problem instance, and the better of the two is returned as the
solution. This technique is used for the maximum satisfiability problem to obtain a 3/4-approximation
algorithm, though each algorithm by itself does not provide a 3/4-approximation ratio. In the weighted
version of the maximum satisfiability problem, we are given a Boolean formula in conjunctive normal
form with weights on the clauses, and the goal is to determine an assignment of values (true/false) to the
literals, such that the sum of weights of the clauses satisfied is maximized. The simpler rounding algorithm
uses a purely randomized rounding, where each variable is set to true (false) with probability 1/2. If a
clause j has k literals, then the probability that this clause is not satisfied is 1/2k (corresponding to the
situation when each of the k variables is set to 0). Thus, the probability that the clause is satisfied equals
1 − (1/2k). To illustrate the second rounding algorithm (using linear programming) for this problem,
we let C+

j denote the unnegated literals in the j th clause and C−
j the negated literals in the j th clause

in formula C . The integer program IP and the corresponding linear programming relaxation LP for the
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problem are given below.

IP: maximize
∑

j∈C

w j z j

subject to:
∑

i∈C+
j

xi +
∑

i∈C−
j

(1 − xi ) ≥ z j ∀ j ∈ C

z j , xi ∈ {0, 1} ∀i, j

LP: maximize
∑

j∈C

w j z j

subject to:
∑

i∈C+
j

xi +
∑

i∈C−
j

(1 − xi ) ≥ z j ∀ j ∈ C

0 ≤ z j , xi ≤ 1 ∀i, j

Let x∗, z∗ be the optimal solution to the linear programming relaxation LP. The rounding sets literal i
to true with probability x∗

i (without loss of generality we assume clause j contains only positive literals).
The probability that clause j is satisfied after this rounding is 1 − ∏

i∈C+
j

(1 − x∗
i ). If clause j contains

k literals, xi1 , xi2 , . . . , xik , the values x∗
i1

, x∗
i2

, . . . , x∗
ik

are constrained by the inequality
∑k

j=1 x∗
i j

≥ z∗
j ,

a constraint in the LP formulation. The probability
∏k

j=1(1 − x∗
i j

) is then maximized when each value
x∗

i j
takes the value z∗

j /k. Thus, the probability that clause j is not satisfied after the rounding is at most
(1 − z∗

j /k)k . Thus the probability that clause j is satisfied after the rounding is at least 1 − (1 − z∗
j /k)k .

Observing that 1 − (1 − z∗
j /k)k ≥ z∗

j (1 − (1 − 1/k)k) for 0 ≤ z∗
j ≤ 1 (due to concavity), the probability

that clause j is satisfied is at least z∗
j (1 − (1 − 1/k)k).

The bound of 3/4 follows from the fact that for each clause j , max{(1 − 1/2k), z∗
j (1 − (1 − 1/k)k)} ≥

max{z∗
j (1 − 1/2k), z∗

j (1 − (1 − 1/k)k)} ≥ z∗
j

2 {(1 − 1/2k) + (1 − (1 − 1/k)k)} ≥ 3/4z∗
j for every positive

integer k.

7.2.2 Dependent Rounding

7.2.2.1 Simultaneous Rounding

The idea of simultaneously rounding a set of variables was used by Bertsimas et al. [5] to establish the
integrality of several well-known polytopes. In particular, they established the integrality of the polytopes
associated with the minimum s − t cut, p-median on a cycle, uncapacitated lot sizing, and boolean
optimization. Using this technique, Bertsimas et al. [5] established a bound of 2(1−1/2k) for the minimum
k-sat problem. A bound of 2 is established for the feasible cut problem, by showing it is equivalent to
vertex cover, which is approximable within a factor of 2 [15]. Here we illustrate the technique due to
Bertsimas et al. [5] on the feasible cut problem. This technique is particularly interesting as the analysis of
the performance ratio is considerably simplified.

Given a graph G = (V, E ) with weights on the edges, M a set of pairs of nodes in G , and a source
vertex s . The problem is to determine a cut of minimum weight with the additional constraints that s
belongs to the cut, but for any pair (i, j ) ∈ M, both i and j are not in the cut. The integer program IP for
the feasible cut problem and the corresponding linear programming relaxation LP are given below.

IP: minimize
∑

(i, j )∈E ci j xi j

subject to: xi j ≥ yi − y j ∀(i, j ) ∈ E

xi j ≥ y j − yi ∀(i, j ) ∈ E

yi + y j ≤ 1 ∀(i, j ) ∈ M

ys = 1

xi j , y j ∈ {0, 1} ∀i, j

LP: minimize
∑

(i, j )∈E ci j xi j

subject to: xi j ≥ yi − y j ∀(i, j ) ∈ E

xi j ≥ y j − yi ∀(i, j ) ∈ E

yi + y j ≤ 1 ∀(i, j ) ∈ M

ys = 1

0 ≤ xi j , y j ≤ 1 ∀i, j

In this technique the variables are rounded simultaneously with respect to a random variable. Let U
be a random value in [1/2, 1] generated uniformly. Given an optimal solution (x∗, y∗) to the linear
program LP, construct the cut as follows: if y∗

i < U then yi = 0, and if y∗
i > U then yi = 1. The rounding

operation gives a feasible cut, since for each (i, j ) ∈ M at most one of y∗
i , y∗

j is greater than 1/2. Let ZIP
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be the value of the optimal solution to IP, ZLP the value of the optimal solution to LP, and E (ZR) the
expected value of the solution obtained after rounding.

Theorem 7.1

Minimum feasible cut can be approximated within a factor of 2.

Proof
Clearly, ZIP ≤ E (ZR). We show that E (ZR) ≤ 2ZLP. If E (xi j ) ≤ 2x∗

i j for all i, j , then by linearity of
expectation the result holds. Without loss of generality assume that y∗

i ≤ y∗
j . If y∗

j ≤ 1/2 then E (xi j ) = 0.
If y∗

i ≤ 1/2 ≤ y∗
j , then E (xi j ) = P (U ∈ [1/2, y∗

j ]) = 2(y∗
j − 1/2) ≤ 2(y∗

j − y∗
i ). If y∗

i ≥ 1/2, then
E (xi j ) = 2(y∗

j − y∗
i ). This implies that E (xi j ) ≤ 2(y∗

j − y∗
i ) ≤ 2x∗

i j .

7.2.2.2 Rounding against a Hyperplane

The first substantial improvement for the Max-Cut problem was made by Goemans and Williamson [6],
who presented a 0.87856 factor approximation based on semidefinite programming. The above bound is
also applicable to the Max 2-Sat problem. They also gave a 0.7584 factor approximation algorithm for the
Max Sat problem. Here we outline their technique for the Max-Cut problem. Given a graph G = (V, E )
with weights on the edges, the objective is to partition the vertices of G such that the sum of weights of
the cut edges is maximized. The problem is formulated first as a quadratic (nonlinear) program, and a
relaxation of the quadratic program is defined in which each variable corresponds to a vector. An optimal
solution to this relaxed nonlinear program is then computed. Given a random hyperplane, the vertices
are partitioned into two sets, corresponding to points above and below the hyperplane. This partition has
the desired bound. For details of the proof and the algorithm for computing the optimal solution to the
relaxed program VP, we refer the reader to Vazirani [13] and Chapter 8 on Semidefinite Programming by
Ye, So, and Zhang. Next, we describe their formulations and the randomization procedure.

QP: maximize 1/2
∑

(i, j )∈E wi j (1 − yi y j )

subject to: y2
i = 1 ∀i ∈ V

yi ∈ Z ∀i ∈ V

VP: maximize 1/2
∑

(i, j )∈E wi j (1 − vi v j )

subject to: vi · vi = 1 ∀i ∈ V

vi ∈ Rn ∀i ∈ V

Let r be a uniformly distributed vector in unit sphere Sn−1, then S = {i : vi · r ≥ 0} and V \S are the
two sets defining the partition.

7.2.2.3 Extensions

Next we outline some extensions of the basic rounding technique. In all these techniques, the variables
are rounded randomly in a somewhat dependent fashion. First we consider the assignment problem in
the presence of covering constraints. Given a complete bipartite graph G = (A ∪ B , E ), with |A| = |B |,
and weights on the edges. The objective is to find a matching of minimum weight that satisfies the
covering constraints. The integer program IP and the linear programming relaxation LP for the assignment
problem are given below.

IP: minimize
∑

(i, j )∈E ci j xi j

subject to:
∑

j∈B xi j = 1 ∀i ∈ A
∑

i∈A xi j = 1 ∀ j ∈ B
∑

i∈A, j∈B ak
i j xi j ≥ bk ∀k ∈ [1, K ]

xi j , y j ∈ {0, 1} ∀i ∈ A, j ∈ B

LP: minimize
∑

(i, j )∈E ci j xi j

subject to:
∑

j∈B xi j = 1 ∀i ∈ A
∑

i∈A xi j = 1 ∀ j ∈ B
∑

i∈A, j∈B ak
i j xi j ≥ bk ∀k ∈ [1, K ]

0 ≤ xi j , y j ≤ 1 ∀i ∈ A, j ∈ B

In the absence of the covering constraint (
∑

i∈A, j∈B ak
i j xi j ≥ bk), the polytope associated with the

IP is integral. But in the presence of the covering constraints we can only guarantee a fractional optimal
solution to the LP in polynomial time. One possibility is to obtain an integral solution by rounding [3] the
optimal fractional solution. One major difficulty with independent rounding in the presence of equality
constraints is that the probability that the constraint is satisfied could be as low as 1/e (consider the case
when all the xi j s have the same value 1/|A|). Therefore, the expected number of equality constraints

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C007 March 20, 2007 12:9

LP Rounding and Extensions 7-5

satisfied in one rounding iteration is low. However, the covering constraints are satisfied almost approxi-
mately. Arora et al. [7] developed a randomized rounding technique that obtains an integral solution (from
the fractional solution), which satisfies (|A| − o(|A|) equality constraints and all the covering constraints
almost approximately (

∑
i∈A, j∈B ak

i j xi j ≥ bk − O(
√|A| max{ak

i j })). Next, we describe their rounding al-
gorithm for the case when all the fractional values are constants. For the rounding in the general case, and
for the proofs we refer the reader to the original paper. Let x∗ be the optimal fractional solution. The
algorithm first constructs a multigraph from the bipartite graph as follows: for each edge in G , toss a
biased coin (with probability of head x∗

i j ) � (log3(n)) times. If heads show up a times then the multigraph
has a copies of edge (i, j ). The multigraph is a union of paths and cycles of length O(

√
n) (if not then we

have to delete O(
√

n) edges). Now these paths and cycles are further divided into �(
√

n) groups of size
O(

√
n) each. Within each group, either all the edges of A are picked or all the edges of B are picked, and the

decision is equally likely. Using a generalization of this technique, Arora et al. [7] were able to demonstrate
polynomial-time approximation schemes for dense instances of minimum linear arrangement problem,
minimum cut linear arrangement problem, maximum acyclic subgraph problem, and the betweenness
problem.

Next we briefly mention some other techniques. Srinivasan [16] developed a rounding technique based
on distributions on level sets, and established better approximation ratios for low-congestion multipath
routing problem, and the maximum coverage version of set cover problem. Gandhi et al. [17] devel-
oped a new rounding scheme based on the pipage rounding method of Ageev and Sviridenko [10] (see
Section 7.3.4), and the level set-based method of Srinivasan [16] to obtain better approximation algorithms
for the throughput maximization problem in broadcast scheduling, the delay minimization problem in
broadcast scheduling, and the capacitated vertex cover problem. Another dependent rounding technique
has been developed by Doerr [18], with applications to digital halftoning. Doerr [19] developed another
dependent randomized rounding technique that respects cardinality constraints.

7.3 Deterministic Rounding

7.3.1 Scaling

Scaling is an important technique that has been applied to covering problems such as Vertex Cover to
obtain a simple 2-factor approximation. Our presentation is based on Hochbaum [12] (Chapter 3). Given
that it is still not known whether vertex cover admits an approximation ratio strictly better (by a constant)
than 2, scaling seems to be a powerful technique. Given a graph G = (V, E ) with weights on the vertices.
The objective is to determine a minimum-weight set S ⊂ V , such that every edge has at least one endpoint
in S. Given below is the integer program IP and the corresponding linear programming relaxation LP.

IP: minimize
∑

i∈V wi xi

subject to: xi + x j ≥ 1 ∀(i, j ) ∈ E

xi ∈ {0, 1} ∀i ∈ V

LP: minimize
∑

i∈V wi xi

subject to: xi + x j ≥ 1 ∀(i, j ) ∈ E

0 ≤ xi ≤ 1 ∀i ∈ V

Let x∗ be the optimal solution to the linear program LP. Let S be the set of vertices j such that x∗
j ≥ 1/2.

S is a cover because for each edge (i, j ) either xi or x j is ≥1/2, and the weight of S is at most 2
∑

i∈V wi x∗
i .

Interestingly, the algorithm by Gonzalez [20] is the only factor 2 approximation algorithm for vertex cover,
whose proof does not rely on the theory of linear programming.

7.3.2 Filter and Round

Sahni and Gonzalez [21] showed that for certain problems including the p-median problem, the tree
pruning problem, and the generalized assignment problem, finding an α-approximate solution is NP-
hard. In light of the previous result, the next best thing is to find an α-approximate solution with the
minimum number of constraint violations. Lin and Vitter [8] gave such approximation algorithms for the
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problems mentioned above. For the generalized assignment problem, we refer the reader to Chapter 48 by
Yagiura and Ibaraki. Here we will illustrate their technique on the p-median problem. Our presentation
is based on Lin and Vitter [8]. Given a complete graph G on n vertices with weights on the edges and an
integer p, the problem is to determine p vertices (medians) so that the sum of the distances from each vertex
to its closest median is minimized. The integer program IP and the corresponding linear programming
relaxation LP are given below.

IP: minimize
∑

i, j∈V ci j xi j

subject to:
∑

j∈V xi j = 1 ∀i ∈ V

xi j ≤ y j ∀i, j ∈ V
∑

j∈V y j = p

xi j , y j ∈ {0, 1} ∀i, j

LP: minimize
∑

i, j∈V ci j xi j

subject to:
∑

j∈V xi j = 1 ∀i ∈ V

xi j ≤ y j ∀i, j ∈ V
∑

j∈V y j = p

0 ≤ xi j , y j ≤ 1 ∀i, j

Given an optimal solution x∗, y∗ to the LP, we obtain an integer program FP (called a filtered program)
by setting some variables in x to 0. The FP has the property that any integral feasible solution is at most
(1 + α) times the value of the optimal solution to LP. First, a fractional feasible solution to FP is constructed
from x∗, y∗. A feasible integral solution to FP is then obtained using either randomized rounding or some
greedy rounding. Here we illustrate a deterministic (greedy) rounding method. We assume certain lemmas
to illustrate the technique. For the proof of the lemmas, we refer the reader to the original paper by Lin
and Vitter [8].

Lemma 7.1

Given y, the optimal values for x can be computed for the linear programming problem LP.

Given an optimal solution x∗, y∗ to the LP, for a vertex i ∈ V , let Vi be the set of vertices j such that
ci j ≤ (1 + α)

∑
j∈V ci j x∗

i j . The FP and the reduced filtered program (RFP) necessary to compute the
solution to FP by Lemma 7.1 are

FP: minimize L

subject to:
∑

j∈Vi
xi j = 1 ∀i ∈ V

xi j ≤ L y j ∀i, j ∈ V
∑

j∈V y j = p

xi j = 0 ∀i ∈ V, j ∈ V \Vi

xi j , y j ∈ {0, 1} ∀i, j

RFP: minimize
∑

j∈V y j

subject to:
∑

j∈Vi
y j ≥ 1 ∀i ∈ V

y j ∈ {0, 1} ∀i, j

L corresponds to the factor by which the covering constraints are violated. The following lemma holds
by construction.

Lemma 7.2

Any feasible (integral) solution to FP has value at most (1 + α) times the value of the optimal solution to the
linear programming relaxation LP.

It is the case that
∑

j∈Vi
y∗

j ≥ α/(1 + α). Therefore, a feasible fractional solution to RFP with value
(1 + 1/α)p can be constructed (by assigning y j = y∗

j (1 + α)/α). RFP is nothing but set cover, and a log n
approximate integral solution can be constructed using the greedy heuristic of Chvátal [22]. Therefore, by
Lemma 7.2 we have a (1 + α)p log n approximate constraint violations with value at most (1 + α) times
the value of the optimal solution to the integer program.

7.3.3 Iterated Rounding

The technique of iterated rounding was introduced by Jain [9], who gave a 2-factor approximation
algorithm for the generalized Steiner network problem. Consider the problem of finding a minimum-cost
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edge-induced subgraph of a graph that contains a prespecified number of edges from each cut. Formally,
G = (V, E ) is a graph with weights on the edges. Also given is a function f : 2V → Z . The problem is
to determine a minimum-weight set of edges such that for every R subset of V , the number of edges is
δ(R) ≥ f (R), where δ(R) are the edges in the cut defined by the vertices in R. Given below are the integer
program IP and the corresponding linear programming relaxation LP.

IP: minimize
∑

e∈E we xe

subject to:
∑

e∈δ(R) ≥ f (R) ∀S ⊆ V

xe ∈ {0, 1} ∀i ∈ E

LP: minimize
∑

e∈E we xe

subject to:
∑

e∈δ(R) ≥ f (R) ∀S ⊆ V

0 ≤ xe ≤ 1 ∀i ∈ E

Note that both the programs above contain exponentially many constraints. Jain [9] gives a separation
oracle for the linear programming relaxation. Using this separation oracle, an optimal solution can be
computed in polynomial time [23]. Furthermore, Jain establishes the following:

Theorem 7.2

Any basic feasible solution to the linear programming relaxation has at least one variable with value ≥ 1/2.

Based on the previous theorem, one can construct a solution as follows: find an optimal solution (basic)
to the LP, include all the edges with a value ≥ 1/2 in the solution, then recursively solve the subproblem
obtained by deleting the edges included in the solution.

7.3.4 Pipage Rounding

Pipage rounding was developed by Ageev and Sviridenko [10], who applied it to the maximum coverage
problem, hypergraph maximum k-cut with given sizes of parts, and scheduling on unrelated parallel
machines. They showed that the maximum coverage problem can be approximated within 1 − (1 − 1/k)k

where k is the maximum size of any subset, thereby improving the previous bound of 1 − 1/e due to
Cornuejols et al. [24]. For the hypergraph max k-cut they obtained a bound of 1 − (1 − 1/r )r − 1/r r ,
where r is the cardinality of the smallest edge in the hypergraph. For the scheduling problem on unrelated
machines, they considered an additional constraint on the number of jobs that a given machine can process
and obtained the bound of 3/2. A similar bound was also established by Skutella [25] in the absence of
cardinality constraints. For the case of two machines, the current best bound is 1.2752 due to Skutella
[25], obtained by rounding the semidefinite programming relaxation using the dependent rounding
technique of Goemans and Williamson [6]. Ageev et al. [26] obtained a 1/2-approximation algorithm
for the max-dicut problem with given sizes of parts by a refined application of the pipage rounding.
Recently, Galluccio and Nobili [27] have improved the approximation ratio from 3/4 to 1 − 1/2q for
the maximum coverage problem when all the sets are of size 2, where every clique in a clique cover of
the input graph has size at least q . Note that q ≥ 2. This problem is also known as the maximum vertex
cover problem. Pipage rounding is especially suited to problems involving assignment and cardinality
constraints.

Our description of the pipage rounding is based on Ageev and Sviridenko [10]. The idea is to determin-
istically round a fractional solution to an integral solution, while ensuring that the objective function value
does not decrease in the rounding process. If the starting fractional solution was at least c times the optimal
fractional solution, then the pipage rounding will guarantee a c-approximation algorithm. The rounding
process converts a fractional solution into another fractional solution with less number of nonintegral
components. The “δ-convexity” of the objective functions guarantees that the objective function value
does not decrease in the rounding process.

Let G = (V, E ) be a bipartite graph with capacities cv on the vertices. Let f (X) be a polynomially
computable function defined on the values X = {xe : e ∈ E } assigned to the edges of G . Consider the
following integer program IP whose solution is an assignment of 0, 1 to the edges that maximizes f (X)
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subject to the capacity constraints, and its linear programming relaxation LP:

IP: maximize f (X)

subject to:
∑

e∈N(v) xe ≤ cv ∀v ∈ V

xe ∈ {0, 1} ∀e ∈ E

LP: maximize f (X)

subject to:
∑

e∈N(v) xe ≤ cv ∀v ∈ V

0 ≤ xe ≤ 1 ∀e ∈ E

We do not assume that the optimal solution to the LP is computable in polynomial time. Given a
fractional solution X , let G(X) be the subgraph induced by the edges that are assigned a nonintegral
value in X . G(X) either contains a path P or a cycle C . Let Po(Co) be the odd-indexed edges in the
P (C). Similarly, Pe (Ce ) the set of even-indexed edges in P (C). Given P (C), let lb = min{min{xe : e ∈
Po(Co)}, min{1 − xe : e ∈ Pe (Ce )}}. Similarly, define ub = min{min{1 − xe : e ∈ Po(Co)}, min{xe :
e ∈ Pe (Ce )}}. f is said to be δ-convex with respect to δ ∈ [lb, ub] if for each fractional solution and
all paths and cycles it is convex in δ. Given δ-convexity, the maximum of f in [lb, ub] is attained at one
of the endpoints. Pipage rounding amounts to either successively adding and deleting ub, or successively
deleting and adding lb, from the values assigned to the edges in P (C). This process yields a solution with
a reduced number of nonintegral components. Let us examine the case when all the capacities are 1, and
f computes the sum of the values assigned to the edges. In this case, the solution to the IP corresponds
to a maximum matching, and the solution to the linear program corresponds to the maximum fractional
matching. The pipage rounding (as can be readily verified) in this case converts the fractional matching
into an integral matching of same or larger size. To compute an α-approximation it remains to find a
function g that approximates f within α such that maximum of g can be computed in polynomial time,
subject to the constraints in the LP.

We illustrate the application of pipage rounding to the maximum coverage problem, where we are given
a collection S of weighted subsets of ground set I , and an integer k. The goal is to determine X ⊆ I of
cardinality k such that the sum of the weights of the sets in S that intersect with X is maximized. Associated
with each element i ∈ I is a variable xi , and associated with each element S j of S is a variable z j . Given
below is an integer program for the maximum coverage problem.

IP: maximize
∑m

j=1 w j z j

subject to:
∑

i∈S j
xi ≥ z j , ∀S j ∈ S
∑n

i=1 xi = k
xi ∈ {0, 1} ∀i ∈ I

The objective function in IP above can be replaced with f = ∑m
j=1 w j (1 − ∏

i∈S j
(1 − xi )) as it has

the same value over all integral vectors x . Replace f by g = ∑m
j=1 w j min{1,

∑
i∈S j

xi }. It can be shown
that f and g are δ-convex and g approximates f within a factor of 1−(1−1/k)k , where k is the cardinality of
the largest element of S. Furthermore, the fractional optimal solution to g , subject to the constraints in
IP can be computed in polynomial time.

7.3.5 Decompose and Round

We next describe a deterministic technique due to Gaur et al. [11]. This technique is applicable to
geometric covering problems, and can be thought of as an extension of the scaling technique. We consider
covering problems of the form min c x , subject to Ax ≥ b, x ∈ {0, 1}n, where A is an m × n matrix with
0, 1 entries, and c , x are vectors of dimension n and b is a vector with m entries. The geometry of the
problem under consideration imposes a structure on A, and this helps us in the application of the scaling
technique. We begin with a few definitions. Let C = {1, . . . , n} be the set of indices of the columns in
A and R = {1, . . . , m} the set of indices of the rows in A. Denote by R = {R1, R2, . . . , Rk} a partition
of R, and by C = {C1, C2, . . . , Ck} a partition of the columns of A. A(Ri , C j ) is the matrix obtained
from A by removing the columns in C \C j , and the rows in R \ Ri . A matrix A is totally unimodular if
the determinant of every square submatrix of A is ±1. We say A is partially unimodular with respect to C
and R if for all Ci ∈ C, R j ∈ R, A(R j , Ci ) is totally unimodular. For a partially unimodular matrix A,
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|C| = |R| is also known as the partial width of A. It is well known that if M is block structured and if all
the blocks are totally unimodular then M is totally unimodular. This fact, with a suitable reordering of the
rows and columns, implies the following:

Lemma 7.3

Let AD be the matrix whose ith diagonal block corresponds to A(Ri , Ci ) (all other entries are 0) then AD is
totally unimodular, if A is partially unimodular with respect to R, C.

We next describe the rectangle stabbing problem, and show that its coefficient matrix is partially
unimodular and has partial width 2. A log n factor approximation for the rectangle stabbing problem is
due to Hassin and Megiddo [28]. Given a set of axis-aligned rectangles (in 2D), the problem is to determine
the minimum number of axis-parallel lines that are needed to stab all the rectangles. Let H be the set of
horizontal lines going through the horizontal edges of the rectangles, V the set of vertical lines going
through the vertical edges of the rectangles, and R the set of all rectangles. Let Hr (Vr ) be the set of lines
from H(V) that intersect rectangle r ∈ R. Given below is the integer program IP and the corresponding
linear programming relaxation LP.

IP: minimize
∑

i∈H hi + ∑
j∈V v j

subject to:
∑

i :i∈Hr
hi + ∑

j : j∈Vr
v j ≥ 1 ∀r∈R

hi , v j ∈ {0, 1} ∀i ∈ H, j ∈ V

LP: minimize
∑

i∈H hi + ∑
j∈V v j

subject to:
∑

i :i∈Hr
hi +

∑
j : j∈Vr

v j ≥1 ∀r∈R

0 ≤ hi , v j ≤ 1 ∀i ∈ H, j ∈ V

Let A be the coefficient matrix corresponding to the programs above.

Lemma 7.4

A is partially unimodular with respect to C = {H, V} and R = {Rh , Rv} as computed below.

Given an optimal solution h∗, v∗ to the linear programming relaxation LP, we construct a partitionR =
{Rh , Rv = R\Rh}of the rectangles of R as follows: Rh is the set of all the rectangles r such that

∑
i :i∈Hr

hi ≥
1/2. Let AD be the block diagonal matrix whose blocks are A(Rh , H) and A(Rv , V). A(Rh , H) and
A(Rv , V) are totally unimodular as the columns can be reordered so that each row has the consecutive ones
property. By Lemma 7.3, AD is totally unimodular. Consider the program min c x subject to AD x ≥ 1, x ∈
{0, 1}n. Conforti et al. [29] showed that the polytope associated with AD is integral, hence the optimal
integral solution has the same value as the optimal fractional solution. Note that (2h∗, 2v∗) is feasible in
the previous problem. Therefore, the performance ratio is 2 as ALG ≤ (2h∗, 2v∗) and OPT ≥ (h∗, v∗).
Furthermore, the addition of capacity constraints on H and V does not affect the performance ratio.
These results can be generalized for arbitrary weights on the lines and requirements on the rectangles in d
dimensions. For recent results on the rectangle stabbing problem with soft capacities see Even et al. [30].
The case when rectangles have zero height has been studied extensively, see Chapter 37 by Kovaleva and
Spieksma.

A brief comment about the technique is in order. Every matrix A is partially unimodular with respect
to the following partitions: C1, C2, . . . , Cn, where Ci is the i th column in A. Let x∗ be the optimal
solution to the LP. Consider the following partition of rows: rectangle r belongs to set Ri in the partition
if x∗

i A[r, i] = max j∈[1, ...,n]{x∗
j A[r, j ]}. AD can now be constructed from the blocks A(Ri , Ci ). Once

again, by Lemma 7.3 AD is totally unimodular as each A(Ri , Ci ) is a column vector with all ones (the
determinant for every square submatrix is 1) and totally unimodular. Let τ be the maximum number of
nonzero entries in a row of A. The performance ratio using the algorithm and the argument above is 1/τ .
This is similar to the bound obtained for the set cover problem using the scaling technique. In this sense,
our approach can be viewed as a generalization of the scaling technique.

The arguments outlined in the preceding paragraphs lead to the following theorem.
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Theorem 7.3

Given a covering problem of the form min c x, subject to Ax ≥ b, x ∈ {0, 1}n, if A is partially unimodular
and has partial width 1/α, there exists an approximation algorithm with performance ratio α.

In light of the preceding theorem it is natural to study algorithms (exact and approximation) for
determining the minimum cardinality partitions with respect to which A is partially unimodular. We are
not aware of any existing results and pose the determination of minimum partial width as an interesting
open problem, with application to the theory of approximation algorithms.

Next, we consider an application of the rectangle stabbing problem to a load balancing problem that
arises in the context of scheduling on multiprocessor systems. In the rectilinear partitioning problem,
the input is a matrix of integers, and the problem is to partition the matrix using h horizontal lines and
v vertical lines, such that the load inside each rectangle (formed by two consecutive horizontal and vertical
lines) is minimized, where the load of a rectangle is defined to be the sum of entries in the rectangle. Given
an instance of the rectilinear partitioning problem we construct an instance of the rectangle stabbing
problem as follows: let L be the minimum load (we can obtain this by using binary search), all the
submatrices with load in excess of L correspond to rectangles in the rectangle stabbing problem. Note
that if all the rectangles are stabbed then the load is at most L . As we only have a 2-factor approximation
algorithm for the rectangle stabbing problem, the number of lines returned can be twice the number of
lines stipulated. Therefore, a solution to the rectilinear partitioning problem is obtained by removing every
second line (horizontal as well as vertical). In the process of removing the alternate lines, a new rectangle
is formed whose load is at most 4L . Therefore, the performance ratio is 4.

7.4 Discussion

Numerous techniques have been developed over the last two decades to convert an optimal fractional
solution (to the linear programming relaxation of an integer program) to an approximate integral solution.
These techniques can be divided into two broad categories: those that use randomized strategies and ones
that use deterministic strategies. Most of the randomized strategies can be made deterministic (at the
expense of increased running time) using the method of conditional expectation. The applicability of the
strategies is most evident in the context of packing and covering types of problems. Some success has been
obtained in the application of these techniques in the presence of cardinality constraints.
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8.1 Introduction

Following the seminal work of Goemans and Williamson [1], there has been an outgrowth in the use of
semidefinite programming (SDP) for designing approximation algorithms. Recall that anα-approximation
algorithm for a problem P is a polynomial-time algorithm such that for every instance I of P , it delivers
a solution that is within a factor of α of the optimum value [2]. It is well known that SDPs can be solved in
polynomial time (up to any prescribed accuracy) via interior-point algorithms (see, e.g., Refs. [3,4]), and
they have been used very successfully in the design of approximation algorithms for a host of NP-hard
problems, e.g., graph partitioning, graph coloring, and quadratic optimization [1–9], just to name a few.

Before we delve into the main topics of this chapter, let us first review Goemans and Williamson’s
technique of analyzing SDP relaxations and point out its limitations. Consider the following (real)
discrete quadratic programming (QP) problem:

maximize
∑

i, j

Qi j (1 − xi x j )

subject to xk ∈ {−1, 1}, k = 1, 2, . . . , n

(8.1)

where Q is an n × n symmetric, positive-semidefinite matrix. Problem (8.1) captures a wide variety of
combinatorial optimization problems (e.g., MAX CUT), and is known to be NP-hard. It is thus natural
to search for a relaxation of problem (8.1) that is polynomial-time solvable and yields a provably good
approximation ratio. One standard approach is to relax the binary variables x j to unit vectors v j in some

8-1
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Hilbert space H , and to replace the product xi x j by the inner product vi · v j in H . This gives the
following mathematical program:

maximize
∑

i, j

Qi j (1 − vi · v j )

subject to ‖vk‖ = 1, k = 1, 2, . . . , n

(8.2)

Problem (8.2) is an instance of an SDP and is a so-called SDP relaxation of problem (8.1). Now, let wQP

and wSDP be the optimal values of problems (8.1) and (8.2), respectively. It is clear that wSDP ≥ wQP,
since any feasible solution to problem (8.1) is also a feasible solution to problem (8.2). Let {v∗

1 , . . . , v∗
n}

be a solution to problem (8.2), which can be obtained in polynomial time (see, e.g., Refs. [3,4]). Goemans
and Williamson [1] then proposed to round this solution via a random hyperplane. Specifically, let r ∈ R

n

be a random vector drawn uniformly from the unit sphere Sn−1 (see, e.g., Ref. [10] for how this could be
done). Then, set x̂ j = sgn(v∗

j · r ), where

sgn(x) =
{

1 if x ≥ 0
−1 if x < 0

It is clear that the rounded solution {x̂1, . . . , x̂n} is a feasible solution to problem (8.1), but how does it
compare with the optimal solution? In the case where the entries of Q are nonnegative (i.e., Qi j ≥ 0 for
all i, j ), Goemans and Williamson [1] gave the following elegant analysis. First, using a geometric
argument and some analysis, one can show that

E
[
1 − x̂i x̂ j

] = 2

π
arccos(v∗

i · v∗
j ) ≥ c(1 − v∗

i · v∗
j ) (8.3)

for some constant c > 0. Now, since Qi j ≥ 0 and 1 − v∗
i · v∗

j ≥ 0, we have

Qi j E
[
1 − x̂i x̂ j

] ≥ c · Qi j (1 − v∗
i · v∗

j ) (8.4)

Thus, upon summing over i, j , we conclude that
∑

i, j

Qi j E
[
1 − x̂i x̂ j

] ≥ c
∑

i, j

Qi j (1 − v∗
i · v∗

j )

Notice that the right-hand side is simply c · w S D P , which is at least c · w Q P . Thus, it follows that the above
algorithm gives an 1/c-approximation to the optimal value of problem (8.1) in expectation.

Now, consider the following related problem:

maximize
∑

i, j

Qi j xi x j

subject to xk ∈ {−1, 1}, k = 1, 2, . . . , n

(8.5)

and its natural SDP relaxation:

maximize
∑

i, j

Qi j (vi · v j )

subject to ‖vk‖ = 1, k = 1, 2, . . . , n

(8.6)

It is tempting to analyze problem (8.6) using the same approach. Indeed, by using the same rounding
scheme, one can show that

E
[

x̂i x̂ j
] = 2

π
arcsin(v∗

i · v∗
j )

and that for −1 ≤ t ≤ 1, arcsin(x) and x differ only by a constant factor. However, as one readily observes,
the inequality (8.3) only provides a term-by-term estimate of the objective function and not a global
estimate. Thus, if we do not assume that the entries of Q are nonnegative, then the same analysis will
not go through, as inequality (8.4) will no longer be valid. However, the bottleneck in the analysis lies
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in (8.3), where we replace the equality by an inequality. Thus, if we could express E[x̂i x̂ j ] in such a way
so that equality can be preserved throughout, then we may be able to circumvent the aforementioned
diffculty and establish approximation guarantees for problem (8.6).

It turns out that such an expression is possible. In his proof of Grothendieck’s inequality—a well-known
inequality in functional analysis—Rietz [11] has established the following identity:

π

2
E[sgn(b · G) sgn(c · G)] = (b · c) + E

[(

b · G −
√

π

2
sgn(b · G)

)

(8.7)

×
(

c · G −
√

π

2
sgn(c · G)

)]

where b, c ∈ R
n are unit vectors and G = (g1, . . . , gn) is a standard Gaussian random vector, i.e., the gi ’s

are i.i.d. standard normal random variables. This identity was established in 1974, but its use for analyzing
SDP relaxations was not discovered until 2004, when Alon and Naor [12] used it to analyze the SDP
relaxation of a certain quadratic program. To see how this identity can be used to analyze problem (8.6),
we first let G ∈ R

n be a standard Gaussian random vector and set x̂i = sgn(v∗
i · G). Then, using (8.7), we

see that

π

2

∑

i, j

QijE
[

x̂i x̂ j
] =

∑

i, j

Qi j (v∗
i · v∗

j )

+
∑

i, j

Qi j E

[(

v∗
i · G −

√
π

2
sgn(v∗

i · G)

)(

v∗
j · G −

√
π

2
sgn(v∗

j · G)

)]

= wSDP +
∑

i, j

Qi j E

[(

v∗
i · G −

√
π

2
sgn(v∗

i · G)

)

×
(

v∗
j · G −

√
π

2
sgn(v∗

j · G)

)]

We now claim that

∑

i, j

Qi j E

[(

v∗
i · G −

√
π

2
sgn(v∗

i · G)

)(

v∗
j · G −

√
π

2
sgn(v∗

j · G)

)]

≥ 0 (8.8)

Assuming this, we see that

∑

i, j

Qi j E
[

x̂i x̂ j
] ≥ 2

π
w S D P

thus showing that the above algorithm gives an 2/π-approximation. We remark that Nesterov [8] has
established the above result using a different technique, but as we shall see, the technique we presented
can be applied to analyze other SDP relaxations as well.

To establish (8.8), let N be the standard Gaussian measure, i.e.,

d N(r ) = 1

(2π)n/2
exp

(−‖r‖2/2
)

dr

where ‖r‖2 = r 2
1 + · · · + r 2

n and dr is the n-dimensional Lebesgue measure. Consider the Hilbert space
L 2(N), i.e., the space of all real-valued measurable functions f on R

n with
∫

Rn | f |2 d N < ∞ (see, e.g.,
Ref. [13] for details). Recall that the inner product on L 2(N) is given by

〈 fu , fv〉 ≡
∫

Rn
fu(r ) fv(r ) dN(r ) = E[ fu fv]

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C008 March 20, 2007 12:10

8-4 Handbook of Approximation Algorithms and Metaheuristics

Now, observe that for each vector u ∈ R
n, the function hu : Rn → R given by

hu(r ) = u · r −
√

π

2
sgn(u · r )

is an element of L 2(N). Thus, it follows that

E

[
hv∗

i
hv∗

j

]
= E

[(

v∗
i · G −

√
π

2
sgn(v∗

i · G)

)(

v∗
j · G −

√
π

2
sgn(v∗

j · G)

)]

is an inner product of two vectors in the Hilbert space L 2(N). Moreover, we may consider Q as a positive-
semidefinite operator defined on the n-dimensional subspace spanned by the vectors {hv∗

1
, . . . , hv∗

n
}. These

observations allow us to conclude that (8.8) holds.
It is now instructive to review what we have done. We begin with the identity (8.7), which can be

written in the form

γ E[ f (b · G) f (c · G)] = (b · c) + E[(b · G − √
γ f (b · G))(c · G − √

γ f (c · G))]

where f is a rotational invariant rounding function and γ > 0 a constant. This suggests that by choosing
different f ’s, we may be able to analyze various SDP relaxations. Indeed, this is the idea behind the results
in Ref. [14], where the authors showed how to choose appropriate f ’s to analyze the SDP relaxations of a
class of discrete and continuous quadratic optimization problems in complex Hermitian form. Specifically,
consider the following problems:

maximize zH Qz

subject to z j ∈ {1, ω, . . . , ωk−1}, j = 1, 2, . . . , n
(8.9)

and

maximize zH Qz

subject to |z j | = 1, j = 1, 2, . . . , n

z ∈ C n

(8.10)

where Q ∈ C n×n is a Hermitian matrix, ω the principal kth root of unity, and zH denotes the conjugate
transpose of the complex vector z ∈ C n. The difference between problems (8.9) and (8.10) lies in the values
that the decision variables are allowed to take. In problem (8.9), we have discrete decision variables, and
such variables can be conveniently modeled as roots of unity. However, in problem (8.10), the decision
variables are constrained to lie on the unit circle, which is a continuous domain. Such problems arise
from many applications. For instance, the MAX-3-CUT problem where the Laplacian matrix is positive,
semidefinite can be formulated as an instance of problem (8.9). On the other hand, problem (8.10) arises
from the study of robust optimization as well as control theory [15,16].

Just like their real counterparts, both of these problems are NP-hard, and thus we will settle for approx-
imation algorithms. In the following sections, we will present a generic algorithm and a unified treatment
of the two seemingly very different problems (8.9) and (8.10) using their natural SDP relaxations, and to
derive approximation guarantees using variants of the identity (8.7).

8.2 Complex Quadratic Optimization

Let Q ∈ C n×n be a Hermitian matrix, where n ≥ 1 is an integer. Consider the following discrete quadratic
optimization problem:

maximize zH Qz

subject to z j ∈ {1, ω, . . . , ωk−1}, j = 1, 2, . . . , n
(8.11)
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where ω is the principal kth root of unity. We note that as k goes to infinity, the discrete problem (8.11)
becomes a continuous optimization problem:

maximize zH Qz

subject to |z j | = 1, j = 1, 2, . . . , n

z ∈ C n

(8.12)

Although problems (8.11) and (8.12) are quite different in nature, the following complex semidefinite
program provides a relaxation for both of them:

maximize Q • Z

subject to Z j j = 1, j = 1, 2, . . . , n

Z � 0

(8.13)

As before, we use w S D P to denote the optimal value of the SDP relaxation (8.13).
Our goal is to get a near-optimal solution for problems (8.11) and (8.12). Below we present a generic

algorithm due to Ref. [14] that can be used to solve both problems (8.11) and (8.12). The algorithm is
quite simple, and it is similar in spirit to the algorithm of Goemans and Williamson [1,7].

Algorithm

STEP 1: Solve the SDP relaxation (8.13) and obtain an optimal solution Z∗. Since Z∗ is positive-
semidefinite, we can obtain a Cholesky decomposition Z∗ = V V H , where V = (v1, v2, . . . , vn).

STEP 2: Generate two independent normally distributed random vectors x ∈ Rn and y ∈ Rn with
mean 0 and covariance matrix 1

2 In, where In is the n × n identity matrix. Let r = x + yi .
STEP 3: For j = 1, 2, . . . , n, let ẑ j = f (v j · r ), where the function f (·) depends on the structure of

the problem and will be fixed later. Let ẑ = (ẑ1, ẑ2, . . . , ẑn) be the resulting solution.

To prove the performance guarantee of the above algorithm, we are interested in analyzing the quantity:

E
[
ẑH Qẑ

] =
∑

l ,m

QlmE[f (vl · r ) f (vm · r )]

Thus, it would be sufficient to compute the quantity E[f (vl · r ) f (vm · r )] for any l , m, and this will be the
main concern of the analysis. The analysis, of course, depends on the choice of the function f (·). However,
the following Lemma will be useful and it is independent of the function f (·). Recall that for two vectors
b, c ∈ C n, we have b · c = ∑n

j=1 b j c j .

Lemma 8.1

For any pair of vectors b, c ∈ C n, E[(b · r )(c · r )] = b · c , where r = x + yi and x ∈ Rn and y ∈ Rn are
two independent normally distributed random vector with mean 0 and covariance matrix 1

2 In.

Proof
This follows from a straightforward computation

E[(b · r )(c · r )] = E








n∑

j=1

b j r j





(
n∑

k=1

c krk

)

 =
n∑

j,k=1

b j c kE[r j rk] =
n∑

j=1

b j c j

where the last equality follows from the fact that the entries of x and y are independent, normally
distributed with mean 0 and variance 1/2.

In the sequel, we shall use r ∼ NC (0, In) to indicate that r is an n-dimensional standard complex
normal random vector, i.e., r = x + yi , where x , y ∈ Rn are two independent normally distributed
random vectors, each with mean 0 and covariance matrix 1

2 In.
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8.3 Discrete Problems Where Q Is Positive Semidefinite

In this section, we assume that Q is Hermitian and positive semidefinite. Consider the discrete complex
quadratic optimization problem (8.11). In this case, we define the function f (·) in the generic algorithm
presented in Section 8.2 as follows:

f (z) =






1 if arg(z) ∈ [−π/k, π/k)
ω if arg(z) ∈ [π/k, 3π/k)
...

...

ωk−1 if arg(z) ∈ [(2k − 3)π/k, (2k − 1)π/k)

(8.14)

By construction, we have ẑ j ∈ {1, ω, . . . , ωk−1} for j = 1, 2, . . . , n, i.e., ẑ is a feasible solution of
problem (8.11). Now, we can establish the following lemma.

Lemma 8.2

For any pair of vectors b, c ∈ C n and r ∼ NC (0, In), we have

E[(b · r ) f (c · r )] = k sin(π/k)

2
√

π
(b · c)

Proof
By rotation invariance, we may assume without loss of generality that b = (b1, b2, 0, . . . , 0) and c =
(1, 0, . . . , 0). Then, we have

E[(b1r1 + b2r2) f (r1)] = b1E[r1 f (r1)]

= b1

π

∫

R

∫

R
(x − i y) f (x − i y) exp{−(x2 + y2)} dx dy

= b1

π

∫ ∞

0

∫ 2π

0
ρ2e−iθ f (ρe−iθ )e−ρ2

dθ dρ

Now, for any j = 1, . . . , k, if (2 j −3)π/k < θ ≤ (2 j −1)π/k, then−(2 j −1)π/k ≤ −θ < −(2 j −3)π/k,
or

2k − 2 j + 1

k
π ≤ 2π − θ <

2k − 2 j + 3

k
π

It then follows from the definition of f (·) that

f (ρe−iθ ) = f (ρei(2π−θ)) = ωk− j+1

and hence f (ρe−iθ ) = ω j−1. Therefore, we have

∫ (2 j−1)π/k

(2 j−3)π/k
f (ρe−iθ )e−iθ dθ = ω j−1

∫ (2 j−1)π/k

(2 j−3)π/k
e−iθ dθ = 2 sin(π/k)

In particular, the above quantity is independent of j . Thus, we conclude that

∫ 2π

0
f (ρe−iθ )e−iθ dθ = 2k sin(π/k)

Moreover, since we have
∫ ∞

0
ρ2e−ρ2

dρ =
√

π

4
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it follows that

E[(b1r1 + b2r2) f (r1)] = k sin(π/k)

2
√

π
b1 = k sin(π/k)

2
√

π
(b · c)

as desired.

We are now ready to prove the main result of this section.

Theorem 8.1

Suppose that Q is Hermitian and positive semidefinite. Then, there exists a
(k sin( π

k ))2

4π
approximation

algorithm for problem (8.11).

Proof
By Lemmas 8.1 and 8.2, we have

E

[{

(b · r ) − 2
√

π

k sin( π
k )

f (b · r )

}{

(c · r ) − 2
√

π

k sin( π
k )

f (c · r )

}]

= −(b · c) + 4π

(k sin( π
k ))2

E[f (b · r ) f (c · r )]

It follows that

E[ẑH Qẑ] = (k sin( π
k ))2

4π

n∑

l=1

n∑

m=1

qlm(vl · vm) + (k sin( π
k ))2

4π

n∑

l=1

n∑

m=1

qlm

(8.15)

× E

[{

(vl · r ) − 2
√

π

k sin( π
k )

f (vl · r )

}{

(vm · r ) − 2
√

π

k sin( π
k )

f (vm · r )

}]

We now claim that
n∑

l=1

n∑

m=1

qlmE

[{

(vl · r ) − 2
√

π

k sin( π
k )

f (vl · r )

}{

(vm · r ) − 2
√

π

k sin( π
k )

f (vm · r )

}]

≥ 0 (8.16)

To see this, let G be the standard complex Gaussian measure, i.e.,

dG(r ) = 1

πn
exp

(−‖r‖2
)

dr

where ‖r‖2 = |r1|2 + · · · + |rn|2 and dr is the 2n-dimensional Lebesgue measure. Consider the Hilbert
space L 2(G), i.e., the space of all complex-valued measurable functions f on C n with

∫
C n |f |2 dG < ∞.

Recall that the inner product on L 2(G) is given by

〈 fu , fv〉 ≡
∫

C n
fu(r ) fv(r ) dG(r ) = E[fu fv]

Now, observe that for each vector u ∈ C n, the function hu : C n → C given by

hu(r ) = u · r − 2
√

π

k sin( π
k )

f (u · r )

is an element of L 2(G). Thus, it follows that

E
[
hvl hvm

] = E

[{

(vl · r ) − 2
√

π

k sin( π
k )

f (vl · r )

}{

(vm · r ) − 2
√

π

k sin( π
k )

f (vm · r )

}]

is an inner product of two vectors in the Hilbert space L 2(G). Moreover, we may consider Q as a positive
semidefinite operator defined on the n-dimensional subspace spanned by the vectors {hv1 , . . . , hvn }.
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These observations allow us to conclude that (8.16) holds. Finally, upon substituting (8.16) into (8.15),
we obtain

E[ẑH Qẑ] ≥ (k sin( π
k ))2

4π

n∑

l=1

n∑

m=1

qlm(vl · vm) = (k sin( π
k ))2

4π
w S D P

i.e., our algorithm gives a
(k sin( π

k ))2

4π
-approximation.

It is interesting to note that the above result can be obtained via a completely different technique.
In Ref. [17], the authors developed a closed-form formula for computing the probability of a complex-
valued normally distributed bivariate random vector to be in a given angular region. Using this for-
mula and the series expansions of certain trigonometric functions, they are able to establish the same
result.

As an application of Theorem 8.1, we consider the MAX-3-CUT problem, which is defined as follows.
We are given an undirected graph G = (V, E ) with V being the set of nodes and E being the set of edges.
For each edge (i, j ) ∈ E , there is a weight wi j that could be positive or negative. For a partition of V into
three subsets V1, V2, and V3, we define

δ(V1, V2, V3) = {(i, j ) ∈ E : i ∈ Vk , j ∈ Vl for k �= l}

and

w(δ(V1, V2, V3)) =
∑

(i, j )∈δ(V1, V2, V3)

wi j

Our goal is to find a tripartition (V1, V2, V3) such that w(δ(V1, V2, V3)) is maximized. Note that the
MAX-3-CUT problem is a generalization of the well-known MAX–CUT problem. In the MAX–CUT problem,
we require one of the subsets, say V3, to be empty.

Goemans and Williamson [7] have given the following complex QP formulation for the MAX-3-CUT

problem:

maximize 1
3

∑
(i, j )∈E wi j

(
2 − zi · z j − z j · zi

)

subject to z j ∈ {1, ω, ω2} for all j ∈ V
(8.17)

Based on this formulation and its SDP relaxation, Goemans and Williamson [7] were able to give an 0.836-
approximation algorithm for the MAX-3-CUT problem when the weights of the edges are nonnegative,
i.e., wi j ≥ 0 for all (i, j ) ∈ E . (They also showed that their algorithm is actually the same as that of Frieze
and Jerrum [5], and thus give a tighter analysis of the algorithm in Ref. [5].) However, their analysis does
not apply if some of the edges have negative weights.

Note that since wi j = w j i , problem (8.17) is equivalent to

maximize 2
3 zH L z

subject to z j ∈ {1, ω, ω2} for all j ∈ V
(8.18)

where L is the Laplacian matrix of the graph G = (V, E ), i.e., L i j = −wi j and L ii = ∑
j :(i, j )∈E wi j .

However, by Theorem 8.1, problem (8.18) can be approximated by a factor of
(3 sin( π

3 ))2

4π
≈ 0.537.

Therefore, we obtain the following result:

Corollary 8.1

There is a randomized 0.537-approximation algorithm for the MAX-3-CUT problem when the Laplacian
matrix is positive-semidefinite.
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8.4 Continuous Problems Where Q Is Positive-Semidefinite

Now, let us consider problem (8.12) when Q is positive-semidefinite. This problem can be seen as a
special case of problem (8.11) by letting k → ∞. In this case, the function f (·) is defined as follows:

f (t) =
{ t

|t| if |t| > 0

0 if t = 0
(8.19)

Note that as k → ∞, we have
(k sin( π

k ))2

4π
→ π/4. This establishes the following result, which has been

proved independently by Ben-Tal et al. [16] and Zhang and Huang [17]. However, the proof presented
above is quite a bit simpler.

Corollary 8.2

Suppose that Q is positive semidefinite and Hermitian. Then, there exists a π
4 -approximation algorithm for

problem (8.12).

8.5 Continuous Problems Where Q Is Not Positive-Semidefinite

In this section, we deal with problem (8.12) where the matrix Q is not positive-semidefinite. However,
for convenience, we assume that w S D P > 0 so that the standard definition of approximation algorithm
makes sense for our problem. It is clear that w S D P > 0 as long as all the diagonal entries of Q are zeros.

Assumption 8.1

The diagonal entries of Q are all zeros, i.e., Qii = 0 for i = 1, 2, . . . , n.

In fact, Assumption 8.1 leads to the even stronger result that follows.

Lemma 8.3

If Q satisfies Assumption 8.1, then there exists a constant C > 0 such that

wSDP ≥ C

√ ∑

1≤i, j≤n

|qi j |2 > 0

Proof
It is straightforward to show that problem (8.12) is equivalent to

maximize (xT , yT )

(
Re(Q) I m(Q)
−I m(Q) Re(Q)

)(
x
y

)

subject to x2
j + y2

j = 1, j = 1, 2, . . . , n

x , y ∈ Rn

(8.20)

Moreover, the objective value of problem (8.20) is bounded below by the objective value of the following
problem:

maximize (xT , yT )

(
Re(Q) I m(Q)
−I m(Q) Re(Q)

)(
x
y

)

subject to x2
j = 1

2 , j = 1, 2, . . . , n

y2
j = 1

2 , j = 1, 2, . . . , n

x , y ∈ Rn

(8.21)
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Since Q satisfies Assumption 8.1, the diagonal entries of
(

Re(Q) I m(Q)
−I m(Q) Re(Q)

)

must also be zeros. It has been shown in Ref. [18] that for any real matrix A = (ai j )n×n with a zero
diagonal, the optimal objective value of

maximize xT Ax

subject to x2
j = 1, j = 1, 2, . . . , n

x ∈ Rn

(8.22)

is bounded below by C
√

2
∑

1≤i, j≤n |ai j |2, for some constant C > 0 which is independent of A. This

implies that the optimal objective value of problem (8.21) is at least

1

2
C

√

2
∑

1≤i, j≤n

2(|Re(qi j )|2 + |I m(qi j )|2) ≥ C

√ ∑

1≤i, j≤n

|qi j |2

which leads to the desired result.

Again, we use our generic algorithm presented in Section 8.2. In this case, we specify the function f (·)
as follows:

f (t) =
{ t

T if |t| ≤ T

t
|t| if |t| > T

(8.23)

where T is a parameter which will be fixed later. If we let z j = f (v j ·r ), then the solution z = (z1, . . . , zn)
obtained by this rounding may not be feasible, as the point may not have unit modulus. However, we
know that |z j | ≤ 1. Thus, we can further round the solution as follows:

ẑ =
{

z/|z| with probability (1 + |z|)/2

−z̄/|z| with probability (1 − |z|)/2

The following lemma is a direct consequence of the second randomized rounding.

Lemma 8.4

For i �= j , we have E[ẑi ẑ j ] = E[zi z j ].

Proof
By definition, conditioning on zi , z j , we have

E[ẑi ẑ j | zi , z j ] = Pr{ẑi = zi /|zi |, ẑ j = z j /|z j |} zi z j

|zi | · |z j |

+ Pr{ẑi = zi /|zi |, ẑ j = −z j /|z j |} − zi z j

|zi | · |z j |

+ Pr{ẑi = −zi /|zi |, ẑ j = z j /|z j |} − zi z j

|zi | · |z j |

+ Pr{ẑi = −zi /|zi |, ẑ j = −z j /|z j |} zi z j

|zi | · |z j |

= 1

2
(1 + |zi | · |z j |) zi z j

|zi | · |z j | − 1

2
(1 − |zi | · |z j |) zi z j

|zi | · |z j |
= zi z j

The desired result then follows from the tower property of conditional expectation.
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This shows that the expected value of the solution on the circle equals that of the “fractional” solution
obtained by applying f (·) to the SDP solution. Therefore, we could still restrict ourselves to the rounding
function f (·).

Now, define

g (T) = 1

T
− 1

T
e−T2 + √

π(1 − �(
√

2T))

where �(·) is the probability distribution function of N (0, 1).

Lemma 8.5

For any pair of vectors b, c ∈ C n and r ∼ NC (0, In), we have

E[(b · r ) f (c · r )] = g (T)(b · c)

Proof
Again, without loss of generality, we assume that c = (1, 0, . . . , 0) and b = (b1, b2, 0, . . . , 0). Let 1A be
the indicator function of the set A, i.e., 1A(ω) = 1 if ω ∈ A and 1A(ω) = 0 otherwise. Then, we have

E[(b · r ) f (c · r )] = E

[
(b1r̄1 + b2r̄2)

r1

T
· 1{|r1|≤T}

]
+ E

[

(b1r̄1 + b2r̄2)
r1

|r1| · 1{|r1|>T}
]

= 1

T
E

[
b1|r1|2 · 1{|r1|≤T}

] + E
[
b1|r1| · 1{|r1|>T}

]

= b1

T
· 1

π

∫

x2+y2≤T2
(x2 + y2) exp(−(x2 + y2)) dx dy

+ b1

π

∫

x2+y2>T2

√
x2 + y2 exp(−(x2 + y2)) dx dy

= b1

πT

∫ 2π

0

∫ T

0
ρ3 exp(−ρ2) dρ dθ + b1

π

∫ 2π

0

∫ ∞

T
ρ2 exp(−ρ2) dρ dθ

= g (T)b1

where the last equality follows from the facts
∫ T

0
ρ3 exp(−ρ2) dρ = 1

2

(
1 − (T 2 + 1) exp(−T 2)

)

and
∫ ∞

T
ρ2 exp(−ρ2) dρ = 1

2

(
T exp(−T 2) + √

π(1 − �(
√

2T))
)

This completes the proof.

In a similar fashion, one can show the following:

Lemma 8.6

For any pair of vectors b, c ∈ C n and r ∼ NC (0, In), we have

E[ f (c · r ) f (c · r )] = 1

T 2
− 1

T 2
exp(−T 2)
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Now, by putting everything together, we obtain the following:

Theorem 8.2

If Q satisfies Assumption 8.1, then there exists a constant C > 0 such that

E
[
ẑH Qẑ

] ≥ 1

3 ln(β)
w S D P

where β = max





5,

∑
1≤k,m≤n

|qkm|

C

√∑
1≤k,m≤n

|qkm|2






Proof
By Lemmas 8.1 and 8.5, we have

E[{(b · r ) − T f (b · r )}{(c · r ) − T f (c · r )}] = (1 − 2Tg (T))(b · c) + T 2
E[ f (b · r ) f (c · r )]

It follows that

E
[
ẑH Qẑ

] =
n∑

k=1

n∑

m=1

2Tg (T) − 1

T 2
qkm(vk · vm)

+ 1

T 2

n∑

k=1

n∑

m=1

qkmE[{(vk · r ) − T f (vk · r )}{(vm · r ) − T f (vm · r )}]

Again, the quantity E[{(b · r ) − T f (b · r )}{(c · r ) − T f (c · r )}] can be seen as an inner product of two
vectors in a Hilbert space. Moreover, by letting b = c and using Lemma 8.6, we know that the norm of an
Euclidean unit vector in this Hilbert space is

2 − 2Tg (T) − exp(−T 2) = exp(−T 2) − 2T
√

π(1 − �(
√

2T))

It follows that

1

T 2

n∑

k=1

n∑

m=1

qkmE[{(vk · r ) − T f (vk · r )}{(vm · r ) − T f (vm · r )}]

≥ − exp(−T 2) − 2T
√

π(1 − �(
√

2T))

T 2

n∑

k=1

n∑

m=1

|qkm|

In contrast, by Lemma 8.3, we have w S D P ≥ C
√∑

1≤k,m≤n |qkm|2 > 0 for some constant C > 0. It

follows that

1

T 2

n∑

k=1

n∑

m=1

qkmE[{(vk · r ) − T f (vk · r )}{(vm · r ) − T f (vm · r )}]

≥ − exp(−T 2) − 2T
√

π(1 − �(
√

2T))

T 2

∑
1≤k,m≤n |qkm|

C
√∑

1≤k,m≤n |qkm|2
· wSDP

≥ − exp(−T 2) − 2T
√

π(1 − �(
√

2T))

T 2
β · wSDP

where β = max





5,

∑
1≤k,m≤n

|qkm|

C

√∑
1≤k,m≤n

|qkm|2





. This implies that

E
[
ẑH Qẑ

] ≥
(

2Tg (T) − 1

T 2
− exp(−T 2) − 2T

√
π(1 − �(

√
2T))

T 2
n

)

wSDP

≥ 1 − (2 + β) exp(−T 2)

T 2
wSDP

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C008 March 20, 2007 12:10

Analyzing Semidefinite Programming Relaxations 8-13

By letting T =
√

2 ln β, we have E
[
ẑH Qẑ

] ≥ 1
3 ln β

w S D P .

Note that
∑

1≤k,m≤n |qkm|
√∑

1≤k,m≤n |qkm|2
≤ 1

n

Therefore, we have

Corollary 8.3

If Q satisfies Assumption 8.1, then E
[
ẑH Qẑ

] ≥ O( 1
ln n ) wSDP.

8.6 Discrete Problems Where Q Is Not Positive-Semidefinite

Let us now consider problem (8.11) where Q is an indefinite Hermitian matrix with diag(Q) = 0. Its
approximability was left open in Ref. [14] and is recently resolved by Huang and Zhang [19]. It is interesting
to note that the techniques of Huang and Zhang encompass well-known ideas in the literature. Specifically,
their rounding is similar to a technique introduced in Ref. [20], and their analysis uses some of the ideas
from Ref. [21]. To be precise, let Z∗ be an optimal solution to problem (8.11). Then, let r ∼ NC (0, Z∗)
be a Gaussian random vector, and for each j = 1, 2, . . . , n, set

z′
j =

{
r j /|r j | if |r j | > T

r j /T if |r j | ≤ T

where T > 0 is a parameter to be chosen later. As earlier, each z′
j satisfies |z′

j | ≤ 1. However, the solution
{z′

1, . . . , z′
n} is not feasible to problem (8.11). Thus, we need to perform a second randomized rounding

as follows:

ẑ j = ωl with probability (1 + Re(ω−l z′
j ))/k

where l = 0, 1, . . . , k − 1 and j = 1, 2, . . . , n. Observe that

k−1∑

l=0

(1 + Re(ω−l z′
j ))

k
= 1 + 1

k
Re

[(
k−1∑

l=0

ω−l

)

z′
j

]

= 1

and hence, we indeed have a probability distribution. The following lemma is similar in spirit to Lemma 8.4
and is crucial to the analysis.

Lemma 8.7

For j �= l and k ≥ 3, we have E
[
ẑ j ẑl

] = 1
4 E

[
z′

j z′
l

]
.

To analyze the quality of the solution {ẑ1, . . . , ẑn}, we need the following lemma (see also Ref. [21]):

Lemma 8.8

For j �= l and T > 1, we have E[|
 j l |] < exp(−T 2)(4 + 5/T), where 
 j l = r j rl /T 2 − z′
j z′

l .

Proof
We first divide C 2 into the following (possibly overlapping) regions:

A = {(r j , rl ) : |r j | ≤ T, |rl | ≤ T}, B = {(r j , rl ) : |rl | > T}, C = {(r j , rl ) : |r j | > T}
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By symmetry, we may assume that E[|
 j l | · 1C ] ≤ E[|
 j l | · 1B ]. Thus, we have

E[|
 j l |] ≤ E[|
 j l | · 1A] + E[|
 j l | · 1B ] + E[|
 j l | · 1C ] ≤ E[|
 j l | · 1A] + 2E[|
 j l | · 1B ]

By construction, we have E[|
 j l | · 1A] = 0. Now, suppose that E[r j rl ] = Z∗
j l = γ eiα . Since we have

(
r j

rl

)

∼ NC

(

0,

(
1 γ eiα

γ e−iα 1

))

it follows that

r j = γ eiαη +
√

1 − γ 2 λ, rl = η

where
(

η

λ

)

∼ NC (0, I2).

Hence, we conclude that

P (|rl | > T) = P (|η| > T) = 1

π

∫ ∞

T

∫ 2π

0
r e−r 2

dθ dr = 2

∫ ∞

T
r e−r 2

dr = e−T2

Now, note that E[|z′
j z′

l |] ≤ E[1B ] = P (|η| > T) = e−T2
. Moreover, since γ ≤ 1, we have

E[|r j rl | · 1B ] = E

[(
γ eiα|η|2 +

√
1 − γ 2 λη̄

)
· 1B

]

≤ E
[(|η|2 + |η| · |λ|) · 1B

]

= 1

π

∫ ∞

T

∫ 2π

0
r 3e−r 2

dθ dr +
(

1

π

∫ ∞

T

∫ 2π

0
r 2 dθ dr

)(
1

π

∫ ∞

0

∫ 2π

0
r 2e−r 2

dθ dr

)

=
(

T 2 +
√

πT

2
+ 1

)

e−T2 + π

2

(
1 − �(

√
2T)

)

where �(·) is the cumulative distribution function of the real-valued standard normal distribution. It then
follows that

E[|
 j l | · 1B ] ≤ E

[ |r j rl |
T 2

+ |z′
j z′

l |
]

≤ e−T2
(

1

T 2
+

√
π

2T
+ 2

)

+ π

2T 2
(1 − �(

√
2T))

whence

E[|
 j l |] ≤ e−T2
(

2

T 2
+

√
π

T
+ 4

)

+ π

T 2
(1 − �(

√
2T)) (8.24)

Now, observe that

π

T 2
(1 − �(

√
2T)) =

√
π

T 2

∫ ∞

T
e−s 2

ds ≤
√

π

T 2

∫ ∞

T
s e−s 2

ds =
√

π

2T 2
e−T2

and hence it follows from (8.24) that

E[|
 j l |] ≤ e−T2
(√

π + 4

2T 2
+

√
π

T
+ 4

)

< e−T2
(

4 + 5

T

)

as desired.
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Now, by using Lemmas 8.7 and 8.8, and the techniques similar to that in Ref. [21], we are led to the
following result:

Theorem 8.3

Suppose that n ≥ 3, and set T = √
9 ln n. Then, we have E[zH Qz] ≥ O

(
1

ln n

)
wSDP.

8.7 Summary

We presented a generic algorithm and a unified treatment of the two seemingly very different quadratic
optimization problems in complex Hermitian form. Since these problems are NP-hard, we settled for
approximation algorithms. We used their natural SDP relaxations, and to derive approximation guarantees
we used variants of the Rietz identity [11].
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9.1 Introduction

Let � be an NP-hard optimization problem, and let A be an approximation algorithm for �. For an
instance I of �, let A(I ) denote the objective value when running A on I , and let OPT(I ) denote the
optimal objective value. The approximation ratio of A for the instance I is RA(I ) = A(I )/OPT(I ), thus,
when � is minimization (maximization) problem RA(I ) ≥ 1 (RA(I ) ≤ 1).

A polynomial-time approximation scheme (PTAS) is an algorithm that takes as input an additional
parameter, ε > 0, which determines the desired approximation ratio. As ε approaches 0, the approximation
ratio gets arbitrarily close to 1. The time complexity of the scheme is polynomial in the input size, but may
be exponential in 1/ε. This gives a clear trade-off between running time and quality of approximation.
Formally,

Definition 9.1

An approximation scheme for an optimization problem � is an algorithm A which takes as input an instance
I of � and an error bound ε, runs in time polynomial in |I |, and has approximation ratio RA(I , ε) ≤ (1+ε).
In fact, such an algorithm A is a family of algorithms Aε such that for any instance I , RAε (I ) ≤ (1 + ε).

The approximation algorithm A may be deterministic or randomized. In the latter case, the result is a
randomized approximation scheme.

Definition 9.2

A randomized approximation scheme for an optimization problem � is a family of algorithms Aε which
run in time polynomial in |I | and have, for any instance I , expected approximation ratio E X P [RAε (I )] ≤
(1 + ε).

9-1
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In some approximation schemes, an additive constant k, whose value is independent of I and ε, is added
to the approximation ratio. Asymptotically, this constant is negligible, thus, such a scheme is called an
asymptotic PTAS.

Definition 9.3

An asymptotic approximation scheme for an optimization problem � is a family of algorithms Aε that run
in time polynomial in |I |, such that, for some constant k and for any instance I , Aε(I ) ≤ (1+ε)OPT(I )+k.

We refer the reader to Chapter 11 in this handbook for a detailed study of such schemes.
Some approximation algorithms provide a solution for a relaxed instance of the problem. For exam-

ple, in packing problems, an algorithm may pack the items in bins whose sizes are slightly larger than
the original. The objective value is achieved relative to the relaxed instance. This type of algorithm is
called a dual approximation algorithm [1], or approximation with resource augmentation [2]. A dual
approximation scheme is a family of algorithms Aε that run in time polynomial in |I |, such that, for
any instance I , A(I ) ≤ (1 + ε)OPT(I ), and A(I ) is achieved for resources augmented by factor of
(1 + ε).

Depending on the function f (|I |, 1/ε), which gives the running time of the scheme, some schemes
are classified as quasi-polynomial and others as fully polynomial. In particular, when the running time is
O(n pol ylog (n)) we get a quasi-PTAS (see, e.g., Refs. [3,4]); when the running time is polynomial in both
|I | and 1/ε we get a fully polynomial-time approximation scheme (FPTAS). Such schemes are studied in
detail in Chapter 10.

There is wide literature on approximation schemes for NP-hard problems. Many of these works present
PTASs for certain subclasses of instances of problems, which are in general extremely hard to solve. While
some of the proposed schemes may have running times which render them inefficient in practice, these
works essentially help identify the class of problems that admit PTAS. There have been some studies also
toward characterizing this class of problems (see, e.g., Refs. [5,6] and Chapter 17 of this book). We focus
here on the techniques that have been repeatedly used in developing PTASs.

We refer the reader also to the comprehensive survey on Approximation Algorithms by Motwani [7], a
tutorial by Schuurman and Woeginger [8], and the survey on scheduling by Karger et al. [9], from which
we borrowed some of the examples in this chapter.

9.2 Partial Enumeration

9.2.1 Extending Partial Small-Size Solutions

There are two main techniques based on extending partial small-size solutions. The first technique exploits
our ability to solve the problem optimally on a constant-size subset of the instance. Thus, initially, such a
constant-size subset is selected. This subset contains the most “significant” elements in the instance. We
identify elements as significant depending on the problem at hand. The problem is solved optimally for
this subset. This can be done by exhaustive search, since there is only a constant number of elements to
consider. Next, this optimal partial solution is extended into a complete one, using some heuristic which
has a bounded approximation ratio.

In the second technique, none of the elements is initially identified as “significant”; instead, all partial
solutions of constant size are considered, and each is extended to a complete solution using some heuristic.
The best extension is selected to be the output of the scheme.

The time-complexity analysis of such PTASs is based on the fact that the number of possible subsets, or
solutions that are considered, is exponential in the (constant) size of these subsets. The step in which the
constant-size partial solution is extended is usually based on some greedy rule that may require sorting,
and is polynomial. The parameter ε specifying the required approximation ratio of (1 + ε) determines the
size k of the partial solution to which an exponential exhaustive search is applied. This implies that the
running time of such schemes is exponential in 1/ε.

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C009 March 20, 2007 12:13

Polynomial-Time Approximation Schemes 9-3

9.2.1.1 Extending an Optimal Solution for a Single Subset

We present the first technique in the context of a classical scheduling problem, namely, the problem of
finding the minimum makespan (MM) (or, overall completion time) of a schedule of n jobs on m identical
machines. The main idea in the PTAS of Graham [10] is to first optimally schedule the k longest jobs and
then schedule, using some heuristic, the remaining jobs. Formally, the input for the MM problem consists
of n jobs and m identical machines. The goal is to schedule the jobs nonpreemptively on the machines in
a way that minimizes the maximum completion time of any job in the schedule.

Denote by p1, . . . , pn the processing times of the jobs. Assume that n > m, and that the processing
times are sorted in nonincreasing order, that is, for all i < j, pi ≥ p j . A well-known heuristic for the
makespan problem is the LPT rule, which selects the longest unscheduled job in the sorted list and assigns
it to a processor which currently has the minimum load. The PTAS combines an optimal schedule of the
longest k jobs with the longest processing time (LPT) rule, applied to the remaining jobs.

Formally, for any k ∈ [0, n], the algorithm Ak is defined as follows:

1. Schedule optimally, with no intended idles, the first k jobs.
2. Add the remaining jobs greedily using the LPT rule.

Theorem 9.1

Let Ak(I ) denote the makespan achieved by Ak on an instance I , and let OPT(I ) denote the minimum
makespan of I , then

Ak(I ) ≤ OPT(I )

(

1 + 1 − 1
m

1 + �k/m�

)

Proof
Let T denote the makespan of an optimal schedule of the first k jobs. Clearly, T is a lower bound for
OPT(I ), thus, if the makespan is not increased in the second step, i.e., Ak(I ) = T , then Ak is optimal for I .
Otherwise, the makespan of the schedule is greater than T . Let j be the job to determine the makespan
(the one which completes last). By the definition of LPT, this implies that all the machines were busy when
job j started its execution (otherwise, job j could start earlier). Since the optimal schedule from step 1
has no intended idles, all the machines are busy during the time interval (0; Ak(I ) − p j ).

Let P = ∑n
i=1 pi be the total processing time of the n jobs. By the above, P ≥ m(Ak(I ) − p j ) + p j .

Also, since the jobs are sorted in nonincreasing order of processing times, we have that p j ≤ pk+1, and
therefore, P ≥ mAk(I ) − (m − 1) pk+1. A lower bound for the optimal solution is the makespan of a
schedule in which the load on the m machines is perfectly balanced; thus, OPT(I ) ≥ P/m, which implies
that Ak(I ) ≤ OPT(I ) + (1 − 1

m ) pk+1.
To bound Ak(I ) in terms of OPT(I ), we need to bound pk+1 in terms of OPT(I ). To obtain such a bound,

consider the k + 1 longest jobs. In an optimal schedule, some machine is assigned at least �(k + 1)/m� ≥
1 + �k/m� of these jobs. Since each of these jobs has processing time at least pk+1, we conclude that
OPT(I ) ≥ (1 + �k/m�) pk+1, which implies that pk+1 ≤ OPT(I )/(1 + �k/m�). It follows that

Ak(I ) ≤ OPT(I )

(

1 + 1 − 1
m

1 + �k/m�

)

To observe that the above family of algorithms is a PTAS, we relate the value of k to (1 + ε), the required
approximation ratio. Given ε > 0, let k = � 1−ε

ε
m�. It is easy to verify that the corresponding algorithm

Ak achieves approximation ratio at most (1 + ε). Thus, we conclude that for a fixed m, there is a PTAS for
the MM problem.

Note that for any fixed k, an optimal schedule of the first k jobs can be found in O(mk) steps. Applying the
LPT rule takes additional O(n log n) steps. For Aε , we get that the running time of the scheme is O(mm/ε),
i.e., exponential in m (that is assumed to be constant) and 1/ε. This demonstrates the basic property of
approximation schemes: a clear trade-off between running time and the quality of approximation.
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9.2.1.2 Extend All Possible Solutions for Small Subsets

The second technique, of considering all possible subsets, is illustrated in an early PTAS of Sahni for the
knapsack problem [11]. An instance of the knapsack problem consists of n items, each having a specified size
and a profit, and a single knapsack having size B . Denote by si ≥ 0, pi ≥ 0 the size and profit associated
with item i . The goal is to find a subset of the items such that the total size of the subset does not exceed
the knapsack capacity, and the total profit associated with the items is maximized.

The PTAS in Ref. [11] is based on considering all O(knk) possible subsets of size at most k, where k is
some fixed constant. Each of these subsets is extended to a larger feasible subset by adding more items to
the knapsack, using some greedy rule. The best extension among these O(knk) candidates is selected to
be the output of the scheme. Formally, for any k ∈ [0, n], the algorithm Ak is defined as follows:

1. (Preprocessing) Sort the items in nonincreasing order of their profit densities, pi /si .
2. For each feasible subset of at most k items.

(a) Pack the subset in the knapsack.
(b) Add to the knapsack items in the sorted list one by one, while there is enough available capacity.

3. Select among the packings generated in Step 2, one which maximizes the profit.

Theorem 9.2

Let P (Ak) denote the profit achieved by Ak, and let P (OPT) denote the optimal profit, then

P (OPT) ≤ P (Ak)

(

1 + 1

k

)

Proof
Let OPT be any optimal solution. If |OPT| ≤ k we are done, since the subset OPT will be considered
in some iteration of Step 2. Otherwise, let H = {a1, a2, . . . , ak} be the set of k most profitable items in
OPT. There exists an iteration of Ak in which H is considered. We show that the profit gained by Ak in
this iteration yields the statement of the theorem. Consider the list L 1 = OPT\H = {ak+1, . . . , ax} of
the remaining items of OPT, in the order they appear in the sorted list. Recall that, at some point, Ak

will try H as the initial set of k packed items. The algorithm will then add greedily items, as long as the
capacity constraint allows. If all the items are packed, Ak is clearly optimal; otherwise, at some point there
is not enough space for the next item. Let m be the index of the first item in L 1 which is not packed in
the knapsack by Ak , i.e., the items ak+1, . . . , am−1 are packed. The item am is not packed because Be , the
remaining empty space at this point, is smaller than sm. The greedy algorithm packed into the knapsack
only items with profit density at least pm/sm. At the time that am is dropped, the knapsack contains the
items from H , the items ak+1, . . . , am−1 and some items which are not in OPT.

Let G denote the items packed in the knapsack so far by the greedy stage of Ak . All of these items have
profit density at least pm/sm. In particular, the items in G\OPT that have total size� = B−(Be +

∑m−1
i=1 si )

all have profit density at least pm/sm. Thus, the total profit of the items in G is P (G) ≥ ∑m−1
i=k+1 pi +�

pm
sm

.
We conclude that the total profit of the items in OPT is

P (OPT) =
k∑

i=1

pi +
m−1∑

i=k+1

pi +
|OPT|∑

i=m

pi

≤ P (H) +
(

P (G) − �
pm

sm

)

+
(

B −
m−1∑

i=1

si

)
pm

sm

= P (H) + P (G) + Be
pm

sm
< P (H ∪ G) + pm

Since Ak packs at least H ∪ G , we get that P (Ak) ≥ P (H) + P (G), which implies that P (OPT) −
P (Ak) < pm. Given that there are at least k items with a profit at least as large as am (those selected
to H), we conclude that pm ≤ P (OPT)/(k + 1). This gives the approximation ratio.
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Assuming a single preprocessing step, in which the items are sorted by their profit densities, each subset
is extended to a maximal packing in time O(n). Since there are O(knk) possible subsets to consider, the
total running time of the scheme is O(knk+1).

To obtain a PTAS for the knapsack problem, let Aε be the algorithm Ak with k = �1/ε�. By the above,

the approximation ratio is at most 1 + ε, and the running time of Aε is O( 1
ε

n1+ 1
ε ).

The technique of choosing the best among a small number of partial packings was applied also to
variants of multidimensional packing. A detailed example is given in Section 9.3.2.

9.2.2 Applying Enumeration to a Compacted Instance

In this section we present the technique of applying exhaustive enumeration to a modified instance, in
which we have a more compact representation of the input. Approximation schemes that are based on this
approach consist of three steps:

1. The instance I is modified to a simpler instance, I ′. The parameter ε determines how rough I ′ is
compared with I . The smaller ε, the more refined is I ′.

2. The problem is solved optimally on I ′.
3. An approximate solution for I is induced from the optimal solution for I ′.

The challenge is to modify I in the first step into an instance I ′ that is simple enough to be solved in
polynomial time, yet not too different from the original I , so that we can use an exact solution for I ′ to
derive an approximate solution for I .

The use of this technique usually involves partitioning the input into significant and nonsignificant
elements. The partition depends on the problem at hand. For example, it is natural to distinguish between
long and short jobs in scheduling problems, and between big and small, or high-profit and low-profit
elements, in packing problems. For a given instance, the distinction between the two types of elements
usually depends on the input parameters (including ε), and on the optimal solution value.

In some cases, the transformation from I to I ′ involves only grouping the nonsignificant elements. Each
group of such elements thus forms a single significant element in I ′. As a result, the instance I ′ consists of
a small number of significant elements. More details and an example for this type of transformation are
given in Section 9.2.2.1.

In other cases, all the elements, or only the more significant ones, are transformed into a set of elements
with a small number of distinct values. This approach is described and demonstrated in Section 9.2.2.2.

9.2.2.1 Grouping Subsets of Elements

We illustrate the technique with the PTAS of Sahni [12] for the MM problem on two identical machines.
The input consists of n jobs with processing times p1, . . . , pn. The goal is to schedule the jobs on two
identical parallel machines in a way that minimizes the latest completion time. In other words, we seek a
schedule which balances the load on the two machines as much as possible.

Let P = ∑n
j=1 p j denote the total processing time of all jobs, and let pmax denote the longest pro-

cessing time of a job. Let C = max(P/2, pmax ). Note that C is a lower bound on the MM (i.e., OPT ≥ C),
since P/2 is the schedule length if the load is perfectly balanced between the two machines, and since some
machine must process the longest job.

The first step of the scheme is to modify the instance I into a simplified instance I ′. This modification
depends on the value of C and on the parameter ε. Given I , ε, partition the jobs into small jobs—of length
at most εC , and big jobs—of length greater than εC . Let PS denote the total length of small jobs. The
modified instance I ′ consists of the big jobs in I together with �PS/(εC)� jobs of length εC .

Next, we need to solve optimally the MM problem for the instance I ′. Note that all jobs in I ′
have length at least εC and their total size is at most P , the total processing time of the jobs in the
original instance, since the small jobs in I are replaced in I ′ by jobs of length εC with total length
at most PS . Therefore, the number of jobs in I ′ is at most the constant P/εC ≤ 2/ε. An optimal
schedule of a constant number of jobs can be found by exhaustive search over all O(22/ε) possible
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schedules. This constant number is independent of n, but grows exponentially with ε, as we expect from
our PTAS.

Finally, we need to transform the optimal schedule of I ′ into a feasible schedule of I . Note that, for the
makespan objective, we are only concerned about the partition of the jobs between the machines, while
the order in which the jobs are scheduled on each machine can be arbitrary. Denote by OPT(I ′) the length
of the optimal schedule for I ′. To obtain a schedule of I , each of the big jobs is scheduled on the same
machine as in the optimal schedule for I ′. The small jobs are scheduled greedily in an arbitrary order
on the first machine until, for the first time, the total load on the first machine is at least OPT(I ′). The
remaining small jobs are scheduled on the second machine. Clearly, the overflow on the first machine is
at most εC (maximal length of a small job). Also, since the total number of (εC)-jobs was defined to be
�PS/(εC)�, the overflow on the second machine is also bounded by εC . Therefore, the resulting makespan
in the schedule of I is at most OPT(I ′) + εC .

To complete the analysis we need to relate OPT(I ′) to OPT(I ).

Claim 9.1

OPT(I ′) ≤ (1 + ε)OPT(I )

Proof
Given a schedule of I , in particular an optimal one, a schedule for I ′ can be derived by replacing—on
each machine separately—the small jobs with jobs of size εC , with at least the same total size. Recall that
the number of (εC )-jobs in I ′ is �PS/(εC )�. Regardless of the partition of the small jobs in I between
the two machines, the result of this replacement is a feasible schedule of I ′ whose makespan is at most
OPT(I ) + εC . Since OPT(I ) ≥ C , the statement of the claim holds.

Back to our scheme, we showed that the optimal schedule of I ′ is transformed into a feasible schedule
of I whose makespan is at most OPT(I ′) + εC . By Claim 9.1, this value is at most (1 + ε)OPT(I ) + εC ≤
(1+2ε)OPT(I ). By selecting ε′ = ε/2, and running the scheme with ε′, we get the desired ratio of (1+ε).

The above scheme can be extended to any constant number of machines. For arbitrary number of
machines, a more complex PTAS exists: the scheme of Ref. [1], which requires reducing the number of
distinct values in the input, is given in the next section.

9.2.2.2 Reducing the Number of Distinct Values in the Input

Any optimization problem can be solved optimally in polynomial, or even constant, time if the input size is
some constant. For many optimization problems, an efficient algorithm exists if the input size is arbitrary,
but the number of distinct values in the input is some constant. Alternatively, the problem can be solved
by a pseudopolynomial-time algorithm (e.g., by dynamic programming), whose running time depends
on the instance parameters, and is therefore polynomial only if the parameter values are polynomial in
the problem size.

The idea behind the technique that we describe below is to transform the elements (or sometimes, only
the significant elements) in the instance I into an instance I ′ in which the number of distinct values is fixed,
or to scale the values according to the input size. The problem is then solved on I ′, and the solution for I ′
is transformed into a solution for the original instance. The nonsignificant elements, which are sometimes
omitted from I ′, are added later to the solution, using some heuristic. The parameter ε determines the
(constant) number of distinct values contained in I ′: the smaller the ε, the larger the number of distinct
values. The following are the two main approaches for determining the values in I ′.

1. Rounding. The values in I ′ form an arithmetic series in which the difference between elements is a
function of ε. For example, multiples of ε2T , for some value T . In this approach, the gap between
any two values bounds the difference between the original value of an element in I and the value
of the corresponding element in I ′. Note that the number of elements whose values are rounded to
a single value in I ′ can be arbitrary.
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2. Shifting. The values in I ′ are a subset of the values in I , selected such that the distribution on the
number of values in I that are shifted to a single value in I ′ is uniform. However, in contrast to
the rounding approach, there is no bound on the difference between the value of an element in I
and its value in I ′. For example, partition the elements into �1/ε2� groups, each having at most
�n/ε2� elements, and fix the values in each group to be (say) the minimal value of any element in
the group.

In both approaches, the approximation ratio is guaranteed to be (1 + ε) if I ′ is close enough to I .
Formally, an optimal solution for I ′ induces a solution for I whose value is greater/smaller by a factor of at
most (1 + ε). Another factor of (1 + ε) may be added to the approximation ratio due to the nonsignificant
items—in case they are handled separately.

We demonstrate this technique with the classic PTAS of Hochbaum and Shmoys [1] for the MM problem
on parallel machines. The input for the problem is a set of n jobs having processing times p1, . . . , pn, and
m identical machines; the goal is to schedule the jobs on the machines in a way that minimizes the latest
completion time of any job. The number of machines, m, can be arbitrarily large (otherwise, a simpler
PTAS exists; see Section 9.2.2.1).

First, note that the MM problem is closely related to the bin packing (BP) problem. The input for BP
is a collection of items whose sizes are in (0, 1). The goal is to pack all items using a minimal number of
bins. Formally, let I = {p1, . . . , pn} be the sizes in a set of n items, where 0 ≤ p j ≤ 1. The goal is to
find a collection of subsets U = {B1, B2, . . . , Bk} which forms a disjoint partition of I , such that for all
i , 1 ≤ i ≤ k,

∑
j∈Bi

p j ≤ 1, and the number of bins, k, is minimized.
The exact solutions of MM and BP relate in the following way. It is possible to schedule all the jobs

in an MM instance on m machines with makespan Cmax if and only if it is possible to pack all the
items in a BP instance, where the size of item j is p j /Cmax , in m bins. The relation between the
optimal solutions does not remain valid for approximations. In particular, BP admits an asymptotic
FPTAS (see Chapter 11), while MM does not. However, this relation can be used to develop a PTAS for
MM.

Let OPTBP(I ) be the number of bins in an optimal solution of BP, and let OPT MM(I ) = Cmax be an
optimal solution for MM. Denote by I

d the BP input in which all the values are divided by d . We already
argued that

OPTBP

(
I

d

)

≤ m ⇔ OPT MM(I , m) ≤ d

We define a dual approximation scheme for BP. For an input I , we seek a solution with at most OPTBP

bins, where each bin is filled to capacity at most 1 + ε. In other words, we relax the bin capacity constraint
by a factor of 1 + ε. Let dualε(I ) be such an algorithm, and let DUALε(I ) be the number of bins in the
corresponding packing.

Theorem 9.3

If there exists a dual approximation algorithm for BP, then there is a PTAS for the MM problem.

Proof
The PTAS performs a binary search to find OPTMM . To bound the range in which the optimal makespan
is searched, two lower bounds and one upper bound for this value are used. The lower bounds are the
length of the longest job and the load on each machine when the total load is perfectly balanced. That is, let
SIZE(I , m) = max{ 1

m

∑
pi , pmax}, then OPTMM ≥ SIZE(I , m). The upper bound uses the fact that the

simple list scheduling algorithm attains a 2-ratio to SIZE(I , m) [10], therefore OPTMM ≤ 2SIZE(I , m).
Now it is possible to perform a binary search to find OPTMM . Instead of checking whether OPTMM < d ,

the algorithm checks whether DUALε( I
d ) < m.
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upper = 2SIZE(I , m)
lower = SIZE(I , m)
repeat until lower = upper

d = (lower + upper)/2
call dualε( I

d )
if DUALε( I

d ) > m
lower ← d

else
upper ← d

d� ← upper
return dualε( I

d� )

Initially, OPTMM(I , m) ≤ upper ⇒ OPTBP( I
upper ) ≤ m. Since dualε is a relaxation of BP,

DUALε( I
upper ) ≤ OPTBP( I

upper ). This implies that DUALε( I
upper ) ≤ m. By the update rule, the above

remains true during the execution of the loop. However,

DUALε

(
I

upper

)

≤ m ⇒ OPT MM(I , m) ≤ (1 + ε)upper

and thus (1 + ε)upper remains an upper bound on OPTMM(I , m) during the search. Similarly, before the
loop OPT MM(I , m) ≥ lower, which remains true since DUALε( I

lower ) ≥ m, is an invariant of the loop,
and

OPTBP

(
I

lower

)

≥ DUALε

(
I

lower

)

≥ m ⇒ OPTMM(I , m) ≥ lower

Thus, the solution value is bounded above by

(1 + ε) · d� = (1 + ε) · upper = (1 + ε) · lower ≤ (1 + ε)OPTMM(I , m)

In practice, assume that we stop the binary search after k iterations. At this time, it is guaranteed that
upper − lower ≤ 2−kSIZE(I , m) ≤ 2−kOPTMM(I , m), and the value of the solution is bounded above by
(1 + ε) · d� = (1 + ε) · upper ≤ (1 + ε) · (lower + 2−kOPTMM(I , m)) ≤ (1 + ε)(1 + 2−k)OPTMM(I , m).

By choosing k = O(log 1
ε

), and taking in the scheme ε′ = ε/3, we obtain a (1 + ε)-approximation.

We now describe the dualε approximation scheme for BP. This scheme uses the rounding and grouping
technique.

Theorem 9.4

There exists an O
(

n
� 1

ε2 �)
-time dual approximation scheme for BP.

Proof
Recall that, for a given ε > 0, the dual approximation scheme needs to find a packing of all items using
at most OPTBP bins, such that the total size of the items packed in each bin is at most 1 + ε. The basic
idea is to omit first the “small” items and then round the sizes of the “big” items; this yields an instance
in which the number of distinct item sizes is fixed. We can now solve the problem exactly using dynamic
programming, and the solution induces a solution for the original instance, where each bin is filled up to
capacity 1 + ε.

The first observation is that small items, whose sizes are less than ε, can be initially omitted. The problem
will be solved for big items only and the small items will be added later on greedily, in the following manner:
if there is a bin filled with items of total size less than 1, small items are added to it; otherwise, a new bin is
opened. If no new bin is opened, then, clearly, no more than the optimum number of bins is used (as the
dual PTAS uses the minimal number of bins for the big items). If new bins were added, then all original
bins are filled to capacity at least 1, and all the new bins (except maybe the last one) are also filled to
capacity at least 1. This is optimal since OPT(I ) ≥ �∑ pi � ≥ DUALε(I ). We conclude that, without loss
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of generality, all items are of size ε ≤ pi ≤ 1. Divide the range [ε, 1] into intervals of size ε2. This gives
S = � 1

ε2 � intervals. Denote by li the endpoints of the intervals and let bi be the number of elements whose
sizes are in the interval (li , li+1].

We now examine a packed bin. Since the minimal item size is ε, the bin can contain at most � 1
ε
�

items. Denote by Xi the number of items in the bin whose sizes are in the interval (li , li+1]. Xi is in the
range [0, � 1

ε
�). Let the vector (X1, . . . , XS ) denote the configuration of the bin. The number of feasible

configurations is bounded above by � 1
ε
�S . A configuration is feasible if and only if

∑S
i=1 Xi li ≤ 1.

For any bin B whose packing forms a feasible configuration, the total size of the items in the bin is
bounded by

∑

j∈B

p j ≤
∑

j∈B

X j l j+1 ≤
∑

j∈B

X j (l j + ε2) ≤ 1 + ε2
∑

j∈B

X j ≤ 1 + ε2 · 1

ε
≤ 1 + ε

Therefore, it is sufficient to solve the instance with all item sizes rounded down to sizes in {l1, . . . , l S}.
Finally, we describe a dynamic programming algorithm which solves the BP problem exactly when the

number of distinct item sizes is fixed. Let BINS(b1, b2, . . . , bS ) be the minimal number of bins required
to pack b1 items of size l1, b2 items of size l2, . . ., and bS items of size l S . Let C denote the set of all feasible
configurations. Observe that, by a standard dynamic programming recursion,

BINS(b1, b2, . . . , bS ) = 1 + minCBINS(b1 − X1, b2 − X2, . . . , bS − XS )

We minimize over all possible vectors (X1, X2, . . . , Xs ) that correspond to a feasible packing of the
“first” bin (counted by the constant 1), and the best way to pack the remaining items (this is the recursive
call). Thus, the dynamic programming procedure builds a table of size nS , where the calculation of each
entry requires O(� 1

ε
�S ).

This yields a running time of

O
(

nS · �1

ε
�S

)
= O

(
(

n

ε
)
� 1

ε2 �) = O
(

n
� 1

ε2 �)

The technique of applying enumeration to a compacted instance through grouping/rounding has been
extensively used in PTASs for scheduling problems (see, e.g., Refs. [13–15]). A common approach for
compacting the instance is to reduce the input parameters to poly bounded, i.e., parameters whose values
can be bounded as function of the input size. This approach is used, e.g., in the PTAS of Chekuri and
Khanna for preemptive weighted flow time [4] (See the survey paper [9]).

9.2.3 More on Grouping and Shifting

In the following we outline two extensions of the techniques described in this section.

Randomized Grouping
In some cases, we need to define a partition of the input elements to groups (I1, . . . , Ik), using for each
element x a parameter of the problem, q(x), such that the elements in two groups I j and I j+1 differ
in their q(x) value by roughly a factor of α, for some α > 1. When such partition is infeasible, we
can use randomization to achieve an expected separation between groups. For a parameter α > 1, the
following randomized geometric grouping technique yields an expected separation that is logarithmic
in α. This technique extends the deterministic geometric rounding technique described in Section 9.2.2.2.
Initially, pick a number r ∈ [1, α] at random, by a probability distribution having the density function
f (y) = 1/y ln α. An element x with the value q(x) belongs to the group I j if q(x) ∈ [rα j , rα j+1]. Thus,
the index of the group to which x belongs, denoted by g (x), is a random variable which can take two
possible values: �logα q(x)� or �logα q(x)� + 1. It can be shown that for a fixed α, the number of distinct
partitions induced by the random choices of r is at most the number of elements in the input. This enables
to easily derandomize algorithms that use randomized geometric grouping. The technique was applied,
e.g., by Chekuri and Khanna [4] in a PTAS for preemptive weighted flow time.
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Oblivious Shifting
While applying the standard shifting technique (as described in Section 9.2.2.2) requires knowing the initial
input parameters, it is possible to apply shifting also when not all values are known a-priori. In oblivious
shifting, the input size is initially known, and the scheme starts by defining the number of values in the
resulting instance, but the actual shifted values are revealed at a later stage, by optimizing on these values,
considering the constraints of the problem. The technique can be used for defining a “good” compacted
instance from a partial solution for the problem, which can then enable to obtain a complete solution for
the problem efficiently.

For example, a variant of the BP problem, in which items may be fragmented, is solved in Ref. [16] in
two steps. Given the input, we need to determine the set of items that will be fragmented, as well as the
fragment sizes in a feasible approximate solution. Since the possible number of fragment sizes is large, a
compact vector of fragments is generated, which contains a bounded number of unknown shifted fragment
sizes. The actual sizes of the shifted fragments are determined by solving a linear program (LP) which
attempts to find a feasible packing of these fragments. A detailed description is given in Ref. [16].

9.3 Rounding Linear Programs

In this section we discuss approximations obtained using linear programming relaxation of the integer
program formulation of a given optimization problem. We refer the reader to Chapters 6 and 7 of this
handbook for further background on linear programming and rounding linear programs. Most generally,
the technique is based on solving a linear programming relaxation of the problem, for which an exact
or approximate solution can be obtained efficiently. This solution is then rounded, thus yielding an
approximate integral solution. The (fractional) solution obtained for the LP needs to have some nice
properties that would allow rounding to be not too harmful, in terms of ε, the accuracy parameter of the
scheme. One such property of an LP, which is commonly used, is the existence of a small basic solution. We
illustrate below the usage of this property, with examples from vector scheduling (VS) and covering integer
programs. An LP has a small basic solution, if there exists an optimal solution in which the number of
nonzero variables is small as a function of the input size and ε. For such a solution, the error incurred
by rounding can be bounded, such that the resulting integral solution is within factor of 1 + ε from the
optimal. A natural example is the class of LPs in which either the number of variables or the number of
constraints is some fixed constant. For such programs, there exists a basic solution in which the number
of nonzero variables is fixed; however, depending on the problem, and in particular, on the value of an
optimal solution for the LP, a basic solution can be “small,” even if the number of nonzero variables is
relatively large, for example, �(εn), where n is the number of variables.

LP rounding can be combined with the techniques described in Section 9.2. In Section 9.3.1 we show
the usage of LP rounding for a given subset of input elements satisfying certain properties. In Section 9.3.2
we show how LP rounding can be combined with the selection of all possible (small) subsets.

9.3.1 Solving LP for a Subset of Elements

As mentioned earlier, in many problems, an approximation scheme can be obtained by partitioning a set
of input elements to subsets, and solving the problem for each subset separately. For some subsets, a good
solution can be obtained by rounding an LP relaxation of the problem.

In certain assignment problems, we can find an almost integral basic solution for an LP, for part of
the input, since the relation between the number of variables and nontrivial constraints in the linear
programming relaxation, combined with the assignment requirement of the problem, imply that only few
variables can get fractional values. This essential property is used, e.g., in the PTAS of Chekuri and Khanna
for the VS problem [17]. The VS problem is to schedule d-dimensional jobs on m identical machines, such
that the maximum load over all dimensions and over all machines is minimized. Formally, an instance I of
VS consists of n jobs, J1, . . . , Jn, where J j is associated with a rational d-dimensional vector ( p1

j , . . . , pd
j ),

and m machines. We need to assign the jobs to the machines, i.e., schedule a subset of the jobs, Ai , on
machine i , 1 ≤ i ≤ m, such that max1≤i≤m max1≤h≤d

∑
J j ∈Ai

ph
j is minimized.
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Note that in the special case where d = 1, we get the minimum makespan problem (see Section 9.2.2.2).
The PTAS in Ref. [17] for the VS problem, where d is fixed, applies a nontrivial generalization of the PTAS
of Hochbaum and Shmoys for the case d = 1 [1]. The scheme is based on a primal-dual approach, in
which the primal problem is VS and the dual problem is vector packing. Thus, the machines are viewed
as d-dimensional bins, and the schedule length as bin capacity (or height). W.l.o.g., we may assume that
the optimal schedule has the value 1. Given an ε > 0 and a correct guess of the optimal value, we describe
below an algorithm Aε that returns a schedule of height at most 1+ε. Arriving at the correct guess involves
a binary search for the optimal value (which can be done in polynomial time; see below).

Let δ = ε/d be a parameter. The scheme starts with a preprocessing step, which enables to bound
the ratio of the largest coordinate to the smallest nonzero coordinate in any input vector. Specifically, let
‖ J j ‖∞= max1≤h≤d ph

j be the 	∞ norm of J j , 1 ≤ j ≤ n, then, for any J j , and any 1 ≤ h ≤ d , if

ph
j ≤ δ · ‖ J j ‖∞, we set ph

j = 0. As shown in Ref. [17], any valid schedule for the resulting modified
instance, I ′, yields a valid solution for the original instance, I , whose height is at most (1+ε) times that of I ′.

We consider from now on only transformed instances. The scheme proceeds by partitioning the jobs to
the sets L (large) and S (small). The set L consists of all vectors whose 	∞ norm is greater than δ, and S
contains the remaining vectors. The algorithm Aε packs first the large jobs and then the small jobs. Note
that while in the case of d = 1 these packings are done independently, for d ≥ 2, we need to consider the
interaction between these two sets. Similar to the scheme of Hochbaum and Shmoys [1], a valid schedule is
found for the jobs by guessing a configuration. In particular, let the d-tuple (a1, . . . , ad ) 0 ≤ ah ≤ �1/ε�,
1 ≤ h ≤ d , denote a capacity configuration, that is, the way some bin is filled. Since d ≥ 2 is a constant,
the possible number of capacity configurations, given by W = (1 + �1/ε�)d , is also a constant. Then, by
numbering the capacity configurations, we describe by a W-tuple M = (m1, . . . , mW) the number of bins
having capacity configuration w , where 1 ≤ w ≤ W. The possible number of bin configurations is then
O(mW). This allows to guess a bin configuration which yields the desired (1 + ε)-approximate solution
in polynomial time.

We say that a packing of vectors in a bin respects a capacity configuration (a1, . . . , ad ) if the height of the
packing is smaller than εah for any 1 ≤ h ≤ d . Given a capacity configuration (a1, . . . , ad ), we define the
empty capacity configuration to be the d-tuple (ā1, . . . , ād ), where āh = �1/ε� + 1 − ah , for 1 ≤ h ≤ d .
For a given bin configuration, M, we denote by M̄ the bin configuration obtained by taking for each of
the bins in M the corresponding empty capacity configuration.

The scheme performs the following two steps for each possible bin configuration, M: (i) decides whether
vectors in L can be packed respecting M, and (i i) decides whether vectors in S can be packed respecting
M̄. Given that we have guessed the correct bin configuration M, both steps will succeed, and we get a
packing of height at most 1 + ε.

We now describe how the scheme packs the large and the small vectors. The vectors in L are packed using
rounding and dynamic programming. In particular, since by definition, any entry in a vector in L has the
value δ2 or greater, we use geometric rounding, that is, for each vector J j , and any entry ph

j , 1 ≤ h ≤ d ,

ph
j is rounded down to the nearest value of the form δ2(1 + ε)t , for 0 ≤ t ≤ � 2

ε
log 1/δ�. Denote the

resulting set of vectors L ′, and the modified instance I ′. The vectors in L ′ can be partitioned into

q =
(

1 + �2

ε
log 1/δ�

)d

(9.1)

classes. The proofs of the next lemmas are given in Ref. [17].

Lemma 9.1

Given a solution for I ′, replacing each vector in L ′ by the corresponding vector in L results in a valid solution
for I whose height is at most 1 + ε times that of I ′.

Lemma 9.2

Given a correct guess of a bin configuration M, there exists an algorithm which finds a packing of the vectors
in L ′ that respects M, and whose running time is O((d/δ)q mnq ), where q is given in Eq. (9.1).
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The small vectors are packed using a linear programming relaxation and careful rounding. Renumber
the vectors in S by 1, . . . , |S|. Let x j i ∈ {0, 1} be an indicator variable for the assignment of the vector J j

to machine i , 1 ≤ j ≤ n, 1 ≤ i ≤ m. In the LP relaxation x j i ≥ 0. We solve the following LP.

(LP)
∑

J j ∈S

ph
j x j i ≤ bh

i , 1 ≤ i ≤ m, 1 ≤ h ≤ d (9.2)

∑m
i=1 x j i = 1, 1 ≤ j ≤ |S| (9.3)

x j i ≥ 0, 1 ≤ j ≤ n, 1 ≤ i ≤ m (9.4)

The constraints (9.2) guarantee that the packing does not exceed a given height bound in any dimension
(i.e., the available height after packing the large vectors). The constraints (9.3) reflect the requirement
that each vector is assigned to one machine. A key property of the LP, which enables to obtain an integral
solution that is close to the fractional, is given in the next result.

Lemma 9.3

In any basic feasible solution for LP, at most d ·m vectors are assigned (fractionally) to more than one machine.

Proof
Recall that the number of nonzero variables, in any basic solution for an LP, is bounded by the number of
tight constraints in some optimal solution (since nontight constraints can be omitted). Since the number
of nontrivial constraints (i.e., constraints other than x j i ≥ 0) is (|S| + d · m), it follows that the number
of strictly positive variables in any basic solution is at most (|S| + d · m). Since each vector is assigned to
at least one machine, the number of vectors which are fractionally assigned to more than one machine is
at most d · m.

The above type of argument was first made and exploited by Potts [18] in the context of parallel machine
scheduling. It was later applied to other problems, such as job shop scheduling (see, e.g., Ref. [19]).

Thus, we solve the above program and obtain a basic solution. Denote by S ′ the set of vectors which are
assigned fractionally to two machines or more. Since |S ′| ≤ d · m, we can partition the set S ′ to subsets of
size at most d each, and schedule the i th set to the i th machine. Since ‖ J j ‖∞≤ δ = ε/d , for all J j ∈ S ′,
the total height of the machines is violated at most by ε in any dimension. We can therefore summarize in
the following theorem.

Theorem 9.5

For any ε > 0, there is a (1 + ε)-approximation algorithm for VS whose running time is (nd/ε)O( f ), where
f = O(( ln(d/ε)

ε
)d ).

Proof
By the above discussion, given the correct guess of the optimal value, the scheme yields a schedule of value
(height) at most 1 + O(ε) the optimal. We need to find a packing of the vectors in L and S, for each
bin configuration M. The running time for a single configuration is dominated by the packing of L , and
since the number of configurations is mW = O(nO(1/εd )), we get the running time from Lemma 9.2. The
value of an optimal schedule can be guessed, within factor 1 + ε, by obtaining first a (d + 1)-approximate
solution. This can be done by applying an approximation algorithm for resource constrained scheduling
due to Ref. [20].

9.3.2 LP Rounding Combined with Enumeration

As described in Section 9.2.1, a common technique for obtaining a PTAS is to extend all possible solutions
for small subsets of elements. This technique can be combined with LP rounding as follows. Repeatedly
select a small subset of input elements, Sg ⊆ I , to be the basis for an approximate solution; solve an LP for
the remaining elements, I \Sg . Select the subset Sg which gives the best solution. We exemplify the usage
of the technique to obtain a PTAS for covering integer programs with multiplicity constraints (CIP). In this
core problem, we must fill up an R-dimensional bin by selecting (with bounded number of repetitions)
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from a set of n R-dimensional items, such that the overall cost is minimized. Formally, let A = {a j i }
denote the sizes of the items in the R dimensions, 1 ≤ j ≤ R, 1 ≤ i ≤ n; the cost of item i is ci ≥ 0. Let
xi denote the number of copies selected from item i , 1 ≤ i ≤ n. We seek an n-vector x of nonnegative
integers, which minimizes c T x, subject to the R constraints given by Ax ≥ b, where b j ≥ 0 is the size
of the bin in dimension j . In addition, we have multiplicity constraints for the vector x, given by x ≤ d ,
where d ∈ {1, 2, . . .}n.

Covering integer programs form a large subclass of integer programs encompassing such NP-hard
problems as minimum knapsack and set cover. This implies the hardness of CIP in fixed dimension (i.e.,
where R is a fixed constant). For general instances, the hardness of approximation results for set cover
carry over to CIP. Comprehensive surveys of known results for CIP and C I P∞, where the multiplicity
constraints are omitted, are given in Refs. [21,22] (see also in Ref. [23]).

We describe below a PTAS for CIP in fixed dimension. The scheme presented in Ref. [21] builds on the
classic LP-based scheme due to Frieze and Clarke for the R-dimensional knapsack problem [24]. Consider
an instance of CIP in fixed dimension, R. We want to minimize

∑n
i=1 ci xi subject to the constraints∑n

i=1 ai j xi ≥ b j for j = 1, . . . , R, and xi ∈ {0, 1, . . . di } for i = 1, . . . , n.
Assume that we know the optimal cost, C , for the CIP instance. The scheme of Ref. [21] uses a reduction

to the binary minimum R-dimensional multiple choice knapsack (R-MMCK) problem. For some R ≥ 1, an
instance of binary R-MMCK consists of a single R-dimensional knapsack, of size b j in the j th dimension,
and m sets of items. Each item has an R-dimensional size and is associated with a cost. The goal is to pack
a subset of items, by selecting at most one item from each set, such that the total size of the packed items
in dimension j is at least b j , 1 ≤ j ≤ R, and the overall cost is minimized.

Given the value of C , the parameter ε, and a CIP instance with bounded multiplicity, the scheme
constructs an R-MMCK instance in which the knapsack capacities in the R dimensions are b j , 1 ≤ j ≤ R.
Also, there are n sets of items denoted by Ai , 1 ≤ i ≤ n. Let K̂ i be the integer value satisfying di ci ∈
[K̂ i εC/n, (K̂ i +1)εC/n), then the number of items in Ai is K i = min(K̂ i , �n/ε�). The set Ai represents
all possible values which xi can take in the solution for CIP. In particular, the kth item in Ai , denoted
(i, k), represents the assignment of a value in [0, di ] to xi , such that c(i, k), the total cost incurred
by item i is in [kεC/n, (k + 1)εC/n). This total cost is rounded down to the nearest integral multiple
of εC/n; thus, c(i, k) = kεC/n. The size of the item (i, k) in dimension j , 1 ≤ j ≤ R, is given by
s j (i, k) = ai j .

Given an instance of R-MMCK, guess a partial solution, given by a small size set, S; these items have the
maximal costs in some optimal solution. The size of S is a fixed constant, namely, |S| = h = � 2R(1+ε)

ε
�.

The set S will be extended to an approximate solution, by solving an LP for the remaining items. The
value of h is chosen such that the resulting solution is guaranteed to be within 1 + ε from the optimal,
as computed below. Let E (S) be the subset of items with costs that are larger than the minimal cost of
any item in S, that is, E (S) = {(i, k) /∈ S | c(i, k) > cmin(S)}, where cmin(S) = min(i,k)∈S c(i, k). Select
all the items (i, k) ∈ S, and eliminate from the instance all the items (i, k) ∈ E (S) and the sets Ai from
which an item has been selected. In the next step we find an optimal basic solution for the following LP, in
which xi,k is an indicator variable for the selection of the item (i, k).

(LP(S)) minimize
n∑

i=1

K i
∑

k=1

xi,k · c(i, k)

subject to
K i
∑

k=1

xi,k ≤ 1, for i = 1, . . . , n,

n∑

i=1

K i
∑

k=1

s j (i, k)xi,k ≥ b j for j = 1, . . . , R

0 ≤ xi,k ≤ 1 for (i, k) /∈ S ∪ E (S)

xi,k = 1 for (i, k) ∈ S

xi,k = 0 for (i, k) ∈ E (S)
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Given an optimal fractional solution for the above program, we get an integral solution as follows. For
any i , 1 ≤ i ≤ n, let kmax = kmax (i) be the maximal value of 1 ≤ k ≤ K i such that xi,k > 0, then we set
xi,kmax = 1 and, for any other item in Ai , xi,k = 0. Finally, we return to the CIP instance and assign to xi

the maximum value for which the total (rounded down) cost for item i is c(i, kmax ).
The next three lemmas show that the scheme yields a (1 + ε)-approximation to the optimal cost, and

that the resulting integral solution is feasible.

Lemma 9.4

If there exists an optimal (integral) solution for CIP with cost C , then the integral solution obtained from the
rounding for R-MMCK has the cost ẑ ≤ (1 + ε)C.

Proof
Let x∗ be an optimal (fractional) solution for the linear program LP(S), and let S∗ be the corresponding
subset of items, that is, S∗ = {(i, k)| x∗

i,k = 1}. If |S∗| < h then we are done: in some iteration, the
scheme will try S∗; otherwise, let S∗ = {(i1, k1), . . . , (ig , kg )}, such that c(i1, k1) ≥ · · · ≥ c(ig , kg ), for
some g > h. Let S∗

h = {(i1, k1), . . . , (ih , kh)}, and σ = ∑h
t=1 c(it , kt ). Then, for any item (i, k) /∈

(S∗
h ∪ E (S∗

h )), we have c(i, k) ≤ σ/h. Let z∗, ẑ denote the optimal (integral) solution and the solution
output by the scheme for the R-MMCK instance, respectively. Denote by xB (S∗

h ), xI (S∗
h ) the basic and

integral solutions of LP(S) as computed by the scheme, for the initial guess S∗
h .

By the above rounding method, for any 1 ≤ i ≤ n, the cost of the item selected from Ai is c(i, kmax ).
Let F denote the set of items for which the basic variable was a fraction, that is, F = {(i, k)| x B

i,k(S∗
h ) < 1},

and let δ = ∑
(i,k)∈F c(i, k).

Then, we get that

z∗ ≥
n∑

i=1

K i
∑

k=1

c(i, k)x B
i,k(S∗

h )

≥
n∑

i=1

K i
∑

k=1

c(i, k)x I
i,k(S∗

h ) − δ

Recall that in any basic solution for an LP, the number of nonzero variables is bounded by the number
of tight constraints in some optimal solution. Assume that in the optimal (fractional) solution of LP(S∗

h )
there are L tight constraints, where 0 ≤ L ≤ n + R. Then in the basic solution xB (S∗

h ), at most L
variables can be strictly positive. Thus, at least L − 2R variables get an integral value (i.e., “1”), and
|F | ≤ 2R. Note that for any (i, k) ∈ F , c(i, k) ≤ σ/h, since F ∩ (S∗

h ∪ E (S∗
h )) = ∅. Hence, we get that

z∗ ≥ ẑ + 2Rσ
h ≥ ẑ + 2Rẑ

h ≥ ẑ
1+ε

.

The next two lemmas follow from the rounding method used by the scheme.

Lemma 9.5

The scheme yields a feasible solution for the CIP instance.

Lemma 9.6

The cost of the integral solution for the CIP instance is at most ẑ + εC.

Note that C can be guessed in polynomial time within factor (1+ ε), using binary search over the range
(0,

∑n
i=1 di ci ). Thus, combining the above lemmas we get:

Theorem 9.6

There is a PTAS for CIP in fixed dimension.

Consider now the special case where the multiplicity constraints are omitted; that is, each variable xi can
get any nonnegative (integral) value. For this special case, we can use a linear programming formulation
in which the number of constraints is R, which is fixed. A PTAS for this problem can be derived from
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the scheme of Chandra et al. [25] for integer multidimensional knapsack. Drawing from recent results for
CIPs, we describe below the PTAS in Ref. [21], which improves the running time in Ref. [25] by using a
fast approximation scheme for solving the LP.

A Scheme for CIP∞
The scheme, called below multidimensional cover with parameter ε (M DC ε), proceeds in the following
steps:

(i) For a given ε ∈ (0, 1), let δ = �R · ((1/ε) − 1)�.
(ii) Renumber the items by 1, . . . , n, such that c1 ≥ c2 ≥ · · · ≥ cn.

(iii) Denote by � the set of integer vectors x = (x1, . . . , xn) satisfying xi ≥ 0, and
∑n

i=1 xi ≤ δ. For any
vector x ∈ �: Let d ≥ 1 be the maximal integer i for which xi �= 0. Find a (1 + ε)-approximation
to the optimal (fractional) solution of the following LP.

(LP′) minimize
n∑

i=d+1

ci zi

subject to
n∑

i=d+1

ai j zi ≥ b j −
n∑

i=1

ai j xi for j = 1, . . . , R (9.5)

zi ≥ 0 for i = d + 1, . . . , n

The constraints (9.5) reflect the fact that we need to fill in each dimension j at least the capacity
b j − ∑n

i=1 ai j xi , once we obtained the vector x.
Let ẑi , d + 1 ≤ i ≤ n, be a (1 + ε)-approximate solution for LP′. We take �ẑi � as the integral

solution. Denote by CMDC(x) = ∑n
i=d+1 ci �ẑi �, the value obtained from the rounded solution,

and let c(x) = ∑n
i=1 ci xi .

(iv) Select the vector x∗ for which CMDCε (x∗) = minx(c(x) + CMDC(x)).

We now show that MDCε is a PTAS for CIP∞. Let Co be the cost of an optimal integral solution for the
CIP∞ instance.

Theorem 9.7

MDCε is a PTAS for CIP∞ which satisfies the following. (i) If Co �= 0, ∞ then CMDCε /Co < 1 + ε.
(i i) The running time of algorithm MDCε is O(n�R/ε� · 1

ε2 log C), where C = max1≤i≤n ci is the maximal
cost of any item, and its space complexity is O(n).

To prove the theorem, we need the next lemma.

Lemma 9.7

For any ε > 0, a (1 + ε)-approximation to the optimal solution for LP′ can be found in O(1/ε2 R log(C · R))
steps.

Proof
For a system of inequalities as given in LP′, there is a solution in which at most R variables get nonzero
values. This follows from the fact that the number of nontrivial constraints is R. Hence, it suffices to solve
LP′ for the

(n−d
R

)
possible subsets of R variables, out of (zd+1, . . . , zn). This can be done in polynomial time

since R is fixed. Now, for each subset of R variables, we have an instance of the fractional covering problem,
for which we can use a fast approximation scheme (see, e.g., in Ref. [26]) to obtain a (1 + ε)-approximate
solution.

Proof of Theorem 9.7
For showing (i), assume that the optimal (integral) solution for the CIP∞ instance is obtained by the
vector y = (y1, . . . , yn). If

∑n
i=1 yi ≤ δ then CMDCε = Co , since in this case y is a valid solution, and

y ∈ �, therefore, in some iteration MDCε will examine y. Suppose that
∑n

i=1 yi > δ, then we define the
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vector x = (y1, . . . , yd−1, xd , 0, . . . , 0), such that y1 + · · · + yd−1 + xd = δ. (Note that xd �= 0.) Let
C̃ o(x) = ∑n

i=d+1 ci ẑi be the approximate fractional solution for LP′. We have that x ∈ �, therefore,

CMDC(x) − C̃ o(x) ≤ Rcd (9.6)

Let Co(x) be the optimal fractional solution for LP′ with the vector x. Note that Co , the optimal (integral)
solution for CIP∞, satisfies

Co > c(x) + Co(x) (9.7)

since Co(x) is a lower bound for the cost incurred by the integral values yd+1, . . . , yn. In addition,

c(x) + CMDC(x) ≥ CMDCε (9.8)

Hence, we get that

Co

CMDCε

≥ c(x) + Co(x)

c(x) + CMDC(x)
> 1 − CMDC(x) − Co(x)

c(x) + CMDC(x) − Co(x)

≥ 1 − CMDC(x) − C̃ o(x)(1 − ε)

c(x) + CMDC(x) − C̃ o(x)

≥ (1 − ε)

(

1 − CMDC(x) − C̃ o(x)

c(x) + CMDC(x) − C̃ o(x)

)

≥ (1 − ε)

(

1 − CMDC(x) − C̃ o(x)

δcd + CMDC(x) − C̃ o(x)

)

The first inequality follows from Eq. (9.7) and Eq. (9.8), and the third inequality follows from the fact
that C̃ o(x)(1 − ε) ≤ Co(x) ≤ C̃ o(x). The last inequality follows from the fact that c(x) ≥ δcd .

Using Eq. (9.6), we get that Co
CMDCε

≥ (1 − ε)1 − Rcd/(δcd + Rcd ) ≥ (1 − ε)2. Taking in the scheme
ε̃ = ε/2, we get the statement in (i).

Next, we show (i i). Note that |�| = O(nδ) since the number of possible choices of n nonnegative
integers, whose sum is at most δ is bounded by

(n+δ
δ

)
. Now, given a vector x ∈ �, we can compute CMDC(x)

in O(nR) steps since at most R variables out of zd+1, . . . , zn can have nonzero values. Multiplying by
the complexity of the FPTAS for fractional covering, as given in Lemma 9.7, we get the statement of the
theorem.

Enumeration is combined with LP rounding also in the PTAS of Caprara et al. [27] for the knapsack
problem with cardinalities constraints, and in a PTAS for the multiple knapsack problem due to Chekuri
and Khanna [28], among others. The scheme in Ref. [27] is based on the scheme of Frieze and Clarke [24],
with the running time improved by factor of n, the number of items. The scheme in Ref. [24] is also the
basis for PTASs for other variants of the knapsack problem. (A comprehensive survey is given in Ref. [29];
see also Ref. [30].)

9.4 Approximation Schemes for Geometric Problems

In this section we present approximation techniques that are specialized for geometric optimization
problems. For a complete description of these techniques we refer the reader to the survey by Arora [31],
Chapter 11 in Ref. [32], and Chapter 8 and Section 9.3.3 in Ref. [33]. A typical input for a geometric
problem is a set of elements in the space (such as points in the plane); the goal is to connect or pack these
elements in a way that minimizes the resources used (e.g., total length of connecting lines, total number
of covering objects).
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9.4.1 Randomized Dissection

We present below the techniques used in the PTAS of Arora [34] for the Euclidean Traveling Salesman
Problem (TSP). In the classical TSP, given are nonnegative edge weights for the complete graph Kn, and
the goal is to find a tour of minimum cost, where a tour refers to a cycle of length n. In other words, the
goal is to find an ordering of the nodes such that the total cost of the edges along the path visiting all
nodes according to this ordering is minimal. In general, TSP is NP-hard in the strong sense, and it cannot
be approximated within any multiplicative factor c > 1, unless P = NP. The PTAS of Arora considers
the relaxed problem of Euclidean TSP. The input is a set of n points in �d , and the edge weights are the
Euclidean (	2) distances between them.

The idea of the PTAS is to dissect the plane into squares, and to look (using dynamic programming)
for a tour that crosses the resulting grid lines only at specific points, denoted portals. The parameter ε of
the PTAS determines the depth of the recursive dissection as well as the density of the portals. A smaller
ε results in more portals and a finer dissection, which lead to a less restricted tour and a larger dynamic
programming instance. Randomization is used to determine an initial shift of the grid lines.

A dissection of a square is a recursive partitioning into squares. It can be viewed as a tree of squares
whose root is the square we started with. Each square in the tree is partitioned into four equal squares,
which are its children. The leaves are squares of a small sidelength—determined by the parameter ε of the
PTAS.

The location of the grid lines is determined randomly as follows. Given a set of n points in �2, enclose
the points in a minimum bounding square. Let 	 be the side of this square. Let p ∈ �2 be the lower left
endpoint of the bounding box. Enclose the bounding box inside a larger square, denoted the enclosing box
of sidelength L = 2	, and position the enclosing box such that p has distance a from the left edge and b
from the lower edge, where a , b ≤ 	 are chosen randomly. The randomized dissection is the dissection
of this enclosing box. Note that the randomness is used only to determine the placement of the enclosing
box (and its accompanying dissection).

We now describe the PTAS in Ref. [34] for the Euclidean TSP, which uses the above randomized
dissection. Formally, for every ε > 0, this PTAS finds a (1 + ε)-approximation to Euclidean TSP.

First, perform randomized dissection to the bounding box of the n points. Recall that L is the side of
the enclosing box. The recursive procedure of subdividing the squares stops when the sidelengths of the
squares becomes less than Lε/8n, or when each square at the last level contains at most one point. We may
assume (by scaling) that L is a power of 2 and that the sides of squares at the last level are unit length. Thus,
at most log L iterations are required, and L ≤ 8n/ε. When there is more than one point in a unit square,
consolidate them into one new “bigger” point. Any tour for the resulting set of points can be augmented to
a tour for the original set of points with an increase in length bounded by

√
2nLε/8n, which is negligible,

since L ≤ OPT/2. Henceforth, we shall assume that there is at most one point per unit square.
The level of a square in the dissection is its depth in the recursive dissection tree; the root square has

level 0. We also assign a level from 0 to log(L − 1) to each horizontal and vertical grid line that participates
in the dissection. The horizontal (resp., vertical) line that divides the enclosing box into two has level 0.
Similarly, the 2i horizontal and 2i vertical lines that divide the level i squares into level i + 1 squares
have level i . The following property of a randomized dissection is used: Any fixed vertical grid line that

intersects the bounding box of the instance has probability 2i

	
= 2i+1

L to be a line at level i .
Next, the location of the portals is determined. Let m = 1

ε
log L . The parameter m is the portal parameter

that determines the density of the points the path can pass through. A level i line has 2i+1m equally spaced
portals. In addition, we also refer to the corners of each square as a portal. Since a level i line has 2i+1

level i + 1 squares touching it, it follows that each side of the square has at most m + 2 portals (m regular
portals plus the 2 corners), and a total of at most 4m + 4 portals on its boundary. A portal-respecting tour
is one that, whenever it crosses a grid line, does so at a portal.

Finally, dynamic programming is used to find the optimum portal-respecting tour in time 2O(m) L log L .
Since m = O(log n/ε), we get a total running time of nO(1/ε). The dynamic programming as well as the
complete analysis of bounding the PTAS error and the time complexity are given in Ref. [31].
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Note that since the PTAS uses randomization, the error of the PTAS is a random variable. Formally,
let OPT denote the cost of the optimum salesman tour and OPTa ,b,m denote the cost of the best portal-
respecting tour when the portal parameter is m and the random shifts are a , b.

Theorem 9.8

The expectation (over the choices of a , b) of OPTa ,b,m − OPT is at most 2 log L/mOPT, where L is the
sidelength of the enclosing box.

As mentioned in the survey of Arora [31], this method of dissection can be used to develop PTASs for
other geometric optimization problems such as minimum Steiner tree, facility location with capacities
and demands, and Euclidean min-cost k-connected subgraph.

Another class of geometric optimization problem is the class of clustering problems, such as metric
max-cut and k-median. In recent research on clustering problems, a core idea in the design of approximation
schemes is to use random sampling of data points from a biased distribution, which depends on the pairwise
distances. This technique is used, e.g., in the PTAS of Fernandez de la Vega and Kenyon for metric max-cut
[35], and in the work of Indyk on metric 2-clustering [36]. For more details on the technique and its
applications, we refer the reader to Ref. [37].

9.4.2 Shifted Plane Partitions

The shifting technique that is applied to geometric problems is based on selecting the best solution over
a (polynomial size) set of feasible solutions. Each candidate feasible solution is obtained using a divide-
and-conquer approach, in which the plane is partitioned into disjoint areas (strips). The technique can be
applied to geometric problems such as square packing or covering with disks, which arise in Very Large
Scale Integration (VLSI) design, image processing, and many other important areas. A common goal in
these problems is to cover or pack elements (e.g., points in the plane) into a minimal number of objects
(e.g., squares of given size).

Recall that each candidate solution is obtained by using divide-and-conquer approach, in which the
plane is partitioned into strips. A solution for the original problem is formed by taking the union of the
solutions for these strips. Consecutive solutions refer to consecutive partitions of the plane into strips,
which differ from each other by shifting the partitioning bars, using the shifting parameter. The smaller the
shifting parameter, the larger the number of candidate solutions to be considered, and the better resulting
approximation.

We illustrate the shifting technique for the problem of covering n points in the two-dimensional plane.
The complete analysis is given in Refs. [33,38]. Assume that the n points are enclosed in an area I . The goal
is to cover these points with a minimal number of disks of diameter D. Denote by 	 the shifting parameter.
The area I is divided into vertical strips of width D. Each set of 	 consecutive strips are grouped together
to form strips of width 	D. Note that there are 	 different ways to determine this grouping—and they can
derive from each other by shifting the partitioning bars to the right over distance D. Denote the 	 distinct
partitions obtained this way by S1, S2, . . . , S	.

Let A be an algorithm to solve the covering problem on strips of width at most 	D. The algorithm A
can be used to generate a solution for a given partition S j . We apply A to each strip in S j and then union
the sets of disks used. The shift algorithm, s A, defined for a given A, uses A to solve the problem for the 	

possible partitions and selects the solution that requires minimum number of disks.
The following lemma gives the performance ratio of s A (denoted rs A ) as function of 	 and the perfor-

mance ratio of A (denoted r A).

Lemma 9.8

rs A ≤ r A

(

1 + 1

	

)

The algorithm A may itself be derived from an application of the shifting technique. In our example, to
solve the covering problem on a strip of width 	D, the strip is cut into squares of size 	D × 	D, for which
an optimal solution can be found by exhaustive search.
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We note that the above shifting technique can be used to derive PTASs for several other problems, includ-
ing minimum vertex cover and maximum independent set in planar graphs [39]. The idea is that a planar
graph can be decomposed into components of bounded outer-planarity. The solution for each component
can be found using dynamic programming. The shifting idea is to remove one “layer” from the graph in
each iteration. This removal guarantees that the number of cross-cluster edges is small, so by considering
the union of the local cluster solutions one can get a good approximation for the original problem.

9.5 Concluding Remarks

There are many other interesting applications of the techniques described in this chapter. We mention
a few of them. Golubchik et al. [49] apply enumeration to a structured instance in solving the problem
of data placement on disks (see also Ref. [40]). The technique of extending solutions for small subsets is
applied by Khuller et al. [41] to the problem of broadcasting in heterogeneous networks. Kenyon et al. [42]
used a nontrivial combination of grouping with periodic scheduling to obtain a PTAS for data broadcast.

As mentioned in Section 9.4, some techniques are specialized for certain types of problems. For graph
problems, some PTASs exploit the density of the input graph (see, e.g., Ref. [43]). There are PTASs which
build on the properties of planar graphs (see, e.g., Refs. [44,45]).

Finally, we have mentioned in Sections 9.2.3 and 9.4 some techniques used in randomized approximation
schemes. A detailed exposition of randomized approximation schemes for counting problems is given in
Chapter 11 in Ref. [46] (see also Chapter 12 of this handbook). Benczúr and Karger presented in Ref. [47]
randomized approximation schemes for cuts and flows in capacitated graphs. Efraimidis and Spirakis
used in Ref. [48] the technique of filtered randomized rounding in developing randomized approximation
schemes for scheduling unrelated parallel machines.
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10.1 Introduction

This chapter reviews three general methods—rounding, interval partitioning, and separation—proposed
by Sahni [1] to transform pseudopolynomial-time algorithms into fully polynomial-time approximation
schemes. The three methods, which generally apply to dynamic-programming and enumeration-type
pseudopolynomial-time algorithms, are illustrated using the 0/1-knapsack and multiconstrained shortest
paths problems. Both of these problems are known to be NP-hard and both are solvable in pseudopoly-
nomial time using either dynamic programming or enumeration.

10.2 Rounding

The rounding method of Ref. [1] is also known by the names digit truncation and scaling. The key idea
in the rounding method is to reduce the magnitude of some or all of the numbers in an instance so that
the pseudopolynomial-time algorithm actually runs in polynomial time on the reduced instance. The
amount by which each number is reduced is such that the optimal solution for the reduced instance is an
ε-approximate solution for the original instance.

Rounding up, rounding down, and random rounding are three possible strategies to construct the
reduced instance. In each, we employ a rounding factor δ(n, ε), where n is a measure of the problem size.
For convenience, we abbreviate δ(n, ε) as δ. When rounding up, each number α (for convenience, we
assume that all numbers in all instances are positive) that is to be rounded is replaced by �α/δ� and when
rounding down, α is replaced by �α/δ�. In random rounding, we round up with probability equal to the
fractional part of α/δ and round down with probability equal to 1—the fractional part of α/δ. So, for
example, if α = 7 and δ = 4, α is replaced by (or reduced to) 2 when rounding up and by 1 when rounding
down. In random rounding, α is replaced by 2 with probability 0.75 and by 1 with probability 0.25.
Random rounding is typically implemented using a uniform random number generator that generates
real numbers in the range [0, 1). The decision on whether to round up or down is made by generating

10-1

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C010 April 6, 2007 10:52

10-2 Handbook of Approximation Algorithms and Metaheuristics

a random number. If the generated number is ≤ the fractional part of α/δ, we round up; otherwise, we
round down.1

As an example of the application of rounding, consider the 0/1-knapsack problem, which is known to
be NP-hard [3]. In the 0/1-knapsack problem, we wish to pack a knapsack (bag or sack) with a capacity
of c . From a list of n items/objects, we must select the items that are to be packed into the knapsack. Each
item i has a weight wi and a profit pi . We assume that all weights and profits are positive integers. In
a feasible knapsack packing, the sum of the weights of the packed objects does not exceed the knapsack
capacity c , which also is assumed to be a positive integer. Since an item with weight more than c cannot
be in any feasible packing, we may assume that wi ≤ c for all i . An optimal packing is a feasible packing
with maximum profit. The problem formulation is

maximize
n∑

i=1

pi xi

subject to the constraints

n∑

i=1

wi xi ≤ c and xi ∈ {0, 1}, 1 ≤ i ≤ n

In this formulation we are to find the values of xi . When xi = 1, it means that object i is packed into
the knapsack, and xi = 0 means that object i is not packed.

For the instance n = 5, ( p1, . . . , p5) = (w1, . . . , w5) = {1, 2, 4, 8, 16} and c = 27, the optimal
solution is X = (x1, x2, . . . , x5) = (1, 1, 0, 1, 1), which corresponds to packing items 1, 2, 4, and 5 into the
knapsack. This solution uses all of the knapsack capacity and yields a profit of 27. With each feasible packing,
we associate a profit and weight pair (P , W), where P is the sum of the profits of the items in the packing
and W ≤ c the sum of their weights. For example, a packing that generates a profit of 15 and uses 20 units of
capacity is represented by the pair (15, 20). P is the profit or value of the packing (P , W) and W its weight.

Several of the standard algorithm design methods of Ref. [3]—for example backtracking, branch and
bound, dynamic programming, and divide and conquer—may be applied to the knapsack problem.
Backtracking and branch and bound result in algorithms whose complexity is O(2n) and dynamic
programming results in a pseudopolynomial-time algorithm whose complexity is O(min{2n, nF̃ , nc}),
where F̃ is the value of the optimal solution [4]. A pseudopolynomial-time algorithm with this same
complexity also may be arrived at using an enumerative approach. By coupling a divide and conquer
step to this enumerative algorithm, we obtain a pseudopolynomial-time algorithm whose complexity is
O(min{2n/2, nF̃ , nc}) [4].

Let (P 1, W1) and (P 2, W2) represent two different feasible packings of items selected from the first i
items. Tuple (P 1, W1) dominates (P 2, W2) iff either P 1 ≥ P 2 and W1 < W2 or P 1 > P 2 and W1 = W2.
The enumerative algorithm for the 0/1-knapsack problem constructs a list of (or enumerates) the profit
and weight pairs that correspond to all possible nondominated feasible packings. This list is constructed
incrementally. Let Si be the list of nondominated profit and weight pairs for all possible feasible packings
chosen from the first i items. We start with the list S0 = {(0, 0)}, and construct S1, S2, . . . , Sn in this
order. Note that each Si , i > 0, may be constructed from Si−1 using the equality

Si = Si−1 ⊕ {(a + pi , b + wi )|(a , b) ∈ Si−1 and b + wi ≤ c} (10.1)

where ⊕ denotes a union in which dominated pairs are eliminated. Eq. (10.1) simply states that the
nondominated pairs obtainable from the first i items are a subset of those obtainable from the first i − 1

1There is a similar sounding, but quite different, method for approximation algorithms—randomized rounding
—due to Raghavan and Thompson [2]. In randomized rounding, we start with an integer linear program formulation;
relax the integer constraints to real number constraints; solve the resulting linear program; transform the noninteger
values in the obtained solution to the linear program to integers using the random rounding strategy stated above.
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items (these have xi = 0) plus those obtainable from feasible packings of the first i items that necessarily
include wi (i.e., xi = 1). The subset is identified by eliminating dominated pairs. Trying Eq. (10.1) out in
the above n = 5 instance, we get (since P = W for every pair (P , W) in this example, we represent each
pair by a single number)

S0 = {0}
S1 = {0} ⊕ {1} = {0, 1}
S2 = {0, 1} ⊕ {2, 3} = {0, 1, 2, 3}
S3 = {0, 1, 2, 3} ⊕ {4, 5, 6, 7} = {0, 1, 2, 3, 4, 5, 6, 7}
S4 = {0, . . . , 7} ⊕ {8, . . . , 15} = {0, . . . , 15}
S5 = {0, . . . , 15} ⊕ {16, . . . , 27} = {0, . . . , 27}

For the case n = 4, ( p1, . . . , p4) = (w1, . . . , w4) = {1, 1, 8, 8}, and c = 17, we get

S0 = {0}
S1 = {0} ⊕ {1} = {0, 1}
S2 = {0, 1} ⊕ {1, 2} = {0, 1, 2}
S3 = {0, 1, 2} ⊕ {8, 9, 10} = {0, 1, 2, 8, 9, 10}
S4 = {0, 1, 2, 8, 9, 10} ⊕ {8, 9, 10, 16, 17} = {0, 1, 2, 8, 9, 10, 16, 17}

The solution to the knapsack instance may be determined from the Si s using the procedure of
Figure 10.1.

For our n = 5 instance with c = 27, (P , W) is determined to be (27, 27) in Step 1. In Step 2, x5 is set
to 1 as (27, 27) 
∈ S4 and P and W are updated to 11. Then x4 is set to 1 as (11, 11) 
∈ S3 and P and W
are updated to 3. Next, x3 is set to 0 as 3 ∈ S2. x2 and x1 are set to 1 in the remaining two iterations of the
for loop.

The Si s may be implemented as sorted linear lists (note that the dominance rule ensures that if Si is in
ascending order of P , Si is also in ascending order of W; also, no two pairs of Si may have the same P or
the same W value). The set Si may be computed from Si−1 in O(|Si−1|) time using Eq. (10.1). The time
to compute all Si s is, therefore,

∑
1≤i≤n |Si−1|. (Note that in Sn we need to only compute the pair with

maximum profit. When the Si s are in ascending order of profit, this maximum pair may be determined
easily.) From Eq. (10.1) it follows that |Si | ≤ 2i (this also follows from the observation that there are 2i

different subsets of i items). Also, since the wi s and pi s are positive integers and Si has only nondominated
pairs, |Si | ≤ min{F̃ , c} + 1. Hence, the time needed to generate the Si s is O(min{2n, nF̃ , nc}). If the
sorted linear lists are array lists, each Si may be searched for (P , W) in O(log |Si |) time. In this case the
complexity of the procedure to determine the xi s from the Si s is O(n ∗min{n, log F̃ , log c}). This may be
reduced to O(n) by retaining with each (P , W) ∈ Si a pointer to the pair (P , W) or (P − pi , W −wi ) that
is in Si−1 (note that at least one of these pairs must be in Si−1). These pointers are added to the members

Step 1: [Determine solution value]
Determine the pair (P, W) ∈ Sn with maximum profit value.  The value of an optimal packing is P.

Step 2: [Determine xis]
for (i = n; i > 0; i − −)

if ((P, W) ∈ Si−1) { xi = 1; P− = pi; W− = wi; }
else xi = 0;

FIGURE 10.1 Procedure to determine xi s from the Si s.
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of Si at the time Si is constructed using Eq. (10.1). The inclusion of these pointers does not change the
asymptotic complexity of the procedure to compute the Si s.

The enumerative pseudopolynomial-time algorithm just described for the knapsack problem may be
transformed into a fully polynomial-time approximation scheme by suitably rounding down the pi s.
Suppose we round using the rounding factor δ to obtain the reduced instance with p′

i = �pi /δ� and
w ′

i = wi , 1 ≤ i ≤ n, and c ′ = c . The time to solve the reduced instance is O(nF̃ ′), where F̃ ′ is
the value of the optimal solution to the reduced problem (we assume the reduction is sufficient so that
nF̃ ′ < min{2n, nc ′}). Notice that the original and reduced instances have the same feasible packings; only
the profit associated with each feasible packing is different. A feasible packing has a smaller profit in the
reduced instance than in the original instance.

Consider any feasible packing (x1, . . . , xn). Since p′
i ∗ δ ≤ pi < ( p′

i + 1) ∗ δ,

δ ∗
∑

i

p′
i xi ≤

∑

i

pi xi < δ ∗
∑

i

( p′
i + 1)xi (10.2)

So,

δ F̃ ′ ≤ F̃ < δ(F̃ ′ + n) (10.3)

Suppose we use the just described rounding strategy on our n = 4 example with ( p1, . . . , p4) = (w1, . . . ,
w4) = (1, 1, 8, 8), c = 17 and δ = 3. We obtain ( p′

1, . . . , p′
4) = (0, 0, 2, 2), (w ′

1, . . . , w ′
4) = (1, 1, 8, 8) and

c ′ = 17. One of the optimal solutions for the reduced instance has (x1, x2, x3, x4) = (0, 0, 1, 1) and the value
of this solution is p′

3 + p′
4 = 4. In the original instance, the solution (0, 0, 1, 1) has value 16. Note that many

different knapsack instances round to the same reduced instance. For example, ( p1, . . . , p4) = (2, 1, 6, 7),
(w1, . . . , w4) = (1, 1, 8, 8) and c = 17 (using δ = 3). The value of the solution (0, 0, 1, 1), for this original
instance, is 13. From Eq. (10.2), regardless of the original instance, the value of (0, 0, 1, 1) must be at least
δ ∗ ∑

p′
i xi = 12 and cannot equal or exceed δ ∗ ∑

( p′
i + 1)xi = 18.

To ensure that every optimal solution to the reduced instance also defines an ε-approximate solution
for the original instance, we must select δ carefully. Let F̂ be the value, in the original instance, of the
optimal solution for the reduced instance. From Eq. (10.2) and Eq. (10.3), we obtain

F̂ ≥ δ F̃ ′ > F̃ − nδ

So, (F̃ − F̂ ) < nδ and (F̃ − F̂ )/F̃ < nδ/F̃ . To gurantee that the optimal solution for the reduced instance
is an ε-approximate solution for the original instance, we require nδ/F̃ ≤ ε or δ ≤ ε F̃ /n. Since the
reduced instance has smaller p′

i values and hence smaller complexity when δ is larger, we would like to use

δ = ε F̃ /n

With this choice ofδ, F̃ ′ ≤ F̃ /δ = n/ε (Eq. [10.3]). So, |Si | ≤ n/ε+1 and the complexity of the enumer-
ative algorithm becomes O(n2/ε). In other words, the enumerative algorithm becomes a fully polynomial-
time approximation scheme for the 0/1-knapsack problem! Unfortunately, this choice of δ is problematic
as we cannot easily compute F̃ . Since any δ ≤ ε F̃ /n guarantees ε-approximate solutions, we may use

δ = εLB/n

where LB ≤ F̃ is a lower bound on the value of the optimal solution. Let Pmax = maxi {pi } be the max-
imum profit value. Since wi ≤ c for all i (by assumption), Pmax ≤ F̃ , and LB = Pmax is a lower bound
on F̃ . So, using δ = εPmax/n guarantees ε-approximate solutions. Since F̃ ≤ nPmax, F̃ ′ ≤ nPmax/δ =
n2/ε and the complexity of the enumerative algorithm becomes O(n3/ε).

An alternative way to determine a lower bound for F̃ is to sort the knapsack items into nondecreasing
order of profit denisty pi /wi and pack the items into the knapsack in density order upto and including the
first item that causes the knapsack to be either filled or overfilled. Note that if there is no such first item,
all items can be packed into the knapsack and this packing represents the optimal solution. Also note that
if the stated packing strategy fills the knapsack completely, it represents an optimal packing. So, assume
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that the capacity is exceeded. Let F̄ be the value of this packing that overfills the knapsack. In Ref. [5], it
is shown that F̄ /2 ≤ F̃ ≤ F̄ . So, using δ = ε F̄ /(2n) as the rounding factor, guarantees ε-approximate
solutions. Since F̃ ≤ F̄ , F̃ ′ ≤ F̄ /δ and, for the reduced instance, |Si | ≤ F̄ /δ + 1 = 2n/ε + 1. For the
reduced instance, the complexity of the enumerative algorithm is, therefore, O(n2/ε) and we get a fully
polynomial-time ε-approximation scheme of this complexity.

10.3 Interval Partitioning

Unlike rounding, which reduces an instance to one that is easier to solve using a known pseudopolynomial-
time algorithm, in interval partitioning we work with the nonreduced (original) instance. In interval
partitioning, we partition the solution space into buckets or intervals and for each interval, we retain only
one of the (feasible) solutions (or partial solutions) that fall into it.

For the 0/1-knapsack problem, for example, each pair (P , W) ∈ Si , i ≤ n, represents a feasible solution.
We may partition the solution space based on the profit value of the pair (P , W). If we partition using an
interval size of δ, then the intervals are [0, δ), [δ, 2δ), [2δ, 3δ), and so on. When two or more solutions
fall into the same interval, all but one of them is eliminated. Specifically, we eliminate all but the one with
least weight. Let S ′

i be the list of (P , W) pairs for all possible feasible packings chosen from the first i items
subject to the interval partitioning constraint that S ′

i has at most 1 (P , W) pair in each interval. We begin
with S ′

0 = {(0, 0)} and compute S ′
i from S ′

i−1 using the equation

S ′
i = S ′

i−1  {(a + pi , b + wi )|(a , b) ∈ S ′
i−1 and b + wi ≤ c} (10.4)

where  denotes a union in which only the least weight pair from each interval is retained. The maximum
profit pair in S ′

n is used as the approximate optimal solution. The xi s for this pair are obtained using the
procedure of Figure 10.1 with Si replaced by S ′

i .
Consider the 0/1-knapsack instance n = 5, ( p1, . . . , p5) = (w1, . . . , w5) = {1, 2, 4, 8, 16}, and

c = 27, which was first considered in Section 10.2. Suppose we work with an interval size δ = 2. The
intervals are [0, 2), [2, 4), [4, 6), and so on. The S ′

i s are

S ′
0 = {0}

S ′
1 = {0}  {1} = {0}

S ′
2 = {0}  {2} = {0, 2}

S ′
3 = {0, 2}  {4, 6} = {0, 2, 4, 6}

S ′
4 = {0, 2, 4, 6}  {8, 10, 12, 14} = {0, 2, 4, 6, 8, 10, 12, 14}

S ′
5 = {0, 2, 4, . . . , 14}  {16, 18, 20, . . . , 26} = {0, 2, 4, . . . , 26}

The maximum profit pair in S4 is (26, 26). For this instance, therefore, the best solution found using
interval partitioning with δ = 2 has a profit 1 less than that of the optimal.

Consider the instance n = 6, ( p1, . . . , p6) = (w1, . . . , w6) = (1, 2, 5, 6, 8, 9), and c = 27. Suppose
we use δ = 3. The intervals are [0, 3), [3, 6), [6, 9), and so on. The S ′

i s are

S ′
0 = {0}

S ′
1 = {0}  {1} = {0}

S ′
2 = {0}  {2} = {0}

S ′
3 = {0}  {5} = {0, 5}

S ′
4 = {0, 5}  {6, 11} = {0, 5, 6, 11}

S ′
5 = {0, 5, 6, 11}  {8, 13, 14, 19} = {0, 5, 6, 11, 13, 19}

S ′
6 = {0, 5, 6, 11, 13, 19}  {9, 14, 15, 20, 22} = {0, 5, 6, 9, 13, 15, 19, 22}
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The profit of the best solution found for this instance is 22; the profit for the optimal solution is 27. Note
that if c were 28 instead of 27,

S ′
6 = {0, 5, 6, 11, 13, 19}  {9, 14, 15, 20, 22, 28} = {0, 5, 6, 9, 13, 15, 19, 22, 28}

and we would have found the optimal solution.
Let F̆ be the value of the solution found by interval partitioning. It is easy to see that F̃ < F̆ + nδ. So,

(F̃ − F̆ )/F̃ < nδ/F̃ . To guarantee that the solution found using interval partitioning is an ε-approximate
solution, we require nδ/F̃ ≤ ε. For this, we must choose δ so that δ ≤ ε F̃ /n. Since F̃ is hard to compute,
we opt to select δ as in Section 10.2. Both the choices δ = εPmax/n and δ = ε F̄ /(2n) guarantee that
the solution generated using interval partitioning is ε-approximate. When δ = εPmax/n, the number
of intervals is F̃ /δ + 1 ≤ nPmax/δ + 1 = n2/ε + 1 and the complexity of the (modified) enumerative
algorithm is O(n3/ε). When δ = ε F̄ /(2n), the number of intervals is F̃ /δ + 1 ≤ F̄ /δ + 1 = 2n/ε + 1
and the complexity is O(n2/ε).

10.4 Separation

An examination of our n = 6 example of Section 10.3 reveals that interval partitioning misses some
opportunities to reduce the size of an S ′

i while yet preserving the relationship F̃ ≤ F̂ + nδ, which is
necessary to ensure an ε-approximate solution. For example, in S ′

4 we have two solutions, one with value 5
and the other with value 6. Although these are within δ of each other, they fall into two different intervals
and so neither is eliminated. In the separation method, we ensure that the value of retained solutions
differs by more than δ.

For the 0/1-knapsack problem, let S ′′
i be the list of (P , W) pairs for all possible feasible packings chosen

from the first i items subject to the separation constraint that no two pairs of S ′′
i have value within δ of

each other. We begin with S ′′
0 = {(0, 0)} and compute S ′′

i from S ′′
i−1 using the equation

S ′′
i = S ′′

i−1 ⊗ {(a + pi , b + wi )|(a , b) ∈ S ′′
i−1 and b + wi ≤ c} (10.5)

where ⊗ denotes a union that implements the separation constraint. More precisely, suppose that

T = S ′′
i−1 ⊕ {(a + pi , b + wi )|(a , b) ∈ S ′′

i−1 and b + wi ≤ c}
Let (Pi , Wi ), 1 ≤ i ≤ |T | be the pairs in T in ascending order of profit (and hence of weight). The set S ′′

i
is obtained from T using the code of Figure 10.2.

The maximum profit pair in S ′′
n is used as the approximate optimal solution.

Consider the n = 6 example of Section 10.3. S ′′
i = S ′

i , 0 ≤ i ≤ 3. The remaining S ′′
i s are

S ′′
0 = {0}

S ′′
1 = {0} ⊗ {1} = {0}

S ′′
2 = {0} ⊗ {2} = {0}

S ′′
3 = {0} ⊗ {5} = {0, 5}

S ′′
4 = {0, 5} ⊗ {6, 11} = {0, 5, 11}

S ′′
5 = {0, 5, 11} ⊗ {8, 13, 19} = {0, 5, 11, 19}

S ′′
6 = {0, 5, 11, 19} ⊗ {9, 14, 20} = {0, 5, 9, 14, 19}

Si = {(P1, W1)};
Pprev = P1;
for (int i = 1; i <= |T |; i + +) 

if (Pi > Pprev + δ) {Si  = Si  ∪ {(Pi, Wi)}; Pprev = Pi;} 

FIGURE 10.2 Computing S ′′
i from T .
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The profit of the best solution found for this instance is 19; the profit for the optimal solution is 27. We
could have produced a slightly better solution by noting that we can replace the computation of S ′′

n by a
step in which we determine the maximum profit pair in

S ′′
n−1 ⊕ {(a + pi , b + wi )|(a , b) ∈ S ′′

n−1 and b + wi ≤ c}
For our example, this pair has value 20.
Let F̌ be the value of the solution found by the separation method. It is easy to see that F̃ ≤ F̌ + nδ.

So, δ ≤ ε F̃ /n ensures that an ε-approximate solution is found. As was the case in Section 10.3, for
the knapsack problem, the choices δ = εPmax/n and ε F̄ /(2n) guarantee that the solution generated
using separation is ε-approximate. When δ = εPmax/n, the complexity of the (modified) enumerative
algorithm is O(n3/ε) and when δ = ε F̄ /(2n), the complexity is O(n2/ε).

Intuitively, we may expect that using the same δ value, |S ′′
i | ≤ |S ′

i | for all i . Although this relationship
holds for the n = 6 example considered above, the relationship does not always hold. For example, consider
the knapsack instance n = 5, ( p1, . . . , p5) = (w1, . . . , w5) = (30, 10, 51, 51, 51), c = 186, and δ = 20.
Using interval partitioning, we get

S ′
0 = {0}

S ′
1 = {0}  {30} = {0, 30}

S ′
2 = {0, 30}  {10, 40} = {0, 30, 40}

S ′
3 = {0, 30, 40}  {51, 81, 91} = {0, 30, 40, 81}

S ′
4 = {0, 30, 40, 81}  {51, 81, 91, 132} = {0, 30, 40, 81, 132}

S ′
5 = {0, 30, 40, 81, 132}  {51, 81, 91, 132, 183} = {0, 30, 40, 81, 132, 183}

and using separation, we get

S ′′
0 = {0}

S ′′
1 = {0} ⊗ {30} = {0, 30}

S ′′
2 = {0, 30} ⊗ {10, 40} = {0, 30}

S ′′
3 = {0, 30} ⊗ {51, 81} = {0, 30, 51, 81}

S ′′
4 = {0, 30, 51, 81} ⊗ {51, 81, 102, 132} = {0, 30, 51, 81, 102, 132}

S ′′
5 = {0, 30, 51, 81, 102, 132} ⊗ {51, 81, 102, 132, 153, 183} = {0, 30, 51, 81, 102, 132, 153, 183}

10.5 0/1-Knapsack Problem Revisited

In Sections 10.2–10.4, we saw how to apply the generic rounding, interval partitioning, and separation
methods to the 0/1-knapsack problem and obtain an ε-approximate fully polynomial-time approximation
scheme for this problem. The complexity of the approximation scheme is either O(n3/ε) or O(n2/ε),
depending on the choice of δ. By tailoring the approximation method to the application, we can, at times,
reduce the complexity of the approximation scheme. Ibarra and Kim [5], for example, combine rounding
and interval partitioning to arrive at an O(n log n − (log ε)/ε4) ε-approximate fully polynomial-time
approximation scheme for the 0/1-knapsack problem. Figure 10.3 gives their algorithm. The correctness
proof and complexity analysis can be found in Ref. [5].

10.6 Multiconstrained Shortest Paths

10.6.1 Notation

Assume that a communication network is represented by a weighted directed graph G = (V, E ), where V
is the set of network vertices or nodes and E the set of network links or edges. We use n and e , respectively,
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Step 1: [Determine δ]
Sort the n items into nondecreasing order of profit density pi/wi.
Let F be as in Section ??.
Let δ = ε2F/9.¯

¯

Let small be the items with pi ≤ εF/3.¯
Let big be the remaining items.

Step 3: [Rounding]
Let big  be obtained from big by rounding down the profits using the rounding factor δ.
For each rounded-down profit p, retain up to 9/(ε2p) items of least weight.
Let big   be the resulting item set.
Let m be the number of items in big .

Step 4: [Interval Partitioning]
Use interval partitioning on big  and determine Sm.

Step 5: [Augmentation]
Augment each (P, W) ∈ Sm by adding in items from small in order of nondecreasing density so as not
to exceed the capacity of the knapsack.
Select the augmentation that yields maximum profit as the approximate solution.

Step 2: [Partition Items]

FIGURE 10.3 Fully polynomial-time ε-approximation scheme of Ref. [5].

to denote the number of nodes and links in the network, that is, n = |V | and e = |E |. We assume that
each link (u, v) of the network has k >1 nonnegative weights wi (u, v), 1 ≤ i ≤ k. These weights, for
example, may represent link cost, delay, and delay-jitter. The notation w(u, v) is used to denote the vector
(w1(u, v), . . . , wk(u, v)), which gives the k weights associated with the edge (u, v). Let p be a path in the
network. We use wi ( p) to denote the sum of the wi s of the edges on the path p.

wi ( p) =
∑

(u,v)∈p

wi (u, v)

By definition, w( p) = (w1( p), . . . , wk( p)).
In the multiconstrained path (k-MCP) problem, we are to find a path p from a specified source vertex s

to a specified destination vertex d such that

wi ( p) ≤ ci , 1 ≤ i ≤ k (10.6)

The ci s are specified QoS (quality of service) constraints. Note that Eq. (10.6) is equivalent to w( p) ≤ c ,
where c = (c1, . . . , ck). A feasible path is any path that satisfies Eq. (10.6).

The restricted shortest path (k-RSP) problem is a related optimization problem in which we are to find
a path p from s to d that minimizes w1( p) subject to

wi ( p) ≤ ci , 2 ≤ i ≤ k

An algorithm is an ε-approximation algorithm (or simply, an approximation algorithm) for k-MCP iff
the algorithm generates a source to destination path p that satisfies Eq. (10.6) whenever the network has
a source to destination path p′ that satisfies

wi ( p) ≤ ε ∗ ci , 1 ≤ i ≤ k (10.7)

where ε is a constant between 0 and 1.
Both the k-MCP and k-RSP problems for k >1 are known to be NP-hard [6] and several

pseudopolynomial-time algorithms, heuristics, and approximation algorithms have been proposed [7–9.]
Jaffe [10] has proposed a polynomial-time approximation algorithm for 2-MCP. This algorithm, which
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uses a shortest path algorithm such as Dijkstra’s [11], replaces the two weights on each edge by a
linear combination of these two weights. The algorithm is expected to perform well when the two
weights are positively correlated. Chen and Nahrstedt [12] use rounding to arrive at a polynomial-time
approximation algorithm for k-MCP. Korkmaz and Krunz [13] propose a randomized heuristic that
employs two phases. In the first phase a shortest path from each vertex of V to the destination vertex d
is computed for each of the k weights as well as for a linear combination of all k weights. The second
phase performs a randomized breadth-first search for a solution to the k-MCP problem. Yuan [14] has
proposed two heuristics for k-MCP—limited granularity and limited path. By properly selecting the
parameters for the limited granularity heuristic (LGH), this heuristic becomes an ε-approximation
algorithm for k-MCP.

The papers [15–19] use rounding (up, down, and random) and interval partitioning to arrive at fully
polynomial-time approximation schemes for k-RSP. Song and Sahni [20] use rounding (up), interval
partitioning, and separation to develop fully polynomial-time approximation schemes for k-MCP. We
focus on the work of Ref. [20] and this section is derived from Ref. [20].

10.6.2 Extended Bellman–Ford Algorithm

This is an extension of the well-known dynamic programming algorithm due to Bellman and Ford that is
used to find shortest paths in weighted graphs [11]. The original Bellman–Ford algorithm was proposed
for graphs in which each edge has a single weight. The extension allows for multiple weights (e.g., cost,
delay, and delay-jitter).

Let u and v be two vertices in an instance of k-MCP. Let p and q be two different u to v paths. Path p
is dominated by path q iff w(q) ≤ w( p) (i.e., wi (q) ≤ wi ( p), 1 ≤ i ≤ k).

In its pure form, the Bellman–Ford algorithm works in n − 1 (n is the number of vertices in the graph)
rounds numbered 1 through n − 1. In round 1, the algorithm implicitly enumerates one-edge paths from
the source vertex; then, in round 2, those with two edges are enumerated; and so on until finally paths with
n − 1 edges are enumerated. Since no simple path has more than n − 1 edges, by the end of round n − 1,
all simple paths have been (implicitly) enumerated. The enumeration of paths that have i + 1 edges is
accomplished by considering all one-edge extensions of the enumerated i-edge paths. During the implicit
enumeration, suboptimal paths (i.e., paths that are dominated by others) are eliminated. Suppose we have
two paths p and q to vertex u and that p is dominated by q . If path p can be extended to a path that
satisfies Eq. (10.6), then so also can q . Hence there is no need to retain p for further enumeration by path
extension. Actual implementations rarely follow the pure Bellman–Ford paradigm and enumerate some
paths of length more than i + 1 in round i .

Figure 10.4 gives the version of the Extended Bellman–Ford algorithm employed by Ref. [20]. This
version is very similar to the version used by Yuan and others [14,21]. PATH(u) is a set of paths from
the source s to vertex u. PATH(u) never contains two paths p and q for which w( p) ≤ w(q). Lines
12–14 initialize PATH(u) for all vertices u. The for loop of lines 16–20 attempts to implement the pure
form of the Extended Bellman–Ford algorithm and performs the required n − 1 rounds (there is a
provision to terminate in fewer rounds in case the previous round added a path to no PATH(u)). The
method Relax(u, v) extends the new2 paths in PATH(u) by appending the edge (u, v). Feasible extended
paths (i.e., those that satisfy the k constraints of Eq. [10.6]) are examined further. If v is the destination,
the algorithm terminates as we have found a feasible source to destination path. Let the extended path
p||(u, v) be r . The inner for loop (lines 4–8) removes from PATH(v) all paths that are dominated by
r (lines 7 and 8). This loop also verifies that r is not dominated by a path in PATH(v) (lines 5 and 6).
Notice that if r is dominated by or equal to a path in PATH(v), r cannot dominate a path in PATH(v).
Finally, in lines 9 and 10, r is added to PATH(v) only if it is not dominated by or equal to any path in
PATH(v).

2A path is new iff it has not been the subject of a similar extension attempt on a previous round.
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Relax(u, v)
1.   for each new p ∈ PATH(u) such that w(p) + w(u, v) ≤ c do
2. if (v = d) return TRUE;
3. Flag = TRUE;
4. for each q ∈ PATH(v) do
5. if (w(q) ≤ w(p) + w(u, v))
6. Flag = FALSE; Break; // exit inner for loop
7. if ((w(p) + w(u, v)) ≤ w(q))
8. remove q from PATH (v);
9. if (Flag == TRUE)
10. insert p||(u, v) into PATH(v); Change = TRUE;
11. return FALSE;

Extended Bellman−Ford(G, c, s, d)
12. for i = 0 to n − 1 do
13. PATH(i) = NULL;
14. PATH(s) = {s};
15. Result = FALSE;
16. for round = 1 to n − 1 do
17. Change = FALSE;
18. for each edge (u, v) ∈ E do
19. if (Relax(u, v)) return “YES”;
20. if (Change == FALSE) return “NO”;
21. return “NO”;

FIGURE 10.4 Extended Bellman–Ford algorithm for k-MCP.

To see that the algorithm of Figure 10.4 is not a faithful implementation of the pure form of the
Bellman–Ford algorithm, consider any iteration of the for loop of lines 16–20 (i.e., consider one round)
and suppose that edge (u, v) is considered before edge (v, w) in the for loop of lines 13–14. Follow-
ing the consideration of (u, v), PATH(v) possibly contains paths with round edges. So, when (v, w) is
considered, Relax extends the paths in PATH(v) by a single edge (v, w) thereby permitting a path of
length round + 1 to be included in PATH(w). This lack of faithfulness in implementation of the pure
Bellman–Ford algorithm does not affect the correctness of the algorithm and, in fact, agrees with the
traditional implementation of the Bellman–Ford algorithm for the case when each edge has a single weight
(i.e., k = 1) [11].

Another implementation point worth mentioning is that although we have defined PATH(u) to be a set
of paths from the source to vertex u, it is more efficient to implement PATH(u) to be the set of weights (or
more accurately, weight vectors w( )) of these paths. This, in fact, is how the algorithm is implemented in
Ref. [14].

10.6.3 Rounding

Let δi = ci ∗ (1 − ε)/n, 2 ≤ i ≤ k. Suppose we replace each wi (u, v) with the weight

w ′
i (u, v) = �wi (u, v)

δi
� ∗ δi

Let p be a path such that it satisfies Eq. (10.7). Then,

w ′
i ( p) < wi ( p) + nδi ≤ εci + (1 − ε)ci = ci

So, algorithm Extended Bellman–Ford of Figure 10.4 when run with the edge weights wi (u, v) replaced
by the weights w ′

i (u, v), 2 ≤ i ≤ k will find a feasible path (either p or some other feasible path). In an
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implementation of the rounding method, we actually replace each wi (u, v), 2 ≤ i ≤ k by

w ′′
i (u, v) = �wi (u, v)

δi
�

and each ci by �ci /δi �, 2 ≤ i ≤ k. From the computation stand point, using the w ′
i s is equivalent to using

the w ′′
i s.

Let S = (n/(1 − ε))k−1. In the w ′′
i s formulation, it is easy to see that |PATH(u)| ≤ S. Hence the

complexity of Extended Bellman–Ford when the w ′′
i (equivalently, w ′

i ) weights are used is O(ne S2) and
we have a fully polynomial-time approximation scheme for k-MCP. For the case k = 2, the complexity
is O(ne S) if we employ the merge strategy of Horowitz and Sahni [4] to implement Relax (i.e., maintain
PATH(u) in ascending order of w1; extend the new paths in one step; then merge these extensions with
PATH(v) in another step).

10.6.4 Interval Partitioning and Separation

In interval partitioning, we partition the space of [w2( p), w3( p), . . . , wk( p)] values into buckets of size
[δ2, δ3, . . . , δk]. PATH(u) is maintained so as to have at most one path in each bucket. When a Relax step
attempts to put a second path into a bucket, only the path with the smaller w1 value is retained. When the
δi s are chosen as in Section 10.6.3, we get a fully polynomial-time approximation scheme. By choosing
larger values for the δi s, we lose the guarantee of an ε-approximate solution but we reduce the run time.
We use the term interval partitioning heuristic (IPH) to refer to the interval partitioning algorithm in which
the δi s are chosen arbitrarily.

Figure 10.5 gives the relax method used by IPH. The driver Extended Bellman–Ford is unchanged.
By choosing the number of buckets (equivalently, the bucket size) as in Section 10.6.3, we get a fully
polynomial-time ε-approximation scheme. The proof of this claim is quite similar to that of the proof
provided in Section 10.6.3.

Theorem 10.1

IPH is an ε-approximation algorithm for k-MCP when the bucket size is chosen as in Section 10.6.3.

In the separation method, PATH(u) is such that no two paths of PATH(v) are withinδi /2 of their wi values
for 2 ≤ i ≤ k. So, if we attempt to add to PATH(v) a path q such that wi ( p)+δi /2 ≤ wi (q) ≤ wi ( p)+δi /2,
2 ≤ i ≤ k, where p ∈ PATH(v), then only the path with the smaller w1 value is retained.

Since separation comes with greater implementation overheads than associated with interval partition-
ing [20] focuses on the interval partitioning method for k-MCP.

RelaxIPH(u, v)
1. for each new p ∈ PATH(u) such that w(p) + w(u, v) ≤ c do
2. if (v = d) return TRUE;
3. Let r = p||(u, v);
4. Let q ∈ PATH (v) such that r and q fall in the same bucket;
5. if (there is no such q)
6. Add r to PATH (v); Change = TRUE;
7. else if (w1(r) < w1(q))
8. Replace q by r in PATH(v); Change = TRUE;
9. return FALSE;

FIGURE 10.5 Relax method for IPH.
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10.6.5 The Heuristics of Yuan [14]

The LGH of Yuan [14] combines the interval partitioning and rounding methods. PATH(v) is represented
as a (k − 1)-dimensional array with each array position representing a bucket of size [s2, s3, . . . , sk]. As
in the pure form of interval partitioning, each bucket can have at most one path. However, unlike interval
partitioning, the exact wi values of the retained path are not stored. Instead, the wi values, 2 ≤ i ≤ k
are rounded up to the maximum possible for the bucket; the smallest w1 value of the paths that fall
into a bucket is stored in the bucket. Note that because of the rounding of the wi values, 2 ≤ i ≤ k,
we do not store these values along with the path; they may be computed as needed from the bucket
indexes.

We may regard the LGH as one with delayed rounding; the rounding done at the outset when the
traditional rounding method is used, is delayed to the time a path is actually constructed. By incorporating
buckets, we eliminate the need to store the wi , 2 ≤ i ≤ k, values stored explictly with each path when
either the rounding or interval partitioning methods are used. Although there is a reduction in space
(by a factor of k) on a per path basis, the array of buckets used to implement each PATH(u) needs∏

2≤i≤k ci /si space, whereas when the wi s are explicitly stored, the space requirements can be reduced to
O(k ∗ total number of paths stored). The time complexity of LGH is O(ne

∏
2≤i≤k ci /si ).

Note that when si = δi , 2 ≤ i ≤ k, the LGH becomes an ε-approximation algorithm.
The limited path heuristic (LPH) of Yuan [14] limits the size of PATH(v) to be X , where X is a specified

parameter. It differs from Extended Bellman–Ford (Figure 10.4) only in that line 9 is changed to if (Flag
== True && |PATH(v)| < X). With this modification, the complexity of Extended Bellman–Ford becomes
O(ne X2). The success of LPH hinges on the expectation that the first X nondominated paths, to vertex
v, found by Extended Bellman–Ford are more likely to lead to a feasible path to the destination than
subsequent paths to v. In a pure implementation of the Bellman–Ford method (which Figure 10.4 is not),
this expectation may be justified with the expectation that paths to nondestination vertices with a smaller
number of edges (these are found first in a pure Bellman–Ford algorithm) are more likely to lead to a
feasible path to the destination than those with a larger number of edges.

10.6.6 Generalized Limited Path Heuristic

LPH limits the number of paths in PATH(u) to be at most X . In generalized limited path heuristic (GLPH),
the constraint on the number of paths is

∑

u∈V,u 
=s

|PATH(u)| ≤ (n − 1) ∗ X

While both LPH and GLPH place the same limit on the total number of paths retained (i.e., (n−1)∗ X),
LPH accomplishes this by explicitly restricting the number of paths in each PATH(u), u 
= s to be no more
than X .

To ensure a performance at least as good as that of LPH, GLPH ensures that each PATH(u) maintains
a superset of the PATH(u) maintained by LPH. So, GLPH permits the size of a PATH(u) to exceed X so
long as the sum of the sizes is no more than (n − 1) ∗ X . When the sum of the sizes equals (n − 1) ∗ X ,
we continue to add paths to those PATH(u)s that have fewer than X paths. However, each such addition
is accompanied by the removal of a path that would not be in any PATH(v) of LPH.

10.6.7 Hybrid Interval Partitioning Heuristics (HIPHs)

Although IPH becomes an ε-approximation algorithm when the bucket size is chosen appropriately, LPH
is expected to perform well on many real-world networks because we expect paths with a small number
of edges to be more likely to lead to feasible source–destination paths than those with a large number of
edges. In this section we describe four hybrid heuristics: HIPH1, HIPH2, HIPH3, and HIPH4.

HIPH1 and HIPH2 combine IPH and LPH into a unified heuristic that has the merits of both. HIPH1
maintains two sets of paths for each vertex u ∈ V . The first set PATH(u) is limited to have at most X
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RelaxHIPH1(u, v)
1. for each new p ∈ PATH(u) such that w(p) + w(u, v) ≤ c do
2. if (v = d) return TRUE;
3. Flag = TRUE;
4. for each q ∈ PATH(v) do
5. if (w(p) + w(u, v) ≥ w(q))
6. Flag = FALSE; Break; // exit for loop
7. if ((w(p) + w(u, v)) < w(q))
8. remove q from PATH(v);
9. if (Flag == TRUE)
10. if (|PATH(v)| < X)
11. insert p||(u, v) into PATH(v); Change = TRUE;
12. else
13. do lines 3-8 of RelaxIPH using ipPATH in place of PATH;
14. // Relax using ipPATH in place of PATH
15. return RelaxIPH(u, v);

FIGURE 10.6 Relax method for HIPH1.

paths. This set is a faithful replica of PATH(u) as maintained by LPH. The second set, ipPATH(u), uses
interval partitioning to store additional paths found to vertex u. For the source vertex s , PATH(s ) = {s }
and ipPATH(s)= ∅. Figure 10.6 gives the new relax method employed by HIPH1. It is easy to see that
if on entry to RelaxHIPH1, PATH(u) as maintained by HIPH1 is the same as that maintained by the
relax method of LPH, then on exit, PATH(v) is the same for both HIPH1 and LPH. Since both heuristics
start with the same PATH(u) for all u, both maintain the same PATH(u) sets throughout. Hence HIPH1
produces a feasible solution whenever LPH does. Furthermore, because HIPH1 maintains additional paths
in ipPATH( ), it has the potential to find feasible source-to-destination paths even when LPH fails to do
so. It is easy also to see that when bucket size is selected as in Section 10.6.3, HIPH1 is an ε-approximation
algorithm.

Theorem 10.2

HIPH1 is an ε-approximation algorithm for k-MCP when the bucket size for ipPATH( ) is chosen as in Section
10.6.3. Further, for any given X, HIPH1 finds a feasible source-to-destination path whenever LPH finds such
a path.

HIPH2 is quite similar to HIPH1. In HIPH1 the extension r = p||(u, v) of a path p ∈ ipPATH(u)
can be stored only in ipPATH(v). In HIPH2, however, this extension is stored in PATH(v) whenever
|PATH(v)| < X . When |PATH(v)| = X , lines 4–8 of RelaxIPH are applied (using ipPATH(v) in place of
PATH(v)) to determine the fate of r . With this change, PATH(u) as maintained by LPH may not be the same
as that maintained by HIPH2. However, by choosing the bucket size for ipPATH(u) as in Section 10.6.3,
HIPH2 becomes an ε-approximation algorithm.

Theorem 10.3

HIPH2 is an ε-approximation algorithm for k-MCP when the bucket size for ipPATH( ) is chosen as in
Section 10.6.3.

HIPH3 and HIPH4 are the GLPH analogs of HIPH1 and HIPH2; that is they are based on GLPH rather
than LPH.

Theorem 10.4

HIPH3 and HIPH4 are ε-approximation algorithms for k-MCP when the bucket size for ipPATH( ) is chosen
as in Section 10.6.3.
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Dataset Algorithm

LGH LPH IPH GLPH HIPH1 HIPH2 HIPH3 HIPH4

8 × 8 mesh, k = 2, unbiased - 8* 4 8 8 4 4

16 × 16 mesh, k = 2, unbiased 8*/16 16* 16* 8*/16 8*/16

8 × 8 mesh, k = 2, biased 8 8* 4*/8 2*/4 2*/4

16 × 16 mesh, k = 2, biased 1 16 16* 1 8 1

Power-law, k = 2, unbiased 4*/8 16* 2 4*/8 4 1*/2 1*/2

Power-law, k = 2,  biased 16* 2 4*/8 4 2 2

ADC, k = 2 16 1* 8 16 1*/8 8 1*/8

4*/8

-

-

-

-

-

-

--

-

-

-

-

FIGURE 10.7 Smallest X at which competitive ratio becomes 1.0 [20].

10.6.8 Performance Evaluation

The existence ratio (ER) and competitive ratio (CR) are defined, respectively, by Yuan [14] to be the number
of routing requests satisfied by the extended Bellman–Ford algorithm divided by the total number of routing
requests and the number of routing requests satisfied by a heuristic divided by the number satisfied by
the extended Bellman–Ford algorithm. For example, if we make 500 routing requests, 100 of which are
satisfiable, the ER is 100/500 = 0.2. If LPH is able to find a feasible path for 80 of the 100 requests for
which such a path exists, the CR of LPH is 80/100 = 0.8.

Song and Sahni [20] report on an extensive simulation study involving mesh [14], power-law [22], and
augmented directed chain (ADC) [20] networks. Figure 10.7 gives the smallest of the tested X values for
which the CR becomes 1.0. For the case when k = 2, X is the bound placed on |PATH(u)| and |ipPATH(u)|.
In particular, for LGH, X is the number of positions in the one-dimensional array used to represent each
PATH(u) and for IPH, X is the number of intervals for each PATH(u). GLPH working on a network with n
vertices is able to store at most X ∗(n−1) paths, which is the maximum number of paths in all PATH(u) lists
of LPH. For the hybrid heuristics HIPH1 and HIPH2, |PATH(u)| ≤ X and |ipPATH(u)| ≤ X . For HIPH3
and HIPH4,

∑ |PATH(u)| ≤ X ∗ (n −1) and |ipPATH(u)| ≤ X . Note that since every heuristic other than
LGH stores both w1 and w2 for each path while LGH stores only w1, the worst-case space requirements of
LGH for any X are one-half for LPH and GLPH and one-fourth for HIPH1 through HIPH4. In Figure 10.7,
X values labeled with an “∗” indicate that the CR becomes almost 1.0, more precisely, larger than 0.99. So,
for example, the entry 8 ∗ /16 for GLPH, HIPH3, and HIPH4 working on 16 × 16 unbiased meshes means
that these heuristics achieved a CR very close to 1.0 when X = 8 and a CR of 1.0 when X = 16. The “−”
in the entry for 16 × 16 unbiased meshes for LGH means that the CR ratio for LGH did not become close
to 1.0 for any of the tested X values.

10.6.9 Summary

All of the studied k-MCP heuristics, with the exception of GLPH, become ε-approximation schemes when
the bucket size is chosen as in Section 10.6.3. Although GLPH has the same bound on total memory as
does the limited path heuristic LPH of Ref. [14], GLPH provides better CR; in fact, GLPH finds a feasible
path whenever LPH does and is able to find feasible solutions for several instances on which LPH fails
to do so. The IPH heuristic achieves significantly better CRs than are achieved by the LGH of Ref. [14].
LPH and GLPH do well on graphs in which there is at least one feasible path that has a small number
of edges. On ADCs that do not have such feasible paths, LPH and GLPH provide miserable performance
[20]. The hybrid heuristics HIPH1 through HIPH4 combine the merits of IPH (ε-approximation when
bucket size is chosen properly) and LPH and GLPH (guaranteed success when the graph has a feasi-
ble path with few edges). Of the four hybrid heuristics, HIPH4 performed best in the experiments of
Ref. [20].
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11.1 Introduction

We illustrate the concept of asymptotic (fully) polynomial-time approximation schemes (APTAS,
AFPTAS) via a study of the bin packing problem. We discuss in detail an APTAS due to Fernandez de la Vega
and Lueker [1] and an AFPTAS due to Karmakar and Karp [2]. Many of the algorithmic and analytical
techniques described in this chapter can be applied elsewhere in the development and study of other
polynomial-time approximation schemes. We conclude with a brief survey of other bin packing-related
results and other examples of APTAS and AFPTAS.

We first introduce the classic bin packing problem, which is NP-complete. Informally, we are given a
collection of items of sizes between 0 and 1. We are required to pack them into bins of unit size so as to
minimize the number of bins used. Thus, we have the following minimization problem.

BIN PACKING (BP):

• [Instances] I = {s1, s2, . . . , sn}, such that ∀i, si ∈ [0, 1].
• [Solutions] A collection of subsets σ = {B1, B2, . . . , Bk} which is a disjoint partition of I , such

that ∀i, Bi ⊂ I and
∑

j∈Bi
s j ≤ 1.

• [Value] The value of a solution is the number of bins used, or f (σ ) = |σ | = k.

BIN PACKING is a perfect illustration of why sometimes the absolute performance ratio is not the best
possible definition of the performance guarantee for an approximation algorithm. Recall that the absolute
performance ratio, a.k.a. the approximation ratio, of an algorithm A for a minimization problem is
defined as

RA = inf

{

r | RA(I ) = A(I )

OPT(I )
< r, ∀I

}

11-1
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where A(I ) and OPT(I ) denote the value of algorithm A’s solution and the optimal solution for instance
I , respectively.1 Note that the problem of deciding if an instance of BIN PACKING has a solution with
two bins is NP-complete—this is exactly the PARTITION problem [3]. This implies that no algorithm
can guarantee an approximation ratio better than 3/2 for BIN PACKING. Consequently, no approximation
schemes, PTAS or FPTAS [4], exist for BIN PACKING.

The hardness of 3/2 comes from the fact that we cannot decide between two or three bins, a difference
of one bin only. It is the small value of the optimum solution that makes the approximation ratio appear to
be large; the approximation ratio is misleading, since on larger instances the ratio could still be bounded
by a small constant. Therefore, we introduce the asymptotic performance ratio:

Definition 11.1

The asymptotic performance ratio, R∞
A , of an approximation algorithm A for an optimization problem is

R∞
A = inf{r | ∃N0, RA(I ) ≤ r for all I with OPT(I ) ≥ N0}

For BIN PACKING, the 3/2-hardness result does not preclude the existence of asymptotic approximation
schemes, which give an approximation factor that approaches 1 in the limit:

Definition 11.2

An Asymptotic PTAS (APTAS) is a family of algorithms {Aε | ε > 0} such that each Aε runs in time polynomial
in the length of the input and R∞

Aε
≤ 1 + ε.

Definition 11.3

An Asymptotic FPTAS (AFPTAS) is a family of algorithms {Aε | ε > 0} such that each Aε runs in time
polynomial in the length of the input and 1/ε, while R∞

Aε
≤ 1 + ε.

In this chapter we present two algorithms, an APTAS and an AFPTAS, due to Fernandez de la Vega
and Lueker [1] and Karmakar and Karp [2], respectively, for BIN PACKING. The algorithmic and analytic
tools demonstrated here are widely applicable to the study and development of approximation schemes.
Some of the techniques, such as interval partitioning, have been applied to similar problems such as
Multiprocessor Scheduling, Knapsack [3] and various packing-related problems and their generalizations.
Other techniques are more general and apply in a broader range of problem settings; for instance, linear
programming is a very powerful tool and has been used with enormous success throughout operations
research, management science, and theoretical computer science.

The rest of this chapter is organized as follows: Section 11.2 presents a summary of the techniques used
in the two algorithms; Section 11.3 presents the APTAS, Section 11.4 presents the AFPTAS, and finally,
Section 11.5 summarizes some other results related to BIN PACKING, and lists some other examples of
APTAS and AFPTAS.

11.2 Summary of Algorithms and Techniques

The first result we present is due to Fernandez de la Vega and Lueker [1], who provided an APTAS for BIN

PACKING that runs in linear time and has Aε(I ) ≤ (1 + ε) · OPT(I ) + 1. To be more specific, the running
time is linear in the size of the input instance I but is severely exponential in ε. Note that the reason this
scheme is an APTAS, and not a PTAS, is the additive error term of 1 in the approximation bound. The
basic techniques used in this result may be summarized as follows:

1 RA(I ), the absolute performance ratio of algorithm A on an input instance I , is defined as OPT(I )/A(I ) for
maximization problems. Such a definition ensures that RA(I ) ≥ 1 always.

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C011 March 20, 2007 12:17

Asymptotic Polynomial-Time Approximation Schemes 11-3

• Separate handling of “small” items.
• Discretization via interval partitioning or linear grouping.
• Rounding of “fractional” solutions.

We then present the modification of this result due to Karmakar and Karp [2], which leads to an AFPTAS
for BIN PACKING. They give an approximation scheme with a performance guarantee similar to the one
described above, with running time improved to O( n log n

ε8 ).
We now derive the results described above. Our presentation combines the methods of Fernandez de

la Vega and Lueker with those of Karmakar and Karp, as the two techniques share many of the same basic
tools. The general approach used in both techniques is as follows: We first define a restricted version of
the problem in which all items are of at least some minimum size, and the item sizes can only take on
a few distinct values. This new version of BIN PACKING turns out to be reasonably easy to solve. Then
we provide a two-step reduction from the original problem instance to a restricted problem instance.
The first step is to pull out the “small” items; it is shown that given any packing of the remaining items, the
small items can be added back in without a significant increase in the number of bins used. The second
step is to divide the item sizes into m intervals, and replace all items in the same interval by items of the
same size. It turns out that this “linear grouping” affects the value of the optimal solution only marginally.
In the next two sections, we consider each of these ingredients in turn and finally show how they can be
combined to produce an APTAS and then an AFPTAS.

11.3 Asymptotic Polynomial-Time Approximation Scheme

Definition 11.4

For any instance I = {s1, . . . , sn}, let SIZE(I ) =
∑n

i=1 si denote the total size of the n items.

Recall that OPT(I ) denotes the value of the optimal solution, i.e., the minimum number of unit size
bins needed to pack the items. We now give two inequalities relating these quantities.

Lemma 11.1

SIZE(I) ≤ OPT(I) ≤ |I | = n.

Proof
In the optimal solution, at best each bin is filled to its maximum capacity, i.e., 1. Thus, the total number
of bins needed is at least SIZE(I)/1, proving SIZE(I) ≤ OPT(I). Since each item is of size between
0 and 1, putting each item in a separate bin is clearly a feasible (if not optimal) solution, proving
OPT(I) ≤ |I | = n.

Lemma 11.2

OPT(I) ≤ 2 · SIZE(I) + 1.

Proof
Prove by contradiction. Suppose this is not the case, i.e., there exists an instance I , where OPT(I) >

2 · SIZE(I ) + 1. Then in the optimal solution, there must exist at least two bins that are at least half empty.
Otherwise, we have at least OPT(I ) − 1 number of bins that are at least half full, i.e., (OPT(I ) − 1)/2 ≤
SIZE(I ), which contradicts our initial assumption. Now the fact that we have two bins at least half empty
contradicts the assumption that we have an optimal solution. We could have easily combined the two bins
into one, and reduce the number of bins used by 1. Thus, our initial assumption must be false, proving
the lemma.

We will represent an instance I as an ordered list of items I = s1s2 . . . sn such that 1 ≥ s1 ≥
s2 ≥ · · · ≥ sn > 0.
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Definition 11.5

Let I1 = x1x2 . . . xn and I2 = y1 y2 . . . yn be two instances of equal cardinality. The instance I1 is said to
dominate the instance I2, or I1 ≥ I2, if it is the case that xi ≥ yi , for all i .

The following lemma follows from the fact that any feasible packing of I1 gives a feasible packing of I2,
using the same number of bins.

Lemma 11.3

Let I1 and I2 be two instances of equal cardinality such that I1 ≥ I2. Then, SIZE(I1) ≥ SIZE(I2) and
OPT(I1) ≥ OPT(I2).

We define a restricted version of BIN PACKING as follows. Suppose that the item sizes in I take on only
m distinct values. Now the instance I can be represented as a multiset of items which are drawn from
these m types of items.

Definition 11.6

Suppose that we are given m distinct item sizes V = {v1, . . . , vm}, such that 1 ≥ v1 > v2 > · · · > vm > 0,
and an instance I of items whose sizes are drawn only from V. Then, we can represent I as multiset MI =
{n1 : v1, n2 : v2, . . . , nm : vm}, where ni is a nonnegative integer denoting the number of items in I of size vi .

It follows that |MI | = ∑m
i=1 ni = n, SIZE(MI ) = ∑m

i=1 ni vi = SIZE(I ) and OPT(MI ) = OPT(I ).
We now define RBP, the restricted version of BIN PACKING.

Definition 11.7

For all 0 < δ < 1 and positive integers m, the problem RBP[δ, m] is defined as BIN PACKING restricted to
instances where the item sizes take on at most m distinct values and the size of each item is at least δ.

Next we show how to approximately solve RBP via a linear programming formulation.

11.3.1 Restricted Bin Packing

Assume that δ and m are fixed independently of the input size n. The input instance for RBP[δ, m] is
a multiset M = {n1 : v1, n2 : v2, . . . , nm : vm}, such that 1 ≥ v1 > v2 > · · · > vm ≥ δ. Let
n = |M| = ∑n

i=1 ni . In the following discussion, we will assume that the underlying set V for M is fixed.
Note that, given M, it is trivial to determine V and verify that M is a valid instance of RBP[δ, m].

Consider a packing of some subset of the items in M into a unit size bin. We can denote this packing by
a multiset {b1 : v1, b2 : v2, . . . , bm : vm}, such that bi is the number of items of size vi that are packed
into the bin. More concisely, having fixed V , we can denote the packing by the m-vector B = (b1, . . . , bm)
of nonnegative integers. We will say that two bins packed with items from M are of the same type if the
corresponding packing vectors are identical:

Definition 11.8

A bin type T is an m-vector (T1, . . . , Tm) of nonnegative integers such that
∑m

i=1 Ti vi ≤ 1.

Having fixed the set V , the collection of possible bin types is fully determined and is finite, because each
Ti in T must take on an integer value from 0 to �1/vi 	. Let T 1, . . . , Tq denote the set of all legal bin types
with respect to V . Here q , the number of distinct types, is a function of δ and m. We bound the value of q
in the following lemma:

Lemma 11.4

Let k = � 1
δ
	. Then

q(δ, m) ≤
(

m + k

k

)
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Proof
Each type vector T t = (T t

1 , . . . , T t
m) has the property that, for all i , T t

i ≥ 0 and
∑m

i=1 T t
i vi ≤ 1. It

follows that
∑m

i=1 T t
i ≤ k, since we have a lower bound of δ on the values vi in V . Thus, each type vector

corresponds to a way of choosing m nonnegative integers whose sum is at most k. This is the same as
choosing m + 1 nonnegative integers whose sum is exactly k. The number of such choices is an upper
bound on the value of q . A standard counting argument now gives the desired bound.

Consider an arbitrary feasible solution x to an instance M of RBP[δ, m]. Each packed bin in this
solution can be classified as belonging to one of the q(δ, m) possible types of packed bins. The solution x
can therefore be specified completely by a vector giving the number of bins of each of the q types.

Definition 11.9

A feasible solution x to an instance M of RBP[δ, m] is a q-vector of nonnegative integers, say x =
(x1, . . . , xq ), where xt denotes the number of bins of type Tt used in x.

Note that not all q-vectors correspond to a feasible solution. A feasible solution must guarantee, for
each i , that exactly ni items of size vi are packed in the various copies of the bin types. The feasibility
condition can be phrased as a series of linear equations as follows:

∀i ∈ {1, . . . , m},
q∑

t=1

xt T t
i = ni

Let the matrix A be a q × m matrix whose tth row is the type vector T t , and 
n = (n1, . . . , nm) denote
the multiplicities of the various item sizes in the input instance M. Then the above set of equations can
be concisely expressed as 
x.A = 
n. The number of bins used in the solution x is simply 
x · 
1 = ∑q

t=1 xt ,
where 
1 denotes all-ones vector. In fact, we have proved the following lemma.

Lemma 11.5

The optimal solution to an instance M of RBP[δ, m] is exactly the solution to the following integer linear
program ILP(M)

minimize 
x · 
1
subject to


x ≥ 0


x · A ≥ 
n

We have replaced the equations by inequalities, but, since a packing of a superset of M can always be
converted into a packing of M using the same number of bins, the validity of the lemma is unaffected.
It is also worth noting that the matrix A is determined completely by the underlying set V ; the vector 
n,
however, is not determined a priori but depends on the instance M.

How easy is it to obtain this integer program? Note that the number of constraints in ILP(M) is
exponentially large in terms of δ and m. However, we are going to assume that both δ and m are constants
which are fixed independently of the length of the input, which is n. Thus, ILP(M) can be obtained in time
linear in n, given any instance M of cardinality n.

How about solving ILP? Recall that the integer programming problem is NP-complete in general [3].
However, there is an algorithm due to Lenstra [5–7] that solves any integer linear program in time linear
in the number of constraints, provided the number of variables is fixed. This is exactly the situation in ILP:
the number of variables q is fixed independent of n, as is the number of constraints, which is q + m. Thus,
we can solve ILP exactly in time independent of n. (A more efficient algorithm for approximately solving
ILP will be described in a later section.) The following theorem results. Here f (δ, m) is some constant
which depends only on δ and m.
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Theorem 11.1

Any instance of RBP[δ, m] can be solved in time O (n + f (δ, m)).

11.3.2 Eliminating Small Items

We now present the second ingredient of the APTAS devised by Fernandez de la Vega and Lueker: the
separate handling of small items. It is shown that if we have a packing of all items except those whose sizes
are bounded from above by δ, then it is possible to add the small items back in without much increase in
the number of bins. This fact is summarized in the following lemma; the rest of this subsection is devoted
to the proof of this lemma.

Lemma 11.6

Fix some constant δ ∈ (0, 1
2 ]. Let I be an instance of BIN PACKING and suppose that all items of size greater

than δ have been packed into β bins. Then it is possible to find in linear time a packing for I which uses at
most max{β, (1 + 2δ) · OPT(I ) + 1} bins.

Proof
The basic idea is to start with the packing of the “large” items and to use the greedy algorithm First Fit to
pack the “small” items into the empty space in the β bins.

First Fit (FF) is a classic bin packing algorithm of historical importance, as we shall see later. The
algorithm is as follows. We are given the set of items in an arbitrary order, and we start with zero bins. For
each item in the list, we consider the existing bins (if any) in order and place the item in the first bin that
can accommodate it. If no existing bin can accommodate it, we make a new bin after all the existing ones,
and put the item in the new bin.

To use First Fit to add the small items into an existing packing of the large ones, we can start by
numbering the β bins in an arbitrary fashion, and also ordering the small items arbitrarily. Then we run
First Fit as usual using this ordering to decide where each small item will be placed. If at some point the small
items do not fit into any of the currently available bins, a new bin is initiated.

In the best case, the small items can all be greedily packed into the β bins which were open initially.
Clearly, the lemma is valid in that case. Suppose now that some new bins were required for the small items.
We claim that at the end of the entire process, each of the bins used for packing I has at most δ empty
space in it, with the possible exception of at most one bin. To see why this claim holds, note that at the
moment when the first new bin was started, each of the original bins must have had at most δ free space.
Next, observe that whenever another new bin was opened, no earlier bin could have had more than δ free
space. Therefore, at every moment, at most one bin had more than δ free space.

Let β ′ > β be the total number of bins used by FF. We are guaranteed that all the bins, except one, are
at least 1 − δ full. This implies that SIZE(I ) ≥ (1 − δ)(β ′ − 1). But we know that SIZE(I ) ≤ OPT(I ),
implying that

β ′ ≤ 1

1 − δ
OPT(I ) + 1 ≤ (1 + 2δ) · OPT(I ) + 1

and we have the desired result.

11.3.3 Linear Grouping

The final ingredient needed for the APTAS is called interval partitioning or linear grouping. This is a
technique for converting an instance I of BIN PACKING into an instance M of RBP[δ, m], for an appropriate
choice of δ and m, without changing the value of the optimal solution too much. Let us assume for now
that all the items in I are of size at least δ, for some choice of δ ∈ (0, 1

2 ]. All that remains is to show how
to obtain an instance where the item sizes take on only m different values. First, let us fix some parameter
k, a nonnegative integer to be specified later. We now show how to convert an instance of RBP[δ, n] into
an instance of RBP[δ, m], for m = �n/k	.
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Definition 11.10

Given an instance I of RBP[δ, n] and a parameter k, let m = �n/k	. Define the groups of items Gi =
s(i−1)k+1 . . . sik , for i = 1, . . . , m, and let G m+1 = smk+1 . . . sn.

Here, the group G 1 contains the k largest items in I , G 2 the next k largest items, and so on. The
following fact is an easy consequence of these definitions.

Fact 11.1

G 1 ≥ G 2 ≥ · · · ≥ G m.

From each group Gi we can obtain a new group of items Hi by increasing the size of each item in Gi

to that of the largest item in that group. The following fact is also obvious.

Definition 11.11

Let vi = s(i−1)k+1 be the largest item in group Gi . Then the group Hi is a group of |Gi | items, each of
size vi . In other words, Hi = vi vi . . . vi and |Hi | = |Gi |.

Fact 11.2

H1 ≥ G 1 ≥ H2 ≥ G 2 ≥ · · · ≥ Hm ≥ G m and Hm+1 ≥ G m+1.

The entire point of these definitions is to obtain two instances of RBP[δ, m] such that their optimal
solutions bracket the optimal solution for I . These instances are defined as follows.

Definition 11.12

Let the instance ILO = H2 H3 . . . Hm+1 and IHI = H1 H2 H3 . . . Hm+1.

Note that ILO is an instance of RBP[δ, m]. Moreover, it is easy to see that I ≤ IHI . We now present some
properties of these three instances.

Lemma 11.7

OPT(ILO) ≤ OPT(I ) ≤ OPT(IHI) ≤ OPT(ILO) + k

SIZE(ILO) ≤ SIZE(I ) ≤ SIZE(IHI) ≤ SIZE(ILO) + k

Proof
First, observe that

ILO = H2H3 . . . Hm Hm+1 ≤ G 1G 2 . . . G m−1 X

where X is any set of |Hm+1| items from G m. The right-hand side of this inequality is a subset of I ,
and so, from Lemma 11.3, OPT(ILO) ≤ OPT(I ) and SIZE(ILO) ≤ SIZE(I ). Similarly, since I ≤ IHI ,
OPT(I ) ≤ OPT(IHI) and SIZE(I ) ≤ SIZE(IHI).

Now observe that IHI = H1 ILO. Given any packing of ILO, we can obtain a packing of IHI which
uses at most k extra bins. (Just pack each item in H1 in a separate bin.) This implies that OPT(IHI) ≤
OPT(ILO) + k and SIZE(IHI) = SIZE(ILO) + SIZE(H1) ≤ SIZE(ILO) + k.

It is worth noting that the result presented in this lemma is constructive. It is possible in O(n log n)
time to construct the instances ILO and IHI , and given an optimal packing of ILO it is possible to construct
a packing of I that meets the guarantee of the above lemma. To construct ILO and IHI , it is necessary only
to sort the items and perform the linear grouping. (Actually, one ingredient is still unspecified, namely
the value of k; this will be given in the next section.) Given a packing of ILO, we can assign all elements in
I \G 1 to bins according to the assignments of the corresponding members of ILO; finally, each member of
G 1 can get its own bin.
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11.3.4 APTAS for Bin Packing

We now put together all these ingredients and obtain the APTAS. The algorithm Aε , for any ε ∈ (0, 1],
takes as input an instance I of BIN PACKING consisting of n items.

Algorithm Aε :
Input: Instance I consisting of n item sizes {s1, . . . , sn}.
Output: A packing into unit-sized bins.

1. δ ← ε
2

2. Set aside all items of size smaller than δ, obtaining an instance J of RBP[δ, n′] with n′ = |J |.
3. k ←  ε2

2 n′�
4. Perform linear grouping on J with parameter k. Let JLO be the resulting instance of RBP[δ, m] and

JHI = H1 ∪ JLO, with |H1| = k and m = � n′
k 	.

5. Pack JLO optimally using Lenstra’s algorithm on ILP(JLO).
6. Pack the k items in H1 into at most k bins.
7. Obtain a packing of J using the same number of bins as in steps 5 and 6, by replacing each item in

JHI by the corresponding (smaller) item in J .
8. Using FF, pack all the small items set aside in step 2, using new bins only if necessary.

How many bins does Aε use in the worst case? Observe that we have packed the items in JHI , hence the
items in J , into at most OPT(JLO) + k bins. Consider now the value of k in terms of the optimal solution.
Since all items have size at least ε/2 in J , it must be the case that SIZE(J ) ≥ εn′/2. This implies that

k ≤ ε2n′

2
+ 1 ≤ ε · SIZE(J ) + 1 ≤ ε · OPT(J ) + 1

Using Lemma 11.7, we obtain that J is packed into a number of bins not exceeding

OPT(JLO) + k ≤ OPT(J ) + ε · OPT(J ) + 1 ≤ (1 + ε) · OPT(J ) + 1

Finally, Lemma 11.6 implies that, while packing the small items at the last step, we use a number of bins
not exceeding

max{(1 + ε) · OPT(J ) + 1, (1 + ε) · OPT(I ) + 1} ≤ (1 + ε) · OPT(I ) + 1

since OPT(J ) ≤ OPT(I ). We have obtained the following theorem.

Theorem 11.2

The algorithm Aε finds a packing of I into at most (1 + ε) · OPT(I ) + 1 bins in time c(ε)n log n, where c(ε)
is a constant depending only on ε.

For the running time, note that the only really expensive step in the algorithm is the one where we solve
ILP using Lenstra’s algorithm. As we observed earlier, this requires time linear in n, although it may be
severely exponential in δ and m, which are functions of ε.

11.4 Asymptotic Fully Polynomial-Time
Approximation Scheme

Our next goal is to convert the preceding APTAS into an AFPTAS. The reason that the above scheme
is not fully polynomial is the use of the algorithm for integer linear programming, which requires time
exponential in 1/ε. We now describe a technique for getting rid of this step via the construction of a
“fractional” solution to the restricted bin packing problem, and a “rounding” of this to a feasible solution
which is not very far from optimal. This is based on the ideas due to Karmakar and Karp.
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11.4.1 Fractional Bin Packing and Rounding

Consider again the problem RBP[δ, m]. By the preceding discussion, any instance I of this problem can
be formulated as the integer linear program ILP(I ).

minimize 
x · 
1
subject to


x ≥ 0

x · A = 
n

Note that we are stating the last constraint as we originally did: as an equality. Recall that A is a q ×m matrix,

x a q-vector, and 
n an m-vector. The bin types matrix A as well as 
n are determined by the instance I .

Consider now the linear programming relaxation of ILP(I ). This system LP(I ) is exactly the same as
ILP(I ), except that we now relax the requirement that 
x be an integer vector. Recall that SIZE(I ) is the
total size of the items in I , and that OPT(I ) is the value of the optimal solution to ILP(I ) as well as the
smallest number of bins into which the items of I can be packed.

Definition 11.13

LIN(I ) is the value of the optimal solution to LP(I ), the linear programming relaxation of ILP(I ).

What does a noninteger solution to LP(I ) mean? The value of xi is a real number that denotes the
number of bins of type Ti which are used in the optimal packing. One may interpret this as saying that
items can be “broken up” into fractional parts, and these fractional parts can then be packed into fractional
bins. This in general would give us a solution of value SIZE(I ), but keep in mind that the constraints in
LP(I ) do not allow any arbitrary “fractionalization.” The constraints require that in any fractional bin,
the items packed therein must be the same fraction of the original items. Thus, this solution does capture
some of the features of the original problem. We will refer to the solution of LP(I ) as a fractional bin
packing.

To analyze the relationship between the fractional and integral solutions to any instance we will
have to use some basic facts from the theory of linear programming. The uninitiated reader is re-
ferred to any standard textbook for a more complete treatment; e.g., see the book by Papadimitriou and
Steiglitz [8].

Consider the system of linear equations implicit in the constraint2 
x.A = 
n. Here we have m linear
equations in q variables, where q is much larger than m. This is an underconstrained system of equations.
Let us assume that rank(A) = m; it is easy to modify the following analysis when rank(A) < m. Assume,
without loss of generality, that the first m rows of A form a basis, i.e., they are linearly independent. The
following are standard observations from linear programming theory.

Definition 11.14

A basic feasible solution to LP is a solution 
x∗ such that only the entries corresponding to the basis of A are
nonzero. In other words, x∗

i = 0 for all i > m.

Fact 11.3

Every LP has an optimal solution which is a basic feasible solution.

We can now derive the following lemma which relates LIN(I ) to both SIZE(I ) and OPT(I ).

Lemma 11.8

For all instances I of RBP[δ, m],

SIZE(I ) ≤ LIN(I ) ≤ OPT(I ) ≤ LIN(I ) + m + 1

2

2We will ignore the nonnegativity constraints for now as they do not bear upon the following discussion.
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Proof
To prove the first inequality, we note that SIZE(I ) = ∑m

j=1 n j v j = ∑m
j=1 (
x · A j )v j , where we use A j

to mean the j th column of A. This sum is equal to
∑q

i=1 xi (
∑m

j=1 ai j v j ). Note that for all 1 ≤ i ≤ q ,∑m
j=1 ai j v j ≤ 1 is the total size accounted for by the i th bin type and is therefore at most 1. It follows

that SIZE(I ) ≤ ∑q
i=1 xi = LIN(I ). The second inequality follows from the observation that an optimal

solution to ILP(I ) is also a feasible solution to LP(I ).
To see the last inequality, fix I and let 
y be some basic optimal solution to LP(I ). Since 
y has at most

m nonzero entries, it uses only m different types of bins. Rounding up the value of each component of 
y
will increase the number of bins by at most m, and will yield a solution to ILP. The bound promised in the
lemma is slightly stronger and may be observed as follows. Define the vectors 
w and 
z in the following way:

∀i, wi = �yi 	
∀i, zi = yi − wi

The vector 
w is the integer part of the solution and 
z the fractional part. Let J denote the instance of
RBP[δ, m] that consists of the items not packed in the (integral) solution specified by 
w . (Note that J is,
indeed, a legal instance of RBP[δ, m], i.e., all items occur in integral quantities, because in 
w , all bin types,
and therefore all items, occur in integral quantities.) The vector 
z gives a fractional packing of the items
in J , such that each of the m bin types is used a number of times which is a fraction less than 1.

Just as SIZE(I ) ≤ LIN(I ), a similar argument implies that

SIZE(J ) ≤ LIN(J )

By Lemma 11.2 we know that

OPT(J ) ≤ 2 · SIZE(J ) + 1

It is also obvious that OPT(J ) ≤ ∑m
i=1 zi ≤ m, since rounding each nonzero zi up to 1 gives a feasible

packing of J . Thus,

OPT(J ) ≤ min{m, 2 · SIZE(J ) + 1}
≤ (m + 2 · SIZE(J ) + 1)/2

= SIZE(J ) + m + 1

2

We will now bound OPT(I ) in terms of LIN(I ) and m.

OPT(I ) ≤ OPT(I − J ) + OPT(J )

≤
m∑

i=1

wi +
(

SIZE(J ) + m + 1

2

)

≤
m∑

i=1

wi + LIN(J ) + m + 1

2

≤
m∑

i=1

wi +
m∑

i=1

zi + m + 1

2

= LIN(I ) + m + 1

2

The first inequality follows from the fact that independent integer packings of I − J and J can be com-
bined to form an integer packing of I . The second and third follow from facts proved above, and the fact
that 
w is a feasible solution to the RBP[δ, m] instance I . The fourth holds because 
z is a feasible
fractional packing of J . Finally, the equality holds by the optimality of 
y as a solution to LIN(I ).

It is not very hard to see that all of the above is constructive. More precisely, given the solution to LP(I ),
we can construct in linear time a solution to I such that the bound from the above theorem is met: We
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take an optimal basic solution 
y and break it into 
w and 
z as described, and define J as above. We find
an integral solution for J either by rounding up each nonzero entry to 1 or by using First Fit, whichever
produces a better solution. We then put together the solution given by 
w and that found for J .

The only problem is that it is not obvious that we can solve the linear program in fully polynomial
time, even though there exist polynomial-time algorithms for linear programming [9], unlike the general
problem of integer programming. The reason is that the number of variables is still exponential in 1/ε.
All we have achieved is that we no longer need to solve an integer program.

Karmakar and Karp show how to get around this problem by resorting to the ellipsoid method of
Grötschel et al. [6,7,10]. In this method, it is possible to solve a linear program with an exponential
number of constraints in time which is polynomial in the number of variables and the number sizes, given
a separation oracle. A separation oracle takes any proposed solution vector 
x and either guarantees that it
is a feasible solution, or provides any one constraint which is violated by it. Karmakar and Karp gave an
efficient construction of a separation oracle for LP(I ). This would result in a polynomial-time algorithm
for LP(I ) if it had a small number of variables, even if it has an exponential number of constraints.
Since our situation is exactly the reverse, i.e., we have a small number of constraints and an exponential
number of variables, we will consider the dual linear program for LP(I ), which has the desired features of
a small number of variables. By Linear Program Duality, its optimal solution corresponds exactly to the
optimal solution of LP(I ).

One important detail is that it is impossible to solve LP(I ) exactly in fully polynomial time. However, it
can be solved within an additive error of 1 in fully polynomial time. Moreover, the implementation of the
separation oracle is in itself an approximation algorithm. The idea behind this method is due to Gilmore
and Gomory [11] who observed that, in the case of an infeasible proposed solution, a violated constraint
can be computed via the solution of a knapsack problem. Since this problem is NP-complete, one must
resort to the use of an approximation scheme for KNAPSACK [3], and so the solution of the dual is not
exact but a close approximation. Karmakar and Karp used this approximate solution to the dual to obtain
an approximate lower bound on the optimal value of the original problem. Having devised the procedure
for efficiently computing an approximate lower bound, they then construct an approximate solution.

This algorithm is rather formidable and the details are omitted as it is outside the scope of this discussion.
The following theorem results.

Theorem 11.3

There is a fully polynomial-time algorithm A for solving an instance I of RBP[δ, m] such that A(I ) ≤
LIN(I ) + m+1

2 + 1.

11.4.2 AFPTAS for Bin Packing

We are now ready to present the AFPTAS for BIN PACKING. We will need the following variant of
Lemma 11.7.

Lemma 11.9

Using the linear grouping scheme on an instance I of RBP[δ, n], we obtain an instance ILO of RBP[δ, m] and
a group H1 such that, for IHI = H1 ILO,

LIN(ILO) ≤ LIN(I ) ≤ LIN(IHI) ≤ LIN(ILO) + k

Proof
The proof is almost identical to that of Lemma 11.7. Recall that m = �n/k	. Take the original instance
I , and define G 1, . . . , G m+1, H1, . . . , Hm, ILO, and IHI as before. From Lemma 11.3 the first two
inequalities follow. The third follows from the fact that, given a solution to ILO, we can solve IHI by putting
all members of IHI ∪ ILO in the bins assigned by the given solution, and then putting each member of H1

in a bin by itself.
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The basic idea behind the AFPTAS of Karmakar and Karp is very similar to that used in the APTAS. We
first eliminate all the small items, and then apply linear grouping to the remaining items. The resulting
instance of RBP[δ, m] is then formulated as an ILP, and the solution to the corresponding relaxation LP
is computed using the ellipsoid method. The fractional solution is then rounded to an integer solution.
The small items are then added into the resulting packing exactly as before.

Algorithm Aε:
Input: Instance I consisting of n item sizes {s1, . . . , sn}.
Output: A packing into unit-sized bins.

1. δ ← ε
2 .

2. Set aside all items of size smaller than δ, obtaining an instance J of RBP[δ, n′] with n′ = |J |.
3. k ←  ε2n′

2 �
4. Perform linear grouping on J with parameter k. Let JLO be the resulting instance of RBP[δ, m] and

JHI = H1 ∪ JLO, with |H1| = k and m = � n′
k 	.

5. Pack the k items in H1 into at most k bins.
6. Pack JLO using the ellipsoid method and rounding the resulting fractional solution.
7. Obtain a packing of J using the same number of bins as used for JHI , by replacing each item in JHI

by the corresponding (smaller) item in J .
8. Using FF, pack all the small items set aside in step 2, using new bins only if necessary.

Theorem 11.4

The approximation scheme {Aε : ε > 0} is an AFPTAS for BIN PACKING such that

Aε(I ) ≤ (1 + ε) · OPT(I ) + 1

ε2
+ 3

Proof
The running time is dominated by the time required to solve the linear program, and we are guaranteed
that this is fully polynomial.

By Lemma 11.8, the number of bins used to pack the items in JLO is at most

(LIN(JLO) + 1) + m + 1

2
≤ OPT(I ) + 1

ε2
+ 2

given the preceding lemmas and the choice of m. The number of bins used to pack the items in H1 is at
most k, which in turn can be bounded as follows using the observation that OPT(J ) ≥ SIZE(J ) ≥ εn′/2:

k ≤
⌈

n′ε2

2

⌉

≤ ε · OPT(J ) + 1 ≤ ε · OPT(I ) + 1

Thus, the total number of bins used to pack the items in J cannot exceed

(1 + ε) · OPT(I ) + 1

ε2
+ 3

Lemma 11.6 guarantees that the small items can be added without an increase in the number of bins, and
so the desired result follows.

11.5 Related Results

We conclude the chapter by presenting a literature survey on topics related to BIN PACKING and asymptotic
approximation schemes.

BIN PACKING is a classic problem in theoretical computer science; the algorithms proposed for this
problem, and the analysis of these algorithms, employ a wide variety of techniques. In the foregoing
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discussion, we used the fact that the First Fit algorithm has an asymptotic worst-case performance ratio
of 2, but this is not the best bound. Ullman [12] proved an asymptotic worst-case performance bound
of 17/10 for this algorithm, and subsequent papers [13–15] reduced the additive constant term from
3 to 1 or less eventually. First Fit is not the only algorithm considered for BIN PACKING. Many other
online algorithms, semionline algorithms, and offline algorithms have been proposed and their worst-
and average-case behavior studied extensively. We refer the reader to survey articles by Coffman et al.
[16–18], and Chapters 32–35 of this handbook for further details.

There are several commonly considered variants of the basic bin packing problem, all of which are
NP-complete. In most of these cases, it is reasonably easy to come up with bounded-ratio approxima-
tions. These variants can be classified under four main headings: packings in which the number of items
per bin is bounded, packings in which certain items cannot be packed into the same bin, packings in
which there are constraints (e.g., partial orders) on the way in which the items are packed, and dynamic
packings in which items may be added and deleted. These variants are discussed in Chapters 33–35 of this
handbook.

There are also some generalizations of the basic packing problem, many of which are covered in the
three survey papers and chapters mentioned above. While some generalizations do not admit APTAS or
AFPTAS, several approximation schemes have been found successful, generally based on the ideas described
above. Here we focus on three generalizations that admit APTAS and AFPTAS: packings into variable-sized
bins, multidimensional bin packing, and BIN COVERING, the dual of BIN PACKING.

Murgolo shows an approximation scheme for the case of variable-sized bins [19]. For multidimensional
bin packing, APTAS have recently been found for packing d-dimensional3 cubes into the minimum number
of unit cubes by Bansal and Sviridenko [20], and Correa and Kenyon [21], independently. Interestingly, the
problem of packing (two-dimensional) rectangles into squares does not admit APTAS or AFPTAS [20].
However, for a more restricted version, namely, a two-stage packing of the rectangles, Caprara et al.
show an AFPTAS [22]. The dual problem of BIN PACKING is BIN COVERING, in which we want to maximize
the total number of bins used, but must fill each bin to at least a certain capacity. Jansen and Solis-Oba
show an AFPTAS for BIN COVERING [23].

BIN PACKING is not the only problem that admits APTAS and AFPTAS. Raghavan and Thompson give an
APTAS for the 0–1 multicommodity flow problem [24]. Their approaches include probabilistic rounding
of fractional linear-programming solutions. Cohen and Nakibli [25] show an APTAS for a somewhat
related problem, the n-hub shortest path routing problem. The goal is to minimize the overloading of
links in a directed network with pairwise source–sink flows, by setting an n-hub route for each source–sink
pair. This APTAS also uses probabilistic rounding. Aingworth et al. [26] show an AFPTAS for pricing Asian
options on the lattice, using discretization to reduce the number of possible option values.

There are other problems that admit absolute approximation algorithms, i.e., algorithms guaranteed
to produce solutions whose costs are at most an additive constant away from the optimal. In contrast to
APTAS and AFPTAS, whose approximation ratios approach a value arbitrarily close to 1 as the optimal
cost grows, these algorithms have an asymptotic performance ratio equal to 1; that is, as the optimal cost
grows, the approximation ratio of an absolute approximation algorithm approaches 1 itself. Examples
of problems admitting absolute approximations include minimum-edge coloring [27] and minimum-
degree spanning tree [28], where the approximate solution is guaranteed to exceed the optimal solution
by at most 1. The techniques used in these algorithms, however, differ from the ones discussed in this
chapter. A variation of Karmakar and Karp’s ideas leads to a stronger result for BIN PACKING, which is
the construction of an approximation algorithm A that is fully polynomial and has the performance
guarantee A(I ) ≤ OPT(I ) + O(log2OPT(I )). One is tempted to believe that there also exists an absolute
approximation algorithm for BIN PACKING, i.e., an algorithm that runs in polynomial time and guarantees
that A(I ) ≤ OPT(I ) + O(1). The existence of such an algorithm is still an open question.

3Here d is assumed to be a fixed constant.
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12.1 Introduction

Randomization (i.e., the use of random choice as an algorithmic step) is one of the most interesting tools
in designing efficient algorithms. A remarkable property of randomized algorithms is their structural
simplicity. In fact, in several cases, while the known deterministic algorithms are quite involved, the
randomized ones are simpler and much easier to code.

This happens also in the case of approximation algorithms to NP-hard problems. In fact, it is exactly the
area of efficient approximations where the value of randomization has been demonstrated via at least two
very general techniques. The first of them is the notorious randomized rounding method, which provides
an unexpected association between the optimal solutions of 0/1 integer linear programs (ILPs) and their
linear programming (LP) relaxations. Randomized rounding is a way to return from the fractional optimal
values of the LP relaxation (which can be efficiently computed) to a good integral solution, whose expected
cost is the cost of the fractional solution! We demonstrate this method here via an example application
to the optimization version of the NP-complete set cover problem, and we comment also on its use (as a
random projection technique) in approximations via semidefinite programs.

The second technique is used in approximately counting the number of solutions to #P-complete
problems. Most of this technique is built around the Markov chain Monte Carlo (MCMC) method. It
essentially states that the time required for a Markov chain to mix (to approach its steady state) is an
approximate estimator of the size of the state space of the chain (i.e., the number of the combinatorial
objects that we wish to count). If the Markov chain is rapidly mixing (i.e., it converges in polynomial time),
then we can also count the size of the state space approximately in polynomial time. We demonstrate this
second approach here via an application to approximate counting of a special kind of colorings of the
vertices of a graph.

The main drawback of the use of randomization in approximations is that it may only derive good
results in expectation (or sometimes with high probability). This means that in certain inputs a randomized
approximation technique may take a lot of time (if we want it not to fail) or may even fail. In certain cases,
it is possible to convert a randomized approach to a deterministic one via a derandomization technique

12-1
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(for example, either by making the random choices dependent on each other and thus reduce the amount
of randomness to the limit of allowing a deterministic brute-force search of the probability space, or by
the use of conditional probabilities). We do not discuss derandomization here, since its application has
been quite limited and since our purpose is to let the reader appreciate the simplicity and generality of the
randomized methods.

12.2 Optimization and Randomized Rounding

12.2.1 Introduction

NP-hard optimization problems are not known to allow finding optimal solutions efficiently. Their com-
binatorial structure is elaborate and sometimes quite cryptic in the general sense.

Many NP-hard optimization problems can be coded as ILPs. In fact, in quite a lot of them, the values of
the integer variables involved are only 0 and 1. We are then speaking of 0/1 Integer Linear Programming
Problems (or 0/1 ILP). An example here is hard problems involving Boolean solutions.

Relaxing the integer constraints of the form “xi ∈ {0, 1}” to the linear inequalities “0 ≤ xi ≤ 1,”
converts a 0/1 ILP into an LP problem. Nowadays it is known that LP optimization problems can be
solved in polynomial time (via the ellipsoid or interior point methods). This strong similarity between
0/1 ILP and LP allows us to design efficient approximation algorithms for the hard problem at hand.

A feasible solution to the LP-relaxation can be thought of as a fractional solution to the original problem.
The set of feasible solutions of a system of linear inequalities is known to build a polytope (a convex,
multidimensional object, a polyhedron, like a diamond). To search for an optimum with respect to a linear
function in a polytope is not so hard, since it has been proved that the optimum is located in some vertex
of the polytope. However, in the case of an NP-hard problem, we cannot expect the polyhedron defining
the set of feasible solutions to have integer vertices. Thus, our task is to somehow transform the optimal
solution of the LP relaxation into a near-optimal integer solution.

A basic technique for obtaining approximation algorithms using LP is what we call LP rounding: i.e.,
solve the (relaxed) linear program and then convert the fractional solutions obtained (e.g., xi = 2/3) to
an integral solution (e.g., here xi = 1 seems more reasonable than xi = 0) trying of course to make sure
that the cost of the solution does not increase much in the process.

A natural idea for rounding an optimal fractional solution is to view the fractions as probabilities. Then
we can “flip coins” with these probabilities as biases, and round accordingly. So, the case “xi = 2/3,”
obtained via LP, now leads to an experiment where “xi = 1 with probability 2/3 and 0 else.” This idea
is called randomized rounding. In the sequel, we present the method via an application to the set cover
problem. This application is also demonstrated in the book of Vazirani [1]. We try to be more thorough
here and provide details.

12.2.2 The Set Cover Problem

The set cover problem is one of the oldest known NP-complete problems (it generalizes the vertex cover
problem).

Problem SET COVER
Given is a universal set U of n elements and also a collection of subsets of U , S = {S1, S2, . . . , Sk}. Given
is also a cost function c : S → Q+.

We seek to find a minimum cost subcollection of S that covers all the elements of U .
Note here that the cost of a subcollection of S, e.g., F = {Si1 , . . . , Siλ} is

∑λ
j=1 c(Si j ). Note also that

any feasible answer to the problem requires covering all of U , i.e., if F is a feasible answer, then we demand
that

⋃λ
j=1 Si j = U . Define the frequency of an element of U to be the number of sets it is in.

Let us denote the frequency of the most frequent element by f . The various known approximation
algorithms for set cover achieve one of the two approximation factors O(log n) or f . The special case with
f = 2 is, basically, the vertex cover problem in graphs (see Ref. [2]).
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12.2.3 The Set Cover as an Integer Program

To formulate the set cover problem as a problem in 0/1 ILP, let us assign a variable x(Si ) for each set
Si ∈ S. This variable will have the value 1 iff the set Si is selected to be in the set cover (and will have the
value 0 else).

Clearly, for each element α ∈ U we want it to be covered, i.e., we want it to be in at least one of the
picked sets. In other words, we want, for each α ∈ U that, at least one of the sets containing it is picked by
our candidate algorithm. These considerations give the following ILP program.

Set Cover ILP

Minimize
∑

Si ∈S c(Si )x(Si )

subject to:

∀α ∈ U
∑

Si :α∈Si
x(Si ) ≥ 1

and x(Si ) ∈ {0, 1} for all Si ∈ S.

The LP relaxation of this integer program can be obtained by replacing each “x(Si ) ∈ {0, 1}” with
“0 ≤ x(Si ) ≤ 1.” The reader can easily see that the upper bound on x(Si ) is redundant here. So we get
the following linear program:

Set Cover Relaxation

Minimize
∑

Si ∈S c(Si )x(Si )

subject to:

(1) ∀α ∈ U
∑

Si :α∈Si
x(Si ) ≥ 1

(2) ∀Si ∈ S x(Si ) ≥ 0

Note 1: A solution to the above LP is a “fractional” set cover.
Note 2: A fractional set cover may be cheaper than the optimal (integral) set cover! To see this, let

U = {α1, α2, α3} and S = {S1, S2, S3} with S1 = {α1, α3}, S2 = {α2, α3} and S3 = {α3, α1}, and let
c(Si ) = 1, i = 1, 2, 3. Any integral cover must pick two sets, for a cost of 2. However, if we pick each set
with x(Si ) = 1/2, we satisfy all the constraints and the cost of the fractional cover obtained is 3/2.

Note 3: The LP dual (see, e.g., Ref. [3]) of the set cover relaxation is a “packing” LP: The dual tries
to pack the “material” into elements, trying to maximize the total amount packed, but no set must be
“overpacked” (i.e., the total amount of the material packed into the elements of the set should not exceed
its cost). The duality of covering–packing is a basic remark and has given lots of approximation results.

12.2.4 A Randomized Rounding Approximation to Set Cover

Let x(Si ) = pi , i = 1, . . . , k be an optimal solution to the set cover relaxation program. Such a solution
can be found in polynomial time.

Now, for each Si ∈ S, select Si with probability pi , independently of the other selections.
Note: We can do it via choosing (independently for each i) k values γ1, . . . , γk randomly and uniformly

from the interval [0, 1]. Then, for i = 1 to k, if γi ∈ [0, pi ], we select Si , otherwise we do not.
Let F be the collection of the selected sets via the experiment.
The expected cost of F is

E (cost(F )) =
∑

Si ∈S

c(Si ) · Prob{Si is selected}

that is,

E (cost(F )) =
∑

Si ∈S

c(Si ) pi
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But {pi , i = 1, . . . , k} is the optimal solution to the set cover relaxation program, hence
∑

Si ∈S c(Si ) pi

is the optimal (minimum) value. Let us denote it by OPT R (optimal for the relaxation).
Now let us examine whether F is a cover. For an α ∈ U , suppose that α occurs in λ sets of S. W.l.o.g.,

let the probabilities of these sets in the optimal solution of the relaxation be p1, . . . , pλ. Since all the
constraints are satisfied by the optimal solution, we get

p1 + · · · + pλ ≥ 1 (12.1)

But

Prob{α is covered by F } = 1 −
λ∏

i=1

(1 − pi )

Because of Eq. (12.1), the above expression becomes minimum when pi = · · · = pλ = 1
λ

, so

Prob{α is covered by F } ≥ 1 −
(

1 − 1

λ

)λ

≥ 1 − 1

e

where e � 2.73 is the basis of the natural logarithms. The above analysis holds for any α ∈ U .
We now repeat the part of the experiment where we pick the collection F , independently each time.
Let us pick the collections F1, F2, . . . , Ft . Let F̃ = ∪t

i=1 Fi . So, for all α ∈ U

Prob{α is not covered by F̃ } ≤
(

1

e

)t

By summing over all α ∈ U we have

Prob{F̃ is not a cover} ≤ n

(
1

e

)t

(12.2)

By selecting now t = log ξn (with ξ ≥ 4, a constant) we eventually get

Prob{F̃ is not a cover} ≤ n
1

4n
= 1

4
(12.3)

Having established that F̃ is a cover with constant probability let us see its cost. Clearly,

E (c(F̃ )) ≤ OPT R · log ξn

Thus, by the Markov inequality (Prob{X ≥ mE [X]} ≤ 1/m, for x ≥ 0) we get

Prob{c(F̃ ) ≥ 4OPT R · log ξn} ≤ 1

4
(12.4)

Let A be the (undesirable) event: “F̃ is not a valid cover or c(F̃ ) is at least 4OPT R log ξn.”

Prob(A) ≤ 1

4
+ 1

4
= 1

2
(12.5)

Note that, given F̃ , we can verify in polynomial time whether the negation of A holds. If it holds (this
happens with probability ≥ 1/2) then we have an F̃ which is (a) a valid set cover, (b) with cost at most
4 log ξn times above the OPT R .

Let OPT be the optimal cost of the integer program. Clearly OPT R ≤ OPT hence, when A holds, we
have found a valid cover with an approximation ratio (w.r.t. the cost)

R = c(F̃ )

OPT
≤ c(F̃ )

OPT R
≤ 4 log ξn

Now, if A happens to hold, then we repeat the entire algorithm. The expected number of repetitions
needed to get a valid cover with R = �(log n) is then at most 2.

We summarize all this in the following.
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Theorem 12.1

The method of randomized rounding gives us in expected polynomial time a valid set cover with a cost
approximation ratio R = �(log n).

Note: The algorithm presented here never errs (since we repeat it if F̃ is not a valid cover of small cost).
The penalty is time, but it is small since the number of repetitions follows a geometric distribution.

12.2.5 A Remark in the Analysis

In the analysis of the last section we established Eq. (12.2) namely

Prob{F̃ is not a cover} ≤ n

(
1

e

)t

where t is the number of collections selected independently. By using t = ξ log n with ξ ≥ 2 we get

Prob{F̃ is not a cover} ≤ ne−2 log n ≤ 1

n

with an expected cover cost of E (c(F̃ )) ≤ OPT R · ξ log n, i.e., E (c(F̃ )) ≤ OPT · 2 log n.
If we are satisfied with a good expected cost, we can stop here. We get a valid cover with probability at

least 1 − 1
n in one repetition and the expected cost is �(OPT · log n).

12.2.6 Literature Notes

For more information about set cover approximation via randomized rounding, see the excellent book
by Vazirani, Chapter 14. For a more advanced randomized rounding method for set cover see Ref. [4].
A quite similar method can be applied to the MAX-SAT problem (see Ref. [1], Chapter 16 or Ref. [5],
Chapter 7). Randomized rounding (actually the random projection method) has been also used together
with semidefinite programming to give an efficient approximation to the MAX-CUT problem and its
variations (see Ref. [1], Chapter 26) or the seminal work of Goemans and Williamson [6] who introduced
the use of semidefinite programs in approximation algorithms.

12.3 Approximate Counting Using the Markov Chain
Monte Carlo Method

The MCMC method is a development of the classic, well-known Monte Carlo method for approximately
estimating measures and quantities whose exact computation is a difficult task. In fact, the Monte Carlo
method expresses the quantity under evaluation (say x) as the expected value x = E (X) of a random
variable X , whose samples can be estimated efficiently. By taking the mean of a sufficiently large set of
samples, an approximate estimation of the quantity of interest can be obtained.

Jerrum [7] illustrates the use of the Monte Carlo method by a simple example: the estimation of the
area of the region of the unit square defined by a system of polynomial inequalities. To do this, points of
the unit square are randomly uniformly sampled, i.e., a point is chosen uniformly at random (u.a.r.) and
then it is tested whether it belongs to the region of interest (i.e., whether it satisfies or not all inequalities
in the system). The probability that a randomly chosen point belongs to the area under investigation (i.e.,
the expectation of a random variable indicating whether the chosen point satisfies all inequalities in the
system or not) is then an estimate of the area of the region of interest. By performing a sufficiently
long sequence of such trials and taking their sample mean, an approximate estimation is obtained. More
complex examples are the estimation of a size of a tree by sampling paths from its root to a leaf [8] and
the estimation of the permanent of a 0,1 matrix [9].

It is, however, not always possible to get such samples of the random variable used. The Markov chain
simulation can then be employed. The main idea of the MCMC method is to construct, for a random
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variable X , a Markov chain whose state space is (or includes) the range of X . The Markov chain constructed
should be ergodic, i.e., it converges to a stationary distribution π , and this stationary distribution matches
the probability distribution of the random variable X . The desired samples can then be (indirectly) obtained
by simulating the Markov chain for sufficiently many steps T , from any fixed initial state, and by taking
the final state reached. If T is large enough, the Markov chain gets very close to stationarity and, thus, the
distribution of the samples obtained in this way is very close to the probability distribution of the random
variable X ; the obtained samples are thus close to perfect and the approximation error will be negligible.

The estimation of a sufficiently large time T is important for the efficiency of the simulation. In contrast
to the classical theory of stochastic process that only studies the asymptotic convergence to the stationarity,
the MCMC method investigates the nonasymptotic speed of convergence and thus the computational
efficiency in practical applications of the simulation. The efficiency of an algorithm using the method
depends on how small the number of simulation steps T is. In efficient algorithmic uses of the MCMC
method with provable performance guarantees (not just heuristic applications), we require T to be small,
i.e., very much smaller than the size of the state space of the simulated space. In other words, we want the
Markov chain to get close to stationarity after a very short random walk on its state space. We call this time
the “mixing time” of the chain and we say that an efficiently converging chain is “rapidly mixing.”

Proving satisfactory upper bounds for the mixing time of the simulated Markov chain is in fact the
most interesting (nontrivial) point in the application of the MCMC method. Several analytical tools have
recently been devised, including the “canonical path” argument, the “conductance” argument, and the
“coupling” method. We here choose to illustrate the application of the “coupling” method in a particular
approximate counting problem, the problem of counting radiocolorings of a graph. For the other two
methods, the reader can consult Refs. [7 and 10].

The approximate counting problem is a general computing task of estimating the number of elements
in a combinatorial space. Several interesting counting problems turn out to be complete for the com-
plexity class #P of counting problems, and thus efficient approximation techniques become essential.
Furthermore, the problem of approximate counting is closely related to the problem of random sampling
of combinatorial structures, i.e., generating the elements of a very large combinatorial space randomly
according to some probability distribution. Combinatorial sampling problems have major computational
applications, including (besides approximate counting) applications in statistical physics and in combi-
natorial optimization.

12.3.1 Radiocolorings of Graphs

An interesting variation of graph coloring is the k-coloring problem of graphs, defined as follows (D(u, v)
below denotes the distance of vertices u and v in a graph G).

Definition 12.1 k-Coloring Problem (Hale [11])

Given a graph G(V, E ) find a function φ : V → {1, . . . , ∞} such that ∀ u, v ∈ V, x ∈ {0, 1, . . . , k}:
if D(u, v) = k − x + 1 then |φu − φv| ≥ x. This function is called a k-coloring of G. Let |φ(V)| = λ.
Then λ is the number of colors that φ actually uses (it is usually called order of G under φ). The number
ν = maxv∈V φ(v) − minu∈V φ(u) + 1 is usually called the span of G under φ.

The problem of k-coloring graphs is well motivated by practical considerations and algorithmic appli-
cations in modern networks. In fact, k-coloring is a discrete version of the frequency assignment problem
(FAP) in wireless networks. Frequency assignment problem aims at assigning frequencies to transmitters
exploiting frequency reuse while keeping signal interference to acceptable levels. The interference between
transmitters are modeled by an interference graph G(V, E ), where V(|V | = n) corresponds to the set
of transmitters and E represents distance constraints (e.g., if two neighbor nodes in G get the same or
close frequencies then this causes unacceptable levels of interference). In most real-life cases, the net-
work topology formed has some special properties, e.g., G is a lattice network or a planar graph. The
FAP is usually modeled by variations of the graph coloring problem. The set of colors represents the
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available frequencies. In addition, each color in a particular assignment gets an integer value which has
to satisfy certain inequalities compared to the values of colors of nearby nodes in G (frequency-distance
constraints). The FAP has been considered in Refs. [12–14]. Planar interference graphs have been studied
in Refs. [15,16].

We have studied the case of k-coloring problem, where k = 2 called the radiocoloring problem (RCP).

Definition 12.2 RCP

Given a graph G(V, E ) find a function 	 : V → N∗ such that |	(u) − 	(v)| ≥ 2 if D(u, v) = 1 and
|	(u) − 	(v)| ≥ 1 if D(u, v) = 2. The least possible number λ (order) needed to radiocolor G is denoted
by Xorder(G). The least possible number ν = maxv∈V 	(v) − minu∈V 	(u) + 1 (span) needed for the
radiocoloring of G is denoted as Xspan(G).

Real networks reserve bandwidth (range of frequencies) rather than distinct frequencies. In this case,
an assignment seeks to use as small range of frequencies as possible. It is sometimes desirable to use as few
distinct frequencies of a given bandwidth (span) as possible, since the unused frequencies are available for
other use. Such optimization versions of the RCP are defined as follows.

Definition 12.3 Min Span RCP

The optimization version of the RCP that tries to minimize the span. The optimal span is called Xspan.

Definition 12.4 Min Order RCP

The optimization version of the RCP that tries to minimize the order. The optimal order is called Xorder.

Fotakis et al. [17] provide an O(n
) algorithm that approximates the minimum order of RCP, Xorder ,
of a planar graph G by a constant ratio which tends to 2 as the maximum degree 
 of G increases.

We study here the problem of estimating the number of different radiocolorings of a planar graph G . This
is a #P-complete problem. We employ here standard techniques of rapidly mixing Markov chains and the
new method of coupling for proving rapid convergence (see, e.g., Ref. [18]) and we present a fully polynomial
randomized approximation scheme (FPRAS) for estimating the number of radiocolorings with λ colors for
a planar graph G , when λ ≥ 4
 + 50.

Results on radiocoloring other types (periodic, hierarchical) of graphs can be found in [19–21].

12.3.2 Outline of Our Approach

Let G be a planar graph of maximum degree 
 = 
(G) on vertex set V = {0, 1, . . . , n − 1} and C be
a set of λ colors. Let 	 : V → C be a (proper) radiocoloring assignment of the vertices of G . Such a
radiocoloring always exists if λ ≥ 2
 + 25 and can be found by the O(n
) time algorithm provided in
Ref. [17].

Consider the Markov chain (Xt ) whose state space R = Rλ(G) is the set of all radiocolorings of G with
λ colors and whose transition probabilities from state (radiocoloring) Xt are modeled by

1. choosing a vertex v ∈ V and a color c ∈ C uniformly at random (u.a.r.),
2. recoloring vertex v with color c . If the resulting coloring X ′ is a valid radiocoloring assignment

then let Xt+1 = X ′, else Xt+1 = Xt .

The procedure above is similar to the “Glauber dynamics” of an antiferromagnetic Potts model at zero
temperature, and was used in Ref. [18] to estimate the number of proper colorings of any low-degree graph
with k colors.

The Markov chain (Xt ), which we refer to in the sequel as M(G , λ), is ergodic (as we show below),
provided λ ≥ 2
 + 26, in which case its stationary distribution is uniform over R. We show here that
M(G , λ) is rapidly mixing, i.e., converges, in time polynomial in n, to a close approximation of the
stationary distribution, provided that λ ≥ 2(2
 + 25). This can be used to get an FPRAS for the number
of radiocolorings of a planar graph G with λ colors, in the case where λ ≥ 4
 + 50.
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12.3.3 The Ergodicity of the Markov Chain M(G, λ)

For t ∈ N let P t : R2 → [0, 1] denote the t-step transition probabilities of the Markov chain M(G , λ)
so that P t (x , y) = Pr{Xt = y|X0 = x}, ∀x , y ∈ R. It is easy to verify that M(G , λ) is (a) irreducible
and (b) aperiodic. The irreducibility of M(G , λ) follows from the observation that any radiocoloring x
may be transformed to any other radiocoloring y by sequentially assigning new colors to the vertices V in
ascending sequence; before assigning a new color c to vertex v it is necessary to recolor all vertices u > v

that have color c . If we assume that λ ≥ 2
+26 colors are given, removing the color c from this set, we are
left with ≥ 2
+25 for the coloring of the rest of the graph. The algorithm presented in Ref. [17] shows that
the remaining graph can by radiocolored with a set of colors of this size. Hence, color c can be assigned to v.

Aperiodicity follows from the fact that the loop probabilities are P (x , x) �= 0, ∀x ∈ R.
Thus, the finite Markov chain M(G , λ) is ergodic, i.e., it has a stationary distribution π : R → [0, 1]

such that limt→∞ P t (x , y) = π(y), ∀x , y ∈ R. Now if π ′ : R → [0, 1] is any function satisfying “local
balance,” i.e., π ′(x)P (x , y) = π ′(y)P (y, x) then if

∑
x∈R π ′(x) = 1 it follows that π ′ is indeed the

stationary distribution. In our case P (y, x) = P (x , y), thus the stationary distribution of M(G , λ) is
uniform.

12.3.4 Rapid Mixing

The efficiency of any approach like this to sample radiocolorings crucially depends on the rate of con-
vergence of M(G , λ) to stationarity. There are various ways to define closeness to stationarity but all are
essentially equivalent in this case and we will use the “variation distance” at time t with respect to initial
vertex x :

δx (t) = max
S⊆R

∣
∣P t (x , S) − π(S)

∣
∣ = 1

2

∑

y∈R

∣
∣P t (x , y) − π(y)

∣
∣

where P t (x , S) = ∑
y∈S P t (x , y) and π(S) = ∑

x∈S π(x).
Note that this is a uniform bound over all events S ⊆ R of the difference of probabilities of event S

under the stationary and t-step distributions.
The rate of convergence to stationarity from initial vertex x is

τx (ε) = min{t : δx (t ′) ≤ ε, ∀t ′ ≥ t}
Our strategy is to use the coupling method, i.e., construct a coupling for M = M(G , λ), i.e., a stochastic

process (Xt , Yt ) on R × R such that each of the processes (Xt ), (Yt ), considered in isolation, is a faithful
copy of M. We will arrange a joint probability space for (Xt ), (Yt ) so that, far from being independent, the
two processes tend to couple so that Xt = Yt for t large enough. If coupling can occur rapidly (independently
of the initial states X0, Y0), we can infer that M is rapidly mixing, because the variation distance of M
from the stationary distribution is bounded above by the probability that (Xt ) and (Yt ) have not coupled
by time t.

The key result we use here is the Coupling Lemma (see Ref. [22] and Chapter 4 by Jerrum [7]), which
apparently makes its first explicit appearance in the work of Aldous [23], Lemma 3.6 (see also Diaconis
[24], Chapter 4, Lemma 5).

Lemma 12.1

Suppose that M is a countable, ergodic Markov chain with transition probabilities P (·, ·) and let ((Xt , Yt ),
t ∈ IN) be a coupling of M. Suppose further that t : (0, 1] → IN is a function such that Pr(Xt(ε) �= Yt(ε)) ≤
ε, ∀ε ∈ (0, 1], uniformly over the choice of initial state (X0, Y0). Then the mixing time τ (ε) of M is bounded
above by t(ε). 

The transition (Xt , Yt ) → (Xt+1, Yt+1) in the coupling is defined by the following experiment:

(1) Select v ∈ V u.a.r.
(2) Compute a permutation g (G , Xt , Yt ) of C according to a procedure to be explained below.
(3) Choose a color c ∈ C u.a.r.

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C012 March 20, 2007 12:18

Randomized Approximation Techniques 12-9

(4) In the radiocoloring Xt (respectively Yt ) recolor vertex v with color c (respectively g (c)) to get a
new radiocoloring X ′ (respectively Y ′).

(5) If X ′ (respectively Y ′) is a (valid) radiocoloring then Xt+1 = X ′ (respectively Yt+1 = Y ′), else let
Xt+1 = Xt (respectively Yt+1 = Yt ).

Note that whatever procedure is used to select the permutation g , the distribution of g (c) is uniform,
thus (Xt ) and (Yt ) are both faithful copies of M.

We now remark that any set of vertices F ⊆ V can have the same color in the graph G 2 only if they can
have the same color in some radiocoloring of G . Thus, given a proper coloring of G 2 with λ′ colors, we
can construct a proper radiocoloring of G by giving the values (new colors) 1, 3, . . . , 2λ′ − 1 in the color
classes of G 2. Note that this transformation preserves the number of colors (but not the span).

Now let A = At ⊆ V be the set of vertices on which the colorings of G 2 implied by Xt , Yt agree and
Dim = Dt ⊆ V be the set on which they disagree. Let d ′(v) be the number of edges incident at v in G 2

that have one point in A and one in Dim. Clearly, if m′ is the number of edges of G 2 spanning A, D, we
get

∑
v∈A d ′(v) = ∑

v∈D d ′(v) = m′.
The procedure to compute g (G , Xt , Yt ) is as follows:

(a) If v ∈ D then g is the identity.
(b) If v ∈ A then proceed as follows: Denote by N the set of neighbors of v in G 2. Define Cx ⊆ C to be

the set of all colors c , such that some vertex in N receives c in radiocoloring Yt but no vertex in N
receives c in radiocoloring Yt . Let Cy be defined as Cx with the roles of Xt , Yt interchanged. Observe
Cx ∩ Cy = ∅ and |Cx |, |Cy | ≤ d ′(v). Let, w.l.o.g., |Cx | ≤ |Cy |. Choose any subset C ′

y ⊆ Cy with
|C ′

y | ≤ |Cx | and let Cx = {c1, . . . , cr }, C ′
y = {c ′

1, . . . , c ′
r }be enumerations of Cx , Cy′ coming from

the orderings of Xt , Yt . Finally, let g be the permutation (c1, c ′
1), . . . , (cr , c ′

r ), which interchanges
the color sets Cx , Cy′ and leaves all other colors fixed.

It is clear that |Dt+1| − |Dt | ∈ {−1, 0, 1}.
(i) Consider first the probability that |Dt+1| = |Dt |+1. For this event to occur, the vertex v selected in

step (1) of the procedure for g must lie in A and hence we follow (b). If the new radiocolorings are to
disagree at vertex v then the color c selected in line (3) must be an element of Cy . But |Cy | ≤ d ′(v)
hence

Pr{|Dt+1| = |Dt | + 1} ≤ 1

n

∑

v∈A

d ′(v)

λ
= m′

λ · n
(12.6)

(ii) Now consider the probability that |Dt+1| = |Dt | − 1. For this to occur, the vertex v must lie in
Dim and hence the permutation g selected in line (2) is the identity. For Xt+1, Yt+1 to agree at v,
it is enough that color c selected in step (3) is different from all the colors that Xt , Yt imply for the
neighbors of v in G 2. The number of colors c that satisfy this is (by our previous results) at least
λ − 2(2
 + 25) + d ′(v) hence,

Pr{|Dt+1| = |Dt | − 1} ≥ 1

n

∑

v∈D

λ − 2(2
 + 25) + d ′(v)

λ

≥ λ − 2(2
 + 25)

λn
|D| + m′

λn
(12.7)

Define now α = λ−2(2
+25)
λn and β = m′

λn . So

Pr{|Dt+1| = |Dt | + 1} ≤ β

and Pr{|Dt+1| = |Dt | − 1} ≥ α|Dt | + β

Given α > 0, i.e. λ > 2(2
 + 25), from Eq. (12.6) and Eq. (12.7), we get

E (|Dt+1|) ≤ β(|Dt | + 1) + (α|Dt | + β)(|Dt | − 1) + (1 − α|Dt | − 2β)|Dt |
= (1 − α)|Dt |
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Thus, from Bayes, we get E (|Dt+1|) ≤ (1 − α)t |D0| ≤ n(1 − α)t

and since |Dt | is a nonnegative random variable, we get, by the Markov inequality, that

Pr{Dt �= 0} ≤ n(1 − α)t ≤ ne−αt

So, we note that, ∀ ε > 0, Pr{Dt �= ∅} ≤ ε provided that t ≥ 1
α

ln
(

n
ε

)
thus proving Theorem 12.2.

Theorem 12.2

Let G be a planar graph of maximum degree 
 on n vertices. Assuming λ ≥ 2(2
+ 25) the convergence time
τ (ε) of the Markov chain M(G , λ) is bounded above by

τx (ε) ≤ λ

λ − 2(2
 + 25)
n ln

(n

ε

)

regardless of the initial state x.

12.3.5 An FPRAS for Radiocolorings with λ Colors

We first provide the following definition.

Definition 12.5

A randomized approximation scheme for radiocolorings with λ colors of a planar graph G is a probabilistic
algorithm that takes as input the graph G and an error bound ε > 0 and outputs a number Y (a random
variable) such that

Pr {(1 − ε) |Rλ(G)| ≤ Y ≤ (1 + ε)|Rλ(G)|} ≥ 3

4

Such a scheme is said to be fully polynomial if it runs in time polynomial in n and ε−1. We abbreviate such
schemes to FPRAS.

The technique we employ is as in Ref. [18] and is fairly standard in the area. By using it we get the
following theorem.

Theorem 12.3

There is an FPRAS for the number of radiocolorings of a planar graph G with λ colors, provided that λ >

2(2
 + 25), where 
 is the maximum degree of G.

Proof
Recall that Rλ(G) is the set of all radiocolorings of G with λ colors. Let m be the number of edges in G
and let

G = G m ⊇ G m−1 ⊇ · · · ⊇ G 1 ⊇ G 0

be any sequence of graphs where Gi−1 is obtained by Gi by removing a single edge. We can always erase
an edge whose one node is of degree at most 5 in Gi . Clearly

|Rλ(G)| = |Rλ(G m)|
|Rλ(G m−1)| · |Rλ(G m−1)|

|Rλ(G m−2)| · · · |Rλ(G 1)|
|Rλ(G 0)| · |Rλ(G 0)|

But |Rλ(G 0)| = λn for all kinds of colorings. The standard strategy is to estimate the ratio

ρi = |Rλ(Gi )|
|Rλ(Gi−1)|

for each i , 1 ≤ i ≤ m.
Suppose that graphs Gi , Gi−1 differ in the edge {u, v}, which is present in Gi but not in Gi−1. Clearly,

Rλ(Gi ) ⊆ Rλ(Gi−1). Any radiocoloring in Rλ(Gi−1)\ Rλ(Gi ) assigns either the same color to u, v or
the color values of u, v differ by only 1. Let deg(v) ≤ 5 in Gi . So, we now have to recolor u with one of
at least λ − (2
 + 25), i.e., at least 2
 + 25, colors (from Section 5 of Ref. [18]). Each radiocoloring of
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Rλ(Gi ) can be obtained in at most one way by our algorithm of the previous section as the result of such
a perturbation, thus

1

2
≤ 2
 + 25

2(
 + 1) + 25
≤ ρi < 1 (12.8)

To avoid trivialities, assume 0 < ε ≤ 1, n ≥ 3 and 
 > 2.
Let Zi ∈ {0, 1} be the random variable obtained by simulating the Markov chain M(Gi−1, λ) from any

certain fixed initial state for

T = λ

λ − 2(2
 + 25)
n ln

(
4nm

ε

)

steps and returning to 1 if the final state is a member of Rλ(Gi ) and 0 else. Let µi = E (Zi ). By our theorem
of rapid mixing, we have

ρi − ε

4m
≤ µi ≤ ρi + ε

4m

and by Eq. (12.8), we get
(

1 − ε

2m

)
ρi ≤ µi ≤

(
1 + ε

2m

)
ρi

As our estimator for |Rλ(G)| we use

Y = λn Z1 Z2 · · · Zm

Note that E (Y ) = λnµ1µ2 · · · µm. But

Var(Y ) ≤ Var(Z1 Z2 · · · Zm)

(µ1µ2 · · · µm)2
=

m∏

i=1

(

1 + Var(Zi )

µ2
i

)

− 1

By using standard techniques (as in Ref. [18]) one can easily show that Y satisfies the requirements for an
FPRAS for the number of radiocolorings of graph G with λ colors |Rλ(G)|.
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13.1 Introduction

The spread of computer networks, from sensor networks to the Internet, creates an ever-growing need
for efficient distributed algorithms. In such scenarios, familiar combinatorial structures such as spanning
trees and dominating sets are often useful for a variety of tasks. Others, like maximal independent sets,
turn out to be a very useful primitive for computing other structures. In a distributed setting, where
transmission of messages can be orders of magnitude slower than local computation, the expensive resource
is communication. Therefore, the running time of an algorithm is given by the number of communication
rounds that are needed by the algorithm. This will be made precise below.

In what follows we will survey a few problems and their solutions in a distributed setting: dominating
sets, edge and vertex colorings, matchings, vertex covers, and minimum spanning trees. These problems
were chosen for a variety of reasons: they are fundamental combinatorial structures; computing them is
useful in distributed settings; and they serve to illustrate some interesting techniques and methods.

Randomization, whose virtues are well known to people coping with parallel and distributed algorithms,
will be a recurrent theme. In fact, only rarely it has been possible to develop deterministic distributed
algorithms for nontrivial combinatorial optimization problems. Here, in the section on vertex covers, we
will discuss a novel and promising approach based on the primal-dual methodology to develop efficient,
distributed deterministic algorithms. One of the main uses of randomization in distributed scenarios
is to break the symmetry. This is well illustrated in Section 13.2. discussing dominating sets. Often,
the analysis of simple randomized protocols requires deep results from probability theory. This will be
illustrated in Section 13.3, where martingale methods are used to analyze some simple, and yet almost
optimal, distributed algorithms for edge coloring. The area of distributed algorithms for graph problems

13-1
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is perhaps unique in complexity theory because it is possible to derive several nontrivial absolute lower
bounds (that is, not relying on special complexity assumptions such as P �= NP). This will be discussed in
Section 13.6.

Let us then define the computation model. We have a message-passing, synchronous network: vertices
are processors, edges are communication links, and the network is synchronous. Communication proceeds
in synchronous rounds: in each round, every vertex sends messages to its neighbors, receives messages from
its neighbors, and does some amount of local computation. It is also assumed that each vertex has a unique
identifier. In the case of randomized algorithms each node of the network has access to its own source of
random bits. In this model, the running time is the number of communication rounds. This will be our notion
of “time.” As remarked, this is a very reasonable first approximation since typically sending a message is
orders of magnitude slower than performing local computation.

Although we place no limits on the amount of local computation, the algorithms we describe perform
polynomial-time local computations only. Under the assumption that local computations are polynomial
time several of the algorithms that we describe are “state of the art,” in the sense that their approximation
guarantee is the same, or comparable, to that obtainable in a centralized setting. It is remarkable that this
can be achieved in a distributed setting.

The model is in some sense orthogonal to the Parallel Random Access Machine (PRAM) model for
parallel computation where a set of polynomially many, synchronous processors access a shared memory.
There communication is free: any two processors can communicate in constant time via the shared memory.
In the distributed model, in contrast, messages are routed through the network and therefore the cost of
sending a message is at least proportional to the length of the shortest path between the two nodes. On the
other hand, local computation is inexpensive, while this is the expensive resource in the PRAM model.

Note that there is a trivial universal algorithm that always works: The network elects a leader which
then collects the entire topology of the network, computes the answers, and notifies them to the other
nodes. This will take a time proportional to the diameter of the network, which can be as large as n,
the number of nodes. In general, we will be looking for algorithms that take polylogarithmically, in n,
many communication rounds, regardless of the diameter of the network. Such algorithms will be called
efficient.

Note the challenge here: if a protocol runs for t rounds then each processor can receive messages from
nodes at distance at most t. For small values of t this means that the network is computing a global function
of itself by relying on local information alone.

13.2 Small Dominating Sets

In this section we study the minimum dominating set (MDS) problem. The advent of wireless networks
gives a new significance to the problem since (connected) dominating sets are the structure of choice to set
up the routing infrastructure of such ad hoc networks, the so-called backbone (see, for instance, Ref. [1]
and references therein). In the sequel we describe a nice algorithm from Ref. [2] for computing small
dominating sets. The algorithm is in essence an elegant parallelization of the well-known greedy heuristic
for set cover [3,4]. Randomness is a key ingredient in the parallelization. The algorithm computes, on any
input graph, a dominating set of size at most O(log �)opt, where as customary � denotes the maximum
degree of the graph and opt is the smallest size of a dominating set in the input graph. By “computing
a dominating set” we mean that at the end of the protocol every vertex decides whether it is in the
dominating set or not. The algorithm was originally developed for the PRAM model but, as we will show,
it can be implemented distributively. It is noteworthy that the approximation bound is essentially the “best
possible” under the assumption that every node performs a polynomially bounded computation during
every round. “Best possible” means that there exists a constant c > 0 such that a c log n-approximation
would imply that P = NP [5], while a (c ln n)-approximation, for a constant c < 1, would imply that NP

could be solved exactly by means of slightly superpolynomial algorithms [6,7].
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We shall then describe a surprisingly simple deterministic algorithm that, building on top of the domi-
nating set algorithm, computes a “best possible” connected dominating set, in O(log n) additional com-
munication rounds [8].

There are other nice algorithms to compute dominating sets efficiently in a distributed setting. The
algorithm in Ref. [9] is a somewhat different parallelization of the greedy algorithm, while Ref. [10]
explores an interesting trade-off between the number of rounds of the algorithm and the quality of the
approximation that it achieves. This paper makes use of LP-based methods, an issue that we will explore
in Section 13.5.

13.2.1 Greedy

Let us start by reviewing the well-known greedy heuristic for set cover. Greedy repeatedly picks the set of
minimum unit cost, creating a new instance after every choice by removing the points just covered. More
formally, let (X, F , c) be a set cover instance, where X is a ground set of elements and F := {Si : Si ⊆
X, i ∈ [m]} is a family of nonempty subsets of X with positive costs c(S) > 0. The goal is to select a
subfamily of minimum cost that covers the ground set. The cost of a subfamily is the sum of the costs of
each set in the subfamily.

Dominating set is a special case of set cover. A graph G with positive weights c(u), u ∈ V(G), can be
viewed as a set system {Su : u ∈ V(G)} with Su := N(u) ∪ {u}, where N(u) is the set of neighbors of u,
and c(Su) := c(u).

Given a set cover instance I := (X, F , c), let c(e) := mine∈S∈F
c(S)
|S| be the cost of the element e ∈ X .

This is the cheapest way to cover e where we do the accounting in the following natural way: when we pick
a set, its cost is distributed equally to all elements it covers. An algorithm A may pick a certain set S ′ at
this stage, then in this accounting scheme, each element e ∈ S ′ pays the price p(e) := c(S ′)

|S ′| . Once set s ′ is
picked, we create a new instance I ′ with ground set X ′ := X − Ŝ and set system F ′ whose sets are defined
as S ′

i := Si − Ŝ. The new costs coincide with the old ones: c(S ′) = c(S), for all S ∈ F ′. The algorithm
continues in the same fashion until all elements are covered.

Greedy selects a set Ŝ at each stage that realizes the minimum unit cost, i.e., p(e) = c(e) at each stage.
In other words, greedy repeatedly selects the set that guarantees the smallest unit price. For the discussion
to follow concerning the distributed version of the algorithm it is important to notice that each element
e is assigned a price tag p(e) only once, at the time when it is covered by greedy. For a subset A ⊆ X , let
g (A) := ∑

e∈A p(e). Then g (X), the sum of the unit prices, is the total cost incurred by greedy. The crux
of the analysis is the next lemma.

Lemma 13.1

For any set S, g (S) ≤ H|S|c(S) where Hk := 1 + 1
2 + 1

3 + · · · + 1
k is the kth harmonic number.

Proof
Sort the elements of S according to the time when they are covered by greedy, breaking ties arbitrarily.
Let e1, e2, · · · , ek be this numbering. When greedy covers ei it must be that p(ei ) ≤ c(S)

k−i . The claim
follows.

Clearly we have that g (A ∪ B) ≤ g (A) + g (B). Denoting with C∗ an optimal cover, we have, by
Lemma 13.1,

g (X) = g (∪S∈C∗ S) ≤
∑

S∈C∗
g (S) ≤

∑

S∈C∗
H|S|c(S) ≤ max

S
H|S|

∑

S∈C∗
c(S) ≤ max

S
H|S|opt

It is well known that log k ≤ Hk ≤ log k + 1. In the case of the dominating set the bound becomes

g (X) ≤ H�+1opt = O(log �)opt

where � is the maximum degree of the graph.
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FIGURE 13.1 Example of lower-bound graph for k = 6. The number of nodes is n = k(k + 1)/2 = �(k2). The
bottom nodes are selected by greedy, one by one from left to right. The number of rounds is k − 1.

13.2.2 Greedy Hordes

We now proceed to parallelize greedy. Figure 13.1 shows that the number of steps taken by greedy can be
�(

√
n). The problem lies in the fact that at any stage there is just one candidate set that gives the minimum

unit cost ĉ . It is to get around this problem that we introduce the following notion. A candidate is any set
S such that

ĉ ≤ c(S)

|S| ≤ 2ĉ (13.1)

Let us modify greedy in such a way that, at any step, it selects any set satisfying this condition. With this
modification, the solution computed by greedy will still be at most O(log n)opt since the algorithm pays
at most twice the smallest unit price the overall we lose only a factor of 2 in the approximation.

Suppose now that the algorithm is modified in such a way that it adds to the solution all candidates
satisfying Eq. (13.1). With this modification, the graphs of Figure 13.1 will be covered in O(log n) steps.
But as the example of the clique shows (all the nodes are selected) this increase in speed destroys the
approximation guarantee. This is because the key requirement of the sequential greedy procedure is
violated. In the sequential procedure, the price p(e) is paid only once, at the time when e is covered. If we
do things in parallel we need to keep two conflicting requirements in mind: picking too many sets at once
can destroy the approximation guarantee, but picking too few can result in slow progress. And we must
come up with a charging scheme to distribute the costs among the elements in a manner similar to the
sequential case.

Rajagopalan and Vazirani solved this problem by devising a scheme that picks enough sets to make
progress but at the same time retains the parsimonius accounting of costs like in the sequential version.
Specifically, for every set S selected by greedy, the cost c(S) will be distributed among the elements of a
subset T ⊂ S of at least |S|/4 elements. Crucially, the elements of T will be charged only once. If we can
do this then we will lose another factor of 4 in the approximation guarantee with respect to greedy, all in
all losing a factor of 8.

The scheme works as follows: line up the candidate sets satisfying Eq. (13.1) on one side and all the
elements on the other. The elements are thought of as voters and cast their vote for one of the candidate
sets containing them by an election. An election is conducted as follows:

• A random permutation of the candidates is computed.
• Among all the candidate sets that contain it, each voter votes for that set which has the lowest

number in the permutation.
• A candidate is elected if it obtains at least 1

4 of the votes of its electorate. Elected candidates enter
the set cover being constructed.

The cost of the set can now be distributed equally among the elements that voted for it, i.e., at least a
quarter of the elements.

Let us now describe the distributed implementation of this scheme in the specific case of the set system
corresponding to the dominating set problem. During the execution nodes can be in four different states:

• They can be free. Initially all vertices are free.
• They can be dominated.
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• They can be dominators. Dominators are added to the dominating set and removed from the graph.
• They can be out. Vertices are out when they are dominated and have no free neighbors. These

vertices are removed from the graph since they can play no useful role.

The algorithm is a sequence of log � phases during which the following invariant is maintained, with high
probability. At the beginning of phase i , i = 1, 2, . . . , log �, the maximum degree of the graph is at most
�/2i−1. The candidates during phase i are all those vertices whose degree is in the interval (�/2i , �/2i−1]
i.e., they satisfy condition (13.1). Note that candidates can be free or dominated vertices. The voters are
those free nodes that are adjacent to a candidate. This naturally defines a bipartite graph with candidates
on one side, voters on the other, and edges that represent domination relationships. Each phase consists
of a series of O(log n) elections. A free vertex can appear on both sides, since a free vertex can dominate
itself. We shall refer to the neighbors of a candidate c in the bipartite graph as the electorate of c , and
to the neighbors of a voter v as the pool of v. Elections are carried out and elected candidates enter the
dominating set.

Step 1 of each election seems to require global synchronization, but a random permutation can be
generated if the value of n is known. If each element picks a random number between 1 and nk then with
probability 1−1/nk−1 all choices will be distinct. Thus, the probability that there is a collision is negligible
during the entire execution of the algorithm.

After every election, nodes are removed for two different reasons. Elected nodes disappear from the
candidate side of the bipartition, while their neighbors disappear from the other side since they are no
more free. In the analysis we will show that after one election the expected number of edges that disappear
from the bipartite graph is a constant fraction of the total. This automatically implies that the total number
of elections to remove all edges from the graph is O(log n) with overwhelming probability. More precisely,
for any c > 0 there is α > 0 such that, the probability that the bipartite graph is nonempty after α log n
elections is at most n−c [11,12]. It follows that α can be chosen in such a way that the probability that
some phase does not end successfully is negligible.

A voter v is influential for a candidate c if at least 3
4 of the voters in c ’s electorate have degree no greater

than that of v. Let d(v) denote the degree of v.

Lemma 13.2

For any two voters v and w, d(v) ≥ d(w), in c ’s electorate, Pr[w votes c | v votes c] ≥ 1
2 .

Proof
Let Nb denote the number of neighbors that v and w have in common, let Nv the number of neighbors of
v that are not neighbors of w , and Nw the number of neighbors of w that are not neighbors of v. Then,

Pr[w votes c | v votes c] = Pr[w votes c , v votes c]

Pr[v votes c]
= Nv + Nb

Nv + Nb + Nw
≥ 1

2

Lemma 13.3

Let v be an influential voter for c . Then, Pr[c is elected | v votes c] ≥ 1
6 .

Proof
Let X := (# votes for c) and Y := c − X where, with abuse of notation we use c to denote the size of c ’s
electorate. Then, by Lemma 13.2

E[X | v votes c] ≥
∑

w : d(w)≤d(v)

Pr[w votes c | v votes c] ≥ 3

8
c

Applying Markov’s inequality to Y we get

Pr[c not elected | v votes c] = Pr[X < c/4 | v votes c] = Pr[Y ≥ 3c/4 | v votes c]

≤ 4 E[Y | v votes c]

3c
= 4(c − E[X | v votes c])

3c
≤ 5

6

The claim follows.
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Lemma 13.4

Fix a phase and let m denote the total number of edges in the bipartite graph at any stage in this phase. Let X
denote the number of edges removed from the bipartite graph after one election. Then, E[X] ≥ m

24 .

Proof
An edge vc is good if v is influential for c . By definition, at least 1

4 of the edges are good. Then,

E[X] =
∑

vc

Pr[c is elected, v votes c]d(v)

≥
∑

vc good

Pr[c is elected, v votes c]d(v)

≥
∑

vc good

Pr[v votes c] Pr[c is elected | v votes c]d(v)

=
∑

vc good

Pr[c is elected | v votes c]

≥ m

24
by Lemma 13.3

As remarked, this lemma implies that, with high probability, O(log n) rounds are sufficient for every
phase. The resulting running time is O(log n log �) communication rounds, while the approximation guar-
antee is O(log �). Vertices must know n to compute a permutation and to run the correct number of elec-
tions, and they must know� to decide whether they are candidates at the current phase. Alternatively, if only
the value of n is known, the algorithm can execute O(log n) phases, for a total of O(log2 n) many rounds.

13.2.3 Small Connected Dominating Sets

In this section we develop an efficient distributed algorithm for computing “best possible” connected
dominating sets. Again, by this we mean that the protocol computes a connected dominating set of size
at most O(log �) times the optimum. Nowadays, connected dominating sets are quite relevant from
the application point of view since they are the solution of choice for setting up the backbones of self-
organizing networks such as ad hoc and sensor networks (see Ref. [1] and references therein). A backbone
is a subnetwork that is in charge of administering the traffic inside a network.

What is remarkable from the algorithmic point of view is that connectivity is a strong global property,
and yet we will be able to obtain it by means of a distributed algorithm that relies on local information
alone. The overall strategy can be summarized as follows:

• Compute a small dominating set.
• Connect it up using a sparse spanning network.

We saw in the previous section how to take care of step 1. To connect a dominating set we can proceed
as follows. Let D be the dominating set in the graph G created after step 1. Consider an auxiliary graph
H with vertex set D and where any two u, v ∈ D that are at distance 1, 2, or 3 in G are connected by an
edge in H . It is easy to see that H is connected if G is (which we assume). Every edge in H corresponds
to a path with 0, 1, or 2 vertices in G . If we inserted all such vertices we would still have a dominating
set, since adding vertices can only improve domination. The resulting set would however be too large in
general, since H can have as many as |D|2 edges, each contributing with two vertices. The best way to
connect D up would be to compute a spanning tree T . If we could do this, adding to D all vertices lying on
paths corresponding to the edges of T , we would obtain the desired approximation since E (T) = |D| − 1
and recalling that |D| is a O(log �)-approximation. Therefore, denoting with D∗ and C∗ an optimal
dominating and connected dominating set, respectively, we would have (with some abuse of notation)
that |D ∪ V(T)| ≤ 3|D| ≤ O(log �)|D∗| ≤ O(log �)|C∗|.

The problem however is that, as we discuss in Section 13.6.1, computing a spanning tree takes time
�(

√
n). In what follows we show a very simple algorithm that computes, in O(log |V(G)|) many
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communication rounds, a network S ⊂ H such that (a) S is connected, (b) |E (S)| = O(|D|), and
(c) V(S) = D. In words, S is a sparse connected network that spans the whole of D with linearly many
edges. If we can compute such an S than we will have a connected dominating set of size at most O(log �)
times the optimum. S will not be acyclic but this is actually a positive thing since it makes S more resilient
to failures. In fault-prone environments such as ad hoc and sensor networks this kind of redundancy is
actually very useful. The key to computing S is given by the following lemma (see, for instance Ref. [13,
Lemma 15.3.1]). Recall that the girth of a graph G is the length of the shortest cycle in G .

Lemma 13.5

Let G = (V, E ) be a graph of girth g , and let m := |E | and n := |V |. Then, m ≤ n + n1+2/(g−1).

Proof
Assume g = 2k + 1 and let d := m

n . Consider the following procedure. As long as there is a vertex whose
degree is less than d , remove it. Every time we remove a vertex the new minimum degree is at least as large
as the old one. Therefore, this procedure ends with a graph whose minimum degree is at least d . Now pick
any vertex in this graph and start a breadth first search. This generates a tree in which the root has at least
d children and every other node has at least d − 1 children. Moreover, assigning level 0 to the root, this
tree is a real tree up to and including level k − 1, i.e., no two vertices of this Breadth-First Search (BFS)
exploration coincide up to that level. Therefore,

n ≥ 1 + d + d(d − 1) + · · · + d(d − 1)k−1 ≥ (d − 1)k

Recalling the definition of d , the claim follows. The proof for the case g = 2k is analogous.

Note that if g = 2 log n + 1 then m ≤ 3n. Define a cycle to be small if it is of length at most 2 log n + 1.
The following amazingly simple protocol removes all small cycles while, crucially, preserving connectivity:

• If an edge is the smallest in some small cycle, it is deleted.

Assume that every edge in the graph has a unique identifier. An edge is smaller than another edge if its
identifier is smaller than that of the other edge. It is clear that every small cycle is destroyed. The next
lemma shows that connectivity is preserved.

Lemma 13.6

The above protocol preserves connectivity.

Proof
Sort the edges by increasing IDs and consider the following sequential procedure. At the beginning all
edges are present in the graph. At step i edge ei is considered. If ei is in a small cycle then it is removed. This
breaks all small cycles and preserves connectivity, since an edge is removed only when there is another path
connecting its endpoints. The claim follows by observing that the sequential procedure and the distributed
protocol remove the same set of edges.

To implement the protocol we only need to determine the small cycles to which an edge belongs. This
can be done by a BFS of depth O(log n) starting from every vertex. If edges do not have distinct IDs to start
with they can be generated by selecting a random number in the range [m3], which ensures that all IDs are
distinct with overwhelming probability. This requires the value of n or m to be known. This sparsification
technique appears to be quite effective in practice [1].

13.3 Coloring: The Extraordinary Career of a Trivial Algorithm

Consider the following sequential greedy algorithm to color the vertices of an input graph with � + 1
colors, where � is the maximum degree: pick a vertex, give it a color not assigned to any of its neighbors;
repeat until all vertices are colored. In general, � can be quite far from the optimal value χ(G) but it
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should not be forgotten that the chromatic number is one of the most difficult combinatorial problems to
approximate [14–16].

In this section we will see how efficient distributed implementations of this simple algorithm lead to
surprisingly strong results for vertex and especially edge coloring. Consider first the following distributed
implementation. Each vertex u is initially given a list of colors L u := {1, 2, . . . , � + 1}. Computation
proceeds in rounds, until the graph is colored. One round is as follows: each uncolored vertex u picks a
tentative color tu ∈ L u ; if no neighboring vertex has chosen the same tentative color, tu becomes the final
color of u, and u stops. Otherwise L u is updated by removing from it all colors assigned to neighbors of
u at the current round. We shall refer to this as the trivial algorithm. It is apparent that the algorithm is
distributed.

The trivial algorithm is clearly correct. An elementary, but nontrivial analysis shows that the probability
that an uncolored vertex colors itself in one round is at least 1

4 [17]. As we discussed in the previous section,
this implies that the algorithm will color the entire network within O(log n) communication rounds, with
high probability.

The following slight generalization is easier to analyze. At the beginning of every round, uncolored
vertices are asleep and wake up with probability p. The vertices that wake up execute the round exactly as
described earlier. At the end of the round, uncolored vertices go back to sleep. In other words, the previous
algorithm is obtained by setting p = 1. In the sequel we will refer to this generalization as the (generalized)
trivial algorithm. Luby analyzed this algorithm for p = 1

2 [18]. Heuristically, it is not hard to see why the
algorithm makes progress in this case. Assume u is awake. The expected number of neighbors of u that
wake up is d(u)/2 ≤ |L u|/2.

In the worst case, these neighbors will pick different colors and all these colors will be in L u . Even then,
u will have probability at least 1

2 to pick a color that creates no conflict. Thus, with probability 1
2 a vertex

wakes up and, given this, with probability at least 1
2 it colors itself. The next proposition formalizes this

heuristic argument.

Proposition 13.1

When p = 1
2 the probability that an uncolored vertex colors itself in one round is at least 1

4 .

Proof
Let tu denote the tentative color choice of a vertex u.

Pr[u does not color | u wakes up] = Pr[∃v ∈ N(u) tu = tv| u wakes up]

≤
∑

v∈N(u)

Pr[tu = tv | u wakes up]

=
∑

v∈N(u)

Pr[tu = tv | u and v wake up]Pr[v wakes up]

=
∑

v∈N(u)

|L u ∩ L v|
|L v||L u|

1

2
≤

∑

v∈N(u)

1

|L u|
1

2
≤ 1

2

Therefore,

Pr[u colors itself] = Pr[u colors itself | u wakes up]Pr[u wakes up] ≥ 1

4

Note that the trivial algorithm works just as well if the lists are initialized as L u := {1, 2, . . . , d(u) + 1},
for all u ∈ V(G), for any value of p > 0. Interestingly, in practice, with p = 1 the trivial algorithm is
much faster than Luby’s one. In fact, experimentally, the speed of the algorithm increases regularly and
monotonically as p tends to 1 [19].

In the distributed model we can simulate the trivial algorithm for the line graph with constant-time
overhead. In this case, the algorithm will be executed by the edges rather than the vertices, each edge e
having its own list L e . In this fashion we can compute edge colorings that are approximated by a factor of 2
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(since 2� − 1 colors are used). It is a challenging open problem whether an O(�)-approximation can be
computed deterministically in the distributed model. The best known result so far is an O(� log n)-
approximation [20]. But the real surprise is that the trivial algorithm computes near-optimal edge
colorings!

Vizing’s theorem shows that every graph G can be edge colored sequentially in polynomial time with �

or � + 1 colors (see, for instance, Ref. [21]). The proof is in fact a polynomial-time sequential algorithm
for achieving a �+ 1 coloring. Thus edge coloring can be well approximated. It is a very challenging open
problem whether colorings as good as these can be computed fast in a distributed model.

If the edge lists L e ’s are initialized to contain just a bit more than � colors, say |L e | = (1 + ε)� for
all e , then the trivial algorithm will edge color the graph within O(log n) communication rounds. Here
ε can be any fixed, positive constant. Some lists can run out of colors and, consequently, the algorithm
can fail, but this happens with a probability that goes to 0 as n, the number of vertices, grows. All this is
true, provided that the minimum degree δ(G) is large enough, i.e., δ(G)  log n [22,23]. For �-regular
graphs the condition becomes �  log n.

In fact, the trivial algorithm has in store more surprises. If the input graph is �-regular and has no
triangles, it colors the vertices of the graph using only O(�/ log �) colors. This is in general optimal, since
there are infinite families of triangle-free graphs that need these many colors [24]. Again, the algorithm
fails with negligible probability, provided that �  log n. For the algorithm to work, the value of p must
be set to a value that depends on the round: small initially, it grows quickly to 1 [25].

The condition �  log n appears repeatedly. The reason is that these algorithms are based on powerful
martingale inequalities and this condition is needed to make them work. These probabilistic inequalities
are the subject of the next section.

13.3.1 Coloring with Martingales

Let f (X1, . . . , Xn) be a function for which we can compute E[ f ], and let the Xi ’s be independent. Assume
moreover that the following Lipshitz condition (with respect to the Hamming distance) holds:

| f (X) − f (Y )| ≤ ci (13.2)

whenever X := (x1, . . . , xn) and Y := (y1, . . . , yn) differ only in the i th coordinate. Then, f is sharply
concentrated around its mean:

Pr[| f − E[ f ]| > t] ≤ 2e−2t2/�i c2
i (13.3)

This is the simplest of a series of powerful concentration inequalities dubbed the method of bounded
differences (MOBD) [26]. The method is based on martingale inequalities (we refer the reader to the
thorough and quite accessible treatment in Ref. [12]). In words, if a function does not depend too much
on any coordinate then it is almost constant.

To appreciate the power and ease of use of Eq. (13.3) we derive the well-known Chernoff–Hoeffding
bound (see, among others Refs. [12,27,28]). This bound states that if X := ∑n

i=1 Xi is the sum of
independent, binary random variables Xi ∈ {0, 1}, then X is concentrated around its mean: Pr[|X −
E[X]| > t] ≤ 2e−2t2/n. This captures the well-known fact that if a fair coin is flipped many times we
expect HEADS to occur roughly 50% of the time, and this bound gives precise probability estimates of
deviating from the mean. This bound can be recovered from Eq. (13.3) simply by defining f := X and by
noticing that condition (13.2) holds with ci = 1.

We now apply the MOBD to the analysis of the trivial algorithm in a simplified setting. Let us assume
that the network is a triangle-free, d-regular graph. We analyze what happens to the degree of a node after

the first round. The probability with which an edge colors itself is
(

1 − 1
d

)2d−2 ∼ 1
e2 . Therefore, denoting

with f the new degree of vertex u, we have that E[ f ] = �(d). At first blush it may seem that the value
of f depends on the tentative color choices of �(d2) edges: those incident on u and the edges incident
on them. But it is possible to express f as a function of 2d variables only, as follows. For every v ∈ N(u)
consider the bundle of d − 1 edges incident on v that are not incident on u, and treat this bundle as a
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single random variable, denoted as Bv . Bv is a random vector with d − 1 components, each specifying the
tentative color choice of an edge incident on v (except uv). Furthermore, for every edge e = uv, let Xe

denote e ’s color choice. Thus, f depends on d variables of type Xe and on d variables of type Bv . What
is the effect of these variables on f ? If we change the value of a fixed Xe , and keep all remaining variables
the same, this color change can affect at most two edges (one of which is e itself). The resulting ce is 2.
The cumulative effect of the first d variables of type Xe is therefore 4d .

Note now that since the network is triangle-free, changing the value of a bundle Bv can only affect
the edge uv the bundle is incident to. Thus, the effect of changing Bv while keeping everything else
fixed is 1. Summing up, we get a total effect of

∑
i c 2

i = 5d . Plugging in this value in Eq. (13.3), for

t = εd , where 1 > ε > 0 we get, Pr[| f − E[ f ]| > εd] ≤ 2e−2ε2d/5. We can see here why it is
important to have d  log n. With this condition, the bound is strong enough to hold for all vertices
and all rounds simultaneously. In fact, a value d = �(log n) would seem to be enough, but the error
terms accumulate as the algorithm progresses. To counter this cumulative effect, we must have d 
log n.

This establishes that the graph stays almost regular after one round (and in fact at all times), with high
probability. For the full analysis one has to keep track of several other quantities besides vertex degrees,
such as the size of the color lists. While the full analysis of the algorithm is beyond the scope of this survey,
this simple example already clarifies some of the issues. For instance, if the graph is not triangle-free, then
the effect of a bundle can be much greater than 1. To cope with this, more powerful inequalities, and a
more sophisticated analysis, are needed [12,22,23,29]. We remark that in general these inequalities do not
even require the variables Xi to be independent. In fact, only the following bounded difference condition
is required:

|E[ f |X1, . . . , Xi−1, Xi = a] − |E[ f |X1, . . . , Xi−1, Xi = b]| ≤ ci

If this condition holds for all possible choices of a and b, and for all i , then Eq. (13.3) follows. What is
behind this somewhat contrived definition is the fact that the sequence Yi := E[ f |X1, . . . , Xi−1, Xi ]
is a martingale (the so-called Doob martingale). A martingale is simply a sequence of random variables
Z0, Z1, . . . , Zn such thatE[Zi |Z0, . . . , Zi−1] = Zi , for i = 1, 2, . . . , n.A typical example of a martingale
is a uniform random walk in the integer lattice, where a particle can move left, right, up, or down with
equal probability. If Zi denotes the distance of the particle from the origin, the expected distance after one
step stays put. A close relative of the Chernoff–Hoeffding bound, known as Azuma’s inequality, states that
if a martingale sequence Z0, Z1, . . . , Zn satisfies the bounded difference condition |Zi − Zi−1| ≤ ci for
i = 1, 2, . . . , n, then it is unlikely that Zn is far from Z0:

Pr[|Zn − Z0| > t] ≤ 2e−2t2/�i c2
i (13.4)

In words, if a martingale sequence does not make big jumps, then it is unlikely to stray afar from its
starting point. This is true for the random walk; it is very unlikely that after n steps the particle will be far
from the origin. Note that for a Doob martingale Y0 = E[ f ] and Yn = f , so that Eq. (13.4) becomes
Eq. (13.3).

To see the usefulness of this more awkward formulation, let us drop the assumption that the network is
triangle-free and analyze again what happens to the vertex degrees, following the analysis from Ref. [29].
As observed this introduces the problem that the effect of bundles can be very large: changing the value of
Bv can affect the new degree by as much as d − 1. We will therefore accept the fact that the new degree of
a vertex is a function of �(d2) variables, but we will be able to bound the effect of edges at distance one
from the vertex. Fix a vertex v and let N1(v) denote the set of “direct” edges—i.e., the edges incident
on v—and let N2(v) denote the set of “indirect edges” that is, the edges incident on a neighbor of v.
Let N1,2(v) := N1(v)

⋃
N2(v). Finally, let T := (Te1 , . . . , Tem ), m = |E (G)|, be the random vector

specifying the tentative color choices of the edges in the graph G . With this notation, the number of edges
successfully colored at vertex v is a function f (Te , e ∈ N1,2(v)) (to study f or the new degree is the same:
if f is concentrated so is the new degree).
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Let us number the variables so that the direct edges are numbered after the indirect edges (this will be
important for the calculations to follow). We need to compute

λk := |E[f | Tk−1, Tk = ck] − E[f | Tk−1, Tk = c′
k]| (13.5)

We decompose f as a sum to ease the computations later. Introduce the indicator functions fe , e ∈ E :
fe (c) is 1 if edge e is successfully colored in coloring c, and 0 otherwise. Then f = ∑

v∈e fe . Hence we
are reduced, by linearity of expectation, to computing for each e ∈ N1(v), |Pr[ fe = 1 | T k−1, Tk =
ck] − Pr[ fe = 1 | T k−1, Tk = c ′

k]|.
To compute a good bound for λk in Eq. (13.5), we shall lock together two distributions Y and Y ′. Y

is distributed as T conditioned on T k−1, Tk = ck , and Y ′, while Y ′ is distributed as T conditioned on
T k−1, Tk = c ′

k . We can think of Y ′ as identically equal to Y except that Y ′
k = c ′

k . Such a pairing (Y, Y ′) is
called a coupling of the two different distributions [T |T k−1, Tk = ck] and [T |T k−1, Tk = c ′

k]. It is easily
seen that by the independence of all tentative colors, the marginal distributions of Y and Y ′ are exactly
the two conditioned distributions [T | T k−1, Tk = ck] and [T | T k−1, Tk = c ′

k], respectively. Now let us
compute |E[f(Y ) − f(Y ′)]|.

First, let us consider the case when e1, . . . , ek ∈ N2(v), i.e., only the choices of indirect edges are
exposed. Let ek = (w , z), where w is a neighbor of v. Then, for a direct edge e �= vw , fe ( y) = fe ( y ′)
because in the joint distribution space, y and y ′ agree on all edges incident on e . So we only need to compute
|E[fvw(Y )− fvw(Y ′)]|. To bound this simply, we observe first that fvw ( y)− fvw ( y ′) ∈ [−1, 1] and second
that fvw ( y) = fvw ( y ′) unless yvw = ck or yvw = c ′

k . Thus we can conclude that E[fvw(Y )− fvw(Y ′)]| ≤
Pr[Ye = ck ∨ Ye = c′

k] ≤ 2
d .

In fact, one can do a tighter analysis using the same observations. Let us denote fe ( y, yw ,z = c1, ye = c2)
by fe (c1, c2). Note that fvw (ck , ck) = 0 and similarly fvw (c ′

k , c ′
k) = 0. Hence

E[fe(Y ) − fe(Y ′) | z] = ( fvw (ck , ck) − fvw (c ′
k , ck))Pr[Ye = ck]

+( fvw (ck , c ′
k) − fvw (c ′

k , c ′
k))Pr[Ye = c ′

k]

= ( fvw (ck , c ′
k) − fvw (c ′

k , ck))
1

d

(Here we used the fact that the distribution of colors around v is unaffected by the conditioning around z
and that each color is equally likely.) Hence |E[fe(Y ) − fe(Y ′)]| ≤ 1

d .
Now let us consider the case when ek ∈ N1(v), i.e., choices of all indirect edges and of some direct edges

have been exposed. In this case, we merely observe that f is Lipshitz with constant 2: | f ( y) − f ( y ′)| ≤ 2
whenever y and y ′ differ in only one coordinate. Hence we can easily conclude that |E[f(Y )− f(Y ′)]| ≤ 2.

Overall, λk ≤ 1/d for an edge ek ∈ N2(v), and λk ≤ 2 for an edge ek ∈ N1(v). Therefore, we get
∑

k

λ2
k =

∑

e∈N2(v)

1

d2
+

∑

e∈N1(v)

4 ≤ 4d + 1

We thus arrive at the following sharp concentration result by plugging into Eq. (13.3): Let v be an arbitrary
vertex and let f be the number of edges successfully colored around v in one stage of the trivial algorithm.
Then,

Pr[| f − E[f]| >t] ≤ 2 exp

(

− t2

2d + 1
2

)

Since E[ f ] = �(d), this is a very strong bound.

13.4 Matchings

Maximum matching is probably one of the best studied problems in computer science: given a weighted
undirected graph G = (V, E ), compute a subset of pairwise nonincident edges (matching) of maximum
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cost. For simplicity, we will focus on the the cardinality version of the problem, where all the edges have
weight 1.

It is not hard to show that a maximum matching cannot be computed efficiently (i.e., in polylogarithmic
time) in a distributed setting.

Lemma 13.7

Any distributed maximum matching algorithm requires �(n) rounds.

Proof
Consider the following mailing problem: let P be a path of n = 2k + 1 nodes, and let 
 and r be the left
and right endpoints of the path, respectively. Moreover, let c be the central node of the path. Nodes 
 and
r receive the same input bit b, and the problem is to forward b to the central node c . Clearly, this process
takes at least k rounds.

Now assume by contradiction that there exists a o(n) distributed maximum matching protocol M.
We can use M to solve the mailing problem above in the following way. All the nodes run M on the
auxiliary graph P (b) obtained from P by removing the edge incident to 
 if b = 1, and the edge
incident to r otherwise. If b = 1 (b = 0), the edge on the left (right) of v must belong to the (unique)
maximum matching. This way c can derive the value of the input bit b in o(n) = o(k) rounds, which is a
contradiction.

Fischer et al. [30] described a parallel algorithm to compute a near-optimal matching in arbitrary graphs.
Their algorithm can be easily turned into a distributed protocol to compute a k/(k + 1)-approximate
solution in polylogarithmic time, for any fixed positive integer k > 0. A crucial step in the algorithm by
Fischer et al. is computing (distributively) a maximal independent set. Since this subproblem is rather
interesting by itself in the distributed case, in Section 13.4.1 we will sketch how it can be solved efficiently.
In Section 13.4.2 we will describe and analyze the algorithm by Fischer et al.

13.4.1 Distributed Maximal Independent Set

Recall that an independent set of a graph is a subset of pairwise nonadjacent nodes. No deterministic
protocol is currently known for the problem. Indeed, this is one of the main open problems in distributed
algorithms. Luby [31] and independently Alon et al. [32] gave the first distributed randomized algorithms
to compute a maximal independent set. Here we will focus on Luby’s result, as described in Kozen’s
book [33].

As the algorithm by Fischer et al., Luby’s algorithm was originally thought for a parallel setting, but it
can be easily turned into a distributed algorithm. It is worth noticing that transforming an efficient parallel
algorithm into an efficient distributed algorithm is not always trivial. For example, there is a deterministic
parallel version of Luby’s algorithm, while, as mentioned above, no efficient deterministic distributed
algorithm is known for the maximal independent set problem.

Luby’s algorithm works in stages. In each stage, one (not necessarily maximal) independent set I is
computed, and the nodes I are removed from the graph together with all their neighbors. All the edges
incident to deleted nodes are also removed. The algorithm ends when no node is left. At the end of the
algorithm a maximal independent set is given by the union of the independent sets I computed in the
different stages.

It remains to describe how each independent set I is computed. Each node v in the (current) graph
independently becomes a candidate with probability 1

2d(v) . Then, for any two adjacent candidates, the one
of lower degree is discarded from S (ties can be broken arbitrarily). The remaining candidates form the
set I .

Each stage can be trivially implemented with a constant number of communication rounds. The expected
number of rounds is O(log n). More precisely, in each stage at least a constant expected fraction of the
(remaining) edges are removed from the graph.

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C013 March 20, 2007 12:22

Distributed Approximation Algorithms via LP-Duality and Randomization 13-13

A crucial idea in Luby’s analysis is the notion of good nodes: a node v is good if at least one-third of its
neighbors have degree not larger than v. In particular, this implies

∑

u∈N(v)

1

2d(u)
≥ 1

6
(13.6)

Otherwise v is bad. Although there might be few good nodes in a given graph, the edges incident to at
least one good node are a lot. Let us call an edge good if it is incident to at least one good node, and bad
otherwise. The following lemma holds.

Lemma 13.8

At least one-half of the edges are good.

Proof
Direct all the edges toward the endpoint of higher degree, breaking ties arbitrarily. Consider any bad edge
e directed toward a given (bad) node v. By definition of bad nodes, the out-degree of v is at least twice its
own in-degree. Thus we can uniquely map e into a pair of edges (either bad or good) leaving v. Therefore,
the edges are at least twice as many as the bad edges.

Thus it is sufficient to show that in a given stage each good node is removed from the graph with constant
positive probability.

Lemma 13.9

Consider a node v in a given stage. Node v belongs to I with probability 1
4d(v) .

Proof
Let L (v) = {u ∈ N(v) | d(u) ≥ d(v)} be the neighbors of v of degree not smaller than d(v). Then

P r (v /∈ I | v ∈ S) ≤
∑

u∈L (v)

P r (u ∈ S | v ∈ S) =
∑

u∈L (v)

P r (u ∈ S) ≤
∑

u∈L (v)

1

2d(u)
≤

∑

u∈L (v)

1

2d(v)
≤ 1

2

Hence P r (v ∈ I ) = P r (v ∈ I | v ∈ S) P r (v ∈ S) ≥ 1
2

1
2d(v) = 1

4d(v) .

Lemma 13.10

Let v be a good node in a given stage. Node v is discarded in the stage considered with probability at least 1/36.

Proof
We will show that v ∈ N(I ) = ∪u∈I N(u) with probability at least 1/36. The claim follows. If v has a
neighbor u of degree at most 2, by Lemma 13.9, P r (v ∈ N(I )) ≥ P r (u ∈ I ) ≥ 1

4d(u) = 1
8 .

Now assume that all the neighbors of v have degree 3 or larger. It follows that, for every neighbor u of v,
1

2d(u) ≤ 1
6 . Hence by Eq. (13.6) there exists a subset M(v) of neighbors ofv such that 1

6 ≤ ∑
u∈M(v)

1
2d(u) ≤

1
3 . Thus

P r (v ∈ N(I )) ≥ P r (∃ u ∈ M(v) ∩ I )

≥
∑

u∈M(v)

P r (u ∈ I ) −
∑

u,w∈M(v), u �=w

P r (u ∈ I ∧ w ∈ I )

≥
∑

u∈M(v)

1

4d(u)
−

∑

u,w∈M(v), u �=w

P r (u ∈ S ∧ w ∈ S)

≥
∑

u∈M(v)

1

4d(u)
−

∑

u,w∈M(v), u �=w

P r (u ∈ S)P r (w ∈ S)

≥
∑

u∈M(v)

1

4d(u)
−

∑

u∈M(v)

∑

w∈M(v)

1

2d(u)

1

2d(w)

=


1

2
−

∑

w∈M(v)

1

2d(w)




∑

u∈M(v)

1

2d(u)
≥

(
1

2
− 1

3

)
1

6
= 1

36
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13.4.2 The Distributed Maximum Matching Algorithm

Consider an arbitrary matching M of a graph G = (V, E ). A node is matched if it is the endpoint of some
edge in M, and free otherwise. An augmenting path P with respect to M is a path (of odd length) whose
endpoints are free and whose edges are alternatively inside and outside M. The reason of the name is that
we can obtain a matching M′ of cardinality |M| + 1 from M, by removing from M all the edges which are
also in P , and by adding to M the remaining edges of P (in other words, M′ is the symmetric difference
M ⊕ P of M and P ).

The algorithm by Fischer et al. is based on the following two lemmas by Hopcroft and Karp [34]. Let
two paths be independent if they are node-disjoint. Note that a matching can be augmented along several
augmenting paths simultaneously, provided that such paths are independent.

Lemma 13.11

If a matching is augmented along a maximal set of independent shortest augmenting paths, then the shortest
augmenting paths length grows.

Lemma 13.12

Suppose a matching M does not admit augmenting paths of length 2k − 1 or smaller. Then the size of M is at

least a fraction k
k+1 of the maximum matching size.

Proof
Let M∗ be a maximum matching. The symmetric difference M′ = M ⊕ M∗ contains |M∗| − |M|
independent augmenting paths with respect to M. Since each of these paths contains at least k edges of
M, |M∗| − |M| ≤ |M|/k. The claim follows.

We are now ready to describe and analyze the approximate maximum matching algorithm by Fischer
et al. The algorithm proceeds in stages. In each stage i , i ∈ {1, 2, . . . , k}, the algorithm computes a maximal
independent set Pi of augmenting paths of length 2i − 1 with respect to the current matching M. Then M
is augmented according to Pi . Stage i can be implemented by simulating Luby’s algorithm on the auxiliary
graph induced by the augmenting paths considered, where the nodes are the paths and the edges are the
pairs of nonindependent paths. In particular, Luby’s algorithm takes O(log n2i ) rounds in expectation in
the auxiliary graph, where each such round can be simulated within O(i) rounds in the original graph.
Note that, by Lemma 13.11, at the end of stage i there are no augmenting paths of length 2i − 1 or smaller.
It follows from Lemma 13.12 that at the end of the kth stage the matching computed is k

k+1 -approximate.
The total expected number of rounds is trivially O(k3 log n). The following theorem summarizes the
discussion above.

Theorem 13.1

For every integer k > 0, there is a distributed algorithm which computes a matching of cardinality at
least k

k+1 times the maximum matching cardinality within O(k3 log n) communication rounds in expectation.

Wattenhofer and Wattenhofer [35] gave a O(log2 n) randomized algorithm to compute a constant
approximation in the weighted case. In the deterministic case weaker results are available. This is mainly
due to the fact that we are not able to compute maximal independent sets deterministically. Hańćkowiak
et al. [36,37] described an efficient distributed deterministic algorithm to compute a maximal matching.
Recall that any maximal matching is a 2-approximation for the maximum matching problem. Recently, a
1.5 deterministic distributed approximation algorithm was described in Ref. [38].

13.5 LP-Based Distributed Algorithms

It might come as a surprise that LP-based methods find their application in a distributed setting. In this
section we describe some primal-dual algorithms for vertex cover problems that give “state-of-the-art”
approximations. In general, it seems that the primal-dual method, one of the most successful techniques
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in approximation algorithms, when applied to graph algorithms exhibits “local” properties that makes
it amenable to a distributed implementation. The best way to explain what we mean is to work out
an example.

We will illustrate the method by considering the vertex cover problem: given an undirected graph
G = (V, E ), with positive weights {c(v)}v∈V , compute a minimum-cost subset V ′ of nodes such that
each edge is incident to at least one node in V ′. This NP-hard problem is approximable within 2 [39],
and not approximable within 1.1666 unless P = NP [40]. In the centralized case there is a primal-dual
2-approximation algorithm. The distributed implementation we give yields a 2 + ε approximation, where
ε can be any fixed constant greater than 0. The number of communication rounds of the algorithm is
O(log n log 1

ε
).

The sequential primal-dual algorithm works as follows. We formulate the problem as an integer pro-
gram (IP):

min
∑

v∈V

c(v) · xv (IP)

s.t. xv + xu ≥ 1 ∀e = (u, v) ∈ E (13.7)

xv ∈ {0, 1} ∀v ∈ V (13.8)

The binary indicator variable xv , for each v ∈ V , takes value 1 if v ∈ V ′, and 0 otherwise.
We now let (LP) be the standard LP relaxation obtained from (IP) by replacing the constraints (13.8) by

xv ≥ 0 for all v ∈ V . In the linear programming dual of (LP) we associate a variable αe with constraints
(13.7) for every e ∈ E . The linear programming dual (D) of (LP) is then

max
∑

e∈E

αe (D)

s.t.
∑

e=(u,v)∈E

αe ≤ c(v) ∀v ∈ V (13.9)

αe ≥ 0 ∀e ∈ E (13.10)

The starting primal and dual solutions are obtained by setting to 0 all the variables xv and αe . Observe that
the dual solution is feasible while the primal one is not. We describe the algorithm as a continuous process.
We let all the variables αe grow at uniform speed. As soon as one constraint of type (13.9) is satisfied with
equality (it becomes tight), we set the corresponding variable xv to 1, and we freeze the values αe of the
edges incident to v. The α-values of frozen edges do not grow more, so that the constraint considered
remains tight. The process continues until all edges are frozen. When this happens the primal solution
becomes feasible. To see why, suppose not. But then there is an edge e = uv which is not covered, i.e.,
xu = xv = 0. This means that the constraints corresponding to u and v are not tight and αe can continue
to grow, a contradiction.

Thus the set V ′ := {u : xu = 1} is a cover. Its cost is upper-bounded by twice the cost of the dual
solution:

∑

v∈V

c(v) xv =
∑

v∈V ′
c(v) ≤

∑

v∈V ′

∑

e=(u,v)∈E

αe ≤ 2
∑

e∈E

αe

Thus the solution computed is 2-approximate by weak duality.
The continuous process above can be easily turned into a discrete one. Let c ′(v) be the difference between

the right- and the left-hand side of constraints (13.9) in a given instant of time (residual weight):

c ′(v) = c(v) −
∑

e=(u,v)∈E

αe

Moreover, let d ′(v) be the current number of nonfrozen (active) edges incident to v. The idea is to raise
in each step the dual value αe of all the active edges by the minimum over all nodes v such that xv = 0 of
the quantity c ′(v)/d ′(v). This way, in each step at least one extra node enters the vertex cover.
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There is a simple-minded way to turn the algorithm above into a distributed algorithm: each node v

maintains the quantities c ′(v) and d ′(v). A node is active if c ′(v) > 0 and d ′(v) > 0, that is if v and at
least one of its neighbors are not part of the vertex cover. In each round each active node v sends a proposal
c ′(v)/d ′(v) to all its active neighbors. Then it decreases c ′(v) by the minimum of all the proposals sent
and received. If c ′(v) becomes 0, v enters the vertex cover. Otherwise, if d ′(v) becomes 0, v halts since all
its neighbors already belong to the vertex cover.

The main drawback of this approach is that it is very slow. In fact, it may happen that in each step
a unique node enters the vertex cover, thus leading to a linear number of rounds. Khuller et al. [41]
showed how to circumvent this problem by losing something in the approximation. Here we will present
a simplified version of their algorithm and analysis (which was originally thought for weighted set cover
in a parallel setting). The idea is to slightly relax the condition for a node v to enter the vertex cover: it is
sufficient that the residual weight c ′(v) falls below ε c(v), for a given (small) constant ε > 0.

Theorem 13.2

The algorithm above computes a 2
1−ε

-approximate vertex cover within O(log n log 1
ε

) rounds.

Proof
The bound on the approximation easily follows by adapting the analysis of the primal-dual centralized
approximation algorithm:

(1 − ε) apx =
∑

v∈V ′
(1 − ε) c(v) ≤

∑

v∈V ′

∑

e=(u,v)∈E

αe ≤ 2
∑

e∈E

αe ≤ 2 opt

To bound the number of rounds we use a variant of the notion of good nodes introduced in Sec-
tion 13.4.1. Consider the graph induced by the active nodes in a given round, and call the corresponding
edges active. Let us direct all the active edges toward the endpoint which makes the smallest proposal.
A node is good if its in-degree is at least one-third of its (total) degree. By basically the same argument as
in Section 13.4.1, at least one-half of the edges are incident to good nodes. Moreover, the residual weight
of a node which is good in a given round decreases by at least one-third in the round considered. As a
consequence, a node can be good in at most log3/2

1
ε

rounds (after those many rounds it must enter the
vertex cover).

We will show next that the total number of active edges halves every O(log 1
ε

) rounds by means of a po-
tential function argument. It follows that the total number of rounds is O(log m log 1

ε
) = O(log n log 1

ε
).

Let us associate 2 log3/2
1
ε

credits to each edge, and thus 2m log3/2
1
ε

credits to the whole graph. When a
node v is good in a given step, we remove one credit from each edge incident to it. Observe that an active
edge e in a given round must have at least two credits left. This is because otherwise one of the endpoints of
e would already belong to the vertex cover, and thus e could not be active. By m j we denote the number of
active edges in round j . Recall that in each round at least one-half of the edges are incident to a good node,
and such edges loose at least one credit each in the round considered. Thus the total number of credits
in round j decreases by a quantity g j which satisfies g j ≥ m j /2. Consider an arbitrary round i , and let
k be the smallest integer such that mi+k < mi /2 (or i + k is the last round). It is sufficient to show that
k = O(log 1

ε
). In each round j , j ∈ {i, i + 1, . . . , i + k − 1}, the number of edges satisfies m j ≥ mi /2.

The total number of credits at the beginning of round i is at most 2mi log3/2
1
ε

, and the algorithm halts
when no credit is left. Therefore,

2mi log3/2
1

ε
≥

i+k−1∑

j=i

g j ≥
i+k−1∑

j=i

m j

2
≥

i+k−1∑

j=i

mi

4
= k

mi

4
⇒ k ≤ 8 log3/2

1

ε
= O

(

log
1

ε

)

By choosing ε = 1/(nC +1), where C is the maximum weight, the algorithm by Khuller et al. computes
a 2-approximate vertex cover within O(log n log(nC)) rounds. Recently, Grandoni et al. [42] showed how
to achieve the same task in O(log(nC )) rounds by means of randomization. They reduce the problem
to the computation of a maximal matching in an auxiliary graph of nC nodes (to have an idea of the

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C013 March 20, 2007 12:22

Distributed Approximation Algorithms via LP-Duality and Randomization 13-17

i

3

j
2

k
1

j1

j2
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FIGURE 13.2 A weighted graph G (on the left) with the corresponding auxiliary graph G̃ . A maximal matching M
of G̃ is indicated via broken lines. The nodes of G such that all the corresponding nodes in G̃ are matched form a
2-approximate vertex cover.

reduction, see Figure 13.2). Such matching can be computed in O(log(nC)) rounds via the randomized,
distributed maximal matching algorithm by Israeli and Itai [43]. The authors also show how to keep small
the message size and the local computation time by computing the matching implicitly.

The capacitated vertex cover problem is the generalization of the vertex cover problem where each node
v can cover only a limited number b(v) ≤ d(v) of edges incident to it. Grandoni et al. [44] showed how
to compute within O( log nC

ε
) rounds an (2 + ε)-approximate solution, if any, which violates the capacity

constraints by a factor at most (4 + ε). They also proved that any distributed constant approximation
algorithm must violate the capacity constraints by a factor at least 2. This, together with the known lower
bounds on the approximation of (classical) vertex cover, shows that their algorithm is the best possible
modulo constants. The algorithm by Grandoni et al. builds up on a primal-dual centralized algorithm
developed for the purpose, which computes a 2 approximation with a factor 2 violation of the capacity
constraints. Turning such primal-dual algorithm into a distributed protocol is far more involved than in
the case of classical vertex cover.

13.6 What Can and Cannot Be Computed Locally?

This fundamental question in distributed computing was posed by Naor and Stockmeyer [45]. Here,
“locally” means that the nodes of the network use information available locally from a neighborhood that
can be reached in time much smaller than the size of the network. For many natural distributed network
problems such as leader election and consensus the parameter determining the time complexity is not
the number of vertices, but the network diameter D, which is the maximum distance (number of hops)
between any two nodes [46]. A natural question is whether other fundamental primitives can be computed
in O(D) time in a distributed setting. If the model allows messages of unbounded size, then there is a
trivial affirmative answer to this question: collect all the information at one vertex, solve the problem
locally and then transmit the result to all vertices. The problem is therefore only interesting in the more
realistic model where we assume that each link can transmit only B bits in any time step (B is usually
taken to be a constant or O(log n)).

A landmark negative result in this direction was that of Linial [47] which investigated the time com-
plexity of various global functions of a graph computed in a distributed setting. Suppose that n processors
are arranged in a ring and can communicate only with their immediate neighbors. Linial showed that a
three-coloring of the n-cycle requires time �(log∗ n). This result was extended to randomized algorithms
by Naor [48]: any probabilistic algorithm for three-coloring the ring must take at least 1

2 log∗ n−2 rounds,
otherwise the probability that all processors are colored legally is less than 1

2 . The bound is tight (up to a
constant factor) in light of the deterministic algorithms of Cole and Vishkin [49].

There has been surprisingly little continuation of work in this direction until fairly recently. Garay
et al. [50] gave an algorithm of complexity O(D +√

n log n) to compute a minimum spanning tree (MST)
of a graph on n vertices with diameter D. Similar bounds were attained by other methods, but none
managed to break the

√
n barrier, leading to the suspicion that it might be impossible to compute the

MST in time o(
√

n) and so this problem is fundamentally harder than the other paradigm problems. The
issue was finally settled by Peleg and Rubinovich [51], who showed a �(

√
n) lower bound on the problem
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(up to log factors). Subsequently, Elkin [52] improved the lower bound and also extended it to distributed
approximation algorithms. Kuhn et al. [53] gave lower bounds on the complexity of computing the
minimum vertex cover (MVC) and the MDS of a graph: in k communication rounds, the MVC and MDS
can only be approximated to factors of �(nck2

/k) and �(�1/k/k) (where � is the maximum degree of the
graph). Thus, the number of rounds required to reach a constant or even a polylog approximation is at least
�(

√
log n/ log log n) and �(log �/ log log �). The same lower bounds also apply to the construction of

maximal matchings and maximal independent sets via a simple reduction.

13.6.1 A Case Study: Minimum Spanning Tree

Here, we give a self-contained exposition of the lower bound for the MST problem due to Refs. [51,52].
We will give the full proof of a bound somewhat weaker than the optimal result of Elkin to convey the
underlying ideas more clearly. The basic idea is easy to explain using the example of Peleg and Rubinovich
[51] (see Figure 13.3). The network consists of m2 country road and one highway. Each country road
has m toll stations and between every two successive toll station are m towns. The highway has m toll
stations with no towns in between. Each toll station number i on each country road is connected to the
corresponding highway toll station. The left end of the country road i is labelled si and its right end ri .
The left end of the highway is labelled s and the right end r . This is the basic underlying graph. Note that
there are �(m4) vertices and the diameter is �(m).

As for the weights, every edge along the highway or on the country roads has weight 0. The roads
connecting the toll stations on the country roads to the corresponding toll stations on the highway have
weight ∞ except for the first and last toll stations. The toll station connections at the right end between each
ri and r are all 1. At the left end, between each si and s , they take either the value 0 or ∞.

What does the MST of this network look like? First, we may as well include the edges along the highway
and each path since these have zero cost. Also the intermediate connecting edges have weight ∞ and so are
excluded. That leaves us with the connecting edges on the left and on the right. The choice here depends
on the weights on the left connecting edges. There are m connecting edges from the left vertex s . If the edge
(s , si ) has weight ∞, then we must exclude this and include the matching connection (ri , r ) at the right
end. In contrast, if edge (s , si ) has weight 0, then we must include this and exclude the corresponding edge
(ri , r ) at the right to r . Thus there are m2 decisions made at s depending on the weights of the corresponding
edges, and these decisions must be conveyed to r to pick the corresponding complementary edges. How
quickly can these m2 bits be conveyed from s to r ? Clearly, it would take very long to route along the
country roads, and so one must use the highway edges instead. Each highway edge can forward only B bits
at any time step. So, heuristically, transporting the m2 bits takes �(m3/B) steps.

To make this heuristic argument formal, Peleg and Rubinovich introduced a mailing problem to be
solved on a given network. In the example above, the sender s has m2 bits that need to be transported
to the receiver r . At each step one can forward B bits along any edge. How many steps do we need to
correctly route the m2 bits from the sender to the receiver? It is easy to see that there is a reduction
from the mailing problem to that of computing the MST: for each of the input bits at s , set the weights
on the connecting edges accordingly: the weight (s , si ) is ∞ if the input bit i is 1 and 0 otherwise.
Now compute the MST. Then, if vertex r notices that the edge (ri , r ) is picked in the MST, it decodes i

s1 r1

s2 r2

s r

s3 r3

s4 r4

FIGURE 13.3 MST lower bound graph for m = 2. The black nodes are the toll stations and the white nodes are
the towns.
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as 1 and as 0 otherwise. This will correctly solve the mailing problem, due to the structure of the MST
discussed above. Thus, a lower bound on the mailing problem implies the same lower bound on the MST
problem.

In fact by a slight change, the correspondence can be extended from exact to approximation algorithms.
Elkin [52] introduced the corrupted mail problem. Here there are � bits at the sender exactly α� of which
are 1’s, where α and � are parameters. In the example above, � = m2. The receiver should get � bits
delivered to it, but these are allowed to be somewhat corrupted. The restrictions are (a) any input bit that
was 1 must be transmitted correctly without corruption and (b) the total number of 1’s delivered can be at
most β�, where β ≥ α is another parameter. Consider solving the (α, β) corrupted mail problem on the
Peleg–Rubinovich example. As in the reduction before, the vertex s sets the weights on the left connections
according to its input and so exactly α� connections have weight ∞, and the rest 0. The optimal MST has
weight exactly α� obtained by picking the corresponding right connections. Now, instead of the optimal
MST, suppose we apply a protocol to compute a β/α approximation. This approximate MST can have
weight at most β�, and it must include the connection edges at r paired with the infinite weight edges at
s . Thus, if r sets its bits as before corresponding to which of its connections are in the approximate MST,
we get a correct protocol for the (α, β) corrupted mail problem. Thus a lower bound for the (α, β)
corrupted mail problem implies the same lower bound for a β

α
-approximate MST.

We are thus left with the task of proving a lower bound for the corrupted mail problem. Let the state
ψ(v, t) of a vertex v at some time t denote the sequence of messages it has received up to this time. Consider
the start vertex s at time 0: this can be in any of

(
�
α�

)
states corresponding to the input it receives. At this

time, on the other hand, the vertex r (and indeed, any other vertex) is in a fixed state (having received no
messages at all). As time progresses and messages are passed, the set of possible states that other vertices
are in expands. Eventually, the set of possible states that vertex r is in must be large enough to accommodate
the output corresponding to all the possible inputs at s . Each possible state of r with at most β� 1’s can be
the correct answer to at most

(
β�
α�

)
input configurations at s . Hence, the set of output states at r must be at

least
(

�
α�

)
/
(
β�
α�

) ≥ (1/eβ)α� .
Now, we will argue that it must take a long time for any protocol, before enough messages arrive at r

for the set of its possible states to have this size. Consider the tail sets Ti , i ≥ 1 which consist of the tail of
each country road from vertex i until the end, and the corresponding fragment of the highway consisting
of the vertices h�i/m�m until hm2 . Also, set T0 := V \ {h0}. For a subset of vertices U , let C(U, t) denote
the set of all possible vectors of states of the vertices in U at time t, and let ρ(U, t) := |C(U, t)|. Note that
ρ(T0, 0) = 1 although ρ({s }, 0) = (

�
α�

)
.

We now focus on how set of configurations of the tail sets Ti grow in time. Fix a configuration C ∈
C(Tt , t). How many configurations in C(Tt+1, t + 1) can this branch into? The tail set Tt+1 is connected to
the rest of the graph by one highway edge f and by m2 path edges. Each of the path edges carries a unique
message determined by the state of the left endpoint in configuration C . The state of the left endpoint of
the highway edge f is not determined by C and hence there could be a number of possible messages that
could be relayed along it. However, because of the restriction that at most B bits can be transmitted along
an edge at any time step, the total number of possible behaviors observable on edge f at this time step
is at most 2B + 1. Thus the configuration C can branch off into at most 2B + 1 possible configurations
C ′ ∈ C(Tt+1, t + 1). Thus we have argued that for 0 ≤ t < m2, ρ(Tt+1, t + 1) ≤ (2B + 1)ρ(Tt , t). By
induction, this implies that for 0 ≤ t < m2, ρ(Tt , t) ≤ (2B + 1)t . Thus finally, we have, that if t∗ is the
time at which the protocol ends, then either t∗ ≥ m2, or (1/eβ)α� ≤ ρ({r }, t∗) ≤ ρ(Tt∗ , t∗) ≤ (2B +1)t∗ .
Hence, t∗ ≥ min(m2, α� log( 1

eβ )/(B + 1)).

Recalling that � = m2 in our specific graph, and taking β to be a constant such that βe < 1, t∗ =
�(αm2/B), or, in terms of the number of vertices n = �(m4) of the graph, t∗ = �(α

√
n/B). If we have

a H := β/α approximation algorithm for the MST, this implies that t∗ = �(
√

n/H B), implying the
trade-off t∗ H = �(

√
n/B) between time and approximation. Elkin [52] improves the lower bound for

t∗ to t∗ = �
(√

n/B/H
)

, implying the time-approximation trade-off t∗2 H = �
(√

n/B
)

, and gives a
protocol achieving this trade-off.
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13.6.2 The Role of Randomization in Distributed Computing

Does randomization help in a distributed setting? This is a fundamental open question in distributed
computing. For some of the problems discussed, such as three-coloring on a ring, we have noted that
matching lower bounds hold for randomized algorithms. By the usual application of Yao’s Minimax
Theorem, Elkin’s lower bound also applies to randomized algorithms. For the problem of computing
maximal matchings and maximal independent sets, there are simple randomized algorithms, whereas the
result of Kuhn et al. [53] shows a superpolylog lower bound for deterministic algorithms. A classification
of problems by the degree to which randomization helps is an interesting open problem.

References

[1] Basagni, S., Mastrogiovanni, M., Panconesi, A., and Petrioli, C., Localized protocols for ad hoc
clustering and backbone formation: A performance comparison, IEEE Trans. on Parallel and Dist.
Systems, 17(4), 292, 2006.

[2] Rajagopalan, S. and Vazirani, V. V., Primal-dual RNC approximation algorithms for set cover and
covering integer programs, SIAM J. Comput., 28(2), 525(electronic), 1999.

[3] Vazirani, V. V., Approximation Algorithms, Springer, Berlin, 2001.
[4] Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., and Protasi, M., Com-

plexity and Approximation, Springer, Berlin, 1999.
[5] Raz, R. and Safra, S., A sub-constant error-probability low-degree test, and a sub-constant error-

probability PCP characterization of NP, Proc. of STOC, 1997, p. 475.
[6] Arora, S. and Sudan, M., Improved low-degree testing and its applications, Combinatorica, 23(3),

365, 2003.
[7] Feige, U., A threshold of ln n for approximating set cover, JACM, 45(4), 634, 1998.
[8] Dubhashi, D., Mei, A., Panconesi, A., Radhakrishnan, J., and Srinivasan, A., Fast distributed

algorithms for (weakly) connected dominating sets and linear-size skeletons, Proc. of SODA,
2003, p. 717.

[9] Jia, L., Rajaraman, R., and Suel, T., An efficient distributed algorithm for constructing small domi-
nating sets, Dist. Comput., 15, 193, 2002.

[10] Kuhn, F., and Wattenhofer, R., Constant-time distributed dominating set approximation, Dist. Com-
put., 17(4), 303–310, 2005.

[11] Karp, R. M., Probabilistic recurrence relations, JACM, 41(6), 1136, 1994.
[12] Dubhashi, D. and Panconesi, A., Concentration of measure for the analysis of randomization algo-

rithms. Cambridge University Press. Forthcoming. http://www.dsi.uniroma1.it/∼ale/Papers/master
.pdf
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14.1 Introduction

Heuristic algorithms are often difficult to analyse theoretically; this holds in particular for advanced,
randomised algorithms that perform well in practice, such as high-performance stochastic local search
(SLS) procedures (also known as metaheuristics) [1]. Furthermore, for various reasons, the practical
applicability of the theoretical results that can be achieved is often very limited. Some theoretical results
are obtained under idealised assumptions that do not hold in practical situations—as is the case, for
example, for the well-known convergence result for simulated annealing [2]. Also, most complexity results
apply to worst-case behaviour, and average-case results, which are fewer and typically much harder to
prove, are often based on instance distributions that are unlikely to be encountered in practice. Finally,
theoretical bounds on the run times of heuristic algorithms are typically asymptotic and do not reflect
the actual behaviour accurately enough for many purposes, in particular, for comparative performance
analyses. For these reasons, researchers (and practitioners) typically use empirical methods when analysing
or evaluating heuristic algorithms.

In many ways, the issues and considerations arising in the empirical analysis of algorithmic behaviour
are quite similar to those commonly encountered in experimental studies in biology, physics or any other
empirical science. Fundamentally, to investigate a complex phenomenon of interest, the classical scientific
cycle of observation, hypothesis, prediction and experiment is followed to obtain a model that explains the
phenomenon. Different from natural phenomena, algorithms are completely specified and mathematically
defined at the lowest level; still, in many cases, this knowledge is insufficient for theoretically deriving
all relevant aspects of their behaviour. In this situation, empirical approaches, based on computational
experiments, are often not only the sole way of assessing a given algorithm, but also have the potential to

14-1
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provide insights into practically relevant aspects of algorithmic behaviour that appear to lie well beyond
the reach of theoretical analysis.

Some general goals are common to all empirical studies: Reproducibility ensures that experiments can
be repeated with the same outcome; it requires that all relevant experimental conditions and protocols
are specified clearly and in sufficient detail. In the empirical analysis of algorithmic behaviour, repro-
ducibility is greatly facilitated by the fact that actual computations can in principle be replicated exactly.
However, complications can arise when dealing with randomised algorithms or randomly generated in-
put data, in which case statistical significance and sample sizes can become critical issues (despite the
fact that typically, pseudo-random number generators are used to implement random processes). Com-
parability with past and future related results ensure that empirical results are useful in the context of
larger scientific endeavours. To achieve this goal, experiments have to be designed in such a way that
their results can be meaningfully compared to those from relevant previous works and facilitate com-
parisons with related results expected from future experiments. Finally, perhaps the main goal of any
empirical study is to gain insight and understanding; this implies that experiments should be designed
in such a way that their outcome is likely to shed light on important, previously open questions regard-
ing the phenomenon of interest. In the empirical analysis of algorithms, in many cases these questions
are of the form ‘Algorithm A has property X ’, and in particular, ‘Algorithm A performs better than
Algorithm B ’.

14.2 Decision Algorithms

Many computational problems take the form of decision problems, in which solutions are characterised
by a set of logical conditions. As an example, consider the following decision variant of the travelling
salesman problem (TSP): given an edge-weighted graph and a real number b, does there exist a Hamiltonian
cycle (i.e., a round trip that visits every vertex exactly once) with total weight at most b? Other well-known
examples of decision problems include the propositional satisfiability problem (SAT), the graph colouring
problem and certain types of scheduling problems.

A decision algorithm is an algorithm that takes as an input an instance of a given decision problem
and determines whether the instance is soluble, i.e., whether it has a solution. In most cases, if a solution
is found, that solution is also returned by the algorithm. Note that this notion of a decision algorithm
includes algorithms that may be incomplete, i.e., may fail to return a correct result within bounded time,
or even incorrect, i.e., sometimes return erroneous results. In the following, we will focus on decision
algorithms that are correct, but incomplete; this captures most heuristic decision algorithms, including,
for example, almost all SLS algorithms for SAT.

14.2.1 Analysis on Single Instances

The primary performance metric for complete (and correct) decision algorithms is typically run time, i.e.,
the time required for solving a given problem instance. For incomplete algorithms, it may happen that,
although the given problem instance is soluble, a solution cannot be found. (In this case, the algorithm
may not terminate, or signal failure, for example, by returning ‘no solution found’.) Obviously, such cases
need to be noted; by further analysing them, valuable insights into weaknesses of the algorithm (or errors
in its implementation) can be obtained.

Run time is typically measured in terms of CPU time (rather than wall-clock time) to minimise
the impact of other processes that are running concurrently (e.g., system processes). Obviously, CPU
time measurements are always based on a concrete implementation and run-time environment, i.e.,
machine and operating system; to facilitate reproducibility and comparability, a specification of the
run-time environment (comprising at least the processor type and model, clock speed and amount of
RAM, as well as the operating system, including version number) should be given along with any CPU time
result.
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It is often desirable to further abstract from details of the implementation and run-time environment,
especially in the context of comparative performance studies. This can be achieved using operation counts,
which reflect the number of elementary operations that are considered to contribute significantly towards
an algorithm’s performance, and cost models, which relate the cost of these operations (typically in terms
of run time per execution) relative to each other or absolute in terms of CPU time for a given imple-
mentation and run-time environment [3]. For SLS algorithms, a commonly used operation count is the
number of local search steps. When measuring performance in terms of operation counts, care should
be taken to select elementary operations whose cost per step is constant or close to constant within and
between runs of the algorithm on the same instance. In this situation, operation counts and CPU-time
measurements are related to each other by scaling with a constant factor that only depends on the given
problem instance. Using operation counts and an associated cost model rather than CPU-time measure-
ments as the basis for empirical studies often gives a clearer and more detailed picture of algorithmic
performance.

While performance analysis of deterministic decision algorithms on a single problem instance consists of
a simple run-time measurement, matters are slightly more involved if the algorithm under consideration is
randomised. In that case, the run time of an algorithm A applied to a given problem instance π corresponds
to a random variable RTA,π ; the probability distribution of RTA,π is called the run-time distribution (RTD)
of A on π . Clearly, the run-time behaviour of an algorithm A on a given problem instance π is completely
and precisely characterised by the respective RTD. Furthermore, this RTD can be estimated based on run-
time measurements obtained from multiple independent runs of A on π . For sufficiently high numbers of
runs, the empirical RTDs thus obtained approximate the underlying theoretical RTD arbitrarily accurately.
In practice, empirical RTDs based on 20–100 runs are sufficient for most purposes (this will be further
discussed later in this chapter).

Graphical representations of empirical RTDs are often useful; plots of the respective cumulative distri-
bution functions (CDFs) are easily obtained (see Ref. [1]) and, unlike histograms, show the underlying data
in full detail. They also make it easy to read quantiles and quantile ratios (such as the median and quartile
ratio) directly off the plots; these basic descriptive statistics provide the basis for quantitative analyses and
many statistical tests, which are discussed later. Compared to averages and empirical standard deviations,
medians and quantile ratios have the advantage of being less sensitive with respect to outliers. Given the
fact that the RTDs of many randomised heuristic algorithms show very large variability, the stability of
basic descriptive statistics can become an important consideration. For the same reason, empirical RTDs
are often best presented in the form of semi-log or log-log plots. Figure 14.1 shows an example of a typical
empirical RTD plot.
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FIGURE 14.1 Left : Example of an empirical run-time distribution of an SLS algorithm for SAT applied to a hard
problem instance; right : semi-log plot of the same RTD. P (solve) denotes the probability for finding a solution within
the given run time.
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14.2.2 Analysis on Instance Ensembles

Typically, the behaviour of heuristic algorithms is analysed on a set or ensemble of instances. The selection
of such benchmark sets is an important factor in the design of an empirical study, and the use of inadequate
benchmark sets can lead to questionable results and misleading conclusions. Although the criteria for
benchmark selection depend significantly on the problem domain under consideration, on the hypotheses
and goals of the empirical study and on the algorithms being analysed, there are some general principles
and guidelines, which can be summarised as follows (for more details, see Ref. [1]): Benchmark sets should
contain a diverse collection of problem instances, ideally including instances from real-world applications
as well as artificially crafted and randomly generated instances; the instances should typically be intrinsically
hard or difficult to solve for a broad range of algorithms. Furthermore, to facilitate the reproducibility
of empirical analyses and the comparability of results between studies, it is important to use established
benchmark sets (in particular those available from public benchmark libraries, such as ORLIB [4], TSPLIB
[5] or SATLIB [6]), and to make newly created test-sets available to other researchers.

The basic approach to the empirical evaluation of an algorithm on a given ensemble of problem instances
is to perform the same type of analysis described in the previous section on each individual instance. For
small ensembles, it is often possible to analyse and report the results of this analysis for all instances,
for example, in the form of tables or multiple RTD plots. When dealing with bigger ensembles, such
as benchmark sets obtained from random instance generators, it becomes important to characterise the
performance of a given algorithm on individual instances as well as across the entire ensemble. The latter
can be achieved by aggregrating the results obtained on all individual instances into a so-called search cost
distribution (SCD). For a deterministic algorithm applied to a given benchmark set, the empirical SCD
is obtained from the run-time measurements on each individual problem instance. Analogous to RTDs,
SCDs are typically best analysed qualitatively by means of CDF plots and quantitatively by means of basic
descriptive statistics, such as quantiles and quantile ratios. For randomised decision algorithms, SCDs can
be computed based on the median (or mean) run times for each individual instance; this means that each
point in the SCD plot corresponds to a statistic of an entire RTD. It is often appropriate to also analyse in
more detail a small set of RTDs that have been carefully selected in such a way that they representatively
illustrate the variation in algorithm behaviour across the ensemble.

In many cases, it is also of considerable interest to investigate the dependence of algorithmic performance
on certain instance features, such as problem size. This is often done by studying the correlation between
the feature value for a given problem instance and the corresponding run time (or RTD) across the
ensemble, for example, by means of simple correlation plots or using appropriate statistics, such as the
Pearson correlation coefficient, and possibly also significance tests. The issues faced in this context are very
similar to those arising in the comparative analysis of multiple algorithms on instance ensembles and will
be further discussed in Section 14.2.4. In terms of qualitative analyses, choosing an appropriate graphical
representation, such as a semilogarithmic plot for the functional dependence of mean cost on problem
size, is often the key for easily detecting interesting behaviour (e.g., exponential scaling).

14.2.3 Comparative Analysis on Single Instances

In many empirical studies, the main goal is to establish the superiority of one heuristic algorithm over
another. The most basic form of this type of analysis is the comparative analysis between two decision
algorithms on a single problem instance. If both algorithms are deterministic, this amounts to a straight-
forward comparison between the respective run-time measurements. Clearly, in the case of incomplete
algorithms or prematurely terminated runs, it needs to be noted if one or both algorithms failed to solve
the given problem instance.

If at least one of the algorithms is randomised, the situation is slightly more complicated. Intuitively, an
algorithm A shows superior performance compared to another algorithm B on a given problem instance π

if for no run time, A has a lower solution probability than B , and there are some run times for which the
solution probability of A is higher than that of B . In that case, we say that A probabilistically dominates B
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TABLE 14.1 Upper Bounds on the Performance Differences Detectable by
the Mann–Whitney U -Test for Various Sample Sizes (Number of Runs per
RTD)

Significance Level 0.05, power 0.95 Significance Level 0.01, power 0.99

Sample size m1/m2 Sample size m1/m2

3010 1.1 5565 1.1
1000 1.18 1000 1.24

122 1.5 225 1.5
100 1.6 100 1.8

32 2 58 2
10 3 10 3.9

Notes: m1/m2 denotes the ratio between the medians of the two given RTDs. The
values in this table have been obtained using a standard procedure based on adjusting
the statistical power of the two-sample t-test to the Mann–Whitney U -test using a
worst-case Pitman asymptotic relative efficiency (ARE) value of 0.864.

on π (see Ref. [1]). A probabilistic domination relation holds between two decision algorithms on a given
problem instance if, and only if, their respective cumulative RTD graphs do not cross each other. This
provides a simple method for graphically checking probabilistic domination between two SLS algorithms
on individual problem instances. The concept of probabilistic domination also applies to situations where
one of A and B is deterministic, since in terms of analysing run-time behaviour, deterministic decision
algorithms can be seen as special cases of randomised decision algorithms that have degenerate RTDs
whose CDFs are simple step functions. In situations where a probabilistic domination relation does not
hold, that is, there is a crossover between the respective RTD graphs, which of the two given algorithms is
preferable in terms of higher-solution probability depends on the time the algorithms are allowed to run.

Statistical tests can be used to assess the significance of empirically measured performance differences
between randomised algorithms. In particular, the Mann–Whitney U-test (or, equivalently, the Wilcoxon
rank sum test) can be used to determine whether the medians of two given RTDs are equal [7]; a rejection
of this null hypothesis indicates significant performance differences. The widely used t-test compares the
means of two populations, but it requires the assumption that the given samples are normally distributed
with identical variance—an assumption which is usually not met when analysing individual RTDs. The
more specific hypothesis whether the theoretical RTDs of two decision algorithms are identical can be
tested using the Kolmogorov–Smirnov test for two independent samples [7].

An important question arising in comparative performance analyses of randomised algorithms is that of
sample size: How many independent runs should be performed when measuring the respective empirical
RTDs? Generally, the ability of statistical tests to correctly distinguish situations in which the given null
hypothesis is correct from those where it is incorrect crucially depends on sample size. This is illustrated
in Table 14.1, which shows the performance differences between two given RTDs that can be detected by
the Mann–Whitney U -test for standard significance levels and power values in dependence of sample size.
(The significance level and power value indicate the maximum probabilities that the test incorrectly rejects
or accepts the null hypothesis that the medians of the given RTDs are equal, respectively.)

In cases where probabilistic domination does not hold, the previously mentioned statistical tests are still
applicable. However, they do not capture interesting and potentially important performance differences
that can be easily seen from the respective RTD graphs. Such an example is depicted in Figure 14.2.

14.2.4 Comparative Analysis on Instance Ensembles

Comparative performance analyses of two decision algorithms on ensembles of problem instances are
based on the same data used in the comparative analysis on the respective single instances. When dealing
with two deterministic decision algorithms, A and B , this results in pairs of run times for each problem
instance. In many cases, particularly when evaluating algorithms on big and diverse benchmark sets, there
will be cases where A performs better than B and vice versa. In such situations it can be beneficial to use
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FIGURE 14.2 RTDs for two SLS algorithms for the TSP that for a given benchmark instance are required to find an
optimal solution. Between 20 and 30 CPU s the two RTDs cross over.

statistical tests to assess the significance of the observed performance differences; this is particularly the
case for benchmark sets obtained from random instance generators. The binomial sign test as well as the
Wilcoxon-matched pairs signed-rank test determine whether the median of the paired differences is statisti-
cally significantly different from zero, indicating that one algorithm performs better than the other [7]. The
Wilcoxon test is more sensitive, but requires the assumption that the distribution of the paired differences
is symmetric. The well-known t-test for two dependent samples requires assumptions on the normality and
homogeneity of variance of the underlying distributions of search cost over the given instance ensembles,
which are typically not satisfied when dealing with the run times of heuristic algorithms.

If one or both of the given algorithms are randomised, the same tests can be applied to RTD statistics,
such as the median (or mean) run time. However, this approach does not capture qualitative differences
in performance, particularly as given in cases where there is no probabilistic domination of one algorithm
over the other, and may suffer from inaccuracies due to a lack of statistical stability of the underlying RTD
statistics. Therefore, additional analyses should be performed. In particular, the statistical significance of
the performance differences (such as median run time) on each individual problem instance should be
investigated using an appropriate test (such as the Mann–Whitney U -test). Furthermore, for each instance
it should be checked whether a probabilistic domination relation holds; based on this information, the given
instance ensemble can be partitioned into three subsets: (i) those instances on which A probabilistically
dominates B , (ii) those on which B probabilistically dominates A, and (iii) those for which probabilistic
domination is not observed. The relative sizes and contents of these partitions give a rather realistic and
detailed picture of the algorithms’ relative performance on the given set of instances.

Particularly for large instance ensembles, it is often useful to study the correlation between the perfor-
mance of algorithms A and B across the given set of instances. This type of analysis can help to expose
(and ultimately, remedy) weaknesses of an algorithm and to refine claims about its relative superiority
for certain types of problem instances. For qualitative analyses of performance correlation, scatter plots
can be used in which each instance is represented by one point, whose coordinates correspond to the
performance of A and B applied to that instance. Performance measures used in this context are typically
run time in case of deterministic algorithms, and RTD statistics, such as the median run time, otherwise.
It should be noted that in the case of randomised algorithms, statistical instability of RTD statistics due
to sampling error limits the accuracy of performance measurements. An example of such an analysis is
shown in Figure 14.3.
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FIGURE 14.3 Correlation between the median run times required by two high-performance SLS algorithms for
finding optimal solutions to a set of 100 TSP instances of 300 cities each; each median was measured across 10 runs
per algorithm. The band between the two outer lines indicates performance differences that cannot be assumed to be
statistically significant for the given sample size of the underlying RTDs.

Quantitatively, the correlation can be summarised using the empirical correlation coefficient. When
the nature of an observed performance correlation seems to be regular (e.g., a roughly linear trend in
the scatter plot), a simple regression analysis can be used to model the corresponding relationship in the
algorithms’ performance. It is often useful to perform correlation analyses on log-transformed data; this
facilitates capturing general polynomial relationships.

To test the statistical significance of an observed performance correlation, nonparametric tests, such as
Spearman’s rank order test or Kendall’s tau test, can be employed [7]. These tests determine whether there
is a significant monotonic relationship in the performance data. They are preferable over tests based on
Pearson’s product-moment correlation coefficient, which require the assumption that the two random
variables underlying the performance data stem from a bivariate normal distribution. (This assumption
is often violated when dealing with run times of heuristic algorithms over instance ensembles.)

14.3 Optimisation Algorithms

In many situations, the objective of a computational problem is to find a solution that is optimal with respect
to some measure of quality or cost. An example of such an optimisation problem is the widely studied TSP:
given an edge-weigthed graph G , find a Hamiltonian cycle with minimal total weight, i.e., a shortest round
trip that visits every vertex of G exactly once. Another example is MAX-SAT, the optimisation variant of the
SAT problem, where the objective is to find an assignment of truth values to the propositional variables in a
given formula F in conjunctive normal form such that a maximal number of clauses of F are simultaneously
satisfied.

The measure to be optimised in an optimisation problem is called the objective function, and the term
solution quality is used to refer to the objective function value of a given candidate solution. In most cases,
solution qualities take the form of real numbers, and the goal is to find a candidate with either minimal
or maximal solution quality. Optimisation problems can include additional logical conditions that any
candidate solution needs to satisfy to be deemed valid or feasible. In the case of the TSP, such a logical
condition states that to be considered a valid solution, a path in the given graph must be a Hamiltonian
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cycle. Logical conditions can always be integrated into the objective function in such a way that valid
solutions are characterised by objective function values that exceed a specific threshold in solution quality.

An optimisation algorithm is an algorithm that takes as an input an instance of a given optimisation
problem and returns a valid solution (or may determine that no valid solution exists). Optimisation
algorithms that are theoretically guaranteed to find an optimal solution for any soluble problem instance
within bounded time are called complete or exact; algorithms that are guaranteed to always return a solution
that is within a specific constant factor of an optimal solution are called approximation algorithms.

When evaluating the performance of optimisation algorithms (theoretically or empirically), it is often
useful to study the ratio between the solution quality achieved by the algorithm, q , and the optimal
solution quality for the given problem instance, q∗. This performance measure is called the approximation
ratio; formally, to be uniformly applicable to minimisation and maximisation problems, it is defined as
r := max{q/q∗, q∗/q}. When used in the empirical analysis of optimisation algorithms, solution qualities
are often expressed in percent deviation from the optimum; this measure of relative solution quality is
defined as q ′ := (r − 1) × 100. For most heuristic optimisation algorithms, in particular for those based
on SLS methods, there is a trade-off between run time and solution quality: the longer the algorithm is
run, the better solutions are produced. The characterisation of this trade-off is of significant importance
in the empirical analysis of optimisation algorithms.

14.3.1 Analysis on Single Instances

As in the case of decision algorithms, the empirical analysis of a deterministic optimisation algorithm on a
single problem instance is rather straightforward, and many of the same considerations (particularly with
respect to measuring run times and failure to produce valid solutions) apply. Run time / solution quality
trade-offs are characterised by the development of solution quality over time, in the form of so-called
solution quality over time (SQT) curves; these represent for each point in time t the quality of the best
solution seen up to time t (the so-called incumbent solution) and are hence always monotone.

A slightly more complicated situation arises when dealing with randomised optimisation algorithms.
Following the same approach as for randomised decision algorithms, run time is considered a random
variable; in addition, a second random variable is used to capture solution quality, and the joint probability
distribution of these two random variables characterises the behaviour of the algorithm on a given problem
instance precisely and completely. For a given algorithm and problem instance, this probability distribution
is called the bivariate RTD of A on π [1]; it can be visualised in the form of a cumulative distribution
surface, each point of which represents the probability that A applied to π reaches (or exceeds) a certain
solution quality bound within a certain amount of time (see Figure 14.4).

Empirical bivariate RTDs can be easily determined from multiple solution quality traces, each of which
represents the development of solution quality over time for a single run of the algorithm on the given
problem instance. A solution quality trace usually consists of pairs (t, q) for each point in time t at which
an improvement in the incumbent solution, i.e., a new best solution quality q within the current run,
has been achieved. As in the case of the (univariate) RTDs for decision algorithms, a sufficient number of
independent runs (i.e., solution quality traces) on any given problem instance is required for measuring
reasonably accurate empirical bivariate RTDs; obviously, the same holds for basic descriptive RTD statistics
on the solution quality obtained within a given run time, or the run time required for reaching a given
solution quality.

Multivariate probability distributions are more difficult to handle than univariate distributions. There-
fore, rather than working directly with bivariate RTDs, it is often preferable to focus on the (univariate)
distributions of the run time required for reaching a given solution quality threshold instead. These
qualified run-time distributions (QRTDs) are the marginals of a given bivariate RTD for a specific bound
on solution quality; intuitively, they correspond to cross-sections of the respective two-dimensional cu-
mulative RTD graph for fixed solution quality values (see Figure 14.4). QRTDs directly characterise the
ability of an SLS algorithm for an optimisation problem to solve the associated decision problems for the
given solution quality bound. They are particularly useful for analysing an algorithm’s ability to find opti-
mal, close-to-optimal or feasible solutions and can be studied using exactly the same techniques as those
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FIGURE 14.4 Top left: Bivariate RTD for an SLS algorithm applied to a TSP benchmark instance; the other plots give
different views on the same distribution; top right: QRTDs for various relative solution quality bounds (percentage
deviation from optimum); bottom left: SQDs for various run-time bounds (in CPU s); and bottom right: SQT curves
for various SQD quantiles.

applied to the (univariate) RTDs of decision algorithms. A detailed picture of the behaviour of a randomised
optimisation algorithm on a single problem instance can be obtained by analysing series of qualified RTDs
for increasingly tight solution quality thresholds. The solution quality bounds used in a QRTD analysis
are typically derived from knowledge of optimal solutions or bounds on the optimal solution quality; the
latter case includes bounds obtained from long runs of heuristic optimisation algorithms.

Another commonly used way of studying the behaviour of randomised optimisation algorithms on a
given problem instance is to analyse the distribution of solution qualities obtained over multiple indepen-
dent runs with a fixed time bound. Technically, these so-called solution quality distributions (SQDs) are the
marginals of the underlying bivariate RTDs for a fixed run-time bound. They correspond to cross-sections
of the two-dimensional cumulative RTD graph for fixed run-time values; in this sense, they are orthogonal
to QRTDs (see Figure 14.4). Again, these univariate distributions can be studied using essentially the same
techniques as for analysing the RTDs of decision algorithms.

Closely related to SQDs are the asymptotic solution quality distributions obtained in the limit for arbitrar-
ily long run times. For complete and probabilistically approximately complete optimisation algorithms,
which are guaranteed to find an optimal solution to any given problem instance with arbitrarily high
probability given sufficiently long run time, the asymptotic SQDs are degenerate distributions whose
probability mass is completely concentrated on the optimal solution quality of the given problem instance.
When dealing with randomised optimisation algorithms with an algorithm-dependent termination crite-
rion, such as randomised iterative improvement methods that terminate upon reaching a local minimum,
it is often also useful to study termination time distributions (TTDs), which characterise the distribution
of the time until termination over multiple independent runs.
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Finally, the SQT curves described earlier in the context of characterising run time / solution quality
trade-offs for deterministic optimisation algorithms can be generalised to randomised algorithms. This is
done by replacing the uniquely defined solution quality values obtained by a deterministic algorithm for
any given run-time bound by statistics of the respective SQDs in the randomised case. Although historically,
this type of analysis has most commonly used SQT curves based on mean solution quality values, it is often
preferable to use SQTs that reflect the development of SQD quantiles (such as the median) over time, since
these tend to be statistically more stable than means. SQTs based on SQD quantiles also offer the advantage
that they directly correspond to horizontal sections or contour lines of the underlying bivariate RTD sur-
faces. Combinations of such SQTs can be very useful for summarising certain aspects of a complete bivariate
RTD; they are particularly well suited for analysing trade-offs between run time and solution quality (see
Figure 14.4). However, the investigation of individual SQTs offers a fairly limited view of an optimisation
algorithm’s run-time behaviour in which important details can be easily missed and should therefore be
complemented with other approaches, such as QRTD or SQD analysis. All these analyses can be carried
out on the same set of solution quality traces collected over multiple indendent runs of the algorithm.

14.3.2 Comparative Analysis on Single Instances

The basic approach used for the comparative analysis of two (or more) optimisation algorithms on a single
problem instance is analogous to that for decision algorithms. Often, a fixed target solution quality is used
in this context, in which case the analysis involves the QRTDs of the algorithms with respect to that solution
quality bound. Alternatively, a bound on run time can be used, and the respective SQDs can be compared
using the same methods as in the case of RTDs for decision algorithms. (It may be noted that the SQDs
of high-performance algorithms for high run times typically have much lower variance than QRTDs.)

Both of these methods do not take into account trade-offs between run time and solution quality. To
capture such trade-offs, it is useful to extend the concept of domination introduced earlier for decision
algorithms. We first note that in the case of two deterministic optimisation algorithms, A and B , this
is straightforward: A dominates B on a given problem instance π if A gives consistently better solution
quality than B for any run time. This implies that the respective SQT curves do not cross each other. In
the case of crossing SQTs, which of the two algorithm is preferable in terms of solution quality achieved
depends on the time the algorithms are allowed to run.

When generalised to randomised algorithms, this leads to the concept of probabilistic domination. Ana-
logous to the case of randomised decision algorithms, probabilistic domination between two randomised
optimisation algorithms holds if, and only if, their (bivariate) cumulative RTD surfaces do not cross each
other. Note that this implies that there is no crossover between any SQDs for the same run-time bound, or
between any QRTDs for any solution quality bound. In practice, probabilistic domination can be tested
based on a series of QRTDs for different solution quality bounds (or SQDs for various run-time bounds).
This does not require substantial experimental overhead, since the solution quality traces underlying
empirical QRTDs for the best solution quality bound also contain all the information for QRTDs for
lower-quality bounds. When probabilistic domination does not hold, the run-time/solution quality trade-
offs between the given algorithms can be characterised using the same data. In many cases, the results from
empirical performance comparisons between randomised optimisation algorithms can be conveniently
summarised using SQT curves over multiple SQD statistics (e.g., median and additional quantiles) in
combination with SQD plots for selected run times.

14.3.3 Analysis on Instance Ensembles

The considerations arising when extending the analyses described in the previous sections to ensembles
of problem instances are essentially the same as in the case of decision algorithms (see Sections 14.2.2
and 14.2.4). It is convienent (and in some special cases sufficient) to perform the analysis for a single
solution quality or run-time bound, in which case the methodology is analogous to that for decision
algorithms. However, in most cases, run time / solution quality trade-offs need to be considered. This
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can be achieved by analysing SCDs or performance correlations for multiple solution quality or run-time
bounds in addition to a more detailed analysis for carefully selected individual instances.

In the analysis of optimisation algorithms on instance ensembles, it is typically much preferable to
use relative rather than absolute solution qualities. This introduces a slight complication when dealing
with benchmark instances for which (provably) optimal solution qualities are unknown. To deal with
such instances, theoretically or empirically determined bounds on the optimal solution quality, including
best solution qualites achieved by high-performance heuristic algorithms, are often used. In this context,
particularly when conducting performance comparisons related to the ability of various algorithms to
find optimal or close-to-optimal solutions, it is very important to ensure that the bounds used in lieu of
provably optimal solutions are as tight as possible.

14.4 Advanced RTD-Based Analysis

The measurement of RTDs for decision and optimisation problems can serve not only as a first step in the
descriptive and comparative analysis of algorithm behaviour, as shown in the previous sections, but it can
also form the basis of more advanced analysis techniques, for example, for examining scaling behaviour
or performance robustness with respect to an algorithm’s parameter settings. In what follows, we briefly
outline such types of analyses; while our discussion is focused on RTDs for decision algorithms or, equiv-
alently, on QRTDs for optimisation algorithms, many of its aspects can be extended in a straightforward
way to the analysis of SQDs for optimisation algorithms.

14.4.1 Scaling with Instance Size

An important question is how an algorithm’s performance scales with the size of the given problem instance.
One approach to studying scaling behaviour is to base the analysis on individual instances of various sizes.
However, since there is often very substantial variation in run time between instances of the same size,
scaling studies are better based on ensembles of instances for each size. Then, the set of techniques discussed
in the previous section can be applied by first measuring RTDs on individual instances; next, SCDs can
be derived from appropriately chosen statistics of these RTDs, as discussed in Section 14.2.2; and finally,
various statistics of these SCDs can be analysed in dependence of instance size.

As a first step, it is often useful to analyse the scaling data graphically. In this context, the use of semi-log
or log-log plots can be very helpful: in particular, exponential scaling of mean or median search cost
is reflected in a linear relationship between instance size and the logarithm of run time, while a linear
relationship between the logarithms of both, instance size and run time is indicative of polynomial scaling.
To analyse scaling behaviour in more detail, function fitting techniques, such as statistical regression, can
be used. A simple example of an empirical scaling analysis is given in Figure 14.5.

Additional support for observed or conjectured scaling behaviour can be obtained by interpolation
experiments, where for instance sizes that are in the range of the previously analysed instance ensembles
additional data points are measured, or by extrapolation experiments, where an empirically fitted scaling
function is used to predict the SCD statistics for larger instance sizes and deviations from the predicted
values are analysed to possibly further refine the hypothesis on the scaling behaviour.

14.4.2 Impact of Parameter Settings

Many heuristic algorithms have one or more parameters that control their behaviour; as an example,
consider the tabu tenure parameter in tabu search, a well-known SLS method (see also Chapters 19 and
23). The settings of such control parameters often have a significant yet theoretically poorly understood
impact on the performance of the respective algorithm, which can be empirically studied by analysing
the variation of an algorithm’s RTD (or RTD statistics) in response to changes in its parameter settings.
Often, the data required for this type of parameter sensitivity analysis is readily available from experiments
conducted to optimise parameter settings for achieving peak performance.
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FIGURE 14.5 Scaling of the median and the 0.9 percentile for the search cost of solving SAT-encoded graph colouring
instances with an SLS algorithm. Both statistics show evidence of exponential scaling.

It should be noted that in the case of randomised algorithms, the variation of run time for a fixed
parameterisation and problem instance often depends on the parameter settings and should therefore be
studied. For many SLS algorithms, suboptimal parameter values can cause search stagnation and extremely
high variability in run time; in such situations, larger sample sizes may be required for obtaining reasonably
accurate estimates of RTD statistics. Furthermore, for many heuristic algorithms with multiple parameters,
the effects of various parameters are typically not independent, and experimental design techniques have
to be employed for studying the nature and strength of these parameter dependencies.

Another important aspect of investigating parameter-dependent algorithmic performance deals with
consistency across instance ensembles, i.e., with the question to which degree the impact of parameter
settings is similar across the instances in a given ensemble. One way of approaching this issue is to treat
different parameterisations like different algorithms, and to use the methods for comparative performance
analysis on instance ensembles from Section 14.2.4 (in particular, correlation analysis of RTD statistics).
Consistency of performance-optimising parameter settings is often of particular interest. When consistent
behaviour across an ensemble is not observed, it may still be possible to relate aspects of parameter-
dependent run-time behaviour to specific characteristics of the instances. Such characteristics could be of
purely syntactic nature (such as instance size or clauses/variables ratio for SAT instances) or they may be
based on some deeper semantic properties (such as search space features in the case of SLS algorithms).

The need for manually tuning parameters can cause problems in practical applications of heuristic
algorithms as well as in their empirical analysis. In particular, comparative performance analyses can yield
misleading results when parameter settings have been tuned unevenly (i.e., more effort has been spent in
optimising parameter settings for one of the algorithms). To alleviate these problems, automatic tuning
techniques have been proposed [8,9]. Furthermore, mechanisms for adapting parameter values while
solving a given problem instance have been used with considerable success, in particular in the context of
reactive search methods (see Chapter 21).

14.4.3 Stagnation Detection

Intuitively, a randomised heuristic decision algorithm shows stagnation behaviour if for long runs, the
probability of finding a solution can be improved by restarting the algorithm at some appropriately chosen
cut-off time. For search algorithms, this effect may be due to the inability of the algorithm to trade off
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FIGURE 14.6 Left: Empirical QRTD of an iterated local search algorithm for finding the optimal solution of TSPLIB
instance pcb442 (ILS); comparison with an exponential distribution (ed[m] = 1 − 2−run time/m) reveals severe
stagnation behaviour. Right: Best fit of an empirical RTD by an exponential distribution. The fit passes a χ2 goodness-
of-fit test at a significance level of α = 0.05.

effectively exploration of the search space and exploitation of previous search experience, and may be
related to the algorithm getting trapped in specific areas of the search space.

Interestingly, it is relatively straightforward to detect such stagnation behaviour from an empirical
RTD. It is easy to see that only for RTDs that are identical to an exponential distribution, a well-known
probability distribution from statistics, such restarts do not result in any performance loss or improvement
[11] (essentially, this is due to the memory-less property of the exponential distribution). This insight
provides the basis for detecting stagnation situations by comparing empirical RTDs of a given algorithm
to exponential distributions. Stagnation behaviour is present if there is an exponential distribution whose
CDF graph meets that of the empirical RTD from below but never crosses it. This situation is illustrated
in Figure 14.6 (left pane); the arrows indicate the optimal cut-off time for a static restart strategy, which
can also be determined from the RTD.

In general, the detection of stagnation situations using the RTD-based methodology can be a key
element in the systematic development of randomised heuristic algorithms; for example, in the case of
SLS algorithms, the occurrence of search stagnation often indicates the need for additional or stronger
diversification mechanisms. (For further details, see Chapter 4 of Ref. [1].)

14.4.4 Functional Characterisation of Empirical RTDs

It is often useful (though not always possible) to characterise empirical RTDs by means of simple
mathematical functions. For example, the RTDs of many high-performance SLS algorithms are well ap-
proximated by exponential distributions (see, e.g., Ref. [11]). Such characterisations are not only useful in
the context of stagnation analysis (as explained in the previous section), but also provide detailed and often
very accurate summarisations of an algorithm’s run-time behaviour. Furthermore, they can help in gaining
insights into an algorithm’s properties by providing a basis for modelling its behaviour mathematically.

In the context of functional RTD characterisations, it is particularly appealing to model empirical
RTDs using parameterised continuous probability distributions known from statistics. This can be done
using standard fitting techniques to determine suitable parameter values; the quality of the resulting
approximations can be evaluated using goodness-of-fit tests, such as the χ2 test or the Kolmogorov–
Smirnov test [7]. (For an illustration, see right pane of Figure 14.6.) The same methods can be used for
functionally characterising other empirical data, such as SQDs or SCDs.

When dealing with large instance ensembles, the fitting and testing process needs to be automated. This
way, more general hypotheses regarding an algorithm’s run-time behaviour can be investigated empirically.
Like any empirical approach, this method cannot be used for proving universal results on an algorithms’
behaviour on an entire (infinite) class of problem instances, but it can be very useful in formulating,
refining or falsifying hypotheses on such results.
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14.5 Extensions

Most empirical analyses of heuristic algorithms in the literature focus on “classical” NP-hard
problems. It is clear, however, that sound empirical methodologies are equally important when tackling
conceptually more involved types of problems, such as multiobjective, dynamic or stochastic optimisation
problems.

Multiobjective problems. In multiobjective problems, several, typically conflicting optimisation criteria
need to be considered simultaneously. For these problems, a common goal is to identify the set of Pareto-
optimal solutions [12], i.e., solutions for which there exists no alternative that is strictly better with respect to
all optimisation criteria. Such multiobjective problems arise in many engineering and business applications,
and heuristic algorithms are widely used for solving them [13,14]. The behaviour of these algorithms can be
analysed empirically using a suitably generalised notion of multivariate RTDs. Since the dimensionality of
the RTDs to be measured in this case is equal to the number of objective functions plus one, data collection
and analysis are considerably more complex than in the case of single-objective optimisation problems.
While we are not aware of any studies based on these multivariate RTDs, the marginal distributions
obtained when keeping the computation time fixed have received considerable attention. The analysis of
these so-called attainment functions has been proposed by Fonseca et al. [15] and has been acknowledged
as one of the few approaches for a correct analysis of the performance of randomised algorithms for
multiobjective optimisation [16].

Dynamic problems. In many applications, some aspects of a given problem instance may change while
trying to find or implement a solution. Such dynamic problems are encountered, for example, in many
distribution problems, where traffic situations can change as a result of congested or blocked routes. Two
common goals in dynamic problems are to minimise the delay in recovering solutions (of a certain quality)
after a change in the problem instance has occurred and to miminise disruptions of the current solution,
i.e., the amount of modifications required to adapt the current solution to the changed situation. The
empirical analysis of heuristic (and in particular, randomised) algorithms for both of these situations
can be handled using relatively straightforward extensions of the RTD-based methodology. In the case of
dynamic optimisation problems, tradeoffs between solution quality and the amount of disruption can be
studied using the same techniques as for static multiobjective problems. Also, particularly for dynamic
optimisation problems where changes occur rather frequently, it can be useful to analyse the development
of solution quality (or, for randomised algorithms, SQDs) over time, using suitable generalisations of the
RTD-based techniques for static optimisation problems.

Stochastic problems. In some practical applications, important properties of solutions are subject to
statistical variation. For many stochastic optimisation problems, variations in the quality of a given solution
are caused by random changes (or uncertainty) in solution components that are characterised in the form
of probability distributions; for example, in stochastic routing problems, the costs associated with using
certain connections may be specified by Gaussian distributions. A typical goal when solving stochastic
optimisation problems is to find a solution with optimal expected quality. In some cases, the expected
quality of a solution can be determined analytically, and algorithms for such problems can be analysed
using the same empirical methods as described for conventional deterministic problems. In other cases,
approximation or sampling methods have to be used for estimating the quality of candidate solutions.
While in principle, the techniques described in this chapter can be extended to these cases, empirical
analyses (as well as algorithm development) are more involved; for example, when measuring empirical
SQDs, a trade-off arises between the number of algorithm runs and the number of samples used to estimate
the quality of incumbent solutions.
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14.6 Further Reading

The use of principled and advanced techniques for the empirical analysis of deterministic and randomised
heuristic algorithms is gaining increasing acceptance among researchers and practitioners. In this chapter,
we have described the analysis of RTDs as a core technique for the empirical investigation and char-
acterisation of randomised algorithms [17]. While RTDs have been previously reported in the literature
[18–20], they have typically been used for purely descriptive purposes or in the context of investigating the
parallelisation speed-up achievable by performing multiple independent runs of a sequential algorithm.
A more detailed description of the RTD-based methodology is given in Chapter 4 of Ref. [1]. RTD-based
methods are now being used increasingly widely for the empirical study of a broad range of SLS algorithms
for numerous combinatorial problems [21–29].

SQDs of randomised heuristic optimisation algorithms have been occasionally reported in the literature;
they have been used, for example, to obtain results on the scaling of SLS behaviour [30]. SQDs can also
be used for estimating optimal solution qualities for combinatorial optimisation problems [31,32]. SCDs
over ensembles of problem instances have been measured and characterised for deterministic, complete
algorithms for binary constraint satisfaction problems and SAT [33,34].

There is a growing body of work on general issues in empirical algorithmics. Several articles provide
guidelines for the experimental study of mathematical programming software [35,36] and heuristic algo-
rithms [37], with the aim of increasing the reproducibility of results. General guidelines for the experimental
analysis of algorithms have also been proposed by McGeoch and Moret [38–40]. Johnson [41] gives an
overview of guidelines and potential pitfalls in empirical algorithmics research. A more scientific approach
to experimental studies of algorithms in optimisation has been advocated by Hooker [42,43], who empha-
sised the need for formulating and empirically investigating hypotheses about algorithm properties and be-
haviour rather than limiting the experimental study of algorithms to simplistic performance comparisons.

At the core of any empirical approach to investigating the behaviour and performance of randomised
algorithms are statistical methods. Cohen’s book [44] provides a good introduction to empirical methods in
computing science with an emphasis on algorithms and applications in artificial intelligence. The handbook
by Sheskin [7] is an excellent source for detailed information on statistical tests and their application, while
Siegel et al. [45] and Conover [46] provide more specialised introductions to nonparametric statistics. For
an introduction to the important topic of experimental design and data analysis we refer to the books of
Dean and Voss [47] and Montgomery [48].
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[1] Hoos, H. H. and Stützle, T., Stochastic Local Search—Foundations and Applications, Morgan Kauf-
mann Publishers, San Francisco, CA, USA, 2004.

[2] Hajek, B., Cooling schedules for optimal annealing, Math. Oper. Res., 13(2), 311, 1988.
[3] Ahuja, R. K. and Orlin, J. B., Use of representative operation counts in computational testing of

algorithms, INFORMS J. Comput., 8(3), 318, 1996.
[4] Beasley, J. E., OR-Library, http://people.brunel.ac.uk/∼mastjjb/jeb/info.html, last

visited February 2006.
[5] Reinelt, G., TSPLIB, http://www.iwr.uni-heidelberg.de/groups/comopt/software/

TSPLIB95, last visited February 2006.

© 2007 by Taylor & Francis Group, LLC

http://www.iwr.uni-heidelberg.de
http://www.iwr.uni-heidelberg.de
http://people.brunel.ac.uk


C5505 C5505˙C014 March 20, 2007 12:25

14-16 Handbook of Approximation Algorithms and Metaheuristics
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15.1 Introduction

The technique of transforming a problem into another in such a way that the solution of the latter entails,
somehow, the solution of the former is a classical mathematical technique that has found wide applica-
tion in computer science since the seminal works of Cook [1] and Karp [2], who introduced particular
kinds of transformations (called reductions) with the aim of studying the computational complexity of
combinatorial decision problems. The interesting aspect of a reduction between two problems consists in
its twofold application: on the one hand it allows to transfer positive results (resolution techniques) from
one problem to the other and, on the other hand, it may also be used for deriving negative (hardness)
results. In fact, as a consequence of such seminal work, by making use of a specific kind of reduction,
the polynomial-time Karp-reducibility, it has been possible to establish a complexity partial order among
decision problems, which, for example, allows us to state that, modulo polynomial-time transformations,
the SATISFIABILITY problem is as hard as thousands of other combinatorial decision problems, even though
the precise complexity level of all these problems is still unknown.

Strictly associated with the notion of reducibility is the notion of completeness. Problems that are
complete in a complexity class via a given reducibility are, in a sense, the hardest problems of such class.
Besides, given two complexity classes C and C′ ⊆ C, if a problem � is complete in C via reductions
that belong (preserve membership) to C′, to establish whether C′ ⊂ C, it is “enough” to assess the actual
complexity of � (informally, we say that � is a candidate to separate C and C′).

In this chapter we will show that an important role is played by reductions also in the field of approx-
imation of hard combinatorial optimization problems. In this context, the kind of reductions which will
be applied are called approximation preserving reductions. Intuitively, in the most simple case, an approxi-
mation preserving reduction consists of two mappings f and g : f maps an instance x of problem � into
an instance f (x) of problem �′, g maps back a feasible solution y of �′ into a feasible solution g (y) of �

with the property that g (y) is an approximate solution of problem � whose quality is almost as good

15-1
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as the quality of the solution y for problem �′. Clearly, again in this case, the role of an approximation
preserving reduction is twofold: on the one hand it allows to transfer an approximation algorithm from
problem �′ to problem �; on the other, if we know that problem � cannot be approximated beyond a
given threshold, such limitation applies also to problem �′.

Various kinds of approximation-preserving reducibilities will be introduced in this chapter and we will
show how they can be exploited in a positive way, to transform solution heuristics from a problem to
another and how, on the contrary, they may help in proving negative, inapproximability results.

It is well known that NP-hard combinatorial optimization problems behave in a very different way
with respect to approximability and can be classified accordingly. While for some problems there exist
polynomial-time approximation algorithms that provide solutions with a constant approximation ratio
w.r.t. the optimum solution, for some other problems even a remotely approximate solution is computa-
tionally hard to achieve. Analogous to what happens in the case of the complexity of decision problems,
approximation-preserving reductions allow to establish a partial order among optimization problems in
terms of approximability properties, independently from the actual level of approximation that for such
problems can be achieved (and that in some cases is still undefined). Approximation-preserving reductions
can also be used to define complete problems which play an important role in the study of possible separa-
tions between approximation classes. The discovery that a problem is complete in a given approximation
class provides a useful insight in understanding what makes a problem not only computationally hard but
also resilient to approximate solutions.

As a final remark on the importance of approximation-preserving reductions, let us observe that such
reductions require some correspondence between the combinatorial structure of two problems be estab-
lished. This is not the case for reductions between decision problems. For example, in such a case, we see that
all NP-complete decision problems turn out to be mutually interreducible by means of polynomial-time
reduction while when we consider the corresponding optimization problems, the different approximability
properties come to evidence. As a consequence, we can say that approximation-preserving reductions are
also a useful tool to analyze the deep relation existing between combinatorial structure of problems and
the hardness of approximation.

The rest of this chapter is organized as follows. The next section is devoted to basic definitions and
preliminary results concerning reductions among combinatorial optimization problems. In Section 15.3 we
provide the first, simple example of approximation-preserving reducibility, namely the linear reducibility,
that while not as powerful as the reducibilities that will be presented in the sequel is widely used in practice.
In Section 15.4, we introduce the reducibility that, historically, has been the first to be introduced, the
strict reducibility and we discuss the first completeness results based on reductions of such kind. Next, in
Section 15.5, we introduce AP-reducibility, and in Section 15.6 we discuss more extensive completeness
results in approximation classes. In Section 15.7, we present a new reducibility, called FT-reducibility,
that allows to prove the polynomial-time approximation scheme (PTAS)-completeness of natural NP-
optimization (NPO) problems. Finally, in Section 15.8, we present other reductions with the specific aim
of proving further inapproximability results. The last two sections of the chapter contain conclusions and
references.

In this chapter we assume that the reader is familiar with the basic notions of computational complex-
ity regarding both decision problems and combinatorial optimization problems, as they are defined in
Chapter 1.

15.2 Basic Definitions

Before introducing the first examples of reductions between optimization problems, let us recall the
definitions of the basic notions of approximation theory and of the most important classes of optimization
problems, characterized in terms of their approximability properties. First of all we introduce the class
NPO which is the equivalent, for optimization problems, of the class of decision problems NP.
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Definition 15.1

An NP optimization problem, NPO, � is defined as a four-tuple (I , Sol, m, goal) such that

• I is the set of instances of � and it can be recognized in polynomial time;
• given x ∈ I , Sol(x) denotes the set of feasible solutions of x; for any y ∈ Sol(x), |y| (the size of y) is

polynomial in |x| (the size of x); given any x and any y polynomial in |x|, one can decide in polynomial
time if y ∈ Sol(x);

• given x ∈ I and y ∈ Sol(x), m(x , y) denotes the value of y and can be computed in polynomial time;
• goal ∈ {min, max} indicates the type of optimization problem.

Given an NPO problem � = (I , Sol, m, goal) an optimum solution of an instance x of � is usually
denoted y∗(x) and its measure m(x , y∗(x)) is denoted by opt(x).

Definition 15.2

Given an NPO problem � = (I , Sol, m, goal), an approximation algorithm A is an algorithm that given an
instance x of � returns a feasible solution y ∈ Sol(x). If A runs in polynomial time with respect to |x|, A is
called a polynomial-time approximation algorithm for �.

The quality of the solution given by an approximation algorithm A for a given instance x is usually mea-
sured as the ratio ρA(x), approximation ratio, between the value of the approximate solution, m(x , A(x)),
and the value of the optimum solution opt(x). For minimization problems, therefore, the approximation
ratio is in [1, ∞), while for maximization problems it is in [0, 1].

Definition 15.3

An NPO problem � belongs to the class APX if there exist a polynomial-time approximation algorithm A and
a value r ∈ Q such that, given any instance x of �, ρA(x) ≤ r (resp., ρA(x) ≥ r ) if � is a minimization
problem (resp., a maximization problem). In such a case, A is called an r -approximation algorithm.

Examples of combinatorial optimization problems belonging to the class APX are MAX SATISFIABILITY, MIN

VERTEX COVER, and MIN EUCLIDEAN TSP.
In some cases, a stronger form of approximability for NPO problems can be obtained by a PTAS that

is a family of algorithms Ar such that, given any ratio r ∈ Q, the algorithm Ar is an r -approximation
algorithm whose running time is bounded by a suitable polynomial p as a function of |x|.
Definition 15.4

An NPO problem � belongs to the class PTAS if there exists a PTAS Ar such that, given any r ∈ Q, r 	= 1, and
any instance x of �, ρAr (x) ≤ r (resp., ρAr (x) ≥ r ) if � is a minimization problem (resp., a maximization
problem).

Among the problems in APX listed above, the problem MIN EUCLIDEAN TSP can be approximated by means
of a PTAS and hence belongs to the class PTAS. Moreover, other examples of combinatorial optimization
problems belonging to the class PTAS are MIN PARTITIONING and MAX INDEPENDENT SET ON PLANAR GRAPHS.

Finally, a stronger form of approximation scheme can be used for particular problems in PTAS, such as,
for example, MAX KNAPSACK or MIN KNAPSACK. In such cases, in fact, the running time of the algorithm Ar

is uniformly polynomial in r as made precise in the following definition.

Definition 15.5

An NPO problem � belongs to the class fully polynomial-time approximation scheme (FPTAS) if there exists
a PTAS Ar such that, given any r ∈ Q, r 	= 1, and any instance x of �, ρAr (x) ≤ r (resp., ρAr (x) ≥ r )
if � is a minimization problem (resp., a maximization problem) and, furthermore, there exists a two variate
polynomial q such that the running time of Ar (x) is bounded by q(x , 1/(r − 1)) (resp., q(x , 1/(1 − r )) in
case of maximization problems).
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It is worth remembering that under the hypothesis that P 	= NP all the above classes form a strict hierarchy
that is FPTAS ⊂ PTAS ⊂ APX ⊂ NPO.

Let us note that there also exists other notorious approximability classes, as Poly-APX, Log-APX,
Exp-APX, the classes of problems approximable within ratios that are, respectively, polynomials (or
inverse of polynomials if goal = max), logarithms (or inverse of logarithms), exponentials (or inverse of
exponentials) of the size of the input. The best studied among them is the class Poly-APX. Despite their
interest for sake of conciseness these classes are not dealt in the chapter.

When the problem of characterizing approximation algorithms for hard optimization problems was
tackled, soon the need arose for a suitable notion of reduction that could be applied to optimization
problems to study their approximability properties [3]:

What is it that makes algorithms for different problems behave in the same way? Is there some stronger
kind of reducibility than the simple polynomial reducibility that will explain these results, or are they
due to some structural similarity between the problems as we define them?

Approximation preserving reductions provide an answer to the above question. Such reductions have an
important role when we wish to assess the approximability properties of an NPO optimization problem
and locate its position in the approximation hierarchy. In such a case, in fact, if we can establish a rela-
tionship between the given problem and other known optimization problems, we can derive both positive
information on the existence of approximation algorithms (or approximation schemes) for the new prob-
lem or, on the other side, negative information, showing intrinsic limitations to approximability. With
respect to reductions between decision problems, reductions between optimization problems have to be
more elaborate. Such reductions, in fact, have to map both instances and solutions of the two problems,
and they have to preserve, so to say, the optimization structure of the two problems.

The first examples of reducibility among optimization problems were introduced by Ausiello et al. in
Refs. [4,5] and by Paz and Moran in Ref. [6]. In particular, in Ref. [5], the notion of structure preserving
reducibility is introduced and for the first time the completeness of MAX WSAT (weighted-vertex SAT) in
the class of NPO problems is proved. Still it took a few more years until suitable notions of approximation
preserving reducibilities were introduced by Orponen and Mannila in Ref. [7]. In particular, their paper
presented the strict reduction (see Section 15.4) and provided the first examples of natural problems who
are complete under approximation preserving reductions: (MIN WSAT, MIN 0-1 LINEAR PROGRAMMING, and
MIN TSP).

Before introducing specific examples of approximation preserving reduction in the next sections, let us
explain more formally how reductions between optimization problems can be defined, starting from the
notion of basic reducibility (called R-reducibility in the following, denoted ≤R) which underlays most of
the reducibilities that will be later introduced.

Definition 15.6

Let �1 and �2 be two NPO maximization problems. Then we say that �1 ≤R �2 if there exist two
polynomial-time computable functions f , g that satisfy the following properties:

• f : I�1 → I�2 such that ∀x1 ∈ I�1 , f (x1) ∈ I�2 ; in other words, given an instance x1 in �1, f
allows to build an instance x2 = f (x1) in �2;

• g : I�1 × Sol�2 → Sol�1 such that, ∀(x1, y2) ∈ (I�1 × Sol�2 ( f (x1))), g (x1, y2) ∈ Sol�1 (x1); in
other words, starting from a solution y2 of the instance x2, g determines a solution y1 = g (x1, y2) of
the initial instance x1.

As we informally said in the introduction, the aim of an approximation preserving reduction is to guarantee
that if we achieve a certain degree of approximation in the solution of problem �2, then a suitable degree of
approximation is reached for problem �1. As we will see, the various notions of approximation preserving
reducibilities that will be introduced in the following, essentially differ in the mapping that is established
between the approximation ratios of the two problems.
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Before closing this section, let us introduce the notion of closure of a class of problems under a given
type of reducibility. In what follows, given two NPO problems � and �′, and a reducibility X, we will
generally use the notation � ≤X �′ to indicate that � reduces to �′ via reduction of type X.

Definition 15.7

Let C be a class of NPO problems and X a reducibility. Then, the closure C
X

of C under X is defined as: C
X =

{� ∈ NPO : ∃�′ ∈ C, � ≤X �′}.

15.3 The Linear Reducibility

The first kind of approximation preserving reducibility that we want to show is a very natural and simple
transformation among problems which consists of two linear mappings: one between the values of the
optimum solutions of the two problems and one between the errors of the corresponding approximate
solutions, the linear reducibility (L-reducibility, denoted ≤L).

Definition 15.8

Let �1 and �2 be two problems in NPO. Then, we say that �1 ≤L �2, if there exist two functions f and g
(basic reduction) and two constants α1 > 0 and α2 > 0 such that ∀x ∈ I�1 and ∀y ′ ∈ Sol�2 ( f (x)):

• opt�2
( f (x)) ≤ α1 opt�1

(x);
• |m�1 (x , g (y ′)) − opt�1

(x)| ≤ α2|m�2 ( f (x), y ′) − opt�2
( f (x))|.

This type of reducibility has been introduced in Ref. [8] and has played an important role in the char-
acterization of the hardness of approximation. In fact it is easy to observe that the following property
holds.

Fact 15.1

Given two problems � and �′, if � ≤L �′ and �′ ∈ PTAS, then � ∈ PTAS. In other words, the L-reduction
preserves membership in PTAS.

Example 15.1

MAX 3-SAT ≤L MAX 2-SAT. Let us consider an instance φ with m clauses (w.l.o.g., let us assume that all clauses
consist of exactly three literals); let l1

i , l 2
i , and l 3

i be the three literals of the i th clause, i = 1, . . . , m. To any
clause we associate the following 10 new clauses, each one consisting of at most two literals: l 1

i , l 2
i , l 3

i , l 4
i , l̄ 1

i ∨
l̄ 2
i , l̄ 1

i ∨ l̄ 3
i , l̄ 2

i ∨ l̄ 3
i , l 1

i ∨ l̄ 4
i , l 2

i ∨ l̄ 4
i , l 3

i ∨ l̄ 4
i , where l 4

i is a new variable. Let C ′
i be the conjunction of the 10

clauses derived from clause Ci . The formula φ′ = f (φ) is the conjunction of all clauses C ′
i , i = 1, . . . , m,

i.e., φ′ = f (φ) = ∧m
i=1C ′

i and it is an instance of MAX 2-SAT.
It is easy to see that all truth assignments for φ′ satisfy at most seven clauses in any C ′

i . On the other side,
for any truth assignment for φ satisfying Ci , the following truth assignment for l 4

i is such that the extended
truth assignment satisfies exactly seven clauses in C ′

i : if exactly one (resp., all) of the variables l 1
i , l 2

i , l 3
i is

(resp., are) set to true, then l 4
i is set to false (resp., true); otherwise (exactly one literal in Ci is set to false), l 4

i
can be indifferently true or false. Finally, if Ci is not satisfied (l 1

i , l 2
i , and l 3

i are all set to false), no truth
assignment for l 4

i can satisfy more than six clauses of C ′
i while six are guaranteed by setting l 4

i to false. This
implies that opt(φ′) = 6m + opt(φ) ≤ 13 opt(φ) (since m ≤ 2 opt(φ), see Lemma 15.2 in Section 15.6.2).

Given a truth assignment for φ′, we consider its restriction τ = g (φ , τ ′) on the variables of φ; for such
assignment τ we have: m(φ , τ ) ≥ m(φ′, τ ′) − 6m. Then, opt(φ) − m(φ , τ ) = opt(φ′) − 6m − m(φ , τ ) ≤
opt(φ′)−m(φ′, τ ′). This means that the reduction we have defined is anL-reduction withα1 = 13 andα2 = 1.

L-reductions provide a simple way to prove hardness of approximability. An immediate consequence of
the reduction that has been shown above and of Fact 15.1 is that, since MAX 3-SAT does not allow a PTAS
(see Chapter 17) so does MAX 2-SAT. The same technique can be used to show the nonexistence of PTAS
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for a large class of optimization problems, among others MAX CUT, MAX INDEPENDENT SET-B (i.e., MAX

INDEPENDENT SET on graphs with bounded degree), and MIN VERTEX COVER.
Before closing this section, let us observe that the set of 10 2-SAT clauses that we have used in Example 15.1

for constructing the 2-SAT formula φ′ = f (φ), is strongly related to the bound on approximability estab-
lished in the example. Really, the proof of the result is based on the fact that at least six out of the 10 clauses
can always be satisfied while exactly seven out of 10 can be satisfied, if and only if the original 3-SAT clause is
satisfied. A combinatorial structure of this kind, which allows to transfer (in)approximability results from
a problem to another, is called a gadget (see Ref. [9]). The role of gadgets in approximation-preserving
reductions will be discussed further in Section 15.8.

15.4 Strict Reducibility and Complete Problems in NPO

As we informally said in the introduction, an important characteristic of an approximation preserving
reduction from a problem �1 to a problem �2 is that the solution y1 of problem �1 produced by
the mapping g should be at least as good as the original solution y2 of problem �2. This property is
not necessarily true for any approximation preserving reduction (it is easy to observe that, for example,
L-reductions do not always satisfy it), but it is true for the most natural reductions that have been introduced
in the early phase of approximation studies: the strict reductions [7].

In the following, we present the strict reducibility (S-reducibility, denoted≤S) referring to minimization
problems, but the definition can be trivially extended to all types of optimization problems.

Definition 15.9

Let �1 and �2 be two NPO minimization problems. Then, we say that �1 ≤S �2 if there exist two
polynomial-time computable functions f , g that satisfy the following properties:

• f and g are defined as in a basic reduction;
• ∀x ∈ I�1 , ∀y ∈ Sol�2 ( f (x)), ρ�2 ( f (x), y) ≥ ρ�1 (x , g (x , y)).

It is easy to observe that the S-reducibility preserves both membership in APX and in PTAS.

Proposition 15.1

Given two minimization problems �1 and �2, if �1 ≤S �2 and �2 ∈ APX (resp., �2 ∈ PTAS), then �1 ∈
APX (resp., �2 ∈ PTAS).

Example 15.2

Consider the MIN-WEIGHTED VERTEX COVER problem in which the weights of vertices are bounded by a
polynomial p(n) and let us prove that this problem S reduces to the unweighted MIN VERTEX COVER problem.
Let us consider an instance (G(V, E ), �w) of the former and let us see how it can be transformed into an
instance G ′(V ′, E ′) of the latter. We proceed as follows: for any vertex vi ∈ V, with weight wi , we construct
an independent set Wi of wi new vertices in V ′; next, for any edge (vi , v j ) ∈ E , we construct a complete
bipartite graph among the vertices of the independent sets Wi and Wj in G ′. This transformation is clearly
polynomial since the resulting graph G ′ has

∑n
i=1 wi ≤ np(n) vertices.

Let us now consider a cover C ′ of G ′ and, w.l.o.g., let us assume it is minimal w.r.t. inclusion (in case it
is not, we can easily delete vertices until we reach a minimal cover). We claim that at this point C ′ has the
form: ∪�

j=1Wi j , i.e., there is an � such that C ′ consists of � independent sets Wi . Suppose that the claim is
not true. Let us consider an independent set Wk which is only partially included in C ′ (that is a nonempty
portion W′

k of it belongs to C ′). Let us also consider all independent sets Wp that are entirely or partially included
in C ′ and moreover are connected by edges to the vertices of Wk. Two cases may arise: (i) all considered sets Wp

have their vertices included in C ′; in this case the existence of W′
k would contradict the minimality of C ′;

(ii) among the considered sets Wp there is at least one set Wq out of which only a nonempty portion W′
q is

included in C ′; in this case, since the subgraph of G ′ induced by Wk ∪ Wq is a complete bipartite graph, the
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edges connecting the vertices of Wp\W′
p with the vertices of Wq \W′

q are not covered by C ′ and this would
contradict the assumption that C ′ is a cover of G ′. As a consequence, the size of C ′ satisfies |C ′| = ∑�

j=1 wi j

and the function g of the reduction can then be defined as follows: if C ′ is a cover of G ′ and if Wi , i = 1, . . . , �,
are the independent sets that form C ′, then a cover C for G contains all corresponding vertices v1, . . . , v�

of V. Clearly g can be computed in polynomial time.
From these premises we can immediately infer that the same approximation ratio that is guaranteed for A

on G ′ is also guaranteed by g on G. The shown reduction is hence an S-reduction.

An immediate corollary of the strict reduction shown in the example is that the approximation ratio 2
for MIN VERTEX COVER (that we know can be achieved by various approximation techniques, see Ref. [10])
also holds for the weighted version of the problem, dealt in Example 15.2.

The S-reducibility is indeed a very strong type of reducibility: in fact it requires a strong similar-
ity between two optimization problems and it is not easy to find problems that exhibit such similar-
ity. The interest for the S-reducibility arises mainly from the fact that by making use of reductions of
this kind, Orponen and Mannila have identified the first optimization problem that is complete in the
class of NPO minimization problems: the problem MIN WSAT. Let us consider a Boolean formula in
conjunctive normal form φ over n variables x1, . . . , xn and m clauses. Any variable xi has a positive
weight wi = w(xi ). Let us assume that the truth assignment that puts all variables to true is feasible,
even if it does not satisfy φ. Besides, let us assume that ti is equal to 1 if τ assigns value true to the i th
variable and 0 otherwise. We want to determine the truth assignment τ of φ which minimizes

∑n
i=1 wi ti .

The problem MAX WSAT can be defined in similar terms. In this case, we assume that the truth assign-
ment that puts all variables to false is feasible and we want to determine the truth assignment τ that
maximizes

∑n
i=1 wi ti . In the variants MIN W3-SAT and MAX W3-SAT, we consider that all clauses contain

exactly three literals.
The fact that MIN WSAT is complete in the class of NPO minimization problems under S-reductions

implies that this problem does not allow any constant-ratio approximation (unless P = NP) [5–7]. In fact,
due to the properties of S-reductions, if a problem which is complete in the class of NPO minimization
problems was approximable then all NPO minimization problems would. Since it is already known that
some minimization problems in NPO do not allow any constant-ratio approximation algorithm (namely
MIN TSP on general graphs), then we can deduce that (unless P = NP) no complete problem in the class
of NPO minimization problems allows any constant-ratio approximation algorithm.

Theorem 15.1

MIN WSAT is complete in the class of minimization problems belonging to NPO under S-reductions.

Proof
The proof is based on a modification of Cook’s proof of the NP-completeness of SAT [1]. Let us consider
a minimization problem � ∈ NPO, the polynomial p which provides the bounds relative to problem �

(see Definition 15.1) and an instance x of �. The following nondeterministic Turing machine M (with
two output tapes T1 and T2) generates all feasible solutions y ∈ Sol(x) together with their values:

• generate y, such that |y| ≤ p(|x|);
• if y /∈ Sol(x), then reject; otherwise, write y on output tape T1, m(x , y) on output tape T2, and

accept.

Let us now consider the reduction that is currently used in the proof of Cook’s theorem (see Ref. [11]) and
remember that such reduction produces a propositional formula in conjunctive normal form that is satisfied
if and only if the computation of the Turing machine accepts. Let φx be such formula and xn, xn−1, . . . , x0

the variables of φx that correspond to the cells of tape T2 where M writes the value m(x , y) in binary
(w.l.o.g., we can assume such cells to be consecutive), such that a satisfying assignment of φx , xi is true
if and only if the (n − i)-th bit of m(x , y) is equal to 1. Given an instance x of � the function f of the
S-reduction provides an instance of MIN WSAT consisting of the pair (φx , ψ), where ψ(x) = ψ (xi ) = 2i ,
for i = 0, . . . , n and ψ(x) = 0, for any other variable x in φx .
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The function g of the S-reduction is defined as follows. For any instance x of � and any solution τ ′ ∈
Sol( f (x)) (i.e., any truth assignment τ ′ which satisfies the formula φx [for simplicity we only consider the
case in which the formula φx is satisfiable]), we recover from φx the representation of the solution y written
on tape T1. Besides, we have that m(x , g (x , τ ′)) = ∑

τ ′(xi )=true 2i = m((φx , ψ), τ ′), where by τ ′(xi )
we indicate the value of variable xi according to the assignment τ ′. As a consequence, m(x , g (x , τ ′)) =
m( f (x), τ ′) and henceforth, r (x , g (x , τ ′)) = r ( f (x), τ ′), and the described reduction is an S-reduction.

After having established that MIN WSAT is complete for NPO minimization problems under the S-
reducibility we can then proceed to find other complete problems in this class.

Let us consider the following definition of the MIN 0-1 LINEAR PROGRAMMING problem (the problem
MAX 0-1 LINEAR PROGRAMMING can be defined analogously). We consider a matrix A ∈ Z

m×n and two
vectors �b ∈ Z

m and �w ∈ N
n. We want to determine a vector �y ∈ {0, 1}n that verifies A �y ≥ �b and minimizes

the quantity �w · �y.
Clearly, MIN 0-1 LINEAR PROGRAMMING is an NPO minimization problem. The reduction from MIN

WSAT to MIN 0-1 LINEAR PROGRAMMING is a simple modification of the standard reduction among the
corresponding decision problems. Suppose that the following instance of MIN 0-1 LINEAR PROGRAMMING,
consisting of a matrix A ∈ Z

m×n and two vectors �b ∈ Z
m and �w ∈ N

n, is the image f (x) of an instance x of
MIN WSAT and suppose that �y is a feasible solution of f (x) whose value is m( f (x), �y) = �w · �y. Then, g (x , �y)
is a feasible solution of x , that is a truth assignment τ , whose value is m(x , τ ) = ∑n

i=1 wi ti where ti is
equal to 1 if τ assigns value true to the i th variable and 0 otherwise. Since we have

∑n
i=1 wi ti = �w · �y,

it is easy to see that the reduction ( f, g , c), where c is the identity function, is an S-reduction1 and,
as a consequence, MIN 0-1 LINEAR PROGRAMMING is also complete in the class of NPO minimization
problems.

It is not difficult to prove that an analogous result holds for maximization problems, that is, MAX WSAT

is complete under S-reductions in the class of NPO maximization problems.
At this point of the chapter we still do not have the technical instruments to establish a more pow-

erful result, that is, to identify problems which are complete under S-reductions for the entire class of
NPO problems. To prove such a result we need to introduce a more involved kind of reducibility, the
AP-reducibility (see Section 15.5). In fact, by means of AP-reductions MAX WSAT can itself be reduced to
MIN WSAT and vice versa (see Ref. [12]) and therefore it can be shown that (under AP-reductions) both
problems are indeed NPO-complete.

15.5 AP-Reducibility

After the seminal paper by Orponen and Mannila [7], research on approximation preserving reducibility
was further developed (see, e.g., Refs. [13–15]); nevertheless, the beginning of the structural theory of ap-
proximability of optimization problems can be traced back to the fundamental paper by Crescenzi and Pan-
conesi [16] where reducibilities preserving membership in APX (A-reducibility), PTAS (P-reducibility),
and FPTAS (F-reducibility) were studied and complete problems for each of the three kinds of reducibil-
ities were shown, respectively in NPO, APX, and PTAS. Unfortunately, the problems which are proved
complete in APX and PTAS in this paper are quite artificial.

Along a different line of research, during the same years, the study of logical properties of optimization
problems has led Papadimitriou and Yannakakis [8] to the syntactic characterization of an important class
of approximable problems, the class Max-SNP. Completeness in Max-SNP has been defined in terms of
L-reductions (see Section 15.3) and natural complete problems (e.g., MAX 3-SAT, MAX 2-SAT, and MIN

VERTEX COVER-B) have been found. The relevance of such an approach is related to the fact that it is
possible to prove that Max-SNP-complete problems do not allow PTAS (unless P = NP).

1Note that, in this case, the reduction is also a linear reductions with α1 = α2 = 1.
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The two approaches have been reconciled by Khanna et al. [17], where the closure of syntactically
defined classes with respect to an approximation preserving reduction were proved equal to the more
familiar computationally defined classes. As a consequence of this result, any Max-SNP-completeness
result appeared in the literature can be interpreted as an APX-completeness result. In this paper a new type
of reducibility is introduced, the E-reducibility. With respect to the L-reducibility, in the E-reducibility
the constant α1 is replaced by a polynomial p(|x|). This reducibility is fairly powerful since it allows to
prove that MAX 3-SAT is complete for APX-PB (the class of problems in APX whose values are bounded
by a polynomial in the size of the instance) such as MAX 3-SAT. However, it remains somewhat restricted
because it does not allow the transformation of PTAS problems (such as MAX KNAPSACK) into problems
belonging to APX-PB.

The final answer to the problem of finding the suitable kind of reducibility (powerful enough to establish
completeness results both in NPO and APX) is the AP-reducibility introduced by Crescenzi et al. [12].

In fact, the types of reducibility that we have introduced so far (linear and strict reducibilities) suffer from
various limitations. In particular, we have seen that strict reductions allow us to prove the completeness
of MIN WSAT in the class of NPO minimization problems, but are not powerful enough to allow the
identification of problems which are complete for the entire class NPO. Besides, both linear and strict
reductions, in different ways, impose strong constraints on the values of the solutions of the problems
among which the reduction is established.

In this section, we provide the definition of the AP-reducibility (denoted ≤AP) and we illustrate its
properties. Completeness results in NPO and in APX based on AP-reductions are shown in Section 15.6.

Definition 15.10

Let �1 and �2 be two minimization NPO problems. An AP-reduction between �1 and �2 is a triple ( f, g , α),
where f and g are functions and α is a constant, such that, for any x ∈ I�1 and r > 1:

• f (x , r ) ∈ I�2 is computable in time t f (|x|, r ) polynomial in |x| for a fixed r ; t f (n, ·) is nonincreasing;
• for any y ∈ Sol�2 ( f (x , r )), g (x , y, r ) ∈ Sol�1 (x) is computable in time tg (|x|, y, r ) which is

polynomial both in |x| and in |y| for an fixed r ; tg (n, n, ·) is nonincreasing;
• for any y ∈ Sol�2 ( f (x , r )), ρ�2 ( f (x , r ), y) ≤ r implies ρ�1 (x , g (x , y, r )) ≤ 1 + α(r − 1).

It is worth underlining the main differences of AP-reductions with respect to the reductions introduced
until now. First, with respect to L-reductions the constraint that the optimum values of the two problems are
linearly related has been dropped. Second, with respect to the S-reductions we allow a weaker relationship
to hold between the approximation ratios achieved for the two problems. Besides, an important condition
which is needed in the proof of APX-completeness is that, in AP-reductions, the two functions f and g
may depend on the approximation ratio r . Such extension is somewhat natural since there is no reason
to ignore the quality of the solution we are looking for, when reducing one optimization problem to
another and it plays a crucial role in the completeness proofs. However, since in many applications such
knowledge is not required, whenever functions f and g do not use the dependency on r , we will avoid
specifying this dependency. In other words, we will write f (x) and g (x , y) instead of f (x , r ) and g (x , y, r ),
respectively.

Proposition 15.2

Given two minimization problems �1 and �2, if �1 ≤AP �2 and �2 ∈ APX (resp., �2 ∈ PTAS),
then �1 ∈ APX (resp., �1 ∈ PTAS).

As a last remark, let us observe that the S-reducibility is a particular case of AP-reducibility, corresponding
to the case in which α = 1. More generally, the AP-reducibility is sufficiently broad to encompass almost
all known approximation preserving reducibilities while maintaining the property of establishing a linear
relation between performance ratios: This is important to preserve membership in all approximation
classes.
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15.6 NPO-Completeness and APX-Completeness

15.6.1 NPO-Completeness

In the preceding section, we have announced that by means of a suitable type of reduction we can transform
an instance of MAX WSAT into an instance of MIN WSAT. This can now be obtained by making use of
AP-reductions. By combining this result with Theorem 15.1 and with the corresponding result concerning
the completeness of MAX WSAT in the class of NPO maximization problems, we can assemble the complete
proof that MIN WSAT is complete for the entire class NPO under AP-reductions. The inverse reduction,
from MIN WSAT to MAX WSAT can be shown in a similar way, leading to the proof that also MAX WSAT is
complete for the entire class NPO under AP-reductions.

Theorem 15.2

MAX WSAT can be AP-reduced to MIN WSAT and vice versa.

Proof (Sketch)
The proof works as follows. First a simple reduction can be defined which transforms a given instance φ of
MAX WSAT into an instance φ′ of MIN WSAT with α depending on r . Such reduction can then be modified into
a real AP-reduction in which α is a constant, not depending on r , while, of course, the functions f and g will
depend on r . We limit ourselves to describing the first step. The complete proof can be found in Ref. [18].

Let φ be the formula produced in the reduction proving the completeness of MAX WSAT for the class
of NPO maximization problems. Then, f (φ) be the formula φ ∧ α1 ∧ · · · ∧ αs , where αi is zi ≡ (v1 ∧
· · · ∧ vi−1 ∧ vi ), z1, . . . , zs are new variables with weights w(zi ) = 2i for i = 1, . . . , s , and all other
variables (even the v variables) have zero weight. If τ is a satisfying truth assignment for f (φ), let g (φ , τ )
be the restriction of τ to the variables that occur in φ. This assignment clearly satisfies φ. Note that exactly
one among the z variables is true in any satisfying truth assignment of f (φ). If all z variables were false,
then all v variables would be false, which is not allowed. However, it is clearly not possible that two z
variables are true. Hence, for any feasible solution τ of f (φ), we have that m( f (φ), τ ) = 2i , for some i
with 1 ≤ i ≤ s . This finally implies that 2s /m( f (φ), τ ) ≤ m(φ , g (φ , τ )) < 2.2s /m( f (φ), τ ). This is
particularly true for the optimal solution (observe that any satisfying truth assignment for φ can be easily
extended to a satisfying truth assignment for f (τ )). Thus, after some easy algebra, the performance ratio
of g (φ , τ ) with respect to φ verifies r (φ , g (φ , τ )) > 1/(2r ( f (φ), τ )).

The reduction satisfies the approximation preserving condition with a factor α = (2r − 1)/(r − 1). To
obtain a factor α not depending on r , the reduction can be modified by introducing 2k more variables for
a suitable integer k.

Other problems that have been shown NPO-complete are MIN (MAX) W3-SAT and MIN TSP [7]. As it
has been observed before, as a consequence of their NPO-completeness under approximation preserving
reductions, for all these problems any r -approximate algorithm with constant r does not exist unless
P = NP.

15.6.2 APX-Completeness

As it has been mentioned above, the existence of an APX-complete problem has already been shown in
Ref. [16] (see also Ref. [19]), but the problem that is proved complete in such framework is a rather
artificial version of MAX WSAT. The reduction used in such a result is called P-reduction. Unfortunately,
no natural problem has been proved complete in APX using the same approach. In this section, we prove
the APX-completeness under AP-reduction of a natural and popular problem: MAX 3-SAT. The proof is
crucially based on the following two lemmas (whose proofs are not provided in this paper).

The first lemma is proved in Ref. [20] and is based on a powerful algebraic technique for the represen-
tation of propositional formulæ (see also Ref. [18]), while the second one states a well-known property of
propositional formulæ and is proved in Refs. [3,18].
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Lemma 15.1

There is a constant ε > 0 and two functions fs and gs such that, given any propositional formula φ in con-
junctive normal form, the formula ψ = fs (φ) is a conjunctive normal form formula with at most three literals
per clause which satisfies the following property: for any truth assignment T ′ satisfying at least a portion 1 − ε

of the maximum number of satisfiable clauses in ψ , gs (φ , T ′) satisfies φ if and only if φ is satisfiable.

Lemma 15.2

Given a propositional formula in conjunctive normal form, at least one-half of its clauses can always be satisfied.

Theorem 15.3

MAX 3-SAT is APX-complete.

Proof (Sketch)
As it has been done in the case of the proofs of NPO-completeness, we split the proof in two parts. First,
we show that MAX 3-SAT is complete in the class of APX maximization problems and then we show that
any APX minimization problem can be reduced to an APX maximization problem. To make the proof
easier, we adopt the convention used in Ref. [18]. The approximation ratio of a maximization problem in
this context will be defined as the ratio between the value of the optimum solution opt(x) and the value of
the approximate solution m(x , A(x)). For both maximization and minimization problems, therefore, the
approximation ratio is in [1, ∞). Let us first observe that MAX 3-SAT ∈ APX since it can be approximated
up to the ratio 0.8006 [9].

Now we can sketch the proof that MAX 3-SAT is hard for the class of maximization problems in APX. Let
us consider a maximization problem � ∈ APX. LetA� be a polynomial-time r�-approximation algorithm
for �. To construct an AP-reduction, let us define the parameter α as follows: α = 2(r� log r� + r� − 1)
×((1 + ε)/ε), where ε is the constant of Lemma 15.1. Let us now choose r > 1 and let us consider the
following two cases: 1 + α(r − 1) ≥ r� and 1 + α(r − 1) < r�.

In the case 1 + α(r − 1) ≥ r�, given any instance x of � and given any truth assignment τ for MAX

3-SAT, we trivially define f (x , r ) to be the empty formula and g (x , τ, r ) = A�(x). It can easily be seen
that r (x , g (x , τ, r )) ≤ r� ≤ 1 + α(r − 1) and the reduction is an AP-reduction.

Let us then consider the case 1 + α(r − 1) < r� and let us define rn = 1 + α(r − 1); then, r =
((rn − 1)/α)+1. If we define k = �logrn

r��, we can partition the interval [m(x , A�(x)), r�m(x , A�(x))]
in the following k subintervals: [m(x , A�(x)), rnm(x , A�(x))], [r i

nm(x , A�(x)), r i+1
n m(x , A�(x))], i =

1, . . . , k−2, [r k−1
n m(x , A�(x)), r�m(x , A�(x))]. Then we have m(x , A�(x)) ≤ opt(x) ≤ r�m(x ,A�(x))

≤ r k
n m(x , A�(x)), i.e., the optimum value of instance x of � belongs to one of the subintervals.

Note that by definition k < (r� log r� + r� − 1)/(rn − 1) and by making use of the definitions of α, r ,
and k, we obtain r < (ε/(2k(1 + ε))) + 1.

For any i = 0, 1, . . . , k − 1, let us consider an instance x of � and the following nondeterministic
algorithm, where p is the polynomial that bounds the value of all feasible solutions of �:

• guess a candidate solution y with value at most p(|x|);
• if y ∈ Sol�(x) and m�(x , y) ≤ r i+1

n m(x , A�(x)), then return yes, otherwise return no.

Applying once again the technique of Theorem 15.1, we can construct k propositional formulæφ0, φ1, . . . ,
φk−1 such that for any truth assignment τi satisfying φi , i = 0, 1, . . . , k − 1, in polynomial time we can
build a feasible solution y of the instance x with m�(x , y) ≥ r i

nm(x , A�(x)).
Hence, the instance ψ of MAX 3-SAT that we consider is the following: ψ = f (x , r ) = ∧k−1

i=0 fs (φi ),
where fs is the function defined in Lemma 15.1; w.l.o.g., we can suppose that all formulæ fs (φi ), i =
0, . . . , k − 1, contain the same number of clauses.

Denote by T a satisfying truth assignment of ψ achieving approximation ratio r and by ri the approxi-
mation ratio guaranteed by τ over fs (φi ). By Lemma 15.2 we get m(ri − 1)/(2ri ) ≤ opt(ψ) − m(ψ,T) ≤
km(r − 1)/r . Using this expression for i = 0, . . . , k − 1, we have m(ri − 1)/2ri ≤ km(r − 1)/r , which
implies 1 − (2k(r − 1)/r ) ≤ 1/ri and, finally, ri ≤ 1 + ε.
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Using Lemma 15.1 again, we derive that, for i = 0, . . . , k−1, the truth assignmentτi = gs (φi , τ ) (where
gs is as defined in Lemma 15.1) satisfies φi if and only if φi is satisfiable. Let us call i∗ the largest i for
which τi satisfies φi ; then, r i∗

n m(x , A�(x)) ≤ opt�(x) ≤ r i∗+1
n m(x , A�(x)). Starting from τi∗ , we can

then construct a solution y for � whose value is at least r i∗
n m(x , A�(x)). This means that y guarantees an

approximation ratio rn. In other words, r (x , y) ≤ rn = 1 + α(r − 1) and the reduction ( f, g , α) that we
have just defined (where g consists in applying gs , determining i∗ and constructing y starting from τi∗)
is an AP-reduction.

Since � is any maximization problem in APX, the completeness of MAX 3-SAT for the class of maxi-
mization problems in APX follows.

We now turn to the second part of the theorem. In fact, we still have to prove that all minimization
problems in APX can be AP-reduced to maximization problems and, henceforth, to MAX 3-SAT.

Let us consider a minimization problem � ∈ APX and an algorithm A with approximation ratio r
for �; let k = �r �. We can construct a maximization problem �′ ∈ APX and prove that � ≤AP �′. The
two problems have the same instances and the same feasible solutions, while the objective function of �′ is
defined as follows: given an instance x and a feasible solution y of x , m�′(x , y) = (k + 1)m�(x , A(x)) −
km�(x , y), if m�(x , y) ≤ m�(x , A(x)), m�′(x , y) = m�(x , A(x)), otherwise.

Clearly, m�(x , A(x)) ≤ opt�′(x) ≤ (k + 1)m�(x , A(x)) and, by definition of �′, the algorithm A is
also an approximation algorithm for this problem with approximation ratio k + 1; therefore, �′ ∈ APX.
The reduction from � to �′ can now be defined as follows: for any instance x of �, f (x) = x ; for any
instance x of � and for any solution y of instance f (x) of �′, g (x , y) = y, if m�(x , y) ≤ m�(x , A(x)),
g (x , y) = A(x), otherwise α = k + 1. Note that f and g do not depend on the approximation ratio r .

We now show that the reduction we have just defined is an AP-reduction. Let y be an r ′-approximate
solution of f (x); we have to show that the ratio r�(x , g (x , y)) of the solution g (x , y) of the instance x
of � is smaller than, or equal to, 1 +α(r ′ − 1). We have the following two cases: m�(x , y) ≤ m�(x , A(x))
and m�(x , y) > m�(x , A(x)).

In the case m�(x , y) ≤ m�(x , A(x)), we can derive m�(x , y) ≤ (1 + α(r ′ − 1)) opt�(x). In other
words, r�(x , g (x , y)) = r�(x , y) ≤ 1 + α(r ′ − 1).

In the case m�(x , y) > m�(x , A(x)), since α ≥ 1, we have r�(x , g (x , y)) = r�(x , A(x)) =
r�′(x , y) ≤ r ′ ≤ 1 + α(r ′ − 1).

In conclusion, all minimization problems in APX can be AP-reduced to maximization problems in
APX and all maximization problems in APX can be AP-reduced to MAX 3-SAT. Since the AP-reduction is
transitive, the APX-completeness of MAX 3-SAT is proved.

15.6.3 Negative Results Based on APX-Completeness

Similar to what we saw for completeness in NPO, also completeness in APX implies negative results in terms
of approximability of optimization problems. In fact if we could prove that an APX-complete problem
admits a PTAS, then so would all problems in APX. However, it is well known that, unless P = NP, there
are problems in APX that do not admit a PTAS (one example for all, MIN SCHEDULING ON IDENTICAL

MACHINES, see Ref. [18]), therefore, under the same complexity theoretic hypothesis, no APX-complete
problem admits a PTAS.

As a consequence of the results in the previous subsection, we can therefore assert that, unless P = NP,
MAX 3-SAT does not admit a PTAS, neither do all other optimization problems that have been shown
APX-complete (MAX 2-SAT, MIN VERTEX COVER, MAX CUT, MIN METRIC TSP, etc.).

Note that the inapproximability of MAX 3-SAT has been proved by Arora et al. [20] in a breakthrough paper
by means of sophisticated techniques based on the concept of probabilistically checkable proofs, without
any reference to the notion of APX-completeness. This fact, though, does not diminish the relevance of
approximation preserving reductions and the related completeness notion. In fact, most results that state
the nonexistence of PTAS for APX optimization problems have been proved starting from MAX 3-SAT,
via approximation preserving reductions that allow to carry over the inapproximability results from one
problem to another. Second, it is worth noting that the structure of approximation classes with respect
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to approximation preserving reductions is richer than it appears from this chapter. For example, beside
complete problems, other classes of problems can be defined inside approximation classes, identifying the
so called intermediate problems (see Ref. [18]).

15.7 FT-Reducibility

As we have already pointed out in Section 15.5, PTAS-completeness has been studied in Ref. [16] under the
so-called F-reduction, preserving membership in FPTAS. Under this type of reducibility, a single problem,
a rather artificial version of MAX WSAT has been shown PTAS-complete. In fact, F-reducibility is quite
restrictive since it mainly preserves optimality, henceforth, existence of a PTAS-complete polynomially
bounded problem is very unlikely.

In Ref. [21], a more “flexible” type of reducibility, called FT-reducibility has been introduced. It is
formally defined as follows.

Definition 15.11

Let � and �′ be two maximization integer-valued problems. Then, � FT-reduces to �′ (denoted by � ≤FT

�′) if, for any ε > 0, there exist an oracle ©�′
α for �′ and an algorithm Aε calling ©�′

α such that

• ©�′
α produces, for any α ∈ [0, 1] and for any instance x ′ of �′, a feasible solution ©�′

α (x ′) of x ′ that
is an (1 − α)-approximation;

• for any instance x of �, y = Aε(©�′
α , x) ∈ Sol(x); furthermore the approximation ratio of y is at

least (1 − ε);
• if ©�′

α (·) runs in time polynomial in both | f (x)| and 1/α, then Aε(©�′
α ( f (x)), x) is polynomial in

both |x| and 1/ε.

For the case where at least one among � and �′ is a minimization problem it suffices to replace 1 − ε

or/and 1 − α by 1 + ε or/and 1 + α, respectively.
As one can see from Definition 15.11,FT-reduction is somewhat different from the other ones considered

in this chapter and, in any case, it is not conformal to Definition 15.6. In fact, it resembles a Turing-reduction.
Clearly, FT-reduction transforms an FPTAS for �′ into an FPTAS for �, i.e., it preserves membership in
FPTAS. Note also that the F-reduction, as it is defined in Ref. [16], is a special case of the FT-reduction,
since the latter explicitly allows multiple calls to oracle © while for the former this fact is not explicit.

Theorem 15.4

Let �′ be an NP-hard problem in NPO. If �′ ∈ NPO-PB (the class of problems in NPO whose values are
bounded by a polynomial in the size of the instance), then any NPO problem FT reduces to �′. Consequently,

(i) PTAS
FT = NPO and (ii) any NP-hard polynomially bounded problem in PTAS is PTAS-complete under

FT-reductions.

Proof (Sketch)
We first prove the following claim: if an NPO problem �′ is NP-hard, then any NPO problem Turing reduces
(see Ref. [18]) to �′.

To prove this claim, let � be an NPO problem and q be a polynomial such that |y|�q(|x|), for any
instance x of � and for any feasible solution y of x . Assume that the encoding n(y) of y is binary. Then
0 ≤ n(y) ≤ 2q(|x|) − 1. We consider problem �̂ which is the same as � up to its value that is defined
by m�̂(x , y) = 2q(|x|)+1m�(x , y) + n(y). If m�̂(x , y1) ≥ m�̂(x , y2), then m�(x , y1) ≥ m�(x , y2). So,
if a solution y is optimal for x , with respect to �̂, it is so with respect to �. Remark now that �̂ and its
evaluation version �̂e are equivalent since given the value of an optimal solution y, one can determine n(y)
(hence y) by computing the remainder of the division of this value by 2q(|x|)+1. Since �′ is NP-hard, it can
be shown that one can solve the evaluation problem �̂e , henceforth �̂ if one can solve, the (constructive)
problem �′ and the claim is proved.
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We now prove the following claim: let �′ ∈ NPO-PB; then, any NPO problem Turing-reducible to �′ is
also FT-reducible to �′.

To prove this second claim, let � be an NPO problem and suppose that there exists a Turing-reduction
between � and �′. Let ©�′

α be as in Definition 15.11. Moreover, let p be a polynomial such that for any
instance x ′ of �′ and for any feasible solution y ′ of x ′, m(x ′, y ′)�p(|x ′|). Let x be an instance of �. The
Turing-reduction claimed gives an algorithm solving � using an oracle for �′. Consider now this algorithm
where we use, for any query to the oracle with the instance x ′ of �′, the approximate oracle ©�′

α (x ′), with
α = 1/( p(|x ′|) + 1). This algorithm is polynomial and produces an optimal solution, since a solution y ′
being an (1 − (1/( p(|x ′|) + 1)))-approximation for x ′ is an optimal one. So, the claim is proved.

From the combination of the above claims the theorem is easily derived.

Observe finally that MAX PLANAR INDEPENDENT SET and MIN PLANAR VERTEX COVER are in both PTAS [22]
and NPO-PB. So, the following theorem concludes this section.

Theorem 15.5

MAX PLANAR INDEPENDENT SET and MIN PLANAR VERTEX COVER are PTAS-complete under FT-reductions.

15.8 Gadgets, Reductions, and Inapproximability Results

As it has been pointed out already in Section 15.3, in the context of approximation preserving reductions,
we call gadget a combinatorial structure which allows to transfer approximability (or inapproximability)
results from a problem to another. A classical example is the set of 10 2-SAT clauses that we have used
in Example 15.1 for constructing the 2-SAT formula starting from a 3-SAT formula. Although gadgets are
used since the seminal work of Karp on reductions among combinatorial problems, the study of gadgets
has been started in Refs. [9,23]; from the latter derive most of the results discussed in this section.

To understand the role of gadgets in approximation preserving reductions, let us first go back to
linear reductions and see what are the implications on the approximation ratio of two problems � and �′,
deriving from the fact that� ≤L �′. Suppose � and �′ are minimization problems, f , g , α1, and α2 are the
functions and constants that define the linear reduction, x is an instance of problem �, f (x) is the instance
of problem �′ determined by the reduction, and y is a solution of f (x). Then, the following relationship
holds between the approximation ratios of � and �′: r�(x , g (x , y)) ≤ 1 + α1α2(r�′( f (x), y) − 1), and,
therefore, we have that r�′ ≤ 1 + (r − 1)/(α1α2) implies r� ≤ r .

In the particular case of the reduction between MAX 3-SAT and MAX 2-SAT, we have α1α2 = 13 and,
therefore, we can infer the following results on the approximability upper bounds and lower bounds of
the two problems, which may be proved by a simple calculation:

• Since it is known that MAX 2-SAT can be approximated with the ratio 0.931 [24], then MAX 3-SAT

can be approximated with ratio 0.103.
• Since it is known that MAX 3-SAT cannot be approximated beyond the threshold 7/8, then MAX 2-SAT

cannot be approximated beyond the threshold 103/104.

Although better bounds are now known for these problems (see Karloff and Zwick [25]), it is important to
observe that the above given bounds may be straightforwardly derived from the linear reduction between
the two problems and are useful to show the role of gadgets. In such reduction, the structure of the gadget
is crucial (it determines the value α1) and it is clear that better bounds could be achieved if the reduction
could make use of “smaller” gadgets. In fact, in Ref. [9], by cleverly constructing a more sophisticated type
of gadget (in which, in particular, clauses have real weights), the authors derive a 0.801 approximation
algorithm for MAX 3-SAT, improving on previously known bounds.

Based on Ref. [23], in Ref. [9] the notion of α gadget (i.e., gadget with performance α) is abstracted
and formalized with reference to reductions among constraint satisfaction problems. In the same paper,
it is shown that, under suitable circumstances, the search for (possibly optimum) gadgets to be used
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in approximation preserving reductions, can be pursued in a systematic way by means of a computer
program. An example of the results that may be achieved in this way is the following.

Let PC0 and PC1 be the families of constraints over three binary variables defined as PCi (a , b, c) = 1,
if a ⊕ b ⊕ c = i , PCi (a , b, c) = 0, otherwise, and let DICUT be the family of constraints corresponding
to directed cuts in a graph. There exists optimum 6.5 gadgets (automatically derived by the computer
program) reducing PC0 and PC1 to DICUT. As a consequence, for any ε > 0, MAX DICUT is hard to
approximate to within 12/13 + ε.

15.9 Conclusion

A large number of other approximation preserving reductions among optimization problems, besides
those introduced in this chapter, have been introduced throughout the years. Here we have reported only
the major developments. Other overviews of the world of approximation preserving reductions can be
found in Refs. [12,26].

As we have already pointed out in Section 15.2, we have not dealt in this chapter with approximability
classes beyond APX, even if intensive studies have been performed, mainly for Poly APX. In Ref. [17],
completeness results are established, under the E-reduction, for Poly-APX-PB (the class of problems in
Poly APX whose values are bounded by a polynomial in the size of the instance). Indeed, as we have
already discussed in Section 15.5, use of restrictive reductions as the E-reducibility, where the functions f
and g do not depend on any parameter ε seems very unlikely to be able to handle Poly-APX-completeness.
As it is shown in Ref. [21] (see also Chapter 16), completeness for the whole Poly APX can be handled,
for instance, by using PTAS-reduction, a further relaxation of the AP-reduction where the dependence
between the approximation ratios of � and �′ is not restricted to be linear [27]. Under PTAS-reduction,
MAX INDEPENDENT SET is Poly-APX-complete [21].

Before concluding, it is worth noting that a structural development (based on the definition of approx-
imability classes, approximation preserving reductions, and completeness results), analogous to the one
that has been carried on for the classical approach to the theory of approximation, has been elaborated
also for the differential approach (see Chapter 16 for a survey). In Refs.[21,28] the approximability classes
DAPX, Poly-DAPX and DPTAS are introduced, suitable approximation preserving reductions are defined
and complete problems in NPO, DAPX, Poly-DAPX, and DPTAS, under such kind of reductions, are
shown.
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16.1 Introduction

In this chapter we introduce the so-called differential approximation ratio as a measure of the quality of
the solutions obtained by approximation algorithms. After providing motivations and basic definitions
we show examples of optimization problems for which the evaluation of approximation algorithms based
on the differential ratio appears to be more meaningful than the usual approximation ratio used in
the classical approach to approximation algorithms. Finally, we discuss some structural results concerning
approximation classes based on the differential ratio. Throughout the chapter we make use of the notations
introduced in Chapter 15. Also, given an approximation algorithm A for an NP optimization problem �

(the class of these problems is called NPO), we denote by mA(x , y), the value of the solution y computed
by A on instance x of �. When clear from the context, reference to A will be omitted. The definitions of
most of the problems dealt in this chapter can be found in Refs. [1,2]; also, for graph-theoretic notions,
interested readers are referred to Ref. [3].

In several cases, the commonly used approximation measure (called standard approximation ratio in
what follows) may not be very meaningful in characterizing the quality of approximation algorithms.
This happens, in particular, when the ratio of m(x , yw ), the value of the worst solution for a given
input x , to the value of the optimum solution opt(x) is already bounded (above, if goal(�) = min, below,
otherwise). Consider, for instance, the basic maximal matching algorithm for MIN VERTEX COVER that
achieves approximation ratio 2. In this algorithm, given a graph G(V, E ), a maximal1 matching M of G
is computed and the endpoints of the edges in M are added in the solution for MIN VERTEX COVER. If M is
perfect (almost any graph, even relatively sparse, admits a perfect matching [4]), then the whole of V will be
included in the cover, while an optimum cover contains at least a half of V . So, in most cases, the absolutely
worst solution (that one could compute without using any algorithm) achieves approximation ratio 2.

The remark above is just one of the drawbacks of the standard approximation ratio. Various other
drawbacks have been also observed, for instance, the artificial dissymmetry between “equivalent”

1With respect to inclusion.

16-1
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minimization and maximization problems (e.g., MAX CUT and MIN CLUSTERING, see Ref. [5]) introduced
by the standard approximation ratio. The most blatant case of such dissymmetry is the one appearing
when dealing with the approximation of MIN VERTEX COVER and MAX INDEPENDENT SET (given a graph, a
vertex cover is the complement of an independent set with respect to the vertex set of the graph). In other
words, using linear programming vocabulary, the objective function of the former is an affine transfor-
mation of the objective function of the latter. This equivalence under such simple affine transformation
does not reflect in the approximability of these problems in the classical approach: the former problem
is approximable within constant ratio, in other words it belongs to the class APX of problems that are
approximable within constant ratios (see Chapter 15 for definitions of approximability classes based on the
standard approximation paradigm; the ones based on the differential paradigm are defined analogously
in this chapter, see Section 16.5), while the latter is inapproximable within ratio �(nε−1), for any ε > 0
(see Ref. [6] and Chapter 17). In other words, the standard approximation ratio is unstable under affine
transformations of the objective function.

To overcome these phoenomena, several researchers have tried to adopt alternative approximation mea-
sures not suffering from these inconsistencies. One of them is the ratioδ(x , y) = (ω(x)−m(x , y))/(ω(x)−
opt(x)), called differential ratio in the sequel, where ω(x) is the value of a worst solution for x , called
worst value. It will be formally dealt in the next sections. It has been used rather punctually and without
following a rigorous axiomatic approach until the paper in Ref. [7] where such an approach is formally
defined. To our knowledge, differential ratio is introduced in Ref. [8] in 1977, and Refs. [9–11] are, to
our knowledge, the most notable cases in which this approach has been applied. It is worth noting that
in Ref. [11], a weak axiomatic approach is also presented.

Finally, let us note that several other authors that have also recognized the methodological problems
implied by the standard ratio, have proposed other alternative ratios. It is interesting to remark that, in most
cases, the new ratios are very close, although with some small or less small differences, to the differential
ratio. For instance, in Ref. [12], for studying MAX TSP, it is proposed that the ratio d(x , y, zr ) = | opt(x) −
m(x , y)|/| opt(x) − zr |, where zr is a positive value computable in polynomial time, called reference value.
It is smaller than the value of any feasible solution of x , hence smaller than ω(x) (for a maximization
problem a worst solution is the one of the smallest feasible value). The quantities | opt(x) − m(x , y)| and
| opt(x) − zr | are called deviation and absolute deviation, respectively. The approximation ratio d(x , y, zr )
depends on both x and zr , in other words, there exist a multitude of such ratios for an instance x of
an NPO problem, one for any possible value of zr . Consider a maximization problem � and an instance x
of �. Then, d(x , y, zr ) is increasing with zr , so, d(x , y, zr ) ≤ d(x , y, ω(x)). In fact, in this case, for
any reference value zr : r (x , y) ≥ 1 − d(x , y, zr ) ≥ 1 − d(x , y, ω(x)) = δ(x , y), where r denotes the
standard approximation ratio for �. When ω(x) is computable in polynomial time, d(x , y, ω(x)) is the
smallest (tightest) over all the d-ratios for x . In any case, if for a given problem, one sets zr = ω(x), then
d(x , y, ω(x)) = 1 − δ(x , y) and both ratios have the natural interpretation of estimating the relative
position of the approximate solution-value in the interval worst solution-value—optimal value.

16.2 Toward a New Measure of Approximation Paradigm

In Ref. [7], the task of adopting is undertaken, in an axiomatic way, an approximation measure founded
on both intuitive and mathematical links between optimization and approximation. It is claimed there
that a “consistent” ratio must be order preserving (i.e., the better the solution the better the approximation
ratio achieved) and stable under affine transformation of the objective function. Furthermore, it is proved
that no ratio function of two parameters—for example, m, opt—can fit this latter requirement. Hence, it
is proposed what will be called differential approximation ratio2 in what follows. Problems related by affine
transformations of their objective functions are called affine equivalent.

2This notation is suggested in Ref. [7]; another notation drawing the same measure is z-approximation suggested
in Ref. [13].
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Consider an instance x of an NPO problem � and a polynomial-time approximation algorithm A
for �, the differential approximation ratio δA(x , y) of a solution y computed by A in x is defined by:
δA(x , y) = (ω(x) − mA(x , y))/(ω(x) − opt(x)), where ω(x) is the value of a worst solution for x ,
called worst value. Note that for any goal, δA(x , y) ∈ [0, 1] and, moreover, the closer δA(x , y) to 1, the
closer mA(x , y) to opt(x). By definition, when ω(x) = opt(x), i.e., all the solutions of x have the same
value, then the approximation ratio is 1. Note that, mA(x , y) = δA(x , y) opt(x) + (1 − δA(x , y))ω(x).
So, differential approximation ratio measures how an approximate solution is placed in the interval
between ω(x) and opt(x).

We note that the concept of the worst solution has a status similar to the optimum solution. It depends
on the problem itself and is defined in a nonconstructive way, i.e., independently of any algorithm that
could build it. The following definition for worst solution is proposed in Ref. [7].

Definition 16.1

Given an NPO problem � = (I , Sol, m, goal), a worst solution of an instance x of � is defined as an
optimum solution of a new problem �̄ = (I , Sol, m, goal), i.e., of an NPO problem having the same sets of
instances and of instances and of feasible solutions and the same value-function as � but its goal is the inverse
w.r.t. �, i.e., goal = min if goal = max and vice versa.

Example 16.1

The worst solution for an instance of MIN VERTEX COVER or of MIN COLORING is the whole vertex set
of the input graph, while for an instance of MAX INDEPENDENT SET the worst solution is the empty set.
However, if one deals with MAX INDEPENDENT SET with the additional constraint that a feasible solution
has to be maximal with respect to inclusion, the worst solution of an instance of this variant is a minimum–
maximal independent set, i.e., an optimum solution of a very well-known combinatorial problem, the MIN

INDEPENDENT DOMINATING SET. Also, the worst solution for MIN TSP is a “heaviest” Hamiltonian cycle of
the input graph, i.e., an optimum solution of MAX TSP, while for MAX TSP the worst solution is the optimum
solution of a MIN TSP. The same holds for the pair MAX SAT, MIN SAT.

From Example 16.1, one can see that, although for some problems a worst solution corresponds to some
trivial input parameter and can be computed in polynomial time (this is, for instance, the case with MIN

VERTEX COVER, MAX INDEPENDENT SET, MIN COLORING, etc.), several problems exist for which determining
a worst solution is as hard as determining an optimum one (as for MIN INDEPENDENT DOMINATING SET,
MIN TSP, MAX TSP, MIN SAT, MAX SAT, etc.).

Remark 16.1

Consider the pair of affine equivalent problems MIN VERTEX COVER, MAX INDEPENDENT SET, and an input
graph G(V, E ) of order n. Denote by τ (G) the cardinality of a minimum vertex cover of G and by α(G), the
stability number of G. Obviously, τ (G) = n−α(G). Based upon what has been discussed above, the differential
ratio of some vertex cover C of G is δ(G , C ) = (n−|C |)/(n−τ (G)). Since the set S = V \C is an independent
set of G, its differential ratio is δ(G , S) = (|S| − 0)/(α(G) − 0) = (n − |C |)/(n − τ (G)) = δ(G , C).

As we have already mentioned, the differential ratio, although not systematically, has been used several
times by many authors, before and after [7], in various contexts going from mathematical (linear or
nonlinear) programming [14–16] to pure combinatorial optimization [9,10,13,17,18]. Sometimes the
use of the differential approach has been disguised by considering the standard approximation ratio of
affine transformations of a problem. For instance, to study differential approximation of BIN PACKING, one
can deal with standard approximation of the problem of maximizing the number of unused bins; for MIN

COLORING, the affinely equivalent problem is the one of maximizing the number of unused colors, for MIN

SET COVER, the problem consists in maximizing the number of unused sets, etc.
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16.3 Differential Approximation Results for Some
Optimization Problems

In general, no systematic way allows to link results obtained in standard and differential approxima-
tion paradigms when dealing with minimization problems. In other words, there is no evident transfer of
positive or inapproximability results from one framework to the other. Hence, a “good” differential approx-
imation result does not signify anything for the behavior of the approximation algorithm studied, or of the
problem itself, when dealing with the standard framework, and vice versa. Things are somewhat different
for maximization problems with positive solution-values. In fact, considering an instance x of a maxi-
mization problem � and a solution y ∈ Sol(x) that is a δ-differential approximation, we immediately get:

m(x , y) − ω(x)

opt(x) − ω(x)
≥ δ �⇒ m(x , y)

opt(x)
�δ + (1 − δ)

ω(x)

opt(x)
ω(x)�0�⇒ m(x , y)

opt(x)
�δ

So, positive results are transferred from differential to standard approximation, while transfer of inap-
proximability thresholds is done in the opposite direction.

Fact 16.1

Approximation of a maximization NPO problem � within differential approximation ratio δ, implies its
approximation within standard approximation ratio δ.

Fact 16.1 has interesting applications. The most immediate of them deals with the case of maximization
problems with worst-solution values 0. There, standard and approximation ratios coincide. In this case,
the differential paradigm inherits the inapproximability thresholds of the standard one. For instance, the
inapproximability of MAX INDEPENDENT SET within nε−1, for any ε > 0 [6], also holds in the differential
approach.

Furthermore, since MAX INDEPENDENT SET and MIN VERTEX COVER are affine equivalent, henceforth
differentially equiapproximable, the negative result for MAX INDEPENDENT SET is shared, in the differential
paradigm, by MIN VERTEX COVER.

Corollary 16.1

Both MAX INDEPENDENT SET and MIN VERTEX COVER are inapproximable within differential ratios nε−1, for
any ε > 0, unless P = NP.

Note that differential equi-approximability of MAX INDEPENDENT SET and MIN VERTEX COVER makes that,
in this framework the latter problem is not constant approximable but inherits also the positive standard
approximation results of the former one [19–21].

In what follows in this section, we mainly focus ourselves on three well-known NPO problems: MIN

COLORING, BIN PACKING, TSP in both minimization and maximization variants, and MIN MULTIPROCESSOR

SCHEDULING. As we will see, approximabilities of MIN COLORING and MIN TSP are radically different from
the standard paradigm (where these problems are very hard) to the differential one (where they become
fairly well approximable). For the first two of them, differential approximability will be introduced by
means of more general problem that encompasses both MIN COLORING and BIN PACKING, namely, the MIN

HEREDITARY COVER.

16.3.1 Min Hereditary Cover

Let π be a nontrivial hereditary property3 on sets and C a ground set. A π-covering of C is a collectionS =
{S1, S2, . . . , Sq } of subsets of C (i.e., a subset of 2C ), any of them verifying π and such that ∪q

i=1 Si = C .

3A property is hereditary if whenever it is true for some set, it is true for any of its subsets; it is nontrivial if it is true
for infinitely many sets and false for infinitely many sets also.
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Then, MIN HEREDITARY COVER consists, given a property π , a ground set C and a family S including any
subset of C verifying π , of determining a π-covering of minimum size. Observe that, by definition of the
instances of MIN HEREDITARY COVER, singletons of the ground sets are included in any of them and are
always sufficient to cover C . Henceforth, for any instance x of the problem, ω(x) = |C |.

It is easy to see that, given a π-covering, one can yield a π-partition (i.e., a collection S where for any
Si , S j ∈ S , Si ∩ S j = ∅) of the same size, by greedily removing duplications of elements of C . Henceforth,
MIN HEREDITARY COVER or MIN HEREDITARY PARTITION are, in fact, the same problem. MIN HEREDITARY

COVER has been introduced in Ref. [22] and revisited in Ref. [13] under the name MIN COVER BY INDEPEN-
DENT SETS. Moreover, in the former paper, using a clever adaptation of the local improvement methods
of Ref. [23], a differential ratio 3/4 for MIN HEREDITARY COVER has been proposed. Based on Ref. [24], this
ratio has been carried to 289/360 by Ref. [13].

A lot of well-known NPO problems are instantiations of MIN HEREDITARY COVER. For instance, MIN

COLORING becomes a MIN HEREDITARY COVER problem, considering as ground set the vertices of the input
graph and as set system, the set of the independent sets4 of this graph. The same holds for the partition of
the covering of a graph by subgraphs that are planar, or by degree-bounded subgraphs, etc. Furthermore,
if any element of C is associated with a weight and a subset Si of C is in S if the total weight of its members
is at most 1, then one recovers BIN PACKING.

In fact, an instance of MIN HEREDITARY COVER can be seen as a virtual instance of MIN SET COVER, even
if there is no need to make it always explicit. Furthermore, the following general result links MIN k-SET

COVER (the restriction of MIN SET COVER to subsets of cardinality at most k) and MIN HEREDITARY COVER

(see Ref. [25] for its proof in the case of MIN COLORING; it can be easily seen that extension to the general
MIN HEREDITARY COVER is immediate).

Theorem 16.1

If MIN k-SET COVER is approximable in polynomial time within differential approximation ratio δ, then
MIN HEREDITARY COVER is approximable in polynomial time within differential approximation ratio
min{δ, k/(k + 1)}.
16.3.1.1 Min Coloring

MIN COLORING has been systematically studied in the differential paradigm. Subsequent papers [(18,23,
24,26–29)] have improved their differential approximation ratio from 1/2 to 289/360. This problem is also
a typical example of a problem that behaves in completely different ways when dealing with the standard or
the differential paradigms. Indeed, dealing with the former one, MIN COLORING is inapproximable within
ratio n1−ε , for any ε > 0, unless problems in NP can be solved by slightly superpolynomial deterministic
algorithms (see Ref. [1] and Chapter 17).

As we have seen previously, given a graph G(V, E ), MIN COLORING can be seen as a MIN HEREDITARY

COVER problem considering C = V and taking for S the set of the independent sets of G . Accord-
ing to Theorem 16.1 and Ref. [24], where MIN 6-SET COVER is proved approximable within differential
ratio 289/360, one can derive that it is also approximable within differential ratio 289/360. Note that any
result for MIN COLORING also holds for the minimum vertex-partition (or covering) into cliques problem
since an independent set in some graph G becomes a clique in the complement Ḡ of G (in other words,
this problem is also an instantiation of MIN HEREDITARY COVER). Furthermore, in Refs. [26,27], a differen-
tial ratio preserving reduction is devised between minimum vertex-partition into cliques and minimum
edge-partition (or covering) into cliques. So, as in the standard paradigm, all these three problems have
identical differential approximation behavior.

Finally, it is proved in Ref. [30] that MIN COLORING is DAPX-complete (see also Section 16.5.3.1);
consequently, unless P = NP, it cannot be solved by polynomial-time differential approximation schemata.
This derives immediately that neither MIN HEREDITARY COVER belongs to DPTAS, unless P = NP.

4It is well known that the independence property is hereditary.
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16.3.1.2 Bin Packing

We now deal with another very well-known NPO problem, the BIN PACKING. According to what has
been discussed above, BIN PACKING being a particular case of MIN HEREDITARY COVER, it is approximable
within differential ratio 289/360. In what follows in this section, we refine this result by first presenting an
approximation preserving reduction transforming any standard approximation ratio ρ into differential
approximation ratio δ = 2 − ρ. Then, based on this reduction we show that BIN PACKING can be solved
by a polynomial-time differential approximation schema [31]; in other words, BIN PACKING ∈ DPTAS.
This result draws another, although less dramatical than the one in Section 16.3.1.1, difference be-
tween standard and differential approximation. In the former paradigm, BIN PACKING is solved by an
asymptotic polynomial-time approximation schema, more precisely within standard approximations ratio
1 + ε + (1/ opt(L )), for any ε>0 ([32]), but it is NP-hard to approximate it by a “real” polynomial-time
approximation schema [2].

Consider a list L = {x1, . . . , xn}, instance of BIN PACKING, assume, without loss of generality, that items
in L are rational numbers ranged in decreasing order and fix an optimum solution B∗ of L . Observe that
ω(L ) = n. For the purposes of this section, a bin i will be denoted either by bi , or by explicit listing of the
numbers placed in it; finally, any solution will be alternatively represented as union of its bins.

Theorem 16.2

From any algorithm achieving standard approximation ratio ρ for BIN PACKING, can be derived an algorithm
achieving differential approximation ratio δ = 2 − ρ.

Proof (Sketch)
Let k∗ be the number of bins in B∗ that contain a single item. Then, it is easy to see that there exists
an optimum solution B̄∗ = {x1} ∪ · · · ∪ {xk∗ } ∪ B̄∗

2 for L , where any bin in B̄∗
2 contains at least two

items. Furthermore, one can show that, for any optimum solution B̂ = {b j : j = 1, . . . , opt(L )} and
for any set J ⊂ {1, . . . , opt(L )}, the solution B j = {b j ∈ B : j ∈ J } is optimum for the sublist
L j = ∪ j∈J b j .

Consider now AlgorithmSA achieving standard approximation ratioρ for BIN PACKING, denote bySA(L )
the solution computed by it, when running on an instance L (recall that L is assumed ranged in decreasing
order), and run the following algorithm, denoted by DA in the sequel, which uses SA as subprocedure:

1. for k = 1 to n set: L k = {xk+1, . . . , xn}, Bk = {x1} ∪ · · · ∪ {xk} ∪ SA(L k);
2. output B = argmin{|Bk | : k = 0, . . . , n − 1}.

Let B̄∗ be the optimum solution claimed above. Then, B̄∗
2 is an optimum solution for the sublist L k∗ .

Observe that Algorithm SA called by DA has also been executed on L k∗ and denote by Bk∗ the solution
so computed by DA. The solution returned in step 2 verifies |B | ≤ |Bk∗ |. Finally, since any bin in B̄∗

2
contains at least two items, |L k∗ | = n − k∗ ≥ 2 opt(L k∗). Putting all this together, we get δDA(L , B) =
(n − |B |)/(n − opt(L )) ≥ (|L k∗ | − |Bk∗ |)/(|L k∗ | − opt(L k∗)) ≥ 2 − ρ.

In what follows, denote by SA any polynomial algorithm approximately solving BIN PACKING within
(fixed) constant standard approximation ratio ρ, byASCHEMA(ε) the asymptotic polynomial-time standard
approximation schema of Ref. [32], parameterized by ε > 0, and consider the following algorithm,
DSCHEMA (L is always assumed ranged in decreasing order):

1. fix a constant ε > 0 and set η = �2(ρ − 1 + ε)/ε2�;
2. for k = n −η+1, . . . , n build list L k−1 where L k−1 is as in step 1 of Algorithm DA (Theorem 16.2);
3. for any list L i computed in step 2 above, perform an exhaustive search on L i , denote by E i the

solution so computed, and set Bi = {{x} : x ∈ L \ L i } ∪ E i ;
4. store B , the smallest of the solutions computed in Step 3;
5. run DA both with SA and ASCHEMA(ε/2), respectively, as subprocedures on L ;
6. output the best among the three solutions computed in steps 4 and 5.
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Theorem 16.3 (Demange et al. [31])

Algorithm DSCHEMA is a polynomial-time differential approximation schema for BIN PACKING. So,
BIN PACKING ∈ DPTAS.

Proof (Sketch)
Since ρ and ε do not depend on n, neither does η, computed at step 1. One can then show that when dealing
with a list L such that |L k∗+1| ≤ η, BIN PACKING can be solved in polynomial time whenη is a fixed constant.
However, assuming |L k∗+1| ≥ η, then, one can prove that, if opt(L k∗+1) ≤ ε|L k∗+1|/(ρSA − 1 + ε), the
approximation ratio of algorithm DA, when calling SA as subprocedure, is δ ≥ 1−ε while, if opt(L k∗+1) ≥
ε|L k∗+1|/(ρSA − 1 + ε), then the approximation ratio of algorithm DA, when calling ASCHEMA(ε/2) as
subprocedure, is also δ ≥ 1 − ε. So, when |L k∗+1| ≥ 2(ρ − 1 + ε)/ε2, step 5 of DSCHEMA achieves
differential approximation ratio 1 − ε. Putting things together derives the result.

Let us note that, as we will see in Section 16.5.4, BIN PACKING is DPTAS-complete; consequently, unless
P = NP it is inapproximable by fully polynomial-time differential approximation schemata. Inapprox-
imability of BIN PACKING by such schemata has also been shown independently in Ref. [19].

16.3.2 Traveling Salesman Problems

MIN TSP is one of the most paradigmatic problems in combinatorial optimization and one of the hardest one
to approximate. Indeed, unless P = NP, no polynomial algorithm can guarantee, on an edge-weighted
complete graph of size n when no restriction is imposed to the edge weights, standard approximation
ratio O(2p(n)), for any polynomial p. As we will see in this section things are completely different when
dealing with differential approximation where MIN TSP ∈ DAPX. This result draws another notorious
difference between the two paradigms.

Consider an edge-weighted complete graph of order n, denoted by Kn, and observe that the worst MIN

TSP-solution in Kn is an optimum solution for MAX TSP. Consider the following algorithm (originally
proposed by Monnot [33] for MAX TSP) based upon a careful patching of the cycles of a minimum-weight
2-matching5 of Kn:

• compute M = (C1, C2, . . . , Ck); denote by {v j
i : j = 1, . . . , k, i = 1, . . . , |C j |}, the vertex set

of C j ; if k = 1, return M;
• for any C j , pick arbitrarily four consecutive vertices v

j
i , i = 1, . . . , 4; if |C j | = 3, v j

4 = v
j
1 ; for Ck

(the last cycle of M), pick also another vertex, denoted by u that is the other neighbor of vk
1 in Ck

(hence, if |Ck | = 3, then u = vk
3 while if |Ck | = 4, then u = vk

4 );
• if k is even (odd), then set:

−R1 = ∪k−1
j=1{(v j

2 , v
j
3 )} ∪ {(vk

1 , vk
2 )}, A1 = {(vk

1 , v1
3), (v1

2 , v2
2)} ∪(k−2)/2

j=1 {(v2 j
3 , v

2 j+1
3 ), (v2 j+1

2 , v
2 j+2
2 )}

(R1 = ∪k
j=1{(v j

2 , v
j
3 )}, A1 = {(vk

2 , v1
3)} ∪(k−1)/2

j=1 {(v2 j−1
2 , v

2 j
2 ), (v2 j

3 , v
2 j+1
3 )}), T1 = (M \ R1) ∪ A1;

−R2 = ∪k−1
j=1{(v j

1 , v
j
2 )} ∪ {(u, vk

1 )}, A2 = {(u, v1
2), (v1

1 , v2
1)} ∪(k−2)/2

j=1 {(v2 j
2 , v

2 j+1
2 ), (v2 j+1

1 , v
2 j+2
1 )}

(R2 = ∪k
j=1{(v j

1 , v
j
2 )}, A2 = {(vk

1 , v1
2)} ∪(k−1)/2

j=1 {(v2 j−1
1 , v

2 j
1 ), (v2 j

2 , v
2 j+1
2 )}), T2 = (M \ R2) ∪ A2;

−R3 = ∪k−1
j=1{(v j

3 , v
j
4 )} ∪ {(vk

2 , vk
3 )}, A3 = {(vk

2 , v1
4), (v1

3 , v2
3)} ∪(k−2)/2

j=1 {(v2 j
4 , v

2 j+1
4 ), (v2 j+1

3 , v
2 j+2
3 )}

(R3 = ∪k
j=1{(v j

3 , v
j
4 )}, A3 = {(vk

3 , v1
4)} ∪(k−1)/2

j=1 {(v2 j−1
3 , v

2 j
3 ), (v2 j

4 , v
2 j+1
4 )}), T3 = (M \ R3) ∪ A3;

• output T the best among T1, T2, and T3.

5A minimum-weight 2-matching is a minimum total weight partial subgraph of Kn any vertex of which has degree
at most 2; this computation is polynomial, see, for example, Ref. [34]; in other words, a 2-matching is a collection of
paths and cycles, but when dealing with complete graphs a 2-matching can be considered as a collection of cycles.
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As proved in Ref. [33], the set (M \∪3
i+1 Ri ) ∪3

i+1 Ai is a feasible solution for MIN TSP, the value of which is

a lower bound for ω(Kn); furthermore, m(Kn, T) ≤ (
∑3

i=1 m(Kn, Ti ))/3. Then, a smart analysis, leads
to the following theorem (the same result has been obtained, by a different algorithm working also for
negative edge weights, in Ref. [13]).

Theorem 16.4 (Monnot [33])

MIN TSP is differentially 2/3-approximable.

Notice that MIN TSP, MAX TSP, MIN METRIC TSP, and MAX METRIC TSP are all affine equivalent (see Ref. [35]
for the proof; for the two former problems, just replace weight d(i, j ) of edge (vi , v j ) by M − d(i, j ),
where M is some number greater than the maximum edge weight). Hence, the following theorem holds.

Theorem 16.5

MIN TSP, MAX TSP, MIN METRIC TSP, and MAX METRIC TSP are differentially 2/3-approximable.

A very famous restrictive version of MIN METRIC TSP is the MIN TSP12, where edge weights are all either 1
or 2. In Ref. [36], it is proved that this version (as well as, obviously, MAX TSP 12) is approximable within
differential ratio 3/4.

16.3.3 Min Multiprocessor Scheduling

We now deal with a classical scheduling problem, the MIN MULTIPROCESSOR SCHEDULING [37], where we
are given n tasks t1, . . . , tn with (execution) time lengths l(t j ), j = 1, . . . , n, polynomial with n, that have
to be executed on m processors, and the objective is to partition these tasks on the processors in such a
way that the occupancy of the busiest processor is minimized. Observe that the worst solution is the one
where all the tasks are executed in the same processor; so, given an instance x of MIN MULTIPROCESSOR

SCHEDULING, ω(x) = ∑n
j=1 l(t j ). A solution y of this problem will be represented as a vector in {0, 1}mn,

the nonzero components yi
j of which correspond to the assignment of task j to processor i .

Consider a simple local search algorithm that starts from some solution and improves it upon any
change of the assignment of a single task from one processor to another. Then the following result can be
obtained [38].

Theorem 16.6

MIN MULTIPROCESSOR SCHEDULING is approximable within differential ratio m/(m + 1).

Proof (Sketch)
Assume that both tasks and processors are ranged with decreasing lengths and occupancies, respectively.
Denote by l( pi ), the total occupancy of processor pi , i = 1, . . . , m. Then, opt(x) ≥ l(t1) and l( p1) =∑n

j=1 y1
j l(t j ) = maxi=1, ..., m{l( pi ) = ∑n

j=1 yi
j l(t j )}. Denote, w.l.o.g., by 1, . . . , q , the indices of the

tasks assigned to p1. Since y is a local optimum, it verifies, for i = 2, . . . , m, j = 1, . . . , q : l(t j ) +
l( pi ) ≥ l( p1). We can assume q ≥ 2 (on the contrary y is optimum). Then, adding the preceding
expression for j = 1, . . . , q , we get l( pi ) ≥ l( p1)/2. Also, adding l( p1) with the preceding expression
for l( pi ), i = 2, . . . , m, we obtain ω(x) ≥ (m + 1)l( p1)/2. Putting all this together we finally get
m(x , y) = l( p1) ≤ (m opt(x)/(m + 1)) + (ω(x)/(m + 1)).

16.4 Asymptotic Differential Approximation Ratio

In any approximation paradigm, the notion of asymptotic approximation (dealing, informally, with a class
of “interesting” instances) is pertinent. In the standard paradigm, the asymptotic approximation ratio is
defined on the hypothesis that the interesting (from an approximation point of view) instances of the
simple problems are the ones whose values of the optimum solutions tend to ∞ (because, in the opposite
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case,6 these problems, called simple [39], are polynomial). In the differential approximation framework,
on the contrary, the size (or the value) of the optimum solution is not always a pertinent hardness criterion
(see Ref. [40] for several examples about this claim). Henceforth, in Ref. [40], another hardness criterion, the
number σ (x) of the feasible values of x , has been used to introduce the asymptotic differential approximation
ratio. Under this criterion, the asymptotic differential approximation ratio of an algorithm A is defined as

δ∞
A (x , y) = lim

k→∞
inf

x
σ (x)≥k

{
ω(x) − m(x , y)

ω(x) − opt(I )

}

(16.1)

Let us note that σ (x) is motivated by, and generalizes, the notion of the structure of the instance intro-
duced in Ref. [9]. We also notice that the condition σ (x) ≥ k characterizing “the sequence of unbounded
instances” (or “limit instances”) cannot be polynomially verified.7 But in practice, for a given problem,
it is possible to directly interpret condition σ (x) ≥ k by means of the parameters ω(x) and opt(x) (note
that σ (x) is not a function of these values). For example, for numerous cases of discrete problems, it is
possible to determine, for any instance x , a step π(x) defined as the least variation between two feasi-
ble values of x . For example, for BIN PACKING, π(x) = 1. Then, σ (x) ≤ ((ω(x) − opt(x))/π(x)) + 1.
Therefore, from Eq. (16.1):

δ∞
A (x , y) ≥ lim

k→∞
inf

x
ω(x)−opt(x)

π(x)
≥k−1

{
ω(x) − m(x , y)

ω(x) − opt(x)

}

Whenever π can be determined, condition (ω(x) − opt(x))/π(x) ≥ k − 1 can be easier to evaluate than
σ (x) ≥ k, and in this case, the former condition is used (this is not senseless since we try to bound below
the ratio).

The adoption of σ (x) as hardness criterion can be motivated by considering a class of problems, called
radial problems in Ref. [40], that includes many well-known combinatorial optimization problems, as BIN

PACKING, MAX INDEPENDENT SET, MIN VERTEX COVER, MIN COLORING, etc. Informally, a problem � is radial
if, given an instance x of � and a feasible solution y for x , one can, in polynomial time, on the one hand,
deteriorate y as much as one wants (up to finally obtain a worst-value solution) and, on the other, greedily
improve y to obtain (always in polynomial time) a suboptimal solution (eventually the optimum one).

Definition 16.2

A problem � = (I , Sol, m, goal) is radial if there exists three polynomial algorithms ξ , ψ , and φ such that,
for any x ∈ I :

1. ξ computes a feasible solution y(0) for x;
2. for any feasible solution y of x strictly better (in the sense of the value) than y(0), algorithm φ computes

a feasible solution φ(y) (if any) with m(x , φ(y)) strictly worse than m(x , y);
3. for any feasible solution y of x with value strictly better than m(x , y(0)), there exists k ∈ N such that

φk(y) = y(0) (where φk denotes the k-times iteration of φ);
4. for a solution y such that, either y = y(0), or y is any feasible solution of x with value strictly better

than m(x , y(0)),ψ(y) computes the set of ancestors of y, defined byψ(y) = φ−1({y}) = {z : φ(z)= y}
(this set being eventually empty).

Let us note that the class of radial problems includes in particular the well-known class of hereditary
problems for which any subset of a feasible solution remains feasible. In fact, for a hereditary (maximization)
problem, a feasible solution y is a subset of the input data, for any instances x , y(0) = ∅, and for any other
feasible solution y, φ(y) is just obtained from y by removing a component of y. The hereditary notion
deals with problems for which a feasible solution is a subset of the input data, while the radial notion
allows problems for which solutions are also second-order structures of the input data.

6The case where optimum values are bounded by fixed constants.
7The same holds for the condition opt(x) ≥ k induced by the hardness criterion in the standard paradigm.
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Proposition 16.1 (Demange and Paschos [40])

Let κ be a fixed constant and consider a radial problem � such that, for any instance x of � of size n, σ (x) ≤ κ .
Then, � is polynomial-time solvable.

16.5 Structure in Differential Approximation Classes

What has been discussed in the previous sections makes it clear which the entire theory of approximation,
which tries characterize and classify problems with respect to their approximability hardness, can be
redone in the differential paradigm. There exist problems having several differential approximability
levels and inapproximability bounds. What follows further confirms this claim. It will be shown that the
approximation paradigm we deal with allows to devise its proper tools and to use them to design an entire
structure for the approximability classes involved.

16.5.1 Differential NPO-Completeness

Obviously, the strict reduction of Ref. [41] (see also Chapter 15), can be identically defined in the frame-
work of the differential approximation; for clarity, we denote this derivation of the strict reduction by
D-reduction. Two NPO problems will be called D-equivalent if there exist D-reductions from any of them
to the other one.

Theorem 3.1 in Ref. [41] (where the differential approximation ratio is mentioned as a possible way
of estimating the performance of an algorithm), based upon an extension of Cook’s proof [42] of SAT
NP-completeness to optimization problems, works also when the differential ratio is dealt instead of the
standard one. Furthermore, solution triv, as defined in Ref. [41] is indeed a worst solution for MIN WSAT.
However, the following proposition holds.

Proposition 16.1 (Ausiello et al. [43])

MAX WSAT and MIN WSAT are D-equivalent.

Proof (Sketch)
With any clause �1 ∨· · ·∨�t of an instance φ of MAX WSAT, we associate in the instance φ′ of MIN WSAT the
clause �̄1 ∨· · ·∨ �̄t . Then, if an assignment y satisfies the instance φ, the complement y ′ of y satisfies φ′, and
vice versa. So, m(φ , y) = ∑n

i=1 w(xi ) − m(φ′, y ′), for any y ′. Thus, δ(φ , y) = δ(φ′, y ′). The reduction
from MIN WSAT to MAX WSAT is completely analogous.

In a completely analogous way, as in Proposition 16.1, it can be proved that MIN 0-1 INTEGER PRO-
GRAMMING and MAX 0-1 INTEGER PROGRAMMING are also D-equivalent. Putting all the above together the
following holds.

Theorem 16.7

MAX WSAT, MIN WSAT, MIN 0-1 INTEGER PROGRAMMING, and MAX 0-1 INTEGER PROGRAMMING are NPO-
complete under D-reducibility.

16.5.2 The Class 0-DAPX

Informally, the class 0-DAPX is the class of NPO problems for which the differential ratio of any polynomial-
time algorithm is equal to 0. In other words, for any such algorithm, there exists an instance on which it
will compute its worst solution. Such situation draws the worst case for the differential approximability
of a problem. Class 0-DAPX is defined in Ref. [43] by means of a reduction called G-reduction. It can be
seen as a particular kind of the GAP-reduction [1,44,45].

Definition 16.3

A problem � is said to be G-reducible to a problem �′, if there exists a polynomial reduction that transforms
any δ-differential approximation algorithm for �′, δ > 0, into an optimum (exact) algorithm for �.
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Let � be an NP-complete decision problem and �′ an NPO problem. The underlying idea for � ≤G �′
in Definition 16.3 is, starting from an instance of �, to construct instances for �′ that have only two distinct
feasible values and to prove that any differential δ-approximation for �′, δ > 0, could distinguish between
positive instances and negative instances for �. Note finally that the G-reduction generalizes both the
D-reduction of Section 16.5.1 and the strict reduction of Ref. [41].

Definition 16.4

0-DAPX is the class of NPO problems �′ for which there exists an NP-complete problem � G-reducible to �′.
A problem is said to 0-DAPX-hard, if any problem in 0-DAPX G reduces to it.

An obvious consequence of Definition 16.4 is that 0-DAPX is the class of NPO problems � for which
approximation within any differential approximation ratio δ > 0 would entail P = NP.

Proposition 16.3 (Bazgan and Paschos [46])

MIN INDEPENDENT DOMINATING SET ∈ 0-DAPX.

Proof (Sketch)
Given an instance φ of SAT with n variables x1, . . . , xn and m clauses C1, . . . , Cm, construct a graph G ,
instance of MIN INDEPENDENT DOMINATING SET associating with any positive literal xi a vertex ui and with
any negative literal x̄ i a vertex vi . For i = 1, . . . , n, draw edges (ui , vi ). For any clause C j , add in G
a vertex w j and an edge between w j and any vertex corresponding to a literal contained in C j . Finally,
add edges in G to obtain a complete graph on w1, . . . , wm. An independent set of G contains at most
n + 1 vertices. An independent dominating set containing the vertices corresponding to true literals of
a nonsatisfiable assignment and one vertex corresponding to a clause not satisfied by this assignment,
is a worst solution of G of size n + 1. If φ is satisfiable then opt(G) = n. If φ is not satisfiable then
opt(G) = n + 1. So, any independent dominating set of G has cardinality either n or n + 1.

By analogous reductions, restricted versions of optimum-weighted satisfiability problems are proved
0-DAPX in Ref. [47].

Finally, the following relationship between NPO and 0-DAPX holds.

Theorem 16.8 (Ausiello et al. [43])

Under D-reducibility, NPO-complete = 0-DAPX-complete ⊆ 0-DAPX.

If, instead of D, a stronger reducibility is considered, for instance, by allowing f and/or g to be multivalued
in the strict reduction, then, under this type of reducibility, it can be proved that NPO-complete =
0-DAPX [43].

16.5.3 DAPX- and Poly-DAPX-Completeness

In this section we address the problem of completeness in the classes DAPX and Poly-DAPX. For this pur-
pose, we first introduce a differential approximation schemata preserving reducibility, originally presented
in Ref. [43], called DPTAS-reducibility.

Definition 16.5

Given two NPO problems � and �′, � DPTAS reduces to �′ if there exist a (possibly) multivalued function
f = ( f1, f2, . . . , fh), where h is bounded by a polynomial in the input length, and two functions g and c ,
computable in polynomial time, such that

• for any x ∈ I�, for any ε ∈ (0, 1) ∩ Q, f (x , ε) ⊆ I�′ ;
• for any x ∈ I�, for any ε ∈ (0, 1) ∩ Q, for any x ′ ∈ f (x , ε), for any y ∈ sol�′(x ′), g (x , y, ε) ∈

sol�(x);
• c : (0, 1) ∩ Q → (0, 1) ∩ Q;
• for any x ∈ I�, for any ε ∈ (0, 1) ∩ Q, for any y ∈ ∪h

i=1sol�′( fi (x , ε)), ∃ j�h such that
δ�′( f j (x , ε), y)�1 − c(ε) implies δ�(x , g (x , y, ε))�1 − ε.
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16.5.3.1 DAPX-Completeness

If one restricts her/himself to problems with polynomially computable worst solutions, then things are
rather simple. Indeed, given such a problem � ∈ DAPX, it is affine equivalent to a problem �′ defined
on the same set of instances and with the same set of solutions but, for any solution y of an instance x
of �, the measure for solution y with respect to �′ is defined as m�′(x , y) = m�(x , y) − ω(x). Affine
equivalence of � and �′ ensures that �′ ∈ DAPX; furthermore, ω�′(x) = 0. Since, for the latter problem,
standard and differential approximation ratios coincide, it follows that �′ ∈ APX. MAX INDEPENDENT SET is
APX-complete under PTAS-reducibility [48], a particular kind of the AP-reducibility seen in Chapter 15.
So, �′ PTAS reduces to MAX INDEPENDENT SET. Putting together affine equivalence between � and �′,
PTAS-reducibility between �′ and MAX INDEPENDENT SET, and taking into account that composition of
these two reductions is an instantiation of DPTAS-reduction, we conclude the DAPX-completeness of
MAX INDEPENDENT SET.

However, things become much more complicated, if one takes into account problems with nonpolyno-
mially computable worst solutions. In this case, one needs more sophisticated techniques and arguments.
We informally describe here the basic ideas and the proof schema in Ref. [43]. It is first shown that any DAPX
problem � is reducible to MAX WSAT-B by a reduction transforming a polynomial-time approximations
schema for MAX WSAT-B into a polynomial-time differential approximation schema for �. For simplicity,
denote this reduction by S–D. Next, a particular APX-complete problem �′ is considered, say MAX

INDEPENDENT SET-B . MAX WSAT-B , that is in APX, is PTAS-reducible to MAX INDEPENDENT SET-B . MAX

INDEPENDENT SET-B is both in APX and in DAPX and, moreover, standard and differential approximation
ratios coincide for it; this coincidence draws a trivial reduction called ID-reduction. It trivially transforms
a differential polynomial-time approximation schema into a standard polynomial-time approximation
schema. The composition of the three reductions specified (i.e., the S–D-reduction from � to MAX WSAT-B ,
the PTAS-reduction from MAX WSAT-B to MAX INDEPENDENT SET-B , and the ID-reduction) is a DPTAS-
reduction transforming a polynomial-time differential approximation schema for MAX INDEPENDENT SET-
B into a polynomial-time differential approximation schema for �, i.e., MAX INDEPENDENT SET-B is
DAPX-complete under DPTAS-reducibility.

Also, by standard reductions that turn out to be DPTAS-reductions also, the following can be proved
[30,43].

Theorem 16.9

MAX INDEPENDENT SET-B, MIN VERTEX COVER-B, for fixed B, MAX k-SET PACKING, MIN k-SET COVER, for
fixed k, and MIN COLORING are DAPX-complete under DPTAS-reducibility.

16.5.3.2 Poly-DAPX-Completeness

Recall that a maximization problem �∈ NPO is canonically hard for Poly-APX [49], if and only if there
exist a polynomially computable transformation T from 3SAT to �, two constants n0 and c and a func-
tion F , hard for Poly,8 such that, given an instance x of 3SAT on n � n0 variables and a number N � nc ,
the instance x ′ = T(x , N) belongs to I� and verifies the following three properties: (i) if x is satis-
fiable, then opt(x ′) = N; (ii) if x is not satisfiable, then opt(x ′) = N/F (N); (iii) given a solution
y ∈ sol�(x ′) such that m(x ′, y) > N/F (N), one can polynomially determine a truth assignment
satisfying x .

Based on DPTAS-reducibility and the notion of canonical hardness, the following is proved in Ref. [30].

Theorem 16.10

If a (maximization) problem � ∈ NPO is canonically hard for Poly-APX, then any problem in Poly-DAPX
DPTAS reduces to �.

8The set of functions from N to N is bounded by a polynomial; a function f ∈ Poly is hard for Poly, if and only if
there exists three constants k, c , and n0 such that, for any n � n0, f (n) � k F (nc ).

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C016 March 20, 2007 12:35

Differential Ratio Approximation 16-13

As it is shown in Ref. [49], MAX INDEPENDENT SET is canonically hard for Poly-APX. Furthermore, MIN

VERTEX COVER is affine equivalent to MAX INDEPENDENT SET. Henceforth, use of Theorem 16.10 immediately
derives the following result.

Theorem 16.11

MAX INDEPENDENT SET and MIN VERTEX COVER are complete for Poly-DAPX under DPTAS-reducibility.

16.5.4 DPTAS-Completeness

Completeness in DPTAS (the class of NPO problems that are approximable by polynomial time differential
approximation schemata) is tackled by means of a kind of reducibility preserving membership in DFPTAS,
which is called DFT-reducibility in Ref. [30]. This type of reducibility is the differential counterpart of
the FT-reducibility introduced in Section 15.7 of Chapter 15 and can be defined in an exactly similar
way. Based on DFT-reducibility, the following theorem holds ([30]; its proof is very similar to the one of
Theorem 15.4 in Chapter 15). Before stating it, we need to introduce the class of diameter polynomially
bounded problems that is a subclass of the radial problems seen in Section 16.4. An NPO problem �

is diameter polynomially bounded if and only if, for any x ∈ I�, | opt(x) − ω(x)| � q(|x|). The class of
diameter polynomially bounded NPO problems will be denoted by NPO-DPB.

Theorem 16.12 (Bazgan et al. [30])

Let �′ be an NP-hard problem NPO-DPB. Then, any problem in NPO is DFT reducible to �′. Conse-
quently, (i) the closure of DPTAS under DFT-reductions is the whole NPO and (ii) any NP-hard problem in
NPO-DPB ∩ DPTAS is DPTAS-complete under DFT-reductions.

Consider now MIN PLANAR VERTEX COVER, MAX PLANAR INDEPENDENT SET, and BIN PACKING. They are
all NP-hard and in NPO-DPB. Furthermore, they are all in DPTAS (for the first two problems, this is
derived by the inclusion of MAX PLANAR INDEPENDENT SET in PTAS proved in Ref. [50]; for the third one,
see Section 16.3.1.2). So, the following theorem holds and concludes this section [30].

Theorem 16.13

MAX PLANAR INDEPENDENT SET, MIN PLANAR VERTEX COVER, and BIN PACKING are DPTAS-complete under
DFT-reducibility.

16.6 Discussion and Final Remarks

As we have already claimed in the beginning of Section 16.5, the entire theory of approximation can be
reformulated in the differential paradigm. This paradigm has the diversity of the standard one, it has a
nonempty scientific content and, to our opinion, it represents in some sense a kind of revival for the
domain of the polynomial approximation.

Since the work in Ref. [7], a great number of paradigmatic combinatorial optimization problems has
been studied in the framework of the differential approximation. For instance, KNAPSACK has been studied
in Ref. [7] and revisited in and Ref. [13]. MAX CUT, MIN CLUSTER, STACKER CRANE, MIN DOMINATING

SET, MIN DISJOINT CYCLE COVER, and MAX ACYCLIC SUBGRAPH have been dealt in Ref. [13]. MIN FEEDBACK

ARC SET is also studied in Ref. [38] together with MIN FEEDBACK NODE SET. MIN VERTEX COVER and MAX

INDEPENDENT SET are studied in Refs. [7,13]. MIN COLORING is dealt in Ref. [18,23,24, 26–30], while MIN

WEIGHTED COLORING (where the input is a vertex-weighted graph and the weight of a color is the weight of
the heaviest of its vertices) is studied in Ref. [51] (see also Ref. [52]). MIN INDEPENDENT DOMINATING SET is
dealt in Ref. [46]. BIN PACKING is studied in Refs. [27,31,40,53]. MIN SET COVER, under several assumptions
on its worst value, is dealt in Refs. [7,13,54], while MIN WEIGHTED SET COVER is dealt in Refs. [27,54].
MIN TSP and MAX TSP, as well as, several famous variants of them, MIN METRIC TSP, MAX METRIC TSP,
MIN TSPab (the most famous restrictive case of this problem is MIN TSP12), and MAX TSPab are studied
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in Refs. [13,33,35,36,55]. STEINER TREE problems under several assumptions on the form of the input
graph and on the edge weights are dealt in Ref. [56]. Finally, several optimum satisfiability and constraint
satisfaction problems (as MAX SAT, MAX E2SAT, MAX 3SAT, MAX E3SAT, MAX EkSAT, MIN SAT, MIN kSAT, MIN

EkSAT, MIN 2SAT, and their corresponding constraint satisfaction versions) are studied in Ref. [57].
Dealing with structural aspects of approximation, besides the existing approximability classes (de-

fined rather upon combinatorial arguments) two logical classes have been very notorious in the stan-
dard paradigm. These are Max-NP and Max-SNP, originally introduced in Ref. [58] (see also Chap-
ters 15 and 17). Their definitions, independent from any approximation ratio consideration, make that
they can identically be considered also in differential approximation. In the standard paradigm, the
following strict inclusions hold: PTAS ⊂ Max-SNP ⊂ APX and MAX-NP ⊂ APX. As it is proved
in Ref. [57], MAX SAT /∈ DAPX, unless P = NP. This, draws an important structural difference in the
landscape of approximation classes in the two paradigms, since an immediate corollary of this result is that
MAX-NP �⊂ DAPX. Position of Max-SNP in the differential landscape is not known yet. It is conjectured,
however, that MAX-SNP �⊂ DAPX. In any case, formal relationships of Max-SNP and Max-NP with the
other differential approximability classes deserve further study.
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17.1 Introduction

This chapter is devoted to the core theory of inapproximability. Undoubtedly, the most fundamental part
of the theory, with its numerous consequences, is the probabilistically checkable proofs (PCPs) theorem,
which asserts that MAX-3SAT is NP-hard to approximate within a factor of 1 + ε (for some ε > 0). In
Section 17.9 we sketch a recently obtained short proof to it [1].

Our survey places particular emphasis on the various kinds of reductions that are employed in the
theory. We would like to convey our conviction that the entire theory is the study of these reductions and
their compositions. We have found it important to introduce the reader to the proof and code-checking
intuition. These play a key role in the theory, have been guiding its development, and even today, when
alternative interpretations are available, still prove to be indispensable when trying to obtain stronger
results.

Unfortunately, we had to make sacrifices to keep the size of the chapter within limits. We discuss only
a handful of specific optimization problems. We could not have possibly opened the treasure chest of ad
hoc inapproximability reductions, there are just so many of them. We have also omitted discussing how
the syntax of optimization problems can often give a guideline to their (in)-approximability status. This
subject, called the syntactic versus semantic view of (in)-approximability, is under heavy investigation and
several advances have been reported recently [2,3]. We have found no room to convey recent excitement
about the unique game conjecture and its consequences [4,5]. Finally, the chapter is concerned only with
NP optimization problems. Probabilistic debate systems [6] and inapproximability of #P problems are out
of the scope of this survey.

17-1
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17.2 NP Optimization: Approximability and Inapproximability

Optimization problems are either maximization or minimization problems:

OPT(x) = max
y∈D(x)

F (x , y) (maximization problem)

OPT(x) = min
y∈D(x)

F (x , y) (minimization problem)

where x ∈ {0, 1}∗ is a string describing the input and F (x , y) is a real-valued function (we often also
assume nonnegativity). The witness y comes from a set that may depend on the input.

One may think of max and min as quantifiers. In analogy with NP, the class NPO is the set of those
optimization problems for which F (x , y) and the relation y ∈ D(x) are polynomial-time computable.
Here, the polynomial is in terms of |x|, the input length. We may get rid of the sometimes annoying
y ∈ D(x) domain condition by setting F (x , y) definitely smaller (larger) than OPT(x) if y �∈ D(x).
This, however, might add extra complexity to the calculation of F (x , y). NPO consists of NP maximiza-
tion and NP minimization problems. To turn an NP maximization (minimization) problem into an NP
problem we just augment the input with a threshold value and ask if OPT is larger (smaller) than the
threshold.

While some important optimization problems are not in NPO, most of those that come from real life are.
Examples are abundant: coloring, allocation, scheduling, Steiner tree problems, TSP, linear and quadratic
programming, knapsack, vertex cover, etc. All of these examples (except linear programming) are NP-
hard, and the best we can hope is to find quick approximate solution for them.

Approximation Ratio
Let x → A(x) (∀x : A(x) ∈ D(x)) be a map. This map is said to approximate OPT(x) = maxy∈D(x) F (x , y)
to within a factor of r (x) ≥ 1 if

∀x : OPT(x) ≤ r (x)F (x , A(x))

The best such r (x) is also called the approximation ratio achieved by A. If there is a polynomial-time
computable A that achieves approximation ratio r (x), we say that OPT is approximable within a factor
of r (x). When we seek to approximate OPT, we often choose r (x) to be a function of the input length. If
the input is a graph, r (x) is typically chosen to be a function of the number of vertices or edges, but we
could also make it dependent on the maximal degree, the girth, etc. When OPT is a minimization problem
the bound in the above definition is replaced by F (x , A(x)) ≤ OPT(x)r (x). (In the literature sometimes
1/r (x) is called the approximation ratio. The two definitions can be told apart, since in our definition
r (x) is always greater than 1.)

Example 17.1 (Set cover)

Let x describe a polynomial size set system S (say, by listing the elements of each set in S), let y describe
a subsystem S ′ ⊆ S , and let y ∈ D(x) iff ∪S ′ = ∪S . The set cover problem is asking to find y ∈ D(x)
such that |S ′| is minimized. It can be shown that there is a polynomial-time algorithm that approximates
the set cover problem within a factor of 1 + ln | ∪ S|.
Inapproximability
For the above example Feige has shown that set cover cannot be approximated within a factor of
(1 − ε) ln | ∪S| in P for any fixed ε > 0 unless NP ⊆ DTIME(nlog log n) [7]. In general, a statement
that there is no polynomial-time algorithm for OPT with approximation ratio r (x) under some complex-
ity theoretic hypothesis is referred to as an inapproximability result, where r (x) is called inapproximability
ratio.

Feige’s result is sharp in the sense that the set cover is approximable in polynomial time within a ratio
of C ln | ∪S| if and only if C ≥ 1 (under our complexity theoretic hypothesis). Thus, ln | ∪S| may be
viewed as the approximation boundary of the set cover problem. In general, we call a function r (x) an
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approximation boundary of problem OPT if OPT is polynomial-time approximable within a factor of r (x)C
for any C > 1, but OPT is (conditionally) hard to approximate within a factor of r (x)C for any C < 1. The
above is sometimes understood in the logarithmic sense, i.e., when r (x)C is replaced by r (x)C . The latter
is clearly a weaker condition. For many NPO problems a type of dichotomy holds: approximating them
beyond their approximation boundary is NP-hard. (The other alternative could be that the complexity of
approximating them gradually increases as r (x) decreases.)

For a long time no approximation boundaries were known for major NPO problems. The appearance
of the theory of probabilistically checkable proofs (PCP theory) has changed this situation. In its rise,
numerous exact inapproximability results (including the one above by Feige) were proven. This theory is
the subject of our next sections.

17.2.1 The Emergence of the PCP Theory

Motivated by Graham’s [8] exact bounds on the performance of various bin packing heuristics, Johnson
[9] gave algorithms for the Subset Sum, the Set Cover, and the MAX k-SAT problems with guarantees
on their performances (1 + o(1), O(log |S|), 2k/(2k − 1), respectively). He also gave inapproximability
results, but unfortunately they referred only to specific algorithms. Nevertheless, he has brought up the
issue of classifying NPO problems by the best approximation ratio achievable for them in polynomial time.
Although the goal was set, only a handful of inapproximability results existed. Sahni and Gonzalez [10]
proved the inapproximability of the non-metric traveling salesman and some other problems (under P �=
N P ). Garey and Johnson [11] introduced gap amplification techniques to show that the chromatic number
of a graph cannot be approximated to within a factor of 2 − ε unless P = N P , and an approximation
algorithm for the max clique within some constant factor could be turned into an algorithm which
approximates max clique within any constant factor.

The old landscape of approximation theory of NPO radically changed when in 1991 Feige et al. [12] for
the first time used Babai et al.’s characterization of NEXP in terms of multiprover interactive proof systems
[13] to show that approximating the clique within any constant factor is hard for NTIME(n1/ log log n).
Simultaneously, Papadimitriou and Yannakakis [14] defined a subclass of NPO, what they called MAXSNP,
in which problems have an elegant logical description and can be approximated within a constant factor.
They also showed that if MAX3SAT, vertex cover, MAX CUT, and some other problems in the class, could
be approximated in polynomial time with an arbitrary precision, the same would hold for all problems in
MAXSNP. They established this fact by reducing MAXSNP to these problems in an approximation preserving
manner. They called their special reduction L -reduction and considered MAXSNP-completeness with
respect to it a strong indication that a problem does not have polynomial-time approximation scheme
(PTAS) (i.e., a sequence of polynomial-time algorithms achieving 1 + 1/k accuracy for k = 1, 2, . . .).
Their work showed great insight. What was missing was a relation between MAXSNP-completeness and
usual hardness assumptions such as P �= NP. In 1992, Arora et al. [15] showed that MAX3SAT is hard
to approximate within a factor of 1 + ε for some ε > 0 unless P = NP. Their proof relied on PCPs,
and employed several intricate arguments. They took techniques from Refs. [13,16–18], in particular,
the important “proof recursion” idea of Arora and Safra [17]. The term PCP was also coined in the latter
article. Rapid development came on the heals of these results:

1. Inapproximability of NPO problems.
2. Construction of approximation algorithms achieving optimal or near-optimal ratios (e.g., Ref. [19]).
3. A bloom of approximation preserving reductions and discovery of new (in)approximability classes.

PCP theory has turned out to be the key ingredient in determining the approximation boundaries of
many NPO problems. Some problems remain open, like the Asymmetric Traveling Salesperson Problem,
whose approximability status is not yet clarified. In a latest development, Dinur [1] gave a simplified
proof for the ALMSS (Arora–Lund–Motwani–Sudan–Szegedy) theorem [20] (see a sketch in Section 17.9)
eliminating much of the difficult algebra of the original proof.
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17.3 Approximation-Preserving Reductions

Reduction is perhaps the most useful concept in algorithm design. Interestingly, it also turns out to be
the most useful tool in proving computational hardness [21–23]. When in problem A Cook reduces to
B , the hardness of B follows from the hardness of A. Unfortunately, Cook reduction does not ensure that
if A is hard to approximate then B is hard to approximate. For reducing hardness of approximation new
definitions are necessary.

Let F1(x , y) and F2(x ′, y ′) be functions that are to be optimized for y and y ′ (maximized or minimized
in an arbitrary combination). Let OPT1(x) and OPT2(x ′) be the corresponding optimums. A Karp–Levin
reduction involves two maps:

1. a polynomial-time map f to transform instances x of OPT1 into instances x ′ = f (x) of OPT2

[Instance Transformation];
2. a polynomial-time map g to transform (input, witness) pairs (x ′, y ′) of OPT2 into witnesses y of

OPT1.
[Witness Transformation].

Observe that the witness transformation goes from OPT2 to OPT1. Let opt1 = OPT1(x), opt2 =
OPT2( f (x)), appr1 = F1(x , g ( f (x), y ′)), and appr2 = F2( f (x), y ′).

The centerpiece of any approximation-preserving reduction scheme is a relation between these four
quantities. This relation must express: “If appr2 well approximates opt2, then appr1 well approximates
opt1.” The first paper which defines an approximation preserving reduction was that of Orponen and
Mannila [24]. Up to the present time more than eight notions of approximation preserving reductions
exist differing only in the relation required between opt1, opt2, appr1, and appr2. For an example, consider
the L -reduction of Papadimitriou and Yannakakis [14]. The required relations are opt2 ≤ c1opt1 and
|appr1 − opt1| ≤ c2|appr2 − opt2| for some constants c1 and c2. It easily follows from the next lemma,
that L -reduction preserves PTAS.

Lemma 17.1

A reduction scheme preserves PTAS iff it enforces that

|appr1 − opt1|/opt1 → 0 whenever |appr2 − opt2|/opt2 → 0.

Proof
Here we only prove the “if” part. Assume we have a PTAS for OPT2 and that OPT1 reduces to OPT2.
To get a PTAS for OPT1(x) first we construct f (x). Using the ε-approximation algorithm Aε for OPT2

we find a witness y ′ such that (1 − ε)OPT2( f (x)) ≤ F2( f (x), y ′) ≤ (1 + ε)OPT2( f (x)). Hence
|F2( f (x), y ′) − OPT2( f (x))|/OPT2( f (x)) ≤ ε. When ε tends to 0, from the condition of the lemma
we obtain that |F1(x , g ( f (x), y ′)) − OPT1(x)|/OPT1(x) also tends to 0. Thus using f , g , and Aε (for
decreasing epsilon) we can build a sequence of algorithms that serves as a PTAS for OPT1.

The main advantage of approximation-preserving reductions is that they enable us to define large classes
of optimization problems that behave in the same way with respect to approximation. A prominent example
is MAXSNP: all problems in this class are constant-factor approximable, as shown via the L-reduction of
Papadimitriou and Yannakakis.

17.4 Gap Problems, Karp Reductions, and the PCP Theorem

It soon became clear that besides approximation-preserving reductions, PCP theory also requires reduc-
tions between new types of problems, called promise problems. Promise problems are functions with three
possible values: 0, 1, and “undefined.” They occur as intermediate steps in reduction sequences from
decision problems to functions. In PCP theory context Bellare et al. in Ref. [25] were the first to explain
reductions through promise problems.
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Let OPT be a minimization problem. Assume that for every input x we have two bounds: a lower bound
Tl (x) and an upper bound Tu(x), both are polynomial-time computable in x . It is easy to see that if we
can efficiently approximate OPT(x) within a factor better than r (x) = Tu(x)/Tl (x), then with only a
polynomial (additive) overhead in the running time we can also solve:

• if OPT(x) ≥ Tu(x), the output is 0,
• if OPT(x) ≤ Tl (x), the output is 1,
• if Tl (x) < OPT(x) < Tu(x), the output can be anything.

We call the above problem a gap problem and refer to it as Gap(OPT, Tl , Tu). If OPT happens to be a
maximization problem, the above definition stays valid, only the roles of 0 and 1 get exchanged.

Example 17.2

For graph G let χ(G) be the chromatic number of G . OPT = χ is a minimization problem. Let Tl = 3,
Tu = |V(G)|0.26, where V(G) denotes the vertex set of the input graph. Karger, Motwani and Sudan solved
Gap(χ , 3, |V(G)|0.26) in polynomial time. In fact, their algorithm well-colors any three chromatic graph
using at most |V(G)|0.26 colors. It is a famous open problem if for any ε > 0 there is a polynomial-time
algorithm that colors a three chromatic graph with |V(G)|ε colors.

Witness giving condition: An algorithm for the problem Gap(OPT, Tl , Tu), where OPT is an NP mini-
mization problem, satisfies the Witness giving condition if for every x with OPT(x) ≤ Tl (x) the algorithm
gives a “witness” y for which F (x , y) < Tu(x). If OPT is a maximization problem then the witness giving
condition requires that for every input x for which OPT(x) ≥ Tu(x), the algorithm computes a witness y
for which F (x , y) > Tl (x). Almost all polynomial-time solutions given to gap problems satisfy the witness
giving condition.

Gap problems yield themselves to Karp reductions as explained below. For brevity we assume that OPT
is an NP maximization problem.

Karp reduction from languages to gap problems
Let L ⊆ �∗ be a language. A Karp reduction from L to Gap(OPT, Tl , Tu) is a polynomial-time map f
from �∗ to input instances of OPT such that

1. if x ∈ L , then OPT( f (x)) ≥ Tu( f (x));
2. if x �∈ L , then OPT( f (x)) ≤ Tl ( f (x)).

For the above type of reduction the most prominent example is the PCP theorem:

Theorem 17.1 (PCP Theorem)

For some ε > 0 it holds, that for every language L ∈ N P there exists a polynomial-time computable function
f : �∗ → {3CNF formulas}, such that

1. if x ∈ L, then f (x) is a formula in which all disjunctions are simultaneously satisfiable;
2. if x �∈ L, then f (x) is a formula in which one can satisfy at most 1 − ε fraction of all clauses.

Remark 17.1

The problem of maximizing the fraction of satisfied clauses of a 3CNF formula is called MAX-3SAT. Formally,

let φ = ∧m
i=1(y

bi,1
i,1 ∨ y

bi,2
i,2 ∨ y

bi,3
i,3 ) be a 3CNF formula. For an assignment y, define

F (φ , y) = |{i | (y
bi,1
i,1 ∨ y

bi,2
i,2 ∨ y

bi,3
i,3 )evaluates to true under assignment y}|/m.

Then MAX-3SAT(φ) = maxy F (φ , y).

We can restate Theorem 17.1 that any language in NP is Karp reducible to Gap(MAX − 3SAT, 1 − ε, 1).
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Karp reduction between gap problems
Let OPT1 and OPT2 be maximization problems, Tl , Tu , T ′

l , T ′
u polynomial-time computable functions.

Let f be a polynomial-time computable function from the set of input instances for OPT1 to the set of
input instances for OPT2 such that

1. if OPT1(x) ≤ Tl (x), then OPT( f (x)) ≤ T ′
l ( f (x));

2. if OPT1(x) ≥ Tu(x), then OPT( f (x)) ≥ T ′
u( f (x)).

Then f is a Karp reduction from Gap(OPT1, Tl , Tu) to Gap(OPT2, T ′
l , T ′

u). The above definition carries
over without any difficulty to those cases when one or both of OPT1 and OPT2 are minimization problems.
If such reduction exists and Gap(OPT1, Tl , Tu) is NP-hard then Gap(OPT2, T ′

l , T ′
u) is also NP-hard.

Example 17.3

For graphs G and H we denote by G × H their strong product: V(G × H) = V(G)×V(H), E (G × H) =
{((u1, v1), (u2, v2)) | (u1, u2) ∈ E (Ĝ) ∧ (v1, v2) ∈ E (Ĥ)}, where Ĝ and Ĥ are obtained from G and H
by adding a loop to every node. Let ω(G) denote the maximum clique size of graph G . It is easy to see that
ω(G × H) = ω(G)ω(H). Let f be the map G → G × G and let l < u be arbitrary positive constants.
The above implies that f is a Karp reduction from the gap problem Gap(ω, l , u) to Gap(ω, l 2, u2).

The following scheme is a high-level description of the way we prove inapproximability results:

3SAT
⇓ PCP theorem (Karp reduction)

gap-3SAT
⇓ Karp reduction

Other gap problems
⇓ trivial

Corresponding inappr. results
⇓ Approx. preserving reduction

Inappr. results

17.5 Probabilistic Verification: The FGLSS Graph

PCP theory grew out of the observation that probabilistic proof systems can be viewed as optimization
problems. At the time of their discovery probabilistic proof systems were a surprising novelty. At the
present time they represent a distinct contribution of the theory of computing to logic and mathematics.
Their two origins are zero-knowledge proof systems [26]and Arthur–Merlin games [27].

Among all probabilistic proof systems, the so-called Multiprover interactive proof system (MIP) of
Ben-Or et al. [28] is what we apply in the theory of PCPs. The polynomial-time randomized verifier of
an MIP “interrogates” two (or more) noncommunicating all-powerful provers about the truth-hood of a
statement. Instead of MIPs we consider a roughly equivalent system.

Probabilistic Oracle Machines (POM)
Let My (x , r ) be a probabilistic RAM with oracle y and random string r . M is said to accept a language L
with completeness α and soundness β (1 ≥ α > β ≥ 0) iff

• if x ∈ L , then there is a y such that Probr (My (x , r ) = 1) ≥ α;
• if x �∈ L , then for every y it holds that Probr (My (x , r ) = 1) ≤ β.

The relevant parameters are the amount of randomness used (|r |), the query size (q), the completeness
parameter (α), and the soundness parameter (β). The query size is the number of positions of y that M
looks at for the worst-case input of size n. Every position of y contains an element of the �, the alphabet
of y, which is assumed to be {0, 1}, unless otherwise said. If the alphabet size is larger, then |�| is also a
parameter. Recently, there is also an interest in minimizing the proof size, |y| [1,29,30].
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Probabilistically Checkable Proofs (PCP)
The witness y written on a POM machine’s oracle tape is also called a Probabilistically Checkable Proof.
The POM that checks the PCP is called a “PCP verifier.” We use the terms “POM” and “PCP verifier”
interchangeably. The latter term was born from an “anthropomorphic” interpretation of the verification
process. We often speak in the first person when we describe the verifier’s actions. Most PCP verifiers are
nonadaptive: they ask all questions to the oracle at once.

To see the connection between proof systems and combinatorial optimization, let M be a POM with
parameters |r |, q , α, β and consider the problem

OPT M(x) = max
y

Probr (My (x , r ))

Observe that if x ∈ L , then OPT M(x) ≥ α and if x �∈ L , then OPT M(x) ≤ β, i.e., L Karp reduces to
Gap(OPT M , β, α). Thus, if L is NP-hard, approximating OPT M within a factor better than α/β is also
NP-hard. The significance of parameters |r | and q will soon be clear.

Feige et al. have turned the MIP = NEXP theorem of Babai, Fortnow, and Lund into an in-approximability
result. It had to be scaled down first to the polynomial level, resulting in the statement: For an NP-complete
language, L , there is a C > 0 and a probabilistic oracle machine M∗ with query size randomness bounded
by (log n)C , completeness parameter 1 and soundness parameter 1/n. Hence OPT M∗ cannot be approx-
imated by a factor of n. If this does not sound impressing, it is because computing OPT M∗ was not a
frequently studied optimization problem. Feige et al. transformed OPT M∗ (or any OPT M) into a maxi-
mum clique problem. Below we describe the transformation:

FGLSS (Feige–Goldwasser–Lovász–Safra–Szegedy) transformation
For a string x ∈ {0, 1}n and a probabilistic oracle machine My (x , r ) we define a graph G x , M . The vertices
of G x , M are ordered tuples (r, a) of 0-1 strings (|a| = q) such that M accepts if it has access to an oracle y
that gives a1, a2, . . . , aq for answers to the q subsequent queries of M, when we run it on inputs x and r .
The main point is that given a = a1, a2, . . . , aq we do not need the entire y to compute My (x , r ). Every
oracle y that answers a1, a2, . . . , aq to the k subsequent queries of My (x , r ) is said to be consistent with
(r, a), as long as it also holds that My (x , r ) accepts. If My (x , r ) rejects, y is defined to be inconsistent
with (r, a) for any a . Clearly, for fixed y and r if there is an a such that (r, a) is consistent with y, then this
a is unique. For r �= r ′ ∈ {0, 1}k and a , a ′ ∈ {0, 1}q we have an edge between (r, a) and (r ′, a ′) in G x , M

if there is an oracle y consistent with both. The following is easy to see:

Lemma 17.2

Let (r1, a1), (r2, a2), . . . , (rs , as ) form a clique in G x , M. Then there is an oracle y consistent with (ri , ai )
for 1 ≤ i ≤ s .

For a fixed oracle y the number of r s that are consistent with y (meaning that there exists an a such
that (r, a) is consistent with y) is proportional with the probability over r that My (x , r ) accepts. Thus,
OPT M(x) is proportional with the max clique size of G x , M .

Since the number of all possible (r, a) pairs is 2|r |+q , graph G x , M has at most 2|r |+q vertices. Applying

this to the verifier M∗ of Feige et al. we get that the number of vertices of G x , M∗ is at most 22(log n)C
. Since

any algorithm that approximates OPT M∗ within a factor of n can solve N P , we can use any algorithm that
approximates the max clique size of G x , M∗ within a factor of n to build an NP solver. The overhead is the cost
of the FGLSS transformation, which is polynomial in the size of G x , M∗ . Expressing all parameters in terms
of N = |V(G x , M∗)|, we get that for some constant C ′ the max clique problem of a graph with N nodes

is not approximable in polynomial time within a factor of 2(log N)1/C ′
unless NP ⊆ DTIME(2(log N)C ′

).
In [12,17,20,25,31–34] (starting with the original paper) the result was subsequently improved. The best
current improvement is:

Theorem 17.2 (Zuckerman [34])

There are γ , c > 0 such that the maximal clique size of a graph with N nodes cannot be approximated within
a factor of N

2(log N)1−γ in polynomial time unless NP ⊆ DTIME(2(log N)c
).
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17.6 PCPs and Constraint Satisfaction Problems

We have seen that constructing a POM with small parameters has immediate inapproximability conse-
quences. In Ref. [20] an even more dramatic consequence was found effecting the entire class MAXSNP:

Lemma 17.3

If for a language L there is a POM with perfect completeness, soundness γ < 1, logarithmic randomness and
constant query size, then L Karp reduces to Gap(MAX − 3SAT, β, 1) for some β < 1.

Indeed, let the POM in the lemma be My (x , r ). Since M queries at most q = O(1) bits, for fixed x and
r there is constant-size Boolean formula, 	x ,r expressing if the verifier accepts or rejects the bits it views.
We have

max
y

Prob(My (x , r ) = 1) = max
y

|{r |	x ,r (y) = 1}|/2|r | (17.1)

Constraint Satisfaction Problems (CSP)
The problem on the right-hand side of Eq. (17.1) is a MAX-CSP problem. A kCSP is a generalization of
kSAT, where clauses can be any k-variable Boolean expressions. kCSPs are typically defined on Boolean
variables, but it is easy to extend this definition to the case when the variables take values from a general
constant-size alphabet �. In this case we talk about a [k, �]CSP.

Fact 17.1

Every PCP with completeness α, soundness γ , query size k, and witness-alphabet � can be turned into a
Gap(MAX − [k, �]CSP, γ , α) instance.

In particular Eq. (17.1) reduces the L of Lemma 17.3 to Gap(MAX − [q , �]CSP, γ , 1), where � is the
alphabet of M. To prove Lemma 17.3 we need to reduce Gap(MAX − [q , �]CSP, γ , 1) to Gap(MAX − 3SAT,
γ ′, 1). This is done by gadgets (in this case we have to transform little nondeterministic 3SAT formulas
replacing the constraints of the k-CSP). Lemma 17.3 explains why we want to construct PCPs with constant
number of check bits.

17.7 Codes and PCPs

Perhaps unexpectedly, when turning NP machines into POMs, it is not the machine, but rather the witness
(or proof, in other words) that goes under a meaningful transformation. The old witness (let it be a
coloring, a TSP tour, etc.) becomes a new and very interesting object, called PCP. (Of course, the machine
needs to be adapted to the new checking task, but what motivates its actions is the presumed structure
of the new witness.) To understand this better, let ∃z N(x , z) be an NP machine, which we would like
to transform into a POM that recognizes the same language. Without the loss of generality we can think
of N as a machine for the chromatic number problem, x as a graph, and z as a coloring on the nodes.
N verifies if z assigns different colors to all pairs of adjacent nodes in x .

Assume we manage to “encode” every witness (i.e., coloring) z into some string y(x , z) (which may be
viewed as a “probabilistically checkable version” of the same coloring) and design a probabilistic oracle
machine My (x , r ) (also called checker or verifier) such that

1. if N(x , z) = 1, then My(x ,z)(x , r ) = 1 for every r .
2. for every x the string y(x , z) (transformed from an original potential witness z) is an element of

an error correcting code Cx that corrects δ fraction of errors.
3. if y is not δ-close to Cx , then Probr (My (x , r ) = 1) ≤ 0.5.
4. if y is δ-close to some y ′ ∈ Cx , but y ′ is not equal to some y(x , z0) for some z0 for which

N(x , z0) = 1, then Probr (My (x , r ) = 1) ≤ 0.5.
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Then M is a POM with completeness 1 and soundness 0.5 that recognizes the same language as N. The
completeness property follows from 1. To see the soundness property assume that ∀z N(x , z) = 0. For
some y how can My (x , r ) be accepting with probability greater than 0.5? From 3 we see that for this y has
to be δ-close to the the code {y(x , z)|z}. But then there is a z0 such that y is δ-close to z0. Then 4 gives a
contradiction, since N(x , z0) = 0.

The above way of constructing PCPs gives a general philosophy. Point 3 calls for constructing codes
such that a POM with small query size can tell with large certainty if a word is δ-far from a code word.
In fact, the POM can be viewed as performing two procedures: (1) checking for closeness to the code and
(2) given that y is close to the code, checking if it is an encoding of a witness that makes N accept. Sometimes
these two tasks are merged together.

In Refs. [12,13,16] the technique to construct a PCP encoding code was arithmetization. When arith-
metizing, the encoding function is the generalized Reed Solomon encoding. The PCP properties of this
code are not straightforward. A technical detail, but important for the further developments, is that in
these articles δ is not a constant, but rather inverse polylogarithmic.

In Ref. [17] the parameters were further reduced to |q | = |r | = O(log n) reaching an important
milestone: NP was characterized for the first time as PCP(log n, log n) (the two arguments are the number
of the random bits and the number of the query bits).

In Ref. [20] the number of check bits had to be decreased to constant. Are there any error correcting
codes over � = {0, 1} that can be checked with constant number of queries even if we allow the code word
to be exponentially long, and we do not require any additional properties? The answer is yes, and these
codes play a fundamental role in the PCP theory.

Hadamard Code
Let z ∈ {0, 1}k . We encode z as the sequence of all scalar products had(z) = (z, v)v∈{0,1}k . Here (z, v)

de f=∑
i zi vi mod 2. The above is known as the Hadamard encoding.

Lemma 17.4

Let y = (yv)v∈{0,1}k be any vector of length 2k with elements from {0, 1}. Then

1. If y = had(z) for some z ∈ {0, 1}k then for every v, t ∈ {0, 1}k we have yv + yt = yv+t .
2. If y is ε-far in Hamming distance from every word from the Hadamard code, then

|{(v, t)|yv + yt �= yv+t}| ≥ ε 22k

The above lemma, which was first discovered with a slightly weaker constant by Blum et al. [18], gives a
procedure to check membership in the Hadamard code: Pick v, t ∈ {0, 1}k randomly and independently,
and reject if yv + yt �= yv+t . The lemma implies that if y is at least ε-far from all code words, the check gets
rejected with probability at least ε. However, if it is a code word, the check gets accepted with probability 1.
A further feature of the Hadamard code is that from any string y close to had(z) we can recover any mod 2
subset-sum of the bits of z with high certainty, but we cannot easily recover nonlinear (in the two-element
field arithmetic) functions of the encoded string. Arora et al. [20] employed the Hadamard encoding in their
construction. The role of exponentially large codes in the PCP theory is made clearer in the next section.

We now describe another code, which is checkable with a constant number of bits and has the added
nice feature that one can also recover any Boolean function of the encoded string with high certainty
using only two queries. The checking procedure is remarkably efficient: three queries suffice. The code was
invented by Bellare et al. [25] and was wonderfully analyzed by Hastad [35], who showed how this code
plays a main role in obtaining sharp inapproximability results with it. It is also employed in the recent
short proof for the PCP theorem.

The Long Code
Encode z (z ∈ {0, 1}k) by the list of values that all Boolean functions take on z. We get long(z). Unlike the
Hadamard code, the long code is nonlinear, although it is a subset of a Hadamard code. Since the number
of Boolean functions that take k input bits is 22k

, the length of the long code is doubly exponential. The
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elements of the code are indexed by the names of the corresponding Boolean functions. There is another
interpretation of the long code, which may be interesting. First encode z in unary and then encode unary(z)
with the Hadamard code. long(z) = had(unary(z)). If we have an abstract set S instead of {0, 1}k we may
also encode its elements with the long code. Let F be the set of all functions f : S → {0, 1}. For z ∈ S we
define longS (z) = ( f (z)) f ∈F , a string of length 2|S|.

Folding
If y = longS (z) then for every f ∈ F we have y¬ f = ¬y f . Let s0 ∈ S be an arbitrarily chosen element of
S. For every f exactly one of f (s0), ¬ f (s0) is 0. The folded long code long′

S contains only those entries
y f of the long code for which f (s0) = 0. Hence its words are from 2S\{s0}. When we describe a test for the
folded long code it is often convenient to talk about y f even when f (s0) �= 0. Under this, by definition,
we mean y f = ¬y¬ f . To retrieve this value the tester needs to read only one bit from y. We call the above
extension the unfolding of y. In PCP theory we always work with the folded code. Long code tests are
studied by Fourier analytic techniques [31,35,36], and using the folded version gives nicer formulas. Also,
if we unfold any string in 2S\{s0} (not only a code word) then the unfolded string in 2S will have Hamming
weight exactly 2|S|−1.

Let f1 ∨ f2 ∨ · · · ∨ fl = 1 and y = long′(z) for some z = {0, 1}k . Then y f1 ∨ y f2 ∨ · · · ∨ y fl = 1 must
hold. This observation makes it possible to check long′

s as follows:

Lemma 17.5 (Dinur [1])

For any finite set S the folded code long′
S (z) can be checked looking at only three positions corresponding to

functions whose OR is 1. The first two functions of the triplet are randomly selected, while the third one is
chosen by a random process (we do not give here the simple details) such that the OR of the three functions is 1.
The procedure then accepts if b1 ∨ b2 ∨ b3 = 1, where b1, b2, and b3 are the three returned code bits. For the
procedure the following holds:

1. If y = long′
S (z), then y is accepted with probability 1.

2. If dist(y, long′
S ) > δ, then y is rejected with probability 0.001δ.

17.8 Holographic Proofs and the Proof Recursion Idea

Babai et al. [16] have shown how to test randomly a (theorem, proof) pair without reading neither the
theorem nor the proof. The theorem is assumed to be in an arbitrary error correcting format and the proof
serves to check both the theorem and its format. When we say “proofs” and “theorems” normally we mean
the corresponding notions of predicate calculus, but to understand this section one needs to think more
generally (and in a sense, simpler). Ref. [16] considers abstract proof systems. In the most general case, the
minimal requirement from a proof system is that it characterizes a set called THEOREMS, which com-
prises all “true statements.” THEOREMS ⊆ {0, 1}∗ may be any language. The notion is merely syntactic.
A slightly less minimal requirement is that THEOREMS be recursively enumerable. If so, then there is a
polynomial-time machine N such that x ∈ THEOREMS if and only if ∃x N(x , y). Here, y can be arbitrar-
ily long compared with x . We prefer to rename x and y and write the above as ∃ proof N(theorem, proof).
We would like to emphasize that theorems and proofs are only strings. No semantics is attached to them.
The only way to get convinced if a (theorem, proof) pair is valid if we run N on it.

The next step in Ref. [16] is to introduce the notion of “holographic” proof systems. Let us assume that
the theorems of a conventional (nonholographic) abstract proof system form the set THEOREMS0. Let
E k : {0, 1}k → {0, 1}h(k) be a family of efficiently computable error correcting encoding that correct δ

fraction of errors. Let E (x) = E |x|(x). We define a new set

THEOREMS = {E (x)|x ∈ THEOREMS0}
This transformation of the theorem set makes it error-resistant: Even if we delete or change a constant
(< δ) fraction of a theorem ∈ THEOREMS, we can recover it using error correction. More importantly,
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if THEOREMS0 is recursively enumerable (RE), then Ref. [16] shows how to build a “holographic proof
system” for THEOREMS (below L stands for THEOREMS0):

Theorem 17.3 (Babai et al. [16])

Let E k : {0, 1}k → {0, 1}h(k) be a family of efficiently computable error correcting encodings that correct δ

fraction of errors. For every L ∈ RE with verifier N, there is a probabilistic oracle machine Mz, y (k, r ) (k is
the length of the unencoded theorem, z ∈ {0, 1}h(k)) such that

1. If x ∈ L, |x| = k, then any witness y0 for which N(x , y0) = 1 can be turned into a witness y for M
for which ME (x), y (k, r ) = 1 for every r . The transformation takes polynomial time in |y0|.

2. Let THEOREMSk = {E (x)|x ∈ L ∩ {0, 1}k}. For every z with dist(z, THEOREMSk) > δ h(k) and
for every y we have Probr (Mz, y (k, r ) = 1)) ≤ 1/2.

3. The query size and |r | are only polylogarithmic in |z| + |y|.
If we allow exponential blow-up in the parameters, then a much simpler holographic proof checker was

found by Dinur [1], which she uses in her simple proof for the PCP theorem:

Assignment Tester of Dinur
Let F be an arbitrary Boolean function on k variables. Let E : {0, 1}k → {0, 1}l be an arbitrary encoding
that corrects 10% of errors, and let

THEOREMS
de f= {E (x)|x ∈ {0, 1}k; F (x) = 1}

The Dinur assignment tester is a holographic proof system for z ∈ THEOREMS. Dinur’s holographic
proof for some E (x) ∈ THEOREMS is simply y = long′

THEOREMS(E (x)). Given a candidate (z, y) for a
(theorem, proof) pair, the verifier checks that the following hold:

1. y is close to some member of long′
THEOREMS;

2. assuming that the first condition holds, y is close to long′
THEOREMS(z).

The second check is the reason why z of the true prover needs to come from an error correcting code. The
first check is done as in Lemma 17.5. The second check is done by selecting a random index 1 ≤ ρ ≤ l and
checking if the ρth bit of z is correctly encoded in y. For this the verifier picks a random f : {0, 1}l → {0, 1}
and checks if y f + y f +πρ = zρ , where πρ is the function that projects a word to its ρth bit: w → wρ .
Remark: πρ behaves as any other Boolean valued function on THEOREMS. In particular, the folded long
code lets it to recover via the expression y f + y f +πρ , where f is arbitrary.

The verifier, instead of checking both 1 and 2, selects either 1 or 2 with 50% probability. If the above
verification process is accepting with probability 0.999, then y is close to some long ′

THEOREMS(z′). Also,
z′ is close to z in Hamming distance. This in turn means that z decodes to x = E −1(z′), where F (x) = 1.

Reducing the Query Size
The query size of the above procedure is 3. As we see in the next section, it has a definite advantage to
reduce the number of queries of the verifier to two even at the price of increasing the alphabet size to eight.
To this end Dinur employs the following nice standard trick. To y we add another proof, y ′, that contains
all the triplets of bits that are potentially read by the checking procedure. The alphabet of y ′ is {0, 1}3. The
verifier proceeds according to the same protocol as before, but when a check is to be performed, it reads
the corresponding triplet, τ , from y ′. To make sure that τ faithfully describes the corresponding three bits
of z ∪ y, it randomly selects one of the three bits of τ , compares it with the corresponding bit in z ∪ y, and
rejects if τ lies about it. The following is not hard to show:

Lemma 17.6

There is fixed c > 0 such that if z is δ-far from THEOREMS then for every y, y ′ the above 2-query verifier
rejects (z, y ∪ y ′) with probability at least cδ. On the other hand, if z ∈ THEOREMS then there exist y, y ′
such that the verifier accepts (z, y ∪ y ′) with probability 1.

The holographic proof idea was slightly generalized in Refs. [1,10,37,38].
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Proof Recursion
Arora and Safra [17] were the first to describe proof recursion, a method in PCP building to decrease the
query size. Proof recursion builds on the holographic proof idea. Below we explain it in its simplest form.
In this form proof recursion is used to decrease the size of the alphabet of the witness tape rather than the
query size. In the process the query size should not increase by much. If the alphabet size is small but the
query size is large, to do the proof recursion, we first need another transformation that trades query size
for alphabet size by reducing the former and increasing the latter (see a simple example above). In general,
if the query size is nonconstant, to achieve this trade-off may be quite technical.

Outer Verifier
Let M be a POM, called outer verifier, that makes a constant number of queries, but its witness is over a
large alphabet, �big . Let E be a binary error correcting encoding of �big that corrects constant fraction
of errors. From a witness (yi )1≤i≤m we create another witness (E (yi ))1≤i≤m, i.e., we encode every symbol
of the witness (or proof) individually and concatenate the resulting code words.

Inner Verifier
To check the new witness we use a verifier that works under the holographic proof principles. Let us
assume that the outer verifier for a random string r would read yi1 , yi2 , . . . , yiq and accept if some
Boolean predicate F (yi1 , . . . , yiq ) equals 1. Define:

THEOREMS = {E (σ1)E (σ2) . . . E (σq )|F (σ1, σ2, . . . , σq ) = 1}
Note that if E corrects δ fraction of errors, then E q = E × · · · × E still corrects δ/q fraction of

errors, so THEOREMS is in an error correcting format (recall that by our assumption q is a constant).
Therefore, a holographic proof checker capable of recognizing THEOREMS can be applied. (BFLS, D,
and other constructions ensure the existence of such proof checkers for a wide range of parameters.)
This proof checker, also called the inner verifier, needs to have access to a holographic proof besides
E (y1)E (y2) . . . E (yq ).

Composed Verifier
We need to build an inner verifier for every fixed r as follows. The composed verifier, given r , first computes
the indices of the check bits of the outer verifier, and the Boolean predicate Fr that represents the acceptance
condition of the outer verifier for this r . From Fr it determines THEOREMSr and computes a random
query of the associated inner verifier. For this the composed verifier uses an additional random string r ′
with length that agrees with the randomness required by the inner verifier. Then the composed verifier
makes the queries. This is the only occasion when it reads anything from the witness tape. Thus the query
and alphabet sizes of the composed verifier are that of the inner verifier. The composed proof itself is
(E (yi ))1≤i≤m ∪ ⋃

r holor , where holor is the holographic proof associated with random string r .
Building an outer verifier is not trivial, and it is a main technical component in Ref. [17]. Arora et al.

[20] build a verifier that is both inner and outer, and which needs only logarithmic randomness and
polylogarithmic query bits. They compose this verifier with itself a constant number of times. The verifier
has a natural size parameter, which is set differently throughout the levels of composition. In particular,
the size rapidly shrinks in every new iteration. For the last time they use a different inner verifier whose
alphabet size is 2, and query size is constant similarly to Dinur’s assignment tester. The latter was a novel
idea at the time. To achieve significant improvement of the parameters in just a constant number of
iterations the outer verifier must be very powerful, which makes the ALMSS [20] construction involved.
To keep the number of iterations constant appeared to be necessary, because in their case every iteration of
the proof recursion either added a constant to the query size or shrunk the completeness-soundness gap.
In Refs. [1,38] gap-increasing reductions help to get around this. Shortly after Ref. [20] a powerful gap-
increasing reduction, called parallel repetition was invented by Raz [39], and exploited in constructions
to obtain sharp inapproximability results [35]. The parallel repetition, unlike the reductions in [1,38],
which only add a constant to |r |, increases |r | by a constant factor, so it can be used only (essentially) once
without making |r | superlogarithmic.

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C017 March 20, 2007 12:46

Hardness of Approximation 17-13

17.9 A Short Proof of the PCP Theorem

Before Refs. [1,38] several different proofs have been made for the PCP theorem, but their rough structure
did not differ much. One of the nice features of the new proof is that it can be almost fully explained without
mentioning PCPs, and talking only about Gap-CSPs (see Section 17.6). In particular, Dinur proves the
following form of the PCP theorem:

Theorem 17.4

Let � = {0, 1}3. Then [2, �]CSP Karp reduces to Gap(MAX − [2, �]CSP, 0.9999, 1) in polynomial time.
(Note: [2, �]CSP is NP-complete.)

For the rest of the section we fix � = {0, 1}3.

Instance Size and Satisfiability Gap
For a CSP 	 = ∧m

i=1 	i , define the instance size as |	| = m. The satisfiability gap of 	 is sat(	) =
miny |{i |	i (y) = 0}|/m (one minus the maximal fraction of the simultaneously satisfiable constraints).
In words, Eq. (17.1) says

Let 	 be a [k, �]CSP instance. Either sat(	) = 0 (the formula is satisfiable) or sat(	) ≥ 1/|	| (the
formula is not satisfiable). The satisfiability gap cannot be smaller than 1/|	| since if the formula is not
satisfiable then at least one component of 	 is not satisfied under any assignment. Dinur constructs a
reduction that enlarges this tiny gap to a constant, while keeping the gap of satisfiable instances 0. The
reduction makes small progresses at a time.

It is sufficient to show that any [2, �]CSP instance 	 can be reduced in polynomial time to a [2, �]CSP
instance 	′ with the following properties:

1. if 	 is satisfiable then 	′ is satisfiable.

2. |	′| ≤ 101010g oog ol |	|
3. sat(	′) ≥ min{2 sat(	), 0.0001}.

We say that a [2, �]CSP instance is d-regular, expanding, if the graph we obtain by replacing each
constraint with the corresponding pair of variables is a d-regular expander. Let	be an arbitrary [2, �]CSP.
Let d = 11 and t be a constant to be determined later. We obtain 	′ from 	 in three steps:

	 ∈ [2, �]CSP → (to improve on the structure)
	reg ∈ d-regular, expanding [2, �]CSP → (to gain the gap)

	big ∈ [2, �(d+1)�
t
2 �

]CSP → (to reduce the alphabet size)
	′ ∈ [2, �]CSP

Furthermore: (1) If 	 is satisfiable then so are 	reg , 	big , and 	′, (2) Each reduction increases the

size of the instance only by a constant factor: |	reg | ≤ 30|	|, |	big | = (d + 1)�
t
2 �−1|	reg |, |	′| ≤

2231(d+1)
� t

2 �
|	big |, and (3) The satisfiability gaps change as

sat(	reg) ≥ 0.1 sat(	)

sat(	big) ≥ min{200000 sat(	reg), 0.001}
sat(	′) ≥ 0.0001 sat(	big)

Only for the 	big → 	′ reduction we need PCP ideas, although very little.

Reducing the Alphabet Size
In fact, Sections 17.7 and 17.8 have already prepared us to understand this reduction. Since � = {0, 1}3,

we can identify �big
de f= �(d+1)�

t
2 �

with {0, 1}3(d+1)�
t
2 �

. If 	big is a positive instance (i.e., satisfiable),

we encode each letter of the satisfying assignment with some encoding function E : {0, 1}3(d+1)�
t
2 � →

{0, 1}30(d+1)�
t
2 �

that corrects constant fraction of errors (from coding theory we know that such encoding
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exists). If vi and v j are two variables on which 	big has a constraint, we install a Dinur Assignment Tester
(see the previous section, Lemma 17.6) which checks the property:

THEOREMSi, j = {(E (σ ), E (σ ′))|(σ, σ ′) ∈ �2
big satisfy all constraints on vi , v j }

The proof, (E (σ ), E (σ ′)), is encoded, as required. A little detail is that the encoding is E × E , rather
than E , but E × E still corrects constant fraction of errors. Let us denote the holographic proof of this
assignment tester by holoi, j , and the set of all i, j pairs for which such a tester is built, by H . The properties
of the Dinur Assignment Tester guarantee that when the constraint is satisfied, and the prover is faithful to
the protocol, all tests are accepting. The tester looks at binary constraints over the alphabet � = {0, 1}3,
therefore, by Fact 17.1 it can be turned into a [2, {0, 1}3]CSP. This CSP is made just for a single constraint
of 	big . To obtain 	′ we unite the above sets for all constraints of 	big . The variables are all bits of all
encoded variables of 	big together with

⋃
i, j∈H holoi, j .

Assume now that 	big is a negative instance. It takes a little argument to show that in this case the
satisfiability gap of 	′ constructed above is at least 0.0001sat(	)big , independently of t. The transformation
blows up the instance size by only a constant factor (dependent of t, but it is all right). These were all we
wanted to achieve in this stage.

Making It Regular, Expanding
The 	 → 	reg reduction is even simpler. It is a fairly standard transformation which involves creating
deg v clones of every node v of the constraint graph of 	. We distribute the outgoing edges among the
clones: Each clone remains connected to exactly one outgoing edge. For every v we fit a degree d ′ expander
(say, with d ′ = 5) on its clones putting equality constraints on the new edges. This way we obtain a
d ′ + 1-regular graph, which may not be an expander itself (recall that we did not have any assumption on
the original graph). To ensure the expanding property, we now add new edges with empty constrains on
them. The new edges form a degree d ′ expander on the entire vertex set. The final graph is d = 2d ′ + 1-
regular and it is an expander. Throughout the whole construction we preserve multiple edges (possibly
with different constraints).

Powering
The second reduction is a wonderful new addition to PCP theory and this is the one that really gains us
the gap. We define an operation on binary constraint systems, called powering. Let G be a constraint graph
and t > 1 be an integer. First we add a loop to each node (with an empty constraint). We denote the
resulting graph with G + I . Then we construct (G + I )t in such a way that

• The vertices of (G + I )t are the same as the vertices of G .
• Edges: u and v are connected by k edges in (G + I )t iff the number of t steps paths from u to v in

G + I is exactly k.
• Alphabet: The alphabet of (G + I )t is �(d+1)�t/2�

, where every vertex specifies values for all of its
neighbor reachable in �t/2� steps.

• Constraints: The constraint associated with an edge (u, v) of (G + I )t is satisfied iff the assignments
for u and v are consistent with an assignment that satisfies all of the constraints induced by the
�t/2� neighborhoods of u and v.

If G is satisfiable then (G + I )t is satisfiable as well. More importantly, powering has the following
satisfiability gap enlarging property:

Lemma 17.7 (Amplification Lemma [1])

Let � be an arbitrary constant-size alphabet. There exists a constant γ = γ (d , |�|) > 0 such that for any
t > 0 and for any d-regular expanding constraint graph G:

sat((G + I )t ) ≥ γ
√

t min

{

sat(G),
1

t

}
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We define 	big = (	reg + I )t . Parameter t has to be chosen so that we get a large enough sat(	big)/
sat(	reg) ratio to compensate for the loss in the satisfiability gap in the first and third transformations,
and even gaining a factor of 2 over that. This can be ensured because of Lemma 17.7.

Many of the stated properties of the reductions are intuitively clear, although some require nontrivial
arguments. To get Theorem 17.4 we need to cycle through the reduction set −log2α times (or, if we
do not know α, more), where α is the satisfiability gap of the very first instance. −log2α ≤ log m, so
the size of the final instance is polynomially bounded by that of the first, where the size of the latter
is m.
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18.1 Introduction

Typically, a combinatorial optimization problem involves a set E of elements (called ground set) and the
goal is to arrange, group, order, or select a subset of elements from E that optimizes a given objective
function. Classical examples of combinatorial optimization problems include the minimum spanning tree
problem, the shortest paths problem, and the traveling salesman problem [1].

Local search is perhaps one of the most natural ways to attempt to solve a combinatorial optimization
problem. The idea of local search is simple: Given a (probably not very good) solution s for a combinatorial
optimization problem, try to improve the value of the solution by making “local changes” to s . A local
change might involve, for example, adding elements from the ground set to s , removing elements from s ,
changing the way in which elements are grouped in s , or changing the order of the elements in s . If an
improvement can be achieved in this manner, then a new solution s ′ is obtained. This process is continued
until no further improvement can be obtained.

Local search has been successfully used to find good solutions for a large number of complex problems,
the most famous of them probably being the traveling salesman problem [1]. The empirical performance
of local search algorithms has been extensively studied for a large number of problems in scheduling,
Very Large Scale Integration design, network design, distributed planning and production control, and
many other fields [2]. Most of these studies concluded that local search is a good method for efficiently
computing near-optimum solutions to problems of realistic sizes (see, e.g., Refs. [2,3]). In this chapter
we explore the use of local search in the design of approximation algorithms with provable performance
guarantee for NP-hard combinatorial optimization problems.

The idea of local search might be better understood by considering an example. In the multiproces-
sor scheduling problem the goal is to schedule a set J = { j1, j2, . . . , jn} of jobs into a group M =
{M1, M2, . . . , Mm} of m identical machines so that the completion time of the last job, also called the
makespan of the schedule, is minimized. Each job ji has a processing time pi , and every machine can
process only one job at a time. Furthermore, we assume that the processing of a job cannot be interrupted
(i.e., preemptions are not allowed).

Let us consider a specific instance of the multiprocessor scheduling problem. Let J = { j1, j2, j3, j4,
j5, j6} with processing times p1 =3, p2 =2, p3 =3, p4 =4, p5 =2, and p6 =1, and M = {M1, M2, M3}.

18-1
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FIGURE 18.1 A schedule for J .
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FIGURE 18.2 Local improvements for the solution in Figure 18.1.

A solution for this instance of the multiprocessor scheduling problem is shown in Figure 18.1. Machine
M1 processes jobs j1, j2, j3, and j6 requiring total processing time 3 + 2 + 3 + 1 = 9. This is the
load of machine M1. The loads of M2 and M3 are 4 and 2, respectively. The makespan or length of this
schedule is equal to the completion time of the last job, and it is also equal to the maximum machine load,
namely 9.

We can make local changes to this solution to try to improve the makespan. For example, we could
move a job from one machine with maximum load to a machine with minimum load. If, say, we move j3
from M1 to M3, we get the solution shown in Figure 18.2(a) with makespan 8. As this solution is better
than the first one, we keep it and try to further improve it. Now we can move j6 to M3 to get the solution
depicted in Figure 18.2(b) with makespan 5.

This last solution cannot be improved by moving any one of the jobs to a different machine. In fact,
one can show that this is an optimum solution for the problem since the total processing time of all the
jobs is 15 and, thus, 3 machines need at least 15/3 = 5 units of time to process them all.

18.1.1 Local Search and Combinatorial Optimization

Formally, a combinatorial optimization problem � consists of a collection of instances (S , c). For each
instance (S , c),S is the set of feasible solutions, and it consists of a family of subsets from a finite ground set
E . The second component c of an instance is an objective function c :S → IR. The goal of a combinatorial
optimization problem is to find a solution s ∗ ∈ S with minimum or maximum objective value, i.e.,

c(s ∗) = optimum
s∈S

c(s )

where optimum is either min or max.
A neighborhood function N :S → 2S specifies for each solution s ∈ S a subset N (s ) of neighbors of s ,

or solutions that are “close” to s . The local search algorithm that we informally described above is called
the iterative improvement algorithm.

Algorithm IterativeImprovement (S, N , c)

In: Set S of feasible solutions, neighborhood function N , and objective function c .
Out: A local optimum solution s ∈ S with respect to N and c .

1. Compute an initial feasible solution s ∈ S .
2. while N (s ) contains a better solution than s do {
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3. Choose a solution s ′ ∈ N (s ) with better value c(s ′) than c(s ).
4. Set s ← s ′

}
5. Output s.

The solution s computed by the algorithm has the best possible value among all the solutions in its
neighborhood N (s )

c(s ) = optimum
s ′∈N (s )

c(s ′) (18.1)

Therefore, this solution s is called a local optimum with respect to N and c . The set of local optimum
solutions in the feasible solution set S with respect to a neighborhood function N and objective function
c is denoted as LN c (S). A local optimum solution is not necessarily a global optimum solution s ∗. To see
this, let us consider the same instance of the multiprocessor scheduling problem described above. For a
feasible schedule s , the objective function c(s ) gives the makespan of the schedule. Let us use the same
neighborhood function defined before, i.e., N (s ) includes all solutions that can be obtained from s by
moving a single job from a machine with maximum load to one with minimum load. This neighborhood
function is called the jump of move neighborhood [4]. Let the initial solution be as shown in Figure 18.3.

Note that since M1 and M2 have maximum load, this solution is local optimum as moving a single
job cannot decrease the makespan. The makespan of this local optimum solution is 6, while the global
optimum solution of Figure 18.2(b) has makespan 5.

Given a combinatorial optimization problem � with instances (S , c) and a local search algorithm A
that uses neighborhood function N , we define the locality gap αA of A as the largest possible ratio between
the value of a local optimum solution and a global optimum one

αA = max
(S ,c)∈�

{

max
s∈LN c (S)

{
c(s )

c(s ∗)
,

c(s ∗)

c(s )

}

: c(s ∗) = optimum
s ′∈S

c(s ′)

}

(18.2)

Therefore, if an algorithm A can compute in polynomial time a local optimum solution for a combina-
torial optimization problem � with respect to a given neighborhood function, then A is an approximation
algorithm for � with approximation ratio αA.

18.1.2 The Complexity of Computing Local Optimum Solutions

There is a large number of combinatorial optimization problems and natural neighborhood functions for
them, for which we do not know any polynomial-time algorithm for computing local optimum solutions.
There has been a lot of research on characterizing the class of problems that admit polynomial-time
algorithms for finding local optimum solutions. One of the most notable works in this area is the research
by Johnson et al. [5], who introduced the complexity class PLS of Polynomial-time Local Search problems.

This class includes all those problems and associated neighborhood functions which admit polynomial-
time algorithms for deciding whether a given feasible solution is locally optimum and, if not, computes a
better solution in its neighborhood. There is a reduction among problems in the class PLS which defines
a subclass of complete PLS problems. It is unknown whether there exists polynomial-time algorithms for
computing local optimum solutions for PLS-complete problems.

Time

j2 j6

j5j4

j3

j1

M3

M1

M2

FIGURE 18.3 A local optimum solution with respect to the jump neighborhood and makespan objective function.
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If we look closely at the IterativeImprovement algorithm described above, we note that its time com-
plexity is dominated by the number of iterations of the while loop and by the time needed to search the
neighborhood for a better solution. Given a combinatorial optimization problem, it is possible to scale the
objective function c , so it yields integer values for all feasible solutions. Then, the IterativeImprovement
algorithm will terminate in a pseudopolynomial number of iterations, since each iteration improves the
value of the solution by an integral amount.

This observation led Orlin et al. [6] to study approximate locally optimum solutions: Given a value
ε>0, a solution s for an instance (S , c) of a combinatorial minimization problem is an ε-local optimum
with respect to the neighborhood function N if

c(s ) − c(s ′) ≤ εc(s ′) for all s ′ ∈ N (s )

Approximate locally optimum solutions can be defined in a similar manner for maximization problems. In
Ref. [6] it is shown that every combinatorial optimization problem with a neighborhood function that can
be efficiently searched has a fully polynomial-time algorithm for computing ε-local optimum solutions.
This is a very interesting result, since as we show in Section 18.4, ε-local optimum solutions might be
shown to be nearly global optimum.

18.1.3 Local Search in Approximation Algorithms

Despite its simplicity, local search has not been extensively used to design approximation algorithms.
Among the reasons for this are that computing the locality gap of a local search algorithm is not easy, and for
many problems natural local search algorithms have very large locality gaps leading to poor approximation
algorithms. Consider, for example, the multiprocessor scheduling problem described above and the jump
neighborhood function. Let us consider an instance of the problem, where J consists of an even number
n = km of jobs with unit processing times for some integer value k >0, and let M consists of m machines.
The solution shown in Figure 18.4 for this instance (half of the jobs are processed on machine M1 and
the other half on M2) is a local optimum solution as moving a single job cannot decrease the makespan.
An optimum solution, however, distributes the jobs evenly among all machines, and so it has makespan
k. The locality gap of the IterativeImprovement algorithm with the jump neighborhood function is, then,
at least km/2

k = m
2 .

The problem with a local search algorithm based on the jump neighborhood is that it might get “trapped”
in a local optimum solution of value far away from the optimum. If a neighborhood function is such that
a local search algorithm always finds a global optimum solution, regardless of the initial solution, such
a neighborhood function is called exact. For neighborhood functions that are not exact, getting trapped
in a local optimum is a big problem, hence various local search techniques have been designed that can
move a local search algorithm away from a local optimum solution. Variable-depth search, tabu search,
simulated annealing, and genetic algorithms are among these techniques. In this chapter we consider only
iterative improvement algorithms, as more complex local search techniques are much harder to analyze.
In the sequel “local search” will mean iterative improvement.

Time

jn

j2j1

Mm

M3

M1

M2
j  +1n

2

j  n
2

j  +2n
2

.  .  .

.  .  .

.  .  .

FIGURE 18.4 Instance showing a large locality gap for the jump neighborhood.
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When designing an approximation algorithm using local search, if the locality gap of the algorithm
with the selected neighborhood function is too large, we can try to improve it by selecting a different
neighborhood function, and sometimes (as we show in the next section) by modifying the cost function.

Let us again consider the multiprocessor scheduling problem. Two other neighborhood functions that
have been used for designing local search algorithms for this problem are the swap and push neighborhoods
[4]. In the swap neighborhood, two jobs ji and jk on different machines are swapped (thus, interchanging
their machine allocations). The push neighborhood allows moving a job ji from its current machine Mj

to a different one, Mh , and then it allows to recursively move from Mh those jobs with processing times
smaller than pi . It is not hard to find instances showing that, like the jump neighborhood, these two
neighborhood functions have a large locality gap.

We could also define a k-jump neighborhood function, where up to k jobs are selected and moved to
other machines. By selecting a sufficiently large value for k (e.g., by choosing k = n) we guarantee that the
neighborhood function is exact and, therefore, that a local search algorithm based on such a neighborhood
function will always find optimum solutions. The problem with this function is that given a solution s , the
size of its neighborhood |N (s )| is exponential in k. Therefore, Step 3 of algorithm IterativeImprovement
might require time that is exponential in k. The main challenge when designing a good local search
approximation algorithm is to select a neighborhood function that yields small enough neighborhoods,
so that deciding whether the current solution is a local optimum, or finding a better solution can be done
efficiently, and such that the locality gap of the algorithm is small.

Computing the locality gap of a local search algorithm is, in general, not easy. We need to make use of
the structural properties of local optimum solutions and relate them to the properties of global optimum
solutions. In the next two sections we describe local search approximation algorithms for two NP-hard
problems to illustrate this process. Sometimes it is a good idea to use Eq. (18.1) defining a local optimum
solution to relate the value of local optimum and global optimum solutions. This idea is used in the last
section of this chapter to design an approximation algorithm for the k-median problem.

18.2 An Approximation Algorithm
for Multiprocessor Scheduling

As the example in Figure 18.4 shows, a local search algorithm for multiprocessor scheduling based on the
jump neighborhood might return a solution that is much worse than the optimum. This happens when
the algorithm gets trapped in a local optimum where several machines have the maximum load and the
rest of them are idle. As in this case more than one machine has maximum load, moving a single job will
not decrease the makespan of the schedule. However, by moving a job from a maximum load machine to
an idle one, the number of machines with largest load will decrease. If we continue moving jobs away from
machines with maximum load, eventually we might be able to decrease the makespan of the solution.

To force the IterativeImprovement algorithm to continue moving jobs away from machines with largest
load, let us define a new objective function c ′ that assigns to every schedule s a pair (c(s ), d(s )), where
c(s ) is the makespan of s and d(s ) the number of machines with load c(s ). Given two solutions s and s ′,
we let c ′(s ) < c ′(s ) if c(s ) < c(s ′) or if c(s ) = c(s ′) and d(s ) < d(s ′).

Given a schedule s , its neighborhood N (s ) has size at most O(mn) since a neighbor of s can be
obtained by moving any of the n jobs to any of the m − 1 machines which do not process it in s . Further-
more, we show below that the IterativeImprovement algorithm requires O(n2) iterations to find a local
optimum solution. Thus, the time complexity of IterativeImprovement with the jump neighborhood is
O(mn3).

We use the arguments presented in Ref. [7] to bound the number of iterations of the algorithm. Let
Cmax(i) and Cmin(i) denote, respectively, the maximum and minimum machine loads at the beginning
of the i th iteration. Let �(i) = Cmax(i) − Cmin(i). Since every iteration moves a job from a machine with
maximum load to a machine with minimum load, then Cmax(i) is a monotone nonincreasing function
and Cmin(i) a monotone nondecreasing function. Therefore, �(i) is also monotone nonincreasing.
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We will bound the number of iterations by first bounding the maximum number of times that a job
can be moved to other machines. Consider a job ji that is moved to some machine Mk during the r th
iteration. This means that Cmin(r ) = �(Mk , r ), where �(Mk , r ) is the load of Mk at the beginning of the
r th iteration. Then, assume that ji is moved from Mk to some other machine at a later iteration q > r ;
thus, Cmax(q) = �(Mk , q).

We need to consider two cases:

• Assume that no job is moved to machine Mk between iterations r + 1 and q . Then,

Cmax(q) = �(Mk , q) ≤ �(Mk , r ) + pi = Cmin(r ) + pi ≤ Cmin(q) + pi

The last inequality follows since Cmin(i) is nondecreasing. Therefore,

pi ≥ Cmax(q) − Cmin(q) = �(q)

This implies that job ji cannot be moved during the q th iteration since by moving ji to a different
machine the value of the objective function c ′ will not decrease.

• Therefore, at least one job needs to be moved to Mk during iterations r +1, . . . , q . Let jh be the last
one of these jobs, and let jh be moved to Mk during iteration u. Then, Cmin(u) = �(Mk , u) and

Cmax(q) = �(Mk , q) ≤ �(Mk , u) + ph = Cmin(u) + ph ≤ Cmin(q) + ph

Hence,

ph ≥ Cmax(q) − Cmin(q) = �(q)

This implies that job jh will not move during the following iterations.

From the above arguments, we conclude that a job ji can move more than once, only if between any
two consecutive moves at least one other job jh gets fixed on some machine from which it will not move
any further. Since at most n − 1 job movements can use jh as the job that gets fixed, then the total number
of job movements (and, thus, the total number of iterations of the algorithm) is O(n2).

Theorem 18.1

The IterativeImprovement algorithm with the jump neighborhood function and cost function c ′ always finds
a schedule s with makespan at most 2 − 1

m times the optimum one.

The proof of this theorem is essentially the same as Graham’s proof for the performance ratio of his
List scheduling algorithm [8]. Consider an instance (S , c) of the multiprocessor scheduling problem. The
feasible set S is formed by all possible ways of scheduling the jobs J on the machines M. Let s ∗ be an
optimum solution for this instance and let s be the local optimum solution computed by IterativeIm-
provement with the jump neighborhood and objective function c ′ (see Figure 18.5). Let Mi be a machine
with maximum load c(s ) and let jr be the last job processed by Mi .

Time

M2

M1

Mi

Mm

c(s)

jr

t

.  .  .
.  .  .

FIGURE 18.5 Solution computed by IterativeImprovement.
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Let jr start processing at time t, so c(s ) = t + pr . Since s is a local optimum solution, then every
machine has load at least t. To see this, observe that if some machine Mk has load smaller than t, then
moving jr to Mk would decrease the cost c ′(s ) of the solution. Since every machine’s load is at least t, then

t ≤ 1

m




∑

ji ∈J

pi − pr



 ≤ c(s ∗) − 1

m
pr

as no schedule can process all jobs in J in time smaller than 1
m

∑
ji ∈J pi . Therefore,

c(s ) = t + pr ≤ c(s ∗) − 1

m
pr + pr

= c(s ∗) +
(

1 − 1

m

)

pr

≤ c(s ∗) +
(

1 − 1

m

)

c(s ∗) as pr ≤ c(s ∗)

= c(s ∗)

(

2 − 1

m

)

18.3 Finding Spanning Trees with Many Leaves

In this section we describe the local search algorithm of Lu and Ravi [9] for the maximum leaves spanning
tree problem: Given an undirected graph G = (V, E ), find a spanning tree of G with maximum number
of leaves. This problem is known to be NP-hard and MAX SNP-complete [10]. The algorithm of Lu and
Ravi is simply the IterativeImprovement algorithm with the exchange neighborhood function, described
below. The feasibility space S for this problem includes all spanning trees of the input graph G . For any
spanning tree s ∈ S , the objective function c(s ) gives the number of leaves in s .

Consider a spanning tree s . The exchange neighborhood of s is formed by all spanning trees that differ
from s in a single edge, i.e.,

N (s ) = {s ′ : s ′ is a spanning tree of G and |s ∩ s ′| = n − 2}
where n is the number of vertices of G . Here we view a spanning tree s as a collection of edges. Let
(u, v) ∈ E \ s be an edge that does not belong to the spanning tree s . Let suv be the unique path in s
between vertices u and v. Note that if we add edge (u, v) to s we create a unique cycle, and by removing
from this cycle any edge in suv we create a new spanning tree (see Figure 18.6). Since the path suv can
have at most n − 1 edges, then the neighborhood S(s ) of s has size at most m(n − 1), where m is the
number of edges in the graph. As this neighborhood function has polynomial size, Step 3 of algorithm
IterativeImprovement can be performed in O(mn) time.

Furthermore, each iteration of the algorithm increases the value of the solution s by at least 1. The initial
solution s0 must have at least 2 leaves, so c(s0) ≥ 2. Each iteration increases the value of the solution, and

v v

u

w w

u u

s

S

v

w

FIGURE 18.6 Neighborhood of spanning tree s . Edge (u, v) does not belong to s .
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c(s ) cannot exceed n − 1. Therefore, the maximum number of iterations that the while loop can perform
is n − 3. The time complexity of algorithm IterativeImprovement is, then, O(mn2). Now, let us compute
the locality gap of the algorithm.

Theorem 18.2

The IterativeImprovement algorithm with the exchange neighborhood function has a locality gap of 10.

To prove the theorem we need to recall some basic properties of spanning trees. Let T be a spanning
tree of a given graph G = (V, E ). A path in T containing only nodes of degree 2 in T is called a 2-path.
For the rest of this section we use the convention that when referring to a tree T , the degree of a vertex u
is the degree of u in T (not the degree of u in the graph G). So, for example, if u is a leaf of T we will say
that the degree of u is 1.

Property 18.1

The number of nodes N3(T) of degree at least 3 in a spanning tree T of G is at most the number of leaves in
T minus 2, i.e.,

N3(T) ≤ c(T) − 2

Proof
A spanning tree has maximum number of vertices of degree at least 3 if it is a full binary tree. In a full
binary tree the number of leaves is one more than the number of internal nodes. Since in a full binary tree
all internal nodes, except the root, have degree 3, then c(T ′) = N3(T ′) + 2 for any binary tree T ′, and so

N3(T) ≤ c(T) − 2

for any spanning tree T of G .

Property 18.2

The number P2(T) of 2-paths in any tree T is at most twice the number of leaves of T minus 3, i.e.,

P2(T) ≤ 2c(T) − 3

Proof
Let us choose a vertex of degree at least 3 as the root of T . Note that if the tree does not have any vertices
of degree larger than 2 then T is a path, so P2(T) = 1 and c(T) = 2.

A 2-path in T either connects a leaf or a vertex of degree at least 3 with its unique nearest ancestor of
degree at least 3. Thus, every leaf and every node of degree at least 3 (except the root) has associated a
unique 2-path, and so

P2(T) ≤ c(T) + N3(T) − 1 ≤ 2c(T) − 3

The last ingredient that we need to prove the theorem is the following lemma that relates the number
of leaves in any spanning tree with the number of 2-paths in the local optimum tree s selected by the
algorithm IterativeImprovement.

Lemma 18.1

Let T be a spanning tree of a graph G = (V, E ) and let s be the tree selected by IterativeImprovement. Let p
be a 2-path of s . At most 4 vertices in p can be leaves in T.

Proof
We prove the lemma by contradiction. Assume that there is a 2-path p in s such that at least five of its
vertices are leaves in T . Let w1, w2, w3, w4, and w5 be five of the leaves of T that belong to p, as shown
in Figure 18.7. Note that if two vertices ui , u j of p are not adjacent in p, then there cannot be an edge
between them in G . This is because if such an edge exists, then adding (ui , u j ) to s forms a unique cycle
(see Figure 18.8); removing any edge of this cycle, other than (ui , u j ), would increase the number of leaves
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p

v

w1 ww w2 u w3 w4 w5

FIGURE 18.7 2-Path p of s . Edge (u, v) does not belong to s .

ui uj

p

FIGURE 18.8 Cycle formed by the inclusion of edge (ui , u j ) to p.

of s by 2, contradicting the assumption that s is a local optimum solution with respect to the exchange
neighborhood.

Let us pick any vertex r not in p as the root of T . Let (u, v) be the first edge in the path from w3 to r that
does not belong to p (see Figure 18.7). Note that by the above argument, u and v cannot both belong to p.
Without loss of generality let v not belong to p. Assume that the path svw3 in s from v to w3 goes through
vertices w1 and w2 (the other case, when such a path goes through w4 and w5 is similar). Adding edge
(u, v) to s creates a unique cycle. Also, observe that u is an internal vertex in s , and thus, by adding (u, v)
to s we decrease the number of leaves of s by at most 1. If we now remove from p any edge (w , w ′) in the
path from w1 to w2 we create a new spanning tree s ′ in which w and w ′ are leaves, and so c(s ′) ≥ c(s ) + 1,
contradicting the assumption that s is a local optimum solution.

Now, we are ready to prove the theorem and to show that the IterativeImprovement algorithm with the
exchange neighborhood has approximation ratio at most 10. Let s ∗ be a spanning tree of G with maximum
number of leaves. Every leaf of s ∗ must be either

(a) a leaf of s ; the total number of these leaves is at most c(s ),
(b) a vertex of degree at least 3 in s ; there are at most N3(s ) ≤ c(s ) − 2 of these leaves by Property 18.1,

or
(c) a vertex in a 2-path of s ; by Lemma 18.1 and Property 18.2, the number of these leaves is at most

4P2(s ) ≤ 8c(s ) − 12.

Combining (a)–(c), the number of leaves in s ∗ is

c(s ∗) ≤ c(s ) + c(s ) − 2 + 8c(s ) − 12 ≤ 10c(s )

Therefore,

c(s ∗)

c(s )
≤ 10

In Ref. [9] it is shown that by using more complex arguments, it can be proven that the locality gap of
the algorithm is at most 5. Furthermore, by using a neighborhood function that allows the simultaneous
exchange of two tree edges with two nontree edges, Lu and Ravi [9] show that the IterativeImprovement
algorithm has locality gap 3.
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18.4 Clustering Problems

In a clustering problem we are given a weighted graph G = (V, E ) and the goal is to partition the vertices
of G into groups or clusters so that a certain objective function is optimized. Two classical clustering
problems are the k-median problem and the facility location problem. In the k-median problem it is
desired to partition the set of vertices V into k clusters, each with a distinguished vertex called a center or
median, so that the sum of distances from the vertices to their clusters’ medians is minimized.

Consider, for example, the weighted graph in Figure 18.9. If k = 2, then the two medians in an optimum
solution are vertices 3 and 6. These two medians define a partition of the set of vertices, as each vertex must be
in the same cluster as its nearest median (ties are broken arbitrarily); thus, the clusters are {1, 2, 3, 4, 8} and
{5, 6, 7, 9}. The sum of distances from the vertices to their nearest medians is 1+1+2+3+1+2+3 = 13.
A related problem is the k-means [11] problem where the goal is to minimize the sum of squared distances
from the vertices to the medians.

In the facility location problem each vertex u of the graph has associated a cost f (u) and the goal is to
select a set F of vertices (and, thus, to partition G into |F | clusters) so that the total cost

∑
u∈F f (u) of

the vertices in F plus the sum of distances from the vertices in V\F to F is minimized. Consider again
the same graph of Figure 18.9. If the cost f (u) of each vertex u is 3, then an optimum solution for the
corresponding facility location problem is F = {3, 6}, and the cost of this solution is 3 + 3 + 13 = 19.

Local search algorithms have been recently used to design good approximation algorithms for a variety
of clustering problems including the k-median, k-means, and facility location problems [11–14]. In the
next section we describe the algorithm of Arya et al. [15] for the metric version of the k-median problem.

18.4.1 Local Search Algorithm for the k-Median Problem

Consider a weighted graph G = (V, E ) in which the edge weight function d : E → IR satisfies the triangle
inequality, i.e., for any three vertices u, v, w ∈ V , d(u, v) + d(v, w) ≥ d(u, w). The metric k-median
problem is the k-median problem restricted to weighted graphs with weight functions that satisfy the
triangle inequality.

Since a feasible solution for the k-median problem is a set s ⊆ V of k vertices, the feasible set S consists
of all subsets of k vertices. A natural way of defining the neighborhood of a solution s is through the use
of the swap operation. A swap operation replaces one vertex in s with a vertex in V\s , so N (s ) = {s ′ :
s ′ = (s\{u}) ∪ {v} for every u ∈ s , v ∈ V\s }. For notational simplicity we denote the set (s\{u}) ∪ {v} as
s − u + v. The objective function c(s ) = ∑

u∈V d(u, s ) gives the sum of distances from the vertices to the
medians in the solution s . The distance d(u, s ) from a vertex u to the set s is defined as the distance from
u to its closest median in the set s .

9

7
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8

4
2

1

2

1

4
3

3

1

2
2

3

2

1
1

2

3

6

FIGURE 18.9 Clustering the vertices around vertices 3 and 6.
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The size of the neighborhood N (s ) of a solution s is k(n − k). However, the number of iterations of the
algorithm might not be polynomial in the size of the input. We show in the next section how to overcome
this problem.

Theorem 18.3

The IterativeImprovement algorithm with the swap neighborhood has a locality gap of 5.

Let s = {s1, s2, . . . , sk} be the solution computed by the algorithm. This set partitions the vertices V
into k clusters V1, V2, . . . , Vk , where all vertices in cluster Vi are closer to si than to any other median in s
(ties are broken arbitrarily). Let s ∗ = {s ∗

1 , s ∗
2 , . . . , s ∗

k } be an optimum solution, and let V∗
1 , V∗

2 , . . . , V∗
k

be the partition induced by s ∗. For any vertex u ∈ V let Vσ (u) denote its cluster in s and let sσ (u) be the
median in cluster Vσ (u). Then, the value c(s ) of solution s is c(s ) = ∑

u∈V d(u, sσ (u)).
Note that since s is a local optimum solution, then no swap operation can improve its value, i.e., for

any pair of vertices si ∈ s , v ∈ V\s ,

c(s − si + v) ≥ c(s ) (18.3)

To prove Theorem 18.3, first we will pair each median s ∗
i ∈ s ∗ with some median ρ(s ∗

i ) ∈ s in such a way
that no vertex in s is paired with more than two vertices of s ∗. The pairing relation ρ is specified below.
By inequality (18.3), for every vertex s ∗

i ∈ s ∗,

c(s − ρ(s ∗
i ) + s ∗

i ) − c(s ) ≥ 0 (18.4)

and this inequality holds regardless of whether s ∗
i is in s or not.

Observe that c(s − ρ(s ∗
i ) + s ∗

i ) and c(s ) differ only by the contributions made by those vertices in
ρ(s ∗

i )’s cluster and s ∗
i ’s cluster to the values of the two solutions, as shown in Figure 18.10. Therefore,

0 ≤ c(s −ρ(s ∗
i ) + s ∗

i ) − c(s ) ≤
∑

u∈V∗
i

(d(u, s ∗) − d(u, s )) +
∑

v∈Vσ (ρ(s∗
i

))\V∗
i

(d(v, s −ρ(s ∗
i ) + s ∗

i ) − d(v, s ))

(18.5)
Adding inequalities (18.5) over all medians s ∗

i ∈ s ∗, we get

0 ≤
∑

s ∗
i ∈s ∗

(c(s − ρ(s ∗
i ) + s ∗

i ) − c(s ))

≤
∑

s ∗
i ∈s ∗

∑

u∈V∗
i

(d(u, s ∗) − d(u, s )) +
∑

s ∗
i ∈s ∗

∑

v∈Vσ (ρ(s∗
i

))\V∗
i

(d(v, s − ρ(s ∗
i ) + s ∗

i ) − d(v, s )) (18.6)

s

s − ρ(si
∗) + si

∗

si
∗

ρ(si
∗)

ρ(si
∗)

Vk

Vσ(s
i
∗)

V1

Vσ(ρ(si
∗))

Vk
V1

sk sk
s1 s1

FIGURE 18.10 Solutions s and s − ρ(s ∗
i ) + s ∗

i .
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Let us look closely at the first term on the right-hand side of this last inequality. Since ∪k
i=1V∗

i = V ,
then

∑

s ∗
i ∈s ∗

∑

u∈V∗
i

(d(u, s ∗) − d(u, s )) =
∑

u∈V

d(u, s ∗) −
∑

u∈V

d(u, s ) = c(s ∗) − c(s ) (18.7)

The second term in the last inequality of (18.6) is more complicated, so we will spend most of the rest of
this section showing that

∑

s ∗
i ∈s ∗

∑

v∈Vσ (ρ(s∗
i

))\V∗
i

(d(v, s − ρ(s ∗
i ) + s ∗

i ) − d(v, s )) ≤ 4c(s ∗) (18.8)

Combining Eqs. (18.6)–(18.8) we get

0 ≤ c(s ∗) − c(s ) + 4c(s ∗) = 5c(s ∗) − c(s )

From which it follows that

c(s )

c(s ∗)
≤ 5

as Theorem 18.3 claims. It just remains to prove inequality (18.8). The proof in Ref. [15] for the validity
of this inequality is an elegant argument that exploits the fact that the edge weights satisfy the triangle
inequality. First, let us define the relation ρ. We partition the set s of k medians into three groups, As , Bs ,
and Cs , as follows:

As = {si ∈ s : |Vi ∩ V∗
j | ≤ 1

2
|V∗

j | for all clusters V∗
j , 1 ≤ j ≤ k}

Bs = {si ∈ s : |Vi ∩ V∗
j | >

1

2
|V∗

j | for exactly one cluster V∗
j , 1 ≤ j ≤ k}

Cs = s\(As ∪ Bs )

Observe that set Bs associates exactly one vertex s ∗
j with each vertex si ∈ Bs . For each si ∈ Bs , we define

the relation ρ as follows:

ρ(s ∗
j ) = si , where s ∗

j is such that |Vi ∩ V∗
j | >

1

2
|V∗

j |
For the remaining |s | − |Bs | medians in s ∗, the relation ρ associates them to vertices in As . Vertices

in Cs are not mapped to any of the medians in the optimum solution. Note that for every vertex si ∈ Cs

there are at least two medians s ∗
j , s ∗

� whose clusters share at least half of their vertices with si ’s cluster.

Therefore, |Cs | < 1
2 (|s | − |Bs |) and so |As | ≥ 1

2 (|s | − |Bs |).
Let As = {s0, s1, . . . , s |As |−1} and let the, still, unmapped medians in s ∗ be U∗ = {s ∗

0 , s ∗
i , . . . ,

s ∗
|s |−|Bs |−1}. Then, for all s ∗

j ∈ U∗ we define

ρ(s ∗
j ) = s j mod |As |

Note that at most two medians of s ∗ are mapped to the same vertex of s .
Consider a pair (ρ(s ∗

i ), s ∗
i ), and the swap operation that exchanges these two vertices transforming the

solution s into s −ρ(s ∗
i ) + s ∗

i . As Figure 18.10 shows, this swap modifies some of the clusters by reassigning
some of the vertices in Vσ (ρ(s ∗

i )) and V∗
i . The change in the cost of the solution (see inequality [18.5])

is
∑

u∈V∗
i

(d(u, s ∗) − d(u, s )) +
∑

v∈Vσ (ρ(s∗
i

))\V∗
i

(d(v, s − ρ(s ∗
i ) + s ∗

i ) − d(v, s ))

To find an upper bound for this value, we define a 1-1 and onto function π : V → V that for every
median s ∗

i ∈ s ∗ maps vertices in its cluster V∗
i to V∗

i . The function is defined as follows. Fix a vertex
s ∗

i ∈ s ∗. Sort the vertices in cluster V∗
i so that vertices in V∗

i ∩ Vj appear before vertices in V∗
i ∩ V� for all
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Vσ(ρ(si
∗))

V�

si
∗

sj
∗

s�

π(v)

v

ρ(si
∗)

V i
∗ V j

∗

FIGURE 18.11 Reassigning vertices from Vσ (ρ(s ∗
i

)).

1 ≤ j < � ≤ k. Index the vertices in V∗
i in this order starting at 0. Let the vertices indexed in this manner

be v∗
i0, v∗

i1, . . . , v∗
i( p−1), where p = |V∗

i |. Now, define

π(v∗
i j ) = v∗

ir , where r =
(

i +
⌊ p

2

⌋)
mod p, for all 0 ≤ j ≤ d − 1

Note that even when we do not know the optimum solution s ∗, we know that such solution exists
and, thus, this function also exists. Consider a vertex v ∈ Vσ (ρ(s ∗

i ))\V∗
i as depicted in Figure 18.11. Let

v belong to cluster V∗
j in the optimum solution. Since |Vσ (ρ(s ∗

i )) ∩ V∗
j | ≤ 1

2 |V∗
j |, then by the definition

of π , we know that π(v) �∈ Vσ (ρ(s ∗
i )) and, thus, in solution s this vertex π(v) belongs to some cluster

V� �= Vσ (ρ(s ∗
i )).

Since the swap operation that exchanges ρ(s ∗
i ) and s ∗

i , removes only one vertex, ρ(s ∗
i ), from s , then

s� ∈ s − ρ(s ∗
i ) + s ∗

i . Therefore,

d(v, s − ρ(s ∗
i ) + s ∗

i ) ≤ d(v, s�)

Then, by the triangle inequality (see Figure 18.11),

d(v, s − ρ(s ∗
i ) + s ∗

i ) ≤ d(v, s�)

≤ d(v, s ∗
j ) + d(s ∗

j , π(v)) + d(π(v), s�)

= d(v, s ∗) + d(π(v), s ∗) + d(π(v), s )

Adding these inequalities for all vertices s ∗
i as required on the left-hand side of Eq. (18.8) yields

∑

s ∗
i ∈s ∗

∑

v∈Vσ (ρ(s∗
i

))\V∗
i

(d(v, s − ρ(s ∗
i ) + s ∗

i ) − d(v, s ))

≤
∑

s ∗
i ∈s ∗

∑

v∈Vσ (ρ(s∗
i

))\V∗
i

((d(v, s ∗) + d(π(v), s ∗)

+ d(π(v), s ) − d(v, s ))

Since ∪s ∗
i ∈s ∗(Vσ (ρ(s ∗

i ))\V∗
i ) ⊆ V and ρ associates at most two vertices from s ∗ with any vertex in s , then

∑

s ∗
i ∈s ∗

∑

v∈Vσ (ρ(s∗
i

))\V∗
i

(d(v, s ∗) + d(π(v), s ∗) + d(π(v), s ) − d(v, s ))

≤ 2
∑

v∈V

(d(v, s ∗) + d(π(v), s ∗)

+ d(π(v), s ) − d(v, s ))
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Recall that the function π is 1-1 and onto, therefore,
∑

v∈V

d(v, s ∗) =
∑

v∈V

d(π(v), s ∗) = c(s ∗) and

∑

v∈V

d(π(v), s ) =
∑

v∈V

d(v, s ) = c(s )

Combining these inequalities yields
∑

s ∗
i ∈s ∗

∑

v∈Vσ (ρ(s∗
i

))\V∗
i

(d(v, s − ρ(s ∗
i ) + s ∗

i ) − d(v, s )) ≤ 4c(s ∗)

as required.

18.4.2 Approximate Local Optimum Solutions

Even when the locality gap of the above algorithm is at most 5, it is not an approximation algorithm,
as the number of iterations needed by IterativeImprovement to find a local optimum solution might be
superpolynomial. This is because the algorithm might potentially select as intermediate solutions a large
fraction of all the subsets of k vertices in the input graph G .

To fix this problem we can change the stopping condition of the IterativeImprovement algorithm so it
finishes as soon as it finds an approximate local optimum solution, i.e., when the solution s is such that
every neighboring solution s ′ ∈ N (s ) has value

c(s ′) > (1 − ε)c(s )

for some accuracy ε > 0. By changing in this manner the condition of the while loop in Step 2 of the
algorithm, we ensure that in each iteration the value of the solution decreases by at least a factor of 1 − ε.
Therefore, the maximum number of iterations is log(c(s0)/c(s ∗))/ log( 1

1−ε
), which is polynomial in the

size of the input; s0 is the initial solution selected in Step 1.
If we change the algorithm as described above, the analysis needs to change also, since now condition

(18.4) does not hold, but the following one does:

c(s − ρ(s ∗
i ) + s ∗

i ) ≥ (1 − ε)c(s ) for all s ∗
i ∈ s ∗

Using this inequality in our analysis gives only a slight worsening in the locality gap (and, thus on the
approximation ratio) of the algorithm, as now

c(s )

c(s ∗)
≤ 5

1 − 3ε

Arya et al. [15] show that by using the p-swap neighborhood which puts in the neighborhood N (s ) of
a solution s any subset s ′ of k vertices that differs from s in at most p vertices, the IterativeImprovement
algorithms has locality gap (3 + 2/p). To the date when this paper was written this was the best known
approximation algorithm for the metric k-median problem.
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19.1 Introduction

Stochastic local search (SLS) algorithms are among the most successful techniques for solving compu-
tationally hard problems from computing science, operations research and various application areas;
examples range from propositional satisfiability, routing and scheduling problems to genome sequence
assembly, protein structure prediction and winner determination in combinatorial auctions. Because of
their versatility and excellent performance in combination with the fact that efficient implementations can
often be achieved relatively easily, SLS methods enjoy an ever-increasing popularity among researchers
and practitioners.

Local search techniques have a long history; they range from simple constructive and iterative improve-
ment algorithms to rather complex methods that require significant fine-tuning, such as evolutionary
algorithms (EAs) or simulated annealing (SA). The key idea behind local search is to iteratively expand
or improve a current candidate solution by means of small modifications. Most local search algorithms
make use of randomised decisions, for example, in the context of generating initial solutions or when
determining search steps, and are therefore referred to as stochastic local search algorithms. (It may be
noted that formally, deterministic local search algorithms can be seen as special cases of SLS algorithms,
since deterministic decisions can be modelled using degenerate probability distributions.) To define an SLS
algorithm, the following components have to be specified. (A formal definition can be found in Chapter 1
of the book by Hoos and Stützle [1].)

Search space: the set of candidate solutions (or search positions) for the given problem instance; candidate
solutions typically consist of a number of discrete solution components.

Solution set: specifies all search positions that are considered to be (feasible) solutions of the given problem
instance.

Neighbourhood relation: specifies the direct neighbours of each candidate solution s , i.e., the search
positions that can be reached from s in one search step.

Memory states: used to hold information about the search mechanism beyond the search position (e.g.,
tabu tenure of solution components in tabu search (TS), or temperature in SA); there may be only
a single, constant state in the case of algorithms that do not use memory, such as simple iterative
improvement.

Initialisation function: specifies search initialisation in the form of a probability distribution over
initial search positions and memory states.

19-1
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Stochastic Local Search:

determine initial search state
While termination criterion is not satisfied:

perform search step
if necessary, update incumbent solution

return incumbent solution or report failure

FIGURE 19.1 General outline of an SLS algorithm.

Step function: determines the computation of search steps by mapping each search position and memory
state to a probability distribution over its neighbouring search positions and memory states.

Termination predicate: used to decide search termination based on the current search position and
memory state.

Based on these components, SLS algorithms work as illustrated in Figure 19.1. When applied to optimi-
sation problems, whose definition comprises an objective function that specifies the quality of solutions,
SLS algorithms need to keep track of the best solution encountered during the search process, the so-called
incumbent solution. For decision problems, the search process is usually terminated as soon as a solution
for the given problem instance is found, and repeated updating of an incumbent solution is not required.

Among the components underlying any SLS algorithm, the neighbourhood relation and the step func-
tion are particularly important. Typically, neighbourhood relations have to be defined in a problem-specific
way, and it is often difficult to predict which of the various choices that can be made in this context will result
in the best performance. However, standard types of neighbourhood relations exist; particularly widely
used are the so-called k-exchange neighbourhoods, in which two candidate solutions are direct neighbours
if and only if they differ in at most k solution components. As an example, consider the 2-exchange neigh-
bourhood for the (symmetric) travelling salesman problem (TSP), under which two candidate solutions
are direct neighbours if one can be obtained from the other by replacing two edges of s by two alternate
edges (see Figure 19.2). Every neighbourhood relation induces a neighbourhood graph, whose vertex set
corresponds to the given search space, and in which each pair of neighbouring search positions is connected
by an edge. Many important properties of the neighbourhood relation are reflected in the neighbourhood
graph; for example, k-exchange neighbourhoods induce symmetric, k-regular neighbourhood graphs.

The step function defines how the search process moves from one search state to the next, where a
search state is a combination of a search position and a memory state. Search steps are usually defined by
means of a procedure that draws a sample from the probability distribution determined by the underlying
step function; similar procedural specifications are used for the initialisation function and termination
predicate. The search process is typically guided by an evaluation function that is used to heuristically assess
or rank candidate solutions. For combinatorial optimisation problems, the objective function (which is
part of the problem definition) is often also used as an evaluation function. In the case of combinatorial
decision problems, however, there can be considerable freedom in choosing an appropriate evaluation
function. Furthermore, some SLS methods use multiple evaluation functions or modify the evaluation
function while searching. (For this reason, we do not explicitly specify a single evaluation function as a
component of our formal definition of an SLS algorithm.)

FIGURE 19.2 Example of a 2-exchange step for the symmetric TSP.
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The concept of SLS, as defined above, provides a unifying framework for many different types of
algorithms. In particular, it captures constructive algorithms, whose search space contains partial solutions
of a given problem, i.e., candidate solutions that can be extended by adding solution components (such
as edges in the case of the TSP). Consequently, search methods that are strongly based on constructive
search procedures, such as greedy randomised adaptive search procedures (GRASP) [2,3] or ant colony
optimisation (ACO) [4,5], fall under the general SLS framework. Similarly, population-based algorithms,
which operate on ensembles of candidate solutions, are covered by our definition by considering search
positions to consist of sets of individual candidate solutions. Note that in this case, step functions can be
defined to model operations on populations, such as recombination in the case of EAs (see also Chapter 2
of Hoos and Stützle’s book [1]).

Many SLS algorithms are based on generic methods for controlling and directing a simpler, subsidiary
search process (such as an iterative improvement procedure, see Section 19.2), and substantial research
efforts have been focused on the development and study of such general SLS methods, which are also
commonly known as metaheuristics [6]. While high-level search strategies and mechanisms provide an
important basis for developing SLS algorithms for a broad range of problems, it is important to keep in mind
that other aspects, including the choice of the search space and neighbourhood relation as well as techniques
for the efficient implementation of local search steps, are also crucial ingredients of high-performance SLS
algorithms. Research in the area of SLS comprises all aspects of the design, implementation and analysis
of SLS algorithms.

The remainder of this chapter provides an overview of widely used SLS methods for discrete combinato-
rial problems, including iterative improvement techniques (Section 19.2); so-called “simple” SLS methods
(Section 19.3), including SA and tabu search, as well as the less widely known method of dynamic local
search (DLS); hybrid SLS methods (Section 19.4), such as iterated local search (ILS) and GRASP; and
population-based SLS methods (Section 19.5), in particular, ACO and EAs. The chapter closes with a brief
discussion of some general issues and interesting research directions in the area of SLS.

19.2 Iterative Improvement

One of the most basic SLS methods is based on the idea of iteratively improving a candidate solution of
the given problem with respect to an evaluation function. More precisely, the search is started from some
initial position, and in each search step, the current candidate solution s is replaced with a neighbouring
candidate solution s ′ with better evaluation function value. The search is terminated when a local minimum
is reached, i.e., a candidate solution s with g (s ) ≤ g (s ′) for all direct neighbours s ′ of s , where g is the
evaluation function that is to be minimised. This SLS method is called iterative improvement; it is also
known as iterative descent or hill climbing (the latter is motivated by an equivalent formulation where a
given evaluation function is to be maximised).

Iterative improvement algorithms find local optima of a given evaluation function. Since local optima
are defined with respect to a given neighbourhood relation N, it is quite obvious that the choice of N
is of crucial importance for the performance of any iterative improvement procedure. While the use of
larger neighbourhoods results in better quality local optima, the time complexity of determining improving
search steps increases with neighbourhood size. For example, in the commonly used k-exchange neighbour-
hoods, each search position has O(nk) direct neighbours (where n is the number of solution components
in each candidate solution), i.e., the neighbourhood size is exponential in k, and the same holds for the time
required for identifying improving neighbours in the worst case. This leads to a general trade-off between
solution quality and run time of iterative improvement algorithms. In practice, search steps with quadratic
or cubic time complexity can already lead to prohibitively high computation times when solving large
problem instances.

The time complexity of local search steps can be significantly reduced using two generic techniques.
Firstly, caching and incremental updating techniques can be used to significantly reduce the often consid-
erable cost of computing from scratch the evaluation function values of all neighbours of the current
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search position in each search step. Instead, these values are stored and updated based on the actual effects
of each search step (see also Chapter 1 of the book by Hoos and Stützle [1]). Secondly, the size of large
neighbourhoods can be substantially reduced by excluding from consideration neighbours of the current
candidate solution that are provably or likely nonimproving. Such neighbourhood pruning techniques have
a long history; they include fixed radius searches, nearest neighbour lists, the use of so-called “don’t look
bits” in the context of the TSP [7], and reduced neighbourhoods in the case of the job-shop scheduling
problem [8]. These techniques are essential for the design of high-performance SLS algorithms based
on large neighbourhoods, but they can also lead to significant performance improvements when used in
combination with smaller neighbourhoods.

Another factor that has a significant influence on the speed and performance of an iterative improve-
ment algorithm is the mechanism used for determining the search steps—the so-called pivoting rule [9].
The two most widely used pivoting rules are best improvement and first improvement. Iterative best
improvement chooses in each step one of the neighbouring search positions that results in a maximal
possible improvement of the evaluation function value; ties can be broken randomly, based on the order in
which the neighbourhood is examined or by using secondary criteria. Iterative first improvement examines
the neighbourhood in some predefined order and performs the first improving search step encountered
during this inspection. Clearly, the local optima found by this method depend on the order in which
the neighbourhood is scanned. Instead of using predefined, fixed orders, it can be beneficial to examine
the neighbourhood in random order, and repeated runs of such random-order first-improvement algo-
rithms are often able to identify many different local optima, even when started from the same initial
position [1].

Iterative first improvement usually requires more steps than iterative best improvement to reach local
optima of comparable quality, but the individual improvement steps are typically found much faster, since
in many cases, they do not require inspection of the entire neighbourhood. However, best-improvement
algorithms often benefit more significantly from caching and incremental updating strategies, and as a
result, are not always slower than first-improvement algorithms in reaching a local minimum. It may
also be noted that to identify a candidate solution as a local optimum both, first- and best-improvement
algorithms need to inspect the entire local neighbourhood; the time required for this final check (the
so-called check-out time) can be reduced using “don’t look bits” [7,10].

An interesting way of achieving a good trade-off between neighbourhood size and time complexity of
local search steps is to use multiple neighbourhood relations. Variable neighbourhood descent (VND), a vari-
ant of a more general SLS method called variable neighbourhood search (VNS) [11,12], is an iterative im-
provement method that switches systematically between several neighbourhood relations N1, N2, . . . , Nk ,
which are typically ordered according to increasing size. Starting from an initial candidate solution, VND
performs iterative improvement using N1. Once a local optimum w.r.t. N1 is found, the search is continued
in N2. Generally, whenever a local optimum of Ni has been found, VND switches to Ni+1. However, as
soon as an improvement has been achieved in any neighbourhood Ni (with i > 1), the search is continued
using N1. The idea underlying this mechanism is to use small neighbourhoods (which can be searched
most efficiently) whenever possible. Variable neighbourhood descent terminates when a local optimum
of Nk has been found. Empirical results have shown that VND algorithms are often significantly more
efficient in finding high-quality local optima than simple iterative improvement algorithms using large
neighbourhoods. It may be noted that other variants of the more general approach of variable neighbour-
hood search, such as basic VNS or skewed VNS [11,12], are conceptually more closely related to ILS (see
Section 19.4).

Finally, a number of SLS algorithms use very large-scale neighbourhoods [13], whose size is often expo-
nential in the size of the given problem instance. This type of neighbourhood usually has to be searched
heuristically, which is the case in variable-depth search [14,15] and ejection chain algorithms [16]. How-
ever, there are specially structured neighbourhoods that can be searched exactly and efficiently using
network-flow techniques or dynamic programming [17–21]. For an overview of these techniques we
refer to Chapter 20 of this book.
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19.3 “Simple” SLS Methods

Iterative improvement algorithms terminate when they reach a local optimum of the given evaluation
function. In the following, we discuss several approaches that allow SLS algorithms to escape from local
optima by occasionally accepting worsening search steps. The methods discussed in this section are “simple”
in the sense that they are usually based on a single, fixed neighbourhood relation.

Randomised Iterative Improvement
One of the simplest ways to allow worsening search steps is to occasionally move to a randomly chosen
neighbouring search position. In randomised iterative improvement (RII), this idea is implemented by
switching probabilistically between two types of search steps within the same neighbourhood structure:
iterative improvement steps and so-called uninformed random walk steps, in which a neighbour is chosen
uniformly at random. More precisely, in each search step, an uninformed random walk step is performed
with probability wp , and an iterative improvement step is performed otherwise (i.e., with probability
1 − wp). The parameter wp is called walk probability or noise parameter. Using this mechanism, arbitrarily
long sequences of random walk steps can be performed, where the probability of r consecutive random walk
steps is wr

p . Extending an iterative improvement algorithm into an RII algorithm typically requires only few
lines of code and introduces only one parameter. Despite their conceptual simplicity, RII algorithms can
perform quite well; for example, they have provided the basis for GSAT with random walk, a well-known
algorithm for the propositional satisfiability problem (SAT) [22]. However, there are relatively few RII
algorithms, perhaps because more complex SLS algorithms often achieve better performance.

Probabilistic Iterative Improvement
Random walk steps, as performed in RII, may lead to significant deteriorations in evaluation function
value. An attractive alternative is to base the acceptance of a worsening search step on the change in
evaluation function caused by it; this is the key idea behind probabilistic iterative improvement (PII). At
each step, PII selects a neighbouring candidate solution according to a function p(g , s ), which determines
a probability distribution over the neighbourhood of S taking into account the evaluation function g . In
practice, samples of this probability distribution can be taken as follows: first, a neighbour s ′ of the current
search position s is selected uniformly at random; then, a decision is made whether s ′ is accepted as the
new current search position. When minimising g , the probability of accepting s ′, paccept(T, s , s ′), is in
many cases based on the following probability function:

paccept(T, s , s ′) :=
{

1 if g (s ′) < g (s )

exp
(

g (s )−g (s ′)
T

)
otherwise

(19.1)

where T is a parameter that determines the degree to which worsening search steps are likely to be accepted.
This so-called Metropolis condition is frequently used in SA algorithms (discussed in the following), and in
this context, the parameter T is called temperature. In fact, PII with the Metropolis condition is equivalent
to constant-temperature SA, which has been shown to perform well if suitable temperature values are used
[23,24].

Simulated Annealing
A natural generalisation of PII with the Metropolis condition is obtained by modifying the parameter T
during the search; for example, by gradually decreasing T , the search process becomes increasingly greedy.
This is the key idea underlying SA, an SLS method that is inspired by the annealing process of solids, and
which has been independently proposed by Kirkpatrick et al. [25] and Cerný [26].

In each step of a standard SA algorithm, first, a neighbour s ′ of the current candidate solution s is
chosen using a proposal mechanism (in the simplest case, this can be a uniform random choice from the
local neighbourhood of s ); next, a parameterised probabilistic acceptance criterion (e.g., the Metropolis
condition—see Eq. (19.1)) is used to decide whether to perform a search step from s to s ′. The way in
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which the temperature parameter T is modified during the search process is determined by the annealing
schedule, a function that defines for each search step i a temperature value T(i). Annealing schedules
are usually specified in the form of an initial temperature T0, the number of search steps performed at
each temperature value (this is often chosen as a multiple of the neighbourhood size) and a temperature
update scheme (e.g., geometric cooling according to Tk+1 := α ·Tk , where α is a parameter between 0
and 1). Obviously, the performance of an SA algorithm is highly dependent on its annealing schedule.
SA algorithms frequently use special termination conditions, such as the acceptance ratio (i.e., the ratio of
accepted versus proposed search steps) or the number of subsequent temperature values that have been
used since the last improvement in the incumbent solution has been achieved.

Simulated annealing is one of the earliest and most prominent generic SLS methods. SA algorithms have
been applied to a wide range of combinatorial problems; they have also been intensely studied analytically
(giving rise to some interesting results, such as proofs regarding the convergence to optimal solutions) and
experimentally. Many variants of SA have been proposed and studied, such as threshold accepting, where
the probabilistic acceptance criterion is replaced by a deterministic mechanism [27]. For a more detailed
discussion on SA we refer to Chapter 25 of this book.

Tabu Search
Differently from the previously discussed SLS methods, TS makes direct and systematic use of memory to
guide the search process [28]. The key idea behind simple TS, the most basic TS variant, is to use short-
term memory to prevent a subsidiary iterative improvement procedure from returning to recently visited
search positions, which allows the search process to escape from local optima of the given evaluation func-
tion. When performing iterative improvement steps, only permissible neighbours of the current candidate
solution are considered, i.e., neighbouring search positions that are not declared tabu. The tabu memory
is updated after each search step, such that search steps cannot be undone for a fixed amount of time
(tabu tenure). Typically, the tabu mechanism is implemented by storing with each solution component
the time (in terms of step number) when it was last used in the current candidate solution, and to only
permit solution components to be introduced by a search step for which the difference between this time
stamp and the current time exceeds the tabu tenure. For example, in a simple TS algorithm based on the
2-exchange neighbourhood for the TSP, the edges removed in a 2-exchange step may not be reintroduced
for tt subsequent search steps, where tt is the tabu tenure parameter. Many simple TS algorithms use an
aspiration criterion, which allows a search step to a nonpermissible neighbour if it leads to an improvement
in the incumbent solution.

The performance of simple TS algorithms can be very impressive, but usually depends strongly on the
value of the tabu tenure parameter. Several extensions have been proposed that adjust the tabu tenure
while running the search process; the best known example is reactive TS [29] (see also Chapter 21).
Furthermore, additional intermediate and long-term memory mechanisms can be used to further improve
the effectiveness of simple TS. These mechanisms aim to either intensify the search in particular regions
of the search space or to diversify the search to prevent stagnation. For a detailed description of these
techniques, we refer to the book by Glover and Laguna [28]. More detailed information on TS can also be
found in Chapter 23 of this book.

Dynamic Local Search
A different approach for escaping from local optima provides the basis for DLS: Rather than explicitly using
worsening search steps, DLS modifies the given evaluation function whenever its subsidiary local search
procedure encounters a local optimum. More precisely, DLS works as follows. Initially, a subsidiary local
search algorithm, typically an iterative improvement procedure, is executed until a local optimum s is en-
countered. At this point, the evaluation function is modified such that s is no longer a local optimum. Then,
the subsidiary local search is run again until it reaches a local optimum of the modified evaluation func-
tion, at which point, further modifications of the evaluation function are performed. These phases of local
search followed by evaluation function modifications are repeated until a termination criterion is satisfied.

The modifications to the evaluation function are typically achieved by means of penalty weights that are
associated with individual solution components. The augmented evaluation function effectively used by
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the subsidiary local search algorithm is then of the form

gp(s ) := g (s ) +
∑

i∈C(s )

penalty(i) (19.2)

where g (s ) is the original evaluation function, C (s ) the set of solution components of candidate solution s ,
and penalty(i) the penalty of solution component i of s . At the beginning of the search process, all penalties
are set to zero. DLS algorithms mainly differ in the way the penalty update is performed, for example,
the usage of additive versus multiplicative increments or the selection of the solution components whose
penalties are increased. Typically, when a local optimum s is encountered, penalties are only increased
for solution components occurring in s . For example, in guided local search (GLS), a well-known family
of DLS algorithms [30,31], the following penalty update mechanism is used. When encountering a local
minimum s of gp , GLS computes a utility value u(i) := gi (s )/(1+penalty(i)) for each solution component
i of s , where gi (s ) is the contribution of i to the original evaluation (or objective) function. (For example,
in the case of the TSP, the solution components are typically edges of the given graph, and gi (s ) is the cost
of edge i .) Then, only the penalties of solution components with maximal utility are increased. Note that
the term 1 + penalty(i) in the denominator of the definition of u(i) avoids overly frequent penalisation of
solution components.

In addition to penalty increases in local optima, many DLS algorithms also occasionally decrease penalty
values. DLS algorithms have been demonstrated to achieve state-of-the-art performance for various combi-
natorial problems, including SAT [32]. They are conceptually related to Lagrangian methods in continuous
optimisation.

19.4 Hybrid SLS Methods

While the previously discussed SLS methods provide the basis for state-of-the-art algorithms for many
hard combinatorial problems, often, further performance improvements can be achieved by combining
various SLS strategies into hybrid algorithms. In fact, RII can already be seen as a hybrid SLS method,
since it combines two different types of search steps—random walk and iterative improvement steps. In
the following, we briefly discuss several other hybrid SLS methods. In many cases, hybrid SLS methods
combine constructive search steps and perturbative local search steps, or larger modifications of candidate
solutions with the application of “simple” local search algorithms.

Iterated Local Search
The key idea behind this SLS method is to escape from local optima of the given evaluation function by
means of a perturbation mechanism. Essentially, three components form the core of any ILS algorithm.
A subsidiary local search procedure is used to efficiently find local optima; this is typically based on an
iterative improvement algorithm or a “simple” SLS method. The perturbation procedure introduces a
modification to a given candidate solution to allow the search process to escape from local optima. Finally,
an acceptance criterion is used to decide whether the search should be continued from a newly found local
optimum. Based on these components, ILS works as outlined in Figure 19.3.

Iterated Local Search (ILS):
determine initial candidate solution s
perform subsidiary local search on s
While termination criterion is not satisfied:

r := s
perform perturbation on s
perform subsidiary local search on s
based on acceptance criterion, keep s or revert to s := r

FIGURE 19.3 Outline of iterated local search.
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When using an iterative improvement algorithm as the subsidiary local search procedure, ILS can
be seen as performing a biased random walk in the space of local optima reached by this procedure.
The perturbation procedure should introduce a modification that cannot be immediately reversed by
the local search procedure, to achieve effective diversification of the search. The acceptance criterion
determines the degree of search intensification; for example, if only improving candidate solutions are
accepted, ILS performs randomised first-improvement search in the space of local optima. Together, the
perturbation procedure and the acceptance criterion determine the balance between search intensification
and diversification.

One of the major attractions of ILS stems from the fact that it is typically very easy to extend an existing
implementation of a simple local search algorithm into a basic ILS algorithm. ILS algorithms define the
current state-of-the-art for solving many hard combinatorial problems, the most prominent of which is
the TSP [33]. Conceptually, there is a close relationship between ILS and some advanced forms of TS;
furthermore, the previously mentioned basic and skewed variable neighbourhood search algorithms can
be seen as special cases of ILS. For more details on ILS we refer to Lourenço et al. [34].

Iterated Greedy Algorithms
Greedy construction methods are at the core of many well-known approximation algorithms. They also
provide the basis for iterated greedy (IG) algorithms, which can be seen as a variant of ILS in which
local search and perturbation phases are replaced by construction and destruction phases. Starting from a
complete candidate solution, IG alternates between phases of destructive and constructive search. During
a destruction phase, some solution components are removed from the current candidate solution s (e.g.,
uniformly at random or heuristically, depending on their impact on the evaluation function), resulting in
some partial (nonempty) candidate solution sp . During a construction phase, solution components are
added heuristically, starting from sp , until a new complete candidate solution s ′ has been obtained. As in
ILS, an acceptance criterion is used to decide whether to continue the search from s ′ or s .

Note that the initial candidate solution in IG may be generated by a construction method that may be
different from the one used in subsequent construction phases. Also, a perturbative local search procedure
may be used to further improve any complete candidate solutions considered during the search. In this
case, IG may be seen as a variant of ILS in which a combination of a destruction and a construction phase
forms the perturbation procedure. IG methods are a promising approach for solving problems for which
good constructive algorithms exist. Problems for which IG algorithms reach state-of-the-art performance
include set covering [35,36] and flow-shop scheduling [37].

Greedy Randomised Adaptive Search Procedures
A combination of constructive and perturbative local search forms the basis for GRASP [2,3], which works
as follows: Using a randomised construction procedure, a complete candidate solution is generated, which
is then improved using a perturbative local search procedure; this two-phase process is repeated until a
termination criterion is satisfied.

The construction procedure in GRASP iteratively adds solution components that are chosen randomly
from a restricted candidate list; the elements of this list are determined using a heuristic function, whose
value for a given solution component may depend on the solution components already present in the
current partial candidate solution (this is the “adaptive” aspect of the search process). GRASP has been
applied to a broad range of combinatorial problems; for a detailed description on GRASP and various
extensions we refer to Resende and Ribeiro [3].

19.5 Population-Based SLS Methods

Various SLS methods maintain a population of candidate solutions which are simultaneously manipulated
in each search step. As previously noted, such population-based methods can be formulated within the
unified SLS framework described in Section 19.1 by considering search positions that consist of sets of
candidate solutions in combination with suitably defined neighbourhood relations as well as initialisation
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and step functions. The appeal of population-based SLS methods partly stems from the fact that the use of a
population provides a straightforward means for achieving search diversification; however, compared with
other SLS methods, this often comes at the cost of higher implementation effort and more parameters that
need to be tuned to achieve competitive performance. The two widely known population-based methods
described in the following are inspired by biological mechanisms; however, it should be noted that there
are many other population-based SLS methods, such as population-based extensions of ILS, that are not
motivated in this way.

Ant Colony Optimisation
The inspiration for ACO stems from the pheromone trail laying and following behaviour exhibited by
several ant species [5]. In ACO, the (artificial) ants are randomised construction procedures that take into
account (artificial) pheromone trails and heuristic information when iteratively constructing complete
candidate solutions. Essentially, the pheromone trails are modelled by numerical values that are associated
with solution components; these are adapted while solving a given problem instance and hence reflect the
search experience of the (artificial) ant colony.

In each construction step, solution components are chosen with a probability that is proportional to
their pheromone value and the heuristic information. For example, in the TSP, the first problem tackled
by ACO algorithms [4], a pheromone value τi j is associated with each edge (i, j ) of the given graph, and
the heuristic information ηi j is typically defined as the inverse of the length of edge (i, j ). Hence, an ant
located at a vertex i would add vertex j ∈ N(i) to its current partial tour sp with probability

pi j = τα
i j · η

β
i j

∑
l∈N(i)τ

α
i l · η

β
i l

, (19.3)

where N(i) is the feasible neighbourhood of vertex i , i.e., the set of all vertices that have not yet been visited
in sp , and α and β are parameters that control the relative influence of pheromone values and heuristic
information, respectively. This probabilistic selection mechanism was used in Ant System, the first ACO
algorithm [4,38]; the tour construction procedure applied by the artificial ants using this mechanism
resembles a probabilistic variant of the nearest neighbour construction heuristic.

After all ants have constructed a complete candidate solution, many ACO algorithms apply a perturbative
local search procedure (such as iterative improvement) to each complete candidate solution; it has been
shown that in the context of solving NP-hard problems, the overall performance of an ACO algorithm
often depends crucially on this local search phase [5,39]. Then, the pheromone values are updated in
two steps. In the first step (which models pheromone evaporation), all pheromone values are decreased,
typically by multiplication with a constant factor. In the second step (which models pheromone deposit),
the pheromone values of the solution components contained in one or more of the current candidate
solutions are increased; the amount of increase often depends on the quality of the respective solutions.
Cycles of construction (and subsidiary local search) phases followed by pheromone updates are repeated
until a termination criterion is satisfied.

Several variants of ACO have been proposed that all share the same basic underlying ideas (see the book
by Dorigo and Stützle [5] for an overview). The ACO metaheuristic [40] gives a general framework for
these variants. In general, ACO is steadily gaining popularity and provides the basis for state-of-the-art
algorithms for a number of hard combinatorial optimisation problems [5]. More information on ACO
can be found in Chapter 26 of this book.

Evolutionary Algorithms
One of the most prominent classes of population-based SLS methods has been inspired by concepts from
biological evolution. Evolutionary algorithms start with an initial set of candidate solutions (which can be
generated randomly or by means of heuristic construction search methods), and iteratively modify this
population by means of three types of operations: mutation, recombination, and selection.

Typical mutation operators introduce small perturbations to candidate solutions in a randomised fash-
ion; the amount of perturbation applied is usually controlled by a parameter called the mutation rate.
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Recombination operators generate one or more new candidate solutions, often called “offspring”, by com-
bining information from two or more “parent” candidate solutions. One of the most common types of
recombination is known as crossover; it generates offspring by assembling partial candidate solutions from
two parents. Selection operators are used to determine which candidate solutions from the current popu-
lation and from the set of new candidate solutions obtained from mutation and recombination will form
the population used in the next iteration of the search process. This choice is typically based on the value
of candidate solutions under the given evaluation function (which, in the context of EAs, is commonly
referred to as fitness function), such that better candidate solutions have a higher probability to “survive”
the selection process. Selection operators are also used for choosing candidate solutions from the current
population to undergo mutation or recombination.

The performance of EAs depends crucially on the choice of the evolutionary operators. In general, the
performance of EAs improves if knowledge about the given problem is exploited in the operators that are
applied. In fact, much research in EAs has been devoted to the design of effective mutation and crossover
operators; a good example for this is the TSP [41,42]. As in the case of ACO, substantial performance
improvements can often be achieved by additionally optimising candidate solutions using a perturbative
local search method, such as iterative improvement. The resulting hybrid algorithms are also known
as memetic algorithms (MAs) [43]. For a detailed account on MAs and their performance we refer to
Chapter 27 of this book. Scatter search and path relinking are SLS methods whose roots can be traced back
to the mid-1970s [44] and that only recently have regained considerable attention. They can be seen as
MAs that use special types of recombination and selection operators. For details on these methods, we
refer to the work of Glover et al. [45] and Laguna and Martı́ [46].

19.6 Discussion and Research Directions

The study of SLS methods lies at the intersection of computing science, operations research, statistics, and
various application areas. Their successful application requires knowledge of the various SLS techniques
and their properties; despite the generic nature of many SLS methods, insights into the problem to be
solved are often also crucial.

Overall, the behaviour of most high-performance SLS algorithms is not well understood, and although
some theoretical results exist (e.g., for SA and ACO algorithms), these are often obtained under specific
assumptions that limit their practical relevance [47,48]. Still, some theoretical properties, such as empirical
approximate completeness (which guarantees that when run arbitrarily long, an algorithm finds a solution
to any given, soluble problem instance with probability approaching one), have been shown to be useful
in guiding the development of high-performance SLS algorithms (see, e.g., Ref. [49]).

Nevertheless, the analysis of SLS algorithms relies mostly on computational experiments, and advanced
methods for the empirical analysis of SLS behaviour play an important role in the development of new
algorithms. Empirical studies in this area are complicated by the fact that most SLS algorithms are heavily
randomised; but using advanced empirical methods, such as the approach based on run-time distributions
discussed in Chapter 14, have contributed significantly to an improved understanding of SLS behaviour as
well as to the development of high-performance SLS algorithms for many hard combinatorial problems
[49,50]. Yet, compared with mature empirical sciences, such as physics or biology, computing science in
general, and the area of algorithmics in particular, are still in the early stages of adopting and exploiting a
well-founded empirical approach.

In the past, much of the successful work on SLS algorithms and generic SLS methods has relied crucially
on prior experience and good intuitions. One of the major directions in SLS research concerns the devel-
opment of improved practices for developing SLS algorithms and for their application to new problems. In
this context, it is likely that conceptual frameworks for the design and exploration of SLS methods, as well
as implementation and experimentation environments will play an important role [51,52]. Furthermore,
an improved understanding of the relationship between the features of problems and problem instances
on one hand, and properties and behaviour of SLS methods on the other will likely provide the basis for
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more principled approaches for the design and application of SLS algorithms. Insights to be gained in this
context are also of considerable scientific interest. Progress in this research direction is significantly lever-
aged by advanced search space analysis techniques, statistical methods, and machine learning approaches
(see, e.g., Merz and Freisleben [53] or Watson et al. [54]).

The formalisation of general principles underlying the design of successful SLS algorithms remains a
major challenge. One interesting question in this context concerns the role and degree of randomisation.
While deterministic local search algorithms exist, most high-performance SLS algorithms are highly ran-
domised. It is not clear to which extent it is generally possible to derandomise these algorithms without
major losses in robustness or peak performance. Interestingly, there is evidence that in most cases, the
quality of the random number source used by the algorithm is not critical and that the number of ran-
domised decisions can often be significantly reduced [55]. However, in most application areas, the use of
deterministic algorithms is not inherently preferable, and randomised algorithms have some general ad-
vantages, for example, with respect to straightforward and efficient parallelisation techniques. Therefore,
while from a scientific point of view, the derandomisation of SLS algorithms poses interesting questions
and challenges, its practical importance is somewhat unclear.

Finally, many challenges remain in the context of SLS methods to more complex combinatorial problems,
including multiobjective, dynamic, and stochastic problems. Furthermore, there appears to be considerable
potential in the context of SLS methods for solving continuous optimisation problems and hybrid problems
with discrete and continuous components. Overall, there is no doubt that as one of the most versatile and
successful approaches for solving hard combinatorial problems, SLS methods will continue to attract the
attention of researchers and practitioners from many academic and application areas.
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20.1 Introduction

A combinatorial optimization problem (COP) P consists of a collection of instances. An instance of P can
be represented as an ordered pair (F, f ), where F is the family of feasible solutions and f the objective
function, which is used to compare two feasible solutions. The family F is formed by subsets of a finite set
E = {1, 2, . . . , m} called the ground set. The objective function f : F → Q+ ∪{0} assigns a nonnegative
cost to every feasible solution S in F. The Traveling Salesman Problem (TSP) and the Minimum Spanning
Tree Problem are typical examples of COPs.

Most of the COPs of practical interest are NP-hard. Local search is one of the primary solution approaches
for computing an approximate solution for such hard problems. To describe a local search algorithm
formally, we need the concept of a neighborhood for each feasible solution. A neighborhood function for
an instance (F, f ) of a COP P is a mapping NF : F → 2F. We assume that NF does not depend on the
objective function f . For convenience, we usually drop the subscript and simply write N. For a feasible
solution S, N(S) is called the neighborhood of S. We assume thatS ∈ N(S). For a minimization problem,
a feasible solution S ∈ F is said to be locally optimal with respect to N if f (S) ≤ f (S) for allS ∈ N(S).
Then the local search problem is to find a locally optimal solution for a given COP.

Classic neighborhood functions studied in the combinatorial optimization literature include the 2- and
3-opt neighborhoods for the TSP [1,2], the flip neighborhood for Max Cut [3], and the swap neighbor-
hood for Graph Partitioning [3,4]. The sizes of these neighborhoods are polynomial in the problem size.
However, the class of local search algorithms that we are considering here primarily concentrates on neigh-
borhoods of very large size, often exponential in the problem size. For the TSP, this class includes variable
depth neighborhoods, ejection chain neighborhoods, pyramidal tours neighborhoods, permutation tree
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neighborhoods, neighborhoods induced by polynomial-time solvable special cases, etc. For partitioning
problems, various multiexchange neighborhoods studied in literature have this property.

Roughly speaking, a local search algorithm starts with an initial feasible solution and then repeatedly
searches the neighborhood of the “current” solution to find better solutions until it reaches a locally optimal
solution. Computational studies of local search algorithms and their variations have been extensively
reported in the literature for various COPs (see, e.g., Refs. [2,5] for studies of the Graph Partitioning
Problem and the TSP, respectively). Empirically, local search heuristics appear to converge rather quickly,
within low-order polynomial time. In general, the upper bound on the guaranteed number of improving
moves is pseudopolynomial.

This chapter is organized as follows. In Section 20.2, we consider various applications of very large
scale neighborhood (VLSN) search algorithms and discuss in detail how to develop such algorithms using
multiexchanges for various partitioning problems. Section 20.3 deals with theoretical concepts of extended
neighborhoods and linkages with domination analysis of algorithms. The results in this section reaffirm the
importance of using large-scale neighborhoods in local search. In Section 20.4, we deal with performance
guarantees for computing an approximation to a local minimum. This is especially relevant for VLSN
search. Searching a large-scale neighborhood is sometimes NP-hard and thus approximation algorithms
are used. In these cases, the algorithm may terminate at a point that is not a local minimum.

20.2 VLSN Search Applications

VLSN search algorithms have been successfully applied to solve various optimization problems of practical
interest [53–62]. This includes the capacitated minimum spanning tree (CMST) problem [6–8], vehicle
routing problems [9–12], the TSP [11,13–17], the weapon target assignment problem [18], the generalized
assignment problem [19–21], the plant location problem [22], parallel machine scheduling problems
[23], airline fleet assignment problems [24–26], the quadratic assignment problem [27], pickup and
delivery problems with time windows [4,28], the multiple knapsack problem [29], manufacturing problems
[30], optimization problems in IMRT treatment planning [31], school timetabling problems [32], the
graph coloring problem [33], etc. The successful design of an effective VLSN search algorithm depends
on the ability to identify a good neighborhood function and the ability to design an effective exact or
heuristic algorithm to search the neighborhood for an improved solution. A VLSN search algorithm can
be embedded within a metaheuristic framework, such as tabu search [34], genetic algorithms [35], scatter
search [36], and GRASP [37] to achieve further enhances in performance. Simulated annealing may be used
in principle, but is not likely to be a successful approach when the size of the neighborhood is exponentially
large.

Researchers have used various techniques for developing good neighborhood functions that lead to
effective VLSN search algorithms. This includes multiexchange [6,7,38,39], ejection chains [40], variable
depth methods [41,42], integer programming [10], weighted matching [10,13,14,16,17], set partitioning
[10], etc. A comprehensive discussion of all these techniques is outside the scope of this chapter. Applications
of ejection chains in local search are discussed in other chapters of this book and hence we will not discuss it
here. To illustrate the features of a VLSN search algorithm, we primarily concentrate on applications of
multiexchange neighborhoods originally developed by Thompson and Orlin [43] and Thompson and
Psaraftis [38]. It is one of the successful approaches for developing VLSN search algorithms for various
partitioning problems [6,7,29].

20.2.1 Partitioning Problems and Multiexchange Neighborhoods

A subset B of the ground set E is said to be a feasible subset if it satisfies a collection of prescribed conditions
called feasibility conditions. We assume there is a feasibility oracle ζ that verifies whether a subset B of E

satisfies the feasibility conditions. A partition S = {S1, S2, . . . , Sp} is said to be feasible if Si is a feasible
subset for each i = 1, 2, . . . , p. Let c : 2E → Q be a prescribed cost function. The cost C(S) of the
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FIGURE 20.1 A cyclic exchange.

partition S = {S1, S2, . . . , Sp} is defined as C (S) = ∑p
i=1 c(Si ). Partitioning problems are the subclass

of COP, where the family of feasible solutions F is the collection of all feasible partitions of E with C(.) as
the objective function.

Partitioning problems are typically NP-hard even if the feasibility oracle ζ and evaluation of the cost
c(.) of the subsets of a partition run in polynomial time. Several well-studied COPs are special cases (or
may be viewed as special cases) of partitioning problems. These include the CMST problem [6,7,44], the
generalized assignment problem [19–21], vehicle routing problems [10,23], graph partitioning problems
[4,42], the k-constrained multiple knapsack problem [29], etc. We will discuss some of these problems in
detail later. Next, we develop a VLSN search algorithm for the general partitioning problem.

The first step in the design of a VLSN search algorithm is to develop a suitable neighborhood function.
Let S = {S1, S2, . . . , Sp} be a feasible partition. A cyclic exchange of S selects a collection

{Sπ1 , Sπ2 , . . . , Sπq } of subsets from S and moves an element say bi from subset Sπi to subset Sπi+1

for i =1, 2, . . . , q, where q + 1 = 1 (see Figure 20.1). Let S∗ be the resulting partition. If S∗ is a feasible
partition, then we call the exchange a feasible cyclic exchange. It can be verified that

C (S∗) = C (S) +
q∑

i=1

(c({bi−1} ∪ Sπi \{bi }) − c(Sπi )) (20.1)

where b0 is defined to be bq . If q = 2, the cyclic exchange reduces to a 2-exchange, an operation well
studied for various partitioning problems [5,15,45]. In a (feasible) cyclic exchange, if we omit the move
from Sπq to Sπq+1 (=Sπ1 ), the resulting exchange is called a (feasible)path exchange. For q = 2, a path
exchange reduces to the shift operation, again well studied for various partitioning problems [45].

The cyclic and path exchanges discussed above were introduced by Thompson and Orlin [43] and
Thompson and Psaraftis [38] and subsequently used by several researchers in the context of various
partitioning problems.

Given a feasible partition S, let Z(S) be the collection of all feasible partitions of E that can be obtained
by cyclic exchanges from S. Similarly, let P(S) be the collection of feasible partitions of E that can be
obtained by a path exchange from S. We call Z(S) the cyclic exchange neighborhood of S, and we call
P(S) the path exchange neighborhood of S. The union Z(S)∪P(S) is called the multiexchange neighborhood
of S. The cardinality of the neighborhoods Z(S) and P(S) is often exponential. A precise estimate of this
cardinality depends on various parameters including the nature of the feasibility oracle ζ . Thus Z(S) and
P(S) qualify as very large-scale neighborhoods that can be used in the design of a VLSN search algorithm.

Besides the size of the neighborhood, the power of a VLSN search algorithm also depends on our ability
to obtain an improved solution in the neighborhood. Given a feasible solution S, the problem of finding
an improved solution in a given neighborhood is called a local augmentation problem [46]. We next discuss
how to solve the local augmentation problem for Z(S). This is achieved by (approximately) solving an
optimization problem on an associated structure called the improvement graph.
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The improvement graph associated with a feasible partition is denoted by G(S). Its node set is E, which
is also the ground set. Given a partition S, for each element i of E let θ(i) denote the index of the subset
in which it belongs in the partition S. That is, for i ∈ Sr , θ(i) = r . The arc set A = A(G(S)) of G(S) is
constructed as follows. An arc (i, j ) ∈ A signifies that element i leaves subset Sθ(i) and enters subset Sθ( j )

while element j leaves Sθ( j ). So,

A = {
(i, j ) : i, j ∈ E , θ(i) �= θ( j ) and {i} ∪ Sθ( j )\{ j } is a feasible subset

}

The cost αi j of arc (i , j ) ∈ A is given by

αi j = c({i} ∪ Sθ( j )\{ j }) − c(Sθ( j )) (20.2)

A directed cycle 〈i1−i2−· · ·−ir −i1〉 in the improvement graph is said to be subset disjoint if θ(i p) �= θ(iq )
forp �= q . In this definition, if we replace “cycle” by “path” we get a subset-disjoint directed path.

Lemma 20.1 (Thompson and Orlin [43])

There is a one-to-one cost-preserving correspondence between cyclic exchanges with respect to S and subset-
disjoint directed cycles in G (S).

A negative cost subset-disjoint directed path (cycle) in G(S) is called a valid path (cycle).
In view of Lemma 20.1, a valid cycle in G(S) yields an improved partition. If G(S) contains no valid

cycle, thenS is locally optimal with respect to N(S). Unfortunately, finding such a valid cycle is NP-hard
[43]. Thus, the local augmentation problem for the neighborhood N(S) is also NP-hard.

20.2.1.1 Local Augmentation Algorithm for N(S)

Ahuja et al. [7] proposed a heuristic algorithm to compute a valid cycle by modifying the label correcting
algorithm for shortest paths. An exact algorithm based on dynamic programming (implicit enumeration)
to solve this problem was introduced in Ref. [6]. We briefly discuss the algorithm, and refer the reader to
Ref. [6] for further details.

For any subgraph H of G(S), its cost α(S) is given by α(S) =
∑

i j∈P αi j , where ij is shorthand for
(i , j ). For a directed path P in G(S), let tail(P ) denote the start node, head(P ) denote the end node,
and label(P ) denote the set {θ(i) : i ∈ P }. We say that a path P1 dominates another path P2 in G(S) if
α(P1)< α(P2), tail(P1)= tail(P2), head(P1)= head(P2), and label(P1)= label(P2). If P1 dominates P2 and
P2 is part of a valid cycle C, then clearlyP1 ∪ C\P2 contains a valid cycle with cost no more than α(C).
For each path P , we associate a triplet (tail(P ), head(P ), label(P )) called the key value of P . In our search
for a valid cycle in G(S), among paths with the same key value, we only need to consider one with the
smallest cost. The following lemma further cuts down the number of paths needed to be considered.

Lemma 20.2 (Lin and Kernighan [41])

If W = 〈i1 − i2 − · · · − ir − i1〉 is a negative cost cycle, then there exists a node i h in W such that each
directed path ih − ih+1, ih − ih+1 − ih+2, . . . , ih − ih+1 − ih+2 − . . . − ih−1 (where indexes are modulo r)
is a negative cost-directed path.

In view of Lemma 20.2 and the preceding discussions, we need to only consider nondominated valid
paths as candidates for forming valid cycles. Let �k be the set of all valid nondominated paths of length k
in G(S). The algorithm of Ahuja et al. [6] progressively generates �k for larger values of k. The algorithm
enumerates valid paths using a forward dynamic programming recursion. It first obtains all valid paths of
length 1 and uses these paths to generate valid paths of length 2, etc. This process is repeated until we have
obtained all valid paths of length R for some given length R, or until we find a valid cycle. From each valid
path, candidate cycles are examined by connecting the head node with the tail node by an arc in G(S) if
such an arc exists. A formal description of the valid cycle detection algorithm is given below.
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algorithm valid cycle detection
begin

P1 := {(i , j ) ∈ A(G(S)) : αi j < 0};
k := 1;
W∗ := Ø; α(W∗) = ∞;
while k < R and α(W∗) ≥ 0 do
begin

while Pk �= Ø do
begin

remove a path P from Pk

let i := head(P ) and h:= tail(P )
if (i , h) ∈ A(G(S)) and α(P )+ αih< α(W∗) then W∗:= P ∪{(i , h)};
for each (i , j ) ∈ A(i) do

if label( j ) /∈ label(P ) and α(P )+ αi j < 0 then
begin

add the path P ∪{(i , j )} to Pk+1

if Pk+1 contains another path with the same key as
P ∪{(i , h)} then remove the dominated path;

endif;
endfor

endwhile;
k = k+1;

endwhile;
return W∗;

end;

Although the algorithm above is not polynomial, it worked very well in practice for some partitioning
problems on which the algorithm was tested [6,7,29].

Path Exchange as a Cyclic Exchange
Let us now consider how a valid path can be obtained if G(S) has one. Note that by Lemma 20.2, every
valid cycle of length r gives r − 1 valid paths. Sometimes path exchanges resulting from these valid paths
may be better than the best cyclic exchange. Even in the absence of a valid cycle, it is possible that G(S) may
have valid paths that lead to an improved solution. Let S be a partition containing p subsets, and suppose
that S∗ is a partition obtained from S by a cyclic exchange. In general, S∗ will also contain p subsets,
and they will have the same cardinalities as the original subsets of S. These are limitations of the cyclic
exchange. One approach to overcome this drawback is to periodically explore the possibility of splitting
one or more subsets within a partition or merging two or more subsets within a partition. In the case of
communication spanning tree problems, some cyclic exchange moves lead to such simple split operations
in a natural way. Interestingly, path exchange moves have the natural property of the possibility of de-
creasing the number of subsets in a partition. By allowing the possibility of an empty set, an improvement
graph can be constructed where a path exchange can even increase the number of subsets while moving
from one partition to another. This variation of path exchange is called enhanced path exchange.

Interestingly, we now observe that path exchanges can be viewed as cyclic exchanges in a modified
improvement graph G̃(S) = (

Ṽ , Ã
)

, which is a supergraph of G(S). Introduce p new nodes (called
pseudonodes) s1, s2, . . . , s p and another node v called the origin node. Thus the node set Ṽof G̃(S) is
E ∪ {

s1, s2, . . . , s p , v
}

. The graph G̃(S) contains all arcs of G(S) along with additional arcs from the set
{(v, j ) : j ∈ E } ∪ {( j, si ) : i �= θ( j ) and Si ∪ { j } is a feasible subset} ∪ {(si , v) : i = 1, 2, . . . , p} (see
Figure 20.2). The cost of these additional arcs are defined as follows: αv j = c(Sθ( j )\{ j }) − c(Sθ( j )) for
all j ∈ E; αsi v = 0 for i = 1, 2, . . . , p; and α j si = c(Si ∪{ j })−c(Si ) for all ( j, si ) ∈ {( j, si ) : i �= θ( j ) and
Si ∪ { j } is a feasible subset}.
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FIGURE 20.2 Construction of the improvement graph G̃(S).

Note that a directed cycle C in G̃(S) containing the node v will have exactly one pseudonode and
the remaining nodes are regular. Further, these regular nodes form a path in C called the regular path
associated with C. A directed cycle C containing the node v in the graph G̃(S) is said to be subset disjoint
if its associated regular path is subset disjoint.

Lemma 20.3 (Ahuja et al. [7])

There is a one-to-one cost-preserving correspondence between path exchanges with respect to the partition S
and subset-disjoint directed cycles in G̃(S) containing the origin node v.

If a valid cycle in the improvement graph contains the origin node v, it corresponds to an improving
path exchange. If it does not contain v, it corresponds to an improving cyclic exchange. Moreover, the
improvement graph G̃(S) can be further modified by adding a new node and appropriate arcs so that
improving enhanced path exchanges can be identified. A VLSN search algorithm based on a multiexchange
(path or cyclic) can be described as follows:

Algorithm Multiexchange
begin

compute a feasible solution S to the partitioning problem;
construct the improvement graph G̃(S);
while G̃(S) contains a valid cycle do

obtain a valid cycle W in G̃(S);
If W contains the origin node v then

perform a path exchange using the corresponding regular path;
else

perform a cyclic exchange corresponding to W;
endif

update S and G̃(S);
endwhile;

end.

Many problem-specific features can be used to simplify calculations in the VLSN search algorithm dis-
cussed above for the partitioning problem. The complexity of the construction of the improvement graph
depends on that of the feasibility oracle and on the evaluation of the cost function c(.). Also, problem-
specific information may be used to update the improvement graph from iteration to iteration efficiently.
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The Capacitated Minimum Spanning Tree Problem
Let G be a graph on the node set V ∪ {0}, where V = {1, 2, . . . , n}. Nodes in V are called terminal nodes,
and the node 0 is called the central node. For each arc (i , j ), a nonnegative cost ci j is prescribed. Also for
each node i ∈ V , a nonnegative demand wi is prescribed. Let L be a given real number. For any spanning
tree T of G , let T1, T2, . . . , TKT denote the components of T-{0}. Then the CMST problem is to

Minimize
∑

i j∈T

ci j

subject to

T is a spanning tree of G
∑

i∈Tj

wi ≤ L , j = 1, 2, . . . , KT (20.3)

For any subgraph H of G , we sometimes let V(H) denote its node set and let E (H) denote its edge set. We
also use the notation i j ∈ H (i ∈ H) to represent (i, j ) ∈ E (H) (i ∈ V(H)) when there is no ambiguity.
It is easy to see that for an optimal spanning tree T , the component Ti must be a minimum spanning tree
of the subgraph of G induced by V(Ti ), i = 1, 2, . . . , KT .

Thus CMST can be viewed as a partition problem where the ground E is the set V of nodes in G , the
feasibility oracle is to verify the condition

∑
i∈S j

wi ≤ L . The cost c(Si ) is the cost of the minimum span-
ning tree Ti of the subgraph of G induced by Si ∪ {0}. Without loss of generality, we assume that node 0 is
a pendant node (node of degree 1) of Ti . Otherwise, we can decompose Ti into a number of subtrees equal
to the degree of node 0, where 0 is a pendant node in each such subtree, yielding an alternative feasible
solution.

The algorithm multiexchange can be used to find a heuristic solution for CMST. For details on im-
plementation aspects of this heuristic specifically for the CMST problem, we refer to Ref. [6]. Instead
of using the simple node exchange, Ahuja et al. [6,7] also considered subtree exchange neighborhoods
and composite neighborhoods [6]. The node exchange worked well for problems where the node weights
are identical (homogeneous problems). Subtree exchanges worked well for problems with different node
weights (heterogeneous problems). The composite neighborhood worked well for both class of prob-
lems and produced improved solutions for several benchmark problems. Table 20.1 (taken from Ref. [6])
summarizes these results.

20.3 Extended Neighborhoods and Domination Analysis

Let us now look at some theoretical issues related to performance guarantees of VLSN search algorithms.
Glover and Punnen [47] introduced the concept of domination ratio to assess the performance guarantee
of a heuristic algorithm. Let α be a heuristic algorithm for a COP P . Then the domination ratio of α,
denoted by dom(α), is

Inf
(F , f )

|{S ∈ F : f (S) ≥ f (Sα)}|/|F |

where Sα is the solution obtained by the heuristic α on instance (F, f ). Note that 0 < dom(α) ≤ 1 and
dom(α) = 1 if and only if α guarantees an optimal solution.

Identifying tight deterministic bounds on domination ratio could be difficult for many algorithms. For
various recent works on domination analysis of algorithms we refer to Refs.[16,30,48,49]. For VLSN search
algorithms for a COP,

Inf
(F , f )

{ |N(S)|
|F | : S ∈ F

}

gives a trivial lower bound on the domination ratio, provided we can find an improving solution in N(S)
if exists.
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TABLE 20.1 Evaluation of the Composite Neighborhood Algorithm

Number of Number of Best Available Composite Neighborhood
Problem ID Nodes Arcs Capacity Solution Solution

tc80-3 81 3,240 10 880 878
CM50-3 50 1,225 400 735 732
CM50-4 50 1,225 400 567 564
CM50-5 50 1,225 400 612 611
CM50-2 50 1,225 800 515 513

CM100-1 100 4,950 200 520 516
CM100-2 100 4,950 200 602 596
CM100-3 100 4,950 200 549 541
CM100-4 100 4,950 200 444 437
CM100-5 100 4,950 200 427 425
CM100-1 100 4,950 400 253 252
CM100-5 100 4,950 400 224 223
CM200-1 200 19,900 200 1037 1017
CM200-2 200 19,900 200 1230 1221
CM200-3 200 19,900 200 1367 1365
CM200-4 200 19,900 200 942 927
CM200-5 200 19,900 200 981 965
CM200-1 200 19,900 400 399 397
CM200-2 200 19,900 400 486 478
CM200-3 200 19,900 400 566 560
CM200-4 200 19,900 400 397 392
CM200-5 200 19,900 400 425 420
CM200-1 200 19,900 800 256 254
CM200-3 200 19,900 800 362 361
CM200-4 200 19,900 800 276 275
CM200-5 200 19,900 800 293 292
CM200-2 200 19,900 400 486 478
CM200-3 200 19,900 400 566 560
CM200-4 200 19,900 400 397 392
CM200-5 200 19,900 400 425 420
CM200-1 200 19,900 800 256 254
CM200-3 200 19,900 800 362 361
CM200-4 200 19,900 800 276 275
CM200-5 200 19,900 800 293 292

We next introduce the concept of extended neighborhoods, which can be used to find improved dom-
ination ratios for a VLSN algorithm. The value of extended neighborhoods goes beyond establishing
improved domination ratios. It generalizes the concept of exact neighborhoods and provides some the-
oretical insights on why the VLSN search algorithms work well in practice. We will address this aspect
later in this section. Let us first consider some basic definitions and properties. For details of the theory of
extended neighborhoods, we refer to Ref. [50].

Consider an instance I = (F, f ) of a COP and let N be a neighborhood function defined on it. Let
L N

I denote the collection of all locally optimal solutions of I with respect to N. Two neighborhoods N1

and N2 are said to be LO-equivalent for a COP P if and only if L N1

I = L N2

I for all instances I of P. A
neighborhood function N∗ of P is called an extended neighborhood of N if

(i) N∗ and N are LO-equivalent, and
(ii) for every neighborhood function N0that is LO-equivalent to N, N0(S) ⊆ N∗(S) for all S ∈ F and

for all I =(F, f ) of P.

Equivalently, N∗ is the largest neighborhood, that is, LO-equivalent to N for P. If N∗ = F, then N is an
exact neighborhood [42]. (A neighborhood is exact if every local optimum is a global optimum.) In this
way, the concept of an extended neighborhood generalizes the concept of exact neighborhoods.
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Note that the domination ratio of any local search algorithm using the neighborhood N will be at least

Inf
(F , f )

{ |N∗(S)|
|F | : S ∈ F

}

The well-known 2-opt neighborhood for the TSP on n nodes contains n(n − 1)/2 elements, while the
extended neighborhood of 2-opt for the TSP contains at least (n/2)! elements [50].

A COP is said to have linear cost if f (x)= cx, where c = (c1, c2, . . . , cm) is the vector element costs and x
the incidence vector representing a feasible solution. Note that each feasible solution S can be represented
by its incidence vector x = (x1, x2, . . . , xm) where

xi =
{

1 if i ∈ S
0 if i /∈ S

We denote by Fx the collection of all incidence vectors of elements of F. When x is the incidence vector
of S, we sometimes denote N(S) by N(x). Let NF (x)={x1, x2, . . . , x K } for some K . Then for i = 1 to
K , let vi = xi − x . We refer to vi as a neighborhood vector and let V N

F (x) be an m × K matrix whose i th
column is vi . V N

F (x) is called the matrix of neighborhood vectors at x . The following theorem characterizes
extended neighborhoods for COPs with a linear cost function.

Theorem 20.4 (Orlin and Sharma [50])

Let P be a COP with a linear cost function and let N be an associated neighborhood function. Let F

be the collection of feasible solutions of any instance and let V N
F (x) be the matrix of neighborhood vec-

tors. Then the extended neighborhood N∗
F of NF is given by N∗

F (x) = {
x̂ ∈ Fx : x̂ = x + V N

F (x)λ;
λ ≥ 0 and λ ∈ �|NF (x)|}.

To illustrate the characterization of extended neighborhood in Theorem 20.4, let us construct the
extended neighborhood of the 2-opt neighborhood for the TSP. In the definition of COP with a linear cost
function, if E is selected as the edge set of a complete graph G and if F is selected as the family of all tours
in G , we get an instance of the TSP. Let the number of nodes in G be n. A tour T in G is represented as
a sequence 〈i1, i2, . . . , in, i1〉, where (ik , ik+1) ∈ T for k = 1, 2, . . . , n − 1 and (in, i1) ∈ T. Given a tour
T = 〈i1, i2, . . . , in, i1〉, a 2-opt move can be represented as a set {k, l}, where ik and il are nonadjacent in T.

The move {k, l} represents the operations of removing edges (ik , ik+1), (il , il+1) from T and adding edges
(ik , il ), (ik+1, il+1)to T-{(ik , ik+1), (il , il+1)}, where the index n + 1 = 1. The 2-opt neighborhood of a
tour T denoted by 2-opt(T) is the collection of all tours in G that can be obtained by a 2-opt move from
T . LetT k,l be the tour obtained from T by the 2-opt move {k, l}. The neighborhood vector corresponding
to this move, denoted by v

k,l
T is given by

v
k,l
T (e) =






−1 if e = (ik , ik+1) or e = (il , il+1)
1 if e = (ik , il ) or e = (ik+1, il+1)
0 otherwise

If x is the incidence vector of T , then x + v
k,l
T is the incidence vector of T k,l . Thus by Theorem 20.4,

we have the extended neighborhood of 2-opt(T), denoted by 2-opt∗(T) is given by




x ′ : x ′ is a tour in G and x ′ = x +

∑

{k,l}∈2-opt

λkl v
k,l
T , λkl ≥ 0





(20.4)

Theorem 20.5 (Orlin and Sharma [50])

(i) |2-opt∗(T)| ≥(�n/2� − 3)!(n − 3). (ii) Finding the best tour in 2-opt∗(T) is NP-hard.

By definition, 2-opt and 2-opt∗ have the same set of local optima, but the size of 2-opt∗(T) is expo-
nentially larger than the size of 2-opt. We now show that using the same starting solution, a local search
with respect to 2-opt∗ can terminate at a solution that cannot be reached by a local search with respect to
2-opt.
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FIGURE 20.3 The graph constructed in the proof of Theorem 20.6 and tour T∗.

Theorem 20.6 (Orlin and Sharma [50])

Let T be any tour with at least 11 nodes. There is a cost vector c and a tour T∗ such that T∗ is not reachable
from T by local search with respect to 2-opt, butT∗ is reachable from Tby a local search with respect to 2-opt∗.

Proof
Without loss of generality assume that T = 〈1, 2, . . . , n, 1〉. Let all edges of T have cost 0. Introduce edges
(1, 5), (2, 6), (3, 8), and (4, 9) with cost −2 and introduce edges (6, 10) and (7, 11) with cost 1. Complete
the graph by introducing the remaining edges with a large cost (see Figure 20.3).

It can be verified that T∗ = 〈1, 5, 4, 9, 10, 6, 2, 3, 8, 7, 11, 12, 13, . . . , n, 1〉 is an optimal tour with cost
−6 . Since T∗ = T + v

1,5
T + v

6,10
T + v

3,8
T , by Theorem 20.4, T∗ ∈ 2-opt∗. T∗, however, is not reachable

from T using improving exchanges since the moves {1,5} and {3, 8} lead to local optima different from
T∗ and {6, 8} is not an improving move. This completes the proof.

Thus, local search with respect to extended neighborhoods fundamentally offers more possibilities than
does local search using the original neighborhood. This observation further strengthens our confidence
in using VLSN search algorithms to obtain good quality solutions.

20.4 Approximate Local Search

One of the most important theoretical questions in VLSN search (and local search, in general) is to
find a good bound on the number of improvement steps required to reach termination. In addressing
this important theoretical question, Johnson et al. [5] introduced the complexity class PLS [52]. A COP
together with a neighborhood function belongs to class PLS if

(i) its instances are polynomial-time recognizable and an initial feasible solution is efficiently
computable;

(ii) the feasibility of a proposed solution can be checked in polynomial time; and
(iii) the local optimality of a solution with respect to the neighborhood under consideration can be

verified in polynomial time, and if it is not locally optimal, an improving solution can be obtained
in polynomial time.

The class PLS has its own reduction scheme which leads to the class of PLS-complete problems. If a
local optimum can be found in polynomial time for one of the PLS-complete problems, then a local
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optimum for every other PLS-complete problem can be found in polynomial time. For example, the TSP
with Lin–Kernighan neighborhood [41], graph partitioning with swap neighborhood, and MAX CUT
with flip neighborhood are all PLS-complete [3]. It is an outstanding open question whether there is a
polynomial-time algorithm for finding a locally optimal solution for a PLS-complete problem.

In view of this open question, it is reasonable to ask whether it is possible to efficiently compute a
solution “close” to a local optimum for a PLS-complete problem. This question is equally relevant for
problems not in the class PLS, where the neighborhoods are searched by approximation algorithms. In
this case it is interesting to see how close the solution produced is to a locally optimal solution.

A feasible solution S to an instance of a COP with neighborhood function N is said to be an ε-local
optimum [46] if

f (S∗) − f (S)

f (S)
≤ ε for all S ∈ N(S)

where ε > 0. Computing an ε-local optimum is relatively easy [46] for problems where the cardinality of
N(S) is small (i.e., polynomial) for all S. Let S be a current solution and if no solution S∗ exists in N(S)
such that f (S∗) < f (S)/(1 + ε) then S is an ε-local optimum. If such an S∗ exists, then move to it and
continue the search. It can be verified that the process will terminate in polynomial time (for fixed ε and
integer cost function) and the resulting solution will be an ε-local optimum. This scheme is not applicable
in many VLSN search algorithms where the neighborhood N(S) is explored using heuristics.

We consider COPs with objective function f to be of the form f (S) = ∑
e∈S ce . If there is a polynomial-

time algorithm for computing an improving solution in a neighborhood, then there is a polynomial-time
algorithm for computing an ε-local optimum. This result was originally obtained by Orlin et al. [46].

The algorithm to compute an ε-local optimum starts with a feasible solution S0. Then the element costs
ce for e ∈ E are modified using a prescribed scaling procedure to generate a modified instance. Using
local search on this modified problem, we look for a solution with an objective function value (with
respect to the original cost) that is half of S0. If no such solution is found, we are at a local optimum
for the modified problem and output its solution. Otherwise we replace S0 by the solution of cost less
than half and the algorithm is repeated. A formal description of the algorithm is given below. We assume
that a local augmentation procedure IMPROVEN is available, which with input of a neighborhood N(S)
and a cost function f computes an improved solution or declares that no improved solution exists
in N(S).

Algorithm ε-local search

Input: Objective function f : 2E → ℵ; subroutine IMPROVEN ; initial feasible solution S0 ∈ F ;
accuracy ε > 0.

Output: Solution Sε ∈ F that is an ε-local optimum with respect to N and f.
Step 1: i := 0

Step 2: K := f (Si ), q := K ε
2m(1+ε) , and c ′

e :=
⌈

ce
q

⌉
q for e ∈ E ;

Step 3: k := 0 and Si,k := Si

Step 4: repeat
Call IMPROVEN(Si,k , f ′);
{comment: f ′(S) = ∑

e∈S
c ′

e}

if the answer is “NO”, then
Let Si,k+1 ∈ N(Si,k) such that c ′( Si,k+1)< c ′( Si,k); set k := k + 1;

else Sε := Si,k ; stop
until c(Si,k) ≤ K /2;

Step 5: Si+1:= Si,k , set i := i + 1 and goto step 2.

Theorem 20.7 (Orlin et al. [46])

The ε-local search algorithm produces an ε-local optimum.
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Proof
Let Sε be the solution produced by the algorithm, and let S be an arbitrary solution in the neighborhood
N(Sε). Let K and q denote the corresponding values from the last execution of step 2 of the algorithm.
Note that

f (Sε) =
∑

e∈Sε

ce ≤
∑

e∈Sε

⌈
ce

q

⌉

q ≤
∑

e∈S

⌈
ce

q

⌉

q ≤
∑

e∈S

q

(⌈
ce

q

⌉

+ 1

)

≤
∑

e∈S

ce + mq = f (S) + mq

where m = |E |. Here, the second inequality follows from the fact that Sε is locally optimal with respect
to f ′. Together with f (Sε) ≥ K /2, we have

f (Sε) − f (S)

f (S)
≤ mq

f (S)
≤ mq

f (Sε) − mq
≤ 2mq

K − 2mq
= ε

This completes the proof.

We now analyze the complexity of ε-local search algorithm as given in Ref. [46]. In each improving
move within the local search in step 4 of the algorithm, the objective function value (with respect to f ′) is
decreased by at least q units. Thus, the number of calls to IMPROVEN between two consecutive iterations
of step 2 is O(m(1 + ε)/ε) = O(m/ε). Step 2 is executed at most log f (S0) times, where S0 is the starting
solution. Thus the total number of times neighborhoods searched is O(mε−1 log f (S0)). Thus, whenever
IMPROVEN is a polynomial algorithm, ε-local search computes an ε-local optimum in polynomial time
for fixed ε.

A strongly polynomial bound on the number of iterations was also proved in Ref. [46]. The proof makes
use of the following lemma.

Lemma 20.8 (Radzik [51])

Let d = (d1, . . . , dm) be a real vector and let y1, . . . , yp be vectors on {0, 1}m. If for all i = 1, . . . ,
p − 1, 0 ≤ d yi+1 ≤ 1

2 d yi then p = O(m log m).

After each execution of step 2, K is reduced at least by half. Further, K is a linear combination of ce

for e ∈ E with coefficients 0 or 1. Lemma 20.8 implies that step 2 of the ε-local search algorithm can be
executed at most O(m log m) times. Thus IMPROVEN at step 4 is called at most O(ε−1m2log m) times.
Let ζ(m, log cmax) be the complexity of IMPROVEN, ξ(n) be the time needed to obtain a feasible starting
solution, and K 0 = f (S0), where cmax = max{ce : e ∈ E }. Thus we have the following complexity result.

Theorem 20.9 (Orlin et al. [46])

The ε-local search algorithm correctly identifies an ε-locally optimal solution of an instance of a COP in
O(ξ(n) + ζ(n, log cmax)nε−1min{n log n, log K0}) time.

If the neighborhood N is exact, then ε-local search produces an ε-optimal solution [46]. Suppose that the
neighborhood N is searched approximately. That is, IMPROVEN detects an improved solution or declares
that the current solution is δ-locally optimal. Even in this case an ε-local optimum can be identified in
(strongly) polynomial time for any fixed ε.

20.5 Concluding Remarks

In this chapter we have discussed techniques for developing VLSN search algorithms. Empirical and
theoretical indicators are provided to substantiate our belief that VLSN search algorithms are powerful
tools for obtaining high-quality solutions for hard problems in reasonable amount of computational time.
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21.1 Introduction: The Role of the User in Heuristics

Most state-of-the-art heuristics are characterized by a certain number of choices and free parameters,
whose appropriate setting is a subject that raises issues of research methodology [1–3].

In some cases, these parameters are tuned through a feedback loop that includes the user as a crucial
learning component: depending on preliminary algorithm tests some parameter values are changed by
the user, and different options are tested until acceptable results are obtained. Therefore, the quality of
results is not automatically transferred to different instances and the feedback loop can require a lengthy
“trial-and-error” process every time the algorithm has to be tuned for a new application.

Parameter tuning is therefore a crucial issue both in the scientific development and in the practical use
of heuristics. In some cases the role of the user as an intelligent (learning) part makes the reproducibility
of heuristic results difficult and, as a consequence, the competitiveness of alternative techniques depends
in a crucial way on the user’s capabilities.

Reactive Search advocates the use of simple subsymbolic machine learning to automate the parameter
tuning process and make it an integral (and fully documented) part of the algorithm.

If learning is performed online, task-dependent and local properties of the configuration space can be
used by the algorithm to determine the appropriate balance between diversification (looking for better
solutions in other zones of the configuration space) and intensification (exploring more intensively a small
but promising part of the configuration space). In this way a single algorithm maintains the flexibility to deal
with related problems through an internal feedback loop that considers the previous history of the search.

In the following, we shall call reaction the act of modifying some algorithm parameters in response
to the search algorithm’s behavior during its execution, rather than between runs. Therefore, a reactive

21-1
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heuristic is a technique with the ability of tuning some important parameters during execution by means
of a machine learning mechanism.

It is important to notice that such heuristics are intrinsically history-dependent; thus, the practical
success of this approach in some cases raises the need of a sounder theoretical foundation of non-Markovian
search techniques.

21.1.1 Machine Learning for Automation and Full Documentation

Parameter tuning is a typical “learning” process where experiments are designed in a focused way, with
the support of statistical estimation (parameter identification) tools.

Because of its familiarity with algorithms, the Computer Science (CS) community masters a very
powerful tool for describing processes so that they can be reproduced even by a (mechanical) computer.
In particular, the Machine Learning community, with significant influx from Statistics, developed in the
last decades has a rich variety of “design principles” that can be used to develop machine learning methods
and algorithms.

It is therefore appropriate to consider whether some of these design principles can be profitably used in
the area of parameter tuning for heuristics. The long-term goal is that of completely eliminating the human
intervention in the tuning process. This does not imply higher unemployment rates in the CS community,
on the contrary, the researcher is now loaded with a heavier task: the algorithm developer must aim at
transferring his expertise into the algorithm itself, a task that requires the exhaustive description of the
tuning phase in the algorithm.

Let us note that the algorithm “complexity” will increase as a result of the process, but the price is worth
paying if the two following objectives are reached:

Complete and unambiguous documentation. The algorithm (and the research paper based on the algo-
rithm) becomes self-contained and its quality can be judged independently from the designer or specific
user. This requirement is particularly important from the scientific point of view, where objective evalua-
tions are crucial. The recent introduction of software archives (in some cases related to scientific journals)
further simplifies the test and simple reuse of heuristic algorithms.

Automation. The time-consuming tuning phase is now substituted by an automated process. Let us note
that only the final user will typically benefit from an automated tuning process. On the contrary, the
algorithm designer faces a longer and harder development phase, with a possible preliminary phase of
exploratory tests, followed by the above-described exhaustive documentation of the tuning process when
the algorithm is presented to the scientific community.

Although formal learning frameworks do exist in the CS community, notably the Probably Approxi-
mately Correct (PAC) learning model [4,5], one should not reach the conclusion that these models can be
simply adapted to the new context. On the contrary, the theoretical framework of computational learning
theory and machine learning is very different from that of heuristics. For example, the definition of a
“quality” function against which the learning algorithm has to be judged is complex. In addition, the
abundance of negative results in computational learning should warn about excessive hopes.

Nonetheless, as a first step, some of the principles and methodologies used in machine learning can be
used in an analogic fashion to develop “reactive heuristics.”

21.1.2 Asymptotic Results Are Irrelevant for Optimization

Scientists, and also final users, might feel uneasy working with non-Markovian techniques because they
do not benefit from the deep and wide theoretical background that covers Markovian algorithms. How-
ever, asymptotic convergence results of many Markovian search algorithms, such as Simulated Annealing
(SA) [6], are often irrelevant for their application to optimization. As an example, a comparison of SA and
Reactive Search has been presented in Refs. [7,8].

In any finite-time approximation, one must resort to approximations of the asymptotic convergence.
In SA, for instance, the “speed of convergence” to the stationary distribution is determined by the second
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largest eigenvalue of the transition matrix. The number of transitions is at least quadratic in the size of the
solution space [9], which is typically exponential in n.

When using a time-varying temperature parameter, it can happen (e.g., the Traveling Salesman Problem
(TSP)) that the complete enumeration of all solutions would take less time than approximating an optimal
solution with arbitrary precision by SA [9].

In addition, repeated local search [10] and even random search [11] have better asymptotic results.
According to Ref. [9] “approximating the asymptotic behavior of SA arbitrarily closely requires a number
of transitions that for most problems is typically larger than the size of the solution space [ . . . ] Thus, the SA
algorithm is clearly unsuited for solving combinatorial optimization problems to optimality.” Of course,
practical utility of SA has been shown in many applications, in particular with fast cooling schedules,
but then the asymptotic results are not directly applicable. The optimal finite-length annealing schedules
obtained on specific simple problems do not always correspond to those intuitively expected from the
limiting theorems [12].

21.2 Reactive Search Applied to Tabu Search

In this section, we illustrate the potential of Reactive Search by installing a reaction mechanism on the
prohibition period T of a Tabu Search (TS) [13] algorithm. For the complete description of TS, the reader
is referred to Chapter 23 of this handbook.

21.2.1 Prohibition-Based Diversification: Tabu Search

The TS metaheuristic is based on the use of prohibition-based techniques and “intelligent” schemes as a
complement to basic heuristic algorithms like local search, with the purpose of guiding the basic heuristic
beyond local optimality. It is difficult to assign a precise date of origin to these principles. For example, ideas
similar to those proposed in TS can be found in the denial strategy of Ref. [14] (once common features
are detected in many suboptimal solutions, they are forbidden) or in the opposite reduction strategy of
Ref. [15] (in an application to the TSP, all edges that are common to a set of local optima are fixed). In very
different contexts, prohibition-like strategies can be found in cutting planes algorithms for solving integer
problems through their Linear Programming relaxation (inequalities that cut off previously obtained
fractional solutions are generated) and in branch and bound algorithms (subtrees are not considered if
the leaves cannot correspond to better solutions). For many examples of such techniques, see Ref. [16].

The renaissance and full blossoming of “intelligent prohibition-based heuristics” starting from the late
1980s is greatly due to the role of F. Glover in the proposal and diffusion of a rich variety of metaheuristic
tools [13,17], but see also Ref. [18] for an independent seminal paper. A growing number of TS-based
algorithms has been developed in the last years and applied with success to a wide selection of problems [19].
It is therefore difficult, if not impossible, to characterize a “canonical form” of TS, and classifications tend
to be short-lived. Nonetheless, at least two aspects characterize many versions of TS: the fact that TS is
used to complement local (neighborhood) search, and the fact that the main modifications to local search
are obtained through the prohibition of selected moves available at the current point. TS acts to continue
the search beyond the first local minimizer without wasting the work already executed, as it is the case if
a new run of local search is started from a new random initial point, and to enforce appropriate amounts
of diversification to avoid that the search trajectory remains confined near a given local minimizer.

In our opinion, the main competitive advantage of TS with respect to alternative heuristics based on
local search like SA [6] lies in the intelligent use of the past history of the search to influence its future steps.

For a generic search space X , let X(t) ∈ X be the current configuration and N(X(t)) ⊆ X its neigh-
borhood. In prohibition-based search (TS) some of the neighbors can be prohibited, and let the subset
NA(X(t)) ⊆ N(X(t)) contain the allowed ones. The general way of generating the search trajectory that
we consider is given by

X(t+1) = BEST-NEIGHBOR
(

NA
(

X(t)
))

(21.1)

NA(X(t+1)) = ALLOW
(

N
(

X(t+1)
)

, X(0), . . . , X(t+1)
)

(21.2)

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C021 March 20, 2007 13:22

21-4 Handbook of Approximation Algorithms and Metaheuristics

The set-valued function ALLOW selects a subset of N
(

X(t+1)
)

in a manner that depends on the search
trajectory X(0), . . . , X(t+1).

This general framework allows several specializations. In many cases, the dependence of ALLOW on the
entire search trajectory introduces too many constraints on the next move, causing the search path to
avoid an otherwise promising area, or even prohibiting all neighbors. It is therefore advisable to reduce the
amount of constraints by limiting the ALLOW function to the latest T configurations (where the parameter
T is often called the prohibition period), so that Eq. (21.2) becomes

NA
(

X(t+1)
) = ALLOW

(
N

(
X(t+1)

)
, X(t ′), . . . , X(t+1)

)
, t ′ = max{0, t − T + 1} (21.3)

A practical example for Eq. (21.3) is a function ALLOW that forbids all moves that have been performed
within the last T iterations. For instance, let us assume that the feasible search space X is the set of
binary strings with a given length L : X = {0, 1}L (this case shall be considered also in the example of
Section 21.4). In this case, a practical neighborhood of configuration X(t) is given by the L configurations
that differ from X(t) by a single entry. In such a case, a simple prohibition scheme may allow a move if and
only if it changes an entry which has remained fixed for the previous T iterations. In other words, after an
entry has been changed, it shall remain frozen for the following T steps.

It is apparent that the choice of the right prohibition period T is crucial to balance the amount of
intensification (small T) and diversification (large T).

21.2.2 Reaction on Tabu Search Parameters

Some problems arising in TS that have been investigated in Reactive Search papers are

1. the determination of an appropriate prohibition T for the different tasks,
2. the robustness of the technique for a wide range of different problems, and
3. the adoption of minimal computational complexity algorithms for using the search history.

The three issues are briefly discussed in the following sections, together with the reaction-based methods
proposed to deal with them.

21.2.2.1 Self-Adjusted Prohibition Period

In Reactive Tabu Search (RTS), i.e., Reactive Search applied to TS, the prohibition period T is determined
through feedback (i.e., reactive) mechanisms during the search. At the beginning, we let T = 1 (the inverse
of a given move is prohibited only at the next step). During the search, T increases only when there is evidence
that diversification is needed, and it decreases when this evidence disappears. In detail: the evidence that
diversification is needed is signaled by the repetition of previously visited configurations. For this purpose,
all configurations found during the search are stored in memory. After a move is executed, the algorithm
checks whether the current configuration has already been found and reacts accordingly (T increases if a
configuration is repeated, T decreases if no repetitions occurred during a sufficiently long period).

By means of this self-adjustment algorithm, T is not fixed during the search, but it is determined
in a dynamic way depending on the local structure of the search space. This is particularly relevant for
“inhomogeneous” tasks, where the statistical properties of the search space vary widely in the different
regions (in these cases a fixed T would be inappropriate).

An example of the behavior of T during the search is illustrated in Figure 21.1, for a Quadratic Assignment
Problem task [20]. T increases in an exponential way when repetitions are encountered, it decreases in a
gradual manner when repetitions disappear.

21.2.2.2 The Escape Mechanism

The basic tabu mechanism based on prohibitions is not sufficient to avoid long cycles. As an example,
when operating on binary strings of length L , the prohibition T must be less than the length of the string,
otherwise all moves are eventually prohibited; therefore, cycles longer than 2 × L are still possible. In
addition, even if “limit cycles” (endless cyclic repetitions of a given set of configurations) are avoided, the
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FIGURE 21.1 Dynamics of the prohibition period T on a QAP task.

first reactive mechanism is not sufficient to guarantee that the search trajectory is not confined in a limited
region of the search space. A “chaotic trapping” of the trajectory in a limited portion of the search space is
still possible (the analogy is with chaotic attractors of dynamical systems, where the trajectory is confined
in a limited portion of the space, although a limit cycle is not present).

For both reasons, to increase the robustness of the algorithm a second more radical diversification step
(escape) is needed. The escape phase is triggered when too many configurations are repeated too often [20].
A simple escape consists of a number of random steps executed starting from the current configuration
(possibly with a bias toward steps that bring the trajectory away from the current search region).

With a stochastic escape, one can easily obtain the asymptotic convergence of RTS: in fact, in a finite
search space escape is activated infinitely often; if the probability for a point to be reached after escaping
is different from zero for all points, eventually all points will be visited—clearly including the globally
optimal points. The detailed investigation of the asymptotic properties and finite-time effects of different
escape routines to enforce long-term diversification is an open research area.

21.2.3 Implementation of History-Sensitive Techniques

The efficiency and competitiveness of history-based reaction mechanisms strongly depend on the detailed
data structures used in the algorithms and on the consequent realization of the needed operations. Different
data structures can possess widely different computational complexities so that attention should be spent
on this subject before choosing a version of Reactive Search that is efficient on a particular problem.

Reactive-TS can be implemented through a simple list of visited configurations, or with more efficient
hashing [21,20] or radix tree [20] techniques. At a finer level of detail, hashing can be realized in different
ways. If the entire configuration is stored (see also Figure 21.2) an exact answer is obtained from the memory
lookup operation (a repetition is reported if and only if the configuration has been visited before). On
the contrary, if a “compressed” item is stored, like a hashed value of a limited length derived from the
configuration, the answer will have a limited probability of false positives (a repetition can be reported even
if the configuration is new, because the compressed items are equal by chance—an event called “collision”).
Experimentally, small collision probabilities do not have statistically significant effects on the use of
Reactive-TS as a heuristic tool, and hashing versions that need only a few bytes per iteration can be used.

21.2.3.1 Fast Algorithms for Using the Search History

The storage and access of the past events is executed through the well-known hashing or radix-tree
techniques in a CPU time that is approximately constant with respect to the number of iterations. Therefore,
the overhead caused by the use of the history is negligible for tasks requiring a nontrivial number of
operations to evaluate the cost function in the neighborhood.
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FIGURE 21.2 Open hashing scheme: items (configuration or compressed hashed value) are stored in “buckets.” The
index of the bucket array is calculated from the configuration.

An example of a memory configuration for the hashing scheme is shown in Figure 21.2. From the
current configuration φ one obtains an index into a “bucket array.” The items (configuration or hashed
value or derived quantity, last time of visit, and total number of repetitions) are then stored in linked
lists starting from the indexed array entry. Both storage and retrieval require an approximately constant
amount of time if (i) the number of stored items is not much larger than the size of the bucket array
and (ii) the hashing function scatters the items with a uniform probability over the different array indices.
More precisely, given a hash table with m slots that stores n elements, a load factor α = n/m is defined. If
collisions are resolved by chaining searches take O(1 + α) time, on average.

21.2.3.2 Persistent Dynamic Sets

Persistent dynamic sets are proposed to support memory-usage operations in history-sensitive heuristics
in Refs. [22,23].

Ordinary data structures are ephemeral [24] because when a change is executed the previous version is
destroyed. Now, in many contexts like computational geometry, editing, implementation of very high-level
programming languages, and, last but not least, the context of history-based heuristics, multiple versions
of a data structure must be maintained and accessed. In particular, in heuristics one is interested in partially
persistent structures, where all versions can be accessed but only the newest version (the live nodes) can be
modified. A review of ad hoc techniques for obtaining persistent data structures is given in Ref. [24] that
is dedicated to a systematic study of persistence, continuing the previous work of Ref. [25].

Hashing Combined with Persistent Red-Black Trees
The basic observation is that, because TS is based on local search, configuration X(t+1) differs from configu-
ration X(t) only because of the addition or subtraction of a single index (a single bit is changed in the string).
Let us define the operations INSERT(i) and DELETE(i) for inserting and deleting a given index i from the set.
As cited above, configuration X can be considered as a set of indices in [1, L ] with a possible realization as a
balanced red-black tree (see Refs. [26,27] for two seminal papers about red-black trees). The binary string
can be immediately obtained from the tree by visiting it in symmetric order, in time O(L ). INSERT(i) and
DELETE(i) require O(log L ) time, while at most a single node of the tree is allocated or deallocated at each
iteration. Rebalancing the tree after insertion or deletion can be done in O(1) rotations and O(log L ) color
changes [28]. In addition, the amortized number of color changes per update is O(1) (see, e.g., Ref. [29]).
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FIGURE 21.3 How to obtain (a) a partially persistent red-black tree from an ephemeral one, containing indices 3,
4, 6, 8, 9 at t = 0, with subsequent insertion of 7 and 5; a persistent red-black tree with path copying, with thick lines
marking the copied part; (c) a persistent red-black tree with limited node copying, with broken lines denoting the
“extra” pointers with time stamp.

Now, the Reverse Elimination Method [13,17,30] (a technique for the storage and analysis of the ordered
list of all moves performed throughout the search) is closely reminiscent of a method studied in Ref. [25]
to obtain partial persistence, in which the entire update sequence is stored and the desired version is rebuilt
from scratch each time an access is performed, while a systematic study of techniques with better space–
time complexities is present in Refs. [24,31]. Let us now summarize from Ref. [31] how a partially persistent
red-black tree can be realized. An example of the realizations that we consider is presented in Figure 21.3.

The trivial way is that of keeping in memory all copies of the ephemeral tree (see Figure 21.3(a)), each
copy requiring O(L ) space. A smarter realization is based on path copying, independently proposed by
many researchers (see Ref. [31] for references). Only the path from the root to the nodes where changes are
made is copied: a set of search trees is created, one per update, having different roots but sharing common
subtrees. The time and space complexities for INSERT(i) and DELETE(i) are now of O(log L ).

The method that we will use is a space-efficient scheme requiring only linear space proposed in Ref. [31].
The approach avoids copying the entire access path each time an update occurs. To this end, each node
contains an additional “extra” pointer (beyond the usual left and right ones) with a time stamp.
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When attempting to add a pointer to a node, if the extra pointer is available, it is used and the time
of the usage is registered. If the extra pointer is already used, the node is copied, setting the initial left
and right pointers of the copy to their latest values. In addition, a pointer to the copy is stored in the last
parent of the copied node. If the parent has already used the extra pointer, the parent, too, is copied. Thus
copying proliferates through successive ancestors until the root is copied or a node with a free extra pointer
is encountered. Searching the data structure at a given time t in the past is easy: after starting from the
appropriate root, if the extra pointer is used the pointer to follow from a node is determined by examining
the time stamp of the extra pointer and following it iff the time stamp is not larger than t. Otherwise, if
the extra pointer is not used, the normal left–right pointers are considered. Note that the pointer direction
(left or right) does not have to be stored: given the search tree property it can be derived by comparing
the indices of the children with that of the node. In addition, colors are needed only for the most recent
(live) version of the tree. In Figure 21.3 null pointers are not shown, colors are correct only for the live
tree (the nodes reachable from the rightmost root), extra pointers are dashed and time-stamped.

The worst-case time complexity of INSERT(i) and DELETE(i) remains of O(log L ), but the important
result derived in Ref. [31] is that the amortized space cost per update operation is O(1). Let us recall that the
total amortized space cost of a sequence of updates is an upper bound on the actual number of nodes created.

Let us now consider the context of history-based heuristics. Contrary to the popular usage of persis-
tent dynamic sets to search past versions at a specified time t, one is interested in checking whether a
configuration has already been encountered in the previous history of the search, at any iteration.

A convenient way of realizing a data structure supporting X-SEARCH(X) is to combine hashing and
partially persistent dynamic sets (see Figure 21.4). From a given configuration X an index into a “bucket
array” is obtained through a hashing function, with a possible incremental evaluation in time O(1).
Collisions are resolved through chaining: starting from each bucket header there is a linked list containing
a pointer to the appropriate root of the persistent red-black tree and satellite data needed by the search
(time of configuration, number of repetitions).

As soon as configuration X(t) is generated by the search dynamics, the corresponding persistent red-
black tree is updated through INSERT(i) or DELETE(i). Let us now describe X-SEARCH(X(t)): the hashing
value is computed from X(t) and the appropriate bucket searched. For each item in the linked list the

repts repts

repts

repts

X (3)

X (2)

X (0) X (1)

 hash(X (0))

 hash(X (1))

 hash(X (2))

 hash(X (3))

...

FIGURE 21.4 Open hashing scheme with persistent sets: a pointer to the appropriate root for configuration X (t) in
the persistent search tree is stored in a linked list at a “bucket.” Items on the list contain satellite data. The index of the
bucket array is calculated from the configuration through a hashing function.
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pointer to the root of the past version of the tree is followed and the old set is compared with X(t). If the
sets are equal, a pointer to the item on the linked list is returned. Otherwise, after the entire list has been
scanned with no success, a null pointer is returned.

In the last case a new item is linked in the appropriate bucket with a pointer to the root of the live
version of the tree (X-INSERT(X, t)). Otherwise, the last visit time t is updated and the repetition counter
is incremented.

After collecting the above cited complexity results, and assuming that the bucket array size is equal to
the maximum number of iterations executed in the entire search, it is straightforward to conclude that
each iteration of reactive-TS requires O(L ) average-case time and O(1) amortized space for storing and
retrieving the past configurations and for establishing prohibitions.

In fact, both the hash table and the persistent red-black tree require O(1) space (amortized for the tree).
The worst-case time complexity per iteration required to update the current X(t) is O(log L ), the average-
case time for searching and updating the hashing table is O(1) (in detail, searches take time O(1 + α), α

being the load factor, in our case upper bounded by 1). The time is therefore dominated by that required to
compare the configuration X(t) with that obtained through X-SEARCH(X(t)), i.e., O(L ) in the worst case.
Because �(L ) time is needed during the neighborhood evaluation to compute the f values, the above
complexity is optimal for the considered application to history-based heuristics.

21.3 Wanted: A Theory of History-Sensitive Heuristics

Randomized Markovian local search algorithms have enjoyed a long period of scientific and applicative
excitement, in particular see the flourishing literature on SA [6,32]. SA generates a Markov chain: the
successor of the current point is chosen stochastically, with a probability that does not depend on the
previous history (standard SA does not learn). A consequence is that the “trapping” of the search trajectory
in an attractor cannot be avoided: the system has no memory and cannot detect that the search is localized.
Incidentally, the often cited asymptotic convergence results of SA are unfortunately irrelevant for the
application of SA to optimization. In fact, repeated local search [10], and even random search [11] has
better asymptotic results.

History-sensitive techniques in local search contain an internal feedback loop that uses the information
derived from the past history to influence the future behavior. In the cited prohibition-based diversification
techniques one can, for example, decide to increase the diversification when configurations are encountered
again along the search trajectory [20,33]. It is of interest that state-of-the-art versions of SA incorporate
“temporal memory” [34]. The non-Markovian property is a mixed blessing: it permits heuristic results
that are much better in many cases, but makes the theoretical analysis of the algorithm difficult.

Therefore, one has an unfortunate chasm: on one side there is an abundance of mathematical results
derived from the theory of Markov processes, but their relevance to optimization is dubious, on the other
there is mounting evidence that simple machine learning or history-sensitive schemes can augment the
performance of heuristics in a significant way, but the theoretical instruments to analyze history-sensitive
heuristics are lacking.

The practical success of history-sensitive techniques should motivate new search streams in Mathematics
and Computer Science for their theoretical foundation.

21.4 Applications of Reactive Search and the Maximum
Clique Example

Reactive Search principles have been used for example for the problem of Quadratic Assignment [20],
training neural nets and control problems [35], vehicle-routing problems [36–38], structural acoustic
control problems [39], special-purpose VLSI realizations [40], graph partitioning [41], electric power
distribution [42], maximum satisfiability [43], constraint satisfaction [44,45], optimization of continuous
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functions [46,47], traffic grooming in optical networks [48], maximum clique [33], real-time dispatch of
trams in storage yards [49], and increasing Internet capacity [50]. Because of space limitation we consider
with some detail only the application to the Maximum Clique (MC) problem.

The MC problem is NP-hard, and strong negative results have been shown about its approximability
[51,52]. In particular, if P �= NP, MC is not approximable within n1/4−ε for any ε > 0, n being the number
of nodes in the graph [53], and it is not approximable within n1−ε for any ε > 0, unless coRP = NP [54].

These theoretical results stimulated a research effort to design efficient heuristics for this problem, and
computational experiments to demonstrate that optimal or close approximate values can be efficiently
obtained for significant families of graphs [55,56].

In particular, a new reactive heuristic (Reactive Local Search (RLS)) is proposed for the MC problem in
Ref. [33]. The present description is a summarized version of the cited paper.

The experimental efficacy and efficiency [33] of RLS is strengthened by an analysis of the complexity
of a single iteration. It is possible to show that the worst-case cost is O(max{n, m}), where n and m are
the number of nodes and edges, respectively. In practice, the cost analysis is pessimistic and the measured
number of operations tends to be a small constant times the average degree of nodes in G , the complement
of the original graph.

21.4.1 Reactive Local Search for Max Clique

The RLS algorithm for the MC problem takes into account the particular neighborhood structure of MC.
This is reflected in the following two facts: a single reactive mechanism is used to determine the prohibition
parameter T , and an explicit restart scheme is added so that all possible configurations will eventually
be visited, even if the search space is not connected by using the basic local search moves. Both building
blocks of RLS use the past history of the search (set of visited configurations) to influence the choice.

The admissible search spaceX is the set of all cliques in a graph G defined over a vertex set V . Let us recall
that a clique is a subset X of V such that all pairs of nodes in X are connected by an edge. The function to be
maximized is the clique size f (X) = |X|, X being the current clique, and the neighborhood M(X) consists
of all cliques that can be obtained from X by adding or dropping a single vertex (add or drop moves).

At a given iteration, the neighborhood set M(X) is partitioned into the set of prohibited neighbors and
the set of allowed ones. As soon as a vertex is moved (added or removed from the current clique), changing
its status is prohibited for the next T iterations; it is allowed otherwise. With a slight abuse of terminology,
the terms allowed and prohibited shall also be applied to vertices.

The top-level description of RLS is shown in Figure 21.5. First (lines 2–5) the relevant variables and
structures are initialized: they are the iteration counter t, the prohibition period T , the time tT of the last

Global variables and data structures
t Time (iteration counter)
tT Time of last period change
S Nodes in V \X adjacent to all nodes

in X

deltaS[j] Nodes in V \S adjacent to all nodes
in X \ {j}

kb Cardinality of best configuration
lastMoved[v] Time of last movement concerning

node v

Local variables

T Prohibition period
tR Time of last restart
X Current configuration
Ib Best configuration
tb Time of best configuration

1. procedure Reactive-Local-Search
2. t ← 0 ; T ← 1 ; tT ← 0 ; tR ← 0
3. X ← ∅ ; Ib ← ∅ ; kb ← 0 ; tb ← 0
4. S ← V ; ∀j ∈ V deltaS[j] ← ∅
5. ∀j ∈ V lastMoved[j] ← −∞
6. repeat
7. T ← History-Reaction (X, T)
8. X ← Best-Neighbor (X)
9. t ← t + 1
10. if |X| > kb

11. Ib ← X ; kb ← |X| ; tb ← t
12. if t - max {tb, tR} > 100 kb

13. tR ← t ; Restart
14. until kb is acceptable
15. or maximum number of iterations reached

FIGURE 21.5 RLS algorithm: pseudocode description.
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change of T , the last restart time tR , the current clique X , the largest clique Ib found so far with its size kb ,
and the iteration tb at which it is found. The set S shall be used by function BEST-NEIGHBOR and contains
the set of eligible nodes to improve the current clique (initially, the current clique is empty, and no node
is prohibited, so all nodes in V are eligible); the role of array deltaS shall be explained in Section 21.4.1.1.
Then the loop (lines 6–15) continues to be executed until a satisfactory solution is found or a limiting
number of iterations is reached.

The function HISTORY-REACTION searches for the current clique X in memory, inserts it if it is a new
one, and adjusts the prohibition T through feedback from the previous history of the search.

Then the best neighbor is selected and the current clique updated (line 8). The iteration counter is
incremented. If a better solution is found, the new solution, its size, and the time of the last improvement
are saved (lines 10–11). A restart is activated after a suitable number of iterations are executed from the
last improvement and from the last restart (lines 12–13).

The prohibition period T is equal to one at the beginning, because in this manner one avoids coming
back to the just abandoned clique. Nonetheless, let us note that RLS behaves exactly as local search in the
first phase, as long as only new vertices are added to the current clique X , and therefore prohibitions do
not have any effect. The difference starts when a maximal clique with respect to set inclusion is reached
and the first vertex is dropped.

21.4.1.1 Choice of the Best Neighbor

The function BEST-NEIGHBOR is described in Figure 21.6. Given a current clique X , let us define S as
the vertex set of possible additions, i.e., the vertices that are adjacent to all nodes of X . Let G(S) be the
subgraph induced by S. Finally, if j ∈ X , deltaS[ j ] is the number of vertices adjacent to all nodes of X
but j . A vertex v is prohibited at iteration t iff it satisfies lastMoved[v] ≥ (t − T (t)), where lastMoved[v]
is the last iteration at which it has been added to or dropped from the current clique. Vector lastMoved is
used to determine the allowed vertices (see lines 3 and 11).

The best neighbor is chosen in stages with this overall scheme: first an allowed vertex that can be added
to the current clique is searched for (lines 3–7). If none is found, an allowed vertex to drop is searched for
(lines 10–13). Finally, if no allowed moves are available, a random vertex in X is dropped if X is not empty
(line 15), a random vertex in V is added in the opposite case (lines 16–18).

Parameters
X          Configuration to be changed

Local variables
type      Type of move (addMove or
        dropMove)

v           Node to be added or removed

1. function Best-Neighbor (X)
2. type ← notFound
3. if {allowed nodes ∈ S} = ∅
4. type ← addMove
5. maxDegAllowed ← maximum degree in G(S)
6. v ← random allowed w ∈ S
7. with degG(S)(w) = maxDegAllowed

8. if type = notFound and X = ∅
9. type ← dropMove
10. if {allowed v ∈ X} = ∅
11. maxDeltaS ← maxallowedj∈X deltaS[j]
12. v ← random allowed w ∈ X
13. with deltaS[w] = maxDeltaS
14. else
15. v ← random w ∈ X
16. if type = notFound
17. type ← addMove
18.
19. Incremental-Update (v, type)

v ← random w ∈ V

20. if type = addMove return X ∪ {v}
21. else return X \ {v}

FIGURE 21.6 RLS algorithm: the function BEST-NEIGHBOR.
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Local variables
Z                   Hash item (or pointer)
lastVisit[Z ]      Time of last visit of item Z
R                   Time since last visit

1. function History-Reaction (X, T)
2. Z ← Hash-Search (X)
3. if Z = null
4. R ← t - lastVisit[Z ]
5. lastVisit[Z ] ← t
6. if R < 2(n-1)
7. tT ← t
8. return Increase(T)
9. else
10. Hash-Insert(X, t)
11. if t - tT > 10 kb

12. tT  ←  t
13. return Decrease(T)
14. return T

FIGURE 21.7 RLS algorithm: routine HISTORY-REACTION.

Ties among allowed vertices that can be added are broken by preferring the ones with the largest degree
in G(S) (line 7); a random selection is executed among vertices with equal degree in G(S).

Ties among allowed vertices that can be dropped are broken by preferring those causing the largest
increase |S(t+1)| − |S(t)| where, S(t) is the set S at iteration t (line 13). Again, a random selection is then
executed if this criterion selects more that one winner.

21.4.1.2 Reaction and Periodic Restart

The function HISTORY-REACTION is illustrated in Figure 21.7. The prohibition T is minimal at the beginning
(T = 1), and is then determined by two competing processes: T increases when the current clique comes
back to one already found, it decreases when no cliques are repeated in a suitable period. In detail: the
current clique X is searched in memory by utilizing hashing techniques (line 1). If X is found, a reference Z
is returned to a data structure containing the last visit time (line 2). If the repetition interval R is sufficiently
short, cycles are discouraged by increasing T (lines 5–7). If X is not found, it is stored in memory with
the time t when it was encountered (line 9). If T remained constant for a number of iterations greater
than 10kb , and therefore no clique is repeated during this interval, it is decreased (lines 10–12). Increases
and decreases, with a minimal change of one unit plus upper and lower bounds, are realized by the two
following functions:

INCREASE(T) = min{max{T · 1.1, T + 1}, n − 2}
DECREASE(T) = max{min{T · 0.9, T − 1}, 1}

The routine RESTART is similar to that in Ref. [57]. If there are vertices that have never been part of the
current clique during the search, i.e., that have never been moved since the beginning of the run, one of
them with maximal degree in V is randomly selected (lines 3–5 in Figure 21.8). If all vertices have already

Local variables

L      Nodes in V not moved yet

1. procedure Restart
2. T ← 1 ; tT ← t
3. if ∃v ∈ V(lastMoved[v] = −∞)
4. L ← {w ∈ V : lastMoved[v] = −∞}
5. v ← random vertex with maximum degG(V )(v) in L

6. else
7. v ← random vertex ∈ V
8. relevant data structures are reinitialized
9. Incremental-Update (v, addMove)
10. X ← {v}

FIGURE 21.8 RLS algorithm: routine RESTART.
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been members of X in the past, a random vertex in V is selected (line 7). Data structures are updated to
reflect the situation of X = ∅, then the incremental update is applied and the vertex v is added.

21.4.2 Complexity per Iteration

The computational complexity of each iteration of RLS is the sum of a term caused by the usage and
updating of reaction-related structures and a term caused by the local search part: neighborhood evaluation
and generation of the next clique.

Let us first consider the reaction-related part. The overhead per iteration incurred to determine the
prohibitions is O(|M(X)|), M(X) being the neighborhood, that for updating the last usage time of
the chosen move is O(1), that to check for repetitions and to update and store the new hashing value of the
current configuration has an average complexity of O(1), if an incremental hashing calculation is applied.

In our case the single-iteration RLS complexity is dominated by the neighborhood evaluation. This
evaluation requires an efficient update of the sets S and SMINUS plus the computation of the degrees
of the vertices in the induced subgraph G(S) (used in function BEST-NEIGHBOR, Figure 21.6, line 6).
It is therefore crucial to consider incremental algorithms, in an effort to reduce the complexity. In our
algorithm, the sets S and SMINUS are maintained by the routine INCREMENTAL-UPDATE that is used in
the function BEST-NEIGHBOR and in the procedure RESTART. The limited space of this extended abstract
force us to omit the detailed description of INCREMENTAL-UPDATE and of the related data structures. The
following theorem is proved in the full paper:

Theorem 21.1

The incremental algorithm for updating X, S, and SMINUS during each iteration of RLS has a worst-case
complexity of O(n). In particular, if vertex v is added to or deleted from S, the required operations are
O(degG (v)).

Let us note that the actual multiplicative constant is very small and that the algorithm tends to be faster
for dense graphs, where the average degree degG (v) in the complement graph can be much smaller than n.

Finally, the computation of the vertex degrees in the induced subgraph G(S) costs at most O(m) by
the following trivial algorithm. All the edges are inspected, if both endpoints are in S, the corresponding
degrees are incremented by 1. In practice the degree is not computed from scratch but it is updated
incrementally with a much lesser computational effort; in fact, the maximum number of nodes that enter
or leave S at a given iteration is at most degG (v), v being the just moved vertex. Therefore, the number of
operations performed is at most O(degG (v) · |S(t+1)|). Because the search aims at maximizing the clique
X , the set S tends to be very small (at some steps empty!) after a first transient period, and the dominant
factor is the same O(degG (v)) factor that appears in the above theorem.

Putting together all the complexity considerations the following corollary is immediately implied:

Corollary 21.1

The worst-case complexity of a single iteration is O(max{n, m}).

Experimental results of RLS on the benchmark suite for the MC problem by the organizers of the Second
DIMACS Implementation Challenge [55] are analyzed in Ref. [33].

21.5 Related Reactive Approaches

Because Reactive Search is rooted in the automation of the algorithm tuning process by embodying the
typical experimental cycle followed by heuristic algorithm designers, it is not surprising to see related ideas
and principles arising in various areas. For space limitation we list in this section a limited selection of
interesting related papers.

Probabilistic methods that explicitly maintain statistics about the search space by creating models of
the good solutions found so far are considered, for example, in Refs. [58,59].
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Implicit models of the configuration space are built by a population of searchers in Genetic Algorithms,
where learning comes in the form of “survival of the fittest” and generation of new sampling points depends
on the previous evolution (see, e.g., Ref. [60]). The issue of controlling parameters of an evolutionary
algorithm, including adaptive and “self-adaptive” techniques is considered in Ref. [61], while fitness
landscape analysis for the choice of appropriate operators in “memetic” algorithms (combining genetic
algorithms with local search) is considered in Ref. [62].

In the area of stochastic optimization, which considers noise in the evaluation process, memory-based
schemes for validation and tuning of function approximators are used in Refs. [63,64].

Guided local search aims at exploiting the problem and search-related information to effectively guide
local search heuristics [65]. Evaluation functions for global optimization and Boolean satisfiability are
learnt in Ref. [66].

Learning mechanisms with biological motivations are used in Ant Colony Optimization based on feed-
back, distributed computation, and the use of a constructive greedy heuristic. For example, “pheromone
trail” information to perform modifications on solutions for the quadratic assignment problem is consid-
ered in Refs. [67,68].

Dynamic local search, which increases penalties of some solution components to move the tentative
solution away from a given local minimum can also be considered as a form of learning based on the
previous history of the search. An example is the dynamic local search algorithm on the MAXSAT problem
in Ref. [69], see also Ref. [70] for additional references about stochastic local search methods including
adaptive versions.

In the area of computer systems management, “autonomic” systems are based on self-regulating bi-
ological systems (http://www.research.ibm.com/autonomic/), which have many points of contact with
Reactive Search.

The authors wish to acknowledge support by the BIONETS Project (IST-027748) funded by the FET
Program of the European Commission.
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[38] Bräysy, O., A reactive variable neighborhood search for the vehicle-routing problem with time win-
dows, INFORMS J. Comput., 15(4), 347, 2003.

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C021 March 20, 2007 13:22

21-16 Handbook of Approximation Algorithms and Metaheuristics

[39] Kincaid, R. K. and Labal, K. E., Reactive tabu search and sensor selection in active structural acoustic
control problems, J. Heuristics, 4(3), 199, 1998.

[40] Anzellotti, G., Battiti, R., Lazzizzera, I., Soncini, G., Zorat, A., Sartori, A., Tecchiolli, G., and Lee,
P., TOTEM: a highly parallel chip for triggering applications with inductive learning based on the
reactive tabu search, Int. J. Mod. Phys. C, 6(4), 555, 1995.

[41] Battiti, R. and Bertossi, A. A., Greedy, prohibition, and reactive heuristics for graph partitioning,
IEEE Trans. Comput., 48(4), 361, 1999.

[42] Toune, S., Fudo, H., Genji, T., Fukuyama, Y., and Nakanishi, Y., Comparative study of modern
heuristic algorithms to service restoration in distribution systems, IEEE Trans. Power Delivery, 17(1),
173, 2002.

[43] Battiti, R. and Protasi, M., Reactive search, a history-sensitive heuristic for MAX-SAT, ACM J. Exp.
Algorithmics, 2, 1997.

[44] Battiti, R. and Protasi, M., Reactive local search techniques for the maximum k-conjunctive constraint
satisfaction problem, Discrete Appl. Math., 96–97, 3, 1999.

[45] Nonobe, K. and Ibaraki, T., A tabu search approach for the constraint satisfaction problem as a
general problem solver, Eur. J. Oper. Res., 106, 599, 1998.

[46] Battiti, R. and Tecchiolli, G., The continuous reactive tabu search: blending combinatorial optimiza-
tion and stochastic search for global optimization, Ann. Oper. Res.—Metaheuristics Comb. Optimiza-
tion, 63, 153, 1996.

[47] Chelouah, R. and Siarry, P., Tabu search applied to global optimization, Eur. J. Oper. Res., 123, 256,
2000.

[48] Battiti, R. and Brunato, M., Reactive search for traffic grooming in WDM networks, in Evolutionary
Trends of the Internet, IWDC2001, Palazzo, S., Ed., Lecture Notes in Computer Science, Vol. 2170,
Springer, Berlin, 2001, p. 56.

[49] Winter, T. and Zimmermann, U., Real-time dispatch of trams in storage yards, Ann. Oper. Res., 96,
287, 2000.

[50] Fortz, B. and Thorup, M., Increasing Internet capacity using local search, Comput. Optimization
Appl., 29(1), 13, 2004.

[51] Ausiello, G., Crescenzi, P., and Protasi, M., Approximate solution of NP optimization problems,
Theor. Comput. Sci., 150, 1, 1995.

[52] Crescenzi, P. and Kann, V., A Compendium of NP Optimization Problems, Technical report, 1996,
electronic notes: http://www.nada.kth.se/˜viggo/problemlist/compendium.html.

[53] Bellare, M., Goldreich, O., and Sudan, M., Free bits, PCP and non-approximability—towards tight
results, Proc. of FOCS, 1995, p. 422.

[54] Hastad, J., Clique is hard to approximate within n1−ε , Proc. of FOCS, 1996, p. 627.
[55] Johnson, D. S. and Trick, M., Eds., Cliques, Coloring, and Satisfiability: Second DIMACS Implemen-

tation Challenge, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol.
26, AMS, Providence, RI, 1996.

[56] Pardalos, P. M. and Xu, J., The maximum clique problem, J. Global Optimization, 4, 301, 1994.
[57] Soriano, P. and Gendreau, M., Tabu Search Algorithms for the Maximum Clique Problem, Tech-

nical report CRT-968, Centre de Recherche sur les Transports, Universite de Montreal, Canada,
1994.

[58] Pelikan, M., Goldberg, D. E., and Lobo, F., A survey of optimization by building and using probabilistic
models, Comput. Optimization Appl., 21(1), 5, 2002.

[59] Baluja, S. and Davies, S., Using optimal dependency trees for combinatorial optimization: learning
the structure of the search space, in Proc. 14th Int. Conf. Machine Learning, Fisher, D. H., Ed., Morgan
Kaufmann, San Mateo, CA, 1997, p. 30.

[60] Syswerda, G., Simulated crossover in genetic algorithms, in Foundations of Genetic Algorithms,
Whitley, D. L., Ed., Morgan Kaufmann, San Mateo, CA, 1993, p. 239.

[61] Eiben, A. E., Hinterding, R., and Michalewicz, Z., Parameter control in evolutionary algorithms,
IEEE Trans. Evol. Comput., 3(2), 124, 1999.

© 2007 by Taylor & Francis Group, LLC

http://www.csc.kth.se


C5505 C5505˙C021 March 20, 2007 13:22

Machine Learning for Memory-Based Heuristics 21-17

[62] Merz, P. and Freisleben, B., Fitness landscape analysis and memetic algorithms for the quadratic
assignment problem, IEEE Trans. Evol. Comput., 4(4), 337, 2000.

[63] Moore, A. W. and Schneider, J., Memory-based stochastic optimization, in Advances in Neural In-
formation Processing Systems, Vol. 8, Touretzky, D. S., Mozer, M. C., and Hasselmo, M. E., Eds., The
MIT Press, Cambridge, MA, 1996, p. 1066.

[64] Dubrawski, A. and Schneider, J., Memory based stochastic optimization for validation and tuning of
function approximators, Conference on AI and Statistics, 1997.

[65] Voudouris, Ch. and Tsang, E., Guided local search and its application to the traveling salesman
problem, Eur. J. Oper. Res., 113, 469, 1999.

[66] Boyan, J. A. and Moore, A. W., Learning evaluation functions for global optimization and boolean
satisfiability, Proc. 15th National Conf. on Artificial Intelligence (AAAI), AAAI Press, Menlo Park, CA,
USA, 1998, p. 3.

[67] Dorigo, M., Maniezzo, V., and Colorni, A., Ant system: optimization by a colony of cooperating
agents, IEEE Trans. Syst., Man Cybernetics, Part B, 26(1), 29, 1996.

[68] Gambardella, L. M., Taillard, E. D., and Dorigo, M., Ant colonies for the quadratic assignment
problem, J. Oper. Res. Soc., 50(2), 167, 1999.

[69] Hutter, F., Tompkins, D. A. D., and Hoos, H. H., Scaling and probabilistic smoothing: efficient dynamic
local search for SAT, in Proc. of CP-02, Lecture Notes on Computer Science, Vol. 2470, Springer,
Berlin, 2002, p. 233.

[70] Hoos, H. H. and Stuetzle, T., Stochastic Local Search: Foundations and Applications, Morgan Kauf-
mann, San Mateo, CA, 2005.

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C022 March 20, 2007 13:26

22
Neural Networks

Bhaskar DasGupta∗
University of Illinois at Chicago

Derong Liu
University of Illinois at Chicago

Hava T. Siegelmann
University of Massachusetts

22.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-1
22.2 Feedforward Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 22-2

Approximation Properties • Backpropagation
Algorithms • Learning Theoretic Results

22.3 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-7
Learning Recurrent Networks: Backpropagation through
Time • Computational Capabilities of Discrete and Continuous
Recurrent Networks

22.1 Introduction

Artificial neural networks have been proposed as a tool for machine learning (see, e.g., Refs. [1–4]) and
many results have been obtained regarding their application to practical problems in robotics control,
vision, pattern recognition, grammatical inferences, and other areas (see, e.g., Refs. [5–8]). In these roles,
a neural network is trained to recognize complex associations between inputs and outputs that were
presented during a supervised training cycle. These associations are incorporated into the weights of the
network, which encode a distributed representation of the information that were contained in the input
patterns. Once trained, the network will compute an input/output mapping which, if the training data were
representative enough, will closely match the unknown rule which produced the original data. Massive
parallelism of computation, as well as noise and fault tolerance, are often offered as justifications for the
use of neural nets as learning paradigms.

Traditionally, especially in the structural complexity literature (see, e.g., Ref. [4]), feedforward circuits
composed of AND, OR, NOT, or threshold gates have been thoroughly studied. However, in practice,
when designing a neural net, continuous activation functions such as the standard sigmoid are more
commonly used. This is because usual learning algorithms such as the backpropagation algorithm assumes a
continuous activation function. As a result, neural nets are distinguished from those conventional circuits
because they perform real-valued computation and admit efficient learning procedures. The last three
decades have seen a resurgence of theoretical techniques to design and analyze the performances of neural
nets (see, e.g., the survey in Ref. [9]) as well as novel application of neural nets to various applied areas
(see, e.g., Ref. [6] and some of the references there). Theoretical researches in computational capabilities
of neural nets have given valuable insights into the mechanisms of these models.

In subsequent discussions, we distinguish between two types of neural networks, commonly known as
the “feedforward” neural nets and the “recurrent” neural nets. A feedforward net consists of a number of
processors (“nodes” or “neurons”) each of which computes a function of the type y = σ (

∑k
i=1ai ui +b) of

its inputs u1, . . . , uk . These inputs are either external (input data are fed through them) or they represent
the outputs y of other nodes. No cycles are allowed in the connection graph and the output of one
designated node is understood to provide the output value produced by the entire network for a given
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vector of input values. The possible coefficients ai and b appearing in the different nodes are the weights of
the network, and the functions σ appearing in the various nodes are the node, activation, or gate functions.
An architecture specifies the interconnection structure and the σ s, but not the actual numerical values of
the weights. A recurrent neural net, however, allows cycles in the connection graph, thereby allowing the
model to have substantially more computational capabilities (see Section 22.3.2).

In this chapter we survey research works dealing with basic questions regarding computational capabilities
and learning of neural models. There are various types of such questions that one may ask, most of them
closely related and complementary to each other. We next describe a few of them informally.

One direction of research deals with the representational capabilities of neural nets, assuming unlimited
number of neurons are available (see, e.g., Refs. [10–16]). The origin of this type of research can be traced
back to the work of the famous mathematician Kolmogorov [17], who essentially proved the first existential
result on the representation capabilities of depth 2 neural nets. This type of research ignores the training
question itself, asking instead if it is at all possible to compute or approximate arbitrary functions (e.g.,
Refs. [11–17]) or if the net can simulate, say, Turing machines (e.g., Refs. [15,16]). Many of the results and
proofs in this direction are nonconstructive.

Another perspective to learnability questions of neural nets takes a numerical analysis or approximation
theoretic point of view. There one asks questions such as how many hidden units are necessary to well
approximate, that is to say, approximate with a small overall error, an unknown function. This type of
research also ignores the training question, asking instead what is the best one could do, in this sense of
overall error, if the best possible network with a given architecture were to be eventually found. Some
papers along these lines are Refs. [18,19], which dealt with single hidden layer nets and Ref. [20], which
dealt with multiple hidden layers.

Another possible line of research deals with the sample complexity questions, that is, the quantification
of the amount of information (number of samples) needed to characterize a given unknown mapping.
Some recent references to such work, establishing sample complexity results, and hence “weak learnability”
in the Valiant model, for neural nets, are the papers in Refs. [21–25]; the first of these references deals
with networks that employ hard threshold activations, the third and fourth cover continuous activation
functions of a type (piecewise polynomial), and the last one provides results for networks employing the
standard sigmoid activation function.

Yet another direction in which to approach theoretical questions regarding learning by neural networks
originates with the work of Judd (see, e.g., Refs. [26,27] as well as the related work [28,29]). Judd was
motivated by the observation that the “backpropagation” algorithm often runs very slowly, especially
for high-dimensional data. Recall that this algorithm is used to find a network (i.e., find the weights,
assuming a fixed architecture) that reproduces the observed data. Of course, many modifications of
the vanilla “backprop” approach are possible, using more sophisticated techniques such as high-order
(Newton), conjugate gradient, or sequential quadratic programming methods. However, the “curse of
dimensionality” seems to arise as a computational obstruction to all these training techniques as well,
when attempting to learn arbitrary data using a standard feedforward network. For the simpler case
of linearly separable data, the perceptron algorithm and linear programming techniques help to find a
network—with no “hidden units”—relatively fast. Thus one may ask if there exists a fundamental barrier
to training by general feedforward networks, a barrier that is insurmountable no matter which particular
algorithm one uses. (Those techniques which adapt the architecture to the data, such as cascade correlation
or incremental techniques, would not be subject to such a barrier.)

22.2 Feedforward Neural Networks

As mentioned earlier, a feedforward neural net is one in which the underlying connection graph contains
no directed cycles. More precisely, a feedforward neural net (or, in our terminology, a � net) can be defined
as follows.

Let � be a class of real-valued functions, where each function is defined on some subset of R. A � net
C is an unbounded fan-in circuit whose edges and vertices are labeled by real numbers. The real number
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FIGURE 22.1 Classical perceptrons.

assigned to an edge (resp. vertex) is called its weight (resp. its threshold). Moreover, to each vertex v a gate
(or activation) function γv ∈ � is assigned.

The circuit C computes a function fC : R
m → R as follows. The components of the input vector

x = (x1, . . . , xm) ∈ R
m are assigned to the sources of C . Let v1, . . . , vn be the immediate predecessors of

a vertex v. The input for v is then sv(x) = ∑n
i=1wi yi − tv , where wi is the weight of the edge (vi , v), tv

the threshold of v, and yi the value assigned to vi . If v is not a sink, then we assign the value γv(sv(x)) to
v. Otherwise we assign sv(x) to v.

Without any loss of generality, one can assume that C has a single sink t. Then fC = st is the function
computed by C .

The function class �, quite popular in the structural-complexity literature (see, e.g., Refs. [30–32]), is
the binary threshold function H defined by

H(x) =
{

0 if x ≤ 0
1 if x > 0

However, in practice this function is not so popular because the function is discrete, and hence using this
gate function may pose problems in most commonly used learning algorithms like the backpropagation
algorithms [3] or their variants. Also, from biological perspectives, real neurons have continuous input–
output relations [33]. In practice, various continuous (or, at least locally smooth) gate functions have been
used, for example, the cosine squasher, the standard sigmoid, radial basis functions, generalized radial basis
functions, piecewise linear, polynomials, and trigonometric polynomial functions. In particular, the standard
sigmoid function σ (x) = 1/(1 + e−x ) is very popular.

The simplest type of feedforward neural net is the classical perceptron. This consists of a single neuron
computing a threshold function (see Figure 22.1). In other words, the perceptron P is characterized by a
vector (of “weights”) �c ∈ R

m, and computes the inner product �c ·v+ c0 = c1v1 +· · ·+ cmvm + c0. Such a
model has been well studied and efficient learning algorithms for it exists (e.g., Ref. [34], see also Ref. [35]).
In this chapter we will be, however, more interested in more complex multilayered neural nets (see
Figure 22.2).

Inputs

Output

Hidden layers

FIGURE 22.2 A feedforward neural net with three hidden layers and two inputs.
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22.2.1 Approximation Properties

It is known that neural nets of only depth 2 and with arbitrarily large number of nodes can approximate
any real-valued function up to any desired accuracy, using a continuous activation function such as the
sigmoidal function (see e.g., Refs. [11,17]). However, these proofs are mostly nonconstructive and, from
a practical point of view, one is more interested in designing efficient neural nets (i.e., roughly speaking,
neural nets with small size and depth) to exactly or approximately compute different functions. It is also
important, from a practical point of view, to understand the size–depth trade-off of the complexity of
feedforward nets while computing functions, since generally neural nets with more layers are more costly
to simulate or implement.

Threshold circuits, i.e., feedforward nets with threshold activation functions, have been quite well
studied, and upper/lower bounds for them have been obtained while computing various Boolean functions
(see, e.g., Refs. [30–32,36–38] among many other works). Functions of special interest have been the parity
function, computing the multiplication and division of binary numbers, and so forth.

However, as mentioned earlier, it is more common in practice to use a continuous activation function,
such as the standard sigmoid function. Refs. [39,40], among others, considered efficient computation
or approximation of various functions by feedforward circuits with continuous activation functions and
also studied size–depth trade-offs. In particular, Ref. [39] showed that any polynomial of degree n with
polynomially bounded coefficients can be approximated with exponential accuracy by depth 2 feedfor-
ward sigmoidal neural nets with a polynomial number of nodes. Refs. [39,40] also show how to simulate
threshold circuits by sigmoidal circuits with a polynomial increase in size and a constant factor increase
in depth. Thus, in effect, functions computed by threshold circuits can also be computed by sigmoidal
circuits with not too much increase in size and depth. Maass [23] shows how to simulate nets with
piecewise-linear activation functions with bounded depth, arbitrary real weights, and for Boolean in-
puts and outputs by a threshold net of somewhat larger size and depth with weights from {−1, 0, 1}.
Refs. [39,40] showed that circuits composed of sufficiently smooth gate functions are capable of effi-
ciently approximating polynomials within any degree of accuracy. Complementing these results, Ref. [39]
also provided nontrivial lower bounds on the size of bounded-depth sigmoidal nets with polynomially
large weights when computing oscillatory functions. In essence, one can prove results of the following
types.

Definition 22.1 (DasGupta and Schnitger [39])1

Let γ : R → R be a function. We call γ nontrivially smooth with parameter k if and only if there exists
rational numbers α, β(α > 0), and an integer k such that α and β have logarithmic size at most k and

(a) γ can be represented by the power series
∑∞

i=0 ai (x − β)i for all x ∈ [β − α, β + α]. For each i > 1,
ai is a rational number of logarithmic size at most ik .

(b) For each i > 1 there exists j with i ≤ j ≤ i k and a j �= 0.

(c) For each i > 1, ||γ (i)||[−α,α] ≤ 2i k
.

Theorem 22.1 (DasGupta and Schnitger [39])2

Assume that γ is nontrivially smooth with parameter k. Let p(x) be a degree n polynomial whose coefficients
are rational numbers of logarithmic size at most max. Then p(x) can be ε approximated (over the domain
[−D, D] with [β − α, β + α] ⊆ [−D, D]) by a {γ }-circuit C p. C p has depth 2 and size O(n2k). The

Lipschitz-bound 3 of C p (over [−D, D]n) is at most cγ · (2max · (2 + D) · 1
ε

)pol y(n)
, where the constant cγ

depends only on γ and not on p.

1The notation γ (i) denotes the i th derivative of γ .
2poly(n) denotes a polynomial in n.
3The Lipschitz bound of the net is a measure of the numerical stability of the circuit. Informally speaking, a net has

a Lipschitz bound of L if all its weights and thresholds are bounded in absolute value by L .
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Theorem 22.2 (DasGupta and Schnitger [39])

Let f : [−1, 1] → R be a function that ε oscillates t times4 and let C be a � circuit of depth d, size s , and
Lipschitz-bound 2s over [−1, 1]. If C approximates f with error at most ε

4 , then s ≥ t�(1/d).

Note that the standard sigmoid is nontrivially smooth with a constant k, and so is the case for most
of the other continuous activation functions mentioned in Section 22.1. However, the simulation in
Theorem 22.1 needs quadratically many nodes to simulate a polynomial by sigmoidal nets with exponential
accuracy. Unfortunately, the proof of Theorem 22.2 relies on efficient simulation of a sigmoidal circuit by
a spline circuit and hence cannot be extended to the case of arbitrary weights (i.e., the Lipschitz-bound
condition cannot be dropped).

22.2.2 Backpropagation Algorithms

Basic backpropagation [41] is currently the most popular supervised learning method that is used to train
multilayer feedforward neural networks with differentiable transfer functions. It is a gradient descent al-
gorithm in which the network weights are moved along the negative of the gradient of the performance
function.

The basic backpropagation algorithm performs the following steps:

1. Forward pass. Inputs are presented and the outputs of each layer are computed.
2. Backward pass. Errors between the target and the output are computed. Then, these errors are

“backpropagated” from the output to each layer until the first layer. Finally, the weights are adjusted
according to the gradient descent algorithm with the derivatives obtained by backpropagation.

We will discuss in more detail a generalized version of this approach for recurrent networks, termed as
the “real-time backpropagation through time,” (BPTT) in Section 22.3.1. The key point of basic back-
propagation is that the weights are adjusted in response to the derivatives of performance function with
respect to weights, which only depend on the current pattern; the weights can be adjusted sequentially or
in batch mode. More details about the basic backpropagation can be found in Ref. [41]. The asymptotic
convergence rates of backpropagation is proved in Ref. [42]. Traditionally, the parity function has been
used as an important benchmark for testing the efficiency of a learning algorithm. Empirical studies in Ref.
[43] show that the training time of a feedforward net using backpropagation while learning the parity
function grows exponentially with the number of inputs, thereby rendering the learning algorithm to be
very time consuming. Unfortunately, a satisfactory theoretical justification for this behavior is yet to be
shown. Also, it is well known that the backpropagation algorithm may get stuck in local minima, and in
fact, in general, gradient descent algorithms may fail to classify correctly data that even simple perceptrons
can classify correctly (see, e.g., Refs. [44–46]). Strategies of avoiding local minima include local perturba-
tion and simulated-annealing techniques, whereas the later problem (in absence of a local minima) can
be avoided using, say, threshold LMS procedures.

22.2.3 Learning Theoretic Results

Approximation results discussed in Section 22.2.1 do not necessarily translate into good learning algo-
rithms. For example, even though a sigmoidal net has great computational power, we still need to investigate
how to learn the weights of such a network from a set of examples. Learning is a very important aspect of
designing efficient neural models from a practical point of view. There are a few possible approaches to
tackle this issue; we describe one of those approaches next.

4 f ε oscillates t times if and only if there are real numbers −1 ≤ x1 < · · · < xt+1 ≤ 1 such that (a) f (x1) =
f (x2) = · · · = f (xt+1), (b) |xi+1 − xi | ≥ ε for all i , and (c) there are real numbers y1, . . . , yt such that xi ≤ yi ≤ xi+1

and | f (xi ) − f (yi )| ≥ ε for all i .
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22.2.3.1 VC-Dimension Approach

Vapnik–Chervonenkis (VC) dimensions (and, their suitable extensions to real-valued computations) pro-
vide information-theoretic bounds to the sample complexities for learning problems in neural nets. We very
briefly (also, somewhat informally) review some (by now standard) notions regarding sample complexity
which deals with the calculation of VC dimensions as applicable for neural nets (for more details, see
Refs. [9,47–49].

In the general classification problem, an input space X as well as a collection F of maps X → {−1, 1}
are assumed to have been given. (The set X is assumed to be either countable or an Euclidean space, and the
maps in F , the set of functions computable by the specific neural nets under consideration, are assumed
to be measurable. In addition, mild regularity assumptions are made which ensure that all sets appearing
below are measurable, but details are omitted since in the context of neural nets these assumptions are
almost always satisfied.) Let W be the set of all sequences

w = (u1, ψ(u1)), . . . , (us , ψ(us ))

over all s ≥ 1, (u1, . . . , us ) ∈ X
s , and ψ ∈ F . An identifier is a map ϕ : W → F . The value of ϕ on a

sequence w as above will be denoted as ϕw . The error of ϕ with respect to a probability measure P on X,
a ψ ∈ F , and a sequence (u1, . . . , us ) ∈ X

s , is

Errϕ(P , ψ, u1, . . . , us ) := Prob [ϕw (u) �= ψ(u)]

(where the probability is being understood with respect to P ).
The class F of functions is said to be (uniformly) learnable if there is some identifier ϕ with the

following property: For each ε, δ > 0 there is some s so that, for every probability P and every ψ ∈ F ,

Prob [Errϕ(P , ψ, u1, . . . , us ) > ε] < δ

(where the probability is being understood with respect to P s on X
s ).

In the learnable case, the function s (ε, δ) which provides, for any given ε and δ, the smallest possible s
as above, is called the sample complexity of the class F . It can be proved that learnability is equivalent to
finiteness of a combinatorial quantity called VC dimension ν of the class F in the following sense (cf. Refs.
[49,50]):

s (ε, δ) ≤ max

{
8ν

ε
log

(
13

ε

)

,
4

ε
log

(
2

δ

)}

Moreover, lower bounds on s (ε, δ) are also known, in the following sense (cf. Ref. [49]): for 0 < ε < 1
2 ,

and assuming that the collectionF is not trivial (i.e.,F does not consist of just one mapping or a collection
of two disjoint mappings, see Ref. [49] for details), we must have

s (ε, δ) ≥ max

{
1 − ε

ε
ln

(
1

δ

)

, ν(1 − 2(ε(1 − δ) + δ))

}

The above bounds motivate studies dealing with estimating VC dimensions of neural nets. When there is
an algorithm that allows computing an identifier ϕ in time polynomial on the sample size, the class is said to
be learnable in the PAC (“probably approximately correct”) sense of Valiant (cf. Ref. [51]). Generalizations
to the learning of real-valued (as opposed to Boolean) functions computed by, say, sigmoidal neural nets,
by evaluation of the “pseudodimension,” are also possible; see the discussion in Ref. [9].

It is well known that a simple perceptron with n inputs has a VC dimension of n + 1 [49]. However,
the VC dimension of a threshold network with w programmable parameters is �(w log w) [21,23,52,53].
Maass [23] and Goldberg and Jerrum [24], among others, investigated VC dimensions of neural nets
with continuous activations and showed polynomial bounds on neural nets with piecewise-polynomial
activation functions. Even finiteness of the VC dimension of sigmoidal neural nets was unknown for a
long time, until it was showed to be finite [25]. Subsequently, an O(w 2n2) bound on the VC dimension of
sigmoidal neural nets, where w is the number of programmable parameters and n the number of nodes,
was established [54]. Ref. [55] gives a �(w 2) lower bound for sigmoidal nets.
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22.2.3.2 The Loading (Consistency) Problem

The VC dimensions provide information-theoretic bounds on sample complexities for learning. To design
an efficient learning algorithm, the learner should be able to design a neural net consistent with the
(polynomially many) samples it receives. This is known as the consistency or the loading problem. In other
words, now we consider the tractability of the training problem, that is, of the question (essentially quoting
Judd [27]): “Given a network architecture (interconnection graph as well as choice of activation function)
and a set of training examples, does there exist a set of weights so that the network produces the correct
output for all examples?”

The simplest neural network, that is, the perceptron, consists of one threshold neuron only. It is easily
verified that the computational time of the loading problem in this case is polynomial in the size of the
training set irrespective of whether the input takes continuous or discrete values. This can be achieved
via a linear programming technique. Blum and Rivest [28] showed that this problem is NP-hard for a
simple three-node threshold neural net. Refs. [56,57] extended this result to show NP-hardness of a three-
node neural net where the activation function is a simple, saturated piecewise linear activation function,
the extension was nontrivial due to the continuous part of the activation function. It was also observed
in Ref. [57] that the loading problem is polynomial time if the input dimension is constant. However, the
complexity of the loading problem for sigmoidal neural nets still remains an open problem, though some
partial results when the net is somewhat restricted appeared in Ref. [58]. Any NP-hardness results of the
loading problems also prove hardness in the PAC learning model, due to the result in Ref. [59].

Another possibility to design efficient learning algorithms is to assume that the inputs are drawn
according to some particular distributions. For example, see Ref. [60] for efficient learning a depth 2
threshold net with a fixed number of hidden nodes and with the output gate being an AND gate, assuming
that the inputs are drawn uniformly from a n-dimensional unit ball.

22.3 Recurrent Neural Networks

As stated in the introduction, a recurrent neural net allows cycles in the connection graph. A sample
recurrent neural network is illustrated in Figure 22.3.

22.3.1 Learning Recurrent Networks: Backpropagation through Time

Backpropagation through time is an approach to solve temporal differentiable optimization problems
with continuous variables [61] and used most often as a training method for recurrent neural networks.
In this section, we describe the method in more detail.

22.3.1.1 Network Definition and Performance Measure

We will use the general expression of Werbos [41] to describe the network dynamics. Symbol y denotes
node inputs and outputs, while symbol s denotes the weighted sum of node inputs. An ordered set of
i, j, l , k on the weights denotes a connection from node j of layer i to node k of layer l ; w0, j,l ,k denotes
connections from outside the network. The node activation function is denoted by f (·). The last layer of
the network is denoted by M. The number of nodes in a layer l is denoted by nl . The bias inputs to each
node are handled homogeneously using the connection weights for zeroth input, where inputs yext

0 (t) and
yl−1,0(t) are fixed at unity for this purpose.

Input

1 2 3

Output

FIGURE 22.3 A simple recurrent network.
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All the algorithms presented in the following part of the chapter are based on the following network
dynamics expressed in pseudocode format:

f or k = 1 to n1{

s1,k(t) =
next
∑

j=0

w0, j,1,k(t)yext
j (t) +

nM∑

j=1

w M, j,1,k(t)yM, j (t − 1) +
n1∑

j=1

w1, j,1,k(t)y1, j (t − 1)

(22.1)

y1,k = f (s1,k(t)) (22.2)

}

f or l = 2 to M {
f or k = 1 to nl {

sl ,k(t) =
nl−1∑

j=0

wl−1, j,l ,k(t)yl−1, j (t) +
nl∑

j=1

wl , j,l ,k(t)yl , j (t − 1) (22.3)

y1,k = f (s1,k(t)) (22.4)

}
}
Note that the input line is not the first layer. Assume that the task to be performed by the network is

sequential supervised learning task, meaning that certain of units’ output values are to match specified
target values at each time step. Define a time-varying e j (t):

e j (t) =
{

d j (t) − y j (t) if j ∈ layer M

0 otherwise
(22.5)

where d j (t) is the target of the output of the j th unit at time t and define the two performance measure
functions:

J (t) = 1

2

∑

k∈M

[ek(t)]2 (22.6)

J total(t0, t) =
t∑

τ=t0

J (τ ) (22.7)

22.3.1.2 Unrolling a Network

In essence, BPTT is the algorithm that calculates derivatives of performance measure with respect to
weights for a feedforward neural network, which is obtained by unrolling the network in time. Let N
denote the network, which is to be trained to perform a desired sequential behavior. Assume that N has n
units and that it is to run from time t0 up through some time t. As described by Rumelhart et al. [64], we
may “unroll” this network in time to obtain a feedforward networkN ∗, which has a layer for each time step
in [t0, t] and n units in each layer. Each unit inN has a copy in each layer ofN ∗, and each connection from
unit j to unit i in N has a copy connecting unit j in layer τ to unit i in layer τ + 1, for each τ ∈ [t0, t). An
example of this unrolling mapping is given in Figure 2 in Ref. [62]. The key value of this conceptualization
is that it allows one to regard the problem of training a recurrent network as the corresponding problem
of training a feedforward neural network with certain constraints imposed on its weights. The central
result driving the BPTT approach is that to compute ∂J(t0, t)/∂wi j in N one simply computes the
partial derivatives of ∂J(t0, t) with respect to each of the τ weights in N ∗ corresponding to wi j and adds
them up.
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Straightforward application of this idea leads to two different algorithms, depending on whether an
epochwise or continual operation approach is sought. One is real-time BPTT and the other is epochwise
BPTT. We only describe the real-time BPTT because of space limitations.

22.3.1.3 Derivation of BPTT Formulation

Suppose that a differentiable function F expressed in terms of {yl , j (τ )|t0 ≤ τ ≤ t}, the outputs of the
network over time interval [t0, t] is given. Note while F may have an explicit dependence on yl , j (τ ), it may
also have an implicit dependence on this same value through later output values. To avoid the ambiguity in
interpreting partial derivatives such as ∂ F

∂yl , j (τ ) , we introduce variable y∗
l , j (τ ) such that y∗

l , j (τ ) = yM, j (τ )

for all l = M. Define the following:

εl , j (τ ) = ∂ F

∂yl , j (τ )
(22.8)

δl , j (τ ) = ∂ F

∂sl , j (τ )
(22.9)

Since F depends on yl , j (τ ), sl ,k(τ + 1), and sl+1,m(τ ), we have

∂ F

∂yl , j (τ )
= ∂ F

∂y∗
l , j (τ )

+
nl∑

k=1

∂ F

∂sl ,k(τ + 1)

∂sl ,k(τ + 1)

∂yl , j (τ )
+

nl+1∑

m=1

∂ F

∂sl+1,m(τ )

∂sl+1,m(τ )

∂yl , j (τ )
(22.10)

from which we derive the following:

1. τ = t. For this case,

εM, j (τ ) = ∂ F

∂y∗
M, j (τ )

= −e j (τ ) (22.11)

where M means the output layer of the network and j ∈ {1, 2, . . . , nM} and

εl , j (τ ) = ∂ F

∂yl , j (τ )
=

nl+1∑

m=1

∂ F

∂sl+1,m(τ )

∂sl+1,m(τ )

∂yl , j (τ )

=
nl+1∑

m=1

∂ F

∂yl+1,m(τ )

∂sl+1,m(τ )

∂yl , j (τ )

∂sl+1,m(τ )

∂yl , j (τ )

=
nl+1∑

m=1

εl+1,m(τ ) f
′
(sl+1,m(τ ))wl , j,l+1,m (22.12)

where l = 1, 2, . . . , M − 1 and j = 1, 2, . . . , nl , and

δl , j (τ ) = ∂ F

∂sl , j (τ )
= ∂ F

∂yl , j (τ )

∂yl , j (τ )

∂sl , j (τ )
= εl , j (τ ) f

′
(sl , j (τ )) (22.13)

where l = 1, 2, . . . , M and j = 1, 2, . . . , nl .
2. τ = t − 1, . . . , t0. In this case,

εM, j (τ ) = ∂ F

∂yM, j (τ )

= ∂ F

∂y∗
M, j (τ )

+
n1∑

k=1

∂ F

∂s1,k(τ + 1)

∂s1,k(τ + 1)

∂yM, j (τ )
+

nM∑

k=1

∂ F

∂s M,k(τ + 1)

∂s M,k(τ + 1)

∂yM, j (τ )

= −e j (τ ) +
n1∑

k=1

δ1,k(τ + 1)w M, j,1,k +
nM∑

k=1

δM,k(τ + 1)w M, j, M,k (22.14)
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where M means the output layer M of network and j ∈ {1, 2, . . . , nM},

εl , j (τ ) = ∂ F

∂yl , j (τ )
=

nl∑

k=1

∂ F

∂sl ,k(τ + 1)

∂sl ,k(τ + 1)

∂yl , j (τ )
+

nl+1∑

m=1

∂ F

∂sl+1,m(τ )

∂sl+1,m(τ )

∂yl , j (τ )

=
nl∑

k=1

δl ,k(τ + 1)wl , j,l ,k +
nl+1∑

m=1

∂ F

∂yl+1,m(τ )

∂yl+1,m(τ )

∂sl+1,m(τ )

∂sl+1,m(τ )

∂yl , j (τ )

=
nl∑

m=1

δl ,k(τ + 1)wl , j,l ,k +
nl+1∑

m=1

εl+1,m(τ ) f
′
(sl+1,m(τ ))wl , j,l+1,m (22.15)

where l = 1, 2, . . . , M − 1 and j = 1, 2, . . . , nl and

δl , j (τ ) = ∂ F

∂sl , j (τ )
= ∂ F

∂yl , j (τ )

∂yl , j (τ )

∂sl , j (τ )
= εl , j (τ ) f

′
(sl , j (τ )) (22.16)

where l = 1, 2, . . . , M and j = 1, 2, . . . , nl .

In addition, for any appropriate i and j

∂ F

∂wi, j,l ,k
=

t∑

τ=t0

∂ F

∂wi, j,l ,k(τ )
(22.17)

and for any τ

∂ F

∂wi, j,l ,k(τ )
= ∂ F

∂sl ,k(τ )

∂sl ,k(τ )

∂wi, j,l ,k(τ )
= δl ,k(τ )yi, j (τ ) or δl ,k(τ )yi, j (τ − 1) (22.18)

Combining these last two equations yields

∂ F

∂wi, j,l ,k
=

t∑

τ=t0

δl ,k(τ )yi, j (τ ) or δl ,k(τ )yi, j (τ − 1) (22.19)

Eqs. (22.11)–(22.16) and (22.19) represent the BPTT computation of ∂ F /∂wi, j,l ,k for differentiable
function F expressed in terms of the outputs of individual units in the network.

22.3.1.4 Real-Time Backpropagation through Time

In real-time BPTT, the performance measure is J (t) at each time. To compute the gradient of J (t) at time
t, we proceed as follows. First, consider t fixed for the moment. This allows us the notational convenience
of suppressing any reference to t in the following. Compute εl , j (τ ) and δl ,k(τ ) for τ ∈ [t0, t] by means of
Eqs. (22.11)–(22.13). Eq. (22.14) needs a little change since with F = J (t), e j (τ ) = 0; thus, for τ < t,

εM, j (τ ) = ∂ F

∂yM, j (τ )
= ∂ F

∂y∗
M, j (τ )

+
n1∑

k=1

∂ F

∂s1,k(τ + 1)

∂s1,k(τ + 1)

∂yM, j (τ )
+

n1∑

k=1

∂ F

∂s M,k(τ + 1)

∂s M,k(τ + 1)

∂yM, j (τ )

=
n1∑

k=1

∂ F

∂s1,k(τ + 1)

∂s1,k(τ + 1)

∂yM, j (τ )
+

n1∑

k=1

∂ F

∂s M,k(τ + 1)

∂s M,k(τ + 1)

∂yM, j (τ )

=
n1∑

k=1

δ1,k(τ + 1)w M, j,1,k +
nM∑

k=1

δM,k(τ + 1)w M, j, M,k (22.20)

Thus, Eqs. (22.11)–(22.16), (22.19) and (22.20) represent the real-time BPTT. The process begins by
using Eq. (22.11) to determine εM, j (t). This step is called injecting error, or to be more precise, injecting
e(t) at time t. Then δ and ε are obtained for successively earlier time steps through the repeated use of the
Eqs. (22.15), (22.16), and (22.20). Here εl , j (τ ) represents the sensitivity of the instantaneous performance
measure J (t) to small perturbations in the output of the j th unit at layer l at time τ , while δl , j (τ )
represents the corresponding sensitivity to small perturbations to that unit’s net input at that time. Once the
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backpropagation computation has been performed down to time t0, the desired gradient of instantaneous
performance is computed by the following pseudocode:

f or τ = t to t0 {
f or l = 2 to M {

f or k = 1 to nl {
f or j = 0 to nl−1 {

∂ F

∂wl−1, j,l ,k
+ = ∂ F

∂sl ,k(τ )

∂sl ,k(τ )

∂wl−1, j,l ,k
= δl ,k(τ )yl−1, j (τ ) (22.21)

}
f or j = 1 to nl {

∂ F

∂wl , j,l ,k
+ = ∂ F

∂sl ,k(τ )

∂sl ,k(τ )

∂wl , j,l ,k
= δl ,k(τ )yl , j (τ − 1) (22.22)

}
} /*k loop*/ } /*l loop*/
f or k = 1 to n1 {
f or j = 1 to next {

∂ F

∂w0, j,1,k
+ = ∂ F

∂sl ,k(τ )

∂sl ,k(τ )

∂w0, j,1,k
= δ1,k(τ )yext

j (τ ) (22.23)

}
f or j = 1 to nM {

∂ F

∂w M, j,1,k
+ = ∂ F

∂sl ,k(τ )

∂sl ,k(τ )

∂w M, j,1,k
= δ1,k(τ )yM, j (τ − 1) (22.24)

}
f or j = 1 to n1 {

∂ F

∂w1, j,1,k
+ = ∂ F

∂sl ,k(τ )

∂sl ,k(τ )

∂w1, j,1,k
= δ1,k(τ )y1, j (τ − 1) (22.25)

}
} /*k loop*/
} /*τ loop*/

where the notation “+ =” is to indicate that the quantity on the right-hand side of an expression is added
to the previous value (time) on the left-hand side. Thus, the sum of ∂ F

∂wi, j,l ,k
from t0 to t is computed.

Because this algorithm makes use of potentially unbounded history storage, it is also sometimes called
BPTT(∞).

22.3.2 Computational Capabilities of Discrete and
Continuous Recurrent Networks

The computational power of recurrent nets is investigated in Refs. [15,16]; see also Ref. [63] for a thorough
discussion of recurrent nets and analog computation in general. Recurrent nets include feedforward nets
and thus the results of feedforward nets apply to recurrent nets as well. But recurrent nets gain considerably
more computational power with increasing computation time. In the following, for the sake of concreteness,
we assume that the piecewise-linear function

π(x) =





0 if x ≤ 0
x if 0 ≤ x ≤ 1
1 if x ≥ 1
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is chosen as activation function. We concentrate on binary input and assume that the input is provided
one bit at a time.

First of all, if weights and thresholds are integers, then each node computes a bit. Recurrent net with
integer weights thus turn out to be equivalent to finite automata and they recognize exactly the class of
regular language over the binary alphabet {0, 1}.

The computational power increases considerably for rational weights and thresholds. For instance, a
“rational” recurrent net is, up to a polynomial-time computation, equivalent to a Turing machine. In
particular, a network that simulates a universal Turing machine does exist and one could refer to such
a network as “universal” in the Turing sense. It is important to note that the number of nodes in the
simulating recurrent net is fixed (i.e., does not grow with increasing input length).

Irrational weights provide a further boost in computation power. If the net is allowed exponential com-
putation time, then arbitrary Boolean functions (including noncomputable functions) are recognizable.
However, if only polynomial computation time is allowed, then nets have less power and recognize exactly
the languages computable by polynomial-size Boolean circuits.
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23.1 Introduction

Tabu search (TS) is a metaheuristic that guides a local heuristic search procedure to explore the solution
space beyond local optimality. The term tabu search was coined in the same paper that introduced the
term metaheuristic [1]. Tabu search is based on the premise that problem solving, to qualify as intelligent,
must incorporate adaptive memory and responsive exploration. The adaptive memory feature of TS allows
the implementation of procedures that are capable of searching the solution space economically and
effectively. Since local choices are guided by information collected during the search, TS contrasts with
memoryless designs that heavily rely on semirandom processes that implement a form of sampling. The
emphasis on responsive exploration (and hence purpose) in TS, whether in a deterministic or probabilistic
implementation, derives from the supposition that a bad strategic choice can often yield more information
than a good random choice. Over a wide range of problem settings, strategic use of memory can make
dramatic differences in the ability to solve problems.

Tabu search can be directly applied to virtually any kind of optimization problem. We can state most of
these problems in the following form, where “optimize” means to minimize or maximize:

Optimize f (x)

subject to x ∈ X

The function f (x) may be linear, nonlinear, or even stochastic, and the set X summarizes constraints on
the vector of decision variables x. The constraints may similarly include linear, nonlinear, or stochastic
inequalities, and may compel all or some components of x to receive discrete values.

While this representation is useful for discussing a number of problem-solving considerations, we
emphasize that in many applications of combinatorial optimization, the problem of interest may not be
easily formulated as an objective function subject to a set of constraints. The requirement x ∈ X, for
example, may specify logical conditions or interconnections that would be cumbersome to formulate
mathematically, but may be better left as verbal stipulations that can be then coded as rules.

The TS technique is rapidly becoming the method of choice for designing solution procedures for hard
combinatorial optimization problems. A comprehensive examination of this methodology can be found
in the book by Glover and Laguna [2]. Widespread successes in practical applications of optimization
have spurred a rapid growth of the method as a means of identifying extremely high-quality solutions

23-1
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TABLE 23.1 Illustrative Tabu Search Applications

Scheduling Telecommunications
Flow-time cell manufacturing Call routing
Heterogeneous processor scheduling Bandwidth packing
Workforce planning Hub facility location
Rostering Path assignment
Machine scheduling Network design for services
Flow shop scheduling Customer discount planning
Job shop scheduling Failure immune architecture
Sequencing and batching Synchronous optical networks

Design Production, Inventory, and Investment
Computer-aided design Supply chain management
Fault tolerant networks Flexible manufacturing
Transport network design Just-in-time production
Architectural space planning Capacitated MRP
Diagram coherency Part selection
Fixed charge network design Multiitem inventory planning
Irregular cutting problems Volume discount acquisition
Layout planning Project portfolio optimization

Logic and Artificial Intelligence Routing
Maximum satisfiability Vehicle routing
Probabilistic logic Capacitated routing
Pattern recognition/classification Time window routing
Data mining Multimode routing
Clustering Mixed fleet routing
Statistical discrimination Traveling salesman
Neural network training Traveling purchaser
Neural network design Convoy scheduling

Location and Allocation Graph Optimization
Multicommodity location/allocation Graph partitioning
Quadratic assignment Graph coloring
Quadratic semiassignment Clique partitioning
Multilevel generalized assignment Maximum clique problems
Large-scale GAP problems Maximum planner graphs

Technology General Combinational Optimization
Seismic inversion Zero–one programming
Electrical power distribution Fixed charge optimization
Engineering structural design Nonconvex nonlinear programming
Minimum volume ellipsoids All-or-none networks
Space station construction Bilevel programming
Circuit cell placement Multiobjective discrete optimization
OffShore oil exploration General mixed integer optimization

efficiently. Tabu search methods have also been used to create hybrid procedures with other heuristic and
algorithmic methods, to provide improved solutions to problems in production planning and scheduling,
resource allocation, network design, routing, financial analysis, telecommunications, portfolio planning,
supply chain management, agent-based modeling, business process design, forecasting, machine learning,
data mining, biocomputation, molecular design, forest management and resource planning, and many
other areas. Some of the diversity of TS applications is shown in Table 23.1.

The TS emphasis on adaptive memory makes it possible to exploit the types of strategies that underlie
the best of human problem-solving, instead of being confined to mimicking the processes found in lower
orders of natural phenomena and behavior. The basic elements of TS have several important features,
summarized in Table 23.2. Tabu search is concerned with finding new and more effective ways of taking
advantage of the concepts embodied in Table 23.2, and with identifying associated principles that can
expand the foundations of intelligent search.
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TABLE 23.2 Principal Tabu Search Features

Adaptive Memory

Selectivity (including strategic forgetting)

Abstraction and decomposition (through explicit and attributive memory)

Timing
Recency of events
Frequency of events
Differentiation between short term and long term

Quality and impact
Relative attractiveness of alternative choices
Magnitude of changes in structure or constraining
Relationships

Context
Regional interdependence
Structural interdependence
Sequential interdependence

Responsive Exploration

Strategically imposed restraints and inducements
(tabu conditions and aspiration levels)

Concentrated focus on good regions and good solution features
(intensification processes)

Characterizing and exploring promising new regions
(diversification processes)

Nonmonotonic search patterns
(strategic oscillation)

Integrating and extending solutions
(path relinking)

In this chapter we will describe some key aspects of this methodology, as the use of memory structures and
search strategies, and illustrate them in an implementation to solve the linear ordering problem (LOP).

23.2 Memory Structures

Tabu search begins in the same way as ordinary local or neighborhood search, proceeding iteratively from
one point (solution) to another until a chosen termination criterion is satisfied. Each solution x has an
associated neighborhood N (x) ⊂ X , and each solution x ′ ∈ N (x) is reached from x by an operation
called a move.

We may contrast TS with a simple descent method where the goal is to minimize f (x). Such a method
only permits moves to neighbor solutions that improve the current objective function value and ends when
no improving solutions can be found. The final x obtained by a descent method is called a local optimum,
since it is at least as good as or better than all solutions in its neighborhood. The evident shortcoming of a
descent method is that such a local optimum in most cases will not be a global optimum, that is, it usually
will not minimize f (x) over all x ∈ X.

Tabu search permits moves that deteriorate the current objective function value but the moves are
chosen from a modified neighborhood N∗(x). Short- and long-term memory structures are responsi-
ble for the specific composition of N∗(x). In other words, the modified neighborhood is the result of
maintaining a selective history of the states encountered during the search. In the TS strategies based
on short-term considerations, N∗(x) characteristically is a subset of N(x), and the tabu classification
serves to identify elements of N(x) excluded from N∗(x). In TS strategies that include longer term con-
siderations, N∗(x) may also be expanded to include solutions not ordinarily found in N(x), such as
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TABLE 23.3 Examples of Recency-Based Memory

Context Attributes To Record the Last Time . . .

Binary problems Variable index (i) Variable i changed its value from 0 to 1 or 1 to 0
(depending on its current value)

Job sequencing Job index ( j ) Job j changed positions
Job index ( j ) and position (p) Job j occupied position p
Pair of job indexes (i , j ) Job i exchange positions with job j

Graphs Arc index (i) Arc i was added to the current solution
Arc i was dropped from the current solution

solutions found and evaluated in past search, or identified as high-quality neighbors of these past solu-
tions. Characterized in this way, TS may be viewed as a dynamic neighborhood method. This means that
the neighborhood of x is not a static set, but rather a set that can change according to the history of the
search.

The structure of a neighborhood in TS differs from that used in local search in an additional manner,
by embracing the types of moves used in constructive and destructive processes (where the foundations
for such moves are accordingly called constructive neighborhoods and destructive neighborhoods). Such
expanded uses of the neighborhood concept reinforce a fundamental perspective of TS, which is to define
neighborhoods in dynamic ways that can include serial or simultaneous consideration of multiple types
of moves.

Tabu search uses attributive memory for guiding purposes (i.e., to compute N∗(x)). Instead of recording
full solutions, attributive memory structures are based on recording attributes. This type of memory
records information about solution properties (attributes) that change in moving from one solution to
another. The most common attributive memory approaches are recency- and frequency-based memory.
Recency, as its name suggests, keeps track of solutions attributes that have changed during the recent past.
Frequency typically consists of ratios about the number of iterations a certain attribute has changed or not
(depending whether it is a transition or a residence frequency). Some examples of recency- and frequency-
based memory are shown in Table 23.3 and Table 23.4 respectively.

Characteristically, a TS process based strictly on short-term strategies may allow a solution x to be
visited more than once, but it is likely that the corresponding reduced neighborhood N∗(x) will be
different each time. With the inclusion of longer term considerations, the likelihood of duplicating a
previous neighborhood upon revisiting a solution, and more generally of making choices that repeatedly
visit only a limited subset of X , is all but nonexistent.

Recency-based memory is the most common memory structure used in TS implementations. As its
name suggests, this memory structure keeps track of solutions attributes that have changed during the
recent past. To exploit this memory, selected attributes that occur in solutions recently visited are labeled

TABLE 23.4 Examples of Frequency-Based Memory

Context Residence Measure Transition Measure

Binary problems Number of times variable i has been Number of times variable i has changed
assigned the value of 1 values

Job sequencing Number of times job j has occupied Number of times job i has exchanged
position p positions with job j
Average objective function value Number of times job j has been moved to
when job j occupies position p an earlier position in the sequence

Graphs Number of times arc i has been part Number of times arc i has been deleted
of the current solution from the current solution when arc j has

been added
Average objective function value Number of times arc i has been added
when arc i is part of the solution during improving moves
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tabu-active, and solutions that contain tabu-active elements, or particular combinations of these attributes,
are those that become tabu. This prevents certain solutions from the recent past from belonging to N∗(x)
and hence from being revisited. Other solutions that share such tabu-active attributes are also similarly
prevented from being visited. Note that while the tabu classification strictly refers to solutions that are
forbidden to be visited, by virtue of containing tabu-active attributes (or more generally by violating
certain restriction based on these attributes), moves that lead to such solutions are also often referred to
as being tabu.

Frequency-based memory provides a type of information that complements the information provided by
recency-based memory, broadening the foundation for selecting preferred moves. Like recency, frequency
often is weighted or decomposed into subclasses. Also, frequency can be integrated with recency to provide
a composite structure for creating penalties and inducements that modify move evaluations.

Frequencies typically consist of ratios, whose numerators represent counts expressed in two different
measures: a transition measure—the number of iterations where an attribute changes (enters or leaves)
the solutions visited on a particular trajectory, and a residence measure—the number of iterations where
an attribute belongs to solutions visited on a particular trajectory, or the number of instances where an
attribute belongs to solutions from a particular subset. The denominators generally represent one of three
types of quantities: (1) the total number of occurrences of all events represented by the numerators (such
as the total number of associated iterations); (2) the sum (or average) of the numerators; and (3) the
maximum numerator value. In cases where the numerators represent weighted counts, some of which
may be negative, denominator (3) is expressed as an absolute value and denominator (2) is expressed as
a sum of absolute values (possibly shifted by a small constant to avoid a zero denominator). The ratios
produce transition frequencies that keep track of how often attributes change, and residence frequencies that
keep track of how often attributes are members of solutions generated. In addition to referring to such
frequencies, thresholds based on the numerators alone can be useful for indicating when phases of greater
diversification are appropriate.

23.3 Search Strategies

The use of recency and frequency memory in TS generally fulfills the function of preventing searching
processes from cycling, that is, from endlessly executing the same sequence of moves (or more generally,
from endlessly and exclusively revisiting the same set of solutions). More broadly, however, the various
manifestations of these types of memory are designed to impart additional robustness or vigor to the
search.

A key element of the adaptive memory framework of TS is to create a balance between search intensifica-
tion and diversification. Intensification strategies are based on modifying choice rules to encourage move
combinations and solution features historically found good. They may also initiate a return to attractive
regions to search them more thoroughly. Diversification strategies, however, seek to incorporate new at-
tributes and attribute combinations that were not included within solutions generated previously. In one
form, these strategies undertake to drive the search into regions dissimilar to those already examined. It
is important to keep in mind that intensification and diversification are not mutually opposing, but are
rather mutually reinforcing.

Most types of intensification strategies require a means for identifying a set of elite solutions as basis for
incorporating good attributes into newly created solutions. Membership in the elite set is often determined
by setting a threshold that is connected to the objective function value of the best solution found during
the search. A simple instance of the intensification strategy is shown in Figure 23.1. Two simple variants
for elite solution selection have proved quite successful. One introduces a diversification measure to assure
the solutions recorded differ from each other by a desired degree, and then erases all short-term memory
before resuming from the best of the recorded solutions. The other keeps a bounded length sequential list
that adds a new solution at the end only if it is better than any previously seen, and the short-term memory
that accompanied this solution is also saved.
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Apply TS short-term memory
Apply an elite selection strategy.
do {

Choose one of the elite solutions.
Resume short-term memory TS from chosen solution.
Add new solutions to elite list when applicable.

} while (iterations < limit and list not empty)

FIGURE 23.1 Simple TS intensification approach.

Diversification is automatically created in TS (to some extent) by short-term memory functions, but is
particularly reinforced by certain forms of longer term memory. TS diversification strategies are often based
on modifying choice rules to bring attributes into the solution that are infrequently used. Alternatively, they
may introduce such attributes by periodically applying methods that assemble subsets of these attributes
into candidate solutions for continuing the search, or by partially or fully restarting the solution process.
Diversification strategies are particularly helpful when better solutions can be reached only by crossing
barriers or “humps” in the solution space topology.

The incorporation of modified choice rules can be moderated by using the following penalty function:

MoveValue′ = MoveValue + d ∗ Penalty

This type of penalty approach is commonly used in TS, where the Penalty value is often a function of
frequency measures such as those indicated in Table 23.2, and d is an adjustable diversification parameter.
Larger d values correspond to a desire for more diversification.

23.4 Advanced Designs: Strategic Oscillation and Path Relinking

There are many forms in which a simple TS implementation can be improved by adding long-term elements.
In this paper we restrict our attention to two of the most used methods, namely strategic oscillation and
path relinking (PR), which constitute the core of many adaptive memory programming algorithms.

Strategic oscillation operates by orienting moves in relation to a critical level, as identified by a stage of
construction or a chosen interval of functional values. Such a critical level or oscillation boundary often
represents a point where the method would normally stop. Instead of stopping when this boundary is
reached, however, the rules for selecting moves are modified, to permit the region defined by the critical
level to be crossed. The approach then proceeds for a specified depth beyond the oscillation boundary,
and turns around. The oscillation boundary again is approached and crossed, this time from the opposite
direction, and the method proceeds to a new turning point (see Figure 23.2).
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FIGURE 23.2 Strategic oscillation.
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The process of repeatedly approaching and crossing the critical level from different directions creates
an oscillatory behavior, which gives the method its name. Control over this behavior is established by
generating modified evaluations and rules of movement, depending on the region navigated and the
direction of search. The possibility of retracing a prior trajectory is avoided by standard TS mechanisms,
like those established by the recency-based and frequency-based memory functions.

When the level or functional values in Figure 23.2 refer to degrees of feasibility and infeasibility, a vector-
valued function associated with a set of problem constraints can be used to control the oscillation. In this
case, controlling the search by bounding this function can be viewed as manipulating a parameterization of
the selected constraint set. A preferred alternative is often to make the function a Lagrangean or surrogate
constraint penalty function, avoiding vector-valued functions and allowing tradeoffs between degrees of
violation of different component constraints.

Path relinking, as a strategy of creating trajectories of moves passing through high-quality solutions was
first proposed in connection with TS by Glover [3]. The approach was then elaborated in greater detail as
a means of integrating TS intensification and diversification strategies, and given the name PR by Glover
and Laguna [4]. Path relinking generally operates by starting from an initiating solution, selected from a
subset of high-quality solutions, and generating a path in the neighbourhood space that leads toward the
other solutions in the subset, which are called guiding solutions. This is accomplished by selecting moves
that introduce attributes contained in the guiding solutions.

Path relinking can be considered an extension of the combination method of scatter search [4,5]. Instead
of directly producing a new solution when combining two or more original solutions, PR generates paths
between and beyond the selected solutions in the neighborhood space. The character of such paths is easily
specified by reference to solution attributes that are added, dropped, or otherwise modified by the moves
executed. Examples of such attributes include edges and nodes of a graph, sequence positions in a schedule,
vectors contained in linear programming basic solutions, and values of variables and functions of variables.

The approach may be viewed as an extreme (highly focused) instance of a strategy that seeks to in-
corporate attributes of high-quality solutions, by creating inducements to favor these attributes in the
moves selected. However, instead of using an inducement that merely encourages the inclusion of such
attributes, the PR approach subordinates other considerations to the goal of choosing moves that introduce
the attributes of the guiding solutions, to create a “good attribute composition” in the current solution.
The composition at each step is determined by choosing the best move, using customary choice criteria,
from a restricted set—the set of those moves currently available that incorporate a maximum number
(or a maximum-weighted value) of the attributes of the guiding solutions. (Exceptions are provided by
aspiration criteria, as subsequently noted.) The approach is called PR either by virtue of generating a new
path between solutions previously linked by a series of moves executed during a search, or by generating
a path between solutions previously linked to other solutions but not to each other.

To generate the desired paths, it is only necessary to select moves that perform the following role: upon
starting from an initiating solution, the moves must progressively introduce attributes contributed by a
guiding solution (or reduce the distance between attributes of the initiating and guiding solutions). The
roles of the initiating and guiding solutions are interchangeable; each solution can also be induced to move
simultaneously toward the other as a way of generating combinations. First, consider the creation of paths
that join two selected solutions x ′ and x ′′, restricting attention to the part of the path that lies “between”
the solutions, producing a solution sequence x ′ = x(1), x(2), . . . , x(r ) = x ′′. To reduce the number of
options to be considered, the solution x(i + 1) may be created from x(i) at each step by choosing a move
that minimizes the number of moves remaining to reach x ′′. The relinked path may encounter solutions
that may not be better than the initiating or guiding solution, but that provide fertile “points of access” for
reaching other, somewhat better, solutions. For this reason it is valuable to examine neighboring solutions
along a relinked path, and keep track of those of high quality that may provide a starting point for launching
additional searches.

As described by Martı́ et al. [6], we can apply different PR elements to perform more elaborated designs.
Some examples are simultaneous relinking, tunneling strategy, extrapolated relinking, multiple guiding
solutions, constructive neighborhoods, or vocabulary building.
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23.5 The Linear-Ordering Problem

Given a matrix of weights E = {eij}m×m, the LOP consists of finding a permutation p of the columns
(and rows) to maximize the sum of the weights in the upper triangle. In mathematical terms, we seek to
maximize

C E ( p) =
m−1∑

i=1

m∑

j=i+1

e pi p j

where pi is the index of the column (and row) in position i in the permutation. Note that in the LOP,
the permutation p provides the ordering of both the columns and the rows. Solution methods for this
NP-hard problem have been proposed since 1958, when Chenery and Watanabe outlined some ideas on
how to obtain solutions for this problem [7]. In this section we describe a TS implementation by Laguna
et al. [8] for the LOP.

The LOP has a wide range of applications in several fields. Perhaps, the best known application occurs
in the field of economics. In this application, the economy (regional or national) is first subdivided into
sectors. Then, an input/output matrix is created, in which the entry (i, j ) represents the flow of money
from sector i to sector j . Economists are often interested in ordering the sectors so that suppliers tend to
come first followed by consumers. This is achieved by permuting the rows and columns of the matrix so
that the sum of entries above the diagonal is maximized, which is the objective of the LOP.

Insertions are used as the primary mechanism to move from one solution to another in Laguna
et al.’s method for the LOP. INSERT MOVE( p j , i) consist of deleting p j from its current position j
to be inserted in position i (i.e., between the current sectors pi−1 and pi ). This operation results in the
ordering p′, as follows:

p′ =
{(

p1, . . . , pi−1, p j , pi , . . . , p j−1, p j+1, . . . , pm
)

for i < j
(

p1, . . . , p j−1, p j+1, . . . , pi−1, p j , pi , . . . , pm
)

for i > j

The neighborhood N consists of all permutations resulting from executing general insertion moves as

N = {p′ : INSERT MOVE( p j , i), for j = 1, . . . , m and i = 1, 2, . . . , j − 1, j + 1, . . . , m},
and N is partitioned into m neighborhoods, N j , associated with each sector p j , for j = 1, . . . , m:

N j = {p′ : INSERT MOVE( p j , i), i = 1, 2, . . . , j − 1, j + 1, . . . , m}
Starting from a randomly generated permutation p, the basic TS procedure alternates between an intensi-
fication and a diversification phase. An iteration of the intensification phase begins by randomly selecting
a sector. The probability of selecting sector j is proportional to its weight w j according to

w j =
∑

i �= j

(
ei j + e j i

)

The move INSERT MOVE(p j , i) ∈ N j with the largest move value is selected. (Note that this rule may
result in the selection of a nonimproving move.) The move is executed even when the move value is not
positive, resulting in a deterioration of the current objective function value. The moved sector becomes
tabu-active for TabuTenure iterations, and therefore it cannot be selected for insertions during this time.

The number of times that sector j has been chosen to be moved is accumulated in the value freq( j ).
This frequency information is used for diversification purposes. The intensification phase terminates
after MaxInt consecutive iterations without improvement. Before abandoning this phase, a local search
procedure based in the same neighborhood is applied to the best solution found (during the current
intensification). We denote this solution as p#, in contrast to p∗ (the best solution found over the entire
search). By applying this greedy procedure (without tabu restrictions), a local optimum is guaranteed as
the output of the intensification phase.
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The diversification phase is performed for MaxDiv iterations. At each iteration, a sector is randomly
selected, where the probability of selecting sector j is inversely proportional to the frequency count freq( j ).
The chosen sector is placed in the best position, as determined by the move values associated with the
insert moves in N j . The procedure stops when MaxGlo global iterations are performed without improving
C E ( p∗). A global iteration is an application of the intensification phase followed by the application of the
diversification phase.

An additional intensification is introduced by implementing a long-term PR phase. Specifically, the best
solution found at the end of an intensification phase p# (which does not necessarily represent p∗, the best
solution overall) is subjected to a relinking process. The process consists of making moves starting from
p# (the initiating solution) in the direction of a set of elite solutions (also referred to as guiding solutions).
The set of elite solutions consists of the EltSol best solutions found during the entire search. The insertions
used to move the initiating solution closer to the guiding solutions can be described as follows. For each
sector p j in the current solution:

(1) Find the position i for which the absolute value of ( j -i) is minimized, where i is the position that
p j occupies in at least one of the guiding solutions.

(2) Perform INSERT MOVE(p j , i).

A long-term diversification phase is also implemented to complement the diversification phase in the basic
procedure. The long-term diversification is applied after MaxLong global iterations have elapsed without
improving C E ( p∗). For each sector p j , a rounded average position α( p j ) is calculated using the positions
occupied by this sector in the set of elite solutions and the solutions visited during the last intensification
phase. Then, m diversification steps are performed which insert each sector p j in its complementary
position m-α( p j ), that is, INSERT MOVE( p j , m-α( p j )) is executed for j = 1, . . . , m.

After preliminary experimentation, the search parameters are set to MaxGlo = 100, MaxLong = 50,
EltSol = 4, TabuTenure = 2

√
m, MaxInt = m, and MaxDiv = 0.5m and EltSol = 4. In the 49 instances

of the public domain library of linear ordering problems (LOLIB [15]), the method obtains the optimal
solution within 1 s of computer time run on a Pentium IV at 3 GHz. The method is also compared with
a previous procedure due to Chanas and Kobylanski [9] and a greedy procedure based on the N local
search. The methods were run in a way that the best solution found was reported every 0.5 s. These data
points were used to generate the performance graph in Figure 23.3. The superior performance of TS LOP
is made evident by Figure 23.3.
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23.6 The Tabu Cycle and Conditional Probability Methods

In this section, we describe the implementation and testing of the tabu cycle method and two variants
of the conditional probability method [10]. These methods were originally described by Glover [11] and
again in a book by Glover and Laguna [2], but have been largely ignored in the TS literature. The tabu
cycle method is a short-term memory mechanism that is based on partitioning the elements (i.e., move
attributes) of a tabu list. The methodology is general and capable of accommodating multiattribute TS
memory, as described by Glover and Laguna [2]. In its most basic form, the tabu cycle method divides
the short-term memory list into TabuGroups groups, where group k consists of elements that were added
to the list between a specified range of iterations ago. While in some variants of TS (e.g., probabilistic
TS) it is common to progressively relax the tabu status of elements as they become older, the tabu cycle
method, by contrast, allows the elements of some groups to fully escape their tabu status according to
certain frequencies that increase with the age of the groups. The method is based on the use of iteration
intervals called tabu cycles, which are made smaller for older groups than for younger groups (with the
exception of a small buffer group). Specifically, if group k has a tabu cycle of TC(k) iterations, then at each
occurrence of this number of iterations, on average, the elements of group k escape their tabu status and
are free to be chosen. In other words, on average, group k is designated as FREE every TC(k) iterations.
Mechanisms and data structures that are useful for achieving this are described in Ref. [10].

The conditional probability method is a variant of the tabu cycle method that chooses elements by
establishing the probability that a group will be FREE on a given iteration. The probability assigned to
group k may be viewed conceptually as the inverse of the tabu cycle value. That is, P (k) = 1/TC(k).
Analogous to the tabu cycle method, group k is FREE if all older groups likewise are FREE. The method
employs a conditional probability, CP(k), as a means of determining whether a particular group k can be
designated as FREE. The conditional probability values are fixed and the status of a group is determined
by a probabilistic process that is not affected by previous choices. Consequently, the approach ignores the
possibility that actual tabu cycle values may be far from their targets for some groups. This may happen,
for example, when for a number of iterations no elements are chosen from a particular set of FREE groups.
The conditional probability method also makes use of a buffer group, for which no element is allowed to
escape its tabu status.

A variant of the conditional probability method uses substitute probability values to keep the expected
number of elements per iteration chosen from groups no older than any given group k close to P (k).
The substitute probabilities replace the original P (k) values in the determination of the conditional
probabilities. These substitute probabilities make use of cycle counts, which are also used in connection
with the tabu cycle method.

Laguna [10] uses a single machine scheduling problem to test the merit of implementations of the
tabu cycle method and both variants of the conditional probability method. The problem consists of
minimizing the sum of the setup costs and linear delay penalties when n jobs, arriving at time zero, are to
be scheduled for sequential processing on a continuously available machine. Several variants of TS for this
problem have been reported in the literature [12–14]. Experiments with more than 300 problem instances
with up to 200 jobs were performed to compare a simple static and dynamic short-term memory schemes
with a tabu cycle implementation (Cycle), a conditional probability implementation (C-Prob) and an
implementation of the conditional probability method with substitute probabilities (S-Prob). The static
short-term memory assigns a constant to the tabu tenure to all attributes during the search. The dynamic
short-term memory randomly selects from a specified range a tabu tenure. Therefore, the tabu tenure
assigned to an attribute in a given iteration may not be the same as the tabu tenure assigned to another
attribute in a different iteration. Table 23.5 shows the number of best solutions found by each method in
each set of 100 problems.

The results in Table 23.5 show the merit of the tabu cycle and the conditional probability variants as
the problem size increases. In addition to these results, the S-Prob is able to find 17 new best solutions
to 20 problems used for experimentation by Glover and Laguna [13]. For problems with up to 60 jobs,
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TABLE 23.5 Number of Best Solutions (Out of 100) Found by Each Method

Problem Set Static Dynamic Cycle C-Prob S-Prob

n = 50 2 50 9 31 65

n = 100 0 10 28 17 47

n = 200 0 8 37 26 29

for which a lower bound can be computed, S-Prob produces a maximum gap of 3.56% in relation to this
optimistic bound.

These results confirm that a TS procedure based solely on a static tabu list is not a robust method,
because it is incapable of maintaining an acceptable level of diversity during the search. The dynamic
short-term memory continues to be an appealing alternative, because it is easy to implement and provides
a good balance between diversification and intensification. The results also show that improved outcomes
are possible with the additional effort required to implement the tabu cycle or conditional probability
methods.

Additional strategies identified by Glover and Laguna [2] can be valuable for exploiting other aspects of
intensification and diversification, but this example demonstrates the importance of handling short-term
memory in a strategic way, especially when faced with larger and more difficult problems.

23.7 Conclusions

The focus and emphasis of TS have a number of implications for the goal of designing improved optimiza-
tion procedures. These research opportunities carry with them an emphasis on producing systematic and
strategically designed rules, rather than following the policy of relegating decisions to random choices, as
often is fashionable in evolutionary methods. The highly attractive results provided by the adaptive mem-
ory structures underlying TS are producing an evident impact on the design of metaheuristic methods in
general, and are motivating the emergence of new hybrids of TS with other procedures.
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24.1 Introduction

This chapter aims to give a summary of evolutionary computation (EC) techniques. The summary includes
a general description of the main families of algorithms belonging to the EC field as well as their main
components. Also, we describe their evolution through the last years including latest advances in constraint-
handling methods, parallel models and algorithms, methods for dynamic environments and multiobjective
optimization, etc. Also included are some observations about the relationship between EC techniques and
other methods for optimization, in particular metaheuristics. Finally, we describe some new trends and
give a glimpse of the numerous applications of EC techniques.

Optimization problems are of high importance in industry and science. Examples of practical optimiza-
tion problems include train scheduling, time tabling, shape optimization, or telecommunication network
design. An optimization problem P can be described as a triple (S , �, f ), where

1. S is the search space defined over a finite set of decision variables Xi , i = 1, . . . , n. In case these
variables have discrete domains we deal with discrete optimization (or combinatorial optimization),
and in case of continuous domains P is called a continuous optimization problem. Mixed variable
problems also exist. � is a set of constraints among the variables.

2. f : S → IR+ is the objective function that assigns a positive cost value to each element (or solution)
of S .

The goal is to find a solution s ∈ S such that f (s ) ≤ f (s ′), ∀s ′ ∈ S (in case we want to minimize the
objective function), or f (s ) ≥ f (s ′), ∀s ′ ∈ S (in case the objective function must be maximized). In real-
life problems the goal is often to optimize several objective functions at the same time. This form of
optimization is labelled as multiobjective optimization.

Due to the practical importance of optimization problems, many algorithms to tackle them have been
developed. These algorithms can be classified as either complete or approximate algorithms. Complete algo-
rithms are guaranteed to find for every finite size instance of an optimization problem an optimal solution
in bounded time (see Refs. [1,2]). Yet, many practically relevant optimization problems are—because of
their size or their structure—very hard to be solved to optimality. Therefore, complete methods might need
a computation time too high for practical purposes. Thus, the development of approximate methods—in
which we sacrifice the guarantee of finding optimal solutions for the sake of getting good solutions in a
significantly reduced amount of time—has received more and more attention in the last 30 years.

24-1
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A very successful strand of approximate optimization algorithms originates from a field known as EC.
EC can be regarded as a metaphor for building, applying, and studying algorithms based on Darwinian
principles of natural selection. The instances of algorithms that are based on evolutionary principles are
called evolutionary algorithms (EAs) [3]. Evolutionary algorithms can be characterized as computational
models of evolutionary processes. They are inspired by nature’s capability to evolve living beings well
adapted to their environment. At the core of each EA is a population of individuals. At each algorithm
iteration a number of reproduction operators is applied to the individuals of the current population to gen-
erate the individuals of the population of the next generation. Evolutionary algorithms might use operators
called recombination or crossover to recombine two or more individuals to produce new individuals. They
also might use mutation or modification operators that cause a self-adaptation of individuals. The driving
force in EAs is the selection of individuals based on their fitness (which might be based on the objective
function, the result of a simulation experiment, or some other kind of quality measure). Individuals with a
higher fitness have a higher probability to be chosen as members of the population of the next generation
(or as parents for the generation of new individuals). This corresponds to the principle of survival of the
fittest in natural evolution. It is the capability of nature to adapt itself to a changing environment, which
gave the inspiration for EAs.

There has been a variety of slightly different EAs proposed over the years. Three different strands of
EAs were developed independently of each other over time. These are evolutionary programming (EP) as
introduced by Fogel [4] and Fogel et al. [5], evolutionary strategies (ES) proposed by Rechenberg [6] and
genetic algorithms (GAs) initiated by Holland [7] (see Refs. [8–11] for further references). Evolutionary
programming arose from the desire to generate machine intelligence. While EP originally was proposed
to operate on discrete representations of finite-state machines, most of the present variants are used for
continuous optimization problems. The latter also holds for most present variants of ES, whereas GAs
are mainly applied to solve discrete problems. More recently, other members of the EA family such as, for
example, genetic programming (GP) and scatter search (SS) were developed. Despite this division into
different strands, EAs can be understood from a unified point of view with respect to their main components
and the way they explore the search space. Over the years there have been quite a few overviews and surveys
about EC methods. Among those are the ones by Bäck [12], Fogel et al. [13], Hertz and Kobler [14], Spears
et al. [15], and Michalewicz and Michalewicz [16]. In Ref. [17] a taxonomy of EAs is proposed.

The structure of this chapter is as follows. Section 24.2 gives an introduction to EAs and covers shortly
important aspects such as the solution representations and search operators. Section 24.3 analyzes the
evolution of EAs emphasizing some of the important recent research advances. Section 24.4 discusses and
highlights the connections between EAs and other stochastic search methods, namely metaheuristics. We
conclude in Section 24.5 with an overview on EAs applications and an outline of new research trends.

24.2 Evolutionary Algorithms

The algorithm in Figure 24.1 shows the basic structure of EAs. In this algorithm, P denotes the population
of individuals. These individuals are not necessarily solutions to the considered problem. They may be
partial solutions, or sets of solutions, or any object which can be transformed into one or more solutions
in a structured way. The set of all possible individuals is generally called the genotype space denoted by G,
whereas the search space of the tackled optimization problem is called the phenotype space denoted by S .
Hereby, the structure of the individuals is called the solution representation, or solution encoding. G and
S , respectively, constitute the domain and codomain of a function g known as the growth (or expression)
function. In some cases G and S are actually equivalent, g being a trivial identity function. However, this
is not the general situation. As a matter of fact, the only requirement posed on g is surjectivity, that is, for
each s ∈ S there must be an individual i ∈ G such that g (i) = s (see Figure 24.2). Furthermore, g might
be undefined for some elements in G or even might not be injective at all (a redundant representation).

At the start of an EA, an initial population of individuals is generated by applying a function ι to the
genotype space G. Function ι might represent a random procedure that generates individuals at random,
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Evolutionary algorithm:

1. P ← apply ι on G to generate µ individuals (the initial population);

2. while termination criteria not met do

(a) P   ← apply σ on P ; /* selection */

(b) P   ← apply ωr on P  ; r ∈ {1, . . . , #operators}; /* reproduction */
(c) P   ← apply ψ on P and P  ; /* replacement */

endwhile

FIGURE 24.1 Pseudocode of an evolutionary algorithm.

G S
g

FIGURE 24.2 Mapping from the genotype space to the phenotype space.

or it might represent a heuristic seeding procedure. Then, at each iteration (also called generation) of the
algorithm, the following three major operations are performed. First, a set of individuals P ′ are selected
from the current population P by applying a function σ to P . The selection process is based on the
individuals’ fitness value, which is a measure of how good the solution represented by an individual is for
the problem being considered. The fitness value is in general tightly coupled to the objective function. It
is the main source for guiding the search process. Second, a population P ′′ of offspring is generated from
P ′ by the application of reproduction operators, that is, the application of a function ωr to P ′. Finally,
the replacement function ψ is applied to the current population P and the set of offspring individuals
P ′′ to generate the population for the next generation. To choose the individuals for the next population
exclusively from the offspring is called generational replacement. In some schemes, such as elitist strategies,
successive generations overlap to some degree, that is, some portion of the previous generation is retained
in the new population. The fraction of new individuals at each generation is called the generational gap [18].
In steady-state selection, only a few individuals are replaced in each iteration: usually a small number of
the least fit individuals are replaced by offspring.

The process described above is repeated until certain termination criteria (usually reaching a maximum
number of iterations, or reaching a time limit) are satisfied. Most EAs deal with populations of constant
size. However, it is also possible to have a variable population size. In case of a continuously shrinking
population size, the situation in which only one individual is left in the population (or no crossover
partners can be found for any member of the population) might also be one of the stopping conditions of
the algorithm. For a graphical presentation of an algorithm iteration see Figure 24.3.

Every possible instantiation of this general framework gives rise to different EAs. In fact, it is possi-
ble to distinguish among different EA families by considering some guidelines on how to perform this
instantiation. However, before we outline the main EA families, we first deal in more detail with some
important aspects that have to be taken into account when applying EAs. Figure 24.4 shows a typical line
of decisions with which a practitioner is faced when applying an EA.1 The first step consists in finding
an appropriate problem formulation, that is, a concise and manageable description of the problem to be

1Note that this is similar when applying an approximate optimization technique other than EC.
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FIGURE 24.3 Illustration of the evolutionary process from the perspective of the genotype space G.
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FIGURE 24.4 The different steps in the process of applying an EA to an optimization problem.

tackled (e.g., a sentence, a mathematical formula, or a mathematical program). Having decided on the
problem formulation, the choice of the solution representation (which defines the EA search space), and
the development of the reproduction operators are crucial for the success of the algorithm.

Solution Representation (i.e., the Individuals)
Most commonly used in EAs is the representation of solutions as bit strings or as permutations of n
integer numbers. However, also real-value encodings, tree structures or other complex structures are
possible. See Figure 24.5 for some examples. In GAs, an individual usually consists of one or more so-
called chromosomes. Chromosomes are strings of smaller units termed genes. The different values a gene
can take are called the alleles for that gene. Holland’s schema analysis [7] and Radcliffe’s generalization to
formae [19] are examples of how theory can help to guide representation choices.

Reproduction Operators
The chosen solution encoding determines the complexity and size of the EA search space. To explore this
search space it is mandatory to design a set of reproduction operators (the number and type of these
operators will depend on the solution encoding and the particular EA instance). In general, we distinguish
between recombination operators (i.e., N-ary operators) and mutation operators (i.e., unary operators).
In most cases it is possible to recombine all individuals with each other. However, sometimes this is not
the case. In general, a neighborhood function NEC : G → 2G assigns to each individual i ∈ G a set of
individuals NEC(i) ⊆ G whose members are permitted to act as recombination partners for i to create
offspring. If an individual can be recombined with any other individual (as, e.g., in the simple GA [11]) we
talk about unstructured populations, otherwise we talk about structured populations. An example of an EA
that works on structured populations is the parallel genetic algorithm (PGA) proposed by Mühlenbein [20]
(see Section 24.2.1 for more information on parallel models and algorithms).

The most common form of a recombination operator is two-parent crossover, in which one or two
offspring are produced from two parents. But there are also recombination operators that operate on
more than two individuals to create new individuals (multiparent crossover), (see Ref. [21,22]). More
recent developments even use population statistics for generating the individuals of the next genera-
tion. Examples are the recombination operators called gene pool recombination [23] and bit-simulated
crossover [24], which make use of a probability distribution over the search space given by the current
population to generate the next population. The simplest form of a mutation operator just performs
a small random perturbation of an individual, introducing a kind of noise. More complex mutation
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FIGURE 24.5 Five examples for solution representations. (a) Binary strings representation. They are popular, for
example, to encode solutions to subset problems such as the knapsack problem. (b) Permutation representation. It
is often used for permutation problems such as the traveling salesman problem. (c) The gray value (or real vector)
representation. It is used, for example, for continuous optimization. (d) Graphs or trees representing a neural network.
They are often represented by edge sets. (e) Trees representing a fuzzy rule. They are often used as encoding for logical
rules.

operators include, for example, random moves or more goal-directed moves in a neighborhood of the
individual.

It is important to remark that each possible operator will define its own characteristic neighbor-
hood structure, i.e., the set of individuals that might be the outcome of the operators’ application.
Figure 24.6 and Figure 24.7 show a general view of the neighborhood sizes with respect to the whole
EA search space G. In Figure 24.6 we can observe two different neighborhoods for the same individual. For
example, considerG to consist of all binary strings of length n. A mutation operator might be allowed to flip
maximally n/2 bits of each individual, or, for example, only n/10 bits. In the first case the neighborhood
of the operator is much bigger than in the second case. Therefore, different mutation operator will define
neighborhoods of different sizes and complexities.

Figure 24.7 shows the neighborhood of a hypothetical (binary) recombination operator. As the distance
between two individuals gets smaller (from (a) over (b) to (c)) the size of the respective neighborhood for
the same operator also diminishes. The neighbor size generally depends on the operator characteristics
in addition to the distance between the parent individuals. The sequence from left to right can also be

G G

i i

N1(i)

(a)

N2(i)

(b)

FIGURE 24.6 Graphical representation of the neighborhood N(i) of a mutation operator around an individual i .
The neighborhood size depends on the operator characteristics. (a) shows the example of a mutation operator with a
smaller neighborhood than the one shown in (b).
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FIGURE 24.7 Graphical representation of the neighborhood N(i1, i2) of a binary recombination operator when
applied to two individuals i1 and i2. From (a) over (b) to (c) the distance between the two individuals changes, and
therefore also the neighborhood size.

seen as the changing exploration capacity of the operator as the population tends to converge, that is, the
individuals from the population are getting closer, which means that the EA converges.

Finally, in Table 24.1, we provide some commonly used reproduction operators for popular solution
representations.

Exploitation versus Exploration
Of great importance for the success of an EA is the right balance between exploitation and exploration. The
term exploitation refers to the use of the accumulated search experience, whereas the term exploration
generally refers to the search for areas in the search space that were not visited yet. In terms of exploitation,
it proved in many EA applications quite beneficial to use improvement mechanisms to increase the fitness
of individuals. While the use of a population ensures an exploration of the search space, the use of local
search techniques helps to quickly identify “good” areas in the search space. Another exploitation strategy
is the use of recombination operators that explicitly try to combine “good” parts of individuals (rather
than, e.g., a simple one-point crossover for bit strings). This may guide the search performed by EAs to
areas of individuals with certain “good” properties. Techniques of this kind are sometimes called linkage
learning or building block learning (see, e.g., Refs. [25–28]). Furthermore, generalized recombination
operators which incorporate the notion of “neighborhood search” into EC have been proposed in the
literature. An example can be found in Ref. [29].

One of the major difficulties of EAs (especially when applying local search) is the premature convergence
toward suboptimal solutions. The simplest mechanism to increase exploration is the use of a mutation
operator. The simplest form of a mutation operator just performs a small random perturbation of an
individual, introducing a kind of noise. To avoid premature convergence there are also a number of other
ways of maintaining the population diversity. Probably the oldest strategies are crowding [18] and its close
relative, preselection [30]. Newer strategies are fitness sharing [31], (respectively niching [32]), which is a

TABLE 24.1 Some Representative Solution Encodings together with Commonly Used
Reproduction Operators

Solution Representation Reproduction Operators

Binary strings One-point crossover, uniform crossover, flip mutation, etc.

Permutations Partially matched crossover (PMX), order crossover (OX),
SWAP mutation, etc.

Gray value encoding (i.e., real vectors) Arithmetic crossover, k-point crossover, Gauss mutation, etc.

Integer vectors k-point crossover, little and big creep mutation, random
mutation, etc.

S-expressions Subree exchange, node function alteration, etc.

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C024 March 20, 2007 13:30

Evolutionary Computation 24-7

collective name, whereby the reproductive fitness allocated to an individual in a population is reduced
proportionally to the number of other individuals that share the same region of the search space.

24.2.1 Families of Evolutionary Algorithms

Evolutionary algorithms, as we know them today, were first introduced during the late 1960s and early
1970s. In these years, scientists from different places in the world almost simultaneously began to transfer
nature’s optimization capabilities into algorithms for search and problem solving. The existence of these
different primordial sources resulted in the rise of three different EA models. These classical families are:

• Evolutionary programming. This EA family originated from the work of Fogel et al. [5]. EP focuses on
the adaption of individuals rather than on the evolution of their genetic information. This implies
a much more abstract view of the evolutionary process, in which the behavior of individuals
is directly modified (as opposed to manipulating its genes). This behavior is typically modeled
by using complex data structures such as finite automata or graphs (see, e.g., Figure 24.5 [d]).
Traditionally, EP uses asexual reproduction (i.e., mutation) by introducing slight changes in an
existing solution, and selection techniques based on direct competition among individuals.

• Evolutionary strategies. These techniques were initially developed by Rechenberg [6]. Their original
goal was to create a tool for solving engineering problems. With this goal in mind, these techniques
are characterized by manipulating arrays of floating-point numbers (see, e.g., Figure 24.5 [c]).
Nowadays also exist versions of ES for discrete problems, but still their application to continuous
optimization problems is predominant. As in EP, mutation is often the unique reproductive op-
erator used in ES; however, sometimes also recombination operators are used within ES. A very
important feature of ES is the utilization of self-adaptive mechanisms for controlling the application
of mutation. These mechanisms are aimed at optimizing the progress of the search by evolving not
only the individuals, but also some parameters for mutating these individuals (in a typical situation,
an ES individual is a pair (i, −→σ ), where −→σ is a vector of standard deviations used to control the
Gaussian mutation exerted on the individual i).

• Genetic algorithms. These are possibly the most widespread variant of EAs. They were first introduced
by Holland [7]. Holland’s work had a great influence on the developments in the field, to the point
that some aspects of his work nearly achieved dogma status (e.g., the ubiquitous use of binary strings
as solution representation, as shown, for example, in Figure 24.5 [a]). Later, the seminal book of
Goldberg [8] resulted in a widespread use of GAs for discrete optimization. The main feature of
GAs is the use of a recombination (or crossover) operator as the primary search tool. The rationale
is the assumption that different parts of the optimal solution can be independently discovered,
and be later combined to create better solutions. Additionally, mutation is used, but is generally
considered a secondary background operator whose purpose is merely “to keep the pot boiling” by
introducing new information in the population. However, this classical interpretation is no longer
considered valid nowadays.

The three EA families described above have not developed in complete isolation from each other. On
the contrary, numerous researchers have built bridges among them, and cross-fertilization was and is
common. As a result of this interaction, the borders of these classical families tend to be fuzzy (the reader
may consult [12] for a unified presentation of EA families), and new variants have emerged of which we
cite the following ones:

• Evolution programs. This term owes to Michalewicz [33], and comprises those techniques that, while
using the fundamental principles of GAs, evolve complex data structures, as in EP. Nowadays, it is
accepted to use the acronym GA—or more generally EA—to refer to such an algorithm, leaving the
term “traditional GA” to denote classical bit-string-based GAs.

• Genetic programming. The roots of GP can be traced back to the work of Cramer [34]. However,
nowadays this technique is mostly associated with Koza, who promoted GP to its current status [35].
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Essentially, GP could be viewed as an evolution program in which the structures evolved represent
computer programs. Such programs are typically encoded by trees (see, e.g., Figure 24.5 [e]). The
ultimate goal of GP is the automatic design of a program for performing a certain task, formulated
as a collection of (input, output) examples.

• Memetic algorithms (MA). These techniques owe their name to Moscato and Cotta [36]. Some
widespread misconception equates MAs to EAs augmented with local search; although such an
augmented EA could be indeed considered an MA, there are additional properties that define MAs
(e.g., restarting procedures). In general, an MA is a problem-aware EA. This problem awareness is
typically acquired by combining the EA with existing algorithms such as hill climbing, branch and
bound, etc.

• Scatter search. The original ideas for SS go back to Glover [37] and originated from strategies for
creating composite decision rules and surrogate constraints [38]. The generation of new solutions is
achieved by systematically following unifying principles for joining solutions based on generalized
path constructions in Euclidean spaces. The terminology in SS is slightly different to the rest of
the EAs. For example, the main population of individuals is called the reference set. This reference
set is manipulated by the application of the following five methods: (1) diversification generation,
(2) improvement, (3) reference set update, (4) subset generation, and (5) solution combination.

24.3 Advanced EA Research Topics

Due to their success in practice, EAs have received an evergrowing amount of attention during the last
two decades. Nowadays, the diversity of research on EAs is impressive. Besides the improvement of their
theoretical understanding, the main aims of this research concern their efficiency and the discovery of new
problem domains to which they can be applied. More and more advanced versions of EAs for increasingly
complex problems were developed. In the following we will shortly deal with the following examples:
EAs for constrained optimization problems (COPs), for dynamic optimization problems (DOPs), and for
multiobjective optimization problems (MOPs). Figure 24.8 shows a time line which—in addition to the
main EA families—indicates the start of the research activities in these areas. Furthermore, we will shortly
present parallel EAs (PEAs) whose aim is to exploit the implicit parallelism that is based on the fact that
EAs are population-based techniques.

Constrained Problems
So far we have assumed that the outcome of a reproduction operator consists always of one ore more
feasible individuals. However, sometimes reproduction operators are applied that do not guarantee that.
This is the case in particular when real-world problems are concerned that often include constraints
in their formulation. However, early applications of EAs were designed to solve mainly unconstrained

GAs (’75)

ES (’73/’77)

EP (’60)

GP (’92)

DOPs (’87)

PEAs (’87)

COPs (’87)

MOPs (’85)

FIGURE 24.8 Time line of EA research including the main EA families and some new developments. The dates
indicate the beginning of the respective research activity.
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FIGURE 24.9 Dynamic environments seen as a three-dimensional field.

combinatorial and continuous optimization problems. As soon as the research community began to
explore the application of EAs to more realistic problems, several constraint handling techniques were
accordingly developed. The simplest method is to reject infeasible individuals. Nevertheless, for some
highly constrained problems (e.g., for timetabling problems) it might be very difficult to find feasible
individuals. A very popular method is the incorporation of constraints into the fitness function through a
penalty factor. However, this technique experiences many drawbacks due to the need of finding appropriate
penalty factors. Therefore, other proposals were designed to automatically adapt the penalty factors during
the evolutionary process. In addition, plenty of works have been devoted in the last years to develop
improved and alternative constraint-handling techniques including advanced penalty approaches, repair
of infeasible individuals, design of special representations and operators, and several versions of hybrid
methods. For a comprehensive survey of constraint-handling techniques see Ref. [39].

Dynamic Problems
One of the most recent applications of EAs is the application to DOPs. These are problems that exhibit
changes in the problem formulation during the algorithms’ execution. These changes might concern
different parts of the problem formulation. For example, Morrison [40] exclusively dealt with changes
of the objective function. These problems are also called problems with a dynamic fitness landscape. A
different example is the work of Branke [41], who adopts a more general point of view in which the
problem might change either in the objective function, in the problem instance, or in terms of the problem
constraints (see Figure 24.9). A general definition of DOPs does not exist so far. However, Branke gives a
categorization of dynamic environments with respect to the frequency, severity, predictability, and cycle of
the changes [41]. The central aspects of EAs that are specially designed for dynamic optimization are the
introduction and maintainance of diversity in the population, and the use of implicitly or explicitly stored
search history. These adaptive EAs must find a trade-off between the quality, robustness, and flexibility of
the found solutions.

Multiobjective Problems
Multiobjective optimization is another important research field in which EAs have been successfully applied
[42]. As a population-based technique, EAs seem to be particularly suitable to face this class of problems.
In contrast to other traditional techniques, EAs provide an entire set of Pareto optimal solutions in a single
run. During the last years a number of different EA-based approaches have been proposed to deal with
multiobjective optimization. Some of the most popular ones are (according to Coello [42]): the aggregation
of the objective functions (combinations of all objectives into a single one), VEGA2 (an extended version
of Grefenstette’s GENESIS that implements an alternative selection operator), MOGA (is a scheme in
which the population is ranked on the basis of nondominance; this rank is used to accordingly calculate
each individuals’ fitness value), NSGA (bases its behavior on successive classification and manipulation
of nondominated individuals; this allows to search and quickly converge to nondominated regions), and

2VEGA was probably the first approach proposed by Schaffer [43] explicitly aimed at solving MOPs.
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FIGURE 24.10 The structured-population genetic algorithm cube.

NPGA (implements an extended version of tournament selection in which the competitors compete against
a certain number of other individuals). Of course, each of these approaches has strengths and weakness.
However, they offer a clear evidence of the intrinsic flexibility and robustness of EAs which makes them
suitable for tackling MOPs.

Parallel Models and Algorithms
Even though the use of populations in EAs has many advantages, EAs often suffer from the disadvantage
of being highly computation time consuming. This is especially the case when the application of the
fitness function is costly, or when the population size is required to be large. However, EAs are naturally
prone to parallelism since the most usual operations on the individuals are mostly independent from
each other. Besides that, the whole population (also called panmixia) can be geographically structured in
separate subpopulations, often leading to better algorithms. The geographical structuring of a population
is a form of decentralization. Decentralizing an EA by structuring the population has many advantages,
but using structured algorithms may have some disadvantages too, as for example, the higher complexity
of implementation and analysis, added to the fact that decentralizing the algorithm is not always better.
Research on EAs that exploit these aspects, called PEAs [44], give often evidence of higher efficiency, larger
diversity maintenance, higher availability of memory and CPU resources, and multisolution capabilities
of these algorithms. In the following, we shortly describe two important models of PEAs.

• In coarse-grained or distributed EAs (dEAs) the population is partitioned into several subpopula-
tions (islands). Each island is treated independently, and there are exchanges of information among
them.

• In fine-grained or cellular evolutionary algorithms (cEAs) the individuals are placed on a toroidal
N-dimensional grid (where N = 1, 2, 3 is used in practice), with one individual per grid location
(this location is often referred to as a cell, the fine-grained approach being also known as cellular).
Every individual has a neighborhood and can only be recombined with individuals from this
neighborhood. The main difference of a cEA with respect to a panmistic EA is its decentralized
selection, since the reproductive loop is performed inside each of the numerous pools. Hereby,
each individual has its own pool composed of neighboring individuals, and at the same time, this
individual belongs to many other pools. Usually, a two-dimensional structure with overlapped
neighborhoods is used to provide a smooth diffusion of good solutions along the grid.

The relation between dEAs and cEAs is graphically represented in Figure 24.10. Structured EAs usually
outperform standard EAs (i.e., unstructured EAs) numerically. A way for further improving PEAs lies in
parallelized implementations and further decentralization.

24.4 EAs in the Context of Metaheuristics

In a wider context, EAs belong to the class of metaheuristic algorithms, which are search algorithms
for approximate optimization. The term metaheuristic, first introduced in Ref. [45], derives from the
composition of two Greek words. Heuristic is derived from the verb heuriskein (ευρισκειν) which means
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“to find”, while the suffix meta means “beyond, in an upper level.” Before this term was widely adopted,
metaheuristics were often called modern heuristics [46]. Except for EAs, this class of algorithms includes3—
but is not restricted to—ant colony optimization (ACO), iterated local search (ILS), simulated annealing
(SA), and tabu search (TS).

Metaheuristics can be characterized as high-level strategies for exploring search spaces by defining
general rules that are later customized to the problem at hands. Of great importance hereby is that a
dynamic balance is achieved between diversification and intensification. The term diversification generally
refers to the exploration of the search space, whereas the term intensification refers to the exploitation of
the accumulated search experience. These terms stem from the TS field [47] and it is important to clarify
that the terms exploration and exploitation are used instead in EC [48] (as outlined before). The balance
between diversification and intensification is important, on one side to quickly identify regions in the
search space with high-quality solutions, and on the other side not to waste too much time in regions of
the search space which are either already explored or which do not provide high-quality solutions. Blum
and Roli [49] elaborated on the importance of the two concepts in their survey on metaheuristics.

The search strategies of different metaheuristics are highly dependent on the philosophy of the meta-
heuristic itself. There are several different philosophies apparent in the existing metaheuristics. Some of
them can be seen as “intelligent” extensions of local search algorithms. The goal of this kind of meta-
heuristic is to escape from local minima to proceed in the exploration of the search space and to move
on to find other hopefully better local minima. This is, for example, the case in TS, ILS, VNS, and SA.
These metaheuristics (also called trajectory methods) work on one or several neighborhood structure(s)
imposed on the search space. We can find a different philosophy in algorithms such as ACO and EAs. They
incorporate a learning component in the sense that they implicitly or explicitly try to learn correlations
between decision variables to identify high-quality areas in the search space. This kind of metaheuristic
performs, in a sense, a biased sampling of the search space. For instance, in EAs this is achieved by recom-
bination of solutions and in ACO by sampling the search space at each iteration according to a probability
distribution.

An important research direction is the hybridization of EAs with other techniques for optimization,
and in particular with other metaheuristics. One of the most popular ways of hybridization concerns the
use of trajectory methods in EAs. Many of the successful applications of EC make use of this feature. The
reason for that becomes apparent when analyzing the respective strengths of trajectory methods and EAs.
The power of EAs is certainly based on the concept of recombining solutions to obtain new ones. This
allows to make guided steps in the search space which are usually “larger” than the steps done by trajectory
methods. In other words, a solution resulting from a recombination in EAs is usually more “different”
from the parents than, say, a predecessor solution to a successor solution (obtained by applying a move)
in TS. We also have “large” steps in trajectory methods such as ILS and VNS, but in these methods the
steps are usually not guided (these steps are rather called “kick move” or “perturbation” indicating the lack
of guidance). It is interesting to note that in population-based methods there are mechanisms in which
elite solutions from the search history influence the search process in the hope of finding better solutions
in-between those elite solutions and the current solutions. In EAs this is often obtained by keeping the best
(or a number of the best) solution(s) found since the beginning of the respective run of the algorithm in
the population. This is called a steady state evolution process. Scatter search performs a steady-state process
by definition. In contrast, the strength of trajectory methods is rather to be found in the more structured
way in which they explore a promising region in the search space. In this way the danger of being close to
good solutions but “missing” them is not as high as in population-based methods such as EAs.

In summary, population-based methods are better in identifying promising areas in the search space,
whereas trajectory methods are better in exploring promising areas in the search space. Thus, EA hybrids
that in some way manage to combine the advantage of population-based methods with the strength of
trajectory methods are often very successful.

3In alphabetical order.
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24.5 Applications and New Trends

Evolutionary algorithms have been applied to most optimization problems (discrete, continuous, as well as
multiobjective). In the classical area of combinatorial optimization, for example, EAs have been applied to
N P -hard problems such as the traveling salesman problem, the multiple knapsack problem, number parti-
tioning, max independent set, and graph coloring, among others. Other nonclassical–yet important–COPs
to which EAs have been applied are scheduling (in many variants), timetabling, vehicle routing, quadratic
assignment, placement problems, and transportation problems. Telecommunications is also a field that has
witnessed successful applications of EAs. For example, EAs have been applied to the placement of antennas
and converters, frequency assignment, digital data network design, predicting bandwidth demands in
ATM networks, error code design, etc. Evolutionary algorithms have been actively used in electronics and
engineering as well. For example, work has been done in structure optimization, aeronautic design, power
planning, circuit design, computer-aided design, analogue network synthesis, and service restoration,
among other areas. For an extensive collection of references to EC applications we refer to Ref. [3].

In addition to the above mentioned areas of applications there is an increasing interest in new areas
for which EAs seems to be a good choice. Recent successes were obtained, for example, in the rapidly
growing bioinformatics area (see, e.g., Refs. [50–52]), software engineering [53], the banking sector [54,55],
computer imagery [56], drug design [57], clustering [58], cryptology [59], games [60,61], elevator groups
[62], and evolvable hardware [63].

The research field of EC is vast, indeed, and continuously under development. This is indicated by a
significant number of international conferences such as

• the International Congress on Evolutionary Computation (CEC);
• the Genetic and Evolutionary Computation Conference (GECCO);
• the European Conference on Evolutionary Computation in Combinatorial Optimization (EvoCOP);
• the Metaheuristics International Conference (MIC); and
• the International Conference on Parallel Problems Solving in Nature (PPSN), among others.

Futhermore exist a number of periodical journals such as Evolutionary Computation, and IEEE Transactions
on Evolutionary Computation, etc., which are devoted specifically to this area. The interested reader may also
want to query any bibliographical database or web search engine for “evolutionary algorithm application”
to get an idea of the vast number of problems that have been tackled with EAs.

24.6 Conclusions

In this chapter we gave an introduction into the working of EAs. We presented an overview of the main
families of EAs as well as a description of their main components from a unifying perspective. Furthermore
we dealt with advanced research directions in EC such as parallel models and algorithms, and the application
of EAS to constrained, dynamic, and multiobjective problems. We have put EAs into perspective by
describing them as a member of the class of metaheuristic algorithms, highlighting hereby the strengths
of EAs in contrast to the strengths of other metaheuristics. Finally, we briefly dealt with typical as well as
with more recent EA applications. The rich diversity of EA applications gives a flavor of the popularity
and the generality of these techniques.
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ontogenetic, and epigenetic view of bio-inspired hardware systems, IEEE Trans. Evol. Comput., 1(1),
83, 1997.

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C025 March 20, 2007 13:33

25
Simulated Annealing

Emile Aarts
Philips Research Laboratories

Jan Korst
Philips Research Laboratories

Wil Michiels
Philips Research Laboratories

25.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25-1
25.2 Basic Simulated Annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25-2
25.3 Practical Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25-4

Static Cooling Schedules • Dynamic Cooling Schedules

25.4 Asymptotic Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25-5
25.5 Equilibrium Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25-7
25.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25-10

25.1 Introduction

In the early 1980s, Kirkpatrick et al. [1] and, independently, Černý [2] introduced simulated annealing as
a randomized local search algorithm to solve combinatorial optimization problems. In a combinatorial
optimization problem we are given a finite or countably infinite set of solutions S and a cost function
f that assigns a cost to each solution. The problem is to find a solution i∗ ∈ S for which f (i∗) is either
minimal or maximal, depending on whether the problem is a minimization or a maximization problem.
Such a solution i∗ is called a (globally) optimal solution. Without loss of generality, we restrict ourselves
in this chapter to minimization problems.

Simulated annealing is a local search algorithm, which means that it starts with an initial solution and
then searches through the solution space by iteratively generating a new solution that is “near” to the
current solution. A neighborhood function N : S → 2S defines for any given solution s ∈ S, the set
N(s ) ⊆ S of solutions that are near to it. The set N(s ) is called the neighborhood of solution s , and each
s ′ ∈ N(s ) is called a neighbor of s . The process of searching through the solution space can be modeled
as a walk through a directed graph G = (V, E ), where node set V is given by the solution space S and arc
set E contains arc (i, j ) if and only if j ∈ N(i). This graph G is called the neighborhood graph.

The solution space of combinatorial optimization problems can typically be formulated in terms of
discrete structures, such as sequences, permutations, graphs, and partitions. Local search uses these repre-
sentations by defining neighborhood functions in terms of local rearrangements, such as moving, swapping,
and replacing items, that can be applied to a representation to obtain a neighboring solution.

The simplest form of local search is iterative improvement. An iterative improvement algorithm con-
tinuously explores neighborhoods for a solution with lower cost. If such a solution is found, then the
current solution is replaced by this better solution. The procedure is repeated until no better solutions can
be found in the neighborhood of the current solution. By definition, iterative improvement terminates in
a local optimum, which is a solution having a cost at least as good as all of its neighbors.

A disadvantage of using iterative improvement is that it easily gets trapped in poor local optima. To
avoid this disadvantage, simulated annealing accepts in a limited way neighboring solutions with a cost
that is worse than the cost of the current solution.

25-1
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25.2 Basic Simulated Annealing

Originally, the use of simulated annealing in combinatorial optimization was heavily inspired by an
analogy between the physical annealing process of solids and the problem of solving large combinatorial
optimization problems. Since this analogy is quite appealing we use it here as a background for introducing
simulated annealing.

In condensed matter physics, annealing is known as a thermal process for obtaining low-energy states
of a solid in a heat bath. The process consists of the following two steps [1]:

• Increase the temperature of the heat bath to a maximum value at which the solid melts.
• Decrease carefully the temperature of the heat bath until the particles arrange themselves in the

ground state of the solid.

In the liquid phase all particles arrange themselves randomly, whereas in the ground state of the solid, the
particles are arranged in a highly structured lattice, for which the corresponding energy is minimal. The
ground state of the solid is obtained only if the maximum value of the temperature is sufficiently high and
the cooling is done sufficiently slow. Otherwise the solid will be frozen into a metastable state rather than
into the true ground state.

It is known that, if the lowering of the temperature is done sufficiently slow, the solid can reach thermal
equilibrium at each temperature. Already in 1953, Metropolis et al. [28] introduced a simple algorithm
for simulating the evolution of a solid in a heat bath to thermal equilibrium. Their algorithm is based on
Monte Carlo techniques [3], and generates a sequence of states of the solid in the following way. Given a
current state i of the solid with energy E i , a subsequent state j is generated by applying a perturbation
mechanism that transforms the current state into a next state by a small distortion, for instance, by a
displacement of a single particle. The energy of the next state is E j . If the energy difference, E j − E i , is
less than or equal to 0, the state j is accepted as the current state. If the energy difference is greater than 0,
then state j is accepted with a probability given by

exp

(
E i − E j

kB T

)

where T denotes the temperature of the heat bath and kB a physical constant known as the Boltzmann
constant. The acceptance rule described above is known as the Metropolis criterion and the algorithm that
goes with it is known as the Metropolis algorithm. In the Metropolis algorithm thermal equilibrium is
achieved by generating a large number of transitions at a given temperature value. Thermal equilibrium
is characterized by the Boltzmann distribution, which gives the probability of the solid to be in a state i
with energy E i at temperature T , and is given by

IPT {X = i} = exp(−E i /kB T)
∑

j
exp(−E j /kB T)

(25.1)

where X is a random variable denoting the current state of the solid and the summation extends over all
possible states. As we show below, the Boltzmann distribution plays an essential role in the analysis of the
convergence of simulated annealing.

Returning to simulated annealing, the Metropolis algorithm can be used to generate a sequence of
solutions of a combinatorial optimization problem by assuming the following equivalences between a
physical many-particle system and a combinatorial optimization problem:

• Solutions in the combinatorial optimization problem are equivalent to states of the physical system.
• The cost of a solution is equivalent to the energy of a state.

Simulated annealing can be viewed as a sequence of Metropolis algorithms, evaluated at decreasing values
of the temperature.
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procedure simulated¯annealing
begin

i := initial solution
c := initial value
repeat

for l := 1 to L do
begin

probabilistically generate neighbor j of i
if f(j) ≤ f(i) then accept j
else accept j with probability

end
update L
decrease c

until stopcriterion
end;

exp f(i)−f(j)
c

FIGURE 25.1 The simulated annealing algorithm in pseudo-code.

We now formulate simulated annealing in terms of a local search algorithm. For an instance (S, f ) of
a combinatorial optimization problem and a neighborhood function N, Figure 25.1 describes simulated
annealing in pseudocode.

The algorithm generates neighbors randomly. If the cost of a neighbor j is at most the cost of the current
solution i , then j is always accepted. If neighbor j has higher cost than i , then j is still accepted with a
positive probability of

exp

(
f (i) − f ( j )

c

)

where c is a control parameter that plays the role of the temperature. The probability of accepting a
deterioration in cost depends on the value of the control parameter c : the higher the value of the control
parameter, the higher the probability of accepting the deterioration.

The value of the control parameter is decreased during the execution of the algorithm. In Figure 25.1 the
value L specifies the number of iterations that the control parameter is kept constant before it is decreased.
The values of c and L and the stop criterion are specified by the “cooling schedule.”

Initially, at large values of c , large deteriorations will be accepted; as c decreases, only smaller deterio-
rations will be accepted and, finally, as the value of c approaches 0, no deteriorations will be accepted at
all. Note that there is no limitation on the size of deterioration with respect to its acceptance. In simulated
annealing, arbitrarily large deteriorations are accepted with positive probability; for these deteriorations
the acceptance probability is small, however. This feature means that simulated annealing, in contrast
to iterative improvement, can escape from local minima while it still exhibits the favorable features of
iterative improvement, namely simplicity and general applicability. The speed of convergence of simulated
annealing is determined by the cooling schedule. In Section 25.4, we will indicate that under certain mild
conditions on the choice of the cooling schedule simulated annealing converges asymptotically to the set
of globally optimal solutions.

Comparing simulated annealing with iterative improvement it is evident that simulated annealing can
be viewed as a generalization. Simulated annealing becomes identical to iterative improvement in the case
where the value of the control parameter is taken equal to 0. With respect to a comparison between the
performances of both algorithms we mention that for most problems simulated annealing performs better
than iterative improvement, in the case that we give iterative improvement the same amount of time by
repeating it for a number of different initial solutions.

The remainder of this chapter is organized as follows. Section 25.3 is devoted to practical cooling sched-
ules. The asymptotic convergence of simulated annealing is discussed in Section 25.4. As an intermediate
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result, we mention in Section 25.4 that if the value of the control parameter is kept constant, then the
probability distribution of the solutions converges to a unique stationary distribution. In Section 25.5 we
derive some characteristic features for simulated annealing in the case that this stationary distribution is
attained. We conclude Section 25.6 with some final remarks.

25.3 Practical Implementations

To implement simulated annealing we have to specify the cooling schedule that governs the convergence
of the algorithm. A cooling schedule specifies a finite sequence of values of the control parameter and
the number of iterations that are executed at each value of the control parameter. More precisely, it is
specified by

• an initial value of the control parameter c0,
• a decrement function for lowering the value of the control parameter,
• a final value of the control parameter specified by a stop criterion, and
• for each value of the control parameter a finite number that specifies the number of iterations that

are made with this value of the control parameter.

The search for adequate cooling schedules has been the subject of many studies. Reviews are given by Van
Laarhoven and Aarts [4], Collins et al. [5], and Romeo and Sangiovanni-Vincentelli [6]. A more recent
empirical study on several cooling schedules is given by Triki et al. [7]. Below we discuss some results.

Most of the existing work on cooling schedules presented in the literature deals with heuristic schedules.
We distinguish between two broad classes: static and dynamic schedules. In a static cooling schedule the
parameters are fixed; they cannot be changed during execution of the algorithm. In a dynamic cooling
schedule the parameters are adaptively changed during execution of the algorithm. Below we illustrate
both types of cooling schedules.

25.3.1 Static Cooling Schedules

The following simple schedule is known as the geometric schedule. It originates from the early work on
cooling schedules by Kirkpatrick et al. [1], and is still used in many practical situations.

Initial value of the control parameter. To ensure that initially a sufficiently large number of solutions is
accepted, one may choose c0 = � fmax, where � fmax is the maximal difference in cost between any two
neighboring solutions. Exact calculation of � fmax is quite time-consuming in many cases. However, one
often can give simple estimates of its value.

Lowering the control parameter value. The decrement function is given by

ck+1 = α · ck , k = 0, 1, . . .

where α is a positive constant smaller than but close to 1. Typical values lie between 0.8 and 0.99.

Final value of the control parameter. The final value is fixed at some small value, which may be related to
the smallest possible difference in cost between two neighboring solutions.

Number of iterations that the control parameter is kept constant. This number is fixed and may be related to
the size of the neighborhoods in the problem instance at hand.

25.3.2 Dynamic Cooling Schedules

There exist many extensions of the simple static schedule presented above that lead to a dynamic schedule.
For instance, a sufficiently large value of c0 may be obtained by starting off at a small positive value of c0 and
multiplying it with a constant factor, larger than 1, until the fraction ω(c0) of accepted solutions is close
to 1. Typical values of ω(c0) lie between 0.9 and 0.99. An adaptive calculation of the final value of the control
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parameter may be obtained by terminating the execution of the algorithm if the best solution cost obtained
at value c of the control parameter remains unchanged for a number of consecutive values of c . Clearly such
a value exists for each local minimum that is found. The number of iterations that the control parameter
is kept constant may be determined by requiring that at each value c of the control parameter, a minimum
number of solutions is accepted. However, since solutions are accepted with decreasing probability, one
would obtain L → ∞ for c ↓ 0. Therefore, L is usually bounded by some constant L max to avoid that c
is kept constant for an extremely large number of iterations.

In addition to this basic dynamic schedule the literature presents a number of more elaborate schedules.
Most of these schedules are based on a statistical analysis of simulated annealing using the equilibrium
statistics of Section 25.5.

25.4 Asymptotic Convergence

Simulated annealing can be mathematically modeled by means of Markov chains. For details on Markov
chain theory we refer to Feller [8], Isaacson and Madsen [9], and Seneta [10]. In this model, we view
simulated annealing as a Markov chain that consists of a sequence of trials, where the outcome of the kth
trial corresponds to the solution that simulated annealing visits in the kth iteration.

Let (S, f ) be a problem instance, N a neighborhood function, X(k) a random variable denoting the
outcome of the kth trial, and ck the value of the control parameter at the kth trial. Then the transition
probability at the kth trial for each pair i, j ∈ S of outcomes is defined as

Pi j (k) = IP{X(k) = j |X(k − 1) = i}

=





Gi j (ck)Ai j (ck) if i �= j

1 − ∑

l∈S,l �=i
G il (ck)Ail (ck) if i = j (25.2)

where Gi j (ck) denotes the generation probability, that is, the probability of generating a solution j when
being at solution i , and Ai j (ck) denotes the acceptance probability, that is, the probability of accepting
solution j once it is generated from solution i . The most frequently used choices for these probabilities
are the following [11]:

Gi j (ck) =
{ |N(i)|−1 if j ∈ N(i)

0 if j /∈ N(i)
(25.3)

and

Ai j (ck) =
{

1 if f ( j ) ≤ f (i)
exp(( f (i) − f ( j ))/ck) if f ( j ) > f (i)

(25.4)

Instead of one long Markov chain, we can also view simulated annealing as a process in which a sequence
of Markov chains is generated, one for each value of the control parameter. In this case, the transition
probabilities of each Markov chain are independent of k, in which case the resulting Markov chain is called
time-independent or homogeneous. We now focus on this homogeneous model.

Using the theory of Markov chains it is fairly straightforward to show that, under the condition that the
neighborhood graph is strongly connected and finite and not all solutions are optimal—in which case the
Markov chain is irreducible and aperiodic—there exist a unique stationary distribution of the outcomes
to which the Markov chain converges. Under the additional condition that the generation matrix satisfies
Gi j = G j i for all solutions i, j ∈ S, this distribution assumes the following form [11], where S∗ denotes
the set of globally optimal solutions.

Theorem 25.1

Let (S, f ) be an instance of a combinatorial optimization problem with S∗ �= S and S finite. Furthermore, let
N be a neighborhood function that induces a strongly connected neighborhood graph. If the generation matrix
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satisfies Gi j = G j i for all i, j ∈ S, then, after a sufficiently large number of transitions at a fixed value c of
the control parameter, applying the transition probabilities of (25.2), (25.3), and (25.4), simulated annealing
will find a solution i ∈ S with a probability given by

IPc {X = i}def=qi (c) = 1

N0(c)
exp

(

− f (i)

c

)

(25.5)

where X is a stochastic variable denoting the current solution obtained by simulated annealing and

N0(c) =
∑

j∈S

exp

(

− f ( j )

c

)

denotes a normalization constant.

A proof of this theorem is considered beyond the scope of this chapter. For those interested we refer to
Aarts and Korst [11]. The probability distribution of (25.5), which besides stationary distribution is also
called equilibrium distribution, is the equivalent of the Boltzmann distribution of (25.1). We can now
formulate the following important result.

Theorem 25.2

Let the components of distribution q(c) be given by (25.5). Then

lim
c↓0

qi (c)
def= q∗

i = 1

|S∗|χ(S∗)(i)

where for any two sets A and A′ ⊆ A the characteristic function χ is defined such that χ(A′)(a) = 1 if a ∈ A′
and χ(A′)(a) = 0 if a ∈ A \ A′.

Proof
Using the fact that for all a ≤ 0, lim

x↓0
e

a
x = 1 if a = 0, and 0 otherwise, we obtain

lim
c↓0

qi (c) = lim
c↓0

exp
(
− f (i)

c

)

∑
j∈S exp

(
− f ( j )

c

)

= lim
c↓0

exp
(

f ∗− f (i)
c

)

∑
j∈S exp

(
f ∗− f ( j )

c

)

= lim
c↓0

1
∑

j∈S exp
(

f ∗− f ( j )
c

)χ(S∗)(i)

+ lim
c↓0

exp
(

f ∗− f (i)
c

)

∑
j∈S exp

(
f ∗− f ( j )

c

)χ(S\S∗)(i)

= 1

|S∗|χ(S∗)(i) + 0

|S∗|χ(S\S∗)(i),

which completes the proof.

The results of Theorems 25.1 and 25.2 are quite interesting since they guarantee asymptotic convergence
of the simulated annealing algorithm to the set of globally optimal solutions under the condition that the
stationary distribution of (25.5) is attained at each value of c . More specifically, it implies that asymptotically
optimal solutions are obtained. This can be expressed as

lim
c↓0

lim
k→∞

IPc {X(k) ∈ S∗} = 1
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We note that it can be proved that this convergence result still holds if we replace the constraint that the
neighborhood function satisfies |N(i)| = |N( j )| for all i, j ∈ S by the constraint that the neighborhood
graph has to be symmetric [12,29].

Of course, it is not possible to implement simulated annealing such that it consists of a sequence
of infinitely long Markov chains. However, we now indicate that simulated annealing also converges in a
more realistic inhomogeneous model in which simulated annealing is modeled by a single inhomogeneous
Markov chain, where the value of the control parameter may be changed after each iteration. Necessary
and sufficient conditions for asymptotic convergence in this case have been derived by Hajek [13]. To
discuss this result we need the following definitions.

For any two solutions i, j ∈ S, j is reachable at height h from i if there exists a sequence of solutions
i = l0, l1, . . . , l p = j ∈ S with Glk ,lk+1 (c) > 0 for k = 0, . . . , p − 1 and f (lk) ≤ h for all k = 0, . . . , p.

The depth d(ı̂) of a local optimum ı̂ is the smallest positive number x , such that there is a solution
j ∈ S with f ( j ) < f (ı̂) that is reachable at height f (ı̂) + x from ı̂ . By definition, for an optimal solution
i∗, d(i∗) = ∞.

We now can formulate Hajek’s result.

Theorem 25.3

Given are an instance (S, f ) of a combinatorial optimization problem with S finite and a suitable neighborhood
function. Furthermore, let {ck}∞k=1 be a sequence of values of the control parameter satisfying

ck = �

log(k + 1)
, k = 0, 1, . . .

for some constant �. Then asymptotic convergence of simulated annealing to the set of globally optimal
solutions, using the transition probabilities of (25.2), (25.3), and (25.4), is guaranteed if and only if

• the neighborhood graph is strongly connected,
• i is reachable from j at height h if and only if j is reachable from i at height h, for arbitrary i, j ∈ S

and h, and
• the constant � satisfies � ≥ D, where D is the depth of the deepest local, nonglobal minimum.

Kern [14] has addressed the problem of calculating the value of D. In particular, he showed for a number
of problems that it is unlikely that D can be calculated in polynomial time for arbitrary instances. Kern
also presents bounds on the value of D for several combinatorial optimization problems.

Several authors have addressed the convergence of simulated annealing for more general forms of
the generation and acceptance probabilities than the probabilities of (25.3) and (25.4). Especially the
use of more general forms of the acceptance probability has been studied extensively with the aim to
find probabilities different from the exponential form of the Metropolis criterion that exhibit a similar
asymptotic convergence behavior. However, this has not resulted in practical acceptance probabilities that
are essentially different from the ones used above.

Summarizing, simulated annealing can find optimal solutions with probability 1 if it is allowed an
infinite number of transitions. This result is mainly of theoretical interest. The real strength of simulated
annealing lies in the good practical results that can be obtained by applying more efficient finite-time im-
plementations, which we discussed in Section 25.3. Several papers derive theoretical results for finite-time
implementations of simulated annealing [15–27]. These results are mainly concerned with the application
of simulated annealing to a particular combinatorial optimization problem and not with the algorithm as
a whole as is the case for the convergence result discussed.

25.5 Equilibrium Statistics

To enhance our understanding of the simulated annealing algorithm, we discuss in this section some
characteristic features of the algorithm in the case that we are at equilibrium. We will assume that all
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conditions of Theorem 25.1 are satisfied. This means that the equilibrium is given by the stationary
distribution defined by (25.5), that is, at any value c of the control parameter, the probability of being in
solution i ∈ S is given by qi (c) = 1

N0(c) exp(− f (i)
c ), where N0(c) = ∑

j∈S exp(− f ( j )
c ). We can write

the expected cost 〈 f 〉c and the variance σ 2
c of the cost as

〈 f 〉c =
∑

i∈S

f (i)qi (c) (25.6)

and

σ 2
c =

∑

i∈S

( f (i) − 〈 f 〉c )2 qi (c) (25.7)

respectively. Note that because S �= S∗ by one of the conditions of Theorem 25.1 and because qi (c) > 0
for all c > 0, we have σ 2

c > 0. Using this observation and the following theorem yields that if the control
parameter decreases, then the expected cost at equilibrium also decreases.

Theorem 25.4

Let 〈 f 〉c and σ 2
c be defined by (25.6) and (25.7), respectively. Then, we have

∂

∂c
〈 f 〉c = σ 2

c

c 2

Proof
Using the definition of 〈 f 〉c gives

∂

∂c
〈 f 〉c =

∑

i∈S

f (i)
∂

∂c
qi (c) (25.8)

Furthermore, simple calculus yields

∂

∂c
N0(c) =

∑

j∈S

f ( j )

c 2
exp

(− f ( j )

c

)

and thus, by using ∂
∂c (g (c) · h(c)) = g (c) ∂

∂c h(c) + h(c) ∂
∂c g (c) with g (c) = 1/N0(c) and h(c) =

exp
(

− f (i)
c

)
,

∂

∂c
qi (c) = ∂

∂c

exp
(

− f (i)
c

)

N0(c)

= f (i)

c 2

exp
(

− f (i)
c

)

N0(c)
−

exp
(

− f (i)
c

)

N2
0 (c)

∂

∂c
N0(c)

= qi (c)

c 2
f (i) − qi (c)

c 2

∑
j∈S f ( j ) exp

(
− f ( j )

c

)

N0(c)

= qi (c)

c 2
( f (i) − 〈 f 〉c )

Substituting this for ∂
∂c qi (c) in (25.8) now gives

∂

∂c
〈 f 〉c = 1

c 2

∑

i∈S

qi (c)
(

f 2(i) − f (i)〈 f 〉c
)

= 1

c 2

(

−〈 f 〉2
c +

∑

i∈S

f 2(i)qi (c)

)
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By definition, we have 〈 f 〉c = ∑
i∈S f (i)qi (c). Furthermore, because

∑
i∈S qi (c) = 1 we also have

〈 f 〉c = ∑
i∈S〈 f 〉c qi (c). Using these observations we obtain

∂

∂c
〈 f 〉c = 1

c 2

(

−2〈 f 〉2
c + 〈 f 〉2

c +
∑

i∈S

f 2(i)qi (c)

)

= 1

c 2

∑

i∈S

(
f 2(i) − 2 f (i)〈 f 〉c + 〈 f 〉2

c

)
qi (c)

= 1

c 2

∑

i∈S

( f (i) − 〈 f 〉c )2qi (c)

= σ 2
c

c 2

By using the following theorem, we can strengthen the observation that the expected cost at equilibrium
decreases if the control parameter decreases. It implies that the expected cost at equilibrium decreases from
some value that is at most the average cost to the optimal cost.

Theorem 25.5

Let 〈 f 〉c and σ 2
c be defined by (25.6) and (25.7), respectively. Furthermore, let 〈 f 〉∞ = 1

|S|
∑

i∈S f (i) denote
the average cost and let f ∗ denote the optimal cost. Then, we have

lim
c→∞〈 f 〉c = 〈 f 〉∞

lim
c↓0

〈 f 〉c = f ∗

lim
c→∞ σ 2

c = 1

|S|
∑

i∈S

( f (i) − 〈 f 〉∞)2

lim
c↓0

σ 2
c = 0

Proof
The theorem can be proved by using the definitions of 〈 f 〉c , σ 2

c , and q(c).

In the above two theorems, we studied the solutions space as a whole. For an individual solution i ∈ S,
we can derive the following result. For decreasing c , the probability of being in solution i at equilibrium
increases if i is optimal and it decreases if i has a cost that is at least the average cost. Otherwise, a turning
point ci exists, such that the probability of being in solution i increases if c > ci and it decreases if c < ci .

Theorem 25.6

Let 〈 f 〉∞ = 1
|S|

∑
i∈S f (i) denote the average cost, and let f ∗ denote the optimal cost. Furthermore, let the

components of distribution q(c) of S be given by (25.5). If S �= S∗, then we have for any i ∈ S

∂

∂c
qi (c) < 0

if f (i) = f ∗,

∂

∂c
qi (c) > 0

if f (i) ≥ 〈 f 〉∞, and

∂

∂c
qi (c)






< 0 if c > ci

= 0 if c = ci

> 0 if c < ci

for some ci > 0 if f ∗ < f (i) < 〈 f 〉∞.

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C025 March 20, 2007 13:33

25-10 Handbook of Approximation Algorithms and Metaheuristics

Proof
In Theorem 25.4 we proved

∂

∂c
qi (c) = qi (c)

c 2
( f (i) − 〈 f 〉c )

As qi (c)
c2 >0, this implies that the sign of ∂

∂c qi (c) is determined by the sign of f (i)−〈 f 〉c . As we concluded
from Theorems 25.4 and 25.5, 〈 f 〉c increases from f ∗ to 〈 f 〉∞ when c increases. The theorem now follows
easily.

25.6 Conclusion

Simulated annealing is a local search algorithm that uses randomization to escape from local optima. Since
its introduction in 1983 simulated annealing has been applied to a large amount of different problems in
many different areas. More than 20 years of experience had led to the following general observations:

• High-quality solutions can be obtained but sometimes at the cost of large amounts of computation
time.

• In many practical situations, where no tailored algorithms are available, simulated annealing is a
valuable algorithm due to its general applicability and its ease of implementation.
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26.1 Introduction

This chapter presents an overview of ant colony optimization (ACO)—a metaheuristic inspired by the
behavior of real ants. Ant colony optimization was proposed by Dorigo and colleagues [1–3] as a method
for solving hard combinatorial optimization problems (COPs).

Ant colony optimization algorithms are part of swarm intelligence, that is, the research field that studies
algorithms inspired by the observation of the behavior of swarms. Swarm intelligence algorithms are made
up of simple individuals that cooperate through self-organization, that is, without any form of central
control over the swarm members. A detailed overview of the self-organization principles exploited by
these algorithms, as well as examples from biology, can be found in Ref. [4]. Many swarm intelligence
algorithms have been proposed in the literature. For an overview of the field of swarm intelligence, we
refer the interested reader to Ref. [5].

This chapter, which is dedicated to present a concise overview of ACO, is organized as follows. Sec-
tion 26.2 presents the biological phenomenon that provided the original inspiration. Section 26.3 presents
a formal description of the ACO metaheuristic. Section 26.4 overviews the most popular variants of ACO
and gives examples of their application. Section 26.5 shows current research directions, and Section 26.6
summarizes and concludes the chapter.

26.2 From Biology to Algorithms

Ant colony optimization was inspired by the observation of the behavior of real ants. In this section,
we present a number of observations made in experiments with real ants, and then we show how these
observations inspired the design of the ACO metaheuristic.

26-1
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26.2.1 Ants

One of the first researchers to investigate the social behavior of insects was the French entomologist
Pierre-Paul Grassé. In the 1940s and 1950s, he was observing the behavior of termites—in particular, the
Bellicositermes natalensis and Cubitermes species. He discovered [6] that these insects are capable to react
to what he called “significant stimuli,” signals that activate a genetically encoded reaction. He observed [7]
that the effects of these reactions can act as new significant stimuli for both the insect that produced them
and for the other insects in the colony. Grassé used the term stigmergy [7] to describe this particular type
of indirect communication in which “the workers are stimulated by the performance they have achieved.”

The two main characteristics of stigmergy that differentiate it from other means of communication are:

• the physical, nonsymbolic nature of the information released by the communicating insects, which
corresponds to a modification of physical environmental states visited by the insects; and

• the local nature of the released information, which can only be accessed by those insects that visit
the place where it was released (or its immediate neighborhood).

Examples of stigmergy can be observed in colonies of ants. In many ant species, ants walking to—and
from—a food source, deposit on the ground a substance called pheromone. Other ants are able to smell
this pheromone, and its presence influences the choice of their path, that is, they tend to follow strong
pheromone concentrations. The pheromone deposited on the ground forms a pheromone trail, which
allows the ants to find good sources of food that have been previously identified by other ants.

Some researchers investigated experimentally this pheromone laying and following behavior to better
understand it and to be able to quantify it. Deneubourg et al. [8] set up an experiment called a “binary
bridge experiment.” They used Linepithema humile ants (also known as Argentine ants). The ants’ nest
was connected to a food source by two bridges of equal length. The ants could freely choose which bridge
to use when searching for food and bringing it back to the nest. Their behavior was then observed over a
period of time.

In this experiment, initially there is no pheromone on the two bridges. The ants start exploring the sur-
roundings of the nest and eventually cross one of the bridges and reach the food source. When walking to
the food source and back, the ants deposit pheromone on the bridge they use. Initially, each ant randomly
chooses one of the bridges. However, because of random fluctuations, after some time there will be more
pheromone deposited on one of the bridges than on the other. Because ants tend to prefer in probability
to follow a stronger pheromone trail, the bridge that has more pheromone will attract more ants. This in
turn makes the pheromone trail grow stronger, until the colony of ants converges toward the use of a same
bridge.1

This colony level behavior, based on autocatalysis, that is, on the exploitation of positive feedback, can
be exploited by ants to find the shortest path between a food source and their nest. This was demonstrated
in another experiment conducted by Goss et al. [9], in which the two bridges were not of the same length:
one was significantly longer than the other. In this case, the stochastic fluctuations in the initial choice
of a bridge were much reduced as a second mechanism played an important role: those ants choosing by
chance the shorter bridge were also the first to reach the nest, and when returning to the nest, they chose the
shorter bridge with higher probability as it had a stronger pheromone trail. Therefore, the ants—thanks to
the pheromone following and depositing mechanism—quickly converged to the use of the shorter bridge.

In the next section we explain how these experiments and findings were used to develop optimization
algorithms.

1Deneubourg et al. [8] conducted several experiments, and results show that each of the two bridges was used in
about 50% of the cases.
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26.2.2 Algorithms

Stimulated by the interesting results of the experiments described in the previous section, Goss et al. [9]
developed a model to explain the behavior observed in the binary bridge experiment. Assuming that after
t time units since the start of the experiment, m1 ants had used the first bridge and m2 the second one, the
probability p1 for the (m + 1)th ant to choose the first bridge can be given by

p1(m+1) = (m1 + k)h

(m1 + k)h + (m2 + k)h
(26.1)

where parameters k and h are needed to fit the model to the experimental data. The probability that the
same (m + 1)th ant chooses the second bridge is p2(m+1) = 1 − p1(m+1). Monte Carlo simulations, run
to test whether the model corresponds to the real data [10], showed very good fit for k ≈ 20 and h ≈ 2.

This basic model, which explains the behavior of real ants, may be used as an inspiration to design
artificial ants that solve optimization problems defined in a similar way. In the above described ant
foraging behavior example, stigmergic communication happens via the pheromone that ants deposit on the
ground. Analogously, artificial ants may simulate pheromone laying by modifying appropriate pheromone
variables associated with problem states they visit while building solutions to the optimization problem.
Also, according to the stigmergic communication model, the artificial ants would have only local access to
these pheromone variables.

Therefore, the main characteristics of stigmergy mentioned in the previous section can be extended to
artificial agents by

• associating state variables with different problem states; and
• giving the agents only local access to these variables.

Another important aspect of real ants’ foraging behavior that may be exploited by artificial ants is
the coupling between the autocatalytic mechanism and the implicit evaluation of solutions. By im-
plicit solution evaluation, we mean the fact that shorter paths (which correspond to lower cost solu-
tions in the case of artificial ants) are completed earlier than longer ones, and therefore they receive
pheromone reinforcement quicker. Implicit solution evaluation coupled with autocatalysis can be very
effective: the shorter the path, the sooner the pheromone is deposited, and the more ants use the shorter
path. If appropriately used, it can be a powerful mechanism in population-based optimization algo-
rithms (e.g., in evolutionary algorithms [11,12] autocatalysis is implemented by the selection/reproduction
mechanism).

Stigmergy, together with implicit solution evaluation and autocatalytic behavior, gave rise to ACO. The
basic idea of ACO follows very closely the biological inspiration. Therefore, there are many similarities
between real and artificial ants. Both real and artificial ant colonies are composed of a population of
individuals that work together to achieve a certain goal. A colony is a population of simple, independent,
asynchronous agents that cooperate to find a good solution to the problem at hand. In the case of real
ants, the problem is to find the food, while in the case of artificial ants, it is to find a good solution to a
given optimization problem. A single ant (either a real or an artificial one) is able to find a solution to
its problem, but only cooperation among many individuals through stigmergy enables them to find good
solutions.

In the case of real ants, they deposit and react to a chemical substance called pheromone. Real ants
simply deposit it on the ground while walking. Artificial ants live in a virtual world, hence they only
modify numeric values (called for analogy artificial pheromones) associated with different problem states.
A sequence of pheromone values associated with problem states is called artificial pheromone trail. In
ACO, the artificial pheromone trails are the sole means of communication among the ants. A mechanism
analogous to the evaporation of the physical pheromone in real ant colonies allows the artificial ants to
forget the history and focus on new promising search directions.

Just like real ants, artificial ants create their solutions sequentially by moving from one problem state
to another. Real ants simply walk, choosing a direction based on local pheromone concentrations and
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a stochastic decision policy. Artificial ants also create solutions step by step, moving through available
problem states and making stochastic decisions at each step.

There are however some important differences between real and artificial ants:

• Artificial ants live in a discrete world—they move sequentially through a finite set of problem states.
• The pheromone update (i.e., pheromone depositing and evaporation) is not accomplished in exactly

the same way by artificial ants as by real ones. Sometimes the pheromone update is done only by
some of the artificial ants, and often only after a solution has been constructed.

• Some implementations of artificial ants use additional mechanisms that do not exist in the case of
real ants. Examples include look-ahead, local search, backtracking, etc.

26.3 The Ant Colony Optimization Metaheuristic

Ant colony optimization has been formalized into a combinatorial optimization metaheuristic by Dorigo
et al. [13,14] and has since been used to tackle many combinatorial optimization problems (COPS).

Given a COP, the first step for the application of ACO to its solution consists in defining an adequate
model. This is then used to define the central component of ACO: the pheromone model. The model of a
COP may be defined as follows:

Definition 26.1

A model P = (S, �, f ) of a COP consists of

• a search space S defined over a finite set of discrete decision variables and a set � of constraints among
the variables;

• an objective function f : S → R
+
0 to be minimized.2

The search space S is defined as follows: Given is a set of discrete variables Xi , i = 1, . . . , n, with values
v

j
i ∈ Di = {v1

i , . . . , v
|Di |
i }. A variable instantiation, that is, the assignment of a value v

j
i to a variable Xi , is

denoted by Xi ← v
j
i . A solution s ∈ S, that is, a complete assignment in which each decision variable has a

value assigned that satisfies all the constraints in the set �, is a feasible solution of the given COP. If the set �

is empty, P is called an unconstrained problem model, otherwise it is said to be constrained. A solution s ∗ ∈ S
is called a global optimum if and only if f (s ∗) ≤ f (s ) ∀s ∈ S. The set of all globally optimal solutions is
denoted by S∗ ⊆ S. Solving a COP requires finding at least one s ∗ ∈ S∗.

The model of a COP is used to derive the pheromone model used by ACO. First, an instantiated
decision variable Xi = v

j
i (i.e., a variable Xi with a value v

j
i assigned from its domain Di ) is called a

solution component and denoted by ci j . The set of all possible solution components is denoted by C. A
pheromone trail parameter Ti j is then associated with each component ci j . The set of all pheromone trail
parameters is denoted by T. The value of a pheromone trail parameter Ti j is denoted by τi j (and called
pheromone value).3 This pheromone value is then used and updated by the ACO algorithm during the
search. It allows modeling the probability distribution of different components of the solution.

In ACO, artificial ants build a solution to a COP by traversing the so-called construction graph, GC (V, E).
The fully connected construction graph consists of a set of vertices V and a set of edges E. The set of
components C may be associated either with the set of vertices V of the graph GC , or with the set of its
edges E. The ants move from vertex to vertex along the edges of the graph, incrementally building a partial
solution. Additionally, the ants deposit a certain amount of pheromone on the components, that is, either
on the vertices or on the edges that they traverse. The amount �τ of pheromone deposited may depend

2Note that minimizing over an objective function f is the same as maximizing over − f . Therefore, every COP can
be described as a minimization problem.

3Note that pheromone values are in general a function of the algorithm’s iteration t : τi j = τi j (t).
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on the quality of the solution found. Subsequent ants utilize the pheromone information as a guide toward
more promising regions of the search space.

The ACO metaheuristic is shown in Algorithm 26.1. It consists of an initialization step and a loop over
three algorithmic components. A single iteration of the loop consists of constructing solutions by all ants,
their (optional) improvement with the use of a local search algorithm, and an update of the pheromones.
In the following, we explain these three algorithmic components in more detail.

Algorithm 26.1 Ant colony optimization metaheuristic

Set parameters, initialize pheromone trails
while termination conditions not met do

ConstructAntSolutions
ApplyLocalSearch {optional}
UpdatePheromones

end while

ConstructAntSolutions
A set of m artificial ants construct solutions from elements of a finite set of available solution components
C = {ci j }, i = 1, . . . , n, j = 1, . . . , |Di |. A solution construction starts with an empty partial solution
s p = ∅. Then, at each construction step, the current partial solution s p is extended by adding a feasible
solution component from the set of feasible neighbors N(s p) ⊆ C. The process of constructing solutions
can be regarded as a path on the construction graph GC = (V, E). The allowed paths in GC are implicitly
defined by the solution construction mechanism that defines the set N(s p) with respect to a partial
solution s p .

The choice of a solution component from N(s p) is done probabilistically at each construction step. The
exact rules for the probabilistic choice of solution components vary across different ACO variants. The
best known rule is the one of ant system (AS) [3]:

p(ci j |s p) = τα
i j · η(ci j )β

∑
cil ∈N(s p ) τα

i l · η(cil )β
, ∀ci j ∈ N(s p) (26.2)

where τi j is the pheromone value associated with the component ci j , and η(·) is a function that assigns at
each construction step a heuristic value to each feasible solution component ci j ∈ N(s p). The values that
are returned by this function are commonly called heuristic information. Furthermore, α and β are positive
parameters, whose values determine the relative importance of pheromone versus heuristic information.
Eq. (26.2) is a generalization of Eq. (26.1) presented in Section 26.2: ACO formalization follows closely
the biological inspiration.

ApplyLocalSearch
Once solutions have been constructed, and before updating pheromones, often some optional actions may
be required. These are often called daemon actions, and can be used to implement problem specific and/or
centralized actions, which cannot be performed by single ants. The most used daemon action consists in
the application of local search to the constructed solutions: the locally optimized solutions are then used
to decide which pheromones to update.

UpdatePheromones
The aim of the pheromone update is to increase the pheromone values associated with good or promising
solutions, and to decrease those that are associated with bad ones. Usually, this is achieved (i) by decreasing
all the pheromone values through pheromone evaporation, and (ii) by increasing the pheromone levels
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associated with a chosen set of good solutions Supd :

τi j ← (1 − ρ)τi j + ρ
∑

s∈Supd |ci j ∈s

F (s ) (26.3)

where Supd is the set of solutions that are used for the update, ρ ∈ (0, 1] is a parameter called evaporation
rate, and F : S → R

+
0 a function such that f (s ) < f (s ′) ⇒ F (s ) ≥ F (s ′), ∀s = s ′ ∈ S. F (·) is

commonly called the fitness function.
Pheromone evaporation is needed to avoid a too rapid convergence of the algorithm. It implements

a useful form of forgetting, favoring the exploration of new areas in the search space. Different ACO
algorithms, for example, Ant Colony System (ACS) [15] or MAX -MIN Ant System (MMAS) [16]
differ in the way they update the pheromone.

Instantiations of the update rule presented in Eq. (26.3) are obtained by different specifications of Supd,
which in many cases is a subset of Siter ∪{sbs}, where Siter is the set of solutions that were constructed in the
current iteration, and sbs the best-so-far solution, that is, the best solution found since the first algorithm
iteration. A well-known example is the AS-update rule, that is, the update rule of AS [3], where

Supd ← Siter (26.4)

An example of a pheromone update rule that is more often used in practice is the IB-update rule (where
IB stands for iteration best):

Supd ← arg max
s∈Siter

F (s ) (26.5)

The IB-update rule introduces a much stronger bias toward the good solutions found than the AS-
update rule. Although this increases the speed with which good solutions are found, it also increases the
probability of premature convergence. An even stronger bias is introduced by the BS-update rule, where BS
refers to the use of the best-so-far solution sbs. In this case, Supd is set to {ssb}. In practice, ACO algorithms
that use variants of the IB or the BS-update rules and that additionally include mechanisms to avoid
premature convergence achieve better results than those that use the AS-update rule.

26.3.1 Example: The Traveling Salesman Problem

One of the most popular ways to illustrate how the ACO metaheuristic works, is via its application to the
traveling salesman problem (TSP). The TSP consists of a set of locations (cities) and a traveling salesman
that has to visit all the locations once and only once. The distances between the locations are given and the
task is to find a Hamiltonian tour of minimal length. The problem has been proven to be NP-hard [17].

The application of ACO to the TSP is straightforward. The moves between the locations become the
solution components, that is, the move from city i to city j becomes a solution component ci j ≡ c j i . The
construction graph GC = (V, E) is defined by associating the set of locations with the set V of vertices of
the graph. Since, in principle, it is possible to move from any city to any other one, the construction graph
is fully connected and the number of vertices is equal to the number of locations defined by the problem
instance. Furthermore, the lengths of the edges between the vertices are proportional to the distances
between the locations represented by these vertices. The pheromone is associated with the set E of edges
of the graph. An example of the resulting construction graph GC is presented in Figure 26.1(a).

The ants construct the solutions as follows. Each ant starts from a randomly selected location (vertex
of the graph GC ). Then, at each construction step it moves along the edges of the graph. Each ant keeps a
memory of its path through the graph, and in subsequent steps it chooses among the edges that do not lead
to vertices that it has already visited. An ant has constructed a solution once it has visited all the vertices of
the graph. At each construction step an ant chooses probabilistically the edge to follow among the available
ones (those that lead to yet unvisited vertices). The exact rule depends on the implementation, an example
being Eq. (26.2). Once all the ants have completed their tour, the pheromone on the edges is updated
according to one of the possible implementations of Eq. (26.3). Ant colony optimization has been shown
to perform quite well on the TSP [18].
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FIGURE 26.1 Example construction graphs for a four-city TSP when (a) components are associated with the edges
of the graph, and when (b) components are associated with the vertices of the graph. Note that ci j ≡ c j i .

It is worth noticing that it is also possible to associate the set of solution components of the TSP (or
any other COP) with the set of vertices V rather than the set of edges E of the construction graph GC .
For the TSP, this would mean associating the moves between locations with the set V of vertices of the
construction graph, and the locations with the set E of its edges. The corresponding example construction
graph for a four-city TSP is presented in Figure 26.1(b). When using this approach, the ants’ solution
construction process has to be also properly modified: the ants would have to move from vertex to vertex
of the construction graph choosing thereby the connections between the cities.

It is important to note that both ways of defining the construction graph are correct and both may
be used in practice. Although for the TSP the first way seems more intuitive and was in fact used in all
the applications of ACO to the TSP that we are aware of, in other cases the second way might be better
suited. For example, it was the selected choice in the case of the university course timetabling problem
(UCTP) [19].

26.4 Main Variants of ACO

Several variants of ACO have been proposed in the literature. Here we present the three most successful
ones, Ant System (AS)—the first implementation of an ACO algorithm—followed by MAX -MIN Ant
System (MMAS) and Ant Colony System (ACS), together with a short list of their applications.

To illustrate the differences between them clearly, we use the example of the TSP, as described in
Section 26.3.1.

26.4.1 Ant System

Ant System was the first ACO algorithm to be proposed in the literature [1–3]. Its main characteristic
is that the pheromone values are updated by all the ants that have completed the tour. The pheromone
update for τi j , that is, for edge joining cities i and j , is performed as follows:

τi j ← (1 − ρ) · τi j +
m∑

k=1

�τ k
i j (26.6)
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where ρ is the evaporation rate, m is the number of ants, and �τ k
i j is the quantity of pheromone per unit

length laid on edge (i, j ) by the kth ant:

�τ k
i j =

{
Q
L k

if ant k used edge (i, j ) in its tour

0 otherwise
(26.7)

where Q is a constant and L k is the tour length of the kth ant.
When constructing the solutions, the ants in AS traverse a construction graph and make a probabilistic

decision at each vertex. The transition probability pk
i j of the kth ant moving from city i to city j is given

by

pk
ij =






τα
ij ·ηβ

ij∑
l∈ allowedk

τα
il ·ηβ

il

if j ∈ allowedk

0 otherwise

(26.8)

where allowedk is the list of cities not yet visited by the kth ant, and α and β are the parameters that control
the relative importance of the pheromone versus the heuristic information ηi j given by

ηij = 1

dij
(26.9)

where dij is the length of edge (i, j ).
Several implementations of the AS algorithm have been applied to different COPs. The first and best

known is the application to the TSP [1–3]. However, AS was also used successfully to tackle other
combinatorial problems. The AS–QAP [20,21] algorithm was used for solving the quadratic assignment
problem (QAP), AS–JSP [22] for the job-shop scheduling problem (JSP), AS–VRP [23,24] for the vehicle
routing problem (VRP), and AS–SCS [25,26] for the shortest common supersequence (SCS) problem.

26.4.2 MAX -MIN Ant System

MAX -MIN Ant System is an improvement over the original AS idea. MMAS was proposed by Stützle
and Hoos [16], who introduced a number of changes of which the most important are the following:

• only the best ant can update the pheromone trails, and
• the minimum and maximum values of the pheromone are limited.

Eq. (26.6) takes the following new form:

τij ← (1 − ρ) · τij + �τ best
ij (26.10)

where �τ best
ij is the pheromone update value defined by

�τ best
ij =

{ 1
L best

if the best ant used edge (i, j ) in its tour

0 otherwise
(26.11)

L best is the length of the tour of the best ant. This may be (subject to the algorithm designer decision)
either the best tour found in the current iteration—iteration best, L ib—or the best solution found since
the start of the algorithm—best-so-far, L bs—or a combination of both.

Concerning the limits on the minimal and maximal pheromone values allowed, respectively τmin and
τmax , Stützle and Hoos suggest that they should be chosen experimentally based on the problem at hand.
The maximum value τmax may be calculated analytically provided that the optimum ant tour length is
known. In the case of the TSP, τmax is given by

τmax = 1

ρ
· 1

L∗ (26.12)

where L∗ is the length of the optimal tour. If L∗ is not known, it can be approximated by L bs. The
minimum pheromone value τmin should be chosen with caution as it has a rather strong influence on the
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algorithm performance. Stützle and Hoos present an analytical approach to finding this value based on
the probability pbest that an ant constructs the best tour found so far. This is done as follows. First, it is
assumed that at each construction step an ant has a constant number k of options available. Therefore, the
probability that an ant makes the right decision (i.e., the decision that belongs to the sequence of decisions
leading to the construction of the best tour found so far) at each of n steps is given by pdec = n−1

√
pbest.

The analytical formula they suggest for finding τmin is

τmin = τmax · (1 − pdec)

k · pdec
(26.13)

For more details on how to choose τmax and τmin, we refer to Ref. [16]. It is important to mention here
that it has also been shown [19] that for some problems the choice of an appropriate τmin value is more
easily done experimentally than analytically.

The process of pheromone update in MMAS is concluded by verifying that all pheromone values are
within the imposed limits:

τi j =






τmin if τi j < τmin

τi j if τmin ≤ τi j ≤ τmax

τmax if τi j > τmax

(26.14)

MAX -MIN Ant System provided a significant improvement over the basic AS performance. While
the first implementations focused on the TSP [16], it has been later applied to many other COPs such
as the QAP [27], the UCTP [19], the generalized assignment problem (GAP) [28], and the set-covering
problem (SCP) [29].

26.4.3 Ant Colony System

Another improvement over the original AS was Ant Colony System (ACS), introduced by Gambardella
and Dorigo [15,30]. The most interesting contribution of ACS is the introduction of a local pheromone
update in addition to the pheromone update performed at the end of the construction process (called here
offline pheromone update).

The local pheromone update is performed by all the ants after each construction step. Each ant applies
it only to the last edge traversed:

τi j = (1 − ϕ) · τi j + ϕ · τ0 (26.15)

where ϕ ∈ (0, 1) is the pheromone decay coefficient, and τ0 is the initial value of the pheromone.
The main goal of the local update is to diversify the search performed by subsequent ants during one

iteration. In fact, decreasing the pheromone concentration on the edges as they are traversed during one
iteration encourages subsequent ants to choose other edges and hence to produce different solutions. This
makes less likely that several ants produce identical solutions during one iteration.

The offline pheromone update, similarly to MMAS, is applied at the end of each iteration by only one
ant (either the one that found the best solution in the iteration or the best-so-far). However, the update
formula is slightly different:

τi j ←
{

(1 − ρ) · τi j + ρ · �τi j if edge (i, j ) belongs to the tour of the best ant

τi j otherwise
(26.16)

and in case of the TSP, �τij = 1
L best

(as in MMAS, L best can be set to either L ib or L bs.)
Another important difference between AS and ACS is in the decision rule used by the ants during the

construction process. Ants in ACS use the so-called pseudorandom proportional rule: the probability for
an ant to move from city i to city j depends on a random variable q uniformly distributed over [0, 1], and
a parameter q0; if q ≤ q0, then j = argmaxl∈N(s p ){τi l η

β
i l }, otherwise Eq. (26.8) is used.

Ant Colony System has been initially developed for the TSP [15,30], but it was later used to tackle
various COPs, including vehicle routing [31], sequential ordering [32], and timetabling [33].
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26.5 Current Research Directions

Research in ACO is very active. It includes the application of ACO algorithms to new real-world optimiza-
tion problems or new types of problems, such as dynamic optimization [34], multiobjective optimiza-
tion [35], stochastic problems [36], or continuous and mixed-variable optimization [37,42]. Also, with an
increasing popularity of parallel hardware architectures (multicore processors and the grid technology), a
lot of research is being done on creating parallel implementations of ACO that will be able to take advantage
of the available hardware. In this section we briefly present current research in these new areas.

26.5.1 Other Types of Problems

One of the new areas of application of ACO is dynamic optimization. This type of problems is characterized
by the fact that the search space dynamically changes. While an algorithm searches for good solutions, the
conditions of the search as well as the quality of the solutions already found may change. This poses a whole
new set of issues for designing successful algorithms that can deal with such situations. It becomes crucial
for an algorithm to be able to adjust the search direction, following the changes of the problem being solved.
Initial attempts to apply ACO to dynamic optimization problems have been quite successful [34,38,39].

Multiobjective optimization is another area of application for metaheuristics that has received increasing
attention over the past years. A multiobjective optimization problem involves solving simultaneously
several optimization problems with potentially conflicting objectives. For each of the objectives, a different
objective function is used to assess the quality of the solutions found. Algorithms usually aim at finding
the so-called Pareto set, that is, a set of nondominated solutions, based on the defined objective functions.
In the Pareto set, no solution is worse than any other in the set, when evaluated over all the objective
functions. Some ACO algorithms designed to tackle multiobjective problems have been proposed in the
literature [35,40,41].

Finally, recently researchers attempted to apply ACO algorithms to continuous optimization problems.
When an algorithm designed for combinatorial optimization is used to tackle a continuous problem, the
simplest approach is to divide the domain of each variable into a set of intervals. The set of intervals is
finite and may be handled by the original discrete optimization algorithm. However, when the domain of
the variables is large, and the required accuracy is high, this approach runs into problems. The problem
size (i.e., the number of intervals) grows, and combinatorial optimization algorithms become less efficient.
Also, this approach requires setting the number of intervals a priori—before the algorithm is run. In case
of real-world problems, this is not always a sensible thing to do.

Due to these reasons, optimization algorithms able to handle continuous parameters natively have been
developed. Recently, Socha and Dorigo [37,42] have extended ACO to continuous (and mixed-variable—
continuous and discrete) problems. Research in this respect is ongoing and should result in new, efficient
ACO implementations for continuous and mixed-variable problems.

26.5.2 Parallel ACO Implementations

Parallelization of algorithms becomes more and more an interesting and practical option for algorithm
designers. Ant colony optimization is particularly well suited for parallel implementations, thanks to ants
operating in an independent and asynchronous way. There have already been many attempts to propose
parallel ACO algorithms. They are usually classified by their parallel grain, that is, the relationship between
computation and communication. We can then distinguish between coarse- and fine-grained models. While
the formers are characterized by many ants using the same CPU and rare communication between the
CPUs, in the latters only few ants use each CPU and there is a lot of communication going on. An overview
of the trends and strategies in designing parallel metaheuristics may be found in Refs. [43,44].

Randall and Lewis [45] proposed a first reasonably complete classification of parallel ACO implemen-
tations. Although many parallel ACO implementations have been proposed in the literature [46–51], the
results are fragmented and difficult to compare. Experiments are usually of limited scale and concern
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different optimization problems. Also, not all parallel implementations proposed are compared with their
sequential counterparts, which is an essential measure of their usefulness [51]. All this implies that more
research is necessary in the area of parallelization of the ACO metaheuristic (for some recent work in this
direction see Ref. [52]).

26.6 Conclusions

We have presented an introduction to ACO—a metaheuristic inspired by the foraging behavior of real ants.
The central component of ACO is the pheromone model based on the underlying model of the problem
being solved. The basic idea of ACO, which has been formalized into a metaheuristic framework, leaves
many options and choices to the algorithm designer. Several variants of ACO have been already proposed,
the most successful being MMAS and ACS.

Ant colony optimization is a relatively young metaheuristic, when compared to others such as evo-
lutionary computation, tabu search, or simulated annealing. Yet, it has proven to be quite efficient and
flexible. Ant colony optimization algorithms are currently state-of-the-art for solving many COPs includ-
ing the sequential ordering problem [32], the resource constraint project scheduling problem [53], and the
open-shop scheduling problem [54]. For an in-depth overview of ACO, including theory and applications,
the interested reader should refer to Ref. [55].
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[18] Stützle, T. and Dorigo, M., ACO algorithms for the traveling salesman problem, in Evolutionary

Algorithms in Engineering and Computer Science, Miettinen, K., Mäkelä, M. M., Neittaanmäki, P., and
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27.1 Introduction

The term memetic algorithms [1] (MAs) was introduced in the late 1980s to denote a family of metaheuristics
that have as central theme the hybridization of different algorithmic approaches for a given problem.
Special emphasis was given to the use of a population-based approach in which a set of cooperating and
competing agents was engaged in periods of individual improvement of the solutions while they interact
sporadically. Another main objective theme was to introduce problem and instance-dependent knowledge
as a way of speedingup the search process. Initially, hybridizations included Evolutionary Algorithms
(EAs) [2–5], Simulated Annealing and its variants [6,7], and Tabu Search [8,9]. Today, a number of
hybridizations include other metaheuristics [10] as well as exact algorithms, in complete anytime memetic
algorithms [11]. These methods not only prove optimality, but can also deliver high-quality solutions early
on in the process.

The adjective “memetic” comes from the term “meme,” coined by R. Dawkins [12], to denote a term
analogous to the gene in the context of cultural evolution. It was first proposed as a means of conveying
the message that, although inspiring for many, biological evolution should not constrain the imagination
to develop population-based methods. Other forms of evolution may be faster, with cultural evolution
being one of those less-restrictive examples.

Due to the fact that MAs aimed at drawing the attention from two communities of researchers with
different agendas, focusing at hybridizations of their methods, this metaheuristic had to suffer tough
initial times. Today they are becoming increasingly popular due to their impressive success record and the
high sophistication of the hybridizations proposed. As a consequence of its evolution, it is not unusual
to find MAs disguised in the literature under different names such as “hybrid EAs” or “Lamarckian EAs.”
Furthermore, many of the underlying ideas of MAs can also be found in other metaheuristics that evolved
in relative isolation from MAs. Scatter search [13] is a good example of a metaheuristic sharing much of
its functioning philosophy with MAs. In Ref. [14], the authors cite a paper by S. Kase, in which a “game”
between a set of hierarchical agents (players and referees) is proposed to hybridize heuristic approaches
for a layout problem [15]. What makes this interesting is that this is an approach that does not rely on
computers for optimization and helps the employees to become engaged in these issues. Anticipating
further definitions, we can say that an MA is a search strategy in which a population of optimizing agents
synergistically cooperate and compete [16]. A more detailed description of the algorithm as well as a
functional template will be given in Section 27.2.

As mentioned before, MAs are a hot topic nowadays, mainly due to their success in solving many
hard optimization problems, attracting experienced researchers to work on the challenges of this field.
A particular feature of MAs accounts for this: unlike traditional EAs, MAs are intrinsically concerned
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with exploiting all available knowledge about the problem under study. The advantages of this approach
were notably neglected in EAs for a long time despite some contrary voices, most notably Davis’ who also
advocated for hybridization in his book [17]. The formulation of the so-called No-Free-Lunch Theorem
(NFL) by Wolpert and Macready [18] made it definitely clear that a search algorithm strictly performs in
accordance with the amount and quality of the problem knowledge they incorporate, thus backing up one
of the leiv motivs of MAs.

MAs exploit problem knowledge by incorporating preexisting heuristics, preprocessing data reduc-
tion rules, approximation and fixed-parameter tractable algorithms, local search techniques, specialized
recombination operators, truncated exact methods, and so on. Also, an important factor is the use of
adequate representations of the problem being tackled. This results in highly efficient optimization tools.
We provide a brief abstracted overview of MA applications in combinatorial optimization in Section 27.3.
We will finish with a brief summary of the current research trends in MAs, with special mention to those
which we believe will play a major role in the near future.

27.2 Dissecting a Basic Memetic Algorithm

As mentioned in the previous section, MAs blend different search strategies in a combined algorithmic
approach. Like EAs, MAs are population-based metaheuristics. This means that in MAs we maintain a
population of solutions for the problem at hand. We are using the term “solutions” rather loosely here,
as we can have either feasible or protosolutions (structures that can be extended/modified to produce
feasible solutions) or even unfeasible solutions (which can be “repaired” to restore feasibility). It is also
assumed that both repairing and extension processes can be done quite fast, as to justify including them
in the population. Each of these solutions will be termed individual as in the EA jargon, mainly to simplify
the discussion. In the context of MAs, the denomination agent represents a processing unit that can hold
multiple solutions and has problem-domain methods that help to improve them if required [1]. Each
individual/agent represents a tentative solution/method for the problem under consideration. When the
agents adapt their methods we call the resulting strategy an adaptive memetic algorithm. Adaptation may
include a modification of the data as in Ref. [10].

Due to the agent’s interactions, solutions are subject to processes of competition and mutual
cooperation. The general structure of MAs is shown in Figure 27.1, aiming to highlight similarities with
other population-based metaheuristics such as EAs. Relevant differences are nevertheless evident when we
inspect the innards of the high-level blocks depicted in Figure 27.1. First of all, notice the existence of an

Generate
initial

population

Perform
generational

step
pop

pop

pop
yes

yes

no

pop

Restart
population

Output best
solution

Converged? Termination?

FIGURE 27.1 The general structure of MAs. Solid arrows indicate the control flow, whereas broken arrows indicate
the data flow.
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FIGURE 27.2 Generation of the initial population. A local improver can be used to enhance the quality of starting
solutions.

initialization block. Standard EAs would simply generate μ = |pop| random solutions. This can be also
done in MAs, but more sophisticated mechanisms are typically used as they are more useful. For example,
some constructive heuristic can be utilized to produce high-quality solutions [19,20]. Another possibility
refers to the use of a local improvement method, as illustrated in Figure 27.2.

There is another interesting element in the flow chart shown in Figure 27.1: the Re-start Population
process. This component is sometimes present in some EAs, but it is essential in MAs. Consider that
the population may reach a state in which the generation of a new improved solution might be very
unlikely. This could be the case when all solutions in the population are very similar to each other.
In this situation of population convergence, it is better to refresh the population, rather than keeping
the population constrained to a small region of the search space, probably expending most of the time
resampling the same solutions [21]. This is specifically important in MAs since the inclusion of several
knowledge-augmented components contributes to accelerate the convergence of the population. Typical
criteria for determining population convergence are measuring the diversity of solutions—via Shannon’s
entropy [22] for instance—and Bayesian decision making [23]. In either case, and whenever the population
is considered to have converged, restarting can be done in different ways. One of these is shown in
Figure 27.3: top individuals of the population are kept (a certain fraction p of the population; this value
should not be very high since otherwise the population would obviously converge again in a very short
time afterwards), and the remaining solutions are created from scratch, as it is done in the initialization
phase.

The main functional block in the MA template is the generational step process. This is actually the part of
the algorithm in which evolution of solutions takes place. Its internal structure is depicted in Figure 27.4.
As can be seen, there are three main components in this generational step: selection, reproduction, and
update. Selection and update are responsible for the competition aspects of individuals in the population.
Using the information provided by a problem-dependent guiding function (termed fitness function in
the EA terminology), the goodness of individuals in pop is evaluated, and a sample of individuals is
selected according to this goodness measure to help create new solutions. Essentially, this selection can
be done using fitness-proportionate methods (the probability of selecting an individual is proportional
to its fitness) and nonproportionate methods (selection is done on the basis of qualitative comparisons
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FIGURE 27.3 A possible restarting procedure for the population. The top π = pμ agents in the population are kept,
and the remaining μ–π are generated from scratch.
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FIGURE 27.4 The basic generational step. Notice the use of a pipeline of reproductive operators for creating new
solutions.

among individuals). The latter are being increasingly used, since they avoid some problems of the former
(assumption of maximization, need of transformation for dealing with minimization, scaling problems,
etc.). Among these, we can cite rank- (the top in the rank of an individual, the higher are its chances for being
selected) and tournament-based methods (individuals are selected on the basis of a direct competition
within small subgroups of individuals).
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As to update, this component takes care of maintaining the population at a constant size, or more
properly, at a manageable size, since variable-size populations are not rare [24]. This is done by substituting
some preexisting individuals in pop by some of the new ones from newpop, using some specific criteria. Two
major strategies are possible: the plus strategy in which the best μ individuals from pop ∪ newpop are kept
and the comma strategy in which the best μ from newpop are kept. In the latter case, if |pop| = |newpop|
then the update is termed generational; if |newpop| is small (say |newpop| = 1) then we have a steady-state
replacement (the worst |newpop| solutions from pop are substituted). Other intermediate generational gaps
are possible by selecting higher values of |newpop|.

We finally arrive at the reproduction stage, where new individuals (or agents) are created using the
information existing in the population. More precisely, several reproductive operators (i.e., transforma-
tion functions) are used in a pipelined fashion, as illustrated in Figure 27.4. Reproductive operators are
algorithms that can be classified into two classes: unary operators and n-ary (n > 1) operators. Begin-
ning with the former, two further types of operators are typically used, namely mutation operators and
individual-improvement operators (in many cases based on some form of local search). The latter were
already mentioned before, for example, in the initialization phase. As indicated by their name, their pur-
pose is to improve the quality of a certain solution. In general, this is implemented via an iterative process
whereby small modifications are introduced in a solution and kept if they result in an effective quality
improvement. This process is repeated until it can be determined that no further improvement is possible,
until the amount of quality improvement is considered good enough, or—most typically—until a max-
imum number of improving attempts are performed. Hence, the process need not stop at an optimum
for the individual improver, and therefore characterizations of MAs as “EAs working in the space of local-
optima [with respect to a certain fitness landscape]” are clearly restricting even the methods that originated
the denomination [1,25] and should be avoided. As to mutation, it is intended to generate new solutions
by partly modifying existing solutions. This modification can be random—as it is typically the case in
EAs—or can be endowed with problem-dependent information so as to bias the search to probably good
regions of the search space.

Nonunary operators are usually termed recombination operators. These operators constitute a distinc-
tive added-value possibility of population-based search and encapsulate the mutual cooperation among
several individuals (typically two of them, but a higher number is possible). They generate new individuals
using the information contained in a number of selected solutions called parents. If the resulting individ-
uals (the offspring) are entirely composed of information taken from the parents, then the recombination
is said to be transmitting [26]. This property can be difficult to achieve for certain problem domains (the
Traveling Salesman Problem (TSP) is a typical example). In those situations, it is possible to consider other
properties of interest such as respect or assortment. The former refers to the fact that the recombination
operator generates descendants carrying all features (i.e., basic properties of solutions with relevance for the
problem attacked) common to all parents; thus, this property can be seen as a part of the exploitative side
of the search. In contrast, assortment represents the exploratory side of recombination. A recombination
operator is said to be assorting if, and only if, it can generate descendants carrying any combination of
compatible features taken from the parents. In either case, similar to mutation, performing the combina-
tion of information in a problem-oriented way (rather than blindly) is crucial for the performance of the
algorithm (see, e.g., Refs. [27,28]).

This description of recombination has introduced a crucial concept, namely, relevant features. By relevant
features we mean the information pieces that can be extracted from solutions, exerting a direct influence
on the quality of these. Consider that a certain solution can contain a high number of atomic information
units, but only some of them are directly linked with quality. For example, a permutation π can be
interpreted as a collection of positional information units, that is, position i has value πi . It also can
be interpreted as a collection of adjacency information units, that is, values a and b occur in adjacent
positions of the permutation. It turns out that if the permutation is taken as a solution to the TRAVELING

SALESMAN PROBLEM, the latter are indeed the relevant features, while for the FLOWSHOP SCHEDULING

PROBLEM positional information is much more important [29]. The definition of operators manipulating
the relevant features is one of the key aspects in the design of MAs.
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There have been several attempts for quantifying how good a certain set of information units is for
representing solutions for a specific problems. We can cite a few of them.

• Minimizing epistasis. Epistasis can be defined as the nonadditive influence on the guiding function
of combining several information units (see, e.g., Ref. [30]). Clearly, the higher this nonadditive
influence, the lower the absolute relevance of individual information units. Since the algorithm will
be processing such individual units (or small groups of them), the guiding function turns out to be
low informative, and prone to misguide the search.

• Minimizing fitness variance. [26]. This criterion is strongly related to the previous one. The fit-
ness variance for a certain information unit is the variance of the values returned by the guiding
function, measured across a representative subset of solutions carrying this information unit. By
minimizing this fitness variance, the information provided by the guiding function is less noisy,
with the subsequent advantages for the guidance of the algorithm.

• Maximizing fitness correlation. In this case a certain reproductive operator is assumed, and the
correlation in the values of the guiding function for parents and offspring is measured. If the fitness
correlation is high, good solutions are likely to produce good solutions too, and thus the search
will gradually shift toward the most promising regions of the search space. Again, there is a clear
relationship with the previous approaches; for instance, if epistasis (or fitness variance) is low,
then solutions carrying specific features will have similar values for the guiding function; since the
reproductive operators will create new solutions by manipulating these features, the offspring is
likely to have a similar guiding value as well.

Obviously, the description of these approaches may appear somewhat idealized, but the underly-
ing philosophy is well illustrated. For further advice on the design of MAs, the reader is referred to
Refs. [31,32].

27.3 MAs and Combinatorial Optimization

MAs constitute a extremely powerful tool for tackling combinatorial optimization problems. Indeed,
MAs are state-of-the-art approaches for many such problems. Traditional N P optimization problems
constitute one of the most typical battlefields of MAs, and a remarkable history of successes has been
reported with respect to the application of MAs to such problems. Combinatorial optimization problems
(both single- and multiobjective [33–35]) arising in scheduling, manufacturing, telecommunications,
and bioinformatics among other fields have been also satisfactorily tackled with MAs. Some of these
applications are summarized in Table 27.1.

This list of applications is by no means complete since its purpose is simply to document the wide
applicability of the approach for combinatorial optimization. Indeed, MAs have been successfully applied
to other domains. Other such application areas of MAs include machine learning, robotics, engineering,
electronics, bioinformatics, and oceanography. For further information about MA applications we suggest
checking Refs. [31,32], or querying bibliographical databases or web browsers for the keywords “memetic
algorithms” and “hybrid genetic algorithm.”

27.4 Conclusions and Future Directions

We believe that MAs have very favorable perspectives for their development and widespread application.
We ground our belief for several reasons: first, MAs are showing a great record of efficient implementations,
providing very good results in practical problems (cf. previous section). We also have reasons to believe that
we are near some major leaps forward in our theoretical understanding of these techniques, including, for
example, the computational complexity analysis of recombination procedures. In contrast, the inherent
asynchronous parallelism of MAs adapts very well to the increasing availability of distributed systems.
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TABLE 27.1 Some Applications of Memetic Algorithms in Combinatorial Optimization

GRAPH PARTITIONING [40,41] MIN NUMBER PARTITIONING [9,42]
MAX INDEPENDENT SET [43–45] BIN-PACKING [46]
MIN GRAPH COLORING [47,48] SET COVERING [49]
MIN GENERALIZED ASSIGNMENT [50] MULTIDIMENSIONAL KNAPSACK [51–53]
QUADRATIC ASSIGNMENT [54,55] QUADRATIC PROGRAMMING [56]
SET PARTITIONING [57] GATE MATRIX LAYOUT [58,59]
TRAVELING SALESMAN PROBLEM [10,60,61,63–65] MIN WEIGHTED k-CARDINALITY TREE [62]
UNCAPACITATED HUB LOCATION [67] MIN k-CUT PROBLEM [66]
VEHICLE ROUTING [71–73] PLACEMENT PROBLEMS [68–70]
PRIZE-COLLECTING STEINER TREE [75] TASK ALLOCATION [74]
VERTEX-BICONNECTIVITY [79] NETWORK DESIGN [76–78]

AUGMENTATION ERROR CORRECTING CODES [80]
OSPF ROUTING [81] MAINTENANCE SCHEDULING [82]
OPEN SHOP SCHEDULING [83] FLOWSHOP SCHEDULING [84–86]
SINGLE MACHINE SCHEDULING [87–89] PARALLEL MACHINE SCHEDULING [90]
PROJECT SCHEDULING [91] PRODUCTION PLANNING [92]
TIMETABLING [93,94] ROSTERING [95]
SPORT GAMES SCHEDULING [96,97] AIRPORT GATE SCHEDULING [98,99]
MULTISTAGE CAPACITATED LOT-SIZING [100] GRAPH ISOMORPHISM PROBLEM [101]
PROTEIN STRUCTURE PREDICTION [36,102,103] CLUSTERING [104–106]

We also see as a healthy sign the systematic development of other particular optimization strategies. If a
simpler, nonpopulation-based, metaheuristic performs the same as a more complex method (GAs, MAs,
Ant Colonies, and so on), Ockham’s razor should prevail and we must resort either to the simpler method
or to the one that has less free parameters, or to the one that is easier to implement. Such a fact should
defy us to adapt the complex methodology to beat a simpler heuristic, or to check if that is possible at all.
An unhealthy sign of current research, however, is the attempt to encapsulate metaheuristics on stretched
confinements. The evolutionary computing community had to endure a difficult time in the past, until
the artificial boundaries among the different EA families were overcome. It would be unwise to repeat the
same mistakes in the wider context of metaheuristics.

There are many open lines of research in MAs. One of them is multilevel evolution. It was anticipated
in Ref. [11] that future MAs could simultaneously evolve solutions (in a short timescale), as well as
representations and methods (in a longer timescale). In this sense, Krasnogor and collaborators have
recently introduced techniques to adaptively change the neighborhood definition [36], and used these
adaptive memetic algorithms for the difficult problem of protein structure prediction [37]. Smith [38,39]
also presents a recent study on these issues.

Multiparent recombination is another promising area in which further work has to be done. Recall
that recombination is precisely one of the additional search possibilities contributed by population-based
algorithms, and that its augmentation with problem knowledge results in notably enhanced optimization
capabilities. It seems natural to generalize these ideas to multiple-solution recombination. Not only can
one have a wider pool of information for building the offspring, but additional hints can be obtained with
respect to, for example, negative knowledge, that is, what pieces of information should be avoided in the
offspring. This is definitely one of the most challenging issues for future development in MAs.
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28.1 Introduction

In classical combinatorial optimization, the quality of a solution is often measured with a single objective
function while, in practice, a decision is rarely made with only one criterion. Then, several conflicting
criteria are necessary to measure the quality of a solution. This is the case in a number of areas including
transportation, communication, biology, finance, and also computer science [1]. Multiobjective combi-
natorial optimization (MCO) arises in situations where at least two objective functions are simultaneously
taken into account. This framework offers more freedom, and models coming from MCO better fit to real
situations than those being from classical combinatorial optimization. Of course, this higher freedom has
a price which often turns out to be a higher degree in complexity.

In monocriterion optimization, the notion of optimality is clear while it is not the case when multiple
objectives are considered. Conflicts between the competing criteria lead to a frequent situation where
no feasible solution meet optimality for all objectives. Instead of a unique and ideal solution, a set of
incomparable alternatives dominating all the others acts as an optimum. Many years before the emergence
of computer science, Vilfredo Pareto gave a characterization of these dominating solutions known today
as Pareto optima or Pareto set. The Pareto set captures the notion of trade-off and its computation is
problematic for mainly two reasons:

• it is typically exponential in size; and
• computing one of these Pareto optima is often NP-hard.

Some problems, known to be polynomially solvable in the monocriterion optimization framework, be-
come NP-hard when two (or more) objectives are simultaneously taken into account. Consequently,
approximation in multiobjective optimization seems unavoidable.

Since Pareto’s pioneering work on optimality, different approaches to tackle a multiobjective problem
were proposed. One can divide them into three classes:

• turning a multiobjective problem into a monocriterion one;
• optimize each objective separately; and
• preserve the multidimensional nature of the quality of a solution.

28-1
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According to this classification of the various attempts, we aim at giving some results that are representative
of the MCO area. Before presenting these results, we propose an introduction to MCO which mainly deals
with optimality and complexity.

28.2 Multiobjective Combinatorial Optimization Problems

This section first introduces an general definition of an MCO problem. Afterwards, the notion of optimality
in multiobjective optimization is addressed. The end of the section is devoted to computational complexity
in the MCO area.

28.2.1 General Definition

An MCO problem gathers the following ingredients:

• a finite set S of feasible solutions;
• a vector �f = ( f1, . . . , fk) of k objective functions; and
• a vector �g = (g1, . . . , gk) of k goals so that gi = min (respectively, gi = max) means fi has to be

minimized (respectively, maximized).

The image of a solution s ∈ S under �f is a k-dimensional vector �f (s ). The image of S under �f is denoted
by I . Then, S and I respectively define the decision space and the objective space. The difference between
an objective function and a criterion is blurred and then the words multicriteria and multiobjective are
both used to refer to the same framework.

28.2.2 Notions of Optimality

Unless the criteria are not in conflict with each other, it is difficult to define an appropriate notion of
optimality and, given this notion, find an optimum.

28.2.2.1 Optimality of Pareto

The optimality of Pareto is based on the notion of dominance. Roughly speaking, a solution s dominates
another solution s ′ if it is at least as “good” as s ′ on every criteria and strictly “better” for at least one
criterion. If we suppose that all objective functions of �f must be minimized, a solution s dominates a
solution s ′, denoted by s < s ′, if

• fi (s ) ≤ fi (s ′) for each component fi of �f ; and
• there exists one objective function fi∗ of �f such that fi∗(s ) < fi∗(s ′).

A solution s ∈ S is called Pareto optimal if there is no s ′ ∈ S such that s ′ < s . The image �f (s ) of a Pareto
optimal solution s is called efficient. The subset of all Pareto optimal solutions in S , called the Pareto set,
is denoted by SPar while IEff , also called the Pareto curve, is its image under �f .

Typically, computing the whole Pareto set is not required and a subset of it having the same image is
often sufficient [2].

28.2.2.2 Other Notions of Optimality

Hierarchical Optimality
A ranking between all objective functions is sometimes assumed. A solution s is preferred to s ′, denoted
by s <hier s ′, iff f j (s ) < f j (s ′), where j is the smallest index in the ranking such that fi (s ) �= fi (s ′).

Min Max Optimality
A solution is sometimes said to be optimal if it minimizes the largest coordinate of its image. Then, we try
to find a solution s such that max{ f1(s ), . . . , fk(s )} = mins ′∈S max{ f1(s ′), . . . , fk(s ′)}.
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s1

s2

s5

s4

s3

f1

f2

FIGURE 28.1 s4 dominates s3. {s1, s2, s4, s5} are Pareto optimal while { �f (s1), �f (s2), �f (s4), �f (s5)} defines the Pareto
curve. s1 and s5 are hierarchically optimal. s3 and s4 are optimal for the min max optimality.

One can remark that the hierarchical optimality is a special case of the Pareto optimality while the min
max optimality is less demanding than the Pareto optimality since a min max optimum is not necessarily
Pareto optimal.

Figure 28.1 gives an illustration of the notions given in this subsection.

28.2.3 Hardness

Modeling a problem with more than one objective function offers more freedom but it also brings
complications.

28.2.3.1 NP-Completeness

Proving NP-completeness for some MCO problems is sometimes easy since it directly follows from NP-
completeness of an underlying problem with less objectives. For example, this is the case for a multiobjective
traveling salesman problem (TSP), where the distance between two cities is a vector of distances instead of a
scalar. However, some polynomially solvable problems become NP-complete when two (or more) criteria
are simultaneously taken into account.

As an example, we consider an extension of the well-known minimal spanning tree problem called BMST

for bicriteria minimal spanning tree. We are given a simple graph G = (V, E ), where each edge e ∈ E has
a weight we and a length le . A solution to this problem is a tree t spanning all the vertices of V , having a
total weight W(t) = ∑

e∈t we and a total length L (t) = ∑
e∈t le .

It is well known that the minimal spanning tree problem can be solved in polynomial time [3]. However,
we have the following theorem:

Theorem 28.1 (Camerini et al. [4])

BMST is NP-complete.

Proof
Suppose that we have a set A of n integers {a1, . . . , an}. Given an integer b, the SUBSET SUM problem
asks whether a subset A′ ⊆ A such that

∑
ai ∈A′ ai = b exists. This decision problem is NP-complete

[5]. Now consider the following decision problem: Given W0 and L 0, does there exist a spanning tree t
that satisfies W(t) ≤ W0 and L (t) ≤ L 0? Set W0 = b, L 0 = ∑n

i=1 ai − b and consider the instance
G given in Figure 28.2. We only consider spanning trees containing the edge [vn+1, vn+2] since those
which do not cannot be preferred. A tree t satisfying W(t) ≤ W0 and L (t) ≤ L 0 yields a subset A′
verifying

∑
ai ∈A′ ai = b if ai ∈ A′ ⇔ [vi , vn+1] ∈ t. Indeed,

∑
e∈t we ≤ b ⇔ ∑

ai ∈A′ ai ≤ b and∑
e∈t le ≤ ∑n

i=1 ai − b ⇔ ∑
ai ∈A′ ai ≥ b.
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vn(an, 0)

(a1, 0)

vn+1
vn+2

(ai, 0) (0, ai)

(0, a1)

(0, an)

v1

(0, 0)

vi

FIGURE 28.2 G has n + 2 vertices {v1, . . . , vn+2} and each edge e has a couple (we , le ). Does G admit a spanning
tree t such that W(t) ≤ W0 and L (t) ≤ L 0?

Thus, several MCO problems generalizing some polynomially solvable ones are NP-complete. For
example, this is also the case for SHORTEST PATH or ASSIGNMENT [6]. Sometimes, the complexity relies on the
notion of optimality. Finding a hierarchical optimum for the BMST problem can be easily done with a slightly
modified version of Kruskal’s algorithm where the edges are sorted lexicographically [3]. However, finding
a min max optimum for the BMST problem is hard because of PARTITION (see the instance in Figure 28.2
and set W0 = L 0 = 1

2

∑n
i=1 ai ).

28.2.3.2 Intractability

Besides the complexity of generating one Pareto optimal solution, computing the Pareto set is problematic
since it is often exponential in size and thus, there is no chance to compute it in an efficient manner. In
the following, an MCO problem is said intractable if |IEff | can be exponential in the size of an instance.

We consider an extension of a classical problem called BSP for bicriteria shortest path. We are given a
graph G = (V, A), where each arc a ∈ A has a cost ca and a delay da . Given two vertices s and t of the
vertex set V , a feasible solution p is a path from s to t whose total cost and total delay are, respectively,
C( p) = ∑

a∈p ca and D( p) = ∑
a∈p da .

Theorem 28.2 (Hansen et al. [7])

BSP is intractable.

Proof
Consider the instance given in Figure 28.3. There are two arcs between two consecutive nodes vi and vi+1,
one with cost–delay vector (2i , 0) and another with cost–delay vector (0, 2i ). Each path p between s and
t satisfies

∑
a∈p(ca + da ) = 2n+1 − 1. Moreover, for every positive integer z ≤ 2n+1 − 1 we can build a

path pz such that C ( pz) = z. Then, |IEff | = 2n+1 and BSP is intractable. A similar result on nonoriented
graphs can be derived.

A proof of intractability for BMST can be found in Ref. [8] and the bicriteria ASSIGNMENT problem is
addressed in Ref. [9].

(20, 0)

t = vn+1

v2v1

(0, 20)

(21, 0)

(0, 21)

(2n, 0)

vn

(0, 2n)

s = v0

FIGURE 28.3 Each arc a has a cost–delay vector (ca , da ). Two different s−t paths in G cannot have the same total
cost and total delay.
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28.3 Multiobjective Approximation

Three main classes of approaches exist in MCO. Two approaches of the first class are presented in subsections
28.3.1 and 28.3.2. Subsections 28.3.3 and 28.3.4 are, respectively, devoted to the second and third class.
Short examples from the literature illustrate the approaches.

28.3.1 Aggregation Approach

One of the most natural ways to address a multiobjective problem is to turn it into a monocriterion one.
Instead of dealing with k objective functions, we can aggregate them and get a single function f̃ defined
as follows:

f̃ =
k∑

i=1

λi fi , where λi ∈ IR+ and
k∑

i=1

λi = 1

Then, considering different values for λi allows us to explore different regions of the objective space. This
technique consists in searching the objective space with a hyperplane (see Figure 28.4 for an illustration
on a biobjective problem).

Interestingly, this aggregation approach gives the opportunity to generate some Pareto optimal solutions
with an exact monocriterion algorithm. Indeed, any solution s which minimizes f̃ , where λi >0 for all i
is Pareto optimal since no other solution s ′ such that s ′ < s and f̃ (s ′) ≥ f̃ (s ) can exist. By definition,
s ′ < s means fi (s ′) ≤ fi (s ) for all i and there is a criterion i∗ such that fi∗(s ′) < fi∗(s ). Hence, s ′ < s
and λi > 0 imply f̃ (s ′) < f̃ (s ) and contradicts the fact that s minimizes f̃ .

The fact that the objective space can be nonconvex implies that only a subset of the Pareto set can be gen-
erated with this approach. Then, Pareto optimal solutions are often partitioned into two sets, the supported
ones which can be computed with the aggregation approach and the nonsupported ones (see the encircled
dots in Figure 28.4). In early articles addressing MCO, nonsupported solutions were often ignored.

28.3.1.1 A Biobjective Scheduling Problem

We address the problem of scheduling n jobs on a single machine without preemption. Each job j ∈
{1, . . . , n} has a processing time p j , a cost c j , and a weight w j . We assume that p j , c j , and w j are positive
integers. All jobs are available at time t = 0 and no precedence constraints are taken into account. Only
schedules without idle times are considered and then a feasible solution is a permutation π of the jobs. If a
job j is at the i th position in π (i.e., π(i) = j ) then its completion time Cπ

j is equal to
∑i

q=1 pπ(q). A permu-
tation π has a total cost c(π) = ∑n

j=1 c j Cπ
j and a total weight w(π) = ∑n

j=1 w j Cπ
j . These two possibly

conflicting objectives have to be minimized. This biobjective scheduling problem is NP-complete [10] and

λ2 = 1 − λ1

λ1

f1

f2

s∗

FIGURE 28.4 f̃ = λ1 f1 +λ2 f2 finds its minimum for s ∗ which is supported. Nonsupported solutions are encircled.
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intractable [11]. We consider a convex combination of the objectives f̃ λ(π) = λc(π) + (1 − λ)w(π) and
we try to compute a set of permutations P such that for any λ between 0 and 1, there is a permutation
π ∈ P that minimizes f̃ λ. This set is called a minimal set of supported solutions.

Each objective can be separately optimized with the rule of Smith [12], since a permutation π that
minimizes the total cost (respectively, the total weight) can be computed in time O(n log n) if the jobs are
sorted by their nondecreasing ratios p j /c j (respectively, p j /w j ). Therefore, an optimal permutation for f̃ λ

can be found efficiently if the jobs are sorted by their nondecreasing ratios r (λ, j ) = p j /(λc j +(1−λ)w j ).
Given a pair of distinct jobs j and j ′ such that p j /c j ≤ p j ′/c j ′ , their ordering in an optimal permutation
for f̃ λ does not depend on λ when p j /w j ≤ p j ′/w j ′ (the criteria are not in conflict) but depends on λ

when p j /w j > p j ′/w j ′ (the criteria are conflicting). Then, one can calculate λ j j ′ such that r (λ j j ′ , j ) =
r (λ j j ′ , j ′) for each pair of jobs in conflict and state that the ordering between j and j ′ in any permutation
minimizing f̃ λ depends on the position of λ compared to λ j j ′ [11].

Algorithm (MSUP)
returns a minimal set of supported solutions

1: let � be an ordered list of distinct reals, set � = {0, 1}, set P = ∅
2: for each pair j j ′ of conflicting jobs
3: find λ j j ′ such that 0 < λ j j ′ < 1 and r (λ j j ′ , j ) = r (λ j j ′ , j ′), insert λ j j ′ into �

4: let �(i) be the i th element of �

5: for i = 1 to |�| − 1
6: take arbitrarily a λ such that �(i) < λ < �(i + 1)
7: sort the jobs by their nondecreasing ratios r (λ, j ) and put the permutation in P
8: return P

Finally, P contains exactly |�| − 1 permutations while |�| ≤ n(n−1)
2 + 2. Thus, MSUP runs in

O(n3 log n).

28.3.2 Budget Approach

This approach consists in turning a k objective problem into a monocriterion one subject to k − 1 budget
constraints. It is like viewing KNAPSACK as a problem with two objectives: utility and size. More generally
(the minimization of each objective is assumed), we are given a (k − 1)-dimensional vector (B2, . . . , Bk)
and one tries to minimize f1(s ) such that s ∈ S , f2(s ) ≤ B2, . . . , fk(s ) ≤ Bk . Let B1 = mins∈S{f1(s ) |
fi (s ) ≤ Bi , i = 2, . . . , k}; a solution s is called ε-approximate if f1(s ) ≤ (1 + ε)B1 and fi (s ) ≤ Bi ,
i = 2, . . . , k.

28.3.2.1 The Bicriteria Shortest Path Problem on Acyclic Graphs

We consider the BSP problem on acyclic digraphs with a budget approach. Namely, one tries to compute
a path p between two nodes s and t such that D( p) ≤ D0 and C( p) is minimized (D0 is an entry of the
instance). An s –t path with total delay at most D0 is also called a D0-path in the following. The material
presented in this subsection comes from the articles [13–16].

There is a pseudopolynomial dynamic programming-like procedure to solve the problem. Let δ j (z) be
the minimal delay for an s – j path of total cost at most z.

Algorithm (EXACT(c,d))
returns a minimal cost D0-path

1: for all z ≥ 0, set δs (z) = 0
2: for all j �= s , set δ j (z) = ∞
3: for z = 1, 2, . . .

4: for all j �= s , set δ j (z) = mini j : ci j ≤z{δ j (z − 1), min{δi (z − ci j ) + di j }}
5: if δt (z) ≤ D0 then output OPT = z and its corresponding path, exit
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The running time of EXACT is O(m OPT), where m = |A| and OPT is the minimal cost for a D0-path.
Using a rounding-and-scaling technique, one can design a fully polynomial time approximation scheme
(FPTAS) for the problem. This technique consists in replacing c (the function that maps a cost to each
arc) by a scaled down function c̃ so that EXACT (c̃ , d) runs in polynomial time and an optimum for the
scaled down instance is an approximation with bounded error of the original optimum.

Suppose that we have two bounds LB and UB satisfying LB ≤ OPT ≤ UB and there is a constant θ >1
such that UB ≤ θLB. Given an ε and n = |V |, the costs on the original instance are scaled down as follows:
c̃a = �n ca/(ε LB), ∀a ∈ A. Since �x is between x − 1 and x , any path p satisfies

∑

a∈p

( nca

ε LB
− 1

)
≤

∑

a∈p

c̃a ≤
∑

a∈p

nca

εLB

Suppose that p′ is an optimal solution for the scaled down instance while p∗ is optimal for the original one.
∑

a∈p′
c̃a ≤

∑

a∈p∗
c̃a

∑

a∈p′

( n ca

ε LB
− 1

)
≤

∑

a∈p∗

n ca

ε LB

∑

a∈p′

(
ca − ε LB

n

)
≤

∑

a∈p∗
ca = OPT

C ( p′) − ε LB ≤ OPT

C ( p′) ≤ (1 + ε)OPT

Thus, running EXACT(c̃ , d) for z = 1, 2, . . . , �θ n/ε, we get anε-approximate D0-path in timeO(nm/ε).
The remaining part of the result concerns efficient ways to get LB and UB. Let c1 < c2 < · · · < cl be the
distinct costs of the arcs in A. We clearly have l ≤ m. Let Ai = {a ∈ A | ca ≤ ci } for 1 ≤ i ≤ l , A0 = ∅,
and Gi = (V, Ai ). Therefore, there must be an index j such that G j admits a D0-path while G j−1 does
not. Given this j , one can claim that OPT is in the range [c j , nc j ] since G j−1 has no D0-path means that
any D0-path in G uses at least one arc a such that ca ≥ c j , and OPT is upper-bounded by the minimal
cost of a D0-path in G j which is itself upper-bounded by nc j . The following algorithm called INDEX
finds j in O(log m) steps.

Algorithm (INDEX)
returns the minimal j such that G j admits a D0-path

1: set low = 1 and high = l
2: while low < high − 1
3: set j = �(high + low)/2
4: find an s − t path p in G j with minimal total delay
5: if p exists and D( p) < D0 then high = j else low = j
6: return high

Thus, INDEX helps to get a lower and an upper bound which are within a factor n. Starting with these
bounds, one can narrow the range so that UB/LB ≤ 2. The idea is to iteratively use a procedure which,
given K ∈ [LB,UB] and γ ≤ n, tests if OPT > K or OPT ≤ K (1 + γ ):

Algorithm (TEST(K , γ ))
checks if OPT > K or OPT ≤ K (1 + γ )

1: for all a ∈ A, set c̃ a = �(nc̃a )/(K γ )
2: for all z ≥ 0, set δs (z) = 0
3: for all j �= s , set δ j (z) = ∞
4: for z = 1, 2, . . . , �n/γ 
5: for all j �= s , set δ j (z) = mini j : c̃ i j ≤z{δ j (z − 1), min{δi (z − c̃ i j ) + di j }}
6: if δt (z) ≤ D0 then output OPT ≤ K (1 + γ ) and exit
7: output OPT > K
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TEST(K , γ ) runs in O(mn/γ ) time for γ ≤ n. Now, we can present the FPTAS for BSP called ADAPT.

Algorithm (ADAPT(ε))
returns an ε-approximate D0-path

1: use INDEX to initialize UB and LB such that UB ≤ nLB
2: while UB > 2LB
3: set γ = √

UB/LB − 1 and K = √
UB LB/(1 + γ )

4: if TEST(K , γ ) outputs OPT > K then set LB = K else set UB = (1 + γ )K
5: invoke EXACT(�nc/(LB ε), d) and output its result

Theorem 28.3 (Ergun et al. [13])

ADAPT has running time O(mn/ε).

Proof
Let UBi , LBi , Ki , and γi be the parameters used in the i th application of TEST. The ratio UBi+1/LBi+1 is
sometimes equal to UBi /Ki and sometimes equal to Ki (1 + γi )/LBi but we always have

UBi+1/LBi+1 = (UBi /LBi )3/4 (28.1)

Let q be the number of applications of TEST in ADAPT. The total time required to have UB ≤ 2LB
is

∑q
i=1 O(mn/γi ) and it therefore suffices to show that

∑q
i=1 1/γi = O(1). The definition of γi

implies 1/γi = 1/(
√

UBi /LBi − 1). Since UBi > 2LBi for i ≤ q , we have
√

LBi /UBi ≤ 1/γi ≤
(2 + √

2)
√

LBi /UBi . Hence,
∑q

i=1 1/γi = O
(∑q

i=1

√
LBi /UBi

)
. We also have

q∑

i=1

√
LBi /UBi =

q∑

j=1

(LBq /UBq )(1/2)(4/3) j ≤
q∑

j=1

2−(1/2)(3/4) j ≤ 2(−1/2)
q∑

i= j

(2−1/6) j

≤ 2−1/2

1 − 2−1/6
≤ 6.5

The first equality follows from repeatedly applying Eq. (28.1). The first inequality follows from UBq >

2LBq . The second inequality holds since 2−(1/2)(4/3) j+1 ≤ (2−1/6)2−(1/2)(4/3) j
for j ≥ 0.

The same approach was successfully used for the BMST problem [17,18].

28.3.3 Simultaneous Approach

No ideal solution meeting optimality for all objectives is likely to exist if the criteria are in conflict.
However, the image of this solution, called the ideal point, can act as a reference to measure the quality
of a compromise solution. The simultaneous approach or ideal point approach consists in giving a feasible
solution whose image approximates the ideal point with a performance guarantee on each objective.

Given a k-criteria optimization problem, the ideal point is a vector �µ = (µ1, . . . , µk) such that

µi = gi { fi (s ) | s ∈ S}, i = 1, . . . , k

A solution s is �ε-approximate if for all i between 1 and k we have fi (s ) ≤ (1 + εi )µi in case gi = min or
µi ≤ (1 + εi ) fi (s ) in case gi = max .

28.3.3.1 The Bicriteria MAX-CUT Problem

Given an undirected graph G = (V, E ) with nonnegative edge weights wi j , the objective of the classical
maximal-cut problem (MAX-CUT) is to find a partition of the vertex set V into two subsets S and S, such
that the sum of the weights of the edges having endpoints in different subsets is maximal. Denoted by
W(S, S), the total weight of the cut (S, S) is

∑
i∈S, j∈S wi j . Finding a cut of maximal total weight is

NP-hard [19].
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A biobjective version of this problem is considered. In addition to the weight, the edges have a nonnegative
length li j . The total length of a cut, denoted by L (S, S) is equal to

∑
i∈S, j∈S li j . In the following, the ideal

point is denoted by (OPTW, OPTL).
We are given an instance of the biobjective problem and two cuts (S1, S1) and (S2, S2) which are,

respectively, α-approximate for the total weight (i.e., OPTW ≤ (1 + α)W(S1, S1)) and α-approximate
for the total length (i.e., OPTL ≤ (1 + α)L (S2, S2)). These two cuts are supposed to be computed with a
deterministic monocriterion α-approximation algorithm AL . One can build a feasible (1 + 2α, 1 + 2α)-
approximate cut with the following algorithm:

Algorithm (BIAPPROX(S1, S2))
returns a feasible (1 + 2α, 1 + 2α)-approximate cut

1: if L (S1, S1) ≥ L (S2, S2)/2 then return (S1, S1) and exit
2: if W(S2, S2) ≥ W(S1, S1)/2 then return (S2, S2) and exit
3: return

(
(S1 ∩ S2) ∪ (S1 ∩ S2), (S1 ∩ S2) ∪ (S1 ∩ S2)

)

Theorem 28.4 (Angel et al. [20])

BIAPPROX returns a feasible (1 + 2α, 1 + 2α)-approximate cut.

Proof
The vertex set V can be partitioned into four subsets: X = S1 ∩ S2, Y = S1 ∩ S2, Z = S1 ∩ S2,
and T = S1 ∩ S2 (see Figure 28.5). BIAPPROX potentially returns the cuts (S1, S1), (S2, S2) or (X ∪
T, Y ∪ Z). If L (S1, S1) ≥ L (S2, S2)/2 then 2(1 + α)L (S1, S1) ≥ (1 + α)L (S2, S2) ≥ OPTL. So,
(S1, S1) is (α, 1 + 2α)-approximate and thus (1 + 2α, 1 + 2α)-approximate. If W(S2, S2) ≥ W(S1, S1)/2
then 2(1 + α)W(S2, S2) ≥ (1 + α)W(S1, S1) ≥ OPTW. So, (S2, S2) is (1 + 2α, α)-approximate and
thus (1 + 2α, 1 + 2α)-approximate. If L (S1, S1) < L (S2, S2)/2 and W(S2, S2) < W(S1, S1)/2 then
W(X, Y ) + W(Z, T) ≥ W(S1, S1)/2 ≥ OPTW/(2(1 + α)) and L (X, Z) + L (Y, T) ≥ L (S2, S2)/2 ≥
OPTL/(2(1 + α)). As a consequence (X ∪ T, Y ∪ Z) is (1 + 2α, 1 + 2α)-approximate.

Suppose that AL is an exact (0-approximation) algorithm, then BIAPPROX provides a constructive proof
on the existence of a feasible (1, 1)-approximate cut. Now suppose that AL is the derandomized version
of the 0.13821-approximation algorithm of Goemans and Williamson [21] (0.13821 = 0.87856−1 − 1),
BIAPPROX returns a feasible (1.276, 1.276)-approximate cut in polynomial time. In contrast to these pos-
itive results, one can remark that no (ε1, ε2)-approximation algorithm can be designed for the biobjective
MAX CUT when ε1 and ε2 are both strictly inferior to 1. Indeed, the instance depicted in Figure 28.6 shows
that no such cut exists.

The same approach was successfully used for a scheduling problem [22].

Y

TZ

X

S2

S2

S1 S1

S2

S2

S1 S1

FIGURE 28.5 S1, S1, S2, and S2 define a partition of V into four sets called X , Y , Z, and T .
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(1, 1)

(1, 0) (0, 1)

f1

f2

2

1

1 2

Ideal point

FIGURE 28.6 Each edge e of this graph has a couple (we , le ). The ideal point is (2, 2) while no feasible cut (S, S)
such that W(S, S) > 1 and L (S, S) > 1 exists.

28.3.4 Pareto Set Approach

Providing the whole set of Pareto optimal solutions or a subset having the same image under �f is the best
answer one could give to a multiobjective problem. Despite the hardness of computing such a set, one can
try to generate in polynomial time an approximation of it. Hence, a succinct set of incomparable solutions
which approximately dominate all the others is of great interest.

Given a vector �ε = (ε1, . . . , εk), we say that s �ε-dominates s ′ if fi (s ) ≤ (1 + εi ) fi (s ′), i = 1, . . . , k
(the minimization of every objective function is assumed). Hence, an �ε-approximate Pareto set S�ε is a set
of feasible solutions such that for every solution s ′ ∈ S there exists an s ∈ S�ε which �ε-dominates s ′. The
image of S�ε under �f is called an �ε-approximate Pareto curve.

Theorem 28.5 (Papadimitriou and Yannakakis [2])

For any multiobjective optimization problem and any ε there is an �ε-approximate Pareto set consisting of a
number of solutions that is polynomial in the size of the instance and 1/ε but exponential in the number of
criteria.

Proof
Given an instance x of a k-criteria problem and a solution s ∈ S , we assume that fi (s ) is between 2−p(|x|)
and 2p(|x|) for some polynomial p. Consider the objective space and subdivide it into hyperrectangles, such
that, in each dimension, the ratio of the larger to the smaller coordinate is 1 + ε (see Figure 28.7). There

are O
( (2p(|x|))k

εk

)
such subdivisions. Define S�ε by choosing one solution of SPar in each hyperrectangle

that contains such a solution.

-Approximate Pareto setPareto set
f2f2

f1 f1

FIGURE 28.7 The geometric grid ensures that the image of two solutions in the same box are within a factor 1 + ε

on every coordinate. Keeping one solution per box leads to an �ε-approximate Pareto set.
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28.3.4.1 An Approximate Pareto Set with a Simultaneous Approach

Let s ∗ be a Pareto optimal solution for a multiobjective problem. Given �µ as the ideal point, we have
fi (s ∗) ≥ µi when gi = min and fi (s ∗) ≤ µi when gi = max. Let s be an �ε-approximate solution with
respect to the simultaneous approach. We have fi (s ) ≤ (1+ εi )µi when gi = min and µi ≤ (1+ εi ) fi (s )
when gi = max. Hence, s �ε-dominates s ∗ since fi (s ) ≤ (1 + εi )µi ≤ (1 + εi ) fi (s ∗) when gi = min
and fi (s ∗) ≤ µi ≤ (1 + εi ) fi (s ∗) when gi = max. Therefore, {s } constitutes an �ε-approximate Pareto
set.

28.3.4.2 An Approximate Pareto Set with a Budget Approach

We first address a problem with two objectives f1 and f2 in which both have to be minimized. We make
the assumption that every solution s ∈ S satisfies LB ≤ f2(s ) ≤ LB(1 + ε)Q , where LB > 0, ε > 0, and
Q is a positive integer. Now suppose that we have an ε′-approximation algorithm AL with respect to the
budget approach. Namely, AL(B2) returns a solution s such that f1(s ) ≤ (1 + ε′)B1 and f2(s ) ≤ B2,
where B1 = mins ′∈S{ f1(s ′) | f2(s ′) ≤ B2}.

Algorithm (MULTIBUDGET(LB, ε, AL))
returns a (ε′, ε)-approximate Pareto set

1: set P = ∅
2: for q = 1, . . . , Q
3: set P = P ∪ {AL (LB(1 + ε)q )}
4: output P

Theorem 28.6

MULTIBUDGET returns an (ε′, ε)-approximate Pareto set.

Proof
Take any Pareto optimal solution s ∗ ∈ SPar . By the assumption, we know that there exists a q∗ such that
1 ≤ q∗ ≤ Q and LB(1 + ε)q∗−1 ≤ f2(s ∗) ≤ LB(1 + ε)q∗

. Let s ′ be such that f1(s ′) = mins∈S{ f1(s ) |
f2(s ) ≤ LB(1 + ε)q∗ }. We have f1(s ′) ≤ f1(s ∗). Let s ∈ P be the solution returned by AL(LB(1 + ε)q∗

).
We have f1(s ) ≤ (1 + ε′) f1(s ′) and f2(s ) ≤ LB(1 + ε)q∗

. Thus, we get f1(s ) ≤ (1 + ε′) f1(s ∗) and
f2(s ) ≤ (1 + ε) f2(s ∗) meaning that s (ε′, ε)-dominates s ∗.

Therefore, an algorithm which outputs an �ε-approximate Pareto set for the BSP problem can be designed
if we combine MULTIBUDGET and ADAPT. This approach acts as a general technique which can be directly
adapted for problems with more than two criteria. The minimization of each criterion is assumed in the
following theorem:

Theorem 28.7 (Papadimitriou and Yannakakis [2])

There is an algorithm for constructing an �ε-approximate Pareto set, polynomial in the size of the instance and
1/ε, if the following problem (called GAP) can be so solved: Given the instance and a k-vector (B1, . . . , Bk),
either return a solution s with fi (s ) ≤ (1 + ε)Bi for all i , or answer that there is no solution s ′ with
fi (s ′) ≤ Bi .

Proof
Define ε′ = √

1 + ε − 1 ≈ ε/2 and subdivide the objective space as in the proof of Theorem 28.5, using
ε′. Call the GAP problem for each corner (see Figure 28.8 for an illustration). Keep (an undominated subset
of) all solutions returned and then we get an �ε-approximate Pareto set.

This approach was successfully used for a scheduling problem [23]. The following subsection addresses
a problem where the general technique cannot be used.
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B1(1 +   )2B1(1 +   )

B2(1 +   )

B1

B2

B2(1 +   )2

s

s∗

f2

f1

FIGURE 28.8 Suppose that s ∗ is Pareto optimal. Call GAP for (B1, B2) and suppose that no solution s ′ satisfies
fi (s ′) ≤ Bi . Call GAP for (B1(1 + ε′), B2(1 + ε′)) and suppose that it returns a solution s with fi (s ) ≤ Bi (1 + ε′)2.
Then, we get fi (s ) ≤ (1 + ε′)2 fi (s ∗) = (1 + ε) fi (s ∗).

28.3.4.3 The Bicriteria TSP (1, 2)

Given a complete graph G = (V, E ) and a function d that maps a nonnegative distance to each edge e ∈ E ,
the TSP consists in finding a tour (a Hamiltonian cycle) whose total distance is minimum. Papadimitriou
and Yannakakis [24] addressed a restricted, but still NP-hard, version of the TSP where distances can be
one or two (denoted by TSP(1, 2) in the following). They proposed a polynomial-time 1/6-approximation
algorithm, while Engebretsen and Karpinski [25] provided a lower bound of 1/740 on this ratio (for
polynomial-time approximation).

We consider a bicriteria version of the TSP(1, 2) where all distance vectors belong to {1, 2}2. A tour t
has total distance vector �D(t) such that n ≤ Dk(t) ≤ 2n, n = |V |, and 1 ≤ k ≤ 2. For any instance of
this biobjective problem, one can compute in polynomial time a set P ′ of two tours such that the image
of P ′ under �D is a ( 1

2 , 1
2 )-approximation of IEff . Each of these two tours is computed with an extended

version of the old nearest neighbor heuristic. Starting from a single node, this greedy procedure consists
in iteratively adding the “lightest” edge connecting the last inserted node with a noninserted one. A tour
is simply built by linking the extremities of the path that was computed. If distances are scalars then the
word “lightest” means “minimal distance.” In case distances are vectors then a definition of “lightness”
must be given since some distance vectors cannot be objectively compared.

Suppose that we are given a permutation σ of the criteria. One can derive a lexicographic order between
the distance vectors as follows: According to σ , �d(e) is lighter than �d(e ′), denoted by �d(e) <σ

�d(e ′), if
dσ ( j )(e) < dσ ( j )(e ′) and j is the smallest index satisfying dσ ( j )(e) �= dσ ( j )(e ′).

The following algorithm takes a permutation σ as an entry and returns an approximate tour tσ (tσ is
viewed as a permutation of the nodes so that tσ (i) denotes the i th visited node):

Algorithm (BINN(σ ))
returns an approximate tour tσ

1: choose arbitrarily one node v ∈ V
2: set tσ (1) = v and VISITED = {v}
3: for i = 1, . . . , n − 1
4: find v′ ∈ V\VISITED the nearest neighbor of tσ (i)
5: set tσ (i + 1) = v′ and VISITED = VISITED ∪ {v′}
6: return tσ
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Theorem 28.8 (Angel et al. [26])

BINN(σ ) returns a tour tσ which ( 1
2 , 1

2 )-dominates any tour t ′ satisfying Dσ (1)(t ′) ≤ Dσ (2)(t ′).

Proof
Given �a ∈ {1, 2}2, let x�a (respectively, x ′

�a ) be the number of edges in tσ (respectively, t ′) having a
distance vector equal to �a . For k = 1 or k = 2, we have Dk(tσ ) = ∑

�a :ak=1 x�a + 2
∑

�a :ak=2 x�a and
Dk(t ′) = ∑

�a :ak=1 x ′
�a + 2

∑
�a :ak=2 x ′

�a . Since tσ and t ′ are two tours with n edges, we have

n =
∑

�a :ak=1

x�a +
∑

�a :ak=2

x�a =
∑

�a :ak=1

x ′
�a +

∑

�a :ak=2

x ′
�a , k = 1, 2

Thus, Dk(tσ ) = 2n − ∑
�a :ak=1 x�a and Dk(t ′) = 2n − ∑

�a :ak=1 x ′
�a . The hypothesis Dσ (1)(t ′) ≤ Dσ (2)(t ′)

gives
∑

�a :aσ (1)=1

x ′
�a + 2

∑

�a :aσ (1)=2

x ′
�a ≤

∑

�a :aσ (2)=1

x ′
�a + 2

∑

�a :aσ (2)=2

x ′
�a ⇔

∑

�a :aσ (1)=2∧aσ (2)=1

x ′
�a ≤

∑

�a :aσ (1)=1∧aσ (2)=2

x ′
�a

(28.2)

Let 
 be a subset of {1, 2}2 such that no couple of vectors �a , �b satisfies �a ∈ {1, 2}2\
, �b ∈ 
 and �a ≺σ
�b.

For example, 
 can be {(1, 1), (1, 2)} or {(1, 1)} if σ is the identity permutation. Let X
 (respectively,
X ′


) be the set of edges in tσ (respectively, t ′) which have a distance vector in 
. Let map : X ′

 → X


be a function such that map(e) = e if e ∈ X ′

 ∩ X
; otherwise map(e) = e ′, where e = [tσ (i), tσ ( j )],

e ′ = [tσ (i), tσ (i+1)], and 1 ≤ i < j ≤ n. Remark that e ′ must belong to X
 because tσ (i+1) is the nearest
neighbor of tσ (i), i.e., �d(e) �≺σ

�d(e ′) and �d(e ′) ∈ 
. Since in a tour, exactly two edges are incident to a
vertex, we have 2|X
| ≥ |X ′


|. Then, taking 
 = {�a | aσ (1) = 1} and 
 = {�a | aσ (1) = aσ (2) = 1}, we get

2
∑

�a :aσ (1)=1

x�a ≥
∑

�a :aσ (1)=1

x ′
�a (28.3)

2
∑

�a :aσ (1)=aσ (2)=1

x�a ≥
∑

�a :aσ (1)=aσ (2)=1

x ′
�a (28.4)

Proving that tσ ( 1
2 , 1

2 )-dominates t ′ is equivalent to Dσ (k)(tσ ) ≤ (1 + 1
2 )Dσ (k)(t ′) for k = 1, 2.

Dσ (k)(tσ ) ≤
(

1 + 1

2

)

Dσ (k)(t ′) ⇔ 2n −
∑

�a :aσ (k)=1

x�a ≤ 3

2

(
2n −

∑

�a :aσ (k)=1

x ′
�a
)

⇔ −2
∑

�a :aσ (k)=1

x�a ≤ 2n − 3
∑

�a :aσ (k)=1

x ′
�a

⇔ −2
∑

�a :aσ (k)=1

x�a ≤ 2
∑

�a :aσ (k)=2

x ′
�a −

∑

�a :aσ (k)=1

x ′
�a (28.5)

Since x ′
�a ≥ 0 for any vector �a ∈ {1, 2}2, inequality (28.5) when k = 1 follows from Eq. (28.3) and

0 ≤ 2
∑

�a :aσ (1)=2 x ′
�a .

Starting from Eq. (28.2) we get

2
∑

�a :aσ (1)=2∧aσ (2)=1

x ′
�a ≤ 2

∑

�a :aσ (1)=1∧aσ (2)=2

x ′
�a

2
∑

�a :aσ (1)=2∧aσ (2)=1

x ′
�a + 2

∑

�a :aσ (1)=2∧aσ (2)=2

x ′
�a ≤ 2

∑

�a :aσ (2)=2

x ′
�a

2
∑

�a :aσ (1)=2∧aσ (2)=1

x ′
�a + 2

∑

�a :aσ (1)=2∧aσ (2)=2

x ′
�a −

∑

�a :aσ (1)=2∧aσ (2)=1

x ′
�a ≤ 2

∑

�a :aσ (2)=2

x ′
�a −

∑

�a :aσ (1)=2∧aσ (2)=1

x ′
�a

∑

�a :aσ (1)=2∧aσ (2)=1

x ′
�a + 2

∑

�a :aσ (1)=2∧aσ (2)=2

x ′
�a ≤ 2

∑

�a :aσ (2)=2

x ′
�a −

∑

�a :aσ (1)=2∧aσ (2)=1

x ′
�a (28.6)
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Since x ′
�a ≥ 0 and x�a ≥ 0 for any vector �a ∈ {1, 2}2, we have

−2
∑

�a :aσ (1)=2∧aσ (2)=1

x�a ≤
∑

�a :aσ (1)=2∧aσ (2)=1

x ′
�a + 2

∑

�a :aσ (1)=2∧aσ (2)=2

x ′
�a

This inequality and Eq. (28.6) give

−2
∑

�a :aσ (1)=2∧aσ (2)=1

x�a ≤ 2
∑

�a :aσ (2)=2

x ′
�a −

∑

�a :aσ (1)=2∧aσ (2)=1

x ′
�a (28.7)

Finally, one can add Eq. (28.4) to Eq. (28.7) and get inequality (28.5) when k = 2.

Running BINN with the two possible permutations σ , one can build a set P ′ of two tours which ( 1
2 , 1

2 )-
dominates any feasible tour. Hence, P ′ is a ( 1

2 , 1
2 )-approximate Pareto set for the bicriteria TSP(1, 2).

28.4 Conclusion

Practical situations without any clearly established optimum are often met. Indeed, considering several
conflicting criteria is sometimes necessary or simply relevant. Instead of a well-identified optimum, one
faces a set of trade-off solutions whose computation is highly problematic. Thus, approximation seems
reasonable in multiobjective optimization.

There are various approaches or techniques for the study of a multiobjective problem:

• aggregate the objective functions and get a single criterion which has to be optimized;
• optimize only one objective function while the others are turned into constraints;
• get a trade-off by combining solutions which are good for each separate objective function; and
• compute a set of solutions which approximately dominates all the others.
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29.1 Introduction

Multiobjective Combinatorial Optimization Problems (MCOPs) are combinatorial problems that involve
the optimization of several, typically conflicting objectives. An MCOP arises, for example, when planning
a holiday trip from a city A to some city B. Besides the minimization of the overall distance between the
two sites, one may also be interested in minimizing the cost, the overall travel time, etc. An unequivocal
solution to such problems is the one which is optimal with respect to all objectives. But is there such a
solution? The shortest tour is not necessarily the fastest nor the fastest needs to be the cheapest one—just
consider tolled highways.

Which is then the optimal solution to such a multiobjective problem? It depends on the notion of
optimality. In this chapter, we focus on the notion of Pareto optimality, which arises when the decision
maker is not able to express his preferences a priori, simply because he is not present in the process or not
able to give an a priori formula or ranking of the objectives. In this case, one is interested in obtaining a
set of solutions that represents the optimal trade-off between the objectives, i.e., solutions which are not
worse than any other and strictly better in at least one of the objectives.

The set of available algorithms for computing high-quality approximations to the Pareto optimal set
has grown enormously over the recent years as witnessed by a large number of papers at international
conferences and workshops [1–4], special issues of scientific journals [5–7] and numerous regular papers
at multiple criteria decision making as well as at algorithms conferences. The majority of these approaches
are based on stochastic local search (SLS) algorithms (see Chapter 19 for more details on SLS), a trend
that reflects the enormous success of these algorithms for single-objective problems.

29-1
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Here, we review the main developments in the application of SLS algorithms to MCOPs. Stochastic
local search techniques range from simple constructive algorithms and iterative improvement algorithms
to general algorithm frameworks that can be adapted to a specific problem under consideration. These
latter general-purpose SLS methods (also often called metaheuristics) include simulated annealing, tabu
search, evolutionary algorithms, ant colony optimization (ACO), and many others. While these tech-
niques can result in rather complex algorithms already for single-objective problems, when applied to
MCOPs they become even more complicated because they need to return a set of solutions instead of
a single one.

For tackling MCOPs with SLS algorithms, two fundamentally different approaches can be distinguished.
The first is to base the search on the component-wise ordering of the objective value vectors of solutions
(or some ranking derived from these orderings). We will say that SLS algorithms that mainly focus on
this approach follow the component-wise acceptance criterion (CWAC) search model. The second approach
is based on the usage of parameterized scalarization methods by aggregating the objectives; the SLS
algorithms following such lines use the scalarized acceptance criterion (SAC) search model. These two choices
somehow define the two main schools for the design of SLS algorithms for MCOPs. Different choices for
the remaining components of an SLS algorithm for MCOPs crucially depend on the choice taken for the
search model.

In the following sections, we review available SLS algorithms in dependence of these two choices, which
also makes this review different from several earlier ones [8–13]. In addition, some proposals combine
these two search models. We will review these latter hybrid approaches separately from the others. Despite
the view taken here, it is inevitable to further discuss the proposed algorithms in dependence of the
analogy to known SLS methods for the single-objective problems. However, since we are more interested
in the differences between the main search strategies, we do not consider specific problem-dependent
implementation choices in detail and also try to avoid the highly specialized jargon found in the context
of various SLS methods.

29.2 Basics

The main goal of solving MCOPs in terms of Pareto optimality is to find solutions which are not worse
than any other solution and strictly better in at least one of the objectives. Let Q be the number of objectives
and S be the set of all candidate solutions; then the objective function for a solution s ∈ S to MCOPs can
be defined as a mapping �f : s �→ R

Q . The following orders hold for objective function vectors in R
Q . Let �u

and �v be vectors in R
Q ; we define the (i) weak component-wise order as �u ≤ �v, i.e., ui ≤ vi , i = 1, . . . , Q;

and (ii) the component-wise order as �u ≺ �v, i.e., �u �= �v and ui ≤ vi , i = 1, . . . , Q. In the context of
optimization, we denote the relation between objective function value vectors of two feasible solutions s
and s ′ as follows: (i) if �f (s ) ≺ �f (s ′), we say that �f (s ) dominates �f (s ′); and (ii) if �f (s ) ≤ �f (s ′), then �f (s )
weakly dominates �f (s ′). In addition, we say that �f (s ) and �f (s ′) are nondominated if �f (s ) �≺ �f (s ′) and
�f (s ′) �≺ �f (s ), and they are nonweakly dominated if �f (s ) �≤ �f (s ′) and �f (s ′) �≤ �f (s ). Note that the latter

implies that �f (s ) �= �f (s ′). For simplification purposes, we shall use the same notation among solutions
when the above relations hold between their objective function value vectors.

Since the notion of optimal solution clearly differs from the single-objective counterpart, we need to
define the notion of a Pareto global optimum solution and a Pareto global optimum set: A solution s ∈ S is
a Pareto global optimum if and only if there is no s ′ ∈ S such that �f (s ′) ≺ �f (s ); we say that S ′ ⊆ S is a
Pareto global optimum set if and only if it contains only and all Pareto global optimum solutions. We call
the image of the Pareto global optimum set in the objective space the efficient set. In most cases, solving
an MCOP in terms of Pareto optimality would correspond to finding solutions that are representative of
the efficient set.

When solving an MCOP in terms of scalarized optimality, it is assumed that the decision maker is able
to weigh the importance of each objective; the objective function vector is then scalarized according to
some weight vector �λ = (λ1, . . . , λQ). We will denote the scalarized objective function value by fλ(s ).
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We then say that a solution s ∈ S is a scalarized global optimum solution if and only if there is no s ′ ∈ S
such that fλ(s ) < fλ(s ′) with respect to a given �λ. The weight vector �λ is usually normalized such that∑Q

q=1 λq = 1. Thus, �λ is an element from the set of normalized weight vectors � given by

� = {�λ ∈ R Q : λq > 0,

Q∑

q=1

λq = 1, q = 1, . . . , Q} (29.1)

In the case of different ranges of values between objectives, a normalization by range equalization factors
must be considered [14]. The scalarization of the objective function vector is usually based on the family
of weighted Lp-metrics as

fλ(s ) =
[

Q∑

i=1

(
λi | fi (s ) − yi |

)p

]1/p

(29.2)

where s ∈ S , p > 0, and �y = y1, . . . , yQ is the ideal vector, where we have yi = min fi , i = 1, . . . , Q.
Settings of p = 1 or p = ∞ are most often used. When p = 1, we have the well-known weighted sum
formulation given by

fλ(s ) =
Q∑

i=1

λi fi (s ) (29.3)

It is well known that a scalarized global optimum solution for Eq. (29.3) with p �= ∞ is also a Pareto global
optimum solution, either if it is a unique solution or if the components of the weight vectors are all positive
[14]. Obviously, the great advantage of using a weighted sum formulation is that the same SLS algorithm
for solving the single-objective problem can be used for tackling the multiobjective version. When using
such formulations, the available algorithms typically change the weight vectors to generate solutions that
are of high quality for different weights. A disadvantage is that, when finding optimal solutions with
respect to the weighted sum formulation, only supported solutions, that is, solutions on the convex hull of
the efficient set, are obtained.

Finally, let us mention that (with a few exceptions) common to all SLS algorithms for MCOPs is that
they return a set of nondominated solutions. Therefore, most of these algorithms include an additional
data structure that maintains a set of solutions during the search process that we call archive and that
is returned when the algorithm is terminated at an arbitrarily chosen time. In our review, we consider
that the best nondominated solutions found during the algorithm’s run are maintained in the archive,
if not expressed otherwise. During the search process, the algorithm needs to update the archive and, if
nothing else is said, we assume that this update consists of (i) adding new nondominated solutions and
(ii) removing dominated ones.

Many of the available SLS algorithms make use of two further techniques. The first is archive bounding;
it is used because the archive may grow very strongly and the operations for manipulating the archive
become increasingly time consuming. The second are techniques for maintaining the solutions in the
archive spread in the objective space, since it is assumed that clusters of solutions are not informative for
the decision maker.

29.3 Component-Wise Acceptance Criterion

We first give an overview of SLS algorithms that make direct or indirect use of the component-wise ordering
when deciding about the acceptance of new candidate solutions. By direct we mean that this decision is
exclusively based on the component-wise ordering introduced in Section 29.2; by indirect we understand
that from this component-wise ordering some ranking of candidate solutions is derived that is then finally
used for deciding on which solutions to accept or choose for further manipulation. The algorithms that
fall into this latter category are mainly evolutionary algorithms.
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29.3.1 Direct Use of the Component-Wise Ordering

When designing an SLS algorithm for single-objective problems, one typically starts by implementing
some form of an iterative improvement algorithm. In fact, it is relatively straightforward to apply iterative
improvement algorithms also to multiobjective problems by modifying the acceptance criterion, making
use of the component-wise ordering of solutions, and the use of an archive of nondominated solutions
found so far. With such modifications, iterative improvement algorithms under the CWAC search model
can iteratively improve the current set of candidate solutions in the archive by adding nondominated
neighboring solutions to it [15]. Such an algorithm can be seeded either by one single solution that may
be generated randomly, or by a set of candidate solutions generated by, for example, an exact algorithm.
Despite their widespread use for single-objective problems, iterative improvement algorithms for MCOPs
were proposed only recently; nevertheless, almost all SLS algorithms that make direct usage of the
component-wise ordering are such iterative improvement algorithms or extensions thereof.

Iterative Improvement Algorithms
Among the first such approaches is Pareto local search (PLS) by Paquete et al. [16–18]. Pareto local search
applies iteratively the two following steps. First, it selects randomly one candidate solution s from the
archive that has not been visited and examines all neighbors of s . Second, it adds all neighbors of s that
are nonweakly dominated with respect to the archive. It stops when the neighborhood of all candidate
solutions has been examined. Independent of PLS, Angel et al. [19] proposed a similar approach called
bicriteria local search (BLS). The main difference between PLS and BLS is that the latter examines the
neighborhood of all candidate solutions in the archive, while PLS chooses only one and updates the archive
immediately after examining a candidate solution’s neighborhood. Angel et al. also proposed an extension
of BLS by using an archive bounding technique that only accepts neighboring solutions whose objective
function value vectors do not lie in a same partition of the objective space; in addition, also a restart
version of BLS was presented. A similar idea was also proposed by Laumanns et al. [20] for a simple
evolutionary multiobjective optimizer (SEMO) that examines only one randomly chosen solution in the
neighborhood. A variant of SEMO [20], called fair evolutionary multiobjective optimizer (FEMO), selects
the candidate solution of the archive whose neighborhood was examined least often.

An iterative improvement algorithm with a more complex acceptance criterion, called Pareto archived
evolution strategy (PAES), was proposed by Knowles and Corne [21], which induces explicitly some
dispersion among the solutions of a bounded-size archive. The acceptance criterion of PAES works as
follows: A neighboring candidate solution s ′ is chosen randomly from the neighborhood of a current
candidate solution s of the archive; if s ′ is dominated by any of the candidate solutions in the archive it is
discarded, while if s ′ dominates candidate solutions in the archive, s ′ is added and the dominated candidate
solutions are removed. If s ′ is nondominated with respect to s and to the archived candidate solutions,
one of the two following possibilities is applied: (i) if the archive is not full, s ′ is added to the archive;
(ii) if the archive is already full, s ′ is only added if there exists another solution s ∗ lying in a partition of the
objective space that contains more solutions. In that case, s ∗ is removed from the archive. A more complex
version of PAES, called M-PAES, is proposed in Ref. [22].

Extensions of Tabu Search
An obvious further extension of the iterative improvement algorithms described above is to incorporate
features of other general-purpose SLS methods. Few approaches in that direction have been proposed so
far and the ones we are aware of are based on multiobjective tabu search. The central idea is to examine
the neighborhood of a set of solutions, extract nondominated solutions and accept among those only
some nontabu ones for inclusion into an archive. Examples of such an approach have been presented by
Baykasoglu et al. [23,24] and by Armetano and Arroyo [25]. In the latter approach, a bounded-size archive
is used and special bounding and dispersion techniques are used that are based on the location of centroids
of clusters of solutions in the objective space.
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29.3.2 Indirect Use of the Component-Wise Ordering

Many current population-based SLS algorithms rely on a mapping of the objective function value vector
of each candidate solution in the archive into a single value, a rank, where the lower a candidate solution’s
rank is, the higher are its chances of being chosen. This indirect use of the component-wise ordering is
mainly made by a number of multiobjective evolutionary algorithms (MEAs). Here, we describe the most
relevant of these MEAs with particular emphasis on the ranking procedure. All these approaches consider
an archive of bounded size. An illustration of the ranking procedure used in the algorithms presented
next is given in Figure 29.1; the brighter the color of an objective function value vector the better is the
solution considered by the ranking procedure. Note that, as said before, we do not discuss details of these
approaches such as crossover or mutation operators, since these are problem specific.

• Fonseca and Fleming [26] proposed the multiple objective genetic algorithm (MOGA), which
scores each solution with the number of solutions that weakly dominate it in the archive. Then,
solutions are ranked according to those values, where ties result in ranks being averaged. A sampling
algorithm chooses the next set of solutions to remain in the archive, even if some of them are
dominated. The top-left plot in Figure 29.1 shows this ranking procedure, before averaging tied
ranks.

• Srinivas and Deb [27] proposed the nondominated sorting genetic algorithm (NSGA), which
extended a ranking procedure initially proposed (but not tested) by Goldberg [28]: the lowest rank
is assigned to the set of candidate solutions in the archive that are nondominated. These solutions
are then removed and the nondominated solutions among the remaining candidate solutions are
assigned the next rank level. This procedure is iterated until no candidate solution remains to be
assigned a rank. Next, a sampling procedure is used for choosing the next set of solutions according
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FIGURE 29.1 Graphical illustration of several ranking procedures in MEAs where the numbers at the points indicate
the respective rank values (See text for more details).
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to the ranking. Similarly to MOGA, also dominated solutions could be chosen. The top-right plot
in Figure 29.1 illustrates this ranking procedure. Some further improvements are found in NSGA-II
[29]; these include a faster computation of the ranks and a strategy for maintaining a dispersed set
of solutions called crowding.

• Zitzler et al. [30] proposed strength Pareto evolutionary algorithm 2 (SPEA2) that maintains two
sets of solutions, one being the archive of the best nondominated solutions found so far and the
second being the set of current candidate solutions that play the usual role of the population in
evolutionary algorithms. Some of the solutions from the archive might be removed by a clustering
algorithm if their number exceeds the maximum allowable size. The ranking procedure of SPEA2
works as follows:
1. To each solution in the archive and in the set of current solutions is assigned the number of

current solutions that are dominated by it.
2. For each solution in both sets, its rank is given by the sum of the values computed for the

solutions from both sets that weakly dominate it.
Solutions, whose ranks are less than one, are added to the archive. The size of the archive is
maintained fixed at some value j in two ways: if the number of solutions becomes larger than j ,
solutions which are clustered in the objective space are removed (except those that are the best to
each objective); if the archive is not full, the best current solutions are added to it until the total
number of solutions reaches j . The bottom plot in Figure 29.1 illustrates this ranking procedure,
where circles correspond to the set of current solutions and squares correspond to the solutions in
the archive. The ranking procedure used by SPEA2 corrects the previous version called SPEA [31],
in which a solution that is dominated by another one could be assigned a lower rank.

Since these approaches typically use an archive of fixed size, it is desirable that the existing solutions are
dispersed in the objective space. Therefore, this aspect also affects how solutions are going to be chosen.
Both MOGA and NSGA use a fitness sharing strategy, which decreases a solution’s rank depending on
how large is the number of solution in the archive within a certain radius in the objective space. NSGA-II
applies a crowding strategy, which modifies a solution’s rank based on an average distance from the nearest
nondominated solutions in the objective space. A similar approach is also used in SPEA2, where to each
solution rank the inverse of the distance from the kth nearest neighbor solution in the objective space is
added (k is a parameter).

Recently, some MEAs have been proposed that add a further exploration step by making direct use of
the component-wise ordering. For instance, Talbi [32] proposed an algorithm that starts with an MEA,
whose final set of solutions is used afterward as starting solutions for an iterative improvement similar
to PLS; similar approaches are found also in Brizuela et al. [33] and Basseur et al. [34]. In Jozefowiez
et al. [35], the further step after the termination of an MEA consists of a tabu search algorithm, with
similar principles to Ref. [23], that is run several times for different regions of the objective space. Finally,
Morita et al. [36] proposed a more complex combination by maintaining two sets of solutions such as
SPEA2. At each iteration, some solutions are chosen from each set and are recombined and mutated; the
resulting solutions are then added to the current set of solutions and to the archive. Then, the CWAC
step consists of the examination of the solutions neighboring to one chosen from the archive. Finally, the
archive is updated and some solutions from the current set of solutions are removed to maintain a given
cardinality at the end of each iteration.

29.4 Scalarized Acceptance Criterion

The main principle underlying the SAC search model is to use the value returned by the scalarization of
the objective function vector with respect to some weight vector to distinguish between better and worse
solutions. Obviously, using only one weight vector is not enough for obtaining a reasonable approximation
to the efficient set. Hence, most approaches consider to change the components of the weight vector while
running the algorithm to attain different regions of the objective space.
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In the following, we divide the approaches in nonproprietary and proprietary ones. In nonproprietary
approaches, an SLS algorithm is embedded into a general framework that mainly says how an underlying
SLS algorithm is applied to tackle an MCOP. In the proprietary approaches, some specific, general-purpose
SLS method is enhanced by additional features or specific search strategies that make it adapted for tackling
MCOPs. Several examples of such proprietary approaches are therefore discussed in dependence of the
underlying general-purpose SLS method.

29.4.1 Nonproprietary Approaches

In the simplest case, a single-objective SLS algorithm could be run several, say k, times using k different
weight vectors and one could for each scalarization return the best solution found by the SLS algorithm.
Then, the set of objective value vectors of the k returned final solutions forms an approximation to the
efficient set. To output a set of nondominated solutions, the dominated solutions from the final set are
removed.

Surprisingly, such a very basic approach is very rarely used, not even for a comparison to more complex
algorithms. Exceptions are found in Borges and Hansen [37] and Knowles and Corne [38], who used the
set of solutions returned by such an approach to get insight into certain instance features. In the following,
we describe some approaches that further extend these ideas:

• Borges [39] proposed a general framework, called changing horizon efficient set search (CHESS),
whose acceptance criterion is based on a function of the distance between a new solution and
an archive; in particular, the neighboring solution that is accepted to the archive is the one that
maximizes the minimum difference between each component of the objective function value vector
to any solution in the archive. However, this distance does not take into account any weight vector.
This general rule for the acceptance criterion can be applied to SLS methods such as simulated
annealing or tabu search.

• Paquete and Stützle [40] proposed two-phase local search (TPLS), which works as follows: in a
first phase, a high-quality solution for one objective is obtained by some high-performance SLS
algorithm. Then, in the second phase, a sequence of scalarizations is solved; the initial solution
of each scalarized problem is the one returned by the previous scalarization; the starting solution
for the first scalarization is the one returned from the first phase. The weight vectors that define
the scalarizations in the second phase are modified according to some strategy. This strategy could
consist of a random sequence of weight vectors, or of a sequence such that a small change is incurred
between components of successive weight vectors. This latter strategy is the most applied one so
far. For a detailed description of this algorithm see Refs. [18,40,41].

29.4.2 Proprietary Approaches

Proprietary Simulated Annealing
Differently from the CWAC model, many algorithms that follow the SAC model use simulated annealing
principles. Here, we describe some of the most relevant ones:

• Serafini [42] proposed several ways of modifying the usual probabilistic acceptance criterion of
simulated annealing for tackling multiobjective problems. Given the current solution s and a
neighboring solution s ′, he gives guidelines that should be applied to the computation of the
probability p of accepting s ′: if �f (s ′) ≺ �f (s ), then p = 1; if �f (s ) ≺ �f (s ′), then p < 1; otherwise,
p depends on the value returned from a function of a parameter called “temperature” and the
weighted distance between �f (s ′) and �f (s ) (or between �f (s ′) and the ideal vector). To attain more
solutions, Serafini proposed to use small random variations on the components of the weight vector
during the run.

• Ulungu [43] proposed Multi-Objective Simulated Annealing (MOSA), where a set of weight vectors
is defined a priori and for each scalarization one run of a simulated annealing algorithm is done. The
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probabilistic acceptance criterion in MOSA follows similar principles to those proposed by Serafini
[42]. Each time a neighboring solution is accepted, an archive Aλ of nondominated solutions for the
current weight vector λ is updated; the final set of solutions returned by the algorithm is obtained
after removing the dominated solutions from the union of the resulting sets Aλ.

Proprietary Tabu Search
Hansen [44] proposed Multi-Objective Tabu Search (MOTS) that uses an archive, which is improved during
the search process. In MOTS, only neighboring solutions that are nontabu and the best with respect to
a given scalarization can be added to the archive. To obtain a final set of solutions that is dispersed in
the objective space, the current weight vector is updated such that neighboring solutions that are isolated
in the objective space are preferably chosen. This update is done as follows: given a solution s from the
archive, the i th weight vector component increases by a fixed amount for each solution in the archive that
is worse in the i th objective; then, a nontabu neighbor of s that has the best scalarized objective function
value with respect to the new weight vector is chosen and added to the archive if it is nondominated with
respect to all solutions in the archive and, in that case, the tabu list is updated. Further features of MOTS
are described in Ref. [44].

Proprietary Memetic Algorithms
Several memetic algorithms for MCOPs have been proposed in analogy to principles of the single-objective
case. Usually, these algorithms consist of a sequence of runs of an SLS algorithm using a scalarized objective
function, each one seeded by solutions that are generated by recombination and mutation procedures
applied to elements of the current set of solutions. We describe the following main approaches:

• Ishibuchi and Murata [45] proposed Multi-Objective Genetic Local Search (MOGLS), which is
a straightforward extension of MEAs to memetic algorithms. At each iteration, two solutions are
selected from the archive by a sampling procedure that takes into account the ranking of all solutions
based on a scalarization of the objective function vector with respect to a randomly generated weight
vector. These two solutions are then recombined, generating a new one, which is then further
improved by a local search algorithm that uses the current weight vector. In the first proposal only
one randomly chosen solution from the neighborhood is examined at each iteration of the local
search, but more recently also analyses on the influence of the strength of the local search on the
overall performance have been done [46].

• Jaszkiewicz [47] proposed another memetic algorithm also called MOGLS. This algorithm main-
tains two sets of solutions as SPEA2, where one set holds the current solutions while a second one
corresponds to the archive of the best solutions found. At each iteration, two solutions are taken
from a subset of the best current solutions with respect to a certain randomly chosen weight vector
and then recombined. Next, a local search algorithm starts from this new solution using the scalar-
ized objective function defined by the generated weight vector. The solution returned by the local
search algorithm is then added to the two sets of solutions according to some acceptance rules.

29.5 Combination of Search Models

Several recently proposed algorithms combine the SAC and the CWAC search model, giving place to
hybrid algorithms. Two main trends can be identified. Either the overall SLS algorithm applies two clearly
distinct phases based on the two search models in sequence (sequential combination), or the SLS algorithm
combines components of the two search models and iteratively changes between those in the overall search
process (iterative combination).

29.5.1 Sequential Combination

All the sequential combinations we are aware of first apply algorithms based on the SAC search model.
The reason for this choice may be due to the fact that optimal solutions with respect to scalarizations of
the objective function vector can identify only supported solutions, possibly leaving large gaps in the final
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set of solutions returned; in addition, the number of solutions returned by some methods following the
SAC model is limited to the number of scalarizations. Algorithms that follow the CWAC search model can
easily be applied after the SAC step with the aim of filling these gaps and increasing the number of returned
solutions. Note that in the SAC step of such a combination, not necessarily SLS algorithms are required.
In fact, if the scalarized problem is polynomially solvable, it is more useful to use an exact algorithm; this
is also the case in the first two combinations described below.

• Hamacher and Ruhe [48] and Andersen et al. [49] proposed an algorithm that combines the two
search models for tackling the multiobjective minimum spanning tree problem. In their approaches,
the SAC step consists of obtaining several supported solutions for different scalarizations (note
that a minimum spanning tree can be computed in polynomial time) and in the CWAC step,
candidate solutions in the neighborhood of the supported ones are added to the archive if they are
nondominated by any other candidate solution.

• Gandibleux et al. [50] proposed an algorithm to search for nondominated solutions with respect
to a set of supported solutions that was previously obtained in the SAC step. (As in Refs. [48,49],
an efficient algorithm is known to the single-objective version of the MCOP tackled in that paper,
the multiobjective assignment problem.) The CWAC step follows principles from evolutionary
algorithms: several pairs of solutions are chosen randomly from the archive and are recombined
to generate a new set of solutions; the recombination operator used here takes into account some
information about the components of the supported solutions. The so obtained solutions are
then changed by a mutation procedure and, if the mutated solutions are not dominated by some
previously calculated bounds, their neighborhood is explored and the nondominated neighbors
are added to the archive. This step is repeated for a given number of iterations.

• Paquete and Stützle [40] proposed a Pareto double two-phase local search (PDTPLS) as a further
extension of the TPLS approach (see Section 29.4.1). For each scalarization, a solution s is returned
and a CWAC step examines all neighboring solutions of s ; all nondominated solutions found in
this way are returned once all scalarizations have been examined.

29.5.2 Iterative Combination

Iterative combinations of the SAC and CWAC search models could be conceived in various ways and,
hence, it is probably not surprising that the approaches in this category are more varied than when only
sequential combinations are considered. In the following we restrict ourselves to give some examples of
such combinations that range from local search algorithms like tabu search and simulated annealing to
population-based algorithms like memetic algorithms or ACO algorithms. These examples illustrate the
range of possibilities that are opened by such iterative combinations.

• Gandibleux et al. [51] use tabu search principles in an algorithm called MOTS. This algorithm
iteratively changes between the neighborhood exploration based on an SAC search model and
CWAC search model. In the SAC step, a nontabu solution that minimizes the distance from a local
utopian point1 or a tabu but aspired solution replaces the current one. Once a new solution in the
neighborhood of the current one, s , is accepted, a CWAC step adds nondominated neighbors of s
to the archive. To favor more isolated regions of the objective space, the weight vector is updated
periodically; to maintain the diversity of the search process, weight vectors are declared tabu for a
given number of iterations.

• Abdelaziz and Krichen [52] developed an algorithm that was also called MOTS. Given some so-
lution s , the SAC step works as follows: A constructive algorithm is run several times for several
scalarizations to generate a set T of solutions; for each run of the constructive algorithm, the weight

1An utopian point dominates the ideal point. In MOTS, a local utopian point dominates all neighbors of the current
solution.
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vector takes into account the two worst components of the objective function value vector of s
multiplied by some random values. The neighboring solutions to s are added to T , from which
then the dominated solutions are removed and the resulting set T ′ is used to update the archive.
Then, a CWAC step that follows similar principles as in Ref. [23] (see also Section 29.3.1) is applied
for a given number of iterations. The iterative combination of the SAC and CWAC steps is repeated
until no solution can be added to the archive during some iterations. A further extension, using an
MEA, has been proposed in Ref. [53].

• Czyzak and Jaszkiewicz [54] proposed an algorithm which further extends the simulated annealing
principles for tackling MCOPs. First, a set of solutions T is generated randomly and each solution
from this set is assigned a weight and added to the archive. For each candidate solution s from
T , a neighboring solution s ′ is added to the archive if it is not dominated by s (CWAC step). The
SAC step is then applied for determining s ′ as the new current solution according to probabilistic
rules similar to the ones proposed by Serafini; the weight vector is changed automatically during
the search process to favor the acceptance of neighboring solutions that are more isolated in the
objective space. This iterative process is repeated for all solutions in T .

• López-Ibáñez et al. [55] proposed a combination of SPEA2 with SLS algorithm, which combines a
CWAC step, as executed by SPEA2, with a SAC step used for defining the search direction for the
SLS algorithm. In that proposal, the SLS algorithm is applied to every new solution obtained from
a recombination of solutions in the archive using randomly generated weights.

Recently, there has been some interest in applying ACO algorithms [56] to MCOPs. Ant colony
optimization algorithms are based on the repeated, construction of solutions that is stochastically bi-
ased by artificial pheromone trails (pheromone trails are essentially some numerical information attached
to solution components that are used in the solution construction) and heuristic information on the
problem under being solved. The pheromone trails are updated during the algorithm’s run in dependence
of the search experience. Interestingly, all applications of ACO algorithms to MCOPs that are solved under
the notion of Pareto optimality combine the two search models: The solution construction is typically
based on an SAC step, where weights are defined to join various types of pheromone information with
respect to the various objectives, while the artificial ants (representing the generated solutions) that update
the pheromone information are typically chosen based on a CWAC step. Some approaches are described
as follows:

• Iredi et al. [57] proposed several extensions of ACO algorithms where the pheromone and heuristic
information are associated to different weight vectors, defined according to subintervals within the
range [0, 1]. Thus, different weight vectors direct the constructive steps toward different regions of
the objective space. The artificial pheromones are then updated with the nondominated solutions
found. Extensions of these algorithms were also proposed by López-Ibáñez et al. [55,58], where an
SLS algorithm based on a scalarization of the objective function vector is applied after each new
constructed solution.

• Doerner et al. [59] describe an ACO algorithm that uses one pheromone matrix for each objective
but only one same type of heuristic information. Each solution is constructed based on the heuristic
information and on the weighted aggregation of the pheromone matrices according to a randomly
chosen weight vector. Some of the best nondominated solutions found are then used for updating
the pheromones.

29.6 Conclusions

We have reviewed the research on SLS algorithms for tackling MCOPs with respect to the notion of Pareto
optimality. The existing approaches were classified according to whether they use the SAC and CWAC
search models or some combinations thereof. For each of the resulting main classes of algorithms we have
shortly described some main representatives without the intention of providing a fully comprehensive
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enumeration of all the existing proposals, which would be almost impossible, given their large number
and the limited amount of space. While we described here only the main features of available approaches,
several other interesting details can be found in the original papers.

Among the possible approaches for tackling MCOPs, a recent and interesting one is to use an acceptance
criterion based on solution quality indicators. Such an algorithm has been proposed by Knowles et al. [60];
it applies at each step the hypervolume indicator [31] to decide which solutions are added to the archive.
A similar approach has also been followed in Ref. [61], where binary performance indicators are used,
that is, quality indicators that return a pair of values for each nondominated set. We remark that the
performance of these algorithms strongly depends on the performance of the underlying algorithm for
computing the quality indicators and we expect further development on ways of computing these more
efficiently.

There are a few important areas related to SLS algorithms for MCOPs that were not covered here.
One of the most important is the empirical assessment of the performance of these algorithms. This
is far from being a trivial issue since, as shown by Zitzler et al. [62], frequently used quality indica-
tors for comparing nondominated sets obtained by SLS algorithms have severe problems. A recognized
exception is the use of attainment functions. Initially proposed in Ref. [63], the attainment function
characterizes the performance of the SLS algorithms by describing the distribution of the outcomes.
This function has shown to be a first-order moment measure of these outcomes and it can be seen as
generalization of the multivariate empirical distribution function [64]. This allows the use of statistical
inference and experimental design techniques to infer conclusions on the performance of SLS algorithms
[65,66]. Some further extension of attainment functions for second-order moments can be found in
Ref. [67].

Finally, we remark that little is known on the dependence between the performance of SLS algorithms
and certain features of the MCOPs. Exceptions can be found in Mote et al. [68] and Müller-Hannemann
and Weihe [69] who identified several features of the Multiobjective Shortest Path problem and variations
that translate in a tractable number of Pareto optimal solutions, which contrasts with the known worst
case for the same problem; see also Ref. [70]. In Refs. [17,37], it is conjectured that most efficient solutions
and approximations thereof are strongly clustered in the solution space for the multiobjective traveling
salesman problem with respect to a small-sized neighborhood. This means that local search algorithms
using this neighborhood are very suitable for this problem, which is confirmed in Ref. [40]. In addition,
the correlation between objectives seems to have a strong effect on the choice for the search model; in
Ref. [18], experimental results indicate that simple SLS algorithms based on the SAC and CWAC search
model, respectively, can behave very differently for the multiobjective quadratic assignment problem as
the correlation between objectives is changed. Therefore, an interesting future line of research is to inves-
tigate, both experimentally and analytically, which and how instance features affect the performance of
SLS algorithms.

While the research field of applying SLS algorithms to MCOPs poses many open questions and signif-
icant research issues, the set of available SLS algorithms shows that nowadays it is becoming increasingly
feasible to tackle MCOPs with respect to the notion of Pareto optimality and that, therefore, these ap-
proaches are very likely to receive more attention for the solution of difficult real-world multiobjective
problems.
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30.1 Introduction

Anyone formulating an optimization problem faces uncertainty in selecting the model parameters. Trans-
portation costs, probabilities of different events, and budget constraints, among other parameters, are all
unlikely to be known with any degree of accuracy. There may also be doubts about the structure of the
model, such as whether to add or remove constraints. Understanding the effect of changes in parameter
values and model structure on the optimum solution is the subject matter of sensitivity analysis. This chapter
gives an overview of the main algorithmic ideas in sensitivity analysis for combinatorial optimization.

Research in sensitivity analysis started shortly after the development of the simplex method [1,2].
Since then, the literature has grown rapidly: as of 1997, over 1000 journal articles had been published
on the subject [3]. To keep things manageable, this chapter focuses on parametric analysis, which studies
problems whose structure remains fixed, but where cost coefficients vary continuously as a function of
one or more parameters. The reader interested in more information on topics not covered here has other
good sources to turn to. Starting points into the literature include Geoffrion and Nauss’ classical survey
of the field in the late 1970s [4], the Ph.D. thesis of Wagelmans [5], the collection of articles edited by Gal
and Greenberg [3], and Greenberg’s bibliography [6].

Parametric analysis is a rich field, whose applications extend beyond the examination of alternative
scenarios. In fact, parametric problems arise as auxiliary problems in other areas, such as Lagrangian
relaxation and minimum-ratio optimization (see Section 30.2). Parametric analysis should not, however,
be confused with the study of parameterized complexity [7]. The latter deals with finding efficient algorithms
for problems when one of the input parameters is fixed. These parameters are typically discrete (e.g., the
maximum size of a vertex cover), and the goal is to obtain the best solution, not to study its stability.

30-1
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More in the spirit of parametric analysis, but also beyond the scope of this chapter, is the study of stability
of approximation, which considers how the complexity of a problem depends on a parameter whose
variation alters the space of allowable instances (Chapter 31 and Ref. [8]). An example is analyzing how
the approximability of the traveling salesman problem varies as intercity distances are allowed to deviate
from the triangle inequality as a function of a continuous parameter [9].

This chapter consists of five parts, in addition to this section. Section 30.2 gives basic definitions and
notation. Section 30.3 introduces the key issues in sensitivity analysis. Section 30.4 is devoted to general-
purpose techniques for sensitivity analysis. Section 30.5 discusses selected results on sensitivity analysis of
polynomially solvable problems. Section 30.6 is devoted to sensitivity analysis of NP-hard problems.

30.2 Preliminaries

This chapter deals with combinatorial optimization problems of the form

z∗ = min{cost(x) : x ∈ X} (30.1)

where X ⊂ R
n is the set of feasible solutions and cost, referred to as the cost function or the objective

function, maps each feasible solution x to a positive real number. Problem (30.1) is called a 0/1 problem
when X ⊆ {0, 1}n. The cost function is linear if cost(x) = ∑n

i=1 ci ·xi . The cost function is a bottleneck (or
min–max) function when cost(x) = max1≤i≤n ci · xi . The ci ’s are the coefficients of the objective function
and c = (c1, . . . , cn) is the coefficient vector.

The minimum spanning tree and traveling salesman problems can be formulated as 0/1 problems with
linear cost functions. In both cases, the coefficient vector consists of the edge costs and xi is 1 or 0 depending
on whether or not edge i is chosen. Bottleneck versions of both problems can also be defined. For example,
in the bottleneck traveling salesman problem, the cost of a tour is determined by its costliest edge. Unless
stated otherwise, our discussion will center on optimization problems with linear cost functions.

For any problem of the form (30.1), one can define a corresponding parametric cost problem where the
cost of each feasible solution depends on a parameter vector λ:

Z(λ) = min{cost(x , λ) : x ∈ X} (30.2)

Eq. (30.2) defines an infinite family of optimization problems of the form (30.1), one for each fixed λ.
Function Z(λ) is called the optimum cost function. An evaluator for problem (30.2) is an algorithm that,
for any given λ, computes Z(λ) and an optimum solution at λ.

The optimum cost function Z induces a decomposition M(Z) of the parameter space into maximal
connected regions, such that within each of region A, there exists a feasible solution x that is optimum for
every λ ∈ A. The combinatorial complexity of M(Z) is the size of the description of M(Z) as a function
of the input size.

Unless stated otherwise, the coefficients of the objective function of the parametric problems considered
here are linear in λ; that is, ci (λ) = ci0 + ∑d

j=1 ci j λ j for i = 1, . . . , n. In this case, Z(λ) is a piecewise
linear concave function of λ (assuming X corresponds to any reasonable combinatorial optimization
problem), since it is the lower envelope of the set of cost functions of the feasible solutions. Hence, M(Z)
subdivides the parameter space into convex polyhedral regions; its combinatorial complexity is its total
number of facets of dimensions 0 through d .

An important subcase is the one where the parameter vector λ is precisely the coefficient vector c . This
occurs, for example, when studying the sensitivity of a minimum spanning tree or of an optimum traveling
salesman tour to variations in the edge costs. The special case where d = 1 is also of interest. Here the
optimum cost function Z consists of a concave sequence of straight-line segments and the points at which
these segments meet are called breakpoints; the combinatorial complexity of M(Z) is proportional to the
number of breakpoints.

In addition to their applications to sensitivity analysis, parametric problems arise as auxiliary problems
in other contexts. Two important cases are discussed next.
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Lagrangian relaxation [10,11] is a well-known technique to handle certain kinds of hard optimization
problems. Specifically, consider an NP-hard problem of the form

z∗ = min{c x : Ax = b, x ∈ X} (30.3)

that is polynomially solvable in the absence of constraints Ax = b. For instance, the minimum spanning
tree problem with degree constraints (known to be NP-hard [12]) can be expressed in the form (30.3):
X is the set of spanning trees and the degree constraints are given by a system of linear equalities.

The Lagrangian function for problem (30.3) is

ZL (λ) = min{c x + λ(Ax − b) : x ∈ X} (30.4)

Observe that Eq. (30.4) defines a linear parametric problem. For example, the Lagrangian function for the
degree-constrained minimum spanning tree yields a minimum spanning tree problem where edge weights
are functions of a parameter vector. It can be shown that for all λ, z∗ ≥ ZL (λ). The best lower bound
obtainable from Eq. (30.4) is therefore maxλ ZL (λ). In practice, this can be a quite accurate estimate of
the optimum solution to problem (30.3) [13,14].

Minimum-ratio optimization, also known as fractional programming, deals with problems of the form

z∗ = min{ f (x)/g (x) : x ∈ X} (30.5)

where g (x) > 0 for all x ∈ X . One setting for this question arises in graph problems where each edge has a
cost and a profit and the goal is to find a subgraph with a certain property that minimizes the ratio of total
cost to total profit. Two examples are the minimum-ratio spanning tree problem [15] and the minimum
ratio cycle problem [16].

Define

ZR(µ) = min{ f (x) − µ · g (x) : x ∈ X} (30.6)

where µ is a scalar parameter. It is well known (see, e.g., Ref. [15]) that z∗ = max{µ : ZR(µ) > 0}.
Observe that ZR(µ) is a concave piecewise linear decreasing function of µ. For the weighted graph
problems mentioned above, Eq. (30.6) defines a parametric problem where edge costs are decreasing
linear functions of µ.

Problems with parametric constraint set are also of interest. An example is the knapsack problem with
variable knapsack size, which can be expressed as

ZK (µ) = max

{
n∑

i=1

ci xi :
n∑

i=1

si xi ≤ b + µb′, x ∈ {0, 1}n

}

(30.7)

where µ is a scalar parameter.
For reasons of space, problems with parametric constraint set are not treated in much depth here.

It should be noted that these problems generally behave quite differently from those with parametric
objective function. Indeed, the optimum cost function is typically not continuous, as the reader may verify
for function ZK above. An exception to this rule is linear programming with parametric right-hand side,
which, because of duality, has the same behavior as linear programming with parametric objective function
(see Section 30.5.1).

30.3 Issues in Sensitivity Analysis

Sensitivity analysis questions can be formulated in different ways. The first important class of problems
considered here are collectively referred to as posterior analysis problems. Here, an optimum solution x(0)

for some parameter vector λ(0) = (λ(0)
1 , . . . , λ

(0)
d ) ∈ R

d is known and the question is to determine the
stability of x(0) with respect to parameter variation around λ(0). Some common notions of stability are
defined next.

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C030 March 20, 2007 15:33

30-4 Handbook of Approximation Algorithms and Metaheuristics

Definition 30.1

The lower tolerance and the upper tolerance of parameter i at λ(0) are the largest values li and ui such that
x(0) is optimum for every λ′ such that λ′

i ∈ [λ(0)
i − li , λ

(0)
i + ui ] and λ′

j = λ
(0)
j for j �= i .

A related problem is ray shooting: Given a ray ρ originating at λ(0), the question is to find the point
λ∗ ∈ ρ farthest from λ(0) such that x(0) is optimum for every λ ∈ ρ between λ(0) and λ∗. By suitable
reparametrization, ray shooting can be expressed as a question of computing tolerances.

Definition 30.2

The stability region of x(0) at λ(0) is the largest connected subset F of R
d containing λ(0) such that x(0) is an

optimum solution for all λ ∈ F .

Observe that each region of M(Z) is a stability region of some feasible solution x . Thus, stability
regions are convex polyhedral subsets of the parameter space. In the important special case where the
parameter vector is precisely the coefficient vector, the stability regions are polyhedral cones that meet at
the origin. This is because all solutions have cost 0 at the origin of the parameter space. Note also that, in
the one-parameter case, computing tolerances and stability regions are equivalent problems.

Definition 30.3

The stability radius of x(0) at λ(0) is the radius of the largest ball B such that x(0) is optimum for all λ ∈ B.

The notion of a ball in the definition above depends on the metric used. A common choice is the L∞
norm, where the distance between parameter vectors λ and λ′ is given by maxi |λi − λ′

i |.
The robustness function [17] provides an alternative way to measure the effect of multiparameter

variation.

Definition 30.4

The robustness function at λ(0), is the function R : R → R given by

R(b) = max

{

Z(λ(0) + δ) :
d∑

i=1

wi · δi ≤ b, δi ≥ 0 for i = 1, . . . , n

}

(30.8)

where b ≥ 0 is the budget, δ = (δi , . . . , δd ) is the increment vector, and wi ≥ 0 is the unit cost of increasing
parameter λi , for each i ∈ {1, . . . , n}.

Intuitively, the robustness function yields the maximum effect that a total weighted increase of the
parameters within a given budget can have on the cost of the optimum solution.

The next problems do not depend on advance knowledge of an optimum solution at some parameter
value; questions of this kind are traditionally referred to as prior analysis problems. The following notion
has some relationships with computing tolerances.

Definition 30.5

A most vital variable in a 0/1 combinatorial optimization problem is a variable xi such that forcing xi to
equal zero increases the value of the optimum solution as much as possible.

In the context of network optimization problems, such as the minimum spanning tree problem, the
shortest path problem, or the traveling salesman problem, identifying most vital variables often translates
into finding most vital edges (see Sections 30.5, 30.6, and Chapter 62).

Parametric search encompasses a broad class of problems whose goal is to locate a point λ∗ in the
parameter space, where the optimum cost function satisfies some specified property. For example, ray
shooting is a parametric search problem, although it is not an instance of prior analysis. Lagrangian
relaxation and minimum-ratio optimization lead to two basic parametric search problems: maximization,
that is, locating λ∗ = arg maxλ Z(λ), and root finding, that is, solving Z(λ) = 0 for λ.
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Inverse optimization is another parametric search problem. The input here is a reference solution x(0),
and the problem is to locate a parameter vector λ(0) such that x(0) is optimal, or as close to optimum as
possible, at λ(0). Examples of inverse parametric minimum spanning tree, shortest path, matching, and
other optimal subgraph problems are given in Ref. [18]; applications to biological sequence alignment are
discussed in Refs. [19,20].

The construction problem is to build a complete representation ofM(Z). This is the most general problem
considered here, since almost any sensitivity analysis question can be answered given M(Z). Clearly, the
time required to solve the construction problem depends heavily on the combinatorial complexity of Z.

30.3.1 Stability of Approximate Solutions and Heuristics

Variants of all the issues outlined so far arise when considering approximate solutions or the behavior
of heuristic algorithms. These questions are of particular interest when studying NP-hard problems (see
Section 30.6).

Analogs to the notions of tolerance, stability radius, and stability region for ε-approximate solutions
are straightforward to define: simply replace “optimum” by “ε-approximate” in Definitions 30.1, 30.2,
and 30.3. As observed in Ref. [21], the stability region for an ε-approximate solution x has properties
similar to those of an ordinary stability region; e.g., it is closed, convex, and polyhedral. Unlike ordinary
stability regions, however, the intersection between the stability regions of two different ε-approximate
solutions, ε > 0, can have dimension d . Note also that, for ε1 < ε2, the region where x is ε1-approximate
is contained in the region where x is ε2-approximate [21].

So far, only the stability of solutions has been discussed. However, it is also natural to enquire about the
sensitivity of an algorithm to changes in parameter values (see Section 30.6.3). Suppose A is an algorithm
(typically a heuristic) for some optimization problem and let x(0) be the solution returned by A at parameter
vector λ(0). Then, the upper tolerance of parameter i for A at λ(0) is the largest value ui such that x(0) is
the solution returned by A for all λ′ such that λ′

i ∈ [λ(0)
i , λ

(0)
i + ui ] and λ′

j = λ
(0)
j for all j �= i . Lower

tolerances, stability regions, and radii are defined similarly.

30.4 General Techniques

Several general-purpose methods for parametric analysis problems are known, including methods for para-
metric search, construction of the space decomposition, and determining the combinatorial complexity
of low-dimensional problems. These techniques are surveyed next.

30.4.1 Parametric Search

Four methods of parametric search are reviewed here: bisection search, Newton’s method, gradient
descent, and Megiddo’s method. The focus is on one-parameter problems, where the cost of a solution
is a linear function of a single scalar parameter µ and the goal is to locate a value µ∗ satisfying certain
properties.

Newton’s method. The classic root-finding method of Newton directly applies to the problem of finding a
zero of Z(µ), when Z is a concave decreasing function of µ: Assume that a parameter value µ(1) and the
optimum solution x(1) at µ(1) are given. Furthermore, assume that µ(1) ≤ µ∗. To locate µ∗, proceed as
follows. Let µ(2) be the value such that cost(x(1), µ(2)) = 0. Now compute v = Z(µ(2)) and the optimum
solution x(2) at µ(2). Note that v ≥ 0. If v = 0, stop and return µ∗ = µ(2). Otherwise, set µ(1) = µ(2)

and x(1) = x(2) and repeat the process. This procedure generates an increasing sequence of µ values,
each of which corresponds to a different feasible solution. Thus, the number of evaluations required by
Newton’s method is at most equal to the number of breakpoints of Z. This naive bound can be improved
substantially in certain applications. In fact, Newton’s method yields the fastest-known algorithms for
several parametric search problems, including certain minimum-ratio network flow and minimum-cut
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problems [22,23]. Newton’s method can also be applied to other parametric search problems, including
finding the maximizer of Z or ray shooting [24].

Bisection search. Suppose that the parametric search problem under consideration has an oracle; that is, a
procedure that determines whether a given parameter value µ is less than or equal to the parameter value
µ∗ being sought. Suppose, additionally, that one is given an interval I known to contain µ∗. Bisection
search locates µ∗ by repeatedly halving I , taking the left or right half depending on the outcome of an
oracle call at the midpoint. The search stops when I is small enough, according to some criterion.

Oracles can often be constructed from evaluators. For example, consider the one-parameter upper
tolerance problem. Let x(0) be the optimum solution at µ(0), and let u be the upper tolerance at µ(0).
Then, the parameter value being sought is µ∗ = µ(0) + u. The oracle must determine whether a given
µ ≥ µ(0) is less than or equal to µ∗. To test this, first use the evaluator to find an optimum solution x(1)

at µ. If cost(x(0), µ) = cost(x(1), µ), then µ ≤ µ∗. Otherwise (since x(1) is optimum at µ), the only
possibility is that cost(x(0), µ) < cost(x(1), µ), and thus µ > µ∗.

Bisection search leads to fast algorithms for certain inverse sequence alignment problems with one or
two parameters [20].

Megiddo’s method. Megiddo’s method [25,26] solves parametric search problems by simulating the exe-
cution of an evaluator for the underlying fixed-parameter problem to find its computation path at µ∗. This
evaluator must be piecewise linear; that is, each value it computes must be a linear combination of the input
parameters. This condition is not particularly restrictive, as many combinatorial optimization algorithms
have this property. For example, most minimum spanning tree, maximum flow, and dynamic program-
ming sequence alignment algorithms are piecewise linear. Like bisection search, Megiddo’s method relies
on repeated invocations of an oracle to narrow down the search range for µ∗. Indeed, the following result
can be proved.

Theorem 30.1

Let P be a parametric search problem that has an oracle that runs in worst-case time b. Suppose that there
exists a piecewise linear algorithm to evaluate Z(λ) that executes t steps in the worst case. Then, P can be
solved in time O(t · b). If the evaluator for Z(µ) is a piecewise linear parallel algorithm that has d parallel
steps, using w processors, then P can be solved in time O(d · b · log w + d · w).

The second of the above time bounds can be improved by a factor of log n for some problems [27].
Among these are several parametric search problems related to minimum spanning trees, including finding
the maximizer of ZG and the root of ZG , when this function is strictly decreasing (as is the case for the
minimum-ratio spanning tree problem). All these questions can be answered in O(TMST(n, m) log n)
time, where TMST(n, m) is the time to compute a minimum spanning tree in an n-vertex, m-edge graph.
Megiddo’s method also yields efficient algorithms for the minimum ratio cycle problem [27]. Theorem 30.1
can be extended to nonlinear problems and to any fixed number of parameters [28–31].

In some cases, such as parametric minimum spanning trees on planar or dense graphs or for certain
optimization problems on graphs of bounded tree width, the polylogarithmic slowdown of Megiddo’s tech-
nique relative to the fixed-parameter problem can be eliminated entirely [32–35]. This yields parametric
algorithms that are asymptotically as fast as fixed-parameter evaluators.

Gradient ascent. Gradient ascent [14,36] can be used to search for the maximizer λ∗ of the optimum cost
function Z(λ). The method is iterative, generating a sequence of points that converges to λ∗. If the current
point λ(0) is not minimum, the algorithm chooses the next point by moving some distance (given by
some predetermined increment sequence) in the direction of a subgradient of Z(λ). Informally, a vector
s ∈ R

d is a subgradient of Z at λ(0) ∈ R
d if s points in a direction along which Z is nondecreasing;

that is, s plays the role a gradient plays for a differentiable function. A subgradient of Z at λ(0) can be
computed using an evaluator: If x(0) is an optimum solution at λ(0), then, the function cost(x(0), λ) has
the form a0 + ∑d

i=1 ai λi and the vector (a1, . . . , ad ) is a sub-gradient at λ(0). It can be shown that λ(0)

is a maximizer of Z if the 0 vector is a subgradient at λ(0) [14]. In practice this termination condition
can be hard to test, since only one subgradient is computed at any point. One way to handle this is by
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ending the search if the function has not decreased by a certain amount after some number of iterations.
Although gradient ascent is fast in practice (indeed, it is widely used in Lagrangian relaxation), it is not in
general possible to establish combinatorial bounds on its running time, since the convergence time of the
algorithm depends on the choice of the increment sequence [14].

30.4.2 Construction Algorithms

Constructing the space decompositionM(Z) induced by the optimum cost function Z requires producing
all the regions ofM(Z), along with the incidence relationships between regions, and the optimum solution
associated with each region. The construction problem can be solved by evaluating Z at various points
in the parameter space, producing a sequence of hyperplanes, each of which is the cost function of some
optimum solution. Each new hyperplane is used to incrementally update the current estimate of Z. The
technique is reminiscent of the methods used to determine the shape of a convex polyhedron through a
series of hyperplane probes [37,38] (see also Refs. [39,40]). Indeed, these results can be used to prove the
following:

Theorem 30.2

Let d denote the number of parameters, let f and v be, respectively, the number of regions and vertices of
M(Z), and let t be the time needed to evaluate Z. Then, M(Z) can be constructed in O(t · ( f + dv)) time,
plus the time needed to construct the lower envelope of all the score functions generated during the computation.
In particular, for d = 1 and 2, M(Z) can be constructed in time O(t · f ) and O(t · f + f 2), respectively.

Lower envelope construction is dual to constructing the upper convex hull of a set of points in R
d+1,

a problem for which an extensive literature exists [41]. The time needed to construct a lower envelope
depends heavily on the complexity of the output produced, as measured by its total number of faces of
dimensions 0 through d . By the Upper Bound Theorem [42], the complexity of Z is �( f �(d+1)/2�), where
f is the number of regions. Thus, for d ≥ 3, the time needed to build the lower envelope can dominate
the total computation time.

An alternative method for building M(Z) is lifting, which works by executing the fixed-parameter
problem for all parameter values simultaneously. Another construction technique relies on ray shoot-
ing (see Section 30.3). Applications of these techniques to parametric sequence alignment are given in
Refs. [19,43,44].

30.4.3 Combinatorial Complexity Bounds for Small-Dimensional Problems

In some problems, the cost of a feasible solution is the weighted sum of a relatively small number of
aggregate features. For example, in one common sequence alignment scoring scheme, while the number
of feasible solutions (alignments) is exponentially large, the cost of a feasible solution depends only on
the total number of matches, mismatches, and indels, each weighted by separate parameters Ref. [43]. In
instances of this kind, the theorem below, from Ref. [45], is useful.

Theorem 30.3

Consider an instance of problem (30.2) where the cost of every feasible solution x ∈ X can be expressed as
cost(x , λ) = ∑d

i=1 λi · fi (x), where f1(x), f2(x), . . . , fd (x) are integers, called the features of x. Suppose
that there exist integers n1, . . . , nd such that for every x ∈ X and each i ∈ {1, . . . , d}, 0 ≤ fi (x) ≤ n1.

Then, M(Z) has O

((∏d
i=1 ni

)(d−1)/(d+1)
)

regions.

Two examples of the use of Theorem 30.3 are given next; applications to sequence alignment can be
found in Ref. [43]. Note that Theorem 30.3 applies to certain NP-hard problems as well—for an example
of this, see Ref. [46].

• An instance of the stable marriage problem has n men and n women. Each man m assigns a rank
r (m, w) ∈ [n] to every woman w , and each woman w assigns a rank r (w , m) ∈ [n] to each man m.
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A feasible solution is a pairing M of men and women called a marriage; M is stable if there is no
man–woman pair (m, w) �∈ M such that m and w prefer each other to their current mate. The cost
of M is λ1xM + λ2 yM , where xM = ∑

(m,w)∈M r (m, w), yM = ∑
(m,w)∈M r (w , m), and λ1 and

λ2 weigh the relative preference of men over women in forming M; xM and yM are the features
of M. The goal is to find the stable marriage of minimum cost [47]. Since xM and yM are O(n2),
Theorem 30.3 gives a bound of O((n2)2(1/3)) = O(n4/3) on the number of regions of M(Z) (see
also Ref. [48]).

• The input to the ancestral reconstruction problem [49] consists of an n-leaf-rooted binary tree T
and a labeling S1, . . . , Sn of T ’s leaves by DNA sequences of length k. A feasible solution (called
an ancestral reconstruction) is a labeling of the internal nodes of T by DNA sequences of length k.
Let e = (x , y) be an edge of T whose endpoints are labeled by sequences X and Y and let i ∈ [k]
be an index for which X[i] �= Y [i]. Then, there is a transition at i if either both X[i] and Y [i]
are purines (A or G nucleotides) or both are pyrimidines (C or T nucleotides); otherwise, there is
a transversion at i . The cost of a labeling L is λ1v + λ2t, where v and t are the total number of
transversions and transitions over all the edges of T and all indices i ; v and t are the features of L .
The goal is to find a labeling of minimum cost. Since 0 ≤ v, t ≤ 2(n − 1)k, Theorem 30.3 implies
that M(Z) has O((nk)2(1/3)) = O(n2/3k2/3) regions.

In combination with Theorem 30.2, Theorem 30.3 allows us to bound the time needed to construct
M(Z). For instance, the time to construct the optimum score function for the maximum parsimony prob-
lem is O(n5/3k5/3), since the number of regions is O(n2/3k2/3) and each evaluation takes O(kn) time [49].

30.5 Sensitivity Analysis for Polynomially Solvable Problems

A number of sensitivity analysis algorithms are known for polynomially solvable problems. In addition to
their intrinsic interest, these results are also useful in analyzing the stability of NP-hard problems. Some of
this work has already been described in Section 30.4.1. The present section surveys problem-specific ap-
proaches, concentrating on linear programming, matroids, shortest paths, and network flows. In what fol-
lows, for graph problems, n and m denote the number of vertices and edges of the input graph, respectively.

30.5.1 Linear Programming

Parametric linear programming seems to have the distinction of being the first sensitivity analysis problem
to be studied [1]. Consider first the simplest case, where the objective function depends on a single scalar
parameter µ:

ZL P (µ) = min

{
n∑

i=1

(ci + µc ′
i )xi :

n∑

i=1

ai j xi = b j , for j ∈ {1, . . . , m}, xi ≥ 0 for i ∈ {1, . . . , n}
}

(30.9)
If problem (30.9) is feasible, then it must have an optimum basic feasible solution (bfs) [50]. Since the
number of such solutions is finite, function ZL P is piecewise linear and concave. Its worst-case number
of breakpoints is known to be exponential in n [51]. The upper and lower tolerances for an optimum bfs
x(0) at µ(0) can be computed using the parametric simplex method [50]. Parametric linear programming
has also been studied from the perspective of interior point methods [52–54].

When the objective function depends on more than one parameter, the optimum cost function is again
piecewise linear and concave; however, little is known about the complexity of the associated decompo-
sition, other than that it must be exponential in the number of variables. Methods for multiparameter
sensitivity analysis were first discussed in Ref. [55] (see also Refs. [56,57]).

By linear programming duality, all the results obtained for parametric linear programming apply to
linear programming problems where the right-hand side of the constraint set is a function of a parameter
vector [50].
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30.5.2 Parametric Minimum Spanning Trees and Matroids

The minimum spanning tree problem is a special case of matroid optimization . A matroid [58] is a pair
M = (E , I), where E is a finite nonempty set of elements andI a family of subsets of E , called independent
sets, satisfying two axioms: (i) any subset of an independent set is independent and (ii) if A and B are
independent, with |A| < |B |, then there exists some x ∈ B such that the set A ∪ {x} is independent. The
rank of M is the cardinality of its largest independent set. A base of a matroid is a maximal independent set.
A weighted matroid is one whose elements have real-valued weights. The matroid optimization problem is
to find a minimum-weight base, in a weighted matroid; that is, a base minimizing the sum of the element
weights.

The graphic matroid of an undirected graph G , denoted as M(G), is a matroid whose elements are the
edges of G , whose independent sets are the subforests of G , and whose bases are the spanning forests of
G . Thus, when G is connected, a minimum-weight base in M(G) is a minimum spanning tree of G , and
the rank of M(G) is n − 1. For further examples of matroids see Ref. [58].

Let ZM(µ) be the function giving the weight of the optimum base of a matroid M where the weight of
each element is a linear function of a scalar parameter µ. Then, ZM(µ) has O(mr 1/3) breakpoints, where
m and r are the number of elements and the rank of M, respectively [59]; this bound is tight in general
[60]. The upper bound implies that the number of breakpoints for the parametric minimum spanning
tree problem is O(mn1/3). However, the best known lower bound for this special case is �(mα(n)), where
α is the inverse Ackermann function [60].

The optimum cost function for the one-parameter minimum spanning tree problem can be constructed
in time O(n2/3 log4/3 n) per breakpoint or in randomized expected time O(n2/3 log n), per breakpoint
[61]. For planar graphs, the time bound can be improved to deterministic O(n1/4 log3/2 n) or randomized
expected O(n1/4 log n) time per breakpoint. Further results for minor-closed families of graphs are given in
Ref. [61]. The latter reference also offers algorithms for the kinetic minimum spanning tree problem, which
extends the parametric minimum spanning tree problem by allowing arbitrary insertions or deletions of
parametrically weighted edges.

All edge tolerances of a minimum spanning tree can be computed in deterministic O(m log α(m, n))
time [62] (see also Ref. [63]), where α is the inverse Ackerman function, and in randomized O(m)
time [64]. A deterministic O(n)-time algorithm exists for planar graphs [65]. These bounds match the
bounds known for solving the minimum spanning tree problem with fixed-edge costs; indeed, it has been
shown that any minimum spanning tree algorithm can be used to calculate minimum spanning tree edge
tolerances, without an asymptotic loss in efficiency [62].

Algorithms for finding the most vital edges in minimum cost spanning trees can be found in Refs.
[66–69] and in Chapter 62.

The robustness function for the minimum spanning tree problem is concave, piecewise linear, with
O(mn) breakpoints and can be constructed in O(m2n3 log(n2/m)) time [17]. More generally, the robust-
ness function of a weighted matroid can be constructed in O(m5n2 + m4n4τ ) time, where τ is the time
needed to test the independence of a set of at most n elements [70].

When the number of parameters is fixed, the inverse parametric minimum spanning tree problem can
be solved in randomized linear expected time, and deterministically in O(m log2 n) worst-case running
time. The inverse problem can be solved in polynomial time by means of the ellipsoid method for linear
programming, even when the number of parameters is large [18]. This result extends to shortest path,
matching, and other “optimal subgraph” problems.

30.5.3 Shortest Paths and Related Problems

Two kinds of shortest path sensitivity analysis problems have been considered in the literature. The first
deals with the sensitivity of the shortest path tree rooted at a specified source vertex s . The edge tolerance
problem for this case has been studied by several authors, often alongside the tolerance problem for
minimum spanning trees [63,71,72]. Thus, all edge tolerances of a shortest path tree can be computed in
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deterministic O(m log α(m, n)) time [62]; for planar graphs, the same problem can be solved in O(n)
time [65]. Algorithms for the most vital edge problems on shortest path trees on undirected graphs have
also been developed in Refs. [73,74] and Chapter 62.

The other kind of problem studies the sensitivity of the shortest path from a source s to a destination
t. Ramaswamy et al. [75] have devised algorithms for two related questions. Let P ∗ be a shortest s –t path
in an edge-weighted undirected graph G . Then, there is an O(m + |P ∗| log |P ∗|) algorithm for finding
all upper and lower tolerances of all edges in G with respect to P ∗. Ramaswamy et al. also consider the
following max–min problem. Let G be an undirected graph where each edge has a real-valued capacity.
The capacity of a path is the minimum capacity of an edge on the path. Let Q∗ be the maximum capacity
s –t path in G . Then, all upper and lower tolerances of the edges with respect to Q∗ can be computed in
O(m +|Q∗| log |Q∗|) time. These questions have applications to the pricing of edges in networks [76,77].
Note that, for the shortest path problem, there is a close relationship between computing tolerances and
finding most vital edges. For instance, the most vital edge with respect to the shortest s –t path is the edge
with the largest upper tolerance. In contrast, the most vital edge problem for minimum cost spanning
trees is not directly related to the problem of computing edge tolerances.

Let Z(µ) be the weight of the shortest s –t path when each edge weight varies linearly as a function
of a scalar parameter µ. Gusfield [78] shows that Z has O(nlog n) breakpoints. Carstensen [79] provides
evidence that this bound is tight.

30.5.4 Parametric Maximum Flow

The maximum-flow problem asks to find a source-to-sink flow of maximum value in a capacitated network
G . A closely related question is the minimum-cut problem, which asks to find a partition (S, T) of the
vertex set—that is, a cut—in G such that the source is in S and the sink is in T , and such that the total
capacity of the edges from S to T is minimized. By the max-flow min-cut theorem [80], the value of the
maximum flow in G equals that of the minimum cut in G .

In the parametric maximum-flow problem, the capacities are functions of a parameter vector. Not
much is known about the properties of the general version of the problem, even for a single parameter;
however, the following important special case has received considerable attention. A parametric flow
network is simple if the capacity of each edge out of the source is a nondecreasing linear function of µ, the
capacity of each edge into the sink is a nonincreasing function of µ, and the capacity of every other edge is
constant; no arcs between source and sink are allowed. Simple parametric flow networks arise in diverse
applications, including scheduling, stable marriage problems, finding maximum density subgraphs, and
baseball elimination problems [81,82].

In simple networks the series of minimum cuts (Si , Ti ), . . . , (Sr , Tr ) encountered as µ is increased
have a nesting property; that is, Si ⊂ Si+1, for i = 1, . . . , r − 1 [39]. Thus, the function ZC (µ) giving
the capacity of the minimum cut has at most n − 2 breakpoints. Remarkably, Gallo et al. [81] show that
the preflow-push algorithm [83] can be modified to construct M(ZC ) in O(nm log(n2/m) time, the
same time as that algorithm takes to compute a single maximum flow. They also show how to achieve the
same running time for finding the value of µ at which ZC (µ) is 0, as required in certain minimum-ratio
applications, and for locating a maximizer of ZC (µ). Further applications and extensions are given in
Ref. [82]; improvements for bipartite flow networks are given in Ref. [84]. Instances with piecewise-linear
capacities or where certain arcs not incident on s or t have varying capacities—which have applications to
preemptive scheduling with release times and deadlines, where processing times are varied, at a cost—have
also been studied [85].

30.6 Sensitivity Analysis of NP-Hard Problems

This section gives an overview of the work on sensitivity analysis for NP-hard problems, primarily with
respect to changes in the coefficient vector.
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30.6.1 Complexity of Sensitivity Analysis

Unsurprisingly, several results exist indicating that analyzing the sensitivity of NP-hard problems is itself
hard. Thus, Hall and Posner [86] have shown that, for a large class of NP-hard scheduling problems,
performing sensitivity analysis relative to the processing times is itself NP-hard. Their results (which
actually apply to the problem of recomputing the optimum solution after a specific change of parameters)
strongly suggest that the computation of tolerances, stability regions, and radii is hard.

van Hoesel and Wagelmans [87] have proved a variety of hardness results for 0/1 problems with linear
objective function, including the following:

• If the tolerances can be computed in polynomial time, then (under some mild assumptions) the
fixed-parameter version of the problem can be solved in polynomial time as well. Thus, for instance,
there is no polynomial-time algorithm for determining the edge tolerances for the traveling salesman
problem unless P = NP.

• If it can be checked in polynomial time whether an optimum solution x(0) for a given cost vector
c (0) is also optimum for another cost vector c (1), then the upper and lower tolerances at c (0) can
be computed in polynomial time. Thus, it is NP-hard to test whether the optimum solution to an
NP-hard 0/1 optimization problem remains optimum after arbitrary parameter changes.

• If there is a polynomial-time ε-approximate algorithm for computing all the upper tolerances for a
0/1 problem, then there exists a polynomial-time algorithm to compute the upper tolerances exactly.
Thus, it is NP-hard to compute the upper tolerances of the optimum solution to an NP-hard 0/1
optimization problem approximately.

• If all upper tolerances for an ε-approximate solution x(0) at c (0) can be computed in polynomial
time, then the optimum solution at c (0) can be computed in polynomial time. Thus, for instance, the
existence of a polynomial algorithm to determine upper tolerances for an ε-approximate solution
to the minimum-cost knapsack problem, would imply that P = NP.

From the above results, one can conclude that computing stability regions and radii for ε-approximate
solutions are hard problems in general.

Sotskov et al. [21] establish a relationship between the complexity of computing exact solutions and
that of multiparameter sensitivity analysis. Let x be an ε-optimal solution and let ν(x) denote the number
of 1’s in x . Let c (0) be a coefficient vector and x(0) an ε-approximate solution at c (0). Then, if the optimum
cost Z(c) can be calculated in O(g (n)) time for any coefficient vector c ∈ R

n, the stability radius of x at
c (0) can be computed in O(2ν(x)ng (n)) time. In contrast, Chakravarti and Wagelmans [88] show that the
stability radius can be computed in polynomial time for problems with linear objective functions whose
fixed-parameter versions can be solved in polynomial time.

While the preceding discussion was limited to problems with linear objective function, it should be
noted that several results are known for bottleneck problems. See, for example, Refs. [89–91]; the last of
these references surveys the extensive treatment of the subject in the Russian literature.

30.6.1.1 Graphs of Bounded Tree Width

Many NP-complete graph optimization problems are polynomially solvable on graphs of constant-
bounded tree width [92–95] (for a definition of tree width, see Refs. [96,97]). Indeed, parametric versions
of several of these problems, where edge and/or vertex costs are linear functions of a single scalar param-
eter µ, are often themselves efficiently solvable [34,98]. This has some implications to the approximate
parametric analysis of NP-hard problems, through Baker’s [99] technique for obtaining polynomial-
time approximation schemes for certain (nonparametric) problems on weighted planar graphs. Among
these problems are maximum independent set, maximum tile salvage, partition into triangles, maximum
H-matching, minimum vertex cover, minimum dominating set, and minimum edge dominating set.

Baker’s approach is based on decomposing the input planar graph into k-outerplanar graphs, which
are graphs of constant-bounded tree width. Thus, one can use parametric algorithms for bounded-tree
width graphs to obtain approximation algorithms for constructing the optimum cost function for all of
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Baker’s problems. More precisely, let Z(µ) denote the optimal cost function for one of Baker’s problems.
Then, for every fixed ε, there exists a polynomial-time algorithm that produces a function Zε(µ) that has
polynomially many breakpoints and such that for each µ, Zε(µ) is ε-approximate to Z(µ) [34].

30.6.2 Bounding the Stability Region

The notions of restriction and relaxation can help in obtaining bounds on the stability region. Let cost A

and X A denote the cost function and set of feasible solutions of a problem A of the form (30.1). Problem
Q is a restriction of problem P if X Q ⊆ X P and cost Q(x) ≥ cost P (x) for every x ∈ X Q . Problem R is a
relaxation of problem P if X R ⊇ X P and cost R(x) ≤ cost P (x) for every x ∈ X P . Note that restriction
and relaxation are inverse relations; that is, R is a relaxation of P if and only if P is a restriction of R. Also,
the cost of the optimum solution of any relaxation (restriction) of P is a lower (upper) bound on the cost
of the optimum solution for P . These facts lead to the following elementary, but useful, observations [4]:

(GN1) If an optimum solution x∗ of P is feasible for a restriction Q of P and cost Q(x∗) = cost P (x∗),
then x∗ is optimum for Q.

(GN2) If x(0) is a feasible solution for P and cost P (x(0)) equals the cost of an optimum solution for some
relaxation of P , then x(0) must be optimum for P .

Observation (GN1) allows one to make statements about the sensitivity of an optimum solution x∗ to
changes in the coefficient vector. For example, x∗ remains optimum if c is replaced by any c ′ such that
c ′

j ≥ c j for every j such that x∗
j = 0 and c ′

j = c j otherwise; that is, each such c j has infinite upper
tolerance. Similarly, for a 0/1 optimization problem, x∗ remains optimum if c is replaced by any c ′ such
that c ′

j ≤ c j for every j such that x j = 1 and c ′
j = c j otherwise; that is, each such c j has infinite lower

tolerance.
Hall and Posner [86] note that observation (GN1) can be used to study the sensitivity of scheduling

problems. As a simple example, an optimal schedule remains optimal if the release date of a job is increased,
but not beyond the time when the job starts processing.

Observation (GN2) applies to Lagrangian relaxation (Section 30.2): Suppose that λ∗ is the maximizer
of the Lagrangian function (Eq. [30.4]), and that x∗ is optimum solution for this parametric problem at
λ∗. Then, if x∗ is also feasible for the original problem (30.3), x∗ must be optimum for the latter problem.
Thus, one can estimate the stability of x∗ in the original (hard) problem, by analyzing the sensitivity of
x∗ in the relaxed (usually polynomially solvable) problem, relying on results such as those presented in
Section 30.5. Along these lines, Libura [100] presents methods for computing lower bounds on the edge
tolerances for the traveling salesman problem and the minimum-weight Hamiltonian path problems,
which rely on relaxations to minimum spanning tree problems. This allows one to use the results on
sensitivity analysis for minimum spanning trees described in Section 30.5.2.

Sotskov et al. [21] study the stability region of ε-optimal solutions and prove certain necessary and
sufficient conditions to obtain lower and upper bounds on the stability radius. They considered the
stability of non-preemptive general shop scheduling with precedence constraints, when the processing
times of the jobs are varied and provide conditions for the stability radius to be strictly larger than 0 or for
it to be infinite. Unfortunately, verifying these conditions is not easy.

30.6.2.1 k Best Solutions and Sensitivity Analysis

Intuitively, the boundaries of the stability region of an optimum x(0) at λ(0) are determined by a set of
near-optimum solutions at λ(0). This observation motivated Libura et al. [101] and van der Poort [102] to
study the connections between near optimality and sensitivity analysis for the traveling salesman problem.
Unsurprisingly, they show that it is NP-hard to find the smallest k such that the k best solutions at c (0)

suffice to determine the stability region of an optimum tour at c (0). Nevertheless, they do obtain some
positive results, which are reviewed below.

Suppose one is given a set S containing the k best tours for some edge cost vector c (0); S of course
includes an optimal tour, H(0). Let E 1 be the set of edges that are present in H(0), but not in every tour
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in S. Then, the upper tolerances of the costs of the edges in E 1 can be computed exactly and one can obtain
lower bounds on the upper tolerances of the other edges. Similarly, let E 2 be the set of edges present in
some tour in S. Then, one can calculate the lower tolerances of the edges present in E 2 and lower bounds
on the lower tolerances of the other edges. The authors also show how to derive upper and lower bounds
for the stability radius and how to use this information to derive subsets of the stability region. The authors
evaluated their results experimentally on instances from TSPLIB [103]. They observe that the number of
edges for which the tolerances can be computed increases quickly for smaller values of k, but that the
growth rate decreases for larger values of k.

30.6.3 Sensitivity of Heuristics

Analyzing the stability of a heuristic algorithm is conceivably easier than analyzing the stability of an exact or
ε-approximate solution, since the heuristic need not have any sort of performance guarantee (recall the dis-
tinction between algorithm and solution stability, explained at the end of Section 30.3). For example, Ghosh
et al. [104] consider the greedy heuristics for binary knapsack and subset-sum problems. They show that the
upper and lower tolerances of this algorithm for any parameter (the knapsack capacity, the weights, and the
profits of the items) can be computed in polynomial time. They also study the conditions under which
the sensitivity analysis of the heuristic generates bounds for the tolerances for the optimal solutions, and the
empirical behavior of the greedy output when there is a change in the problem data. Hall and Posner [86]
study the behavior of greedy heuristics for two NP-hard problems: scheduling two machines to minimize
the weighted completion time and scheduling two machines to minimize the makespan. They provide
approaches to obtain bounds on the upper tolerances of each heuristic to changes in the processing times.

Intuitively, since a simple heuristic uses less of the input information than an exact algorithm, it may
produce a poor result, but the solution should be less susceptible to parameter changes than the optimal
solution. This intuition is supported by the work of Kolen et al. [105] comparing two heuristics for
scheduling jobs on identical parallel machines to minimize the makespan: Shortest Processing Time (SPT)
and Longest Processing Time (LPT). The ratios between the solution returned and the optimum are 2−1/m
for SPT, where m is the number of machines and 4/3 − 1/(3m) for LPT [106,107].

Suppose the processing time µ of one of the jobs is varied from 0 to ∞. For H ∈ {SPT, LPT}, let ZH (µ)
be the length of the makespan of the schedule returned by H , let BH (n, m) denote the worst-case number
of breakpoints of ZH , and let AH (n, m) be the number of different assignments of jobs to machines. The
latter two values serve as an indication of sensitivity of H . Kolen et al. show that ZH (µ) is a continuous
piecewise linear function. They also prove that ASPT(n, m) ≤ n and BSPT(n, m) ≤ 2�n/m� and that both
bounds are tight. In contrast, ALPT(n, m) ≤ 2n−m and BLPT(n, m) ≤ 2n−m+1. The first bound is tight
and there exists an example for which BLPT(n, m) > 2(n−m)/2. These results support the intuition that
the sensitivity of a list scheduling rule increases with the quality of the schedule produced.
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31.1 Introduction

The design of approximation algorithms has evolved as one of the most successful approaches for dealing
with hard optimization problems. The first approximation algorithms were introduced in the 1960s [1,2].
A short time after introducing NP-hardness (and completeness) as a concept for proving the intractability
of computational problems [3,4], a large range of successful approximation algorithms was proposed
[5–10]. Since then, a wealth of approximation algorithms for very many practically relevant problems
have been developed, as large parts of this handbook stand witness to. Also, overviews on approximation
algorithms can be found, for example, in Refs. [11–14] and in Chapter 1 of this handbook.

Approximation algorithms allow us to jump from exponential time complexity (unless P=NP) to
polynomial time complexity by a small change in the requirement from searching for the optimal solution to
searching for a near-optimal solution. This effect is especially strong in the case of so-called approximation
schemes, where one can guarantee to find a solution whose cost can become arbitrarily close to the optimal
value (see Chapter 9 for more details).

Another possibility to make intractable problems tractable is to consider only a subset of input instances
satisfying some special properties instead of the set of all inputs for which the problem is well defined.
A good example is the Traveling Salesman Problem (TSP) which has served from the beginning as an
archetype of a hard problem [15,16]. The traveling salesman problem is not only NP-hard, but also the
search for an α-approximate solution for TSP is NP-hard for every constant α [6]. But if one considers TSP
for inputs satisfying the triangle inequality (the so-called �-TSP), one can even design an approximation
algorithm [10] with approximation ratio α = 3

2 . The situation is still more interesting, if one considers
the Euclidean TSP, where the vertices are points in the Euclidean space and the edge weights correspond to
the distances between the vertices in the Euclidean metrics. The Euclidean TSP is strongly NP-hard [17],
but for every small ε > 0 one can design a polynomial-time (1 + ε)-approximation algorithm [18–20]
(or polynomial-time approximation scheme [PTAS]).

The fascinating observations of huge quantitative changes as mentioned above have lead to the proposal
of considering the “stability” of approximation algorithms. Let us consider the following scenario. One
has an optimization problem P for two sets of inputs L 1 and L 2, L 1 ⊂ L 2. For L 1 there exists a

31-1
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polynomial-time α-approximation algorithm A, but for L 2 there is no polynomial-time δ-approximation
algorithm for any δ > 1 (unless NP=P). We pose the following question: Is the algorithm A really useful
for inputs from L 1 only? Let us consider a metrics M in L 2 determining the distance between any two
inputs in L 2. Now, one can consider an input x ∈ L 2 − L 1, for which there exists an y ∈ L 1 such that
distanceM(x , y) ≤ k for some positive real number k. One can look for how “good” the algorithm A is
for the input x ∈ L 2 − L 1. If, for every k > 0 and every x with distance at most k to L 1, A computes a
δα,k-approximation of an optimal solution for x (where δα,k is considered to be a constant depending on
k and α only), then one can say that A is “(approximation) stable” according to the metrics M.

The idea of this concept is similar to the concept of stability of numerical algorithms. But instead of
observing the size of the change of the output value according to a small change of the input value, we
look for the size of the change of the approximation ratio according to a small change in the specification
(some parameters, characteristics) of the set of problem instances considered. If the change of the approx-
imation ratio is small for every small change in the specification of the set of problem instances, then we
have a stable algorithm. If a small change in the specification of the set of problem instances causes an
essential (depending on the size of the input instances) increase of the relative error, then the algorithm is
unstable.

The concept of stability enables us to show positive results extending the applicability of known ap-
proximation algorithms. As we shall see later, the concept also motivates to modify an unstable algorithm
A to get a stable algorithm B that achieves the same approximation ratio on the original set of problem
instances as A has, but can also be successfully used outside of this original set. This concept is useful
because there are a number of problems for which an additional assumption on the “parameters” of the
problem instances leads to an essential decrease of the hardness of the problem. Such effects are the starting
points for trying to partition the whole set of problem instances into a spectrum of classes according to
their polynomial-time approximability.

As one can observe, this approach is similar to the concept of parameterized complexity, introduced
by Downey and Fellows [21,22], in trying to overcome the troubles caused by measuring complexity
and approximation ratio in the worst-case manner. The main aim of both concepts is in partitioning
the set of all instances of a hard problem into infinitely many classes with respect to the hardness of
particular instances. We believe that approaches like these will be the core of future algorithmics, because
they provide a deeper insight into the nature of the hardness of specific problems. In many applications
we are not interested in the worst-case problem hardness, but in the hardness of forthcoming problem
instances.

This chapter is organized as follows. In Section 31.2, we formally define the concept of approximation
stability. In Section 31.3, we apply the concept of stability to the TSP and exhibit a partition of the general
TSP input instances into infinitely many classes, according to their approximability in dependence of a
relaxation of the triangle inequality. In Section 31.4, we then complement the picture by introducing also
a partition into infinitely many approximability classes inside the metric TSP. Moreover, lower bounds are
exhibited for all these classes, inside as well as outside the metric case. They serve for judging the quality of
the obtained algorithms, and they show that one cannot, in principle, expect much better results. Section
31.5 concludes the chapter with a survey of other successful applications of approximation stability and a
discussion of the concept.

31.2 Definition of the Stability of Approximation Algorithms

We assume that the reader is familiar with the basic concepts and notions of algorithmics and complexity
theory as presented in standard textbooks like in Refs. [13,15,23–25]. Next, we give a formal definition
of the notion of an optimization problem, which is an extended version of the standard definition. This
extended definition allows us to study the influence of the input sets on the hardness of the problem
considered.

Let IN = {0, 1, 2, . . .} be the set of nonnegative integers, and let IR+ be the set of positive reals.
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Definition 31.1

An optimization problem U is a 7-tuple U = (�I , �O , L , L I , M, cost, goal), where

(i) �I is an alphabet called input alphabet,
(ii) �O is an alphabet called output alphabet,

(iii) L ⊆ �∗
I is a language over �I called the language of consistent inputs,

(iv) LI ⊆ L is a language over �I called the language of actual inputs,
(v) M is a function from L to 2�∗

O , where, for every x ∈ L, M(x) is called the set of feasible solutions
for the input x,

(vi) cost is a function, called cost function that, for every pair (u, x), where u ∈ M(x) for some x ∈ L,
assigns a positive real number cost(u, x),

(vii) goal ∈ {min, max}.
For every x ∈ L, we define

SolOptU (x) = {y ∈ M(x)|cost(y) = goal{cost(z)|z ∈ M(x)}}
as the set of optimal solutions, and OptU (x) = cost(y) for some y ∈ SolOptU (x).

Clearly, the meaning for �I , �O , M, cost, and goal is the usual one. L may be considered as the set
of consistent inputs, that is, the inputs for which the optimization problem is consistently defined. L I

is the set of inputs actually considered and only these inputs are taken into account for determining the
complexity of the optimization problem U . This kind of definition is useful for considering the complexity
of optimization problems parameterized according to their languages of actual inputs.

Definition 31.2

Let U = (�I , �O , L , L I , M, cost, goal) be an optimization problem. We say that an algorithm A is a
consistent algorithm for U if, for every input x ∈ L I , A computes an output A(x) ∈ M(x). We say that
A solves U if, for every x ∈ L I , A computes an output A(x) from SolOptU (x). The time complexity of A is
defined as the function

TimeA(n) = max{TimeA(x) | x ∈ L I ∩ (�I )n}
from IN to IN, where TimeA(x) is the length of the computation of A on x.

In this chapter, we deal with the case TimeA(n) ∈ O( p(n)), for some polynomial p, only. That is, we
just speak of an approximation algorithm when meaning polynomial-time approximation algorithm. Next,
we recall the definitions of standard notions in the area of approximation algorithms.

Definition 31.3

Let U = (�I , �O , L , L I , M, cost, goal) be an optimization problem, and let A be a consistent algorithm
for U .

• For every x ∈ L I , the approximation ratio RA(x) of A on x is defined as

RA(x) = max

{
cost(A(x))

OptU (x)
,

OptU (x)

cost(A(x))

}

.

• For any n ∈ IN, we define the approximation ratio of A as

RA(n) = max{RA(x) | x ∈ L I ∩ (�I )n}.
For any positive real δ ≥ 1, we say that A is a δ-approximation algorithm for U if RA(x) ≤ δ for
every x ∈ L I .

• For every function f : IN → IR, we say that A is an f (n)-approximation algorithm for U if RA(n) ≤
f (n) for every n ∈ IN.
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To define the notion of stability of approximation algorithms we need to consider something like a
distance between a language L and a word outside L .

Definition 31.4

Let U = (�I , �O , L , L , M, cost, goal) and U = (�I , �O , L , L I , M, cost, goal) be two optimization
problems with L I ⊂ L. A distance function for U according to L I is any function hL : L → IR+ satisfying
the property

hL (x) = 0 for every x ∈ L I

We define, for any r ∈ IR+,

Ballr,h(L I ) = {w ∈ L | h(w) ≤ r }
Let A be a consistent algorithm for U , and let A be an ε-approximation algorithm for U for some ε ∈ IR+. Let p
be a positive real. We say that A is p-stable according to h if, for every real 0 ≤ r ≤ p, there exists a δr,ε ∈ IR+
such that A is an δr,ε-approximation algorithm for Ur = (�I , �O , L , Ballr,h(L I ), M, cost, goal).1

A is stable according to h if A is p-stable according to h for every p ∈ IR+. We say that A is unstable
according to h if A is not p-stable for any p > 0.

For every positive integer r , and every function fr : IN → IR+ we say that A is (r, fr (n))-quasi-stable
according to h if A is an fr (n)-approximation algorithm for Ur = (�I , �O , L , Ballr,h(L I ), M, cost, goal).

One may see that the notion of stability can be useful for answering the question how broadly a given
approximation algorithm is applicable. If one is interested in negative results, then one can try to show
that for any reasonable distance measure the considered algorithm cannot be extended to work for a much
larger set of inputs than the original one. In this way one can search for some more exact boundaries
between polynomial approximability and polynomial inapproximability.

31.3 Stable Approximation Algorithms for the TSP

To illustrate the concept of approximation stability, we consider the well-known TSP. The TSP in its general
form is very hard to approximate, but if one considers complete graphs in which the triangle inequality
holds, then we have a 1.5-approximation algorithm due to Christofides [10].

To extend the part of the TSP that can be considered solvable reasonably well, it is therefore a natural
idea to look at instances that “violate the triangle inequality not by much.” This is formalized by the idea
of the parameterized triangle inequality.

Definition 31.5

For fixed β ≥ 1
2 , a weighted graph (G , c), G = (V, E ) obeys the β-triangle inequality iff

c(u, w) ≤ β (c(u, v) + c(v, w)) for all u, v, w ∈ V

In case of β > 1 we speak of the relaxed triangle inequality, which is the the case we want to investigate
in this section. The case of the sharpened triangle inequality is considered in Section 31.4. We call �β-TSP
the TSP subcase consisting of all instances obeying the β-triangle inequality (�β-inequality for short).

In terms of stability, we start from �-TSP = (�I , �O , L , L I , M, cost, min), where we assume �I =
�O = {0, 1, #}. L contains codes of all weight functions for edges of complete graphs, and L I contains
codes of weight functions that satisfy the triangle inequality. Let, for every x ∈ L , G x = (Vx , E x , c x ) be
the complete weighted graph coded by x .

1Note that δr,ε is a constant depending on r and ε only.
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For every TSP input outside L I (i.e., not obeying the standard triangle inequality), we obtain a distance
from L I as follows. Let β be minimal such that the given input belongs to �β-TSP, then β − 1 is the
distance from L I .

Definition 31.6

For every x ∈ L,

dist(x) = max

{

0, max

{
c x ({u, v})

c x ({u, p}) + c x ({p, v}) − 1

∣
∣
∣
∣ u, v, p ∈ Vx

}}

Now let us look at known algorithms for �-TSP. We can easily observe that these algorithms work on
any TSP-instance, that is, they are consistent for (�I , �O , L , L , M, cost, min). Only the guarantee for the
approximation ratio depends on the triangle inequality. It is therefore natural to ask how these algorithms
perform on other inputs.

We start with a 2-approximation algorithm that simply converts a doubled minimal spanning tree (MST)
into a Hamiltonian path, see, for example, Ref. [16], where also a few equivalent variants are shown.

DOUBLE SPANNING TREE ALGORITHM

Input: A complete graph G = (V, E ), and a cost function c : E → IR+.
Step 1: T : = MST of (G , c).
Step 2: ω : = Eulerian tour in the multigraph obtained from T by doubling each edge.
Step 3: Construct a Hamiltonian tour H of G by shortening ω (i.e., by removing all repetitions of the

occurrences of every vertex in ω in one run via ω from the left to the right).
Output: H .

As each Hamiltonian tour after removing any one edge becomes a spanning tree, clearly, an MST is at
most as expensive as an optimal TSP solution for the same graph. Consequently, ω costs at most twice as
much as an optimal solution.

Though this holds for any TSP instance, the “shortening” in step 3 is reducing or at least not increasing
the cost only under the triangle inequality. It is executed by repeatedly replacing a path x , u1, . . . , um, y
by the edge {x , y} (because u1, . . . , um have already occurred before in the prefix of ω). Before further
pursuing that thought, let us see how the Christofides algorithm builds on the previous one.

At closer inspection it occurs that the doubling of the spanning tree was needed only to get an Eulerian
subgraph. Consequently, in the Christofides algorithm the idea is to add only one edge each to the vertices
of odd degree in T to get an Eulerian subgraph as cheap as possible.

CHRISTOFIDES ALGORITHM

Input: A complete graph G = (V, E ), and a cost function c : E → IR+.
Step 1: T : = MST of (G , c).
Step 2: S : = {v ∈ V | degT (v) is odd}.
Step 3: Compute a minimum-weight perfect matching M on S in G .
Step 4: ω : = Eulerian tour in the multigraph G ′ = (V, E (T) ∪ M).
Step 5: Construct a Hamiltonian tour H of G by shortening ω.
Output: H .

In addition to the above reasoning for the Double Spanning Tree Algorithm, here we have to convince
ourselves that M costs at most half as much as an optimal TSP solution. The reasoning is that by identifying
the vertices of S in an optimal solution Hopt , we cut the circle Hopt at every vertex from S. Assigning the
resulting paths segments alternately into two sets and shortening each into single edges, we obtain two
matchings M1, M2. Obviously, M1, M2 each cost as least as much as M.

But from this, cost(M) ≤ 1
2 cost(Hopt) follows only under triangle inequality since we had to shorten

the path segments from Hopt into single edges to apply our argument.
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We can see how the Christofides algorithm depends on the triangle inequality even more intricately
than the Double Spanning Tree Algorithm. Here, the inequality is not only used in a constructive step but
also already in the argument to show that the initial component M of the solution is suitable.

When applying these two algorithms to input instances from �β-TSP for β > 1, one has to expect
the approximation ratio to grow at least with β since β factors immediately in the “shortening” of paths.
Unfortunately, however, for β > 1, the approximation ratio becomes dependent on the input size as we
will see now.

Lemma 31.1

The Christofides Algorithm is unstable for dist.
More precisely, for every r ∈ IR+, if the Christofides algorithm is (r, fr (n))-quasi-stable for dist., then

fr (n) ≥ nlog2(1+r )/(2 · (1 + r ))

Remember that the distance r from �-TSP of an input x is the minimal β − 1 such that x is a �β-TSP
instance, that is, we may use β = 1 + r in the following as a shorthand.

Proof
We construct a weighted complete graph from Ballr,dist(LI ) as follows (Figure 31.1). We start with the
path p0, p1, . . . , pn for n = 2k , k ∈ IN, where every edge {pi , pi+1} has weight 1. Then we add edges
{pi , pi+2} for i = 0, 1, . . . , n − 2 with weight 2 · β. Generally, for every m ∈ {1, . . . , log2 n}, we define
c({pi , pi+2m}) = 2m ·βm for i = 0, . . . , n−2m. For all other edges one can take maximal possible weights
in such a way that the constructed input is in Ballr,dist(L I ).

Let us have a look on the work of the Christofides Algorithm on the input (G , c). There is only one MST
that corresponds to the path containing all edges of weight 1 (Figure 31.1). Since every path contains exactly
two vertices of odd degree, the Eulerian graph constructed in step 4 is the cycle D = p0, p1, p2, . . . , pn, p0

with the n edges of weight 1 and the edge of the maximal weight n · β log2n = n1+log2β . Since the Eulerian
tour is a Hamiltonian tour (Figure 31.1), the output of the Christofides algorithm is unambiguously the
cycle p0, p1, . . . , pn, p0 with cost n + nβ log2n. The optimal tour for this input is

HOpt = p0, p2, p4, . . . , p2i , p2(i+1), . . . , pn, pn−1, pn−3, . . . , p2i+1, p2i−1, . . . , p3, p1, p0

This tour contains two edges {p0, p1} and {pn−1, pn} of weight 1 and all n − 2 edges of weight 2 ·β. Thus,
cost(HOpt) = 2 + 2 · β · (n − 2) and

cost(D)

cost(HOpt)
= n + n · β log2n

2 + 2 · β · (n − 2)
≥ n1+log2β

2n · β
= nlog2β

2β

Roughly the same happens for the Double Spanning Tree Algorithm. Only the fact that the choice of the
root of the MST is not fixed may allow that algorithm to gain a factor of β at best (if two edges replacing
paths of about n/2 edges each are used).

1 1 1 1 1 1 1

2β

2β2β2β

2β2β2β

4β24β2

4β24β2

nβlog
2
n = n1+log

2
β

FIGURE 31.1 Unstability of the Christofides algorithm.
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One may observe that in this example, the Double Spanning Tree Algorithm can fare much better if, in
shortening the Eulerian tour into a Hamiltonian one, a more clever strategy is used. The Eulerian tour is
in this case just a double traversal of the path that forms the MST. If on each traversal every other vertex
is used, an optimal solution will be obtained. This idea might not work on every MST, but it is the basis
for the first �β-TSP algorithm by Andreae and Bandelt discussed below.

Afore, we just note that the above example marks roughly the worst case for both algorithms.

Lemma 31.2

For every positive real number r , the Christofides Algorithm and the Double Spanning Tree Algorithm are
(r, O(nlog2((1+r )2)))-quasi-stable for dist.

Now we turn to the question how to modify those algorithms to get algorithms that are stable according
to dist.

As we have observed, the main problem is that shortening a path u1, u2, . . . , um+1 to the edge u1, um+1

can lead to

cost({u1, um+1}) = β�log2 m� · cost(u1, u2, . . . , um+1)

Obviously, we need to limit by a constant the number of consecutive edges replaced by a single new edge.
For a spanning tree being just a path, we have mentioned that it suffices to replace at most two consecutive
edges. For a general spanning tree, the following result implies that replacing at most three consecutive
edges suffices.

We use, for any graph G = (V, E ) and k ∈ IN≥2, the notation

G k = (V, {{x , y} | x , y ∈ V, there is a path x , P , y in T of a length at most k})
Theorem 31.1 (Sekanina [26])

For every tree T = (V, E ), the graph T 3 contains a Hamiltonian tour H.

This means that every edge {u, v} of H has a corresponding unique path u, Pu,v , v in T of length at
most three. This is a positive development, but it still does not solve our problem completely. The remaining
task is that we need to estimate a good upper bound on the cost of the path

P (H) = u1, Pu1,u2 , u2, Pu2,u3 , u3, . . . , un−1 Pun−1,un , un, Pun ,u1 , u1

(in T) that corresponds to the Hamiltonian tour u1, u2, . . . , un, u1 in T 3.
The problem is that we do not know the frequency of the occurrences of particular edges of T in

P (H). It may happen that the most expensive edges of T occur more frequently in P (H) than the
cheap edges. Observe also that cost(T 3) cannot be bounded by c · cost(T) for any constant c inde-
pendent on T , because T 3 may be even a complete graph for some trees T . Thus, we need the fol-
lowing refinement of the above theorem which is obtained by a slight modification of the original
proof.

Lemma 31.3 (Andreae and Bandelt [27])

Let T be a tree with n ≥ 3 vertices, and let {p, q} be an edge of T. Then, T 3 contains a Hamiltonian path
U = v1, v2, . . . , vn, p = v1, vn = q, such that every edge of E (T) occurs exactly twice in PT (H), where
H = U, p is a Hamiltonian tour in T3.

Let us call a Hamiltonian path of the type described in the lemma admissible. Then we have the following
refinement of the Double Spanning Tree Algorithm, developed by Andreae and Bandelt [27].

T 3-ALGORITHM

Input: A complete graph G = (V, E ), and a cost function c : E → IR+.
Step 1: T := MST of (G , c).
Step 2: Construct an admissible Hamiltonian tour H of T .
Output: H .
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Originally, the approximation ratio was estimated to be 3
2β2 + 1

2β, but by further refining step 2,
Andreae [28] could lower this a bit.

Theorem 31.2 (Andreae and Bandelt, and Andreae [27,28])

The refined T 3-algorithm is a β2 + β-approximation algorithm for �β-TSP, and it runs in time O(n2) on a
graph with n vertices.

Taking into account the fact that T 2 does not always contain a Hamiltonian tour, if one wants to get
below the β2 factor one needs to consider a suitable replacement for a spanning tree as starting point.

This is the approach followed by Bender and Chekuri [29], building on a 2-vertex-connected spanning
subgraph (2VCSS) of G .

Theorem 31.3 (Fleischner [30])

For every 2-vertex-connected graph S, the graph S2 contains a Hamiltonian tour H.

As desired, now we need to replace only two consecutive edges by one. However, as opposed to an MST,
a minimal spanning 2VCSS of G cannot be computed in polynomial time, unless P=NP. Therefore, one
has to use an approximation instead.

Theorem 31.4 (Penn and Shasha-Krupnik [31])

There is a polynomial-time 2-approximation algorithm for the minimal 2VCSS problem.

Additionally, as for the T 3-algorithm, the existence of a Hamiltonian tour is not enough. From a
constructive version of Fleischner’s proof by Lau [32], one can get an 8β-approximation. By refining this
such that the resulting Hamiltonian tour uses every edge of S at most twice, one gets the following result.
Again, we call such a tour admissible.

S2-ALGORITHM

Input: A complete graph G = (V, E ), and a cost function c : E → IR+.
Step 1: S := 2-approximation of a minimal 2VCSS of (G , c).
Step 2: Construct an admissible Hamiltonian tour H of S.
Output: H .

Theorem 31.5 (Bender and Chekuri [29])

The S2-Algorithm is a 4β-approximation algorithm for �β-TSP, and it runs in time O(n5) on a graph with
n vertices.

The impractical running time is clearly a drawback. It comes from computing the 2VCSS. Obviously,
any improvement on the 2VCSS approximation would also improve the S2-algorithm, w.r.t. running time
or approximation ratio. However, since the algorithm by Penn and Shasha-Krupnik is already the result
on several improvements in smaller and smaller steps, one cannot be too optimistic in that regard. At the
current state, the S2-algorithm surpasses the much faster T 3-algorithm only for β > 3, at which point
the approximation ratio already is 12.

Another downside to both algorithms is that for inputs close to �-TSP they cannot get close to the
results by the Christofides algorithm. Especially, for instances where only a few edge costs violate the
triangle inequality, an algorithm based on the Christofides algorithm should in most cases get close to
or reach the 1.5-approximation ratio, where S2- and T 3-algorithms can only hope to return about a
2-approximation in such cases.

The difficulty, as mentioned before, is that the Christofides algorithm uses a matching as one of its
starting points, and the estimate that this does not cost more than half of a Hamiltonian tour fails if the
triangle inequality does not hold. Therefore, it was even conjectured in Ref. [27] that the Christofides
algorithm cannot be adopted to �β-TSP for β > 1.

However, there is a way around this by computing a so-called path matching.
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Definition 31.7

For a weighted graph (G , c), G = (V, E ) and an even set W ⊆ V, a path matching is a set M of paths in G
such that each vertex from W is the endpoint of exactly one path from M.

A path matching of minimal cost can be computed in time |V |3. First, one solves the all-pairs cheapest
path problem on (G , c) and let c ′(u, v) be the cost of cheapest path between u and v. Then one computes
a minimum matching M′ for (G , c ′), and M is obtained from M′ by replacing every edge u, v by the
cheapest path from u to v computed previously on (G , c).

It is easy to see that for every TSP instance, independent of the triangle inequality, a minimum path
matching costs at most half as much as an optimum TSP solution. This holds because an optimum TSP
solution can simply be divided into two path matchings.

Now that this initial problem is solved, one is left with a combination of spanning tree T and path
matching M. This is a structure where no result like the ones of Sekanina and Fleischner is known. To
construct in the end a Hamiltonian path without replacing more than four consecutive edges by a new
one, one needs some detail work additionally. (“PMCA” stands for path matching and the Christofides
algorithm-based approach.)

ALGORITHM PMCA [33]
Input: A complete graph G = (V, E ), and a cost function c : E → IR+.
Step 1: T : = MST of (G , c).
Step 2: S : = {v ∈ V | degT (v) is odd}.
Step 3: Compute a minimum-weight path matching M1 on S in G .
Step 4: Replace M1 by vertex-disjoint path matching M2.
Step 5: ω1 : = Eulerian tour in the multigraph G ′ = (V, E (T) ∪ M2).
Step 6: Modify parts from T in ω1 such that they form a forest of degree at most 3, obtain ω2

Step 7: Construct a Hamiltonian tour H of G by shortening ω2.
Output: H .

The detail work happens in steps 4, 6, and 7.
While any minimum-weight path matching can easily be shown to be edge-disjoint, for obtaining

vertex-disjointness in step 4 a price has to be paid. At vertices used by two paths, one of them has to give
way by “bridging” the two edges to and from that vertex, that is, replacing them by a new one. This can
be done such that a new edge is never replaced again later. Thus, the costs increase at most by β, that is,
cost(M2) ≤ βcost(M1).

Similarly, we look in step 6 at partial paths from ω1 in T , that is, at those pieces we obtain after dividing
ω1 into parts from T and parts from M2 alternately. At a vertex of degree ≥ 4 in T , two or more path pieces
from ω1 in T will cross, and we can bridge some of them like in step 4, replacing at most two consecutive
edges from T by a new one. Thus, we have

cost(ω2) ≤ cost(M2) + βcost(T) ≤ β (cost(M1) + cost(T))

After this preparation, in ω2 each vertex will occur not more than twice, and bridging one of the
occurrences for each such vertex is performed in step 7 again by replacing at most two consecutive edges
from ω2 by a new one. This gives the resulting estimate, where Hopt is an optimal TSP solution.

cost(H) ≤ βcost(ω2) ≤ β2 (cost(M1) + cost(T)) ≤ β2 · 1.5cost(Hopt)

Theorem 31.6 (Böckenhauer et al. [33])

The Algorithm PMCA is a 1.5β2-approximation algorithm for �β-TSP, and it runs in time O(n3) on a graph
with n vertices.

This algorithm has a practical running time, and it gives the best approximation ratio so far for cases
β ≤ 2. Note that for β = 2 the approximation ratio of algorithms PMCA and T 3 is 6 already. Thus
algorithm PMCA covers the cases close to the kernel L I that are in practice the most interesting ones.
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Probably, it is the most prominent open question in this area whether this algorithm can be improved
to ratio 1.5β, respectively whether another approach can reach that goal. Certainly, one should not hope
for anything better in view of the lower bounds discussed in the next section.

Let us finish this section by summarizing what we have seen by studying stability for the TSP, this
archetype of a hard problem. It has been very fruitful, starting from known algorithms for a kernel
problem, first to identify how they depend on properties of that kernel, and then to look for modifications
or similar approaches. There, the crucial point was to transform a dependency of a kernel property into
one that holds for each distance from the kernel, albeit with a worse ratio but independent of the input
size. One can see that different tools may come into play, modifying the starting point, using general graph
properties, or fine-tuning the algorithm’s behavior at points where it did not matter for the original kernel
problem.

31.4 Lower Bounds and the Situation Inside �-TSP

We have seen in the previous section how to use the concept of stability to partition all TSP instances
into infinitely many classes according to their approximability, depending on the parameter β of a relaxed
β-triangle inequality. Our aim in this section is twofold: We will first exhibit a similar partition into
infinitely many classes also for the input instances inside the �-TSP, based on the parameter β, and we
will show that the concept of stability can also be used to obtain lower bounds on the approximability for
all of these classes.

Recall that for a complete edge-weighted graph G = (V, E , c), we say that it satisfies a sharpened
triangle inequality, if, for all u, v, w ∈ V ,

c({u, v}) ≤ β · (c({u, w}) + c({w , v})
holds for some 1

2 ≤ β < 1. Note that β = 1
2 corresponds to the trivial case where all edge weights are

equal.
In Ref. [34] it was shown how to estimate the approximation ratio of any approximation algorithm for

�-TSP on instances of �β-TSP for 1
2 < β < 1.

Theorem 31.7 (Böckenhauer et al. [34])

Let A be an approximation algorithm for �-TSP with approximation ratio α, and let 1
2 < β < 1.

Then A can be used as an approximation algorithm for �β-TSP with approximation ratio α·β2

β2+(α−1)·(1−β)2 .

The proof of Theorem 31.7 is based on the following idea: For any input instance for the �β-TSP, we
can subtract a certain amount (depending on β and the value of the minimum edge weight) from all
edge weights such that the resulting TSP instance still satisfies the triangle inequality. Furthermore, the
optimal Hamiltonian tours for both instances coincide. Using the observation that, in a weighted graph

obeying a sharpened β-triangle inequality, the maximum edge weight is bounded from above by 2β2

1−β

times the minimum edge weight, we can then estimate the length of a Hamiltonian tour as computed by
algorithm A as stated in Theorem 31.7.

Note that the approximation ratio guaranteed by Theorem 31.7 tends to 1 for β tending to 1
2 , and it

tends to α for β tending to 1. Applied to the Christofides algorithm, we obtain an approximation ratio of
1 + 2β−1

3β2−2β+1
.

For 1
2 ≤ β < 2

3 , this result can be improved by a specific algorithm, called Cycle Cover Algorithm,
which we will explain below.

Theorem 31.8 (Böckenhauer et al. [34])

For 1
2 ≤ β < 1, the Cycle Cover Algorithm is a ( 2

3 + 1
3 · β

1−β
)-approximation algorithm for �β-TSP.

This algorithm is based on the idea of first computing a minimum cycle cover of the given graph, this
can be done in polynomial time [35]. Then the cycles are joined together to form a Hamiltonian tour
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by removing the cheapest edge from every cycle and replacing it by an edge to the next cycle. One can
easily observe that, in a graph satisfying a sharpened β-triangle inequality, for any two adjacent edges the
costs differ by a factor of at most β

1−β
. Since every cycle of the cover has at least three edges, this possible

growth of the costs affects at most one third of the total cost of the cycle cover, which gives the claimed
approximation ratio.

We have seen so far that we can partition the set of TSP input instances into infinitely many classes
according to their approximability. We have used the relaxed and sharpened triangle inequality to define
these classes. In the following we will show that it is also possible to give an explicit lower bound on the
approximability of the TSP for each of these classes, for any β > 1

2 . These lower bounds imply that, unless
P = NP, one can expect to obtain only gradually better results, not principally better ones. Specifically,
as we will see, no polynomial-time approximation scheme can exist for �β-TSP for β > 1

2 , even when
getting arbitrarily close to the trivial case of β = 1

2 . Also, for growing β, we will see the necessity for the
approximation ratio of any polynomial-time algorithm to grow at least linearly with β.

The first in-approximability proof for the metric TSP, that is, for β = 1, goes back to Papadimitriou
and Yannakakis [36], who proved that even TSP restricted to edge weights from the set {1, 2} does not
admit a PTAS.

The first explicit lower bound on the approximability of the metric TSP was given by Engebretsen [37],
who proved that it is NP-hard to approximate the �-TSP within a factor of 5381

5380 − ε for any small ε > 0,
even in the case where all edge weights are from {1, 2}.

This result was not only improved for the metric case, but also extended to the cases of a relaxed or
sharpened triangle inequality by Böckenhauer and Seibert [38], who proved the following theorem.

Theorem 31.9 (Böckenhauer and Seibert [38])

Unless P =NP, there is no polynomial-time α-approximation algorithm, if

α <






7611 + 10β2 + 5β

7612 + 8β2 + 4β
for the case

1

2
< β ≤ 1

3803 + 10β

3804 + 8β
for the case β ≥ 1

For the metric TSP, that is, for β = 1, this leads to a lower bound of 3813
3812 . The currently best known lower

bound of 220
219 for the metric TSP is due to Papadimitriou and Vempala [39]. However, since in Ref. [39]

edge weight 0 was used, this result cannot be adapted to �β-TSP for β < 1.
The proof of Theorem 31.9 is based on a gap-preserving reduction from the LinEq2-2(3) problem.2

LinEq2-2(3) is the following problem: Given a system of linear equations modulo 2 with exactly two
variables in each equation, and with exactly three occurrences of each variable, find the maximum number
of equations that can be simultaneously satisfied. This problem was proven to be not approximable in
polynomial time within 332

331 − ε for an arbitrarily small ε > 0 by Berman and Karpinski [41].
The idea of the reduction is based on building so-called gadgets. For each equation and for each variable

a small graph is built, and all these graphs are put together into a large graph that serves as the input for
the TSP. In this construction, only three different edge weights are used, such that, for each nonsatisfied
equation in an optimal variable assignment, the optimal Hamiltonian tour through the constructed graph
has to pass through one edge of highest cost. All other edges of an optimal tour are shown to be of
lowest cost.

Theorem 31.9 is most interesting for the case β < 1. It shows the strong result that the TSP with
sharpened triangle inequality does not admit a PTAS even if β comes arbitrarily close to the trivial case 1

2 .
For the case of a relaxed triangle inequality, the result from Theorem 31.9 tends to 5

4 for β tending to
infinity. Bender and Chekuri [29] extended the result from Ref. [36] to the case of the relaxed triangle

2For an introduction into the theory of gap-preserving reductions see Chapters 15 and 17 or, for a broader treatment,
see Ref. [40].
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inequality and showed a lower bound of 1 + εβ for some very small ε, not given explicitly in the proof.
This result shows that the approximation ratio of any polynomial-time algorithm for the �β-TSP has to
grow at least linearly with β.

31.5 Discussion and Related Work

In the previous sections we have introduced the concept of stability of approximation. Here we discuss the
potential applicability and usefulness of this concept.

Using this concept, one can establish positive results of the following types:

(1) An approximation algorithm or a PTAS can be successfully used for a larger set of inputs than the
set usually considered.

(2) We are not able to successfully apply a given approximation algorithm A (a PTAS) for additional
inputs, but we can simply modify A to get a new approximation algorithm (a new PTAS) working
for a larger set of inputs than the original set of inputs of A.

(3) To learn that an approximation algorithm is unstable for a distance measure could lead to the
development of completely new approximation algorithms that would be stable according to the
considered distance measure.

The following types of negative results may be achieved:

(1) The fact that an approximation algorithm is unstable according to all “reasonable” distance measures
and so that its use is really restricted to the original input set.

(2) Let Q = (�I , �O , L , L I , M, cost, goal) ∈ NPO be well approximable. If, for a distance measure D
and a constant r , one proves the nonexistence of any polynomial-time approximation algorithm for
Qr, D = (�I , �O , L , Ballr, D(L I ), M, cost, goal), then this means that the problem Q is “unstable”
according to D.

Thus, using the notion of stability one can search for a spectrum of the hardness of a problem according
to the set of inputs. For instance, considering a hard problem such as the TSP or the Clique problem, one
could get an infinite sequence of input languages L 0, L 1, L 2, . . . given by some distance measure, where
Rr (n) is the best achievable approximation ratio for the language Lr . Results of this kind can essentially
contribute to the study of the nature of hardness of specific problems.

In case of the TSP with relaxed triangle inequality, this approach has been followed successfully as seen
in the preceding sections. A variety of new and adapted algorithms has been developed after the known
ones have proven to be unstable. All in all, an approximation ratio of min{β2 + β, 3

2β2, 4β} has been
reached so far, and the proven lower bounds show the β-dependency to be invariable.

Further applications of these ideas for different versions of the Hamiltonian path problem were developed
by Forlizzi et al. in Ref. [42], where a few stable algorithms with respect to relaxed triangle inequality were
designed.

Also we have seen how these studies gave rise to looking into subcases inside the metric one. Though
not a direct application of the stability concept, the treatment here was inspired by the stability approach,
and it has proven successful, too. The combined approximation ratio in this case was min{ 2

3 + 1
3 · β

1−β
,

1 + 2β−1
3β2−2β+1

}.
Moreover, Chandran and Ram [43], and then Bläser [44], succeeded in transferring this approach to

the asymmetric TSP. Remember that no constant-factor approximation algorithm for the metric case is
known, so the combined approximation factor of min{ β

1−β
, 1

1− 1
2 (β+β2)

} is quite an achievement in the

asymmetrical case.
The subproblems with sharpened triangle inequality were also successfully attacked for a variety of

minimum connected spanning subgraph problems in Refs. [45,46]. Since these problems allow constant
approximation algorithms in their general case, a treatment analogous to the TSP could not be expected.
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However, the approach guided by the parameterized triangle inequality led to the development of a few
new simple and fast algorithms that improve the best known approximation ratio at least for a part of the
sharpened triangle inequality case.

All in all, we have seen that the stability of approximation approach leads to rethinking known algorithms
and developing new ones. The common goal is to provide a variety of algorithms for the whole range of
a problem that deliver approximation ratios depending not on the input size but on a suitable parameter
indicating the hardness of each input instance.
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[25] Hromkovič, J., Theoretical Computer Science, Springer, Berlin, 2004.
[26] Sekanina, M., On an ordering of a set of vertices of a connected graph, Publ. Fak. Sci. Univ. Brno,

412, 137, 1960.
[27] Andreae, T. and Bandelt, H.-J., Performance guarantees for approximation algorithms depending on

parameterized triangle inequalities, SIAM J. Disc. Math., 8, 1, 1995.
[28] Andreae, T., On the traveling salesman problem restricted to inputs satisfying a relaxed triangle

inequality, Networks, 38, 59, 2001.
[29] Bender, M. and Chekuri, C., Performance guarantees for TSP with a parametrized triangle inequality,

Inf. Proc. Lett., 73, 17, 2000.
[30] Fleischner, H., The square of every two-connected graph is Hamiltonian, J. Comb. Theor. B, 16, 29,

1974.
[31] Penn, M. and Shasha-Krupnik, H., Improved approximation algorithms for weighted 2- and 3-vertex

connectivity augmentation problems, J. Algorithms, 22, 187, 1997.
[32] Lau, H. T., Finding EPS-graphs, Monatshefte Mathematik, 92, 37, 1981.
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32.1 Introduction

Let a1, . . . , an be a given collection of items with sizes s (ai ) > 0, 1 ≤ i ≤ n. In mathematical terms,
bin packing is a problem of partitioning the set {ai } under a sum constraint: Divide {ai } into a minimum
number of blocks, called bins, such that the sum of the sizes of the items in each bin is at most a given
capacity C > 0. To avoid trivialities, it is assumed that all item sizes fall in (0, C]. Research into bin packing
and its many variants, which began some 35 years ago [1,2], continues to be driven by a countless variety
of applications in the engineering and information sciences. The following examples give an idea of the
scope of the applications:

• (Stock cutting) Lumber with a fixed cross section comes in a standard board C units in length.
The items are demands for pieces that must be cut from such boards. The objective is to minimize
the number of boards (bins) used for the pieces {ai }, or equivalently, to minimize the trim loss or
waste (the total board length used minus the sum of the s (ai )). It is easy to see that this type of
application extends to industries that supply cable, tubing, cord, tape, and so on from standard
lengths.

• (Television programming) Fixed duration time slots are provided between segments of entertain-
ment programs for the use of commercials. The objective is to minimize the number of time slots
(bins) that need to be devoted to a given collection of variable length commercials {ai }.

• (Transportation) The ai are items to be loaded onto a collection of identical transports (e.g., trucks,
railway cars, and airplanes) with given weight and volume limits. The objective is to minimize the
number of transports (bins) needed; if only the weight limit is operative then the s (ai ) denote
weights, and if only the volume limit is operative then the s (ai ) represent volumes.

• (Computer storage allocation) In this application, the items are files to be stored on a set of identical
disks with the constraint that each file must be stored entirely on one disk; and the objective is to
minimize the number of disks (bins) needed for the set of files.

32-1
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In the above applications, bin packing has been presented as the primary combinatorial problem. In many
applications, it is a secondary problem or an embedded special case. For example, capacitated vehicle
routing is a classic problem in which bin packing is embedded.

Bin packing is an NP-hard problem, so a large majority of the research on bin packing focuses on the
design and analysis of approximation algorithms. Apart from applications, bin packing has acquired an
added, more general importance in the development of complexity theory and algorithms. It was one of a
relatively few “test” problems, such as satisfiability and chromatic index, in which reducibility arguments
were most often formulated in NP-completeness proofs. Bin packing has also served as a testbed for
advances in algorithmics such as approximation schemes and average-case analysis.

We normalize the problem by dividing all item sizes by C and letting the bin capacity be 1. Let A(L )
denote the number of bins needed by algorithm A to pack the items of L . The symbol OPT stands for an
optimal algorithm. Define Vα as the set of all lists of items with sizes no larger than α and consider, for
given k and α, the upper bound

RA(k, α) := sup

{
A(L )

k
: L ∈ Vα and OPT(L ) = k

}

The limit k → ∞ of this bound is the asymptotic worst-case ratio for algorithm A:

R∞
A (α) := lim sup

k→∞
RA(k, α)

A less formal, but more instructive, definition states that R∞
A (α) is the smallest constant such that there

exists a constant K < ∞ for which

A(L ) ≤ R∞
A (α) · OPT(L ) + K

for every list L ∈ Vα ; the asymptotic ratio, a multiplicative constant, hides the additive constant K . This
ratio is of most interest in those applications where K is small relative to A(L ).

The effect of the additive constant is preserved in the absolute worst-case ratio for algorithm A:

RA(α) = sup
L∈Vα

{
A(L )

OPT(L )

}

(32.1)

An algorithm A is either online or offline. If online, A assigns items to bins in the order they are given
in the original list, without using any knowledge about subsequent items in the list. If offline, the entire
list is available to A as it computes the packing.

Online algorithms may be the only ones that can be used in certain situations, where the items arrive in
sequence according to some physical process and must be assigned to a bin at arrival time. In many cases
an algorithm is offline only in that it performs an initial ordering of the items before applying an online
rule. An algorithm is bounded-space if the bins available for packing (called “open” bins) are limited in
number.

32.2 Online Algorithms

Let B1, B2, . . . denote the sequence of initially empty bins. The NEXT FIT (NF) algorithm was one of
the first, and simplest, approximation algorithms to be analyzed: NF begins by packing a1, a2, . . . into B1

until an item, say ai , is encountered that does not fit, that is, ai > 1 − ∑
1≤ j<i a j . Item ai is packed in B2

and B1 is closed, that is, no further items are packed in B1. Bin B2 becomes the new open bin and, like B1,
is packed with items until one that does not fit is encountered, whereupon B2 is closed; this bin-by-bin
process repeats until all items are packed. NEXT FIT is obviously linear-time; it is also bounded-space,
since the number of open bins never exceeds 1.

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C032 March 20, 2007 15:39

Performance Guarantees for One-Dimensional Bin Packing 32-3

Johnson’s [2,3] parametric analysis of NF showed that

R∞
N F (α) =

{
2 if 1

2 ≤ α ≤ 1
1

1−α
if α < 1

2

As observed by Fisher [4], NF uses the same number of bins for the reverse of L (an, an−1, . . . , a1), as it
does for L , for every L .

An obvious drawback of NF is that it cannot make use of the empty space in closed bins. When packing
a new item, the FIRST FIT (FF) algorithm tries to exploit this empty space by scanning all bins each time
an item is packed; thus, bins are never closed. When packing a new item, FF puts it into the lowest indexed
bin in which it fits; a new bin is started only if the current item does not fit into any nonempty bin. With an
appropriate data structure, the running time of FF is O(n log n) and thus greater than the O(n) running
time of NF. However, FF has a much better asymptotic ratio. Johnson et al. [5] proved that, if m is a positive
integer such that 1/(m + 1) < α ≤ 1/m, then

R∞
FF(α) =

{
17
10 if m = 1

m+1
m if m ≥ 2

A worst-case list proving that the 17/10 ratio cannot be improved is quite complicated. Much simpler lists
showing behavior nearly as bad, in particular a 5/3 ratio, are

L 6k =
(

1

6
− 2ε, . . . ,

1

6
− 2ε

︸ ︷︷ ︸
6k

,
1

3
+ ε, . . . ,

1

3
+ ε

︸ ︷︷ ︸
6k

,
1

2
+ ε, . . . ,

1

2
+ ε

)

︸ ︷︷ ︸
6k

Then OPT(L 6k) = 6k, FF(L 6k) = 10k, and the 5/3 ratio follows.
Other classical online algorithms are BEST FIT (BF), WORST FIT (WF), and ALMOST WORST FIT

(AWF). BEST FIT behaves like FF, except that it puts the next item into the bin in which it fits with the
smallest gap left over; ties are broken arbitrarily. WORST FIT puts the next item into a nonempty bin with
the largest gap, starting a new bin only if this largest gap is too small. ALMOST WORST FIT first tries
to put the next item into a nonempty bin with the second largest gap; if the item does not fit there then
AWF behaves like WF. All three variants belong to the class of so-called ANY FIT (AF) algorithms: An AF
algorithm scans once through the list L packing items as they are encountered. It never puts an item into
an empty bin, unless it does not fit into any available partially filled bin. Similarly, an ALMOST ANY FIT
(AAF) algorithm is an AF algorithm that never puts an item into a partially filled bin with the lowest level
unless there is more than one bin having this level, or unless the bin of lowest level is the only one that has
enough room. Johnson [3] proved that, although the class of AF algorithms is clearly large, no algorithm
in this class can improve upon FF. Moreover, all AAF algorithms have the same asymptotic ratio as FF;
these statements hold even for the parametric ratios. One simple consequence is that the AAF algorithms
BF and AWF have asymptotic ratios 17/10. However the asymptotic ratio of the AF algorithm WF is 2, the
same as that for NF.

32.2.1 Bounded-Space Online Algorithms

An online bin packing algorithm is said to use k-bounded-space if, for each new item, the number of bins
in which it may be packed is at most k. NEXT FIT uses 1-bounded-space, whereas FF, WF, and AWF each
use unbounded space. There are four very natural bounded-space bin packing algorithms that are defined
via simple packing rules for items and simple closing rules for bins: A new item can always be packed into
the lowest indexed bin (as in FF) or into the bin with the smallest remaining gap (as in BF). If the new
item does not fit into any active bin, some active bin has to be closed; in this case one can always choose
the lowest indexed bin (the FIRST bin) or the bin with the greatest sum of item sizes (the BEST bin). The
corresponding four algorithms are called AFFk , AFBk , ABBk , and ABFk . Here A stands for algorithm, the
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second letter denotes the packing rule (best fit or first fit), the third letter denotes the closing rule (best
bin or first bin), and k is the upper bound on the number of active bins. Results are as follows:

• Algorithm AFFk. This algorithm was termed NEXT-k FIT by Johnson [3]. Provably tight bounds
were not in hand until almost 20 years later. Csirik and Imreh [6] constructed a sequence of worst-
case examples which show that R∞

AFFk
≥ 17

10 + 3
10(k−1) , and Mao [7] proved a matching upper

bound on R∞
AFFk

.
• Algorithm ABFk. Mao [8] proved that R∞

ABFk
= 17

10 + 3
10k .

• Algorithm AFBk. Zhang [9] adapted the analysis of Mao [8] to this algorithm and proved that
R∞

AFBk
= 17

10 + 3
10(k−1) , that is, this algorithm has the same ratio as AFFk .

• Algorithm ABBk. This algorithm was investigated by Csirik and Johnson [10,11]. Compared with the
other three algorithms, ABBk uses the best packing and closing rules and it has the best asymptotic
ratio; R∞

ABBk
= 17

10 holds for any k ≥ 2.

So, except for small k, the asymptotic ratios of all four algorithms are around 17/10; since they are of
the AF type, they of course cannot outperform FF.

Lee and Lee [12] introduced a new class of bounded-space algorithms using bin reservation techniques.
Their algorithm HARMONICk (Hk) is based on a partition of the interval (0, 1] into k subintervals, where
the partitioning points are 1/2, 1/3, . . . , 1/k. To each of these subintervals there corresponds a different
active bin; items belonging to a given subinterval are packed only into the corresponding active bin. If
a new item arrives that does not fit into its corresponding active bin, the bin is closed and a new bin is
activated. Thus, the packing in bins containing items with sizes in one of the subintervals is a NF packing.
Note that Hk is not an AF algorithm because it may close a bin even when the next item could be packed
in one of the active bins (belonging to a different subinterval). In Ref. [12] it was proved that

R∞
Hk

→ h∞ ≈ 1.69103

This number occurs frequently in bin packing and is defined by

h∞ =
∞∑

i=1

1

ti − 1

where

ti+1 = ti (ti − 1) + 1, i ≥ 1, t1 = 2 (32.2)

Tight bounds for R∞
Hk

are not known for every value of k, so Table 32.1 gives the best upper and lower
bounds currently known. The upper bounds for every value of k except 4 and 5 are from Ref. [12]. Tight
upper bounds for k ∈ {4, 5} are due to van Vliet, as are the lower bounds for k ≥ 4 [13,14].

Woeginger [15] introduced the SIMPLIFIED HARMONIC (SHk) algorithm, a modification of HAR-
MONIC with a different interval structure (basically using the sequence ti ) and with a slightly better

TABLE 32.1 Asymptotic Ratios for Bounded-Space Bin Packing Algorithms, Rounded to Five Decimal
Places

k AFFk ABFk ABBk Hk ≥ Hk ≤ SHk Champion

2 2.00000 1.85000 1.70000 2.00000 2.00000 2.00000 ABB
3 1.85000 1.80000 1.70000 1.75000 1.75000 1.75000 ABB
4 1.80000 1.77500 1.70000 1.71429 1.71429 1.72222 ABB
5 1.77500 1.76000 1.70000 1.70000 1.70000 1.70000 ABB, H, SH
6 1.76000 1.75000 1.70000 1.70000 1.70000 1.69444 SH
7 1.75000 1.74286 1.70000 1.69444 1.69444 1.69388 SH
8 1.74286 1.73750 1.70000 1.69377 1.69388 1.69106 SH
9 1.73750 1.73333 1.70000 1.69326 1.69345 1.69104 SH

∞ 1.70000 1.70000 1.70000 1.69103 1.69103 1.69103 H, SH
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asymptotic ratio for small values of k. He proved that S Hk only needs O(log k) open bins to achieve the
performance ratio Hk .

A summary of the asymptotic ratios of the bounded-space algorithms for some small values of k is given
in Table 32.1. The asymptotic ratios of all five algorithms always remain above h∞. In fact, Lee and Lee
[12] showed that a bounded-space algorithm cannot have an asymptotic ratio better than h∞. However,
at present no online bounded-space algorithm A is known for which R∞

A = h∞.
Csirik and Woeginger [16] compared online bounded-space algorithms that pack into bins of size b ≥ 1,

with optimal offline algorithms that pack into bins of size 1. In a decreasing scan, choose reciprocals itera-
tively so long as those chosen sum to no more than 1/b. If 1/bi is the i th one chosen then 1/b = ∑

i≥1 1/bi ,
with b1 > b2 > b3 > · · ·. The authors showed that, for every bin size b ≥ 1, there exist online bounded-
space algorithms packing into bins of size b which have a worst-case performance arbitrarily close to

ρ(b) :=
∞∑

i=1

1

bi − 1

They also showed that for every b ≥ 1, the bound cannot be beaten by any online bounded-space bin
packing algorithm.

32.2.2 Better Online Algorithms

The first online algorithm for bin packing with R∞
A < h∞ was Yao’s [17] REVISED FF (RFF). Both

the definition and analysis of RFF are fairly involved. It is essentially based on FIRST FIT, but like Hk it
uses separate bins for items from the intervals (0, 1/3], (1/3, 2/5], (2/5, 1/2], and (1/2, 1], respectively.
Moreover, every sixth item from the interval (1/3, 2/5] is treated differently, the idea being to occasionally
start a new bin with an item of this size in the hope of subsequently adding an item of size greater than
1/2 to that bin. Yao showed that

R∞
RFF = 5

3

All other known online algorithms that beat the h∞ bound are variants of HARMONIC that give special
treatment to items≥ 1/3. Lee and Lee [12] described the REFINED HARMONIC (R HK ) algorithm, which
was based on H20. It uses the partitioning scheme of H20, with the modification that the two size intervals
(1/3, 1/2] and (1/2, 1] are replaced by the four intervals (1/3, y], (y, 1/2], (1/2, 1 − y], and (1 − y, 1],
where y = 37/96. Packing proceeds as in a HARMONIC algorithm, except one now attempts to pair items
whose sizes are in the first of the new intervals with items whose sizes are in the third interval, since such
pairs can always fit in the same bin. Every seventh item with sizes in the first interval is handled differently.
Lee and Lee proved that

R∞
RH20

≤ 373/228 = 1.6359 . . .

Ramanan et al. [18] introduced the MODIFIED HARMONIC (MH) algorithms, which added the possi-
bility of packing still smaller items together with items having sizes in (1/2, 1/2 + y], and consequently
created a more complicated algorithmic structure (as well as a different value for y – in this case
y = 265/684). For this first variant they showed that

1.6156146 < R∞
MH38

≤ 1.615615 . . .

and gave a general lower bound of 1.6111. . . for this type of algorithm. They introduced a second variant
of MF (MF-2), which divides (1/3, 1/2] and (1/2, 1] into more than two parts. MF-2 has an asymptotic
ratio < 1.61217 and the general lower bound 1.58333. . . . Hu and Kahng [19] used similar principles to
construct an unnamed variant for which they claimed R∞

A ≈ 1.6067.

Richey [20] introduced the HARMONIC+1 algorithm, and claimed that it has a performance ratio of
1.58872. HARMONIC+1 uses a partition of [0, 1], dividing it into more than 70 intervals. Its design and
analysis were carried out with the help of linear programming.
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Seiden [21] presented a general framework for analyzing a large class of online algorithms. This class
includes HARMONIC, REFINED HARMONIC, MODIFIED HARMONIC, MODIFIED HARMONIC-2,
and HARMONIC+1. He showed that all of these algorithms are merely instances of a general class
of algorithms, which he called SUPER HARMONIC. In his new approach, he reduced the problem of
analyzing an instance of SUPER HARMONIC to that of solving a specific knapsack instance. He developed
a branch-and-bound algorithm for solving such knapsack problems, and furnished a general computer-
assisted method of proving upper bounds for every algorithm that can be expressed in terms of SUPER
HARMONIC. As a result of this new technique, Seiden found a flaw in the analysis of HARMONIC+1 and
showed that the performance ratio of HARMONIC+1 is at least 1.59217. He developed a new algorithm
called HARMONIC++ and showed that it has an asymptotic performance ratio of at most 1.58889. This
is the current champion. He also proved that 1.58333 is a lower bound for any SUPER HARMONIC
algorithm.

32.2.3 Lower Bounds for Online Algorithms

Consider next lower bounds on performance that the asymptotic worst-case ratios of all online bin packing
algorithms must satisfy. Roughly speaking, one way to prove such lower bounds is to argue as follows.
Suppose an online algorithm A is confronted initially with a huge set of tiny items. If A packs these tiny
items very tightly, it would not be able to find an efficient packing for the larger items that might arrive
later; if such items actually do arrive, A is going to lose. However, if A leaves lots of room for large items
while packing the tiny items, the large items might not arrive; and in that case, A is again going to lose.
To illustrate this idea let us consider a simple example involving two lists L 1 and L 2, each containing n
identical items. The size of each item in list L 1 is 1/2 − ε, and the size of each item in list L 2 is 1/2 + ε. We
will investigate the performance of an arbitrary online algorithm A on the following two lists: L 1 alone
and the concatenation, L 1 L 2, of L 1 and L 2. The items of L 1 should be packed first. The algorithm will
pack some items separately ( j of them, say) and it will match up the remaining n − j . If we stop after L 1

has been packed then, obviously, A(L 1)/OPT(L 1) = (n + j )/n. If L 2 comes after L 1, then the best our
algorithm can do is to add one element of L 2 to each of j bins containing a single element of L 1, and to
pack separately the remaining n − j elements. Clearly, A(L 1 L 2)/OPT(L 1 L 2) = (3n − j )/(2n). The best
choice of j is where the maximum of the two previous ratios is minimal. It is attained when j = n/3,
implying a lower bound of 4/3 for the asymptotic worst-case performance ratio of any online algorithm A.

Yao [17] formalized this idea using three item sizes: 1/7 + ε as the size of small items, and 1/3 + ε and
1/2 + ε as sizes of larger items. (Note that these item sizes are simply 1/ti + ε, 1 ≤ i ≤ 3 as given in
Eq. [32.2].) Yao proved that, given such a list, the asymptotic ratio of every online bin packing algorithm
A must satisfy R∞

A ≥ 1.5. Brown [22] and Liang [23] independently generalized this lower bound to
1.53635 using Yao’s construction for 1 ≤ i ≤ 5. Ten years later, van Vliet [13,24] found an elegant
linear programming formulation for the Brown–Liang construction. Van Vliet gave an exact analysis and
increased the lower bound to

R∞
A ≥ 1.5401

This is currently the best lower bound known for online bin packing. Note that the gap between this lower
bound and the upper bound of 1.58889 described in Section 32.2.2 is less than 0.05.

Galambos [25] and Galambos and Frenk [26] simplified and extended the Brown–Liang construction
to the parametric case. Combining these results with the linear programming formulation of van Vliet
[24] yields the lower bounds given in Table 32.2. For comparison, corresponding upper bounds for some
algorithms have also been included.

Applying the above general argument, Csirik et al. [27] proved that for lists of items in nonincreasing
order, no online algorithm can have an asymptotic performance ratio smaller than 8/7. Faigle et al. [28]
showed that, when lists are restricted to those with only the item sizes 1/2−ε and 1/2+ε, this lower bound
becomes 4/3. Chandra [29] argued that all of these lower bounds can be carried over to randomized online
bin packing algorithms in which the choice of an allowable packing decision can be made at random.
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TABLE 32.2 Lower Bounds for the Parametric Case

α 1 1/2 1/3 1/4 1/5

Lower bound on R∞
A (α) 1.540 1.389 1.291 1.229 1.188

Current champion 1.588 1.423 1.302 1.234 1.191
R∞

Hk
(α) 1.691 1.423 1.302 1.234 1.191

R∞
F F (α) 1.700 1.500 1.333 1.250 1.200

32.3 Semionline Algorithms

Better bounds can be achieved when we relax the online condition by allowing the repacking of items.
In these cases, we have to bound the number of times items are repacked, for otherwise, we would end
up with an offline algorithm. Gambosi et al. [30] proposed two algorithms of this type. The first is
based on a nonuniform partition of (0, 1] into four subintervals: I0 = (2/3, 1], I1 = (1/2, 2/3], I2 =
(1/3, 1/2], I3 = (0, 1/3]. Essentially, their first algorithm uses a HARMONIC type algorithm for each
interval, but it tries to fill bins packed with items from I1 (i.e., items with sizes in I1) up to 2/3 with
already-packed I3 items (by repacking) or with I3 items from the remaining part of the list. This is a linear-
time algorithm (items can be packed at most twice) and it is quite easy to see that its asymptotic ratio is
3/2. Their second algorithm uses six intervals. Its time complexity is O(n log n) and the corresponding
ratio is 4/3. In a subsequent paper, the same authors offered a more detailed analysis of the same set of
algorithms [31].

Ivković and Lloyd [32] investigated dynamic bin packing, but as a side result they produced a quite
complicated semionline algorithm with an asymptotic ratio of 5/4. They also proved a lower bound for
the special class of semionline algorithms that only use atomic repacking moves; such a move is limited
to the transfer of a single item from one bin to another. They proved that for any semionline algorithm
that performs only a bounded number of atomic repacking moves at each step, the asymptotic worst-case
ratio is at least 4/3 [33].

One may only be willing to consider bounded-space algorithms of the semionline type. There are
such algorithms whose worst-case ratios match the limiting value, as has been shown by Galambos and
Woeginger [34] and Grove [35]. The relaxation used by Ref. [34] is to allow the repacking of currently open
bins, that is, items can be removed from current open bins and reassigned before packing the current item.
Galambos and Woeginger presented an “online with repacking” algorithm REP3 that uses a weighting
function w and three open bins concurrently as follows. The current item is always packed in an open bin.
Then all elements in the three open bins are repacked by the FIRST FIT DECREASING (FFD) algorithm,
with the result that either one bin becomes empty or at least one bin B has w(B) := ∑

ai ∈B w(ai ) ≥ 1.

All bins with w(B) ≥ 1 are then closed and replaced by empty bins. The authors proved that

R∞
REP3

= h∞

Grove [35] independently designed an algorithm with the same behavior using an alternative notion that he
calls lookahead. In his algorithm, one is given a fixed warehouse size, W; an item ai need not be packed until
one has looked at every item ai through a j , for j > i such that

∑ j
h=i s (ah) ≤ W. Allowing lookahead,

an appropriate choice of parameters again gives an algorithm with an asymptotic worst-case ratio of h∞.

32.4 Offline Algorithms

As unconstrained algorithms for partitioning the sets {ai }, offline algorithms need not be thought of in
terms of sequential packings of an ordered list. However, the best known offline algorithms are usually
expressed in just these terms, but with an initial ordering of the list allowed. That this is a natural first
approach can be seen from the bad examples for online algorithms, which were either increasing (FF) or
alternating (NF) sequences of item sizes. Thus, sorting the items in decreasing order and then employing
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NF, FF, or BF creates three interesting candidates for simple, but effective offline algorithms; they are
denoted by NFD, FFD, and BFD, with the “D” standing for “Decreasing.” The sorting needs O(n log n)
time and so the total running time of each algorithm will be O(n log n).

Baker and Coffman [36] proved that R∞
NFD = h∞, and they gave a parametric bound as well: if α ∈

(1/(s + 1), 1/s ], s ≥ 1 then

R∞
NFD(α) = h∞(γ ∗

s )

where h∞(γ ∗
s ) = s−1

s + γs . Here γs is a slight generalization of the previous ti sequence, as follows:
t1(s ) = s + 1, t2(s ) = s + 2, and ti+1(s ) = ti (s )(ti (s ) − 1) + 1, for i ≥ 2. Then γs = ∑∞

i=1
1

ti (s )−1 .

As expected, better results are achieved when using FF (or BF) after the initial sort. Johnson [2] showed
that for every list L

FFD(L ) ≤ 11

9
· OPT(L ) + 4

He could also prove that this bound is tight, that is, R∞
FFD = 11/9. Later, Baker [37] gave a shorter and

simpler proof and cut the constant to 3. Further shortening in the proof and reducing the constant to 1
was given by Yue [38]. Later, even this value was cut to 7/9 by Li and Yue [39].

For the parametric case, Johnson [2] showed that

R∞
FFD(α) =






71
60 for 8

29 < α ≤ 1
2

7
6 for 1

4 < α ≤ 8
29

23
20 for 1

5 < α ≤ 1
4

and he conjectured that

R∞
FFD

(
1

m

)

= 1 + 1

m + 2
− 2

m(m + 1)(m + 2)
= Fm

for all integers m ≥ 4.
Csirik [40] proved that this conjecture is true when m is even but is false when m is odd. Defining

G m = 1 + 1

m + 2
− 1

m(m + 1)(m + 2)
= Fm + 1

m(m + 1)(m + 2)

he was able to prove that

R∞
FFD

(
1

m

)

=
{

Fm if m is even

G m if m is odd

for all m ≥ 5.
Xu [41] completed the proof for arbitrary values of α ≤ 1/4. He showed that when m is even, Fm holds

true for any α ∈ (1/(m + 1), 1/m], while for m odd the interval has to be divided into two parts with

R∞
FFD(α) =

{
Fm if 1

m+1 < α ≤ dm

G m if dm < α ≤ 1
m

where dm := (m + 1)2/(m3 + 3m2 + m + 1).
The lower bound for FFD is given via the following lists:

L 6k =
(

1

2
+ ε, . . . ,

1

2
+ ε

︸ ︷︷ ︸
6k

,
1

4
+ 2ε, . . . ,

1

4
+ 2ε

︸ ︷︷ ︸
6k

,
1

4
+ ε, . . . ,

1

4
+ ε

︸ ︷︷ ︸
6k

,
1

4
− 2ε, . . . ,

1

4
− 2ε

)

︸ ︷︷ ︸
12k

It is then straightforward to check that OPT(L 6k) = 9k and FFD(L 6k) = 11k.
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After sorting the items we may use an AF algorithm to pack the list. Unfortunately, there are no exact
bounds for this case. We only know [2,3,5] that

11

9
≤ R∞

AF (1) ≤ 5

4

and

1

m + 2
− 2

m(m + 1)(m + 2)
≤ R∞

AF (α) ≤ 1

m + 2

where m = ⌊
1
α

⌋
and α < 1.

Johnson [2] made an interesting attempt to get a better offline algorithm. He proposed the MOST-k
FIT (MFk) algorithm, which first sorts the list in decreasing order. The next bin to be packed will first be
filled with the largest as yet unpacked element. If the smallest item in the list does not fit in the bin, we close
the bin and continue with the next bin. If the smallest item does fit, we pack at most k additional items
with the least space left over. The running time is O(nk log n). For a long time, Johnson conjectured that
limk→∞ R∞

MFk
=10/9, but Friesen and Langston [42] provided a counterexample showing that R∞

MFk
≥

5/4 for k ≥ 2.

For several years FFD had the provably smallest asymptotic bound. Yao [17] proposed a complicated
algorithm A with a O(n10 log n) running time and with R∞

A ≤ 11/9−10−7, which proved that FFD could
in fact be beaten. A much larger improvement was achieved by Garey and Johnson [43]. They proposed
the MODIFIED FIRST FIT DECREASING (MFFD), which differs from FFD only when packing the items
from (1/6, 1/3], called key items, just after packing all items > 1/3. MFFD attempts to pack 2 key items
in every key bin, defined as a bin having only an item > 1/2. The key bins are packed in largest-gap-first
order. If the gap in the current key bin can accommodate the two smallest items in the set SU of the as yet
unpacked key items, then the first key item packed is the smallest in SU and the second one packed is the
one remaining in SU that would be chosen by BF. As soon as at most one key item remains or a key bin
is encountered that cannot accommodate the smallest two remaining key items, MFFD reverts to FFD for
the remainder of the packing. Garey and Johnson proved that

R∞
MFFD = 71

60
= 1.183333. . . .

This is the best known offline algorithm. It is interesting to note that R∞
MFFD = R∞

FFD

(
1
2

)
.

In their attempt to find a better algorithm, Friesen and Langston [42] investigated the BEST TWO FIT
(B2F) algorithm, which is basically a MFk-type algorithm with k = 2 : B2F first pack a bin by FFD. If the
bin contains more than a single item, then the list is checked to see if the smallest item in the bin could
be replaced by two items that would occupy more of the bin. If so, the two largest such items are inserted
in place of the smallest item. The algorithm is also simplified by requiring all items smaller than 1/6 be
withheld until all larger items have been packed. FFD is used to complete the packing when only items no
greater than 1/6 are left. The authors proved that

R∞
B2F = 5

4
= 1.25

which is worse than those of FFD. The bad lists for this algorithm have the following optimal packing:






1

3
− 4k ε

2
,

1

3
− 4k ε

2
,

1

3
+ 4kε

︸ ︷︷ ︸
2 bins

,
1

3
− 4k−1 ε

2
,

1

3
− 4k−1 ε

2
,

1

3
+ 4k−1ε

︸ ︷︷ ︸
8 bins

, . . . ,

1

3
− 2ε,

1

3
− 2ε,

1

3
+ 4ε

︸ ︷︷ ︸
2·4k−2 bins

,
1

3
+ ε,

1

3
+ ε

︸ ︷︷ ︸
4k−1 bins
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Fortunately, the counterexamples for FFD and B2F are complementary and so the authors defined a
compound algorithm (CFB) that runs both FFD and B2F on the list and takes the better result. The running
time may double, but for the performance ratio we get

1.164 . . . = 227

195
≤ R∞

CFB ≤ 6

5
= 1.2

The worst-case example is given by an example where the bin size is 559, and lists where the optimal
packing consists of 60k bins each having three items of size 381, 98, 80, of 120k bins each having five items
of size 191, 96, 96, 96, 80, and of 15k bins each having six items of size 99, 99, 99, 99, 80, 80. Then the
optimal packing clearly uses 195k bins, and CFB will use 227k bins. The exact bound for CFB has not yet
been determined and so it is not known whether it is better than MFFD.

An earlier step in this direction (i.e., sequentially packing each bin as well as possible) did not entail
orderings by size. Graham [44] proposed a greedy algorithm in which, at each step, packing the next bin
solved a knapsack problem. Surprisingly, however, the worst-case behavior of this algorithm A is rather
poor:

R∞
A ≥

∞∑

k=1

1

2k − 1
= 1.6067 . . .

This lower bound is proved by instances L b that have b items of size 1/2k + ε for k = 1, 2, . . . , p,
with 0 < ε ≤ 1/22p and for values of b that are multiples of 2k − 1, k = 1, 2, . . . , p, for example,
b = a

∏p
k=1(2k − 1) for some positive integer a. Then the optimal packing of L b has b bins, each bin

consisting of one item from each size. Grahams’s algorithm first packs b/(2p − 1) bins, each with 2p − 1
items of size 1/2p + ε, then b/(2p−1 − 1) bins, each with 2p−1 − 1 items of size 1/2p−1 + ε, and so on,
ending with b bins, each with one item of size 1/2 + ε. Summing up, the lengths of the subpackings gives
the lower bound.

Caprara and Pferschy [45] recently proved an upper bound on the asymptotic performance of Graham’s
algorithm:

R∞
S S ≤ 4

3
+ ln

(
4

3

)

≈ 1.6210

They also dealt with the parametric case, showing that, if 1
m+1 < α ≤ 1

m , then

R∞
S S (α) ≥

∞∑

k=1

m

(m + 1)k − 1

and

R∞
S S (α) ≤

{
2 − 4m

3(m+1) + ln
(

4
3

)
if m ≤ 2

1 + ln m+1
m if m ≥ 3

32.5 Other Worst-Case Issues

32.5.1 Special Case Optimality

One of the easiest cases is when the number of different items in the lists is bounded, that is, we have k
different item sizes. Let us denote the item sizes by s1, s2, . . . , sk . In this case we have a smallest item size.
Then let us denote the smallest integer by j so that all item sizes are ≥ 1/j. It is quite clear that we cannot
pack more than j items in one bin. So a legal packing (we call it here a configuration) of a bin can be given
by a k-tuple,

pi = ( pi1, pi2, . . . , pik),
k∑

l=1

pil ≤ j,
k∑

l=1

sl · pil ≤ 1

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C032 March 20, 2007 15:39

Performance Guarantees for One-Dimensional Bin Packing 32-11

where pij denotes the number of s j items in configuration i. The total number of lists having not more
than j items is O(k j ), a part of them form a configuration. But then the total number of all possible
packings of a list L = (a1, a2, . . . , an) where ai ∈ {s1, s2, . . . , sk} is O(nk j

), that is, a polynomial in n.

This is a brute force method—the optimum can be computed more easily in this case, as proposed by
Blazewicz and Ecker [46]. Let us denote the number of items si in the list L by mi , 1 ≤ i ≤ k. Then the
problem of finding the optimal packing of L can be formulated as the following integer programming
problem:

min
N∑

i=1

bi , w .r.t
N∑

i=1

pi j bi = m j ( j = 1, . . . , k)

and bi ≥ 0 are integers (i = 1, . . . , N). Here N is the number of all possible configurations and bi gives
the number of bins of configuration pi . This matrix has k rows and O(k j ) columns and can be solved
in polynomial time in the number of constraints [47]. The optimal packing can then be constructed in
linear time. If we do not need the exact optimum but just a good approximation of it then we can relax
the integer condition from the above inequalities and compute the optimum of the remaining problem.
Then we may round down the solution, as proposed by Gilmore and Gomory [48,49].

A different approach was chosen by Hochbaum and Schmoys [50]. They investigated the classical bin
packing problem with item sizes bounded from below. They found an easily solvable case: if all item sizes
are ≥ 1/3, then a relatively straightforward polynomial algorithm will furnish an optimal packing. This
algorithm will pack, in the first stage, all items larger than a half separately in bins. In the second stage all
items = 1/3 are packed by three items in bins. In the third stage the remaining items, that is, those with
size > 1/3 and ≤ 1/2 are paired up with items from stage one, and those items where the pairing is not
possible are packed by two. The second step in this direction was to prove that if item sizes are ≥ 1/3−ε for
any fixed ε, 0 < ε < 1/3, then the problem becomes strongly NP-complete. Even for this case, supposing
0 < ε ≤ 1/12, and slightly relaxing the problem allowing the bins to be overpacked a little bit, they gave a
polynomial-time algorithm that gives the optimal number of bins but an overpacking with at most 3ε/2.

Leung [51] derived the limits for polynomially solvable cases. He proved that the bin packing problem
remains NP-hard even if the bin capacity is one and if item sizes must be drawn from the set {1, r, r 2, r 3, · · ·},
where r is an arbitrary positive rational number < 1.

Another type of optimality result was covered by Coffman et al. [52]. They introduced the restricted
lists L where the item sizes form divisible sequences. Now let us suppose that the bin capacity is an integer.
A sequence of item sizes s1 > s2 > . . . > si > si+1 > . . . is called divisible if for each i ≥ 1, si+1 exactly
divides si . A list L is called weakly divisible if its items when sorted forms a divisible sequence. If, in
addition, the largest item size exactly divides the bin capacity, then the list is called strongly divisible. In
Ref. [52] it was proven that when L is weakly divisible FFD gives optimal packing. If L is strongly divisible
then even FF produces optimal packing.

32.5.2 Linear-Time Algorithms

Most algorithms investigated up till now have a running time superlinear in n. It would be interesting
to know what could be said about algorithms that have a linear running time. Naturally, NF is one of
these, but it has poor performance. Johnson quite early on [3] proposed a better linear-time algorithm,
GROUP-X FIT GROUPED (GXFG). First he defined the GROUP-X FIT (GXF) algorithm. Let a schedule
of intervals be the set X = {x0, x1, . . . , xk}, where x0 = 0, xk = 1, and xi < xi+1, 0 ≤ i < k. X can be
thought of as a partition of the unit interval [0, 1] into the subintervals (0, x1], (x1, x2], . . . , (xk−1, 1].
Interval (xi−1, xi ] will be called the Xi , 1 ≤ i ≤ k interval, and the points in X will be called breakpoints.
Items from the list are classified similarly: a j will be called an Il item if it belongs to Xl . Note that this
is a more general definition than that given for the Harmonic algorithm, the latter having xi = 1/ i as
breakpoints. GROUP-XFIT will round down the free space in open bins to the next breakpoint (if the free
space is equal to a breakpoint then it is kept). The algorithm is actually a variant of best fit: an Il item
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will be packed in a bin with the least free space left over (if no bin has enough space for the item, a new
bin will be used). The algorithm has linear running time and is online. Johnson [2,3] did show that for
m = �1/α	 ≥ 2,

R∞
GXF(α) = R∞

FF(α)

when {1/(m + 1),1}⊆ X.He also proved that if m = 1, then 1.7 ≤ R∞
GXF ≤ 2 whenever {1/6,1/3,1/2} ⊆ X

and conjectured that the lower bound is the tight value.
The better algorithm GXFG first scans through the list and collects items from the same intervals

together. The second step is just GXF, which starts with items from interval Xk , followed by items from
Xk−1, Xk−2, . . . . Johnson also proved, for all m = �1/α	 ≥ 1, if X contains 1/(m + 2), 1/(m + 1), 1/m,
that

R∞
GXFG(α) = m + 2

m + 1

Because of the first scan GXFG is not an online algorithm. Basically, it uses the idea of FFD (it first starts
to pack the large elements) but without really sorting the elements.

A further improvement was achieved by Martel [53]. He used subintervals too, but packed items more
freely than Johnson in his GXFG. The algorithm is the following. First, we partition the items using the
following five sets:

C1 = {xi | 2/3 < xi ≤ 1}
C2 = {xi | 1/2 < xi ≤ 2/3}
C3 = {xi | 1/3 < xi ≤ 1/2}
C4 = {xi | 1/4 < xi ≤ 1/3}
C5 = {xi | xi ≤ 1/4}

Let ci = | Ci |, i = 1, 2, . . . , 5, be the numbers of items in intervals. An item in Ci will be called a
Ci -piece. The motivation behind this partitioning is to allow items to be packed based on the set to which
they belong. Items in C1 can only be combined with items in C5. Items in C2 can always be combined with
an item in C4, but never with an item in C2. Items in C3 can be packed together two to a bin, items in C4

can be packed three to a bin, and items in C5 can be packed at least four to a bin. The algorithm OffBP is
based on these observations and is defined in the following:

Step 1. Form the sets Ci , i = 1, 2, . . . , 5.

Step 2. Let k = �min{c2, c3}/2�. Split C2 into the two sets C s
2 that contains the smallest k elements in

C2 and C b
2 , which contains the remaining elements. In a similar way, split C3 into C s

3 and C b
3 . Pair

up each element in C s
2 with an element in C s

3 . If the pair fits in a bin, create a bin containing both
items. If the pair does not fit, create a bin containing only the element from C s

2 .

Step 3. Put each C1-piece into its own bin and put each C b
2 -piece into its own bin.

Step 4. Put all C b
3 -pieces and all C s

3-pieces which were not combined with a C s
2-piece in step 2 into

bins, two into each bin.
Step 5. Each bin with a single C2-piece has a C4-piece added to it (until one runs out of C4-pieces).
Step 6. Any C4-pieces not packed in step 5 are put three to a bin into empty bins.
Step 7. Pack C5-pieces into the bins created in steps 1–6 using NF: for each bin we add C5-pieces until

the next C5-piece does not fit; then go to the next bin and never consider the previous bin again.
Step 8. Any remaining C5-pieces are packed into empty bins using NF.

Martel has shown that the performance ratio of OffBP is 4/3. He also gave hints on how the algorithm
could perhaps be improved. These were followed up by Békési et al. [54]. They used the breakpoints
{1/5, 1/4, 1/3, 3/8, 1/2, 2/3, 4/5} and a much more complicated algorithm and obtained a performance
bound of 5/4.
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32.5.3 Randomization

Bin packing was a pioneering theme in many fields of analysis of algorithms. This is the case for randomized
algorithms as well. Perhaps AF is the first randomized algorithm that was really analyzed in detail. This is
certainly a classical result for randomized algorithms.

Only a few additional results are known for randomized algorithms in bin packing. As mentioned earlier,
Chandra [29] proved that the general lower bound for online algorithms hold for randomized algorithms
too.

Kenyon [55] analyzed BF from a new point of view and defined a new measure of performance. This
new measure is the expectation over random packing orders of a worst-case list of input items; packing
orders are drawn uniformly at random from the set of all permutations. She defined the random-order
performance-ratio RC(A) of an online algorithm A as

RC (A) = lim sup
OPT(L )→∞

EσA(Lσ )

OPT(L )

where Lσ is the permuted list (xσ (1), xσ (2), . . . , xσ (n)) and the summation for the expectation is taken
over all permutations σ ∈ Sn. She proved that for BF

1.08 ≤ RC(BF) ≤ 1.5

a quite large gap between the lower and upper bound! She also conjectured that the true answer was
probably close to 1.15. To estimate the lower bound she used a nice simplification: if we have only two
different item sizes then the permutations can be simulated by drawing each item independently with the
appropriate probabilities. So the sequence can be viewed as an unbiased random walk in the plane, which
can be analyzed with help of the Markov chains. The lower bound was found with the aid of the lists where
we have 1/2 items with probability p and 1/3 items with probability 1 − p. In this case we have a Markov
chain with five states:

(a) There is no open bin.
(b) There is one open bin whose current content is 1/2.
(c) There is one open bin whose current content is 1/3.
(d) There is one open bin whose current content is 2/3.
(e) There are two open bins, one containing 1/2 and the other containing 2/3.

A quite standard analysis of this Markov chain leads to the lower bound 1.08. The proof of the upper
bound is much more complicated and uses some deeper results from probability theory.

No further results are available for this type of investigation. We are not aware of any estimates for
RC(N F )!

32.5.4 Absolute Worst-Case Ratios

Up till now we have considered the asymptotic worst-case ratios of bin packing heuristics. For lists where
OPT(L ) is small, a different ratio may also be helpful. This is the absolute worst-case ratio, which is defined
by Eq. (32.1). It can readily be seen that bin packing is hard even for lists for which OPT(L ) is small. This
is true because the 2-partition problem, which is known to be NP-complete [56], can be polynomially
reduced to the problem whether or not it is possible to pack all items in two bins. This also implies that no
polynomial-time heuristic has an absolute worst-case ratio smaller than 1.5 for the bin packing problem,
unless P = NP. This is obvious as such a heuristic could solve the 2-partition in polynomial time [56].
However, for the list L = (0.4, 0.4, 0.3, 0.3, 0.3, 0.3), OPT(L )) = 2 and FFD(L ) = 3, so FFD has the
best possible absolute worst-case bound. From Ref. [39] it is known that

FFD(L ) ≤ 11

9
· OPT(L ) + 7

9
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for all lists. This gives an upper bound of 4 for lists with OPT(L)=3 and bound of 5 for lists with OPT(L)=4.
The same numbers apply to BF too.

As regards FF (and BF), we have already mentioned [57] that, for any list L ,

FF(L ) ≤
⌈

17

10
· OPT(L )

⌉

and Ref. [5] gave examples showing that FF(L )/OPT(L ) = 17/10 could be actually attained. Simchi-Levi
[58] once proved that for all lists FF(L ) ≤ 1.75 · OPT(L ).

Xie and Liu [59] improved the upper bound, giving a proof for

FF(L ) ≤ min

(⌊
33

19
· OPT(L )

⌋

,

⌈
17

10
· OPT(L )

⌉)

Summarizing the results we currently know that

1.7 ≤ FF(L ) ≤ min

(⌊
33

19
· OPT(L )

⌋

,

⌈
17

10
· OPT(L )

⌉)

Berghammer and Reuter [60] gave a linear-time algorithm with an absolute worst-case bound of 3/2.
This bound holds for FFD and BFD too, but in O(n log n) time. The algorithm is based on the BF idea.
It works with two partial solutions P1 and P2 and two auxiliary bins B1 and B2—one for each partial
solution. The algorithm proceeds as follows: First, the items are packed one by one into B1 until its capacity
would be exceeded by the packing of some item u. In this situation the contents of B1 is inserted into
P1, the bin B1 is cleared, u is packed into B2, and the process is repeated with the remaining items.
If, however, the packing of u would lead to an overfilling of B1 as well as B2 then, in addition, the
contents of B2 is inserted into P2 and u is packed into the cleared B2. This bookkeeping combined with
a suitable selection of the next object (based on a partition of the objects into small and large ones at
the beginning of the algorithm) allows us to avoid the costly search of a bin the next item will optimally
fit in.

Zhang et al. [61] furnished a different offline algorithm with absolute worst-case ratio 3/2 using an
extra bin. The algorithm is the following:

Step 1. Put large items (>1/2) each into a bin. Index the unfilled bins in arbitrary order. Set all bins
as active bins. Then repeatedly arrange small items as follows.

Step 2. If there is an active open bin, put the current item ai into the open active bin with the lowest
index if the bin has enough room for ai , otherwise close this active bin and consider the extra bin
as follows. If there is an extra bin open and it has enough room for ai , place ai into it. Otherwise
close the extra bin. Open a new bin for ai and set this bin as the extra bin.

Step 3. If there is no active bin open, create a new bin for ai and set this new bin as the active bin.

Actually, in step 1, we need to only arrange one large item at a time. As soon as the active bin con-
taining a large item is closed, we open a new bin and put the remaining large item into it first and
set it as the active bin. At any one time we keep at most one active bin and at most one extra bin
open. So it is a bounded-space algorithm. The authors proved that its tight absolute worst-case ratio
is 3/2.

They also defined an online algorithm of the same type. This is again a bounded-space algorithm and
has a tight absolute worst-case ratio of 7/4. In this algorithm, a bin is called an L -bin if the first item it
accepts is a large item and has not been set as an active bin. Once such bin becomes an active bin it will no
longer be called an L -bin. The algorithm is the following:

Step 1. Open a bin for the first item. Set it as the active bin.
Step 2. If there is an active bin B j open, put the current item ai into B j if it has enough room for this

item. But suppose that B j does not have enough space for the item:
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(a) If ai is a large item, create a new bin for it. If there are two L -bins, close them.
(b) If ai is a small item, close the active bin. Set an open L -bin as the active bin if such a bin exists. If

there is an extra bin open and this bin has enough room for ai , pack ai into it. Otherwise open
a new bin for ai and set the new bin as the extra bin.

Step 3. If there is no active bin open, create a new bin for item ai and set it as the active bin.

32.5.5 Bounds on Anomalous Behavior

As we have already seen, the two well-known algorithms FF and BF have the same asymptotic ratios.
However they can give strikingly different packings for individual lists. Examples are given in Ref. [2] of lists
L with arbitrarily large values of OPT(L ), both such that BF(L ) = (4/3)·FF(L ) and FF(L ) = (3/2)·BF(L ).
Similarly, AWF can be just as far away from FF, and examples exist such that AWF(L ) = (5/4)·FF(L ) and
that FF(L ) = (9/8)·AWF(L ).

The decreasing-type algorithms FFD and BFD may be likewise compared. In Ref. [2] lists are given for
which BFD(L ) = (10/9)·FFD(L ). However, BFD can produce better packings than FFD as well: There
are lists for which FFD(L ) = (11/10)·BFD(L ).

It has been shown that certain algorithms possess the undesirable property of sometimes performing
“worse” when their inputs are made “better.” Let us start from a list L and let us form a new list L ′ by
deleting some elements of L and/or reducing the size of some elements of L . We will say in this case
that L dominates L ′. If an algorithm never uses more bins to pack L ′ than it uses to pack L we will say
that the algorithm is monotonic, otherwise we will say the algorithm is nonmonotonic. Graham [44] and
Johnson [2] once showed that FF is nonmonotonic. Murgolo [62] introduced a technique that allows one
to completely characterize the monotonic behavior of any algorithm in a large, natural class. He provided
upper bounds on nonmonotonic behavior for any reasonable algorithm. (A reasonable algorithm is one
which never packs an item into an empty bin if it can fit into an already allocated bin.) We note that a
reasonable algorithm is an AF algorithm. For example, he showed that there exist arbitrarily long lists
satisfying L dominates L ′ such that FF(L ′) ≥ FF(L ) + 1

75 FF(L ), and this bound is tight to within a
constant factor. Similar results hold for BF (with a constant of 1

42 ) and WF (with a constant of 1
15 ).

32.5.6 Parallel Algorithms

Anderson, Mayr, and Warmuth have investigated the FFD algorithm from a parallel computational view.
They used the PARALLEL RANDOM ACCESS MACHINE (PRAM) model of parallel computation of
Fortune and Wyllie [63]. They considered a parallel algorithm to be fast if it is an NICK’S CLASS (NC)
algorithm, that is, if it runs in polylogarithmic time using a polynomial number of processors. The main
algorithm they gave has a more reasonable bound, running in O(log n) time on an n/ log n processor
EREW (exclusive read, exclusive write) PRAM, and so is asymptotically optimal. A problem is called
inherently sequential if it is P-complete. This furnishes a relatively strong evidence that the problem is not
in NC , since if it were, we would have P = NC . The interpretation of this is that deciding the value of a
specific bit of the output of the algorithm is P-complete.

The main result of Ref. [63] is that the FFD heuristic is a P-complete algorithm, and that a packing
which obeys the same performance bound as FFD can be computed by a fast parallel algorithm. The
algorithm packs the large items (items of size ≥ 1/6) in the same manner as FFD and then fills in the
remaining items. Now let u1, u2, . . . , ur be the list of remaining items, all with a size less than 1/6. We
first combine these items into chunks so that every chunk (except possibly the last) has a size between 1/24
and 1/6. The items with a size 1/24 or larger are big enough and each is put into a chunk by itself. For the
remaining items, the partial sums sk = ∑

1< j≤k u j are determined and for each i , we combine the set of
items {uk | i/12 ≤ sk < (i + 1)/12} to form a chunk. Since the item sizes are less than 1/24, each chunk
will have a size between 1/24 and 3/24.

Now the bins packed using the FFD algorithm with items of size 1/6 or larger will be filled in. We will
add, in parallel, a distinct chunk to each bin filled less than 5/6. Since the sizes are at least 1/24, only a
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constant number of passes are needed. If there are any leftover items they are packed in new bins, just as
in the method used in FFD packing.

The algorithm runs in O(log n) time using n/ log n processors.
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33.1 Introduction

Few problems compete with the bin packing problem in having fascinated so many people for so long a
time. Research into the classical bin packing problem dates back over three decades to the early 1970s. In
the original version, a list L = (a1, a2, . . . , an) of n items, each with a size no larger than 1, is given along
with an infinite supply of unit capacity bins. The goal is to pack the list into as few bins as possible so that
no bin capacity is exceeded. Because the problem is NP-hard, most research has concentrated on designing
fast approximation algorithms with good performance guarantees. The studies have spanned both online
and offline algorithms, and have applied both combinatorics and probabilistic analysis.

In parallel with the development of approximation algorithms for the classical problem, several variants
have been proposed and studied. In this and the next chapter we survey some of the results for these
variants. Because of the extensive work done in this area, we cannot possibly hope to cover every problem.
Rather, we choose some of the representative ones, and hope that they will give the reader a flavor of the
richness of the problem area.

In Section 33.2, we survey the variant in which the number of items packed is maximized. In this
problem the number of bins, m, is fixed and the goal is to pack a maximum number of pieces into the
m bins. This problem was first proposed by Coffman et al. [1] in 1978, and studied more recently by Boyar
et al. [2].

Section 33.3 surveys the variant that places a bound on the number of items that can be packed in each
bin. This problem is identical to the classical bin packing problem, except that, for given k > 0, each bin
can contain at most k items. The problem was first proposed and studied by Krause et al. [3] in 1975.

In Section 33.4, we survey dynamic bin packing, in which packings change with time; each item has
an arrival and departure time, which define the time interval during which an item occupies a bin. This
problem was first studied by Coffman et al. [4] in 1983.

33-1
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Section 33.5 surveys several variants that put constraints on the data. The first problem, first studied by
Liu and Sidney [5], is concerned with bin packing under the ordinal data scenario: the item sizes are not
known but the order of the weights is known. The second problem, first proposed by Mandal et al. [6],
allows the items to be fragmented while packing them into bins of fixed capacity. The last problem, first
studied by Jansen and Öhring [7], considers the bin packing problem where certain items cannot be put
into the same bin. An undirected graph G = (V, E ) is used to describe these relationships, where V is a set
of vertices representing the items and E a set of edges such that items connected by an edge (ai , a j ) ∈ E
have to be packed into different bins.

In the final section, we survey the bin stretching problem, first studied by Azar and Regev [8]. In this
problem, the optimal bin capacity is known and the goal is to find a good heuristic, given this information.
The supremum of the bin capacity ratio of an algorithm and the optimal value is the stretching factor. The
goal is to find a simple algorithm with a small stretching factor.

In the next chapter, we survey bin packing into bins of different sizes. The variable-sized bin packing
problem was first studied by Friesen and Langston [9] in 1986, and it has attracted much attention since
then. We then survey bin covering problems, which ask us to partition a set of items into the maximum
number of subsets such that, in every subset, the total size of the items is never less than some lower bound.
The problem was first studied by Assman et al. [10] in 1984.

33.2 Maximizing the Number of Items Packed

Coffman et al. [1] introduced the following bin packing variant to model processor and storage alloca-
tion problems. For example, it might be desirable to maximize the number of records stored in multiple,
autonomous storage units, or to maximize the number of tasks that can be executed on multiple pro-
cessors during a fixed time interval. The formal model is as follows: given a set of m unit capacity bins
B1, B2, . . . , Bm and a list of L = (a1, a2, . . . , an) of items, the goal is to pack a maximum subset of L into
the bins such that no bin capacity is exceeded. It is intuitively clear that any algorithm having a reasonable
worst-case performance relative to an optimal algorithm must attempt to pack a maximum number of the
smaller pieces. So it is quite natural to start by sorting pieces in ascending order of size and then to pack
a maximum prefix of the sorted list. It is obvious that for every sublist L ′ ⊆ L that can be packed into m
bins there is a prefix of L having at least as many pieces that can also be packed into the m bins. Coffman
et al. always used the sorted lists for their algorithms.

Let nO denote the optimal number of items packed into m bins and nA the number of items packed
by an algorithm A. Coffman et al. considered the absolute worst-case ratios, giving bounds on nA/nO .
They first considered the SMALLEST-PIECE-FIRST (SPF) algorithm, which is defined as follows: the list
is sorted in ascending order of piece size and each piece is assigned in turn to the bin having the least
filled space, with ties broken in favor of the bin having the lowest index. The algorithm halts when it first
encounters a piece that is too large to fit in any bin. It is quite easy to see that the asymptotic worst-case
performance of SPF is 1/2.

The next algorithm they investigated was the FIRST-FIT-INCREASING algorithm (FFI), that is, the
First Fit (FF) rule applied to the sorted list. They proved that, for any list packed into m bins,

nF F I

nO
≥ 3

4

and that, for every m, there exists a list which realizes this bound. A straightforward example can be given
as follows:

(
1

2
− ε, . . . ,

1

2
− ε

︸ ︷︷ ︸
m items

,
1

2
+ ε, . . . ,

1

2
+ ε

︸ ︷︷ ︸
m items

)

where m is even. The optimal packing will pack all items (2m) into m bins, while FFI will pack 3m/2
items.
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They also provided a more precise bound from which parametric results can be derived. Let ki denote
the number of items in bin Bi in the FFI packing. For FFI, it is easy to see that k1 ≥ k2 ≥ · · · ≥ km. With
the help of km they proved that

nF F I ≥





mkm+1
m(km+1) nO , m ≤ km + 1

k2
m+km+1
(km+1)2 (nO − 1), m > km + 1

Both bounds are attainable.
Coffman and Leung [11] described a better algorithm for this problem, which is much more difficult to

analyze. They introduced the ITERATED-FIRST-FIT-DECREASING rule (FFD*) that works as follows.
Again, assume that the elements of L are in ascending size order. FFD* first scans L to find the maximum
length prefix L (1) = (a1, a2, . . . , at ) ⊆ L such that

∑t
i=1 ai ≤ m. The algorithm then packs L (1) into as

many bins as required (say m′), by scanning right to left and placing the next smaller piece into that bin
with the lowest index into which it will fit. The algorithm terminates successfully if m′ ≤ m; otherwise,
the algorithm constructs L (2) ⊂ L (1) by discarding the largest piece in L (1) and then proceeds as above
to pack L (2) by the FFD rule. The process is repeated until, for some j, L ( j ) has been packed into m′ ≤ m
bins. They proved that, for all L and m ≥ 1,

nFFD∗(L , m) ≥ 6

7
nO (L , m) − 18

7

and there exist lists for each m such that FFD* will pack 7/8 times the optimum number of pieces. A tight
bound has not yet been found.

These are, of course, not online algorithms. It is quite easy to see that without some restriction on the
lists to be processed, all online algorithms can perform very poorly; just take lists starting with large items
so that, after all of the bins are filled with these items, many very small items remain. Here we need some
restrictions so as to have reasonably good online algorithms. With the classical bin packing problem all
items have to be packed, so it seems natural to restrict the input sequences to those that can be completely
packed by an optimal offline algorithm. Such sequences are called accommodating sequences [2].

Boyar et al. [2] considered greedy algorithms: an item is rejected only if there is not enough space to pack
it (the authors called them fair algorithms). Boyar et al. analyzed the FF algorithm and proved that it has
a competitive ratio of at least 5/8 on accommodating sequences. Azar et al. [12] showed that this bound
is asymptotically tight, that is, the competitive ratio on accommodating sequences comes arbitrarily close
to 5/8 for large enough n. Specifically, for any n, the competitive ratio is bounded by 5/8 + O(1/

√
n).

Azar et al. [12] investigated unrestricted algorithms that have the power of performing admission control
on the pieces, that is, rejecting pieces while there is enough space to pack them. They designed an algorithm
for unrestricted bin packing called UNFAIR-FIRST-FIT (UFF) whose competitive ratio is 2/3 ± θ(1/n).
UFF uses two sets of pieces: A (accepted) and R (rejected). Since every piece has the same value, it seems
reasonable to reject large pieces. So UFF examines whether the piece is larger than 1/2 and whether the
performance ratio would still be at least 2/3 if the piece were rejected. If both conditions are satisfied, the
piece is rejected (placed in R); otherwise, it is accepted (placed in A). All accepted pieces will be packed
according to the FF rule.

Azar et al. [12] also showed that the competitive ratio of any online algorithm on accommodating
sequences is no better than 0.857+O(1/n) even when randomized algorithms are considered. For deter-
ministic fair algorithms, they proved a slightly better bound of 0.809 + O(1/n).

Boyar et al. [2] gave additional results for the following special case: they assumed that the item size
and bin size were integers. Let k be the bin size here. They investigated special lists where they know that
the optimal offline algorithm would use no more than α times the given number of bins, with α ≥ 1 (for
α = 1 we get the accommodating sequences). They called these sequences α-sequences. Algorithm A is
called c-accommodating with respect to α-sequences if c ≤ 1 and for every α-sequence L ,

A(L ) ≤ c · OPT(L ) − b
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where b is a fixed constant. Let Cα = {c | A is c-accommodating with respect to α-sequences}. The
accommodating function A is defined as A(α) = sup Cα.

To maximize the number of pieces packed, Boyar et al. proved that if α ≤ 5/4 and k ≥ 3, then

A(α) ≤ 2

2 + (α − 1)(k − 2)

Boyar et al. [13] used the same restrictions—integer-sized items with an integer bin capacity of k.
Under these conditions it is quite easy to see that the competitive ratio of FF is 1/k. They introduced a
new algorithm Dlog and compared it with FF from various points of view. The Dlog algorithm works
as follows. Let us first suppose that we have m bins. We assume that m ≥ c	log2 k
, for some con-
stant c . Divide the bins into �log2 k� groups G 1, G 2, . . . , G �log2 k�. Let p = 	 n

�log2 k� 
 and let s =
n − p�log2 k�. Groups G 1, G 2, . . . , G s consist of p + 1 bins and the other groups consist of p bins.
Let S1 = {x | k

2 ≤ x ≤ k} and Si = {x | k
2i ≤ x ≤ k

2i−1 } for 2 ≤ i ≤ �log2 k�. When Dlog
receives an item o of size so ∈ Si , it decides which G j group of bins to pack it in by calculating
j = max{ j ≤ i | there is a bin in G j that has room for o}. If j exists, o is packed into G j according
to the FF rule. Otherwise, the item o is rejected.

The authors proved that for every α ≥ 1, if m ≥ c	log2 k
, the competitive ratio of Dlog on α-sequences
is �( 1

log k ).
They also defined a randomized version of log and proved that, on accommodating sequences, its

competitive ratio is �( 1
log k ). This is quite close to the best possible, as they have already shown that any

deterministic or randomized online algorithm for this problem has a competitive ratio of less than 4
	log2 k
 .

Some other results were given where we know the optimum value in advance.
Coffman et al. [14] investigated the previous FFI and ITERATED-FIRST-FIT-DECREASING algorithms

for lists with divisibility conditions. They proved that if L is weakly divisible, then FFD* will produce an
optimal packing. Moreover, if L is strongly divisible, even FFI gives an optimal packing.

33.2.1 Generalizations of the Objective Function

In the classical bin packing problem the cost associated with a given bin is either zero or one, depending
on whether it is empty or not. Anily et al. [15] defined a more general model, where the cost of a bin is
a monotone and concave function of the number of items in a bin. Let f ( j ) define the cost of a bin that
contains j items. The properties are defined as
Monotonicity. The cost of a bin does not decrease with the inclusion of additional items, i.e., if j ≤ k,
then f ( j ) ≤ f (k).
Concavity. The incremental cost (due to the addition of an item) to a set of items is no more than the
incremental cost resulting from the addition of an item to a smaller set. Formally, for all j ≥ 1, f ( j +
1) − f ( j ) ≤ f ( j ) − f ( j − 1). We assume that f (0) = 0 as well.

The authors showed that the classical algorithms NF, FF, BF, FFD, and BFD have neither finite absolute
worst-case ratios nor finite asymptotic worst-case ratios for the bin packing problem with general cost
structure, where these ratios are defined in a similar way to those for the classical problem—just replace
the number of bins by the sum of the cost of all bins used. They also proved that the absolute worst-case
bound for the NFI (NEXT-FIT-INCREASING) algorithm is less than or equal to

min

{

1.75, 1.7 + 2

bOPT(L )
, 1.691 . . . + 3

bOPT(L )

}

where bOPT(L ) denotes the optimal cost for the list L . This is the best known algorithm for this problem.

33.3 Bounds on the Number of Items per Bin

Krause et al. [3] investigated a task scheduling problem on a multiprogramming computer system. Here
we suppose that we have a system with k ≥ 2 processors that share a common memory of fixed capacity.
A sequence of tasks with unit processing times have to be executed on these processors. Each task has a
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certain memory requirement. The goal here is to execute these tasks in the shortest possible time. We can
represent the tasks by items and each unit of time by one bin. The memory requirements of the tasks are
then the item sizes, and tasks that are performed at the same time correspond to items in the same bin.
The size of the memory is the bin capacity. The schedule length will be the number of bins used in the
packing. So they actually defined a bin packing problem with the restriction that no more than k items
can be placed in one bin. Krause et al. at first investigated a suitable modification of the FF heuristic: use
the FF rule with the additional constraint that we can place an item into a bin only if the number of items
is not larger than k. Let us call this heuristic kFF. They proved that for each list L ,

kFF(L ) ≤
(

27

10
− 24

10k

)

OPT(L ) + 2

and also gave examples (with arbitrarily large OPT(L)) such that

kFF(L ) =
(

27

10
−

⌈
37

10k

⌉)

OPT(L )

From this we have
(

27

10
−

⌈
37

10k

⌉)

≤ R∞
kFF ≤

(
27

10
− 24

10k

)

where, in particular, R∞
2FF ≤ 1.5 and 1.4666 . . . ≤ R∞

3FF ≤ 1.9.
This is, of course, an online algorithm. They also offered better offline algorithms. The first is called

the LARGEST MEMORY FIRST (LMF) algorithm, but it is actually a suitable modification of the First Fit
Decreasing rule: first sort the items and then use the FFD rule. If a bin already has k items, it is closed. For
this algorithm they proved that

R∞
LMF = 2 − 2

k

if k ≥ 2.

The second algorithm of Krause et al. is called the ITERATED WORST-FIT DECREASING (IWFD)
rule. It starts by sorting the items in ascending order of size and then opens q empty bins, where

q =






max



n

k
,

n∑

j=1

s (a j )











n being the number of items in our list. It is an obvious lower bound on OPT(L ). The IWFD rule uses the
Largest Processing Time (LPT) rule to pack the list: put the next item into the bin with the lowest level.
It breaks ties in favor of the highest index. The IWFD rule starts with q bins. If LPT does not pack all
items into q bins, then this number is increased by 1. All bins are cleared and the procedure starts all over
again. This is repeated until the whole list is packed. The number of bins used in the last step is defined as
IWFD(L ). It can be shown that for special lists the IWFD rule has good properties and for the general case

4

3
≤ R∞

IWFD ≤ 2

As the gap is quite large, the exact value remains an interesting open question. The authors put it at 4/3.
Babel et al. [16] returned to this bin packing problem. They presented two heuristics for the online

version. Both heuristics better the previous best result by Krause et al. For increasing values of k, the
asymptotic worst-case ratio tends to 2 for the first method, and it is 2 for the second algorithm. The chief
feature of the first heuristic is that a new item can be packed into a bin only if the bin contains relatively
few items or, if it does not, the bin together with this new item is sufficiently filled. The second algorithm
defines three different bin types (depending on the bin level and the number of items already packed) and
attempts to pack the next item first in the first, then in the second, and finally in the third type of bins. The
authors also gave the best possible algorithm for k = 2 with an asymptotic worst-case ratio of

√
2. For

k = 3 they offered a simple heuristic with worst-case ratio of 5/3 and showed that no online algorithm
for this case can have worst-case ratio better than 3/2.
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33.3.1 Online Bin Coloring

Shachnai and Tamir [17] defined a coloring problem, which is actually a generalization of bounds on the
number of items per bin. In their version every item has the same (unit) size and a color. The number of
different colors is M. The bins have a capacity B and c compartments. We need to fill the bins with items,
subject to capacity constraints (such that items of different colors are placed in different compartments)
so that each bin contains at most c different colors. The goal is to minimize the number of bins used.
The absolute and asymptotic worst-case ratios are defined in a similar way to the classical problem. This
variant is called the Class-Constrained Bin Packing (CCBP). Their first result is a tight bound of 2 on the
competitive ratio of any online algorithm.

For special lists they obtained better results. Let Sc , B (k, h) denote the set of all lists, where kc < M ≤
(k + 1)c and h · B < n ≤ (h + 1) · B (n is the number of items in the list). The competitive ratio of
an algorithm A restricted to an input set S of lists will be denoted by r A(S). They showed that for any
deterministic algorithm A, 1 < c < B , k ≥ 0 and h ≥ k − 1 + max {�k/(c − 1)�, �(kc + 1)/B�} ,

r A(Sc , B (k, h)) ≤ 1 + k + 1 − ⌈
kc+1

B

⌉

h + 1

The authors showed that a variant of the FF rule achieves this bound. A greedy algorithm based on
partitioning the items into color sets was shown to be efficient as well.

Krumke et al. [18] introduced a new variant of bin packing called bin coloring. Here we have unit
size items where each item has a color, and we have to pack them into bins of size B (an integer). They
considered an online, bounded-space problem, that is, one where we can use at most m open bins at the
same time. A further restriction is that we can close a bin only when it is full, that is, after we have packed
B items into it. The goal is to minimize the maximum number of different colors assigned to a bin. To
measure the goodness of a heuristic algorithm they used the absolute worst-case ratio. They investigated
two heuristic algorithms and gave some general bounds.

• The first method was the GREEDYFIT rule, which works as follows: if upon the arrival of item ai

the color of this item is already contained in one of the currently open bins, put it into this bin. (If
the bin becomes full with this item, close it.) Otherwise, put the item into a bin that contains the
least number of different colors (which means opening a new bin if currently fewer than m bins are
partially filled). The competitive ratio of this method is at most 3m but not less than 2m (provided
the capacity B is sufficiently large).

• The second method was the trivial algorithm ONEBIN, which is actually the Next Fit algorithm:
the next item is packed into the (one) open bin. A new bin is opened only if the previous item
closed the previous bin by filling it up completely. Quite surprisingly, this algorithm has a better
competitive ratio than GREEDYFIT, it being 2m − 1.

They also proved that no online algorithm can be substantially better than ONEBIN: no deterministic
online algorithm can have a competitive ratio better than m. This bound holds for randomized algorithms
too. Using resource augmentation, that is, allowing the online algorithm to use a fixed number of m′ ≥ m
open bins, the lower bound will still be �(m).

33.4 Dynamic Bin Packing

Coffman et al. [4] defined an interesting generalization of the classical problem. They added arrival and
departure times to each item. These define the various time intervals during which items occupy bins.
Compared with the classical “archival” model, this model is more realistic in certain applications, such as
those relating to computer storage allocation.

The formal model is defined as follows. We are given a list L = ( p1, p2, . . . , pn). Each item pi in L
corresponds to a triple (ai , di , si ), where ai is the arrival time for pi , di its departure time, and si its size.
The item pi resides in the packing for the time interval [ai , di ), and we assume that di − ai > 0 for all i.
We also assume that the items in L are ordered in such a way that a1 ≤ a2 ≤ · · · ≤ an.
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Coffman et al. analyzed the FF method for dynamic bin packing. With this version, FF maintains two
lists of bins: a list of currently empty bins and a list of currently occupied bins, with the latter ordered
such that the times of the most recent transitions from empty to nonempty bins are nondecreasing. We
use B1, B2, . . . to denote the bins in the occupied bins, in this order.

For each i, as in the classical version, the FF rule attempts to pack pi into the first occupied bin (the
one with the lowest index) that has sufficient available space for it. If no such occupied bin exists, pi is
put into an empty bin and this bin is appended to the list of occupied bins. The departure of pi at time
di simply causes an increase by si in the available space in the bin in which it was packed and, if the bin
becomes empty at that time, it is moved to the list of empty bins.

Let F F (L , t) denote the number of occupied bins in the FF packing of L at time t. The performance
of FF applied to the list L is defined by

FF(L ) = max
0≤t≤an

FF(L , t)

This is the maximum number of occupied bins ever required by FF for processing L . This definition can be
applied to an arbitrary packing algorithm A simply by replacing FF with A. We will apply this measure to
two different ways of optimal packing depending on how the items in L can be packed. The first method,
OPT R(L ), is the maximum number of bins ever required in dynamically packing L when the current set of
items is repacked into the minimum number of bins each time a new item arrives. The second, OPT N R(L ),
is the maximum number of bins ever required in dynamically packing L when no rearrangement of items
is allowed, and otherwise packed optimally so as to achieve the least possible value of this maximum over
all such packings of L , with L assumed to be fixed and known in advance. The performance ratio of an
arbitrary packing algorithm A is now defined in the standard way. Let

WR,n

(

A,
1

k

)

= sup
|L |=n

A(L )

OPT R(L )

where all item sizes are less than or equal to 1/k. We then define

W ∞
R

(

A,
1

k

)

= lim sup
n→∞

WR,n

(

A,
1

k

)

Similar definitions apply to W ∞
N R(A). The authors gave the following bounds:

W ∞
R

(

FF,
1

k

)

≤ k + 1

k
+ 1

k − 1
log

k2

k2 − k + 1
, k ≥ 2

W ∞
R (FF, 1) ≤ 5

2
+ 3

2
log

√
13 − 1

2
≈ 2.897

They also gave a slightly improved FF version for which W∞
R is bounded by 2.788. . . . In addition, they

proved that

W ∞
R

(

FF,
1

k

)

≥ k + 1

k
+ 1

k2
, k ≥ 2

W ∞
R (FF, 1) ≥ 11

4
= 2.75

They derived a lower bound that holds for an arbitrary online algorithm A :

W ∞
R

(

A,
1

k

)

≥ W∞
NR

(

A,
1

k

)

≥ k + 1

k
+ 1

k(k + 1)
, k ≥ 2

W ∞
R (A, 1) ≥ 5

2

W ∞
NR(A, 1) ≥ 43

18
∼ 2.388. . . .
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We should note that the upper and lower bounds are quite close to each other. We have the largest gap for
W ∞

R (FF, 1) for which

2.75 ≤ W ∞
R (FF, 1) ≤ 2.897

33.5 Constraints on Data

33.5.1 Bin Packing Using Semi-Ordinal Data

Liu and Sidney [5] investigated the bin packing problem under the ordinal data scenario: the item sizes
are not known, but the order of the weights is known, that is, a1 ≥ a2 ≥ · · · ≥ an. Specific sizes may
be obtained, and the trade-off between the amount of information obtained versus the solution quality
(performance ratio) is investigated.

If the only information available about L is the ordinal assumption, then we can place only one item
per bin, since all items may be larger than 1/2. Even in this case the optimal solution may be 1 if

∑
ai ≤ 1.

So we have a worst-case ratio of n. Suppose we could purchase perfect knowledge of k sizes, where we
can specify the ranks (ordinal positions) of the desired sizes. Which ordinal positions should we choose to
guarantee a good feasible solution that utilizes the knowledge of these sizes? Liu and Sidney proved that
the worst-case ratio of an integer ρ can be achieved by at most

	ln[n(ρ − 1) + 1]/ ln ρ

exact observations, and that this worst-case performance cannot be achieved with fewer than

⌊
ln n(ρ−1)

ρ2−ρ+1

ln ρ

⌋

+ 1

exact observations. They also gave a method for choosing a good set of indices.

33.5.2 Fragmentable Bin Packing

Mandal et al. [6] defined the following variant called Fragmentable Object Bin Packing: it is permissible to
fragment the items while packing them into bins of fixed capacity. Fragmentation has an additional cost
associated with it, leading to the consumption of additional bin capacity. They proved that this problem
is NP-hard too. Unfortunately no heuristic was analyzed from the worst-case point of view.

Menakerman and Rom [19] tackled this problem further and defined two variants. The first variant
is called BIN PACKING WITH SIZE-INCREASING FRAGMENTATION (BP-SIF). In this variant, when
packing a fragment of an item, one unit of overhead is added to the size of every fragment. They supposed
that the item sizes were integer-valued and that each bin size had an integer value U. An algorithm is said
to prevent unnecessary fragmentation if it follows the following two rules:

• No unnecessary fragmentation. An item (or fragment of an item) is fragmented only if it is to be
packed into a bin that cannot contain it. In this case the item is fragmented into two fragments.
The first fragment must fill one of the bins, and the second fragment must be packed according to
the packing rule of the algorithm.

• No unnecessary bins. An item is packed into a new bin only if it cannot fit in any of the open bins
used by the algorithm (greedy).

They proved that for any algorithm that prevents unnecessary fragmentation the absolute worst-case
bound is ≤ U

U−2 . They also showed that the following variant of the NEXT FIT rule, called N F f , achieves
this bound. When an item does not fit in the open bin, it is fragmented into two parts. The first part or
piece fills the open bin and the bin is closed. The second part or piece is packed into a new bin which
becomes the open bin. The Next Fit Decreasing and the Next Fit Increasing rules have basically the same
bound, for large enough U . Neither the First Fit Decreasing rule nor the following iterative variant of the

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C033 March 20, 2007 15:41

Variants of Classical One-Dimensional Bin Packing 33-9

First Fit Decreasing rule improves the bound: we start with m = �s (L )/U� bins and try to pack the items
by the FFD rule. If every item has been packed then we stop. If some remain then m is increased by 1 and
we start packing the whole list again. This is repeated until every item has been packed.

The second variant is BIN PACKING WITH SIZE-PRESERVING FRAGMENTATION (BP-SPF). In
this version each item has a size and a cost. The items must be packed into m bins, where s (L ) ≤ mU. It is
possible to fragment any item, in which case one unit is added to its cost while keeping the size fixed. The
goal is to minimize the total cost. As every item must be packed and for the chosen m this is possible because
the fragmentation does not increase the size we have a fixed cost for the whole list. The minimization of the
cost is equivalent to the minimization of the number of fragmentations. The problem remains NP-hard.
They proved that for any algorithm A that has no unnecessary fragmentations, the extra cost is bounded
above by m − 1, and that N F f achieves this bound. The appropriate variant of the FFD rule betters this
bound only when U is small. If the bin size is unbounded, the worst-case behavior of the FFD rule is the
maximum possible value.

33.5.3 Packing Nodes of Graphs

Jansen and Öhring [7] once looked at a constrained bin packing problem: in this case there is an undirected
graph (the conflict graph) G = (J , E ) on the elements. The adjacent items (ai , a j ) ∈ E have to be packed
into different bins, and the goal is to minimize the number of bins. Clearly, if E is an empty set, the problem
is equivalent to the classical bin packing problem. In contrast, if s (L ) ≤1, then the problem is to compute
the chromatic numberχ(G) of the conflict graph. Both special cases are NP-complete. The authors used the
absolute worst-case ratios and then proved that simply using the appropriate modifications of the classical
algorithms NF, FF, and FFD will not yield a constant competitive ratio. (The appropriate modification
simply means that we use the heuristic, but if the item to be packed has an adjacent item in the bin being
packed, then we do not pack it into this bin.) Their other algorithms were based on the composition of
two algorithms—a coloring algorithm and a bin packing heuristic.

The first algorithm of this type uses an optimal coloring, that is, it finds a minimum partition of L into
independent sets U1, U2, . . . , Uχ(G), and then applies one of the NF, FF, and FFD bin packing heuristics
to each independent set. They proved that in this case NF has a competitive ratio of 3, FF of 2.7, and for
the FFD the bound lies between 2.691 and 2.7.

The second algorithm of this type is based on a precoloring method. The main step is to compute a
minimum coloring of the conflict graph where the large items are separated and colored differently. On
the basis of this method, they obtained an approximation algorithm with competitive ratio of 5/2 for
graphs such as interval graphs, split graphs, cographs, and other graphs. More involved coloring methods
are used to obtain algorithms with worst-case bounds of 7/3, 11/5, and 15/7, respectively. The last of
these methods is a general separation method that works for cographs and partial K -trees. Applying this
separation method they obtained an approximation algorithm with worst-case ratio of 2 + ε for these two
classes of graphs. This result implies an approximation with factor 2 + ε for any class of graphs with a
constant upper bound on the treewidth (e.g., outerplanar graphs and series-parallel graphs).

Katona [20] investigated the edge disjoint polyp packing problem. A graph is called a p-polyp if it
consists of p simple paths of the same length and one vertex of these paths is a common vertex. The polyp
packing problem is a generalization of the classical bin packing problem: how does one pack a set of paths
with different lengths into a set of disjoint polyps edges? Edge disjoint packing means that the embedded
path may contain a vertex more than once, but each edge only once. Katona proved that this problem is
NP-complete and that the appropriate modification of the FF rule has an asymptotic worst-case bound
lying between 1.6904 and 1.7.

Codenetti et al. [21] have investigated the following variant: the items to be packed are structured as the
leaves of a tree. They called this problem a hierarchically structured bin packing problem (SBPP). The goal is
to pack the items while preserving some locality properties, that is, leaves whose lowest common ancestor
has a low height should be packed into the same bin. This problem comes up in the area of document
organization and retrieval where one is confronted with searching issues on very large structured, tree-like
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ontologies. The formal definition is given as follows. Given a tree T = (V, E ) and a vertex v ∈ T, ST (v)
will denote the subtree rooted at v, L T (v) and NT (v) will denote the set of leaves and internal nodes of
ST (v), respectively. Let P be a partition of L T (v). The node dispersal number for the node v of T with a
given P is

ρ(v, P) =| {A ∈ P | L T (v) ∩ A �= ∅} |
In other words, given a vertex v, ρ(v, P) counts how many sets of P intersect L T (v). Now the SBPP is
defined as follows. Given a tree T, a positive size function s : L T → N+ and a positive integer (bin)
capacity c ≤ maxv∈T s (v), find a partition P of L T such that

• for every set A ∈ P the total size of the leaves in A is bounded by c;
• the total node dispersal number ρ(P) = ∑

v∈NT
ρ(v, P) is minimum.

Informally, we start with a partitionP of the leaves such that, in each subset, the total weight of the leaves
is bounded by c (the bin capacity). Then for each internal node of the tree we define the node dispersal
number, which is the number of subsets in P for which the node has a successor in the subset. The total
node dispersal number is the sum of the node dispersal numbers for each internal node. In the SBPP we
have to find a partition of leaves with the minimal total node dispersal number. The authors presented a
heuristic with an asymptotic worst-case ratio of 2. For the special case where every item size is equal to 1
and the bin capacity is k, they found a heuristic with a worst-case bound of 3/2.

33.6 Changing the Bin Size

Azar and Regev [8] investigated the online version of a special case of this problem and called it bin
stretching. They supposed that the optimal bin capacity is known and that the goal is to find a good
heuristic, given this information. The supremum of the bin capacity ratio of an algorithm and the optimal
value is called the stretching factor. They first proved that the stretching factor of any deterministic online
algorithm is at least 4/3 for any number m ≥ 2 of bins. They also gave two algorithms with a stretching
factor of 5/3. To describe these algorithms we first need some additional notation. Let c j (Bi ) denote the
level of bin i after a j was packed. Both algorithms use a parameter α > 0 to classify the bins according to
their levels. An appropriate choice of α will lead to an algorithm with a stretching factor of 1 + α. We will
call a bin short if its level is at most α. Otherwise, it is tall. When item a j arrives, 1 ≤ j ≤ n, we define the
following three disjoint sets of bins:

Sα
1 ( j ) = {

i ∈ M | c j−1(Bi ) + s (a j ) ≤ α
}

Sα
2 ( j ) = {

i ∈ M | c j−1(Bi ) ≤ α, α < c j−1(Bi ) + s (a j ) ≤ 1 + α
}

Sα
3 ( j ) = {

i ∈ M | c j−1(Bi ) > α, c j−1(Bi ) + s (a j ) ≤ 1 + α
}

The set S1 consists of bins that are short and remain short if the current item is placed into them. The
set S2 contains bins that are short but become tall if the next item is packed. The last set S3 consists of bins
that are tall but remain below 1 + α if the next item is packed. Note that there may be bins which are not
in any of these three sets. Now the two algorithms are defined as follows:

AL G1α : when the next item a j arrives

• Put the item into any bin belonging to the set S3 or S1, but not in an empty bin belonging to S1 if
there is a nonempty bin belonging to S1.

• If S1 = S3 = ∅ then put the item into the bin belonging to S2 with the least level.
• If S1 = S2 = S3 = ∅ then report failure.

AL G2α : when the next item a j arrives

• Put the item into any bin belonging to S1.
• If S1 = ∅ then put the item into any bin belonging to S3.
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• If S1 = S3 = ∅ then put the item into the bin with the least level.
• If S1 = S2 = S3 = ∅ then report failure.

Note that both algorithms actually define a family of algorithms. Azar and Regev proved that both
algorithms have a stretching factor of 5/3 for the best possible choice of α (which is equal to 2/3). They
also presented an improved algorithm using five sets of bins. This has a stretching factor of 13/8.

Kellerer et al. [22] showed that for two bins the List Scheduling algorithm has a stretching factor of 2.
Epstein [23] gave a tight analysis of bin stretching for two bins, where the items arrive sorted in

nonincreasing size. She showed that the tight competitive ratio of this problem is 10/9 and gave a quite
complicated algorithm that achieves this bound.

Speranza and Tuza [24] investigated a different problem. Suppose we have m bins of unit capacity and
that the bin capacity can be exceeded. If the sum of the sizes of the items in the bin is greater than 1, then
the cost of the bin will be this sum. Otherwise, the cost is equal to the capacity 1. The goal is to minimize
the total cost of the bins. They investigated the online version of this problem. First they proved that every
online algorithm has an absolute worst-case ratio of 7/6. This can be demonstrated with two bins: simply
make the first two elements equal to 1/3, and for the sum of the next two items, let a + b = 4/3. Now, if
both 1/3 items are packed into the same bin, let a = b = 2/3. If they are packed into different bins, let
a = 1 and b = 1/3. They proved as well that the List Scheduling algorithm has a tight bound of 5/4.

The above authors also presented an improved algorithm Hx .This depends on a parameter x , 0 < x < 1.

The algorithm assigns an item to the bin with the highest level under the condition that after the assignment
of the item to the bin the level of the bin does not exceed 1 + x. If the item causes excess greater than x in
each open bin, it is then assigned to an empty bin—if there is any—or to the bin with the lowest level. In
case of ties, the bin with the lowest index is used. They proved that

Hx (L )

OPT(L )
≤ max

(

1 + x

1 + x
,

5

4
− x2

4

)

The right-hand side has a minimum at x ≈ 0.2956, the minimum being ≈ 1.228. It is not known whether
this bound is tight.

An 13/12 algorithm is given by Dell’Olmo et al. [25].
Yang and Leung [26] introduced the Ordered Open-end Bin Packing Problem (OOBP). Here a bin can

be filled to a level exceeding 1 so long as there is a designated last piece in the bin such that the removal
of this piece brings the bin’s level back to below 1. In this problem items of size 1 play a special role, and
will be called 1-pieces. It is quite clear that a good algorithm for this problem will fill the majority of bins
to levels no less than 1, while for any algorithm, no bin can be filled to a level more than 2. Hence, any
good algorithm will have a worst-case ratio of no more than 2. The authors showed that for any online
algorithm A, R∞

A ≥ 1.630297 with the 1-pieces, and R∞
A ≥ 1.415715 without the 1-pieces.

They then introduced two algorithms. The first is called MIXED FIT (MXF) and is defined as follows:
we divide the items into four types according to their size. Type-1 items will have a size 0 < s (ai ) < 1/3,
type-2 items have size 1/3 ≤ s (ai ) < 1/2, type-3 items have size 1/2 ≤ s (ai ) < 1, and type-4 items have
size 1. Accordingly, we define a type-1 open bin as an open bin containing a number of type-1 items, a
type-2 open bin as a bin containing one or two type-2 items, and a type-3 open bin as a bin containing
one type-3 item. We pack the items in order of their arrival. When the current item is of type-1, we pack
it into the type-1 open bins using the FF rule without closing any bin. When the current item is of type-2,
we pack it similarly into type-2 bins. Suppose the current item is of type-3 or type-4. We pack it into the
first type-1 or type-2 open bin whose level is at least 2/3 and close this bin. If there is no such bin, we pack
the item into an open type-3 bin and then close it. If there is no such bin, we pack the item into a new bin
and close it if the item is a type-4 item. The authors showed that with no 1-piece present,

R∞
MXF ≤ 35/18 ≈ 1.9444

and they also showed that regardless of the presence of the 1-pieces,

R∞
MXF ≥ 25/13 ≈ 1.9231
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Their second algorithm is the GREEDY LOOK-AHEAD NEXT FIT (GLANF), which is an offline algorithm.
With this algorithm there is one open bin at any given moment. GLANF keeps on filling the current bin
with items in their original order unless the first piece is a 1-piece or the addition of the next piece will
bring the bin’s level to be at least 1. For the latter situation GLANF makes some greedy effort in filling the
current open bin to the highest possible level. They proved that, without the 1-pieces,

27

20
≤ R∞

GLANF ≤ 3

2

and with the 1-pieces,

R∞
GLANF ≥ 3

2
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34.1 Introduction

In this chapter we continue our survey with a focus on two variants of the one-dimensional bin packing
problem: the variable-sized bin packing problem and the bin covering problem. In Section 34.2, we survey
algorithms for packing into bins of different sizes, a problem first studied by Friesen and Langston [1] in
1986. In Section 34.3, we survey the bin covering problem, which asks for a partition of a given set of items
into a maximum number of subsets such that, in every subset, the total item size is always at least some
lower bound. This problem was first studied by Assmann et al. [2] in 1984. Concluding remarks are given
in Section 34.4.

34.2 Variable-Sized Bin Packing

In the classical bin packing problem the measure of a packing is the number of bins used. The wasted space
in the packing is an equivalent measure; a packing that minimizes one of these measures minimizes the
other. In what follows, we focus on the wasted-space measure.

Interesting results are available if we relax the condition of having bin sizes fixed in advance. In a problem
posed by Friesen and Langston [3], the bin size, which must be the same for all bins, is part of the solution.
What is a bin size α, and a packing into bins of this size, which minimizes the wasted space? If there were
no bound on the maximum bin size, the problem would be trivial: use only one bin with a size equal to
the total item size. But a maximum bin size is a constraint of the problem, and we normalize to one for
convenience. The goal is to choose a number α ≤ 1, and produce a packing of a list L = (a1, a2, . . . , an)
into N bins of size α such that

Nα −
n∑

i=1

s (ai )

is as small as possible. The analysis compares the worst-case wasted space of approximation algorithms
to OPTα0 , the minimal space wasted using bin size α0 ≤ 1. Friesen and Langston proved that if a bin
packing algorithm A can guarantee a worst-case ratio R for the classical bin packing problem, then an

34-1
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iterated version of A can be used to achieve a bound as close to R as we would like. More precisely, if a
bound of R + ε is sought, we can generate a sequence of sizes α1, α2, . . . , αk with αi+1 = αi R/(R + ε)
and prove that, if αi+1 < α0 ≤ αi , then running algorithm A on bins of size αi will ensure a wasted space
Aαi (L ) < (R + ε)OPTα0 (L ).

The next step taken by Friesen and Langston [1] allowed more than one bin size for packing. They defined
the variable-sized bin packing problem on a finite collection of k available bin sizes, s1 > s2 > · · · > sk ,
with an inexhaustible supply of each size. We adopt the normalization whereby the items {ai } and bins are
such that the largest bin has size s1 = 1 and s (ai ) ≤ 1 for all 1 ≤ i ≤ n. The goal is to pack the items into
bins so that the sum of the sizes of the bins used is minimum.

The variable-sized bin packing problem is NP-hard [1], so as usual, efficient algorithms that ensure
near-optimal packings comprise the design goal. Let s (A, L ) denote the total size of the bins used by
algorithm A to pack the items of L . Then

R∞
A = lim sup

k→∞

{

max
s (A, L )

s (OPT, L )
: s (OPT, L ) ≥ k

}

is the asymptotic worst-case ratio of algorithm A.

Friesen and Langston presented three approximation algorithms, with asymptotic worst-case ratios of
2, 3/2, and 4/3, respectively. The first algorithm is a simple adaptation of the NEXT FIT (NF) rule. They
called it NEXT FIT USING LARGEST BINS ONLY (NFL), that is, NF packing only into bins of size 1. The
proof of NFL(L ) < 2 · OPT(L ) + 1 for any list L is quite standard. Letting ε denote an arbitrarily small
positive real value, any instance consisting of items of size 1/2 + ε and bins of sizes 1 and 1/2 + ε shows
that 2 is a matching asymptotic lower bound.

The second algorithm is a variant of the FIRST FIT DECREASING (FFD) rule, called FIRST FIT
DECREASING USING LARGEST BINS, THEN REPACK INTO SMALLEST POSSIBLE BINS (FFDLR);
and it does what its name says: In the first round the elements are sorted in decreasing order and the items
are packed into bins of size 1 by the FFD rule. In the second round it attempts to repack all used bins into
the smallest possible bins, where only the full content of a bin can be repacked. This algorithm has an
asymptotic worst-case bound of 3/2.

The third algorithm FFDLS (FIRST FIT DECREASING USING LARGEST BINS, BUT SHIFTING AS
NECESSARY) uses two rounds as well but tries to repack the contents of certain bins even in the first
round. It is a modification of the FFDLR rule in the sense that it uses the same method in both rounds,
but in the first round when ai is packed into bin B j it checks whether B j contains an item of size greater
than 1/3. If so it repacks, where possible, all the items in B j into the smallest empty bin B j ′ that will hold
them, and for which c(B j ′) ≥ (3/4)c(B j ) holds. The second round of the FFDLS rule is the same as that
for FFDLR. This algorithm has an asymptotic worst-case bound of 4/3.

Note that only the first of the three algorithms is online. Kinnersley and Langston [4] gave better online
algorithms, as follows. First, they proved that two variants of FIRST FIT (FF) (FFL—FIRST FIT, USING
LARGEST POSSIBLE BINS and FFS—FIRST FIT, USING SMALLEST POSSIBLE BINS) both have a
worst-case bound of two. They observed that the FFL rule fails in its packing of “large” items (those with
a size exceeding 1/2) and FFS fails in its packing of “small” items (those with size at most 1/2). So they
focused on a hybrid approach that we denote by FFf. Let f denote a user-specified factor in the range
[1/2, 1]. Suppose FFf has to start a new bin when it is packing a piece ai . If ai is a small piece, FFf starts a
new bin of size 1. If ai is a large piece, then it selects the smallest bin size in the range [s (ai ), s (ai )/ f ] if
such a size exists, otherwise it will use bin size 1. Kinnersley and Langston proved that

F F f (L ) ≤
(

1.5 + f

2

)

OPT(L ) + 2

for any list L . We should remark here that for the smallest possible f this gives an asymptotic upper bound
of 1.75.

They also proved that for the parametric case, FFL gives the same performance as FF for the classical
problem, if every item is at most 1/2. Later, Zhang [5] showed that the best possible FFf algorithm (with
f = 1/2) has a tight bound of 17/10, the bound for FF in the classical bin packing problem.
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Csirik [6] introduced a Harmonic type heuristic, VARIABLE HARMONIC M (V HM) that is based on
a harmonic subdivision of each bin size. Let M > 1 be a positive integer and let Mj = �M · s (B j )� ( j =
1, 2, . . . , k). The algorithm is defined only for those M where Mk ≥ 2. Let us divide the intervals
(0, s j ] ( j = 1, 2, . . . , k) into Mj parts according to the following harmonic partitioning:

I j,l =
( s j

l + 1
,

s j

l

]
, j = 1, 2, . . . , k; l = 1, 2, . . . , Mj − 1

and

I j,∗ =
(

0,
s j

Mj

]

For each bin size s j we define a weighting function as follows:

Wj (ai ) =






Mj
Mj −1 s (ai ) if s (ai ) ∈ I j,∗,

s j
l if s (ai ) ∈ I j,l , l = 1, 2, . . . , Mj − 1,

∞ if s (ai ) > s j .

Let

W(ai ) = min
j=1,2, ...,k

Wj (ai )

be the weight of ai .

Now we can define the algorithm V HM as follows.

Step 1. We assign to each item of the list a bin size; an item assigned to a bin of size s j is called a type
j item.

(a) s1 = 1 is assigned to each element ai with

W(ai ) = (M1/(M1 − 1)) · s (ai )

These items are called small items, and all others big items.
(b) A big item ai will be a type-j element if j is the smallest integer such that W(ai ) = Wj (ai ). A

big element will be called an I j,l element if it is a type-j element and belongs to I j,l .

Step 2. V HM performs a harmonic fit type packing:
(a) Each big type-j element is packed by harmonic fit into bins of size s j as follows. We classify these

bins into Mj − 1 categories. Each category is designated to pack the same type of items. A bin
of size s j designated to pack I j,l items is called an I j,l bin. Clearly, each I j,l bin has room for
exactly l items. We use a NF packing in all I j,l ( j = 1, 2, . . . , k; l = 1, 2, . . . , Mj − 1) bins,
that is, after packing l items into an I j,l bin, we close this bin and open a new I j,l bin.

(b) All small items are packed in bins of size 1 by NF.

Csirik proved that, using the sequence ti defined in the harmonic algorithm, the following holds: If
ti(k)−1 < Mk ≤ ti(k), then

RVH M ≤
i(k)−1∑

l=1

1

tl − 1
+ Mk

(Mk − 1)ti(k)

He also considered the question of what performance can be achieved if we are free to choose the bin sizes.
He proved that if we have just two bin sizes and the smaller bin size is optimally selected (this is 0.7) then
the asymptotic worst-case ratio is 1.4.

Seiden [7] showed that variable harmonic is an optimal bounded-space algorithm. Seiden et al. [8]
generalized the refined harmonic idea of the classical bin packing problem to the variable-sized problem
with two bin sizes. Making use of refined harmonic they bettered the upper bound from 1.69103 to 1.63597.
Seiden [9] once demonstrated that if we are allowed to choose the bin sizes then, with two bin sizes, the
optimal performance ratio lies in the range [1.37530, 1.37532].
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Epstein et al. [10] investigated in more detail the case of two different bin sizes. They presented two
different algorithms for this case, both being combinations of harmonic and refined harmonic. They
proved that the best of these two algorithms and the variable harmonic yields an upper bound of
373/227 < 1.63597. They also gave the first lower bound for this problem, showing that for two bin
sizes any online algorithm has an asymptotic performance ratio of at least 1.33561.

Burkard and Zhang [11] generalized the bounded space algorithm of Csirik and Johnson [12] so that
it applied to the variable bin size problem. In the latter case we have to define the closing rule slightly
differently because we may choose in between bin sizes too. Hence their closing rules are:

(1) C-VF. Close one active bin with size less than 1 if a such bin exists, otherwise use FF.
(2) C-VB. Close one active bin with size less than 1 if a such bin exists, otherwise use Best-Fit (BF).

They defined the opening rule in the following way: suppose ai is a large item with size greater than
1/2. If it can be contained in a bin with size less than 1, it is called a B-item, otherwise it is called an L-item.
The smallest bin that can contain a large item ai is called an ai −home-bin. Obviously, if ai is an L-item,
the size of the ai −home-bin is 1. Their opening rule is, suppose the current item to be packed is ai . If ai

is a B-item, open an ai −home-bin and pack ai into it. Otherwise, start a new bin of size 1 for ai .

Burkard and Zhang proved that using this opening rule and the closing rule C-VB we will get a tight
1.7 performance bound for this algorithm for those cases where we have at least three open bins at the
same time. This means that—taking into account Csirik and Johnson’s result for classical bin packing—we
need one more open bin for the variable-sized bin packing problem to have an algorithm with the same
performance.

Chu and La [13] used a best-fit-like idea for variable-sized bin packing. They defined four algorithms:
LARGEST OBJECT FIRST WITH LEAST ABSOLUTE WASTE (LFLAW), LARGEST OBJECT FIRST
WITH LEAST RELATIVE WASTE (LRLRW), LEAST ABSOLUTE WASTE (LAW), and LEAST RELATIVE
WASTE (LRW). Naturally, the first two are not online algorithms as they need a sorted list as input. They
proved tight bounds for each algorithm, showing that

R∞
LFLAW = R∞

LFLRW = 2, R∞
LAW = 3 and R∞

LRW = 2 + ln 2

Zhang [14] introduced a relaxation on the online condition: Here we have all the information about
the items, but we cannot preview the type of bin before it arrives. We must decide which items should be
packed into the bin as it arrives. We will suppose that the largest item still fits in the smallest bin. In this
case we have of course just one open bin, and we close it as we cannot pack more items into it. The goal is
evidently to fill bins with the minimal total size. Zhang investigated the classical algorithms NF, FF, Next
Fit Decreasing, and FFD and proved that each of them has an asymptotic worst-case ratio of 2. He also
remarked that if there are at most l , l ≥ 1, open bins at a time this ratio cannot be improved.

Dell’Olmo and Speranza [15] introduced a different relaxation on the variable-sized bin packing prob-
lem: They supposed that the bin sizes are extendible, that is, the total size of items packed into a single
bin can exceed 1, if necessary. The goal is to minimize the total bin size, where the size of bin B j is now
given by max(c(B j ), s (B j )). The authors investigated two heuristics: Best Fit Decreasing (BFD) for the
offline case and BF for the online case. They proved that BFD’s performance bound is at most 2(2 − √

2)
and conjectured that the exact bound is 8/7. For the online case they proved a tight 5/4 bound for the BF
algorithm and showed that no online algorithm can have better bound than 7/6.

Ye and Zhang [16] studied a similar problem. They supposed that we have m bins with different bin
sizes. They called the set of bins a collection. We have to pack the items into these bins and overpacking is
allowed. They distinguished two cases. In the first case, the largest item will fit into the smallest bin. They
carefully analyzed the list scheduling algorithm and gave competitive ratios for each m and each collection.
The ratios differ for an even number of bins and an odd number of bins. They were able to prove that

RLS(m) =






1 + m·bmin

4
∑m

j=1
b j

if m is even

1 + (m2−1)·bmin

4m
∑m

j=1
b j

if m is odd
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where bmin is the smallest bin size. For equal bin size the ratio is 5/4 when m is even and 5/4 − 1/(4m2)
when m is odd. They presented an improved algorithm for m = 2 and m = 3.

In the second case, the largest item does not fit into the smallest bin. A lower bound for the overall
competitive ratio is given for two bins.

Kang and Park [17] investigated the special case of variable-sized bin packing where we have (weak)
divisibility conditions. Two types of conditions were looked at:

• where the sizes of the items are divisible,
• where the sizes of the bins are divisible, that is, s (B j+1) exactly divides s (B j ) for all j = 1, 2, . . . ,

k − 1.

They also used a more general cost function: They assumed that the bin sizes are sorted in descending
order, i.e., b1 ≥ b2 ≥ · · · ≥ bk , and bins of size bi have a cost ci , where the unit size cost of each bin
does not increase as the bin size increases, that is, the costs and the bin sizes satisfy

ci1
bi1

≤ ci2
bi2

for all

1 ≤ i1 ≤ i2 ≤ k. They studied iterative versions of the FFD and BFD rules. The ITERATIVE FIRST FIT
DECREASING algorithm (IFFD) works as follows: We first pack all the items into the largest size bins using
the FFD algorithm, and obtain a feasible solution. We then get another solution by repacking the items in
the last bin of the solution into the next largest bin using the FFD rule. We obtain another feasible solution
by continuing this procedure until we have repacked every item. In this way, we obtain feasible solutions
for each type of bin. Then the best solution among them is selected as the final solution. The ITERATIVE
BEST FIT DECREASING (IBFD) algorithm is similarly defined, using the BFD rule instead of the FFD
rule in each step. They obtained a series of results for this algorithm:

• When L has divisible item sizes and bin sizes are divisible as well, there exists an optimal solution
using k1 or k1 − 1 bins of type 1, where k1 is the number of bins used in the first step of IFFD. This
means that IFFD provides an optimal solution.

• For each L , if bin sizes are divisible, then C (IFFD(L )) ≤ 11
9 · C(OPT(L )) + 5 2

9 . Here C(A(L ))
denotes the cost of packing list L by algorithm A. The bound of 11/9 is tight.

• The general case, that is, when we have no divisibility condition, for each L , C(IFFD(L )) ≤ 3
2 ·

C(OPT(L )) + 1. This bound is tight.

The same results apply to IBFD.
Xing [18] investigated a special case of variable-sized bin packing where we can have oversized items,

that is, items with a size larger than the largest bin size. The bins cannot be overpacked, so we are free
to divide up the oversized items such that the parts are no larger than the largest bin size. The problem
is called Bin Packing with Oversized Items, (BPOS). Xing also defined a special objective function for this
problem: If an item ai is oversized and so packed into more than one bin, the extra bins do not contribute
to the objective function. If we use bins B1, B2, . . . , Bm in the packing, then the objective function is

m∑

i=1

s (Bi ) −
n∑

i=1

(�s (ai )� − 1)

Xing defined the following two-stage procedure: Let us delete size �s (ai )� from item ai —now the size
of the remaining part does not exceed the largest bin size. We can easily extend a heuristic algorithm of
variable-sized bin packing to a heuristic of BPOS: first we pack �s (ai )� − 1 unit-sized bins with unit parts
of ai and then the remaining part will be packed by the variable-sized bin packing heuristic. Let TOPT(L)
denote the optimal value of the BPOS using a two-stage procedure. It can readily be seen that if there is
only one bin size then OPT(L )=TOPT(L ) for each list. If there are several bin sizes and the largest item is
packed into l bins then

2 − 1

l + 1
≤ R∞

TOPT ≤ 2

and the ratio 2 is asymptotically tight.
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Xing defined a modification of the FF algorithm for this problem and showed that its asymptotic
worst-case ratio is 7/4. If there is a bin size between [2/3, 3/4], then the ratio is 3/2.

34.2.1 Number of Items

Langston [19] turned to the problem of maximizing the number of items packed into m available bins,
where the bin sizes can be different. He analyzed the three heuristics given by Coffman et al. [20], and
proved that both smallest-piece-first and first-fit-increasing have an asymptotic worst-case bound of
1/2. The best algorithm is the FFD* rule, for which Langston was able to prove that for all L and bin
size-set B

nFFD ∗ (L , B) ≥ 2

3
nO (L , B) − 2

3

He conjectured that the tight bound is 8/11—this is still an open question.
Friesen and Kuhl [21] gave the best known algorithm for maximizing the number of items in a given

set of variable-sized bins. Their algorithm is an iterative version of the Best-2-Fit and FFD algorithms, and
is similar to the compound algorithm given for the classical problem in Ref. [22]. This hybrid algorithm
has a tight asymptotic worst-case ratio of 3/4.

Epstein and Favrholdt [23,24] investigated the online version of maximizing the number of items packed
into variable-sized bins. They restricted the input sequences to be accommodating, that is, sequences that
we know in advance every item can be packed by an optimal offline algorithm. They studied fair algorithms
that reject an item only if the item does not fit in the empty space of any bin. They proved that any fair
algorithm has a competitive ratio of at least 1/2, and BF has a performance bound of n/(2n −1). They also
showed that any fair, deterministic algorithm has a competitive ratio at most 2/3, and any fair, randomized
algorithm has a competitive ratio at most 4/5.

34.3 Bin Covering

In the packing problems studied up to now, the goal was to partition a set of items into the minimum
number of subsets such that, in every subset, the total size of the items does not exceed some upper bound.
In a covering problem, the goal is to partition a set of items into the maximum number of subsets such that,
in every subset, the total size of the items is always above some lower bound. Covering problems model
a variety of situations encountered in business and in industry, from packing peach slices into tin cans
so that each tin can contains at least its advertised net weight, to such complex problems as breaking up
monopolies into smaller companies, each of which is large enough to be viable. Since covering problems
can be viewed as a kind of inverse or dual version of the packing problem, they are sometimes called
“dual-bin packing” problems in the literature. We note that the task of maximizing the number of items
to be packed is sometimes also called dual-bin packing problem.

In the one-dimensional bin covering problem, the goal is to pack a list L = (a1, a2, . . . , an) into a
maximum number of bins of size 1 such that the contents of each bin is at least one. Let R∞

A denote the
asymptotic worst-case ratio of an approximation algorithm for bin covering (A(L ) and OPT(L ) denote the
numbers of bins in the packing constructed by algorithm A and an optimization algorithm, respectively).
It is defined by

Rn
A = min

{
A(L )

OPT(L )
| OPT(L ) = n

}

and

R∞
A = lim inf

n→∞ Rn
A

Since we are dealing with a maximization problem, the larger the worst-case ratio of an algorithm, the
better the approximation algorithm will be. The bin covering problem was investigated for the first time
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in the Ph.D. thesis of Assmann [25] and in the journal article [2] by Assmann et al. [2]: They called it the
dual-bin packing problem.

First of all one might adapt heuristics from the classical bin packing to the bin covering problem. This
was indeed done by Assmann et al. [2]. They considered the following adaptation of NF, called DUAL
NEXT FIT (DNF): DNF always has a single active bin. Newly arriving items ai are packed into the active
bin until the active bin is full (i.e., it has contents of at least one). Then the active bin is closed and another
(empty) bin becomes the active bin. It is not difficult to show that DNF has performance

R∞
D N F = 1

2

as all bins packed by DNF will have a content of less than 2, while for the lists

L 4k =
(

1 − ε, . . . , 1 − ε
︸ ︷︷ ︸

2k items

, ε, . . . , ε
︸ ︷︷ ︸
2k items

)

we get OPT(L 4k) = 2k and DNF(L 4k) = k, if ε < 1/2k. Analogous modifications of FF, BF, and
Harmonic do not improve this worst case ratio of 1/2 (e.g., modifying FF is useless, since after filling a bin,
placing further items into it does not make sense). Actually, from the worst-case point of view, algorithm
DNF is the best possible online bin covering algorithm, since Csirik and Totik [26] have proved that every
online bin covering algorithm A satisfies the condition

R∞
A ≤ 1

2

A bettering of the performance ratio of 1/2 was achieved by Assmann et al. [2] by defining an artificial
upper bound on the sum of the sizes of elements placed into the same bin. This upper bound can be regarded
as the capacity of a bin and has some similarities with classical bin packing. However, after packing the
items with a good heuristic for the classical bin packing problem, it might happen that in some of the bins
the sum of item sizes is less than 1. Hence we have to use a second step to fill these bins. The algorithm
based on the above observation is called FIRST FIT DECREASING WITH PARAMETER r (FFDr ) and
proceeds as follows:

Phase I. (“Classical FFD”)

(a) Presort the items in L such that s (a1) ≥ s (a2) ≥ · · · ≥ s (an).
(b) While there is still an unpacked element, do the following: Let ai be the first unpacked item and let

B j be the first (leftmost) unfilled bin with a current content less than or equal to r − s (ai ). If such
a bin exists, place ai in B j , otherwise open a new empty bin and pack ai into this bin.

Phase II. (Repacking unfilled bins)

While there is more than one open nonfilled bin, remove an item from the rightmost such bin and add
it to the leftmost one.

It is clear that after phase I there is no bin with content more than r. Furthermore, it follows from the
definition in the first phase that adding an element from the rightmost open nonfilled bin will increase
the total sum of sizes of elements in the leftmost bin to more than r . Lastly, the time complexity of FFDr

can be seen to be O(n log n). For this algorithm the following result holds [25]: for all r, 4/3 ≤ r ≤ 3/2,
and every lists L ,

FFDr (L ) ≥ 2

3
(OPT(L ) − 1)

and the bound is tight.
Assmann et al. also suggested a further improvement by defining a pretty sophisticated algorithm called

ITERATED LOWEST FIT DECREASING (ILFD). To define this heuristic we first consider the following
problem: given the list L and a fixed number M of bins, what is the maximum possible value for the
minimum bin level in a packing of L into M bins? From a good heuristic A for this problem we can derive
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a good approximation algorithm for the bin covering problem by iteratively applying this algorithm A.
Let A(L , M) stand for the minimum bin level in the packing of L generated by the heuristic A when the
number of bins is fixed to be M. Now the algorithm iteratively applies A and proceeds as follows:

ITERATED “A”

Step 1. Let UB = ⌊∑n
i=1 s (ai )

⌋
, LB = 1. (Clearly LB ≤ OPT(L ) ≤ UB.)

Step 2. While UB − LB > 1 take M = �(LB + UB)/2� and apply heuristic A. If A(L , M) > 1 take
LB = M, otherwise UB = M.

The resulting algorithm provides a feasible solution to the bin covering problem with LB bins. Clearly,
the performance of this method depends on the choice of A. While the problem to be solved by A is closely
related to multiprocessor scheduling problems, it seems natural to use for the heuristic A the Lowest
Fit Decreasing (LFD) algorithm, as studied by Graham [27] and Deuermeyer et al. [28]. This algorithm
proceeds as follows:

Step 1. Order L so that s (a1) ≥ s (a2) ≥ · · · ≥ s (an) and start with M empty bins.
Step 2. While there is an unpacked item in L do the following: let ai be the first unpacked item and let

B j be the bin with a minimum level (in case of ties, choose the rightmost one). Put ai into B j .

It is not difficult to verify that the time complexity of ILFD is O(n log2 n). Furthermore, one can prove
the following result [2]:

R∞
ILFD = 3

4

Csirik et al. [29] achieved these bounds via simpler algorithms. Their first algorithm, called SIMPLE
(SI), first sorts the items in descending order, and then packs the prefix of the list by NF into the next bin
until the content becomes larger than 1 when the piece following the prefix is packed. It then fills the bin
with a postfix, that is, packs the smallest items as long as the content of the bin is less than 1. For this
algorithm

R∞
S I = 2

3

The second algorithm, IMPROVED SIMPLE (ISI) is a bit more complicated. It divides the list L into three
sublists:

– s (a1) ≥ s (a2) ≥ · · · ≥ s (a p) ≥ 1/2(X-sublist),
– 1/2 > s (a p+1) ≥ s (a p+2) ≥ · · · ≥ s (ar ) ≥ 1/3(Y-sublist),
– s (ar+1) ≥ s (ar+2) ≥ · · · ≥ s (an)(Z-sublist).

Now, ISI proceeds in two phases. In phase 1, if s (a1) ≥ s (a p+1) + s (a p+2), it then packs a1 into an
empty bin, otherwise packs a p+1 and a p+2. Then it fills the just opened bin with elements from the end
of the Z-sublist, that is, with an, an−1, . . . until the content of the bin is larger than 1, removes the packed
elements, and then repeats the packing until X ∪ Y or Z is empty. In the second phase, if X ∪ Y is empty,
it packs the remaining elements from the Z-sublist by NF. Otherwise, if Z is empty, it packs the remaining
elements from the X-sublist by two, from the Y -sublist by three. The authors subsequently proved that

R∞
ISI = 3

4

The time complexity of both algorithms here is O(n log n).
Coffman et al. [30] analyzed the bin covering problem when the list has divisible item sizes. They proved

that the Next Fit Decreasing rule gives an optimal packing when the list is strongly divisible. They also
proved that if the list is divisible, the Iterated Lowest Fit Decreasing rule gives an optimal packing as well.

Deuermeyer et al. [28] studied the problem of machine covering. Here we have m machines (bins) and
we want to pack the list so as to maximize the minimum load for the machines. This means in bin covering
terms that we would like to maximize the bin sizes such that the packing of the list will cover all the bins.
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They investigated the performance of the Largest Processing Time (LPT) heuristic and proved that its
performance is not larger than 3/4. The tight ratio of this method was found by Csirik et al. [31] to be 3m−1

4m−2 .

Azar and Epstein [32] investigated the online version of machine covering. They proved that there
is a randomized O(

√
m log m) competitive algorithm, and any randomized algorithm is at least �(

√
m)

competitive. This is in marked contrast to the competitive ratio of the best possible deterministic algorithm,
which is m. For the parametric version of this problem, where the sizes may vary up to a factor F they
showed that there is a randomized O(log F ) competitive algorithm. For the same problem where the
optimal value is known in advance they offered a deterministic 2 − 1

m competitive algorithm.
Woeginger and Zhang [33] considered bin covering with variable sized bins: there are several types

B1, . . . , Bk of bins with sizes 1 = b1 = s (B1) > b2 = s (B2) > · · · > bk = s (Bk); there is an infinite
supply of bins of each size. We will denote the set of feasible bin sizes here by B as well. The problem is to
cover, with a given list of items ai ∈ [0, 1], a set of bins with the largest total size. Formally, let OPT(L , B)
and A(L , B) denote, respectively, the total size of the bin cover produced by an optimum algorithm and
the total size of the bin cover produced by an approximation algorithm A for an input list L and a set B
of bin sizes. The asymptotic worst-case R∞

A,B of algorithm A for the set B is defined as

R∞
A,B = lim

s→∞ inf
L

{
A(L , B)

OPT(L , B)
| OPT(L , B) ≥ s

}

Woeginger and Zhang [33] determined, for each finite set of bin sizes, the worst-case ratio of the best
possible online covering algorithm. Let k1 denote the number of bin sizes in B that are strictly greater than
1/2. Define

q(B) = max

{
b j

b j+1
: 1 ≤ j ≤ k1 − 1

}

∪ {2bk1}

Note that q(B) > 1. Finally, define

r (B) = 1

q(B)

Woeginger and Zhang proved that for every set B of bin sizes, there exists an online approximation
algorithm A for variable-sized bin covering with asymptotic worst-case ratio r (B). For every set B this
result is the best possible.

Epstein [34] gave similar results for the parametric case, that is, where each item size is less than or
equal to 1/m, where m is a positive integer. Similar to Ref. [33], she defined the number r (B, m) in the
following way. For each 1 ≤ i ≤ k, let bi, j = bi /j and let Bi (m) be the set of fractions of bi between
sizes 1/(2m) and 1/m, that is, Bi (m) = {bi, j | 1 ≤ j ≤ 2m} ∩ [1/(2m), 1/m]. We define a new set of
bins by C(m) = ∪1≤i≤kBi (m). Enumerate the sizes of numbers in C(m), C(m) = {c1, . . . , cl }, where
1/m = c1 > c2 > · · · > cl = 1/(2m). For every element in C(m), recall an original bin size that caused it
to be inserted into C(m). For ci , let b(ci ) be the smallest b j such that there exists an integer y that satisfies
yci = b j . Now define

q(B, m) = max

{
ci

ci+1
| 1 ≤ i ≤ l − 1

}

Note that 1 + 1/m ≥ q(B, m) > 1. Finally, define

r (B, m) = 1

q(B, m)

For every finite set of bins and integer m ≥ 1, Epstein gave a deterministic algorithm with competitive
ratio r (B, m). She also proved that this is the best possible for any online randomized algorithms.

Zhang [35] defined a special variable-sized bin covering problem which he called the bin-batching
problem: in this problem, in addition to a list L , a parameter 0 ≤ t ≤ 1 is also given. We are asked to
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group the item into batches. If a batch B has a total content c(B), the gain of this batch is defined as

g (B) =





0 if c(B) < 1 − t
c(B) if 1 − t ≤ c(B) ≤ 1
1 if c(B) > 1

The goal is to make the total gain as large as possible. We may note that this problem reduces to the bin
covering problem when t = 0. In bin batching all bin sizes in [1 − t, 1] are allowed, that is, we allow
underpacking of bins up to a level of 1 − t. It is clear that the problem is simple if t ≥ 1/2, so we may
assume t < 1/2. Zhang proved that every online algorithm for the bin-batching problem has an asymptotic
worst-case ratio of at most 1/(2 − 2t), and that the following simple algorithm—called SA—will meet
this bound: assume that the currently incoming item is ai ; if s (ai ) ≥ 1 − t, put it into an empty bin with
size s (ai ) and close this bin immediately. If s (ai ) < 1 − t, we apply the NF algorithm with bin size 1.

Woeginger and Zhang [33] looked at the special problem of having only two different bin sizes (this
was done by Csirik [6] for the classical variable-sized problem). They proved that, for a set B = {1, b}
with two bin sizes, there exists an online approximation algorithm A for the bin covering problem with
the best possible asymptotic worst-case ratio

R∞
A,B =






1
2 if 0 < b ≤ 1

2

b if 1
2 ≤ b ≤ 1√

2
1

2b if 1√
2

≤ b < 1

For B = {1, 1/
√

2}, the asymptotic worst-case ratio is 1/
√

2. This is the best ratio that can be achieved
with two bins.

34.4 Conclusion

In this chapter we conclude our survey of variants of the classical bin packing problem. The main topics
covered include the variable-sized bin packing problem and the bin covering problem. Both problems
have generated tremendous interests in the past and promise to have more results in the future.
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35.1 Introduction

There are several ways to generalize the bin packing problem to more dimensions. We consider two- and
three-dimensional strip packing, and bin packing in dimensions two and higher. Finally we consider vector
packing and several other variations.

In the most common two-dimensional version, the items are rectangles or squares, and the bins are
unit squares. In the strip packing problem, instead of bins, we are given a strip of width 1 and unbounded
height. In higher dimensions, the rectangles are replaced by boxes (or hyperboxes), the squares by cubes (or
hypercubes), and the unit square by a unit cube (or hypercube of the relevant dimension). Strip packing
becomes column packing.

A striking difference between one-dimensional bin packing and its multidimensional generalizations
is that while for one-dimensional bin packing, offline algorithms clearly outperform online algorithms,
this is not always the case in more dimensions. There are several cases where an online algorithm was
at one point the best known approximation algorithm, or remains the best known approximation until
today. Most likely, this simply reflects the fact that we do not understand the multidimensional case as
well as the one-dimensional case. In contrast, some results simply cannot be generalized. For instance,
we now know that there cannot be an asymptotic polynomial-time approximation scheme (APTAS) for
two-dimensional bin packing [1], or for two-dimensional vector packing [2].

An important special case in multidimensional bin and strip packing is the case where (hyper)cubes
need to be packed. For this case, better results are known than for the general case. In particular, the offline
version of this problem admits an APTAS [1,3].

As is the case for one-dimensional bin packing, most attention has gone to the asymptotic worst-case
ratio, but in the course of this chapter we will encounter some results on the absolute ratio as well.

35-1
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FIGURE 35.1 A comparison between the oriented and the rotatable models.

When packing of rectangle or boxes is considered, there are several ways to define the problem. In the
oriented problem, items have a fixed orientation, and cannot be rotated. In the rotatable (or nonoriented)
version, an item can be rotated and placed in any position such that its sides are parallel to the sides of the
bin. Finally there are mixed versions where items can be rotated in certain directions, but not all directions.
One such three-dimensional model where items can be rotated to the left or to the right but the top and
bottom must remain such as the “z-oriented” packing studied by Miyazawa and Wakabayashi [4,5], also
known as the “This Side Up” problem [6].

An illustration of the difference between the two problems is given in Figure 35.1. In this figure we see
packings of rectangles of sides 3

5 and 2
5 . If the rectangles are oriented so that their height is 3

5 and cannot
be rotated, we can pack at most two such items in one bin. However, if rotation is allowed, we can pack as
much as four such rectangles together in one bin.

This chapter is organized as follows. We begin by presenting the algorithm Next Fit Decreasing Height,
which is a fundamental algorithm for two-dimensional packing problems, in Section 35.2. We then discuss
results on multidimensional packing problems, in order of increasing dimension. That is, we start with
strip packing in Section 35.3 and move to two-dimensional bin packing in Section 35.4. We then discuss
column packing in Section 35.5 and three- and more dimensional bin packing in Section 35.6. Finally,
we mention results on vector packing in Section 35.7 and discuss several variations on multidimensional
packing in Section 35.8.

35.2 Next Fit Decreasing Height

In 1968, Meir and Moser [7] introduced an algorithm for packing d-dimensional cubes into a d-dimensional
hyperbox, which they called Next Fit Decreasing (NFD). This algorithm sorts the cubes by decreasing vol-
ume and packs them into layers. The authors show that if the sides of the cubes are denoted by x1, x2, . . . ,
and they are packed into a hyperbox of sides a1, . . . , ad , where x1 ≤ ai for i = 1, . . . , d , then the cubes
can be packed into the hyperbox as long as their total volume is at most xd

1 + ∏d
i=1(ai − x1).

For d = 2 (packing squares into a rectangle), the algorithm works as follows. The largest square is put
in the bottom left corner of the rectangle. The height of the first layer is equal to the side of this square. The
next squares are put in this layer, next to each other and touching each other and the bottom of the layer,
until one does not fit. At this point we define a new layer above the first layer, with height equal to the side
of the first square packed into it. This continues until all squares are packed, or there is not enough room
to pack some item (it does not fit into the current layer, and the last layer that is left is either empty or not
high enough).

This algorithm (for two dimensions) was extended to an algorithm for packing rectangles into a rectangle
(or a strip) by Coffman et al. [8], which was called Next Fit Decreasing Height (NFDH). It sorts the rectangles
by decreasing height and then packs them as above. They showed that if this algorithm is applied to pack
rectangles into a strip (of unbounded height), then the height used to pack the rectangles is at most twice
the optimal height, plus an additive constant that is equal to the height of the highest rectangle. (Thus its
absolute worst-case ratio is 3.)
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The proof is quite straightforward. In each level, there may be wasted space to the right of the rightmost
item, and above all items except the first. The height of a level is the height of the first item in it. This item
did not fit on the previous level. This implies that the total area of the items in level i plus the first item in
level i + 1 is at least the height of level i + 1 (since the width of the strip is 1). (If we move all items in level
i up to level i + 1, and shift the first item in level i + 1 to the right, then level i + 1 is entirely covered by
items.) Adding up the heights of all levels, this is upper bounded by twice the area of the packed items plus
the height of the first level. This explains the performance bound including the additive constant, since
the total area is an obvious lower bound for the optimal height.

This fundamental algorithm was used in many later papers as a subroutine. It works especially well
when all rectangles are guaranteed to have a small width (relative to the width of the strip), and this
property was, for instance, used by Kenyon and Rémila [9] in their approximation scheme for strip
packing.

Meir and Moser [7] also showed the following important result in the same paper:

Theorem 35.1

Any set of rectangles with sides at most x and total area A can be packed into any rectangle of size a × b
if a ≥ x and ab ≥ 2A + a2/8. This result is best possible.

For packing rectangles into a unit square, this result states that any set of rectangles of total area at most
7/16 (and sides not larger than 1) can be packed into a unit square.

35.3 Strip Packing

35.3.1 Online Results

Baker and Schwartz [10] were the first to study two-dimensional online strip packing. They introduced a
class of algorithms called shelf algorithms. A shelf algorithm uses a one-dimensional bin packing algorithm
A and a parameter α ∈ (0, 1). Items are classified by height: an item is in class s if its height is in the
interval (αs−1, αs ]. Each class is packed in separate shelves, where we use A to fill a shelf and open a new
shelf when necessary. Note that the algorithm A is not necessarily online. See Figure 35.2 for an illustration
of a shelf algorithm.

FIGURE 35.2 An illustration of a packing of NFDH (left) and of a shelf packing algorithm (right).
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Baker and Schwartz showed that the algorithm FIRST FIT SHELF, which uses FIRST FIT as a subroutine,
has an asymptotic performance ratio arbitrarily close to 1.7. Csirik and Woeginger [11] showed that by
using HARMONIC as a subroutine, it is possible to achieve an asymptotic performance ratio arbitrarily
close to h∞ ≈ 1.69103. Moreover, they show that any shelf algorithm, online or offline, has a performance
ratio of at least h∞. The idea of the lower bound is that items are given that could be combined nicely next
to each other, but which end up in different height classes and are therefore packed in separate shelves.
So basically, the best thing one can do is to use a bounded space algorithm (which has a constant number
of simultaneously active bins) like HARMONIC as the subroutine. Finally, they mention that from the
one-dimensional lower bound of van Vliet [12], together with the insights of Baker et al. [13], a general
lower bound for online algorithms of 1.5401 is implied. It remains an open problem how to improve the
upper bound of Csirik and Woeginger. It does not seem easy to find a good online algorithm that does not
use shelves. As for the absolute performance ratio, Brown et al. [14] showed a lower bound of 2 for any
algorithm. They also show some lower bounds for algorithms that may sort the items.

35.3.2 Offline Results

The strip packing problem was introduced in 1980 by Baker et al. [15]. They developed the first offline
approximation algorithms for this problem, and give an upper bound of 3 on the absolute performance
ratio. This bound was later improved to 2 independently by Schiermeyer [16] and by Steinberg [17], using
different approaches. In the same issue of SIAM Journal on Computing, Coffman et al. [8] showed that
NFDH has an asymptotic performance ratio of 2, First Fit Decreasing Height (FFDH) achieves a value of
1.7, and an algorithm called Split-Fit has 3/2. Also in 1980, Sleator [18] gave an algorithm with asymp-
totic performance ratio of 2.5, but absolute performance ratio of 2, which is better than that of Split-Fit,
which has 3. In 1981, Baker et al. [13] gave an offline algorithm with asymptotic worst-case ratio of 5/4.
Finally, Kenyon and Rémila [9] designed an asymptotic fully polynomial-time approximation scheme.
This scheme uses some nice ideas, which we describe below.

Fractional strip packing. A fractional strip packing of L is a packing of any list L ′ obtained from L by
subdividing some of its rectangles by horizontal cuts: each rectangle (wi , hi ) is replaced by a sequence of
rectangles (wi , h1

i ), (wi , h2
i ), . . . , (wi , hki

i ) such that
∑ki

j=1 h j
i = hi .

In the case that L contains only items of m distinct widths in (ε′, 1], where ε′ > 0 is some constant, it
is possible to find a fractional strip packing of L that is within one of the optimal fractional strip packing
FSP(L ) in polynomial time. Moreover, it is possible to turn this packing into a regular strip packing at the
loss of only an additive constant 2m. Denote the height of the optimal strip packing for L by OPT(L ). We
conclude that we found a packing with height at most FSP(L ) + 1 + 2m ≤ OPT(L ) + 2m + 1.

Modified NFDH. This is a method for adding narrow items (items of width at most ε′) to a packing of
wide items such as described above. Such a packing leaves empty rectangles on the right-hand side of the
strip. Each of these rectangles is packed with narrow items using NFDH (starting with the highest narrow
item in the first rectangle). When all rectangles have been used, the remaining items (if any) are packed
above the packing using NFDH on the entire width of the strip.

Grouping and rounding. This method is a variation on the linear rounding defined by Fernandez de la
Vega and Lueker [19]. It works as follows.

We stack up the rectangles of L by order of nonincreasing widths to obtain a left-justified stack of total
height h(L ). We define m − 1 threshold rectangles, where a rectangle is a threshold rectangle if its interior
or lower boundary intersects some line y = ih(L )/m for some i ∈ {1, . . . , m −1}. We cut these threshold
rectangles along the lines y = ih(L )/m. This creates m groups of items that have height exactly h(L )/m.

First, the widths of the rectangles in the first group are rounded up to 1, and the widths of the rectangles
in each subsequent group are rounded up to the widest width in that group. This defines L+.

Second, the widths of the rectangles in each group are rounded down to the widest width of the next
group (down to 0 for the last group). This defines L−.
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It is easy to find a strip packing for L− using a reduction to fractional strip packing. Moreover, it can be
seen that the stack associated with L+ is exactly the union of a bottom part of width 1 and height h(L )/m
and the stack associated with L−. Thus FSP(L ) ≤ FSP(L+) = FSP(L−) + h(L )/m.

Partial ordering. We say that L ≤ L ′ if the stack associated to L (used for the grouping above), viewed
as a region of the plane, is contained in the stack associated to L ′. Note that L ≤ L ′ implies that
FSP(L ) ≤ FSP(L ′). As an example, in the grouping above we have L− ≤ L ≤ L+.

35.3.3 Rotations

The upper bound of 2 of NFDH and Bottom Leftmost Decreasing Width (BLDW) remain valid if or-
thogonal rotations are allowed, since the proofs use only area arguments. Miyazawa and Wakabayashi [5]
presented an algorithm with asymptotic approximation ratio of 1.613. Epstein and van Stee [20] improved
this to 3/2 using a simpler algorithm. This algorithm packs items that are wider and higher than 1/2
optimally, and packs remaining items first next to this packing (where possible) and finally on top of this
packing. In this way, the resulting packing is either optimal, or almost all heights with a width of 2/3
is occupied by items. Finally, an asymptotic fully polynomial-time approximation scheme was given by
Jansen and van Stee [21].

35.4 Two-Dimensional Bin Packing

We saw in section 35.3.1 that we can use a one-dimensional bin packing algorithm as a subroutine for
a strip packing algorithm, basically without a loss in (asymptotic) performance ratio. Similarly, a two-
dimensional bin packing algorithm can be used as a subroutine to create a three-dimensional strip packing
algorithm, and this also holds for higher dimensions.

In contrast, a d-dimensional strip packing algorithm can also be used to create a d-dimensional bin
packing algorithm at a cost of a factor of 2 in the performance ratio. The idea is to cut the packing generated
by the strip packing algorithm into pieces of unit height. For each piece we do the following. Items that
are completely contained in the piece are put together in one bin. Items that are partially in the next piece
are put together in a second bin (see Figure 35.3).

Assume we have a guarantee of R on the asymptotic performance ratio of the strip packing algorithm.
Then this method gives us 2R · OPT(L ) + C bins for an input L , where OPT(L ) is the height of the optimal

FIGURE 35.3 Converting a packing in a strip into a packing in bins.
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strip packing. In contrast, there cannot be a bin packing into less than OPT(L ) bins, because this packing
could be trivially turned into a strip packing of height less than OPT(L ). This explains the factor of two loss.

35.4.1 Online Results

Coppersmith and Raghavan [22] were the first to study the online version of this problem. They gave an
online algorithm with asymptotic performance ratio of 3.25 for d = 2 (and 6.25 for d = 3). This result
was improved by Csirik et al. [23], who presented an algorithm with performance ratio 3.0625. In the
same year, Csirik and van Vliet [24] showed an online bin packing algorithm for arbitrary dimensions,
which achieves a performance ratio of hd∞, where d is the dimension. Note that already for d = 2, this
improves over the previous result, since h2∞ ≈ 2.85958 (see also Ref. [25] for d = 2, 3). Finally, Seiden
and van Stee [26] gave an algorithm with ratio 2.66013 for two-dimensional bin packing.

Epstein and van Stee [20] introduced a new technique for packing small multidimensional items online,
enabling them to achieve the asymptotic performance ratio of hd∞ [24] using only bounded space.

Galambos [27] was the first to give a lower bound for this problem, which was higher than the best
known lower bound for one-dimensional bin packing. His bound was 1.6. This was later successively
improved to 1.808 by Galambos and van Vliet [28], 1.851 by van Vliet [29], and finally to 1.907 by
Blitz et al. [30]. The gap between the upper and lower bounds remains relatively large to this day, and it is
unclear how to improve either of them significantly.

An interesting special case is where all items are squares. Coppersmith and Raghavan [22] showed that
their algorithm has an asymptotic performance ratio of 2.6875 for this case, and gave a lower bound of
4/3. This lower bound actually holds for the more general problem of packing hypercubes. Seiden and
van Stee [26] showed that the algorithm HARMONIC × HARMONIC, which uses the HARMONIC
algorithm to find slices for items and then uses the HARMONIC algorithm again to find bins for slices,
has an asymptotic performance ratio of at most 2.43828. They gave a lower bound of 1.62176 for any
online algorithm, and also showed a lower bound of 2.28229 for bounded space algorithms using the same
instances.

Epstein and van Stee [31] give an algorithm with asymptotic performance ratio of at most 2.24437,
and improved the lower bound to 1.6406. Here too, the gap between the lower and the upper bounds
remains disappointingly large. Finally, the same authors [32] give bounds for the performance of their
optimal bounded space algorithm from Ref. [20], showing that its performance ratio lies between 2.3638
and 2.3692.

35.4.2 Offline Results

As mentioned at the start of this chapter, Bansal and Sviridenko [1] proved that the two-dimensional
bin packing problem is APX-hard. Thus, there cannot be an asymptotic polynomial-time approximation
scheme for this problem.

Chung et al. [33] were the first to give an approximation algorithm for this problem. It has an asymptotic
approximation ratio of 2.125. As mentioned above, the APTAS for strip packing by Kenyon and Rémila
implies a (2 + ε)-approximation for any ε > 0. In 2002, Caprara [34] gave an h∞-approximation.

Leung et al. [35] proved that the special case of packing squares into squares is still NP-hard (for general
two-dimensional bin packing, this follows immediately from the one-dimensional case). Ferreira et al.
[36] gave a 1.988-approximation for this problem, which uses as a subroutine an optimal algorithm for
packing items with sides larger than 1/3. They conjecture that packing items with sides larger than 1/4 is
already NP-hard. Independently of each other, Kohayakawa et al. [37] and Seiden and van Stee [26] gave
a (14/9 + ε)-approximation (1.5555 . . . + ε). However, the first result is more general in that it actually
gives a (2 − (2/3)d + ε)-approximation for packing d-dimensional hypercubes. The idea of both these
algorithms is to find an optimal packing for large items (items with sides larger than ε) and to add the
small items to this packing. Specifically, any bins in the optimal packing which contain only a single item
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with sides larger than 1/2 are filled with small items using the algorithm NFD from Meir and Moser (see
Section 35.2). It is shown that all other bins are already “reasonably full,” leading to the approximation
guarantee.

In the same year, Caprara [34] gave an algorithm with performance ratio in the interval (1.490, 1.507)
provided a certain conjecture holds. Two years later, Epstein and van Stee [38] gave a (16/11 + ε)-
approximation (1.4545 . . . + ε). Simultaneously and independently of each other, Bansal and Sviridenko [1],
and Correa and Kenyon [3] presented an asymptotic polynomial-time approximation scheme for this
problem, which also works for the more general problem of packing hypercubes.

Recently, Bansal et al. [39] showed a special case which admits an APTAS. This is a rectangle packing,
where the packing of each bin must be possible to achieve using guillotine cuts only. That is a sequence of
edge to edge cuts, parallel to the edges of the bin. Even more special cases, where the number of stages in
the sequence of guillotine cuts is limited, were studied by Caprara et al. [40]. They designed an APTAS for
the two-stage problem. Note the shelf packing described above actually uses two stages of guillotine cuts.
Kenyon and Rémila [9] point out that their approximation scheme uses five stages of guillotine cuts.

As regards the absolute performance ratio, Zhang [41] gave an approximation algorithm with absolute
worst-case ratio of 3 for two-dimensional bin packing. Van Stee [42] gave an absolute 2-approximation
for the special case where squares need to be packed, which is optimal by the result of Leung et al. [35].

35.4.3 Resource Augmentation

Since there cannot be an approximation scheme for general two-dimensional bin packing, several authors
have looked at the possibility of resource augmentation, that is, giving the approximation algorithm
slightly larger bins than the offline algorithm that it is compared with. Correa and Kenyon [3] give a dual
polynomial-time approximation scheme. That is, they give a polynomial-time algorithm to pack rectangles
into the k bins of size 1 + ε, where these rectangles cannot be packed in less than k bins of size 1. Bansal
and Sviridenko [43] showed that it is possible to achieve this even if the size of the bin is relaxed in one
dimension only.

35.4.4 Rotations

For the case where rotations are allowed, Epstein [44] showed an online algorithm with asymptotic
performance ratio of 2.45. The online problem was studied before by Fujita and Hada [45]. They presented
two online algorithms and claimed asymptotic performance ratios of at most 2.6112 and 2.56411. Epstein
[44] mentioned that the proof in Ref. [45] only shows that the first algorithm has an asymptotic performance
ratio of at most 2.63889 and that the proof of the second algorithm is incomplete.

Two years later, Miyazawa and Wakabayashi [5] gave an offline algorithm with asymptotic performance
ratio of 2.64. Epstein and van Stee [20] gave the best known result to date, an approximation algorithm
with asymptotic performance ratio 2.25. It divides the items into types and combines them into bins
such that in almost all bins, an area of 4/9 is occupied. Correa [46] adapted the dual polynomial-time
approximation scheme from Ref. [3] to rotatable items.

35.5 Column (Three-Dimensional Strip) Packing

35.5.1 Online and Offline Results

Li and Cheng [47] were the first to consider this problem. In their paper [47] from 1990, they showed
that three-dimensional versions of NFDH and FFDH have unbounded worst-case ratio. They gave several
approximation algorithms, the best of which has an asymptotic performance ratio of 3.25. Their first
algorithm sorts the items by height and then divides them into groups of area (in the first two dimensions)
at most 7/16, so that they can be packed into a single layer by Theorem 35.1. They improve on this by
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classifying items with similar bottoms, and packing similar items together into layers. Two items have
similar bottoms if both their length and their width fall into the same class when classified by the HAR-
MONIC algorithm. For the case where all items have square bottoms, the ratio improves to 2.6875.

Two years later, the same authors [48] presented an online algorithm with asymptotic performance ratio
arbitrarily close to h2∞ ≈ 2.89 for three-dimensional strip packing. At the time, there was no better offline
approximation known. This algorithm uses the HARMONIC algorithm as a subroutine in both horizontal
dimensions (i.e., to find a strip for a two-dimensional item, and a place inside a strip for a one-dimensional
item), and a geometric rounding for the heights. The paper actually discusses several online algorithms for
this problem and only mentions the use of HARMONIC in the summary section. The authors [47] note
that the improvement in the asymptotic performance ratio compared with the approximation algorithm
from their earlier paper only comes at the cost of a high additive constant.

In 1997, Miyazawa and Wakabayashi [49] improved the offline upper bound to 2.66994 (2.36 for items
with square bottoms). This algorithm places columns of similar items next to each other in the strip, thus
avoiding the layer structure of the previous algorithms. The algorithm is quite involved and its description
takes three pages. This remains the best result to date.

35.5.2 Rotations

In the case where rotations are allowed, it becomes relevant what exactly the dimensions of the strip are.
In two-dimensional strip packing, this does not really play a part, but in column packing, the base of the
column might not be a square. However, if the base is not a square but may be an arbitrary rectangle,
then having the ability to rotate items horizontally (leaving the top side unchanged) does not help, as was
shown by Miyazawa and Wakabayashi [4]. The idea is that in this case it is possible to scale the input so
that the smallest width of an item is still larger than the length of the base of the strip, so that no item can
be rotated and still fit inside the strip. For this reason, in this section we focus on the case where the base
of the strip is a square.

Epstein and van Stee [6] give an approximation algorithm with asymptotic worst-case ratio of 9/4 =
2.25, improving on the upper bound of 2.76 by Miyazawa and Wakabayashi [5]. The special case where
only rotations that leave the top side of items at the top are allowed has received more attention. It was
introduced by Li and Cheng [50] as a model for a job scheduling problem in partitionable mesh connected
systems. Here each job i is given by a triple (xi , yi , ti ), meaning that job i needs a submesh of dimensions
xi × yi or yi × xi for ti time units. They give an algorithm for minimizing the makespan (i.e., the height
of the packing), which has asymptotic performance bound 4 4

7 . This was improved to 2.543 by Miyazawa
and Wakabayashi [5] and finally to 2.25 by Epstein and van Stee [6].

35.6 Three- and More Dimensional Bin Packing

At present, the online-bounded space algorithm from Epstein and van Stee [20] is the best (online or
offline) algorithm for packing multidimensional items into bins for any dimension d ≥ 3. Clearly, this
problem is APX-hard as well since it includes the two-dimensional bin packing problem as a special case [1].

Blitz et al. [30] gave a lower bound of 2.111 for online algorithms for d = 3. However, there is no
good lower bound known for larger dimensions: nothing above 3. It appears likely that the asymptotic
performance bound of any online algorithm must grow with the dimension.

For the special case of packing hypercubes online in dimensions d ≥ 4, there is no better lower bound
than the 4/3 given by Coppersmith and Raghavan [22] (which works in any dimension d ≥ 2).

The bounded space algorithm by Epstein and van Stee [20] for this problem has a performance ratio
that is sublinear in d : it is O(d/ log d) and �(log d).

For d = 3 (online cube packing), Miyazawa and Wakabayashi [51] showed that the algorithm of
Coppersmith and Raghavan [22] has an asymptotic performance bound of 3.954. Epstein and van Stee [31]
give an algorithm with asymptotic performance ratio at most 2.9421, and a lower bound of 1.6680.
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Furthermore, the same authors [32] give bounds for the performance of their bounded space algorithm
from Ref. [20], showing that its performance ratio lies between 2.95642 and 3.0672.

As was seen in Section 35.4.2, we can do even better offline. Before Bansal and Sviridenko [1] and
Correa and Kenyon [3] gave their asymptotic polynomial-time approximation scheme for any dimension
d ≥ 2, Miyazawa and Wakabayashi [51] gave two approximation algorithms, of which the best had
an asymptotic performance ratio of 2.6681. Soon afterwards, Kohayakawa et al. [37] presented their
paper which we discussed in Section 35.4.2 as well. For d = 3, its asymptotic performance bound is
46/27 + ε ≈ 1.7037 . . . + ε.

35.7 Vector Packing

In this section we discuss the nongeometric version of multidimensional bin packing. The d-dimensional
“vector packing” or “vector bin packing” problem is defined as follows. The bins are instances of the “all-1”
vector (1, 1, . . . , 1) of length d . Items are d-dimensional vectors, whose components are all in [0, 1]. A
packing is valid if the vector sum of all items assigned to one bin does not exceed the capacity of the bin
(i.e., 1) in any component. Since all bins are identical, the goal is to minimize the number of bins used.

The problem can be seen as a scheduling problem with limited resources. The machines (with correspond
to bins) have fixed capacities of several resources as memory, running time, and access to other computers.
The items in this case are jobs that need to be run, each job requires a certain amount of each resource.
Another application arises from viewing the problem as a storage allocation problem. Each bin has several
qualities as volume and weight. Each item requires a certain amount of each quality. Both applications are
relevant to both offline and online environments.

For many years there were very few results on this problem. In the first paper which obtained an APTAS
for classical bin packing, Fernandez de la Vega and Lueker [19] imply a (d + ε)-approximation for the
vector packing problem. This improved very slightly on some online results. These results were an upper
bound of d + 1 on the performance ratio of any algorithm of which the output never has two bins that
can be combined, given by Kou and Markowsky [52], and a tight bound on the performance of First Fit
of d + 7

10 , given by Garey et al. [53]. Note that this is a generalization of the tight bound of 17
10 for First Fit

in one dimension.
Since these results were obtained, for a while there was hope that an APTAS would be found for this

problem. However, Woeginger [2] proved that unless P = N P , there cannot be such an APTAS, already
for two-dimensional vectors. Clearly, more restricted classes of vectors may still admit an APTAS. One
such type of input is one where there is a total order on all vectors. In [54], Caprara et al. showed that an
APTAS for this problem indeed exists.

The offline result for the general case was finally improved by Chekuri and Khanna [55]. They designed
an algorithm of asymptotic performance 1+εd + O(ln 1

ε
). If d is seen as a constant, the best ratio achieved

in this way is O(ln d). They proved that for an arbitrary d , it is APX-hard to approximate the problem

within a factor of d
1
2 −ε for every fixed positive ε. This was shown using a reduction from graph coloring.

The online result was not improved since 1976. Lower bounds on the performance ratio of online
algorithms, which tend to 2 as d grows, were shown by Galambos et al. [56]. Improved lower bounds were
given by Blitz et al. [30], but this construction also tends to 2 as d grows.

As for the absolute approximation ratio, Kellerer and Kotov [57] designed an algorithm for two-
dimensional vector packing with absolute approximation ratio of at most 2. Recently, Erlebach [58]
showed a nonconstant lower bound on the absolute performance ratio for this problem. Interestingly,
the method is similar to the one used by Chekuri and Khanna to show the hardness of approximation.
The lower bound holds for the asymptotic performance ratio if d is not seen as a constant, that is, for
arbitrary d .

As for variable-sized packing, the online problem was studied by Epstein [59]. In this problem, the
algorithm may use bins out of a given finite subset. This subset contains the standard “all-1” vector, and
possibly other vectors. The cost of a bin is the sum of its components. She showed that there exists a finite
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set where an online algorithm can achieve a performance of ratio of 1 + ε (by defining the class of bins to
be dense enough), whereas for another set (which contains except for the “all-1” bin only bins that have
relatively small components), the ratio must be linear in the dimension. Clearly, no matter what the set is,
there exists a simple algorithm with linear performance ratio.

Analogous to the bin covering problem, we can define the vector covering problem, where the vector
sum of all vectors assigned to one bin is at least 1 in every component. This problem was studied by Alon
et al. [60]. In this paper it was shown that the performance ratio of any online algorithm is at least d + 1

2 .
A linear upper bound of 2d is achieved by an algorithm that partitions the input into classes. The same
paper contains offline results as well. An algorithm of performance guarantee O(log d) is presented as
well as a simple and fast 2-approximation for d = 2. In Ref. [61] some results on variable-sized vector
covering are given. These results focus on cases where all bins are vectors of zeros and ones. The benefit of
a covered bin is the sum of its nonzero components. The considered cases for the bin sets are as follows: a
set which consists of a single type of bin, a set of all unit vectors (all components are zero except for one),
unit prefix vectors (some prefix of the vector consists of ones only), and the set of all zero–one vectors.

35.8 Variations

35.8.1 Rectangle Stretching

Imreh [62] studied an oriented online strip packing problem where rectangles can be stretched in a way
that results in a larger height but the original area. Note that allowing stretching that increases the width
makes the problem trivial as all items would be stretched to have the same width as the bin. He showed
that the offline problem is polynomially solvable, and that if the online problem is considered under the
asymptotic performance ratio measure (and assuming an upper bound of 1 on the original height of any
rectangle), then the performance ratio can be made arbitrarily close to 1. Therefore, the main results are
for the absolute performance ratio. There are algorithms of performance ratios 6 and 4, and a lower bound
of 1.73 on the performance ratio of any online algorithm.

35.8.2 Items Appear from the Top

A “Tetris-like” online model was studied in a few papers. This is similar to strip packing, however, in this
model, a rectangle cannot be placed directly in its designated area, but it arrives from the top as in the
Tetris game, and should be moved continuously around only in the free space until it reaches its place (see
Figure 35.4), and then cannot be moved again.

In [63], the model was introduced by Azar and Epstein. In that paper, both the rotatable and the oriented
models were studied. For the rotatable model, a 4-approximation algorithm was designed. The situation
for the oriented problem is more difficult, as no algorithm with constant approximation ratio exists for

FIGURE 35.4 The process of packing an item in the “Tetris-like” model.
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unrestricted inputs. If the width of all items is bounded below by ε and/or bounded above by 1 − ε, the

authors showed a lower bound of �(
√

log 1
ε

) on the performance ratio of any online algorithm for any

deterministic or randomized algorithm. Restricting the width, they designed an O(log 1
ε

)-approximation
algorithm.

The oriented version of the problem was studied by Coffman et al. [64]. They assume a probabilistic
model where item heights and widths are drawn from a uniform distribution on [0, 1]. They show that
any online algorithm which packs n items has an asymptotic expected height of at least 0.313827n and
design an algorithm of asymptotic expected height of 0.369764n.

35.8.3 Dynamic Bin Packing

A multidimensional version of a dynamic bin packing model, which was introduced in Ref. [65] for the
one-dimensional case, was studied recently by Epstein and Levy [66]. This is an online model where items
do not only arrive but may also leave. Each event is an arrival or a departure of an item. Durations are
not known in advance, that is, an algorithm is notified about the time that an item leaves only upon its
departure. An algorithm may rearrange the locations inside bins, but the items may not migrate between
bins. In Ref. [66], the same problem was studied in multiple dimensions.

In two dimensions, they designed a 4.25-approximation algorithm for dynamical packing of squares,
and provided a lower bound of 2.2307 on the performance ratio. For rectangles the upper and lower
bounds are 8.5754 and 3.7, respectively. For three-dimensional cubes they presented an algorithm which
is a 5.37037-approximation, and a lower bound of 2.117. For three-dimensional boxes, they supplied a
35.346-approximation algorithm and a lower bound of 4.85383. For higher dimensions, they define and
analyze the algorithm NFDH for the offline box packing problem. This algorithm was studied before for
rectangle packing (two-dimensional only) [8], and for square and cube packing for any dimension [7,37],
but not for box packing. For d-dimensional boxes they provided an upper bound of 2 · 3.5d and a lower
bound of d +1. Note that, as already mentioned in this survey, the best bound known for the regular offline
multidimensional box packing problem is exponential as well. For d-dimensional cubes they provided an
upper bound of O

(
d

ln d

)
and a lower bound of 2.

One earlier paper by Coffman and Gilbert [67] studies a related problem. In this problem, squares of a
bounded size, which arrive and leave at various times, must be kept in a single bin. The paper gives lower
bounds on the size of such a bin, so that all squares can fit. It is not allowed to rearrange the locations in
the bin.

35.8.4 Packing Rectangles in a Single Rectangle

Another version is concerned with maximizing the number, area, or weight of a subset of the input
rectangles that can be packed into a larger rectangle (of given height and width). The maximization
problem with respect to the number of rectangles was studied already in 1983 by Baker et al. [68]. They
designed an asymptotic 4

3 -approximation. This offline problem was recently studied by Jansen and Zhang
[69,70]. The first paper considered the case of weighted rectangles and maximizing the total weight
packed, whereas the second one considered unweighted rectangles and maximizing the number of packed
rectangles. The problem is considered without rotation.

In [69], Jansen and Zhang proved that there exists an asymptotic FPTAS and an absolute PTAS, for
packing squares into a rectangle. For rectangles they gave an approximation algorithm with asymptotic
ratio of at most 2, and a simple one with an absolute ratio of 2 + ε. In [70], Jansen and Zhang gave a more
complicated algorithm for the weighted case with an absolute ratio of 2 + ε. This algorithm has higher
running time than the one for the unweighted problem. A special case of weights is simply the area of
rectangles. The area maximization problem was studied by Caprara and Monaci [71]. They designed an
algorithm with (absolute) approximation ratio of 3 + ε.

An online version was studied by Han et al. [72]. In this version, we are given a unit square bin, rectangles
arrive online, and the algorithm needs to decide whether to accept an arriving rectangle or not. The goal is
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again to maximize the packed area. They showed that if the algorithm is not allowed to remove rectangles
accepted in the past, no algorithm with constant approximation ratio exists. This holds already for squares.
It is easy to see that this holds with the following example. Take a first square which is very small and another
one which fills the bin completely. An algorithm must accept the first square and therefore cannot accept the
larger one. Next, they show that no algorithm with constant approximation ratio exists for rectangles, even
if the algorithm is allowed to remove previously accepted rectangles. Therefore, the paper studies removable
square packing. Before describing the results, we discuss a related paper that was used in this paper.

Januszewski and Lassak [73] studied a similar problem from the point of view of finding a threshold
α ≤ 1 such that a set of squares of total area of at most α can be always packed online in a bin, without
rearranging the contents of the bin. They showed that 5

16 is lower bound on α. Moreover, they considered
this problem for multidimensional cubes, and showed a lower bound of 1

2d −1
for d ≥ 5. For the packing

they used a nice tool which they called bricks. A brick is a rectangle, where the ratio of the maximum
between height and width to the minimum between the two remains the same after cutting the rectangle
into two identical parts. Clearly, this can work if the ratio is

√
2.

Han et al. [72] adopted this method. They showed that any algorithm has performance ratio of at least
φ + 1 ≈ 2.618. They designed a matching algorithm for the case where rearranging is allowed, and a
3-approximation algorithm without rearranging. A direct consequence is that a lower bound on α for two
dimensions is 1

3 .
Finally, another related problem is packing squares or rectangles into a square or rectangle of minimum

size, where arbitrary rotations are allowed (not just over 90◦). For example, five unit squares, can be packed
inside a square with side 2 + 1

2

√
2, by placing four squares in the corners and one in the center at a 45◦

angle. For a survey on packing equal squares into a square; see for example, Ref. [74]. Novotný [75] showed
that any set of squares with total area 1 can be packed in a rectangle of area at most 1.53 (without rotations).
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36.1 Introduction

Cutting and packing problems consist of placing a given set of (small) items into one or more (larger)
objects without overlap so as to minimize/maximize a given objective function. This is a combinatorial
optimization problem with many important applications in the wood, glass, steel, and leather industries, as
well as in Large Scale Integration (LSI) and Very Large Scale Integration (VLSI) design, newspaper paging,
and container and truck loading. For several decades, cutting and packing has attracted the attention of
researchers in various areas including operations research, computer science, manufacturing, etc.

Cutting and packing problems can be classified using different criteria. The dimensionality of a problem
is one of such criteria, and most problems are defined over one, two, or three dimensions. In this chapter
we consider two-dimensional problems. The next criterion to classify two-dimensional packing problems
is the shape of items to pack. We focus on the rectangle packing problem in this chapter. This problem has
been actively studied in the past few decades. When the shapes of the items to be packed are polygons or
arbitrary shapes, the problem is called irregular packing. We also discuss in this chapter recent research in
this area.

Almost all two-dimensional packing problems are known to be NP-hard, and hence it is impossible
to solve them exactly in polynomial time unless P = NP. Therefore, heuristics and metaheuristics are
very important to design practical algorithms for these problems. We survey practical algorithms for two-
dimensional packing problems in this chapter. We also survey various schemes used to represent solutions
to rectangle packing problem, and introduce algorithms based on these coding schemes.

The remainder of this chapter is organized as follows: Section 36.2 defines the rectangle packing problem
and its variations. Section 36.3 introduces coding schemes for the rectangle packing problem, which are used
to represent solutions. Section 36.4 presents heuristic algorithms, from the traditional to the latest ones,
for the rectangle packing problem. Section 36.5 discusses practical algorithms based on metaheuristics.
Sections 36.4 and 36.5 discuss computational results for the various algorithms on benchmark instances.
Section 36.6 defines the irregular packing problem, and practical algorithms for this problem are presented.

36-1
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36.2 Rectangle Packing Problem

We consider the following two-dimensional rectangle packing problem. We are given n items (small
rectangles) I = {1, 2, . . . , n}, each of which has width wi and height hi , and one or many large objects
(rectangles). We are required to place the items orthogonally without any overlap (an edge of each item
is parallel to an edge of the object) so as to minimize (or maximize) a given objective function. The
rectangle packing problem arises in many industrial applications, often with slightly different constraints,
and many variants of this problem have been considered in the literature. The following characteristics
are important to classify the problems [1,2]: type of assignment, assortment of objects, and assortment
of items. We will review some specific variations of the rectangle packing problem in this section. We
should mention two more important constraints for the rectangle packing problem: orientation and
guillotine cut constraint. As for the orientation of the items, we usually assume that “each rectangle has
a given fixed orientation” or “each rectangle can be rotated by 90◦.” Rotation of items is not allowed in
newspaper paging or when the items to be cut are decorated or corrugated, whereas orientation is free in
the case of plain materials, and so on. Guillotine cut constraint signifies that the items must be obtained
through a sequence of edge-to-edge cuts parallel to the edges of the large object (see Figure 36.1 for an
example), which is usually imposed by technical limitations of the automated cutting machines or the
material.

We introduce six types of rectangle packing problems that have been actively studied. For simplicity,
we define the problems assuming that each item has a fixed orientation and the guillotine cut constraint is
not imposed unless otherwise stated. It is straightforward to extend our definitions for other cases where
each item can be rotated by 90◦ and/or the guillotine cut constraint is imposed. We first consider two
types of typical rectangle packing problems with one large rectangular object, which may grow in one or
two dimensions, where all the items are placed disjointly. The problems are called strip packing and area
minimization.

Strip packing problem. We are given n items (small rectangles) each having width wi and height hi ,
and one large object (called a strip) whose width W is fixed, but its height H is variable. The objective is
to minimize the height H of the strip such that all items can be packed into the strip.

Area minimization problem. We are given n items each having width wi and height hi , and one large
rectangular object, where both its width W and height H are variables. The objective is to minimize the
area W H of the object such that all items can be packed into the object.

In Sections 36.3–36.5, we focus mainly on the strip packing (and area minimization) problem, which
is formally formulated as the following mathematical program:

minimize the height of the stripH (or the area of the large object W H)
subject to 0 ≤ xi ≤ W − wi , for all i ∈ I

0 ≤ yi ≤ H − hi , for all i ∈ I
(36.1)

(36.2)

(a) (b)
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FIGURE 36.1 Examples of placements with/without guillotine cut constraint. (a) Guillotine cut; (b) nonguillotine.
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At least one of the next four inequalities holds for every pair i and j :

xi + wi ≤ x j (36.3)

x j + w j ≤ xi (36.4)

yi + hi ≤ y j (36.5)

y j + h j ≤ yi (36.6)

where (xi , yi ) is the coordinate of the lower left corner of an item i . Constraints (36.1) and (36.2) mean
that all items must be placed into the large object, and Constraints (36.3)–(36.6) mean that no two items
overlap (i.e., each inequality signifies one of the four relative locations: left-of, right-of, above, and below).

Two other rectangle packing problems are the two-dimensional bin packing and knapsack problems that
have (many or one) fixed-sized objects.

Two-dimensional bin packing problem. We are given a set of items, where each item i has width wi

and height hi , and an unlimited number of large objects (rectangular bins) having identical width W and
height H . The objective is to minimize the number of rectangular bins used to place all the items.

Two-dimensional knapsack problem. We are given a set I of items, where each item i ∈ I has width wi ,
height hi , and value ci . We are also given a rectangular knapsack with fixed width W and height H . The
objective is to find a subset I ′ ⊆ I of items with the maximum total value

∑
i∈I ′ ci such that all items i ∈ I ′

can be packed into the knapsack.

For the two-dimensional bin packing problem, Lodi et al. [3] proposed practical heuristic and meta-
heutistic algorithms and performed computational experiments on various benchmark instances. For the
two-dimensional knapsack problem, Wu et al. [4] proposed heuristic algorithms that are effective for many
test instances.

We should also mention the following two problems: two-dimensional cutting stock and pallet loading.
For some industrial applications, such as mass production manufacturing, many small items of an identical
shape or relatively few classes of shapes are packed into the objects. The following two problems are useful
for modeling these situations.

Two-dimensional cutting stock problem. We are given a set of items each with width wi , height hi , and
demand di . We are also given an unlimited number of objects having identical width W and height H .
The objective is to minimize the number of objects used to place all the items (i.e., for each i , we place di

copies of item i into the objects).

Pallet loading problem. We are given sufficiently large number of items with identical size (w , h), and
one large rectangular object with size (W, H). The objective is to place the maximum number of items
into the object, where each item can be rotated by 90◦.

Note that the pallet loading problem with a fixed orientation of items is trivial to solve. Among many
studies on the two-dimensional cutting stock problem, Gilmore and Gomory [5] provided one of the
earliest solution methods. They proposed a column generation scheme in which new cutting patterns are
produced by solving a generalized knapsack problem. Recently, some practical algorithms for the two-
dimensional cutting stock problem have been proposed [6,7]. Morabito and Morales [8] proposed a simple
but effective algorithm for the pallet loading problem.

The complexity of the pallet loading problem is open (this problem is not known to be in class NP,
because of the compact input description), whereas the other problems we defined in this section are
known to be NP-hard.
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36.3 Coding Schemes for Rectangle Packing

In this section, we review coding schemes for rectangle packing problems. For simplicity, we focus on the
strip packing problem. An effective search will be difficult if we search the x and y coordinates of each
item directly, since the number of solutions is uncountable and eliminating the overlap between items is
not easy. To overcome this difficulty, various coding schemes have been proposed and many algorithms
for rectangle packing problems are based on some coding schemes.

A coding scheme consists of a set of coded solutions, a mapping from coded solutions to placements,
and a decoding algorithm that computes for a given coded solution the corresponding placement using the
mapping. (The mapping is sometimes defined by the decoding algorithm.) Properties of a coding scheme
(and a decoding algorithm) are given below:

1. There exists a coded solution that corresponds to an optimal placement.
2. The number of all possible coded solutions is finite, where a small total number is preferable

provided that property 1 is satisfied.
3. Every coded solution corresponds to a feasible placement.
4. Decoding is possible in polynomial time. Fast algorithms are more desirable.

Some of the coding schemes in the literature satisfy all of the above four properties, but others do not.
One of the most popular coding schemes is to represent a solution by a permutation of the n items,

where a coded solution (i.e., a permutation of n items) specifies the placement order. The number of all
possible coded solutions is O(n!), which is smaller than other coding schemes in the literature, and every
permutation corresponds to a placement without items overlapping. A decoding algorithm computes a
placement from a given coded solution by specifying the locations of the items one by one, which defines
the mapping from coded solutions to placements and is sometimes called a placement rule. The decoding
time complexity and the existence of a coded solution that corresponds to an optimal placement depend
on the decoding algorithms. In the literature, a number of decoding algorithms for permutation coding
schemes have been proposed. We will explain some typical decoding algorithms in Section 36.4, and
compare them theoretically and experimentally.

We now explain different types of coding schemes for rectangle packing problems. The schemes we
explain hereafter specify the relative locations for each pair of items by a coded solution. In other words,
for every pair of items, a coded solution determines one of the four inequalities (36.3)–(36.6), which must
be satisfied to avoid item overlap. The placement corresponding to a coded solution is the best one among
those that satisfy the relative locations specified by the coded solution.

One of the most popular coding schemes of this type is to represent a solution by an n-leaf binary tree [9].
This coding scheme can represent only slicing structures (in other words, each placement obtained by this
representation always satisfies the guillotine cut constraint). The leaves of a binary tree correspond to
items, and each internal node has a label “h” or “v,” where h stands for horizontal and v for vertical. This
coding scheme uses O(n) space to represent a solution, and the number of all possible coded solutions is
O(n!25n−3/n1.5) [9]. In this scheme, one of the four relative locations is assigned for each pair i and j of
items as follows: If i is a left descendant of an internal node u with “h” label and j is a right descendant
of the same internal node u (i.e., u is the least common ancestor of i and j ), then we must place i to the
left of j (i.e., xi + wi ≤ x j ). If the label of the least common ancestor is “v,” then we place i below j (i.e.,
yi + hi ≤ y j ). Figure 36.2 shows an example of a binary tree representation and a placement that satisfies
these constraints. For example, in the figure, there is an internal node with “h” label for which the node
for item 6 is a left descendant and the node for item 1 is a right descendant, and hence item 6 is placed
to the left of item 1; the node for item 4 is a left descendant and the node for item 3 is a right descendant
of the least common ancestor with “v” label, and hence item 4 is placed below item 3 and so forth. For
a given binary tree τ , let �τ denote the set of all placements that satisfy the above horizontal–vertical
constraints. The placement corresponding to a coded solution τ is one of the best (i.e., the most compact)
placements in �τ . Though �τ contains infinitely many placements for any τ , natural decoding algorithms
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FIGURE 36.2 A binary tree representation τ and a solution π ∈ �τ .
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FIGURE 36.3 A sequence pair representation σ and a solution π ∈ �σ .

for this coding scheme run in linear time with respect to the number of items, and computes one of the
best placements among �τ . Moreover, for any placement π that satisfy the guillotine cut constraint, there
exists a binary tree τ that satisfies π ∈ �τ . That is, the binary tree coding scheme satisfies all of the four
desirable properties of a coding scheme if the guillotine cut constraint is imposed.

Murata et al. [10] proposed a coding scheme called sequence pair. For the sequence pair representation,
a solution is represented by a pair of permutations σ = (σ+, σ−) of the n items (see Figure 36.3 for an
example). Based on this coded solution, we assign relative locations for each pair of items i and j as follows:
If item i is before item j in both permutations σ+ and σ−, then item i must be placed to the left of j .
If i is before j in σ+ and after j in σ−, then we place i above j . For example, in Figure 36.3, element 1
is before element 2 in both permutations, and hence item 1 is placed to the left of item 2; element 2 is
before element 3 in permutation σ+ and after element 3 in σ−, and hence item 2 is placed above item 3
and so on. For a given pair of permutations σ = (σ+, σ−), let �σ be the set of placements that satisfy the
above constraints. The placement corresponding to a coded solution σ is one of the best placements in
�σ . Murata et al. [10] proposed an O(n2) time decoding algorithm to obtain one of the best placements
π ∈ �σ for a given coded solution σ . Takahashi [11] improved the time complexity of the decoding
algorithm to O(n log n); Tang et al. [12] further improved it to O(n log log n). Moreover, for any feasible
placement π , there exists a coded solution σ that satisfies π ∈ �σ (such a pair of permutations σ can
be computed in O(n log n) time [13]). That is, the sequence pair coding scheme satisfies all of the four
desirable properties of a coding scheme.

Nakatake et al. [14] proposed a coding scheme called bounded sliceline grid (BSG). BSG consists of a
set of small rooms that are separated by horizontal and vertical segments, where the number of rooms in
the horizontal and vertical directions, denoted p and q , respectively, are parameters that satisfy pq ≥ n
(see Figure 36.4[a] with p = q = 6). It introduces one of the four orthogonal relations (left-of, right-of,
above, and below) uniquely for each pair of rooms (see Figure 36.4[b] and Figure 36.4[c]). In these figures,
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FIGURE 36.4 Rooms of bounded sliceline grid representation and relative locations.
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FIGURE 36.5 A bounded sliceline grid representation α and a solution π ∈ �α .

a room with label l (resp., r, a, b) is left-of (resp., right-of, above, below) the shaded room. A solution
is represented by an assignment of the items to rooms, where at most one item can be assigned to each
room. The assigned items inherit the relations defined on the rooms. Figure 36.5 shows an example of an
assignment of items to rooms and a placement that satisfy all specified constraints of relative locations. For
example, in the figure, item 3 is placed to the right of item 1, item 3 is placed below item 2, item 3 is placed
above item 4, and so forth. For a given assignment α, let �α be the set of all placements that satisfy the
constraints given by α. The placement corresponding to a coded solution α is one of the best placements
in �α . A decoding algorithm proposed by Nakatake et al. [14] runs in linear time with respect to the
number of small rooms pq , and can find one of the best placements π ∈ �α for a given coded solution α.
As for the existence of a coded solution that corresponds to an optimal placement, it is known that an
assignment α such as π ∈ �α always exists for any placement π if and only if p ≥ n and q ≥ n hold.
The BSG coding scheme with parameters p ≥ n and q ≥ n satisfies all of the four desirable properties
of a coding scheme.

There are many other coding schemes that describe the relative locations for each pair of items. Guo
et al. [15] proposed a tree representation called O-tree: Two ordered trees for the horizontal and vertical
directions are used to represent a coded solution. This coding scheme can represent nonslicing structures
and the number of all possible coded solutions is O(n!22n−2/n1.5); this is smaller than the number of
all coded solutions by the binary tree representation for slicing structures. There exists a coded solution
corresponding to any placement π that satisfies the bottom left (BL) stability; that is, in the resulting
placement, all items cannot be moved any further to the bottom or to the left. Chang et al. [16] extended
the result of Guo et al. [15]. They proposed another tree representation called B∗-tree; it is easy to implement
this data structure and a decoding algorithm for B∗-tree runs in linear time with respect to the number of
items. Sakanushi et al. [17] proposed another coding scheme called quarter-state sequence: They utilized
a string of items and labels to represent a solution and their decoding algorithm runs in linear time of the
number of items.

36.4 Heuristics for Rectangle Packing

In this section, we describe heuristic algorithms for rectangle packing problems. We first explain some
heuristic algorithms based on the permutation coding scheme. Those algorithms consist of two phases:
(1) construct a permutation and (2) place the items one by one according to the permutation.

For the first phase, a standard strategy to construct a permutation is “a larger item has higher priority
than a smaller one.” To realize this, the items are sorted by some criteria, for example, decreasing height,
decreasing width, or decreasing area. It is difficult to decide a priori which criterion is the best for numerous
instances that arise in practice. Hence, many algorithms generate several permutations with different
criteria, and apply a decoding algorithm to all such permutations.

Let us consider the second phase, that is, decoding algorithm for permutations. We first explain level
algorithms in which the placement is obtained by placing items from left to right in rows forming levels
(see Figure 36.6 for an example). The first level is the bottom of the object, and each subsequent level is
along the horizontal line coinciding with the top of the tallest item packed on the level below.

The most popular level algorithms are the next fit, first fit, and best fit strategies, which are extended
from the algorithms for the (one-dimensional) bin packing problem. Let i (i = 1, 2, . . . , n) denote the
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Level 1

Level 2

Level 3

FIGURE 36.6 An example of level packing.

current item to be placed, and s be the level created most recently, where the bottom of the object is level 1
created at the beginning of an algorithm.

• Next fit strategy. Item i is packed on level s left justified (i.e., place it at the leftmost feasible position)
if it fits. Otherwise, a new level (s := s + 1) is created and i is packed on it left justified.

• First fit strategy. We check whether or not item i fits from level 1 to level s , and pack it left justified
on the first level where it fits. If no level can accommodate i , it is placed on a new level as in the
next fit strategy.

• Best fit strategy. Item i is packed left justified on the level that minimizes the unused horizontal
space among those where it fits. If no level can accommodate i , it is placed on a new level as in the
next fit strategy.

Computation time of these algorithms is O(n), O(n log n), and O(n log n), respectively, if appropriately
implemented. The above strategies are illustrated by examples in Figure 36.7 (in this figure, items are sorted
by decreasing height and are numbered accordingly). The resulting placements of these algorithms always
satisfy the guillotine cut constraint. More precisely, they are the so-called two-stage guillotine placements
in that they can be cut out in two stages: the first stage for horizontal cuts and the second stage for vertical
cuts.

A different classical approach, and the most documented one, is the BL approach. The first algorithm of
this type was proposed by Baker et al. [18] in 1980, and some variants of this method have been proposed
in the last couple of decades. A common characteristic of this type of algorithms is to place items one by
one at the BL stable positions; that is, in the resulting placement, all items cannot be moved any further to
the bottom or to the left.

Baker et al. [18] used a BL rule that places each item at the leftmost point among the lowest possible
positions. This approach is called bottom left fill (BLF) strategy in Refs. [19,20], which is illustrated by an
example in Figure 36.8(a). The “x” marks in the figure show the BL stable positions. There are natural
algorithms that require O(n3) time in the worst case for this strategy, and Hopper and Turton implemented
one of them in their article [20]. Chazelle [21] devised an efficient algorithm that requires O(n2) time and
O(n) space in the worst case.

Jakobs [22] utilized another BL method: For each item, first place it at the top right location of the
object and make successive sliding moves down and to the left alternately as far as possible (see an example
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FIGURE 36.7 Three level algorithms for the strip packing problem: (a) next fit; (b) first fit; (c) best fit.
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FIGURE 36.8 Three bottom left algorithms for the strip packing problem: (a) Baker et al.; (b) Jakobs; (c) Liu and
Teng.

in Figure 36.8[b]). This strategy is called BL in Refs. [19,20] and it runs in O(n2) time, if appropriately
implemented. We will see a comparison of BL and BLF algorithms through our computational experiments
later on. Liu and Teng [23] developed another BL heuristics similar to Jakobs’s algorithm. In their strategy,
the downward movement has priority such that items slide leftward only if no downward movement is
possible (see Figure 36.8[c]). This algorithm also runs in O(n2) time.

There are more algorithms which utilize the permutation to represent a solution. For example, Lodi
et al. [3] proposed several decoding algorithms such as floor ceiling, alternate directions, and touching
perimeter, and experimentally compared these algorithms with other decoding algorithms in the literature.
Wu et al. [4] proposed complicated decoding algorithms, which runs in O(n4 log n) or O(n5 log n) time
and has achieved certain computational success.

We discuss a different type of heuristic algorithm proposed by Burke et al. [19] in 2004. This method
does not have a permutation of items to place, but dynamically decide the next item to place during the
packing stage. More precisely, it finds the lowest available gap (LAG) within the large object and then
places the item that best fits there (see Figure 36.9 for an example). This enables the algorithm to make
informed decisions about which item should be packed next and where it should be placed. A natural
implementation of this strategy runs in O(n2) time. We will also present experimental results for this
algorithm.

At the end of this section, we compare typical heuristic algorithms through computational experiments.
Test instances given by Hopper and Turton [20] were used for the experiments. There are seven different
categories C1, C2, . . . , C7 with the number of items ranging from 17 to 197, with each category having
three instances. The optimal solution for all instances are known; these instances have placements without
any dead space (in other words, these instances have perfect packings). The results of algorithms BL-R,
BL-DW, BL-DH, BLF-R, BLF-DW, and BLF-DH are taken from Ref. [20], where BL (resp., BLF) means
that items are placed with BL (resp., BLF) strategy into the object, and R, DW, and DH signify the types
of permutations: R means random permutation and DW (resp., DH) means that items are sorted by
decreasing width (resp., decreasing height). The results by Burke et al. reported in Ref. [19] algorithm
(denoted BKW) are also shown.

LAG LAG

LAGLAG

FIGURE 36.9 A heuristic algorithm for the strip packing by Burke et al. [19].
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TABLE 36.1 Solution Quality of Heuristic Algorithms for the Strip Packing Problem

C1 C2 C3 C4 C5 C6 C7

n 17 25 28 49 72 97 196

BL 25 39 33 33 31 34 41
BL-DH 17 68 27 21 18 19 31
BL-DW 18 31 24 18 22 21 29
BLF 14 20 17 15 11 12 10
BLF-DH 11 42 12 6 5 5 4
BLF-DW 11 12 12 5 5 5 5
BKW 12 7 10 4 3 2 2

Computational results are shown in Table 36.1. Each row corresponds to a heuristic algorithm and each
column corresponds to a category of instances, where n is the number of items for each instance. In this
table, the relative distances in percentage between the optimal and resulting solutions are reported. The
computation time for each instance is within 1 second on a PC with an 850 MHz CPU (for BKW) or a 200
MHz CPU (for others). From Table 36.1, we can observe that BLF outperformed BL by up to 25% and
that preordering the items by decreasing width or decreasing height for BL and BLF algorithms increased
the packing quality by up to 10% compared to random permutations. Moreover, the algorithm by Burke
et al. outperformed other algorithms, especially for large instances.

36.5 Metaheuristics for Rectangle Packing

In the last decade, many local search and metaheuristic algorithms for rectangle packing problems have
been proposed. Dowsland [24] was one of the early researchers who implemented metaheuristics for
rectangle packing problems. Her simulated annealing (SA) algorithm explores both feasible and infeasible
(i.e., some items overlap) solutions. During the search, the objective is to reduce the overlapping area.
Computational results for small problem instances are reported in Ref. [24].

Let us explain some metaheuristic algorithms based on the permutation coding scheme. These algo-
rithms consist of two phases: (1) find a good permutation using metaheuristics and (2) the decoding
algorithm places the items one by one following the permutation order. In Ref. [22], Jakobs proposed a
metaheuristic algorithm for the strip packing problem. In this algorithm, he uses a genetic algorithm (GA)
to find a good permutation, and places items by using the BL strategy explained in the previous section. He
treats not only rectangle packing problems but also irregular packing problems, and reports several com-
putational results. Liu and Teng [23] also proposed a GA algorithm using their BL type decoding algorithm.

In Ref. [20], Hopper and Turton compare the performance of various metaheuristics (multistart local
search [MLS], SA, GA, and so on) with two decoding rules on small and large test instances. The compu-
tational results reported in Ref. [20] are shown in Table 36.2. The first decoding rule is the BL heuristic
proposed by Jakobs [22], and the second one is the BLF strategy proposed by Baker et al. [18]. The stopping
criterion for each algorithm is a fixed number of iterations, and the computation time for each instance
is about 50,000 times as large as the simple heuristic algorithms (BL and BLF). The representation of
this table is similar to that of Table 36.1. From this table, we observe that the performance of the hybrid

TABLE 36.2 Solution Quality of Metaheuristic Algorithms for the Strip Packing Problem

C1 C2 C3 C4 C5 C6 C7

GA+BL 6 10 8 9 11 15 21
SA+BL 4 7 7 6 6 7 13
MLS+BL 9 18 11 14 14 20 25
GA+BLF 4 7 5 3 4 4 5
SA+BLF 4 6 5 3 3 3 4
MLS+BLF 7 10 7 7 6 7 7
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algorithms is strongly dependent on the decoding rule and the instance size. Moreover, it is also reported
that certain computation time is needed to attain better solutions with metaheuristics than the solutions
obtained by well-designed heuristics such as BLF-DW and BLF-DH.

We now discuss metaheuristic algorithms based on other coding schemes. For the sequence pair rep-
resentation, Murata et al. [10] proposed an SA algorithm and Imahori et al. [13] proposed an iterated
local search (ILS) algorithm. They used metaheuristics to find a good coded solution where each coded
solution is evaluated with its own decoding algorithms. Chang et al. [16] and Nakatake et al. [14] proposed
SA algorithms using B∗-trees and BSG, respectively. One of the advantages of the above algorithms is
generality: Imahori et al. [13] incorporated “spatial cost functions” into their algorithms, which was used
to handle various types of rectangle packing problems and scheduling problems. Chang et al. [16] and
Nakatake et al. [14] designed algorithms that can treat the rectangle packing problem with additional
constraints such as preplaced items and soft modules.

Recently, more effective algorithms for rectangle packing problems have been proposed. Lesh et al. [25]
proposed a stochastic search variation of the bottom left heuristics for the strip packing problem. Their
algorithm outperforms other heuristic and metaheuristic algorithms based on the BL strategy reported
in the literature. Furthermore, they incorporated their algorithm in an interactive system that combines
the advantages of computer speed and human reasoning. Using the interactive system, they succeeded in
producing significantly better solutions than their original algorithm quickly.

Imahori et al. [26] proposed an improved metaheuristic algorithm based on sequence pair representa-
tion. Metaheuristic algorithms generate numerous number of coded solutions and evaluate all of them.
Hence, the efficiency of metaheuristic algorithms strongly depends on the time complexity of decoding
algorithms. Imahori et al. proposed new decoding algorithms to evaluate all coded solutions in various
neighborhoods efficiently. As a result, they attained an amortized constant time to evaluate one coded
solution in basic neighborhoods.

Bortfeldt [27] proposed a GA for the strip packing problem that works without any encoding of
solutions. Instead of using a coding scheme, fully defined layouts are directly manipulated by specific
genetic operators. He conducted thorough computational experiments using existing benchmark instances
with up to 5000 rectangles, and compared his algorithm with 11 competing methods that were proposed
in 1993–2004. He reported that his GA performed best among them.

For more information of the metaheuristic algorithms applied to rectangle packing problems, we refer
the reader to articles by Hopper and Turton [20] and Bortfeldt [27].

36.6 Irregular Packing Problem

In this section, we consider the two-dimensional irregular packing problem, which has been actively studied
in the last decade. The irregular packing problem has many practical applications, for example, the garment,
shoe, and shipbuilding industries, and many variants of this problem have been considered in the literature.
Among the numerous variants of this problem, the irregular strip packing problem has been studied
extensively.

Irregular strip packing problem. We are given n items of arbitrary shapes, and one object (called a strip)
with constant width W but variable height H . The objective is to minimize the height H of the strip such
that all the items can be packed into the strip.

In this section, we mainly focus on fixed orientation packing. The problem in which items can be
rotated (freely or by some fixed degrees) has also been studied in the literature. One of the main differences
between rectangle and irregular packing problems is that the intersection test between irregular items
is considerably more complex than the case with rectangular items. To overcome this difficulty, some
approximation techniques and geometric algorithms have been incorporated into the packing algorithms.

One popular idea for speeding up the intersection test is to represent the items (irregular shapes) ap-
proximately. Oliveira and Ferreira [28] proposed two approaches to the irregular strip packing problem,
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and one of them uses this type of approach. Their approach is based on a raster representation (in other
words, bitmap representation) of the irregular shapes to be placed. This approximation allows a quick test
overlapping, but suffers from inaccuracy, caused by the approximation inherent in the raster representa-
tion. Their another approach uses a polygon-based representation that does not use any approximation
technique. Both methods allow overlap in the solutions, and the extent of overlap is penalized by an eval-
uation function. They try to find a good solution via SA, where the algorithms aim to reduce the overlap
to zero.

Okano [29] proposed a heuristic algorithm for the irregular two-dimensional bin packing problem using
a scanline representation. He approximates a two-dimensional item with a set of parallel line segments.
He also uses a clustering technique; some items are gathered and packed tightly, and then these items are
treated as one new item. Okano designed his algorithm for the irregular two-dimensional bin packing
problem; however, his technique is also useful for treating the irregular strip packing problem. He conducted
computational experiments with real instances from a shipbuilding company, and reported that the quality
of the resulting layouts was sufficiently high for practical use.

Jakobs [22] used another type of approximation scheme; for all irregular shapes, the minimum bounding
rectangles of the given items are calculated and his algorithm treats these rectangles instead of the original
shapes. For these shapes, a good placement is computed by his BL decoding algorithm and GA techniques.
After finding a good placement for the rectangles, the algorithm replaces rectangles with the original
irregular shapes, and computes a better placement of the irregular items. He reported computational
results for this algorithm. Jakobs also discussed an idea of clustering several shapes, and finding the
minimum bounding rectangle of several items.

Dighe and Jakiela [30] proposed an algorithm for the irregular strip packing problem, which is based
on a clustering method with a tree structure. Their algorithm uses a tree structure to represent a solution:
The leaves of a tree correspond to items, and clustering operations are applied to items from the leaves to
the root of the tree. To find a good coded solution (i.e., tree), they utilized GA. Dighe and Jakiela created
new test instances and conducted computational experiments on these instances.

One of the most popular geometric techniques used for the intersection test is no-fit polygon. The concept
of no-fit polygon was introduced by Art [31] in 1966, who used the term “shape envelope” to describe
the positions where two items can be placed without intersection. Albano and Sapuppo [32] proposed an
algorithm to solve the irregular strip packing problem with this geometric technique. This was the first
paper that used the term “no-fit polygon.” This concept is also known as Minkowski sums, and is utilized
in various fields such as motion planning for polygonal robots.

The no-fit polygon of item j relative to item i (NFPi, j ) is the set of all loci of the reference point of
item j (denoted R j ) such that items i and j have a common point when the position of item i is fixed
(each item is considered as the set of points on the boundary and inside it). If both items i and j are
convex, the boundary of NFPi, j is the trace of R j when item j slides along the boundary of item i . See
Figure 36.10 for an example of the no-fit polygon NFPi, j of convex polygons i and j . From the definition
of no-fit polygons, it follows that

• if the reference point R j of item j is placed in the interior of NFPi, j , then item j overlaps item i ;
• if R j is placed on the boundary of NFPi, j , then item j touches item i ;
• if R j is placed in the exterior of NFPi, j , then item j neither overlaps nor touches item i .

i

j

Rj

i

NFPi, j

FIGURE 36.10 An example of the no-fit polygon NFPi, j of convex items i and j .
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Holes

Leading
edge

FIGURE 36.11 The leading edge and holes in a layout of irregular shapes.

The problem of finding the relative position of two polygons is transformed into a simpler problem of
finding the relative position of one point and one polygon. To achieve a nonoverlapping compact layout,
each item should have its reference point on the boundary of at least one no-fit polygon and in the exterior
of all the other no-fit polygons.

Albano and Sapuppo [32] proposed an algorithm to solve the irregular strip packing problem using
no-fit polygons. They approached the problem using a BL algorithm, which utilized the no-fit polygon to
reduce the geometric complexity of the packing process. Their algorithm places each item one by one at
the right frontier called the leading edge of the current layout only, that is, without hole filling capabilities.
See Figure 36.11 for an example of the leading edge and holes in a layout. Blazewicz et al. [33] presented an
extension of the work performed by Albano and Sapuppo [32]. Their method is an extension of the BLF
algorithm; that is, their approach attempts to fill holes in the existing layout before attempting to place an
item on the leading edge. Their algorithm utilizes the tabu search technique to produce moves from one
solution to another.

Oliveira et al. [34] also tackled the irregular strip packing problem using no-fit polygons. Their algorithm
places all small items one by one at a nonoverlapping position touching at least one item already placed.
Several criteria to choose the next item to place and its orientation were proposed (in this article, they treated
a problem such that each item can be rotated by some fixed degrees). Different evaluation functions were
also proposed to evaluate partial solutions and to decide the position of each item. A total of 126 variants
of the algorithm, generated by the complete set of combinations of criteria and evaluation functions, were
computationally compared. In their computational experiments, they solved several types of test instances;
test instances from a fabric cutting company and a test instance generated by Blazewicz et al. [33]. Oliveira
et al. compared their results against an implementation of Albano and Sapuppo’s algorithm [32], and
against results from Blazewicz et al. [33]. In some cases, their new algorithm generated better solutions
than the best known solutions in the literature; more precisely, their algorithm generated solutions that
ranged from 6.2% better to 4% worse than the best known results.

Gomes and Oliveira [35] developed shape-ordering heuristics for an extended irregular packing algo-
rithm similar to that given by Oliveira et al. [34]. The algorithm is improved by the introduction of the
inner-fit rectangle, which is derived from the concept of no-fit polygon and represents the feasible set of
points for placing a new polygon inside the object. In addition to this extension of geometric techniques,
the paper introduces a 2-exchange heuristic for manipulating a permutation that specifies the order of
placing items one by one. They generated some initial permutations with various criteria, for example,
random, decreasing order of area, decreasing order of the longest length of items, and improved them using
the 2-exchange heuristic over a number of iterations. In [35], they conducted thorough computational
experiments and compared the proposed algorithm with existing algorithms. They improved almost all
best known solutions for well-known benchmark instances (except for an instance called SHAPE0).

Gomes and Oliveira [36] also developed a hybrid algorithm of simulated annealing with linear pro-
gramming (LP) technique to solve the irregular strip packing problem. In this algorithm, a neighborhood
structure based on the exchange of items on the layout was used for SA. For a given layout (which is neither
feasible nor tight), they solved LP to locally optimize the layout. Computational tests were conducted using
15 benchmark instances that are commonly used in the literature, and the best results published so far
were improved for all instances by their new algorithm.
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Burke et al. [37] proposed a heuristic algorithm for the irregular strip packing problem with new
shape overlap resolution techniques applied to the given shapes directly (i.e., without reference to no-fit
polygons). In this article, they treated not only polygons (i.e., shapes with line representation) but also
shapes that incorporate circular arcs and holes, and proposed overlap resolution techniques for line &
line, line & arc, and arc & arc. Items are placed one by one according to a permutation (coded solution)
with the BLF strategy, and tabu search is used to find a good permutation. They conducted computational
experiments on 26 existing benchmark instances and 10 new test instances with items having circular arcs
and holes. Their technique produced 25 new best solutions for the 26 existing benchmark instances; most
of them were found within 5 minutes on a PC with a 2 GHz CPU.

36.7 Conclusions

In this chapter, we surveyed practical algorithms for the two-dimensional rectangle packing problem and
the irregular packing problem, both of which have many industrial applications. For the rectangle packing
problem, we first introduced some coding schemes (in other words, how to represent a solution) such as
permutation, binary tree, sequence pair, and BSG. We then explained various heuristic and metaheuristic
algorithms, most of which are based on these coding schemes. For some representative algorithms, we re-
ported computational results on benchmark instances and compared them. The irregular packing problem
has also been studied extensively in the last decade. The main difference between rectangle and irregular
packing problems is that the intersection test between irregular items is considerably more complex. To
overcome this difficulty, some different types of methodologies have been proposed; no-fit polygon is one
of the representative and effective ones. We explained some heuristic and metaheuristic algorithms based
on these techniques for the irregular packing problem.

The survey in this chapter is by no means comprehensive, but we hope this gives valuable information
to the readers who are interested in devising practical algorithms for cutting and packing problems.
Fortunately, there have been many survey papers (30 or more in these 20 years) on cutting and packing
problems; for example, Dyckhoff [1] and Wäscher et al. [2] presented typologies of cutting and packing
problems and categorized existing literature, and Hopper and Turton [20] investigated heuristic and
metaheuristic algorithms for the rectangle packing problem. Chapters 32–35, 78, and 79 of this handbook
may also be useful for readers who are interested in related topics.
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37.1 Introduction

Packing and stabbing (or covering) problems are two basic problems in combinatorial optimization.
Apart from the fact that they arise in many practical applications, investigating these problems improves
our understanding of fundamental issues in combinatorial optimization. Admittedly, the generality of a
packing or a stabbing problem has its price: When it comes to solving such a problem, and when one
insists that an optimal solution is produced for all instances, one needs to accept that, for some instances,
large running times are unavoidable. Moreover, when one restricts oneself to polynomial-time algorithms,
only very weak statements concerning the quality of the solutions found can be made (see, e.g., Chapter 1,
Ausiello et al. [1] or Vazirani [2] for an introduction and terminology).

Here, we focus on a special case of these two problems. On the one hand, by studying a (geometric) special
case, we enter the world of polynomial-time algorithms that admit a constant performance guarantee; on
the other, this special case is still general enough to admit a variety of applications.

As an appetizer, consider the following two questions dealing with intervals on the line. Imagine that
n intervals (li , ri ], i = 1, . . . , n, etc. on the line are given; further, we say that two intervals are disjoint
when their intersection is empty, interval i contains point p when li < p ≤ ri , and interval i is stabbed by
point p when interval i contains p.

Question 1. Select as many pairwise disjoint intervals as possible.

Question 2. Stab every interval at least once using as few points as possible.

These two questions are, in fact, easy to answer. Indeed, it is well known that the following rule does
the job. After sorting the intervals in nondecreasing order with respect to the ri ’s, repeat the following
instructions iteratively: (i) select the remaining interval with the smallest ri , (ii) discard all intervals
containing ri , and (iii) add point ri to the set of points. Essentially, this rule solves an independent set
problem, and a clique cover problem, in an interval graph.

37-1
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This chapter deals with generalizations of this setting. We consider the case when the set of intervals
is partitioned into, say m, subsets such that at most one interval of a subset can be selected (while still
requiring disjointness). Such a subset of intervals is sometimes referred to as a job. Even more generally, we
consider the problems that arise when a given number of intervals from a subset can be selected, and when
the disjointness restriction is replaced by allowing a given number of intervals to intersect each other. Also,
weights for the intervals are considered.

In the sequel we formulate precisely the problems we consider, describe previous research, and explain
the setup of this chapter. Our main focus is on the description of a generic primal-dual algorithm for a
weighted set packing problem (WSP), and how this method works for our particular geometric setting.
This chapter is based on a part of the Ph.D. thesis of Kovaleva [3].

Preliminaries
We use an underlying grid to formulate our problems. Given is a grid consisting of t columns, numbered
consecutively from left to right, and m numbered rows. Furthermore, given is a set of intervals I =
{1, 2, . . . , n} lying on the rows of the grid. An interval i ∈ I is specified by the triple li , ri , ρi , where li , ri

are the indices of the left- and the rightmost columns intersecting interval i and ρi is the index of the row
where interval i lies. For each column c , row r , and interval i we are given positive integral parameters
vc , ur , and pi , respectively, referred to as the column, row, and interval capacities. For each interval i we
are given a positive integral parameter wi referred to as the interval demand. We assume that the intervals
are ordered according to nondecreasing ri . We refer to the family of inputs that arise in this way as Job
Interval instances (JI). Thus, an instance I of JI can be seen as a collection of numbers t, m, for each
i ∈ I : li , ri , ρi , pi , wi , for each c = 1, . . . , t : vc , and for each r = 1, . . . , m : ur .

We use the following terminology in the sequel: Column c is said to stab interval i if column c intersects
interval i , that is, li ≤ c ≤ ri . Also, row ρi is said to stab interval i if interval i lies on row ρi .

For each instance I of JI we formulate the following two problems:

Job Interval Packing Problem (JIP)
For each interval i ∈ I specify an integral multiplicity xi such that

• it does not exceed the interval capacity pi ,
• for each column c the sum of multiplicities of the intervals stabbed by column c does not exceed the

column capacity vc ,
• for each row r the sum of multiplicities of the intervals stabbed by row r does not exceed the row capacity

ur ,
• the total demand

∑
wi xi is maximized.

Job Interval Stabbing Problem (JIS)
For each column c, row r , and interval i specify integral multiplicities yc , zr , and si respectively, such that

• for each interval i the sum of the multiplicities of the columns stabbing interval i plus the multiplicity
of the row stabbing interval i plus the multiplicity of interval i equals at least its demand wi ,

• the total capacity
∑t

c=1 vc yc + ∑m
r=1 ur zr + ∑n

i=1 pi si is minimized.

One may interpret the interval demands wi as interval weights in JIP and the column, row and interval
capacities vc , ur , pi as column, row, and interval weights in JIS. However, in this chapter we refer to these
parameters as demands and capacities to keep the terminology uniform for both problems.

In this chapter we describe a generic primal-dual algorithm and show how it can be applied to two
special cases of JIP and JIS. The first special case deals with instances where all the column, row, and
interval capacities are unit, that is, vc = ur = pi = 1, ∀c , r, i . We refer to the family of inputs sat-
isfying this condition as JI with unit capacities. The second special case assumes that all the interval
demands are unit, that is, wi = 1, ∀i = 1, . . . , n. The family of these inputs is referred to as JI with unit
demands.
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Below we give natural Integer Linear Programming (ILP) formulations of JIP and JIS:

JIP: Maximize
n∑

i=1

wi xi (37.1)

subject to
∑

i :ρi =r

xi ≤ ur ∀r = 1, . . . , m (37.2)

∑

i :c∈[li ,ri ]

xi ≤ vc ∀c = 1, . . . , t (37.3)

xi ≤ pi ∀i = 1, . . . , n (37.4)

xi ∈ Z
1+ ∀i = 1, . . . , n (37.5)

JIS: Minimize
t∑

c=1

vc yc +
m∑

r=1

ur zr +
n∑

i=1

pi si (37.6)

subject to zρi +
∑

c∈[li ,ri ]

yc + si ≥ wi ∀i = 1, . . . , n (37.7)

zr , yc , si ∈ Z
1+ ∀r, c , i (37.8)

Observe that for any instance I of JI the Linear Programming (LP) relaxations of these ILP formulations
(which arise when we substitute the integrality constraints [37.5] and [37.8] by nonnegativity constraints
xi ≥ 0, ∀i = 1, . . . , n and zr , yc , si ≥ 0, ∀r, c , i , respectively) constitute a primal-dual pair of LP
problems. It follows then from the strong duality theorem for linear programming that for any instance
I , the LP relaxations of JIP and JIS have the same optimum value, which we denote by LP(I), and thus
the following holds:

JIP(I) ≤ LP(I) ≤ JIS(I) (37.9)

where JIP(I) and JIS(I) are the optimum values of JIP and JIS for I , respectively.
We say that problems JIP and JIS are weakly dually related and establish the following result:

Lemma 37.1 (Weak duality lemma for JIP and JIS)

For any instance I of JI, for any feasible solution to JIP with value JIPfeas(I) and any feasible solution to JIS
with value JISfeas(I) holds:

JIPfeas(I) ≤ JISfeas(I).

Proof
Follows from (37.9).

Previous Research
JIP and its special cases have received a great deal of attention in the literature. Its applications, mentioned
by different authors, include printed circuit board assembly, combinatorial auctions, satellite photography,
computational biology, throughput scheduling [4–7]. JIP is MAX SNP-hard even if all the parameters are
unit ([7]; this implies that there is no polynomial-time approximation scheme for JIP unless P = NP). A
greedy 1/2-approximation algorithm for JIP with unit capacities and demands (i.e., ur =vc = pi =wi =
1, ∀c , r, i) is described in Spieksma [7]. A better approximation guarantee for this case has been found
by Chuzhoy et al. [8]. They present an algorithm with performance guarantee (e − 1)/e − ε ≈ 0.63 − ε,
for any ε > 0, exploiting a sophisticated technique involving randomized LP-rounding. Bar-Noy et al. [6]
describe a (1/2 − ε)-approximation algorithm for JIP with unit capacities (i.e., ur =vc = pi =1, ∀c , r, i)
using an LP-rounding technique. One can easily generalize this algorithm to JIP (with arbitrary capacities
and demands) and, using the ideas introduced by Calinescu et al. [9], improve the approximation factor
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to 1/2. The resulting 1/2-approximation algorithm (which involves solving an LP problem) has to our
knowledge so far the highest approximation factor for JIP. Combinatorial 1/2-approximation algorithms
for JIP with unit capacities are described by Berman and DasGupta [4] and Bar-Noy et al. [10]. In Ref. [5]
the performance of greedy algorithms for JIP with constant column capacity and unit row capacity (i.e.,
vc = v, ∀c , ur = 1, ∀r ) is investigated using competitive analysis.

So far JIS has not been as extensively studied as JIP. Applications of JIS that have been mentioned
in the literature include military and medical applications [11]. JIS is also MAX SNP-hard even if all
the parameters are unit [12]. Recently, Kovaleva and Spieksma [13] describe a e

e−1 -approximation algo-
rithm for JIS with unit demand. This algorithm is based on solving the linear programming relaxation
of constraints (37.6)–(37.8), and rounding this solution to an integral one. Earlier work is described
in Gaur et al. [14] who consider the so-called rectangle stabbing problem, which generalizes JIS with
unit demands to the case where rectangles intersecting several rows of the grid are given instead of
intervals; their work implies a 2-approximation for JIS with unit demand. Hassin and Megiddo [11]
describe a combinatorial 2 − 1

K +1 -approximation algorithm for the case of JIS with unit capacities and
demands, where each interval is intersected by exactly K columns, and a 2-approximation for a slightly
more general case, when each interval is intersected by the same number of columns.

Outline of the Chapter
Section 37.2 is devoted to JI with unit capacities. We first describe a generic primal-dual algorithm, called
Local Covering, for the WSP (Section 37.2.1) and then specify a setup of Local Covering for JIP with
unit capacities, yielding algorithm ALG1 (Section 37.2.2). We also give conditions which guarantee that
a particular setup of Local Covering yields a constant factor approximation algorithm. This algorithm is
in fact a primal-dual interpretation of the Opportunity Cost algorithm described by Akcoglu et al. in [15],
which is in turn based on the local-ratio technique, introduced by Bar-Yehuda and Even [16] and later
elaborated upon by Bar-Noy et al. [10].

A distinctive feature of the primal-dual algorithm ALG1 described in Section 37.2.2 is that it simul-
taneously delivers two feasible solutions, one for JIP and one for JIS with unit capacities. Moreover, we
show that their values are within a factor of 2 of each other. The weak duality relation between JIP and JIS
implies then that these solutions are respectively a 1/2-approximation for JIP with unit capacities and a
2-approximation for JIS with unit capacities. This analysis is tight, that is, the approximation guarantees
cannot be improved by carrying out a better analysis of the algorithm.

Note that, when viewed as a 1/2-approximation algorithm for JIP, ALG1 behaves similar to the algorithms
described previously by Berman and DasGupta [4] and Bar-Noy et al. [10].

In Section 37.3 we consider JI with unit demands. It is easy to see that JIS with unit demands is a
special case of the the weighted hitting set problem. Following the framework of the generic primal-dual
algorithm with reverse delete step described in Ref. [17] for the weighted hitting set problem, we develop
a primal-dual approximation algorithm ALG2. Similar to ALG1 it returns two feasible solutions, one for
JIS and the other for JIP with unit demands. Again, we show that their values are within a factor of 2 of
each other. This makes ALG2 a 1/2-approximation algorithm for JIP and a 2-approximation algorithm to
JIS with unit demands.

Note that the algorithms described here are combinatorial and do not require solving a linear
program.

37.2 The Case of Unit Capacities

37.2.1 The Local Covering Algorithm for the Weighted Set Packing Problem

Consider the WSP: given is a collectionS of subsets of a finite ground setE . For each subset s ∈ S a nonnegative
weight ws is given. Find a maximum-weight collection A of disjoint subsets from S.
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Below we give a natural ILP formulation of WSP, where we use the characteristic vector of A,χ ∈ {0, 1}|S|,
as a vector of decision variables:

WSP: Maximize
∑

s∈S
ws χs (37.10)

subject to
∑

s :e∈s

χs ≤ 1 ∀e ∈ E (37.11)

χs ∈ {0, 1} ∀s ∈ S (37.12)

By substituting nonnegativity constraints χs ≥ 0 ∀s ∈ S for integrality constraints (37.12), we obtain
the LP relaxation of this formulation.

Let us also introduce the dual linear problem to this LP relaxation (here we use γ ∈ R
|E |
+ for a vector of

dual variables):

Minimize
∑

e∈E
γe (37.13)

subject to
∑

e∈s

γe ≥ ws ∀s ∈ S (37.14)

γe ≥ 0 ∀e ∈ E (37.15)

For ease of discussion let us introduce some terminology. We say that

• an element e ∈ E and a subset s ∈ S are incident to each other if e ∈ s ;
• the coverage of a subset s ∈ S by a vector γ ∈ R

|E |
+ is a value equal to the sum of the elements of γ

corresponding to the elements e belonging to s , that is,
∑

e∈s γe ;
• a subset s ∈ S is covered if its coverage equals at least ws . Otherwise, we say that s is violated;
• a subset s1 is a neighbor of a subset s2 if they share a common element;
• N(s ) is the set of all the neighbors of s . Note that s ∈ N(s );
• a feasible solution χ to the ILP formulation (37.10)–(37.12) as well as the corresponding set A ∈ S

is a feasible packing;
• a feasible solution γ to the LP formulation (37.13)–(37.15) is a feasible covering.

Definition 37.1

For a given vector γ ∈ R
|E |
+ and a subset s ∗ let us call a vector δ ∈ R

|E |
+ satisfying:

∑
e∈s δe ≥ min(ws −∑

e∈s γe , ws ∗ − ∑
e∈s ∗ γe ), ∀s ∈ N(s ∗), a local covering for γ in s ∗.

Let us now describe a generic primal-dual algorithm local covering for WSP. The framework of the
algorithm is the following: Initially, all the dual variables γe are zero and A is empty. Until γ becomes a
feasible covering do

• select (some) subset s , violated by the current γ , and push it on a stack,
• construct a local covering δ for γ in s ,
• increment vector γ by the the values of vector δ.

When γ becomes a feasible covering, pop the subsets from the stack iteratively and each time add a subset
to A if this does not violate the feasibility of A.

Figure 37.1 gives a formal description of local covering (notice that δ ∈ R
|E |
+ , � ∈ R+, l ∈ N).

Observe that it is not exactly specified in the algorithm how s l and δ are selected. The description of
these selection procedures is left to a particular setup. It does not make sense to discuss implementation
and efficiency of the algorithm in such a general setting. Let us only establish the following result:
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1. γ ← 0

2. A ← ∅

3. l ← 0

4. Until γ is a feasible covering
l ← l + 1
Select sl such that     e∈sl γe < wsl

γ ← γ + δ

5. For l downto 1
if A ∪ {sl} is feasible then A ← A ∪ {sl}

6. Return A (and γ)

∆ ← wsl −    e∈sl γe

Find δ ∈ R+
|E| s. t.:    e∈s δe ≥ min(ws −    e∈s γe, ∆), ∀s ∈ N(sl)

FIGURE 37.1 Algorithm Local Covering.

Theorem 37.1

For any instance I of WSP, the set A and the vector γ returned by local covering are a feasible packing and a
feasible covering respectively. Moreover, if � and δ found by the algorithm at each iteration satisfy:

∑

e∈E
δe ≤ β · �

then
∑

e∈E
γe ≤ β

∑

s∈A

ws

Proof
The feasibility of A and γ is obvious. Let us establish the relation between their values. Let p be the number
of iterations made by the algorithm at step 4. Observe that p is at most |S| since at each iteration the
number of violated subsets decreases by at least 1 and the iterations stop when there is no more violated
subset. Let �l , δl and γ l (l = 1, . . . , p) be the values of �, vector δ, and vector γ respectively at the end
of the l th iteration of step 4. Let γ 0 be a zero vector. So we have γ l = γ l−1 + δl , ∀l = 1, . . . , p. The
condition of the theorem can be written as

∑

e∈E
δl

e ≤ β · �l ∀l = 1, . . . , p

Further, let Aq be the state of set A at the end of the loop of the cycle at step 5, corresponding to l = q .
Let Ap+1 be ∅. Then we have ∅ = Ap+1 ⊆ Ap ⊆ · · · ⊆ A1.

We show that for each l = 1, . . . , p + 1

∑

e∈E

(
γ p

e − γ l−1
e

) ≤ β
∑

s∈Al

(

ws −
∑

e∈s

γ l−1
e

)

(37.16)

Then for l = 1, since γ 0 is a zero vector and A1 is the set A returned by the algorithm, we obtain the result
of the theorem.

We use induction on l = p + 1, . . . , 1. The basis of induction is l = p + 1. Then inequality (37.16)
trivially holds, since Ap+1 = ∅. Suppose the inequality is proven for l = j + 1. Let us prove it for l = j .
So, we have

∑

e∈E

(
γ p

e − γ j
e

) ≤ β
∑

s∈A j+1

(

ws −
∑

e∈s

γ j
e

)

(37.17)
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and the theorem will be established if we show that

∑

e∈E

(
γ p

e − γ j−1
e

) ≤ β
∑

s∈A j

(

ws −
∑

e∈s

γ j−1
e

)

(37.18)

First, let us show that the following inequality holds:

∑

s∈A j

(

ws −
∑

e∈s

γ j−1
e

)

≥
∑

s∈A j+1

(

ws −
∑

e∈s

γ j
e

)

+ � j (37.19)

There are two cases possible: either A j = A j+1 or A j = A j+1 ∪ {s j }.
Consider the first case. Suppose A j = A j+1. Clearly, this case is only possible if A j+1 contains a

neighbor of subset s j , say subset s q , that is, s q ∈ N(s j ). Consider γ j , it is equal to γ j−1 + δ j , where δ j

satisfies

∑

e∈s

δ j
e ≥ min

(

ws −
∑

e∈s

γ j−1
e , � j

)

, for all s ∈ N(s j )

and in particular for s q , that is,
∑

e∈s q δ
j
e ≥ min

(

ws q − ∑
e∈s q γ

j−1
e , � j

)

.

Assume

∑

e∈s q

δ j
e ≥ min

(

ws q −
∑

e∈s q

γ j−1
e , � j

)

= ws q −
∑

e∈s q

γ j−1
e

Then
∑

e∈s q

γ j
e =

∑

e∈s q

γ j−1
e +

∑

e∈s q

δ j
e ≥ ws q

This means that subset s q is covered by γ j and therefore also by γ j+1, . . . , γ p , since γ j ≤ γ j+1 ≤ · · · ≤
γ p . Therefore, subset s q is not violated at iteration j or later and cannot be selected and pushed on the
stack during iterations j + 1, . . . , p of step 4, which contradicts with s q ∈ A j+1. Therefore, the only
possible case is that

∑

e∈s q

δ j
e ≥ min

(

ws q −
∑

e∈s q

γ j−1
e , � j

)

= � j

Now, using the assumption A j = A j+1, the facts that γ j−1 = γ j − δ j and that there exists s q ∈ A j+1

such that the above inequality holds, we can rewrite the left-hand side of inequality (37.19) as

∑

s∈A j+1

(

ws −
∑

e∈s

γ j−1
e

)

=
∑

s∈A j+1

(

ws −
∑

e∈s

γ j
e +

∑

e∈s

δ j
e

)

=
∑

s∈A j+1

(

ws −
∑

e∈s

γ j
e

)

+
∑

s∈A j+1

∑

e∈s

δ j
e ≥

∑

s∈A j+1

(

ws −
∑

e∈s

γ j
e

)

+ � j

which proves inequality (37.19) in the case A j = A j+1.

Consider now the case A j = A j+1 ∪ {s j }.
Using the fact that � j = ws j − ∑

e∈s j γ
j−1

e and γ j−1 ≤ γ j , rewrite the left-hand side of inequality
(37.19) as

∑

s∈A j+1

(

ws −
∑

e∈s

γ j−1
e

)

+
(

ws j −
∑

e∈s j

γ j−1
e

)

≥
∑

s∈A j+1

(

ws −
∑

e∈s

γ j
e

)

+ � j

which proves inequality (37.19) in the case A j = A j+1 ∪ {s j }.
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Now, with inequality (37.19) established, we rewrite it by multiplying both sides by β:

β
∑

s∈A j

(

ws −
∑

e∈s

γ j−1
e

)

≥ β
∑

s∈A j+1

(

ws −
∑

e∈s

γ j
e

)

+ β� j

Next, using the condition of the theorem, that is,
∑

e∈E δ
j
e ≤ β� j , the induction hypothesis (37.17) and

the fact γ j − δ j = γ j−1, we can bound the last expression from below by

∑

e∈E

(
γ p

e − γ j
e

) +
∑

e∈E
δ j

e =
∑

e∈E

(
γ p

e − γ j−1
e

)

Thus, we establish inequality (37.18), which proves the theorem.

The weak duality theorem for linear programming implies OPT(I) ≤ ∑
e∈E γe (I), where OPT(I) is

the optimum value of WSP for instance I and γ (I) is feasible covering γ returned by local covering for
I . Let A(I) be the set A returned by the algorithm for I , then from Theorem 37.1 we have

OPT(I) ≤
∑

e∈E
γe (I) ≤ β

∑

s∈A(I)

ws

Corollary 37.1

If (a particular setup of) the local covering algorithm runs in polynomial time and the condition of Theorem 37.1
is satisfied, then the local covering is a 1

β
-approximation algorithm.

37.2.2 Algorithm ALG1

Suppose we are given an instance I of JI with unit capacities. Recall that this is a grid consisting of t
columns, numbered consecutively from left to right, and m numbered rows together with a set of intervals
I = {1, 2, . . . , n} lying on the rows of the grid. An interval i ∈ I is specified by the triple (li , ri , ρi ), where
li , ri are the indices of the left- and the rightmost columns intersecting the interval and ρi is the index of
the row where it lies. For each interval i ∈ I we are given a positive integral parameter wi referred to as
the interval demand. We assume that the intervals are ordered according to nondecreasing ri .

Recall that the job interval packing problem (JIP) with unit capacities, can be formulated as follows:
select a maximum-weight subset of intervals A such that no two intervals share a column or row. Observe that
that this problem is a special case of the WSP, considered in the previous section. Indeed, let the ground
set E be the set of all the columns and rows of the grid and the collection S be {s1, . . . , sn}, where si is
the subset of columns and the row stabbing interval i , that is, si = {column li , . . . , column ri , row ρi }.
The weights of the subsets are equal to the corresponding interval weights: wsi = wi , ∀i ∈ I . It is easy
to see that any feasible packing corresponds to a feasible solution to JIP with unit capacities of the
same value.

Below we give an ILP formulation of JIP with unit capacities, where we use a characteristic vector x of
A as a vector of decision variables:

JIP: Maximize
n∑

i=1

wi xi (37.20)

subject to
∑

i :ρi =r

xi ≤ 1 ∀r = 1, . . . , m (37.21)

∑

i :c∈[li ,ri ]

xi ≤ 1 ∀c = 1, . . . , t (37.22)

xi ∈ Z
1+ ∀i = 1, . . . , n (37.23)
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The dual to its LP relaxation (the dual variables z ∈ R
m and y ∈ R

t correspond to the constraints [37.21]
and [37.22] respectively) looks as follows:

Dual: Minimize
t∑

c=1

yc +
m∑

r=1

zr (37.24)

subject to zρi +
∑

c∈[li ,ri ]

yc ≥ wi ∀i = 1, . . . , n (37.25)

zr , yc ≥ 0 ∀r, c (37.26)

Note that by replacing in this formulation the nonnegativity constraints (37.26) with integrality constraints

zr , yc ∈ Z+, ∀r, c , (37.27)

we obtain an ILP formulation of the job interval stabbing JIS problem with unit capacities: For each column
c and row r specify integral multiplicities yc and zr , respectively such that

• for each interval i the sum of multiplicities of the columns and the row stabbing interval i is at least the
demand wi ,

• the sum of the multiplicities is minimum.

Note that in the case of JIS with unit capacities the interval multiplicities can be fixed to zero without
loss in the optimum value, since, given any feasible solution, one can obtain a feasible solution of the same
value by decreasing interval multiplicities to zero and increasing row multiplicities so as to preserve the
feasibility.

We now describe a setup of the generic algorithm Local Covering for JIP with unit capacities, yielding
a primal-dual approximation algorithm called ALG1.

Let us reproduce step 4 of local covering (see Figure 37.2) and translate it into the terms of JIP with unit
capacities.

Line (1), that is, selecting a violated subset s l = si corresponds in our context to selecting interval i such
that

∑
c∈[li ,ri ] yc + zρi < wi . When more then one index i satisfies this condition we select the smallest

of them.
Line (2) should be translated as � ← wi − ∑

c∈[li ,ri ] yc − zρi .

In line (3) we have to find δ = (δcol 1, . . . , δcol t , δrow 1, . . . , δrow m) s.t.

∑

e∈s j

δe ≥ min

(

w j −
∑

c∈[l j ,r j ]

yc − zρ j , �

)

, ∀ j s.t. s j ∈ N(si ) (37.28)

where i is the number selected in line (1). We assign the value of � to the elements of δ corresponding to
the right-most column stabbing interval i and to its row, and 0 to all the other elements.

Until γ is a feasible covering
l ← l + 1

(1) Select sl such that    e∈sl γe < wsl

(2) ∆ ← wsl −    e∈sl γe

(3) Find δ ∈ R+
|E| s. t.:    e∈s δe ≥ min(ws −    e∈s γe, ∆), ∀s ∈ N(sl)

(4) γ ← γ + δ

FIGURE 37.2 Step 4 of Local Covering.
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1. y ← 0, z ← 0

2. A ← ∅

3. l ← 0

4. For i ← 1 to n
∆ ← wi −      c∈[li, ri] yc − zρi

,
if ∆ > 0 then:

l ← l + 1, yri
 ← yri 

+ ∆, zρi
 ← zρi 

+ ∆, il ← i

5. For l downto 1
if A ∪ {il} is feasible to JIP then A ← A ∪ {il}

6. Return A (and y, z)

FIGURE 37.3 Algorithm ALG1.

Lemma 37.2

If vectors z and y and index i are such that w j − ∑
c∈[l j ,r j ] yc − zρ j ≤ 0 for all j = 1, . . . , i − 1, then

vector δ defined as

δe =





�, if e = col ri

�, if e = rowρi

0, otherwise

satisfies (37.28) for any � > 0.

Proof
The condition of the lemma guarantees that Eq. (37.28) is satisfied for all s j ∈ N(si ) such that j < i.

Consider the other neighbors of si , that is, all s j ∈ N(si ) such that j ≥ i. These subsets correspond
to the intervals that either lie on the same row or share a column with interval i and whose right-most
stabbing column has index at least equal to ri . Then sharing a column with interval i implies sharing the
column ri . This means that each subset s j ∈ N(si ), j ≥ i , includes either row ρi or column ri . Thus,

∀s j ∈ N(si ), s.t. j ≥ i :
∑

e∈s j

δe ≥ min(δcol ri , δrow ρi ) = �

This implies the lemma.

Figure 37.3 shows the formal description the algorithm ALG1 (see also Ref. [12]). Here A is a set of
interval indices.

Theorem 37.2

For any instance I of JI with unit capacities, the set A and the vectors (y, z) returned by the algorithm
ALG1 describe feasible solutions to JIP and JIS respectively, and their values (denoted by val(y, z) and val(A),
respectively) are related as

val(y, z) ≤ 2 · val(A)

Proof
Obviously A is a feasible solution to JIP with unit capacities. Consider (y, z). According to Theorem 37.1
it is a feasible covering, that is, it is a feasible solution to the LP formulation (37.24)–(37.26). Obviously
the vectors y and z are integral since wi is integral for all i ∈ I . Thus (y, z) is a feasible solution to the ILP
formulation (37.24),(37.25),(37.27).
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Let us establish the ratio of 2 between the values of the solutions. Observe that the conditions of
Theorem 37.1 are satisfied with β = 2. Indeed, at each iteration of step 4 of the algorithm

∑
e∈E δe = 2�.

Theorem 37.1 implies that
m∑

r=1

zr +
t∑

c=1

yc ≤ 2 ·
∑

i∈A

wi

Algorithm ALG1 can be implemented to run in O(n log n) time [3].
From the weak duality relation between JIP and JIS, and from Theorem 37.2, we have that for any

instance I of JI with unit capacities

JIP(I) ≤ val(y(I), z(I)) ≤ 2 · val(A(I)) ≤ 2JIS(I)

where JIP(I) and JIS(I) are the optimal values of JIP and JIS for I , and (y(I), z(I)), and A(I) are the
values of the solutions returned by algorithm ALG1 applied to I .

Corollary 37.2

Algorithm ALG1 is a 1/2-approximation algorithm for JIP with unit capacities and 2-approximation for JIS
with unit capacities.

The results stated in Corollary 37.2 are tight, that is, the analysis of the algorithm’s performance cannot
be improved to provide a better factor [12].

37.3 The Case of Unit Demands: Algorithm ALG2

In this section we focus on JI with unit demands. This special case of JI can be described as follows: given is
a grid consisting of t columns, numbered consecutively from left to right, and m numbered rows together
with a set of intervals I = {1, 2, . . . , n} lying on the rows of the grid. An interval i is specified by the triple
(li , ri , ρi ), where li , ri are the indices of the leftmost and the rightmost columns intersecting the interval
and ρi is the index of the row where it lies. For each column c , row r , and interval i , we are given positive
integral parameters vc , ur , and pi respectively, referred to as the column, row, and interval capacities. We
assume that the intervals are ordered according to nondecreasing ri .

The objective of the JIS with unit demands is: find a collection H of columns, rows, and intervals of
minimum total capacity, such that for each interval i ∈ I , H contains either a column stabbing interval i , or
the row stabbing interval i , or the interval i itself.

Note that JIS with unit demands is a special case of the well-known weighted hitting set problem (WHS):
given is a finite weighted ground set E , each element e ∈ E having a nonnegative weight we , and a collection
of its subsets S . Find a minimum-weight subset H ⊆ E such that H ∩ s �= ∅ for any s ∈ S.

Indeed, let the set of all the columns, rows, and intervals with their weights constitute a weighted
ground set E . Let S be {s1, s2, . . . , sn}, where subset si contains the interval i together with the subset of
the columns and the row stabbing it. Then any feasible hitting set corresponds to a feasible solution to JIS
with unit demands of the same value.

In the spirit of WHS we say that an interval i is hit by a subset H of columns, rows, and intervals if H
contains either column or row stabbing interval i , or interval i itself.

Below we give an ILP formulation of JIS with unit demands (for the decision variables we use here
characteristic vector (y, z, s ) of H , where y ∈ Z

t is associated with the set of columns, z ∈ Z
m with the

set of rows and s ∈ Z
n with the set of intervals).

JIS: Minimize
t∑

c=1

vc yc +
m∑

r=1

ur zr +
n∑

i=1

pi si (37.29)

subject to zρi +
∑

c∈[li ,ri ]

yc + si ≥ 1 ∀i (37.30)

zr , yc , si ∈ {0, 1} ∀r, c , i (37.31)
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The dual to its LP relaxation is

Dual: Maximize
n∑

i=1

xi (37.32)

subject to
∑

i :ρi =r

xi ≤ ur ∀r = 1, . . . , m (37.33)

∑

i :c∈[li ,ri ]

xi ≤ vc ∀c = 1, . . . , t (37.34)

xi ≤ pi ∀i = 1, . . . , n (37.35)

xi ≥ 0 ∀i = 1, . . . , n (37.36)

Note that when replacing the nonnegativity constraints (37.36) with integrality constraints xi ∈ Z ∀i =
1, . . . , n, we obtain an ILP formulation of the JIP with unit demands.

Specify an integral multiplicity for each interval i , not exceeding its capacities pi , such that

• for each column c or row r the sum of the multiplicities of the intervals sharing it does not exceed the
capacity vc or ur respectively,

• the sum of the multiplicities is minimum.

Following the framework of the generic primal-dual algorithm with reverse delete step described for WHS
by Goemans and Williamson [17], we develop a primal-dual algorithm for JIS with unit demands, called
ALG2.

We use auxiliary variables v̂ ∈ R
t , û ∈ R

m, and p̂ ∈ R
n which are in fact slack variables for the

constraints (37.33)–(37.35), that is, at each moment in time:

v̂c = vc −
∑

i :c∈[li ,ri ]

xi ∀c , ûr = ur −
∑

i :ρi =r

xi ∀r, p̂i = pi −xi ∀i (37.37)

for some current values of xi , i = 1, . . . , n.

Initially, the dual vector x is zero, the set H is empty and the slack variables v̂, û, p̂ are equal to v,
u, and p respectively. For each interval i ∈ I we check whether it is already hit by H , if not we do the
following:

- assign to the dual variable xi the minimum of the values of slack variables corresponding to the
following elements: the columns stabbing interval i , its row and interval i itself, that is, xi ←
min{v̂li , . . . , v̂ri , ûρi , p̂i };

- update the slack variables (since the value of xi changed). Because of the way xi was updated, at
least one of the slack variables v̂li , . . . , v̂ri , ûρi , p̂i has to be zero now;

- add to H the elements (columns li , . . . , ri , rowρi , or interval i) whose corresponding slack variables
are zero. Note that at least one of these element has to be added to H and thus interval i becomes
hit.

Clearly, after all the n intervals are processed as above, H is a feasible solution to JIS with unit demands,
since all the intervals are hit. At the next stage we try to remove elements from H . For that we consider
each element in H and remove it if feasibility of H is preserved. The order of considerations plays a role
here. First we check the columns in the order reverse to the order they were added to H . Then all the other
elements, that is, rows and intervals, in an arbitrary order.

The formal description of algorithm ALG2 is shown in Figure 37.4. We use three index sets to represent
set H , the set of column, row, and interval indices Hcol, Hrow, and Hint , respectively.
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1. x ← 0

2. Hcol ← ∅, Hrow ← ∅, H int ← ∅

3. v ← v, u ← u, p ← p

4. l ← 0

5. For i ← 1 to n
If ([li, ri] ∩ Hcol = ∅) AND ({ρi} ∩ Hrow = ∅) then

xi ← min{vli, ..., vri
, uρi

, pi};
For c ← li to ri if (vc ← vc − xi) = 0 then

l ← l + 1, cl ← c, Hcol ← Hcol ∪ {c}
If (uρi ← uρi − xi) = 0 then Hrow ← Hrow  ∪ {ρi}
If (pi ← pi − xi) = 0 then H int ← H int ∪ {i}

6. For j ← l downto 1
if Hcol − {cj}, together with Hrow and H int, is feasible

then Hcol ← Hcol − {cj}
7. For all i ∈ H int

if H int − {i} together with Hcol and Hrow is feasible
then Hrow ← Hrow − {i}

8. For all r ∈ Hrow

if Hrow − {r}, together with Hcol and H int, is feasible
then Hrow ← Hrow − {r}

9. Return Hcol, Hrow, H int (and x)

ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ

ˆ

ˆ
ˆ ˆ

ˆ

ˆ

FIGURE 37.4 Algorithm ALG2.

Theorem 37.3

For any instance I of JI with unit demands the sets (Hcol, Hrow, Hint) and vector x returned by the algorithm
ALG2 describe feasible solutions to JIS and JIP respectively, and their values are related as follows:

val(Hcol, Hrow, Hint) ≤ 2 val(x)

To prove this we need a preliminary lemma. This is a result for the WHS that can be also found in
Ref. [17]:

Lemma 37.3

Consider an instance of WHS. If a set H ⊂ E , vector χ ∈ R
|S| and β ≥ 0 satisfy

∀e ∈ H :
∑

s�e

χs = we and ∀s ∈ S , such that χs > 0 : |s ∩ H| ≤ β

then
∑

e∈H

we ≤ β
∑

s∈S
χs

Proof
Using the conditions of the lemma we have

∑

e∈H

we =
∑

e∈H

∑

s�e

χs =
∑

s∈S
|s ∩ H|χs ≤ β

∑

s∈S
χs
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Proof (of the Theorem)
Obviously, by construction the sets (Hcol, Hrow, Hint) describe a feasible solution to JIS with unit demands
and the vector x is feasible to the dual LP formulation (37.33)–(37.35). Note, that the integrality of the
input data implies integrality of x. Thus x is feasible to JIP with unit demands.

Let us establish the relation between the solution values. Recall the representation of JIS with unit
demands as a special case of WHS, described earlier in this section. We use the result of the lemma with
(Hcol, Hrow, Hint) representing H , x representing χ , β equal to 2.

Let us show that the first condition of the lemma is satisfied. Recall that an index of an element (which
can be a column, row, or interval) is added to one of (Hcol, Hrow, Hint) only when the corresponding
slack variable (37.37) becomes zero. After a slack variable becomes zero, it is not changed by the algorithm
anymore. Thus at the end of the algorithm we have all the slack variables (37.37) corresponding to the
elements in the solution to be zero, and thus the first condition of the lemma follows.

Let us establish the second condition, that is, show that for (Hcol, Hrow, Hint) returned by the algorithm
and for any i ∈ I , such that xi > 0 holds:

|{li , . . . , ri } ∩ Hcol| + |{ρi } ∩ Hrow| + |{i} ∩ Hint | ≤ 2

Take i such that xi > 0. If we show that |{li , . . . , ri } ∩ Hcol| ≤ 1, the above bound follows easily from the
fact that, due to the minimality of solution (Hcol, Hrow, Hint), accomplished in steps 6–8. |{i}∩ Hint | = 0
for any i , for which |{li , . . . , ri } ∩ Hcol| + |{ρi } ∩ Hrow| ≥ 1.

Suppose |{li , . . . , ri } ∩ Hcol| ≥ 2, that is, Hcol contains at least two columns incident to the interval
i , say, columns c1 and c2, c1 < c2. Consider the moment right before xi became positive, that is,
the beginning of the i th iteration at step 5 of the algorithm. All the previously considered intervals j ,
j < i , are already covered by this moment and neither c1, nor c2 are yet added to Hcol (otherwise,
{li , li + 1, . . . , ri } ∩ Hcol = ∅ would not hold). Look now at step 6, the moment when we are considering
column c1 as a candidate for removal from Hcol. We claim that all intervals j, j < i, are currently covered
by other elements (columns, rows, or intervals). This is because of the fact that no element, added to the
solution during step 5 before column c1, can be considered for removal in step 6 before c1. Further, it is
not difficult to see that all intervals l , l ≥ i , stabbed by column c1, have to be stabbed by column c2 as
well by the ordering of the intervals (see Figure 37.5). Therefore, nothing can prevent us from removing
c1 from Hcol in step 6.

Algorithm ALG2 can be implemented to run in O(nt) time [3].
Theorem 37.3 together with the weak duality relation between JIP and JIS has the following consequence.

Corollary 37.3

Algorithm ALG2 is a 1/2-approximation algorithm for JIP with unit demands and a 2-approximation for JIS
with unit demands.

Again, these performance guarantees are tight (see Kovaleva and Spieksma [12]). Finally, note that both
algorithms ALG1 and ALG2 can be applied to instances of JI with unit capacities and demands. It is not
difficult to verify that the solutions for JIP (subsets of intervals) returned by the two algorithms coincide,
while the solutions to JIS (subsets of columns and rows) may be different.

c1 c2

i

FIGURE 37.5 All the intervals l , l ≥ i , incident to column c1 have to be incident to column c2 as well.
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38.1 Introduction

Many problems in location theory deal with the placement of facilities on a network so as to minimize
some function of the distances between facilities or between facilities and other nodes of the network [1].
Such problems model the placement of “desirable” facilities such as warehouses, hospitals, and fire stations.
However, there are situations in which facilities must be located so as to maximize a given function of the
distances. Such location problems are referred to as dispersion problems [2] since they model situations in
which proximity of facilities is undesirable. One example of such a situation involves placing “obnoxious”
(also called “undesirable”) facilities such as nuclear power plants, oil storage tanks, and ammunition dumps
[2,3]. These facilities need to be spread out to the greatest possible extent so that an accident at one of the
facilities does not damage any of the others. Another example where dispersion problems arise is in the
distribution of business franchises in a city [2,4]. In this case, separation of business units is desirable to
minimize the competition for customers among the units. In these examples, the facilities to be dispersed
are assumed to be of the same type. Applications involving multiple types of facilities (e.g., incinerators
and landfills) have also been considered in the literature [3].

The concept of dispersion is also useful in the context of multiobjective decision making [5]. When
the number of nondominated1 solutions is large, a decision maker may be interested in selecting a
manageable collection of solutions which are dispersed as far as possible with respect to the various

∗Supported by NSF Grant CCR-97-34936.
†Supported by NSF Grant CCR-01-05536.

1Given two solutions S1 and S2 to a multiobjective optimization problem, S1 dominates S2 if S1 is no worse than S2

in every objective and S1 is strictly better than S2 in at least one objective. It can be seen that the domination relation
is a partial order. Each maximal element of this partial is a nondominated solution.
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objectives. Identifying such a collection is useful in obtaining an understanding of the range of available
alternatives.

Dispersion problems can be formulated under a variety of maximization objectives. Many of these
optimization problems are NP-hard. So, it is unlikely that optimal solutions to these problems can be
obtained efficiently. The practical importance of these problems motivates the study of efficient approxi-
mation algorithms that provide near-optimal solutions. In this chapter, we present some approximation
algorithms for several versions of the dispersion problem. This chapter is not a survey on FD, rather, the
focus is on approximation algorithms for which performance guarantee results have been established.

The remainder of this chapter is organized as follows. Section 38.2 provides a general formulation of
the dispersion problem and mentions a number of objectives considered in the literature. Section 38.3
presents approximation algorithms for the dispersion problem under several objectives. The discussion
also includes a greedy approach that is useful in designing such approximation algorithms. Section 38.4
presents approximation algorithms for capacitated versions of dispersion problems. Section 38.5 discusses
several directions for future research.

38.2 Analytical Model and Problem Formulation

38.2.1 Formulation of Dispersion Problems

Analytical models for the dispersion problem assume that the input consists of a set V = {v1, v2, . . . , vn}
of n nodes, a nonnegative distance (also called edge weight) between each pair of nodes in V and an integer
p ≤ n. Distances are assumed to be symmetric so that the input can be thought of as an undirected complete
graph on n nodes with a nonnegative weight on each edge. The weight of the edge {vi , v j} (i �= j ) is
denoted by w(vi , v j ). It is assumed that w(vi , vi ) = 0 for 1 ≤ i ≤ n. Under these assumptions, a general
formulation of the FD problem is as follows.

Facility Dispersion
Instance
A complete graph G(V, E ), where V = {v1, v2, . . . , vn}, a nonnegative distance w(vi , v j ) for each edge
{vi , v j } in E , and an integer p ≤ n.

Requirement
Find a subset P ⊆ V , with |P | = p, such that a specified objective function f (P ) is maximized.

To avoid trivial solutions, we will assume throughout this chapter that p ≥ 2. The chosen place-
ment P induces a complete subgraph of G , denoted by G(P ). The objective f (P ) is a function of the
edge distances in G(P ). A number of alternatives for f (P ) have been considered in the literature (see,
Refs. [3,6–14] and the references cited therein). Some examples of such objective functions are listed below.

(a) Max-Min dispersion. Here, the function f (P ) is defined to be the smallest edge weight in G(P ).
Thus, the goal of the corresponding dispersion problem is to maximize the smallest edge weight in
G(P ). (This is referred to as the remote edge problem in Ref. [14].)

(b) Max-average dispersion. Here, the function f (P ) is defined to be the average edge weight in G(P ).
Since the number of edges in G(P ) is p( p − 1)/2, f (P ) is given by

f (P ) =
2
∑

{vi ,v j }∈G(P ) w(vi , v j )

p( p − 1)
(38.1)

As the denominator p( p − 1) is independent of which nodes are in P , maximizing the value of
f (P ) given by Eq. (38.1) is equivalent to maximizing the sum of the edge weights in G(P ). (This
is referred to as the remote clique problem in Ref. [14].)

(c) Max-MST dispersion. Here, the function f (P ) is defined to be the weight of a minimum spanning
tree (MST) of G(P ). A variant of this is the Max-ST dispersion measure, where f (P ) is the weight
of a minimum Steiner tree [15] (ST) of G(P ).
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(d) Max-TSP dispersion. Here, the function f (P ) is defined to be the weight of a minimum traveling
salesperson (TSP) tour of G(P ); that is, f (P ) is the minimum weight of a simple cycle containing
all the nodes in P .

(e) Max-matching dispersion. Here, f (P ) is the weight of a minimum perfect matching2 in G(P ).
(f) Max-star dispersion. Here, the dispersion objective f (P ) is given by

f (P ) = min
vi ∈P






∑

v j ∈P

w(vi , v j )





(38.2)

(This problem is referred to as the remote star problem in Ref. [14].)

Under all of the above objectives, the dispersion problem is known to be NP-hard. This motivates the
study of approximation algorithms for such problems.

The edge distances specified in an instance of the dispersion problem are said to satisfy the triangle
inequality when for any three distinct nodes x , y, and z, w(x , z) ≤ w(x , y) + w(y, z). We refer to
such instances as metric instances. Most of the approximation algorithms reported in the literature are
for metric instances of dispersion problems. Nonapproximability results are known for some nonmetric
instances of dispersion problems [12–14].

Geometric versions of dispersion problems have been considered in the literature under two models,
which we refer to as the discrete placement and continuous placement models respectively. Under the
discrete placement model [11–13,16,17], the node set V consists of n points in an appropriate metric space
(e.g., Euclidean space) along with a chosen distance function (e.g., L k distance metric for some k ≥ 1),
and the placement must be a subset of the points in V . Under the continuous placement model, a region
in which facilities must be placed is specified geometrically (e.g., a polygonal region possibly containing
holes), and each facility may be placed at any point inside or on the boundary of the specified region [18].
In discussing geometric versions, we use the terms “point” and “node” interchangeably.

38.2.2 Additional Definitions

This section contains several definitions that are used throughout this chapter. Definitions of common
graph theoretic and algorithmic notions used in this chapter can be found in standard texts such as in
Refs.[19,20].

For a maximization problem, a polynomial-time approximation algorithm provides a performance
guarantee of ρ ≥ 1, if for each instance of the problem, the solution value produced by the algorithm is
at least 1/ρ of the optimal solution value. We will also refer to such an algorithm as a ρ-approximation
algorithm. A polynomial-time approximation scheme (PTAS) for a problem is a family of polynomial-
time algorithms such that for each fixedε > 0, the family contains an algorithm that provides a performance
guarantee of (1 + ε).

A matching in an undirected graph G(V, E ) is a subset E ′ of edges such that no two edges in E ′ are
incident on the same node. A maximum matching is a matching containing the largest number of edges.
When the edges of G have weights, a maximum-weight matching is a matching with the largest total
weight. For each k ≥ 1, a k-matching is a matching consisting of exactly k edges. When the edges of
G have weights, a maximum-weight k-matching (minimum-weight k-matching) is a k-matching with
the largest (smallest) total weight. A graph G(V, E ) has a perfect matching if it has a matching of size
�|V |/2	. When the edges of G have weights, a maximum-weight perfect matching (minimum-weight
perfect matching) is a perfect matching with the largest (smallest) total weight.

A subset V ′ of nodes of an undirected graph G(V, E ) is an independent set if there is no edge between
any pair of nodes in V ′. Given an undirected graph G(V, E ) and an integer J ≤ |V |, the goal of the
MAXIMUM INDEPENDENT SET (MIS) decision problem is to determine whether G has an independent set

2See Section 38.2.2 for the definition of perfect matching.
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of size at least J . This decision problem is known to be NP-complete [15]. When there are nonnegative
weights on nodes, one can generalize the problem of finding a MIS to the problem of finding an independent
set of maximum weight. Strong nonapproximability results are known for the MIS (optimization) problem
for general graphs. In particular, it has been shown [21] that for any ε > 0, the MIS problem cannot be
approximated to within a factor O(n1−ε), unless the complexity classes3 NP and ZPP coincide.

In developing approximation algorithms for capacitated dispersion problems (Section 38.4), the class
of unit disk graphs plays an important role. An undirected graph is a unit disk graph if its vertices can be
placed in one-to-one correspondence with a set of circles of equal radius in the plane so that two vertices
of the graph are joined by an edge if and only if the corresponding circles touch or intersect [23]. The
geometric representation for a unit disk graph consists of the radius value and the coordinates of the
center of each disk. The recognition problem for unit disk graphs is NP-hard [24]. When the geometric
representation is not available, the MIS problem for unit disk graphs has a constant factor approximation
[25]. However, given the geometric representation, there is a PTAS for the MIS problem for unit disk
graphs [26]. As mentioned in Ref. [27], this PTAS can be extended in a straightforward manner to the
weighted MIS problem for unit disk graphs.

38.3 Approximating Dispersion Problems

38.3.1 Overview

In this section, we discuss approximation algorithms with good performance guarantees for dispersion
problems under several objectives. We begin with a greedy approach for designing an approximation
algorithm for metric instances of the Max-Min dispersion problem. We observe that the greedy approach
can also be used to obtain approximation algorithms for other dispersion objectives. Further, we point out
that for some objectives, approximation algorithms developed from the greedy framework can be improved
using other techniques. Known results for geometric instances of problems are also summarized.

38.3.2 Approximation Algorithms for Max-Min Dispersion

38.3.2.1 Results for Metric Instances

We abbreviate the Max-Min facility dispersion problem by MMFD. It is shown in Ref. [12] that for any
ρ ≥ 1, if there is a polynomial-time ρ-approximation algorithm for nonmetric instances of the MMFD
problem, then the MIS problem can be solved in polynomial-time. In other words, for any ρ ≥ 1, there
is no ρ-approximation algorithm for nonmetric instances of MMFD, unless P = NP. Therefore, in this
section, we restrict our attention to metric instances of MMFD, denoted by MMFD:TI. (The suffix “TI” is
used to indicate that the distances satisfy the triangle inequality.)

A greedy heuristic for MMFD:TI, called GMM, is shown in Figure 38.1. This heuristic is similar to “fur-
thest point outside the neighborhood” heuristic, described in Ref. [5]. For results regarding the performance
guarantee provided by this heuristic see Refs. [10–12,28]. The presentation below is based on Ref. [12].

The heuristic begins by initializing P (the set of nodes at which facilities are placed) to contain a pair
of nodes in V which are joined by an edge of maximum weight. Subsequently, each iteration of GMM
chooses a node v from V − P such that the minimum distance from v to a node in P is the largest among
all the nodes in V − P . In each step, ties are broken arbitrarily. Heuristic GMM terminates when |P | = p.
The solution value of the placement P produced by GMM is equal to minx , y∈P {w(x , y)}. Using standard
techniques, it can be seen that the running time of the heuristic is O(n2).

Our next theorem shows that GMM provides a performance guarantee of 2. It will also be shown
(Theorem 38.2) that unless P = NP, no polynomial-time heuristic can provide a better performance
guarantee.

3For definitions of complexity classes such as ZPP, see [22].
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Input: A complete graph G(V, E) with a nonnegative edge-weight w(vi, vj) for each edge {vi, vj} ∈ E and

an integer p ≤ |V |. (The edge weights satisfy the triangle inequality.)

Output: A set P ⊆ V such that |P | = p. (The goal is to make the smallest edge weight in G(P ) close to

the optimum value.)

Algorithm:

1. Let P = ∅.

2. Let vi and vj be the endpoints of an edge of maximum weight. Add the nodes vi and vj to P.

3. while ( |P | < p) do

(a) Find a node v ∈ V − P such that min {w(v, v ′ )} is maximum among the nodes in V − P.

(b) Add v to P.

4. Output P.

v′∈P

FIGURE 38.1 Details of heuristic GMM.

Theorem 38.1

Let I be an instance of MMFD:TI. Let OPT(I) and GMM(I) denote respectively the solution values of an
optimal placement and that produced by GMM for the instance I . Then OPT(I )/GMM(I ) ≤ 2.

Proof
Consider the set-valued variable P in the description of heuristic GMM. Let f (P ) = minx , y∈P {w(x , y)}.
We will show by induction that the condition

f (P ) ≥ OPT(I )/2 (38.3)

holds after each addition to P . Since GMM(I ) = f (P ) after the last addition to P , the theorem would
follow.

Since the first addition inserts two nodes joined by an edge of largest weight into P , Condition (38.3)
clearly holds after the first addition. So, assume that the condition holds after k additions to P , for some k,
1 ≤ k < p − 1. We will prove that the condition holds after the (k + 1)th addition to P as well.

To that end, let P ∗ = {v∗
1 , v∗

2 , . . . , v∗
p} denote an optimal placement. For convenience, we use �∗ for

OPT(I ). The following observation is an immediate consequence of the definition of the solution value
corresponding to a placement for an MMFD instance.

Observation 38.1

For every pair v∗
i , v∗

j of distinct nodes in P ∗, w(v∗
i , v∗

j ) ≥ �∗. ■

Let Pk = {x1, x2, . . . , xk+1} denote the set P after k additions, 1 ≤ k ≤ p −1. (Note that |Pk | = k +1,
since the first addition inserts two nodes into P ). Since GMM adds at least one more node to P , the following
is a trivial observation.
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Observation 38.2

For 1 ≤ k < p − 1, |Pk | = k + 1 < p. ■

For each v∗
i ∈ P ∗ (1 ≤ i ≤ p), define S∗

i = {u ∈ V | w(v∗
i ,u) < �∗/2}. The following claim provides

two useful properties of these sets.

Claim 38.1

(a) For 1 ≤ i ≤ p, S∗
i is nonempty.

(b) For i �= j , S∗
i and S∗

j are disjoint.

Proof
Part (a) is obvious, since v∗

i ∈ S∗
i for 1 ≤ i ≤ p. To prove part (b), suppose S∗

i ∩ S∗
j �= ∅ for some i �= j .

Let u ∈ S∗
i ∩ S∗

j . Thus, w(v∗
i , u) < �∗/2 and w(v∗

j , u) < �∗/2. By Observation 38.1, w(v∗
i , v∗

j ) ≥ �∗.
These three inequalities together imply that the triangle inequality does not hold for the three nodes u,
v∗

i , and v∗
j . Part (b) follows. ■

We now continue with the main proof. Since for k < p −1, Pk has less than p nodes (Observation 38.2)
and there are p disjoint sets S∗

1 , S∗
2 , . . . , S∗

p , there must be at least one set, say S∗
r (for some r , 1 ≤ r ≤ p),

such that Pk ∩ S∗
r = ∅. Therefore, by the definition of S∗

r , we must have for each u ∈ Pk , w(v∗
r , u) ≥ �∗/2.

Sincev∗
r is available for selection by GMM, and GMM selects a nodev ∈ V−Pk for which minv′∈Pk w(v, v′)

is maximum among the nodes in V − Pk , it follows that Condition (38.3) holds after the (k +1)th addition
to P . This completes the proof of Theorem 38.1.

The next theorem provides a lower bound on the obtainable performance guarantee for MMFD:TI.

Theorem 38.2

If P �= NP, no polynomial-time approximation algorithm can provide a performance guarantee of (2 − ε)
for any ε > 0 for MMFD:TI.

Proof
We use a reduction from the MIS problem. Given an instance of the MIS problem consisting of graph
G(V, E ) and an integer J , construct an instance of MMFD:TI as follows. The nodes of the MMFD:TI
instance are in one-to-one correspondence with the nodes in V . For each edge {vi , v j } in E , the weight
w(vi , v j ) is chosen as 1. All the other weights are chosen as 2. Obviously, the resulting distances satisfy the
triangle inequality. The number p of facilities to be chosen is set to J . If G contains an independent set
V ′ of size at least J , then placing the facilities on the nodes of in V ′ provides a solution value of 2 for the
MMFD:TI instance; otherwise, every placement has a solution value of 1. Therefore, any polynomial-time
approximation algorithm A with a performance guarantee of 2 − ε for any ε > 0, for MMFD:TI will
output a solution value of 2 if and only if G contains an independent set of size at least J . Thus, we obtain
a polynomial-time algorithm for the MIS problem, contradicting the assumption that P �= NP.

Theorems 38.1 and 38.2 indicate that the simple greedy algorithm of Figure 38.1 provides the best
performance guarantee for the MMFD:TI problem that one can hope to obtain in polynomial time. A
variant of this algorithm which can be used to approximate a more general form of MMFD, where facilities
may be placed on nodes or edges, is analyzed in Ref. [10].

38.3.2.2 Results for Geometric Versions

Geometric versions of the MMFD problem have also been considered in the literature. We will first mention
the results under the discrete placement model. The one-dimensional version of the problem (where all
the points are on a line) can be solved in O( pn + n log n) time [16]. When the points are in two (or
higher)-dimensional Euclidean space, the problem is NP-hard [16,29]. Since the triangle inequality holds
for all geometric instances, the greedy algorithm of Figure 38.1 provides a performance guarantee of 2 for
geometric instances of the MMFD problem under the discrete placement model.

Baur and Fekete [18] considered the MMFD problem and several of its variants under the continuous
placement model, where the region is specified by a rectilinear polygon and the distance metric is L 1 or L∞.
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If the specified region is not required to be connected, they show that the MMFD problem cannot be
approximated to within the factor 2 − ε for any ε > 0, unless P = NP. For a more general version of
the problem, where the goal is to maximize the minimum distance between each pair of chosen points
as well as the closest distance between a chosen point and the boundary of the region, they present an
approximation algorithm with a performance guarantee of 3/2. They also show that the problem cannot be
approximated to within the factor 14/13, unless P = NP. Additional approximation results for dispersional
packing problems (e.g., finding the largest value of L such that a specified number of L × L squares can
be packed in a given region) are also presented in Ref. [18].

38.3.3 Approximation Algorithms for Max-Average Dispersion

38.3.3.1 Results for Metric Instances

Recall that in the Max-Average dispersion (MAFD) problem, the goal is to maximize the average distance
between a pair of chosen facilities. We use MAFD to denote this problem and MAFD:TI to denote its
restriction to metric instances. We discuss approximation results for MAFD:TI in this section. Subsequent
sections consider nonmetric and geometric instances of MAFD.

Reference [12] presents a modified version of the greedy approach used in Figure 38.1 to obtain an
approximation algorithm for MAFD:TI. The modification is to replace step 3(a) in that figure by the
following: Find a node v ∈ V − P such that the average distance from v to the nodes in P is maximum
among all the nodes in V − P . An inductive argument is used in Ref. [12] to show that this modification
yields an approximation algorithm with a performance guarantee of 4.

Hassin et al. [30] present two approximation algorithms for MAFD:TI. Each of these algorithms provides
a performance guarantee of 2. We will discuss one of their approximation algorithms below as it is also
used in Ref. [14] for approximating another dispersion problem.

The details of the heuristic from Ref. [30], which we call Heuristic-HRT, are shown in Figure 38.2.
The key step in the heuristic is the computation of a maximum-weight �p/2	-matching in G (Step 2).

Input: A complete graph G(V, E) with a nonnegative edge-weight w(vi, vj) for each edge {vi, vj} ∈ E and

an integer p ≤ |V |. (The edge weights satisfy the triangle inequality.)

Output: A set P ⊆ V such that |P | = p. (The goal is to make the average edge weight in G(P ) close to

the optimum value.)

Algorithm:

1. Let P = ∅.

2. Compute a �p/2�-matching M∗ of maximum weight in G.

3. Add both end points of the edges in M∗ to P.

4. If p is odd, add an arbitrary node from V − P to P.

5. Output P.

FIGURE 38.2 Details of heuristic-HRT.
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Using the fact that the problem of finding a maximum-weighted matching in any graph can be solved
in polynomial time [31], it is shown in Ref. [30] that the problem of computing a maximum-weight
�p/2	-matching can also be solved efficiently. Thus, Heuristic-HRT runs in polynomial time. A careful
implementation of the heuristic which leads to a running time of O(n2( p+log n)) is presented in Ref. [30].
We now prove the performance guarantee provided by the heuristic, closely following the presentation in
Ref. [30].

The following notation is used in the proof. As before, for any nonempty node subset V1, G(V1) denotes
the complete subgraph of G induced on V1. Further, W(V1) and W(V1) denote, respectively, the total
weight and the average weight of the edges in the complete subgraph G(V1). Similarly, for any nonempty
subset E 1 of edges, W(E 1) and W(E 1) = W(E 1)/|E 1| denote, respectively, the total and average weight
of the edges in E 1. The following lemma establishes a property of maximum-weight �p/2	-matchings.

Lemma 38.1

Let V1 be a subset with at least p ≥ 2 nodes and let M∗
1 denote a maximum-weight �p/2	-matching in

G(V1). Then, W(V1) ≤ W(M∗
1 ).

Proof
Let q denote the number of �p/2	-matchings of G(V1), and let M1, M2, . . . , Mq denote the matchings
themselves. Let A1 = ∑q

i=1 W(Mi )/q denote the average of the q values W(M1), W(M2), . . . , W(Mq ).
We will show that A1 = �p/2	W(V1). Since W(M∗

1 ) ≥ A1, the lemma would then follow.
Consider the summation

∑q
i=1 W(Mi )/q . The number of edge weights included in this summation is

q�p/2	, since |Mi | = �p/2	, for 1 ≤ i ≤ q . By symmetry, the weight of each edge of G(V1) occurs the
same number of times, say t, in the summation. Therefore, the number of occurrences of edge weights in
the summation is also equal to t |V1| (|V1| − 1)/2. Hence,

q �p/2	 = t |V1| (|V1| − 1)/2 (38.4)

Now,

A1 =
q∑

i=1

W(Mi )/q = t W(V1)/q = t W(V1) |V1| (|V1| − 1)

2q
(38.5)

Now, using Eq. (38.4), we get A1 = �p/2	 W(V1) as desired.

The next lemma, which relies on the triangle inequality, shows a relationship between the average edge
weight of a complete subgraph and the average weight of any �p/2	-matching in the subgraph.

Lemma 38.2

Let V1 be a subset containing p ≥ 2 nodes and let M be any �p/2	-matching in G(V1). Then, W(V1) >

W(M)/2.

Proof
Let M = {{ai , bi } : 1 ≤ i ≤ �p/2	} and let VM denote the set of nodes which are endpoints of the edges
in M. Consider each edge {ai , bi } in M and let E i denote the set of edges in G(V1) incident on ai or
bi , except for the edge {ai , bi } itself. By the triangle inequality, for any node v ∈ VM − {ai , bi }, we have
w(v, ai ) + w(v, bi ) ≥ w(ai , bi ). When this inequality is summed up over all the nodes in VM − {ai , bi },
we get

W(E i ) ≥ ( p − 2) w(ai , bi ) (38.6)

Now, we consider two cases.

Case 1. Let p be even. So, �p/2	 = p/2.

Consider the summation of Inequality (38.6) over all the edge sets E i , 1 ≤ i ≤ p/2. On the left-
hand side of that summation, each edge of G(V1), except for those in M, appears twice. Therefore,
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2[W(V1) − W(M)] ≥ ( p − 2) W(M). Expressing this inequality in terms of W(V1) and W(M), we get
W(V1) ≥ p W(M)/[2( p − 1)]; that is, W(V1) > W(M)/2. This completes the proof for Case 1.

Case 2. Let p be odd. So, �p/2	 = ( p − 1)/2.

Let x be the node in V1 − VM , and let E x denote the set of edges incident on x in G(V1). By the triangle
inequality, we have

W(E x ) ≥ W(M) (38.7)

Again, consider the summation of Inequality (38.6) over the edge sets E i , 1 ≤ i ≤ �p/2	. On the left-hand
side of that summation, each edge of G(V1) appears twice, except that the edges in M do not appear at all
and the edges in E x appear only once. Therefore, 2[W(V1) − W(M)] − W(E x ) ≥ ( p − 2) W(M). Using
Inequality (38.7), we get 2[W(V1) − W(M)] ≥ ( p − 1) W(M). Again expressing this inequality in terms
of W(V1) and W(M), and using the fact that �p/2	 = ( p − 1)/2, we get W(V1) ≥ ( p + 1) W(M)/(2p).
Consequently, W(V1) > W(M)/2. This completes the proof for Case 2 and also that of the lemma.

We are now ready to establish the performance guarantee of Heuristic-HRT.

Theorem 38.3

Let I be an instance of MAFD:TI. Let OPT(I) and HRT(I ) denote the value of an optimal solution and that
of the solution produced by Heuristic-HRT respectively. Then, OPT(I)/HRT(I ) < 2.

Proof
Let P ∗ and P denote, respectively, the set of nodes in an optimal solution and that in the solution produced
by Heuristic-HRT for the instance I . By definition, OPT(I) = W(P ∗) and HRT(I ) = W(P ). Let M∗ and
M denote respectively a maximum-weight �p/2	-matching in P ∗ and P . By Lemma 38.1, we have

OPT(I) ≤ W(M∗) (38.8)

Further, by Lemma 38.2, we have

HRT(I ) > W(M)/2 (38.9)

Since Heuristic-HRT computes a maximum-weight �p/2	-matching for the graph G , we have W(M) ≥
W(M∗). This fact in conjunction with Inequalities (38.8) and (38.9) yields the theorem.

A lower bound example is presented in Ref. [30] to show that the performance guarantee of Heuristic-
HRT can be made arbitrarily close to 2.

38.3.3.2 Results for Nonmetric Instances

Here, we briefly mention the known results for nonmetric instances of the MAFD problem. When the
weight of every edge in the complete graph G (which is part of the MAFD problem instance) is 0 or 1,
the input can be thought of as a graph G ′(V, E ′), where E ′ contains only the edges of weight 1 in G . Then,
the MAFD problem corresponds to the following problem: select a subset V ′ of p nodes such that the
number of edges in the subgraph of G ′ induced on V ′ is a maximum over all induced subgraphs on p nodes.
This problem is called the Dense p-Subgraph (DpS) problem in the literature. Feige et al. [32] present
an approximation algorithm with a performance guarantee of O(nδ), where δ < 1/3, for the problem.
They also show that the algorithm can be modified to obtain a performance guarantee of O(nδ log n) for
a more general version of the problem, where the edges in G ′ have nonnegative edge weights and the goal
is to choose a subset of p nodes so that the weight of all the edges in the chosen induced subgraph is
maximized. When p = �(n), Asahiro et al. [33] show that there is an approximation algorithm with a
constant performance guarantee for the DpS problem. When the graph G ′ is dense (i.e., the number of
edges in G ′ = �(n2)) and p = �(n), there is a PTAS for the DpS problem [34]. When the edge weights in
the input graph are from the set {1, 2, . . . , K }, for some fixed positive integer K and the number of edges
in an optimal solution is �(n2), Czygrinow [35] presents a faster PTAS for the weighted version of the
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DpS problem. Feige [36] shows the existence of a constant ρ > 1 such that if there is a polynomial-time
ρ-approximation algorithm for the DpS problem, then a natural conjecture regarding the average case
hardness of the Boolean Satisfiability problem would be violated. No stronger nonapproximability results
are currently known for the DpS problem.

38.3.3.3 Geometric Versions

Geometric versions of the MAFD problem seem to have been considered only under the discrete placement
model. The approximation algorithm for the MAFD:TI problem presented in Section 38.3.3.1 provides
a performance guarantee of 2 for geometric versions. Better performance guarantee results have been
obtained by using ideas from computational geometry. In Refs. [12,28] it is shown that the one-dimensional
version of the MAFD problem can be solved efficiently. Using this result, an approximation algorithm for
the two-dimensional MAFD problem under Euclidean distances was presented in Ref. [12]. The basic idea
of the approximation algorithm is to create a polynomial number of instances of the one-dimensional
MAFD problem by projecting the given set of points onto an appropriate set of lines, solve each one-
dimensional problem optimally and choose the best of these solutions. It is shown that this scheme provides
an asymptotic performance guarantee4 of π/2 ≈ 1.571 for the two-dimensional MAFD problem.

Fekete and Meijer [17] consider the MAFD problem under rectilinear distances for points in d-
dimensional space, for any fixed d ≥ 2. When p, the number of points to be selected, is fixed, they
show that the MAFD problem can be solved in O(n) time. When p is part of the problem instance, they
present a PTAS for the problem. By appropriately modifying this PTAS, they show that an approximation
algorithm with an asymptotic performance guarantee of

√
2 can be obtained for the case of Euclidean

distances in two-dimensional space, thus improving the asymptotic bound of π/2 in Ref. [12].

38.3.4 Results for Other Dispersion Problems

Approximation results for a number of other dispersion objectives have been reported in the literature
[13,14]. In particular, results for objectives Max-MST, Max-ST, and Max-TSP are presented in Ref. [13]
while results for Max-Matching and Max-Star are presented in Ref. [14]. Below, we summarize these results.

Halldórsson et al. [13] consider dispersion problems under three objectives, namely minimum weight
spanning tree (Max-MST), minimum TSP tour length (Max-TSP) and minimum ST (Max-ST). For metric
instances of these three problems, they show that the greedy algorithm discussed in Section 38.3.2.1 provides
performance guarantees of 4, 3, and 3, respectively. Under the assumption that P �= NP, they also show
lower bounds of 2, 2, and 4/3, respectively on the performance guarantees obtainable in polynomial time for
the three problems. Since constructing a near-minimum ST is done using shortest path distances between
nodes, the greedy approach provides a performance guarantee of 3 for the Max-ST dispersion problem
even for nonmetric instances. However, nonmetric instances of Max-MST and Max-TSP are shown to be
at least as hard to approximate as the MIS problem. In Ref. [13], geometric versions of dispersion problems
under the discrete placement model are also considered. For two-dimensional versions of Max-MST and
Max-ST, where the distance between two points is the Euclidean distance, they present approximation
algorithms with performance guarantees of 2.25 and 2.16, respectively.

In Ref. [14], an approximation algorithm with a performance guarantee of O(log p) for the metric
instances of the Max-Matching problem was provided. They obtain the algorithm by suitably modifying
the greedy approach (used in Section 38.3.2.1). For metric instances of the Max-Star problem, they show
that the HRT-heuristic [30] (discussed in Section 38.3.3.1) provides a performance guarantee of 2. They
also discuss other applications of the HRT-heuristic.

Further, Chandra and Halldórsson [14] carry out a more detailed study of the greedy approach for
approximating dispersion problems. They show that for many dispersion objectives, the ratio of the

4An algorithm provides an asymptotic performance guarantee ofρ, if for any fixed ε > 0, the performance guarantee
of the algorithm is at most ρ + ε.
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optimal solution value to the solution value produced by the greedy approach may be arbitrarily large.
They also show that the greedy approach is useful for a more general version of the Max-MST, Max-TSP,
and Max-ST dispersion problems. In this general version, an integer k ≤ p is also specified as part of the
input. After an algorithm chooses a subset of p nodes, an adversary partitions the chosen subset into k
subsets, and the value of the objective is the sum of the weights of the corresponding minimum structure
(MST, minimum TSP tour or minimum ST) on the k subgraphs. For the generalized version of the Max-
MST problem, it is shown that the greedy approach provides a performance guarantee of 4−2/( p −k +1).
For the generalized versions of Max-TSP and Max-ST problems, the greedy approach is shown to provide
a performance guarantee of min{5, 2 p/( p − k)}.

38.4 Approximation Algorithms for Capacitated Versions

38.4.1 Motivation and Problem Definition

The model of dispersion considered in previous sections does not explicitly consider the storage capacity of
a node. In general, different nodes may have different capacities. This practical aspect adds a new dimension
and leads to capacitated dispersion problems [27]. These are typically constrained optimization problems
in which the constraints or the optimization objectives involve capacities of nodes. One example of such
a problem is the following: Choose a subset of nodes so that the minimum distance between any pair
of chosen nodes is at least a specified threshold and the total storage capacity of the chosen nodes is a
maximum over all subsets that satisfy the distance constraint. The focus of this section is on approximation
algorithms for such capacitated dispersion problems.

The following notation is used throughout this section. For a subset of nodes V ′, C AP (V ′) denotes
the sum of the storage capacities of the nodes in V ′. For any subset of nodes V ′ with |V ′| ≥ 2, D I ST(V ′)
denotes the minimum distance between a pair of nodes in V ′; this is the Max-Min dispersion measure for
the set V ′.

Formulations of some capacitated dispersion problems are given below. In naming these problems, we
use the following convention. Each problem has a maximization objective and one or more constrained
measures. The maximization objective is indicated by the prefix “Max,” and each constrained measure is
preceded by a slash (“/”). For example, in the Max-Cap/Dist problem, the objective is to maximize the
total capacity and the constraint is on the internode distance. A precise formulation of this problem is as
follows.

Maximizing Capacity under a Distance Constraint (Max-Cap/Dist)
Instance
A complete graph G(V, E ) with an edge weight w(vi , v j ) for each edge {vi , v j } in E , a storage capacity ci

(rational number) for each node vi ∈ V and a positive rational number α.

Requirement
Select a subset V ′ ⊆ V so that CAP(V ′) is a maximum over all subsets V ′ that satisfy the constraint
DIST(V ′) ≥ α.

The dual5 version of Max-Cap/Dist, where a required capacity value B is to given and the goal is to
select a subset V ′ of nodes so that DIST(V ′) is maximum among all subsets satisfying the constraint
CAP(V ′) ≥ B , is denoted by Max-Dist/Cap. We will use Max-Cap/Dist:TI (Max-Dist/Cap:TI) to denote
the restriction of Max-Cap/Dist (Max-Dist/Cap) to metric instances.

Geometric versions of the capacitated dispersion problems seem to have been considered only for the
discrete placement model [27]. In our notation, the geometric version of a problem will be specified
with the appropriate dimension as the prefix. For example, the one- and two-dimensional versions of the

5We use the term “dual” in a narrow sense to mean that the maximization objective and constrained measure are
interchanged.
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Max-Cap/Dist problem will be denoted by 1D:Max-Cap/Dist and 2D:Max-Cap/Dist, respectively. In all
problems involving a capacity constraint, we assume without loss of generality that no single node has a
large enough capacity to satisfy the constraint.

38.4.2 Approximation Results for Capacitated Dispersion

38.4.2.1 A Nonapproximability Result for Maximizing Capacity

The Max-Cap/Dist:TI problem is at least as hard to approximate as the MIS problem. This can be seen as
follows. Given an instance of the MIS problem represented by an undirected graph G(V, E ), construct a
Max-Cap/Dist:TI instance as follows. Treat V as the set of nodes, each with a capacity of one unit. For any
pair of nodes u and v, let w(u, v) = 1 if {u, v} is an edge in G and let w(u, v) = 2 otherwise. Obviously,
the resulting distances satisfy the triangle inequality. Let the minimum distance constraint be set to 2.
It can be verified that any feasible solution of capacity γ to the constructed Max-Cap/Dist:TI instance
corresponds to an independent set of size γ in G and vice versa. As a consequence, nonapproximability
results for the MIS problem (mentioned in Section 38.2.2) carry over to the Max-Cap/Dist:TI problem.
The following proposition provides a formal statement of this result.

Proposition 38.1

Unless NP = ZPP, there is no polynomial-time approximation algorithm with a performance guarantee
of O(n1−ε) for any ε > 0 for the Max-Cap/Dist:TI problem.

38.4.2.2 Results for Maximizing Internode Distance

The approximation problem for nonmetric instances of Max-Dist/Cap is at least as hard as that for the
nonmetric instances of Max-Min dispersion (MMFD). To see this, consider an instance of the MMFD
problem with n nodes and let p denote the number of facilities to be placed. Construct an instance of the
Max-Dist/Cap problem as follows. The two instances have the set of nodes and internode distances. The
capacity of each node is set to 1 and the capacity requirement is set to p. Now, it is straightforward to verify
that any solution to the MMFD instance with a Max-Min objective value of α is a feasible solution with the
same objective value for the Max-Dist/Cap instance. As a consequence, the known nonapproximability
result for nonmetric instances of MMFD (mentioned in Section 38.3.2.1) is applicable to the Max-Cap/Dist
problem. This result is stated formally below.

Proposition 38.2

Unless P = NP, for any ρ ≥ 1, there is no polynomial-time ρ-approximation algorithm for nonmetric instances
of the Max-Dist/Cap problem.

We now consider metric instances of the Max-Dist/Cap problem, denoted by Max-Dist/Cap:TI. A
further restricted version of this problem, where all nodes have a capacity of 1, is the MMFD:TI problem
considered in Section 38.3.2. Thus, there is a 2-approximation algorithm for this restricted version of
Max-Dist/Cap:TI problem, and this approximation cannot be improved unless P = NP. We now show
that the more general version of the Max-Dist/Cap:TI problem, where nodes have arbitrary capacities, can
also be approximated to within a factor of 2.

Recall that the specification of the Max-Dist/Cap:TI problem includes a lower bound B on the required
capacity. To ensure feasibility, we assume that the sum of the capacities of all the nodes in G is at least B .
As mentioned earlier, we also assume that no node has a capacity of B or more. Our heuristic for Max-
Dist/Cap:TI is shown in Figure 38.3. It is based on a binary search over the internode distances. For each
query distance α, the heuristic invokes procedure Greedy (also shown in Figure 38.3) to try to find a subset
of nodes V ′ for which DIST(V ′) ≥ α and CAP(V ′) ≥ B . It will be shown (Lemma 38.3) that procedure
Greedy returns “success” (and the corresponding placement V ′) for any internode distance which is at
least half the optimal value.

To establish the performance guarantee provided by the heuristic, we have the following lemma.

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C038 March 20, 2007 16:2

Approximation Algorithms for Facility Dispersion 38-13

Input: A complete graph G(V, E) with edge weights satisfying the triangle inequality, a capacity ci for each

node vi ∈ V and a capacity requirement B.

Output: A subset V ′ of V such that CAP(V ′) ≥ B. (The goal is to make DIST(V ′) close to the optimum

value.)

Algorithm:

1. Sort the nodes in nonincreasing capacity order, and create a list, denoted by SiteList.

2. Sort the internode distances in nonincreasing order and eliminate duplicate distances. Let the resulting

sorted list of distances be stored in the array D[1 .. t] such that D[1] > D[2] > · · · > D[t].

3. Carry out a binary search over the array D to find the index i such that for α = D[i], the call

Greedy(α, B) returns “success” and for α′ = D[i+1], the call Greedy (α′, B) returns “failure.”

4. Output the internode distance α along with the corresponding placement V ′ found in step 3.

procedure Greedy (α, B)

(a) Let L = SiteList and V  = ∅.

(b) while L is not empty do

(i) Add the first node v from L to V ′.

(ii) Remove from L all nodes (including v) whose distance to v is strictly less than α.

(c) if CAP(V ′) ≥ B then return “success” and the set V ′  else return “failure.”

′ 

FIGURE 38.3 Details of the heuristic for Max-Dist/Cap:TI.

Lemma 38.3

Let I denote any instance of Max-Dist/Cap:TI problem for which there is a feasible solution. Let V∗ denote
an optimal set of nodes for the instance I and let OPT(I ) = DIST(V∗). Let γ be the smallest internode
distance ≥ OPT(I )/2. For any internode distance α ≤ γ , the call Greedy(α, B) returns “success.”

Proof
Let V∗ = {vi1 , vi2 , . . . , vir } denote the nodes in the optimal solution. Without loss of generality, we
assume that ci1 ≥ ci2 ≥ · · · ≥ cir . Note that for any two nodes via and vib in V∗, w(via , vib ) ≥ OPT(I ).

Consider the call Greedy(α, B). Let v j1 be the first node added to V ′ in this call. Since the procedure
considers nodes in nonincreasing order of capacities, we have c j1 ≥ ci1 . We now have the following claim.
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Claim
w(v j1 , vi1 ) ≥ α or w(v j1 , vi2 ) ≥ α.

Proof
Suppose the claim is false; that is, w(v j1 , vi1 ) < α and w(v j1 , vi2 ) < α. Since α ≤ γ and γ is the smallest
internode distance ≥ OPT(I )/2, it follows that w(v j1 , vi1 ) < OPT(I )/2 and w(v j1 , vi2 ) < OPT(I )/2.
Consequently, w(v j1 , vi1 ) + w(v j1 , vi2 ) < OPT(I ). However, since vi1 and vi2 are both in the optimal
solution V∗, w(vi1 , vi2 ) ≥ OPT(I ). This violates the triangle inequality, and the claim follows.

During the call Greedy(α,B), after selecting v j1 , only those nodes which are at a distance strictly less
than α are removed from L . Thus, from the above claim, at most one of the nodes vi1 and vi2 is eliminated
when v j1 is chosen. Consequently, a node of capacity at least ci2 is available for selection during the second
iteration.

A straightforward extension of the above argument shows that for 1 ≤ q ≤ r , where r is the number
of nodes in the optimal solution V∗ under consideration, a node of capacity at least ciq is available for
selection during iteration q of the while loop of procedure Greedy. As a consequence, the call Greedy(α,B)
will select a set V ′ of nodes with CAP(V ′) ≥ B and return “success.”

Theorem 38.4

Let I denote any instance of Max-Dist/Cap:TI problem for which there is a feasible solution. Let V∗ denote
an optimal set of nodes for the instance I and let OPT(I ) = D I ST(V∗). Let HEU(I ) be the distance output
by the heuristic shown in Figure 38.3. Then OPT(I )/HEU(I ) ≤ 2.

Proof
Because of the binary search used in the heuristic, the distance value α returned by the heuristic is such
that Greedy(α,B) returns “success,” but if α′ is the next largest distance after α, then Greedy(α′,B) returns
“failure.” By Lemma 38.3, α ≥ γ , the smallest internode distance ≥ OPT(I)/2.

A lower bound example is presented in Ref. [27] to show that the bound of 2 established in the above
theorem is tight. It can be seen that the running time of the heuristic in Figure 38.3 is O(n2 log n).

38.4.3 Results for Geometric Versions

All the results mentioned in this section are for the discrete placement model. Problems 1D:Max-Cap/Dist
and 1D:Max-Dist/Cap can be solved in polynomial time [27] and hence are not discussed further. Using
a straightforward reduction from the MIS problem for unit disk graphs, both 2D:Max-Cap/Dist and
2D:Max-Dist/Cap can be shown to be NP-complete, even when each node has a capacity of 1.

As mentioned in Section 38.2.2, a PTAS is known for the weighted MIS problem for unit disk graphs
when the geometric representation is available as part of the input [26,27]. Using this result, a PTAS for
the 2D:Max-Cap/Dist problem can be obtained. This is done by reducing the 2D:Max-Cap/Dist problem
to the weighted MIS problem for unit disk graphs in the following manner. Treat each given point in
the 2D:Max-Cap/Dist problem as the center of a unit disk with radius = α/2, where α is the distance
constraint. The weight of each disk is the storage capacity of the corresponding point. Now, it can be seen
that any independent set of weight γ for the constructed unit disk graph is a feasible solution of capacity
γ for the 2D:Max-Cap/Dist problem. Therefore, there is a PTAS for the 2D:Max-Cap/Dist problem.

A heuristic with a performance guarantee of 2 for the Max-Dist/Cap:TI was presented in Section 38.4.2.
Since the internode distances in any instance of 2D:Max-Dist/Cap satisfy the triangle inequality, it fol-
lows that there is a 2-approximation algorithm for the 2D:Max-Dist/Cap problem. The following result
summarizes the above discussion.

Proposition 38.3

(a) There is a PTAS for the 2D:Max-Cap/Dist problem.
(b) There is a 2-approximation algorithm for the 2D:Max-Dist/Cap problem. ■
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38.4.4 Capacitated Dispersion with Storage Costs

In Ref. [27] capacitated dispersion problems with storage costs were also considered. Their model assumes
that the storage cost at a node is a linear function of the amount of material stored at the node. Such
dispersion problems, which involve three measures, namely capacity, distance, and cost, are formulated by
choosing one of these measures as the optimization objective and specifying constraints on the other two
measures. The formulation leads to minimization problems when the optimization objective is cost and
to maximization problems when the optimization objective is either capacity or distance. Likewise, the
constraint on cost specifies an upper bound (budget) while constraints on the other two measures specify
lower bounds (minimum required value). A solution to such a problem consists of a placement along with
the amount of material stored at each node in the placement. In specifying these problems, we use the
notation introduced in Section 38.4.1, where the optimization objective (preceded by “Min” or “Max”)
is given first and each constrained measure is preceded by a “/.” For example, in the Min-Cost/Cap/Dist
problem, the objective is to minimize the storage cost while satisfying constraints on capacity and minimum
internode distance. In the remainder of this section, we will summarize the known results for such problems.

In general, many of the problems involving storage costs are difficult to approximate. For example, strong
nonapproximability results are known for metric instances of Min-Cost/Cap/Dist, Max-Dist/Cap/Cost,
and Max-Cap/Cost/Dist problems. Further, the 2D:Min-Cost/Cap/Dist problem has no ρ-approximation
for any ρ ≥ 1, unless P = NP. A similar nonapproximability result is also known for the 1D:Max-
Dist/Cap/Dist problem. Positive results are known only for geometric versions of some of the problems.
For example, there is a PTAS for the 1D:Min-Cost/Cap/Dist problem. This PTAS is obtained by start-
ing with a pseudopolynomial algorithm6 that solves the problem optimally, and converting the algo-
rithm into a PTAS using standard scaling and rounding techniques [15]. Also, a PTAS is known for the
2D:Max-Cap/Dist/Cost problem. This PTAS is obtained by combining the known PTAS for the weighted
MIS problem for unit disk graphs [26] with another PTAS for the problem of finding a solution of maximum
capacity under a cost constraint. Details regarding the above results can be found in Ref. [27].

38.5 Future Directions

In the previous sections, we discussed approximation algorithms for several versions of dispersion prob-
lems. We conclude this chapter by presenting some directions for future research.

For the metric instances of MAFD, the best known approximation algorithm [30] provides a performance
guarantee of 2. Whether this performance guarantee can be improved remains an open problem. For the
nonmetric instances of MAFD, there is a significant gap between the upper bound of O(nδ log n) [32] and
the lower bound of O(1) [36] on the performance guarantee. Narrowing this gap is an interesting research
problem. For metric instances of the Max-Matching dispersion problem, an approximation algorithm with
a performance guarantee of O(log p) is known [14], but no lower bounds on the achievable performance
guarantee are known. Many of the known results for the geometric versions of dispersion problem are
for the discrete placement model. Under the continuous placement model, results are available for the
Max-Min objective [18]. Investigating other dispersion problems under the continuous placement model
is a useful research direction. The topic of capacitated dispersion also provides several open questions. For
example, all the known results for capacitated dispersion [27] use the Max-Min measure for the internode
distance. It is of interest to consider capacitated dispersion problems for other distance measures (e.g., Max-
Average distance). Dispersion problems involving multiple types of facilities are of practical importance.
Exploring approximation algorithms for such problems would be a fruitful research endeavor.

Another research direction is offered by the online model for facility placement. In this model, intro-
duced in Ref. [37], the distance between each pair of nodes is given as part of the input, but p, the number

6A pseudopolynomial algorithm has a running time that is a polynomial function of the size of the input and the
maximum value that appears in the input [15].
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of facilities to be placed is not known a priori. Instead, requests for placing facilities arrive one at a time.
An algorithm must choose a new node for each request. Previously placed facilities cannot be moved
or eliminated. Under this online model, constant factor approximations were presented in Ref. [37] for
location problems involving desirable facilities. Using the same online model, some results for dispersion
problems are presented in Ref. [38]. In particular, it is shown that for dispersion objectives satisfying
certain properties, approximation algorithms for the offline model (where the value of p is known a pri-
ori) can be used to obtain approximation algorithms under the online model, with only an O(1) loss in
the performance guarantee. This result also holds for nonmetric instances. Results on robust subgraphs
developed in Ref. [39] are also germane to the context of online facility placement problems. In general,
developing approximation algorithms for facility dispersion problems under the online model remains an
interesting research direction.
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39.1 Introduction

Variants of the facility location problem (FLP) have been studied extensively in the operations research
and management science literatures and have received considerable attention in the area of approximation
algorithms. In the metric uncapacitated facility location problem (UFLP), which is the most basic facility
location problem, we are given a finite set F of facilities, a finite set D of clients, a cost fi for opening
facility i ∈ F , and a connection cost ci j for connecting i to j for i, j ∈ D ∪ F . The objective is to open a
subset of the facilities in F and connect each client to an open facility so that the total cost is minimized.
We assume that the connection costs form a metric, meaning that they are nonnegative, symmetric, and
satisfy the triangle inequality, that is, for any i, j, k ∈ D ∪ F , ci j ≥ 0, ci j = c j i , and ci j ≤ cik + ck j .

More precisely, the problem can be formulated as an integer program (39.1)–(39.4):

minimize
∑

i∈F

∑

j∈D
ci j xi j +

∑

i∈F
fi yi (39.1)

subject to
∑

i∈F
xi j = 1 for all j ∈ D (39.2)

xi j ≤ yi for all i ∈ F , j ∈ D (39.3)

xi j , yi ∈ {0, 1} for all i ∈ F , j ∈ D (39.4)

where the binary variable yi indicates whether facility i is open and the binary variable xi j indicates
whether client j is connected to facility i . Constraints (39.2) ensure that each client is connected to a
facility, whereas constraints (39.3) ensure that the clients are connected only to open facilities. This integer
programming formulation has been attributed to Balinski [1].

We briefly review recent work on approximation algorithms for the metric UFLP. First of all, we note
that a result of Guha and Khuller [2], combined with an observation of Sviridenko (cited as private
communication in Ref. [3]), implies that no polynomial-time algorithm for the uncapacitated problem

39-1
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TABLE 39.1 Approximation Algorithms for the Metric UFLP

Approximation factor Reference Technique/running time

O(ln |D|) Hochbaum [4] Greedy algorithm/O(n3)
3.16 Shmoys et al. [5] LP rounding
2.41 Guha and Khuller [2] LP rounding

1.736 Chudak and Shmoys [6] LP rounding
5 + ε Korupolu et al. [8] Local search/O(n6 log(n/ε))

3 Jain and Vazirani [14] Primal-dual method/O(n2 log n)
1.853 Charikar and Guha [9] Primal-dual method/O(n3)
1.728 Charikar and Guha [9] LP rounding + primal-dual method
1.861 Mahdian et al. [18] Greedy algorithm/O(n2 log n)
1.61 Jain et al. [19] Greedy algorithm/O(n3)

1.582 Sviridenko [7] LP rounding
1.52 Mahdian et al. [20] Greedy algorithm/Õ(n)

can have a performance guarantee better than 1.463 unless P = NP. Therefore, under the assumption
that P �= NP, we cannot expect a ρ-approximation algorithm with ρ < 1.463 for the metric UFLP and
its generalization.

The first approximation algorithm for the uncapacitated problem was developed 20 years ago by
Hochbaum [4] with performance guarantee O(ln |D|). The first constant factor approximation algo-
rithm was given by Shmoys et al. [5], who presented a 3.16-approximation algorithm based on rounding
an (fractional) optimal solution of the linear programming (LP) relaxation of (39.1)–(39.4). Such an
approach is called linear programming rounding. Subsequently, many approximation algorithms with bet-
ter performance guarantees have been proposed. The approximation ratios and running times of these
algorithms are summarized in Table 39.1, where n = |D| + |F |. These algorithms fall into three classes.

The first class contains approximation algorithms that are based on LP rounding, including Guha and
Khuller [2], Chudak and Shmoys [6], and Sviridenko [7]. The algorithms in Refs. [2,5] based on solving
LP relaxation of (39.1)–(39.4), while the algorithms in Refs. [6,7] also need to solve the dual of the LP
relaxation.

The second class contains local search algorithms including Korupolu et al. [8], Charikar and Guha
[9], and Arya et al. [10]. Starting with any feasible solution, the local search algorithms try to improve the
current solution by opening new facility, closing an open facility, or swap two facilities (close one and open
one), etc. These algorithms have been generalized to solve capacitated facility location problems where
each facility can serve certain amount of demands [11–13].

The last class of algorithms is primal-dual in flavor. The first such algorithm was proposed by Jain and
Vazirani [14]. The algorithms of Mettu and Plaxton [15] and Thorup [16] also fall into this class.

The greedy algorithms presented in this chapter can also be presented as dual-ascent algorithms. They
are due to Jain et al. [17] (this is the journal version of two conference papers [18,19], and in many
cases, we will refer to the conference papers) and Mahdian et al. [20]. We also present a generalization of
the algorithm in Ref. [17] for a two-level facility location problem [21]. In the next section, we present
the simplest greedy algorithm, and introduce the ideas of dual-fitting and factor-revealing LP, which are
essential in analyzing the algorithm and other greedy algorithms for the metric UFLP. In Section 39.3, we
present the more refined algorithms and the concept of bifactor approximation. Section 39.4 is devoted to
the two-level facility location problem where we introduce the so-called quasi-greedy algorithm.

39.2 Dual-Fitting and Factor-Revealing LP

In greedy algorithms, at each step, one computes a greedy function value for each element of a candidate
set and chooses the optimal candidate based on these values. For the metric UFLP, a natural choice for the
candidate set is a star and the greedy function is related to the notion of cost-effectiveness. A star S = (i, C)
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consists of one facility i and a set of clients C . The set of all stars is denoted by S . For a star S = (i, C),
the cost of the star is defined by c S = fi + ∑

j∈C ci j , and the cost-effectiveness of the star is defined by
c S/|C |.

Now we are ready to present our first algorithm, which was originally proposed by Mahdian et al. [18].
We call it the MMSV algorithm.

The MMSV Algorithm.
1. Let U be the set of unconnected clients. Initially U = D.
2. While U �= ∅:

(a) Choose the most cost-effective star S = (i, C) such that C ⊂ U , open facility i if it is not
already open, and assign all clients in C to i .

(b) Set fi := 0, U := U \ C .

The algorithm is extremely simple and it is easy to implement. The performance guarantee of the algorithm
is 1.861 and it has been reported that it performs very well on average [17].

The analysis of the algorithm relies on the dual of the LP relaxation of the UFLP, which can be represented
as follows:

maximize
∑

j∈D
α j (39.5)

subject to
∑

j∈D
βi j ≤ fi for all i ∈ F (39.6)

α j − βi j ≤ ci j for all i ∈ F , j ∈ D (39.7)

βi j , α j ≥ 0 for all i ∈ F , j ∈ D (39.8)

It is equivalent to

maximize
∑

j∈D
α j (39.9)

subject to
∑

j∈S∩D
α j ≤ c S for all S ∈ S (39.10)

α j ≥ 0 for all j ∈ D (39.11)

Intuitively, the dual variable α j can be interpreted as the contribution of client j toward the total cost.
Constraint (39.10) requires that for each star, the total contribution from the clients in the star should be
no more than the cost of the star.

Note that if we raise the dual variables of all clients simultaneously and uniformly, the most cost-effective
star will be the first star S = (i, C ) such that

∑

j∈S∩D
α j = c S

or equivalently
∑

j∈C

max(0, α j − ci j ) = fi

On the basis of this, the MMSV algorithm can be restated as follows [18]:

The MMSV Algorithm: Dual-Ascent Representation.
1. At the beginning, all clients are unconnected, all facilities are unopened, and the budget of every

client j , denoted by α j , is initialized to 0. At every moment, each client j offers some money from
its budget to each unopened facility i . The amount of this offer is equal to max(α j − ci j , 0) if j is
unconnected.
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2. While there is an unconnected client, increase the budget of each unconnected client at the same
rate, until one of the following events occurs:
(a) For some unopened facility i ,

∑
j∈U max(0, α j − ci j ) = fi . In this case, we open facility i ,

and for every unconnected client j with α j ≥ ci j , we connect j to i and remove it from U .
(b) For some j ∈ U , and some facility i that is already open, α j = ci j . In this case, we connect j

to i and remove it from U .

The analysis of the MMSV algorithm can be sketched as follows. First of all, it is easy to see that the total
cost of the solution produced by the algorithm is equal to

∑
j∈D α j . Second, we show that there exists a

constant γ ≥ 1 such that
∑

j∈S
α j ≤ γ c S (39.12)

for any star S ∈ S . Then from the dual problem (39.9)–(39.11) and by LP duality we can conclude that∑
j∈D α j is no more than γ times the optimal value of the LP relaxation. Therefore, the algorithm is a

γ -approximation algorithm. This idea is called dual-fitting.
Of course, we would like to find a γ such that Eq. (39.12) holds and γ is as small as possible. To do this,

an elegant technique called the “factor revealing LP” is developed by Mahdian et al. [18]. They show that,
for any star S = (i, C ), if the α j ’s are ordered in such a way that α1 ≤ α2 ≤ · · · ≤ α|C |, then the following
hold:

Lemma 39.1

For any j ∈ C,
∑|C |

l= j max(α j − c j l , 0) ≤ fi .

Lemma 39.2

For any 1 ≤ l < j ≤ |C |, α j ≤ αl + cil + ci j .

The proof of Lemma 39.1 follows directly from the description of the algorithm, and Lemma 39.2
can be proven as follows [18]. Without loss of generality, we assume α j > αl and let i ′ be the facil-
ity that client l is connected to by the MMSV algorithm. Thus, facility i ′ is open at time αl . There-
fore α j cannot be greater than ci ′ j since otherwise j could be connected to facility i ′ at some time
before α j . Then using the above inequalities and the fact that the connection costs form a metric we have
α j ≤ ci ′ j ≤ ci ′l + cil + ci j ≤ αl + cil + ci j .

Then it would be clear that if we define zk as the optimal value of the following maximization problem
for each k ≥ 1:

maximize
k∑

i=1

αi (LP1)

subject to ∀ 1 ≤ i < k : αi ≤ αi+1

f +
k∑

j=1

d j = 1

∀ 1 ≤ i, j ≤ k : αi ≤ α j + di + d j

∀ 1 ≤ i ≤ k :
k∑

j=i

max(αi − d j , 0) ≤ f

∀ 1 ≤ j ≤ k : α j , d j , f ≥ 0

And let γ := supk{zk}. Then (39.12) is satisfied and it can be shown that γ ≤ 1.861. And this implies that
the MMSV algorithm is a 1.861 algorithm.

The linear program (LP1) is called a factor-revealing LP. As we have seen, it is used to derive an upper
bound for the performance guarantee of the MMSV algorithm. Mahdian et al. [18] also show that the
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factor-revealing LP is helpful to construct the worst-case instances. Indeed, they show that the performance
guarantee of the algorithm is lower-bounded by 1.81.

39.3 BiFactor Approximation

In this section, we first present the second algorithm in Jain et al. [17], which was first presented in Jain
et al. [19]. We called it the JMS algorithm. We also present the 1.52-approximation algorithm due to
Mahdian et al. [20]. The analysis of the JMS algorithm has the feature that allows the approximation factor
for the facility cost to be different from the approximation factor for the connection cost, and gives a way
to compute the trade-off between these two factors. The following definition captures this notion [22]:

Definition 39.1

An algorithm is called a (γ f , γc )-approximation algorithm for a facility location problem, if for every instance
I of the problem, and for every solution SOL for I with facility cost FSOL and connection cost CSOL, the cost
of the solution found by the algorithm is at most γ f FSOL + γc CSOL.

39.3.1 The 1.61-Approximation Algorithm

Now we present the JMS algorithm, which is very similar to the MMSV algorithm. In the MMSV algorithm,
once a client j is connected to a facility i , α j will be fixed and j will not be switched to other facilities.
However, it is possible that later on, when the algorithm opens a new facility, say i ′, the connection cost
ci ′ j is less than ci j . Therefore, j can be switched to facility i ′ and it will save ci j − ci ′ j , which can be used
to open facility i ′.

Therefore, one could modify the definition of the cost-effectiveness of a star S = (i, C) as follows. Let
U be the set of unconnected clients. And for each j ∈ D \ U , let σ ( j ) be the facility that j is connected
to. Then the cost-effectiveness of a star S = (i, C ) with C ⊆ U is defined as

fi − ∑
j∈D\U max(0, ci j − cσ ( j ) j ) + ∑

j∈C ci j

|C |
Essentially, the JMS algorithm is the MMSV algorithm with the modified definition. Again, for the purpose
of analyzing the algorithm, we state the JMS algorithm as a dual-ascent algorithm, as it has been done in
Ref. [19].

The JMS Algorithm.
1. At the beginning, all clients are unconnected, all facilities are unopened, and the budget of every

client j , denoted by B j , is initialized to 0. At every moment, each client j offers some money from
its budget to each unopened facility i . The amount of this offer is equal to max(B j − ci j , 0) if j is
unconnected, and max(ci ′ j − ci j , 0) if it is connected to some other facility i ′.

2. While there is an unconnected client, increase the budget of each unconnected client at the same
rate, until one of the following events occurs:
(a) For some unopened facility i , the total offer that it receives from clients is equal to the cost of

opening i . In this case, we open facility i , and for every client j (connected or unconnected),
which has a nonzero offer to i , we connect j to i .

(b) For some unconnected client j , and some facility i that is already open, the budget of j is equal
to the connection cost ci j . In this case, we connect j to i .

One may notice that the JMS algorithm finds a solution in which there is no unopened facility that one
can open to decrease the cost (without closing any other facility). This is because for each client j and
facility i , j offers to i the amount that it would save in the connection cost if it gets its service from i .

The analysis of the algorithm also relies on dual-fitting and factor-revealing LP.
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Again, the total cost of the solution produced by the algorithm is equal to
∑

j∈D α j . Also, from the
dual problem (39.5)–(39.8) we can show that, if there exists γ f and γc such that

∑

j∈S
α j ≤ γ f fi + γc

∑

j∈C

ci j (39.13)

for any star S = (i, C ) ∈ S , then by LP duality the algorithm is a (γ f , γc )-approximation algorithm.
To develop a factor-revealing LP to find such γ f and γc , we would like to have some results analogous

to Lemmas 39.1 and 39.2. Again, for any star S = (i, C ), we assume the α j ’s are ordered in such a way
that α1 ≤ α2 ≤ · · · ≤ α|C |. We need more variables to capture the execution of the JMS algorithm. For
every l < j , if client l is connected to some facility i at time α j , let rl j = cil ; otherwise, let rl j = αl (this
case will occur only if αl = α j ). Then one can prove the following lemmas:

Lemma 39.3

For any l ∈ C, rl ,l+1 ≥ rl ,l+2 ≥ · · · , rl , |C |.

Lemma 39.4

For any j ∈ C,
∑ j−1

l=1 max(αl j − cil , 0) + ∑|C |
l= j max(α j − c j l , 0) ≤ fi .

Lemma 39.5

For any 1 ≤ l < j ≤ |C |, α j ≤ rl j + cil + ci j .

Using the above lemmas, we can then establish the following result due to Ref. [19]:

Theorem 39.1

Let γ f ≥ 1 be fixed and γc := supk{zk}, where zk is the solution of the following optimization program which
is referred to as the factor-revealing LP.

maximize

∑k
i=1 αi − γ f f
∑k

i=1 di

(LP2)

subject to ∀ 1 ≤ i < k : αi ≤ αi+1 (39.14)

∀ 1 ≤ j < i < k : r j, i ≥ r j, i+1 (39.15)

∀ 1 ≤ j < i ≤ k : αi ≤ r j, i + di + d j (39.16)

∀ 1 ≤ i ≤ k :
i−1∑

j=1

max(r j, i − d j , 0) +
k∑

j=i

max(αi − d j , 0) ≤ f (39.17)

∀ 1 ≤ j ≤ i ≤ k : α j , d j , f, r j, i ≥ 0 (39.18)

Then the JMS algorithm is a (γ f , γc )-approximation algorithm for UFLP.

Jain et al. [19] have also shown that for γ f = 1 we have γc ≤ 2. Mahdian et al. [20] proved that
γc ≤ 1.78 when γ f = 1.11 and they used this pair of ratios to get the 1.52-approximation algorithm. We
call their algorithm the MYZ algorithm. The MYZ algorithm also uses the idea of cost scaling, which was
originally proposed by Charikar and Guha [9].

39.3.2 The 1.52-Approximation Algorithm

The MYZ algorithm has two phases.

Phase I. We scale up the opening costs of all facilities by a factor of δ (which is a constant that will be fixed
later) and then run the JMS algorithm to find a solution.

Phase II. In the second phase of the algorithm, we decrease the scaling factor δ at rate 1, so at time t, the
cost of facility i has reduced to (δ − t) fi . If at any point during this process, a facility could be opened
without increasing the total cost (i.e., if the opening cost of the facility equals the total amount that clients
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can save by switching their “service provider” to that facility), then we open the facility and connect each
client to its closest open facility. We stop when the scaling factor becomes 1.

Intuitively, the facilities that are opened in Phase I are those that are very economical, because we weigh
the facility cost more than the connection cost in the objective function.

We remark that Phase II is equivalent to a greedy procedure introduced by Guha and Khuller [2] and
Charikar and Guha [9]. In this procedure, in each iteration, we pick a facility u of opening cost fu such
that if by opening u, the total connection cost decreases from C to C ′

u , and the ratio (C − C ′
u − fu)/ fu

is maximized. If this ratio is positive, then we open the facility u, and iterate; otherwise we stop. In
Phase II of the MYZ algorithm, the first facility u that is opened corresponds to the minimum value
of t, or the maximum value of δ − t, for which we have (δ − t) fu = C − C ′

u . In other words, our
algorithm picks the facility u for which the value of (C − C ′

u)/ fu is maximized, and stops when this value
becomes less than or equal to 1 for all u. This is the same as what the Charikar–Guha–Khuller procedure
does.

Mahdian et al. [20] proved that the JMS algorithm is a (1.11, 1.78)-approximation algorithm for the
metric UFLP. It follows directly from the results of Refs. [2,9]—which is essentially the same as the one
proved in Theorem 39.3 below—that the above algorithm is a 1.52-approximation algorithm. However,
Mahdian et al. [22] were able to show that the performance guarantee of the MYZ algorithm can be
bounded by analyzing a single factor-revealing LP. Their analysis depends on a modified implementation
of Phase II as the following.

Instead of decreasing the scaling factor continuously from δ to 1, we decrease it discretely in L steps,
where L is a constant. Let δi denote the value of the scaling factor in the i th step. Therefore, δ = δ1 >

δ2 > · · · > δL = 1. We will fix the value of the δi ’s later. After decreasing the scaling factor from δi−1 to
δi , we consider facilities in an arbitrary order, and open those that can be opened without increasing the
total cost. We denote this modified algorithm by MYZL . Clearly, if L is sufficiently large (depending on
the instance), the algorithm MYZL computes the same solution as Algorithm MYZ.

Then, Mahdian et al. [20] were able to prove that

Theorem 39.2

Let (ξ f , ξc ) be such that ξ f ≥ 1 and ξc is an upper bound on the solution of the following maximization
program for every k:

maximize

∑k
j=1

(
α j
δ

+ ∑L−1
i=1

(
1

δi+1
− 1

δi

)
r j,k+i

)
− ξ f f

∑k
i=1 di

(LP2)

subject to ∀ 1 ≤ i < k : αi ≤ αi+1 (39.19)

∀ 1 ≤ j < i < k : r j, i ≥ r j, i+1 (39.20)

∀ 1 ≤ j < i ≤ k : αi ≤ r j, i + di + d j (39.21)

∀ 1 ≤ i ≤ k :
i−1∑

j=1

max(r j, i − d j , 0) +
k∑

j=i

max(αi − d j , 0) ≤ δ f (39.22)

∀ 1 ≤ i ≤ L :
k∑

j=1

max(r j,k+i − d j , 0) ≤ δi f (39.23)

∀ 1 ≤ j ≤ i ≤ k : α j , d j , f, r j, i ≥ 0 (39.24)

Then, algorithm MY ZL is a (ξ f , ξc )-approximation algorithm for UFLP.

The following theorem follows from the above factor-revealing LP, and it immediately implies that the
metric LP can be approximated by a factor of 1.52 by choosing δ = 1.504.
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Theorem 39.3

Let (γ f , γc ) be a pair given by the maximization program (LP2) in Theorem 39.1, and δ ≥ 1 be an arbitrary
number. Then for every ε, if L is a sufficiently large constant, algorithm AL is a (γ f + ln(δ) + ε, 1 + γc −1

δ
)-

approximation algorithm for the metric UFLP.

We note that although the performance guarantee of the MYZ algorithm can be upper-bounded by
analyzing a single factor-revealing LP, it is not clear whether the bound provided by the factor-revealing
LP is tight or not. Detailed discussion of the MYZ algorithm can be found in [32], which is the journal
version of Refs. [20,22].

39.4 Quasi-Greedy Algorithm for Two-Level Facility Location

In this section, we consider a generalization of the metric UFLP, called the k-level uncapacitated facility
location problem (k-LFLP). In this problem, the demands must be routed among facilities in a hierarchical
order, that is, from the highest level (the factories) down to the lowest (the retailers), before reaching the
clients. The k-LFLP arises naturally in designing logistic systems.

The k-LFLP can be formulated formally as follows. We are given a set of clients D and k-level sets of
facilities F1, F2, . . . , Fk . Denote P = F1 × F2 × · · · × Fk and F = ∪ k

t=1F t . Each client j ∈ D must
be served by an open path p = (i1, i2, . . . , ik) ∈ P of k facilities with exactly one from each of the k
levels, where a path p is open if and only if every facility on the path is open. There is a facility cost
fit for opening facility it ∈ Ft (1 ≤ t ≤ k). Furthermore, if client j ∈ D is served by an open path
p = (i1, i2, . . . , ik) ∈ P a connection cost c j p is incurred where c j p = c j i1 + ∑k

t=2 cit−1it and c j i is the
connection cost between j and i for j, i ∈ D ∪ F . Here, we wish to open a subset of facilities such that
each client is assigned to an open path and the total cost is minimized, that is, to choose ∅ �= St ⊂ Ft ,
t = 1, 2, . . . , k, such that

∑

j∈D

min
p∈S1×S2×···×Sk

c jp +
k∑

t=1

∑

it∈St

fit

is minimized. We also assume that the connection costs are nonnegative, symmetric, and satisfy the triangle
inequality, that is, for each i, j, l ∈ D ∪F , ci j ≥ 0, ci j = c j i and ci j ≤ cil + cl j . The metric UFLP is just
1-LFLP.

The 2-LFLP is the most studied special case of k-LFLP in the literature of Operations Research for
k ≥ 2 [23]. Although it is the simplest model among all the k-LFLP for k ≥ 2, the 2-LFLP has some
fundamental structural differences from the 1-LFLP. For example, the 2-LFLP does not possess the so-
called supermodularity, a well-known property for the 1-LFLP [24]. This property is often helpful in
designing branch-and-cut algorithms and in analyzing some approximation algorithms. Thus, the 2-LFLP
needs new techniques.

One can easily see that the lower bound 1.463 of the 1-LFLP also applies to the 2-LFLP, and no better
lower bound is known. In Ref. [5], the algorithm for the 1-LFLP has been extended to the 2-LFLP with
an approximation ratio 3.16. Later on, Aardal et al. [25] showed that the k-LFLP can be approximated
in polynomial time by a factor of 3 for any k ≥ 2 using an LP relaxation. However, their algorithm does
not possess a better performance guarantee for k = 2, and neither do a series of recently proposed faster
combinatorial algorithms due to Meyerson et al. [26], Guha et al. [27], Bumb and Kern [28], and Ageev
[29]. In fact, the algorithms of Refs. [25,28,29] will produce solutions whose open paths are disjoint, and
Edwards [30] showed that such algorithms cannot have worst-case ratios that are better than 3 even for
k = 2. Ageev et al. [31] proposed two different combinatorial algorithms and showed that “the better of the
two” has a performance guarantee 2.43, although each of them has a performance guarantee of at least 3.

In this section, we present the algorithm developed by Zhang [21]. The main result of Ref. [21] is that the
2-LFLP can be approximated in polynomial time by a factor of 1.77, which achieves a significant improve-
ment over previous results. The improved ratio is achieved by using what we call a quasi-greedy approach.
Our algorithm is analyzed by using the technique of factor-revealing LP presented in previous sections.
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To design a greedy algorithm for the 2-LFLP, we should define the candidate set and the greedy function.
It is known that the open paths of an optimal solution of the 2-LFLP form a forest [30]. Thus a natural
choice of the set of candidates would be the set of all trees, where each tree T = (i, Si , Di ) consists of one
facility i ∈ F2, a set of first-level facilities Si ⊂ F1, and a set of clients Di ∈ D. Then we can define the
cost-effectiveness of a tree. The cost associated with a tree T = (i, Si , Di ) is

fi +
∑

k∈Si

fk +
∑

j∈Di

min
k∈Si

c j ki

and the cost-effectiveness of this tree is

fi + ∑
k∈Si

fk + ∑
j∈Di

mink∈Si c j ki

|Di |
On the basis of this definition, we can design a greedy algorithm for the 2-LFLP similar to the MMSV algo-
rithm. However, it should be noted that the problem of choosing a tree with minimum cost-effectiveness
itself is at least as hard as the metric UFLP. Therefore, at each step, we do not choose the best candidate.
Instead, we use an approximation algorithm to find a “good” candidate. The resulting algorithm is called
a quasi-greedy algorithm [21].

Similarly, we can also modify the definition of the cost-effectiveness as it has been done in the JMS algo-
rithm. The quasi-greedy algorithm developed in Ref. [21], denoted by QG, is a dual-ascent representation
of the greedy algorithm with a modified definition of the cost-effectiveness. As we have mentioned earlier,
at each step of the algorithm, we need to solve another NP-hard problem. In fact, this NP-hard problem
is called the maximization version of the facility location problem, denoted by Max-1-LFLP.

The Max-1-LFLP is defined as follows. We are given a set of client D and a set of facilities F . The facility
cost for opening facility i is fi and the revenue generated by assigning client j to facility i is di j ≥ 0.
Here, the di j ’s may not satisfy the triangle inequality. The objective is to open a subset of the facilities of
F and then assign each of the clients in D to an open facility such that the net profit is maximized. The
Max-1-LFLP can be formulated as the following integer program:

Max
∑

i∈F , j∈D
di j xi j −

∑

i∈F
fi yi

s.t.
∑

i∈F
xi j ≤ 1 for all j ∈ D (39.25)

xi j ≤ yi for all i ∈ F , j ∈ D
xi j , yi ∈ {0, 1} for all i ∈ F , j ∈ D

where yi = 1 if we decide to open facility i , otherwise yi = 0; xi j = 1 if client j is assigned to facility i ,
otherwise xi j = 0.

The Max-1-LFLP and the minimization 1-LFLP are equivalent from the perspective of optimization,
but not from that of approximation. Approximation algorithms for the Max-1-LFLP have a longer history
than those for the 1-LFLP [33,34]. However, the results of Refs. [33,34] do not help in establishing our
result for the 2-LFLP. Instead, the following simple LP-rounding algorithm has been used to solve the
Max-1-LFLP in Ref. [21].

Algorithm MAX
Step 1. Solve the following LP and obtain an optimal solution (x , y):

Max (1 − 1

e
) ·

∑

i∈F , j∈D
di j xi j −

∑

i∈F
fi yi

s.t.
∑

i∈F
xi j ≤ 1 for all j ∈ D (39.26)

xi j ≤ yi for all i ∈ F , j ∈ D
0 ≤ xi j , yi ≤ 1 for all i ∈ F , j ∈ D
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Step 2. For each i ∈ F , open facility i independently with probability yi , and assign each client j ∈ D
to an open facility with maximum revenue. Let the resulting solution be (x̂ , ŷ) and the corresponding
facility cost and revenue be F and C , respectively.

Consider any feasible solution, whose total profit is assumed to be C∗−F ∗, where C∗ and F ∗ correspond
to the total revenue and the total facility cost, respectively. It can be shown that Algorithm MAX produces
a solution with profit C − F ≥ (1 − 1

e )C∗ − F ∗.
Then we are ready to present the quasi-greedy algorithm for the 2-LFLP.

The Algorithm QG

1. We introduce a notion of time. The algorithm starts at time 0. At this time, all clients are unconnected
and all facilities are unopen. Let U be the set of unconnected clients. Thus at this time U = D. And
α j = 0 for each j ∈ D.

At each moment, every client j will have some money B j available to offer to each unopen facility
inF2, where B j = α j if j is unconnected, and B j = c j p if j is currently connected to an open path
p. The amount of offers received by a facility i ∈ F2 is computed as follows. Consider any i ∈ F2.
For each j ∈ D and k ∈ F1, define dk j = max{B j − c j ki , 0}, where c j ki = c j k + cki , and f̂ k = 0
if k ∈ F1 is already open; f̂ k = fk otherwise. Then we obtain an instance of the Max-1-LFLP. We
solve this instance by Algorithm MAX and obtain a feasible solution. This profit (could be negative)
is the amount of offers received by the facility i . Note that each client j can make an offer to a facility
i ∈ F2 through exactly one facility σi ( j ) ∈ F1, where σi ( j ) is the facility to which j is assigned by
Algorithm MAX. The contribution made by client j to facility i is equal to dσi ( j ) j .

2. While U �= ∅, increase the time and simultaneously increase α j at the same rate for each j ∈ U ,
until one of the following events occurs:
(a) For an unopen facility i ∈ F2, the total amount of offers that it has received from the clients is

equal to fi . In this case, we open facility i . And for each client j ∈ D who has made nonzero
contribution to i , we open facility σi ( j ) ∈ F1 and assign j to the path (σi ( j ), i). Furthermore,
if j ∈ U , then remove j from U (and stop increasing α j ).

(b) For a client j ∈ U and open facilities i ∈ F2 and k ∈ F1, α j = c j ki , then assign j to the path
(k, i) and remove j from U (and stop increasing α j ).

To implement Algorithm QG in polynomial time, we notice that the total number of possible events is
bounded by |D| + |F2|. At any time, we need to find the minimum value of how much the α j ’s should
increase such that the next event will occur. This can be done in polynomial time (but not strongly
polynomial time) by performing a bisection search. Another way for implementing the algorithm is
that we discretize the time and only consider the values of α j ’s that are powers of (1 + ε), that is,
{0, 1, (1 + ε), (1 + ε)2, (1 + ε)3, . . . , } for any given constant ε > 0. Therefore, the algorithm can be
implemented in polynomial time for any given constant ε > 0.

Again, it is easy to show that the total cost of the solution produced by Algorithm QG is
∑

j∈D α j . If
we could prove that, for any tree T = (i, Si , Di ),

∑

j∈Di

α j ≤ R f



 fi +
∑

k∈Si

fk



+ Rc

∑

j∈Di

min
k∈Si

c j ki

then Algorithm QG must be a (R f , Rc )-approximation algorithm for the 2-LFLP. This is done by con-
structing a factor-revealing LP.

Now we consider a tree T = (i, Si , Di ). We assume that |Di | = n and let m j = mink∈Si c j ki .

Furthermore, without losing generality, we assume that α1 ≤ α2 ≤ · · · ≤ αn.
For each j : 1 ≤ j ≤ n, consider the situation of the algorithm at time t = α j . For each l ≤ j − 1, if l is

connected to a path p before time t (i.e., l was connected to a path at time α j /(1 + ε) , then let rl , j = cl p ;
otherwise, let rl , j = αl . In the latter case, αl = α j .
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Then we can show some results analogous to Lemmas 39.3–39.5.

Lemma 39.6

For each 1 ≤ l < j ≤ n, we have rl , j ≥ rl , j+1.

Lemma 39.7

For any j : 1 ≤ j ≤ n,

j−1∑

l=1

max
(

rl , j /(1 + ε) − ml , 0
) +

n∑

l= j

max
(
α j /(1 + ε) − ml , 0

) ≤ e

e − 1



 fi +
∑

k∈Si

fk





Lemma 39.8

For any 1 ≤ l < j ≤ n, α j /(1 + ε) ≤ rl , j + m j + ml

Notice that, if we had been able to solve the Max-1-LFLP optimally, then Lemma 39.1 would be the
following: For any j : 1 ≤ j ≤ n,

j−1∑

l=1

max
(

rl , j /(1 + ε) − ml , 0
) +

n∑

l= j

max
(
α j /(1 + ε) − ml , 0

) ≤


 fi +
∑

k∈Si

fk





Then we would get a 1.52-approximation algorithm for the 2-LFLP.
Comparing Lemmas 39.6, 39.7, and 39.8 with Lemmas 39.3, 39.4, and 39.5, respectively, we see that

if (γ f , γc ) satisfies Theorem 39.1, then Algorithm QG is a ( e
e−1γ f , γc )-approximation algorithm. In

particular, we can choose γ f = 1.118 and γc = 1.77, from which it will follow that Algorithm QG is a
1.77-approximation algorithm.
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40.1 Introduction

The most general version of the Prize-Collecting Traveling Salesman Problem (PCTSP) was first introduced
by Balas [1]. In this problem, a salesman has to collect a certain amount of prizes (the quota) by visiting
cities. A known prize can be collected in every city. Furthermore, by not visiting a city, the salesman incurs
a pecuniary penalty. The goal is to minimize the total travel distance plus the total penalty, while starting
from a given city and collecting the quota.

The problem generalizes both the Quota TSP, which is obtained when all the penalties are set to zero,
and the Penalty TSP (PTSP) (sometimes unfortunately also called PCTSP), in which there is no required
quota, only penalties. A special case of the Quota TSP is the k-TSP, in which all prizes are unitary (k is
the quota). The k-TSP is strongly tied to the problem of finding a tree of minimum cost spanning any
k vertices in a graph, called the k-Minimum Spanning Tree (k-MST) problem.

The k-MST and the k-TSP are NP-hard. They have been the subject of several studies for good approx-
imation algorithms [2–6]. A 2-approximation scheme for both the k-MST and the k-TSP given by Garg
[6] is the best known approximation ratio. Interestingly enough, all these algorithms use the primal-dual
algorithm of Goemans and Williamson [7] for the Prize-Collecting Steiner Tree as a subroutine.

The Quota TSP was also considered by some researchers. It was considered by Awerbuch et al. [8], who
gave an O(log2(min(Q, n))) approximation algorithm for instances with n cities and quota Q. Ausiello

40-1
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et al. [9] give an algorithm with an approximation ratio of 5 for what could be called the Quota MST, by
extending some of the ideas of Ref. [5].

The PTSP has apparently a better approximation ratio. Goemans and Williamson [7], as an application
of their primal-dual technique, give an approximation algorithm with a ratio of 2 for the PTSP. Their
algorithm uses a reduction to the Prize-Collecting Steiner Tree Problem. The running time of the algorithm
was reduced from O(n2 log n) to O(n2) by Gabow and Pettie [10].

We finally remark that both the MST and the TSP also admit a budget version; in these cases a budget B
is specified in the input and the objective is to find the largest k-MST, respectively the k-TSP, whose cost
is no more than the given budget.

Awerbuch et al. [8] in the aforementioned work, were the first to give an approximation algorithm for
the general PCTSP. Their approximation ratio is again O(log2(min(Q, n))). They achieve this ratio by
concatenating the tour found by the Quota TSP algorithm to a tour found by the Goemans–Williamson
algorithm. As an application of the 5-approximate algorithm for the Quota MST [9] it follows that the
approximation ratio of the PCTSP is constant.

In what follows, we introduce formal details and we provide a review of the main results in the area. In
Section 40.2, we present the algorithm by Goemans and Williamson for the Prize-Collecting Steiner Tree,
which is a basic building block for all the other algorithms in this chapter and has also an application to
the PTSP. In Section 40.3, we analyze Garg’s technique showing a 5-approximation for both the k-MST
and k-TSP and show how to extend it to the Quota TSP. In Section 40.4, we describe an algorithm for the
general PCTSP that builds over the algorithms for Quota TSP and PTSP. In Section 40.5, we show some
applications of these algorithms to the minimum latency problem and graph searching.

40.2 The Prize-Collecting Steiner Tree Problem and Penalty
Traveling Salesman Problem

40.2.1 Definitions

Prize-Collecting Steiner Tree. Given an undirected graph G = (V, E ) with vertex penalties π : V → Q
+,

edge costs c : E → Q
+ and a root node r , the Prize-Collecting Steiner Tree problem asks to find a tree

T = (VT , E T ) including r that minimizes

c(T) =
∑

e∈E T

ce +
∑

v∈V\VT

πv

Penalty Traveling Salesman Problem. Given an undirected graph G = (V, E ) with vertex penalties π :
V → Q

+, edge costs c : E → Q
+ satisfying the triangle inequality and a root node r , the PTSP asks to

find a tour T = (VT , E T ) including r that minimizes

c(T) =
∑

e∈E T

ce +
∑

v∈V\VT

πv

40.2.2 History of the Results

The first approximation algorithms for the Prize-Collecting Steiner Tree and PTSP were developed by
Bienstock et al. [11]. They gave LP-based algorithms achieving a 3-approximation for the PCST and a 5/2-
approximation for the PTSP with triangle inequality. Both bounds were later improved to 2 by Goemans
and Williamson [7] with a combinatorial algorithm. The NP-hardness (more precisely, APX-hardness) of
the problems follows from that of the Steiner Tree problem [12] and the TSP [13], respectively.

40.2.3 The Primal-Dual Algorithm of Goemans and Williamson

We review the algorithm of Goemans and Williamson [7] for the Prize-Collecting Steiner Tree and PTSP. We
are given an undirected graph G = (V, E ), nonnegative edge costs ce , and nonnegative vertex penalties
πi . The goal in the Prize-Collecting Steiner Tree problem is to minimize the total cost of a Steiner tree and
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the penalties of the vertices that are not spanned by the Steiner tree. In the PTSP, we aim to minimize the
cost of a tour and of the penalties of the vertices that are not included in the tour. In this section we revise
the primal-dual algorithm of Ref. [7] that provides a 2-approximation for both problems. We first show a
2-approximation for the Steiner tree version and then show how to obtain a 2-approximation for the TSP
version. Subsequently, we use GW (Goemans-Williamson) to refer to this algorithm.

GW is a primal-dual algorithm, that is, the algorithm constructs both a feasible and integral primal and
a feasible dual solution for a linear programming formulation of the problem and its dual, respectively.
We will consider the version of the problem in which a root vertex r is given and the Steiner tree or the
traveling salesman tour will contain r . This is without loss of generality if we can run the algorithm for all
possible choices of r .

An integer programming formulation for the Steiner tree problem has a binary variable xe for all edges
e ∈ E : xe has value 1 if edge e is part of the resulting forest and 0 otherwise. Let us denote by S all subsets
of V/{r }. The integer programming formulation has a binary variable xU for each set U ∈ S . The cost
of set U is

∑
v∈U πv . For a subset U ∈ S we define δ(U ) to be the set of all edges that have exactly one

endpoint in U . Let T be the set of edges with xe = 1 and let A be the union of sets U for which xU = 1.
For any U ∈ S , any feasible solution must cross U at least once, that is, |δ(U ) ∩ T | ≥ 1, or U must be
included in the set of vertices that are not spanned, that is, U ⊂ A.

This gives rise to the following integer programming formulation for the Prize-Collecting Steiner Tree
problem:

optIP = min
∑

e∈E

ce · xe +
∑

U∈S

xU ·
∑

i∈U

πi (IP)

s.t.
∑

e∈δ(U )

xe +
∑

U ′:U⊆U ′
xU ′ ≥ 1 ∀U ∈ S (40.1)

xe , xU ∈ {0, 1} ∀e ∈ E , ∀U ∈ S

It is easy to observe that any solution to the Prize-Collecting Steiner Tree problem is an integral solution
of this integer linear program: We set xe = 1 for all edges of the Steiner tree T that connects the spanned
vertices to the root r . We set xU = 1 for the set U of vertices not spanned by the tree. In the linear
programming relaxation of IP we drop the integrality constraints on variables xe and xU .

The dual (D) of the linear programming relaxation (LP) of (IP) has a variable yU for all sets U ∈ S .
There is a constraint for each edge e ∈ E that limits the total dual assigned to sets U ∈ S that contain
exactly one endpoint of e to be at most the cost ce of the edge. There is a constraint for every U ∈ S that
limits the total dual from subsets of U by at most the total penalty from vertices in U .

optD = max
∑

U∈S

yU (D)

s.t.
∑

U∈S : e∈δ(U )

yU ≤ ce ∀e ∈ E (40.2)

∑

U ′⊆U

yU ′ ≤
∑

i∈U

πi ∀U ∈ S (40.3)

yU ≥ 0 ∀U ∈ S

Algorithm GW constructs a primal solution for (IP) and a dual solution for D. The algorithm starts with
an infeasible primal solution and reduces the degree of infeasibility as it progresses. At the same time, it
creates a dual feasible packing of sets of largest possible total value. The algorithm raises dual variables of
certain subsets of vertices. The final dual solution is maximal in the sense that no single set can be raised
without violating a constraint of type (40.2) or (40.3).

We can think of an execution of GW as a process over time. Let xτ and yτ , respectively, be the primal
incidence vector and feasible dual solution at time τ . Initially, x0

e = 0 for all e ∈ E , x0
U = 0 for all U ∈ S ,

and y0
U = 0 for all U ∈ S . In the following we say that an edge e ∈ E is tight if the corresponding

constraint (40.2) holds with equality, and that a set U is tight if the corresponding constraint (40.3) holds
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with equality. We use F τ to denote the forest formed by the collection of tight edges corresponding to xτ ,
and and S τ to denote the collection of tight sets corresponding to xτ . Assume that the solution xτ at time
τ is infeasible. A set U ∈ S is active at time τ if it is spanned by a connected component in forest F τ , there
is no tight edge e ∈ δ(U ), and the corresponding constraint (40.3) is not tight. Let A τ be the collection
of sets that are active at time τ . GW raises the dual variables for all sets in A τ uniformly at all times τ ≥ 0.

Two kind of events are possible. (i) An edge e ∈ δ(U ) becomes tight for a set U ∈ A τ . We set xe = 1
and update A τ . (Observe that if the tight edge connects U to a component containing r , the newly
formed connected component of F τ is part of A τ . If the tight edge connects set U to a component of F τ

that does not contain the root (either active or inactive), the newly formed component is part of A τ .)
(ii) Constraint (40.3) becomes tight for a set U ∈ A τ . We set xU = 1. GW ends with a reverse pruning
phase applied to all sets U ∈ S with xU = 1. They are analyzed in order of decreasing time at which the
corresponding constraint (40.3) became tight. If the vertices of U are actually connected to the root via
tight edges in the current solution, we set xU = 0. The algorithm ends with a tree T connecting a set of
vertices to the root r and a set A of vertices for which the penalties are paid. Denote by c(T, A) the total
cost of the solution, that is, c(T, A) = ∑

e∈T ce + ∑
i∈A πi .

Theorem 40.1 (Goemans and Williamson [7])

Suppose that algorithm GW outputs a tree T, a set of vertices A and a feasible dual solution {yU }U∈S . Then

c(T, A) ≤ 2 ·
∑

U∈S

yU ≤ 2 · opt

where opt is the minimum-cost solution for the Prize-Collecting Steiner Tree problem.

The proof of the above theorem [7] is along the following lines. The total dual of subsets of U ∈ S

with xU = 1 will pay for the penalties of vertices in A, that is,
∑

U :xU=1

∑
U ′⊆U yU ′ ≤ ∑

i∈A πi , since
constraints (40.3) are tight for these sets. Due to the reverse pruning phase, subsets of U ∈ S with xU = 1
do not contribute to make tight any edge in T . The cost of T is then paid by twice the total dual of sets
U ∈ S loading edges of T , that is, those that contribute to making the corresponding constraints (40.2)
tight.

GW also provides a 2-approximation for the PTSP when edge costs obey the triangle inequality. First, we
run the PCST algorithm with halved penalties. Then, the resulting tree is converted to a tour by doubling
every edge and shortcutting the resulting Eulerian tour. For the proof of 2-approximation, we observe that
the following integer linear program is a formulation for the problem.

optIP = min
∑

e∈E

ce · xe +
∑

U∈S

xU

∑

i∈U

πi

2
(IP)

s.t.
∑

e∈δ(U )

xe +
∑

U ′:U⊆U ′
xU ′ ≥ 2, ∀U ∈ S (40.4)

xe ∈ {0, 1}, ∀e ∈ E

xU ∈ {0, 2}, ∀U ∈ S

Constraints (40.4) impose that each subset must me crossed at least twice unless we pay the penalties
for all the vertices of the subset. The dual of the corresponding relaxation is

optD = max 2 ·
∑

U∈S

yU (D)

s.t.
∑

U∈S : e∈δ(U )

yU ≤ ce ∀e ∈ E (40.5)

∑

U ′⊆U

yU ′ ≤
∑

i∈U

πi

2
∀U ∈ S (40.6)

yU ≥ 0 ∀U ∈ S
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The cost of the solution provided by GW is given by at most twice the cost of tree T and the total penalty
of vertices in A. Since twice the total dual collected by the algorithm is a lower bound to the optimal
solution, we conclude from the following theorem.

Theorem 40.2 (Goemans and Williamson [7])

Suppose that algorithm GW outputs a cycle C , a set of vertices A and a feasible dual solution {yU }U∈S . Then

c(C , A) ≤ 2 ·
(

2 ·
∑

U∈S

yU

)

≤ 2 · opt

where opt is the minimum-cost solution for the PTSP.

40.3 The k-Minimum Spanning Tree, k-TSP and Quota
Traveling Salesman Problem

40.3.1 Definitions

k-Minimum Spanning Tree Problem. Given an undirected graph G = (V, E ), a tree on G spanning exactly
k nodes is called a k-tree. Given such a graph with edge costs c : E → Q

+ and a positive integer k,
the (unrooted) k-MST problem asks to find a k-tree of minimum total cost. In the rooted version of the
problem, the k-tree has to include a given root node r .

k-Traveling Salesman Problem. Given an undirected graph G = (V, E ), a cycle of G spanning exactly k
nodes is called a k-tour. Given such a graph with edge costs c : E → Q

+ satisfying the triangle inequality,
a positive integer k and a root node r , the k-TSP asks to find a k-tour including r of minimum total cost.

Quota Traveling Salesman Problem. Given an undirected graph G = (V, E ) with vertex weights w : V →
Z

+ and a nonnegative integer Q, a cycle C of G such that
∑

v∈C w(v) ≥ Q is called a quota Q-tour. Given
such a graph with edge costs c : E → Q

+ satisfying the triangle inequality and a root node r , the Quota
TSP asks to find a quota Q-tour including r of minimum total cost.

40.3.2 History of the Results

The k-MST problem is known to be an NP-hard problem [14]. Heuristics were given by Cheung and
Kumar [15], who studied the problem in the context of communication networks. The first approximation
algorithms were considered by Ravi et al. [16], who gave an algorithm achieving an approximation ratio
of O(

√
k). Later, this ratio was improved to O(log2 k) by Awerbuch et al. [8]. The first constant-ratio

algorithm was given by Blum et al. [17]. Subsequently, Garg [5] gave a simple 5-approximation algorithm
and a more complicated 3-approximation algorithm, while a 2.5-approximation algorithm for the unrooted
case was found by Arya and Ramesh [3]. Arora and Karakostas gave a (2 + ε)-approximation scheme for
the rooted version. A 2-approximation by Garg [6] is the current best bound.

We observe that the rooted and the unrooted versions of the k-MST are equivalent with respect to the
approximation ratio. In fact, given a c-approximation algorithm for the rooted case it is sufficient to run
n times the k-MST algorithm with all possible choices for the root node r , and return the cheapest k-tree
found to obtain a c-approximation algorithm for the rooted case . Garg [6] observed that a c-approximation
algorithm for the unrooted case gives a c-approximation algorithm for the rooted case.

Some of these works also addressed the k-TSP and Quota TSP. The algorithms for the k-MST by Garg, as
well as the scheme by Arora and Karakostas, extend to the k-TSP, thus giving a 2-approximation algorithm
for this problem as the current best bound. Finally, as an application of their O(log2 k)-approximation
algorithm for k-MST, Awerbuch et al. give a O(log2(min(Q, n)))-approximation algorithm for the Quota
TSP, where n is the number of nodes of the graph.

Finally, we remark that a dual version of the TSP is known as the orienteering problem [18]. In this
problem we are given an edge-weighted graph and a budget and the goal consists in visiting as many
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vertices of the graph as possible and return to the origin without incurring in a cost greater than the al-
lowed budget. In Ref. [19] a 4-approximation algorithm that makes use of min-cost path algorithms
of Ref. [20] is presented for the orienteering problem. In Ref. [21] an improved algorithm leading
to a 3-approximation bound for the problem is shown in the context of a more general approach to
constrained vehicle routing problem. Other budget versions have been defined also for MST and for
TSP [6,19,22].

40.3.3 A 5-Approximation Algorithm for k-Minimum Spanning Tree and
k-Traveling Salesman Problem

In this section, we present and discuss the algorithm by Garg achieving a 5-approximation for the rooted
k-MST and its modification yielding the same approximation for the k-TSP. Our analysis follows Chudak
et al. [23].

Several assumptions can be made with no loss of generality. First, we can suppose that the edge costs
satisfy the triangle inequality, by using well-known techniques [16]. Also, we will assume that the distance
from the root to the farthest vertex is a lower bound on the optimum value. It turns out that this is easy
to ensure: We can run the algorithm n − 1 times with all possible choices of a “farthest” vertex, every time
disregarding nodes farther than the chosen one, and return the best solution found. The last assumption
is that opt ≥ c0, where c0 is the smallest nonzero edge cost. This is not the case only if opt = 0, meaning
that the optimal solution is a connected component containing r of size k in the graph of zero-cost edges,
and the existence of such a component can be easily checked in a preprocessing phase.

A possible formulation of the rooted k-MST as an integer linear problem is the following:

opt = min
∑

e∈E

ce xe (IP)

subject to:
∑

e∈δ(S)

xe +
∑

T :T⊇S

zT ≥ 1 ∀S ⊆ V \ {r } (1)

∑

S:S⊆V\{r }
|S|zS ≤ n − k (2)

xe ∈ {0, 1} ∀e ∈ E

zS ∈ {0, 1} ∀S ⊆ V \ {r }
In the above formulation, r is the root node and δ(S) the set of edges with exactly one endpoint in S. The
variables xe indicate whether the edge e is included in the tree; the variables zS indicate whether the set of
vertices S is not spanned by the tree. The set of constraints (1) enforces, for each S ⊆ V \ {r }, either some
edge of δ(S) is in the tree or all the vertices in S are not spanned by the tree. Thus, every vertex not in any S
such that zS = 1 will be connected to the root r . Constraint (2) enforces at least k vertices to be spanned.
Finally, the LP relaxation of this integer program is obtained by replacing the integrality constraints with
nonnegativity constraints (in an optimal solution, xe ≤ 1 and zS ≤ 1 for all e and S).

All the proposed constant approximation algorithms for the k-MST problem use as a subroutine the
primal-dual 2-approximation algorithm for the Prize-Collecting Steiner Tree of Goemans and Williamson
[7]. This is not by chance, because this problem is essentially the Lagrangean relaxation of the k-MST.
Indeed, if we apply Lagrangean relaxation to constraint (2) of the LP relaxation of the k-MST program,
we obtain the following:

min
∑

e∈E

ce xe + λ

(∑

S⊆V\{r } |S|zS − (n − k)

)

(LR)

subject to:
∑

e∈δ(S)

xe +
∑

T :T⊇S

zT ≥ 1 ∀S ⊆ V \ {r }

xe ≥ 0 ∀e ∈ E

zS ≥ 0 ∀S ⊆ V \ {r }
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where λ ≥ 0 is the Lagrangean variable. Apart from the constant term −λ(n −k) in the objective function,
this is the same as the LP relaxation of the Prize-Collecting Steiner Tree problem with πv = λ for all v.
Moreover, any solution feasible for the LP relaxation of k-MST is also feasible for (LR), so the value of this
program is a lower bound on the cost of an optimal k-MST.

Before discussing Garg’s algorithm, we recall that the primal-dual approximation algorithm for the
Prize-Collecting Steiner Tree returns a solution (F , A), where F is a tree including the root r , and A is the
set of vertices not spanned by F . The algorithm also constructs a feasible solution y for the dual of the LP
relaxation of PCST.

Theorem 40.3 (Goemans and Williamson [7])

The primal solution (F , A) and the dual solution y produced by the prize-collecting algorithm satisfy

∑

e∈F

ce +
(

2 − 1

n − 1

)

π(A) ≤
(

2 − 1

n − 1

)
∑

S⊆V\{r }
yS

where π(A) = ∑
v∈A πv .

A corollary of Theorem 40.3 is that the prize-collecting algorithm has an approximation ratio of 2, by
weak duality and the feasibility of y.

We would like to use the prize-collecting algorithm to solve the k-MST problem. Thus suppose that we
run the algorithm with πv = λ for all v ∈ V , for some value λ ≥ 0. Then by Theorem 40.3, we obtain
(F , A) and y such that

∑

e∈F

ce + 2|A|λ ≤ 2
∑

S⊆V\{r }
yS (40.7)

Consider the dual of the Lagrangean relaxation of the k-MST LP:

max
∑

S⊆V\{r }
yS − (n − k)λ (LR-D)

subject to:
∑

S:e∈δ(S)

yS ≤ ce ∀e ∈ E

∑

T :T⊆S

yT ≤ |S|λ ∀S ⊆ V \ {r }

yS ≥ 0 ∀S ⊆ V \ {r }
Since this dual is, apart from the objective function, the same as the dual of the LP relaxation of the PCST

instance, the solution y is feasible for this dual, and the value of the objective function is a lower bound
on the cost of an optimal k-MST, by weak duality. Subtracting 2(n − k)λ from both sides of Eq. (40.7)

∑

e∈F

ce + 2λ
(|A| − (n − k)

) ≤ 2

(
∑

S⊆V\{r }
yS − (n − k)λ

)

≤ 2 opt

where opt is the cost of an optimal solution to the k-MST instance.
Now if the term |A| − (n − k) is zero, we can conclude that the tree F is a k-tree and has cost no more

than twice optimal. Unfortunately, if |A| − (n − k) is positive then the tree F is not feasible, while if it
is negative we cannot conclude anything about the approximation ratio. However, it turns out that it is
possible to find values of λ such that even if these cases occur, they can be taken care of, although at the
cost of resulting in an approximation ratio higher than two.

What Garg’s algorithm does is indeed a binary search for these critical values of λ, through a sequence
of calls to the prize-collecting algorithm. Notice that if the prize-collecting algorithm is called with λ = 0,
it will return the empty tree spanning only r as a solution, while for λ = ∑

e∈E ce it will return a tree
spanning all vertices. Thus the initial interval of the binary search will be [0,

∑
e∈E ce ], and at every

iteration, if the current interval is [λ1, λ2], the prize-collecting algorithm is run with λ = 1
2 (λ1 + λ2). If

the returned tree has less than k vertices, we update λ1 to λ; if it has more than k vertices, we update λ2 to
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λ. Notice that in the lucky event that, at any point, a tree with exactly k vertices is returned, we can stop,
since by the above discussion that must be within a factor 2 of optimal. So assume that this event does not
happen. We will stop when we have found two values λ1, λ2 such that:

(1) λ2 − λ1 ≤ c0
2n(n+1) (recall that c0 is the smallest nonzero edge cost);

(2) for i = 1, 2, the prize-collecting algorithm run with λ set to λi returns a primal solution (Fi , Ai )
spanning ki vertices and a dual solution y(i), with k1 < k < k2.

Note that these two values will be found at most after O(log
n2

∑
e

ce

c0
) calls to the prize-collecting algorithm.

The final step of the algorithm is combining the two solutions (F1, A1) and (F2, A2) into a single k-tree.
Solution (F1, A1) is within a factor of 2 of optimal, but infeasible, while solution (F2, A2) can be easily
made feasible but not within a factor of 2 of optimal. More precisely, as a consequence of Theorem 40.3,

∑

e∈F1

ce ≤
(

2 − 1

n

)(
∑

S⊆V\{r }
y(1)

S − |A1|λ1

)

∑

e∈F2

ce ≤
(

2 − 1

n

)(
∑

S⊆V\{r }
y(2)

S − |A2|λ2

)

To get a bound on the cost of F1 and F2 in terms of opt, let

α1 = n − k − |A2|
|A1| − |A2| and α2 = |A1| − (n − k)

|A1| − |A2| .

Then α1|A1| + α2|A2| = n − k and α1 + α2 = 1, and after defining, for all S ⊆ V \ {r }, yS =
α1 y(1)

S + α2 y(2)
S , it is possible to prove the following lemma.

Lemma 40.1 (Chudak et al. [23])

α1

∑

e∈F1

ce + α2

∑

e∈F2

ce < 2opt

Proof
We omit the proof for brevity; the reader can find it in the overview by Chudak et al. [23].

We now show how to obtain a 5-approximation algorithm by choosing one of two solutions. First, if
α2 ≥ 1

2 , the tree F2, besides spanning more than k vertices, satisfies
∑

e∈F2

ce ≤ 2α2

∑

e∈F2

ce ≤ 4opt

by Lemma 40.1. If instead α2 < 1
2 , the solution is constructed by extending F1 with nodes from F2. Let

� ≥ k2 − k1 be the number of nodes spanned by F2 but not by F1. Then we can obtain a path on k − k1

vertices by doubling the tree F2, shortcutting the corresponding Eulerian tour to a simple tour of the �

nodes spanned only by F2, and choosing the cheapest path of k − k1 vertices from this tour. The resulting
path has cost at most

2
k − k1

k2 − k1

∑

e∈F2

ce

Notice that this path is disconnected from F1. However, we can connect it by adding an edge from the root
to any node of the set, costing at most opt by one of the assumptions at the beginning of the section. Since

k − k1

k2 − k1
= n − k1 − (n − k)

n − k1 − (n − k2)
= |A1| − (n − k)

|A1| − |A2| = α2
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the total cost of the produced solution is bounded by

∑

e∈F1

ce + 2α2

∑

e∈F2

ce + opt ≤ 2

(

α1

∑

e∈F1

ce + α2

∑

e∈F2

ce

)

+ opt ≤ 4opt + opt

using Lemma 40.1 and the fact that α2 < 1
2 implies α1 > 1

2 .
As for the k-TSP, it suffices to run the Prize-Collecting subroutine with halved penalties and then

shortcut the Eulerian walk obtained after doubling the k-tree found, in the same way as we went from the
Prize-Collecting Steiner Tree to the PTSP.

40.3.4 From the k-MST to the Quota Traveling Salesman Problem

In this section we will describe a 5-approximation algorithm for the Quota TSP. However, the discussion
will be easier if we consider the following problem first.

Quota Minimum Spanning Tree Problem
Given an undirected graph G = (V, E ) with vertex weights w : V → Z

+ and a positive integer Q, a tree F
of G such that

∑
v∈F w(v) ≥ Q is called a quota Q-tree. Given such a graph with edge costs c : E → Q

+
and a root node r , the Quota MST Problem asks to find a quota Q-tree including r of minimum total cost.

Theorem 40.4 (Ausiello et al. [9])

There is a 5-approximation algorithm for the Quota MST Problem.

The idea behind the theorem is that we can run the 5-approximation algorithm for the k-MST by Garg,
but instead of setting uniformly the penalties to λ, we set πv = λ · wv when calling the Prize-Collecting
Steiner Tree subroutine. The two solutions obtained at the end of the binary search phase can then be
patched essentially as before.

Now, we can obtain an algorithm for the Quota TSP in the same way as we went from the Prize-Collecting
Steiner Tree to the PTSP in Section 40.2. That is, it is sufficient to run the Prize-Collecting subroutine with
πv = 1

2λwv . The analysis remains the same.

40.4 The Prize-Collecting Traveling Salesman Problem

40.4.1 Definitions

Prize-Collecting Traveling Salesman Problem
Given an undirected graph G = (V, E) with vertex weights w : V → Z

+, vertex penalties π : V → Q
+,

and a nonnegative integer Q, a cycle C of G such that
∑

v∈C w(v) ≥ Q is called a quota Q-tour. Given
such a graph with edge costs c : E → Q

+ satisfying the triangle inequality and a root node r , the PCTSP
asks to find a quota Q-tour T = (VT , E T ) including r that minimizes

c(T) =
∑

e∈E T

ce +
∑

v∈V\VT

πv

40.4.2 History of the Results

In the general form given here, the PCTSP was first formulated by Balas [1,24], who gave structural
properties of the PCTS polytope as well as heuristics. The problem arose during the task of developing
daily schedules for a steel rolling mill.

The only results on guaranteed heuristics for the PCTSP are due to Awerbuch et al. [8]. They give
polynomial-time algorithm with an approximation ratio of O(log2(min(Q, n))), where n is the number
of vertices of the graph and Q is the required vertex weight to be visited. However, the PCTSP contains as
special cases both the PTSP and the k-TSP, which received more attention in the literature (for the history

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C040 March 20, 2007 16:6

40-10 Handbook of Approximation Algorithms and Metaheuristics

of results on these problems, the reader can refer to the previous sections). From some recent results on
these problems, we derive a constant-approximation algorithm for the general PCTSP in the following
section.

40.4.3 A Constant-Factor Approximation Algorithm for PCTSP

A simple idea exploited by the algorithm of Awerbuch et al. [8] is that, for a given instance I of the PCTSP,
the following quantities constitute lower bounds on the cost opt of an optimal solution:

(1) the cost optp of an optimal solution to a PTSP instance I p defined on the same graph and having
the same penalties as in the PCTSP instance (since a feasible solution to I is also feasible for I p and
has the same cost);

(2) the cost optq of an optimal solution to a Quota TSP instance Iq defined on the same graph and
having the same weights and quota as in I (since every feasible solution to I can be turned into a
feasible solution for Iq of at most the same cost).

Thus, to approximate an optimal solution to the PCTSP instance I we can:

(1) run an α-approximation algorithm for PTSP on Ip to obtain a tour Tp such that c(Tp) ≤ α · optp;
(2) run aβ-approximation algorithm for Quota TSP on Iq to obtain a tour Tq such that c(Tq ) ≤ β·optq;
(3) concatenate Tp and Tq to obtain a tour T feasible for the PCTSP instance I of cost

c(T) ≤ c(Tp) + c(Tq ) ≤ α · optp + β · optq ≤ (α + β)opt

This means that, by using the best algorithms currently known for PTSP and Quota TSP, we can obtain a
constant-factor approximation to the PCTSP.

40.5 The Minimum Latency Problem and Graph Searching

Suppose that a plumber receives calls from various customers and decides to organize a tour of the
customers for the subsequent day; for sake of simplicity let us also assume that, at each visit, the time the
plumber needs to fix the customer’s problem is constant. A selfish plumber would decide to schedule his
tour in such way as to minimize the overall time he takes to serve all customers and come back home;
such approach would require the solution of an instance of TSP. Alternatively, a nonselfish plumber would
decide to schedule his tour in such a way to minimize the average time customers have to wait for his visit
the day after. In this case he will have to solve an instance of the so-called traveling repairman problem
(TRP).

The TRP problem is more frequently known in the literature as Minimum Latency Problem (MLP) [25],
but it is also known as school-bus driver problem [26] and the delivery man problem [27,28]. Strictly related
to MLP is the so-called graph searching problem (GSP) [29]. In such problem we assume that a single prize
is hidden in a vertex of an edge-weighted graph and the vertices are labeled with the probability that the
prize is stored in the vertex. The goal is to minimize the expected cost to find the prize by exploring all
vertices of the graph. The relationship between MLP and GSP is discussed in Ref. [9].

40.5.1 Definitions

Minimum Latency Problem
Given an undirected graph G = (V, E ), with edge costs c : E → Q

+ satisfying the triangle inequality,
let T be a tour that visits the vertices in some order. The latency lvi ,T of a vertex vi ∈ T is the cost of the
prefix of T ending in vi . The MLP asks to find a tour T such that the sum of the latencies of all vertices
along T is minimum.
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40.5.2 History of the Results

The problem has been shown to be NP-hard by Sahni and Gonzalez [30]. In Ref. [31] Afrati et al. showed
that the problem can be solved in polynomial time on trees with bounded number of leaves. Recently,
Sitters [32] has shown that the problem is NP-hard also in the case of general weighted trees.

From the approximability point of view, the MLP is, clearly, as the TSP, hard to approximate for any
given constant ratio on general graphs [30] (i.e., when the triangle inequality does not hold), while in the
case of metric spaces it can be shown to be APX-complete, that is, it allows approximation algorithms but
does not allow approximation schemes.

The first constant-factor approximation algorithm for the MLP on general metric spaces has been
presented by Blum et al. [25] who show that given a c-approximate algorithm for the k-MST then there
exists a 8c-approximation ratio for the MLP. Subsequently, Goemans and Kleinberg [33] showed that the
constant 8 above can be lowered to 3.59, thus implying a 7.18-approximation algorithm for MLP. The best
current bound is 3.59 is given by Chaudhuri et al. in Ref. [20].

Arora and Karakostas [34] showed the existence of a quasi-polynomial-time approximation algorithm
when the input graph is a tree; to compute a (1+ε)-approximation the algorithm requires time nO(log n/ε)

time.
We finally remark that the problem has also been extended to the case of k repairmen. Namely,

Fakcharoenphol et al. [35] showed the first constant approximation algorithm for the problem. This
result has been improved to 8.49-approximation by Chaudhuri et al. in Ref. [20].

40.5.3 A 3.59-Approximation Algorithm for the Minimum Latency Problem

We first present the algorithm proposed by Goemans and Kleinberg in Ref. [33] that gives a 7.18-
approximation algorithm. The procedure proposed by the authors computes, for every j = 1, 2, . . . , n
the tour Tj of minimum length that visits j vertices. Then we have to concatenate a subsequence of the
tours to form the desired tour. Clearly, the goal is to select those values j1, . . . , jm such that the latency of
the final tour obtained by stitching together tours Tj1 . . . Tjm is minimized.

Let d ji and pi be the length of tour Tji and the number of new vertices visited during the same tour,
respectively. It is simple to show that the following claim holds:

m∑

i=1

pi d ji ≤
m∑

i=1

(ji − ji−1)d ji

Note that if, for every i , the tours Tji and Tji−1 were nested, the above inequality would be trivially
satisfied, but a careful analysis of the contributions involved on the right and the left-hand sides of the
inequality may convince the reader that such inequality is also true when the tours are not nested. It follows
that for a number of vertices equal to

∑i
k=1 pk − ji we sum a contribution at most d jk on the left-hand

side of the equation while a contribution larger than d jk on the right-hand side of the equation. Moreover,
each tour Tji is traversed in the direction that minimizes the total latency of the vertices discovered
during tour Tji . This allows to rewrite the total latency of the tour obtained by concatenating Tj1 , . . . ,
Tjm as

∑

i

(

n −
i∑

k=1

pk

)

d ji + 1

2

∑

i

pi d ji

≤
∑

i

(n − ji )d ji + 1

2

∑

i

( ji − ji−1)d ji

=
∑

i

(

n − ji−1 + ji
2

)

d ji
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The formula above allows to rewrite the total latency of the algorithm only in terms of the indices ji
and of the length d ji , independently from the number of new vertices discovered during each tour. A
complete digraph of n + 1 vertices is then constructed in the following way. Arc (i, j ) goes from min(i, j )
to max(i, j ) and has length (n − i+ j

2 )d ji . The algorithm computes a shortest path from node 0 to node
n. Assume that the path goes through nodes 0 = j0 < j1 < · · · < jm = n. The tour is then obtained by
concatenating tours Tj1 , . . . , Tjm .

The obtained solution is compared against the following lower bound OPT ≥ ∑n
k=1

dk
2 . This lower

bound follows from the observation that the kth vertex cannot be visited before dk/2 in any optimum
tour. The approximation ratio of the algorithm is determined by bounding the maximum over all the
possible set of distances d1, . . . , dn of the ratio between the shortest path in G n and the lower bound on
the optimum solution. This value results to be smaller than 3.59.

Theorem 40.5 (Goemans and Kleinberg [33])

Given a c-approximation algorithm for the problem of finding an a tour of minimum length spanning at least
k vertices on a specific metric space, then there exists a 3.59c-approximation algorithm for the MLP on the
same metric space.

Again by making use of the 2-approximation algorithm of [6] for k-MST and k-TSP we may achieve a
ratio 7.18 for MLP.

With respect to the results we have seen so far, a remarkable step forward has been achieved by Chaudhuri
et al. in Ref. [20]. Using techniques from Garg [5], Arora and Karakostas [2], and Archer et al. [36], the
authors are able to find a k-MST whose cost is no more than (1 + ε) the cost of the minimum path visiting
k vertices. Since such a cost is a lower bound on the latency of a k tour the result implies the following
theorem.

Theorem 40.6 (Chaudhuri et al. [20])

There exists a 3.59-approximation algorithm for the MLP on general metric spaces.

By the arguments provided in Ref. [9] the same approximation bound also holds for GSP.
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41.1 Introduction

Branch-and-bound intelligently searches the set of feasible solutions to a combinatorial optimization
problem: It, in effect, proves that the optimal solution is found without necessarily examining all feasible
solutions. The feasible solutions are not given. They can be generated from the problem description.
However, doing so usually is computationally infeasible: The number of feasible solutions typically grows
exponentially as a function of the size of the problem input. For example, the set of feasible tours in
a symmetric Traveling Salesman Problem (TSP) of a complete graph with 23 nodes is 22!/2 or around
8 × 1014 tours. The space of feasible solutions is progressively partitioned (branching), forming a search
tree. Each tree node has a partial feasible solution. The node represents the set of feasible solutions that are
extensions of its partial solution. For example, in a TSP branch and bound, a search tree node has a partial
tour, representing the set of all tours that contain that partial tour. As branching continues (progresses
down the problem tree), each search node has a more complete partial solution, and thus represents a
smaller set of feasible solutions. For example, in a TSP branch and bound, a tree node’s children each
represents an extension of the partial tour to a more complete tour (e.g., one additional city or one
additional edge). As one progresses down the search tree, each node represents a larger partial tour. As the
size of a partial tour increases, the number of full tours containing the partial tour clearly decreases.

In traversing the search tree, we may come to a node that represents a set of feasible solutions, all of
which are provably more costly than a feasible solution already found. When this occurs, we prune this
node of the search tree: We discontinue further exploration of this set of feasible solutions. In the example

41-1
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activeSet = { originalTask };

u = infinity; // u = the cost of the best solution known

currentBest = null;

while ( ! activeSet.isEmpty() ) {

k = remove some element of the activeSet;

children = generate k’s children;

for each element of children {

if ( element’s lower bound <= u )

if ( element is a complete solution ) {

u = element’s cost;

currentBest = element;

}

else

add element to activeSet;

}

}

FIGURE 41.1 A sequential algorithm for branch and bound.

of the TSP, the cost of any feasible tour that has a given partial tour surely can be bounded from below by
the cost of the partial tour: the sum of the edge weights for the edges in the partial tour. (In our experiments,
we use a Held–Karp lower bound, which is stronger but more computationally complex.) If the lower
bound for a node is higher than the current upper bound (i.e., best known complete solution), then the
cost of all complete solutions (e.g., tours) represented by the node is higher than a complete solution that
is already known: The node is pruned (see Papadimitriou and Steiglitz [1] for a more complete discussion
of branch-and-bound). Figure 41.1 gives a basic, sequential branch-and-bound algorithm.

Branch-and-bound may be easily modified to generate suboptimal solutions. The total search time
decreases as the desired accuracy decreases.

The framework that we present here is designed for deployment in a distributed setting. Moreover,
the framework supports adaptive parallelism: During the execution, the set of compute servers can grow
(if new compute servers become available) or shrink (if compute servers become unavailable or fail): the
branch-and-bound computation thus cannot assume a fixed number of compute servers.

The branch-and-bound computation is decomposed into tasks, each of which is executed on a compute
server: Each element of the active set (see Figure 41.1) is a task that, in principle, can be scheduled
for execution on any compute server. Indeed, parallel efficiency requires load balancing of tasks among
compute servers. This distributed setting implies the following compute server requirements:

• Tasks (activeset elements) are generated during the computation—they cannot be scheduled a
priori.

• When a compute server discovers a new best cost, it must be propagated to the other compute
servers.

• Detecting termination requires “knowing” when all branches (children) have been either fully
examined or pruned. In a distributed setting, the implied communication must not be a bottleneck.

Our goal is to facilitate the development of branch-and-bound computations for deployment as a dis-
tributed computation. We provide a development–deployment infrastructure that requires the developer
to write code for only the particular aspects of the branch-and-bound computation under development,
primarily the branching rule, the lower bound computation, and the upper bound computation. We
present this framework and some experimental results of its application to a medium complexity TSP
code running on a beowulf cluster.

41.2 Related Work

Held et al. give a short history of the TSP [2]. In it, they note that, in 1963, Little et al. [3] were the first to
use the term “branch and bound” to describe their enumerative procedure for solving TSP instances. As

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C041 March 20, 2007 16:19

A Development and Deployment Framework for Distributed Branch and Bound 41-3

we understand it, Little et al. [3] and Land and Doig [4] independently discovered the technique of branch
and bound. This discovery led to “a decade of enumeration.”

Parallel branch and bound also has been widely studied. See, for example, Refs. [5,6]. Rather early on it
was discovered that there are speedup anomalies in parallel branch and bound [7]: Completion times are
not monotonically nonincreasing as a function of the number of processors. In the discussion that follows,
let T denote the search tree, c∗ the cost of a minimum-cost leaf in T , T∗ ⊆ T the subtree of T whose nodes
cost less than or equal to c∗, n the number of nodes in T∗, and h the height of T∗. Karp and Zhang [8]
present a universal randomized method called Local Best-First Search for parallelizing sequential branch-
and-bound algorithms. When executing on a completely connected, message-passing multiprocessor, the
method’s computational complexity is asymptotically optimal with high probability, O(n/p +h), where p
is the number of processors. The computational complexity of maintaining the local data structure and
the communication overhead is ignored in their analysis. When n > p2 log p, Liu et al. [9] give a
method for branch and bound that is asymptotically optimal with high probability, assuming that inter-
processor communication is controlled by a central First In, First Out (FIFO) arbiter. Herley et al. [10]
give a deterministic parallel algorithm for branch and bound based on the parallel heap selection algo-
rithm of Frederickson [11], combined with a parallel priority queue. The complexity of their method is
O(n/p + h log2(np)) on an EREW-PRAM, which is optimal for h = O(n/( p log2(np))). This bound
includes communication costs on an EREW-PRAM.

Distributed branch and bound has also been widely studied. Tschöke et al. [12] contributed
experimental work on distributed branch and bound for TSP using over 1000 processors. When the
number of processors gets large, fault tolerance becomes an issue. Yahfoufi and Dowaji [13] present
perhaps the first distributed fault-tolerant branch-and-bound algorithm.

There also has been a lot of work on what might be called programming frameworks for distributed
branch-and-bound computation. This occurs for two reasons: (1) branch and bound is best seen as
a metaalgorithm for solving large combinatorial optimization problems: It is a framework that must
be completed with problem-specific code and (2) programming a fault-tolerant distributed system is
sufficiently complex to motivate a specialization of labor: distributed systems research versus operations
research. In 1995, Shinano et al. [14] presented a Parallel Utility for Branch and Bound (PUBB) based on
the C programming language. They illustrate the use of their utility on TSP and 0/1 ILP. They introduce
the notion of a Logical Computing Unit (LCU). Although in parts of their paper, an LCU sounds like a
computational task, we are persuaded that it most closely resembles a processor, based on their explanation
of its use: “The master process maintains in a queue, all the subproblems that are likely to lead to an optimal
solution. As long as this queue is not empty and an idle LCU exists, the master process selects subproblems
and assigns them to an idle LCU for evaluation one after the other.” When discussing their experimental
results, they note: “The results indicate that, up to using about 10 LCUs, the execution time rapidly
decreases as more LCUs are added. When the number of LCUs exceeds about 20, the computing time for
one run, remains almost constant.” Indeed, from their Figure 9 (in Ref. [14]) , we can see that PUBB’s
parallel efficiency steadily goes down when the number of LCUs is above 10, and is well below 0.5, when
the number of LCUs is 55. Aversa et al. [15] report on the Magda project for mobile agent programming
with parallel skeletons. Their divide-and-conquer skeleton is used to implement branch and bound, which
they provide experimental data for up to eight processors. Moe [16] reports on GRIBB, and infrastructure
for branch and bound on the Internet. Experimental results on an SGI Origin 2000 with 32 processors
machines show good speedups when the initial bound is tight, and ∼ 67% of ideal speedup, when a simple
initial bound is used. Dorta et al. [17] present C++ skeletons for divide-and-conquer and branch-and-
bound, where deployment is intended for clusters. Their experiments, using a 0/1 knapsack problem of
size 1000, on a Linux cluster with seven processors, the average speedup was 2.25. On an Origin 3000 with
16 processors, the average speedup was 4.6. On a Cray T3E with 128 processors, the average speedup was
5.02. They explain “Due to the fine grain of the 0/1 knapsack problem, there is no lineal increase in the
speed up when the number of processor increase. For large numbers of processors the speed up is poor.”

Neary et al. [18] and Neary and Cappello [19] present an infrastructure/framework for distributed
computing, including branch and bound, that tolerates faulty compute servers, and is in pure Java,

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C041 March 20, 2007 16:19

41-4 Handbook of Approximation Algorithms and Metaheuristics

allowing application codes to run on a heterogeneous set of machine types and operating systems. They
experimentally achieved 50% of ideal speedup for their TSP code, when running on 1000 processors.
Their schemes for termination detection and fault tolerance of a branch-and-bound computation both
exploit its tree-structured search space. The management of these schemes is centralized. Iamnitchi and
Foster [20] build on this idea of exploiting branch and bound’s tree-structured search space, produc-
ing a branch-and-bound-specific fault tolerance scheme that is distributed, although they provide only
simulation results.

41.3 The Deployment Architecture

JICOS, a Java-centric network computing service that supports high-performance parallel computing,
is an ongoing project that virtualizes compute cycles, stores/coordinates partial results—supporting
fault tolerance, is partially self-organizing, may use an open grid services architecture [21,22] front end
for service discovery (not presented), is largely independent of hardware/OS, and is intended to scale from
a LAN to the Internet. JICOS is designed to support scalable, adaptively parallel computation (i.e., the
computation’s organization reduces completion time, using many transient compute servers, called hosts,
that may join and leave during a computation’s execution, with high system efficiency, regardless of how
many hosts join/leave the computation); tolerate basic faults: JICOS must tolerate host failure and network
failure between hosts and other system components; hide communication latencies, which may be long,
by overlapping communication with computation. JICOS comprises three service component classes.

Hosting Service Provider. JICOS clients (i.e., processes seeking computation done on their behalf) interact
solely with the hosting service provider (HSP) component. A client logs in, submits computational tasks,
requests results, and logs out. When interacting with a client, the HSP thus acts as an agent for the entire
network of service components. It also manages the network of task servers described below. For example,
when a task server wants to join the distributed service, it first contacts the HSP. The HSP tells the task
server where it fits in the task server network.

Task Server. This component is a store of task objects. Each task object, which has been spawned but
has not yet been computed, has a representation on some task server. Task servers balance the load of ready
tasks among themselves. Each task server has a number of hosts associated with it. When a host requests
a task, the task server returns a task that is ready for execution, if any are available. If a host fails, the task
server reassigns the host’s tasks to other hosts.

Host. A host (aka compute server) joins a particular task server. Once joined, each host repeatedly
requests a task for execution, executes the task, returns the results, and requests another task. It is the
central service component for virtualizing compute cycles.

When a client logs in, the HSP propagates that log-in to all task servers, who in turn propagate it to all
their hosts. When a client logs out, the HSP propagates that log-out to all task servers, which aggregate
resource consumption information (execution statistics) for each of their hosts. This information, in turn,
is aggregated by the HSP for each task server, and returned to the client. Currently, the task server network
topology is a torous. However, scatter/gather operations, such as log-in and log-out, are transmitted via a
task server tree: a subgraph of the torous (see Figure 41.2).

Task objects encapsulate computation: Their inputs and outputs are managed by JICOS. Task execution is
idempotent, supporting the requirement for host transience and failure recovery. Communication latencies
between task servers and hosts are reduced or hidden via task caching, task prefetching, and task execution
on task servers for selected task classes.

41.3.1 Tolerating Faulty Hosts

To support self-healing, all proxy objects are leased [23,24]. When a task server’s lease manager detects an
expired host lease and the offer of renewal fails, the host proxy: (1) returns the host’s tasks for reassign-
ment and (2) is deleted from the task server. Because of explicit continuation passing, recomputation is

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C041 March 20, 2007 16:19

A Development and Deployment Framework for Distributed Branch and Bound 41-5

Hosting
service

provider

Client

FIGURE 41.2 A JICOS system that has nine task servers. The task server topology, a 2D torous, is indicated by the
broken lines. In the figure, each task server has four associated hosts (the little black discs). An actual task server might
serve about 40 hosts (although our experiments indicate that 128 hosts/task server is not too much). The client interacts
only with the HSP.

minimized: Systems that support divide-and-conquer but do not use explicit continuation passing [25],
such as Satin [26], need to recompute some task decomposition computations, even if they completed
successfully. In some applications, such as sophisticated TSP codes, decomposition can be computation-
ally complex. On Jicos, only the task that was currently being executed needs to be recomputed. This is a
substantial improvement. In the TSP instance that we use for our performance experiments, the average
task time is 2 s. Thus, the recomputation time for a failed host is, in this instance, a mere 1 s, on average.

41.4 Performance Considerations

JICOS’s API includes a simple set of application-controlled directives for improving performance by reducing
communication latency or overlapping it with task execution.

Task caching. When a task constructs subtasks, the first constructed subtask is cached on its host,
obviating its host’s need to ask the TaskServer for its next task. The application programmer thus implicitly
controls which subtask is cached.

Task prefetching. The application can help hide communication latency via task prefetching:

Implicit. A task that never constructs subtasks is called atomic. The Task class has a Boolean method,
isAtomic. The default implementation of this method returns true, if and only if the task’s class imple-
ments the marking interface, Atomic. Before invoking a task’s execute method, a host invokes the task’s
isAtomic method. If it returns true, the host prefetches another task via another thread before invoking
the task’s execute method.

Explicit. When a task object whose isAtomic method returned false (it did not know prior to the
invocation of its execute method that it would not generate subtasks) nonetheless comes to a point
in its execute method when it knows that it is not going to construct any subtasks, it can invoke its
environment’s prefetch method. This causes its host to request a task from the task server in a separate
thread.

Task prefetching overlaps the host’s execution of the current task with its request for the next task.
Application-directed prefetching, both implicit and explicit, thus motivates the programmer to (1) iden-
tify atomic task classes and (2) constitute atomic tasks with compute time that is at least as long as a
Host–TaskServer round trip (on the order of 10s of milliseconds, depending on the size of the returned
task, which affects the time to marshal, send, and unmarshal it).
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Task server computation. When a task’s encapsulated computation is little more complex than reading
its inputs, it is faster for the task server to execute the task itself than to send it to a host for execution.
This is because the time to marshal and unmarshal the input plus the time to marshal and unmarshal
the result is less than the time to simply compute the result (not to mention network latency). Binary
Boolean operators, such as min, max, sum (typical linear-time gather operations), should execute on the
task server. All Task classes have a Boolean method, executeOnServer. The default implementation returns
true, if and only if the task’s class implements the marking interface, ExecuteOnServer. When a task is
ready for execution, the task server invokes its executeOnServer method. If it returns true, the task server
executes the task itself: The application programmer controls the use of this important performance feature.

Taken together, these features reduce or hide much of the delay associated with Host–TaskServer
communication.

41.5 The Computational Model

Computation is modeled by a directed acyclic graph (DAG) whose nodes represent tasks. An arc from
node v to node u represents that the output of the task represented by node v is an input to the task
represented by node u. A computation’s tasks all have access to an environment consisting of an immutable
input object and a mutable shared object. The semantics of “shared” reflects the envisioned computing
context—a computer network: The object is shared asynchronously. This limited form of sharing is of
value in only a limited number of settings. However, branch and bound is one such setting, constituting a
versatile paradigm for coping with computationally intractable optimization problems.

41.6 The Branch-and-Bound API

Tasks correspond to nodes in the search tree: Each task gives rise to a set of smaller subtasks, until it
represents a node in the search tree that is small enough to be explored by a single compute server. We
refer to such a task as atomic; it does not decompose into subtasks.

41.6.1 The Environment

For branch-and-bound computations, the environment input is set to the problem instance. For example,
in a TSP, the input can be set to the distance matrix. Doing so materially reduces the amount of information
needed to describe a task, which reduces the time spent to marshal and unmarshal such objects.

The cost of the least cost known solution at any point in time is shared among the tasks: It is encapsulated
as the branch-and-bound computation’s shared object (see IntUpperBound below). In branch and bound,
this value is used to decide if a particular subtree of the search tree can be pruned. Thus, sharing the
cost of the least cost known solution enhances the pruning ability of concurrently executing tasks that are
exploring disjoint parts of the search tree. Indeed, this improvement in pruning is essential to the efficiency
of parallel branch-and-bound. When a branch-and-bound task finds a complete solution whose cost is
less than the current least cost solution, it sets the shared object to this new value, which implicitly causes
JICOS to propagate the new least cost throughout the distributed system.

41.6.2 The JICOS Branch-and-Bound Framework

The classes comprising the JICOS branch-and-bound framework are based on two assumptions:

• The branch-and-bound problem is formulated as a minimization problem. Maximization problems
can be typically reformulated as minimization problems.

• The cost can be represented as in int.

Should these two assumptions prove troublesome, we will generalize this framework.

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C041 March 20, 2007 16:19

A Development and Deployment Framework for Distributed Branch and Bound 41-7

Before giving the framework, we describe the problem-specific class that the application developer
must provide: A class that implements the Solution interface. This class represents nodes in the search
tree: A Solution object is a partial feasible solution. For example, in a TSP, it could represent a partial
tour. Since it represents a node in the search tree, its children represent more complete partial feasible
solutions. For example, in a TSP, a child of a Solution object would represent its parent’s partial tour, but
including[excluding] one more edge (or including one more city, depending on the branching rule).

The Solution interface has the following methods:

getChildren returns a queue of the Solution objects that are the children of this Solution. The queue’s
retrieval order represents the application’s selection rule, from most promising to least promising. In
particular, the first child is cached (see Section 41.4 for an explanation of task caching).

getLowerBound returns the lower bound on the cost of any complete Solution that is an extension of
this partial Solution.

getUpperBound returns an upper bound on the cost of any complete Solution, and enables an upper
bound heuristic for incomplete solutions.

isComplete returns true if and only if the partial Solution is, in fact, complete.
reduce omit loose constraints. For example, in a TSP solution, this method may omit edges whose cost

is greater than the current best solution, and therefore cannot be part of any better solution. This
method returns void, and can have an empty implementation.

The classes that comprise the branch-and-bound framework—provided by JICOS to the application
programmer—are described below:

BranchAndBound. This is a Task class, which resides in the jicos.applications.branchandbound package,
whose objects represent a search node. A BranchAndBound Task either

• constructs smaller BranchAndBound tasks that correspond to its children search nodes, or
• fully searches a subtree, returning:

◦ null, if it does not find a solution that is better than the currently known best solution
◦ the best solution it finds, if it is better than the currently known best solution.

IntUpperBound. An object that represents the minimum cost among all known complete solutions.
This class is in the jicos.services.shared package. It implements the Shared interface (for details about this
interface, see the JICOS API), which defines the shared object. In this case, the shared object is an Integer
that holds the current upper bound on the cost of a minimal solution. Consequently, IntUpperBound u
“is newer than” IntUpperBound v when u < v.

MinSolution. This task is included in the jicos.services.tasks package. It is a composition class whose
execute method

• receives an array of Solution objects, some of which may be null;
• returns the one whose cost is minimum, provided it is less than or equal to the current best solution.

Equality is included to ensure that the minimum-cost solution is reported: It is not enough just to
know the cost of the minimum-cost solution.

• From the standpoint of the JICOS system (not a consideration for application programming), the
compose tasks form a tree that performs a gather operation, which, in this case, is a min operation
on the cost of the Solution objects it receives. Each task in this gather tree is assigned to some task
server, distributing the gather operation throughout the network of task servers. (This task is indeed
executed on a task server, not a compute server—see Section 41.4.)

Q A queue of Solution objects. Using this framework, it is easy to construct a branch-and-bound
computation. The JICOS web site tutorial [27] illustrates this, giving a complete code for a simple TSP
branch-and-bound computation.
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41.7 Experimental Results

41.7.1 The Test Environment

We ran our experiments on a Linux cluster. The cluster consists of 1 head machine, and 64 compute
machines, composed of two processor types. Each machine is a dual 2.6 GHz (or 3.0 GHz) Xeon processor
with 3 GB (2 GB) of PC2100 memory, two 36 GB (32 GB) SCSI-320 disks with on-board controller, and
an on-board 1 GB ethernet adapter. The machines are connected via the gigabit link to one of two Asante
FX5-2400 switches. Each machine is running CentOS 4 with the Linux smp kernel 2.6.9-5.0.3.ELsmp and
the Java j2sdk1.4.2. Hyperthreading is enabled on most, but not all, machines.

41.7.2 The Test Problem

We ran a branch-and-bound TSP application, using kroB200 from TSPLIB, a 200 city Euclidean instance.
In an attempt to ensure that the speedup could not be superlinear, we set the initial upper bound for
the minimal-length tour with the optimum tour length. Consequently, each run explored exactly the
same search tree: Exactly the same set of nodes is pruned regardless of the number of parallel processors
used. Indeed, the problem instance decomposes into exactly 61,295 BranchAndBound tasks whose average
execution time was 2.05 s, and exactly 30,647 MinSolution tasks whose average execution time was <1 ms.

41.7.3 The Measurement Process

For each experiment, an HSP was launched, followed by a single task server on the same machine. When
additional task servers were used, they were started on dedicated machines. Each compute server was started
on its own machine. Except for 28 compute servers in the 120 processor case (which were calibrated with
a separate base case), each compute server thus had access to two hyperthreaded processors that are
presented to the JVM as four processors (we report physical CPUs in our results). After the JICOS system
was configured, a client was started on the same machine as the HSP (and task server), which executed the
application. The application consists of a deterministic workload on a very unbalanced task graph. Measured
times were recorded by JICOS’s invoice system, which reports elapsed time (wall clock, not processor) between
submission of the application’s source task (aka root task) and receipt of the application’s sink task’s output.
JICOS also automatically computes the critical path using the obvious recursive formulation for a DAG.
Each test was run eight times (or more) and averages were reported.

One processor in the OS does not correspond to one physical processor. It therefore is difficult to get
meaningful results for one processor. We consequently use one machine, which is two physical CPUs, as
our base case. For the 120 processor measurements, we used the speedup formula of a heterogeneous
processor set [28]. We thus had three separate base cases for computing the 120 processor speedup.

For our fault tolerance test, we launched a JICOS system with 32 processors as compute servers. We
issued a kill command to various compute servers after 1500 s, ∼3/4 through the computation. The
completion time for the total computation was recorded, and was compared with the ideal completion
time: 1500 + (T32 − 1500) × 32/Pfinal, where Pfinal denotes the number of compute servers that did not
fail.

To test the overhead of running a task server on the same machine as a compute server, we ran a 22-
processor experiment both with a dedicated task server and with a task server running on the same machine
as one of the compute servers. We recorded the completion times and reported the averages of eight runs.

41.7.4 The Measurements

TP denotes the time for P physical processors to run the application. A computation’s critical path time,
denoted T∞, is a maximum time path from the source task to the sink task. We captured the critical
path time for this problem instance: It is 37 s. It is well known [25] that max{T∞, T1/P } ≤ TP . Thus,
0 ≤ max{T∞, T1/P }/TP ≤ 1 is a lower bound on the fraction of perfect speedup that is actually attained.
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FIGURE 41.3 Number of processors versus % of ideal speedup.

Figure 41.3 presents speedup data for several experiments: The ordinate in the figure is the lower bound
of fraction of perfect speedup. As can be seen from the figure, in all cases, the actual fraction of perfect
speedup exceeds 0.94; it exceeds 0.96, when using an appropriate number of task servers. Specifically, the
two-processor base case ran in 9 h and 33 min; whereas the 120-processor experiment (two processors per
host) ran in just 11 min!

We get superlinear speedups for 4, 8, 16, and 32 processors. The standard deviation was <1.6% of the
size of the average. As such, the superlinearity cannot be explained by statistical error. However, differences
in object placement in the memory hierarchy can have impacts greater than the gap in speedup we observe
[29]. So, within experimental factors beyond our control, JICOS performs well.

We are very encouraged by these measurements, especially considering the small average task times.
Javelin, for example, was not able to achieve such good speedups for 2-s tasks. Even CX [28,30] is not
capable of such fine task granularity.

P∞ = T1/T∞ is a lower bound on the number of processors necessary to extract the maximum
parallelism from the problem. For this problem instance, P∞ = 1857 processors. Thus, 1857 processors is a
lower bound on the number of processors necessary to bring the completion time down to T∞, namely, 37 s.

Our fault tolerance data is summarized in Table 41.1. Overhead is caused by the rescheduling of tasks lost
when a compute server failed as well as some time taken by the TaskServer to recognize a faulty compute
server. Negative overhead is a consequence of network traffic and thread scheduling preventing a timely
transfer of the kill command to the appropriate compute server.

When measuring the overhead of running a task server on a machine shared with a compute server, we
received an average of 3115.1 s for a dedicated task server and 3114.8 s for the shared case. Both of these
represent 99.7% ideal speedup. This is not too surprising: there is a slight reduction in communication
latency having the task server on the same machine as a compute server, and the computational load of
the task server is small due to the simplicity of the compose task (it is a comparison of two upper bounds).
It, therefore, appears beneficial to place a compute server on every available computer in a JICOS system
without dedicating machines to task servers.
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TABLE 41.1 Efficiency of Compute Server Fault Tolerance

Processors (final) 30 26 12 8 6 4

Theoretical time (s) 2119.43 2214.73 3048.58 3822.87 4597.16 6145.74
Measured time (s) 2194.95 2300.92 2974.35 4182.62 4884.86 6559.91
Percent overhead 3.6 3.9 −2.4 9.4 6.3 6.7

Note: Each experiment started with 32 processors. The experiment in which 30 processors finished had 2 fail; the experiment
in which 4 finished had 28 fail.

41.8 Conclusion

We have presented a framework, based on the JICOS API, for developing distributed branch-and-bound
computations. The framework allows the application developer to focus on the problem-specific aspects of
branch-and-bound: the lower bound computation, the upper bound computation, and the branching rule.
Reducing the code required to these problem-specific components reduces the likelihood of programming
errors, especially those associated with distributed computing, such as threading errors, communication
protocols, and detecting, and recovering from, faulty compute servers.

The resulting application can be deployed as a distributed computation via JICOS running, for example,
on a beowulf cluster. JICOS [31] scales efficiently as indicated by our speedup experiments. This, we believe,
is because we have carefully provided (1) for divide-and-conquer computation; (2) an environment that
is common to all compute servers for computation input (e.g., a TSP distance data structure, thereby
reducing task descriptors) and a mutable shared object that can be used to communicate upper bounds
as they are discovered; (3) latency hiding techniques of task caching and prefetching; and (4) latency
reduction by distributing termination detection on the network of task servers.

Faulty compute servers are tolerated with high efficiency, both when faults occur (as indicated by our
fault tolerance performance experiments) and when they do not (as indicated by our speedup experiments,
in which no faults occur). Finally, the overhead of task servers is shown to be quite small, further confirming
the efficiency of JICOS as a distributed system.

The vast majority of the code concerns JICOS, the distributed system of fault-tolerant compute servers.
The Java classes comprising the branch-and-bound framework are few, and easily enhanced, or added
to, by operations researchers; the source code is cleanly designed and freely available for download from
the JICOS web site [27]. Our branch-and-bound framework may be used for any divide-and-conquer
computation. JICOS may be adapted to solve in a distributed environment any algorithm that can be
defined as a computation over directed acyclic graph, where the nodes refer to computations and the edges
specify a precedence relation between computations.
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42.1 Introduction

Designing optimal network for certain purpose, such as rail road design, telecommunication, computer
networks, has been an important research topic in applied mathematics and theoretical computer science
for a long time. Many such problems are very difficult. Thus, finding polynomial-time approximation
solutions plays an important role.

For example, given a set of points in the Euclidean plane, the shortest network interconnecting all points
in the set is called the Steiner minimum tree. The Steiner minimum tree may contain some vertices which
are not given points. Those vertices are called Steiner points while the points given are called terminals. The
Steiner minimum tree for three terminals was first studied by Fermat (1601–1665). Recent research on
mathematical history showed that the Steiner minimum tree for more than three points was first studied
by Gauss in a letter of Gauss to Schumacher [1].

Actually, on March 19, 1836, Schumacher wrote a letter to Gauss. In this letter, he mentioned a paradox
about Fermat’s problem: Consider a convex quadrilateral ABCD. It has been known that the solution of
Fermat’s problem for four points A, B , C , and D is the intersection E of diagonals AC and B D. Suppose
extending DA and CB can obtain an intersection F . Now, move A and B to F . Then E will also be moved
to F . However, when the angle at F is less than 120◦, the point F cannot be the solution of Fermat’s
problem for three given points F , D, and C . What happens (Figure 42.1)?

On March 21, 1836, Gauss wrote a letter to Schumacher in which he explained that the mistake of
Schumacher’s paradox occurs at the place where Fermat’s problem for four points A, B , C , and D is
changed to Fermat’s problem for three points F , C , and D. When A and B are identical to F , the total
distance from E to the four points A, B , C , and D equals 2EF + EC + ED, not EF + EC + ED. Thus, the
point E may not be the solution of Fermat’s problem for F , C , and D. More importantly, Gauss proposed
a new problem. He said that it is more interesting to find a shortest network rather than a point. Gauss
also presented several possible connections of the shortest network for four given points.

Unfortunately, Gauss’ letter was discovered only in 1986. From 1941 to 1986, many publications have
followed Crourant and Robbins [2], who in their popular book What Is Mathematics? (published in 1941)
referred to Gauss’ problem as the Steiner tree problem.

42-1
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FIGURE 42.1 Schumacher’s paradox.

It is well known that the Steiner minimum tree is a NP-hard problem [3,4], that is, the optimal solution
is unlikely computable in polynomial time. Therefore, it is important to concentrate our research efforts
seeking for good polynomial-time approximation solutions.

In 1992, Smith and Shor [5] proposed a greedy construction as follows: Start with all n terminals,
regarded as a forest of n 1-node trees. At any stage, add the shortest possible line segment to the current
forest, which cause two trees to merge. Continue until the forest is completely merged into a single tree.
They conjectured that this greedy heuristic has a performance ratio (3 + 2

√
3)/6, which is smaller than

2√
3

. (Here, the performance ratio for an approximation algorithm is defined to be the least upper bound

for the ratio of lengths between the approximation solution and the Steiner minimum tree for the same
set of terminals.) However, Du [6] disproved their conjecture by proving that this greedy heuristic has
performance ratio 2√

3
. This closed the door to finding a better polynomial-time approximations for Steiner

minimum trees in the Euclidean plane using this approach.
In fact, it was a long-standing open problem whether there exists a polynomial-time approximation for

Steiner minimum trees in the Euclidean plane with performance ratio smaller than 2√
3

. The number
√

3
2

is the value of the Steiner ratio in the Euclidean plane. The Steiner ratio in a metric space is the largest
lower bound for the ratio of lengths between the Steiner minimum tree and the minimum spanning
tree for the same set of points in the space. In other words, it is the inverse of the performance ratio
of the minimum spanning tree as an approximation of the Steiner minimum tree. In 1968, Gilbert and

Pollak [7] conjectured that the Steiner ratio in the Euclidean plane equals
√

3
2 . This conjecture received

lots of attention and efforts [8–15], and was finally proved by Du and Hwang [16]; the solution received
a large publicity.

In general, it was called the better approximation problem whether there exists a polynomial-time
approximation for Steiner minimum trees in each metric space with performance ratio smaller than
the inverse of the Steiner ratio.

Usually, when we talk about the Steiner trees in various metric space, we simply called the Steiner tree
problem in the Euclidean plane as the Euclidean Steiner tree, the Steiner tree problem in the rectilinear
plane as the rectilinear Steiner tree, and the Steiner tree problem in weighted graphs as the network Steiner
tree. These three Steiner tree problems are classical and very well studied in the literature.

Zelikovsky [17] made the first breakthrough. He found a polynomial-time 11/6-approximation for the
network Steiner tree that beats the inverse of the Steiner ratio in graphs, ρ−1

2 = 2. Soon later, Berman
and Ramaiyer [18] gave a polynomial-time 92/72-approximation for the rectilinear Steiner tree and
Du et al. [19] showed a general solution for the open problem. They showed that in any metric space,
there exists a polynomial-time approximation with performance ratio better than the inverse of the Steiner
ratio provided that for any set of a fixed number of points, the Steiner minimum tree is polynomial-time-
computable. A main part of these works is to establish the lower bound for the k-Steiner ratio. Let us
explain it as follows.
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A tree interconnecting a terminal set is called a Steiner tree if every leaf is a terminal. However, a terminal
in a Steiner tree may not be a leaf. A Steiner tree is full if every terminal is a leaf. When a terminal is not a
leaf, the tree can be decomposed into several small trees at this terminal. In this way, every Steiner tree can
be decomposed into smaller trees in each of which every terminal is a leaf. Those smaller trees are called
full components of the tree. The size of a full component is the number of terminals in the full component.

A k-restricted Steiner tree is a Steiner tree with all full components of size at most k. The k-restricted
Steiner minimum tree is the shortest one among all k-restricted Steiner trees. The 2-restricted Steiner
minimum tree is the minimum spanning tree. The k-Steiner ratio in a metric space is the least ratio of
lengths between the Steiner minimum tree and the k-restricted Steiner minimum tree for the same set of
terminals in the metric space. The 2-Steiner ratio is exactly the Steiner ratio. A better lower bound for the
k-Steiner ratio will give a better performance ratio for approximations of Zelikovsky’s type. Zelikovsky [17]
showed that the 3-Steiner ratio in graphs is at least 3/5. Du et al. [19] showed that the k-Steiner ratio in
graphs is at least �log2 k�/(1 + �log2 k�).

In 1996, both Arora [20] and Mitchell [21] found that actually, the Euclidean Steiner tree and the
rectilinear Steiner tree have polynomial-time approximation scheme (PTAS). However, the network Steiner
tree problem is found to be MAX SNP-complete, that is, unlikely to have PTAS [22].

Hwang et al. [23] gave a very useful reference. However, many important results appeared after this
book was published. In this survey, we will pay attention to those important results appearing after 1990,
and identify some open problems.

42.2 The Steiner Ratio

A minimum spanning tree on a set of terminals is the shortest network interconnecting all terminals with
all edges between terminals. While the Steiner tree problem is intractable, the minimum spanning tree
can be computed pretty fast. As we mentioned in the introduction, the Steiner ratio is a measure of
performance of the minimum spanning tree as a polynomial-time approximation of the Steiner tree.
Determining the Steiner ratio in each metric space is a traditional problem on Steiner trees. In 1976,
Hwang [24] determined that the Steiner ratio in the rectilinear plane is 2/3. However, it took 22 years for
completing the story of determining the Steiner ratio in the Euclidean plane. In 1968, Gilbert and Pollak
conjectured that the Steiner ratio in the Euclidean plane is

√
3/2. Through efforts made by Pollak [25], Du

et al. [8], Friedel and Widmayer [9], Booth [10], Rubinstein and Thomas [11,26], Graham and Hwang [12],
Chung and Hwang [13], Du and Hwang [14], and Chung and Graham [15], the conjecture was finally
proved by Du and Hwang [16,27] in 1990. The significance of their proof stems also from the potential
applications of the new approach included in the proof.

In their approach, the central part is a new minimax theorem for minimizing the maximum value of
several concave functions over a polytope as follows:

Minimax Theorem
Let f (x) = maxi∈I gi (x), where I is a finite set and gi (x) is a continuous, concave function in a polytope
X. Then the minimum value of f (x) over the polytope X is achieved at some critical point, namely, a point
satisfying the following property:

(∗) There exists an extreme subset Y of X such that x ∈ Y and the index set M(x)(= {i | f (x) = gi (x)})
is maximal over Y .

The Steiner ratio problem is first transformed to such a minimax problem (gi (x) = (the length of a
Steiner tree) − (the Steiner ratio)(the length of a spanning tree with graph structure i), where x is a vector
whose components are edge lengths of the Steiner tree and the minimax theorem reduces the minimax
problem to the problem of finding the minimax value of the concave functions at critical points. Then
each critical point is transformed back to an input set of points with special geometric structure; it is a
subset of a lattice formed by equilateral triangles. This special structure enables us to verify the conjecture
corresponding to the nonnegativeness of minimax value of the concave functions.
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Using the same approach, Gao et al. [28] proved that in any Minkowski plane (or two-dimensional
Banach space), the Steiner ratio is at least 2/3. They also proved an upper bound 0.8686 for the Steiner
ratio in Minkowski plane. This upper bound is very close to the conjectured upper bound

√
3/2 =

0.8666 . . ., which was made independently by Cieslik [29] and Du et al. [30]. Actually, many interesting
open problems have a possible solution with this approach. For example, the above upper bound problem
can be transformed to the following max-min problem:

max
‖·‖

min
(A, B)

MST‖·‖(A, B , C) ≤ √
3

where the maximization is over all norm ‖ · ‖ in the plane, the minimization is over all possible directions
of edge (A, B) in the equilateral triangle ABC with unit edges, and MST‖·‖(A, B , C) is the length of the
minimum Steiner tree for three points A, B , C in the plane with norm ‖ · ‖. Clearly, the Euclidean norm
is the most symmetric one. However, the above minimax theorem cannot be used. One of the reasons is
that possible directions of edge (A, B) form an interval which is not a finite discrete set.

The research on this minimax approach has the following three aspects:

• Develop new minimax theorems of the above type.
• Find new methods to determine critical structures.
• Generate new proof techniques for each open problem on critical structures.

Any research development on this approach would help to solve the following open problems about the
Steiner ratio.

Chung–Gilbert’s Conjecture on the Steiner Ratio in Euclidean Space
Steiner trees in Euclidean spaces have applications in constructing phylogenetic trees [31]. Gilbert and
Pollak [7] also mentioned a possible generalization of their conjecture, that is, in any Euclidean space
the Steiner ratio is achieved by the vertex set of a regular simplex. Chung and Gilbert [32] constructed a
sequence of Steiner trees on regular simplexes. The lengths of constructed Steiner trees goes decreasingly
to

√
3/(4 − √

2). Although the constructed trees are not known to be Steiner minimum trees, Chung
and Gilbert conjectured that

√
3/(4 − √

2) is the best lower bound for Steiner ratios in Euclidean spaces.
Clearly, if

√
3/(4−√

2) is the limiting Steiner ratio in d-dimensional Euclidean space as d tends to infinity,
then Chung–Gilbert’s conjecture is a corollary of Gilbert and Pollak’s generalization. However, Smith [33]
and Du and Smith [34] disproved Gilbert–Pollak’s general conjecture for dimension more than two. This
leaves a question mark to Chung and Gilbert’s conjecture. It is quite interesting that Chung–Gilbert’s
conjecture could still be true. In fact, the n-dimensional regular simplex may reach the smallest Steiner
ratio over all sets of n + 1 terminals in the Euclidean space. Smith and Smith [35] proved that this is true
for n = 4.

Graham–Hwang’s Conjecture on the Steiner Ratio in Rectilinear Space
Rectilinear Steiner trees in high-dimensional space can be found in biology [31,3] and optimal traffic
multicasting for some communication networks [36,37]. Although the Steiner ratio in rectilinear plane
was determined by Hwang [24] many years ago, there is still no progress on the Steiner ratio in rectilinear
spaces, which was conjectured by Graham and Hwang [12] to be d/(2d − 1).

The Steiner Ratio in Banach Spaces
A Minkowski space is a Banach space of finite dimension. In other words, it is a finite-dimensional
linear space with a norm. Some applications of Steiner minimum trees with L p norm can be found in
Ref. [38]. Examining the proof of Gilbert–Pollak’s conjecture in the Euclidean plane, we observe that
the proof has nothing to do with special properties of the Euclidean norm except the last part, verifica-
tion of the conjecture on point sets with critical structure. This means that using the minimax approach
to determine the Steiner ratio in Minkowski planes, we would have no problem on finding a transfor-
mation and determining critical structures. We need to work on only point sets with critical structure.

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C042 March 20, 2007 16:28

Approximations for Steiner Minimum Trees 42-5

Gao et al. [28] showed that the Steiner ratios in Minkowski planes is at least 2/3. Meanwhile, Du et al.
[30] showed that the Steiner ratios in Minkowski planes is at most and conjectured that this upper bound
is

√
3/2, that is, the upper is achieved at the Euclidean norm. This conjecture is independently made by

Cieslik [29].

42.3 Better Approximations

Starting from a minimum spanning tree, improve it by adding Steiner points. This is a natural idea to
obtain an approximation solution for the Steiner minimum tree. Every approximation solution obtained
in this way would have a performance ratio at most the inverse of the Steiner ratio. The problem is how
much better than the inverse of the Steiner ratio one can make.

Over the last 20 years numerous heuristics [36,39–44] for Steiner minimum trees have been proposed
for terminals in various metric spaces. Their superiority over minimum spanning trees was often claimed
by computation experiments. But no theoretical proof of superiority was ever given. It was a long-standing
problem whether there exists a polynomial-time approximation with performance ratio better than the
inverse of the Steiner ratio or not. For simplicity, a polynomial-time approximation with performance
ratio smaller than the inverse of the Steiner ratio will be called a better approximation.

In the following, we study two ideas to add Steiner points greedily. They give approximation algorithms
with better performance ratio.

42.3.1 Chang’s Idea

Chang [37,40] proposed the following approximation algorithm for Steiner minimum trees in the
Euclidean plane: Start from a minimum spanning tree and at each iteration choose a Steiner point such that
using this Steiner point to connect three vertices in the current tree could replace two edges in the minimum
spanning tree and this replacement achieves the maximum saving among such possible replacements.

Smith et al. [45] also use the idea of the greedy improvement. But, they start with Delaunay tri-
angulation instead of a minimum spanning tree. Since every minimum spanning tree is contained in
Delaunay triangulation, the performance ratio of their approximation algorithm can also be bounded by the
inverse of the Steiner ratio. The advantage of Smith–Lee–Liebman algorithm is on the running time. While
Chang’s algorithm runs in O(n3) time, Smith–Lee–Liebman algorithm runs only in O(n log n) time.

Kahng and Robin [46] proposed an approximation algorithm for the rectilinear Steiner tree by using
the same idea as that of Chang. Approximations obtained with this idea are called iterated 1-Steiner trees.

42.3.2 Zelikovsky’s Idea

As we mentioned in introduction, Zelikovsky’s idea [17] is based on study of k-restricted Steiner trees.
Clearly, for any k ≥ 3, a k-restricted Steiner minimum tree usually has shorter length compared with
a minimum spanning tree. It is natural to think about using a minimum k-restricted Steiner tree to
approximate the Steiner minimum tree. However, this does not work because computing a k-restricted
Steiner minimum tree is still an intractable problem. Zelikovsky’s idea is to approximate the Steiner
minimum tree by a 3-restricted Steiner tree generated by a polynomial-time greedy algorithm. The key
fact is that the length of such an approximation is smaller than the arithmetic mean of lengths of a minimum
spanning tree and a 3-restricted Steiner minimum tree; that is, the performance ratio of his approximation
satisfies

P R ≤ ρ−1
2 + ρ−1

3

2

where ρk is the k-Steiner ratio. Thus, if the 3-Steiner ratio ρ3 is higher than the Steiner ratio ρ2, then this
greedy algorithm is a better approximation for the Steiner minimum tree. Zelikovsky was able to prove
that 3-Steiner ratio in graphs is at least 3/5, which is higher than 1/2, the Steiner ratio in graphs [41].
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So, he solved the better approximation problem in graphs. Zelikovsky’s idea has been extensively studied
in the literature.

Du et al. [19] generalized Zelikovsky’s idea to the k-size Steiner tree. They showed that a generalized
Zelikovsky’s algorithm has performance ratio

PR ≤ (k − 2)ρ−1
2 + ρ−1

k

k − 1

Berman and Ramaiyer [18] employed a different idea to generalize Zelikovsky’s result. They obtained
an algorithm with the performance ratio satisfying

PR ≤ ρ−1
2 −

k∑

i=3

ρ−1
i−1 − ρ−1

i

i − 1

They also showed that in the rectilinear plane, the 3-Steiner ratio is at least 72/94, which is higher than
2/3 [24], the Steiner ratio in rectilinear plane. So, they solved the better heuristic problem in rectilinear
plane.

Du et al. [19] proved a lower bound for the k-Steiner ratio in any metric space. This lower bound tends
to one as k tends to infinity. So, in any metric space with the Steiner ratio less than 1, there exists a k-Steiner
ratio higher than the Steiner ratio. Thus, they proved that the better heuristic exists in any metric space
satisfying the following conditions:

(1) The Steiner ratio is lower than 1.
(2) The Steiner minimum tree on any fixed number of points can be computed in polynomial time.

These metric spaces include Euclidean plane and Euclidean spaces.

42.3.3 The k-Steiner Ratio ρk

We see in Section 42.3.2 that the determination of the k-Steiner ratio plays an important role in estima-
tion of the performance ratio of several recent better approximations. Borchers and Du [47] completely
determined the k-Steiner ratio in graphs that for k = 2r + h ≥ 2,

ρk = r 2r + h

(r + 1)2r + h

and Borchers et al. [48] completely determined the k-Steiner ratio in the rectilinear plane that ρ2 = 2/3,
ρ3 = 4/5, and for k ≥ 4, ρk = (2k − 1)/(2k). However, the k-Steiner ratio in the Euclidean plane for
k ≥ 3 is still an open problem.

42.3.4 Variable Metric Method

Berman and Ramaiyer [18] introduced an interesting approach to generalize Zelikovsky’s greedy approxi-
mation. Let us call the Steiner minimum tree for a subset of k terminals as a k-tree. Their approach consists
of two steps. The first step processes all i-trees, 3 ≤ i ≤ k, sequentially in the following way: For each
i-tree T with positive saving in the current graph, put T in a stack and if two leaves x and y of T are
connected by a path p in a minimum spanning tree without passing any other leaf of T , then put an edge
between x and y with weight equal to the length of the longest edge in p minus the saving of T . In the
second step, it repeatedly pops i-trees from the stack remodifying the original minimum spanning tree for
all terminals and keeping only i-trees with the current positive saving. Adding weighted edges to a point
set would change the metric on the points set. Let E be an arbitrary set of weighted edges such that adding
them to the input metric space makes all i-trees for 3 ≤ i ≤ k have nonpositive saving in the resulting
metric space ME . Denote by tk(P ) a supermum of the length of a minimum spanning tree for the point
set P in metric space ME over all such E ’s. Then Berman–Ramaiyer’s algorithm produces a k-size Steiner
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tree with total length at most

t2(P ) −
k∑

i=3

ti−1(P ) − ti (P )

i − 1
= t2(P )

2
+

k−1∑

i=3

ti (P )

(i − 1)i
+ tk(P )

k − 1

The bound for the performance ratio of Berman–Ramaiyer’s approximation in Section 42.3.2 is obtained
from this bound and the fact that tk(P ) ≤ ρ−1

k SMT(P ), where SMT(P ) is the length of the Steiner
minimum tree for point set P .

42.3.5 Preprocessing and Loss

Karpinski and Zelikovsky [49] proposed a preprocessing procedure to improve approximations
of Zilikovsky type. First, they use this procedure to choose some Steiner points and then run a bet-
ter approximation algorithm on the union of the set of terminals and the set of chosen Steiner points.
This preprocessing can improve the performance ratio for many approximations that we mentioned
previously.

The preprocessing procedure is similar to the algorithm of Berman and Ramaiyer. But, it uses a “related
gain,” instead of the saving, as the greedy potential function.

Karpinski and Zelikovsky [49] also introduced the loss of a Steiner tree, which is the length of a shortest
forest connecting all Steiner points to terminals. With the loss, Hougardy and Prömel [50] defined a
new greedy potential function and obtain a 1.598-approximation for the network Steiner tree. Robin and
Zelikovsky [51] improved the performance ratio to 1.55. This is the best performance ratio for polynomial-
time approximations of the network Steiner tree.

42.3.6 Comparison of the Two Ideas

Although Zelikovsky’s idea starts from a point different from Chang’s one, the two approximations are
actually similar. To see this, let us describe Zelikovsky’s algorithm as follows: Start from a minimum
spanning tree and at each iteration choose a Steiner point such that using this Steiner point to connect
three terminals could replace two edges in the minimum spanning tree and this replacement achieves the
maximum saving among such possible replacements.

Clearly, they both start from a minimum spanning tree and improve it step by step by using a greedy
principle to choose a Steiner point to connect a triple of vertices. The difference is only that this triple
in Chang’s algorithm may contain some Steiner points while it contains only terminals in Zelikovsky’s
algorithm. This difference makes Chang’s approximation hard to be analyzed. Why? A recent paper by
Du et al. [52] indicated that the saving for k-restricted Steiner trees is submodular while the saving for
iterated 1-Steiner trees is not. They also analyzed the iterated 1-Steiner tree with new techniques for dealing
with greedy approximations with nonsubmodular potential functions.

42.4 Approximation for Geometric Steiner Minimum Trees

In 1996, New York Times reported that Arora [20] obtained a surprising result: many geometric
optimization problems, including the Euclidean traveling salesman and the Euclidean Steiner minimum
tree, have PTAS. In this context, for any ε > 0, there exists a polynomial-time approximation algorithm
that produces an approximation solution within a factor 1 + ε from optimal with run time nO(1/ε). Sev-
eral weeks later, Mitchell [53] claimed that a “minor modification” of his earlier work [21] leads to the
similar results. One year later, Arora [54] made further progress by improving run time from nO(1/ε)

to n3(log n)O(1/ε). His new PTAS also runs randomly in time n(log n)O(1/ε). Soon after, Mitchell [55]
claimed again that his approach provides similar results.

Actually, both Arora’s and Mitchell’s approaches fall into the same category, the adaptive partition,
consisting of a sequential partition and dynamic programming. The adaptive partition was first introduced
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to the design of approximation algorithm by Du et al. [56] in 1986 with guillotine cut. A sequence of
guillotine cuts partitions a problem into subproblems to find an approximation solution in polynomial
time by dynamic programming (see also Chapters 3 and 54).

Both Arora and Mitchell found that the cut need not be completely guillotine. In other words, the
dynamic programming can still run in polynomial time if subproblems have some relations, but the
number of relations should be smaller. As the number of relations goes up, the obtained approximation
solution approaches to the optimal one, while the run time, of course, goes up.

To do the incomplete guillotine cut, Arora [20] employed miportals, while Mitchell [21,53] utilized
m-guillotine subdivision. These two techniques differ in their applicability, that is, there exist many
problems for which the portal works, but the m-guillotine subdivision does not, and vice versa. Actually,
their combination produces further improvement of Arora [54] and Mitchell [55]. Chapter 51 discusses
the application of Arora’s approach to the minimum cost k-connectivity problem in geometric graphs.

42.4.1 Guillotine Cut

Roughly speaking, a guillotine cut is subdivision with a line segment, which divides the area into two
subareas. To explain the technique of adaptive partition, let us first consider a rectangular partition problem
as follows: Given a rectilinear polygon possibly with some rectangular holes, partition it into rectangles with
minimum total edge length. This problem is called minimum edge-length rectangular partition (MELRP).

Holes in the input rectangular polygon may degenerate into a line segment or a point or partially into a
line segment. The existence of holes makes difference in the computational complexity. While the MELRP
in general is NP-hard, the MELRP in the hole-free case can be solved in time O(n4), where n is the number
of vertices in the input rectilinear polygon.

In 1986, Du et al. [56] initiated an idea on adaptive partition with guillotine cut to design an ap-
proximation for the above rectangular partition problem. Today, we know that the idea is applicable to
many geometric optimization problems, including the Euclidean Steiner minimum tree and the rectilinear
Steiner minimum tree.

A cut is called a guillotine cut if it breaks a connected area into two parts. A rectangular partition is
called a guillotine rectangular partition if it can be performed adaptively by a sequence of guillotine cuts.
The guillotine cut features dynamic programming since each guillotine cut breaks a problem into two
subproblems. Moreover, Du et al. [56] noted that the minimum length guillotine rectangular partition
also satisfies the property that there exists an optimal rectangular guillotine partition in which each
maximal line segment contains a vertex of the boundary. Hence, the minimum length guillotine rectangular
partition can be computed by a dynamic programming in O(n5) time. Therefore, they suggested to use
the minimum length guillotine rectangular partition to approximate the MELRP and tried to analyze the
performance ratio. Unfortunately, they failed to get a constant ratio in general and obtained a result only
in a special case. In this special case, the input is a rectangle with points inside. Those points are holes. It
had been showed that even the rectangular partition case is NP-hard, and Gonzalez and Zheng [57] had
introduced divide and conquer approximation algorithms for this problem.

In their proof, Du et al. [56] introduced two terms projx (P ) and projy (P ) to form a stronger inequality
than the one that they want to prove. That is, instead of proving that for each rectangular partition P , by
adding some segments, a guillotine rectangular partition P ′ can be obtained to satisfy that length(P ′) ≤
2 · length(P ), they show that P ′ satisfies length(P ′) ≤ 2 · length(P )−projx (P )−projy (P ), where projx (P )
(projy (P )) denote the total length of segments on a horizontal (vertical) line covered by vertical (horizontal)
projection of the partition P . Chapter 54 discusses a different proof to establish this approximation bound
as well as other approximation algorithms for this problem.

The term projx (P ) (projy (P )) plays an important role in the induction. When a vertical (horizontal)
guillotine cut receives horizontal (vertical) projections from both sides, a portion of projx (P ) (projy (P ))
will be doubled from the application of the induction hypothesis to the two subproblems resulting from
the cut. The increased negative value would cancel the increased positive value caused by the length of the
new cut.
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For simplicity, let us call any point in such cut a 1-dark point. That is, a point lying inside of a given area
is a horizontal (vertical) 1-dark point if it receives horizontal (vertical) projections from both sides. What
Du et al. [56] did was to find various guillotine cuts consisting of 1-dark points. They succeeded only in
the mentioned special case.

42.4.2 m-Guillotine Subdivision

Mitchell [21] made an important discovery about 1-dark points.

Lemma 42.1 (Mitchell’s Lemma)

Let H (V) be the set of all horizontal (vertical) 1-dark points. Then there exists either a horizontal line L such
that

leng th(L ∩ H) ≤ l eng th(L ∩ V)

or a vertical line L such that

length(L ∩ H) ≥ length(L ∩ V)

The first inequality means that if we use all horizontal 1-dark points on the horizontal line L to form
an incomplete guillotine cut, then the set of vertical 1-dark points on L will receive enough two-side
projection to cancel the length of the cut. Such cut is called a horizontal 1-guillotine cut. Similarly, the set
of all vertical 1-dark points on a vertical line forms a vertical 1-guillotine cut. The lemma actually says that
either an expected horizontal 1-guillotine cut or an expected vertical 1-guillotine cut exists.

A rectangular partition is called a 1-guillotine rectangular partition if it can be performed by a sequence
of 1-guillotine cuts. It has been shown that there exists minimum 1-guillotine rectangular partition such
that every maximal segment contains at least a vertex of the boundary.

Now, the question is whether the 1-guillotine cut can also feature the dynamic programming. The answer
is yes, although the 1-guillotine cut partitions a rectangular partition problem into two subproblems with
some boundary conditions that two open segments may be created on the boundary by a 1-guillotine cut.
This boundary condition increases the number of subproblems in the dynamic programming. Since, each
subproblem is based on a rectangle with four sides, the condition on each side can be described by two
possible open segments at two ends. Hence each side has O(n2) possible conditions. So, the total number
of possible boundary conditions is O(n8). Thus the total number of possible subproblems is O(n12).
For each subproblem, there are O(n3) possible 1-guillotine cuts. Therefore, the minimum 1-guillotine
rectangular partition can be computed by dynamic programming in O(n15) time. With 1-guillotine cuts,
the approximation ratio 2 can be established not only for the special case, but also in general. However,
to reduce the number of boundary conditions in the general case, Mitchell [21] initially covered the input
by a rectangle and kept performing a “rectangular partition” at each iteration.

Mitchell [21] also presented the proof in a different way. Instead of introducing the terms projx and
projy , he did a symmetric charge. For example, in case when a horizontal 1-guillotine cut is used, charge
0.5 to all horizontal segments whose projection directly contributes horizontal 1-dark points on the cut.
Since the charge is performed symmetrically, no segment in P can be charged more than twice on the
same side. Therefore, each segment in P can be charged with at most value 1 and the total length of
charged segments cannot exceed the total length of P . This argument has the same power as that of using
projection, however, more directly to the point.

The 1-guillotine cut can be easily generalized in the following way: A point p is a horizontal (vertical)
m-dark point if the horizontal (vertical) line passing through p intersects at least 2m vertical (horizontal)
segments of the considered rectangular partition P , among which at least m are on the left of p (above p)
and at least m are on the right of p (below p). A horizontal (vertical) cut is an m-guillotine cut if it consists
of all horizontal (vertical) m-dark points on the cut line. In other words, let Hm (Vm) denote the set of all
horizontal (vertical) m-dark points. An m-guillotine cut is either a horizontal line L with cut segment

L ∩ Hm ⊆ L ∩ P
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or a vertical line L with cut segment

L ∩ Vm ⊆ L ∩ P

where P is a considered partition.
A rectangular partition is m-guillotine if it can be realized by a sequence of m-guillotine cuts. The min-

imum m-guillotine rectangular partition can also be computed by dynamic programming in O(n10m+5)
time. In fact, at each step, an m-guillotine cut has at most O(n2m+1)) choices. There are O(n4) possible
rectangles appearing in the algorithm. Each rectangle has O(n8m) possible boundary conditions. Mitchell’s
lemma can also be generalized to the following.

Lemma 42.2 (Mitchell’s Lemma)

There exists either a horizontal line L such that

length(L ∩ Hm) ≤ length(L ∩ Vm)

or a vertical line L such that

length(L ∩ Hm) ≥ length(L ∩ Vm)

With the m-guillotine subdivision, Mitchell [53] showed that there exists a polynomial-time (1 + ε)-
approximation with run time nO(log 1/ε) for the rectangular partition.

To apply the m-guillotine subdivision to the Steiner tree problem, we only need to include all terminals
in a rectangle at the initial step.

42.4.3 Portals

Arora’s PTAS [20] is also based on a sequential rectangular partition. Consider the rectilinear Steiner
minimum tree. Initially, use a minimal square to cover n input terminals. Then with a sequence of cuts,
partition the square into small rectangles, each containing one terminal. Arora [20] managed the partition
to have O(log n) levels with the following techniques:

(1) Equally divide the initial square into n2 × n2 grid. Move each input point to the center of the cell
containing the input point.

(2) Choose a grid line in a range between 1/3 and 2/3 of the longest edge to cut.

Let P be the set of n input points and P ′ the set of n′ cell-centers receiving the n input points in (1).
(Possibly, n′ < n.) Then, it is shown that there is a PTAS for P if and only if there exists a PTAS for P ′.
Therefore, one may work on P ′ instead of P .

Furthermore, with technique (2), the rectangle at the i th level has area at most S2(2/3)i−1, where S is
the edge length of the initial square. Since the ratio between the lengths of longer edge and shorter edge
is at most 3, the rectangle at the last level, say the s th level, has area at least (1/3)(S/n2)2. Therefore,
S2(2/3)s−1 ≥ (1/3)(S/n2)2. That is, s = O(log n).

To reduce the number of crosspoints at each cut line, Arora employed a technique, called the portal.
Portals are points on cut line equally dividing cut segments. For rectilinear Steiner tree, crosspoints on
a cut line can be moved to portals by increasing a small amount of the length. This would decrease the
number of crosspoints on the cut line. Suppose the number of portals is p, and we will call such portals
as p-portals. By properly choosing cut line, at each level of the adaptive partition, moving crosspoints to
portals would increase the length of the tree within three pth of the total length of the Steiner tree. To see
this, consider each rectangle R at a certain level. Suppose its longer edge has length a and shorter edge
has length b (a/3 ≤ b ≤ a). Look at every possible cut in a range between 1/3 and 2/3 of a longer edge.
Choose the cut line to intersect the Steiner tree with the smallest number of crosspoints, say c points. Then
the length of the part of the Steiner tree lying in rectangle R is at least ca/3. Moving c crosspoints to portals
requires to add some segments with total length at most cb/( p + 1) ≤ ca/( p + 1) ≤ (3/p)(ca/3).
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Since the guillotine rectangular partition has O(log n) levels, the total length of the resulting Steiner
tree is within (1 + 3

p )O(log n) times the length of the optimal one. To obtain (1 + 3
p )O(log n) ≤ 1 + ε, we

have to choose p = O( log n
ε

).
Summarizing the above, we obtained the structure theorem for the rectilinear Steiner minimum tree.

Theorem 42.1

For rectilinear SMT, there exists a (1 + ε)-approximation T together with a guillotine rectangular partition
P such that each cut intersects T only at p-portals where p = O( log n

ε
).

Now, one can employ dynamic programming to find the shortest one among (1 + ε)-approximations
described in the structure theorem. To estimate the run time of dynamic programming, note that each
subproblem is characterized by a rectangle and conditions on the boundary. There are O(n8) possible
rectangles. Each rectangle has four sides. One of them must contain p portals. However, each of the other
three may contain less than p portals resulting from previous cuts. There are O(n4) possible previous
cuts for each edge. Thus, the number of possible sets of positions for portals on each of these three sides
is O(n4). Hence, the total number of possible sets of portal positions on the boundary is O(n20). For
each fixed set of portal positions, we need also consider whether a portal is a crosspoint or not and how
crosspoints are connected with each other inside the rectangle. It brings us 2O( p) possibilities. Therefore,
the total number of possible subproblems is nO(1/ε). Moreover, in each iteration of dynamic programming,
the number of all possible cuts is O(n2). Therefore, the dynamic programming runs in time nO(1/ε). the
dynamic programming runs in time nO(1/ε).

42.4.4 Comparison and Combination

Let us compare two techniques, the m-guillotine subdivision and the portal.
For problems in d-dimensional space, the cut line should be replaced by (d − 1)-dimensional hyper-

plane. The number of portals would be O((m log n)d−1) where m = 1/ε. With so many possiblecrosspoints,
the dynamic programming runs in time 2(m log n)d−1

, which is not a polynomial for d ≥ 3. However, the
m-guillotine cut has O(m) crosspoints in each dimension and totally O(md−1) crosspoints in (d − 1)-
dimensional cut plane. Therefore, the dynamic programming runs in time nO(md−1), which is still poly-
nomial for fixed m. Thus, while the m-guillotine works well in high-dimensional space, the portal does
not.

The portal technique cannot apply to the above rectangular partition problems and the rectilinear
Steiner arborescence [58]. In fact, for these three problems, moving crosspoints to portals is sometimes
impossible. But, the m-guillotine cut works well in these problems.

However, the portal preserves the topological structure of original figure, but, the m-guillotine cut does
not. Therefore, for problems such as the Euclidean k-medians and the Euclidean facility locations [59],
the portal works well, but the m-guillotine cut does not.

In case when the problem is suitable to use both techniques, such as the rectilinear Steiner minimum
tree and the Euclidean Steiner tree, a rough idea suggests a combination of two techniques, which may
reduce the run time. In fact, one may first move crosspoints to O(m log n) portals and then choose 2m
from the O(m log n) portals to construct an m-guillotine cut (m = 1/ε). This way, the dynamic programm-
ing will run in time nc (log n)O(m)) for some constant c . However, the problem is that in two techniques,
two different principles are used for choosing the position of each cut. In m-guillotine cut, the cut line
has to satisfy the inequality in Mitchell’s lemma. But, when portals are used, the cut line is chosen to
minimize the number of crosspoints.

Again, Arora [54] and Mitchell [55] found two different ways to overcome this problem.
Arora [54] borrowed a shafting technique from nonadaptive partition and employed random argu-

ment. He found family of n2 adaptive partitions obtained by shafting, satisfying property that the total
increased length caused by moving crosspoints to portal and m-guillotine cutting in average bounded
by ε · OPT.
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Mitchell [55] tried another way. First, he employed a 1-guillotine cut and put portals on the 1-guillotine
cut segment; then he constructed an m-guillotine cut with the portals. The purpose of putting portals on
the 1-guillotine cut is to bound the length increased by moving crosspoints to portals by the length of the
1-guillotine cut segment. A new lemma of Mitchell’s type on the combination of the 1-guillotine cut and
the m-guillotine cut would resolve the problem.

It is interesting to mention that combining Arora’s and Mitchell’s approaches of 1997 again may produce
a further improvement in the run time [60].

Rao and Smith [61] reduced time complexity of PTAS to mO(m)n log n for the rectilinear Steiner tree
and the Euclidean Steiner tree. The basic idea is to compute a banyan instead of the tree. The banyan
contains a (1 + ε)-approximation solution. It has O(n) vertices and the total length is within a constant
factor from optimal solution. Moreover, it can be computed in time O(n log n).
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[50] Hougardy, S. and Prömel, H. J., A 1.598-approximation algorithm for the Steiner problem in graphs,
Proc. SODA, 1999, p. 448.

[51] Robin, G. and Zelikovsky, A., Improved Steiner trees approximation in graphs, Proc. SODA, 2000,
p. 770.

[52] Du, D.-Z., Graham, R. L., Wu, W., Pardalos, P., and Wan, P.-J., Analysis of greedy approximations
with nonsubmodular potential functions, 2006 (unpublished manuscript).

[53] Mitchell, J. S. B., Guillotine subdivisions approximate polygonal subdivisions: Part II—a simple
polynomial-time approximation scheme for geometric k-MST, TSP, and related problem, SIAM J.
Comput., 29, 515, 1999.

[54] Arora, S., Nearly linear time approximation schemes for Euclidean TSP and other geometric problems,
Proc. of FOCS, 1997, p. 554.

[55] Mitchell, J. S. B., Guillotine subdivisions approximate polygonal subdivisions: Part III—faster
polynomial-time approximation scheme for geometric network optimization, Proc. Canadian Conf.
on Comput. Geom., 1997, p. 229.

[56] Du, D.-Z., Pan, L.-Q., and Shing, M.-T., Minimum edge length guillotine rectangular partition,
Technical report 0241886, Mathematical Sciences Research Institute, University of California,
Berkeley, 1986.

[57] Gonzalez, T. F. and Zheng, S. Q., Bounds for partitioning rectilinear polygons, Proc. Symp. on Comput.
Geom., 1985, pp. 281–287.

[58] Lu, B. and Ruan, L., Polynomial time approximation scheme for the rectilinear Steiner arborescence
problem, J. Comb. Opt., 4, 357, 2000.

[59] Arora, S., Raghavan, P., and Rao, S., Polynomial time approximation schemes for Euclidean k-medians
and related problems, Proc. STOC, 1998, p. 106.

[60] Arora, S., Polynomial-time approximation schemes for Euclidean TSP and other geometric problems,
JACM, 45, 753, 1998.

[61] Rao, S. B. and Smith, W. D., Approximating geometrical graphs via “spanners” and “banyans,” Proc.
STOC, 1998, p. 540.

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C043 March 20, 2007 16:29

43
Practical Approximations of

Steiner Trees in Uniform
Orientation Metrics

Andrew B. Kahng
University of California at San Diego

Ion Măndoiu
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43.1 Introduction

The Steiner minimum tree problem, which asks for a minimum-length interconnection of a given set of
terminals in the plane, is one of the fundamental problems in very large-scale integration (VLSI) physical
design. Although advances in VLSI manufacturing technologies have introduced additional routing ob-
jectives, minimum length continues to be the primary objective when routing noncritical nets, since the
minimum-length interconnection has minimum total capacitance and occupies minimum amount of area.

To simplify design and manufacturing, VLSI interconnect is restricted to a small number of orientations
defining the so-called interconnect architecture. Until recently, designers have relied almost exclusively
on the Manhattan interconnect architecture, which allows interconnect routing along two orthogonal
directions. However, non-Manhattan interconnect architectures—such as the Y-architecture, which allows
0◦, 120◦, and 240◦ oriented wires, and the X-architecture, which allows 45◦ diagonal wires in addition to
the traditional horizontal and vertical orientations—are becoming increasingly attractive because of the
significant potential for reducing interconnect length (see, e.g., Refs. [1–7]). A common generalization of
interconnect architectures of interest in VLSI design is that of uniform orientation metric, or λ-geometry, in
which routing is allowed only alongλ ≥ 2 orientations forming consecutive angles of π/λ. The Manhattan,
Y-, and X-architectures correspond to λ = 2, 3, and 4, respectively.

In contrast to the extensive literature on the rectilinear version of the Steiner tree problem, computing
Steiner trees in λ-geometries with λ > 2 has received much less attention in the literature. A hierarchical
Steiner tree construction was proposed by Sarrafzadeh and Wong [8]. Koh [9] showed how to compute
the optimal Steiner trees for three terminals under the octilinear metric (λ = 4) and proposed a heuristic
inspired by the iterated 1-Steiner heuristic of Kahng and Robins for computing rectilinear Steiner tree.
Li et al. [10] solved the 3-terminal case for λ = 3 and proposed a simulated annealing heuristic. Gen-
eralizations of the classical Hanan grid [11] for λ = 3 and λ = 4 are also proposed by Refs. [9,10], but
these generalizations lead to multilevel grids typically containing too many points to be of use in designing
practical algorithms.

43-1
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Chiang et al. [12] proposed a simple heuristic for constructing octilinear Steiner trees that computes a
rectilinear Steiner tree for the terminals and then iteratively reduces tree length by using diagonal wires to
reroute tree edges and by sliding Steiner points. Coulston [13] proposed an exact octilinear Steiner tree
algorithm based on a two-phase approach of generating all possible full components for the given set of
terminals and then merging them to form an optimal tree. He reports that the proposed algorithm has
practical runtime for up to 25 terminals. Nielsen et al. [14] described the extension of the GeoSteiner exact
rectilinear/Euclidean Steiner tree package to arbitrary λ-geometries. GeoSteiner uses the same two-phase
approach as Coulston’s algorithm, however it incorporates highly effective pruning techniques based on
structural properties of full components to greatly improve the running time. With these improvements,
GeoSteiner is reported to compute optimal λ-geometry Steiner trees for instances with 100 random
terminals in seconds of CPU time.

Recently, there has been a growing interest in practical methods for computing near-optimal Steiner
trees for instances with up to tens of thousands of terminals. Instances of this size, for example, scan
enable nets, are becoming more common in modern VLSI designs because of the increased emphasis on
design for test. Such nets are noncritical for chip performance and tend to consume significant routing
resources, so minimizing length is the appropriate optimization objective. Furthermore, very large Steiner
tree instances are created by reductions that model nonzero terminal dimensions, for example, nets
with preroutes. High-quality routing of such instances requires representing each terminal by a set of
electrically equivalent points [15] and this results in instances with as much as 100,000 points [16]. Due to
combinatorial explosion and/or quadratic memory requirements, instances of this size cannot be solved
in practical time with the existing exact methods such as GeoSteiner or best-performing heuristics such
as iterated 1-Steiner [17] and iterated Rajagopalan-Vazirani (IRV) [18].

In this chapter we present a highly scalable heuristic for computing near-optimal Steiner trees. Our
heuristic, referred to as the batched greedy algorithm (BGA) in the following, is graph-based and can
therefore be easily modified to handle routing in uniform orientation geometries as well as other practi-
cal considerations such as routing obstacles, preferred directions [19], and via costs. Indeed, the results
reported in Section 43.5 show only a small factor increase in runtime compared to the rectilinear imple-
mentation. The BGA heuristic routes a 34k-terminals net extracted from a real design in less than 25 s
compared to over 86 min needed by the O(n2) edge-based heuristic of Ref. [20]. More importantly, this
dramatic reduction in runtime is achieved with no loss in solution quality. On random instances with
more than 100 terminals our algorithm improves over the rectilinear minimum spanning tree (MST) by
an average of 11%, matching in solution quality the edge-based heuristic of Ref. [20].

The BGA heuristic derives its efficiency from three key ideas:

• Combining the implementation proposed in Ref. [21] for the greedy triple contraction algorithm
(GTCA) of Zelikovsky [22] with the batched method introduced by the iterated 1-Steiner heuristic
of Kahng and Robins [17].

• A new divide-and-conquer method for computing a superset of size O(n log n) of the set of O(n)
triples required by GTCA.

• A new linear size data structure that enables finding a bottleneck (i.e., maximum cost) edge on the
tree path between two given nodes in O(log n) time after O(n log n) preprocessing, with very low
constants hidden under the big O . This data structure allows computing the gain of a triple (see
Section 43.2 for the definition) in O(log n) time.1

The BGA heuristic requires O(n) memory and O(n log2 n) time for computing a Steiner tree over
n terminals. To the best of our knowledge, this is the first practical subquadratic heuristic with such

1Our data structure may be of interest in other applications that require computing bottleneck edges. For example,
Zachariasen incorporated it in the beta version of the GeoSteiner 4.0 code for computing optimum geometric Steiner
trees. On large instances, computing bottleneck edges with the new data structure was found to be faster than look up
in a precomputed matrix, most likely because of improved memory access locality [23].
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high performance. The O(n log n) implementation described in Ref. [20] for the edge-based heuristic
requires advanced data structures, potentially involving large hidden constants. We are not aware of any
implementation demonstrating the practical applicability of this implementation. After the publication
of a preliminary version of this work [24], Zhu et al. [25] proposed an O(n log n) octilinear Steiner tree
heuristic based on spanning graphs, which is reported to run faster than BGA at the cost of a small decrease
in solution quality.

The rest of the chapter is organized as follows. In Section 43.2 we briefly review the GTCA of Ref. [22] and
describe our new BGA. In the following two sections we describe in detail two of the key BGA subroutines:
In Section 43.3 we give the new divide-and-conquer method for computing the set of O(n log n) triples
used by BGA, while in Section 43.4 we describe the new data structure for computing bottleneck edges.
Finally, in Section 43.5 we give experimental results comparing BGA with previous implementations of
rectilinear and octilinear Steiner tree heuristics and exact algorithms on test cases both randomly generated
and extracted from recent VLSI designs.

43.2 The Greedy Triple Contraction and Batched
Greedy Algorithms

We begin this section by introducing the Steiner tree terminology used in the rest of the chapter. A Steiner
tree for a set of terminals is a tree spanning the terminals and possibly additional points, called Steiner
points. A Steiner tree is called a full Steiner tree if all terminals are leaves (i.e., have degree 1). Any Steiner tree
T can be split into edge-disjoint full Steiner trees called the full Steiner components of T [26]. A Steiner tree
T is called k-restricted if every full component of T has at most k terminals (an example of a 3-restricted
rectilinear Steiner tree is shown in Figure 43.1). The minimum-cost 3-restricted Steiner tree is in general
cheaper than the MST of the terminals (note that the MST is the minimum-cost 2-restricted Steiner tree
of the terminals).

The GTCA in Ref. [22] finds an approximate minimum-cost 3-restricted Steiner tree by greedily choosing
3-restricted full components which reduce the cost of the MST. To describe GTCA we need to introduce
a few more notations. Let G S be the complete graph on a given set S of terminals, and let MST(S) be
a MST of G S . A triple τ is an optimal Steiner tree for a set of three terminals.2 We denote by center(τ )

Northwest triple of terminals

Diagonal terminal

Full components

Center 

FIGURE 43.1 A 3-restricted rectilinear Steiner tree partitioned into full components. The dark full component is
a northwest triple (From Kahng, A. B., Măndoiu, I. I., and Zelikovsky, A. Z., Proc. Asia and South Pacific Design
Automation Conf., 2003, pp. 828–832.).

2The optimum Steiner tree of three given terminals can be computed in constant time under the common uniform
orientation metrics, including rectilinear [11] and octilinear [3] metrics.
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Cycle 1 

New zero-cost
edges A(t )

e1

e2

Most expensive
edges R(t)

Triple t

(a) (b)

Cycle 2 

e′1

e′2

FIGURE 43.2 The MST of G S (a) before and (b) after contraction of the triple τ . The gain of the dashed triple is the
difference between the cost of most expensive edges R(τ ) = {e1, e2} in each of the two cycles of T ∪ τ and the cost
of τ . Two new zero-cost edges A(τ ) = {e ′

1, e ′
2} replace e1 and e2 in the updated MST (From Kahng, A. B., Măndoiu, I.

I., and Zelikovsky, A. Z., Proc. Asia and South Pacific Design Automation Conf., 2003, pp. 828–832.).

the single Steiner point of τ and by cost(τ ) the cost of τ . In the graph MST(S) ∪ τ , there are two cycles
(see Figure 43.2[a]). To obtain an MST of this graph we should remove the most expensive edge from
each cycle. Let e1 and e2 be the two edges that must be removed and let R(τ ) = {e1, e2}. The gain of τ is
gain(τ ) = cost(R(τ )) − cost(τ ).

GTCA (see Figure 43.3) repeatedly adds a triple τ with the largest gain and contracts it, that is, collapses
the three terminals of τ into a single new terminal. Contraction of a triple is conveniently implemented
by adding two new zero-cost edges A(τ ) = {e ′

1, e ′
2} between the three terminals of τ (see Figure 43.2[b]).

It is easy to see that addition of A(τ ) changes the MST of G S —in the updated MST the two edges in A(τ )
replace the two edges in R(τ ). Finally, GTCA adds all chosen triples to the original MST of G S and outputs
the MST of this union.

Theorem 43.1 Berman et al. [27]

The cost of the rectilinear Steiner tree constructed by GTCA is at most 1.3125 times more than the optimal
Steiner tree.

Fößmeier et al. [21] prove that to achieve an approximation ratio of 1.3125 in Theorem 43.1 it is sufficient
to consider only empty tree triples of terminals. A triple τ is empty if the minimum rectangle bounding the
triple does not contain any other terminals and is a tree triple if the center c of τ is adjacent to all terminals
of the triple in MST(S + c) (or, equivalently, if gain(τ ) > 0). As shown in Ref. [21], there are at most 36n
empty tree triples. Even so, finding the best triple in step 3 of GTCA is very time consuming. An efficient

Input: Set S of terminals
Output: 3-restricted Steiner tree T spanning S

1. T ← MST(GS)

2. F ← ∅
3. Repeat forever

Find a triple τ with maximum gain

If gain (τ) ≤ 0, then go to step 4

F ← F ∪ {τ} // Add τ

T ← T − R(τ) + A(τ) // Contract τ

4. Output MST(F ∪ MST(GS))

FIGURE 43.3 The greedy triple contraction algorithm (From Kahng, A. B., Măndoiu, I. I., and Zelikovsky, A. Z.,
Proc. Asia and South Pacific Design Automation Conf., 2003, pp. 828–832.).
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Input: Set S of terminals
Output: Steiner tree T spanning S

1. Compute the minimum spanning tree of S, MST(S)

2. Compute a set Triples, of size O(n log n), containing all empty tree triples

3. SP ← ∅
4. While Triples = ∅ do

For each τ ∈ Triples compute R(τ), A(τ), and gain(τ), discarding triples with nonpositive gain

Sort Triples in descending order of gain

Unmark all edges of MST(S)

For each τ ∈ Triples do

If both edges in R(τ) are unmarked, then mark them and replace them in the MST with the two
edges in A(τ), i.e., MST(S) ← MST(S) − R(τ) + A(τ)

SP ← SP + center(τ)

5. If SP = ∅ then return the minimum spanning tree of S, else

S ← S + SP

Compute the minimum spanning tree of S and discard all Steiner points with degree 1 or 2

Go to step 2

FIGURE 43.4 The batched greedy algorithm (From Kahng, A. B., Măndoiu, I. I., and Zelikovsky, A. Z., Proc. Asia
and South Pacific Design Automation Conf., 2003, pp. 828–832.).

O(n2 log n) time implementation of GTCA should maintain dynamic MSTs for which, to date, there is no
data structure able to handle instances with tens of thousands of nodes in practical running time. Existing
data structures are difficult to implement and involve big asymptotic constants, see Cattaneo et al. [28]
for a recent empirical study.

Our new heuristic, the BGA (see Figure 43.4) adopts the batched method from Ref. [17], substantially
reducing running time by relaxing the greedy rule used to select triples in GTCA. After contracting a triple
we continue by picking the best triple among those with unchanged gain; in general this may not be the
best triple overall. Note that a triple τ can change its gain only if one of the edges in R(τ ) is removed when
contracting other triple—if none of the contracted triples removes edges from R(τ ) then the gain of τ is
unchanged. When done with one such batched phase (the body of the while loop in step 4) it is still possible
to have positive gain triples. Therefore, we recompute triple gains and repeat the batched phase selection
until no positive gain triples are left. To enable further improvements, we add the centers of triples selected
in step 4 to the terminal set then iterate steps 2–5 (which constitute a round of the algorithm) until no
more centers are added to the tree.

In next section we show how to compute in O(n log n) time a set of O(n log n) triples containing all
empty tree triples (see Theorem 43.3). Then, in Section 43.4 we describe a data structure which enables
computing a bottleneck edge on the tree path between any two given nodes in O(log n) time after O(n log n)
time preprocessing. Since computing the gain of a triple amounts to three bottleneck edge computations,
this leads to an O(n log2 n) time implementation of the batched phase algorithm. This gives the following.

Theorem 43.2

The running time of the BGA is O(Pn log2 n), where P is the total number of batched phases and n is the
number of terminals.

In practice, the total number of phases P is small and can be bounded by a constant. Thus, the runtime
of BGA is O(n log2 n).
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43.3 Generation of Triples

In this section we show how to compute in O(n log n) time a set of O(n log n) triples containing all empty
tree triples. For simplicity, we assume that terminals are in general position, i.e., no two of them share the
same x- or y-coordinate. This assumption is not restrictive since we can always break ties, for example,
according to terminal IDs.

In a triple, the terminal which does not share x- and y-coordinates with the center (see the shaded
portion of Figure 43.1) is called diagonal. There are four types of triples depending on where the diagonal
terminal lies with respect to the center: a triple is called north-west if the diagonal terminal is in the northwest
quadrant of the center (see Figure 43.1); north-east, south-west, and south-east triples are defined similarly.
We will use the divide and conquer method to find O(n log n) northwest triples containing all northwest
empty tree triples. Triples of the other types are obtained by reflection and application of the same
algorithm.

For finding northwest triples we recursively partition the terminals into (almost) equal halves with
a bisector line parallel to line y = −x . Let LB (left-bottom) and TR (top-right) be the half-planes
defined by the bisector line, and let D, R, and B be the diagonal, right, and bottom terminals of a
northwest triple that is intersected by the bisector line (see Figure 43.5). We distinguish the following four
cases:

Case 1. D, R ∈ TR and B ∈ LB. Figure 43.6 (a) illustrates how to compute for each diagonal terminal D
the unique terminal R that can serve as a right terminal in an empty northwest triple with D as the diagonal
terminal. All terminals in TR are processed in x-ascending order as follows: (1) if the next terminal has y
larger then the current terminal, then a dashed pointer is set from the next to the current terminal, and
then the current terminal is advanced to the next terminal; (2) otherwise, a solid pointer is set from the
current terminal to the next one, and the current terminal is moved back along the dashed pointer (if it

LB

Case 3

D

R

Case 1 

B

Case 4

B

TR

LB
TR

LB
TR

LB
TR

D

Case 2  

D

D

B

R

R
R

B

FIGURE 43.5 Four cases of partitioning of a northwest triple (From Kahng, A. B., Măndoiu, I. I., and Zelikovsky,
A. Z., Proc. Asia and South Pacific Design Automation Conf., 2003, pp. 828–832.).
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32

1

5

M1

M2
M3

M4

LB

(b)

TR

32

1 4 4

5

LB

TR

(a)

FIGURE 43.6 Case 1: (a) Finding the right terminal for each diagonal terminal, for example, if D = 1, then R = 5, if
D = 3, then R = 4, etc. (b) Finding highest terminals in the strips corresponding to consecutive terminals (From Kahng,
A. B., Măndoiu, I. I., and Zelikovsky, A. Z., Proc. Asia and South Pacific Design Automation Conf., 2003, pp. 828–832.).

exists, otherwise the current terminal is advanced to the next). Clearly, this procedure is linear since the
runtime is proportional to the number of pointers established and each terminal has at most two pointers
(one solid and one dashed). When processing of the points in TR is finished, each solid arc connects a
terminal D with the leftmost terminal in TR lower than and to the right of D, that is, with the unique
terminal R that can serve as a right terminal in an empty northwest triple with D as the diagonal terminal.

To find all case 1 northwest triples, we must find for each solid arc (D, R) in TR the node B in LB which
can complete the triple, that is, the node B with maximum y-coordinate in the vertical strip defined by D
and R. This is done in linear time by one traversal of the terminals in LB in x-ascending order (i.e., strip
by strip) while computing the highest point in each strip.

Case 2. B , R ∈ TR and D ∈ LB . For each terminal R, the unique terminal in TR that can serve as the
bottom terminal in an empty northwest triple with R as the right terminal (i.e., the highest terminal in
TR lower and to the left of R) can be found by a procedure similar to the one in step 1. Cf. [21], an arc
(R, B) in TR is completed into a tree northwest triple only when the diagonal node D is the closest to R
(and therefore to B) in the octant of LB containing points higher than R. To find the diagonal points D
for each arc (R, B) in TR, we simultaneously traverse terminals in TR in y-ascending order and terminals
in LB in (x − y)-ascending order as follows:
While there are unprocessed terminals in both TR and LB

• advance in TR until we reach a terminal R that has an arc to the associated B ,
• advance in LB until we reach a terminal D higher than R,
• assign D to R.

Note that triples found by the above procedure are not necessarily empty. With a more careful im-
plementation it is possible to avoid generating nonempty triples, however this would not change the
asymptotic number of triples generated or the worst-case running time of the algorithm.

Case 3. R ∈ TR and D, B ∈ LB . It is equivalent to case 1 after reflection over bisector.

Case 4. D ∈ TR and B , R ∈ LB . It is equivalent to case 2 after reflection over bisector.

Theorem 43.3

A set of size O(n log n) containing all empty tree triples can be computed in O(n log n) time.
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Proof
Each northwest empty tree triple crossing the dividing diagonal must fall in one of the four cases considered
and finding all crossing triples takes linear time. Thus, the running time is given by the recurrence T(n) =
2T(n/2) + O(n), that is, T(n) = O(n log n). The number of triples generated by the divide-and-conquer
algorithm is also O(n log n) by the same recurrence; notice that each recursive step generates a linear
number of triples. The same argument applies to the other three triple types.

43.4 Computing Maximum Cost Edge on a Tree Path

It is easy to see that computing the gain of a triple τ and the edges in R(τ ) reduces to finding bottleneck
(i.e., most expensive) edges on the tree paths between pairs of terminals in τ . The hierarchical greedy
preprocessing (HGP) algorithm given in Figure 43.7 computes for a given tree on n terminals two auxiliary
arrays, parent and edge, with at most 2n − 1 elements each. Using these arrays, the bottleneck tree edge
between any two terminals u and v can be found in O(log n) using the algorithm in Figure 43.8.

Assuming that edges are sorted in ascending order of cost, HGP is equivalent to the following recursive
procedure. First, for each node u, direct the cheapest edge incident to u, away from u, and save its index in
edge(u). As a result some edges remain undirected, some become unidirected, and some become bidirected.
In the subgraph induced by the (uni- and bi-) directed edges, each connected component consists of a

Input: Weighted tree T = (V, E, cost) with V = {1, 2, ..., n}
Output: Arrays parent(i) and edge(i), i = 1, ..., 2n − 1

1. Sort tree edges e1, ..., en−1 in ascending order of cost

2. Initialization:

next ← n

For each i = 1, 2, ..., 2n − 1 do

parent(i) ← NIL

edge(i) ← NIL

3. For each edge ei = (u, v), i = 1, ..., n − 1, do

While u = v and  parent(u) = NIL and parent(v) = NIL do

u ← parent(u)

v ← parent(v)

If parent(u) = parent(v) = NIL, then

next ← next + 1

parent(u) ← parent(v) ← next

edge(u) ← edge(v) ← i

If parent(u) = NIL and parent(v) = NIL, then

parent(u) ← parent(v)

edge(u) ← i

If parent(u) = NIL and parent(v) = NIL, then

parent(v) ← parent(u)

edge(v) ← i

4. Output the arrays parent(i) and edge(i)

FIGURE 43.7 The hierarchical greedy preprocessing algorithm (From Kahng, A. B., Măndoiu, I. I., and Zelikovsky,
A. Z., Proc. Asia and South Pacific Design Automation Conf., 2003, pp. 828–832.).
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Input: Tree edges e1, ..., en−1 in ascending order of cost, arrays parent(i) and edge(i), i = 1, ..., 2n − 1,

and nodes u, v ∈ V
Output: Maximum cost edge on the tree path between u and v

1. index ← −∞,

2. While u = v do

index ← max{index, edge(u), edge(v)}
u ← parent(u)

v ← parent(v)

3. Return eindex

FIGURE 43.8 Subroutine for computing the maximum cost edge on the tree path between nodes u and v (From
Kahng, A. B., Măndoiu, I. I., and Zelikovsky, A. Z., Proc. Asia and South Pacific Design Automation Conf., 2003,
pp. 828–832.).

bidirected edge with two (possibly empty) arborescences attached to its ends. HGP collapses each such
connected component K into a single node q , then sets parent(u) to q for every u ∈ K . Since each
connected component contains at least one bidirected edge, no more than n/2 collapsed component
nodes are created. The procedure is repeated on the tree induced by collapsed components until there is a
single node left. The total runtime of HGP is O(n log n) because of the edge sorting in step 1, remaining
HGP steps require O(n) time.

Clearly, edge costs decrease along any directed path of a connected component K . Therefore, if u and
v are two vertices of K , then the index of the maximum cost edge on the tree path between u and v is
max{edge(u), edge(v)}. If u andv are in different components K and K ′, we need to compute the maximum
between edge(u), edge(v), and the maximum index of the most expensive edge on the path between K
and K ′ in the tree T with collapsed connected components. The algorithm in Figure 43.8 is an iterative
implementation of this recursive definition. Since the hierarchy of collapsed connected components has a
depth of at most log n, we get Theorem 43.4.

Theorem 43.4

The algorithm in Figure 43.8 finds the maximum cost edge on the tree path connecting two given nodes in
O(log n) time after O(n log n) time for HGP.

43.5 Experimental Results

Comprehensive experimental evaluation indicates that the iterated 1-Steiner heuristic of Kahng and Robins
[17] significantly outperforms in solution quality the rectilinear Steiner tree heuristics proposed prior to
1992 [29]. Since then, the edge-based heuristic of Borah et al. [20], and the IRV heuristic [18] have been
reported to match or slightly exceed iterated 1-Steiner in solution quality. However, among these best-
performing heuristics only the edge-based heuristic can be applied to instances with tens of thousands of
terminals, since current implementations of iterated 1-Steiner and IRV require quadratic memory. Besides
Borah’s O(n2) implementation of the edge-based heuristic, we compared our O(n log2 n) BGA to the
recent O(n log2 n) Prim-based heuristic of Rohe [30]. For comparison purposes, we also include results
from our implementation of the Guibas–Stolfi O(n log n) rectilinear MST algorithm [31], and, whenever
possible, the optimum Steiner trees computed using the beta version of the GeoSteiner 4.0 algorithm in
Ref. [14].

All heuristics and MST algorithms were run on a dual 1.4 GHz Pentium III Xeon server with 2 GB
of memory running Red Hat Linux 7.1. The GeoSteiner code using the CPLEX 6.6 linear programming
solver was run on a 360 MHz SUN Ultra 60 workstation with 2 GB of memory under SunOS 5.7. The test
bed for our experiments consisted of two categories of instances: instances drawn uniformly at random
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TABLE 43.1 Percent Improvement over MST and CPU Time of the Compared Rectilinear Steiner Tree Algorithms

MST Prim-based Edge-based Batched greedy GeoSteiner 4.0

#Term. Len.(µm) CPU %Imp. CPU %Imp. CPU %Imp. CPU %Imp. CPU

Random instances (average results over 10 instances)

100 85169.9 0.0005 9.78 0.001 10.97 0.006 10.99 0.003 11.66 0.555
500 184209.7 0.0036 10.08 0.007 11.12 0.216 11.17 0.081 11.76 15.205

1000 258926.8 0.0079 10.04 0.014 10.96 0.939 10.99 0.230 11.61 117.916
5000 573178.8 0.0501 10.02 0.082 11.02 56.348 11.05 1.903 — —

10000 809343.5 0.1268 10.04 0.191 11.01 415.483 11.05 5.192 — —
50000 1808302.7 1.2330 10.05 1.320 11.01 16943.777 11.06 69.043 — —

100000 2555821.9 3.1150 10.08 3.143 11.04 61771.928 11.08 195.589 — —
500000 5710906.8 22.9130 10.07 20.570 — — 11.08 1706.765 — —

VLSI instances

337 247.7 0.0020 5.96 0.000 6.50 0.060 6.43 0.040 6.75 16.040
830 675.6 0.0055 3.10 0.010 3.19 0.320 3.20 0.080 3.26 9.480

1944 452.2 0.0165 6.86 0.040 7.77 3.640 7.85 0.400 8.15 1304.270
2437 578.8 0.0217 7.09 0.040 7.96 5.740 7.96 0.680 8.34 13425.310
2676 887.2 0.0235 8.07 0.040 8.99 5.340 8.93 0.770 9.38 430.800

12052 2652.7 0.1378 7.65 0.180 8.46 540.840 8.45 5.230 — —
22373 13962.5 0.3419 8.99 0.480 9.83 2263.760 9.85 13.060 — —
34728 9900.5 0.5455 8.16 0.690 9.01 5163.060 9.05 24.200 — —

Source: From Kahng, A. B., Măndoiu, I. I., and Zelikovsky, A. Z., Proc. Asia and South Pacific Design Automation Conf., 2003,
pp. 828–832.

from a 1, 000, 000 × 1, 000, 000 grid, ranging in size between 100 and 500,000 terminals, and a set of eight
test cases extracted from recent industrial designs, ranging in size between 330 and 34,000 terminals.

Table 43.1 gives the percent improvement over the rectilinear MST and running time (in CPU seconds)
for experiments on rectilinear instances. On random instances, the batched greedy heuristic matches or
slightly exceeds in average solution quality the edge-based heuristic of Ref. [20]. Both batched greedy and
the edge-based heuristic improve the rectilinear MST by an average of 11% in our experiments. This is
roughly 1% more than the average improvement achieved by the Prim-based heuristic of Ref. [30], and is
within 0.7% of the optimum average improvement for the sizes for which the optimum could be computed
using GeoSteiner. Results on VLSI instances show that the relative performance of the heuristics is the
same to that observed on random instances. However, the improvement over the rectilinear MST and the
gaps between heuristics are smaller in this case.

The results in Table 43.1 show that the BGA is highly scalable. Even though batched greedy is not as
fast as the MST or the Prim-based heuristic of Ref. [30], it can easily handle up to hundreds of thousands
of terminals in minutes of CPU time. Compared to Borah’s O(n2) implementation of the edge-based
heuristic, batched greedy is two or more orders of magnitude faster as soon as the number of terminals
gets into the tens of thousands.

The BGA can be easily adapted to other cost metrics. We have implemented and experimented with
an octilinear version of the BGA. The only required modifications are in the distance formula and in the
procedure for finding the optimum Steiner point of a triple. The octilinear distance between points (x , y)
and (x ′, y ′) is equal to max{|x − x ′|, |y − y ′|} + (

√
2 − 1) min{|x − x ′|, |y − y ′|}; this is always smaller

than the rectilinear distance, |x −x ′|+|y − y ′|, unless the two points are on the same horizontal or vertical
line, in which case the two distances are equal. The computation of the optimum Steiner point of a triple
in the octilinear metric can be done in constant time using the method described in Ref. [3].

Table 43.2 gives results obtained by the octilinear versions of the Guibas-Stolfi MST, O(n2) edge-based,
batched greedy, and GeoSteiner 4.0 [32] algorithms. Octilinear batched greedy is almost always better than
the octilinear edge-based heuristic, and very close to optimum for the instances for which the latter is
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TABLE 43.2 Percent Improvement over MST and CPU Time of the Compared Octilinear Steiner Tree Algorithms

MST Edge-based Batched greedy GeoSteiner 4.0

#Term. Len.(µm) CPU %Imp. CPU %Imp. CPU %Imp. CPU

Random instances (average results over 10 instances)

100 72375.1 0.0005 4.28 0.530 4.43 0.010 4.75 11.608
500 155611.7 0.0036 4.12 13.410 4.29 0.118 4.60 311.991

1000 219030.8 0.0079 4.12 54.641 4.25 0.296 4.59 1321.382
5000 484650.5 0.0506 4.17 1466.296 4.31 2.820 — —

10000 684409.5 0.1217 4.13 5946.815 4.28 8.362 — —
50000 1528687.2 1.1940 4.16 147210.395 4.30 116.419 — —

100000 2160629.4 3.1060 — — 4.32 476.307 — —
500000 4826839.1 23.0610 — — 4.31 6578.840 — —

VLSI instances

337 219.0 0.0020 2.92 5.690 2.99 0.050 3.13 72.960
830 630.4 0.0055 0.93 27.610 0.90 0.120 1.07 195.190

1944 407.2 0.0167 3.33 202.030 3.47 0.750 4.01 5279.870
2437 523.1 0.0218 3.67 345.330 3.77 0.820 4.29 7484.730
2676 780.2 0.0236 3.41 392.340 3.51 1.310 3.89 6080.050

12052 2372.3 0.1417 3.63 7517.680 3.72 10.800 — —
22373 12069.8 0.3447 3.65 25410.340 3.74 21.380 — —
34728 8724.9 0.5427 3.64 62971.090 3.74 25.160 — —

Source: From Kahng, A. B., Măndoiu, I. I., and Zelikovsky, A. Z., Proc. Asia and South Pacific Design Automation Conf., 2003,
pp. 828–832.

available. Furthermore, octilinear batched greedy remains highly scalable, with just a small factor increase
in runtime compared to the rectilinear version.

43.6 Conclusions

Noncritical nets with tens of thousands of terminals are becoming more common in modern designs
because of the increased emphasis on design for test. Even a single net of this size can render quadratic
Steiner tree algorithms impractical, given the stringent constraints on routing runtime (e.g., designers
expect full chip global and detailed routing to be completed overnight). In this chapter we have given
a high-quality O(n log2 n) heuristic that can practically handle these nets without compromising so-
lution quality. Since our heuristic is graph-based, it can be easily modified to handle other practical
considerations, such as routing obstacles, preferred directions, and via costs. A C++ implementation of
BGA is freely available as part of the MARCO Gigascale Silicon Research Center VLSI CAD Bookshelf at
http://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/RSMT/FastSteiner/.
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[18] Măndoiu, I. I., Vazirani, V. V., and Ganley, J. L., A new heuristic for rectilinear Steiner trees, IEEE
Trans. CAD, 19, 1129, 2000.

[19] Yildiz, M. C. and Madden, P. H., Preferred direction Steiner trees, Proc. Great Lakes Symp. on VLSI,
2001, p. 56.

[20] Borah, M., Owens, R. M., and Irwin, M. J., A fast and simple Steiner routing heuristic, Disc. Appl.
Math., 90, 51, 1999.
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44.1 Introduction

Meeting deadline constraints is of great importance in real-time systems. Sometimes, it is not feasible to
schedule all the tasks so that they can meet their deadlines, a situation that occurs quite often when the
system is saturated. In situations like this, it is often more desirable to execute some parts of every task, than
to give up completely the execution of some tasks. The Imprecise Computation Model was introduced
[1–3] to allow for the trade-off of the quality of computations in favor of meeting the deadline constraints.
In this model, a task is logically decomposed into two subtasks, mandatory and optional. The mandatory
subtask of each task is required to be completed by its deadline, while the optional subtask can be left
unfinished. If a task has an unfinished optional subtask, it incurs an error equal to the execution time of
its unfinished portion. The Imprecise Computation Model is extremely attractive in modeling iterative
algorithms, where a task can be terminated prematurely with some loss of accuracy.

In the Imprecise Computation Model, each task Ti is represented by the quadruple Ti = (ri , di , mi , oi ),
where ri , di , mi , and oi denote its release time, deadline, mandatory subtask’s execution time, and optional
subtask’s execution time, respectively. Let ei = mi + oi denote its total execution time. A schedule for a
given task system is feasible if each mandatory subtask is fully executed in the time interval between its
release time and its deadline; a task system is feasible if there is a feasible schedule for it. Feasibility of a task
system can be determined in at most O(n2 log2 n) time for a multiprocessor system [4] and O(n log n)
time for a single processor [5]. In this chapter we assume that all task systems are feasible and all task
parameters are rational numbers. Furthermore, we will be concerned with preemptive scheduling only.

Let S be a feasible schedule for a task system T S with n tasks. For each task Ti , let α(Ti , S) denote the
amount of time Ti is executed in S. The error of Ti , denoted by ε(Ti , S), is defined to be ei −α(Ti , S). The
total error of S, denoted by ε(S), is defined to be

∑n
i=1 ε(Ti , S). The maximum error of S, denoted by ϒ(S),

is defined to be maxn
i=1{ε(Ti , S)}. The minimum of total error of T S, denoted by ε(T S), is defined to be

min{ε(S) : S is a feasible schedule for T S}. The minimum of maximum error of T S, denoted by ϒ(T S),
is similarly defined. If the importance of the tasks is not identical, we can assign a weight wi to each task
Ti , and the resulting task system is called a weighted task system. For a weighted task system, the goal is to
minimize the total w − weighted error. Sometimes we are interested in dual-criteria scheduling problems.

44-1
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Scheduling problems with dual-criteria objective functions arise in some applications. In this case, we
assign an additional weight w ′

i to each task Ti . For dual-criteria scheduling problems, we are interested in
minimizing the total w − weighted error, subject to the constraint that the maximum w ′ − weighted error
is minimum, or minimizing the maximum w ′ − weighted error, subject to the constraint that the total
w − weighted error is minimum.

Blazewicz [6] was the first to study the problem of minimizing the total w − weighted error for a
special case of the weighted task system, where each task has its optional subtask only; that is, mi = 0
for each 1 ≤ i ≤ n. He showed that both parallel processor and uniform processor systems can be
reduced to minimum-cost-maximum-flow problems which can be transformed to linear programming
problems. Blazewicz and Finke [7] later gave faster algorithms for both problems; see also Leung [8]. Potts
and Van Wassenhove [9] studied the same problem for a single processor, assuming that all tasks have
identical release times and identical weights. They developed an O(n log n)-time algorithm for preemptive
scheduling and showed that the problem becomes NP-hard for nonpreemptive scheduling. Later on they
introduced a polynomial approximation scheme and two fully polynomial approximation schemes for the
nonpreemptive case [10].

For imprecise computation tasks, Shih et al. [4] gave an O(n2 log2 n)-time algorithm to minimize the
total error on a parallel processor system. Shih et al. [11] and Leung et al. [12] later presented a faster
algorithm for a single processor that runs in O(n log n) time. For the weighted case, Shih et al. [4] again
showed that the problem can be transformed to a minimum-cost-maximum-flow problem, thus giving
an O(n2 log3 n)-time algorithm for parallel processors. For a single processor, Shih et al. [11] gave a
faster algorithm that runs in O(n2 log n) time, which was subsequently improved by Leung et al. [12] to
O(n log n + kn) time, where k is the number of distinct w − weights.

Ho et al. [13] gave an algorithm to minimize the maximum w ′ − weighted error; see also the work
of Ho [14]. The algorithm runs in O(n3 log2 n) time for parallel processors and O(n2) time for a single
processor. They also studied dual-criteria scheduling problems. For the problem of minimizing the total
w −weighted error, subject to the constraint that the maximum w ′ −weighted error is minimum, Ho et al.
[13] gave an algorithm that runs in O(n3 log2 n) time for parallel processors and O(n2) time for a single
processor. For the problem of minimizing the maximum w ′ −weighted error, subject to the constraint that
the total w −weighted error is minimum, Ho and Leung [15] gave an algorithm that runs in O(kn3 log2 n)
time for parallel processors and O(kn2) time for a single processor, where k is the number of distinct
w − weights.

The Imprecise Computation Model has also been studied under the 0/1-constraint, where each optional
subtask is either fully executed or totally discarded. With the 0/1-constraint, two problems have been
studied: (1) minimize the total error and (2) minimize the number of imprecisely scheduled tasks (i.e.,
tasks whose optional subtasks have been discarded). The 0/1-constraint is motivated by some practical
applications. In real life, many tasks can be implemented by either a fast or a slow algorithm, with the
slow algorithm producing better quality results than the fast one. Due to deadline constraints, it may not
be possible to meet the deadline of every task if each task were to execute the slow version. Thus, the
problem of scheduling tasks with primary version (slow algorithm) and alternate version (fast algorithm)
can be reduced to one of scheduling with 0/1-constraint. The execution time of the fast algorithm is the
mandatory execution time, while the execution time of the slow algorithm is the total execution time.

Lawler [16] has given an algorithm to solve the problem 1 | pmtn, r j | ∑
w j U j ; that is, one processor

preemptive scheduling to minimize the weighted number of tardy tasks where tasks have release dates. His
algorithm runs in O(nk2W2) time, where n is the number of tasks, k is the number of release dates, and
W is the total weights of the tasks. In the following we will show that Lawler’s algorithm can be used to
solve the above two 0/1-constraint scheduling problems.

Consider the problem of minimizing the total error. Let T S be a set of n imprecise computation tasks
and let σ = ∑n

i=1 oi . For each task Ti , we create two tasks, an M-task with execution time mi and weight
σ + 1 and an O-task with execution time oi and weight oi . Both tasks have release time ri and deadline
di . It is clear that a schedule for the M-tasks and O-tasks that minimizes the weighted number of tardy
tasks is also a feasible schedule that minimizes the total error for T S. Using Lawler’s algorithm, such a

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C044 March 20, 2007 16:39

Approximation Algorithms 44-3

schedule can be found in O(n5σ 2) time. Hence it can be solved in pseudopolynomial time. We note that
the problem of minimizing the total error is NP-hard in the ordinary sense [11].

Now consider the problem of minimizing the number of imprecisely scheduled tasks. Let T S be a set of
n imprecise computation tasks. For each task Ti , we create two tasks—an M-task with execution time mi

and weight n + 1 and an O-task with execution time oi and weight 1. Both tasks have release time ri and
deadline di . It is clear that a schedule for the M-tasks and O-tasks that minimizes the weighted number
of tardy tasks is also a feasible schedule that minimizes the number of imprecisely scheduled tasks for T S.
Using Lawler’s algorithm, such a schedule can be found in O(n7) time.

Since the running times of the above algorithms are unacceptably high, there is a need for fast approxi-
mation algorithms. Ho et al. [17] gave two approximation algorithms, both of which run in O(n2) time.
The first one, the Largest-Optional-Execution-Time-First algorithm, is used to minimize the total error. It
has been shown [17] that the total error produced by the algorithm is at most three times that of the op-
timal solution and the bound is tight. The second algorithm, the Smallest-Optional-Execution-Time-First
algorithm, is used to minimize the number of imprecisely scheduled tasks. It was shown [17] that the
number of imprecisely scheduled tasks produced by the algorithm is at most two times that of an optimal
solution and the bound is tight.

In this chapter we will present these two approximation algorithms. We begin by presenting an algorithm
to test whether or not a set of tasks is feasible (Section 44.2). In Section 44.3, we will present the Largest-
Optional-Execution-Time-First algorithm and prove that it has a worst-case bound of 3. In Section 44.4,
we will present the Smallest-Optional-Execution-Time-First algorithm and prove that it has a worst-case
bound of 2. In Section 44.5, we will prove two assertions that were used in the proofs of the previous two
sections. Our concluding remarks appear in the last section.

We now define notations that will be used throughout this chapter. Let T S be a set of n imprecise
computation tasks. We use PO(TS) to denote the set of tasks with positive optional execution time. A task
Ti is eligible in a given interval [t ′, t”] if ri ≤ t ′ ≤ t” ≤ di . We use ε̂(TS) to denote the minimum total
error of T S under the 0/1-constraint; note that ε(TS) denotes the minimum total error of T S without
any constraint. If H is a scheduling algorithm, we let (1) E H (TS) denote the set of precisely scheduled
tasks produced by H ; that is, E H (TS) = {Ti : oi > 0 and Ti is precisely scheduled by H} and (2) Ẽ H (TS)
denote the set of imprecisely scheduled tasks produced by H ; that is, Ẽ H (TS) = PO(TS) − E H (TS).

44.2 Feasibility Test

In this section, we will give a fast algorithm to test if a set of independent tasks is feasible on one processor.
Each task Ti has an execution time ei , release time ri , and deadline di . The Boolean Function Feasible
will decide if the set of tasks is feasible on one processor. Let 0 = minn

i=1{ri } = u0 < u1 < · · · < u p =
maxn

i=1{di } be the p +1 distinct integers obtained from the multiset {r1, . . . , rn, d1, . . . , dn}. These p +1
integers divide the time frame into p segments: [u0, u1], [u1, u2], · · ·, [u p−1, u p]. The algorithm assumes
that the tasks are indexed in descending order of release times and schedules the tasks in that order. When
a task is scheduled, it is assigned from the latest segment in which it can be scheduled to the earliest one.
Below is a formal description of the algorithm.

Boolean Function Feasible (TS)
Input: A task system T S = ({ri }, {di }, {ei }).
Output: “True” if T S is feasible and “False” otherwise.

Method:

(1) For i = 1, . . . , p do: li ← ui − ui−1.
(2) For i = 1, . . . , n do:

Find a satisfying ua = di and b satisfying ub = ri .
For j = a , a − 1, . . . , b + 1 do:
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δ ← min{l j , ei }.
l j ← l j − δ, ei ← ei − δ.
If ei = 0 then “break”

If ei > 0 then return “False”

(3) Return “True”

Let us examine the time complexity of the algorithm. The time it takes to sort the tasks in descending order
of their release times as well as obtaining the set {u0, u1, . . . , u p} is O(n log n). Step 1 of the algorithm takes
linear time and a straightforward implementation of step 2 takes O(n2) time. Thus, it appears that the run-
ning time of the algorithm is O(n2). However, observe that whenever a segment is scheduled, either all the
units of a task are scheduled or the segment is saturated, or both. Hence, at most O(n) segments have posi-
tive values. Thus, if we can avoid scanning those segments that have zero values, then step 2 takes only linear
time. As it turns out, this can be done by the special UNION-FIND algorithm due to Gabow and Tarjan [18].

As we will see later, both of our approximation algorithms make n calls to Function Feasible, with
the same set of tasks but different values of execution times. Since each call takes linear time, the overall
running time of our approximation algorithm is O(n2).

44.3 Total Error

In this section we will give a fast approximation algorithm to minimize total error. The algorithm works as
follows. Let TS be a set of n tasks and let n′ =| PO(TS) |. First, the tasks are sorted in descending order of
their optional execution times. Then, the set of precisely scheduled tasks is initialized to be the empty set
and the following process is iterated n′ times. At the i th iteration, we set the execution times of Ti and all
the precisely scheduled tasks to be its mandatory plus optional execution times, and the execution times
of all other tasks to be its mandatory execution times only. We then test if this set of tasks is feasible. If
it is feasible, we include Ti into the set of precisely scheduled tasks; otherwise, Ti will not be included. A
formal description of the algorithm is given below.

Algorithm Largest-Optional-Processing-Time-First
Input: A feasible task system TS = ({ri }, {di }, {mi }, {oi }) consisting of n tasks with n′ = | PO(TS) |.
Output: A feasible schedule SL satisfying the 0/1-constraint.

Method:

(1) Sort the tasks in descending order of their optional execution times; that is, oi ≥ oi+1 for 1 ≤ i < n.
E L (TS) ← ∅.

(2) For i = 1, 2, . . . , n′ do:

Create a set of n tasks TS′ with release times, deadlines, and execution times as follows: For
each task Tj in E L (TS) ∪ {Ti }, create a task T ′

j with the same release time and deadline as Tj ,
and execution time e ′

j = m j + o j . For each remaining task Tk , create a task T ′
k with the same

release time and deadline as Tk , and execution time e ′
k = mk .

If Feasible(TS′) = “True,” then E L (T S) ← E L (T S) ∪ {Ti }.
It is clear that SL is a feasible schedule satisfying the 0/1-constraint. The time complexity of the algorithm

is O(n2). It is interesting to observe that the worst-case performance of the algorithm is unbounded if
the tasks were sorted in ascending order, rather than descending order, of their optional execution times.
Consider the two tasks T1 and T2 with r1 = 0, d1 = x , m1 = 0, o1 = x , r2 = 0, d2 = 1, m2 = 0,
and o2 = 1. With the new ordering, T2 will be scheduled precisely. However, the optimal solution will
schedule T1 precisely. Thus, the ratio becomes x which can be made arbitrarily large. However, if the tasks
were sorted in descending order of their optional execution times, the algorithm has a worst-case bound
at most 3, as the following theorem shows.
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Theorem 44.1

For any task system TS, we have εL (TS) ≤ 3ε̂(TS), where εL (TS) is the total error produced by Algorithm
Largest-Optional-Execution-Time-First. Moreover, the bound can be achieved asymptotically.

We first give a task system showing that the bound can be achieved asymptotically. Consider four tasks
T1, T2, T3, and T4 with r1 = x − δ, d1 = 2x − δ, r2 = 0, d2 = x , r3 = 2x − 2δ, d3 = 3x − 2δ, r4 = x ,
d4 = 2x − 2δ, m1 = m2 = m3 = m4 = 0, o1 = o2 = o3 = x , and o4 = x − 2δ. It is clear that Algorithm
Largest-Optional-Execution-Time-First will schedule T1 precisely while the optimal solution will schedule
T2, T3, and T4 precisely. Thus, the ratio approaches 3 as δ approaches 0.

We will prove Theorem 44.1 in the remainder of this section. First, we will state an assertion that will
be proved in Section 44.5. Call a task improper if it is precisely scheduled by Algorithm Largest-Optional-
Execution-Time-First, but not by the optimal algorithm.

Assertion 44.1

Let Ts be an improper task in the task system TS and let T̃S be obtained from TS by setting the optional
execution time of Ts to be 0. Then we have εL (T̃S) > εL (TS) − 3os .

With Assertion 44.1, we will prove the bound by contradiction. Let TS be the smallest task system, in
terms of n′, that violates the bound. We will characterize the nature of TS in the next two lemmas.

Lemma 44.1

E L (TS) ∩ E O (TS) = ∅ and E L (TS) ∪ E O (TS) = PO(TS).

Proof
If E L (TS) ∩ E O (TS) �= ∅, let Ti ∈ E L (TS) ∩ E O (TS). Consider the task system T̃S obtained from TS by
setting the mandatory and optional execution times of Ti to be mi + oi and 0, respectively. It is clear that
| PO(T̃S) |<| PO(TS) |, εL (T̃S) = εL (TS) and ε̂(T̃S) = ε̂(TS). Thus, T̃S is a smaller task system violating
the bound, contradicting the assumption that TS is the smallest.

If E L (TS) ∪ E O (TS) �= PO(TS), let Ti be a task such that oi > 0 and Ti /∈ E L (TS) ∪ E O (TS).
Consider the task system T̃S obtained from TS by setting the optional execution time of Ti to be 0. Clearly,
| PO(T̃S) |<| PO(TS) |, εL (T̃S) = εL (TS) − oi and ε̂(T̃S) = ε̂(TS) − oi . Thus, εL (T̃S) = εL (TS) − oi >

3ε̂(TS) − oi = 3ε̂(T̃S) + 2oi > 3ε̂(T̃S), and hence T̃S is a smaller task system violating the bound.

Lemma 44.2

E L (TS) = ∅.

Proof
If E L (TS) �= ∅, let E L (TS) = {Ti1 , . . . , Tim}, where m ≥ 1. By Lemma 44.1, each task in E L (TS) is an
improper task. Consider the task system T̃S obtained from TS by setting the optional execution time of
Tim to be 0. Clearly, | PO(T̃S) |<| PO(TS) |. By Assertion 44.1, we have

εL (T̃S) > εL (TS) − 3oim (44.1)

Since εL (TS) > 3ε̂(TS), we have

εL (T̃S) > 3(ε̂(TS) − oim ) (44.2)

Since Tim /∈ E O (TS), we have

ε̂(T̃S) = ε̂(TS) − oim (44.3)

From Eq. (44.2) and Eq. (44.3), we have εL (T̃S) > 3ε̂(T̃S), contradicting the assumption that TS is the
smallest task system violating the bound.
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We can now prove Theorem 44.1. Lemma 44.2 implies that Algorithm Largest-Optional-Execution-
Time-First cannot schedule any tasks precisely. However, Lemma 44.1 implies that an optimal algorithm
schedules every task precisely. These two facts lead to impossibility.

44.4 Number of Imprecisely Scheduled Tasks

In this section we will give a fast approximation algorithm for minimizing the number of imprecisely
scheduled tasks. The algorithm, to be called Algorithm Smallest-Optional-Execution-Time-First, works
exactly like Algorithm Largest-Optional-Execution-Time-First, except that tasks are sorted in ascending
order of their optional execution times. A formal description of the algorithm is given below.

Algorithm Smallest-Optional-Processing-Time-First
Input: A feasible task system TS = ({ri }, {di }, {mi }, {oi }) consisting of n tasks with n′ =| PO(TS) |.
Output: A feasible schedule SS satisfying the 0/1-constraint.

Method:

(1) Index the tasks in PO(TS) from 1 to n′ such that oi ≤ oi+1 for 1 ≤ i < n′. Index the remaining
tasks from n′ + 1 to n. E S (TS) ← ∅.

(2) For i = 1, 2, . . . , n′ do:

Create a set of n tasks TS′ with release times, deadlines, and execution times as follows: For
each task Tj in E S (TS) ∪ {Ti }, create a task T ′

j with the same release time and deadline as Tj ,
and execution time e ′

j = m j + o j . For every other task Tk , create a task T ′
k with the same

release time and deadline as Tk , and execution time e ′
k = mk .

If Feasible(TS′) = “True,” then E S (TS) ← E S (TS) ∪ {Ti }.
It is clear that SS is a feasible schedule satisfying the 0/1-constraint. The time complexity of Algorithm

Smallest-Optional-Execution-Time-First is O(n2). In the last section we showed that if Algorithm Smallest-
Optional-Execution-Time-First were used to minimize total error, then it would give an unbounded
performance. As it turns out, if Algorithm Largest-Optional-Execution-Time-First were used to minimize
the number of imprecisely scheduled tasks, then it would also give an unbounded performance. Consider
the task system consisting of n + 1 tasks: For 1 ≤ i ≤ n, ri = (i − 1)x , di = i x , mi = 0, and oi = x ;
rn+1 = 0, dn+1 = nx , mn+1 = 0, on+1 = nx , where x > 0. It is clear that Algorithm Largest-Optional-
Execution-Time-First schedules Tn+1 precisely, while the optimal algorithm schedules T1, T2, . . . , Tn

precisely. Thus, the ratio can be made arbitrarily large by taking n large enough. However, Algorithm
Smallest-Optional-Execution-Time-First gives a much better performance, as the next theorem shows.

Theorem 44.2

For any task system TS, we have | Ẽ S (TS) ≤ 2 | Ẽ O (TS) |. Moreover, the bound is tight.

We first give a task system showing that the bound is tight. Consider the three tasks T1, T2, and T3

with r1 = x − δ, d1 = 2x − δ, r2 = 0, d2 = x , r3 = 2(x − δ), d3 = 3x − 2δ, m1 = m2 = m3 = 0,
o1 = o2 = o3 = x , where x > δ. Algorithm Smallest-Optional-Execution-Time-First schedules T1

precisely, while the optimal algorithm schedules T2 and T3 precisely. Thus, the ratio is 2. In the following
we will prove the upper bound. First, we will state an assertion that will be proved in the next section. Call
a task improper if it is precisely scheduled by Algorithm Smallest-Optional-Execution-Time-First, but not
by the optimal algorithm.

Assertion 44.2

Let Ts be an improper task in the task system TS and let T̃S be obtained from TS by setting the optional
execution time of Ts to be 0. Then we have | Ẽ S (T̃S) |≥| Ẽ S (TS) | −2.
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With Assertion 44.2, we will prove the upper bound by contradiction. Let TS be the smallest task system,
in terms of n′, that violates the bound. The next two lemmas, which are counterparts of Lemmas 44.1 and
44.2, characterize the nature of TS.

Lemma 44.3

E S (TS) ∩ E O (TS) = ∅ and E S (TS) ∪ E O (TS) = PO(TS).

Proof
If E S (TS) ∩ E O (TS) �= ∅, let Ti ∈ E S (TS) ∩ E O (TS). Consider the task system T̃S obtained from TS by
setting the mandatory and optional execution times of Ti to be mi + oi and 0, respectively. It is clear that
| PO(T̃S) |<| PO(TS) |, Ẽ S (T̃S) = Ẽ S (TS) and Ẽ O (T̃S) = Ẽ O (TS). Thus, T̃S is a smaller task system
violating the bound, contradicting the assumption that TS is the smallest.

If E S (TS) ∪ E O (TS) �= PO(TS), let Ti be a task such that oi > 0 and Ti /∈ E S (TS) ∪ E O (TS).
Consider the task system T̃S obtained from TS by setting the optional execution time of Ti to be 0.
Clearly, | PO(T̃S) |<| PO(TS) |, | Ẽ S (T̃S) |=| Ẽ S (TS) | −1 and | Ẽ O (T̃S) |=| Ẽ O (TS) | −1. Thus,
| Ẽ S (T̃S) |=| Ẽ S (TS) | −1 > 2 | Ẽ O (TS) | −1 = 2 | Ẽ O (T̃S) | +1 > 2 | Ẽ O (T̃S) |, and hence T̃S is a
smaller task system violating the bound.

Lemma 44.4

E S (TS) = ∅.

Proof
If E S (TS) �= ∅, let E S (TS) = {Ti1 , . . . , Tim}, where m ≥ 1. By Lemma 44.3, each task in E S (TS) is an
inappropriate task in TS. Consider the task system T̃S obtained from TS by setting the optional execution
time of Tim to be 0. Clearly, | PO(T̃S) |<| PO(TS) |. By Assertion 44.2, we have

| Ẽ S (T̃S) |≥| Ẽ S (TS) | −2 (44.4)

Since | Ẽ S (TS) |> 2 | Ẽ O (TS) |, we have

| Ẽ S (T̃S) |> 2 | Ẽ O (TS) | −2 (44.5)

Since | Ẽ O (T̃S) |=| Ẽ O (TS) | −1, we have

| Ẽ S (T̃S) |> 2 | Ẽ O (T̃S) | (44.6)

contradicting our assumption that TS is the smallest task system violating the bound.

Lemma 44.4 implies that Algorithm Smallest-Optional-Execution-Time-First cannot schedule any tasks
in PO(TS) precisely, while Lemma 44.3 implies that the optimal algorithm schedules every task in PO(TS)
precisely. These two facts lead to an impossibility, which proves Theorem 44.2.

While Theorem 44.2 gives a relationship between | Ẽ S (TS) | and | Ẽ O (TS) |, it does not give a
meaningful relationship between | E S (TS) | and | E O (TS) |. The next theorem shows that they are also
related by the same multiplicative factor.

Theorem 44.3

For any task system TS, | E O (TS) |≤ 2 | E S (TS) |. Moreover, the bound is tight.

Proof
The task system TS given in the proof of Theorem 44.2 also shows that | E O (TS) |= 2 | E S (TS) |. The
upper bound is proved by contradiction. Let TS be the smallest task system, in terms of | PO(TS) |, that
violates the bound. It is easy to verify that Lemma 44.3 also holds for TS. Thus, E S (TS) = Ẽ O (TS) and
E O (TS) = Ẽ S (TS). Hence, | E O (TS) |=| Ẽ S (TS) |≤ 2 | Ẽ O (TS) |= 2 | E S (TS) |, contradicting our
assumption that TS violates the bound.
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44.5 Proofs of Assertions

In this section we will prove Assertions 44.1 (in Section 44.3) and 44.2 (in Section 44.4), thereby completing
all the proofs in this chapter. For convenience, we will state the assertions in the following.

Assertion 44.1

Let Ts be an improper task (with respect to Algorithm Largest-Optional-Execution-Time-First) in the task
system TS and let T̃S be obtained from TS by setting the optional execution time of Ts to be 0. Then we have
εL (T̃S) > εL (TS) − 3os .

Assertion 44.2

Let Ts be an improper task (with respect to Algorithm Smallest-Optional-Execution-Time-First) in the task
system TS and let T̃S be obtained from TS by setting the optional execution time of Ts to be 0. Then we have
| Ẽ S (T̃S) |≥| Ẽ S (TS) | −2.

Let �L (Ts ) be the set of all subsets of tasks in PO(TS) − E L (TS) such that it is feasible to schedule all
the tasks in the subset precisely, along with all the tasks in E L (TS) − {Ts }; that is, �L (Ts ) = {τL : τL ⊆
PO(TS) − E L (TS) and there is a feasible schedule for TS such that all the tasks in τL ∪ (E L (TS) − {Ts })
are precisely scheduled }. Similarly, let �S (Ts ) be the set of all subsets of tasks in PO(TS) − E S (TS) such
that it is feasible to schedule all the tasks in the subset precisely, along with all the tasks in E S (TS) − {Ts };
that is, �S (Ts ) = {τS : τS ⊆ PO(TS) − E S (TS) and there is a feasible schedule for TS such that all the
tasks in τS ∪ (E S (TS) − {Ts }) are precisely scheduled }. Then it is easy to see that Assertions 44.1 and 44.2
follow directly from the following assertions, 44.3 and 44.4, respectively.

Assertion 44.3

For any τL ∈ �L (Ts ), we have
∑

Ti ∈τL
oi < 3os .

Assertion 44.4

For any τS ∈ �S (Ts ), we have | τS |≤ 2.

In the following we will prove Assertions 44.3 and 44.4. First, we need to prove two properties about
�L (Ts ) and �S (Ts ). Since these properties are common to both, we will use H to denote both L and S.
The two properties are:

Property 44.1

For any τH ∈ �H (Ts ), we have
∑

Ti ∈τH
oi ≤ �H (Ts ) + os , where �H (Ts ) is the total amount of processor

times that could possibly be assigned to the optional execution times of the tasks in τH without the 0/1-
constraint, under the condition that all the tasks in E H (TS) are precisely scheduled.

Property 44.2

�H (Ts ) < o p + oq , where Tp and Tq are the two tasks in τH with the earliest release time and the latest
deadlines, respectively.

To facilitate our proof, we will assume that an optimal schedule can be divided from time min{ri } to
time max{di } into equal-length segments such that there is no task reassignment within each segment; we
use µ to denote the length of each segment. Such an assumption can be made because the task parameters
are rational numbers and a feasible schedule can be constructed with only a finite number of preemptions.
The following lemma, whose proof we will omit, is instrumental in proving Property 44.1.
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Lemma 44.5

Let T̃S be obtained from TS by reducing the mandatory execution time of Ti by an amount x, where 0 ≤ x ≤ mi .
Then we have ε(TS) ≤ ε(T̃S) + x.

Using the above lemma, we can show Property 44.1.

Lemma 44.6

For any τH ∈ �H (Ts ), we have
∑

Ti ∈τH
oi ≤ �H (Ts ) + os , where �H (Ts ) is the total amount of processor

times that could possibly be assigned to the optional subtasks of the tasks in τH without the 0/1-constraint,
under the condition that all the tasks in E H (TS) are precisely scheduled.

Proof
Consider the two task systems T̃S and T̂S obtained from TS as follows: In T̃S, the mandatory execution
time of Ti is set to be mi + oi if Ti ∈ E H (TS); otherwise, it is set to be mi . The optional execution time
of Ti is set to be oi if Ti ∈ τH ; otherwise, it is set to be 0. The task system T̂S is the same as T̃S, except
that the mandatory execution time of Ts is set to be ms . Clearly, T̂S is obtained from T̃S by reducing the
mandatory execution time of Ts by os . Thus, by Lemma 44.5, we have

ε(T̃S) ≤ ε(T̂S) + os (44.7)

Since it is feasible to schedule all the tasks in τH ∪ (E H (TS) − {Ts }) precisely, we have ε(T̂S) = 0.
Furthermore, it is easy to see that ε(T̃S) = ∑

Ti ∈τH
oi − �H (Ts ). Substituting into 44.7, we obtain the

desired result immediately.

We now proceed to show Property 44.2. The next lemma is instrumental in proving this result.

Lemma 44.7

None of the tasks in τH can be precisely scheduled in any feasible schedule in which every task in E H (TS) is
precisely scheduled.

Proof
If there were a task Ti in τH that can be precisely scheduled along with all the tasks in E H (TS), then Ti

would be included in E H (TS), contradicting the fact that it is in τH .

Consider the task system TS∗ obtained from TS as follows: TS∗ consists of all the tasks in TS plus an
extra task Tn+1 not in TS. In TS∗, the mandatory execution time of Ti , 1 ≤ i ≤ n, is set to be mi + oi if
Ti ∈ E H (TS) − {Ts }; otherwise, it is set to be mi . The optional execution time of Ti , 1 ≤ i ≤ n, is set to
be oi if Ti ∈ τH ; otherwise, it is set to be 0. Finally, the release time, deadline, mandatory, and optional
execution times of Tn+1 are set to be rs , ds , os , and 0, respectively.

Let S∗ be the schedule such that ε(S∗) = ε(TS∗). Divide S∗ into equal-length segments and index them
as 1, 2, . . . , �D/µ, where D = maxTi ∈TS∗ {di } − minTi ∈TS∗ {ri } and µ is the length of the segments of
S∗. Now remove the optional subtasks of all the tasks in τH from S∗. We will call the newly created idle
segments the τH − idle segments. Since Tn+1 acts like the optional subtask of Ts , �H (Ts ) is equal to the
total length of all the τH − idle segments in S∗. Thus, our problem is reduced to finding an upper bound
for the total length of all the τH − idle segments.

Let Tp be the task in τH such that r p = minTi ∈τH {ri } and Tq be the task in τH such that dq =
maxTi ∈τH {di }. By left or right-shifting tasks in S∗ if necessary, we may assume that the execution of Tn+1

in the interval [r p , dq ] is not separated by any τH − idle segment. It can be shown that all the τH − idle
segments can be directly or indirectly used to schedule the optional subtask of Tp or Tq . Since neither Tp

nor Tq can be precisely scheduled along with the tasks in E H (TS), the total length of all the τH − idle
segments must be less than o p + oq .

The following two lemmas, whose proofs we will omit, bound the total length of all the τH − idle
segments; see Ref. [17] for proofs.
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Lemma 44.8

If Tn+1 is executed in [r p , dq ] in S∗, then the total length of all the τH − idle segments is less than o p + oq .

Lemma 44.9

If Tn+1 is not executed in [r p , dq ] in S∗, then the total length of all the τH − idle segments is less than o p or oq .

Lemmas 44.8 and 44.9 immediately imply Property 44.2.

Lemma 44.10

�H (Ts ) < o p + oq , where Tp and Tq are the two tasks in τH with the earliest release time and the latest
deadline, respectively.

We are now in a position to prove Assertions 44.3 and 44.4. First, we need to prove the next lemma.

Lemma 44.11

For each task Ti ∈ τL , we have oi ≤ os . For each task Tj ∈ τS , we have o j ≥ os .

Proof
We prove the lemma by contradiction. Suppose that Ti is in τL and oi > os . Since Algorithm Largest-
Optional-Execution-Time-First considers the tasks in descending order of their optional execution times,
Ti must be considered before Ts . Since Ti is in τL , it is feasible to schedule all the tasks in τL ∪
(E L (TS) − {Ts }) precisely. But this means that Ti would be in E L (TS), contradicting the fact that it
is in τL . The second part of the lemma can be proved in the same manner by observing that Algorithm
Smallest-Optional-Execution-Time-First considers the tasks in ascending order of their optional execution
times.

Lemma 44.12

For any τL ∈ �L (Ts ), we have
∑

Ti ∈τL
oi < 3os .

Proof
By Lemmas 44.6 and 44.10, for any τL ∈ �L (Ts ),

∑
Ti ∈τL

oi < o p + oq + os , where Tp and Tq are
the two tasks in τL with the earliest release time and the latest deadline, respectively. The lemma follows
immediately from Lemma 44.11.

Lemma 44.13

For any τS ∈ �S (Ts ), we have | τS |≤ 2.

Proof
By Lemmas 44.6 and 44.10, for any τS ∈ �S (Ts ),

∑
Ti ∈τS

oi < o p + oq + os , where Tp and Tq are the two
tasks in τS with the earliest release time and the latest deadline, respectively. By Lemma 44.11, the optional
execution time of every task in τS is at least os . Thus, | τS |≤ 2.

44.6 Conclusions

In this chapter we have considered the problem of preemptively scheduling a set of imprecise computation
tasks on a single processor, with the added constraint that each optional subtask is either fully executed
or not executed at all. We gave an O(n2)-time approximation algorithm, Algorithm Largest-Optional-
Execution-Time-First, for minimizing the total error, and showed that it has a tight bound of 3. We
also gave an O(n2)-time approximation algorithm, Algorithm Smallest-Optional-Execution-Time-First,
for minimizing the number of imprecisely scheduled tasks, and showed that it has a tight bound of 2.
Interestingly, the number of precisely scheduled tasks in an optimal schedule is also bounded above by two
times the number of precisely scheduled tasks in Algorithm Smallest-Optional-Execution-Time-First.
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For future research, it will be interesting to see if there are any fast approximation algorithms for the two
problems with better performance bounds than those of Algorithm Largest-Optional-Execution-Time-
First and Algorithm Smallest-Optional-Execution-Time-First.
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45.1 Introduction

Nowadays, parallel computing plays a key role in high-performance computing and it is gradually replacing
traditional supercomputers. The computing units (processors) in parallel computing systems are linked
by different types of networks [1]. The allocation of the computing resources to tasks is a crucial issue
in these complex systems. Therefore there is a need to design efficient resource allocation algorithms.
Unfortunately, many traditional scheduling algorithms are not able to fulfill this requirement, due to the
large amount of data that needs to be transmitted through the network, as well as synchronization and
other scheduling overhead required by the processors allotted to the same task. Thus, many parallel task
(PT) models have been proposed to address this problem. One of these models is the malleable task (MT)
model (sometimes also called moldable task) [2]. This is a promising model that has been used in real
application [3]. In the MT model, the processing time of a task depends on the number of processors
allotted to it. The communication overhead and synchronization is implicitly included in the processing
time. The idea behind the MTs is to provide an alternative strategy to model the communication delays. An
MT includes elementary operations (e.g., a numerical routine or a nested loop) with sufficient parallelism
to be amenable for multiprocessor processing. Thus, a sequential task can be regarded as a special case of
the MT model. The MT model has been used in realistic applications [3,4].

In general, there are three types of MT models based on the actual behavior of the PTs. In the first model
(MT1), the processing time of an MT may be an arbitrary function of the number of processors allotted.
In the second model (MT2), the processing time of an MT decreases as the number of processors allotted
to it increases, while the work function (the product of the processing time and the number of processors)
increases as the number of processors allotted increases. These assumptions are based on the well-known
Brent’s lemma [5], which states that the parallel execution of a task achieves some speedup if it is large
enough, but does not lead to superlinear speedups. In the third model (MT3), the processing time has
the same behavior as in MT2, while the speedup function (the reciprocal of the processing time function)
in terms of the number of processors is concave. This is based on the real behavior of a class of massive
parallel computers [6–8].

We shall study two different categories of MTs. In the first category, the MTs are independent MTs (called
IMTs), that is, there is no dependence between the tasks. In the second category, there are precedence
constraints between the MTs (called PCMTs). These dependencies are determined in advance from the
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FIGURE 45.1 A precedence graph and a corresponding feasible schedule.

tasks’ data flow. From the precedence constraints we construct a precedence graph, which is simply a directed
acyclic graph. The vertices represent the set of MTs and the directed edges the set of precedence constraints
among MTs (see Figure 45.1).

An instance of the MT scheduling problem consists of n independent or precedent-constrained MTs
(MT1, MT2, or MT3) and m homogeneous (identical) processors. The problem is to find a feasible sched-
ule with minimum makespan (or Cmax, which is the maximum completion time). In a feasible schedule,
each task is executed simultaneously on all processors allotted to it until its completion time without inter-
ruption, and each processor executes at most one task at any time. For PCMTs, the precedence constraints
must be satisfied, that is, a task cannot start until all its predecessors have been processed to completion.

Since classical PT scheduling problems are, in general, special cases of MT scheduling, some of their
complexity results apply directly to MT scheduling. Thus, MT scheduling isNP-hard [9]. IMT scheduling
is known to be strongly NP-hard even for five processors, but IMT scheduling for three processors is
solvable in pseudopolynomial time [10]. The complexity of IMT scheduling on four processors is open. In
contrast, PCMT scheduling isNP-hard in the strong sense [10], and a lower bound for the approximation
ratio is 4/3 [11]. Hence, there is interest in finding polynomial-time approximation algorithms for these
problems.

Most existing approximation algorithms for MT scheduling are based on the two-phase approach
initially proposed by Turek et al. [2]. In the first phase, an allotment problem is solved (approximately)
such that each task is allotted a number of processors. Then in the second phase, the resulting non-MT
scheduling is to be solved (approximately). It is clear that if we are able to approximate allotment within a
ratio ρ and approximate the non-MT scheduling within a ratio µ, then we will have an r -approximation
algorithm, where r = ρµ. On the basis of this strategy, the following two methodologies for IMT and
PCMT scheduling have been used. The first one focuses on the non-MT scheduling phase (the second
phase) and the other on the first phase (allotment problem). Let us discuss them further.

• Since we consider the makespan as the optimization criterion, the second phase for IMT scheduling is
essentially the two-dimensional strip packing problem [12–15], which is to pack (without rotation)
a set of rectangles with width at most 1 into a strip with width 1 and least possible height. In this
approach, the allotment problem is usually formulated as a knapsack problem or one of its variants.
Approximation algorithms in this category can be found in Refs. [16–21].

• For PCMT scheduling, the allotment problem is solved by dynamic programming for tree prece-
dence constraints [22,23] or by approximation algorithms for the discrete time–cost trade-off
problem [23–27]. The non-MT scheduling in the second phase is then solved by a variant of the
list scheduling algorithm [28].

We shall review four approximation algorithms for MT scheduling in this chapter. In Section 45.2 we
discuss a 3/2-approximation algorithm for IMT scheduling (MT2) [22], and then an AFPTAS for IMT
scheduling (MT1) [21] in Section 45.3. A (3+√

5)/2-approximation algorithm for PCMT scheduling with
tree precedence constraints (MT2) [23] is introduced in Section 45.4. Finally, we shall discuss in Section 45.5
a (3 + √

5)-approximation algorithm for PCMT scheduling with general precedence constraints (MT2)
[23], and improved results for the MT2 and MT3 models [25–27].
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45.1.1 Notations

An instance of the IMT and PCMT scheduling contains a setT of n tasks and a set of m identical processors.
Each task J j can be executed on any integer number l ∈ {1, . . . , m} of processors. It requires p j (l) units of
time when being processed by l processors. In addition, a PCMT instance includes a directed precedence
graph G = (V, E ), where V = {1, . . . , n} represents PCMTs and E ⊆ V × V precedence constraints
among PCMTs. If there is an edge (i, j ) ∈ E , then task J j cannot be processed before the completion of
task J i . Task J i is called a predecessor of J j , while J j a successor of J i . We denote by �−( j ) and �+( j )
the sets of the predecessors and successors of J j , respectively. We also assume that p j (0) = ∞, as no
task J j can be executed if there is no processor available. Furthermore, given a processing time p j (l), its
speedup function is defined as s j (l) = p j (1)/p j (l), and its work function is Wj (l) = l p j (l). In addition,
in some cases the work of a task J j is also considered as a function of its processing time, denoted by
w j ( p j (l)) = l p j (l) = Wj (l).

In a schedule, each task J j has two values associated with it: the starting time τ j and the number of
processors l j allotted to task J j . A task J j is called active during the time interval from its starting time
τ j to its completion time C j = τ j + p j (l j ). A schedule is feasible if at any time t, the number of active
processors does not exceed the total number of processors, that is,

∑
j :t∈[τ j ,C j ] l j ≤ m, and if there is

no preemption or migration. For the PCMT case, a feasible schedule is further required to satisfy the
precedence constraints τi + pi (li ) ≤ τ j are fulfilled for all i ∈ �−( j ).

We consider the following three models of MTs:

• MT1: There are no special conditions on the processing time or work.
• MT2: The following two constraints must be satisfied:

◦ The processing time p(l) of a MT J is nonincreasing in the number l of the processors allotted
to it, that is, p(l) ≤ p(l ′), for l ≥ l ′

◦ The work of a MT J is nondecreasing in the number l of the processors allotted to it, that is,
W(l) ≤ W(l ′) for l ≤ l ′.

• MT3: The following two constraints must be satisfied:
◦ The processing time p(l) of a MT J is nonincreasing in the number l of the processors allotted

to it, that is, p(l) ≤ p(l ′), for l ≥ l ′;
◦ The speedup function of a MT J is concave in the number l of the processors allotted to it, that

is, p j (1)/p j (l) = s j (l) ≥ [(l − l ′′)s j (l ′) − (l − l ′)s j (l ′′)]/(l ′ − l ′′) = p j (1)[(l − l ′′)/p j (l ′) −
(l − l ′)/p j (l ′′)]/(l ′ − l ′′), for any 0 ≤ l ′′ ≤ l ≤ l ′ ≤ m.

45.2 A 3/2-Approximation Algorithm for IMT Scheduling

The original strategy in Ref. [2] for IMT scheduling, in general, leads to an effective mechanism to design
approximation algorithms. However, its power and its limitation are that the approximation ratios of this
type of algorithms strongly depend on the approximation ratios for the strip packing algorithms. Thus,
direct application of this approach can only lead to an absolute performance ratio of 2 based on Ref. [14].
Other approaches that avoid the strip packing bottleneck have been proposed, for example, the (

√
3 + ε)-

approximation algorithm for IMT scheduling (MT2) proposed in paper [18]. The approximation ratio
was further improved to 3/2 [19]. This approximation algorithm for IMT scheduling (MT2) used the dual
technique. An r -dual approximation algorithm for IMT scheduling (MT2) takes a real number d as input
and

• either delivers a schedule of length at most r d ;
• or gives a correct answer that there exists no schedule of length less than d .

Furthermore, a lower bound C max can be computed such that C max ≤ C∗
max ≤ 2C max [16]. Therefore,

a binary search on this interval results is an (r + ε)-approximation solution provided there is an r -dual
approximation algorithm for any ε > 0.
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TABLE 45.1 The 3/2-Dual Approximation Algorithm for IMT Scheduling (MT2) in Ref. [19]

1. Remove the set TS of small tasks whose processing times on one processor is at most d/2.
2. Find an allotment for the remaining tasks such that every task is alloted enough processors so that its

processing time is at most d . Partition these remaining tasks into two sets T1 and T2, consisting of the tasks
with processing times strictly greater than d/2 and at most d/2, respectively.

3. Apply basic transformations to generate a feasible two-level schedule (a two-level schedule for t is such that
every task is either processed completely from time 0 to time t, or after time t). The original allotment for
tasks may decrease by the transformations.

4. Schedule the tasks in TS .

The skeleton 3/2-dual approximation algorithm for IMT scheduling (MT2) is shown in Table 45.1.
Later on we give implementation details for steps 2–4.

The following lemma appears in Ref. [19] and for brevity we state it here without a proof:

Lemma 45.1

If a schedule of length 3d/2 exists for T \ TS with work md − WS , then there exists an MT schedule of length
at most 3d/2, where WS is the work of the set of tasks TS .

In steps 2 and 3 of the algorithm in Table 45.1, an allotment for tasks in T \ TS is constructed to satisfy
the following constraints:

(C1) The total work of this allotment is at most md − WS .
(C2) The set T1 of tasks with processing times strictly greater than d/2 use at most m processors. These

tasks will be scheduled in level S1 for time 0 to d .
(C3) The set T2 of tasks with processing times at most d/2 use at most m processors. These tasks will be

scheduled in level S2 from time d to 3d/2.

Obviously, an allotment satisfying all the above three constraints for tasks in T \ TS leads to a two-level
schedule of length at most 3/2d . The set of tasks T1 is scheduled in level S1 from time 0 to d , and the set
of tasks T2 is to be scheduled in level S2 from time d to 3d/2. This schedule satisfies the conditions of
Lemma 45.1. Therefore we know there is a 3/2-dual approximation solution to the IMT scheduling (MT2)
problem. The remaining work is to find an allotment without violating constraints (C1)–(C3).

In the second step, an allotment for the tasks in T \TS satisfying constraints (C1) and (C2) is computed
by solving a knapsack problem. Denote by l j (x) the least number of processors needed to process task
J j so that it has a processing time at most x . Indeed, the knapsack problem to be solved is minimizing
the total work of the tasks in T \ TS subject to the constraint that the tasks in T1 use a total number of
processors at most m, that is,

min
T1⊆T

∑

J j ∈T1

Wj (l j (d)) +
∑

J j 
∈T1

Wj (l j (d/2))

s.t.
∑

J j ∈T1

l j (d) ≤ m

The knapsack problem is NP-hard [9], but there allows a pseudopolynomial-time algorithm [29,30] by
dynamic programming with running time O(nC ), where C is the capacity of the knapsack. In our case,
the capacity C is m, so it can be solved in O(mn) time. If solution to the above knapsack problem has total
work greater than md − WS , then there is no solution to the scheduling problem with makespan at most
d , and the dual approximation algorithm gives a correct negative answer for value d . Otherwise, we show
below that a feasible schedule can be constructed by a set of transformations. The above discussion can be
summarized by the following lemma:

Lemma 45.2

If there exists a schedule of length at most d, then solving the knapsack formulation of the problem gives an
allotment satisfying constraints (C1) and (C2).
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FIGURE 45.2 The two-level schedule from initial allotment to the final schedule by transformations.

From the allotment generated by the solution to the knapsack problem, we have a two-level schedule
with tasks in T1 in level S1 and the others T2 = T \ (TS ∪ T1) in level S2, provided that constraint (C3) is
satisfied. But this condition might not hold (see the schedule on the left-hand side of Figure 45.2). Hence,
we perform transformations to modify the shape of the two-level schedule to create a new area S0 whose
processors may be continuously busy in interval [0, 3d/2]. The transformations are as follows:

(T1) If a task J j in S1 has processing time at most 3d/4 and is allotted to l j > 1 processors, then allocate
J j to l j − 1 processors and move it to S0.

(T2) If J j and J ′
j in S1 both have processing times at most 3d/4 and both are allotted to one processor,

then allocate J j and J ′
j to the same processor and move them to S0. For the special case that J j is

the only remaining “sequential” task with processing time at most 3d/4, it is put on top of a task in
S1 (if one exists) that has a processing time greater than 3d/4, provided that the completion time
of J j does not exceed 3d/2.

(T3) Denote by q the number of idle processors in S1. If there exists a task J j in S2 such that its processing
time on q processors is bounded by 3d/2, then place J j on l j processors, where l j is the smallest
integer in {1, . . . , m} such that the processing time p j (l j ) ≤ 3d/2. Depending on the resulting
processing time, J j is either moved to S0 or S1.

The above transformations can be conducted in any order. It has been proven in Ref. [19] that the resulting
schedule is feasible (see Figure 45.2) and the following lemma holds:

Lemma 45.3

An algorithm that performs the transformations (T1), (T2), and (T3) for a solution to the knapsack problem
delivers a feasible schedule of length at most 3d/2 and total work md − WS .

Combining Lemmas 45.1 and 45.3, together with the binary search strategy, we have a (3/2 + ε)-
approximation algorithm for IMT scheduling (MT2) [19]. This result is summarized in the following
theorem:

Theorem 45.1

The algorithm described above is a (3/2 + ε)-approximation algorithm for IMT scheduling (MT2).

45.3 An AFPTAS for IMT Scheduling

Given an allotment of IMTs, non-MT scheduling is in fact the strip packing problem. On the basis of this
idea, a 2-approximation algorithm is given in Refs.[16,17] using the 2-approximation algorithm for strip
packing given in Ref. [14]. Since there is an AFPTAS for strip packing [15], a natural question is whether
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there exists an AFPTAS for IMT scheduling. In this section we discuss the AFPTAS given in Ref. [21] for
IMT scheduling (MT1) with processing times at most 1.

The main ideas of the AFPTAS are as follows: First an approximate preemptive schedule with migration
for IMT scheduling (MT1) is constructed via linear programming. Then the preemptive schedule is
converted into a nonpreemptive schedule by computing a unique allotment for almost all MTs using a
new rounding technique. Let us now discuss this in detail.

In the preemptive model, each task can be interrupted at any time before its completion at no cost and
can be resumed later on. In addition, migration is allowed for this preemptive schedule, which means that
a task may be assigned to different processor sets during its different execution phases [10,31,32]. The
preemptive scheduling problem can be formulated as the following linear program [33]:

min
∑

f ∈F

x f

s.t.
∑

l

1

p j (l)

∑

f ∈F :| f −1( j )|=l

x f ≥ 1, j = 1, . . . , n

x f ≥ 0, ∀ f ∈ F

(45.1)

The set F denotes the set of all configurations. The variable x f indicates the length of configuration f in
the schedule, and | f −1( j )| is the number of processors allotted to task J j in configuration f . Clearly, the
optimal objective function value of Eq. (45.1), that is, the length of the optimal preemptive schedule with
migration, is a lower bound of the length of the optimal nonpreemptive IMT schedule.

The linear program (45.1) can be solved approximately by performing binary search on the optimum
value and testing at each step the feasibility of a system of (in)equalities for a given g ∈ [dmax, ndmax],
where dmax = max j={1, ...,n} d j and d j = minl p j (l). Notice that the length of an optimal preemptive
schedule is at least dmax and at most ndmax. Now the system of inequalities is

∑

l

1

p j (l)

∑

f ∈F :| f −1( j )|=l

x f ≥ 1, j = 1, . . . , n, (x f ) f ∈F ∈ B

where

B =




(x f ) f ∈F |

∑

f ∈F

x f = g , x f ≥ 0, f ∈ F






This test can be performed approximately by computing an approximate solution to the following problem:

λ∗ = max





λ|

∑

l

1

p j (l)

∑

f ∈F :| f −1( j )|=l

x f ≥ λ, j = 1, . . . , n, (x f ) f ∈F ∈ B





(45.2)

which can be viewed as a fractional covering problem with convex set B and n covering constraints. Thus,
the (1 − ε)-approximation algorithm for fractional covering problems in Ref. [34] can be used. It requires
a block solver that for any price vector y ∈ R

n+ computes an approximate solution of

max
n∑

j=1

∑

l

y j

p j (l)
· x j l

s.t.
n∑

j=1

∑

l

l · x j l ≤ m

∑

l

x j l ≤ 1, j = 1, . . . , n

x j l ∈ {0, 1}, l = 1, . . . , m, j = 1, . . . , n

(45.3)
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FIGURE 45.3 The stack packing for rounding.

This is indeed the multiple-choice knapsack problem (a generalized knapsack problem with different
choices for tasks). Lawler [35] presented a (1 − ε)-approximation algorithm for this problem. Hence, we
have developed an FPTAS for the preemptive IMT scheduling (MT1) with migrations. In the second phase
of the algorithm, the resulting preemptive schedule is converted into a nonpreemptive schedule.

The conversion phase consists of two steps. First, a unique processor allotment for almost all tasks
is generated. Subsequently, a new rounding technique is applied and a constant number of tasks with
nonunique processor numbers are removed. Then an instance of strip packing with one rectangle for
any remaining tasks is defined, and its approximate solution leads to an approximate solution to IMT
scheduling (MT1).

Let pmax = max j maxl p j (l). For each task J j ∈ T and each processor number l , the fraction is defined
as x j,l = ∑

f ∈F :| f −1( j )|=l x f /p j (l) ≥ 0. Without loss of generality, we assume that
∑

l x j,l = 1. Then
an instance of strip packing is constructed, with rectangles of height x j,l p j (l) and width l , for x j,l > 0.
Denote by L w the set of rectangles with width l > ε′m and L n the remaining rectangles, where ε′ is
defined later. Similar to the AFPTAS for strip packing in Ref. [15], for the wide rectangles in L w , an
instance of stack packing is constructed such that the total height of the wide rectangles H = H(L w ) is
the height of the stack, and the stack is divided into M groups, where M is defined later (see Figure 45.3).
Let Wj,l be the set of widths in group i corresponding to task J j . The total area of the narrow tasks is
An = ∑n

j=1

∑
l≤ε′m x j,l p j (l)l , and they are placed in group 0. For each group i ∈ {0, . . . , M} and task

J j , let z j, i = ∑
w :w∈Wj, i

y j, i (w) be the fraction of task J j executed in group i . Denote by ai and by bi

the smallest and the largest widths of group i , respectively. The following steps are performed to obtain
unique processor numbers for almost all the tasks:

(1) For each group i and task J j with at least two widths in group i , compute the smallest processing
time p j (l) among all processor numbers l ∈ [ai , bi ]. Let l j, i be such a processor number. Now
place the rectangles corresponding to task J j in group i by (z j, i p j (l j, i ), l j, i ).

(2) For each task J j with at least two widths in group 0, compute the smallest area p j (l)l among all
small processor numbers l ≤ ε′m. Let l j,0 be such a processor number. Then replace all rectangles
corresponding to task J j in group 0 by (z j,0 p j (l j,0), l j,0).

(3) Round all tasks over the groups using a general assignment problem:

n∑

j=1

z j,0 p j (l j,0)l j,0 ≤ An

n∑

j=1

z j, i p j (l j, i ) ≤ H/M, i = 1, . . . , M

M∑

i=0

z j, i = 1, j = 1, . . . , n

z j, i ≥ 0, j = 1, . . . , n, i = 1, . . . , M

(45.4)
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TABLE 45.2 The Algorithm to Convert a Preemptive Schedule into a Nonpreemptive Schedule in
Ref. [21]

(0) Set δ ≤ min{1, ε/8}, ε′ = δ/(δ + 2), M = 1/ε′2;
(1) compute the values x j,l = ∑

f ∈F :| f −1( j )|=l
x f /p j (l) ∈ [0, 1] for each task Tj ∈ T and l ;

(2) construct an instance of strip packing with rectangles (x j,l p j (l), l) for x j,l > 0, and let L w =
{(x j,l p j (l), l)|l > ε′m} and L n = {(x j,l p j (l), l)|l ≤ ε′m}.

(3) apply the rounding technique to obtain a strip packing with instance L ′
w = {( p j (l j, i ), l j, i )|z j, i = 1, i > 0}

and L ′
n = {( p j (l j,0), l j,0)|z j,0 = 1} and set F = {Tj |z j, i ∈ (0, 1) for at least one i ∈ {0, . . . , M}};

(4) construct instance sup(L ′
w ) (via strip packing in Ref. [15]) with a constant number M of distinct widths;

(5) solve fractional strip packing for sup(L ′
w ) approximately with ratio (1 + δ) by the algorithm in Ref. [34]

and round the solution to obtain only M nonzero variables x j ;
(6) place the wide rectangles of L ′

w into the space generated by the nonzero variables x j ;
(7) insert the narrow rectangles of L ′

n using modified next fit decreasing height [13,15];
(8) schedule the tasks in F at the end of the schedule.

This formulation is closely related to the one for scheduling (independent) tasks on unrelated machines
[36]. Thus, one can now round the variables z j, i such that there are at most M fractional variables [36]. For
tasks with integer variables, unique processor numbers are allotted. The remaining tasks are executed at
the end of the schedule with processing time at most M. We now obtain a rectangle packing instance with
a set L ′

w = {( p j (l j, i ), l j, i )|z j, i = 1, i > 0} of wide rectangles and a set L ′
n = {( p j (l j,0), l j,0)|z j,0 = 1}

of narrow rectangles.
For the next step we use an instance sup(L) for a given set L of rectangles [15]. First construct a stack

packing for L with M groups. Then rounding each rectangle in group i up to bi (up to m for the first
group) generates sup(L). We say that L ≤ L ′ if the stack associated to L viewed as a region in the plane
is contained in the stack associated to L ′. Our algorithm computes sup(L ′

w ) (by producing a new stack
packing). In this way an instance with at most M distinct widths is generated. We note that the height H ′
of the new stack packing is bounded by H .

The algorithm to convert the preemptive schedule into nonpreemptive schedule is shown in Table 45.2.
Hence, for any ε > 0, the AFPTAS for IMT scheduling (MT1) works as follows: First we set δ = min{1, ε/8};
afterwards we compute a (1 + δ)-approximate preemptive schedule. Then we convert the preemptive
schedule into a nonpreemptive schedule.

Theorem 45.2

If the maximum processing time is at most 1, then there exists an AFPTAS for IMT scheduling (MT1) .

To improve the running time [21], a preprocessing step was added together with a speedup technique
for the binary search and the solution to the linear programming problem (see Ref. [21] for details). A
simplified AFPTAS for IMT scheduling (MT2) is also presented in Ref. [21].

45.4 An Approximation Algorithm for PCMT Scheduling
with Tree Precedence

We study a special case of PCMT scheduling, where the precedence graph is a tree, a series parallel graph
[37] or a bounded width graph. In Ref. [22] the schedule delivered by their algorithm is carefully analyzed.
The bound of the increase of the schedule length in the second phase (non-MT schedule) is estimated and
their algorithm is shown a 4-approximation algorithm for PCMT scheduling with tree precedence. The
performance ratio is further improved to (3 + √

5)/2 ≈ 2.61803 in Ref. [23].
As in Ref. [21], the approximation algorithm in Ref. [23] for PCMT scheduling with tree precedence

has two phases. In the first phase, the allotment problem is solved such that each task is allotted a certain
number of processors. In the second phase, for the given allotment (may be slight different from the
solution to the allotment problem), a non-MT schedule is obtained by classical scheduling algorithms.
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TABLE 45.3 Algorithm LIST

LIST (J , m, α′, µ)
• generate new allotment α: l j = min{l ′

j , µ} for j ∈ {1, . . . , n};
• SCHEDULED = ∅;
• if SCHEDULED 
= T then

◦ READY = {J j |�−( j ) ⊆} SCHEDULED;
◦ compute the earliest possible starting time under α for all tasks in READY ;
◦ schedule the task J j ∈ READY with the smallest earliest starting time;
◦ SCHEDULED = SCHEDULED ∪ {J j };

• end

The allotment problem in this case is to find for each task a number of processors, to minimize the
following cost:

cost = max{L , W/m} (45.5)

where L is the length of a critical path (the longest path in the precedence graph under the allotment), and
W the sum of the works of all tasks.

We first study the second phase, that is, given an allotment, to schedule PCMTs according to their prece-
dence. In fact in Refs. [23,26,27], a variant of the list scheduling algorithm [28] is performed (Table 45.3).
Denote by l ′j the number of processors allotted to a task J j in the allotment α′ generated in the first
phase (i.e., a solution to the allotment problem). The algorithm LIST constructs a new allotment α with
a parameter µ ∈ {1, . . . , �(m + 1)/2�} defined later, and then schedules all tasks in a greedy way.

Denote by α∗ the optimal (fractional) solution to the allotment problem, and by L∗ and W∗ its critical
path length and total work, respectively. In addition, let L and W denote the critical path length and total
work of the final schedule corresponding to allotment α.

The following bound holds by using Eq. (45.5) for α∗:

max{L∗, W∗/m} ≤ C∗
max (45.6)

where C∗
max is the length of α∗. Clearly, it is also a lower bound of an optimal PCMT schedule. Suppose

that we have already a λ-approximate solution of the allotment problem, that is,

max{L ′, W ′/m} ≤ λ max{L∗, W∗/m} (45.7)

Our goal is to find the relation between the makespan of the final schedule and that of the allotment in the
first phase. Since in the second phase, each task J j is allotted l j ≤ l ′j processors, according to the property
of MT2, the work does not increase. Therefore

W ≤ W ′ ≤ mλC∗
max (45.8)

In the final schedule, the time interval [0, Cmax] consists of three types of time slots. In the first type
of time slots, at most µ − 1 processors are busy. In the second type of time slots, at least µ and at most
m − µ processors are busy. In the third type at least m − µ + 1 processors are busy. Denote by T1, T2, and
T3 the sets of the three types of time slots, and by |Ti | the overall lengths for i ∈ {1, 2, 3}. In the case that
µ = (m + 1)/2 and m odd, T2 = ∅. In other cases all three types of time slots may exist. Clearly,

Cmax = |T1| + |T2| + |T3| (45.9)

Since during the first (respectively, the second and the third) type of time slots, at least one of the (respec-
tively, µ and m − µ + 1) processors is busy, we have

W ≥ |T1| + µ|T2| + (m − µ + 1)|T3| (45.10)

Lemma 45.4

|T1| + µ|T2|/m ≤ L ′.

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C045 March 20, 2007 16:59

45-10 Handbook of Approximation Algorithms and Metaheuristics
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FIGURE 45.4 An example of the “heavy” path.

Proof
We construct a “heavy” directed pathP in the final schedule. The last task in the pathP is any multiprocessor
task J j1 that completes at time Cmax (the makespan of the final schedule). After we have defined the last
i ≥ 1 tasks J ji → J ji−1 → · · · → J j2 → J j1 on the path P , we can determine the next task J ji+1 as
follows: Consider the latest time slot t in T1 ∪ T2 that is before the starting time of task J ji in the final
schedule. Let V ′ be the set of task J ji and its predecessor tasks that start after time t in the schedule. Since
during time slot t at most m − µ processors are busy, and since at most µ processors are allotted to any
task in V ′, none of the tasks in V ′ can be ready for execution during the time slot t. Therefore for every
task in V ′ some predecessor is being executed during the time slot t. Then we select any predecessor of task
J ji that is running during slot t as the next task J ji+1 on the path P . This search procedure stops when P
contains a task that starts before any time slot in T1 ∪ T2. An example of the “heavy” path is illustrated in
Figure 45.4. Now we examine the stretch of processing time for all jobs in P in the rounding procedure of
the first phase and in the new allotment α of the second phase.

Consider a task J j in the resulting path P . If in the final schedule l j < µ, then in the first phase
l ′j = l j < µ. If l j = µ, then µ ≤ l ′j ≤ m. Since l j p j (l j ) ≤ l ′j p j (l ′j ) by the property of MT2,
p j (l ′j )/p j (l j ) ≥ µ/ l ′j ≥ µ/m. With the construction of the directed path P , it covers all time slots in
T1 ∪ T2 in the final schedule. In addition, denote by L ′(P) the length of path P in allotment α′. The tasks
during time slots in T1 contribute a total length of at least |T1| to L ′(P), and tasks in T2 contribute at least
µ|T2|/m to L ′(P). Because L ′(P) ≤ L ′, the lemma follows.

Combining the above bounds, the following theorem holds:

Theorem 45.3

If there exists a λ-approximation algorithm for the allotment problem, then there exists a λr -approximation
algorithm for PCMT scheduling (MT1), where r = min1≤µ≤�(m+1)/2� max{m/µ, (2m −µ)/(m −µ+ 1)}.
Proof
Multiplying Eq. (45.9) by m − µ + 1 and subtracting Eq. (45.10) from it yields

(m − µ + 1)Cmax ≤ W + (m − µ)|T1| + (m − 2µ + 1)|T2| (45.11)

We consider two cases. In the first case, m/µ ≤ (2m−µ)/(m−µ+1). Thus, r = (2m−µ)/(m−µ+1) and
(m−2µ+1) ≤ µ(m−µ)/m. Substituting this into Eq. (45.11), using Lemma 45.4, and Eq. (45.6)–(45.8)
we have (m − µ + 1)Cmax ≤ (2m − µ)λC∗

max, and the resulting schedule is indeed a λr -approximate
solution. The analysis of the second case is analogous.

Furthermore, it can be proven that for all m ≥ 2, µ equals either the integer above or the integer below
(3m −√

5m2 − 4m)/2, and r < (3 +√
5)/2 ≈ 2.61803. As m tends to infinity, µ tends to (3 −√

5)m/2 ≈
0.38196m, and r tends to (3 + √

5)/2.
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We have now established the relation between the approximation ratio for the allotment problem and
PCMT scheduling (MT2). When the precedence graph is a tree, a series–parallel graph, or a bounded
width graph, the allotment problem can be solved approximately with ratio 1 + ε (for any ε > 0) by
dynamic programming [22,23]. In this way, we have already obtained a 2.61803-approximation algorithm
for PCMT with tree precedence (MT2).

45.5 Approximation Algorithms for PCMT Scheduling

In the case of arbitrary precedence graphs, the allotment problem is related to the discrete time–cost trade-
off problem [24,38], which is NP-complete [39]. In fact, the approximation algorithm in Ref. [24] for the
discrete time–cost trade-off problem is employed to solve the allotment problem in Ref. [23] for developing
a 5.23606-approximation algorithm for PCMT scheduling (MT2).

An instance of the discrete time–cost trade-off problem is a project given by a finite set J of activities
with a partial order (J , ≺) on the set of activities. All activities have to be executed in accordance with
the precedence constraints given by the partial order. Each activity J j ∈ J has a set of feasible durations
{d j1 , . . . , d jk( j )} sorted in a nondecreasing order, and has a nonincreasing nonnegative cost function
c j : R+ → R+ ∪ {∞}, where c j (x j ) is the amount paid to run J j with duration x j .

Skutella [24] presented approximation algorithms for the above problems, in particular, an algorithm
for the bicriteria problem such that c(x) < B/(1 − ρ) and t(x) ≤ L/ρ for a fixed ρ ∈ (0, 1). The budget
problem can be formulated as the following integer linear program:

min L

s.t. 0 ≤ C j ≤ L , for all j

Ci + x j ≤ C j , for all i ∈ �−( j ) and all j

c(x) =
n∑

j=1

c j (x j ) ≤ B

x j ∈ {d j1 , . . . , d jk( j )}, for all j

(45.12)

Here C j is the completion time of activity J j , c j (x j ) the cost of the duration x j , and d j p the pth feasible
duration of activity J j . The first set of constraints shows that completion times of any tasks are bounded
by the project length. The second set is related to the precedence constraints. In addition, the third set of
constraint means that the total cost should be bounded by the budget B .

To solve it, first a “reduced” cost function ĉ is set such that for any duration d jl , ĉ j (d jl ) = c j (d jl ) −
c j (d jk( j ) ). Since d jk( j ) is the maximum duration for activity J j , c j (d jk( j ) ) is the minimum over all durations
for activity J j and the “reduced” cost ĉ is also positive. The amount of P = ∑n

j=1 c j (d jk( j ) ) is called
the “fixed” cost. In the second step, the “reduced” instance is transformed into a two-duration instance
such that each given “virtual” activity has only at most two feasible durations. For any activity J j , the first
“virtual” activity J j1 has only two fixed feasible durations s j (1) = t j (1) = d j1 , and the corresponding
“virtual” costs are c̄ j (s j (1)) = c̄ j (t j (1)) = 0. Then for each 1 < i ≤ k( j ), activity J ji has a duration
x ji ∈ {s j (i) = 0, t j (i) = d ji }, and the corresponding “virtual” costs are c̄ ji (s j (i)) = ĉ j (d ji−1 ) − ĉ j (d ji )
and c̄ ji (t j (i)) = 0. Thus the activity J j can be modeled as k( j ) parallel “virtual” activities, and there is
a canonical mapping of feasible durations x j for activity J j to tuples of feasible durations x j1 , . . . , x jk( j )

for “virtual” activities J j1 , . . . , J jk( j ) such that the duration of the activity J j is the maximum over all
durations of the corresponding “virtual” activities and the cost of J j is the sum of the costs of the “virtual”

activities, that is, x j = max{x j1 , . . . , x jk( j )} and ĉ j (x j ) = ∑k( j )
i=1 c̄ ji (x ji ). Moreover, this mapping is

bijective if we restrict ourselves without loss of generality to tuples of durations x j1 , . . . , x jk( j ) satisfying
x ji = t j (i) if t j (i) ≤ max{x j1 , . . . , x jk( j )}. In this way we have obtained a two-duration instance such
that each activity has at most two feasible durations, and the solution of this instance can be transformed
into a solution of the “reduced” instance.
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Finally, we consider the linear relaxation of the two-duration instance, where for each “virtual”activity
J ji , the “virtual” cost function is linear and nonincreasing within the interval [s j (i), t j (i)] as follows:

c̄ ji (y) =






∞, if y < s j (i)

t j (i) − y

t j (i) − s j (i)
c̄ ji (s j (i)) + y − s j (i)

t j (i) − s j (i)
c̄ ji (t j (i)), if s j (i) ≤ y ≤ t j (i)

c̄ ji (t j (i)) = 0, if y ≥ t j (i)

(45.13)

Therefore we are able to find a fractional solution of the linear relaxation of the two-duration instance. To
obtain a feasible (integer) solution of Eq. (45.12), we need to take some rounding technique. For a given
ρ ∈ (0, 1), if for a “virtual” activity Jji the fractional solution x ji ∈ [0, ρd jk( j ) ), we round it to x̄ ji = 0.
Otherwise if x ji ∈ [ρd jk( j ) , d jk( j ) ] we round it to x̄ ji = d jk( j ) , where x̄ is the rounded solution. In this
way, Skutella [24] showed that ĉ(x) ≤ (B − P )/(1 − ρ) and Cmax ≤ L/ρ, where B − P is the optimal
cost for the linear relaxation of Eq. (45.12) with a deadline L .

In Ref. [23], the above algorithm is applied together with binary search to solve the allotment problem
approximately. The rounding parameter ρ = 1/2 is set to obtain a 2-approximation algorithm for the
allotment problem. According to Theorem 45.3, the following theorem holds:

Theorem 45.4

There exists a 5.23606-approximation algorithm for PCMT scheduling (MT2).

45.5.1 Improved Approximation Algorithm for PCMT Scheduling

Jansen and Zhang [27] observed the following two facts: First, solving the discrete time–cost trade-off
problem for the two optimization criteria with the same ratio in the first phase in Ref. [23] does not
necessarily lead to the best possible ratio for the whole algorithm. Second, the “fixed” cost in solving the
discrete time–cost trade-off problem does not change during the rounding procedure. Thus, they further
improved the approximation ratio for PCMT scheduling (MT2) to 4.730598.

For any MT J j of MT2, we denote by w(·) the work function in processing time, that is, w j ( p j (l)) =
Wj (l), and by x j the fractional duration of the allotment problem (or the processing time). The new linear
relaxation of the allotment problem is

min C = max{L , W/m}
s.t. 0 ≤ C j ≤ L , for all j

C j + xk ≤ Ck , for all j and k ∈ �+( j )
x j ≤ p j (1), for all j
x ji ≤ x j , for all j and i = 1, . . . , m
0 ≤ x ji ≤ p j (i), for all j and i = 2, . . . , m
x j1 = p j (m), for all j

ŵ j (x j ) =
m∑

i=1

w̄ ji (x ji ), for all j

P =
n∑

j=1

p j (1)

n∑

j=1

ŵ j (x j ) + P ≤ W

(45.14)

where the “virtual” work function w̄ j (x jm ) = 0, and for all j and i = 1, . . . , m − 1:

w̄ ji (x ji ) = [Wj (i + 1) − Wj (i)]( p j (i) − x ji )/p j (i) (45.15)
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The rounding technique in Ref. [24] is applied here, and the following inequality holds:

L ′ ≤ L∗/ρ and (W′ − P ) ≤ (W∗ − P )/(1 − ρ) (45.16)

Furthermore, the bounds (45.6), (45.8), and (45.9) still hold. We can prove the following bound similar
to Eq.(45.4):

Lemma 45.5

ρ|T1| + min{µ/m, ρ}|T2| ≤ C∗
max.

Denote by xi = |Ti |/C∗
max the normalized lengths of the i th type of time slots, it can be shown that the

approximation ratio is the objective value of the following min–max nonlinear program:

minµ,ρ maxx1, x2

x1(m − µ)(1 − ρ) + x2(1 − ρ)(m − 2µ + 1) + m

(m − µ)(1 − ρ) + 1
s.t. ρx1 + min{ρ , µ/m}x2 ≤ 1

x1 + x2(µ(1 − ρ) + ρ) ≤ m

x1, x2 ≥ 0

ρ ∈ (0, 1)

µ ∈ {1, . . . , �(m + 1)/2�}

(45.17)

A complicated analysis is needed to solve Eq. (45.17). It can be shown that to obtain the optimal value,
one need to find analytic roots of a polynomial of degree 6, where the coefficients are polynomials of
m. Unfortunately this is impossible in general. Thus in Ref. [27] the parameters are set as ρ = 0.43 and
µ = (93m − √

4349m2 − 4300m)/100. Hence they showed that

Theorem 45.5

There exists an algorithm for PCMT scheduling (MT2) with an approximation ratio

r ≤ 100

43
+ 100

43

(43m − 100)(57
√

4349m2 − 4300m − 399m − 4300)

139707m2 − 174021m − 184900
≤ 100

43
+ 100(

√
4349 − 7)

2451

≈ 4.730598.

It is also proved that when m tends to infinity, the optimal asymptotic choices are ρ = 0.430991 and
µ → 0.270875m. In this case the ratio r → 4.730577.

45.5.2 Approximation Algorithm for PCMT Scheduling (MT3)

Jansen and Zhang [26] also studied the scheduling problem for model MT3, which is a generalization of
the continuous model by Refs. [6–8]. The ideas are similar to those for MT2 in Ref. [27].

First, one can show that MT3 is a special case of MT2 where the work function is convex in the
processing time. Then a piecewise linear program with convex constraints is developed for the relaxed
allotment problem, which is polynomial-time solvable. Finally, the variant of the list scheduling algorithm
is applied to obtain a feasible schedule.

The relaxed allotment problem can be formulated as

min C = max{L , W/m}
s.t. Ci + x j ≤ C j , for all j and i ∈ �−( j )

0 ≤ C j ≤ L , for all j

W/m =
n∑

j=1

w j (x j )/m

x j ∈ [ p j (m), p j (1)], for all j

(45.18)
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where the continuous work function is defined as follows: If x = p j (l) for l = 1, . . . , m, then w j (x j ) =
w j ( p j (l)). If x ∈ ( p j (l + 1), p j (l)) for l = 1, . . . , m − 1, then

w j (x j ) = w j ( p j (l + 1)) − w j ( p j (l))

p j (l + 1) − p j (l)
x j + w j ( p j (l)) p j (l + 1) − w j ( p j (l + 1)) p j (l)

p j (l + 1) − p j (l)
(45.19)

In the interval [ p j (l + 1), p j (l)], we define a critical point lc such that lc = l + 1 − ρ for the rounding
parameter ρ ∈ [0, 1]. The processing time p j (lc ) is given by p j (lc ) = p j (l + 1 − ρ) = ρp j (l) + (1 −
ρ) p j (l + 1), and its work is w j ( p j (lc )) = (1 − ρ)w j ( p j (l + 1)) + ρw j ( p j (l)) = (1 − ρ)(l + 1) p j (l +
1) + ρl p j (l). We apply the following rounding technique for the fractional solution to Eq. (45.18): If
x∗

j ≥ p j (lc ) it is rounded up to p j (l), and otherwise rounded down to p j (l + 1).
We have the following new bounds:

Lemma 45.6

For any job J j , in the allotment α′ its processing time p j (l ′j ) ≤ 2x∗
j /(1 + ρ), and its work w j ( p j (l ′j )) =

l ′j p j (l ′j ) ≤ 2l∗j x∗
j /(2 − ρ) = 2w j (x∗

j )/(2 − ρ), where x∗
j is the optimal solution to Eq. (45.18).

Lemma 45.7

(1 + ρ)|T1|/2 + min{µ/m, (1 + ρ)/2}|T2| ≤ C∗
max.

It is shown that the approximation ratio is the objective value of the following min–max nonlinear
program [26]:

min
µ,ρ

max
x1, x2

2m/(2 − ρ) + (m − µ)x1 + (m − 2µ + 1)x2

m − µ + 1

s.t. (1 + ρ)x1/2 + min{µ/m, (1 + ρ)/2}x2 ≤ 1

x1, x2 ≥ 0

ρ ∈ [0, 1]

µ ∈ {1, . . . , �(m + 1)/2�}

(45.20)

Again, the optimal solution cannot be obtained analytically in general. Hence the parameter settings
are r = 0.26 and m = (113m − √

6469m2 − 6300m)/100.

Theorem 45.6

There exists an algorithm for PCMT scheduling (MT3) with an approximation ratio

r ≤ 100

63
+ 100

345303

(63m − 87)(
√

6469m2 − 6300m + 13m)

m2 − m
≤ 100

63
+ 100(

√
6469 + 13)

5481
≈ 3.291919.

It is also proved that when m tends to infinity, the optimal asymptotic choices are ρ = 0.261917 and
µ → 0.325907m. In this case the ratio r → 3.291913.
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46.1 Introduction

This chapter surveys approximation algorithms for scheduling a set of vehicles that process jobs located at
graph vertices. We are given a simple connected graph G = (V, E ) with vertex set V , edge set E , and a set
J of jobs. The jobs in J (such as items to be picked up or facilities to be inspected) are located at the vertices
of the graph. Each job is characterized by a release time, a handling time, and a due date (or a deadline).
The time window for a job is the time interval between its release time and deadline. The handling time
for a job means the time required to process the job. The job must be processed without interruption.
The handling times are represented by vertex-weights in the graph. The travel time of an edge of a graph
is the time that a vehicle takes to traverse the edge. The travel times are represented by edge-weights. Each
job must be processed by exactly one vehicle, but any number of vehicles may visit any number of times a
vertex without processing its job. A given set of identical vehicles is available to process the set of jobs. All
the vehicles process the jobs and traverse the edges at the same speed.

Given p vehicles, the vehicle scheduling problem (VSP) is to find a routing schedule for the p vehicles
that minimizes (or maximizes) a given objective function. Objective functions include the maximum tour
time of the vehicles, the makespan (i.e., the maximum completion time of jobs), the maximum lateness
computed from due dates, and so on. The VSP is an important area of research activity with a variety of
industrial and service sector applications [1].

The graphs may be restricted to paths or trees in some applications, for example, ship deliveries along
a shoreline [2] and deliveries by robots with elevator boarding functions in a building [3]. The VSP
for these graphs has been studied extensively. The VSP restricted to trees is an important subproblem
because the bin packing problem is a special case when the tree is a star. Approximation algorithms for
bin packing have been extensively studied for the past three decades. Chapter 32 discusses approximation
algorithms for bin packing. When the graphs are restricted to trees (resp., paths), we denote the VSP by
VSP-TREE (resp., VSP-PATH). The VSP with p = 1 is called the single-vehicle scheduling problem. We
refer to the VSP-TREE (resp., VSP-PATH) with p = 1 as the 1-VSP-TREE (resp., 1-VSP-PATH).

Several related routing problems for trees have also been studied such as the p-traveling salesperson
problem ( p-TSP) and the capacitated vehicle routing problem (CVRP) (see, e.g., Asano et al. [4], Averbakh
and Berman [5–7], and Labbé et al. [8]). We do not include a review of approximation algorithms for these
related problems, but we do a relationship to the subtree cover problem (SCP). This problem may be a
special case of the VSP where each job is characterized only by a handling time. Given a simple connected

46-1
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graph G = (V, E ), the SCP is find a partitionX = {X1, X2, . . . , X p}of V and a setT = {T1, T2, . . . , Tp}
of p subtrees such that each Ti contains Xi so as to minimize (or maximize) a given objective function.

Given an integer p (≥2), the minmax subtree cover problem (MSCP) is to find a solution (X , T ) that
minimizes the maximum cost of the p subtrees, where the cost of each subtree Ti is defined by the sum
of edge-weights in Ti and vertex-weights in Xi . When a vertex v0 ∈ V is designated as the root and each
subtree is required to contain v0, the problem is called the minmax rooted-subtree cover problem (MRSCP).
As with the VSP, when the graphs are restricted to trees, we use “TREE” that follows the problem name,
that is, MSCP-TREE and MRSCP-TREE.

The remainder of this chapter is organized as follows. In Section 46.2, we define graph-theoretical
terms and introduce our notation. In Section 46.3, we overview known approximation algorithms for the
1-VSP-TREE and VSP-TREE. We also discuss an important relationship between the VSP and MSCP. Our
concluding remarks are given in Section 46.4.

46.2 Preliminaries

Let G = (V, E ) be a simple connected graph with a set V of vertices and a set E of edges. Let n = |V |
and m = |E |. We denote by (G , w) an edge-weighted graph G = (V, E ) such that each edge e ∈ E has a
nonnegative weight w(e). The graph is denoted by (G , w , v0) if a vertex v0 ∈ V is designated as the root.
The weight w(e) for the edge e = {u, v} ∈ E with end vertices u, v ∈ V is denoted by w(u, v). The vertex
set and edge set of a subgraph G ′ ⊆ G are denoted by V(G ′) and E (G ′), respectively. The sum of the
edge-weights in a subgraph G ′ ⊆ G is denoted by w(G ′).

Let (J , h) be a subset J ⊆ V of weighted vertices such that each vertex v ∈ J has a nonnegative weight
h(v), and h(v) = 0 for every vertex v ∈ V \ J . The sum of vertex-weights in a subset J ′ ⊆ J is denoted
by h(J ′).

A tree is a connected graph containing no cycle. A vertex with degree one is called a leaf in a tree, except
when it is the root. For a given tree T , a connected subgraph T ′ ⊆ T is called a subtree of T . The set of
leaves in T ′ is denoted by L (T ′). We define by b = |L (T)| as the number of leaves in tree T . For a tree T
and a subset X ⊆ V(T) of vertices, let T〈X〉 denote the minimal subtree of T that contains X (where the
leaves of T〈X〉 will be vertices in X). We say that T〈X〉 is induced by X (from T).

A path is a tree with exactly two vertices of degree one, called end vertices. The other vertices of degree
two are called interior vertices. A connected subgraph Q′ of a path Q is called a subpath of Q. In this
chapter, a path is referred to as an end-rooted path if the root is an end vertex of the path. However, a path
is called an interior-rooted path if its root is an interior vertex.

We denote by dG (u, v) the sum of the edge-weights of a shortest path between vertices u and v in a
given graph G .

46.3 Vehicle Scheduling Problem

For a graph (G = (V, E ), w), the symmetric edge-weight w(u, v) (= w(v, u)) for each edge {u, v} ∈ E
is the travel time for a vehicle between the two vertices u and v. The vertex set V also represents the job set
J . Thus, (V, h) denotes a set of n jobs such that each job v ∈ V has the handling time h(v). Interruptions
are not allowed when processing a job. The set (V, h) is augmented to (V, r, h) if each job v has a release
time r (v), that is, the time at which job v becomes available for processing.

For an edge-weighted tree (T, w) and a job set (V(T), r, h), we define the sum of travel times by

W = 2w(T) = 2
∑

e∈E (T)

w(e)
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the sum of handling times by

H = h(V(T)) =
∑

v∈V(T)

h(v)

and the maximum of release times by

rmax = max{r (v) | v ∈ V(T)}
For a rooted tree (T, w , v0), we define by

dmax = max{dT (v0, v) | v ∈ V(T)}
the travel time from the root v0 to the farthest vertex from v0 in T .

The 1-VSP-TREE and VSP-TREE have a large number of variants that depend on time constraints
and objective functions. Hereafter, unless otherwise stated, we focus on the following 1-VSP-TREE and
VSP-TREE, and provide an overview based on the paper [3].

1-VSP-TREE (Tour time 1-VSP-TREE)
• Input. An instance I = (T, w , v0, V(T), r, h) which consists of a rooted tree (T, w , v0) and a job

set (V(T), r, h).
• Feasible solution. A schedule π for a single vehicle initially located at the root v0, that is, a processing

ordering of the n jobs by the vehicle.
• Goal. Minimize the tour time Ctour (π) of the vehicle (i.e., the time at which the vehicle returns to

the root v0 after processing all the jobs).
• Comments. In the makespan 1-VSP-TREE, the initial location of the vehicle is also the root v0, but

the vehicle does not have to return to the root.

VSP-TREE (Makespan VSP-TREE)
• Input. An instance I = (T, w , V(T), r, h, p) which consists of a tree (T, w), a job set (V(T), r, h),

and p identical vehicles (p ≥ 2).
• Feasible solution. A schedule π for the p vehicles, that is, a set of p (processing) orderings of jobs

where each job belongs to exactly one of the p orderings.
• Goal. Minimize the makespan Cmax(π) (i.e., the maximum completion time of all jobs).
• Comments. You decide the initial locations for the p vehicles, and the vehicles do not have to return

to their initial locations. In the maximum tour time VSP-TREE, you decide the initial locations for
the vehicles (e.g., choose them so as to minimize the maximum tour time), and each vehicle must
return to its initial location.

Table 46.1 summarizes the approximation ratios known for the 1-VSP-TREE and VSP-TREE.

46.3.1 Single-Vehicle Scheduling

In this subsection, we review the known approximation algorithms for the 1-VSP-TREE. We also discuss
approximation algorithms for the 1-VSP-PATH, which is a restricted version of the 1-VSP-TREE.

46.3.1.1 In Trees

Nagamochi et al. [9] proved the strong NP-hardness of the 1-VSP-TREE even if all handling times are zero.
We will discuss an approximation algorithm for the 1-VSP-TREE derived from the following polyno-

mially solvable restriction on the 1-VSP-TREE. The depth-first routing constraint for the 1-VSP-TREE is
defined as follows. Once the single vehicle reaches a vertex v from its parent in the rooted tree (T, w , v0),
it cannot return to the parent unless it has completed all jobs in the subtrees rooted at v. Under this
constraint, each edge {u, v} ∈ E (T) is traversed exactly twice (i.e., once from u to v and the other from v

to u). We refer to a schedule under this routing constraint as a depth-first schedule.
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TABLE 46.1 Approximation Bounds to the VSP in Trees

Objective Tour Time Makespan

PATH TREE PATH TREE

PTAS [13] PTASa [13]

1-VSP-
5

3
; O(n2) [15] 2; O(n) [10] 2; O(n) [10] 2; O(n) [10]

2; O(n2) [2]

Objective Maximum Tour Time Makespan

PTASb [18] PTASa,b [18]

VSP-
(

3 − 2

p + 1

)
; O( p2n) [3]

(
3 − 2

p + 1

)
; O( p2n) [3] 2; O( pn2) [17]

(
5 − 4

p + 1

)
; O( p2n) [3]

Note: PTAS—polynomial-time approximation scheme.
aFor a constant number b of leaves in a given tree.
bFor a constant number p of vehicles.

Depth-first schedules have the following properties. The sum of handling times is constant in any
schedule (i.e., it is equal to H). The sum of travel times is also constant in any depth-first schedule (i.e., it
is equal to W). Thus, minimizing the tour time is equivalent to minimizing the sum of idle times under
the depth-first routing constraint.

Karuno et al. [10] observed that an optimal depth-first schedule (i.e., a depth-first schedule with the
minimum tour time among all depth-first schedules) can be constructed in O(n log n) time. The O(n log n)
algorithm works as follows. Assume that the vehicle reaches vertex v from its parent at time t and there
exist subtrees rooted at v. For each subtree rooted at v, compute the total idle time incurred by the vehicle
which starts from v at time t, visits all jobs in the subtree for processing (of course, in the depth-first
manner) and returns to v. The algorithm traverses the subtrees one by one in nondecreasing order of the
total idle times. The algorithm performs this computation recursively.

Karuno et al. [10] showed in the same paper that any depth-first scheduleπ D F is a 2-approximation algo-
rithm for the 1-VSP-TREE. An immediate lower bound on the optimal tour time C∗

tour is max{rmax, W+H}.
It is not difficult to see that the tour time of πDF satisfies Ctour(π D F ) ≤ rmax + W + H , since the vehicle
can traverse the tree processing all jobs without idle time if it starts at time rmax. This implies that π D F

is a 2-approximation algorithm for the 1-VSP-TREE. A depth-first schedule π D F can be constructed in
O(n) time, and thus the 1-VSP-TREE is 2-approximable in O(n) time. Even for an optimal depth-first
schedule, this approximation ratio is asymptotically tight [10].

It is important to note that the minimum travel time is guaranteed if and only if the vehicle uses
a depth-first schedule. Minimization of the total travel time is important in practice (e.g., to reduce
the battery power consumption of the vehicle). So depth-first schedules are useful for more than their
approximation value. For the 1-VSP-TREE, Nagamochi et al. [11] showed that once an optimal depth-first
schedule with respect to a specified initial vertex has been obtained, minimum tour times for all other
initial vertices can be simultaneously computed in O(n) time. Karuno et al. [12] considered a different
variant of 1-VSP-TREE where each job has its own due date, but all jobs are available at time zero.
The objective is to minimize the maximum lateness with respect to the due dates. They showed that an
optimal depth-first schedule with minimum maximum lateness 1-VSP-TREE can be obtained in O(n log n)
time.

For the makespan 1-VSP-TREE the vehicle does not have to return to the root v0 (or, no cost is incurred
to return from the last vertex to the root). An immediate lower bound in this case for the optimal makespan
C∗

max is max{rmax, W + H −dmax}, where dmax denotes the travel time between the root v0 and the farthest
vertex v f ar in (T, w , v0). Since a depth-first schedule where the last job is vfar can be constructed in O(n)
time, the makespan 1-VSP-TREE is also 2-approximable in O(n) time.
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Augustine and Seiden [13] showed that the makespan 1-VSP-TREE with a constant number b of leaves
admits a polynomial-time approximation scheme (PTAS) (i.e., a family of algorithms {Aε} such that for
any positive real ε > 0, Aε delivers a schedule with the makespan at most (1 + ε) times the optimal). Let
π = (π(1), π(2), . . . , π(n)) be a permutation on {1, 2, . . . , n}, where π(i) denotes the i th job processed
by the vehicle, and let cπ (i) be the completion time of the i th job in π . For notational convenience, we
define π(0) = v0 and cπ (0) = 0, and let π−1( j ) be the position of job j in π . A schedule π eagerly
processes job j if for all i such that job j is located on the unique path from π(i − 1) to π(i), either
π−1( j ) ≤ i or r ( j ) > cπ (i − 1) + dT (π(i − 1), j ) holds. A schedule is called eager if π eagerly processes
all jobs. Augustine and Seiden [13] proved that there exists an optimal schedule among eager schedules for
the makespan 1-VSP-TREE, and based on this, they showed that an optimal schedule can be constructed
in polynomial time when the number of leaves in T and the number of distinct release times are bounded
above by a constant. An O(n) time approximation scheme for a fixed ε is derived from these facts. However,
the complexity is exponential in 1/ε.

46.3.1.2 In Paths

We will discuss a special case of the 1-VSP-TREE where the underlying graph is given by a path Q, that
is, the 1-VSP-PATH. The objective is to minimize the tour time Ctour . Tsitsiklis [14] proved that the
1-VSP-PATH is NP-hard. However, whether the 1-VSP-PATH is strongly NP-hard remains open problem.

Since a path is a tree where the degree of each vertex is at most two, an optimal depth-first schedule to
the 1-VSP-PATH can be obtained in O(n), and it is a 2-approximation algorithm [10].

A schedule π = (π(1), π(2), . . . , π(n)) is said to be connected if any nonempty set U = {π(i +1), π(i +
2), . . . , π(n)} ⊆ V(Q) of unprocessed vertices satisfies U = V(Q〈U 〉). Psaraftis et al. [2] showed that
there is an optimal schedule to the makespan 1-VSP-PATH which is connected if all handling times are
zero, and that by using dynamic programming, this subproblem can be solved in O(n2) time. Subsequently
Nagamochi et al. [9] extended the result to an arbitrary graph, and presented an O(n22n) time algorithm.

Gaur et al. [15] proved that the schedule π1 constructed by this O(n2) time dynamic programming
procedure has performance guarantee

Ctour (π1) ≤
(

1 + H

W + H

)

C∗
tour (46.1)

where C∗
tour is the optimal tour time. Thus, we can easily see that the schedule π1 is also a 2-approximation

algorithm for the 1-VSP-PATH.
Karuno et al. [16] proved that the 1-VSP-PATH is 3/2-approximable in O(n) time if the given path is

end-rooted. The lower bounds

C∗
tour ≥ W + H (46.2)

C∗
tour ≥ r (v) + h(v) + dQ(v, v0) for any job v ∈ V(Q) (46.3)

can be easily established. For a real value t with 0 ≤ t ≤ rmax, let H(t) (resp., H ′(t)) be the sum of
handling times of all jobs v ∈ V with r (v) ≥ t (resp., r (v) > t). They showed that

C∗
tour ≥ t + H(t) (46.4)

for any t with 0 ≤ t ≤ rmax, and that there always exists a t∗ such that H ′(t∗) ≤ t∗ ≤ H(t∗). From these
inequalities, they established

C∗
tour ≥ 2t∗ ≥ 2H ′(t∗) (46.5)

The two-phase algorithm [16] makes the vehicle traverse the path as follows (assuming that the vertex v0

is the left-end vertex of the path Q and vn−1 the right-end vertex): In the forward phase, the vehicle travels
from the left-end vertex v0 to the right-end vertex vn−1, processing all jobs whose release times are at most
t∗. In the backward phase, the vehicle returns back from vn−1 to v0, processing all remaining jobs. The
approximation ratio of this algorithm is derived as follows. Let π ′ be the schedule obtained by the two-phase
algorithm. If the vehicle does not wait at any vertex in the backward phase, then Ctour (π ′) ≤ t∗ + W + H .
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This is because the vehicle can process all jobs whose release times are at most t∗ with no waiting if it waits
at the v0 until time t∗. By Eq. (46.2) and Eq. (46.5), we have

Ctour (π ′) ≤ t∗ + W + H ≤ t∗ + C∗
tour ≤ 3

2
C∗

tour

However, if the vehicle waits at some vertex vk in the backward phase, then for such a vk that it is the
nearest one to vertex v0, we have Ctour (π ′) = r (vk)+h(vk)+dQ(vk , v0)+ Hk , where Hk denotes the sum
of handling times of all jobs that are processed after vk in π ′. Note that Hk ≤ H ′(t∗) holds. By Eq. (46.3)
and again by Eq. (46.5), we obtain

Ctour (π ′) = r (vk) + h(vk) + dQ(vk , v0) + Hk ≤ C∗
tour + H ′(t∗) ≤ 3

2
C∗

tour

Therefore, the approximation bound of the two-phase algorithm is 3/2.
Gaur et al. [15] modified the two-phase algorithm for the case of interior-rooted paths. In their modified

algorithm, the vehicle starts from the root and heads for the closer end to the root. Once the vehicle reaches
the closer end, the vehicle follows the two-phase algorithm. Finally, the vehicle returns back from the closer
end to the root. Let π2 be the schedule generated by the modified two-phase algorithm. Then the modified
two-phase algorithm has the following performance guarantee for the 1-VSP-PATH [15]:

Ctour (π2) ≤
(

3

2
+ 1

2
· W

W + H

)

C∗
tour (46.6)

Gaur et al. [15] showed that the approximation bound 5/3 for the 1-VSP-PATH can be derived from
Eq. (46.1) and Eq. (46.6) if one chooses the better from two schedules π1 and π2. This is because 1 +
H/(W + H) ≤ 5/3 holds if H ≤ 2W, while 3/2 + W/(2(W + H)) ≤ 5/3 holds if H > 2W.

Of course, the PTAS for the 1-VSP-TREE with a constant number b of leaves proposed by Augustine
and Seiden [13] can be applied to the 1-VSP-PATH, since b ≤ 2 holds for paths.

Tsitsiklis [14] considered a different makespan 1-VSP-PATH where each job has its own deadline, but
all handling times are zero and all jobs are available at time zero, and showed that an optimal schedule
can be computed by an O(n2) time dynamic programming procedure (which returns C∗

max = ∞ if no
feasible solution exists).

46.3.2 Multi-Vehicle Scheduling

In this subsection, we begin with the VSP-PATH. The first constant factor approximation algorithm to
the VSP-PATH was proposed by Karuno and Nagamochi [17]. For a constant number p of vehicles,
they also developed a PTAS to the VSP-PATH [18]. Subsequently, a polynomial time constant factor
approximation algorithm for the VSP-TREE was derived from a constant factor approximation algorithm
for the MSCP-TREE [3].

It should be noted that if all edge-weights in a given path (i.e., travel times of the vehicles) are zero, then
the VSP-PATH is identical to the parallel machine scheduling problem, which asks to construct a schedule
with minimum makespan under the release time constraint. This machine scheduling problem is denoted
by P/r j /Cmax under the traditional notation for machine scheduling problems [19].

When p = 1, problem P/r j /Cmax becomes the single-machine scheduling problem denoted by
1/r j /Cmax. This problem can be solved in O(n log n) time by scheduling the jobs in nondecreasing
order of their release times. However, for the makespan 1-VSP-PATH, a slight change in the processing
order of the jobs may affect the makespan dramatically because of the travel times. In fact, Tsitsiklis
[14] proved the NP-hardness of the makespan 1-VSP-PATH, which indicates that introducing travel
times distinguishes the computational complexity for the makespan 1-VSP-PATH from the 1/r j /Cmax

problem.
Problem P/r j /Cmax is NP-hard in the strong sense since it contains the 3-PARTITION as a special

case, and the problem for any fixed p ≥ 2 is NP-hard since it contains the PARTITION (see Garey and
Johnson [20]). Hall and Shmoys [21] observed that there exist a 2-approximation algorithm and a PTAS for
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problem P/r j /Cmax (but the algorithm running times are not discussed in their paper). The VSP-PATH
is NP-hard in the strong sense for p arbitrary, since it can be viewed as a generalization of P/r j /Cmax.
Similarly, the VSP-PATH is NP-hard even for any fixed p ≥ 2.

Deriving good lower bounds for the optimal solution value for the VSP-PATH and the VSP-TREE is
significantly harder than for the 1-VSP-PATH and the 1-VSP-TREE. In an optimal schedule for an instance
of the VSP-PATH with p ≥ 2, some edges may not be traversed by any vehicle. Such an edge is called a
gap. This is what makes it difficult to derive a lower bound on the total travel time.

A subpath traversed by a vehicle in a schedule for the VSP-PATH is called its zone. A feasible schedule
for p′ vehicles (p′ ≤ p) is called a zone schedule if no two zones intersect and thus there are p′ − 1
gaps. Moreover, a zone schedule is called a one-way zone schedule if any vehicle traverses its zone in one
direction only (i.e., from left to right or from right to left). However, a schedule is called gapless if each
edge is traversed at least once by some vehicle.

Karuno and Nagamochi [17] first observed that there exists a one-way zone schedule which is a 2-
approximation algorithm for the optimal gapless VSP-PATH with p ≥ 2 (i.e., the one with the minimum
makespan among all schedules with no gaps). The one-way zone schedule can be constructed in O(n)
time. For an optimal gapless schedule, we can establish an immediate lower bound (W/2 + H)/p on its
makespan. Notice that a general schedule consists of several gapless schedules for subpaths on a given path.
As stated above, each of such subpaths admits a one-way zone schedule that is a 2-approximate solution.
Therefore, it suffices to take into account all possible configurations of gaps in the given path. Karuno and
Nagamochi [17] proved that an optimal one-way zone schedule can be constructed in O( pn2) time via
dynamic programming. This implies that there exists a one-way zone schedule that is a 2-approximation
algorithm for the general case. By designing an approximation algorithm for constructing an optimal one-
way zone schedule, Karuno and Nagamochi also presented a nearly linear time (2 + ε)-approximation
algorithm for the VSP-PATH for any fixed ε > 0 [17].

Augustine and Seiden [13] extended their PTAS for the makespan 1-VSP-TREE with a constant number
b of leaves to a PTAS for the VSP-PATH for finding an optimal zone schedule (note that it may not
be an optimal schedule with respect to general schedules). They generalized the dynamic programming
procedure provided by Karuno and Nagamochi [17] to compute the gap configuration.

Karuno and Nagamochi [18] developed a PTAS for the VSP-PATH with a constant number p of vehicles.
The approximation scheme is based on rounding the release times, and on the fact that any schedule consists
of several gapless schedules. Rounding the release times leads to a problem instance with a constant number
of distinct release times. The approximation scheme is a two-fold dynamic programming procedure. One
is for computing an optimal schedule to the problem with rounded release times, and the other for finding
the best schedule to the original problem by combining several gapless schedules over all choices of gaps
in the path. The algorithm can be extended to the VSP-TREE and become a PTAS when the number p of
vehicles and the number b of leaves in the tree are bounded by a constant [18].

Nagamochi and Okada [22] observed that the VSP-TREE can be regarded as the MSCP-TREE by
ignoring its release times, and that the VSP-TREE is approximable within a constant factor by any constant
factor approximation algorithm for the MSCP-TREE. Based on this, Karuno and Nagamochi [3] gave an
O( p2n) time (5 − 4/( p + 1))-approximation algorithm for the VSP-TREE. We extend the observation to
the VSP in an arbitrary class of graphs.

Theorem 46.1

LetG be a class of graphs. Assume that there exists an O( f (n)) time α-approximation algorithm for the MSCP
in an arbitrary graph G ∈ G. Then a (1 + 2α)-approximate solution to the makespan VSP in a graph G ∈ G
can be obtained in O( f (n)) time.

We can obtain an analogous result for the case where the maximum tour time VSP has a root (i.e., a
designated vertex to which all vehicles are required to return at the end of a schedule) by using an O( f (n))
time α-approximation algorithm for the MRSCP instead of that for the MSCP.

Table 46.2 summarizes the best approximation ratios currently for the MSCP and MRSCP.
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TABLE 46.2 Approximation Bounds to the SCP

Underlying Graphs Trees Cacti Arbitrary

MSCP
(

2 − 2

p + 1

)
[23]

(
4 − 4

p + 1

)
[24] (4 + ε) [25]

MRSCP (2 + ε) [23]
(

3 − 2

p + 1

)
[26]

(
3 − 2

p + 1

)
[26]

46.4 Concluding Remarks

In this chapter, we gave an overview of approximation bounds to the 1-VSP-TREE and VSP-TREE obtained
by the previous work. We also provided an important relationship between the VSP and SCP in arbitrary
graphs. It is left for the future research to develop algorithms to the SCP that achieve a better performance.
In particular, finding a PTAS for the SCP is a challenging problem.
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47.1 Introduction

Automated planning has been an active area of research in theoretical computer science and artificial
intelligence (AI) for over 40 years. Planning is the study of general purpose algorithms that accept as input
an initial state, a set of desired goal states, and a planning domain model that describes how actions can
transform the state. The problem is to find a sequence of actions that transforms the initial state into one
of the goal states. Planning is widely applicable, and has been used in such diverse application domains as
spacecraft control [1], planetary rover operations [2], automated nursing aides [3], image processing [4],
computer security [5], and automated manufacturing [6]. Planning is also the subject of continued and
lively ongoing research.

This chapter will present an overview of how approximations and related techniques are used in au-
tomated planning. The chapter focuses on classical planning problems, where states are conjunctions of
propositions, all state information is known to the planner, and all action outcomes are deterministic.
Classical planning is nonetheless a large problem class that generalizes many combinatorial problems in-
cluding bin packing (Chapters 32–35), prize collecting TSP (Chapter 40) and scheduling (Chapters 44–46).
There are numerous planning problems that capture models of uncertainty in the world and in action
outcomes; readers interested in learning more about planning are referred to Ref. [7].

47.1.1 Classical Planning

The core of classical planning problems is goal achievement; given a particular state of the world, and
actions that can manipulate the state, the problem is to find a sequence of actions that lead to one of the
designated set of goal states. More formally, a planning domain D consists of a set of world states W and
a set of actions A. An action a defines a deterministic mapping a : W → W. A planning problem instance
〈D, i, G〉 consists of a planning domain D = 〈A, W 〉, an initial state i ∈ W, and a set of goal states G ⊂ W.

47-1
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The set of actions define a directed graph on W; thus, the problem is to find a path from i to a state g ∈ G
or to prove that no such path exists.

When described this way, planning appears quite easy; the problem is either to decide whether there
is a path from i to any node g . However, W and the associated set of actions A are usually described
implicitly by exponentially compressing the descriptions of W and A. The elementary problem description
in classical planning uses a formalism called STRIPS. The STRIPS formalism [8] uses a set of propositions P
to implicitly define the set of world states; W = 2P , with each state w = {p1, . . . , pn} being interpreted as
the conjunction ( p1 ∧ · · · ∧ pn). Each action a is described by a set of preconditions pre(a) (propositions
that must be true to enable a), a set of added effects add(a) (propositions that a makes true), and a
set of delete effects del(a) (propositions that a makes false). An action a is applicable in a state if the
propositions in pre(a) are true in that state. The value of a proposition that does not appear in add(a) or
del(a) is unchanged by the application of a .

Given this description of a planning domain, a STRIPS planning problem is defined by a single initial
state i ∈ 2P, and a set of goal propositions G p ⊆ P , implicitly defining a set of goal states G = {v ∈
2P | G p ⊆ v}. A plan can be viewed as an ordered sequence of actions. A plan can also be viewed as
an ordered sequence of concurrent action sets; two actions a , b may be concurrent in a plan if (pre(a) ∪
add(a)) ∩ del(b) = ∅ and (pre(b) ∪ add(b)) ∩ del(a) = ∅. A plan is valid if, for each action set, all actions
in the set may be concurrent, and if every action in the set is applicable in the state resulting from the
sequential application of the previous action sets. The core decision problem is to find a valid plan, that
is, a sequence of applicable actions sets (A1, . . . , An) that maps the initial state to a goal state.

Figure 47.1 shows a simple STRIPS version of a planetary rover domain. The domain consists of a mobile
rover with two instruments, a camera and a drill. In this example, the propositions are described using
a combination of predicates and parameters; for example, the predicate at takes a location parameter.
Initially, the rover is at the Lander, it has collected no images or samples, and its drill and camera are
off. The rover can drive from the Lander to a Hill, and then to one of the two rocks. The rover can take
pictures or sample with the drill, but not both at the same time. The rover cannot drive with the drill on.
Finally, the rover’s goals are to take a picture at Rock1, and both a picture and a drill sample at Rock2.

Optimal planning couples the constraints on reaching goals with a function mapping valid plans to
values. Common cost functions are the makespan of the plan (i.e., the number of action sets in the plan),
the number of actions in the plan, and the utility of a plan. The utility of the plan is the sum of the rewards
for propositions in the goal state reached, minus the sum of action costs. Consider again Figure 47.1.
Suppose there are two rovers at the lander instead of one; the goal is to gather an image of each rock, and
to sample Rock2.1 A minimum makespan plan would have two rovers to go to Rock2, since one can drill
and the other can take the image. Since the camera can stay on while driving, whichever rover took the
image at Rock2 could drive to Rock1 and take the image there. By contrast, a minimum action plan would
use only one rover, and would first go to Rock1, leave the camera on while going from Rock1 to Rock2,
then do the drilling operation. The minimum makespan plan has makespan five and uses 10 actions. The
minimum action plan, by contrast, has makespan nine but uses only nine actions. It is clear how adding
action cost and goal reward to these examples creates complex and interesting problems.

It should be noted that planning research has been moving toward more complex representations
of classical planning problems that compactly express constraints involving time, resources, and more
complex planning domain rules. These extensions are discussed briefly at the end of the chapter.

47.1.2 Methods for Solving Classical Planning Problems

Planning has motivated considerable work on approximation algorithms, local search techniques, exploita-
tion of structure (e.g., divide-and-conquer methods), and the use of approximations as components of

1The STRIPS domain would need to be extended to include action descriptions for the second rover; the extended
description is omitted for brevity.
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FIGURE 47.1 The STRIPS encoding of a simple planetary rover domain. The can-drive propositions describe the
simple road network in the picture. The rover is permitted to drive with the camera on, but cannot drive with the drill
on. The drill and camera both cannot be turned on simultaneously. The rover must be at a location to take a picture
of sample.

exact planning algorithms. The motivation behind this is the computational complexity of planning. The
complexity is typically measured in the size of the domain, which is usually dominated by the size of the
action descriptions A. Standard STRIPS problems, where A is finite, arePSPACE-complete. Restrictions
on the problem specification can reduce the computational complexity. For example, the class of planning
problems where the length of the plan is bounded is NP-complete. This section gives a broad overview
of commonly used search methods to solve planning problems, which will set the stage for a detailed
discussion of approximation and local search techniques.

Search strategies for planning can be characterized by the search space representation and algorithm for
traversing the search space. One of the most commonly used strategies for planning is state-space search,
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in which the planner searches for a path between the initial state and a goal state. The state space and the set
of possible transitions is both implicit and exponential in size. To save time and space, states and allowed
state transitions are identified “on the fly” during planning. This leads to two primary state-space search
strategies; progression, which involves searching from the initial state toward a goal state, and regression
search, which starts with the propositions in the goal states and searches backward for a path to a state that
contains only propositions that are true in the initial state. Another strategy, plan-space search, searches
the set of possible plans. Typically, a plan-space search algorithm starts with the empty plan as its current
candidate plan. At each point in the search, if the candidate plan is not yet a valid solution, the algorithm
identifies a flaw that prevents the candidate plan from being a solution, and searches over flaw resolution
strategies. A candidate plan may not be valid because a goal has not been established by an action, or
a precondition for an action is not guaranteed to be true; one class of resolution strategies is the set of
actions that adds the required precondition or goal. Plan-space search is not restricted to progression or
regression, but can generate arbitrary partial plans.

Solving planning problems with a systematic search algorithm requires heuristics to guide the search
process. In the most general sense, heuristics provide guidance on how to make choices in the search
process. In state space search, heuristics are evaluated on states or sets of propositions, and estimate the
minimal distance to the search objective. For progression, this distance is from the current state to a goal
state, while for regression search the distance is from the current set of propositions to a subset of the
initial state. Admissible heuristics always under-estimate the distance to the goal in state space. Admissible
heuristics are appealing because, when used with breadth-first search, the first feasible solution found is
also an optimal solution. In state-space search, this yields optimal plans. Unfortunately, there is a tradeoff
between admissibility and accuracy, which is manifested in the speed of search. In plan-space search,
heuristics are more complex since a plan need not define a single current state that can be compared to
the goal. For example, a plan containing actions with missing preconditions implicitly identifies a set of
paths through the state space, but none of these paths may be valid.

This section discusses a variety of uses of relaxations in planning algorithms. One common use of
relaxations is to generate efficient, accurate heuristics to guide search; these techniques are discussed in
Section 47.2.1. The solution of the simpler problem can be used to guide the search; for example, it can
be used as an input to a heuristic choice ranking function, or as an indicator of which choices to pursue
and which to ignore. This section will focus on relaxation-based heuristics for state-space search, but will
mention some methods used to guide plan-space search. Another use of relaxations is to approximate
the solutions to planning problems. These methods are described in Section 47.2.2. Approximations are
most often used for optimal planning problems, but sometimes are used for decision problems as well. A
second class of search guidance techniques relies on identifying and exploiting problem structure. These
techniques are described in Section 47.2.3. Planning problems often contain subproblems that can be solved
by specialized combinatorial algorithms, for example, packing, path planning, and scheduling. Another
common form of structure exploitation is to partition the problem by either ordering or separating goals,
thus creating smaller, more easily solved planning problems.

Local search is a powerful technique that has been used successfully on a variety of combinatorial
problems. We describe local search approaches to planning in Section 47.3. Planning algorithms employing
local search can be applied directly to the space of plans; neighborhood selection for these algorithms can
be constructed by using variants of the cost functions discussed in Section 47.2. Local search can also be
done by transforming the space of plans into another space that is more amenable to the existing local
search algorithms.

47.2 Relaxations of Classical Planning Problems

Approximations are the foundation for many of the search guidance techniques used in planning. The
basic idea is to automatically generate an approximation of the given problem, solve or analyze the approx-
imation, and derive useful heuristic information from the result. Relaxations and related approximation
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techniques are particularly appealing, as they can be relatively easy to solve, while still retaining impor-
tant aspects of the original problem, and thus being more likely to provide useful information. This
section examines relaxation and approximation techniques used to guide planners. The section starts with
approximation-based heuristics, then moves on to the use of similar techniques for search space pruning.
Finally, the section examines methods that identify subproblems in planning and uses their solutions as
heuristics to guide the search for the larger problem.

47.2.1 Heuristic Guidance Using Relaxed Planning Problems

Effective search guidance is essential to the success of systematic search methods for planning. For planning
algorithms this means automatically calculating heuristics from the problem specification. The challenge
is to make such heuristics accurate enough to guide search effectively while preserving speed.

We will begin by considering heuristic estimation in state-space planning. Since planning goals are
stated only in terms of what propositions are true in goal states, the principal source of difficulty in finding
plans is the effect of action delete lists. A relaxed planning problem is one where all the delete lists have
been eliminated. While the existence of a plan can be determined in polynomial time for relaxed planning
problems, finding a plan with a minimal number of actions, that is, the path to the nearest goal, is still
NP-complete (the minimal action set problem is easily reduced to minimal set covering). Arbitrary
solutions to the relaxed planning problem offer poor heuristic guidance, so more refined approximations
are needed. One approach, used in progression, is to estimate the distance to individual propositions of a
goal state separately, and then combine the estimates. This approach, introduced in the Heuristic Search
Planner (HSP) family [9], can be described by a cost function c(s , p) that estimates the number of actions
needed to make a proposition p true when starting in state s . The cost estimate, which is easily calculated
in low-order polynomial time, is defined by

c(s , p) =
{

0 if p ∈ s
1 + mina∈A, p∈add(a) f ({c(s ′, p)|s ′ ∈ pre(a)})

Letting f = max when combining costs yields a heuristic hmax that is admissible, whereas letting f = ∑

yields a heuristic hadd that may underestimate or overestimate the real cost. A variation on this idea is found
in the FastForward (FF) planner [10], but instead of combining estimates for individual propositions, the
full relaxed planning problem is solved in a way that biases it toward short solutions. While this does not
optimally solve the relaxed problem, the results are often sufficiently accurate to provide a useful heuristic
estimate.

Consider our sample domain with the initial state at(Rock1) ∧ camera − off and the goal of having
image(Rock2)∧at(Rock1). The shortest plan has four actions, while both hmax and hadd give an estimate
of three. It is worth noting that while hmax is admissible, hadd is neither an upper or a lower bound. To see
that, consider the same initial state, with the goal of having image(Rock1) ∧image(Rock2). The shortest
solution is a four-step plan, while hmax estimates three steps and hadd estimates five steps.

The same idea can be applied in regression search, but with some notable differences. For one, since
the distance estimate is always from the initial state to a set of propositions, the heuristic can largely be
precalculated for each individual proposition, leaving only a simple combination operation; this idea is
discussed in Ref. [9]. However, this simple heuristic will often permit much of the regression search effort
to be spent on finding paths from sets of propositions which cannot be reached from the initial state, as they
contain two or more propositions that are mutually exclusive. This has led to efforts to identify mutually
exclusive sets of propositions and thus prune such states from the search. The notion of a plan-graph
[11] has turned out to be one effective approach to calculating mutual exclusions. A plan-graph is an
approximation of the state space that can be calculated easily and represented in a compact fashion. The
plan-graph is constructed as follows. The first level consists of the propositions defining the initial state.
The next level consists of all applicable actions (an action a is applicable if all propositions in pre(a) appear
in the previous level, and no two are marked as mutually exclusive). Actions that cannot be concurrent (as
described in Section 47.1.1) are marked as being mutually exclusive. The following level consists of all the
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propositions in the initial level, as well as all effects from actions in the second level. Pairs of propositions
that can only be achieved by mutually exclusive actions are marked as such. This process continues until
the set of propositions and mutual exclusion annotations does not change between successive levels. An
example of a plan-graph for the simple rover domain is shown in Figure 47.2.

The approximation provided by plan-graph is a powerful tool for guiding search methods. In the
GraphPlan planner [11], a simple plan-space regression search is used, with no particular emphasis on
action selection heuristics. Even so, the mutual exclusion annotations significantly reduce the effort spent
on inconsistent states. The plan-graph has also been used successfully in state space search, as it provides a
useful approximation of the search space and offers a way to identify impossible states in regression search.
Furthermore, the plan-graph has been used to formulate planning problems as constraint satisfaction
problems [12,13], and as satisfiability problems [14] (discussed in Section 47.3).

at(Rock2) ready-camera

take-pic
(Rock2)

at(Rock2) at(Rock1) ready-camera
image

(Rock2)

drive
(Rock2,Rock1)
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FIGURE 47.2 Part of the plan-graph for the rover domain. Boxes represent propositions and ovals represent actions.
Arrows represent action preconditions and effects, while arcs represent mutual exclusions. The plan-graph assumes
the rover is at(Rock2) and the camera is ready and includes only the actions drive and take-pic for simplicity.
Note that the set of mutual exclusions does not change after level four of this plan-graph.
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In many planning algorithms, and especially in state-space search, the plan-graph approximation has
been used to generate heuristics. A simple admissible heuristic calculates the distance to a state based
on the level of the plan-graph where the propositions in the state first appear without mutual exclusion
annotations. For example, in Figure 47.2, the first time image(Rock1) and at(Rock2) appear together
without being mutually exclusive is at level two. The state-space heuristics described above and the plan-
graph-based heuristics are in fact related special cases of a more general heuristic [15]. This generalized
heuristic is based on calculating the number of actions required to achieve a set of propositions of bounded
size b. If b = 1, then the derived heuristic is the HSP heuristic; if the b = 2, it gives the plan-graph heuristic.

The power of the plan-graph has led to many plan-graph-based heuristics. Simple heuristics often
underestimate the number of actions needed to reach a goal, so efforts are typically aimed at improving
that. One approach is to partition a set of propositions into minimally interacting subsets and then add up
the estimates calculated for each subset. The plan-graph can be used to estimate the interactions between
actions and take those into account in heuristic estimates [16].

We note that plan-graph-based heuristics have also been successfully applied to controlling search for
certain types of plan-space planners [17]. The idea is to use a special progression planner that focuses
search on a limited set of applicable actions. This limitation simplifies the mapping of partial plans to
states, making distance estimates easier to calculate.

To this point, the abstractions we have described have been based on relaxing action effects, and using the
resulting problems to derive heuristics. Another approach to relaxing planning problems is to eliminate
propositions from the problem description. This idea is used in planning with pattern databases [18].
An entry in the database maps a state to a heuristic evaluation that is calculated as the cost of solving a
planning problem that is restricted to a subset of the propositions in the planning problem. Such multiple
entries, each using a planning problem restricted to a different set of propositions, can be combined into
an overall admissible heuristic estimate. The selection of proposition sets is crucial to the value of each
entry; typically, the subsets are chosen such that each member has minimal interactions with propositions
outside the subset.

Optimal planning problems lead to another set of variations on this theme. These problems require
action costs and goal rewards to be folded into the standard plan-graph or state-space search distance
estimates. In AltAltPS and SapaPS [19], which are progression search and regression planners respectively
designed to solve optimal planning problems, the action cost C(a , t) and proposition costs C( p, t) at each
level t of the plan-graph are calculated by:

C ( p, t) = min(C (a , t − 1) + cost(a)

C(a , t) = f ({C (s ′, t) : s ′ ∈ pr e(a)})
where f is either min or

∑
, and the cost values are initialized with C( p, 0) = 0 if p ∈ i , C( p, 0) = ∞ if

p ∈ i , and C(a , 0) = ∞.
Finally, linear programming approximations that relax variable domains from the propositional set

{0, 1} to the interval [0, 1] can be used on planning problems. These approximations can be used to guide
the search and to prune irrelevant or suboptimal parts of the search space, as is done in many standard
integer programming techniques; examples of this technique are described in Refs. [20,21].

47.2.2 Solution Approximations Using Relaxation

While heuristics have been found to help a great deal when solving planning problems, there are many
cases when they are not sufficient for solving a problem effectively. This can stem from the heuristics not
providing enough information to steer the search effort, or the fact that a significant portion of the search
space must be searched to solve a given problem, such as is the case when finding optimal plans or proving
that no solution exists. To address these problems, many have turned to methods that reduce the search
by pruning parts of the search space, often using approximate methods.

Approximate pruning techniques have been explored for most existing planning formulations, but they
vary greatly depending on problem being solved and formulation being used. One common notion is
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to map the problem to an easier class of problem. In those cases, the approximation primarily involves
bounding some aspect of the planning problem, such as the length or number of actions. Another common
approach is to discard candidates that are viewed as being unlikely to lead to a solution. For example, in
the FF planner [10], one method is to limit action selection to “helpful” actions that achieve a desired goal
or subgoal. A variation of this approach is to limit the number of options considered at each point.

Optimal planning is a fertile area for approximations for search space pruning, as guaranteed optimality
is a particularly difficult problem, necessitating the use of methods that balance the search effort with the
quality of the solution returned. The simplest approximation is for optimal planning problems where the
solution value is a function of which goal propositions are achieved. Selecting a subset of goal propositions
up front turns the problem into a standard planning problem. For example, in AltAltPS [19], the set of
goals is generated iteratively as follows. For each goal g not yet in a current goal set G ′, solve the relaxed
planning problem for goals G ′∪ g , biased toward reusing the relaxed plan for achieving G ′. Then select
the one that adds the most value. A more sophisticated variation of the selection strategy examines subsets
of candidate goals that are mutually consistent [22].

Another approximation technique is to solve an easier planning problem first, then modify the solution
to meet the more difficult objective. This is particularly prevalent in problems where plan length (make-
span) must be minimized. One approach to minimizing makespan is to “parallelize” a plan minimizing the
number of actions [23]. Two approximations are at work in this technique; not only is finding a minimal
length plan from a given sequential planNP-complete [24], but also an optimal solution to the sequential
planning problem does not necessarily provide the best set of actions for a minimal length parallel plan.
This is demonstrated by the planning problem employing two rovers described in Section 47.1. Other
approaches include adding constraints to limit the search space [25] or heuristics [10] to influence a search
technique that otherwise ignores the desired plan optimization criterion.

47.2.3 Heuristic Guidance via Subproblem Identification

Structure and subproblem identification is another powerful tool for guiding search. One class of techniques
involves identifying common combinatorial problems as subcomponents of planning problems. Such
problems can then be solved with specialized, efficient solvers. The other class of techniques identifies
structures like partitions and ordering restrictions, which are then used to split the planning problem into
smaller, nearly independent planning problems that can be solved quickly with general-purpose planners,
after which the resulting plans are easily merged.

The best known technique for combinatorial subproblem identification uses type extraction [26] to
identify sets of related propositions and the relations between them. This is done by building up state-
machines whose nodes are propositions, and whose transitions are actions. For example, the characteristics
of a transportation domain are a set of location propositions, at(x), and a mobility action move(x,y)
that enables a change in location. These techniques can identify interesting and nonobvious subproblems;
an example in Ref. [26] shows how a wall-painting domain leads to a transportation subproblem due to
constraints on what colors walls can be painted; that is, the walls are mobile along a map of colors. Type
extraction is also extensible to “dependent” maps (e.g., travelers can only travel places with passports),
transported objects (packages carried in trucks), and multiple move propositions (drive and fly operators).
Furthermore, the approach can be extended to other subproblem types such as packing or scheduling. A
significant disadvantage of these techniques is that humans must write the subproblem descriptions. Fur-
ther work is needed when multiple subproblems can be extracted from the same parent problem instance.

The notion of identifying state machines within planning problems is a powerful idea. A more general
approach to identifying problem structures relies on translating planning problems into a different domain
modeling language called SAS+ [27], using a transformation algorithm described in Ref. [28]. In this
representation, a planning problem consists of finite domain variables, and actions cause subsets of these
variables to change values; each variable can be thought of as a state machine. A SAS+ representation of the
rover domain is shown in Figure 47.3. A SAS+ domain’s causal graph is a directed graph over the variables
of the problem; there is an edge from u to v if a precondition on u causes v to change value, or an effect
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FIGURE 47.3 The rover domain in the SAS+ formalism. Only one instance of each action is provided for simplicity.
Ovals are values of state variables, boxes represent actions. State variable value transitions are shown with black arrows,
action preconditions and effects are shown with white arrows.

causes both u and v to change value. A subclass of SAS+ problem instances restricts goals to variables
with out degree zero in the causal graph. A polynomial-time approximate algorithm for these problems
described in Ref. [29] enumerates paths of value transitions from shortest to longest; each path is checked
to ensure it satisfies the goal, and that the action descriptions for the low-level goals are satisfied. These
plans are converted into distance estimates by summing the number of value transitions for the high-level
variable plan and the shortest paths between the initial and final values for the low-level variable.

When it comes to planning problems involving transportation and optimization, a common subproblem
is the Orienteering problem or Prize-Collecting TSP (Chapter 40). The Orienteering problem is quite
simple compared to an optimal planning problem, consisting of a graph with weighted nodes and edges,
where the node weights correspond to edge traversal costs, while node weights correspond to rewards for
visiting each edge. Methods for constructing and using the Orienteering problem for optimal planning
are described in Ref. [30]. The extraction of the Orienteering problem consists of three phases. The first
phase involves a sensitivity analysis step, in which the ground propositions are analyzed for the variable
cost of goal achievement. This is done by constructing a relaxed plan for each goal g and calculating costs
using the same formula for calculating costs for AltAltPS. For each proposition p in the final plan for
g , assume p was true initially, and that propositions mutually exclusive with p are infinitely expensive,
then recalculate the cost. The “seed” of the Orienteering problem comprises the set of all propositions for
which the cost of goal achievement varies significantly (using a parameter passed to the algorithm). The
problem is complemented by applying each action to each possible state which is both reachable from the
initial state, and consists only of propositions in the seed set; this is calculable using a normal plan-graph.
The plan-graph is used to estimate the costs of achieving goals at each state of the resulting problem
using the same cost function; this process adds new nodes (states derived from the plan-graph) and edges.
Approximate solutions to the resulting Orienteering problem then provide heuristics to a classical planner,
which can either be an approximate or complete planner.

Another class of structure identification and exploitation techniques relies on identifying subproblems
that are solved with a planner instead of special-purpose combinatorial solvers. This approach relies on
identifying small subproblems and guaranteeing that an overall solution can be constructed from the
subproblems. One method involves finding landmarks [31], which are propositions that must hold in all
valid plans. These propositions can be goals or intermediate states that must be reached to satisfy the goals.
Two landmarks are necessarily ordered if one is a precondition for achieving the other. Again referring to
Figure 47.1, the goals of imaging Rock1 and Rock2 from the initial state of rover at Lander both require
being at the Hill at some point. Deciding if a proposition is a landmark, and deciding whether landmarks
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are necessarily ordered, are PSPACE-complete problems. A subset of landmarks are found by building
the relaxed plan-graph; initially the goals g are landmarks, and subsequently every proposition needed
by all actions is a landmark. The relaxed plan-graph is then used to find a subset of the necessary orders.
The resulting identified landmarks and orders are used to provide search control to planners, either by
controlling decision making or providing guidance to sequential divide-and-conquer algorithms.

47.3 Planning Using Local Search

Local search is a term used to describe a broad range of strategies for solving combinatorial problems.
Local search is appealing because it tends to solve such problems fast, but theoretical analysis of average
case performance of such algorithms is difficult, and considerable work is often required to tune these
algorithms for best performance. This section describes local search techniques for planning.

47.3.1 Local Search Algorithms

Local search algorithms are characterized by a candidate solution to a problem, a set of operators that modify
that solution to produce a neighborhood of solutions, and a procedure that chooses one of the neighbors as
the next candidate solution. When local search is used to solve decision problems, minimizing the number
of violated constraints transforms the problem into a pure optimization problem. The most common
strategy to solve such problems is a “greedy” one, in which the lowest cost neighbor is selected as the
next candidate solution. Greedy local search algorithms can be trapped in local minima in which there
are no improving moves; numerous strategies for detecting or avoiding local minima have been studied,
from injecting random moves and random restarts into search (Chapter 19) to adding either temporary
constraints (Chapters 21 and 23) or permanent ones that influence subsequent steps. Another problem is
that of large neighborhoods, which can be expensive to evaluate. This leads to early termination rules that
improve the rate at which moves are made, at the possible cost of slow improvement in the optimization
criteria (Chapter 20).

Constrained optimization problems can also be transformed into pure optimization problems by as-
signing a penalty to violated constraints. In constrained optimization problems over continuous variables,
these penalties are called Lagrange multipliers (Chapter 4). The theory of Lagrange multipliers states that
saddle points in the space of the original variables plus the Lagrange multipliers are solutions to the origi-
nal constrained optimization problem, as long as some other properties are satisfied; this theory has been
extended to discrete problems as well.

47.3.2 Local Search Neighborhoods for Planning

A common method of local search for planning is to define a set of operators that directly manipulate
plans, in effect performing local search over plan space. These methods generate a set of possible plans
from the current plan. The plans are then assessed to determine whether they are an improvement over
the current plan; this assessment drives selection of the next plan in the neighborhood.

When feasible plans are easy to find and optimization is required, local search over the space of plans is
a sensible approach. Planning by rewriting or PBR [32] is one such technique; it operates in plan space.
The plan rewrite rules are domain-specific operators that are designed to create better plans. Rules come
in four classes: action reordering rules, collapsing rules (that reduce the number of actions), expanders
(inverse of collapsers), and parallelizers (that eliminate ordering constraints). A sample reordering rule
from the rover problem (Figure 47.1) is: if the plan moves the rover to accomplish a goal, then moves back
to the current position to accomplish another goal, reorder these goals and discard the extra movements.
If feasible plans are needed, the violated rules can be assigned penalties. This approach is used in Ref. [33];
specifically, an elaboration on the landmark technique described in Section 47.2 is used to divide the plan
into segments. The rules of the domain ensure that the plan is well formed, that is, each segment is well
formed, and the actions in segment i establish the preconditions for states in segment i + 1.
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Another option is to operate on the space of plan-graphs. An action-graph is a subset of a plan-graph
such that if an action is in action-graph then the propositions in the precondition and add effect lists are
also in action-graph. Action-graphs can have inconsistencies, either in the form of mutual exclusions or
propositions not supported by actions. This leads to a natural local search neighborhood; actions can be
added to establish support, or removed to eliminate unsupported actions or resolve mutual exclusions. A
linear-action-graph is an action-graph with at most one action per level. Local search on linear-action-
graphs only manipulates actions to fix unsupported precondition inconsistencies; this leads to a simpler
and smaller search neighborhood. Actions may be added at any level; the resulting linear-action-graphis
grown by one level. Actions with unsupported preconditions may also be removed. LPG [34] is a local
search planner that operates on action-graphs. In Figure 47.4 we show a linear action graph neighborhood
for the rover example. In the scenario in Figure 47.4 there is only one way to legally insert the turn-
on-drill action. In general, however, there may be many neighbors to evaluate. Due to the expense
of evaluating the neighborhood, and its potential size, small subsets of inconsistencies may be used to
generate neighbors, with heuristics guiding inconsistency selection. Further limits can also be imposed to
reduce the neighborhood size.

Another method involves transforming the plan space into another representation and performing local
search in this representation. One possible representation is the Propositional Satisfiability problem (SAT);
considerable work on local search (and complete search) has been done on this problem. Propositions
encode assertions such as “plan proposition holds at step” or “action occurs at step,” and clauses encode
the domain rules governing legal action occurrences and their implications. The transformation of the
plan space into SAT requires searching over a restricted set of plans; this is often done in a manner sim-
ilar to construction of the plan-graph. Different encodings impact the size of the SAT problem and the
local search topology, and therefore solver performance. One encoding, described in Ref. [35], works as
follows. Actions imply their preconditions at the current instant and their effects at the next instant; one
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FIGURE 47.4 An example of the search neighborhood for LPG in the rover domain using linear action graphs. The
preconditions for drill-sample are unsatisfied, inducing a search neighborhood of size two. There is one legal place
for adding turn-on-drill; alternately, drill-sample can be removed.
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Actions imply preconditions
and effects

(drive-Hill-Rock1-i) =>
((at-Hill-i)  

(can-drive-Hill-Rock1-i)  
(at-Rock1-i+1)  

(¬at-Hill-i+1))

(turn-on-Camera-i) =>
((off-Camera-i)  

(off-Drill-i)  
(ready-Camera-i+1)  

(¬off-Camera-i+1))

(take-pic-Rock1-i) =>
((at-Rover-Rock1-i)  
(ready-Camera-i)  
(image-Rock1-i+1))

...

Frame axioms
(summarized)

((take-pic-Rock-i)  
(true-prop-i)) =>
(true-prop-i+1)

((drive-Hill-Rock1-i)  
true-prop-i)) =>
(true-prop-i+1)

((turn-on-Camera-i)  
true-prop-i)) =>
(true-prop-i+1))

...

Only one action at a time

((drive-Hill-Rock1-i) v
(¬turn-on-Camera-i) v

...
(¬Sample-Rock1-i))

((¬drive-Hill-Rock1-i v
(turn-on-Camera-i) v

...
(¬Sample-Rock1-i))

((¬drive-Hill-Rock1-i) v
(¬ turn-on-Camera-i) v

...
(Sample-Rock1-i))

v
v

v

v
v

v

v

v

v

v
v

v
v

FIGURE 47.5 The SATPlan encoding of the rover problem.

action occurs per instant; the initial state holds; and the frame conditions hold. An example of this SAT
encoding for our rover domain is shown in Figure 47.5. Another representation, described in Ref. [36],
allows concurrent actions, and eliminates the action propositions from the encoding; all that remains are
logical clauses expressing the possible transformations of propositions truth values after a (set of) action
invocations. This reduces the size of the domain encoding and thus improves SAT solver performance.
Other techniques to manipulate the SAT encoding include using unit propagation and posting single- and
double-literal assertions to generate new clauses.

SAT is a good representation for finding feasible plans, but more expressive representations can provide
more flexibility to solvers. One such representation is a special subset of Integer Linear Programs (ILPs)
called Over-constrained Integer Programs (OIPs). The OIP consists of two systems of linear inequalities,
one set Ai x ≤ b defining feasible plans, and another set Ci x ≤ d defining optimization criteria. The
optimization function is to minimize the nonlinear function

∑
i Ci x −d | Ci x > d , that is, the “deviation”

of the current solution from the optimal solution. The encoding is an extension of the SAT-based encodings
described previously; it is easy to transform SAT into a 0−1 LP. Linear objective functions based on states and
actions in the plan are easily encoded as systems of LPs. This representation is used by WalkSAT(OIP) [37].

47.3.3 Selecting the Successor

Local search algorithms that operate directly on the plan-state face the problem of deciding which neighbor
to select. When the set of plans in the neighborhood is mostly feasible, as is the assumption behind PBR,
the neighborhood can simply be evaluated by the function that determines the value of feasible plans.
When the neighborhood consists of infeasible plans, as occurs with LPG, the problem is how to estimate
the relative merit of infeasible plans. One solution is to use heuristics that estimate the amount of work
needed to fix the problems with this plan. The situation is well summarized when considering heuristics
estimating the work needed to find a feasible linear-action-graph. Let threats(a,C) be the set of supporting
preconditions of actions in C that become unsupported if a is added to C ; nopre(a,C) be the set of
unsupported preconditions of a in C ; and unsup(b,C) be the set of supporting preconditions of actions in
C that become unsupported if b is removed from C . A simple neighborhood evaluation function is

E i
0(a , C ) = |threats(a , C )| + |nopre(a , C)|

E r
0(b, C ) = |unsup(b, C )|
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where E i
0(a , C) is used if a is added to C , and E r

0(b, C ) is used if b is removed from C . A more accurate
heuristic recursively adds actions to support unsupported facts, using E i

0(a , C) and E r
0(a , C) to penalize

these actions. The most accurate heuristic extends the linear-action-graph using a regression planner that
ignores delete effects of actions; the heuristic then counts actions in the resulting (relaxed) plan and
conflicts between the relaxed plan and the current linear-action-graph.

Representations based on either SAT or constraints, such as OIP, induce simple neighborhoods. The
common neighborhood in the SAT solvers used in SATPlan [38] is to reverse the assignment of each
proposition. For constraint-based representations like OIP, the set of variable assignments satisfying one
violated constraint form the search neighborhood. Representations that partition constraints into feasi-
bility constraints and optimality constraints such as OIP enable algorithms that choose between sets of
violated constraints according to a predetermined bias.

Since the theory of Lagrange multipliers has been extended to discrete search, it is possible to transform
an optimal planning problem into a discrete constrained optimization problem, and implement a search
to find extended saddle points in the Lagrangian space of a problem. This is the approach taken in Ref. [33].
Plans are partitioned into contiguous segments, with discrete choices corresponding to actions that can be
added to or removed from each segment; this effectively creates many small, linked optimization problems,
thereby parallelizing search. The search for a saddle point utilizes numerous methods to control growth of
the Lagrangian penalties, as well as the usual methods of neighborhood cost control and randomization
to promote exploration. Additional methods are used to adjust segment boundaries during search. This
approach can use many different planners to generate moves during search. This method is more general
than using OIPs, but still requires careful modeling of the search space.

47.4 Planning Ahead: The Future of Approximations
and Planning

Recent work in AI planning has focused on extending the core goal achievement problem to better represent
the complexity of real-world problems. This includes handling temporal and resource constraints found in
scheduling problems [39], as well as more complex relations between actions and states. The most popular
planning domain description language (PDDL), has been extended to provide more direct support for
temporally extended state and action, numeric fluents (meant to capture resource states), and planning
with knowledge of future state (exogenous events). In addition, other variants of STRIPS have been
developed to include explicit resource declarations, resource-impacting actions, and allow resource state-
based preconditions, for example, see Ref. [40].

Work is under way to extend existing techniques to handle the additional complexity, and to develop new
approaches to represent and reason about plans. This work includes approximation methods, structure
identification techniques, and local search, which will continue to play a crucial role in effective automated
planning. For search guidance, plan-graph methods have been extended to include temporal information
[41] and numerical fluents [42]. Structure identification and exploitation techniques include the use of
special-purpose methods for scheduling subproblems [43]. Local search approaches are being utilized for
resource-constrained planning [44]. However, a great deal of work still needs to be done to reach the full
potential of approximation techniques and local search methods for planning in the future.
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48.1 Introduction

The generalized assignment problem (GAP) is one of the representative combinatorial optimization prob-
lems known to be NP-hard. Given n jobs and m agents, we undertake to determine a minimum-cost
assignment such that every job is assigned to exactly one agent and the resource constraint for each agent
is satisfied. This problem is a natural generalization of such representative combinatorial optimization
problems as bipartite matching, knapsack, and bin packing problems, and has many important applica-
tions, including flexible manufacturing systems [1], facility location [2], and vehicle routing problems [3].
Consequently, designing good, exact, or heuristic algorithms for GAP has significant practical as well
as theoretical value. Among various heuristic algorithms developed for GAP are a combination of the
greedy method and the local search by Martello and Toth [4,5]; a tabu search and simulated annealing by
Osman [6]; a genetic algorithm by Chu and Beasley [7]; variable depth search algorithms by Racer and
Amini [8,9]; a tabu search based on ejection chain approach by Laguna et al. [10] (which is proposed for a
generalization of GAP); another tabu search by Dı́az and Fernández [11]; a Lagrangian heuristic algorithm
by Haddadi and Ouzia [12]; a MAX-MIN ant system combined with local search and tabu search by
Lourenço and Serra [13]; a path-relinking algorithm by Alfandari et al. [14]; ejection chain approaches
by Yagiura et al. [15,16], and so on. Research for exact algorithms also has long history since early papers
by Ross and Soland [17], Martello and Toth [4], and Fisher et al. [18]. Among recent exact algorithms
successful for GAP are the branch-and-bound methods by Savelsbergh [19], Nauss [20], and Haddadi and
Ouzia [21].

In this chapter, we review heuristic and metaheuristic algorithms for GAP. We first define the problem
formally, and introduce some related problems and their complexities in Section 48.2. We then explain
basic strategies of greedy method and local search in Sections 48.3 and 48.4. As relaxation problems
often provide useful information to improve the search, we introduce Lagrangian relaxation problems in

48-1
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Section 48.5, and then explain some basic ideas of Lagrangian heuristics in Section 48.6. Although branch-
and-bound is usually used to design exact algorithms, it can also be used for approximation algorithms;
hence we describe the basics of branch-and-bound in Section 48.8. We then report some computational
results of various metaheuristic algorithms and branch-and-bound methods in Section 48.9. A brief survey
on polynomial-time approximation algorithms with performance guarantees is given in Section 48.10.

48.2 Generalized Assignment Problem

In this section, we first give a formal definition of the generalized assignment problem, and then introduce
some equivalent formulations, special cases, and generalizations, and discuss their complexities.

48.2.1 Definition of the Problem

Given n jobs J = {1, 2, . . . , n} and m agents I = {1, 2, . . . , m}, we determine a minimum-cost assignment
subject to the constraints of assigning each job to exactly one agent and satisfying a resource constraint for
each agent. Assigning job j to agent i incurs a cost of cij and consumes an amount ai j (>0) of the resource,
whereas the total amount of the resource available at agent i is bi (> 0). An assignment is a mapping σ :
J → I , where σ ( j ) = i means that job j is assigned to agent i . For convenience, we define a 0-1 variable
xij for each pair of i ∈ I and j ∈ J by

xij = 1 ⇐⇒ σ ( j ) = i

Then the generalized assignment problem (GAP) is formulated as follows:

GAP: minimize cost(x) =
∑

i∈I

∑

j∈J

c i j xi j (48.1)

subject to
∑

j∈J

ai j xi j ≤ bi , ∀i ∈ I (48.2)

∑

i∈I

xi j = 1, ∀ j ∈ J (48.3)

xi j ∈ {0, 1}, ∀i ∈ I and ∀ j ∈ J (48.4)

The first condition (48.2) signifies that the amount of resource required by the jobs assigned to each agent
must not exceed the available amount of resource at the agent, which is called the resource constraint, and
the second condition (48.3) signifies that each job must be assigned to exactly one agent, which is called
the assignment constraint. The objective value cost(x) is also referred to as cost(σ ), as it represents the cost
of assignment σ : J → I .

48.2.2 Related Problems and Complexity

GAP is sometimes defined as a maximization problem whose objective is to maximize
∑

i∈I

∑
j∈J ρi j xi j ,

where ρi j are profits of assigning job j to agent i , subject to constraints (48.2)–(48.4). This is a natural
generalization of the knapsack problem [5], and is equivalent to the above minimization formulation;
simply let ci j := −ρi j , or let ci j := ρ̄ − ρi j for a constant ρ̄ with ρ̄ ≥ maxi∈I , j∈J ρi j if negative costs are
not preferable. In the latter case, cost(x) = ∑

i∈I

∑
j∈J (ρ̄ − ρi j )xi j = nρ̄ − ∑

i∈I

∑
j∈J ρi j xi j holds

for any feasible x by (48.3).
GAP is known to be NP-hard, and the (supposedly) simpler problem of determining the existence of a

feasible solution for GAP is NP-complete in the strong sense, since (the decision version of) the bin packing
problem [22] can be reduced to this problem. This feasibility problem of GAP remains to be NP-complete
even if m is a fixed constant, since the partition problem [22] can be reduced to this problem with m = 2.
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In contrast, we can consider the problem GAP′, which is GAP with constraint (48.3) being replaced by

∑

i∈I

xi j ≤ 1, ∀ j ∈ J (48.5)

This GAP′ always has a feasible solution. Note that in this case, a job j will not be assigned to an agent i
unless ci j ≤ 0, and hence the formulation of profit maximization seems more natural. Such maximization
formulation is suitable when performance guarantees are considered [23,24], and is called by various
names such as LLGAP [5] and max-profit GAP [24].) GAP′ is, however, equivalent to GAP as shown
below. For any instance of GAP′, we can construct an equivalent instance of GAP by adding a dummy
agent “m + 1” with bm+1 = n, cm+1, j = 0, and am+1, j = 1 for all j ∈ J . That is, corresponding to a
solution of GAP′ with

∑
i∈I xi j = 0, GAP has the solution with xm+1, j = 1. Conversely, for any instance

of GAP, we can consider the instance of GAP′ having costs ci j − c̄ for all i ∈ I and j ∈ J , where c̄ is a
sufficiently large constant (e.g., c̄ > 2

∑
j∈J (maxi∈I c i j − mini∈I c i j )). Then, if an optimal solution to

the transformed instance of GAP′ satisfies (48.3), the original instance also has an optimal feasible solution
whose cost is larger by nc̄ ; otherwise we can conclude that there is no feasible solution to the instance of
GAP.

If m is a fixed constant, GAP admits a pseudo polynomial-time exact algorithm, which is based on
dynamic programming. GAP with ai j = 1 for all i ∈ I and j ∈ J becomes a special case of the minimum-
cost flow problem and is solvable in polynomial time. (Actually, it is not hard to show that this special case
is equivalent to the bipartite maximum weight matching problem.) A more restricted case with m = n,
ai j = 1, and bi = 1 for all i ∈ I and j ∈ J is known as the assignment problem, and has efficient special
algorithms. Efficient algorithms for network flow, matching, and assignment problems are found, e.g., in
Refs. [25–27].

GAP can also be formulated as a set partitioning problem. For each agent i ∈ I , suppose that all possible
subsets J ′ ⊆ J (including the empty set) satisfying

∑
j∈J ′ ai j ≤ bi are numbered and let Ci be the set

of such indices. A subset J k
i ⊆ J with k ∈ Ci represents a set of jobs assigned to agent i . For each J k

i ,
define dk

i = ∑
j∈J k

i
c i j and δk

i j = 1 (respectively, 0) if j ∈ J k
i (resp., j 
∈ J k

i ). Then the set partitioning

formulation of GAP is given as follows:

minimize
∑

i∈I

∑

k∈Ci

dk
i yk

i (48.6)

subject to
∑

i∈I

∑

k∈Ci

δk
i j yk

i = 1, ∀ j ∈ J (48.7)

∑

k∈Ci

yk
i = 1, ∀i ∈ I (48.8)

yk
i ∈ {0, 1}, ∀k ∈ Ci and ∀i ∈ I (48.9)

It is not practical to generate all elements in Ci (i ∈ I ), and hence column generation approach is usually
used to generate only promising subsets [28,19].

Motivated by practical applications, various generalizations of GAP have been proposed. The multi re-
source generalized assignment problem (MRGAP), in which more than one resource constraint is considered
for each agent, is a natural generalization of GAP. For MRGAP, Gavish and Pirkul proposed a branch-
and-bound algorithm and two simple Lagrangian heuristics [29]; Rego et al. [30] applied a metaheuristic
approach called RAMP (relaxation adaptive memory programming)[31]; and Yagiura et al. [32] devised
a very large-scale neighborhood search algorithm. We mention here other generalizations of GAP; e.g.,
the multi level GAP [10]; the dynamic multi resource GAP [33]; the generalized multi assignment prob-
lem [34]; the multi resource GAP with additional constraints [35]; and so forth. The survey by Cattrysse
and van Wassenhove [36] discusses some other generalizations of GAP, and summarizes existing results
before the early 1990s.
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48.3 Greedy Methods

There are several useful tools used to design approximation algorithms. The most common one is perhaps
the greedy method, which directly constructs approximate solutions by successively determining the values
of variables on the basis of some local information. Another important tool is the local search (LS), which will
be discussed in Section 48.4. In this section, we will describe simple examples of greedy methods for GAP.

The basic framework of greedy methods for GAP is as follows: Start with an empty assignment (i.e.,
xi j = 0 for all i ∈ I and j ∈ J ), and in each iteration, choose a pair of job j and agent i that minimizes an
evaluation function fi j (x) among those having sufficient space at agent i (i.e.,

∑
j ′∈J ai j ′ xi j ′ +ai j ≤ bi ),

and assign the job j to the agent i (i.e., let xi j := 1). This is repeated until a feasible solution is found or it is
concluded that the algorithm failed to find a feasible solution. The function fi j (x) measures the desirability
of assigning job j to agent i when the current (incomplete) solution is x , where various definitions of
fi j (x) are possible. For convenience, let

b̃i (x) = bi −
∑

j ′∈J

ai j ′ xi j ′

be the currently available amount of resource at agent i and

F j (x) = {
i ∈ I | ai j ≤ b̃i (x)

}
(48.10)

be the set of agents to which job j can be assigned without violating the resource constraint (48.2). Then
the framework of the greedy method is formally described as follows, where J ′ ⊆ J denotes the set of jobs
not assigned yet.

Algorithm GREEDY
Step 1. Let xi j := 0 for all i ∈ I and j ∈ J , and let J ′ := J .
Step 2. If F j (x) = ∅ holds for some j ∈ J ′, then output “failed” and stop. If J ′ = ∅ holds, output

the current solution x and stop.
Step 3. Choose a pair (i, j ) that minimizes fi j (x) among those satisfying j ∈ J ′ and i ∈ F j (x). Then

let xi j := 1, J ′ := J ′ \{ j }, and return to Step 2.

Among conceivable functions for fij(x) are (1) cij, (2) (cij − c̄ j )/ai j , (3) aij, and (4) aij/bi , where c̄ j is
a parameter satisfying c̄ j ≥ maxi∈I c ij. The evaluation function (2) comes from the profit maximization
formulation of GAP, where the counterpart is ρi j /ai j , the profit per unit resource. It should be noted that
this measure ρi j /ai j is meaningful only if ρi j ≥ 0 for all i ∈ I and j ∈ J .

Below is a more sophisticated way of defining fi j (x), which is based on the concept of “regret” measures.
Let f ′ be a simple evaluation function such as those listed above. For each job j ∈ J ′, let i1 be the agent
i in F j (x) that minimizes f ′

i j (x). Moreover, if |F j (x)| ≥ 2 holds, let i2 be the agent i that minimizes
f ′
i j (x) among those in F j (x)\{i1}. Then fi j (x) is defined as fi1 j (x) = −∞ if |F j (x)| = 1, and fi1 j (x) =

f ′
i1 j (x) − f ′

i2 j (x) otherwise, while fi j (x) = +∞ for i 
= i1. Of course, in the iteration of GREEDY, the
xi j with the minimum fi j (x) is chosen and set to xi j := 1. This regret measure gives priority to the job
having the largest difference in the values of f ′

i j (x) between the best and the second best agents. While
simple original measures are myopic, the regret measures consider one step forward, and hence lead to
better performance in many cases. An efficient implementation of such a greedy method is discussed in
Ref. [5].

48.4 Local Search

LS is one of the basic tools for designing approximation algorithms. It starts from an initial solution x and
repeatedly replaces x with a better solution in its neighborhood N(x) until no better solution is found in
N(x), where a neighborhood N(x) is a set of solutions obtainable from x with slight perturbations. The
resulting solution x is locally optimal in the sense that no better solution exists in its neighborhood. LS is
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sometimes terminated before a locally optimal solution is reached according to some stopping criterion;
e.g., when it is computationally expensive to continue the search.

Shift and swap neighborhoods, denoted Nshift and Nswap, respectively, are commonly used in LS methods
for GAP, where

Nshift(x) = {x ′ | x ′ is obtainable from x by changing the assignment of one job},
Nswap(x) = {x ′ | x ′ is obtainable from x by exchanging the assignments of two jobs}.

The size of these neighborhoods are O(mn) and O(n2), respectively. Note that the number of jobs assigned
to each agent will not be changed by swap moves; hence it is not appropriate to use the swap neighborhood
alone.

The definition of the search space is also an important issue in designing LS. For GAP, it is not effective
to search only within the feasible region unless the resource constraints (48.2) are loose, since the problem
of determining the existence of a feasible solution is already NP-complete as mentioned in Section 48.2.
The following two search spaces are commonly used:

SS1. The set of all possible x that satisfy constraints (48.3) and (48.4) (i.e., the set of all possible
assignments σ : J → I ), implying that the resource constraint (48.2) can be violated during the
search.

SS2. The set of all possible x that satisfy constraints (48.2), (48.4), and (48.5) (i.e., the constraint
(48.3) is relaxed to (48.5)). This is equivalent to adding a dummy agent “m + 1” and considering
all possible assignments σ : J → I ∪ {m + 1} that satisfy the resource constraint (48.2).

We then need to evaluate solutions taking the degree of constraint violation into consideration. An objective
function penalized by infeasibility is usually used for this purpose. For example, if the above search space
SS1 is used, a natural penalized cost function is as follows:

pcost(x) = cost(x) +
∑

i∈I

αi pi (x) (48.11)

where

pi (x) = max





0,

∑

j∈J

ai j xi j − bi






denotes the amount of infeasibility at agent i ∈ I , and αi (>0) are parameters called penalty weights. For
the search space SS2, a natural evaluation function is

cost(x) +
∑

j∈J

β j

(

1 −
∑

i∈I

xi j

)

with appropriate penalty weights β j (>0). (Equivalently, we can add a dummy agent “m + 1” and let
cm+1, j = β j , am+1, j = 1 for all j ∈ J and bm+1 = n, and let the search space to be the feasible region
with respect to the modified instance.) The parameters αi and β j can be given as fixed constants as in
Refs. [37,38], or can be adaptively controlled during the search by using such an algorithm as in [15] (see
also Section 48.7.2). A locally optimal solution under the above penalized costs may not always be feasible;
however, we can increase the probability of obtaining feasible solutions by (1) keeping the best feasible
solution obtained during the search as an incumbent solution and (2) using large values for the penalty
weights.

Various algorithms can be realized within the framework of LS by specifying detailed rules in the
algorithm. For example, LS with the shift neighborhood in search space SS2 includes the greedy method
in Section 48.3, where all jobs are initially assigned to the dummy agent m + 1 and shifted to new agents i
with 1 ≤ i ≤ m one by one.

As a concrete example of a simple LS algorithm, we introduce below the algorithm MTHG proposed
by Martello and Toth [4,5]. This algorithm is often used as a subprocedure for other approximation or
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exact algorithms. It starts with the greedy method in Section 48.3, using a regret measure as the evaluation
function f , and then improves the solution by shift moves, where the feasible shift move with the largest
improvement is chosen for each job, and a job will not be shifted again once its assignment is changed;
hence the number of shift moves is limited to n. The algorithm is formally described as follows. Recall that
F j (x) defined in (48.10) is the set of agents to which job j can be shifted without violating the resource
constraint.

Algorithm MTHG
Step 1 Call algorithm GREEDY using a regret measure. If it failed to find a feasible solution, output

“failed” and stop; otherwise let x be the solution output by GREEDY and j := 1.
Step 2 Let i ′ be the agent to which the job j is currently assigned (i.e., xi ′ j = 1). If F j (x)\{i ′} = ∅

holds, proceed to Step 3; otherwise let i ′′ be the agent that minimizes ci j among those in F j (x)\{i ′}.
If ci ′′ j < ci ′ j holds, change the assignment of job j from i ′ to i ′′; i.e., let xi ′ j := 0 and xi ′′ j := 1.

Step 3 If j = n holds, output the current solution x and stop; otherwise let j := j + 1 and return to
Step 2.

For simplicity, in the above algorithm, shift moves are tested according to the order of their job indices (as
described in the same way as in Ref. [5]); however, it is often preferable to shuffle the indices beforehand
to avoid undesirable bias. If appropriately implemented, algorithm MTHG runs in O(nm log m + n2)
time, provided that the simple evaluation f ′ to be used to compute the regret measure f can be evaluated
independently of x as in the case of the four examples discussed in Section 48.3.

48.5 Lagrangian Relaxation

Relaxation problems often provide useful information for designing efficient algorithms to solve the
original problem. In this section, we give two types of Lagrangian relaxation problems for GAP: One relaxes
the resource constraint (48.2), and another relaxes the assignment constraint (48.3). The first type is
formally defined as follows:

L rec(u) = min
∑

i∈I

∑

j∈J

(ci j + ui ai j )xi j −
∑

i∈I

ui bi

s.t.
∑

i∈I

xi j = 1, ∀ j ∈ J (48.12)

xi j ∈ {0, 1}, ∀i ∈ I and ∀ j ∈ J

where u = (u1, u2, . . . , um) ∈ Rm+ (R+ is the set of nonnegative reals) is a Lagrangian multiplier vector
given to the resource constraint (48.2). An optimal solution x for this relaxation problem is obtained by
the following simple rule: For each job j , let i∗j be an agent i that minimizes ci j + ui ai j , and let xi j := 1
for i = i∗j and xi j := 0 for i 
= i∗j .

For any u ∈ Rm+ , L rec(u) gives a lower bound on the objective value of problem GAP, and the Lagrangian
dual problem is to find a u ∈ Rm+ that maximizes the lower bound L rec(u). Any optimal solution u = u∗
to the dual of the linear programming (LP) relaxation of GAP,

LP = max
∑

j∈J

v j −
∑

i∈I

bi ui

s.t. v j − ai j ui ≤ ci j , ∀i ∈ I and ∀ j ∈ J
ui ≥ 0, ∀i ∈ I

(48.13)

is an optimal solution to the Lagrangian dual [39]. However, computing such u∗ by solving (48.13) is
expensive for large scale instances. Hence the subgradient method [39,40] explained below is often used for
finding a near-optimal u.
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Define the subgradient vector s (u) ∈ Rm by

si (u) =
∑

j∈J

ai j xi j (u) − bi

for all i ∈ M, where x(u) is an optimal solution to L rec(u). The method generates a sequence of Lagrangian
multiplier vectors u(0), u(1), . . . , where u(0) is an initial vector, and u(k+1) is updated from u(k) by the
following formula:

u(k+1)
i := max

{
u(k)

i + tksi (u(k)), 0
}

, ∀i ∈ I

where tk > 0 is a scalar called step size. One of the most common rules of determining step sizes is

tk = λk
UB − L rec(u(k))

||s (u(k))||2
where UB is an upper bound on cost(x) (e.g., obtained by a greedy method or an LS) and λk ∈
(0, 2] is a scalar. The sequence of λk is often determined by setting λ0 := 2 and halving λk whenever
maxk≥0 L rec(u(k)) has failed to improve during some number of consecutive iterations.

Another type of Lagrangian relaxation problem is obtained by relaxing the assignment constraint (48.3):

L asgn(v) = min
∑

i∈I

∑

j∈J

(ci j − v j )xi j +
∑

j∈J

v j

s.t.
∑

j∈J

ai j xi j ≤ bi , ∀i ∈ I (48.14)

xi j ∈ {0, 1}, ∀i ∈ I and ∀ j ∈ J

where v = (v1, v2, . . . , vn) ∈ Rn (R is the set of reals) is a Lagrangian multiplier vector given to the
assignment constraint. Problem (48.14) decomposes into m 0-1 knapsack problems, which is also known
to be NP-hard [22] but is much easier to solve exactly compared to GAP [5,41]. The Lagrangian dual to
problem (48.14) is similarly defined as in the case of (48.12), and the subgradient method is useful also in
this case.

For an optimal solution (u∗, v∗) to the linear programming problem (48.13),

L asgn(v∗) ≥ L rec(u∗) = LP

holds, and L asgn(v∗) often provides a tighter lower bound on the optimal value of GAP than L rec(u∗) = LP.

48.6 Lagrangian Heuristics

If a good Lagrangian multiplier vector u (resp., v) is given, an optimal solution x to problem (48.12)
(respectively, (48.14)) is often close to be feasible. (If an optimal x to problem (48.14) happens to be
feasible, it is optimal for the original GAP, but this property does not hold for problem (48.12).) Hence it
is often advantageous to obtain feasible solutions by slightly modifying them. Moreover, the Lagrangian
relative cost (or reduced cost) ci j + ui ai j and ci j − v j with respect to the Lagrangian relaxation problems
(48.12) and (48.14), respectively, often provide more accurate estimation on the desirability of assigning
a job j to an agent i than the original cost ci j . (The relative cost ci j + ui ai j is suitable for comparing
the desirability of agents for a specified job, while the relative cost ci j − v j is suitable for comparing
the desirability of jobs for a specified agent.) A heuristic algorithm based on such information is called a
Lagrangian heuristic algorithm [39]. For GAP, many such algorithms have been proposed and are confirmed
to be quire useful; e.g., Refs. [12,20,21,28,42–44]. Some are based on different relaxation problems from
those illustrated in Section 48.5; e.g., Refs. [28,42–44]. Among them, Cattrysse et al. [28] proposed an
algorithm based on the set partitioning formulation of GAP. See, e.g. [36], for various types of relaxation
problems of GAP. Lagrangian heuristics is also known to be very efficient to solve large-scale instances

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C048 March 20, 2007 17:8

48-8 Handbook of Approximation Algorithms and Metaheuristics

of other representative combinatorial optimization problems such as location and set covering problems.
Below we briefly illustrate basic ideas for such heuristic algorithms.

A standard framework of Lagrangian heuristics is as follows.

Lagrangian Heuristic Algorithm
For each Lagrangian multiplier vector u = u(k) generated by a subgradient method, if u (or
L rec(u) or x(u)) satisfies certain prespecified conditions, construct a feasible solution based
on the information from the Lagrangian relaxation problem (48.12). (The algorithm for the
Lagrangian relaxation problem [48.14] is similar.)

As the construction of feasible solutions is tried many times in the above iteration, quick methods are
preferable. Some such methods will be described below. Moreover, it is not fruitful to construct a feasible
solution by using a poor multiplier vector u (e.g., those generated in the early stage of the subgradient
method), and hence some conditions are applied to decide whether the construction is executed or not. A
simple rule may be to execute only if (UB − L rec(u))/L rec(u) is below a prespecified constant.

For the Lagrangian relaxation problem (48.12) with a given u, an optimal solution x to it satisfies the
assignment constraint (48.3). It is therefore natural to use such x as the initial solution for an LS algorithm
with search space SS1, and improve its feasibility with the shift neighborhood (or the combination of the
shift and swap neighborhoods) using sufficiently large penalty weights αi in pcost(x) of (48.11). Another
reasonable method is to call algorithm MTHG in which f ′

i j (x) = ci j +ui ai j is used to compute the regret
measure.

For the Lagrangian relaxation problem (48.14) with a given v, an optimal solution x to it satisfies the
resource constraint (48.2), but may not satisfy the assignment constraint (48.3). A job j may be assigned
to two or more agents, or may not be assigned to any agent. Let

J0 = { j ∈ J | ∑
i∈I xi j = 0}

J1 = { j ∈ J | ∑
i∈I xi j = 1}

J2 = { j ∈ J | ∑
i∈I xi j ≥ 2}

be the set of jobs assigned to no agent, exactly one agent, and more than one agent, respectively. Then it
is often the case that |J0 ∪ J2| is small. Hence it is usually effective to fix the assignment of jobs in J1 to
the currently assigned agents, and try to modify the assignments of jobs in J0 or J2 to obtain a feasible
solution. A standard method is to remove each job in J2 from all but one agent, and then assign jobs in
J0 to agents. For choosing an agent for a job j in J2 among those i with xi j = 1, reasonable criteria are
(1) ci j , (2) (ci j − v j )/ai j and so forth, where a smaller value is more preferable. Note that ci j − v j < 0
holds for all i ∈ I and j ∈ J satisfying xi j = 1 in an optimal solution x to problem (48.14). To assign
jobs in J0 to agents, we can use the greedy method in Section 48.3 or algorithm MTHG to the restricted
instances whose free variables are xi j with j ∈ J0. Once a feasible solution is found, it is often effective to
improve it by an LS algorithm. The efficiency of the above method may degrade if |J0 ∪ J2| is large; hence
it is advantageous to try the construction only when |J0 ∪ J2| is below a prespecified threshold (e.g., [21]).

48.7 Metaheuristics

Metaheuristic algorithms are widely recognized as one of the most practical approaches for hard combi-
natorial optimization problems. Metaheuristics is a set of comprehensive guidelines or frameworks useful
to devise efficient algorithms by combining basic strategies such as greedy methods and LS in a unified
manner. Among representative metaheuristic algorithms are genetic algorithms, simulated annealing, tabu
search, and so on. See other chapters of this handbook (e.g., 19–21, 23–27) for details of metaheuristic
algorithms. While basic strategies such as greedy methods, LS, and Lagrangian heuristics tend to find
good solutions quickly, metaheuristic algorithms aim at obtaining better solutions by investing more
computation time.
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For GAP, many metaheuristic algorithms have been proposed. Among them are a tabu search and a
simulated annealing by Osman [6]; a genetic algorithm by Chu and Beasley [7]; variable depth search
algorithms by Racer and Amini [8,9]; a tabu search based on ejection chain approach by Laguna et al. [10]
(which is proposed for a generalization of GAP); another tabu search by Dı́az and Fernández [11]; a
MAX-MIN ant system combined with local search and tabu search by Lourenço and Serra [13]; a path-
relinking algorithm by Alfandari et al. [14]; variable depth search algorithms [37,38] and ejection chain
approaches by Yagiura et al. [15,16]; RAMP (relaxation adaptive memory programming) and primal-dual
RAMP algorithms by Rego et al. [30]; and so forth. The algorithm by Rego et al. [30] is one of the latest
algorithms, which is based on the RAMP approach recently proposed in [31]. We will illustrate below basic
ideas of the ejection chain and path-relinking approaches by Yagiura et al. [15,16], which are among the
most efficient metaheuristic algorithms in those listed above.

It utilizes a powerful neighborhood search algorithm [15], called EC probe, based on the idea of ejection
chains [45]. An ejection chain is an embedded neighborhood construction that compounds simple moves
to create more complex and powerful moves. In Ref. [15], EC probe was first incorporated in the framework
of tabu search, and promising results were obtained. We call this algorithm tabu search with ejection chains
(TSEC). In Ref. [16], EC probe was then incorporated with the path relinking approach, which provides an
“evolutionary” mechanism for generating new solutions by combining two or more reference solutions.
We call the resulting algorithm PREC (path relinking with ejection chains).

As mentioned in Section 48.4, it is difficult to conduct the search only within the feasible region.
Algorithms TSEC and PREC are both based on the search space SS1, and evaluate solutions by the penalized
cost (48.11). As the search is sensitive to penalty weights αi , the algorithms employ a sophisticated adaptive
control mechanism of the penalty weights, thereby introducing strategic oscillation mechanism in the
algorithms. This adaptive control method improves the performance and robustness of the algorithms as
well as their usability.

In the following subsections, we briefly explain the idea of EC probe and adaptive control of penalty
weights, and then summarize the frameworks of TSEC and PREC. For convenience, in the rest of this
section, we use an assignment σ instead of x to represent a solution, and use notations such as pcost(σ )
instead of pcost(x), as their meanings are clear.

48.7.1 EC Probe

An EC move in algorithms TSEC and PREC is a sequence of shift moves such that a solution σ ′ is obtained
from the current solution σ by shifting l (l = 2, 3, . . . , n) jobs j1, j2, . . . , jl simultaneously in such a
way that satisfies σ ′( jr ) = σ ( jr−1) for r = 2, 3, . . . , l , where σ ′( j1) is arbitrary. In other words, for
r = 2, 3, . . . , l , job jr is shifted from agent σ ( jr ) to agent σ ( jr−1) after ejecting job jr−1. An EC move
is called cyclic if σ ′( j1) = σ ( jl ) holds, i.e., the first job j1 is inserted into the agent from which the
last job jl is ejected. The length of an EC move is the number of shift moves l in the sequence. The EC
neighborhood is the set of solutions obtainable by such EC moves. Both shift and swap neighborhoods
are subsets of the EC neighborhood, since a shift move is an EC move of length 1, and a swap move is
a cyclic EC move of length 2. However, the size of the EC neighborhood can become exponential unless
intelligently controlled. For this purpose, three subsets of the neighborhood called shift, double shift, and
long chain are considered, where a double-shift move is an EC move of length 2, and a long-chain move
is an EC of any length. For the double-shift neighborhood, the number of candidates for j2 is restricted
to max{m, log n} when j1 is fixed, and for the long-chain neighborhood, only one candidate for jl is
considered when j1, j2, . . . , jl−1 are fixed. Such candidates are chosen by using heuristic rules based on
the observation that given a good multiplier vector v, the Lagrangian relative cost ci j − v j for Lagrangian
relaxation (48.14) tends to represent desirability of assigning job j to agent i as discussed in Section 48.6.
More details of such rules are found in Ref. [15].

As a result, the sizes of shift, double-shift, and long-chain neighborhoods become O(mn), O(n max
{m, log n}), and O(n2), respectively. Yagiura et al. [15] also showed that the expected size of the long-chain
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neighborhood was O(n(3/2)+ε) for an arbitrarily small positive ε under a simplified random model. These
three neighborhoods are used alternately to form an improving phase of LS, which is called EC probe.

48.7.2 Adaptive Control of the Penalty Weights

In this section, we briefly explain the basic idea of the adaptive control of the penalty weights given in
Refs. [15,16]. The initial values of αi are decided by solving a quadratic programming problem (QP),
whose main aim is to balance the estimated change in the cost and penalty after shift moves. The definition
of the QP in Ref. [15] is slightly complicated and is omitted here. Then, whenever an EC probe stops at a
locally optimal solution σlopt, αi values are updated by the following rule. If no feasible solution is found
during the previous EC probe after the last update of αi , the penalty weights are increased by

αi := αi

(

1 + δinc · pi (σlopt)/bi

maxi ′∈I ( pi ′(σlopt)/bi ′)

)

for all i ∈ I , where δinc is a parameter. Otherwise (i.e., if at least one feasible solution is found during the
previous EC probe after the last update of αi ), the penalty weights are decreased by

αi := αi (1 − δdec)

for all i ∈ I that satisfy pi (σlopt) = 0, where δdec is a parameter. In the computational experiments in
Section 48.9, δinc and δdec are set to 0.01 and 0.1, respectively, as in Refs. [15,16].

48.7.3 Algorithms TSEC and PREC

Algorithm TSEC applies an EC probe to a solution obtained by perturbing an available good solution
σseed. Solution σseed is initially generated randomly, and is replaced with the locally optimal solution σlopt

obtained by the previous EC probe whenever pcost(σlopt) ≤ pcost(σseed) holds. The perturbed solution
to which the next EC probe is applied is determined by first generating solutions by applying shift moves
to σseed and then choosing the one that minimizes pcost among those not tested yet from the current
σseed. Note that the perturbed solution σ generated by applying a shift move to σseed is improved first
by the cyclic double-shift neighborhood in EC probe. This strategy was motivated by the success of SSS
probe [37], and was confirmed to be effective to avoid short cycling. The idea is based on the fact that a
cyclic move does not change the number of jobs assigned to each agent, while a shift move changes those
of relevant agents. See Ref. [15] for more discussion.

Algorithm PREC applies EC probes to solutions generated by path relinking, which is a methodology
to generate solutions from two or more solutions. It keeps a reference set R (|R| = π is a parameter) of
good solutions. Initially, R is prepared by applying EC probes to randomly generated solutions. Then it
is updated by reflecting the outcomes of LS. The incumbent solution (i.e., the best feasible solution) is
always stored as a member of R. Other solutions in R are maintained as follows. Whenever an EC probe
stops, the locally optimal solution σlopt is exchanged with the worst (with respect to pcost) solution σworst

in R (excluding the incumbent solution), provided that σlopt is not worse than σworst and is different
from all solutions in R. Path relinking is applied to two solutions σA (initiating solution) and σB (guiding
solution) randomly chosen from R, where a random shift is applied to σB with probability 1/2 (no
shift with the remaining probability 1/2) before applying the path relinking (for the purpose of keeping
the diversity of the search), and the resulting solution is redefined to be σB. Let the distance between two
solutions σ and σ ′ be dist(σ, σ ′) =

∣
∣{ j ∈ J | σ ( j ) 
= σ ′( j )}

∣
∣ , i.e., the number of jobs assigned to different

agents, and let d = dist(σA, σB) be the distance between solutions σA and σB. The algorithm generates a
sequence σ0, σ1, . . . , σd of solutions from two solutions σA and σB as follows. Starting from σ0 := σA, for
k = 1, 2, . . . , d , let σk be the solution in Nshift(σk−1) with the best pcost among those whose distances to
σB are smaller than that from σk−1. Let S be the best γ (a parameter) solutions with respect to pcost from
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{σ2, σ3, . . . , σd−1}.1 EC probes are then applied to all solutions in S, which completes this phase of path
relinking. For each starting solution σ ∈ S, it is improved first by the cyclic double-shift neighborhood in
EC probe to avoid short cycling, as in algorithm TSEC.

Yagiura et al. [16] also tested other rules, e.g., perturbing guiding solutions σB or not, using more than
one guiding solution for generating a path, restricting the distance between solutions in the reference
set, rules to choose initiating and guiding solutions, and rules to define the set S, and observed that
the algorithm was not sensitive to such changes. In the computational experiment in Section 48.9, the
parameters in PREC were set to π = 20 and γ = 10 as in Ref. [16].

48.8 Branch-and-Bound Algorithms

Branch-and-bound is one of the major enumerative methods to solve combinatorial optimization problems.
It is based on the idea that the original problem can be equivalently solved as a result of solving all partial
problems decomposed from the original problem. The decomposition can then be applied to the generated
partial problems. A problem instance of GAP can be decomposed into two partial problems by fixing some
variable xi j to 0 and 1, where such a variable is called a branching variable, and the corresponding operation
is called a branching operation. We denote the original problem by P0 and the kth partial problem generated
during computation by Pk . Starting from P0, if we apply branching operations repeatedly until all partial
problems become trivial, we can enumerate all possible solutions. During this process, we usually examine
only a small portion of all partial problems, based on the following idea. If an optimal solution to a partial
problem Pk is found or it is concluded for some reason that an optimal solution to the original problem
can be found even without solving Pk , then it is not necessary to consider Pk further. The operation of
removing such a Pk from the list of partial problems to be solved is called a bounding operation, and we say
that this operation terminates Pk . For example, denoting the incumbent value by UB, and a lower bound
on the objective value for Pk by LB(Pk), we can terminate Pk if LB(Pk) ≥ UB holds. This is called a lower
bound test. The process of branching operations can be expressed by a search tree, whose root corresponds
to P0, and the children of a node correspond to the partial problems generated by a branching operation
applied to the node. A partial problem is called active if it has not been terminated or decomposed into
partial problems. A branch-and-bound algorithm obtains an exact optimal solution if no active partial
problem remains when it stops. The rule to choose an active partial problem to test is called the search
strategy, which affects the efficiency of the search.

A common way for obtaining a lower bound LB is to solve relaxation problems such as the Lagrangian
relaxations (48.12) and (48.14) in Section 48.5, and the LP relaxation of GAP in which the 0-1 constraint
xi j ∈ {0, 1} of (48.4) is relaxed to xi j ≥ 0 for ∀i ∈ I and ∀ j ∈ J . (Though 0 ≤ xi j ≤ 1 seems more
natural, xi j ≤ 1 is redundant because of the assignment constraint (48.3).) As mentioned in Section 48.5,
the lower bound L asgn(v) from problem (48.14) tends to be better than the bound L rec(u) from (48.12)
or the lower bound from the LP relaxation. Computing better lower bounds will result in reducing the
number of partial problems generated during the search, and hence the bound L asgn(v) is often used in
branch-and-bound algorithms. Another common approach to obtain better lower bounds is the use of
valid inequalities, where a linear inequality constraint is called valid if all feasible solutions to the original
GAP satisfy it (but solutions to the LP relaxation problem may not satisfy it). The optimal values of
LP relaxations with such additional constraints will usually give better lower bounds. Branch-and-bound
algorithms using such valid inequalities are called branch-and-cut methods. We give below a simple example
of a valid inequality. Let x̄ be an optimal solution to the LP relaxation of GAP, and let i ∈ I be an agent
having at least one x̄i j fractional (i.e., 0 < x̄i j < 1). Sort the jobs j with x̄i j > 0 in the nonincreasing
order of ai j , and let j1, j2, . . . be the resulting order (i.e., ai j1 ≥ ai j2 ≥ · · ·). Let k be the index that
satisfies

∑k−1
l=1 ai jl ≤ bi <

∑k
l=1 ai jl , and let J i = { j1, j2, . . . , jk}. Then

∑
j∈J i

xi j ≤ |J i | − 1 is a valid

1A part of their neighbors are also considered as candidates for S.
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inequality. Therefore, if the solution x̄ violates it (i.e.,
∑

j∈J i
x̄ i j > |J i | − 1), it will be useful to improve

the lower bound.
The objective value of any feasible assignment is an upper bound on the optimal value. We can use

approximation algorithms to obtain good bounds UB; e.g., greedy methods, LS, Lagrangian heuristics, or
metaheuristic algorithms. Having a good UB at an early stage is useful for reducing computation time,
because many partial problems may be terminated by lower bound tests. It is often effective to apply
approximation algorithms to partial problems with small lower bounds. Lagrangian heuristic algorithms
are often used for this purpose when Lagrangian relaxation is used to compute lower bounds.

While branch-and-bound algorithms are usually designed to obtain exact optimal solutions, they can
also be used as approximation algorithms if the computation is cut off before normal termination. Approx-
imation algorithms of this type are sometimes effective, especially when the size of the problem instance
is not very large as will be observed in Section 48.9. One of the merits of such an approximation branch-
and-bound is that the minimum of LB(Pk) among all active Pks gives a lower bound that tends to be
better than the lower bound to the original problem LB(P0). Search strategy to find good upper bound
earlier may be different from the one that makes the exact branch-and-bound algorithm efficient. Hence
it will be worth trying to design a good search strategy for the purpose of obtaining a good approximation
branch-and-bound algorithm.

Among early papers on branch-and-bound algorithms for GAP are Refs. [4,17,18]. Cattrysse and van
Wassenhove [36] surveyed various relaxation problems used to compute lower bounds for branch-and-
bound methods, such as Lagrangian relaxation, surrogate relaxation, and so on. Recently, Savelsbergh [19]
specialized a general-purpose solver, MINTO, to solve GAP based on a branch-and-price approach to the
set partitioning formulation of GAP. Nauss [20] incorporated various ideas to improve lower bounds and
fixing variables, and obtained impressive results. Haddadi and Ouzia [21] also gave good results with a
relatively simple branch-and-bound algorithm. See a recent survey by Nauss [46] for more information
on branch-and-bound algorithms for GAP.

48.9 Computational Results

In this section, we show computational results of some metaheuristic algorithms and branch-and-bound
algorithms. There are five types of benchmark instances called types A, B, C, D, and E [4,7,10]. Out of
threse, we use three types C, D, and E, since types A and B are relatively easy. Instances of these types are
generated as follows:

Type C: ai j are random integers from [5, 25], ci j are random integers from [10, 50], and bi =
0.8

∑
j∈J ai j /m.

Type D: ai j are random integers from [1, 100], ci j = 111 − ai j + ei j , where ei j are random integers
from [−10, 10], and bi = 0.8

∑
j∈J ai j /m.

Type E: ai j = 1 − 10 ln ei j , where ei j are random numbers from (0,1], ci j = 1000/ai j − 10êi j , where
êi j are random numbers from [0, 1], and bi = 0.8

∑
j∈J ai j /m.

Types D and E are somewhat harder than other types, since ci j and ai j are inversely correlated. Note
that types D and E instances should be solved as minimization problems, since otherwise they are trivial.
Among the three sets of problem instances SMALL, MEDIUM, and LARGE used in Ref. [15], we use set
MEDIUM in this section, which are total of 18 instances of types C, D, and E with n up to 200, each type
consisting of six instances. Among them, types C and D instances were taken from OR-Library,2 and type
E instances were generated by us, which are available at our site.3

2URL of OR-Library: http://people.brunel.ac.uk/˜mastjjb/jeb/orlib/gapinfo.html
3URL of our site: http://www.al.cm.is.nagoya-u.ac.jp/˜yagiura/gap/
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TABLE 48.1 The Best Costs Obtained by the Tested Algorithms

Type n m LB PREC TSEC BVDS-l BVDS-j VDS RA LKGG NI RLSa CBb DFc CPLEX

C 100 5 1930 1931a 1931a 1931a 1931a 1931a 1938 1931a 1931a 1942 1931a 1931a 1931a

C 100 10 1400 1402a 1402a 1402a 1403 1402a 1405 1403 1403 1407 1403 1402a 1402a

C 100 20 1242 1243a 1243a 1244 1244 1246 1250 1245 1245 1247 1244 1243a 1243a

C 200 5 3455 3456a 3456a 3456a 3457 3457 3469 3457 3465 3467 3458 3457 3456a

C 200 10 2804 2807 2806a 2809 2808 2809 2835 2812 2817 2818 2814 2807 2806a

C 200 20 2391 2391a 2392 2401 2400 2405 2419 2396 2407 2405 2397 2391a 2391a

D 100 5 6350 6353a 6357 6358 6362 6365 — 6386 6415 6476 6373 6357 6358
D 100 10 6342 6356 6358 6367 6370 6380 6532 6406 6487 6469 6379 6355a 6381
D 100 20 6177 6211a 6221 6275 6245 6284 6428 6297 6368 6358 6269 6220 6280
D 200 5 12741 12744a 12746 12755 12755 12778 — 12788 12973 12923 12796 12747 12750
D 200 10 12426 12438a 12446 12480 12473 12496d 12799 12537 12889 12746 12601 12457 12457
D 200 20 12230 12269a 12284 12440 12318 12335d 12665 12436 12793 12617 12452 12351 12393

E 100 5 12673 12681a 12682 12681a 12682 12685 12917 12687e 12686 f 12836 N. A. 12681a 12681a

E 100 10 11568 11577 11577a 11585 11599 11585 12047 11641e 11590 f 11780 N. A. 11581 11593
E 100 20 8431 8444 8443a 8499 8484 8490 9004 8522e 8509 f 8717 N. A. 8460 8565
E 200 5 24927 24930a 24930a 24942 24933 24948 25649 25147e 24958 f 25317 N. A. 24931 24930a

E 200 10 23302 23310 23307a 23346 23348 23340 24717 23567e 23396 f 23620 N. A. 23318 23321
E 200 20 22377 22379a 22391 22475 22437 22452d 24117 22659e 22551 f 22779 N. A. 22422 22457

Note: The time limits are 150 and 300 s for n = 100 and 200, respectively; one execution per instance except RLS, CB and DF.
a Computation time is reported in Ref. [15].
b Results in Ref. [7].
c Results in Ref. [11].
d Results after 1,000 seconds on Sun Ultra 2 Model 2300.
e Results after 20,000 seconds on Sun Ultra 2 Model 2300.
f Results after 5,000 seconds on Sun Ultra 2 Model 2300.

We first compare in Table 48.1 various metaheuristic algorithms: (1) variable depth search by Yagiura
et al. [38] (denoted VDS), (2) two algorithms of branching variable depth search by Yagiura et al. [37]
(denoted BVDS-l and BVDS-j), (3) tabu search based on ECs by Yagiura et al. [15] (denoted TSEC),
(4) path relinking approach based on ECs by Yagiura et al. [16] (denoted PREC), (5) variable depth search
by Racer and Amini [9] (denoted RA), (6) tabu search by Laguna et al. [10] (denoted LKGG), (7) tabu
search for the general purpose constraint satisfaction problem by Nonobe and Ibaraki [47] (denoted NI),
(8) a MAX-MIN ant system combined with LS and tabu search by Lourenço and Serra [13] (denoted RLS),
(9) the genetic algorithm by Chu and Beasley [7] (denoted CB), and (10) the tabu search by Dı́az and
Fernández [11] (denoted DF). The results of a commercial solver CPLEX 6.54 are also shown in the column
CPLEX. All the data were taken from Table 2 of Ref. [16]. Unless otherwise stated, algorithms were run on a
workstation Sun Ultra 2 Model 2300 (two UltraSPARC II 300MHz processors with 1 GB memory), where
the computation was executed on a single processor. SPECint95 of this workstation is 12.3 according to
the SPEC site5 (Standard Performance Evaluation Corporation). The table shows the best costs obtained
by the algorithms within 150 s for n = 100, and 300 s for n = 200, respectively, unless otherwise stated
below the table. The computation time of RLS, CB, and DF is longer than this time limit as discussed in
Refs. [15,16]. Table 48.1 also shows the lower bounds (denoted LB) obtained by solving the Lagrangian
relaxation (48.14) of GAP. Each “∗” mark indicates that the best cost is attained, and “—” means that no
feasible solution was found. The results of algorithm CB for type E instances are not available (i.e., not
reported in their paper), and are denoted “N. A.” in the table. Note that all algorithms except CB and DF
were run only once for each instance in the computational results in this section in order to make the

4CPLEX 8.1.0 was also tested, but the results of CPLEX 6.5 were slightly better on average.
5URL of SPEC site: http://www.spec.org/
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TABLE 48.2 Results of Branch-and-Bound Algorithms by Nauss [20] (NaussBB) and Haddadi and Ouzia [21]
(HOBB)

NaussBB HOBB

Type n m Best Known Best Time to Best Total Time Opt? Best Time to Best Total Time Opt?

C 100 5 1931 1931 0.1 3.7 yes 1931 0.8 7.5 yes
C 100 10 1402 1402 7.3 15.1 yes 1402 1.2 20.6 yes
C 100 20 1243 1243 90.2 115.2 yes 1243 22.2 26.8 yes
C 200 5 3456 3456 30.4 40.6 yes 3456 27.7 34.9 yes
C 200 10 2806 2806 312.6 490.4 yes 2806 177.0 193.3 yes
C 200 20 2391 2391 968.7 1028.3 yes 2391 94.4 96.0 yes

D 100 5 6353 6353 349.9 362.2 yes 6353 65.5 471.0 yes
D 100 10 6348 6349 2831.5 T. O. no 6349 371.6 T. O. no
D 100 20 6190 6200 2829.4 T. O. no 6196 17.8 T. O. no
D 200 5 12742 12745 2937.0 T. O. no 12742 535.7 1481.5 yes
D 200 10 12432 12447 1896.8 T. O. no 12436 2068.1 T. O. no
D 200 20 12241 12263 2375.4 T. O. no 12250 55.6 T. O. no

Note: NaussBB is with a time limit of 3000 s on a Pentium II 300 MHz, and HOBB with a time limit 2400 s on a Pentium
MMX 200 MHz.

comparison fair. From the table, we can observe that PREC and TSEC are highly effective, especially for
the type D and E instances. They obtained the best solutions for most of the tested instances.

We next show the results of recent branch-and-bound algorithms by Nauss [20] (denoted NaussBB)
and Haddadi and Ouzia [21] (denoted HOBB) in Table 48.2. The results of NaussBB were taken from
Tables 1 and 5 of Ref. [20], and those of HOBB were taken from Table 4 of Ref. [21]. (Table 4 of Ref. [21]
also includes the results by NaussBB, but they seem to be taken from Table 4 of Ref. [15], which are
slightly different from those in Ref. [20] because the experiments were conducted under different settings
as mentioned in Ref. [15].) NaussBB was coded in FORTRAN 77 and run on a Dell XPS D300 (Pentium
II 300 MHz with a 64-MB memory), while HOBB was coded in Turbo-Pascal 7.0 and run on an IBM
compatible PC (Pentium MMX 200 MHz). SPECint95 of these computers are 11.9 and 6.4, respectively,
according to the SPEC site; hence the speed of the Dell XPS D300 is approximately the same as the Sun
Ultra 2, while the IBM-compatible PC is slower approximately by a factor of 2. The time limit of NaussBB
was 3000 s, while that of HOBB was 2400 s. The column “Best” shows the best cost obtained by the algorithm
within the time limit. The column “Time to Best” shows the computation time used to obtain the solution
reported in column “Best.” The column “Total Time” shows the whole computation time needed for the
algorithm until it stops after confirming optimality, where “T. O.” signifies that the algorithm stopped
when the prespecified time limit was reached before confirming optimality. If the algorithm stopped
after confirming optimality, the column “Opt?” is “yes”; otherwise the column is “no.” The column “Best
Known” shows the best known values reported in Table 6 of Ref. [16].

From the table, we can observe the following: (1) type C instances with up to n = 200 can be solved
exactly within a reasonable amount of computation time; and (2) type D instances are much harder to solve
exactly, but the best results obtained by the branch-and-bound methods are of high quality. Moreover, the
computation time of HOBB to obtain such solutions are reasonably small in most cases compared with
the time limit of Table 48.1, which implies the effectiveness of the algorithm when it is used as heuristics.

In these results, we observed that algorithms PREC, TSEC, and HOBB are highly efficient. However, it
is not safe to draw decisive conclusions from limited computational results. (We reported computational
results for these instances mainly because the results of many algorithms are available for these sizes,
while very limited results have been reported for larger instances to the best of our knowledge.) For more
extensive experimental results, readers are referred to Ref. [16], in which results of some metaheuristic
algorithms on benchmark instances with up to n = 1600 and m = 80 with various time limits are reported,
and those instances are available from the authors’ web site.
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48.10 Performance Guarantee

In this section, we briefly summarize theoretical results on the performance guarantees of approximation
algorithms for GAP. As mentioned in Section 48.2, determining the existence of a feasible solution is already
NP-complete; hence no polynomial-time approximation algorithm is possible unless some assumptions
are made or a different formulation is considered.

We first consider the case where the resource constraint (48.2) can be violated. Without loss of generality,
we assume in this section that the available amount of resource at agents satisfy b1 = b2 = · · · =
bm = b̄ by scaling the amount of resource. Lin and Vitter [48] gave a polynomial-time algorithm that—
given cost c̄ , amount of resource b̄, and any constant ε > 0—finds a solution of cost at most (1 + ε)c̄
where the required amount of resource at each agent is at most (2 + 1/ε)b̄, if there exists a feasible
solution of cost at most c̄ . Shmoys and Tardos [49] showed that there is a polynomial-time algorithm
that, given a value c̄ , either proves that no feasible solution of cost c̄ exists, or else finds a solution
of cost at most c̄ where the resource requirement at each agent is at most 2b̄. On the negative side,
Lenstra et al. [50] considered the problem of minimizing b̄ (i.e., the assignment cost is not considered
and b̄ becomes the objective value instead of being a given constant), and showed that for any α <

3/2, no polynomial-time α-approximation algorithm exists unless P = NP, where an α-approximation
algorithm guarantees to produce a solution with objective function value at most (respectively, at least)
α times the optimum for a minimization (respectively, maximization) problem. Shmoys and Tardos
also considered the problem of minimizing the weighted sum of the assignment cost

∑
i∈I

∑
j∈J c i j xi j

and the required amount of resource b̄ at each agent, and gave a polynomial-time 2-approximation
algorithm.

We next consider another variant of GAP, in which the objective is to maximize the total profit∑
i∈I

∑
j∈J ρi j xi j and the assignment constraint (48.3) is relaxed to (48.5), i.e.,

∑
i∈I xi j ≤ 1 (∀ j ∈ J ),

and call it the max-profit GAP (or MPGAP in short). As discussed in Section 48.2, this problem is equiv-
alent to the original GAP when the objective is to find an exact optimal solution; however, MPGAP is
suitable for considering approximation algorithms with performance guarantees because it always has a
feasible solution while the original GAP may not. Chekuri and Khanna [23] and Nutov et al. [24] showed
that highly restricted cases of MPGAP are APX-hard.

On the positive side, Chekuri and Khanna showed that a polynomial-time 1/2-approximation algorithm
exists, which is based on the above-mentioned result by Shmoys and Tardos, and is explained as follows.
The theorem by Shmoys and Tardos can be restated as follows. (Though they did not state some of the
following facts explicitly, they are immediate from the proof in [49] as pointed out in [23]).

Theorem 48.1 (Shmoys and Tardos [49])

Given an instance of GAP that has a feasible solution of cost c̄ , there is a polynomial-time algorithm that
produces a solution x that satisfies the following three conditions.

1. The cost of the solution x is at most c̄ .
2. Each job j assigned to an agent i satisfies ai j ≤ bi .
3. If

∑
j∈J ai j xi j > bi holds for an agent i ∈ I , there exists a job j ′ that satisfies

∑
j∈J \{ j ′} ai j xi j ≤ bi .

Then the algorithm of Chekuri and Khanna works as follows. Given an instance of MPGAP whose
optimal profit is ρ∗, obtain an equivalent instance of GAP as explained in Section 48.2, and call the
algorithm of Shmoys and Tardos. Then we have a solution x that has profit at least ρ∗ and satisfies the above
conditions 2 and 3. For each i with

∑
j∈J ai j xi j > bi , let j ′ be a job that satisfies

∑
j∈J \{ j ′} ai j xi j ≤ bi ,

and let xi j ′ := 0 if ρi j ′ <
∑

j∈J ρi j xi j /2, or let xi j := 0 for all j 
= j ′ otherwise. Then the obtained
solution is feasible, and has profit at least ρ∗/2.

Nutov et al. [24] considered the case with ρi j = ρ j (∀ j ∈ J ), and showed that a polynomial-time
(1 − 1/e)-approximation algorithm exists, where e is the base of the natural logarithm function. When an
instance of MPGAP satisfies ρi j = ρ j and ai j = a j (∀ j ∈ J ), the problem is called the multiple knapsack
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problem (MKP). Chekuri and Khanna proposed a PTAS for MKP, and showed that there is no FPTAS for
MKP even with m = 2 unless P = NP.

48.11 Conclusion

In this chapter, we reviewed various algorithms for GAP, such as greedy methods, LS, Lagrangian heuristics,
metaheuristics, and branch-and-bound approaches. As examples of efficient methods, basic components of
recent metaheuristic algorithms by Yagiura et al. [15,16] were explained. We then gave some computational
comparisons of representative metaheuristic algorithms as well as some branch-and-bound methods. We
also surveyed performance guarantees of some polynomial-time approximation algorithms. The survey
in this chapter is by no means comprehensive, but we hope this article gives useful information for people
who are interested in devising efficient algorithms to solve this basic problem, which is of practical as well
as theoretical importance.
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49.1 Introduction

Consider a set of clauses, each clause a disjunction of Boolean variables. The maximum (minimum)
satisfiability problem is to find a truth assignment that maximizes (minimizes) the number of clauses that
are satisfied. For brevity, we refer to the maximization problem as maxsat, and the minimization problem
as minsat. Both maxsat and minsat are NP-hard problems [1–2].

The purpose of this chapter is to examine probabilistic greedy heuristics for the maxsat and minsat
problems, and to describe for the simplest of these heuristics the bounds on the average number of clauses
satisfied, relative to an optimal solution. We call the algorithms probabilistic greedy heuristics because they
set a truth variable true or false not with certainty, but with a probability that depends on the number of
unsatisfied clauses in which the variable appears in negated or unnegated form. There are many methods
by which the probabilities can be obtained. We discuss some of these, and give the known results for the
simplest kinds of rules, in which the probability is (directly or inversely) proportional to the number of
additional clauses satisfied if a variable were set true.

There are three main advantages that probabilistic algorithms have over deterministic ones. First, one
can often obtain bounds on the average performance of such algorithms without having to specify the
method by which the problem instances are generated. In such cases, one is assured of a performance
guarantee across all families of statistical distributions giving rise to instances of a problem. This is a form
of robustness, obtained by probabilistic algorithms because they can use the structure of a specific problem
instance in such a manner as to nullify, at least in part, those peculiarities of data as give rise to worst-case
instances for deterministic algorithms. One still obtains worst-case bounds for probabilistic algorithms,
but these are bounds on the average performance, which are often higher than the worst-case bounds
of similar deterministic algorithms. The second advantage is that analyzing the average performance of
probabilistic algorithms is often much simpler than analyzing the average performance of deterministic
algorithms. The third advantage is that by selecting the best solution value over a large number of runs
of a probabilistic algorithm, one obtains a solution that almost certainly has a worst-case bound that is
no smaller than the average performance bound for the probabilistic algorithm. Note that this point is
distinct from the possible derandomization of a probabilistic algorithm, as for example the procedure by
Mahajan and Ramesh [3] that derandomizes the probabilistic algorithm for maxsat problem by Goemans
and Williamson [4].

49-1
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49.2 Maxsat and Minsat Problems

Let U = {u1, . . . , un} denote a set of n Boolean variables, where each variable u ∈ U can be true or false.
We denote by ū the negation of a truth variable u. We use the term “literal” to refer to a truth variable
in negated or unnegated form. Thus, u and ū are both literals. A truth assignment for an instance of a
satisfiability problem (either maxsat or minsat) comprises a truth setting for each variable, where each
variable is set to either true or false.

Let C = {c1, . . . , cm} denote a set of m clauses. Each clause c ∈ C is a disjunction of some, possibly
all, of the literals in U. A clause is satisfied if at least one of the literals it contains is true. For example,
c = u1 ∨ ū4, a disjunction of two literals, is satisfied if u1 is true and/or u4 is false.

The satisfiability problem is to determine if there is a truth assignment that satisfies all clauses in C .

The problem is NP-complete if each clause contains three or more literals [5]. An optimization problem
corresponding to satisfiability is the maximum satisfiability or maxsat problem. It is NP-hard [6], and
it requires the identification of a truth assignment that satisfies the maximum number of clauses in C .

The complementary problem, called minimum satisfiability, or minsat, requires the identification of a
truth assignment that satisfies the minimum number of clauses in C . We note that minsat is equivalent to
maximizing the number of conjunctive clauses, each of which is satisfied only if all its literals are true.

Minsat is readily solved if there is an assignment that satisfies no clause, because in this case each
variable, or its negation, does not appear in any clause. However, the general minsat problem is NP-hard
if each clause contains at least two literals [2]. A deterministic approximation algorithm has since been
provided for minsat by using an approximation-preserving transformation from minsat to the vertex
cover problem [7]. Furthermore, an approximation algorithm with a performance ratio of ρ for minsat
implies the existence of an approximation algorithm with the same performance ratio for vertex cover.
This suggests that it is hard to provide an approximation algorithm for minsat with a performance ratio
better than 2.

Let u1, u2, . . . , un denote an arbitrary ordering of the n truth variables in U. We consider the following
probabilistic greedy heuristic(s) for solving maxsat and minsat.

Initialization (step 1)
Let C1 = C denote the set of all clauses in an instance of the maxsat or minsat problem. Let C1(u1) denote
the subset of clauses in C1 that contain variable u1. Let C1(ū1) denote the subset of clauses in C1 that
contain variable ū1. Let x1 and y1 denote the number of clauses in sets C1(u1) and C1(ū1). Set

u1 =
{

True with probability p1 = f (x1, y1)
False with probability 1 − p1

where f (x1, y1) ∈ [0,1]. Eliminate all satisfied clauses. Define C2, the set of clauses not satisfied at the
end of step 1:

C2 =
{

C1 \ C1(u1) if u1is selected at step 1
C1 \ C1(ū1) if ū1is selected at step 1

Iteration (step j)
Let C j denote the set of clauses that are not satisfied at the end of step j − 1. Let C j (u j ) denote the subset
of clauses in C j that contain u j . Let C j (ū j ) denote the subset of clauses in C j that contain ū j . Let x j and
y j denote the number of clauses in C j (u j ) and C j (ū j ). Set

u j =
{

True with probability p j = f (x j , y j )
False with probability 1 − p j

where f (x j , y j ) ∈ [0,1]. Eliminate all satisfied clauses. Define C j+1, the set of clauses not satisfied at the
end of step 1:

C j+1 =
{

C j \ C j (u j ) if u j is selected at step j
C j \ C j (ū j ) if ū j is selected at step j
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Termination
Stop if C j+1 = φ or if j = n.

There are many possible functions f (·) that can be used to determine the probabilities for each of the
maxsat and minsat problems. The only conditions are that the value of the function increases with x j (y j )
and decreases with y j (x j ) for the maxsat (minsat) problem, and that the probabilities remain bounded
between 0 and 1. For example, we can use the function

f (x j , y j ) = eβx j

eβx j + eβy j
= 1

1 + eβ(y j −x j )

for the maxsat problem. The function has value 1/2 when x j = y j . Its value approaches 1 as x j becomes
much larger than y j , and approaches zero as y j becomes much larger than x j . This is a “logit” function,
which has found much use in the statistics and economics literatures [8]. The corresponding function for
the minsat problem is

f (x j , y j ) = eβy j

eβx j + eβy j
= 1

1 + eβ(x j −y j )

Perhaps the simplest class of functions we can use is

f (x j , y j ) = xβ
j

xβ
j + yβ

j

= 1

1 + (y j /x j )β
, β ≥ 1

for the maxsat problem and

f (x j , y j ) = yβ
j

xβ
j + yβ

j

= 1

1 + (x j /y j )β
, β ≥ 1

for the minsat problem. In both cases, p j = f (x j , y j ) = 1/2 if x j = y j , and p j approaches the limiting
probabilities 1 (0) in the desired manner. Different values of β give different rates at which the probabilities
approach their limiting values; as β becomes arbitrarily large, the probabilities approach the limiting values
0 and 1, and the algorithm becomes a deterministic greedy heuristic. In this sense, a probabilistic rule of
the above sort is a generalization of a deterministic greedy heuristic. The only results so far obtained are for
the special case of β = 1 in the above expression; theoretical analysis of the general class of probabilistic
greedy heuristics remains open. In the next section, we describe the results that are known for β = 1 in
the above expression.

49.2.1 Performance Bound for Maxsat Problem

In the following discussion, x j denotes the number of clauses in which the literal u j occurs, and y j denotes
the number of clauses in which the literal ū j occurs. Let n j = x j + y j . As noted above, we consider a
probabilistic greedy heuristic that sets the j th variable true with probability p j = x j /n j .

Without loss of generality, let u j , j = 1, . . . , n, comprise the optimal solution. Let z j denote the value
of the optimal solution to the subproblem comprising clauses in set C j . Let a j denote the value of the
optimal solution to the subproblem obtained by eliminating u j , and all the clauses satisfied when u j is
true. Similarly, let ā j denote the value of the optimal solution to the subproblem obtained by eliminating
ū j , and all the clauses satisfied when u j is false. The following lemma provides a bound on both a j and
ā j in terms of z j , x j , and n j .

Lemma 49.1 (Kohli and Krishnamurti [9])

a j = z j − x j and ā j ≥ max {0, z j − n j }, for all j = 1, . . . , k.

Proof
Since u j occurs in x j clauses, the optimal solution to the maxsat subproblem defined over the set of
clauses C j \C j (u j ) is, trivially, a j = z j − x j . Also, x j ≤ n j (by definition), so that z j − x j ≥ z j − n j .
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Of the z j − x j clauses in set C j \ C j (u j ), at most n j − x j clauses contain literal ū j . Hence, the maxsat
subproblem defined over the set of clauses C j \ C j (ū j ) has an optimal solution ā j no smaller than
z j − x j − (n j − x j ) = z j − n j . As n j can exceed z j , and as the value of the optimal solution to the maxsat
subproblem comprising clauses C j \C j (ū j ) is nonnegative, ā j ≥ max {0, z j − n j }, j = 1, . . . , k.

We now obtain the main result for the maxsat problem.

Theorem 49.1 (Kohli and Krishnamurti [9])

On average, the greedy heuristic for the maxsat problem satisfies at least 2/3 of the number of clauses satisfied
by an optimal truth assignment.

Proof
We prove the theorem by induction on the number of variables. We first prove the result for n = 1. Without
loss of generality, assume that variable u1 is true in an optimal assignment. Then the value of the optimal
solution is z1 = x1. The expected value of the greedy solution is

p1x1 + (1 − p1)(n1 − x1)

where p1 = x1/n1. Thus, the expected performance ratio of the heuristic is

E [r1] = 1

z1
( p1x1 + (1 − p1)(n1 − x1)) = 1

x1

(
x1

n1
x1 + n1 − x1

n1
(n1 − x1)

)

Given n1, the lower bound on E [r1] is obtained by minimizing the above expression with respect to x1,
which can be verified to occcur at x1 = n1/

√
2. Substituting this value of x1 in E [r1] and simplifying

yields

E [r1] ≥ 2
√

2 − 2 ≥ 2

3

Now suppose

E [rl ] ≥ 2

3
for all l ≤ k − 1

We show that

E [rk] ≥ 2

3
for all k

Suppose the probabilistic greedy heuristic sets uk true, satisfying xk clauses. Then the expected number
of clauses satisfied by the probabilistic greedy heuristic is no smaller than

xk + 2

3
ak

By a similar argument, if the greedy heuristic sets uk false at step 1, the expected value of its solution is no
less than

nk − xk + 2

3
āk
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As uk is selected with probability pk = xk/nk , and ūk is selected with probability 1 − pk , the expected
value of the heuristic solution has the lower bound

E [ fk] ≥ xk

nk

(

xk + 2

3
ak

)

+ nk − xk

nk

(

nk − xk + 2

3
āk

)

From Lemma 49.1, ak ≥ zk − xk , which gives

E [ fk] ≥ xk

nk

(

xk + 2

3

(
zk − xk

)
)

+ nk − xk

nk

(

nk − xk + 2

3
āk

)

Also, from Lemma 49.1

āk ≥ max {0, zk − nk}
Consider zk > nk . Then

āk ≥ zk − nk > 0

and the above inequality for E [ fk] becomes

E [ fk] ≥ xk

nk

(
2zk

3
+ xk

3

)

+ (nk − xk)2

nk
+ 2(nk − xk)

3nk
(zk − nk)

Simplifying

E [ fk] ≥ (xk)2

3nk
+ 2zk xk

3nk
+ (nk − xk)2

nk
+ 2(nk − xk)

3nk
(zk − nk)

The right-hand side obtains its minimum value when xk = nk/2, which implies

E [ fk] ≥ 2zk

3
and E [rk] = E [ fk]

zk
≥ 2

3

Now consider zk ≤ nk . Then

āk ≥ 0 (≥ zk − nk)

and therefore

E [ fk] ≥ xk

nk

(

xk + 2

3

(
zk − xk

)
)

+ nk − xk

nk
(nk − xk)

Simplifying

E [ fk] ≥ x2
k

3nk
+ 2zk xk

3nk
+ (nk − xk)2

nk

The right-hand side of the above expression can be verified to obtain its minimum value when

xk = 3nk − zk

4

at which value of xk

E [ fk] ≥ nk

4
+ zk

2
− z2

k

12nk

The right-hand side of the above expression takes its smallest value when nk = zk , for which

E [ fk] ≥ zk

4
+ zk

2
− zk

12
= 2

3
zk

It follows that

E [rk] = E [ fk]

zk
≥ 2

3
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To see that the bound in Theorem 49.1 is tight, consider the following problem instance in which there
are k variables and 2k clauses.

Clause uk ūk uk−1 ūk−1 . . u2 ū2 u1 ū1

1 0 1 0 1 . . 0 1 0 1
2 0 1 0 1 . . 1 0 0 0
3 0 1 0 1 . . 0 0 0 0
. . . . . . . . . . .

. . . . . . . . . . .

2k−2 0 1 0 1 . . 0 0 0 0

2k−2 + 1 0 1 1 0 . . 0 0 0 0
. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

2k−1 0 1 1 0 . . 0 0 0 0

2k−1 + 1 1 0 0 0 . . 0 0 0 0
. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

2k 1 0 0 0 . . 0 0 0 0

The expected performance of the probabilistic greedy heuristic is

E [ fk] = 2

(
1

2

)
nk

2
+ 2

(
1

2

)2 nk

22
+ · · · + 2

(
1

2

)k nk

2k
+

(
1

2

)k nk

2k

= 2nk

3
+ nk

3

(
1

4k

)

As zk = nk , the expected performance ratio equals

E [rk] = 2

3
+ ε where ε = 1

3
· 1

4k

As ε can be made to approach 0 arbitrarily closely by increasing k, E [rk] can be made to approach 2/3
from above arbitrarily closely. Since the asymptotic upper bound for the probabilistic greedy heuristic is
2/3, the lower bound in Theorem 49.1 is tight.

49.2.2 Performance Bound for Minsat Problem

As in the last section, we restrict our analysis to a probabilistic greedy heuristic for the minsat problem to
the case where β = 1; that is, the heuristic sets the j th variable true with probability p j = y j /n j . The
following theorem gives the lower bound on the expected performance ratio of the greedy heuristic.

Theorem 49.2 (Kohli et al. [2])

On average, the greedy heuristic for the minsat problem satisfies at most twice the number of clauses satisfied
by an optimal truth assignment.

Proof
We prove the theorem by induction on the number of variables n. If n = 1, the expected number of
satisfied clauses is

p1x1 + (1 − p1)y1 = y1

n1
x1 + x1

n1
y1 = 2x1 y1

n1
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where p1 = y1/n1. Without loss of generality, assume that variable u1 is true in an optimal assignment.
Then the value of the optimal solution is z = x1. Thus, the value of the expected performance ratio for
the probabilistic greedy heuristic is

E (rn) = 2x1 y1

n1
= 2y1

n1
≤ 2

Let l ≥ 1 be an integer such that

E (rn) ≤ 2 for n = l

We now show that

E (rn) ≤ 2 for n = l + 1

If the probabilistic greedy heuristic selects u1 at step 1, the value of the optimal solution at the second step of
the greedy heuristic is z − x1, where z is the optimal solution value of the minsat problem with n variables.
However, if the greedy heuristic selects ū1 at step 1, the value of the optimal solution at the second step
is bounded from above by z. Hence, the expected number of clauses satisfied by the probabilistic greedy
heuristic is bounded from above by

p1(x1 + E (rl )(z − x1)) + (1 − p1)(y1 + E (rl )z)

As E (rl ) ≤ 2 by the induction hypothesis, the value of the above expression is no greater than

p1(x1 + 2(z − x1)) + (1 − p1)(y1 + 2z)

Thus, an upper bound on the expected performance ratio for the probabilistic greedy heuristic is

E (rl+1) ≤ 1

z
( p1(x1 + 2(z − x1)) + (1 − p1)(y1 + 2z))

= 1

z
(2z − p1(x1 + y1) + y1)

≤ 2

To prove the above bound is tight, consider the following example with n = 2 variables and m clauses.
Let

c1 = u1 ∨ u2

c2 = ū1

ci = ū2, 3 ≤ i ≤ m

The optimal assignment sets both u1 and u2 true and satisfies one clause, c1. The probabilistic greedy
heuristic sets u1 true or false with the same probability (which equals 1/2) at its first step. If it sets u1 true,
then it obtains the optimal solution, setting u2 true with probability 1 at its second step. Otherwise, at the
second step, it sets u2 true with probability 1 − (1/(m − 1)), satisfying two clauses, c1 and c2; and sets u2

false with probability 1/(m − 1), satisfying (m − 1) clauses, c2, . . . , cm. Thus, the expected performance
ratio (which equals the expected number of satisfied clauses) for the probabilistic greedy heuristic is

1

2
1 + 1

2

(
m − 2

m − 1
(2) + 1

m − 1
(m − 1)

)

= 2 − 1

m − 1

As m tends to infinity, the value of this expression approaches from below the bound derived in Theo-
rem 49.2. Note that if we interchange u2 and ū2 in the above example, then each clause has at most one
unnegated truth variable. Such clauses are called Horn clauses, and so it follows that the above bound
on the average performance of the probabilistic greedy heuristic remains tight if we restrict the problem
instances to Horn clauses. Also note that n = 2 in this example and that the optimal clause c1 contains
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s = 2 variables. Thus, the bound on the average performance of the probabilistic greedy heuristic does
not depend on m or s .

49.3 Using Probabilistic Algorithms

An average performance analysis does not tell us how well a probabilistic algorithm will do if we stop it
after a single run for a given problem instance. It is possible that the solution obtained will be far removed
from the average bound. Why then should we be interested in the average performance of a probabilistic
algorithm? The answer is that we do not need to stop after a single run. If we run the algorithm a large
number of times (say N), then the average of the solution values will asymptotically converge to a value no
smaller than the bound on the average performance in Theorems 49.1 or 49.2. The maximum value across
these N runs can of course be no smaller than their average. We can thus select this best solution and be
assured that, with a very high probability, it has a value that is no worse than the bound on the average
performance of the algorithm. The value of N does not have to be enormously large—in most instances,
several thousand, if not several hundred runs, will suffice.

There is another way in which probabilistic algorithms can be used. Suppose we run the algorithm a
large number of times (say N), and select the best solution. We can repeat the process a large number of
times (say M). We then have a sample of M solution values, each the best solution among N solutions. If
we plot the distribution of these M best solutions, we obtain an empirical distribution of the best solution.
This is a useful distribution, from which we can make several important inferences. First, we note that as
N and M become arbitrarily large, the distribution approaches the “true” distribution of the best solution
across N M runs. This argument was first used by Fisher and Tippet [10] to obtain closed-form expressions
for distributions of a maximum or minimum value from a sample when it is bounded on one or both
sides. The main assumption for these distributions to hold is that the samples be drawn from a continuous
distribution. This is not valid for such discrete problems as satisfiability, and so the exact distributions
need not hold. But the essence of the argument still remains, and one can use repeated runs to obtain a
reference distribution which is asymptotically the entire distribution of interest. This procedure is akin
to bootstrapping methods in statistics, except that the sampling process uses a probabilistic algorithm.
One can use the reference distribution to make probabilistic statements about a solution value, that is,
obtain estimates for the probability that the best solution across many runs will exceed a certain numerical
value. Such analyses are not possible for deterministic algorithms; but they are natural for probabilistic
algorithms, although we are not aware of literature reporting their use.

49.4 Conclusion

There are other probabilistic algorithms for the maxsat problem. The simplest of these is a “random”
algorithm that sets each variable true or false with probability 1/2. It is easy to see that the average
performance of this algorithm is 1/2 [9]. Johnson’s [11] (unweighted) deterministic greedy algorithm
with a performance ratio of 1/2 can be considered as a derandomization of this simple random algorithm
[12]. A randomized algorithm for maxsat using linear programming rounding, where the fractional value
assigned to the variable corresponding to a truth variable is used as the probability of setting the truth
variable true, provides a performance guarantee of 1 − 1/e [13]. The better of the “random” algorithm
and the randomized rounding algorithm using linear programming provides a performance guarantee
of 3/4. Approaches using semidefinite programming for the maxsat problem have yielded improved
approximation ratios [4]. However, algorithms using linear programming and semidefinite programming
have high running times. One benefit of using simple probabilistic algorithms is that the running time is
low, and the probabilistic algorithm may be run many times on a given problem instance. By retaining the
best solution across all the runs, one obtains a solution that, with high probability, is no worse than the
bound on the average performance of a probabilistic algorithm.
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Several possible problems remain open, including the following. How do different probability rules
affect the expected performance of probabilistic greedy heuristics? Is there an optimal choice of the β

parameter for the two rules considered in the paper? Are there some types of problems for which one or
another probabilistic greedy heuristic does better than others? And are there ways in which resampling
methods like bootstrapping [14] can be used to construct reference distributions from which one can
make probabilistic assertions about an obtained solution relative to an optimal solution?
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50.1 Introduction

A triangulation [1,2] is a partition of a d-dimensional polytope into simplices. The decomposed sim-
plices should be nonoverlapping except sharing the common vertices (0-faces), edges (1-faces), faces
(2-faces), . . . , (d − 1)-faces. When d = 2, a triangulation is the subdivision of a two-dimensional (2D)
region into empty triangles, in which two adjacent triangles share an edge. When d = 3, a triangulation,
sometimes called tetrahedralization, can be viewed as a decomposition of a three-dimensional (3D) volume
into a set of disjoint 3D empty tetrahedra in which two adjacent tetrahedra share a face. Triangulation
is not only an interesting theoretical problem in computational geometry, it also has many important
applications, such as finite element methods [3] for computer-aided design and physical simulations.

In this chapter we consider some approximation algorithms for triangulations in two and three dimen-
sions. Note that a 2D region (or a 3D volume) can be defined by a simple polygon (or a polyhedron), or
by a set of points, in which case we are to triangulate the region enclosed by the convex hull of the set of
points. We consider both the cases of simple polygon/polyhedron and point sets. Throughout this chapter,
S denotes a set of points, P denotes a polygon or polyhedron, n denotes the number of points in S or the
number of vertices in P , and CH(S) denotes the convex hull of S.

A standard assumption in computational geometry is to assume the points in consideration are in
general position. In our case, we assume no three points are collinear and no four points are on the same
circle in the 2D case, and no four points are on the same plane in the 3D case. In particular, for a convex
polyhedron in 3D, this implies that all faces of the polyhedron are triangles.

In the rest of this section we will present some properties and simple heuristics of 2D and 3D trian-
gulations. Subsequent sections will discuss some 2D and 3D triangulation approximation algorithms in
detail.

50-1
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50.1.1 2D Triangulations

Let S = {si | i = 1, . . . , n} be a set of n points in a plane such that S is in general position. Let si s j

for i �= j denote the line segment with endpoints si and s j , and let |si s j | denote the Euclidean distance
between si and s j . A triangulation of S, denoted by T(S), is a maximum set of noncrossing line segments
with their endpoints in S.

A 2D simple polygon or point set may admit more than one triangulation, but all triangulations contain
the same number of triangles. An arbitrary triangulation of a simple polygon can be found in linear time
[4]. However, there are many objectives which we can optimize and have practical applications, for example,
maximizing the minimum (or minimizing the maximum) angle [5], edge length [6], or circumcircle, of
the triangles in the triangulation. One well-known triangulation is called the Delaunay triangulation (DT)
[7,8], which is closely related to Voronoi diagrams. It can be computed by an efficient O(n log n) time
algorithm. It has many interesting properties, such as maximizing the minimum angle of the DT triangles,
and that each circumscribing circle of a DT triangle of a set of points contains no other points in its interior.
One variation of the DT problem is to have the triangulation be constrained by a given set of line segments,
called Constrained Delaunay triangulation (CDT) [9,10]. When the set of constrained line segments forms
a simple polygon, there is a linear time algorithm for computing the CDT [11].

Greedy triangulations [12] are constructed by inserting the diagonals of the polygon one by one in
sorted order according to some parameters as long as the later inserted diagonals do not intersect with
those already inserted. A greedy triangulation for a 2D polygon can be constructed in O(n log n) time.

There is another famous triangulation called minimum-weight triangulation (MWT) [13], which has
the property that the sum of lengths of all line segments in the triangulation is minimized. Finding the
minimum-weight triangulation of a point set is a famous outstanding open problem; it is still unknown
whether this problem has a polynomial-time algorithm or is NP-complete [14].1 Properties on minimum-
weight triangulations can be found in Refs. [15–17]. The maximum-weight triangulation (MAT) problem
[18] is similar to the MWT problem except that the sum of lengths of all line segments in the triangulation
is maximized.

We will present in Sections 50.2 and 50.3 a number of heuristics for the MWT and MAT problems.

50.1.2 3D Triangulations

Properties of 3D Triangulations
The 3D triangulation, or tetrahedralization, has many properties different from 2D triangulation. For
example, a polygon in 2D can have many different triangulations, where each triangulation contains the
same number of triangles. However, different tetrahedralizations of the same polyhedron can result in
different numbers of tetrahedra. A simple example is given in Figure 50.1; one tetrahedralization gives two
tetrahedra while the other gives three.

FIGURE 50.1 Two different tetrahedralizations.

1Very recently, Mulzer and Rote showed that the minimum weight triangulation problem is NP-hard [68].
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Reflex edges

FIGURE 50.2 A nontetrahedralizable example: A twisted triangular prism.

The difference in the number of tetrahedra in two tetrahedralizations can in fact be quite large: consider
the n vertices of a polyhedron to be on the moment curve, {vi = (i, i 2, i 3), i = 1, . . . , n}. This polyhedron
can be decomposed into

(n−2
2

)
tetrahedra of the form vi vi+1v j v j+1. With Euler’s formula, this is the

maximum number of tetrahedra that a tetrahedralization of an n-vertex polyhedron can have. However, as
we shall see, there exists a tetrahedralization for the same polyhedron containing at most 2n−7 tetrahedra.

Another interesting property is that, unlike 2D simple polygons, triangulation is not even always possible:
not all simple polyhedra are tetrahedralizable. A famous example is owed to Schönhardt [19], which is a
twisted triangular prism (Figure 50.2). The triangular base of the prism is twisted so that each of the three
rectangular faces folds into two triangular faces with a reflex edge between them. The resultant polyhedron
is nonconvex and cannot be tetrahedralized without inserting additional vertices inside the polyhedron,
called Steiner points. In general, it is NP-complete [20] to determine whether a 3D nonconvex polyhedron
is tetrahedralizable without Steiner points. As we shall see, Steiner points are not necessary for convex
polyhedra. In this chapter we only consider triangulations without Steiner points.

Another interesting difference is the greedy 3D tetrahedralization of a set of points, which, unlike the
greedy 2D triangulation, might not always be possible if edges are inserted in some order according to
some parameters, such as their lengths. The problem becomes NP-complete if the selected edge has to be
checked, besides whether it and its induced component intersect with the previously inserted components,
whether its inclusion with the previously inserted edges is tetrahedralizable [21,22].

Some Triangulation Heuristics for Convex Polyhedra
All convex polyhedra can be tetrahedralized by the pulling (also known as “fan-out”) approach, that is,
by choosing a particular vertex v in the polyhedron and forming tetrahedra with faces in the polyhedron
which are not adjacent to v. Since each face of the polyhedron is a triangle, by Euler’s formula, the total
number of faces in an n-vertex polyhedron must be exactly 2n−4. Let d be the degree of v, then the number
of nonadjacent faces (or equivalently the number of decomposed tetrahedra) is 2n − 4 − d ≤ 2n − 7 as
d ≥ 3. The pulling tetrahedralization may not result in the minimum number of tetrahedra. An example
is given in Figure 50.3: The convex polyhedron is formed by attaching four flat tetrahedra onto the four

FIGURE 50.3 An optimal tetrahedralization which is not “pulling”.
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faces of a tetrahedron. The pulling tetrahedralization of this polyhedron gives at least six tetrahedra, while
the optimal tetrahedralization gives five.

Another way to tetrahedralize a polyhedron is by peeling, also called cap-removal or shelling. The peeling
algorithm is similar to what is given in Ref. [23] for polyhedron with reflex edges. Let N(v) be the set of
neighbors of a vertex v. The cap of v is defined as the star-shaped polyhedron formed by removing the
convex hull of N(v) from the convex hull of N(v) ∪ v, that is, cap(v) = CH(N(v) ∪ v) − CH(N(v)).
The cap-removal algorithm removes the caps of the vertices one by one, and each of the removed caps is
tetrahedralized by the pulling approach: if v is of degree d , the cap of v can be replaced by (d−2) tetrahedra.
This cap-removal step is performed recursively until the whole polyhedron is tetrahedralized. As the degree
of v can be O(n), the cap of v is replaced by O(n) tetrahedra. This approach takes at most O(n2 log n) time
and can produce O(n2) tetrahedra. As the surface of the polyhedron forms a planar graph, there always
exists a vertex of degree at most 5, and we can tetrahedralize the polyhedron by recursively removing the
cap of those vertices with degree 5 or less. This cap-removal algorithm based on vertices of minimum
degrees produces a tetrahedralization with at most 3n − 11 tetrahedra; it is another tetrahedralization
algorithm which results in a linear number of decomposed tetrahedra other than the pulling approach.

How to tetrahedralize a convex polyhedron with the minimum number of tetrahedra is a well-known
open problem [2], until it is shown recently to be NP-hard [24]. Only very special types of polyhedra have
known minimum triangulations [25,26]. It is therefore natural to consider approximation algorithms
for this problem. In Section 50.4, we give approximation algorithms for finding a tetrahedralization for a
convex polyhedron that give the minimum number of tetrahedra. We will also consider nonapproximability
of this problem.

50.2 2D Minimum Weight Triangulation

In this section we consider MWTs for a set of points in two dimensions. The weight of a triangulation
T(S) is given by

ω(T(S)) =
∑

si s j εT(S)

| si s j |

An MWT of S, denoted by MWT(S), is defined as a triangulation such thatω(MWT(S))=min{ω(T(S))}
for all possible T(S).

One of the outstanding open problems listed in Garey and Johnson’s book [14] is MWT. The complexity
status of this problem is unknown since 1975 [27]. A great deal of work has been done to seek the ultimate
solution of the problem. Basically, there are three directions to approach the problem: (1) to construct
the exact MWT(S) for restricted classes of point sets [28–31]. In particular, when the point set forms a
simple polygon P with n vertices, then MWT(P ) can be computed in O(n3) time [28,29]; (2) to identify
edges inclusive or exclusive to MWT(S) [15,32–35] and hoping that the identified edges may form a
constant number of connected components or several simple polygons. Then, a dynamic programming
method can solve this problem in polynomial-time; and (3) to find a triangulation T(S) which has a good
approximation ratio: ω(T(S))/ω(MWT(S)). This direction of research has practical significance since
finding the MWT may be time-consuming even if solvable in polynomial-time.

In direction (1), Gilbert and Klincsek [28,29] independently showed an O(n3) time dynamic program-
ming algorithm to obtain MWT(P ), where P is restricted to be a simple n-gon. Anagnostou and Corneil
[30] gave an O(n3k+1) time algorithm to find MWT(S), where S are vertices of k nested convex polygons.
Meijer and Rappaport [36] gave an O(nk) time algorithm when S is restricted to be on k nonintersecting
lines. It was shown in Ref. [31] that if given a subgraph of MWT(S) with k connected components, then
the complete MWT(S) can be computed in O(nk+2) time. A sparse point set case was studied in Ref. [37].
Most recently, Hoffmann and Okamoto [38] proved that MWT(S) is fixed-parameter tractable, that is,
MWT(S) can be solved in O(6kn5 log n) time, where k is the number of points of S inside the convex
hull CH(S). Thus, when k ≤ O(log n), this time complexity is polynomial. A different algorithm (which
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also handles the case of k points inside a nonconvex polygon) with time complexity O(n3k!k) is given in
Ref. [39].

In direction (2), researchers noted that the intersection of all possible T(S), called stable edges in Ref. [40],
is a subgraph of MWT(S). A triangulation is k-local minimal if every k-sided simple polygon formed by
the edges of this triangulation is an MWT of that k-gon. Since MWT(S) must be k-local minimal (for
k ≤ n), the intersection of all 4-local minimal triangulations of S is a subgraph of MWT(S), called the
LMT-skeleton [41]. Dickerson and Montague [41] showed an algorithm to compute the LMT-skeleton.
Dai and Katoh [42] used a variation of the local minimal method to a version of MWT that restricts the
angles of the triangles. Experiments show that the local minimal method usually results in a connected
subgraph; however, it was shown [43] that there exist point sets such that a connected subgraph cannot
be formed using these local minimal methods.

Researchers also noted that edges with certain local properties must belong to MWT(S). Gilbert [28]
showed that the shortest edge in S is in MWT(S). Keil [15] proved that the so-called β-skeleton of S for
β = √

2 is a subgraph of MWT(S), which inspired a wave of research in this direction. Cheng and Xu
[34] extended Keil’s result to β = 1.17682. Yang et al. [33] showed that mutual nearest neighbors are also
in MWT(S). Wang et al. [16] investigated the case of nonsymmetric geometric condition for an edge in
MWT(S). Das and Joseph [32] identified some edges which do not belong to any MWT(S). Drysdale et al.
[44] identified exclusion regions of MWT(S). The edge identification of MWT(S) seems to be a promising
approach and has the following merit: the more edges of MWT(S) being identified, the fewer number
of disconnected components are there in S. Thus, it is possible that eventually all these identified edges
form a connected graph so that an MWT(S) can be constructed by dynamic programming in polynomial
time [31]. So far, all these MWT edges identified were light edges, where an edge is called a light edge if it is
shorter than all other edges crossing it. It is still open whether or not some nonlight edges can be identified
in polynomial-time and they together with the known light edges form a connected graph.

In direction (3), researchers concentrated on designing efficient triangulation algorithms with good
approximation ratios with respect to MWT(S). It has been shown that the well-known greedy triangulation
and DT do not approximate MWT(S) well: Kirkpatrick [45] showed that DT may have approximation
factor �(n) with respect to MWT(S), and Levcopoulos [46] demonstrated that greedy triangulation may
have an approximation factor of �(

√
n).

To see this, refer to Figure 50.4(a), where n − 1 vertices lie on a circle with radius r and within a very
small arc of length δ, where δ � r , and one vertex lies on the center of the circle. The DT connects the
center vertex with all other vertices and the total length is r (n − 1) + δ. However, MWT of this set would
first connect all n − 1 vertices on the arc to form a triangulation, and then connect the center vertex with

(a) (b)

v0

S1
n – n – 1

S2

b

−3

−2

−1

0

1

2

4

3

– n 

FIGURE 50.4 Delaunay and greedy triangulations may be a bad approximation.
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the two extreme vertices on the arc. Thus, the total length of MWT would be at most 2r + (2n − 5)δ.
Thus, we have an �(n) factor for DT. (By slight modifications, we can avoid this degenerated case and still
obtain the �(n) factor.)

For the greedy triangulation, refer to Figure 50.4(b), where
√

n points (S2) are put evenly on the
negative y-axis, one point (called blocking point, b) is put on coordinates (1, 1), and the remaining
(n − √

n − 1) points (S1) are on the line between coordinates (3,3) and (4,4). The greedy triangulation
GT(S) contains edges connecting vertex b to all

√
n vertices in S2 and the edges connecting vertex (0, −√

n)

to all vertices in S1. The total length of GT(S) is at least |CH(S)|+∑√
n

i=1

√
1 + (i + 1)2 + (n −√

n − 1) ·√
32 + (

√
n + 3)2 = �(n

√
n), where |CH(S)| is the length of edges on the convex hull of S. But MWT(S)

contains edges of CH(S), edges connecting vertex (0,−1) to all the vertices in S1 as well as b, and the
edges connecting vertex (4,4) to all the vertices in S2. The total length of MWT(S) is at most |CH(S)| +
∑√

n
i=1

√
42 + (i + 4)2+(n−√

n−1)
√

52 + 42+√
5 = O(n). Thus, the ratio ω(GT(S))/ω(MWT(S)) =

�(
√

n).
Lingas [47] and Heath and Pemmaraju [48] took another approach. First, build a minimum spanning

tree on the Delaunay or the greedy triangulation, which partitions the point set into a number of simple
polygons. Then use dynamic programming to find the optimal triangulation of each of these smaller
polygons. This heuristic is no worse than the simple Delaunay or greedy triangulation, respectively, but
not better either: they only yield �(n) and �(

√
n) approximation ratio, respectively [49]. It is proved in

Ref. [50] that the simple greedy triangulation or the one based on building a minimum spanning tree first
both have approximation ratio O(

√
n), so the bound is tight.

Before the above O(
√

n) bound on greedy triangulation was proved, Plaisted and Hong [51] al-
ready proposed an O(log n) factor approximation algorithm. The best approximation algorithm is owed
Levcopoulos and Krznaric [50]. They provided a constant factor approximation algorithm, even though
the constant is very large.

Finally, we turn our attention to convex polygons. Even though the MWT of a simple n-gon can be
found in O(n3) time, no better algorithm has been found. Researchers turned to design some efficient
approximation algorithms for this case. Levcopoulos and Lingas [52] proved that the greedy triangulation
yields a constant factor approximation to the MWT of a convex polygon. Levcopoulos and Krznaric gave a
linear-time approximation scheme [53], that is, it has approximation ratio 1+ε for arbitrarily small ε > 0.

We will in the following briefly discuss Plaisted and Hong’s O(log n) factor algorithm, Levcopoulos and
Krznaric’s constant factor algorithm, and Lingas and Levcopoulos’s constant factor greedy triangulation
for convex polygons.

50.2.1 An O(log n) Approximation Algorithm for Point Sets

This approximation algorithm is based on two steps:

1. Partition the point set S into a set of empty convex polygons, that is, the interior of each polygon
does not contain any point in S. The total lengths of the boundaries of these convex polygons are
proportional to ω(MWT(S)).

2. Use the so-called “ring heuristic” to triangulate each of the empty convex polygons.

We now explain the steps in more detail. The algorithm first finds the “initial star” for each vertex inside
the convex hull of S, where an initial star for a vertex p is a group of three edges incident to p such that
the angle between two adjacent edges is less than 180◦ and the “initial star” has the smallest total edge
length among all possible such stars at p. For example in Figure 50.5(a), p4 has star (p5 p8 p9), p5 has star
(p2 p6 p9), p6 has star ( p3 p5 p9), p7 has star ( p1 p3 p4), p8 has star ( p1 p4 p5), and p9 has star ( p4 p6 p8).
The total edge lengths of all initial stars are bounded by 2ω(MWT(S)). This is because in any inner vertex,
say p, there exists a star of MWT(S) incident to p, and the length of this star is at least the length of p’s
initial star. Since each edge in the initial stars may be counted twice, we have a factor of 2.

However, some edges of the initial stars may cross. To form a set of convex polygons, one needs to replace
the crossing edges by one or more noncrossing edges. For example in Figure 50.5(a), edge p4 p7 crosses
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FIGURE 50.5 (a) An illustration for the stars. (b) The ring heuristic.

edge p8 p9. In the process, p4 p7 may be replaced by, for example, p7 p9. The algorithm processes the set
of initial star edges, S1, in ascending order of their lengths, and attempts to add them to the modified
edge set S2 which is initially empty. If an edge pi p j in S1 does not cross any edge in S2, it is moved to
S2. Otherwise, pi p j is removed from S1, and either one or more edges are added into S2 or an edge is
added to a “tentative” edge set according to a 14-case analysis. The process ensures that these newly added
edges have total length at most twice the length of pi p j , and the edges in S2 do not cross each other.
Furthermore, if a tentative edge is shorter than twice the length of pi p j , a special treatment is applied to
replace this edge with some edges which are then moved to S2.

To complete the triangulation, the algorithm uses the “ring heuristic” to triangulate each convex polygon
resulted in the first step. To do so, the algorithm first connects every other vertex by an edge, that is,
connecting p1 p3, p3 p5, . . . , pn−1 p1 (assuming n = 2k for integer k) to form a ring of edges. Then it
connects p1 p5, p5 p9, . . . , pn−3 p1 to form another inner ring of edges, and continues in this manner until
only three vertices are left. Figure 50.5(b) shows the ring heuristic triangulation of a convex polygon with
12 vertices. It is obvious that the total length of the edges in each inner level of ring is less than the total
length of an outer ring. Since there are about �log n	 rings, the total length of the edges inside the convex
polygon is at most O(log n) times the length of the boundary of the polygon.

Thus, this approximation algorithm yields a triangulation with O(log n)-factor to the MWT(S).

50.2.2 A Constant Factor Approximation Algorithm for Point Sets

It was noted that the greedy triangulation and DT can approximate MWT to a constant factor when the
points are uniformly distributed [54,55]. Levcopoulos and Krznaric [50] showed that only in one certain
distribution, the greedy triangulation approximates MWT badly. This case occurs when the point set forms
two concave chains facing each other (see Figure 50.6). To avoid the failure of the greedy algorithm, they
modified the greedy triangulation to check this case.

Specifically, let G be a graph initially containing only the vertex set S. Let E be the edge set sorted in
nondecreasing order of edge lengths. The algorithm tries to insert the shortest edge currently in E into
G (like greedy triangulation). Let v1u1 be an edge to be inserted. If all the following six conditions hold,
then an edge v0u0 is added into G , otherwise the edge v1u1 is added into G .

1. The diagonal v1u1 forms an empty triangle (v1, u0, u1) with two edges in G .
2. There is a diagonal v0u0 properly intersecting v1u1 and forming an empty triangle (v0, v1, u0) with

two edges in G .
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FIGURE 50.6 An illustration for the quasi-greedy algorithm.

3. The angle � (v1, u0, u1) > 135◦ in triangle (v1, u0, u1).
4. |u0v0| < 1.1|u1v1|.
5. |v0 p | < 0.5|u0 p |, where p is the intersecting point of the straight-line extensions of |v0v1| and

|u0u1|.
6. There is an edge u1, u2 in G such that (v1, u0, u1, u2) forms an empty quadrangle and the angle

� (u0, u1, u2) in that quadrangle is greater than 180◦.

Levcopoulos and Krznaric proved [50] that this modified greedy algorithm yields a triangulation of a
point set with a constant factor of the MWT. The detailed proof is omitted here.

50.2.3 A Linear-Time Approximation Algorithm for Convex Polygons

When the given point set forms a simple polygon, its MWT can be found in O(n3) time by dynamic
programming. However, it is still open that whether or not there exists a sub-O(n3) algorithm for even a
convex polygon, and an O(n3) time algorithm is still too expensive in practice. Hence, researchers tried
to design efficient algorithms to approximate MWT(P ) for a convex polygon P .

Levcopoulos and Lingas [52] proved that greedy triangulation GT(P) of a convex polygon can approx-
imate MWT within a constant factor. Their proof basically consists of the following parts. (1) In a convex
polygon P , if a diagonal d intersects and hence partitions a greedy edge e of GT(P ) into two parts e ′ and
e ′′, then either |e ′| = O(|d|) or |e ′′| = O(|d|). A similar property holds for MWT edges. Therefore, the
length of an edge of GT(P ) is related to the length of an edge of MWT(P ) if they cross each other. (2) For
each edge d in MWT(P ), the set of greedy triangulation edges that intersects d and within certain weight
ranges has constant cardinality. (3) The total length of all edges of GT(P ) incident to a vertex vi is only a
constant factor larger than the length of the longest edge of GT(P ) incident to vi .

They used the above properties and case analysis to match the edges in MWT(P ) to edges in GT(P )
and proved that ω(GT(P )) = O(ω(MWT(P )).

50.3 2D Maximum Weight Triangulation

Unlike MWT, there is not much research done on MAT(S) of a point set S. MAT(S) is defined as a
triangulation such that ω(MAT(S)) = max{ω(T(S))} for all possible T(S). From the theoretical view-
point, the MAT and MWT problems should be of equal interest, and one seems not to be easier than the
other.

The first work in MAT showed that if an n-sided polygon P is inscribed on a circle, then MAT(P ) can
be found in O(n2) time instead of O(n3) [18]. Hu [56] proved that greedy, greedy spanning tree, and
maximum spanning tree triangulation heuristics all have approximation ratio not better than �(

√
n).

Then, Hu gave a simple “spoke triangulation” approximation algorithm to triangulate a point set S with
an approximation ratio of 6. Chin et al. [57] improved Hu’s result to 4.238 by presenting a nontrivial upper
bound of the weight of MAT(S) for a set S of n points in the plane. If the point set forms a convex polygon,
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FIGURE 50.7 An illustration for the �(
√

n) ratio.

the spoke triangulation algorithm gives an approximation ratio of 2 [56], and Qian and Wang [58] gave
a linear-time approximation scheme that gives an approximation ratio of 1 + ε for any ε > 0. In the
following, we will briefly discuss each of the above results for point sets.

Greedy Triangulation Approximates MAT Badly
To see why, consider a point set as in Figure 50.7. All points are put on or inside a unit half circle with
diameter ab, except the point d which is slightly above ab. The first

√
n points p1, p2, . . . are placed in

such a manner that the greedy triangulation will select the edges bp1, p1 p2, p2 p3, . . . . The total length of
these edges in GT(S) can be shown to be O(

√
n). Then the rest of n − √

n points are put within a small
triangle p√

n−3 p√
n−2 p√

n−1 and again their total edge length in GT(S) is at most O(
√

n). Therefore,
ω(GT(S)) = O(

√
n). On the other hand, an MAT(S) would have weight �(n) just by connecting point

d to all other points in S and adding CH(S). Thus, ω(MAT(S))
ω(GT(S)) = �(

√
n).

The Spoke Triangulation Algorithm
The algorithm can be described as follows. Let DS = |si s j | be the diameter of a point set S. The line extend-
ing DS partitions S into S1 and S2 (excluding si and s j ). Let ω(E 1

i ) and ω(E 1
j ) (respectively, ω(E 2

i ) and

ω(E 2
j )) denote the sum of the lengths of edges connecting every point in S1 (respectively, S2) to si and s j ,

respectively. The algorithm first takes the “spokes” in the larger one of ω(E 1
i ) and ω(E 1

j ) (respectively, the

larger one of ω(E 2
i ) and ω(E 2

j )) as the first subset of the triangulation edges. Then, it completes the trian-
gulation similar to Graham’s scan convex hull construction algorithm. It was shown that this triangulation
has weight at least (n+1) DS

2 . Since there are at most 3n−6 edges in any triangulation of n points, this gives
a trivial bound of ω(MAT(S)) ≤ (3n −6)DS and therefore the algorithm has an approximation ratio of 6.

Improving the Approximation Ratio to 4.238
Chin et al. [57] observed that not all 3n−6 edges can be as long as the diameter. They proved a tighter upper
bound and hence improved the approximation ratio to 4.238. The intuitive idea of proof is as follows.

Let ε be a constant, 0 < ε ≤ 1
2 . We call a triangle � “large” if its perimeter ω(�) ≥ (2 + 2ε) · D�

where D� is the diameter of the triangle, and “small” otherwise. Note that ε is the shape parameter of a
triangle: a triangle with perimeter (2 + 2ε)D� is long and thin if ε → 0 and equilateral if ε = 1/2.

To maximize the edge lengths of a triangulation of the set, one may wish that a triangulation contains
as many long and thin (“large”) triangles as possible. However, it can be proved that if a triangle � has
ω(�) ≥ (2 + 2ε)D�, then its area A� ≥ ε

√
1 − ε2 · D2

�. Since the maximum area of the convex hull of a

point set with diameter DS is bounded above by π
4 D2

S , we have that T(S) may contain at most π

4ε
√

1−ε2

large triangles. It is well known that any triangulation T(S) contains at most 2n−5 triangles. Suppose T(S)
contains m large triangles and at most 2n − 5 − m small triangles. It is clear that the perimeter of a large
triangle is at most 3DS , and the perimeter of a small one is less than (2 + 2ε) · DS by definition. Summing
up the perimeters of all the triangles in T(S) as well as the perimeter of CH(S) (which is at most π DS ), we
obtain a sum equals twice of ω(T). Simplifying, we have ω(T) ≤ ((2+2ε)·n+ π(1−2ε)

8ε
√

1−ε2
+ π

2 −5(1+ε))DS .
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If we apply the spoke-triangulation algorithm to produce a triangulation T ′(S) of a point set, then by
our upper bound on ω(T(S)), we obtain an approximation ratio

ω(T(S))

ω(T ′(S))
≤

((2 + 2ε) · n + π(1−2ε)

8ε
√

1−ε2
+ π

2 − 5(1 + ε))DS

(n + 1)DS/2
= (4 + 4ε) + b(ε)

n + 1

where b(ε) is some function of ε. By setting ε = 0.05932, the approximation ratio is always at most
4 + 4ε = 4.238.

50.4 Minimum Triangulation of 3D Convex Polyhedra

As noted in the introduction, finding the minimum tetrahedralization of a 3D convex polyhedron is
NP-hard. In this section we consider the problem of finding an approximation to the minimum-size
triangulation of a convex polyhedron. For a convex polyhedron P , let n denote its number of vertices and
� denote its maximum vertex degree.

To bound the approximation ratio of an algorithm, we need to have a bound on the size of the mini-
mum (i.e., optimal) triangulation. A triangulation may contain interior edges, which are edges of the set
of decomposed tetrahedra not on the surface of the polyhedron. For any triangulation of an n-vertex
polyhedron, the number of interior edges e is directly related to the number of tetrahedra t by the formula
t = e + n − 3, which was shown in Refs. [59–61]. In the following this will be used as a lower bound
on the size of optimal triangulations. Note that this implies a lower bound of n − 3 tetrahedra for any
triangulation.

50.4.1 Simple Heuristics

In Section 50.1.2 we introduced simple triangulation heuristics like pulling and peeling. The pulling
heuristic gives a triangulation of size 2n − 4 − d , where d is the degree of the vertex where we “pull” from.
To minimize the size of triangulation, the pulling should be done from the maximum-degree vertex. So the
minimum triangulation has size at most 2n − 4 −�. Recall that there is a lower bound of n − 3 for the size
of any triangulation. Hence pulling gives an approximation ratio of (2n − 4 − �)/(n − 3) = 2 − �(1/n).
Similarly, since peeling gives a triangulation of size at most 3n − 11, it gives an approximation ratio of
3 − �(1/n).

50.4.2 A Better Approximation Algorithm

We now describe another triangulation algorithm [62], which gives a slightly better approximation ratio
2 − �(1/

√
n) by exploiting the combinatorial properties of polyhedra and their triangulations.

A 3-cycle in the (surface) graph of a polyhedron is a closed path of three edges in the graph such that
each side of the cycle contains at least one other vertex. In other words, a 3-cycle partitions the polyhedron
into two convex subpolyhedra (the requirement of having at least one other vertex on each side ensures
the 3-cycle is not a face of the polyhedron, which does not partition the polyhedron).

The new algorithm, CutPull, adds a simple extra step comparing with pulling: It partitions the polyhe-
dron along all 3-cycles before applying pulling.

• Step 1. Find all 3-cycles on the surface graph of the given polyhedron P . This can be done efficiently
using algorithms such as those in Refs. [63,64].

• Step 2. Partition the polyhedron along all these 3-cycles to produce a set of subpolyhedra, each is
free of 3-cycles.

• Step 3. Apply the pulling heuristic to each of the resulting subpolyhedron.

Suppose there are k 3-cycles in a polyhedron P . We have the following three properties concerning
3-cycles and CutPull, whose proofs are elementary (see Ref. [62]).
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1. Let P1, P2 be the resulting subpolyhedra when P is partitioned along a 3-cycle. Let n1 and n2 be
the number of vertices of P1 and P2, and t, t1, and t2 be the number of tetrahedra produced by the
pulling heuristic applied to P , P1, and P2, respectively. Then t ≥ t1 + t2. (In other words, cutting
along 3-cycles does not make pulling worse.)

2. CutPull produces a triangulation with at most 2n − 7 − k tetrahedra.
3. If P has maximum vertex degree � and n > 4, and has a minimum triangulation with em interior

edges, then em� + 3k ≥ n − 2.

To prove the approximation ratio of CutPull, consider a convex polyhedron P , and suppose it has k
3-cycles. Consider the following two cases:

Case 1
k = o(n). Since em� ≥ n − 2 − 3k = n − o(n), and using the arithmetic-geometric-mean inequality,
this gives em + � ≥ 2

√
n − o(n) = �(

√
n). So

2n − 4 − �

em + n − 3
≤ 2n − 4 − (�(

√
n) − em)

em + n − 3
≤ 2n − 4 − �(

√
n)

n − 3
≤ 2 − �(

1√
n

)

This means even if the pulling heuristic is applied directly to P (without first cutting 3-cycles), we
still have an approximation ratio of 2 − �( 1√

n
). Since partitioning the polyhedron along all 3-cycles

before pulling will not increase the number of tetrahedra, CutPull also gives an approximation ratio of
2 − �( 1√

n
).

Case 2
k = �(n). The approximation ratio is then at most 2n−7−cn

em+n−3 ≤ 2 − c < 2 − �( 1√
n

) for some constant
c > 0.

Therefore, CutPull gives an approximation ratio of 2 − �( 1√
n

) in either case.

50.4.3 Lower Bound for Approximation Ratio

No general lower bound on the approximation ratio of this problem is known. It is known, however, that
if we only consider the combinatorial structure of the polyhedron, the bound of CutPull in Section 50.4.2
is actually tight. Two polyhedra have the combinatorial structure if their graph is isomorphic. Polyhedra
with the same combinatorial structure can still have their vertices at different relative positions, and a
different minimum size in triangulations (see Ref. [60]). Note that CutPull and pulling considers only
combinatorial structures.

To prove the lower bound we need the following observation. If two polyhedra, A and B have the
same combinatorial structure, and their sizes of minimum triangulations are tA and tB respectively, where
tA < tB , then no algorithm that only considers combinatorial structures can have approximation ratio
better than tB/tA. This is because the algorithm cannot distinguish A and B, and can only produce the
same output for them, which must be at least tB . The main idea of the proof is to construct two convex
polyhedra P1 and P2 such that they have the same combinatorial structure, but the sizes of their minimum
triangulations differ by a large amount.

We do not go into the details of the constructions; they can be found in Ref. [62]. Figure 50.8 shows
a rough idea of the construction of a polyhedron from which P1 and P2 will be formed. It consists of m
wedges W1, . . . , Wm. Wedge Wk has vertices ak , bk , ck , dk . In each wedge Wk , m vertices q 1

k , q 2
k , . . . , q m

k
are created between each interval (ck , dk) and edges akq i

k , bkq i
k are added. The polyhedron is formed by

taking the convex hull of all wedge vertices, and has n = m2 + 4m vertices. The wedges are carefully
placed, and do not intersect one another except touching at a single point. P1 and P2 are formed by slight
changes to this polyhedron. For P1, the wedges are “pushed” slightly together so that they all “interlock”
each other. For P2, the wedges are “moved away” a little bit so that they do not intersect.

P1 and P2 have the same combinatorial structure, but their sizes of minimum triangulations greatly differ,
because the size of triangulations of the wedges differ greatly depending on whether they are interlocked.
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FIGURE 50.8 The placement of three wedges; q i ’s are not shown.

In P1, all wedges are interlocked, and a total of at least 2m(m − 1) + (m + 1) = 2n − �(
√

n) tetrahedra
must appear in any triangulation. For P2, each wedge can be triangulated independently, producing m + 1
tetrahedra each. The remaining space can also be triangulated using O(m) tetrahedra. Thus there is a
triangulation with total number of tetrahedra m(m + 1) + O(m) = n + �(

√
n).

It follows that any approximation algorithm for finding minimum triangulations of convex polyhedra,
using only combinatorial structures, cannot have approximation ratio better than 2 − O( 1√

n
).

Note that unlike most other nonapproximability results for NP-hard problems, this result does not
depend on the P/NP question: This lower bound for approximation is valid no matter P = NP or not. It is
because the bound is derived by observing the ambiguity in the size of triangulations due to combinatorial
restrictions. However, this lower bound proof may not hold if noncombinatorial information can be used.

50.4.4 Special Cases

The CutPull algorithm gives better approximation ratios for some special classes of polyhedra [65], which
we briefly discuss below.

(1) Knowledge of maximum degree. The CutPull algorithm actually gives an approximation ratio of
2 − �( 1

�
) − �( �

n ) where � is the maximum degree. This is proved along the lines of the general
case 2 − �( 1√

n
) bound in Section 50.4.2. Thus, for example the approximation ratio is 2 − c for some

constant c if � = �(n). The worst case happens when � = �(
√

n) in which the bound reduces to
2 − �( 1√

n
). Similar to Section 50.4.3, a matching lower bound for the case where only combinatorial

structures are considered can be shown.
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(2) Constant maximum degree. When the maximum degree � is constant, the bound in (1) above can be
shown to be at most 2− 2

�+1 −�( 1
n ). This bound improves substantially from 2, especially when � is small.

For example, when � = 6, the approximation ratio r ≤ 12/7 ≈ 1.714; when � = 7, r ≤ 7/4 = 1.75.

(3) No 3-cycles and no degree-4 vertices. If we can prove a better lower bound on the size of minimum
triangulations for special types of polyhedra, a better approximation ratio can be obtained using the same
algorithm. We have seen that 3-cycles and wedges (which consist of long chains of degree-4 vertices) makes
approximating the size of minimum triangulation difficult. If we consider the special type of polyhedra
without these two structures, a lower bound of (4n − 8)/3 on the size of any minimum triangulation can
be proved. Therefore, the CutPull algorithm gives an improved approximation ratio of 3/2 in this case.
This bound is tight in the sense that there are polyhedra attaining this approximation ratio using CutPull.

(4) Minimum degree at least 5. This is a generalization of the above type but allowing 3-cycles. If a
polyhedron has no degree-3 and degree-4 vertices and k 3-cycles, it can be shown that (using similar
arguments as in [3] above) the size of any minimum triangulation is at least (4n −8)/3−4k. Since CutPull
gives a triangulation of size at most 2n − 7 − k, the approximation ratio is 2n−7−k

max(n−3,(4n−8)/3−4k) . This ratio

is less than 2 − 1
12 = 1.9166 . . . for any k.

50.5 Conclusion and Open Problems

This chapter studies some triangulation problems for point sets and polygons in two and three dimensions.
The 2D triangulation problems are widely studied and constant factor approximation algorithms (for
point sets) and linear-time approximation schemes (for convex polygons) are known, but the complexity
of finding the exact optimal triangulation remains unknown. 3D triangulations are relatively less studied
and not much is known other than minimizing the size of triangulations.

Some more important open problems include:

• What is the complexity of finding MWT of a 2D point set? Is it solvable in polynomial-time or is
NP-complete?

• Are there better approximation algorithms for finding MWTs of a 2D point set?
• Are there subcubic time algorithms for finding MWTs of convex polygons?
• For 3D polyhedron triangulation, are there algorithms with better approximation ratios (r < 2 − ε

where ε > 0 is constant, independent from n) when the actual coordinatizations are taken into
account, instead of just looking at the combinatorial structure?

• Are there other kinds of polyhedra that have better approximation ratios (or can be triangulated
optimally) using CutPull or other algorithms?

• What about other objective functions in three dimensions? For example, O’Rourke [66] raises the
problem of maximum-size tetrahedralizations and points out some motivations. There are also
work on minimizing the total area of the triangles [67].
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51.1 Introduction

51.1.1 Multiconnectivity Problems

We survey the recent progress in the design of approximation schemes for geometric variants of the
following classical optimization problem: for a given undirected weighted graph, find its minimum-cost
subgraph that satisfies a priori given multiconnectivity requirements. We present the approximation
schemes for various geometric minimum-cost k-connectivity problems and for geometric survivability
problems, giving a detailed tutorial of the novel techniques developed for these algorithms. We also shortly
discuss extensions to include planar graphs.

51-1
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A classical multiconnectivity graph problem is as follows: for a given undirected weighted graph, find
its minimum-cost subgraph that satisfies a priori given connectivity requirements.

Multiconnectivity graph problems are central in algorithmic graph theory and have numerous appli-
cations in computer science and operation research (see, e.g., Refs. [1–5]). They also play very important
role in the design of networks that arise in practical situations (see, e.g., Refs. [1,2,6]). Typical application
areas include telecommunication, computer, and road networks. Low-degree connectivity problems for
geometrical graphs in the plane can often closely approximate such practical connectivity problems (see,
e.g., the discussion in Refs. [2,5,7]). For instance, they can be used to model the design of low-cost tele-
phone networks that can “survive” some types of edge and node failure. In such a model, the cost of the
edge corresponds to the cost of lying a fiber-optic cable between the endpoints of the edge plus the planned
cost of the service of the cable. Furthermore, the minimum connectivity requirement for a pair of vertices
corresponds to the minimum number of edge and/or node failures that must occur in the network before
the pair is completely disconnected. In practice, the latter value tends to be quite low, usually not more
than 2, since failures are assumed to be isolated accidents, such as fires at nodes [5,7]. Note that the cost
of lying a fiber-optic cable between two points is roughly proportional to the length of the link (see, e.g.,
Ref. [7]).

In this work, we survey approximation results for these problems restricted to geometric graphs and
planar graphs.

The most classical problem we study is the (Euclidean) minimum-cost k-vertex connected spanning
subgraph (k-VCSS) problem. We are given a set S of n points in the Euclidean space R

d and the aim is to
find a minimum-cost k-vertex connected Euclidean graph spanning points in S (i.e., a subgraph of the
complete Euclidean graph on S).

Throughout the chapter we shall assume that the cost of the graph is equal to the sum of the costs
of the edges of the graph. Furthermore, in the geometric case, the cost of an edge connecting a pair of

points x , y ∈ R
d is equal to the Euclidean distance between points x and y, that is,

√∑d

i=1
(xi −yi )2, where

x = (x1, . . . , xd ) and y = (y1, . . . , yd ). More generally, the distance could be defined using other norms,
such as �p norms for any p > 1; all results discussed in this survey can be extended from the Euclidean
case to other �p norms.

By substituting the requirement of k-edge connectivity for that of k-vertex connectivity, we obtain the
corresponding (Euclidean) minimum-cost k-edge connected spanning subgraph (k-ECSS) problem. We term
the generalization of the latter problem which allows for parallel edges in the output graph spanning S as
the (Euclidean) minimum-cost k-edge connected spanning sub-multigraph (k-ECSSM) problem.

The concept of minimum-cost k-connectivity naturally extends to include that of Euclidean Steiner
k-connectivity by allowing the use of additional vertices, called Steiner points. For a given set S of points
in R

d , we say that a geometric graph G is a Steiner k-VCSS (or, Steiner k-ECSS) for S if the vertex set of G
is a superset of S and for every pair of points from S there are k internally vertex-disjoint (edge-disjoint,
respectively) paths connecting them in G . The problem of (Euclidean) minimum-cost Steiner k-vertex- (or,
k-edge-) connectivity is to find a minimum-cost Steiner k-VCSS (or, Steiner k-ECSS) for S. For k = 1, it is
simply the Steiner minimal tree (SMT) problem, which has been very extensively studied in the literature
(see, e.g., Refs. [8,9] and Chapter 42).

In a more general formulation of multiconnectivity graph problems, nonuniform connectivity con-
straints have to be satisfied. The survivable network design problem is defined as follows: for a given
weighted undirected graph G = (V, E ) and a connectivity requirement function r : V × V → N,
find a minimum-cost subgraph of G such that for any pair of vertices x , y ∈ V the subgraph has rx , y

internally vertex-disjoint (or edge-disjoint, respectively) paths between x and y. Also in that case, the
output may be allowed to be a multigraph [5]. The survivable network design problem arises in many
aforementioned applications, e.g., in telecommunication, communication network design, and VLSI
design.

In many applications of this problem, often regarded as the most interesting ones [2,10], the connectivity
requirement function is specified with the help of a one-argument function, which assigns to each vertex
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v its connectivity type rv ∈ N. Then, for any pair of vertices v, u ∈ V , the connectivity requirement ru,v is
simply given as min{ru , rv} [2,5,7,11,12]. Following the literature, we assume this standard simplification
of the connectivity requirements function in this chapter. Note that, in particular, this includes the Steiner
tree problem (see, e.g., Ref. [13]), in which rv ∈ {0, 1} for any vertex v ∈ V . It also includes the most
widely applied variant of the survivability problem in which rv ∈ {0, 1, 2} for any vertex v ∈ V (see, e.g.,
Ref. [2,5,7]).

Since all the aforementioned k-connectivity problems are known to be NP-hard when restricted to
even two-dimensions for k ≥ 2 [14], we focus on efficient constructions of good approximations. We
aim at developing a polynomial-time approximation scheme (PTAS). This is a family of algorithms {Aε}
such that, for each fixed ε > 0, Aε runs in time polynomial in the size of the input and produces a
(1 + ε)-approximation (see Chapter 9 and Ref. [15]).

51.1.2 History of the Multiconnectivity Problems

For a very extensive presentation of results concerning problems of finding minimum-cost k-vertex- and
k-edge-connected spanning subgraphs, nonuniform connectivity, connectivity augmentation problems,
and geometric problems, we refer the reader to Refs. [1,4,16] and to various chapters of Ref. [15], especially
to Refs. [3,17]. Here we discuss mostly the work related to geometric graphs.

All the multiconnectivity problems discussed in this survey are known to be NP-hard not only for
general graphs, but also for several nontrivial classes of graphs. For general graphs, the multiconnec-
tivity problems are even known to be APX-hard, that is, they do not have a PTAS unless P = NP
(see Ref. [18]). Despite the practical relevance of the multiconnectivity problems for geometrical graphs
and the vast amount of practical heuristic results reported (see, e.g., Refs. [2,5,7,12]), very little theo-
retical research has been done toward developing efficient approximation algorithms for these problems
until a few years ago. This contrasts with the very rich and successful theoretical investigations of the
corresponding problems in general metric spaces and for general weighted graphs. And so, until 1998,
even for the simplest and most fundamental multiconnectivity problem, that of finding a minimum-cost
biconnected graph spanning a given set of points in the Euclidean plane, obtaining approximations achiev-
ing better than a 3

2 ratio had been elusive (the ratio 3
2 is the best polynomial-time approximation ratio

known for general graphs whose weights satisfy the triangle inequality [19]; for other results, see e.g.,
Refs. [17,20]).

For many years the algorithmic community has believed that TSP and the multiconnectivity problems
discussed in this survey were also APX-hard for geometric and planar graphs, and hence they do not have
a PTAS unless P = NP . However, the situation changed dramatically with the seminal works of Arora
[13] and Mitchell [21], who showed that the TSP problem in geometric graph has a PTAS; soon after, a
PTAS for TSP in planar graphs has been also developed by Arora et al. [22]. These results gave a hope
that also the multiconnectivity problems in geometric and planar graphs can have a PTAS. This has been
proven affirmatively in a series of papers by Czumaj and Lingas [18,23,24] in the case of geometric graphs.
The case of planar graphs seems to be more challenging, and as for today, we know only a partial solution
for two-connectivity problems, where a quasi-polynomial time approximation scheme (running-time of

the form nÕ(log n/ε)) has been recently developed [25,26].

51.1.3 Overview of the Results

In this survey, we overview the recent polynomial-time approximation schemes for multiconnectivity
problems in geometric graphs, as developed in a series of papers by Czumaj et al. in Refs. [18,23,24,27]
(see also Refs. [28,29] for full versions of the papers). Besides presenting the specific results, we give a
detailed tutorial of techniques developed during the design of polynomial-time approximation schemes
for various k-connectivity problems in geometric graphs; we also emphasize the difference between these
algorithms and the recent PTASs for TSP and related problems. In addition, we discuss lower bounds on
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approximability of these problems in higher dimensions [18] and extensions to include the survivability
problems [27] and planar graphs [25,26].

51.2 Preliminaries

In this section, we introduce basic technical definitions and notions used in this survey. For simplicity of
presentation we shall assume that the quality of approximation ε satisfies n−1/4 < ε ≤ 0.1. Furthermore,
we shall aim at achieving an approximation of (1 + O(ε)) rather than (1 + ε). Both these assumptions
can be easily relaxed.

All algorithms for geometric graphs that we discuss in this survey are randomized. Even though the
algorithms can be derandomized, and the final results are stated in deterministic versions as well, the
randomized versions of the algorithms are more natural to present and are simpler.

For a given undirected graph G , a traveling salesman tour (TST) is any Hamiltonian cycle in G ; a traveling
salesman path is any Hamiltonian path in G . For a given set S of points, a TST is any traveling salesman
tour for the complete graph on S. For a given graph G with cost on the edges, or for a set of points S in
a metric space, the traveling salesman problem (TSP) is to find a TST in G or for S, respectively, that has a
minimum total cost of the edges. For simplicity of our presentation, we define a TST for a set of two points
to be the edge connecting these points.

We use term L d -cube with L ∈ R to denote any axis-parallel d-dimensional cube in R
d of side-length

L in all d dimensions. A bounding box of the input multiset of points in R
d is any L d -cube in R

d enclosing
these points.

The perturbation. In our algorithms for multiconnectivity problems, we first perturb the input instance
so that each node lies on the unit grid and every inter-node distance is at least 8. We begin with rescaling
the input so that the smallest bounding box L d has L = O(n3) being a power of two. Next, we move
every point to the nearest point on the unit grid whose all coordinates are multipliers of 8 (which may
merge some points). Then, it is easy to see that the perturbation ensures that any k-VCSS for the original
input instance is now mapped into a k-VCSS whose cost (after rescaling) differs by at most an ε fraction.
Therefore, if we can find a (1 +O(ε))-approximation for the k-VCSS problem for the perturbed instance,
then we can directly obtain a (1 +O(ε))-approximation for the k-VCSS problem for the original instance.
Because of that, from now on we assume that all input points have integer coordinates, lie in the cube
[0, L ]d with L = O(n3) being a power of two, and the distance between any two points is either 0 or is at
least 8. (We chose L = O(n3) for convenience only; a much smaller L would be enough.)

The dissection. The concept of space partitioning via dissections (quadtrees) and shifted dissections plays
the key role in all our algorithms. Following [13], we define the geometric partitioning of a bounding box
as follows. A (2d -ary) dissection of the bounding box L d of a set of points in R

d is its recursive partitioning
into smaller sub-cubes, called regions. Each region U d of volume larger than 1 is recursively partitioned
into 2d regions (U/2)d . A 2d -tree with respect to the (2d -ary) dissection is a tree whose root corresponds
to the bounding box, and whose other nonleaf nodes correspond to the regions containing at least two
points from the input multiset. For a nonleaf node v of the tree, the nodes corresponding to the 2d regions
partitioning the region corresponding to v are the children of v in the tree. Note that the dissection has
�(L d ) regions and its recursion depth is logarithmic in L . Furthermore, if L is a power of 2, the boundaries
of all regions in the dissection have integer coordinates, and thus they are in the unit grid.

For any d-vector a = (a1, . . . , ad ), where all ai are 0 ≤ ai ≤ L , the a-shifted dissection [13] of a set
X of points in the bounding box [0, L ]d in R

d is the result of shifting all the regions in the dissection
of X in the bounding box [0,2L ]d by the vector (−a) (see Figure 51.1). The a-shifted 2d -ary tree with
respect to the a-shifted dissection is defined analogously. A random shifted dissection of a set of points X in
a cube L d in R

d is an a-shifted dissection of X with a = (a1, . . . , ad ) and the elements a1, . . . , ad chosen
independently and uniformly at random from {0, 1, . . . , L }.
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FIGURE 51.1 Shifted dissection of a set of points in the bounding box [0, L ]d in R
2 (with a = (a1, a2)).

51.3 First Approach: Polynomial-Time
“Pseudo-Approximation” Schemes

After the development of polynomial-time approximation schemes for the TSP problem due to Arora [13]
and Mitchell [21], it seemed to be almost a straightforward task to extend their schemes to obtain a PTAS
for multiconnectivity problems, or at least for the most basic 2-VCSS and 2-ECSS problems. However, it
turned out that the schemes, which work very well for TSP and for some number of related problems,
including Minimum Steiner Tree, Min-Cost Perfect Matching, k-TSP, and k-MST, could not be extended
in a simple way. The reason was that in all these approximation schemes, the key step was to find a low-cost
solution which uses Steiner points. While (by the triangle inequality) a Steiner point can be removed
from a TST without any increase of its cost, such a transformation is impossible for k-VCSS and k-ECSS
problems, e.g., a minimum-cost 2-VCSS for a point set S in R

2 can have cost as much as
√

3
2 times larger

than a Steiner 2-VCSS for S [30].
Despite this difficulty, Czumaj and Lingas [23] showed that one can apply the approach developed by

Arora [13] to design a “pseudo-approximation scheme”: an algorithm that finds a Steiner k-VCSS for a
point set S whose cost is at most (1 + ε) times larger than the cost of a minimum-cost S-VCSS for S.
In other words, the algorithm finds a solution with Steiner points that has cost not much larger than an
optimal solution that uses no Steiner points. Even though this is only a pseudo-approximation scheme
and not a PTAS, in this section we shall present this algorithm in detail, because the underlying ideas of
this approach are used later in all other algorithms we discuss in this survey.

On a very high level, the approach of Arora [13] (see also Refs. [21,31,32]) is a clever combination of the
divide-and-conquer method with the dynamic programming approach, and as such, it follows a design of
many classical PTASs. For the multiconnectivity problems, similarly as Arora, we hierarchically partition
the cube containing the input points (via random shifted dissection) into regions, and then prove the key
technical result, that there is an approximate solution to the problem that can cross the boundaries of each
region only in prespecified points a bounded number of times (Structure Theorem). The Structure Theorem
states that for any problem instance there is a (1 + O(ε))-approximation that satisfies some basic local
property: it is m-portal respecting and r -light (see the definitions below). The Structure Theorem is proven
by taking an optimal solution to the problem and applying a sequence of transformations that increases
the cost of the resulting graph and at the same time makes it m-portal respecting and r -light. Once the
Structure Theorem is proved, a dynamic programming procedure finds in a polynomial-time an almost
optimal solution that satisfies the basic local property. The dynamic programming procedure combines
optimal partial solutions within regions into an optimal global solution under the crossing restrictions.
To combine solutions efficiently, we derive a k-connectivity characteristic of a spanning subgraph within
a region solely in terms of the set of prespecified points on the region boundary included in its vertex set.
In our crucial theorem, we show that the connectivity characteristic of a union of two adjacent subgraphs
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Portals

(a) (b)

FIGURE 51.2 Portals and a portal-respecting graph.

can be computed from the connectivity characteristics of the subgraphs. This allows us to set up a dynamic
programming procedure computing a (1 + O(ε))-approximation of minimum-cost Euclidean graph,
which is k-vertex or k-edge connected and obeys the crossing restrictions.

Below we discuss this approach in more detail; we focus only on the k-VCSS problem and note that the
extension to the k-ECSS problem is straightforward.

51.3.1 Special Forms of Geometric Graphs

51.3.1.1 m-Portal-Respecting Graphs

For every integer m, an m-regular set of portals in a (d −1)-dimensional region facet U d−1 is an orthogonal
lattice of m points in the facet where the spacing between the portals is (U + 1) · m−1/(d−1). A graph is
m-portal-respecting (with respect to a shifted dissection) if whenever it crosses a facet in the dissection,
it does so at a portal. Observe that this restriction forces us to assume that an m-portal-respecting graph
may have to bend some of its edges, that is, an edge may deviate from being a straight line connecting its
endpoints and be rather a straight-line path between the endpoints. If we are allowed to bend the ends,
then for any graph in a dissection it is easy to make it m-portal-respecting by moving every crossing of
every facet to its nearest portal (see Figure 51.2). Arora [13] proved the following result that transforms a
graph into an m-portal-respecting one at a small cost increase and without changing the connectivity.

Lemma 51.1

Let G be a geometric graph in R
d for a set of (perturbed) points contained in a bounding box L d . Pick a

random shifted dissection of L d . Then, one can transform G into an m-portal-respecting graph by moving
each crossing of each facet to its nearest portal so that the expected increase of the cost of the resulting graph is
at most O(d log Lm−1/(d−1)) · cost(G).

Proof
Pick any edge (v, u). By the definition of the dissection, edge (v, u) crosses the facets in the dissection at
most O(

√
d) · c(v, u) times, where c(v, u) is the cost of the edge (v, u).1 To make this edge m-portal-

respecting, we move each crossing of a facet to the nearest portal, which involves bending the edge that
might increase its length. If the facet has side-length L/2i , then this increases the distance by at most
O(

√
d L/2i ) m−1/(d−1), since the interportal distance is O(L/2i ) m−1/(d−1). Because we have chosen

the dissection at random, the probability that a given facet has side-length L/2i is O(2i /L ). Hence, the
expected increase of the cost of a given edge (v, u) is

log L∑

i=0

O
(√

d 2i /L
) · O(L/2i ) m−1/(d−1) = O

(√
d log L · m−1/(d−1)

)

1The number of crossings of the facets in the dissection is upper bounded by a constant times the �1 distance between
v and u, and this is upper bounded by O(

√
d) times the �2 distance between v and u, that is, O(

√
d) · c(v, u).
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The same arguments can be applied to all of at most O(
√

d) · c(v, u) dissection crossings by any edge
(v, u). Therefore, the expected increase of the cost of the entire graph is at most

∑

(v,u)

(
O

(√
d
) · c(v, u)

) · O(√
d log L · m−1/(d−1)

) = O
(

d log L · m−1/(d−1)
) · cost(G)

Note that in our applications we require this error term to be at most an O(ε) factor of the cost
of the optimal solution, and therefore we set m = (O(d log L/ε))d−1. Using the transformation from
Lemma 51.1, from now on, we assume that we consider a geometric graph that is m-portal-respecting
with m = (O(d log L/ε))d−1.

Special forms of geometric graphs: r -light graphs. We say a geometric graph is r -light (with respect to a
shifted dissection) if for each region in the dissection there are at most r edges crossing any of its facets.

51.3.2 Dynamic Programming and Finding an Optimal
m-Portal-Respecting r-Light Solution

In our presentation, we begin from the end and discuss first the goal of our analysis. In the following
section, we show that for any set S of n (perturbed) points in R

d that are contained in a bounding box L d ,
if we choose a random shifted dissection of L d , then with a good probability there is an m-portal-respecting
r -light (for the dissection chosen) Steiner k-VCSS for S whose cost is at most (1 + O(ε)) times the cost
of the optimal k-VCSS for S, for appropriated values of m and r . How can we use this existential result?
The key observation is that if we restrict ourself to m-portal-respecting r -light graphs then we can use
dynamic programming to actually find an almost optimal Steiner k-VCSS efficiently! In what follows, we
briefly discuss main ideas of this result (see Ref. [23] for more details).

The key idea is that the subproblem (finding an optimal Steiner k-VCSS) inside a region in the dissection
can be solved independently of the subproblems in other regions provided that we know which portals
are used by the edges of the graph and the structure of the external k-connectivity properties outside that
region. External k-connectivity properties outside a region are defined in terms of the portals used: if a
portal is used by the graph outside the current region, we want to know which connections with other
portals it supports. The concept of connectivity characteristic developed in Ref. [23] aims at maintaining
this structural properties of graphs contained in any region.

Let us define an internal interface of a region Q to be any multiset of at most m portals, such that for
every facet of Q, the total multiplicity of all portals (in the multiset) is upper bounded by r . Since our goal
is to find an m-portal-respecting and r -light Steiner k-VCSS with low cost, we do not know its structure in
advance (except that it is m-portal-respecting and r -light) and hence in our algorithm we have to consider
all possible internal interfaces. Note that for m-portal-respecting and r -light graphs the number of internal
interfaces of a region is at most mO(d r ).

Next, for any region Q and any given internal interface of Q, we define a connectivity characteristic
to be a description of routing properties within the region and requirements on the routing properties
in the complementary graph from the point of view of portals needed to preserve k-connectivity. Let
P be the multiset of points in the portals used in the internal interface. The connectivity characteristic
consists of three parts corresponding to different aspects of k-vertex connectivity requirements for the
graph:

• Requirements for internal connectivity: what configurations of external disjoint paths ought to be
outside the region to make any pair of vertices within region k-vertex connected; since for any pair
of points in Q, all sets of disjoint paths leaving Q must traverse through the portals, each such set
of vertex-disjoint paths can be encoded by a matching in the complete graph on P .

• Requirements for internal/external connectivity: what configurations of disjoint paths ought to be
inside and outside Q to ensure that any vertex inside region Q has k vertex-disjoint paths to any
vertex outside the region; this can be encoded by a set of pairs consisting of a matching in the
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complete graph on P and a subset of portals (that is used to encode the parts of the paths from a
vertex inside Q to the first portals, before they leave Q).

• Requirements for external connectivity: what configurations of internal disjoint paths ought to be
inside Q to ensure that any pair of vertices outside Q are connected by k-vertex-disjoint paths; this
can be encoded by matchings in the complete graph on P .

One can show that for a given region and its internal interface, there are at most 2(d r )O(d r )
connectivity

characteristics.
The goal of the dynamic programming procedure is to determine for each region Q, for each possible

internal interface of Q, and for each possible connectivity characteristic of Q, an (almost) optimal (m, r )-
light graph within the region using given internal interface and having given connectivity characteristic. We
maintain a lookup table that, for each region, each internal interface, and each connectivity characteristic,
stores the optimal way to solve the subproblem inside the region. The lookup table is created bottom-up
and the efficiency of this procedure relies on the efficiency of computing the connectivity characteristic
for a region from its 2d subregions one level down in the 2d -dissection tree. One can find a minimum-
cost graph within region Q having a given characteristic by combining minimum-cost graphs within
subregions of Q, and this can be done in time md 2d r · 2(d r )O(d r )

. This approach has to be refined for
regions corresponding to the leaves in the 2d -dissection tree, where we have to find an optimal graph
directly. Unfortunately, since we do not know the locations of Steiner points in an optimal solution, we
can only find an approximate solution within every leaf region. Still, this is enough to conclude with the
following result (see Ref. [23] for more details):

Lemma 51.2

Let S be a (perturbed) point set in R
d contained in a bounding box L d and with minimum nonzero inter-

distance at least 8. Let m and r be integer parameters. Then, in time n · log L · mO(d 2d r ) · 2(d r )O(d r )
one can

find a (1 + O(ε))-approximation of a minimum-cost m-portal-respecting r -light Steiner k-VCSS for S. ��

51.3.3 Patching Lemma: Reducing Number of Crossings
Using Steiner Points

In this section, we discuss a patching procedure (initially used by Arora [13] for TSP), which is a key
ingredient of our result that for any set of points and for a random shifted dissection of its bounding
box, there is always an m-portal-respecting r -light Steiner k-VCSS for S whose cost is low. The patching
procedure takes any facet crossed by more than k edges and patches the crossings to reduce the number
of crossings to at most k, by augmenting the original graph with new Steiner vertices and new edges (line
segments).

Lemma 51.3 (Patching Lemma)

Let F be a (d − 1)-dimensional facet of side length W and let H be any Steiner k-VCSS (for some point
set S) that crosses F exactly � times, � > k. Then, one can break edges of H in all but k of the crossings
and add to H new Steiner vertices (that lie infinitesimally close to F) and line segments of total cost at most
O(kW�1−1/(d−1)) such that H changes into a k-VCSS H∗ for S that crosses F at most k times.

Proof
Let x1, . . . , x� be the points at which H crosses the (d − 1)-dimensional facet Wd−1-cube F . For each i ,
1 ≤ i ≤ �, break the edge (yi , zi ) crossing F at xi into two parts, one on each side of F ; we assume that
all vertices y1, . . . , y� are on the same side of F . We consider 2k + 4 copies of each xi , denoted by x+

i, j ,

and x−
i, j with 0 ≤ j ≤ k + 1; k + 2 copies for each side of F . We assume that all copies are at distance zero

from each other.
Now, we define H∗. H∗ is obtained from H by removing all the edges crossing F , and inserting the

vertices {y1, . . . , y�}∪{z1, . . . , z�}∪
⋃

1≤i≤� & 0≤ j≤k+1{x+
i, j }∪

⋃
1≤i≤� & 0≤ j≤k+1{x−

i, j } and eight groups
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FF

FIGURE 51.3 Graph H∗ constructed in the Patching Lemma. Dotted lines corresponds to the traveling salesman
paths. In this example d = 2, � = 4, and k = 2.

of edges (see Figure 51.3):

(i) two halves of each edge crossing F in H in the form of the edges {yi , x+
i,0} and {x−

i,0, zi }, for all
1 ≤ i ≤ �,

(ii) edges crossing F that connect x+
i,k+1 with x−

i,k+1, for all 1 ≤ i ≤ k,
(iii) k edges connecting x+

i,0 with x+
i, j , for all 1 ≤ i ≤ �, 1 ≤ j ≤ k,

(iv) edges connecting x+
i,k+1 with x+

i, j , for all 1 ≤ i ≤ �, 1 ≤ j ≤ k,

(v) edges connecting x−
i,0 with x−

i, j , for all 1 ≤ i ≤ �, 1 ≤ j ≤ k,

(vi) edges connecting x−
i,k+1 with x−

i, j , for all 1 ≤ i ≤ �, 1 ≤ j ≤ k,

(vii) edges of a traveling salesman path for
⋃

1≤i≤�{x+
i, j }, for all 1 ≤ j ≤ k, and

(viii) edges of a traveling salesman path for
⋃

1≤i≤�{x−
i, j }, for all 1 ≤ j ≤ k.

(Observe that all edges in groups (ii)–(vi) have cost zero (infinitesimally small), because we assumed
that for every i and j , 1 ≤ i < �, 0 ≤ j ≤ k + 1, all nodes x+

i, j and x−
i, j are at distance zero from each

other.)
It is easy to see that the cost of the nonzero length edges in H∗\H is bounded from above by the

cost of the edges in H plus the cost of 2 k traveling salesman paths for the point sets
⋃

1≤i≤�{x+
i, j },⋃

1≤i≤�{x−
i, j }, j = 1, . . . , k, respectively. Now, a well-known result about geometric TSP (see, e.g., Chap-

ter 6 in Ref. [33]) implies that for any set of � points contained in a (d − 1)-dimensional Wd−1 cube, there

is a traveling salesman path of total length smaller than O(W �
1− 1

d−1 ). Therefore, we can conclude that

the total additional cost is bounded by O(k W �
1− 1

d−1 ).
Finally, it is not hard to show that H∗ satisfies the vertex-connectivity requirements.

51.3.4 Structure Theorem: There Is Always a Good r-Light Steiner k-VCSS

Now, we are ready to present the first Structure Theorem for the k-VCSS problem. This theorem compares
the cost of an m-portal-respecting r -light Steiner k-VCSS for a set of points with the cost of an optimal
k-VCSS for this set of points, where the optimal solution is not allowed to use Steiner points.

Theorem 51.1 (Structure Theorem)

Let S be a (perturbed) point set in R
d contained in a bounding box L d and with minimum nonzero inter-

distance at least 8. Pick a random shifted dissection of L d . Then with probability at least 0.9, there is an
m-portal-respecting r -light Steiner k-VCSS for S whose cost is at most (1 +O(ε))-times the optimal k-VCSS
for S, where m = (O(d log L/ε))d−1 and r = (O(

√
d k/ε))d−1.
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The proof of the Structure Theorem follows from the Patching Lemma above by repeatedly patching the
original graph in an appropriated order of facets, following the original approach of Arora. This part of
the analysis is technical and subtle, and we only sketch it here; a reader interested in more detail is refered
to Ref. [23] or Refs. [13,31].

Sketch of the proof
The idea is to transform an optimal k-VCSS for S into an r -light Steiner k-VCSS for S of low cost by
applying the Patching Lemma 51.3 to every facet which is crossed too often. Lemma 51.3 ensures that
the resulting graph is an r -light Steiner k-VCSS for S. However, since its every application increases the
cost of the resulting graph, it is crucial to show that the expected cost of the resulting graph is at most
(1 + O(ε))-time the optimal k-VCSS for S. If we prove this claim, then the lemma follows by applying
Lemma 51.1 and by Markov inequality.

We bound the total cost of the new edges resulting from invoking the Patching Lemma by charging their
cost to grid hyperplanes. For every facet in the dissection we charge the cost of removing the excess of
the edges crossing the facet to the grid hyperplane that contains the facet. We show that the expected cost
charged to a grid hyperplane H is at most ε t(H)/(2

√
d), where t(H) is the number of crossings of the

hyperplane H by the optimal k-VCSS for S. Now, the result follows by the linearity of expectations and by
the fact that

∑
H t(H) is at most 2

√
d times the cost of the optimal k-VCSS for S (this result is obtained

by a well-known relation between the �1 and �2 norms).
Let us fix a grid hyperplane H perpendicular to some coordinate axis. Note that within the bounding

box L d , H forms a L d−1 cube. We apply the Patching Lemma to all facets of the dissection that belong to
H. We first begin with the smallest facets, and then consider the facets in the increasing order of their sizes.
Let c j be the number of facets in H of side length L/2 j for which patching has been invoked. For � ≤ c j ,
let t j,� be the number of crossings of the �th facet of side length L/2 j for which patching has been applied.
Observe that for the �th facet of side length L/2 j for which patching has been applied, the total cost of the
new edges added by the Patching Lemma is upper bounded by O(k (L/2 j ) (t j,�)1−1/(d−1)). Therefore, if
the largest facet in the hyperplane H has side-length L/2i , then the total cost of the new edges added by
applying the Patching Lemma to all facets in H is upper bounded by:

O




log L∑

j=i

c j∑

�=1

k
(

L/2 j
)

(t j,�)1−1/(d−1)



 (51.1)

Next, we study the expected cost as above, where the expectation is taken over shifts chosen in the random
shifted dissection. Let us assume that the grid hyperplane H is perpendicular to the s th coordinate axis.
Let us fix the random vector a = (a1, . . . , ad ) used to determine the random shifted dissection in which
all elements are fixed with the exception of as , which is kept random. We observe that the random shift in
the dissection depends only on the value of as , and therefore, if a1, . . . , as−1, as+1, . . . , ad are fixed, then
the probability that the largest facet in the hyperplane H has side-length L/2i is O(2i /L ). Furthermore,
one can show that the values of c j and t j,� are independent of as . Therefore, the expected cost of all edges
added by applying patching to all facets in H is at most:

log L∑

i=0

O(2i /L ) · O



log L∑

j=i

c j∑

�=1

k (L/2 j ) (t j,�)1−1/(d−1)



 ≤ O




log L∑

j=0

c j∑

�=1

k/2 j (t j,�)1−1/(d−1)
j∑

i=0

2i





= O(k) ·
log L∑

j=0

c j∑

�=1

(t j,�)1−1/(d−1)

Since t j,� ≥ r + 1, the bound above is maximized when each t j,� = r + 1, and therefore it is bounded
by O(k) · (r + 1)1−1/(d−1) · ∑log L

j=0 c j . Now, we need a good upper bound for
∑log L

j=0 c j . Since each
application of the Patching Lemma reduces the number of crossings of H by at least r + 1 − k, the
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definition of t(H) yields:

log L∑

j=0

c j ≤ t(H)

r + 1 − k

Therefore, the expected cost of all edges added by applying patching to all facets in H is upper bounded
by:

O(k) · (r + 1)1−1/(d−1) ·
log L∑

j=0

c j ≤ O
(

k (r + 1)1−1/(d−1) t(H)

r + 1 − k

)

We set r = (O(
√

d k/ε))d−1 to upperbound this by ε t(H)/(2
√

d). By our arguments above, this
implies that the expected cost of all edges added by applying the Patching Lemma (which results in a
transformation of the graph into an r -light one) to an optimal k-VCSS for S is at most ε times the cost of
the optimal k-VCSS for S.

Finally, we have to transform the graph into m-portal-respecting. We apply the construction presented in
Lemma 51.1 with the value of m = (O(d log L/ε))d−1. Since, by Lemma 51.1, this construction increases
in expectation the cost of the graph by at most a factor of O(ε), the final result follows.

51.3.5 Final Result: “Pseudo-Approximation” Schemes
for Multiconnectivity Problems

The results from the previous sections (Lemma 51.2 and Theorem 51.1) are summarized in the following
theorem.

Theorem 51.2

Let k and d be any integers, k, d ≥ 2, and let ε be any positive real. Let S be a set of n points in R
d . There is

a randomized algorithm which finds a Steiner k-VCSS for S, whose cost is at most (1 + ε)-time the optimal

k-VCSS for S, in time n(log n)(O(
√

d k/ε))d−1 · 2(d k/ε)(O(
√

d k/ε))d−1

with probability at least 0.9 .
Furthermore, within the same running time one can find a Steiner k-ECSS for S whose cost is at most

(1 + ε)-time the optimal k-ECSS for S. Also, all these algorithms can be derandomized in polynomial time.

Observe that when all d , k, and ε are constant, the running time of the randomized algorithm is
n · (log n)O(1). When d is a constant and k and ε are arbitrary, then the running time is n · (log n)(k/ε)O(1) ·
22(k/ε)O(1)

.

51.4 PTAS for Geometric Multiconnectivity Problems

The results from the previous section are certainly not fully satisfactory, and a natural question arises if we
can obtain a similar result without using Steiner points in the solution. In this section, we discuss in detail
how one can modify the approach from Section 51.3 to obtain a PTAS for geometric multiconnectivity
problems. Even if this method can be seen as a generalization of the approach developed initially by
Arora [13], the details of the new construction are significantly different than those used for TSP and
related problems. The material in this section is based on Ref. [28], an updated and improved version of
Refs. [18,24].

The main idea of the PTAS is similar to that from the previous section: we want to prove a result of
the form similar to that from Structure Theorem (Theorem 51.1). However, this time we want to make
sure that no new Steiner points difficult to remove are created. We achieve this goal by aiming at a variant
of the Structure Theorem that does not require the resulting graph to be r -light but only r -locally-light,
see the definition below. The difference between these two requirements is insignificant for the dynamic
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programming phase, but it is critical in our analysis: as we show in our main theorem, there is always an
almost optimal k-VCSS for a set of points in R

d that is m-portal-respecting and r -locally-light for small
values of m and r . Before we proceed on, we begin with introducing some new notation.

Relevant crossings and vital edges. A crossing of an edge with a region facet of side length W in a dissection
is called relevant if it has exactly one endpoint in the region and its length is at most 2

√
d W. For a given

region Q in a shifted dissection, any edge having exactly one endpoint in Q is called vital (for Q).

Special forms of geometric graphs: r -gray and r -locally-light graphs. We say a geometric graph is r -gray
(with respect to a shifted dissection) if for each region in the dissection there are at most r relevant crossings.
A graph is r -locally-light (with respect to a shifted dissection) if each region in the dissection has at most
r vital edges.

Augmented traveling salesman tours. A kth power of a graph G is obtained by augmenting G by the edges
whose endpoints are connected by paths consisting of at most k edges in G . For any set S and �, an
�-augmented traveling salesman tour on S is either a clique on S if |S| ≤ 2 �, or the �th power of some TST

on S if |S| ≥ 2 � + 1.

51.4.1 Transformation Lemmata

In this section, we present a variant of the Structure Theorem designed to deal with the problem of finding
a minimum-cost k-VCSS for a set of points in R

d . Our goal is to obtain a similar claim as the Structure
Theorem (Theorem 51.1) but without the assumption that the promised graph has Steiner points. We
prove this new Structure Theorem in three steps. We take an optimal solution for the minimum-cost
k-VCSS problem and we modify it to a suitable form to obtain a graph that is still k-VCSS and whose cost
is just slightly larger than that of the minimum-cost. In the first two steps we remove some number of
edges (and thus, we do not increase the cost of the graph) to ensure that the resulting graph is first r -gray
and then r -locally-light. In the third step we add replacement of the removed edges to ensure that the
obtained graph is k-VCSS. The first and the third steps are randomized and they show that in expectation
the cost of the resulting graph is at most (1 + O(ε)) times the minimum-cost k-VCSS.

51.4.1.1 Local Decomposition Lemma

In this section we discuss our first key result in the analysis, the so-called Local Decomposition Lemma.
The Local Decomposition Lemma aims at reducing the number of relevant crossings of any given facet
to at most k. This procedure is very similar in the spirit to the Patching Lemma 51.3. However, unlike
the previously known approaches, the Local Decomposition Lemma does not use any Steiner points. The
key feature of this construction is that it only removes edges and the decision that new edges should be
inserted to ensure the connectivity requirements is delayed. Instead, a description of properties the new
edges must satisfy is provided and these edges are inserted only at the very end of the algorithm (using the
TST Covering Lemma 51.7).2

To streamline maintaining the connectivity properties of the missing edges, we always describe missing
edges in a form of k-augmenting TSTs. The idea is that in order to ensure that a set of points is k-connected
it is enough to maintain its TST and then observe that the k-augmenting TST is k-connected. Furthermore,
by controlling the cost of a minimum-cost TST for that set of points, we can also control an upper bound
for a minimum-cost k-augmenting TST for these points. This will be important in our analysis.

2One can ask why do we delay inserting the new edges, e.g., in a similar situation in Arora’s PTAS for TSP [13], the
new edges are inserted at once, as we also do in the analysis of the Structure Theorem (Theorem 51.1). Note however
that Arora [13] and others were always able to place the new edges on the facet for which the Patching Lemma is
applied, which facilitates dealing with the new crossings. In the case discussed here, we do not want to create Steiner
points and therefore we need to add new edges in arbitrary locations.
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Lemma 51.4 (Local Decomposition Lemma)

Let G be an Euclidean graph on a multiset S of points in R
d . Let F be a (d − 1)-dimensional facet of side

length W in a dissection of the bounding box of S. If the edges of G form � relevant crossings of F , then there
exist a subgraph G∗ of G, and two disjoint subsets S1 and S2 of S, such that

• there are at most 2 k2 relevant crossings of F in G∗,
• there are a TST on S1 and a TST on S2 such that the cost of each is upper bounded by O(d W �1− 1

d ),
and

• if G is a k-VCSS on S, then the graph H∗ resulting from the graph G∗ by adding any k-augmented
TST on S1 and any k-augmented TST on S2, is a k-VCSS on S.

Remark 51.3

There are three key differences between the Local Decomposition Lemma and the Patching Lemma 51.3:
(i) the Local Decomposition Lemma does not introduce any new points to the obtained graph, (ii) it reduces
only the number of relevant crossings, leaving the number of arbitrary crossings possibly arbitrarily large, and
(iii) it does not produce a k-VCSS on S, but rather it says that one can build one by adding some additional
edges.

Remark 51.4

For a given TST T on X it is easy to construct a k-augmented TST T〈k〉 on X such that the cost of T〈k〉 is at
most

(k+1
2

) ≤ 2 k2 times larger than the cost of T and each hyperplane H (which does not contain any edge

from T ) is crossed by the edges of T〈k〉 at most
(k+1

2

) ≤ 2 k2 times more than it is crossed by the edges of H.

Proof
We can assume � > 2 k2. We first construct the subgraph G∗ and the subsets S1 and S2, and then briefly
argue about their properties.

Let E be the set of the � edges of G forming the � relevant crossings withF . We define S1 = {x1, . . . , x�}
as the set of endpoints of the edges in E in the first half-space induced by F and S2 = {y1, . . . , y�} as the
corresponding set of endpoints of these edges in the other half-space. Next we define G∗. G∗ is obtained
by removing from G a subset of the edges in E . Let M be a maximum cardinality subset of E such that no
two edges in the subset are incident. Let q = min{k, |M|}. Then, we define the set E∗ of edges in E that
will remain in G∗ to consist of

• the first q edges of M, and
• if q < k, then, additionally, for each endpoint v of each edge from M we add to E∗ min{k − 1,

degE (v) − 1} edges in E\M incident to v, where degE (v) is the number of edges in E incident to v.

Now, the graph G∗ is obtained from G by removing the edges in E \E∗.
To complete the proof, we must show that G∗, S1, and S2 satisfy the properties promised in the

lemma. Clearly, E∗ is of size at most 2 k2, and hence there are at most 2 k2 relevant crossings of F in G∗.
Furthermore, each of S1 and S2 consists of at most � vertices that are contained in a bounding box of size
O(

√
d W). (Indeed, since the vertices in S1 and S2 are endpoints of relevant crossings F , their distance

from F is bounded by 2
√

d W.) Thus, there is a TST on each of S1 and S2 of total length smaller than

O(d W �1− 1
d ) (see, e.g., Section 6 in Ref. [33]).3 The remaining properties can be also easily shown (see

Refs. [18,28] for details).

3Note that we need here the assumption that each of S1 and S2 is included in a bounding box of size O(
√

d W). In
contrast, in the Patching Lemma 51.3, the points could be arbitrarily far away from each other and thus, for example,
there could be no TSP on S1 of length o(n).
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51.4.1.2 Weak (Too Weak) Version of Structure Theorem: Global
Decomposition Lemma

With the Local Decomposition Lemma above, we can provide a weak version of the Structure Theorem
that uses similar arguments as those used in the proof of Theorem 51.1. Since this formulation is too weak
for our applications, our goal in the following sections will be to extend it to obtain a stronger result.

Lemma 51.5 (Global Decomposition Lemma)

Let S be a (perturbed) point set in R
d contained in a bounding box L d and with minimum nonzero inter-

distance at least 8. Pick a random shifted dissection of L d . Then, there is an r -gray graph G on S and a
collection S of (possible intersecting) subsets of S such that:

• the cost of G is not larger than the minimum cost of k-VCSS for S,
• r = (O(k2 d3/2/ε))d ,
• there is a graph H consisting of (possible nondisjoint) TSTs on every set X ∈ S whose expected (over

the choice of the random shifted dissection) total cost is at most O(ε/k2) times the minimum cost of
k-VCSS for S, and

• the graph resulting from G by adding any k-augmented TSTs on each X ∈ S is a k-VCSS on S.

Proof
The proof of this result mimics the proof of the Structure Theorem (Theorem 51.1) with the exception of
a few modifications that are caused by a different form of the Local Decomposition Lemma 51.4. We take
a minimum-cost k-VCSS G opt for S and apply a sequence of the Local Decomposition Lemma to make
this graph r -gray. Since each application of the Local Decomposition Lemma only removes the edges from
G opt, the obtained graph G is a subgraph of G opt and hence its cost is not larger than the minimum cost
of k-VCSS for S. Furthermore, the resulting graph is r -gray by Lemma 51.4. This lemma ensures also that
if we define S as the family of sets returned by all calls to the Local Decomposition Lemma, then by adding
to G any k-augmented TSTs on all X ∈ S we obtain a k-VCSS on S.

What remains to prove is that for the sets X ∈ S, the total expected costs of minimum-cost TSTs on the
sets X ∈ S is at most O(ε/k2) times the cost of G opt. The proof of this fact mimics the analysis of the
Structure Theorem (Theorem 51.1). We charge the cost of invoking the Local Decomposition Lemma to a
facet contained in a grid hyperplane to that hyperplane. Then, a similar analysis implies that the expected
cost of all minimum-cost TSTs on all sets X ∈ S resulting from applying the Local Decomposition Lemma
to all facets contained in H is upper bounded by:

O
(

d · (r + 1)1−1/d · t(H)

r + 1 − 2 k2

)

Now, if we set r = (O(k2 d3/2/ε))d , then the same arguments as those used in the proof of the Structure
Theorem (Theorem 51.1) imply that the expected (over the choice of the random shifted dissection) total
cost of minimum-cost TSTs on all sets X ∈ S is upper bounded by O(ε/k2) times the minimum cost of
k-VCSS for S.

51.4.1.3 Filtering Lemma

The Global Decomposition Lemma 51.5 transforms an arbitrary Euclidean graph G into an r -gray graph, so
that certain properties of optimal k-vertex connected graphs induced by these graphs are satisfied. There are
however stronger requirements for the transformed graph in order to get a PTAS. Even if after applying the
Global Decomposition Lemma each facet in an r -gray graph has only O(r ) relevant crossings, many other
(longer) crossings are possible. The Filtering Lemma below transforms any r -gray graph into an r ∗-locally-
light one by removing a set of edges of total small cost, with the parameter r ∗ just slightly bigger than r .

Lemma 51.6 (Filtering Lemma)

Let r ≥ 1 and let S be a (perturbed) point set in R
d contained in a bounding box L d and with minimum

nonzero inter-distance at least 8. For a given shifted dissection, let G = (S, E ) be any r -gray graph on S.
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Then, we can find a subgraph G∗ of G that is r ∗-locally-light for r ∗ = O(r d log(d k/ε)), and such that the
total cost of the edges in G \G∗ is at most O(ε/k2) · cost(G).

The proof of the Filtering Lemma explores the property that if a graph is r -gray, then for every region
Q of side length L in the dissection there are at most 2 dr vital edges for Q whose length is in the interval
(2 j

√
d L , 2 j+1

√
d L ) for every value of j . This implies that if there are many vital edges crossing any

single facet then most of them (all but a small number of the heaviest edges) have small cost. Therefore,
one can transform any r -gray graph into an r ∗-locally-light one by deleting some number of short edges
whose total cost (by careful charging arguments) is low.

51.4.1.4 TST Covering Lemma

In the previous subsections, we have transformed an Euclidean graph into the one that possesses fewer
edges crossing each facet in the dissection. The key feature of the Global Decomposition Lemma and the
Filtering Lemma is that after the graph transformations we are left with some (possible intersecting) sets of
nodes that are to be connected in some way (either in pairs by edges or into k-augmented TSTs). The main
reason of such construction was to postpone immediately connecting the nodes within each set because
this could introduce many new crossings and might destroy the r -locally-lightness of the graph. The TST
Covering Lemma below shows how to connect the nodes within each set without increasing the cost of
the graph too significantly and without introducing too many crossings of any facet.

We need a definition of a cover of a superset that can be seen as a way of connecting multiple TSTs. Let S

be a collection of (not necessarily disjoint) sets. A collection S
∗ is called a cover of S if (i) for every X ∈ S

there is a Y ∈ S
∗ such that X ⊆ Y and (ii)

⋃
X∈S

X = ⋃
Y∈S∗ Y . Now, we are ready to state the TST

Covering Lemma.

Lemma 51.7 (TST Covering Lemma)

Let S be a (perturbed) point set in R
d contained in a bounding box L d and with minimum nonzero inter-

distance at least 8. Pick a random shifted dissection of L d . Let S be a collection of (possibly nondisjoint) subsets
of S. Suppose there is a graph G on S that is a union of TSTs, one for each X ∈ S, of total cost cost(G). Then,
there is a graph G∗ such that

• G∗ is r -light with respect to the dissection, where r = (O(
√

d))d−1,
• there is a cover SG∗ of S such that G∗ is the union of TSTs for each Y ∈ SG∗ , and
• the expected (over the choice of the random shifted dissection) cost of G∗ is at most O(cost(G)). ��

The proof of this lemma is an extension of the PTAS for Euclidean TSP by Arora [13] and uses ideas
similar to those underlined in the proof of the Structure Theorem (Theorem 51.1). (Observe that since
now we need to find TSTs the appearance of Steiner points in the approach of Arora [13] does not cause
any problems.)

51.4.1.5 Concluding: Structure Theorem for k-Vertex Connectivity

We conclude with a Structure Theorem for k-vertex connectivity that shows the existence of a low cost
locally light graph. This theorem is obtained by combining Lemma 51.1, the Global Decomposition Lemma,
the Filtering Lemma, and the TST Covering Lemma, when applied to a minimum-cost k-VCSS G for the
input point set.

Theorem 51.5 (Structure Theorem II)

Let S be a (perturbed) point set in R
d contained in a bounding box L d and with minimum nonzero inter-

distance at least 8. Pick a random shifted dissection of L d . Then with probability at least 0.9, there is an
m-portal-respecting r -light k-VCSS for S whose cost is at most 1 +O(ε) times the minimum-cost of k-VCSS
for S, where m = (O(d log L/ε))d−1 and r = (O(k2 d3/2/ε))d log(k/ε).
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51.4.2 PTAS for Euclidean k-Vertex and k-Edge Connectivity

Now, with the Structure Theorem II (Theorem 51.5) at hand, we are ready to present the “real” PTAS
for the minimum-cost k-VCSS problem in geometric graphs. In Section 51.3.2, we showed how to find
a (1 + O(ε))-approximation of a minimum-cost m-portal-respecting r -light Steiner k-VCSS for a set
of points (see Lemma 51.2). Similar result holds also for finding a minimum-cost m-portal-respecting
r -locally-light k-VCSS for a set of points. The running time of the appropriated dynamic programming
scheme is the same as that promised in Lemma 51.2, but this time we can even find an optimal solution
(not an (1 + O(ε))-approximation, as in Lemma 51.2). Therefore, we can combine this result with the
Structure Theorem II (Theorem 51.5) to obtain the following result.

Theorem 51.6

Let k and d be any integers, k, d ≥ 2, and let ε be any positive real. Let S be a set of n points in R
d . There

is a randomized algorithm that in time n · (log n)(k d/ε)O(d) · 22(k d/ε)O(d)

with probability at least 0.9 finds a
k-VCSS for S whose cost is at most 1 + ε times the minimum-cost of k-VCSS for S.

Furthermore, within the same running time one can find a k-ECSS for S whose cost is at most 1 + ε times
the minimum-cost of k-ECSS for S. Also, all these algorithms can be derandomized in polynomial time.

When the parameters ε, k, and d are constants, then the running time of the randomized algorithm is

n · logO(1) n. When d and ε are constant and k is arbitrary, the running time becomes n · (log n)kO(1)·22kO(1)

;

when ε is arbitrary, it is n · (log n)(1/ε)O(1)· 22(1/ε)O(1)

. In particular, for a constant dimension d , our scheme
leads to a PTAS for the minimum-cost k-VCSS and k-ECSS problems for all k such that k ≤ (log log n)c

for certain positive constant c < 1.

51.5 Faster PTAS for Euclidean k-ECSSM
and 2-Connected Graphs

Czumaj and Lingas [24] showed that the approximation schemes from Section 51.4 can be improved
in the special case when k = 2 and for the minimum-cost k-ECSSM problem. The main source of the
improvement is the observation that if we knew a graph/multigraph that contains an optimal or near
optimal k-VCSS (k-ECSS, k-ECSSM), then we would be able to apply similar transformations as those
described in Section 51.4 to transform this graph into an r -locally-light one. Comparing to the result
from the Structure Theorem II 51.5, we would gain by not having to make the graph m-portal-respecting,
because dynamic programming would not have to “guess” the locations of crossings of the facets. This
would potentially eliminate term m in the analysis (see Lemma 51.2), and thus greatly improve the running
time.

A geometric graph G on a set of points in R
d is called a t-spanner of S, t ≥ 1, if for any pair of

points p, q ∈ S there is a path in G from p to q of length at most t times the distance between p and q .
Gudmundson et al. [34] showed that for any set S of n points in R

d and for any positive ε, in time
O((d/ε)O(d) · n + d · n · log n) one can find a (1 + ε)-spanner of S with maximum degree (d/ε)O(d) and
with the total cost at most (d/ε)O(d) · MST(S).

For a given multigraph H , the graph induced by H is the graph obtained by reducing the multiplicity
of each edge of H to one. The following lemma formally describes the intuition that a t-spanner contains
(implicitly) a t-approximation of the minimum-cost k-ECSSM.

Lemma 51.8

Let G be a t-spanner for a point set S in R
d and let k be an arbitrary positive integer. Then, there exists a

k-edge-connected multigraph H on S such that (i) the graph induced by H is a subgraph of G, (ii) the total
cost of H is at most t times larger than the minimum-cost k-edge-connected multigraph on S, and (iii) there
are no parallel edges in H of multiplicity exceeding k.
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Now, with a good spanner at hand and with Lemma 51.8, we can proceed with the approach sketched
before. This approach is partly inspired by the recent use of spanners to speed-up PTAS for Euclidean
versions of TSP due to Rao and Smith [32]. The analysis relies on a series of transformations of a low cost
and sparse (1 +O(ε))-spanner for the input point set into an r -locally-light k-edge connected multigraph
spanning the input set and having nearly optimal cost. With some modifications of the analysis from the
Structure Theorem II, one can get the following theorem.

Theorem 51.7 (Structure Theorem III)

Let S be a (perturbed) set of n points in R
d contained in a bounding box L d and with minimum nonzero

inter-distance at least 8. Let G be a (1 + ε)-spanner for S that has n (d/ε)O(d) edges and has total cost
(d/ε)O(d) ·MST(S). Choose a shifted dissection uniformly at random. Then, one can transform G into a graph
G∗ on S such that with probability (over the random choice of the shifted dissection) at least 0.9

• G∗ is r -locally-light with respect to the shifted dissection, r = kdO(d)+O(kd2 log(d/ε))+(d/ε)O(d2),
and

• there exists a k-edge-connected multigraph H, which is a spanning subgraph of G with possible parallel
edges (of multiplicity at most k) whose cost is upper bounded by 1 + O(ε) times the minimum-cost of
k-ECSSM for S.

Moreover, the transformation can be done in time n · 2(O(
√

d))d−1 + n · (d/ε)O(d) log n.

Once we have the transformation defined in the Structure Theorem III (Theorem 51.7), we can use
dynamic programming, similar to that described in Lemma 51.2 and in Section 51.4.2, to obtain the
following lemma.

Lemma 51.9

Let S be a set of n points in R
d contained in a bounding box L d and with minimum nonzero interdistance at

least 8. Consider an arbitrary shifted dissection and assume that the 2d -ary dissection tree of S is given. Let
G be an r -locally-light graph on S, where r ≥ 1 is arbitrary. Then, a minimum-cost k-ECSSM G∗ on S for
which the induced graph is a subgraph of G can be found in time n · 2d+(k r )O(k r )

.

Therefore, if we combine the Structure Theorem III (Theorem 51.7) with Lemma 51.9, we directly
obtain the following theorem.

Theorem 51.8

Let k and d be any integers, k, d ≥ 2, and let ε be any positive real. Let S be a set of n points in R
d . There is a

randomized algorithm that in time n · log n · (d/ε)O(d) + n · 22(kO(1) ·(d/ε)O(d2))
, with probability at least 0.9

finds a k-ECSSM for S whose cost is at most 1 + ε times the minimum-cost of k-ECSSM for S. The algorithm
can be derandomized in polynomial time.

Observe that when all d , k, and ε are constant, the running time of the randomized algorithm is
O(n log n). When d and k are constant and ε is arbitrary, the running time becomes n log n (1/ε)O(1) +
n 22(1/ε)O(1)

. When d and ε are set to be constants, then the running time is O(n log n) + n 22kO(1)

.

51.5.1 2-Connected Graphs Are Not Worse than 2-Connected Multigraphs

The algorithm presented in the previous section does not work for minimum-cost k-VCSS or k-ECSS
problems. The reason is that no result similar to that from Lemma 51.8 holds. However, in the special case
when k = 2, we still can use multigraph approach to obtain a fast PTAS for the minimum-cost 2-VCSS or
2-ECSS problems. Indeed, it is known than any 2-VCSS is also a 2-ECSSM. Therefore, the minimum-cost
2-ECSSM for a set of points is not bigger than the minimum-cost 2-VCSS for the same point set. The
following theorem shows that actually, we can always quickly find a 2-VCSS (and hence also 2-ECSS) that
has cost not larger than that of a 2-ECSSM.
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Lemma 51.10 [24,19]

A 2-edge-connected multigraph on a set of points in R
d can be transformed in linear time into a biconnected

graph on the same set of points without increasing the total cost.

In view of this result, we could find a (1 + ε)-approximation for the minimum-cost 2-VCSS problem
by first running an algorithm for finding a (1 + ε)-approximation of the minimum-cost 2-ECSSM and
then applying Lemma 51.10. By Theorem 51.8, such randomized algorithm for the minimum-cost 2-VCSS

problem runs in time n ·log n ·(d/ε)O(d)+n ·22(O(d/ε))O(d2)

. However, as Czumaj and Lingas [24,29] proved,
one can obtain further speedup by improving the dynamic programming scheme from Lemma 51.9 in
the special case k = 2. For any set S of n points in R

d and for any Euclidean graph G on S that is
r -locally-light with respect to some given shifted dissection, one can use dynamic programming to find
in time n · 2d · rO(r 2d ) a minimum-cost 2-edge-connected multigraph on S for which the induced graph
is a subgraph of G . This yields the following theorem.

Theorem 51.9

Let d be any integer d ≥ 2, and let ε be any positive real. Let S be a set of n points in R
d . There is a randomized

algorithm which in time n · log n · (d/ε)O(d) + n · 2(d/ε)O(d2)
, with probability at least 0.9 finds a 2-VCSS

for S whose cost is at most 1 + ε times the minimum-cost of 2-VCSS for S.
The same holds for the minimum-cost 2-ECSS problem; these algorithms can be derandomized in polynomial

time.

For constant d and arbitrary ε, the running time of the randomized algorithm is n log n (1/ε)O(1) +
2(1/ε)O(1)

.

51.6 Lower Bounds

The results discussed in previous sections show that various multiconnectivity problems have a PTAS.
However, the obtained algorithms work in polynomial-time only for small values of d and k. Are these
results just a sign that our methods still need to be improved or they are inherent for the multiconnectivity
problems?

As for now, we still do not know if there is a PTAS for large values of k and, say, if we pick k = log n
we do not know if the k-VCSS problem for geometric graphs on the plane (i.e., for d = 2) has a PTAS
or does not. However, we know that we cannot obtain a PTAS for large values of d . Our basic tool is a
powerful result of Trevisan [35] that connects the inapproximability of TSP in geometric graphs with the
inapproximability of TSP in the so-called 1–2 graphs. A weighted undirected complete graph G is a 1–2
graph if each of its edges has weight either 1 or 2. It is called a 1–2-� graph if it is a 1–2 graph and each of
its vertices is incident to at most � edges of weight 1. It is easy to see that in every graph TST has cost that
is not smaller than the cost of a minimum-cost 2-VCSS. The following result showing that in 1–2 graphs
TST and minimum-cost 2-VCSS coincide is central for our analysis.

Lemma 51.11

In every 1–2 graph, TST is a minimum-cost 2-VCSS. ��
With this result, general inapproximability results for TST in 1–2 graphs proven by Trevisan [35] directly

imply similar results for the 2-VCSS problem.

Theorem 51.10 [18]

There exist constants �0 > 0 and ε > 0 such that, given a 1–2-�0 graph G on n vertices, and given the
promise that either its minimum-cost 2-VCSS H has cost n, or its cost is greater than or equal to (1 + ε) n, it
is NP-hard to distinguish which of the two cases holds. In particular, it is NP-hard to approximate within
(1 + ε) the cost of a minimum-cost 2-VCSS of a 1–2-�0 graph.
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The next result is a direct application of Theorem 51.10 combined with classical results on metric
embeddings.

Theorem 51.11 [18]

For any fixed p ≥ 1 there exists a constant ξ > 0 such that it is NP-hard to approximate within 1 + ξ the
minimum-cost 2-connected graph spanning a set of n points in the �p metric in R

log n.

Corollary 51.1

The minimum k-VCSS problem in graphs of maximum degree bounded by some constant is APX-hard and
hence does not have a PTAS unless P = NP .

One can easily modify the proofs of the theorems presented in this section in order to obtain similar
inapproximability results for the problem of finding a minimum-cost k-edge-connected subgraph of a
k-vertex-connected graph.

51.7 Extensions to Other Related Problems

The results and techniques we discussed in the previous sections can be applied to various related problems.

51.7.1 Pseudo-Approximations and Steiner k-VCSS/ECSS

It is not hard to improve the pseudo-approximation result obtained in Theorem 51.2 by modifying the
result from Theorem 51.8. We begin with finding a k-ECSSM whose cost is within 1 + ε of the minimum
using the result from Theorem 51.8. Then, we can trivially transform this multigraph into a Steiner k-VCSS
by placing k − 1 Steiner points on each input point (i.e., at the length zero from it) and forming a k-clique
of zero cost out of the point and its associated k −1 Steiner points. The cost of the resulting graph is within
1 + ε of the minimum-cost of k-ECSSM for the input set, which, in turn, does not exceed 1 + ε times
the minimum-cost k-VCSS on the input set. Such a Steiner k-VCSS can be found in (asymptotically) the
same time as required by Theorem 51.8 to find the k-ECSSM, which is significantly better than the result
in Theorem 51.2. The same approach works also for Steiner k-ECSS.

51.7.2 Steiner k-Connectivity—Real Approximation Schemes

The techniques described in the survey can be also used to derive efficient approximation schemes for
Euclidean minimum-cost Steiner k-connectivity. In contrast to the result in Section 51.7.1, our goal is
to find a Steiner k-VCSS (or k-ECSS) for a set of points S in R

d whose cost is at most 1 + ε times the
minimum-cost of Steiner k-VCSS (k-ECSS, respectively) for S; so both, the solution found and the optimal
solution are allowed to use Steiner points.

The main difficulty with extending the result from Section 51.7.1 to a real PTAS for Steiner k-VCSS/ECSS
is that the spanners used in the Structure Theorem III (Theorem 51.7) and in the PTAS from Theorem 51.8
do not include Steiner points. Nevertheless, one can decompose optimal Steiner solutions for k-connectivity
and combine this decomposition with the construction of banyans due to Rao and Smith [32]. The case of
k = 2 is most interesting. Extending the work of Hsu and Hu [30], Czumaj and Lingas [24] showed a new
structural characterization of minimum-cost Steiner biconnected graphs that lead to a decomposition of
an optimal Steiner solution into minimum Steiner trees. This opened the possibility of using the so-called
(1 + ε)-banyans, for the purpose of approximating the Euclidean minimum Steiner tree problem. As the
result, Czumaj and Lingas [24] obtain a PTAS for Euclidean minimum-cost Steiner biconnectivity and
Euclidean minimum-cost two edge connectivity; the algorithms run in time O(n log n) for any constant

dimension and ε. For general d and ε, the running time is n log n (d/ε)O(d) + n 2(d/ε)O(d2) + n 22dO(1)

.
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51.7.3 Survivable Networks

Czumaj et al. [27] extended the analysis from previous sections (in particular, Theorem 51.9) to a more
general problem of survivable networks. They considered the variant of the survivable network design
problem in which for a given set S of n points in Euclidean space R

d and a connectivity requirement
function r : S → N, the goal is to find a minimum-cost graph G on S such that for any pair of points
x , y ∈ S, G has min{r (x), r (y)} internally vertex-disjoint paths between x and y. The two most basic
(and of largest practical relevance) variants of this problem are those in which r (x) ∈ {0, 1} and when
r (x) ∈ {0, 1, 2}, for any point x ∈ S.

First, for the simplest case in which r (x) ∈ {0, 1} for any point x ∈ S, that is, for the Steiner tree
problem,4 Czumaj et al. [27] designed a randomized algorithm that, for any constant d and any constant
ε, in time O(n log n) finds a Steiner tree whose cost is at most (1 + ε) times larger than the minimum.

For general d and ε, its running time is n log n (d/ε)O(d) + n 2(d/ε)O(d2) + n 22dO(1)

.
Next, for the case when r (x) ∈ {0, 1, 2} for any point x ∈ S (this is the classical problem investigated

thoroughly by Grötschel and Monma et al. [2,5,7,11,12]), Czumaj et al. [27] extended algorithm for the
Steiner tree problem to design an algorithm that, for any constant d and any constant ε, in timeO(n log n)
finds a graph satisfying all the vertex connectivity requirements and having the cost at most (1 + ε)
times the minimum. When d and ε are allowed to be arbitrary, its running time is n log n (d/ε)O(d) +
n 2(d/ε)O(d2) + n 22dO(1)

.
Finally, essentially the same techniques can be used to obtain a PTAS for the multigraph variant, where

the edge-connectivity requirements satisfy r (x) ∈ {0, 1, . . . , k} and k = O(1).
All these approximation schemes are randomized, but they can be derandomized in a polynomial time.

51.7.4 Finding Low-Cost k-VCSS and k-ECSS in Planar Graphs

Recently, there has been also a progress in designing approximation schemes for the 2-VCSS and 2-ECSS
problem in planar graphs [25,26]. Similarly as for the TSP problem in planar graphs [22,36], the first step
toward an efficient approximation scheme has been achieved for unweighted graphs. Czumaj et al. [26]
showed that for every positive ε, for a given undirected graph planar G with n vertices, one can find in time
nO(1/ε) a 2-VCSS (or 2-ECSS) of G whose total number of edges is at most (1 + ε) times the minimum
number of edges in any 2-VCSS (or 2-ECSS, respectively) of G ; this gives a PTAS for the unweighted
version of the 2-VCSS and 2-ECSS problem in planar graphs. In fact, the approximation scheme provided
in Ref. [26] works also for the weighted case, but then the running time becomes nO(γ /ε), where γ is the
ratio of the total edge cost to the optimum solution cost.

Soon after, Berger et al. [25] modified the scheme from Ref. [26] and obtained a quasi-polynomial time
approximation scheme for the 2-VCSS and 2-ECSS problem in planar graphs. Their algorithm runs in
time nO(log n log(1/ε)/ε) and finds a 2-VCSS (or 2-ECSS) of G whose total cost is at most (1 + ε) times the
minimum-cost 2-VCSS (or 2-ECSS, respectively) of G . Furthermore, their algorithm can be extended to
solve within the same runtime bounds the survivable network design problem in planar graphs in which
r (x) ∈ {1, 2} for any vertex.

The underlying techniques developed for the approximation schemes for the 2-VCSS and 2-ECSS
problem in planar graphs were surprisingly similar to those used for geometric graphs: a combination of
(new) separator theorems with dynamic programming, and then new constructions of light spanners for
planar graphs. For more details, we refer interested readers to the original papers [25,26].

4Note that this variant of the Steiner tree problem is different from the Steiner tree problem considered by Arora
[13], for which a PTAS is also known [13,31] (see also Refs. [21,32]). The variant considered in this survey requires
that all locations of Steiner points are given in advance (they are the points x ∈ S with r (x) = 0), while in the other
variant, all points in R

d could be used as Steiner points.
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51.8 Final Comments

In this chapter, we surveyed recent approximation schemes for various variants of network design
problems for geometric graphs. Our main goal was not only to show the result, but also to demonstrate a
variety of new techniques developed to coupe with these problems.

51.8.1 Interesting Open Questions

In our context, perhaps the most intriguing open problem for now is whether the minimum-cost 2-VCSS
and 2-ECSS problems for planar graphs has a PTAS. We conjecture that this is indeed the case, but so far,
the existing techniques seem to be too weak. Further, it would be interesting to see if there is a PTAS for
the k-VCSS/ECSS problem in planar graphs for k = 3, 4 (note that for k ≥ 5 no planar graph can be
k-vertex-connected).

Another interesting open problem is whether there exists a PTAS for the geometric minimum-cost
k-VCSS and k-ECSS problems for very large values of k. The techniques presented in this survey seem to
work only for the values of k up to (log log n)c for certain positive constant c < 1. What about large values
of k?

Finally, and perhaps most importantly, how practical are the methods discussed in this survey? Even
though, most probably any direct implementation of the PTAS for k-connectivity problems would be
inferior to the existing heuristic implementations discussed (e.g., Refs. [2,5,7,12]), we believe that the
techniques presented in this survey when combined with heuristics could lead to significant improvements
in practical implementations.
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52.1 Introduction

In this chapter we consider geometric networks and two important quality measures of such networks,
namely dilation and detour. A geometric network is an undirected graph whose vertices are points in
d-dimensional space, and the edges are straight-line segments connecting the vertices. The sites are usu-
ally located in the Euclidean plane, but other metrics and higher dimensions are also common. Geometric
networks arise in many applications. Road networks, railway networks, telecommunication, pattern match-
ing, bioinformatics—any collection of objects in space that have some connections between them can be
modeled as a geometric network.

The weight of an edge e = (u, v) in a geometric network G = (S, E ) on a set S of n points is the
(usually Euclidean) distance between u and v, which we denote by d(u, v). The graph distance dG (u, v)
between two vertices u, v ∈ S is the length of the shortest path in G connecting u to v.

This chapter will consider the problem of designing a “good” network and the dual problem, that is,
evaluating how “good” a given network is. When designing a network for a given set S of points, several
criteria have to be taken into account. In particular, in many applications it is important to ensure a fast
connection between every pair of points in S. For this it would be ideal to have a direct connection between
every pair of points; the network would then be a complete graph. In most applications, however, this is
unacceptable due to the high costs. This leads to the concepts of dilation and detour of a graph, which we
define next.

The dilation or stretch factor of G , denoted �(G), is the maximum factor by which the graph distance
dG differs from the geometric distance d between every pair of vertices.

Definition 52.1

Let S be a set of points in R
d , let M = (Rd , dM) be a metric space on R

d and let G be a graph in M with
vertex set S. For any two vertices x , y ∈ S let dG (x , y) be the infimum length of all paths connecting x to y

52-1
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in G. We call

�G
M(x , y) = dG (x , y)

dM(x , y)

the M-dilation between x and y in G, and �M(G) = supx , y∈S �G
M(x , y) the M-dilation of G.

A graph G = (S, E ) with �M(G) ≤ t is said to be a t-spanner of S.
The notion of dilation can be generalized to arbitrary connected sets P ⊂ R

d . This measure is called
detour and compares the length of a shortest path inside P between any two points x , y ∈ P with their
distance measured, for example, in the Euclidean metric on R

d .

Definition 52.2

Let P ⊂ R
d be a connected set, and M = (Rd , dM) be a metric space on R

d . For any two points, x , y ∈ P
let dP (x , y) be the infimum length of all curves connecting x to y that are contained in P . We call

δP
M(x , y) = dP (x , y)

dM(x , y)

the M- detour between x and y in P , and δM(P ) = supx , y∈P δP
M(x , y) the M-detour of P .

In some sense the detour measures how much two metric spaces on R
d —namely M and R

d with the
shortest-path metric induced by P —resemble each other.

In this chapter we will mainly consider the case M = E
d , the d-dimensional Euclidean space. We then

write �(G) and δ(P ) instead of �
Ed (G) and δ

Ed (P ), respectively. Whenever we speak about the dilation
or detour without specifying M, we refer to the case M = E

d .
The chapter is organized as follows. In Section 52.2 we give an overview of the construction of

t-spanners. Section 52.3 briefly considers the dual problem, namely computing the dilation of a given
graph. Then in Section 52.4 we turn our attention to the problem of computing the detour. Finally, in
Section 52.5, we end the chapter by looking at structures with small dilation.

52.2 Constructing t-Spanners

The problem considered in this section is the construction of t-spanners given a set S of n points in R
d

and a positive real value t > 1. The aim is to compute a good t-spanner for S where the quality measures
are:

Size. The number of edges in the graph.
Degree. The maximum number of edges incident to a vertex.
Weight. The weight of an Euclidean network G is the sum of the edge weights.
Spanner diameter (or simply diameter). Defined as the smallest integer d such that for any pair of

vertices u and v in S, there is a t-path in the graph (a path of length at most t · |uv|) between u and
v containing at most d edges.

There are trade-offs between different quality measures, for example, between the degree and the diame-
ter [1]; a graph with constant degree will have diameter�(log n). A further example is the trade-off between
the diameter and the weight [2], that is, if the diameter of a Euclidean graph G is bounded by O(log n) then
the weight of G is �(wt(MST(S)) log n

log log n ), where wt(MST(S)) denotes the weight of the minimum span-
ning tree of S. Finally, there is also an �(n log n) time lower bound in the algebraic computation tree
model for computing any t-spanner for a given set of points S [3].

The most well-known t-spanners can be divided into three groups: �-graphs, WSPD-graphs, and
greedy-graphs. In the following sections we give the main idea of each of these, together with the known
bounds. Throughout this section it will be assumed that the set of input points is given in d-dimensional
Euclidean space. For a more detailed description of the construction of t-spanners see the extensive and
thorough work by Narasimhan and Smid [4].
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52.2.1 The �-Graph

The �-graph was discovered independently by Clarkson [5] and Keil [6]. Keil considered the graph in two
dimensions while Clarkson extended his construction to also include three dimensions. Althöfer et al. [7]
defined the �-graph for higher dimensions and Ruppert and Seidel [8] improved the construction time
to O(n logd−1 n). The general approach is stated below. Note that it is possible to cover E

d by k simplicial
cones of angular diameter θ , where k = O(1/θd−1) as defined in the algorithm.

Algorithm �-GRAPH(S, t)

1. Set k := 2d!
⌈√

2(d−1)
1−cos θ

⌉d−1
such that t = 1

cos θ−sin θ
for θ = 2π/k.

2. Set E := ∅.
3. for each point u ∈ S
4. Consider k cones C1, . . . , Ck with angular diameter θ and apex at u that cover E

d .
5. for each cone Ci

6. Find the point v within Ci whose orthogonal projection onto the bisector of Ci is closest
to u.

7. Add (u, v) to E .
8. return G = (S, E ).

A similar construction was already defined by Yao [9] in 1982, with the difference that for every point u
and every cone Ci , u is connected to the closest point in Ci . Defining the edges as in the �-graph algorithm
has the advantage of faster computation.

Theorem 52.1

The �-graph is a t-spanner of S for t = 1
cos θ−sin θ

with O( n
θd−1 ) edges and can be computed in

O( n
θd−1 logd−1 n) time using O( n

θd−1 + n logd−2 n) space.

Even though the “out-degree” of each vertex is bounded by k, the “in-degree” could be linear. Also, in
worst case the weight and the diameter of the �-graph can be �(n ·wt(MST(S))) and n −1, respectively.
However, there are several variants of the �-graph that improve these bounds.

Sink-Spanners
To obtain a spanner with constant degree one can use the construction of sink-spanners by Arya et al. [1].
The basic idea is as follows. Start with a �-graph that is a

√
t-spanner. Direct all the edges such that the

out-degree is bounded by a constant for every vertex. To handle the vertices with high in-degree, replace
each high degree node q and its adjacent neighbors, that is, the star centered at q , with a bounded degree√

t-sink-spanner. A
√

t-sink-spanner is a directed graph where each point has a directed
√

t-spanner path
to the center q . This is done in a way that may increase the dilation by a factor of

√
t, thus resulting in a

t-spanner with degree O
(

1
(t−1)2d−2

)
.

Theorem 52.2

The sink spanner is a t-spanner of S for t = 1
(cos θ−sin θ)2 with O( n

θd−1 ) edges and can be computed in

O( n
θd−1 logd−1 n

θd−1 ) time using O( n
θd−1 + n logd−2 n) space.

The transformation from a directed
√

t-spanner with bounded out-degree to a t-spanner with bounded
degree is called a sink-spanner transformation.

Skip-List Spanners
The idea is to generalize skip-lists [10] and apply them to the construction of spanners. Construct a sequence
of subsets, as follows: Let S1 = S. Let i > 1 and assume that we already have constructed the subset Si .
For each point in Si , flip a fair coin. The set Si+1 is defined as the set of all points of Si whose coin flip
produced heads. The construction stops if Si+1 = ∅. We have ∅ = Sh+1 ⊂ Sh ⊆ Sh−1 ⊆ · · · ⊆ S1 = S.
It holds that h = O(log n) with high probability and that

∑h
i=1 |Si | = O(n) with high probability. For
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each 1 ≤ i ≤ h, construct a �-graph G(Si ). The union of the graphs G(S1), . . . , G(Sh) is the skip-list
spanner G . The skip-list spanner is a t-spanner having O(n) edges and O(log n) spanner diameter with
high probability.

Ordered �-Graphs
A recent modification of the �-graph by Bose et al. [11] is the so-called Ordered �-graph which considers
the order in which the points of S are processed, that is, the graph is built incrementally by inserting and
processing each point in some predefined order. When a new point is processed it only considers the points
in the graph that have already been processed. They show an ordering that guarantees that the degree is
bounded by O(k log n) and that a random order gives a t-spanner for which the diameter is bounded by
O(log n) with high probability.

Gap-Greedy
The final variant is a combination of the �-graph and a greedy approach. A set of directed edges is said to
satisfy the gap property if the sources of any two edges in the set are separated by a distance that is at least
proportional to the length of the shorter of the two edges. Chandra et al. [12] showed that any directed
graph G that fulfills the gap property has weight O(log n · wt(MST(S))). However, the gap property is
limited in power. Lenhof et al. [13] showed that there exists a graph that satisfies the gap property and has
weight �( log n

log log n · wt(MST(S))).
Using the above idea, Arya and Smid [14] proposed an algorithm that uses the gap property to decide if

an edge should be added to the t-spanner graph or not. They consider pairs of points in order of increasing
distance, adding an edge ( p, q) if and only if it does not violate the gap property.

Theorem 52.3

Let t = 1/(cos θ − sin θ − 2w) for some real numbers 0 < θ < π/4 and 0 ≤ w < (cos θ − sin θ)/2. The
gap-greedy algorithm produces a t-spanner G of S in time O(n/θd−1 logd n) such that each vertex has degree
O(1/θd−1) and weight O( 1

θd−1 · (1 + 1
w ) log n · wt(MST(S))).

52.2.2 The Well-Separated Pair Decomposition-Graph

The well-separated pair decomposition (WSPD) was developed by Callahan and Kosaraju [15]. A detailed
description of the WSPD can be found in Chapter 53 by Smid in this handbook. The WSPD-graph was
first described by Callahan and Kosaraju in [16] but similar ideas were used earlier by Salowe [17,18] and
Vaidya [19–21].

Algorithm WSPD-GRAPH(S, t)

1. E ′ := ∅
2. G ′ := (S, E ′).

3. {A1, B1}, . . . , {Am, Bm}← the well-separated pair decomposition of S w.r.t. s = 4(t+1)
(t−1) .

4. for each well-separated pair {Ai , Bi }
5. Let ai and bi be arbitrary points in Ai and Bi respectively.
6. Add (ai , bi ) to E ′.
7. return G ′ = (S, E ′).

The following theorem summarizes the properties.

Theorem 52.4

The WSPD-graph is a t-spanner for S with O(s d · n) edges and can be constructed in time O(s d n + n log n),
where s = 4(t + 1)/(t − 1).

There are modifications that can be made to obtain bounded diameter or bounded degree.
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Bounded Diameter
Arya et al. [22] showed how the construction algorithm can be modified such that the diameter of the graph
is bounded by 2 log n. In the basic construction of a WSPD-graph a graph is constructed by adding an edge
for every well-separated pair in the WSPD. Instead of selecting an arbitrary point in each well-separated
set, they choose a representative point by a search in the fair-split tree (see Chapter 53), that is, for a node
u in the split tree, follow the path down the tree by always choosing the larger subtree. The point stored at
the leaf in which the path ends is the representative point for u. This approach guarantees that the diameter
of the constructed t-spanner is bounded by 2 log n.

Bounded Degree
The main problem in the construction of the WSPD-graph is that a single point v can be part of many
well-separated pairs and each of the pairs generates an edge with an endpoint at v. Arya et al. [1] suggest to
keep only the shortest edge for each cone direction, thus combining the �-graph approach with the WSPD-
graph. The resulting spanner has bounded “out-degree” and by applying the sink-spanner transformation,
a t-spanner of degree O( 1

(t−1)2d−1 ) is obtained.

52.2.3 The Greedy-Graph

The greedy algorithm was first presented in 1989 by Bern. Althöfer et al. [7] gave the first theoretical bounds
and since then the greedy algorithm has been subject to considerable research [12,23–28].The graph
constructed using the greedy algorithm is called a greedy-graph and the general approach is given below.

Algorithm GREEDY-GRAPH(S, t)

1. Construct the complete graph of S, denoted G = (S, E ).
2. E ′ := ∅
3. G ′ := (S, E ′).
4. for each edge (u, v) ∈ E in order of increasing weight
5. if SHORTESTPATH(G ′, u, v) > t · dG (u, v)
6. Add (u, v) to E ′.
7. return G ′ = (S, E ′).

Chandra et al. [12] proved that the maximum degree of the graph is bounded by a constant. The
running time of the naı̈ve implementation of GREEDY-GRAPH considered in their paper is O(n3 log n).
Das, Narasimhan and Salowe [26] showed that the greedy-spanner fulfills the so-called leapfrog property. A
set of undirected edges E is said to satisfy the t-leapfrog property, if for every k ≥ 2, and for every possible
sequence {( p1, q1), . . . , ( pk , qk)} of pairwise distinct edges of E ,

t · |p1q1| <

k∑

i=2

|pi qi | + t ·
(

k−1∑

i=1

|qi pi+1| + |pkq1|
)

Using the leapfrog property it is possible to bound weight of the graph. Das and Narasimhan [25] made a
breakthrough in 1994 when they showed that a modified greedy graph could be constructed in O(n log2 n)
time. They detailed how to use clustering to speed up shortest path queries, by showing that approximate
shortest path queries suffice to produce sparse spanners. However, their algorithm was not efficient as
the clusters were not maintained efficiently and had to be frequently rebuilt. This problem was solved by
Gudmundsson et al. [27], who developed techniques to efficiently perform clustering. Das and Narasimhan
[25] proved that the edges in the greedy graph satisfies the so-called leapfrog property and showed that any
graph satisfying this property has weight O(wt(MST(S))). A set of undirected edges E is said to satisfy
the t-leapfrog property, if for every k ≥ 2, and for every possible sequence {( p1, q1), . . . , ( pk , qk)} of
pairwise distinct edges of E ,

t · |p1q1| <

k∑

i=2

|pi qi + t ·
(

k−1∑

i=1

|qi pi+1| + |pkq1|
)
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A complete proof can be found in Chapter 14 in the book by Narasimhan and Smid [4]. The following
theorem summarizes the known bounds.

Theorem 52.5

The greedy graph is a t-spanner of S with O( n
(t−1)d log( 1

t−1 )) edges, O( 1
(t−1)d log( 1

t−1 )) maximum degree

and total weight O( 1
(t−1)2d · wt(MST(S))), and can be computed in time O( n

(t−1)2d log n).

52.2.4 Experimental Studies

The first experimental study of the construction of t-spanners was performed by Navarro and Paredes
[30], who presented four heuristics for point sets in high-dimensional metric space (d = 20) and showed
by empirical methods that the running time was O(n2.24) and the number of edges in the produced graphs
was O(n1.13). In Ref. [31], Sigurd and Zachariasen considered the problem of constructing a minimum-
weight t-spanner of a given graph, but they only considered sparse graphs of small size, that is, graphs
with at most 64 vertices and with average vertex degree 4 or 8. In the case where the input points are given
in the Euclidean plane, an extensive study of the main algorithms presented in Sections 52.2.1–52.2.3 was
performed by Farshi and Gudmundsson [32].

52.3 Computing the Dilation of a Graph

The previous section considered the problem of constructing a graph for a given point set. In this section
the dual problem is considered, that is, given a graph G compute �(G).

The problem of calculating the dilation of a given geometric graph can be solved by computing All-
Pairs-Shortest-Paths of G . Running Dijkstra’s algorithm—implemented using Fibonacci heaps—gives the
dilation of G in time O(mn +n2 log n) using linear space, where m is the number of edges in G . For a long
time there were no considerable improvements but in 2002, Langerman et al. [33] and Agarwal et al. [34]
showed the first subquadratic bounds for certain types of graphs. They proved that the dilation of a planar
polygonal path can be computed in O(n log n) expected time. The algorithm can be generalized to planar
trees and cycles, with a randomized expected running time of O(n log2 n), or O(n logO(1) n) worst-case
running time. Agarwal et al. [35] also showed that in three dimensions one can compute the dilation of a
path, cycle, or tree in O(n4/3+ε) in randomized expected time. More details about their construction can
be found in Section 52.4.2.

Eppstein and Wortman [36] presented an O(n log n)-time algorithm for evaluating the dilation when
the input graph G is a star. Computing the shortest path between two points in a star obviously takes
constant time, their idea is to identify O(n) candidate pairs and prove that the pair deciding the dilation of
G is among these pairs. The point pairs are identified using two techniques, each generating O(n) pairs.

Assume that (x , y) is a pair of points in G with dilation �(G).
In the case when the dilation of G is high, that is, greater than 3, then it holds that y is one of x ’s k

nearest neighbors, for a constant k. The k nearest neighbors of every point in V may be reported in time
O(kn log n) using the algorithm by Vaidya [20]. So the process of identifying the O(n) candidate point
pairs takes O(n log n) time.

In the case when the dilation of G is low, that is, smaller than or equal to 3, then it holds that x and
y must have almost the same distance to the center of G . Assume that the vertices of V are sorted with
respect to their distance from the center of G , 〈v1, . . . , vn〉, and that x = vi and y = v j . It holds that
|i − j | ≤ �, where � is a constant, and thus identifying O(n) candidate point pairs requires O(n log n)
time in this case.

52.3.1 Approximating the Dilation

For general geometric graphs it seems unavoidable to test all the
( n

2

)
pairs of vertices that may decide the

dilation of the graph. However, in the case when it suffices to approximate the dilation, this bound is no
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longer correct. Narasimhan and Smid [37] showed that O(n/εd ) pairs of vertices are sufficient to test to
give a good approximation. Their algorithm is very simple and it is stated below. It is assumed that an
algorithm ASPc ( p, q , G) is given that takes a graph G and two vertices p and q as input and computes
a c-approximation of �G ( p, q), where �G ( p, q) = dG ( p,q)

d( p,q) . Denote by T(n, m, k) the running time of
ASPc , when given (i) a graph having n vertices, m edges, and (ii) a sequence of k c-approximate shortest
path queries.

The algorithm takes a Euclidean graph G = (V, E ) and a real constant ε > 0 as input. A well-separated
pair decomposition of V is computed with separation constant 4(1 + ε)/ε. For each well-separated pair
{Ai , Bi } two arbitrary points ai ∈ Ai and bi ∈ Bi are chosen, and the dilation of ai and bi is estimated
by taking the ratio between ASPc (ai , bi , G) and d(ai , bi ). The maximum over all the values is returned.

The main theorem can now be stated.

Theorem 52.6

Let G be a Euclidean graph in E
d and let ε be a real constant such that 0 < ε ≤ 3, one can compute a

((1 + ε)c)-approximate dilation of G in time

O(n log n) + T(n, m, n/εd )

Using known data structures to answer (approximate) distance queries together with Theorem 52.6
gives an O(n log n) time (1 + ε)-approximation algorithm for paths, cycles, and trees, an O(n

√
n) time

(1+ε)-approximation algorithm for plane graphs [38], an O(m+n(t5/ε2)d (log n+(t/ε)d )) time (1+ε)-
approximation algorithm for t-spanners [39,40], and an O(mn1/β log2 n) expected time O(2β(1 + ε)2)-
approximation algorithm for any Euclidean graph [41].

Note that any algebraic computation tree algorithm that computes a c-approximate dilation of a path
or a cycle has running time �(n log n) [37].

52.4 Detour

When a geometric network G models an urban street system, the dilation is not necessarily an appropriate
measure to assess the quality of G . Since houses are spread everywhere along the streets, one has to take
into account not only the vertices of G but also all the points on its edges, that is, consider the detour of
G . The detour is also of particular interest in various other applications:

• Analyzing on-line navigation strategies often involves estimating the detour of curves: The length
of a path created by some robot must be compared to the shortest path connecting two points [42].

• When comparing the Fréchet distance F (P , Q) between two curves P ,Q of detour at most κ with
their Hausdorff distance H(P , Q) (see Ref. [43] for the definition of F and H) it turns out that
(under some additional technical condition) F (P , Q) ≤ (1 + κ)H(P , Q), while no such bound
is known for general curves [44,45].

In Section 52.4.1 we describe properties of pairs of points with maximum detour for various scenarios,
and in Section 52.4.2 we give algorithms for computing the detour in these scenarios. All the algorithms
exploit the structural properties described earlier. The problem of constructing graphs of small detour
that contain a prescribed finite point set will be considered in Section 52.4.3.

52.4.1 Structural Properties

We describe properties of pairs of points with maximum detour for the following scenarios:

• P is a simple polygonal curve (possibly closed), or a simple tree in R
2,

• P is a simple polygon in R
2, and

• P is a geometric graph in R
2.
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FIGURE 52.1 The detour δP ( p(t), q) is larger than δP ( p, q).

As already mentioned, the case of the detour of a planar polygonal chain P is of particular interest in
various applications. The problem of (approximately) computing δ(P ) in that setting was first addressed in
Ebbers-Baumann et al. [46]. The proposed algorithm exploits several structural properties of the problem.

Consider for instance an edge e of P with endpoints r, s , and let q be a fixed point on P , such that
dP (q , s ) > dP (q , r ), cf., Figure 52.1. The function δP (., q) takes on a unique maximum on e , and if
β := cos � (q , p, s ) = − ||p−q ||

dP (q ,r ) holds, then this maximum is attained at p.
To see this, let us assume that 0 < β < π . For −||p − r || ≤ t ≤ 0 let p(t) be the point on r p that has

distance |t| to p, and for 0 ≤ t ≤ ||p − s || let p(t) be the point on ps that has distance |t| to p. We have

f (t) := δP ( p(t), q) = dP ( p(t), q)

||p(t) − q || = t + dP ( p, q)
√

t2 + ||p − q ||2 − 2t||p − q || cos β

Since ||p − q || cos β + dP ( p, q) > 0, the derivative of f (t) has a positive denominator and its numerator
has the same sign as

n(t) := ||p − q || ||p − q || + dP ( p, q) cos β

||p − q || cos β + dP ( p, q)
− t

Thus, if ||p − q || + dP ( p, q) cos β is positive (resp. negative), the detour can be increased by moving p
toward s (resp. r ).

Another crucial property is that there is always a pair of points ( p′, q ′) attaining the detour of a simple
polygonal chain P , such that p′ and q ′ are covisible, that is, p′q ′ ∩ P = {p′, q ′}. This can be seen as follows:
Let p′, q ′ ∈ P attain the detour of P , that is, δP ( p, q) = δ(P ), and p = p0, . . . , pk = q be the points of
P intersected by the segment s = pq , ordered by their appearance on s , cf. Figure 52.2.

Then

δP ( p, q) = dP ( p, q)

||p − q || ≤
∑k−1

i=0 dP ( pi , pi+1)
∑k−1

i=0 ||pi − pi+1||
≤ max

0≤i<k

dP ( pi , pi+1)

||pi − pi+1|| = max
0≤i<k

δP ( pi , pi+1)

that is, some covisible pair pi and pi+1 attains the detour of P .
We can summarize the above discussion in the following lemma.

FIGURE 52.2 There is always a covisible pair of points attaining the detour.

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C052 March 20, 2007 17:18

Dilation and Detours in Geometric Networks 52-9

Lemma 52.1 [46]

The detour of a simple polygonal chain P in the plane is attained by a pair of points ( p, q) on P , where p is
a vertex of P , and p and q are covisible.

Similar results were obtained for various other cases. Lemma 52.1 was generalized by Agarwal et al. [35]
to the case of simple trees in the plane, and by Ebbers-Baumann et al. [47] it is shown that Lemma 52.1
also holds for simple polygons in the plane.

Lemma 52.2 [48]

For any metric space M on R
2 the M-detour of a simple polygon P in the plane with δM(P ) > 1 is attained

by a pair of points ( p, q) on the boundary of P , with the property that pq ∩ P = {p, q}, and at least one of
p, q is a vertex of P .

For the Euclidean metric, one can even show that every pair of points ( p, q) on the boundary that
attains the detour of any nonconvex simple polygon P must have the property that pq ∩ P = {p, q}.

It is easy to see that the detour of a closed simple polygonal curve is not necessarily attained at a vertex.
Still, a somewhat weaker property was shown by Agarwal et al. [35] for this case.

Lemma 52.3 [35]

The detour of a closed, simple polygonal curve P of length � in the plane is attained by a pair ( p, q) of points
of P , such that, either one of them is a vertex of P , or dP ( p, q) = �/2.

Moreover, Ebbers-Baumann et al. [47] observed that it is still the case, that a covisible pair of points
attains the detour of P . This is in fact true for arbitrary connected simple straight-line graphs in the plane:

Lemma 52.4 [47]

The detour of a connected simple straight-line graph P in the plane is attained by a pair of covisible points
of P .

Note that the dilation of a geometric graph is not necessarily attained at a covisible pair of vertices.
Moreover most of these properties fail to hold in higher dimensions. The detour of a polygonal curve in
R

3 for instance is not necessarily attained at a vertex of the chain, cf. [35].

52.4.2 Algorithmic Questions

Based on the earlier work of Narasimhan and Smid [37], Grüne [49] has shown that there is an �(n log n)
lower bound in the algebraic decision tree model for computing the dilation of a monotone and hence
simple planar polygonal curve. Unfortunately, for the problem of computing the detour of such curves,
no nontrivial lower bound is known.

However, as was shown by Agarwal et al. [35], computing the detour of a three-dimensional polygonal
path is as hard as Hopcroft’s problem: Given a set L of n lines in R

2 and a set Q of n points in R
2, decide

whether any line of L contains any point of Q.
The idea is to reduce an instance of Hopcroft’s problem to the problem of computing the detour of a

three-dimensional path. To this end, a three-dimensional path PL,Q is built in such a way that PL,Q has
infinite detour (i.e., it self-intersects), iff any line of L contains any point of Q. Using techniques developed
by Erickson [50] the construction is then modified to cover the case where it is known in advance that the
input chain is not self-intersecting.

The construction shows that, if there is an algorithm to compute δ(P ) for a simple polygonal chain P
on n vertices in R

3 in T(n) time, then Hopcroft’s problem can be solved in O(n log n + T(n)) time. There
is an abundance of evidence that suggests that Hopcroft’s problem has an �(n4/3) lower bound [50] in
any reasonable model of computation.

On the positive side, for arbitrary connected plane graphs P on n vertices the detour can be computed
in O(n2) time in the following way: Compute the shortest-path distance for all pairs of vertices of P . Since
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P is planar this can be done in O(n2) time, cf. [51]. For every pair of edges e , f of P , compute the detour
δP (e , f ) = max{δP (x , y) | x ∈ e , y ∈ f }. This can be done in constant time per pair, since there are
only four combinatorial different types of shortest paths going from points on e to points on f .

The structural properties shown in the previous section can be exploited to obtain faster algorithms in
some cases. The case where P is a planar polygonal chain without self-intersections was first studied by
Ebbers-Baumann et al. [46], where the following result is shown:

Theorem 52.7 [46]

Let P be a simple polygonal chain on n vertices in the plane, and let ε be a positive constant. In O(n log n)
time a pair of points ( p, q) on P can be computed, such that δ(P ) ≤ (1 + ε)δP ( p, q).

The problem of exactly computing δ(P ) for a simple polygonal chain P was independently considered
by Langermann et al. and Agarwal et al. [33,34] (see also Ref. [35] for a combined version).

The approach in Ref. [35] is as follows: First, a deterministic O(n log n) time algorithm for the decision
problem is developed, that is, an algorithm that decides on input (P , κ) whether δ(P ) ≤ κ . Note that
according to Lemma 52.1 δ(P ) ≤ κ iff δP (q , p) ≤ κ for all vertices p ∈ P and all points q ∈ P .

This problem can be restated in a form that makes it amenable to range-searching techniques: Let
p0 be the first point of P . For a point p ∈ P , define the weight of p to be ω( p) = dP ( p, p0)/κ .
Let C denote the cone z =

√
x2 + y2 in R

3, and map each vertex p = ( px , py ) ∈ P to the cone
C p = C + ( px , py , ω( p)), that is, translate the apex of C (i.e., the origin) to the point ( px , py , ω( p)).
If C p is regarded as the graph of a bivariate function, which will also be denoted by C p , then for any
point x ∈ R

2, C p(x) = |xp| + ω( p). Map a point q = (qx , qy ) ∈ P to the point q̂ = (qx , qy , ω(q))
in R

3, (cf. Figure 52.3). Now, for any point q ∈ P and a vertex p ∈ P that lies “before” q on P
(in the sense that dP ( p, q) = dP ( p0, q) − dP ( p0, p)), δP (q , p) ≤ κ if and only if q̂ lies below the
cone C p :

δP (q , p) ≤ κ ⇔ dP ( p0, q) − dP ( p0, p)

|q p| ≤ κ ⇔ dP ( p0, q)

κ
≤ |q p| + dP ( p0, p)

κ
⇔ ω(q) ≤ C p(q)

That is, δP (q , p) ≤ κ iff q̂ lies below the cone C p , and consequently δ(P ) ≤ κ iff the polygonal chain
P̂ = { p̂ | p ∈ P } lies below the lower envelope of the cones {C p | p is a vertex of P }. By exploiting the
covisibility property from Lemma 52.1, this condition can be verified in O(n log n) deterministic time.

Using a randomized technique of Chan [52] or parametric search [53], the decision procedure is
then turned into an algorithm for actually computing δ(P ) (parametric search incurs a polylogarithmic
overhead).

Theorem 52.8 [35]

Let P be a simple polygonal chain on n vertices in the plane. There is

• a deterministic algorithm to decide in O(n log n) time whether δ(P ) ≤ κ , for any κ > 0,
• a randomized algorithm to compute δ(P ) in O(n log n) expected time, and
• a deterministic algorithm to compute δ(P ) in O(n logO(1) n) time.

FIGURE 52.3 The chain P lifted to R
3.
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Using appropriate recursive partitioning schemes—based on Lemma 52.3 or the variant of Lemma 52.1
for trees—similar techniques can be applied to the case where P is a simple planar tree or cycle.

Theorem 52.9 [35]

Let P be a simple, closed polygonal chain or a plane tree on n vertices in the plane. There is a randomized
algorithm to compute δ(P ) in O(n log2 n) expected time.

As shown by Grüne et al. [46], the approach can be modified to handle the case where P is a simple
polygon in the plane. This yields an efficient approximation algorithm.

Theorem 52.10 [48,49]

Let P be a simple polygon on n vertices in the plane, and let ε be a positive constant. In O(n log n) time a pair
of points ( p, q) on the boundary of P can be computed, such that δ(P ) ≤ (1 + ε)δP ( p, q).

The fastest known algorithm for computing δ(P ) for a simple polygon P exactly is similar to the brute-
force approach described at the beginning of this section. Of course, Lemma 52.2 plays a crucial role here.
Moreover, the shortest-path computation is more involved since shortest-geodesic paths inside P have to
be computed.

Theorem 52.11 [48]

Let P be a simple polygon on n vertices in the plane. There is a deterministic algorithm to compute δ(P ) in
O(n2) time.

As already mentioned it is no longer true that the detour is attained at a vertex of P , when P is a simple
polygonal chain in R

3. This makes the three-dimensional algorithm considerably more complicated, and
less efficient, than its two-dimensional counterpart.

Theorem 52.12 [35]

Let P be a simple polygonal chain on n vertices in R
3. There is a randomized algorithm to compute δ(P ) in

O(n16/9+ε log n) expected time for any ε > 0.

52.4.3 Low Detour Embeddings of Point Sets

Besides computing the detour of given graphs, the problem of constructing plane graphs of small detour
that contain a given finite point set was also investigated.

Definition 52.3 (Detour of a point set)

The detour δ̇(P ) of a finite point set P in the plane is the smallest possible detour of any finite plane graph
that contains all points of P , that is,

δ̇(P ) := inf
P ⊂G

G finite, plane

δ(G)

Even for a point set P of size three, computing δ̇(P ) is a nontrivial task. For the dilation the optimum
solution must be a triangulation, since an optimal solution only contains straight edges, and adding
edges never increases the dilation. Still, it is not known how to efficiently compute the triangulation that
minimizes the dilation of a given point set.

As a consequence of Lemmas 52.4 and 52.3, the detour of any rational point set P is bounded by two,
since it can be embedded into a square grid, that is, δ̇(P ) ≤ 2 for all P ⊆ Q

2. A construction of Ref. [47]
shows that this can be improved:

Theorem 52.13 [47]

There is a periodic, plane covering graph G∞ of detour 1.67784..., such that each finite set of rational points
is contained in a finite part of a scaled copy of G∞.
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On the other side of the spectrum Ref. [47] gives an example of a point set P with detour δ̇(P ) ≥ π/2 =
1.57079.... Subsequent work in Refs. [54,55] improved this lower bound by exhibiting a point set P with
δ̇(P ) > π/2.

Theorem 52.14 [47,55]

• Let P be the vertex set of the regular n-gon on the unit circle. Then δ̇(P ) ≥ π/2.
• Let P = {(x , y) | x , y ∈ {−9, . . . , 9}}. Then δ̇(P ) ≥ (1 + 10−11)π/2.

52.5 Low-Dilation Networks

Besides computing the dilation of given graphs, the problem of constructing certain finite plane graphs
G = (V, E ) of small dilation that contain a given finite point set P is also interesting. There are several
different variants of this problem, depending on whether G may or may not contain Steiner-points, or if
G is restricted to belong to a certain class of graphs G, like, for example, triangulations and trees.

Definition 52.4 (Dilation of a point set)

Let G be a class of graphs and P be a finite point set in the plane. The dilation �̇G(P ) of P wrt. G is the
smallest possible dilation of any finite plane graph G = (P , E ) in G, that is,

�̇G(P ) := min
G=(P,E) ∈ G
G finite, plane

�(G)

If G is the class of all graphs, we can assume G to be a triangulation, since an optimal solution only
contains straight edges, and adding edges never increases the dilation. We omit the superscript G in this
case.

52.5.1 Triangulations

A triangulation defining �̇(P ) is called a minimum dilation triangulation of P . So far, only little research
has been conducted on minimum dilation triangulations. The complexity status of the problem is open.
Most work upperbounds the dilation of certain types of triangulations. Chew [56] has shown that the
rectilinear Delaunay triangulation has dilation at most

√
10. Dobkin et al. [57] give a similar result

for the Euclidean Delaunay triangulation. They show that its dilation can be bounded from above by
((1+√

5)/2)π ≈ 5.08. This bound was further improved to 2π/ (3 cos (π/6)) ≈ 2.42 by Keil and Gutwin
[58,59]. Das and Joseph [60] generalize all these results by identifying two properties of planar graphs
such that if A is an algorithm that computes a planar graph from a given set of points and if all the graphs
constructed by A meet these properties, then the dilation of all the graphs constructed by A is bounded
by a constant.

Exclusion and Inclusion Regions
When investigating optimal triangulations, it is usually instructive to consider local properties of the
edges in these triangulations. One important class of local properties that has been studied extensively, for
example, for minimum-weight triangulations are exclusion regions. They provide a necessary condition
for the inclusion of an edge into an optimal triangulation: If p and q are two points in P , then the edge
e := pq can only be contained in an optimal triangulation of P if no other points of P lie in (certain parts
of) the exclusion region of e .

To obtain an exclusion region for the minimum dilation triangulation one can observe the follow-
ing: We know from Ref. [58] that the dilation of the Delaunay triangulation of P is bounded by γ =
2π/(3 cos(π/6)). Moreover, if we have an edge e and two points x , y on opposite sides of e that are close to
the center of e , then the dilation between x and y is large, because e constitutes an obstacle that the shortest
path between x and y has to surpass. In fact, if we can quantify this, and show that the dilation between any
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pair of points in a certain region De ,γ that lie on opposing sides of e is larger than γ , we can conclude that,
if De ,γ contains such a pair of points, then e cannot be contained in the minimum dilation triangulation
of P , since the Delaunay triangulation gives a better dilation than any triangulation containing e .

The upper bound of Ref. [58] can also be used to obtain a sufficient condition for the inclusion of an
edge. More specifically, consider for two points p, q ∈ P the ellipsoid E p,q ,γ with foci p and q that is
given by E p,q ,γ = {x ∈ R

2||px| + |q x| ≤ γ · |pq |}. If E p,q ,γ is empty, then the line segment pq has
to be included in the minimum dilation triangulation of P , since otherwise the dilation between p and q
would be larger than γ .

Theorem 52.15 [61,62]

Let γ = 2π/(3 cos (π/6)) and p, q ∈ P .

1. For any 0 < α < 1/(2γ ) the disc D pq ,α of radius α|pq | centered at the midpoint of pq is an exclusion
region for the minimum dilation triangulation.

2. The ellipsoid E p,q ,γ = {x ∈ R
2||px| + |q x| ≤ γ · |pq |} is an inclusion region for the minimum

dilation triangulation.

Regular n-Gons
Even for the vertex set Sn = {s1, . . . , sn} of a regular n-gon, it is not known how to efficiently compute
a minimum dilation triangulation. There is however some additional understanding of the structure of
optimal triangulations in that case. In particular, there is a simple lower bound for the dilation of Sn.

Theorem 52.16 [62]

Let n ≥ 74, and assume that max1≤i< j≤n ||si − s j || = 2. For any triangulation T of Sn and any maximum
dilation pair sx , s y ∈ Sn of T, we have

1. �(T) ≥
√

2 − √
3 + √

3/2 ≈ 1.3836,
2. |x − y| > 5n/12, and

3. ||sx − s y || >

(√
6 + 3

√
3 +

√
2 − √

3
)

/2 ≈ 1.93185.

This can be used to derive an efficient approximation algorithm that computes a triangulation whose
dilation is within a factor of 1 + O(1/

√
log n) of the optimum.

Theorem 52.17 [62]

In O(n
√

log n) time a triangulation T∗ of Sn can be computed, such that

�(T∗) ≤
(

1 + O
(

1/
√

log n
))

�̇(Sn)

52.5.2 Stars

The problem of computing a minimum dilation star of P , that is, a graph G ∈ G defining �̇P where
G is a star, was considered for the first time by Eppstein and Wortman [36]. They proved the following
theorem.

Theorem 52.18

Let P be a set of n points in E
2; one can compute a minimum dilation star of P in O(n2α(n) log n) expected

time, where α is the functional inverse of Ackermann’s function [63].

The algorithm works by iteratively selecting a random vertex c in a region R, evaluating the dilation
that would result from using c as a center, computing the region R that could contain a center yielding a
lower dilation, and discarding the vertices outside R. Evaluating the dilation �c of a given star with center
at c in O(n log n) time was discussed in Section 52.3.

The region R is the intersection of O(n) ellipses defined by the O(n) pairs of points identified in
Section 52.3, that is, for each of the pairs vi and v j the level set f ≤λ

i, j = {x ∈ E
2| fi, j (x) = |vi x|+|xv j |

|vi v j | ≤ λ}
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defines an ellipsoid with foci vi and v j . The intersection of those O(n) ellipses can be described by
O(n2α(n)) arcs.

In each iteration, any vertex in R will be removed with probability 1/2; so the expected number of
iterations is O(log n), resulting in an O(n2α(n) log n) expected time algorithm.

52.5.3 Small Spanners with Small Dilation

Aronov et al. [64] considered the problem of constructing a minimum dilation graph given the number of
edges as a parameter. Any spanner of a set of n points S must have at least n − 1 edges, because otherwise
the graph would not be connected and the dilation would be infinite. The quantity �(S, k) is defined
as

�(S, k) = min
V(G)=S

|E (G)| = n − 1 + k

�(G)

Thus, �(S, k) is the minimum dilation one can achieve with a network on S that has n − 1 + k edges.

Theorem 52.19

For any n and any k with 1 ≤ k ≤ 2n, there is a set S of n points such that any graph on S with n − 1 + k
edges has dilation at least 2

π
· � n

k+1� − 1.

Consider a set S of n points p1, . . . , pn spaced equally on the unit circle, and let o be the center of the
circle. The first step is to prove a lower bound on any tree T for S.

Let x and y be two points in S and let γ and γ ′ be two paths from x to y avoiding o. The paths γ

and γ ′ are (homotopy) equivalent if γ and γ ′ belong to the same homotopy class in the punctured plane
R

2 \ {o}. Let γi be the unique path in T from pi to pi+1 (where pn+1 := p1). Aronov et al. [64] prove
that there must be at least one index i for which γi is not equivalent to the straight segment pi pi+1. Since
the path γi must not only “go around” o, but must do so using points p j on the circle only it follows that
�(S, 0) ≥ 2

π
n − 1.

Theorem 52.19 follows from the above argument by letting S consist of k + 1 copies of the above
construction, that is, sets Si , for 1 ≤ i ≤ k + 1, each consisting of at least �n/(k + 1)� points. The points
in Si are placed equally spaced on a unit–radius circle with center at (2 · i · n, 0). The set S is the union of
S1, . . . , Sk+1.

In the same paper, Aronov et al. [64] give a matching upper bound. The algorithm constructs a graph
G = (S, E ) with n − 1 + k edges, and dilation O(n/(k + 1)) in O(n log n) time.

Let m ← �(k + 5)/2�. Partition a minimum spanning tree T of S into m disjoint connected subtrees,
T1, . . . , Tm, each containing O(n/m) points. The edges of each subtree is added to E . Next, consider a
Delaunay triangulation of S. For each pair of subtrees Ti and Tj the shortest Delaunay edge (if any) is
added to E . This completes the construction of G = (S, E ).

The number of edges in G is at most n − 1 + k and �(G) can be bounded by O(n/(k + 1)) [64].
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53.1 Introduction

Computational geometry is concerned with the design and analysis of algorithms that solve problems on
geometric data in R

d , where the dimension d is considered to be a constant. A large part of the field has
been devoted to problems that involve distances determined by pairs of points in a given point set. Given
a set S of n points in R

d , we may wish to compute a pair p, q of distinct points in S whose distance is
minimum, the k smallest distances among the

(n
2

)
pairwise distances, the nearest neighbor of each point

of S, or the minimum spanning tree of S. Most problems of this type can be rephrased as a graph problem
on the complete Euclidean graph on S, in which each edge ( p, q) has a weight being the Euclidean distance
|pq | between p and q . Since the number of edges in this graph is �(n2), many problems involving pairwise
distances can trivially be solved in O(n2) time. Even though the complete Euclidean graph has size �(n2),
it can be represented in �(n) space: It is clearly sufficient to only store the points of S, because the weight
of any edge can be computed in O(1) time. This leads to the question whether distance problems can be
solved in subquadratic time, possibly at the cost of obtaining an approximate solution. For many of these
problems, subquadratic algorithms have indeed been designed; see, for example, the books by Preparata
and Shamos [1] and de Berg et al. [2], and the survey papers by Bern and Eppstein [3], Eppstein [4], and
Smid [5]. Most of these algorithms, however, are tailored to the problem at hand.

Callahan and Kosaraju [6,7] devised the well-separated pair decomposition (WSPD) and showed that
it can be used to solve a large variety of distance problems. Intuitively, a WSPD is a partition of the

(n
2

)

edges of the complete Euclidean graph into O(n) subsets. Each subset in this partition is represented by
two subsets A and B of the point set S, such that (i) all distances between points in A and points in B are

53-1
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approximately equal and (ii) all distances between points in A (resp. B) are much smaller than distances
between A and B . Thus, a WSPD can be regarded as a set of O(n) edges that approximates the dense
complete Euclidean graph.

Callahan and Kosaraju [6,7] showed that the WSPD can be used to obtain optimal algorithms for
solving the closest pair problem, the k closest pairs problem, the all-nearest neighbors problem, and the
approximate minimum spanning tree problem. In recent years, other researchers have shown that the
WSPD can be used to solve many other problems. In this chapter, we give an overview of several proximity
problems that can be solved efficiently using the WSPD. We mention that the WSPD has also been a
critical tool for the solution of several variants of the problem of constructing spanners; an overview of
these results can be found in Chapter 52 by Gudmundsson and Knauer in this handbook. An extensive
treatment of the WSPD and its applications is given in the book by Narasimhan and Smid [8].

The rest of this chapter is organized as follows. In Section 53.2, we define the WSPD. In Section 53.3,
we present an efficient algorithm for constructing a WSPD. In Section 53.4, we show that the WSPD can
be used to obtain optimal algorithms for the closest pair problem, the k closest pairs problem, and the
all-nearest neighbors problem. In Section 53.5, we use the WSPD to obtain approximate solutions for
the diameter problem, the spanner problem, the minimum spanning tree problem, and the problem of
computing the kth closest pair. Finally, in Section 53.6, we mention recent work in which the WSPD has
been generalized to more general metric spaces.

53.2 Well-Separated Pairs

In this section, we define the WSPD and prove one of its main properties in Lemma 53.1. As mentioned
in Section 53.1, the WSPD was introduced by Callahan and Kosaraju [6,7]. Previously, however, similar
ideas were used by Salowe [9,10] and Vaidya [11–13], who designed efficient algorithms for computing
spanners, all-nearest neighbors, and k closest pairs.

We start by defining the notion of two sets being well-separated. For any set X of points in R
d , we

denote its bounding box by R(X). Thus, R(X) is the smallest axes-parallel hyperrectangle that contains
the set X .

Definition 53.1

Let A and B be two finite sets of points in R
d and let s > 0 be a real number. We say that A and B are

well-separated with respect to s , if there exists two disjoint balls C A and C B , such that

1. C A and C B have the same radius,
2. C A contains R(A),
3. C B contains R(B), and
4. the distance between C A and C B is at least s times the radius of C A.

The real number s is called the separation ratio.

If we are given the bounding boxes R(A) and R(B) of the sets A and B , respectively, then we can test
in O(1) time whether these two sets are well-separated.

In the next lemma, we prove the two properties of well-separated sets that were mentioned already in
Section 53.1: If A and B are well-separated with respect to a large separation ratio s , then (i) all distances
between points in A and points in B are approximately equal and (ii) all distances between points in A
(resp. B) are much smaller than distances between A and B . These two properties will be used repeatedly
in the rest of this chapter.

Lemma 53.1

Let s > 0 be a real number, let A and B be two sets in R
d that are well-separated with respect to s , let a and

a ′ be two points in A, and let b and b′ be two points in B. Then, we have
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1. |aa ′| ≤ (2/s )|ab|, and
2. |a ′b′| ≤ (1 + 4/s )|ab|.

Proof
Let C A and C B be disjoint balls of the same radius, say ρ, such that R(A) ⊆ C A, R(B) ⊆ C B , and the
distance between C A and C B is at least sρ. The first claim follows from the facts that |aa ′| ≤ 2ρ and
|ab| ≥ sρ. By combining the first claim with the triangle inequality, we obtain

|a ′b′| ≤ |a ′a| + |ab| + |bb′| ≤ (1 + 4/s )|ab|
proving the second claim.

Definition 53.2

Let S be a set of n points in R
d , and let s > 0 be a real number. A well-separated pair decomposition (WSPD)

for S, with respect to s , is a sequence

{A1, B1}, {A2, B2}, . . . , {Am, Bm}
of pairs of nonempty subsets of S, for some integer m, such that

1. for each i with 1 ≤ i ≤ m, Ai and Bi are well-separated with respect to s , and
2. for any two distinct points p and q of S, there is exactly one index i with 1 ≤ i ≤ m, such that

(a) p ∈ Ai and q ∈ Bi , or
(b) p ∈ Bi and q ∈ Ai .

The integer m is called the size of the WSPD.

Observe that a WSPD always exists: If we let any two distinct points p and q of S form a pair {{p}, {q}},
then the conditions in Definition 53.2 are satisfied. The size of this WSPD, however, is

(n
2

)
. In the next

section, we will give an algorithm that computes a WSPD whose size is only O(n).

53.3 Computing a Well-Separated Pair Decomposition

Let S be a set of n points in R
d , and let s > 0 denote the separation ratio. The algorithm that constructs

a WSPD for S consists of two phases. In the first phase, a so-called split tree is constructed, which can be
considered to be a hierarchical decomposition of the bounding box of S into axes-parallel hyperrectangles.
In the second phase, the split tree is used to actually compute the WSPD. The algorithm is due to Callahan
and Kosaraju [7].

53.3.1 The Split Tree

The split tree T(S) for the point set S is a binary tree that is defined as follows:

1. If n = 1, then T(S) consists of a single node storing the only element of S.
2. Assume that n ≥ 2 and consider the bounding box R(S) = �d

i=1[�i , ri ] of S. Let i be the dimension
such that ri − �i is maximum, and define S1 := {p ∈ S : pi ≤ (�i + ri )/2} and S2 := S \ S1. The
split tree T(S) for S consists of a root whose two children are recursively defined split trees T(S1)
and T(S2) for the sets S1 and S2, respectively. The root of T(S) stores the bounding box R(S).

Thus, the split tree T(S) stores the points of S at its leaves. Each internal node of T(S) stores an axes-
parallel hyperrectangle, which is the bounding box of the set of all points of S that are stored in its subtree.
Observe that the split tree is, in general, not balanced.

The above definition immediately leads to an O(n2)-time algorithm for constructing the split tree.
Callahan and Kosaraju show that, by using a divide-and-conquer approach, the split tree can in fact be
constructed in O(n log n) time:
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Lemma 53.2

The split tree for any set of n points in R
d can be constructed in O(n log n) time.

53.3.2 Using the Split Tree to Compute Well-Separated Pairs

Consider the split tree T = T(S) for the point set S. For any node u of T , we denote by Su the subset of
S that is stored at the leaves of the subtree rooted at u. For any subset X of R

d , we denote by L max(R(X))
the length of a longest side of the bounding box R(X) of X .

The following algorithm uses the split tree to compute a WSPD for S. Recall that s denotes the separation
ratio.

Step 1: Initialize an empty queue Q. For each internal node u of T , do the following: Let v and w be
the two children of u. Insert the pair (v, w) into Q.

Step 2: Repeat the following until the queue Q is empty: Take the first pair (v, w) in Q and delete it
from Q. If the sets Sv and Sw are well-separated with respect to s , then output the pair {Sv , Sw }.
Otherwise, assume without loss of generality that L max(R(Sv)) ≤ L max(R(Sw )). Let w1 and w2

be the two children of w . Insert the pairs (v, w1) and (v, w2) into the queue Q.

It is not difficult to see that the output of this algorithm is a WSPD of the point set S. Callahan and
Kosaraju use a nontrivial packing argument to show that the number of pairs is O(n).

Lemma 53.3

Given the split tree, the above algorithm constructs, in O(s d n) time, a WSPD for S that consists of O(s d n)
pairs.

Observe that the WSPD is represented implicitly by the split tree: Each pair {A, B} in the WSPD is
represented by two nodes v and w , such that A = Sv and B = Sw . Thus, the entire WSPD can be
represented using O(s d n) space.

By combining Lemmas 53.2 and 53.3, we obtain the following result:

Theorem 53.1 (Callahan and Kosaraju [7])

Given a set S of n points in R
d , and given a real number s > 0, a WSPD for S, with separation ratio s ,

consisting of O(s d n) pairs, can be computed in O(n log n + s d n) time.

In some applications, it is useful to have a WSPD in which each well-separated pair consists of two sets,
at least one of which is a singleton set. For the WSPD {Ai , Bi }, 1 ≤ i ≤ m, that is constructed by the
algorithm given above, Callahan [6] proves that

m∑

i=1

min(|Ai |, |Bi |) = O(s d n log n)

Thus, if we replace each pair {Ai , Bi } (where we assume without loss of generality that |Ai | ≤ |Bi |) by
|Ai | pairs {{a}, Bi }, a ∈ Ai , then we obtain the following result:

Theorem 53.2 (Callahan [6])

Let S be a set of n points in R
d , and let s > 0 be a real number. In O(s d n log n) time, a WSPD for S, with

separation ratio s , can be constructed, such that each well-separated pair consists of two sets, at least one of
which is a singleton set, and the total number of pairs is O(s d n log n).

53.4 Exact Algorithms for Proximity Problems

As we have mentioned before, the WSPD is an O(n)-size approximation of the set of �(n2) distances
determined by a set of n points. In this section, we show that, despite the fact that the WSPD approximates
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all distances, it can be used to solve several proximity problems exactly. All results in this section are due
to Callahan and Kosaraju [6,7].

Let S be a set of n points in R
d , and let s > 0 be a real number. Consider the split tree T and the

corresponding WSPD for S, with separation ratio s , consisting of the pairs {Ai , Bi }, 1 ≤ i ≤ m.

53.4.1 The Closest Pair Problem

In this problem, we want to compute a closest pair in S, that is, two distinct points p and q in S such that
|pq | is minimum. Many algorithms are known that solve this problem optimally in O(n log n) time (see
Ref. [5]). We show that the WSPD basically “contains” a solution to the closest pair problem.

Let ( p, q) be a closest pair in S, and let i be the index such that p ∈ Ai and q ∈ Bi . If we assume
that the separation ratio s is a constant greater than 2, then it follows from Lemma 53.1 that both Ai and
Bi are singleton sets. Thus, by considering all pairs {A j , B j }, 1 ≤ j ≤ m, such that both A j and B j

are represented by leaves of the split tree, we obtain the closest pair in O(m) time. Combining this with
Theorem 53.1, we obtain the following result:

Theorem 53.3

Given a set S of n points in R
d , a closest pair in S can be computed in O(n log n) time.

53.4.2 The k Closest Pairs Problem

We next consider the problem of computing the k closest pairs in S, for any given integer k with 1 ≤ k ≤ (n
2

)
.

That is, we want to compute the k smallest elements in the (multi)set of
(n

2

)
distances determined by pairs

of points in S. Several algorithms have been designed that solve this problem optimally in O(n log n + k)
time (see Ref. [5]). As for the closest pair problem, we show that, once the WSPD is given, the k closest
pairs can be obtained in a simple way.

For each i with 1 ≤ i ≤ m, we denote by |R(Ai )R(Bi )| the minimum distance between the bounding
boxes R(Ai ) and R(Bi ) of Ai and Bi , respectively. We assume, for ease of notation, that the pairs in the
WSPD are numbered such that

|R(A1)R(B1)| ≤ |R(A2)R(B2)| ≤ · · · ≤ |R(Am)R(Bm)|
(This ordering of the pairs is only used in the analysis, it is not computed by the algorithm.) The algorithm
does the following:

Step 1: Compute the smallest integer � ≥ 1, such that
∑�

i=1 |Ai | · |Bi | ≥ k.
Step 2: Compute the distance r between the bounding boxes R(A�) and R(B�) of the sets A� and B�,

respectively.
Step 3: Compute the largest index �′ such that |R(A�′)R(B�′)| ≤ (1 + 4/s )r .
Step 4: Compute the set L ′ consisting of all pairs ( p, q) for which there is an index i with 1 ≤ i ≤ �′,

such that p ∈ Ai and q ∈ Bi .
Step 5: Return the k smallest distances determined by the pairs in the set L ′.

Lemma 53.4

This algorithm computes the k closest pairs in S.

Proof
Let ( p, q) be one of the k closest pairs, and let j be the index such that p ∈ A j and q ∈ B j . It suffices to
prove that ( p, q) is an element of L ′, that is, j ≤ �′. To prove this, assume that j > �′. Then

|pq | ≥ |R(A j )R(B j )| > (1 + 4/s )r

Let L be the set consisting of all pairs (x , y) for which there is an index i with 1 ≤ i ≤ �, such that
x ∈ Ai and y ∈ Bi . This set contains at least k elements. Using Lemma 53.1, we have, for each pair
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(x , y) in L ,

|xy| ≤ (1 + 4/s )|R(Ai )R(Bi )| ≤ (1 + 4/s )|R(A�)R(B�)| = (1 + 4/s )r

This contradicts our assumption that ( p, q) is one of the k closest pairs.

Using a linear-time (weighted) selection algorithm, the running time of the algorithm can be bounded
by

O



m +
�′

∑

i=1

|Ai | · |Bi |


 = O(m + |L ′|)

Let δ be the kth smallest distance in S. Then it can be shown that r ≤ δ and |pq | ≤ (1 + 4/s )2δ, for
any pair ( p, q) in L ′. Hence, if we denote by M the number of distances in the set S that are at most
(1 + 4/s )2δ, then the running time of the algorithm is O(m + M). By using a counting technique, based
on a grid with cells having sides of length δ/

√
d , it can be shown that

M = O((1 + 4/s )2d (n + k))

We take the separation ratio s to be equal to, say, 1. Then, by combining our results with Theorem 53.1,
we obtain the following theorem:

Theorem 53.4

Given a set S of n points in R
d , and given an integer k with 1 ≤ k ≤ (n

2

)
, the k closest pairs in S can be

computed in O(n log n + k) time.

53.4.3 The All-Nearest Neighbors Problem

In this problem, we want to compute for each point p of S a nearest neighbor in S, that is, a point q ∈ S \{p}
for which |pq | is minimum. Vaidya [12] was the first to solve this problem optimally in O(n log n) time.
In fact, his algorithm uses ideas that are very similar to the WSPD. In this section, we sketch the algorithm
of Callahan and Kosaraju [7].

Let p be a point of S and let q be its nearest neighbor. Let i be the index such that p ∈ Ai and q ∈ Bi .
It follows from Lemma 53.1 that the set Ai consists only of the point p. Hence, to solve the all-nearest
neighbors problem, we only have to consider pairs of the WSPD, for which at least one of their sets is a
singleton set. This observation does not lead to an efficient algorithm yet.

For any node u of the split tree T , we define F (u) to be the set of all points p ∈ S such that {{p}, Sv} is a
pair in the WSPD, for some ancestor v of u. (We consider u to be an ancestor of itself.) Also, we define N(u)
to be the set of all points p ∈ F (u), such that the distance from p to the smallest ball containing R(Su) is
at most equal to the smallest distance between p and any other point of F (u). Observe that N(u) ⊆ F (u).

Lemma 53.5

The size of the set N(u) is O((s/(s − 1))d ).

Proof
Let C be the smallest ball that contains R(Su). We claim that

1. for each p ∈ N(u), the sets {p} and Su are well separated, and
2. |pC | ≤ |pq |, for any two distinct points p and q of N(u).

By combining these two claims with a generalization of the fact that any point can be the nearest neighbor
of at most a constant number of other points, it can be shown that the size of N(u) is O((s/(s − 1))d ).

To prove the first claim, let p ∈ N(u). Since p ∈ F (u), there is an ancestor v of u such that the sets {p}
and Sv are well separated. Since Su is a subset of Sv , the sets {p} and Su are well separated as well.
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To prove the second claim, let p and q be two distinct points of N(u). The definition of N(u) implies
that the distance between p and C is at most the smallest distance between p and any other point of F (u).
In particular, since q ∈ F (u), we have |pC | ≤ |pq |.

We assume from now on that the separation ratio s is a constant greater than 2. The sets N(u), where
u ranges over all nodes of the split tree T , can be computed in a top-down fashion, in O(n) total time.
How do we use these sets? Let p be any point of S, q a nearest neighbor of p, and u the leaf of the split
tree that stores q . Let i be the index such that Ai = {p} and q ∈ Bi , and let v be the ancestor of u such
that Bi = Sv . Then, p ∈ F (u). Moreover, since Su = {q}, the distance between p and the smallest ball
containing R(Su) is equal to |pq |, which is at most the distance between p and any other point of F (u).
Therefore, we have p ∈ N(u).

The discussion above, together with Theorem 53.1, leads to an algorithm that solves the all-nearest
neighbors problem in O(n log n) time.

Theorem 53.5

Given a set S of n points in R
d , the all-nearest neighbors problem can be solved in O(n log n) time.

53.5 Approximation Algorithms for Proximity Problems

In this section, we consider proximity problems for which no optimal exact algorithms are known. For
each of these problems, we show that the WSPD leads to simple and fast approximation algorithms.

Let S be a set of n points in R
d , and let s > 0 be a real number. We assume that we have already

computed the split tree T and the corresponding WSPD for S, with separation ratio s , consisting of the
pairs {Ai , Bi }, 1 ≤ i ≤ m. For each i with 1 ≤ i ≤ m, we choose an arbitrary element ai in Ai and an
arbitrary element bi in Bi .

53.5.1 The Diameter Problem

The diameter of S is defined to be the largest distance between any two points of S. If the dimension d is
equal to two, the diameter can be computed in O(n log n) time (see Ref. [1]). Ramos [14] obtained the
same time bound for the three-dimensional case. It is not known if for dimensions greater than three,
the diameter can be computed in O(n logO(1) n) time. In this section, we show that the WSPD leads to a
simple and efficient algorithm that approximates the diameter, for any constant dimension d .

Let D be the diameter of S, and let i be the index for which |ai bi | is maximum. A straightforward
application of Lemma 53.1 shows that D/(1 + 4/s ) ≤ |ai bi | ≤ D. Hence, if we choose s = 4(1 − ε)/ε,
then this result, together with Theorem 53.1, yields the following theorem:

Theorem 53.6

Given a set S of n points in R
d , and given a real constant 0 < ε < 1, a (1 − ε)-approximation to the diameter

of S can be computed in O(n log n) time.

53.5.2 The Spanner Problem

For a real number t > 1, a graph G = (S, E ) is called a t-spanner for the point set S, if for any two points
p and q of S, we have |pq |G ≤ t|pq |, where |pq |G denotes the length of a shortest path in G between p
and q . Many algorithms are known that compute spanners (see Chapter 52 by Gudmundsson and Knauer
in this handbook and Ref. [8]). In this section, we show that the WSPD immediately gives a spanner for
S consisting of O(n) edges. The construction is due to Callahan and Kosaraju [15].

Lemma 53.6

Assume that the separation ratio s is greater than 4. Define G = (S, E ) to be the graph with edge set
E = {(ai , bi ) : 1 ≤ i ≤ m}. Then, G is a t-spanner for S, where t = (s + 4)/(s − 4).
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Proof
The proof is by induction. Consider two points p and q in S. If p = q , then obviously |pq |G ≤ t|pq |.
Assume that p �= q . Moreover, assume that |xy|G ≤ t|xy|, for all points x and y in S for which |xy| < |pq |.
Let i be the index such that p ∈ Ai and q ∈ Bi . Using Lemma 53.1, we obtain

|pq |G ≤ |pai |G + |ai bi |G + |bi q |G
= |pai |G + |ai bi | + |bi q |G
≤ t|pai | + |ai bi | + t|bi q |
≤ (2t/s + (1 + 4/s ) + 2t/s )|pq |
= t|pq |

Thus, Theorem 53.1 implies the following result:

Theorem 53.7

Given a set S of n points in R
d , and given a real constant t > 1, a t-spanner for S, consisting of O(n) edges,

can be computed in O(n log n) time.

53.5.3 The Minimum Spanning Tree Problem

In the two-dimensional case, the minimum spanning tree of S can be computed in O(n log n) time, by using
the fact that it is contained in the Delaunay triangulation of S (see Refs. [1,2]). For the three-dimensional
case, the best known algorithm has a running time that is close to O(n4/3) (see Ref. [16]). Erickson [17]
argues that it is unlikely that this running time can be improved considerably. In this section, we show
that, in any constant dimension d , an approximation to the minimum spanning tree can be computed in
O(n log n) time. The algorithm is due to Callahan and Kosaraju [15].

Assume that the separation ratio s is a constant greater than 4, and let t = (s + 4)/(s − 4). Consider
again the graph G of Lemma 53.6. Since G is a t-spanner for S, this graph is connected. Let T be a
minimum spanning tree of G .

Lemma 53.7

T is a t-approximate minimum spanning tree of S.

Proof
Let T∗ be a minimum spanning tree of S, and denote its total edge length by |T∗|. Number the edges of
T∗ as e1, e2, . . . , en−1. For each i with 1 ≤ i ≤ n − 1, let Pi be a t-spanner path (in G) between the
endpoints of ei , and denote the length of this path by |Pi |. Then,

n−1∑

i=1

|Pi | ≤
n−1∑

i=1

t|ei | = t|T∗|

Let G ′ be the subgraph of G consisting of the union of the edges of all paths Pi , 1 ≤ i ≤ n − 1. Then G ′
is a connected graph on the points of S, and its weight is at most t|T∗|. Since the weight of T is at most
that of G ′, the weight of T is at most t times the weight of T∗.

Since the graph G contains O(n) edges, its minimum spanning tree T can be computed in O(n log n)
time. By combining this with Theorem 53.1, we obtain the following result:

Theorem 53.8

Given a set S of n points in R
d , and given a real constant ε > 0, a (1 + ε)-approximation to the minimum

spanning tree of S can be computed in O(n log n) time.
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53.5.4 The kth Closest Pair Problem

In this problem, we are given an integer k with 1 ≤ k ≤ (n
2

)
, and want to compute the kth smallest element

in the (multi)set of
(n

2

)
distances determined by pairs of points in S. In the two-dimensional case, the

best known algorithm for this problem has a running time that is close to O(n4/3) (see Ref. [18]). Again,
Erickson [17] argues that it is unlikely that a significantly faster algorithm exists. We show that, for any
constant dimension, there is a simple and efficient algorithm that approximates the kth closest pair. The
results in this section are due to Bespamyatnikh and Segal [19].

Let k be any integer with 1 ≤ k ≤ (n
2

)
. As in Section 53.4.2, we assume that the pairs in the WSPD are

numbered such that

|R(A1)R(B1)| ≤ |R(A2)R(B2)| ≤ · · · ≤ |R(Am)R(Bm)|
Let � ≥ 1 be the smallest integer such that

∑�
i=1 |Ai | · |Bi | ≥ k, x an arbitrary element of A�, and y an

arbitrary element of B�.

Lemma 53.8

If δ is the kth smallest distance in the set S, then δ/(1 + 4/s ) ≤ |xy| ≤ (1 + 4/s )δ.

Proof
As mentioned in Section 53.4.2, it can be shown that |R(A�)R(B�)| ≤ δ. If we combine this fact with
Lemma 53.1, then we obtain

|xy| ≤ (1 + 4/s )|R(A�)R(B�)| ≤ (1 + 4/s )δ

Let L be the set consisting of all pairs (a , b) for which there is an index i with 1 ≤ i ≤ �, such that a ∈ Ai

and b ∈ Bi . Let (a , b) be the pair in L for which |ab| is maximum, and let i be the index such that a ∈ Ai

and b ∈ Bi . Observe that i ≤ �. Since L has size at least k, we have δ ≤ |ab|. Therefore (again using
Lemma 53.1),

δ ≤ |ab| ≤ (1 + 4/s )|R(Ai )R(Bi )| ≤ (1 + 4/s )|R(A�)R(B�)| ≤ (1 + 4/s )|xy|
Thus, using Theorem 53.1, we obtain the following result:

Theorem 53.9

Let S be a set of n points in R
d , let k be an integer with 1 ≤ k ≤ (n

2

)
, let ε > 0 be a constant, and let δ

be the kth smallest distance in S. In O(n log n) time, a pair (x , y) of points in S can be computed for which
(1 − ε)δ ≤ |xy| ≤ (1 + ε)δ.

Surprisingly, computing a pair (x , y) of points in S such that δ ≤ |xy| ≤ (1 + ε)δ is more difficult.
To compute such a pair, we use the WSPD of Theorem 53.2. Thus, the WSPD consists of pairs {Ai , Bi },
1 ≤ i ≤ m, where each set Ai is a singleton set, say Ai = {ai }, and m = O(n log n).

For each i with 1 ≤ i ≤ m, we define di = min{|ai b| : b ∈ Bi } and Di = max{|ai b| : b ∈ Bi }. Assume
that the pairs in the WSPD are numbered such that d1 ≤ d2 ≤ · · · ≤ dm. Let � ≥ 1 be the smallest integer
such that

∑�
i=1 |Bi | ≥ k, and let D = max(D1, D2, . . . , D�).

Lemma 53.9

If δ is the kth smallest distance in the set S, then δ ≤ D ≤ (1 + 4/s )δ.

Proof
Since

∑�
i=1 |Bi | ≥ k, the pairs {Ai , Bi } with 1 ≤ i ≤ �, define at least k distances. Since D is the largest

among these distances, it follows that δ ≤ D.
Let L = {(ai , b) : b ∈ Bi , i ≥ �}. Then d� is the minimum distance of any element in L . Since the size

of L is greater than
(n

2

) − k, it follows that δ ≥ d�. Let i be the index such that D = Di . By Lemma 53.1,
we have Di ≤ (1 + 4/s )di . Therefore, we have

D = Di ≤ (1 + 4/s )di ≤ (1 + 4/s )d� ≤ (1 + 4/s )δ

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C053 March 20, 2007 17:21

53-10 Handbook of Approximation Algorithms and Metaheuristics

We obtain the value of D (which is an approximation to the kth smallest distance in S), by computing
all values di and Di , 1 ≤ i ≤ m. That is, for each point ai , we compute its nearest and furthest neighbors
in the set Bi . We will show how to use the split tree to solve this problem for the case when the points are
in R

2. The algorithm uses the following result:

Lemma 53.10

Let V be a set of N points in the plane. There exists a data structure that supports the following operations:

1. For any given query point q ∈ R
2, report the nearest neighbor of q in V. The query time is O(log2 N).

2. For any given query point q ∈ R
2, report the furthest neighbor of q in V. The query time is O(log2 N).

3. Insert an arbitrary point into the set V. The amortized insertion time is O(log2 N).

Proof
Consider the Voronoi diagram of the set V , which can be constructed in O(N log N) time. If we store this
diagram, together with a point location data structure, then a nearest-neighbor query can be answered in
O(log N) time (see Refs. [1,2]). If we use the furthest-point Voronoi diagram, then we obtain the same
result for furthest-neighbor queries. Unfortunately, these Voronoi diagrams cannot be maintained effi-
ciently under insertions of points. Since nearest-neighbor and furthest-neighbor queries are decomposable,
however, we can use the logarithmic method of Bentley and Saxe [20] to obtain the time bounds that are
claimed in the lemma.

We now show how Lemma 53.10 can be used to compute all values of di and Di , 1 ≤ i ≤ m. Consider
the split tree T . Recall that for any node u, Su denotes the subset of S that is stored at the leaves in the
subtree of u. We store with each node u, a list L u consisting of all points ai such that Bi = Su .

The algorithm traverses the split tree T in postorder. During this traversal, the following invariant is
maintained: If u is a node that has been traversed, but none of its proper ancestors has been traversed yet,
then u stores the data structure DSu of Lemma 53.10 for the point set Su .

The postorder traversal of T does the following. Let u be the current node in this traversal. If u is a leaf
storing the point, say, p, then we compute di = Di = |ai p| for each point ai in L u , and we build the data
structure DSu of Lemma 53.10 for the singleton set Su = {p}. Assume that the current node u is not a
leaf. Let v and w be the two children of u. By the invariant, v and w store the data structure DSv and DSw

of Lemma 53.10 for the sets Sv and Sw , respectively. Assume without loss of generality that |Sv| ≤ |Sw |.
We do the following: First, we discard the data structure DSv . Then, we insert each element of Sv into
DSw ; this results in the data structure DSu storing all elements of Su . Finally, for each element ai of L u ,
we use DSu to find the nearest and furthest neighbors of ai in the set Su , and compute the values of di

and Di .
We analyze the total time of this algorithm. Since the WSPD contains O(n log n) pairs, the total number

of nearest-neighbor and furthest-neighbor queries is O(n log n). Consider any fixed point p of S. If p
is inserted into a data structure, then it “moves” to a new set whose size is at least twice the size of the
previous set containing p. As a result, p is inserted O(log n) times. Thus, overall, the total number of
insertions is O(n log n). Lemma 53.10 then implies that the running time of the algorithm is O(n log3 n).
If we combine this with Theorem 53.2, we obtain the following result:

Theorem 53.10

Let S be a set of n points in R
d , let k be an integer with 1 ≤ k ≤ (n

2

)
, let ε > 0 be a constant, and let δ be

the kth smallest distance in S. In O(n log3 n) time, a pair (x , y) of points in S can be computed for which
δ ≤ |xy| ≤ (1 + ε)δ.

53.6 Generalization to Metric Spaces

All results in the previous sections are valid for Euclidean spaces R
d , where d is a constant. In recent years,

the WSPD (and its applications) has been generalized to more general metric spaces.

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C053 March 20, 2007 17:21

The Well-Separated Pair Decomposition and Its Applications 53-11

Consider an arbitrary metric space (S, δ), where S is a set of n elements and δ : S × S −→ R the
metric defined on S. For any two subsets A and B of S, we denote the minimum distance between any
point in A and any point in B by δ(A, B), and we denote the diameter of A by D(A). If s > 0 is a real
number, then we say that A and B are well-separated with respect to s , if

δ(A, B) ≥ s · max(D(A), D(B))

Using this generalized notion of being well-separated, we define a WSPD for S as in Definition 53.2.
Gao and Zhang [21] considered the problem of constructing a WSPD for the unit-disk graph metric:

Let S be a set of n points in R
d . The unit-disk graph is defined to be the graph with vertex set S, in which

any two distinct points p and q are connected by an edge if and only |pq | ≤ 1. If we define δ( p, q) to
be the length of a shortest path between p and q in the unit-disk graph, then (S, δ) is a metric space.
Observe that even though the unit-disk graph may have �(n2) edges, it can be represented in O(n) space:
It suffices to store the points of S. Given any two points p and q of S, we can decide in O(1) time if p and
q are connected by an edge and, if so, compute its length |pq |. (If p and q are not connected by an edge,
however, then a shortest-path computation is needed to compute δ( p, q).) Gao and Zhang [21] proved
the following result:

Theorem 53.11

Let S be a set of n points in R
d , and let s > 1 be a real number. Consider the unit-disk graph metric on S.

1. If d = 2, then a WSPD for S with respect to s , consisting of O(s 4n log n) pairs, can be computed in
O(s 4n log n) time.

2. If d = 3, then a WSPD for S, with respect to s , consisting of O(n4/3) pairs, can be computed in
O(n4/3 logO(1) n) time.

3. If d ≥ 4, then a WSPD for S, with respect to s , consisting of O(n2−2/d ) pairs, can be computed in
O(n2−2/d ) time.

Talwar [22] extended the WSPD to metric spaces whose doubling dimension is a constant. To define
this notion, let (S, δ) be a metric space. A ball, with center p ∈ S and radius R, is defined to be the set
{q ∈ S : δ( p, q) ≤ R}. The doubling parameter of S is defined to be the smallest integer λ such that the
following holds, for all real numbers R > 0: Every ball with radius R can be covered by λ balls of radius
R/2. The doubling dimension of the metric space is defined to be log λ. Observe that this generalizes
Euclidean space R

d , because the doubling dimension of R
d is proportional to d .

Many algorithms solving proximity problems in R
d are analyzed using a packing argument. If the

doubling parameter λ is small, then, in many cases, a similar analysis can be used to efficiently solve these
problems.

Talwar [22] showed how to compute a WSPD consisting of O(s log λ n log �) pairs, where � is the aspect
ratio, which is defined to be the ratio of the diameter and the closest pair distance. Har-Peled and Mendel
[23] gave an improved construction and obtained the following result:

Theorem 53.12

Let (S, δ) be a metric space, let n = |S|, let λ be the doubling parameter of S, and let s > 1 be a real number.
There exists a randomized algorithm that constructs, in O(λn log n + s log λ n) expected time, a WSPD for S,
with separation ratio s , consisting of O(s log λ n) pairs.

Most results of the previous sections remain valid for metric spaces whose doubling parameter is
bounded by a constant. Interestingly, Har-Peled and Mendel [23] show that this is not the case for the
all-nearest neighbors problem: For every deterministic algorithm that solves this problem, there exists
a metric space on n points and doubling parameter λ ≤ 3, such that this algorithm computes all

(n
2

)

distances determined by these points.
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54.1 Introduction

In this chapter we discuss approximation algorithms for partitioning a rectangle with interior points. This
problem is denoted by RG-P, where RG stands for Rectangle and P stands for Points. An instance of the
RG-P problem is a set P of n points inside a rectangle R in the plane. A feasible solution is a rectangular
partition, which consists of a set of (orthogonal) line segments that partition R into rectangles such that
each of the n points in P is on a partitioning line segment. The objective of the RG-P problem is to find
a rectangular partition whose line segments have least total length. The RG-P problem is an NP-hard
problem [1].

A more general version of the problem is when R has interior rectilinear holes instead of points. This
problem arises in VLSI design where it models the problem of partitioning a routing region into channels
[2]. Approximation algorithms for this more general problem exist [3–6]. Levcopoulos’ algorithms [4,5]
are the ones with the smallest approximation ratio. His fastest algorithm [5] invokes as a subprocedure
the divide-and-conquer algorithm for the RG-P problem developed by Gonzalez and Zheng [7], which is
a preliminary version of the one discussed in this chapter.

The structure of an optimal rectangular partition can be very complex (Figure 54.1 [a]). A restricted
version of the RG-P problem limits the set of feasible solutions to recursively defined partitions that at each
level partition the instance into two subinstances of the RG-P problem by introducing a single line segment.
A recursive partition with this property is given in Figure 54.1(b). For a given rectangle, such a line segment
is called a cut of the rectangle in Ref. [7], and a guillotine cut in Ref. [8]. A rectangular partition such that at
every level there is a guillotine cut is called a guillotine partition. By definition every guillotine partition is
a rectangular partition, but the converse is not true. For example, the rectangular partition given in Figure
54.1(a) is not a guillotine partition. For the same instance, the structure of an optimal guillotine partition
can be much simpler than the structure of an optimal rectangular partition. Furthermore, the concept of
guillotine cut is useful for developing approximation algorithms for the RG-P problem using divide-and-
conquer and dynamic programming techniques. The algorithm given in Ref. [7] finds an approximation
to the RG-P problem by generating a suboptimal guillotine partition via a divide-and-conquer algorithm,
whereas the algorithm given by Du et al. [8] finds an approximation to the RG-P problem by generating
an optimal guillotine partition via dynamic programming. Gonzalez and Zheng’s [7] algorithm takes
O(n log n) time. Du et al.’s [8] algorithm takes O(n5) time to construct an optimal guillotine partition.

54-1
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(a) (b)

FIGURE 54.1 (a) Optimal rectangular partition. (b) Optimal guillotine partition.

On the other hand, Du et al. [8] showed that the length of an optimal guillotine partition is at most
twice the length of an optimal rectangular partition for the RG-P problem, but the approximation ratio
for the divide-and-conquer algorithm given in Ref. [7] is 3

√
3. This ratio was reduced to 4 by using a

slightly different divide-and-conquer procedure. A complex proof showing that the length of an optimal
guillotine partition is within 1.75 times the length of an optimal rectangular partition is given by Gonzalez
and Zheng [9]. Clearly, neither algorithm dominates the other when one takes into account both the time
complexity and the approximation ratio.

It is important to note that optimal and near-optimal guillotine partitions are not the only way one can
generate solutions with a constant approximation ratio for the RG-P problem. Gonzalez and Zheng [10]
developed an algorithm with approximation ratio of 3 for the RG-P problem that generates a rectangular
partition that is not necessarily a guillotine partition. Both the time and approximation ratio for this
algorithm are between the ones of the two algorithms mentioned above.

The RG-P problem was generalized to d-dimensional Euclidean space. In this generalized problem, R
is a d-box and P is a set of points in d-dimensional space, and the objective is to find a set of orthogonal
hyperplane segments of least total (d − 1)-volume that includes all points of P . This is the d-dimensional
RG-P problem. Approximating an optimal d-box partition by suboptimal and optimal guillotine partitions
based on divide-and-conquer and dynamic programming techniques has been established in Refs. [11,12],
respectively.

In this chapter, we present two approximation algorithms for the RG-P problems. For an RG-P instance
I , we use E (I ) to represent the set of line segments in the solution generated by our algorithm, and E opt(I )
the set of line segments in an optimal rectangular partition. We use L (S) to represent the length of the
line segments in set S. We first present an O(n log n)-time divide-and-conquer approximation algorithm
that generates suboptimal guillotine partitions with total edge length within four times the one in an
optimal rectangular partition, that is, for every I , L (E (I )) ≤ 4L (E opt(I )). We then present a simple
proof that shows that an optimal guillotine partition has total edge length that is within two times the
one in an optimal rectangular partition, that is, for every I , L (E (I )) ≤ 2L (E opt(I )). This proof is much
simpler than the proof of Ref. [8] for the same bound. We also outline the main ideas of the complex proof
in Ref. [9] that establishes that an optimal guillotine partition has edge length that is within 1.75 times
the optimal rectangular partition value. One may improve Levcopoulos’ [5] algorithm by replacing the
algorithm in Ref. [7] by any of the above algorithms.

54.2 A Divide-and-Conquer Algorithm

An RG-P problem instance is given by I = ((X, Y ), P ), where (X, Y ) defines the rectangle R (with height
Y and width X), and P = {p1, p2, . . . , pn} is a nonempty set of points located inside R. Before we
present our algorithm we define some terms and define a way to establish lower bounds for the length of
rectangular partitions.

A partial rectangular partition is a partition of R into rectangles where not all the points in P are located
along the partitioning line segments. Let Q be any partial rectangular partition for problem instance I . A
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subset of the points in P is said to be assigned to Q if the following three conditions are satisfied:

1. Every rectangle r in Q with at least one point inside it has one such point assigned to it.
2. A rectangle r in Q without points inside it may be assigned at most one point on one of its sides.
3. Two rectangles with a common boundary cannot have both their assigned points on their common

boundary.

An assignment of the points in P to Q is denoted by A(Q).
Every rectangle r with a point assigned to it is said to have value, v(r ), equal to the minimum of the

height of r and the width of r . The assignment A(Q) of the partial rectangular partition Q has value equal
to the sum of the values of the rectangles that have an assigned point. This value is denoted by v(A(Q)).

We now establish that the edge length of a rectangular partition is at least equal to the value of any
assignment for any partial rectangular partition of R.

Lemma 54.1

For every problem instance I , partial rectangular partition Q, and assignment A(Q), a lower bound for
L (E (I )) is given by v(A(Q)), that is, v(A(Q)) ≤ L (E (I )). In particular, v(A(Q)) ≤ L (E OPT(I )).

Proof
Consider any rectangle r with one or more points in it. By definition one of these points is assigned to the
rectangle. Clearly, any partition into rectangles must include line segments inside r with length greater or
equal to the minimum of the height of r or the width of r . This is equal to the value v(r ).

Consider now any rectangle r without points inside, but with an assigned point. The point assigned to
r must be located on one of its sides. Let us say it is on side s . By definition any rectangle with a common
boundary to side s of rectangle r does not have its assigned point on this common boundary. Therefore,
any rectangular partition that covers the assigned point of r must include line segments in r with length
at least equal to the minimum of the height of r or the width of r . This is equal to the value v(r ).

Since v(A(Q)) is equal to the sum of the values of the rectangles that have been assigned a point, the
above arguments establish that v(A(Q)) ≤ L (E (I )), that is, v(A(Q)) is a lower bound for L (E (I )).

We now define our divide-and-conquer procedure to generate a rectangular partition. From this rect-
angular partition we identify a partial rectangular partition and an assignment of a subset of the points
P . Applying Lemma 54.1 we have a lower bound for an optimal rectangular partition. Then we show that
the length of the edges in the solution generated is within four times the lower bound provided by the
assignment.

Assume without loss of generality that we start with a nonempty problem instance such that Y ≤ X .
Procedure DC introduces a mid-cut or an end-cut, depending on whether or not the rectangle has points
to the left and also to the right of the center of R. The cut is along a vertical line that partitions R into
Rl and Rr . The set of points in P that are not part of the cut are partitioned into Pl and Pr depending
on whether they are inside of Rl or Rr . A mid-cut is a vertical line segment that partitions R and includes
the center of the rectangle. An end-cut is a vertical line segment that partitions R and includes either the
“rightmost” or the “leftmost” points in P , depending whether all the points are located to the left or right
of the center of R. Procedure DC is then applied recursively to the nonempty resulting subproblems, that
is, Il = ((Xl , Y ), Rl ) and Ir = ((Xr , Y ), Rr ), where Xl and Xr represent the length along the x-axis of
the two resulting subinstances (Il and Ir ), respectively. Note that when a mid-cut is introduced it must be
that both Pl and Pr end up being nonempty. For an end-cut at least one of these sets will be empty. When
both sets of points are empty the cut is called terminal end-cut.

It is easy to verify that Figure 54.2 represents all the possible outcomes of one step in the recursive
process of our procedure. A subinstance without interior points is represented by a rectangle filled with
diagonal line segments.

Our lower bound function, LB(I ), is defined from a partial rectangular partition of the rectangular par-
tition generated by Procedure DC. The partial rectangular partition is the rectangular partition generated
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(a) (b) (c) (d)

FIGURE 54.2 Subinstances generated by Procedure DC.

by Procedure DC, except that all the terminal end-cuts are not included. The association for the partial
rectangular partition is defined as follows. Every rectangle with points inside it is assigned one of the
points inside it. Rectangles without points inside them resulting from a nonterminal end-cut have one of
the points along the end-cut assigned to them. By Lemma 54.1, the value of this assignment is a lower
bound for the length of an optimal rectangular partition. A recursive definition for the value of the above
assignment is given by the following recurrence relation:

LB(I ) =






Y (a) A terminal end-cut is introduced, Pl = ∅ and Pr = ∅.

LB(Il ) + LB(Ir ) (b) A mid-cut is introduced, Pl �= ∅ and Pr �= ∅.

min{Y, Xl } + LB(Ir ) (c) A nonterminal end-cut is introduced, Pl = ∅ and Pr �= ∅
LB(Il ) + min{Y, Xr } (d) A nonterminal end-cut is introduced, Pl �= ∅ and Pr = ∅.

Let L (E DC (I )) denote the total length of the set E DC (I ) of line segments introduced by Procedure
DC. We define USE(I ) to be the length of the line segments introduced directly by Procedure DC(I ),
but not by the recursive invocations, that is, when P = ∅ then USE(I ) = 0; otherwise, USE(I ) =
L (E DC (I )) − L (E DC (Il )) − L (E DC (Ir )).

Assume X ≥ Y . A problem instance I = ((X, Y ), P ) is said to be regular if X ≤ 2Y , and irregular
otherwise (i.e., X > 2Y ). We define the carry function C for a problem instance I as

C ( I ) =
{

3Y if I is irregular
X + Y if I is regular

One may visualize the analysis of our approximation algorithm as follows. Whenever a line segment
(mid-cut or end-cut) is introduced by Procedure DC it is colored red, and when a lower bound from LB(I )
is “identified” we draw an “invisible” blue line segment with such length. Our budget is four times the
length of the blue line segments, which we must use to pay for all the red line segments. In other words, the
idea is to bound the sum of the length of all the red segments by four times the one of the blue segments.
The length of the red line segments introduced at previous recursive invocations of Procedure DC which
have not yet been accounted by previously identified blue segments is bounded above by the carry function
C , defined above. In other words, the carry value is the maximum edge length (length of red segments)
we could possibly owe at this point. Before proving our result, we establish some preliminary bounds.

Lemma 54.2

For any problem instance I such that X ≥ Y , 2Y ≤ C (I ) ≤ 3Y .

Proof
The proof follow from the definition of the carry function.

Lemma 54.3

For every problem instance I , L (E DC (I )) + C (I ) ≤ 4LB(I ).

Proof
The proof is by contradiction. Let I be a problem instance with the least number of points P that does
not satisfy the lemma, that is,

L (E DC (I )) + C (I ) > 4LB(I ) (54.1)

Assume without loss of generality that Y ≤ X . There are three cases depending on the cut introduced
by Procedure DC when it is initially invoked with I .
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Case 1. The procedure introduces a terminal end-cut.
Since Y ≤ X , and Pl = Pr = ∅, we know that LB(I ) = Y . From the way the procedure operates we
know L (E DC (I )) = USE(I ) = Y . Substituting into Eq. (54.1), we know that C(I ) > 3Y . But this
contradicts Lemma 54.2. So it cannot be that the algorithm introduces a terminal end-cut when presented
with instance I .

Case 2. The procedure introduces a mid-cut.
Since a mid-cut is introduced, both Pl and Pr must be nonempty and since both Il and Ir have fewer
points than P , we know they satisfy the conditions of the lemma. Combining the conditions of the lemma
for Il and Ir we know that

L (E DC (Il )) + L (E DC (Ir )) + C (Il ) + C(Ir ) ≤ 4LB(Il ) + 4LB(Ir )

By definition, L (E DC (I )) = L (E DC (Il )) + L (E DC (Ir )) + USE(I ) and LB(I ) = LB(Il ) + LB(Ir ). Since
Y ≤ X we know USE(I ) = Y . Substituting these equations into Eq. (54.1) we have

Y + C (I ) > C (Il ) + C(Ir ) (54.2)

There are two cases depending on whether I is regular or irregular.

Subcase 2.1. I is regular.
By definition C(I ) = X + Y . Substituting into Eq. (54.2),

Y + C(I ) = X + 2Y > C(Il ) + C(Ir )

Since I is regular and the procedure introduces a mid-cut, both I1 and I2 must also be regular. Therefore,
X + 2Y = C(Il ) + C(Ir ). A contradiction. So it cannot be that I is regular.

Subcase 1.2. I is irregular.
Since Y ≤ X and I is irregular, we know that Y + C (I ) = 4Y . Substituting into Eq. (54.2) we have 4Y >

C(Il ) + C (Ir ). Since I is irregular and the algorithm introduces a mid-cut, it must be that Xl = Xr ≥ Y .
But by Lemma 54.2, C(Il ) ≥ 2Y or C (Ir ) ≥ 2Y . A contradiction. So it cannot be that the procedure
introduces a min-cut.

Case 3. The procedure introduces a nonterminal end-cut.
When a nonterminal end-cut is introduced, exactly one of the two resulting subproblems has no interior
points (Figure 54.2 [c] and [d]). Assume without loss of generality that Ir has no interior points. From
the lower bound function and the procedure we know that

LB(I ) = LB(Il ) + min{Y, Xr } and L (E DC (I )) = L (E DC (Il )) + USE(I )

Since instance Il has fewer points than I , it then follows that L (E DC (Il )) + C(Il ) ≤ 4LB(Il ). Clearly,
USE(I ) = Y . Substituting these inequalities into Eq. (54.1) we know that

Y + C(I ) > C (Il ) + 4 min{Y, Xr } (54.3)

By Lemma 54.2 we know C(I ) ≤ 3Y and C (Il ) > 0. So Eq. (54.3) is 4Y > 4min{Y, Xr }. Therefore, it
cannot be that Y ≤ Xr as otherwise there is a contradiction. It must then be that Xr < Y . Substituting
into Eq. (54.3)

Y + C (I ) > C (Il ) + 4Xr (54.4)

Instance I is regular because Xr < Y and Xr ≥ X
2 implies X < 2Y . Substituting C(I ) = X + Y into

Eq. (54.4) we know

X + 2Y > C (Il ) + 4Xr (54.5)

If Il is regular, then substituting C (Il ) into Eq. (54.5) we know that X + 2Y > Xl + Y + 4Xr . Since
Xl + Xr = X , Eq. (54.5) becomes Y > 3Xr . But we know that Xr ≥ X/2 and X ≥ Y . So Xr ≥ Y/2. A
contradiction. So it must be that Il is irregular.
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In contrast, if Il is irregular, then since Xl ≤ Y substituting C(Il ) into Eq. (54.5) we know that
X + 2Y > 3Xl + 4Xr . Since Xl + Xr = X , we know that 2Y > 2X + Xr . But we know that X ≥ Y and
Xr > 0. A contradiction.

This completes the proof of this case and the lemma.

We establish the main result (Theorem 54.1), which shows that the approximation bound is tight
(Theorem 54.2), and explain implementation details needed to establish the time complexity bound for
procedure DC (Theorem 54.3).

Theorem 54.1

For any instance of the RG-P problem, algorithm DC generates a solution such that L (E DC (I )) ≤
4 L (E opt(I )).

Proof
The proof follows from Lemmas 54.2 and 54.3.

We now show that the approximation bound is asymptotically tight, that is, L (E DC (I )) is about
4L (E opt(I )). The problem instance we use to establish this result has the property that LB(I ) = L (E opt(I )).
Our approach is a standard one that begins with small problem instances and then combines them to build
larger ones. As the problem instances become larger, the approximation ratio for the solution generated
by Procedure DC increases. The analysis just needs to take into consideration a few steps performed by
the procedure and the previous analysis for the smaller problem instances.

We define problem instances Pi , for i ≥ 0 as follows: Problem instance Pi consists of a rectangle of
size 2i by 2i . The instance P1 contains two points. Figure 54.3(a) and Figure 54.3(b) depicts E DC (P1)
and E opt(P1), respectively. Clearly, L (E DC (P1)) = 4 and L (E opt(P1)) = 2. In this case the approxima-
tion ratio is 2. Instance P2 is a combination of four instances of P1. Figure 54.3(c) and Figure 54.3(d)
depicts E DC (P2) and E opt(P2), respectively. Clearly, L (E DC (P2)) = 23 + 4L (E DC (P1)) = 24 and
L (E opt(P2)) = 4L (E opt(P1)) = 8. The ratio is 3. Problem instance P3 combines four instances of P2

as shown in Figure 54.3(c). Figure 54.3(e) and Figure 54.3(f) depicts E DC (P3) and E opt(P3), respec-
tively. Clearly, L (E DC (P3)) = 24 + 4L (E DC (P2)) = 112 and L (E opt(P3)) = 4L (E opt(P2)) = 32.
The ratio is 112/32 = 3.5. To construct Pi we apply the same combination using Pi−1. Note that
when applying our procedure to Pi it always introduces mid-cuts, except when presented P0 in which
case it introduced a terminal end-cut. It is simple to see that our approximation algorithm introduces

(a) (b) (c) (d)

(f)(e)

FIGURE 54.3 (a) E DC (P1), (b) E OPT (P1), (c) E DC (P2), (d) E OPT (P2), (e) E DC (P3), and (f) E OPT (P3).
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cuts with length L (E DC (Pi )) = 2i+1 + 4L (E DC (Pi−1)), for i > 1 and L (E DC (P1)) = 4. An optimal
solution, in this case, is identical to the lower bound function which is L (E opt(Pi )) = 4L (E opt(Pi−1)),
for i > 1 and L (E opt(P1)) = 2.

Solving the above recurrence relations we know that

L (E DC (Pi )) =
i−2∑

j=0

22i− j−1 + 22i−2 L (E DC (P1)) = 22i+1 − 2i+1

and

L (E OPT(Pi )) = 22(i−1) L (E OPT(P1)) = 22i−1

Therefore the approximation ratio is L (E DC (Pi ))/L (E opt(P i)) = 4 − 1/2i−2.

Theorem 54.2

There are problem instances for which procedure DC generates a solution such that L (E DC (I )) tends to
4L (E opt(I )).

Proof
By the above discussion.

Procedure DC can be easily modified so that for problem instances with “many” points along the same
line it will introduce a line to cover all the points provided that the line segment has length close to Y .
For the problem instance given above the modified algorithm will generate a better solution decreasing
substantially the approximation ratio. However, as pointed out in Ref. [11], there are problem instances
for which the modified procedure will generate solutions with edge length of about 4LB(I ). The idea is to
perturb the points slightly. This way no two points will belong to the same vertical or horizontal line.

The time complexity T(n) for Procedure DC when operating on an instance with n = |P | points is
given by the recurrence relation T(n) ≤ T(n − i − 1) + T(i) + cn, for 1 ≤ i < n and some constant c .
However, it is possible to implement the procedure so that it takes O(n log n) time [5]. In what follows, we
briefly describe one of the two implementations given in Ref. [5] with the O(n log n) bound. To simplify
the presentation assume that no two points can be covered by the same vertical or horizontal line. The
idea is to change the procedure so that the time complexity term cn becomes c f (min{i, n − i − 1}), for
some function f () that we specify below. Note that this requires a preprocessing step that takes O(n log n)
time. For certain functions f () this reduces the overall time complexity bound to O(n log n).

In the preprocessing step we create a multilinked structure in which there is a record (data node) for
each point. The record contains the x- and y-coordinate values of the point. We also include the rank of
each point with respect to their x and y values. For example, if the rank of a point is (i, j ) then it is the
i th smallest point with respect to its x value, and the j th smallest point with respect to its y value. Note
that this ranking is with respect to the initial set of points. We also have all of these records in two circular
lists, one sorted with respect to the x values and the other sorted with respect to the y values. It is simple
to see that this multilinked structure can be constructed in O(n log n) time.

In each recursive invocation of procedure DC we need to construct Pl and Pr from P , and assume that
X ≥ Y . This construction can be implemented to take O(min{|Pl |, |Pr |}) by scanning the doubly linked
lists for the x values from both ends (alternating one step from each end) until all the points at one end
are Pl and the other ones are on Pr . Assume that n ≥ |P | = m > |Pl | = m − q ≥ |Pr | = q , and
1 < q ≤ m/2. Clearly, the above procedure can be used to identify the points in Pr and then remove
the points in Pr from P in O(q) time. The remaining points are Pl and are represented according to our
structure. But now the problem is that we need to construct a multilinked data structure for the points
in Pl . These points are already sorted by their x values, but not by their y values. The algorithm given in
Ref. [13] can sort any q integers in the range [1, n] in O(q log logq n) time. Once we have sorted them
we can construct the multilinked data structure for Pl . This takes O(q log logq n) time. Let Tn(m) be the
total time required by procedure DC when the initial invocation involved a problem with n points and
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we now have a problem with m points. Clearly, Tn(1) = O(1) and Tn(m) = max{O(q log logq n) +
Tn(q) + Tn(m − q)|1 ≤ q ≤ m/2} for m > 1. By the analysis of Ref. [5], Tn(n) = O(n log n). This result
is summarized in the following theorem:

Theorem 54.3

Procedure DC and its preprocessing step can be implemented to take O(n log n) time.

Proof
By the above discussion.

54.3 Dynamic Programming Approach

The divide-and-conquer algorithm DC presented in the previous section introduces guillotine cuts by
following a set of simple rules, which makes the algorithm run very efficiently. But such guillotine cuts do
not form an optimal guillotine partition. It seems natural that using an optimal guillotine partition would
generate a better solution. But how fast can one generate an optimal guillotine partition? By the recursive
nature of guillotine partitions, it is possible to construct an optimal guillotine partition in polynomial
time. In this section we analyze an approximation algorithm based on this approach. As we shall see the
algorithm has a smaller approximation ratio, but it takes longer to generate its solution.

54.3.1 Algorithm

Let I = (R = (X, Y ), P ) be any problem instance and let the x-interval and y-interval define the rectangle
Rx , y , which is part of rectangle R. We use g (Rx , y ) to represent the length of an optimal guillotine partition
for Rx , y .

First it is important to establish that there is always an optimal guillotine partition such that all its line
segments include at least one point from P inside them (excluding those at its endpoints). This is based
on the observation that given any optimal partition that does not satisfy this property it can either be
transformed to one that does satisfy the property or one can establish that it is not an optimal guillotine
partition. The idea is to move each horizontal (vertical) guillotine cut without points from P inside them
either to the left or right (up or down) without increasing the total edge length. Note that when the above
operation is perfomed some vertical (horizontal) segments need to be extended and some need to be
retracted to preserve a guillotine partition. If the total edge length decreases then we know that it is not
an optimal guillotine partition and when it remains unchanged after making all the transformations it
becomes an optimal guillotine partition in which all its guillotine cuts include at least one point from P .

By applying the above argument we know that for any rectangle Rx , y one can easily compute g (Rx , y ) re-
cursively by selecting the best solution obtained by trying all 2n guillotine cuts (that include a point from P )
and then solving recursively the two resulting problem instances. It is simple to show that there are O(n4)
different g values that need to be computed. By using dynamic programming and the above recurrence
relation the length of an optimal guillotine partition can be constructed in O(n5) time. By recording at each
step a guillotine cut forming an optimal solution and using the g values, an optimal guillotine partition
can be easily constructed within the same time complexity bound. The following theorem follows from
the above discussion:

Theorem 54.4

An optimal guillotine partition for the RG-P problem can be constructed in O(n5) time.

54.3.2 Approximation Bound

The set of line segments in a feasible rectangular partition of I is denoted by E (I ), and a set of line segments
in a minimum-length guillotine partition is denoted by E G (I )). We use L (E ) to represent the length of the
edges in a rectangular partition E . In what follows we show that L (E G (I )) ≤ 2L (E (I )) by introducing a set
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of vertical and horizontal line segments A(I ) such that E (I ) ∪ A(I ) is a guillotine partition and L (E (I )∪
A(I )) ≤ 2L (E (I )). The bound follows from the fact that L (E G (I )) ≤ L (E (I ) ∪ A(I )). Our main result
follows from the application of this result to E (I ) = E opt(I ). The set A(I ) of additional segments are
introduced by Procedure TR1. Before we present this procedure and in its analysis we define some terms.

A horizontal (vertical) line segment that partitions rectangle R into two rectangles is called a horizontal
(vertical) cut. We say that E (I ) has a horizontal guillotine cut, if there is a horizontal cut, l , such that
L (E (I ) ∩ l) = X . A rectangular partition E (I ) has a half horizontal overlapping cut if there is a horizontal
cut l such that L (E (I ) ∩ l) ≥ 0.5X . Vertical guillotine cuts are defined similarly.

Suppose R is partitioned by a vertical or horizontal cut into two rectangles, Rl and Rr . With respect to
this partition we define E (Il ) and E (Ir ) as the set of line segments of E (I ) inside Rl and Rr , respectively.
We use E h(I ) (Ev(I )) to denote all the horizontal (vertical) line segments in E (I ). With respect to A(I )
we define similarly Ah(I ) and Av(I ).

Assume that E (I ) is nonempty. The idea behind Procedure TR1 is to either introduce horizontal or
vertical line segments at each step and then apply recursively the procedure to the nonempty problem
instances. When a horizontal line segment is introduced, it is added along a half horizontal overlapping
cut. The two resulting problems will not have any of these segments inside them. So at this step the added
horizontal segments have length at most equal to the ones of the half horizontal overlapping cut.

Since there are problem instances without half horizontal overlapping cuts, Procedure TR1 checks to
see if there is a vertical guillotine cut. In this case we just partition the rectangle along this cut. Clearly,
there are no additional line segments introduced in this case.

There are rectangular partitions without a half horizontal overlapping cut or a vertical guillotine cut.
In this case, Procedure TR1 introduces a mid-cut, which is just a vertical line that partitions the rectangle
along its center. The problem now is that this mid-cut does not necessarily overlap with any of the segments
in Ev(I ). Our approach is to remember this fact and later on identify a set of line segments in Ev(I ) that
will account for the length of this mid-cut. To remember this fact we will color the right side of rectangle
Rl . As we proceed in the recursive process different parts of this colored side will be inherited by smaller
rectangles that will get their right side colored. At some point later on when we pay for the segment
represented by a colored right side of a rectangle, it will no longer appear in recursive calls resulting from
the one for this rectangle. The budget in this case is two times the total length of the vertical line segments
in Ev(I ). This budget should be enough to pay for the total length of the vertical line segments introduced
during the transformation.

To be able to show that Av(I ) ≤ Ev(I ) it must be that the rectangles in the terminal recursive calls will
not have their right side colored. Before we establish this result, we formally present Procedure TR1 that
defines the way colors are inherited in the recursive calls.

Procedure TR1(I = (R = (X, Y ), E (I )));
case

:E (I ) is empty: return;
:There is a half horizontal overlapping cut in E (I ):

Partition the rectangle R along one such cut;
If the right side of R is colored, the right sides of rectangles Rl and Rr remain colored;

:There is a vertical guillotine cut in E (I ):
Partition R along one such cut;
Remove the color, if any, of the right side of rectangle Rr ;

:else:
Partition R by a vertical cut intersecting the center of R;// introduce a mid-cut
If the right side of R is colored, the right side of Rr remains colored;
Color the right side of Rl ;

endcase
Apply TR1 recursively to (Il = (Rl , E (Il )));
Apply TR1 recursively to (Ir = (Rr , E (Ir )));

end of Procedure TR1
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It is important to remember that Procedure TR1 is only used to establish our approximation bound.
The right side of rectangle R is not colored in the initial invocation to Procedure TR1. Before establishing
the approximation ratio of 2 in Theorem 54.5, we prove the following lemmas:

Lemma 54.4

Every invocation of Procedure TR1 (I , E (I )) satisfies the following conditions:

(a) if E (I ) is empty, then the right side of R is not colored, and
(b) if the right side of R is colored, then E (I ) does not have a horizontal guillotine cut.

Proof
Initially the right side of R is not colored so the the first invocation (I , E (I )) satisfies conditions (a) and
(b). We now show that if upon entrance to the procedure the conditions (a) and (b) are satisfied, then the
invocations made directly from it will also satisfy (a) and (b). There are three cases depending on the type
of cut introduced by procedure TR1.

Case 1. Procedure TR1 partitions R along a half horizontal overlapping cut.
First consider the subcase when E (I ) has a horizontal guillotine cut. From (b) we know that the right
side of R is not colored, and the algorithm does not color the right side of Rl or Rr . Therefore the two
invocations made directly from this call satisfy properties (a) and (b). In contrast, when E (I ) does not
have a horizontal guillotine cut, then the right side of R may be colored. Since E (I ) does not have a
horizontal guillotine cut, we know that there is at least one vertical line segment on each side of the half
horizontal overlapping cut, so E (Il ) and E (Ir ) must be nonempty. Since neither of these two partitions
has a horizontal guillotine cut, each invocation made directly by our procedure satisfies properties (a) and
(b). This completes the proof for this case.

Case 2. Procedure TR1 partitions R along a vertical guillotine cut.
Since the right side of Rl and Rr end up uncolored; then the invocations made directly by the procedure
satisfy (a) and (b). This completes the proof of this case.

Case 3. Procedure TR1 introduces a mid-cut.
Since E (I ) does not have a half horizontal overlapping cut and there is no vertical guillotine cut, then each
of the resulting rectangular partitions has at least one vertical line segment and there are no horizontal
guillotine cuts in the two resulting problems. Therefore, both of the resulting problem instances are not
empty and do not have a horizontal guillotine cut. This implies that both problem instances satisfy (a)
and (b). This completes the proof for this case and the lemma.

Lemma 54.5

For any nonempty rectangular partition E (I ) of any instance I of the RG-P problem, procedure TR1 generates
a set A(I ) of line segments such that L (Ah(I )) ≤ L (E h(I )), and L (Av(I )) ≤ L (Ev(I )).

Proof
First we show that L (Ah(I )) ≤ L (E h(I )). This is simple to prove because horizontal cuts are only
introduced over half horizontal overlapping cuts. Each time a horizontal cut is introduced the segments
added to Ah(I ) have length that is at most equal to the length of the segments in the half horizontal cut
in E h(I ). Since these line segments are located on the boundary of the two resulting instances, these line
segments will not account for other segments in Ah(I ) and thus L (Ah(I )) ≤ L (E h(I )).

Let us now establish that L (Av(I )) ≤ L (Ev(I )). It is simple to verify that Procedure TR1 does not
color a side more than once, and all empty rectangular partitions do not have their sides colored (Lemma
54.4). Every invocation of Procedure TR1 with a nonempty rectangular partition R generates two problem
instances whose total length of their colored right sides is at most the length of the right side of R, if it is
colored, plus the length of the vertical line segment introduced. The only exception is when the procedure
introduces a cut along an existing vertical guillotine cut. In this case if the right side of R is colored, the right
sides of two resulting partitions will not be colored. So the length of a line segment previously introduced
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(b)(a)

FIGURE 54.4 (a) Optimal rectangular partition. (b) Optimal guillotine partition.

in A(I ), which is recorded by the fact that the right side of R is colored, is charged to the existing guillotine
cut and such cut will not be charged another segment again. Therefore, L (Av(I )) ≤ L (Ev(I )). This
concludes the proof of the lemma.

Theorem 54.5

The length of an optimal guillotine partition is at most twice the length of an optimal rectangular partition,
that is, L (E G (I )) ≤ 2L (E opt(I )).

Proof
Apply procedure TR1 to any optimal rectangular partition E (I ) = E opt . By Lemma 54.5 we know that
L (E (I ) ∪ A(I )) ≤ 2L (E h(I )) + 2L (Ev(I )) = 2L (E (I )). Since E (I ) ∪ A(I ) is a guillotine partition,
L (E G (I )) ≤ L (E (I ) ∪ A(I )). Hence, L (E G (I )) ≤ 2L (E (I )) = 2L (E opt (I )).

It is simple to find a problem instance I such that L (E G (I )) is about 1.5L (E opt(I )) [8]. One of such
problem instances has the distribution of points shown in Figure 54.4. As the number of points increases,
the ratio L (E G (I ))

L (E opt (I )) approaches 1.5.

54.3.3 Improved Approximation Bound

In this section, we describe the idea behind the complex proof given in Ref. [9] that establishes the fact
that L (E G (I )) ≤ 1.75L (E opt(I )). The proof is based on a recursive transformation procedure TR2
that, when performed on any rectangular partition E (I ), generates a set A(I ) of line segments such that
E (I ) ∪ A(I ) forms a guillotine partition (of course A(I ) ∩ E (I ) = ∅). Without loss of generality, assume
that L (Ev(I )) ≤ L (E h(I )). The transformation is performed in such a way that

L (Av(I )) ≤ L (Ev(I )) (54.6)

and

L (Ah(I )) ≤ 0.5L (E h(I )) (54.7)

Then, we have

L (E G (I )) ≤ L (A(I ) ∪ E (I ))

= L (Ah(I )) + L (Av(I )) + L (E (I ))

≤ 0.5L (E h(I )) + L (Ev(I )) + L (E (I ))

= 0.5L (Ev(I )) + 1.5L (E (I ))

≤ 1.75L (E (I ))
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FIGURE 54.5 A vertically separable E (I ). E (I ) has no guillotine cut. The broken line segment is a vertical through
cut of E (I ). In fact, any vertical cut in the region marked by the vertical segments outside of rectangular boundary is
a vertical through cut for E (I ).

To satisfy Eq. (54.6), the notion of vertical separability is introduced. Denote the x-coordinate of a
vertical segment l by x(l). A vertical cut l is left (right) covered by Ev(I ) if for every point p on l there
exists a line segment l ′ in Ev(I ) such that x(l ′) ≤ x(l) (x(l ′) ≥ x(l)), and there is a point p′ on l ′ with
x( p′) = x( p). A vertical cut is called a vertical through cut if it is both left and right covered by Ev(I ). The
set of segments E (I ) is said vertically separable if there exists at least one vertical through cut. Note that
a vertical guillotine cut is also a vertical through cut, but the converse is not necessarily true. Figure 54.5
shows a vertically separable E (I ) and a vertical through cut. When a new vertical line segment is introduced
by TR2, it is ensured to be a portion of a vertical through cut.

To satisfy Eq. (54.7), horizontal segments are carefully introduced by TR2 according to the structure of
E (I ). When there is neither guillotine cut and nor vertical through cut in E (I ), a three-step subprocedure
HVH-CUT is invoked to introduce new segments. Procedure TR2 is given below

Procedure TR2(E (I ));
case

:E (I ) is empty:
return;

:E (I ) has a guillotine cut l :
Partition E (I ) along l into E (I1) and E (I2);
Recursively apply TR2 to E (I1) and E (I2);

:E (I ) is vertically separable:
Let l be any vertical through cut;
Partition E (I ) along l into E (I1) and E (I2);
Recursively apply TR2 to E (I1) and E (I2);

:else:
Use Procedure HVH-CUT to partition E (I ) into E (I1), E (I2), · · · , E (Iq+1);
Recursively apply TR2 to each E (Ii );
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endcase
end of Procedure TR2

Procedure HVH-CUT is outlined below:

Procedure HVH-CUT(E (I ));

1. Introduce a carefully selected set of q horizontal cuts that partition E (I ) into q + 1 vertically
separable rectangular subpartitions;

2. In each resulting partition of Step 1, introduce either the leftmost or the rightmost vertical through
cut;

3. Divide each resulting partition of Step 2 into two rectangular subpartitions by a horizontal guillotine
cut if such a cut exists;

end of Procedure HVH-CUT

Let H(I ) be the set of horizontal cuts introduced in Step 1, V(I ) the set of vertical through cuts chosen
in Step 2, and H3(I ) the horizontal guillotine cuts found in Step 3. Define H1(I ) = H(I ) ∩ E h(I ) and
H ′

1(I ) = H(I ) − E h(I ). Note that H3(I ) ⊂ E h(I ). The sets H(I ) and V(I ) are selected in such a way
that

L (H ′
1(I )) ≤ 0.5q X (54.8)

and

L (H1(I ) ∪ H3(I )) ≥ q X (54.9)

It is quite complex to establish that such H(I ) and V(I ) always exist [9]. We omit additional de-
tails of the procedure HVH-CUT and the related proofs. Vertical though cuts introduced by TR2 are
carefully selected to satisfy Eq. (54.6) and ensure Eq. (54.9). Since all horizontal cuts introduced by
HVH-CUT satisfy Eq. (54.8) and Eq. (54.9), and all horizontal cuts that are not introduced by invocations
to HVH-CUT are horizontal guillotine cuts in their respective subrectangular boundaries, Eq. (54.7) is
satisfied. Consequently, L (E G (I )) ≤ 1.75L (E (I )). Since E (I ) is any arbitrary rectangular partition, we
have L (E G (I )) ≤ 1.75L (E opt(I )). The next theorem sums up the discussion.

Theorem 54.6

The length of an optimal guillotine partition is at most 1.75 times the length of an optimal rectangular partition,
that is, L (E G (I )) ≤ 1.75L (E opt(I )).

Proof
The full details of the proof, whose outline is given above, appears in Ref. [9].

54.4 Concluding Remarks

In this chapter, we considered the RG-P problem. We presented a fast divide-and-conquer approximation
algorithm with approximation ratio 4. This ratio is smaller than the 3 + √

3 ratio of a similar divide-and-
conquer approximation algorithm given [7]. We also examined in detail the approach of approximating
optimal rectangular partitions via optimal guillotine partitions. Optimal guillotine partitions can be
constructed in polynomial time using dynamic programming [3]. For this approach we presented a proof
that the approximation ratio is at most 2. Our proof is simpler than the proof for the same bound
given in Ref. [3]. We presented the idea behind a complex proof given in Ref. [9], which establishes that
the approximation ratio is at most 1.75 when approximating optimal rectangular partitions via optimal
guillotine partitions. Both proofs are based on the technique of recursively transforming a rectangular
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partition into a guillotine partition by introducing additional line segments. The difference is that the
additional segments in the transformation for the approximation ratio of 1.75 are selected more carefully
than those introduced by the transformation for the bound of 2. Whether or not one can further reduce
this bound remains a challenging open problem.

For the RG-P problem, the partitions obtained by the divide-and-conquer algorithms (the one of
Ref. [7] and the one presented in this chapter) and the dynamic programming algorithm are guillotine
partitions formed by recursive guillotine cuts. The approach examined in this chapter can be referred to
as approximating optimal rectangular partitions via optimal and suboptimal guillotine partitions. The
first approximation algorithm for this problem based on suboptimal guillotine partitions appeared in
Ref. [7]. Subsequently, optimal guillotine partitions were used in Ref. [8]. Both of these approaches were
generalized to multidimensional space in Refs. [11,12].

The term “guillotine cut” was introduced in the 1960s in the context of cutting stock problems. In the
context of rectangular partitions it was first used in Ref. [8]. As pointed out in Ref. [14], the concept
of guillotine partition has been generalized into a powerful general approximation paradigm for solving
optimization problems in different settings. The guillotine partition algorithms for the RG-P problem
were among the first that manifested the power of this paradigm.
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55.1 Introduction

In this chapter we will consider partitions of finite d-dimensional integer grids, that is, sets of the form
{0, 1, . . . , m − 1}d , by lines in two-dimensional space or by hyperplanes and hypersurfaces in an arbitrary
dimension. Different aspects of the problem depending on m, d , and the type of hypersurfaces used have
been widely studied in different areas of computer science and mathematics. In this chapter we will focus
on problems arising in the areas of digital image processing (analysis) and neural networks. For brevity,
related problems arising in other areas of computing (e.g., multivalued logic) and in pure mathematics
areas (e.g., group theory) will not be analyzed.

Our work may be viewed as a technique for representing planar digital objects and threshold functions
in near-optimal space. In this sense it is a heuristic for minimizing the space required to represent these
objects.

The chapter is organized as follows. Section 55.2 begins with basic definitions and notations and ends
with the basic mathematical result that will be used in the chapter. This result determines which discrete
moments are enough for a unique characterization of discrete point sets from a certain family. The result
is very useful because discrete moments are easy and fast to compute (summations and multiplications
are needed only) and because the number of moments needed is relatively small. In Section 55.3 we
discuss planar digital objects that arise in the area of digital image analysis. These objects are charac-
terized by variables m (image size), and d = 2 (corresponds to a 2D image) or d = 3 (corresponds
to a 3D image). When m → ∞ the image has a very high resolution. Due to the recent technology
development one is able to collect a huge number of images, and consequently, new applications are
creating new problems related to our problems. One of the actual problems is to determine whether
or not an object (or a kind of objects) appears on some images from a given database. Straightforward
methods to solve this problem do not work satisfactorily for several reasons: The image collection and
the object size (in terms of the number of pixels) slows down the methods considerably, the photos are
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taken from different view points, etc. Section 55.3 gives an encoding scheme for digital objects (digi-
tal images of real objects) that essentially reduces the time necessary to solve related object matching
problems. We show that O

(
h2 log(m + n)

)
bits are enough for a unique matching of curves from an

m × n binary image if the number of mutual intersection between them is at most h. The parame-
ter h is usually application dependent and it is known beforehand—for example: Since boundaries of
machine-made products consist of second degree curve arcs, then h = 4 is a natural presumption for these
objects.

Particular attention is given to the encoding by least squares fit lines (surfaces). The least square fit
method is used to represent scattered data by lines (or curves) to reduce storage requirements or to
enable a proper visualization. We establish that under certain conditions the representation of discrete
data by least squares is information lossless. The results presented in Section 55.4 are of interest in the
area of neural networks. While the performance of conventional algorithms is measured by the space
and time complexity, in the area of neural networks performance is based on information theory and
computational complexity. The performance of a neural network consisting of a given number of pair-
wise connected (connections are weighted) neurons with “off” and “on” states is strongly related to
partitions of d-dimensional hypercube by a single hyperplane. In our terminology this corresponds to
the situation where m = 2 while d varies (increases) to reach the required neural network capacity,
that is, the ability to achieve the required number of stable states that, for example, correspond to data
from the training set. The encoding of such a linear partition (states) by our encoding scheme requires
O

(
d2

)
bits that is an asymptotic minimum. Thus, it enables a fastest possible comparison between those

partitions.
Our concluding remarks are given in Section 55.5.

55.2 Preliminaries

55.2.1 Definitions and Notation

The following definitions and notation will be used throughout this chapter.
If a set X consists of a finite number of points (elements), this number will be denoted by #X , that is,

#X is the cardinality of X .
R denotes the set of real numbers. Z is the set of integers. N0 is the set of nonnegative integers.

If X ⊆ R
d is a finite number point set and ( p1, p2, . . . , pd ) ∈ N

d
0 , then ( p1, p2, . . . , pd )-discrete moment

µp1, p2, ..., pd (X) is defined as

µp1, p2, ..., pd (X) =
∑

(x1, x2, ..., xd )∈X

x p1
1 · x p2

2 · . . . · x pd
d

The order of the moment µp1, p2, ..., pd is said to be p1 + p2 + · · · + pd . The formal equality 00 = 1
is applied. A continuous function f (x1, x2, . . . , xd ) is said to separate the sets A and B if the sign
of f (x1, x2, . . . , xd ) in the points of A differs from the sign of f (x1, x2, . . . , xd ) in the points of B .

Definition 55.1

A function f (x1, x2, . . . , xd ) separates the sets A and B if and only if either (i) or (ii) holds

(i) A ⊂ {(x1, x2, . . . , xd ) | f (x1, x2, . . . , xd ) > 0} and B ⊂ {(x1, x2, . . . , xd ) | f (x1, x2, . . . , xd ) < 0},
(ii) A ⊂ {(x1, x2, . . . , xd ) | f (x1, x2, . . . , xd ) < 0} and B ⊂ {(x1, x2, . . . , xd ) | f (x1, x2, . . . , xd ) > 0}.

For a function f (x1, x2, . . . , xd ) with the domain A, f −1(c) will denote the set of points for which
f (x1, x2, . . . , xd ) = c , that is, f −1(c) = {(x1, x2, . . . , xd ) ∈ A | f (x1, x2, . . . , xd ) = c}.
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55.2.2 Necessary Mathematics

The following theorem is the basic mathematical tool used in this chapter. It yields information about the
set of discrete moments that is sufficient for the unique characterization of discrete point sets from a given
class.

Theorem 55.1

Let A and B be two finite subsets of R
d and let a finite set P ⊂ N

d
0 be fixed. Suppose that the set differences

A \ B and B \ A can be separated by a function f (x1, x2, . . . , xd ) of the form

f (x1, x2, . . . , xd ) =
∑

( p1, p2, ..., pd )∈P
a p1, p2, ..., pd · x p1

1 · x p2
2 · . . . · x pd

d (55.1)

for some real numbers a p1, p2, ..., pd . Then,

A = B ⇔ µp1, p2, ..., pd (A) = µp1, p2, ..., pd (B) for all ( p1, p2, . . . , pd ) ∈ P

Proof
A = B implies that all the corresponding moments must be equal. To prove that the assumed moment
equalities preserve A = B , we will show that the assumptions µp1, p2, ..., pd (A) = µp1, p2, ..., pd (B) (for all
( p1, p2, . . . , pd ) ∈ P) and A �= B lead to a contradiction.

Since A �= B we can assume that A \ B is nonempty, otherwise we can start with the nonempty B \ A.
To simplify the notation, we write x instead of (x1, x2, . . . , xd ), and p instead of ( p1, p2, . . . , pd ). Also,

αp1, p2, ..., pd = αp, while xp = x p1
1 · x p2

2 · · · · · x pd
d .

From our assumption there is a function

f (x) = f (x1, x2, . . . , xd ) =
∑

( p1, p2, ..., pd )∈P
a p1, p2, ..., pd · x p1

1 · x p2
2 · . . . · x pd

d =
∑

p∈P
αp · xp

that separates A\ B and B \ A and, let us assume, satisfies the condition (i). Therefore we have the following
derivation:

0 <
∑

x∈A\B

f (x) −
∑

x∈B\A

f (x) =
∑

x∈A\B




∑

p∈P
αp · xp



 −
∑

x∈B\A




∑

p∈P
αp · xp





=
∑

p∈P



αp ·
∑

x∈A\B

xp



 −
∑

p∈P



αp ·
∑

x∈B\A

xp



 =
∑

p∈P
αp · µp(A \ B) −

∑

p∈P
αp · µp(B \ A)

=
∑

p∈P
αp · (µp(A) − µp(A ∩ B)

) −



∑

p∈P
αp · (µp(B) − µp(B ∩ A))



 = 0

The derived contradiction 0 <
∑

x∈A\B f (x) − ∑
x∈B\A f (x) ≤ 0 completes our proof.

55.3 Planar Digital Objects

Digital objects are defined to be the result of subjecting real objects to a certain digitization process. A planar
continuous curve γ with the equation y = f (x) is usually digitized so that the closest digital points (points
with integer coordinates, often referred to as pixels) below a given curve are taken (see Figure 55.1[a]).
The set of digital points associated to the digitized curve γ is called a digital curve and it is defined by

C (γ ) = {(i, � f (i)�), i is an integer }
(�k� denotes the greatest integer not larger than k).
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FIGURE 55.1 (a) Digitization of the given real curve on the 11 × 10 integer grid, consists of 11 enlarged points.
(b) The digitization of the planar region (bounded by the presented curve) consists of 12 points inside it.

In practical applications, we deal with finite subsets of C (γ ) or, more precisely, with digital curve segments
that are obtained by digitizing parts of curves lying between a pair of vertical lines x = x1 and x = x2.
Without loss of generality, we can assume x1 = 0 and x2 = m − 1, where m is an integer.

We will be dealing with the digital curve segments Cm(γ ) having the form

Cm(γ ) = {(i, � f (i)�), i = 0, 1, 2, . . . , m − 1} (55.2)

Obviously, m is the number of digital points in the digital curve segment Cm(γ ). Naturally, if γ is a straight
line then Cm(γ ) is called a digital straight line segment, if γ is part of a hyperbola, then Cm(γ ) is called a
digital hyperbola segment, and so on.

Among the most important problems considered in digital image analysis are the recognition of original
objects and the estimation of their relevant parameters (based on the data resulting from the digitization)
as well as the creation of efficient coding schemes for digital objects. Such an efficient encoding scheme
for digital objects should preserve low storage complexity, fast transmission, mutual comparison of digital
objects, etc.

It is worth mentioning that if a planar curve is digitized, then the curve equation y = f (x) and x-
coordinates of the endpoints can be used for a trivial representation of its digitization. However, this trivial
method has several deficiencies. As an illustration, we give two of them:

• In real applications, the equations of digitized curves are usually unknown. In dealing with satellite
images, or images taken by a digital camera, for example, such equations are not provided. Moreover,
even if we know that a binary image represents a real pyramid, whose edges are most likely straight
line segments, we do not know the equations of such lines.

• There are infinitely many real curve segments (even of different kinds) whose digitizations coincide
(as an example, it could happen that a hyperbola segment and a straight line segment have the same
digitizations).

Therefore, it would be useful to have a one-to-one mapping between digital curve segments from a
given domain and their representations. Note that the trivial method mentioned above does not satisfy
this requirement.

55.3.1 A General Coding Scheme

In this subsection we show that a suitably chosen set of discrete moments can provide an efficient encoding
of digital curve segments belonging to a given set. The number of required moments depends on the
maximum number of intersection points between any two original curves whose digitization belongs to
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the set considered. We will show that digital curve segments (from a fixed set) can be coded by h + 1
discrete moments if there are no more than h intersection points between any pair of real curves whose
digitizations are considered.

We start with a precise definition of a family �h (h is an arbitrary integer) of sets of digital curve segments
to which the coding scheme can be applied.

Definition 55.2

A set G of digital curve segments belongs to a family �h if the following conditions hold:

(C1) G consists of digital curve segments which are digitizations of graphs of continuous, explicitly given
functions y = f (x) > 0, where x ∈ [0, m − 1].

(C2) Let G1, G2 ∈ G. Then there are two continuous curves γ1 and γ2 such that G1 = Cm(γ1) and
G2 = Cm(γ2) and γ1 and γ2 have no more than h intersection points on the interval [0, m − 1].

The sets which are the most interesting for practical reasons are the set of digital straight line segments
(from the family �1), the set of subarcs of digital half-circle segments (from the family �2), the set of
subarcs of digital half-ellipse segments (from the family �4), the set of digital cubic parabola segments (the
family �3), as well as unions of these sets. Particular attention will be given to the sets of digital polynomial
segments having a degree not exceeding a given number r (from the family �r ).

The following theorem shows that all digital curve segments belonging to a fixedG ∈ �h can be matched
uniquely by h + 1 discrete moments.

Theorem 55.2

Let a set G from the family �h be given and let two digital curve segments G1 ∈ G and G2 ∈ G. Then

G1 = G2 ⇔ µ0,1(G1) = µ0,1(G2), µ1,1(G1) = µ1,1(G2), . . . , µh,1(G1) = µh,1(G2)

Proof
We will show that the statement is a consequence of Theorem 55.1. For a given curve γ (where γ is the
graph of a function y = f (x) > 0 on [0, m − 1]) let R(γ ) be the set of all integer points from the closed
area bounded by γ and by the lines: x = 0, y = 0, and x = m − 1 (see Figure 55.2 [a]).

It is obvious that

Cm(γ1) = Cm(γ2) ⇔ R(γ1) = R(γ2) (55.3)

since by Definition 55.2 there are two continuous curves γ1 and γ2 such that G1 = Cm(γ1) and G2 =
Cm(γ2) and γ1 and γ2 have no more than h intersection points on the interval [0, m − 1].

Since µk,1(Cm(γ )) = ∑

(i, j )∈Cm(γ )
i k · � f (i)� equals the sum of kth powers of the abscissa values of

all digital points belonging to R(γ ) except those belonging to the x-axis, we have the following equalities.

µ0,1(Cm(γ )) = ∑

(i, j )∈Cm(γ )
� f (i)� = ∑

(i, j )∈R(γ )
1 − ∑

(i,0)∈R(γ )
1 = µ0,0(R(γ )) − s0

µ1,1(Cm(γ )) = ∑

(i, j )∈Cm(γ )
i · � f (i)� = ∑

(i, j )∈R(γ )
i − ∑

(i,0)∈R(γ )
i = µ1,0(R(γ )) − s1

. . . . . . . . .

µh,1(Cm(γ )) = ∑

(i, j )∈Cm(γ )
i h · � f (i)� = ∑

(i, j )∈R(γ )
i h − ∑

(i,0)∈R(γ )
i h = µh,0(R(γ )) − sh ,

(55.4)

where s0 = ∑

(i,0)∈R(γ )
1 = m, s1 = ∑

(i,0)∈R(γ )
i = m·(m−1)

2 , . . . , sh = ∑

(i,0)∈R(γ )
i h are the constants which

depend on m but not on γ . Let us consider the set differences R(γ1)\R(γ2) and R(γ2)\R(γ1). By definition:

• R(γ1) \ R(γ2) consists of integer points lying below the curve γ1 and above the curve γ2, while
R(γ2) \ R(γ1) consists of integer points lying below the curve γ2 and above the curve γ1 (see
Figure 55.2[b]).

• γ1 and γ2 have no more than h intersection points on the interval [0, m − 1].
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FIGURE 55.2 (a) The set of integer points R(γ ) corresponding to the displayed curve γ consists of all the enlarged
points. (b) The integer points belonging to R(γ1) \ R(γ2) and to R(γ2) \ R(γ1) are labeled by a and b, respectively.

Let γ1 and γ2 be the graphs of continuous functions y = f1(x) and y = f2(x), respectively, and let
c1, c2, . . . , cl (with l ≤ h) be all the intersection points between γ1 and γ2 on [0, m − 1].

It is easy to see that there are parallel strips

−∞ < x < ci1 , ci1 < x < ci2 , . . . , c1s−1 < x < cis , cis < x < ∞
such that

• {ci1 , ci2 , . . . , cis } ⊂ {c1, c2, . . . , cl }.
• any strip contains at least one integer point either from R(γ1) \ R(γ2) or from R(γ2) \ R(γ1).
• there is no strip containing points from both R(γ1) \ R(γ2) and R(γ2) \ R(γ1).
• if a strip contains points from R(γ1) \ R(γ2) then its neighbouring strip contains integer points

from R(γ2) \ R(γ1) (not any point from R(γ1) \ R(γ2)).

Under these assumptions, the function

f (x) = (x − ci1 ) · (x − ci2 ) · · · · · (x − cis )

divides the plane in two parts: f (x) > 0 and f (x) < 0 (either part consists of alternately taken parallel
strips defined above) in such a way that R(γ1) \ R(γ2) belongs to one part (let us say to the part where
f (x) > 0) while R(γ2) \ R(γ1) belongs to the other part (i.e., to the part with f (x) < 0). In other words,
the function f (x) = (x − ci1 ) · (x − ci2 ) · · · · · (x − cis ) separates the set differences R(γ1) \ R(γ2) and
R(γ2) \ R(γ1). Consequently, in accordance with Theorem 55.1,

R(γ1) = R(γ2) ⇔ µi,0(R(γ1)) = µi,0(R(γ2)) for i = 0, 1, . . . , l (55.5)

Since s < h and because of Eq. (55.4) and Eq. (55.5), the statement is proven.

The next corollary is a straightforward consequence of the previous theorem.

Corollary 55.1

The set Pr of digital polynomial segments with a degree less or equal to r can be coded uniquely by r + 1
discrete moments.

The proposed coding scheme can be understood as very efficient with respect to its memory space
requirements. To be more precise, if a set G ∈ �h is fixed, and if all digital curve segments from G could
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be presented on an m × n integer grid, then

µk,1(Cm(γ )) =
∑

(i, j )∈Cm(γ )

j · i k = O
(

n · mk+1
)

follows easily for any k. The last asymptotic estimate applied to the moments µ0,1(Cm(γ )), µ1,1(Cm(γ )),
. . . , µh,1(Cm(γ )) leads to the following theorem that describes the storage complexity of the proposed
encoding scheme.

Theorem 55.3

Fix G ∈ �h. If all digital curve segments from G are presented on {0, 1, . . . , m − 1} × {0, 1, . . . n − 1}, then
the encoding suggested by Theorem 55.2 requires

O
(

h2 · log(n + m)
)

bits per coded digital curve segment from G.

Observation 55.1

In the case when h is assumed to be a constant, O(log(m + n)) bits are sufficient, which is obviously the
theoretical minimum. For example, if G consists of digital straight line segments (consisting of m points)

inscribed into an n × n integer grid, then #G = 3·n4

π2 +O
(

n3 · log n
)

(see Refs. [1,2]) showing that the
previous bit rate is the theoretical minimum (taken in an asymptotic sense).

To illustrate the efficiency of the above coding scheme we cite an example from Ref. [3]. The comparison
of the code proposed here and the well-known Freeman code [4] (also called the 8-chain code—see
Figure 55.3) for the digitization of the curve γ is made under the assumption that γ belongs to a set from
�3. Under such an assumption, the moment based code of C82(γ ) is

(µ0,1(C82(γ )), µ1,1(C82(γ )), µ2,1(C82(γ )), µ3,1(C82(γ ))) = (5030, 215522, 12020658, 736586012)

while the 8-chain code (represented by a sequence of digits (0–7) indicating the direction of the next point
[as given in Figure 55.3]) is 7 6 7 7 6 7 6 7 6 7 7 6 7 6 7 6 7 7 6 6 6 6 6 6 7 6 6 6 6 6 6 6 6 6 7 6 6 6 6 6 6 6 6 6
6 7 6 6 6 6 6 6 6 6 6 7 6 6 6 6 6 6 6 6 6 6 7 6 6 6 6 6 6 6 6 6 1 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 1 2 2 2 2 2 1
2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 1 2 2 2 2 2 0 0 0 7 0 0 0 0 0 7 0 0 0 0 1 2 2 2 2 1 2 2 2 2 1 2 2 2 1 2 7 7 6 7 7 6
7 7 7 6 7 7 6 1 1 2 2 1 2 2 2 1 2 2 1 2 2 2 1 2 2 1 2 2 2 1 2 7 6 6 7 6 6 6 7 6 6 1 2 1 2 2 2 1 2 2 1 2 2 2 7 6 6 6 6 6
6 7 6 6 6 6 6 6 6 7 6 6 1 2 2 1 2 1 2 2 1 2 2 7 7 6 6 6 6 6 6 6 6 6 6 6 6 6 7 6 6 6 6 6 6 6 6 6 6 6 6 6 7 6 6 6 6 6 6 6
6 6 6 6 7 6 6 6 6 6 6 6 6 6 6 7 6 6 6 6 6 6 6 6 6 6 7 6 6 6 6 6 6 6 6 6 6.
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FIGURE 55.3 The boundary of the presented digital disc (enlarged points) is coded by the well-known Freeman
code.
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The previous example is just one illustration that coincides with theoretical observations. Precisely, if a
curve having the length l is presented on binary image then the storage of all digital points belonging to
such a binary image requires O(l log l) bits and this bound, in general, cannot be improved. The encoding
by the 8-chain code requires O(l) bits, while the complexity of our encoding scheme depends on the

parameter h and for h = O(l
1
2 −ε) (where ε > 0) it is dominant. The last condition is not a strong

limitation for real applications.

55.3.2 Encoding by Least Squares Fit Polynomials

Least squares fit lines (or more generally fit polynomials) are commonly used in data visualization and
data representation. They are easy to compute and it is also expected that they look like the presented set
of points.

It is clear that least squares fit lines (polynomials) corresponding to different discrete point sets could
coincide if there are no restrictions to the discrete point sets fitted. But it could be of interest to characterize
the situations when they are necessarily different, that is, when the mapping

discrete point set −→ corresponding least squares fit polynomial

is one to one. If a set D of digital objects has such a nice property then any digital object from D can be
represented uniquely by the corresponding least squares fit polynomial, that is, by its coefficients. In this
case a comparison between elements of D could be made by comparing the corresponding least squares
fit polynomials.

The following question was proposed in Ref. [5]: Does a least squares fit line uniquely match a digital
straight line segment on a given interval? A positive answer is given in Ref. [6]. Later on, the result is
generalized [3] to least squares fit polynomials. Moreover, it turns out that the encoding by least squares
fit polynomial is a subcase of the proposed general coding scheme.

Let S be a finite discrete point set. The polynomial of a given degree that minimizes the total sum of the
squares of vertical distances from the polynomial to the points from S can be determined easily. Indeed,
if the equation of the required polynomial is p(x) = ar xr + ar−1xr−1 + · · · + a0, then the function

F (ar , ar−1, . . . , a0) =
∑

(x , y)∈S

( p(x) − y)2 =
∑

(x , y)∈S

(ar xr + ar−1xr−1 + · · · + a0 − y)2

should be minimized. Thus the following system of r + 1 equations has to be satisfied:

∂ F

∂ar
= 0,

∂ F

∂ar−1
= 0, . . . ,

∂ F

∂a0
= 0

If S is a digital curve segment S = {(0, y0), (1, y1), . . . , (m − 1, ym−1)} then the above system becomes

S2r · ar + S2r−1 · ar−1 + · · · + Sr · a0 =
m−1∑

i=0

yi i r (= µr,1(S))

S2r−1 · ar + S2r−2 · ar−1 + · · · + Sr−1 · a0 =
m−1∑

i=0

yi i r−1(= µr−1,1(S)) (55.6)

. . .

Sr · ar + Sr−1 · ar−1 + · · · + S0 · a0 =
m−1∑

i=0

yi (= µ0,1(S))

where the coefficients S0, S1, . . . , S2r are given by

S j =
m−1∑

i=0

i j , 0 ≤ j ≤ 2r

The unknown ar , ar−1, . . . , a0 are the coefficients of the least squares fit polynomial. If m ≥ r , the
determinant of the system (55.6) is different from zero (see Ref. [3]) and the system has a unique solution.
Trivially, for m < r there are infinitely many solutions.
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Let S = Cm(γ ) ∈ G ∈ �r and let ar (γ ), ar−1(γ ), . . . , a0(γ ) be the solution of (55.6). A very practical
question is:

Are there two different digital curve segments, Cm(γ1) and Cm(γ2), both from a given set G ∈ �r ,
such that ar (γ1) = ar (γ2), ar−1(γ1) = ar−1(γ2), . . . , a0(γ1) = a0(γ2)?

The answer is negative. This means that digital curve segments from a fixed set belonging to �r and their
least squares fit polynomials having the degree r are in a one-to-one correspondence. This enables the
encoding of the digital curve segments by their associated least squares polynomials. This is stated by the
following theorem.

Theorem 55.4

Let Cm(γ1) and Cm(γ2) be two digital curve segments from a set belonging to the family �r . If ar (γ1),
ar−1(γ1), . . . , a0(γ1) and ar (γ2), ar−1(γ2), . . . , a0(γ2) are the coefficients of the least squares fit polynomials
associated to Cm(γ1) and Cm(γ2), respectively, then

ar (γ1) = ar (γ2) and ar−1(γ1) = ar−1(γ2) and . . . and a0(γ1) = a0(γ2) ⇔ Cm(γ1) = Cm(γ2)

Proof
Trivially, Cm(γ1) = Cm(γ2) �⇒ ai (γ1) = ai (γ2) for all 0 ≤ i ≤ r.

We prove that the opposite direction is a consequence of Theorem 55.1.

Let M denote the matrix of the system (55.6), that is, M =







S2r S2r−1 . . . Sr

S2r−1 S2r−2 . . . Sr−1

. . . . . . . . .

Sr Sr−1 . . . S0







Then Eq. (55.6) gives

M · [ar (γ1), ar−1(γ1), . . . , a0(γ1)]T = [µr,1(Cm(γ1)), µr−1,1(Cm(γ1)), . . . , µ0,1(Cm(γ1))]T

and

M · [ar (γ2), ar−1(γ2), . . . , a0(γ2)]T = [µr,1(Cm(γ2)), µr−1,1(Cm(γ2)), . . . , µ0,1(Cm(γ2))]T

Since the corresponding least squares fit polynomials are equal, that is,

[ar (γ1), ar−1(γ1), . . . , a0(γ1)] = [ar (γ2), ar−1(γ2), . . . , a0(γ2)]

we obtain

[µr,1(Cm(γ1)), µr−1,1(Cm(γ1)), . . . , µ0,1(Cm(γ1))]

= [µr,1(Cm(γ2)), µr−1,1(Cm(γ2)), . . . , µ0,1(Cm(γ2))]

The last equality together with Theorem 55.1 completes the proof.

A direct consequence of the previous theorem is the following corollary.

Corollary 55.2

Let Pm(γ ) and Pm(β) be two digital polynomial segments, where γ and β are polynomials with a degree less
or equal to r . If ar (γ ), ar−1(γ ), . . . , a0(γ ) and ar (β), ar−1(β), . . . , a0(β) are the coefficients of the least
squares fit polynomials associated to Pm(γ ) and Pm(β), respectively then:

ar (γ ) = ar (β) and ar−1(γ ) = ar−1(β) and . . . and a0(γ ) = a0(β) ⇐⇒ Pm(γ ) = Pm(β)

To close this subsection, let us mention that the encoding by the least squares fit objects (in general)
does not preserve an optimal encoding. The coefficients are not necessarily integers. If they are stored as
fractions, they could be extremely big since denominators and nominators are computed by using the
system (55.6).
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55.3.3 Encoding Planar Regions

Digital (binary) images of planar regions consist of pixels whose centers belong to the digitized region (see
Figure 55.1[b]). Let a planar region R be bounded by a simple closed curve f (x , y) = ∑

( p1, p2)∈P a p1, p2 ·
x p1 ·x p2 for some chosen setP and some chosen real number a p1, p2 , where ( p1, p2) ∈ P . A straightforward
consequence of Theorem 55.1 is that the digitization of R, that is, R = R ∩ Z

2 is uniquely represented
by the moments µp1, p2 (R), where ( p1, p2) takes all the values from P . Namely, the function f (x , y) =∑

( p1, p2)∈P a p1, p2 · x p1 · x p2 separates the set differences R \ A and A \ R for any chosen discrete point
set A.

The next theorem illustrates that the set of necessary moments sometimes can be reduced. It will be
shown that any digital disc D = D ∩ Z

2, defined as the intersection of a real disc D and squared integer
grid Z

2 could be matched uniquely by µ0,0(D), µ1,0(D), and µ0,1(D). In other words, even if the disc
boundary is a second degree polynomial, the first order moments are sufficient for the encoding.

Theorem 55.5

Let D1 and D2 be two digital discs. Then

D1 = D2 ⇔ µ0,0(D1) = µ0,0(D1) and µ1,0(D1) = µ1,0(D2) and µ0,1(D1) = µ0,1(D2).

Proof
Let D1 = D1 ∩Z

2 and D2 = D2 ∩Z
2, where D1 and D2 are real discs. To prove the statement, it is enough

to see that D1 \ D2 and D2 \ D1 could be separated by a line of the form: a · x + b · y + c = 0. Precisely,
if D1 and D2 intersect then the line determined by their intersection points can be used, else, a common
tangent to D1 and D2 separates D1 and D2. The statement follows from Theorem 55.1.

As mentioned before, in real applications, the original objects remain unknown during the digitization
process. Thus, if we have a digital image of a real disc, we do not know the equation of the original circle
that bounds the disc considered. In any case, even if we do not have the equation of the original circle (disc)
it could be useful to have a circle (disc) that fits well with the resulting digital data. It is worth mentioning
that the least squares fitting circle cannot be computed—only a numerical (approximative) solution is
possible. The most common approach to computing a real circle (disc) that fits well with the considered
digital disc D is to take the disc {(x , y) | (x − a)2 + (x − b)2 ≤ r 2}, where the parameters a , b, and r are
computed as follows:

a = µ1,0(D)

µ0,0(D)
, b = µ0,1(D)

µ0,0(D)
, r =

√
1

π
· µ0,0(D)

It can be shown that the disc constructed as described above is a very good approximation of the real circle,
particularly if the reconstruction is based on a digital image with a very high resolution. For the limitation
in estimating the real moments from the corresponding binary images we refer to Ref. [7].

To close this section, let us compare encoding by the Freeman code and encoding by moments µ0,0, µ1,0,
and µ0,1 if both are applied to digital discs. The situation when the unit disc U = (x − a)2 + (x − b)2 ≤ 1
(in an arbitrary position with respect to digitization grid) is presented on a digital image having the
resolution ρ (i.e., there are ρ pixels per measure unit) corresponds to the situation when the disc ρ · U =
(x − ρ · a)2 + (x − ρ · b)2 ≤ ρ2 (i.e., the disc U dilated by the factor ρ) is digitized on the integer grid.
Hence, if we consider the digitization of ρ ·U on the integer grid, it is clear that the Freeman code requires
O(ρ) bits (see Figure 55.3)—more precisely, the number of bits required has the same order as the
perimeter of the disc. However, O(log ρ) bits are sufficient if ρ ·U is digitized on {0, 1, 2, . . . , ρ , ρ + 1}×
{0, 1, 2, . . . , ρ , ρ + 1}. Indeed, since µ0,0(ρ · U ∩ Z

2) = O(ρ2), µ1,0(ρ · U ∩ Z
2) = O(ρ3), and

µ0,1(ρ ·U ∩Z
2) = O(ρ3) a number ofO(log ρ) bits is sufficient for the storage of µ0,0(ρ ·U ), µ1,0(ρ ·U ),

and µ0,1(ρ · U ).
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55.3.4 On 3D Digital Objects

The digitization of a 3D curve is not well defined, for example, it is difficult to say what the most natural
definition of a 3D digital line segment or 3D digital circle is. The situation is much more clear when we
work with surfaces and bodies. Analogous to 2D, we can say that a surface is digitized when the closest
points below the surface are taken. If we consider the digitization of a surface segment α on an rectangular
domain, say [0, m − 1] × [0, n − 1] in the xy-plane, then the digital surface segment obtained can be
represented as

Sm,n(α) = { (i, j, � f (i, j )�) | (i, j ) ∈ {0, 1, . . . , m − 1} × {0, 1, . . . , n − 1} }

where α is the graph of the function z = f (x , y). If f (x , y) = a · x + b · y + c · z + d , then we have a
digital plane segment. By using the same technique as in the 2D case, it can be shown that the set of digital
plane segments defined on the same domain could be coded uniquely by the following moments: µ0,0,1,
µ1,0,1, and µ0,1,1. What is more important is that the digital plane segments and their corresponding least
squares fit planes are in a one-to-one correspondence. For more details, we refer to Ref. [8].

Digitization of three-dimensional bodies consists of all the integer points belonging to the digitized
body. Similarly, as in the case of planar discs, it can be shown that the set of digital balls in 3D can be
coded by four corresponding moments having the order up to 1. Readers interested in additional details
are referred to Ref. [9].

55.4 Threshold Functions on Binary Inputs

In this section we will demonstrate how Theorem 55.1 can be applied to problems related to encoding and
enumerating threshold functions. Generally speaking, a function f (x1, x2, . . . , xd ) is a threshold function
if

f (x1, x2, . . . , xd ) = sgn(F (x1, x2, . . . , xd )) =
{

1 if F (x1, x2, . . . , xd ) > 0
0 if F (x1, x2, . . . , xd ) < 0

(55.7)

for some real function F (x1, x2, . . . , xd ). This subject has a history of more than 40 years [10,11], but
there are many research problems still open. That is not only caused by the diversity of the threshold
functions studied, but also by difficulties in solving some of them. Threshold functions are usually large
objects—for example, a single threshold function f (x1, x2, . . . , xd ) : {0, 1}d → {0, 1} if defined as a
vector in {0, 1}2d

space [12] requires 2d bits for storage. Therefore, it would be useful to have an efficient
coding scheme that requires a relatively small amount of bits per coded function. Such a coding scheme
would enable a comparison of threshold functions without comparing their values at all points from their
domain.

The enumeration problem is also interesting. The number of threshold functions from some class
describes the information capacity of the class [13,14]. Encoding and enumeration problems are usually
considered together and very often the number of threshold functions of a given kind is estimated from
the size of the corresponding codes.

A function f (x1, x2, . . . , xd ) is a linear threshold function if there are real numbers a1, a2, . . . , ad , and
t such that

f (x1, x2, . . . , xd ) =
{

1 if a1x1 + a2x2 + · · · + ad xd + t > 0
0 if a1x1 + a2x2 + · · · + ad xd + t < 0

Linear threshold functions defined on {0, 1}d are studied mostly because of their importance in the theory
of neural networks [12,15]. The set of linear threshold functions defined on {0, 1}d will be denoted by LT.
The following simple and efficient characterization of linear threshold functions defined on {0, 1}d has
been established by Chow [10,11].
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Theorem 55.6

Let f (x1, x2, . . . , xd ) and g (x1, x2, . . . , xd ) map {0, 1}d → {0, 1}. Also, let

µp1, p2, ..., pd ( f −1(1)) = µp1, p2, ..., pd (g −1(1))

for all p1, p2, . . . , pd such that 0 ≤ p1 + p2 + . . . + pd ≤ 1. Then

f (x1, x2, . . . , xd ) ∈ LT ⇒ g (x1, x2, . . . , xd ) = f (x1, x2, . . . , xd )

In other words, if a linear threshold function f (x1, x2, . . . , xd ) is represented by d + 1 integers which
are discrete moments (having the order up to 1) corresponding to f −1(1), then there is no other threshold
function (even nonlinear) with the same representation. In the literature, such moments (or their slight
modifications [16]) are known as Chow parameters. Based on the Chow parameters, the total number of
linear threshold functions defined on {0, 1}d has been upper bounded as

#LT ≤ 2 · 2d2
(55.8)

It is worth mentioning here that a lower bound for #LT has been proven recently [17]. More precisely,
it has been shown that the inequality

log(#LT1) ≥ d2 ·
(

1 − 10

log d

)

(55.9)

holds for a sufficiently large d .
Now, we show that Theorem 55.6 is a simple consequence of Theorem 55.1.
Let f (x1, x2, . . . , xd ) = s g n(a1 · x1 + a2 · x2 + · · · + ad · xd + t) be a linear threshold function and

g (x1, x2, . . . , xd ) : {0, 1}d → {0, 1} be another arbitrary (not necessarily linear threshold) function and
let the Chow parameters corresponding to f (x1, x2, . . . , xd ) and g (x1, x2, . . . , xd ) coincide. It is obvious
that a1 · x1 + a2 · x2 + · · · + ad · xd + t separates f −1(1) \ B and B \ f −1(1) for any B ⊂ {0, 1}d . By
setting B = g −1(1) and noticing that a1 · x1 + a2 · x2 + · · · + ad · xd + t is of the form Eq. (55.1) with
P = {( p1, p2, . . . , pd ) | 0 ≤ p1 + p2 +· · ·+ pd ≤ 1} ⊂ {0, 1}d we get that the equality f −1(1) = g −1(1)
holds due to Theorem 55.1, or equivalently f (x1, x2, . . . , xd ) = g (x1, x2, . . . , xd ).

Theorem 55.1 leads to some improvements of the Chow result (for details see Ref. [18]):

• It enables us to show that two linear threshold functions f (x1, x2, . . . , xd ) and g (x1, x2, . . . , xd )
which satisfy f (0, 0, . . . , 0) = g (0, 0, . . . , 0) = 1 must be identical if their first order moments
coincide. So, the largest of Chow parameters µ0,0, ...,0( f −1(1)) can be replaced with a number from
{0, 1}. This number, let us say, is chosen to be 1 when f (0, 0, . . . , 0) = 1, and 0 otherwise.

• Perhaps a more important consequence of Theorem 55.1 is an analogous extension of the previous
item to partially defined linear threshold functions which are also of interest [19].

Observation 55.2

The encoding linear threshold functions by Chow parameters or by their slight modification (see the previous
items) that comes from our encoding scheme requires O

(
d2

)
bits per coded function and that is, because of

Eq. (55.9), an optimal bit rate.

In the rest of this section we consider a more general problem. It is known [20] that any Boolean function
{0, 1}d → {0, 1} can be represented as a threshold function of the form

f (x1, x2, . . . , xd ) = s g n




∑

( p1, p2, ..., pd )∈S⊂{0,1}d

a p1, p2, ..., pd · x p1
1 · x p2

2 · · · · · x pd
d



 (55.10)

if S is allowed to be as large as {0, 1}d . Thus, there is a big gap between the number of all thresh-

old functions defined on {0, 1}d , which is 22d
, and the number of linear threshold functions which is

2d2+O(d2/ log d) (see Eq. (55.8) and Eq. (55.9)). Noticing that linear threshold functions are realizable by
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the set {1, x1, x2, . . . , xd }of d+1 monomials, while the set {x p1
1 ·x p2

2 ·. . .·x pd
d | ( p1, p2, . . . , pd ) ∈ {0, 1}d }

consisting of 2d monomials is required for the realization of all threshold functions, the natural question
to ask is: What happens when the number of monomials (terms) in Eq. (55.10) is somewhere between d and
2d ? Let us look at the answers to these problems which follow from Theorem 55.1. We start with a formal
definition.

Definition 55.3

Let a set S ⊂ {0, 1}d be fixed. Then a function having the form as in Eq. (55.10) is called an S-threshold
function. Note that (0, 0, . . . , 0) ∈ S is assumed in accordance with Eq. (55.7).

A characterization ofS-threshold functions by using spectral coefficients has been described in Ref. [20].
There has been shown that the number of S-functions is upper bounded by

2(d+1)·#S (55.11)

Here we use discrete moments to characterize S-threshold functions. It is worth mentioning that discrete
moments are easier (faster) to compute. The results are derived without restrictions to the coefficients
a p1, p2, ..., pd which appear in Eq. (55.10) and without restrictions on S , either. The following theorem
holds.

Theorem 55.7

Let S ⊂ {0, 1}d be fixed.

(a) Let f (x1, x2, . . . , xd ) be an S-threshold function and let g (x1, x2, . . . , xd ) be an arbitrary (not
necessarily S-threshold) function. Then f (x1, x2, . . . , xd ) = g (x1, x2, . . . , xd ) if and only if

µp1, p2, ..., pd ( f −1(1)) = µp1, p2, ..., pd (g −1(1)) for all ( p1, p2, . . . , pd ) ∈ S

(b) Let f (x1, x2, . . . , xd ) and g (x1, x2, . . . , xd ) be S-threshold functions. Then
f (x1, x2, . . . , xd ) = g (x1, x2, . . . , xd ) if and only if f (0, 0, . . . , 0) = g (0, 0, . . . , 0) and

µp1, p2, ..., pd ( f −1(1)) = µp1, p2, ..., pd (g −1(1)) for all ( p1, p2, . . . , pd ) ∈ S \ (0, 0, . . . , 0)

(c) There are at most

4 · 2
d·(#S−1)−

∑
( p1, p2, ..., pd )∈S ( p1+p2+···+pd )

(55.12)

different S-threshold functions defined on {0, 1}d .

Proof

(a) It is easy to see that anyS-threshold function f (x1, x2, . . . , xd ) separates f −1(1)\B and B \ f −1(1)
for any B ⊂ {0, 1}d . Let us set B = g −1(1), then the statement follows from Theorem 55.1.

(b) Let f (x1, x2, . . . , xd ) = s g n
(∑

( p1, p2, ..., pd )∈S a p1, p2..., pd · x p1
1 · x p2

2 · · · · · x pd
d

)

and g (x1, x2, . . . , xd ) = s g n
(∑

( p1, p2, ..., pd )∈S b p1, p2..., pd · x p1
1 · x p2

2 · · · · · x pd
d

)
.

The equality f (x1, x2, . . . , xd ) = g (x1, x2, . . . , xd ) preserves b0,0, ...,0
a0,0, ...,0

> 0, implying that the
function

h(x1, x2, . . . , xd ) = b0,0, ...,0

a0,0, ...,0




∑

( p1, p2, ..., pd )∈S
a p1, p2..., pd · x p1

1 · x p2
2 · . . . · x pd

d





−



∑

( p1, p2, ..., pd )∈S
b p1, p2..., pd · x p1

1 · x p2
2 · . . . · x pd

d
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separates f −1(1) \ g −1(1) and g −1(1) \ f −1(1)—it is easy to prove the implications
(x1, . . . , xd ) ∈ f −1 \ g −1(1) ⇒ h(x1, . . . , xd ) > 0 and
(x1, . . . , xd ) ∈ g −1 \ f −1(1) ⇒ h(x1, . . . , xd ) < 0

By noticing that the separating function h(x1, x2, . . . , xd ) is of the form (55.1) and specifying
P = S it follows from Theorem 55.1 that f −1(1) and g −1(1) must be equal, or equivalently,
f (x1, . . . , xd ) = g (x1, . . . , xd ) for all (x1, . . . , xd ) ∈ {0, 1}d .

(c) The proof follows from the bijection established in (b). An upper bound for the number of different
(#S − 1)-tuples made by µp1, p2, ..., pd ( f −1(1)) (with ( p1, p2, . . . , pd ) ∈ S \ (0, 0, . . . , 0) and
f (0, 0, . . . , 0) = 0) follows from the implication:

p1 + p2 + · · · + pd = i ⇒ µp1, p2, ..., pd ( f −1(1)) ∈
{

[0, 2d−i ) if f (1, 1, . . . , 1) = 0
(0, 2d−i ] if f (1, 1, . . . , 1) = 1

for all ( p1, p2, . . . , pd ) ∈ {0, 1}d and i = 0, 1, . . . , d . Therefore,

• the number of S-threshold functions which map (1, 1, . . . , 1) → 1 and (0, 0, . . . , 0) → 0
and

• the number of S-threshold functions which map (1, 1, . . . , 1) → 0 and (0, 0, . . . , 0) → 0
are both upper bounded with

∏

( p1, p2, ..., pd )∈S\(0,0, ...,0)

2d−( p1+p2+···+pd ) = 2
d·(#S−1)−

∑
( p1, p2, ..., pd )∈S ( p1+p2+···+pd )

which proves (c).

Note that the proved bound for the number of S-threshold functions improves (55.11).

55.5 Concluding Remarks

The problem of partitioning a finite d-dimensional squared (integer) grid appears in many areas of
computer science and mathematics. This chapter considered just some of them. We demonstrated how a
subset of such an integer grid can be represented uniquely by a suitably chosen set of discrete moments.
In the case of planar digital objects, we characterized situations when the least squares fit polynomials
preserve a unique identification of the fitted object from the considered set of digital objects. This is a
particular advantage in the area of image processing and digital image analysis. The same method can be
applied in three dimensions as well. Even though the 3D case was discussed briefly, let us mention that
the characterization by discrete moments described here is important because there are not many ways
to characterize discrete point sets in 3D. Indeed, two sets could be compared by looking at their convex
hulls but this could be inappropriate because very simple objects, such as digital tetrahedrons, for example,
could have a large number of vertices on their convex hull—for details see Ref. [21]. Of course, the Freeman
encoding has not a straightforward extension in 3D. The application of our method to multilevel threshold
functions defined on not necessarily binary inputs (see Ref. [22]) was not analyzed in this chapter, but
we will analyze it in the near future. To make the discussion more complete, let us give an example when
the method does not apply well. If we consider the set of digital convex polygons on an m × m integer
grid, then Theorem 55.1 suggests a large number of moments that have to be used. That is far from the
optimum. The result of Ref. [23] suggests that the encoding of such digital convex polygons can be done
within an O(m2/3) bit rate per encoded polygon. Let us point out that some versions of the problem (the
infinite grid N

d
0 should be divided) can be found in some areas where they are perhaps not expected—in

the group theory [24–26], for example.
Our results may be viewed as a technique for representing planar digital objects and threshold functions

in near-optimal space. In this sense it is a heuristic for minimizing the space required to represent these
objects.
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[8] Klette,R., Stojmenović, I., and Žunić, J., A new parametrization of digital planes by least squares
plane fit and generalizations, Graphical Models Image Process., 58, 295, 1996.
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56.1 Introduction

In graph theory, questions related to planarity always played an important role. The main subject of this
chapter is the following problem, which is denoted here as MAXIMUM-WEIGHT PLANAR SUBGRAPH: Given
a graph G with a nonnegative weight defined for each edge, find a planar subgraph of G of maximum
weight, where the weight of a subgraph is simply the sum of the weights of the edges in the subgraph. Its
unweighted version, denoted as MAXIMUM PLANAR SUBGRAPH, is: given a simple graph G , find a planar
subgraph of G with the maximum number of edges.

These problems have applications in circuit layout [1–6], facility layout [5,7], and graph drawing
[8–10](the process of drawing a graph, usually on a two-dimensional medium, as “nicely” as possible,
where “nicely” is defined by the application). For example, graph drawing of nonplanar graphs can start
by drawing a planar subgraph [11,12], and then drawing the remaining edges. This method employs
planarization, the process of obtaining a large planar subgraph from a nonplanar one [13–15].

Unfortunately, MAXIMUM PLANAR SUBGRAPH is NP-hard [16,17]. In fact, MAXIMUM PLANAR SUBGRAPH

is known to be Max SNP-hard [18], which means there is an ε > 0 such that no approximation algorithm
achieves a ratio of 1 − ε for it, unless P = NP. This is true even if the input is a cubic graph [19]. The
largest ε for which this result is known however is tiny, making 1 − ε far from the best approximation
ratios known for the problem.

On the positive side, for years, the best known approximation algorithm for MAXIMUM PLANAR SUBGRAPH

was the trivial one that produces a spanning tree of the (connected) input graph. Using Euler’s formula,
it is easy to see that this algorithm achieves a ratio of 1/3. There were several heuristics proposed for
MAXIMUM PLANAR SUBGRAPH and MAXIMUM-WEIGHT PLANAR SUBGRAPH, but most of them either have a
ratio of 1/3 or were not approximation algorithms at all [20]. In particular, the natural MST algorithm
for MAXIMUM-WEIGHT PLANAR SUBGRAPH, which outputs a maximum weight forest of the given graph,
has also a ratio of 1/3. Only in the 1990s, the 1/3 threshold was broken, by algorithms that use triangular
structure (a graph whose all blocks are edges or triangles) [18,21]. Since then, to our knowledge, no better
approximation algorithms appeared in the literature for these problems.
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Specifically, the best known approximation algorithm for MAXIMUM PLANAR SUBGRAPH is the one that
outputs a triangular structure of the input graph with the maximum number of edges. Such a triangular
structure can be computed in polynomial time by a sophisticated algorithm for polymatroid matching.
The approximation ratio of the resulting algorithm is 4/9 [18]. Its analysis and implementation however
are intricate. A simpler and faster greedy algorithm that also produces a triangular structure achieves a
ratio of 7/18 [18].

As for MAXIMUM-WEIGHT PLANAR SUBGRAPH, the best approximation ratio known is 1/3 + 1/72 [21].
Triangular structures are related to 3-restricted Steiner trees, which are used to achieve good approximation
ratios for the famous MINIMUM STEINER TREE problem (see Chapter 42). The ratio of 1/3 + 1/72 for
MAXIMUM-WEIGHT PLANAR SUBGRAPH is achieved by an algorithm that follows closely an algorithm by
Berman and Ramaiyer [22] for MINIMUM STEINER TREE. The output is also a triangular structure. A
randomized pseudopolynomial algorithm that computes a maximum-weight triangular structure in a
given weighted graph can be derived from a result of Camerini et al. [23]. This algorithm can be converted,
using the standard method of rounding and scaling (as in Chapters 9–11, or in Ref. [24, pp. 135–137]),
to a (1 − ε)-approximation algorithm for computing a maximum-weight triangular structure. A (1 − ε)-
approximation parallel algorithm with polylogarithmic running time also follows from a result by Prömel
and Steger [25]. A maximum-weight triangular structure also achieves a 1/3 + 1/72 ratio, however we
know of no direct proof for this. The only proof we know is based on the algorithm that mimics Berman
and Ramaiyer’s.

In this chapter, we describe the main approximation algorithms known for both MAXIMUM PLANAR

SUBGRAPH and MAXIMUM-WEIGHT PLANAR SUBGRAPH. We also discuss the relation between these problems
and MINIMUM STEINER TREE.

The chapter is organized as follows. Section 56.2 analyzes the Maximum Spanning Tree (MST) algorithm.
Section 56.3 is about triangular structures, their relation to 3-restricted Steiner trees and the above-
mentioned algorithms that generate triangular structures. Section 56.4 presents the analysis of some of
these triangular structure algorithms. Section 56.5 shows the results of applying the same methods to the
MAXIMUM OUTERPLANAR SUBGRAPH problem, where the output graph must be outerplanar (i.e., can be
drawn in the plane with all vertices on the boundary of the outer face). Due to the importance of these
problems, exact algorithms with exponential worst-case running time have been proposed, and heuristics
have been analyzed experimentally. We discuss these practical approaches in Section 56.6 together with
related problems and results and ideas for improved approximation ratios.

56.2 Analysis of the MST Algorithm

The MST algorithm, given a graph G and a nonnegative weight for each of its edges, outputs a maximum
weight forest of G . We know two ways to demonstrate that this algorithm has a ratio of 1/3 for MAXIMUM-
WEIGHT PLANAR SUBGRAPH. One of them uses an idea of Korte and Hausmann [26]. The other one uses a
well-known theorem of Nash-Williams involving the following concept.

The arboricity of a graph is the minimum number of spanning forests into which its edge set can be
partitioned. Nash-Williams [27,28] proved the following classic theorem about it.

Theorem 56.1

The arboricity of a graph G is the maximum, over all subgraphs H of G with at least two vertices, of
⌈ |E (H)|

|V(H)| − 1

⌉

For a function w defined on the edge set of a graph G and a set S of edges of G , we use w(S) to denote
the sum of the weights of the edges in S and, for a subgraph H of G , we use w(H) instead of w(E (H)). A
family of graphs is said to be closed under taking subgraphs if and only if any subgraph of any graph in the
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family is in the family. The next lemma is the key in the analysis of the approximation ratio of the MST
algorithm.

Lemma 56.1

Let F be a family of graphs closed under taking subgraphs, such that, for some positive integer c ,|E (G)| ≤
c(|V(G)| − 1) for all G in F . Let w be a nonnegative weight function on the edges of some G in F , and F be
a maximum-weight forest in G. Then w(F ) ≥ 1

c w(G).

First Proof
Let G be a graph in  F and w be a nonnegative weight function on its edges. We have |E (H)| ≤ c(|V(H)|−1)
for any subgraph H of G , because F is closed under taking subgraphs. Thus, by Theorem 56.1, the
arboricity of G is at most c . This means that the edge set of G can be partitioned into c forests F1, . . . , Fc .
Clearly, we have w(F1) + · · · + w(Fc ) = w(G). But w(F ) ≥ w(Fi ) for all i , and this implies that
w(G) = w(F1) + · · · + w(Fc ) ≤ c · w(F ). ■

Second Proof
Let G be a graph in F with a nonnegative weight for each of its edges. Use Kruskal’s algorithm to construct
a maximum-weight forest F . That is, let e1, . . . , em be the edges of G in nonincreasing order of weight.
Start with F0 := ∅. For i = 1, . . . , m, if the addition of ei to Fi−1 creates a cycle, let Fi := Fi−1, otherwise
let Fi := Fi−1 ∪ {ei }. At the end, let F := Fm.

For each i , let E i := {e1, . . . , ei } and let wi be the weight of ei . Let wm+1 := 0. By rearranging the
terms,

w(F ) =
m∑

i=1

|Fi |(wi − wi+1), and w(G) =
m∑

i=1

|E i |(wi − wi+1)

It is therefore enough to show that |E i | ≤ c |Fi | for i = 1, . . . , m.

For each i , let p1, . . . , pk be the number of vertices in the components of Fi . Of course, |Fi | =∑k
j=1( p j − 1). Any edge of E i must have its two endpoints in the same component of Fi . (Otherwise,

the edge could have been selected by the algorithm, merging two components of Fi .) We associate each
edge of E i with the component of Fi that contains both of its endpoints.

The edges of E i associated with a component of Fi are a subset of the edges of the subgraph of G
induced by the vertices of this component. Thus, the number of edges associated with the j th component
of Fi is at most c( p j − 1), because the subgraph of G induced by Fi is in F , as F is closed under taking
subgraphs. But then |E i | ≤ ∑k

j=1 c( p j − 1) = c |Fi |. ■

The approximation ratio of 1/3 for the MST algorithm for MAXIMUM PLANAR SUBGRAPH follows from
the next corollary.

Corollary 56.1 (See [Ref 1, Theorem 3.3])

Let P be a simple planar graph with a nonnegative weight function w defined on its edges. If F is a maximum-
weight forest in P , then w(F ) ≥ 1

3 w(P ).

Proof
By Euler’s formula, |E (P )| ≤ 3(|V(P )| − 1). Then the corollary follows from applying Lemma 56.1 to
the family of simple planar graphs, with c = 3. ■

Indeed, if F is a maximum-weight forest in a graph G with a weight function w on its edges and P is
any planar subgraph of G , then w(F ) ≥ 1

3 w(P ) by Corollary 56.1. This implies that the MST algorithm
has a ratio of at least 1/3 for MAXIMUM-WEIGHT PLANAR SUBGRAPH. The 1/3 bound is tight, as is the case
when the input is an unweighted triangulated planar graph.

If one uses a Kruskal-like heuristic where a test for planarity is performed before adding an edge, the
output contains a maximum-weight forest and therefore this algorithm also has an approximation ratio
of at least 1/3. Tight examples are known [1,20].
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A graph is said to be outerplanar if it can be drawn in the plane with all vertices on the boundary of the
outer face. Consider the MAXIMUM-WEIGHT OUTERPLANAR SUBGRAPH problem: Given an edge-weighted
graph G , find an outerplanar subgraph of G of maximum weight. This problem is known to be NP-
hard [24, p. 197]. The MST algorithm has a ratio of 1/2 for MAXIMUM-WEIGHT OUTERPLANAR SUBGRAPH,
as we show below using the same techniques.

Corollary 56.2

Let P be an outerplanar graph with a nonnegative weight function w defined on its edges. Then a maximum-
weight forest F of P satisfies w(F ) ≥ 1

2 w(P ).

Proof
Any subgraph of an outerplanar graph is outerplanar, and, by Euler’s formula, |E (P )| ≤ 2(|V(P )| − 1)
for any outerplanar graph P [29, Corollary 11.9]. Thus, it is enough to apply Lemma 56.1 with c = 2 to
the family of all outerplanar graphs. ■

Let P be any outerplanar subgraph of the graph G with a weight function w on its edges and F be a
maximum-weight forest. By Corollary 56.2, we deduce that w(F ) ≥ 1

2 w(P ), and the approximation ratio
of 1/2 for MAXIMUM-WEIGHT OUTERPLANAR SUBGRAPH follows.

56.3 Triangular Structures and Better Approximations

We start by defining some terms and then presenting two algorithms for MAXIMUM PLANAR SUBGRAPH:
algorithm A (the greedy one) and algorithm B (the currently best one).

A triangular cactus is a graph whose cycles (if any) are triangles and such that all edges appear in some
cycle (see Figure 56.1). A triangular cactus in a graph G is a subgraph of G that is a triangular cactus.

A triangular structure is a graph whose cycles (if any) are triangles (see Figure 56.2). A triangular structure
in a graph G is a subgraph of G that is a triangular structure. Note that every triangular cactus is a triangular
structure, but not vice versa. Observe also that every triangular structure is planar, as it does not contain
cycles of length greater than three.

Given a graph G = (V, E ) and E ′ ⊆ E , we denote by G[E ′] the spanning subgraph of G induced by
E ′, that is, the graph (V, E ′) (Note that this is not the usual definition of subgraph induced by an edge
set, since we require the subgraph to be spanning.).

The approximation ratio of algorithm A for MAXIMUM PLANAR SUBGRAPH, as we will see, is 7/18 =
0.3888 . . . . Algorithm A generates a triangular structure in the given graph G . As seen below, it consists
of two phases. First, it greedily constructs a maximal triangular cactus S1 in G . Second, it extends S1

to a triangular structure S2 in G by adding as many edges as possible to S1 without forming any new
cycles.

FIGURE 56.1 A (connected) triangular cactus.
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FIGURE 56.2 A (connected) triangular structure.

Algorithm A (G)

1 E 1 ← ∅
2 while there is a triangle � in G whose vertices are in different components of G[E 1] do
3 E 1 ← E 1 ∪ E (�)
4 E 2 ← E 1

5 while there is an edge e in G whose endpoints are in different components of G[E 2] do
6 E 2 ← E 2 ∪ {e}
7 S2 ← G[E 2]
8 return S2

Note that S2 is indeed a triangular structure in G and therefore is a planar subgraph of G . It is easy
to see that algorithm A is polynomial. Also, it can be implemented to run in linear time for graphs with
bounded degree [18]. Its approximation ratio will be analyzed in the next section. Now we present the
second algorithm for MAXIMUM PLANAR SUBGRAPH.

Algorithm B is very similar to algorithm A. The only difference is that, in the first phase, it finds a
triangular cactus with the maximum number of triangles. This can be done in polynomial time using an
algorithm for the so-called GRAPHIC MATROID PARITY problem [30,31] as a subprocedure. In the pseudocode
below, MAXTRICACTUS denotes a routine that uses such an algorithm to obtain a triangular cactus in G
with maximum number of triangles. See Ref. [18] for the details on how this routine does that.

Algorithm B (G)

1 E 1 ← MAXTRICACTUS(G)
2 E 2 ← E 1

3 while there is an edge e in G whose endpoints are in different components of G[E 2] do
4 E 2 ← E 2 ∪ {e}
5 S2 ← G[E 2]
6 return S2

Again it is clear that S2 is a triangular structure in G and therefore is a planar subgraph of G . Gabow and
Stallmann [30] described an algorithm for GRAPHIC MATROID PARITY that runs in time O(m′n′ log6 n′),
where m′ and n′ are the number of edges and vertices, respectively, in the input graph for this problem.
Using this algorithm, one can get an implementation for MAXTRICACTUS that runs in time O(m3/2n log6 n),
where m is the number of edges in the input graph and n is the number of vertices. So line 1 can
be implemented to run in polynomial time, and again the whole algorithm has a polynomial-time
implementation.

As for the weighted case, there is no polynomial-time algorithm known for GRAPHIC MATROID PARITY.
However, Camerini et al. [23] proposed a randomized pseudopolynomial algorithm to solve the MATROID
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PARITY problem. Using the standard method of rounding and scaling (as in Chapters 9 and 10, or in Ref. [24,
pp. 135–137]), one can use their algorithm to obtain, in a weighted graph, for every ε > 0, a triangular
structure whose weight is at least 1 − ε times the weight of a maximum-weight triangular structure. The
running time of this procedure is polynomial in the size of the input and in 1/ε.

Curiously, we do not know a direct way to prove that a maximum-weight triangular structure achieves a
ratio greater than 1/3 for MAXIMUM-WEIGHT PLANAR SUBGRAPH. The only way we know how to prove that
is by analyzing another algorithm—a greedy one, inspired by the algorithm of Berman and Ramaiyer [22]
for MINIMUM STEINER TREE. This algorithm takes advantage of an interesting relation between triangular
structures and a particular type of Steiner trees. To explain a bit of this relation, we need to introduce some
notation for Steiner trees.

Let G be a connected graph and R be a set of vertices of G , usually called terminals. Each vertex not
in R is called a Steiner vertex. A Steiner tree is a tree in G containing all terminals. We may assume that
all leaves in a Steiner tree are terminals. In the MINIMUM STEINER TREE problem, we are given a graph G , a
nonnegative weight for each edge of G and a set R of vertices of G , and we want to find a minimum-weight
Steiner tree in G .

A full component of a Steiner tree T is a maximal subtree of T whose internal vertices are all Steiner
vertices. For an integer k, a Steiner tree is k-restricted if all of its full components have at most k leaves.

Berman and Ramaiyer [22] proposed an approximation algorithm for MINIMUM STEINER TREE that
generates a 3-restricted Steiner tree of weight at most 11/6 times the minimum weight of a Steiner tree. Their
algorithm works for larger values of k, producing k-restricted Steiner trees having better approximation
ratio. The 3-restricted version has been applied to MAXIMUM-WEIGHT PLANAR SUBGRAPH, and we give the
intuition behind this approach below.

There is a close relation between triangular structures in a graph G and 3-restricted Steiner trees in an
auxiliary graph H defined as follows. The set of vertices of H is V(G) plus a new vertex for each triangle
in G . The edge set of H is E (G) plus three new edges incident to each triangle vertex. The edges incident
to a triangle vertex have as the other endpoints the three vertices of the triangle in G . This completes the
description of graph H . Let V(G) be the set of terminals R.

Now, suppose we are given a nonnegative weight for each edge in G and let M be 10 times the largest
such weight. In H , an edge of e ∈ E (G) has weight w ′(e) = M − w(e). For a triangle xyz of G , if
u is the new vertex of H corresponding to xyz, then we set w ′(xu) = w ′(yu) = w ′(zu) = 2M/3 −
(w(xy) + w(xz) + w(yz))/3. It is easy to check that a triangular structure of weight W in G corresponds
to a 3-restricted Steiner tree in H of weight (n − 1)M − W, where n = |V(G)|. Thus a maximum-weight
triangular structure in G corresponds to a minimum-weight 3-restricted Steiner tree in H .

The reduction above does not preserve approximation ratios. Nevertheless, some algorithms designed
for MINIMUM STEINER TREE can be adapted to MAXIMUM-WEIGHT PLANAR SUBGRAPH. In particular, the
Berman and Ramaiyer algorithm is used by Călinescu et al. [21] to break the 1/3 threshold for MAXIMUM-
WEIGHT PLANAR SUBGRAPH.

56.4 Analysis of the Triangular Structure Algorithms

We start by settling the approximation ratio of algorithm A.

Theorem 56.2

Algorithm A has approximation ratio of 7/18 for MAXIMUM PLANAR SUBGRAPH.

Proof
First let us show that the approximation ratio is at least 7/18. Without loss of generality, we may assume
G is connected, and has at least three vertices. Observe that the number of edges in S2 is the number of
edges in a spanning tree of G plus the number of triangles in S1. So it suffices to count the number of
triangles in S1.
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Let H be a plane embedding of a maximum planar subgraph of G . Let n ≥ 3 be the number of vertices
in G , and t ≥ 0 be such that 3n − 6 − t is the number of edges in H . We can think of t as the number
of edges missing for H to be a triangulated plane graph. The number of triangular faces in H is at least
2n − 4 − 2t. (This is a lower bound on the number of triangular faces of H since if H were triangulated,
it would have 2n − 4 triangular faces, and each missing edge can destroy at most two of these triangular
faces.)

Let k be the number of components of S1 each with at least one triangle, and let p1, p2, . . . , pk be the
number of triangles in each of these components. Let p = ∑k

i=1 pi . We will prove that p, the number of
triangles in S1, is at least a constant fraction of n − 2 − t. Note that if a triangle cannot be added to S1, it is
because two of its vertices are in the same component of S1. Hence one of its edges has its two endpoints
in the same component of S1. This means that, at the end of the first phase, every triangle in G must have
some two vertices in the same component of S1. In particular, every triangular face in H must have some
two vertices in the same component of S1, and therefore one of its three edges must be in the subgraph
of H induced by the vertices in a component of S1. Thus we can associate with each triangular face F in
H an edge e in F whose endpoints are in the same component of S1. But any edge e in H lies in at most
two triangular faces of H , so e could have been chosen by at most two triangular faces of H . It follows that
the number of triangular faces in H is at most twice the number of edges in H whose endpoints are in the
same component of S1.

Let H ′ be the subgraph of H induced by the edges of H whose endpoints are in the same component
of S1. Note that pi ≥ 1, for all i , and that the number of vertices in the i th component of S1 is 2pi +1 ≥ 3.
Since H ′ is planar, H ′ has at most

∑k
i=1(3(2pi + 1) − 6) = 6p − 3k edges. By the observation at the end

of the previous paragraph, 2(6 p − 3k) ≥ 2|E (H ′)| ≥ (number of triangular faces in H) ≥ 2n − 4 − 2t.
From this, we have

p ≥ n − 2 − t + 3k

6
≥ n − 2 − t

6

Therefore, the number of triangles in S1 is at least n−2−t
6 , and the ratio between the number of edges in

S2 and the number of edges in H is at least

n − 1 + n−2−t
6

3n − 6 − t
= 7n − 8 − t

18n − 36 − 6t
≥ 7

18

since t ≥ 0. This completes the proof that the approximation ratio of algorithm A is at least 7/18.
Now, we will prove that the approximation ratio is at most 7/18. Let S be any connected triangular cactus

with p > 0 triangles. Note that S has 2p +1 ≥ 3 vertices. Let S ′ be any triangulated plane supergraph of S
on the same set of vertices (S ′ can be obtained from S by adding edges to S until it becomes triangulated).
Since S ′ is triangulated, S ′ has 2(2p + 1) − 4 = 4p − 2 (triangular) faces. For each face of S ′, add a new
vertex in the face and adjacent to all vertices on the boundary of that face. Let G be the new graph. Observe
that G is a triangulated plane graph and has (2p + 1) + (4 p − 2) = 6p − 1 vertices. This means that G has
3(6p − 1) − 6 = 18p − 9 edges. With G as input for algorithm A, in the first phase it can produce S1 = S,
and S2 can be S plus one edge for each of the new vertices (the vertices in G not in S). The number of
edges in S is 3p. Hence S2 can have 3p + (4p − 2) = 7p − 2 edges, while G has 18p − 9 edges. Thus, the
ratio between the number of edges in S2 and the number of edges in G is

7 p − 2

18 p − 9

By choosing p as large as we wish, we get a ratio as close to 7/18 as we want.

Algorithm B has an approximation ratio of 4/9 = 0.444 . . . . The proof that its ratio is at least 4/9 is a
consequence of a result on triangular structures in planar graphs.

For a graph H , denote by mts(H) the number of edges in a triangular structure in H with the maximum
number of edges. Then we have the following.
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Theorem 56.3

If H is a planar graph, then mts(H)/|E (H)| ≥ 4/9.

This theorem however has a long and complicated proof [18] (Raz [32] also announced a proof), so we
chose to present here a weaker version of the result, that has a nice proof.

Theorem 56.4

If H is a planar graph, then mts(H)/|E (H)| ≥ 0.4.

Proof
The theorem is easily verified if H has less than three vertices, so let us assume that H has n ≥ 3 vertices.
We may furthermore assume that H is connected. Embed H in the plane without crossings. Let t be such
that |E (H)| = 3n − 6 − t. Clearly t ≥ 0.

Now let J be any triangular cactus obtained by choosing triangular faces of H until no more can
be added; say the final J has k components. Let p be the number of triangles in J . As in the proof of
Theorem 56.2, if we count twice every edge in H whose endpoints are in the same component of J , we
will “cover” every triangular face of H . In fact, each triangular face of J will be covered three times, by
the three edges bounding the face. Let s be the number of edges in H whose endpoints are in the same
component of J . Let l be the number of triangular faces in H . Since the p triangles in J are covered three
times, we have (l − p)+3p = l +2p ≤ 2s . As in Theorem 56.2, we have s ≤ 6 p −3k and l ≥ 2n −4−2t.

It follows that 2n − 4 − 2t + 2p ≤ l + 2p ≤ 2s ≤ 2(6p − 3k), so that

p ≥ 2n − 4 − 2t + 6k

10
= n − 2 − t + 3k

5
≥ n − 2 − t

5

As mts(H) ≥ (n − 1) + p, we have

mts(H)

|E (H)| ≥ n − 1 + n−2−t
5

3n − 6 − t
= 6n − 7 − t

15n − 30 − 5t
≥ 2

5
= 0.4 ■

Now we proceed with the analysis of algorithm B.

Theorem 56.5

Algorithm B has approximation ratio of 4/9 for MAXIMUM PLANAR SUBGRAPH.

Proof
To show that the approximation ratio of algorithm B is at least 4/9, it suffices to apply Theorem 56.3 to a
maximum planar subgraph of the input graph of algorithm B. (Theorem 56.4 implies a lower bound of
0.4 on the approximation ratio.)

Now, let us prove that the approximation ratio is at most 4/9. Let G ′ be any triangulated plane graph
on n′ vertices. Call V ′ the vertex set of G ′. Since G ′ is triangulated, G ′ has 2n′ − 4 (triangular) faces. For
each face of G ′, add a new vertex in the face, adjacent to all three vertices on the boundary of that face.
Let G be the new graph and let V be the vertex set of G .

Observe that G is a triangulated plane graph, and has n′ + (2n′ − 4) = 3n′ − 4 vertices. Therefore
G has 3(3n′ − 4) − 6 = 9n′ − 18 edges. Let S be a maximum triangular structure in G . Any edge
in G has at least one endpoint in V ′. Moreover |V ′| = n′. Therefore a maximum matching in G has
at most n′ edges (each with at least one distinct endpoint in V ′). The following lemma is observed in
Ref. [33, p. 440].

Lemma 56.2

If S is a triangular structure with t triangles in a given graph G, then there is a matching in G of size t.

Using Lemma 56.2, we conclude that S has at most n′ triangles. Recall that S, being a triangular
structure, is a spanning tree of G plus one edge per triangle in S, which implies that S has at most
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(3n′ − 5) + n′ = 4n′ − 5 edges. Furthermore, G has 9n′ − 18 edges. Therefore, the ratio between the
number of edges in S and the number of edges in G is

4n′ − 5

9n′ − 18

By choosing n′ as large as we wish, we get a ratio as close to 4/9 as required. ■

Surprisingly, somehow Theorem 56.3 does not extend to the weighted case. Let mwts(G) denote the
weight of a maximum-weight triangular structure in a weighted graph G . Then we have the following.

Theorem 56.6

If H is a planar graph, then mwts(H)/w(H) ≥ 1/3 + 1/72.

This theorem, however, has a long and complicated proof [21] based on the algorithm adapted from the
Berman and Ramaiyer MINIMUM STEINER TREE algorithm. The bound is not tight, and in fact we conjecture
the following.

Conjecture 56.1

If H is a planar graph, then mwts(H)/w(H) ≥ 5/12.

The next theorem shows that Conjecture 56.1 is as strong as possible in the sense that it does not hold
with a constant bigger than 5/12. Conjecture 56.1, if true, would imply that the algorithm that produces
a maximum-weight triangular structure in the input weighted graph has an approximation ratio of 5/12.

Theorem 56.7

For any ε > 0, there is a planar graph H and a weight function w defined on its edges for which mwts(H)/
w(H) ≤ 5/12 + ε.

Proof
Let P be any triangulated plane graph with n ≥ 3 vertices. By Euler’s formula, P has 3n − 6 edges. Let
the weight of each edge of P be two. In each of the 2n − 4 faces of P , add a new vertex and three edges
adjacent to this new vertex and the three vertices of P that define the face. These new edges have weight
one. Denote by H the plane graph obtained this way and by w the weight function defined on its edges.

Observe that H has 3n − 4 vertices, is triangulated, and has total weight 2 · [3n − 6] + 1 · [3(2n − 4)] =
12n − 24 (see Figure 56.3). Let us prove that a maximum-weight triangular structure in H has weight at
most 5/12 + o(1) of the weight of H .

Consider an arbitrary triangular structure S in H . Let S1 be the set of edges of weight one in S and S2

be the remaining edges of S (all of weight two).
First, we may assume S connects V(H), as this can be obtained without decreasing the weight of S.

Second, we may assume that S2 connects V(P ). Indeed, assume this is not the case, and let V1, . . . , Vk

be the connected components of P [S2]. Then there are two such components, say V1 and V2, such that
two edges e1 and e2 in S1 form a path of length two from a vertex v1 in V1 to a vertex v2 in V2. Indeed
this is the only way to connect vertices of P with edges from S1. The middle point of this path sits in
a face of P so let v3 be the third vertex of P , besides v1 and v2, bordering this face. By interchanging,
if necessary, indexes 1 and 2 we may assume that v3 
∈ V2. Then the weight-2 edges v1v2 and v2v3 do
not belong to S2. As S only contains cycles of length three, we deduce that e2 (which is incident to v2)
does not belong to any cycle of S. Thus replacing e2 by v1v2 results in a triangular structure of larger
weight.

Now we divide the edges of S2 into two sets: set X , containing edges that belong to triangles of S2, and
set Y , containing the remaining edges. Removing exactly one edge from each triangle of S2 leaves us with
a spanning tree of P , and therefore 2|X|/3 + |Y | = n − 1. Each triangle of S that is not in X must contain
one edge from Y , or we have cycles of length 4. Now recall that S2 connects P . Thus for every vertex of H
not in P , we have in S exactly one or two edges, and if we have two edges, we have a triangle of S with one
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FIGURE 56.3 An example of graph H . The solid edges show graph P . Each of them has weight two. The dotted part
shows the extra vertices and edges in H . The dotted edges have weight one.

edge in Y . One edge of Y can appear in at most one triangle, as otherwise we get a cycle of length four. In
conclusion, we have

w(S) ≤ (|X|+|Y |) ·2+(2n−4) ·1+|Y | ·1 ≤ 3

(
2

3
|X|+|Y |

)

+2n−4 = 3(n−1)+2n−4 = 5n−7

Therefore, as n goes to ∞, the ratio mwts(H)/w(H) approaches 5/12 and the theorem follows. ■

A consequence of Theorem 56.7 is that the approximation ratio of any algorithm for MAXIMUM-WEIGHT

PLANAR SUBGRAPH that produces a triangular structure in the input graph is at most 5/12. In particular,
the approximation ratio of the algorithm that mimics Berman and Ramaiyer’s and the one that produces
a maximum-weight triangular structure in the input weighted graph is at most 5/12.

56.5 Outerplanar Subgraphs

A triangular structure is an outerplanar graph. We will show that a maximum-weight triangular structure
in a weighted graph G has weight at least two thirds of the weight of a maximum-weight outerplanar
subgraph of G . This implies a (2/3 − ε)-approximation algorithm for MAXIMUM-WEIGHT OUTERPLANAR

SUBGRAPH and, for the unweighted version of the problem, a 2/3-approximation algorithm (via algorithm
B, described in Section 56.3).

The proof of the next key lemma takes a few pages.

Lemma 56.3

In any maximal outerplanar graph P , there are at most three (not necessarily distinct) triangular structures
in P such that each edge of P appears in exactly two of them.

Proof
If P has fewer than three vertices, then P and the empty graph are triangular structures. Let us assume P
has at least three vertices. Embed P in the plane as a triangulation of a polygon. Every maximal outerplanar
graph with at least three vertices is a triangulation of a polygon. That is, the boundary of the exterior face
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FIGURE 56.4 An outerplanar graph (solid lines) and the tree D′ (filled vertices and dotted lines) obtained from its
dual.

of P is a Hamiltonian cycle H and each interior face is triangular [29, p. 106]. Let E be the edge set of P ,
b be the exterior face of P , and F be the set of faces of P other than b.

Let D be the dual multigraph of P . Let us call the vertices of D (which are faces of P ) nodes, and
the edges of D, arcs. All nodes of D but b have degree three. Also, the edges in the Hamiltonian cycle H
correspond to the arcs incident to b in D.

Let D′ be the graph obtained from D by subdividing each arc incident to b, and then removing b. See
Figure 56.4 for an example.

Lemma 56.4

D′ is a tree all of whose internal nodes have degree three.

Proof
First, let us prove that D′ has no cycle. It is enough to show that any cycle in D contains b. A cycle in D
corresponds to a cut in P [34, p. 143, ex. 9.2.3]. Because H is a Hamiltonian cycle, any cut in P contains
at least two edges of H , which correspond to arcs incident to b. Therefore, any cycle in D contains at least
two arcs incident to b, so it contains b.

Second, let us prove that D′ is connected. If D′ were not connected, there would be two nodes u and v

in different components of D′. Let us argue that we can choose u and v to be nodes in V(D). If u were
not a node in V(D), then it would be a node that originated from the subdivision of an arc incident to b,
and thus it would have degree one in D′. Change u to its unique neighbor in D′. Do the same for v. Note
that the new u and v must still be in different components of D′, since they are in the same component as
the initial u and v, respectively. So we can assume u and v are nodes of D. And because D is connected,
there is a path in D between u and v. For this path not to exist in D′, it has to go through node b. But this
implies that b would be a cut vertex in D. If b were a cut vertex in D, then there would be a minimal cut
in D containing exactly a proper subset of the arcs incident to b (consider the set of edges going from b
to one of the components of D after the removal of b). A minimal cut in D corresponds to a cycle in P
[34, p. 143, ex. 9.2.3]. This implies that there would be a cycle in P whose edges are a proper subset of the
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edges of H , a contradiction (a proper subset of the edges of any cycle induces an acyclic graph, since it is
enough to remove one edge of a cycle to be left with a path, which is acyclic).

Therefore D′ is, in fact, a tree. Recall that all nodes of D but b have degree three. Before removing b,
we subdivided all of the arcs incident to b. The new nodes have degree one in D′, and all others have the
same degree as in D, that is, three. ■

A special 3-coloring of D′ is a partition of the set of nodes of D′ into three sets {X1, X2, X3} (each set
referred to as a color class) such that

(1) adjacent nodes have different colors, and
(2) for i = 1, 2, 3, if we remove all nodes of color i , in the resulting graph there is a path from any node

to a leaf in D′.

Lemma 56.5

There is a special 3-coloring of D′.

Proof
Root D′ at one of its leaves. In the rooted D′, all internal nodes except the root have two children. Color
the root and its unique child with distinct colors. Now, start at level i = 1. If there are nodes in level i + 1,
for each node in level i with children, give its children distinct colors that differ from its own color. Proceed
to level i + 1.

Clearly, adjacent nodes get distinct colors.
Suppose we remove all nodes of color i , for some i . Let j and k be the two remaining colors. Consider a

remaining node. Either it is a leaf in D′, and there is nothing to prove, or it is an internal node of the rooted
tree D′ different from the root (since the root is a leaf of D′). Any internal node colored j that is not the root
has a child of color k, and vice versa. This means that there is a path from any node to a leaf in D′. ■

Given a special 3-coloring {X1, X2, X3} of D′, we now describe three triangular structures S1, S2, and
S3 as required by Lemma 56.3. Establish the natural one-to-one correspondence between edges of P and
arcs of D′: each edge of P corresponds to the unique arc of D′ that “crosses” it.

Let Si be the set of edges in P whose corresponding arc in D′ has an endpoint of color i (i.e., in Xi ).
(An arc has either one or zero endpoints of a given color.)

Lemma 56.6

Si is a triangular structure in P .

Proof
Suppose that there is a cycle C in Si that is not a triangle. Cycle C partitions the set of faces of P into two
sets F0 � b (outside C ) and F1 ⊆ F (inside C ), F being the set of faces of D other than b.

Because C is not a triangle, |F1| ≥ 2. (If |F1| = 1, then C would be the boundary of the unique face in
F1 ⊆ F , which is a triangle.)

A cycle in P corresponds to a minimal cut in D [34, p. 143, ex. 9.2.3]. So F1 must induce a connected
subgraph of D. Since D′ differs from D only in arcs incident to b, F1 induces the same connected subgraph
in D′. Also, F1 consists only of internal nodes of D′.

Thus F1 induces a connected subgraph of D′ with at least two nodes. Hence, in the given special
3-coloring of D′, not all nodes of F1 can be of color i ; there is a node d in F1 of color j 
= i .

All leaves of D′ are outside C . Since C is in Si , each edge of C corresponds to an arc in D′ with one
endpoint of color i . Removing the nodes of D′ of color i hence eliminates all arcs with one endpoint
inside C and one outside. Thus, after removing from D′ the nodes (faces of P ) of color i , there can be no
path from node d to a leaf of D′. This is a contradiction to the fact that we have a special 3-coloring. ■

Clearly, S1, S2, and S3 satisfy the statement of Lemma 56.3: each edge of P appears in exactly two of
them. ■
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Theorem 56.8

Let G be a graph with a nonnegative weight function w on its edges and let S be a maximum weight triangular
structure in G. Then w(S) ≥ 2

3 w(P ) for any outerplanar subgraph P of G.

Proof
By adding edges possibly not in G , extend P to a maximal outerplanar graph P . For any edge e in P but
not in G , let w(e) = 0. Clearly w(P ) ≥ w(P ).

Let S1, S2, S3 be three triangular structures in P as given by Lemma 56.3. Each edge of P appears in
exactly two of these triangular structures. Then w(S1) + w(S2) + w(S3) = 2w(P ) ≥ 2w(P ). Moreover,
w(S) ≥ w(Si ), i = 1, 2, 3. Therefore 2w(P ) ≤ 3w(S), implying that w(S) ≥ 2

3 w(P ). ■

As there are outerplanar graphs Hi with 2i vertices and 3i − 2 edges that do not have any triangle (all
faces except the outer one having size four), the theorem above is tight. Thus we conclude.

Corollary 56.3

Algorithm B, described in Section 56.3, has approximation ratio of 2/3 for the unweighted version of
MAXIMUM-WEIGHT OUTERPLANAR SUBGRAPH. There is a polynomial-time (2/3−ε)-approximation algorithm
for MAXIMUM-WEIGHT OUTERPLANAR SUBGRAPH.

56.6 Practical Results and Discussion

Exact algorithms for MAXIMUM PLANAR SUBGRAPH have been proposed. Foulds and Robinson [3] present
a branch and bound algorithm successful only on small dense graphs. Cimikowski [35] also proposes
a branch and bound algorithm. Jünger and Mutzel [9,36] present a branch-and-cut methodology with
promising results on unweighted instances. New facets for this method have been proposed by Hicks [37].

Heuristics without proven approximation ratio have been proposed and analyzed experimentally by
Cacceta and Kusumah [38] and Poranen [39,40]. In particular, Poranen [40] proposes modified greedy
algorithms that improve on experiments over algorithm A from Section 56.3. Precisely, triangles are added
also when two of the three vertices are in the same component of G[E 1] (the third being in another
component) if the two vertices are adjacent in E 1. Poranen [40] proves that this modified algorithm
also has approximation ratio at least 7/18 and conjectures that it has approximation ratio 4/9. We have
examples showing that in fact the 7/18 ratio is tight for his algorithm. Poranen reports that the modified
greedy algorithm is a slightly better start for simulated annealing heuristics.

For certain classes of inputs, better algorithms are known. Kühn et al. [41] showed that graphs having
large minimum degree contain large planar subgraphs. For example, if the minimum degree is at least
1500

√
n/ε2, then every graph G with n = |V(G)| sufficiently large has a planar subgraph with (2 − ε)n

edges. Their proofs can be converted in polynomial-time algorithms.
If the input graph is a weighted clique whose edge weights satisfy the triangle inequality, the output of

the algorithm that mimics Berman and Ramaiyer’s [22] has approximation ratio at least 3/8 [21].
The related problem of GRAPH THICKNESS (given G , partition the edges of G into as few planar subgraphs

as possible) has been proven to be NP-hard [42]. A 3-approximation for GRAPH THICKNESS is trivial, via
arboricity as in the proof of Lemma 56.1. Finding better approximation algorithms seems very hard.

We conclude with a discussion on improving the approximation ratio for MAXIMUM PLANAR SUBGRAPH

and MAXIMUM-WEIGHT PLANAR SUBGRAPH. First we remark that with the current methods adapted from
MINIMUM STEINER TREE, MAXIMUM-WEIGHT PLANAR SUBGRAPH is harder than MAXIMUM PLANAR SUBGRAPH,
as opposed to many problems mentioned in Ref. [43].

For MAXIMUM-WEIGHT PLANAR SUBGRAPH, there is still room for improvement with triangular structures.
Conjecture 56.1, for instance (or some weaker version of it with a bound greater than 1/3 + 1/72), would
already imply a better ratio for MAXIMUM-WEIGHT PLANAR SUBGRAPH.

A natural approach is to consider structures with larger blocks. For example, what is the approximation
ratio of an algorithm that produces a “large” structure whose blocks have up to four vertices? (Note that
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such structures are planar.) Unfortunately, finding such a structure with the maximum number of edges
is NP-hard. (One can reduce packing of triangles in graphs of maximum degree bounded by four to this
problem.) The approximation algorithm of Berman and Ramaiyer’s [22] and the relative greedy algorithm
of Zelikovsky [44] can be adapted to use planar structures with blocks of size at most k, for an arbitrary
fixed k, and run in time polynomial in nk , where n denotes, as usual, the number of vertices of the input
graph.

For a graph H , denote by mtsk(H) the maximum number of edges in a subgraph of H whose blocks have
size at most k. Theorem 56.3 states that, if H is planar, mts3(H)/|E (H)| ≥ 4/9. Computing the infimum
over planar graphs H of mtsk(H)/|E (H)| for larger values of k is interesting, but we do not believe the
values of these infimums are large enough to allow the algorithms of Berman and Ramaiyer’s [22] or the
relative greedy algorithm of Zelikovsky [44] to improve the 4/9 approximation ratio.

The equivalent of the infima for MINIMUM STEINER TREE are the Steiner ratios for k-restricted Steiner
trees and are well studied [45,46] (see also Chapter 42). Here we have that these infima converge to 1/2
as k goes to ∞; the family of planar graphs consisting of two vertices u and v and many paths of length
two from u to v shows that all these infima are at most 1/2. Differently, the Steiner ratios for k-restricted
Steiner trees tend to 1 as k goes to ∞.

In other words, we believe that algorithm B is better than possible adaptations of Berman and Ramaiyer’s
or Zelikovsky’s algorithm. This type of situation happens in fact for MINIMUM STEINER TREE, where com-
puting an almost optimal 3-restricted Steiner tree (as done by Prömel and Steger [25]) is better than both
Berman and Ramaiyer’s [22] and the relative greedy approximation algorithm of Zelikovsky [44].

All known MINIMUM STEINER TREE algorithms with better ratio than Prömel and Steger [25] (the best
one being the one by Robins and Zelikovsky [47]) use not only the notion of “gain” (as defined in Ref. [46]),
but also the notion of “loss.” However, the notion of “loss” does not translate easily to MAXIMUM PLANAR

SUBGRAPH.
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57.1 Introduction

Finding disjoint paths in graphs is a problem that has attracted considerable attention from at least
three perspectives: graph theory, VLSI design, and network routing/flow. The corresponding literature
is extensive. In this chapter we limit ourselves mostly to results on offline approximation algorithms for
problems on general graphs as influenced from the network flow perspective. Surveys examining the
underlying graph theory, combinatorial problems in VLSI, and disjoint paths on special graph classes can
be found in Refs. [1–8].

An instance of disjoint paths consists of a (directed or undirected) graph G = (V, E ) and a multiset
T = {(si , ti ) : si ∈ V, ti ∈ V, i = 1, . . . , k} of k source–sink pairs. Any source or sink is called
a terminal. An element of T is also called a commodity. One seeks a set of edge- (or vertex-)disjoint
paths P1, P2, . . . , Pk , where Pi is an si –ti path, i = 1, . . . , k. In the case of vertex-disjoint paths we are
interested in paths that are internally disjoint, that is, a terminal may appear in more than one pair in T .

We abbreviate the edge-disjoint paths problem by EDP. The notation introduced will be used throughout
the chapter to refer to an input instance. We will also denote |V | by n and |E | by m for the corresponding
graph.

On the basis of whether G is directed or undirected and the edge- or vertex-disjointness condition,
one obtains four basic problem versions. The following polynomial-time reductions exist among them.
Any undirected problem can be reduced to its directed counterpart by replacing an undirected edge
with an appropriate gadget; both reductions maintain planarity (see, e.g., Refs. [9] and [4, Chapter 70]
for details). An edge-disjoint problem can be reduced to its vertex-disjoint counterpart by replacing G
with its line graph (or digraph as the case may be). Directed vertex-disjoint paths reduce to directed edge-
disjoint paths by replacing every vertex with a pair of new vertices connected by an edge. There is no known
reduction from a directed to an undirected problem. The reader should bear in mind these transformations
throughout the chapter. They can serve for translating approximation guarantees or hardness results from
the edge-disjoint to the vertex-disjoint setting and vice versa.

57-1
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The unsplittable flow problem (UFP ) is the generalization of EDP , where every edge e ∈ E has a positive
capacity ue , and every commodity i has a demand di > 0. The demand from si to ti has to be routed in
an unsplittable manner, that is, along a single path from si to ti . For every edge e the total demand routed
through that edge should be at most ue . We will often refer to a capacitated graph as a network. In a similar
manner a vertex-capacitated generalization of vertex-disjoint paths can be defined. UFP was introduced in
the Ph.D. thesis of Kleinberg [8]. Versions of the problem had been studied before though not under the
UFP moniker (see, e.g., Refs. [10,11]).

If one relaxes the requirement that every commodity should use exactly one path, one obtains the
multicommodity flow problem which is well known to be solvable in polynomial time. When all the sources
of a multicommodity flow instance coincide at a vertex s and all the sinks at a vertex t, we obtain the
classical maximum flow problem to which we also refer to as s –t flow. The relation between UFP and
multicommodity flow is an important one to which we shall return often in this chapter. We will denote
a solution to either problem as a flow vector f, defined on the edges or the paths of G as appropriate.

57.1.1 Complexity of Disjoint-Path Problems

For general k all four basic problems are NP-complete. The undirected vertex-disjoint paths problem was
shown to be NP-complete by Knuth in 1974 (see Ref. [12]), via a reduction from SAT, and by Lynch
[13]. This implies the NP-completeness of directed vertex-disjoint paths and directed edge-disjoint paths.
Even et al. [14] showed that both problems remain NP-complete on directed acyclic graphs (DAGs). In the
same paper the undirected edge-disjoint paths problem was shown NP-complete even when T contains
only two distinct pairs of terminals. In the case when s1 = s2 = · · · = sk all four versions are in P
as special cases of maximum flow. For planar graphs Lynch’s [13] reduction shows NP-completeness for
undirected vertex-disjoint paths; Kramer and van Leeuwen [15] show that undirected EDP is NP-complete.
The NP-completeness of the directed planar versions follows.

For fixed k, the directed versions are NP-complete even for the case of two pairs with opposing source–
sinks, that is, (s , t) and (t, s ) [16].1 Undirected vertex-disjoint paths, and by implication edge-disjoint
paths as well, can be solved in polynomial time [19]. This is an outcome of the celebrated project of
Robertson and Seymour on graph minors. See Ref. [20] for an informal description of the highly impractical
Robertson–Seymour algorithm. It is notable that for fixed k, vertex-disjoint paths, and by consequence
EDP, can be solved on DAGs by a fairly simple polynomial-time algorithm [16]. Earlier polynomial-time
algorithms for k = 2 include the one by Perl and Shiloach [9] on DAGs and the ones derived independently
by Seymour [21], Shiloach [22], and Thomassen [23] for vertex-disjoint paths on general undirected
graphs.

For planar graphs and fixed k the directed vertex-disjoint path problem is in P [24], while the complexity
of the edge-disjoint case is open. When the input graph is a tree, Garg et al. [25] gave a polynomial-time
algorithm to maximize the number of pairs that can be connected by edge-disjoint paths. The algorithm
extends for vertex-disjoint paths (N. Garg, personal communication, July 2005). By total unimodularity,
the EDP maximization problem is polynomial-time solvable on di-trees as well, that is, directed graphs in
which there is a unique directed path from si to ti , for all i; a reduction to a minimum-cost circulation
problem is also possible in this case (cf. Ref. [26]). Reducing directed vertex-disjoint paths to EDP maintains
the di-tree property, hence the former problem is in P as well. Observe that directed out- and in-trees are
special cases of di-trees.

Our presentation will focus mostly on EDP and its generalization to edge-capacitated UFP. We will switch
explicitly to vertex-disjoint paths when necessary. Approximation algorithms for vertex-disjoint paths are
typically obtained by modifying appropriately algorithms for the edge-disjoint case.

1The NP-completeness proof holds for a sparse graph with m = �(n); this observation has consequences for
hardness of approximation proofs in Refs. [17,18].
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57.1.2 Optimization Versions

Two basic NP-hard optimization problems are associated with unsplittable flow and hence with EDP. Given
a UFP instance an unsplittable flow solution or simply a routing is a selection of k′ ≤ k paths, one each for
a subset T ′ ⊆ T of k′ commodities. Any routing can be expressed as a flow vector f ; the flow fe through
edge e equals the sum of the demands using e. A feasible routing is one that respects the capacity constraints.
In the maximum demand optimization problem one seeks a feasible routing of a subset T ′ of commodities
such that

∑
i∈T ′ di is maximized. The congestion of a routing f is defined as maxe∈E {max{ fe/ue , 1}}.

Note that the events fe < ue and fe = ue are equivalent for this definition. In the minimum congestion
optimization problem one seeks a routing of all k commodities that minimizes the congestion, that is,
one seeks the minimum λ ≥ 1 such that all k commodities can be feasibly routed if all the capacities are
multiplied by λ. From now on, when we refer to EDP without further qualification we imply the maximum
demand version of EDP. Some other objective functions of interest will be defined in Section 57.3.

57.1.3 Main Threads

We present now some of the unifying themes in the literature on approximation algorithms for disjoint-
path problems.

LP-rounding algorithms. As mentioned above, multicommodity flow is an efficiently solvable relaxation
of EDP. Hence it is not accident that multicommodity flow theory has played such an important part in
developing algorithms for disjoint-path problems. This brings us to the standard linear programming
formulation for multicommodity flow. Let Pi denote the set of paths from si to ti . Set P := ⋃k

i=1 Pi .

Consider the following linear program (LP) for maximum multicommodity flow (MCF):

maximize
∑

P ∈P
f P (LP-MCF)

∑

P ∈Pi

f P ≤ di for i = 1, . . . , k

∑

P ∈P : P �e

f P ≤ ue for e ∈ E

f P ≥ 0 for P ∈ P

The number of variables in the LP is exponential in the size of the graph. By using flow variables defined
on the edges one can write an equivalent LP of polynomial size. We choose to deal with the more elegant
flow-path formulation. Observe that adding the constraint f P ∈ {0, di }, ∀P ∈ Pi , to (LP-MCF) turns
it into an exact formulation for maximum demand UFP. A similar LP, corresponding to the concurrent
flow problem, can be written for minimizing congestion (see, e.g., Ref. [27] for details). We call an LP
solution for the optimization problem of interest fractional. Several early approximation algorithms for
UFP, and more generally integer multicommodity flow, work in two stages. First a fractional solution f
is computed. Then f is rounded to an unsplittable solution f̂ through procedures of varying intricacy,
most commonly by randomized rounding as shown by Raghavan and Thompson [28]. The randomized
rounding stage can usually be derandomized using the method of conditional probabilities [29–31]. The
derandomization component has gradually become very important in the literature for two reasons. First,
through the key work of Srinivasan [32,33] on pessimistic estimators, good deterministic approximation
algorithms were designed even in cases where the success probability of the randomized experiment was
small (see, e.g., Refs. [34,35] for applications to disjoint paths). Second, in some cases the above two-stage
scheme can be implemented rather surprisingly without solving first the LP. Instead one designs directly
a suitable Langrangean relaxation algorithm implementing the derandomization part. See the work of
Young [36] and Chapter 4 in this volume.

We note that some of the approximation ratios obtained through the LP-rounding method can nowadays
be matched (or surpassed) by simple combinatorial algorithms. By combinatorial one usually means
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algorithms restricted to ordered ring operations as opposed to ordered field ones. Two distinct greedy
algorithms for EDP were given by Kleinberg [8] (see also Ref. [37]), and Kolliopoulos and Stein [38]
(see also Ref. [39]). Most of the subsequent work on combinatorial algorithms uses these two approaches
as a basis. Still the influence of rounding methods on the development of algorithms for disjoint-path
problems can hardly be overstated. See Chapters 6 and 7 in this volume for further background on LP-based
approximation algorithms.

Approximate max-flow min–multicut theorems. One of the first results on disjoint paths and in fact
one of the cornerstones of graph theory is Menger’s [40] theorem: an undirected graph is k vertex-
connected if and only if there are k vertex-disjoint paths between any two vertices. The edge analog
holds as well and the min–max relation behind the theorem has resurfaced in a number of guises, most
notably as the max-flow min-cut theorem for s –t flows. Let G = (V, E ) be undirected. For U ⊆ V,
define δ(U ) := {{u, v} ∈ E : u ∈ U and v ∈ V \ U }. Similarly dem(U ) is the sum of all demands over
commodities which are separated by the cut δ(U ). A necessary condition for the existence of a feasible
fractional solution to (LP-MCF) that satisfies all demands is the cut condition:

∑

e∈δ(U )

ue ≥ dem(U ), for each U ⊆ V

For s –t flows, the max-flow min-cut theorem [41–43] states that the cut condition is sufficient. For
undirected multicommodity flow, Hu [44] showed that the cut condition is sufficient for k = 2. It fails
in general for k ≥ 3. For directed multicommodity flows there are simple examples with k = 2, for
which the directed analog of the cut condition holds but the demands cannot be satisfied fractionally (see,
e.g., Ref. [4]). For undirected EDP, already for k = 2 the cut condition is not sufficient for a solution to
exist [1].

Starting with the seminal work of Leighton and Rao [45], a lot of effort has been spent on estab-
lishing approximate multicommodity max-flow min-cut theorems. A multicut in an undirected graph
G = (V, E ) is a subset of edges F ⊆ E , such that if all edges in F are deleted none of the pairs (si , ti )
i = 1, . . . , k are in the same connected component of the remaining graph. Garg et al. [46] showed
constructively that the minimum multicut is always at most O(log k) times the MCF and this is exis-
tentially tight. See Refs. [27,47,48] for surveys of the many results in this area and their applications to
approximation algorithms. Most of this work focused originally on fractional flows. The methods were
versatile enough to extend to UFP, typically yielding results that were also obtainable via randomized
rounding. See, for example, the discussion on the high-capacity UFP in Section 57.3.1 below. Moreover
this body of work contributed significantly to the intellectual climate that spawned, among other currents
in approximation algorithms, the renewed interest in disjoint paths. This research also produced increased
interest in the efficient solution of multicommodity flow problems via combinatorial approximation
schemes, thereby producing fast algorithms for solving disjoint-path relaxations. Such approximation
schemes had been first investigated by Shahrokhi and Matula [49]. The running time was significantly
improved in Ref. [50] with extensions and refinements following in Refs. [51–53]. Extensions of these
methods to general fractional packing/covering problems were first pursued in Refs. [54,55]. A representa-
tive sample of subsequent work on fractional multicommodity flow and related problems can be found in
Refs. [36,56–59].

Finally, one should acknowledge the influence of the Ph.D. thesis of Kleinberg [8] on solidifying the
various strands of work on disjoint-path problems up to the mid-1990s. The results in Ref. [8] gave impetus
to new research and the thesis itself is a valuable reference tool for earlier work.

The outline of this chapter is as follows. In Section 57.2 we present hardness of approximation results and
(mostly greedy) algorithms for EDP. In Section 57.3 we examine the more general UFP problem, properties
of the fractional relaxation, and packing integer programs (PIPs). Finally in Section 57.4 we present results
on some variants of the basic problems. Unless mentioned otherwise, all of the approximation algorithms
we will describe in the upcoming sections work equally well on directed and undirected graphs.
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57.2 Algorithms for Edge-Disjoint Paths

In this section we examine the problem of finding a maximum-size set of edge-disjoint paths, mostly from
the perspective of combinatorial algorithms. We defer the discussion of the LP-rounding algorithms and
the integrality gaps of the linear relaxations until Section 57.3, where we examine them in the more general
context of UFP, similarly for some key results on expander graphs and hardness bounds particular to UFP.

57.2.1 Hardness Results

Guruswami et al. [17] showed that on directed graphs it is NP-hard to obtain an O(n1/2−ε)-approximation
for any fixed ε > 0. They gave a gap-inducing reduction from the two-pair decision problem to EDP on a
sparse graph with �(n) edges. Since this EDP problem reduces to a vertex-disjoint path instance on a graph
with N = �(n) vertices, we obtain that it is NP-hard to approximate vertex-disjoint paths on graphs
with N vertices within O(N1/2−ε), for any fixed ε > 0. Ma and Wang [60] showed via the PCP theorem
that it is NP-hard to approximate EDP on directed graphs within O(2log1−ε n), even when the graph is
acyclic. See Chapter 17 in this volume for background on the PCP theorem and the theory of inapprox-
imability. For the undirected edge-disjoint path problem, Andrews and Zhang [61] showed that there is no
O(log1/3−ε n)-approximation algorithm unless NP ⊆ ZPTIME(n pol y log(n)). ZPTIME(n pol y log(n)) is the
set of languages that have randomized algorithms that always give the correct answer in expected running
time n pol y log(n). The lower bound was improved to �(log1/2−ε n) in Ref. [62], under the same complexity-
theoretic assumption. Even when congestion C > 1 is allowed, Ref. [62] shows that the maximization
version is log�(1/C) n-hard to approximate. EDP on undirected graphs was shown MAX SNP-hard in
Ref. [25].

57.2.2 Greedy Algorithms

The first approximation algorithm analyzed in the literature for EDP on general graphs seems to be the
online Bounded Greedy Algorithm (BGA) in the Ph.D. thesis of Kleinberg [8] (see also Ref. [37]). The
algorithm is parameterized by a quantity L . The terminal pairs are examined in one pass. When (si , ti ) is
considered, check if si can be connected to ti by a path of length at most L . If so, route (si , ti ) on such
a path Pi . Delete Pi from G and iterate. To simplify the analysis we assume that the last terminal pair is
always routed if all the previous pairs have been rejected.

The idea behind the analysis of BGA [8] is very simple but it has influenced later works such as Refs. [38],
[63], and [64]. Informally it states that in any graph there cannot be too many long paths that are edge-disjoint.
In Ref. [8] the algorithm was shown to achieve a (2L + 1)-approximation if L = max{diam(G),

√
m}.

Several people quickly realized that the analysis can be slightly altered to obtain an O(
√

m)-approximation.
We provide such an analysis with L = √

m. The first published O(
√

m)-approximation for EDP was given
by Srinivasan [34] using LP-rounding methods.

Let O be a maximum-cardinality set of edge-disjoint paths connecting pairs of T . Let B be the set of
paths output by BGA and Ou ⊂ O the set of paths corresponding to terminal pairs unrouted by the BGA.
We have that

|O| − |Ou| = |O \ Ou| ≤ |B| (57.1)

One tries to relate |Ou| to |B|. This is done by observing that a commodity l routed in Ou was not routed
in B because one of the two things happened: (i) no path of length shorter than L exists or (ii) the existing
paths from sl to tl were blocked by (intersect on at least one edge with) paths selected earlier in B. The
paths in Ou can thus be partitioned into the two corresponding subsets O1 and O2. O1 contains paths
blocked by a path in B and has size at most L |B|, since the elements of B are edge-disjoint paths of length
at most L . The second set O2 := Ou \ O1, consists of disjoint paths longer than L , hence |O2| < m/L .

Therefore

|Ou| <
m

L
+ L |B| = √

m + √
m|B| ≤ 2

√
m|B| (57.2)
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Adding inequalities (57.1) and (57.2) yields that the BGA is an O(
√

m)-approximation algorithm. In
Section 57.3.3 below we return to the performance of the BGA on expander graphs.

The astute reader has noticed that the idea used in the analysis above is an old one. It goes back to the
blocking flow method of Dinitz [65] for the s –t flow problem as applied to unit-capacity networks by Even
and Tarjan [66]. A blocking flow is a flow that cannot be augmented without rerouting. The blocking flow
method iterates over the residual graph. In every iteration a blocking flow is found over the subgraph of
the residual graph that contains the edges on a shortest path from s to t. At the end of an iteration the
distance from s to t in the new residual graph can be shown to have increased by at least one. When the
distance becomes larger than L , the number of edge-disjoint paths from s to t is O(min{m/L , n2/L 2})
and this bounds also the remaining number of augmentations required by the algorithm [66].

Kolliopoulos and Stein [38] made the connection with the blocking flow idea explicit and proposed the
offline Greedy Path algorithm, from now on called simply the greedy algorithm. The motivation behind the
greedy algorithm was the following: what amount of residual flow has survived if one is never allowed to
reroute the flow sent along shortest paths at a given iteration? In every iteration, greedy picks the unrouted
(si , ti ) pair such that the length of the shortest path Pi from si to ti is minimized. The pair is routed using
Pi . The greedy algorithm is easily seen to achieve an O(

√
m)-approximation [38]. Using the BGA notation

and analysis from above we obtain the following (see also Ref. [64]):

Lemma 57.1

Consider the restriction of the greedy algorithm that stops as soon as the minimum shortest path length among
the unrouted pairs exceeds L . The approximation guarantee is at most max{L , |O2|}.
The analysis in Ref. [38] used the fact that |O2| ≤ m/L . This was extended by Chekuri and Khanna [64].

Theorem 57.1 (Chekuri and Khanna [64])

Using the notation defined above |O2| = O(n2/L 2) for undirected simple graphs and |O2| = O(n4/L 4) for
the directed case.

The theorem, together with Lemma 57.1 and Ref. [38], yields immediately that the greedy algorithm
achieves an O(min{√m, n2/3})-approximation for undirected EDP and an O(min{√m, n4/5}) for di-
rected EDP. Varadarajan and Venkataraman [67] improved the bound for directed graphs to O(min
{√m, (n log n)2/3}), again for the greedy algorithm. Interestingly, their argument shows the existence of
a cut of size O((n2/L 2) log2(n/L )) that separates all terminal pairs (si , ti ) lying at distance L or more.
This brings us almost full circle back to the Even–Tarjan [66] bound for s –t flows. The latter argument
demonstrates the existence of a cut of size O(n2/L 2) when the source is at distance L or more from the
sink. Chekuri and Khanna [64] demonstrate an infinite family of directed and undirected instances on
which the approximation ratio achieved by the greedy algorithm is �(n2/3). New ideas are thus required
to bring the approximation down to O(

√
n), which in Ref. [64] is conjectured to be possible. Chekuri

et al. [104] and independently Nguyen [105] have recently obtained O(
√

n)-approximation algorithms
for EDP on undirected graphs and DAGs.

We now sketch the proof of Theorem 57.1 for the undirected case as given by Chekuri and Khanna
[64]. The theorem holds for the fractional solution as well, that is, the value ν of the maximum fractional
multicommodity flow connecting terminals at distance more than L . Call a vertex of G high-degree if its
degree is more than 6n/L and low-degree otherwise. The total capacity incident to low-degree vertices
is O(n2/L ). We claim that every si –ti path, (si , ti ) ∈ T , must contain at least L/6 of the low-degree
vertices. Therefore ν, the sum of flow values over the paths used in the fractional solution, is O(n2/L 2).
To prove the claim consider a breadth-first search tree rooted at si and let layer L j be the set of vertices
at distance j from si . We will show something stronger: there are at least L/6 layers among the first L
consisting only of low-degree vertices. Partition the layers into blocks of three contiguous layers and let
B j denote the block made up of layers L 3 j+1, L 3 j+2, L 3 j+3. Discard the blocks which contain at least
one layer consisting entirely of low-degree vertices. If L/6 or more blocks are discarded, we are done. So
assume that we are left with at least L/6 blocks. The blocks are disjoint, so at least one of the remaining
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blocks, call it B∗, must contain at most 6n/L vertices. Consider a high-degree vertex in the middle layer
of B∗. By the breadth-first search property all its neighbors must be within B∗ itself, a contradiction. This
completes the proof of Theorem 57.1.

Other guarantees for general graphs. In the original paper on the greedy algorithm, it was shown to
output a solution of size �(max{OPT2/m0, OPT/d0}), where OPT is the optimum, m0 the minimum
number of edges used in an optimal solution, and d0 the minimum average length of the paths in an
optimal solution [38]. The second bound is a straightforward consequence of the first. The first bound is
obtained through a somewhat more sophisticated charging scheme for the number of paths in an optimal
solution blocked by the paths in B. In conclusion, greedy gives better results in the case where there is a
“sparse” optimal solution.

57.2.3 Acyclic Digraphs

The author observed in Ref. [39] that greedy achieves an o(n)-approximation if the terminal pairs are
disjoint and there is an acyclic optimal solution. In particular, one can show using a result in Ref. [68]
that in this case m0 = O(n3/2); an O(n3/4)-approximation follows. Chekuri and Khanna [64] pro-
vided an O(

√
n log n)-algorithm for DAGs. The following applies to general graphs. Because of the

d0-approximation outlined earlier, one can assume without loss of generality that all shortest si –ti paths
have length �(

√
n). Then a counting argument shows that there is a vertex u such that at least �(OPT/

√
n)

paths in the optimal solution go through this “congested” vertex u. We guess u and concentrate on finding
the maximum-size u-solution, to our original EDP instance: this consists only of paths going through u.

Devising an O(log n)-approximation algorithm of the LP-rounding variety for this special case gives the
desired result. Recently, Nguyen [105] showed that an optimal u-solution is polynomial-time computable
in DAGs and undirected graphs.

57.2.4 Vertex-Disjoint Paths

The greedy algorithm, with the obvious modifications, connects a set of terminal pairs of size �(max
{OPT/

√
n0, OPT2/n0, OPT/d0}) [38]. Here n0 denotes the minimum size of a set of vertices used in the

optimal solution and d0 the minimum average path length in an optimal solution. By the hardness result
of Ref. [17] this result is essentially tight on directed graphs, unless P = N P .

57.3 The General Unsplittable Flow Problem

We start with some additional definitions. We assume that a UFP instance always satisfies the balance (also
called no-bottleneck) condition: dmax := maxi=1, ...,k di ≤ umin := mine∈E ue , that is, any commodity can
be routed through any of the edges. This assumption is common in the literature and we will refer explicitly
to an extended UFP instance when the balance condition is not met. In the weighted UFP, commodity i has
an associated weight (profit) wi > 0; one wants to route feasibly a subset of commodities with maximum
total weight. Note that maximizing demand reduces to maximizing the weight: simply set wi := di ,
i = 1, . . . , k. Another objective function of interest in addition to maximizing demand and minimizing
congestion is routing in the minimum number of rounds. A round corresponds to a set of commodities that
can be routed feasibly, hence one seeks a minimum-size partition of the set of commodities into feasible
unsplittable flow solutions. A uniform capacity unsplittable flow problem (UCUFP ) is a UFP in which all
edges of the input graph have the same capacity value.

57.3.1 Randomized Rounding and UFP

Some of the approximation ratios achieved by LP-rounding that we are about to present are currently also
obtainable with simple greedy algorithms. See Section 57.3.3 below. Nevertheless, LP-rounding algorithms
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are analyzed with respect to the existentially weak optima of the linear relaxations. In addition, their analysis
yields upper bounds on the respective integrality gaps. An implementation study comparing the actual
performance of the LP-based versus the more combinatorially flavored algorithms would be of interest.
For an in-depth survey of randomization for routing problems, see Ref. [69].

Minimizing congestion. The best known algorithm for congestion is also perhaps the best known example
of the randomized rounding method of Raghavan and Thompson [28]. A fractional solution f to the
concurrent flow problem is computed and then one path is selected independently for every commodity
from the following distribution: commodity i is assigned to path P ∈ Pi with probability f P /di . An
application of the Chernoff [70] bound shows that with high probability the resulting congestion is
O(log n/ log log n) times the fractional optimum. The process can be derandomized using the method of
conditional probabilities [31]. Young [36] shows how to construct the derandomized algorithm without
having first obtained the fractional solution.

The analysis of the performance guarantee cannot be improved. Leighton et al. [71] provide an in-
stance on a directed graph on which a fractional solution routes at most 1/ logc n flow per edge, for any
constant c > 0, while any unsplittable solution incurs congestion �(log n/ log log n). If the unsplittable
solution uses only paths with nonzero fractional flow the lower bound holds for both undirected and
directed instances with optimal UFP congestion 1 [71,72]. Chuzhoy and Naor [73] show that for directed
graphs there is no c log log n-approximation for some constant c , unless NP ⊆ DTIME(nO(log log log n)).
For undirected graphs, Andrews and Zhang [74] show that congestion cannot be approximated within
(log log m)1−ε , for any constant ε > 0, unless NP ⊆ ZPTIME(n pol y log(n)). Trivially, it is NP-hard to
approximate congestion within better than 2 in the case of EDP; this would solve the decision problem.

Maximum demand. Srinivasan published the first O(
√

m)-approximation for EDP and more generally
UCUFP in Ref. [34]. The first nontrivial O(

√
m log m)-approximation for UFP was published in the IPCO

version of Ref. [38]. Simultaneously and independently, Baveja and Srinivasan refined the results in Ref. [34]
to obtain an O(

√
m)-approximation for the general UFP; this work was published in Ref. [35]. The

Baveja–Srinivasan methods extend the earlier key work of Srinivasan [32,33] on LP-rounding methods for
approximating PIPs. We now outline some of the ideas in Refs. [32,34,35]. The algorithm computes first
a fractional solution f to the (LP-MCF) linear relaxation (cf. Section 57.1.3). The rounding method has
two phases. First, a randomized rounding experiment is analyzed to show that it produces with positive
probability a near-optimal feasible unsplittable solution. Second, the experiment is derandomized yielding
a deterministic polynomial-time algorithm for computing a feasible near-optimal solution. Let y∗ be the
fractional optimum.

One starts by scaling down every variable f P by an appropriate parameter α > 1. This is done to
boost the probability that after randomized rounding all edge capacities are met. Let Bi denote the event
that in the unsplittable solution, the capacity of the edge ei ∈ E is violated. Let Bm+1 denote the event
that the routed demand will be less than y∗/(βα), for some β > 1. The quantity βα is the targeted
approximation ratio. The randomized rounding method of Raghavan and Thompson [28] in the context

of UFP works by bounding the probability of the “bad” event
⋃m+1

i=1 Bi by
∑m+1

i=1
P r (Bi ). Srinivasan

[34] and later Srinivasan and Baveja [35] exploit the fact that the events Bi are positively correlated: if it
is given that a routing respects the capacities of the edges in some S ⊂ E , the conditional probability
that for ei ∈ E \ S, Bi occurs, is at least P r (Bi ). Mathematically this is expressed via the FKG inequality
due to Fortuin, Ginibre and Kasteleyn (see Ref. [75, Chapter 6]). Using the positive correlation property,
Baveja and Srinivasan [35] obtain a better upper bound on P r (

⋃
ei ∈E Bi ) than the naive union bound

and, therefore, can prove the existence of an unsplittable solution while using a better, that is, smaller,
βα scaling factor than traditional randomized rounding. The second ingredient of Srinivasan’s method in
Refs. [32,33] is to design an appropriate pessimistic estimator to constructively derandomize the method.
Such an estimator is shown for UFP as well in Ref. [35]. The by-now standard derandomization approach
of Raghavan [31] fails since it relies precisely on the probability P r (

⋃m+1
i=1 Bi ) being upper-bounded by∑m+1

i=1 P r (Bi ).
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Let d denote the dilation of the optimal fractional solution f, that is, the maximum number of edges on
any flow-carrying path. The Baveja–Srinivasan algorithm computes a solution to weighted UFP of value

�(max{(y∗)2/m, y∗/
√

m, y∗/d}) (57.3)

The corresponding upper bounds on the integrality gap of (LP-MCF) follow. The analysis of Ref. [32]
was simplified by Srinivasan in Ref. [76] by using randomized rounding followed by alteration. Here the
outcome of the random experiment is allowed to violate some constraints. It is then altered in a greedy
manner to achieve feasibility. The problem-dependent alteration step should be analyzed to quantify the
potential degradation of the performance guarantee. This method was applied to UFP in Ref. [77].

For weighted vertex-disjoint paths the corresponding bounds hold with n in place of m [35,38]. In
addition to the upper bounds on the integrality gap of (LP-MCF) given by Eq. (57.3), the integrality gap
for EDP is O(

√
n) on undirected graphs [104] and O(n4/5) on directed graphs [64]. The gap is known to

be at least k/2 by an example in a grid-like planar graph with k = �(
√

n), even for the EDP case [25].

Minimizing the number of rounds. Aumann and Rabani [78] (see also Ref. [8]) show that aρ-approximation
for maximum demand translates to an O(ρ log n) guarantee for the number of rounds objective. Ref. [35]
provides improvements when all edge capacities are unit. Let χ(T ) be the minimum number of rounds.
In deterministic polynomial time one can feasibly “route in rounds,” the number of rounds being the
minimum of (i) O(χ(T )dδ log n + d(y∗ + log n)) for any fixed δ ∈ (0, 1), (ii) O(η−1d(y∗ + log n)), if

for all i, di ≥ η, and (iii) O
(
χ(T )

√
m

(
1 + (log n)/χ(T )

))
[35]. Minimizing the number of rounds

for UFP is related to wavelength assignment in optical networks. Connections routed in the same round
can be viewed as being assigned the same wavelength. There is a burgeoning literature dealing with path
coloring as this problem is often called; usually the focus is on special graph classes. See Ref. [79, Chapter 2]
for an introduction to this area.

The high-capacity case. In the high-capacity UFP, the minimum-edge capacity is �(log m) times the
maximum demand. An optimal deterministic O(log n)-competitive online algorithm was obtained by
Awerbuch et al. [11]. It maintains length functions for the edges that are exponential in the current
load. This idea was introduced for multicommodity flow in Ref. [49] and heavily used thereafter (see,
e.g., Refs. [36,51,55,56]). Raghavan [31] showed that standard randomized rounding achieves with high
probability an O(1)-approximation for maximum weight with respect to the fractional optimum. Similarly,
one obtains that the high-capacity UFP admits an O(1)-approximation for congestion. In general, if
dmax ≤ umin/B , for some B > 1, various improved bounds that depend on B exist, some obtainable via
combinatorial algorithms (see Refs. [18,35,38,63,77] for details. Some particularly good results have been
obtained for the half-disjoint case, that is, when B = 2 [80,81,105].

57.3.2 Packing Integer Programs and UFP

Given A ∈ [0, 1]M×N , b ∈ [1, ∞)M , and c ∈ [0, 1]N with max j c j = 1, a PIP, P = (A, b, c) seeks to
maximize c T x subject to x ∈ Z N+ and Ax ≤ b. Constraints of the form 0 ≤ x j ≤ d j are clearly allowed.
Let B and ζ denote, respectively, mini bi and the maximum number of nonzero entries in any column of
A. The restrictions on the values in A, b, c are without loss of generality; arbitrary nonnegative values can
be scaled appropriately [32]. When A ∈ {0, 1}M×N , we say that we have a (0, 1)-PIP. The best guarantees
known for PIPs are due to Srinivasan [32,33]; those for (0, 1)-PIPs are better than those known for general
PIPs by as much as an �(

√
M) factor.

As witnessed by the (LP-MCF) relaxation, UFP is a packing problem, albeit one with an exponential
number of variables. Motivated by UFP, Ref. [38] defined the class of column-restricted PIPs (CPIPs): these
are the PIPs in which all nonzero entries of column j of A have the same value ρ j , for all j. Observe
that a CPIP generalizes Knapsack. If one obtains the fractional solution f to the (LP-MCF) relaxation,
one can formulate the rounding problem as a polynomial-size CPIP, where the columns of A correspond
to the paths used in the fractional solution and the rows to the edges in the graph, hence to capacity
constraints. The column value ρ j equals the demand d j of the commodity corresponding to the path
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represented by the column. A preprocessing step requires to transform first the fractional solution to a
fractional single-path solution. This is a fractional solution in which (i) at most one path per commodity is
used and (ii) if a commodity is routed at least a �(1/ log m) fraction of the demand is sent to the sink [38].
In combination with improved bounds for CPIPs this approach yielded the O(

√
m log m)-approximation

for UFP mentioned above. The fractional single-path solution concept resurfaced in the algorithm for EDP

on DAGs in Ref. [64] (cf. Section 57.2.3).
A result of independent interest in Ref. [38] shows that any family of column-restricted PIPs

can be approximated asymptotically as well as the corresponding family of (0,1)-PIPs. This result is
obtained constructively via the grouping-and-scaling technique which first appeared in Ref. [82]
in the context of single-source UFP (see Section 57.3.4 below). Let z∗ be the fractional optimum. For a gen-
eral CPIP the result of Ref. [38] translates to the existence of an integral solution of value

�

(

max

{
z∗

M1/(�B+1) , z∗
ζ 1/�B , z∗

(
z∗

M log log M

)1/�B})

. Baveja and Srinivasan [83] improved the di-

lation bound for column-restricted PIPs to �( z∗
t1/�B ), where t ≤ ζ is the maximum column sum of A.

57.3.3 Combinatorial Algorithms and Other Results

For extended UFP with polynomially bounded demands, Ref. [17] gave a simple randomized algorithm
that achieves an O(

√
m log3/2 m)-approximation and generalized the greedy algorithm for EDP [38] (cf.

Section 57.2.2) to UFP, to obtain an O(
√

m log2 m)-approximation. Azar and Regev [18] provided the first
strongly polynomial algorithm for weighted UFP that achieves an O(

√
m)-approximation. For weighted

extended UFP they obtained a strongly polynomial O(
√

m log(2 + dmax
umin

))-approximation algorithm. By

a reduction from the two-pair decision problem, Ref. [18] shows it is NP-hard to obtain an O(n1−ε)-
approximation for extended weighted UFP, for any fixed ε > 0. The lower bound applies with all the
commodities sharing the same source but with weights different from the demands. For extended UFP the
integrality gap of (LP-MCF) is �(n) even when the input graph is a path [77].

Further progress in terms of greedy algorithms was achieved by Kolman and Scheideler [63] and Kolman
[84]. Recall the BGA algorithm from Section 57.2.2. Kolman and Scheideler proposed the careful BGA,
parameterized by L . The commodities are ordered according to their demands, starting with the largest.
Commodity i is accepted if there is a feasible path P for it such that, after routing i, the total flow is
larger than half their capacity on at most L edges of P . Let B1 be the solution thus obtained and B2 the
solution consisting simply of the largest demand routed on any path. The output is B := max{B1, B2}. In
Ref. [63] the careful BGA is shown to achieve an O(

√
m)-approximation for extended UFP. Generalizing

Theorem 57.1 above to UFP, Kolman [84] showed that the careful BGA achieves an O(min{√m, n2/3})-
approximation on undirected networks and O(min{√m, n4/5})-approximation on directed networks,
even for extended UFP. Currently these are the best published bounds for UFP; previously they had been
shown for UCUFP in Ref. [64]. Recently, Chekuri et al. [104] obtained an LP-based O(

√
n)-approximation

algorithm for UFP on undirected graphs.

Guarantees depending on the network structure. Existing approximation guarantees for UFP are rather weak
and on directed graphs one cannot hope for significant improvements, unless P = NP. A different line
of work has aimed for approximation ratios depending on parameters other than n and m. This type
of work was originally motivated, in part, by popular hypercube-derived interconnection networks (cf.
Ref. [85]). Theoretical advances on these networks are typically facilitated by their rich expansion prop-
erties. A graph G = (V, E ) is an α-expander if for every set X of at most half the vertices, the number of
edges leaving X is at least α|X|. Concluding a long line of research, Frieze [86] showed that in any r -regular
graph with sufficiently strong expansion properties and r a sufficiently large constant, any �(n/ log n)
vertex pairs can be connected via edge-disjoint paths. See Ref. [86] for references on the long history
of the topic and the precise underlying assumptions. In such an expander the median distance between
pairs of vertices is O(log n), hence the result of Frieze is within a constant factor of optimal. This basic
property, that expanders are rich in short edge-disjoint paths, has been exploited in various guises in the
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literature. Results for fractional multicommodity flows along short paths were first given by Leighton and
Rao [45].

Kleinberg and Rubinfeld analyzed the BGA on expanders in Ref. [87]. In the light of Frieze’s above
result, the BGA achieves an O(log n)-approximation. In Ref. [87] it was also shown that for UCUFP one
can efficiently compute a fractional solution that routes at least half the maximum demand with dilation
d = O(�2α−2 log3 n). Here � denotes the maximum degree of the (arbitrary) input graph. The bound on
d was improved in Ref. [63]. Kolman and Scheideler introduced a new network measure, the flow number
FG ,u , and showed that there is always a near-optimal fractional flow of dilation O(FG ,u). The flow number
is a quantity computable in polynomial time which is defined based on the solution to a multicommodity
flow problem on G . If umin ≥ 1, FG ,u is always �(α−1) and O(�α−1 log n) [63]. The BGA examining
the demands in nonincreasing order and with L := 4FG ,u achieves an O(FG ,u)-approximation for UFP

[63]. Chakrabarti et al. [77] provide an O(FG log n)-approximation for UFP where FG is a definition of
the flow number concept of Ref. [63] made independent of capacities. FG and FG ,u coincide on uniform
capacity networks. Notably, Ref. [77] presents an O(

√
� log n)-approximation for UCUFP on �-regular

graphs with sufficiently strong, in the sense of Ref. [86], expansion properties.

57.3.4 Single-Source Unsplittable Flow

Much better approximation guarantees exist for the case where all commodities share the same source,
the so-called single-source UFP (SUFP). In contrast to single-source EDP, SUFP is strongly NP-complete
[88]. The version of SUFP with costs has also been studied. In the latter problem every edge e ∈ E has a
nonnegative cost ce . The cost of an unsplittable flow solution is

∑
e∈E ce fe .

The first constant-factor approximations for all the three main objectives (minimizing congestion,
maximizing demand, and minimizing the number of rounds) were given by Kleinberg [88]. The factors
were improved by Kolliopoulos and Stein in Ref. [82], where also the first approximations for extended
SUFP were given. The grouping-and-scaling technique of Ref. [82] consists of partitioning the original
problem into a collection of independent subproblems, each of them with demands in a specified range.
The fractional solution is then used to assign capacities to each subproblem. The technique is, in general,
useful for translating within constant factors integrality gaps obtained for unit demand instances to
arbitrary demand instances. It found further applications, for example, in approximating CPIPs [38,83]
(cf. Section 57.3.2 above), in weighted UFP on trees [89], and in Ref. [90]. The currently best constant
factors for SUFP were obtained by Dinitz et al. [91], though none of them is known to be best possible under
some complexity-class separation assumption. Our understanding seems to be better for congestion. The
2-approximation in Ref. [91] is best possible if the fractional congestion is used as a lower bound. No
ratio better than 3/2 is possible unless P = N P . The lower bound comes from minimizing makespan on
parallel machines with allocation restriction [92], which reduces in an approximation-preserving manner
to SUFP. The mentioned scheduling problem is also a special case of the generalized assignment problem
for which a simultaneous (2, 1)-approximation for makespan and assignment cost exists [93]. Naturally
one wonders whether a simultaneous (2, 1)-approximation for congestion and cost is possible for SUFP.
This is an outstanding open problem. The currently best trade-off is a (3, 1)-approximation algorithm
due to Skutella [94], which cleverly builds on the earlier (3, 2)-approximation in Ref. [82]. Erlebach and
Hall [95] show that it is NP-hard to obtain a (2 − ε, 1)-approximation, for any fixed ε > 0. Experimental
evaluations of algorithms for congestion can be found in Refs. [96,97].

57.4 Variants of the Basic Problems

In this section we examine some variants of the basic problems. In the bounded-length EDP (BLEDP), an
additional input parameter M is specified. One seeks a maximum-cardinality set of disjoint si –ti paths,
i = 1, . . . , k, under the constraint that the length of each path is at most M. In (s , t)-BLEDP all the
pairs share the same source s and sink t. Cases that used to be tractable become NP-hard with the length
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constraint. Both in the vertex and the edge-disjoint case, (s , t)-BLEDP is NP-complete on undirected graphs
even when M is fixed [98]. For variable M and fixed k, the problems remain NP-complete [99]. It is NP-
hard to approximate (s , t)-BLEDP within O(n1/2−ε) on directed graphs and, unless NP = ZPP, BLEDP

cannot be approximated in polynomial time within O(n1/2−ε) on undirected graphs, for any fixed ε > 0
[17]. On the positive side it is easy to obtain an O(

√
m)-approximation for BLEDP. For the paths in the

optimal solution with length at most M′ := min{√m, M} the BGA with parameter L = M′ achieves an
O(M′)-approximation. This is because, in the notation of Section 57.2.2, O2 is empty. In contrast, there
are at most

√
m edge-disjoint paths of length more than

√
m. See Ref. [17] for other algorithmic results.

In transportation logistics a commodity may be splittable in different containers, each of them to be
routed along a single path. One wishes to bound the number of containers used. This motivates the
b-splittable flow problem, a relaxed version of UFP where a commodity can be split along at most b ≥ 1
paths, b an input parameter. This problem was introduced and first studied by Baier et al. [100]. Clearly
for b = m, it reduces to solving the fractional relaxation; it is NP-complete for b = 2. See Refs. [72,101]
for a continuation of the work in Ref. [100]. The author observes in Ref. [102] that the single-source
2-splittable flow problem admits a simultaneous (2, 1)-approximation for congestion and cost. Finally, a
problem in a sense complementary to b-splittable flow and with more history is the multiroute flow, where
for reliability purposes the flow has to be split along a given number of edge-disjoint paths. See Ref. [103]
for definitions and background.
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58.1 Introduction

We survey approximation algorithms and hardness results for versions of the Generalized Steiner Network
(GSN) problem in which we seek to find a low-cost subgraph (where the cost of a subgraph is the sum of the
costs of its edges) that satisfies prescribed connectivity requirements. These problems include the following
well-known problems: min-cost k-flow, min-cost spanning tree, traveling salesman, directed/undirected
Steiner tree, Steiner forest, k-edge/node-connected spanning subgraph, and others.

The type of problems we consider can be formally defined using the following unified framework. Let
G = (V, E ) be a (possibly directed) graph and let S ⊆ V . The S-connectivity λS

G (u, v) of (u, v) in G
is the maximum number of uv-paths such that no two of them have an edge or a node in S − {u, v} in
common.

Generalized Steiner Network
Instance: A (possibly directed) graph G = (V, E) with costs {ce : e ∈ E } on the edges, a node subset

S ⊆ V , and a nonnegative integer requirement function r (u, v) on V × V .
Objective: Find a minimum-cost spanning (i.e., on the same node set) subgraph G = (V, E ) of G so that

λS
G (u, v) ≥ r (u, v) for all (u, v) ∈ V × V (58.1)

58-1

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C058 March 20, 2007 17:35

58-2 Handbook of Approximation Algorithms and Metaheuristics

Extensively studied particular choices of S are the edge- (S = ∅), the node- (S = V), and the element-
(r (u, v) = 0 whenever u ∈ S or v ∈ S) GSN. For brevity, if r (u, v) is not specified, then r (u, v) = 0
by default. We may assume that the input graph G is complete, by assigning infinite costs to “forbidden”
edges. Under this assumption, we categorize the edge costs as follows:

• Augmentation problems ({0, 1}-edge costs). Here we are given a graph G 0, and the goal is to find
a min-size augmenting edge set F of new edges (any edge is allowed) so that Eq. (58.1) holds for
G = G 0 + F .

• Min-size subgraph problems ({1, ∞}-edge costs, known also as “uniform costs”). Given a graph H
(formed by the edges of cost 1 of G) find a min-size spanning subgraph G of H so that Eq. (58.1)
holds.

• Metric costs. Here we assume that the edge costs satisfy the triangle inequality.
• General (nonnegative) costs.

For each type of costs, we consider three types of requirements:

• Rooted (single source/sink) requirements. That is, there is s ∈ V so that if r (u, v) > 0, then u = s
for directed graphs, and u = s or v = s for undirected graphs.

• Uniform requirements. r (u, v) = k for every pair (u, v) ∈ V × V .
The corresponding “edge” and “node” versions are the k-Edge-Connected Spanning Subgraph
(k-ECSS) and the k-(Node-)Connected Spanning Subgraph (k-CSS) problems.

• Arbitrary (nonnegative) requirements.

In the capacitated GSN, every edge e of G has a capacity u(e) and the costs are per unit of capacity (the
capacitated GSN is reduced in pseudopolynomial time to the uncapacitated GSN by replacing every edge e
with u(e) copies of e). For simplicity, we consider the uncapacitated case only, and in addition assume that
rmax = maxu,v∈V r (u, v) is bounded in a polynomial in n = |V |. However, most algorithms are easily
adjusted to get the same performance without these simplifying assumptions.

Many well-known problems are particular cases of GSN. When there is only one pair (u, v) with
r (u, v) > 0 we get the (uncapacitated) min-cost k-flow problem, which is solvable in polynomial time
(cf., Ref. [1]). The undirected 1-ECSS (and 1-CSS) is just the Minimum Spanning Tree problem; however,
the directed 1-ECSS (and 1-CSS) is NP-hard. The undirected/directed rooted GSN with r (u, v) ∈ {0, 1}
is the extensively studied Undirected/Directed Steiner Tree problem (cf., Refs. [2,3]). The undirected GSN

with r (u, v) ∈ {0, 1} is the Steiner Forest problem which admits a 2-approximation algorithm. Several
other well-known problems are also particular cases of GSN. In this survey we focus on algorithms for
edge and node connectivity and rmax = maxu,v∈V r (u, v) arbitrary, although there are many interesting
results for element connectivity [4–8], as well as for small requirements, for example, Refs. [3,6,9–14]. See
also a previous survey in Ref. [15]. We survey only approximation algorithms (for exact algorithms see
Refs. [8,16,17]), with the currently best known approximation ratios. Table 58.1 summarizes the currently
best known approximation ratios and hardness results for edge/node-connectivity and uniform/general
requirements.

Small Requirements
For node-GSN with {0, 1} costs the following results are known. The problem admits an O(rmax · log n)-
approximation algorithm [22] (for S �= V the approximation ratio in Ref. [22] is O(log n)). For r (u, v) ∈
{0, 2} the problem is NP-hard and admits a 3/2-approximation algorithm [32]. For uniform requirements
r (u, v) = k for all u, v ∈ V the complexity status is not known for undirected graphs, but for any fixed
k an optimal solution can be computed in polynomial time [33]. For rooted uniform requirements (in
undirected graphs) the situation is similar [34]. For {1, ∞}-costs and uniform requirements the following
approximation ratios are known: 5/4 for undirected 2-ECSS [11], 4/3 for undirected 2-CSS [14], and
(π2/6+ ε) for directed 1-CSS [13]. For metric costs, both 2-ECSS and 2-CSS admit a 3/2-approximation
algorithm, [10]. For undirected k-CSS with arbitrary costs and k ≤ 8 there are k/2-approximation
algorithms [9,12].
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TABLE 58.1 Approximation Ratios and Hardness Results for GSN Problems. MC and GC Stand for Metric and

General Costs, UR and GR Stand for Uniform and General Requirements, Respectively. α = min
{

n
n−k ,

√
k

ln k

}
.

Edge-Connectivity Node-Connectivity

c & r Undirected Directed Undirected Directed

{0, 1} & UR in P [18] in P [19] min{2, 1 + k2

2opt
}[20,21] in P [20]

{0, 1} & GR in P [19] �(log n) [22] �(2log1−ε n) [7] �(2log1−ε n) [7]
{1, ∞} & UR 1 + 2/k [23,24] 1 + 2/k [23] 1 + 1/k [24] 1 + 1/k [24]

{1, ∞} & GR 2 [25] �(2log1−ε n) [26,27] �(2log1−ε n) [27] �(2log1−ε n) [26,27]
MC & UR 2 [28] 2 [28] 2 + (k − 1)/n [12] 2 + k/n [12]

MC & GR 2 [25] �(2log1−ε n) [26] O(log rmax) [29] �(2log1−ε n) [26]
GC & UR 2 [28] 2 [28] O(log k), n ≥ 2k2 [30] O(α · log2k) [31]

GC & GR 2 [25] �(2log1−ε n) [26] �(2log1−ε n) [27] �(2log1−ε n) [26]

Element-Connectivity
Most approximation algorithms for node connectivity can be extended to element-connectivity, but in
many cases better approximation ratios are possible. For general requirements and general edge-costs
undirected element-GSN admits a 2-approximation algorithm [5,6]. For {0, 1} costs the problem is NP-
hard (even for r (u, v) ∈ {0, 2}). For {0, 1} costs the best known approximation ratios are [7]: 7/4 for
arbitrary requirements, and 3/2 for {0, 1, 2}- or {0, k}-requirements.

58.2 Preliminaries

We now define some notation. An edge from u to v is denoted by uv. A uv-path is a path from u to v. For
an arbitrary two sets A, B of nodes and edges (or graphs) A − B is the set (or graph) obtained by deleting
B from A, where deletion of a node implies also deletion of all the edges incident to it; similarly, A + B
is the set (graph) obtained by adding B to A. Let H be a (possibly directed) graph or an edge set on node
set V . For disjoint X, Y ⊆ V we denote by δH (X, Y ) the set {uv ∈ H : u ∈ X, v ∈ Y } of the edges in H
from X to Y and dH (X, Y ) = |δH (X, Y )|; for brevity, δH (X) = δH (X, V − X) and dH (X) = |δH (X)|.
Let �H (X) be the set {v ∈ V − X : uv ∈ H for some u ∈ X} of neighbors of X in H . We sometimes omit
the subscripts if they are clear from the context. Given a graph, we call the new edges that can be added
to it links, to distinguish them from the existing edges. Let opt denote the optimal solution value of an
instance at hand.

Proposition 58.1

If there exists a ρ-approximation algorithm for the directed GSN then there exists a 2ρ-approximation
algorithm for the undirected GSN.

Proof
Given an instance I = (G, S, c , r ) of an undirected GSN, obtain an instance I ′ = (G′, S, c ′, r ′) of a
directed GSN as follows. Replace every edge uv of G by the two opposite directed edges uv, vu having the
same cost as uv, and for every u, v ∈ V set r ′(u, v) = r ′(v, u) = r (uv). Then apply the ρ-approximation
algorithm on I ′ to compute a subgraph D′ of G′, and output its underlying graph G . It is easy to see that
G is a feasible solution for I . Furthermore, if H is an arbitrary subgraph of G, and H ′ is the corresponding
subgraph of G′, then c ′(H ′) = 2c(H) and H is a feasible solution for I if and only if, H ′ is a feasible
for I ′. In particular, opt′ ≤ 2ρ · opt, where opt and opt′ denote the optimal solution value of I and I ′,
respectively. Thus c(G) ≤ c ′(D′) = ρ · opt′ ≤ 2ρ · opt.

Proposition 58.1 indicates that undirected problems cannot be much harder to approximate than the
directed ones; note that the reduction in the proof is “cost-type preserving.”
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We now briefly discuss some algorithms for rooted requirements (for additional literature see Refs.
[3,17,34–37]). A graph G = (V, E ) is said to be k-outconnected from s if it contains k-internally disjoint
sv-paths for every v ∈ V − s ; G is k-inconnected to s if it contains k-internally disjoint vs -paths for every
v ∈ V − s (for undirected graphs these two concepts are the same). When the paths are only required
to be edge-disjoint, we say that G is k-edge-outconnected from s or k-edge-inconnected to s , respectively.
Particular important cases of the rooted requirements are the k-Edge-Outconnected Subgraph (k-EOS) and
the k-Outconnected Subgraph (k-OS) problems, where r (s , v) = k for every v ∈ V . For directed graphs,
both k-EOS and k-OS can be solved in polynomial time, see Refs. [35,36], respectively. This implies:

Theorem 58.1

Undirected k-EOS and k-OS admit a 2-approximation algorithm.

Proof
We prove the statement for k-OS; the proof for k-EOS is identical. The algorithm is as follows. Replace
every edge uv of G by the two opposite directed edges uv, vu having the same cost as uv. Then in the
obtained directed graph G′ with cost function c ′ compute an optimal k-outconnected from s spanning
subgraph D′ of G′, and output its underlying graph G . It is easy to see that G is a feasible solution.
Furthermore, if H is an arbitrary subgraph of G, and H ′ is the corresponding subgraph of G′, then
c ′(H ′) = 2c(H) and H is k-outconnected from s if, and only if, H ′ is k-outconnected from s . In
particular, opt′ ≤ 2ρ · opt, where opt and opt′ denote the optimal solution value to G and G′, respectively.
Thus c(G) ≤ c ′(D′) = ρ · opt′ ≤ 2ρ · opt.

Theorem 58.1 is widely used for designing approximation algorithms for k-ECSS and k-CSS. For
example, it was observed in Ref. [28] that (a possibly directed) graph G = (V, E ) is k-edge-connected
if, and only if, G is both k-edge-outconnected from s and k-edge-inconnected to s for some s ∈ V . This
implies:

Theorem 58.2 (Khuller and Vishkin [28])

Both directed and undirected k-ECSS admit a 2-approximation algorithm.

This method does not work directly for k-CSS, since a graph (digraph) which is k-outconnected from
s (and also k-inconnected to s ) is usually not k-connected. However, many algorithms for k-CSS use an
extension of this method, see Sections 58.6 and 58.7.2.

Definition 58.1

Let H = (V, E ) be a (possibly directed) graph. X ⊆ V is an 
-fragment (in H) if |�H (X)| ≤ 
 and
V − (X + �H (X)) �= ∅. If H is undirected then T ⊆ V is an 
-fragment transversal if T intersects every

-fragment. If H is directed then a pair (T−, T+) with T−, T+ ⊆ V is an 
-fragment transversal if T−
intersects every 
-fragment in H and T+ intersects every 
-fragment in the reverse graph of G.

When considering k-CSS we will assume that all the graphs are simple. It is well known that in this case,
a (directed or undirected) graph G = (V, E ) is k-connected if, and only if, either G is a complete graph
on (k + 1) nodes or |V | ≥ k + 2 and G has no (k − 1)-fragments, cf. Ref. [38]. An edge e of a graph G
is said to be critical (with respect to k-connectivity) if G is k-connected but G − e is not. For k-CSS we
repeatedly use consequences of the following “Critical Cycle Theorem” due to Mader [39].

Theorem 58.3 (Mader [39])

In a k-connected undirected graph H, any cycle of critical edges has a node v with dH (v) = k.

Corollary 58.1

Let T be a (k − 1)-fragment transversal in an undirected graph G 0, and let E ′ = {uv : u �= v ∈ T}. Then
G 0 + E ′ is k-connected. Moreover, if |�(v)| ≥ k − 1 for every v ∈ V, and if F ⊆ E ′ is an inclusion minimal
edge set such that G 0 + F is k-connected, then F is a forest on T and thus |F | ≤ |T | − 1.
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Proof
The first statement follows from Menger’s Theorem. For the second statement, note that if F contains a
cycle C , then dG 0+F (v) = dG 0 (v) + dF (v) ≥ k + 1 for every v ∈ C . This contradicts Theorem 58.3.

We now state the directed counterparts (also due to Mader [40]) of Theorem 58.3 and Corollary 58.1.
An even length sequence of directed edges C = (v1v2, v3v2, v3v4, . . . , v2q−1v2q , v1v2q ) in a directed
graph H is called an alternating cycle; the nodes v1, v3, . . . , v2q−1 are C-out nodes, and v2, v4, . . . , v2q are
C-in nodes.

Theorem 58.4 (Mader [40])

In a k-connected directed graph H, any alternating cycle C of critical edges contains a C-in node whose
indegree in H is k, or a C-out node whose outdegree in H is k.

Theorem 58.4 implies that if the indegree and the outdegree of every node in H is at least k − 1, and if
F is an inclusion minimal edge set such that H + F is k-connected, then F contains no alternating cycle.
One can associate with every directed graph J = (V, F ) an undirected bipartite graph J ′ = (V + V ′, F ′)
by adding a copy V ′ of V and replacing every edge uv ∈ F by the edge uv′. Mader proved [40] that J has
no alternating cycle if, and only if, J ′ is a forest.

Corollary 58.2

Let (T−, T+) be a (k−1)-fragment transversal in an directed graph G 0, and let E ′ = {uv : u ∈ T−, v ∈ T+}.
Then G 0 + E ′ is k-connected. Moreover, if the indegree and the outdegree of every node v in G 0 is at least
k − 1, and if F ⊆ E ′ is an inclusion minimal edge set such that G 0 + F is k-connected, then F has no
alternating cycle and thus |F | ≤ |T−| + |T+| − 1.

58.3 Edge-Covers of Set-Functions and LP-Relaxations

Theorem 58.5 (Generalized Menger’s Theorem)

Let u, v be two nodes of a (directed or undirected) graph G = (V, E ) and let S ⊆ V. Then λS
G (u, v) =

min{|C | : C ⊆ E + S − {u, v}, G − C has no uv-path} .

This formulation of Menger’s Theorem for S-connectivity is easily deduced from its original theorem
by standard constructions. Using Theorem 58.5, GSN can be formulated as a setpair-function edge-cover
problem as follows. X ′, X ′′ ⊆ V is a setpair (of V) if X ′ ∩ X ′′ = ∅; if V − S ⊆ X ′ ∪ X ′′ then (X ′, X ′′) is
an S-setpair. Let us extend the definition of r to setpairs as follows:

r (X ′, X ′′) = max{r (u, v) : u ∈ X ′, v ∈ X ′′} ∀ S-setpair (X ′, X ′′), X ′, X ′′ �= ∅ (58.2)

and r (X ′, X ′′) = 0 otherwise. Let q be a function defined on setpairs of V by

q(X ′, X ′′) = max{r (X ′, X ′′) − (|V | − |X ′ ∪ X ′′|), 0} ∀ setpair (X ′, X ′′) (58.3)

Then Eq. (58.1) is equivalent to

dG (X ′, X ′′) ≥ q(X ′, X ′′) ∀ setpair (X ′, X ′′) (58.4)

It might be the case (e.g., in augmentation problems) that we are already given an initial graph G 0 = (V, E 0)
and we seek for a min cost/size set F of links so that Eq. (58.1) holds for G = G 0 + F . In this case, let

p(X ′, X ′′) = max{q(X ′, X ′′) − dG 0 (X ′, X ′′), 0} ∀ setpair (X ′, X ′′) (58.5)

Since F is a set of links (i.e., of new edges), then Eq. (58.4) is equivalent to

dF (X ′, X ′′) ≥ p(X ′, X ′′) ∀ setpair (X ′, X ′′) (58.6)
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Let p(X ′, X ′′) be defined by Eq. (58.5). Let I = E − E 0, and associate a variable xe with every link e ∈ I .
Then we get the following LP-relaxation for GSN that has an exponential number of constraints, but it
can be solved using the ellipsoid method, and, in many cases, more efficiently by max-flow techniques.

min
∑

e∈I ce xe (58.7)

s.t.
∑

e∈δI (X ′, X ′′) xe ≥ p(X ′, X ′′) ∀ setpair (X ′, X ′′)
0 ≤ xe ≤ 1 ∀e ∈ I

For directed k-OS an appropriate choice of p is p(X ′, X ′′) = k − |V − (X ′ + X ′′)|, if (X ′, X ′′) is a
setpair with s ∈ X ′ and X ′′ �= ∅, and p(X ′, X ′′) = 0 otherwise. Frank and Tardos [36] proved that linear
program (58.7) always has an optimal solution which is integral. This can be used to show that:

Lemma 58.1

Let G 0 be an 
-outconnected from s subgraph of cost zero of a directed k-outconnected from s graph G, 
 < k.
Then the minimum cost of an (
+1)-outconnected spanning subgraph ofG is at most 1

k−

times the minimum

cost of a k-outconnected from s spanning subgraph of G.

We now consider edge-connectivity problems. In this case S = ∅, and thus (X ′, X ′′) is an S-setpair if,
and only if, X ′′ = V − X ′; in particular, p(X ′, X ′′) > 0 implies X ′′ = V − X ′. Thus p can be considered
as a set-function on subsets of V , where its value on X is p(X, V − X). Similarly, r can be considered as
a set function where its value on X is r (X, V − X). Then Eq. (58.6) and linear program (58.7) can be
rewritten as

dF (X) ≥ p(X) ≡ max{r (X) − dG 0 (X), 0} ∀ X ⊆ V (58.8)

min
∑

e∈I ce xe (58.9)

s.t.
∑

e∈δI (X) xe ≥ p(X) ∀ X ⊆ V

0 ≤ xe ≤ 1 ∀e ∈ I

Definition 58.2

A set function p is skew-supermodular (or weakly supermodular) if for every X, Y ⊆ V at least one of the
following holds:

p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y ) (58.10)

p(X) + p(Y ) ≤ p(X − Y ) + p(Y − X) (58.11)

If Eq. (58.10) always holds whenever X ∩ Y �= ∅ and X ∪ Y �= V, then p is crossing supermodular.

Lemma 58.2

Let G 0 = (V, E 0) be a (possibly directed) graph, let r be a requirement function on V × V, and let
p(X) = r (X) − dG 0 (X) for all X ⊆ V.

(i) For undirected G 0 p is skew-supermodular.
(ii) For both directed an undirected G 0, if r (X) = k for all X ⊆ V then p is crossing supermodular.

The following concepts are used in Sections 58.5.2 and 58.7.1. Let x belong to a polyhedron P ⊆ Rm

defined by a system I of linear inequalities; an inequality in I is tight (for x) if it holds as equality for x .
x ∈ P is a basic solution for the system defining P if there exists a set of m tight inequalities from
the system defining P such that x is the unique solution for the corresponding equation system; that
is, the corresponding m tight equations are linearly independent. It is well known that if the problem
min{c x : x ∈ P } has an optimal solution, then it has an optimal solution which is basic. Let x be
an arbitrary basic solution for linear program (58.9), and consider the corresponding m tight linearly
independent equations. We will be particularly interested in “fractional” solutions with 0 < xe < 1 for
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all e ∈ I ; in this case, every tight equation is of the form
∑

e∈I xe = p(X), and then we say that X
is tight (for x). Let us say that a family of tight sets on V is x-defining if x is the unique solution for
{∑e∈δI (X) xe = p(X), ∀X ∈ F}. A family F of sets is laminar if for every A, B ∈ F , either A ∩ B = ∅,
or A ⊆ B , or B ⊆ A. Part (i) of the following statement is from Ref. [25] and part (ii) from Ref. [41].

Theorem 58.6 (Jain [25], Melkonian and Tardos [41])

Let x be a basic feasible solution for linear program (58.9) and assume that 0 < xe < 1 for all e ∈ I .

(i) If I is undirected and p is skew-supermodular then there exists an x-defining family which is laminar.
(ii) If I is directed and p is crossing supermodular, then there exists an x-defining family F and O ⊆ F

such that if I = {V − X : X ∈ F − O} then the family I + O is laminar.

58.4 Connectivity Augmentation Problems ({0, 1}-Costs)

58.4.1 An O(log n)-Approximation Algorithm for Arbitrary Requirements

Here we present the result of Ref. [22] for the following problem (for surveys of the cases that are in P see
[8,17]):

Connectivity Augmentation
Instance: A directed/undirected graph G 0 = (V, E 0), S ⊆ V , and a requirement function r (u, v) on

V × V .
Objective: Find a minimum-size set F of links so that λS

G 0+F (u, v) ≥ r (u, v) for all (u, v) ∈ V × V .

Theorem 58.7 (Kortsarz and Nutov [22])

Connectivity augmentation (CA) admits an O(log n)-approximation algorithm except the case S = V for
which there exists an O(rmax log n)-approximation algorithm.

For S �= V the approximation ratio in Theorem 58.7 is tight since the problem has an �(ln n)-
approximation threshold [34] (for directed graphs even for rooted {0, 1}-requirements, see Theorem 58.21).
For S = V , the approximation ratio in Theorem 58.7 is tight for small requirements, but may seem
weak if rmax is large. However, a much better approximation algorithm might not exist; for S = V
CA with r (u, v) ∈ {0, k} (k = �(n)) cannot be approximated within 2log1−ε n for any ε > 0 unless
NP ⊆ DTIME(npolylog(n)) [7]. We note that Theorem 58.7 is also unlikely to be extended to {0, 1, ∞}-
costs case, see Theorem 58.23.

The proof of Theorem 58.7 follows. We prove Theorem 58.7 for the directed case, and the statement for
the undirected CA follows from Proposition 58.1. Let F ′ be an arbitrary solution for an instance G 0, S, r
of directed CA. Subdivide every edge in F ′ by a new node, and then identify all these new nodes into a node
s . The obtained graph satisfies the requirements between nodes in V , and the number of links incident to
s is 2|F ′|. If V − S �= ∅, then by identifying s with some node v ∈ V − S we get that the links added form
a feasible solution for G 0, S, r . This implies:

Corollary 58.3

For any solution F ′ for directed CA with S �= V and any s ∈ V − S, there exists a solution F with |F | ≤ 2|F ′|
such that all the links in F are incident to s .

If S = V , we make rmax copies s1, . . . , srmax of s and of the links incident to s , choose arbitrary rmax

nodes {v1, . . . , vrmax}, and identify every si with vi . Again, it is easy to see that the new links added form
a feasible solution to the CA instance, and the number of links added is 2|F ′|rmax.

Given an instance G 0, S, r for directed CA, let H0 = G 0 + s (note that s /∈ S). We say that a set F
of links incident to s is a feasible solution for H0 if H0 + F satisfies the S-connectivity requirements
defined by r . The H0-problem is to find a feasible solution for H0 of minimum size. We show an O(log n)-
approximation algorithm for the H0-problem. This is done by approximating the following two problems.
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Let H+
0 be obtained from H0 by adding rmax edges from s to every node in V , and H−

0 is obtained by
adding rmax edges from every node in V to s . A set F + (F −) of links entering (leaving) s is a feasible
solution for H+

0 (for H−
0 ) if H+

0 + F + (if H−
0 + F −) satisfies the S-connectivity requirements defined

by r . The H+
0 -problem is to find a feasible solution for H0 of minimum size opt+, and the H−

0 problem
is defined similarly.

Lemma 58.3

Let F + and F − be a feasible solution for H+
0 and for H−

0 , respectively. Then F + + F − is a feasible solution
for the H0 problem.

Lemma 58.4

The H+
0 -problem (and the H−

0 -problem) admits an O(log n)-approximation algorithm.

The algorithm for directed CA with S �= V is as follows:

(1) Using the algorithm from Lemma 58.4 find a solutions F + for the H+
0 -problem and F − for the

H−
0 -problem, so that |F +| = O(log n)opt+ and |F −| = O(log n)opt−.

(2) Let F = F + + F −, and let H = H0 + F .
Obtain a graph G from H by identifying s with an arbitrary node in V − S.

The algorithm computes a feasible solution, by Corollary 58.3 and Lemma 58.3. The approximation
ratio is O(log n), by Lemma 58.4. To complete the proof of Theorem 58.7 it remains to prove Lemmas
58.3 and 58.4. We need the following statement that stems from Menger’s Theorem.

Fact 58.1

λS
H (u, v) ≥ r (u, v) if, and only if, |Q| + dH (X, Y ) ≥ r (u, v) for any partition X, Q, Y of the node set of

H with u ∈ X, v ∈ Y , and Q ⊆ S.

Proof of Lemma 58.3
Let H = H0 + F . Suppose to the contrary there are u, v ∈ V so that λS

H (u, v) < r (u, v). Then by Fact 58.1
there exists a partition X, Q, Y of V + s with u ∈ X , v ∈ Y , and Q ⊆ S such that |C | < r (u, v) for
C = Q + δH (X, Y ). Note that s /∈ C , so s ∈ X or s ∈ Y . If s ∈ X then δH−(X, Y ) = δH (X, Y ), where
H− = H−

0 + F −, so H− − C has no uv-path. Since |C | < r (u, v), we get that λS
H−(u, v) < r (u, v),

contradicting that F − is a feasible solution for H−
0 . The proof for the case s ∈ Y is similar.

In the rest of this section we prove Lemma 58.4. We use a result due to Wolsey [42] about the performance
of the greedy algorithm for a certain type of covering problems. A Covering Problem is defined as follows:

Instance: An integer nondecreasing function p given by an evaluation oracle on subsets of a groundset I .
Objective: Find F ⊆ I of minimum size so that p(F ) = p(I ).

The Greedy Algorithm starts with F = ∅ and adds elements to the solution one after the other using the
following simple greedy rule. As long as p(F ) < p(I ) it adds to F an element e ∈ I that has maximum
p(F +e)− p(F ); if this step can be performed in polynomial time, then the algorithm can be implemented
in polynomial time. Let �p = maxe∈I ( p(e) − p(∅)), and for an integer k let H(k) be the kth Harmonic
number.

Theorem 58.8 (Wolsey [42])

Suppose that for an instance of a covering problem
∑

e∈F2

( p(F1 + e) − p(F1)) ≥ p(F1 + F2) − p(F1) ∀F1, F2 ⊆ I , F1 ∩ F2 = ∅ (58.12)

Then the Greedy Algorithm produces a solution of size at most H(�p) times the optimal.
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We formulate the H+
0 -problem as a covering problem and using Theorem 58.8 show that it admits

an O(log n)-approximation algorithm. The set I is obtained by taking rmax links from v to s for every
v ∈ V . We also need to define a function p on the subsets of I . For (u, v) ⊆ V × V and F + ⊆ I , let
q(F +, (u, v)) = max{r (u, v) − λS

H+
0 +F +(u, v), 0} be the deficiency of (u, v) in H+

0 + F +. Let

q(F +) =
∑

(u,v)∈V×V

q(F +, (u, v))

be the total deficiency of H+
0 +F +. Then p(F +) = q(∅)−q(F +). In other words, p(F +) is the decrease in

the total deficiency as a result of adding F + to H+
0 ; in the corresponding covering problem, the goal is to find

a minimum size F + ⊆ I so that p(F +) = p(I ) (that is, q(F +) = 0). Clearly p is increasing. The Greedy
Algorithm can be implemented in polynomial time, as p(F +) can be computed in polynomial time for any
link set F +. Clearly,�p ≤ n2. We prove that Eq. (58.12) holds for p, and thus Theorem 58.8 implies that the
Greedy Algorithm produces a solution of size at most H(�p) · opt+ ≤ H(n2) · opt+ = O(log n) · opt+.

Let F1, F2 ⊆ I be disjoint link sets. To simplify the notation, denote J = H+
0 + F1, F = F2, and denote

by �(F , (u, v)) the decrease in the deficiency of (u, v) as a result of adding F to J . Namely, �(F , (u, v))
is obtained by subtracting the deficiency of (u, v) in J + F from the deficiency of (u, v) in J . Then
Eq. (58.12) is equivalent to

∑

e∈F

∑

(u,v)∈V×V

�(e , (u, v)) ≥
∑

(u,v)∈V×V

�(F , (u, v))

Consequently, it would be sufficient to show that
∑

e∈F

�(e , (u, v)) ≥ �(F , (u, v)) ∀(u, v) ∈ V × V (58.13)

Let u, v ∈ V . If λS
J (u, v) ≥ r (u, v), then Eq. (58.13) is valid, since both its sides are zero. Note that

λJ +F (u, v) − λJ (u, v) ≥ �(F , (u, v)), while �(e , (u, v)) = λS
J +e (u, v) − λS

J (u, v) if λS
J (u, v) ≤

r (u, v) − 1. Thus if λS
J (u, v) ≤ r (u, v) − 1, it would be sufficient to prove that for any link set F

entering s :
∑

e∈F

(
λS

J +e (u, v) − λS
J (u, v)

) ≥ λJ +F (u, v) − λJ (u, v) ∀(u, v) ∈ V × V

Let us say that X ⊆ V is (u, v)-tight (in J ) if there exists a partition X, Q, Y of V with u ∈ X , v ∈ Y ,
and Q ⊆ S such that |Q| + dJ (X, Y ) = λS

J (u, v). It is well known and easy to show that:

Fact 58.2

The intersection and union of two (u, v)-tight sets are also (u, v)-tight.

For u ∈ V let Xu be the unique minimal (u, v)-tight set in J. By Fact 58.1 and the definition of J,
λS

J +e (u, v) −λS
J (u, v) = 1 if e connects Xu with s . Let t = λS

J +F (u, v) −λS
J (u, v). Then at least t links in

F must connect Xu with s . Thus, each one of these t links contributes 1 to
∑

e∈F

(
λS

J +e (u, v) − λS
J (u, v)

)
.

This finishes the proof of Lemma 58.4, and the proof of Theorem 58.7 is complete.

58.4.2 Augmenting a k-Connected Graph to Be (k + 1)-Connected

Recall that a simple graph is k-connected if there are k pairwise internally disjoint paths between every pair
of its nodes. We describe a version of Jordán’s algorithm [38,43] from Ref. [44] for the following problem:

Instance: A k-(node) connected graph G .
Objective: Find a smallest set F of links so that the graph G + F is (k + 1)-connected.

The complexity status of this problem is a major open question in graph connectivity. Recall that a similar
problem for digraphs is solvable in polynomial time [10], and this implies a 2-approximation algorithm
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for undirected graphs. Jordán’s algorithm computes an augmenting edge set with at most �(k − 1)/2�
edges over (a lower bound of) the optimum. The following property of k-fragments (cf. Ref. [38]) is
used.

Lemma 58.5

Let X, Y be two intersecting k-fragments in a k-connected graph G. If V − (X + Y + �(X + Y )) �= ∅ or if
|V − (X + Y )| ≥ k, then X ∩ Y is also a k-fragment.

It follows from Menger’s Theorem that G + F is (k + 1)-connected if, and only if, F has a link between
X and V − (X +�(X)) for every k-fragment X of G . Henceforth, let T be an arbitrary inclusion minimal
k-fragment transversal in G ; such T can be computed in polynomial time using max-flow techniques.

Lemma 58.6

opt ≥ �|T |/2�. Furthermore, if |T | ≥ k + 2 then the minimal k-fragments are disjoint.

Proof
Let F(G) denote the family of inclusion minimal k-fragments of G . Clearly |F(G)| ≥ |T |. We will prove
that opt ≥ �|F(G)|/2�. For that, it would be enough to show that |F(H + e)| ≥ |F(H)| − 2 for any
k-connected graph H and link e . If not, then there is a link e = uv and X, Y ∈ F(H) such that u ∈ X ∩ Y
and v ∈ V − (X + Y + �(X + Y )). By Lemma 58.5 X ∩ Y is also a k-fragment of H , contradicting
the minimality of X, Y . Now suppose that |T | ≥ k + 2. The minimality of T implies that for every
u ∈ T there exists Xu ∈ F(G) with |Xu ∩ T | = {u}. If the sets {Xu : u ∈ T} are pairwise disjoint,
the statement is obvious. Suppose therefore that there are Xu and Xv that intersect. If |T | ≥ k + 2,
then |V − (Xu ∪ Xv)| ≥ |T | − 2 ≥ k, and thus by Lemma 58.5 their intersection is also a k-fragment,
contradicting the minimality of Xu , Xv .

Another lower bound on opt is as follows. For C ⊆ V the C-components are the connected components
of G − C and let b(C) denote the number of C -components; C is a k-separator of G if |C | = k and
b(C) ≥ 2. A k-separator C is a k-shredder if b(C ) ≥ 3. All k-shredders separating two given nodes u, v

can be found using one max-flow computation, as follows. First, compute a set � of k internally disjoint
uv-paths, and set P to be the the union of their nodes. Second, for every connected component X of
G − (P −{u, v}) check whether �(X) is a k-shredder. The algorithm is correct since if C is a k-shredder so
that u, v belong to distinct C -components, then every C -component X with X ∩{u, v} = ∅ is a connected
component of G − (P − {u, v}); this is so since C ⊆ P − {u, v} and X ∩ P = ∅. Indeed, any uv-path
that contains a node from X goes through C at least twice, and thus contains at least two nodes from C ,
but since |C | = |�| and the paths in P are internally disjoint this is not possible for a path from �.

Let b(G) = max{b(C) : C ⊆ V, |C | = k}. If G + F is (k + 1)-connected then |F | ≥ b(G) − 1,
since for any k-separator C , F must induce a connected graph on the C -components. Combining with
Lemma 58.6 gives

opt ≥ max{�|T |/2�, b(G) − 1} (58.14)

Theorem 58.9 (Jordán [38,43])

There exists a polynomial-time algorithm that given a k-connected graph G = (V, E ) finds an augmenting
edge set F with |F | ≤ opt + �(k − 1)/2� such that G + F is (k + 1)-connected. Moreover, for any minimal
k-fragment transversal T of G the following holds: |F | = max{�|T |/2�, b(G) − 1} = opt if b(G) ≥ k + 1,
and |F | ≤ �|T |/2� + �(k − 1)/2� if b(G) ≤ k and |V | ≥ 2k + 1.

A link uv with u, v ∈ T is (G , T)-legal if T − {u, v} is a k-fragment transversal of G + uv. Intuitively,
whenever |T |/2 > b(G) − 1 the idea is to add a single link and reduce the size of the traversal by 2. One
can find a (G , T)-legal pair or determine that such does not exist in polynomial time using max-flow
techniques. The algorithm relies on the following key theorem (part (i) is from Ref. [44] and part (ii) is
from Ref. [38]).
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Theorem 58.10 (Liberman and Nutov [44], Jordán [38])

Let T be a minimal k-fragment transversal of a k-connected graph G = (V, E ). Then:

(i) If C is a k-shredder of G with b(C ) = b(G) ≥ k +1 and if X is a C-component with |T ∩ X| ≥ b(C)
then there exists a (G , T)-legal link e = uv with u, v ∈ X ∩ T.

(ii) If |V | ≥ 2k + 1 and |T | ≥ k + 3 then either b(G) = |T |, or there exists a (G , T)-legal link.

The case b(G) ≥ k + 1: Let C be a k-shredder with b(C) = b(G) ≥ k + 1. Then X ∩ C = ∅ for any
minimal tight set X , as otherwise it can be shown that X has a neighbor in every C -component, which gives
a contradiction k = |�(X)| ≥ b(C ) ≥ k + 1. In particular, T ∩ C = ∅. Thus every minimal k-fragments
is contained in some C -component, and (by Lemma 58.5) the minimal k-fragments are pairwise disjoint.
Let us say that a link set F on T is a (C , T)-connecting cover if the following three conditions hold:
(a) dF (v) ≥ 1 for every v ∈ T ; (b) every edge in F connects distinct C -components; (c) F induces
a connected graph on the C -components. Let max(C , T) = max{|T ∩ X| : X is a C -component}. In
Ref. [44] it is proved:

Lemma 58.7

If b(C) ≥ k + 1 then any (C , T)-connecting cover is a feasible solution. Furthermore, an optimal (C , T)-
connecting cover of size max{�|T |/2�, max(C , T), b(C ) − 1} can be found in polynomial time.

The following algorithm finds an (optimal) augmenting edge set F of size max{�|T |/2�, b(G) − 1}.
Phase 1: While there exists a C -component X with |T ∩ X| ≥ b(C) do:

Find a (G , T)-legal link uv with u, v ∈ X and set G ← G + uv, T ← T − {u, v};
End While

Phase 2: Add to G a minimum size (C , T)-connecting cover.

The condition in the loop of phase 1 ensures that an appropriate (G , T)-legal link exists, by Theo-
rem 58.10(i). Consequently, the algorithm is correct, by Lemma 58.7. Let F1 and F2 be the link sets added
at phases 1 and 2, respectively. We show that |F1| + |F2| = max{�|T |/2�, b(C) − 1} = opt. If F1 = ∅
then max(C , T) ≤ b(C ) − 1, and thus by Lemma 58.7 |F | = |F2| = max{�|T |/2�, b(C) − 1}. Assume
therefore that F1 �= ∅. Let T2 be the set of nodes in T when phase 2 starts. Clearly |T2| = |T | − 2|F1|.
We claim that |F2| = �|T2|/2� and thus |F1| + |F2| = |F1| + �(|T | − 2|F1|)/2� = �|T |/2� = opt.
To see that |F2| = �|T2|/2�, note that there is a C -component X with |X ∩ T2| ≥ b(C) − 2, while
|Y ∩ T2| ≥ 1 for any other C -component Y , so |T2| ≥ (b(C) − 2) + (b(C) − 1) = 2b(C) − 3. Conse-
quently, |F2| = max{�|T2|/2�, b(C ) − 1} = �|T2|/2�.

The case b(G) ≤ k : The following statement from Ref. [43] is used when |V | ≤ 2k.

Lemma 58.8

Let G be a k-connected graph with |V | ≤ 2k, and let F1 = {u1v1, . . . , u j v j } be a sequence of links such that
ui vi is (Gi , Ti )-legal where for i = 1, . . . , j : G 1 = G, T1 = T, Gi+1 = Gi +ui vi , and Ti+1 = Ti −{ui , vi }.
If |Tj+1| ≥ k + 3 and if no (G j+1, Tj+1)-legal link exists, then one can find in polynomial time a link set
F2 so that G + F1 + F2 is (k + 1)-connected and |F1| + |F2| ≤ opt + �(k − 1)/2�.

Here is a description of the algorithm for the case b(G) ≤ k.

Phase 1: While |T | ≥ k + 3 and there exists a (G , T)-legal link uv do:
G ← G + uv, F ← F + uv, T ← T − {u, v}.

End While
Phase 2: If |T | ≤ k + 2 add to G a forest on T as in Corollary 58.1;

Else (|V | ≤ 2k) add to G an augmenting edge set as in Lemma 58.8.

We now finish the proof of Theorem 58.9 for the case b(G) ≤ k. Let F1 and F2 be the link sets added
phases 1 and 2, respectively. Let T2 be the set of nodes in T when phase 2 starts. The case |T2| = 0 is
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obvious, while |T2| = 1 is not possible. Assume therefore that |T2| ≥ 2. If |T2| ≤ k + 2 then:

|F1| + |F2| = (|T | − |T2|)/2 + (|T2| − 1) = �|T |/2� + �(|T2| − 1)/2� − 1 ≤ �|T |/2� + �(k − 1)/2�
If |T2| ≥ k+3, then |V | ≤ 2k, by Theorem 58.10 (ii). The correctness of this case follows from Lemma 58.8.

58.5 Min-Size k-Connected Spanning Subgraphs ({1, ∞}-Costs)

58.5.1 Algorithm Based on Edge-Covers

Here we consider simple graphs only and survey the results from Ref. [24] (see Ref. [23] for the case of
multigraphs).

Theorem 58.11 (Cheriyan and Thurimella [24])

Both directed and undirected min-size k-CSS admit a (1 + 1/k)-approximation algorithm. The undirected
min-size k-ECSS admits a (1 + 2/(k + 1))-approximation algorithm.

The proof of Theorem 58.11 relies on two lower bounds on the optimum. The first lower bound is as
follows. Let G = (V, E ) be a graph and let n = |V |. Note that if G = (V, E ) is k-edge-connected then
dG (v) ≥ k for every v ∈ V ; thus |E | ≥ kn/2 if G is undirected and |E | ≥ kn if G is directed. The same is
true if G is k-connected, since then G is also k-edge connected. This implies the following lower bound on
opt for min-size k-CSS and k-ECSS: opt ≥ kn/2 for undirected graphs and opt ≥ kn for directed graphs.

The above lower bound can be used to get a 2-approximation algorithm for both directed and undirected
k-CSS and k-ECSS. Let G be a minimally k-connected graph, that is, G is k-connected, but G − e is not
k-connected for any edge e of G . If G is undirected then G has at most kn edges, by Corollary 58.1.
Similarly, if G is directed then G has at most 2kn edges, by Corollary 58.2. These bounds extend to edge-
connectivity as well. Thus by simply taking a minimally k-connected (k-edge-connected) graph we obtain
a 2-approximation algorithm, for the directed and undirected min-size k-CSS (k-ECSS).

One can improve on this using the following idea. For undirected graphs an edge set E 0 on V is an

-edge cover (of V) if dE 0 (v) ≥ 
 for every v ∈ V ; for directed graphs we require that both the indegree
and the outdegree of every node is at least 
. For both directed and undirected graphs a minimum size

-edge cover can be computed in polynomial time, since it is a complementary problem of the b-matching
problem, cf., Ref. [1]. The algorithm for (both directed and undirected) min-size k-CSS is as follows.

Phase 1: Find a minimum size (k − 1)-edge cover E 0 ⊆ E .
Phase 2: Find an inclusion minimal edge set F ⊆ E − E 0 so that G 0 + F is k-connected.

Clearly |E 0| ≤ opt. For undirected graphs |F | ≤ n − 1 ≤ 2opt/k, while for directed graphs |F | ≤
2n − 1 ≤ 2opt/k. Thus |F | ≤ 2opt/k for both directed and undirected graphs. Consequently, the size of
the subgraph computed by the algorithm is bounded by |E 0| + |F | ≤ opt + 2opt/k = opt(1 + 2/k).

The following key theorem from Ref. [24] enables to improve the approximation ratio from 1 + 2/k to
1 + 1/k.

Theorem 58.12 (Cheriyan and Thurimella [24])

Let G = (V, E ) be an undirected graph with minimum degree ≥ k, and let E 0 ⊆ E be a minimum size
(k − 1)-edge edge cover. If G is k-connected or bipartite, then |E | ≥ |E 0| + �|V |/2�.

Using the improved lower bound provided by Theorem 58.12 we get for undirected graphs:

|E 0| + |F | ≤ (opt − �n/2�) + (n − 1) ≤ opt + n/2 ≤ (1 + 1/k)opt

For directed graphs, a similar analysis on the associated bipartite graph gives

|E 0| + |F | ≤ (opt − �2n/2�) + (2n − 1) ≤ opt + (n − 1) ≤ (1 + 1/k)opt
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We now turn to the undirected min-size k-ECSS. For this case the algorithm is almost the same, but at
phase 1 we find a minimum size k-edge-cover E 0 ⊆ E (instead of a (k − 1)-edge cover). The proof of the
approximation ratio is based on the following statement from Ref. [24].

Theorem 58.13 (Cheriyan and Thurimella [24])

Let G 0 be an undirected graph of minimal degree ≥ k, and let F be an inclusion minimal edge set so that
G 0 + F is k-connected. Then |F | ≤ kn/(k + 1).

The approximation ratio (1 + 2/(k + 1)) follows, since |F | ≤ 2opt/(k + 1) and thus |E 0| + |F | ≤
opt + 2opt/(k + 1) = (1 + 2/(k + 1))opt. This completes the proof of Theorem 58.11.

58.5.2 LP-Rounding Algorithm for Directed Min-Size k-ECSS

Theorem 58.14 (Gabow, Goemans, Tardos, and Williamson [23])

Directed min-size k-ECSS admits a (1 + 2/k)-approximation algorithm.

The proof of Theorem 58.14 (due to Ref. [23]) follows. The algorithm computes a basic optimal solution
y to Eq. (58.9) with p(X) = k for all ∅ �= X ⊂ V , and outputs G = (V, E ) where E = {e : ye > 0}.
Clearly, the derived solution is feasible. Let us partition E into F = {e : 0 < ye < 1}and E 0 = {e : ye = 1}.
Let x be the restriction of y to F . Let x(F ) = ∑

e∈F xe , and opt∗ = |E 0|+x(F ) be the optimal (fractional)
value of linear program (58.9). Clearly, opt∗ ≥ kn and thus the approximation ratio ρ (and the integrality
gap) is bounded by:

ρ = |E 0| + |F |
|E 0| + x(F )

= 1 + F − x(F )

E 0 + x(F )
= 1 + |F | − x(F )

opt∗
≤ 1 + |F | − x(F )

kn
(58.15)

Let G 0 = (V, E 0). Then x is an optimal basic solution to linear program (58.9) with p defined by
Eq. (58.8). By Lemma 58.2 p is crossing supermodular. By Theorem 58.6(ii) there exists an x-defining
family F and O ⊆ F such that if I = {V − X : X ∈ F −O} then the family I +O is laminar; each one
of the families I , O consists from distinct sets, but it might be that the same set belongs both to I and to
O. This implies a (1 + 4/k)-approximation ratio: we claim that |F | = |I| + |O| ≤ 4n − 2, and thus by
Eq. (58.15) the approximation ratio is bounded by 1 + (4n − 2)/kn ≤ 1 + 4/k. Indeed, |F | = |I| + |O|
since |F | = |I| + |O| for the family F that is x-defining (if a set of equations has a unique solution then
the number of equations equals the number of variables). It is well known that a laminar family (of distinct
sets) on |V | has at size at most 2|V | − 1; thus |I|, |O| ≤ 2n − 1.

We describe the improved analysis of Ref. [23]. By Eq. (58.15), Theorem 58.14 will be proved if we
show that

|F | ≤ 2n + x(F ) (58.16)

Let L be a laminar family. We say that X owns v in L if X is the inclusion minimal set in L that contains
v. Define φ(X) to be the sum of xe over all e = uv ∈ F so that X owns u and v in F = I + O.

Lemma 58.9

Let X ∈ I and suppose that X does not own any node in I . Then φ(X) is a positive integer. Furthermore, if
X ∈ I ∩ O then X owns some node in O.

Now, consider the contribution of every set X to both sides of Eq. (58.16). Sets X that own a node v

either in I or in O contribute at most 2n to |I| + |O| and this accounts for the 2n term in the r.h.s. If
X ∈ I and does not own a vertex in I nor in O then X ∈ I\O and φ(X) ≥ 1, by Lemma 58.9. Such X
contributes 1 to the l.h.s of Eq. (58.16) and at least 1 to its r.h.s.
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58.6 Algorithms for k-CSS with Metric Costs

The first constant approximation ratio for undirected metric k-CSS is due to Khuller and Raghavachari
[45]. We present a slightly improved version, as well as an algorithm for directed graphs from Ref. [12].

Theorem 58.15 (Kortsarz and Nutov [12])

Undirected metric k-CSS admits a (2 + k−1
n )-approximation algorithm. Directed metric k-CSS admits a

(2 + k
n )-approximation algorithm.

We use the following lemma from Ref. [9], which is valid for both directed and undirected graphs.

Lemma 58.10

Let X be an 
-fragment of a k-inconnected to s graph H with s /∈ X and let T = {v ∈ V : s ∈ �H (v)}.
If s ∈ �H (X) then |X ∩ T | ≥ k − 
 + 1, and if s /∈ �H (X) then 
 ≥ k. Thus T is a (k − 1)-fragment
transversal of H − s .

Proof
Let v ∈ X , and consider a set of k internally disjoint vs -paths in H . Let T ′ = {v1, . . . , vk} ⊆ T be the
nodes of these paths preceding s . If s ∈ �H (X), then at most 
 − 1 nodes from T ′ may not belong to X ;
this implies |T ∩ X| ≥ |T ′ ∩ X| ≥ k − (
 − 1). Clearly, if s /∈ T and 
 < k there cannot be k internally
disjoint vs -paths, by Menger’s Theorem. The last statement follows from the simple observation that if X
is a (k − 1)-fragment of H − s but not of H , then X is a k-fragment of H with s ∈ �H (X).

58.6.1 Undirected Graphs

A tree J on 
 nodes with a designated center v is a v − 
-star if every node of J distinct from v is a
leaf. Among all subdigraphs of G which are v − 
-stars, let J
(v) be a cheapest one; clearly, J
(v) can be
computed in polynomial time. The algorithm for undirected graphs is as follows:

(1) Find a node v0 for which c(Jk+1(v0)) is minimal.
Let {v1, . . . , vk} be the leaves of Jk+1 = Jk+1(v0), where c(v0vi ) ≤ c(v0vi+1), i = 1, . . . , k − 1.

(2) Set T = {v0, . . . , vk−1} (note that vk /∈ T) and add a node s to G and edges {vs : v ∈ T} of
the cost 0, obtaining a graph Gs ; compute a k-outconnected from s subgraph Hs of Gs using the
2-approximation algorithm from Theorem 58.1.

(3) By Lemma 58.10, T is a (k − 1)-fragment transversal of H = Hs − s .
Find a forest F on T as in Corollary 58.1 so that G = H + F is k-connected.

To bound the approximation ratio we use the following technical statement.

Lemma 58.11

Let T be a node set with node weights w(v) ≥ 0, v ∈ T. If F is a forest on T then
∑

uv∈F

(w(u) + w(v)) ≤ (|T | − 2) max
v∈T

w(v) +
∑

v∈T

w(v)

The approximation ratio follows from the following two lemmas.

Lemma 58.12

c(Hs ) ≤ 2opt for the graph Hs computed at step 2 of the algorithm.

Proof
Let G∗ be an optimal k-connected spanning subgraph of G. Extend G∗ to a spanning subgraph G∗

s by
adding to G∗ the node s together with edge set δGs (s ). It is easy to see that G∗

s is k-outconnected from s ,
and clearly c(G∗

s ) = c(G∗). Thus c(Hs ) ≤ 2c(G∗
s ) = 2c(G∗) = 2opt.

Lemma 58.13

c(F ) ≤ k−1
n opt holds for the forest F computed at step 3 of the algorithm.
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Proof
Denote w0 = w(v0) = 0 and wi = w(vi ) = c(v0vi ), i = 1, . . . , k, where w1 ≤ w2 ≤ · · · ≤ wk . Since the
costs are metric, c(vi v j ) ≤ wi +w j , 0 ≤ i �= j ≤ k. We claim that c(Jk+1) = wk +∑

v∈T w(v) ≤ 2
n opt.

Indeed, if G∗ is an optimal k-connected spanning subgraph of G, then
∑{c(δG∗(v)) : v ∈ V} =

2c(G∗) = 2opt, and thus there is a node v with c(Jk+1(v)) ≤ c(δG∗(v)) ≤ 2
n opt. By our choice of Jk+1,

wk + wk−1 ≤ 2opt/n, thus wk−1 = max{w(v) : v ∈ T} ≤ 1
n opt. Using this, the metric costs assumption,

and Lemma 58.11 we get

c(F ) ≤
∑

vi v j ∈F

(wi + w j ) ≤ (k − 2)wk−1 +
∑

v∈T

w(v) ≤ (k − 3)wk−1

+ 2

n
opt ≤ k − 3

n
opt + 2

n
opt = k − 1

n
opt

58.6.2 Directed Graphs

A v → 
-star is a directed tree rooted at v, with 
 nodes and 
 − 1 leaves; a v ← 
-star is a graph where
reversal of its edges results in a v → 
-star. Among all subdigraphs of G which are v → 
-stars (resp.,
v ← 
-stars), let J −


 (v) (resp., J +

 (v)) be a cheapest one. The algorithm for directed graphs is as follows:

(1) Find a node v0 for which c(J −
k+1(v)) + c(J +

k+1(v)) is minimal, and set u0 = v0.
Let {v1, . . . , vk} be the leaves of J −

k+1 = J −
k+1(v0), and T+ = {u1, . . . , uk} be the leaves of

J +
k+1 = J +

k+1(u0), where c(v0vi ) ≤ c(v0vi+1) and c(ui u0) ≤ c(ui+1u0), i = 1, . . . , k − 1.
(2) Set T− = {v0, . . . , vk−1} and T+ = {u0, . . . , uk−1}. Add a node s to G and edges vi s , s ui of the

cost 0, i = 0, . . . , k − 1, obtaining a graph Gs . Compute two spanning subgraphs of Gs : an optimal
k-outconnected from s , say H−

s , and an optimal k-inconnected to s , say H+
s .

(3) By Lemma 58.10 (T−, T+) is a (k − 1)-fragment transversal of H = (H−
s + H+

s ) − s .
Find an edge set F ⊆ δG(T−, T+) without alternating cycles so that G = H + F is k-connected.

The approximation ratio follows from the following directed counterparts of Lemmas 58.11, 58.12,
and 58.13.

Lemma 58.14

Let A, B be disjoint node sets with nonnegative weights w(v) ≥ 0, v ∈ A + B. If F is a forest on A + B so
that every edge in F connects a node in A to a node in B then

∑

ab∈F

(w(a) + w(b)) ≤ (|B | − 1) max
a∈A

w(a) + (|A| − 1) max
b∈B

w(b) +
∑

v∈A+B

w(v)

Lemma 58.15

c(H) ≤ c(H−
s ) + c(G+

s ) ≤ 2opt.

Lemma 58.16

c(F ) ≤ k
n opt.

58.7 General Costs

58.7.1 A 2-Approximation Algorithm for Undirected Edge-GSN

The crucial property used by the algorithm of Ref. [25] is as follows.

Theorem 58.16 (Jain [25])

For a skew-supermodular p, any basic solution x of Eq. (58.9) has an entry of value xe ≥ 1/2.

Given Theorem 58.16, a 2-approximation algorithm immediately follows. As long as G 0 is not a feasible
solution (initially G 0 = (V, ∅)), we repeatedly find a basic optimal solution x to linear program (58.9)
(for p defined by Eq. (58.8) this can be done in polynomial time) and transfer the edge e with xe ≥ 1/2
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from I = E − E 0 to G 0. Every iteration reduces the optimum of linear program (58.9) by at least ce/2,
and increases the cost of G 0 by ce . Hence, the total cost of the solution over all iteration is at most twice the
initial optimum of linear program (58.9). We prove a weaker version of Theorem 58.16; Theorem 58.16
can be proved by a slight refinement using parity arguments.

Claim 58.1

For a skew-supermodular p, any basic solution x of linear program (58.9) has an entry of value xe ≥ 1/3.

Proof
Assume 0 < xe < 1 for all e ∈ I (for e ∈ I , if xe = 0 then e can be ignored, and if xe = 1 then we are
done). By Theorem 58.6, there exists an x-defining family L which is laminar.

To get a contradiction, assume that the statement is false. With every e = uv ∈ I associate two
endpoints eu ∼ u and ev ∼ v. The number of endpoints is thus 2m, where m = |I |. For A ∈ L, let
LA = {X ∈ L : X ⊆ A}. Under the assumption that xe < 1/3 for all e , we show that we are able to do
the following. Given A ∈ L, we can assign every endpoint contained in A to a set in LA (every endpoint
is assigned to exactly one set) such that: A gets four endpoints, and any other set in LA gets at least two
endpoints. This implies that we are able to assign at least 2m + 2 > 2m distinct endpoints to sets in L, a
contradiction.

The proof is by induction on |LA|. The induction basis is |LA| = 1. In this case, dI (A) ≥ 4, since
p(A) ≥ 1 and since xe ≤ 1/3 for every e ∈ δI (A). Thus we can assign to A the four endpoints that belong
to A of the edges in δI (A) (these may be four “copies” of the same node).

Henceforth, assume that |LA| ≥ 1. Let us say that B is a child of A if B is a maximal inclusion set
in L properly contained in A. By the induction hypothesis, for any child B of A, in LB we can assign
the endpoints contained in B such that: B gets four endpoints, and any other set in LB gets at least two
endpoints. In particular, we can assign the endpoints contained in A such that: A gets zero endpoints, every
child of A gets four endpoints, and any other set in LA gets at least two endpoints. If A has at least two
children, then by transferring two endpoints from every child of A to A, we get an assignment as claimed.

The remaining case is when A has a unique child B . We again move two extra endpoints of B to A. We
show that there are at least two endpoints in A − B , which we assign to A. If there is no endpoint in A − B
then δI (A) = δI (B) and thus the equations corresponding to A and B are the same. This contradicts that
L is x-defining. A − B cannot contain exactly one endpoint, since there is an edge e ∈ I so that either
δI (A) = δI (B) + e or δI (B) = δI (A) + e . Since A, B are tight this implies |r (A) − r (B)| = xe , which is
a contradiction, since |r (A) − r (B)| is an integer.

58.7.2 Approximation Algorithm for k-CSS

Theorem 58.17 (Kortasarz and Nutov [31], Cheriyan, Vempala and Vetta [30])

For k-CSS there exists an O( n
n−k ln2 k)-approximation algorithm for both directed and undirected graphs,

and an O(ln k)-approximation algorithm for undirected graphs with n ≥ 2k2.

The proof of Theorem 58.17 follows. The algorithm has k iterations. For 
 = 0, . . . , k − 1, iteration 


starts with an already computed 
-connected spanning subgraph G = (V, E ) of G (so edges of G have
cost zero), finds an augmenting edge set F such that G + F is (
 + 1)-connected, and adds F to G .

We say that U ⊆ V is an 
-cover of G if no 
-separator of G contains U , that is, if U intersects the set
V − C for every 
-separator C of G . Let U be an 
-cover of G . Using the algorithm of Ref. [36] we find
an augmenting edge set F so that G + F is (
 + 1)-connected of cost c(F ) ≤ 2|U |opt, as follows. For
every s ∈ U compute an edge set Fs of cost ≤ 2opt such that G + Fs is (
 + 1)-outconnected from s (and
also (
 + 1)-inconnected to s , for directed graphs), and set F = ∪s∈U Fs to be the union of the computed
edge sets. Note however that Lemma 58.1 implies that c(Fs ) ≤ 2|U |

k−

optk , where optk is the optimal value

of LP-relaxation (58.7) with p(X ′, X ′′) = k − (n − |X ′ + X ′′|). Thus for both directed and undirected
graphs the following holds.
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Proposition 58.2

Suppose that there is a polynomial algorithm that finds in any 
-connected graph G on n nodes an 
-cover of
G of size at most t(
, n). Then there exists a polynomial-time algorithm that for instances of the minimum k-
connected spanning subgraph problem on n nodes finds a feasible solution of cost at most optk ·2 ∑k−1


=0
t(
,n)
k−


=
optk · O(ln k · max0≤
≤k−1 t(
, n)).

Theorem 58.1 follows by combining Proposition 58.2 with the following two theorems from Refs. [46]
and [31], respectively.

Theorem 58.18 (Mader [46])

Any undirected 
-connected graph G with n ≥ 2
2 nodes has an 
-cover of size 3.

Theorem 58.19 (Kortasarz and Nutov [31])

There exists a polynomial algorithm that given an 
-connected (directed or undirected) graph G with n ≥ 
+2
nodes finds an 
-cover of G of size O

(
n

n−

ln 


)
.

58.8 Hardness of Approximation: Three Typical Reductions

We illustrate three typical reductions for establishing approximation hardness of connectivity problems.

3-Partition (strongly NP-complete [47], used for proving NP-hardness)

Instance: A set A = {α1, . . . , α3m} of positive integers so that β = ∑3m
i=1 αi /m is an integer, and so that

β/4 ≤ α < β/2 for every α ∈ A.
Question: Can A be partitioned in to m sets A1, . . . , Am so that each set sums to exactly β?

Kant and Bodlaender [48] were the first to use the type of reductions described below for establishing
that the problem of augmenting a 1-connected graph to be 2-connected while preserving planarity is
NP-hard. We will describe a version from [32].

Theorem 58.20 (Nagamochi and Ishii [19])

The undirected node-connectivity augmentation problem with r (u, v) ∈ {0, 2} is NP-hard.

Proof
3-Partition is strongly NP-complete [47]. Therefore, it is enough to show a pseudopolynomial time reduc-
tion from 3-partition to the problem in the theorem. Note that if the answer to 3-partition is “YES,” then
each Ai contains exactly three elements from A. We can assume that α ≥ 3 for every α ∈ A; otherwise,
we get an equivalent instance by increasing each α ∈ A by 2.

Here is the reduction. Given an instance A = {α1, . . . , α3m} of 3-partition, construct an instance
(G 0 = (V, E 0), r ) of the undirected node-connectivity augmentation problem with r (u, v) ∈ {0, 2}
as follows. Set V = A + B + {b1, . . . , bm} + {s } where |A| = |B | = mβ. Partition A into 3m sets
A1, . . . , A3m where |Ai | = αi for i = 1, . . . , 3m, and partition B into m sets B1, . . . , Bm of size β each.
Let E 0 = {vs : s ∈ V − B} + ∪m

i=1{bi v : v ∈ Bi }. The requirement function is defined by r (u, v) = 2 if
u, v belong to the same part Ai of A or to the same part B j of B , and r (u, v) = 0 otherwise. We claim
that the answer to 3-partition is “YES” if, and only if, (G 0, r ) has a solution F of size mβ.

Suppose that the answer to 3-partition is “YES,” and that the corresponding parts of A are Ai =
{a3i−2, a3i−1, a3i }, i = 1, . . . , m. Let Fi be an arbitrary perfect matching between A3i−2 + A3i−1 + A3i

and Bi . It is easy to see that F = ∪m
i=1 Fi is a feasible solution for (G 0, r ) of size |F | = mβ.

If (G 0, r ) has a feasible solution F of size mβ, then F must be a perfect matching on A + B . Let
a ′, a ′′ ∈ Ai for some i . By the definition of r , H = (G + F )− s has a uv-path for any u, v ∈ Ai . Note that
a ′a ′′ /∈ F , as otherwise for a ∈ Ai − {a ′, a ′′} (such a exists since |Ai | ≥ 3) there cannot be a an aa ′-path
in H . Let a ′b′, a ′′b′′ ∈ F . It is easy to see that then there is an a ′a ′′-path in (G + F ) − s if, and only if,
b′, b′′ belong to the same part B j of B . It follows therefore that for any part Ai of A there exists a part B j
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of B so that �F (Ai ) ⊆ B j . Define A j = {ai : �F (Ai ) ⊆ B j }. This gives a solution for the 3-partition
instance.

Set-Cover (cannot be approximated within C ln n for some universal constant C < 1 even on
instances with |A|=|B |, unless P = NP [49]).

Instance: A bipartite graph J = (A + B , I ) without isolated nodes.
Objective: Find a minimum size subset T ⊆ A such that �J (T) = B .

Theorem 58.21 (Frank [19])

The directed rooted edge-GSN augmentation (the case of {0, 1}-costs) with r (u, v) ∈ {0, 1} cannot be approx-
imated within C ln n for some universal constant C < 1, unless P=NP.

Proof
Given an instance J = (A + B , I ) for set-cover (with |A| = |B |) construct an instance G 0 = (V, E 0)
for directed rooted edge-GSN augmentation by directing the edges in J from A to B , adding a new node
s , and setting r (s , v) = 1 for every v ∈ B . Let F be a feasible solution for (G 0, r ) and let e = uv ∈ F .
If u �= s then we replace e by the link sv, getting again a feasible solution. Then, if e = sv and v ∈ B ,
we replace e by a link uv′ where v′ ∈ {a ∈ A : v ∈ �(a)} (such v′ exists, since J has no isolated nodes),
getting again a feasible solution. This implies that for any solution F ′ for the the obtained instance (G 0, r )
there exists a solution F with |F | = |F ′| such that every edge in F connects s to some node in V − B = A.
But for such F , T ⊆ A is a solution for set-cover on J if, and only if, F = {sv : v ∈ T} is a solution for
(G 0, r ). Combined with the hardness result from Ref. [49], we get the statement.

MinRep (cannot be approximated within O(2log1−ε n) for any ε>0, unless NP ⊆ DTIME(npolylog(n)))

Instance: A bipartite graph H = (A + B , I ), and equitable partitions A of A and B of B .
Objective: Find a minimum size node set A′ ∪ B ′, where A′ ⊆ A and B ′ ⊆ B , so that for any Ai ∈ A,

B j ∈ B with δI (Ai , B j ) �= ∅ there are a ∈ A′ ∩ Ai , b ∈ B ′ ∩ B j such that ab ∈ I .

Theorem 58.22 (Raz [50])

MinRep on n nodes cannot be approximated within O(2log1−ε n) for any ε > 0, unless NP ⊆ DTIME

(npolylog(n)).

Theorem 58.23 (Dodis and Khanna [26])

The directed edge-GSNwith cost in {0, 1, ∞}andr (u, v) ∈ {0, 1} cannot be approximated within O(2log1−ε n)
for any fixed ε > 0, unless NP ⊆ DTIME(npolylog(n)).

Proof
Given an instance (H = (A + B , I ), A, B) of MinRep construct an instance (G = (V, E 0 + E 1), r ) of
directed edge-GSN as follows, where edges in E 0 have cost 0 and edges in E 1 have cost 1. Let I = {i j :
Ai ∈ A, B j ∈ B, δH (Ai , B j ) �= ∅}. The graph G = (V, E 0 + E 1) is obtained from H as follows:

1. Add to H : a set {a1, . . . , a|A|, b1, . . . , b|B|} of |A|+ |B| nodes, and for every i j ∈ I a pair of nodes
ai j , bi j (so a total number of nodes added to H is |A| + |B| + 2|I|). Thus

V = A + B + {a1, . . . , a|A|, b1, . . . , b|B|} + {ai j : i j ∈ I} + {bi j : i j ∈ I}
2. For every i j ∈ I : connect ai j to ai and connect b j to bi j . Thus:

E 0 = I + {aij ai : i j ∈ I} + {b j bi j : i j ∈ I}
The edges that can be added by cost 1 each are from ai to Ai or from B j to b j , that is:

E 1 = {ai a : a ∈ Ai ∈ A} + {bb j : b ∈ B j ∈ B}
The requirement function is defined by r (ai j , bij ) = 1 for i j ∈ I and r (u, v) = 0 otherwise.
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We claim that an edge set F ⊆ E 1 is a feasible solution for ( G, r ) if, and only if, the end-nodes of F
contained in A + B are a feasible solution for the original MinRep instance. Note that there is a bijective
correspondence between edge sets F ⊆ E 1 and subsets A′ + B ′ of A+ B , where A′ ⊆ A, B ′ ⊆ B . Namely

F = {ai a : a ∈ Ai , 1 ≤ i ≤ |A|} ∪ {b j b : b ∈ B j , 1 ≤ j ≤ |B|}
Let A′ + B ′ and F be such corresponding pair. Recall that A′ + B ′ is a feasible solution for MinRep if for
every i j  ∈ I there are a ∈ A′ ∩ Ai , b ∈ B ′ ∩ B j such that ab ∈ I . Note that for i j  ∈ I there are such a , b
if, and only if, there is an ai j bi j -path ai j , ai , a , b, b j , bi j  of the length 5 in (V, E 0 + F ).

Since in the construction |V | = O(n2), where n = |A| + |B |, Theorem 58.22 implies Theorem 58.23.

Theorem 58.23 easily extends to the case of {1, ∞}-costs [44], and to metric costs (using metric comple-
tion). For an extension to undirected graphs and to {0, 1}-costs of Theorems 58.21 and 58.23 see Refs. [34]
and [7,27], respectively.

58.9 Open Problems

• Determining the complexity status of the two undirected problems: augmenting a k-connected
graph to be (k+1)-connected, and augmenting a k-outconnected graph to be (k+1)-outconnected.

• Can one achieve a constant approximation ratio for undirected CA with rmax bounded by a constant?
Can one a achieve an approximation ratio O(n1−ε) for node CA?

• Improving hardness results or approximation ratios for k-CSS.
• Can one achieve an approximation ratio 2 − ε for k-ECSS? (This is open even if k = 2 and G

contains a spanning tree of cost zero.)
• Can one achieve an approximation ratio better than 3/2 (e.g., 4/3) for metric 2-ECSS?
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59.1 Introduction

A spanning tree for a graph G is a subgraph of G that is a tree and contains all the vertices of G . Besides nu-
merous network design applications, spanning trees also play important roles in several newly established
research areas, such as biological sequence alignments and evolutionary tree construction. In contrast,
there exists many spanning tree problems that have been proved to be NP-hard. Thus, designing approx-
imation algorithms for those hard spanning tree problems has become an exciting and important field
in theoretical computer science. This chapter focuses on the approximation algorithms for constructing
efficient communication spanning trees.

Let G = (V, E , w) be an undirected graph with nonnegative edge length function w and λ(u, v)
the requirements for each pair of vertices. The optimum communication spanning tree (OCT) problem is
defined as follows. For any spanning tree T of G , the communication cost between two vertices is defined
to be the requirement multiplied by the path length of the two vertices on T , and the communication
cost of T is the total communication cost summed over all pairs of vertices. Our goal is to construct a
spanning tree with minimum communication cost. That is, we want to find a spanning tree T such that∑

u,v∈V λ(u, v)dT (u, v) is minimized.
The requirements in the OCT problem are arbitrary nonnegative values. By restricting the requirements,

several special cases of the problem were defined in the literature. In the following, we compile a list of the
problems, in which r : V → Z+

0 is a given vertex weight function, and S ⊂ V a set of sources:

59-1
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FIGURE 59.1 The relationships between OCT problems [8].

TABLE 59.1 The Restrictions and Currently Best Ratios of the OCT Problems

Problem Restriction on Requirements Ratio Reference

MRCT λ(u, v) = 1 PTAS [1,10,11]
PROCT λ(u, v) = r (u)r (v) PTAS [12,13]
SROCT λ(u, v) = r (u) + r (v) 2 [12]
p-MRCT λ(u, v) = r (u) + r (v) 2 [12]

r (s ) = 1 for s ∈ S, and r (v) = 0 otherwise
2-MRCT The same as p-MRCT but |S| = 2 PTAS [14]
Weighted The same as 2-MRCT but r (s1) �= r (s2) 2 (general graphs) [14]
2-MRCT PTAS (metric graphs) [14]
p-OCT λ(u, v) = 0 for u, v /∈ S and |S| = p is a constant 2 (metric graphs) [15]
2-OCT λ(u, v) = 0 for u, v /∈ S, |S| = 2 3 (general graphs) [15]

• λ(u, v) = 1 for each u, v ∈ V : This version is called the MINIMUM ROUTING COST SPANNING TREE

(MRCT) problem.
• λ(u, v) = r (u)r (v) for each u, v ∈ V : This version is called the OPTIMUM PRODUCT-REQUIREMENT

COMMUNICATION SPANNING TREE (OPRCT) problem.
• λ(u, v) = r (u) + r (v) for each u, v ∈ V : This version is called the OPTIMUM SUM-REQUIREMENT

COMMUNICATION SPANNING TREE (OSRCT) problem.
• λ(u, v) = 0 if u /∈ S: This version is called the p-SOURCE OCT ( p-OCT) problem. In other words,

the goal is to find a spanning tree minimizing
∑

u∈S

∑
v∈V λ(u, v)dT (u, v).

• λ(u, v) = 1 if u ∈ S, andλ(u, v) = 0 otherwise: This version is called the p-source MRCT (p-MRCT)
problem. In other words, the goal is to find a spanning tree minimizing

∑
u∈S

∑
v∈V dT (u, v).

Figure 59.1 depicts the relationships between the problems, and Table 59.1 gives the currently best
approximation ratio of each problem.

The rest of the chapter is organized as follows. Section 59.2 presents some approximation schemes for
the MRCT problem. We give a PTAS for the PROCT problem in Section 59.3, and a 2-approximation
algorithm for the SROCT problem in Section 59.4. Sections 59.5 and 59.6 propose some approximation
algorithms for the multiple-sources MRCT and OCT problems, respectively. Finally, Section 59.7 concludes
the chapter with a few remarks.

59.2 Minimum Routing Cost Spanning Tree

In the MRCT problem, the requirements between any pair of vertices are the same. In other words, we
want to find the spanning tree minimizing the all-to-all distance. When there is no ambiguity, we assume
that G = (V, E , w) is the given graph, which is simple, connected, and undirected. In this section, T̂
denotes an MRCT of G , and c(T) is the routing cost of a spanning tree T .
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59.2.1 Shortest-Paths Trees and Solution Decomposition

Let r be the median of graph G , that is, the vertex with minimum total distance to all vertices, and Y any
shortest-paths tree rooted at r . By the triangle inequality, we have dY (u, v) ≤ dY (u, r ) + dY (v, r ) for any
vertices u and v. Summing up over all pairs of vertices, we obtain that c(Y ) ≤ 2n

∑
v dY (v, r ). Since r is

a median,
∑

v dG (r, v) ≤ ∑
v dG (u, v) for any vertex u, it follows

∑
v dG (r, v) ≤ (1/n)

∑
u,v dG (u, v).

By the property of a shortest-paths tree, dY (r, v) = dG (r, v) for each vertex v, and consequently, c(Y ) ≤
2n

∑
v dG (r, v) ≤ 2

∑
u,v dG (u, v). Since c(T̂) ≥ ∑

u,v∈V dG (u, v), we have that Y is a 2-approximation
of an MRCT.

Theorem 59.1 (Wong [1])

A shortest-paths tree rooted at the median of a graph is a 2-approximation of an MRCT of the graph.

The median of a graph can be found easily once the distances of all pairs of vertices are known. By
Theorem 59.1, we have a 2-approximation algorithm and the time complexity is dominated by that of
finding all-pairs shortest path lengths of the input graph.

Corollary 59.1

An MRCT of a graph can be approximated with ratio 2 in O(n2 log n + mn) time.

Now we introduce another proof of the approximation ratio of the shortest-paths tree. The analysis
technique we used is called solution decomposition, which is widely used in algorithm design, especially for
approximation algorithms. To design an approximation algorithm for an optimization problem, we first
suppose that X is an optimal solution. Then we decompose X and construct another feasible solution Y .
To our aim, Y is designed to be a good approximation of X and belongs to some restricted class of feasible
solutions, of which the best solution can be found efficiently. The algorithm is designed to find an optimal
solution of the restricted problem, and the approximation ratio is ensured by that of Y . It should be noted
that Y plays a role only in the analysis of approximation ratio, but not in the designed algorithm. In the
following, we show how to design a 2-approximation algorithm by this method.

For any tree, we can always cut it at a node r such that each branch contains at most half of the nodes.
Such a node is usually called a centroid of the tree in the literature. Suppose that r is the centroid of the
MRCT T̂ . If we construct a shortest-paths tree Y rooted at the centroid r , the routing cost will be at
most twice that of T̂ . This can be easily shown as follows. First, if u and v are two nodes not in a same
branch, d

T̂
(u, v) = d

T̂
(u, r ) + d

T̂
(v, r ). Consider the total distance of all pairs of nodes on T̂ . For any

node v, since each branch contains no more than half of the nodes, the term d
T̂

(v, r ) will be counted
in the total distance at least n times, n/2 times for v to others and n/2 times for others to v. Hence, we
have c(T̂) ≥ n

∑
v d

T̂
(v, r ). Since, as in the proof of Theorem 59.1, c(Y ) ≤ 2n

∑
v dG (v, r ), it follows

that c(Y ) ≤ 2c(T̂). We have decomposed the optimal solution T̂ and constructed a 2-approximation
Y . Of course, there is no way to know what Y is since the optimal T̂ is unknown. But we have the next
result.

Lemma 59.1

There exists a vertex such that any shortest-paths tree rooted at the vertex is a 2-approximation of the MRCT.

By Lemma 59.1, we can design a 2-approximation algorithm which constructs a shortest-paths tree
rooted at each vertex and chooses the best of them. Since there are only n vertices and a shortest-paths
tree can be constructed in O(n log n + m) time, the algorithm runs in O(n2 log n + mn) time, which is
the same as the result stated in Corollary 59.1.

59.2.2 Routing Loads, Separators, and General Stars

We introduce a term, routing load, which provides us an alternative formula to compute the routing
cost of a tree. For any edge e ∈ E (T), let x and y, x ≤ y, be the number of vertices in the two subtrees
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resulting by removing e . The routing load on e , denoted by l(T, e), is 2xy = 2x(n − x). Notice that
x ≤ n/2, and the routing load increases as x increases. The following property can be easily shown by
definition:

Fact 59.1

For any edge e ∈ E (T), if the number of vertices in both sides of e are at least δn, the routing load on e is at
least 2δ(1 − δ)n2. Furthermore, for any edge of a tree T, the routing load is upper-bounded by n2/2.

Intuitively the routing load is the number of paths passing through the edge. To compute the routing
load of an edge of a tree, all we need to do is to compute the number of vertices in both sides of the edge.
By rooting the tree at an arbitrary vertex and traveling in a post order, we can compute the routing load
of every edge in linear time.

Lemma 59.2

For a tree T with edge length w , c(T) = ∑
e∈E (T) l(T, e)w(e). In addition, c(T) can be computed in O(n)

time.

A key point to the 2-approximation in the last section is the existence of the centroid, which separates
a tree into sufficiently small components. To generalize the idea, we define the separator as follows. Let
δ ≤ 1/2. Root a tree T at its centroid, and then remove all the vertices of which the number of descendants
(including itself) are equal to or less than δn. The remaining subgraph is defined as a minimal δ-separator of
T . Obviously, the separator is a connected subgraph. A star is a tree with only one internal vertex (center).
We define a general star as follows:

Definition 59.1

Let R be a tree contained in graph G. A spanning tree T is a general star with core R if each vertex is connected
to R by a shortest path.

Let S be a connected subgraph of a spanning tree T . Let dT (v, S) denote the minimum distance from
v to any vertex of S on the graph T . For a graph G and u, v ∈ V(G), we use S PG (u, v) to denote a
shortest path between u and v in G . For convenience, we define d S

T (u, v) = w(S PT (u, v) ∩ S). Obviously
dT (u, v) ≤ dT (v, S) + d S

T (u, v) + dT (u, S), and the equality holds if v and u are in different branches.
Summing up the inequality for all pairs of vertices, we have

c(T) ≤ 2n
∑

v∈V

dT (v, S) +
∑

u,v∈V

d S
T (u, v)

By the definition of routing load,
∑

u,v∈V

d S
T (u, v) =

∑

e∈E (S)

l(T, e)w(e)

Suppose that T is a general star with core S. We can establish an upper bound of the routing cost by
observing that dT (v, S) = dG (v, S) for any vertex v and l(T, e) ≤ n2

2 for any edge e (Fact 59.1).

Lemma 59.3

If T is a general star with core S, c(T) ≤ 2n
∑

v∈V(G) dG (v, S) + (n2/2)w(S).

Let S be a minimal δ-separator of a spanning tree T . The following lower bound of the minimum
routing cost was established:

Lemma 59.4

If S is a minimal δ-separator of T̂ , then

c(T̂) ≥ 2(1 − δ)n
∑

v∈V

d
T̂

(v, S) + 2δ(1 − δ)n2w(S)
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59.2.3 Approximating by a General Star

As shown previously, a 1/2-separator is used to derive a 2-approximation algorithm. The idea is now
generalized to show that a better approximation ratio can be obtained by using a 1/3-separator. Let r be a
centroid of T . There are at most two branches of r with more than n/3 vertices. Therefore, there exists a
path P ⊂ T such that P is a 1/3-separator of T , and we say that P is a path separator of T .

Substituting δ = 1/3 in Lemma 59.4, we obtain a lower bound of the minimum routing cost.

Corollary 59.2

If P is a path separator of T̂ , then

c(T̂) ≥ 4n

3

∑

v∈V

d
T̂

(v, P ) + 4n2

9
w(P )

The following result can then be shown by Lemma 59.3 and Corollary 59.2:

Lemma 59.5

There exists r1, r2 ∈ V such that if R = S PG (r1, r2) and T is a general star with core R, then c(T) ≤
(15/8)c(T̂).

By Lemma 59.5 we have a 15/8-approximation algorithm for the MRCT problem. For every r1 and
r2 in V , we construct a shortest path R = S PG (r1, r2) and a general star T with core R. The one with
the minimum routing cost must be a 15/8-approximation of the MRCT. All-pairs shortest paths can be
found in O(n3) time. A direct method takes O(n log n + m) time for each pair r1 and r2, and therefore
O(n3 log n + n2m) time in total. By avoiding some redundant computations, the time complexity can be
reduced to O(n3), and the following result was obtained:

Theorem 59.2

There is a 15/8-approximation algorithm for the MRCT problem with time complexity O(n3).

Let P be a path separator of an optimal tree. By Lemma 59.3, if X is a general star with core P , then

c(X) ≤ 2n
∑

v∈V

dG (v, P ) + (n2/2)w(P )

By Lemma 59.2, it can be shown that X is a 3/2-approximation solution. However, it costs exponential
time to try all possible paths. Let P = ( p1, p2, . . . , pk). It is easy to see that a centroid must be in V(P ).
Let pq be a centroid of T̂ . Construct R = S PG ( p1, pq )∪ S PG ( pq , pk). Let T be any general star with core
R. One can show that such T is a 3/2-approximation. For every triple (r1, r0, r2) of vertices, we construct
R = S PG (r1, r0) ∪ S PG (r0, r2) and find a general star with core R. The one with the minimum routing
cost is a 3/2-approximation.

Theorem 59.3

The MRCT can be approximated with error ratio 3/2 in O(n4) time.

59.2.4 A Reduction to the Metric Case

Let S be a minimal δ-separator of T̂ . The strategy of algorithms shown above is to “guess” the structure of
S and to construct a general star with the guessed structure as the core. If T is a general star with core S,
by Lemmas 59.3 and 59.4,

c(T) ≤ 2n
∑

v∈V(G)

dG (v, S) + (n2/2)w(S)
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and

c(T̂) ≥ 2(1 − δ)n
∑

v∈V

d
T̂

(v, S) + 2δ(1 − δ)n2w(S)

The approximation ratio, by comparing the two inequalities, is max{ 1
1−δ

, 1
4δ(1−δ) }. The ratio achieves its

minimum when the two terms coincide, that is, δ = 1/4, and the minimum ratio is 4/3. In fact, by using
a general star and a (1/4)-separator, it is possible to approximate an MRCT with ratio (4/3) + ε for any
constant ε > 0 in polynomial time. The additional error ε is due to the difference between the guessed
and the true separators.

By this strategy, the approximation ratio is limited even if S was known exactly. The limit of the
approximation ratio may be mostly due to that we consider only general stars. In a general star, the vertices
are always connected to their closest vertices of the core. In extreme cases, there are roughly half of the
vertices connected to both sides of a costly edge. This results in the cost (n2/2)w(S) in the upper bound
of a general star. To make a breakthrough, the restriction that each vertex must be connected to the closest
vertex of the core needs to be relaxed.

A metric graph is a complete graph with triangle inequality, that is, each edge is a shortest path of its
two endpoints. Define k-stars to be the trees with at most k internal vertices. Importantly, k-stars have
no such restriction like general stars and can be used to approximate an MRCT more precisely. However,
k-stars work only for metric graphs. So we should first clarify the computational complexity and the
approximability of the MRCT problem on metric graphs. The following transformation provides us the
answers.

The metric closure of a graph G = (V, E , w) is the complete graph Ḡ = (V, V × V, w̄) in which
w̄(u, v) = dG (u, v) for all u, v ∈ V . Any edge (a , b) in Ḡ is called a bad edge if (a , b) /∈ E or w(a , b) >

w̄(a , b). It was shown that given any spanning tree T of Ḡ , in O(n3) time, we can construct another
spanning tree Y without any bad edge such that c(Y ) ≤ c(T). Since Y has no bad edge, it can be thought
of as a spanning tree of G with the same routing cost. As a result, we have the next theorem, in which
�MRCT denotes the MRCT problem with metric inputs. By the transformation, it is straightforward that
the �MRCT problem is NP-hard.

Theorem 59.4

If there is an approximation algorithm for �MRCT with time complexity O(f (n)), then there is an approxi-
mation algorithm for MRCT with the same approximation ratio and time complexity O(f (n) + n3).

59.2.5 A Polynomial-Time Approximation Scheme

By Theorem 59.4, we may focus on metric graphs. The k-stars, that is, trees with no more than k internal
nodes, are used as a basis of the approximation scheme. The design of the PTAS consists of two parts: the
existence of a k-star which is a (k + 3)/(k + 1)-approximation and how to compute the best k-star in
polynomial time.

59.2.5.1 Approximation Ratio

Root T̂ at its centroid r . For a desired positive δ ≤ 1/2, removing all vertices with no more than δn
descendants, we obtain a minimal δ-separator S. We then choose some critical vertices, defined as the cut
and leaf set, to partition S into some edge-disjoint paths, called as δ-paths, each of which has only few
nodes (at most δn/2) hanging at its internal nodes. It was shown that the number of the necessary critical
vertices is at most 2/δ − 3. By the following steps, we construct a k-star used to argue the upper bound on
the routing cost :

1. Replace the δ-paths with the short-cutting edges to construct a tree structure.
2. All vertices in subtrees hanging at the cut and leaf nodes are connected directly to their closest node

in the tree.
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FIGURE 59.2 Constructing the k-star from an optimal tree.

3. Along a δ-path, all the internal nodes and nodes in subtrees hanging at internal nodes are connected
to one of the two endpoints of this path (notice that both are in the cut and leaf set) in such a way
as to minimize the resulting routing cost.

In Figure 59.2, we illustrate how to construct the desired k-star from an optimal tree. Frame (a) is an
optimal tree in which the separator is shown and the cut and leaf set is {A, B , C , D, E }. Frame (b) is the
tree spanning the cut and leaf nodes, which has the same skeletal structure as the separator. Frames (c)–(e)
illustrate how to connect other nodes to the cut and leaf nodes. Frame (c) exhibits the nodes hanging at a
δ-path. These nodes will be connected as in either Frame (d) or (e). The nodes hanging at the endpoints
of the path will be connected to the endpoints in either case. All the internal nodes of the path and nodes
hanging at the internal nodes will be connected to one of the two endpoints. Notice that they are connected
to the same endpoint either as Frame (d) or Frame (e), but not connected to the two endpoints partially.

By establishing a more precise lower bound than Lemma 59.4 and using the properties of δ-separator
and δ-paths, it can be shown that the routing cost of such a k-star is at most 1/(1 − δ) times the optimal.
For any integer k ≥ 1, we take δ = 2

k+3 , and obtain the next result.

Lemma 59.6

A k-star of minimum routing cost is a (k + 3)/(k + 1)-approximation of an MRCT.

59.2.5.2 Finding the Optimal k-Star

For a given k, to find an optimal k-star, we consider all possible subsets S of vertices of size k, and for
each such choice, find an optimal k-star where the remaining vertices have degree one. Any k-star can
be described by a triple (S, τ, L), where S = {v1, . . . , vk} ⊆ V is the set of k distinguished vertices
which may have degree more than one, τ a spanning tree topology on S, and L = (L 1, . . . , L k), where
L i ⊆ V − S is the set of vertices connected to vertex vi ∈ S. For any r ∈ Z+, an r -vector is an integer
vector with r components. Let l = (l1, . . . , lk) be a nonnegative k-vector such that

∑k
i=1 li = n − k. We

say that a k-star (S, τ, L) has the configuration (S, τ, l) if li = |L i | for all 1 ≤ i ≤ k.
For a fixed k, the total number of configurations is O(n2k−1) since there are

(n
k

)
choices for S, kk−2

possible tree topologies on k-vertices, and
(n−1

k−1

)
possible such k-vectors. Notice that any two k-stars with

the same configuration have the same routing load on their corresponding edges. Any edge cross the cut
(S, V − S), connects a leaf to a node in S, and therefore has the same routing load 2(n − 1). Since all these
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routing loads are the same, the best way of connecting the vertices in V − S to nodes in S can be solved in
polynomial time for a given configuration by a straightforward reduction to an instance of minimum-cost
perfect matching. The minimum-cost perfect matching problem, also called the assignment problem, has
been well studied and can be solved in O(n3) time [2]. Therefore, the overall complexity is O(n2k+2) for
finding an optimal k-star.

In the PTAS, we need to solve many matching problems, each for one configuration. It takes polynomial
time to solve these problems individually and this result is sufficient for showing the existence of the PTAS.
Although there is no obvious way to reduce the time complexity for one matching problem, the total
time complexity can be significantly reduced when considering all these matching problems together. By
carefully ordering the matching problems for the configurations and exploiting the common structure of
two consecutive problems, it was shown that the best k-star for any configuration in this order can be
obtained from the optimal solution of the previous configuration in O(nk) time. As a result, an optimal
k-star of a metric graph can be constructed in O(n2k) time. The next theorem concludes the result for the
PTAS of the MRCT.

Theorem 59.5

There is a PTAS for finding a minimum routing cost tree of a weighted undirected graph. Specifically, we can

find a (1 + ε)-approximation solution in time O(n2
 2
ε �−2).

59.3 Product-Requirement Communication Spanning Tree

The product-requirement communication (or p.r.c. in abbreviation) cost of a tree T is defined by c p(T) =∑
u,v r (u)r (v)dT (u, v), in which r is a nonnegative vertex weight. Recall that the PTAS for the MRCT

problem is obtained by showing the following properties:

1. The MRCT problem on general graphs is equivalent to the problem on metric graphs.
2. The best k-star is a ((k + 3)/(k + 1))-approximation solution for the metric MRCT problem.
3. For a fixed k, the best k-star of a metric graph can be found in polynomial time.

The PROCT problem is a weighted counterpart of the MRCT problem. A vertex with weight r (v) can
be regarded as a super node consisting of r (v) nodes of unit weight and connected by edges of zero length.
In fact, the first and the second properties remain true for the PROCT problem. They can be obtained by
straightforward generalizations of the previous results. However, there is no obvious way to generalize the
algorithm for the minimum routing cost k-star to that for the minimum p.r.c. cost k-star. A straightforward
generalization conducts to a pseudopolynomial-time algorithm whose time complexity depends on the
total weight of all vertices.

For convenience, we define a balanced k-star by adding a restriction that the core must be a minimal
(2/(k + 3))-separator of the spanning tree. The performance ratio of an optimal balanced k-star is the
same as in Lemma 59.6. Therefore, to approximate a PROCT, we can only focus on the problem of finding
an optimal balanced k-star on a metric graph. When k is a constant, the number of all possible cores is
polynomial, and we may reduce the problem to the following subproblem:

PROBLEM: Optimal Balanced k-Stars with a Given Core
INSTANCE: A metric graph G = (V, E , w), a tree S in G with |V(S)| = k, and a vertex weight
r : V → Z+.
GOAL: Find an optimal balanced k-star with core S if it exists.

In this section, two approximation algorithms are presented. The first algorithm approximates a PROCT
by finding the minimum p.r.c. cost 2-star, and the second one is a PTAS, which employs a PTAS for a
minimum p.r.c. cost k-star.

For a vertex set U , we use r (U ) to denote
∑

u∈U r (u), and r (H) = r (V(H)) for a graph H . Let
R = r (G) denote the total vertex weight of the input graph. Similar to a centroid of an unweighted graph,
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we define the r -centroid of a tree with vertex weight function r as follows. Let T be a tree with vertex weight
function r . The r -centroid of a tree T is a vertex m ∈ V(T) such that if we remove m, then r (H) ≤ r (T)/2
for any branch H . The p.r.c. routing load on the edge e of a tree T is defined by l p(T, e) = 2r (Tu)r (Tv),
where Tu and Tv are the two subgraphs obtained by removing e from T . The p.r.c. routing cost on the
edge e is defined to be l p(T, e)w(e). Similarly, the p.r.c. routing cost of a tree can also be computed by
summing up the edge lengths multiplied by their p.r.c. routing load.

Lemma 59.7

Let T be any spanning tree of a graph G = (V, E , w) and r be a vertex weight function. c p(T) =∑
e∈E (T) l p(T, e)w(e).

59.3.1 Approximating by 2-Stars

The core of a 2-star is an edge and there are O(n2) possible cores. A 2-star T can be represented by an
edge (x , y) and a bipartition (X, Y ) of V , in which X and Y are the sets of nodes connected to x and y,
respectively. By definition, its cost can be calculated by the following formula:

c p(T) = 2r (X)r (Y )w(x , y) + 2
∑

v∈X

r (v)(R − r (v))w(x , v) + 2
∑

v∈Y

r (v)(R − r (v))w(y, v) (59.1)

For each possible edge (x , y), the goal is to find the corresponding bipartition such that the p.r.c. routing
cost is minimized. It is not hard to find that such a bipartition can be found by solving a minimum-
cut problem on an auxiliary graph. Since the minimum cut of a graph can be found in O(n3) [3], the
minimum p.r.c. cost 2-star can be found in O(n5) time. By a result similar to Lemma 59.6, such a 2-star
is a (5/3)-approximation of a PROCT. In the following, with a more precise analysis, we show that the
approximation ratio is 1.577.

Let T be a PROCT of the metric graph. We are going to construct two 2-stars and show that one of them
is a 1.577-approximation of T . First we establish a lower bound of the optimal cost. Let 1/3 < δ < 0.5 be
a real number to be determined later. Since δ > 1/3, there exists a path P , which is a minimal δ-separator
of T . Let a and b be the two endpoints of P . Similar to Lemma 59.4, we have

c p(T) ≥ 2 (1 − δ) R
∑

x

r (x)dT (x , P ) + 2δ(1 − δ)R2w(P ) (59.2)

Let Va and Vb be the sets of vertices which are connected to P at a and b, respectively. Consider two
2-stars T∗ and T∗∗ with the same core (a , b) and their corresponding bipartitions are (V − Vb , Vb) and
(Va , V − Va ), respectively. By Eq. (59.1) and the triangle inequality, we can show that

min{c p(T∗), c p(T∗∗)} ≤ 2R
∑

v∈V

r (v)dT (v, P ) + (1 − 2δ2)R2w(P ) (59.3)

By Eq. (59.2) and Eq. (59.3), the approximation ratio is max{1/(1−δ), (1−2δ2)/(2δ(1−δ))}, in which
1/3 < δ < 1/2. By setting δ = (

√
3 − 1)/2 � 0.366, we get the ratio 1.577. Combining with the time

complexity of finding the minimum p.r.c. cost 2-star and the reduction from general to metric graphs, we
obtain the next result.

Theorem 59.6

A PROCT of a general graph can be approximated with ratio 1.577 in O(n5) time.

59.3.2 A Polynomial-Time Approximation Scheme

We now show that the PROCT problem admits a PTAS. Instead of finding a minimum p.r.c. cost k-star
exactly, the PTAS finds an approximation of an optimal balanced k-star. Let G = (V, E , w) be a metric
graph and S a given core consisting of k vertices. Let U = V − V(S). The goal is to connect every vertex
in U to the core so as to make the p.r.c. cost as small as possible. For each vertex v ∈ U , we regard v as
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a super node consisting of r (v) nodes of weight one and connected by zero-length edges. Since all these
nodes have weight one, by the technique in the PTAS of MRCT, the best leaf connection can be found by
solving a series of assignment problems. The time complexity is O(Rk), in which R = r (V) is the total
vertex weight. However, the time complexity depends on the total weight of the vertices, that is, it is a
pseudopolynomial-time algorithm.

To reduce the time complexity, a natural idea is to scale down the weight of each vertex by a common
factor. Since the algorithm works only on vertices of integer weights, there are rounding errors. To ensure
the quality of the solution, some details of the algorithm should be designed carefully and we need to show
that the rounding errors on the vertex weights do not affect too much the cost of the solution.

By a selected threshold, we first divide U into a light part and a heavy part according to their weights.
Then, for each vertex in the heavy part, we scale down their weights by a scaling factor and round them to
integers. When the weights are all integers, the best connection (with respect to the scaled weights) can be
determined by a pseudopolynomial-time algorithm. Finally, each vertex in the light part is connected to
its closest vertex in S. It will be shown that the approximation ratio and time complexity are determined
by k, the scaling factor, and the threshold for dividing the vertices into the light and heavy parts. The PTAS
is given below.

Algorithm PTAS STAR

Input: A metric graph G = (V, E , w) with vertex weight r , a tree S in G
with |V(S)| = k, a positive number λ < 1 and a positive integer q .

Output: A k-star with core S.
/∗ assume that V(S) = {si |1 ≤ i ≤ k} and U = {1..n − k}
in which r (i) ≤ r (i + 1) for each i ∈ U . ∗/

1: Find the maximum j such that r ({1.. j }) ≤ λR.
Let VL = {1.. j } and VH = { j + 1..n − k} and µ = r ( j + 1).

2: Let r̄ (v) = �qr (v)/µ� for each v ∈ VH ;
and r̄ (v) = qr (v)/µ for each v ∈ V(S).

3: Find an optimal k-star T1 with respective to r̄ .
4: Construct T from T1 by connecting each vertex in VL

to the closest vertex in S.
5: Output T .

The time complexity and approximation ratio are shown in the next theorem. The approximation ratio
approaches to 1 as q and λ−1 go to infinity. Therefore, for any desired approximation ratio 1 + ε > 1, we
can choose suitable q and λ, and the time complexity is polynomial when they are fixed.

Theorem 59.7

Algorithm PTAS STAR is a PTAS for an optimal balanced k-star with a given core. For any positive integer q
and positive number λ < 1, the time complexity is O((nq/λ)k) and approximation ratio is ((1 + q−1)2 +
λ(k + 3)2/(k + 1)).

We conclude the section by the next theorem.

Theorem 59.8

The PROCT problem on general graphs admits a PTAS.

59.4 Sum-Requirement Communication Spanning Tree

The sum-requirement communication (or s.r.c. in abbreviation) cost of a tree T is defined by cs (T) =∑
u,v(r (u) + r (v))dT (u, v). Similar to the PROCT problem, the SROCT problem includes the MRCT

problem as a special case and is therefore NP-hard. The s.r.c. cost of a tree can also be computed by
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summing the routing costs of edges. The only difference is the definition of routing load. We define the
s.r.c. routing load on the edge e to be ls (T, e) = 2(r (Tu)|V(Tv)| + r (Tv)|V(Tu)|), where Tu and Tv are
the two subgraphs obtained by removing e from T .

Lemma 59.8

Let T be any spanning tree of a graph G = (V, E , w) and r be a vertex weight function. cs (T) =∑
e∈E (T) ls (T, e)w(e).

For the PROCT problem, it has been shown that an optimal solution for a graph has the same value as
the one for its metric closure. In other words, using bad edges cannot lead to a better solution. However,
the SROCT problem has no such property. By giving a counterexample, it was shown that a bad edge may
reduce the s.r.c. cost. It is still unknown if any approximation algorithm on metric graphs ensures the same
approximation ratio for general graphs.

In this section, we introduce a 2-approximation algorithm for the SROCT problem on general graphs.
For each vertex v, the algorithm finds the shortest-paths tree rooted at v. Then it outputs the shortest-
paths tree with minimum s.r.c. cost. Obviously, the time complexity of the algorithm is O(n2 log n + mn)
since it constructs O(n) shortest-paths trees and each takes O(n log n + m) time. Similar to the MRCT
problem, we obtain the approximation ratio by showing that there always exists a vertex x such that any
shortest-paths tree rooted at x is a 2-approximation solution.

We use T̂ to denote an optimal spanning tree of the SROCT problem, and use x1 and x2 to denote a
centroid and an r -centroid of T̂ , respectively. Let P be the path between the two vertices x1 and x2 on the
tree. For any edge e ∈ E (P ), let T1 and T2 be the two subtrees resulting by deleting e from T̂ . Assume that
x1 ∈ V(T1) and x2 ∈ V(T2). By definition, |V(T1)| ≥ n/2 and r (T2) ≥ R/2, in which R = r (V). Then,

ls (T̂ , e)/2 = |V(T1)|r (T2) + |V(T2)|r (T1) = 2 (|V(T1)| − n/2) (r (T2) − R/2) + nR/2 ≥ nR/2

By the inequality, we are able to establish a lower bound of the minimum s.r.c. cost. Recall that d
T̂

(v, P )
denotes the shortest-path length from vertex v to path P .

Lemma 59.9

cs (T̂) ≥ ∑
v∈V (nr (v) + R) d

T̂
(v, P ) + nRw(P ).

For any vertex v, let f1(v) = d
T̂

(v, x1) − d
T̂

(v, P ) and f2(v) = d
T̂

(v, x2) − d
T̂

(v, P ). It should be
noted that f1(v) + f2(v) = w(P ). Let Y ∗ and Y ∗∗ be the shortest-paths trees rooted at x1 and x2,
respectively. By the triangle inequality, we can obtain that cs (Y ∗) ≤ 2

∑
v∈V (nr (v) + R) (d

T̂
(v, P ) +

f1(v)) and cs (Y ∗∗) ≤ 2
∑

v∈V (nr (v) + R) (d
T̂

(v, P ) + f2(v)). Taking the mean of the two inequalities,
we have

min{cs (Y ∗), cs (Y ∗∗)} ≤ 2
∑

v∈V

(nr (v) + R) d
T̂

(v, P ) + 2nRw(P )

which is at most 2cs (T̂) by Lemma 59.9. The next theorem summarizes the result in this section.

Theorem 59.9

There exists a 2-approximation algorithm with time complexity O(n2 log n + mn) for the SROCT problem.

59.5 Multiple Sources MRCT

In the multiple sources MRCT (p-MRCT) problem, we are given a set S ⊂ V of p sources, and the
cost function is defined by cm(T) = ∑

u∈S

∑
v∈V dT (u, v). If there is only one source, the problem

is reduced to the shortest-paths tree problem, and therefore the 1-MRCT problem is polynomial-time
solvable. For the other extreme case that all vertices are sources, the problem is reduced to the MRCT
problem, and is therefore NP-hard. By a transformation from the well-known satisfiability problem [4,5], it
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was shown that the p-MRCT problem is also NP-hard for any fixed p > 1 even when the input is a metric
graph [15].

Recall that in the SROCT problem, the objective function is cs (T) = ∑
u,v(r (u) + r (v))dT (u, v) in

which r is the given vertex weight. By setting r (v) = 1 for each v ∈ S and r (v) = 0 for other vertices, it is
easy to see that the p-MRCT problem is just a special case of the SROCT problem, and therefore can be
approximated with ratio 2.

Theorem 59.10

The p-MRCT problem admits a 2-approximation algorithm with time complexity O(n2 log n + mn).

59.5.1 Approximating the 2-MRCT

For the 2-MRCT problem, there are only two sources. We shall assume that s1 and s2 are the given sources.
Let T be a tree and P the path between the two sources in T . For any v ∈ V , dT (v, s1) + dT (v, s2) =
w(P ) + 2dT (v, P ). Summing over all vertices in V , we obtain that cm(T) = nw(P ) + 2

∑
v∈V dT (v, P ).

Therefore, once a path P between the two sources has been chosen, it is obvious that the best way to extend
P to a spanning tree is to add the shortest-paths forest using the vertices of P as multiple roots, that is,
the distance from each vertex to the path is made as small as possible. To approximate the 2-MRCT, it is
natural to connect the two sources by a shortest path.

ALGORITHM 2MRCT

1: Find a shortest path P between s1 and s2 on G .
2: Find the shortest-paths forest with multiple roots in V(P ).
3: Output the tree T which is the union of the forest and P .

We are going to show the performance of the algorithm. First we establish a lower bound of the optimum.
Let T̂ be an optimal tree of the 2-MRCT problem. Since d

T̂
(v, si ) ≥ dG (v, si ) for any vertex v and for

i ∈ {1, 2}, the optimal cost is lower-bounded by
∑

v∈V (dG (v, s1) + dG (v, s2)). By the triangle inequality,
we may obtain another lower bound ndG (s1, s2). By taking the mean of the two lower bounds, we have

cm(T̂) ≥ 1

2

∑

v

(dG (v, s1) + dG (v, s2)) + n

2
dG (s1, s2) (59.4)

Let T be the tree constructed by Algorithm 2MRCT and P a shortest path between the two sources. Since
each vertex is connected to P by a shortest path, for any vertex v,

dT (v, P ) ≤ min{dG (v, s1), dG (v, s2)} ≤ 1

2
(dG (v, s1) + dG (v, s2))

Therefore cm(T) ≤ ndG (s1, s2) + ∑
v(dG (v, s1) + dG (v, s2)). Comparing with Eq. (59.4), we have

cm(T) ≤ 2cm(T̂). Since the total time complexity is dominated by the step of finding the shortest-paths
tree, we have the next result.

Theorem 59.11

The 2MRCT algorithm finds a 2-approximation of a 2-MRCT in O(n log n + m) time.

The ratio shown in Theorem 59.11 is tight in the sense that there exists an instance such that the spanning
tree constructed by the algorithm has a routing cost twice as the optimum. Consider a complete graph in
which w(v, s1) = w(v, s2) = 1 and w(s1, s2) = 2 for each vertex v. The distance between any other pair
of vertices is zero. At Step 1, the algorithm may find edge (s1, s2) as the path P , and then all other vertices
are connected to one of the two sources. The routing cost of the constructed tree is 4n − 4. On an optimal
tree, the path between the two sources is a two-edge path, and all other vertices are connected to the middle
vertex of the path. The optimal routing cost is therefore 2n. The increased cost is due to missing the vertex
on the path. In contrast, the existence of the vertex reduces the cost at an amount of w(P ) for each vertex.
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The worst-case instance of the simple algorithm gives us some intuitions to improve the error ratio. To
reduce the error, we may try to guess some vertices of the path. Let r be a vertex of the path between the
two sources on an optimal tree and U the set of vertices connected to the path at r . If the path P found in
Step 1 of the simple algorithm includes r , the distance from any vertex in U to each of the sources will be
no more than the corresponding distance on the optimal tree. In addition, the vertex r partitions the path
into two subpaths. The maximal increased cost by one of the vertices is the length of the subpath instead of
the whole path. In the following, we introduce a PTAS based on this idea. For the sake of convenience, we
shall first assume that G is a metric graph, and the generalization to general graphs will be discussed later.

By at most k vertices on the path, P can be partitioned into k + 1 subpaths such that the number of
vertices hanging at the internal nodes of each subpath is at most n/(k + 1). Here a path or a subpath may
consist of only one vertex. Suppose that (P0, P1, . . . , Pk) is such a partition of P and the endpoints of
Pi are mi and mi+1 for each 0 ≤ i ≤ k, in which m0 = s1 and mk+1 = s2. Let Ui be the set of vertices
hanging at the internal nodes of Pi in T̂ and U = V − ⋃

0≤i≤k Ui the set of the remaining vertices.
Construct a path X from P by replacing each subpath Pi with the short-cut edge (mi , mi+1), and extend
X to a spanning tree T by adding the shortest-paths forest using the vertices of X as multiple roots. By
the construction of X , it is obvious that w(X) ≤ w(P ). Similar to the proof of the 2-approximation, for
any vertex v ∈ Ui , 0 ≤ i ≤ k, the routing cost of v is increased by at most w(Pi ). Since |Ui | ≤ n

k+1 and∑
i w(Pi ) = w(P ), the total increased cost is upper-bounded by nw(P )/(k + 1). Since nw(P ) is a lower

bound of the optimal, T is a ((k + 2)/(k + 1))-approximation of T̂ .
Thus, once we correctly guess the k-vertices mi , we can construct an approximation of the 2-MRCT

with ratio (k + 2)/(k + 1). By trying all possible k-tuples, we can ensure such an error ratio in O(nk+1)
time since there are O(nk) possible k-tuples and it takes O(kn) time to connect the remaining vertices to
their closest vertices in V(X). For any ε > 0, we set k = 
 1

ε
− 1�, and the approximation ratio is 1 + ε.

Theorem 59.12

The 2-MRCT problem on metric graphs admits a PTAS. For any constant ε > 0, a (1 + ε)-approximation
of a 2-MRCT of a graph G can be found in O(n
1/ε�) time.

To generalize the PTAS to general graphs, the only difficulty is how to construct a tree structure playing
the same role as X in the above PTAS. The following result was shown to overcome the difficulty:

Lemma 59.10

Let m0, m1, . . . , mk+1 be k vertices in a general graph G and P be a path connecting the consecutive mi .
Given the graph G and mi , in O(kn2) time, we can construct a tree X such that mi ∈ V(X) and dX (v, m0)+
dX (v, mk+1) ≤ w(P ) for any v ∈ V(X).

As a result, the 2-MRCT problem on general graphs also admits a PTAS.

Theorem 59.13

The 2-MRCT problem on general graphs admits a PTAS. For any constant ε > 0, a (1 + ε)-approximation
of a 2-MRCT of a graph G can be found in O(n
1/ε+1�) time.

59.5.2 The Weighted 2-MRCT

We now turn to a weighted version of the 2-MRCT problem. In such a problem, we want to minimize∑
v∈V (β1dT (s1, v) + β2dT (s2, v)), in which β1 and β2 are given positive real numbers. Without loss of

generality, we define the objective function as cm(T, β) = ∑
v∈V (βdT (s1, v)+dT (s2, v)), in which β ≥ 1.

As in Theorem 59.10, the weighted 2-MRCT admits a 2-approximation algorithm with time complexity
O(n2 log n + mn). We shall first present a more efficient 2-approximation algorithm, and then show that
the problem admits a PTAS if the input is restricted to metric graphs.
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59.5.2.1 On General Graphs

First we present the 2-approximation algorithm for general graphs. Basically each vertex is greedily con-
nected to one of the two sources, and then the two sources are connected by a shortest path.

Algorithm W2MRCT

1: Partition V into (V1, V2) such that v ∈ V1 if
(β + 1)dG (v, s1) + dG (s1, s2) ≤ (β + 1)dG (v, s2) + βdG (s1, s2);

2: For each Vi , with si as the root, find a shortest-paths tree Ti spanning Vi .
3: Find a shortest path between s1 and s2, and then

connect T1 and T2 by inserting an edge of the path.
4: Output the tree obtained in the last step.

Let T̂ be the optimal tree and P the path from s1 to s2 on T̂ . Let f1(v) = d
T̂

(v, s1) − d
T̂

(v,P ) and
f2(v) = d

T̂
(v, s2) − d

T̂
(v, P ) for each vertex v. By the definition of routing cost, we have

cm(T̂ , β) =
∑

v∈V

((β + 1)d
T̂

(v, P ) + β f1(v) + f2(v)) (59.5)

Consider the cost in the case that vertex v is connected to s1 by a shortest path. Since dG (v, s1) ≤
d

T̂
(v,P ) + f1(v) and dG (s1, s2) ≤ w(P ) = f1(v) + f2(v), we have

(β + 1)dG (v, s1) + dG (s1, s2) ≤ (β + 1)d
T̂

(v, P ) + (β + 2) f1(v) + f2(v)

= βd
T̂

(v, s1) + d
T̂

(v, s2) + 2 f1(v) (59.6)

That is, the cost is increased by at most 2 f1(v). Similarly, in the case that v is connected to s2 by a shortest
path, it can be shown that the cost is increased by at most 2β f2(v). Consequently, the routing cost of v is
increased by at most min{2 f1(v), 2β f2(v)}. By taking a weighted mean of the two terms, we have

min{2 f1(v), 2β f2(v)} ≤ β2

β2 + 1
(2 f1(v)) + 1

β2 + 1
(2β f2(v))

= 2β

β2 + 1
(β f1(v) + f2(v))

≤ β f1(v) + f2(v) (59.7)

The last step is obtained by 2β ≤ β2 + 1 since β2 + 1 − 2β = (β − 1)2 ≥ 0. Summing over all vertices
and comparing with Eq. (59.5), we have that the approximation ratio is 2.

Theorem 59.14

For a general graph, a 2-approximation of the weighted 2-MRCT can be found in O(n log n + m) time.

59.5.2.2 On Metric Graphs

The main idea of the PTAS for the weighted case is similar to the unweighted one. We also try to guess k-
vertices of the path between the two sources on the optimal tree. For each possible k-tuple (m1, m2, . . . , mk)
of vertices, we construct a path X starting at s1, passing through the consecutive mi , and ending at s2.
The only difference is the way to connect the remaining vertices to the path X . In the unweighted case,
each remaining vertex is connected to the closest vertex in X . In the weighted case, the vertices are also
connected to minimize the routing cost. But this time, due to the different cost function, we choose the
vertex mi such that (β + 1)w(v, mi ) + βdX (mi , s1) + dX (mi , s2) is minimized.

By an analysis similar to the unweighted case, it can be shown that the constructed tree is a ( k+3
k+1 )-

approximation of the weighted 2-MRCT. Therefore it is a PTAS but is less efficient than one of the
unweighted problems.

Theorem 59.15

The weighted 2-MRCT problem on metric graphs admits a PTAS. For any ε > 0, a (1 + ε)-approximation
of the optimal can be found in O(n
2/ε�) time.

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C059 March 20, 2007 17:38

Optimum Communication Spanning Trees 59-15

59.6 Multiple Sources OCT

In the p-OCT problem, the requirement between a source and a destination is any nonnegative number,
whereas there is no requirement between two nonsource vertices. Let T be a tree and S = {s1, s2, . . . , s p} ⊂
V(T) the set of given sources. For any vertex v ∈ V(T), the communication cost of v on T is defined by
DT (v) = ∑p

i=1 ri (v)dT (v, si ), where ri (v) is the given nonnegative requirement between si and v. The
communication cost of T is defined by c(T) = ∑

v∈V(T) DT (v).

59.6.1 The p-OCT on Metric Graphs

59.6.1.1 The 2-OCT

To approximate the 2-OCT, the algorithm starts at the edge (s1, s2), and then inserts other vertices one by
one in an arbitrary order. In each iteration, we greedily connect a vertex v to either s1 or s2 depending on
the communication cost. Precisely speaking, for each non-source vertex v, connect v to s1 if

(r1(v) + r2(v))w(v, s1) + r2(v)w(s1, s2) ≤ (r1(v) + r2(v))w(v, s2) + r1(v)w(s1, s2)

and connect to s2 otherwise. We shall show that the approximation ratio is 2.
For the sake of convenience, we define some notations. Let T̂ be the 2-OCT and P the path between s1

and s2 on T̂ . We define f1(v) = d
T̂

(v, s1) −d
T̂

(v, P ) and f2(v) = d
T̂

(v, s2) −d
T̂

(v, P ) for each vertex v.
The next formula directly comes from the above notations and the definition of the communication cost.

c(T̂) =
∑

v∈V

((r1(v) + r2(v))d
T̂

(v, P ) + r1(v) f1(v) + r2(v) f2(v)) (59.8)

Let T be the tree delivered by the greedy method. To show that T is a 2-approximation, it suffices to
show that DT (v) ≤ 2D

T̂
(v) for any vertex v. By the triangle inequality, w(v, s1) ≤ d

T̂
(v, P ) + f1(v).

By a similar analysis to Eq. (59.6), we can show that if v is connected to s1, the cost of v is increased by
at most 2 f1(v)r2(v), and the cost is increased by at most 2 f2(v)r1(v) if v is connected to s2. Since the
vertex v is connected to either s1 or s2 by choosing the minimum of the two costs, DT (v) ≤ D

T̂
(v) +

min{2 f1(v)r2(v), 2 f2(v)r1(v)}.
Since the minimum of two number is no more than their weighted mean, we have

min{2 f1(v)r2(v), 2 f2(v)r1(v)} ≤ r1(v)2

r1(v)2 + r2(v)2
2 f1(v)r2(v) + r2(v)2

r1(v)2 + r2(v)2
2 f2(v)r1(v)

= 2r1(v)r2(v)

r1(v)2 + r2(v)2
( f1(v)r1(v) + f2(v)r2(v)) (59.9)

Since r1(v)2 + r2(v)2 − 2r1(v)r2(v) = (r1(v) − r2(v))2 ≥ 0, we have

DT (v) ≤ D
T̂

(v) + f1(v)r1(v) + f2(v)r2(v) ≤ 2D
T̂

(v) (59.10)

Theorem 59.16

The greedy method finds a 2-approximation of the 2-OCT of a metric graph.

59.6.1.2 The p-OCT

To approximate the p-OCT, we define the reduced skeleton of a tree as follows. The S-skeleton of T is the
subgraph obtained by repeatedly removing the nonsource leaves from T until all the leaves are sources.
The reduced skeleton is obtained from the skeleton by eliminating the nonsource vertices of degree two.
By eliminating a vertex of degree two, we mean that the two edges incident to the vertex is substituted
by the short-cut edge. An example of the S-skeleton and reduced S-skeleton of a tree is illustrated in
Figure 59.3.

The reduced skeleton is a tree spanning S and possibly some other vertices. By the definition and the
property of a tree structure, it is not hard to show that the number of vertices of X is bounded by 2|S|− 2.
In other words, there are at most |S| − 2 nonsource vertices in X .
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(a)

(b) (c)

: source : nonsource

FIGURE 59.3 (a) A tree with four sources; (b) the skeleton; and (c) the reduced skeleton.

By introducing the reduced skeleton, the 2-approximation algorithm for the 2-OCT is generalized to
the case of p sources, where p ≥ 2 is a constant. The approximation algorithm tries to guess the reduced
S-skeleton X of the OCT, and the other vertices are connected to one of the vertices of X by making the cost
as small as possible. By a technique similar to the case of two sources, it was shown that the approximation
ratio is 2.

The algorithm tries each tree X spanning the p sources and ( p − 2) other vertices. The total number
of such trees is

(n−p
p−2

)
(2 p − 2)2p−4. For each X and each v ∈ V \V(X), it takes O( p) time to determine

a vertex u∗ ∈ V(X) and insert edge (v, u∗). The total time complexity is therefore O(n p−1) since p is a
constant.

Theorem 59.17

For a metric graph, a 2-approximation of the p-source OCT can be found in O(n p−1) time, where p ≥ 2 is
a constant.

59.6.2 The 2-OCT on General Graphs

In the following, we shall show that the 2MRCT algorithm in Section 59.5.1 is a 3-approximation algorithm
of the 2-OCT problem in the case that the input is a general graph. Remember that the algorithm finds
a shortest path between the two sources and then constructs a shortest-paths forest with all the vertices
of the path as the multiple roots. The output tree is the union of the forest and the path. We now show
the approximation ratio. Let T̂ be the 2-OCT and T the spanning tree obtained by the approximation
algorithm. Suppose that v is connected to the path P at vertex x of P . In other words, among the trees of the
shortest-paths forest, x is the root of the tree containing v. Therefore, dT (v, x) = dG (v, x) ≤ dG (v, s1).
Since P is a shortest path between s1 and s2, dT (s1, x) = dG (s1, x) ≤ dG (s1, v) + dG (v, x). Therefore,

dT (v, s1) = dT (v, x) + dT (x , s1) ≤ 2dG (v, x) + dG (s1, v) ≤ 3dG (v, s1)

Similarly, dT (v, s2) ≤ 3dG (v, s2). By the definition of the communication cost, it is easy to see that
DT (v) ≤ 3D

T̂
(v). Since c(T) = ∑

v DT (v), we have that c(T) ≤ 3c(T̂).

Theorem 59.18

The 2MRCT algorithm finds a 3-approximation of the 2-OCT of a general graph in O(m + n log n) time.

59.7 Concluding Remarks

The OCT problem was first discussed in Ref. [6], and the NP-hardness in the strong sense of the MRCT
problem was shown in Ref. [7]. The first constant ratio approximation algorithm for the MRCT appeared
in Ref. [1]. More details for the approximation algorithms surveyed in this chapter can be found in Ref. [8].
Besides approximation algorithms, exact algorithms for the MRCT have also been studied [9].
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We close this chapter by mentioning a few open problems. First, it would be interesting to improve the
approximation ratio for the weighted 2-MRCT of a general graph. By the previous result for the SROCT
problem, the p-MRCT admits a 2-approximation algorithm for arbitrary p and for both weighted and
unweighted cases. The 2-approximation algorithm in Section 59.5 only improves the time complexity.
Although there is a PTAS for metric graphs, we did not find a similar result for general graphs.

Another open problem is how to approximate the p-OCT of general graphs. The O(n p−1)-time algo-
rithm in Section 59.6 only works for metric graphs, and we did not find a similar result for general graphs.
It would be nice to find a more efficient algorithm to approximate the p-OCT with good ratio. Another
interesting issue concerns the development of an approximation scheme, by which one can control the
trade-off between the time complexity and the approximation ratio.
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60.1 Introduction

The graph partitioning problem occurs in a wide range of applications. In its simplest form—the graph
bisection problem—it is the task of dividing the vertices of a graph into two equally sized subsets such
that the number of edges connecting vertices from both sets is minimal. Although easy to describe, this
problem is known to be computationally difficult.

Due to the complexity of the problem, heuristics have to be applied to partition large graphs in a
reasonable amount of time. A very powerful approach for this task is the multilevel graph partitioning
paradigm [1–7]. The efficiency of this strategy depends mainly on two operations: graph coarsening and
local improvement. For both subproblems methods with analytically proven worst-case performance are
known.

For the coarsening part linear-time approximation algorithms computing a maximum-weighted match-
ing in general edge-weighted graphs [8–11] exist. Although the maximum-weighted matching problem is
solvable in polynomial time, it is not solvable in linear or close to linear time. Thus, these approximation
algorithms are perfectly suitable in this context.

Most local improvement heuristics are based on the Kernighan–Lin (KL) algorithm [12]. However,
this approach does not provide any valuable quality guarantee. An alternative approach is the Helpful-Set
method [13,14], which origins from constructive proofs of upper bounds on the bisection width of regular
graphs [7,15–17].

Overall, the combination of analytical methods for the two parts of the multilevel approach leads to an
efficient graph-partitioning concept. A broader discussion can be found in, for example, Refs. [7,17].

In the remainder of this introduction we formally define the problem, give some bounds on the bisection
width of graphs and discuss some applications. In Section 60.2 we refer to some standard global methods.
In Section 60.3, we discuss applicable approximation algorithms for the multilevel graph partitioning
paradigm. Finally, in Section 60.4, we point to some possible improvements.

60-1
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60.1.1 Problem Definition

Given a graph G = (V, E ) with a set of vertices V and a set of edges E , the graph bisection problem can
formally be defined the following way. Let π : V → {1, 2} be a partition (bisection) of the vertices from
V into two sets V1 and V2. We define cut(π) = |{{u, v} ∈ E , π(u) �= π(v)}| to be the cut-size of π and
bal(π) = ||V1| − |V2|| its balance. When solving the bisection problem, one looks for a partition π with
bal(π) ≤ 1 that minimizes cut(π). This minimal cut-size is also called the bisection width of the graph.
Refs. [18,19] show that the graph bisection problem is NP-complete.

The bisection problem can be generalized in several ways. First, weight functions wV : V → R on the
vertices and w E : E → R on the edges can be introduced. Now, the sum of vertex weights in each part
should be almost equal and the sum of weights of edges incident to vertices of different parts has to be
minimized.

Furthermore, one could ask to divide the graph into more than two parts V1, . . . , Vk , which leads to
the k-partitioning problem. In this case one looks for a partition π : V → {1, . . . , k}, which is defined
to be balanced if bal(π) := max1≤i≤k{

∑
v∈Vi

wV (v)} − 1
k

∑
v∈V wV (v) is smaller than maxv∈V wV (v).

The cut-size of π is now defined as cut(π) = ∑
{u,v}∈E ,π(u) �=π(v)} w E ({u, v}).

Of course, once a bisection algorithm is present, it can be applied to partition a graph into more than
two parts by recursive invocation, but in general the direct approach finds better solutions. A study of the
resulting partition qualities of the direct and recursive approach is given, for example, in Refs. [20,21].

So far, we have discussed edge partitions (also known as edge separators). However, some applications
require a vertex partition (also known as node separator), that is, one wants to remove a small number
of vertices such that the graph splits into two components. Although there are methods of converting an
edge separator into a vertex separator and vice versa (e.g., Ref. [22]), the quality of the solutions after the
conversion can be very poor. Nevertheless, a good vertex separator might serve as a starting point of a
search for a good edge separator.

An additional extension is the repartitioning problem. In this case, an unbalanced partition πt of a
graph is present and the task is to find a nearby remapping πt+1 of the vertices that restores the balance.
This usually results in a multiobjective optimization problem since most applications not only request
few cut edges but also a small number of migrating vertices |{v ∈ V : πt (v) �= πt+1(v)}|. Some existing
approaches addressing this problem can be found, for example, in Refs. [23,24].

60.1.2 Bounds on the Bisection Width

Some analytical results on the bisection width of graphs are known. Feige et al. [25] propose an algorithm
which calculates a cut-size that differs from the bisection width by not more than a factor of O(

√|V | ·
log(|V |)). Although this factor is still very high, it is the first sublinear factor for this problem. Furthermore,
an algorithm with a smaller factor of O(log2(|V |)) has been proposed in Ref. [26]. These approximation
factors are of high theoretical interest, but they are far from acceptable for real applications. Furthermore,
the algorithms behind these approximation factors are very complicated and are not suitable to design fast
and efficient graph partitioning algorithms.

The graph bisection problem is NP-complete even for regular degree graphs [27]. Analytical results on
these graphs show that almost every large d-regular graph G = (V, E ) has a bisection width of at least
cd · |V | where cd → d

4 as d → ∞ [28,29].
These bounds can be improved for small values of d . Almost every large 3-regular graph has a bisec-

tion width of at least 1
9.9 |V | ≈ 0.101|V | [30,31]. However, all sufficiently large 3-regular graphs have a

bisection width of at most 1
6 |V | [16]. Furthermore, it is shown that almost all large 4-regular graphs have

a bisection width of at least 11
50 |V | = 0.22|V | [29], while the bisection width of sufficiently large 4-regular

graphs is at most 2
5 |V |.

Some approaches calculate lower bounds on the graph bisection width. These bounds can be used
to evaluate the quality of the existing upper bounds as well as to speed up Branch & Bound strategies
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determining the bisection width of moderately sized graphs. Leighton [32] proposes a lower bound of
the bisection width based on a routing scheme for all pairs of vertices. A small congestion of the routing
scheme leads to a high lower bound. Lower bounds on the bisection width can also be derived from
algebraic graph theory by relating the bisection problem to an eigenvalue problem. It is well known that
the bisection width of a graph G = (V, E ) is at least λ2|V |

4 with λ2 being the second smallest eigenvalue
of the Laplacian of G . This spectral bound is tight for some graphs [33].

Furthermore, the structure of an optimal bisection can be used to derive improved spectral lower
bounds on certain graph classes [33]. For some classes of d-regular graphs one can prove an improved
lower bound on the bisection width of roughly d

d−2
λ2|V |

4 . Furthermore, one can prove a lower bound

of
10+λ2

2−7λ2

8+3λ3
2−17λ2

2+10λ2
· λ2|V |

2 for the bisection width of all sufficiently large 3-regular graphs and a lower

bound of 5−λ2
7−(λ2−1)2 · λ2|V |

2 for the bisection width of all sufficiently large 4-regular graphs. These lower

bounds are higher than the classical bound of λ2|V |
4 for sufficiently large graphs and are applicable to

Ramanujan graphs [34–37]. Any sufficiently large 3-regular Ramanujan graph has a bisection width of
at least 0.082|V |, while sufficiently large 4-regular Ramanujan graphs have a bisection width of at least
0.176|V |. These values are the best lower bounds for explicitly constructible 3- and 4-regular graphs [16].

60.1.3 Applications

The graph partitioning problem is encountered, for example, in Very-Large-Scale Integration (VLSI) layout
of circuits. The wires of the circuit have to be distributed uniformly over a wafer and long wire lengths
should be avoided. This problem can be solved by recursive partitioning of the graph which represents
the circuit such that the costs between two partitions are minimized. In Ref. [38] it is reported that this
method is the most cost-effective way to generate VLSI placements.

Another application consists in balancing the computational load in distributed (adaptive) finite
element method (FEM) computations. These are used extensively by engineers to analyze a variety of
physical processes which can be expressed via partial differential equations (PDE). The domain on which
the PDEs have to be solved is discretized into a mesh, and the PDEs are transformed into a set of linear
equations defined on the mesh’s elements (see, e.g., Ref. [39]). These can then be solved by iterative
methods such as the conjugate gradient (CG). Due to the very large amount of elements needed to obtain
an accurate approximation of the original problem, this method has become a classical application for
parallel computers. The parallelization of numerical simulation algorithms usually follows the single-
program multiple-data (SPMD) paradigm: Each processor executes the same code on a different parts of
the data. This means that the mesh has to be split into P subdomains and each subdomain is then assigned
to one of the P processors. To minimize the overall computation time, all processors should roughly contain
the same amount of elements. Since iterative solution algorithms perform mainly local operations, that
is, data dependencies are defined by the mesh, the parallel algorithm mainly requires communication at
the partition boundaries. Hence, these should be as small as possible. Since the communication pattern
of FEM computations can be modeled by a graph where the vertices represent the data and the edges the
dependencies, this task is equivalent to solving a graph partitioning problem.

60.2 Global Heuristics

Apart from simple greedy algorithms, there are only a few global heuristics that are still applied to partition
a graph. Most of these heuristics are not competitive to the multilevel schemes described later on. Therefore,
we only mention two popular approaches here.

The first is the spectral bisection. Note that, though we describe only spectral bisection, this heuristic
has been also generalized to solve k-partitioning problems directly within a multilevel framework which
is described later on. Spectral bisection does not work directly on a given graph, but on a mathematical
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representation. For a graph G = (V, E ) with vertex-edge incidence matrix A, which contains in each
column corresponding to edge e = (u, v) the entries −1 and +1 in the rows u and v, and 0 elsewhere.
The Laplacian matrix L ∈ Z

|V |×|V | of G is defined as L = AAT. For the spectral bisection, the second-
smallest eigenvalue λ2 of L is computed. Then, the median m of all components of the corresponding
eigenvector e is determined and the vertices of the graph are distributed as V1 = {v ∈ V : ev < m} and
V1 = {v ∈ V : ev > m}. More background information on this method can be, for example, found
in Ref. [40]. Also, extensions to k-partitioning have been published [41].

In some applications vertices are provided with geometric data. Hence, this additional information can
be used to partition the graph. In this field, partitions based on space-filling curves have become popular.
Space-filling curves are geometric representations of bijective mappings M : {1, . . . , Nm} → {1, . . . , N}m.
The curve M traverses all Nm cells in the m-dimensional grid of size N. They have been introduced by
Peano and Hilbert in the late nineteenth century [42]. An (historic) overview on space-filling curves is
given in Ref. [43]. In Ref. [44], it is shown that partitions based on connected space-filling curves are
“quasi optimal” for regular grids and special types of adaptively refined grids. In these cases, the cut-size
is bounded by C(|V |/P )(d−1)/d , where |V | denotes the number of vertices, P the number of partitions,
and d the dimension of the graph. The constant C depends on the curve type. This approach is very fast,
but it is also known that ignoring the adjacency information of the graph can result in a poor solution
quality, especially in case of unstructured graphs.

60.3 The Multilevel Graph Partitioning Paradigm

The graph partitioning problem often only represents a subproblem. Therefore, it has to be solved fast and
be space-efficient. Due to the size of the graphs, global approaches are either slow or result in rather bad
solutions. This is overcome by the most important invention in this area, the multilevel scheme (see, e.g.,
Ref. [1]).

60.3.1 The Multilevel Scheme

The main idea of the multilevel scheme is to contract vertices of the graph and generate a new level
consisting of a smaller graph with a similar structure. This is repeated, until in the lowest level only a
small graph, sometimes with two vertices only, remains. The partitioning problem is then solved for this
small graph and vertices in higher levels are assigned to partitions according to their representatives in
lower levels, after a local refinement phase has been applied to further enhance the current solution. This
process finally leads to a partition of the original graph. Hence, a multilevel algorithm consists of three
important tasks: (i) a matching algorithm, deciding which vertices are combined in the next level, (ii) a
global partitioning algorithm applied in the lowest level (which actually can be omitted if the number of
vertices in the lowest level meets the number of desired partitions), and (iii) a local refinement algorithm
improving the quality of a given partition.

Edges of high weights usually connect dense areas of the graph. To impede these edges from being cut
in coarser graphs, the matching algorithm is supposed to calculate a solution with a high edge weight. To
speed up the coarsening process, the whole graph is processed and the matchings on each level should
have a high cardinality. The maximum reduction is achieved by splitting the number of vertices in halves
on each level. This is only possible with a complete matching. Section 60.3.2 therefore presents a number
of approximation algorithms for maximum-weighted matchings in general edge-weighted graphs.

Concerning the local improvement, most heuristics are based on the work of Kernighan and Lin [12].
Their strategy is to move single vertices between parts to decrease the size of the cut. The Helpful-Set
heuristic [13,14] is based on a movement of larger sets of vertices and is derived from a technique used
to prove an upper bound on the bisection width of 4-regular graphs [15]. Both will be presented in
Section 60.3.3.
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60.3.2 Graph Coarsening through Graph Matching

To create a smaller, similar graph for the next level of the multilevel scheme, a matching algorithm is
applied and matched vertices are then combined to generate the next level.

60.3.2.1 Graph Matching Algorithms

Graph matching is a fundamental topic in graph theory. Let G = (V, E ) be a graph consisting of the
vertex set V and a set of undirected edges E without multiedges or self-loops. A matching of G is a subset
M ⊂ E , so that no two edges of M are adjacent. A vertex incident to an edge of M is called matched and
a vertex not incident to an edge of M is called free.

In the past, an enormous amount of work has been spent on matching theory. Different types of
matchings have been discussed, their existence and properties have been analyzed, and efficient algorithms
to calculate specific matchings have been developed. Many results have been achieved for specific classes
such as bipartite or planar graphs. A central aspect are matchings with high cardinality. A Maximal Matching
MMAX is a matching which cannot be enlarged by an additional edge without violating the matching
property. A graph may have several different maximal matchings and, especially, maximal matchings of
different cardinality. A Maximum Cardinality Matching MMCM is a matching of maximum size, that is,
for all matchings M̄ of G it holds |MMCM| ≥ |M̄|.

Matchings are also discussed for graphs with edge weights w : E → IR. For a set F ⊂ E let W(F ) :=∑
{a ,b}∈F w({a , b}) be the weight of F . A maximum-weighted Matching MMWM is a matching of highest

weight, that is, for all matchings M̄ of G it holds W(MMWM) ≥ W(M̄).
Many algorithms calculating matchings have been developed in the past. Consult, for example, Refs. [45,

46] for the history of matching algorithms. In the following, only the currently fastest algorithms are stated.
The fastest algorithm for maximum cardinality matching up to date is presented in Ref. [47] and has

a time complexity of O(|E |√|V |). In the edge-weighted case, the algorithm from Ref. [48] calculates a
maximum-weighted matching in time O(|V | · |E | + |V |2 log(|V |)). This time complexity has been im-
proved by Gabow and Tarjan [49] considering the assumption of integral costs which are not particularly
high: if the weight function w : E → [−N, ..., N] maps to integers between −N and N only, their
algorithm will run in O(

√
|V | · α(|E |, |V |) · log(|V |) · |E | · log(|V | · N)) time, with α being the inverse

of Ackermann’s function.

60.3.2.2 Approximation Algorithms for Cardinality Matching

The algorithms discussed so far have super-linear time complexity. Recently, approximation algorithms
for matching problems have attracted more and more attention. They not only possess a smaller time
complexity than optimal algorithms but also calculate suboptimal solutions. The guaranteed quality is
described by an approximation factor which states the worst-case loss to an optimal solution, for example,
a factor of 1

2 guarantees that the solution quality is at least half as good as the optimum. It is a simple exercise
to prove that any maximal matching MMAX has a cardinality of at least 1

2 the cardinality of a maximum
cardinality matching, that is, |MMAX| ≥ 1

2 |MMCM|. Therefore, any maximal matching algorithm is an
1
2 -approximation algorithm for a maximum cardinality matching. Simple methods with time complexity
O(|E |) can be used to calculate maximal matchings.

Augmenting paths are often considered for graph matching, especially for approximating maximum
cardinality matching. An augmenting path has an odd number of edges with alternating edges of M and
of E \M and two free vertices as endpoints, that is, an augmenting path of length l consists of l−1

2 edges of
M and l+1

2 edges of E \M. If such a path exists, the cardinality of M can be increased by one by exchanging
the matched and unmatched edges of the path.

Based on Ref. [50], it can be shown that if the shortest augmenting path with respect to a matching Ml

has length l , then |Ml | ≥ l−1
l+1 |MMCM| (see, e.g., Ref. [51, p. 156]). Matchings without short augmenting

paths can be calculated very fast, for example, a matching with a shortest path of length l ≥ 5 can be
computed in time O(|E |), resulting in |M5| ≥ 2

3 |MMCM|. If the minimum degree min and maximum
degree max of all vertices are considered, it can easily be proven that if the shortest augmenting path has a
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length of l ≥ 5, then |M5| ≥ min
max+2·min |V |, which implies |M5| ≥ 1

3 |V | for graphs with a regular degree,
that is, 2

3 of the vertices are matched [17].

60.3.2.3 Common Graph Matching Heuristics

A matching algorithm for multilevel partitioning is supposed to quickly deliver a high matching cardinality
and matching weight. Because of the time constraints, the calculation of a MMCM or even a MMWM would
be too time consuming. Therefore, fast algorithms calculating maximal matchings are applied. All of them
follow the same strategy: Starting with an initial empty matching, the vertices of the graph are visited in a
specific order. For each visited vertex v, it is checked if v is free and if v is adjacent to at least one free vertex.
If v is free and all neighbors are already matched, v remains free. Otherwise, if v is free and at least one
free neighbor exists, the edges to free neighbors are rated and an edge with highest rating is added to the
matching. The methods differ in the order in which the vertices are visited and the rating of the incident
edges. In addition, they may also differ in the way in which possible ties in the ordering and rating are
broken.

As first example, the random-edge matching (REM) is used in, for example, Ref. [1]. The vertices are
visited in random order, a random free neighbor is chosen and the connecting edge is added to the
matching. In Refs. [2,52], the random matching as well as the heavy-edge matching (HEM), the modified
heavy-edge matching (HEM∗), the light-edge matching (LEM), and the heavy-clique matching (HCM) are
discussed. All of them visit the vertices in random order and either take any incident edge with highest
weight (HEM), perform further tie-breaking mechanisms if more than one edge has the highest weight
(HEM∗), take the edge with lightest weight (LEM), or take the edge with the highest edge-density. The first
attempt to analyze the matching strategies REM and HEM under several assumptions has been published
in Ref. [53]. The work in Ref. [3] proposes a balanced-edge matching to result in a coarse graph with more
uniform vertex weights.

These strategies are fast and try to calculate a matching with high cardinality and weight but only
guarantee a maximal matching. This, as discussed above, guarantees a cardinality of the matching with at
least 1

2 |MMCM|. However, concerning the matching weight, one can construct examples for which these
methods calculate matchings with a weight much lower than that of a MMWM.

An experimental study of several matching algorithms is given in Ref. [54]. An overview of parallel
algorithms for graph matching problems is presented in Ref. [51] and new parallel approximation algo-
rithms are presented in Ref. [55]. In the following we present a number of fast sequential approximation
algorithms for graph matching.

60.3.2.4 1
2 -Approximation Algorithms for Maximum-Weighted

Matching

There is a series of different 1
2 -approximation algorithms, starting with a very simple algorithm which is

based on a greedy strategy. It always adds the heaviest free edge to the matching [56].

Greedy algorithm
MGr eedy := ∅;
Sort the edges E according to their weight;
WHILE (E �= ∅)

take an edge {a , b} ∈ E with highest weight;
add {a , b} to MGr eedy ;
remove all edges incident to a or b from E ;

The Greedy algorithm, which is, for example, applied in Ref. [4] for calculating matchings after the first
few coarsening steps, requires a time of O(|E | · log(|V |)) because of the initial sorting of the edges by their
weight. Clearly, if the Greedy algorithm chooses an edge which is not part of an (unknown) maximum-
weighted matching, the chosen edge blocks at most two edges of the optimal matching. However, the edge
weight of each of the two blocked edges are at most the weight of the chosen edge.
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Theorem 60.1 (due to Avis [56])

Let G = (V, E ) be a graph with vertices V and weighted undirected edges E . The Greedy algorithm computes
a matching of G with an edge weight of at least 1

2 of the edge weight of a maximum-weighted matching in
time O(|E | · log(|V |)).

The work in Refs. [7,8] started a sequence of new 1
2 -approximation algorithms for maximum-weighted

matching by different authors. They all require linear time.

Locally Heaviest Algorithm
MLocall y−Heavi es t := ∅;
WHILE (E �= ∅)

try match ({a , b}) with an arbitrary edge {a , b} ∈ E ;
PROCEDURE try match ({a , b})

WHILE (a is free AND b is free AND there is another edge {a , c} ∈ E or {b, d} ∈ E with a higher
weight)
IF (a is free AND there is another edge {a , c} ∈ E with a higher weight)

try match ({a , c});
IF (b is free AND there is another edge {b, d} ∈ E with a higher weight)

try match ({b, d});
IF (a and b are free)

add {a , b} to MLocall y−Heavi es t ;
remove all edges incident to a or b from E ;

This algorithm starts with an empty matching MLocall y−Heavi es t and repeatedly chooses an arbitrary
edge which it tries to match. The main idea is to look for the so-called locally heaviest edges, that is, edges
which are at least as heavy as all of their remaining adjacent edges. After such an edge has been matched
and removed from E , further remaining edges may become locally heaviest. Clearly, if one repeatedly
matches locally heaviest edges, the resulting matching will be a 1

2 approximation of the maximum-weighted
matching because of the same fact as with the Greedy algorithm. The procedure try match proceeds in a
backtracking manner. As long as there exists an incident edge to one of the vertices a or b with a higher
weight than {a , b}, it calls itself recursively with this new edge. This is repeated until all adjacent edges
have a lower or equal weight. In this case, the current edge is a locally heaviest edge and is added to the
matching while all adjacent edges are removed.

Theorem 60.2 (due to Monien et al. [7])

Let G = (V, E ) be a graph with vertices V and weighted undirected edges E . The Locally Heaviest algorithm
computes a matching of G with an edge weight of at least 1

2 of the edge weight of a maximum-weighted
matching in linear time O(|E |).

The path growing algorithm from Ref. [9] possesses the same approximation quality and run-time as
the Locally Heaviest algorithm presented before but its analysis is much simpler.

Path-Growing Algorithm
start with an empty set of paths P ;
WHILE (there is a vertex v ∈ V)

WHILE (v has a neighbor)
let {v, w} be a heaviest edge incident to v;
add {v, w} to the set of paths P ;
remove v from V ;
v := w ;

divide P into two matchings M1 and M2 and return the heavier one;

Its main idea is to grow a set of vertex disjoint paths. Starting at a single vertex, it tries to extend the
current path in one direction always along the heaviest edge available. Once the heaviest edge has been
chosen, all other edges incident to the current vertex are removed. If no more edges can be found to extend
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the current path, a new path is started at a pathless vertex. This process is repeated until no more pathless
vertices remain. The edges of all paths are separated alternately in two sets M1 and M2. Therefore, both sets
do not contain any incident edges and are both matchings. Finally, the heavier set (matching) is returned.

It is easy to see that the algorithm runs in linear time, since each vertex is processed only once and
finding all heaviest incident edge can be executed in O(|E |). Since the algorithm always chooses the
heaviest incident edge, the weight of M1 ∪ M2 is at least as large as the weight of MWM and hence the
heavier set has at least half the weight. This results in the following theorem.

Theorem 60.3 (due to Drake and Hougardy [9])

Let G = (V, E ) be a graph with vertices V and weighted undirected edges E . The Path-Growing algorithm
computes a matching of G with an edge weight of at least 1

2 of the edge weight of a maximum-weighted
matching in linear time O(|E |).

60.3.2.5 2
3 − ε Approximation Algorithms for Maximum-Weighted

Matching

It is possible to design an approximation algorithm with an approximation factor arbitrarily close to 2
3

[10]. The algorithm iteratively improves a matching via short augmentations to achieve an approximation
factor of 2

3 − ε.

Iterated-Augmentation Algorithm
compute a 1

2 -approximation matching M in linear time (previous section);
DO at most 16

3ε
iterations of

M′ := M;
FOR (e ∈ M) DO

IF (there exists a β-augmentation in M′ with center e)
augment M′ by a good β-augmentation with center e;

M := M′;

This algorithm starts with a matching computed by a linear time 1
2 matching algorithm (Locally Heaviest

or Path-Growing). The key idea is to apply short augmentations, that is, augmentations around a center
edge e involving only edges adjacent to the center edge. Furthermore, no arbitrary short augmentations are
performed, but only good augmentations that yield a certain ratio. The parameter β controls this selection
and depends only on ε. It can be proven that a constant number of improvement iterations (depending
on ε) is sufficient to achieve the desired approximation. Overall, the following theorem can be stated.

Theorem 60.4 (due to Drake and Hougardy [10])

Let G = (V, E ) be a graph with vertices V and weighted undirected edges E . For any constant ε > 0 the
Iterated-Augmentation algorithm computes a matching of G with an edge weight of at least 2

3 − ε of the edge
weight of a maximum-weighted matching in linear time O(|E |).

Another 2
3 − ε approximation algorithm is described in Ref. [11]. It converges faster toward the desired

approximation than the Iterated-Augmentation algorithm.

Deterministic-Match Algorithm
M := ∅;
REPEAT k times

S := ∅;
FOREACH atom e (matched edge or unmatched vertex)

find an eligible augmentation a centered at e maximizing the gain;
S := S ∪ {a};

calculate a vertex disjoint subset of augmentations from S and apply them to M;

Like the Iterated-Augmentation algorithm, this approach also requires a constant number of iterations.
The number of iterations k only depends on the desired gap of the approximation factor to 2

3 . In each
iteration, every atom (either a matched edge or an unmatched vertex) is choosing a small augmentation.
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This results in a set S of augmentations, which are not necessarily independent. Then, by repeatedly
selecting edges with the highest gain in a greedy fashion, a maximum vertex-disjoint augmentation in S is
constructed. This is then realized on M. The properties of the algorithm are stated in the following theorem.

Theorem 60.5 (due to Pettie and Sanders [11])

Let G = (V, E ) be a graph with vertices V and weighted undirected edges E . For any constant integer k the
Deterministic-Match algorithm computes a matching of G with an edge weight of at least 2

3 (1 − ( 19
20 )k) of the

edge weight of a maximum-weighted matching in time O(k|E |).

60.3.2.6 Heuristic Improvements

Without modifications, the presented matching algorithms will often create star-like graphs, meaning that
some very heavy vertices of very high degree are generated (see, for example, Ref. [17]). This makes the
result unusable because neither is the graph similar to the original one anymore nor can the number of
vertices of a star-like graph be reduced appropriately to create a smaller graph for the next level of about half
the size. To prevent this, the edge-weights can be modified according to the weight of their incident vertices.
The new weight w ′ of an edge e = {u, v} becomes w ′(e) = w(e)/(w(u) · w(v)). Another possibility is
to only consider vertices as matching pairs if their combined weight does not exceed twice the weight of
the lightest plus the weight of the heaviest vertex that occurs in the entire graph. This ensures that heavy
vertices can only be matched with light ones which leads to more balanced weights. Further discussion
can be found, for example, in Ref. [17].

60.3.3 Local Refinement Algorithms

The second important phase within the multilevel paradigm is the improvement or local refinement. After
the vertices are assigned according to their representatives in the smaller graph, this phase tries to improve
the current partitioning.

60.3.3.1 The Kernighan–Lin Refinement Heuristic

The KL heuristic [12] with the modifications by Fiduccia and Mattheyses [57] is one of the earliest graph
partitioning heuristics and has been developed to optimize placements of electronic circuits. It does not
create partitions but rather improves existing ones by exchanging vertices.

Each vertex v of the graph is assigned a value diff(v) which represents the reduction in the chosen metric
that would occur when moving v to the other partition. If addressing the cut-size, this value depends only
on the edges incident to v and is defined as

diff(v) =
∑

{v,u}∈E ;π(v) �=π(u)

w E ({v, u}) −
∑

{v,u}∈E ;π(v)=π(u)

w E ({v, u})

Also, if a vertex is moved, only the values of itself and its neighbors are affected.
The KL algorithm performs several passes. In each pass, it repeatedly chooses an unlocked vertex with

a high value, moves it logically to the other part and locks it. If the resulting bisection after a move is
balanced and the cut-size is lower than the previously found best cut-size, it marks this state. When all
vertices are locked and if a new best cut-size has been marked, all vertex moves up to the marked state
are performed physically. The algorithm continues with the next pass until the cut-size cannot be reduced
further.

Kernighan–Lin Algorithm
REPEAT

compute the diff-values of all vertices
WHILE there are unlocked vertices

IF the partition is not balanced
choose an unlocked vertex v with maximal diff-value from the overloaded part

ELSE
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choose an unlocked vertex v with maximal diff-value from any part
logically move v to the other part and lock it
update the diff-values of v’s neighbors
IF the bisection is balanced and the cut-size is lower than the best cut-size seen so far

mark the current state
ENDWHILE
IF marked cut-size is smaller than previously known cut-size

move all vertices up to the marked state physically to the other part
UNTIL cut-size is not reduced

The original algorithm by Kernighan and Lin is based on the exchange of vertex pairs. In a simple
implementation, a pass has run-time O|V |3 with the calculation of the vertices with the highest gain
being the most expensive part. By sorting the vertices according to their gain, this can be reduced to
O(|V |2 log |V |). The method has been modified in Ref. [57], such that only single vertices are moved.
Furthermore, efficient data structures called buckets reduce the run-time per pass to O(|V | + |E |).

In general, KL is robust and reliable. Although no theoretical bounds on the partition quality is known
yet, the results are convincing, provided the initial partitioning is fairly satisfactory.

60.3.3.2 The Helpful-Set Refinement Heuristic

Just as KL, the Helpful-Set bisection heuristic [13,14] is based on local search. Starting with an arbitrary
initial bisection π , it tries to reduce the cut-size with the help of local rearrangements. However, their
choice is the main difference to KL since it does not only migrate single vertices but also sets off vertices.

The Helpful-Set concept is based on the following definition which states the reduction of the cut-size
if a set of vertices is moved from one part to another.

Definition 60.1 (Helpful-Sets)

Let π be a bisection of the vertices V of a graph G = (V, E ) into V1 and V2. For a set S ⊂ Vi , i ∈ {1, 2}, let

H(S) = |{{v, w} ∈ E ; v ∈ S; w ∈ V\Vi }| − |{{v, w} ∈ E ; v ∈ S; w ∈ Vi \S}|
be the helpfulness of S. S is called H(S)-helpful.

Helpful-Set Algorithm
REPEAT

search for a k-helpful set S ⊂ V1 with k > 0 and move it to V2;
search for a k̄-helpful balancing set S̄ ⊂ V2 with |S| = |S̄| and k + k̄ > 0 and move it to V1;

UNTIL a desired cut-size is reached

The algorithm proceeds within several iterations. Each iteration starts to search for a k-helpful set
S ⊂ V1 with a positive k. Then, an equally sized balancing set S̄ will be found on the enlarged part and
moved back to the first part. The helpfulness of the balancing set can be negative, but the overall gain will
be positive. This ensures that the cut-size decreases in each iteration.

The idea behind this process is that as long as the cut-size is above a certain value, one can guarantee
that a small k-helpful set can be found on one side and a balancing set on the other side. The first theorem
based on this observation is the following.

Theorem 60.6 (Due to Hromkovič and Monien [15])

Let G = (V, E ) be a 4-regular graph with an even number of at least 350 vertices. Then, the bisection width
bw(G) of G is bounded by

bw(G) ≤ 1

2
|V | + 1

The proof of this theorem is based on two lemmas, one for finding a helpful set in one of the parts and
one for balancing an almost balanced partition without increasing the cut-size too much.
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Lemma 60.1 (Helpful Set; due to Hromkovič and Monien [15])

Let π be a balanced partition with cut(π) >
|V |
2 + 1. Then we can find a balanced partition π̂ with

cut(π̂) < cut(π) by exchanging only two nodes or there exists a 4-helpful graph of cardinality at most
4�log2 |V |� + 3.

Clearly, this lemma can be applied if the current cut size is still too high. Then, either the cut size is
reduced by a simple exchange of two vertices, or it is decreased by at least four if the small 4-helpful set is
moved to the other part.

We will call a partition π almost balanced if there exists some number z such that (i) cut(π) ≥
z| |V |

2 − |V1|| and (ii) 4 max{|V1|, |V2|} ≤ 5cut(π) + 2z.

Lemma 60.2 (Balancing Lemma, due to Hromkovič and Monien [15])

Let π be an almost balanced partition with cut(π) ≥ 4. Then we can construct a balanced partition π̂ with
cut(π̂) ≤ cut(π) + 2.

Thus, the first lemma ensures a reduction of the cut-size of at least 4 and the second lemma ensures an
increase of at most 2, leading to an overall reduction of 2 for every iteration of these two lemmas. This
results in the already stated theorem.

These results are extended to general regular graphs with an even degree.

Theorem 60.7 (Due to Monien and Diekmann [14])

Let G = (V, E ) be a d-regular graph with d even, d ≥ 4 and |V | ≥ n0(d). Then, the bisection width bw(G)
of G is bounded by

bw(G) ≤ d − 2

4
|V | + 1

Furthermore, improved results are known for 3- and 4-regular graphs.

Theorem 60.8 (Due to Monien and Preis [16])

For any ε > 0 there exists a value n(ε) such that the bisection width of any 3-regular graph G = (V, E ) with
|V | > n(ε) is at most ( 1

6 + ε)|V |.
Theorem 60.9 (Due to Monien and Preis [16])

For any ε > 0 there exists a value n(ε) such that the bisection width of any 4-regular graph G = (V, E ) with
|V | > n(ε) is at most ( 2

5 + ε)|V |.
All proofs of these theorems are based on the Helpful-Set concept. Although these results are stated for

regular graphs and only for certain values of regularity, they can be generalized in principal to a wide range
of vertex degrees. However, these proofs would be very technical.

The Helpful-Set heuristic [7,13] is the algorithmic result of the theorems above and includes several
heuristic generalization such as the handling of graphs with arbitrary vertex degrees and graphs with vertex
and edge weights.

60.3.4 Graph Partitioning Tools

Efficiency and generalizations of graph partitioning methods strongly depend on specific implementations.
There exist several software libraries which provide a large range of different methods. Examples are
CHACO [58], JOSTLE [59], METIS [60], PARTY [7,21], and SCOTCH [61]. The goal of the libraries is
both to provide efficient implementations and to offer a flexible and universal graph partitioning interface
to applications.

Although there exists a large number of sequential libraries, only a few parallel implementations are
available. This is because of the complexity involved in parallel programming. Furthermore, the applied
heuristics like KL are basically of sequential nature, hence modifications are required, which sometimes
introduce new limitations. The most popular distributed libraries are the parallel versions of METIS [60,62]
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and JOSTLE [63,64]. These tools essentially perform the same techniques as their sequential counterparts,
are quite fast and deliver solutions that are acceptable for most applications.

60.3.5 Effects of Nondeterminisms

Each of the libraries implementing the algorithms presented above involves some kind of heuristic. This
is unavoidable due to the complexity of the problem, the large problem sizes, and the given time con-
straints. Even if approximation algorithms are applied in some stages, the overall computation is still a
heuristic, because the influence between the different components has not been theoretically investigated
yet. However, this also means that empirical tests are necessary and are currently the only way to compare
the different approaches and implementations.

A number of example graphs from different sources have been published. Library authors usually
refer to a subset of these graphs to evaluate their algorithms and measure the improvements. However,
observations in Ref. [65] reveal that different initializations of the random number generator, which is
applied, for example, in the matching algorithm of some libraries, lead to a large variety in the quality of
the results.

Schamberger [66] demonstrates that results calculated by partitioning libraries are not totally pre-
dictable, even if the applied algorithms themselves do not include any nondeterminism. By generating
graphs of identical structure but with a permuted vertex ordering, one can observe that the obtained
partitions vary significantly in their quality. The variation is sometimes even larger than the gap between
different implementations.

This is important since experiments and comparisons are usually thought as a kind of prediction of how
good a heuristic performs on certain types of graphs. Randomization also helps during the development
and testing of new features. Additionally, it provides information about how reliable a graph partitioning
heuristic is and therefore indicates in what quality range solutions can be expected.

60.4 Discussion

The existing graph partitioning heuristics provide good solutions and are very fast. However, although
great progress has been made in this area, many questions and challenges remain as, for example, explained
in Ref. [67]. While the global cut-size is the classical metric that most graph partitioners optimize, it is not
necessarily the metric that models the real costs of the application. In FEM computations for example, the
true communication volume can significantly differ from the number of cut-edges. Furthermore, aspects
like latency are ignored. Another questionable point is the applied norm. In synchronized computations,
the slowest processor specifies the overall speed, hence the maximum norm would be appropriate, while
the usually applied cut-size is a summation norm.

Furthermore, the existing libraries cannot obey some constraints that applications might have. For
example, the multilevel algorithms cannot guarantee connected partitions. Swapping a single vertex in a
lower level can easily disconnect a partition. Though it is possible to check the result for connectivity, it
would be quite an expensive operation and therefore is usually not implemented. Another point especially
when solving the repartitioning problem is that partitions often become long and thin. This contra-
dicts the desired small boundaries and, for example, in FEM computations, can even lead to instabilities
in the parallel mathematical solvers. However, there are first approaches that consider these additional
constraints.

Another concern is the parallelization. All state-of-the-art implementations are based on vertex exchange
heuristics like KL. This procedure, however, is a sequential process. Although it is possible to parallelize it
by adding some restrictions, the question remains if there exists a method that is of parallel nature. With
growing graph sizes, large clusters and with the upcoming multicore processors, parallelization becomes
more and more important.
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61.1 Introduction

A hypergraph is a generalization of a graph wherein edges can connect more than two vertices and are
called hyperedges. Just as graphs naturally represent many kinds of information in mathematical and com-
puter science problems, hypergraphs also arise naturally in important practical problems, including circuit
layout, Boolean SATisfiability, numerical linear algebra, etc. Given a hypergraph H , k-way partitioning
of H assigns vertices of H to k disjoint nonempty partitions. The k-way partitioning problem seeks to
minimize a given cost function of such an assignment. A standard cost function is net cut, which is the
number of hyperedges that span more than one partition, or, more generally, the sum of weights of such
edges. Constraints are typically imposed on the solution, and make the problem difficult. For example,
certain vertices can be fixed in their partitions (fixed constraints) or the total vertex weight in each partition
may be limited (balance constraints). With balance constraints, the problem of optimally partitioning a
hypergraph is known to be NP-hard [1]. However, since partitioning is critical in several practical applica-
tions, heuristic algorithms were developed with near-linear runtime. Such move-based heuristics for k-way
hypergraph partitioning appear in Refs. [2–4], with refinements given by Refs. [5–14]. The following is
an introduction to partitioning formulations and algorithms, centered on the Fiduccia–Mattheyses (FM)
heuristic [3] and its derivatives.

61-1
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FIGURE 61.1 An example of a nearly block-diagonal matrix and corresponding hypergraph. Each row of the matrix
corresponds to a hyperedge, and each column corresponds to vertices v1 through v8. Recursively bisecting the graph
aligns the blocks of the matrix on the diagonal.

There is a wide variety of contexts for hypergraph partitioning. Several of them are outlined in
Section 61.2. Each context uses a hypergraph to represent another kind of data structure. The mappings
of several mathematical structures to hypergraphs are described below:

Matrices. The pattern of nonzero entries of a matrix A can be represented by a hypergraph whose
hyperedges correspond to rows of A and vertices correspond to the columns of A. Each hyperedge, e , will
be connected to a vertex, v, if Ae ,v �= 0. Figure 61.1 gives an example of a matrix and its corresponding
hypergraph.

Logic circuits. Logic circuits are composed of gates (or standard cells) that perform logical operations
and connected by metal wires. The same electrical signal may propagate from one gate to several other
gates—such a connection is called a net, and can be conveniently represented by a hyperedge. The hyper-
graph corresponding to a logic circuit directly maps gates to vertices and nets to hyperedges. The dual of this
hypergraph is sometimes used as well. In the dual hypergraph, vertices correspond to nets, and hyperedges
correspond to gates. An example of a logic circuit and corresponding hypergraph is given in Figure 61.2.

Boolean formulae. The conjunctive normal form (CNF) for Boolean formulae consists of Boolean vari-
ables or their complements grouped into clauses and combined with the OR operation. All of the clauses
are then combined with the AND operation (see Figure 61.3 for an example). To convert a CNF formula
into a hypergraph, the following mapping is used. Each literal in the formula (a Boolean variable is a
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FIGURE 61.2 An example of a logic circuit and the corresponding hypergraph.

φ = (v1 + v3)(v3 + v5)(v2 + v5 + v4)
(v5 + v6)(v6 + v7 + v8)(v8 + v9) v2
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FIGURE 61.3 An example of a CNF logic formula φ and the corresponding hypergraph.
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literal and its complement is another literal) maps to one vertex in the hypergraph. Each clause maps to a
hyperedge, which connects to the vertices that correspond to the literals in the clause. A Boolean formula
in conjunctive normal form is shown in Figure 61.3 along with the corresponding hypergraph.

The remainder of this survey discusses hypergraph partitioning as illustrated by these three contexts.
Section 61.2 describes how these contexts give rise to practical applications of hypergraph partitioning.
Terms used in this survey are defined in Section 61.3. Section 61.4 summarizes the various techniques
presented in this survey and outlines how scale dictates which technique is most applicable. The FM
heuristic is described in detail in Section 61.5 and the multilevel FM extension is discussed in Section 61.6.
Available software and benchmarks are briefly described in Section 61.7. Sample empirical results are given
in the appendix.

61.2 Motivation and Applications

Hypergraph partitioning arises in several practical applications, three of which are outlined below.

61.2.1 Numerical Linear Algebra

The runtime of linear algebra computations can vary dramatically depending on the sparsity of input
matrices and their patterns of non-zero values [15,16], which can affect the sparsity of intermediate
matrices appearing during computations. In particular, many linear algebra operations (such as matrix-
vector multiply, matrix-matrix multiply, solving systems of linear equations, eigenvalue problems, etc.)
are faster for block-diagonal matrices due to parallelization.

To leverage this speedup, one would like to reorder rows of the matrix to bring non-zero elements in
input matrices as close to the diagonal as possible before applying such operations. Fortunately, the results
of the operations mentioned above are not changed substantially by row or column permutation. Finding
an optimal permutation is computationally hard [59], but one can use recursive calls to partitioning on a
hypergraph representation of the matrix to find an appropriate solution. Figure 61.1 shows a small example
of a sparse block-diagonal matrix whose rows were ordered in this fashion.

61.2.2 Integrated Circuit Design

Very Large Scale Integration (VLSI) circuit design has long provided driving applications and ideas for hy-
pergraph partitioning heuristics. For example, the methods of Kernighan–Lin [2] and Fiduccia–Mattheyses
[3] form the basis of today’s move-based approaches. The method of Goldberg–Burstein [17] presaged
the multilevel approaches recently popularized in the parallel simulation [18–20] and VLSI [10,13,21]
communities. As noted in Ref. [22], applications in VLSI design include test, simulation and emulation;
design of systems with multiple field-programmable devices; technology migration and repackaging; and
top–down floorplanning and placement.

Depending on the specific VLSI design application, a partitioning instance may have directed or undi-
rected hyperedges, weighted or unweighted vertices, and so on. However, in all contexts the instance
represents at the transistor, gate, cell, block, chip, or behavioral description module level—a human-
designed system. Such instances are highly nonrandom. Hence, the current practice remains to evaluate
new algorithmic ideas against suites of human-designed benchmark instances. In the VLSI partitioning
community, performance of algorithms is typically evaluated on the ISPD 1998 benchmarks released by
IBM. Alpert [23] noted that previous circuits did not reflect the complexity of modern partitioning in-
stances, particularly in VLSI physical design; this motivated the release of 18 larger benchmarks produced
from internal designs at IBM [24].

Salient features of benchmark (real-world) circuit hypergraphs include:

• Size. Number of vertices can be in the millions (instances of all sizes are equally important).
• Sparsity. Average vertex degrees are typically between 3 and 5 for device-, gate-, and cell-level

instances; higher average vertex degrees occur in block-level design.
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• Number of hyperedges (nets) typically between 0.8x and 1.5x of the number of vertices (each module
typically has only one or two outputs, each of which represents the source of a new signal net).

• Average net sizes are typically between 3 and 5.
• A small number of very large nets (e.g., clock, reset, test) connect hundreds or thousands of vertices.

Partitioning heuristics must be highly efficient to be useful in VLSI design.1 Because of this and also
because of their flexibility in addressing variant objective functions, fast and high-quality iterative move-
based partitioners using the approach of Fiduccia–Mattheyses [3] have dominated recent practice.

The primary use of partitioning heuristics in VLSI design is that of top–down recursive min-cut bisection
placement. In this placement framework, a region of a chip is divided geometrically, and the logic inside
that region is partitioned topologically. Each of these pieces are then recursively divided until the regions
are so small that an optimal end-case placer can solve the problem in a reasonable amount of time.

61.2.3 Automated Theorem-Proving and Formal Verification

Algorithms for electronic design automation (EDA) [25,26], including those for synthesis as well as hard-
ware and software verification, require efficient manipulation of Boolean functions. Boolean satisfiability
(SAT) [27,28] solvers and binary decision diagrams (BDDs) [29] have traditionally been used with such
applications, but their worst-case complexity remains exponential and can scarcely be improved.

A key observation is that Boolean functions arising in EDA applications and constraint satisfaction prob-
lems possess useful structural properties, for example, related variables in satisfiability typically participate
in the same clauses. Uses of problem structure are known to improve the efficiency of SAT and BDD algo-
rithms. For example, Prasad et al. [30] theoretically show that combinational circuits with small net cuts
give easy instances of automatic test pattern generation (ATPG), which are essentially SAT instances. BDDs
with smaller cuts tend to have fewer hyperedges and vertices, speeding up BDD manipulations [31,32].

Based on these observations, Aloul et al. [33] reorder Boolean variables to place “connected” variables
close to each other. The ordering process relies on recursive calls to hypergraph partitioning to reduce
net cut. This optimization can accelerate SAT solving and BDD manipulation, and reduce BDD memory
consumption. The authors of Refs. [34,35] apply partitioning techniques to more general types of reasoning
and more sophisticated theorem provers.

61.3 Definitions and Terminology

In what follows, V is the set of vertices in a hypergraph.

Definition 61.1 (Disjoint Partitions)

A k-tuple P = (p0, . . . , pk−1) with each pi a set of vertices such that
⋃k−1

i=0 pi = V and
⋂k−1

i=0 pi = ∅.

Definition 61.2 (k-Way Partitionment)

A function of the form δ : V → P wherein all vertices of V are mapped to a disjoint partitions from the k-tuple
P. More practically, this function assigns the vertices to one of k disjoint partitions.

Definition 61.3 (Balance Constraint)

A pair of values (l , u). A partition p with a balance constraint must obey l ≤ ∑
v∈p W(v) ≤ u, where W(v)

is the weight of vertex v or 1 if the vertex has no weight.

1For example, a modern top–down standard-cell placement tool will perform recursive min-cut bisection of a
gate-level hypergraph to obtain a coarse global placement, which is then refined into a detailed placement by local
optimizations. This entire placement process, for example, takes approximately 1 CPU minute per 7000 standard cells
on an AMD Opteron 250 workstation with adequate RAM. The implied partitioning runtimes are on the order of
1 CPU second for hypergraphs with 3500 vertices, and 10 min for hypergraphs with 2 million vertices.
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When ∀v ∈ V, W(v) = 1, then
∑

v∈p W(v) = |p|, the number of vertices in p. Partitioning using
similar balance constraints for all partitions will equalize the number of vertices in each.

Definition 61.4 (Hypergraph)

A pair of sets H = (V, E). V is the set of vertices of the hypergraph and E is the set of hyperedges of the
hypergraph. Each hyperedge in a hypergraph is a nonempty subset of V, the size of this subset is called
the hyperedge’s degree. A weighted hypergraph has nonnegative numeric weights associated with each vertex,
each hyperedge, or both.

Conventional graphs are a special case of hypergraphs, where all hyperedges have degree 2. In most
cases, the degree of a hyperedge is no smaller than 2.

Vertices and hyperedges optionally have nonnegative numeric weights. A weight of 0 usually means
that the edge or the vertex is deleted. Weights usually have additive semantics, for example, two weighted
edges, e1 and e2, connecting the same pair of vertices can be replaced with a single edge, e3, such that
W(e3) = W(e1) + W(e2) (see also Definition 61.8).

Definition 61.5 (Cut)

A hyperedge e of hypergraph is cut if, with respect to a particular partitionment δ, its vertices are mapped to
more than one partition. The net cut of a partitionment is the total number of hyperedges that are cut. The
weighted net cut of a partitionment is the sum of the weights of hyperedges that are cut.

Definition 61.6 (Hypergraph Partitioning)

The process of finding a partitionment of a hypergraph such that some cost function, such as net cut, is
minimized. When the solutions must additionally satisfy balance constraints, the process is called balanced
hypergraph partitioning. Hypergraph partitioning that results in two partitions is called bisection.

Definition 61.7 (The k-Way Hypergraph Partitioning Problem)

Given a hypergraph H = (V, E), find a k-way partitionment δ : V → P that maps the vertices of H to one
of k disjoint partitions such that some cost function c : δ → R is minimized.

One typically deals with a particular hypergraph partitioning problem instance which consists of a
particular hypergraph, a set of two or more balance constraints, and an objective function.

Definition 61.8 (Clustering)

The process of computing a coarser hypergraph from an input hypergraph by merging vertices into larger
groups of vertices called clusters.

The weight of each cluster will be the sum of the weights of its vertices, or simply the number of vertices
if they have no weights.

Several cost objectives exist for the hypergraph partitioning problem. The most common by far is net
cut. In VLSI placement, reduced net cut is correlated with shorter wires, and in parallelization smaller net
cut means reduced interprocessor communication. For more than 2-way partitioning, the sum-of-degrees
metric is sometimes used. For this metric, the cost of each hyperedge is equal to the number of different
partitions which contain some of its vertices.

61.4 Summary of Techniques and Their Scale Dependence

In many applications of hypergraph partitioning, the size of input grows every year, and the demand for
performance is high. For example, the number of transistors in a typical VLSI design continues to grow
exponentially (according to Moore’s Law). The algorithms applicable to these circuits must scale to tens of
millions of components today and hundreds of millions in the foreseeable future. Because of these large
inputs, any partitioning technique used must have near-linear complexity in the worst case to be effective.
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State-of-the-art partitioning tools use local search heuristics to refine a given partitionment. The basic
technique common to all VLSI partitioning applications is the FM algorithm [3], which applies linear-
time passes to iteratively improve a given partitionment by moving every vertex exactly once. A prevalent
extension of this algorithm is the MLFM algorithm, which improves both solution quality and runtime of
partitioning large hypergraphs by clustering tightly connected components and partitioning the resulting
smaller hypergraph. However, for sufficiently small hypergraphs, “flat” FM can produce optimal solutions
faster than MLFM, indicating that different techniques should be applied at different scales.

Despite growing input sizes, recursive applications of partitioning will still produce a large number of
small partitioning instances, and the performance of partitioning on small instances is equally relevant
in practice. In high-performance applications, actual runtime, rather than asymptotic complexity, is a
design objective of prime importance. Due to this, occasionally an algorithm with higher complexity will
be selected if it is faster for practical input sizes. The following is a summary of the techniques available,
and at which scale they are effective.

61.4.1 Exhaustive Enumeration

Exhaustive enumeration produces optimal partitionments and has exponential asymptotic complexity
but low constant runtime factor. As such, at very small scales, exhaustive enumeration is the fastest known
technique. The evaluation of each solution is the bottleneck of this algorithm, and it can be sped up by
incrementally evaluating the cost objective. However, it is straightforward to iteratively update the cut of
a partitionment when one vertex is moved [36]. We can represent each partitionment as a vector, with
each entry corresponding to a vertex’s partition. Then, enumerating the values of this vector in Gray code
order moves only one vertex at a time, thus allowing incremental update of net cut for fast evaluation.
Empirically, we find this to be the fastest technique for one to nine vertices [36].

61.4.2 Branch and Bound

The runtime of exhaustive enumeration grows exponentially in the number of vertices and thus cannot
scale very far. However, its scalability can be improved through intelligent search space pruning; this
technique is known as branch and bound (B&B). A B&B implementation does a depth-first search of the
tree of partial partitionments (some vertices assigned to a partition, some yet unassigned) by choosing a
partition for the next unassigned vertex and recursing. It can search the entire solution space in the worst
case and therefore also has exponential time complexity, but maintains optimality by bounding away only
suboptimal results. Partition balance constraints can be used for pruning illegal solutions and best-seen
cost can be used to bound away suboptimal results.

One notable improvement to the bounding function is known as inevitable cut [36], which applies to
the portion of a hypergraph that is made up of two-pin nets. Choosing any partition for a particular vertex
may imply some additional cost, because it may be connected to vertices in both (all) partitions. The
minimum possible additional cost (considering only two-pin nets) over all legal partition assignments for
a particular vertex is known as its inevitable cut, and can be computed directly. It is the minimum number
of two-pin connections to vertices locked in any particular partition. Figure 61.4 shows two small examples

11 23

FIGURE 61.4 Two small examples of an inevitable cut computation. The black vertices have been assigned to their
respective partitions and the white vertex is still unassigned. In each case, any assignment of the white vertex implies
that some edges will be cut. The inevitable cut is 1 on the left and 2 on the right. For a given unassigned vertex, inevitable
cut is computed as the smallest number of adjacent vertices assigned to any one partition.
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of an inevitable cut computation (for more details see Ref. [36]). The inevitable cut of a vertex can be
safely added to the lower-bound cost computation in the bounding function to strengthen the pruning of
suboptimal results. It is unclear how to extend this technique to hyperedges of degree greater than 3. The
inevitable cut technique can be extended to handle a larger portion of the hypergraph by replacing degree-3
hyperedges with three-cliques (triangles), with each hyperedge’s weight multiplied by one-half the weight
of the original degree-3 hyperedge. This “triangle technique” preserves cost of all partitionments exactly
and allows inevitable cut to be applied to all degree-2 and degree-3 hyperedges. The runtime of B&B can
be unreasonably high for certain pathological cases that have many optimal solutions. In practice we detect
these cases with a time-out. If the runtime limit is exceeded we will stop B&B and use a more scalable
algorithm such as FM discussed below. Empirically, we find B&B to be the best technique for 10–35 movable
objects [36].

61.4.3 The Fiduccia–Mattheyses Heuristic

Partitioning problems with more than 35 movable objects take an impractical amount of runtime to solve
optimally using B&B. Fortunately, an amortized near-linear-time heuristic exists for iterative improvement
of hypergraph partitions. The FM algorithm works by prioritizing moves by gain. A move changes to which
partition a particular vertex belongs, and the gain is the corresponding change to the cost function. After
each vertex is moved, gains for connected modules are updated.

The FM algorithm runs in passes wherein each vertex is moved exactly once. Passes are generally applied
until little or no improvement remains. Initial solutions are often produced using a simple randomized
algorithm. Empirically, we find FM to be the best technique for 36–200 movable objects. Details of the FM
algorithm are discussed below and, at length in Section 61.5.

61.4.4 Multilevel Fiduccia–Mattheyses Framework

The multilevel hypergraph-partitioning framework provides the best known partitioning results for large-
scale circuit hypergraphs. It consists of three main components: clustering, top-level partitioning, and
refinement. During clustering, hypergraph vertices are combined into clusters based on connectivity,
leading to a smaller, clustered hypergraph. This step is repeated until the hypergraph is small enough to
be solved effectively by a “flat” partitioning algorithm (e.g., the FM heuristic). The smallest hypergraph
is partitioned with a very fast initial solution generator (e.g., random) and iteratively improved using the
flat partitioner. The resulting partitionment is then interpreted as a solution for the next (less clustered)
hypergraph during the refinement stage, and improved again using the flat partitioning algorithm until
the bottom level is reached.

Using this multilevel framework with the FM algorithm is known as the MLFM technique, and it is
the most effective and commonly used hypergraph partitioning algorithm for large circuit hypergraphs.
Empirically, we find the MLFM algorithm to be the best technique for more than 200 movable objects.
Details of the MLFM algorithm are discussed at length in Section 61.6.

61.4.5 Other Types of Algorithms

Several other approaches exist for solving the hypergraph partitioning problem [37–41]. Typically, these
techniques have some substantial drawback that makes their use impractical for high-performance appli-
cations. For example, metaheuristics such as simulated annealing and tabu search may be able to achieve
better solution quality at the cost of an impractical increase in runtime [39]. Other techniques may
have constraints on their input that are violated by some problem instances, as is the case with spectral
techniques [38]. Spectral algorithms find eigenvalues of the Laplacian matrix of the connectivity graph
and derive a partitionment from coefficients of an eigenvalue, for example, by comparing them to the
median [42]. These algorithms may not handle fixed terminals well and are therefore not general enough
to handle many practical applications. Another technique relies on the Min-cut Max-flow theorem and
efficient network-flow algorithms to identify optimally small cuts in graphs [41]. These polynomial-time
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algorithms do not typically perform approximation and can handle hyperedges using accurate conversion
to graphs, but do not handle balance constraints, which results in expensive trial-and-error in flow-based
partitioners.

61.5 The Fiduccia–Mattheyses Heuristic

The FM heuristic for partitioning hypergraphs [3] is a linear-time iterative improvement algorithm.
Its neighborhood structure is induced by single-vertex, partition-to-partition moves.2 FM starts with a
possibly random solution and changes the solution by a sequence of moves which are organized as passes.
At the beginning of a pass, all vertices are free to move (unlocked), and each possible move is labeled
with the immediate change to the cost it would cause; this is called the gain of the move (positive gains
reduce solution cost, while negative gains increase it). Iteratively, a move with highest gain is selected
and executed, and the moving vertex is locked, that is, it is not allowed to move again during that pass.
Since moving a vertex can change gains of adjacent vertices, after a move is executed all affected gains are
updated. Selection and execution of a best-gain move, followed by gain update, are repeated until every
vertex is locked. Then, the best solution seen during the pass is adopted as the starting solution of the
next pass. The algorithm terminates when a pass fails to improve solution quality. Pseudocode for the FM
heuristic is given in Figure 61.5.

The FM algorithm has three main components: (1) the computation of initial gain values at the beginning
of a pass; (2) the retrieval of the best-gain (feasible) move; and (3) the update of all affected gain values after
a move is made. One contribution of Fiduccia and Mattheyses lies in observing that circuit hypergraphs
are sparse, and any move’s gain is bounded between plus and minus the maximal vertex degree in the
hypergraph (times the maximal hyperedge weight, if weights are used). This allows prioritization of moves
by their gains. All affected gains can be updated in amortized-constant time, giving overall linear complexity
per pass [3]. In Ref. [3] all moves with the same gain are stored in a linked list representing a “gain bucket.”
It is important to note that some gains may be negative, and as such, FM performs hill climbing and is not
purely greedy.

1 FM(hypergraph, partitionment)
2 do
3 initialize gain container from partitionment;
4 FMpass(gain container, partitionment);
5 while(solution quality improves);
6 FMpass (gain container

gain container);

gain container);

, partitionment)
7 solution cost = partitionment.get cost();
8 while(not all vertices locked)
9 move = choose move(

10 solution cost += gain container.get gain(move);
11 gain container.lock vertex( move.vertex() );
12 gain update(move,
13 partitionment.apply(move);
14 roll back partitionment to best seen solution;
15 gain container.unlock all();

FIGURE 61.5 Pseudocode for the FM heuristic. choose move and gain update are defined in Figure 61.6.

2By contrast, the stronger Kernighan–Lin (KL) heuristic [2] uses a pair-swap neighborhood structure and has cubic
runtime per pass.
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61.5.1 Fiduccia–Mattheyses Passes

The FM algorithm consists of incrementally improving passes [3]. During each pass, FM will search the
neighborhood of a given partitionment, and record the best seen solution. FM performs successive passes
as long as the solution can be improved.

At each pass, the FM repetitively chooses one (best) move and applies it, followed by the processing
of information about the new solutions thus obtained. Since no vertex can be moved twice in a pass, no
moves will be available beyond a certain point (end of a pass). Some best-gain moves may increase the
solution cost, and typically the solution at the end of the pass is not as good as the best solutions seen
during the pass. FM will then undo a given number of moves to return to a solution with best-seen cost.

61.5.2 Gain Computation and Gain Update

The initialization of the FM data structures at the beginning of each pass is straightforward. First, traverse
all hyperedges and count the number of vertices in each partition. If a hyperedge is uncut, then decrease
the gain of all adjacent vertices by the hyperedge weight (or by 1 when no weights are given). If there is
only one vertex in some partition, then increase the gain of that vertex by the hyperedge weight (or by 1
when no weights are given) and do not change the gain of all other adjacent vertices.

Picking and applying one move is subtle. FM requests the best move from the gain container and can
continue requesting more moves until a feasible (i.e., not violating the balance constraints) move is found.
As FM applies the chosen move and locks the vertex, gains of adjacent vertices likely need to be updated.
In performing “generic” gain update, an implementation of FM must walk all hyperedges incident to the
moving vertex and for each hyperedge computes gain updates (delta gains) for each of its vertices because
of this hyperedge (these are combinations of the given hyperedge’s cost under four distinct partition
assignments for the moving and affected vertices; see Figures 61.6 and 61.7). These partial gain updates are
immediately applied to the gain container, and moves of affected vertices may have their priority within
the gain container changed. Even if the delta gain for a given move is zero, removing and inserting it into
the gain container will typically change tie-breaking among moves with the same gain.

1 choose move (gain container)
2 move = gain container.max feasible move();
3 while(move is infeasible)
4 gain container

gain container.update(v, p, e.weight());

gain container.update(v, p, -e.weight());

gain container)

.mark infeasible(move);
5 move = gain container.max feasible move();
6 gain container.mark all feasible();
7 return move;
8 gain update (move,
9 source part = partition that move.vertex() is in;

10 dest part = partition where move.vertex() is going;
11 for each(hyperedge e incident to move.vertex())
12 if(e is not cut before applying move)
13 for each(vertex v on e)
14 for each(partition p != source part)
15
16 if(e is cut before applying move and uncut after)
17 for each (vertex v on e)
18 for each (partition p != dest part)
19
20 if(only 1 vertex v remains outside dest part after applying move)

if(only 1 vertex v outside source part before applying move)
21
22
23

gain

gain container.update(v, source part, -e.weight());

container.update(v, dest part, e. weight());

FIGURE 61.6 Functions called by the FM heuristic. A faster version of gain update that takes advantage of special
cases and bipartitioning is given in Figure 61.7.
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1 gain update special cases ( move )
2 source part = partition that move.vertex() is in;
3 dest part = partition where move.vertex() is going;
2 for each(hyperedge e incident to move.vertex() )
3 if( e.degree() == 2)
4 v = the vertex on e that is not move.vertex();
5 if( v is not locked and v is in source part)
6 gain container.update( v, dest part, 2*e.weight() );
7 else if( v is not locked)
8 gain container.update( v, source part, -2*e.weight() );
9 else if( tallies[dest part] == 0)

10 for each( vertex v on e )
11 if( not locked( v )
12 gain container.update( v, dest part, e.weight());
13 else if( tallies[source part] == 1)
14 for each( vertex v on e )
15 if( not locked( v )
16 gain container.update( v, source part, -e.weight());
17 else
18 for each( vertex v on e )
19 if( not locked( v ) )
20 if( v is in source part )
21 if( tallies[source part] == 2 )
22 gain container.update( v, dest part, e.weight() )
23 break;
24 else if( tallies[dest part] == 1)
25 gain container.update( v, source part, -e.weight() )
26 break;

FIGURE 61.7 Pseudo-code for a faster gain update that takes advantage of special cases and bipartitioning.

In most implementations the gain update is the main bottleneck, followed by the gain container con-
struction. The net cut objective is particularly amenable to optimizations during gain update [3,6,44].
For example, hyperedges that have at least one vertex locked in each partition can be safely ignored during
gain update, as the cost of such a hyperedge cannot change until the end of a pass, and they do not con-
tribute to gain update. We term such hyperedges locked. Once a hyperedge becomes locked, it is marked
as such in a dedicated bitvector. While this requires additional effort, the savings in the overall runtime
per pass are considerable.

61.5.3 Custom Data Structures

The efficient custom data structures used by the FM algorithm are critical to its performance. The gain
bucket list data structure introduced in Ref. [3] is necessary to allow linear-time gain update. Figure 61.8
shows the gain bucket list structure as originally illustrated. On the left-hand side is a bucket-array structure
which stores 2 ∗ pmax + 1 pointers to gain buckets, where pmax is the maximum possible gain. The
bucket-array allows constant-time lookup of moves which have a particular gain. Each bucket is a possibly
empty doubly linked list of gain elements. On the bottom is a repository, which stores pointers to the
gain elements associated with each vertex. The repository allows constant time lookup of the gain for a
particular vertex. To efficiently find the move with max-gain, the index of the highest gain, nonempty
bucket is maintained.

The bucket-array structure is efficiently implemented with an array when the magnitude of hyperedge
weights is limited by some constant. However, an array-based implementation of the bucket-array has
space complexity dependent upon the magnitude of hyperedge weights. For arbitrary hyperedge weights,
the bucket-array must be modified to efficiently support the operations of a bucket-array in the context
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FIGURE 61.8 The gain bucket list structure as illustrated in Ref. [3]. More efficient implementations than what is
depicted exist.

of an FM gain container. These operations include (1) finding a particular gain bucket; (2) insertion
and removal of gain elements; (3) finding the maximum nonempty gain bucket; and (4) finding the
second-highest nonempty gain bucket. The last operation is necessary, for example, when the max-gain
bucket is exhausted and the new max-gain must be determined. If hyperedge weights are large, then an
array-based implementation of bucket-array will result in a large, sparse, and wasteful structure that must
be searched (linear in the magnitude of weights) to implement operation (4).

Figure 61.9 shows an alternative implementation of bucket-array that allows for time complexities
of operations (1), (3), and (4) that do not depend on the magnitude or sparsity of hyperedge weights.
Operation (2) is logarithmic in the number of nonempty gain buckets. On the right-hand side is a hash
table that stores pointers to gain buckets. Since the expected lookup time for a hash table is constant, this

MAX
GAIN

Nonempty
gain lists
(Sorted in

a BST)

Gain list pointers
(Hash table)

Cell#

CELL

1 2 n...

...

...Cell#

FIGURE 61.9 The gain list structure with a hybrid BST+hash-table bucket-array for improved FM complexity with
arbitrary hyperedge weights.
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efficiently implements operation (1). On the left-hand side is a binary search tree (BST)3 that stores the
gains which are possible from some move (i.e., nonempty gain lists). Since a BST is sorted, the largest item in
the BST can be found in constant time, and this is an efficient implementation of operation (3). Operation
(4) is as easy as operation (3) for this structure, since the second-highest gain is the second from the last
entry in the nonempty gain BST. The most difficult operation for this structure is operation (2), since
BST insertion and removal are logarithmic time operations. Nevertheless, the complexity of operation
(4) for an array-based implementation is linear in the magnitude of hyperedge weights. Therefore, for
sufficiently large weights, the runtime of this BST+hash bucket-array will be less than that of an array-based
implementation of bucket-array.

61.5.4 Implementation Insights

There are important degrees of freedom in the implementation of the above gain containers which can have
a significant effect on solution quality. Among the most notable is whether items are taken from the gain
buckets in Last-In-First-Out (LIFO) or First-In-First-Out (FIFO) order. It has been shown that choosing
LIFO order gain buckets can provide significant improvement in solution quality [7]. The intuition for
this effect is that it exploits some locality in the structure of the hypergraph. When moving one vertex to a
different partition causes a change to the gain of another vertex, that other vertex should also be considered
for movement.

Extending the theme of exploiting the locality in graphs, Dutt and Deng [9] propose the CLuster-
oriented Iterative-improvement Partitioner (CLIP) algorithm. The key observation in this algorithm is
that if tightly connected cluster is cut, then the solution cost can be reduced by moving the cluster entirely
into a single partition. CLIP first computes the gains of all vertices. It then sorts them into a single linear
order and puts them all into the zero-gain bucket. This allows for choosing the highest gains first. More
importantly, as partitioning proceeds, the gain of each move will be determined solely by the change in
gain due to moves of adjacent vertices. Thus, when part of a cluster is moved, it is more likely that the rest of
the cluster will be moved along with it. CLIP does not track net cut as accurately as conventional FM, and
therefore it usually does not improve initial solutions that are already good. CLIP is used in nonincremental
contexts, starting with a random initial solution and is typically postprocessed by conventional FM passes.

FM also tends to have problems when the highest-gain move is a vertex with high weight that cannot
move across the cutline because of balance constraints. This is known as the corking effect and some
techniques for handling it are presented in Ref. [45]. Techniques specific to hypergraphs with fixed vertices
are presented in Ref. [46].

61.6 Multilevel Fiduccia–Mattheyses Partitioning Framework

The multilevel hypergraph partitioning framework was successfully verified in 1997 by Alpert et al. [10],
Karypis et al. [13], and Karypis and Kumar [47] and has been conducive to the best known partitioning
results ever since. The main advantage that MLFM has over flat partitioners is its ability to more effectively
search the solution space by spending comparatively more effort on smaller coarsened hypergraphs. Good
coarsening algorithms allow for high correlation between good partitionments for coarsened hypergraphs
and good partitionments for the initial hypergraph. Therefore, a thorough search at the top of the multilevel
hierarchy is worthwhile because doing so is relatively inexpensive when compared to flat partitioning of the
original hypergraph, but can still preserve most of the possible improvement. The result is an algorithmic
framework with both improved runtime and solution quality over a completely flat approach. Pseudocode
for an implementation of the MLFM framework is given in Figure 61.10.

3We assume an implementation of a BST that allows constant time traversal of the sorted sequence. The standard
C++ set is an example of such a data structure.
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1 MLFM(hypergraph)
2 level = 0;
3 hierarchy[level] = hypergraph;

//Coarsening phase
5 while(hierarchy[level].vertex-count() > 200)
6 next-level = cluster(hierarchy[level]);
7 level = level + 1;
8 hierarchy[level] = next-level;

//Top level partitioning phase
10 partitionment[level]

= a random initial partitionment for top-level hypergraph;
11 FM(hierarchy[level], partitionment[level])

//Refinement phase
13 while(level > 0)
14 level = level - 1;
15 partitionment[level]

= project(partitionment[level+1], hierarchy[level]);
16 FM(hierarchy[level], partitionment[level])

17 return partitionment[0];

FIGURE 61.10 Pseudocode for the MLFM algorithm.

Multilevel partitioning consists of three main components: clustering, top-level partitioning, and re-
finement or “uncoarsening.” During clustering, hypergraph vertices are combined into clusters based on
connectivity, leading to a smaller, clustered hypergraph. This step is repeated until there are only several
hundred clusters, culminating in a hierarchy of clustered hypergraphs. We describe this hierarchy with the
smaller hypergraphs being “higher” and the larger hypergraphs being “lower.”4 The smallest (top-level)
hypergraph is partitioned with a very fast initial solution generator and iteratively improved, for example,
using the FM algorithm. The resulting partitionment is then interpreted as a solution for the next hyper-
graph in the hierarchy. During the refinement stage, solutions are projected from one level to the next and
iteratively improved, for example, by the FM algorithm.

Additionally, the hMETIS partitioning program [48] introduced several new heuristics that are incor-
porated into their multilevel partitioning implementation and are reportedly performance-critical. One
is hyperedge removal during refinement, which is analogous to FM, except that a single move “uncuts”
a hyperedge by reassigning as many vertices as needed. Another heuristic is V-cycling, a repetition of the
clustering-partitioning-refinement process that uses a solution produced by a previous execution of this
process—vertices in different partitions cannot be clustered. A similar technique is v-cycling, in which the
refinement stage may stop before the bottom-level hypergraph is reached and clustering resumed (starting
from a solution for a clustered hypergraph). Similarly, clustering may be stopped earlier than it would
normally be, and refinement resumed.

61.6.1 Coarsening

The multilevel partitioning framework begins by “coarsening” the input hypergraph which results in
smaller hypergraphs that retain as much of the structure of the original hypergraph as possible. Solutions
to these coarsened hypergraphs are then interpreted as solutions to larger hypergraphs during refinement.
“Clustering,” the name for merging two or more vertices together, is the mechanism by which hypergraphs

4This is the most common notation used for a multilevel partitioning hierarchy. hMETIS related works invert the
notation, including the naming of V-cycles which may be more appropriately called �-cycles (lambda cycles).
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are coarsened. Here we cover the details of two simple but effective clustering algorithms. A countless
number of more complex schemes exist in partitioning literature, [11,49–52].

61.6.1.1 Edge Coarsening

A simple linear-time clustering strategy called (hyper)Edge Coarsening (EC) was proposed in Ref. [10,13].
The EC technique works by combining connected vertices and is commonly randomized by choosing
a vertex and a random neighbor to merge. A straightforward but effective EC implementation has the
following attributes [46]:

• The hypergraph is updated continuously as the clustering occurs, that is, the next pair of merged
clusters is selected with the knowledge of the last merged pair.

• No cluster can be merged with another if its weight is more than four to five times the average
cluster weight at the current level.

• Hyperedge weights are additionally divided by the square root of the sum of cluster weights to
discourage merging large clusters.

• Clustering ratio used is 1:3, unclustering ratio is 1:2.8.
• Clustering stops when the clustered hypergraph has 200 clusters or fewer.

61.6.1.2 Heavy Edge Matching

Heavy (hyper)Edge Matching (HEM) is an alternative clustering strategy which seeks to minimize the
net cut of the coarsened hypergraph directly. This is achieved by contracting hyperedges with the highest
possible weights. In the hypergraph version of this strategy, a vertex is chosen and it will be probabilistically
merged with its “nearest neighbor,” defined as that with the largest weight connection. The net cut (and
partitioning runtime) of a coarsened hypergraph can also be improved when nets disappear entirely due
to all of its connected vertices being merged into one. Since it is more likely that a smaller net will be
removed, HEM weights connections via smaller nets more highly. A common weighting scheme W is
W(e) = 1

degree−1 for hyperedge e , but many variations of this are possible. HEM also seeks to minimize
the number of remaining nets by favoring neighbors which have multiple connections via several nets. So
the weight of a connection (u, v) will be

∑
e∈E (W(e) if u, v ∈ e or 0 otherwise).

61.6.2 Top-Level Partitioning

The FM algorithm is only capable of iteratively improving an initial solution. At the top-level no previous
solution is available to improve, therefore top-level partitioning requires initial solution generation. A
rather simple generator will suffice, because the FM algorithm will quickly find a nearby local minimum.
The following “randomized engineering method” (REM) creates random, legal initial solutions. REM
first sorts vertices according to decreasing size, so that it can assign the largest vertices first to satisfy
balance constraints and avoid “painting itself into a corner.” It assigns vertices to partitions in sorted
order using biased random selection (“spinning a roulette wheel” such that each outcome has a prescribed
probability). Assignment probabilities are proportional to the hypothetical area remaining before the so-
lution satisfies minimal area requirements, the area slack, computed after assigning a given vertex to the
various partitions. This keeps area slacks approximately equal, yet provides a good degree of random-
ness. REM will continue assigning vertices to partitions in this way until all partitions reach the lower
bound of their respective balance constraints, at which point it will compute slacks relative to the upper
bound.

61.6.3 Refinement

After a partitionment is chosen at a particular level, it is projected onto the less clustered (finer) hypergraph
at the next level. A vertex in the finer hypergraph is projected into the same partition as the cluster it belongs
to in the coarsened hypergraph. The solution for this hypergraph will have cut identical to that for the
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more clustered hypergraph. However, it is likely that the solution can be improved with respect to the finer
hypergraph. This is done through iterative improvement by calling FM on the partitioning solutions at
each level.

61.7 Available Software and Benchmarks

There are two common, freely available academic tools for performing hypergraph partitioning. MLPart
[53] is an open source C++ implementation of MLFM hypergraph partitioning geared toward circuit
hypergraphs and partitioning-based placement. hMETIS [54] is the hypergraph version of METIS, a
multilevel graph partitioning algorithm implemented in C. hMETIS is distributed freely for academic use
in the form of a precompiled library and executables.

These two partitioning tools use different file formats to represent hypergraphs. hMETIS uses one text
file to represent a hypergraph, while MLPart uses several text files in the Bookshelf format to represent
partitioning problems, which includes a hypergraph.5 Both tools additionally define balance constraints in
terms of partition capacity targets, and a tolerance parameter that specifies how far it is allowed to deviate
from its target.

61.7.1 hMETIS Benchmark Format

The input hypergraph to hMETIS has a simpler format than Bookshelf. The first line contains the number
of hyperedges, the number of vertices, and an optional format bit-flag that indicates the presence of weights
for hyperedges, vertices, or both. If the vertices have weights, the file will have |E | + |V | + 1 lines, and
|E | + 1 lines otherwise. The file may additionally contain commented lines preceded by %. Each of the
following |E | lines represents one hyperedge, and will optionally contain an integer weight, followed by a
list of the indices of vertices on that hyperedge. If vertex weights are present, the remaining |V | lines will
contain the integer weight of each vertex. The solution is specified by giving the partition of the i th vertex
on the i th line of the solution file. Partitioning tolerance is specified with a parameter called UBfactor that
can be specified on the command line or when making calls to the hMETIS library. This number specifies
how far any partition’s total weight can deviate from the average weight of a partition, as a percentage. For
more details and examples, see Figure 61.11 and Ref. [48].

Line
no.

Graph
file

Solution
file

1 7 8 1
2 1 2 1
3 5 4 0
4 3 4 6 0
5 2 3 0
6 4 7 0
7 2 7 1
8 7 8 1

v1

v3

v2

v7 v8

v4

v6

v5

FIGURE 61.11 An example of an hMETIS graph file and partitioning solution for the hypergraph on the right-hand
side. Line 1 of the graph file specifies that there are seven hyperedges and eight vertices. The remaining lines specify
hyperedges. The i th line of the solution file specifies the partition of the i th vertex. Due to space limitations the
Bookshelf version of this example has been omitted but is available online [57].

5In addition, industrial VLSI design tools commonly use LEF/DEF files to represent hypergraphs. Tools exist to
convert LEF/DEF into the Bookshelf format. See Refs. [55,56] for more information.

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C061 April 9, 2007 18:58

61-16 Handbook of Approximation Algorithms and Metaheuristics

61.7.2 Bookshelf Benchmark Format

The Bookshelf benchmark format is more expressive because it is used in other VLSI applications than
hypergraph partitioning, including placement and floorplanning. Each Bookshelf partitioning benchmark
will be represented with several files, at minimum: a .nodes file containing a list of vertices and their sizes,
a .nets file containing a list of nets (hyperedges) and the vertices they connect to, a .blk file specifying
partitions and their balance constraints, and a .aux file containing one line listing all of the other filenames.
Balance constraints are specified by a target for each partition, and one capacity tolerance as a percent. The
balance constraint of a particular partition will be the pair (target ∗ (1 − capacity tolerance/100), target ∗
(1 + capacity target/100)). Other optional files may be included, namely a .wts listing vertices and nets
with one or more weights, a .fix file which lists vertices and which partitions they are constrained to, and a
.sol file which contains an input partitionment. All bookshelf benchmarks may contain commented lines
beginning with “#”. Solutions are specified by listing all vertices and their partition assignments.

61.7.3 Integrated Circuit Benchmarks from IBM

A set of standard benchmarks derived from VLSI circuits at IBM were presented in ISPD in 1998 [24].
These instances range from 12506 vertices in IBM01 to 210341 vertices in IBM18.

Additionally, partitioning in the context of VLSI placement results in hypergraphs with fixed vertices.
Benchmark hypergraphs with fixed vertices were released at ISPD in 1999 [58]. Techniques for evaluating
partitioning heuristics and experiments using these benchmarks were given in Ref. [45]. Examples of such
comparisons between hMETIS and MLPart are found in Ref. [46].

Appendix: Empirical Results

Figure 61.12 gives runtimes and average solution qualities for 10 runs of MLPart and hMETIS on the ISPD
’98 IBM benchmark suite with partitioning tolerances of 2 and 10%. Smaller net cut is better. Runs were
performed by a 2.0 GHz Pentium IV Xeon workstation with 2 GB of RAM running Linux.

The size of benchmarks range from 12506 vertices in IBM01 to 210341 vertices in IBM18. MLPart is
generally faster than hMETIS, but hMETIS often produces better partitioning results. Both tools produce
better solutions when the tolerance is higher. By curve-fitting this data, we find empirically that the runtime
and memory usage of both partitioners grow nearly linearly with the size of the benchmark.

We estimate that one can partition a 3.5 million vertex hypergraph in 20 min on a 32-bit machine with
the above processor and 4 GB of memory.

Benchmark Tolerance Solver Cut Runtime Solver Cut Runtime
IBM01 2% MLPart 240.6 1.725 hMETIS 243 3.402
IBM01 10% MLPart 231.9 1.535 hMETIS 238.3 3.304
IBM02 2% MLPart 319.4 3.005 hMETIS 300.3 5.775
IBM02 10% MLPart 294.4 2.715 hMETIS 296.1 5.159
IBM17 2% MLPart 2380.2 63.992 hMETIS 2445.5 217.874
IBM17 10% MLPart 2291.4 62.204 hMETIS 2274.1 221.417
IBM18 2% MLPart 1840.4 47.253 hMETIS 1687.5 225.259
IBM18 10% MLPart 1583.5 51.323 hMETIS 1548.7 184.307

FIGURE 61.12 Performance of available software tools on common circuit hypergraph partitioning benchmarks.
Results are the average of 10 runs with default configuration. Runs were performed by a 2.0 GHz Pentium IV
Xeon workstation with 2 GB of RAM running Linux. Performance of the remaining benchmarks can be found
online [57].
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62.1 Introduction

In many applications such as design of transportation networks, we often need to identify a set of
regions/sections whose damage will cause the greatest increase in transportation cost within the net-
work so that we can set extra protection to prevent them from being damaged. Modeling a transportation
network with a weighted graph, a set of regions with a set of edges in the graph, transportation cost within
the network with a particular property of the graph, we can convert this real-application problem to the
following graph-theoretic problem: finding a set of edges in the graph, namely most vital edges or MVE for
short, whose removal will cause the greatest damage to a particular property of the graph. The problems
are traditionally referred to as prior analysis problems in sensitivity analysis (see Chapter 30).

Problems of finding the MVE of G for various objectives were addressed in the literature: Lubore et al.
[1], Wollmer [2], and Ratliff et al. [3] raised this problem with respect to maximum flow; Corley and
Sha [4], Malik et al. [5,6], and Ball et al. [7] considered this problem with respect to shortest paths; Hsu
et al. [8] and Lin and Chern [9] addressed this problem with respect to minimum spanning tree (MST).
Two central properties of a graph that represent graph’s ability of connecting its vertices at minimum
cost are MST and shortest paths (SPs). They are particularly important to various network applications.
Other graph properties such as diameter and Steiner problem can be derived from them. Recently, finding
MVEs with respect to MST and SP has found applications in link failure recovery and replacement SP
computation, respectively [10–12.]

In a graph with n vertices and m edges, the problem of finding the k-MVE with respect to MST (the
k-MVE problem for short) has important applications in network design and reliability issues, and hence
received considerable attention. When k = 1, this problem becomes that of finding the single MVE for
which a number of results have been developed [8,13–19]. It was shown that the 1-MVE problem can be
solved in almost the same time complexity sequentially and same work in parallel on PRAM, as required
for computing MST [8,14,17]. For k ≥ 1, Lin and Chern [9] first showed that a generalized version of
the k-MVE problem is N P -hard, Shen [20] first proposed a nontrivial deterministic exact solution using
the edge replacement technique, and randomized exact and approximate (2-optimal) solutions. Here we
use exact solution to mean optimum in quality rather than in efficiency, in order to distinguish from the
conventional meaning of optimal algorithm. We say that an algorithm is t-optimal if its solution deviates

62-1

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C062 March 20, 2007 17:45

62-2 Handbook of Approximation Algorithms and Metaheuristics

from the exact solution by a factor of at most t. Frederickson and Solis-Oba [21] further proved the
N P -hardness of the k-MVE problem and developed a deterministic O(log n)-optimal algorithm. For
fixed k > 1, in addition to Shen’s exact k-MVE algorithm based on edge replacement [20], Liang and Shen
[16] presented an algorithm employing the (k + 1)-edge certificate of G , Shen [22] showed an improved
algorithm that combines edge replacement and edge certificate approaches.

For MVE with respect to single s -t SP, Corley and Sha [4] examined the general k-MVEs problem and
gave an algorithm for the case when k = 1, referred to here as the single most vital edge problem. Malik
et al. [5] gave a complexity analysis of the algorithm proposed in Ref. [4], and proposed a more efficient
algorithm with the same complexity as that of Dijkstra’s SP algorithm for the single MVE problem. The
best polynomial bound for Dijkstra’s SP algorithm, due to Fredman and Tarjan [23], is O(m + n log n),
where m = | E | and n = | V |. Malik et al. [6] also proposed an exponential time algorithm for the
k-MVEs problem. This algorithm was shown to be incorrect in their erratum. Bar-Noy et al. [24] showed
that a slightly weaker claim corrected from that made in Ref. [5] suffices to ensure the correctness of the
algorithm. Sven et al. [25] extended Malik’s technique, developed a more efficient algorithm using an
auxiliary graph transmuter and its parallelization. They have also applied this technique to compute the
single MVE with respect to all-pairs SPs (APSP) [26]. Nardelli et al. [27] defined the detour-critical edge
of a SP as a variant of single MVE and showed that it can be found in the same time complexity as MVE.
In their consequent work [28], they applied transmuter in the same way as Ref. [25] to achieve the same
complexity of Sven et al.’s algorithm.

In this chapter, we present an overview of deterministic and randomized solutions for the MVE problem
with respect to MST and SP. The chapter is organized as follows. Section 62.2 presents exact and approxi-
mation solutions for MVE with respect to MST. Section 62.3 presents results for MVE with respect to SP.
Section 62.4 concludes the chapter with some remarks.

62.2 MVE with Respect to MST

Given a connected, undirected, and weighted graph G = (V, E ) with n vertices and m edges, the k-MVEs
of G with respect to MST are a set of k edges in G whose removal results in greatest weight increase in
the MST of the remaining graph. The problem is known to be N P -hard for arbitrary k. In this section,
we first present a deterministic solution that incorporates the technique of computing replacement edges
and constructing an edge certificate of G . We then present randomized solutions to achieve polynomial
time complexity.

Let w(e) be a real-valued weight assigned to edge e ∈ E . Denote by MST(G), E (MST(G)), and
w(MST(G)) the MST of G , the set of edges in MST(G), and the total weight of MST(G), respectively. If
K ⊂ E is the set of the k-MVEs of G , then w(MST(G ′)) ≥ w(MST(G ′′)) for any K ′ �= K in E , where
G ′ = (V, E − K ) and G ′′ = (V, E − K ′).

62.2.1 Deterministic Algorithms

We now present the edge replacement and edge certificate approaches used to design deterministic algo-
rithms. We show that combining these two approaches yields a more effective algorithm [22] than that
based on either of them. It results in a time-complexity improvement of O(k) factor over the edge certifi-
cate approach, and O(m/(kn)) factor over the edge replacement approach, respectively, under the usual
uniform-distribution assumption that different sizes of the replacement edge-set have an equal proba-
bility to occur. We also present a parallel execution of this algorithm on the EREW (Exclusive-Read and
Exclusive-Write) PRAM and show that it results in an �(m/n) work reduction over the algorithm using the
edge replacement approach. When k is any fixed constant, our algorithm runs in O(m log β(m, n)+nk+1)
sequential time, and in O(log n log log n) time on an EREW PRAM with O(nk+1) processors.
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62.2.1.1 Sequential Algorithm

Assume that G is at least (k + 1)-edge connected. Otherwise any set of k edges containing an edge cut of
G would be the k-MVE. We further assume that all the edge-weights are distinct so that, for any E ′ ⊆ E ,
MST(G(V, E − E ′)) is unique. Denote by tS the time required for computing S.

A naive approach requires to consider removal of every possible set K of k edges from m edges of E
and computing the MST in the remaining graph, and hence needs time

t(0) =
(

m
k

)
tMST(G ′) (62.1)

where G ′ = (V, E − K ).
An edge replacement approach to the k-MVE problem was proposed in Ref. [20]. Let R(e) be the

replacement edge set of e ∈ MST(G) that includes all edges (u, v) in G − MST(G) for which path P (u, v)
in MST(G) contains edge e . We compute R(e) for all e ∈ E (MST(G)) by assigning e ′ to every edge e
on the path P (u, v) (i.e., R(e) ← R(e) ∪ {e ′}) for every edge e ′ = (u, v) ∈ E − E (MST(G)).

Definition 62.1

The replacement edge of e ∈ E (MST(G)), denoted by r (e), is the one with the minimum weight among all
edges in R(e). The k replacement edges of e ∈ MST(G), denoted by Re = {r 1(e), r 2(e), . . . , r k(e)}, are the
k minimum-weighted edges in R(e).

Let R+ = {Re | (∀e)[e ∈ MST(G)]} and R = ∪e∈MST(G) Re . Clearly R contains all distinct elements
of R+.

Let �e be Re ’s corresponding weight increment array: �e [i] = w(Re [i]) − w(e), 1 ≤ i ≤ k. Re can be
obtained by selecting the k smallest-weight elements in R(e) and then sorting them. When Re is obtained
for all e ∈ E (MST(G)), R is a simple matter of computing the union of all Re . The following procedure
computes Re , �e | e ∈ E (MST(G)).

Procedure k-ReplacementEdges(G , MST(G), k, {Re , �e | e ∈ E (MST(G))})
{*Input G , MST(G) and k; output Re , �e | e ∈ E (MST(G)) containing all k replacement edges
and their weight increments of every edge e ∈ E (MST(G)).∗}

1. for every edge e ′ = (u, v) ∈ E − E (MST(G)) do
for every edge e ∈ E (MST(G)) on path P (u, v) do

R(e) ← R(e)
⋃ {e ′};

2. for every edge e ∈ E (MST(G)) do
Select the k smallest-weight elements in R(e) and store them in Re ;
Sort elements in Re in increasing order;

3. for every e ∈ E (MST(G)) do
for i = 1 to k do

�e [i] ← w(Re [i]) − w(e).

This procedure requires O(mn) time: O(mn) for Step 1, O(n(m + k log k)) for Step 2, and O(kn) for
Step 3. Since G is k-edge connected, m ≥ k(k − 1)/2 and k ≤ n − 1.

The following lemma proved in Ref. [20] suggests an algorithm to compute the k-MVE.

Lemma 62.1

If K is a set of k-MVE, then the following properties hold:

(1) K ∩ MST(G) �= ∅;
(2) K ⊂ E (MST(G))

⋃
R.

Property (2) states that we can exclude all edges in E − (E (MST(G))
⋃

R) from consideration for
the k-MVE. Since |R| ≤ k(n − 1) ≤ m, following Lemma 62.1 we can derive an algorithm that is more
efficient than the naive approach.
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Denote by tR and tMST(G) the time required for computing R = ⋃
e (R(e)) and MST(G), respectively.

The time required for computing the k-MVE under the edge-replacement approach is then

t(1)
kMVE = tMST(G) + tR + (n − 1)

(
|R| + n − 1

k − 1

)
tMST(G ′) (62.2)

where tR is the time required for computing R, n − 1 the number of ways of taking one edge from
E (MST(G)) by property (1) of Lemma 62.1,

(
|R|+n−1

k−1

)
the number of ways of taking k − 1 edges from

E (MST(G)) ∪ R by property (2) of Lemma 62.1, and G ′ = (V, E − K ) for every chosen K .
An alternative approach using the (k + 1)-edge certificate of G [29] was given in Ref. [16]. As defined

in Ref. [30], we define the i th minimum spanning tree of G , Ti , to be

T1 = MST(G); Ti = MST(G −
i−1⋃

j=1

Tj ), 2 ≤ i ≤ k + 1 (62.3)

Uk+1 = ∪k+1
j=1Ti is called the (k +1)-edge certificate of G . Clearly Uk+1 is (k +1)-edge connected, since

G is (k + 1)-edge connected. It is known that Uk+1 can be computed in O(m) [29].
Observe that since Uk+1 consists of the k edge-disjoint MSTs of G , it must contain both the k-MVE of G

and MST(G(V, E − K )) for any k edges K ⊂ E . Shen [17] confirmed this for k = 1 by transforming the
maximum spanning tree defined by Iwano and Katoh [14] to the second MST of G . Liang and Shen [16]
showed this is also true for arbitrary k and presented an algorithm for computing the k-MVE using the
edge certificate approach with time complexity

t(2)
kMVE = tUk+1 +

(
(k + 1)(n − 1)

k

)
tMST(G ′′) (62.4)

where G ′′ = (V, E (Uk+1) − K ).
Clearly to compare t(1)

kMVE and t(2)
kMVE, we need only to compare their dominating parts:

(n − 1)
(

|R| + n − 1
k − 1

)
tMST(G ′) and

(
(k + 1)(n − 1)

k

)
tMST(G ′′)

Assume that all sizes of R are equally likely to appear, that is |R| = s with equal probability 1/((n − 2)
(k − 1) + 1) for all k − 1 ≤ s ≤ (n − 1)(k − 1). We define this case to be the average case. We have

(n − 1)
(

|R| + n − 1
k − 1

)
≤

(
|R| + n − 1

k

)
= 1

(n − 2)(k − 1) + 1

(n−1)(k−1)∑

s=k−1

(
s + n − 1

k

)

= 1

(n − 2)(k − 1) + 1

((
(n − 1)k + 1

k + 1

)
−

(
n − k − 1

k + 1

))

= O

((
(n − 1)k

k

)/

k

)

(62.5)

Using Cole et al.’s [31] MST algorithm, we know that

tMST(G ′) = O((m − k) log β(m − k, n)) = O(m log β(m, n))

tMST(G ′′) = tMST(Uk+1) = O(kn log β(kn, n))

Neglecting the insignificant factor log β(m, n)/ log β(kn, n) which is asymptotically constant, we have by
Eqs. (62.2) and (62.4)

t(1)
k MV E

/
t(2)
k MV E = O(m/(k2n)) (62.6)

Hence the following lemma holds.

Lemma 62.2

For the k-MVE problem, the edge replacement approach is more efficient than the edge certificate approach
when k = �(

√
n) in the average case.
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From the above analysis it is clear that the edge replacement approach reduces the search space for
k-MVE better than the edge certificate approach (|R| ≤ |Uk+1|), whereas the edge certificate approach
reduces the remaining graph for computing the weight increment (MST) after removal of each set of k
edges better than the edge replacement approach (|Uk+1| ≤ |G ′|). So a better algorithm is to incorporate
both approaches [22]. The resulting algorithm computes both R and Uk+1. It uses the edge replacement

approach to reduce the search space for the k-MVE from
(

m
k

)
to (n − 1)

(
|R| + n − 1

k − 1

)
, and uses the edge

certificate approach to reduce G ′ to Uk+1. The algorithm is given below.

Algorithm Exact-k-MVE
{∗Input G and k; output k-MVE containing the k-MVEs of G .∗}

1. Compute T1 = MST(G); � ← 0
for i = 1 to k do

E ′ ← E ′ ∪ E (Ti ); Compute Ti+1 = MST(G(V, E − E ′));
{∗Compute Uk+1; � is the total weight increment introduced by removal of k edges from G .∗}

2. k-ReplacementEdges(∪k
i=2Ti , MST(G), k, {Re , �e | e ∈ E (MST(G))});

{∗Compute R.∗}
3. for every edge e1 ∈ E (MST(G)) do

for every edge-set {e2, . . . , ek} ∈ (E (MST(G)) − {e1}) ∪ R do
Remove {e1, . . . , ek} from E (MST(G)) ∪ Re ;
Compute MST(G ′) for G ′ = (V, E (Uk+1) − K );
if w(MST(G ′)) − w(MST(G)) > � then

Mark {e1, . . . , ek} as the current k-MVE.

Time complexity of the algorithm: Step 1 requires time O(km log β(m, n)) by Ref. [31]. Step 2 requires
O(kn2) time, since | ∪k

i=2 Ti | = (k − 1)(n − 1). There are
( |R|

k

)
iterations in Step 3, each taking

time tMST(Uk+1), so the total time required for Step 3 is O((n − 1)
( |R|+n−1

k−1

)
kn log β(kn, n)).

By Eq. (62.5)
( |R|

k

) = ( k(n−1)
k

)/
k in the average case. The size of R is k − 1 in the best case and

(k − 1)(n − 1) in the worst case. So we have the following theorem.

Theorem 62.1 [22]

Given a connected, undirected and weighted graph G with n vertices and m edges, we can find the k-MVEs
in G in

• O(km log β(m, n) + (n − 1)
(

(k + n − 2)
k − 1

)
kn log β(kn, n)) in the best case;

• O(km log β(m, n) + (n − 1)
(

k(n − 1)
k − 1

)
n log β(kn, n)) in the average case;

• O(km log β(m, n) + (n − 1)
(

k(n − 1)
k − 1

)
kn log β(kn, n)) in the worst case.

The above theorem shows that with the same worst case time complexity, our algorithm has an O(k)
factor speedup to the algorithm using the edge certificate approach in the average case. By Eq. (62.6),
it is clear that our algorithm is O(m/(kn)) factor faster than the algorithm using the edge replacement
approach in the average case.

Since
(

m
k

)
< (m − k + 1)k holds for any k ≤ m, the following corollary is immediate.

Corollary 62.1

The k-MVEs in a connected, undirected, and weighted graph G with n vertices and m edges can be computed
in O(km log β(m, n) + (n − 1)(kn + 2)k−1kn log β(kn, n)) time.

When k is a fixed constant, the above complexity can be simplified:

Corollary 62.2

For any fixed k ≥ 1, the k-MVEs in a connected, undirected, and weighted graph G with n vertices and m
edges can be computed in O(m log β(m, n) + nk+1) time.
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62.2.1.2 Parallelization

Given algorithm Exact-k-MVE, we now show how to implement it on the EREW PRAM.
Applying Chrong et al.’s MST algorithm [32] k + 1 times, each producing a Ti , we can implement

Step 1 in O(k log n log log n) time with O(m) processors. At the i th time we need to mark all the edges
in ∪i

j=0Ti , which can be done obviously in O(1) time with m processors.

Having obtained Uk+1 = ∪k+1
j=1Ti , we first make k(n − 1) copies of T1 = MST(G) for the purpose of

exclusive read, and allocate one processor to each edge in Uk+1 and use an array L e of size k(n − 1) at
each edge in MST(G), where L e [i] is used for keeping the label (if there is) to be written by processor i ,
1 ≤ i ≤ k(n − 1). Then we use the path labelling procedure based on the techniques of Euler tour (for
finding the lowest common ancestor of vertex pair (u, v) which divides path P (u, v) into two upward
subpaths) and pointer jumping (for propagating the label along the subpaths) [17], where at each step of
writing different processors write their labels into different cells in array L e associated at edge e ∈ E (T1).
This requires O(log n) time and k(n − 1) processors. Now we allocate k(n − 1) processors to each L e

and sort its nonempty cells in increasing order. Clearly R = ⋃n−1
i=1 L [1 . . . k − 1]. Hence Step 2 can be

completed in O(log n) time using O(kn2) processors.
Now we make (n − 1)

( |R|+n−1
k−1

) = O((n − k + 1)k) copies of Uk+1 and allocate k(n − 1) processors
to each copy. For every copy in parallel we compute the k edges to be removed (K ), that is, we compute
all the combinations of (n − 1)

( |R|+n−1
k−1

)
using this number of processors, which can be done in O(k)

time by using Knott’s numbering system for combinations [33]. We then in parallel compute the MST in
every copy of Uk+1 using the edge certificate approach after removal of its K in O(log n log log n) time
using k(n − 1) processors per copy, and find the minimum weight increment among them in O(k log n)
time using O(nk) processors. So Step 3 requires O((k + log log n) log n) time using O(kn(n − k + 1)k)
processors.

Hence we have the following theorem.

Theorem 62.2 [22]

Given a connected, undirected, and weighted graph G with n vertices and m edges, using O(kn(n − k + 1)k)
processors on an EREW PRAM, we can find the k-MVEs in G in O((k + log log n) log n) time.

When k is a fixed constant, the above complexity has a simple form:

Corollary 62.3

For any fixed k ≥ 1, the k-MVEs in a connected, undirected, and weighted graph G with n vertices and m
edges can be computed in O(log n log log n) time on an EREW PRAM with O(nk+1) processors.

Clearly, our algorithm is an NC algorithm for any fixed k. In comparison with Liang and Shen’s algorithm
[16], our algorithm has a�(m/n) factor work-reduction. Note that in Ref. [16] the claimed time complexity
O(log n) excludes the time required for computing MST(G) which is O(log n log log n) on EREW
PRAM.

62.2.2 Randomized Solutions

Since the k-MVE problem is N P -hard for arbitrary k, our interest should turn to seeking polynomial-time
randomized solutions. In this section, we outline two randomized algorithms of Ref. [20] that produce
optimal and near-optimal solutions with high probability in polynomial time.

62.2.2.1 Randomized Optimal Solution

For any x ∈ R, we define the rank of x in Re , denoted by ranke (x), to be i if x is the i th element in
Re . We call rank(x) = mine {ranke (x)} the rank of x . Let Ri = {x ∈ R | (∃e)[ranke (x) = i]} and �i

be Ri ’s corresponding weight increment array for i = 1, . . . , k. Clearly Ri contains a set of replacement
edges, each being the result of removal of i edges (i − 1 edges before it in its Re and {e}). When the total
weight increment introduced to the MST is maximum possible, Ri becomes the result of removal of a set
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of k-MVE. The k-MVE can be computed by identifying a set of replacement edges in ∪i Ri that introduces
a maximum weight increment to the MST. We call such a set of edges maximum replacement edges.

Assume that Re ∩ Re ′ = ∅ for any e �= e ′ ∈ E (MSTG ). We say that R j improves Ri , denoted by R j � Ri ,
if replacing a subset of Ri with a subset of R j corresponding to an equal number of edges to be removed
increases the weight increment. It is clear that if we keep elements in every Ri sorted in decreasing order,
then a maximal (weight increment) improvement on Ri by R j must be resulted by replacing a (contiguous)
segment of elements from the last (smallest) toward the first (largest) in Ri with a segment from the first
toward the last in R j . We call such segments in Ri and R j the tail and head, denoted by T(x) and H(x)
for length x , respectively. By the definition of improvement apparently a segment T(x) of Ri can be legally
replaced by a segment H(y) of R j only when y = i x/j . We call H(y) the improver of Ri , denoted by
H(x) � Ri . It is not hard to observe that given Ri , i = 1, . . . , k, a set of maximum replacement edges can
be obtained via repeatedly improving any Ri by R j for all j �= i .

Theorem 62.3 [20]

Given a connected, undirected, and weighted graph G with n vertices and m edges, we can compute the k-MVEs

of G with respect to MST in time O(mn) with probability at least e− k2

2(m−n−1) − 2 logc k
k−4 , where c = 1 + 1

2k/2 .

62.2.2.2 Randomized Approximate Solution

An algorithm is called t-optimal if its output differs from the optimal solution within a factor t. Study
on approximate algorithms is an important contemporary trend on algorithms research, because for
many problems optimal (exact) solutions are very hard to obtain whereas t-optimal solutions may be
easily obtainable within polynomial time. Here we present a randomized algorithm that produces 2-
optimal solution to the k-MVE problem. Our algorithm sets up a “cutoff” point for the weight increment
and considers only those replacement edges whose weight increments are not below the cutoff point.
The algorithm runs in multiple phases, each with a reduced cutoff point by a factor 2, starting from the
maximum possible cutoff point and ending at the minimum possible cutoff point. This first randomization
that neglects the possibility that the combination of some replacement edges below the cutoff point and
some above the point can also result in the overall weight increment within the specified bound. This
probability is, however, quite small

(∑k−1
i=1

( x
i

)( kn−x
k−i

)
/
(

k
( kn

k

)))
if there are x replacement edges below

the cutoff point).
Let �i

max = max j {�i
j | j ∈ Ri } and �̄ = ∑k

i=1 �i
max/k. Clearly �̄ is the maximum possible cutoff

point of weight increment per edge for k replacement edges, and �̄ k
k−i is the maximum possible cutoff

point for k − i replacement edges, 1 ≤ i ≤ k − 1. Given cutoff point �̄, let R̃ = {x ∈ R | �x ≥ �̄}
and I = {ẽ i | R̃[i] ∈ Rẽi , 1 ≤ i ≤ |R̃|}. We define the fringe of R̃, F R̃ , to be a (rank) ordered
subset of R̃ that contains, for every distinct element ẽ in I , the corresponding element in R̃ that has the
smallest rank in Rẽ . Let I ′ = {ẽ ′

i | F R̃[i] ∈ Re ′
i
, 1 ≤ i ≤ |F R̃ |}. Obviously if i < j then I ′[i] �= I ′[ j ] and

rankI ′[i](F R̃[i]) < rankI ′[ j ](F R̃[ j ]). The second randomization to be made here is that we assume that, for
any i < j , F R̃[ j ] can be included into the replacement edge set satisfying the conditions only when F R̃[i]
has already been included. It is obvious that F R̃[i] has a much greater probability to be chosen than F R̃[ j ]
as rankI ′[i](F R̃[i]) < rankI ′[ j ](F R̃[ j ]). The reverse can happen only when RI ′[ j ][1 . . . rankI ′[ j ](F R̃[ j ])]
has an extremely high ratio of duplicates with others, which has a very low probability too. This suggests
that the replacement edge satisfying the conditions w.r.t. the current cutoff point, if exists, should be
F R̃[1 . . . x] for some x .

Theorem 62.4 [20]

For computing the k-MVEs with respect to minimum spanning tree in a connected, undirected, and weighted
graph G with n vertices and m edges, we can obtain an optimal solution with probability of success at least

e−
√

2k
k−2 in O(n) time using n2 processors, and an approximate two-optimal solution with probability of success

at least 1 − 1
4 ( 2

n )k/2−2 in O(log2 n) time using mn/ log n processors, on a CREW PRAM.
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62.3 MVE with Respect to SPs

Given a connected, undirected, and weighted graph G = (V, E ), a set of edges is called MVEs with respect
to shortest paths if removing them from G will result in greatest weight increase for the SPs concerned in
the remaining graph. In this part, we address the problems of computing the single MVE with respect to
the s -t SP and APSPs ORS, respectively. We present the algorithms developed in our previous work for
solving these problems and show the schemes for their efficient parallelization [25,26].

We assume without loss of generality that a source node s and a terminal node t are at least two-edge
connected. If s and t are not two-edge connected, then any edge whose removal results in the disconnection
of s from t is a single MVE of G with respect to SPs.

62.3.1 MVE with Respect to Single Source SPs

For each edge (i, j ) ∈ E , assume a length (weight) d(i, j ) is associated with it. For any two nodes s and t
∈ V , let P be the SP from s to t in G .

An edge e is the single MVE with respect to P if the length of the shortest s -t path in G(V, E \{e}) is at
least the length of the shortest s -t path in G(V, E \{e ′}), for all e ′ ∈ P .

In this section, we describe our sequential O(mα(m, n)) time algorithm for the single MVE problem
[25] for a weighted undirected graph G = (V, E ), where n = |V| and m = |E |. The time complexity of our
algorithm is asymptotically equivalent to Malik et al.’s algorithm [5]. However, unlike Malik’s algorithm,
our algorithm is not inherently sequential and thus lends itself to efficient parallelization.

We show how to parallelize our algorithm in O(log n) time using m processors on the CRCW
(Concurrent-Read and Concurrent-Write) PRAM computational model and O(m) space, O(log n) time
using mn/log n CREW (Concurrent-Read and Exclusive-Write) processors and O(m + n log m) space,
and in O(log n) time and O(mn) space using mn/ log n EREW processors. These are the first NC algo-
rithms for this problem to the best of our knowledge.

62.3.1.1 Sequential Algorithm

It is clear that the most vital edge with respect to the shortest s -t path of a graph G must lie on the
shortest s -t path. Let T be a tree of SPs from s to all other nodes. Let P be the shortest s -t path in T ,
u(i) be the shortest distance from s to i , and let v(i) be the shortest distance from i to t. Let Ts and
Tt be the two subtrees of T created by the removal of an edge e ∈ P . Note that Ts contains s , and Tt

contains t.
The sequential algorithm given by Malik et al. [5] is based on the following observations.

Observation 62.1

An edge (i, j ) is on a shortest s -t path if and only if

u(t) = v(s ) = u(i) + d(i, j ) + v( j ) = min(x , y)∈E {u(x) + d(x , y) + v(y)} (62.7)

Observation 62.2

Let T be a tree of SPs from s to all the nodes and let P be the shortest s -t path in T. If some edge e ∈ P is
removed from T, dividing the node set V into Vs and Vs such that s ∈ Vs and t ∈ Vs , then there exist SPs
from all other nodes in Vs to t that do not use the edge e.

Observation 62.2 was given by Bar-Noy et al. [24] by correcting an erroneous claim made in Ref. [5].
Let Q(i, j ) = {(x , y) ∈ E \(i, j ) : x ∈ Ts and y ∈ Tt}. It is clear that any path from s to t in the

absence of (i, j ) must have an edge in this cut Q(i, j ). It is shown in Ref. [5] that using Observations 62.1
and 62.2, we may find this edge and the length of the shortest s -t path in G(V, E \{i, j )}) by computing
the following formula:

min(x , y)∈E {u(x) + d(x , y) + v(y)} | (x , y) ∈ Q(i, j ) (62.8)
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We can identify the single MVE if we compute (62.8) for every edge (i, j ) ∈ P . Finding the MVE
w.r.t. the s -t path will thus require O(m |P |) time. Malik et al. [5] reduced this to O(m + n log n) using
Fibonacci heaps [23]. However, their algorithm cannot be parallelized efficiently due to its inherently
sequential nature. For the purpose of efficient parallelization, we presented another sequential algorithm
using a different approach based on the following observation [25]:

Observation 62.3

Every nontree edge (x , y) creates a cycle with a tree edge (i, j ) if and only if (x , y) ∈ Q(i, j ).

Proof
Consider an edge (i, j ) ∈ T , and an edge (x , y) /∈ T . We say an edge (x , y) spans Ts and Tt if its two
endpoints reside in Ts and Tt respectively. Let (x , y) span Ts and Tt if (i, j ) is removed from T . We can
find the nearest common ancestor of x and y (NC A(x , y)), that is, the node at which the paths from x to s
and from y to s in T converge. T is rooted at s , and the component Ts contains s , thus, NC A(x , y) ∈ Ts .
Obviously, there is only one edge (i, j ) in T that spans Ts and Tt . Hence, any edge (x , y) that spans Ts and
Tt must create a cycle with (i, j ). Furthermore, any edge (x , y) not spanning Ts and Tt does not create a
cycle with (i, j ) as both x and y must be in either Ts or Tt , which implies that NC A(x , y) is also in the
same component.

We use an auxiliary graph called a transmuter [34] to simultaneously compute the set of nontree edges
Q(i, j ) for each tree edge (i, j ). A transmuter is directed and acyclic, and represents the set of fundamental
cycles of G with respect to T . For a transmuter D, we name the vertices of D nodes to avoid confusion
with the vertices of G . In a transmuter, source nodes and sink nodes have in-degree zero and out-degree
zero, respectively. For each tree edge e , the transmuter has a corresponding source node s (e), and for each
nontree edge f , there is a sink node t( f ). There are an arbitrary number of additional nodes between the
source and sink nodes. There is a path from a source node s (e) in D to a sink node t( f ) if and only if the
edge e lies on the tree-path T( f ). By Observation 62.3, and the definition of transmuter, a transmuter
will associate all nontree edges (x , y) with each tree edge (i, j ) if (i, j ) is on the tree path T(x , y), thus
making simultaneous computation of the set of nontree edges Q(i, j ) possible.

Our sequential algorithm follows Tarjan [34] SP sensitivity analysis algorithm by labeling each edge in
Q(i, j ) with the length of s-t SP calculated by Observations 62.1 and 62.2 instead of the cost of a replacement
edge in Tarjan’s algorithm. A high level description of our algorithm from Ref. [25] is given below.

Algorithm Single-SP-MVE
{∗Input: A weighted undirected graph G = (V, E ) and a shortest path tree T ; Output: The MVE
wrt the s-t SP.∗}

1. Calculate u(x) and v(x) for every vertex x in T ;
2. Compute the path length L ( f ) from s to t where L ( f ) = d(x , y) + u(x) + v(y)

for every nontree edge f = (x , y);
3. Compute the nearest common ancestor NC A(x , y) for every nontree edge (x , y);
4. Calculate the auxiliary edge f ′ for each nontree edge f ;

{∗The auxiliary edge f ′ for a nontree edge f = (x , y) is defined as (NC A(x , y), y).∗}
5. Construct a transmuter for the auxiliary graph G ′ = (V, E ′),

where E ′ = {e | e is a tree edge } ∪ { f ′ |f is a nontree edge };
6. Label each sink f ′ of the transmuter with L ( f );
7. Process the nodes of the transmuter in reverse topological order:

For any node that is not a sink, label it with the minimum of
the labels of its immediate successors;

8. Find the maximum label for each edge (i, j ) ∈ P from Step 7.

Steps 1 and 2 ensure the correct value for the labelling of the sink nodes in Step 6. Steps 3–5 ensure
that structural correctness of the transmuter. Step 7 ensures that we choose the minimum label among all
possible labels for a source node. Step 8 identifies the MVE.
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In Step 2, if we assume that the APSP information is available, then the function v(y) for every vertex
y ∈ V can be calculated in the same manner and time as u(y). Step 6 can be done in O(n) time by
simply taking the maximum label over all tree edges on the s -t SP. Step 8 requires O(n) time. So the
time complexity of our algorithm is O(mα(m, n)) as all other steps are the same as those in Tarjan’s SP
sensitivity analysis algorithm.

62.3.1.2 Parallel Algorithm

Based on the sequential algorithm proposed in the previous section, the following parallel algorithm can
be easily derived [25].

Algorithm Par-Single-SP-MVE
{∗Input: a weighted undirected graph G = (V, E ) and a SP tree T ; Output: the MVE w.r.t. the s-t
SP.∗}

1. Compute u(x) and v(x) for every vertex x in T(s ) in parallel;
2. Compute the path length L ( f ) from s to t where L ( f ) = d(x , y) + u(x) + v(y)

for every nontree edge f = (x , y) in parallel and label (x , y) with L ( f );
3. Using the path labeling technique from Ref. [15] and the construction in Section 62.3,

compute the minimum label for each tree edge in parallel:
3.1 For each nontree edge (x , y), project its label to every tree

edge on the cycle T(s )
⋃{x , y};

3.2 For each tree edge find the minimum label among all labels
assigned to it in Step 3.1;

4. Find the maximum label among all edges (i, j ) ∈ P in parallel.

We now show its implementations on different PRAM models.

62.3.1.2.1 CRCW Implementation
The computational model for the algorithm is the MINIMUM-CRCW PRAM. On this model, if a write
conflict arises, the processor holding the minimum value is allowed to write. This processor writes its value
if and only if the value to be written is smaller than any previously computed value.

Given a MINIMUM-CRCW PRAM with m processors, we can implement Tarjan’s Shortest Path
Sensitivity Analysis algorithm [34] in O(log n) time by a path labelling technique described in Ref. [15].
This combines the techniques of Euler tour and list ranking using pointer jumping [35] to find the nearest
common ancestor of a nontree edge (x , y) and assign the correct label to each edge on the paths from x
and y to that ancestor. The Euler tour technique is used to split the path P from x to y into two subpaths
by finding the lowest common ancestor of vertices x and y. We then use list ranking with pointer jumping
to propagate the labels along the two subpaths.

Note that the main change we have made to the Shortest Path Sensitivity Analysis algorithm is to calculate
the v(x) values for every vertex x , and to enumerate the replacement shortest path lengths. Also, we need
to find the maximum label over all edges (i, j ) ∈ P . This maximum label and its associated edge will be
the MVE with respect to the s -t path.

In Step 1, we assume that we are given the APSP information, and this enables us to compute the v(x)
values in the same time and manner as the u(x) values. It was shown that this computation requires
O(log n) time using n processors [15]. Step 2 may be done in constant time on m processors as there
are at most m − n + 1 nontree edges. Step 3 can be done in O(log n) time using m processors. Step 4
can be accomplished in O(log n) time on n processors. So the complexity of the above algorithm on the
MINIMUM-CRCW PRAM is O(log n) using m processors. Clearly the algorithm requires O(m) space.

62.3.1.2.2 CREW Implementation
We now show how to implement algorithm Single-SP-MVE on a CREW PRAM with mn/ log n processors
in O(log n) time.

We implement Step 1 in O(log n) time using n processors on an EREW PRAM as follows. To compute
u(x), x ∈ V , we root T at s using the Euler tour technique as in Ref. [35, Section 3.2], which requires
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O(log n) time on n processors on the EREW PRAM. However, instead of assigning a weight of 1 to each
arc (x , y) on the Euler tour, we assign d(x , y). This will give us the distance of each vertex from s . We
follow similar steps to compute v(x), x ∈ V . For Step 2 we allocate one processor to each nontree edge f
and compute the path length L ( f ). This can be done in constant time using m processors as there is no
interprocessor communication and hence, no write conflict.

For Step 3 we use an analogous construction to that used in Shen [17], which applies the path labelling
technique on a CREW PRAM. We split Step 3 into two parts. First we compute the labels for each edge e ∈ T ,
then we find the minimum label for each tree edge e . To compute the labels for each tree edge we proceed as
follows. We allocate one processor to each nontree edge f and use an array Ae of size m − n + 1 for each
edge e ∈ T . We store the label for a processor i at position Ae [i], where 1 < i ≤ m − n + 1. In effect we
are creating m − n + 1 copies of T where each processor can work on its own copy. Note that this requires
O(mn) space. We use the same labelling technique so this step takes O(log n) time using m processors.

To compute the minimum label for each tree edge e we allocate m/ log n processors to e . Using standard
techniques, we find the minimum label among all labels for a tree edge e as follows. Divide Ae into m/ log n
subarrays of size log n. Find the minimum element in each subarray using one processor per subarray.
Next find the global minimum among the m/ log n local minima using one processor per local minimum.
This can be done in O(log n) time using nm/ log n processors.

It is shown in Ref. [17] that the space requirement can be reduced by compressing each Ae into m bits
and creating a new array A

′
of size m to store the labels for each nontree edge. So, Step 3 may be done in

O(log n) time using nm/ log n processors.
Finding the maximum among n − 1 values can be done in O(log n) time using n processors on this

model. This gives an O(log n) algorithm using nm/ log n CREW processors and O(m + n log m) space.

62.3.1.2.3 EREW Implementation
We use a technique as shown in Ref. [17] to show that our EREW algorithm can also be implemented on
the EREW PRAM with the same time and processor complexity using O(mn) space.

Step 1 is already shown to require O(log n) time on m processors in the CREW implementation. To
remove concurrent read conflicts we create m − n + 1 copies of T , and assign a copy to each nontree edge
e . This requires O(mn) space. Note that we must use the uncompressed version of Ae for each tree edge e
to resolve concurrent read conflicts. Hence, we can implement our CREW algorithm on the EREW PRAM
in O(log n) time using mn/ log n processors with O(mn) space.

Several efficient parallel algorithms were also developed for this problem [15,17]. Due the inherent
sequentiality of the single MVE algorithm proposed by Malik et al., it was not possible to develop an
efficient parallel algorithm based on their approach.

62.3.2 MVE with Respect to APSPs

For the APSPs problem we define two types of MVEs based on two different measurements.

MVE1. An edge e∗ is most vital if for all other e ∈ E , maxi, j∈V {distG∗(i, j ) − distG (i, j )} ≥
maxi, j∈V {distG ′(i, j ) − distG (i, j )}, where G∗ = (V, E \{e∗}) and G ′ = (V, E \ {e}).

MVE2. An edge e∗ is most vital if for all e ∈ E ,
∑

i, j∈V distG∗(i, j ) ≥ ∑
i, j∈V distG ′(i, j ).

For MVE1, we wish to identify the highest increase in the distance between any two vertices s and t,
and not the maximum length of any s − t path. Hence, the presence of the distG (i, j ) term on each side
of the comparison. For MVE2, we compute the highest increase in the total (summed) weight for all pairs
shortest paths.

The diameter of a graph G = (V, E ) is defined as the maximum length of the shortest paths among all
pairs of vertices in V (see, e.g., [36,37]). For the diameter problem, we define the MVE as the edge which
when removed causes the greatest increase in the length of the diameter. It is not difficult to see that an
almost straightforward extension of MVE1 can result in a solution to MVE with respect to the diameter.

In this section, we first present our sequential algorithm for computing MVE w.r.t. to APSPs [26], which
is an extension of the algorithm of MVE w.r.t. to single SP introduced in the previous section. We then
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show how to implement this algorithm in parallel in O(log n) time for both MVE1 and MVE2 using mn2

CRCW processors.

62.3.2.1 Sequential Algorithm

To solve MVE1 and MVE2 we extend the result in Ref. [25] as follows. We perform a preprocessing step
that associates with each edge e ∈ Tω the set V(T

ω
e ) of vertices to which a new path from ω must be

calculated. We label each tree edge e with the vertex v ∈ (V \{ω}) if e ∈ E (P (ω, v)) to determine which
vertices to reconnect to ω when e is removed. We basically run the algorithm of Ref. [25] once for each
vertex pair, for a total of n2 times. Finally, we calculate the maximum increase in any inter-vertex distance
for MVE1, and the change in the weight of the n APSP trees for MVE2. Note that we may use the algorithm
for solving MVE1 to compute the MVE with respect to the diameter of the graph. We first compute the
length of the replacement path for each vertex pair that is disconnected when a tree edge is removed. Then,
instead of computing the change in vertex distances, we find the maximum distance between each pair of
vertices. This gives us the maximum distance between any pair of vertices, and hence, the new diameter
of the graph.

We first give a procedure Pre-MVE, which we use to preprocess the n APSP trees. This procedure is used
for both MVE1 and MVE2.

Procedure Pre-MVE(T z |z̄ ∈ V , V(T
ω
e ))

{∗Input: n SP trees T z rooted at z for each z ∈ V ; Output: the MVE w.r.t. the s-t shortest path;
Output: the sets V(T

ω
e ) of nodes disconnected when e is removed from Tω∗}

1. for each ω ∈ V do
for each e ∈ Tω do

Calculate V(T
ω
e )

{*The set of vertices to reconnect with ω when e is removed from Tω.*}

We now give two procedures Post-MVE1 and Post-MVE2, which generate MVE1 and MVE2, respec-
tively, after all replacement paths have been calculated.

Procedure Post-MVE1
for each tree edge e do

M(e) = MAX {distG=(V, E \{e})(ω, j ) − distG (ω, j ), e ∈ Tω, and j ∈ V(T
ω
e )};

MVE1 = MAX(M(e)).

Procedure Post-MVE2
For each tree edge e do

S(e) =
∑

{distG=(v, E \{e})(ω, j ) − distG (ω, j ), e ∈ Tω, and j ∈ V(T
ω
e )};

MVE2 = MAX(S(e)).

The main idea of the sequential algorithm is to first find the set of nodes V(T
ω
e ) disconnected when

each tree-edge e is removed. This is done using procedure Pre-MVE. Then each nontree edge has an n × n
matrix of inter-vertex replacement paths computed. Each element of this n × n matrix is propagated up
the transmuter structure. Recall that the transmuter structure associates all nontree edges (x , y) with each
tree-edge e if and only if e is on the cycle created when (x , y) is added into the tree. We keep only the
minimum value computed so far for each element of the matrix. Once the propagating stage is complete, we
use either procedure Post-MVE1 or procedure Post-MVE2 to solve problem MVE1 or MVE2, respectively.

The extended algorithm from Ref. [25] is:

Algorithm All-Pairs-MVE
1. Call Procedure Pre-MVE;
2. Calculate dist(ω, x) and for every vertex pair ω and x in V ;
3. Compute an n × n matrix A( f ), for each nontree edge f = (x , y), and assign each element [i, j ]

of the matrix with d(x , y) + dist(i, x) + dist( j, y);
4. Compute the nearest common ancestor nca(x , y) in each SP tree for every nontree edge (x , y);
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5. Calculate the auxiliary edge f ′ for each nontree edge f in each SP tree;
{∗The auxiliary edge f ′ for a nontree edge f = (x , y) is defined as (nca(x , y), y). We construct
the transmuter for each SP tree using the auxiliary edges f ′ and each tree edge. Note that f ′ is a
single edge, but it may represent multiple edges on the cycle created with tree edge f .∗}

6. Construct a transmuter for the auxiliary graph G ′ = (V, E ′),
where E ′ = {e | e is a tree edge } ∪ { f ′ |f is a nontree edge };

7. Label each sink f ′ of the transmuter with matrix A( f );
8. Each sink f ′ will now have n2 labels associated with it, each of which represents a replacement path

for a vertex pair;
9. Process the nodes of the transmuter in reverse topological order:

For any node that is not a sink, label it with the minimum of the labels of its immediate successors.
That is, node vi receives the minimum of the i th label of each of v’s immediate successors;

10. Call either procedure Post-MVE1 or Post-MVE2 to calculate MVE1 or MVE2, respectively.

Step 1 finds the sets V(T
ω
e ) of vertices that are disconnected from the root ω ∈ V of each tree when

an edge e is removed from Tω. Steps 2 and 3 ensure the correct value for the labeling of the sink nodes
in Step 7. Steps 3–6 ensure the structural correctness of the transmuter. Step 8 ensures that we choose the
minimum label among all possible labels for a source node, and Step 9 finds the MVE (the tree edge with
the maximum label) with respect to either MVE1 or MVE2.

For brevity, we do not discuss the complexity of the above sequential algorithm. For a detailed discussion
see Refs. [25,34].

In what follows we present the implementation of this algorithm on the CRCW PRAM model.

62.3.2.2 Parallel Algorithm

The main idea of the parallel algorithm is to first find the set of nodes V(T
ω
e ) disconnected when each

tree edge e is removed. Then each nontree edge has an n × n matrix of inter vertex replacement paths
computed. Each element of this n × n matrix is propagated up the transmuter structure. We keep only the
minimum value computed so far for each element of the matrix. Once the propagating stage is complete,
we use a parallel version of either procedure Post-MVE1 or precedure Post-MVE2 to solve problem MVE1
or MVE2, respectively.

Algorithm Parallel-MVE
{∗Input: the SP tree T(z) rooted at z for each z ∈ V . Output: the single MVE with respect to the
all pairs shortest paths.∗}

1. Compute V(T
ω
e ) for each tree edge e ∈ E in parallel using a parallel version of procedure Pre-MVE;

2. Compute the n × n matrix A( f ) for each nontree edge f ;
3. Using the path labeling technique from Ref. [15] and the construction in Section 62.3, compute the

|V | minimum labels for each tree edge in parallel:
3.1 For each nontree edge (x , y), project its n2 labels to every tree edge on the cycle Tω

⋃{(x , y)}
for each ω ∈ V ;

3.2 For each tree edge, find the n2 minimum labels among all labels assigned to it in Step 3.1;
4. Call a parallel version of either procedure Post-MVE1 or Post-MVE2 to calculate MVE1 or MVE2,

respectively.

62.3.2.2.1 CRCW Implementation
The model of computation for the algorithm is the MINIMUM-CRCW PRAM. On this model, if a write
conflict arises, the processor holding the minimum value is allowed to write. This processor writes its value
if and only if the value to be written is smaller than any previously computed value.

Given a MINIMUM-CRCW PRAM with m processors, we can implement Tarjan’s Shortest Path Sen-
sitivity Analysis algorithm in O(log n) [34] time by a path labeling technique described in Ref. [15] and
later used in Ref. [17]. This combines the techniques of Euler tour and list ranking using pointer jumping
[35] to find the nearest common ancestor of a nontree edge (x , y) and assign the correct label to each edge
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on the paths from x and y to that ancestor. The Euler tour technique is used to split the path P (x , y) into
two subpaths by finding the lowest common ancestor of vertices x and y. We then use list ranking with
pointer jumping to propagate the labels along the two subpaths.

In Step 1 of the parallel algorithm, the set V(T
ω
e ) is calculated for each edge e ∈ Tω, for each ω ∈ V ,

by applying the Euler tour technique and Lemma 62.1 as follows:

1.1 Root Tω at ω using the Euler tour technique (see Ref. [35, Section 3.2])
1.2 for each v ∈ V do

for each w ∈ V \{ω} do
if nca(v, w) = w then

Set position v at edge (parent(w), w) to a 1.

Rooting a tree using the Euler tour technique requires O(log n) time on n EREW processors. There are
n vertices, each of which requires n nearest common ancestor calculations. An edge can appear in at most
n SP trees. None of the above steps requires concurrent read or write; thus, we can implement Step 1 in
O(log n) time using n3 EREW processors.

Step 2 can be done in constant time on mn2 processors as there are at most m − n + 1 nontree edges,
and each nontree edge requires n2 constant-time path calculations. Step 3 can be done in O(log n) time
using mn2 processors (for details see Ref. [25]).

If we calculate MVE1, procedure Post-MVE1 can be done in constant time on mn2 processors as there
are at most m distinct SP tree edges, and we calculate the minimum of at most n2 elements for each of
these. For procedure Post-MVE2, we compute the sum of at most n2 elements for each tree edge. There
are at most m such tree edges. Hence, this step can be done in O(log n) time using mn2 processors.

62.4 Concluding Remarks

Identifying critical sections in a network for protection to avoid sudden system breakdown and disruption
is a topic of increasing importance for network-centric computing and applications. In this chapter, we
summarized the results made in our previous work on the problems of computing the MVEs with respect
to MST and SP. For the first problem, we shown have approaches to develop both deterministic and
randomized solutions for computing k-MVE and their parallel executions. For the second problem, we
described efficient sequential and parallel solutions using an auxiliary graph transmuter [34]. Though the
contents of this chapter may not cover all research activities on this topic, we hope that they can provide
some insight to understanding the approaches and techniques for computing MVE with respect to certain
properties in a graph. These may also be helpful to devising solutions for other relevant problems.

References

[1] Lobore, S. H., Ratliff, H. D., and Sicilia, G. T., Determining the most vital link in a flow network,
Naval Res. Logist. Quart., 18, 497, 1971.

[2] Wollmer, R., Removing arcs from a network, Oper. Res., 12, 934, 1965.
[3] Ratliff, H. D., Lobore, S. H., and Sicilia, G. T., Finding the n most vital links in flow networks, Manage.

Sci., 21, 531, 1975.
[4] Corley, H. W. and Sha, D. Y., Most vital links and nodes in weighted networks, Oper. Res. Lett., 1,

157, 1982.
[5] Malik, K., Mittal, A. K., and Gupta, S. K., The k most vital edges in the shortest path problem, Oper.

Res. Lett., 8, 223, 1989.
[6] Malik, K., Mittal, A. K., and Gupta, S. K., Erratum: the k most vital arcs in the shortest path problem,

Oper. Res. Lett., 9, 283, 1990.
[7] Ball, M. O., Golden, B. L., and Vohra, R. V., Finding the most vital arcs in a network, Oper. Res. Lett.,

8, 73, 1989.

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C062 March 20, 2007 17:45

Finding Most Vital Edges in a Graph 62-15

[8] Hsu, L. H., Jan, R. H., Lee, Y. C., Hung, C. N., and Chern, M. S., Finding the most vital edge with
respect to minimum spanning tree in weighted graphs, Inf. Proc. Lett., 39, 277, 1991.

[9] Lin, K.-C. and Chern, M. S., The most vital edges in the minimum spanning tree problem, Inf. Proc.
Lett., 45, 25, 1993.

[10] Bhosle, A. M. and Gonzalez, T. F., Algorithms for single link failure recovery and related problems,
J. Graph Alg. Appl., 8(3), 275, 2004.

[11] Bhosle, A. M., Improved algorithms for replacement paths problems in restricted graphs, Oper. Res.
Lett., 33(5), 459, 2005.

[12] Hershberger, J. E., Suri, S., and Bhosle, A. M., On the difficulty of some shortest path problems, Proc.
STACS, 2003, p. 343.

[13] Hsu, L. H., Wang, P. F., and Wu, C. T., Parallel algorithms for finding the most vital edge with respect
to minimum spanning tree, Parallel Comput., 18, 1143, 1992.

[14] Iwano, K. and Katoh, N., Efficient algorithms for finding the most vital edge of a minimum spanning
tree, Inf. Proc. Lett., 48, 211, 1993.
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63.1 Introduction

The graph (vertex) coloring problem (GCP) is a central problem in graph theory [1]. It consists of finding
an assignment of colors to vertices of a graph in such a way that no adjacent vertices receive the same color.
Graph coloring problems arise in many real-life applications such as register allocation [2], air traffic flow
management [3], frequency assignment [4], light wavelengths assignment in optical networks [5], and
timetabling [6,7].

In the GCP, one is given an undirected graph G = (V, E ), with V being the set of |V | = n vertices and
E the set of edges. A k-coloring of G is a mapping ϕ : V �→ �, where � = {1, 2, . . . , k} is a set of |�| = k
integers, each one representing a color. A k-coloring is feasible or proper if for all [u, v] ∈ E it holds that
ϕ(u) �= ϕ(v); otherwise it is infeasible. If for some [u, v] ∈ E it is ϕ(u) = ϕ(v), the vertices u and v are
in conflict. The conflict set V c is the set of all vertices that are in conflict. A k-coloring can also be seen as a
partitioning of the set of vertices into k disjoint sets, called color classes, and represented as a partitioning
of V , C = {C1, . . . , Ck}. Finally, if some vertices are assigned to color classes while others are not, the
coloring is said to be a partial coloring.

The GCP can be posed as a decision or an optimisation problem. In the decision version, also called
the (vertex) k-coloring problem, the question to be answered is whether for some given k a feasible
k-coloring exists. The optimisation version of the GCP asks for the smallest number k such that a feasible
k-coloring exists; for a graph G , this number is called the chromatic number χG . The problem of finding the
chromatic number is often approached by solving a sequence of k-coloring problems: an initial value of k
is considered and each time a feasible k-coloring is found, the value of k is decreased by one. The chromatic
number is found when for some k the answer to the decision version is “no” i.e., a feasible k-coloring does
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not exist. In this case, χG = k +1. If a feasible coloring cannot be found but no proof of its nonexistence is
given, as it is typically the case with heuristic algorithms, k+1 is an upper bound on the chromatic number.

It is well known that the k-coloring problem for general graphs is NP-complete and that the chromatic
number problem is NP-hard [8]; only for a few special cases polynomial-time algorithms are known. In
some sense, the GCP is among the hardest problems in NP , since approximation ratios of n1−ε cannot
be achieved in polynomial time, unless NP = ZPP [9]; i.e., it is very unlikely to find polynomial-time
algorithms that guarantee a constant approximation ratio. The best absolute performance guarantee of
O(n(log log n)2/ log3 n) is given for an approximation algorithm presented in Ref. [10]. More details on
the approximability of graph coloring can be found in Ref. [11].

Due to its importance, many attempts have been made to tackle the GCP algorithmically. Various exact
algorithms, including specialised branch-and-bound algorithms [12,13] or approaches based on general
integer programming formulations of the GCP have been tested [14–16]. Probably the best known exact
algorithm is Brélaz’ modification of Randall–Brown’s coloring algorithm [12]. While exact algorithms can
be very effective on specific classes of graphs, their performance for many large graphs is often rather poor
[16,17]. Therefore, a significant amount of research has focused on stochastic local search (SLS) algorithms
for the GCP (see Chapter 19 for an overview of SLS methods). The available SLS approaches range from
rather simple but very fast construction methods over iterative improvement algorithms to sometimes
rather complex SLS algorithms, which are currently the best performing approximate algorithms for
many classes of GCP instances. This chapter is an overview of available SLS algorithms and reports some
indicative comparison of the performance of several such algorithms.

63.2 Benchmark Instances

The available benchmark instances for the GCP are either graphs randomly generated or graphs derived
from some practically relevant application. The most frequently used benchmark instances are available
from the web page COLOR02/03/04: Graph Coloring and its Generalizations athttp://mat.tepper.cmu.
edu/COLOR04 and an earlier DIMACS challenge [18]. Next, some instance classes are described which
will be used in the experimental analysis presented in Section 63.7.

Uniform random graphs. This class comprises graphs of a variable number of vertices, n, where each of
the n(n − 1)/2 possible edges is generated independently at random with probability p. The instance have
identifiers DSJCn.p, with n ∈ {125, 250, 500, 1000} and p ∈ {0.1,0.5,0.9}. They stem from one of the
first thorough experimental studies of SLS algorithms for the GCP [19]. For these graphs, probabilistic
estimates of the chromatic number exist [20–22].

Flat graphs. These graphs are random graphs generated according to an equipartitioning of vertices
into k sets. Edges are then generated to respect some constraints on the resulting degrees of the vertices
until a given edge density is obtained [23]. The value of k is an upper bound on the chromatic number
of the graph. These instances are denoted as flatn k, with n = 300; k ∈ {20,26,28} and n = 1000;
k ∈ {50,60,76}.
Leighton graphs. Leighton graphs are random graphs of density below 0.25, which are constructed by
first partitioning vertices into k distinct sets representing the color classes and then assigning edges only
between vertices that belong to different sets. The chromatic number is guaranteed to be k by implanting
cliques of sizes ranging from 2 to k into the graph. The graphs are denoted as le450 kx , where 450 is the
number of vertices, k the chromatic number of the graph, and x ∈ {a , b, c , d} a letter used to distinguish
different graphs with the same characteristics. Graphs with letters c and d have higher edge density than
those with a and b.

Quasigroup graphs. A Quasigroup is an algebraic structure on a set with a binary operator. The constraints
on this structure define a Latin square, that is a square matrix with elements such that entries in each row
and column are distinct. A Latin square of order n has n2 vertices and n2(n − 1) edges, corresponding to
2n cliques, a clique per row/column, each of size n. The chromatic number of Latin square graphs is n.
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Latin square graphs originated by Quasigroups are denoted by qg.ordern. Latin square graphs also arise
in experimental design for statistical analysis. The instance latin square 10, which has an unknown
chromatic number, is one such example with preassigned experiments [24].

Queens graphs. The n-queens problem asks whether it is possible to place n queens on a n × n grid such
that no pair of queens is in the same row, column, or diagonal. This problem can be posed as a GCP and
a feasible solution with n queens exists if, and only if, the resulting queen graphs have a feasible coloring
with n colors. Queen graphs are highly structured instances and their edge density decreases with their
size; they are denoted by queenn n.

WAP graphs. These graphs arise in the design of transparent optical networks [5] and are denoted by
wap0ma, where m = {1, . . . , 8}. They have between 905 and 5231 vertices. All instances have a clique of
size 40.

Jacobian estimation graphs. These graphs stem from a matrix partitioning problem in the segmented
columns approach to determine sparse Jacobian matrices [25]. They range in size from 662 to 1916 vertices
and they are identified with the following names abb313GPIA, ash331GPIA, ash608GPIA, ash958GPIA,
introduce more space between the two paragraphs and will199GPIA.

The DIMACS benchmark repository contains some other instances which were identified as easy. For
these instances, some combination of preprocessing rules and simple construction heuristics, which are
introduced in the next two sections, suffice to find a coloring with the known chromatic number. Forty-
five instances were identified as easy. They are the Mycielski graphs, the graphs from register allocation
for variables in compiled code [24], graphs from Knuth’s Stanford GraphBase [26], and the almost 3-
colorable graphs with embedded four cliques [27]. Two further classes of graphs that are a generalisation
of Mycielski graphs (the insertions and full insertions graphs due to Caramia, M. and Dell’Olmo P.,
personal communication) and graphs for course scheduling [24] are not useful to determine differences
among algorithms.

63.3 Preprocessing and Heuristic Reduction Rules

In the chromatic number problem, preprocessing can be applied to reduce a graph G to a graph G ′ such
that a feasible k-coloring for G can be derived by construction rules from any feasible k-coloring of G ′.
Next, the two preprocessing rules presented in Ref. [28] are given.

Rule 1. Remove all vertices in G that have a degree less than the size of the largest known clique ω̂(G).
Knowing that the degree of a vertex u is less than ω̂(G) guarantees that at least one color that is not used
in the set of adjacent vertices can be assigned to u without breaking feasibility. (This rule can be applied
when solving the k-coloring problem by replacing ω̂(G) by k.)

Rule 2. Remove any vertex v ∈ V for which there is a u ∈ V , v �= u and [u, v] /∈ E , such that u is
adjacent to every vertex to which v is adjacent (subsumption). In this case, any color that can be assigned
introduce more space between the two paragraphs to u can also be assigned to v.

These two rules can be applied in any order and if one rule applies, it may make possible further
reductions by the other rule. Hence, in the preprocessing stage, the two rules are applied iteratively until
no vertex can be removed anymore. The rules are easy to apply. Rule 1 requires O(|V |) operations once a
clique has been found heuristically and the degree of each vertex is known. Rule 2 is more costly and its
time complexity is O(|V |3). The overall reduction time is, however, insignificant in practice. Among the
challenging instances considered, preprocessing is effective only for the WAP instances.

The graph can also be reduced heuristically. One such procedure consists of reducing the graph by re-
moving maximal independent sets [29–31]. Typically, this procedure is accomplished with the companion
strategy of minimising the number of edges in the residual graph. In contrast to the previously mentioned
preprocessing rules, this procedure may make it impossible to find the chromatic number of the original
graph because it is a priori unknown how the independent sets should be constructed such that an optimal
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coloring is obtained from a coloring of the residual graph and the coloring for the independent sets. Nev-
ertheless, for some graphs such a heuristic procedure has contributed significantly to the improvement of
the solution quality for SLS algorithms [29,30,32,33].

63.4 Construction Heuristics

The fastest methods to generate a feasible coloring are construction heuristics. Most of these heuris-
tics for the GCP belong to the class of sequential heuristics that start from a set of empty color classes
{C1, . . . , Ck}, where k = |V |, and then iteratively add vertices to color classes until a complete coloring is
reached. Each iteration of the heuristic consists of two steps: first, the next vertex to be colored is chosen,
and then this vertex is assigned to a color class. The order in which the vertices are colored corresponds to
a permutation π of the vertex indices that can be determined either statically before assigning the colors,
or dynamically by taking into account the partial coloring for the choice of the next vertex. The choice
of the color class at each construction step is typically based on the greedy heuristic that adds at iteration
i the vertex π(i) to the color class with the lowest possible index such that the partial coloring obtained
after coloring vertex π(i) remains feasible, therefore, trying to minimise the number of nonempty color
classes.

Clearly, the result of the greedy heuristic depends on the permutation π . The simplest way to derive π

in a static way is by using the random order sequential (ROS) heuristic, which simply generates a random
permutation. Several other ways for generating π statically exist, like largest degree first, smallest degree
last, etc. However, static sequential methods are typically dominated by dynamic ones [21]. Probably, the
most widely known dynamic heuristic is the DSATUR heuristic that is derived from the exact DSATUR

algorithm of Brélaz [12]. In DSATUR, the vertices are first arranged in decreasing order of their degrees
and a vertex of maximal degree is inserted into C1. Then, at each construction step the next vertex to
be inserted is chosen according to the saturation degree, i.e., the number of differently colored adjacent
vertices. The vertex with the maximal saturation degree is chosen and inserted according to the greedy
heuristic. Ties are broken preferring vertices with the maximal number of adjacent, still uncolored vertices;
if further ties remain, they are broken randomly. Other dynamic heuristics for determining π were studied
in Refs. [34,35].

A different strategy for generating colorings is to iteratively extract independent sets from the graph.
The most famous such heuristic is the recursive largest first (RLF) heuristic proposed by Leighton [7]. RLF

iteratively constructs a color class Ci by first assigning to it a vertex v with maximal degree from the set
V ′ of still uncolored vertices; initially it is V ′ = V . Next, all the vertices in V ′ that are adjacent to v are
removed from V ′ and inserted into a set U , which is initially empty; U is the set of vertices that cannot
be added to color class Ci anymore. Then, while V ′ is not empty, the vertex v′ ∈ V ′ that has the largest
number of edges [v′, u], with u ∈ U , is chosen; v′ is added to Ci , removed from V ′, and all vertices in V ′
adjacent to v′ are moved into U . Ties are broken, if possible, choosing the vertex that has minimal degree
in V ′, otherwise randomly. These steps are iterated until V ′ is empty and the same steps are repeated with
the residual graph consisting of the vertices in U .

We have compared experimentally the three construction heuristics DSATUR, RLF, and ROS [17].
Their behaviour is stochastic because random choices are used to break ties, hence each of the algorithms
was run 10 times on all 125 instances of the DIMACS benchmark sets as of end 2004. The conclusion
was that RLF performs statistically significantly better than DSATUR for most instance classes and both
heuristics are by a large margin better than ROS. RLF is not significantly better than DSATUR only on the
insertions, full insertions, and course scheduling graphs. With respect to computation time, although RLF

and DSATUR have the same time complexity O(|V |3), RLF is in practice much more time-consuming.
ROS with a complexity of O(|V |2) is the fastest. For example, on the largest instance tested (10,000
vertices), RLF takes on average ∼18.5 s to color the graph with 101 colors, DSATUR 3 s to color it with 103
colors, and ROS < 1 s to produce a coloring with 106 colors (the computer used was a 2 GHz AMD Athlon
MP 2400+ Processor with 256 KB cache and 1 GB of RAM memory). A more detailed analysis showed
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that the computation time of RLF depends not only on the instance size, as it is the case for DSATUR, but
it is also affected by the graph density and the final number of colors used [17].

Note that the construction heuristics described above can also be used if a fixed number k < |V | of
color classes is available. In that case, the usual steps of the construction algorithms are followed as long as
the number of used color classes remains below k. Then, if a vertex cannot be colored legally, it is added to
a color class randomly or according to some other heuristic that tries to minimise the number of arising
conflicts. The result of these so modified construction heuristics is typically an infeasible k-coloring, which
can serve as an initial solution for improvement methods.

63.5 Neighbourhoods for Local Search

Once an initial (feasible or infeasible) coloring is generated by construction algorithms, one may try to
improve it through the application of iterative improvement algorithms. These algorithms may be used
within two different approaches to solve the GCP: as a sequence of decision problems or directly as an
optimisation problem. The first approach corresponds to leaving the numbers of colors fixed to some
value k at each stage. Subsequently, once a feasible coloring with k colors is found, the number of colors
is reduced by one. The second approach allows the number of used colors to vary throughout one single
trial of the local search algorithm. To apply iterative improvement algorithms one needs to define the set
of candidate solutions, a neighbourhood relation, and an evaluation function. Two choices are possible
for the set of candidate solutions: one may opt for the algorithm to work on complete colorings, where each
candidate solution represents a possibly infeasible partitioning of the set of vertices into color classes, or to
work on partial colorings, where candidate solutions are also those with a subset of the vertices left without
any color assigned. Next, several neighbourhood relations and evaluation functions of candidate solutions
are introduced, differentiating among possible choices of how to tackle the GCP.

63.5.1 Strategy 1: k Fixed, Complete Colorings

This approach works on a partitioning of V into k color classes: C = {C1, . . . , Ck}. The most widely
used evaluation function counts the number of edges that have their end points in the same color class.
Formally, the function can be described as g (C ) = ∑k

i=1 |E i |, where E i is the set of edges with both
end points in Ci . A candidate solution with an evaluation function value of zero corresponds to a proper
k-coloring. An alternative evaluation function would be g (C) = |V C |. However, this function is much less
used, possibly because it would lead to a large number of neighbours with the same evaluation function
value, therefore inducing large plateaus in the search landscape.

1-exchange neighbourhood. The most frequently used neighbourhood structure in this setting is the 1-
exchange neighbourhood, in which two colorings are neighbours if they differ in the color class assignment
of exactly one vertex. That is, to obtain a neighbour of C , one vertex u is moved from a color class
C j , j ∈ {1, . . . , k}, into a different color class Cl , l �= j . Often, the 1-exchange neighbourhood is
further restricted to change only the color class assignment of vertices that are in conflict, since only these
modifications can lead to a decrease of the evaluation function; this is called the restricted 1-exchange
neighbourhood.

Swap neighbourhood. In the swap neighbourhood, exactly one vertex v ∈ V c exchanges the color class
with another vertex u ∈ V . This neighbourhood is of quadratic size and it is used only very rarely.

Cyclic exchange and path exchange neighbourhoods. An extension of the 1-exchange and swap neigh-
bourhoods are the path and cyclic exchange neighbourhoods (see Figure 63.1). Both the cyclic and the
path exchange are sequences of 1-exchanges. A cyclic exchange of length m acts on a sequence of distinctly
colored vertices (u1, . . . , um). For simplicity, the color class of any ui , i = 1, . . . , m, will be denoted by
Ci . The cyclic exchange moves any ui , i = 1, . . . , m, from Ci into Ci+1. For convention, Cm+1 = C1.
A cyclic exchange does not change the cardinality of the color classes involved in the move. In a path
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FIGURE 63.1 The black vertices are the vertices involved in the cyclic and path exchange: (a) cyclic exchange,
(b) path exchange.

exchange instead, um remains in Cm. Hence, the sequence of exchanges is not closed and the cardinality
of C1 and Cm is modified. The cyclic and path exchange neighbourhoods are examples of very large-scale
neighbourhoods (VLSN). The problem of finding a good neighbour within these neighbourhoods can
be reduced to searching the least cost cycle or cost path in an improvement graph. If these problems
can be solved exactly, then the best neighbour is found. Refer to Chapter 20 for more details on how an
improvement graph is built and can be searched exactly and heuristically. Details on the implementation
of a VLSN for the GCP can be found in Ref. [17].

Other neighbourhoods. Similar to the path exchange neighbourhood is the ejection-chain neighbourhood
defined in Ref. [36], where the length of the sequences was limited to 3. Other neighbourhoods, rather
fancy at times, were proposed in the context of a variable neighbourhood approach [37]. However, the
overall contribution of these neighbourhoods is somewhat unclear, especially when they are used inside a
more complex SLS algorithm.

63.5.2 Strategy 2: k Fixed, Partial Colorings

This approach works on a partitioning of V into k + 1 color classes: C = {C1, . . . , Ck , Cimp}. The partial
coloring C̄ = {C1, . . . , Ck} is usually required to be feasible. The color class Cimp is called the impasse
class [33] and it contains the “uncolored” vertices. The goal of the local search is to try to empty color class
Cimp, while maintaining the partial coloring C̄ feasible. The most widely used evaluation function in this
case is g (C) = ∑

v∈Cimp
d(v), where d(v) is the degree of vertex v. Analogously to complete colorings,

an alternative would be to minimise g (C) = |Cimp|. However, this appears to lead to worse performance
[31].

i-swap neighbourhood. A neighbour of C in the i-swap neighbourhood is obtained by moving a vertex v

from Cimp into another color class Ci , followed by moving all vertices of Ci that share an edge with v into
Cimp so that the partial coloring C̄ remains feasible [33].

Other neighbourhoods. The neighbourhoods discussed in the section dedicated to Strategy 1 could, at
least in principle, also be applied for algorithms using strategy 2; however, it would probably be difficult
to maintain the partial coloring feasible and additional penalties for infeasibility may be required in the
evaluation function. So far, such an approach appears not to have been tried.

63.5.3 Strategy 3: k Variable, Complete Colorings

The final strategy discussed allows the number of color classes to vary during the local search. In almost
all these approaches, the current candidate coloring is forced to be complete and feasible. The local search
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Ci Cj

FIGURE 63.2 A Kempe chain between color classes Ci and C j is indicated by the thick edges.

then tries to minimise the number of color classes. Hence, the simplest evaluation function would be to
count the number of colors currently used; however, since moves that remove one color class completely
will be certainly very rare, the guidance provided by this evaluation function would be minor. As an
alternative, Johnson et al. [19] proposed to use g (C ) = −∑k

i=1(|Ci |)2, which biases the search towards
a small number of color classes. The most widely used neighbourhood structure for this strategy is based
on Kempe chains.

Kempe chains neighbourhood. A Kempe chain K is a set of vertices that form a component (a maximal
connected subgraph) in the subgraph G ′ of G induced by the vertices that belong to two (disjoint) color
classes Ci and C j of C . A Kempe chain exchange applied to a feasible coloring produces again a feasible
coloring (a Kempe chain neighbour) by moving all vertices of Ci that belong to the Kempe chain K into
the color class C j and vice versa. An example of a Kempe chain is given in Figure 63.2.

An alternative to enforcing coloring feasibility is to allow also infeasible colorings. In that case, the
same neighbourhoods as under the k fixed strategy can be applied, but the evaluation function needs now
also to guide the search towards feasible candidate solutions. One such evaluation function is g ′(C) =
−∑k

i=1 |Ci |2 + ∑k
i=1 2|Ci ||E i |, where E i is the set of vertices with both end points in Ci [19]. The

second term in g ′ is used to penalise conflicts between adjacent vertices.
Finally, note that no approach that leaves k variable and uses partial colorings is known, although such

an approach would be conceivable.

63.5.4 Neighbourhood Examination and Data Structures

The various neighbourhoods that have been described can be restricted and explored in various ways. It
is intuitively clear that neighbourhood restrictions are more important for large neighbourhoods than for
the small ones. Nevertheless, computational results with SLS algorithms suggest that restrictions to moves
that involve only vertices in V c are essential even for the 1-exchange neighbourhood.

Regarding the neighbourhood search strategy, one can distinguish mainly between best- and first-
improvement strategies. In best-improvement, the best neighbouring candidate solution (best w.r.t. neigh-
bourhood restrictions, if these are used) is accepted, breaking ties randomly; in first-improvement, the
first improving candidate solution found when scanning the neighbourhood replaces the current one.
Somehow intermediate between these two is the strategy followed in the min-conflicts heuristic [38], which
searches the restricted 1-exchange neighbourhood in a two-stage process. In a first stage, a vertex is chosen
uniformly at random from the conflict set; in a second stage, this vertex is moved into a color class such
that the number of conflicts is minimised, breaking ties randomly.

Finally, let us note that the local search algorithms for the GCP require the usage of appropriate data
structures to support caching and updating strategies to make the evaluation of the neighbouring candidate
solutions as efficient as possible. Typically, the use of elaborated data structures is more important for best-
improvement local search algorithms and those making use of large neighbourhoods. We refer to Ref. [17]
for a short discussion of efficient caching and updating strategies.
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63.6 Stochastic Local Search Algorithms

In the case of the GCP, iterative improvement algorithms have received rather little attention, probably
because of their generally poor performance when used as stand-alone algorithms. Much more attention
has focused on the application of more complex SLS algorithms. In what follows, a selection of some of
the best-performing SLS algorithms is presented, as well as a few recently developed ones. The selection
was biased by the desire to cover different approaches and methods. Where appropriate, there also is a
short overview of algorithms that are related to the ones described, covering in this way the majority of
the SLS algorithms proposed so far for the GCP. If nothing else is said in the text, the evaluation functions
used are the standard ones given for the various strategies described in the previous section.

63.6.1 Strategy 1: k Fixed, Complete Colorings

Tabu search with 1-exchange neighbourhood. Tabu search algorithms based on the 1-exchange neighbour-
hood (TS1-ex) are probably the most frequently applied SLS algorithms for the GCP (see Chapter 23 for
details on tabu search). Such an algorithm was first proposed by Hertz and de Werra [30] and was later
improved leading to the most performing tabu search variant to date by Dorne, Galinier, and Hao [39,40].
TS1-ex chooses at each iteration a best nontabu or tabu but aspired neighbouring candidate solution from
the restricted 1-exchange neighbourhood. If a 1-exchange move puts vertex v from color class Ci into C j ,
it is forbidden to re-assign vertex v to Ci in the next tt steps; the tabu status of a neighbouring solution is
overruled if it improves over the best candidate solution found so far (aspiration criterion). If more than
one move produces the same effect on the evaluation function, one of those moves is selected uniformly
at random. The tabu list length in TS1-ex is set to tt = random(A) + δ · |V c |, where random(A) is an
integer uniformly chosen from {0, . . . , A} and δ and A are parameters. Since tt depends on |V c |, the tabu
list length varies dynamically with the evaluation function value.

Tabu search with very large-scale neighbourhood. In this algorithm, a neighbourhood obtained from the
composition of the path exchange and cyclic exchange neighbourhoods is used, referred to as the cyclic
and path exchange neighbourhood. The embedding of this neighbourhood into a tabu search algorithm
analogous to TS1-ex results in an algorithm called TSVLSN [17]. Several variants of TSVLSN have been
studied and the best performing one of these first selects the best nontabu move in the restricted 1-exchange
neighbourhood as in TS1-ex. If this move is a plateau move, (i.e., the best neighbouring solution has the
same evaluation function value as the current one), then the cyclic and path exchange neighbourhood is
searched. In all other cases the 1-exchange move is applied and the tabu list is updated. The tabu mechanism
is applied to the search for cyclic and path exchanges by discarding any neighbouring candidate solution
that involves the reassignment of a vertex to some color class that is currently tabu. The tabu list is updated
by considering the path or the cyclic exchange as a composition of 1-exchanges and the tabu duration tt
for a specific vertex-color–class pair (v, i) is chosen using the rule of TS1-ex. Yet, contrarily to TS1-ex,
TSVLSN does not use an aspiration criterion.

Min-conflicts heuristic. One of the most effective extensions of the basic min-conflicts heuristic is a tabu
search variant of it (MC-TS1-ex) [41]. It uses the same two-stage selection process as the min-conflicts
heuristic, which was described in the previous section, but in the second stage it only allows to move the
vertex into a color class that is not tabu, analogous to TS1-ex. If all color classes are tabu, one is chosen
randomly. One advantage of this neighbourhood examination strategy is that it does not require the usage
of sophisticated caching and updating schemes as required, for example, by TS1-ex; hence, it allows for an
easier implementation. In addition, the chances of cycling are reduced due to the random choices especially
in the first stage of the selection process, allowing for shorter tabu lists.

Guided local search. Guided local search (GLS) is an SLS method that modifies the evaluation function
to escape from local optima [42]. An application of GLS to the GCP was proposed in Ref. [17]. In this
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algorithm, GLS uses an augmented evaluation function g ′ defined as

g ′(C ) = g (C ) + λ ·
|E |∑

i=1

wi · IC (i)

where g (C) is the usual evaluation function, λ a parameter that determines the influence of the penalties
on the augmented cost function, wi the penalty weight associated to edge i , and IC (i) an indicator function
that takes the value 1 if the end points of edge i are in conflict in C and 0 otherwise. The penalties are
initialised to 0 and are updated each time an iterative improvement algorithm reaches a local optimum
of g ′. The modification of the penalty weights is done by first computing a utility ui for each violated
edge, ui = IC (i)/(1 + wi ), and then incrementing the penalties of all edges with maximal utility by one.
The underlying local search is a best-improvement algorithm in the restricted 1-exchange neighbourhood.
Once a local optimum is reached, the search continues for a maximum number of sw plateau moves before
the evaluation function g ′ is updated.

Iterated local search. TS1-ex can be used as a local search inside hybrid SLS methods like iterated local
search (ILS) [43]. In the ILS algorithm presented in Ref. [44], TS1-ex is run until the best solution found
does not change for lLS iterations. A perturbation is then applied to the best coloring found so far and
TS1-ex is run again. In the perturbation, a number kr , kr < k, of color classes is randomly chosen and the
color class membership of all vertices in those color classes is changed. The ROS heuristic bounded by k
and with the further strong constraint of avoiding the reinsertion of a vertex into its previous color class
is used to accomplish this task. The tabu list of TS1-ex is emptied before applying the perturbation, while
the exchanges caused by the perturbation are inserted in the tabu list.

Other approaches that are based on the same or similar SLS methods have been studied: a predecessor
of the ILS algorithm described above is presented in Ref. [45], an ILS algorithm that uses a permutation
of the color classes in subgraphs as a perturbation is given in Ref. [46]. Similar in spirit is also the iterated
greedy solution reconstruction [47].

Evolutionary algorithms. The first evolutionary algorithm (EA) for the GCP is reported in Ref. [48]. The
most successful EAs are hybrid methods that use TS1-ex to improve candidate solutions [29,32,39,40,49].
Among them, the best results so far have been reported for the hybrid evolutionary algorithm (HEA)
[40]. HEA starts with a population P of candidate solutions, which is initialised by using the DSATUR

construction heuristic restricted to k colors, and then iteratively generates new candidate solutions by
first recombining two members of the current population that are improved by local search. For the
recombination, the greedy partition crossover (GPX) is used [40]. Starting with two candidate partitionings
(parents) C 1 = {C 1

1 , . . . , C 1
k } and C 2 = {C 2

1 , . . . , C 2
k }, GPX generates a candidate solution (offspring)

by alternately selecting color classes of each parent. At step i of the crossover operator, i = 1, . . . , k, GPX
chooses a color class with maximal cardinality from parent C 1 (if i is odd) or from parent C 2 (if i is even).
This color class will become color class Ci of the offspring. Once Ci is chosen, the vertices that belong to
it are removed from both parents. The vertices that remain in C 1 and C 2 after step k are added to a color
class of the child, which for each vertex is chosen uniformly at random. The new candidate partitioning
returned by GPX is then improved by TS1-ex, run for lLS iterations, and it is inserted in the population P
replacing the worse parent. The population is reinitialised if the average distance between colorings in the
population falls below a threshold of 20. Responsible for the high performance reported for the algorithms
appears to be mainly the GPX crossover operator [46].

The adaptive search algorithm of Galinier et al. [50] also makes use of the GPX crossover, but it does
not further improve on the performance of HEA. Another EA was proposed in Ref. [51] and a scatter
search algorithm was proposed in Ref. [52]; however, none of these algorithms appears to surpass the peak
performance of HEA.

Other methods. A greedy randomised adaptive search procedure was proposed in Ref. [53]. It uses a
randomisation of RLF for the candidate solution construction and an iterative improvement algorithm in
the 1-exchange neighbourhood. The reported results for low-degree graphs appear to be good. Another
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SLS method, ant colony optimisation (ACO), has also been applied to the GCP in Ref. [54] (see Chapter 26
for more details on ACO). In that approach, several ways of defining the heuristic information were
studied; the computational results appear to be worse than state-of-the-art, however, no local search was
used to improve candidate solutions.

63.6.2 Strategy 2: k Fixed, Partial Colorings

Distributed coloration neighbourhood search. The distributed coloration neighbourhood algorithm
proposed by Morgenstern [33] can be seen as an ILS algorithm that uses a simulated annealing (SA)
algorithm for the local search. The SA algorithm is based on the i-swap neighbourhood and is run for I
iterations or until a certain solution quality threshold is passed. Upon termination of the SA algorithm, a
perturbation is applied that is defined by a random s-chain exchange that moves from the current coloring
configuration to a new one with the same solution quality. An s -chain exchange can be seen as a generali-
sation of the Kempe chain exchange. It is defined through a vertex v and an ordered sequence of nonempty
color classes C1, . . . Cs , wherev ∈ C1, all color classes are distinct, and s ≤ k. From this sequence, a directed
graph with vertex set V ′ = C1 ∪ · · · ∪ Cs and arc set A = {(u, w) | (u, w) ∈ E , u ∈ Ci and w ∈ Ci+1}
is derived (for convention, Cs+1 = C1). In an s -chain, each vertex that is reachable from v in the digraph
(V ′, A) is moved from color class Ci to Ci+1. Note that an s -chain, where all vertices in V ′ are reach-
able, would simply correspond to a relabelling of the color classes and, hence, would result in the very
same partitioning; therefore, such a total s-chain is to be avoided and the neighbourhood is restricted to
non-total s-chains. Different ways of combining these two steps and including them into a distributed
computational environment were studied in Ref. [33].

More recently, a tabu search algorithm based on the i-swap neighbourhood was proposed [55]. The
tabu criterion in this algorithm forbids adding into Ci vertices adjacent to a vertex v that was moved into
a color class Ci . This interdiction acts for the tt iterations successive to the move of v.

63.6.3 Strategy 3: k Variable, Complete Colorings

Simulated annealing with Kempe chain neighbourhood. SA was among the first SLS methods applied
to the GCP [56,19]. A comprehensive study of three SA algorithms was presented in Ref. [19]; among
these three variants, two work with the number of colors k variable. The more promising one of the
two allows only feasible colorings and uses the Kempe chain neighbourhood (SAKempe), while the other
allows infeasible colorings and uses the 1-exchange neighbourhood. SAKempe uses the evaluation function
g (C) = −∑k

i=1(|Ci |)2 and starts from an initial partitioning generated by the ROS heuristic. At each
iteration of SAKempe, a neighbouring solution is generated in three steps; first, a nonempty color class Ci ,
a vertex v ∈ Ci , and a nonempty color class C j are chosen uniformly at random but avoiding that Ci and
C j form a full Kempe chain, which would result simply in a relabelling of the two color classes; second, the
Kempe chain Kij of color classes Ci and C j that contains vertex v is determined; and third, the Kempe chain
exchange is applied. The generated neighbouring candidate solution C ′ is always accepted if it improves over
the current candidate solution C and otherwise it is accepted with a probability of exp((g (C)−g (C ′))/T),
where T is a parameter called temperature. The parameter T is modified according to a rather standard
cooling schedule [19].

63.7 Experimental Comparison of Stochastic Local Search
Algorithms

This section reports numerical results for the SLS algorithms that were described in detail in Section 63.6.
For this purpose, the challenging benchmark instances described in Section 63.2, i.e., those that are not
recognised as easy, are used; the benchmark instances were not treated by the preprocessing rules given in
Section 63.3. The algorithms compared are TS1-ex, TSVLSN, MC-TS1-ex, ILS, GLS, HEA, SAKempe, and

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C063 March 20, 2007 18:4

Stochastic Local Search Algorithms for the Graph Coloring Problem 63-11

XRLF [19], an extension of RLF. All algorithms were implemented under the same environment, sharing
the same data structures as much as reasonable. A specific experimental set-up is used which considers
the GCP in its optimisation version and each algorithm started from the number of colors kRLF returned
by the RLF heuristic. When a feasible k-coloring is found, a new coloring with k − 1 colors is created
by uncoloring the vertices assigned to one selected color and recoloring each of the vertices by randomly
choosing any of the remaining colors. Finally, all algorithms were allowed the same maximum computation
time tmax , which is instance dependent, after preliminary experiments, it was decided to use TS1-ex as
the reference algorithm and to set tmax to the average time TS1-ex needs to perform Imax = 104 × |V |
iterations (averages are taken across 10 trials per instance). For each of the algorithms, there were attempts
to link parameter settings to instance features where possible and set the remaining ones to some constant
value that resulted in good performance across the whole benchmark set. Thus, the results presented below
give rather an indication of the algorithms’ robustness than necessarily their true peak performance.

Each of the algorithms was run 10 times on each instance. For each trial the minimal number of colors
found by the algorithm was measured and the resulting data analysed using rank-based statistical methods.
In particular, the measured results on each instance are transformed into a rank value in 1, . . . , 80 (eight
algorithms are compared and each algorithm is run 10 times) and then the ranks within the instance classes
described in Section 63.2 are aggregated. Note that applying the statistical tests to each of the instance
classes separately avoids the incorrect bias towards problem classes that comprise more instances and it may
help in distinguishing the particular strength or weakness of the algorithms for the various instance classes.

In Figure 63.3, we report for each instance class the results of the statistical analysis by the nonparametric
rank-based Friedman test for an all-pairwise comparison [57]. The graphs are obtained by attaching error
bars to a scatter plot of the estimated average rank versus algorithm labels. The length of the bars is adjusted
so that the average rank of a pair of algorithms can be inferred to be different with statistical significance at
the level of α = 0.05 if their bars do not overlap. Numerical results on the performance of the algorithms
are given in Table 63.1.
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FIGURE 63.3 All-pairwise comparisons through confidence intervals for the SLS algorithms discussed in the text.
The x-axis gives the average rank for the SLS algorithms.
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TABLE 63.1 Numerical Results on the DIMACS Graph Coloring Instances.

TS1-ex HEA ILS MC-TS1-ex GLS SAKempe TSVLSN XRLF
Bench. time

Instance (χ ,χ̂ best ) sec. min med sec. min med sec. min med sec. min med sec. min med sec. min med sec. min med sec. min med sec.

DSJC125.1 (–,5) 10 5 5 0 5 5 0 5 5 0 5 5 0 5 5 0 6 6 0 5 6 0 5 6 0
DSJC250.1 (–,8) 30 8 8 0.1 8 8 0 8 8 0.2 8 8 0.3 8 9 0 9 9 0.2 9 9 0 9 9 24.4
DSJC500.1 (–,12) 37 13 13 0.1 13 13 0.1 13 13 0.1 13 13 0.2 13 13 0.2 14 14 1.6 14 14 4.5 14 14 29.9
DSJC1000.1 (–,20) 174 21 21 2.8 21 21 164.3 21 21 5.9 21 21 10.4 21 22 0.8 23 23 46.7 23 23 90.5 22 22 169.9

DSJC125.5 (–,17) 14 17 17 0.5 17 17 1.3 17 17 1.6 17 17 6.6 18 18 0 18 18 0.4 18 19 2.1 18 18 2.5
DSJC250.5 (–,22) 47 28 28 22.3 28 28 30.8 28 28 33.6 29 29 2.8 29 30 0.9 29 30 2.7 32 32 6.2 29 30 5.4
DSJC500.5 (–,48) 168 49 50 35 50 50 100.3 50 50 105.8 50 51 20.4 52 52 81.4 51 51 47.3 55 55 138.5 50 50 123
DSJC1000.5 (–,83) 1102 89 90 309.7 89 90 962.5 90 91 303.5 90 91 496.9 93 93 546.3 90 91 409.7 97 98 981.1 86 86 514.8

DSJC125.9 (–,30) 12 44 44 0.1 44 44 0.1 44 44 0.1 44 44 0.2 44 44 0.3 44 44 2 44 44 9.9 44 45 3.4
DSJC250.9 (–,72) 60 72 72 3.8 72 72 28.2 72 72 5.6 72 72 26.7 72 73 6.3 72 72 26.6 74 74 39 75 77 12
DSJC500.9 (–,126) 398 127 127 234.4 128 129 180.8 127 128 82.3 128 129 127 129 130 154 127 128 377.2 134 135 340.3 132 132 204.4
DSJC1000.9 (–,224) 2693 226 227 1983.5 230 232 1869.2 227 228 2245 230 230 2382.1 233 234 1621.1 226 229 2401.4 245 247 2143.7 232 233 125.9

flat300 20 0 (20,20) 112 20 20 0.3 20 20 0.3 20 20 0.4 20 20 0.6 20 20 0.6 20 20 1.1 33 34 76.9 20 20 2.9
flat300 26 0 (26,26) 89 26 26 5.5 26 26 16.1 26 26 16.6 26 26 19.8 33 33 4.3 32 33 4.3 35 35 53.5 33 34 2.9
flat300 28 0 (28,31) 61 31 32 3.4 31 31 54.6 31 32 3.3 31 32 7.8 33 33 7.2 33 33 5.1 35 36 17.3 33 34 2.9
flat1000 50 0 (50,50) 1076 85 86 957.4 50 78 1004.9 88 88 729.5 87 88 713.3 50 50 636.3 86 88 470.3 95 96 939.4 84 86 359.3
flat1000 60 0 (60,60) 1119 88 89 245.2 87 88 918.5 89 90 128.2 89 90 372.3 90 91 719.2 88 89 1014.6 96 97 624.5 87 87 235.4
flat1000 76 0 (76,83) 1147 88 89 618.1 88 89 957.6 89 90 188.7 90 90 712 92 92 605 89 90 399 96 97 869 87 87 306

le450 5a (5,5) 230 5 5 0.1 5 5 0.1 5 5 0.1 5 5 0.9 5 5 0.2 5 7 0 6 7 0 6 7 47.4
le450 5b (5,5) 232 5 5 0.3 5 5 0.5 5 5 0.6 5 5 0.6 5 5 0.3 6 7 0 6 6 59.6 7 7 37.1
le450 5d (5,5) 191 5 5 0 5 5 0 5 5 0 5 5 0 5 5 0 5 5 0 5 5 0 5 6 16.4
le450 15a (15,15) 68 15 15 0.2 15 15 3.4 15 15 0.1 15 15 15 15 15 2.2 16 16 0 16 16 0 16 17 9.3
le450 15b (15,15) 76 15 15 0.1 15 15 0.2 15 15 0.1 15 15 5.8 15 15 0.3 16 16 0 16 16 0 16 16 18.9
le450 15c (15,15) 45 16 16 13.5 15 15 19.5 15 15 19.1 15 16 8 15 15 5.9 23 23 0 23 23 0 19 21 216.4
le450 15d (15,15) 42 16 16 21.7 15 16 13 15 15 20.3 15 16 7.1 15 15 7.8 22 23 0 22 23 0 20 21 189.6
le450 25c (25,26) 56 26 26 0.7 26 27 0 26 26 2 26 27 0.1 26 26 18 27 28 0 27 28 0 27 28 32.3
le450 25d (25,26) 59 26 26 0.5 26 27 0 26 26 0.8 26 27 0.2 26 26 4.7 28 28 0 27 28 0 27 27 38.1
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TABLE 63.1 Continued

TS1-ex HEA ILS MC-TS1-ex GLS SAKempe TSVLSN XRLF
Bench. time

Instance (χ ,χ̂ best ) sec. min med sec. min med sec. min med sec. min med sec. min med sec. min med sec. min med sec. min med sec.

latin square 10 (–,99) 1242 103 104 617.8 106 107 889.4 103 104 510.4 104 105 458.4 102 103 214.9 101 102 369.9 111 114 798.4 117 118 970.7
qg.order100 (100,100) 12102 100 100 17.9 100 100 18.5 100 100 18.3 100 100 19.9 100 100 36.6 100 101 14.8 100 100 875.1 100 101 3971.9

queen6 6 (7,7) 2 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 1.5 7 7 0
queen7 7 (7,7) 4 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 2.1 7 7 0
queen8 12 (12,–) 7 12 12 0 12 12 0 12 12 0 12 12 0 12 12 0 12 12 0.1 12 12 0.4 12 12 0.9
queen8 8 (9,9) 5 9 9 0 9 9 0 9 9 0 9 9 0 9 9 0 9 9 0.1 9 10 0 9 9 0.2
queen9 9 (10,10) 6 10 10 0 10 10 0 10 10 0 10 10 0 10 10 0 10 10 0.1 10 11 0 10 10 0.4
queen10 10 (11,11) 10 11 11 0.1 11 11 0.1 11 11 0 11 11 0.1 11 11 0.8 11 12 0.1 12 12 0.1 11 11 0.9
queen11 11 (11,12) 14 12 12 0.1 12 12 0.1 12 12 0.2 12 12 0.2 12 13 0 12 13 0.1 13 13 0.4 12 12 2
queen12 12 (12,12) 18 13 13 1 13 13 1.4 13 13 0.9 13 13 3.8 13 14 0 14 14 0.2 14 14 1.1 13 13 13.3
queen13 13 (13,14) 22 14 14 2.9 14 14 2.3 14 14 1.3 14 14 13.2 15 15 0 15 15 0.3 15 15 2.7 14 14 21.4
queen14 14 (14,–) 21 15 16 0 15 16 0 15 15 20 15 16 0 16 16 0 16 16 0.5 16 16 5 15 15 32.2
queen15 15 (15,17) 24 16 17 0 16 17 0 16 16 23.9 16 17 0 17 17 0 17 17 0.8 17 17 5.7 16 17 23.9
queen16 16 (16,18) 24 18 18 0 18 18 0 18 18 0 18 18 0 18 18 0 17 18 1.2 18 18 19.5 17 17 33.4

wap01a (–,–) 412 43 44 1.2 43 44 1.6 43 44 1.5 42 42 217.1 42 42 55 44 45 107.8 44 46 30.8 47 48 131.6
wap02a (40,–) 318 42 43 0.7 42 43 0.8 42 42 251.6 41 42 4.9 41 41 159.9 43 43 97.8 43 44 0.5 46 47 150.8
wap03a (–,–) 1395 46 47 3.8 46 47 4.5 46 46 365.2 45 47 5.8 44 44 782 46 47 198.9 47 48 339.1 50 51 884.3
wap04a (40,–) 2125 44 44 170 45 45 2.8 44 44 484.3 43 44 31.2 43 43 833.6 45 46 1.6 45 46 1.8 47 49 1073.5
wap06a (40,–) 138 41 42 0.5 42 42 0.7 42 42 0.5 42 43 0.2 40 41 8.1 42 44 0.2 42 43 4.7 44 44 24.3
wap07a (–,–) 341 43 44 0.7 43 43 1.9 43 44 0.7 42 43 30.9 42 42 215.2 44 45 9.1 44 45 39 47 47 80.7
wap08a (40,–) 373 42 43 10.3 42 43 1.4 43 43 56.1 42 44 0.7 42 42 41.4 45 45 0.4 44 45 0.4 46 47 89.4

abb313GPIA (9,10) 328 9 9 4.1 9 9 26.4 9 9 0.9 9 9 30.7 9 9 1.1 11 11 0 11 11 0.1 12 13 36.4
ash331GPIA (4,4) 200 4 4 0 4 4 0 4 4 0 4 4 0 4 4 0 4 4 0 4 4 0 5 5 25.8
ash608GPIA (4,4) 633 4 4 0.1 4 4 0.2 4 4 0.1 4 4 0.2 4 4 0.1 4 5 0 4 4 409.3 5 5 27.4
ash958GPIA (5,4) 1627 4 4 0.5 4 4 0.5 4 4 0.6 4 4 0.9 4 4 0.4 5 5 0 4 5 0 5 5 121.5
will199GPIA (7,7) 31 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 8 43.9

Note: Given are the chromatic number and best known colorings (χ ,χ̂ best ), the maximal computation time for the algorithms in seconds (time), the best and the median coloring found by an algorithm, and
the median computation time for reaching a solution with median (solution) quality. The computational experiments were run on a machine with a 2 GHz AMD Athlon MP 2400+ processor, 256 KB cache
and 1 GB of RAM memory.
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From these results one can draw the following conclusions. Most importantly, there are strong differences
in the relative order of the algorithms among the various instance classes and, hence, it is not possible to
declare any single algorithm to be the best performing one. On the uniform random graphs, TS1-ex, ILS,
and HEA are the most competitive algorithms. HEA is the significantly best performing algorithm on the
Flat graphs, while on the Leighton graphs ILS and GLS are the best ones. The largest variation in the relative
order of the algorithms appears to be due to GLS; GLS is the best or among the best algorithms for Leighton,
Jacobian estimation, and WAP graphs, but on the other classes of graphs its performance is significantly
worse than, for example, that of TS1-ex. Two further results are interesting. First, the exploration of large
neighbourhoods in TSVLSN does not pay off; in fact, it is among the worst performing algorithms. Further
analysis showed that this is mainly due to the higher computational cost per search step [17]. Second,
on most instance classes XRLF performs rather poorly and it is among the best algorithms only on the
Queens graphs. This contradicts somehow the reputation it gained, which, however, is mainly due to its
very good performance on large uniform random graphs with edge density 0.5. Finally, note that the
performance of HEA is worse than that reported in Ref. [40]. We verified that this difference is mainly due
to our experimental setup and the usage of a single parameter setting; in Ref. [40], HEA was tuned for each
specific graph and even the value of k when solving the k-coloring problem. When the implementation
of HEA was fine-tuned, our implementation roughly matched the results presented in Ref. [40]. Across
all the instances, the very good performance of TS1-ex is most noteworthy, because it is also one of the
algorithms that are among the most easy ones to implement.

63.8 Summary

This chapter gives an overview of the main SLS algorithms described in the literature dedicated to the GCP.
Most of these SLS algorithms follow the strategy of keeping the number of colors fixed to a value k and trying
to minimise the number of conflicts. The optimisation of the GCP is then tackled by solving a series of
k-coloring problems. Among the algorithms that follow this strategy, a simple tabu search algorithm based
on the restricted 1-exchange neighbourhood is a very robust and fast approach that achieves competitive
results for many instance classes. Other SLS algorithms either show better performance only on a few
instance classes (e.g., GLS on the WAP instances or Jacobian estimation graphs) or when very high
computation times are available (e.g., HEA when appropriately tuned). On most classes of graphs, SLS
algorithms also outperform exact algorithms for the GCP. However, exact algorithms appear to be feasible
if the chromatic number is equal or very close to the size of the largest clique of the graph [17].

A promising direction for future research on the GCP appears to be the integration of exact and SLS
algorithms, given that they show particular advantages for different instance classes. Another challenge
for research on SLS algorithms for the GCP is to get a better understanding of the performance of these
algorithms in dependence of instance features. Insights into this relationship may help to increase the
robustness of the algorithms across the various instance classes and may finally lead to new developments
and possibly even better performing algorithms.
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64.1 Introduction

The efficient use of modern communication networks depends on our capabilities for solving a number of
demanding algorithmic problems, some of which are concerned with the allocation of network resources to
individual connections. One of the basic operations in communication networks consists in establishing
routes for connection requests between physically separated network endpoints that wish to establish a
connection for information exchange. Many connection requests occur simultaneously in a network, and
it is desirable to establish routes for as many requests as possible. In many situations, either because of
technical constraints or just to improve the communication, it is required that no two routes interfere
with each other, which implies not to share network resources such as links or switches. This scenario can
be modeled as follows. Let G = (V, E ) be an edge-weighted undirected graph representing a network in
which the nodes represent the hosts and switches, and the edges represent the links. Let T = {(s j , t j ) |
j = 1, . . . , ITI; s j �= t j ∈ V} be a list (of size ITI) of commodities, that is, pairs of nodes in G , representing
endpoints demanding to be connected by a path in G . T is said to be realizable in G if there exist mutually
edge-disjoint (respectively vertex-disjoint) paths (EDP) from s j to t j in G , for every j = 1, . . . , ITI.

The question whether T is realizable was early known to be NP-complete [1] in arbitrary graphs. The
problem remains NP-complete for specific types of graphs such as planar graphs [2,3], series-parallel
graphs (a.k.a. partial 2-trees) [4], and grid graphs [5,6]. For several types of graphs, this problem belongs
to the class of APX-hard problems [7–10]. This fact explains the notorious hardness of the EDP problem
in terms of approximation, despite the attention and effort that researchers have put on it. Interestingly,
for the specific case of complete graphs, we are not aware of any inapproximability results. In particular,
it is not even known whether the problem in complete graphs is APX-hard.

The combinatorial optimization version of this problem consists in satisfying as many of the requests as
possible, which is equivalent to finding a realizable subset of T of maximum cardinality. A solution S to the
combinatorial optimization problem is a set of disjoint paths, in which each path satisfies the connection
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request for a different commodity. For any solution S, the objective function value f (S) is defined as

f (S) = |S| (64.1)

In general, the “disjointness” of paths may refer to nodes or edges. We decided to consider the latter case
because it seems of higher importance in practical applications. We henceforth refer to our problem as the
maximum EDP problem. The EDP problem is obtained from the more general unsplittable flow problem
by considering the demands, profits, and capacities to be one. In the extreme case, in which the list of
commodities is composed by repetitions of the same pair (s , t), the problem is known as edge-disjoint
Menger problem [11].

The EDP problem is interesting for different research fields such as combinatorial optimization,
algorithmic graph theory, and operations research. It has a multitude of applications in areas such as
real-time communications, VLSI-design, scheduling, bin packing, load balancing, and it has recently been
brought into focus in works discussing applications to routing and admission control in modern networks,
namely large-scale, high-speed, and optical networks [12–15]. Concerning real-time communications,
the EDP problem is very much related to survivability and information dissemination. Concerning surviv-
ability, having several disjoint paths available may avoid the negative effects of possible failures occurring
in the base network. Furthermore, to communicate via multiple disjoint paths can increase the effective
bandwidth between pairs of nodes, reduce congestion in the network, and increase the velocity and the
probability of receiving the information [16,17]. This becomes especially important nowadays. Due to the
type of information that circulates over networks (e.g., media files), which requires fast, qualified, and
reliable connections.

In general, there is a lack of efficient algorithms for tackling the EDP problem. Only some greedy
approaches (which we will mention in Section 64.3) and a preliminary ant colony optimization (ACO)
approach [18] exist for tackling the problem. The greedy approaches are used as approximation algorithms
for theoretical purposes, but the quality of the solutions they obtain are susceptible to improvement. The
direct application of a basic ACO scheme to a problem achieves sometimes quite good results. However,
the performance of such an algorithm can often be improved by applying some additional features to the
search process, especially when a rather unusual problem such as the EDP is tackled. Based on the (basic)
approach [18], we have evolved a more sophisticated ACO algorithm (see Ref. [19] for details). We present
and evaluate this ACO approach in the remainder of this chapter.

64.2 A Greedy Approach

A greedy heuristic is a constructive algorithm that builds a solution step by step starting from an empty
solution. At each construction step, an element from a finite set of solution components is added to the
current partial solution. The element to be added is chosen at each step according to some greedy function,
which lends the name to the algorithm. A characteristic feature of the greedy algorithms is that, once a
decision is made on which element to add, this decision is never reconsidered again. Advantages of greedy
heuristics are that they are usually easy to implement and that they are fast in execution. In contrast, the
disadvantage is that the quality of the solutions provided by greedy algorithms is often far from being
optimal.

Greedy algorithms are often used as approximation algorithms to solve optimization problems with a
guaranteed performance. With this aim, some greedy algorithms were proposed for the EDP problem;
examples are the simple greedy algorithm [20], its constrained variant the bounded-length greedy algorithm
[20–24], and the greedy path algorithm [25,26]. Due to its lower time complexity when compared to the
other greedy approaches we decided to implement the simple greedy algorithm (henceforth denoted by
SGA) and a multistart version, which we both outline in the following.

The simple greedy algorithm (SGA)—see Algorithm 64.1 is a natural way of approximating the EDP

problem that works as follows. It starts with an empty solution S. Then, it proceeds through the com-
modities in the order that is given as input. For routing each commodity Tj ∈ T , it considers the graph G
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without the edges that are already in the paths of the solution S under construction. The shortest path (with
respect to the number of edges) between s j and t j is assigned as path for the commodity Tj = (s j , t j ).
In addition to its simplicity, the SGA algorithm can be naturally considered an online algorithm and then,
the lower bounds of Ref. [27] would imply that it does not achieve a good performance ratio on graphs
such as trees and two-dimensional meshes. However, it works well for many other types of graphs.

Algorithm 64.1 Simple greedy algorithm (SGA) for the EDP problem

INPUT: a problem instance (G , T), consisting of a graph G and a commodity list T
S ← ∅, Ê ← E
for j = 1, . . . , |T | do

if s j and t j can be connected by a path in G = (V, Ê ) then
P j ← shortest path from s j to t j in G = (V, Ê )
S ← S ∪ P j , Ê ← Ê \ {e | e ∈ P j }

end if
end for
OUTPUT: the solution S

Observe that the SGA algorithm is deterministic and that the quality of the solutions it provides depends
heavily on the order in which the commodities are treated. A simple way of overcoming that dependence
on the order is to develop a multistart version of the SGA by permuting—for each restart—the order of the
commodities. This approach is pseudocoded in Algorithm 64.2, in which Nper m the number of restarts,
Si the solution under construction in the embedded SGA, and Sbes t the best solution found so far. In the
following, we refer to this algorithm as multistart greedy algorithm (MSGA).

Algorithm 64.2 Multistart simple greedy algorithm (MSGA) for the EDP problem

INPUT: a problem instance (G , T, Nperm), where Nperm is the number of restarts
Sbest ← ∅, T(1) ← T {T(i) denotes the i th permutation of T}
for i = 1 to Nperm do

Si ← Simple Greedy Algorithm SGA(G ,T(i)) {See Algorithm 64.1}
if f (Si ) > f (Sbest) then Sbest ← Si end if
if i < Nperm then

π ← random permutation of size |T |
T(i+1) ← (π(1), π(2), . . . , π(|T | − 1), π(|T |))

end if
end for
OUTPUT: Sbest

64.2.1 An Example where SGA and the Multistart Greedy Algorithm Fail

As we have commented, the main disadvantage of some existing greedy algorithms that approximate hard
problems is the low quality of the solutions they provide. Due to the deterministic greedy decisions that
they take during the solution construction, it is sometimes not possible for them to find an existing optimal
solution. This is also the case for SGA and MSGA presented here.

Consider, for example, the instance of the EDP problem depicted in Figure 64.1, which consists of the
depicted graph and the set T = {(v1, v7), (v8, v14), (v15, v21)} of three commodities to join. The optimal
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v1 v2 v3 v4 v5 v6 v7

s1 t1

v8 v9 v10 v11 v12 v13 v14

s2 t2

v15 v16 v17 v18 v19 v20 v21

s3 t3

FIGURE 64.1 Example of an instance of the EDP problem (with T = {(v1, v7), (v8, v14), (v15, v21)}) for which
neither the SGA nor the MSGA greedy algorithm can find the solution of size 3 emphasized with bold font.

solution in which all three commodities are connected is also shown in bold font in the Figure 64.1.1

Observe, however, that there is no way for any of the greedy algorithms, neither SGA nor MSGA, to find
the solution of size greater than two. Since these greedies are based on the shortest paths (in terms of
the number of edges), the algorithms will tend to connect the commodities through nonconsecutively
numbered vertices. For example, when trying to connect first the commodity (v1, v7), the SGA algorithm
will establish the path {v1, v9, v10, v5, v6, v7}. This excludes edge {v9, v10} as a possibility for being used
in other paths, which makes it impossible to build disjoint paths simultaneously for the remaining two
commodities, independently of which one is built next. Analogous situations occur when starting from
any of the other two commodities. Thus, since no possible permutation of the commodities would provide
a solution of size three, neither the SGA nor the MSGA will find the optimal solution of size three.

64.3 An Ant Colony Optimization Approach

Ant colony optimization [28,29] is a metaheuristic for solving hard combinatorial optimization problems.
Apart from the application to static combinatorial optimization problems (see Ref. [30] for an extensive
overview), the method has also gained recognition for the applications to adaptive routing in static and
dynamic communication networks [31,32]. Ant Colony Optimization algorithms are composed by inde-
pendently operating computational units, namely artificial ants, that generate a global perspective without
the necessity of direct interaction. This exclusive use of local information is an advantageous and desirable
feature when applications in large-scale environments are concerned in which the computation of global
information is often too costly. This property makes ACO algorithms a natural choice for the application
to the EDP problem.

Ant colony optimization is inspired by the foraging behavior of real ants. While walking from food
sources to the nest and vice versa, ants deposit a chemical substance called pheromone on the ground.
When they decide about a direction to go, they choose probabilistically paths marked by strong pheromone
concentrations. This behavior is the basis for a cooperative interaction, which leads to the emergence of
shortest paths between food sources and their nest. In ACO algorithms, artificial ants incrementally construct
a solution by adding appropriately defined solution components to the current partial solution. Each of
the construction steps is a probabilistic decision based on local information, which is represented by the
pheromone information.

In the following, we outline our ACO approach, which is based on a decomposition of the EDP problem.
Each problem instanceP = (G , T) of theEDPproblem can be naturally decomposed into |T | subproblems
P j = (G , Tj ), with j ∈ {1, . . . , |T |}, by regarding the task of finding a path for a commodity Tj ∈ T as a
problem itself. With respect to this problem decomposition, we use a number of |T | ants each of which is
assigned to exactly one of the subproblems. Therefore, the construction of a solution consists of each ant

1This solution is found by our ACO algorithm, which is presented next, in a small amount of time (less than 30 ms).

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C064 March 20, 2007 18:33

Solving the Maximum Disjoint Paths Problem 64-5

building a path P j between the two endpoints of her commodity Tj . Obviously, the subproblems are not
independent as the set of |T | paths constructed by the ants should be mutually edge-disjoint.

64.3.1 Ant Solutions and Pheromone Model

Our algorithm will deal with solutions that contain a path for each commodity. A solution S constructed
by the |T | ants is a set of nonnecessarily edge-disjoint paths. We henceforth refer to them as ant solutions,
in contrast to the EDP solutions, which only consist of disjoint paths. From each ant solution, a valid EDP

solution can be produced by iteratively removing the path, which has most edges in common with the
remaining paths, until all remaining paths are mutually edge-disjoint.

The objective function f (·) of the problem (see Eq. [64.1]) is characterized by having many plateaus
when it is applied to ant solutions. This is because many ant solutions have the same number of disjoint
paths. Thus, a consequence of decomposing the EDP problem is the need to define a more fine-grained
objective function f a (·) for ant solutions. Therefore, referring to f (S) as a first criterion, we introduce a
second criterion C(S), which is defined as follows:

C(S) =
∑

e∈E

(

max

{

0,

( ∑

P j ∈S

δ j (S, e)

)

− 1

})

where δ j (S, e) =
{

1, e ∈ P j ∈ S
0, otherwise

This second criterion quantifies the degree of nondisjointness of an ant solution. If all the paths in a
solution S are edge-disjoint, C(S) is zero. In general, C (S) increases when increasing the number of edges
in S which are common to more than one path. Therefore, based on the idea that the fewer edges are
shared in a solution, the closer the solution is to disjointness, a function f a (·) that differentiates between ant
solutions can be defined as follows. For two ant solutions S and S ′, it holds that

f a (S) > f a (S ′) ⇔ ( f (S) > f (S ′))
︸ ︷︷ ︸

1st criterion

or (( f (S) = f (S ′) and (C(S) < C(S ′))
︸ ︷︷ ︸

2nd criterion

(64.2)

The problem decomposition as described above requires that we use a pheromone model τ j for each sub-
problem P j . Each pheromone model τ j consists of a pheromone value, that is, a positive numerical value,

τ
j

e for each edge e ∈ E . The set of |T | pheromone models is henceforth denoted by τ = {τ 1, . . . , τ |T |}.
The pheromone values are bounded between 0 and 1, since our ACO algorithm is implemented in the
hypercube framework [33]. Furthermore, to prevent the algorithm from converging to a solution, we
borrow an idea from the so-called MAX -MIN Ant Systems [34] and forbid the extreme pheromone
values of 0 or 1 by introducing new pheromone value limits τmin = 0.001 and τmax = 0.999.

64.3.2 Algorithmic Framework

In the following, we give a high-level description of an ACO algorithm for the EDP problem (see
Algorithm 64.3). The main procedures used by the algorithm are explained in detail in the following
section. First, all the variables are initialized. In particular, the pheromone values are set to their initial
value τmin by the procedure InitializePheromoneValues(τ ), which initializes all the pheromone values
τ

j
e ∈ τ j ∈ τ to the value τmin. Second, Ns ols ant solutions are constructed per iteration. To construct a

solution, each ant applies the function ConstructSolution(G ,π) (see Section 64.3.2.1 for details), where
π is a permutation of T . At each iteration, the first of those Ns ols ant solutions is constructed with the
identity permutation, that is, by sending the ants in the order in which the commodities are given in T .
However, for each further ant solution construction in the same iteration, π is randomly generated by the
function GenerateRandomPermutation(|T |) to avoid bias.
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Algorithm 64.3 ACO algorithm for the EDP problem

INPUT: a problem instance (G , T)
Sgbest ← ∅, Spbest ← ∅, ccrit1 ← 0, ccrit2 ← 0, all update ← FALSE

InitializePheromoneValues(τ )

while termination conditions not met do
π ← (1, 2, . . . , |T | − 1, |T |)
for i = 1 to Ns ols do

Si ← ConstructSolution(G ,π) {See Algorithm 64.4}
if i < Ns ols then π ← GenerateRandomPermutation(|T |) end if

end for
Choose Sibest ∈ {Si | i = 1, . . . , Ns ols } s.t. f a (Sibest) ≥ f a (S), ∀S ∈ {Si | i = 1, . . . , Ns ols }
if f (Sibest) > f (Sgbest) then Sgbest ← Sibest end if
if f a (Sibest) > f a (Spbest) then

ccrit1 ← ccrit1 + 1, ccrit2 ← 0, Spsave ← Spbest , Spbest ← Sibest

if f (Sibest) > f (Spsave) then
Supdate ← ExtractDisjointPaths(Spbest) {Update for first phase}
ccrit1 ← 0, all update ← FALSE

end if
if all update then Supdate ← Spbest end if {Update for second phase}

else ccrit2 ← ccrit2 + 1
end if
if all update and ccrit2 > c2max then

Spbest ← DestroyPartially(Spbest) {Escape mechanism}
Supdate ← ExtractDisjointPaths(Spbest)

ccrit2 ← 0, ccrit1 ← 0
else if not all update then all update ← (ccrit1 > c1max)
end if
UpdatePheromoneValues(τ ,Supdate)

end while
OUTPUT: the EDP solution generated from the best solution Sgbest

Three different ant solutions are kept in the algorithm: Sibest is the iteration-best solution, that is, the
best ant solution generated in the current iteration, and Sgbest is the best-so-far solution, that is, the best
ant solution found since the start of the algorithm. In addition to them, an ant solution Spbest is also kept,
which is the currently best solution, that is, the best ant solution generated since the last escape action (see
Section 64.3.2.3). The values of these three variables are always kept updated. Additionally there is the
Supdate solution, which is generated from Spbest and which is used for updating the pheromone values.

The search process has two differentiated phases (see Section 64.3.2.2) and two variables, ccrit1 and ccrit2,
are introduced to control them. The variable ccrit1 determines the first phase by counting the number of
successive iterations without improvement of the first criterion of the objective function. The variable ccrit2

counts the number of successive iterations without improvement of the second criterion, thus defining
the second phase. Limits c1max (for ccrit1) and c2max (for ccrit2) are used to determine when the algorithm
should change phases.2 The direct repercussion of the phase distinction is the selection of edges whose
pheromone is updated, that is, the construction of Supdate from Spbest . When the algorithm is in the first

2After parameter tuning we chose a setting of c1max = c2max = 20.
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phase only the disjoint paths of solution Spbest are used for updating, but when the algorithm is in the
second phase all paths of Spbest are used for updating. Additionally, the escape mechanism might be applied
by destroying Spbest partially (see Section 64.3.2.3).

Finally, the pheromone values are updated in the method UpdatePheromoneValues(τ ,Supdate) depend-
ing on the edges of the paths included in Supdate. The algorithm is iterated until some opportunely defined
termination conditions are satisfied, and it returns the EDP solution generated from the ant solution Sgbest .

In the Sections 64.3.2.1–64.3.2.3, we explain in more detail the features concerning the solution con-
struction, the search procedure and its different search phases, and the escape mechanism of our algorithm,
respectively.

64.3.2.1 Solution Construction

The solution construction is performed in method ConstructSolution(G ,π), whose high-level descrip-
tion is shown in Algorithm 64.4. That construction is done as follows: at each construction step, each
ant moves from the node where it is currently located to a neighboring node by traversing one of the
available edges that is not already in its path Pπ( j ) under construction, and is not labeled forbidden
by a backtracking move. Note that with this strategy the ant will find a path between its source and its
destination, if there exists one. Otherwise, the ant returns an empty path. This way of constructing the
solution emulates that the ants build concurrently their paths, in contrast to a sequential way in which, for
each commodity, a path between its endpoints would be built completely before the next commodity is
considered.

Algorithm 64.4 Method ConstructSolution(G ,π) of Algorithm 64.3.

INPUT: a graph G from a problem instance (G , T), and a permutation π of T .
S ← ∅, nb-paths-finished ← 0, j ← 0
for i = 1 to |T | do Pπ(i) ← ∅ end for
repeat

if not isFinishedPath(Pπ( j+1)) then
Pπ( j+1) ← ExtendOneStepPath(Pπ( j+1),τ

π( j+1))

if isFinishedPath(Pπ( j+1)) then
nb-paths-finished ← nb-paths-finished +1
S ← S ∪ {Pπ( j+1)}

end if
end if
j ← ( j + 1) mod |T |

until (nb-paths-finished = |T|)
EvaporatePheromone(τ ,S)

OUTPUT: an ant solution S

The procedures of Algorithm 64.4 are detailed in the following:

• is Finished Path (Pi ).3 This method returns a Boolean value indicating whether the path Pi is
finished, that is, whether a path could be established from si to ti .

• ExtendOneStepPath(Pi ,τ
i ).3 The path Pi passed as parameter is the path under construction by

the i th ant. For constructing a path between the endpoints of the commodity (si , ti ), an ant first
chooses randomly to start either from the source si or from the target ti ; this is done when the path

3For readability, we substitute π( j + 1) in the description of the functions by i .
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Pi is empty. Afterward this method either tries to extend the path Pi by adding exactly one edge or,
it performs a backtracking step. Backtracking is done in case the ant finds itself in a node in which
all the incident edges have been used, or if all the incident edges are labeled forbidden.

Once one of the two endpoints of the commodities is chosen as starting point, the remaining
endpoint becomes the so-called goal node and will be denoted by vg . Additionally, let us denote by
vc the current node, and by I∗

vc
the set of allowed edges in G , that is, those incident to vc that are

not used yet in the path and not labeled as forbidden. The length of the shortest path between two
vertices u and v in G is henceforth denoted by σ (u, v) and it is measured in terms of the number of
edges.

From the set I∗
vc

of allowed edges, only the two best edges will be actually considered as candi-
dates. This is called a candidate list strategy in ACO. The best two edges are those that maximize the
value of the following expression:

τ j
e p(De )p(Ue )

where p(De ) is a value that determines the influence of the distance from vc via u to the goal vertex

vg , and p(Ue ) a value that determines the influence of the overall usage of edge e , which is the
information whether e is already used in the path of another ant for the same solution. The terms
p(De ) and p(Ue ) are defined as follows:

p(De={vc ,u}) ← (σ (u, vg ) + w(e))−1
∑

e ′={vc ,u′}∈I�
vc

(σ (u′, vg ) + w(e ′))−1

p(Ue ) ← U (e)−1
∑

e′∈I∗
vc

U (e ′)−1 in which U (e) =
{

2, e already used in Si

1, otherwise

Thus, using this candidate list strategy, we can reduce the set of allowed edges in I∗
vc

and just

consider a new two-cardinality set I
∗
vc

= {e∗
1 , e∗

2}, where e∗
1 is the best edge in I∗

vc
, that is,

e∗
1 = {vc , u} ← argmax {τ j

e p(De )p(Ue ) | e ∈ I∗
vc

}

and e∗
2 the second best edge in I∗

vc
.

At each construction step, the choice of where to move to has a certain probability p to be done
deterministically, and a certain probability 1 − p to be chosen probabilistically among the elements
in I

∗
vc

. This is a feature that we adopt from a particularly effective ACO variant called Ant Colony
System (ACS [35]). In 75% of the cases, the next edge to join the path Pπ(k) under construction will
be e∗

1 , while in the remaining 25% of the cases, the next edge is chosen from I
∗
vc

according to the
following transition probabilities:

p(e | I
∗
vc

) = τ
j

e p(De )p(Ue )∑

e′∈I
∗
vc

τ
j

e′ p(De ′)p(Ue ′)
, ∀e ∈ I

∗
vc

(64.3)

In general, if the probability of doing a deterministic construction step is too high, there is the

danger that the algorithm gets stuck in low-quality regions of the search space. However, doing
deterministic construction steps bears the potential of leading the algorithm quite quickly to good
areas of the search space. Concerning the composition of the transition probabilities, the use of
the pheromone information τ

j
e ensures the flexibility of the algorithm, whereas the use of p(De )

ensures a bias toward short paths, and p(Ue ) ensures a bias toward disjointness of the |T | paths
constituting a solution.
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• EvaporatePheromone(τ , S). After every ant has constructed its path and the solution S is com-
pleted, we apply another feature of ACS, namely the evaporation of some amount of pheromone
from the edges that were used by the ants. Given a solution S, the evaporation is done as
follows:

τ j
e ←

{
(1 − ε) · τ

j
e , e ∈ Pπ( j ) ∈ S, j = 1, . . . , |T |

τ
j

e , otherwise
(64.4)

The reason for this pheromone evaporation is the desire to diversify the search in each iteration.4

64.3.2.2 Search with Distinguished Phases

In general, the pheromone update procedure is an important component of every ACO algorithm. In fact,
it determines to a large degree the failure or the success of the algorithm. Most of the existing generic
variants of ACO only differ in the pheromone update. In the case of the EDP application, we propose a
pheromone updating scheme that is based on the idea that, to maintain a higher degree of freedom for
finding also edge-disjoint paths for the commodities that initially prove to be problematic, it might be better
not to use the nondisjoint paths for updating the pheromone at the beginning of the search. Therefore,
we propose a two-phases search process based on the two criteria of function f a (·) (see Eq. [64.2]): A
first phase of the algorithm in which the algorithm will try to improve the first criterion of f a (·) (while
disregarding the second one) and only disjoint paths are used for updating the pheromone values; the first
phase is followed by a second phase which is initiated when no improvements of the first criterion can be
found over a certain time bounded by c1max. In this second phase, the algorithm will try to improve the
second criterion of f a (·) and all the paths are used for updating the pheromone values. Once the second
phase leads to an improvement also in terms of the first criterion, the algorithm changes back to the first
phase.

In the first phase, the solution Supdate that is used for updating the pheromone values is obtained by
applying function ExtractDisjointPaths(Spbest), which implements the process of returning a valid EDP

solution from the ant solution Spbest as explained in Section 64.3.1. In the second phase, the solution
Supdate that is used for updating the pheromone values is a copy of the current solution Spbest , including
possibly nondisjoint paths. If for a number of c2max iterations the second criterion could not be improved
neither, then some of the paths from the EDP solution that can be produced from Spbest are deleted from
Spbest . This action can be seen as a mechanism to escape from the current area of the search space and it is
explained in Section 64.3.2.3.

After the solution Supdate is constructed, the pheromone of the edges conforming its paths are updated
as follows:

τ j
e ← max

{
τ j

e + ρ
(

1 − τ j
e

)
, τmax

} ∀ e ∈ P j ∈ Supdate (64.5)

where ρ ∈ (0, 1) is a constant value which is called learning rate in algorithms that is implemented in
the hypercube framework.5 This pheromone update is performed in function UpdatePheromoneValues

(τ ,Supdate).

64.3.2.3 Escape Mechanism

One of the main problems of metaheuristic search procedures is to detect situations in which the search
process gets stuck, that is, when some local minimum is reached. Most of the successful applications

4After parameter tuning we chose a setting of ε = 0.10.
5For all our experiments we have set ρ to 0.1.
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incorporate algorithm features to escape from these situation once they are detected. In case of our
algorithm for the EDP problem, we propose as escape mechanism the partial destruction of the disjoint
part of the solution, which is used for updating the pheromone values. This escape mechanism is imple-
mented through the function DestroyPartially(Spbest), whose pseudocode is outlined in Algorithm 64.5.
This mechanism is triggered once the algorithm is unable to improve the currently best solution for a
number of subsequent applications of first and second phases, since that situation indicates that the search
process is stuck in a localized area. Similar ideas are applied in backtracking procedures, or in the pertur-
bation mechanism of local search-based methods, such as iterated local search or variable neighborhood
search [36].

Algorithm 64.5 Method DestroyPartially(Spbest) of Algorithm 64.3. ExtractDisjointPaths(Spbest) imple-
ments the process of returning a valid EDP solution from an ant solution as explained in Section 64.3.1. The
method Cost(Stemp) returns the number of disjoint paths in Stemp. The method ChooseLongestPath(Stemp)

return the longest disjoint path of Stemp. The method ResetPheromoneModel(τ i ) resets to τmin all the
pheromone values of the pheromone model τ i , i.e., τ i

e ← τmin, ∀e ∈ E .

INPUT: an ant solution Spbest

Spbest ← ExtractDisjointPaths(Spbest)

nb paths ←
⌈

1

4
· Cost(Spbest)

⌉

while (nb paths > 0) do
Pi ← ChooseLongestPath(Spbest)

Spbest ← Spbest \ {Pi }
nbpaths ← nbpaths −1
ResetPheromoneModel(τ i )

end while
OUTPUT: the solution Spbest partially destroyed

One-fourth of the disjoint paths composing solution Spbest are destroyed. The disjoint paths to be
destroyed are chosen according to their lengths, giving priority to the longest paths, that is, those paths with
the highest number of edges. The idea behind this choice is that, the longer a path is, the more restrictions
it introduces to assure disjointness of the paths that still conflict with others. Thus, by removing the longest
disjoint paths, the number of total edges available is maximized.6

64.4 Experiments

We present the experimental evaluation of our ACO approach in comparison to the results obtained by the
greedy approaches that we outlined in Section 64.2. As commented before, the ACO algorithm presented
here resulted from a detailed algorithm design process that started with a very simple ACO approach [18],
which was improved and enriched until the algorithm explained in the present work was obtained. In the
same process, the values for those parameters involved in the algorithm were fixed (after a careful tuning)

6Other options were tried, both considering different values for the percentage of solution’s paths to be destroyed,
as well as a random selection of the paths to be destroyed. However, these options were not providing us with better
results (see Ref. [19]).
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TABLE 64.1 Parameters Used for the Generation of Network Topologies with BRITE [37]

Graph |V | Model Node Placement m

bl-wr2-wht2.10-50 (10,50) (Waxman, Waxman) (random, heavy-tailed) (2, 2)
AS-BA.R-Wax.v100e190 (20, 5) (Barabási–Albert [39], Waxman) (random, random) (2, 2)
AS-BA.R-Wax.v100e217 (10,10) (Barabási–Albert [39], Waxman) (random, random) (2, 2)

Notes: In each value tuple (Xas , Xr ou), Xas is the value of the parameter at the AS level, and Xr ou is the value of the parameter
at the router level. Parameter m specifies the number of links for each new node that is added while constructing the topology.
For all the graphs, the growth type (i.e., how nodes join the topology) is incremental. In graph bl-wr2-wht2.10-50, the
edge connections between the AS level and the router level are introduced using the Waxman probability model [38] with
parameters α = 0.15 and β = 0.20; in graphs AS-BA.R-Wax.v100e190 and AS-BA.R-Wax.v100e217 both levels are
interconnected by choosing edges at random.

to the values provided here. The experiments to be presented in the following were done with those settings
(see Ref. [19] for more detail)

All the algorithms were implemented in C++ and compiled using GCC 2.95.2 with the -o3 op-
tion. The experiments have been run on a PC with Intel(R) Pentium(R) 4 processor at 3.06 GHz
and 900 Mb of memory running a Linux operating system. Moreover, our algorithms were all imple-
mented on the same data structures. Information about the shortest paths in the respective graphs is
provided to all of them as input. Notice however that, while the greedy approaches need to partially
recompute this information after the routing of each commodity, this is not necessary for our ACO

algorithm.

64.4.1 Problem Instances

In the following, we present the set of benchmark instances that we used to experimentally evaluate our ACO

approach. This set of instances includes graphs representing different communication network topologies.
Recall that an instance of the EDP problem consists of a graph and a set of commodities.

Concerning the graphs, we adopt graph3 and graph4 from Ref. [18], whose structure resembles parts of
the communication network of the Deutsche Telekom AG, Germany. Additionally, we include graphs that
we created with the network topology generator BRITE [37] according to the parameter values specified
in Table 64.1. These three generated graphs are named bl-wr2-wht2.10-50, AS-BA.R-Wax.v100e190, and
AS-BA.R-Wax.v100e217. They consist of a two-level top-down hierarchical topology (autonomous system
level plus router level), which are typical for Internet topologies. Table 64.2 summarizes the main features
and quantitative measures of all the considered graphs.

For each of the five graphs we have randomly generated different sets of commodities. Hereby, we
made the size of the commodity sets dependent on the number of vertices of the graph. For each graph
G = (V, E ) we generated 20 different instances with 0.10|V |, 0.25|V |, and 0.40|V | commodities. This
makes a sum of 60 instances for each graph and 300 instances altogether.

TABLE 64.2 Main Quantitative Measures of Our Benchmark Graphs

Degree Clustering
Graph |V | |E | Minimum Average Maximum Diameter Coefficient

graph3 [18] 164 370 1 4.51 13 16 0.226161
graph4 [18] 434 981 1 4.52 20 22 0.155547
bl-wr2-wht2.10-50 [18] 500 1020 2 4.08 13 23 0.102385
AS-BA.R-Wax.v100e190 100 190 2 3.80 7 11 0.378524
AS-BA.R-Wax.v100e217 100 217 2 4.34 8 13 0.411119
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64.4.2 Experiments and Results

We applied the algorithms presented in this chapter (namely SGA, MSGA, and ACO) to all 300 instances
exactly once. First, we applied MSGA with 50 restarts (i.e., Nper m = 50) to each of the 300 instances. The
computation time of MSGA was used as a maximum CPU time limit for the ACO algorithm. We present
the results as averages over the 20 instances of each combination of graph and commodity number in
Table 64.3. The layout of this table is explained in its caption.

Concerning the comparison between SGA and MSGA, we observe a clear advantage of MSGA. This means
that the order in which the commodities are treated is crucial in achieving a good performance. However,
as there is no obvious way of determining a good commodity order beforehand, the only way of exploiting
this knowledge is by randomly permuting the commodity list and running MSGA. The price we have to
pay for exploiting this knowledge is the increased computation time.

When comparing SGA and MSGA with the ACO, we can observe that in 11 out of 15 cases the ACO

approach beats the greedy approaches. The ACO approach is on average 4.69% better than MSGA, and
in one case (graph4, 173 commodities) it is even 15.07% better. Additionally, the ACO approach needs
in general less computation time than the greedy approaches. This advantage in computation time in-
creases with increasing number of commodities. Exceptions are some of the results for small numbers of
commodities, namely for 10% of the number of nodes. For this combination MSGA has often slight ad-
vantages over the ACO approach. Therefore, we recommend to use a greedy approach when easy problem
instances are concerned, but to use the ACO approach for instances with a higher number of commodi-
ties, since then a clear advantage of the latter is observed in comparison to MSGA both in quality and
time.

An additional analysis concerns the run-time behavior of the algorithms. Figure 64.2 shows that the ACO

approach finds relatively good solutions already after a very short computation time. In general, already
the first solutions produced by the ACO are quite good, whereas the greedy approaches reach a comparable
solution quality only much later in time. This property of our ACO approach is a desirable feature in the
context of communication networks since the quality of the solutions that are found after a short execution
time might be often sufficient in practice. Also of interest is Figure 64.3 where a representative example of
the usefulness of ACO’s escape mechanism is shown. Also the evolution of the second criterion as a measure
for disjointness can be clearly observed.
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FIGURE 64.2 A representative example of the run-time behavior of the algorithms presented in this work. All the
curves are smoothed with gnuplots’ sbezier function. (a) Example of the evolution in time of the quality of the solution
Sgbest . The behavior shown here corresponds to the application to one of the 20 instances composed by graph4 and a
list of 173 commodities. (b) Zoom on the first 25 of part (a) of this figure. The time needed to obtain good solutions
is clearly smaller for the ACO approach. Note that in the first seconds the performance of the SGA and the MSGA are
identical due to dealing with the same permutation of the commodities.
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TABLE 64.3 Comparison of the Results Obtained by the SGA, the MSGA, and the ACO Algorithm.

SGA MSGA ACO
Number of

Graph Commodities q σ t q σ t q σ t average CPU time

graph3 16 15.30 0.781 0.566 15.70 0.557 0.960 15.70 0.557 0.457 30.582
graph3 41 29.00 2.864 1.298 32.00 2.302 25.235 31.80 1.990 27.953 79.619
graph3 65 33.70 2.777 2.156 37.60 2.577 49.267 40.30 2.571 57.899 126.945
graph4 43 40.50 1.628 12.121 42.05 1.024 95.744 41.45 1.284 168.871 237.520
graph4 108 58.10 4.194 31.138 64.10 3.064 697.456 68.15 2.725 730.436 1656.475
graph4 173 66.75 4.846 49.281 73.95 3.542 974.350 85.10 3.534 1111.982 2603.872
bl-wr2-wht2.10-50 50 19.70 2.238 17.926 22.55 2.397 318.518 24.10 1.947 155.899 971.488
bl-wr2-wht2.10-50 125 34.15 4.464 46.387 38.10 4.369 1004.462 42.30 4.540 344.092 2425.090
bl-wr2-wht2.10-50 200 46.70 4.961 62.158 50.85 4.892 1151.197 56.30 5.245 847.415 3124.550
AS-BA.R-Wax.v100e190 10 8.75 0.942 0.114 9.10 0.943 0.579 8.95 0.973 0.611 6.665
AS-BA.R-Wax.v100e190 25 12.30 1.900 0.280 14.25 1.374 4.809 14.85 1.195 3.718 16.740
AS-BA.R-Wax.v100e190 40 15.45 2.500 0.443 17.95 1.624 7.796 19.45 1.936 4.121 26.850
AS-BA.R-Wax.v100e217 10 7.00 1.225 0.103 8.05 0.921 0.427 7.88 0.927 0.164 6.892
AS-BA.R-Wax.v100e217 25 11.40 1.882 0.300 13.60 1.463 4.330 13.83 1.579 1.816 17.622
AS-BA.R-Wax.v100e217 40 14.60 1.685 0.497 17.00 1.949 9.833 17.80 1.646 2.212 28.318

Notes: The first column gives the name of the graph and the second column the number of the commodities, which are obtained as the 10, 25, and 40% of the number of nodes of the graphs.
For each algorithm there are three columns reporting on the average results obtained for the 20 instances of each combination of graph topology and number of commodities. The first of
these three columns (headed by q) shows the average of the values of the best solutions found for the 20 instances. Such an average is in boldface when the result is the best in the comparison.
In case of ties the computation time decides. The second column provides the standard deviation of the 20 values used to compute q , and the third column (headed by t reports on the average
time (in seconds) needed to find the best solution values for the 20 instances. Finally, the last column shows the average computation time of MSGA.
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FIGURE 64.3 A representative example of the behavior of the ACO algorithm. The effect of the mechanism
for the partial destruction of the current best solution can be clearly observed. It is also interesting to observe
the evolution of the second criterion as a measure for disjointness. (a) Example of the evolution of the qual-
ity of the current best solution Spbest and the best-so-far solution Sgbest during the search (left), and the num-
ber of shared edges (2nd criterion) of the solution Spbest (right). The behavior shown here corresponds to the
application to one of the 20 instances composed by graph4 and a list of 173 commodities. All the curves are
smoothed with gnuplots’ sbezier function. (b) Zoom on the 700 first (left) and the 700 last (right) iterations of
part (a) of this figure. On the left, the best solution found is quickly improved. At about iteration 250, the al-
gorithm destroys part of the Spbest solution, which produces an instantaneous worsening in the quality (left); an-
other solution destruction takes places around iteration 550, which helps in achieving an improvement soon af-
terward (left). Analogous effects can be observed around iteration 950 and 1250 (right). In part (a) (right) of
this figure, we can observe that there exists an (inverted) relation between the number of edges shared and
the quality of the solutions obtained. Thus validating our choice of the 2nd criterion as a part of the objective
function.
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[16] Hromkovič, J., Klasing, R., Stöhr, E., and Wagener, H., Gossiping in vertex-disjoing paths mode

in d-dimensional grids and planar graphs, Eur. Symp. on Algorithms, Lecture Notes in Computer
Science, Vol. 726, Springer, Berlin, 1993, p. 200.

[17] Sidhu, D., Nair, R., and Abdallah, S., Finding disjoint paths in networks, ACM SIGCOMM Comp.
Comm. Rev., 21(4), 43, 1991.

[18] Blesa, M. and Blum, C., Ant colony optimization for the maximum edge-disjoint paths problem,
Proc. Eur. Workshop on Evolutionary Computation in Communications, Networks, and Connected Sys.,
Lecture Notes in Computer Science, Vol. 3005, Springer, Berlin, 2004, p. 160.

[19] Blesa, M. and Blum, C., Finding edge-disjoint paths with artificial ant colonies, TR LSI-05-13-R,
ALBCOM research group, Dept. Llenguatges i Sistemes Informàtics, Universitat Politècnica de
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65.1 Introduction

A mobile ad hoc network (MANET) consists of a number of devices equipped with wireless interfaces. Ad
hoc nodes are free to move, and communicate with each other using their wireless interfaces. Communica-
tions among nodes which are not within the same radio range are carried on via multihop routing. That is,
some of the intermediate nodes between the source and the destination act as relays to deliver the messages.
Hence, these networks can be deployed without any infrastructure, making them specially interesting for
dynamic scenarios like battlefield, rescue operations, and even as flexible extensions of mobile networks
for operators.

Wireless sensor networks (WSNs) follow a similar communication paradigm based on multihop paths.
Although wireless sensor nodes are not usually mobile, their limited resources in terms of battery life and
computational power pose additional challenges to the routing task. For instance, wireless sensor nodes
operate following a duty cycle, allowing them to save energy while they are sleeping. The different timings for
sleep and awake periods across sensors make the topology change. In addition, these networks are usually
densely populated compared to ad hoc networks, requiring very efficient and scalable mechanisms to
provide the routing functions. Examples of such techniques gaining momentum nowadays are geographic
routing and localized algorithms in general, in which nodes take individual decisions solely based on the
local information about itself and its neighbors. These networks have a lot of potential applications, which
is one of the reasons why they are receiving so much attention within the research community.

The most commonly used model for these networks is called “Unit Disk Graph.” The network is modeled
as an undirected graph G = (V, E ), where V is the set of vertices and E the set of edges. The model assumes
that the network is two-dimensional (every node v ∈ V is embedded in the plane) and wireless nodes are
represented by vertices of the graph. Each node v ∈ V has a transmission range r . Let dist(v1, v2) be the
distance between two vertices v1, v2 ∈ V . An edge between two nodes v1, v2 ∈ V exists iff dist(v1, v2) ≤ r
(i.e., v1 and v2 are able to communicate directly).

Unicast routing both for MANETs and WSNs can be defined as the process of finding a path in the
network to deliver a message from the originator to the destination. As we mentioned before, in these

65-1
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networks such paths are formed by a set of nodes acting as relays. The multicast routing task is similar to
the unicast routing except that there are a number of destinations instead of a single node. These destinat-
ions are often referred as “receivers” in the literature. In this particular case, the set of relay nodes usually
forms a tree, commonly known as “multicast tree.” Below, we define more precisely the problem of unicast
and multicast routing in these networks.

Definition 65.1

Given a graph G = (V, E ), a source node s ∈ V and a destination node D ∈ V, the unicast routing problem
can be defined as finding a set of relay nodes F ⊂ V s.t. {s } ∪ F ∪ {D} is connected.

Similarly, the multicast routing problem can be defined as follows:

Definition 65.2

Given a graph G = (V, E ), a source node s ∈ V and a set of destinations R ⊆ V, the multicast routing
problem, can be defined as finding a set of relay nodes F ⊂ V s.t. {s } ∪ F ∪ R is connected.

Of course, routing algorithms are designed to avoid cycles, and usually select paths according to some
metric or combination of metrics such as hop count, delays, etc. In fact, most of the existing routing
protocols use the hop count as the path selection metric.

The problem of unicast routing is well known and there are many distributed algorithms such as Dijkstra,
Bellman-Ford, and so on. For the problem of multicast routing, there are also algorithms to build shortest
path trees (SPTs), shared trees, etc. In fact, the problem of the efficient distribution of traffic from a set of
senders to a group of receivers in a datagram network was already studied by Deering [1] in the late 1980s.
Several multicast routing protocols such as DVMRP [2], MOSPF [3], CBT [4], and PIM [5] have been
proposed for IP multicast routing in fixed networks. These protocols have not been usually considered in
MANETs because they do not properly support mobility. In the case of mesh networks, one may believe
that they can be a proper solution. However, they were not designed to operate on wireless links, and they
lead to suboptimal routing solutions which are not able to take advantage of the broadcast nature of the
wireless medium (i.e., sending a single message to forward a multicast message to all the next hops rather
than replicating the message for each neighbor). Moreover, their routing metrics do not aim at minimizing
the cost of the multicast tree, which limits the overall capacity of the mesh network.

Within the next sections, we describe existing multicast routing protocols for ad hoc and sensor net-
works, and we analyze the issue of computing minimum-cost multicast trees. In fact, we will show the
NP-completeness of the problem.

Given that the use of approximation algorithms is fully justified in the multicast routing case, we
focus the rest of the chapter on the multicast routing problem, and its approximation algorithms for
MANETs and WSNs. The remainder of the chapter is organized as follows: Section 65.2 describes existing
multicast routing protocols for MANETs and their inability to approximate minimum-cost multicast
trees. Section 65.3 focus on the issue of computing minimum bandwidth multicast trees in wireless ad
hoc networks, shows the NP-completeness of the problem, and offers approximation algorithms which
offer better performance than Steiner trees. We focus on the problem of geographic multicast routing in
Section 65.4. Finally, we provide some discussion and conclusions in Section 65.5.

65.2 Multicast Routing in Ad Hoc Networks

A plethora of protocols have been proposed for multicast routing in MANETs. We focus our discussion
on the most representative protocols. They can be classified into tree- or mesh-based depending upon
the underlying forwarding structure that they use. Tree-based schemes [6–10] construct a multicast
tree from each of the sources to all the receivers using generally an SPT or a shared tree. Mesh-based
approaches [11,12] compute several paths among senders and destinations. Thus, when the mobility rate
increases they are able to tolerate link breaks better than tree-based protocols at the expense of a usually
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higher overhead. Hybrid approaches [13,14] try to combine the robustness of mesh-based ad hoc routing
and the low overhead of tree-based protocols. Finally, there are stateless multicast protocols [15] in which
there is no need to maintain a forwarding state on the nodes (for instance, if the nodes to traverse are
included in the data packets themselves). We will not discuss further about the latter category given the
very limited applicability of those variants.

Regarding tree-based protocols, AMRIS [6] builds a shared multicast tree among a set of sources and
receivers. There is a root node, which is the one with the smallest ID (Sid). These ID numbers are assigned
dynamically within a multicast session, and based on these IDs the multicast tree is built. The numbering
process starts at the Sid, and other nodes always select an ID being higher than the one of their upstream
nodes in the tree. MAODV [7] is an extension of the well-known AODV protocol. The route creation
is similar to the RREQ/RREP process in AODV, except that the source unicasts an MACT (Multicast
Activation) message through the selected paths, which usually form a SPT based on the hop count.

Regarding mesh-based multicast routing protocols for ad hoc networks, ODMRP [11] works reactively
to build a multicast mesh connecting senders and receivers. All the intermediate nodes taking part in the
multicast mesh are said to belong to the forwarding group (FG). When a multicast node has data to send
and it does not have a route for that multicast group, it starts a periodic broadcasting of JOIN-QUERY (JQ)
packets. These messages are propagated through the entire ad hoc network avoiding duplicates, so that
every ad hoc node can learn which of his neighbors is in its shortest path to that source. Upon reception
of a nonduplicate JQ message, a receiver broadcasts a JOIN-REPLY (JR) message in which it includes the
ID of the neighbor selected as the next hop to reach each of the multicast sources. When a node receives
a JR message it checks out if its own ID is listed as the selected next hop for any of the sources. If that is
the case, then it realizes that it is in the SPT to any of the sources, and it adds itself to the FG by activating
its FG-FLAG. In addition, the selected node sends out a JR which he fills with the IDs of its selected
neighbors to reach those sources for which it was selected in the received JR message. In this way, the FG is
populated until the JR messages reach the source. This whole process is repeated periodically to update the
FG over time. Once the mesh is built, data forwarding is very simple. Only those nodes whose FG-FLAG is
active are allowed to forward data packets generated by the sources. In addition, in case of receiving the same
data packet several times, a node within the FG shall only forward it the first time it is received. CAMP [12]
was designed as an extension of the “Core-Based Trees” (CBT; Ref. [4]) protocol. However, unlike CBT in
which there was no link redundancy, CAMP builds a multicast mesh to offer a much better performance
and resilience in case of link breaks. Whereas in CBT core nodes were used for data forwarding, they are
used in CAMP to reduce the overhead for a node to find out a node belonging to the multicast mesh. Data
packets are not required to go through core nodes. Thus, given that there can be several core nodes for a
multicast group, the tolerance of mobility is increased. CAMP uses a receiver-initiated approach to build
the multicast mesh. Using the cores as well-known mesh nodes, CAMP avoids relying on periodic flooding
of the network to find multicast routes. However, this comes at the cost of depending upon the unicast
routing protocol as well as the need of a mapping service from multicast groups to core nodes. CAMP
ensures that the mesh contains all the reverse shortest paths between the source and the recipients. It uses
a so-called heartbeat mechanism by which each node periodically monitors its packet cache. If the node
finds out that some data packets which it is receiving are not coming from its shortest path neighbor, then it
sends a HEARTBEAT message to its successor in the reverse shortest path to the source. The HEARTBEAT
triggers a push-join (PJ) message which (if the successor is not a mesh member) forces the successor and
all the nodes in the path to join the mesh.

All these solutions are not aimed at minimizing the cost of multicast trees due to the difficulty of
computing such trees. In fact, when the goal is to find multicast trees with minimum edge cost, the
problem becomes NP-complete and requires heuristic solutions. Such minimum-cost multicast tree is well
known as the Steiner tree problem. However, Ruiz and Gomez-Skarmeta [16] showed that ODMRP (and
accordingly other similar protocols) can benefit from the use of Steiner trees rather than SPTs and shared
trees. Karp [17] demonstrated that the Steiner tree problem is NP-complete even when every link has the
same cost using a transformation from the exact cover by 3-sets. There are some heuristic algorithms [18]
to compute minimal Steiner trees. For instance, the MST heuristic [19,20] provides a 2-approximation,
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and Zelikovsky [21] proposed an algorithm which obtains a 11/6-approximation. Recently, Rajagopalan
and Vazirani [22] proposed a 3/2-approximation algorithm. Given the complexity of computing this kind
of trees in a distributed way, most of the existing multicast routing protocols use SPTs or suboptimal
shared trees, which can be easily computed in polynomial time.

Recently Ruiz and Gomez-Skarmeta [23] showed that the Steiner tree is not the best solution for wireless
ad hoc networks, and provided some approximation algorithms which will be analyzed in this chapter.
The problem of minimizing the bandwidth consumption of a multicast tree in an ad hoc network needs
to be reformulated in terms of minimizing the number of data transmissions. By assigning a cost to each
link of the graph computing the tree that minimizes the sum of the cost of its edges, existing formulations
have implicitly assumed that a given node v needs k transmissions to send a multicast data packet to k
of its neighbors. However, in a broadcast medium, the transmission of a multicast data packet from a
given node v to any number of its neighbors can be done with a single data transmission. Thus, in ad hoc
networks the minimum cost tree is the one which connects sources and receivers by issuing a minimum
number of transmissions, rather than having a minimal edge cost. We will discuss further this problem
along next sections.

65.3 Minimum Bandwidth Consumption Multicast Tree

When nodes are mobile, such as in traditional MANETs, it is not really interesting to approximate optimal
multicast trees. The reason is that by the time the tree is computed, it may no longer exist. However, in some
new static ad hoc network scenarios being deployed (i.e., wireless mesh networks) these algorithms may
become of utmost relevance. In wireless mesh networks, devices are powered. So, the main concern, rather
than being the power consumption, is the proper utilization of the bandwidth. Thus, the computation of
bandwidth-optimal multicast trees becomes really important.

Given a multicast source s and a set of receivers R in a network represented by a undirected graph, we
are interested in finding the multicast tree with the minimal cost in terms of the total amount of bandwidth
required to deliver a packet from s to every receiver.

In wired networks, the computation of such minimum bandwidth consumption multicast tree is equiv-
alent to the Steiner tree over a graph G = (V, E ) so that w(ei ) = bs , ∀i = 1..|E |, bs being the rate
at which the source s is transmitting, and w(ei ) the cost of the link number i . Unitary costs (i.e.,
w(ei ) = 1, ∀i = 1..|E |) are usually assumed for simplicity. The bandwidth consumption of such a
Steiner tree T∗ = (V∗, E ∗) is then proportional to |E ∗|. This means that the problem is NP-complete in
wired networks. As we mentioned before, in wireless multihop networks a node can send a message to all
neighbors with a single transmission. Thus, the bandwidth consumption is different from the edge cost,
and the problem requires being reformulated in terms of the number of transmissions rather than the
number of traversed links. To account for the excessive bandwidth consumption due to suboptimal trees,
we will define a new metric called “data overhead.”

65.3.1 Problem Formulation

Before going into details, we need some definitions which are used in the sequel.

Definition 65.3

Given a graph G = (V, E ), a source s ∈ V, and a set of receivers R ⊂ V, we define the set T as the set of
the possible multicast trees in G which connect the source s to every receiver ri ∈ R. We denote by Ft , the
set of relay nodes in the tree t ∈ T, consisting of every nonleaf node, which relays the message sent out by
the multicast source. We define a function Ct : T → Z

+ so that given a tree t ∈ T, Ct (t) is the number of
transmissions required to deliver a message from the source to every receiver induced by that tree.

Lemma 65.1

Given a tree t ∈ T as defined above, Ct (t) = 1 + |Ft |.
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Proof
By definition relay nodes forward the message sent out by s only once. In addition, leaf nodes do not
forward the message. Thus, the total number of transmissions is one from the source and one from each
relay node, making a total of 1 + |Ft |.

So, as we can see from Lemma 65.1, to minimize Ct (t) we must somehow reduce the number of
forwarding nodes |Ft |. Note that some receivers may serve also as relay nodes.

Definition 65.4

Under the conditions of definition 65.3, let t∗ ∈ T be the multicast tree such that Ct (t∗) ≤ Ct (t) for any
possible t ∈ T. We define the data overhead of a tree t ∈ T, as ωd (t) = Ct (t) − Ct (t∗). Obviously, with this
definition ωd (t∗) = 0.

On the basis of the previous definitions, the problem can be formulated as follows. Given a graph
G = (V, E ), a source node s ∈ V , a set of receivers R ⊂ V , and given V ′ ⊆ V defined as V ′ = R ∪ {s },
find a tree T∗ = (V∗, E ∗) ⊂ G such that the following conditions are satisfied:

(1) V∗ ⊇ V ′
(2) Ct (T∗) is minimized.

From the condition of T∗ being a tree it is obvious that it is connected, which combined with condition
(1) establishes that T∗ is a multicast tree. Condition (2) is equivalent to ωd (T∗) = 0 and establishes the
optimality of the tree. As we show below, this problem is NP-complete.

65.3.2 NP-Completeness

Ruiz and Gomez-Skarmeta [23] demonstrated that this problem is NP-complete. We show below a similar
demonstration based on the inclusion of the Minimim Common Dominating Set (MCDS) as a particular
case of the problem.

Theorem 65.1

Given a graph G = (V, E ), a multicast source s ∈ V and a set of receivers R, the problem of finding a tree
T∗ ⊇ R ∪ {s } so that Ct (T∗) is minimum is NP-complete.

Proof
According to Lemma 65.1, minimizing Ct (T∗) is equivalent to minimizing the number of relay nodes
F ⊆ T∗. So, the problem is finding the smallest set of forwarding nodes F that connects s to every r ∈ R.
If we consider the particular case in which R = V −{s }, the goal is finding the smallest connected F ⊆ T∗
that covers the rest of nodes in the graph (V − {s }). This problem is one of finding a minimum connected
dominating set, which is known to be NP-complete [24].

Ruiz and Gomez-Skarmeta [23] also proved the suboptimality of Steiner trees for this particular
problem in ad hoc networks. We give a simple example to prove it.

Theorem 65.2

Let G = (V, E ) be an undirected graph. Let s ∈ V be a multicast source and R ⊆ V be the set of receivers. The
Steiner multicast tree T∗ ⊆ G so that Ce (T∗) is minimal may not be the minimal data-overhead multicast
tree.

Proof
It is immediate from the examples shown in Figure 65.1 that the Steiner tree may not minimize the band-
width consumption, leading to suboptimal solutions in MANETs and WSNs.
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FIGURE 65.1 Differences in cost for several multicast trees over the same ad hoc network in (a) source path tree
with eight edges and six transmissions; (b) Steiner tree with six edges and five transmissions; and (c) minimum data
overhead tree with seven edges and four transmissions.

In general, Steiner tree heuristics try to reduce the cost by minimizing the number of Steiner nodes
|S∗|. In the next section we will present our heuristics being able to reduce the bandwidth consumption
of multicast trees, by just making receivers be leaf nodes in a cost-effective way.

65.3.3 Heuristic Approximations

Given the NP-completeness of the problem, within the next subsections we describe two heuristic algo-
rithms proposed by Ruiz and Gomez-Skarmeta [23] to approximate minimal data-overhead multicast
trees. As we learned from the demonstration of Theorem 65.2, the best approach to reduce the data over-
head is reducing the number of forwarding nodes, while increasing the number of leaf nodes. The two
heuristics presented below try to achieve that trade-off.

65.3.3.1 Greedy-Based Heuristic Algorithm

The first proposed algorithm is suited for centralized wireless mesh networks, in which the topology can
be known by a single node, which computes the multicast tree.

Inspired by the results from Theorem 65.2, this algorithm first systematically builds different cost-
effective subtrees. The cost-effectiveness refers to the fact that a node v is selected to be a forwarding node
only if it covers two or more nodes. That is, if it has two or more multicast receivers as neighbors.

The algorithm shown in Algorithm 65.1, starts by initializing the nodes to cover (aux) to all the sources
except those already covered by the source s . Initially the set of forwarding nodes (MF) is empty. After the
initialization, the algorithm repeats the process of building a cost-effective tree, starting with the node v

which covers the largest number of nodes in “aux.” Then, v is inserted into the set of forwarding nodes
(MF) and it becomes a node to cover. In addition, the receivers covered by v (Cov(v)) are removed from

Algorithm 65.1 Greedy minimal data overhead algorithm MNT

1: MF ← �/ ∗ mcast − forwarders ∗ /

2: V ← V - {s }
3: aux ← R-Cov(s) + {s } / ∗ nodes − to − cover ∗ /

4: repeat
5: node ← argmaxv∈V (|Cov(v)|) s.t. Cov(v)≥2
6: aux ← aux-Cov(v)+{v}
7: V ← V-{v}
8: MF ← MF + {v}
9: until aux = � or node = null

10: if V!=� then
11: Build Steiner tree among nodes in aux
12: end if
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the list of nodes to cover denoted by “aux.” This process is repeated until all the nodes are covered, or it
is not possible to find more cost-effective subtrees. In the latter case, the different subtrees are connected
by a Steiner tree among their roots, which are in the list “aux” (i.e., among the nodes which are not yet
covered). For doing that one can use any Steiner tree heuristic. In our simulations we use the minimum
spanning tree (MST) heuristic for simplicity.

65.3.3.2 Distributed Variant

The previous algorithm may be useful for some kind of networks. However, in general, a distributed
algorithm is preferred for wireless ad hoc networks. Hence, Ruiz and Gomez-Skarmeta [23] proposed the
distributed approach described below.

The previous protocol consists of two different parts: (i) construction of cost-efficient subtrees and (ii)
building a Steiner tree among the roots of the subtrees.

To build a Steiner tree among the roots of the subtrees, Ruiz assumed the utilization of the MST
heuristic in the previous protocol. This is a centralized heuristic consisting of two different phases. First,
the algorithm builds the metric closure for the receivers on the whole graph, and then, an MST is computed
on the metric closure. Finally, each edge in the MST is substituted by the shortest path (in the original
graph) between the two nodes connected by that edge. Unfortunately, the metric closure of a graph is hard
to build in a distributed way. Thus, Ruiz approximated the MST heuristic with the simple, yet powerful,
algorithm presented in Algorithm 65.2. The source, or the root of the subtree in which the source is (called
source-root), will start flooding a route request message (RREQ). Intermediate nodes, when propagating
that message will increase the hop count. When the RREQ is received by a root of a subtree, it sends a route
reply (RREP) back through the path which reported the lowest hop count. Those nodes in that path are
selected as multicast forwarders (MF). In addition, a root of a subtree, when propagating the RREQ will
reset the hop count field. This is what makes the process very similar to the computation of the MST on
the metric closure. In fact, we achieve the same effect, which is that each root of the subtrees, will add to
the Steiner tree the path from itself to the source-root, or the nearest root of a subtree. In the case in which
two neighboring nodes are far away from S but at the same hop count, the node-ID is used as a tie-breaker.

Algorithm 65.2 Distributed approximation of MST heuristic MNT2

1: if thisnode.id = source − root then
2: Send RREQ with RREQ.hopcount=0
3: end if
4: if rcvd non duplicate RREQ with better hopcount then
5: prevhop ← RREQ.sender
6: RREP.nexthop ← prevhop
7: RREQ.sender ← thisnode.id
8: if thisnode.isroot then
9: send(RREP)

10: RREQ.hopcount ← 0
11: else
12: RREQ.hopcount++;
13: end if
14: send(RREQ)
15: end if
16: if received RREP and RREP.nexthop = thisnode.id then
17: Activate MF-FLAG
18: RREP.nexthop ← prevhop
19: send(RREP)
20: end if
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This avoids a deadlock by preventing each of them from calling the other as its selected next hop. The one
with the lowest ID will always select the other. This mechanism and the way in which the algorithm is
executed from the source-root to the other nodes guarantees that the obtained tree is connected.

The second part of the algorithm to make distributed is the creation of the cost-effective subtrees.
However, this part is much simpler and it can be done locally with just a few messages. Receivers flood a
Subtree-Join (ST-JOIN) message only to its 1-hop neighbors indicating the multicast group to join. These
neighbors answer with a Subtree-Join-Ack (ST-ACK) indicating the number of receivers they cover. This
information is known locally by counting the number of (ST-JOIN) messages received. Finally, receivers
send again a Subtree-Join-Activation (ST-JOIN-ACT) message including their selected root, which is the
neighbor which covers the greatest number of receivers. This is also known locally from the information
in the (ST-ACK). Those nodes which are selected by any receiver, repeat the process acting as receivers.
Nodes which already selected a root do not answer this time to ST-JOIN messages.

65.3.4 Performance Evaluation

Ruiz and Gomez-Skarmeta [23] presented some performance evaluation of their approach. We have
reproduced their simulations with the same parameters except that the number of nodes has been fixed
at 600, and the area has been ranged from 750 × 750 to 2250 × 2250 m2. The simulated algorithms are
the two minimum bandwidth algorithms (MNT and MNT2 respectively) as well as the MST heuristic to
approximate Steiner trees. In addition, we also simulated the SPT algorithm, which is the one which is
used by most multihop multicast routing protocols proposed to date.

Performance metrics are also the same as Ruiz and Gomez-Skarmeta used in Ref. [23] and the reader can
refer there for details. The results shown correspond to the 1250×1250 m2 area and 150 receivers. For each
combination of simulation parameters, a total of 91 simulation runs with different randomly generated
graphs were performed. The error in the graphs shown below are obtained using a 95% confidence level.

65.3.4.1 Performance Analysis

In Figure 65.2, we show for a network with an intermediate density (600 nodes in 1250 × 1250 m2 area)
how the number of transmissions required varies with respect to the number of receivers. For a low number
of them, the minimum bandwidth schemes do not offer significant differences compared to the Steiner
tree heuristic. This is because receivers tend to be very sparse and it is less likely that cost-effective trees are
built. However, as the number of receivers increases, the creation of cost-effective trees is favored, making
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the MNT and MNT2 algorithms achieve significant reductions in the number of transmissions required.
In addition, given that the SPT approach does not aim at minimizing the cost of the trees, it shows a lower
performance compared to any of the other approaches. The distributed MNT2 algorithm, by not using the
metric closure, gets a slightly lower performance compared to the centralized approach. However, both of
them have very similar performance, which allow them to offer substantial bandwidth savings compared
to the Steiner tree (i.e., MST heuristic).

In Figure 65.3 we represent the mean path length. MNT and MNT2 offer a higher mean path length
because grouping paths for several receiver require deviating from their shortest paths for some of the
receivers. As we can see, this metric is much more variable to the number of receivers than the number of
transmissions was for the heuristic approaches. This is why the error bars are reporting a larger confidence
interval for MST, MNT, and MNT2.

In Figure 65.4 we present the variation of the number of transmissions as the density varies, for 150
receivers. As the figure depicts, the higher the density, the better is the performance of all the approaches.
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FIGURE 65.4 Number of Tx with varying network density for 150 receivers.
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The reason is that higher densities imply shorter path length (note that number of nodes is fixed). So, in
general, one can reach the receivers with less number of transmissions regardless of the routing scheme.
However, if we compare the performance across approaches, we can see that the reduction in the number of
transmissions achieved by MNT and MNT2 is higher as the density increases. This can be easily explained
by the fact that for higher densities it is more likely that several receivers can be close to the same node,
which facilitates the creation of cost-effective subtrees.

We can observe that the number of receivers has small impact on the performance comparison compared
to that of the density of the network.

65.4 Cost-Efficient Geographic Multicast Routing

Routing in sensor networks differ from routing in ad hoc networks. Position information is almost
intrinsic to WSNs. In fact, measurements provided by sensor nodes do not usually have proper mean-
ing unless the geographical information regarding that sensor is also reported. Position information, if
available to each sensor, also simplifies routing task. This approach is commonly known as “geographic
routing.” A survey of position-based routing schemes is given in Ref. [25].

The general idea is very simple. Given a source s and a destination d (the destination is normally a
fixed sink whose location is known to all sensors), the source s sends the data packet to be delivered to the
neighbor which is closest to the destination. This neighbor will repeat the process again, until the message
is eventually delivered to the destination. For the case in which the algorithm reaches a local minima (i.e.,
there is no neighbor making progress toward the destination), Bose et al. [26] proposed a recovery scheme
called “Face routing” which guarantees delivery.

Similar to ad hoc network routing, different metrics can be minimized when finding the route to-
ward a destination using geographic routing. The most used one is the reduction of the hop count.
However, there are also proposals to reduce the power consumption [27], delay, etc. Stojmenovic [28]
proposed a general framework to optimize different metrics. The rest of the chapter will be devoted to
the explanation of that framework, and its application to the problem of efficient geographic multicast
routing.

65.4.1 The Cost over Progress Framework

A frequent solution when dealing with multiple metrics in geographic routing in the literature is to
introduce additional parameters, not present in the problem formulation, as part of the solution protocol.
For instance, the neighbor selection function is changed to something like

α(metric1) + β(metric2) + · · · + ω(metricn)

where Greek letters are the additional parameters considered and metrici the different metrics (e.g., delay,
hop count, power consumption, etc.).

So, the performance of such a protocol often depends on the particular values for the set of parameters.
In most cases, the optimal values for these parameters depend on global network conditions, which may
be beyond the knowledge available to tiny sensors. In other cases, the computational and communication
cost required to obtain such information is higher than the benefits provided by the particular protocol.
Another typical approach is to use thresholds for the solutions, which has the effect of eliminating certain
options in the protocols which may lead to suboptimal solutions or to failures.

To avoid those issues, a simple but elegant solution is to use as the neighbor selection function, a cost
over progress ratio. The idea is to optimize the ratio of operation costs (in terms of the particular metrics
considered in the problem statement) and progress made (e.g., reduction in distance to the destination in
the case of routing). For network coverage problems, the same concept can be applied by redefining the
cost function, and considering an appropriate progress function (e.g., additional area covered). To better
understand this idea, we will give a couple of examples of its application.
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FIGURE 65.5 Best neighbor selection in localized routing schemes.

Example 65.1

We consider the case in which we want to provide geographic routing with minimal power consumption.
We consider Figure 65.5 as a reference, where C is the source, D the destination, and A a candidate neighbor
and A’ the projection of A on CD. In addition, we have that |CD| = c , |AD| = a , and |CA| = r .

The power needed to send a message from C to A is proportional to r α + k, where α is the power
attenuation factor (2 ≤ α ≤ 6), while k is a constant (k > 0) that accounts for running circuits at the
transmitter and receiver nodes. In our framework, this power can be used as the cost measure. The progress
can be measured according to Figure 65.5 as c −a . Therefore, the neighbor that minimizes (r α +k)/(c −a)
is the one to be selected.

In the next section, we discuss how the same framework can be applied to the geographic multicast
routing problem.

65.4.2 Geographic Multicasting with Cost over Progress

We now focus on the multicasting problem represented in Figure 65.6. A source node C wishes to send a
packet to several destinations (sinks) with known positions (D1, . . . , Dn). It is assumed that the number
of such destinations is small, which is reasonable for the scenario in which a sensor reports to several sinks.

Mauve et al. [29] proposed a geographic multicast protocol which considers the total hop count as the
metric to optimize, and distances from neighbors to destinations as part of the criterion to optimize. The
impact of each of these aspects in the final neighbor selection is controlled by an external parameter (λ)
whose best value is to be separately determined. We describe below how the same problem can be solved
with the cost over ratio framework, without the need for such additional parameters.

C
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D4
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FIGURE 65.6 Evaluating candidate forwarding set from neighbors.
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Let us assume a node C , after receiving a multicast message including the positions of the destinations
D1, D2, . . . , Dk . And let us also assume that C evaluates neighbors A1, A2, . . . , Am for forwarding. If
there is one neighbor which is closer to all destinations than C , then it may happen that there is only one
next hop selected. However, it may also happen that the multicast routing task needs to be split across
multiple neighbors, each handling a subset of destinations.

Consider the case in Figure 65.6 as an illustration of the general principle. The current total distance to
deliver the message from C to all receivers is T1 = |C D1| + |C D2| + |C D3| + |C D4| + |C D5|. If C now
considers neighbors A1 and A2 as forwarding nodes covering D1, D2, D3 and D4, D5, respectively, the
new total remaining distance would be T2 = |A1 D1| + |A1 D2| + |A1 D3| + |A2 D4| + |A2 D5|, and the
“progress” made is T1 −T2. The “cost” is the number of selected neighbors (i.e., two in the previous figure).
Thus, the forwarding set {A1, A2} is evaluated as 2/(T1 − T2). So, among all candidate forwarding sets,
the one with optimal value of this expression is selected. Those destinations for which there is no neighbor
closer to them, will be reached using Greedy Face Greedy (GFG) routing [26] directly to them. Note that
the number of expressions to evaluate grows with number of neighbors and number of destinations. We
provide below an enhanced algorithm to reduce the number of evaluations.

65.4.2.1 Exhaustive Enumeration by Set Partitioning

Given k destinations, the algorithm can consider all Sk partitions. For each set given in the set partition,
check whether there is a node which is closer to the destinations in the set than the current node C .
If it is not possible to find such a node for a set, that particular partition is ignored. For those being
possible, the cost/progress ratio is computed, and the best one is selected. This solution is applicable
for small number of destinations (e.g., up to 5). For a larger number, it becomes exponential in k, and
therefore a faster greedy solution is needed. A fast algorithm for generating set partitions is given in
Ref. [30].

65.4.2.2 Greedy Selection of Set Partitions

The goal of this greedy selection of set partitions is to reduce the number of partitions (destination
sets) being evaluated. The destinations for which there is no closer neighbor are served using the GFG
protocol [26]. Thus, we start with the set of destinations {D1, D2, . . . , Dk}, for which there is at least one
node closer to them than C .

For each of these Di we choose the best neighbor Ai of C as if it was the only destination. If there are
several destinations for which the best neighbor is the same, then we merge those destinations into a single
set {Mi }. At the end of this phase, we have an initial set partition of the destinations {M1, M2, . . . , Ml },
and there is a different neighbor Ai for each subset Mi . Each Mi has its cost over progress 1/Pi , and the
whole partition also has its overall cost over progress being equal to l/(P1 + P2 +· · ·+ Pl ). In the example
of Figure 65.6, there are two subsets M1 = {D1, D2, D3} and M2 = {D4, D5}. The cost over progress of
M1 is 1/P1, where P1 = (|C D1| + |C D2| + |C D3|) − (|A1 D1| + |A1 D2| + |A1 D3|). Similarly, the cost
over progress for M2 is 1/P2, where being P2 = (|C D4| + |C D5|) − (|A2 D4| + |A2 D5|). The overall cost
over progress ratio of the whole partition is then 2/(P1 + P2).

After this first iteration, we will repeatedly try to improve the cost over progress ratio, until this was not
possible in a given iteration. In each iteration, we try to merge each pair Mi , Mj to see whether they can
improve the cost–progress ratio by merging into one set. This merge is done selecting a new A j , being
the neighbor of C which is closer than C to all destinations in Mi ∪ Mj and provides best ratio. If such
A j does not exist, merge is not possible. From all possible merges which improve the ratio compared to
the partition set, select the one with higher ratio, and update the set partition by effectively merging those
sets, and decreasing l by 1. The next iteration starts with this new set partition. The process is repeated
until no new merging improves the ratio.

It is easy to prove that this algorithm would test O(k3) cases rather than k!
The described algorithm is based on position information. If it is not available, it can be applied on a

version where distances between nodes are replaced by hop counts between them. Each receiver may flood
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the network, so that each node may learn hop count distances to all receivers. These distances can be used
in the described protocol to determine multicast routes.

65.5 Discussion

Multicast routing has proven to be an interesting problem requiring approximation algorithms, and simple
yet efficient heuristic solutions. As we have seen, multicast routing problems are NP-complete even when
the metrics to optimize are not very complicated.

In this chapter, we have shown examples of such greedy algorithms and their applicability to the multicast
routing problem in two different environments: wireless ad hoc networks, and WSNs.

In ad hoc networks, we have shown that the traditional Steiner tree problem does not guarantee
optimality regarding the overall bandwidth consumption of the multicast tree, and we have applied a
heuristic epidemic algorithm to approximate efficiently those bandwidth-efficient trees.

For sensor network scenarios, we have shown how the general geographic routing concept can be
extended to solve the multicast routing task in a localized way. In addition, we have explained how the
general cost–progress ratio framework can be also used for such problem. As shown here, using this
framework we avoid adding extra parameters to the problem formulation, which is one of the issues
present in most of the existing solutions in the literature.

We believe that the concepts presented here will be useful for solving a number of other network layer
problems, or even variants of these ones based on different assumptions or optimality criteria.
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66.1 Introduction

Since flat networks do not scale, it is a time-honored strategy to overlay a virtual infrastructure on a
physical network. There are, essentially, two approaches to doing this. The first approach is protocol-
driven and involves crafting a virtual infrastructure in support of whatever protocol happens to be of
immediate interest. While the resulting virtual infrastructure is likely to serve the protocol well, more
often than not, the infrastructure is not useful for other purposes. This is unfortunate, as its consequence
is that a new infrastructure has to be invented and installed from scratch for each individual protocol in
a given suite. In bandwidth-constraint Mobile Adhoc NETworks (MANET), maintaining different virtual
infrastructures for different protocols may involve excessive overhead. The alternate approach is to design
the virtual infrastructure with no particular protocol in mind. The challenge, of course, is to design the
virtual infrastructure in such a way that it can be leveraged by a multitude of different protocols. Such a
virtual infrastructure is called general-purpose as opposed to special-purpose if it is designed in support of
just one protocol. The benefits of a general-purpose virtual infrastructure are obvious.

The important problem of identifying general-purpose infrastructures that can be leveraged by a mul-
titude of different protocols has not yet been addressed in MANET. We view the main contribution of
this work as the first step in this direction. Specifically, we identify clustering as the archetypal candidate
for establishing a general-purpose virtual infrastructure for MANET. Motivated by the idea that a vir-
tual infrastructure having a decent chance of becoming truly general-purpose should be able to make a
large MANET appear smaller and less dynamic, we propose a novel clustering scheme based on a number
of properties of diameter-2 graphs. Compared to virtual infrastructures with central nodes, our virtual
infrastructure is more symmetric and stable, but still lightweight. In our clustering scheme, cluster initial-
ization naturally blends into cluster maintenance, showing the unity between these two operations. We
call our algorithm tree-based since cluster merge and split operations are performed based on a spanning
tree maintained at some specific nodes. Extensive simulation results have shown the effectiveness of our
clustering scheme when compared to other schemes proposed in the literature.

66-1
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The remainder of this chapter is organized as follows: following the background of our work described in
Section 66.2, Section 66.3 presents technicalities that underlie the tree-based clustering scheme; Section 66.4
provides the details of the tree-based clustering algorithms; Section 66.5 presents our simulation results
in terms of several generic metrics; Section 66.6 discusses the application of the clustering scheme as
appromiation algorithms in the context of topology control; finally, Section 66.7 offers concluding remarks
and directions for further work.

66.2 Motivation

Essentially, a cluster is a subset of the nodes of the underlying network that satisfies a certain property P . At
the network initialization stage, a cluster initialization algorithm is invoked and the network is partitioned
into individual clusters each satisfying property P . Due to node mobility, new links may form and old
ones may break, leading to changes in the network topology and, thus, to possible violations of property
P . When property P is violated, a cluster maintenance algorithm must be invoked. It is intuitively clear
that the less stringent property P , the less frequently is cluster maintenance necessary.

The precise definition of the desirable property P of a cluster varies in different contexts. However, there
are some general guidelines suggesting instances of P that are desirable in all contexts. One of them is that
a consensus must be reached quickly in a cluster in order for a cluster to work efficiently. Since the time
complexity of the task of reaching a distributed consensus increases with the diameter of the underlying
graph [1], small-diameter clusters are generally preferred in MANET [2]. As an illustration, some authors
define property P such that every node in the cluster is 1-hop away from every other node, that is, each
cluster is a diameter-1 graph [3,20]. A less restrictive widely adopted definition of P is the dominance
property [4–6], which insists on the existence of a central cluster-head adjacent to all the remaining nodes
in the cluster. In the presence of a central node, consensus is reached trivially: indeed, the cluster-head
dictates the consensus.

Motivated by the fact that a cluster-head may easily become a traffic bottleneck and a single point
of failure in the cluster, and inspired by the instability of the virtual infrastructures maintained by the
node-centric clustering schemes, in the clustering scheme proposed by Lin and Gerla [7], although the
cluster initialization algorithm used is node-centric with the clusters featuring a central cluster-head, once
clusters are constructed [7], eliminates the requirement for a central node, defining the cluster simply as
a diameter-2 graph. Only when the cluster is no longer a diameter-2 graph will a cluster change occur.
This definition imposes fewer constraints on a cluster and hence may result in significant improvement
on the stability of the resulting virtual infrastructure. In addition, Nakano and Olariu [8] have shown that
a distributed consensus can be reached fast in a diameter-2 cluster. In the light of these observations, in
this work we adopt the diameter-2 property as the defining property of a cluster.

The basic idea of the degree-based cluster maintenance algorithm of Ref. [7] is the following: when a
violation of the diameter-2 property is detected, the highest degree node and its one-hop neighbors remain
in the original cluster and all the other nodes leave the cluster. It is expected that a leaving node will join
another cluster or form a new cluster by itself. Unfortunately, the description of the algorithm in Ref. [7]
is very succinct and many important details are glossed over.

In fact, there are several problems with the above degree-based cluster maintenance algorithm as dis-
cussed in Ref. [7]. To illustrate, consider the cluster topology in Figure 66.1(a). When the link (3,4) is
broken due to mobility, the diameter-2 property is violated. One problem is that various nodes have a
different local view, precluding them from reaching a global consensus as to which node(s) should leave
the cluster. To wit, even if the highest degree of nodes in Figure 66.1(b) is propagated throughout the entire
topology, the nodes still do not have sufficient information to decide whether or not they should leave the
cluster. For example, node 3 is adjacent to node 2 which has degree two, thus being a highest-degree node.
Consequently, node 3 decides that it should not leave the cluster. Likewise, node 5 is adjacent to node 4,
which also has the highest degree and decides that it should not leave the cluster. The net effect is that no
node will leave, invalidating the correctness of the cluster maintenance algorithm.
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FIGURE 66.1 An example of the degree-based cluster maintenance algorithm.

Notice that the insecurity we just outlined stems, in part, from the fact that in Figure 66.1(b) there are
three highest-degree nodes: nodes 1, 2, and 5. The above problem can be helped somewhat by using the
lowest nodeID criterion to break ties. Under this criterion, node 1 and its one-hop neighbors, nodes 2 and
5, stay in the original cluster, and nodes 3 and 4 leave. Thus, in this case, the original cluster is partitioned
into three clusters: {1,2,5}, {3}, and {4}.

Furthermore, if the cluster maintenance algorithm of Ref. [7] is to be fully distributed, each node must
maintain the whole topology of the cluster; otherwise, the nodes cannot reach a consensus as to which is
the unique node with the highest degree. Note that maintaining the complete topology of the cluster at
each member node requires flooding the formation and breakage of every link to all the other nodes in the
cluster, involving a large overhead.

The cluster maintenance algorithm of Ref. [7] tries to minimize the number of node transitions between
clusters and this number is used to evaluate the stability of the cluster infrastructure. However, there is no
guarantee that this algorithm will minimize node transitions. In the example shown in Figure 66.2(a), there
are 2n + 1 nodes in the cluster, numbered from 1 to 2n + 1. Nodes 1, 2, . . . , n are within transmission
range (R) from each other; similarly, the nodes n + 1, n + 2, . . . , 2n − 1 are within transmission range
from each other. With the breakage of link between nodes 2n − 1 and 2n, the cluster is no longer diameter-
2. Nodes 1, 2, . . . , n have degree n + 2 and are the highest-degree nodes. Assume that node 1 is chosen as
the maintenance leader. In this case, according to the degree-based algorithm, n − 1 nodes (namely, nodes
n + 2, n + 3, . . . , 2n) leave the cluster while, in fact, the minimum number of nodes that have to leave the
cluster is just one as shown in Figure 66.2(b).

Moreover, using the number of node transitions as the sole criterion to assess the goodness of a cluster
maintenance algorithm is misleading since: (a) it implicitly assumes that the highest-degree node is the
same as the logical cluster representative. This assumption is not attractive since during normal operation
of a cluster, the highest-degree node may change frequently due to link changes. If every highest-degree
node change results in a migration of the logical cluster representative, a significant amount of overhead
will be involved. (b) It assumes that only leaving nodes are responsible for the overhead in the cluster
maintenance procedure. In reality, during the maintenance procedure, all nodes in the involved clusters
participate in computation and message passing for determining the new cluster membership. Consider
an example simulation for two clustering schemes 1 and 2. During the simulation, in Scheme 1, a cluster
with 100 nodes are split once into two clusters, each with 50 nodes; in Scheme 2, a cluster with 100 nodes
decreases its size by one node for 30 times. It is not clear that Scheme 2 is definitely more stable than
Scheme 1. (c) In many cases, the degree-based algorithm generates single-node clusters. Such a cluster is of
little use and must merge with some other existing cluster. This operation should be considered part of the
overhead introduced by the cluster maintenance algorithm. Consider the following cluster infrastructure:
each node is a single-node cluster and cluster merge never occurs. In such an infrastructure, the number
of node transitions is 0. However, this is a very poor cluster infrastructure and the benefits of clustering are
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FIGURE 66.2 An example in which the degree-based algorithm generates a number of leaving nodes.

lost. This example clearly illustrates the tradeoff between cluster stability and quality. We must consider
both metrics when evaluating the performance of a cluster maintenance algorithm.

66.3 Technicalities

The main goal of this section is to develop the graph-theoretic machinery that will be used by our clustering
algorithms. As customary, we model a multihop ad hoc network by an undirected graph G = (V, E ) in
which V is the set of nodes and E is the set of links between nodes. The edge (u, v) ∈ E exists whenever
nodes u and v are one-hop neighbors. Each node in the network is assigned a unique identifier (nodeID).
The distance between two nodes is the length of the shortest path between them. The diameter of a graph is
the largest distance between any pair of nodes. Our cluster maintenance algorithm relies on the following
theorems of diameter-d graphs.

Theorem 66.1

Consider a diameter-d graph G and an arbitrary edge e of G. Let G ′ = G − e be the graph obtained from G
by removing edge e. If G ′ is connected, then there must exist a node in G ′ whose distance to every other node
is at most d. Moreover, the diameter of G ′ is at most 2d.

Proof
Assume that the edge e = (u, v) is removed. Since G ′ is connected, there must exist a shortest path
P ′(u, v) : u = x1, x2, . . . , xk = v joining u and v in G ′. Consider node x� k

2 �. Clearly, the distance from

x� k
2 � to both u and v is unaffected by the removal of the edge e = (u, v). We claim that the distance in G ′

from x� k
2 � to all the remaining nodes is bounded by d . To see this, consider an arbitrary node y in G and

let � be the shortest path in G joining x� k
2 � to y. If � does not use the edge e , then the removal of e does

not affect �. Assume, therefore, that � involves the edge e . Assume, without loss of generality, that in �

node v is closer to y than u. However, our choice of x� k
2 � guarantees that the path consisting of the nodes

x� k
2 �, x� k

2 �+1, . . . , xk−1, v, . . . , y cannot be longer than �, completing the first part of the claim.

Consider a BFS tree of G ′ rooted at x� k
2 �. We just proved that the depth of this tree is bounded by d ,

confirming that the diameter of G ′ is, indeed, bounded by 2d .

Theorem 66.1 has the following important consequence that lies at the heart of our cluster maintenance
algorithm.
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Corollary 66.1

Consider a diameter-2 graph G and an edge e of G. Let G ′ = G −e be the graph obtained from G by removing
edge e. If G ′ is connected, then there must exist at least one node in G ′ whose distance to every other node is
at most two. Furthermore, the diameter of G ′ is at most four.

Theorem 66.2

Let G be a diameter-d graph, and let x and y be a pair of nodes that achieve the diameter of G. Then the
graph G ′ = G − {x} is connected. Furthermore, in G ′, any BFS tree rooted at y has depth at most d.

Proof
In G , x is a level-d (leaf) node of any BFS tree rooted at y. Hence removing node x does not affect the
distance from y to any other node. Thus, G ′ must be connected, and in G ′, any BFS tree rooted at y has
depth at most d .

Theorem 66.2 has the following important consequence that will be used in our cluster maintenance
algorithm.

Corollary 66.2

Let G be a diameter-2 graph, and let x be a node in G such that there exists at least one node y in G that is
not adjacent to x. In the graph G ′ = G − {x}, any BFS tree rooted at y has depth at most two.

Theorem 66.3

Consider a graph G = (V, E ), disjoint subsets V1, V2 of V, and let G ′ be the subgraph of G induced by
V1 ∪ V2,

(1) if the subgraphs of G induced by V1 and V2 are diameter-d graphs, and
(2) if for every node x of V1, the BFS tree of G ′ rooted at x has depth at most d then G ′ is a diameter-d

graph.

Proof
Consider an arbitrary pair of nodes u, v in G . We need to show that u and v are at distance at most d
in G ′. Indeed, if u, v ∈ V1 (resp. V2), the conclusion is implied by assumption (1). Consequently, we
may assume, without loss of generality, that u ∈ V1 and that v ∈ V2. By assumption (2), the BFS tree of
G ′ rooted at u has depth at most d , implying that the distance between u and v is bounded by d . This
completes the proof of Theorem 66.3.

We conclude this section by stating some properties of unit-disk diameter-2 graphs.
We have written a program to generate random unit-disk diameter-2 graphs, and in the one million

instances of graphs that was generated by the program, all can be dominated by two nodes. This suggests
that the probability that a unit-disk diameter-2 graph is dominated by two nodes is very high. On the
other hand, we have been able to construct a counterexample that cannot be dominated by two nodes [9].
Further, we have proven that any unit-disk diameter-2 graph can be dominated by at most three nodes
[9]. Note that this is not true for a general diameter-2 graph. For a general diameter-2 graph, there is
no proved constant upper bound on the size of its minimum dominating set (MDS). In the examples
shown in Ref. [9], there is a general diameter-2 graph with 198 nodes and max node degree 16, so its
|MDS| ≥ 12.

66.4 Our Tree-Based Clustering Algorithm

In MANET link failures caused by node mobility can be predicted by the gradual weakening of the radio
signal strength. In addition, since mechanical mobility and radio transmission occur at vastly different
time scales, multiple link failures can be treated as a series of single-link failures. With this in mind, in this
work we adopt the single-link failure and single-node failure models where either one link or one node fails
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at any one time. We also note that the single-node failure model can be used to account for the scenarios
where link breakages occur unpredictably.

We make the following two assumptions: (1) a message sent by a node is received correctly by all its
neighbors within a finite time, called a message round; and (2) the cluster split algorithm is atomic in the
sense that no new link/node failure occurs during its execution.

66.4.1 The Tree-Based Cluster Split Algorithm: Single-Link Failure

In this subsection, we discuss the details of our cluster split algorithm in the case where a single-link failure
occurs.

When a node detects the formation/breakage of one of its immediate links, it broadcasts a HELLO
beaconing message containing its nodeID, clusterID, cluster size, the nodeIDs, and clusterIDs of its one-
hop neighbors, as well as the signal strength of each link to its one-hop neighbors. By receiving such
beaconing messages, each node u maintains a depth-2 BFS tree T(u) rooted at u itself and containing only
the nodes belonging to the same cluster as u. Clearly, as long as the diameter-2 property holds, the distance
between each pair of nodes is at most two, and the tree T(u) contains all the nodes in the cluster. Thus,
each node knows the number n of nodes in its own cluster.

In our model, each node monitors the signal strength of the links joining it with its one-hop neighbors.
When a generic node u detects that the signal strength of one of its links weakens below a threshold value, it
reconstructs T(u). By comparing the size |T(u)| of T(u) with n, node u determines whether all the cluster
members are still at most two hops away. If it finds that some member cannot be reached in two hops,
it broadcasts a VIOLATION message to all of its one-hop neighbors, identifying the single-link failure
causing the violation of diameter-2 property. Each node v receiving a VIOLATION message reconstructs
its own tree T(v) and checks whether |T(v)| matches n. If there is a mismatch, the node forwards the
VIOLATION message to all its neighbors; otherwise, it declares itself a maintenance leader. In other words,
a maintenance leader is a node that can reach every other node in at most two hops. By Corollary 66.1,
after being forwarded at most once, the VIOLATION message will reach a maintenance leader. Note that
there might be multiple maintenance leaders: each of them runs an instance of the cluster split algorithm
independently. Finally, the instance which yields the best quality new clusters is adopted.

For a generic maintenance leader x , the tree T(x) is composed of: (1) node x itself—the root of the
tree; (2) level-1 nodes, that is, x ’s one-hop neighbors in the original cluster; and (3) level-2 nodes, all the
remaining nodes in the original cluster.

During the split procedure, there can be several different considerations as to how to split the original
cluster. Our motivation is to minimize the number of newly generated clusters when splitting. In addition,
by considering link stability during a split, the newly generated clusters tend to be more stable.

Specifically, a generic maintenance leader x performs the following steps:

Step 1. Node x tries to find the minimum number of level-1 nodes to cover all the level-2 nodes. A level-1
node y can cover a level-2 node z if and only if x can reach z through y. This is an instance of the well-known
minimum set covering problem and can be solved using the following greedy heuristic [10].

Initially, all level-2 nodes are marked uncovered, and all the level-1 nodes constitute the total level-1 set.
For each node y in the total level-1 set, x calculates the number Ny of uncovered level-2 nodes that can
be covered by y. The node y with the largest Ny is deleted from the total level-1 set, added to the critical
level-1 set and marked as new leader. All the Ny level-2 nodes covered by y are marked covered. Node x
continues the above process until all the level-2 nodes are marked covered. We call the current total level-1
set as redundant level-1 set. For each level-2 node z marked covered, x calculates the stability (i.e., signal
strength) of the link STAzw between z and every critical level-1 node w . Denote the node w that has the
largest STAzw as p. Node x marks w as new member of p.

Step 2. Next, x tries to use the nodes in the critical level-1 set to cover the nodes that are left in the redundant
level-1 set. For each node r in the redundant level-1 set, x determines the stability of the link between r
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FIGURE 66.3 An example of the tree-based cluster split algorithm.

and each of the critical level-1 nodes adjacent to r . Denote the one that has the most stable link as w ; x
marks r as a new member of w .

Step 3. x checks whether there exist nodes in the redundant level-1 set. If so, x marks itself new leader and
all the uncovered nodes in the redundant level-1 set as new members of x . Otherwise, x finds a new leader
q which has the largest link stability value in the critical level-1 set and marks itself as new member of q .

At this point, x has reached its cluster split decision. It broadcasts the result through a MAINTENANCE-
RESULT message to all its one-hop neighbors. A node finding itself chosen as a new leader further broad-
casts a MEMBER-ENLIST message containing its new cluster membership list. Upon receiving such a
message, each node in the original cluster knows its new membership. This completes the split procedure
in the case of a single-link failure.

We now illustrate the tree-based split algorithm using an example. There are five nodes in the cluster
shown in Figure 66.3(a). When the link (3,4) is broken, nodes 3 and 4 detect that the diameter-2 property
is violated. Each of them broadcasts a VIOLATION message. Upon receiving the VIOLATION message,
nodes 2 and 5 reconstruct their respective BFS trees. Since neither of them can work as maintenance leader,
they forward the VIOLATION message. When node 1 receives the VIOLATION message, it reconstructs
T(1) and finds that |T(1)| = 5. At this point, node 1 knows that it is a maintenance leader. In T(1),
node 2 covers node 3, and node 5 covers node 4. Hence nodes 2 and 5 are chosen as critical level-1 nodes.
Assuming that link (1,2) is more stable than link (1,5), node 1 chooses to be covered by node 2. The result
of this split procedure is two new clusters: {1,2,3} and {4,5}, as shown in Figure 66.3(b).

66.4.2 The Tree-Based Cluster Split Algorithm: Single-Node Failure

Our cluster split algorithm for the case when a single-node failure occurs relies, in part, on Corollary
66.2. Indeed, by Corollary 66.2, when a single-node failure occurs in a cluster and the tree maintained
by the failed node (just before its failure) has depth two, then the resulting graph is still connected (al-
though it need not be diameter-2) and there must be some node that still maintains a BFS tree with depth
at most two. This means that a maintenance leader still exists, and that we can still use our tree-based
cluster split algorithm. Specifically, when a node detects the sudden breakage of a link to/from a one-hop
neighbor, it assumes a node failure, deletes the failed node from its cluster membership list, and recon-
structs the BFS tree. A VIOLATION message is sent out when necessary, identifying the single-node failure
causing the violation of diameter-2 property. The remaining steps are the same as those described in
Subsection 66.4.1.

However, if the failed node maintains a depth-1 (as opposed to depth-2) tree before its failure, it is
possible that none of the remaining nodes can play the role of maintenance leader. To solve this problem,
during the cluster’s normal operation phase, when a node finds that it is the only node maintaining a
depth-1 tree in the cluster, it periodically runs a MDS algorithm (using a greedy algorithm similar to that
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described in Subsection 66.4.1) on its one-hop neighbors, and notifies the nodes in the MDS to become
candidate maintenance leaders. When the node fails, each candidate maintenance leader detects this
failure and immediately broadcasts a MEMBER-ENLIST message containing its new cluster membership
list. Upon receiving such a message, each node in the original cluster knows its new membership. This
completes the split procedure in the case of a single-node failure.

66.4.3 Merging Clusters

The previous discussion focused on one aspect of cluster maintenance: the cluster split procedure. Clearly,
cluster maintenance cannot rely on cluster splitting only, for otherwise the size of the clusters will continually
decrease, and we would end up with many one-node clusters, defeating the purpose of clustering. To prevent
this phenomenon from occurring, the other necessary component is a mechanism for merging two clusters.
The main goal of this subsection is to discuss a simple tree-based cluster merge procedure.

When the members of two clusters move close so that they can reach each other in two hops, the
two clusters may be merged. To better control the cluster merge procedure and to prevent it from being
invoked too frequently, we introduce the concept of desirable size of a cluster. Specifically, given system
parameters—desirable cluster size k and tolerances α, β, we insist that clusters should have size in the
range [k − α, k + β]. Clusters of size less than k − α are said to be deficient. Only deficient clusters are
seeking neighboring clusters with which to merge.

For definiteness, consider a deficient cluster A of size |A| < k − α. By receiving HELLO beaconing
messages described in Subsection 66.4.1, the nodes in A maintain a list of feasible clusters for merging.
Among these, the one, say, B such that |A| ≤ |B | and |A|+|B | is as close as possible to k but not exceeding
k + β is selected. ClusterID is used to break ties. Upon selecting B as a candidate, the nodes of A that
have a one-hop neighbor in B broadcast a MERGE-REQUEST message. If B is not involved in a merge
operation, the nodes of B that have received the MERGE-REQUEST message send back a MERGE-ACK
message. At this point, every node in cluster A computes its BFS tree involving nodes in A ∪ B . A node in
A for which the size of the corresponding tree differs from |A| + |B | sends a VIOLATION message to the
other nodes in A. By virtue of Property 66.3, if no VIOLATION message is received, A ∪ B is a diameter-2
graph. In this case, the nodes in cluster A broadcast a MERGE-CONFIRMATION message to cluster B
indicating the new cluster membership and the merge procedure terminates. If, however, a VIOLATION
message was received, the merge operation is aborted, a MERGE-ABORT message is sent to the nodes of
cluster B , and a new candidate for merging is examined.

We note that the merge operation takes precedence over split. To explain the intuition behind this design
decision refer to Figure 66.4. Here cluster X consisting of nodes e and f attempts to merge with cluster
Y consisting of nodes a , b, c , and d . Assume that either while the request to merge is issued or just prior
to that the edge (a , d) broke, invalidating Y as a cluster. Rather than proceeding with the split operation,
as would normally be the case, the merge operation is given priority. As illustrated in the figure, all nodes
in X and Y detect that X ∪ Y has diameter 2 and is, therefore, a valid cluster. We note, however, that had

Y

X
b

d

f

e

a

c

FIGURE 66.4 Illustrating the priority of merge over split.
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FIGURE 66.5 An example of the cluster initialization algorithm.

X ∪ Y had diameter larger than 2, the merge operation would have failed and the nodes in Y would have
proceeded with the split operation.

66.4.4 Cluster Initialization

The cluster merge algorithm described in Subsection 66.4.3 is perfectly general and can, in fact, be used for
the purpose of cluster initialization. Initially, each node is in a cluster by itself. The cluster merge algorithm
is started as described above. The initialization algorithm naturally blends into cluster maintenance as
more and more clusters reach desirable size.

It is worth noting that our cluster initialization algorithm has a number of advantages over the nodeID-
based algorithms. First, our algorithm is cluster-centric, as opposed to node-centric. Second, the natural
blend of cluster initialization and cluster maintenance shows the unity between these two operations.
This is certainly not the case in the vast majority of clustering papers in the literature. Third, our cluster
initialization algorithm (just as the cluster merge) can be performed in the presence of node mobility.

Last, our initialization algorithm results in better quality clusters than the nodeID-based algorithms.
To see this, consider the subnetwork in Figure 66.5(a) and assume that the desirable cluster size (k) is
seven with tolerances α = β = 2. It is not hard to see that our initialization algorithm actually returns the
entire subnetwork as a single cluster—for this graph is diameter-2. On the other hand, the nodeID-based
algorithm results in many deficient clusters, as illustrated in Figure 66.5(b).

66.5 Performance Analysis and Simulation Results

In this section, we use simulation to demonstrate the effectiveness of our tree-based clustering scheme
compared to other clustering schemes in the literature. We choose LCC [11] as a representative of the node-
centric clustering schemes since it avoids the global rippling effect and greatly reduces cluster changes com-
pared to the other nodeID-based algorithms. In addition, it is shown in Ref. [12] that in the unit-disk graph
model, LCC is asymptotically optimal with respect to the number of clusters maintained in the system.

66.5.1 Performance Metrics

As discussed in Section 66.2, we need to consider both cluster quality and cluster stability in our comparison.
The number of clusters in the system is generally considered as a good indication of the quality of a cluster
infrastructure [12,13]. A clustering scheme that generates and maintains fewer clusters is potentially able
to accommodate more nodes in a cluster, hence providing better load balancing among clusters. In our
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simulation, we count the number of clusters in the system once every second of simulation time. We
calculate the sum of these numbers divided by the total simulation time, and we use this average number
of clusters maintained in the system to characterize cluster quality. We note, however, that the number
of clusters maintained does not tell the whole story. Given two clustering algorithms that maintain,
essentially, the same number of clusters, we prefer the one that generates clusters of roughly equal size to
the one that generates a mix of very large and very small clusters. Indeed, clustering schemes that generate
very small clusters have to rely on frequent cluster merges to keep cluster quality, clearly an undesirable
situation.

To evaluate cluster stability, we assume that each cluster chooses one of its member as cluster leader and
takes its nodeID as the clusterID. When a node is no longer in the same cluster as its latest cluster leader,
this node is considered as a node changing cluster. Note that the cluster leader defined here serves only as a
reference point that allows us to count and compare the number of node transitions in different clustering
schemes. In LCC, the central node of a cluster is always the cluster leader. In the diameter-2 schemes, each
node initially chooses its nodeID as the clusterID of the single-node cluster. When two clusters merge, the
clusterID of the cluster with larger size is used as the new clusterID. When a cluster split happens, among
the new clusters, the one which contains the original cluster leader still keeps the original clusterID, and
all the other clusters choose the minimum nodeID of its members as the new clusterID. Further, we need
to clearly identify the events that can cause cluster changes. In LCC, there are two types of events that can
cause nodes to change clusters: (1) a nonleader node is no longer adjacent to its leader; in this case, the
node joins another leader, or becomes itself a new leader; (2) when two cluster leaders become neighbors,
the one with larger nodeID gives up its role, and all the nodes in its cluster either join a new cluster, or
become new leaders by themselves. In the diameter-2 schemes, the two types of events that can cause nodes
to change clusters are: (1) a cluster is no longer diameter-2, and is split to several subclusters; (2) a cluster
merges with another cluster.

With the above assumptions in mind, we define two measurements to evaluate cluster stability: (1) total
number of nodes changing clusters and (2) average cluster lifetime. Specifically, we compare the snapshots of
the system taken exactly before and after the execution of the maintenance algorithm triggered by either
of the above events. If node x’s clusterID after the event is different from its clusterID before the event,
then it is counted as a node changing its cluster. If a node x is a cluster leader before the event, but no longer
a leader after the event, then the cluster is considered as disappearing and we stop increasing its lifetime.
If a node x is not a cluster leader before the event, but becomes one after the event, then a new cluster is
considered generated, and we start increasing its lifetime. The average cluster lifetime is calculated as the
sum of all the cluster lifetimes divided by the number of clusters generated in the simulation.

66.5.2 Simulation Results

We simulate a MANET by placing N nodes within a bounded region of area A. The nodes move according
to the random way-point model [14] with zero pause time and constant node speed V . All the nodes have
uniform transmission range, which varies from 30 to 210 m in different simulations. For each simulation,
we examine the first 300 s of simulation time. All the simulation results presented here are an average of
10 different simulation runs. We also plot 95% confidence intervals for the means. The small confidence
intervals show that our simulation results precisely represent the unknown means.

A set of representative simulation results (N = 100, A = 500 m × 500 m, V = 5 m/s) are shown in
Figure 66.6 and Figure 66.7. For the tree-based algorithm, we implement a baseline version which does
not consider link stability during cluster split. Also, since the tree-based algorithm allows for controlling
cluster merging frequency and LCC and the degree-based algorithm do not, we have set the desirable size
of a cluster to ∞.

(A) Comparing the node-centric LCC and the cluster-centric diameter-2 schemes. Figure 66.6(a) indicates
that the average number of clusters in the system maintained by the diameter-2 clustering schemes is
about half of that maintained by LCC. Figure 66.6(b) shows that the number of nodes changing clusters in
LCC is significantly larger than in either of the diameter-2 schemes. This is hardly a surprise since LCC is
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FIGURE 66.6 Comparing the performance of different clustering schemes. (a) Average number of clusters. (b) Total
number of nodes changing clusters.
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FIGURE 66.7 Comparing the performance of different clustering schemes. (a) Average cluster lifetime. (b) Total
number of clusters generated during simulation.

node-centric and it is obvious that clusters predicated on the existence of a central node (the cluster-head)
are more brittle than regular diameter-2 clusters. This is further confirmed by Figure 66.7(a) that illustrates
that the average lifetime of clusters generated by LCC is shorter than the lifetime of clusters generated by
either of the diameter-2 schemes. These results demonstrate that by removing the central-node constraint,
the diameter-2 cluster is a much more stable structure and can provide better quality clusters, especially in
MANET applications where central node is not necessary, such as [7,15,16].

(B) Comparing the tree-based algorithm and the degree-based algorithm. In terms of the average number
of clusters maintained in the system, the tree-based algorithm is slightly better than the degree-based
algorithm as shown in Figure 66.6(a). Figure 66.7(a) shows that the average cluster lifetime in the tree-
based algorithm is longer than in the degree-based algorithm. From Figure 66.7(b), we can see that the
degree-based algorithm generates many more new clusters than the tree-based algorithm. On the other
hand, Figure 66.6(b) shows that the total number of nodes changing clusters is significantly larger in the
tree-based algorithm than in the degree-based algorithm. The explanation is simple: the degree-based
algorithm tends to generate single-node clusters during cluster split, while the clusters generated by the
tree-based algorithm are much more balanced. The net effect is that when a cluster split/merge happens,
a larger number of nodes change clusters in the tree-based algorithm than in the degree-based algorithm.
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FIGURE 66.8 Comparing the maintenance overhead of tree- and degree-based algorithms. (a) Number of benign
intra-cluster link changes. (b) Ratio of benign link changes.

This result shows that the number of nodes changing clusters is not always indicative of the quality of the
cluster maintenance algorithm. Note that the single-node clusters generated in the degree-based algorithm
are short-living and will be merged with other clusters soon, hence they do not significantly influence the
average number of clusters maintained in the system shown in Figure 66.6(a).

It is important to realize that what really distinguishes the tree-based algorithm and the degree-based
algorithm is the cluster maintenance overhead. Since the degree of a node is a rather unstable parameter,
in the degree-based algorithm, every link change (formation and breakage) has to be forwarded to all the
cluster members. This is certainly not the case in the tree-based algorithm where, as long as the cluster
is still diameter-2, link formation and link breakage are propagated in the HELLO beaconing message as
described in Section 66.4 and will not be forwarded by the other nodes.

To take this point one step further, we count the total number of intra-cluster link changes during the
simulation. We call a link change between nodes A and B in the same cluster benign if after the change nodes
A and B remain in the original diameter-2 cluster, and A and B have a common two-hop neighbor. For
example, in the cluster shown in Figure 66.5(a), the breakage of link (6,7) is benign since the resultant graph
is still diameter-2, and nodes 6 and 7 have a common two-hop neighbor (node 8). However, the breakage
of link (3,8) is not benign since nodes 3 and 8 do not have a common two-hop neighbor. We note that,
trivially, the tree-based algorithm saves at least one message forwarding per benign link change over the
degree-based algorithm. We count the number and ratio of benign link changes, and the corresponding
simulation results are shown in Figure 66.8. As the simulation result shows, the ratio of benign link
changes is quite significant, and as the node density becomes higher, the savings become more and more
significant.

Our simulation results have revealed an interesting piece of evidence that speaks for the robustness of our
tree-based algorithm: even when multiple link failures occur in a cluster, the probability of the existence of
a maintenance leader is still very high. Theoretically, when multiple edges are removed from a diameter-2
graph, there may no longer exist a maintenance leader in the resulting graph. There are two approaches
that can be employed by the tree-based algorithm to deal with this situation. The first approach is to predict
link failure ahead of time whenever possible. Thus, when multiple link failures occur at the same time,
all these links are actually still there, and the maintenance leader can arbitrarily choose one link as the
only broken link. Essentially, this prevents real link failures from occurring in the first place. The second
approach is to simply let multiple link failures occur. By Corollary 66.1, if a maintenance leader exists, each
node will know the maintenance result in at most four message rounds. A node sets a 4-message round
long timer when violation is detected. Upon time-out, each node uses the cluster initialization algorithm
described in Subsection 66.4.4 as the last resort for cluster maintenance.
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66.6 Application

In this section, we discuss topology control [17] in mobile ad hoc networks as a sample application of
the cluster-based general-purpose infrastructure we have proposed. We propose a cluster-based algorithm
to construct an approximate Minimum Spanning Tree (MST). The algorithm has three phases: Phase 1:
cluster formation. A distributed clustering algorithm is used to generate and maintain clusters in the
network. In this work, our focus is the diameter-2 clustering we have proposed. Phase 2: forming intra-
cluster MST. In our infrastructure, since each cluster is diameter-2, a distributed MST algorithm exists
that finishes very quickly [1]. Alternatively, a leader for topology control can be elected in each cluster,
which is responsible for running a centralized MST algorithm (such as Kruskal’s algorithm [10]). Note
that this leader is a logical leader for the topology control application only. Phase 3: connecting clusters. In
this phase, connectivity between adjacent clusters is considered. Each cluster runs the following algorithm:
by exchanging information with neighboring clusters only, a cluster knows its shortest link to each of its
adjacent clusters, as well as the shortest links between each pair of its adjacent clusters. Based on this
information, a cluster constructs a Localized Minimum Spanning Tree (LMST) [18]. Note that each node
in the LMST is a cluster, and each edge is the LMST is an actual link between two nodes. When running the
LMST to establish connections between two adjacent clusters, the power assigned to the involved nodes
is increased only. The collections of all edges in the LMSTs constructed by all nodes, as well as the links
selected in Phase 2, form the resulting structure.

We have conducted a simulation study to determine the effectiveness of our cluster-based MST algorithm.
In this study, 100–500 nodes were distributed uniformly at random in an area of 1000 ∗ 1000 m2. When
operating at full transmission power, each node has a transmission range of 250 m. In the simulation, for
a specific number of nodes, we generate 50 different topologies. And the result is the average of these 50
simulation runs. Also, in this simulation, we consider static topology only.

We consider the following metrics in the simulation: (1) The two most important metrics, average link
length and number of links in the resulting topology, consider only the bidirectional links in the resulting
connected structures. For a connected network with N nodes, its MST has N − 1 links. The average link
length is calculated as the sum of the length of each link divided by the number of links. (2) The degree
of the node is counted in the following way: for a node u with transmission power Pu , and a node v with
transmission power Pv , if the distance between u and v is not larger than Pv , then node v is considered as
a neighbor of u. Note that this relationship is not symmetric. (3) Average node power is calculated as the
sum of the powers assigned to each node divided by the total number of nodes in the network. (4) Max
node power: it is the maximum value among the powers assigned to the nodes in the network.

For any given topology, the diameter-2 clustering scheme can potentially generate/maintain fewer (or
equal) number of clusters than any central-node-based clustering scheme, hence there are more topology
information available for making intra-cluster decisions (since there are more nodes in a cluster) and for
making inter-cluster decisions (since there are fewer clusters in the network), leading to a better-quality
global structure.

Detailed simulation results are shown in Table 66.1. In the table, MST is the result using a centralized
Kruskal’s algorithm, Diameter-2 and LowestID are the results of diameter-2 clustering and the lowestID
clustering, respectively. From the simulation result, it is evident that resulting topology constructed by
our cluster-based MST algorithm approximates the MST effectively in terms of all the four performance
metrics used. Specifically, (1) the average link length of the resulting structure is very close to the optimal
value (the approximation ratio is 1.06, 1.06, 1.05, 1.08, 1.05 as the number of nodes increases from 100 to
500); the number of links in the resulting structure is about three more than the optimal value, regardless
of the number of nodes in the networks (the approximation ratio is 1.03, 1.02, 1.01, 1.01, 1.01 as the
number of nodes increases from 100 to 500). (2) The average node degree keeps stable when the number
of nodes increases (the approximation ratio is 1.15, 1.16, 1.14, 1.12, 1.16 as the number of nodes increases
from 100 to 500). (3) The average node power is very close to the optimal value (as the number of nodes
increases from 100 to 500; the approximation ratio of the average node power is 1.09, 1.08, 1.07, 1.07, 1.07).
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TABLE 66.1 Performance Comparison of the Three Topology Control Algorithms

Number of Nodes Algorithm MST Diameter-2 LowestID

100 Max node power 164.44 190.32 192.23
100 Average node power 82.19 89.89 90.89
100 Average node degree 2.51 2.89 2.93
100 Average link length 68.06 72.14 72.77
100 Number of links 99 102.42 103.20
200 Max node power 116.74 147.80 149.71
200 Average node power 57.73 62.51 62.88
200 Average node degree 2.51 2.90 2.92
200 Average link length 47.42 50.32 50.50
200 Number of links 199 202.58 202.94
300 Max node power 99.44 124.19 125.79
300 Average node power 46.97 50.41 50.53
300 Average node degree 2.50 2.85 2.86
300 Average link length 38.66 40.70 40.79
300 Number of links 299 302.78 303.06
400 Max node power 86.70 110.51 113.82
400 Average node power 40.28 42.94 43.15
400 Average node degree 2.51 2.81 2.83
400 Average link length 33.19 35.74 34.85
400 Number of links 399 402.92 403.52
500 Max node power 78.44 99.75 100.42
500 Average node power 36.00 38.36 38.48
500 Average node degree 2.51 2.80 2.81
500 Average link length 29.67 31.09 31.15
500 Number of links 499 503.58 504.04

(4) The approximation ratio of the max node power is a little high (1.16, 1.27, 1.25, 1.27, 1.27 as the number
of nodes increases from 100 to 500). This is expected since max node power is determined by the critical
part of a network. In fact, it is proved in Ref. [17] that it is impossible for any localized algorithm to
construct a connected structure such that the max node power based on this structure is within a constant
factor of that based on MST.

In the simulation result, the diameter-2 clustering consistently generates better-quality structures than
the lowestID clustering in terms of all the performance metrics used; however the difference between the
two is small. The reason is that the simulation is conducted on static topologies only, and under static
topologies, the difference between these two clustering schemes is not as dramatic as the difference in face
of mobility (see Figure 66.6(a)). The advantage of diameter-2 clustering scheme is expected to be more
obvious in face of node mobility.

Finally, it is worth emphasizing that in this section we use MST construction as an illustration of the
application of our proposed general-purpose infrastructure; but in fact, the cluster-based infrastructure
provides a powerful general framework, and similar approaches can be used to establish many other global
structures such as strongly connected graphs [19].

66.7 Concluding Remarks

A large number of clustering schemes for MANET have been proposed in the recent literature. In general,
we believe that a clustering scheme that can generate a more stable and symmetric virtual infrastructure is
especially suitable for MANET, and such a virtual infrastructure can be leveraged by a number of MANET
applications without introducing traffic bottlenecks and single points of failure. To illustrate the feasibility
of this concept we have proposed a tree-based cluster initialization/maintenance algorithm for MANET
based on a number of properties of diameter-2 graphs. The resulting algorithm is cluster-centric and works
in the presence of node mobility. Simulation results demonstrated the effectiveness of our algorithm when
compared to other clustering schemes in the literature.
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The tree-based clustering algorithm proposed in this chapter can be further generalized to achieve (d1,
d2)-clustering in which: two clusters merge when the diameter of the resulting cluster is not larger than
d1, and a cluster is split into several diameter-d1 clusters if its diameter is larger than d2. By adaptively
changing the values of d1 and d2, a stable and symmetric general-purpose virtual infrastructure can be
achieved efficiently in large-scale MANET.
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67.1 Introduction

An ad hoc network consists of a collection of transceivers (nodes). All communication among these
nodes is based on radio propagation. The term “ad hoc” is used to indicate that the nodes organize
themselves into a network without any preexisting infrastructure. Wireless ad hoc networks are used
in a number of applications including military operations, cellular phones, and emergency search-and-
rescue operations [1,2]. In such networks, battery power is a precious resource. This chapter presents
approximation algorithms for several problems that arise in the context of wireless ad hoc networks,
where the main goal is to minimize the power used by the nodes.

To develop precise formulations of the problems considered in this chapter, we need to introduce
some basic concepts and terminology regarding the nodes used in the ad hoc network. For each ordered
pair (u, v) of nodes, there is a transmission power threshold, denoted by p(u, v), with the following
significance: A signal transmitted by the node u can be received by v only when the transmission power of
u is at least p(u, v). The transmission power threshold for a pair of nodes depends on a number of factors
including the distance between the nodes, the antenna gain at the sender and the receiver, interference,
and noise [3].

Each assignment of powers to the nodes of an ad hoc network induces a directed graph in the following
manner. The nodes of this directed graph are in one-to-one correspondence with the nodes of the ad hoc
network. A directed edge (u, v) is in this graph if and only if the transmission power of u is at least
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the transmission power threshold p(u, v). The main goal of topology control is to assign transmission
powers to nodes so that the resulting directed graph satisfies some specified properties. Since the battery
power of each node is an expensive resource, it is important to achieve the goal while minimizing a given
function of the transmission powers assigned to the nodes. Examples of desirable graph properties are
connectivity, small diameter, and so on. The primary minimization objectives considered in the literature
are the maximum power assigned to a node and the total power assigned to all nodes (the latter objective
is equivalent to minimizing the average power assigned to a node). Most of the results presented in this
chapter deal with the minimum total power objective.

Unless otherwise mentioned, the power threshold values are assumed to be symmetric; that is, for any
pair of nodes u and v, p(u, v) = p(v, u). Under this assumption, the power threshold values can be
represented by an undirected complete graph which we call the threshold graph. The weight of each edge
{u, v} in this graph is the transmission power threshold p(u, v).

As stated above, the main motivation for studying topology control problems is to make efficient use
of available power at each node. In addition, using a minimum amount of power at each node to achieve
a given task is also likely to decrease the interference in the medium access (MAC) layer between adjacent
radios. We refer the reader to Refs. [3–5] for a thorough discussion of the power control issues in ad hoc
networks. References [6,7] present surveys on topology control. The emphasis of Ref. [6] is on how
topology control can facilitate the design of routing protocols for ad hoc networks. Reference [7] provides
a thorough coverage of the practical aspects of topology control.

Precise formulations of the optimization problems considered in this chapter are provided in
Section 67.2. Many of these problems are NP-complete. The practical importance of these problems
motivates the study of approximation algorithms for them. The focus of this chapter is on approxima-
tion algorithms with proven performance guarantees. Our goal is to discuss some known techniques
for developing such approximation algorithms rather than to provide a survey on the topic of topology
control.

The remainder of this chapter is organized as follows. Section 67.2 provides the necessary definitions
and develops a notation for specifying topology control problems. Section 67.3 presents approximation
algorithms for topology control problems where the goal is to minimize the total power assigned to
the nodes of the network. Both centralized and distributed approximation algorithms are discussed in
that section. Section 67.4 summarizes known approximation results for other objectives. Finally, some
directions for future research are presented in Section 67.5.

67.2 Model and Problem Formulation

67.2.1 Graph Models for Topology Control

Topology control problems have been studied under two graph models. The discussion in Section 67.1
corresponds to the directed graph model studied in Ref. [3]. In the undirected graph model considered
in Ref. [8], each power assignment induces an undirected graph in the following manner. An undirected
edge {u, v} is in this graph if and only if the transmission powers of u and v are both at least the trans-
mission power threshold p(u, v). Under this model, the goal of a topology control problem is to assign
transmission powers to nodes such that the resulting undirected graph has a specified property, and a
specified function of the powers assigned to nodes is minimized. Note that the directed graph model
allows two-way communication between some pairs of nodes and one-way communication between
other pairs of nodes. In contrast, every edge in the undirected graph model corresponds to a two-way
communication.

67.2.2 Notation for Topology Control Problems

In general, a topology control problem can be specified by a triple of the form 〈M, P, O〉. In such a
specification, M ∈ {DIR, UNDIR} represents the graph model, P the desired graph property and O the

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C067 March 20, 2007 18:43

Topology Control Problems 67-3

minimization objective. For the problems considered in this chapter, O ∈ {MAXP, TOTALP} (abbreviations
of Max Power and Total Power). For example, in the 〈DIR, STRONGLY CONNECTED, MAXP〉 problem, powers
must be assigned to nodes so that the resulting directed graph (induced by the assigned powers in relation
to the edges of the threshold graph) is strongly connected and the maximum power assigned to a node is
minimized. Similarly, the 〈UNDIR, 2-NODE-CONNECTED, TOTALP〉 problem seeks to assign powers to the
nodes so that the resulting undirected graph has a node connectivity (see below for definition) of (at least)
2 and the sum of the powers assigned to all nodes is minimized. Throughout this chapter, an instance of
an 〈M, P, O〉 problem is specified by a threshold graph.

67.2.3 Additional Definitions

This section collects together the definitions of some graph theoretic and algorithmic terms used through-
out this chapter.

Given an undirected graph G(V, E ), an edge subgraph G ′(V, E ′) of G has all of the nodes of G and
the edge set E ′ is a subset of E . Further, if G is an edge-weighted graph, then the weight of each edge in
G ′ is the same as it is in G .

The node connectivity of an undirected graph is the smallest number of nodes that must be deleted
from the graph so that the resulting graph is disconnected. The edge connectivity of an undirected
graph is the smallest number of edges that must be deleted from the graph so that the resulting graph is
disconnected. For example, a tree has node and edge connectivities equal to 1 while a simple cycle has
node and edge connectivities equal to 2. When the node (edge) connectivity of a graph is greater than
or equal to k, the graph is said to be k-node connected (k-edge connected). Given an undirected graph,
polynomial algorithms are known for finding its node and edge connectivities [9].

Some of the results presented in this chapter use the following definition.

Definition 67.1

A property P of the (directed or undirected) graph induced by a power assignment is monotone if the property
continues to hold even when the powers assigned to some nodes are increased while the powers assigned to the
other nodes remain unchanged.

Example 67.1

For any k ≥ 1, the property k-NODE-CONNECTED for undirected graphs is monotone since increasing
the powers of some nodes while keeping the powers of other nodes unchanged may only add edges to the
graph. However, properties such as ACYCLIC or BIPARTITE are not monotone.

We say that an approximation algorithm provides a performance guarantee of ρ if for every instance
of the problem, the solution produced by the approximation algorithm is within the multiplicative factor
of ρ of the optimal solution.

67.3 Approximation Algorithms for Minimizing Total Power

67.3.1 A General Framework

Topology control problems in which the minimization objective is total power tend to be computationally
intractable. For example, the problem is NP-hard even for the (simple) property 1-NODE-CONNECTED [8].
In this section, we first discuss a general framework developed in Ref. [10] for approximation algorithms
for topology control problems of the form 〈UNDIR, P, TOTALP〉. We then discuss how approximation
algorithms for several graph properties can be derived from this framework.
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Input: An instance I of 〈Undir,  P,  TotalP〉 where the property P is monotone and polynomial-time
testable.

Output: A power value π(u) for each node u such that the undirected graph induced by the power assignment
satisfies property P and the total power assigned to all nodes is as small as possible.

Steps:

1. Let Gc(V, Ec) denote the threshold graph for the given problem instance.

2. Construct an edge subgraph G ′(V, E ′) of Gc such that G ′ satisfies property P and the total weight of
the edges in E ′ is minimum among all edge subgraphs of Gc satisfying property P.

3. For each node u, assign a power value π(u) equal to the weight of the largest edge in E ′ incident on u.

FIGURE 67.1 Heuristic GEN-TOTAL-POWER: A general framework for approximating total power.

The framework assumes that the property P to be satisfied by the graph is monotone and that it can be
tested in polynomial time. It also assumes symmetric power thresholds as in Refs. [8,11,12]; that is, for any
pair of nodes u and v, the power thresholds p(u, v) and p(v, u) are equal.

The general approximation framework (called Heuristic GEN-TOTAL-POWER) is shown in Figure 67.1.
Note that steps 1 and 3 of the heuristic can be implemented in polynomial time. The time complexity of
step 2 depends crucially on the property P. For some properties such as 1-NODE CONNECTED, step 2 can
be done in polynomial time. For other properties such as 2-NODE CONNECTED, step 2 cannot be done in
polynomial time, unless P = NP [13]. In such cases, an efficient algorithm that produces an approximately
minimum solution can be used in step 2. Theorem 67.1 proves the correctness of the general approach
and establishes its performance guarantee as a function of some parameters that depend on the property
P and the approximation algorithm used in step 2 of the framework.

Theorem 67.1

Let I be an instance of 〈UNDIR, P, TOTALP〉, where P is a monotone property. Let OPT(I) and GTP(I) denote
respectively the total power assigned to the nodes in an optimal solution and in a solution produced by Heuristic
GEN-TOTAL-POWER for the instance I . Then, the following hold.

(i) The graph Gπ induced by the power assignment produced by the heuristic (i.e., step 3) satisfies
property P.

(ii) Let H(V, E H ) be an edge subgraph of the threshold graph G c such that H has the minimum total
edge weight among all edge subgraphs of G c satisfying property P. Let W(H) denote the total edge
weight of H. Let step 2 of the heuristic produce an edge subgraph G ′(V, E ′) of G with total edge weight
W(G ′). Suppose there are quantities α > 0 and β > 0 such that (a) W(H) ≤ α OPT(I) and (b)
W(G ′) ≤ β W(H). Then, GTP(I) ≤ 2αβ OPT(I). That is, Heuristic GEN-TOTAL-POWER provides a
performance guarantee of 2αβ.

Proof
Part (i). The edge subgraph G ′(V, E ′) constructed in step 2 of the heuristic satisfies property P. We
show that every edge in E ′ is also in the subgraph Gπ induced by the power assignment π produced
in step 3. Then, even if Gπ has other edges, the monotonicity of P allows us to conclude that Gπ

satisfies P.
Consider an edge {u, v} with weight p(u, v) in E ′. Recall that p(u, v) is the minimum power threshold

for the existence of edge {u, v} and that the power thresholds are symmetric. Since step 3 assigns to
each node the maximum of the weights of edges incident on that node, we have π(u) ≥ p(u, v) and
π(v) ≥ p(u, v). Therefore, the graph Gπ induced by the power assignment also contains the edge {u, v}
and this completes the proof of Part (i).
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Part (ii). By conditions (a) and (b) in the statement of the theorem, we have W(G ′) ≤ α β OPT(I). We
observe that GTP(I) ≤ 2 W(G ′). This is because step 3 of the heuristic may assign the weight of any
edge to at most two nodes (namely, the endpoints of the edge). Combining the two inequalities, we get
GTP(I) ≤ 2αβ OPT(I).

67.3.2 Applications of Theorem 67.1

This section presents several examples of approximation algorithms derived from the general framework
outlined in Figure 67.1.

67.3.2.1 An Approximation Algorithm for 〈UNDIR, 1-NODE-CONNECTED, TOTALP〉
As a first example, we observe that the 2-approximation algorithm presented in Ref. [8] for the
〈UNDIR, 1-NODE-CONNECTED, TOTALP〉 problem can be derived from the above general framework. In
step 2 of the framework, the algorithm in Ref. [8] constructs a minimum spanning tree of G c . It is also
shown that the total power assigned by any optimal solution is at least the weight of a minimum spanning
tree of G c (see Lemma 67.9). Thus, using the notation of Theorem 67.1, α = β = 1 for their approxima-
tion algorithm. Since 1-NODE-CONNECTED is a monotone property, it follows from Theorem 67.1 that the
performance guarantee of their algorithm is 2. A different approximation algorithm with a performance
guarantee of 2 for 〈UNDIR, 1-NODE-CONNECTED, TOTALP〉 was presented in Ref. [14]. The best known
approximation algorithm for this problem provides a performance guarantee of 5/3 + ε, for any fixed
ε > 0 [15].

67.3.2.2 An Approximation Algorithm for 〈UNDIR, 2-NODE-CONNECTED, TOTALP〉
The approximation algorithm discussed in this section is from Ref. [10]. The NP-hardness of the
〈UNDIR, 2-NODE-CONNECTED, TOTALP〉 problem was established in Ref. [16]. We note that the prop-
erty 2-NODE-CONNECTED is monotone. The following notation is used throughout this section. I denotes
the given instance of 〈UNDIR, 2-NODE-CONNECTED, TOTALP〉 with n nodes. For each node u, π∗(u) denotes
the power assigned to u in an optimal solution. Further, OPT(I) denotes the sum of the powers assigned
to the nodes in an optimal solution.

The approximation algorithm in Ref. [10] for the 〈UNDIR, 2-NODE-CONNECTED, TOTALP〉 problem is
obtained from the framework of Figure 67.1 by using an approximation algorithm from Ref. [17] for
the minimum-weight 2-NODE-CONNECTED subgraph problem in step 2. This approximation algorithm
provides a performance guarantee of (2 + 1/n). Thus, using the notation of Theorem 67.1, we have
β ≤ (2 + 1/n).

Lemma 67.1 below shows that the threshold graph G c (V, E c ) of the instance I contains an edge
subgraph G 1(V, E 1) such that G 1 is 2-NODE-CONNECTED and the total weight W(G 1) of the edges in
G 1 is at most (2 − 2/n) OPT(I). Again, using the notation of Theorem 67.1, this result implies that
α ≤ (2 − 2/n).

Thus, once Lemma 67.1 is established, it would follow from Theorem 67.1 that the performance
guarantee of the resulting approximation algorithm is 2 (2 − 2/n) (2 + 1/n), which approaches 8 asymp-
totically from below. The remainder of this section is devoted to the formal statement and proof of
Lemma 67.1.

Lemma 67.1

Let I denote an instance of the 〈UNDIR, 2-NODE-CONNECTED, TOTALP〉 problem with n nodes. Let G c (V, E c )
denote the threshold graph for the instance I . Let OPT(I) denote the total power assigned to the nodes in an
optimal solution to I . There is an edge subgraph G 1(V, E 1) of G c such that G 1 is 2-NODE-CONNECTED and
the total weight W(G 1) of the edges in G 1 is at most (2 − 2/n) OPT(I).
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Our proof of Lemma 67.1 begins with an optimal power assignment π∗ to instance I and constructs a
graph G 1 satisfying the properties mentioned in the above statement. This construction relies on several
definitions and known results from graph theory.

Definition 67.2

Let G(V, E ) be an undirected graph. Suppose the node sequence 〈v1, v2, v3, . . ., vk , v1〉 forms a simple cycle C
of length at least 4 in G. Any edge {vi , v j } of G (1 ≤ i �= j ≤ k) which is not in C is a chord.

Definition 67.3

An undirected graph G(V, E ) is critically 2-NODE-CONNECTED if it satisfies both of the following conditions:
(i) G is 2-NODE-CONNECTED. (ii) For every edge e ∈ E , the subgraph of G obtained by deleting the edge e is
not 2-NODE-CONNECTED.

For example, a simple cycle on three or more nodes is critically 2-NODE-CONNECTED. This is because
such a cycle is 2-NODE-CONNECTED, and deleting any edge of the cycle yields a simple path which is not
2-NODE-CONNECTED. A number of properties of critically 2-NODE-CONNECTED graphs have been estab-
lished in the literature (see, e. g., Refs. [18–20]). In proving Lemma 67.1. we use the following property
established1 in Refs. [18,19].

Proposition 67.1

If a graph G is critically 2-NODE-CONNECTED then no cycle of G has a chord.

We also need some terminology associated with Depth-First-Search (DFS) [21]. When DFS is carried
out on a connected undirected graph G(V, E ), a spanning tree T(V, E T ) is produced. Each edge in
T is called a tree edge. Each tree edge joins a child to its parent. An ancestor of a node u in T is a node
which is not the parent of u but which is encountered in the path from u to the root of T . Each edge
in E − E T is called a back edge. Each back edge joins a node u to an ancestor of u in T . The following
lemma establishes a simple property of back edges that arise when DFS is carried out on a critically
2-NODE-CONNECTED graph.

Lemma 67.2

Let G(V, E ) be a critically 2-NODE-CONNECTED graph and let T(V, E T ) be a spanning tree for G produced
using DFS. For any node u, there is at most one back edge from u to an ancestor of u in T.

Proof
The proof is by contradiction. Suppose a node u has two or more back edges. Let v and w be two ancestors
of u in T such that both {u, v} and {u, w} are back edges. Note that these two edges are in G . Without
loss of generality, let w be encountered before v in the path in T from the root to u. The path from w
to u in T together with the edge {u, w} forms a cycle in G . By our choice of w , this cycle also includes
the node v. Therefore, the edge {u, v} is a chord in the cycle. This contradicts the assumption that G
is critically 2-NODE-CONNECTED since by Proposition 67.1, no cycle in G can have a chord. The lemma
follows.

We now prove several additional lemmas that are used in our proof of Lemma 67.1. Consider the given
instance I of the 〈UNDIR, 2-NODE-CONNECTED, TOTALP〉 problem and let V denote the set of nodes. For
the chosen optimal power assignment π∗, let p∗ denote the maximum power value assigned to a node. Let
the chosen optimal power assignment induce the graph Gπ∗ . Note that Gπ∗ is 2-NODE-CONNECTED. Let
G∗

1(V, E ∗
1 ) be an edge subgraph of Gπ∗ such that G∗

1 is critically 2-NODE-CONNECTED. Such a subgraph
can be obtained by starting with Gπ∗ and repeatedly removing edges until no further edge deletion

1It should be noted that the graph theoretic terminology used in Refs. [18,19] is different from that used in this
chapter. The statement of Proposition 67.1 given above is from Ref. [20].
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is possible without violating the property. For each edge {u, v} of G∗
1, we assign a weight w1(u, v) as

follows:

1. Let r be a node such that π∗(r ) = p∗. Using r as the root, perform a DFS of G∗
1. Let T(V, E T ) be

the resulting spanning tree. Thus, each edge of G∗
1 is either a tree edge or a back edge.

2. For each tree edge {u, v} where v is the parent of u, let w1(u, v) = π∗(u).
3. For each back edge {u, v} where v is an ancestor of u, let w1(u, v) = π∗(u).

We can now bound the total weight W1(G∗
1) of the edges in G∗

1 under the edge weight function w1.

Lemma 67.3

W1(G∗
1) ≤ (2 − 2/n) OPT(I).

Proof
As mentioned above, each edge of G∗

1 is either a tree edge or a back edge. Consider the tree edges first. For
each tree edge {u, v}, where v is the parent of u, w1(u, v) = π∗(u). Thus, the weight π∗(u) is assigned to
at most one tree edge (namely, the edge that joins u to the parent of u if any in T). The power value of the
root r in the optimal solution, namely p∗, is not assigned to any tree edge (since the root has no parent).
Thus, the total weight of all of the tree edges under the weight function w1 is bounded by OPT(I) − p∗.

Now consider the back edges. For each back edge {u, v}, where v is an ancestor of u, w1(u, v) = π∗(u).
Since G∗

1 is critically 2-NODE-CONNECTED, by Lemma 67.2, each node has at most one back edge to an
ancestor. Thus, the weight π∗(u) is assigned to at most one back edge. Again, the power value p∗ of the
root r in the optimal solution is not assigned to any back edge. Thus, the total weight of all of the back
edges under the weight function w1 is also bounded by OPT(I) − p∗.

Therefore, the total weight W1(G∗
1) of all of the edges in G∗

1 under the edge-weight function w1 is at
most 2 OPT(I) − 2 p∗. Since p∗ is the largest power value assigned to a node in the optimal solution, p∗
is at least OPT(I)/n. Hence, W1(G∗

1) is bounded by (2 − 2/n) OPT(I) as required.

The following lemma relates the weight w1(u, v) of an edge {u, v} to the power threshold p(u, v) needed
for the existence of the edge.

Lemma 67.4

For any edge {u, v} in G∗
1 , p(u, v) ≤ w1(u, v).

Proof
Consider any edge {u, v} in G∗

1. Since G∗
1 is an edge subgraph of Gπ∗ (the graph induced by the chosen

optimal power assignment), {u, v} is also an edge in Gπ∗ . Also, recall that the minimum power threshold
values are symmetric. Therefore, π∗(u) ≥ p(u, v) and π∗(v) ≥ p(u, v). Hence, min{π∗(u), π∗(v)} ≥
p(u, v). The weight assigned to the edge {u, v} by the edge-weight function w1 is either π∗(u) or π∗(v).
Therefore, w1(u, v) ≥ min{π∗(u), π∗(v)}. It follows that w1(u, v) ≥ p(u, v).

We are now ready to complete the proof of Lemma 67.1.

Proof of Lemma 67.1
Starting from the optimal power assignment π∗, construct the graph G∗

1(V, E ∗
1 ) as described above.

Since the threshold graph G c is complete, every edge in G∗
1 is also in G c . Consider the edge subgraph

G 1(V, E 1) of G c where E 1 = E ∗
1 . Since G∗

1 is 2-NODE-CONNECTED, so is G 1. By Lemma 67.4, for each
edge {u, v} in E 1, p(u, v) ≤ w1(u, v). Therefore, the total weight W(G 1) of all of the edges in G 1 under
the edge-weight function p is at most W1(G∗

1). By Lemma 67.3, W1(G∗
1) is bounded by (2−2/n) OPT(I).

Therefore, W(G 1) is also bounded by (2 − 2/n) OPT(I). In other words, the edge subgraph G 1(V, E 1) is
2-NODE-CONNECTED and the total weight of all its edges is at most (2 − 2/n) OPT(I). This completes the
proof of Lemma 67.1.

Theorem 67.2 is a direct consequence of the above discussion.
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Theorem 67.2

There is a polynomial-time approximation algorithm with a performance guarantee of 2 (2 − 2/n) (2 + 1/n)
(which approaches 8 asymptotically from below) for the 〈UNDIR, 2-NODE-CONNECTED, TOTALP〉
problem.

67.3.2.3 An Approximation Algorithm for 〈UNDIR, 2-EDGE-CONNECTED, TOTALP〉
A result analogous to Theorem 67.2 has also been obtained in Ref. [10] for the 〈UNDIR, 2-EDGE-CONNECTED,
TOTALP〉 problem, where the goal is to induce a graph that is 2-EDGE-CONNECTED. This problem has also
been shown to be NP-complete in Ref. [16]. To obtain an approximation algorithm for this problem
from the general framework, an approximation algorithm of Khuller and Vishkin [22] is used. Their
approximation algorithm produces a 2-EDGE-CONNECTED subgraph whose cost is at most twice that of a
minimum 2-EDGE-CONNECTED subgraph. In the notation of Theorem 67.1, we have β ≤ 2. Again using the
notation of Theorem 67.1, it is also possible to show that α ≤ (2 − 1/n). The proof of this result is almost
identical to that for the 2-NODE-CONNECTED case, except that we need an analog of Proposition 67.1.
Before stating this analog, we have the following definition (which is analogous to Definition 67.3).

Definition 67.4

An undirected graph G(V, E ) is critically 2-EDGE-CONNECTED if it satisfies both of the following conditions:
(i) G is 2-EDGE-CONNECTED. (ii) For every edge e ∈ E , the subgraph of G obtained by deleting the edge e is
not 2-EDGE-CONNECTED.

The following is the analog of Proposition 67.1 for critically 2-EDGE-CONNECTED graphs.

Proposition 67.2

If a graph G is critically 2-EDGE-CONNECTED then no cycle of G has a chord.

Proof
The proof is by contradiction. Suppose G is critically 2-EDGE-CONNECTED but there is a cycle C =
〈v1, v2, . . . , vr 〉, with r ≥ 4, with a chord {vi , v j }. Consider the graph G ′ obtained from G by deleting
the chord {vi , v j }. We will show that G ′ is 2-EDGE-CONNECTED, thus contradicting the assumption that
G is critically 2-EDGE-CONNECTED.

To show that G ′ is 2-EDGE-CONNECTED, it suffices to show that G ′ cannot be disconnected by deleting
any single edge. Consider any edge {x , y} of G ′, and let G ′′ denote the graph created by deleting {x , y}
from G ′. Since we deleted only one edge from G ′, all the nodes of the cycle C are in the same connected
component of G ′′. Thus, if we create the graph G 1 by adding the chord {vi , v j } to G ′′, the two graphs
G 1 and G ′′ have the same number of connected components. However, G 1 is also the graph obtained
by deleting the edge {x , y} from G . Since G is 2-EDGE-CONNECTED, G 1 is connected. Thus, G ′′ is also
connected. We therefore conclude that G ′ is 2-EDGE-CONNECTED, and this contradiction completes the
proof of Proposition 67.2.

The remainder of the proof to show that α ≤ (2 − 2/n) is identical to that for the 2-NODE-CONNECTED

case. With α ≤ (2 − 2/n) and β ≤ 2, Theorem 67.3 is a direct consequence of Theorem 67.1.

Theorem 67.3

There is a polynomial-time approximation algorithm with a performance guarantee of 8(1 − 1/n) (which
approaches 8 asymptotically from below) for the 〈UNDIR, 2-EDGE-CONNECTED, TOTALP〉 problem.
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67.3.2.4 Improvement by Calinescu and Wan

The approximation algorithms of Sections 67.3.2.2 and 67.3.2.3 were shown to provide a performance
guarantee of at most 8 using the general bound given in Theorem 67.1. By a more careful analysis of the
two algorithms, Calinescu and Wan [16] have shown that the algorithms actually provide a performance
guarantee of at most 4. In particular, they show that the approximation algorithm of Section 67.3.2.3
for the 〈UNDIR, 2-EDGE-CONNECTED, TOTALP〉 problem can be generalized to obtain an approximation
algorithm with a performance guarantee of 2k for the 〈UNDIR, k-EDGE-CONNECTED, TOTALP〉 problem,
for any k ≥ 2. Here, we discuss this general result.

We need to introduce some notation. Given an undirected graph G , the directed graph obtained by
replacing each undirected edge {u, v} by the pair of directed edges (u, v) and (v, u) is denoted by

−→
G . When

each edge e = {u, v} of the graph G has an edge weight w(e), the weights of the directed edges (u, v) and
(v, u) in

−→
G are also set to w(e). For a directed graph D(V, A), we use D to denote the undirected graph

obtained from D by erasing the directions on all the edges and combining multiedges into a single edge.
For an edge-weighted undirected graph G (directed graph D), the total weight of all the edges is denoted
by W(G) (W(D)).

Suppose G(V, E ) is the undirected graph induced by assigning powers to the nodes of an ad hoc
network. For any node u ∈ V , the power of u with respect to G , denoted by pG (u), is given by
pG (u) = max{p(u, v) : {u, v} ∈ E }. The power for inducing G , denoted by P (G), is given by P (G) =∑

u∈V pG (u).
We will also need the directed graph model (Section 67.1) of graphs induced by power assignments.

Recall that in that model, a directed edge (u, v) is in the induced directed graph if and only if the power
assigned to u is at least p(u, v). The definitions of power of a node and the power for inducing a graph given
above for undirected graphs can be readily extended to directed graphs. For any node u of a directed graph
D(V, A), pD(u) is given by pD(u) = max{p(u, v) : (u, v) ∈ A}. Likewise, P (D) is given by P (D) =∑

u∈V pD(u).
A directed graph is strongly k-edge-connected if for each pair of nodes u and v, there are at least k

edge-disjoint paths from u to v. A directed graph D(V, A) is an inward branching rooted at a node s ∈ V
if |A| = |V |− 1 and there is a directed path from each node in V −{s } to s . Thus, in an inward branching
rooted at s , the outdegree of each node except s is 1 and the outdegree of s is 0. The following three-part
observation is a simple consequence of the above definitions.

Observation 67.1

Let G be an undirected graph and D be a directed graph, both having edge weights. Then, the following hold:
(i) P (G) ≤ 2W(G). (ii) W(D) ≤ W(D). (iii) If D is an inward branching, then P (D) = W(D).

Given a directed graph G(V, A), a vertex s ∈ V and an integer k ≥ 1, we say that D is k-Edge-
Inconnected to s if there are at least k edge-disjoint paths from each vertex in V − {s } to s . The following
known results about k-EDGE-INCONNECTED graphs are used in proving the main result of this section.

Theorem 67.4

(a) Suppose D(V, A) is k-EDGE-INCONNECTED to a vertex s ∈ V. Then A contains k pairwise disjoint
subsets A1, A2, . . ., Ak such that for each i , 1 ≤ i ≤ k, the directed graph Bi (V, Ai ) is an inward
branching rooted at s [23].

(b) Given a directed graph D(V, A) with a nonnegative weight for each edge, an integer k ≥ 2 and a
vertex s ∈ V, the problem of obtaining a subgraph D1(V, A1) of minimum total weight such that D1

is k-EDGE-INCONNECTED to s can be solved in polynomial time [24,25].

Recall that the approximation algorithm of Section 67.3.2.3 was obtained using the Khuller–Vishkin
Algorithm (KV-Algorithm) [22] in step 2 of the general framework. Relying on part (b) of Theorem 67.4,
the KV-Algorithm actually provides a performance guarantee of 2 for the following problem: Given an
integer k ≥ 2 and an undirected and k-EDGE-CONNECTED graph G with nonnegative edge weights, find
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a subgraph H(V, E H ) of minimum weight such that H is also k-EDGE-CONNECTED. We give below the
steps of the KV-Algorithm since they are used in the proof of the main result.

1. From the graph G , construct
−→
G .

2. Choose any vertex s of G and construct a subgraph D of
−→
G such that D is k-EDGE-INCONNECTED

to s and has the smallest total weight among all such subgraphs. (By Part (b) of Theorem 67.4, this
step can be done in polynomial time.)

3. Construct and output D.

It is shown in Ref. [22] that D is k-EDGE-CONNECTED and that W(D) is at most twice the weight of an
optimal solution.

We are now ready to prove the main result of this section. The proof below follows the presentation in
Ref. [16].

Theorem 67.5

For any k ≥ 2, the approximation algorithm obtained by using the KV-Algorithm in step 2 of the general
framework (Figure 67.1) provides a performance guarantee of 2k for the 〈UNDIR, k-EDGE-CONNECTED,
TOTALP〉 problem.

Proof
Let I denote the given instance of the 〈UNDIR, k-EDGE-CONNECTED, TOTALP〉 problem. Let OPT(I) and
HEU(I) denote respectively the total power of an optimal assignment π∗ and that of the power assignment
π produced by the heuristic referred to in the statement of the theorem. Note that π∗ is an optimal power
assignment under the undirected graph model. Our goal is to show that HEU(I) ≤ 2k OPT(I).

Consider an optimal power assignment π∗
d for the instance I under the directed graph model. Let π∗

d
induce the directed graph D∗(V, A∗). Note that D∗ is STRONGLY k-EDGE-CONNECTED. Since the power
threshold values are symmetric, it follows that P (D∗) ≤ OPT(I).

Consider any vertex s ∈ V . Since D∗(V, A∗) is STRONGLY k-EDGE-CONNECTED, D∗ is also k-EDGE-
INCONNECTED to s . By Part (a) of Theorem 67.4, A∗ contains k pairwise disjoint subsets A1, A2, . . ., Ak

such that each directed graph Bi (V, Ai ), 1 ≤ i ≤ k, is an inward branching with s as the root. Thus,
the directed graph D′(V, ∪k

i=1 Ai ) is k-EDGE-INCONNECTED to s . Therefore, the weight of the solution
D found in step 2 of the KV-Algorithm is at most W(D′). Using this observation, the following claim
provides a bound on W(D).

Claim 67.1

W(D) ≤ k OPT(I).

Proof
As mentioned above, W(D) ≤ W(D′). Since W(D′) = ∑k

i=1 W(Bi ), we have

W(D) ≤
k∑

i=1

W(Bi )

=
k∑

i=1

P (Bi ) (Part (iii) of Observation 67.1)

≤
k∑

i=1

P (D∗)

= k P (D∗)

≤ k OPT(I) (since p(D∗) ≤ OPT(I))

as indicated in the statement of the claim.
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The power assignment π output by the approximation algorithm is obtained from the graph D.
Therefore,

HEU(I) = P (D)

≤ 2 W(D) (Part (i) of Observation 67.1)

≤ 2 W(D) (Part (ii) of Observation 67.1)

≤ 2k OPT(I) (Claim 67.1).

This completes the proof of Theorem 67.5.

67.3.2.5 Bicriteria Approximation for Diameter and Total Power

We now present an application of Theorem 67.1 to the topology control problem where the goal is to
induce a graph whose diameter is bounded by a given value. For an undirected graph G(V, E ), recall
that the diameter is given by max{d(u, v) : u, v ∈ V}, where d(u, v) denotes the number of edges in a
shortest path between nodes u and v. Graphs with small diameters are desirable in the context of ad hoc
networks since the diameter determines the largest end-to-end delay in such a network. We assume that
a diameter bound γ is given as part of the problem instance and the goal is to find a power assignment
such that the diameter of the induced graph is at most γ and the total power assigned to the nodes is
minimized. For this problem, denoted by 〈UNDIR, DIAMETER, TOTALP〉, approximation algorithms with
similar performance guarantees were presented in Refs. [26,27]. We discuss the algorithm from Ref. [26].

The 〈UNDIR, DIAMETER, TOTALP〉 problem involves two minimization objectives, namely, the diameter
and the total power. Such bicriteria minimization problems are typically handled by designating one of the
objectives as a budget constraint and the other as the minimization objective [28]. Following Ref. [26], we
will designate the diameter bound as a constraint and total power as the minimization objective. It is shown
in Ref. [26] that if the diameter constraint must be satisfied, the total power cannot be approximated to
within a factor λ log n, for some λ, 0 < λ < 1, unless P = NP. So, the approximation algorithm presented
in Ref. [26] is a bicriteria approximation, where the diameter constraint is violated by a certain factor and
the total power is approximated to within another factor. A formal definition of bicriteria approximation
is as follows.

Definition 67.5

Suppose a problem � with two minimization objectives A and B is posed in the following manner: Given a
budget constraint on objective A, find a solution which minimizes the value of objective B among all solutions
satisfying the budget constraint. An (ρ1, ρ2)-approximation algorithm for problem � is a polynomial-time
algorithm that provides for every instance of � a solution satisfying the following two conditions.

1. The solution violates the budget constraint on objective A by a factor of at most ρ1.
2. The value of objective B in the solution is within a factor of at most ρ2 of the minimum possible value

satisfying the budget constraint.

To obtain bicriteria approximation algorithms for the 〈UNDIR, DIAMETER, TOTALP〉 problem, we rely
on known approximation results for another problem, called the Minimum Cost Tree with a Diameter
Constraint (MCTDC), also involving two minimization objectives. A formal definition of this problem is
as follows.

Minimum Cost Tree with a Diameter Constraint
Instance: A connected undirected graph G(V, E ), a nonnegative weight w(e) for each edge e ∈ E , an
integer γ ≤ n − 1.

Requirement: Find a spanning tree T(V, E T ) of G such that DIA(T) ≤ γ and the total edge weight of T
is minimum among all the trees satisfying the diameter constraint.

MCTDC is known to be NP-hard [28]. Bicriteria approximations for this problem have been presented
in Refs. [28–30].
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Input: An instance I of the 〈Undir, Diameter, TotalP〉 problem, with diameter bound γ.

Output: A power value π(u) for each node u such that the diameter of the undirected graph induced by
the power assignment is close to γ and the total power assigned to all nodes is as small as possible.

1. Let Gc(V, Ec) denote the threshold graph for the given instance of the 〈Undir, Diameter, TotalP〉
problem.

2. Use any approximation algorithm A for the Mctdc problem on Gc(V, Ec) with diameter bound 2γ,
and obtain a spanning tree T(V, ET) of Gc.

3. For each node u, assign a power value π(u) equal to the weight of the largest edge incident on u in T.

FIGURE 67.2 Outline of Heuristic GEN-DIAMETER-TOTAL-POWER.

The bicriteria approximation algorithm for 〈UNDIR, DIAMETER, TOTALP〉 in Ref. [26] is based on the
general framework (Figure 67.1). The steps of the approximation algorithm, which we call GEN-DIAMETER-
TOTAL-POWER, are shown in Figure 67.2. In step 2 of Figure 67.2, any approximation algorithm A for the
MCTDC problem can be used. As long as A runs in polynomial time, GEN-DIAMETER-TOTAL-POWER also
runs in polynomial time. The performance guarantee provided by GEN-DIAMETER-TOTAL-POWER is a
function of the performance guarantee provided by Algorithm A.

The solution produced by Heuristic GEN-DIAMETER-TOTAL-POWER is approximate in terms of both
diameter and total power. So, we cannot directly rely on Theorem 67.1 to derive the performance guarantee
provided by the heuristic.

For the remainder of this section, we use the following notation. Let I denote the given instance of
the 〈UNDIR, DIAMETER, TOTALP〉 problem with n nodes and diameter bound γ ≥ 1. Let π∗ denote an
optimal power assignment such that the graph Gπ∗ induced by π∗ has diameter at most γ , and let
OPT(I) =

∑
v∈V π∗(v). Let π denote the power assignment produced by the heuristic and let Gπ denote

the graph induced by π . Let DTP(I) =
∑

v∈V π(v), the total power assigned by the heuristic for the instance
I . The bicriteria approximation result proved in this section is as follows.

Theorem 67.6

Suppose Algorithm A used in step 2 of Heuristic GEN-DIAMETER-TOTAL-POWER is a (ρ1, ρ2)-approximation
algorithm for the MCTDC problem. For any instance I of the 〈UNDIR, DIAMETER, TOTALP〉 problem, Heuristic
GEN-DIAMETER-TOTAL-POWER produces a power assignment π satisfying the following two properties: (1)
DIA(Gπ ) ≤ 2 ρ1 γ . (2) DTP(I) ≤ 2 ρ2 (1 − 1/n) OPT(I). In other words, GEN-DIAMETER-TOTAL-POWER

provides a (2 ρ1, 2ρ2(1 − 1/n)) bicriteria approximation for the 〈UNDIR, DIAMETER, TOTALP〉 problem.

Several lemmas are needed to prove Theorem 67.6. We begin with a simple lemma about spanning
trees generated by carrying out a breadth-first-search (BFS) on a connected graph [21].

Lemma 67.5

Let G be a connected graph with diameter δ. Let T be any spanning tree for G generated by BFS. Then
DIA(T) ≤ 2δ.

Proof
Suppose T was generated by carrying out BFS starting with node v (as the root). For any node x , the
distance d(v, x) between the root v and x in T is the length of a shortest path between them in G [21].
Thus, for any node x , d(v, x) ≤ δ in T . It follows that the maximum distance between any pair of nodes
in T , that is DIA(T), is at most 2δ.

The next lemma indicates why in step 2 of Heuristic GEN-DIAMETER-TOTAL-POWER, the diameter bound
of 2γ is used.
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Lemma 67.6

Consider the threshold graph G c (V, E c ) of the 〈UNDIR, DIAMETER, TOTALP〉 instance I . There is a spanning
tree T1(V, E T1 ) of G c satisfying the following two properties. (a) DIA(T1) ≤ 2γ . (b) Let W(E T1 ) denote the
total edge weight of T1. Then, W(E T1 ) ≤ (1 − 1/n) OPT(I).

Proof
Part (a). Consider the graph Gπ∗ induced by the optimal power assignment π∗. Note that DIA(Gπ∗) ≤ γ .
Let v be a node such that π∗(v) has the largest value among all the nodes in V . Let T1(V, E T1 ) be a
spanning tree of Gπ∗ generated by carrying out a BFS on Gπ∗ with v as the root. Then, from Lemma 67.5,
we have DIA(T1) ≤ 2γ .

Part (b). Consider another assignment w of weights to the edges of T1 as indicated below. Consider each
edge {x , y} in T1, where y is the parent of x . Let w(x , y) = π∗(x). Thus, the power value assigned by the
optimal solution to each node except the root becomes the weight of exactly one edge of T1. The power
value π∗(v) of the root is not assigned to any edge. Therefore,

∑

{x , y}∈E T1

w(x , y) = OPT(I) − π∗(v)

Since v has the maximum power value under π∗ among all the nodes, we have π∗(v) ≥ OPT(I)/n.
Therefore,

∑

{x , y}∈E T1

w(x , y) ≤ (1 − 1/n) OPT(I)

The following claim relates the weight w(x , y) to the power threshold value p(x , y).

Claim 67.2

For each edge {x , y} ∈ E T1 , w(x , y) ≥ p(x , y).

Proof of Claim
Consider edge {x , y} ∈ E T1 , where y is the parent of x . Then, by definition, w(x , y) = π∗(x). Since T1 is
a spanning tree of Gπ∗ , the edge {x , y} is also in Gπ∗ . This fact, in conjunction with the assumption that
the power threshold values are symmetric, implies that π∗(x) ≥ p(x , y). The claim follows.

As a simple consequence of the above claim, we have

W(E T1 ) ≤
∑

{x , y}∈E T1

w(x , y) ≤ (1 − 1/n) OPT(I)

and this completes the proof of Part (b) of the lemma.

The next lemma uses the performance guarantee provided by the approximation algorithm A used in
step 2 of the heuristic.

Lemma 67.7

Let T(V, E T ) denote the tree produced by A at the end of step 2 of Heuristic GEN-DIAMETER-TOTAL-POWER.
Let W(E T ) denote the total weight of the edges in T. Let (ρ1, ρ2) denote the performance guarantee provided by
A for the MCTDC problem. Then the following hold: (a) DIA(T) ≤ 2 ρ1 γ . (b) W(E T ) ≤ρ2 (1−1/n) OPT(I).

Proof
By Lemma 67.6, the edge-weighted graph G c (V, E c ) has a spanning tree of diameter at most 2γ and total
edge weight at most (1 − 1/n) OPT(I). Now, Lemma 67.7 is a simple consequence of the performance
guarantee provided by Algorithm A.

We are now ready to prove Theorem 67.6.
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Proof of Theorem 67.6
Consider the spanning tree T(V, E T ) produced in step 2 of the heuristic. It is straightforward to verify
that every edge {x , y} ∈ E T is also in Gπ (V, Eπ ), the graph induced by the power assignment constructed
in step 3 of the heuristic. Since DIA(T) ≤ 2 ρ1 γ , and the addition of edges cannot increase the diameter,
it follows that DIA(Gπ ) ≤ 2 ρ1 γ .

To bound DTP(I), we note from Lemma 67.7 that W(E T ) ≤ ρ2 (1 − 1/n) OPT(I). In the power
assignment constructed in step 3, the weight of any edge can be assigned to at most two nodes (namely,
the end points of that edge). Thus, the total power assigned to all the nodes is at most 2W(E T ). In other
words, DTP(I) ≤ 2ρ2 (1 − 1/n) OPT(I).

We now briefly indicate how several bicriteria approximation algorithms for the 〈UNDIR, DIAMETER,
TOTALP〉 problem can be obtained using GEN-DIAMETER-TOTAL-POWER in conjunction with known bicri-
teria approximation results for the MCTDC problem.

1. For any ε > 0, a (2 �log2 n�, (1 + ε) �log2 n�)-approximation algorithm is presented in Ref. [28]
for the MCTDC problem. Using this algorithm and setting ε < 1/n, we can obtain a (4 �log2 n�,
2 �log2 n�)-approximation algorithm for the 〈UNDIR, DIAMETER, TOTALP〉 problem.

2. For any fixed γ ≥ 1, a (1, O(γ log n))-approximation algorithm for the MCTDC problem is
presented in Ref. [30]. Thus, for any fixed γ ≥ 1, we can obtain a (2, O(γ log n))-approximation
algorithm for the 〈UNDIR, DIAMETER, TOTALP〉 problem.

3. For any γ and any fixed ε > 0, a (1, O(nε log n))-approximation algorithm for the MCTDC problem
is presented in Ref. [29]. Thus, for this case, we can obtain a (2, O(nε log n))-approximation
algorithm for the 〈UNDIR, DIAMETER, TOTALP〉 problem.

67.3.3 Some Extensions

The general framework for minimizing total power can also be used to obtain polynomial-time approx-
imation algorithms for topology control problems wherein the connectivity requirements are specified
using proper functions [31]. To obtain this result, the general method outlined in Refs. [31,32] is used
as the algorithm in step 2 of the framework. The method in Refs. [31,32] gives a 2-approximation algo-
rithm for network design problems specified using proper functions. Using the notation of Theorem 67.1,
β = 2. It is also straightforward to show that the threshold graph contains an appropriate subgraph of
weight at most the optimal solution value. In other words, α ≤ 1. Thus, we obtain a 4-approximation
algorithm for the general class of problems defined in Refs. [31,32]. An important example of a problem
in this class is the Steiner variant of connectivity, where the goal is to assign power levels so as to induce
a graph which connects a specified subset of nodes, called terminals (possibly using nodes which are
not terminals). An approximation algorithm with a performance guarantee of (1 + ln

√
3) is known for

the Steiner tree problem in graphs [33]. Thus, using this approximation algorithm, the approach yields a
(2 + ln 3)-approximation for the Steiner variant.

The bicriteria results for minimizing the diameter and total power can also be extended to the Steiner
version, where only the terminals need to be connected together into a graph of bounded diameter. Letting
η denote the number of terminals, Ref. [28] presents an (O(log η), O(log η))-approximation algorithm for
the Steiner version of the MCTDC problem. Using this approximation algorithm in step 2 of Figure 67.2, we
obtain an (O(log η), O(log η))-approximation algorithm for the Steiner version of the 〈UNDIR, DIAMETER,
TOTALP〉 problem.

67.3.4 Distributed Approximation Algorithms

Previous sections considered centralized approximation algorithms for minimizing total power used by
the nodes. In this section we discuss distributed topology control algorithms for minimizing total power.
These algorithms also have provably good performance guarantees.
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67.3.4.1 Preliminaries

The distributed algorithms that we discuss all utilize the geometric model. Typically, in geometric instances
of topology control problems, nodes are points in a metric space, and the transmission power threshold
p(u, v) is determined by the distance d(u, v) between u and v. Specifically, the power threshold p(u, v)
is d(u, v)α , where α is the attenuation constant associated with path loss. The path loss is the ratio of the
received power to the transmitted power of the signal [34]. The value of α is typically between 2 and 4.

For consistency with the notation used in previous sections, we assume that instances of topology
control problems under the geometric model are also specified through threshold graphs, where the
threshold values are determined from the distances as discussed above. The following result providing
a weak triangle inequality between the threshold values under the geometric model is established in
Ref. [35].

Lemma 67.8

For nodes u, v, and w, p(u, v) ≤ 2α−1( p(u, w) + p(w , v)).

It is shown in Ref. [16] that:

Theorem 67.7

The 〈GEOMETRIC, 2-NODE-CONNECTED, TOTAL POWER〉 problem is NP-hard.

67.3.4.2 Distributed Algorithms for 〈GEOMETRIC, 2-NODE-CONNECTED, TOTALP〉
A framework for distributed topology control algorithms for the 〈GEOMETRIC, 2-NODE-CONNECTED,
TOTALP〉 problem is given in Figure 67.3. The framework consists of first finding a minimum spanning
tree of the threshold graph, and then, for each nonleaf node u in that tree, adding edges to connect all of
the neighbors of u.

The framework given in Figure 67.3 is easy to implement in a distributed fashion: step 1 utilizes the
distributed minimum spanning tree algorithm given by Gallager et al. [36]; the computation in step 2
is handled by each node u, which then distributes the relevant results to its neighbors; and, each node
computes its own power value in step 3.

Theorem 67.8

The framework in Figure 67.3 produces a 2-NODE-CONNECTED network.

Proof
Since the resulting network contains a minimum spanning tree of G t , the network is at least 1-NODE-
CONNECTED. Thus, by way of contradiction, assume that G ′ is not 2-NODE-CONNECTED. This means that

Input: A threshold graph Gt under the geometric model.

Output: A power value π(u) for each node u such that the undirected graph induced by that power
assignment is 2-Node-Connected.

Steps:

1. Compute a minimum spanning tree T of Gt and let G ′ = T.

2. For each nonleaf node u in T, let Vu consist of the neighbors of u in T.  Then, from Gt, add edges Eu
    to G ′ such that the graph Gu = (Vu, Eu) is connected.

3. For each node u, assign a power value π(u) equal to the largest threshold among the edges incident on
    u in G ′.

FIGURE 67.3 A distributed framework for 〈GEOMETRIC, 2-NODE-CONNECTED, TOTAL POWER〉.
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some node u is an articulation point of G ′, hence u must be a node of degree two or more in the minimum
spanning tree T that was placed into G ′. Let v and w be neighbors of u that are in different connected
components if u is removed from G ′. This is not possible since step 2 of the framework adds edges to G ′
to connect all of the neighbors of u without using any of the edges in T .

While the framework does produce a network that is 2-NODE-CONNECTED, the specific method used to
connect the neighbors of node u in step 2 is left open. Two natural methods for connecting the neighbors
of u are ones in which:

• Each graph G u is a simple path [35].
• Each graph G u is a minimum spanning tree of the restriction of G t to Vu [16].

The quality of the solutions produced by algorithms based on the framework in Figure 67.3 is dependent
both on the path loss exponent (α) and on the particular method utilized in step 2 to connect the neighbors
of node u. To state this dependence, we use the following notation. For any instance I of 〈GEOMETRIC,
2-NODE-CONNECTED, TOTAL POWER〉, let OPT(I) and DF(I) denote the total power assigned by an optimal
solution and that produced by the above framework, respectively. We begin with the following result which
was originally shown in Ref. [35]:

Theorem 67.9

Let I be an instance of 〈GEOMETRIC, 2-NODE-CONNECTED, TOTAL POWER〉. Using the distributed framework
and finding a simple path in step 2, DF(I) ≤ (2 + 2α+2) OPT(I).

To prove this theorem we begin by letting C (G) denote the sum of the threshold values associated with
the edges in a graph G . Note that this is different from the total power value needed to induce G . We have
the following lemma whose proof also appears in Ref. [8].

Lemma 67.9

For G t , let π ′ be an optimal power assignment such that the induced graph Gπ ′ is 1-NODE-CONNECTED.
Then C (T) ≤ ∑

v∈G t
π ′(v), where T is the minimum spanning tree computed in step 1 of the framework.

Proof
Consider any spanning tree T ′ of Gπ ′ , and any leaf x in T ′. The threshold value of the edge between x
and its parent y, is no more than the power value of x in Gπ ′ . Now remove node x and edge {x , y} from
the tree. By recursively applying this node removal, it is seen that the weight of each edge in T ′ is bounded
from above by the power value assigned to some node, and each node is utilized at most once in this
fashion. Thus, C(T ′) ≤ ∑

v∈G t
π ′(v). The lemma follows since T ′ is also a spanning tree of G t , and T is

a minimum spanning tree of G t . Hence C(T) ≤ C (T ′).

Proof of Theorem 67.9
Consider the graph G ′ computed by the framework. Since each edge in G ′ determines the power assignment
to at most two nodes, it follows that

DF(I) ≤ 2C (G ′) (67.1)

Note that G ′ consists of the minimum spanning tree T computed in step 1 along with the edges added
in step 2. Let G ′′ be a graph over the nodes of G ′ that contains all of the edges added in step 2. Since the
edges of T and G ′′ are disjoint,

C(G ′) = C (T) + C(G ′′) (67.2)

Consider any edge {u, v} in G ′′. Recall that u and v are both neighbors of some w , such that edges {w , u}
and {w , v} are both in T . From Lemma 67.8, p(u, v) ≤ 2α−1( p(u, w) + p(w , v)). Note that for any edge
{s , t} in T , there are at most four edges of G ′′ that are adjacent to it. Thus,

C(G ′′) ≤ 4 ∗ 2α−1C (T) = 2α+1C(T) (67.3)
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Combining Eqs. (67.1), (67.2), and (67.3), we have

DF(I) ≤ 2(C (T) + 2α+1C (T)) = (2 + 2α+2)C(T)

By applying Lemma 67.9, it follows that DF(I) ≤ (2 + 2α+2)
∑

v∈G t
π ′(v). Finally, the theorem follows

by noting that
∑

v∈G t
π ′(v) cannot exceed the optimal power OPT(I) needed to produce a 2-NODE-

CONNECTED network.

Recall from above that finding a minimum spanning tree in step 2 is an alternative to finding a simple
path. For that case a somewhat lower approximation ratio was shown in Ref. [16].

Theorem 67.10

Let I be an instance of 〈GEOMETRIC, 2-NODE-CONNECTED, TOTAL POWER〉. Using the distributed framework
and finding a minimum spanning tree in step 2, DF(I) ≤ 8 OPT(I) when α = 2 and DF(I) ≤ (3.2 ∗ 2α)
OPT(I) for any α > 2.

The above discussion focused on distributed algorithms for 〈GEOMETRIC, 2-NODE-CONNECTED, TO-
TAL POWER〉. Using that framework, one can also obtain the following result for 〈GEOMETRIC, 1-NODE-
CONNECTED, TOTAL POWER〉.
Theorem 67.11

Let I be an instance of 〈GEOMETRIC, 1-NODE-CONNECTED, TOTAL POWER〉, using a distributed algorithm
consisting of steps 1 and 3 of the framework, DF(I) ≤ 2 OPT(I).

That is, the algorithm2 finds a minimum spanning tree of G t , and the result follows from the proof of
Theorem 67.9.

67.4 A Summary of Results for Other Topology
Control Problems

The literature contains approximation results for a variety of topology control problems. In this section
we provide a brief overview of some of these results.

Results similar to those presented in Section 67.3.2 have been obtained for higher node connectivities
[37]. Two of the results presented in that paper are the following. For any k ≥ 3, they present a 3k-
approximation algorithm for the problem of inducing a k-NODE-CONNECTED graph. For the special range
3 ≤ k ≤ 7, they also present an approximation algorithm with a performance guarantee of k+2�(k+1)/2�.

Ref. [26] considers the topology control problem where the goal is to compute a power assignment π

such that the undirected graph Gπ is connected, the degree of each node in Gπ is at least a specified value
�, and the total power is minimized. It is shown there that the problem is NP-complete for every fixed
integer � ≥ 2. Also, an approximation algorithm based on the general framework in Figure 67.1 with a
performance guarantee of 2(� + 1)(1 − 1/n) is presented for the problem.

Topology control problems where the power threshold values may be asymmetric were considered in
Refs. [26,38]. In this model, there may be pairs of nodes u and v such that p(u, v) �= p(v, u). It was
shown in Refs. [26,38] that the 〈UNDIR, 1-NODE-CONNECTED, TOTALP〉 problem under this model can be
approximated to within O(log n) and that this result cannot be improved beyond constant a factor, unless
P = NP. This is in sharp contrast to the symmetric threshold case, where there is a (5/3+ε)-approximation
algorithm (Section 67.3.2.1).

As mentioned in our initial formulation of topology control problems (Section 67.2.2), the objective of
minimizing the maximum power assigned to any node has also been studied [3,10]. For any monotone
and efficiently testable property P, it was shown in Ref. [10] that there is a polynomial-time algorithm for

2In fact, this is the algorithm given in Ref. [8] for the 〈UNDIR, 1-NODE-CONNECTED, TOTALP〉 problem.
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minimizing the maximum power. This algorithm makes O(log n) calls to an algorithm for testing whether
a graph G has the property P. It was also shown in Ref. [10] that for any given ε > 0, it is possible to get
a (1 + ε)-approximation for minimizing the maximum power using only O(log log ( pmax/pmin)) calls
to the algorithm for testing P, where pmax and pmin are the largest and the smallest power thresholds
respectively. This approximation algorithm is particularly useful when the ratio pmax/pmin is small.

The polynomial algorithm for minimizing maximum power given in Ref. [10] may assign the max-
imum power value to a larger than necessary number of nodes. The problem of minimizing the num-
ber of nodes to which the maximum power is assigned was considered in Ref. [39]. It was shown that
even for simple properties such as 1-NODE-CONNECTED, the problem is NP-complete. Further, it was
shown that for any property, the problem can be reduced in an approximation-preserving manner to
the problem of minimizing the total power. As a consequence, the (5/3 + ε)-approximation algorithm
for 〈UNDIR, 1-NODE-CONNECTED, TOTALP〉 given in Ref. [15] provides the same performance guaran-
tee for minimizing the number of nodes assigned the maximum power. However, as pointed out in
Ref. [15], the algorithm is not practical since it involves solving large linear programs. In Ref. [39], a 5/3-
approximation algorithm was presented for the problem. This algorithm does not involve solving linear
programs, and its running time is O(n3α(n)), where α(n) is the functional inverse of the Ackermann
function [21].

Other topology control problems which address issues such as power assignment using game theoretic
considerations and maximizing network lifetime are considered in Refs. [38,40,41].

67.5 Directions for Future Research

We start by mentioning some open problems in the context of minimizing total power. First, it is of
interest to investigate whether there are approximation algorithms with better performance guarantees
for inducing graphs with various node and edge connectivity requirements. A second open problem is
whether there is a better bicriteria approximation algorithm for the problem of inducing a graph whose
diameter is bounded by a specified value. A more general research issue is to identify other graph topologies
that are useful in the context of ad hoc networks and to study the approximation issues for inducing such
graph topologies.

Most of the results mentioned in this chapter are for symmetric power thresholds. Investigating ap-
proximation algorithms for inducing various graph topologies under the asymmetric power thresholds is
also of interest. All of the known theoretical results on topology control are for ad hoc networks in which
nodes of the network are stationary. Extending these results to the case where the nodes are mobile is
a challenging research direction. In practice, centralized algorithms are likely to be of limited value. So,
the development of distributed approximation algorithms for inducing graphs with various topologies is
necessary if such algorithms are to be deployed in actual networks.
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68.1 Introduction

Wireless ad hoc networks have been undergoing a revolution that promises to have a significant impact
throughout society, one that could quite possibly dwarf milestones in the information revolution. Unlike
traditional fixed infrastructure networks, there is no centralized control over ad hoc networks, which
consist of an arbitrary distribution of radios in certain geographical area. Wireless ad hoc networks
trigger many challenging research problems, as it intrinsically has many special characteristics and some
unavoidable limitations, compared to other wired or wireless network. An important requirement of
these networks is that they should be self-organizing, that is, transmission ranges and data paths are
dynamically restructured with changing topology. Energy conservation and network performance are
probably the most critical issues in wireless ad hoc networks, because wireless devices are usually powered
by batteries only and have limited computing capability and memory. Recently, significant research [1–8]
has been conducted on designing power-efficient network topology for ad hoc networks. Many proposed
methods applied computational geometry technique (specifically, geometrical spanner) to achieve the
power efficiency. In this chapter, we will review these approximation algorithms of power spanner for ad
hoc networks.

68.1.1 Geometrical Spanner

Geometrical spanners have been studied intensively in computational geometry literature for years [9–15].
Let G = (V, E ) be a n-vertex connected weighted graph. The distance in G between two vertices u, v ∈ V
is the total weight (length) of the shortest path between u and v and is denoted by dG (u, v). A subgraph
H = (V, E ′), where E ′ ⊆ E , is a t-spanner of G if for every u, v ∈ V , dH (u, v) ≤ t · dG (u, v) where t is

68-1
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a constant and called the stretch factor. In other words, if H is a t-spanner of G , for any path �(u, v) in G
from a node u ∈ V to another node v ∈ V there is always a path �′(u, v) in H which has length at most
t times of �(u, v). The spanner H can be treated as a constant (t) approximation of the original graph G
in sense of shortest path length. If the spanner H is a sparse graph (i.e., the number of edges in H is linear
with the number of vertices), it is called a sparse spanner.

68.1.2 Ad Hoc Networks: Graph Model

A wireless ad hoc network consists of a set V of n wireless nodes distributed in a two-dimensional plane.
Each node has the same maximum transmission range R. By a proper scaling, we assume that all nodes
have the maximum transmission range equal to one unit. These wireless nodes then define a unit disk
graph, UDG(V), in which there is an edge between two nodes if and only if their Euclidean distance is at
most one. In other words, we assume that two nodes can always receive the signal from each other directly
if the Euclidean distance between them is no more than one unit. Hereafter, UDG(V) is always assumed
to be connected. We also assume that all wireless nodes have distinctive identities and each wireless node
knows its position information either through a low-power global position system (GPS) receiver or some
other ways. By one-hop broadcasting, each node u can gather the location information of all nodes within
its transmission range. In the most common power-attenuation model, the power to support a link uv is
assumed to be ‖uv‖β , where ‖uv‖ is the Euclidean distance between u and v, β is a real constant between
2 and 5 depending on the wireless transmission environment.

68.1.3 Topology Control: Power Spanner

The topology control techniques are to let each wireless device adjust its transmission range and select
certain neighbors for communication, while maintaining a structure (network topology) that can support
energy-efficient routing and improve the overall network performance. Remember that we use a unit disk
graph (UDG) to model the original communication graph for an ad hoc network, and the UDG provides
information about all possible topologies. Most topology control methods construct a sparse subgraph
of UDG and then restrict the routings on the constructed subgraph to save energy. Not every connected
subgraph of the UDG are suitable to be the network topology. A good network topology should be energy
efficient, that is to say, the total power consumption of the shortest path (most power-efficient path)
between any two nodes in final topology should not exceed a constant factor of the power consumption
of the shortest path in original network. Given a path v1v2 · · · vh connecting two nodes v1 and vh , the
energy cost of this path is

∑h−1
j=1 ‖v j v j+1‖β . The path with the least energy cost is called the shortest path

in a graph. Borrowing the concept of spanner from computational geometry, we define, a subgraph H is
called a power spanner of a graph G if there is a positive real constant ρH (G) such that for any two nodes,
the power consumption of the shortest path in H is at most ρH (G) times of the power consumption of
the shortest path in G . The constant ρH (G) is called the power stretch factor. Similarly, we can define the
length stretch factors �H (G) by setting β = 1. And we call a graph H a length spanner if the �H (G) is
bounded by a constant. It is not difficult to show that, for any H ⊆ G with a length stretch factor δ, its
power stretch factor is at most δβ for any graph G . In particular, a graph with a constant bounded length
stretch factor must also have a constant bounded power stretch factor, but the reverse is not true. Finally,
the power stretch factor has the following monotonic property: If H1 ⊂ H2 ⊂ G then the power stretch
factors of H1 and H2 satisfy ρH1 (G) ≥ ρH2 (G).

Besides the power efficiency (power spanners), the network topology should also have some of (or all
of) the following desirable features: connected, sparse, planar, degree bounded, fault tolerant, etc.

68.1.4 Efficient Localized Construction

Unlike traditional wired network and cellular wireless networks, the wireless devices are often moving
during the communication, which could change the network topology to some extent. Hence, it is more
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challenging to design a topology control algorithm for ad hoc networks: the topology should be locally
and self-adaptively maintained without affecting the whole network, and the communication cost during
maintaining should not be too high. In other words, the construction algorithm is preferred to be localized.
Here, a distributed algorithm constructing a graph G is a localized algorithm if every node u can exactly
decide all edges incident on u based only on the information of all nodes within a constant hops of u, that
is, it runs in a constant number of rounds. More importantly, we expect that the total communication cost
of the algorithm is O(n) messages, where each message is O(log n) bits.

68.1.5 Organization

The rest of the chapter is organized as follows. In Section 68.2, we survey several planar spanners which
are used as routing topologies for ad hoc networks. In Section 68.3, we survey several degree bounded
spanners based on Yao graph. In Section 68.4, we present several methods to build degree bounded and
planar spanners. In Section 68.5, more kinds of spanners are reviewed. We present our conclusions in
Section 68.6.

68.2 Planar Spanner

Many geometric routing algorithms require the planar topology to guarantee the message delivery, such
as right-hand routing, greedy face routing (GFG) [16], greedy perimeter stateless routing (GPSR) [17],
adaptive face routing (AFR) [18], etc. Therefore, in this section, we review the methods to build planar
spanners.

68.2.1 Relative Neighborhood Graph

Let G = (V, E ) be a geometric graph defined on vertex set V with edge set E . The relative neighborhood
graph, denoted by RNG(G), is a geometric concept proposed by Toussaint [19,20]. It consists of all edges
uv ∈ E such that there is no point w ∈ V with edges uw and wv in E satisfying ‖uw‖ < ‖uv‖ and
‖wv‖ < ‖uv‖. Thus, an edge uv is included if the intersection of two circles centered at u and v and
with radius ‖uv‖ do not contain any vertex w from the set V such that edges uw and wv exist in E .
See Figure 68.1(a) for an illustration. When G is a UDG, we use RNG(V) to denote the graph instead of
RNG(G). RNG(V) is a planar graph (i.e., no two edges cross each other), which also implies its sparseness:
|RNG(V)| ≤ 3n, where n is the number of vertices. For an undirected and connected graph G , RNG(G)
is connected and contains the minimum spanning tree (MST) of G . In other words, if the UDG(V) is
connected, the RNG(V) is connected too. This insures the connectivity of the ad hoc networks. Another
important property is that RNG(V) can be constructed easily using a localized method. From the definition,
each node only need information of its one-hop neighbors to construct the RNG(V). RNG(V) was used for
efficient broadcasting (minimizing the number of retransmissions) in one-to-one broadcasting model in
Ref. [21] and was used by the GPSR routing protocol [17] as routing topology that guarantees the delivery
of the packet. However, the analysis by Bose et al. [11] implied that the length stretch factor of RNG(V) is

u

v

w

(c)(a) (b)

vuvu

FIGURE 68.1 Illustration of definitions of planar structures: (a) RNG, (b) RNG, and (c) Del. The shaded areas
((a) the lune, (b) the diametric circle, and (c) the circumcircle of uvw) are empty of nodes inside.
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at most n − 1. Li et al. [3] and Wang [22] first studied and analyzed the power stretch factors of RNG(V),
they showed that the power stretch factor of RNG(V) is actually n − 1 by constructing an example. Thus,
in summary, RNG(V) is not a power/length spanner, that is, RNG(V) is not power efficient for unicast
routing in ad hoc networks.

68.2.2 Gabriel Graph

Let disk(u, v) be the disk with diameter uv. Then, the Gabriel graph [23] GG(G) contains an edge uv

from G if and only if disk(u, v) contains no other vertex w ∈ V such that there exist edges uw and
wv from G . See Figure 68.1(b) for an illustration. When G is a UDG, we use GG(V) to denote the
graph. GG(V) is also a popular planar graph. It is easy to show that RNG(V) is a subgraph of GG(V).
Thus, for a connected graph G , GG(G) is also connected and contains the MST of G . GG(V) can be
constructed easily using a localized method with one-hop neighbor information. Gabriel graph was used
as a planar subgraph in the face routing protocol [16,24,25] and the GPSR routing protocol [17] that
guarantee the delivery of the packet. The same analysis by Bose et al. [11] implied that the length stretch

factor of GG(V) is at most 4π
√

2n−4
3 . Recently, Wang et al. [26] showed that the length stretch factor

of GG(V) is precisely
√

n − 1 actually. Li et al. [3] and Wang [22] then proved that the power stretch
factor of any Gabriel graph is one, that is, all power-efficient paths are kept in Gabriel graphs. There-
fore, GG(V) is a power spanner but not a length spanner. For unicast routing Gabriel graph is power
efficient.

68.2.3 Delaunay Triangulation

While both Gabriel graph and relative neighborhood graph are not length spanners, Delaunay triangu-
lation is a well-known length spanner. Assume that there are no four vertices of V that are cocircular.
A triangulation of V is a Delaunay triangulation, denoted by Del(V), if the circumcircle of each of its
triangles does not contain any other vertices of V in its interior. A triangle is called the Delaunay tri-
angle if its circumcircle is empty of vertices of V . See Figure 68.1(c) for an illustration. Dobkin et al.
[27] first proved that the Delaunay Triangulation is a length spanner with length stretch factor bounded

by 1+√
5

2 π . Then Keil and Gutwin [28] improved the constant to be 4
√

3
9 π . Note that the Gabriel graph

is a subgraph of the Delaunay triangulation and the power stretch factor of Gabriel graph is one. Thus,
the power stretch factor of Delaunay triangulation is also one, due to the monotonic property of power
spanner.

Given a set of points V , let UDel(V) be the graph of removing all edges of Del(V) that are longer than
one unit, that is, UDel(V) = Del(V) ∩ UDG(V). Li et al. [29] considered the unit Delaunay triangulation
UDel(V) for planar spanner of UDG, which is a subset of the Delaunay triangulation. It was proved in

Ref. [29] that UDel(V) is a 4
√

3
9 π-length-spanner of UDG(V).

Though Delaunay triangulation is a well-known planar spanner, it is not appropriate to require the
construction of the Delaunay triangulation in the wireless communication environment because of the
possible massive communications it requires. Note that the circumcircle of a triangle can be very large
(much larger than the transmission range of a wireless node), therefore it may need global information
to build the Delaunay triangulation. Recently, several published results [29–31] were proposed to build
Delaunay triangulation or its relatives in a localized way. Here we review one of these results.

68.2.4 Local Delaunay Graph

Li et al. [29,30] gave a localized algorithm that constructs a sequence graphs, called localized Delaunay
L Del (k)(V), which are supergraphs of UDel(V). Triangle 
uvw is called a k-localized Delaunay triangle
if the interior of the circumcircle of 
uvw does not contain any vertex of V that is a k-neighbor of u, v,
or w ; and all edges of the triangle 
uvw have length no more than one unit. The k-localized Delaunay
graph over a vertex set V , denoted by LDel(k)(V), has exactly all Gabriel edges (edges in GG(V)) and edges
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of all k-localized Delaunay triangles. The localized algorithm for the construction of L Del (k)(V) goes as
follows.

Algorithm 1 CONSTRUCT-LDel (k)(V)

1: Each node u first gathers the location information of its k-hop neighbors Nk(u). It computes the
Delaunay triangulation Del(Nk(u)) of its k-neighbors Nk(u), including u itself.

2: For each edge uv of Del(Nk(u)), let 
uvw and 
uvz be two triangles incident on uv. Edge uv is a
Gabriel edge if both angles � uwv and � uzv are less than π/2. Node u marks all Gabriel edges uv,
which will never be deleted.

3: Each node u finds all triangles 
uvw from Del(Nk(u)) such that all three edges of 
uvw have length
at most one unit. If angle � wuv ≥ π

3 , node u broadcasts a message proposal(u, v, w) to form a
k-localized Delaunay triangle 
uvw in LDel(k)(V), and listens to the messages from other nodes.

4: When a node u receives a message proposal(u, v, w), u accepts the proposal of constructing 
uvw if

uvw belongs to the Delaunay triangulation Del(Nk(u)) by broadcasting message accept(u, v, w);
otherwise, it rejects the proposal by broadcasting message reject(u, v, w).

5: A node u adds the edges uv and uw to its set of incident edges if the triangle 
uvw is in the Delaunay
triangulation Del(Nk(u)) and both v and w have sent either accept(u, v, w) or proposal(u, v, w).

It was proved that the graph constructed by the above algorithm is LDel(k)(V). Indeed, for each triangle

uvw of LDel(k)(V), one of its interior angles is at least π/3 and 
uvw is in Del(Nk(u)), Del(Nk(v)) and
Del(Nk(w)). So one of the nodes among {u, v, w} will broadcast the message proposal(u, v, w) to form
a k-localized Delaunay triangle 
uvw . As Del(Nk(u)) is a planar graph, and a proposal is made only if
� wuv ≥ π

3 , node u broadcasts at most six proposals. And each proposal is replied by at most two nodes.
Therefore, the total communication cost of steps 3–5 is O(n) messages (each message with log n bits).

As shown in Refs. [29,30], the graph LDel(1)(V) may contain some edges intersecting, while LDel(k)(V)
is a planar graph for any k ≥ 2. Although LDel(1)(V) is not a planar graph, Li et al. [29] proved LDel(1)(V)
has thickness 2 which implies it is sparse. Since UDel(V) ⊆ LDel(k)(V) which is proved in Refs. [29,30],
LDel(k)(V) is also a length spanner.

For ad hoc networks, we can construct LDel(2)(V), which is guaranteed to be a planar spanner of
UDel(V), but it is difficult to collect the 2-hop neighbors for every node in O(n) messages. A total
communication cost of a simple broadcast approach to collect 2-hop information is O(m) messages,
where m is the number of edges in UDG(V) and could be as large as O(n2). Recently, Cǎlinescu [32]
proposed an approach (using O(n) messages total) that is based on the specific connected dominating
set introduced by Alzoubi et al. [33]. Using this approach, Wang and Li [34] proposed an algorithm that
can build LDel (2) in O(n) messages, however the constant behind the big-O is still large. To reduce the
total communication cost, Li et al. [29,30] do not construct LDel(2)(V), and they extract a planar graph
PLDel(V) out of LDel(1)(V) instead. They provided a novel algorithm to make LDel(1)(V) planar using
linear communications after building it. The final graph still contains UDel(V) as a subgraph. Thus, it is
a spanner of the UDG.

68.3 Bounded-Degree Spanner and Yao’s Family

For a topology of ad hoc network, it is also desirable that the node degree in the constructed topology
is small and bounded from above by a constant. A small node degree reduces the MAC-level contention
and interference, and also may help to mitigate the well-known hidden and exposed terminal problems.
In addition, a structure with small degree will improve the overall network throughout [35]. However,
all of previous planar topologies are not degree bounded. Thus, in this section, we review several degree
bounded spanners.
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u v

(a) (b)

FIGURE 68.2 Illustration of Yao graph where k = 8: (a) bound out-degree by Yao structure at node u. (b) unbounded
in-degree at node v.

68.3.1 Yao Graph

The Yao graph is proposed by Yao [15] to construct MST of a set of points in high dimensions efficiently.
At given node u, any k ≥ 6 equal-separated rays originated at u define k cones. In each cone, choose the
closest node v within the transmission range of u, if there is any, and add a directed link −→uv (as shown in
Figure 68.2[a]). Ties are broken arbitrarily. The remaining edges are deleted from the graph. The resulting
directed graph is called the Yao graph, denoted by

−→
Y G k(G). If we add the link −→vu instead of the link −→uv,

the graph is denoted by
←−
Y G k(G), which is called the reverse of the Yao graph. Some researchers used a

similar construction named θ-graph [28,36].
The idea of applying Yao structure on UDG(V) to bound node degree is very natural. Hereafter, we

use
−−→
Y G k(V) denote

−−→
Y G k(UDG(V)). It is easy to prove

−−→
Y G k(V) is connected and sparse. The

−−→
Y G k(V)

has length stretch factor 1
1−2 sin π

k
. Thus, its power stretch factor is no more than ( 1

1−2 sin π
k

)β . Li et al. [3]

proved a stronger result: its power stretch factor is at most 1
1−(2 sin π

k )β
.

Li et al. [2] proposed a structure that is similar to the Yao structure for topology control. Each node
u finds a power pu,α such that in every cone of degree α surrounding u, there is some node that u can
reach with power pu,α . Then the graph Gα contains all edges uv such that u can communicate with v

using power pu,α . It was proved in Ref. [2] that, if α ≤ 5π
6 and the UDG is connected, then graph Gα is a

connected graph. On the other hand, if α > 5π
6 , they showed that the connectivity of Gα is not guaranteed

by giving some counterexamples.
Note that although the directed graph

−→
Y G k(V) has a bounded power stretch factor and a bounded

out-degree k for each node, some nodes may have very large in-degrees. The nodes configuration given
in Figure 68.2(b) will result a very large in-degree for node v. Bounded out-degree gives us advantages
when we apply several routing algorithms. However, unbounded in-degree at node v will often cause large
overhead at v. Therefore, it is often imperative to construct a sparse network topology such that both the
in-degree and the out-degree are bounded by a constant while it is still power efficient.

68.3.2 Symmetric Yao

Symmetric Yao graph, denoted by Y Sk(V), was proposed by Wang et al. [7] and Li et al. [37], to bound the
node degree at most k. Each node u first applies Yao structure. An edge uv is selected to graph Y Sk(V) if
and only if both directed edges −→uv and −→vu are in the

−→
Y G k(V). Then it is obvious that the maximum node

degree is k. In Ref. [37], the authors proved that Y Sk(V) is strongly connected if UDG(V) is connected
and k ≥ 6. However, it was shown in Ref. [1] recently that Y Sk(V) is not a spanner theoretically. They
constructed a counterexample to show that Y Sk(V) may have large power and length stretch factors.

68.3.3 Sparsified Yao

Another Yao-based algorithm is proposed by Li et al. [4] that constructs a sparser and bounded-degree
topology. The basic idea is to apply reverse Yao structure on

−→
Y G k to bound the in-degree. Node v chooses

a node u from each cone, if there is any, so the directed link −→uv has the smallest length among all directed
links −→wv in

−→
Y G k in that cone (as shown in Figure 68.3[b]). The union of all chosen directed links is the final

network topology, denoted by
−→
Y Y k(V). Notice that in Ref. [1,38], they reinvestigate

−→
Y Y k(V) structure,

and call it sparsified Yao graph or Yao Yao graph.
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v

(c)(b)(a)

v v

FIGURE 68.3 Illustration of sparsified Yao graph and Yao and sink graph: (a) Large in-degree in YG, star formed by
links toward v. (b) YY, bound in-degree by reverse Yao structure. (c) YG∗, directed tree T(v) sinked at v.

In Ref. [4], the authors proved
−→
Y Y k(V) is strongly connected if UDG(V) is connected and k > 6. It

was proved in Ref. [7] that
−→
Y Y k(V) is a spanner in civilized UDGs (also called λ-precision UDGs [39]).

Here a UDG is a civilized graph if the distance between any two nodes in this graph is larger than a positive
constant λ. Li et al. and Wang et al. [4,7] conjectured that

−→
Y Y k(V) also has constant-bounded length

and power stretch factors theoretically in any UDG. Recently, Jia et al. [40] and Schindelhauer et al. [41]
proved that

−→
Y Y k(V) has a constant-bounded power stretch factor theoretically. However, it is still an open

problem whether it is a length spanner.

68.3.4 Yao and Sink Structure

Arya et al. [9] gave an ingenious technique to generate a bounded-degree graph with constant length stretch
factor. Li et al. [3]; applied the same technique to construct a sparse network topology with a bounded
degree and a bounded power stretch factor from

−→
Y G k(V). The technique is to replace the directed star

consisting of all links toward a node v in
−→
Y G k(V) (as shown in Figure 68.3[a]) by a directed tree T(v) of a

bounded degree with v as the sink (as shown in Figure 68.3[c]). Tree T(v) is constructed recursively. The
algorithm is as follows. First, construct the graph

−→
Y G k(V). Each node v will have a set of incoming nodes

I (v) = {u | −→uv ∈ −→
Y G k(V)}. For each node v, use the following algorithm Tree(v,I (v)) to build tree T(v).

Algorithm 2 CONSTRUCT-T(v) TREE(v,I (v))

1: To partition the unit disk centered at v, choose k equal-sized cones centered at v: C1(v), C2(v), . . .,
Ck(v).

2: Node v finds the nearest node yi ∈ I (v) in Ci (v), for 1 ≤ i ≤ k, if there is any. Link −→yi v is
added to T(v) and yi is removed from I (v). For each cone Ci (v), if I (v) ∩ Ci (v) is not empty, call
Tree(yi ,I (v) ∩ Ci (v)) and add the created edges to T(v).

The union of all trees T(v) is called the sink structure
−→
Y G

∗
k (V). Notice that, node v constructs the tree

T(v) and then broadcasts the structure of T(v) to all nodes in T(v). Since the total number of edges in
the Yao structure is at most k · n, the total number of edges of T(v) of all nodes v is also at most k · n.
Thus, the total communication cost of broadcasting the T(v) to all its neighbors is still at most k · n. The
algorithm uses a directed tree T(v) to replace the directed star for each node v. Therefore, if nodes u and v

are connected by a path in
−→
Y G k , they are also connected by a path in

−→
Y G

∗
k . It is already known that

−→
Y G k is

strongly connected if UDG(V) is connected, so does
−→
Y G

∗
k . Li et al. [3] also proved that the power stretch

factor of
−→
Y G

∗
k (V) is at most ( 1

1−(2 sin π
k )β

)2 and the maximum degree of
−→
Y G

∗
k (V) is at most (k + 1)2 − 1.

68.3.5 Ordered Yao

Bose et al. [42]; study a variant of θ-graphs called ordered θ-graphs. An ordered θ-graph of V is obtained by
inserting the points of V in some order. When a point p is inserted, we draw the same cones around p and
connect p to its closest previously inserted neighbor in each cone. An ordered θ-graph of V is dependent on
the order imposed on V ; different orderings of V can produce different graphs. Nevertheless, in Ref. [42],
they show that ordered θ-graphs are also spanners, regardless of the ordering used.

In the same way, we can generally define an ordered Yao graph Y Ok(V) by some order π imposed on V .
Using same arguments in Ref. [42], we can prove that the power stretch factor of the π-ordered Yao graph
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Y Ok(V) is at most 1
1−(2 sin π

k )β
, for any ordering π . However, the node degree of Y Ok(V) is not bounded

by k, since for node u after applying Yao structure, other node can still add more edges to node u. The
communications cost of this algorithm is O(n), if an ordering is given. Note that we can use a local order
π ′ instead of the global order π . Since we can use O(n) message to build a local order, like we do in the
localized algorithm in next section, Y Ok(V) can be built using O(n) messages.

Note that in ordered Yao graph, when you process a node, it only considers all previous processed nodes.
If we change it to only consider all unprocessed nodes, the spanner proof still holds.

68.4 Bounded-Degree Planar Spanner

The structures discussed so far either have bounded degree or are planar or spanners, but none of the
structures have all these three properties together. We then review some recent results that can locally
construct a bounded-degree planar spanner for ad hoc networks.

68.4.1 Delaunay Triangulation Plus Yao Structure

Bose et al. [43] proposed a centralized O(n log n)-time algorithm that constructs a plan t-spanner for a
given nodes set V , for t � 10.02, such that the node degree is bounded from above by 27. As we knew,
this algorithm is the first method to compute a plane spanner of bounded degree. However, their method
is impossible to have a localized even distributed version, since they use breadth-first-search (BFS) and
many operations on polygons (such as degree-3 partitions). Note that may take O(n2) communications.

Inspired by Bose et al.’s method, Li and Wang [44] recently proposed a centralized algorithm for building
a planar spanner with bounded node degree for UDG(V). The basic idea of their method is to combine
Delaunay triangulation and the ordered Yao structure [42]. The algorithm is as follows. Here, we assume
each node u has a unique ID denoted by ID(u).

Algorithm 3 CENTRALIZED ALGORITHM: CONSTRUCT BOUNDED-DEGREE PLANAR LENGTH SPANNER

1: Compute Delaunay triangulation Del(V) and remove the edges whose length is longer than 1 in
Del(V). Call the remaining graph unit Delaunay triangulation U Del(V). For every node u, we know
its unit Delaunay neighbors NU Del (u) and its node degree du in U Del(V).

2: Find an order π of V as follows: Let G 1 = U Del(V) and dG ,u is the node degree of u in graph G .
Remove the node u with the smallest value of (dGi ,u , I D(u)) from Gi , let πu = n − i + 1, and call
the remaining graph Gi+1. Repeat this procedure for 1 ≤ i ≤ n. Obviously, in ordering π , node u at
most has five edges to its predecessors Pu in U Del(V). Here, x is a predecessor of y if πx < πy .

3: Let E and E ′ be the edge sets of U Del(V) and the desired spanner. Initialize E ′ = ∅ and all nodes in
V are unprocessed. Then, same with the algorithm for point set, for each node u in V , following the
increasing order π , run the following steps to add some edges to E ′:

(a) Node u uses its predecessors (processed Unit Delaunay neighbors) in E to define at most five
open sectors at node u (assume v1, . . . , v5 are the processed neighbors of node u in U Del(V)).
For each sector, we divide it into a minimum number of open cones of degree α, where α ≤ π/3.

(b) For each cone, let s1, s2, . . . , sm be the ordered neighbors NU Del (u) of u in this cone. That is,
s1, s2, . . . , sm are all unprocessed nodes that are connected by an edge of the unit Delaunay
triangulation to u. For each cone, first add the shortest edge in E that is adjacent to u to the
edge set E ′, then add to E ′ all the edges s j s j+1 between its geometrically ordered unprocessed
neighbors in this cone, 1 ≤ j < m. Note that, here such edges s j s j+1 are not necessarily
in U Del(V). For example, when node u has a Delaunay neighbor x such that ux intersects
edge si si+1 and ‖ux‖ > 1.

(c) Mark node u as processed.

Repeat this procedure in order of π , until all nodes are processed. Let BPSc(V) denote the final graph
formed by edge set E ′.
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Note that the algorithm uses open sectors, which means that in the algorithm we do not consider adding
the edges on the boundaries (any edge involved previously processed neighbors). In other words, the open
cones do not include any edges uvi . This guarantees the algorithm does not add any edges to node vi after
vi has been processed. This approach bounds the node degree. In Ref. [44], the authors proved that the
maximum node degree of the graph BPSc(V) is at most 19 + � 2π

α
�. For example, when α = π/3, the

maximum node degree is at most 25. In Ref. [44], the authors also proved that graph BPSc(V) is a planar
t-length-spanner, where t = max{π

2 , π sin α
2 +1}·Cdel . Hereafter, we use Cdel to denote the length stretch

factor of the Delaunay triangulation.

68.4.2 Local Delaunay Graph Plus Yao Structure

By using local Delaunay graph and local ordering, Wang and Li [34] converted their centralized method
to an efficient localized algorithm for building bounded degree planar spanner.

Algorithm 4 LOCALIZED ALGORITHM: CONSTRUCT BOUNDED-DEGREE PLANAR LENGTH SPANNER

1: First, compute the planar localized Delaunay triangulation L Del (2)(V) (using the method in Ref. [32]
to collect the location information of N2(u)), so that every node u knows all its neighbors NL Del (2) (u)
and its node degree d(u) in L Del (2)(V). Assume a synchronized method is used to collect NL Del (2) (u)
for every node u.

2: Build a local order π of V as follows: (Every node u initializes πu = 0, i.e., unordered.)

(a) If node u has πu = 0 and d(u) ≤ 5, then u queries1 each node v, from its unordered neighbors,
the current degree d(v). If node u has the smallest ID among all unordered neighbors v with
d(v) ≤ 5, node u sets

πu = max{πv | v ∈ NL Del (2) (u)} + 1

and broadcasts πu to its neighbors NL Del (2) (u).
(b) If node u receives a message from its neighborv saying thatπv = k, it updates its d(u) = d(u)−1

and also updates the order πv stored locally. So d(u) represents how many neighbors are not
ordered so far.
If node u finds that d(u) ≤ 5 and πu = 0, it goes to step 2 (a).
When node u finds that d(u) = 0 and πu > 0, it can go to step 3.

3: Build structures based on local order π as follows: (Initialize all nodes unprocessed)

(a) If an unprocessed node u has the highest local order in its unprocessed neighbors Nu in
L Del (2)(V), let k be the number of processed neighbors2 of u in L Del (2)(V). Assume that
v1, v2, . . . , vk be the processed neighbors of u in L Del (2)(V). Node u divides its transmission
range into k open sectors cut by the rays from u to these processed neighbors. Then divide each
sector into a minimum number of open cones of degree at most α with α ≤ π/3. For each cone,
let s1, s2, . . . , sm be the ordered unprocessed neighbors of u in NL Del (2) (u). For this cone, node
u first adds an edge usi , where si is the nearest neighbor among s1, s2, . . . , sm. Node u then
tells s1, s2, . . . , sm to add all the edges s j s j+1, 1 ≤ j < m. Node u marks itself processed, and
tells all nodes in NL Del (2) (u) that it is processed.

(b) If an unprocessed node v receives a message for adding edge vv′ from its neighbor u, it adds
edge vv′.

4: When all nodes are processed, the final network topology is denoted by B P S(V).

1If some unordered neighbor with d(v) ≤ 5 has smaller ID, we call such query round a failed round. Node u
performs a new round of queries only if it finds that the number of its unordered neighbors has been reduced (d(u)
has reduced in step 2[b]). So there are at most five rounds of queries.

2There are at most five processed neighbors since graph L Del (2)(V) is planar.
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Note that the ordering computed by this method is not a global ordering. Some nodes may have
the same order. However, no two neighboring nodes in L Del (2)(V) receive the same order. Thus, af-
ter all nodes are ordered, the algorithm will process all nodes. Observe that the algorithm does not
process two neighboring nodes at the same time. Assume that there are two nodes, say u and v are
processed at the same time. Remember that the algorithm processes a node only if it has the highest
ordering among its unprocessed neighbors. Thus, nodes u and v must receive the same order, that is,
πu = πv , which is impossible in the ordering method. In Ref. [34], the authors also proved that graph
BPS(V) is a planar t-spanner, where t = max{π

2 , π sin α
2 + 1} · Cdel . The proofs of the planar and span-

ner properties are much complex than the centralized ones, refer to Ref. [34] for details. In addition,
Algorithm 4 uses at most O(n) messages, where each message has O(log n) bits. However, the hidden con-
stant could be as high as several hundreds since the method needs to collect the 2-hop information for every
node.

68.4.3 Gabriel Graph Plus Yao Structure

Remember that Gabriel graph is a planar power spanner. To reduce the total communication cost, Song
et al. [45] proposed new methods by applying the ordered Yao structures on Gabriel graph to bound node
degree. Note that the Gabriel graph is much simpler and easier to build than localized Delaunay graph.
The algorithm is as follows.

Algorithm 5 LOCALIZED ALGORITHM 1: CONSTRUCT BOUNDED-DEGREE PLANAR POWER SPANNER

1: Each node self-constructs the Gabriel graph G G locally. Let NG G (u) be the neighbors set of node u
in G G .

2: Each node u decides its order π locally using the same method in Algorithm 4 from Ref. [34].
3: All nodes self-form the final topology based on local order π as follows. Initially, all nodes are marked

with WHITE color, that is, unprocessed. Let NOY G G (u) be the set of neighbors of u in the final topology,
which is initialized as NG G (u).

(a) If node u is unprocessed (marked WHITE), and it has the largest order π[u] among all its WHITE

neighbors in NG G (u), it divides its transmission range (which is a unit disk centered at the node
u) into k equal-sized cones, keeps one nearest WHITE neighbor v ∈ NOY G G (u) (if available)
in each cone and deletes others. Node u marks itself BLACK, that is, processed, and notifies all
nodes in NG G (u) of the deleted edges through a broadcasting message UPDATEN. The message
UPDATEN includes all unselected neighbors.

(b) Once the node u receives the message UPDATEN for deleting edge vu from its neighbor v, it
deletes the node v from its local list NOY G G (u).

When all nodes are processed, all the remaining edges {uv|v ∈ NOY G G (u)} form the final network
topology OrdYaoGG.

It is proved in Ref. [45] that OrdYaoGG is a bounded-degree planar power spanner. The power stretch
factor is at most 1

1−(2 sin π
k )β

while the node degree is bounded from above by a positive constant k + 5

where k > 6 is an adjustable parameter. Moreover, they showed that the structure can be constructed
using at most 24n messages, where each message is O(log n) bits.

Furthermore, in the same paper, the authors proposed another method to build a degree-bounded
planar power spanner, which can be constructed easier and demands less communication cost during
construction.
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Algorithm 6 LOCALIZED ALGORITHM 2: CONSTRUCT BOUNDED-DEGREE PLANAR POWER SPSNNER

1: First, each node self-constructs the Gabriel graph G G locally.
2: All nodes together self-form the final topology as follows. Initially, each node u is marked with WHITE

color, that is, unprocessed, and initializes NSY G G (u) as the set of all the neighbor nodes in G G .

(a) If a WHITE node u has the smallest ID among its WHITE neighbors in G G , it divides its
transmission range into k equal-sized cones where k > 8 is an adjustable parameter. In each
cone, node u checks whether there are some BLACK nodes in NSY G G (u) within same cone:

i. Yes. Node u keeps the closest BLACK neighbor v ∈ NSY G G (u) among them and deletes all
the other links in the cone.

ii. No. Node u keeps a closest WHITE neighbor v ∈ NSY G G (u) (if available) among them and
deletes all the other links in the cone.

After processing all k cones, node u marks itself BLACK, that is, processed, then notifies each
deleted neighboring node v in G G by a broadcasting message UPDATEN.

(b) Once a WHITE nodev receives the message UPDATEN from a neighbor u in G G , it checks whether
it is itself in the nodes set for deleting: if so, it deletes the sending node u from NSY G G (v),
otherwise, marks u as BLACK in its local list NSY G G (v).

(c) Once a BLACK node v receives the message UPDATEN from a neighbor belonging to NSY G G (v),
it checks whether it is itself in the nodes set for deleting: if so, it deletes the sending node u from
NSY G G (v), otherwise, marks u as BLACK in its local list NSY G G (v).

When all nodes are processed, all selected edges {uv|v ∈ NSY G G (u)} form the final network topology,
denoted by SYaoGG.

Algorithm 6 further reduces the communication cost during constructing a degree-bounded planar
power spanner to 3n messages, because it does not demand the local ordering before construction. It also
reduces the degree bound to k, and keeps all other nice properties, except that the theoretical power stretch

factor is relaxed to
√

2
β

1−(2
√

2 sin π
k )β

, where k > 8 is an adjustable parameter.

Note that both OrdYaoGG and SYaoGG are degree-bounded planar power spanners, but they are not
length spanners. However, BPS(V) is a degree-bounded planar length spanner.

68.5 Other Spanners

Beside the spanners (planar spanner, bounded-degree spanner, and bounded-degree planar spanner) we
reviewed above, there are many other spanners that have been studied for ad hoc network applications.

Fault-tolerant geometric spanners have been studied heavily [14,46–48], but most of the solutions are
centralized methods which are too complex to have localized versions. Lukovszki et al. [49] gave a method
based on θ graph to construct a spanner that can sustain k-nodes or links failures for complete graph.
Similarly, Li et al. [50] also proposed a method based on Yao structure to build a fault-tolerant spanner.
Bahramgiri et al. [51] generalized the cone-based local heuristic of Wattenhofer et al. [2,8] to achieve the
fault tolerance. We can prove that their resulted graph is also a length spanner (the proof is similar to
Ref. [50]).

Li et al. [52] proposed a new bounded-degree planar spanner which is also low weighted. Here a topology
is low weighted if the total link length of the topology is within a constant factor of that of MST. For ad
hoc networks, low-weighted structures enable energy-efficient broadcasting.

Burkhart et al. [53] studied the spanners which can effectively constrain interference. Following this
direction, Li et al. [54] and Moscibroda and Wattenhofer [55] also studied more general low interference
topologies for ad hoc networks.
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TABLE 68.1 Summary of the Spanners

Power Spanner Length Spanner Bounded Degree Planar Local Construction

RNG No No No Yes Yes
GG Yes No No Yes Yes
Del Yes Yes No Yes No
LDel Yes Yes No Yes Yes
YG Yes Yes No No Yes
YG∗ Yes Yes Yes No Yes
YY Yes Open Yes No Yes
YS No No Yes No Yes
YO Yes Yes No No Yes
BPS Yes Yes Yes Yes Yes
OYAOGG Yes No Yes Yes Yes
SYAOGG Yes No Yes Yes Yes

Schindelhauer et al. [56,41] defined a new concept weak spanner in which the path can be arbitrarily
longer than the original one but must remain within a disk or sphere of radius constant times the Euclidean
distance between two vertices. They studied the relationship among length spanner, weak spanner, and
power spanner. In addition, they proved that sparsified Yao graph is weak spanner and power spanner.

The spanners reviewed in this chapter are spanners for UDG where each node has same transmission
range. However, practically, the networks are never so perfect as UDGs. Kuhn et al. [57] modeled ad hoc
networks as quasi UDG and gave a spanner for quasi UDG. Li et al. [58] also studied spanners for networks
with nonuniform transmission ranges where different node could have different transmission ranges.
They extended the Yao graph, sparsified Yao graph, and Yao and sink graphs to the nonuniform case.

68.6 Conclusion

In this chapter, we reviewed several methods to construct geometric spanners as network topologies for
ad hoc networks which can approximate the underlying communication graph well. The summary of
properties of these spanners is given in Table 68.1. In this chapter, we did not give the detailed algorithms,
proofs, and simulation results, please refer to the reference for more detail.

References
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69.1 Introduction

As networks continue to grow explosively both in size and internal complexity, the ever increasing tremen-
dous traffic load and applications drive researchers to develop techniques for analyzing network perfor-
mance and managing network resources for optimal usage. All these tasks require that end-systems know
the internal network characteristics. Discovery of internal information such as topology and localized
lossy links plays an important role in resource management, loss recovery, and congestion control [1–3].
As a result of this different techniques have been developed to identify the internal characteristics of
networks.

Existing approaches to discover the internal characteristics of networks are classified into three types:
(i) setting probes in the network, collecting statistics at internal nodes periodically, and generating topology
reports or link-level performance; (ii) characterizing the network based on end-to-end behavior of point-
to-point traffic such as that generated by TCP or UDP; and (iii) inferring link-level loss behavior and
topology from end-to-end measurements.

The first approach requires support from internal nodes. It takes time and extra equipment or software
to collect and analyze data. Usually only authorized network administrator and developer can perform
these tasks. This approach can neither be made to update the network internal information in time
nor is it scalable. The second approach has the same problem as the first one. The only difference is
that it is performed on the links of the network. Compared with the former two approaches, the third
one is the most intelligent approach. It infers network internal characteristics by using multicast traffic
from end-to-end measurements, without needing the cooperation of internal nodes. This is a branch of
network tomography, which has attracted considerable attention in recent years because the end-based
inference approach is much more practical and scalable than previous approaches. Multicast probe makes
the approach easier and more efficient.

69-1
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A crucial step in the identification of the network internal characteristics for the end-based inference
approach is the identification of the network topology. Topology inference research from end-to-end
measurements can be found in Refs. [3–8]. The key idea underlying the approach on multicast measure-
ments is that receivers sharing common paths on the multicast tree associated with a given source will see a
correlation in their packet losses or delays. The multicast topology and internal loss and delay performance
can thus be inferred based on the shared loss or delay statistics of the probe packets transmitted. However,
the prevalent methods to estimate correlation used in Refs. [4–7] for siblings identification may produce
fault results as pointed out in Ref. [9]. To overcome this difficulty, we present our Hamming distance-based
classification approach [10], which is based on the Hamming distance of sequences on receipt/loss of probe
packets maintained at each pair of sibling nodes. In comparison with other approaches, our approach is
simpler and more effective. On the basis of the topology identified, we also discuss the applications of
the Hamming distance approach for the inference of other internal characteristics such as internal delay
and link loss performance [9,11]. The efficiency and effectiveness of our inferences using the Hamming
distance approach are validated by the simulation results discussed in this chapter.

The chapter is organized as follows. In Section 69.2 two mathematical models to characterize multicast
networks are introduced. Section 69.3 describes the Hamming distance classification approach and presents
our Binary Hamming distance Classification-based algorithm (BHC) for multicast topology inference.
Section 69.4 presents the Hamming distance matrix approach for internal delay and link loss performance
analysis. Section 69.5 shows the application of Hamming distance for general tree topology inference.
Section 69.6 concludes the chapter. The contents of this chapter are based on our previous work reported
in Refs. [9–11].

69.2 Mathematical Models of Multicast Network

We use the multicast tree model and the loss/delay model which have been widely used [5–7,12,13] to study
the internal characteristics of networks. We have made a number of assumptions. Routing and network
topology are assumed to be static during the measurement period, as dynamic routing and topology
may restrict the amount of data collected for inference. Most current methodologies usually assume
that performance characteristics on each link are statistically independent of all other links. However,
this assumption can be easily violated due to common cross-traffic flowing through the links. Temporal
stationarity is also assumed in many cases. When inference is from end-to-end delay measurements, it is
generally assumed that synchronized clocks are available at all sender and receiver nodes. Although these
simplified assumptions may not strictly hold, such “first-order” approximations have been shown to be
reasonable for the large-scale inference problems [14]. Thus, by the above assumptions, the multicast tree
and its internal delay and link loss measurements can be modeled as follows:

• Tree model. The physical multicast tree is represented by a tree comprising actual network elements
(the nodes) and communication links connecting them. Let T = (V, L ) denote a multicast tree
with node set V and link set L . The root node 0 is the source of the probe packets, and R ⊂ V
denotes the set of leaf nodes representing the receivers. A link is said to be internal if neither of
its endpoints is the root or a leaf node. Let W denote V\({0, 1} ∪ R), where 1 is the child node
of 0. Each nonleaf node k has a set of children nodes d(k) = {di (k) | 1 ≤ i ≤ nk}, and each
nonroot node k has a parent p(k). The link

(
p(k), k

) ∈ L is denoted by link k. We use j ≺ k if j
is descendant from k, k = pr ( j ) if j is an r -level descendant from k, where r is a positive integer.
Let a(U ) denote the nearest common ancestor of a node set U ⊂ V . Nodes in U are said to be
siblings if they have the same parent, that is, if p(k) = a(U ), ∀k ∈ U . The subtree of T rooted
at k is denoted by T(k) = (

V(k), L (k)
)

, where V(k) and L (k) are node set and link set rooted
at k, respectively. The receiver set R(k) is defined as the set of receivers descendant from k, that is,
R(k) = R ∩ V(k). Figure 69.1 shows an example of multicast tree model.
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FIGURE 69.1 An example of a multicast tree.

• Loss/delay model. Probe packets are dispatched down the tree from the root node 0. Each packet
arriving at a node k gives rise to a copy sent to each child node of k. On each link, the packet
is either lost, or transmitted with some delay. The delay can be represented as the sum of a fixed
propagation delay and a variable queueing delay. Suppose Zk is the random variable that specifies
the queueing delay of a packet traversing link k, Zk ∈ [0, ∞]. Zk = ∞ denotes packet loss. By
convention Z0 = 0. The queueing delay for the path from the root to a node k is Y (k) = ∑

j	k Zk .
If a packet is lost on some link between node 0 and k, Y (k) = ∞. Likewise, if a packet does not
encounter any queueing delay on each link between node 0 and k, Y (k) = 0.

Assume αl (k) is the probability of a successful transmission on link k, and αu(k) the probability of
transmission without queueing delay on link k, that is, αl (k) = P [Zk < ∞] αu(k) = P [Zk = 0].
Thus, 1 −αl (k) denotes the probability of a packet lost on link k. 1 −αu(k) denotes the probability
of link k being utilized because Zk > 0 iff the link is utilized, which is also called link utilization.
If 0 < αl/u(k) < 1, ∀k ∈ V\{0}, the loss tree is said to be a canonical tree. Any tree (T, α) in
noncanonical form can be reduced to a canonical tree [7] by simply removing all subtrees rooted
at the broken links whose successful transmission rates are 0. Henceforth, only canonical loss trees
are considered in this chapter. A loss tree can thus be modeled as (T, αl ). Similarly, a delay tree can
be modeled as (T, αu).

For each link an independent Bernoulli loss (delay) model is assumed for each probe packet being
successfully transmitted (or transmitted without delay) across link k with probability αl (k) (αu(k)).
Thus Zk are independent random variables, and the progress of each probe packet down the tree
can be described by Markov stochastic processes Xl/u = (Xl/u(k))k∈V [6]. Here Xl denotes the loss
process and Xu the utilization process. For the loss process, Xl (k)=1, if the probe packet reaches k
(i.e., Y (k) < ∞) and 0 otherwise (i.e., Y (k) = ∞), k ∈ V . For the utilization process, Xu(k)=1, if
the probe packet reaches k without queueing delay (i.e., Y (k) = 0) and 0 otherwise (i.e., Y (k) > 0),
k ∈ V . Their Markov properties follow from the following facts:

Xl/u(0) = 1; Xl/u( p(k)) = 0 
⇒ Xl/u(k) = 0

P [Xl/u(k) = 1|Xl/u( p(k)) = 1] = αl/u(k)

Obviously, the loss and utilization processes are formally identical except that these processes
represent the event of “no loss” and “no delay,” respectively.

By the above modeling, it is clear that the observed end-to-end measurements are (Xl/u(k))k∈R . Given
(Xl/u(k))k∈R , the objective is to infer the network topology, the network internal link-level loss and delay
performance which have been modeled as T = (V, L ) and (T, αl/u).
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69.3 Hamming Distance-Based Multicast Network
Topology Inference

In this section, we first consider topology inference for multicast networks in the form of a binary for
simplicity. We begin with discussing the problems with the previous algorithms for multicast topology
inference. To overcome the disadvantage of existing approaches, we introduce the Hamming distance
approach and the BHC algorithm. Because of its simplicity and efficiency, the Hamming distance approach
plays an important role in identifying siblings in the BHC algorithm. The inference accuracy obtained by
the Hamming distance approach and the previous estimation methods is compared.

69.3.1 Existing Approach for Siblings Classification

In the previous papers [5–7,10], network topology was inferred by the identification of siblings from
end-to-end measurements. Thus, identification of each siblings pair is the key for topology inference. The
previous approaches mainly used the notation A(i, j ) to determine whether nodes i and j are siblings, or
an equivalent notation to A(i, j ).

A(i, j ) is defined as the probability that a probe packet reaches the nearest common ancestor of node
pair (i, j ) successfully (if using loss measurements) or reaches it without queueing delay (if using delay
measurements). Obviously, when A(i, j ) is minimized, nodes i and j are most likely to be siblings than
other node pairs. A(i, j ) is obtained by the measurements of loss or delay (also called utilization) as we
discussed in Section 69.2. Let X(k) generalize the measurements for loss and delay Xl/u(k). In what follows,

we use Xk instead of X(k) for simplicity. For the mth probe packet we let X(m)
k be 1 if it reaches node k.

Otherwise, X(m)
k is set to 0, indicating that node k did not receive any copy of the probe packet m. Similar

for those internal routers, X(m)
k is 1 if the mth probe packet reaches it and 0 otherwise. In practice, X(m)

k

for an internal node is obtained by ∨l∈R(k) X(m)
l , because the internal node is said to receive a probe packet

surely if any receiver descendant from it receives the probe packet. Thus, each node has a “0–1” sequence
{X(m)

k }, 0 < m < n, k ∈ V . Because the paths from the root to the receivers are different, each sequence
maintained by any node is, more or less, different from others. We can thus compare the correlation
between the sequences so as to reconstruct the multicast network topology and infer the internal link
characteristics. For any node pair (i, j ), i = j = a(i, j ),

A(i, j ) = P [∨k∈R(i) Xk = 1]P [∨k∈R( j ) Xk = 1]

P [∨k∈R(i) Xk = ∨k∈R( j ) Xk = 1]
(69.1)

Because it is impossible to obtain in practice each probability in Eq. (69.1), A(i, j ) is estimated by
A(n)(i, j ) as used in all previous work, where n is the number of probe packets.

A(n)(i, j ) =
∑n

m=1 X(m)
i

∑n
m = 1 X(m)

j

n
∑n

m=1 X(m)
i X(m)

j

(69.2)

where X(m)
i = ∨k∈R(i) X(m)

k X(m)
k , m = 1, . . . , n denotes the measured outcomes observed at receiver k by

n probe packets. Each probability in Eq. (69.1) is estimated by the observation from n probe packets as in

Eq. (69.2), for example, P [∨k∈R(i) Xk = 1] is estimated by

∑n

m=1
X(m)

i
n . As n goes to infinity, A(n)(i, j ) is

consistent with A(i, j ), i, j ∈ V . Then the key clue of multicast network topology inference is minimizing
A(n)(i, j ) in each iteration and identifying the node pair (i, j ) as siblings. For simplicity in describing
siblings identification by this estimation approach, we call it the A-approach in later sections.

It is worth noting that n is always a finite number of probe packets. Because large numbers of probe
packets decrease efficiency, the number of probe packets is set to be small in many cases. Thus, each
probability in Eq. (69.2) is not consistent to the real probability. The estimation for A(i, j ) may cause
obvious mistakes as shown in Fig. 69.2, when determining whether two nodes are siblings with a finite
number of probe packets.
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0
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a b

{Xc
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FIGURE 69.2 Comparison of Hamming distance(Hd (·, ·)) and the previous A-approach (A(n)(·, ·)) for each
pair node.

According to the estimated value A(n)(i, j ) of Eq. (69.2), if receiver j loses many probe packets, the
value of A(n)(i, j ) will be very small, even smaller than the value between i and its actual sibling, for
example, A(n)(a , c) < A(n)(a , b), n = 7 in Figure 69.2. Thus, the A-approach will misclassify nodes
a and c as siblings. Even when the number of probe packet increases, such bias cannot be eliminated
completely. Because the estimated probability in Eq. (69.2) does not equal to the true probability unless
the number of probe packets is infinite. To reduce the bias with a finite number of probe packets, we use
the Hamming distance classification approach.

69.3.2 Hamming Distance Classification Approach

The Hamming distance between nodes u and v is defined as the number of different bits between their
sequences, which is given in the following equation, where “⊕” is the exclusive-OR operator:

Hd (u, v) =
n∑

m=1

X(m)
u ⊕ X(m)

v (69.3)

For instance, the Hamming distances between each pair of sequences are given in Figure 69.2. Different
Hamming distances between different node pairs can be used to determine which pair of nodes are siblings.
As illustrated in Figure 69.2, Hd (a , c) > Hd (a , b) is congruent with the relationship between the nodes
because nodes a and b are siblings. This is to say, the Hamming distance approach distinguishes the
siblings and nonsiblings with different values successfully. However, the A-approach failed to identify
the relationship of nodes a , b, and c with seven probe packets in Figure 69.2, because A(n)(i, j ) shows the
contrary relationship between node pairs (a , c) and (a , b). We will discuss the reason why our Hamming
distance approach is superior to the A-approach in Section 69.3.4.

In the multicast network, the nearer the two nodes are located, the more similar the two “0–1” sequences
they maintained are. The reason for such phenomenon is that the probe packets from the root to the
receivers may pass many common links. If the receivers are siblings, the paths the probe packets pass from
the root to their parent nodes are the same. Therefore, the correlation of two “0–1” sequences between
a node and its siblings is greater than that of all other pairs of sequences between a node and one of its
nonsibling nodes.

To infer the topology of the multicast network, all the siblings need to be identified correctly. That is, we
should find out the similarity between each pair of sequences. The problem of identifying siblings in the
multicast network can be stated as marking out the similarity and dissimilarity of all pairs of bit sequences.
For a two-component sequence, Hamming distance is the simplest and most efficient method to identify
the similarity and dissimilarity among different sequences. Therefore, we use Hamming distance to identify
siblings for multicast network topology inference.

It should be noted that the Hamming distance classification approach generally works well regardless
of temporal correlation between the losses in actual networks. No matter when we send the probe packets
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and how many probe packets we use to infer the network topology, the Hamming distance approach
can classify siblings correctly. In contrast, the previous A-approach is affected strongly by the temporal
correlation of collected data. Different data collected in different time periods may cause different siblings
classifications, especially when a small number of probe packets is used.

69.3.3 Binary Hamming Distance Classification Algorithm

The BHC algorithm is based on the Hamming distance classification approach. BHC also incorporates the
hop count measurements as HBLT (Binary Loss Tree classification with Hop count) proposed in Ref. [10].
Each node k is associated with a hop count k.hop. The k.hop values of leaf nodes can be obtained by simply
reading the TTL values of the probe packets. For internal nodes, their k.hop values can be computed from
the k.hop values of leaf nodes during the topology inference procedure.

In BHC, the nodes with the same value of hop count, a node pair, is identified as siblings if the Hamming
distance is not only minimal among all Hamming distances of all node pairs in the node set, but also less
than a given threshold. The BHC algorithm is run in a bottom-up fashion, which is described in detail below.

1. Input: The set of receivers R, number of probe packets n, observed sequences at
receivers (X(i)

k )i=1, ...,n
k∈R ;

2. R′ := R, V ′ := ∅, L ′ := ∅, h = maxk∈R(k.hop), We = ∅, (e = 1, . . . , h); //V ′ is the set
of discovered nodes; L ′ is the set of discovered links, We is a set of nodes with hop count
value e , e is initialized as the maximum value of hop count for all nodes in R.//

3. for k ∈ R, do
4. Wk.hop := Wk.hop

⋃{k} //Classify the receivers into different groups according to their
hop count values.//

5. while e > 1 do
6. while We = ∅ do
7. Let u be the first element in We ; search for v ∈ We to minimize Hd (u, v), (u = v);
8. if Hd (u, v) > δe then S = {u}, Set r to be u’s virtual parent node; //Initially, sibling

nodes set S := ∅, δe is a given classification threshold of level e . If the minimal
Hamming distance is still greater than δe , u does not have siblings.//

9. else S = {u, v}, Set r to be u and v’s virtual parent node; //u and v are siblings,
r is denoted as their virtual parent node.//

10. for i = 1, . . . , n do X(i)
r := ∨l∈S X(i)

l ;
11. r.hop := e − 1;
12. V ′ := V ′ ⋃ S; We := We \ S; We−1 := We−1

⋃{r }; //The discovered two siblings
are added to the discovered node set V ′ and excluded from original set We , their
parent node is added to the node set We−1.//

13. for each l ∈ S, L ′ := L ′ ⋃{(r, l)};
14. S = ∅;
15. e := e − 1;
16. V ′ := V ′ ⋃{0}; L ′ := L ′ ⋃{0, r }; //Include root node and the link from root node to his child

node to the discovered node set and link set.//
17. Output: Inferred topology (V ′, L ′).

Thus, the operation of BHC can be described as follows. First, all the receivers are classified into different
node sets We (1 ≤ e ≤ h) according to their values of hop count. Inference begins by identifying siblings
in the node set with the maximum value of hop count. The Hamming distances of each node pair in We

are calculated. The node pair is identified to be siblings if its Hamming distance is minimal and less than
the threshold. Remove the siblings from the node set with the hop count being e and add the parent node
into the node set with hop count reduced by 1. The “0–1” sequence of the parent node is obtained by the
“OR” operation of those of the siblings. When all nodes in We are grouped decrease hop count value by 1.
Repeat the same procedure among the nodes in the node set We−1. The algorithm ends when the hop
count becomes 1.
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Therefore, by the Hamming distance classification approach, the network topology can be efficiently
inferred from multicast end-to-end measurements on loss or delay of probe packets.

69.3.4 Analysis on Inference Accuracy of Hamming Distance
Classification Approach

The Hamming distance-based topology inference algorithm, that is, BHC in this chapter and the previous
A-approach-based topology inference algorithms can all find a consistent result with the real multicast
network as the number of probe packets increases to infinity. However, with a finite number of probe
packets, the BHC algorithm can obtain accurate results with a higher probability than previous algorithms,
because the Hamming distance approach has been found to be superior to the A-approach used in
Refs. [5–7,10] for siblings classification.

Definition 69.1

Let s1 and s2 be two nodes that have a common parent node i , s3 be a node for which node i is not its parent,
Wk is the node set with the hop count k. Define s (i) as follows:

s (i) = {(s1, s2, s3) : ∀s1, s2, s3 ∈ Wk , 1 ≤ k ≤ h}

Definition 69.2

For (s1, s2, s3) ∈ s (i), let DH (s1, s2, s3) be the difference between the Hamming distance of non-siblings and
siblings, and DA(s1, s2, s3) be the difference between A(n)(·, ·) of nonsiblings and siblings. That is,

DH (s1, s2, s3) = Hd (s1, s3) − Hd (s1, s2)

DA(s1, s2, s3) = A(n)(s1, s3) − A(n)(s1, s2)

Lemma 69.1

Sufficient conditions for correctly identifying nodes s1 and s2 as siblings are 0 < min(s1,s2,s3)∈s (i) DH (s1, s2, s3)
and H(s1, s2) < δe . For the A-approach, the same condition must be satisfied by replacing DH (s1, s2, s3)
with DA(s1, s2, s3), and H(s1, s2) with A(n)(s1, s2).

Lemma 69.1 holds because the Hamming distance or A(n)(·, ·) of a node and its nonsibling nodes should
be greater than that of it and its siblings.

We denote by n1
si

the number of probe packets transmitted from the root to node si successfully, and
by n1

si s j
the number of probe packets transmitted successfully from the root to both nodes si and s j at the

same time, i = 1–3.

Lemma 69.2

For (s1, s2, s3) ∈ s (i), if inequality (69.4) holds, the Hamming distance approach can identify the siblings
while A(n)(·, ·) cannot; if inequality (69.5) holds, A(n)(·, ·) can identify the siblings while the Hamming
distance approach cannot; in all other cases, both approaches can identify siblings correctly.

1

2

(
n1

s2
− n1

s3

)
< n1

s1s2
− n1

s1s3
≤ n1

s1s3

n1
s3

(
n1

s2
− n1

s3

)
(69.4)

n1
s1s3

n1
s3

(
n1

s2
− n1

s3

)
< n1

s1s2
− n1

s1s3
≤ 1

2

(
n1

s2
− n1

s3

)
(69.5)

Proof

Since Hd (s1, s2) = n1
s1

+ n1
s2

− 2n1
s1s2

and A(n)(s1, s2) = n1
s1

·n1
s2

n·n1
s1s2

, we have,

DH (s1, s2, s3) = n1
s1

+ n1
s3

− 2n1
s1s3

− (
n1

s1
+ n1

s2
− 2n1

s1s2

)
(69.6)

= (
n1

s3
+ 2

(
n1

s1s2
− n1

s1s3

)) − n1
s2

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C069 March 20, 2007 18:50

69-8 Handbook of Approximation Algorithms and Metaheuristics

and

DA(s1, s2, s3) = n1
s1

· n1
s3

n · n1
s1s3

− n1
s1

· n1
s2

n · n1
s1s2

(69.7)

= n1
s1

n · n1
s1s2

·
((

n1
s3

+ n1
s3

n1
s1s3

· (n1
s1s2

− n1
s1s3

)
)

− n1
s2

)

From Lemma 69.1, we know that nodes s1 and s2 will be identified as siblings if DH (s1, s2, s3) > 0 using
the Hamming distance approach for any (s1, s2, s3) ∈ s (i). If (s1, s2, s3) results in DH (s1, s2, s3) < 0,
the Hamming distance approach will fail to identify s1 and s2 as siblings correctly. Similar conditions
holds for the A(n)(·, ·) approach. Therefore, we can conclude that if any (s1, s2, s3) ∈ s (i) results in
DA(s1, s2, s3) < 0 while DH (s1, s2, s3) > 0, the Hamming distance approach is superior to the A(n)(·, ·)
approach in siblings identification, and vice versa. Lemma 69.2 describes the complete conditions based
on Eq. (69.6) and Eq. (69.7).

Lemma 69.2 shows when the Hamming distance approach or the A-approach can identify nodes s1

and s2 as siblings correctly. If the probability that inequality (69.4) holds is greater than the probability
that inequality (69.5) holds, the Hamming distance approach works better than the previous A-approach.
However, obtaining the exact probabilities for inequalities (69.4) and (69.5) to hold are very difficult,
because both probabilities vary with different network connections and conditions. Thus, we only analyze
the cases when inequalities (69.4) and (69.5) hold, respectively, and give an example through which we
can have a clear view on which approach has a better performance in inference accuracy.

First we should note that in most cases, both the Hamming distance approach and the A-approach can
identify siblings correctly according to our analysis of the different receiving cases for nodes s1, s2, and s3.
When links s1 and s2 are in similar conditions, the Hamming distance approach can identify siblings
correctly if the A-approach can do so. However, we also find that sometimes the A-approach cannot
identify siblings correctly while the Hamming distance approach can. When both nodes s1 and s2 receive
almost all probe packets while node s3 loses many probe packets, and n1

s1s3
happens to be equal to n1

s3
,

the Hamming distance approach can identify siblings correctly while the A-approach cannot. The above
is also true when both nodes s1 and s2 lose many probe packets while s3 receives almost all probe packets,

and
n1

s1s3
n1

s3

< 1
2 . In very few cases, the Hamming distance approach may not identify siblings correctly while

the A-approach can. This might happen only when links s1 and s2 are in different conditions which result
in dissimilar sequences on nodes s1 and s2. In a multicast network, only a few siblings links may exhibit
completely different performances among all siblings–links pairs. Even if under this condition, it can be
noted that in most cases the Hamming distance approach can identify siblings correctly as the A-approach
does. Thus from all cases discussed, we can see that the occurrence of the Hamming distance approach
outperforming the A-approach is more frequent than that of the opposite.

As to the exact probabilities that inequalities (69.4) and (69.5) hold, we assume a multicast network with
5–27% links losing packets severely, the ratios can represent most cases in real multicast networks. Less
than 5% links suffering severe packet losses only occur in some applications. Multicast networks with more
than 10% links losing packets often result in unacceptable performance because most group receivers can
be affected by not receiving packets accurately. Therefore, the multicast network with 5–27% links losing
packets severely as shown in Figure 69.3 chooses reasonable ratios for ill-performing links and represents
situations arising in practice. Assume other links experience some loss and congestion to a different degree.
For this network the four different cases and the probabilities of inequalities (69.4) and (69.5) holding
in each case are calculated and displayed in the figure. We find that the probabilities vary with different
link status. As we have discussed before, the probabilities also vary with different network topologies.
Figure 69.3 illustrates clearly that the probability that the Hamming distance approach succeeds, but the
A-approach fails is greater than the probability in the opposite situation for this network. This conclusion
may be extended to any network in general. The simulation of the network given in Section 69.3.5 also
supports this conclusion.
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Case 1: Links with circle mark
 lose lots of packets
 (10.5% links)

Case 2: Links with line mark lose
 lots of packets (10.5% 
 links)

Case 3: Links with rectangular
 mark lose lots of packets
 (5.3% links)

Case 4: All marked links
 lose lots of packets
 (26.3% links)

Link
status

Prob. of Hd
outperforming A

Prob. of A
outperforming Hd

Prob. of both
working well

Case 1
Case 2
Case 3
Case 4

0.3
0.4
0.7
0.4

0.2
0.2
0.1
0.3

0.5
0.4
0.2
0.3

FIGURE 69.3 Comparison on probabilities that inequality (69.4) or (69.5) holds in a certain multicast network.

Though the probabilities that inequalities (69.4) and (69.5) hold are different as the network condition
varies, we have seen from the above analysis that with a finite number of probe packets, the Hamming
distance approach is more likely to work out the accurate topology than the A-approach. In other words,
due to the greater probability of the Hamming distance approach outperforming the A-approach in siblings
identification, we may conclude that the use of the Hamming distance approach in the BHC algorithm can
result in a better performance than using the A-approach in inference accuracy in our tested networks.

69.3.5 Experimental Results for Topology Inference

This section validates the BHC algorithm by comparing it with HBLT which is based on the A-approach.
Because both algorithms take hop count into consideration, the comparison results will clearly show the
difference of topology inference by the Hamming distance classification approach and the A-approach.

We executed both algorithms for the network topology shown in Figure 69.4 via the network simulator
ns. Node 0 is the sender and nodes 1–10 are the receivers. All internal links are configured with different
capacities ranging from 0.1 to 5 Mbit/s. The link 0 → 0′ is set at 5 Mbit/s. The root node 0 generates probe
packets in a 20 K bit to 2 Mbit/s stream. Every probe packet comprises one UDP packet with 1000 bytes.

Due to the low capacity and heavy traffic load of links, multicast probe packets can be delayed or even
lost. The loss measurements are counted for topology inference. Then for each receiver, the collected data is
set to 1 if the probe packet is received, otherwise 0. Both algorithms work on the collected “0–1” sequences.
From TTL field of the probe packets obtained from receivers, the hop count required by BHC and HBLT
can easily be obtained.

To compare the inferred topologies by the different algorithms, a similarity degree, which is defined
below, is used [10].

Definition 69.3

Define SimilarityDegree = α · s + β · h, where s denotes the ratio of the number of nodes whose siblings are
identified correctly to the total number of nodes, h denotes the ratio of the number of nodes whose hop levels
are inferred accurately to the total number of nodes. α, β are the weight of these two factors. When at least one
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FIGURE 69.4 A multicast network topology.
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FIGURE 69.5 Similarity degree comparison of HBLT and BHC when α = 0.5, β = 0.5.

of the two subtrees of a node’s sibling is the same as that of the physical tree, we say that the node is inferred
correctly.

We let α = 0.5 and β = 0.5, then the compared results are shown in Figure 69.5 [11].
Figure 69.5(a) and Figure 69.5(b) are obtained by changing different links’ capacities. Both simu-

lation results show that BHC requires fewer probe packets than HBLT to infer the accurate topology
constantly. Therefore, we can conclude that BHC is more efficient in topology inference than the HBLT
algorithm.

Figure 69.5(a) and Figure 69.5(b) also validate our analysis on siblings identification by the Hamming
distance approach and the A-approach. It shows that the occurrence of the Hamming distance approach
outperforming the A-approach is more frequent than that of the opposite situation. This supports the

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C069 March 20, 2007 18:50

Multicast Topology Inference and Its Applications 69-11

conclusion we have drawn in Section 69.3.4, that is, the probability that Hamming distance approach
outperforming the A-approach should be greater than the probability of the opposite situation.

69.4 Hamming Distance Matrix for Internal Loss/Delay
Performance Analysis

From the previous section, it is seen that every receiver maintains a bit sequence from end-to-end measure-
ments. On the basis of these measurements and the discovered topology, we present a Hamming distance
matrix-based scheme for analyzing the network link loss and internal delay performance.

We begin by defining a Hamming distance matrix. The bit sequence maintained by each receiver is
denoted by {X(m)

r }, 1 ≤ m ≤ n, r ∈ R. We assume the number of receivers in a multicast network to be
l . For simplicity, let di j denote the Hamming distance between receiver i and j , that is, di j = Hd (i, j ).
Denote D to be the Hamming distance matrix. Then D is defined as follows:

D =








d11 d12 . . . d1l

d21 d22 . . . d2l
...

...
. . .

...

dl1 dl2 . . . dll








.

Obviously, the matrix is symmetric, that is, di j = d j i for i = j . And it is also easy to see that di j = 0
if i = j . Apart from these properties, the matrix supplies additional information. For instance, if receiver
i and j are siblings, di j is supposed to be smaller than dik , k = j and k = i . More generally, the closer
the two nodes are located, the smaller their Hamming distance is supposed to be because their sequences
are more similar due to more shared common link condition which we have discussed in Section 69.3.
Therefore, such a Hamming distance matrix provides a lot of information of the internal topology when
the internal links have different congestion and loss rates.

Now let us see what this matrix can do for link loss and internal delay performance analysis and
identification. Consider the network in Figure 69.6 where only one receiver observes severe loss. We
assume here that the loss measurements are counted. Internal link delay performance can be obtained if
the end-to-end delay measurements observed on receivers are counted. Suppose link s in Figure 69.6 is in
very poor condition and all other links are in good condition and thus have few losses.

According to the Hamming distance matrix in Figure 69.6, we can easily find that the Hamming distances
between 1 and any of the remaining receivers are very large, while the Hamming distances among receivers
2, 3, and 4 are quite similar and small. Then we can infer that the nearest common link of receivers 2, 3,
and 4 work in poor condition.

As for a network with very complex internal link conditions, we need to transform the matrix into
several blocks according to the different values of components in the matrix. Usually we classify the
components by the experienced difference which depends on how many probe packets are sent in total.
With the experienced difference, we can do elementary transformations on the Hamming distance matrix

1

2

3 4

S

D =

0
88
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0
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85
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92
3
2
0

Receiver 1 2 3 4

FIGURE 69.6 A simple Hamming distance matrix.
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FIGURE 69.7 Hamming distance matrix and matrix in blocks.

and obtain a matrix with several regular blocks. The receivers are classified into several groups. Thus we
can infer all the possible bad links in the topology according to those classified receivers by blocks easily.
For example, the network topology, the Hamming distance matrix, and the transformed matrix are given
in Figure 69.7; we aim to analyze the internal delay and link loss performance and locate the ill-performing
link easily.

There is a group including receivers 1, 4, and 5 which receive almost all the probe packets. This group
is called base group which can be easily identified by the 0–1 sequence maintained by any receiver in this
group. The links in the path from the source to the receivers in this group all work in good condition.
We find all other groups have a common property, that is, the Hamming distance between any receiver
in these groups and any receiver in base group is very large while the Hamming distance between the
receivers in each group is very small. These groups are called loss group (or delay group in the case of
internal delay inference). We can then decide that the link connecting to the nearest common ancestor
node of each loss/delay group is one of the links which is causing a severe loss (experiencing severe delay).
In the topology of Figure 69.7, links 13, 6, and 14 are the links we aim to identify. All other links work well
with few loss or delay in this network.

Therefore, if we can transform the Hamming distance matrix into blocks according to the value of the
components, the receivers are classified into several groups. Then we can determine a base group which
include those receivers who receive almost all probe packets (or receive most probe packets without delay),
that is, there is not a any link causing big loss (or severe delay) in the path from the source to these
receivers. And apart from this group, there are many loss/delay groups. The links connecting to the nearest
common ancestor node of each loss/delay group are identified as those links where severe loss/delay exists.
This means, the Hamming distance matrix D of a network can help to analyze and identify the network
internal loss/delay performance. Moreover, a well-known phenomenon is that there are usually only a few
links that are in poor condition in a large-scale network in practice. Therefore, the components in the
Hamming distance matrix usually appear to be different obviously and can be easily classified.

69.5 Topology Inference for General Trees

This section extends the Hamming distance classification approach for topology inference to general trees.
It is more complicated to infer the topology for general trees than for binary ones. We thus introduce

a threshold ε into grouping the siblings set S. The set S is grouped if the Hamming distance between any
pair of nodes in S is sufficiently close to being minimal.
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The grouping step starts by finding a pair of nodes {u, v} that has the minimum Hamming distance
in S, then adjoining further elements to it provided the following inequality is satisfied:

Hd (u, v′)(1 − ε) < Hd (u, v) (69.8)

Thus we replace line 9 of the BHC algorithm by the following steps so that topology inference for general
trees can be performed.

9a. else {S = {u, v};
9b. while there exists v′ ∈ We\S such that Hd (u, v′)(1 − ε) < Hd (u, v) do
9c. S := S ∪ {v′}; }
9d. Set r to be the virtual parent node of all identified siblings in S.

We also use classification threshold δe for identification of siblings in general trees in a similar way as it
was used in the BHC algorithm of Section 69.3.3. We can set δe to a given experience value for a network
with binary tree topology due to the structural simplicity. However, for general trees, we set δe to be n

k log e
to reduce the ratio of misclassification of siblings. Here e is the level of nodes computed from the root, n
the total number of nodes in the multicast network, and k the estimated expected number of branches of
the multicast network. We set δe to be n

k log e because we want δe to be linearly proportional to the number
of nodes and to the logarithm of the level, and inversely proportional to the branches of each level in the
multicast tree. The value may also need to be adjusted according to the real condition of the network.

As pointed out in Ref. [7], the violation of the condition described in inequality (69.8) has the interpre-
tation that the ancestor a(U ) is separated from a({u, v}) by a link with loss rate at least ε. The convergence
of the inferred topology to the true topology is mainly influenced by ε. If only ε is less than the internal
link loss rates, the inferred topology will be convergent to the true topology. However, the internal link
loss rates are unknown in advance. A small value of ε is more likely to satisfy the above condition but
at the cost of slow convergence. A large value of ε, in contrast, is more likely to result in systematically
removing links with small loss rates. Thus it is convergent to a wrong topology. To choose an appropriate
ε to obtain more accurate and complete topology practically, the loss rate inference is extremely helpful
for general topology inference for which we have proposed the scheme of incorporating the link loss rate
into topology inference in Ref. [15].

69.6 Concluding Remarks

We introduced the Hamming distance approach for multicast topology discovery and network internal
characteristics inference in this chapter. This approach was proposed in our previous work and contents
of its applications are collected from our recent publications [9–11]. We showed that Hamming distance
of sequences obtained from multicast end-to-end loss/delay measurements for each pair of nodes can be
used effectively, not only in network topology inference, but also in network link loss and internal delay
performance inference.
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70.1 Introduction

Due to the recently rapid development of multimedia applications, multicast has become the critical tech-
nique in many network applications. In multicasting routing, the main objective is to send data from one
or more sources to multiple destinations in order to minimize the usage of resources such as bandwidth,
communication time, and connection costs. We investigate contemporary research concerning multi-
cast congestion problems. These problems include multicast Steiner tree, multicast packing, undirected
Minimum Congestion Hypergraph Embedding in a Circle (MCHEC), and directed MCHEC problem. We
discuss randomized metarounding for these problems. The multicast congestion problem is to find a set
of multicast trees that minimize the maximum congestion over all its edges. The congestion of an edge
is the number of multicast trees that use the edge. The topology of multicast congestion research can be
classified into two categories: general graphs and ring networks, we focus on multicast congestion on ring
networks and discuss the undirected and directed version in detail in Sections 70.2 and 70.3, respectively.

For general graphs, given a physical network G = (V, E ) with a set V of n nodes, a set E of undirected
network links and m multicast requests S = S1, S2, . . . , Sm being subsets of V , a solution to the problem
is a set of m trees such that the i th tree spans the nodes of the i th multicast request. The objective function
is to minimize the maximum congestion. The problem was formulated as an Integer Linear Programming
(ILP) and its LP relaxation solution finds fractional solutions for each multicast request. Vempala and
Vöcking [1] proposed an algorithm with approximation bound of O(log n) based on an LP relaxation
where the fractional solution for each multicast is a set of paths rather than a set of trees with fractional
weights. Raghavan and Tompson [2] presented an exponential (with respect to number of nodes in the
multicast tree, but polynomial with respect to the number of different multicasts) time algorithm that
generates solutions with congestion O(OPT + log n), where OPT denotes the optimal solution value.

Carr and Vempala [3] proposed a polynomial-time algorithm with the same quality based on the
ellipsoid method by decomposing the fractional solution for each multicast into a combination of trees.
They then employ a simple rounding algorithm by decomposing the fractional solution into a convex
combination of trees and by selecting one tree with probability equal to its convex multiplier to find its
fractional congestion on an edge. If the fractional solution for each multicast can be formulated as a convex
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combination of trees, then the congestion on an edge will be exactly its fractional congestion. Furthermore,
this decomposing process is independent for each multicast, thus the deviation from the expectation was
bounded by a solution within c · OPT + O(log n), for some constant c . The solutions are Steiner trees
spanning the vertices of the multicast.

In the multicast packing problem, the network tries to accommodate simultaneously all the multicast
groups (many-to-many) and avoid bottlenecks on the links to achieve higher throughput (i.e., minimize
the maximum link sharing among the multicast groups). A shared tree can be considered as the backbone
of a group multicasting session. One way to minimize the maximum congestion is to increase the size of
some multicast trees, but this also increases the delay which must be considered in the objective function
of the optimal packing problem formulation. The delay is a function of the amount of dilation α from the
size of the optimal tree obtained for each group multicast independently from the others (i.e., in isolation).
In Ref. [4], Chen, Günlük, and Yener proposed a suboptimal solution to the Steiner tree problem (which
is known to be NP-hard) to reduce the sharing of a link in order to ensure that the size of multicast trees
will never exceeds α · OPTk (OPTk is the cost of the optimum tree for multicast group k in isolation). The
optimal multicast tree for each group in isolation was computed by using cutting-plane inequalities (see
Ref. [5] for details) and a branch-and-cut algorithm.

For ring networks, an optimal solution to the Minimum Congestion Graph Embedding in a Cycle prob-
lem (undirected MCGEC) for a set of routing requests, where each request is defined by a pair of network
nodes (i.e., a source and a destination) to be connected, can be solved in polynomial time based on the
graph theoretical approach developed by Okamura and Seymour [6,7]. The weighted undirected MCGEC
problem has a polynomial time approximation algorithm proposed in Refs. [8,9]. The undirected MCHEC
problem is to embed the hyperedges of a hypergraph as paths in a cycle such that the maximum congestion
is minimized. The MCHEC problem can be mapped into the multicast ring network problem by viewing
the hyperedges and the hypergraph as the multicast groups and the multicast ring topology, respectively.

Ganley and Cohoon [10] proposed the problem of hypergraph embedding in a cycle. The hypergraph
embedding problem is to embed m hyperedges as adjacent paths of an n-vertex cycle such that the maximum
number of adjacent paths over any physical link of the cycle is minimized. This problem is NP-complete in
general, but solvable in polynomial time when the congestion of embedded paths is at most k. For any fixed
k, a solution can be computed in O((nm)k+1) time. They also proposed an approximation algorithm that is
guaranteed to find a solution with the maximum congestion at most three times that of the optimal solution.

For unknown maximum congestion, Gonzalez [11] proposed two improved approximation algorithms
that both generate solutions within two times the optimum. The first algorithm transforms the hypergraph
embedding problem to a linear programming (LP) formulation, and the other one solves the problem in
linear time by transforming hyperedges to normal edges. This algorithm is discussed in Chapter 3.

Carpenter et al. [12] provides a linear time approximation algorithm which routes the hyperedges in
the clockwise direction starting from the lowest numbered vertex to the highest numbered vertex. This
algorithm is guaranteed to find a solution whose value is at most twice the optimal value.

Lee and Ho [13] also proposed a linear time algorithm with approximation ratio 2 for the weighted
version of the problem, but the algorithm is based on the longest adjacent path removing heuristic.

Gu and Wang [14] proposed a 1.8 approximation algorithm for the undirected MCHEC problem based
on the clockwise embedding scheme that was proposed in Ref. [12]. This algorithm has time complexity
O(m · n). But this might not be optimal time if some hyperedges have O(n) vertices and others just O(c)
vertices. For large values of k they employed a re-embedding of k hyperedges to reduce the maximum
congestion L in the clockwise embedding L − k to k, and for small values of k established a lower bound
for the maximum congestion of an optimal embedding L∗. The approximation ratio is (L − k)/L∗, thus
at most (L − k)/�L/2� because of �L/2� ≤ L∗ from Ref. [12].

Lee and Ho [15] improve these results and presented an approximation algorithm with approximation
ratio 1.5(opt + 1), where opt is the optimal value of maximum congestion for the undirected MCHEC
problem by formulating the problem as an ILP and then by performing their LP-rounding algorithm
(called clockwise (2/3)-rounding algorithm), which is based on two constraints: connectivity and capacity
constraints.
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Deng and Li [16] presented a polynomial-time approximation scheme (PTAS) for the undirected
MCHEC problem. This algorithm is based on three algorithms for special cases of the problem. The
first algorithm uses a combinatorial approach for the case when m ≤ C · log n, for some C > 0, and a
solution with 1 + ε factor of the optimum is constructed in O(n(C+1)/ε) time for any given ε > 0. The
second algorithm is for the case when the optimal congestion is large (i.e., optimal congestion ≥ c · m
where c > 0 is a constant and m ≥ C · log n). This algorithm uses LP-relaxation to apply the randomized
rounding strategy. The last algorithm employs a hybrid version of the first two methods by applying the
LP relaxation method proposed by Li et al. [17] for a string problem, to a specified subset of variables,
instead of only a randomized rounding procedure, which will generate errors when the optimal congestion
is small compared to m.

Li and Wang [18] proposed a polynomial-time approximation algorithm for the directed MCHEC
problem by extending the method proposed in Ref. [16] and developed a technique to reduce the time
complexity by a factor of O(m). They proposed an algorithm for the case when there are O(log n)
hyperedges based on choosing only 2r out of all the directed edges for each hyperedge h j and cutting only
a segment of vertices that contains one of the 2r selected edges. The time complexity of this algorithm
is O((2r )O(log n)). They used this algorithm to construct a polynomial-time approximation scheme with
ratio 1 + 1/r , where r is a constant, that takes O(n2r−1 · nO(log 2r )) time when m = O(log n).

Randomization is a powerful technique in finding approximate solutions to difficult problems in com-
binatorial optimization by solving a relaxation (usually LP relaxations or semidefinite programming
relaxations) of a problem and then using randomization to return from the relaxation to the original
optimization problem.

Derandomization can be applied by using standard techniques to yield deterministic polynomial-time
algorithms that yield approximations as good as those given by the randomized algorithms they are derived
from, even though the process of derandomization typically takes a relatively simple and clean randomized
rounding procedure and turns it into a complex and generally slower deterministic algorithm.

Randomized rounding is a probabilistic method to convert a solution of a relaxed problem into an
approximate solution to the original problem. Relaxation is an optimization problem with an enlarged
feasible region and extended objective function compared with an original optimization problem.

Li and Wang also proposed another algorithm for the case when c ≥ O(log m) and c = O(m) using
LP and randomized rounding approach where m = O(Copt) (Copt is the minimum congestion cost
of an optimal embedding) and using the standard derandomization method to find a polynomial-time
approximation for the case when m ≥ O(log n) and Copt ≥ O(m) where Copt is large compared to m.
They further proposed a general algorithm for the case when Copt is small compared to m by decomposing
the set of all hyperedges into two groups so as to find approximate embedding using different methods
for the two groups to construct a polynomial-time approximation scheme for the problem.

In Section 70.2, we discuss the undirected MCHEC Problem with the objective of minimizing the max-
imum sharing of a link. We outline and analyze recent approximation algorithm work for the undirected
MCHEC problem and related lower bounds for these problems. In Section 70.3, we discuss the directed
version of MCHEC problem.

70.2 The Undirected MCHEC Problem

In this section, we discuss the undirected MCHEC problem. Given a hypergraph and a cycle on the node
set, the undirected MCHEC problem is to find an embedding of the hypergraph such that the maximum
congestion of any edge in the cycle is minimized. An embedding of the hypergraph specifies a connecting
path for each hyperedge of the hypergraph.

Given a cycle C=(V, E c ) consisting of n vertices labelled clockwise by 1 through n whereV={1, 2, . . . , n}
is a set of vertices and E c = {(i, i +1)|1 ≤ i ≤ n−1}⋃{(n, 1)} is a set of n undirected links or E c = {e+

i =
(i, i + 1), e−

i = (i + 1, i)|i = 1, 2, 3, . . . , n} (n + 1 denoted as 1) is a set of 2n directed edges, respectively.
Each edge in the cycle refers to an undirected (in this section) or directed (in the next section) link.
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A hypergraph H = (V, E h) with m hyperedges defined over the same set of vertices V where E h =
{h1, h2, . . . , hm} is a set of m hyperedges and the hyperedge hi consists of |hi | vertices for interconnecting
these vertices. A connecting path (c − path) Pi (1 ≤ i ≤ m) for each hyperedge hi denotes a path such
that all nodes in hi are in Pi . An embedding of the hypergraph specifies a c-path for each hyperedge of the
hypergraph. The congestion of each link is the number of c-paths that contain the link. The undirected
MCHEC (or directed MCHEC) problem is to find an embedding of the hypergraph such that the maximum
congestion of any link in the cycle or the ring is minimized.

70.2.1 The Re-Embedding Algorithm

Gu and Wang [14] proposed a re-embedding (i.e., re-embed some hyperedges to reduce the maximum
congestion) algorithm to find a solution bound to approximation ratio 1.8.

Let l(i) denote the congestion of link i , L the maximum congestion in the clockwise embedding, L∗ the
maximum congestion in the optimal embedding, gk the smallest link where l(gk) ≥ L − 2k + 1, and hk

the largest link where l(hk) ≥ L − 2k + 1 for integer k when 1 ≤ k ≤ �L/2� and 0 ≤ gk ≤ hk < n − 1.
Each re-embedding candidate w.r.t. k (i.e., with respect to k) is a hyperedge that has a node in segment

〈0, gk〉, a node in segment 〈hk + 1, n − 1〉, and no node in segment 〈gk + 1, hk〉. For this re-embedding
candidate w.r.t. k, we embed it in such a way that the c-path does not contain any link i where gk ≤ i ≤ hk

and get gk + 1 ≤ gk , hk + 1 ≥ hk , and xk + 1 ≤ xk where xk denotes the number of candidates w.r.t. k.
This algorithm re-embeds the candidates w.r.t. k or k + 1 after finishing the clockwise embedding. The
value of k is decreased by one starting from k = �L/2� if xk ≥ k such that the c-path for each candidate
does not contain any link i where gk ≤ i ≤ hk . Otherwise, k is decreased by one and the re-embedding
process is repeated.

The re-embedding algorithm. Below we present the re-embedding algorithm with an approximate ratio 1.8
(even in the special case, i.e., ((L = 2 or L = 4) and k = 0) or (L = 12 and k = 1)) was proposed by Gu
and Wang in Ref. [14].

Step 1. Perform the clockwise embedding on the hypergraph.
Step 2. Find links gk and hk , k = 1, 2, . . . , �L/2�, xk = 0 if k = �L/2� + 1 or k = 0.
Step 3. For k := �L/2� Step −1 until 1 do

if x ≥ k then go to Step 4.
Step 4. If xk ≥ k + 1 and xk+1 ≥ 1 then

re-embed k + 1 candidates w.r.t. k including at least one candidate w.r.t. k + 1
else if ((L = 2 or L = 4) and k = 0) or (L = 12 and k = 1) then

call Subprocedure Special Cases else
re-embed k candidates w.r.t. k.

Return

Subprocedure special cases. Let s denote the link with L , E the set of hyperedges whose c-paths contain s
in the clockwise embedding, and pi the c-path for ei ∈ E that does not contain link s , the subprocedure
special cases is as follows:

If (L = 2 or L = 4) and k = 0 then
for ∀ei ∈ E do

if re-embedding ei by pi reduces the L by 1 then
re-embed ei by pi and return
else for ∀ei , e j ∈ E do

if re-embedding ei by pi and e j by p j reduces the L by 2 then
re-embed ei by pi and e j by p j and return

re-embed one candidate w.r.t. k = 1
Return
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Let L k denote the maximum congestion in the clockwise embedding; we have the following lemma:

Lemma 70.1 (Gu and Wang [14])

L k = L − k or L k = L − k − 1.

Given L k = L − k or L k = L − k − 1, define

W : the set of the hyperedges such that each hyperedge has a node in segment 〈0, g 〉, a node in segment
〈g + 1, h〉, and a node in segment 〈h + 1, n − 1〉.

X : the set of the hyperedges such that each hyperedge has a node in segment 〈0, g 〉, has no node in
segment 〈g + 1, h〉, and has a node in segment 〈h + 1, n − 1〉.

Y : the set of the hyperedges such that each hyperedge has a node in segment 〈0, g 〉, a node in segment
〈g + 1, h〉, and has no node in segment 〈h + 1, n − 1〉.

Z : the set of the hyperedges such that each hyperedge has no node in segment 〈0, g 〉, has a node in
segment 〈g + 1, h〉, and a node in segment 〈h + 1, n − 1〉.

A lower bound is derived:

Lemma 70.2 (Gu and Wang [14])

For any links g and h with 0 ≤ g < h < n − 1, L∗ ≥ (2/3)|W| + (1/3)(|X| + |Y | + |Z|).

Using the lower bound given in the above lemma, a approximation ratio is derived for small k:

Theorem 70.1

The approximation ratio of Algorithm Re-embedding is bounded by 1.8.

70.2.2 The Clockwise (2/3)-Rounding Algorithm

A LP for any Integer Programming (IP) can be generated by taking the same objective function and
same constraints but with the requirement that variables are integer replaced by appropriate continuous
constraints. The LP Relaxation of the IP is the LP obtained by omitting all integer and 0–1 constraints on
variables.

Lee and Ho [15] proposed a ρ-rounding and a 1.5(opt + 1) approximation algorithm, where opt denotes
the optimal maximum congestion for the MCHEC problem, by employing a clockwise (2/3)-rounding
after an ILP formulation of the problem.

Let hi denote an ordered sequence (vi
1, vi

2, . . . , vi
|hi |) with vi

1 ≤ vi
2 ≤, . . . , ≤ vi

|hi | and p(i, j ) denote

the j th clockwise adjacent path of hyperedge hi between vi
j and vi

j+1.
Also let a set of binary variables Y = yp(i, j )|∀i ∈ {1, 2, . . . , m} j ∈ {1, 2, . . . , |hi |} denote an assign-

ment of adjacent paths to embed the hypergraph H in the cycle C with yp(i, j ) = 1 if p(i, j ) is embedded,
or with yp(i, j ) = 0 otherwise. The set P (e) is used to denote the adjacent paths that pass through the link
e ∈ E c , and ϕ = max

e∈E c
{∑p(i, j )∈P (e) yp(i, j )} denotes the maximum link congestion of an assignment Y .

The problem is formulated as the following ILP, based on two constraints: connectivity and capacity
constraints.

�(Y ): minimize ϕ

Subject to
∑

1≤ j≤|hi |
yp(i, j ) ≥ |hi | − 1, ∀hi ∈ E h , i ∈ {1, 2, . . . , m}

∑

p(i, j )∈P (e)
yp(i, j ) ≤ ϕ, ∀e ∈ E c

yp(i, j ) ∈ {0, 1}, ∀i ∈ {1, 2, . . . , m}, j ∈ {1, 2, . . . , |hi |}
The ρ-rounding algorithm begins by solving optimally the LP relaxation of the above ILP formulation

and finds the optimal solution �(Y L ) where (Y L ) = [y L
p(i, j )] and 0 ≤ y L

p(i, j ) ≤ 1 with y R
p(i, j ) = 1 if
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y L
p(i, j ) ≥ ρ, or y R

p(i, j ) = 0 otherwise, and then output the approximate solution ϕR = �(Y R) of the

maximum congestion, where Y R = [y R
p(i, j )]. They proved the following two lemmas.

Lemma 70.3 (Lee and Ho [15])

Given min1≤ j≤|hi |{y L
p(i, j )} ≤ 1 − ρ, 0 < ρ ≤ 1 for ∀hi ∈ E h, i ∈ {1, 2, . . . , m}, the maximum congestion

of ρ-rounding algorithm is at most 1/ρ times the optimum.

Lemma 70.4 (Lee and Ho [15])

For every hyperedge hi ∈ E h, |hi | ≥ k, i ∈ {1, 2, . . . , m}, the value of the k-th smallest variable in {y L
p(i, j ) |

1 ≤ j ≤ |hi |} is at least (k − 1)/k.

Lemma 70.4 is used to prove the following theorem.

Theorem 70.2 (Lee and Ho [15])

The maximum congestion of (1/2)-rounding algorithm is at most twice the optimum.

The problem of unsplittable load is defined as follows:
Given two fractions y M

g (i,2) = 3
2 y L

g (i,2) and y M
g (i,1) = 1− y M

g (i,2), for each disconnected hyperedge hi ∈ D,

find an optimal rounding assignment of y R
g (i,1) and y R

g (i,2) such that the maximum load increment, denoted
as �, over any physical link in the ring is minimized.

Let D = {hi |
∑

1≤ j≤|hi | y R
p(i, j ) = |hi | − 2, 1 ≤ i ≤ m} denote the set of disconnected hyperedges in

the output of the clockwise (2/3)-rounding algorithm, the problem of rounding one of the smallest
two variables on hi ∈ D is translated into an unsplittable subproblem of the ring loading problem,
which is studied in Refs. [8,19–22]. Lee and Ho extended the merging and sequential rounding tech-
niques proposed in Refs. [8,20] from the ring loading problem for ensuring

∑
p(i, j )∈P (e) y R

p(i, j ) ≤ 3
2 (1 +

∑
p(i, j )∈P (e) y L

p(i, j )) ≤ 3
2 (opt + 1), ∀e ∈ E c (opt is the optimal value of the problem). They proved that:

Lemma 70.5 (Lee and Ho [15])

Given y M
g (i,2) = 3

2 y L
g (i,2) and y M

g (i,1) = 1 − y M
g (i,2), for each disconnected hyperedge hi ∈ D, we have y M

g (i,1) ≤
3
2 y L

g (i,1) − y R
g (i,1), y M

g (i,2) ≤ 3
2 y L

g (i,2) − y R
g (i,2) and y M

g (i,1) ≤ 3
2 y L

g (i, j ) − y R
g (i, j ), 3 ≤ j ≤ |hi |.

The clockwise (2/3)-rounding algorithm. The clockwise (2/3)-rounding algorithm proposed is as follows:

Step 1. Solve optimally the LP relaxation of the ILP formulation. Given �(Y L ) denote the optimal
solution (Y L = [y L

p(i, j )] and 0 ≤ y L
p(i, j ) ≤ 1).

Step 2. For all i, j , let y R
p(i, j ) = 1 if y L

p(i, j ) ≥ 2/3 or y R
p(i, j ) = 0, otherwise.

Step 3. Given g (i, j ) denote the adjacent path with the j th smallest LP variable for hi ∈ D. If the
adjacent path g (i, 2) for the second smallest variable of hi is connected around the ring from
vertex si to vertex ti in the clockwise direction, then assume that the adjacent path g (i, 1) is
connected in the other way around the ring from ti to si . Moreover, we define y M

g (i,2) = 3
2 y L

g (i,2)

and y M
g (i,1) = 1 − y M

g (i,2), respectively.

Step 4. Given the adjacent paths g (i, j ) and variables y M
g (i, j ) for all hi ∈ D, j ∈ {1, 2}, perform the

merging procedure on D repeatedly until only crossing adjacent paths remain.
Step 5. Let S be the set of remaining hyperedges. For each hi ∈ S, let y M

s (i,1) and y M
s (i,2), respectively, be

the first and second variables of hi in the clockwise order and let r1, r2, . . . , r|S| denote the labels
of hyperedges in S in the clockwise sequential order.

Step 6. Given y R
s (r1,1) = 1 and y R

s (r1,2) = 0 if y M
s (r1,1) > 0.5, otherwise, y R

s (r1,1) = 0 and y R
s (r1,2) = 1.

Step 7. For ∀k, 2 ≤ k ≤ |S|, if (1− y M
s (rk ,1))+∑

i∈{r1, ..., rk−1}(y R
s (i,1) − y M

s (i,1)) < 1
2 then set y R

s (rk ,1) = 1

and y R
s (rk ,2) = 0 else set y R

s (rk ,1) = 0 and y R
s (rk ,2) = 1. Due to the complementary nature, we have

∑
i∈{r1, ...,rk }(y R

s (i,1) − y M
s (i,1)) ∈ [− 1

2 , 1
2 ) and

∑
i∈{r1, ...,rk }(y R

s (i,2) − y M
s (i,2)) ∈ (− 1

2 , 1
2 ].

Step 8. Output the approximate solution ϕR = �(Y R) of the maximum congestion.
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Finally, they proved the following theorem that the clockwise (2/3)-rounding algorithm has an approx-
imation bound of 1.5(opt + 1), where opt represents the optimal value of the problem.

Theorem 70.3 (Lee and Ho [15])

The clockwise (2/3)-rounding algorithm has an approximation bound of 1.5(opt + 1), where opt represents
the optimal value of the problem.

70.2.3 The Randomized Rounding Algorithm

Randomization is a powerful technique in finding approximate solutions to difficult problems in com-
binatorial optimization by solving a relaxation (usually LP relaxations or semidefinite programming
relaxations) of a problem and then using randomization to return from the relaxation to the original
optimization problem.

Deng and Li [16] proposed a polynomial-time approximation scheme to solve the problem for a
special case with O(log n) hyperedges and for a case with large optimal solution. For the special case with
O(log n) hyperedges, given m ≤ C (log n) for any fixed constant C > 0 and x j = E C −E ( j )

l j
, 1 ≤ l j ≤ k j ,

denoting an embedding of hyperedge b j for j = 1, 2, . . . , m, the proposed algorithm is to enumerate all
the possible solutions for each r -element subset {ei1 , ei2 , . . . , eir } of the n input edges in E C and output
the best solution.

Let E ( j )
l = {e( j )

il
, e( j )

il +1, . . . , b( j )
il+1−1} denote an embedding of the hyperedge e j = {i ( j )

1 , i ( j )
2 , . . . , i ( j )

k j
}

which partitions the edges on the cycle C into k j segments represented by E ( j )
l , l = 1, 2, . . . , j . An

x-embedding x = (x1, x2, . . . , xm) denotes a vector of dimension m, where x j is a subset of edges in C

that forms an embedding of j th hyperedge b j (i.e., x j = E C − E ( j )
l j

).

Let some l j , 1 ≤ l j ≤ k j , denote that the c-path embeds b j excluding E ( j )
l j

, 1 ≤ j ≤ m, ei denote an
edge of the cycle C, and ei (x) denote the congestion of edge ei for the feasible solution x-embedding, the
MCHEC problem is formulated as the following ILP:

Minimize z

Subject to ei (x) ≤ z, i = 1, 2, . . . , n

Also let A(I ) denote the cost of the solution found by A, OPT(I) denote the cost of an optimal solution
with a polynomial-time complexity on the input size if ε is considered as a constant, the objective is to
find an approximation algorithm A in a polynomial time that is bound to the following performance ratio
because it was known to be NP-complete:

RA(I , ε) = A(I)
OPT(I) ≤ 1 + ε

For small number of hyperedges, they proved the following theorem:

Theorem 70.4 (Deng and Li [16])

The MCHEC problem can be solved by a PTAS when m < C · log n for any constant C > 0. In particular,
for any given ε > 0, a solution with 1 + ε factor of the optimum can be found in time O(n(C+1)/ε).

Let us consider the case when the optimal solution is large. Let Copt denote the (large) objective value
of optimum solution to the following ILP, where copt ≥ c · m with a constant c > 0. The binary variable

x j,l has the value 1 if x j = E C − E ( j )
l , and value 0 otherwise, where 1 ≤ j ≤ m and 1 ≤ l ≤ k j . The

set x̂ j (ei , l) denotes the index functions with value 0 if ei ∈ E ( j )
l , or value 1 otherwise. The undirected

MCHEC problem is formulated as the following ILP:

Minimize z

Subject to
k j∑

l=1
x j,l = 1, j = 1, 2, 3, . . . , m

m∑

j=1

k j∑

l=1
x̂(ei , l) · x j,l ≤ z, i = 1, 2, 3, . . . , n
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For large optimal solution, they proved the following theorem:

Theorem 70.5 (Deng and Li [16])

The MCHEC problem can be solved with a PTAS when Copt ≥ c · m, and m is sufficiently large (by choosing
sufficiently large constant C such m ≥ C · log n).

Deng and Li [16] also employed the randomized rounding strategy to round a fractional optimal solution
x j,l ; j = 1, 2, . . . , m; l = 1, 2, . . . , k j , for each j = 1, 2, . . . , m, independently, with probability x j,l , to
set x̂ j,l = 1 and x̂ j,h = 0 for any h ∈ 1, 2, . . . , k j − l so as to find a solution for the problem.

Let Ri1, i2, ..., ik denote the set of indices of hyperedges such that ei1 , ei2 , . . . , eik are all relative with respect

to those hyperedges (i.e., Ri1, i2, ..., ik = {1 ≤ j ≤ m|∃ l j ∈ 1, 2, . . . , k j such that ei1 , ei2 , . . . , eik ∈ E ( j )
l j

}),
y|Ri1, i2, ..., ik denote a partial embedding of y restricted on Ri1, i2, ..., ik , where Ui1, i2, ..., ik = {1, 2, . . . , m} −
Ri1, i2, ..., ik , the problems is formulated as the following ILP:

Minimize z

Subject to
k j∑

l=1
x j,l = 1, j = 1, 2, 3, . . . , |U |

|U |∑

j=1

k j∑

l=1
x̂(ei , l) · x j,l ≤ z − ei (x(i1)|R), i = 1, 2, 3, . . . , n

The Randomized Rounding Algorithm. The proposed randomized rounding algorithm has a fractional
solution x j,l , 1 ≤ j ≤ |U | with cost d ≤ (1 + 1

r−1 ) · Copt and is as follows:

Step 1. For each r -element subset {ei1 , ei2 , . . . , eik } of the n input edges in E C do
(a) R = {1 ≤ j ≤ m|ei1 , ei2 , . . . , eik } are in the same segment of j th hyperedge, U = {1, 2, . . . ,

m} − R.
(b) For the hyperedges with indices in Ri1, i2, ..., ir , take x(i1)|R as an approximation of optimal

embedding x .
(c) For the hyperedges with their indices in Ui1, i2, ..., ir , find a partial embedding x̂|U
(d) Get an approximation x̂ of x by concatenating x(i1)|R and x̂|U .

Step 2. Output the best solution obtained in Step 1.

For the general MCHEC problem, they proved the following theorem:

Theorem 70.6 (Deng and Li [16])

There is a PTAS for the MCHEC problem.

70.3 The Directed MCHEC Problem

Let c(e+
i ) and c(e−

i ) denote the congestion on the directed ring, h = (u, S) a directed hyperedge, u the
source of hyperedge, S ⊆ V − u the set of sinks, and h j = (u j , S j ) a hyperedge in E h .

Also let S j = {i j
1 , i j

2 , i j
3 , . . . , i k

j } denote the set of j th sink (i j
0 regarded as u j ), k j = |S j | the total

number of sink vertices in the hyperedge, P the segment of vertices from vertex i j
k to vertex i j

k+1(k =
0, 1, 2, . . . , k j − 1), and P j

k j
the segment of vertices from vertex i j

k to vertex i j
0 (k = 0, 1, 2, . . . , k j − 1).

An embedding of h j on the ring (i.e., a P j
k embedding, if it is cut, then there are k j + 1 different

embedding) is formed by cutting one of the paths Pk into two directed paths both starting from k, where
k = 0, 1, 2, . . . , k j .

Given an embedding x of all the hyperedges E H , the congestion e+
i (x) or e−

i (x) of a directed edge is
the number of times that the edge e+

i or e−
i is used in the embedding. The directed MCHEC problem is to

find an embedding for each b j ∈ E h such that every edge e+
i and e−

i is used at most c times and c is
minimized.
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Li and Wang [18] proposed a polynomial-time approximation scheme for the problem of embedding
directed hyperedges on a directed ring. They deal with a special case where the number of hyperedges
m = O(log n) and solve the case where the number of hyperedges m = O(Copt) with Copt denoting the
minimum congestion cost of an optimal embedding. They also proposed an algorithm with approximation
ratio 1 + 1

r (r is a constant) for the case of O(log n) hyperedges by cutting a P j
k , which contains one of

the 2r edges and by choosing one of the 2r edges for each hyperedge hi .
Let (i1, i1 + 1), (i2, i2 + 1), (i3, i3 + 1), . . . , (i2r , i2r + 1) denote the 2r edges represented by indices

i1, i2, i3, . . . , i2r , x = (x1, x2, x3, . . . , xm) denote an embedding of H where x j represents the selection

of P j
k cut for the embedding of b j , and E j (x) denote the segment P j

k cut for the embedding x of b j .
Also let Qi1, i2, ..., i2r (x) denote the set of indices of hyperedges such that j is in Qi1, i2, ..., i2r (x) if and only

if E j (x) contains at least one of the 2r edges and Hr denote the set of the (at most 2c) h j ’s with e+
1 ∈ E j (x).

Li and Wang [18] proposed the following embedding algorithm. The algorithm has O((2r )O(log n)) time
complexity.

The Embedding Algorithm

Step 1. For each remaining edge e+
g do

Step 2. If there are more than c
r hyperedges b j ∈ Hr with e+

g ∈ E j (x), then select the index q and set
Hr − { j |e−

g ∈ E j (x)}
Step 3. If the size of Hr is more than c

r than goto Step 1 else stop.
Step 4. Try all possible choices of i2, i3, . . . , i2r with time complexity O(n2r−1).
Step 5. For each b j ∈ H , try the 2r − 1 choices for cutting the path (cut a path and obtain two directed

paths to form an embedding of a hyperedges on the ring) P j
k containing e+

i1
, e+

i2
, . . . , e+

i2r with time

complexity O((2r )m) = O((2r )O(log n)) = nO(log 2r ).

By using an enumerating method for m = O(log n) they proved the following theorem.

Theorem 70.7 (Li and Wang [18])

There is a PTAS with ratio 1 + (1/r ) that runs in O(n2r−1 · nO(log 2r )) when m = O(log n).

For the case when c = O(m) and c ≥ O(log n) their approach is as follows. Let h j = (u j , S j ) denote a

hyperedge, x j,1, x j,2, . . . , x j,k j +1 where the binary variables with x j,l = 1 if P j
l is a cut for the embedding

of b j , or value 0 otherwise. Let µi,q , j denote the binary variables for each segment P j
q of b j and an edge

e+
i with value 1 if the edge e+

i is in the segment P j
q of b j , or value 0 otherwise. The problem is formulated

as the following ILP and is solved in a polynomial-deterministic time by using the randomized rounding
approach and standard derandomization method for packing integer programs proposed in Ref. [23].

Minimize c

Subject to
k j +1∑

l=1
x j,l = 1

c(e+
i ) =

m∑

j=1

k j +1∑

q=1
µi,q , j (x j,q+1 + x j,q+2 + · · · + x j,k j ) ≤ c

c(e−
i ) =

m∑

j=1

k j +1∑

q=1
µi,q , j (x j,0 + x j,1 + · · · + x j,q−1) ≤ c

Let Copt denote the optimal congestion of the above ILP formulation, similar to Lemma 3 in Ref. [16],
they proved the following theorem:

Theorem 70.8 (Li and Wang [18])

Assume that m ≥ c1 · log n and Copt = c2 · m. Let x̂ be the 0 − 1 solution obtained by randomized

rounding. With probability at least 1 − n1−(1/3)ε2·c2
2 ·c1 , for any e+

i and e−
i in E h, e+

i (x̂) ≤ (1 + ε)Copt , and
e−

i (x̂) ≤ (1 + ε)Copt .
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Using the standard de-randomization method for packing integer program [23], they proved the
following theorem:

Theorem 70.9 (Li and Wang [18])

There is a PTAS for the directed MCHEC problem when m ≥ O(log n) and Copt ≥ O(m).

They proposed a general algorithm for the case when Copt is small compared to m. The set of all
hyperedges is decomposed into two groups. Each group is embedded using a different method.

Let e+
i1

, e+
i2

, . . . , e+
i2r denote the 2r edges on the ring, Ri1, i2, ..., i2r = {1 ≤ j ≤ m|∃l , e+

ik
∈ P j

l , ∀k ∈
{1, 2, . . . , 2r }},Ui1, i2, ..., i2r ={1, 2, . . . , m} − Ri1, i2, ..., i2r , xopt denote an optimal embedding, xopt |Ri1, i2, ..., ir

and xopt |Ui1, i2, ..., ir denote the reduced embedding of xopt on the sets of Ri1, i2, ..., ir and Ui1, i2, ..., ir , respec-
tively, and c(e+

i |R) and c(e−
i |R) denote the embedding of b′

j s in Ri1, i2, ..., i2r , the problem is formulated
as the following ILP:

Minimize c

Subject to
k j +1∑

l=1
x j,l = 1, j = 1, 2, 3, . . . , |Ui1, i2, ..., i2r |

|Ui1, i2, ..., i2r |∑

j=1

k j +1∑

q=1
µi,q , j (x j,q+1 + x j,q+2 + · · · + x j,k j ) ≤ c − c(e+

i |R)

|Ui1, i2, ..., i2r |∑

j=1

k j +1∑

q=1
µi,q , j (x j,0 + x j,1 + · · · + x j,q−1) ≤ c − c(e−

i |R)

This algorithm computes Ui1, i2, ..., ir and Ri1, i2, ..., i2r by employing the enumerating approach discussed
above to find an embedding of the set of hyperedges in Ui1, i2, ..., ir and by cutting the ring at edge e+

1 of
the hyperedges in Ri1, i2, ..., ir for the case when |Ui1, i2, ..., i2r | ≤ C · log n. This algorithm employs the LP
randomized rounding approach also discussed above to find an embedding of the set of hyperedges in
Ui1, i2, ..., i2r by cutting the ring at edge e+

1 of the hyperedges in Ri1, i2, ..., ir for the case when |Ui1, i2, ..., ir | >

C · log n.

70.4 Discussion

The multicast congestion problems are critical to many network applications in multimedia streamlining
such as multimedia distribution, software distribution, and video-conference; groupware system; game
communities; and electronic design automation such as routing nets around a rectangle and moat routing.
All the approximation algorithms discussed above have been developed based on the deep analysis of the
problems from different points of views, which thus have been formulated as a variety of ILPs and solved
by employing different schemes.

The generalization of the problem of finding edge disjoint paths is a NP-hard combinatorial problems,
i.e., minimum multicast Steiner tree problem, and also a max-SNP hard problem, i.e., there is a constant
ε > 0 such that it is NP-hard to find a (1 + ε) approximation. The main problem with the LP-relaxation
is the time required to solve the ILP. To improve the efficiency, it is mandatory to make better use of
the multicast congestion parameters in order to obtain a simplified approximation algorithm with tighter
approximation bound. Finding better and fast approximation algorithms for specific classes of hypergraphs
is worth further investigation as well.
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71.1 Introduction

Recent progress in audio, video, and data storage technologies has given rise to a host of high-bandwidth
real-time applications such as videoconferencing. These applications require Quality of Service (QoS)
guarantees from the underlying networks. Thus, multicast routing algorithms, which manage network
resources efficiently and satisfy the QoS requirements, have come under increased scrutiny in recent
years [1]. The focus on multimedia data transfer capability in networks is expected to further increase as
videoconferencing applications gain popularity.

It is becoming apparent that new network mechanisms will be required to provide differentiated quality
guarantees to network users. Of particular importance is the problem of optimal multimedia distribution
from a source to a collection of users with heterogeneous demands. Multimedia distribution is usually
done via multicast trees. There are two main reasons for using trees in multicast routing: (a) data can be
transmitted concurrently to destinations along the branches of the tree, and (b) only a minimum number
of copies of data must be transmitted since information replication is limited to the branching points of
the tree [2]. The bandwidth savings obtained from the use of multicast trees can be maximized by using
optimal or nearly optimal multicast tree algorithms, and future networks are expected to integrate such
algorithms into their operation [3].

Several versions of the QoS multicast problem have been studied in the literature. These versions seek
routing tree cost minimization subject to (1) end-to-end delay, (2) delay variation, and/or (3) minimum
bandwidth constraints (see, e.g., Refs. [3–5]). This chapter deals with the case of minimum bandwidth
constraints, that is, the problem of finding an optimal multicast tree when each terminal possesses a different
rate of receiving information. This problem is a generalization of the classical Steiner tree problem and
therefore NP-hard [6]. Formally, given a graph G = (V, E ), a source s , a set of terminals S, and two
functions: length : E → R+ representing the length of each edge and rate : S → R+ representing the
rate of each terminal, a multicast tree T is a tree in G spanning s and S. The rate of an edge e in a multicast
tree T , denoted by rate(e , T), is the maximum rate of a downstream terminal, that is, of a terminal in the

71-1
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connected component of T − e , which does not contain s . The cost of a multicast tree T is defined as

cost(T) =
∑

e∈T

length(e) · rate(e)

Quality of Service Multicast Tree (QoSMT) Problem
Given a network G = (V, E , length, rate) with source s ∈ V and set of terminals S ⊆ V , find a minimum
cost multicast tree in G .

Without loss of generality, in this chapter we further assume that the rates belong to a given discrete
set of possible rates: 0 = r0 < r1 < · · · < r N . The QoSMT problem is equivalent to the Grade of Service
Steiner Tree problem [7], which has a slightly different formulation: in the latter the network has no source
node and rates re must be assigned to edges so that the minimum edge rate on the tree path from a terminal
with rate ri to a terminal with rate r j is at least min(ri , r j ), and such that the total tree cost is minimized.
A more general QoSMT with priorities was considered by Charikar et al. [6]. In this version of the problem
the cost of an edge e is given arbitrarily instead of being equal to the length times the rate. In other words,
edge costs in QoSMT with priorities are not required to be proportional to edge rates. This generalization
seems more difficult—the best known approximation ratio is logarithmic (which also holds for multiple
multicast groups) [6].

The QoSMT problem was introduced in the context of multimedia distribution over communication
networks by Maxemchuk [5]. Maxemchuk suggested a low-complexity heuristic that can be used to build
reliable multicast trees in many practical applications. Following Maxemchuk, Charikar et al. [6] gave a
useful approximation algorithm that finds a solution within eα of the optimal, where α < 1.550 is the
best approximation ratio of an algorithm for the Steiner tree problem. This is the first known algorithm
with a constant approximation ratio for this problem. Recently, an approximation ratio of 3.802 based on
accurate estimation of Steiner tree length has been achieved [8].

We note that the QoSMT problem was also considered previously (under different names) in the op-
erations research literature. A number of results for particular instances of the problem were obtained:
Current et al. [9] gave an integer programming formulation for the problem and proposed a heuristic
algorithm for its solution. Results for the case of a series-parallel graph were presented in Ref. [25]. Some
results for the case of few rates were obtained by Balakrishnan et al. [10,11]. Specifically, Ref. [11] (see also
Ref. [7]) suggested an algorithm for the case of two nonzero rates with approximation ratio of 4

3α < 2.066.
An improved approximation algorithm with a ratio of 1.960 was proposed in Ref. [8]. For the case of three
nonzero rates, Mirchandani [12] gave an 1.522-approximation algorithm.

This chapter is organized as follows. First, we describe centralized algorithms for the QoSMT problem,
spending the bulk of the time on the algorithms in Ref. [8], which have best approximation factors to
date. Although these algorithms have superior quality, they cannot be easily adjusted for operation in a
distributed environment. Thus, we then describe a more practical primal-dual approach to the QoSMT
problem following Ref. [13]. This approach yields algorithms that have natural distributed implementa-
tions, and work well even when the multimedia source does not have exact knowledge of network topology.
We conclude with an experimental comparison showing the advantage of the primal-dual approach over
practical heuristics proposed in the literature.

71.2 Centralized Approximation Algorithms

Table 71.1 and Table 71.2 summarize the approximation ratios of known centralized algorithms for the
QoSMT problem, for the cases of two nonzero rates and unbounded number of nonzero rates, respectively.
In this table, we present the approximation ratios achievable using various Steiner tree approximation
algorithms as a subroutine. Note that along with the best approximation ratios resulting from the use of
the loss-contracting Steiner tree algorithm in Ref. [14], we also give approximation ratios resulting from
the use of the more practical Steiner tree algorithms from Refs. [15–18]. In this section, we briefly discuss
Maxemchuk’s [5] and Charikar et al.’s [6] methods, and then give a detailed description of best-to-date
β-convex approximation algorithms of Karpinski et al. [8].
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TABLE 71.1 QoSMT Problem with Two Rates

Steiner Tree Algorithm LCA [14] LCA + RNS [15] BR [16,18] MST [17]

Runtime Polynomial Polynomial O(n3) [19] O(n log n + m) [20]
Approximation ratio 4

3
1+ln 3

2 + ε 20
9 + ε 22

9
8
3

in Refs. [7,11] < 2.066 + ε < 2.223 + ε < 2.445 < 2.667
Improved ratio [8] — 1.960 + ε 2.237 2.414

Note: Runtime and approximation ratios of previously known algorithms and of the algorithms given in this
chapter. In the runtime, n and m denote the number of nodes and edges in the original graph G = (V, E ), respec-
tively. Approximation ratios associated with polynomial-time approximation schemes are accompanied by a + ε to
indicate that they approach the quoted value from above and do not reach this value in polynomial time.

TABLE 71.2 Approximation Ratios for QoSMT Problem
with an Arbitrary Number of Rates

Steiner Tree Algorithm LCA [14] RNS [15] BR [16,18] MST [17]

Approximation e 1+ln 3
2 + ε e 5

3 + ε e 11
6 2e

ratio in [15] < 4.212 + ε < 4.531 + ε < 4.984 < 5.44
Improved ratio [8] — 3.802 + ε 4.059 4.311

71.2.1 Maxemchuk’s Algorithm

Maxemchuk [5] introduced the QoSMT problem and proposed the first heuristic to solve this problem.
His algorithm is a modification of the Minimum Spanning Tree (MST) heuristic for Steiner trees [17] (see
Figure 71.1).

The extensive experiments given in Ref. [5] demonstrate that this method works well in practice.
Nevertheless, the following example shows that the method may produce arbitrarily large error (linear in
the number of rates) compared with the optimal tree. Consider the natural generalization of the example
in Figure 71.2 with an arbitrary number k of distinct rates. Its optimal solution has a cost of about 1,
whereas Maxemchuk’s method returns a solution of cost about (k +1)/2. As there are 2k−1 +1 nodes, this
cost can also be written as 1 + 1

2 log2(n − 1), where n is the number of nodes in the graph. We conclude
that the approximation ratio of Maxemchuk’s algorithm is no better than linear in the number of rates
and no better than logarithmic in the number of nodes in the graph.

71.2.2 The Charikar–Naor–Schieber Algorithms

Charikar et al. [6] gave the first constant-factor approximation algorithms for the QoS Steiner tree problem.
The simplest version is a binary rounding algorithm. In its first step, all rates are rounded to the closest

Input: A graph G = (V, E, length, rate) with a source s in V and a collection of terminals S ⊆ V.

Output: A QoSMT spanning the source and the terminals.

1. Initialize the current tree to {s}.

2. Find a nonreached terminal t of highest rate with the shortest distance to the current tree.

3. Add t to the current tree along with a shortest path connecting it to the current tree.

4. Repeat until all terminals are spanned.

FIGURE 71.1 Maxemchuk’s algorithm for the QoSMT problem.
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1−2e 1−2e1−3e 1−3e 1−e 1−3e 1−3e

1/8 1/8

1/4

1/2

1

1/4

1/8 1/8

11
S

FIGURE 71.2 A bad example for Maxemchuk’s algorithm, with k = 4 rates. In the figure, ε = 1/22k−1. The
rate of each node is given above the node. The edge lengths are given on the thin curved arcs, while on the solid
horizontal line each segment has length 1/2k−1 + ε. The optimum, of total cost 1 + 2k−1ε = 1 + 2k−1(1/22k−1) =
1 + 1/2k , uses the solid horizontal line at rate 1. Maxemchuk’s algorithm picks the thin curved arcs at a cost of
1 + (1/2)(1 − ε) + 2(1/4)(1 − 2ε) + 4(1/8)(1 − 3ε) ≥ ((k + 1)/2)(1 − 1/2k).

power of 2 to produce the rounded up instance of this problem (clearly, this at most doubles the cost of
an optimal solution). In its second step, Steiner trees are computed separately for each rate (within some
approximation ratio α). The union of these trees is the final solution.

Consider the network obtained by replacing each edge of rate 2i in an optimal solution by i + 1 parallel
edges of rates 20, 21, . . . , 2i−1, 2i , respectively. In the new network, edges of a specific rate form a Steiner
tree spanning all terminals of the respective rate. Since the optimal cost in this new network is no more than
twice the cost of the rounded up instance, taking the union of all the computed Steiner trees introduces
another factor of 2 to the approximation ratio. Thus the final approximation factor is 2 × (2α) = 4α.

Using a randomization technique, Charikar, et al. [6] reduce the approximation ratio to eα ≈ 4.21,
where e ≈ 2.71 is the Euler constant and α ≈ 1.55 is the currently best approximation ratio for the Steiner
tree problem.

71.2.3 β-Convex Steiner Tree Approximation Algorithms

In this section, we introduce the notion of β-convex Steiner tree approximation algorithms and show
tighter upper bounds on their output when applied to the QoSMT problem.

We begin by reviewing some Steiner tree definitions. A Steiner tree is a minimum-length tree connecting
a subset of the graph’s nodes. The nodes in a subset are usually referred to as terminal nodes. A Steiner tree
is called full if every terminal is a leaf. A Steiner tree can be decomposed into components, which are full
by breaking the tree up at the nonleaf terminals. A Steiner tree is called k-restricted if every full component
has at most k terminals. Let us denote the length of the optimum k-restricted Steiner tree as optk and the
length of the optimum unrestricted Steiner tree as opt. Let the k-restricted Steiner ratio ρk be ρk = sup

optk
opt ,

where the supremum is taken over all instances of the Steiner tree problem. It has been shown in Ref. [21]
that ρk = (r+1)2r +s

r 2r +s , where r and s are obtained from the decomposition k = 2r + s , 0 ≤ s < 2r .
A slightly tighter bound on the length of the optimal k-restricted Steiner tree has been established in
Ref. [8].

Theorem 71.1 (Karpinski et al. [8])

For every Steiner tree T partitioned into edge-disjoint full components Ti ,

optk ≤
∑

i

(ρk(l(Ti ) − D(Ti )) + D(Ti ))

where l(Ti ) is the length of the full component Ti and D(Ti ) is the length of the longest path in Ti .

β-convexity of Steiner tree approximation has been introduced in Ref. [8]. A Steiner tree heuristic A
is called a β-convex α-approximation Steiner tree algorithm if there exist an integer m and nonnegative
real numbers λi , i = 2, . . . , m, with β = ∑m

i=2 λi and α = ∑m
i=2 λi ρi such that the length of the tree
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computed by A, l(A), is upper bounded by

l(A) ≤
m∑

i=2

λi opti

where opti is the length of the optimal i-restricted Steiner tree.
The MST-algorithm [17] is 1-convex 2-approximation since its output is the optimal 2-restricted Steiner

tree of length opt2. Every k-restricted approximation algorithm from Ref. [16] is 1-convex—the sum
of coefficients in the approximation ratio always equals to 1, for example, for k = 3, it is 1-convex
11/6-approximation algorithm since the output tree is bounded by 1

2 opt2 + 1
2 opt3. The output tree for

Polynomial Time Approximation Scheme (PTAS) [15] converges to the optimal 3-restricted Steiner tree
and has length (1+ε)opt3, therefore, it is (1+ε)-convex 5

3 (1+ε)-approximation algorithm. The currently

best approximation ratio of 1 +
√

3
2 is achieved by the heuristic in Ref. [14] which is not known to be

β-convex for any value of β.
Given a β-convex α-approximation algorithm A, it follows from Theorem 71.1 that

l(A) ≤
∑

i

λi opti ≤
∑

i

λi ρi (opt − D) + βD = α(opt − D) + βD (71.1)

Let OPT be the optimum cost QoSMT tree T , and let ti be the length of rate ri edges in T . Then,

cost(OPT) =
N∑

i=1

ri ti

Let OPTk be the subtree of the optimal QoS multicast tree OPT induced by edges of rate ri , i ≥ k. The
tree OPTk spans the source s and all nodes of rate rk and, therefore, an optimal Steiner tree connecting s
and rate-rk nodes cannot be longer than

l(OPTk) =
N∑

i=k

ti

The main idea of the QoSMT algorithms in Ref. [8] is to reuse connections for the higher rate nodes
when connecting lower rate nodes. When connecting nodes of rate rk , we collapse nodes of rate strictly
higher than rk into the source s thus allowing to reuse higher rate connections for free. Let Tk be an
approximate Steiner tree connecting the source s and all nodes of rate rk after collapsing all nodes of rate
strictly higher than rk into the source s and treating all nodes of rate lower than rk as Steiner points. If we
apply an α-approximation Steiner tree algorithm for finding Tk , then the resulted length can be bounded
as follows

l(Tk) ≤ αl(OPTk) = αtk + αtk+1 + · · · + αtN

The following lemma shows that if the tree Tk is obtained using β-convex α-approximation Steiner tree
algorithm, then a tighter upper bound on the length of Tk holds.

Lemma 71.1 (Karpinski et al. [8])

Given an instance of the QoSMT problem, the cost of the tree Tk computed by a β-convex α-approximation
Steiner tree algorithm is at most

cost(Tk) ≤ αrktk + β(rktk+1 + rktk+2 + · · · + rktN)

Proof
Let OPTk be the subtree of the optimal QoS multicast tree OPT induced by edges of rate ri , i ≥ k. By
duplicating nodes and introducing zero length edges, it can be assumed that OPTk+1 is a complete binary
tree with the set of leaves consisting of the source s and all nodes of rate at least rk+1. The edges of rate rk

form subtrees attached to the tree OPTk+1 connecting rate rk nodes to OPTk+1 (see Figure 71.3[a]).
Note that edges of any binary tree T can be partitioned into the edge-disjoint paths connecting internal

nodes with leaves as follows. Each internal node v (including the degree-2 root) is split into two nodes v1

and v2, such that v1 becomes a leaf incident to one of the downstream edges and v2 becomes a degree-2
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(a) (b) (c)

FIGURE 71.3 (a) The subtree OPTk of the optimal QoS Multicast tree OPT induced by edges of rate ri , i ≥ k. Edges
of rate greater than rk (shown as solid lines) form a Steiner tree for s ∪ Sk+1 ∪ · · · SN (filled circles); attached triangles
represent edges of rate rk . (b) Partition of OPTk into edge-disjoint connected components OPTi

k , each containing a
single terminal of rate ri , i > k. (c) A connected component OPTi

k , which consists of a path Di
k containing all edges

of rate ri , i > k, and attached Steiner trees containing edges of rate rk .

node (or a leaf if v is the root) incident to an edge connecting v to its parent (if v is not the root) and
another downstream edge. Since each node is incident to a downstream edge, each resulted connected
component will be a path containing exactly one leaf of T connected to an internal node of T .

The binary tree OPTk+1 broken into edge-disjoint paths described above along with all nodes of rate
rk that attached to them is shown on Figure 71.3(b). A resulted connected component OPTi

k consisting
of a path Di

k = OPTi
k ∩ OPTk+1 and attached Steiner trees with edges of rate rk is shown on Fig-

ure 71.3(c). Note that the total length of the paths Di
k is l(OPTk+1) = tk+1 + tk+2 + · · · + tN . By

Theorem 71.1, decomposing the tree Tk along these full components OPTi
k results in the following upper

bound:

l(Tk) ≤
∑

i

[
α
(

l
(

OPTi
k

) − Di
k

) + βDi
k

]

= αtk + β(tk+1 + tk+2 + · · · + tN)

The lemma follows by multiplying the last inequality by rk .

71.2.4 β-Convex Approximation for QoSMT with Two Rates

In practice, it is often the case that only few distinct rates are requested by the terminals. This is why the
QoS problem with two or three rates has a long history [7,10–12]. The previously best results of Refs. [12]
have produced algorithms with approximation factor equal to 2.667 (provided that the MST heuristic is
used to compute Steiner trees).

In this section approximation factors for the QoSMT problem with two nonzero rates are derived for
the balancing algorithm based on β-convex Steiner tree approximation (see Figure 71.4) [8].

Recall that an edge e has rate ri if the largest node rate in the component of T − {e} that does not
contain the source is ri . Let the optimal Steiner tree in G have cost opt = r1t1 + r2t2, with t1 being the
total length of the edges of rate r1 and t2 being the total length of the edges of rate r2. The algorithm
in Figure 71.4 uses as subroutines two Steiner tree algorithms: an algorithm A1 with an approximation
ratio of α1, and a β-convex algorithm A2 with an approximation ratio of α2. It outputs the minimum
cost Steiner tree between the tree ST1 obtained by running A1 with a set of terminals containing the
source and the nodes with both high and low nonzero rate, and the tree ST2 obtained by running A1

with a set of terminals containing the source and all high rate nodes, contracting the resulting tree into
the source, and running A2 with a set of terminals containing the contracted source and the low rate
nodes.
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Input: Graph G = ( V, E, l) with two nonzero rates r1 < r2, source s, terminal sets S1 of rate r1 and S2 of

rate r2, Steiner tree α1-approximation algorithm A1 and a β-convex α2-approximation algorithm A2.

Output: Low cost QoSMT spanning all terminals.

1. Compute an approximate Steiner tree ST1 for s ∪ S1 ∪ S2 using algorithm A1.

2. Compute an approximate Steiner tree T2 for s ∪ S2 (treating all other points as Steiner points) using

algorithm A1. Next, contract T2 into the source s and compute the approximate Steiner tree T1 for s and

remaining rate r1 points using algorithm A2.  Let ST2 be T1 ∪ T2.

3. Output the minimum cost tree among ST1 and ST2.

FIGURE 71.4 QoSMT approximation algorithm for two nonzero rates.

Theorem 71.2 (Karpinski et al. [8])

The algorithm in Figure 71.4 has an approximation ratio of

max

{

α2, max
r

α1
α1 − α2r + βr

α1 − α2r + βr 2

}

Proof
The cost of ST1 is bounded by cost(ST1) ≤ α1r2(t1 + t2). To obtain a bound on the cost of ST2 note that
cost(T2) ≤ α1r2t2, and that, by Lemma 71.1, cost(T1) ≤ α2r1t1 + βr1t2.

Thus, the following two bounds for the costs of ST1 and ST2 follow:

cost(ST1) ≤ α1r2t1 + α1r2t2

cost(ST2) ≤ α1r2t2 + α2r1t1 + βr1t2

Let us distinguish the following two cases:

Case 1
Let βr1 ≤ (α2 − α1)r2. Then

cost(ST2) ≤ α1r2t2 + α2r1t1 + βr1t2

≤ α1r2t2 + α2r1t1 + (α2 − α1)r2t2

≤ α2(r2t2 + r1t1)

= α2opt

Case 2
Let βr1 > (α2 − α1)r2. Then the following two values are positive:

x1 = r1

α1r2
(βr1 − (α2 − α1)r2)

x2 = r2 − r1

The following linear combination will be bounded:

x1cost(ST1) + x2cost(ST2) = r1(βr1 − (α2 − α1)r2)

α1r2
cost(ST1) + (r2 − r1)cost(ST2)

≤ r1(βr1 − (α2 − α1)r2)(t1 + t2) + (r2 − r1)(α1r2t2 + α2r1t1 + βr1t2)

= (
(β − α2)r 2

1 + r1r2α1
)

t1 + (
(β − α2)r1r2 + r 2

2 α1
)

t2

= ((β − α2)r1 + r2α1)(r1t1 + r2t2)

≤ (βr1 + α1r2 − α2r1)opt (71.2)
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Let Approx be the cost of the tree produced by the approximation algorithm. The Inequality (71.2)
implies that

Approx = min{cost(ST1), cost(ST2)}

= x1 min{cost(ST1), cost(ST2)} + x2 min{cost(ST1), cost(ST2)}
x1 + x2

≤ x1cost(ST1) + x2cost(ST2)

x1 + x2

≤ βr1 + α1r2 − α2r1
r1

α1r2
(βr1 − (α2 − α1)r2) + r2 − r1

opt

≤ α1
βr1r2 + α1r 2

2 − α2r1r2

βr 2
1 − (α2 − α1)r2r1 + α1r 2

2 − α1r1r2
opt

≤ α1
α1 − α2r + βr

α1 − α2r + βr 2
opt

where r = r1
r2

.
Summarizing the two cases we obtain that Approx is at most the maximum of two values, α2opt and

α1
α1−α2r+βr
α1−α2r+βr 2 opt, which proves the theorem.
Theorem 71.2 implies numerical bounds on the approximation ratios. Using that α1 = 1 + ln 3/2 + ε

for the algorithm from Ref. [14], α2 = 5/3 + ε for the algorithm from Ref. [15], α1 = α2 = 11/6 for
the algorithm from Ref. [16], and α1 = α2 = 2 for the MST heuristic, and β → 1 for all of the above
algorithms (except for the algorithm from Ref. [14]), we maximize the expression in Theorem 71.2 to
obtain the following theorem.

Theorem 71.3 (Karpinski et al. [8])

If the algorithm from Ref. [14] is used as A1 and the algorithm from Ref. [15] is used as A2, then the
approximation ratio of the QoSMT algorithm in Figure 71.4 is 1.960 + ε. If the algorithm from Ref. [15] is
used in place of both A1 and A2, then the approximation ratio is 2.059 + ε. If the algorithm from Ref. [16] is
used in place of both A1 and A2, then the ratio is 2.237. If the MST heuristic is used in place of both A1 and
A2, then the ratio is 2.414.

71.2.5 β-Convex Approximation for QoSMT
with Unbounded Number of Rates

In this section, we describe and prove the performance ratios of β-convex approximation algorithms for the
case of the QoSMT problem with arbitrarily many nonzero rates r1 < r2 < · · · < r N [8]. The algorithm
(see Figure 71.5) is a modification of the algorithm in Ref. [6]. As in Ref. [6], node rates are rounded up
to the closest power of some number a starting with a y , where y is picked uniformly at random between
0 and 1. In other words, the given rates are replaced with numbers from the set {a y , a y+1, a y+2, . . .}.
The major difference is that each approximate Steiner tree, Tk , constructed over nodes of rounded rate
a y+k is contracted in increasing order of k instead of simply taking union of Tk ’s according to Ref. [6].
This allows contracted edges to be reused at zero cost by Steiner trees connecting lower rate nodes. The
following analysis from Ref. [8] of this improvement shows that it decreases the approximation ratio from
4.211 to 3.802.

Let Topt be the optimal QoS Multicast tree, and let ti be the total length of the edges of Topt with rates
rounded to a y+i . First, we prove the following “randomized doubling” lemma corresponding to Lemma
4 from Ref. [6].
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Input: Graph G = (V, E, l), source s, sets Si of terminals with rate ri, positive number a, and

α-approximation β-convex Steiner tree algorithm.

Output: Low cost QoSMT spanning all terminals.

1. Pick y uniformly at random between 0 and 1. Round up each rate to the closest power of some number a

starting with ay, that is, round up to numbers in the set {ay, ay+1, ay+2, . . .}. Form new terminal sets S ′
i which

are unions of terminal sets with rates rounded to the same number r ′i.

2. T ← ∅.

3. For each nonzero rounded rate r ′i, in decreasing order, do:

Find an α-approximate Steiner tree Ti spanning s ∪ S ′
i

T ← T ∪ Ti

Contract Ti into source s

4. Output T.

FIGURE 71.5 Approximation algorithm for multirate QoSMT.

Lemma 71.2 (Karpinski et al. [8])

Let S be the cost of Topt after rounding node rates as in Figure 71.5, that is, S = ∑n
i=0 ti a y+i . Then,

S ≤ a − 1

ln(a)
cost(Topt)

Proof
First, note that an edge e used at rate r in Topt will be used at the rate a y+m, where m is the smallest integer
i such that a y+i is no less than r . Indeed, e is used at rate r in Topt if and only if the maximum rate of a
node connecting to the source via e is r , and every such node will be rounded to a y+m. Next, let r = ax+m.
If x ≤ y, then the rounded up cost is a y−x times the original cost; otherwise, if x > y, is a y+1−x times
the original cost. Hence, the expected factor by which the cost of each edge increases is

∫ x

0
a y+x−1dy +

∫ 1

x
a y−x dy = a − 1

ln a

By linearity of expectation, the expected cost after rounding of Topt is

S ≤ a − 1

ln a
cost(Topt)

Theorem 71.4 (Karpinski et al. [8])

The algorithm given in Figure 71.5 has an approximation ratio of

min
a

(

α
a

ln a
− (α − β)

1

ln a

)
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Proof (Sketch)
Let Approx be the cost of the tree returned by the algorithm in Figure 71.5, and Approxk be the cost of the
tree Tk constructed by the algorithm when considering rate rk . Then, by Lemma 71.1,

Approxk ≤ αa y+ktk + βa y+k+1tk+1 + βa y+k+2tk+2 + · · · + βa y+ntn

Summing up all the Approxk ’s (we omit the details), we get an upper bound of

(α − β)S + βS

(

1 + 1

a
+ 1

a2
+ · · ·

)

≤ (α − β)
a − 1

ln a
cost(Topt) + β

a

ln a
cost(Topt)

=
(

α
a

ln a
− (α − β)

1

ln a

)

cost(Topt)

where the last inequality follows from Lemma 71.2.

Note that the corresponding approximation ratio in Ref. [6] is larger and equalsα a
ln a attaining minimum

for a = e . The minimum of the approximation ratio in Theorem 71.4 can be obtained numerically—it is
equal to 3.802, 4.059, respectively 4.311, when the β-convex α-approximation Steiner tree algorithm used
in Figure 71.4 is the algorithm in Refs. [15,16], respectively, the MST heuristic. Finally, the algorithm in
Figure 71.5 can be derandomized using the same techniques as in Ref. [6].

71.3 Primal-Dual Approach to the QoSMT Problem

In this section, we discuss several primal-dual heuristics for the QoSMT problem due to Călinescu et al.
[13]. A simpler integer linear program and two primal-dual algorithms based on it are discussed in Sections
71.3.1 and 71.3.2. A tighter integer linear program and an associated 4.311-approximation primal-dual
algorithm are then described in Section 71.3.3.

71.3.1 A Simple Integer Linear Program (ILP) Formulation

The QoSMT problem can be formulated as an integer program as follows. Consider a network G =
(V, E , length, rate) with a source node s and a set of terminal nodes. Let r1 < r2 < · · · < r N be all rate
values assigned to the terminals. To simplify our notation we assume that every node has an extra rate r0 = 0
(i.e., assign rate r0 to each nonterminal node). As before the source s has the highest rate. Construct a new
network G ′ = (V, E ′, cost, rate) by replacing each edge e of G with k edges (e , r1), (e , r2), . . . , (e , rk)
and setting cost((e , ri )) = ri · length(e).

Let x(e ,r ) be a Boolean variable denoting whether edge e is used at rate r in an optimum tree. The QoS
Steiner tree problem can be formulated as

min
∑

(e ,r )∈E ′
x(e ,r ) · r · l eng th(e) (71.3)

s.t.
∑

(e ,r )∈δ(C)
r≥rC

x(e ,r ) ≥ 1, ∀C ⊆ V\{s } (71.4)

x(e ,r ) ∈ {0, 1} (71.5)

where δ(C) denotes the set of edges with exactly one endpoint in C and rC denotes the maximum rate of
a node in C . Note that formula (71.3) gives the cost of an optimal solution, while Eq. (71.4) guarantees
that each terminal is connected to the source through a collection of edges of rate no less than its rate.

After relaxing the integrality Constraint (71.5), the dual linear program can be written as follows. For
each (e , r ), C∗(e , r ) is defined as {C ∈ V\{s } : (e , r ) ∈ δ(C), r ≥ rC }. In words, C∗(e , r ) is the set of
subsets C of V\{s } such that (e , r ) has at least one endpoint in C and r is at least as large as rC . Using this
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definition, the dual is as follows:

max
∑

C

yC

s.t.
∑

C∈C∗(e ,r )

yC ≤ r · l eng th(e), ∀(e , r )

yC ≥ 0

71.3.2 Two Primal-Dual Methods for the Simple ILP Formulation

The primal-dual framework applied to network design problems usually grows uniformly the dual variables
associated to the “active” components of the current forest [22]. This approach fails to take into account
the different rates of different nodes in the QoSMT problem. The Naive Primal-Dual algorithm [13] (see
Figure 71.6) takes into account different rates by varying the speed at which each component grows. While
the simulations in the ensuing sections show that this is a good method in practice, the solution it produces
on some graphs may be very large compared to the optimal solution, as shown by the following example
with two rates.

Consider two nodes of rate 1 connected by an edge of length 1 (see Figure 71.7). There is an arc between
these two nodes, and on this arc there is a chain of nodes of rate ε. Each two consecutive nodes in the chain
are at a distance δ from each other, where δ < 1. Each extreme node in the chain is at a distance δ/2 of its
neighboring rate-1 node.

The Naive Primal-Dual applied to this graph connects the rate-ε nodes first, since δ
2 < 1

2 . So, the
algorithm connects the rate-1 nodes via the rate-ε nodes, and not via the direct edge connecting them.
Thus, the Naive Primal-Dual can make arbitrarily large errors (just take an arbitrarily long chain).

Input: A graph G = (V, E, length, rate) with a source s in V and a collection of terminals S ⊆ V.

Output: A QoSMT spanning the source and the terminals.

1. Start from the spanning forest of G with no edges.

2. Grow yC  with speed rC  for each “active” component C of the current forest. (A component C is inactive if

it contains s and all vertices of rate rC.)

3. Stop growing once the dual inequality for a pair (e, r) becomes tight, with e connecting two distinct

components of the forest. 

4. Add e to the forest, collapsing the two components.

5. Terminate when there is no active component left.

6. Keep an edge of the resulting tree at the minimum needed rate.

FIGURE 71.6 The Naive Primal-Dual algorithm for the QoSMT problem.

(a) (b)

FIGURE 71.7 The Restarting Primal-Dual avoids the mistake of the Naive Primal-Dual. Part (a) shows duplication
of the edges. Part (b) shows the components growing along the respective edges.
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Input: A Graph G′ = (V, E, cost, rate) with source s, and a collection of terminals S.

Output: A QoSMT spanning the source and the terminal.

1. Grow each active Cri
 with speed ri along incident edges (e, rj), j ≤ i, picking edges, which become tight.

2. Continue this process until there is no active component of rate rk.

3. Remove all edges, that are not necessary for maintaining connectivity of nodes of rate rk.

4. Accept (keep in the solution) and contract all edges of Crk
 (i.e., set their length/cost to 0).

5. Restart the algorithm with the new graph.

FIGURE 71.8 The Restarting Primal-Dual algorithm for the QoSMT problem.

An improved Restarting Primal-Dual algorithm [13] is given in Figure 71.8. One can easily see that this
is a primal-dual algorithm. Indeed, each addition of an edge to the current solution is the result of growing
dual variables. Moreover, since the feasibility requirement for edge a is �a∈δ(C) yC ≤ r · l eng th(a), this
addition preserves the feasibility of the dual solution. The algorithm maintains forests F ri given by the edges
picked at rate ri , and the connected components of F ri , seen as sets of vertices, are denoted in the algorithm
by Cri . Such a component is active if rCri

= ri , and Cri is disjoint from components of higher rate.
The Restarting Primal-Dual algorithm avoids the mistake made by the Naive Primal-Dual algorithm

on the frame example in Figure 71.7(a). Then, at time δ
2 the rate-ε nodes become connected. This means

that δ(1 − ε) of each rate-1 edge between the ε-rate nodes is not covered. Meanwhile, the rate-1 nodes are
growing on the respective edges as shown in Figure 71.7(b).

Let us assume that the Restarting Primal-Dual algorithm uses the chain of rate-ε nodes to connect the
two rate-1 nodes instead of the direct edge. This would imply that it takes less time to cover the chain, that
is, 1

2δ(1 − ε)n ≤ 1
2 − δ

2 , where n is the number of rate-ε nodes. When ε is small, then nδ ≤ 1, so if the
Restarting Primal-Dual algorithm uses the chain then it is correct to do so.

71.3.3 Primal-Dual 4.311-Approximation Algorithm

A constant-factor primal-dual approximation algorithm is obtained in Ref. [13] based on an enhanced
integer linear programming formulation of the QoSMT problem. The enhanced formulation takes into
account the fact that if a set C ⊂ V\{s } is connected to the source with edges of rate r ′ > rC , then there
should be at least two edges of rate r ′ with exactly one endpoint in C . The integer program is

min
∑

(e ,r )∈E ′
x(e ,r ) · r · l eng th(e)

s.t.
∑

e∈δ(C)
r=rC

x(e ,r ) + 1

2

∑

e∈δ(C)
r>rC

x(e ,r ) ≥ 1, ∀C ⊆ V \ {s }

x(e ,r ) ∈ {0, 1}
The corresponding dual of the LP relaxation is

max
∑

C⊆V\{s }
yC

s.t.
∑

C :e∈δ(C)
rC =r

yC + 1

2

∑

C :e∈δ(C)
rC <r

yC ≤ r · l eng th(e) (71.6)

yC ≥ 0
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Input: A graph G = (V, E, length, rate) with source s in V and a collection of terminals S ⊆ V.

Output: A QoSMT spanning the source and the terminal.

1. For each r = r1, r2, . . ., rk, execute steps 2–6.

2. Start from the spanning forest F r of G with no edges.

3. Grow yC uniformly for each r-component C of the current forest F r.

4. Stop growing once the dual inequality for a pair (e, r) becomes tight, with e connecting two distinct

components of F r.

5. Add (e, r) to F r, collapsing two of its components.

6. Terminate when there is no r-component of F r left.

7. Traversing the list of picked edges in reverse order, remove an edge (e, r) from F r if after (e, r)’s removal

the set of edges picked form a feasible tree.

Output: A QoSMT spanning the source and the terminal.

2. Start from the spanning forest F r of G with no edges.

FIGURE 71.9 The 4.311-approximation algorithm for QoSMT problem.

The core algorithm presented in Figure 71.9 is preprocessed with random bucketing of rates as in
Section 71.2.5 (see also step 1 in Figure 71.5). Let a be a real (to be picked later) and y be a real picked
uniformly at random from the interval [0 . . 1]. Every node of rate r is replaced by a node of rate aγ+ j ,
where j is the integer satisfying aγ+ j−1 < r ≤ aγ+ j .

The primal-dual part follows the classical framework [22], and works in stages starting from the lower
rate to the highest. During the execution of the algorithm, edges are picked at a certain rate (in other words,
x(e ,r ) is set to 1) one by one. Before executing step 3 at rate r for the i th time, the set of edges picked at
rate r by the algorithm forms a forest F r

i . (An edge can be picked at several rates, but it is kept in at most
one such rate in the final solution because of the reverse delete step.) A component C of F r

i is called an
r -component if rC = r .

Using constraint (71.6), it follows by induction on j that, for an edge e and a rate aγ+ j , we have
∑

C :e∈δ(C)

rC ≤aγ+ j

yC ≤ length(e)aγ+ j
j∑

i=0

(
1

2a

)i

≤ length(e)aγ+ j 2a

2a − 1

For an edge picked by the algorithm at rate r , Constraint (71.6) is tight and therefore,
∑

C :e∈δ(C)

rC ≤aγ+ j

yC ≥ length(e)
2a − 2

2a − 1
aγ+ j (71.7)

Exactly as in Ref. [22], the number of edges of rate r in the final solution which cross the active
r -components at some moment (an edge being counted twice if it crosses two r -components) is at most
twice the number of active r -components. Eq. (71.7), and exactly the same argument as in Theorem 4.2
of Ref. [22], imply that the cost of the solution of the algorithm is bounded by (2(2a − 1)/(2a − 2))∑

yC ≤ ((2a − 1)/(a − 1)) opt, as any feasible solution for the dual linear program has value at most the
value of any feasible solution of the primal.

The same argument as in Section 71.2.5 shows that the approximation ratio of the algorithm above is
(2a − 1)/ ln a . Numerical picking the same best value for a as in Section 71.2.5 implies
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Theorem 71.5 (Călinescu et al. [13])

The output cost of the algorithm on Figure 71.9 is at most 4.311 times the optimum cost.

71.4 Experimental Study

In this section, we report experimental results with several QoSMT heuristics: Maxemchuk’s [5], binary
rounding [6], naive primal-dual, and restarting primal-dual algorithms. The heuristics were implemented
in C++ and compiled using gpp with -O2 optimization, and run on a Sun workstation Ultra-60. The
experiments were run on random testcases generated using GT-ITM generator [23], which is used for
modeling Internet networks [24]. Table 71.3 gives a comparison of the performance of of the aforemen-
tioned algorithms. The experiments were conducted in the presence of no Steiner nodes, respectively 50%
Steiner nodes. Moreover, both arithmetic and geometric distributions of rates were tested.

TABLE 71.3 Cost Improvement Over Maxemchuck’s Algorithm (%) and CPU Seconds for Binary Rounding
and Two Primal-Dual Algorithms (Averages Over Ten Testcases)

50% Steiner Nodes, Geometric Progression Rates

Binary rounding Naive-PD Restart-PD
Maxemchuk’s

R N CPU G(%) CPU G(%) CPU G(%) CPU

1 200 0.017 0.00 0.017 −0.01 0.544 −0.01 0.325
1 300 0.050 0.00 0.052 0.04 1.372 0.04 0.946
2 200 0.027 0.00 0.026 0.43 1.271 1.03 1.125
2 300 0.070 0.00 0.072 0.93 4.573 2.17 3.747
5 200 0.044 0.00 0.044 −2.13 1.490 1.30 5.321
5 300 0.123 0.00 0.120 −0.91 5.221 1.10 16.798

10 200 0.065 0.00 0.068 −2.53 1.636 0.66 17.848
10 300 0.180 0.00 0.176 −2.61 6.582 0.24 107.125

50% Steiner Nodes, Arithmetic Progression Rates

1 200 0.016 0.00 0.017 −0.01 0.541 −0.01 0.327
1 300 0.052 0.00 0.051 0.04 1.370 0.04 0.946
2 200 0.027 0.00 0.023 −0.69 1.373 −0.00 1.136
2 300 0.071 0.00 0.070 −0.32 4.491 0.24 3.773
5 200 0.043 −0.01 0.040 1.70 1.564 2.66 5.256
5 300 0.123 −0.10 0.107 1.92 5.392 4.19 17.271

10 200 0.067 1.79 0.043 4.25 1.556 6.11 16.856
10 300 0.181 2.36 0.126 3.38 5.444 5.73 92.575

0% Steiner Nodes, Geometric Progression Rates

1 100 0.002 0.00 0.002 0.00 0.052 0.00 0.077
1 200 0.028 0.00 0.028 0.00 0.251 0.00 0.465
2 100 0.007 0.00 0.007 1.21 0.088 1.69 0.185
2 200 0.038 0.00 0.033 2.14 0.698 2.31 1.517
5 100 0.012 0.00 0.013 1.24 0.120 2.82 0.665
5 200 0.059 0.00 0.056 −0.25 1.296 1.70 6.314

10 100 0.019 0.00 0.018 −0.68 0.133 1.63 1.953
10 200 0.090 0.00 0.091 −1.97 1.466 0.73 20.525

0% Steiner Nodes, Arithmetic Progression Rates

1 100 0.005 0.00 0.005 0.00 0.054 0.00 0.078
1 200 0.026 0.00 0.026 0.00 0.247 0.00 0.457
2 100 0.005 0.00 0.006 −0.11 0.111 −0.04 0.187
2 200 0.036 0.00 0.034 −0.02 1.078 0.30 1.570
5 100 0.011 −0.17 0.011 3.70 0.114 4.60 0.656
5 200 0.059 −0.15 0.052 3.13 1.235 3.85 5.952

10 100 0.019 2.62 0.012 6.65 0.113 7.12 1.922
10 200 0.091 2.67 0.058 5.83 1.203 6.38 17.689

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C071 March 20, 2007 18:57

QoS Multimedia Multicast Routing 71-15

−200 0 200 400 600 800 1000 1200 1400 1600 1800
−1

0

1

2

3

4

5

6

7

P
er

ce
nt

ag
e 

ga
in

Binary rounding
Naive primal-dual
Restarting primal-dual

FIGURE 71.10 The gain of several algorithms versus Maxemchuk’s algorithm, 50% Steiner nodes.

Table 71.3 gives the results for instances generated using several sets of parameters. The relative solu-
tion quality of various heuristics is fairly independent on the class of instances. We note that the Naive
Primal-Dual and the Charikar–Naor–Schieber algorithms most often produce comparable results, which
are slight improvements over the results produced by Maxemchuk’s algorithm. The Restarting Primal-
Dual consistently produces solutions of best quality, typically 0.25–6% better than solutions produced by
Maxemchuk’s algorithm; this, however, occurs at the expense of greater CPU time. We also note that the
difference between algorithms increases as the number of rates increases. Figure 71.10 and Figure 71.11
illustrate this observation in a graphical form.
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FIGURE 71.11 The gain of several algorithms versus Maxemchuk’s algorithm, 0% Steiner nodes.
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72.1 Introduction

Every distributed system must be based on some kind of logical interconnection structure, also called
an overlay network, that allows its sites to exchange information. Once distributed systems become large
enough, one has to deal with sites continuously entering and leaving the system, simply because sites may
fail and have to be replaced by new sites or because additional resources have to be added to preserve the
functionality of the system. Hence, in general, a distributed system supporting any service has to have
an overlay network supporting joining, leaving, and routing between the sites, and without a scalable
implementation of such a network, the field of scalable distributed systems does not really exist.

Scalability is especially critical for peer-to-peer systems. The basic idea of peer-to-peer systems is to
have an open self-organizing system of peers that does not rely on any central server and where peers can
join and leave at will. This has the benefit that individuals can cooperate without fees or an investment
in additional high-performance hardware. Also, peer-to-peer systems can make use of the tremendous
amount of resources (such as computation and storage) that otherwise sit idle on individual computers
when they are not in use by their owners.

If we want a scalable peer-to-peer system, then joining, leaving, and routing between the sites should be
performed with at most polylogarithmic work in the size of the system. This implies that the maximum
degree and the diameter of the overlay network should be at most polylogarithmic as well. The overlay
network should also be well connected so that it is robust against faulty peers. The well connectedness of
a graph is usually measured by its expansion, which we will formally define later in this chapter. Another
important parameter is the stretch factor of an overlay network, which measures by how much the length
of a shortest route between two nodes v and w in the overlay network is off from a shortest route from v

to w when using the underlying physical network.

72-1
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To summarize, we are seeking operations JOIN, LEAVE, and ROUTE so that for any sequence of join, leave,
and route requests,

• the work of executing these requests is as small as possible,
• the degree, diameter, and stretch factor of the resulting network are as small as possible, and
• the expansion of the resulting network is as large as possible.

Hence, we are dealing with multiobjective optimization problems for which we want to find good ap-
proximate solutions. To address these problems, we first introduce some basic notation and techniques
for constructing overlay networks (Section 72.2). Afterwards, we start with supervised overlay network
designs (i.e., the topology is maintained by a supervisor but routing is done on a peer-to-peer basis), and
then we present various decentralized overlay network designs (i.e., the topology is maintained by the peers
themselves). For simplicity, we assume that no peer fails and that the peers always execute the operations
in a correct and timely manner (though in practice this might not be the case).

72.2 Basic Notation and Techniques

We start with some basic notation. A graph G = (V, E ) consists of a node set V and an edge set E ⊆ V ×V .
We will only consider directed graphs. The in-degree of a node is the number of incoming edges, the out-
degree of a node is the number of outgoing edges, and the degree of a node is the number of incoming and
outgoing edges. Given two nodes v and w , let d(v, w) denote the length of a shortest directed path from
v to w in G . G is strongly connected if d(v, w) is finite for every pair v, w ∈ V . In this case,

D = max
v,w∈V

d(v, w)

is the diameter of G . The expansion of G is defined as

α = min
S⊆V, |S|≤|V |/2

|�(S)|
|S|

where �(S) = {v ∈ V \ S | ∃u ∈ S : (u, v) ∈ E } is the neighbor set of S. The following relationship
between the expansion and diameter of a graph is easy to show:

Fact 72.1

For any graph G with expansion α, the diameter of G is in O(α−1 log n).

The vast majority of overlay networks for peer-to-peer systems suggested in the literature is based on
the concept of virtual space. That is, every site is associated with a point in some space U and connections
between sites are established based on rules how to interconnect points in that space. In this case, the
following operations need to be implemented:

• JOIN( p): add new peer p to the network by choosing a point in U for it
• LEAVE( p): remove peer p from the network
• ROUTE(m, x): route message m to point x in U

Several virtual space approaches are known. The most influential techniques are the hierarchical decom-
position technique, the continuous-discrete technique, and the prefix technique. We will give a general
outline of each technique in this section. At the end of this section, we present two important families of
graphs that we will use later in this chapter to construct dynamic overlay networks.

72.2.1 The Hierarchical Decomposition Technique

Consider the space U = [0, 1]d for some fixed d ≥ 1. The decomposition tree T(U ) of U is an infinite
binary tree in which the root represents U and for every node v representing a subcube U ′ in U , the
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FIGURE 72.1 The decomposition tree for d = 2.

children of v represent two subcubes U ′′ and U ′′′, where U ′′ and U ′′′ are the results of cutting U ′ in the
middle at the smallest dimension in which U ′ has a maximum side length. The subcubes U ′′ and U ′′′ are
closed, that is, their intersection gives the cut. Let every edge to a left child in T(U ) be labeled with 0 and
every edge to a right child in T(U ) be labeled with 1. Then the label of a node v, �(v), is the sequence of
all edge labels encountered when moving along the unique path from the root of T(U ) downwards to v.
For d = 2, the result of this decomposition is shown in Figure 72.1.

The goal is to map the peers to nodes in T(U ) so that the following conditions are met:

Condition 72.1

(1) The interiors of the subcubes associated with the (nodes assigned to the) peers are disjoint,
(2) the union of the subcubes of the peers gives the entire set U , and
(3) every peer p with subcube Up is connected to all peers p′ with subcubes Up′ that are adjacent to Up

(i.e., Up ∩ Up′ is a d − 1-dimensional subcube).

In the 2-dimensional case, for example, condition (3) means that p and p′ share a part of the cut line
through their first common ancestor in T(U ). It is not difficult to see that the following result is true.

Fact 72.2

Consider the space U = [0, 1]d for some fixed d and suppose we have n peers. If the peers are associated with
nodes that are within k levels of T(U ) and Condition 72.1 is satisfied, then the maximum degree of a peer is
at most (2d)2k−1 and the diameter of the graph is at most dn1/d + 2(k − 1).

The diameter of the graph can be as large as dn1/d and therefore too large for a scalable graph if d is
fixed, but its degree is small as long as k = O(log log n).

An example of a peer-to-peer system using the hierarchical decomposition technique is CAN [1]. In
the original CAN construction, a small degree is achieved by giving each peer p a label �( p) consisting
of a (sufficiently long) random bit string when it joins the system. This bit string is used to route p
to the unique peer p′ that is reached when traversing the tree T(U ) according to �( p) (a 0 bit means
“go left” and a 1 bit means “go right”) until a node v is reached that is associated with a peer. (Such
a node must always exist if there is at least one peer in the system and the two rules of assigning peers
to nodes in Condition 72.1 are satisfied.) One of p and p′ is then placed in the left child of v and the
other in the right child of v. Leave operations basically reverse join operations so that Condition 72.1 is
maintained. Due to the use of a random bit sequence, one can show that the number of levels the peers
are apart is indeed O(log log n), as desired, but it can also be as bad as that. Strategies that achieve a more
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even level balancing were, subsequently, proposed in several papers (see, e.g., Ref. [2] and the references
therein).

72.2.2 The Continuous-Discrete Technique

The basic idea underlying the continuous-discrete approach [3] is to define a continuous model of graphs
and to apply this continuous model to the discrete setting of a finite set of peers. A well-known peer-to-peer
system that uses an approach closely related to the continuous-discrete approach is Chord [4].

Consider the d-dimensional space U = [0, 1)d , and suppose that we have a set F of continuous
functions fi : U → U . Then we define E F as the set of all pairs (x , y) ∈ U 2 with y = fi (x) for some i .
Given any subset S ⊆ U , let �(S) = {y ∈ U \ S | ∃x ∈ S : (x , y) ∈ E F }. If �(S) 	= ∅ for every S ⊂ U ,
then F is said to be mixing. If F does not mix, then there are disconnected areas in U .

Consider now any set of peers V , and let S(v) be the subset in U that has been assigned to peer v. Then
the following conditions have to be met:

Condition 72.2

(1) ∪v S(v) = U and
(2) for every pair of peers v and w it holds that v is connected to w if and only if there are two points

x , y ∈ U with x ∈ S(v), y ∈ S(w), and (x , y) ∈ E F .

Let G F (V) be the graph resulting from the conditions above. Then the following fact is easy to see:

Fact 72.3

If F is mixing and ∪v S(v) = U , then G F (V) is strongly connected.

To bound the diameter of G F (V), we introduce some further notation. For any point x and any
ε ∈ [0, 1), let B(x , ε) denote the d-dimensional ball of volume ε centered at x . For any two points x
and y in U let dn(x , y) denote the shortest sequence (s1s2s3 . . . sk) ∈ INk so that there are two points
x ′ ∈ B(x , 1/n) and y ′ ∈ B(y, 1/n) with fs1 ◦ fs2 ◦ . . . fsk (x ′) = y ′. Then we define the diameter of F as

D(n) = max
x , y∈U

dn(x , y)

Using this definition, it holds

Fact 72.4

If ∪v S(v) = U and every S(v) contains a ball of volume at least 1/n then G F (V) has a diameter of at most
D(n).

Also the expansion of G F (V) can be bounded with a suitable parameter for F , but it is easier to consider
explicit examples here, and therefore we defer a further discussion to Section 72.4.1.

72.2.3 The Prefix Technique

The prefix technique was first presented in Refs. [5,6] and first used in the peer-to-peer world by Pastry [7]
and Tapestry [8]. Given a label � = (�1�2�3 . . .), let prefixi (�) = (�1�2 . . . �i ) for all i ≥ 1 and prefix0(�) =
ε, the empty label.

In the prefix technique, every peer node v is associated with a unique label �(v) = �(v)1 . . . �(v)k ,
where each �(v)i ∈ {0, . . . , b − 1}, for some constant b ≥ 2 and sufficiently large k, and the following
condition has to be met concerning connections between the nodes.

Condition 72.3

For every peer v, every digit α ∈ {0, . . . , b − 1}, and every i ≥ 0, v has a link to a peer node w with
prefixi (�(v)) = prefixi (�(w)) and �(w)i+1 = α, if such a node w exists.
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Since for some values of i and α there can be many nodes w satisfying the condition above, a rule has to
be specified which of these nodes w to pick. For example, a peer may connect to the geographically closest
peer w , or a peer may connect to a peer w to which it has the best connection. The following result is easy
to show:

Fact 72.5

If the maximum length of a node label is L and the node labels are unique, then any rule of choosing a node
w as in Condition 72.3 guarantees strong connectivity. Moreover, the maximum out-degree of a node and the
diameter of the network are at most L .

However, the in-degree, that is, the number of incoming connections, can be quite high, depending
on the rule. An easy strategy guaranteeing polylogarithmic in- and out-degree and logarithmic diameter
is that every node chooses a random binary sequence as its label, and a node v connects to the node w
among the eligible candidates with the closest distance to v, that is, |�(v) − �(w)| is minimized. This rule
also achieves a good expansion but not a good stretch factor. To address the stretch factor, other rules are
necessary that are discussed in Section 72.4.2.

72.2.4 Basic Classes of Graphs

We will apply our basic techniques above to two important classes of graphs: the hypercube and the de
Bruijn graph. They are defined as follows.

Definition 72.1

For any d ∈ IN, the d-dimensional hypercube is an undirected graph G = (V, E ) with V = {0, 1}d and
E = {{v, w} | H(v, w) = 1}, where H(v, w) is the Hamming distance between v and w.

Definition 72.2

For any d ∈ IN, the d-dimensional de Bruijn graph is an undirected graph G = (V, E ) with node set V =
{v ∈ {0, 1}d } and edge set E that contains all edges {v, w} with the property that w ∈ {(x , vd−1, . . . , v1) :
x ∈ {0, 1}}, where v = (vd−1, . . . , v0).

72.3 Supervised Overlay Networks

A supervised overlay network is a network formed by a supervisor but in which all other activities can be
performed on a peer-to-peer basis without involving the supervisor. It can, therefore, be seen as being
between server-based overlay networks and pure peer-to-peer overlay networks. In order for a supervised
network to be highly scalable, two central requirements have to be satisfied:

1. The supervisor needs to store at most a polylogarithmic amount of information about the system
at any time (e.g., if there are n peers in the system, storing contact information about O(log2 n) of
these peers would be fine).

2. The supervisor needs at most a constant number of messages to include a new peer into or exclude
an old peer from the network.

The second condition makes sure that the work of the supervisor to include or exclude peers from the system
is kept at a minimum. First, we present a general strategy of constructing supervised overlay networks,
which combines the hierarchical decomposition technique with the continuous-discrete technique and
the recursive labeling technique below, and then we give some explicit examples that achieve near-optimal
results for the cost of the join, leave, and route operations as well as the degree, diameter, and expansion
of the network.
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72.3.1 The Recursive Labeling Technique

In the recursive labeling approach, the supervisor assigns a label to every peer that wants to join the system.
The labels are represented as binary strings and are generated in the following order:

0, 1, 01, 11, 001, 011, 101, 111, 0001, 0011, 0101, 0111, 1001, 1011, . . .

Basically, when stripping off the least significant bit, the supervisor is first creating all binary numbers of
length 0, then length 1, then length 2, and so on. More formally, consider the mapping � : IN0 → {0, 1}∗
with the property that for every x ∈ IN0 with binary representation (xd . . . x0)2 (where d is minimum
possible):

�(x) = (xd−1 . . . x0xd )

Then � generates the sequence of labels displayed above. In the following, it will also be helpful to view
labels as real numbers in [0, 1). Let the function r : {0, 1}∗ → [0, 1) be defined so that for every label
� = (�1�2 . . . �d ) ∈ {0, 1}∗, r (�) = ∑d

i=1
�i
2i . Then the sequence of labels above translates into

0, 1/2, 1/4, 3/4, 1/8, 3/8, 5/8, 7/8, 1/16, 3/16, 5/16, 7/16, 9/16, . . .

Thus, the more labels are used, the more densely the [0, 1) interval will be populated. When using the
recursive approach, the supervisor aims to maintain the following condition at any time:

Condition 72.4

The set of labels used by the peers is {�(0), �(1), . . . , �(n − 1)}, where n is the current number of peers in the
system.

This condition is preserved when using the following simple strategy:

• Whenever a new peer v joins the system and the current number of peers is n, the supervisor assigns
the label �(n) to v and increases n by 1.

• Whenever a peer w with label � wants to leave the system, the supervisor asks the peer with currently
highest label �(n − 1) to take over the role of w (and thereby change its label to �) and reduces n
by 1.

72.3.2 Putting the Pieces Together

We assume that we have a single supervisor for maintaining the overlay network. In the following, the label
assigned to some peer v will be denoted as �v . Given n peers with unique labels, we define the predecessor
pred(v) of peer v as the peer w for which r (�w ) is closest from below to r (�v), and we define the successor
succ(v) of peer v as the peer w for which r (�w ) is closest from above to r (�v) (viewing [0, 1) as a ring in
both cases). Given two peers v and w , we define their distance as

δ(v, w) = min{(1 + r (�v) − r (�w ))mod 1, (1 + r (�w ) − r (�v))mod 1}
To maintain a doubly linked cycle among the peers, we simply have to maintain the following condition:

Condition 72.5

Every peer v in the system is connected to pred(v) and succ(v).

Now, suppose that the labels of the peers are generated via the recursive strategy above. Then we have
the following properties:

Lemma 72.1

Let n be the current number of peers in the system, and let n̄ = 2�log n�. Then for every peer v ∈ V,
|�v| ≤ �log n� and δ(v, pred(v)) ∈ {1/(2n̄), 1/n̄}.
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So the peers are approximately evenly distributed in [0, 1) and the number of bits for storing a label is
almost as low as it can be without violating the uniqueness requirement.

Now, recall the hierarchical decomposition approach. The supervisor will assign every peer p to the
unique node v in T(U ) at level log(1/δ( p, pred( p))) with �v being equal to �p (padded with 0’s to the
right so that |�v| = |�p |). As an example, if we have four peers currently in the system, then the mapping
of peer labels to node labels is

0 → 00, 1 → 10, 01 → 01, 11 → 11

With this strategy, it follows from Lemma 72.1 that Fact 72.2 applies with k = 2.
Consider now any family F of functions acting on some space U = [0, 1)d and let C( p) be the subcube

of the node in T(U ) that p has been assigned to. Then the goal of the supervisor is to maintain the following
condition at any time:

Condition 72.6

For the current set V of peers in the system it holds that

1. the set of labels used by the peers is {�(0), �(1), . . . , �(n − 1)}, where n = |V |,
2. every peer v in the system is connected to pred(v) and succ(v), and
3. there is an edge (v, w) for every pair of peers v and w for which there is an edge (x , y) ∈ E F with

x ∈ C (v) and y ∈ C (w).

72.3.3 Maintaining Condition 72.6

Next we describe the actions that the supervisor has to perform to maintain Condition 72.6 during a join
or leave operation. We start with the following important fact:

Fact 72.6

Whenever a new peer v enters the system, then pred(v) has all the connectivity information v needs to satisfy
Condition 72.6(3), and whenever an old peer w leaves the system, then it suffices that it transfers all of its
connectivity information to pred(w) to maintain Condition 72.6(3).

The first part of the fact follows from the observation that when v enters the system, then the subcube
of pred(v) splits into two subcubes where one resides at pred(v) and the other is taken over by v. Hence, if
pred(v) passes all of its connectivity information to v, then v can establish all edges relevant for it according
to the continuous-discrete approach. The second part of the fact follows from the observation that the
departure of a peer is the reverse of the insertion of a peer.

Thus, if the peers take care of the connections in Condition 72.6(3), the only part that the supervisor
has to take care of is maintaining the cycle. For this we require the following condition:

Condition 72.7

At any time, the supervisor stores the contact information of pred(v), v, succ(v), and succ(succ(v)), where v

is the peer with label �(n − 1).

To satisfy Condition 72.7, the supervisor performs the following actions. If a new peer w joins, then the
supervisor

• informs w that �(n) is its label, succ(v) its predecessor, and succ(succ(v)) its successor,
• informs succ(v) that w is its new successor,
• informs succ(succ(v)) that w is its new predecessor,
• asks succ(succ(v)) to send its successor information to the supervisor, and
• sets n = n + 1.
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If an old node w leaves and reports �w , pred(w), and succ(w) to the supervisor (recall that we are
assuming graceful departures), then the supervisor

• informs v (the node with label �(n − 1)) that �w its new label, pred(w) its new predecessor, and
succ(w) its new successor,

• informs pred(w) that its new successor is v and succ(w) that its new predecessor is v,
• informs pred(v) that succ(v) is its new successor and succ(v) that pred(v) is its new predecessor,
• asks pred(v) to send its predecessor information to the supervisor and to ask pred(pred(v)) to send

its predecessor information to the supervisor, and
• sets n = n − 1.

Thus, the supervisor only needs to handle a small constant number of messages for each arrival or
departure of a peer, as desired. Next we look at two examples resulting in scalable supervised overlay
networks.

72.3.4 Examples

For a supervised hypercubic network, simply select F as the family of functions on [0, 1) with fi (x) =
x + 1/2i (mod 1) for every i ≥ 1. Using our framework, this gives an overlay network with degree
O(log n), diameter O(log n), and expansion O(1/

√
log n), which matches the properties of ordinary

hypercubes.
For a supervised de Bruijn network, simply select F as the family of functions on [0, 1) with f0(x) = x/2

and f1(x) = (1 + x)/2. Using our framework, this gives an overlay network with degree O(1), diameter
O(log n), and expansion O(1/ log n), which matches the properties of ordinary de Bruijn graphs.

In both networks, routing with logarithmic work can be achieved by using the bit adjustment strategy.

72.4 Decentralized Overlay Networks

Next we show that scalable overlay networks can also be maintained without involving a supervisor. We only
discuss examples for the latter two basic techniques in Section 72.2 since the hierarchical decomposition
technique cannot yield networks of polylogarithmic diameter.

72.4.1 Overlay Networks Based on the Continuous-Discrete Approach

Similar to the supervised approach, we first show how to maintain a hypercubic overlay network, and then
we show how to maintain a de Bruijn-based overlay network.

72.4.1.1 Maintaining a Dynamic Hypercube

Let U = [0, 1) and consider the family F of functions on [0, 1) with fi (x) = x + 1/2i (mod 1) for every
i ≥ 1. Given a set of points V ⊂ [0, 1), we define the region S(v) associated with point v as the interval
(pred(v), v), where pred(v) is the closest predecessor of v in V and U is seen as a ring. The following
result follows from Ref. [9]:

Theorem 72.1

If every peer is given a random point in [0, 1), then the graph G F (V) with |V | = n resulting from
the continuous-discrete approach has a degree of O(log2 n), a diameter of O(log n), and an expansion of
�(1/ log n), with high probability.

Suppose that Condition 72.2 is satisfied for our family of hypercubic functions. Then it is fairly easy to
route a message from any point x ∈ [0, 1) to any point y ∈ [0, 1) along edges in G F (V).
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Consider the path P in the continuous space that results from using a bit adjustment strategy to get
from x to y. That is, given that x1x2x3 . . . is the bit sequence for x and y1 y2 y3 . . . the bit sequence for y,
P is the sequence of points z0 = x1x2x3 . . . , z1 = y1x2x3 . . . , z2 = y1 y2x3 . . . , . . . , y1 y2 y3 . . . = y.
Of course, P may have an infinite length, but simulating P in G F (V) only requires traversing a finite
sequence of edges.

We start with the region S(v) containing x = z0. Then we move along the edge (v, w) in G F (V) to
the region S(w) containing z1. This edge must exist because we assume that Condition 72.2 is satisfied.
Then we move along the edge (w , w ′) simulating (z1, z2), and so on, until we reach the node whose region
contains y. Using this strategy, it holds.

Theorem 72.2

Given a random node set V ⊂ [0, 1) with |V | = n, it takes at most O(log n) hops, with high probability, to
route in G F (V) from any node v ∈ V to any node w ∈ V.

Next we explain how nodes can join and leave. Suppose that a new node v contacts some node already
in the system to join the system. Then v’s request is first sent to the node u in V with u = succ(v), which
only takes O(log n) hops according to Theorem 72.2. u forwards information about all of its incoming
and outgoing edges to v, deletes all edges that it does not need any more, and informs the corresponding
endpoints about this. Because S(v) ⊆ S(u) for the old S(u), the edges reported to v are a superset of the
edges that it needs to establish. v checks which of the edges are relevant for it, informs the other endpoint
for each relevant edge, and removes the others.

If a node v wants to leave the network, it simply forwards all of its incoming and outgoing edges to
succ(v). succ(v) will then merge these edges with its existing edges and notifies the endpoints of these
edges about the changes.

Combining Theorems 72.1 and 72.2 we obtain the following theorem:

Theorem 72.3

It takes a routing effort of O(log n) hops and an update work of O(log2 n) messages that can be processed in
O(log n) communication rounds in order to execute a join or leave operation.

72.4.1.2 Maintaining a Dynamic deBruijn Graph

Next, we show how to dynamically maintain a deBruijn graph. An example of a dynamic de Bruijn network
(only some shortcut pointers for two nodes are given) is given in Figure 72.2. Let U = [0, 1) and F consist

1 0

FIGURE 72.2 An example of a dynamic de Bruijn network (only some shortcut pointers for two nodes are given).
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of two functions, f0 and f1, where fi (x) = (i + x)/2 for each i ∈ {0, 1}. Then one can show the following
result:

Theorem 72.4

If the peers are mapped to random points in [0, 1), then the graph G F (V) resulting from the continuous-
discrete approach has a degree of O(log n), diameter of O(log n), and node expansion of �(1/ log n), with
high probability.

Next we show how to route in the de Bruijn network. Suppose that Condition 72.2 is satisfied. Then we
use the following trick to route a message from any point x ∈ [0, 1) to any point y ∈ [0, 1) along edges in
G F (V).

Let z be a randomly chosen point in [0, 1). Let x1x2x3 . . . be the binary representation of x , y1 y2 y3 . . .

the binary representation of y, and z1z2z3 the binary representation of z. Let P be the path along the points
x = x1x2x3 . . . , z1x1x2 . . . , z2z1x1 . . . , . . . and P ′ the path along the points y = y1 y2 y3 . . . , z1 y1 y2 . . . ,
z2z1 y1 . . . , . . .. Then we simulate moving along the points in P by moving along the corresponding edges
in G F (V) until we hit a node w ∈ V with the property that S(w) contains a point in P and a point in P ′.
At that point, we follow the points in P ′ backwards until we arrive at the node w ′ ∈ W that contains y in
S(w ′). Using this strategy, it holds.

Theorem 72.5

Given a random node set V ⊂ [0, 1) with |V | = n, it takes at most O(log n) hops, with high probability, to
route in G F (V) from any point x ∈ [0, 1) to any point y ∈ [0, 1).

Joining and leaving the network is done in basically the same way as in the hypercube, giving the
following result:

Theorem 72.6

It takes a routing effort of O(log n) hops and an update work of O(log n) messages that can be processed in a
logarithmic number of communication rounds in order to execute a join or leave operation in the dynamic de
Bruijn graph.

72.4.2 Overlay Networks Based on Prefix Connections

The efficiency of routing on an overlay network is quite often measured in terms of the number of hops
(neighbor links) followed by a message. While this measure indicates the latency of a message in the overlay
network, it fails to convey the complexity of the given operation with respect to the original underlying
network. In other words, while in the overlay network all overlay links may have the same cost, this is not
true when those overlay links are translated back into paths in the underlying network. Hence, if one is
to analyze the routing performance of an overlay network in a way that is more meaningful for real-life
scenarios, one needs to take into account the different internode communication costs in the underlying
network when charging for the cost of following a path in the overlay network. For example, a hop from a
peer in the United States to a peer in Europe costs a lot more (in terms of reliability, speed, cost of deploying
and maintaining the link, and so on) than a hop going between two peers in a local area network. In brief,
keeping routing local is important: It may make sense to route a message originated in Phoenix for a
destination peer in San Francisco through Los Angeles, but not through a peer in Europe.

In this section, we present peer-to-peer overlay network design schemes which take locality into account
and which are able to achieve constant stretch factors, while keeping polylogarithmic degree and diameter,
and polylogarithmic complexity for join and leave operations. All of the work in this section assumes that
the underlying peer-to-peer system is a growth-bounded network, which we define a few paragraphs later.

Peers communicate with one another by means of messages; each message consists of at least one
word. We assume that the underlying network supports reliable communication. We define the cost of
communication by a function c : V 2 → �. This function c is assumed to reflect the combined effect of the
relevant network parameter values, such as latency, throughput, and congestion. In other words, for any
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two peers u and v in V , c(u, v) is the cost of transmitting a single-word message from u to v. We assume that
c is symmetric and satisfies the triangle inequality. The cost of transmitting a message of length l from peer
u to peer v is given by f (l)c(u, v), where f : N → �+ is any nondecreasing function such that f (1) = 1.

A growth-bounded network satisfies the following property: Given any u in V and any real r , let B(u, r )
denote the set of peers v such that c(u, v) ≤ r . We refer to B(u, r ) as the ball of radius r around u. We
assume that there exists a real constant � such that for any peer u in V and any real r ≥ 1, we have

|B(u, 2r )| ≤ �|B(u, r )| (72.1)

In other words, the number of peers within radius r from u grows polynomially with r . This network
model has been validated by both theoreticians and practitioners as to model well-existing internetworking
topologies [7,8,10,11].

Plaxton, Rajaraman, and Richa (PRR) in Refs. [5,6] pioneered the work on locality-aware routing
schemes in dynamic environments. Their work actually addresses a more general problem—namely the
object location problem—than that of designing efficient overlay networks with respect to the parameters
outlined in Section 72.1. In that early work, Plaxton et al. formalize the problem of object location in a
peer-to-peer environment, pinpointing the issue of locality and developing a formal framework under
which object location schemes have been rigorously analyzed. In the object location problem, peers seek
to find objects in a dynamic and fully distributed environment, where multiple (identical) copies of an
object may exist in the network: The main goal is to be able to locate and find a copy of an object within
cost that is proportional to the cost of retrieving the closest copy of the object to the requesting peer, while
being able to efficiently support these operations in a dynamic peer-to-peer environment where copies of
the objects are continuously inserted and removed from the network.

Our overlay network design problem can be viewed as a subset of the object location problem addressed
by PRR, where each object is a peer (and hence there exists a single copy of each object in the network).
Hence the results in the PRR scheme and other object location schemes to follow, in particular the LAND
scheme to be addressed later in this section, directly apply to our overlay network design problem. Both PRR
and LAND assume a growth-bounded network model. For these networks, the LAND scheme provides the
best currently known overlay design scheme with 1 + ε stretch, and polylogarithmic bounds on diameter
and degree, for any fixed constant ε > 0. Combining the LAND scheme with a technique by Hildrum
et al. [12] to find nearest neighbors enable us to also attain polylogarithmic work for JOIN and LEAVE

operations. Since the LAND scheme heavily relies on the PRR scheme, we will present the latter in more
detail and then highlight the changes introduced by the LAND scheme. We will address both schemes under
the light of overlay routing, rather than the object location problem originally addressed by these schemes.

In the PRR and related schemes, each peer p will have two attributes in addition to its exact location
in the network (which is unknown to other peers): A virtual location x in U , and a label �(x) generated
independently and uniformly at random. We call the virtual location x of p the peer identifier x , or simply, the
ID x . In the remainder of this section, we will indistinctly use the ID x of a peer p to denote the peer p itself.

72.4.2.1 The PRR Scheme

The original PRR scheme assumes that we have a growth-bounded network with the extra assumption of
also having a lower bound on the rate of growth. Later work that evolved from the PRR scheme (e.g., the
LAND scheme) showed that this assumption could be dropped by slightly modifying the PRR scheme. The
PRR scheme and the vast majority of provably efficient object location schemes rely on a basic yet powerful
technique called prefix routing, which we outlined in Section 72.4.2. Below, we revisit prefix routing in the
context of the PRR scheme.

Theorem 72.7

The PRR scheme, when combined with a technique by Hildrum et al. for finding nearest neighbors, achieves
an overlay peer-to-peer network with the following properties: expected constant stretch for ROUTE operations,
O(log n) diameter, and, with high probability, O(log2 n) degree and work for JOIN, LEAVE, and ROUTE

operations.
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0 1

Node y with minimum c (x, y) such that
prefixi −1 (�(x)) = pref ixi −1 (�(y)) and �(y)i = 0

Node z with minimum c (x, z) such that
prefixi −1 (�(x)) = prefixi −1 (�(z)) and �(z)i = 1

y z

Level logb  n

Level i 

Level 1 

FIGURE 72.3 The neighbor table of peer node x for b = 2.

72.4.2.1.1 Prefix Routing
The basic idea behind prefix routing (see also Section 72.4.2) is that the path followed in a routing operation
will be guided solely by the ID y we are seeking for: Every time a ROUTE(m, y) request is forwarded from
a peer u to a peer v in the overlay path, the prefix of �(v) that (maximally) matches a prefix of the ID y is
strictly larger than that of �(u).

We now sketch the PRR prefix routing scheme (for more details, see Ref. [6]). Each peer x in the
network is assigned a (logb n)-digit label1 �(x) = �(x)1 . . . �(x)logb n, where each �(x)i ∈ {0, . . . , b − 1},
uniformly at random, for some large enough constant b ≥ 2. Recall that each peer also has a unique
(logb n)-digit ID which is independent of this label. We denote the ID of peer x by x1 . . . xlogb n, where
each xi ∈ {0, . . . , b − 1}.

The random labels are used to construct a neighbor table at each peer. For a base b sequence of digits
γ = γ1 . . . γm, prefixi (γ ) denotes the first i digits, γ1 . . . γi , of γ . For each peer x , each integer i between
1 and logb n, and each digit α between 0 and b − 1, the neighbor table at peer x stores the (logb n)-digit
ID of the closest peer y to x—that is, the peer with minimum c(x , y)—such that prefixi−1(�(x)) =
prefixi−1(�(y)) and �(y)i = α. We call y the (i, α)-neighbor of peer x . There exists an edge between
any pair of neighbor peers in the overlay network. Figure 72.3 illustrates the neighbor table of peer x
for b = 2.

The degree of a peer in the overlay network is given by the size (number of entries) of its neighbor table.
The size of the neighbor table at each peer, as constructed above, is O(log n). In the final PRR scheme
(and other follow-up schemes) the neighbor table at a peer will have size polylogarithmic on n (namely
O(log2 n) in the PRR scheme), since a set of “auxiliary” neighbors at each peer will need to be maintained
in order for the scheme to function efficiently. Each peer x will also need to maintain a set of “pointers” to
the location of the subset of peers that were published at x by JOIN operations. In the case of routing, each
peer will maintain O(log2 n) such pointers with high probability.2 We describe those pointers in more
detail while addressing the JOIN operation in PRR.

The sequence of peers visited in the overlay network during a routing operation for ID y initiated by
peer x will consist of the sequence x = x0, x1, . . . , xq , where xi is the (i, yi )-neighbor of peer xi−1, for
1 ≤ i ≤ q , and x p is a peer that holds a pointer to y in the network ( p ≤ logb n). We call this sequence the

1Without loss of generality, assume that n is a power of b.
2With probability at least 1 − 1/p(n), where p(n) is a polynomial function on n.
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neighbor sequence of peer x for (peer ID) y. Below we explain in more detail the ROUTE, JOIN, and LEAVE

operations according to PRR.

72.4.2.1.2 Route, Join, and Leave
Before we describe a routing operation in the PRR scheme, we need to understand how JOIN and LEAVE

operations are processed. Since we are interested in keeping low stretch, the implementation of such
operations will be different in the PRR scheme than in the two other overlay network design techniques
presented in this chapter. In a ROUTE(m, x) operation, we will, as in the hierarchical decomposition and
continuous-discrete approaches, start by routing towards the virtual location x ; however, as we route
toward this virtual location, as soon as we find some information on the network regarding the actual
location of the peer p corresponding to x , we will redirect our route operation to reach p. This way, we
will be able to show that the total stretch of a route operation is low (If we were to route all the way to the
virtual location x to find information about the actual location of p, the total incurred stretch might be
too large.).

There are two main components in a JOIN( p) operation: First, information about the location of peer p
joining the peer-to-peer system needs to be published at the network so that subsequent ROUTE operations
can indeed locate peer p; second, peer p needs to build its own neighbor table, and other peers in the
network may need to update their neighbor tables given the presence of peer x in the network. Similarly,
there are two main components in a LEAVE( p) operation: Unpublishing any information about p’s location
in the network, and removing any entries containing peer p in the neighbor tables of other peers. We will
address these two issues separately. For the moment, we will only be concerned with how information
about p is published or unpublished in the network, since this is what we need to guarantee the success of
a ROUTE operation. We will assume that the respective routing table entries are updated correctly upon the
addition or removal of p from the system. Later, we will explain how the neighbor tables can be efficiently
updated.

Whenever a peer p with ID x decides to join the peer-to-peer system, we place (publish) a pointer leading
to the actual location of p in the network, which we call an x-pointer, at up to logb n peers of the network.
For convenience of notation, in the remainder of this section, we will always use x to indistinctly denote
both the ID of peer p and the peer p itself. Let x0 = x , x1, . . . , x logb n−1 be the neighbor sequence of peer
x for node ID x . We place an x-pointer to xi−1 at each peer xi in this neighbor sequence. Thus, whenever
we find a peer with an x-pointer (at a peer x j , 1 ≤ j ≤ logb n) during a ROUTE(m, x) operation, we
can forward the message all the way “down” the reverse neighbor sequence x j , . . . , x0 = x to the actual
location of peer x .

The LEAVE( p) operation is the reverse of a JOIN operation: We simply unpublish (remove) all the
x-pointers from the peers x0, . . . , x logb n.

There is an implicit search tree associated with each peer ID y in prefix routing. Assume for a moment
that there is only one peer r matching a prefix of the ID y in the largest number of digits in the network.
At the end of this section, we address the case when this assumption does not hold. Let the search tree
T(y) for peer y be defined by the network edges in the neighbor sequences for peer ID y for each peer x
in the network, where, for each edge of the type (xi−1, xi ) in the neighbor sequence of x for y, we view
xi as the parent of xi−1 in the tree. The above implementation of the publish and unpublish operations
trivially maintain the following invariant. Let Tx (y) be the subtree rooted at x in T(y).

Invariant 72.1

If peer y belongs to Tx (y), then peer x has a y-pointer.

We now describe how a ROUTE(m, y) operation initiated at peer x proceeds. Let x0 = x , x1, . . . , x logb n−1

be the neighbor sequence of peer x for y. Starting with i = 0, peer xi first checks whether it has a y-pointer.
If it does then xi will forward the message m using its y-pointer down the neighbor sequence that was
used when publishing information about peer y during a JOIN(y) operation. More specifically, let j be the
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maximum index such that prefix j (�(xi )) = prefix j (y) (note that j ≥ i). Then xi must be equal to y j ,
where y = y0, y1, . . . is the neighbor sequence of peer y for the ID y, used during JOIN(y). Thus message
m will be forwarded using the y-pointers at y j , . . . , y0 = y (if y j has a y-pointer, then so does yk for all
1 ≤ k ≤ j ) all the way down to peer y. If xi does not have a y-pointer, it will simply forward the message
m to xi+1.

Given Invariant 72.1, peer x will locate peer y in the network if peer y is indeed part of the peer-to-peer
system. The cost of routing to peer y can be bounded by the following fact:

Fact 72.7

A message from peer x to peer y will be routed through a path with cost O(
∑ j

k=1[c(xk−1, xk)+c(yk−1, yk)]).

A deficiency of this scheme, as described, is that there is a chance that we may fail to locate a pointer
to y at x1 through x logb n. In this case, we must have more than one “root peer” in T(y) (a root peer is a
peer such that the length of its maximal prefix matching the ID of y is maximum among all peers in the
network), and hence there is no guarantee that there exists a peer r which will have a global view of the
network with respect to the ID of peer y. Fortunately, this deficiency may be easily rectified by a slight
modification of the algorithm, as shown in Ref. [6].

The main challenge in the analysis of the PRR scheme is to show that the summation in Fact 72.7 is indeed
O(c(x , y)). The probability that the k-digit prefix of the label of an arbitrary peer matches a particular
k-digit string γ = prefixk(y), for some peer y, is b−k . Consider a ball B around peer xk−1 containing
exactly bk peers. Note that there is a constant probability (approximately 1/e) that no peer in B matches
γ . Thus the radius of B is a lower bound (up to a constant factor) on the expected distance from xk−1 to
its (k, yk)-neighbor. Is this radius also an upper bound? Not for an arbitrary metric, since (for example)
the diameter of the smallest ball around a peer z containing bk + 1 peers can be arbitrarily larger than
the diameter of the smallest ball around z containing bk peers. However, it can be shown that the radius
of B provides a tight bound on the expected distance from xk−1 to its (k, yk)-neighbor. Furthermore,
Eq. (72.1) implies that the expected distance from xk−1 to its (k, yk)-neighbor is geometrically increasing
in k. The latter observation is crucial since it implies that the expected total distance from xk−1 to its
(k, yk)-neighbor, summed over all k such that 1 ≤ k ≤ j , is dominated by (i.e., within a constant factor
of) the expected communication cost from x j−1 to its ( j, y j )-neighbor x j .

We still need to show that, c(x , y) = O(E [c(x j−1, x j )]), and hence that the routing stretch factor
in the PRR scheme is constant in expectation. This proof is technically rather involved and we refer the
reader to Ref. [6]. In the next section, we will show how the PRR scheme can be elegantly modified to yield
deterministic constant stretch. More specifically, the LAND scheme achieves deterministic stretch 1 + ε,
for any fixed ε > 0.

72.4.2.1.3 Updating the Neighbor Tables
To be able to have JOIN and LEAVE operations with low work complexity, while still enforcing low stretch
ROUTE operations and polylogarithmic degree, one needs to devise an efficient way for updating the
neighbor tables upon the arrival or departure of a peer from the system. The PRR scheme alone does not
provide such means. Luckily, we can combine the work by Hildrum et al. [12], which provides an efficient
way for finding nearest neighbors in a dynamic and fully distributed environment, with the PRR scheme
to be able to efficiently handle the insertion or removal of a peer from the system. Namely, the work by
Hildrum et al. presents an algorithm which can build the neighbor table of a peer p joining the system and
update the other peers’ neighbor tables to account for the new peer in the system with total work O(log2 n).

72.4.2.2 The LAND Scheme

The LAND scheme proposed by Abraham et al. in Ref. [10] is the first, and currently best-known, peer-to-
peer overlay network design scheme to achieve constant deterministic stretch for routing, while maintaining
polylogarithmic diameter, degree, and work (for ROUTE, JOIN, and LEAVE) for growth-bounded metrics.
Note that LAND does not require a lower bound on the growth as PRR does. Like the PRR scheme,
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the LAND scheme was also designed for the more general problem of object location in peer-to-peer
systems.

Namely, the main results of the LAND scheme are summarized in the following theorem:

Theorem 72.8

The LAND scheme, when combined with a technique by Hildrum et al. for finding nearest neighbors, achieves an
overlay peer-to-peer network with the following properties: deterministic (1+ε) stretch for ROUTE operations,
for any fixed ε > 0, O(log n) diameter, and expected O(log n) degree and work for JOIN, LEAVE, and ROUTE

operations.

The LAND scheme is a variant of the PRR scheme. The implementation of ROUTE, JOIN, and LEAVE

operations in this later scheme are basically the same as in PRR. The basic difference between the two
schemes is on how the peer labels are assigned to the peers during the neighbor table construction phase.
A peer may hold more than one label, some of which may not have been assigned in a fully random and
independent way.

In a nutshell, the basic idea behind the LAND scheme is that instead of letting the distance between a
peer x and its (i, α)-neighbor be arbitrarily large, it will enforce that this distance be always at most some
constant β times bi by letting peer x emulate a virtual peer with label γ such that prefixi (γ ) = x1 . . . xi−1α

if no peer has x1 . . . xi−1α as a prefix of its label in a ball centered at x with O(bi ) peers in it. Another
difference in the LAND scheme which is crucial to guarantee a deterministic bound on stretch is that the
set of “auxiliary” neighbors it maintains are only used during join/leave operations, rather than during
routing operations such as in the PRR scheme.

The analysis of the LAND scheme is elegant, consisting of short and intuitive proofs. Thus, this is also a
main contribution of this scheme, given that the analysis of the PRR scheme is rather lengthy and involved.

72.5 Other Related Work

There is a wealth of literature on peer-to-peer systems, and papers on this subject can be found in every
major computer science conference. Peer-to-peer overlay networks can be classified into three categories:
social networks, random networks, and structured networks.

Examples of social networks are Gnutella and KaZaA. Their basic idea of interconnecting peers is that
connections follow the principle of highest benefit: a peer preferably connects to peers with similar interests
by maintaining direct links to those peers that can successfully answer queries.

An example for random networks is JXTA, a Java library developed by SUN to facilitate the development
of peer-to-peer systems. The basic idea behind the JXTA core is to maintain a random-looking network
between the peers. In this way, peers are very likely to stay in a single connected component because
random graphs are known to be robust against even massive failures or departures of nodes. Recent theory
work on random peer-to-peer networks can be found in Refs. [13,14].

Most of the scientific work on peer-to-peer networks has focused on structured overlay networks, that
is, networks with a regular structure that makes it easy to route in them with low overhead. The vast
majority of these networks is based on the concept of virtual space. The most prominent among these
are Chord [4], CAN [1], Pastry [7], and Tapestry [8]. The virtual space approach has the problem that it
requires node labels to be evenly distributed in the space to obtain a scalable overlay network. Alternative
approaches that yield scalable overlay networks for arbitrary distinct node labels are skip graphs [15], skip
nets [16], and the hyperring [17].

As we have already seen above, structured overlay networks are also known that can take locality
into account. All of this work is based on the results in Refs. [5,6]. The first peer-to-peer systems were
Tapestry [8] and Pastry [7]. Follow-up schemes addressed some of the shortcomings of the PRR scheme. In
particular, the LAND scheme [10] improves the results in PRR as seen in the previous section; algorithms
for efficiently handling peer arrival and departures are presented in Refs. [12,18]; a simplified scheme with
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provable bounds for ring networks is given in Ref. [19]; a fault-tolerant extension is given in Ref. [20]; a
scheme that addresses general networks, at the expense of an O(log n) stretch bound, is given in Ref. [21];
a scheme that considers object location under more realistic networks is given in Ref. [22]; and a first
attempt at designing overlay networks in peer-to-peer systems consisting of mobile peers is presented in
Ref. [23] (no formal bounds are proven in Ref. [23] for any relevant network distribution though).

Finally, overlay networks have not only been designed for wired networks but also for wireless networks.
See, for example, Ref. [24] and references therein for newest results in this area.
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73.1 Introduction

We discuss the broadcasting problem of N data items over K wireless channels, under the assumptions of
skewed data allocation to channels and flat data scheduling per channel. Both the uniform and nonuniform
length cases are surveyed showing their exact and heuristic solutions, respectively. Two of the heuristic
methods are greedy and the third one is based on a dynamic programming procedure developed to solve a
simplified version of the problem. An experimental evaluation of our heuristics is presented and the quality
of the solutions generated is compared against a lower bound, which is derived by relaxing the problem
and then solving it optimally via a dynamic programming procedure developed in earlier sections.

In wireless asymmetric communication, broadcasting is an efficient way of simultaneously disseminating
data to a large number of clients. Consider data services on cellular networks, such as stock quotes, weather
information, traffic news, where data are continuously broadcast to clients that may desire them at any
instant of time. In this scenario, a server at the base-station repeatedly transmits data items from a given
set over a wireless channel, while clients passively listen to the shared channel waiting for their desired
item. The server follows a broadcast schedule for deciding which item of the set has to be transmitted at
any time instant. An efficient broadcast schedule minimizes the client expected delay, that is, the average
amount of time spent by a client before receiving the item needed. The client expected delay increases
with the size of the set of the data items to be transmitted by the server. Indeed, the client has to wait for
many unwanted data before receiving its own data. The efficiency can be improved by augmenting the

∗Portions of this chapter are reprinted, with permission, from Ref. [1] IEEECS Log Number TC-0238-0704, c© 2005,
IEEE.
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server bandwidth, for example, allowing the server to transmit over multiple disjoint physical channels and
therefore defining a shorter schedule for each single channel. In a multichannel environment, in addition
to a broadcast schedule for each single channel, an allocation strategy has to be pursued so as to assign data
items to channels. Moreover, each client can access either only a single channel or any available channel at
a time. In the former case, if the client can access only one prefixed channel and can potentially retrieve any
available data, then all data items must be replicated over all channels. Otherwise, data can be partitioned
among the channels, thus assigning each item to only one channel. In this latter case, the efficiency can
be improved by adding an index that informs the client at which time and on which channel the desired
item will be transmitted. In this way, the mobile client can save battery energy and reduce the tuning
time because, after reading the index info, it can sleep and wake up on the proper channel just before the
transmission of the desired item.

Several variants for the problem of data allocation and broadcast scheduling have been proposed in the
literature, which depend on the perspectives faced by the research communities [2–12].

Specifically, the networking community faces a version of the problem, known as the Broadcast Problem,
whose goal is to find an infinite schedule on a single channel [4,6,7,10]. Such a problem was first introduced
in the teletext systems [2,3]. Although it is widely studied (e.g., it can be modeled as a special case of the
Maintenance Scheduling Problem and the MultiItem Replenishment Problem [4,6]), its tractability is still
under consideration. Therefore, the emphasis is on finding near optimal schedules for a single channel.
Almost all the proposed solutions follow the square root rule (SRR) [3]. The aim of such a rule is to
produce a broadcast schedule where each data item appears with equally spaced replicas, whose frequency
is proportional to the square root of its popularity and inversely proportional to the square root of its
length. The multichannel schedule is obtained by distributing in a round robin fashion the schedule for a
single channel [10]. Since each item appears in multiple replicas which, in practice, are not equally spaced,
these solutions make indexing techniques ineffective. Briefly, the main results known in the literature for
the Broadcast Problem can be summarized as follows. For uniform lengths, namely all items of the same
length, it is still unknown whether the problem can be solved in polynomial time or not. For a constant
number of channels, the best algorithm proposed so far is the polynomial-time approximation scheme
(PTAS) devised in Ref. [7]. In contrast, for nonuniform lengths, the problem has been shown to be strong
N P -hard even for a single channel, a 3-approximation algorithm was devised for one channel, and a
heuristic has been proposed for multiple channels [6].

On the other hand, the database community seeks for a periodic broadcast scheduling which should be
easily indexed [5]. For the single channel, the obvious schedule that admits index is the flat one. It consists
in selecting an order among the data items, and then transmitting them once at a time, in a round-robin
fashion [13], producing an infinite periodic schedule. In a flat schedule indexing is trivial, since each item
will appear once, and exactly at the same relative time, within each period. Although indexing allows the
client to sleep and save battery energy, the client expected delay is half of the schedule period and can
become infeasible for a large period. To decrease the client expected delay, still preserving indexing, flat
schedules on multiple channels can be adopted [8,9,12]. However, in such a case the allocation of data
to channels becomes critical. For example, allocating items in a balanced way simply scales the expected
delay by a factor equal to the number of channels. To overcome this drawback, skewed allocations have
been proposed where items are partitioned according to their popularity so that the most requested items
appear in a channel with shorter period [8,12]. Hence, the resulting problem is slightly different from
the Broadcast Problem since, to minimize the client expected delay, it assumes skewed allocation and
flat scheduling. This variant of the problem is easier than the Broadcast Problem. Indeed, as proved in
Ref. [12], an optimal solution for uniform lengths can be found in polynomial time. In contrast, the
problem becomes computationally intractable for nonuniform lengths [1]. For this latter case, several
heuristics have been developed in Refs. [12,14], which have been tested on some benchmarks whose item
popularity follow Zipf distributions. Such distributions are used to characterize the popularity of one
element among a set of similar data, like a web page in a web site [15].

The present chapter reviews the work of Refs. [1,12,14] on the broadcasting problem of N data items
over K wireless channels, under the assumptions of skewed data allocation to channels and flat data
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scheduling per channel. Both the uniform and nonuniform length cases are surveyed showing their exact
and heuristic solutions, respectively. Two of the heuristic methods are greedy and the third one is based
on a dynamic programming procedure used to solve a simplified version of the problem. An experimental
evaluation of our heuristics is presented and the quality of the solutions generated compared against a lower
bound which is derived by relaxing the problem and then solving it optimally via a dynamic programming
procedure developed in earlier sections.

For the case of data items with uniform lengths, three exact polynomial time algorithms are presented, all
based on dynamic programming. The first algorithm, called DP and originally proposed in Ref. [12], takes
O(N2 K ) time, while the second algorithm, called Dichotomic and proposed later in Ref. [1], is faster as it
runs in O(N K log N) time. The third algorithm, presented in Ref. [14], is designed for the specific case of
K = 2. Although it requires O(N log N) time, and hence it is asymptotically not faster than Dichotomic,
it exploits a specific characterization of the optimal solution when there are only two channels.

For the case of data items with nonuniform lengths, the problem is N P -hard when K = 2, and strong
N P -hard for arbitrary K . In this latter case, the Optimal algorithm presented in Ref. [1] is reviewed. It
requires O(K N2z) time, where z is the maximum data length, and reduces to the DP algorithm when
z = 1. Since algorithm Optimal can solve only small instances in a reasonable time, three heuristics are
described, all having an O(N(K + log N)) time complexity.

The first heuristic, called Greedy, has been proposed in Ref. [12]. For any fixed N, Greedy starts with
all data items assigned to one channel, and then proceeds by splitting the items of one channel between
two channels, thus adding a new channel, until K channels are reached. The other two heuristics, both
presented in Ref. [14], pretend that the characterization of the optimal solution of the problem for K = 2
and uniform lengths holds also for the general case of arbitrary K and nonuniform lengths. One heuristic
is called Greedy+ since it combines such solution characterization with the Greedy approach, while the
second heuristic is called Dlinear and combines the same characterization with the dynamic programming
relation proposed in Ref. [12].

All the three heuristics are then tested on benchmarks whose item popularity are characterized by Zipf
distributions. The experimental tests reveal that Dlinear finds optimal solutions almost always, requiring
reasonable running times. Although Greedy remains the fastest heuristic, it gives the worst suboptimal
solutions. Both the running times and the quality of the solutions of Greedy+ are intermediate between
those of Dlinear and Greedy. However, Greedy and Greedy+ have the feature to scale well with respect to
the parameter changes.

The rest of this chapter is so organized. Section 73.2 gives notations, definitions, and the problem
statement. Section 73.3 illustrates the DP and Dichotomic algorithms for items of uniform lengths, as well
as the solution characterization for the particular case of two channels. In contrast, Section 73.4 studies the
nonuniform length case. It first recalls the strong N P -hardness for an arbitrary number of channels, and
then presents the exponential time Optimal algorithm. Then, Section 73.5 gives the Greedy, Greedy+, and
Dlinear heuristics. Section 73.6 reports the experimental tests on some benchmarks, whose item popularity
follow Zipf distributions. Finally, we discuss our conclusions in Section 73.7.

73.2 Problem Formulation

Consider a set of K identical channels, and a set D = {d1, d2, . . . , dN} of N data items. Each item di

is characterized by a probability pi and a length zi , for 1 ≤ i ≤ N. The probability pi represents the
popularity of item di , namely its probability to be requested by the clients, and it does not vary along the
time. Clearly,

∑N
i=1 pi = 1. The length zi is an integer number, counting how many time units are required

to transmit item di on any channel. When all data lengths are the same, that is, zi = z for 1 ≤ i ≤ N,
the lengths are called uniform and are assumed to be unit, that is, z = 1. When the data lengths are not
the same, the lengths are said nonuniform.

The items have to be partitioned into K groups G 1, . . . , G K . Group G j collects the data items assigned
to channel j , for 1 ≤ j ≤ K . The cardinality of G j is denoted by Nj , the sum of its item lengths is denoted
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by Z j , that is, Z j = ∑
di ∈G j

zi , and the sum of its probabilities is denoted by P j , that is, P j = ∑
di ∈G j

pi .
Note that since the items in G j are cyclically broadcast according to a flat schedule, Z j is the schedule
period on channel j . Clearly, in the uniform case Z j = Nj , for 1 ≤ j ≤ K . If item di is assigned to
channel j , and assuming that clients can start to listen at any instant of time with the same probability,
the client expected delay for receiving item di is half of the period, namely

Z j
2 . Assuming that indexing

allows clients to know in advance the content of the channels [12], the average expected delay (AED) over
all channels is

AED = 1

2

K∑

j=1

Z j P j (73.1)

Given K channels, a set D of N items, where each data item di comes along with its probability pi

and its integer length zi , the K-Nonuniform Allocation Problem consists in partitioning D into K groups
G 1, . . . , G K , so as to minimize the objective function AED given in Eq. 73.1. In the special case of
equal lengths, the above problem is called K-Uniform Allocation Problem and the corresponding objective
function is derived replacing Z j with Nj in Eq. (73.1).

As an example, consider a set of N = 6 items with uniform lengths and K = 3 channels. Let the demand
probabilities be p1 = 0.37, p2 = 0.25, p3 = 0.18, p4 = 0.11, p5 = 0.05, and p6 = 0.04. The optimal
solution assigns item d1 to the first channel, items d2 and d3 to the second channel, and the remaining items
to the third channel. The corresponding AED is 1

2 (0.37+2(0.25+0.18)+3(0.11+0.05+0.04)) = 0.915.
Consider the sequence d1, . . . , dN of items ordered by their indices, and assume that each channel

contains items with consecutive indices. Then, the cost of assigning to a single channel consecutive items
within the sequence, say from di to d j , is Ci, j = 1

2 (
∑ j

h=i ph)(
∑ j

h=i zh). Letting Pi, j = ∑ j
h=i ph and

Zi, j = ∑ j
h=i zh , one notes that all the P1,n and Z1,n, for 1 ≤ n ≤ N, can be computed in O(N) time by

two prefix sum computations. Hence, a single Ci, j can be computed on the fly in constant time as Ci, j =
1
2 (P1, j −P1, i−1)(Z1, j −Z1, i−1). From now on, to simplify the presentation, Ci, j is defined to be 0 whenever

i > j . Note that, for uniform lengths, the formula of Ci, j simplifies as Ci, j = 1
2 ( j − i + 1)

∑ j
h=i ph .

Moreover, a segmentation is a partition of the ordered sequence d1, . . . , dN into G 1, . . . , G K , such that
if di ∈ G k and d j ∈ G k then dh ∈ G k whenever i ≤ h ≤ j . A segmentation

d1, . . . , dB1︸ ︷︷ ︸
G 1

, dB1+1, . . . , dB2︸ ︷︷ ︸
G 2

, . . . , dBK −1+1, . . . , dN
︸ ︷︷ ︸

G K

is compactly denoted by the (K − 1)-tuple

(B1, B2, . . . , BK −1)

of its right borders, where border Bk is the index of the last item that belongs to group G k . Note that it
is not necessary to specify BK , the index of the last item of the last group, because its value will be N for
any solution. From now on, BK −1 will be referred to as the final border of the solution. The cardinality of
G k , that is, the number Nk of items in the group, is Nk = Bk − Bk−1, where B0 = 0 and BK = N are
assumed.

73.3 Uniform Lengths

This section is devoted to examine the dynamic programming algorithms proposed in [1,12,14] for the
K -Uniform Allocation Problem. The following results show that the optimal solutions for the K -Uniform
Allocation Problem can be sought within the class of segmentations.

Lemma 73.1 (Yee et al. [12])

Let G h and G j be two groups in an optimal solution for the K -Uniform Allocation Problem. Let di and dk be
items with di ∈ G h and dk ∈ G j . If Nh < Nj , then pi ≥ pk. Similarly, if pi > pk, then Nh ≤ Nj .
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In other words, the most popular items are allocated to less loaded channels so that they appear more
frequently. As a consequence, if the items are sorted by nonincreasing probabilities, then the group sizes
are nondecreasing.

Corollary 73.1 (Yee et al. [12])

Let d1, d2, . . . , dN be N uniform length items with pi ≥ pk whenever i < k. Then, there exists an optimal
solution for partitioning them into K groups G 1, . . . , G K , where each group is made of consecutive elements.

Thus, assuming the items sorted by nonincreasing probabilities, any sought solution S will be a seg-
mentation. Moreover, the sought segmentations S = (B1, B2, . . . , BK −1) for the uniform case can be
restricted to those verifying N1 ≤ N2 ≤ · · · ≤ NK , which will be called feasible segmentations.

73.3.1 The DP Algorithm

To describe the DP algorithm [12], let OPTn,k denote an optimal solution for grouping items d1, . . . dn

into k groups and let optn,k be its corresponding cost, for any n ≤ N and k ≤ K . Since d1, d2, . . . , dN are
sorted by nonincreasing probabilities, one has

optn,k =
{

C1,n if k = 1
min1≤�≤n−1{opt�,k−1 + C�+1,n} if k > 1

(73.2)

The DP algorithm is a dynamic programming implementation of recurrence (73.2). Indeed, to find
OPTn,k , consider the K × N matrix M with Mk,n = optn,k . The entries of M are computed row by row
applying recurrence (73.2). Clearly, MK , N contains the cost of an optimal solution for the K -Uniform
Allocation Problem. To actually construct an optimal partition, a second matrix F is employed to keep
track of the final borders of segmentations corresponding to entries of M. In recurrence (73.2), the value
of �, which minimizes the right-hand side, is the final border for the solution OPTn,k and is stored in
Fk,n. Hence, the optimal segmentation is given by OPT N, K = (B1, B2, . . . , BK −1) where, starting from
BK = N, the value of Bk is equal to Fk+1, Bk+1 , for k = K − 1, . . . , 1.

To evaluate the time complexity of the DP algorithm, observe that O(n) comparisons are required to
fill the entry Mk,n, which implies that O(N2) comparisons are required to fill a row. Since there are K
rows, the complexity of the DP algorithm is O(N2 K ).

73.3.2 The Dichotomic Algorithm

To improve on the time complexity of the DP algorithm for the K -Uniform Allocation Problem, the
properties of optimal solutions have to be further exploited.

Definition 73.1

Let d1, d2, . . . , dN be uniform length items sorted by nonincreasing probabilities. An optimal solution
OPT N, K = (B1, B2, . . . , BK −1) is called left-most optimal and denoted by LMON, K if, for any other
optimal solution (B ′

1, B ′
2, . . . , B ′

K −1), it holds BK −1 ≤ B ′
K −1.

Clearly, since the problem always admits an optimal solution, there is always a leftmost optimal solution.
Although the leftmost optimal solutions do not need to be unique, it is easy to check that there exists a
unique (B1, B2, . . . , BK −1) such that (B1, B2, . . . , Bi ) is a left-most optimal solution for partitioning
into i + 1 groups the items d1, d2, . . . , dBi+1 , for every i < K .

Definition 73.2

A leftmost optimal solution (B1, B2, . . . , BK −1) for the K -Uniform Allocation Problem is called strict
leftmost optimal solution, and denoted by SLMON, K , if (B1, B2, . . . , Bi ) is a LMOBi+1, i+1, for every
i < K .

The Dichotomic algorithm computes a leftmost optimal solution for every i < K , and thus it finds the
unique strict leftmost optimal solution.
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Lemma 73.2 (Ardizzoni et al. [1])

Let d1, d2, . . . , dN be uniform length items sorted by nonincreasing probabilities. Let LMON−1, K = (B1,
B2, . . . , BK −1) and OPT N, K = (B ′

1, B ′
2, . . . , B ′

K −1). Then, B ′
K −1 ≥ BK −1.

In other words, Lemma 73.2 implies that, given the items sorted by nonincreasing probabilities, if one
builds an optimal solution for N items from an optimal solution for N − 1 items, then the final border
BK −1 can only move to the right. Such a property can be easily generalized as follows to problems of
increasing sizes. From now on, let Bc

h denote the h-th border of LMOc ,k , with k > h ≥ 1.

Corollary 73.2 (Ardizzoni et al. [1])

Let d1, d2, . . . , dN be uniform length items sorted by nonincreasing probabilities, and let l < j < r ≤ N.
Then, Bl

K −1 ≤ B j
K −1 ≤ Br

K −1.

Corollary 73.2 plays a fundamental role in speeding up the DP algorithm. Indeed, assume that LMOn,k−1

has been found for every 1 ≤ n ≤ N. If the LMOl ,k and LMOr,k solutions are also known for some
1 ≤ l ≤ r ≤ N, then one knows that B j

k−1 is between Bl
k−1 and Br

k−1, for any l ≤ j ≤ r . Thus, recurrence
(73.2) can be rewritten as

opt j,k = min
Bl

k−1≤�≤Br
k−1

{opt�,k−1 + C�+1, j } (73.3)

As the name suggests, the O(KN log N) time Dichotomic algorithm is derived by choosing j = � l+r
2 � in

recurrence (73.3), thus obtaining:

opt� l+r
2 �,k = min

Bl
k−1≤�≤Br

k−1

{opt�,k−1 + C
�+1,� l+r

2 �} (73.4)

where Bl
k−1 and Br

k−1 are, respectively, the final borders of LMOl ,k and LMOr,k . Such recurrence is
iteratively solved within three nested loops which vary, respectively, in the ranges 1 ≤ k ≤ K , 1 ≤ t ≤
�log N�, and 1 ≤ i ≤ 2t−1, and where the indices l , r , and j are set as follows: l = � i−1

2t−1 (N + 1)�,

r = � i
2t−1 (N + 1)�, and j = � l+r

2 � = � 2i−1
2t (N + 1)�.

In details, the Dichotomic algorithm is shown in Figure 73.1. It uses the two matrices M and F , whose
entries are again filled up row by row (Loop 1). A generic row k is filled in stages (Loop 2). Each stage
corresponds to a particular value of the variable t (Loop 3). The variable j corresponds to the index of
the entry, which is currently being filled in stage t. The variables l (left) and r (right) correspond to the
indices of the entries nearest to j which have been already filled, with l < j < r .

Input: N items sorted by nonincreasing probabilities, and K groups;
Initialize: for i from 1 to N do

for k from 1 to K do
if k = 1 then Mk,i ← Ck,i else Mk,i ← ∞;

Loop 1: for k from 2 to K do
Fk,0 ← Fk,1 ← 1; Fk,N+1 ← N;

Loop 2: for t from 1 to log N  do
Loop 3: for i from 1 to 2t−1 do

r i

2t−1 (N + 1) ;l i−1
2t−1 (N + 1) ;j 2i−1

2t (N + 1) ;

if Mk,j = ∞ then
Loop 4: for � from Fk,l to Fk,r do

if Mk−1,� + C�+1,j < Mk,j then
Mk,j ← Mk−1,� + C�+1,j;
Fk,j ← �;

FIGURE 73.1 The Dichotomic algorithm for the K -Uniform Allocation Problem. (From Ardizzoni, E. et al., IEEE
Trans. Comput., 54(5), 558, 2005. IEEECS Log Number TC-0238-0704, Copyright 2005, IEEE with permission.)
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If no entry before j has been already filled, then l = 1, and therefore the final border Fk,1 is initialized
to 1. If no entry after j has been filled, then r = N, and thus the final border Fk, N+1 is initialized to N. To
compute the entry j , the variable � takes all values between Fk,l and Fk,r . The index � which minimizes
the recurrence in Loop 4 is assigned to Fk, j , while the corresponding minimum value is assigned to Mk, j .

To show the correctness, consider how a generic row k is filled up. In the first stage (i.e., t = 1), the entry
Mk,� N+1

2 � is filled and � ranges over all values 1, . . . , N. By Corollary 73.2, observe that to fill an entry Mk,l ,

where l < � N+1
2 �, one needs to consider only the entries Mk−1,�, where � ≤ Fk,� N+1

2 �. Similarly, to fill

an entry Mk,l , where l > � N+1
2 �, one needs to consider only the entries Mk−1,�, where � ≥ Fk,� N+1

2 �. In

general, one can show that in stage t, to compute the entries Mk, j with j = � 2i−1
2t (N+1)�and 1 ≤ i ≤ 2t−1,

only the entries Mk−1,� must be considered, where Fk,l ≤ � ≤ Fk,r and l and r are � i−1
2t−1 (N + 1)� and

� i
2t−1 (N + 1)�, respectively. Notice that these entries have been computed in earlier stages. The above

process repeats for every row of the matrix. The algorithm proceeds till the last entry MK , N , the required
optimal cost, is computed. The strict leftmost optimal solution SLMON, K = (B1, B2, . . . , BK −1) is
obtained, where Bk−1 = Fk, Bk for 1 < k ≤ K and BK = N.

As regard to the time complexity, first note that the total number of comparisons involved in a stage of
the Dichotomic algorithm is O(N) since it is equal to the sum of the number of values the variable � takes
in Loop 3, that is:

2t−1
∑

i=1

(F
k,
⌈

i
2t−1 (N+1)

⌉ − F
k,
⌈

i−1
2t−1 (N+1)

⌉ + 1) = Fk, N+1 − Fk,0 + 2t−1 = N − 1 + 2t−1 = O(N)

Since Loop 2 runs�log N� times and Loop 1 is repeated K times, the overall time complexity is O(N K log N).

73.3.3 Two Channels

This subsection exploits the structure of the optimal solution in the special case where the item lengths
are uniform and there are only two channels. Indeed, as shown later, the values assumed varying � in the
right-hand side of recurrence (73.2) for k = 2 form a unimodal sequence. That is, there is a particular index
� such that the values on its left-hand side are in nonincreasing order, while those on its right-hand side
are in increasing order. By this fact, one can search the minimum of recurrence (73.2) in a very effective
way, improving on the overall running time.

Formally, the 2-Uniform Allocation Problem consists in finding a partition S into two groups G 1 and
G 2 such that AEDS = 1

2 (N1 P1 + N2 P2) is minimized. Clearly, N = N1 + N2, and by Lemma 73.1,
N1 ≤ N2 holds for any optimal solution. Moreover, recall that any feasible segmentation S for K = 2 can
be denoted by the single border B1, which coincides with N1.

Lemma 73.3 (Anticaglia et al. [14])

Consider the uniform length items d1, d2, . . . , dN sorted by nonincreasing probabilities, and K = 2 channels.
Let S = (N1) be a feasible segmentation such that P1 ≤ P2. If the segmentation S ′ = (N1 + 1) is feasible,
then AEDS ′ ≤ AEDS .

While Lemma 73.1 gives the upper bound N1 ≤ � N
2 	 on the cardinality of group G 1, Lemma 73.3

provides a lower bound b on N1. Indeed, it guarantees that any optimal solution contains at least the first
b items d1, . . . , db , where b is the largest index for which P1 = ∑b

h=1 ph ≤ P2 = ∑N
h=b+1 ph . Formally,

recurrence (73.2) for K = 2 can be rewritten as follows:

opt N,2 = min
b≤�≤� N

2 	
{C1,� + C�+1, N} (73.5)

where

b = max
1≤s≤� N

2 	

{

s :
s∑

h=1

ph ≤
N∑

h=s+1

ph

}
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Procedure BinSearch (i, j);
m

i+j
2

;
if i = j then

return m
else

if f(m) ≥ f(m + 1) then
BinSearch (m + 1, j)

else
BinSearch (i, m);

FIGURE 73.2 The binary search on a unimodal sequence.

The following lemma improves on the upper bound of N1 given by Lemma 73.1, and shows that the
values of the feasible segmentations assumed in the right-hand side of Eq. (73.5) form a unimodal sequence.

Lemma 73.4 (Anticaglia et al. [14])

Consider the uniform length items d1, d2, . . . , dN sorted by nonincreasing probabilities, and K = 2 channels.
Let S = (N1) be a feasible solution such that P1 > P2. Consider the solutions S ′ = (N1+1) and S ′′ = (N1+2).
If AEDS ′ > AEDS , then AEDS ′′ > AEDS ′.

In practice, one can scan the feasible solutions of Eq. (73.5) by moving the border � rightwards, one
position at a time, starting from the lower bound b obtained applying Lemma 73.3. The scan continues
while the AED of the current solution does not increase, but stops as soon as the AED starts to increase.
Indeed, by Lemma 73.4, further moving the border � to the right can only increase the cost of the solutions.
Hence the border m that minimizes Eq. (73.5), that is, the optimal solution of the problem, is given by

opt N,2 = C1,m + Cm+1, N (73.6)

where

m = min
b≤�≤� N

2 	

{
� : C1,� + C�+1, N < C1,�+1 + C�+2, N

}

Note that, in the above equation, the cost variation is

(C1,�+1 + C�+2, N) − (C1,� + C�+1, N) = 1

2

(
�∑

h=1

ph −
N∑

h=�+1

ph + p�+1(2� + 2 − N)

)

Due to the unimodal property of the sequence of values on the right-hand side of Eq. (73.6), the search
of m can be done in O(log N) time by a suitable modified binary search. Let f (�) = C1,� + C�+1, N =
�
2

∑�
h=1 ph + N−�

2

∑N
h=�+1 ph . Then, the unimodal sequence consists of the values f (b), f (b + 1), . . . ,

f (� N
2 	). As said, solving Eq. (73.6) is equivalent to find the index m such that f (b) ≥ · · · ≥ f (m) <

f (m + 1) < · · · < f (� N
2 	). This can be done by invoking the recursive procedure BinSearch, given in

Figure 73.2, with parameters i = b and j = � N
2 	. The BinSearch procedure first computes the middle

point m = � i+ j
2 	. Then, the values f (m) and f (m+1) are compared in the light of the unimodal sequence

definition. If f (m) ≥ f (m + 1), the minimum must belong to the right half, otherwise it must be in the
left half. Procedure BinSearch proceeds recursively on the proper half until the minimum is reached.

73.4 Nonuniform Lengths

Consider now the K -Nonuniform Allocation Problem for an arbitrary number K of channels. In contrast to
the uniform case, introducing items with different lengths makes the problem computationally intractable.

Theorem 73.1 (Ardizzoni et al. [1])

The K -Nonuniform Allocation Problem is NP-hard for K = 2, and strong NP-hard for an arbitrary K .
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As a consequence of the above result, there is no pseudopolynomial time optimal algorithm or fully
polynomial time approximation scheme (FPTAS) for solving the K -Nonuniform Allocation Problem
(unless P=NP). However, when the maximum item length z is bounded by a constant, a polynomial time
optimal algorithm can be derived where z appears in the exponent. When z = 1, this algorithm reduces
to the DP algorithm. The following result generalizes Lemma 73.1.

Lemma 73.5 (Ardizzoni et al. [1])

Let G h and G j be two groups in an optimal solution for the K -Nonuniform Allocation Problem. Let di and
dk be items with zi = zk and di ∈ G h, dk ∈ G j . If Zh < Z j , then pi ≥ pk. Similarly, if pi > pk, then
Zh ≤ Z j .

Based on the above lemma, some additional notations are introduced. The set D of items can be viewed
as a union of disjoint subsets Di = {di

1, di
2, . . . , di

L i
}, 1 ≤ i ≤ z, where Di is the set of items with length i ,

L i is the cardinality of Di , and z is the maximum item length. Let pi
j represent the probability of item di

j ,
for 1 ≤ j ≤ L i .

The following corollary generalizes Corollary 73.1.

Corollary 73.3 (Ardizzoni et al. [1])

Let di
1, di

2, . . . , di
L i

be the L i items of length i with pi
m ≥ pi

n whenever m < n, for i = 1, . . . , z. There is
an optimal solution for partitioning the items of D into K groups G 1, . . . , G K , such that if a < b < c and
di

a , di
c ∈ G j , then di

b ∈ G j .

In the rest of this section, the items in each Di are assumed to be sorted by nonincreasing probabilities,
and optimal solutions will be sought of the form:

d1
1 , . . . , d1

B (1)
1︸ ︷︷ ︸

G 1

, d1
B (1)

1 +1
, . . . , d1

B (1)
2︸ ︷︷ ︸

G 2

, . . . , d1
B (1)

K −1+1
, . . . , d1

N1

︸ ︷︷ ︸
G K

d2
1 , . . . , d2

B (2)
1︸ ︷︷ ︸

G 1

, d2
B (2)

1 +1
, . . . , d2

B (2)
2︸ ︷︷ ︸

G 2

, . . . , d2
B (2)

K −1+1
, . . . , d2

N2

︸ ︷︷ ︸
G K

...

dz
1 , . . . , dz

B (z)
1︸ ︷︷ ︸

G 1

, dz
B (z)

1 +1
, . . . , dz

B (z)
2︸ ︷︷ ︸

G 2

, . . . , dz
B (z)

K −1+1
, . . . , dz

Nz

︸ ︷︷ ︸
G K

where B (i)
j is the highest index among all items of length i in group G j . The solution will be represented

as (B̄1, B̄2, . . . , B̄ K −1), where each B̄ j is the z-tuple (B (1)
j , B (2)

j , . . . , B (z)
j ) for 1 ≤ j ≤ K − 1. From

now on, B (i)
K −1 will be referred to as the final border for length i and B̄ K −1 as the final border vector.

Let OPTn1, ...,nz ,k denote the optimal solution for grouping the
∑z

i=1 ni items di
1, di

2, . . . , di
ni

, 1 ≤ i ≤ z,
into k groups and let optn1, ...,nz ,k be its corresponding cost. Let Cl1,n1, ...,lz ,nz be the cost of putting items
li through ni , for all i = 1, 2, . . . , z, into one group, that is,

Cl1,n1, ...,lz ,nz = 1

2

(
z∑

i=1

i(ni − li + 1)

)


z∑

i=1

ni∑

j=li

pi
j





Now, consider the recurrence:

optn1, ...,nz ,k = min

�=(�1, ...,�z )

0≤�i ≤ni ,1≤i≤z

{
opt�1, ...,�z ,k−1 + C�1+1,n1, ...,�z+1,nz

}
(73.7)
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To solve this recurrence by using dynamic programming, consider a (z+1)-dimensional matrix M, made of
K rows in the first dimension and L i columns in dimension i +1 for i = 1, . . . , z. Each entry is represented
by a (z + 1)-tuple Mk,n1, ...,nz , where k corresponds to the row index and ni to the index of the column in
dimension i + 1. The entry Mk,n1, ...,nz represents the optimal cost for partitioning items di

1 through di
ni

,
for i = 1, 2, . . . , z, into k groups. There is also a similar matrix F where the entry Fk,n1, ...,nz corresponds
to the final border vector of the solution whose cost is Mk,n1, ...,nz . The matrix entries are filled row by
row. The optimal solution is given by OPT L 1, ..., L z , K = (B̄1, B̄2, . . . , B̄ K −1) where, starting from B̄ K =
(L 1, L 2, . . . , L z), the value of B̄ k is obtained from the value of B̄ k+1 and by F as B̄ k = Fk+1, B̄k+1

, for
k = 1, . . . , K − 1. The Optimal algorithm derives directly from recurrence (73.7). Since the computation
of every entry Mk,n1, ...,nz and Fk,n1, ...,nz requires

∏z
i=1(ni + 1) ≤ ∏z

i=1(L i + 1) comparisons, and every
row has

∏z
i=1 L i entries, the overall time complexity is O(K

∏z
i=1(L i + 1)2) = O(KN2z).

73.5 Heuristics

Since the K -Nonuniform Allocation Problem is strong NP-hard, it is computationally intractable unless
P=NP. In practice, this implies that one is forced to abandon the search for efficient algorithms which find
optimal solutions. Therefore, one can devise fast and simple heuristics that provide solutions which are
not necessarily optimal but usually fairly close. This strategy is followed in this section, where the main
heuristics are reviewed. Two of the heuristic methods are greedy and the third one is based on the dynamic
programming procedure developed in earlier sections. An experimental evaluation of our heuristics is
presented and the quality of the solutions generated is compared against a lower bound which is derived
by relaxing the problem and then solving it optimally via the dynamic programming procedures developed
in earlier sections. All heuristics assume that the items are sorted by nonincreasing pi

zi
ratios, which can

be done in O(N log N) time during a preprocessing step.

73.5.1 The Greedy Algorithm

The Greedy heuristic [11,12] initially assigns all the N data items to a single group. Then, for K − 1 times,
one of the groups is split in two groups, that will be assigned to two different channels. To find which
group to split along with its actual split point, all the possible points of all groups are considered as split
point candidates, and the one that decreases AED the most is selected. In details, assume that the channel
to be split contains the items from di to d j , with 1 ≤ i < j ≤ N, and let costi, j,2 denote the cost of a
feasible solution for assigning such items to two channels. Then, the split point is the index m that satisfies

costi, j,2 = Ci,m + Cm+1, j = min
i≤�≤ j−1

{Ci,� + C�+1, j } (73.8)

An efficient implementation takes advantage from the fact that, between two subsequent splits, it is
sufficient to recompute the costs for the split point candidates of the last group that has been actually
split. The time complexity of the Greedy heuristic is O(N(K + log N)) and O(N log N) in the worst and
average cases, respectively [14].

Note that Greedy scales well when changes occur on the number of channels, on the number of items, on
item probabilities, as well as on item lengths. Indeed, adding or removing a channel simply requires doing
a new split or removing the last introduced split, respectively. Adding a new item first requires to insert
such an item in the sorted item sequence. Assume the new item is added to group G j , then the border
of the two-channel subproblem including items of G j and G j+1 is recomputed by applying Eq. (73.8).
Similarly, deleting an item that belongs to group G j requires to solve again the two-channel subproblem
including items of G j and G j+1. Finally, a change in the probability/length of an item is equivalent to first
removing that item and then adding the same properly modified item.
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73.5.2 The Greedy+ Algorithm

The Greedy+ heuristic [14] is a refinement of the Greedy heuristic and consists of two phases. In the first
phase, it behaves as Greedy, except the way the split point is determined. In the second phase, the solution
provided by the first phase is refined by working on pairs of consecutive channels.

Specifically, in the first phase, Greedy+ uses an approach similar to that of Eq. (73.6) to determine the
split point. This is because splitting one channel is the same as solving the problem for two channels. In
details, the split point m is given by

costi, j,2 = Ci,m + Cm+1, j (73.9)

where

m = min
i≤�≤ j−1

{
� : Ci,� + C�+1, j < Ci,�+1 + C�+2, j

}

Note that, since the item lengths are not the same, the sequence of values Ci,�+C�+1, j , for i ≤ � ≤ j −1, is
not unimodal. However, Greedy+ behaves as such a sequence were unimodal. Instead of trying all the possi-
ble values of � between i and j , as done by Greedy, Greedy+ performs a left-to-right scan starting from i and
stopping as soon the AED increases. In this way, a suboptimal solution S = (B1, B2, . . . .BK −1) is found.

The second phase is performed only when K ≥ 3 and consists in refining the solution S by recomputing
its borders. The phase consists in a sequence of odd steps, followed by a sequence of even steps. During
the t-th odd step, 1 ≤ t ≤ � K

2 	, the two-channel subproblem including the items assigned to groups
G 2t−1 and G 2t is solved. Specifically, Eq. (73.9) is applied choosing i = B2t−2 + 1 and j = B2t , thus
recomputing the border B2t−1 of S. Similarly, during the t-th even step, 1 ≤ t ≤ � K −1

2 	, the two-channel
subproblem including the items assigned to groups G 2t and G 2t+1 is solved by applying Eq. (73.9) with
i = B2t−1 + 1 and j = B2t+1, recomputing the border B2t of S.

The initial sorting requires O(N log N) time. Since each split runs in O(N) time, and K splits are
computed, the first phase of Greedy+ takes O(NK) time. The second phase of Greedy+ requires O(N)
time since each item is considered as a candidate split point at most in a single split computation among all
the odd steps, and in a single split computation among the even steps. Therefore, the overall time required
in the worst case by the Greedy+ heuristic is O(N(K + log N)). Clearly, Greedy+ maintains the same
scaling features as Greedy.

73.5.3 The Dlinear Algorithm

The Dlinear heuristic [14] follows a dynamic programming approach similar to that provided by recurrence
(73.2). Fixed k and n, Dlinear computes a solution for n items from the previously computed solution for
n − 1 items and k channels, exploiting the characteristics of the optimal solutions for two channels and
uniform lengths.

Let Mk,n and Fk,n be defined as in Section 73.3.1. Dlinear selects the feasible solutions that satisfy the
following Recurrence:

Mk,n =
{

C1,n if k = 1
Mk−1,m + Cm+1,n if k > 1

(73.10)

where

m = min
Fk,n−1≤�≤n−1

{
� : Mk−1,� + C�+1,n < Mk−1,�+1 + C�+2,n

}

In practice, Dlinear pretends to adapt Eq. (73.6), that holds for the 2-Uniform Allocation Problem,
also to the K -Nonuniform Allocation Problem. In particular, the choice of the lower bound Fk,n−1 in the
formula of m is suggested by Lemma 73.2, which says that the border of channel k − 1 can only move
right when a new item with the smallest probability is added. Moreover, m is determined as in Eq. (73.6)
pretending that the sequence Mk−1,� +C�+1,n, obtained for Fk,n−1 ≤ � ≤ n −1, be unimodal. Therefore,
the solution provided by Dlinear is a suboptimal one.
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As regard to the time complexity, computing Mk,n requires O(Fk,n − Fk,n−1) time. Hence, row k of M
is filled in

∑N
n=1 O(Fk,n − Fk,n−1) = O(Fk, N − Fk,1) = O(N) time. Since M has K rows and the sorting

step takes O(N log N) time, the overall time complexity of the Dlinear algorithm is O(N(K + log N)).

73.6 Experimental Tests

In this section, the behavior of the Greedy, Greedy+, and Dlinear heuristics is tested. The algorithms are
written in C and the experiments are run on an AMD Athlon XP 2500+, 1.84 GHz, with 1 GB RAM.

The heuristics are executed on the following nonuniform length instances. Given the number N of
items and a real number 0 ≤ θ ≤ 1, the item probabilities are generated according to a Zipf distribution
whose skew is θ , namely:

pi = (1/ i)θ
∑N

h=1(1/h)θ
, 1 ≤ i ≤ N

In the above formula, θ = 0 stands for a uniform distribution with pi = 1
N , while θ = 1 implies a high

skew, namely the range of pi values becomes larger. The item lengths zi are integers randomly generated
according to a uniform distribution in the range 1 ≤ zi ≤ z. The items are sorted by nonincreasing pi

zi
ratios. The parameters N, K , z, and θ vary, respectively, in the ranges: 500 ≤ N ≤ 2500, 10 ≤ K ≤ 500,
3 ≤ z ≤ 10, and 0.5 ≤ θ ≤ 1.

Since the Optimal algorithm can find the exact solutions in a reasonable time only for small instances, a
lower bound on AED is used for large values of N, K , and z. The lower bound for a nonuniform instance is
obtained by transforming it into a uniform instance as follows. Each item di of probability pi and length
zi is decomposed in zi items of probability pi

zi
and length 1. Since more freedom has been introduced, it

is clear that the optimal AED for the so transformed problem is a lower bound on the AED of the original
problem. Since the transformed problem has uniform lengths, its optimal AED is obtained by running the
Dichotomic algorithm.

The simulation results are exhibited in Tables 73.1–73.4. The tables report the time (measured in
microseconds), the AED, and the percentage of error, which is computed as

(
AEDheuristic − AEDlowerbound

AEDlowerbound

)

100

The running times reported in the tables do not include the time for sorting.
By observing the tables, one notes that Greedy+ and Dlinear always outperform Greedy in terms of

solution quality. In particular, Greedy+ at least halves the error of Greedy, producing solutions whose errors
are at most 5.7%. Moreover, Dlinear reaches the optimum almost in all cases, and its maximum error is
as high as 1.8% only in one instance. As regard to the running times, although all the three heuristics have
the same asymptotic worst-case time, Greedy is the fastest in practice. Although Greedy+ and Dlinear are
slower than Greedy, their running times are always less than one tenth of second. The experiments show
that Greedy+ and Dlinear behave well when the item probabilities follow a Zipf distribution. This suggests
that, in most cases, the AED achieved in correspondence of the leftmost value of � satisfying recurrences
(73.9) and (73.10) is the optimal AED or it is very close to the optimal AED. In other words, the sequence
of values obtained by varying � is almost unimodal.

In summary, the experimental tests show that the Dlinear heuristic finds optimal solutions almost always.
In contrast, Greedy is the fastest heuristic, but produces the worst solutions. Finally, Greedy+ presents
running times and suboptimal solutions, which are both intermediate between those of Greedy and Dlinear.
Therefore, the choice among the heuristics depends on the goal to be pursued. If one is interested in finding
the best suboptimal solutions, then Dlinear should be adopted. Instead, if the running time is the main
concern, then Greedy should be chosen, while if adaptability to parameter changes is the priority, then
either Greedy or Greedy+ could be applied. In this scenario, Greedy+ represents a good compromise since
it is scalable and produces fairly good solutions.

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C073 March 20, 2007 19:1

Scheduling Data Broadcasts on Wireless Channels 73-13

TABLE 73.1 Experimental Results When K = 20, θ = 0.8, and z = 3

N/K /θ /z Algorithm AED % Error Time

500/20/0.8/3 Greedy 18.72 7.1 102
Greedy+ 17.58 0.6 3514
Dlinear 17.47 2106
Lower bound 17.47

1500/20/0.8/3 Greedy 53.85 7.9 283
Greedy+ 51.71 3.6 21240
Dlinear 49.90 6519
Lower bound 49.90

1750/20/0.8/3 Greedy 62.64 7.9 326
Greedy+ 58.92 1.5 31137
Dlinear 58.04 7488
Lower bound 58.04

2000/20/0.8/3 Greedy 71.24 7.9 373
Greedy+ 66.93 1.4 38570
Dlinear 65.98 8602
Lower bound 65.98

2250/20/0.8/3 Greedy 79.70 7.8 457
Greedy+ 75.06 1.6 45170
Dlinear 73.87 9749
Lower bound 73.87

2500/20/0.8/3 Greedy 88.40 7.8 474
Greedy+ 82.51 0.7 62376
Dlinear 81.93 10920
Lower bound 81.93

TABLE 73.2 Experimental Results When N = 2500, θ = 0.8, and z = 3

N/K /θ /z Algorithm AED % Error Time

2500/10/0.8/3 Greedy 179.16 7.8 381
Greedy+ 167.86 1.0 97356
Dlinear 166.14 4919
Lower bound 166.14

2500/40/0.8/3 Greedy 44.04 7.9 562
Greedy+ 41.58 1.9 34147
Dlinear 40.79 22771
Lower bound 40.79

2500/80/0.8/3 Greedy 21.98 7.9 685
Greedy+ 20.72 1.7 19179
Dlinear 20.37 46545
Lower bound 20.37

2500/100/0.8/3 Greedy 17.14 5.2 740
Greedy+ 16.75 2.8 27452
Dlinear 16.29 57906
Lower bound 16.29

2500/200/0.8/3 Greedy 8.56 5.1 1009
Greedy+ 8.37 2.8 12974
Dlinear 8.15 0.1 116265
Lower bound 8.14

2500/500/0.8/3 Greedy 3.4 4.2 2313
Greedy+ 3.35 2.7 21430
Dlinear 3.32 1.8 273048
Lower bound 3.26
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TABLE 73.3 Experimental Results When N = 2500, K = 50, and z = 3

N/K /θ /z Algorithm AED % Error Time

2500/50/0.5/3 Greedy 47.74 9.7 595
Greedy+ 46.02 5.7 23175
Dlinear 43.52 0.02 29075
Lower bound 43.51

2500/50/0.7/3 Greedy 39.59 6.8 600
Greedy+ 38.47 3.8 23606
Dlinear 37.05 0.02 29132
Lower bound 37.04

2500/50/0.8/3 Greedy 34.33 5.2 603
Greedy+ 33.49 2.6 24227
Dlinear 32.61 29121
Lower bound 32.61

2500/50/1/3 Greedy 23.10 3.2 609
Greedy+ 22.53 0.6 27566
Dlinear 22.38 28693
Lower bound 22.38

TABLE 73.4 Experimental Results When N = 500, K = 50, and θ = 0.8

N/K /θ /z Algorithm AED % Error Time

500/50/0.8/3 Greedy 7.34 5.3 147
Greedy+ 7.19 3.1 2517
Dlinear 6.98 0.1 5423
Lower bound 6.97

500/50/0.8/5 Greedy 10.78 5.3 147
Greedy+ 10.52 2.8 2938
Dlinear 10.25 0.1 5490
Lower bound 10.23

500/50/0.8/7 Greedy 14.50 4.9 146
Greedy+ 14.16 2.4 3329
Dlinear 13.85 0.2 5499
Lower bound 13.82

500/50/0.8/10 Greedy 19.48 5.1 145
Greedy+ 18.97 2.3 3899
Dlinear 18.58 0.2 5507
Lower bound 18.53

73.7 Conclusions

In this chapter, the problem of data broadcasting over multiple channels, with the objective of minimizing
the AED of the clients, was considered under the assumptions of skewed allocation to multiple channels
and flat scheduling per channel. Both the uniform and nonuniform length problems were solved to the
optimum, illustrating exact algorithms based on dynamic programming. Moreover, effective heuristics
for nonuniform lengths have also been shown. All the results reviewed in this chapter are summarized in
Table 73.5.

In this chapter, the client delay has been defined as the overall time elapsed from the moment the client
desires a data item to the moment the item download starts. Such a definition assumes that indexing is
already available to the client. Hence, the client delay does not include the tuning time spent by the client
for actively retrieving the index information and the data item. Thus, after reading the index, the client
can be turned into a power saving mode until the data item appears on the proper channel. Therefore, our
solution minimizes the AED and keeps as low as possible the tuning time provided that an efficient index
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TABLE 73.5 Results for Broadcasting N Data Items on K Channels with Skewed Allocation and Flat Scheduling

Item Lengths Complexity Solution Algorithm Time References

Uniform P Optimal DP O(KN2) [12]
Optimal Dichotomic O(KN log N) [1]

Nonuniform Strong Optimal Optimal O(KN2z) [1]
NP-hard Heuristic Greedy, Greedy+, Dlinear O(N(K + log N)) [11,14]

strategy is adopted on one or more separate channels. In our solution, the index can be readily derived
from the (K − 1)-tuple (B1, B2, . . . , BK −1), which compactly represents the data allocation. However,
this tuple is enough for indexing only if all the clients know, as a global information, the relative position
of each data item within the set of all data items sorted by probabilities. To overcome this assumption,
solutions can be sought that, without using global information on data items, either mix index and data
items within the same channels or optimize the index broadcasting on dedicated channels [16,17].
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74.1 Introduction

J. Craig Venter declared in 1998: “We are now starting the Century of Biology.” This had been recognized
before. In fact Gregory Benford was already pointing to this fact in 1995, when he noted that physics had
dominated the twentieth century, as chemistry had probably dominated the century before. In his own
words:

And yet, far from the physics departments of the great campuses, a clarion call is sounding through
our time, one that responds to hot-button environmental problems and that incorporates rapid
advances in other laboratories: Biology has turned aggressively useful.

Microarrays have been evolving rapidly, and are among the most novel and revolutionary new biotech-
nologies. They are reshaping our understanding of biological systems as well as shaking the grounds of
biomedical research. They allow us to monitor the expression of thousands of genes at once. With a
single experiment we can test billions of individual hypotheses. A query at PubMed1 shows that over
20,000 publications already have the words “microarray” or “DNA array.” Almost all of these papers have
appeared in the last 10 years, with approximately 70% of them appearing in the last two years. These
high-throughput molecular assays generate immense datasets, which have the potential to help us to un-
derstand biological systems in ways that are completely new. While huge promises are ritually proclaimed

1http://www.ncbi.nlm.nih.gov/entrez/query.fcgi
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(personalized medicine, targeted therapies, genetic engineering for more efficient crops, etc.) [1], the
challenges are equally enormous [2].

Advances in combinatorial optimization are too moving along swiftly. Fixed-parameter tractable algo-
rithms, for example, speed the systematic development of data reduction methods to bound the search
for optimal solutions. As another example, metaheuristics produce powerful stochastic algorithms for
large-scale optimization problems. In spite of this progress, combinatorial optimization has sometimes
been rather naively applied. The ultimate goal is not always to find a purely optimal solution, but instead
to use results in the context of other tools to uncover underlying genetic networks or other conserved
aspects of biosystems.

In this chapter, we present three illustrative examples drawn from the authors’ own experience in the
analysis of microarray datasets. The associated decision problems are each NP-complete. An underlying
theme is subgraph identification via cliques, bicliques, and Hamiltonian paths.

74.2 Genetic Networks and the Clique Problem

The structure of a biological network has a natural representation as a graph. As a consequence, algorithms
for optimal subgraph detection become powerful tools for the investigation of biological function. In
gene regulatory networks, any given gene may have different functions as its activity influences, and is
influenced by, a number of other genes [3]. A gene in one species may be very similar, at the sequence
level, to another gene in some other species. Given such “orthologs,” common subgraphs among different
biological networks help us infer evolutionarily conserved modules of coexpressed genes [4–6]. This leads
to approaches for deriving phylogenetic trees based on the detection of common metabolic pathways
between taxa [7]. Biology, thus aided by graph-theoretic formulations, is now moving from the study of
single genes and proteins to the investigation of the basic common building blocks of life.

At the core of this quest is the search for sets of putatively coregulated genes. This can be formalized
as the CLIQUE problem (see Ref. [8] for an excellent review of this foundational problem). Formally, the
inputs to CLIQUE are an undirected graph G with n vertices, and a parameter k ≤ n. The decision problem
asks whether G contains a clique of size k, that is, a subgraph isomorphic to Kk , the complete graph
on k vertices. Because CLIQUE is NP-complete, it has no known decision algorithm that runs in time
polynomial in the size of the input. CLIQUE can be decided by generating and checking all

(n
k

)
of vertices

selections. But this brute force approach requires O(nk) time, and is thus prohibitively slow, even for
problem instances of only modest size.

Despite its computational intractability, there is a strategic advantage to formulating problems of bio-
logical interest in terms of cliques. This is because a vertex can be a member of multiple cliques, just as
genes and gene products can be involved in multiple pathways. Traditional clustering algorithms, how-
ever, are limited by the requirement that a vertex must reside in a single cluster [9–13]. A few clustering
techniques, for example, those employing factor analysis, do not require exclusive cluster membership for
single genes [14]. Unfortunately, these tend to produce biologically uninterpretable factors without the
incorporation of prior biological information [15]. CLIQUE has no such restriction.

74.3 Parameterized Complexity

74.3.1 Fixed-Parameter Tractability

The origins of fixed-parameter tractability (FPT) can be traced at least as far back as work on the applications
of well-quasi order theory. Nearly two decades ago, it was shown that a variety of NP-complete problems
are tractable when a relevant input parameter is fixed [16,17]. A problem is FPT if it can be solved in
O( f (k)nc ) time, where n is the size of the instance, k the input parameter, and c a constant independent
of both n and k [18].
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A number of problems of interest in bioinformatics are FPT. One of the most prominent ones is VERTEX

COVER. Here the input is an undirected graph G with n vertices, and a parameter k ≤ n. The decision
problem asks whether G contains a set C of k or fewer vertices that covers every edge in G (an edge is said
to be covered if either one or both of its endpoints are in C).

Alas, CLIQUE is not FPT unless the W hierarchy collapses [18]. (The W hierarchy, whose lowest level
is FPT, can be viewed as a fixed-parameter analog of the polynomial hierarchy, whose lowest level is P .)
Fortunately, CLIQUE’s complementary dual is VERTEX COVER. To see this, let G denote the complement of
G . (G has the same vertex set as G , and all the edges present in G are absent in G and vice versa.) A vertex
cover of size k in G turns out to be exactly the complement of a clique of size n − k in G . Thus the search
for a minimum vertex cover in G corresponds to the search for a maximum clique in G .

74.3.2 Kernelization and Branching

An effective approach to finding a small vertex cover is accomplished with kernelization and branching.
We start by reducing an arbitrary input instance to what is hopefully a much smaller instance (the kernel).
It is easy to see that an O(k2) kernel suffices [19]. Kernels of size O(k) can also be obtained at the expense
of methods relying on linear programming relaxation [20,21], which tend to be slower in practice.

More recently, a new technique, termed crown reduction, was introduced for kernelization. A crown is
an ordered pair (I , H) of subsets of vertices from G that satisfies the following criteria: (1) I �= ∅ is an
independent set of G, (2) H = N(I ), and (3) there exists a matching M on the edges connecting I and H
such that all elements of H are matched. H is called the head of the crown. The width of the crown is |H|.

The following theorem is then central to this algorithmic approach.

Theorem 74.1 (Abu-Khzam et al. [22])

Any graph G can be decomposed into a crown (I , H) for which H contains a minimum size vertex cover of G

and so that |H| ≤ 3k. Moreover, the decomposition can be accomplished in O(n
5
2 ) time.

Branching is applied after the kernel is obtained. A binary tree search is used. Subtree searches can be
spawned off at each level and be concurrently explored [23]. Up to 64 processors have been used for an
application in motif discovery [24]. Contrary to the folklore of NP-completeness, this method can be
used to solve huge instances optimally [25]. For large problems, and for particularly difficult subtrees,
hardware acceleration in the form of Field Programmable Gate Arrays have delivered speedups in excess
of 125 over software-only implementations [26].

74.3.3 The Clique Intersection Graph

To study high-level network structures we need first to enumerate all maximal cliques of the graph under
study. Note that a graph may have as many as 3n/3 maximal cliques. Thus memory management is critical.
Highly efficient methods are discussed in Ref. [27].

To illustrate, we recently analyzed a dataset with 6,830 genes (more on this in the sequel). A threshold
of 0.85 was chosen for the minimum meaningful correlation between gene pairs. This cutoff produced a
graph with only 2,281 vertices and 2,619 edges. It contained 355 maximal (locally optimal) cliques with
sizes between 3 and 15 vertices. From this we computed the clique interaction graph defined as follows: A
vertex in the clique interaction graph denotes a maximal clique in the original graph; two vertices in the
clique interaction graph are connected by an edge if and only if the corresponding cliques are not disjoint.
See Figure 74.1.

74.4 A Biclique-Oriented Approach

We have mentioned before how an approach based on clique finding and new techniques based on FPT
have been useful to identify highly correlated groups of genes. In some cases, however, the different samples
belong to particular classes of interest to the biologist or the medical researcher. The samples can correspond
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FIGURE 74.1 The clique intersection graph obtained in this study. A graph is first constructed with 6,830 vertices
(in a one-to-one correspondence with all the different genes in the original microarray). Edges in this graph links
pairs of genes that have a correlation greater than 0.85 or smaller than −0.85. We then calculated its clique intersection
graph, shown in this figure. This graph, in conjunction with the genetic signatures found with the (α, β)−k-feature set
method allows to identify differential pathways associated with the disease. For instance, the K5 at the bottom-left corner
represents a set of cliques entirely composed of genes present in the Colon genetic signature shown in Figure 74.3(c) The
RPS16 gene (Ribosomal Protein S16) is present in all five cliques in the original graph, it is highly expressed in five cell
lines, significantly less but still expressed in HCT-116 and underexpressed in HCT-15, matching recent reports [28]).
Another gene common to all cliques is IL20RA, which encodes for receptor for interleukin 20 (IL20), a cytokine that
may be involved in epidermal function. IL20RA is highly expressed in skin, upregulated in psoriasis, and may have an
important role in local mechanisms of mucosal and cutaneous immunity [29]. Our combinatorial methods allow a
systematic investigation of what can be “master genes” as being key players in a variety of pathways implicated in the
disease and allow for high-throughput bioinformatic analysis.

to either particular clearly separated clinical conditions [30], or to different cellular processes [31,32], to
different parts of an organ (voxelization techniques) [33], different cancer types [34], prediction of tumor
outcome [35], different cell lines [36], etc. Now the question is: Given that such a labeling on the samples
is available, can we identify the set of genes that most likely explains the existence of these classes?

As such, this is a generic problem that needs a precise formalization. Since in a typical microarray
experiment the number of samples is usually much smaller than the number of genes, it is often the case
that several high correlations exist between some genes and the labeling. As a consequence, minimization
of the number of genes that can “explain” the labeling should be taken with some caution. It would
be possible that we can find a small number of genes for which the following holds. For any two pairs
of samples that have different labelings it is always true that there exists at least one gene which has a
significantly different expression value. As a consequence, we need to find some new formalization of this
problem that would give “robust genetic signatures.” By “robust,” we mean that the explanation should
rely on the coexpression of many genes, as a way of avoiding individual spurious correlations that may
dramatically influence the gene selection task. Towards this end, a useful mathematical formalization
was introduced with the ((α, β) − k−FEATURE SET problem). This has made it possible to find genetic
signatures for Alzheimer’s disease [33], the molecular classification of cancer [36], and even the prediction
of US presidential election results [37].
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We will see that the (α, β) − k−FEATURE SET Problem can be formalized as a problem of finding a
certain type of subgraph in a bipartite graph. In addition, such a subgraph contains a biclique Kk′,k where
k′ is the minimum of the values α and β.

74.4.1 The (α, β) − k−Feature Set Problem

We use the (α, β)−k−FEATURE SET Problem as our mathematical formalization of the problem of interest
since we aim to obtain robust genetic signatures of the different types of cancer. Robustness is obtained
via some redundance in the genes/features that allow the discrimination. As a consequence, our genetic
signatures guarantee that, if a feasible solution exists for the dataset of interest, at least α genes will help
discriminate between any two samples of different classes. In addition, the genetic signature will have at
least β genes with similar values between any two samples of the same class.

The (α, β) − k−FEATURE SET Problem is a generalization of the k−FEATURE SET [38]. Thus it is trivially
NP-complete, because the k−FEATURE SET is NP-complete [39] (a k−FEATURE SET corresponds to an
α = 1, β = 0 (α, β) − k−FEATURE SET). Formally, (α, β) − k−FEATURE SET

• Instance. A set of m examples X = {x(1), . . . , x(m)}, such that for all i , x(i) = {x(i)
1 , x(i)

2 , . . . , x(i)
n ,

t(i)} ∈ {0, 1}n+1, and three integers k > 0, and α, β ≥ 0.
• Question. Does there exist an (α, β) − k-feature set S, S ⊆ {1, . . . , n}, with |S| ≤ k and such that:

◦ for all pairs of examples i �= j , if t(i) �= t( j ) there exists S ′ = S ′(i, j ) ⊆ S such that |S ′| ≥ α and
for all l ∈ S ′, x(i)

l �= x( j )
l ?

◦ for all pairs of examples i �= j , if t(i) = t( j ) there exists S ′ ⊆ S such that |S ′| ≥ β and for all
l ∈ S ′, x(i)

l = x( j )
l ?

where the set S ′ is not necessary the same for all pairs of examples, so we have written S ′ = S ′(i, j ).

74.4.2 Parameterized Intractability

The NP-completeness of k-FEATURE SET implies that there may exist no polynomial-time algorithm for
this problem. A natural parameter to consider is the cardinality of the feature subset.

Theorem 74.2 (Cotta and Moscato [40])

Unless F P T = W[2], the (α, β) − k−FEATURE SET problem is not FPT for parameter k.

Thus, unlike as was the case for CLIQUE, we cannot rely on an FPT algorithm. So heuristic algorithms are
a reasonable alternative for this problem. Even if the problem is not FPT, however, it may permit powerful
reduction rules that can shrink problem size. The application of such rules may in extreme cases even turn
large instances of NP-hard problems into small instances solvable by hand or enumeration [41]. A greedy
heuristic coupled with reduction rules for this purpose is very useful to address this problem.

74.4.3 Reduction Rules for the (α, β) − k−Feature Set Problem
We will explain these rules with the help of the RED-BLUE DOMINATING SET problem and consider the case
of the (1, 0) − k−FEATURE SET problem first. If I is an instance of this problem we first transform it to an
instance of the RED-BLUE DOMINATING SET using the following procedure: a bipartite graph G(V1 ∪V2, E )
is constructed such that:

• There is a red vertex gi ∈ V2 for each feature/gene in I , that is, |V2| = n.
• There is a blue vertex p j k ∈ V1 for each pair of examples x( j ) and x(k) such that t( j ) �= t(k).
• There is an edge (gi , p j k) whenever x( j )

i �= x(k)
i .

We leave to the reader the task of verifying that I is a yes-instance if, and only if, there exists a red
dominating set D ⊆ V2 such that |D| ≤ k and it can be generalized to the (α, 0) − k−FEATURE SET

(requesting that D be α−dominating, i.e., that at least α vertices in D dominate each vertex in V1 [42]).
The final generalization to the (α, β) − k−FEATURE SET problem is easy from here: A tripartite graph
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G(V1 ∪ V2 ∪ V3, E ) is constructed such that V1, V2, and the edges among vertices in them are as described
before, and

• There is a blue vertex c j k ∈ V3 for each pair of examples x( j ) and x(k) such that t( j ) = t(k).
• There is an edge (gi , c j k) whenever x( j )

i = x(k)
i .

Then an instance I would be a yes-instance if, and only if, D ⊆ V2 α-dominates V1, β-dominates V3,
and |D| ≤ k.

We now introduce an auxiliary integer variable rv with each vertex v ∈ V1 ∪ V3; such that, initially,
r p = α for each p ∈ V1, and rc = β for each c ∈ V3; let G(v) = {g ∈ V2 | (g , v) ∈ E } be the set of vertices
(genes) dominating vertex v ∈ V1 ∪V3; conversely, let N(g ) = {v ∈ V1 ∪V3 | (g , v) ∈ E } be the vertices in
V1 ∪ V3 dominated by gene g ∈ V2. The three basic rules for this problem can be then applied as following:

R1. For each v ∈ V1 ∪ V3 such that rv = |G(v)| do

i. For each g ∈ G(v), mark g as belonging to the solution.
ii. Delete v from G .

R2. For each v ∈ V1 ∪ V3 such that rv ≤ 0 delete v from G .
R3. For each v1, v2 ∈ V1 ∪ V3, v1 �= v2 such that rv1 ≥ rv2 and G(v1) ⊆ G(v2), delete v2 from G .

If a gene is marked, or a vertex is deleted, the following actions are taken:

Gene marking [g]: For each v ∈ N(g ) do
i. rv ← rv − 1.

ii. G(v) ← G(v) \ {g }.

Vertex deleting [v]: For each g ∈ G(v) do N(g ) ← N(g ) \ {v}
These three rules greatly simplify the original instance by marking genes that are bound to appear in

the final solution, and removing subsumed vertices, that is, vertices that will be dominated for sure upon
domination of another vertex. The application of these rules is interleaved until the the graph cannot be
further simplified.

74.4.4 Discretization of Numeric Values

In data mining, an important problem is to determine, given numeric value information, a reasonable
discretization. We note that the (α, β) − k−FEATURE SET Problem was defined as having a Boolean input
matrix. This said, we need to find, for each gene a threshold value that dicotomizes the expression. For this
study, we have used two different methods, one proposed by Fayyad and Irani [43] and another in which
an evolutionary search strategy is applied to find a large biclique and employs the reduction rules described
above [38]. The methods give similar, but different results, and we currently use them as complementary
approaches to retrieve many relevant genes [33].

74.5 A Hamiltonian Path-Motivated Approach for
Gene Ordering

A number of approaches for the ordering of gene expression patterns have been based on combinatorial
optimization. Much of the time the number of genes to be ordered can be quite large (several thousands).
Researchers have therefore resorted to heuristics because finding a Hamiltonian path of minimum weight is
NP-hard. A number of heuristic and metaheuristic algorithms have been developed, with Self Organizing
Maps (SOMs) as possibly one of the most widely used. Implementations of SOMs have found their way
into commercial packages for microarray data analysis. Some software packages, both commercial and in
the public domain, use some form of hierarchical clustering and ad hoc heuristics for the ordering of the
leaves of the dendogram that represents the final clustering. Under some special but still quite practical
conditions, an optimal arrangement can be found in polynomial time [44,45].
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It has recently been recognized, however, that this type of approach may not always lead to results that
entirely satisfy life science researchers. Gene members of the same functional group can be scattered in
such orderings. An alternate objective function was introduced in Ref. [46]. If hierarchical clustering is
not given as extra constraint, this leads to a problem that is NP-hard because it contains the minimum-
weight Hamiltonian path problem as a special case. The input is an integer matrix of gene expression
values G = gi j , 1 ≤ i ≤ n, 1 ≤ j ≤ m, where n the number of genes, m the number of samples, and
gi j the level of activity of gene i under condition j . We are also given a function that allows us, given any
two patterns, to compute the degree of dissimilarity between them. We need to find a permutation of the
genes’ names π = (π1, π2, . . . , πn), such that the genes with the most similar expression patterns are
close to each other in the sought permutation. Now, the task is to find the permutation that minimizes the
following objective function:

TotalCost(π) =
n∑

l=1

min(l+ws ,n)∑

i=max(l−ws ,1)

(ws − |l − i | + 1)D[πl , πi ] (74.1)

where the window size is 2ws + 1 (the number of genes involved in each partial distance calculation) and
D[πl , πi ] represents the measure of dissimilarity between πl and πi . For our purpose in this chapter, we
fix the parameter ws at �0.01n� (see Ref. [46] for the influence of this parameter in the final solution). This
objective function was also recently adopted for the visualization and analysis of metabolic pathways [47].

During the last decade, several combinatorial optimization problems for finding an optimal permutation
have been addressed with memetic algorithms [48–50]. We also use this metaheuristic to address this
problem. In addition, memetic algorithms have been introduced with the motivation of obtaining an
almost linear speedup when parallelized [51] due to its inherent asychronism and low interprocessor
communication requirements. In Ref. [52], it has been shown that this algorithm is very robust to individual
noise measurements and was used to order genetic signatures of Alzheimer’s disease [33]. They have also
been applied to cancer’s genetic signatures [36]. The next section shows an illustrative example (Figure 74.2)
of its performance and a comparison with some of the most used methods available on the public domain.

(a) (b)

(c) (d)

(e)

FIGURE 74.2 Opera House-based images. (a) The original image, containing 489 rows and 971 columns; (b) ran-
domized image, a random permutation of the image’s rows and columns used to illustrate the performance of the
different algorithms; (c) EBI solution, the solution from the European Bioinformatics Institute’s Expression Profiler;
(d) Eisen solution, the solution from Eisen’s hierarchical clustering [53]; (e) our memetic algorithm solution.
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74.6 Computational Experiments and Results

We present results on the application of these three techniques using a microarray dataset of a number
of cell lines originating from different cancers. To ensure the reproducibility of our techniques, we have
chosen to work with cell lines and a public domain dataset called NCI60. The original dataset and a
clustering analysis was introduced in Ref. [54]. In addition, we will show how a memetic algorithm, using
a similarity measure between pairs of genes (or pairs of samples), is able to obtain permutations of the
rows and columns such that the final layout is highly correlated and highlights the major common groups.

In Figure 74.2, we present the results of three different algorithms for ordering microarray data. We have
used an image to illustrate their main characteristics and the memetic algorithm is later used to order the
genetic signatures of Figure 74.3 and Figure 74.4. Figure 74.2(a) shows the original image that contains 489
rows and 971 columns of grey-scale pixel values. The rows and columns are randomly permuted to obtain
Figure 74.2(b), illustrating the task we have on real data. We present results of two of the best algorithms for
analyzing microarray datasets that are available on the public domain. Figure 74.2(c), shows the results of a
hierarchical clustering algorithm European Bioinformatics Initiative (EBI) as part of the Expression Profiler
software tool.2 Figure 74.2(d), proposed by Eisen et al. [53], a hierarchical clustering algorithm that also
performs the ordering of the genes.3 Finally, Figure 74.2(e) shows the result of our memetic algorithm [46],
and in the three cases we have used the same algorithms to order both the rows and columns. In the rest of
the chapter, we will only use the memetic algorithm to order the genetic signatures shown in all the other
figures.

The original NCI60 dataset has 64 samples from 60 cell lines (i.e., two cell lines have three samples
each in the set). A total of 9,703 human cDNAs have been spotted on glass microscope slides; the cDNAs
thus included around 8,000 different genes. We have worked with the dataset that corresponds to Figure 2
given in Ref. [54], which helps to illustrate the power of our combinatorial approach. Again, for the
purpose of illustration of the technique, we have selected only a subset of the samples that corresponds
to four types of cancer: melanoma (SK-MEL-5, M-14, SK-MEL-28, UACC-257, MALME-3M, UACC-62,
SK-MEL-2A), leukemia (RPMI-8226, K562, K562, K562, HL-60, MOLT-4, CCRF-CEM, SR), Colon (HCT-
116, SW-620, HCT-15, KM12, HCC-2998, COLO205, HT-29), and renal (A498, RXF-393, a786-0, CAKI-1,
ACHN, UO-31, TK-10). This means that we have excluded for the purpose of this study cell lines LOXIMVI
(Melanoma), as well as SN12C and SNB-75 (both renal). The reason is that they seem to have, overall, a
very different gene expression pattern than the others from the same class. While the reason of removing
for consideration was only done to help illustrate better the power of the basic technique (providing
very distinctive genetic signatures), other issues should be considered. For instance, have these cell lines
remained with molecular characteristic of their parent tumors? Again, for the purpose of the illustration
case, we would not include them in this study.

The first question that we would like to address could be informally phrased as: Which are the genes that
are a genetic signature of colon cancer? An analogous question can be asked for the three other different
types. We realize that this basic question is implicit in the analysis of Ref. [54] and is also implicit in
several other analyses. In Ref. [54], an attempt has been made to identify “clusters” of genes that are related
to a given type of cancer. Unfortunately, the authors only used the information given by the clustering
algorithm. This has led them to identify genetic signatures containing only the highly expressed genes.

Figure 74.3 shows the genetic signatures of the renal, melanoma, colon, and leukemia [54] cell lines
listed above. Figures 74.2(a–d), correspond to an different (α, β) − k-feature sets obtained. All these
genetic signatures have been obtained using a methodology first employed in Ref. [36]. Initially, an
(αmax , β = 0)−k-feature set is obtained, where αmax is the maximum obtainable discrimination that can
be guaranteed for all pairs of samples. This means that there exists at least a pair of samples that belong to

2 http://ep.ebi.ac.uk/EP/EPCLUST/
3http://rana.lbl.gov/EisenSoftware.htm
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FIGURE 74.3 Signatures of the four types of cancer: (a) renal, (b) melanoma, (c) colon, and (d) leukemia. The image
on the right-hand side (e) is the union of the four sets on the left-hand side and contains the profiles of 2,998 genes in
29 cell lines.
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FIGURE 74.4 The genetic signatures of the four types of cancer found with the Evolutionary Search (ES) heuristic
introduced in Ref. [38]. They discriminate renal (a), melanoma (b), colon (c), and leukemia (d). Their union (2,259
genes) is shown in (e). The signatures have 1,120, 1,035, 556, and 1,255 genes, respectively. The ES has an advantage
for particular values of (α, β), where exact searches are too time consuming. In this case it shows comparatively similar
results to the exact algorithm used for Figure 74.3.
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different classes (renal vs. nonrenal) such that we can only find αmax differentially expressed genes. For the
renal vs. nonrenal case, we have found αmax = 768. The parameter β is set to zero, thus not considering the
within-class similarity. We have then found a (768, β = 0)−k-feature set with the objective of minimizing
the number of genes in the signature (k). We found it requires only 1,073 genes. We then proceed trying to
increase the within-class similarity of our genetic signatures without incrementing the number of genes.
We stop when we obtain a maximum value of β such that if we increase it by at least one unit, we cannot
obtain a genetic signature with the optimal value of 1,073 (obtained when we aimed to find the minimum
cardinality (768, β = 0)−k-feature set). Figure 74.3(a) shows the result: a genetic signature for renal cancer
(relative to the other three types), which corresponds to a (αmax = 768, β = 655), kopt = 1, 073) feature
set (where the genes are the features in this case). Analogously, Figures 74.3(b–d) correspond to the genetic
signatures of melanoma (αmax = 714, β = 673, kopt = 985), colon (αmax = 358, β = 277, kopt = 521),
and leukemia (αmax = 814, β = 743, kopt = 1, 253), respectively.

In total, the union of the four genetic signatures has 3,832 genes, but only 2,998 are different. Fig-
ure 74.3(e) finally displays those 2,998 genes. In all cases, the order of the genes was found with the
memetic algorithm allowing to identify different groups of up and down regulated genes. When the union
of the four signatures is displayed as a whole, the within-class differences of the different tumors start to
become evident. A clear example is given by leukemia’s cell lines RPMI-8226 and SR, colon’s HCT-116,
and melanoma’s SK-MEL-5.

74.7 Conclusions

We have shown how a combinatorial optimization approach for the problem of pattern recognition in
microarray data helps to provide useful solutions to classify hundreds of genes involved in a disease.
These approaches are complementary to statistical methodologies which, in turn, can benefit from the
extraordinary performance of these methods to organize the data and extract interesting hypothesis for
further testing and validation.

We have used publicly available data, to ensure reproducibility and for illustrative purposes. We have
selected the NCI60 dataset, since it has been available since 2000 and some researchers have regarded it as
“uninformative” in the past. Our results seem to indicate that this label may be related to the inadequacy of
previous methodologies rather than something intrinsic to this dataset. We have shown how a combination
of powerful metaheuristics and exact algorithms allow to find genetic signatures for some of the major
cancer groups in the dataset.

If the genetic signatures that we have found correspond to characteristic of the tumor types in vivo,
they may have several uses. At the very least, they can help in determining the true origin of a metastases
without obvious primary. Possibly, the most important role of this type of analysis is to provide a molecular
classification of cancer, which is novel and independent from traditional clinical taxonomies. Finally, if this
classification correlated well with the characteristics in vivo, they may have a central role in personalized
medicine. It could then be possible to link patients with the most appropriate tumor chemotherapy, a
dreamed scenario which may be closer than we imagine.
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75.1 Primer Selection Problem

In this chapter, we consider two problems from computational biology, namely, primer selection and
planted motif search (PMS). The closest string and the closest substring problems are closely related to
the PMS problem. All of these problems have been proven to be NP-hard. We survey some representative
approximation algorithms that have been proposed for these problems.

The problem of selecting primers for polymerase chain reaction (PCR) and multiplex PCR (MP-PCR)
experiments is important in computational biology and has drawn the attention of numerous researchers
in the recent past. This is a minimization problem that seeks the minimum set of primers required for a
given set of DNA sequences as the input. The primers selected for the input set could be of two different
categories, namely, nondegenerate primers and degenerate primers. The latter method of designing de-
generate primers for a given input set gives rise to a variant of the primer selection problem (PSP) called
the degenerate primer selection problem (DPSP). These two variants have been proven to be NP-complete
in the literature and also intractable to approximation within a constant to the optimal solution [1,2].
Thus, a number of heuristics have been proposed in the literature to select primers and in this chapter,
we discuss them in detail. The primers can be viewed as motifs occurring in the input set and hence this
problem is related to the problem of identifying motifs in deoxyribonucleic acid (DNA) sequence data.

75.1.1 Background Information

PCR is a molecular biological method for amplifying, that is, creating multiple copies of, DNA sequences.
In its basic form, PCR requires a pair of synthetic DNA sequences, called forward and reverse primers,
which are short single-stranded DNA strings, typically 15–20 nucleotides in length, which exactly match
the beginning and end of the DNA fragment to be amplified.

75-1
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Multiplex PCR (MP-PCR) is a variant of PCR, which enables simultaneous amplification of multiple
DNA fragments of interest in one reaction by using a mixture of multiple primers [3]. This method has been
applied in many areas of DNA testing, including analyses of deletions, mutations, and polymorphisms,
and, more recently, in genotyping applications requiring simultaneous analysis of up to thousands of
markers. A set of nondegenerate primers is selected on each end of the regions to be amplified for the given
input set of DNA sequences. This is the basic version of the problem and is called the PSP in the literature.
We discuss some of the salient algorithms proposed for this problem in some detail in this chapter.

The presence of multiple primers in MP-PCR can lead to severe problems, such as unintended amplifi-
cation products caused by mispriming or lack of amplification because of primer cross-hybridization. To
minimize these problems, it is critical to minimize the number of primers involved in a single MP-PCR
reaction, particularly when the number of DNA sequences to be amplified is large. This can be achieved by
selecting primers that would simultaneously act as forward and/or reverse primers for several of the DNA
sequences in the input set. A recent technique that enables higher degrees of primer reuse is to allow more
than one nucleotide at some of the positions of the primer. Remarkably, such primers, called degenerate
primers [4], are as easy to synthesize as regular primers since their synthesis requires the same number of
biochemical steps (the only difference is that one must add multiple nucleotides in some of the synthesis
steps). The degeneracy of a degenerate primer is the number of distinct nondegenerate primers that could
be formed out of it. For example, if the degenerate primer pd = A{CT}GC{ACG}T{GA}, it has degen-
eracy 12; the distinct nondegenerate primers represented in pd are ACGCATG, ACGCATA, ACGCCTG,
ACGCCTA, ACGCGTG, ACGCGTA, ATGCATG, ATGCATA, ATGCCTG, ATGCCTA, ATGCGTG, and
ATGCGTA. Since highly degenerate primers may give excessive mispriming, a bound on the degeneracy
of a primer is typically imposed, leading to a variant of the primer selection problem called the DPSP,
discussed in detail in the following sections of this chapter.

75.1.2 Polymerase Chain Reaction

The PCR experiment is conducted in a series of cycles, typically 30–40 in number, each cycle divided into
three major steps. It requires several components (called the reaction mixture) that are placed in tubes,
called the reaction tubes, which are repeatedly heated and cooled in an automated equipment called the
thermal cycler. The components that make up the reaction mixture are a DNA template or the sequence
that needs to be amplified, two primers that define the start and the end of the region to be amplified,
nucleotides from which the new DNA is built by the DNA-polymerase and a suitable chemical environment
provided by the buffer.

The three steps that constitute each cycle of the PCR are as follows:

Step 1. The double-stranded DNA is heated to around 94–96◦C to break the hydrogen bonds that connect
the two DNA strands and separate them. This step is called denaturing.
Step 2. In this step, called annealing, the temperature is lowered so the primers can attach themselves to
the single DNA strands. The temperature of this stage is usually 5◦C below melting temperature of the
primers (45–60◦C).
Step 3. The DNA-polymerase fills in the missing strands in this step called elongation. It starts at the
annealed primer and works its way along the DNA strand and, typically, takes place at a temperature of
around 72◦C.

The total time for a single cycle of the PCR is 3–5 min. Because both strands of the DNA sequence are
copied during PCR, there is an exponential increase of the number of copies of the sequence. If there is
one copy of the sequence before the cycles start, after one cycle, there will be two copies; after two cycles,
there will be four copies; three cycles will result in eight copies; and so on.

The quality of the amplifications depends very largely on the primers used in the experiment, thus making
the primer selection a very important process. The melting temperature of a primer is the temperature at
which at least half of the primer binding sites are occupied in the step 1 above and increases with the increase
in the length of the primer. However, very short primers, although they have low melting temperatures,
would result in binding to many locations in the DNA sequence leading to mispriming. Thus, there arise
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some experimental constraints for the selection of PCR primers, referred to as the biological constraints:

1. The GC content (the number of G’s and C’s in the primer) of the primers should be around 40–60%
of its length.

2. The length of the primers should be chosen in such a way that they do not bind themselves to several
positions of the DNA sequence.

3. There should not be any complementarity in the primers, that is, they should not be self-
complementary, for example, the primer 5′-GCGGTATACCGC-3′ is self-complementary, and they
should not be complementary to one another, for example, the primers 5′-CGAAATGCCG-3′ and
5′-CGGCATTTCG-3′ are complementary to each other.

4. The melting temperatures of both primers should not differ by more than 5◦C and the melting
temperature of the DNA sequence should not differ from that of the primers by more than 10◦C.

75.1.3 Terminology

In this section, the terminology adopted to explain the problems under discussion and the algorithms
proposed for the same is given in detail.

Let S = {S1, S2, . . . , Sn}be the set of input sequences defined over the DNA alphabet� = {A, C , G , T}.
Let �∗ denote the set of all finite strings defined over the alphabet �. Let li be the length of the sequence
Si , 1 ≤ i ≤ n. Let k be the length of the primer designed for the input set. The number of k-mers (a k-mer
is a substring of length k) possible from each input string Si is (li − k + 1), 1 ≤ i ≤ n. Let P be the set
of all k-mers of the input set S. A primer p ∈ P of length k is said to cover a subset S ′ of the set of input
sequences S, iff p is a substring of every sequence in S ′. The primer that is designed to bind at the 5′ end
of the sequences is called a forward primer and the one designed to bind at the 3′ end is called a reverse
primer. The PSP is defined as follows.

Definition 75.1 (PSP)

The PSP is to minimize the size of the subset P ′ of P such that the primers of P ′ collectively cover the input set
S, and every sequence Si , 1 ≤ i ≤ n, has at least one forward and one reverse primer in P ′.

An optimal cover for S is defined as the set P ′ of minimum size.
A degenerate primer pd is a primer of length k with one or more symbols of � occurring in each

position. The degeneracy d of the degenerate primer pd is the product of the number of symbols in each
position of the primer, that is, d( pd ) = �k

i=1|pd [i]|.
The degeneracy of a degenerate primer is also the number of distinct nondegenerate primers that could

be formed out of it. For example, the degenerate primer pd = A{CT}GC{ACG}T{GA} has a degeneracy
of 12; the distinct nondegenerate primers represented in pd are ACGCATG, ACGCATA, ACGCCTG,
ACGCCTA, ACGCGTG, ACGCGTA, ATGCATG, ATGCATA, ATGCCTG, ATGCCTA, ATGCGTG, and
ATGCGTA. The degenerate primer pd is said to cover an input sequence Si iff one of the nondegenerate
primers represented in pd is a substring of Si . If a degenerate primer of length k covers m of the given n
input sequences, it is said to have a coverage of size m.

The decision version of Degenerate Primer Design Problem (known as DPD [41]) is to find if there
exists a degenerate primer of length k and degeneracy at most d that has a coverage of m for a given
input set of n sequences. As the length of the primer k is decided beforehand, the algorithms that have
been designed for this problem try to optimize either the degeneracy d or the coverage m and hence there
are two variants of the DPD problem. The former is called the Minimum Degeneracy Degenerate Primer
Design Problem (MD-DPD) and attempts to find a degenerate primer of length k and minimum degeneracy
dmin that covers all the n input sequences. The latter is called the Maximum Coverage Degenerate Primer
Design Problem (MC-DPD) that identifies a primer of length k and degeneracy at most d that covers a
maximum number of the given n input strings. Linhart and Shamir [41] formulated the above versions
of the problem. The formulation of MC-DPD above is for identifying one degenerate primer and can be
extended to find a set of degenerate primers to cover a given set of input sequences as follows.
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Definition 75.2 (DPSP)

Given a set S of n input sequences (DNA sequences) and integers k and d, find a set of degenerate primers Pd

such that each primer in Pd has a degeneracy of at most d, the set Pd covers all the input strings S, that is,
every sequence Si , 1 ≤ i ≤ n, has at least one forward and one reverse primer in Pd .

In the following sections, we discuss some salient algorithms that have been proposed for PSP and DPSP.
Both these variants have been proven to be NP-complete in the literature. These proofs are described next.

75.1.4 NP-Completeness of Primer Selection Problem and Degenerate
Primer Selection Problem

Pearson et al. [2] formulated the problem of finding an optimal cover for the PSP version of primer
selection as follows:

Optimal Primer Cover Problem (OPCP). Given an input set S of DNA sequences and integer k, find an
optimal cover of S, the primer length being k.

They proved the NP-completeness of OPCP by transforming the Minimum Set Cover problem to OPCP.

Minimum Set Cover Problem (MSCP). Let F = {F j } be a finite family of sets. Let F ′ be a subset of F . F ′
is a cover of F iff

U =
⋃

F ∈F ′
F =

⋃

F ∈F
F

The decision version of MSCP is, for a given family of sets F and an integer f , to determine if F has a
cover F ′ such that |F ′| ≤ f .

Let the number of primers in an optimal cover solution for OPCP be q . Let (S, P , q) denote an instance
of OPCP and (F , f ) denote an instance of MSCP. An arbitrary instance (F , f ) of MSCP is transformed
into an instance (S, P , q) of OPCP such that (S, P , q) has a solution iff (F , f ) has a solution, as given
below. Let U = ∪F ∈F F .

Let q = f ; and � = {0, 1, b1, b2, b3, . . . , b|U |}. Here the bi
′s (1 ≤ i ≤ |U |) are unique symbols used

as separators as explained next. Let k = log2 |F |. Construct the set S over the alphabet � as follows. Every
F j ∈ F is encoded by a unique string v j , of length k, over the alphabet �′ = {0,1}, �′ being a subset of
�. Every Si ∈ S represents a unique element ui ∈ U , Si encoding details about the subsets F j ∈ F in
which element ui is present. This is achieved by concatenating the string v j bi to Si of all F j ∈ F in which
ui is present. Note that bi acts as a unique string separator in Si .

In the above transformation of the MSCP instance to the OPCP instance, the size of the alphabet �

varies with the size of U . But for input sets, which are DNA sequences, the alphabet � is fixed, that
is, � = {A, C , G , T}. To transform an arbitrary MSCP instance to an OPCP instance using the fixed
alphabet, it is sufficient to represent {0,1} above using {a ,c} and {b1, b2, b3, . . . , b|U |} using {g , t}. Thus,
the OPCP for the DNA alphabet is NP-complete.

Hence we get the following theorem.

Theorem 75.1

PSP is NP-complete.

Linhart and Shamir [1] prove the NP-completeness of DPSP by proving that the Minimum Primers
DPD problem (MP-DPD), a special case of DPSP where every input string is of length k, is NP-complete
for |�| ≥ 2. The proof is based on a reduction from the Minimum Bin Packing problem (MBPP).

Minimum Bin Packing Problem (MBPP). Given are q positive integers or items a1, a2, a3, . . . , aq , two
integers b (the number of bins) and c (the capacity). The goal is to find if the q items can be packed into
the b bins such that the total sum of the items in each bin is at most c .

Given an instance of MBPP, the instance for DPSP can be constructed as follows: Let A = ∑q
i=1 ai ;

� = {0,1}; k = A; d = 2c ; and |Pd | = b. The set S is constructed as follows: each string Si ∈ S is of
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length A and is over the alphabet �. Si = s 1
i , s 2

i , . . . , s A
i , where s j

i = 1 when Ai ≤ j ≤ Ai + ai and

s j
i = 0 otherwise. Here Ai = ∑i−1

x=1 ax .
The size of the set Pd is set to b and so the goal is to find if there is a Pd of size b, with primers of length A

and degeneracy 2c that cover all the q input strings. This polynomial reduction of MBPP to DPSP proves
that a solution to MBPP exists iff a solution to MP-DPD exists and hence the following theorem arises.

Theorem 75.2

DPSP is NP-complete.

Given that PSP and DPSP are NP-hard, researchers have devised several approximation algorithms for
these problems. Quality bounds have been proven for some of these algorithms. For the other algorithms,
the quality has been measured only empirically. We describe some of the approximation algorithms that
have been proposed for PSP and DPSP next.

75.1.5 Algorithms for PSP

In this section, we will survey some of the salient algorithms from the literature that have been proposed
for the PSP.

Pearson et al. [2] have proposed a simple greedy algorithm for MSCP called PSP-Greedy. The output of
this algorithm is guaranteed to be within an O(log n) factor of the optimal. They have also proposed an
exact branch and bound algorithm, which is not discussed here.

Algorithm PSP-Greedy can be used to select forward and the reverse primers for a given set of DNA
sequences in two separate steps, namely, by considering the first, say, r nucleotides of the sequences to select
the set of forward primers and then the lastr nucleotides to select the reverse primers. Another approach is to
consider the first r nucleotides and the complement of the last r nucleotides of each sequence, thus building
an input dataset of 2n sequences of length r each. The latter approach was described by Souvenir et al. [5]
to design degenerate primers. Note that the value r must be chosen carefully such that (li −2r ) > 0 for 1 ≤
i ≤ n to assure that every DNA sequence in the input would have an amplified product of length strictly >0.

Algorithm PSP-Greedy {
Let P be the collection of primers selected; initially, P := ∅;
Let R be the set of remaining (uncovered) sequences; initially, R := {1, 2, . . . , n}.
Let C be the collection of k-mers from all the n input sequences; Note that each
input sequence Si , 1 ≤ i ≤ n, will have (r − k + 1) k-mers, r being the
length of Si . Each element of C is a tuple of the form < k − mer, i >, i being the
sequence to which the k-mer belongs to.

Sort the collection C such that its k-mers are in lexicographic order. Scan
through C and identify unique k-mers and the list of sequences in which they
are present (denoted by the second value in each tuple), called their coverage.
Let L be the list of all such unique k-mers and their coverage.
While (R is not empty) do {

Pick p from L , p being the k-mer that has coverage of maximum
cardinality among all the elements of L ;
L := L − {p}; P := P ∪ {p};
R := R− {coverage of p};
For each q ∈ L do {

{coverage of q} := {coverage of q} − {coverage of p};
}

}
Output P ;

}
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It is obvious from its description that PSP-Greedy does not consider the biological constraints seen in
the earlier section to select primers. The first efforts in this direction came from Doi and Imai [6–8], who
proposed another greedy heuristic, essentially a modification of PSP-Greedy that considered biological
constraints such as GC-content and complementarity in selecting primers. Their algorithm also considered
length constraint of the amplified product, namely, the minimum length constraint that ensures that the
minimum length of the amplified products is at least of a prespecified length lmin (instead of 0 as described
above). Algorithms in Ref. [9] also consider length constraints in designing primers for MP-PCR.

75.1.6 Algorithms for Degenerate Primer Selection Problem

This section discusses some of the known algorithms for the DPSP. Rose et al. [10] proposed algorithm
COnsensus-DEgenerate Hybrid Oligonucleotide Primers (CODEHOP) that designs hybrid primers with
nondegenerate consensus clamp at the 5′ region and a degenerate 3′ core region. In an effort to identify genes
belonging to the same family, Fuchs et al. [11] devised a two-phase algorithm called DEciphering Families
Of Genes (DEFOG). In its first phase, DEFOG introduces degeneracy into a set of nondegenerate primer
candidates selected because of their best entropy score. Linhart and Shamir [1] proposed an algorithm
called Highly DEgeNerate (HYDEN) for the first phase of DEFOG. Wei et al. [12] contributed an algorithm
based on clustering called DePiCt that designs primers of low degeneracy and high coverage for a given set
of aligned amino acid sequences. Souvenir et al. [5] proposed the Multiple Iterative Primer Selector (MIPS)
algorithm for a variation of DPSP, discussed in their paper as the Partial Threshold Multiple Degenerate
Primer Design (PT-MDPD). Algorithms HYDEN, degenerate primer design via clustering (DePiCt), and
MIPS are explained in some detail in this section.

75.1.6.1 Algorithm HYDEN

The HYDEN algorithm [1] performs the first phase of DEFOG [11]. For a given set of input sequences,
HYDEN is run separately on the datasets of the first r residues from every sequence to select the forward
degenerate primers (say, the set P f ) and the last r residues from each sequence to select the reverse
degenerate primers (say, the set Pr ). Then, the desired set Pd = P f ∪ Pr . For a given run, HYDEN designs
a degenerate primer that covers the maximum number of the sequences that are yet to be covered (initially,
all sequences are yet to be covered), adds the primer to the output set, removes the sequences that it had
covered, and repeats the same procedure until all sequences are covered. To select one degenerate primer
for the set of sequences alive at a given time of its execution, HYDEN employs a three-phased approach
described as follows.

Phase 1. Named HYDEN-Align, this phase identifies highly conserved regions of the given set of DNA
sequences by locating ungapped local alignments that contribute towards a low entropy score. It enumerates
all substrings of length k (k-mers) in the input set, generates alignment score for each substring by finding
best matches to it with respect to its hamming distance with substrings of other strings in the input. We
know that the total number of k-mers possible in the input is O(nr). HYDEN-Align considers all such
possibilities and obtains O(nr) alignments. Therefore, the runtime of HYDEN-Align is O(n2r 2k). A subset
of these alignments, determined by another input parameter (say a , (i.e.) the ‘a ’ best alignments), that
have a low entropy score is considered for the next phase. The authors also give a simple heuristic that
will speed up this phase, namely, initially each such alignment is generated only on a subset of the input
strings (say εn), a subset a ′ (a ′ > a) of these alignments that have the best entropy scores are selected;
for each partial alignment selected, a full alignment is generated, the entropy scores calculated and the
best a alignments are selected for the next phase based on the complete entropy scores. This reduces the
runtime of this phase to O(knr(εL + a ′)).

The entropy scores are calculated as follows. Let A be a given ungapped alignment. A consists of n
k-mers one from each input sequence. Let DA denote a column distribution matrix of A. The column
distribution matrix DA is a two-dimensional matrix of size |�| × k, where DA[σ, j ], 1 ≤ σ ≤ |�| and
1 ≤ j ≤ k, has the value equal to the count or the number of occurrences of the symbol σ (σ ∈ �) in
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column j of the alignment A. The entropy score E A of alignment A is given as

E A = −
k∑

j=1

∑

σ∈�

[(DA[σ, j ]/n) ∗ log2(DA[σ, j ]/n)]

The lower the entropy score, the less will be the variation of symbols in the alignment A. Thus, greater
are the chances of finding a k-mer that would cover many of the input sequences.

Phase 2. In this phase two procedures, namely HYDEN-Contraction and HYDEN-Expansion, are run on
the set of alignments from the first phase. HYDEN-Contraction starts with a complete degenerate primer
(pc ) of degeneracy 4k , proceeds by removing the symbol from a position at which it has occurred the
minimum number of times in the given alignment until the target degeneracy d is achieved. However,
HYDEN-Expansion starts from a nondegenerate primer (pe ), that is, the k-mer from which the alignment
was obtained, adds to it symbols one at a time at positions where the symbol added has occurred the
maximum number of times in the alignment, increasing the degeneracy until the target degeneracy is
achieved. Both the procedures use DA of each alignment A to eliminate and add symbols in the primers
pc and pe , respectively. Two such primers are designed for every alignment in the set, and a subset of
these primers that have maximum coverage is considered for the third phase (the size of the subset is
given as an input parameter, say b, that is, the b best primers of the 2a primers designed). Each run of
HYDEN-Contraction or HYDEN-Expansion takes O(knr) time and there are ‘a ’ alignments for which
the primers are designed, thus the runtime of phase 2 is O(aknr).

Phase 3. In this phase, called the HYDEN-Greedy, attempt is made to improve the primers selected from
Phase 2 using a greedy hill-climbing approach, trying to exclude symbols in some positions of a given
primer and include symbols in other positions to increase coverage.

Although there is no theoretical guarantee on the performance of algorithm HYDEN, the authors have
reported good practical performance in experiments on real biological data.

75.1.6.2 Algorithm DePiCt

This algorithm proposed by Wei et al. [12] designs degenerate primers of low degeneracy and high coverage
from a given multiple alignment of amino acid (or protein) sequences. It adopts clustering techniques
to group the set of input sequences, thus ensuring that sequences that belong to a given cluster would
have regions significantly conserved in them, which would enable the design of a pair of degenerate
primers for them. Conserved regions of a cluster are determined using a novel scoring technique called
the BlockSimilarity scoring. The degenerate primers are then obtained by reverse translation of the amino
acids in the conserved regions to corresponding nucleotides.

The Genetic Code consists of triplets of nucleotides, called codons, each such codon encoding one of the
20 amino acids that are used in the synthesis of proteins in organisms. As the DNA alphabet has 4 symbols,
there are 64 triplets in the genetic code, leading to some redundancy that many of the amino acids are
encoded by more than one codon. For example, the amino acid proline (P) is encoded by four codons,
namely, CCT, CCG, CCC, and CCA. It is obvious to see that many amino acids have very similar codons
too, although they may be very different in their physical and chemical properties. For example, another
amino acid alanine (A) is encoded by the codons GCT, GCG, GCC, and GCA. In calculating the similarity
between the input sequences algorithm DePiCt considers proline and alanine in our example to be similar
as they differ only by one nucleotide in the first position of the codons that encode them.

DePiCt adopts hierarchical clustering to cluster the set of input sequences into groups that have conserved
regions. Initially, there are n groups, each group consisting of one input sequence. A series of iterations are
performed to regroup the sequences in the groups based on their similarities. In each iteration, sequences
of two groups that have the highest similarity score are grouped together into one, if the resultant group
is a valid cluster. A valid cluster is one that has at least one conserved block of length greater than or
equal to the minimum required product length or two blocks separated by a length in the range of
the minimum required product length and the maximum required product length. These minimum and
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maximum product lengths are specified as input. The iteration stops when no more groups can be combined
into one. The similarity scores used are the BlockSimilarity scores calculated as follows.

A multiple alignment M of the sequences to be grouped is obtained. Conserved regions are located in
M based on the amino acids that appear in all the sequences. If the amino acids are identical or if they
are similar according to the explanation given earlier for similarity considered by DePiCt in any given
column of M, then that column is considered as conserved. Consecutive conserved columns of M give rise
to conserved regions or blocks. The BlockSimilarity score of a block is simply the number of columns in it.
If the BlockSimilarity score of a block is < 	k/3
 (as the sequences are protein sequences and each amino
acid corresponds to three nucleotides in the primer), then it is assigned a score of 0. The BlockSimilarity
score of the alignment M is the sum of the BlockSimilarity scores of all the blocks in it.

Two degenerate primers pf and pr are designed for each cluster, pf being the forward primer and pr

the reverse primer, by reverse translating the conserved blocks of the cluster into nucleotide sequences
that correspond to the codons of the amino acids in the conserved blocks. For the reverse primers the
complement of the nucleotides is considered. The set of all such primers designed is the desired set Pd .

75.1.6.3 Algorithm Multiple Iterative Primer Selector

Proposed by Souvenir et al. [5], algorithm MIPS follows an iterative beam search technique to design
degenerate primers. It starts with a set of primers that cover two sequences from an input of n sequences.
To bring down the time complexity, the 2-primers are formed only by merging a k-mer with those
k-mers that are returned by a technique similar to a FASTA lookup table. Then it extends the coverage
of the primers in the candidate set by one additional sequence, introducing degeneracy in the primers if
necessary, retains a subset of these primers (the number determined by an input parameter called beam
size b) for the next iterative step until none of the primers can be extended further without crossing the
target degeneracy. At this point, the primer with the lowest degeneracy is selected and the sequences that
it covers (let the number be q) are removed from the input set and the procedure is repeated until all the
sequences are covered.

The input dataset for the algorithm is generated as follows. Each input sequence has two sequences
representing it in the dataset, one sequence is the first r nucleotides, and the other is the complement of
the last r nucleotides of the sequence itself. Thus the input set will consist of N = 2n sequences of length
r each. MIPS has an overall time complexity of O(b N3r p), where b is the beam size, N the number of
input sequences, r the sequence length, and p the cardinality of the final set of selected degenerate primers
(Pd ). The pseudocode of algorithm MIPS is hereunder:

Algorithm MIPS {
Let P be the list of selected primers, initially, P is empty;

Let Q be a priority queue of size b that holds the primer candidates;
(candidates in Q are ordered with respect to their degeneracy).
Initially all the N input sequences are alive;
While (# of sequences alive > 0) {

Let pd be the selected primer for the current iteration; Initially pd = null;
Let C be the collection of all substrings of length k (k-mers) in the
sequences alive;
For each element k-mer u ∈ C {

Let C ′ be the collection of k-mers that are obtained from the
FASTA lookup of u;
For each element k-mer v ∈ C ′ {

Form the primer u′ = u ∪ v;
Add u′ to Q (if the degeneracy of u′ is at most
the target degeneracy d);

}
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}
While(Q is not empty) {

Let Q′ be a priority queue of the next generation candidates;
For each element q ∈ Q {

For each sequence Si alive and not covered by q {
For each k-mer v of Si {

Form the primer q ′ = q ∪ v;
Add q ′ to Q′ if the degeneracy of q ′ is at most the
target degeneracy d ;

}
}

}
pd = the primer of lowest degeneracy in Q′;
Q = Q′;

}
Add pd to P ;
Set the sequences not covered by pd as the sequences alive;

}
Output P ;

}

Let us analyze the time taken by the loop that processes the elements of the priority queue Q to generate
primers of higher coverage. Forming each q ′ takes O(N + |�|k) time. Since each candidate can form
at most O(Nr ) such q ′, the time complexity of creating Q′ is O(b Nr (N + |�|k)). Therefore, the time
required for one iteration of the loop is O(b N2r ).

Now, let us look into the number of iterations the algorithm will perform to design one primer of
degeneracy at most d . The algorithm constructs i-primers in each iteration from (i −1)-primer candidates
of the previous iteration whose degeneracy either remains the same or increases. Thus, the number of
iterations performed by algorithm MIPS to identify one primer of the output set is O(N), leading to a
runtime of O(b N3r ). If there are p primers in the output, then, the overall time complexity of algorithm
MIPS is O(b N3r p).

75.1.6.4 Algorithm Degenerate Primer Search (DPS)

An algorithm called DPS has been given in Ref. [13]. DPS has been shown to have a better runtime than
that of MIPS in the worst case. It employs a new strategy of ranking the primers in every iteration as
defined below.

Definition 75.3

The coverage-efficiency e(P ) of a degenerate primer P is the ratio of the number of sequences it amplifies or
covers (c(P )) to its degeneracy (d(P )), that is, e(P ) = c(P )/d(P ).

Let P1 and P2 be two degenerate primers in the priority queue of candidate primers and let e(P1) >

e(P2). Then the priority of P1 is higher than that of P2. If e(P1) = e(P2), then the primers are ranked in
the nondecreasing order of their degeneracy.

In every iteration, the new algorithm performs additional processing of primer candidates before select-
ing the b best primers for the next iteration. Instead of adding each q ′ directly to the priority queue Q′, the
candidates are collected in a collection B , sorted in their lexicographic order and unique primer candidates
are identified by scanning the sorted collection B , obtaining their coverage by merging the coverage of the
duplicates. Each such unique primer candidate is added to the priority queue Q′, in which the priority
of the candidates are as explained above. This ensures that the degeneracy of the candidates generated
for (i + 1)th iteration from a candidate of i th iteration is strictly greater than that of their predecessor.
As the number of symbols that can be added to a nondegenerate primer to create a degenerate primer of
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degeneracy at most d lies in the range [�log2 d� : (|�|− 1) ∗ 	log|�| d
], the number of iterations the new
algorithm performs to identify a single primer of the output set P is O(|�| log|�| d). If |P | = p, then
the overall time complexity of the algorithm is O(|�| log|�| db N2r p), an improvement of the worst-case
time complexity O(b N3r p) of algorithm MIPS.

75.2 The Planted Motif Search Problem

Motif search is an important problem in biology. Motif search is nothing but the problem of identifying
short patterns (also called motifs) from a database of biological sequences. These motifs are fundamental
functional elements in proteins vital for understanding gene function, human disease, and identifying
potential therapeutic drug targets. Many variants of motif search have been proposed in the literature. The
version of interest in this chapter is defined next.

Inputs are n sequences of length m each. Inputs also are two integers l and d . The problem is to find
a motif (i.e., a sequence) M of length l . It is given that each input sequence contains a variant of M. The
variants of interest are sequences that are at a hamming distance of d from M. This problem is also known
as the planted (l , d)-motif search problem.

A simple algorithm can be devised for the solution of this problem. Consider every possible l-mer
one at a time and check if this l-mer is the correct motif M. There are 4l possible l-mers. Let M′ be
one such l-mer. We can check if M′ = M as follows. Let the input sequences be S1, S2, . . . , Sn. The
length of each sequence is m. Form all possible l-mers from out of these sequences. The total number
of l-mers is ≤ nm. Call this collection of l-mers C . Compute the hamming distance between u and M′
for every u ∈ C . As a result we can check if M′ occurs in each input sequence (at a hamming distance
of d). Thus we can identify all the motifs of interest in a total of O

(
nml4l

)
time. This algorithm becomes

impractical even for moderately large values of l . Numerous efficient algorithms have been proposed in the
literature.

Algorithms for PMS can be broadly classified into exact and approximate algorithms. An exact algorithm
always outputs the planted motif from a given input of sequences. However, an approximate algorithm
may not always output the correct planted motif. Note that this notion of an approximate algorithm differs
from the traditional concept of approximation algorithms. The random projection algorithm of Buhler
and Tompa [14] is an example of an approximate algorithm and the PMS algorithms given in Ref. [15] are
exact.

Algorithms for Problem 1 can be categorized into two depending on the basic approach employed,
namely, profile-based algorithms and pattern-based algorithms. Profile-based algorithms predict the starting
positions of the occurrences of the motif in each sequence and pattern-based algorithms predict the motif
itself.

Examples of pattern-based algorithms include PROJECTION [14], MULTIPROFILER [16], MITRA
[17], and PatternBranching [18]. Examples of profile-based algorithms include CONSENSUS [19],
GibbsDNA [20], MEME [21], and ProfileBranching [18]. The performance of profile-based algorithms are
specified with a measure called “performance coefficient.” The performance coefficient gives an indication
of how many positions (for the motif occurrences) have been predicted correctly. These algorithms have
been shown to perform well in practice for l ≤ 18 and d ≤ 6. A profile-based algorithm could either be
approximate or exact. Likewise a pattern-based algorithm may either be exact or approximate.

Several exact algorithms have been proposed in the literature. These algorithms work by exhaustive
enumeration. For example, see Refs. [15,22–28]. As pointed out in Ref. [14], these algorithms “become
impractical for the sizes involved in the challenge problem.” (Challenge problems are instances of the PMS
problem that have been found to be difficult and were proposed by Pevzner and Sze [29].) Exceptions
are the MITRA algorithm [17] and the PMS algorithms of Rajasekaran et al. [15]. These algorithms are
pattern based and are exact. MITRA solves, for example, the (15, 4) instance in 5 min using 100 MB of
memory [17]. This algorithm is based on the WINNOWER algorithm [29] and uses pairwise similarity
information. A new pruning technique enables MITRA to be more efficient than WINNOWER. MITRA
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uses a mismatch tree data structure and splits the space of all possible patterns into disjoint subspaces that
start with a given prefix. The same (15, 4) instance is solved in 3.5 min by PMS [15].

Profile-based algorithms such as CONSENSUS, GibbsDNA, MEME, and ProfileBranching take much
less time for the (15, 4) instance [18]. However, these algorithms fall under the approximate category and
may not always output the correct answer. Some of the pattern-based algorithms (such as PROJECTION,
MULTIPROFILER, and PatternBranching) also take much less time [18]. However, these are approximate
as well (though the success rates are close to 100%).

75.2.1 The WINNOWER Algorithm

The algorithm of Pevzner and Sze [29] (called WINNOWER) works as follows. If A and B are two instances
(i.e., occurrences) of the motif, then the hamming distance between A and B is at most 2d . The algorithm
constructs a collection C of all possible l-mers in the input. A Graph G(V, E ) is then constructed. Each
l-mer in C will correspond to a node in G . Two nodes u and v in G are connected by an edge if and only
if the hamming distance between the two l-mers is at most 2d and these l-mers come from two different
sequences.

Clearly, the n instances of the motif M form a clique of size n in G . Thus, the problem of finding M
reduces to that of finding large cliques in G . Unfortunately, there will be numerous “spurious” edges (i.e.,
edges that do not connect instances of M) in G and also finding cliques is NP-hard. Pevzner and Sze [29]
employ a clever technique to prune spurious edges. More details can be found in Ref. [29].

75.2.2 Random Projection Algorithm

The algorithm of Buhler and Tompa [14] is based on random projections. Let the motif M of interest be
an l-mer. Collect all the l-mers from all the n input sequences and let C be this collection. Project these
l-mers along k randomly chosen positions (for some appropriate value of k). In other words, for every
l-mer u ∈ C , generate a k-mer u′, which is a subsequence of u corresponding to the k random positions
chosen. (The random positions are the same for all the l-mers.) We can think of each k-mer thus generated
as an integer. We group the k-mers according to their integer values (i.e., we hash all the l-mers using the
k-mer of any l-mer as its hash value).

If a hashed group has at least a threshold number s of l-mers in it, then there is a good chance that
M will have its k-mer equal to the k-mer of this group. (An appropriate value for s is obtained using a
probabilistic analysis.) We collect all the k-mers (and the corresponding l-mers) that pass the threshold
and these are processed further to arrive at the final answer M. Processing is done using the expectation
maximization (EM) technique of Lawrence and Reilly [30].

75.2.3 Algorithm PMS1

A simple algorithm called PMS1 has been given in Ref. [15]. Even this simple algorithm has been shown
to solve some of the challenge problems efficiently. Steps involved in this algorithm are:

1. Generate all possible l-mers from out of each of the n input sequences. Let Ci be the collection of
l-mers from out of Si for 1 ≤ i ≤ n.

2. For all 1 ≤ i ≤ n and for all u ∈ Ci generate all l-mers v such that u and v are at a hamming
distance of d . Let the collection of l-mers corresponding to Ci be C ′

i , for 1 ≤ i ≤ n. The total
number of patterns in any C ′

i is O
(

m
( l

d

)
3d

)
.

3. Sort all the l-mers in every C ′
i , 1 ≤ i ≤ n and eliminate duplicates in every C ′

i . Let L i be the
resultant sorted list corresponding to C ′

i .
4. Merge all the L i s (1 ≤ i ≤ n) and output the generated (in step 2) l-mer that occurs in all the L i s.

The run time of the above algorithm is O
(

nm
( l

d

)
3d l

w

)
where w is the word length of the computer.
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Two other exact algorithms called PMS2 and PMS3 have also been proposed in Ref. [15]. These algo-
rithms are competitive in practice with other exact algorithms. For a survey on motif search algorithms
see Ref. [31].

75.3 Closest String and Closest Substring Problems

Two problems that are closely related to the PMS are the closest string problem (CSP) and the closest
substring problem (CSSP). The CSP takes as input n sequences of length m each and the problem is
to identify a string s of length m that is the closest to all the input strings. In other words, the max-
imum distance of s to any input sequence should be minimum. However, the CSSP takes as input n
sequences of length m each. The problem is to identify a string s̄ of length l(<m) such that s̄ is the
closest to some substrings (each of length l and picked one from each input sequence) of the input
sequences.

Algorithms that have been proposed for the PMS problem have typically been tested on random inputs.
Specifically, the input sequences will be generated randomly such that each symbol in each sequence is
uniformly randomly picked from �. A motif M will also be generated randomly in a similar fashion. This
motif will then be planted in the input sequences starting from random locations. What is planted in each
sequence will be a random neighbor of M that is at a Hamming distance of ≤ d from M. If l is small
enough in relation to d , then there could be spurious motifs occurring in the input sequences by random
chance (see, e.g., Ref. [14]). A probabilistic analysis can be performed to figure out values of l and d for
which the probability of a spurious motif occurring by random chance is very low. For these values of l
and d , in fact the planted motif will correspond to the closest substring. If there are spurious motifs in
the input sequences then the closest substring may not be the same as the planted motif. However, in this
case it may not be possible to identify the planted motif using any other algorithm also unless additional
information is given for the planted motif. For example, the exact algorithms of [15] will identify all the
motifs present in the input (including the planted motif). But the algorithm will not be able to isolate the
planted motif.

Both CSP and CSSP have been proven to be NP-hard. In this section we present some of the approxi-
mation algorithms that have been devised for CSP and CSSP.

75.3.1 The Closest String Problem

In this section we address the CSP. A formal definition of the CSP follows.

Definition 75.4

Given strings s1, s2, . . ., sn (of length m each) over the alphabet �, the CSP is to find a string s of length m
over � that minimizes maxn

i=1 d(s , si ), where d is the Hamming distance. Let dmin := maxn
i=1 d(s , si ).

From hereon whenever we refer to s1, . . . , sn we assume that they are strings of length m over the
alphabet �.

The first result on the complexity of the problem was obtained in Ref. [32] under the context of coding
theory and the so-called minimum radius problem and states the following.

Theorem 75.1

If � = {0, 1} the CSP is NP-complete.

After this negative result, two different approaches were used to tackle this problem. The first approach
had the goal of finding polynomial-approximation schemes with a prescribed accuracy (see, e.g., [33–35)].
The other approach sought to find exact solutions that take polynomial time for a fixed set of parameters
(such as n or dmin). Examples include Refs. [36,37].
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In the next sections we will describe the first approach. The interested reader can find details of the
second in Refs. [36,37].

75.3.1.1 Simple Approximation Algorithms

Given any instance of the CSP, one of the easiest strategies is to output any of the given strings. This gives
rise to the following theorem due to Ref. [33].

Theorem 75.2

Fix 1 ≤ i ≤ n. The algorithm that outputs si is a 2-approximation algorithm for the CSP.

Proof
Let us call s the optimal solution to the CSP and let dmin := maxn

i=1 d(s , si ). Given 1 ≤ j ≤ n we have
that

d(si , s j ) ≤ d(si , s ) + d(s , s j ) ≤ 2dmin

Hence we have maxn
j=1 d(si , s j ) ≤ 2dmin and the result follows.

The following result from Ref. [35] will be used later on, and will allow us to find an exact solution
when m ≤ c log n for a fixed c .

Theorem 75.3

There is a polynomial-time algorithm that solves the CSP when m ≤ c log n.

Proof
We proceed by enumerating all of the strings of length m and picking the one that minimizes the desired
distance. Since |�|m ≤ |�|c log n = nc ′

(for some constant c ′) we have that it takes polynomial time in n.

75.3.1.2 An Approximate Solution Using Integer Programming

A useful and widely used strategy in approximation algorithms is the so-called “method of randomized
rounding” [38]. This method models the given problem as a linear integer program, relaxes the integrality
constraints, solves the resultant problem by a polynomial-time linear programming solver and, rounds
the—possible—real solution to an integer solution based on the values obtained. This strategy was first
used in Ref. [33].

We could use the above strategy to solve the CSP as well.

Definition 75.5

Given a string p = p[1] . . . p[m] over an alphabet � we define the following binary variables, for σ ∈ �

and i = 1, . . . , m : pσ
i =

{1 if p[i] = σ

0 if not

Note that given a set of binary variables {s σ
i }, where i = 1, . . . , m and σ ∈ � they represent a string

of length m if for every i = 1, . . . , m there is exactly one 1 in the sequence {s σ
i }σ∈� or equivalently if∑

σ∈� s σ
i = 1.

We would like to find a formula that will allow us to calculate the hamming distance between two strings
x and y by using the binary variables xσ

i and yσ
i . To do that we introduce the following definition and

lemma.

Definition 75.6

Given two strings p = p[1] · · · p[m] and q = q[1] · · · q[m], for any i (1 ≤ i ≤ m) we define

δi ( p, q) =
{1 if p[i] = q[i]

0 if p[i] = q[i]

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C075 March 20, 2007 19:6

75-14 Handbook of Approximation Algorithms and Metaheuristics

Lemma 75.1

Given strings p = p[1] · · · p[m] and q = q[1] · · · q[m] we have

d( p, q) =
m∑

i=1

δi ( p, q) =
m∑

i=1

(

1 −
∑

σ∈�

pσ
i qσ

i

)

Proof

This follows easily from the fact that pσ
i qσ

i =
{1 if p[i] = q[i] = σ

0 otherwise
.

Notice that if one of the sequences is fixed, the equation obtained in lemma 75.1 is linear.
To state the CSP as a minimization problem suppose that si = si [1], . . . , si [m] for i = 1, . . . , n. The

problem can be stated as

min
n

max
i=1

d(r, si )
∑

σ∈�

r σ
i = 1, i = 1, . . . , n

r σ
i ∈ {0, 1}, i = 1, . . . , n and σ ∈ �

(75.1)

Let d represent the maximum distance of r to any si . Using lemma 75.1 we get the following linear integer
program:

min d
m∑

j=1

(

1 − ∑

σ∈�

s σ
i, j r

σ
j

)

≤ d , i = 1, . . . , n

∑

σ∈�

r σ
i = 1, i = 1, . . . , n

r σ
i ∈ {0, 1}, i = 1, . . . , n and σ ∈ �

(75.2)

By allowing the variables to take values in the interval [0, 1], we get the following linear program:

min d
m∑

j=1

(

1 − ∑

σ∈�

s σ
i, j r

σ
j

)

≤ d , i = 1, . . . , n

∑

σ∈�

r σ
i = 1, i = 1, . . . , n

0 ≤ r σ
i ≤ 1, i = 1, . . . , n and σ ∈ �

(75.3)

We will call d̂min the solution to Eq. (75.3) and we will call r̃ σ
i the values that the variables r σ

i take for
i = 1, . . . , m and σ ∈ �. It is clear that d̂min ≤ dmin.

Definition 75.7

1. Given r̃ σ
i with i = 1, . . . , m and σ ∈ �, which are solutions to Eq. (75.3), we define random variables

xi independently for i = 1, . . . , m by satisfying the equation Pr({xi = σ }) = r̃ σ
i for σ ∈ �. Note that∑

σ∈� Pr({xi = σ }) = ∑
σ∈� r̃ σ

i = 1
2. Let x be the string obtained by concatenating the {xi }m

i=1, that is, x = x1x2 · · · xm.
3. We call dx = maxm

i=1 d(x , si )

It is clear that one can obtain x by a polynomial-time algorithm by solving the linear programming
problem (75.3) and then do the randomized rounding described in Definition (75.7). We will prove now
that x is a good approximation to the solution.

Lemma 75.2

E[d(x , si )] ≤ dmin for i = 1, . . . , n.

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C075 March 20, 2007 19:6

Primer Selection, Planted Motif Search, and Related Problems 75-15

Proof
By Lemma 75.1 we have that d(x , si ) = ∑m

j=1 δ j (x , si ). Furthermore for fixed i (in the range [1, m]) and
j (in the range [1, n]), δi (xi , s j ) is a Bernoulli trial with

E[δ j (x , si )] = 1 −
∑

σ∈�

s σ
i, j E[xσ

j ] = 1 −
∑

σ∈�

s σ
i, j Pr({x j = σ }) = 1 −

∑

σ∈�

s σ
i, j r̃

σ
j

Hence by linearity of expectations we get that E[d(x , si )] = ∑m
j=1(1 − ∑

σ∈� s σ
i, j r̃

σ
j )) and since r σ

j is a
solution of Eq. (75.3) we have

E[d(x , si )] =
m∑

j=1

(

1 −
∑

σ∈�

s σ
i, j r̃

σ
j

)

≤ d̂min ≤ dmin for i = 1, . . . , n

We can employ Chernoff bounds to prove a stronger result.

Lemma 75.3

Let Y1, Y2, . . . , Yn be independent Bernoulli trials with E(Yi ) = pi . If Y = ∑n
i=1 Yi and µ = E(Y ) =∑n

i=1 pi and 0 < ε ≤ 1 we have

Pr(Y ≥ (1 + ε)µ) ≤ e− 1
3 µε2

Pr(Y ≥ µ + εn) ≤ e− 1
3 nε2

Pr(Y ≤ (1 + ε)µ) ≤ e− 1
2 µε2

Pr(Y ≤ µ − εn) ≤ e− 1
2 nε2

Theorem 75.4

The algorithm that outputs x is a randomized polynomial-time (1 + ε) approximation algorithm for the CSP
when dmin ≥ 6 log n

ε2 .

Proof
We have that d(x , si ) is the sum of independent Bernoulli trials, that is, d(x , si ) = ∑m

j=1 δ j (x , si ), and
by Lemma 75.2 we have that µ = E (d(X, si )) ≤ dmin. By applying Lemma 75.3 we have

Pr (d(x , si ) > (1 + ε)dmin) ≤ e− 1
3 ε2µ

Furthermore we have

Pr(dx > (1 + ε)dmin) = Pr({∀i = 1, . . . , n : d(X, si ) > (1 + ε)dmin}) ≤ ne− 1
3 ε2µ

And since µ ≥ dmin ≥ 6 log n
ε2 we have

Pr (dx > (1 + ε)dmin) ≤ ne−2log n ≤ 1

n

Using the method of conditional probabilities (see Ref. [38]) it is possible to derandomize the previous
algorithm. This is done explicitly in Refs. [34,35].

75.3.1.3 A (1 + ε) Polynomial-Approximate Scheme

In this section we describe the approximation scheme of Refs. [34,35]. Consider the following strategy to
solve the CSP, fix 0 ≤ k < n and align any k strings out of the n. In this alignment, there will be clean
columns and dirty columns. A column is clean if a single character occurs in the entire column; it is dirty
otherwise. If j is a clean column and c is the character in this column, then in the output string column
j will be set to c . Luckily the number of dirty columns will be relatively small and can be dealt with using
the methods introduced in the previous section.

In the remainder of this section we assume a fixed k, such that 1 < k < n and we make the previous
ideas rigorous in the following way.
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Definition 75.8

Let i1, . . . , ik be a subset of indices of {1, . . . n}. We define:

1. Qi1, ..., ik := { j : si1 [ j ] = si2 [ j ] = . . . sik [ j ]}, that is, the set of positions where si1 , . . . , sik agree.
2. Pi1, ..., ik := {1, . . . , m}\Qi1, ..., ik , that is, the set of positions where si1 , . . . , sik have two or more

characters.
3. Given a string r of length m over �, we define r |{i1...ik } = r [i1] . . . r [ik].

The following lemma gives us a good estimate for the number of dirty columns.

Lemma 75.4

Given 1 ≤ i1 ≤ · · · ≤ ik ≤ n we have that

|Pi1···ik | ≤ kdmin

Proof
Let j be a position (i.e., a column) where si1 , . . . , sik have two or more characters. Then, there is an
l (1 ≤ l ≤ k) such that s [ j ] = sil [ j ], where s is the closest to all the n input strings. By def-
inition, d(s , sil ) ≤ dmin, and hence every sil contributes at most dmin dirty columns to Pi1, ..., ik hence
|Pi1···ik | ≤ kdmin.

Theorem 75.5 gives us an effective way to find an approximate solution to the CSP of s1, . . . , sn when
we restrict every string to the positions Pi1, ..., ik (i.e., the dirty columns).

Theorem 75.5

Let i1, . . . , ik form a subset of indices from {1, . . . , n} and let 0 < ε < 1. There is a polynomial-time
algorithm, which produces a string s ′ of length |Pi1, ..., ik | such that

d(s ′, sl |Pi1, ..., ik
) ≤ (1 + ε)dmin − d(si1 |Qi1 ...ik

, sl |Qi1 ...ik
) for l = 1, . . . , n

Proof

Consider s̃1, . . . , s̃n, where s̃ l [ j ] : =
{

sl [ j ] when j ∈ Pi1, ..., ik

si1 [ j ] when j ∈ Qi1, ..., ik

Let s̃ be a solution to the CSP over these strings, and define as before d̃min and P̃i1, ..., ik . It is simple to
note that d̃min ≤ dmin and that P̃i1, ..., ik = Pi1, ..., ik . Hence by using Lemma 75.4 we infer that |Pi1...ik | =
| P̃i1...ik | ≤ kd̃min.

If |Pi1...ik | >
6k log n

ε2 we have that d̃min >
6 log n

ε2 and by using Theorem 75.4 on s̃1, . . . , s̃ j we obtain s̃ ′,
such that

d(s̃ ′, s̃ l ) ≤ (1 + ε)d̃min ≤ (1 + ε)dmin for l = 1, . . . , n

Let s ′ = s̃ ′|Pi1, ..., ik
and since s̃ ′|Qi1, ..., ik

= si1 |Qi1, ..., ik
. Then, that

d(s̃ ′, s̃ l ) = d(s ′, sl |Pi1, ..., ik
) + d(si1 |Qi1, ..., ik

, sl |Qi1, ..., ik
) ≤ (1 + ε)dmin

If |Pi1...ik | <
6k log n

ε2 define s ′
l := sl |Pi1, ..., ik

for l = 1, . . . , n. We can find s ′ that solves exactly the CSP
on s ′

1, . . . s ′
n using Theorem 75.3, considering that |s ′

l | = |Pi1...ik | < c log n.

If we define s̃ by s̃ [ j ] : =
{

s ′[ j ] when j ∈ Pi1, ..., ik

si1 [ j ] when j ∈ Qi1, ..., ik

it is clear that this is a solution to the CSP for

s̃1, . . . , s̃n. Also,

d(s̃ , s̃ l ) = d
(

s ′, sl |Pi1, ..., ik

) + d
(

si1 |Qi1, ..., ik
, sl |Qi1, ..., ik

) ≤ d̃min ≤ dmin
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For the remaining part of this section we will be interested in knowing how close is si1 to s when we
restrict the problem to the positions Qi1, ..., ik (i.e., the clean columns). That is, we want to estimate

d
(

sl

∣
∣

Qi1 ...ik
, si1

∣
∣

Qi1 ...ik

) − d
(

sl

∣
∣

Qi1 ...ik
, s

∣
∣

Qi1 ...ik

)
for l = 1, . . . , n

The following definition and lemma will be a step in that direction.

Definition 75.9

Let i1, . . . , ik be a subset of indices of {1, . . . n} and 1 ≤ l ≤ n, we define

J (l) = { j ∈ Qi1...ik : si1 [ j ] = sl [ j ] ∧ si1 [ j ] = s [ j ]}
Lemma 75.5

Let i1, . . . , ik be a subset of indices of {1, . . . n} and 1 ≤ i ≤ n, then

d
(

sl

∣
∣

Qi1 ...ik
, si1

∣
∣

Qi1 ...ik

) − d
(

sl

∣
∣

Qi1 ...ik
, s

∣
∣

Qi1 ...ik

) ≤ J (l) (75.4)

Proof
Let Q := Qi1, ..., ik . Then,

d(sl |Q , si1 |Q) − d(sl |Q , s |Q)

= |{ j ∈ Q : si1 [ j ] = sl [ j ]}| − { j ∈ Q : sl [ j ] = s [ j ]}|
≤ |{ j ∈ Q : si1 [ j ] = sl [ j ] ∧ sl [ j ] = s [ j ]}| + (|{ j ∈ Q : si1 [ j ] = sl [ j ] ∧ sl [ j ] = s [ j ]}|

− |{ j ∈ Q : sl [ j ] = s [ j ]}|)
≤ |{ j ∈ Q : si1 [ j ] = sl [ j ] ∧ si1 [ j ] = s [ j ]}| + (|{ j ∈ Q : sl [ j ] = s [ j ]}|

− |{ j ∈ Q : sl [ j ] = s [ j ]}|) ≤ J (l)

Note that for a fixed k, J (l) depends on the set of indices i1, . . . , ik that we choose. For an arbitrary set of
indices i1, . . . , ik we cannot bound J (l), but we will prove in the following lemmas that there exists a set
of indices i1, . . . , ik , where J (l) is small. By using Lemma 75.5 we know that si1 is an approximate solution
for the restriction of the problem to the positions Qi1, ..., ik . To be more precise we introduce the following.

Definition 75.10

Let i1, . . . , ik be a subset of indices from {1, . . . , n} and 0 ≤ l ≤ n, we define

1. pi1, ..., ik := d(si1

∣
∣

Qi1, ..., ik
, s

∣
∣

Qi1, ..., ik
) that is, the number of mismatches between si1 and s at positions

in Qi1, ..., ik .

2. ρ0 := max
1≤i, j≤n

d(si ,s j )
dmin

and ρk := min
1≤i1≤···ik≤n

pi1···ik
dmin

for k = 1, . . . , n.

Lemma 75.6

For any 2 ≤ k′ ≤ k there are indices 1 ≤ i1 ≤ · · · ≤ ik ≤ n such that for any 1 ≤ l ≤ n

J (l) ≤ (ρk′ − ρk′+1)dmin

Proof
Choose i1, . . . , ik′ such that pi1···ik′ = ρk′dmin. Then for any 1 ≤ ik′+1 ≤ ik′+2 ≤ · · · ≤ ik ≤ n and 1 ≤
l ≤ n we have that

J (l) ≤ |{ j ∈ Qi1···ik′ : si1 [ j ] = sl [ j ] ∧ si1 [ j ] = s [ j ]}|
= |{ j ∈ Qi1···ik′ : si1 [ j ] = s [ j ]} \ { j ∈ Qi1···ik′ : si1 [ j ] = sl [ j ] ∧ si1 [ j ] = s [ j ]}|
= |{ j ∈ Qi1···ik′ : si1 [ j ] = s [ j ]}| − |{ j ∈ Qi1···ik′ ,l : si1 [ j ] = s [ j ]}|
= pi1...ik′ − pi1...ik′ ,l ≤ (ρk′ − ρk′+1)dmin
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Lemma 75.7

For 2 ≤ k < n

min{ρ0 − 1, ρ2 − ρ3, . . . , ρk − ρk+1} ≤ 1

2k − 1

Proof

1

2
(ρ0 − 1) + (ρ2 − ρ3) + · · · + (ρk − ρk+1) = 1

2
(ρ0 − 1) + ρ2 − 1

2
− ρk+1 ≤ 1

2
ρ0 + ρ2 − 1

2

However, let i, j be such that d(si , s j ) = ρ0dmin. Then, in the positions where si differs from s j , one of
the two strings say si is at a distance of at least ρ0

2 dmin from the optimum, that is, d(s |Pi, j , si |Pi, j ) ≥ ρ0
2 dmin.

Thus,

d(s |Qi, j , si |Qi, j ) ≤ dmin − ρ0

2
dmin = (1 − ρ0)dmin

This implies that ρ2 ≤ (1 − ρ0
2 ) and as a consequence,

1
2 (ρ0 − 1) + (ρ2 − ρ3) + · · · + (ρk − ρk+1)

k − 1 + 1
2

≤
1
2

k − 1
2

= 1

2k − 1

So at least one of ρ0 − 1, ρ2 − ρ3, . . . , ρk − ρk+1 is less than or equal to 1
2k−1 .

Theorem 75.6

There exists a set of indices 1 ≤ i1 ≤ · · · ≤ ik ≤ n such that

d
(

sl

∣
∣

Qi1···ik
, si1

∣
∣

Qi1···ik

) − d
(

sl

∣
∣

Qi1···ik
, s

∣
∣

Qi1···ik

) ≤ 1

2k − 1
dmin for 1 ≤ l ≤ n

Proof
It is clear by using Lemmas 75.5, 75.6, and 75.7 in consecutive order.

Based on the ideas presented consider the following algorithm.

Algorithm Closest-String

1. for every set of indices {i1, . . . , ik} do
(a) Let ŝ (i1, . . . , ik) be the solution to the problem as in Theorem 75.5.
(b) Define s (i1, . . . , ik) by making s (i1, . . . , ik)|Qi1, ..., ik

:= si1 |Qi1, ..., ik
and

s (i1, . . . , ik)|Pi1, ..., ik
:= ŝ (i1, . . . , ik).

(c) Let cost(i1, . . . , ik) := k
max
j=1

d(si j , s (i1, . . . , ik)).

2. Let s ′ := s (i1, . . . , ik) be the string that minimizes cost(i1, . . . , ik).
3. for i= 1, . . . , n do calculate cost(i) := maxn

j=1 d(s j , si ).
4. Select the string of minimum cost from the two previous steps.

Theorem 75.7

Let 0 < δ < 1. The algorithm Closest-String is a (1 + δ) polynomial-approximation algorithm for the CSP.

Proof
Choose 1 < k < n and 0 < ε < 1 such that 1

2k−1 + ε ≤ δ.
If ρ0 − 1 ≤ 1

2k−1 then in step 2 we find a solution such that

ρ0dmin ≤
(

1 + 1

2k − 1

)

dmin
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which by definition of ρ0 implies that

d(s ′, sl ) ≤ max
1≤i, j≤n

d(si , s j ) ≤ 1

2k − 1
dmin ≤ (1 + δ)dmin

In case ρ0 − 1 > 1
2k−1 dmin, let us first observe that in step 2 we find a set of indices 1 ≤ i1 ≤ · · · ≤ ik

≤ n such that

d(s ′, sl ) = d
(

si1

∣
∣

Qi1, ..., ik
, sl

∣
∣

Qi1, ..., ik

) + d
(

ŝ
(

i1, . . . , ik
)

, sl

∣
∣

Pi1, ..., ik

)

Using Theorems 75.5 and 75.6 we note that

d(s ′, sl ) ≤
(

1 + 1

2k − 1

)

dmin + d
(

si1

∣
∣

Qi1, ..., ik
, sl

∣
∣

Qi1, ..., ik

) + εdmin − d
(

si1

∣
∣

Qi1, ..., ik
, sl

∣
∣

Qi1, ..., ik

)

≤ (1 + δ)dmin

75.3.2 Closest Substring Problem

The CSSP takes as input n sequences of length m each. The goal is to find a substring (of length l) that is
the closest to some substrings (of length l each) picked one from each input sequence. The substring of
interest is also known as the “motif.” The notion of a motif is defined rigorously next.

Definition 75.11

If s and s ′ are strings over the alphabet � and l is such that 0 < l < |s |, we define:

1. s ′ �l s if s ′ is a substring of length l of s .
2. d̄(s ′, s ) := min

r�l s
d(s ′, r ).

Note that if s ′ �l s then d̄(s ′, s ) = 0.

Definition 75.12

Given strings s1, s2, . . . , sn of length m each over the alphabet � and an l (0 < l ≤ m), the CSSP is to
find a string s̄ of length l over � that minimizes maxn

i=1 d̄(s , si ). We denote by ti �l si the string such that
d̄(s̄ , si ) = d(S, t̄i ) for i = 1, . . . , n. We denote by d̄min := maxn

i=1 d̄(s̄ , si ).

In the remaining part of this section we will assume that we are given s1, . . . , sn and l that satisfy the
conditions of Definition 75.12. d̄min, t̄i and s̄ will satisfy the conditions stated in Definition 75.12.

We now present approximation strategies that have been proposed in Refs. [35,39,40]. Some of these
strategies will be based on the results which were discussed in Section 75.3.

75.3.2.1 Simple Approximation Schemes

We start by presenting a simple strategy that obtains a 2-approximation polynomial-time algorithm as it
is described in Ref. [39].

Algorithm Simple-Closest-Substring

1. for every s ′ �l s1 do
(a) for i := 2, . . . , n do

Let ti (s ′) �l si be such that d(s ′, ti (s ′)) = d̄(s ′, si ).
(b) Let cost(s ′) := maxn

i=1 d̄(s ′, si ).
2. Pick the string s̃ �l s1 that minimizes cost(s̃ ). Let t̃ j �l s j be such that

d(s̃ , t̃ j ) = d̄(s̃ , s j ) for j = 1, . . . , n.

Theorem 75.8

Algorithm Simple-Closest-Substring is 2-approximate for CSSP.
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Proof
Let r1, . . . , rn, where ri �l si , be the strings such that d̄(s̄ , si ) = d(s̄ , ri ). Then, d(s̄ , ri ) ≤ d̄min and hence

d(r1, r j ) ≤ d(s̄ , r1) + d(s̄ , r j ) ≤ 2d̄min for j = 1, . . . , n

We conclude by noticing that

d̄(s̃ , si ) = d(t̃1, t̃i ) = min
s ′�l s1

n
max
j=1

d(s ′, t j (s ′)) ≤ min
s ′�l s1

n
max
j=1

d(s ′, r j ) = n
max
j=1

d(r1, r j ) ≤ 2d̄min

Our aim is to describe an approximation algorithm that follows the ideas of algorithm Closest-String.
To do so we will describe some definitions and theorems that generalize the ones done in Section 75.3.1.3.

Definition 75.13

Given a set of indices 1 ≤ i1 ≤ · · · ≤ ik ≤ n and a set of substrings T = {ti1 , . . . , tik } where ti j �l si j for
j = 1, . . . , k. We define

1. QT
i1, ..., ik

:= { j : ti1 [ j ] = ti2 [ j ] = · · · tik [ j ]}, that is, the set of positions where ti1 , . . . , tik agree.

2. P T
i1, ..., ik

:= {1, . . . , m} − QT
i1, ..., ik

, that is, the set of positions where ti1 , . . . , tik differ.

The following theorems extend naturally Lemma 75.4 and Theorem 75.6.

Theorem 75.9

For 1 ≤ i1 ≤ · · · ≤ ik ≤ n and T := {ti1 , . . . , tik } where ti j � s j ,
∣
∣P T

i1···ik

∣
∣ ≤ kd̄min.

Proof
It follows directly from Lemma 75.4.

Theorem 75.10

There exists a set of indices 1 ≤ i1 ≤ · · · ≤ ik ≤ n such that for T := {t̄i1 , . . . , t̄ik },

d
(

t̄l
∣
∣

QT
i1···ik

, t̄i1

∣
∣

QT
i1···ik

) − d
(

t̄l
∣
∣

QT
i1···ik

, s̄
∣
∣

QT
i1···ik

) ≤ 1

2k − 1
d̄min for 1 ≤ l ≤ n.

Proof
It follows from Theorem 75.6

Algorithm Closest-Small-Substring

1. for every set of substrings T = {ti1 , . . . , tik } where ti j �l si j j = 1, . . . , k do
(a) for every t ∈ � p where p = |P T

i1, ..., ik
| do

Build the string x by x|P T
i1, ..., ik

= t and x|QT
i1, ..., ik

= si1 |QT
i1, ..., ik

.

(b) Let xT
i1, ...ik

be the string that minimizes maxn
i=1 d(xT

i1, ...ik
, si ) and call

costT (i1, . . . , ik) := maxn
i=1 d̄(xT

i1, ...ik
, si ).

2. Let x ′ be the string that minimizes costT (i1, . . . , ik).
3. for i=:1, . . . , n and for every r �l si do calculate costr (i) := maxn

i=1 d(r, si ).
4. Select the string of minimum cost from the two previous steps.

Theorem 75.11

Let 1 ≤ k < n . The algorithm Closest-Small-Substring is a (1 + 1
2k−1 ) polynomial-time approximation

algorithm for the CSSP when dmin ≤ O(log(nm)).
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Proof
To argue that Closest-Small-Substring takes polynomial time we notice by using Theorem 75.9 that
|P T

i1, ..., ik
| = O(k log(nm)) in step 1. This means that the inner loop of step 1 takes |�|O(k log(nm))mnl =

O((nm)O(log |�|k)) time and that step 1 takes O((nm)O(log |�|k))O((nm)k) = O((nm)O(log |�|k)) time. It
is clear that steps 2 and 3 take less time.

Applying Theorems 75.9, 75.10 in a similar way to the one in the proof of Theorem 75.7, we get a
(1 + 1

2k−1 ) approximate solution.

75.3.2.2 A (1 + ε) Polynomial-Approximation Scheme

The following ideas were first described in Ref. [40] and later in Ref. [35].
We would like to extend the algorithm Closest-Small-Substring for the general case. Let us first note that

by trying all possibilities we get a set of indices 0 ≤ i1 ≤ · · · ik ≤ n and substrings T = {ti1 , . . . , tik }, which
satisfy the conditions of Theorem 75.10 and hence we know that if we if we set s ′|QT

i1, ..., ik
= si1 |QT

i1, ..., ik
we

get a “good” solution when we restrict ourselves to the positions QT
i1, ..., ik

.
To calculate s ′|P T

i1, ..., ik
we would like to use Theorem 75.5 applied to the strings t̃1, . . . , t̃n where t̃ j =

t̄ j |P T
i1, ..., ik

. One major difficulty in doing so, is that we do not know t̄1, . . . , tn.

To do this we want for t j �l s j to estimate d(t j , s̄ ). To accomplish that, we fix a small set R ⊂ P T
i1, ..., ik

and we calculate s̄ |R by brute force. Based on the values of s̄ |R and t j |R , we define f R(t j ) ≈ d(t j , s̄ ). By
choosing t ′j such that f R(t ′j ) = min

t�l s j
f R(t) we hope to get a good approximation of t̄ j for j = 1, . . . , n.

To make the preceding discussion more formal we introduce the following definitions and theorem.

Definition 75.14

Let 1 ≤ i1 ≤ · · · ≤ ik ≤ n, T := {t̄i1 , . . . , t̄ik }, R be a multiset of positions from P T
i1, ..., ik

and let us call

ρ := |P T
i1, ..., ik

|
|R| .

1. For t a string of length l we define

f R(t) = ρd(t|R , s̄ |R) + d
(

t
∣
∣

QT
i1, ..., ik

, t̄i1

∣
∣

QT
i1, ..., ik

)

2. For j = 1, . . . , n let t ′j be such that

f R(t ′j ) := min
t�l s j

f R(t)

The following lemma implies that the t ′i referred to in Definition 75.14 is a “good” approximation of the
t̄i , for i = 1, . . . , n.

Theorem 75.12

Suppose the conditions of Definition 75.14 are met, and let s ∗ be a string with s ∗|P T
i1, ..., ik

= s̄ |P T
i1, ..., ik

and

s ∗|QT
i1, ..., ik

= t̄i1 |QT
i1, ..., ik

. Furthermore, let us assume |R| = 4
ε2 log nm. Then,

Pr
({∀i = 1, . . . , n : d(s ∗, t ′i ) ≤ d(s ∗, t̄i ) + 2ε

∣
∣P T

i1, ..., ik

∣
∣
}) ≤ 2(nm)−

1
3

Proof
Let P := P T

i1, ..., ik
and Q := P T

i1, ..., ik
. Let us choose t �l si such that d(s ∗, t) ≥ d(s ∗, t̄i ) + 2ε|P |.
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Assume that f (t) ≤ f (t̄i ) and consider the following cases:

• If f (t̄i ) < d(s ∗, t̄i ) + ε|P | then

f (t) ≤ d(s ∗, t̄i ) + ε|P | ≤ d(s ∗, t) − 2ε|P | + ε|P | = d(s ∗, t) − ε|P |
• Similarly If f (t) ≤ f (t̄i ) and f (t) > d(s ∗, t) − ε|P |, then

f (t̄i ) ≥ d(s ∗, t̄i ) − ε|P | ≥ d(s ∗, t̄i ) + 2ε|P | − ε|P | = d(s ∗, t̄i ) + ε|P |
So if f (t) ≤ f (t̄i ) we either have f (t) ≤ d(s ∗, t) − ε|P | or f (t̄i ) ≥ d(s ∗, t̄i ) + ε|P | and therefore,

Pr( f (t) ≤ f (t̄i )) ≤ Pr( f (t) ≤ d(s ∗, ti ) + ε|P |) + Pr( f (t̄i ) ≥ d(s ∗, t̄i ) + ε|P |)
By using Lemma 75.1, it is clear that d(s ∗|R , t|R) is the sum of |R| = 4

ε2 log nm Bernoulli trials, each one
indicating whether s ∗ and t coincide at the i th character in R. It is also clear that µ := E [d(s ∗|R , t|R)] =
d(s ∗|P , t|P )

ρ
. Hence

Pr( f (t) ≤ d(s ∗, t) − ε|P |)
= Pr(ρd(s ∗|R , t|R) + d(s ∗|Q , t|Q) ≤ d(s ∗, t) − ε|P |)
= Pr(ρd(s ∗|R , t|R) ≤ d(s ∗|P , t|P ) − ε|P |)
≤ Pr(d(s ∗|R , t|R) ≤ µ − ε|R|) ≤ e− 1

2 ε2|R| ≤ (nm)−2

The previous to the last inequality follows from Lemma 75.3.
Similarly, we can prove that

Pr( f (t̄i ) ≥ d(s ∗, t̄i + ε|P |) ≤ (nm)−
4
3

In conclusion, for t �l si such that d(s ∗, t) ≥ d(s ∗, t̄i ) + 2ε|P |:
Pr ( f (t) ≤ f (t̄i )) ≤ 2(nm)−

4
3

Furthermore, we have

Pr(d(s ∗, t ′i ) ≤ d(s ∗, t̄i ) + 2ε|P |) = Pr

(
⋃

t�l si

{d(s ∗, t) ≤ d(s ∗, t̄i ) + 2ε|P |}
)

≤
∑

t�l si

Pr(d(s ∗, t) ≤ d(s ∗, t̄i ) + 2ε|P |) ≤ m2(nm)−
4
3 = 2n− 4

3 m− 1
3

Hence, we know that

Pr({∀i = 1, . . . , n : d(s ∗, t ′i ) ≤ d(s ∗, t̄i ) + 2ε|P |)})

≤
n∑

i=1

Pr(d(s ∗, t ′i ) ≤ d(s ∗, t̄i ) + 2ε|P |) ≤ n2n− 4
3 m− 1

3 < 2(nm)−
1
3

Algorithm Closest-Substring

1. for every set of substrings T = {ti1 , . . . , tik } where ti j �l si j j = 1, . . . , k do
(a) Let R be a multiset containing 4

ε2 log nm uniformly random positions from P T
i1, ..., ik

.

(b) By enumerating all strings in �R find s̄ |R .
(c) for j = 1, . . . , n do find t ′j �l s j that satisfies Definition 75.14.
(d) By using Theorem 75.5 find a solution s ′ to the closest string problem for

t ′1|P T
i1, ..., ik

, . . . , t ′n|P T
i1, ..., ik

.

(e) Define x so that x|Qi1, ..., ik
= si1 |QT

i1, ..., ik
and x|P T

i1, ..., ik
= s ′.

(f) Call costT (i1, . . . , ik) := maxn
i=1 d̄(x , si ).

2. Let x ′ be the string that minimizes costT (i1, . . . , ik)
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3. for i=:1, . . . , n and for every r �l si do calculate costr (i) := maxn
i=1 d(r, si ).

4. Select the string with the minimum cost from the two previous steps.

Theorem 75.13

Let 0 < δ < 1. The algorithm Closest-Substring is a (1 + δ) polynomial-approximation algorithm for the
CSP.

Proof
Let s ′ be the output of algorithm Closest-Substring. Using Theorem 75.12 we note that

d(s ∗, t ′i ) ≤ d(s ∗, t̄i ) + 2ε|P T
i1, ..., ik

| with high probability

An application of Theorem 75.9 implies that |P T
i1, ..., ik

| ≤ kd̄min. Combining this with Theorem 75.10,

d(s ∗, t ′i ) ≤
(

1 + 1

2k − 1
+ 2εk

)

d̄min for i = 1, . . . , n with high probability

Employing Theorem 75.5 with ε′ = ε|P T
i1, ..., ik

| ≤ εkd̄min,

d(s ′, t ′i ) ≤
(

1 + 1

2k − 1
+ 3εk

)

d̄min for i = 1, . . . , n, with high probability

Then if we choose δ such that
(

1
2k − 1 + 3εk

) ≤ δ the result holds.

By using the method of conditional probabilities [38] it is possible to eliminate the randomness in
algorithm Closest Substring. More details can be found in Ref. [35].

75.4 Conclusions

In this chapter we have considered the problem of selecting primers for a given set of DNA sequences that
will be employed in PCR and MP-PCR experiments. The basic version of the problem, namely, the PSP
and its variant, the DPSP, were discussed in detail. Some of the salient algorithms found in the literature for
these versions of primer selection were surveyed. An elaborate discussion of other variants of degenerate
primer design can be found in Ref. 1. We have also addressed the PMS problem and some of the algorithms
to solve this problem. Furthermore we consider the related minimization problems: the closest string
(CSP), and the closest substring problems (CSSP). For the CSP and the CSSP we presented a survey of the
existing polynomial approximation algorithms.
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76.1 Introduction

There are interesting algorithmic issues that arise when length constraints are taken into account in the
formulation of a variety of problems on string similarity, particularly in the problems related to local
alignment. These types of problems have their roots and most striking applications in computational
biology. In fact, because of the applications in biological sequence analysis, detection of local similarities in
two given strings has become an increasingly important computational problem. When there are additional
constraints that need to be satisfied as a part of the search criteria, it is natural to consider approximation
algorithms for the resulting computational problems for large parameters.

Given two strings X and Y , the classical dynamic programming solution to the local alignment problem
searches for two substrings I ⊆ X and J ⊆ Y with maximum similarity score under a given scoring scheme,
where ⊆ indicates the substring relation. This classical definition of similarity has certain anomalies mainly
because the lengths of the segments I and J are not taken into account. To cope with the possible anomalies
of mosaic and shadow effects, many variations of the local alignment problem have been suggested. Mosaic
effect is observed when an unrelated segment is sandwiched between two very similar segments. Shadow
effect is observed when a biologically important short alignment is not detected because it overlaps with
a longer yet biologically inadequate alignment with only a slightly higher score.

The variations suggested either define new objective functions, or include a length constraint on the
substrings I and J for optimal alignments sought. This constraint can be driven by practical considerations
for various objective functions (e.g., the maximization of length-normalized scores) and can be explicitly
given such as requiring |I | + |J | ≥ t or |J | ≤ T for given parameters t and T . In addition, in some
local alignment problems the constraint may also be implicit, as it happens in the case of cyclic sequence

76-1
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comparison. In Table 76.1 we give a list of local alignment problems, their objectives, and computational
results for them. The function s (I , J ) denotes the similarity score between I and J . The optimizations are
over all possible substrings I of X , and J of Y . In the table, we use “nor. score” as a shorthand for length-
normalized score. For any optimization problem P , we denote by P∗ its optimum value, and sometimes
drop the parameters from the notation when they are obvious from the context. An optimization problem
P is called feasible if it has a solution with the given parameters.

In most cases under consideration, there are simple dynamic programming formulations for the solution
of the exact version of a given alignment problem with a length constraint. However, the resulting algorithms
require cubic or higher time complexity, which is unacceptably high for practical purposes since the
sequence lengths can be on the order of millions. To cope with such high complexity, approximations are
considered both in definitions of similarity, and in the resulting computations.

There have been approximation algorithms proposed for various alignment problems with constraints,
involving applications of techniques from fractional programming, and dynamic programming. In this
chapter, we present a survey of the most interesting approximation algorithms for variations of local align-
ment problems. Our focus is on fractional programming algorithms, and algorithms returning results that
meet the length constraint only partially but guaranteed to be within a given tolerance. These algorithms
can be organized into three main categories:

1. Fractional programming algorithms. Application of fractional programming on adjusted normalized
local alignment (the ANLA problem in Table 76.1) is of interest. The local alignment is normally
defined as a graph problem. The fractional programming technique offers an iterative solution
such that at each iteration an ordinary local alignment problem with modified weights is solved.
This mimics the action of manually changing the weights until the results are found satisfactory.
Fundamental theorems of fractional programming guarantee an optimal solution at the conclusion
of these iterations. The termination properties of the iterative scheme are not obvious at all without
referring to the results established for fractional programming.

2. Approximation algorithms for partial constraint satisfaction. Another noteworthy feature of some
constrained local alignment approximation algorithms is their unusual performance measure. Or-
dinarily, performance of an approximation algorithm is measured by comparing the returned
results against optimum value with respect to the objective function. In some approximation re-
sults regarding the length-constrained local alignment problems, such as the problem of finding
a sufficiently long alignment with high score (the LAt problem in Table 76.1), the alignment re-
turned is assured to have at least the score obtainable with respect to the given constraint, but
the length constraint is satisfied to only within a prescribed tolerance from the required length
value.

3. Fractional programming approximation algorithms. There are fractional programming approxi-
mation algorithms for the normalized local alignment problem with length constraint (the NLAt
problem in Table 76.1). These algorithms iteratively invoke an approximation algorithm to solve a
length-constrained local alignment problem (LAt) such that the length constrained is guaranteed
to be satisfied within a given tolerance. This length guarantee carries over for the final result for
the normalized local alignment problem. That is, the fractional programming algorithm returns an
approximate result for which the guarantee on the satisfaction of the length constraint within some
tolerance is due to the approximation algorithm used at each iteration, and the criteria is preserved
over the iterations.

In this chapter, we start with the basic framework for local alignment in Section 76.2. We present
the details of the topics enumerated above in three sections. In Section 76.3 we describe the fractional
programming algorithms for the adjusted normalized local alignment problem (ANLA). In Section 76.4
we describe an approximation algorithm that uses decomposition of the alignment graph into slabs in
order to find a sufficiently long alignment with high score (LAt). This algorithm is used to obtain a
fractional programming approximation algorithm for the normalized local alignment problem (NLAt).
This is done in such a way that the length constraint is met within a given tolerance, as described in detail
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in Section 76.5. The main results and the algorithm descriptions given in the subsequent sections of this
chapter are a compilation and a reorganization of the results that appear in Refs. [1–4].

76.2 Framework for Pairwise Sequence Comparison

Given two strings X = x1x2 . . . xn and Y = y1 y2 . . . ym with n ≥ m, we use the alignment graph G X,Y

to analyze alignments between all substrings of X and Y . The alignment graph is a directed acyclic graph
having (n + 1)(m + 1) lattice points (u, v) as vertices for 0 ≤ u ≤ n and 0 ≤ v ≤ m. Figure 76.1
shows an alignment graph for xi · · · xk = ATTGT and y j · · · yl = AGGACAT. Matching diagonal arcs
are drawn as solid lines while mismatching diagonal arcs are shown by dashed lines. Dotted lines are used
for horizontal and vertical arcs. An example alignment path is shown in Figure 76.1. Labels of the arcs
on this path are the corresponding edit operations where ε denotes the null string. An alignment path for
substrings xi · · · xk and y j · · · yl is a directed path from the vertex (i − 1, j − 1) to (k, l) in G X,Y where
i ≤ k and j ≤ l . To each vertex there is an incoming arc from each neighbor if it exists. Horizontal and
vertical arcs correspond to insert and delete operations, respectively. We sometimes use indel to refer to
an insert or a delete operation. The diagonal arcs correspond to substitutions which are either matching
(if the corresponding symbols are the same) or mismatching (otherwise). If we trace the arcs of an align-
ment path for substrings I and J and perform the indicated edit operations in the given order on I , we
obtain J .

Blocks of insertions and deletions are also referred to as gaps. The alignment in Figure 76.1 includes
two gaps with sizes 1 and 3. We will use the terms alignment and alignment path interchangeably.

The objective of sequence alignment is to quantify the similarity between X and Y under a given scoring
scheme. In the simple scoring scheme, the arcs of G X,Y are assigned weights determined by nonnegative reals
δ (mismatch penalty) and µ (indel or gap penalty). We assume that s (xi , y j ) is the similarity score between
the symbols xi and y j which is normally 1 for a match (xi = y j ) and −δ for a mismatch (xi �= y j ).

Given two strings X and Y the local alignment (LA) problem seeks substrings I ⊆ X and J ⊆ Y with
the highest similarity score. The optimum value LA∗(X, Y ) for this problem is given by

LA∗(X, Y ) = max{s (I , J ) | I ⊆ X, J ⊆ Y } (76.1)
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FIGURE 76.1 Alignment graph G X,Y where xi · · · xk = ATTGT and y j · · · yl = AGGACAT.
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where s (I , J ) is the best alignment score between I and J . Alignments have positive scores, or otherwise,
they do not exist, that is, s (I , J ) = 0 iff there is no alignment between I and J .

The following is the classical dynamic programming formulation [5] to compute the maximum local
alignment score Si, j achieved by an optimal local alignment ending at each vertex (i, j ):

Si, j = max{0, Si−1, j − µ, Si−1, j−1 + s (xi , y j ), Si, j−1 − µ} (76.2)

for 1 ≤ i ≤ n, 1 ≤ j ≤ m, with the boundary conditions Si, j = 0 whenever i = 0 or j = 0. Then

LA∗(X, Y ) = max
i, j

Si, j (76.3)

LA∗ can be computed using the Smith–Waterman algorithm [6] in time O(nm). The space complexity
is O(m) because only O(m) entries of the dynamic programming matrix need to be stored at any given
time.

The simple scoring scheme can be extended such that the scores can vary depending on the individual
symbols within the same edit operation type. This leads to arbitrary scoring matrices. In this case there is
a dynamic programming formulation similar to Eq. (76.2).

Affine gap penalties is another common scoring scheme in which the total penalty for a gap of size k,
that is, a block of k insertions (or deletions), is α + (k − 1)µ where α is the gap open penalty, and µ is
called the gap extension penalty. The dynamic programming formulation for this case can be described as
follows (see Ref. [5]): Let Ei, j = Fi, j = Si, j = 0 when i or j is 0, and define

Ei, j = max{Si, j−1 − α, Ei, j−1 − µ}
Fi, j = max{Si−1, j − α, Fi−1, j − µ}

Si, j = max{0, Si−1, j−1 + s (xi , y j ), Ei, j , Fi, j } (76.4)

By virtue of this formulation, consideration of affine gap penalties does not increase the asymptotic
complexity of the local alignment problem.

We can also express the alignment problems as optimization problems that involve linear functions.
In the following sections we will describe fractional programming algorithms based on these expressions.
We define an alignment vector as the vector of edit operation frequencies such that the scores and the
lengths of alignments can be expressed as linear functions over alignment vectors. For example, under the
basic scoring scheme, we say that (x , y, z) is an alignment vector if there is an alignment path between
substrings I ⊆ X and J ⊆ Y with x matches, y mismatches, and z indels. In Figure 76.1, (3, 1, 4) is an
alignment vector corresponding to the path shown in the figure. Let AV, under a given scoring scheme,
denote the set of alignment vectors. Then s (I , J ) can be expressed as a linear function SCORE over AV
for the scoring schemes we study: the basic scoring scheme, arbitrary scoring matrices, and affine gap
penalties. For example when simple scoring is used

SCORE(a) = x − δy − µz for a = (x , y, z) ∈ AV

where x ,y,z of alignment vector a represent the number of matches, mismatches, and indels, respectively.
We can easily verify that also for affine gap penalties and arbitrary scoring matrices, SCORE can be expressed
as a linear function.

The local alignment problem LA can be rewritten as follows:

LA : maximize SCORE(a) s.t. a ∈ AV

76.3 Fractional Programming ANLA Algorithms

Using length-normalized scores in local alignment is suggested by Arslan et al. [2] to cope with the mosaic
and shadow effects. The objective of the NLAt problem [2] is

NLAt∗(X, Y ) = max{s (I , J )/(|I | + |J |) | I ⊆ X, J ⊆ Y, |I | + |J | ≥ t} (76.5)
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To solve the NLAt problem we can extend the dynamic programming formulation for the scoring
schemes that we address in this chapter by adding another dimension. At each entry of the dynamic
programming matrix we can store optimum scores for all possible alignment lengths up to m + n. This
increases the time and space complexities to �(n2m) and �(nm), respectively. These are unacceptably
high because in practice the values of both n and m may be on the order of millions.

The length of an alignment can appropriately be defined as the sum of the lengths of the substrings
involved in the alignment. For an alignment vector a ∈ AV, the length of the corresponding alignment
can be expressed as a linear function LENGTH. For example, when the simple scoring scheme is used

LENGTH(a) = 2x + 2y + z for a = (x , y, z) ∈ AV

where x ,y,z represent the number of matches, mismatches, and indels, respectively. We can easily see that
for affine gap penalties and arbitrary scoring matrices LENGTH can be expressed as a linear function. We
assume that only the matches have nonnegative scores; therefore on any alignment the score cannot exceed
the length.

The objective of NLAt may be achieved by a reformulation. In adjusted normalized local alignment
(ANLA) problem, we can modify the maximization ratio function in such a way that we drop the length
constraint, yet achieve a similar objective: to obtain sufficiently long alignments with a high degree of
similarity. The adjusted length-normalized score of an alignment is computed by adding some parameter
L ≥ 0 to the denominator in the calculation of the quotient of ordinary scores by the length. Thus the
ANLA problem [2] is a variant of the normalized local alignment problem in which the length constraint
is dropped, and the optimization function is modified by adding a parameter L to the denominator.

ANLA∗(X, Y ) = max{s (I , J )/(|I | + |J | + L ) | I ⊆ X, J ⊆ Y } (76.6)

The adjusted normalized local alignment problem ANLA can be rewritten as follows:

ANLA : maximize SCORE(a)
LENGTH(a)+L

s.t. a ∈ AV

For ANLA faster algorithms are possible using fractional programming technique. The provable time
complexity of the ANLA problem for rational weights is O(nm log n), as we discuss later. Test results of a
fractional programming-based approach suggest that the time complexity is O(nm), although this result
is empirical. Compared to �(n2m) time complexity of a naive dynamic programming algorithm for the
NLAt problem, the ANLA problem can be solved much faster.

Fractional programming ANLA algorithms [2] use the parametric method. They iteratively solve a
so-called parametric problem LAλ which is the following optimization problem: for a given λ

LA∗
λ(X, Y ) = max{s (I , J ) − λ(|I | + |J | + L ) | I ⊆ X, J ⊆ Y } (76.7)

LAλ(X, Y ) can also be written as

LA(λ) : maximize SCORE(a) − λ LENGTH(a) − λL s.t. a ∈ AV

Proposition 76.1 (Arslan et al. [2])

For λ < 1
2 , the optimum value LA∗(λ) of the parametric LA problem can be formulated in terms of the

optimum value LA∗ of an LA problem.

Proof
Under the simple scoring scheme the optimum value of the parametric problem, when λ < 1

2 , is

LA∗
δ,µ(λ) = (1 − 2λ)LA∗

δ′,µ′ − λL , where δ′ = δ + 2λ

1 − 2λ
, µ′ = µ + λ

1 − 2λ
(76.8)

We can easily verify that a similar relation exists in the case of arbitrary scoring matrices, and affine gap
penalties. Thus, computing LA∗(λ) involves solving the local alignment problem LA, and performing some
simple arithmetic afterward.
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Algorithm Dinkelbach

Pick an arbitrary alignment, and let λ∗ be the adjusted length-normalized score of this alignment
Repeat

λ ← λ∗

Solve LA(λ) and let λ∗ be the adjusted length-normalized score of an optimal alignment
Until λ∗ = λ
Return(λ∗)

FIGURE 76.2 Dinkelbach algorithm for ANLA [2].

We assume, without loss of generality, that for any alignment the score does not exceed the number of
matches. Therefore for any alignment, its normalized score λ ≤ 1

2 . We consider λ = 1
2 as a special case

since it can only happen when the alignment is composed of matches only, and L = 0.
The thesis of the parametric method of fractional programming is that the optimum solution to the

original problem that involves a ratio of two functions can be obtained via optimal solutions of the
parametric problem. In this case, an optimal solution to a ratio optimization problem ANLA can be
achieved via a series of optimal solutions of the parametric problem LA(λ) with different parameters λ.
In fact λ = ANLA∗ iff LA∗(λ) = 0. That is, an alignment vector v ∈ AV has the optimum adjusted
normalized score λ iff v is an optimal alignment vector for the parametric problem LA(λ) with optimum
value zero. (See Ref. [2] for more details, also see Refs. [7,8] for many interesting properties of fractional
programming). The Dinkelbach algorithm for the ANLA problem is shown in Figure 76.2. Solutions of
the parametric problems through the iterations yield improved (higher) values to λ except for the last
iteration in which λ remains the same, and becomes the optimum value. In fractional programming
algorithms convergence to an optimal result is guaranteed: In infinite sets the convergence to optimum
is super-linear. In finite sets the termination is guaranteed. In the case of ANLA Dinkelbach algorithm,
when the algorithm terminates, the final alignment is optimal with respect to both the ordinary scores
used at that iteration, and the adjusted length-normalized scoring with the original scores. This mimics
manually changing the scores until the result is satisfactory.

As reported by Arslan et al. [2], experiments suggest that the number of iterations in the algorithm is
a small constant: 3–5 on average. However, a theoretical bound is yet to be established. If we assume that
the sequences involved in alignments are fixed (e.g., consider the normalized global alignment), and the
simple scoring scheme is used then the number of iterations is bounded by the size of the convex hull
of lattice points whose diameter is bounded by the length of the strings. In this case, each parametric
problem is optimized at one of the extreme points of the convex hull, and each extreme point is visited
at most once during the iterations. It is known that the size of a convex hull of diameter N is O(N2/3)
(see, e.g., Ref. [1]). Even this rough estimate shows that the algorithm in the worst case is better than the
straightforward dynamic programming extension for ANLA.

In practice the scores are rational, and in the case of rational scores there is a provably better result
[2] which is achieved by Algorithm RationalANLA given in Figure 76.3. The algorithm uses Megiddo’s
technique [9] to perform a binary search for optimum adjusted normalized score over an interval of

Algorithm RationalANLA

Let σ  be the smallest gap between two adjusted length normalized scores

Initialize [e, f ] ← [0, 1
2
σ−1]

While (e + 1 < f) do

k ← �(e + f)/2�
If LA∗(kσ) > 0  then e ← k else f ← k

End {while}
Return(eσ)

FIGURE 76.3 ANLA algorithm RationalANLA for rational scores [2].
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integers. The search is based on the sign of the optimum value of the parametric problem. In this case,
if LA∗(λ) = 0, then λ = ANLA∗, and an optimal alignment vector of LA(λ) is also an optimal solution
of ANLA. In contrast, if LA∗(λ) > 0, then a larger λ, and if LA∗(λ) < 0, then a smaller λ should be
tested (i.e., Problem LA(λ) should be solved with a different value of λ). When the scores are rational
numbers the effective search space includes O(n2) integers because the gap between any two distinct
length-normalized score is �(1/n2). The algorithm solves O(log n) parametric problems. Therefore the
resulting time complexity is O(nm log n), and the space complexity is O(m).

76.4 Approximation Algorithms for Partial
Constraint Satisfaction

In Table 76.1 we list several local alignment problems with length constraint. For these problems there are
approximation algorithms that guarantee the satisfaction of the constraints partially, that is, they return
alignments whose lengths are within a given tolerance of the required length.

These algorithms decompose the alignment graph into slabs. The length-restricted local alignment
LRLA problem [3] is suggested to find alignments with optimal score over the alignments that involve
substrings of up to a given length. The length limit is only on the substrings of one of the strings. The
approximation algorithms for this problem imagine that the alignment graph is partitioned into vertical
slabs. The results for this problem are summarized in Table 76.1. The cyclic sequence alignment CLA [3]
is a special case of the LRLA problem. In the CLA problem the length constraint is implicit as shown in
the table. The LRLA algorithms and results are applicable to the CLA problem, too.

We omit the details of LRLA approximation algorithms. Instead we describe another algorithm which
is also based on the decomposition of the alignment graph into slabs. This algorithm is for the length-
constrained local alignment problem LAt [4] (see also Table 76.1).

TABLE 76.1 Variations of Local Alignment Problems [4]

Alignment Returned
problem Objective Algorithm Time Space alignment satisfies

LA maximize s (I , J ) Smith–Waterman O(nm) O(m) Score = LA∗

ANLA maximize s (I , J )
|I |+|J |+L for Dinkelbach O(nm) O(m) Score = ANLA∗

parameter L ≥ 0 (experimental)
RationalANLA O(nm log n) O(m) Score = ANLA∗

LRLA maximize s (I , J ) such HALF O(nm) O(m) Score ≥ 1
2 LRLA∗

that |J | ≤ T APX-LRLA O(nmT/�) O(mT/�) Score ≥ LRLA∗−
2�

CLA LRLA with parameters The same LRLA algorithms, complexity, and results
X , Y Y , and T = |Y |

LAt maximize s (I , J ) such APX-LAt O(rnm) O(rm) Score ≥ LAt∗,
that |I | + |J | ≥ t length ≥ (1 − 1

r )t
Qt find (I , J ) such that APX-LAt O(rnm) O(rm) Nor. score > λ,

s (I , J )
|I |+|J | > λ, and length ≥ (1 − 1

r )t

|I | + |J | ≥ t,
for parameter λ > 0

NLAt maximize s (I , J )
|I |+|J | such Dinkelbach O(rnm) O(rm) Nor. score ≥

that |I | + |J | ≥ t (experimental) NLAt∗, length ≥
(1 − 1

r )t
RationalNLAt O(rnm log n) O(rm) Nor. score ≥

NLAt∗, length ≥
(1 − 1

r )t
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For a given t, we define the local alignment with length threshold score between X and Y as

LAt∗(X, Y ) = max{s (I , J ) | I ⊆ X, J ⊆ Y, and |I | + |J | ≥ t} (76.9)

Equivalently

LAt : maximize SCORE(a) s.t. a ∈ AVt

where AVt ⊆ AV is the set of alignment vectors corresponding to alignments with length ≥ t.
Although the problem itself is not very interesting, an algorithm for the problem can be used to find

a long alignment with length-normalized score > λ for a given positive λ, which is a practical query
problem Qt included in Table 76.1. We also show that the algorithm for the local alignment with length
threshold leads to improved approximation algorithms for the normalized local alignment problem (see
Section 76.5).

To solve LAt we can extend the dynamic programming formulation in Eq. (76.2) by adding another
dimension. At each entry of the dynamic programming matrix we store optimum scores for all possible
lengths up to m + n, increasing the time and space complexities to �(n2m) and �(nm), respectively.

We describe an approximation algorithm APX-LAt [4] which computes a local alignment whose score
is at least LAt∗, and whose length is at least (1 − 1

r )t provided that the LAt problem is feasible, that is the

algorithm finds two substrings Î ⊆ X , and Ĵ ⊆ Y such that s ( Î , Ĵ ) ≥ LAt∗ and | Î |+| Ĵ | ≥ (1 − 1
r )t. The

algorithm runs in time O(rnm) using O(rm) space. For simplicity, we assume the simple scoring scheme.
Instead of a single score, we maintain at each node (i, j ) of G X,Y , a list of alignments with the property
that for positive s where s is the optimum score achievable over the set of alignments with length ≥ t and
ending at (i, j ), at least one element of the list achieves score s and length t − � where � is a positive
integral parameter. We show that the dynamic programming formulation can be extended to preserve this
property through the nodes. In particular, an alignment with score ≥ LAt∗ and length ≥ t − � will be
observed in one of the nodes (i, j ) during the computations. We imagine the vertices of G X,Y as grouped
into �(n + m)/�	 diagonal slabs at distance � from each other as shown in Figure 76.4.

Since we define the length of an alignment as the sum of the lengths of the substrings involved in the
alignment, on a given alignment the contribution of each diagonal arc to the alignment length is 2 (each
match, or mismatch involves two symbols, one from each sequence), while that of each horizontal or
vertical arc is 1 (each indel involves one symbol from one of the sequences). Equivalently we say that
the length of a diagonal arc is 2, and the length of each horizontal, or vertical arc is 1. The length of an
alignment a is the total length of the arcs on a . Each slab consists of ��/2	+ 1 diagonals. Two consecutive
slabs share a diagonal which we call a boundary. The left and the right boundaries of slab b are, respectively,
the boundaries shared by the left and right neighboring slabs of b. As a subgraph, a slab contains all the

�(i+ j)/∆�∆

� j/∆�−1  ∆� j/∆�∆

�(n+m)/∆�∆
<

0

∆

2∆

∆ 2∆

∆

2∆

slab 1

(n,m)

slab�t/∆�

d = i+ j

slab 0

(i, j)
∆

∆

∆

∆

∆
∆

� j/∆�−�t/∆�  ∆

FIGURE 76.4 Slabs with respect to diagonal d and alignments ending at node (i, j ) starting at different slabs.
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edges in G X,Y incident to the vertices in the slab except for the horizontal and vertical edges incident to
the vertices on the left boundary (which belong to the preceding slab), and the diagonal edges incident to
the vertices on the first diagonal following the left boundary.

Now to a given diagonal d in G X,Y , we associate a number of slabs as follows. Let slab 0 with respect to
diagonal d be the slab that contains the diagonal d itself. The slabs to the left of slab 0 are then ordered,
consecutively, as slab 1, slab 2, . . . with respect to d . In other words, slab k with respect to diagonal d is the
subgraph of G X,Y composed of vertices placed inclusively between diagonals �d/�	 and d if k = 0, and
between diagonal (�d/�	 − k)� and (�d/�	 − k + 1)�, otherwise. Figure 76.4 includes sample slabs
with respect to diagonal d , and alignments ending at some node (i, j ) on this diagonal.

Let Si, j,k represent the optimum score achievable at (i, j ) by any alignment starting at slab k with
respect to diagonal i + j for 0 ≤ k < 
t/��. For k = 
t/��, Si, j,k is slightly different: It is the maximum
of all achievable scores by an alignment starting in or before slab k. Also let Li, j,k be the length of an
optimal alignment starting at slab k, and achieving score Si, j,k . A single slab can contribute at most � to
the length of any alignment. We store at each node (i, j ), 
t/�� + 1 score–length pairs (Si, j,k , Li, j,k) for
0 ≤ k ≤ 
t/�� corresponding to 
t/�� + 1 optimal alignments that end at (i, j ). Figure 76.5 shows the
steps of the algorithm AP X-LAt. The processing is done row-by-row starting with the top row (i = 0) of
G X,Y .

Step 1 of the algorithm performs the initialization of the lists of the nodes in the top row (i = 0). Step 2
implements computation of scores as dictated by the dynamic programming formulation in Eq. (76.2).
Let maxp of a list of score–length pairs be a pair with the maximum score in the list. We obtain an
optimal alignment with score Si, j,k by extending an optimal alignment from one of the nodes (i − 1, j ),
(i −1, j −1), or (i, j −1). We note that extending an alignment at (i, j ) from node (i −1, j −1) increases

Algorithm APX-LAt(δ, µ)

1. Initialization:  set LAt = 0; and (S0,j,k, L0,j,k) = (0, 0) for all j, k,  0 ≤ j ≤ m, and 0 ≤ k ≤ �t/∆�
2. Main computations:

for i = 1 to n do {
set (Si,0,k, Li,0,k) = (0, 0) for all k, 0 ≤ k ≤ �t/∆�
for j = 1 to m do {

if (i + j mod ∆ = 1) then {
set (Si,j,0, Li,j,0) = (0, 0)

for k = 1 to �t/∆� − 1 do

2.a.1 set (Si,j,k, Li,j,k) = maxp{ (0, 0),  (Si−1,j,k−1, Li−1,j,k−1) + (−µ, 1),

(Si−1,j−1,k−1, Li−1,j−1,k−1) ⊕ (s(xi, yj), 2),

(Si,j−1,k−1, Li,j−1,k−1) + (−µ, 1) }
for k = �t/∆�

2.a.2 set (Si,j,k, Li,j,k) = maxp{ (0, 0),  (Si−1,j,k−1, Li−1,j,k−1) + (−µ, 1),

(Si−1,j−1,k−1, Li−1,j−1,k−1) ⊕ (s(xi, yj), 2),

(Si,j−1,k−1, Li,j−1,k−1) + (−µ, 1), (Si−1,j,k, Li−1,j,k) + (−µ, 1),

(Si−1,j−1,k, Li−1,j−1,k) ⊕ (s(xi, yj), 2), (Si,j−1,k, Li,j−1,k) + (−µ, 1) }
} else {

for k = 0 to �t/∆� do
2.b set (Si,j,k, Li,j,k) = maxp{ (0, 0),  (Si−1,j,k, Li−1,j,k) + (−µ, 1),

(Si−1,j−1,k, Li−1,j−1,k) ⊕ (s(xi, yj), 2), (Si,j−1,k, Li,j−1,k) + (−µ, 1) }
}

for k = �t/∆� − 1 if Li,j,k ≥ t − ∆ then set LAt = max{LAt, Si,j,k}
for k = �t/∆� set LAt = max{LAt, Si,j,k}

} }
3. Return LAt

FIGURE 76.5 Algorithm APX-LAt [4].
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for (i, j)
slab 1

for (i, j)
slab 0

for others

&
slab k−1

for others

&
slab 0

� j/∆�−k  ∆ � j/∆� ∆ 

�(i+ j)/∆� ∆

�(n+ j)/∆� ∆

slab k
for (i, j)

(i−1,  j )

(i,  j)(i, j−1)

(i−1, j−1)

FIGURE 76.6 Relative numbering of the slabs with respect to (i, j ), (i − 1, j ), (i − 1, j − 1), and (i, j − 1) when
node (i, j ) is on the first diagonal following boundary �(i + j )/�	.

the length by 2 and the score by s (xi , y j ), whereas from nodes (i − 1, j ) or (i, j − 1) adds 1 to the length
and −µ to the score of the resulting alignment. There are two cases:

Case 1. If the current node (i, j ) is not on the first diagonal after a boundary then nodes (i − 1, j ),
(i − 1, j − 1), and (i, j − 1) share the same slabs with node (i, j ). In this case (Si, j,k , Li, j,k) is calculated
by using (Si−1, j,k , Li−1, j,k), (Si−1, j−1,k , Li−1, j−1,k), and (Si, j−1,k , Li, j−1,k) as shown in Step 2.b, where
(Si−1, j−1,k , Li−1, j−1,k) ⊕ (s (xi , y j ), 2) = (Si−1, j−1,k + s (xi , y j ), Li−1, j−1,k + 2) if Si−1, j−1,k > 0 or
k = 0; and (0, 0) otherwise. This is because, by definition, a local alignment must have a positive score to
exist, and it is either a single match, or it is an extension of an alignment whose score is positive. Therefore
we do not let an alignment with zero score be extended. A new alignment starts with a single match in the
current slap.

Case 2. If the current node is on the first diagonal following a boundary (i.e., i + j mod � = 1) then
the slabs for the nodes involved in the computations for node (i, j ) differ as shown in Figure 76.6. In this
case slab k for node (i, j ) is slab k − 1 for nodes (i − 1, j ), (i − 1, j − 1), and (i, j − 1). Moreover any
alignment ending at (i, j ) starting at slab 0 for (i, j ) can only include one of the edges ((i − 1, j ), (i, j ))
or ((i − 1, j − 1), (i, j )) both of which have negative weight −µ. Therefore, (Si, j,0, Li, j,0) is set to (0, 0).
Steps 2.a.1 and 2.a.2 show the calculation of (Si, j,k , Li, j,k) respectively for 0 < k < 
t/�� and for
k = 
t/��.

The running maximum score L̂At is updated whenever a newly computed score for an alignment with
length ≥ t − � is larger than the current maximum which can only happen with alignments starting in
or before slab 
t/�� − 1. The final value L̂At is returned in Step 3. The alignment position achieving this
score may also be desired. This can be done by maintaining for each optimal alignment a start and end
position information besides its score and length. In this case in addition to the running maximum score,
the start and end positions of a maximal alignment should be stored and updated.

We first show that Si, j,k calculated by the algorithm is the optimum score achievable and Li, j,k is the
length of an alignment achieving this score over the set of all alignments ending at node (i, j ) and starting
with respect to diagonal i + j : (1) at slab k for 0 ≤ k < 
t/�� and (2) in or before slab k for k = 
t/��.
This claim can be proved by induction. If we assume that the claim is true for nodes (i −1, j ), (i −1, j −1),
and (i, j − 1), and for their slabs, then we can easily see by following Step 2 of the algorithm that the claim
holds for node (i, j ) and its slabs.

Let optimum score LAt∗ for the alignments of length ≥t be achieved at node (i, j ). Consider the calcu-
lations of the algorithm at (i, j ) at which an optimal alignment ends. There are two possible orientations
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> t
> t − ∆

> t − ∆

slab �t /∆�
slab 0slab�t /∆�−1

(i ′,  j ′)

(i″,  j″)

(i,  j)

in or before

� j/∆�−�t /∆�+1  ∆ � j/∆�∆

FIGURE 76.7 Two possible orientations of an optimal alignment of length ≥ t ending at (i, j ): It starts either at
some (i ′, j ′) at slab 
t/�� − 1, or (i ′′, j ′′) in or before slab 
t/��.

of an optimal alignment as shown in Figure 76.7: (1) It starts at some node (i ′, j ′) of slab k = 
t/�� − 1.
By a previous claim an alignment starting at slab k with score Si, j,k ≥ LAt∗ is captured in Step 2. The
length of this alignment Li, j,k is at least t − � since the length of the optimal alignment is ≥t, and both
start at the same slab and end at (i, j ). (2) It starts at some node (i ′′, j ′′) in or before slab k = 
t/��.
Again by the previous claim an alignment starting in or before slab k with score Si, j,k ≥ LAt∗ is captured
in Step 2. The length of this alignment Li, j,k is at least t − � since slab k is at distance ≥t − � from (i, j ).
Therefore the final value L̂At returned in Step 3 is ≥LAt∗ and it is achieved by an alignment whose length
is ≥t − �. We summarize these results in the following theorem:

Theorem 76.1 (Arslan and Eğecioğlu [4])

For a feasible LAt problem, Algorithm APX-LAt returns an alignment ( Î , Ĵ ) such that s ( Î , Ĵ ) ≥ LAt∗ and
| Î | + | Ĵ | ≥ (1 − 1

r )t for any r, 1 < r ≤ t/2. The algorithm’s complexity is O(rnm) time and O(rm) space.

Proof
Algorithm APX-LAt is similar to the Smith–Waterman algorithm except that at each node instead of a
single score, 
t/�� + 1 entries for score–length pairs are stored and manipulated. Therefore the resulting
complexity exceeds that of the Smith–Waterman algorithm by a factor of 
t/�� + 1. That is, the time
complexity of APX-LAt is O(nmt/�). The algorithm requires O(mt/�) space since the computations
proceed row by row, and we need the entries in the previous and the current row to calculate the entries
in the current row. When the LAt problem is feasible, it is guaranteed that Algorithm APX-LAt returns
an alignment ( Î , Ĵ ) such that s ( Î , Ĵ ) ≥ LAt∗ > 0 and | Î | + | Ĵ | ≥ t − � for any positive �. Therefore
setting � = �t/r 	 for a choice of r , 1 < r ≤ t/2, and using Algorithm APX-LAt we can achieve the
approximation and complexity results expressed in the theorem. We also note that for � = 2 the algorithm
becomes a dynamic programming algorithm extending the dimension by storing all possible alignment
lengths.

A variant of APX-LAt for arbitrary scoring matrices can be obtained by simple modifications: At each
entry of the dynamic programming matrix, instead of a single score a number of scores (and lengths)
are maintained and manipulated as dictated by the underlying dynamic programming formulation (e.g.,
Eq. [76.4]).

An application of the LAt problem is on problem Qt which is defined as the problem of finding two
subsequences with normalized score higher than λ, and total length at least t. More formally

Qt : find (I , J ) such that I ⊆ X, J ⊆ Y,
s (I , J )

|I | + |J | > λ and |I | + |J | ≥ t (76.10)
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The following simple query explains the motivation for this problem: “Do two sequences share a
(sufficiently long) fragment with more than 70% of similarity?”

The problem is feasible for given thresholds t, and λ > 0, if the answer to this query is not empty,
that is, there exists a pair of subsequences I and J with total length |I | + |J | ≥ t, and normalized score
s (I , J )/(|I | + |J |) > λ. Note that Qt is feasible iff NLAt∗ > λ. We describe an algorithm which returns
for a feasible problem two subsequences Î ⊆ X and Ĵ ⊆ Y with normalized score higher than λ, and total
length | Î | + | Ĵ | ≥ (1 − 1

r )t. The approximation ratio is controlled by parameter r . The computations
take O(rnm) time and O(rm) space.

For a given λ, we define the parametric local alignment with length threshold problem LAt(λ) as follows:

LAt(λ) : maximize SCORE(a) − λ LENGTH(a) s.t. a ∈ AVt

Proposition 76.2 (Arslan and Eğecioğlu [4])

For λ < 1
2 , the optimum value LAt∗(λ) of the parametric LAt problem can be formulated in terms of the

optimum value LAt∗ of an LAt problem.

Proof
The proof is very similar to that of Proposition 76.1. Under the simple scoring scheme the optimum value
of the parametric problem, when λ < 1

2 , is

LAt∗δ,µ(λ) = (1 − 2λ)LAt∗δ′,µ′ , where δ′ = δ + 2λ

1 − 2λ
, µ′ = µ + λ

1 − 2λ
(76.11)

We can easily see that a similar relation exists in the case of arbitrary scoring matrices, and affine gap
penalties. Computing LAt∗(λ) involves solving the local alignment with length threshold problem LAt and
performing some simple arithmetic afterward.

Under the scoring schemes we study we assume without loss of generality that for any alignment, its
normalized score is ≤ 1

2 . We consider λ = 1
2 as a special case which can only happen when the alignment

is composed of matches only.

Proposition 76.3 (Arslan and Eğecioğlu [4])

When solving LAt(λ), the underlying algorithm for LAt returns an alignment ( Î , Ĵ ) with normalized score
higher than λ, and | Î | + | Ĵ | ≥ (1 − 1

r )t if problem Qt is feasible.

Proof
Assume that problem Qt is feasible. Then LAt∗(λ) > 0, which implies that the algorithm which solves the
corresponding LAt problem (of Proposition 76.2) returns an alignment ( Î , Ĵ ) such that its score is positive
(i.e., s ( Î , Ĵ ) − λ(| Î | + | Ĵ |) > 0) and | Î | + | Ĵ | ≥ (1 − 1

r )t by the approximation results of Algorithm
AP X-LAt.

Thus solving Qt requires a single application of Algorithm AP X-LAt.

76.5 Normalized Local Alignment

Need for a length constraint is clear when length-normalized scores are used because shorter alignments
may have high normalized scores but they may not be biologically significant. The definition of the NLAt
problem contains a length constraint as described in Section 76.3.

Let AVt ⊆ AV be the set of alignment vectors corresponding to alignments with length ≥ t. The
normalized local alignment problem NLAt can be rewritten as follows:

NLAt : maximize SCORE(a)
LENGTH(a)

s.t. a ∈ AVt
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Algorithm APX-RationalNLAt

If there is an exact match of size (1− )t then return(  ) and exit

Let σ be the smallest gap between two length-normalized scores

1
r

1
2

1
2

[e, f ] ← [0,    σ−1]

λ∗ ← 0

While (e + 1 < f) do

k ← �(e + f)/2�
APX-LAt∗(kσ) > 0 then {

e ← k

λ∗ ← the normalized score of an optimal alignment obtained

} else f ← k

End {while}
Return(λ∗)

FIGURE 76.8 Algorithm APX-RationalNLAt for rational scores [4].

We present next approximation algorithms for the NLAt problem that apply fractional programming
in which we use Algorithm APX-LAt as a subroutine. The approximation is in the sense that the length
constraint is partially satisfied. These algorithms are the Dinkelbach algorithm for NLAt, and Algorithm
RationalNLAt. Both algorithms obtain an alignment whose score is no smaller than the optimum score
NLAt∗ of the original NLAt problem, and whose length is at least (1 − 1

r )t for a given r provided that the
original NLAt problem is feasible (Theorem 76.2). The Dinkelbach algorithm for NLAt (Figure 76.9) and
RationalNLAt (Figure 76.8) are similar to the corresponding ANLA algorithms except that they iteratively
solve LAt problems presented in Section 76.4 instead of LA problems. The approximation algorithm
APX-LAt can be applied to solving the parametric problems that arise in computing NLAt∗.

In both resulting algorithms the space complexity is O(r m). The observed time complexity of the
Dinkebach algorithm for NLAt is O(rnm) (in tests [4], it performs always smaller than 10, and on average 3–
5 invocations to Algorithm APX-LAt). Algorithm RationalNLAt has proven time complexity O(rnm log n)
since in this algorithm O(log n) invocations of APX-LAt is sufficient to solve the NLAt problem.

We reiterate the definitions of the local alignment with length threshold LAt, normalized local alignment
NLAt , and the parametric local alignment LAt(λ) problems as the following optimization problems defined
in terms of SCORE and LENGTH functions that are linear over AVt under the scoring schemes we study:

LAt : maximize SCORE(a) s.t. a ∈ AVt

NLAt : maximize SCORE(a)
LENGTH(a)

s.t. a ∈ AVt

LAt(λ) : maximize SCORE(a) − λ LENGTH(a) s.t. a ∈ AVt

If we apply the fractional programming to the normalized local alignment computation then we can
obtain an optimal solution to NLAt via a series of optimal solutions of the parametric problem with
different parameters LAt(λ) such that λ = NLAt∗ iff LAt∗(λ) = 0.

Theorem 76.2 (Arslan and Eğecioğlu [4])

If NLAt∗ > 0 then an alignment with normalized score at least NLAt∗, and total length at least (1 − 1
r )t can

be computed for any r, 1 < r ≤ t/2 in time O(rnm log n) and space O(r m).

Proof
Algorithm Rational NLAt given in Figure 76.8 accomplishes this. The algorithm is based on a binary search
for optimum-normalized score over an interval of integers. This takes O(log n) parametric problems to
solve. The algorithm is similar to the RationalANLA algorithm in Figure 76.3, and the results are derived
similarly. It first determines if there is an exact match of size (1 − 1

r )t, which can easily be done by using
the Smith–Waterman algorithm. If the answer is yes then the algorithm returns the maximum possible
normalized score and exits. The skeleton of the rest of the algorithm is the same as Algorithm RationalNLAt
in Figure 76.3, based on Megiddo’s search technique [9]. The difference is that the parametric alignment
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Algorithm Dinkelbach

If APX-LAt∗(0) > 0 then set λ∗ to the length-normalized score of an optimal alignment else exit
Repeat

λ ← λ∗

If APX-LAt∗(λ) > 0 then set λ∗ to the length-normalized score of an optimal alignment
Until λ∗ ≤ λ

Return(λ∗)

FIGURE 76.9 Dinkelbach algorithm for NLAt [4].

problems now have a length constraint. The algorithm computes the smallest possible gap σ between any
two distinct possible normalized scores, which is �(1/(n + m)2) [2]. It maintains an interval [e , f ], on
which a binary search is done to find the largest λ for which LAt∗(λ) is positive where e and f are integer
variables. Initially e is set to 0, and f is set to 1

2σ−1 since NLAt∗ is in [0, 1
2 ]. A parametric LAt problem with

parameter kσ is iteratively solved, where k is the median of integers in [e , f ]. At each iteration the interval
is updated according to the sign of the value of the parametric problem. The effective search space is the
integers in [e , f ] and each iteration reduces this space by half. The iterations end whenever there remains
no integer between e and f . By Theorem 76.1 and Proposition 76.3 in Section 76.4 for every kσ < NLAt∗,
Algorithm APX-LAt returns an alignment with a positive score, and length at least (1 − 1

r )t as a solution
to the parametric problem. After the search ends, λ∗ ≥ NLAt∗, and λ∗ is achieved by an alignment whose
length is at least (1 − 1

r )t for NLAt feasible. Note that if NLAt∗ = 0 then the algorithm returns 0.
The asymptotic space requirement is the same as that of Algorithm AP X-LAt, and the loop iterates

O(log n) times. Therefore the complexity results are as described in the theorem.

If NLAt∗ > 0 then we can also achieve the same approximation guarantee by using the Dinkelbach
algorithm given by Arslan et al. [2] as the template. The details of the resulting algorithm appear in
Figure 76.9. At each iteration, except for the last, Algorithm AP X-LAt returns an alignment with a
positive score, and length at least (1 − 1

r )t as a solution to the parametric problem by Theorem 76.1
and Proposition 76.3 in Section 76.4 since λ < NLAt∗. Solutions of the parametric problems through
the iterations yield improved (higher) values to λ except for the last iteration. The resulting algorithm
performs no more than 3–5 iterations on average, and never more than 9 in the worst case in tests [4].
When the algorithm terminates, the optimal alignment whose length-normalized score is λ∗ has the total
length at least (1 − 1

r )t and λ∗ ≥ NLAt∗.

76.6 Discussion

We would like to point out the relation between the normalized local alignment and a problem known as
parametric sequence alignment [10] (which is different from the parametric local alignment problem we
discuss in this chapter) in the literature. The fractional programming-based ANLA and NLAt algorithms
iteratively, and systematically change the four parameters (i.e., match score, mismatch, gap open, and gap
extension penalties) until the resulting alignment is satisfactory (i.e., optimal both with respect to ordinary
scores at the last iteration and with respect to length-normalized scores with the original scores). It has
been known that sequence alignment is sensitive to the choice of these parameters as they change the
optimality of the alignments. Parametric sequence alignment studies the relation between the parameter
settings and optimal alignments. The goal is to partition the parameter space into convex polygons such
that the same alignment is optimal at every point in the same polygon. Clearly a point in one of the
polygons computed yields an optimal length-normalized alignment. The following results are summarized
by Gusfield [11]: A polygonal decomposition requires O(nm) time per polygon when scores are uniform
(i.e., not dependent on individual symbols). When only two parameters are chosen to be variable then the
polygonal decomposition can contain at most O(nm) polygons. When all the four parameters are variables
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then there is no known reasonable upper bound on the number of polygons. When the alignment is global,
and no character-specific scoring matrices are used the number of polygons is bounded from above by
O(n2/3) [12].

We also remark that to find long regions with high degree of similarity we may also formulate an objective
with which we aim to minimize a length-normalized weighted edit distance for substrings, and include a
length threshold as a lower bound for the desired length. For solving this problem Karp’s O(|V ||E |)-time
minimum mean-weight cycle algorithm [13] seems a natural candidate. This solution requires adding
extra edges to cause cycles of minimum certain length determined by the given length threshold. For an
alignment graph for a pair of strings of length n each, the number of vertices |V | and number of edges
|E | (excluding the additional edges) are both O(n2). This is not more efficient than the naive dynamic
programming solution.

We conclude by stating a few open problems for further study:

How many iterations do the Dinkelbach ANLA or NLAt algorithms perform in the worst case?

Are there (provably) faster exact or better approximation algorithms for the NLA, LRLA, LAt,
or Qt problems?
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77.1 Introduction

Each individual has a unique set of genetic blueprints stored in a long and spiral-shaped molecule called
deoxyribonucleic acid (DNA). The genetic blueprints are composed of linked subunits called nucleotides.
Each nucleotide carries one of the four genetic codes: adenine (A), cytosine (C), guanine (G), and thymine
(T). The variations of genetic codes from individual to individual (e.g., insertions, deletions, and muta-
tions) have a major impact on genetic diseases and phenotypic differences. Therefore, correlating genetic
variations with diseases or traits is the next important step in human genomics. In the following, we first
introduce the related biological background to understand the problem studied in this chapter. Then we
describe a frequently encountered problem in the current experimental environment, which is the main
focus of this chapter.

77.1.1 Single Nucleotide Polymorphisms and Haplotypes

Among various genetic variations, single nucleotide polymorphisms (SNPs) are generally considered to
be the most frequent form, which has fundamental importance for genetic disease association and drug
design. A SNP is a genetic variation when a single nucleotide (i.e., A, C, G, or T) in the genomic sequence
is altered and kept through heredity thereafter.1 It has been shown that approximately 90% of genetic
variations are made up of SNPs. Up to the present, millions of SNPs have been identified and these data
are now publicly available for researchers [1,2]. The SNPs can be further divided into the following types
depending on their region and function to the amino acid sequence.

1The genetic variation is considered to be a SNP only if it is observed with frequency at least 1% in the population.
Otherwise, it is considered to be a mutation.

77-1
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Coding SNP (cSNP). A SNP in the coding region that involves in the regulation of amino acid substitution.
Synonymous SNP (sSNP). A cSNP that synonymously changes the codon of an amino acid, which does

not alter the amino acid sequence.
Nonsynonymous SNP (nsSNP). A cSNP that nonsynonymously changes the codon of an amino acid,

which alters the amino acid sequence.

Despite many types of SNPs, almost all SNPs observed have only two variants called alleles. Very few
SNPs (about 0.1%) in the human population have been found to have more than two different nucleotides.
In fact, these third type nucleotides are often resulted from possible experimental errors [3]. Consequently,
most studies usually assume that the value of a SNP is binary. A SNP is referred to as the major allele if it is
the wild type and is called the minor allele otherwise (i.e., mutant type). In this chapter, each type of SNP
is equally treated as a binary variable.

A set of linked SNPs on one genomic sequence is referred to as a haplotype. Because the value of a
SNP is usually assumed to be binary, a haplotype can be simply considered to be a binary string. Linkage
disequilibrium (LD), which refers to the nonrandom association of alleles at different loci in haplotypes,
plays an important role in genome-wide association studies for identifying genetic variations responsible
for common diseases. A number of studies have shown that using haplotypes instead of individual SNP
as the basic units for LD analysis can greatly reduce the noise [4]. Recently, the International HapMap
Project [1], formed in 2002, aimed to characterize the patterns of LD across the human genome such that
the information can be used for large-scale genetic association studies.

77.1.2 Haplotype Blocks and Tag SNPs

The LD analysis of haplotypes has greatly affected the frequency of past recombination events. Recom-
bination (or cross over) is a process during meiosis that the two homologous chromosomes (inside the
cells that produce sperms or eggs) break and swap portion with each other. After these two homologous
chromosomes glue themselves back, each of them obtains new alleles from the other. Therefore, the result
of recombination can produce new chromosomes for the offspring. However, the nonrandom associa-
tion of alleles at different loci is broken up by the recombination occurred in between. Consequently,
recombination can also reduce the LD observed in the population.

In recent years, the patterns of LD observed in the human population show a block-like structure
[4–7]. The entire chromosome can be partitioned into high LD regions interspersed by low LD regions.
The chromosome recombination almost only takes place at those low LD regions called recombination
hotspots. The high LD region between recombination hotspots is often referred to as a “haplotype block.”
Within a haplotype block, there is little or even no recombination occurred, and the SNPs in the block
tend to be inherited together. Due to the low haplotype diversity within a block, the information carried by
these SNPs is highly redundant. Thus, a small subset of SNPs, called “tag SNPs,” is sufficient to distinguish
each pair of patterns in the block [5,7,8–12]. Haplotype blocks with corresponding tag SNPs are quite
useful and cost-effective for association studies as it does not require genotyping all SNPs.

Many studies have tried to find the minimum set of tag SNPs. These studies can be classified into the
following categories.

LD-bins-based model. These methods try to identify minimum bins of SNPs such that all SNPs in the
same bin are in high LD (e.g., r 2 ≥ 0.8) with each other (e.g., Carlson et al. [9]). Most of them solve
some variants of the minimum clique cover problem [13].

Blocks-based model. These methods assume that the block partition is available as input, and try to find
a minimum set of SNPs, which is able to distinguish each pair of haplotypes in a block (e.g., Zhang
et al. [11]). Most of them solve some variants of the minimum test set problem [13].

Block-free-based model. These methods define an informative measure or prediction accuracy to evaluate
a set of tag SNPs. Most of them try to find a minimum set of SNPs, which maximizes their criterion
(e.g., Bafna et al. [8]).
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In this chapter, we study the tag SNP selection problem following the blocks-based model. In a large-scale
study of human chromosome 21, Patil et al. [5] developed a greedy algorithm to partition the haplotypes
into 4,135 blocks with 4,563 tag SNPs. Zhang et al. [7,11,12] used a dynamic programming approach to
reduce the numbers of blocks and tag SNPs to 2,575 and 3,562, respectively. Bafna et al. [8] showed that the
general version of this problem is NP-hard and gave efficient algorithms for special cases of this problem.
In the following, we show that the previous studies do not consider the influence of missing data in the
current SNP detection environment.

77.1.3 The Problem of Missing Data

In reality, a SNP may not be genotyped and is considered to be missing data (i.e., we fail to obtain the allele
configuration of the SNP) if it does not pass the threshold of data quality [5,7,14]. The missing rates of
SNPs can be up to 10% under the current genotyping experiment. In practice, there could be two kinds of
missing data: completely and partially missing data. In this chapter, partially missing data are handled in
analogy to completely missing data. These missing data may cause ambiguity when using the minimum
set of tag SNPs to distinguish an unknown haplotype sample. As a consequence, the power of using tag
SNPs for association study is reduced by missing data.

Figure 77.1 illustrates the influence of missing data when using the minimum set of tag SNPs to identify
haplotype samples. In this figure, a haplotype block (see Figure 77.1 [a]) defined by 12 SNPs and 4 haplotype
patterns is presented (from the haplotype database of human chromosome 21 by Patil et al. [5]). We follow
the same assumption as Patil et al. [5] and Bafna et al. [8] that all SNPs are biallelic (i.e., taking on only two
values). Suppose we select SNPs S1 and S12 as tag SNPs. The haplotype sample h1 is identified as haplotype
pattern P3 unambiguously (see Figure 77.1 [b]). Consider haplotype samples h2 and h3 with one tag SNP
genotyped as missing data (see Figure 77.1 [c]). Sample h2 can be identified as haplotype patterns P2 or
P3, and h3 can be identified as P1 or P3. As a result, these missing tag SNPs result in ambiguity when
identifying haplotype samples.

Although we cannot avoid the occurrence of missing data, the remaining SNPs within the haplotype
block may provide abundant information to resolve the ambiguity. For example, if we regenotype an
additional SNP S5 for h2 (see Figure 77.1 [d]), h2 is identified as haplotype pattern P3 unambiguously.
However, if SNP S8 is regenotyped (see Figure 77.1 [e]), h3 is also identified unambiguously. These
additional SNPs are referred to as “auxiliary tag SNPs,” which can be found from the remaining SNPs in
the block and are able to resolve the ambiguity caused by missing data.

: Major allele : Minor allele : Missing data

S12

S1

P1 P3P2 P4 h1

P1 P3P2 P4 h3P1 P3P2 P4

P1 P3P2 P4

S12

S1

h3h2

S12

S1

S8

S12

S1

S5

h2

Haplotype patterns

SNP
loci

P1 P2 P4P3
S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
S11
S12

a

e

d

c

b

FIGURE 77.1 The influence of missing data and auxiliary tag SNPs. (a) A haplotype block defined by 12 SNPs and
4 haplotype patterns. Each column represents a haplotype pattern and each row represents a SNP locus. The black and
grey boxes stand for the major and minor alleles at each SNP locus, respectively. (b) Tag SNPs genotyped without missing
data. (c) Tag SNPs genotyped with missing data. (d) The auxiliary tag SNP S5 for h2. (e) The auxiliary tag SNP S8 for h3.
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P1 P3P2 P4

S12

S1

S5

S8

FIGURE 77.2 A set of robust tag SNPs for tolerating one missing tag SNP.

Alternatively, instead of regenotyping auxiliary tag SNPs whenever encountering missing data, we work
on a set of SNPs, which is not affected by the the occurrence of missing data. Figure 77.2 illustrates a set
of SNPs, which can tolerate one missing SNP. Suppose we select SNPs S1, S5, S8, and S12 to be genotyped.
Note that no matter which SNP is missing, each pair of patterns can still be distinguished by the remaining
three SNPs. Therefore, all haplotype samples with one missing SNP can still be identified unambiguously.
We refer to these SNPs as “robust tag SNPs,” which are able to tolerate a certain number of missing data.
The important feature of robust tag SNPs is that although they consume more SNPs than the “tag SNPs”
defined in previous studies, they guarantee that all haplotype patterns with a certain number of missing
data can be distinguished unambiguously. When the occurrence of missing data is frequent, the cost of
regenotyping processes can be reduced by robust tag SNPs.

This chapter studies the problems of finding robust and auxiliary tag SNPs. Our study indicates that
auxiliary tag SNPs can be found efficiently when robust tag SNPs have been computed in advance. This
chapter is organized as follows. In Section 77.2, we show that the problem of finding minimum robust tag
SNPs (MRTS) is NP-hard, and propose two greedy and one iterative linear programming (LP) relaxation
algorithms, which find solutions of (m + 1) ln( K (K −1)

2 ), ln((m + 1) K (K −1)
2 ), and O(m ln K ) approxima-

tion, respectively. Section 77.3 describes an efficient algorithm to find auxiliary tag SNPs when robust tag
SNPs have been computed in advance. Section 77.4 presents the experimental results of our algorithms
tested on a variety of simulated and biological data. Finally, concluding remarks are given in Section 77.5.

77.2 Finding Robust Tag SNPs

Assume we are given a haplotype block consisting of N SNPs and K haplotype patterns. This block is
denoted by an N × K binary matrix Mh (see Figure 77.3 [a]). Define Mh[i, j ] ∈ {1,2} for each i ∈ [1, N]
and j ∈ [1, K ], where 1 and 2 represent the major and minor alleles, respectively.2 Define C as the set of

(1, 2) (1, 3) (1, 4) (2, 3) (2, 4) (3, 4)

P

C

... ...S1
S2

Sk

1
1

1

1
2

1

2
1

1

2
2

2

K = 4

N

...
...

... ... ... ...

... ... ... ...

a b

S′1 S′ 2 S′k
P1 P2 P3 P4

FIGURE 77.3 (a) The haplotype matrix Mh containing N SNPs and K haplotype patterns. (b) The bipartite graph
corresponding to Mh .

2In reality, the haplotype block may also contain missing data. This formulation can be easily extended to handle
missing data by treating them as “don’t care” symbols. To simplify the presentation, we will assume no missing data in
the block.

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C077 March 20, 2007 19:48

Approximation Algorithms for the Selection of Robust Tag SNPs 77-5

SNPs (i.e., rows) in Mh . The set of robust tag SNPs C ′ ⊆ C (which allows up to m missing SNPs) must
satisfy the following two properties: (1) an unknown haplotype sample can be identified (as one of the K
patterns) by SNPs in C ′ unambiguously; (2) when at most m SNPs in C ′ are genotyped as missing data,
(1) still holds. Note that to identify a sample unambiguously, each pair of patterns must be distinguished
by at least one SNP in C ′. For example (see Figure 77.3 [a]), patterns P1 and P2 can be distinguished by
SNP S2 since Mh[2, 1] �= Mh[2, 2]. A formal definition of this problem is given below.

Problem: Minimum Robust Tag SNPs

Input. An N × K matrix Mh and an integer m.
Output. The minimum subset of SNPs C ′ ⊆ C which satisfies:

(1) for each pair of patterns Pi and P j , there is a SNP Sk ∈ C ′ such that Mh[k, i] �= Mh[k, j ];
(2) when at most m SNPs are discarded from C ′ arbitrarily, (1) still holds.

We then reformulate MRTS to a variant of the set covering problem [13]. Each SNP Sk ∈ C (i.e., the
k-th row in Mh) is reformulated to a set S

′
k = {(i, j ) | M[k, i] �= M[k, j ] and i < j }. For example,

suppose the kth row in Mh is {1,1,1,2}. The corresponding set S
′
k = {(1, 4), (2, 4), (3, 4)}. In other words,

S
′
k stores pairs of patterns distinguished by SNP Sk . Define P as the set that contains all pairs of patterns

(i.e., P = {(i, j ) | 1 ≤ i < j ≤ K } = {(1, 2), (1, 3), . . . , (K − 1, K )}).
Consider each element in P and each reformulated set of C as nodes in an undirected bipartite graph

(see Figure 77.3 [b]). If SNP Sk can distinguish patterns Pi and P j (i.e., (i, j ) ∈ S
′
k), there is an edge

connecting the nodes (i, j ) and S
′
k . The following lemma implies that each pair of patterns must be

distinguished by at least (m + 1) SNPs to allow m SNPs genotyped as missing data.

Lemma 77.1

C ′ ⊆ C is the set of robust tag SNPs, which allows at most m SNPs genotyped as missing data iff each node in
P has at least (m + 1) edges connecting to each node in C ′.

Proof
Let C ′ be the set of robust tag SNPs, which allows m SNPs genotyped as missing data. Suppose patterns Pi

and P j are distinguished by only m SNPs in C ′ (i.e., (i, j ) has only m edges connecting to nodes in C ′).
However, if these m SNPs are genotyped as missing data, no SNPs in C ′ are able to distinguish patterns
Pi and P j , which is a contradiction. Thus, each pair of patterns must be distinguished by at least (m + 1)
SNPs, which implies that each node in P must have at least (m + 1) edges connecting to nodes in C ′. The
proof of the other direction is similar.

In the following, we give a lower bound on the minimum number of robust tag SNPs required.

Lemma 77.2

Given K haplotype patterns, the minimum number of robust tag SNPs for tolerating m missing SNPs is at
least m + log K .

Proof
Recall that the value of a SNP is binary. The maximum number of distinct haplotypes, which can be
distinguished by N SNPs is at most 2N . As a result, to distinguish K distinct haplotype patterns, at least
log K SNPs are required since 2log K = K . In addition, there could be up to m missing SNPs. Therefore,
the minimum number of robust tag SNPs required is at least m + log K .

Now we show the NP-hardness of the MRTS problem, which implies there is no polynomial-time
algorithm to find the optimal solution of MRTS.

Theorem 77.1

The MRTS problem is NP-hard.
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S′5 = {(1, 2), (2, 3), (2, 4)}

S4 S1 S1 S1 S1 S4

S2 S2 S4 S4 S3 S3

1
2
1
1
1

1
1
1
2
2

2
1
1
1
1

2
1
2
2
1

R1
R2

P
S′1 = {(1, 3), (1, 4), (2, 3), (2, 4)}
S′2 = {(1, 2), (1, 3), (1, 4)}
S′3 = {(1, 4), (2, 4), (3, 4)}
S′4 = {(1, 2), (1, 4), (2, 3), (3, 4)}

(S1, S4, S2, S3  are selected in order)

(1, 2) (1, 3) (1, 4) (2, 3) (2, 4) (3, 4)

a
S1

S2

S3

S4

S5

P1 P2 P3 P4

FIGURE 77.4 The SNPs S1, S4, S2, and S3 are selected by the first greedy algorithm. (a) The table that stores each
selected SNP.

Proof
When m = 0, MRTS is the same as the original problem of finding minimum number of tag SNPs, which
is known as the minimum test set problem [11,13]. Since the minimum test set problem is NP-hard and
can be reduced to a special case of MRTS, MRTS is NP-hard.

77.2.1 The First Greedy Algorithm

To solve MRTS efficiently, we propose a greedy algorithm, which returns a solution with a number of SNPs
that is not extremely far from optimal. By Lemma 77.1, to tolerate m missing tag SNPs, we need to find a
subset of SNPs C ′ ⊆ C such that each pair of patterns in P is distinguished by at least (m + 1) SNPs in C ′.
Assume that the SNPs selected by this algorithm are stored in a (m + 1)×|P | table (see Figure 77.4 [a]).
Initially, each grid in the table is empty. Once a SNP Sk (that can distinguish patterns Pi and P j ) is selected,
one grid of the column (i, j ) is filled in with Sk , and we say that this grid is covered by Sk .

This greedy algorithm works by covering the grids from the first row to the (m + 1)th row, and greedily
selects a SNP, which covers most uncovered grids in the i th row at each iteration. In other words, while
working on the i th row, a SNP is selected if its reformulated set S ′ maximizes |S ′ ∩ Ri |, where Ri is the set
of uncovered grids at the i th row.

Figure 77.4 illustrates an example for this algorithm to tolerate one missing tag SNP (i.e., m = 1). The
SNPs S1, S4, S2, and S3 are selected in order. When all grids in this table are covered, each pair of patterns is
distinguished by (m+1) SNPs in the corresponding column. Thus, the SNPs in this table are the robust tag
SNPs which allows at most m SNPs genotyped as missing data. The pseudocode of this greedy algorithm
is given below.

Algorithm: FIRST-GREEDY-ALGORITHM(C , P , m)

1 Ri ← P , ∀i ∈ [1, m + 1]
2 C ′ ← φ

3 for i = 1 to m + 1 do
4 while Ri �= φ do
5 select and remove a SNP S from C that maximizes |S ′ ∩ Ri |
6 C ′ ← C ′ ∪ S
7 j ← i
8 while S ′ �= φ and j ≤ m + 1 do
9 Stmp ← S ′ ∩ R j

10 R j ← R j − Stmp

11 S ′ ← S ′ − Stmp

12 j ← j + 1
13 endwhile
14 endwhile
15 endfor
16 return C ′

The time complexity of this algorithm is analyzed as follows. At Line 4, the number of iterations of
the intermediate loop is bounded by |Ri | ≤ |P |. Within the loop body (Lines 5–13), Line 5 takes
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S′3 = {(1, 4), (2, 4), (3, 4)}

S′4 = {(1, 2), (1, 4), (2, 3), (3, 4)}
S′2 = {(1, 2), (1, 3), (1, 4)}

S′1 = {(1, 3), (1, 4), (2, 3), (2, 4)}

1/2
0 0

P

(1, 2) (1, 3) (1, 4) (2, 3) (2, 4) (3, 4)
C ′

1/2 1/21/21/2
1/4 1/41/41/4 1/2

FIGURE 77.5 The cost C i
j of each grid for the first greedy algorithm.

O(|C ||P |) because we need to check all SNPs in C and examine the uncovered grids of Ri . The inner loop
(Lines 8–13) takes only O(|S ′|). Thus, the entire program runs in O(m|C ||P |2).

We now show the number of SNPs in the solution C ′ returned by the first greedy algorithm is not
extremely large compared to the ones in the optimal solution C∗. Suppose the algorithm selects the kth
SNP when working on the i th row. Let |Sc

k | be the number of grids in the i th row covered by the kth selected
SNP (i.e., |Sc

k | = |S ′ ∩ Ri |; see Line 5 in FIRST-GREEDY-ALGORITHM). For example (see Figure 77.4), S
c

2 = 2
since the second selected SNP (i.e., S4) covers two grids in the first row. We incur 1 unit of cost to each
selected SNP, and spread this cost among the grids in S

c

k [15]. In other words, each grid at the i th row and
j th column is assigned a cost C i

j (see Figure 77.5), where

C i
j =

{
1

|Sc
k | if the algorithm selects the kth SNP when covering the i th row

0 otherwise

Since each selected SNP is assigned 1 unit of cost, the sum of C i
j for each grid in the table is equal to

|C ′|, that is,

|C ′| =
m+1∑

i=1

K (K −1)
2∑

j=1

C i
j (77.1)

Let Ri
k be the number of uncovered grids in the i th row before the kth iteration (i.e., (k − 1) SNPs have

been selected by the algorithm). For example (see Figure 77.5), R1
2 = 2 since two grids in the first row are

still uncovered before the second SNP is selected. Define C ′
i as the set of iterations used by the algorithm

when working on the i th row. For example (see Figure 77.5), C ′
2 = {3, 4}, since this algorithm works on

the second row in the third and fourth iterations. We can rewrite Eq. (77.1) as

m+1∑

i=1

K (K −1)
2∑

j=1

C i
j =

m+1∑

i=1

∑

k∈C ′
i

(Ri
k−1 − Ri

k)
1

|Sc

k |
(77.2)

Lemma 77.3

The kth selected SNP has |Sc

k | ≥ Ri
k−1

|C∗| .

Proof
Suppose the algorithm is working on the i th row at the beginning of the kth iteration. Let C∗

k be the set of
SNPs in C∗ (the optimal solution) that has been selected by the algorithm before the kth iteration, and the

set of remaining SNPs in C∗ be C ∗̄
k

. We claim that there exists a SNP in C ∗̄
k

, which can cover at least
Ri

k
|C ∗̄

k
|

grids in the i th row. Otherwise (i.e., each SNP in C ∗̄
k

covers less than
Ri

k
|C ∗̄

k
| grids), all SNPs in C ∗̄

k
will cover

less than (
Ri

k
|C ∗̄

k
| ×|C ∗̄

k
|=Ri

k ) grids in the i th row. But since C∗
k ∪ C ∗̄

k
= C∗, this implies that C∗ cannot cover

all grids in Ri
k , which is a contradiction. Because all SNPs in C ∗̄

k
are candidates to the greedy algorithm, the

kth selected SNP must cover at least
Ri

k
|C ∗̄

k
| grids in the i th row, which implies |Sc

k |≥ Ri
k−1

|C∗| since |C∗| ≥ |C ∗̄
k
|

and |Ri
k | ≤ |Ri

k−1|.

Theorem 77.2

The first greedy algorithm gives a solution of (m + 1) ln K (K −1)
2 approximation.
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Proof
Define the dth harmonic number as H(d) = ∑d

i=1
1
i and H(0) = 0. By Eq. (77.2) and Lemma 77.3,

m+1∑

i=1

K (K −1)
2∑

j=1

C i
j =

m+1∑

i=1

∑

k∈C ′
i

(
Ri

k−1 − Ri
k

) 1

|Sc

k |
≤

m+1∑

i=1

∑

k∈C ′
i

(
Ri

k−1 − Ri
k

) |C∗|
Ri

k−1

=
m+1∑

i=1

∑

k∈C ′
i

( Ri
k−1∑

l=Ri
k+1

|C∗|
Ri

k−1

)

≤ |C∗|
m+1∑

i=1

∑

k∈C ′
i

Ri
k−1∑

l=Ri
k+1

1

l

(
l ≤ Ri

k−1

)

= |C∗|
m+1∑

i=1

∑

k∈C ′
i






Ri
k−1∑

l=1

1

l
−

Ri
k∑

l=1

1

l






≤ |C∗|
m+1∑

i=1

∑

k∈C ′
i

(
H

(
Ri

k−1

) − H
(

Ri
k

))

≤ |C∗|
m+1∑

i=1

(
H

(
Ri

0

) − H
(

Ri
|C ′

i |
))

≤ |C∗|(m + 1)max{H(Ri
0)} (Ri

|C ′
i |

= 0 and H(0) = 0 )

≤ |C∗|(m + 1) ln |P | (H(Ri
0) ≤ H(|P |)) (77.3)

By Eq. (77.1) and Eq. (77.3), we get

|C ′|
|C∗| ≤ (m + 1) ln |P | = (m + 1) ln

K (K − 1)

2

77.2.2 The Second Greedy Algorithm

This section describes the second greedy algorithm which returns a better solution than the one the first
greedy algorithm generates. Let Ri be the set of uncovered grids at the i th row. Unlike the row-by-row
manner of the first greedy algorithm, this algorithm greedily selects a SNP that covers most uncovered
grids in the table (i.e., its reformulated set S ′ maximizing |S ′ ∩ (R1 ∪· · ·∪ Rm+1)|). Let T be the collection
of Ri (i.e., T is the set of all uncovered grids in the table). If the grids in the i th row are all covered (i.e.,
Ri = φ), Ri is removed from T . This algorithm runs until T = φ (i.e., all grids in the table are covered).

Figure 77.6 illustrates an example for this algorithm with m set to 1. The SNPs S1, S2, S4, and S5 are
selected in order. Since this algorithm runs until all grids are covered, the set of SNPs in this table is able
to tolerate m missing tag SNPs. The pseudocode of this algorithm is given below.

S′5 = {(1, 2), (1, 4), (2, 3), (3, 4)}

S4 S1 S1 S1 S1 S4

S5 S2 S2 S2 S2 S5

1
1
1
1
1

1
1
1
2
2

2
2
1
1
1

2
2
2
2
2

R1
R2

P
S′1 = {(1, 3), (1, 4), (2, 3), (2, 4)}
S′2 = {(1, 3), (1, 4), (2, 3), (2, 4)}
S′3 = {(1, 4), (2, 4), (3, 4)}
S′4 = {(1, 2), (1, 4), (2, 3), (3, 4)}

(S1, S2, S4, S5  are selected in order)

(1, 2) (1, 3) (1, 4) (2, 3) (2, 4) (3, 4)

a
S1

S2

S3

S4

S5

P1 P2 P3 P4

FIGURE 77.6 The SNPs S1, S2, S4, and S5 are selected by the second greedy algorithm. (a) The table that stores each
selected SNP.
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Algorithm: SECOND-GREEDY-ALGORITHM(C , P , m)

1 Ri ← P , ∀i ∈ [1, m + 1]
2 T ← {R1, R2, . . . , Rm+1}
3 C ′ ← φ

4 while T �= φ do
5 select and remove a SNP S from C that maximizes |S ′ ∩ (R1 ∪ · · · ∪ Rm+1)|
6 C ′ ← C ′ ∪ S
7 for each Ri ∈ T and S ′ �= φ do
8 Stmp ← S ′ ∩ Ri

9 Ri ← Ri − Stmp

10 S ′ ← S ′ − Stmp

11 if Ri = φ then T ← T − Ri

12 endfor
13 endwhile
14 return C ′

The time complexity of this algorithm is analyzed as follows. At Line 4, the number of iterations of the
loop is bounded by O(|T |)=O(m|P |). Within the loop, Line 5 takes O(|C ||P |) time because we need to
check each SNP in C and examine if it can cover any uncovered grid in each column. The inner loop (Lines
7–12) is bounded by O(|S ′|) < O(|P |). Thus, the running time of this program is O(m|C ||P |2).

We now evaluate the solution returned by the second greedy algorithm. Let C ′ and C∗ be the set of
SNPs selected by this algorithm and the optimal solution, respectively. Let |Sc

k | be the number of grids in
the table covered by the kth selected SNP. For example (see Figure 77.6), |Sc

2 | = 4 since the second selected
SNP (i.e., S2) covers four grids in the table. Define Tk as the number of uncovered grids in the table before
the kth iteration. We have the following lemma similar to Lemma 77.3.

Lemma 77.4

The kth selected SNP has |Sc

k | ≥ Tk−1
|C∗| .

Proof
The proof is similar to that of Lemma 77.3. Let C ∗̄

k
be the set of remaining SNPs in C∗, which has not

been selected before the kth iteration. We claim that there exists a SNP in C ∗̄
k

, which can cover at least
Tk

|C ∗̄
k
| grids in the table. Otherwise, we can get the same contradiction (i.e., C∗ fails to cover all grids) as in

Lemma 77.3. Since |C∗| ≥ |C ∗̄
k
| and Tk−1 ≤ Tk , we have |Sc

k | ≥ Tk−1
|C∗| .

Theorem 77.3

The second greedy algorithm gives a solution of ln((m + 1) K (K −1)
2 ) approximation.

Proof
Each grid at the i th row and j th column is assigned a cost C i

j = 1
|Sc

k | (see Figure 77.7) if it is covered by
the kth selected SNP. The sum of C i

j for each grid is

|C ′| =
m+1∑

i=1

K (K −1)
2∑

j=1

C i
j =

|C ′|∑

k=1

(Tk−1 − Tk)
1

|Sc

k |
(see Eq. (77.1) and Eq. (77.2))

≤
|C ′|∑

k=1

(Tk−1 − Tk)
|C∗|
Tk−1

(by Lemma 77.4)

≤ |C∗|(H(T0) − H(T|C ′|)) (see the proof in Theorem 77.2)

≤ |C∗| ln((m + 1)|P |) (77.4)
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S′5 = {(1, 2), (1, 4), (2, 3), (3, 4)}

S′2 = {(1, 3), (1, 4), (2, 3), (2, 4)}
S′4 = {(1, 2), (1, 4), (2, 3), (3, 4)}

S′1 = {(1, 3), (1, 4), (2, 3), (2, 4)}

1/2

P

(1, 2) (1, 3) (1, 4) (2, 3) (2, 4) (3, 4)
C ′

1/21/2
1/4 1/41/41/4
1/4 1/41/41/4

1/2

FIGURE 77.7 The cost C i
j of each grid for the second greedy algorithm.

By Eq. (77.4), we have

|C ′|
|C∗| ≤ ln((m + 1)|P |) = ln((m + 1)

K (K − 1)

2
)

77.2.3 The Iterative LP-Relaxation Algorithm

In practice, a probabilistic approach is sometimes more useful since the randomization can explore different
solutions. In this section, we reformulate the MRTS problem to an Integer Programming (IP) problem.

Based on the IP problem, we propose an iterative LP-relaxation algorithm. The iterative LP-relaxation
algorithm is described below.

Step 1. Given a haplotype block containing N SNPs and K haplotype patterns. Let {x1, x2, . . . , xN} be
the set of integer variables for the N SNPs, where xk = 1 if the SNP Sk is selected and xk = 0 otherwise.
Define D(Pi , P j ) as the set of SNPs which are able to distinguish Pi and P j patterns. By Lemma 77.1, to
allow at most m SNPs genotyped as missing data, each pair of patterns must be distinguished by at least
(m + 1) SNPs. Therefore, for each set D(Pi , P j ), at least (m + 1) SNPs have to be selected to distinguish
Pi and P j patterns. As a consequence, the MRTS problem can be formulated as the following IP problem:

Minimize
N∑

k=1

xk

Subject to
∑

k∈D(Pi , P j )

xk ≥ m + 1, for all 1 ≤ i < j ≤ K (77.5)

xk = 0 or 1

Step 2. Since solving the IP problem is NP-hard [13], we relax the integer constraint of xk , and the IP
problem becomes a LP problem defined as follows:

Minimize
N∑

k=1

yk

Subject to
∑

k∈D(Pi , P j )

yk ≥ m + 1, for all 1 ≤ i < j ≤ K (77.6)

0 ≤ yk ≤ 1

The above LP problem can be solved by efficient algorithms such as the interior point method [16,17].

Step 3. Let {y1, y2, ..., yN} be the set of linear solutions obtained from Eq. (77.6), where 0 ≤ yk ≤ 1. We
assign 0 or 1 to xk by the following randomized rounding method:

Assign

{
xk = 1 with probability yk

xk = 0 with probability 1 − yk

Step 4. The randomized rounding method may invalidate some of the inequalities in Eq. (77.5). Thus, we
repeat steps 1–3 for those unsatisfied inequalities until all of them are satisfied. Finally, when all inequalities
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in Eq. (77.5) are satisfied, we construct a final solution by the following rule:

Assign

{
xk = 1 if xk is assigned to 1 in any one of the iterations
xk = 0 otherwise

We now evaluate the solution returned by the iterative LP-relaxation algorithm. The selection of each
SNP is considered as a Bernoulli random variable xk taking values 1 (or 0) with probability yk (or 1 − yk).
Let Xi, j be the sum of random variables in one inequality of Eq. (77.5), that is,

Xi, j =
∑

k∈D{Pi , P j }
xk

By Eq. (77.6), the expected value of Xi, j (after randomized rounding) is

E [Xi, j ] =
∑

k∈D{Pi , P j }
E [xk] =

∑

k∈D{Pi , P j }
yk

≥ m + 1 (77.7)

Lemma 77.5

The probability that an inequality in Eq. (77.5) is not satisfied after randomized rounding is less than e− 1
2(m+1) .

Proof
The probability that an inequality in Eq. (77.5) is not satisfied is P [Xi, j < m + 1] = P [Xi, j ≤ m]. By

the Chernoff bound (i.e., P [X ≤ (1 − θ)E [X]] ≤ e− θ2 E [X]
2 ), we have

P [Xi, j ≤ m] ≤ e
− (E [Xi, j ]−m)2

2E [Xi, j ] (77.8)

By Eq. (77.7), we know E [Xi, j ] ≥ m+1. Since the right-hand side of Eq. (77.8) decreases when E [Xi, j ] >

m, we can replace E [Xi, j ] with (m + 1) to obtain an upper bound, that is,

P [Xi, j ≤ m] ≤ e
− (E [Xi, j ]−m)2

2E [Xi, j ] ≤ e− (m+1−m)2

2(m+1)

≤ e− 1
2(m+1)

Theorem 77.4

The iterative LP-relaxation algorithm gives a solution of O(m ln K ) approximation.

Proof
Suppose this algorithm runs for t iterations. The probability that all K (K −1)

2 inequalities in Eq. (77.5) are
satisfied after t iterations is

(1 − (e−1/2(m+1))t )
K (K −1)

2 = (1 − e−t/2(m+1))
K (K −1)

2

≈ e− K (K −1)
2 e−t/2(m+1)

When t = 2(m + 1) ln K (K −1)
2 , the algorithm stops and returns a solution with probability e−1. Define

OPT(IP) and OPT(LP) as the optimal solutions of the IP problem and the LP problem, respectively. Since
the solution space of LP includes that of IP,

OPT(LP) ≤ OPT(IP)

Let the set of solutions returned in t iterations be {Z1, Z2, . . . , Zt}.

E [Z1] = E

[
N∑

k=1

xk

]

=
N∑

k=1

yk = OPT(LP)
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Note that we repeat this algorithm only for those unsatisfied inequalities. Thus, E [Z1] ≥ E [Z2] ≥ · · · ≥
E [Zt ]. Let x p denote the final solution obtained in step 4. The expected final solution is

E

[
N∑

p=1

x p

]

≤ E

[
t∑

p=1

Z p

]

≤ t × E [Z1]

≤ t × OPT(LP)

≤ 2(m + 1) ln
K (K − 1)

2
× OPT(IP)

= O(m ln K ) × OPT(IP)

With a high probability, the iterative LP-relaxation algorithm stops after O(m ln K ) iterations and finds
a solution of O(m ln K ) approximation.

77.3 Finding Auxiliary Tag SNPs

This section describes an algorithm for finding auxiliary tag SNPs assuming that robust tag SNPs have
been computed in advance. Given a haplotype block Mh containing N SNPs and K haplotypes, we define
Ctag ⊆ C as the set of tag SNPs obtained from a haplotype sample and some SNPs in Ctag are missing.
This haplotype sample may be identified ambiguously due to the lack of missing SNPs. We wish to find
the minimum number of auxiliary tag SNPs from the remaining SNPs to resolve the ambiguity. A formal
definition of this problem is given below.

Problem: Minimum Auxiliary Tag SNPs

Input. An N × K matrix Mh , and a set of SNPs Ctag genotyped from a sample with missing data.
Output. The minimum subset of SNPs Caux ⊆ C − Ctag such that each pair of ambiguous patterns

can be distinguished by SNPs in Caux.

The following theorem shows the NP-hardness of the Minimum Auxiliary Tag SNPs (MATS) problem.

Theorem 77.5

The MATS problem is NP-hard.

Proof
Consider that all SNPs in Ctag are genotyped as missing data. This special case of the MATS problem is
just like finding another set of tag SNPs from C − Ctag to distinguish those K patterns, which is already
known as NP-hard [11].

Although the MATS problem is NP-hard, we show that auxiliary tag SNPs can be found efficiently when
robust tag SNPs have been computed in advance. Without loss of generality, assume that these robust tag
SNPs are stored in an (m + 1) × |P | table Tr (see Figure 77.8 [a]).

Step 1. The patterns that match the haplotype sample are stored into a set A. For example (see Figure 77.8),
if we genotype SNPs S1, S2, and S3 for the sample h2 and the SNP S1 is missing, patterns P1 and P3 both
match h2. Thus, A = {P1, P3}.
Step 2. If |A|=1, the sample is identified unambiguously and we are done (e.g., h1 in Figure 77.8). If
|A| > 1 (e.g., h2), for each pair of ambiguous patterns in A (e.g., P1 and P3), traverse the corresponding
column in Tr , find the next unused SNP (e.g., S4), and add the SNP to Caux. As a result, the SNPs in
Caux can distinguish each pair of ambiguous patterns, which are the auxiliary tag SNPs for the haplotype
sample.

The worst case of this algorithm is that all SNPs in Ctag are genotyped as missing data, and we need to
traverse each column in Tr . Thus, the running time of this algorithm is O(|Tr |) = O(m|P |).
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x

1
1
2

x

2
1

P1 P2 P3 P4 h1 h2

S2 S1 S1 S1 S1 S3
S4 S4 S3 S2 S2 S4

P

(1, 2) (1, 3) (1, 4) (2, 3) (2, 4) (3, 4)

a
1
1
1
1

1
2
1
1

2
1
1
2

2
1
2
1

S1
S2

S3
S4

FIGURE 77.8 An example to find the auxiliary tag SNPs. The SNP S1 is genotyped as missing data and SNP S4 is the
auxiliary tag SNP for h2. (a) The table that stores the set of robust tag SNPs.

77.4 Experimental Results

We have implemented the first and second greedy algorithms in JAVA. The LP-relaxation algorithm has
been implemented in Perl, where the LP problem is solved via a program called “lp solve” [16]. The
LP-relaxation algorithm is a randomized method. Thus, this program is repeated for 10 times to explore
different solutions and the best solution among them is chosen as the output. To compare the solutions
(and efficiency) returned by our algorithms with the optimal solution, we also implement a brute force
program in JAVA (referred to as “OPT”) which enumerates all possible solutions to find the optimal
solution. The proposed algorithms along with the brute force program are tested on a variety of simulated
and biological data.

77.4.1 Results on Simulated Data

We first generate 100 data sets containing short haplotypes. Each data set consists of 10 haplotypes with 20
SNPs. These haplotypes are created by randomly assigning the major or minor alleles at each SNP locus.
Let m be the number of missing SNPs allowed and Sa be the average number of robust tag SNPs over 100
data sets. Figure 77.9(a) plots Sa with respect to m (roughly corresponding to SNP missing rates from 0%
to 33%). When m = 0, all programs find the same number of SNPs as the optimal solution. The iterative
LP-relaxation algorithm slightly outperforms others as m increases. When m > 6, more than 20 SNPs are
required to tolerate missing data. Thus, no data sets contain enough SNPs for solutions.

We then generate 100 data sets containing long haplotypes. Each data set is composed of 10 haplotypes
with 40 SNPs. Figure 77.9(b) illustrates the experimental results on these long data sets (corresponding to
SNP missing rates from 0 to 37%). The optimal solutions for m > 1 cannot be computed in one day and
are not shown in this figure. It is because the number of possible solutions in long data sets is too large
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FIGURE 77.9 Experimental results on random data. (a) Results from data sets containing 10 haplotypes and 20 SNPs.
(b) Results from data sets containing 10 haplotypes and 40 SNPs.
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FIGURE 77.10 Experimental results on Hudson’s data. (a) Results from data sets containing 10 haplotypes and
20 SNPs. (b) Results from data sets containing 10 haplotypes and 40 SNPs.

to enumerate. However, both greedy and iterative LP-relaxation algorithms run in polynomial time and
always output a solution efficiently. In this experiment, both greedy algorithms slightly outperform the
iterative LP-relaxation algorithm. In addition, the number of SNPs allowed for missing data is larger than
those in short data sets. For example, when m = 10, all programs output less than 28 SNPs. The remaining
SNPs in each data set are still enough to tolerate more missing SNPs.

Hudson [18] provides a program that can simulate a set of haplotypes under the assumption of neutral
evolution and uniformly distributed recombination rate using the coalescent model. We use Hudson’s
program to generate 100 short data sets with 10 haplotypes and 20 SNPs and 100 long data sets with
10 haplotypes and 40 SNPs. Figure 77.10(a) shows the experimental results on Hudson’s short data sets
(corresponding to SNP missing rates from 0 to 23%). The number of missing SNPs allowed are less than
that of random data. It is because Hudson’s program generates coalescent haplotypes that are similar to
each other. As a result, many SNPs cannot be used to distinguish those haplotypes and the amount of
tag SNPs is inadequate to tolerate larger missing SNPs. In this experiment, we observe that the iterative
LP-relaxation algorithm finds solutions quite close to the optimal solutions and slightly outperforms the
other two algorithms.

Figure 77.10(b) illustrates the experimental results on long data sets generated by Hudson’s program
(corresponding to SNP missing rates from 0 to 29%). The optimal solutions for m > 1 again cannot be
computed in one day. In this experiment, the performance of the first greedy and iterative LP-relaxation
algorithms are similar, and they slightly outperform the second greedy algorithm as m becomes large.

77.4.2 Results on Biological Data

We test these programs on public haplotype data of human Chromosome 21 released by Patil et al. [5].
Patil’s data includes 20 haplotypes of 24,047 SNPs spanning over about 32.4MB. Based on the 4,135
haplotype blocks partitioned by Patil et al., we apply all programs to find the robust tag SNPs in each
block. Figure 77.11(a) shows the experimental results on these 4,135 blocks. Because there are many
long blocks in Patil’s data (e.g., more than one hundred SNPs), the optimal solution for m > 1 cannot be
computed in one day. However, some short blocks may not have solutions for larger m because of insufficient
number of SNPs in the block. As a consequence, Sa here stands for the average number of robust tag SNPs
over those blocks containing solutions. In this experiment, all algorithms find similar number of robust
tag SNPs. We observe that the number of robust tag SNPs required in Patil’s data is less than those in
simulated data. For example, when m = 8, all algorithms find less than 12 SNPs in Patil’s data, and they
find about 28 SNPs in random data and 31 SNPs in Hudson’s data. This result implies that genotyping
additional tag SNPs to tolerate missing data is more cost-effective on biological data than on simulated
data.
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FIGURE 77.11 Experimental results on biological data. (a) Results from Patil’s chromosome 21 data. (b) results from
Daly’s chromosome 5q31 data.

Daly et al. [4] studied a 500 kb region on human Chromosome 5q31, which may contain a genetic
variant related to the Crohn disease. By genotyping 103 SNPs with minor allele frequency at least 5%, they
partition this chromosomal region into 11 haplotype blocks. Figure 77.11(b) illustrates the experimental
results on these 11 blocks. Because the blocks partitioned by Daly et al. are very short (e.g., most blocks
contain less than 12 SNPs), the optimal solution is still computable. The solutions found by each algorithm
is almost the same as optimal solutions. Note that the number of blocks (containing solutions) decreases
as m increases. When m increases to 3, some blocks that do not have enough SNPs for a solution are
discarded. The remaining block require only 4 SNPs and Sa thus drops down to 4.

77.4.3 Discussion

In terms of efficiency, the first and second greedy algorithms are faster than the LP-relaxation algorithm.
The greedy algorithms usually return a solution in seconds and the LP-relaxation algorithm requires about
half minute for a solution. It is because the running time of LP-relaxation algorithm is bounded by the
time of solving the LP problem. Furthermore, this LP-relaxation algorithm is repeated and rounded for
10 times to explore 10 different solutions. The brute force program for searching the optimal solution is
apparently slower than the others (e.g., taking hours for a solution). The optimal solution usually cannot
be found in 24 hours if the size of the block becomes large. When m increases, each block requires more
tag SNPs to tolerate more missing SNPs, and the brute force program requires longer execution time to
find the optimal solution.

Assuming no missing data (i.e., m = 0), we now compare the solutions found by each algorithm with
the optimal solution. Table 77.1 lists the numbers of total tag SNPs found by each algorithm in previous
experiments. In the experiments on random and Daly’s data, the solution found by each algorithm is as
good as the optimal solution. In the experiments on Hudson’s and Patil’s data, these algorithms still find
solutions quite close to the optimal solution. For example, the approximation ratios of these algorithms
are only 472

443 ≈ 1.07 and 4657
4595 ≈ 1.01, respectively.

We then analyze the genotyping cost that can be saved by using tag SNPs. In Table 77.1, the ratio of tag
SNPs to total SNPs in each data set is shown in parentheses. The experimental results indicate that the cost
of genotyping tag SNPs is much lower than that of genotyping all SNPs in a block. For example, in Patil’s
data, we only need to genotype about 19% of tag SNPs in each block, which saves about 81% genotyping
cost. The genotyping cost saved by using tag SNPs is especially significant in long haplotype blocks. For
example, in random and Hudson’s long data sets, the saved genotyping cost can be as high as 90%.

Finally, we compute the cost of genotyping extra tag SNPs for tolerating missing data. The biological
data sets (i.e., Patil’s and Daly’s data) have blocks in different sizes. Some of them may not have solutions
for larger values of m. Therefore, we only consider random and Hudson’s 100 data sets in the same size.
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TABLE 77.1 The Number of Total Tag SNPs Found by Each Algorithm. The Ratio of Tag SNPs to Total SNPs Is
Shown in Parentheses

Random Data Hudson’s Data Patil’s Data Daly’s Data

Total blocks 100 100 100 100 4135 11
Total SNPs 2000 4000 2000 4000 24047 103

1st Greedy 400 (20%) 400 (10%) 509 (25.5%) 472 (11.8%) 4610 (19.2%) 23 (22.3%)
2nd Greedy 400 (20%) 400 (10%) 509 (25.5%) 472 (11.8%) 4610 (19.2%) 23 (22.3%)
LP-relaxation 400 (20%) 400 (10%) 509 (25.5%) 471 (11.8%) 4657 (19.4%) 23 (22.3%)
OPT 400 (20%) 400 (10%) 492 (24.6%) 443 (11.1%) 4595 (19.1%) 23 (22.3%)

TABLE 77.2 The Number of Extra Tag SNPs Required to Tolerate Missing Data. The Ratio of Extra Tag SNPs to Total
SNPs Is Shown in Parentheses

m 1 2 3 4 5

Random 1st Greedy 200 (5.0%) 451 (11.3%) 647 (16.2%) 889 (22.2%) 1092 (27.3%)
data 2nd Greedy 237 (5.9%) 477 (11.9%) 714 (17.9%) 930 (23.3%) 1144 (28.6%)
(4000 SNPs) LP-relaxation 262 (6.6%) 535 (13.4%) 774 (19.4%) 1018 (25.5%) 1194 (29.9%)

Hudson’s 1st Greedy 299 (7.5%) 656 (16.4%) 995 (24.9%) 1351 (33.8%) 1695 (42.4%)
data 2nd Greedy 347 (8.7%) 723 (18.1%) 1091 (27.3%) 1439 (36.0%) 1806 (45.2%)
(4000 SNPs) LP-relaxation 269 (6.7%) 657 (16.4%) 921 (23.0%) 1344 (33.6%) 1609 (40.2%)

Each data set contains 10 haplotypes with 40 SNPs and has solutions for m from 1 to 5. Table 77.2 lists the
number of extra tag SNPs used by each algorithm. When m increases to 5, the extra genotyping cost is less
than 30% for all algorithms on random data. In contrast, the extra genotyping cost is higher on Hudson’s
data because of the coalescent haplotypes. However, in comparison with genotyping all SNPs, the extra
genotyping cost is still less than 50% and is thus cost-effective.

77.5 Concluding Remarks

In this chapter, we show there exists a set of robust tag SNPs, which is able to tolerate a certain number of
missing data. Our study indicates that robust tag SNPs is more practical than the minimum tag SNPs if we
cannot avoid the occurrence of missing data. We describe two greedy and one LP-relaxation approximation
algorithms for finding robust tag SNPs. Our experimental results and theoretical analysis show that these
algorithms are not only efficient but the solutions found are also close to the optimal solution. In terms of
genotyping cost, we observe that the genotyping cost saved by using tag SNPs can be as high as 90%, and
genotyping extra tag SNPs to tolerate missing data is still cost-effective. One future direction is to assign
weights to different types of SNPs (e.g., SNPs in coding or noncoding regions), and design algorithms for
the selection of weighted tag SNPs.
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78.1 Introduction

In this chapter, we consider the following sphere packing problem: Given a polygonal (or polyhedral)
region R (called the container or domain) in two (or higher-dimensional space and an infinite object set
O of “solid” unit spheres, find a sphere packing SP for R using the spheres in O such that (i) each sphere
in SP is inside R, (ii) no two spheres in SP intersect each other in their interior, and (iii) the volume of R
covered by SP (called the density) is maximized.

Packing is a venerable topic in mathematics. Various versions of packing problems have been studied
[1–19], depending on the shapes of the domains, the types of objects, the position restrictions on the
objects, the optimization criteria, etc. Originating from number theory and crystallography, sphere packing
has mysterious connections with hyperbolic geometry, Lie algebras, and the Monster simple group, and
finds direct applications in number theory and pure geometry [3]. It also arises in numerous applied
areas such as digital communications, cryptography, numerical evaluation of integrals, physics, chemistry,
biology, antenna design, X-ray tomography, and statistical analysis on spheres [3]. Packing problems in
lower dimensions d-D (d ≤ 3) with a bounded or unbounded domain R appear in manufacturing [20–
37] (e.g., stock and cloth cutting, part nesting, compaction, and containment), mesh generation [38–44],
VLSI layout [45], logistics [29], scheduling [20–23,30,37,46,47] management [28], operations research,
and image processing [45,48].

Most packing problems exhibit substantial difficulties. Even very restricted versions (e.g., regular-shaped
objects and domains in lower dimensional spaces) have been proved to be NP-hard. The 2-D problem
of packing arbitrary-shaped objects in a bounded domain [34] has been shown to have very high time
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complexity (e.g., exponential in the size of the packing). For congruent packing (i.e., packing copies of the
same object), it is known [49] that the 2-D cases of packing fixed-sized squares or disks in a simple polygon
are NP-hard. Baur and Fekete [48] considered a closely related dispersion problem: Pack k congruent disks
in a polygon such that the radius of disks is maximized. They proved that the dispersion problem cannot be
approximated arbitrarily well in polynomial time unless P = NP, and gave a 2

3 -approximation algorithm
for the L∞ disk case with a time bound of O(n38).

Recent interest on the sphere packing problem was motivated by medical applications in radiosurgery
[50–52]. Radiosurgery is a minimally invasive surgical procedure that uses radiation to destroy tumors
inside human body. Gamma Knife is a radiation system that contains 201 Cobalt-60 sources [53,54]. The
gamma-rays from these sources are all focused on a common center, creating a spherical volume of high
radiation dose. A key geometric problem in Gamma Knife treatment planning is to fit multiple balls into
a 3-D irregular-shaped tumor [53–55]. In such applications, overlapping balls may cause overdose, and
a low packing density may result in underdose and a nonuniform dose distribution. Note that Gamma
Knife currently produces spheres of four different radii (4, 8, 14, and 18 mm), and hence the Gamma Knife
sphere packing is in general not congruent. However, in practice, a commonly used approach is to pack
larger spheres first, and then fit smaller spheres into the remaining subdomains, in the hope of reducing
the total number of spheres involved and thus shortening the treatment time. Therefore, congruent sphere
packing can be used as a key subroutine for such a common approach.

Much work on congruent sphere packing studies the case of packing spheres into an unbounded domain
or even the whole space [3] (e.g., Mount and Silverman’s algorithm [56]). There are also some results on
packing congruent spheres into a bounded region. Hochbaum and Maass [45] presented a unified and
powerful shifting technique for designing pseudopolynomial-time approximation schemes for packing
congruent squares into a rectilinear polygon; but, the high time complexities (e.g., O(n38) in Ref. [48])
associated with the resulting algorithms restrict its applicability in practice. (In radiosurgery, since the
shapes of some human organs change from time to time, a treatment is expected to be planned and
delivered quickly.) Graham and Lubachevsky [57,58] considered the problems of packing k L 2 disks into
an equilateral triangle or square to maximize the radius of disks, producing a number of best known
packings for different constants k. Friedman [59] obtained many best known solutions for packing k unit
squares into the smallest square. A common feature of this type of algorithms is to transform a packing
problem into some nonlinear optimization problems, and resort to available optimization software to
generate packings [51,52,60]. In general, such an approach guarantees neither a fast running time nor
a provably good quality of solutions, and it works well only for small problem sizes and regular-shaped
domains.

To reduce the running time yet achieve a dense packing, a common idea is to let the objects form a
certain lattice or double lattice. A number of results were given on lattice packing of congruent objects in
the whole (especially high-dimensional) space [3]. For a bounded rectangular 2-D domain, Milenkovic
[36] adopted a method that first finds the densest translational lattice packing for a set of polygonal objects
in the whole plane, and then uses some heuristics to extract the actual packing.

Chen et al. [50] present a very efficient scheme, called pack-and-shake, for packing congruent spheres
in an irregular-shaped 2-D or 3-D bounded domain. Their scheme consists of three phases. In the first
phase, the d-D (d = 2,3) irregular-shaped domain R is partitioned into some convex cells. The set
of cells defines a dual graph G D (each vertex v of G D is for a cell C(v), and an edge connects two
vertices if their cells share a (d − 1)-D face). In the second phase, the algorithm repeats the following
trimming and packing process until G D = ∅: Remove the lowest degree vertex v from G D and pack
the cell C (v). In the third phase, a shake procedure is applied to globally adjust the packing to obtain a
denser one.

The objective of the trimming and packing procedure is that after each cell is packed, the remaining
“packable” subdomain R′ of R is always kept as a connected region. The rationale for maintaining the
connectivity of R′ is as follows. To pack spheres in a bounded domain R, two typical approaches have
been used: (a) packing spheres layer by layer from the boundary of R toward its interior [41], and (b)
packing spheres from the “center” of R, such as its medial axis, to the boundary [53–55,61]. Due to the
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shape irregularity of R, both approaches may fragment the “packable” subdomain R′ into more and more
disconnected regions; however, at the end of packing each such region, a small “unpackable” area may
eventually remain that allows no further packing. It could fit more spheres if the “packable” subdomain
R′ is lumped together instead of being divided into fragments, which is what the trimming and packing
procedure aims to achieve.

Due to the packing of its adjacent cells, the boundary of a cell C(v) that is to be packed may consist of
both line segments and arcs (of packed spheres). Hence it is needed to consider the problem of packing
spheres in cells bounded by certain curves. In the trimming and packing phase, they presented several
packing algorithms for different types of domain with or without a curved boundary. Their packing
algorithms are based on certain lattice structures and allow the domain R to both translate and rotate.
Their algorithms have fairly low time complexities. In certain cases, they even run in near linear time.
Their algorithms can be easily generalized to congruent packing of other shapes, and are readily extended
to higher dimensional spaces.

An interesting feature of the packings generated by the trimming and packing procedure is that the
resulted spheres cluster together in the middle of the domain R, leaving some small unpackable areas
scattered along the boundary of R. The “shake” procedure thus seeks to collect these small areas together
by “blowing” the spheres to the boundary of R, in the hope of obtaining some “packable” region in the
middle of R. They experimented quite a few techniques for efficiently shaking the packed spheres in R
and compared their performances based on randomly generated input data.

Chen et al. [50] implemented their 2-D pack-and-shake algorithms and presented a set of experimental
results. Their experiments showed that the packing algorithms consistently yield dense packings. Com-
paring with those optimization-based methods, their approaches improve dramatically on the running
time with only a slight loss on the packing density.

The remainder of this chapter is organized as follows. In Section 78.2, we give some notations that
will be used throughout this chapter. In Section 78.3, we present the algorithms in Ref. [50] for packing
spheres in a single cell. Section 78.4 illustrates the ideas in Ref. [50] on how to partition the domain into
cells. Section 78.5 discusses the extensions of the packing algorithms to higher dimensional space, and
Section 78.6 discusses applications in treatment planning of radiosurgery. We present in Section 78.7 some
experimental results from Ref. [50].

78.2 Preliminaries

Let U = { �u1, �u2, . . . , �ud } be a set of d independent vectors in the d-D space E d , and M be the d × d
matrix formed by the d vectors. For any integer vector �x = (x1, x2, . . . , xd )T (i.e., each xi is an integer),
M�x is a vector (or called lattice point) in E d . The set of vectors so generated by using all integer vectors �x
forms a lattice LU in E d . M is called the generator matrix of LU , and U is called the basis.

For each lattice LU , there is a polyhedron B in E d formed by the set of vertices, v0, v1, . . . , vd ,
vd+1, where v0 is the origin, vd+1 = M × (1, 1, . . . , 1)T , and vi = M �ei for 1 ≤ i ≤ d and �ei =
(0, . . . , 0
︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0)T . B is called the basic block of LU , which can be translated to form a tile of E d . In

2-D, the basic block is a parallelogram, called the basic parallelogram.
We say that a lattice LU admits a packing (in the whole space) of congruent spheres of radius r if the

Euclidean distance between any pair of lattice points is no less than 2r .
We denote a sphere packing of a bounded domain R as SPR , and the densest sphere packing of R (i.e.,

a packing with the maximum number of spheres in R) as SPMax
R . If the center of each sphere in SPR is at

a lattice point of LU , then SPR is called a lattice sphere packing of R, denoted as LSPR . Similarly, we can
define LSPMax

R .
We denote a translation of an object O (e.g., a point, polygon and sphere) in E d with offset vector

�X = (�x1, �x2, . . . , �xd ) as O + �X . �X is called the offset point.
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78.3 Pack-and-Shake on a Polygonal Domain without
Cell Partition

In this section, we introduce the algorithms in Ref. [50] for packing 2-D unit spheres in different types
of simple polygon or polygonal domain R, under the assumption that the whole domain R is treated
as a single cell (i.e., no further cell partitioning is done on R). The algorithms are based on certain
lattice structures, and have low time complexities. Combining with a global shake refinement proce-
dure, the resulted packings exhibit a fairly high density as shown by experimental results in a later
section.

Let R be an n-vertex simple polygon or polygonal domain (i.e., a polygon with holes), and U = { �u1, �u2}
be the basis of a lattice LU on the plane P such that LU admits a unit sphere packing. Ideally, one would
like to obtain the densest sphere packing SPMax

R . However, as mentioned in Section 78.1, this problem is
strongly NP-hard. Our goal thus is to seek efficient algorithms for producing dense packings SPR .

Our approach is to first obtain the densest lattice unit sphere packing LSPMax
R , and then use a shake

procedure to globally adjust LSPMax
R to generate a denser packing in R. Suppose that the plane P is already

packed by infinitely many unit spheres, with each lattice point of LU coincident with the center of a sphere.
To obtain LSPMax

R from the packing of P , we need to find a position and orientation of R on P such
that R contains the maximum number of spheres from the packing of P . We discuss below two types of
algorithms for computing the optimal position of R on P : translational algorithms that allow R to be
translated, and rotational algorithms that allow R to be both translated and rotated.

78.3.1 2-D Lattice Packing with Translation

To produce efficiently the densest translational lattice sphere packing of R (denoted by TLSPMax
R ) in a

given lattice LU , we need to first identify a finite set S of spheres from the packing of P such that S contains
at least one optimal solution for R. Once S is determined, we then seek an optimal position of R with
respect to S. We solve this problem by reducing it to an interesting thickest point problem, and give an
algorithm.

A frequently arising problem is to decide whether a sphere s ∈ S is completely contained in R. To
simplify this problem, we “shrink” the domain R by computing the Minkowski sum of a unit sphere s
with the complement region R of R. The resulted region is denoted by R−, that is, R− = R ⊕ s . Note
that the boundary of R− may consist of both line segments and arcs (each arc is associated with a reflex
vertex of R). After the shrinking, a sphere s is contained in R if and only if the center cs of s is inside R−.

The shrunk domain R− need not be topologically equivalent to the original domain R. When this is
the case, R− is broken into multiple disconnected components, each corresponding to a subdomain of R.
We pack on each component independently of other components. Note that it is possible that the spheres
in two different components interfere with each other. However, such interferences can be handled with
some care. Hence, we assume in this section that the shrunk domain R− is one connected component
with n vertices. The next lemma shows that shrinking R can be done efficiently.

Lemma 78.1

An n-vertex polygonal domain can be shrunk in O(n log n) time.

Now we consider the problem of identifying the finite set S of spheres from the lattice LU . Since the
domain is already shrunk, we only need to identify a finite set of lattice points from LU that gives rise to
at least one optimal packing TLSPMax

R . Let v1, v2, . . . , vn be the n vertices of R−. Let R− + (u, v) be a
translation of R− with offset point (u, v). Since the plane P can be tiled by translating infinite copies of
the basic parallelogram of LU , the following lemma holds.

Lemma 78.2

To obtain TLSPMax
R , it is sufficient to translate R− around inside the basic parallelogram.
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Proof
Let TLSPMax

R be an optimal packing of R with a translation offset point to = (u, v). Further, let BPo be
the basic parallelogram that contains the point to and (�x , �y) be its offset from the basic parallelogram
BP (i.e., BPo = BP + (�x , �y)). Since each vertex ui of BPo , i = 0, 1, 2, 3, is a lattice point, �ui = M �xi for
some integer vector �xi . In particular, (�x , �y)T = M �x0. We map to to a point t ′o = (u − �x , v − �y).
Clearly, t ′o is inside BP.

Below we prove the claim that for every sphere s in TLSPMax
R centered at sc = (xsc , ysc ), there is

another sphere s ′ centered at s ′
c = (xs ′

c
, ys ′

c
) = sc − (�x , �y), such that s ′ is contained in R− + t ′o (i.e.,

the translation of R− with an offset point t ′o).
To show the existence of such a sphere s ′ in LU , we observe that sc is a lattice point. Hence �sc = M �xsc for

some integer vector �xsc . Since s ′
c = sc − (�x , �y), �s ′

c = �sc − (�x , �y)T = M �xsc − M �x0 = M( �xsc − �xc ).
Thus, both �xsc and �x0 are integer vectors, and �xsc − �x0 is also an integer vector. Therefore, s ′

c is a lattice
point of LU .

To prove that s ′ is contained in R− + t ′o , we show that the distance from sc to any vertex vi of R− +(u, v)
is the same as that from s ′

c to vi in R− + t ′o . The coordinates of vi is vi + (u, v) in R− + (u, v) and
vi +t ′o = vi +(u, v)−(�x , �y) in R−+t ′o . The vector �vi sc fromvi (in R−+(u, v)) to sc is �sc −( �vi +(u, v)T ),
and the vector �vi s ′

c from vi (in R− + t ′o) to s ′
c is �sc − (�x , �y)T − ( �vi + (u, v)T − (�x , �y)T ) =

�sc − ( �vi + (u, v)T ). Thus the two distances are the same, and the claim is true.

The above lemma suggests that to find TLSPMax
R , it is sufficient to consider the set of spheres (more

accurately, the set of lattice points), which are away from R− only by a basic parallelogram. As we move
the offset point f = (u, v) for R− inside the basic parallelogram BP, lattice points may go in and out of
R−, causing the number of spheres contained in R to change. Thus, we need to identify the set S of lattice
points that may cross the boundary of R− while f is moving around BP.

To compute S, we consider a segment ab of R− (an arc can be handled similarly). The lattice points,
which may cross or touch ab can be determined as follows. Let (xa , ya ) and (xb , yb) be the coordinates of
points a and b, respectively. We first determine to which parallelogram, BPa , a belongs. (This can be easily
done in O(1) time by decomposing �a into two vectors �a1 and �a2 along the directions of the basis vectors
�u1 and �u2 and dividing �ai , i = 1, 2, by �ui to obtain the integer vector �x0 = (i0, j0)T .) Then we check

the four lattice points of BPa to see whether they cross ab while moving f in BP, and add each crossing
point into a set Sab . For each lattice point si = M �xi in Sab , we further check the following three lattice
points: M( �xi + (1, 0)T ), M( �xi + (0, 1)T ), and M( �xi + (1, 1)T ), and add the crossing points into Sab . By
repeating this procedure, all lattice points which may cross ab are put into Sab .

Repeating the above procedure for each segment and arc of R−, we obtain a collection of point sets.
The union of them forms the sought lattice point set S. The size of S is roughly O(m), where m is the total
number of lattice points along the boundary of R− in TLSPMax

R .
Once S is obtained, we need to determine an optimal translational position for R−. That is, we need

to determine a point fo in BP for the offset point f such that R− + fo contains the maximum number
of points in S. For this purpose, we compute, for each lattice point s ∈ S, a region sf inside BP such that
when f moves inside sf , s is contained in R− + f . The region sf is called the containing region of s . The
optimal offset point fo is thus a point that is covered by the maximum number of containing regions.
Below we discuss how to compute the containing region of each lattice point of S.

Assume that �s = M �xs is a member of Sab . (The case in which ab is an arc can be handled similarly.) We
first compute the locus of the offset point f in BP when the boundary of R− + f touches s . Each point w
on ab + f can be represented by its corresponding vector �w = �a + �f + t(�b − �a) for some 0 ≤ t ≤ 1. To
make ab + f touch s , we must have some point �w = �s . This means that there is a value t ∈ [0, 1] such that
�w = �a + �f +t(�b−�a) = �s . Thus, the locus of f can be determined by the equality �f = �s −�a +t(�a −�b), t ∈
[0,1]. (Note that the slope of the locus is the same as that of ab.) The locus of f is trimmed by the boundary
of BP if it goes outside of BP. For each segment uv whose Suv contains s , we compute the locus of f . All
these loci, possibly together with the boundary of BP, form the containing region sf of s .

The containing region sf has some interesting properties.
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Property 78.1

If R− is convex, then all containing regions are convex. If R− contains a convex hole, then the containing
region of a lattice point generated by an edge of this hole is the complement of a convex region in BP.

The number of edges in each containing region is less than n + 4. If all edges of R− are “long” (i.e.,
≥ | �u1 + �u2|), then each lattice point can touch or cross only a constant number of edges of R−, and thus
each containing region has a constant number of edges.

The above approach for generating containing regions can be extended to the case in which R− is
bounded by a set of algebraic curves.

Property 78.2

If R− is bounded by a set of algebraic curves, then each containing region is also bounded by a set of algebraic
curves. Further, each curve of R− has the same degree as its corresponding curve of the containing region.

Since the shrinking procedure does not change the degrees of the curves of R−, based on Property 78.2,
we can now consider the translational lattice packing problem in a domain R bounded by algebraic curves.
Once the set of containing regions is generated, the packing problem is reduced to the following thickest
point problem, where the thickness of a point is defined as the number of containing regions covering it.

Problem 78.1

Given a set F of connected regions on the plane, with each region bounded by a set of algebraic curves, find
the thickest point on the plane.

To solve this problem, let � be the set of algebraic curves bounding the regions in F , and N = |�|.
Obviously, � forms an arrangement A on the plane. If the degree of each curve in � is bounded by a
constant, then any two such curves intersect only a constant number of times. Thus, we can use well-
known arrangement algorithms [61,62] to first construct A in O(N log N + K ) time, where K is the total
number of intersections in A. In the worst case, K = O(N2). The optimal point can then be found by
traversing the cells of A and computing the thickness of each cell.

Lemma 78.3

If every edge in � is an algebraic curve with constant degree, then the thickest point problem on F can be solved
in O(N log N + K ) time.

Now, we go back to the sphere packing problem. As we have shown, a containing region is computed
from R− and a lattice point in S. If R is bounded by a set of degree-bounded algebraic curves, we have the
following lemma.

Lemma 78.4

Given a domain R with its boundary edges being algebraic curves of constant degrees, the TLSPMax
R problem

can be solved in O(N log N + K ) time, where N is the number of edges of the generated containing regions,
and K is the size of the arrangement formed by the containing regions.

In the above lemma, N = n × m in the worst case, where n is the size of R and m is the total number of
spheres along the boundary of R in TLSPMax

R . Note that, in practice, N may be much smaller than n × m.
For example, for the cases in which all bounding edges of R are “long” edges (i.e., ≥ | �u1 + �u2|), or “short”
edges are separated by long edges, the containing region of each lattice point has only a constant number
of edges, and thus N is roughly O(n + m).

78.3.2 2-D Lattice Packing with Translation and Rotation

For a domain R, the translational lattice packing may not yield the densest lattice packing due to the given
orientation of R. Thus, we like to study the rotational lattice packing problem that allows R to be translated
and rotated. We denote the densest rotational lattice sphere packing of R by RLSPMax

R .

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C078 March 20, 2007 19:52

Sphere Packing and Medical Applications 78-7

To compute RLSPMax
R , similar to the translational lattice packing, we first shrink R to obtain R−. We

then identify a set S of lattice points, which may cross the boundary of R− while translating and rotating
R−. Finally, we determine the optimal position and orientation of R.

To compute S, we consider all possible lattice points that may cross an edge of R− while translating and
rotating R−. The rotation of R− may cause a large set of lattice points to cross the boundary of R−. For
each boundary edge ab of R−, the number of crossing lattice points of ab is roughly proportional to the
area “swept” by ab during the rotation, which clearly depends on the location of the rotation center. Thus,
the problem of minimizing the set S is reduced to finding an optimal rotation center that minimizes the
total area swept by all O(n) edges of R−. We call this the annuli minimization problem.

To find an optimal rotation center, we consider an edge ab of R−. Suppose that the rotation center is
ro = (x , y). Then the rotation of ab sweeps the plane and forms an annulus nuab . The area of nuab is equal
to π(r 2

out − r 2
in), where rout and rin are the radii of its inner and outer circles. Precisely, rout is the distance

from ro to the furthest point of a and b, and rin is the distance from ro either to the supporting line lab

of ab or to the nearest of a and b. There are four different cases. To distinguish these cases, we draw three
lines: one is the bisector bsab of ab, and the other two, la and lb , are parallel to bsab and passing through
a and b respectively. In each of the four regions partitioned by these three lines, the area of the annulus
is either a linear or quadratic function of x and y. Thus, the optimal rotation center can be computed by
first constructing an arrangement A′ from the O(n) partitioning lines obtained from all edges of R−, and
then in each convex cell of A′, finding an optimal rotation center point by solving the associated quadratic
minimization problem on that cell. The objective function for each cell of A′ can be updated in an online
fashion.

Lemma 78.5

For a domain R− of n edges, the annuli minimization problem can be solved by reducing it to solving
O(n2) quadratic minimization problems. Furthermore, these O(n2) optimization problems (including both
the objective functions and constraints) can be generated in altogether O(n2) time.

Note that the above approach for computing the rotation center is also applicable to the case when the
rotation angle is < 2π (e.g., for a hexagonal lattice, it is sufficient to rotate R− between 0 and π

3 ).
Once the rotation center is located, we translate the origin of the coordinate system to this center. (This

changes the coordinates of the vertices of R−.) The set S of crossing lattice points, can then be computed
from those lattice points, which are either contained by any of the n annuli (or a portion of an annulus if
the rotation is < 2π) or within a distance of a basic parallelogram away from the lattice points contained
by the annuli (for translation). The total time for generating S is O(|S|). Similar to our translational lattice
packing approach, the rotational lattice packing algorithm needs to identify the containing regions for all
lattice points in S with respect to R−. With the motions of both translation and rotation, the space for
the containing regions in this case becomes 3-D (the third dimension, called the α-axis, represents the
rotation angles). To generate the set of 3-D containing regions, we first compute the set of the 2-D initial
containing regions (i.e., with a rotation angle α = 0). Due to the rotation, each edge of a 2-D containing
region becomes a 3-D spiral surface patch. To see that, we consider a segment ab of R− and a lattice point
s ∈ S. Each point p of ab can be represented as �p = �a + �f + tW(�b − �a), 0 ≤ t ≤ 1, where f is the offset
point, W is the rotation matrix with

W =
(

cos θ − sin θ

sin θ cos θ

)

and θ is the rotation angle. The locus of the 3-D point (f, θ) forms a surface SFab when ab is translated and
rotated as it remains touching s . The surface SFab can be expressed by the equality �f = �s −�a + tW(�a −�b),
0 ≤ t ≤ 1.

In 3-D, the basic parallelogram BP becomes a polygonal cylinder C . Surface patches, which go outside
of C are truncated at the boundary of C . Denote the set of (truncated) surface patches and the boundary
of C as �. The following lemma shows some nice property of the surface patches in �.
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Lemma 78.6

The surface patches in � are all pseudoplanes. That is, any two surface patches in � intersect at a continuous
curve (if they intersect each other), and any three surface patches intersect at no more than one point.

With the above lemma, we solve the thickest point problem in 3-D by using a space-sweeping algorithm
along the α-axis. Note that each containing region in 3-D is a polygonal cylinder spiraling up along the
α-axis. The thickest point is covered by the maximum number of such cylinders. The space-sweeping
algorithm first constructs the planar arrangement A0 corresponding to the rotation angle α = 0, and
computes the thickness map for each cell of A0. To determine the next event point, we consider an edge
ei ∈ A0. Let ei−1 and ei+1 be the neighboring edges of ei along a cell of A0. Denote the three surface
patches generated by the rotation of the three edges as SFi , SFi−1, and SFi+1. We compute the intersection
point vi, i−1 (resp., vi, i+1) between the bounding curves of SFi and SFi−1 (resp., SFi+1) with the other
surface patch, and the intersection point v of the three surface patches. All these intersection points are
inserted into a priority queue based on their α-coordinates. The next event point is the intersection point
in the priority queue with the smallest α-coordinate. At each event point, the algorithm may generate
new event points, and it identifies whether a new cell is created or an old cell disappears. For these two
cell changing cases, the algorithm needs to update the thickness map. The thickness of a new cell can be
computed from its neighboring cells in O(1) time. In this way, the sweeping algorithm spends only O(1)
time to compute each vertex of the whole 3-D arrangement A of �, and the total computation cost can be
charged to the vertices of A with a logarithmic cost per vertex. Thus, we have the following lemma.

Lemma 78.7

The space-sweeping algorithm finds the thickest point in 3-D in O((K + N) log N) time, where K is the size
of the 3-D arrangement A and N = |�|.

In the worst case, K = O(N3). Based on our experiments, K is normally much smaller than O(N3).

Remark
The above approach for finding rotational lattice sphere packing can be extended to the case in which R
is bounded by a set of algebraic curves with constant degrees.

78.3.3 Shaking a Lattice Packing

The lattice packings produced in Sections 78.3.1 and 78.3.2 have an interesting property. That is, the
resulted spheres cluster in the middle of the domain R. For certain lattice structures, for example, the 2-D
hexagonal lattice whose basis is {(2, 0)T , (1,

√
3)T }, the packings are very tight in the middle. Locally, the

packing may even be optimal in the middle. But globally, there may still be some small “unpackable” areas
scattered along the boundary of R. To make use of these small areas, we apply a “shake” procedure, which
tries to “blow” the spheres from the “center” of R to its boundary and gather these unused small areas to
the center for packing more spheres.

From experiments, we observed that unused yet unpackable areas frequently occur around the corners
(vertices) of the domain. Thus, we first push a sphere to each unoccupied corner. Next, we repeatedly apply
two procedures, “move” and “drop”. The two procedures could be viewed as making the movements of
spheres in a special field of forces. The moving directions of the spheres could be different from sphere to
sphere. Unlike some physical simulation such as in Ref. [33], in the shake procedure, a sphere could “pass
through” some baffled spheres to reach a stable point under the effect of the field.

Several different shake procedures are implemented and tested in Ref. [50], based on different ways of
choosing the moving directions and different criteria for the movements. For example, one technique is to
scatter from an “anchor point,” which is derived from the positions of the spheres. Intuitively, the “anchor
point” repulses a sphere while the nearest edge attracts it. Each force is associated with a weight, which
helps determine the sphere movement. Different shake procedures can be used one after another to yield
denser packing.
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We continue the shaking until no more sphere can be added. During the shaking process, whenever
we detect that an empty space large enough for a sphere shows up, we put a new sphere to take that
space. Experiments show that the shake procedures work very well. It will improve the packing density
significantly, especially for those packings with low density. Furthermore, shaking can be done efficiently
(in practice, it often takes several or tens of seconds) by moving spheres layer by layer.

78.4 Trimming and Packing

In the previous section, we use the domain R as a whole to pack spheres. The packings so generated are
very dense for “fat” or convex domains, since the initial lattice packings already occupy most area in the
middle of such domains and leave only very small unused areas along their boundaries.

However, this strategy does not always work well, especially for irregular-shaped domains. Due to
its local structures, different parts of a domain R may require different translational and rotational
lattice packings. Treating R as a single cell may make the overall lattice packing density very low. In
Figure 78.1(a), for example, the domain R consists of multiple “strips” connected together, and each strip
can pack a row of spheres; it is possible that no matter which translation or rotation lattice packing is used,
the packing density remains very low if the whole R is treated as one cell. A better approach is to partition
R into multiple “nice” cells, and pack each cell somewhat independently. Figure 78.1(b) shows an optimal
packing based on a partition of R.

Another reason for partitioning a domain into multiple cells is to achieve a better time efficiency. In
Section 78.3, the packing algorithms all take superlinear time in terms of the number N of edges or surfaces
of the containing regions. N is between O(n + m) and O(nm), where n is the number of edges of R−
and m is the number of involved crossing lattice points. Partitioning R into smaller “fat” and convex cells
makes the values of n and m for packing each cell much smaller than those for R, and thus speeds up the
overall running time significantly.

To achieve a faster and denser packing, we use a procedure called trimming and packing. This procedure
first partitions the domain R into a set of triangles or trapezoids. Then the neighboring triangles or
trapezoids are merged to form larger convex cells. The set of cells define a dual graph G D (each vertex v

of G D is for a cell C (v), and an edge connects two vertices if their d-D cells share a (d − 1)-D face). To
pack spheres in all cells, the procedure repeatedly removes the lowest degree vertex v from G D and packs
C(v) by using the algorithms in Section 78.3.

One problem that needs to be solved in the trimming and packing procedure is how to join the packings
of two adjacent cells, say C (v) and C (u). Note that independently packing C(v) and C(u) may leave some
small room along the edge separating the two cells. If there are many cells, then the total unused area could

(a) (b)

FIGURE 78.1 (a) Lattice packing on R as a whole may not yield a dense packing. (b) An optimal packing obtained
by using lattice packing in two subdomains.
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be significant. To remedy this problem, when packing a cell, say C(u), we actually pack the union of C(u)
and the small areas left by its neighbors that have already been packed. The boundary of each packed cell
is a curve formed by the outer boundary of the packed spheres. This means that the actual packable region
for C(u) is bounded by a mix of line segments and circular arcs.

One way to solve this problem is to use the algorithms for handling domains bounded by algebraic curves.
This approach normally generates dense packing, but takes much longer time than packing a polygonal
domain. From a practical point of view, a faster algorithm is as follows. First of all, R is partitioned into
cells with a small number of boundary edges. Then the efficient translation algorithm is used to obtain a
translational lattice packing for each cell. Finally, a shake procedure is used on every pair of neighboring cells.

Remark
To reduce the running time of the trimming and packing procedure, one possible way is to compute
a convex decomposition that minimizes the total length of the diagonal edges, since such a partition
minimizes the number of circular arcs and crossing lattice points. There are several sophisticated convex
decomposition algorithms (e.g., Keil and Snoeyink’s algorithm [63]). But, all such algorithms have quite
large time bounds, probably not easy to implement, and may not work for domains with holes. Hence, we
use a simple algorithm for convex decomposition.

An important feature of our trimming and packing procedure is that the remaining “packable” subdo-
main is always a connected component. This prevents the algorithm from producing many “unpackable”
small areas, a problem occurring in some commonly used approaches [41,53–55].

78.5 Extensions to Three or Higher Dimensions

The sphere packing algorithms in previous sections can be extended in several directions, which we sketch
in this section. These include extending the lattice packing algorithms to 3-D and high dimensions, and
applying the sphere packing algorithms to treatment planning of radiosurgery.

To pack spheres in a 3-D domain, we also use the trimming and packing procedure to partition the
domain into convex cells. For each cell, we use lattice packing algorithms to find a good initial packing,
and shaking procedures to improve the packing. Since the trimming and packing, shaking, and shrinking
algorithms are similar to those for 2-D, we focus on the lattice packing step. Further, our experiments
suggest that for convex domains, the quality of translation packings is very close to that of rotation
packings. Thus, we only discuss the 3-D translational lattice packing in a convex cell.

Suppose after shrinking, the convex domain R consists of n vertices. Further, assume that the boundary
of R− is triangulated. Since a lemma similar to Lemma 78.2 holds in 3-D (which can be proved similarly),
the set S of crossing lattice points can be easily computed. Thus, to compute the containing regions, we
only need to consider a triangle �abc on the boundary of R− against a lattice point s ∈ S.

Let w be any point of �abc + f , where f is the offset point of R− inside the basic block of LU .
Then w can be expressed as �w = �a + �f + t1(�b − �a) + t2(�c − �a) with t1 ∈ [0,1], t2 ∈ [0,1], and
t1 + t2 ∈ [0, 1]. The locus of f , when �abc touches s , is determined by �w = �s , and can be expressed
by �f = �s − �a + t1(�a − �b) + t2(�a − �c). Clearly, this is a triangle with the same normal as �abc .

The optimal 3-D translational lattice packing TLSPMax
R can be obtained by finding the thickest point

inside the basic block. Using a space-sweeping algorithm, we have the following lemma.

Lemma 78.8

For a 3-D convex polyhedral domain with n vertices, the thickest point problem can be solved in O((K +
N) log N) time, where N is the number of faces of the set of containing regions and K is the size of the 3-D
arrangement generated by the set of N faces.

It is also possible to extend the above approach for translational lattice sphere packing to higher dimen-
sional spaces.
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78.6 Applications in Gamma Knife Treatment Planning

The congruent sphere packing algorithms can be used as a key procedure for solving the sphere packing
problem arising in Gamma Knife surgical treatment planning. Based on a common approach used in
practice, we can first put congruent balls of the largest available size into the domain, and then repeat
for the next size balls, until no more balls can be put into the domain. Note that our algorithms for
domains bounded by algebraic curves are especially useful in this setting (since packing larger balls leaves
subdomains bounded by arcs). This common approach is intended for reducing the total number of balls
used and thus shortening the treatment time.

After the balls are placed into the domain, another problem in Gamma Knife surgical treatment planning
is to determine how much radiation (i.e., the weight) each ball should deliver. Note that the radiation in
a ball also affects the surrounding uncovered parts of the tumor domain. To completely destroy a tumor,
every point p of the tumor domain should receive a prescribed amount of radiation. In particular, if p
is not in a ball, then it must receive the required radiation from the “cross-firing” of radiation by nearby
balls. This is a weight assignment problem for balls after a packing is done.

To solve the weight assignment problem of balls, we use the following approaches for 2-D domains (3 or
higher dimensional domains can be handled similarly). We can first approximate the function of radiation
spread from a sphere s by a set of circles whose centers are all at the center of s and assume that all points
between any two such consecutive circles receive the “same” amount of radiation from s , the set of circles,
defined by all packed spheres, forms a 2-D arrangement A. The amount of radiation in each cell of A is a
linear sum determined by the weights of the spheres. Since dose distribution is known in advance, we can
determine the expected radiation for each cell of A. The weight of each sphere can thus be determined by
solving a linear programming L P . In this L P , each cell of A contributes a linear constraint indicating that
the amount of radiation for this cell should not excess (or be too much lower than) the expected radiation.
The objective of the L P is to minimize the total difference between the expected and actually received
radiation over all cells of A.

78.7 Experimental Studies

In this section, we show some experimental results on the 2-D pack-and-shake sphere packing algorithms
from Ref. [50]. All implementations use the hexagonal lattice as an example. The implementation is
on Sun Ultra Sparc 30 workstations using the C++ based library LEDA 4.1. Experiments suggest that the
aforementioned algorithms produce reasonably dense packings for polygonal domains of almost all shapes.

Four algorithms were tested: Translation, Translation and Shake (TS), Rotation, and Rotation and Shake.
The first two algorithms ran very fast, normally in about 1 min. However, the last two algorithms took about
15 h. An explanation for such long execution time is that these two algorithms need to compute the 3-D
arrangement of O(N) complicated surfaces as discussed in Section 78.3. Furthermore, computing such
3-D arrangements involves solving many nonlinear equation systems, which takes nontrivial numerical
manipulations. The data were obtained by taking the average of many examples. The numbers of spheres
used in those packing examples range from 20 to 300.

The results show that in most cases, Rotation and Shake gave a better packing quality, but hours to
terminate. While TS sometimes gave a little worse quality than Rotation and Shake, it ran much faster.
The packing quality differed from 1.2 to 4.65%. Thus, there is a tradeoff between the execution time and
packing quality.

Comparisons were also done between the above algorithms and some known results obtained by using
optimization methods [60] on domains of triangles and squares. In particular, we packed spheres in the
unit square by using the algorithm TS, and compared the results with those in Ref. [60]. Note that the
problem studied in Ref. [60] is somewhat different: Given a domain and an integer k, pack k congruent
spheres in the domain to maximize their diameter. Some nonconvex programming methods are used in
Ref. [60] for that problem, and their algorithms generally run in hours. We used the output diameters of
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TABLE 78.1 Comparison of Packing Results on Square Domains

Diameter Spheres by TS Spheres by Ref. [60]

0.166454626 46 50
0.174459361 43 46
0.178639224 43 44
0.188175077 39 40
0.196238101 35 37
0.205021908 31 34
0.213082353 30 32
0.217547292 30 31
0.226882901 28 29
0.235849528 25 27
0.254333095 23 24
0.267958402 20 22

Source: From Chen, D. Z. et al., Algorithms for congruent sphere pack-
ing and applications, Proc. 17th Annual ACM Symp. on Computational
Geometry, 2001, pp. 212–221.

Ref. [60] as our input diameters. This comparison thus may not be completely fair, but we believe it is
still meaningful. Table 78.1 shows the different number of spheres packed by our TS algorithm and the
algorithms in Ref. [60] in the unit square with different diameters. It shows that our packing qualities are
no more than 10% worse than those in Ref. [60]. But our TS packing algorithm only ran in less than 5 s
(compared to the hours of Ref. [60]).
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Nearly five decades of steady exponential improvement in the design and manufacture of very large-scale
integrated circuits (VLSI) has produced some of the largest combinatorial optimization problems ever
considered. Placement—arranging the elements of a circuit in the plane—is one of the most difficult of
these. As of 2007, mixed integer nonconvex nonlinear-programming formulations of placement with over
10 million variables and constraints are not unusual, and problem sizes continue to grow with Moore’s
law. Realistic objectives and constraints for placement incorporate complex models of signal timing,
power consumption, wiring routability, manufacturability, noise, temperature, and so on. A popular
and very useful simplification is to minimize a standard estimate of total wirelength subject only to
pairwise nonoverlap constraints. Although this abstract model problem cannot fully express the scope of
the placement challenge, evidence suggests that it does capture a critical part of the core mathematical
difficulty.

In 1976, Sahni and Gonzalez [1] showed that, unless P = NP, no deterministic polynomial-time
approximation algorithms for placement exist. In practice, problem sizes and available computing re-
sources prohibit any order of run time beyond approximately N log N, where N is the number of movable
objects. Despite these obstacles, competition continues to push researchers toward a clearer understanding
of the achievable limits of scalable algorithms.

This chapter presents an overview of metaheuristics for global placement as defined below. Section 79.1
contains a brief description of the problem’s context and typical abstract formulation. In Section 79.2,
dominant placement metaheuristics are reviewed. In Section 79.3, a brief overview is given of formulations
modeling timing and routability. Conclusions are drawn in Section 79.4.

79.1 Background

Integrated circuit (IC) design consists of three main stages: behavioral, logical, and physical. The behavioral
and logical stages translate the desired functionality of the IC into a directed graph. The nodes of the graph
represent functional or storage components. The edges of the graph express signal paths, each signal
constrained to arrive within prescribed time intervals at the nodes along its path from primary input to
primary output. The task of physical design is to compute a layout, that is, spatial positions for all circuit
elements and their interconnecting wires, consistent with the logical design. Physical design is usually
further divided into separate placement and routing phases. During placement, the circuit’s modules are
arranged without overlap within a two-dimensional rectangular region of prescribed dimensions. After

79-1
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placement, required connections among modules are explicitly constructed during routing as spatially
disjoint wiring paths in parallel planes over the modules.

The exponential growth of on-chip complexity has dramatically increased the demand for scalable
optimization algorithms for large-scale physical design. Although complex logic functions are usually
composed hierarchically, studies (e.g., [2]) show the importance of building a good physical hierarchy from
a flattened or nearly flattened logical netlist for performance optimization. Because a logical hierarchy is
usually conceived with little or no consideration of the layout and interconnect information, it may not
map well to a two-dimensional layout. Therefore, large-scale global placement on a nearly flattened netlist
is needed for physical hierarchy generation to achieve the best performance.

This approach is even more important in today’s nanometer designs, where the interconnect has become
the performance bottleneck. Interconnect delay grows roughly linearly with the insertion of buffers.
However, as module sizes have decreased, their internal signal delays have become small compared to the
delays of the wires joining them, especially when the modules are far apart. Placement determines the
interconnect structure and, hence, the performance of the resulting circuit more than any other step in
the VLSI design sequence. Thus, the continued exponential decrease of circuit element sizes has increased
the relative importance of placement in the design flow.

79.1.1 Mathematical Formulation

An instance of the VLSI placement problem is specified as a hypergraph netlist H = (V , E), which is
the output of logic synthesis. The terminology is illustrated in Figure 79.1. The vertices vi ∈ V of H are
rectangular modules of prescribed functionality. Each hyperedge or net e ∈ E is defined as a subset of the
vertices, e ⊂ V . Placement traditionally consists of two stages: global placement and detailed placement.
In global placement, approximate locations of all modules are computed under relaxed formulations of
design constraints. A strictly legal configuration is then computed prior to detailed placement, which
maintains strict feasibility at every step.

During global placement, it is customary to project the modules v ∈ V into two dimensions
(“2-D”) and consider only their widths along the x-direction and heights along the orthogonal y-direction.
Most modules are standard cells selected from a given library during technology mapping. Such cells con-
sist of up to several dozen logic gates1 each and have fixed dimensions. Cell widths are various integer
multiples of unit length, but every cell has the same, fixed, uniform height. The placement region R
has fixed rectangular shape and is correspondingly partitioned into uniform rows, the height of which
matches the standard cell height. Increased design complexity has brought ever greater reuse of larger

Three-pin net

Macro

Pad

Cell

FIGURE 79.1 A sample placement illustrating basic terminology. Cells and macro (lower right) are shaded. Two nets
are shown as broken lines enclosing subsets of cells and pads.

1For example, NAND, XOR, or NOT gates, often with different driving strengths.
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intellectual property (IP) blocks called macros, which may be thousands of times as large as the standard cells
and thus span several standard rows. The multiplicity and diversity of macro sizes in large-scale mixed-size
placement presents a particular challenge to the development of robust, high-quality heuristics.

Let (xi , yi ) denote the coordinates of the lower-left corner of module i , and let (wi , hi ) denote its width
and height. Let x and y denote corresponding vectors of the xi and yi . An accurate calculation of routed
wirelength requires both detailed modeling of 3-D routing topologies and an actual routing solution. For
simplicity, a nonconstructive2 2-D-wirelength approximation is used instead as a substitute. The bounding-
box wirelength of a single net e ∈ E is simply half the perimeter of its smallest circumscribing rectangle,

w(e) = max
v j ∈e

(x j + w j ) − min
vk∈e

xk + max
vm∈e

(ym + hm) − min
vn∈e

yn (79.1)

The corresponding weighted half-perimeter wirelength (HPWL) for a given placement is thus

f (x , y) =
∑

e∈E

γ (e)w(e) (79.2)

where the weights γ (e) may be chosen adaptively for various purposes, for example, dynamically priori-
tizing nets by timing criticality (Section 79.3). In general, several of the modules’ locations will be fixed a
priori, but the number of fixed modules is a small fraction (∼1/

√
N) of the total.

Given the shapes of the modules and a specification of their hypergraph netlist H, a precise formulation
of placement constrains all modules to lie in standard cell rows (macros span multiple rows) with no
two modules overlapping; this view amounts to a mixed integer nonlinear-programming problem. What
distinguishes global placement from general and detailed placement is its approximation of the nonoverlap
constraints. Typically, this approximation is expressed simply as a collection of simple constant upper
bounds ui j of module areas in subregions (“bins”) Bi j defined by a regular m × n rectangular grid G .
Thus, the global placement model problem may be expressed as

min
x , y

∑
e∈E γ (e)w(e)

subject to
∑

v∈V area (v ∩ Bij) ≤ uij for all i ∈ {1, . . . , m}, j ∈ {1, . . . , n}
(79.3)

where v and Bi j are viewed in this formula as sets of points in the plane. The resolution of the grid is usually
determined by some empirical estimate of the capabilities and limitations of the legalization and detailed
placement steps that follow. Illustrations of a global placement and a corresponding detailed placement,
both produced by mPL5 [3] on a mixed-size circuit with over one million modules and nets, is shown in
Figure 79.2.

Center-to-center HPWL = 440715913.
Pin-to-pin HPWL = 301919591.

Center-to-center HPWL = 420180624.
Pin-to-pin HPWL = 282521408.

FIGURE 79.2 A global placement (left) with a corresponding detailed placement on a circuit with over one million
movable objects. For simplicity, nets are not shown.

2The approximation is nonconstructive in the sense that no explicit physical signal routes are actually calculated.
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While there is general agreement on formulation (Eq. [79.3]) among active researchers, the actual
formulation of global placement used, if it is formally stated at all, is usually tailored ad hoc to suit a
given algorithm. New variations continue to be investigated. For example, Eq. (79.3) is often viewed as a
discretization of continuous area–density function d(x̄ , ȳ) defined at every point (x̄ , ȳ) ∈ R. Extensions
or alternatives which incorporate more detailed modeling of complex objectives and constraints, such as
routability, signal propagation times, maximum temperature, noise, etc., are crucial in practice.

79.2 Overview of Dominant Metaheuristics

Heuristics for placement may be broadly classified as either hierarchical or flat. Prior to the 1980s, most
research focused on flat heuristics for instances up to at most a few thousand modules and nets [4]. With
the explosion in instance sizes due to Moore’s law, most research has shifted to hierarchical frameworks
supporting fast and scalable implementations [5]. Generally, however, the two views are combined in vari-
ous ways. Flat heuristics typically play an enabling role at each level of a hierarchical algorithm. Conversely,
flat formulations may rely on hierarchical numerical schemes to accelerate their internal calculations.

79.2.1 Flat Improvement Heuristics

In their survey article of 1972, Hanan and Kurtzberg [4] divided placement techniques into three categories:
(i) constructive initial placement; (ii) iterative placement improvement; and (iii) branch and bound.
Constructive initial placement incrementally selects and places unplaced movable modules according to
the strength of their connectivity to already fixed modules (most circuits have at least some small subset
of terminals fixed a priori). The process is simple and fast, but neglecting connections among movable
modules diminishes the quality of the final placement. Branch and bound is far more accurate and also
constructive but is affordable only for subproblems of ∼15–20 modules or fewer.

Of these three early kinds of placement techniques, iterative improvement is the only one still widely
used. In this approach, a given placement is repeatedly modified as long as sufficient reduction in the
objectives is obtained. Early usage of the term is usually restricted to sequences of strictly feasible, that
is, overlap-free, placements. While many iterative heuristics today also generate sequences of strictly
feasible placements, other infeasible methods attain legality only approximately or asymptotically. Most
feasible heuristics are either discrete or linear. Dominant infeasible heuristics include nonlinear, analytical
formulations such as force-directed methods. Modification strategies in iterative improvement may be
randomized or deterministic, localized or global.

79.2.1.1 Iterative Improvement over Feasible Placements

Perhaps, the simplest but least efficient placement procedure is the global Monte Carlo strategy attempted
in early work [4]. In this approach, all modules are randomly assigned positions according to a given prob-
ability distribution. The resulting placement is retained if and only if it produces lower cost than previously
obtained placements. Although the probability distribution can be dynamically adapted to push modules
toward subregions likeliest to produce lower cost, results are not generally competitive. Currently, the most
successful randomized algorithms employ sequences of local moves guided by simulated annealing [6–11].
A given placement is endowed with a neighborhood structure. A pair of neighboring modules is randomly
selected, and the change in cost �C associated with exchanging the two modules’ positions is computed.
If �C < 0, then the modules’ positions are swapped—the move is accepted. If �C ≥ 0, then the move
is accepted with probability proportional to e−�C/T , where T is the parameter simulating temperature.
Initially, T is set large, so that hill-climbing moves are accepted with relatively high probability. Eventually,
T is decreased far enough that such uphill moves are essentially excluded. When T is decreased suffi-
ciently slowly, certain theoretical guarantees exist for asymptotic convergence of the process to a global
optimum [90]. In practice, a far more rapid decrease in T must be used to keep run times acceptable. The
main drawback of SA is its inherent lack of scalability. Genetic algorithms and simulated evolution have
also been used in placement [12] but, to our knowledge, are not directly used by leading tools.
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Early deterministic heuristics include techniques based on linear assignment, network flows, and force
equilibration. In a typical assignment-based scheme, a subset of movable vertices is selected. If all movable
vertices have the same dimensions, and no movable vertex shares a hyperedge with any other, then linear
assignment (bipartite matching) can be used to determine an optimal permutation of the movable vertices
over their set of locations. Construction of multiple subsets of nonadjacent vertices by iterative deletion is
simple and fast on hypergraphs of bounded degree.

A generalization of this approach, called relaxation-based local search (RBLS), is introduced by Hur
and Lillis [13,14]. In this scheme, the optimal locations of all vertices in a given movable subset are
simultaneously determined without regard to overlap via solution of two separate rectilinear distance
facility location (RDFL) subproblems, one for each coordinate direction. In the x-direction, the problem
may be written as follows. Let M ⊂ E denote the set of nets containing movable vertices; M typically
also contains many other, fixed vertices. Variables ri and li are introduced to represent the right and left
boundaries of the i th net ei ∈ M.

min
∑

{ei ∈M} ri − li

s.t. li ≤ x j ≤ ri for all v j ∈ ei

This problem can be solved efficiently by either a sequence of related network flows or by a single network
flow applied to its dual. Once the subproblem has been solved and the optimal locations are determined,
cell swapping along monotone chains of bins (“ripple-move”) is used to restore area–density legality. For
each overfull bin s , a nearest underfull bin t is selected, and a chain of cell swaps between neighbor-
ing bins (ai , ai+1) leading from s = a1 to t is computed. The chain is monotone in the sense that the
Manhattan distance between ai and t strictly decreases with i ; this property and memoization reduce com-
putational overhead. Network flows have also been used extensively in legalization and detailed placement
algorithms [15,16].

79.2.1.2 Iterative Improvement over Infeasible Placements

Contemporary approaches to iterative improvement fall mostly among the so-called analytical methods
based on mathematical programming or the equilibration of simulated forces. Generally, these methods
all use continuous approximation and seek to satisfy a set of computationally verifiable optimality condi-
tions either repeatedly for sequences of subproblems or asymptotically for the entire circuit. In contrast
to the methods described in the previous subsection, they do not normally terminate at overlap-free
configurations, and they therefore require postprocessing by a legalization engine.

The idea of modeling an IC as a system of springs and masses dates back at least as far as 1967 [17].
The mass of a vertex is taken in proportion to its area. The force on a mass i due to mass j is defined
by Hooke’s law: Fi j = ki j si j . Vector si j is the displacement from the position of i to that of j . Spring
constant ki j is proportional to the total relative strength of all hyperedges containing both i and j . The
precise form of ki j amounts to a prescription for approximating netlist H by a graph G ; for example,
ki j = ∑

i, j∈e w(e)/(|e| − 1). One simple form of iteration attempts to move vertices one by one to the
available location nearest where the sum of the forces on them is zero. Later work of Quinn and Breuer [18]
applies a Newton-based algorithm to a simultaneous systems of nonlinear equations for force equilibrium.

Other abstractions of force simulations have been proposed for placement. For example, Cheng and
Kuh [19] proceed by an analogy to the minimization of power dissipation in an electrical network. More
generally, explicit modeling of physical forces can be abandoned in favor of a simple mathematical model
in which a quadratic, graph-based-wirelength approximation is minimized without regard to overlap con-
straints. This simple unconstrained quadratic placement is widely used to generate both initial placements
and subsequent refinements, both local and global. The presence of fixed terminals at various locations
tends to spread cells enough that cell centers rarely coincide, thus enabling subsequent spreading based
on relative-order heuristics [20,21]. Judicious iterative addition and adjustment of fixed pseudoterminals
is used by FastPlace [22] and mFAR [23,24] both for accelerating convergence and improving quality.
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Example: Kraftwerk

Seminal work by Eisenmann and Johannes [25] formulates force-directed placement as a sequence of
unconstrained quadratic minimizations. The perturbed quadratic-wirelength-objective function

q(x , y) = 1

2
(xT Qx + yT Qy) + bT

x x + bT
y y + f T

x x + f T
y y

captures both netlist connectivity and area congestion by a graph approximation and force–field calcu-
lation, as follows. Cell-to-cell connections determine the off-diagonal entries and part of the diagonal
entries in the fixed graph Laplacian matrix Q by means of a quadratic star-wirelength model [20]. Cell-to-
pad connections contribute to the diagonal elements of Q, rendering it positive definite, and determine
the linear-term coefficients in the right-hand side vector b = (bx , by ). Viewing this vector b as external
spring-like forces following Hooke’s law, the circuit connectivity is represented by the (constant) symmetric
positive-definite matrix Q and the vector b. The perturbation vector f = ( fx , f y ) represents global area-
distribution forces analogous to electrostatic repulsion, with cell area playing the role of electric charge. At
each iteration, vector f is recalculated from the current cell positions by means of a fast Poisson-equation
solver. Since Q does not change from one iteration to the next unless nets are reweighted, a hierarchical
set of approximations to Q can typically be reused over several iterations. We refer to this approach as
Poisson-based.

79.2.2 Hierarchical Methods

The FastPlace and Kraftwerk algorithms show that global placement can still be done flat. Most other
leading algorithms, however, explicitly incorporate hierarchy. The dominant hierarchical metaheuristics
are recursive partitioning and multilevel methods, aka multiscale methods.

79.2.3 Recursive Partitioning

Among academic placement tools, all the leading top-down methods rely on variants of recursive cir-
cuit partitioning in some way. Seminal work on partitioning-based placement was done by Breuer [26]
and Dunlop and Kernighan [27]. Most contemporary methods have exploited further advances in fast
multiscale algorithms for hypergraph partitioning [28–30] to push these frameworks beyond their orig-
inal capabilities. Fast, high-quality O(N) partitioning algorithms give top-down partitioning attractive
O(N log N) scalability overall. The asymptotic isO(N log N) and notO(N), because partitioning is always
applied to cells, not to aggregates.

79.2.3.1 Cutsize Minimization

At a given level of the top-down hierarchy, each rectangular subregion S and the modules assigned to it
are bipartitioned, that is, S is split by a horizontal or vertical cutline into two disjoint rectangular subre-
gions S1 and S2, and each module assigned to S is assigned to either S1 or S2. Most partitioning-based
top-down placers employ variations of multilevel [28–30] Fiduccia-Matheysses (FM) style [31] itera-
tions to separate the modules. Given some initial partition, subsets of cells are moved across its cutline
in a way that reduces the total weight of hyperedges cut without violating a given area–balance con-
straint (a hyperedge is cut if it contains modules in both subsets of the partition). Leading tools based
on recursive cutsize-driven partitioning include Capo [32,33] and Feng Shui [34,35]. Spatial cutlines
for subregions, either horizontal or vertical, can be carefully chosen, for example, by dynamic program-
ming [36], such that subregion aspect ratios remain bounded. As the recursion proceeds, cell subsets
become smaller, and the cell-area distribution over the placement region becomes more uniform. Base
cases of the bipartitioning recursion are reached when cell subsets become small enough that special
end-case placers can be applied [37]. A small example is illustrated after three levels of bipartitioning in
Figure 79.3.

Netlist bipartitioning can be enhanced in a few important ways to support the ultimate goal of
wirelength-driven circuit placement. Key considerations include (i) terminal propagation; (ii) subproblem
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FIGURE 79.3 Cutsize-driven partitioning-based placement. Rectangles represent movable cells, line segments rep-
resent cutlines, and ellipses and other closed curves represent nets. The recursive bipartitioning attempts to minimize
the number of nets containing cells in more than one subregion.

ordering; (iii) cutline placement; and (iv) handling small balance tolerances and/or highly nonuniform
module areas.

Connections between subregions can be modeled by terminal propagation [27,38], in which the usual
cutsize objective is augmented by terms incorporating the effect of connections to external subregions.
At early stages, when the best positions of these connection points are not clear, several iterations may be
used to incorporate feedback [34,39]. Other techniques for organizing local partitioning subproblems use
Rent’s rule to relate cutsize to wirelength estimation [40,36].

Careful consideration of the order and manner in which subregions are selected for partitioning can
be significant. In the multiway partitioning framework, intermediate results from the partitioning of each
subregion are used to influence the final partitioning of others. Explicit use of multiway partitioning
at each stage can in some cases bring the configuration closer to a global optimum than is possible by
recursive bisection alone [34]. Cell replication and iterative deletion have been used for this purpose [41].
Rather than an attempt to find the best subregion in which to place a cell, one can replicate the cell enough
times to place it once in every subregion, then iteratively delete only the worst choices. These iterations
may continue until only one choice remains, or they may be terminated earlier, allowing a small pool of
candidates to be propagated to and replicated at finer levels. By postponing further deletion decisions until
better information becomes available, spurious effects from locally optimal subregion partitions can be
diminished and the global result improved.

In Capo, horizontal cuts are constrained to lie between uniform-height rows of the standard-cell layout.
Respecting standard-cell row boundaries in this fashion greatly facilitates legalization of the final global
placement. However, a recent study shows [42] that this restriction occasionally overconstrains end cases
and increases wirelength. The authors of this study show that Feng Shui’s “fractional-cut” relaxation of
row boundaries during the partitioning can considerably improve results, when it is followed by careful
displacement-minimizing legalization, such as dynamic-programming-based row assignment.

Much of Capo’s performance derives from its placement-driven enhancements to its core FM parti-
tioner [43,44] to support nonuniform module sizes and tight area–balance constraints. Given any initial
partition, FM considers sequences of single, maximum-gain cell moves from one partition block to the
other. It maintains a list of “buckets” for each partition block, where the kth bucket in each list holds the
vertices which, when moved to the opposite block, will reduce the total number of nets cut by k. However,
a cell will not be moved if the move violates the vertex-weight (area) balance constraint. A large module in
an FM gain bucket must not prevent other modules of equal gain from being considered for movement.
Capo starts each bipartitioning subproblem with a relaxed area–balance constraint and gradually tightens
the constraint as partitioning iterations proceed. As the balance tolerance decreases below the area of any
cell, that cell is locked in its current partition block. The final subproblem balance tolerance is selected so
that, given an initial white space budget, enough relative white space in end-case subproblems is ensured
so that overlap-free configurations can typically be found.
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Incorporating Advances in Floorplanning

The quality and robustness of partitioning-based placement, especially mixed-size placement, can be en-
hanced by the incorporation of techniques for fixed outline floorplanning. Such incorporation improves
the handling of large macro blocks [45] and facilitates final legalization of end-case subproblems. Alter-
native approaches are taken by Capo [32,33] and Patoma/PolarBear [46,47].

In Capo [32,33], min-cut placement proceeds as described above until certain ad hoc tests suggest that
legalization of a subset of macro blocks and cells within their assigned subregion may be difficult. At
that point, the cells in that subregion are aggregated into soft clusters, and annealing-based fixed outline
floorplanning is applied to the given subproblem [48]. If it succeeds, the macro locations in its solution
are fixed. If it fails, it must be merged with its sibling subproblem, and the merged parent subproblem
must then be floorplanned. This step therefore initiates a recursive backtracking through ever larger
ancestor subproblems. The backtracking terminates when one of these ancestor subproblems is successfully
floorplanned. The ad hoc tests are chosen to prevent long backtracking sequences on most cases.

The challenge of ensuring the legalizability of subproblems within a min-cut partitioning-based floor-
planning or placement has been most directly addressed by Patoma and PolarBear [47,49].3 Beginning
with the given instance itself, PolarBear employs fast and scalable area-driven floorplanning before cutsize-
driven partitioning to confirm that the problem can be legalized as given. This area-driven “prelegalization”
ignores wirelength but serves as a guarantor of the legalizability of subsequent steps. It is extremely robust.
Given the guarantor legalization at a given level, cutsize-driven partitioning proceeds at that level. The flow
then proceeds recursively on the subproblems generated by the cutsize-driven partitioning, each subprob-
lem being legalized before it is solved. When prelegalization fails, the failed subproblem is merged with its
sibling, and the previously computed legal guarantor solution to this parent subproblem is improved to
reduce wirelength. The flow thus guarantees the computation of a legal placement or floorplan, under the
very modest assumption that the initial attempt to prelegalize the given instance succeeds. Experiments
with this flow demonstrate significantly more robust performance on mixed-size benchmarks with white
space between 1 and 10%.

79.2.3.2 Partitions Guided by Analytical Placements

An oft-cited disadvantage of recursive bisection is its alleged tendency to ignore the global objective as it
pursues locally optimal partitions. Approximating wirelength by cutsize in the objective may also degrade
the quality of the final placement. A radically different approach, first introduced in Proud [19,50], and sub-
sequently, refined by Gordian [20,51], BonnPlace [21,52], and Warp [53], is to use continuous, iteratively
constrained quadratic star-model-wirelength minimization over the entire circuit to guide partitioning
decisions. The choice of a quadratic-wirelength objective helps avoid long wires and facilitates the construc-
tion of efficient numerical linear-system solvers for the optimality conditions, for example, preconditioned
conjugate gradients. Fixed I/O terminals prevent modules from simply collapsing to a single point. Linear
wirelength can still be asymptotically approximated by iterative adjustments to the net weights [51].

Following this “analytical” placement, each region is then quadrisected, and cells are partitioned to
subregions to further reduce overlap and area congestion. In Gordian, carefully chosen cutlines and FM-
based cutsize-driven partitioning and repartitioning are used. Cell-to-subregion assignments are loosely
enforced by imposing and maintaining a single center-of-mass equality constraint for each subregion.
As constraints accumulate geometrically, degrees of freedom in cell movement are eliminated, and the
quadratic minimization at each step moves cells less and less. In BonnPlace, module subsets are quadrisected
in a manner that essentially minimizes the sum of their rectilinear displacements from their starting
positions [54]. BonnPlace does not explicitly impose equality constraints into the subsequent analytical
minimization to preserve these partitioning assignments, as Gordian does. Instead, it directly alters the
quadratic-wirelength objective to minimize the sum of all cells’ squared Manhattan displacements from
their assigned subregions.

3Recently [91], ad-hoc look-ahead floorplanning based on simulated annealing of large macros with clustered
smaller macros and standard cells has been incorporated into Capo with excellent results.
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(a) (b) (c)

FIGURE 79.4 Warping. Each bin of a uniform bin grid (a) is mapped to a corresponding quadrilateral in an oblique
but slicing bin structure (b) so as to capture roughly equal numbers of cells in each quadrilateral. The inverse bin maps
are applied to the cells in order to spread them out (c).

The novelty of grid warping [53] is that, rather than directly move modules based on their distribution, it
uses the modules to deform or warp the region in which they lie, in an analogy with gravity as described by
Einstein’s general relativity. The inverse of the deformation is then used to carry modules from their original
locations to a more uniform distribution. Figure 79.4 illustrates the approach. As shown, oblique grid lines
are used, and although a slicing structure with alternating cutline directions and quadrilateral bins is main-
tained, gridlines not necessary to the slicing pattern are broken at points where they intersect other gridlines.
This weakening of the grid structure allows close neighbors in the original unconstrained placement to be
separated a relatively large distance by the warping. The grid points of the warped grid are determined si-
multaneously by a derivative-free method of nonlinear optimization of Brent and Powell [55]. The required
top-down slicing grid structure is maintained by (a) fixing the alternating cutline direction order a priori,
by deciding whether to orient the first cut from top to bottom or from side to side, and (b) expressing each
cutline after the first in terms of two variables, one for where it intersects its parent cutline, and another
for where it intersects the opposite boundary or cutline. A penalty function f is used as the objective:

f = wirelength + ρ
∑

bins

βi j

where βi j is approximately the square of the difference between the total cell area in bin (i, j ) and the
target cell area κ = κ(i, j ) for each bin. The wirelength is the total weighted HPWL obtained after the
inverse warp. Although evaluating the objective is fairly costly, the number of variables in the optimization
is low—only 6 for a 2 × 2 grid or 30 for a 4 × 4 grid—and convergence is fast.

Iterative Refinement

Following the initial partitioning at a given level, various means of further improving the result at that
level can be used. In BonnPlace (Section 79.2.3.2), unconstrained quadratic- wirelength minimization over
2 × 2 windows of subregions is followed by a repartitioning of the cells in these windows. Windows can
be selected based on routing–congestion estimates. Capo [32] greedily selects cell orientations to reduce
wirelength and improve routability. Feng Shui [34] follows k-way partitioning by localized repartitioning
of each subregion. Some leading partitioning-based placers also employ time-limited branch-and-bound-
based enumeration at the finest levels [37].

In Dragon [10,40], an initial cutsize-minimizing quadrisection is followed by a bin-swapping-based
refinement, in which entire partition blocks at that level are interchanged in an effort to reduce total
wirelength. At all levels except the last, low-temperature simulated annealing is used; at the finest level, a
more detailed and greedy strategy is employed. Because the refinement is performed on aggregates of cells
rather than on cells from the original netlist, Dragon may also be grouped with the multilevel methods
discussed next.

79.2.4 Multiscale Methods

Placement algorithms in the multilevel paradigm have developed rapidly over the last 6 years [3,10,11,24,
40,56–62]. These methods construct a hierarchy of problem approximations, perform optimizations on
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aggregated variables and data functions at each level, and transfer solutions between levels to obtain a final
placement of the given netlist. The following terminologies are standard.

(i) Coarsening. Hierarchies are built recursively, by bottom-up aggregation or top-down partitioning.
(ii) Relaxation. Iterative optimization improves an approximate solution at a given aggregation level.

(iii) Interpolation. Each final approximate placement at a given level is used as the initial placement at
its neighboring finer level. (A good placement for the coarsest level can be obtained directly.)

The order in which the various problems at the various levels are solved can also be important. The
simplest and most common approach is simply to proceed top down, from the coarsest to the finest
level, once the aggregation hierarchy has been constructed [10,56,57,60]. However, studies show that
considerable improvement is possible by repeated traversals and reconstructions of the hierarchy in various
orderings [59,63], as in traditional multiscale methods for Partial Differential Equations (PDEs) [64]. We
refer to this organization of traversals as iteration flow.

The scalability of the multilevel approach is obvious. Provided relaxation at each level has order linear
in the number Na of aggregates at that level, and the number of aggregates per level decreases by factor
r < 1 at each level of coarsening, say Na (i) = r i N at level i , the total order of a multilevel method is at
most c N(1 + r + r 2 + · · ·) = c N/(1 − r ). Higher-order (nonlinear) relaxations can still be used in a
limited way (e.g., Refs. [3,24,60]). For example, a hard limit on the number of global nonlinear relaxation
steps can be imposed. While not strictly scalable, global relaxations often produce better solutions than
their localized counterparts and can be tuned to limit run time. Alternatively, relaxation can be applied
only to subsets of bounded size, for example, by sweeps over overlapping windows of contiguous clusters
at the current aggregation level.

79.2.4.1 Coarsening

Traditional multiscale algorithms form their hierarchies by recursive clustering or generalizations thereof.
However, the importance of limiting cutsize makes partitioning attractive in the placement context [10].
Typically, clustering algorithms merge tightly connected cells in a way that eliminates as many nets
at the adjacent coarser level as possible while respecting some area–balance constraints. Experiments
to date suggest that relatively simple, graph-based greedy strategies like First-Choice vertex matching
[65,66] produce fairly good results. More sophisticated ideas like edge-separability clustering (ESC) [67],
wirelength-prediction-based clustering [68], and “best-choice” clustering [66] have also been attempted.
In general, how best to define coarse-level hyperedges without explosive growth in the number and degree
of coarsened hyperedges relative to coarsened vertices remains an important open question [69].

First-Choice clustering is illustrated in Figure 79.5. A graph is defined on the netlist vertices with
each edge weighted by the “affinity” of the given two vertices. The affinity may represent some weighted
combination of complex objectives, such as hypergraph connectivity, spatial proximity, timing delay, area
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FIGURE 79.5 First-Choice clustering on an affinity graph. Darkened edges in the original graph are of maximal
weight for at least one of their vertices. Note that vertex d has maximal affinity for vertex b, but vertex b has maximal
affinity for vertex f .
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balance, coarse-level hyperedge elimination, and so on. Each vertex is paired with some other vertex for
which it has its highest affinity. This maximum-affinity pairing is not symmetric and is independent of the
order in which vertices are considered (see Figure 79.5). The corresponding maximum-affinity edges are
marked and define a subgraph of the affinity graph; connected components of this subgraph are clustered
and thus define vertices at the next coarser level.

79.2.4.2 Initial Placement at Coarsest Level

A placement at the coarsest aggregate level may be derived in various ways. Because the initial placement
may have a large influence at subsequent iterations, and because the coarsest-level problem is relatively
small, the placement at this level is typically performed with great care, to the highest quality possible,
by an enhanced version of the relaxation engine. How to judge the coarse-level placement quality is not
necessarily obvious, however, as the coarse-level objective may not correlate strictly with the ultimate
fine-level objectives.

79.2.4.3 Relaxations

The core of a multiscale algorithm is the means by which it improves its approximate solution at a
given aggregation level. Almost any algorithm for intralevel optimization can be used, provided that it can
support (i) incorporation of complex constraints and (ii) restriction to subsets of movable objects. Leading
contemporary algorithms build on the iterative improvement heuristics employed by their predecessors.
Relaxation in mPG [11], Dragon [10], and Ultrafast VPR [56] is by fast annealing. Both APlace [60,61]
and mPL5 [92] use nonlinear programming with the following log–sum–exp smoothing of the HPWL of
each net t = {(xi , yi ) | i = 1, . . . , deg(t)},

�exp(t) = α ·
(

ln
(∑

exi /α
)

+ ln
(∑

e−xi /α
)

+ ln
(∑

e yi /α
)

+ ln
(∑

e−yi /α
))

(79.4)

where α is the smoothing parameter. The formulations used by APlace and mPL5 for nonoverlap
constraints are quite different however, as are the optimization engines used to find solutions. These
are reviewed next.

Example: APlace

In APlace, the scalar potential field φ(x , y) used to generate area–density-balancing forces is defined as a
sum over cells and bins as follows. For a single cell v at position (xv , yv) overlapping with a single bin b
centered at (xb , yb), the potential is the bell-shaped function

φv(b) = α(v) p(|xv − xb |) p(|yv − yb |)
where α(v) is selected so that

∑
b∈G φv(b) = area(v), and

p(d) ≡
{

1 − 2d2/r 2 if 0 ≤ d ≤ r/2
2(d − r )2/r 2 if r/2 ≤ d ≤ r

(79.5)

and r is the radius of the potential. The potential φ at any bin b is then defined as the sum of the potentials
φv(b) for the individual cells overlapping with that bin. Let (X, Y ) denote all positions of all cells in the
placement region R. Let |G | denote the total number of bins in grid G . Then the target potential for each
bin is simply φ̄ = ∑

v∈V area(v)/|G |, and the area–density penalty term for a current placement (X, Y )
on grid G is defined as

ψG (X, Y ) =
∑

b∈G

(φ(b) − φ̄)2

For the given area density grid G , APlace then formulates placement as the unconstrained minimization
problem

min
v∈V

ρ�

(
∑

e∈E

�exp(e)

)

+ ρψψG (X, Y )
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for appropriate, grid-dependent scalar weights ρ� and ρψ . This formulation has been successfully aug-
mented in APlace to model routing congestion, movable I/O pads, and symmetry constraints on placed
objects.

Optimization in APlace proceeds by the Polak-Ribiere variant of nonlinear conjugate gradients [70]
with Golden-Section linesearch [71]. A hard iteration limit of 100 is imposed. The grid size |G |, objective
weights ρ� and ρψ , wirelength smoothing parameter α (Eq. [79.4]), and area–density potential radius
r (Eq. [79.5]) are selected and adjusted at each level to guide the convergence. Bin size and α are taken
proportional to the average aggregate size at the current level. The potential radius r is set to 2 on most
grids but is increased to 4 at the finest grid to prevent oscillations in the maximum cell-area density of any
bin. The potential weight ρψ is fixed at one. The wirelength weight ρ� is initially set rather large and is
subsequently decreased by 0.5 to escape from local minima with too much overlap. As iterations proceed,
the relative weight of the area–density penalty increases, and a relatively uniform cell-area distribution is
obtained.

Example: mPL5

mPL5 generalizes the Kraftwerk framework to a more rigorous mathematical formulation suitable for a
multilevel implementation. Recall that x and y denote vectors of module coordinates; hence, we let (x̄ , ȳ)
denote an arbitrary point in R. Letting Di j denote the cell-area density of bin Bi j and K the total cell
area divided by the total placement area, the area–density constraints are initially expressed simply as
Di j = K over all bins Bi j . Viewing the Di j as a discretization of the smooth density function d(x̄ , ȳ),
these constraints are smoothed by approximating d by the solution ψ to the Helmholtz equation

�ψ(x̄ , ȳ) − εψ(x̄ , ȳ) = d(x̄ , ȳ), (x̄ , ȳ) ∈ R
∂ψ
∂ν

= 0, (x̄ , ȳ) ∈ ∂R
(79.6)

where ε > 0, ν is the outer unit normal, ∂R the boundary of the placement region R, d(x̄ , ȳ) the
continuous density function at a point (x̄ , ȳ) ∈ R, and � the Laplacian operator � ≡ ∂2

∂ x̄2 + ∂2

∂ ȳ2 .

The smoothing operator �−1
ε d(x̄ , ȳ) defined by solving Eq. (79.6) is well defined, because Eq. (79.6) has

a unique solution for any ε > 0. Since the solution of Eq. (79.6) has two more derivatives [72] than
d(x̄ , ȳ), ψ is a smoothed version of d . Discretized versions of Eq. (79.6) can be solved rapidly by fast nu-
merical multilevel methods. Recasting the density constraints as a discretization of ψ gives the nonlinear
programming problem

min W(x , y)
s.t. ψij = −K /ε, 1 ≤ i ≤ m, 1 ≤ j ≤ n

(79.7)

where the ψi j is obtained by solving Eq. (79.6) with the discretization defined by the given bin grid.
Interpolation from the adjacent coarser level defines a starting point. This nonlinear-programming prob-
lem is solved by the Uzawa iterative algorithm [73], which does not require second derivatives or large
linear-system solves:

∇W(xk+1, yk+1) + ∑

i, j
λk

ij∇ψi j = 0

λk+1
ij = λk

ij + α(ψij + K̄ /ε)
(79.8)

where λ is the Lagrange multiplier, λ0 = 0, α is a parameter to control the rate of convergence, and
gradients of ψij are approximated by simple forward finite differences ∇x̄k ψij = ψi, j+1−ψi, j

hx̄
, ∇ȳk ψij =

ψi+1, j −ψi, j
h ȳ

when the center of cell vk is inside Bi j and are set to zero otherwise. The nonlinear equa-

tion for (xk+1, yk+1) is recast as an ordinary differential equation and solved by an explicit Euler
method [74].

Comparison to APlace

mPL5 and APlace both employ multilevel adaptations of globalized, analytical, iterative, formulations
for placement. The primary difference between their formulations is the manner in which they model
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the nonoverlap constraints. APlace uses local smoothing of area densities derived from symmetric bell-
shaped functions, while mPL5 uses a global smoothing derived from the Helmholtz equation. While
mPL5 specifically targets first-order constrained optimality conditions with explicit Lagrange-multiplier
updates derived from fast ODE solves, APlace minimizes each member of a sequence of unconstrained
penalty functions. The convergence theory for these sequential unconstrained methods [75] shows that
they implicitly maintain Lagrange-multiplier estimates as well. Both methods rely on (i) empirical density
estimates for termination criteria and (ii) empirically tuned parameters for control of the convergence
rate, and both have produced results of very high quality.

79.2.4.4 Interpolation

Simple declustering and linear assignment can be effective [57]. With this approach, each component
cluster is initially placed at the center of its parent’s location. If an overlap-free configuration is needed,
a uniform bin grid can be laid down, and clusters can be assigned to nearby bins or sets of bins. The
complexity of this assignment can be reduced by first partitioning clusters into smaller windows, for
example, of 500 clusters each. If clusters can be assumed to have uniform size, then fast linear assignment
can be used. Otherwise, approximation heuristics are needed.

Under algebraic-multigrid-style (AMG)-weighted disaggregation, each finer-level cluster is initially
placed at the weighted average of the positions of all coarser-level clusters with which its connection is
sufficiently strong [58]. Finer-level connections can also be used: once a finer-level cluster is placed, it can
be treated as a fixed, coarser-level cluster for the purpose of placing subsequent finer-level clusters.

79.3 Timing and Routability

Realistic constraints for VLSI placement typically enforce limits on maximum signal-propagation times and
the routability of wires connecting modules. The formulation of these constraints and their incorporation
within the generic wirelength-driven model problem are described briefly in this section.

79.3.1 Timing

Timing-driven placement algorithms fall into two categories: path-based and net-based. An accurate view
of signal propagation in an IC is graph-based rather than hypergraph-based. In each net of a given IC, one
vertex serves as signal source and the other vertice serve as sinks. A signal travels from its primary input
(PI) to its primary output (PO) along a path of pairs of modules in nets. The performance of a circuit is
determined by the longest delay of any of its signal paths. Path delay is extremely complex, however, as the
number of paths grows exponentially with circuit size.

Two path-based formulations of timing-driven placement appear frequently. In the first, the maximum
signal-propagation time along any path is used directly as the objective to be minimized. In the second,
constraints on propagation times are imposed, and the minimum slack along any path is maximized. In
either formulation, auxiliary variables representing arrival times at circuit nodes are explicitly introduced.
In terms of arrival time a(i) at pin i , timing constraints may be expressed as follows:

a( j ) ≥ a(i) + d(i, j ) ∀(i, j ) ∈ G; a( j ) ≤ T ∀ j ∈ PO; a(i) = 0 ∀i ∈ PI

where G denotes the timing graph, d(i, j ) the delay of timing arc (i, j ) either as a constant for cell internal
delay or as a function of cell locations, and T the target’s longests path delay. Here we assume that the
arrival time at all PI pins is zero and that all PO pins have the same delay targets. Simple changes can be
made to the formula to accommodate more complex situations.

The advantage of path-based algorithms is their accurate timing view during the optimization procedure.
However, they usually require substantial computation resources, and, in certain placement frameworks
such as top-down partitioning, it is very difficult or infeasible to maintain an accurate view of global
timing.
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Net-based algorithms [25,76–78], in contrast, enforce path-based constraints only indirectly by means
of net-length constraints or net weights. This information is fed to a weighted-wirelength-minimization-
based placement engine to obtain a new placement with better timing. This new placement is then analyzed
by a static analyzer, thus generating a new set of timing information to guide the next placement iteration.
Usually this process must be repeated for a few iterations until no improvement can be made or until a
certain iteration limit has been reached. Net-weighting-based approaches assign weights to nets based on
(a) their timing criticality and (b) the number of paths sharing a net. A recently proposed algorithm [79]
can properly scale the impact of all paths by their relative timing criticalities as measured by their slacks.
Under certain conditions, this method is equivalent to enumerating all the paths in the circuit, counting
their weights, and then distributing the weights to all edges in the circuit.

79.3.2 Routability

Because most wire routes go over the modules in parallel planes known as routing layers, during placement
it is not strictly necessary to reserve space for wires alongside the modules. However, a tightly packed
placement may be difficult or impossible to route. Therefore, quantitative models of estimated routing
congestion are incorporated into the objective or constraints of practical placement algorithms.

There are two major categories of routability modeling: topology-free (TP-free), where no explicit
routing is done and topology-based (TP-based), where rectilinear routing trees are explicitly constructed
on some routing grid. TP-free modeling is faster in general. In bounding-box modeling [80], for example,
the routing supply for each bin in the routing grid structure is modeled according to how the existing wiring
of power or clock nets, regular cells, and macros is placed, and the routing demand of a net is modeled by its
weighted bounding-box length. Pin densities and stochastic models for two-pin nets have also been used
to compute expected horizontal and vertical track usage with consideration of routing blockages [81,82].
In TP-based modeling, for each net, a Steiner tree is generated on the given routing grid. If a TP-based
modeling method uses a topology similar to what the after-placement-router does, the fidelity of the model
can be guaranteed. However, topology generation is often of high complexity; therefore, most research
focuses mainly on efficiency. In one approach [83], a precomputed Steiner tree topology on a few grid
structures is used for wiring-demand estimation. In another approach [11], two algorithms of logarithmic
complexity were recently proposed: a fast congestion-avoidance two-bend routing algorithm, LZ-router
for two-pin nets, and an IncA-tree algorithm, which can support incremental updates for building a
rectilinear Steiner arborescence tree (A-tree) for a multipin net.

The results of routability modeling can be applied to placement optimization by net weighting, cell
weighting (cell inflation), or white-space allocation. Net weighting directly incorporates a congestion
picture into the weighted-wirelength-placement objective. Cell weighting (also known as cell inflation)
incorporates a congestion picture into nonoverlap constraints by inflating cell sizes based on congestion
estimation, so that the placement algorithm’s overlap-removal system can alleviate the congestion with-
out added enhancement. White-space allocation can be applied hierarchically [93–95] to ease routing
congestion in hot spots with low perturbation to a given layout. mPL6 [96], a recent enhancement of
mPL5 [97], uses artificial, unconnected “filler cells” for efficient white-space distribution in the multi-
scale nonlinear-programming framework. mPL6 produced the best quality of results in the ISPD 2006
Placement Contest [98].

79.4 Conclusion

Recent years have seen a resurgence in the investigation of both synthetic benchmarks with known
optimality properties [84–87] and lower bounds for globally optimal solutions to real instances [88]. For
standard-cell benchmarks with known optima [85], leading tools may produce solutions with wirelengths
as much as 2× or more above the optimal. For large mixed-size benchmarks with known optima [89],
observed wirelengths are often 5× or more above the optimal. Moreover, this gap is observed to increase
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20% or more with the size of the parametrized benchmarks. One recent study suggests that a large gap
may result even when almost every module in a global placement is within a very small distance—one or
two cell widths—of its optimal location [86]. While the results of these studies are diverse and difficult to
generalize, the techniques they describe are increasingly being used to identify algorithm weaknesses that
may be difficult to isolate on real instances.

In the last decade, the increased importance of interconnect delay on the performance of VLSI circuits
has spurred a burst of progress in algorithms for large-scale global placement. The new algorithms of-
ten generalize earlier heuristics within a hierarchical framework—either top-down recursive partitioning
or multiscale optimization. Increasing computing power and instance complexity continue to push re-
searchers to consider diverse techniques as they seek more effective algorithms. More detailed discussion
of recent advances in large-scale global placement can be found in [5] and [99].
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80.1 Introduction

Due to delay scaling effects in deep-submicron technologies, interconnect planning and synthesis are
becoming critical to meeting chip performance targets with reduced design turnaround time. In particu-
lar, the global routing phase of the design cycle is receiving renewed interest, as it must efficiently handle
increasingly more complex constraints for increasingly larger designs (see Ref. [1] for a recent survey). In
addition to handling traditional objectives such as congestion, wirelength, and timing, a critical require-
ment for next generations of global routers is the integration with other interconnect optimizations, most
importantly with buffer insertion and sizing. Indeed, it is estimated that top-level on-chip interconnect
will require up to 106 repeaters when we reach the 50 nm technology node. Since these repeaters are large
and have a significant impact on global routing congestion, buffer insertion and sizing can no longer be
done after global routing completes.

In this chapter, we present and enhance a powerful integrated approach introduced in Ref. [2] for
congestion and timing-driven global routing, buffer insertion, pin assignment, and buffer/wire sizing.
Our approach is based on a multicommodity flow formulation for the buffered global routing problem.
Multicommodity flow-based global routing has been an active research area since the seminal work of
Raghavan and Thomson [3]. Although the global routing problem is NP-hard (even highly restricted
versions of it, see Ref. [4]), Raghavan and Thomson [3] have shown that the optimum solution can be
approximated arbitrarily close in time polynomial in the number of nets and the inverse of the accuracy. To
date, predictability of solution quality continues to be a distinct advantage of multicommodity flow-based
methods over all other approaches to global routing, including popular rip-up-and-reroute approaches [1].

The original method of Raghavan and Thomson relies on randomized rounding of an optimum
fractional multicommodity flow. Subsequent works [5,6] have improved runtime scalability by using
the approximation algorithm for multicommodity flows by Ref. [7]. Yet, only the recent breakthrough

80-1
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improvements due to Garg and Könemann [8] and Fleischer [9] have rendered multicommodity flow-
based global routing practical for full chip designs [10]. As Ref. [10], our algorithm is built upon the
efficient multicommodity flow approximation scheme of Refs. [8,9]. Our main contribution is a provably
good multicommodity flow-based algorithm that, for a given buffer site map, finds a buffered global rout-
ing minimizing buffer and wire congestion subject to given constraints on routing area (wirelength and
number of buffers) and sink delays.

The key features of our approach include the following:

• Our implementation permits detailed floorplan evaluation in that it enables computing the trade-
off curve between routing area and wire/buffer congestion under any combination of delay and
capacity constraints.

• Like the allocation heuristic in Ref. [11], our algorithm enforces maximum source/buffer wireloads
and controls congestion by taking into account routing channel capacities and buffer site locations.
At the same time, like the buffer-block planning algorithm in Ref. [12], our algorithm takes into
account individual sink delay constraints.

• Simultaneously, our algorithm performs buffer and wire sizing by taking into account given libraries
of buffer types and wire widths, and integrates layer and pin assignment (the latter with virtually
no increase in runtime). Soft pin locations are modeled as multiple sites (grid locations), and are
enabling to solution quality.

The rest of the chapter is organized as follows. In Section 80.2, we formalize the buffered global routing
problem for 2-pin nets. Then, in Section 80.3.2, we reformulate the problem as a minimum cost integer
multicommodity flow problem (with capacities on sets of edges), give an efficient algorithm for finding
near-optimal solutions to the fractional relaxation, and show how to convert fractional solutions to near-
optimal routings by randomized rounding. In Sections 80.4 and 80.5 we show how our approach can
be extended to handle multipin nets as well as pin assignment, polarity constraints imposed by the use
of inverting buffers, buffer and wire sizing, and prescribed delay upperbounds. We conclude the chapter
with experimental results detailing the scalability and limitations of our algorithm and comparing it to
the heuristic in Ref. [11].

80.2 Problem Formulation

In this section we formulate the buffered global routing problem. To simplify the presentation, we ignore pin
assignment flexibility and assume that there is a single (noninverting) buffer type and a single wire width.
We further assume that only buffer wireload constraints must be satisfied (i.e., ignore delay upper-bounds),
and that each net has two pins only. Extensions of our approach to pin assignment, polarity constraints
induced by the use of inverting buffers, buffer and wire sizing, timing constraints, and multipin nets are
discussed in Section 80.5.

For a given floorplan and tile size, we construct a vertex- and edge-weighted tile graph G = (V, E , b, w),
b : V → IN, w : E → IN, where:

• V is the set of tiles;
• E contains an edge between any two adjacent tiles;
• For each tile v ∈ V , the buffer capacity b(v) is the number of buffer sites located in v; and
• For each edge e = (u, v) ∈ E , the wire capacity w(e) is the number of routing channels available

between tiles u and v.

We denote by N = {N1, N2, . . . , Nk} the given netlist, where each net Ni is specified by a source si and
a sink ti .

A feasible solution to the buffered global routing problem seeks for each net Ni an si −ti path Pi buffered
using the available buffer sites (see Figure 80.1) such that the source vertex and the buffers drive each at
most U units of wire, where U is a given upper-bound (the example in Figure 80.1 has U = 5). Formally,
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FIGURE 80.1 Tile graph with two 2-pin nets.

a feasible buffered routing for net Ni is a path Pi = (v0, v1, . . . , vli ) in G together with a set of buffers
Bi ⊆ {v0, . . . , vli } such that:

• v0 = si and vli = ti ;
• w(vi−1, vi ) ≥ 1 for every i = 1, . . . , li ;
• b(vi ) ≥ 1 for every vi ∈ Bi ; and
• The length along Pi between v0 and the first buffer in Bi , between consecutive buffers, and between

the last buffer and vli , are all at most U .

We will denote by Ri the set of all feasible routings (Pi , Bi ) for net Ni . Given buffered routings
(Pi , Bi ) ∈ Ri for each net Ni , the relative buffer congestion is

µ = max
v∈V

|{i : v ∈ Bi }|
b(v)

and the relative wire congestion is

ν = max
e∈E

|{i : e ∈ Pi }|
w(e)

The buffered paths (Pi , Bi ), i = 1, . . . , k, are simultaneously routable iff both µ ≤ 1 and ν ≤ 1. To leave
resources available for subsequent optimization of critical nets and ECO routing, we will generally seek
simultaneous buffered routings with buffer and wire congestion bounded away from 1. Using the total
wire and buffer area as solution quality measure we get:

Integrated Global Routing and Bounded Wireload Buffer Insertion Problem1

Given:

• Grid-graph G = (V, E , b, w), with buffer and wire capacities b : V → IN, respectively w : E → IN;
• Set N = {N1, . . . , Nk} of 2-pin nets with unassigned source and sink pins Si , Ti ⊆ V ; and
• Wireload, buffer congestion, and wire congestion upper-bounds U > 0, µ0 ≤ 1, and ν0 ≤ 1.

Find: Feasible buffered routings (Pi , Bi ) ∈ Ri for each net Ni with relative buffer congestion µ ≤ µ0

and relative wire congestion ν ≤ ν0, minimizing the total wire and buffer area, that is, α
∑k

i=1 |Bi | +
β

∑k
i=1 |Pi |, where α, β ≥ 0 are given constants.

1The problem is called Floorplan Evaluation Problem in Ref. [2], but the formulation is useful in postplacement
scenarios as well.
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80.3 Buffered Global Routing via Multicommodity
Flow Approximation

The high-level steps of our approach are the following:

1. Following Alpert et al. [11], we construct a two-dimensional tile graph to capture the number and
spatial distribution of wire routing tracks and buffer insertion sites available in the given floorplan.
For simplicity, we assume throughout the chapter that all tiles have the same size. As discussed in
Ref. [13], uneven tiling, that is, using fine tiling in highly congested regions of the design and coarse
tiling in regions blocked for routing or buffering, can be used to improve the trade-off between
accuracy and solution time.

2. We then build an auxiliary graph in which every directed path from a net source to the net’s
sink captures a feasible wire route between them together with locations for the buffers to be
inserted on this route such that buffer load constraints are satisfied. The auxiliary graph is obtained
automatically from the tile graph using an original gadget construction (Section 80.3.1), which only
increases the size of the graph by a linear factor.

3. We use the auxiliary graph to formulate the buffered global routing problem as an integer linear
program (ILP). To formally express the ILP, we use a 0/1 variable for each source–sink path, and
require that exactly one path be chosen for each source–sink pair. The objective is to minimize the
wire and buffer congestion subject to a given upper-bound on the total wirelength (Section 80.3.1).

4. We find a near-optimal solution to the fractional relaxation of the above integer program. Although
the integer program has exponential size (there are exponentially many variables corresponding
to source-sink paths in the auxiliary graph), we give a combinatorial algorithm which runs in
polynomial time by representing explicitly only nonzero variables (Section 80.3.2). The algorithm
combines the general framework for multicommodity flow approximation introduced by [8,9] with
some of the extensions described in Refs. [10,14].

5. Finally, we round the fractional solution to an integer solution using a heuristically enhanced version
of the randomized rounding method originally proposed in Ref. [3] (Section 80.3.3).

In this section, we detail each step of our approach for the case of 2-pin nets, and also discuss efficient
computation of the entire trade-off curve between routing area and congestion for a given floorplan
(Section 80.3.4).

80.3.1 Gadget Graph and Integer Program Formulation

Recall that, for every feasible buffered routing in the tile graph G = (V(G), E (G), b, w), the wireload
of the source and of each buffer must be at most U . We start by defining an auxiliary directed graph H ,
which captures exactly these feasible buffered routings (see Figure 80.2). The graph H has U + 1 vertices
v0, v1, . . . , vU for each vertex v ∈ V(G). The index of each copy corresponds to the remaining wireload
budget, that is, the number of units of wire that can still be driven by the last inserted buffer (or by the
net’s source). Buffer insertions are represented in the gadget graph by directed arcs of the form (v j , vU )—
following such an arc resets the remaining wireload budget up to the maximum value of U . Each undirected
edge (u, v) in the tile graph gives rise to directed arcs (u j , v j−1) and (v j , u j−1), j = 1, . . . , U , in the gadget
graph. Note that the copy number decreases by 1 for each of these arcs, corresponding to a decrease of 1
unit in the remaining wireload budget. In addition, we add to H individual vertices to represent net sources
and sinks. Each source vertex is connected by a directed arc to the U th copy of the node representing the
enclosing tile. Furthermore, all copies of the nodes representing enclosing tiles are connected by directed
arcs into the respective sink vertices.

Formally, the graph H has vertex set

V(H) = {si , ti | 1 ≤ i ≤ k} ∪ {v j | v ∈ V(G), 0 ≤ j ≤ U }
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FIGURE 80.2 The basic gadget replacing edge (u, v) of the tile graph for buffer wireload upperbound U = 5.

and arc set

E (H) = E src ∪ E s ink ∪ ( ⋃

(u,v)∈E (G)

E u,v
) ∪ ( ⋃

v∈V(G)

Ev

)

where

E src = {(si , vU ) | tile v contains si , 1 ≤ i ≤ k}
E sink = {(v j , ti ) | tile v contains ti , 0 ≤ j ≤ U, 1 ≤ i ≤ k}
E u,v = {(u j , v j−1), (v j , u j−1) | 1 ≤ j ≤ U }
Ev = {(v j , vU ) | 0 ≤ j < U }

Each directed path in the gadget graph H corresponds to a buffered routing in the tile graph, obtained
by ignoring copy indices for tile vertices and replacing each“buffer” arc (v j , vU ) with a buffer inserted in
tile v. Clearly, the construction ensures that the wireload of each buffer is at most U since a directed path
in H can visit at most U vertices before following a buffer arc. Therefore, we get the following lemma.

Lemma 80.1

There is a one-to-one correspondence between the feasible buffered routings for net Ni in the tile graph G and
the si −ti paths in H.

We will use the correspondence established in Lemma 80.1 to give an ILP formulation for the buffered
global routing problem. Let P i denote the set of all simple si −ti paths in H . We introduce a 0/1 variable
x p for every path p ∈ P := ∪k

1P i . The variable x p is set to 1 if the buffered routing corresponding to
p ∈ Pi is used to connect net Ni , and to 0 otherwise. With this notation, the buffered global routing
problem can be formulated as follows:

min
∑

p∈P

(
α

∑

v∈V(G)

|p ∩ Ev| + β
∑

(u,v)∈E (G)

|p ∩ E u,v|
)

x p (80.1)

subject to
∑

p∈P
|p ∩ Ev| x p ≤ µ0 b(v) v ∈ V(G)

∑

p∈P
|p ∩ E u,v| x p ≤ ν0 w(u, v) (u, v) ∈ E (G)

∑

p∈P i

x p = 1 i = 1, . . . , k

x p ∈ {0, 1} p ∈ P
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ILP (80.1) is similar to the “path” formulation of the classical minimum cost integer multicommodity
flow problem [15]. The only difference is that capacity constraints on the edges and vertices of the tile
graph G become capacity constraints for sets of edges of the gadget graph H (see Figure 80.2). We note
that the buffered global routing problem can be represented more compactly by using a polynomial
number of edge-flow variables instead of the exponential number of path-flow variables x p . However, we
use formulation (80.1) since it is the natural setting for describing the approximation algorithm in the
next section. The exponential number of variables is not impeding the efficiency of the approximation
algorithm, which, during its execution, represents explicitly only a polynomial number of paths with
nonzero flow.

80.3.2 The Approximation Algorithm

In this section, we give an efficient approximation algorithm that can be used for solving the fractional
relaxation of ILP (80.1). Using an approach similar to that used in Ref. [8] for solving the minimum cost
concurrent multicommodity flow problem (see also Ref. [10]), instead of solving the relaxation of ILP
(80.1) directly we introduce an upper bound D on the wire and buffer area and consider the following
linear program (LP):

min λ (80.2)

subject to
∑

p∈P

(
α

∑

v∈V(G)

|p ∩ Ev| + β
∑

(u,v)∈E (G)

|p ∩ E u,v|
)

x p ≤ λ D

∑

p∈P
|p ∩ Ev| x p ≤ λ µ0 b(v) v ∈ V(G)

∑

p∈P
|p ∩ E u,v| x p ≤ λ ν0 w(u, v) (u, v) ∈ E (G)

∑

p∈P i

x p = 1 i = 1, . . . , k

x p ≥ 0 p ∈ P
Let λ∗ be the optimum objective value for LP (80.2). Solving the fractional relaxation of ILP (80.1)

is equivalent to finding the minimum D for which λ∗ ≤ 1. This can be done by a binary search, which
requires solving the LP (80.2) for each probed value of D. A lower bound on the optimal value of D
can be derived by ignoring all buffer and wire capacity constraints, that is, by computing for each net
Ni buffered paths p ∈ P i minimizing α

∑
v∈V(G) |p ∩ Ev| + β

∑
(u,v)∈E (G) |p ∩ E u,v|. A trivial upper

bound is the total routing area available, that is, Dmax = α µ0
∑

v∈V(G) b(v)+ β ν0
∑

(u,v)∈E (G) w(u, v).
In particular, unfeasibility in the fractional relaxation of ILP (80.1) is equivalent to λ∗ being greater than
1 when D = Dmax, and can therefore be detected using the algorithm described below.

The algorithm for approximating the optimum solution to LP (80.2) (see Figure 80.3) uses the general
framework for multicommodity flow approximation introduced in Ref. [8] combined with ideas similar to
those in Ref. [14] for efficiently handling set capacity constraints. The algorithm relies on simultaneously
approximating the dual LP:

max
k∑

i=1

li (80.3)

subject to
∑

v∈V(G)

µ0b(v)yv +
∑

(u,v)∈E (G)

ν0w(u, v)zu,v + Du = 1
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(1) Set yv :=
δ

µ0b(v)
∀v ∈ V(G), ze :=

δ

ν0w(e) ∀e ∈ E(G), u := δ

D

(2) Set xp := 0 ∀p ∈ P
(3) Set r = 0 and pi := ∅ for i = 1, ..., k.
(4) While µ0      b(v)yv + ν0         w(u, v)zu,v + Du < 1 do:

v∈V(G) (u,v)∈E(G)

(5) begin
(6) r := r+1.
(7)   For i := 1 to k, do
(8)   begin
(9)       If pi = ∅ or        |pi ∩ Ev|(yv + αu) +            |pi ∩ Eu,v|(zu,v + βu) > (1 + γε)li  then

v∈V(G) (u,v)∈E(G)

(10)       begin
(11)          Find a path pi ∈ Pi minimizing li :=         |pi ∩ Ev|(yv + αu) +          |pi ∩ Eu,v|(zu,v + βu)

v∈V(G) (u,v)∈E(G)

(12)       end
(13)       Set xpi := xpi

 + 1

(14) Set yv := yv 1 ε
|pi∩Ev|
µ0b(v)

∀v ∈ V(G), ze := ze

|pi∩Eu,v|
ν0w(u,v)

∀(u, v) ∈ E(G)

u := u





α |pi∩Ev|+β

v∈V(G) (u,v)∈E(G)

|pi∩Eu,v|

D





(15)       end
(16)   end
(17)   Output (xp/r)p∈P

+ 1 ε+

1 ε+

FIGURE 80.3 Algorithm for approximately solving LP (80.2).

∑

v∈V(G)

|p ∩ Ev| (yv + αu) +
∑

(u,v)∈E (G)

|p ∩ E u,v| (zu,v + βu) ≥ li , p ∈ P i

yv ≥ 0 v ∈ V(G)

ze ≥ 0 e ∈ E (G)

The algorithm starts with trivial solutions for LPs (80.2) and (80.3), and then updates these solutions
over several phases. In each phase (lines 5–16 in Figure 80.3), one unit of flow is routed for each commodity;
a feasible solution to LP (80.2) is obtained in line 17 after dividing all path flows by the number of phases.
Commodities are routed along paths with minimum weight with respect to weights of yv + αu for arcs in
Ev , v ∈ V(G), of zu,v+βu for arcs in E u,v , (u, v) ∈ E (G), and of 0 for all the other arcs (cf. LP [80.3]). The
dual variables are increased by a multiplicative factor for all vertices/edges on a routed path; this ensures
that dual weights increase exponentially with usage and thus often used edges are subsequently avoided [8].

Minimum-weight paths are computed in line 11 of the algorithm using Dijkstra’s single-source shortest
path algorithm. To reduce the number of shortest path computations, paths are recomputed only when
their weight increases by a factor of more than (1 + γ ε) (see the test in line 9). This speed-up idea, first
applied in Ref. [9] for the maximum multicommodity flow problem, has been shown in Ref. [10] to
decrease the running time in practice while maintaining the same theoretical worst-case runtime. The
proof of the following theorem can be found in Ref. [13].

Theorem 80.1

The algorithm in Figure 80.3 finds an (1 + ε0)-approximation with O
(

1
ε2

0λ∗ k log n
)

minimum-weight path

computations, using ε = min
{

1
γ

, 1
γ

(
√

1 + ε0−1), 1
4

(
1−(

1
1+ε0

)1/6)}
and δ=(

1−ε′
n+m

)1/ε
, where n and m

are the number of vertices and edges of G, and ε′ := ε(1 + ε)(1 + εγ ).

Remark 1. The dependence on λ∗ in Theorem 80.1 can be eliminated by a scaling technique described
in Ref. [9]. Thus, using a Fibonacci heap implementation of Dijkstra’s algorithm to compute minimum-
weight paths leads to a runtime of O( 1

ε2
0

k(m + n log n) log n) for the algorithm in Figure 80.3.
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Remark 2. Using ideas from Ref. [10], it can be shown that the algorithm in Figure 80.3 not only minimizes
λ, but also “strives” for a lexicographically minimum solution with respect to the vector consisting of the
relative buffer congestion of the vertices, the relative wire congestion of the edges, and the ratio between
the total routing area and the upperbound D. This is particularly useful for the case when the floorplan is
unroutable using the given buffer sites and wire tracks, since then the solution returned by the algorithm
indicates where we should add more routing resources (by local perturbations of the floorplan) to reach
routability. As noted above, this case is handled by running the algorithm with D = Dmax. If we want to
completely ignore the constraint on total routing area (i.e., set D = ∞), the dual variable u is 0 throughout
the whole execution of the algorithm and can thus be eliminated.

Remark 3. In a practical implementation, line 2 of the algorithm, which requires setting to zero an
exponential number of variables, is not implemented explicitly. Rather, the algorithm keeps track only of
the paths with nonzero flow, that is, those paths for which flow is augmented in line 13. Several alternatives
for memory efficient representation of the nonzero flows are discussed in the next section.

80.3.3 Randomized Rounding

In the previous section we have presented an algorithm for computing near-optimal solutions to LP (80.2).
The last step in solving the buffered global routing problem is to convert these fractional flows into feasible
buffered routings for each net. We follow the randomized rounding technique proposed by Raghavan and
Thomson [3], and route each net Ni by randomly choosing one of the paths p ∈ P i , where the probability
of choosing path p is equal to the fractional flow x p (recall that

∑
p∈P i

x p = 1, i.e., x p is a probability
distribution over P i ). Since the fractional flows satisfy buffer and wire congestion constraints, it follows
that (for large enough capacities) the relative congestion after rounding increases only by a small factor [3].

A direct implementation of the randomized rounding scheme requires storing explicitly all paths with
nonzero flow. However, this is typically unfeasible due to the large memory requirement. An alternative
implementation, originally suggested by Ref. [3], is to compute edge flows instead of path flows during
the algorithm in Figure 80.3, and then implement randomized rounding by performing a random walk
between the source and sink of each net. As noted in Ref. [14], performing the random walks backward,
that is, from sinks toward sources, leads to reduced congestion for the case when a significant number of
the 2-pin nets result from decomposition of multipin nets.

A simpler implementation, which requires storing a single path per net, is to interleave randomized
rounding with the computation of the fractional flows x p . In this implementation, we continuously update
the path selected for each net, as follows. In first phase, the single path routed for each net becomes the
net’s choice with probability 1. In iteration r > 1, the path routed for net i replaces the previous selection
of net i with a probability of (r − 1)/r . It is easy to see that the path selected after t phases was selected by
the net in phase r = 1, . . . , t with an equal probability of 1/r , that is, the probability that a path p is the
final selection is equal to the fractional flow x p computed by the algorithm in Figure 80.3.

The results reported in Section 80.6 were obtained using yet another implementation. In our imple-
mentation we save the paths routed for each net in the last K = 5 phases of the algorithm in Figure 80.3
(note that the K paths resulting for each net need not be distinct). Then, we pick for each net one of the
K saved paths, uniformly at random. To further improve the results, we repeat the random choices a large
number of times (10,000 times in our implementation) and keep the choices that result in the smallest
congestion or routing area (depending on the optimization criteria). We found this scheme, which has
still reasonable memory requirements, to work better in practice than the other approaches (although,
technically, it implements only a rough approximation of the probability distribution required by Ref. [3]).

80.3.4 Area and Congestion Trade-Off Curve

To evaluate a floorplan at an early stage of the design process, it is useful to find not only the minimum
routing area needed for given bounds on µ0 and ν0 on the relative buffer and wire congestion, but also
how the total routing area increases if we enforce a smaller congestion. Obviously, a floorplan is better if a
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smaller area increase is needed for the same decrease in congestion. Let us denote by �(µ, ν) the minimum
routing area needed for a fractional solution with relative buffer and wire congestion not more than µ

and ν, respectively. In the following, we denote a fractional solution x p , p ∈ P for LP (80.2), simply by
a vector x . Let A(x), µ(x), and ν(x) denote the total routing area, buffer congestion, respectively wire
congestion of x . The proofs of the following lemmas can be found in Ref. [13].

Lemma 80.2

The function (µ, ν) �−→ �(µ, ν) is convex.

Lemma 80.3

Let x be an optimal solution of LP (80.2) for given D, µ0, and ν0. If there exists a solution x ′ with
max( µ(x ′)

µ0
, ν(x ′)

ν0
) < max( µ(x)

µ0
, ν(x)

ν0
), then �(µ(x), ν(x)) = A(x)

Lemma 80.3 shows that in certain cases we can derive a value �(µ, ν) from an optimal solution of the LP
(80.2), and thus the binary search suggested in Section 80.3.2 can be avoided. This suggests the following
approach to computing the full area versus congestion trade-off curve. First, compute the feasible region
(which is also convex) for µ and ν by ignoring the constraint on the area. Then solve the LP (80.2) for
certain values of D, µ0, and ν0. If the solution is on the boundary of the feasible region, decrease D such
that µ and ν increase, otherwise a new point for the area and congestion trade-off curve has been found.

80.4 Handling Multipin Nets

Although a majority of nets have only two pins, modern designs also contain an increasing number
of multipin nets. To apply our approximation algorithm from the previous section, we need to reduce
multipin nets to 2-pin nets or otherwise adjust the algorithm to handle multipin nets. In this section we
consider several methods for decomposing multipin nets and present an extension of our algorithm to
3-pin nets; these alternatives provide a range of trade-offs between runtime and solution quality.

The standard reduction constructs the minimum spanning tree T over all k pins of a k pin net and
then splits the net into k − 1 2-pin nets each corresponding to a single edge in T . Although the wireload
can be accurately taken in account, the inherent drawback of this approach is that for high fanout nets
we may end up with unbalanced and overloaded buffering. Note that the star topology decomposition, in
which the source is connected with each sink by a separate edge, suffers from the same drawback. Instead
of spanning trees, we suggest to use buffered Steiner trees. The minimum buffered routing for the entire
k-pin net can be found using one of the algorithms from Ref. [16]. Such routing has been shown to be
very close to optimal and is convenient for handling high fanout nets—both sink and wire loads are taken
into account. The resulting buffered routing tree T connects the vertices of degree 1 (corresponding to
terminals), degree 2 (corresponding to buffers), and degrees 3 and 4 (corresponding to branching points
for Steiner tree routing) (see Figure 80.4[a]). Our approach is to split T into smaller pieces (2- or 3-pin
nets) and route them separately using the algorithm from the previous section. The resulting pieces have
longer total wirelength, thus allowing more flexibility for congestion minimization. We distinguish three
methods of splitting T .

Fixed branching and fixed buffering. The tree T is split into 2-vertex subgraphs by replacing each vertex v

with the deg(v) copies each corresponding to one of the incident edges (see Figure 80.4[b]). Each subgraph
corresponds to a single edge of T and has a single source and a single sink. The number of resulting 2-pin
nets is k + p + b − 1, where k is the number of terminals, p the number of Steiner points, and b the
number of buffers in T . This decomposition is the least flexible—the positions of both buffers and Steiner
points are fixed. Routing- and buffer-congestion minimization may require using very long detours with
possible addition of extra buffers.

Fixed branching and flexible buffering. The tree T is split into 2-vertex subgraphs by replacing each branch-
ing vertex v with the deg (v) copies, each corresponding to one of the incident edges (see Figure 80.4[c]).
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FIGURE 80.4 (a) Minimum buffered routing T of a 4-pin net with source s and sinks s1, s2, s3 produced by the
algorithm in Ref. [17]. T has two buffers b1 and b2 and two Steiner points p1 and p2. (b) Decomposition of T
using fixed branching and fixed buffering. There are seven resulting 2-pin nets: (s , b1), (b1, p1), ( p1, s1), ( p1, b2),
(b2, p2), ( p2, s2), and ( p3, s3). (c) Decomposition of T using fixed branching and flexible buffering. There are five re-
sulting 2-pin nets: (s , p1), ( p1, s1), ( p1, p2), ( p2, s2), and ( p3, s3). (d) Decomposition of T using half-flexible branch-
ing and flexible buffering. The Steiner point p1 is fixed and, therefore, split between three nets, while the Steiner point
p2 is flexible. There are two resulting 2-pin nets: (s , p1), ( p1, s1) and one 3-pin net ( p1, s2, s3).

Each subgraph corresponds to a single edge of the unbuffered version of T . The number of resulting 2-pin
nets is k + p − 1. Similar to the previous decomposition, there is limited room for rerouting but now
the buffers can be shifted between grid cells resulting in much better opportunities for buffer-congestion
minimization. Since the buffer insertion may be caused by large sink load (e.g., in Figure 80.4[c], net
(s , p1) requires a buffer because of the three sinks downstream), it is necessary to compensate the upper
bound U for some nets. This can be easily done by decreasing the level of the source of such net as follows.
Normally, the source of a net is placed at the highest node of the edge gadget, for example, u5 on Figure 80.2,
but if compensation is necessary, then the source should be placed lower, for example, u1, thus requiring
a buffer much sooner.

Half-flexible branching and flexible buffering. Assume for simplicity that all Steiner points in T have
degree 3, that is, no degree-4 Steiner points are allowed. The vertices of the unbuffered tree T can be
colored into two, colors such that adjacent vertices have different color. If we fix locations of the Steiner
points of the same color then all the resulting nets will have either three or two terminals (see Figure
80.4[d]). If we pick the color with the least amount of Steiner points, then we can be sure that at most
half of all Steiner points are fixed implying that the number of resulting nets is at most k − 1. Indeed,
at least p/2 Steiner points are not fixed and the corresponding three 2-pin nets for fixed branching are
replaced with one 3-pin net. This reduces the total number of nets with respect to fixed branching by at
least 2p/2 = p.

This decomposition is the most flexible one, giving most opportunities for routing and buffer-congestion
minimization. Unfortunately, it requires runtime-costly adjustments to the approximation algorithm from
the previous section. Figure 80.5 gives the modified subroutine for computing feasible routings having
minimum weight with respect to the dual variables. We assume here that the possible locations of the
source pin for a net Ni are specified by Si as before, while the two sinks are specified by sets T 1

i and T 2
i .

In the graph H we have vertices t1
i and t2

i and edge sets {(v j , tl
i ) | v ∈ Tl

i , j = 0, . . . , U }, l = 1, 2 for the
sink pins of such a 3-pin net. For each possible Steiner point v, the algorithm tries all possible lengths j
and k to the first buffer on the path from v to t1

i , and respectively to t2
i .
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(1) Set w∗ := ∞
(2) For all v ∈ V do // try all possible Steiner points
(3) begin
(4)     For j := 0 to U
(5)     begin

(6)        Find a shortest vU−j − t1i–path P1 in H
(7)        For k := 0 to U − j
(8)        begin

(9)           Find a shortest vU−k − t2i–path P2 in H

(10)           Find a shortest s
i
0 – vU−j−k–path P0 in H

(11)           If w(P0) + w(P1) + w(P2) ≤ w∗ then
(12) Set w∗ := w(P0) + w(P1) + w(P2); T

∗ := P0 ∪ P1 ∪ P2

(13)       end
(14) end
(15) end
(16) return T ∗

FIGURE 80.5 Algorithm for finding minimum-weight buffered routings for 3-pin nets.

80.5 Extensions

In this section we describe how our approach to buffered global routing can be extended to handle
pin assignment, polarity constraints imposed by the use of inverting buffers, buffer and wire sizing, and
prescribed delay upperbounds. The modifications required to handle these extensions involve only changes
to the gadget graph described in Section 80.3.1, but not to the approximation algorithm in Figure 80.3 or
to the randomized rounding scheme.

80.5.1 Pin Assignment

At the early stages of the design flow there is a significant degree of flexibility available for pin assignment,
and therefore the ability to exploit this flexibility can have a major impact on the quality of resulting global
routings. Consideration of pin assignment requires only two small changes in the construction of the
gadget graph described in Section 80.3.1: (1) source vertices si must now be connected by directed arcs to
the U th copies of all nodes representing enclosing tiles, and (2) copies 0, . . . , U of all nodes representing
enclosing tiles must be connected by directed arcs into the sink vertices ti . Reading pin assignments from
the paths selected by randomized rounding is trivial: we assign to each source (sink) an arbitrary pin in
the tile visited first (last) by the selected path for the net.

The size of the gadget graph remains virtually unaffected by the pin assignment modification: for k nets
we only add O(k) edges to the gadget graph under the realistic assumption that each pin can be assigned
to at most O(1) tiles. Therefore, the time required to find minimum-weight paths, and hence the overall
runtime of the algorithm in Figure 80.3, does not increase even though the number of paths available for
each net increases when considering pin assignment.

80.5.2 Polarity Constraints

The basic problem formulation in Section 80.2 considers only a noninverting buffer type. In practice, invert-
ing buffers are often preferred since they occupy a smaller area for the same driving strength. Although
the use of inverting buffers introduces additional polarity constraints, which may require a larger number of
buffers to be inserted, overall inverting buffers may lead to a better overall resource utilization. Algorithms
for bounded capacitive load inverting (and noninverting) buffer insertion have been recently discussed in
Ref. [16]. The focus of Ref. [16] is on single net buffering, with arbitrary positions for the buffers. In our
approach, the goal is to minimize the overall number of buffers required by the nets, and buffers can be
inserted only in the available sites.
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FIGURE 80.6 Gadget for polarity constraints with buffer load upperbound U = 2.

Consideration of polarity constraints required is achieved by modifying the basic gadget graph given
in Section 80.3.1 as follows (see Figure 80.6). Each node of the basic gadget is replaced by an “even”
and “odd” copy, that is, vi is propagated into vi

even and vi
odd . Tile-to-tile arcs are replaced by two arcs

connecting copies with the same polarity, for example, the arc (ui , vi−1) gives rise to (ui
even, vi−1

even) and
(ui

odd , vi−1
odd ). If a path uses such an arc, then it does not change polarity. Instead, each buffer arc changes

polarity, that is, (vi , vU ) gives rise to (vi
even, vU

odd ) and (vi
odd , vU

even). The gadget also allows two inverting
buffers to be inserted in the same tile for the purpose of meeting polarity constraints. This is achieved by
providing bidirectional arcs connecting the U th even and odd copies of a tile v, that is, (uU

even, uU
odd ) and

(vU
odd , vU

even). Finally, source vertices si are connected by directed arcs to the even U th copy of enclosing
tiles, and only copies of the desired polarity have arcs going into sink vertices ti .

80.5.3 Buffer and Wire Sizing

Buffer and wire sizing are well-known techniques for timing optimization in the final stages of the design
cycle [12]. However, early buffer and wire sizing can be equally effective for reducing congestion or wiring
resources. In this section we show how to incorporate buffer and wire sizing in our algorithmic framework
for global buffered routing. The key enablers to these extensions are again appropriate modifications of
the gadget graph.

The gadget for buffer sizing is illustrated in Figure 80.7(a) for two available buffer sizes, one with
wireload upperbound U = 4 and the other with wireload upperbound U = 2. The general construction
entails using a number of copies of each tile vertex equal to the maximum buffer load upperbound U . For
every buffer with wireload upperbound of U ′ ≤ U , we insert buffer arcs (vi , vU ′

) for every 0 ≤ i < U ′.
Thus, the copy number of each vertex continues to capture the remaining wireload budget, which ensures
the correctness of the construction.

Wire sizing (and a coarse form of layer assignment) can be handled by a different modification of the gad-
get graph (see Figure 80.7[b]). Assuming that per unit capacitances of the thinner wire widths are rounded
to integer multiples of the “standard” per unit capacitance, the gadget models the use of thinner segments
of wire by providing tile-to-tile arcs, which decrease the tile copy index (i.e., remaining wireload budget)
by more than one unit. For example, in Figure 80.7(b), solid arcs (ui , vi−1) and (vi , ui−1) correspond to
standard width connections between tiles u and v, while dashed arcs (ui , vi−2) and (vi , ui−2) correspond
to “half-width” connections, that is, connections using wire with double capacitive load per unit.

While our models for buffer and wire sizing are rather coarse (e.g., we truncate all buffer wireload
upperbounds to integer multiples of the tile dimension, ignore variations in input capacitances of buffers
and sinks), we consider them to be sufficiently accurate first-approximations for driving these optimizations
during the early physical design stages.

80.5.4 Delay Constraints

In Ref. [2] we have proposed a method for enforcing given sink delay constraints based on charging
wiresegment delays to buffer arcs in the gadget graph, and using a routine for computing minimum-
weight delay constrained paths instead of Dijkstra’s algorithm in the algorithm for approximating the
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FIGURE 80.7 (a) Gadget for buffer sizing with two available buffer sizes, one with wireload upperbound U = 4 and
the other with wireload upperbound U = 2. Solid arcs (ui , u4), respectively (vi , v4), correspond to the insertion of a
buffer capable of driving 4 units of wire, while dashed arcs (ui , u2) and (vi , v2) correspond to the insertion of a smaller
buffer capable of driving 2 units of wire. (b) Gadget for wire sizing with two available wire widths, standard width and
“half” width (i.e., wire with double per unit capacitive load). The solid arcs (ui , vi−1) and (vi , ui−1) correspond to
standard width connections between tiles u and v, while dashed arcs (ui , vi−2) and (vi , ui−2) correspond to half-width
connections.

fractional solution to ILP (80.1). Here we give a different method for handling sink delay constraints.
The new method is similar in spirit to the constructions in previous sections, relying exclusively on a
modification of the gadget graph. In general, our construction applies for any delay model, such as the
Elmore delay model, for which (1) the delay of a buffered path is the sum of the delays of the path segments
separated by the buffers, and (2) the delay of each segment depends only on segment length and buffer
parameters. However, for the sake of efficiency, segment delays would have to be rounded to relatively
coarse units.

Figure 80.8 shows the gadget construction for the case when delay is measured simply by the number of
inserted buffers. The idea is again to replicate the basic gadget construction, this time a number of times
equal to the maximum allowed net delay. Within each replica, tile-to-tile arcs decrease remaining wireload
budget by one unit. To keep track of path delays, buffer arcs advance over a number of gadget replicas
equal to the delay of the wiresegment ended by the respective buffer (this delay can be easily determined
for each buffer arc since the tail of the arc fully identifies the length of the wiresegment). The construction
is completed by connecting net sources to the vertices with maximum remaining wireload budget in the “0
delay” replica of the gadget graph, and adding arcs into the sinks from all vertices in replicas corresponding
to delays smaller than the given delay upperbounds.
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FIGURE 80.8 Gadget for enforcing delay constraints when the delay is measured by the number of buffers inserted
between source and sink. The basic gadget is replicated a number of times equal to the maximum allowed net delay (3
in this example). Tile-to-tile arcs decrease remaining wireload budget within a gadget replica, while buffer arcs advance
from one replica to the next.
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Remark
An interesting feature of the resulting gadget graph is that it is acyclic. Hence, we can now compute
minimum-weight paths in the approximation algorithm in Figure 80.3 by computing the distances from
the source via a topological traversal of the graph in O(m + n) time instead of the O(m + n log n) time
needed by Dijkstra’s algorithm.

80.6 Experimental Results

In this section we report results for a 2-pin net implementation of our multicommodity flow-based
algorithm. All experiments with our algorithm were conducted on a 360 MHz SUN Ultra 60 workstation
with 2 GB of memory, running under SunOS 5.7. The algorithm was coded in C and compiled usingg++ 3.2
with -04 optimization. Unless otherwise noted, the value of precision parameter ε in the multicommodity
flow algorithm was set to 0.3, and the number of iterations was limited to 64.

We tested the algorithm on the 10 circuits from Ref. [11], which are derived from testcases first used
by Ref. [12]. We used the same circuit parameters as in the experiments for 2-pin nets of Ref. [11];
these parameters are summarized in Table 80.1. As in Refs. [11,12], we decomposed multipin nets into
2-pin nets by making direct connections from the source of a net to each of the net’s sinks. Therefore,
the numbers of 2-pin nets in Table 80.1 correspond to the numbers of sinks in Ref. [11]. We note that
these numbers are slightly smaller than those reported in Ref. [12] since Ref. [11] retained only the nets
requiring buffer insertion under the algorithm of Ref. [12]. We also note that the numbers of buffer sites
used in our experiments are those used by Alpert et al. [11] in the experiments in which multipin nets
were decomposed into 2-pin nets. These numbers were obtained directly from the authors, as they do not
appear explicitly in Ref. [11] (the numbers of buffer sites given in Table 1 of Ref. [11] were used only in
their experiments with undecomposed multipin nets; see Ref. [17] for more details on these experiments).
Finally, we note that although we use the same grid sizes as Ref. [11], there are some small differences in
tile areas between Table 80.1 and Ref. [11]. These differences, which are probably because of the different
procedures used in rounding tile dimensions, are unlikely to affect to a measurable degree the results of
the compared algorithms.

Table 80.2 shows the results of the multicommodity flow algorithm (with pin assignment) when run
with D = ∞, that is, when the objective is to minimize the wire and buffer congestion only. The table
shows that progressively better fractional solutions are obtained by the approximation algorithm. The
results also show the trade-off between congestion on one hand and wiring resources (number of buffers
and wirelength) on the other.

Table 80.3 gives the results for wirelength minimization (i.e., using α = 0 and β = 1) subject to wire and
buffer congestion constraints (µ0 = 1.0 and ν0 = 1.0). In these experiments the multicommodity flow

TABLE 80.1 Circuit Parameters

# 2-Pin Grid Tile Avg. Tiles #Buffer
Circuit Nets Size Area w(e) per Pin U Sites

a9c3 1526 30 × 30 1.09 52 4.9 6 32780
ac3 409 30 × 30 0.49 26 5.0 7 8550
ami33 324 33 × 30 0.46 32 5.0 6 17750
ami49 493 30 × 30 0.68 14 4.8 6 11450
apte 141 30 × 33 0.36 13 5.0 7 4200
hc7 1318 30 × 30 1.04 28 4.8 6 17780
hp 187 30 × 30 0.42 12 5.0 7 2350
Playout 1663 33 × 30 0.78 120 4.8 7 37550
xc5 2149 30 × 30 0.58 50 5.0 7 19150
Xerox 390 30 × 30 0.38 40 5.0 7 7000

Source: From Mandoiu, I. I., Recent advances in multicommodity flow algorithms for global routing,
Proc. 5th Int. Conf. on ASIC, October 2003.
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TABLE 80.2 Congestion Minimization Results (D = ∞) for the Multicommodity Flow Algorithm
with ε = 0.3

Wire Buffer
Circuit Phase# Congest Congest #Buffers Wlen CPU (s)

a9c3 1 0.75 0.80 3351 26057 12.0
4 0.59 0.43 3356 26123 47.5
16 0.51 0.23 3402 26595 188.8
64 0.46 0.18 3505 27328 730.7
64+ROUND 0.62 0.30 3625 27980 785

ac3 1 0.77 1.00 796 4998 3.0
4 0.62 0.53 797 5008 12.2
16 0.40 0.27 803 5072 48.9
64 0.28 0.18 826 5211 192.3
64+ROUND 0.46 0.50 827 5251 213

ami33 1 0.66 0.67 909 4466 2.6
4 0.55 0.36 908 4476 10.6
16 0.47 0.20 910 4515 42.2
64 0.40 0.14 930 4618 163.0
64+ROUND 0.56 0.31 956 4698 181

ami49 1 1.36 0.90 948 6045 3.0
4 1.00 0.46 958 6083 12.3
16 0.74 0.29 1040 6509 52.1
64 0.66 0.21 1205 7278 211.3
64+ROUND 1.00 0.56 1308 7751 234

apte 1 1.08 1.00 328 1668 1.2
4 0.87 0.57 327 1677 5.0
16 0.53 0.30 336 1725 21.1
64 0.44 0.17 359 1836 86.8
64+ROUND 1.00 1.00 360 1841 98

hc7 1 1.00 1.19 2203 17670 8.0
4 0.79 0.61 2206 17738 32.5
16 0.69 0.31 2301 18481 132.9
64 0.62 0.23 2498 19660 516.9
64+ROUND 0.89 0.50 2675 20584 562

hp 1 0.92 1.67 334 1952 1.3
4 0.71 0.85 330 1961 5.2
16 0.46 0.45 334 2003 21.8
64 0.33 0.29 355 2119 89.8
64+ROUND 0.58 1.00 362 2147 101

Playout 1 0.64 0.98 2890 23155 14.9
4 0.52 0.42 2892 23199 60.6
16 0.40 0.24 2922 23582 257.5
64 0.33 0.17 3238 25809 1118.8
64+ROUND 0.36 0.28 3467 27281 1176

xc5 1 1.14 1.31 3187 22314 17.6
4 0.98 0.66 3202 22492 70.9
16 0.74 0.37 3277 23231 288.2
64 0.66 0.31 3570 24872 1134.7
64+ROUND 0.88 0.57 3895 26305 1216

Xerox 1 0.93 1.42 659 3662 2.8
4 0.72 0.77 660 3698 11.9
16 0.45 0.40 684 3858 54.0
64 0.32 0.21 753 4174 237.6
64+ROUND 0.47 0.67 779 4295 257
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TABLE 80.3 Wirelength Minimization (α = 0 and β = 1) Subject to Wire and Buffer Congestion Constraints
(µ0 = 1.0 and ν0 = 1.0)

%LB %LB Wire Buffer
Circuit Algorithm Wlen Gap #Buffers Gap Congest Congest CPU (s)

a9c3 RABID 30723 5.64 4225 11.95 0.60 0.44 502
MCF+ROUND 29082 0.00 3800 0.69 0.67 0.31 775
MCF+PA+ROUND 26057 0.00 3378 0.81 0.62 0.30 779

ac3 RABID 5954 7.67 1037 15.74 0.58 0.33 208
MCF+ROUND 5530 0.00 905 1.00 0.77 0.67 204
MCF+PA+ROUND 4993 0.00 803 1.13 0.69 0.67 204

ami33 RABID 5232 6.93 1150 14.20 0.69 0.44 138
MCF+ROUND 4893 0.00 1014 0.70 0.75 0.33 177
MCF+PA+ROUND 4464 0.00 916 0.88 0.53 0.50 177

ami49 RABID 7592 11.87 1339 21.51 0.93 0.36 167
MCF+ROUND 6792 0.07 1133 2.81 1.00 0.60 227
MCF+PA+ROUND 6041 0.01 989 4.66 1.00 0.44 218

apte RABID 2010 10.78 417 18.47 1.00 0.33 95
MCF+ROUND 1833 1.03 377 7.10 1.00 1.00 88
MCF+PA+ROUND 1663 0.15 331 4.75 1.00 1.00 87

hc7 RABID 21523 7.54 2983 17.44 0.82 0.35 386
MCF+ROUND 20024 0.05 2591 2.01 0.96 0.47 551
MCF+PA+ROUND 17660 0.00 2214 0.68 0.86 0.47 543

hp RABID 2403 11.12 450 20.97 0.83 0.28 67
MCF+ROUND 2165 0.13 404 8.60 1.00 1.00 95
MCF+PA+ROUND 1945 0.00 345 6.81 0.92 1.00 94

Playout RABID 27601 6.38 3840 15.04 0.45 0.64 813
MCF+ROUND 25946 0.00 3429 2.73 0.53 0.34 1002
MCF+PA+ROUND 23138 0.00 3011 4.37 0.40 0.32 995

xc5 RABID 27060 8.35 4410 23.25 0.84 0.81 694
MCF+ROUND 25151 0.71 3843 7.41 0.98 0.62 1162
MCF+PA+ROUND 22265 0.05 3341 4.90 1.00 0.65 1175

Xerox RABID 4541 11.48 957 30.56 0.93 0.57 167
MCF+ROUND 4078 0.12 805 9.82 1.00 1.00 212
MCF+PA+ROUND 3658 0.00 692 6.30 0.88 0.67 208

Notes: RABID is the algorithm of Ref. [13], MCF the multicommodity flow algorithm without pin assignment capability, and
MCF+PA the multicommodity flow algorithm with pin assignment enabled. Both MCF and MCF+PA were run with ε = 0.3.

algorithm is run once per testcase (without binary search), with D equal to the lower bound computed by
routing each net optimally without taking into account capacity constraints. The multicommodity flow
runtime includes randomized rounding (10,000 trials, as described in Section 80.3.3). RABID runtime is
for an RS6000/595 workstation with 1 Gb of memory, as reported in Ref. [11].

The wirelength of the global routing obtained by our algorithm without pin assignment (MCF) is always
within 1.03% of the lower bound. In contrast, the RABID heuristic of Ref. [11] exceeds the lower bound
by 5.64–11.87%. To evaluate the effect of simultaneous pin assignment, we have added the possibility for
each sink to be positioned not only in the given tile, but also in the 3–8 surrounding tiles (see Table 80.1
for the average number of tiles per pin of each testcase). Running our algorithm with pin assignment
enabled (MCF+PA) further decreases wirelength by ≈ 10%, while being within at most 0.15% of the
corresponding lower bound. We note that routing and pin assignment is performed by our algorithm in
virtually the same time as routing alone.

Tables 80.4 gives results for the extension of the multicommodity flow algorithm to inverting buffer
insertion, which is about twice slower than noninverting buffer insertion due to the doubling in size of
the gadget graph. Inverter insertion leads to a very small increase in the number of buffers (because of the
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TABLE 80.4 Wirelength Minimization Results for Noninverting versus Inverting Buffer Insertion

Noninverting Buffers Inverting Buffers

Testcase Wlen #Buffers W-congest B-congest CPU Wlen #Buffers W-congest B-congest CPU

a9c3 29082 3800 0.67 0.31 775 29082 4540 0.60 0.41 1470
ac3 5530 905 0.77 0.67 204 5530 1095 0.69 0.50 417
ami33 4893 1014 0.75 0.33 177 4893 1186 0.62 0.29 359
ami49 6792 1133 1.00 0.60 227 6790 1417 1.00 1.00 449
apte 1833 377 1.00 1.00 88 1833 441 1.00 1.00 185
hc7 20024 2591 0.96 0.47 551 20024 3358 0.89 0.50 1030
hp 2165 404 1.00 1.00 95 2164 495 1.00 1.00 201
Playout 25946 3429 0.53 0.34 1002 25946 4235 0.53 0.32 1982
xc5 25151 3843 0.98 0.62 1162 25222 4799 0.96 1.00 2285
Xerox 4078 805 1.00 1.00 212 4155 1050 1.18 1.00 520

Notes: The number of buffer sites was assumed to be the same in both experiments.
Source: From Mandoiu, I. I., Recent advances in multicommodity flow algorithms for global routing, Proc. 5th Int. Conf. on
ASIC, October 2003.

TABLE 80.5 Runtime Scaling for the Timing-Driven Version of the MCF Algorithm (Delay Measured by Number
of Inserted Buffers)

Delay Bound = 1 Delay Bound = 2 Delay Bound = 4 Delay Bound = 8 No Delay Bound

Testcase #Nets CPU #Nets CPU #Nets CPU #Nets CPU #Nets CPU

a9c3 455 77 820 361 1361 2178 1526 7667 1526 775
ac3 152 29 249 122 374 666 409 2270 409 204
ami33 63 13 125 50 260 413 323 1761 324 177
ami49 177 25 298 113 442 598 493 2161 493 227
apte 49 12 67 33 126 255 141 968 141 88
hc7 569 70 873 305 1231 1584 1318 5217 1318 551
hp 76 15 124 63 174 330 187 1083 187 95
Playout 657 124 1095 651 1575 3506 1663 10979 1663 1002
xc5 1072 192 1429 748 2100 4158 2149 12351 2149 1162
Xerox 163 29 282 201 360 752 390 2308 390 212

Source: From Mandoiu, I. I., Recent advances in multicommodity flow algorithms for global routing, Proc. 5th Int. Conf. on
ASIC, October 2003.

need to satisfy polarity constraints), which is easily compensated by the smaller size of inverters. At the
same time, inverter insertion requires virtually the same wirelength and often gives improved congestion
(except for the Xerox testcase).

Table 80.5 gives runtime scaling results for the extension of the multicommodity flow algorithm to
buffered global routing with delay constraints. We note that the algorithm becomes faster for very tight
delay constraints, since the number of nets that can meet delay constraints is only a fraction of the total
number of nets. For moderately tight delay constraints almost all nets become routable, yet the runtime
is comparable to that of the unconstrained version of the algorithm. For very lax delay constraints all nets
become routable, and the runtime becomes significantly higher than that of the delay-oblivious version of
the algorithm, by a factor roughly proportional to the increase in the size of the gadget graph, that is, the
maximum delay upperbound. However, large delay constraints are not very useful since they are satisfied
almost in totality by using the unconstrained version of the algorithm.

80.7 Conclusions

In this chapter we have presented the first provably good approach to buffered global routing with si-
multaneous timing- and congestion-driven buffered global route planning, pin and layer assignment, and
wire/buffer sizing. The experimental results show that our method significantly outperforms approaches
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based on cascading individual optimizations such as the recent RABID algorithm of Alpert et al. [11]. Future
work aims to incorporate in our implementation practical improvements such as the use of uneven-sized
tiles, window constraints on buffer usage (as opposed to tile constraints), and faster-converging dual-
update rules.
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81.1 Introduction

Nowadays, understanding the Internet is one of the major issues in theoretical computer science [1].
Toward this direction, a number of researchers consider the Internet as a system of rational selfish agents
(or users), each acting his/her own profit. This simplification makes the use of many notions introduced in
noncooperative game theory possible [2,3], where every agent determines her behavior (strategy) based on
the other agents’ strategies. The aim of every agent is to maximize her own individual profit, without taking
into account the consequences of her choice to the other agents or to the system’s performances. A central
notion in this field is the notion of Nash equilibrium [2] defined as a combination of (deterministic or
randomized) choices (strategies), one for each agent, from which no agent has an incentive to unilaterally
change her strategy. The existence of such an equilibrium is assured for every finite game from the famous
theorem of Nash [2]. However, even if, in the last few years, some progress has been made for particular
classes of games [4,5], it remains an open question to decide whether or not the problem of computing
Nash equilibrium is in general solvable in polynomial time. This question is actually among the most
challenging open questions in theoretical computer science [1]. However, a much progress has been made
in the related question of evaluating the impact of the selfishness of the agents on the efficient use of the
system, or, in other words, on the social welfare measured in terms of an appropriate global objective
function. Given that for a finite game there are, in general, a number of different Nash equilibria that may
have different objective function values, this question is very similar to the one of evaluating the quality
of a feasible solution for a combinatorial optimization problem. Exploiting this relation, Koutsoupias and
Papadimitriou [6] adopted a worst-case approach and they introduced the notion of the price of anarchy
(also known as coordination ratio), which is defined as the ratio of the value of the objective function in
the worst Nash equilibrium and its value at the optimum. In fact, the price of anarchy evaluates the cost
of the lack of coordination—as opposed to the competitive ratio, that evaluates the lack of information

81-1

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C081 March 20, 2007 20:22

81-2 Handbook of Approximation Algorithms and Metaheuristics

in the context of the on-line computation or the approximation ratio, that is used to evaluate the lack of
unbounded computational resources in the context of the off-line computation.

In this chapter, we present some directions of research related to the notion of the price of anarchy and
we illustrate them on three scheduling models involving selfish agents: for two of them, namely the KP
(Koutsoupias–Papadimitriou) model [6] and the CKN (Christodoulou–Koutsoupias–Nanavati) model of
Ref. [7], the agents are the tasks, while for the third one, the AT (Archer–Tardos) model [8], the agents are
the machines (links of the network). Our aim is to offer a starting point for researchers who are interested
in this area.

The chapter is organized as follows: in the remaining part of the introduction we present the three
scheduling models that we use in the sequel. Section 81.2 is devoted to the notions of the price of anarchy
and of the coordination mechanism that we illustrate for the KP and CKN models. In Section 81.3, we deal
with the price of stability and the related topic of nashification. An example is given for the CKN model.
Section 81.4 concerns the design of truthful algorithms. In the first part, we show how this can be done for
the CKN model. In the second part, we give a general result characterizing the algorithms that do admit
truthful payment schemes in the context of mechanism design and we illustrate it for the AT model. In
Section 81.5, we give a brief state of the art and we point out some related references.

81.1.1 Selfish Tasks: The KP and CKN Models

In the KP and CKN models, n rational agents (tasks) T1, . . . , Tn have to choose, among m available
machines (also called links or processors) P1, . . . , Pm, the machine on which they will be scheduled. Each
task Ti is characterized by a positive length (execution or processing time) li and by an identification
number i , and each machine P j is characterized by its identification number j . The strategy of each agent
is either pure, that is, decides to be processed on a particular machine (with a probability one), or mixed,
that is, the strategy is a probability distribution over the machines (goes on each machine with a given
probability).

The choice of the machine on which the agent will be processed is based on the cost that is associated
with each strategy. Let c j

i be the cost of agent i if the agent chooses to be processed on machine j . In both
models, the aim of each agent is to minimize her cost. Therefore, in a Nash equilibrium, the cost of agent
i is

ci = min
j

c j
i

In the first model [6], called the KP model, the aim of each task Ti , i = 1, . . . , n, is to minimize the
load of the machine j on which she is executed, that is, the sum of the execution times of all the tasks that
have been assigned to the same machine as Ti . If p j

k denotes the probability of task Tk goes on machine j ,
then the (expected) cost of agent i on machine j is the expected load on machine j , that is,

c j
i = li +

∑

k �=i

p j
k lk

In the second model [7], called the CKN model, every machine has a public local policy (known to all
agents) that determines the order on which the tasks that are allocated to this machine will be scheduled.
This policy may be a function of the lengths of the tasks, or of their identification numbers, or some other
characteristics of the tasks (e.g., such a policy may consist in scheduling the tasks in decreasing order of
their lengths). Tasks know the policies of the machines, and the aim of each task is to minimize her own
completion time. The (expected) cost of agent i on machine j is then

c j
i = li +

∑

k≺ j i

p j
k lk

where k ≺ j i means that task Tk is scheduled before task Ti according to the policy of machine j .
In the sequel, we will consider for this latter model only pure strategies: the probability for a task to go

on a given machine will be either 1 or 0.
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81.1.2 Selfish Machines: The AT Model

In the AT model [8] there are m machines of different speeds and n tasks with lengths l1, . . . , ln. The
amount of time to complete task j on machine i is

l j
si

, where si is the speed of machine i . Each machine
is owned by an agent and the value of si is known only by agent i . Each agent has to report her speed, and
based on the reported speeds, the mechanism M = (A, P) constructs a schedule (i.e., an allocation of the
tasks on the machines) using an algorithm A, and then pays the agents, according to a payment function
P , to compensate the cost induced by the processing of the tasks. Let Pi denote the amount of money (as
computed by the payment function P) given to agent i . The profit of agent i is defined as

profiti = Pi − wi

si

that is, her payment minus the cost incurred by the agent in being assigned work wi (wi is the sum of
the processing times of all the tasks that have been allocated to machine i). The cost for each agent is the
opposite of her profit. The aim of each agent is to maximize her profit (i.e., to minimize her cost), and an
agent may lie and bid a false value (a value different from her real speed) if this can increase her profit.
The (social) cost of a schedule is the maximum load over all machines, that is, its makespan. The goal in
this model is to design a mechanism (i.e., a schedule and a payment function), which is truthful (i.e., it
assures that every agent has no incentive to lie), and which, at the same time, minimizes the makespan.

81.2 Price of Anarchy and Coordination Mechanisms

In many networks, users and service providers act selfishly, without an authority that monitors and regulates
network operation to achieve some “social optimum.” How much performance is lost because of this? This
question, raised by Papadimitriou and Koutsoupias [6], opens many theoretical problems where the main
question concerns the cost of the lack of coordination, called price of anarchy. This notion is studied in
the next section and is illustrated in the case of the KP model. However, from an algorithmic point of
view what is more interesting is to find ways for decreasing the price of anarchy in such a context. Such an
approach has been introduced by Christodoulou et al. [7], where the notion of coordination mechanism is
proposed. We discuss this notion in Section 81.2.2 and we illustrate it for the CKN model.

81.2.1 Price of Anarchy for the KP Model

In this section we consider the KP model and show that the price of anarchy on two identical machines is 3/2.
Let us consider an arbitrary task i and let us assume that she decides to go to machine j with a probability

1, that is, p j
i = 1, then its cost, that is, the average load of machine j , is c j

i = li + ∑
k �=i p j

t lk . In the

general case, the expected cost of task i is
∑

j p j
i c j

i . In a Nash equilibrium there is no incentive for task

i to change its strategy, therefore it assigns nonzero probabilities only to machines j that minimize c j
i .

We note ci = min j c j
i .

For example, consider two tasks, each one with a length 1. The probabilities p j
i = 1/2 for i = 1, 2

and j = 1, 2 give rise to a Nash equilibrium. Indeed, we have c 1
1 = 1 + 1/2 × 1 = 3/2 and also

c 2
1 = c 1

2 = c 2
2 = 3/2. What is the expected makespan of this Nash equilibrium? With a probability 1/4

(resp. 1/4) all tasks go to machine 1 (resp. 2) giving rise to a makespan of 2, with a probability 1/4 (resp.
1/4) task 1 goes to machine 1 (resp. 2) and task 2 goes to machine 2 (resp. 1), giving rise to a makespan of
1. The expected makespan is thus 1/4 × 2 + 1/4 × 2 + 1/4 × 1 + 1/4 × 1 = 3/2. Note that the expected
makespan is not the maximum over all machines of their average load. The average load of machine j is
M j = ∑

i p j
i li , and it is 1 in this example. Of course, the optimum makespan of 1 is obtained when task

1 (resp. 2) goes to machine 1 (resp. 2). Recall that the price of anarchy is defined as the ratio between the
(worst) expected makespan in a worst Nash equilibrium over the optimal makespan (achievable over the
set of all schedules, i.e., not necessarily Nash equilibria). Therefore, this example shows that the price of
anarchy on two identical machines is at least 3/2.

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C081 March 20, 2007 20:22

81-4 Handbook of Approximation Algorithms and Metaheuristics

Ei

Ek

Eik

Ω

FIGURE 81.1 Let E i (resp. E k) denote the event “Task i (resp. k) is scheduled on the machine with the maximum load,”
and E ik denote the event “Tasks i and k collide.” One has E i ∩ E k ⊆ E ik . Hence, qi + qk = Proba(E i ) + Proba(E k) =
Proba(E i ∪ E k) + Proba(E i ∩ E k) ≤ 1 + Proba(E ik) = 1 + tik .

In the sequel we consider any Nash equilibrium, and we want to upper bound its expected makespan
with respect to the optimum makespan, to show that this ratio 3/2 is tight.

The contribution probability qi of task i is equal to the probability that this task is scheduled on the
machine of maximum load (ties are broken using the machine with the smallest identification number).
Therefore, the expected makespan is

∑
i qi li .

Lemma 81.1 (Koutsoupias and Papadimitriou [6])

For any task i , one has
∑

k �=i (qi + qk)lk ≤ 3
2

∑
k �=i lk .

Proof
Let tik be the collision probability of tasks i and k, that is, the probability that they are scheduled on the same
machine. Observe that if both tasks i and k contribute to the expected makespan, that is they are scheduled
on the machine with the maximum load, then they must collide. This is illustrated in Figure 81.1.

Therefore, one has the following inequality:

qi + qk ≤ 1 + tik (81.1)

Moreover, we will show that for any task i
∑

k �=i

tiklk = ci − li (81.2)

We have tik = ∑
j p j

i p j
k , then

∑
k �=i tiklk = ∑

j p j
i

∑
k �=i p j

k lk = ∑
j p j

i (c j
i − li ) = ∑

j p j
i (ci − li ).

The last equality comes from the fact that since in a Nash equilibrium task i assigns nonzero probabilities
only to machines j that minimize c j

i , we have p j
i �= 0 when c j

i = ci and p j
i = 0 otherwise. Finally, since

∑
j p j

i = 1 we obtain equality (81.2).
Now we will show that

ci ≤
∑

k lk

2
+ 1

2
li (81.3)

Recall that c j
i = li +∑

t �=i p j
t lt = M j + (1− p j

i )li , with M j = ∑
i p j

i li the expected load on machine j .
Note that

M1 + M2 =
∑

k

lk (81.4)

since p1
i + p2

i = 1 for all tasks i .
Therefore, we have

ci = min
j=1,2

c j
i

≤ 1

2
(c 1

i + c 2
i )
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≤ 1

2

2∑

j=1

(M j + (1 − p j
i )li )

= M1 + M2

2
+ 1

2
li since p1

i + p2
i = 1

=
∑

k lk

2
+ 1

2
li using Eq. (81.4)

and this proves Eq. (81.3).

Finally, we can write
∑

k �=i

(qi + qk)lk ≤
∑

k �=i

(1 + tik)lk using (81.1)

≤
∑

k �=i

lk +
∑

k �=i

tiklk

=
∑

k �=i

lk + ci − li using (81.2)

≤
∑

k �=i

lk +
∑

k lk

2
− 1

2
li using (81.3)

= 3

2

∑

k �=i

lk

Theorem 81.1 (Koutsoupias and Papadimitriou [6])

The price of anarchy for any number of tasks and two machines is 3/2.

Proof
We have already seen, with the example given in the beginning of this section, that the price of anarchy is
at least 3/2. We show that is at most 3/2.

Let OPT be the optimum makespan. We will to compare the expected makespan in any Nash equilibrium
versus the optimum makespan OPT.

Let us assume that qi ≤ 3/4 for all tasks i . Then the expected makespan is
∑

k qklk ≤ 3
4

∑
k lk ≤ 3

2 OPT,
since OPT ≥ 1

2

∑
k lk .

Otherwise there exists a task i such that qi ≥ 3/4. In that case,
∑

k

qklk =
∑

k �=i

qklk + qi li

≤ 3

2

∑

k �=i

lk −
∑

k �=i

qi lk + qi li using Lemma 81.1

= 3

2

∑

k

lk − 3

2
li −

∑

k

qi lk + 2qi li

=
(

3

2
− qi

)∑

k

lk +
(

2qi − 3

2

)

li

≤
(

3

2
− qi

)

2 OPT +
(

2qi − 3

2

)

OPT since 2qi − 3
2 ≥ 0, and using OPT

≥ max
{

1
2

∑
k

lk ,li

}

= 3

2
OPT
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81.2.2 Coordination Mechanisms for the CKN Model

From an algorithmic point of view, an important question concerns possible ways to reduce the price of
anarchy. One of the proposed approaches is due to Christodoulou et al. [7], who introduced the notion
of coordination mechanism. A coordination mechanism is a set of local policies, one for each facility, that
have to be based only on the characteristics of the local agents and not require any additional resources or
alter the distributed nature of the system (the local policies are fixed once and for all before having any
knowledge of the input).1

For instance, the local policy of a facility may give priorities to the agents or introduce delays. Knowing
the coordination mechanism and the characteristics of the other agents, each agent chooses on which
facility she goes, and she is then allocated to it, according to the policy of the facility.

The price of anarchy of a coordination mechanism is defined as the ratio between the objective function
in the worst Nash equilibrium that we can obtain with this coordination mechanism, and the optimal value
of the objective function (obtained in a centralized way, and which is not necessarily a Nash equilibrium).

Let us consider the following coordination mechanism for the CKN model on two machines: on each
machine the tasks are sorted in order of increasing lengths: a task Ti is said larger than a task Tj if and
only if the length of Ti is larger than the one of Tj (li > l j ) or the tasks have the same lengths and the
identification number of Ti is smaller than the one of Tj (i < j ). The first machine, denoted by PSPT ,
schedules the tasks in order of increasing lengths, and the second machine, denoted by PLPT , schedules
the tasks in order of decreasing lengths.

With this mechanism, denoted by LPT-SPT, every task knows on which machine it will be scheduled
first: a task Ti will go on PSPT if the total length of the tasks that are smaller than Ti is smaller than or equal
to the total length of the tasks that are larger than Ti ; otherwise Ti will have incentive to go on PLPT .

Theorem 81.2 (Christodoulou et al. [7])

The coordination ratio of the LPT-SPT mechanism over two machines is 4/3.

Proof
Let us consider any schedule S obtained by this coordination mechanism, and let us show that the makespan
of this schedule is smaller than or equal to 4

3 OPT, where OPT is the smallest makespan of any schedule
involving the same tasks. Let Tr be the last task to be completed in S, and let Cmax denote its completion
time (i.e., Cmax is the makespan of S).

Let L 1 (resp. L 2) be the sum of lengths of tasks scheduled on machine 1 (resp. 2), without taking
into account task Tr . One has Cmax = min{L 1, L 2} + lr ≤ (L 1 + L 2)/2 + lr . Therefore, Cmax ≤
1
2

∑
i �=r li + lr ≤ 1

2

∑n
i=1 li + (1 − 1

2 )lr ≤ OPT + 1
2 lr . If lr ≤ 2

3 OPT then Cmax ≤ 4
3 OPT.

Let us now consider the case lr > 2
3 OPT.

If Tr is scheduled on PLPT , then the schedule is optimal. Indeed, if Tr is the only task of PLPT , then S
is an optimal schedule. In the other cases, there is at least one task before Tr on PLPT and this task has a
length larger than 2

3 OPT. Likewise, since task Tr has no incentive to go on PSPT , there are on PSPT tasks
whose sum of lengths is larger than 2

3 OPT. Thus
∑n

i=1 li > 6 OPT
3 = 2 OPT, which is impossible.

If Tr is scheduled on PSPT , then there exists a task T1 of length larger than or equal to lr on PLPT . Let x
be the sum of the lengths of the tasks scheduled before Tr on PSPT . Since l1 + x + lr ≤ 2 OPT, and since
l1 > 2

3 OPT, we deduce that lr + x ≤ 4
3 OPT, that is, Cmax ≤ 4

3 OPT.

We have shown that the coordination ratio of this mechanism is at most 4
3 . We can notice that this

bound is tight by considering the following instance: two tasks of lengths 1 and two tasks of lengths 2.
With this coordination mechanism the makespan will be 4, whereas the makespan of an optimal solution
(where one task of length 1 and one task of length 2 are scheduled on each machine) is 3.

1This approach is related to the classical approach of game theory, the approach of Mechanism Design, where the
agents are “paid” to cooperate [3].
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However, this coordination mechanism cannot be generalized for m machines. Hence, Christodoulou
et al. [7] proposed in the following coordination mechanism, that has a price of anarchy of 4

3 − 1
3m : all

the machines use a Longest Processing Time (LPT) local policy (i.e., every machine schedules its tasks in
order of decreasing lengths) and introduce small (negligible) delays to break ties. In this way, it can be
shown that the tasks have incentive to choose the machine on which they would have been affected by a
centralized LPT algorithm (i.e., an algorithm which schedules greedily the tasks in the decreasing order
of their lengths without leaving a machine idle whenever there is an unscheduled task). Thus, the price
of anarchy of this mechanism is equal to the approximation ratio of the LPT algorithm (delays can be as
small as we wish) [9]. In Ref. [7], the authors conjecture that there is no coordination mechanism with a
better coordination ratio.

81.3 Price of Stability

In many applications, it is not true that the users (or agents) are interacting directly with each other. In
reality, they interact with a protocol, which proposes a collective solution to all of them and the users
are free to accept or reject. Hence, in these applications it is necessary to design protocols (algorithms)
producing the best (or a near optimal) Nash equilibrium, that is, a stable (near) optimal solution such
that no agent has incentive to defect from it [10]. A new measure for evaluating the impact of searching a
solution under the constraint that the returned solution must be stable (i.e., a Nash equilibrium) has been
introduced by Anshelevich et al. [10]: the price of stability is defined as the ratio of the objective function
in the best Nash equilibrium and the global optimum (this maximum is taken over all instances). This
measure can be viewed as the optimistic price of anarchy.

For the KP model there is always a pure Nash equilibrium with minimum makespan, so the price of
stability is equal to 1 for this model. This result is a direct corollary of the results of Ref. [11] stating
that for the KP model it is always possible to modify (nashify) an arbitrary initial solution to a pure Nash
equilibrium without increasing the value of the makespan. However, for the CKN model this is not possible
and the price of stability depends on the policies of the machines. Indeed, if for instance, we consider that
the policies of the machines are LPT (each machine schedules the tasks in order of decreasing lengths),
then the only pure Nash equilibrium is the schedule obtained by a centralized LPT schedule. Given that
the approximation ratio of such an algorithm is 4

3 − 1
3m [9], the price of stability for the CKN model with

LPT local policies is 4
3 − 1

3m .

81.3.1 Approximate Stability for the CKN Model

In this section, we relax the definition of “stable” schedule: A solution is said to be stable if it corresponds
to an α-approximate Nash equilibrium, that is, to a situation in which no agent has sufficient incentive to
unilaterally change her behavior. We say that an agent does not have sufficient incentive to unilaterally leave
the machine on which she is scheduled, if and only if this change does not increase her profit by more than
α times its current profit, where α is a given threshold (α ≥ 1). If in a solution no agent has sufficient
incentive to change strategy, then this solution is an α-approximate-Nash equilibrium. If α = 1 then the
schedule is an (exact) Nash equilibrium. Thus, we can define the price of α-approximate stability as the
maximum ratio between the value of the objective function in the best α-approximate Nash equilibrium,
and the value of the objective function in the global optimum.

Let us illustrate this notion for the CKN model with two identical machines whose policies are LPT. In
the sequel, a task is said to be α-approximate if it will not reduce its completion time by a factor greater
than α by changing machine.

We prove that this relaxation allows to reduce the price of stability to (1 + ε), while preserving an
α-approximate Nash equilibrium, with α bounded by a constant. To do so, we consider the classical
polynomial-time approximation scheme (PTAS) of Graham [9], modified slightly:

(1) Let k be some specified and fixed integer.
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(2) Obtain an optimal schedule for the k largest tasks, such that:
• Once tasks are assigned to each machine, they are scheduled on their machines in order of

decreasing lengths (i.e., for a given machine, tasks are scheduled from the largest to the smallest
one).

• If two tasks have the same length, the one which has the smallest identification number is
scheduled first.

(3) Schedule the remaining n − k tasks using the LPT algorithm.

Note that since k is a constant, step (2) of this algorithm takes a polynomial time using an exhaustive
enumeration search. This algorithm is a PTAS, and its approximation ratio is 1 + ε, where ε is equal
to 1

2+2 � k
2 	 , if the k largest tasks of the schedule are optimally scheduled [9]. Let us now show that this

algorithm, denoted by OPT-LPT(k), always returns an α-approximate-Nash equilibrium, with α < k − 2,
for the CKN model with two machines P1 and P2 whose policies are LPT.

Theorem 81.3 (Angel et al. [12])

The schedule returned by algorithm OPT-LPT(k) is an α-approximate-Nash equilibrium, with α < k − 2,
for two machines whose policies are LPT.

Proof
Let us show that each task of an OPT-LPT(k) schedule either does not have incentive to change machine
(because she would increase its completion time by going on the other machine), or does not decrease her
completion time by a factor larger than or equal to k −2, by going on the other machine. The n−k smallest
tasks of the schedule are scheduled using the LPT rule, so they do not have incentive to change machine.
Thus we consider the k largest tasks. Let OPT be the optimal solution of these tasks, such as computed
by OPT-LPT(k). We will now consider three cases. In the sequel we will denote the i th task of P1 by xi ,
the i th task of P2 by yi , and l(t) will denote the length of task t. We will say that task t1 is larger than task
t2 if l(t1) > l(t2) or if l(t1) = l(t2), and the identification number of t1 is smaller than the identification
number of t2. Likewise t1 is said smaller than t2 if t2 is larger than t1.

• In the first case, there is, in OPT, only one task on a machine (w.l.o.g. on P1), and k − 1 tasks on
the other machine. Since this schedule is an optimal solution, the task on P1 is necessarily the largest task
on the schedule, and this schedule is an LPT schedule. So no task has incentive to change machine in this
case.

• Let us now consider the case where there are exactly two tasks on a machine (w.l.o.g. on P1) in OPT.
The others k − 2 tasks are then on P2.

We first show that no task scheduled on P2 has incentive to go on P1. By construction, we know that
l(x1)+ l(x2) is larger than or equal to the sum of the lengths of the k −3 first tasks of P2,

∑k−3
j=1 y j . Let i be

the largest number such that l(x1) ≥ ∑i
j=1 y j : the i +1 first tasks of P2 (i.e., the tasks who start at the latest

at the end of x1) do not have incentive to go on P1, otherwise they would be scheduled after task x1 and
would not decrease their completion times. Moreover, we know that l(x2) ≥ ∑k−3

j=i+2 y j : thus the tasks
from yi+2 to yk−3 do not have incentive to change machine. Likewise, yk−2 does not have incentive to
change: if it is smaller than x2, then she would be scheduled on P1 after x2, and would not decrease
her completion time, since OPT is an optimal solution. If yk−2 is larger than x2, then yk−2 starts to
be executed before (or at the same time as) x2, otherwise by switching x2 with yk−2 we could obtain
a better solution than OPT. Thus, if it goes on P1, yk−2 will be scheduled after x1, and then will not
decrease her completion time (note that yk−2 is smaller than x1, otherwise OPT would not be an optimal
solution).

The only task which may have incentive to change machine is x2. If x2 is smaller than all the other tasks,
then she does not have incentive to change. Otherwise, since OPT is an optimal solution, we know that at
least a task of P2 starts at the same time or after x2. In the best case, x2 can go to the first position on P2: by
doing this, she starts on P2 before at most k − 3 tasks, which started before her when she was on P1. These
k − 3 tasks are smaller than x2: the sum of their completion times, S, is thus smaller than (k − 3) l(x2).
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The completion time of x2 decreases with this change, from S + l(x2) < (k − 2) l(x2) to l(x2). Thus x2

is, in OPT, α-Nash-approximate, with α < k − 2.
• Let us now consider the case where there are exactly a < k − 2 tasks on P1, and b < k − 2 tasks on

P2. Let t be a task on P1 (resp. P2), who has incentive to change machine. When she changes machine,
t overtakes p tasks of P2 (resp. P1), that is, she starts to be executed before p tasks, which started to
be executed before t, that is before the change. We know that p is smaller than k − 2 because there are
less than k − 2 tasks on each machine. Moreover, these tasks have a length smaller than the one of t,
otherwise t would not overtake them. Thus, in the best case, t overtakes k − 3 tasks of length almost equal
to l(t), and the completion time of t decreases from a value smaller than (k − 2) l(t) to l(t). Thus t is
α-Nash-approximate, with α < k − 2.

We saw that OPT-LPT(k) returns α-approximate Nash equilibria, with α < k − 2. Let us now show
that this bound is tight.

Theorem 81.4 (Angel et al. [12])

Let ε be any small number such that 0 < ε < 1. OPT-LPT(k) can return α-approximate Nash equilibria,
with α ≥ k − 2 − ε and k ≥ 5.

Proof
Let ε′ = ε

k−2−ε
, and let us consider the following instance: a task of length k − 3 − ε′, a task of length

1 + ε′, and k − 2 tasks of length 1. The only optimal solution for this instance is the schedule where the
tasks of length 1 are on the same machine (w.l.o.g. on P2), and the two other tasks on the other machine.
Let t denote the task of length 1 + ε′: t is completed on P1 at time k − 2. Note that 1 + ε′ < k − 3 − ε′
for any 0 < ε < 1 and k ≥ 5, thus by going on the other machine, t would end at time 1 + ε′,
and then decrease her completion time by k−2

1+ε′ = k − 2 − ε. Thus t is (k − 2 − ε)-approximate.
The schedule returned by OPT-LPT(k) on this instance is an α-approximate Nash equilibrium, with
α ≥ k − 2 − ε.

We can deduce from Theorem 81.3, and from the fact that the approximation ratio of OPT-LPT(k) is
1

2+2 � k
2 	 , the following result:

Corollary 81.1

Let k be any integer larger than or equal to 5. For the two machine scheduling game, if the local policies of
the links are LPT, then the price of α-approximate stability is at most 1 + ε, where ε = 1

4+2 � k
2 	 < 1

k , for all
α ≥ k.

81.4 Truthful Algorithms

Another important aspect of systems based on the selfish behavior of a set of agents is the notion of
truthfulness. Consider a system with selfish agents, where the network is organized by a protocol whose aim
is the maximization of the social welfare. The underlying assumption, in such a context, is that the agents
on whom the protocols are applied are trustworthy. However, this assumption is unrealistic in some settings
as the agents might try to manipulate the protocol by reporting false information to get some advantages.
With false information, even the most efficient protocol may lead to unreasonable solutions if it is not
designed to cope with the selfish behavior of the single entities. Thus, if every agent has a value (for a task,
its length; for a machine, its speed; etc.), which is known only by herself, it is useful to design algorithms
that are able to give incentive to the agents to bid their real secret values. Such algorithms are called
truthful.

The field of mechanism design provides a theory to get truthful algorithms. The main idea of this theory
is to pay the agents to convince them to declare their true values, thus helping the system to solve the
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optimization problem correctly. This is possible if every agent incurs some monetary cost. It is common to
allow side payments to the agents, and to assume that each agent tries to maximize the sum of her payment
and her intrinsic cost of the outcome. Thus a mechanism M = (A, P) is a couple, where A is an algorithm
that computes an allocation of the resources (in our case which affects tasks to machines), and P is a
payment function that affects to every agent a certain amount of money. A mechanism is truthful if and
only if the profit of every agent is maximized when the agent reveals her true value. The main general result
in this direction is the Vickrey–Clarke–Groves (VCG) mechanism [13–15]. It handles arbitrary agents’
cost functions and guarantees the truthfulness under the hypothesis that the global objective function is
utilitarian (it optimizes the sum of the agents’ costs or profits), and that the mechanism is able to compute
the optimal solution. This is the case, for instance, when the agents are the tasks and they want to reduce
their individual completion times, and the global objective function is the sum of completion times.
However, if the objective function is the makespan, then the VCG mechanism cannot be used anymore
since the minimization of the makespan is an NP-hard problem (and thus it is not possible to compute
the optimum in polynomial time unless P = NP), and in addition the problem is not utilitarian since the
goal is the minimization of the maximum completion time over all the machines.

In this section, we consider problems where the objective function is the makespan. In Section 81.4.1,
we study the case where the agents are the tasks (CKN model): every agent is a task, which is the only
one to know its real length and may lie on the value of this length. We present a (randomized) truthful
mechanism without payment where the incentive of every agent is based only on her cost which is her
(expected) completion time.

In Section 81.4.2, we consider the case where the agents are the machines (AT model): each agent is
a machine that may lie on the value of its speed. We first show a fundamental result, due to Archer and
Tardos [8], for the following type of problems: a set of loads have to be allocated by the mechanism on
a set of machines (agents), and every agent has a secret data, which is a single positive real number that
represents the cost incurred per unit of load assigned to this agent. These problems are known as One-
Parameter-Agent problems. Archer and Tardos [8] showed that a mechanism M = (A, P) for a problem
with one-parameter agents is truthful if and only if algorithm A is monotone: an algorithm is monotone
if, given the secret data b1, . . . , bn of the agents, then, for any i and fixed b j ( j = 1, . . . , n with j �= i),
the load assigned to agent i is nondecreasing with respect to bi . Moreover, they show how to construct a
payment function PA such that if A is monotone then (A, PA) is a truthful mechanism.

It is interesting to see that our selfish machines problem is a problem involving one-parameter agents:
the agents are the machines, the loads are the tasks, and the agent’s secret data is the inverse of her speed.
Thus, an algorithm will be truthful for this problem if and only if it is monotone. Intuitively, monotonicity
here means that increasing the speed of exactly one machine does not make the algorithm decrease the
load assigned to that machine. We use this result in Section 81.4.2.2 to show that the LPT algorithm is
truthful if the speeds of the machines are powers of a constant higher than or equal to 2.

81.4.1 Truthful Algorithm for Scheduling Selfish Tasks

We consider in this section selfish tasks whose aim is to reduce their completion times (CKN model). We
assume that the length of each task (agent) is a private value, known only by herself, and that each agent
bids a value representing her length. We focus on the following process: at first the agents declare their
lengths; then given these bids the system allocates the tasks to the machines. The objective of the system
is to minimize the makespan. The aim of each agent is to minimize her completion time and an agent
may lie on this value if this can improve her (expected) completion time. We assume that the tasks cannot
shrink their lengths and thus they will not bid values smaller than their real lengths, but they may bid
values larger than their real lengths. There is a natural way to get a truthful deterministic algorithm, it is
sufficient to schedule the tasks according to the Shortest Processing Time (SPT) algorithm, in which tasks
are greedily scheduled from the smallest task to the largest task. The approximation ratio of this algorithm
is 2 − 1

m (see Ref. [9]). Here we will present a (randomized) truthful algorithm, which has an (expected)
approximation ratio better than the one of SPT.
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P3

P2

P1

0 21 3 54 6 7 11 121098 Time

T1 T4 T7

T2 T5 T8

T9T6T3

FIGURE 81.2 Example of an SPTδ schedule.

Since SPT is truthful and LPT has a good approximation ratio, it is natural to wonder whether a
randomized algorithm that returns the SPT schedule with a probability p and the LPT schedule with a
probability 1 − p, is truthful for some values of p (0 ≤ p ≤ 1). We can easily see that this algorithm is not
truthful for any p smaller than 1. Indeed, consider the following instance on two machines: a task T1 of
length 1, a task T2 of length 2, and a task T3 of length 3. If T1 bids its true value, then it will be scheduled
first in the SPT schedule, and then finish at time 1; and it will be scheduled in the LPT schedule after task
T2, and then finish in this schedule at time 3. Thus, the expected completion time of T1 if it bids its true
value is p + 3 (1 − p) = 3 − 2 p. If T1 bids 2.5 (instead of its true value 1), then it will be on the first
position in both the SPT and the LPT schedules. In both cases its completion time will be 1. Since the
expected completion time of T1 is smaller if it bids a false value rather than if it bids its true value, this
algorithm is not truthful. We will now see that if we slightly modify the SPT algorithm, then a randomized
algorithm of this type is truthful.

Let us consider the following algorithm, denoted by SPTδ in the sequel:
Let {T1, T2, . . . , Tn} be n tasks to be scheduled on m ≥ 2 identical machines, {P1, P2, . . . , Pm}. Let us
suppose that l1 ≤ l2 ≤ · · · ≤ ln. Tasks are scheduled alternatively on P1, P2, . . . , Pm, in order of increasing
lengths, and Ti+1 starts to be executed when exactly 1

m of task Ti has been executed. Thus T1 starts to be
scheduled on P1 at time 0, T2 is scheduled on P2 at time l1

m , T3 is scheduled on P3 (on P1 if m = 2) when
1
m of T2 has been executed, that is, at time l1

m + l2
m , and so forth.

The schedule returned by SPTδ will be called an SPTδ schedule in the sequel. Figure 81.2 shows an SPTδ

schedule, where m = 3.
Let us now consider the following algorithm, denoted by LSδ in the sequel:

Let m be the number of machines. With a probability of m
m+1 , the output schedule is an SPTδ schedule,

and with a probability 1
m+1 , the output schedule is an LPT schedule.

We will now show that this algorithm has an approximation ratio better than the one of SPT (cf. Theorem
81.6) and that it is truthful (cf. Theorem 81.7). But first, we need to find the approximation ratio of SPTδ .

Theorem 81.5 (Angel et al. [16])

The algorithm SPTδ is (2 − 1
m )-approximate: the makespan of an SPTδ schedule is smaller than or equal to

(2 − 1
m ) OPT, where OPT is the makespan of an optimal schedule for the same tasks.

Proof
We have n tasks T1, . . . , Tn, such that l1 ≤ · · · ≤ ln, to schedule on m machines. Each task Ti starts to
be executed exactly when 1

m of Ti−1 has been executed. So, if n ≤ m, then the makespan of the SPTδ

schedule is 1
m (l1 + · · · + ln−1) + ln ≤ 1

m (n − 1) ln + ln ≤ (2m−1) ln
m ≤ (2 − 1

m ) ln ≤ (2 − 1
m ) OPT, since

ln ≤ OPT.
Let us now consider the case n > m. Let i ∈ {m + 1, . . . , n}. Task Ti starts to be executed when

1
m of Ti−1 is executed, and Ti−1 started to be executed when 1

m of Ti−2 was executed, etc., T(i−m)+1

started to be executed when 1
m of Ti−m was executed. So the idle time between Ti and Ti−m is idle(i) =

1
m (li−m + li−m+1 + · · · + li−1) − li−m.

Let i ∈ {2, . . . , m}. The idle time before Ti is equal to idle(i) = 1
m (l1 + · · · + li−1), and there is no

idle time before T1, which starts to be executed at time 0. Thus, the sum of the idle times between tasks is∑n
i=2 idle(i) = 1

m ((m − 1)ln−m+1 + (m − 2)ln−m+2 + · · · + ln−1).
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Let j ∈ {n − m + 1, . . . , n − 1}. Let end( j ) be the idle time in the schedule after the end of task Tj and
before the end of Tn: end( j ) = l j+1 − m−1

m l j +end( j +1), where end(n) = 0. So the sum of the idle times

after the last tasks and before the end of the schedule is
∑n−1

j=n−m+1 end( j ) = (m − 1)
(

ln − m−1
m ln−1

)+
(m − 2)

(
ln−1 − m−1

m ln−2
) + · · · + (

ln−m+2 − m−1
m ln−m+1

)
.

The sum of the idle times on the machines, from the beginning of the schedule until the makespan,
is the sum of the idle times between tasks (and before the first tasks), plus the sum of the idle times
after the end of the last task of a machine and before the makespan. It is equal to

∑n
i=2 idle(i) +∑n−1

j=n−m+1 end( j ) = 1
m ((m − 1)ln−m+1 + (m − 2)ln−m+2 + · · · + ln−1)+ (m−1)

(
ln − m−1

m ln−1
)+

(m − 2)
(

ln−1 − m−1
m ln−2

) + · · · + (
ln−m+2 − m−1

m ln−m+1
) = (m − 1) ln.

Let ξ be the makespan of an SPTδ schedule. ξ is the sum of the tasks plus the sum of the idle times,

divided by m: ξ =
(∑n

i=1
li

)
+(m−1) ln

m =
∑n

i=1
li

m + (m−1) ln
m . Since

∑n

i=1
li

m ≤ OPT and ln ≤ OPT, we
have ξ ≤ (2 − 1

m ) OPT.

Theorem 81.6 (Angel et al. [16])

The expected approximation ratio of LSδ is 2 − 1
m+1

(
5
3 + 1

3 m

)
.

Proof
The approximation ratio of an SPTδ schedule is 2− 1

m (see Theorem 81.5), and the approximation ratio of
an LPT schedule is 4

3 − 1
3 m (see Ref. [9]). Thus the expected approximation ratio of LSδ is m

m+1

(
2 − 1

m

)+
1

m+1

(
4
3 − 1

3 m

) = 1
m+1

(
2m − 1 + 4

3 − 1
3m

) = 1
m+1

(
2(m + 1) − 5

3 − 1
3m

) = 2 − 1
m+1

(
5
3 + 1

3 m

)
.

For example, in the case where we have two machines, the expected approximation ratio is 25
18 < 1.39,

whereas the approximation ratio of SPT is 2 − 1
m = 1.5 in this case.

Let us now show that LSδ is truthful.

Theorem 81.7 (Angel et al. [16])

The algorithm LSδ is truthful.

Proof
Let us suppose that we have n tasks T1, . . . , Tn, ordered by increasing lengths, to schedule on m machines.
Let us show that any task Ti does not have incentive to bid a length higher than her true length. Let us
suppose that task Ti bids b > li , and that, by bidding b, Ti is now larger than all the tasks T1, . . . , Tx , and
smaller than Tx+1. In the LPT schedule, the tasks Tx+1 to Tn are scheduled in the same way, whatever Ti

bids (li or b). By bidding b, Ti can, at best, start (li+1 + · · · + lx ) time units before she had bided li . Thus
the expected completion time of Ti in LSδ decreases by at most 1

m+1 (li+1 + · · · + lx ) time units when Ti

bids b instead of li .
However, by bidding b instead of li , Ti will end later in the SPTδ schedule: in this schedule, tasks from

Ti+1 to Tx will be started before Ti . Since a task Tj starts to be scheduled when 1
m of her predecessor Tj−1

is executed, by bidding b, Ti starts 1
m (li+1 + · · · + lx ) time units later than she had bided li . Thus, the

expected completion time of Ti in LSδ is increased by m
m+1 ( 1

m (li+1 + · · · + lx )) = 1
m+1 (li+1 + · · · + lx ).

Thus, as a whole, the expected completion time of Ti cannot decrease when Ti bids a higher value than li ,
and we can deduce that LSδ is truthful.

81.4.2 Truthful Algorithms for Scheduling with Selfish Machines

We start this section by stating a general result, from Ref. [8], for one-parameter-agent problems whose
application is illustrated in the case of the AT model.

81.4.2.1 Monotonicity

We characterize the algorithms that do and do not admit truthful payment schemes for mechanism design
problems where the cost of agent i is of the form ti wi (o), where ti is her privately known cost per unit work
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and wi (o) is the amount of work—or load—assigned to her. This is, for instance, the case of scheduling
problems where the agents are the machines that have to bid their speeds (see Section 81.4.2.2).

The private data ti of agent i is only known by herself, whereas everything else is public knowledge.
Every agent reports some value bi to the mechanism: this value is called the agent’s bid. Let b−i denote the
vector of bids, not including agent i . We write the vector of bids b as (b−i , bi ). The mechanism’s output
algorithm computes a function o(b) according to the agents’ bids, and tries to optimize a global objective
function without knowing t directly. Each agent i incurs some monetary cost, costi (ti , o) = ti wi (o).
To offset these costs, the mechanism makes a payment Pi (b) to agent i . We assume that agent i always
attempts to maximize her profit: profiti (ti , b) = Pi (b) − costi (ti , o(b)).

Theorem 81.8 (Archer and Tardos [8])

The output function o(b) admits a truthful payment scheme if and only if it is decreasing. In this case, the
mechanism is truthful if and only if the payments Pi (b−i , bi ) are of the form

hi (b−i ) + bi wi (b−i , bi ) −
∫ bi

0
wi (b−i , u) du (81.5)

where the hi ’s are arbitrary functions.

Proof
Let us show this theorem with the pictorial proof of Figure 81.3.

In Figure 81.3 (left), A, B , C , and D denote the areas of the rectangles they label. The cost of agent i is
her privately known cost per unit work (ti ), times the amount of work assigned (wi (b−i , bi )). If i ’s true
value is y, her cost will be B + D if she bids x , and A + B + C + D if she bids y. Thus she would save
cost A + C by bidding x . If her true value is x , her cost will be B if she bids x , and A + B if she bids y:
she would incur an extra cost of A by bidding y. To motivate truth-telling, the extra payment for bidding
y instead of x should then be at least A + C and at most A, which is impossible since C > 0. Therefore,
the work curve must decrease.

In Figure 81.3 (right), the work curve is decreasing and the payments are given by Eq. (81.5). Geomet-
rically, the payment to i if she bids x is a constant cste minus the area between the work curve and the
horizontal line at height wi (x). If agent i ’s true value is ti and she bids x > ti , then her cost decreases by
A (this cost is A + C if the agent bids ti whereas it is only C if she bids x), but her payment decreases by
A + B (this payment is cste − D if the agent bids ti whereas it is cste − (D + A + B) if she bids x). Since
B > 0, the agent never benefits from overbidding. Similarly, we can show that she never benefits from
underbidding.

81.4.2.2 A Truthful Algorithm for the AT Model

We now consider the AT model in which each machine is an agent whose secret data is her speed. We
consider the case where we have two machines, and we wish to know if the LPT algorithm is truthful. The

bi

wi(b−i, x)

wi(b−i, y)

wi(b−i, bi)

wi(b−i, x)

wi(b−i, ti)

wi(b−i, bi)

x y

A

B

C

D

bixti

A B

C

D

FIGURE 81.3 Left: The graph shows why the work curve must be decreasing. Right: The graph shows why agent i
never gains by overbidding.

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C081 March 20, 2007 20:22

81-14 Handbook of Approximation Algorithms and Metaheuristics

Ts′1
(σ) Ts′2

(σ)

Ts1
(σ)

Ts2
(σ)

T1(σ)

T2(σ)

L(σ)

R(σ)

FIGURE 81.4 The set of tasks σ is partitioned into two subsets Ts1 (σ ) and Ts2 (σ ) (resp. Ts ′
1
(σ ) and Ts ′

2
(σ )) according

the machine (1 or 2) on which each task is scheduled when the speed vector is s (resp. s ′).

LPT algorithm, in the case where the machines do not necessarily have the same speeds, is the following
one: tasks are scheduled in order of decreasing lengths and each task is scheduled on the machine on
which it will be completed first. Theorem 81.9 shows that LPT is truthful if the speeds of the machines
are c-divisible, with c ≥ 2, that is, if the speeds of the machines are restricted to be powers of c , where
c is a constant greater than or equal to 2. It has also be shown in Ref. [17] that LPT is not truthful
in the case of two machines with c-divisible speeds if c ≤ 1.78. To prove Theorem 81.9, we will show
that LPT is monotone when the speeds are c-divisible, with c ≥ 2. By Theorem 81.8, shown in the
previous section, this result implies that LPT is truthful in that case. Let us first start with the following
lemma:

Lemma 81.2 (Ambrosio and Auletta [17])

For each speed vector s , where si is the speed of machine i , and for each sequence of tasks σ , the schedule
computed by any list scheduling algorithm 2 on input s and σ is such that for any i, j , if s j ≥ 2 si then
w j ≥ wi , where wi is the load assigned to machine i by the algorithm.

Proof
Suppose, by contradiction, that w j < wi and consider the last task t assigned to machine i . We have
w j +t

s j
<

2 wi
s j

≤ wi
si

, which contradicts the hypothesis that the list scheduling algorithm assigned task t to

machine i .

Consider two speed vectors s = 〈s1, s2〉 and s ′ = 〈s ′
1, s ′

2〉, where s ′ differs from s only on the speed of
machine i and si ≤ s ′

i .
Let Ts1 (σ ) be the set of tasks of σ that are assigned to machine 1 when the speed vector is s . We define

Ts2 (σ ),Ts ′
1
(σ ) andTs ′

2
(σ ) in a similar way. We define L (σ ) = |Ts1 (σ )∩Ts ′

2
(σ )|, R(σ ) = |Ts2 (σ )∩Ts ′

1
(σ )|,

T1(σ ) = |Ts1 (σ ) ∩ Ts ′
1
(σ )| and T2(σ ) = |Ts2 (σ ) ∩ Ts ′

2
(σ )|. In other words, L (σ ) is, for example, the sum

of the lengths of the tasks of σ that are assigned to machine 1 with respect to s (i.e., when the speed vector
is s ), and to machine 2 with respect to s ′ (i.e., when the speed vector is s ′). These notations are depicted
in Figure 81.4.

In the sequel we omit the argument σ when it is clear from the context.

Theorem 81.9 (Ambrosio and Auletta [17])

For any c ≥ 2, the algorithm LPT is monotone when restricted to the case of two machines with c-divisible
speeds.

Proof
Suppose, by contradiction, that LPT is not monotone for c-divisible speeds. Then, there exists two speed
vectors s = 〈s1, s2〉, and s ′ = 〈s ′

1, s ′
2〉, where s ′ has been obtained from s by increasing only one speed

(i.e., s ′
i ≥ c si and s ′

j = s j for i, j ∈ {1, 2} and i �= j ), and a sequence of tasks σ = 〈σ ′, t〉 such that
the scheduling of the tasks in σ computed by LPT with respect to s and s ′ is not monotone. Without

2A list scheduling algorithm is an algorithm, which schedules the tasks following the order of an arbitrary priority
list without leaving any unnecessary idle time.
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loss of generality, assume that σ is the shortest sequence that LPT schedules in a not monotone way:
the schedule of σ ′ is monotone while the allocation of t destroys the monotonicity. We distinguish three
cases.

• Let us first consider the case where s ′
1 = s1 and s ′

2 ≥ c s2. Since the schedule of σ ′ is monotone, we
know that w2(σ ′, s ) ≤ w2(σ ′, s ′), that is, |Ts2 (σ ′)| ≤ |Ts ′

2
(σ ′)|, and so R(σ ′) ≤ L (σ ′) (see Figure 81.4).

Likewise, since the schedule of σ is not monotone, w2(σ, s ) > w2(σ, s ′), and so we know that t is on
machine 2 with respect to s , and t is not on machine 2 with respect to s ′, meaning that the length of task
t contributes to the quantity R(σ ). One can deduce that L (σ ′) < R(σ ′) + t. Thus,

R(σ ′) ≤ L (σ ′) < R(σ ′) + t (81.6)

Since t is the smallest task of σ , R(σ ′) and L (σ ′) are either nil, or greater than or equal to t. Hence,

R(σ ′) ≥ L (σ ′)
2

(81.7)

Since the schedule of σ ′ is monotone, while the one of σ is not monotone, we know that t is on machine
2 with respect to s , and t is on machine 1 with respect to s ′. By definition of LPT, since LPT on input s
assigns task t to machine 2, we know that T1(σ ′)+L (σ ′)+t

s1
≤ T2(σ ′)+R(σ ′)+t

s2
, and so

T2(σ ′) ≤ s2

s1
(T1(σ ′) + L (σ ′) + t) − R(σ ′) − t (81.8)

Similarly, since LPT on input s ′ assigns t to machine 1, T1(σ ′)+R(σ ′)+t
s ′

1
≤ T2(σ ′)+L (σ ′)+t

s ′
2

, from which we

obtain

T2(σ ′) + L (σ ′) + t ≥ s ′
2

s1
(T1(σ ′) + R(σ ′) + t) (81.9)

since s1 = s ′
1. We deduce from inequalities (81.8) and (81.9) that

L (σ ′) ≥ s ′
2

s1
(T1(σ ′) + R(σ ′) + t) − T2(σ ′) − t

L (σ ′) ≥ s ′
2

s1
(T1(σ ′) + R(σ ′) + t) − s2

s1
(T1(σ ′) + L (σ ′) + t) + (R(σ ′) + t) − t

L (σ ′) ≥ 2 s2

s1
(T1(σ ′) + R(σ ′) + t) − s2

s1
(T1(σ ′) + L (σ ′) + t) + R(σ ′)

L (σ ′) ≥ s2

s1
T1(σ ′) + s2

s1
(2 R(σ ′) + 2 t − L (σ ′) − t) + R(σ ′)

L (σ ′) ≥ s2

s1
T1(σ ′) + s2

s1
(2 R(σ ′) − L (σ ′)) + t (

s2

s1
− 1) + (R(σ ′) + t)

L (σ ′) ≥ (R(σ ′) + t) since s2 ≥ s1 and using inequality (81.7)

This last inequality contradicts Eq. (81.6), and thus there is no instance σ for which the schedule computed
by LPT is not monotone.
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• The case s2 ≥ s ′
1 ≥ c s1 can be reduced to the previous case by observing that since the scheduling

of σ with respect to s and s ′ is not monotone, w1(σ, s ) > w1(σ, s ′) and therefore w2(σ, s ) < w2(σ, s ′).
The schedules computed by LPT with respect to s and s ′ are equal to the schedules computed with respect
to speed vectors 〈1, s2

s1
〉 and 〈1, s2

s ′
1
〉, where s2

s ′
1

≤ c s2
s1

.

• Case where s ′
1 > s2: since s2 and s ′

1 are by hypothesis powers of c ≥ 2, and since s ′
1 > s2, then

s ′
1 ≥ 2 s2, and this case follows directly from Lemma 81.2.

This result together with Theorem 81.8 shows that LPT is truthful for the AT model.

81.5 Other Results

In this section, we give some of the numerous results in this area classified by model. Notice the existence
of other surveys [18,19] and of a recent book dealing with the price of anarchy in the context of selfish
routing [20].

81.5.1 Results for the KP Model and Variants

The proof of Theorem 81.1, stating that the price of anarchy for the KP model in the case of two identical
parallel machines is equal to 3/2, is due to Koutsoupias and Papadimitriou [6]. They have also pointed
out the relation between the problem of computing the price of anarchy for the KP model and the BINS

AND BALLS problem (see, e.g., Ref. [21]). In this way, they were able to show that the price of anarchy
for the KP model with m identical machines is at least �( log m

log log m ) and is at most 3 +
√

4m log m. They
also obtained that for the case of the KP model with uniform machines (where the machines can have
different speeds) the price of anarchy is at least φ = 1+√

5
2 = 1.618 in the case of two machines, and

O(
√

s1
sm

∑m
j=1

s j
sm

√
log m) in the case of m uniform machines with speeds s1 ≥ s2 ≥ · · · ≥ sm. They

have also conjectured that the price of anarchy for the KP model is 	( log m
log log m ) [6].

The first advance in the direction of settling the validity of this conjecture has been made by Mavronicolas
and Spirakis [22], who considered a special class of Nash equilibria, the so-called fully mixed equilibria
where for every pair of task i and machine j , p j

i is nonzero. They proved that for this class of equilibria
the conjecture of Koutsoupias and Papadimitriou is valid for the KP model with identical machines. They
further considered the case of the KP model with m uniform machines and n tasks of the same length
(with m ≤ n) and they established that the price of anarchy is 	( log n

log log n ). Koutsoupias et al. [23] showed

that the price of anarchy is O( log m
log log m ) for the KP model with identical machines. But the conjecture has

been completely settled for the more general KP model with uniform machines by Czumaj and Vöcking
[24], who showed that the price of anarchy is indeed 	( log m

log log log m ).
Two important classes of Nash equilibria have been extensively studied for the KP model, namely

the pure and the fully mixed Nash equilibria. The obtained results concern the evaluation of the price
of anarchy, as well as the computation of the best, worst, or of just a Nash equilibrium within these
classes.

Pure Equilibria
In the case where the agents are not allowed to randomize their strategies, the set of solutions for the KP
model is the set of all pure Nash equilibria, that is where for every agent i and machine j , p j

i is either
0 or 1. Several questions have been treated concerning this kind of equilibria: the first one asks if such
an equilibrium always exists. It has been shown in Ref. [25] that this is true for the KP model. Another
question concerns the price of anarchy when restricted to pure equilibria: Czumaj and Vöcking [24] proved
two upper bounds of 
−1(m) + 1 = O( log m

log log m ) for the case of the KP model with identical machines
and O(log s1

sm
) for the same model with uniform machines of speeds s1 ≥ s2 ≥ · · · ≥ sm. They have

also showed that these bounds are tight up to a constant factor. From an algorithmic point of view, the
main question is how to find a Nash equilibrium: Fotakis et al. [25] showed that it is NP-hard to find the
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best and worst equilibria, but, they proved that it is possible to compute a Nash equilibrium for the KP
model with identical machines whose price of anarchy is 4

3 − 1
3m using the LPT algorithm of Graham [9].

This result has been strengthened by the results of Refs. [26–28]. In these papers, the authors consider
the nashification problem for the KP model, that is, the problem of designing a polynomial-time algorithm
that starting from an arbitrary schedule computes a Nash equilibrium whose social cost is not greater
from the one of the original schedule. Hence, in Refs. [26,27], an O(n log n) algorithm is presented
for the KP model with identical machines. In Ref. [28], an O(m2n) algorithm is presented for the
KP model with uniform machines. These results show that there is a PTAS for the problem of find-
ing a Nash equilibrium of minimum social cost for the KP model (in both the identical and uniform
machine cases). This is true since it is sufficient to start from a schedule computed by the PTAS of
Hochbaum and Shmoys [29] that has to be nashified using one of the above-mentioned nashification
algorithms.

Fully Mixed Equilibria
As mentioned above the first to study the class of fully mixed Nash equilibria were Mavronicolas and
Spirakis [22]. Many researchers followed this direction with the hope that the techniques elaborated for
the analysis of fully mixed Nash equilibria could be appropriately extended to the general case. Fotakis
et al. [25] proposed a polynomial-time algorithm, which computes in O(n log n) time a fully mixed Nash
equilibrium. Gairing et al. [26] conjectured that the worst Nash equilibrium, that is, the Nash equilibrium
with the highest social cost, is a fully mixed Nash equilibrium. This conjecture is known as the Fully
Mixed Nash Equilibrium conjecture. The motivation to study this conjecture is that if it was true, then
computing the worst Nash equilibrium would be trivial: indeed, for the KP model there is a unique fully
mixed Nash equilibrium in which each task is scheduled with probability 1

m to each machine [22]. Fotakis
et al. [25] studied this conjecture and gave some partial results. They proved that the conjecture is true
in the special case where there are only two tasks for the KP model with identical machines. They also
proved that the social cost of the worst Nash equilibrium is less than or equal to 49.02 times the cost of
any generalized fully mixed Nash equilibrium for the KP model with uniform machines. They have also
studied the computational complexity of computing the social cost of a Nash equilibrium, and they showed
that it is #P-complete when restricted to mixed equilibria. Furthermore, they proposed a fully polynomial
randomized approximation scheme (FPRAS) to compute it for the KP model with identical machines.
If the fully mixed Nash equilibrium conjecture was true, this scheme would help to approximate within
any accuracy the cost of the worst Nash equilibrium. Thus the efforts continued in this direction and the
conjecture was shown to be true for some other special cases: the case where the number of machines is
two [11] and the case where the comparison is limited to pure Nash equilibria [30]. Unfortunately, Fischer
and Vöcking [31] showed recently that the fully mixed Nash equilibrium conjecture is not true and that
the ratio between the social cost of a fully mixed Nash equilibrium and the worst Nash equilibrium can be
almost as bad as the price of anarchy.

Various extensions of the KP model have been considered in the literature [11,33]. Among them, we can
cite the restricted KP model where a task is allowed to be executed only to subset of the machines [11,33],
the KP model with unrelated machines [33] or the Web server farm model [34]. The main results concern,
as for the KP model, the evaluation of the price of anarchy or the nashification problem.

81.5.2 Results for the CKN Model

Coordination Mechanisms
The notion of coordination mechanism, the CKN model in the context of selfish scheduling, and the
results of Section 81.2.2 are from Ref. [7]. In Ref. [35], the authors have recently extended the results of
Ref. [7]: they noticed the close relation between coordination mechanisms and local search algorithms, as
well as, between the price of anarchy and the locality gap of a neighborhood and by doing so they were able
to obtain the price of anarchy for some of the variants of the CKN model using some older results from
the local search literature [36]. They also studied the price of anarchy of pure Nash equilibria for various
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coordination mechanisms for the CKN model. They proved that the price of anarchy of any deterministic
coordination mechanism for the CKN model with uniform machines and the CKN model where each
task can be executed to a restricted subset of machines is at most O(log m). They also proved that the price
of anarchy of a coordination mechanism based on a universal policy (like LPT or SPT) is �(log m) for the
later model. Furthermore, they showed that the price of anarchy of a coordination mechanism based on
LPT is 2− 2

m for the CKN model with uniform machines. They also proved that a coordination mechanism
based on a randomized policy has a price of anarchy of 	(m) for the CKN model with unrelated machines.
They also studied the convergence and existence of pure Nash equilibria for coordination mechanisms
based on SPT and LPT policies.

Price of Stability
The results in Section 81.3.1 are from Ref. [12] and can be extended to the m machines case. The authors
studied the trade-off between α and the quality of the proposed solution. More precisely, they showed that
the price of α-approximate stability is at most 8

7 for all α ≥ 3, and they gave an algorithm that achieves this
bound. They also provided a relation between α and the best possible price of α-approximate stability, by
showing, for example, that the price of α-approximate stability is at least 8

7 for all α < 2.1, and that it is
larger than or equal to 1 + ε if α is smaller than a certain constant k in 	(ε−1/2).

Truthfulness
The results of Section 81.4.1 are from Ref. [16]. The authors considered also the design of truthful coor-
dination mechanisms for the CKN model with two identical machines. They first studied a coordination
mechanism where the first machine always schedules its tasks in order of increasing lengths (its policy is
SPT), and the second machine schedules its tasks with a probability p > 2

3 in order of increasing lengths
and with probability (1− p) in order of decreasing lengths. The expected price of anarchy of this (random-
ized) coordination mechanism, that they proved to be 4

3 + p
6 , is better than the one of SPT (whose price of

anarchy is 3
2 ). They also showed that this coordination mechanism is truthful if the tasks are powers of a

constant greater than or equal to 4−3p
2−p , but not if the values of the task lengths are not restricted. Moreover,

they showed that if p < 1
2 then this coordination mechanism is not truthful even if the tasks are powers

of any integer larger than 1. They also considered the other randomized coordination mechanisms that
combine deterministic coordination mechanisms in which the tasks are scheduled in order of increasing
or decreasing lengths (and thus which have expected price of anarchy better than the one of SPT), and
gave negative results on their truthfulness.

81.5.3 Results for the AT Model

The results of Theorem 1.8 are from Ref. [8] and that of Theorem 1.9 from Ref. [17]. The first results
in this direction were given by Nisan and Ronen [37], but for the model of selfish unrelated machines.
For this model they proved that the former known approximation algorithms are not truthful. For the
AT model (with uniform machines) it was Archer and Tardos who introduced a truthful randomized
mechanism, which gives 3-approximate solutions. The first deterministic result is due to Auletta et al. [38]
who proposed a deterministic polynomial-time (2 + ε)-approximation algorithm and suitable payments
functions that yield truthful mechanisms for the following restrictions of the problem: (i) the speeds of the
machines are integer and the largest is bounded from above by a constant, and (ii) the speeds are divisible,
that is, si+1 is a multiple of si . The proposed mechanisms compute the payments in polynomial time and
satisfy voluntary participation, that is, a truthfully behaving agent never incurs in a loss. They were also
able to deduce a deterministic truthful (4 + ε)-approximate mechanism for the case of arbitrary speeds
and for any, but fixed, number of machines. More recently, Azar and Sorani [39] improved these results:
They provided a deterministic 12-approximation truthful mechanism for the AT model with an arbitrary
number of processors. They also proposed a deterministic truthful PTAS for the AT model with a fixed
number of machines. Auletta et al. [40] studied the difficulty of translating approximation/competitive
algorithms into equivalent approximation/competitive truthful mechanisms. They proposed “translation”
technique and studied its limits.
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82.1 Introduction

The general equilibrium model of the economy consists of a set of agents, each with an initial endowment
of commodities, interacting through a market, trying to maximize their own utility function. The market
prices of commodities are determined by a clearance condition. That is, all commodities are bought,
collectively, by all the utility maximizing agents, subject to their budget constraints (determined by the
values of their initial endowments of commodities at the market price).

This conceptual framework is the outcome of a sequence of efforts trying to fully understand the
laws that govern human commercial activities, starting with the “invisible hand” of Adam Smith [1], the
Walras law [2], and finally, the mathematical conclusion of Arrow and Debreu [3] that there exists a set of
prices that bring supply and demand into equilibrium, under quite general conditions on the agent utility
functions and their optimization behavior.

An inherent challenge grown out of the mathematical beauty of the general equilibrium, especially to the
believers of the model often referred to as Neoclassical Economics, is how this clearance price vector arrives
at the market place. Walras proposed a tatonnement process that moves the market into an equilibrium
state through a sequence of virtual auctions of the commodities at a sequences of their prices that gradually
correct imbalance of the supply and the demand. In a different approach, Scarf developed a fixed point
algorithm to directly compute the equilibrium price [4]. In addition, mathematical programming models
and numerical methods have been used in practical methods commonly referred to as the paradigm of
Computable General Equilibrium (CGE) [5]. Those approaches can be traced back to the Leontief ’s input–
output model and have been applied to policy and trade analysis of developing countries, most noticeably,
by the World Bank [6,7].

The Scarf ’s fixed-point algorithm approach was the first serious effort on deriving the equilibrium price
for general utility functions. Scarf observed that the algorithm converges in O(n4) time. The worst-case
complexity, however, has shown to be exponential [8,9]. The fixed-point algorithm does not reach an exact
solution of the general equilibrium problem but an approximate solution in the fixed-point formulation.
It may not even directly translate to an approximate general equilibrium solution in a well defined way.

82-1
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For practical applications, solutions are always approximate as various parameters are not as accurate
as in an ideal world. Data are estimated and utility functions are derived. Therefore, the fact that the exact
solutions cannot be efficiently computed has not been a major concern for any practical reason. Concep-
tually, however, approximate general equilibrium has never hold a place in the mainstream Economics
Theory, except in special cases, such as the case for the rational expectation model, where Allen [10] defined
approximation equilibrium as a utility maximization model with the aggregated excess demand bounded
by ε. This concept has thus rescued the general equilibrium approach for the rational expectation model,
which may result in nonexistent of the exact equilibrium.

In a proposal for computational complexity study of the general equilibrium problem, Deng et al. [11]
introduced a concept of approximate general equilibrium in a more relaxed way than that of Allen.
They introduce the computational counter part of bounded rationality, that of Herbert Simon [12],
to allow agents in the market to be satisfied with allocations of commodities with a utility within
1 − ε of its optimal utility under the price, together with the global excess demand relaxation as that of
Allen.

The approximate equilibrium concept allows them to develop polynomial time approximate solution
for the case of a finite number of indivisible goods. Even for divisible goods where equilibrium always
exist, the concept has allowed for polynomial time approximate solutions under various models of the
economy [13,14]. Moreover, the concept has formed a basis for the study of an interesting dynamic model
of the online market [15].

The computer and Internet age has created a reality of the economy much different from that led
to the establishment of the theories of Smith, Walras, and even Arrow and Debreu. Economic activ-
ities become observable in a wide scale that matches up the considerations under the general equi-
librium. The Electronic Commerce and the Internet have made the ideal testing ground for the then
speculative theories of the prophets. Economics can become as empirical as any scientific subjects.
The recent study in this direction is only the beginning of a great revolution to come in Economic
Theories.

In this chapter, we will discuss recent development for the algorithmic complexity issue of the general
equilibrium problem. We should focus on pure exchange economy for simplicity of presentation. The
general model with production agents can often be handled similarly. In Section 82.2, we first introduce
the model of general equilibrium, and define the notation of approximate equilibrium, together with
some discussion on the recent development in this direction. In Sections 82.3 and 82.4, we discuss two
algorithmic approaches for computational of the general equilibrium problem, including convex program-
ming and ellipsoid algorithms. In Section 82.5, we discuss approaches that derive provably approximate
algorithms for the general equilibrium problem, especially with indivisible commodities in the market.
In Section 82.6, we discuss the hardness results for approximating the market equilibria. We conclude in
Section 82.7 with remarks on open problems and future directions.

82.2 Models and Definitions

In the section, we will introduce the model of a pure exchange economy and the definition of equilibrium
of the economy.

In a pure exchange economy, there are m traders, labelled by i = 1, 2, . . . , m, and n types of
commodities, labelled by j = 1, 2, . . . , n. The commodities could be divisible or indivisible. Each trader i
comes to the market with initial endowment of commodities, denoted by a vector wi ∈ R

n+, whose j th
entry is the amount of commodity j held by trader i .

We associate each trader i a consumption set Xi to represent the set of possible commodity bundles.
For example, when there are n1 divisible commodities and (n − n1) indivisible commodities, we may set
Xi = R

n1+ × Z
n−n1+ . Each trader has a utility function Xi �→ R+ to present his utility for a bundle of

commodities. Usually, we require that the utility function u be concave and nondecreasing.
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Example 82.1

Constant elasticity of substitution (CES) function has the form u(x) = (∑n
j=1 α j xρ

j

) 1
ρ , where α′

j s are
constant parameters, and ρ ∈ (−∞, 1]\ {0}. CES function is intensively used in economic modelling of
markets. It also covers some important classes of utility functions, at least in the limit sense. For example,
CES function turns to be linear utility function when ρ = 1, Cobb–Douglas utility function when ρ → 0,
Leontief utility function when ρ → −∞.

In the market, each trader acts as both a buyer and a seller to maximize his utility. At a certain price
p ∈ R

n+, trader i is solving the following optimization problem, under his budget constraint:

max ui (xi ) s.t. xi ∈ Xi and 〈p, xi 〉 ≤ 〈p, wi 〉
Definition 82.1

An equilibrium in a pure exchange economy is a price vector p̄ ∈ R
n+ and bundles of commodities{

x̄ i ∈ R
n+, i = 1, . . . , m

}
, such that

x̄i ∈ argmax {ui (xi )|xi ∈ Xi and 〈xi , p̄〉 ≤ 〈wi , p̄〉} , ∀1 ≤ i ≤ m
m∑

i=1

x̄ ij ≤
m∑

i=1

wi j , ∀1 ≤ j ≤ n

A special case of exchange market is the Fisher’s model which can be considered as a special case of
the general model, where the initial endowments of traders are proportional, i.e., wi = ei w to a fixed
vector w ∈ R

n+. In fact, Fisher considered the traders who come to the market with initial endowments of
money, where the goods are available for sale. The traders buy commodities from the market to maximize
their utilities under their budget constraints. Assume trader i ’s money is ei ∈ R+, then he is solving the
following optimization problem:

max ui (xi ) s .t. xi ∈ Xi and 〈p, xi 〉 ≤ ei

The equilibrium price for the Fisher model is one under which all traders spent all their money and all
goods are sold to the traders.

Definition 82.2

An equilibrium in the Fisher’s model is a price vector p̄ ∈ R
n+ and bundles of commodities{

x̄ i ∈ R
n+, i = 1, . . . , n

}
, such that

x̄i ∈ argmax {ui (xi )|xi ∈ Xi and 〈xi , p̄〉 ≤ ei } , ∀1 ≤ i ≤ m
m∑

i=1

x̄ i j ≤
m∑

i=1

ei w , ∀1 ≤ j ≤ n

〈

p̄,
m∑

i=1

x̄ i

〉

=
〈

p̄,
m∑

i=1

ei w

〉

Even though an equilibrium exists under some moderate assumptions, its computation is not in general
easy. The classical general approach of the fixed-point method is known to be exponential in time. In
addition, existence is not always guaranteed for indivisible goods, even for divisible goods under some
utility functions. Therefore, a concept of approximate equilibrium was introduced in Ref. [11]:

Definition 82.3 [11]

An ε-approximate equilibrium in an exchange market is a price vector p̄ ∈ R
n+ and bundles of goods{

x̄ i ∈ R
n+, i = 1, . . . , m

}
, such that

ui (x̄ i ) ≥ 1

1 + ε
max {ui (xi )|xi ∈ Xi , 〈xi , p̄〉 ≤ 〈wi , p̄〉} , ∀i (82.1)
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〈x̄ i , p̄〉 ≤ 〈wi , p̄〉 , ∀i (82.2)
m∑

i=1

x̄ ij ≥ (1 − ε)
m∑

i=1

wij, ∀ j (82.3)

m∑

i=1

x̄ ij ≤
m∑

i=1

wij, ∀ j (82.4)

82.3 Convex Programming Methods

Convex programming is a powerful tool to solve the equilibrium problem. By exploiting the Karush-Kuhn-
Tucker (KKT) conditions of the traders’ utility-maximizing problem, the equilibrium conditions may be
formulated as a convex feasibility problem or a convex optimization problem. Such convex formulations
are expressive to characterize many utility functions, and are also implementable in practice. Up till now,
at least two classes of problems can be solved with this kind of methods. We will introduce them in the
following two subsections.

82.3.1 A Convex Formulation for a Class of General Equilibrium Model

In 1983, Nenakhov and Primak [16] found that in an exchange market with linear utility functions,
the equilibrium conditions are equivalent to a set of convex feasibility conditions. Recently, Jain [17]
rediscovered this convex feasibility formulation independently. Since then, the method has been applied
to more general cases including productivity components as by Jain et al. [18]

The following theorem is a simplified version of Nenakhov and Primak’s [16] convex formulation (with
the production activities removed). It provides a sufficient and necessary condition for the equilibrium in
a pure exchange market:

Theorem 82.1

Let ui j denote ∂ui
∂ j . An allocation-price pair (x , p) is an equilibrium if and only if

ui j (xi )

p j
≤ 〈∇ui , xi 〉

〈wi , p〉 , ∀i, j. (82.5)

m∑

i=1

xij ≤
m∑

i=1

wij , xi j ≥ 0, ∀i, j (82.6)

Proof
Given a price vector p, trader i is solving the following optimization problem:

max ui (xi ) (82.7)

s.t. f0(xi ) = 〈xi , p〉 − 〈p, wi 〉 ≤ 0 (82.8)

f j (xi ) = −xij ≤ 0, ∀1 ≤ j ≤ n (82.9)

And its dual problem:

min ui (xi ) −
n∑

k=0

yk fk(xi ) (82.10)

s.t.
n∑

k=0

yk∇ fk(xi ) = ∇ui (xi ) (82.11)

yk ≥ 0, ∀k (82.12)
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It is known that xi is the optimal solution of the primal problem if and only if there exists a y ∈ R
m+1

such that

y0(〈xi , p〉 − 〈p, wi 〉) −
n∑

k=1

yk xik = 0

〈xi , p〉 ≤ 〈p, wi 〉
y0 p j − y j = uij (xi ), ∀ j

xi j ≥ 0, ∀ j

yk ≥ 0, ∀k

Take y j = y0 p j − uij (xi ), the conditions are equivalent to that there exists (xi , y0), such that

y0 〈p, wi 〉 = y0 〈xi , p〉 (82.13)

〈xi , p〉 ≤ 〈p, wi 〉 (82.14)

y0p j ≥ uij (xi ), ∀1 ≤ j ≤ n (82.15)

y0p j xi j = uij (xi )xij , ∀1 ≤ j ≤ n (82.16)

xi j ≥ 0, ∀1 ≤ j ≤ n (82.17)

y0 ≥ 0 (82.18)

Now we prove the necessary side. If (x , p) is an equilibrium, then for any xi , we can find a y0 satisfies
Eqs. (82.13)–(82.18). By Eq. (82.13) and Eq. (82.16), we have

〈∇ui , xi 〉 =
n∑

j=1

uij (xi )xij =
n∑

j=1

y0p jxi j

= y0 〈xi , p〉 = y0 〈p, wi 〉
Since y0 ≥ uij

p j
(∀ j ), we have proved that 〈∇ui , xi 〉/〈p, wi 〉 ≥ uij (xi )/p j for all i, j .

For the sufficient side, if there exists (x , p) such that

uij (xi )

p j
≤ 〈∇ui , xi 〉

〈wi , p〉 , ∀i, j.

m∑

i=1

xij ≤
m∑

i=1

wij , ∀ j ;

xij ≥ 0, ∀i, j

We have

〈∇ui , xi 〉 p j ≥ uij 〈p, wi 〉

⇒
n∑

j=1

〈∇ui , xi 〉 p j xi j ≥
n∑

j=1

uij xi j 〈p, wi 〉

⇒ 〈xi , p〉 ≥ 〈p, wi 〉
Let 〈xi , p〉 = 〈p, wi 〉 + εi . Sum over i , we have

〈
n∑

i=1

xij , p

〉

=
〈

n∑

i=1

wij , p

〉

+
n∑

i=1

εi

Then, the condition
∑m

i=1 xij ≤ ∑m
i=1 wij implies that εi = 0 for all i . Now, xi have satisfied conditions

(82.13), (82.14), and (82.17).
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For any i , take y0 = max
j

ui j
p j

, then we need only to verify Eq. (82.16). We have for all j :

y0 p j xi j ≥ uij (xi )xi j

⇒
n∑

j=1

y0p j xi j ≥
n∑

j=1

uij (xi )xij

⇒ y0 〈xi , p〉 ≥ 〈∇ui , xi 〉
Finally, we get y0 〈p, wi 〉 ≥ 〈∇ui , xi 〉 ≥ y0 〈p, wi 〉. So all inequalities become equalities. Hence,

y0p jxi j = uij (xi )xi j for all j . This complete the proof.

Corollary 82.1

By Theorem 82.1, the problem of computing a general equilibrium can be reformulated to:

min θ

s.t.
m∑

i=1

xij =
m∑

i=1

wi + θ , ∀ j

log
(

〈∇ui , xi 〉
uij

)
≥ log(〈p, wi 〉) − log( p j ), ∀i, j

xi j ≥ 0, p j > 0, ∀i, j

(82.19)

The following lemma was developed in Ref. [19]:

Lemma 82.1

For all feasible solution of Problem (82.19), we must have θ ≥ 0.

Proof
The inequalities in (82.19) imply that

xij p j 〈∇ui , xi 〉 ≥ 〈p, wi 〉 uij xi j , ∀i, j
(summing over j ) ⇒ 〈xi , p〉 〈∇ui , xi 〉 ≥ 〈p, wi 〉 〈∇ui , xi 〉

⇒ 〈xi , p〉 ≥ 〈p, wi 〉

(summing over i) ⇒
〈

m∑

i=1

xi , p

〉

≥
〈

m∑

i=1

wi , p

〉

This implies θ ≥ 0.

The existence of equilibrium and Lemma 82.1 show that the minimal value of Problem (82.19) must
be zero. If log( 〈∇ui , xi 〉

uij
) is concave for any i, j , the system (Eq. (82.19)) is a convex optimization problem.

Therefore, we can approximate the equilibrium in polynomial time with existing techniques for convex
programming, such as interior point algorithms. The time complexity strongly depends on the utility
functions. Ye [19] shows how to estimate the time complexity for linear utility functions.

82.3.2 Homogeneous Utility Functions

It was first discovered by Eisenberg and Gale [20] that the solution of a convex optimization program yields
the market equilibrium in the Fisher’s market model with linear utility functions. Later, Eisenberg [21]
extends the approach to concave homogeneous utility functions. In this subsection, we redescribe their
result in a general form. We will show that how to aggregate the traders’ individual utilities to obtain a
convex optimization program and how the equilibrium price be yielded by the solution of the program.

In this subsection, we deal with the Fisher’s market model. In the market, the money held by trader i is
ei ∈ R+ and the amount of each commodity is normalized to 1.

A continuous differentiable function u : R
n+ �→ R+ is said to be homogenous of degree d if 〈∇u, x〉 =

du(x). CES utility functions are homogenous functions.
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A continuous differentiable function u : R
n+ �→ R+ is said to be weak homogenous if there exists an

increasing function φ : R+ �→ R+ such that

〈∇u, x〉 = φ(u) (82.20)

Obviously, a homogenous function of degree d is a weak homogenous function with φ(u) = du.
Assume trader i ’s utility function ui is weak homogenous, then there exists a function φi satisfying that

〈∇ui , xi 〉 = φi (ui (xi ))

Define a function �i : R+ �→ R+ by the integration of φi

�i (u) =
u∫

t=0

ei

φi (t)
dt

Naturally, d�i (ui (xi )) = ei
φ(ui (xi )) = ei〈∇ui , xi 〉 . Since φi is an increasing function, �i is a well-defined

concave function over R+. For example, when ui is a homogenous function of degree d ,�(ui ) = ei log(ui ).

Theorem 82.2

If the utility functions of all the traders satisfy the weak homogenous condition, then the market equilibrium
in the Fisher’s setting can be computed by solving the following convex programming problem:

max � =
m∑

i=1

�i (ui (xi ))

s.t.
m∑

i=1

xij ≤ 1, ∀ j

xi j ≥ 0, ∀i, j

(82.21)

Proof
Let x be the solution of Eq. (82.21) and p be the dual solution. Denote ∂ui

∂xi j
by uij, then

∂�
∂xi j

= d�i (ui )uij ≤ p j , ∀i, j

d�i (ui )uij xi j = p j xi j ∀i, j
m∑

i=1

xij ≤ 1, ∀ j

p j

(

1 −
m∑

i=1

xij

)

= 0, ∀ j

xi j ≥ 0, ∀i, j

These equations guarantee that xi is the solution of trader i ’s utility-maximizing problem

max ui (xi )
s.t. 〈xi , p〉 ≤ ei

To see p is a market clearing price, we have for any trader i :

n∑

j=1

p j xi j =
n∑

j=1

d�i (ui )uij xi j =
n∑

j=1

ei

φi (ui )
uij xi j

= ei

〈∇ui , xi 〉
n∑

j=1

uij xi j = ei
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82.4 Ellipsoid Algorithm

In some models, it is more convenient to use demand functions to characterize the traders’ preference
on goods. Trader i ’s demand function is a map di : R

n+ �→ R
n+, where di ( p) ∈ R

n+ presents trader i ’s
demand of goods under the price p. The excess demand function of trader i is zi ( p) = di ( p) − wi .
The aggregated demand function is defined by D( p) = ∑mj

i=1 di ( p) and the aggregated excess demand
function is Z( p) = D( p) − ∑m

i=1 wi .
We can define the market equilibrium price via excess demand functions.

Definition 82.4

A price p is an equilibrium price of the market if and only if Z(w , p) ≤ 0.

If the trader’s utility function ui : R
n+ �→ R+ is strictly concave, we can define its demand function

di : R
n+ �→ R

n+ as follows:

di ( p) = argmax
{

ui (xi ) | 〈xi , p〉 ≤ 〈wi , p〉 , xi ∈ R
n
+
}

If the traders’ demand functions are induced by their utility functions, Definition 82.1 and Defini-
tion 82.4 are equivalent.

We can also define the approximate equilibrium via the excess demand function.

Definition 82.5

A price vector p and bundles of goods {xi | i = 1, . . . , m} is a strong ε-approximate equilibrium if xi = di ( p)
for every i and

∑m
i=1 xi j ≤ (1 + ε)

∑m
i=1 wij .

The demand functions may have the following properties:

1. A demand function di is said to satisfy the Walras Law, if 〈p, di ( p)〉 = 〈p, wi 〉 for any price p, or
equivalently, 〈p, zi ( p)〉 = 0.

2. A demand function di is said to satisfy positive homogeneity, if di ( p) = di (λp) for any price p and
any λ > 0.

3. A demand function di is said to satisfy weak gross substitutability (WGS) if any two prices p and
p′ such that 0 < p j ≤ p′

j for each j , and p j < p′
j for some j , we have that pk = p′

k implies
di,k( p) ≤ di,k( p′).

Arrow et al. [22] proved the following lemma.

Lemma 82.2 (Separation Lemma)

If the equilibrium vector p̄ > 0 and gross substitutability prevails and the Walras Law together with positive
homogeneity hold, then for any nonequilibrium vector p > 0, we have

〈 p̄, Z( p)〉 ≡
n∑

i=1

p̄i Zi ( p) > 0 (82.22)

By the Walras law, 〈 p̄ − p, Z( p)〉 = 〈 p̄, Z( p)〉 > 0. This inequality shows that there always exists a
hyperplane that separates an nonequilibrium price vector from the set of equilibrium prices. The separation
lemma provides an intuition that we may develop an ellipsoid algorithm to find an equilibrium price, with
an oracle to compute the aggregate excess demand function. However, the inequality (Eq. (82.22)) is not
enough to guarantee the polynomial-time convergence of the ellipsoid algorithm, since it does not provide
a lower bound on the distance between the equilibrium price and the separate hyperplane.

Codenotti et al. [23] first exploit the separation lemma to compute the equilibrium price. They present a
polynomial-time ellipsoid algorithm to compute a weak ε-approximate equilibrium, when the aggregated
excess demand function satisfies the Walras law, positive homogeneity, and WGS. (A weak approximate
equilibrium is similar to Definition 82.5, except that the demand functions are also approximated).
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They also show that if ‖ ∂ Z
∂p ‖∞ is polynomial-bounded, the ellipsoid algorithm can compute a strong

ε-approximate equilibrium in polynomial time.
The content of this section is based on Codenotti et al.’s work [23]. To avoid too much details, we only

introduce their result on computing the strong approximate equilibrium, and assume the market satisfies
the following two assumptions:

Assumption 1

For any equilibrium price p, max {p j }/min {p j } ≤ 2L , where D is bounded by a polynomial in the input
size.

Assumption 1 is reasonable because if the market does not satisfy this assumption, we can add a virtual
trader to the market, whose utility function is the Cobb–Douglas function um+1(xm+1) = ∏n

j=1 x1/n
m+1, j ,

and whose endowment is (η, η, . . . , η) for a small number η > 0. This trader will prevent the smallest
price from being too small relative to the largest price.

By the positive homogeneity, if p is an equilibrium price, so is λp for any λ > 0. Therefore, we can
assume that the domain of the demands functions is the region 
 = {p ∈ R

n+ | 2−L ≤ p j ≤ 1, ∀ j }.
Assumption 2

| ∂ Zi
∂p j

( p)| ≤ 2D for any i, j and any p ∈ 
, where D is bounded by a polynomial in the input size.

Lemma 82.3 (Enhanced Separation Lemma) [23]

Assume that the market M satisfies the Walras law, positive homogeneity, WGS, Assumption 1, and Assump-
tion 2. Let p ∈ 
 be a price vector that is not a strong ε-approximate equilibrium, for some ε > 0. Then for
any equilibrium p̄ ∈ 
, we have 〈 p̄, Z( p)〉 ≥ δ, where δ ≥ 2−E 1 , and E 1 is bounded by a polynomial in the
input size of M and log(1/ε). Moreover, ‖Z( p)‖2 ≤ 2E 2 , where E 2 is bounded by a polynomial in the input
size.

Before proving Lemma 82.3, we first show the algorithmic implication of the enhanced separation
lemma by presenting an inscribed ellipsoid algorithm for computing a strong ε-approximate equilibrium.
The inscribed ellipsoid algorithm was proposed by Huang et al. [24] for computing the fixed-point of a
nonexpansive map, and is also suitable for our case.

For a convex set A ⊂ R
n, we define µ(A) by

µ(A) = max{the volume of E | E is an ellipsoid and E ⊆ A}.
We call an ellipsoid E ⊆ A is γ -maximal if Vol(E ) ≥ γµ(A). Now we can formulate the ellipsoid

algorithm as follows:
Ellipsoid Algorithm
Input: A market M and an oracle of its aggregate excess demand function, ε > 0.
Output: A strong ε-approximate equilibrium price of M.
Step 0: Set γ = 0.99. Set i = 0 and A0 = 
.
Step 1: Construct a γ -maximal ellipsoid E i in Ai and let p(i) be its center.
Step 2: If p(i) is a strong ε-approximate equilibrium, terminate with the output p(i).
Step 3: Let Ai+1 = {

y ∈ Ai | 〈
Z( p(i)), y − p(i)

〉 ≥ 0
}

. Let i = i + 1 and go to Step 1.

The complexity analysis of the above ellipsoid algorithm is based on the following lemma.

Lemma 82.4 [25]

For any convex set A ⊆ R
n and any vector a ∈ R

n\ {0}, define A′ by

A′ = {y ∈ A | 〈a , y − x0〉 ≥ 0}
where x0 is the center of a γ -maximal ellipsoid of A. Then,

µ(A′) ≤ 0.843γ −2µ(A)
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Theorem 82.3

The ellipsoid algorithm will terminate within O(n(E 1 + E 2)) iterations.

Proof
Assume that the algorithm does not reach a strong ε-approximate equilibrium until the (k + 1)-th step.
For any 1 ≤ i ≤ k, let Hi be the separate hyperplane, i.e., Hi = {x ∈ R

n | 〈
x − p(i), Z( p(i))

〉 = 0}.
Since p(i) is not a strong ε-approximate equilibrium, we have

〈
Z( p(i)), p̄ − p(i)

〉 ≥ δ

by Lemma 82.3, where p̄ is an equilibrium price. This implies that

dist( p̄, Hi ) ≥ 〈
p̄ − p(i), Z( p(i))

〉
/‖Z( p(i))‖2 ≥ δ/2E 2 (82.23)

Let δ′ = δ/2E 2 and Bδ′( p̄) denote the ball centered at p̄ with radius δ′. The inequality (82.23) implies
that the algorithm cannot cut off any point in Bδ′( p̄) before the (k + 1)-th step. By Lemma 82.4, the
algorithm decreases µ(Ai ) by a factor of 0.843γ −2. Then,

µ(Ak) ≤ (0.843γ −2)kµ(A0) = 0.861kµ(A0)

Note that Bδ′( p̄) ⊆ A(k), we have

(δ′)n

0.5n
≤ µ(Bδ′( p̄))

µ(A0)
≤ µ(Ak)

µ(A0)
≤ 0.861k .

This implies that k ≤ 4.64n(log( 1
δ

) + E 2 − 1) = O(n(E 1 + E 2))

Now we return to the proof of Lemma 82.3 to conclude this section.

Proof of Lemma 82.3
Without loss of generality, we may assume that p̄ = (1, 1, . . . , 1)T is an equilibrium price by scaling the
units of goods. After scaling the units, the domain of demand functions turns to be 
+ = {p ∈ R

n+ |
2−L 1 ≤ p j ≤ 2L 1}, where L 1 is polynomial of the input size. Assumption 2 turns to be | ∂ Zi

∂p j
( p)| ≤ 2D1

for any i, j and any p ∈ 
+, where D1 is bounded by a polynomial in the input size.
Let Wj = ∑m

i=1 wij . Assume that the price p = ( p1, p2, . . . , pn)T satisfies p1 ≤ p2 ≤ · · · ≤ pn,
otherwise we can change the order of goods. We need to prove that

∑n
j=1 Z j ( p) ≥ δ.

Define a sequence of prices {π s | s = 1, 2, . . . , n} as follows:

π s
j =

{
p j , when 1 ≤ j ≤ s − 1

ps , when s ≤ j ≤ n

Note that π1 = ( p1, p1, . . . , p1)T is an equilibrium price. Using WGS, we can assert that

Z j (π s+1) ≥ Z j (π s ), when 1 ≤ j ≤ s (82.24)

Z j (π s+1) ≤ Z j (π s ) ≤ 0, when s + 1 ≤ j ≤ n (82.25)

Moreover, Arrow et al. [22] prove that
∑n

j=1(Z j (π s+1) − Z j (π s )) ≥ 0 for any 1 ≤ s ≤ n − 1. If we

can further show that
∑n

j=1(Z j (π s+1) − Z j (π s )) ≥ δ for some s , the lemma is proved.
For any 1 ≤ s ≤ n − 1, we have

n∑

j=1

π s+1
j Z j (π s+1) −

n∑

j=1

π s
j Z j (π s ) = 0
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by the Walras law. This implies

ps+1

m∑

j=1

(
Z j (π s+1) − Z j (π s )

) =
s∑

j=1

( ps+1 − p j )
(

Z j (π s+1) − Z j (π s )
)−

m∑

j=s+1

( ps+1 − ps )Z j (π s )

( by Eq.(82.24) and Eq.(82.25)) ≥
s∑

j=1

( ps+1 − ps )
(

Z j (π s+1) − Z j (π s )
)

Therefore,
n∑

j=1

(
Z j (π s+1) − Z j (π s )

) ≥ ps+1 − ps

ps+1

s∑

j=1

(
Z j (π s+1) − Z j (π s )

)
(82.26)

for any 1 ≤ s ≤ n − 1.
Since πn = p is not a strong ε-approximate equilibrium, we have Zl (πn) ≥ εWl for some good l .

Note that Zl (π1) ≤ 0 since π1 is an equilibrium price. Hence, there must exists a k such that Zl (πk+1) −
Zl (πk) ≥ (ε/n)Wl . By Assumption 2, the significant change of the aggregate excess demand function is
caused by the significant change of the price, that is pk+1 − pk ≥ εWl /n22D1 .

By Eq. (82.26), we have

n∑

j=1

(
Z j (πk+1) − Z j (πk)

) ≥ pk+1 − pk

pk+1

k∑

j=1

(
Z j (πk+1) − Z j (πk)

)

≥ εWl

n22D1 2L 1

(
Zl (π

k+1) − Zl (π
k)

)

≥ εWl

n22D1 2L 1

εWl

n
= δ

This completes the proof.

82.5 Approximation Algorithm for Indivisible Goods

In the last two sections, the convex programming methods and ellipsoid algorithm can compute an
ε-approximate equilibrium in polynomial time with respect to log(1/ε) and the input size. Thus, they
can be viewed as polynomial-time algorithm for computing exact solutions, since their running time is
polynomial whenever the exact solution is rational and can be encoded in polynomial length with respect
to the input size (e.g., when the utility functions are linear or log-linear).

Approximation algorithms are necessary in several situations. There are cases where general equilibrium
price does not exist, such as for some utility functions that are not concave, as well as for indivisible goods.
In addition, even for cases the existence is guaranteed, computation of the equilibrium price is not known
to be in polynomial time. For example, the equilibrium price may be an irrational number.

In this section, we should present some techniques that are able to find approximate solutions in
polynomial time for some special cases.

For an exchange economy of linear utility functions with a bounded number of indivisible goods, Deng
et al. [11] proved that there exists a polynomial time algorithm for finding an approximate solution, if an
exact equilibrium price exists.

Theorem 82.4 (Deng [11])

If the number of goods is bounded, there is a polynomial-time algorithm which, for any linear indivisible
market for which a price equilibrium exists, and for any ε > 0, finds an ε-approximate equilibrium.

We shall present the algorithm and the proof for n = 2 and fixed ε.
One basic observation is that in any exact equilibrium price vector p, because of the market clearance

condition, every agent exhausts her budget, that is, if xi is the acquired vector of goods, 〈p, xi 〉 = 〈p, wi 〉,
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or 〈p, xi − wi 〉 = 0. That is, the price vector is perpendicular to the exchange vector of goods for every
agent.

The algorithm tries to find or approximate the equilibrium price vector p = ( p1, p2) where p1, p2 are,
without loss of generality, integers between 0 and M (or, normalized for p1 �= 0 as (1, q) with q between
1/M and M), where M is the sum of all total allocations of goods. Once we have p, we can always find the
optimal allocations for each agent—this is an integer program with bounded variables [26,27].

In the assumed equilibrium if every agent has an allocation with all components small integers (say, less
than 1

δ
), then we can find the prices in this equilibrium (and therefore approximate the allocations via a

method combining geometric rounding and dynamic programming) exhaustively in polynomial time.
We can therefore assume that we are looking for prices and allocations such that at least one agent

has at least one large component. Define the set of integers Z̃+ = {0, 1, . . . , �1/δ�} ∪ {�(1 + δ)i � : i ≥ 0,
(1 + δ)i < M}. That is, Z̃+ contains all small numbers, plus all rounded powers of (1 + δ) up to M. For
an integer x , x̃ will denote the largest integer in Z̃+ ≤ x .

Define now the set of all price vectors p such that
〈

pt , u
〉 = 〈

pt , wi
〉

for some u ∈ Z̃+ and some
i . Notice that this set is polynomially large. We call them type 1 price vectors. We further add two more
classes of price vectors by expanding the above set in two ways. First, for each wk and each small points
(i, j ) with i, j ≤ 1/δ, we add a price vectors p that makes

〈
pt , wk

〉
<

〈
pt , (i, j )

〉
“barely hold.” That is,

(i, j ) is not a feasible solution for agent k under the price vector p, and there is no integer point between
the line

〈
pt , x

〉 = 〈
pt , wk

〉
and the line defined by wk to (i, j ). We call these the type 2 price vector.

We also consider price vectors of type 3, i.e., those that are parallel to the utility functions of agents. The
resulting set of price vectors is denoted by V .

The algorithm is the following:

repeat for all price vectors p ∈ V (note: polynomially many):
repeat for each agent i :

find (by integer programming) the optimum utility Ui ;
find the set Ai = {a ∈ Z̃2+ : ui (a) ≥ (1 − ε)Ui ,

〈
pt , a

〉 ≤ 〈
pt , wi

〉};
find (by dynamic programming) ai ∈ Ai , i = 1, . . . , m such that

∑
(1 − ε)

∑
wi ≤ q

∑
ai ≤ ∑

wi .
choose the p for which such allocation exists.

Lemma 82.5

If there is an indivisible equilibrium, the above algorithm, finds an ε-equilibrium.

Among all price vectors in V , we choose one that is the closest (in the angle) to the integer equilibrium
price vector p∗ and denote it by po . Let vo

i be the optimal utility function value of agent i under price
vector po , and let a∗

i be the optimal allocation to agent i that clears the market.
The main idea of the proof is that, under the price vector po , either a∗

i is a feasible solution to agent i ;
or not all the coordinates of a∗

i are small and rounding its large values to the larger �(1 + δ) j � smaller than
a∗

i is a feasible solution to agent i . Moveover, in both cases, the utility value of agent i at such points are
close to its optimal utility function value.

Consider the normalized price vector: po = (1, po
2 ) and p∗ = (1, p∗

2 ). Without loss of generality, assume
that a∗

i is to the northwest of wi (i.e., the x-coordinate of a∗
i is smaller than that of wi , y-coordinate larger).

We need to consider two cases: po
2 ≤ p∗

2 and po
2 > p∗

2 .
If po

2 ≤ p∗
2 , a∗

i is a feasible solution for agent i under price vector po . We should show that it is a good
approximate solution for agent i under the approximate price vector. Let ao

i denote the optimal solution
of agent i under price vector po . Then vo

i = 〈
po , ao

i

〉 ≥ 〈
po , a∗

i

〉
. Consider the ray r o

i from wi to ao
i

and the ray r ∗
i from wi to a∗

i ; there is no point in Z̃+ that is contained in the sector from r o
i to r ∗

i in
the counter-clockwise order, by the choice of po as the closest to p∗ among the three types of vectors (in
particular, type 1). Therefore, the largest point f in Z̃2+ that is closest to ao

i is a feasible point for agent
i under price vector p∗. The utility function of agent i at point f is no more than that at point a∗

i . On
the other hand, ao

i is not a small point, i.e., one of its coordinate is large, because of type 2 price vectors.
Therefore, the utility function value of agent i at point f is close to that at ao

i (at least a factor of 1/(δ + 1)
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of that at ao
i ). It follows that the utility function value of agent i at point a∗

i is close to that at ao
i (within a

factor of 1/(δ + 1)). For the second case, let po
2 > p∗

2 . The point a∗
i may not be feasible under price vector

po . Because of type 3 price vectors, ao
i is still to the northwest of wi , the initial endowment to agent i .

(Otherwise, if ao
i is to the southeast of wi , p∗ will have to be parallel to the utility function of agent i

and po will be the same as p∗ by our choice.) Since ao
i is feasible under p∗, the utility function value of

agent i at it is no larger than that at a∗
i . Note that a∗

i is not a small point. Therefore, the largest point in
Z̃2+ that is smaller than a∗

i must be feasible under po (otherwise, po is not the closest to p∗). The utility
function value of agent i at this point is close to that at a∗

i and therefore close to that at ao
i (within a factor

of 1/(1 + δ)).
Therefore, we have established that there is a point bi ∈ Ai such that

∑
(1 − ε)

∑
wi ≤ ∑

bi ≤ ∑
wi .

The next step is to find it using dynamic programming. Even though there are only a polynomial number of
possible values for allocations to the agents, it is not immediate that the dynamic programming algorithm
has a polynomial number of states, since summing up the allocations results in a super-polynomial number
of states. Our solution is as follows: the allocated commodities are in units of (1 + δ) j , and we guess the
maximum j such that one of the agent gets that in the above existential solution. Then, in the Dynamic
Programming (DP), we change the values of commodities less than (1+δ)( j−C log n) to zero for a sufficiently
large constant C . Therefore, we only have up to nC entries in the DP and can thus solve in polynomial
time. Once we get a solution (with revised values of commodities) satisfying the market constraints (and
the above discussion guarantees there is one), we change them back to the original values. That could make
the market constraints unsatisfied but only by no more than n(1+ δ) j−C log n, which is an arbitrarily small
fraction with respect to (1 + δ) j . We then sacrifice the utility function of the agent with the maximum
value to satisfy the market constraint. So far, we have focused on one commodity. We choose the other
commodity by taking the minimum possible value. ■

This concludes the proof for the n = 2 case. Note that we only need to consider a polynomial number
of price vectors for the approximate solution. Then a clever dynamic programming resolves the matter
how to find the solution. To extend the idea established here to general constant dimension requires new
ideas to select the representative price vectors. Other ideas would go through without much change. The
details are left as an exercise for the readers. The main idea is to divide the price space into a polynomial
number of polytopes such that prices in each polytope derives the same optimal allocation in the Z̃d+ for
a d-dimensional space.

82.6 Hardness Results

In Section 82.3 and Section 82.4, we present two algorithms that can compute an ε-approximate equilibrium
in polynomial time. Obviously, for the market models fit the convex programming methods, the set of
equilibria is convex. For the market models fit the ellipsoid algorithm, the set equilibria is also convex
due to the separation lemma. However, in many cases, the set of equilibria may be nonconvex or even
disconnected. For example, the market with CES utility functions may admit multiple disconnected
equilibria, when ρ < −1. It is an open problem that whether there exists an efficient algorithm to find at
least one equilibrium point in a market that has multiple disconnected equilibria.

Recently, Codenotti et al. [28] proved that computing a market equilibrium in a market with Leontief
utility functions is actually hard. Note that the Leontief utility function can be viewed as the limit of
CES function when ρ → −∞. Their recent hardness results were developed through a one-to-one
correspondence between the Nash equilibria in bi-matrix games and the market equilibria in the pairing
model of Leontief economies. With the connection, hardness results in bi-matrix games [29] were carried
over to the market equilibrium problem. Cases leading to NP-hardness include: (1) the uniqueness of the
market equilibrium; (2) the existence of an equilibrium with positive prices on a given set of goods; and
(3) the existence of an equilibrium with at least (or at most) k goods positive priced. Moreover, the one-to-
one correspondence yields the #P-hardness of counting the number of equilibria in a Leontief economy,
since counting the number of Nash equilibria in a bi-matrix game is already known to be #P-hard [30].
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In this section, we present a direct proof of #P-hardness of counting the number of equilibria in a
Leontief economy, without the aid of the connection to Nash equilibria.

A Leontief utility function ui can be characterized by a vector ai ∈ R
n+. The trader’s utility on a bundle

of goods xi ∈ R
n+ is given by

ui (xi ) = min
1≤ j≤n

{
xi

j /ai
j | ai

j �= 0
}

In other words, a trader with a Leontief utility function demands a bundle of goods proportional to
the vector ai . We can define a response function di to present trader i ’s response with respect to a certain
price p:

di ( p) =






0, if
〈

p, ai
〉 = 〈

p, ei
〉 = 0;

+∞, if
〈

p, ai
〉 = 0,

〈
p, ei

〉 �= 0;〈
p,ei

〉

〈p,ai 〉 , otherwise.

Therefore, given a price p, trader i ’s demand to good j is di ( p)ai
j . Obviously, ui (di ( p)ai ) = di ( p). So

di ( p) can also be viewed as the trader i ’s optimal utility under the price p.
We adopt (A, E ) to denote a Leontief economy, where A is an n × m matrix whose i th column presents

trader i ’s demands, and E is an n × m matrix whose i th column is trader i ’s endowments.
With these notations, the equilibrium in a Leontief economy is a pair of vectors (p, w) satisfying the

following conditions:

wi = di ( p), p ≥ 0, p �= 0
Aw ≤ 1, pT (Aw − 1) = 0

In this section, we will prove that counting the number of equilibria in a Leontief economy is #P -hard
by a reduction from #SAT.

Let φ be a Boolean formula in 3-conjunctive normal form. Let V = {x1, x2, . . . , xn} be its set of
variables, L = {

l 0
1 , l 1

1 , l 0
2 , l 1

2 , . . . , l 0
n, l 1

n

}
the set of corresponding literals, and C = {c1, c2, . . . , cm} its set

of clauses.
We will construct a Leontief economy (A, E ) for φ. Let B denote the set of traders and G denote the

set of goods. There are |V | + |L | + 1 = 3n + 1 traders in the economy, denoted by

B = {x1, x2, . . . , xn} ∪ {
l 0
1 , l 1

1 , l 0
2 , l 1

2 , . . . , l 0
n, l 1

n

} ∪ {φ}
There are 2|V | + |L | + |C | = 4n + m goods in the economy. We also denote them by

G = {x1, x2, . . . , xn} ∪ {
l 0
1 , l 1

1 , l 0
2 , l 1

2 , . . . , l 0
n, l 1

n

} ∪ {c1, . . . , cm} ∪ {σ1, σ2, . . . , σn}
The ambiguity of using the same symbols for both the trades and the goods should be clear from the

context.
Let A(b, g ) denote trader b’s demand for good g in proportion and E (b, g ) denote trader b’s initial

endowment of good g . Then the economy (A, E ) is defined as follows:

A(b, g ) =






1, if b = xi , g = l j
i , 1 ≤ i ≤ n, j = 0, 1;

4/5, if b = xi , g = σi , 1 ≤ i ≤ n;
1, if b = l j

i , g = xi , 1 ≤ i ≤ n, j = 0, 1;
1, if b = g = l j

i , 1 ≤ i ≤ n, j = 0, 1;
1, if b = l j

i , g = ck , l j
i ∈ ck , ∀i, j, k;

2, if b = l j
i , g = ck , l j

i /∈ ck and l 1− j
i ∈ ck , ∀i, j, k;

0, otherwise.

E (b, g ) =






1, if b = g = l j
i , ∀i, j ;

1/n, if b ∈ V, g ∈ V ∪ L ;
5, if b = φ , g ∈ C ;
1, if b = φ , g = σi , 1 ≤ i ≤ n;
0, otherwise.
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In the economy (A, E ), the total amount of good g is 1 (for g ∈ V or g = σi , 1 ≤ i ≤ n), 2 (for
g ∈ L ) or 5 (for g ∈ C ).

First, we will show that any truthful assignment of φ always corresponds an equilibrium in the economy.
Assume there is a truth assignment (l1, . . . , ln) satisfies φ. Set P (g ) = 1 for all g = l j

i = li and P (g ) = 0

otherwise. If b = φ or b = l j
i �= li , the initial endowment of b would be valued as zero. By our convention

of defining the response function, those agents will not want anything and their utility values will be zero.
If b = xi , then E (b, g ) = 1/n for all g ∈ V ∪ L . It follows that the value of the initial endowment of b

is 1
n × n = 1 as P (g ) = 1 for g = l j

i = li and P (g ) = 0 otherwise. If b = l j
i = li , then the value of the

initial endowment of b is also 1 as both E (b, g ) = 1 and P (g ) = 1 for b = g = l j
i = li .

By the definition of Leontief utility functions, we derive the utilities U (b) of agent b as follows:

U (b) =






1, when b = xi , ∀1 ≤ i ≤ n;
1, when b = l j

i = li , ∀1 ≤ i ≤ n;
0, when b = l j

i �= li , ∀1 ≤ i ≤ n;
0, when b = φ

For the Leontief economy, the trader b’s demand for good g is A(b, g )U (b). Therefore,
∑

b A(b, g )U (b)
is the total amount of consumed good g . And

∑
g A(b, g )P (g )U (b) is the total amount of money spent

by trader b. The equilibrium conditions are:

1.
∑

g

A(b, g )P (g )U (b) ≤
∑

g

E (b, g )P (g ), ∀b ∈ B

2.
∑

b

A(b, g )U (b) ≤
∑

b

E (b, g ), ∀g ∈ G

3.
∑

g

P (g )

(
∑

b

A(b, g )U (b) −
∑

b

E (b, g )

)

= 0

For the first set of inequalities, we only need to consider those traders with endowment of nonzero value
under the price vector P defined above.

1. For agent b: b = xi , it desires two types of goods l 0
i and l 1

i , of which one’s price is zero and another’s
price is one. Therefore, with one unit of wealth, it will acquire one unit each of l 0

i and l 1
i .

2. For agent b: b = l j
i = li , it desires goods g = xi and g = l j

i , g = ck such that l j
i ∈ ck , as well as

g = ck such that l j
i /∈ ck but l 1− j

i ∈ ck . All those goods cost zero except g = l j
i cost one per unit.

Therefore, b = l j
i will get one unit of g = l j

i , one unit of xi , one unit of ck if l j
i ∈ ck , and two units

of g = ck if l j
i /∈ ck but l 1− j

i ∈ ck .

For the second set of inequalities, consider goods in V ∪ L :
∑

b

A(b, g )U (b) = 1 =
∑

b

E (b, g ), ∀g ∈ V

∑

b

A(b, g )U (b) = 2 =
∑

b

E (b, g ), for g = l j
i = li

∑

b

A(b, g )U (b) = 1 <
∑

b

E (b, g ), for g = l j
i �= li

For goods in C , one unit of g = ck is desired by each literal in ck that is true, two units of g = ck is
desired by each literal in ck that is false. Since li ’s, i = 1, 2, . . . , n, is a satisfying assignment, there is a
true literal in each ck of three literals. Therefore, at most five units of g = ck are desired. With five units
of each type of such goods, we have enough for them.

Finally, as the price of g = l 1− j
i with li = l j

i is zero, and the prices of all ck ’s are all zero, we have

∑

g

P (g )

(
∑

b

A(b, g )U (b) −
∑

b

E (b, g )

)

= 0
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On the other hand, we need to show that any equilibrium in the economy must correspond to a truthful
assignment of φ. We declare that for any equilibrium (P , U ) and any i ∈ {1, 2, . . . , n}, either U (xi ) ≥ 3/2,
or U (xi ) = U (l j

i ) = 1 and U (l 1− j
i ) = 0 for some j ∈ {0, 1}.

To see that, if both P (l j
i ) �= 0 and P (l 1− j

i ) �= 0, then U (l j
i ) + U (xi ) = 2 and U (l 1− j

i ) + U (xi ) = 2 as

shown above. Therefore, U (l j
i ) = U (l 1− j

i ). On the other hand, U (l 0
i ) + U (l 1

i ) ≤ 1, also shown above. It
follows that U (xi ) ≥ 3/2 in this case.

Alternatively, assume that P (l j
i ) �= 0 but P (l 1− j

i ) = 0. Then, U (l j
i ) + U (xi ) = 2 by the former.

Because of the latter, trader b = l 1− j
i has a zero initial wealth and U (l 1− j

i ) = 0. Therefore, the one unit

of xi must be all sold to b = l j
i since it is desired only by b = l j

i and b = l 1− j
i . Hence, U (l j

i ) = 1. In this
case, U (xi ) = 1.

However, the goods σi forces that U (xi ) ≤ 5/4. Hence, in the economy (A, E ), there is a one-to-
one correspondence between its equilibria and satisfiable truth assignments of the Boolean formula
φ. This correspondence proves the #P -hardness of counting the number of equilibria in a Leontief
economy:

Theorem 82.5

Counting the number of equilibria in a Leontief economy is #P -hard.

82.7 Concluding Remarks

The understanding of computational complexity issues for general equilibrium computation has been a
recent focus that attracted scientists from different disciplines, including computer science, economics,
and operations research. In addition to the related technical algorithmic questions for the mathematical
problem, new concepts have emerged to fully characterize the proper definition of approximation for the
ideal general equilibrium.

Much progress has been made in this field. Still several important open problems remains. The most
important of all, what is the computational complexity for finding the equilibrium price, as guaranteed by
the Arrow–Debreu theorem. Second, how to handle the dynamic case is especially interesting in theory,
mathematical modelling, and algorithmic complexity as bounded rationality. Great progress must be made
in those directions for any theoretical work to be meaningful in practice. Third, incentive compatible
mechanism design protocols for the auction models have been most actively studied recently, especially
with the rise of e-commerce. As an example, it has been successfully applied to study a dynamic model of
auction [31]. Especially at this level, a proper approximate version of the equilibrium concept handling
price dynamics should be especially important. Finally, there is a potential for more interplays between
microeconomics and macroeconomics. It is possible that microeconomics methodology and data could be
playing a bigger role in macroeconomics. Computational efficiency will without question be an important
and necessary precondition. The conceptual approximation and the computational approximation also
require a uniform framework.

Our discussion shows that significant progress has been made in the above directions but only as a first
step. New ideas and methods have already been invented and applied in reality. The next significant step
will soon manifest itself with many active studies in microeconomic behavior analysis for E-commercial
markets. Nevertheless, the algorithmic analytic foundation we have laid down here will be an indispensable
tool for further development in this reincarnated exciting field.

References

[1] Smith, A., An Inquiry into the Nature and Causes of the Wealth of Nations, Edinburgh, 1776. Reprinted
by The Adam Smith Institute, London, 2001.

[2] Walras, L., Elements of Pure Economics, or the Theory of Social Wealth, 1874.

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C082 March 20, 2007 20:24

Approximate Economic Equilibrium Algorithms 82-17

[3] Arrow, K. J. and Debreu, G., Existence of an equilibrium for a competitive economy, Econometrica,
22(3), 265, 1954.

[4] Scarf, H., The approximation of fixed points of a continuous mapping, SIAM J. Appl. Math., 15,
1328, 1967.

[5] Bergman, L., Jorgenson, D. W., and Zalai, E., Eds., General Equilibrium Modeling and Economic
Policy Analysis, Basil Blackwell, Cambridge, United Kingdom, 1990.

[6] Dervis, K., de Melo, J., and Robinson, S., General Equilibrium Models for Development Policy, World
Bank Research Publication, Cambridge University Press, Cambridge, 1982.

[7] Francois, J. F. and Reinert, K., Applied Methods for Trade Policy Analysis: A Handbook, Cambridge
University Press, Cambridge, 1997.

[8] Hirsch, M., Papadimitriou, C., and Vavasis, S., Exponential lower bounds for finding Brouwer
fixed points, J. Complex., 5, 379, 1989.

[9] Chen, X. and Deng X., Matching algorithmic bounds for finding Brouwer fixed point, Proc. STOC,
2005, p. 323.

[10] Allen, B., Approximate equilibria in microeconomic rational expectation models, J. Econ. Theory,
26, 244, 1982.

[11] Deng, X., Papadimitriou, C., and Safra, S., On the complexity of price equilibria, JCSS, 67(2), 311,
2002.

[12] Simon, H. A., Theories of bounded rationality, in Decision and Organization: A Volume in Honor
of Jacob Marschak, McGuire, C. B. and Radner, R., eds., North-Holland Publishing Company,
Amsterdam, London, 1972, chap. 8.

[13] Devanur, N. R. and Vazirani, V. V., An improved approximation scheme for computing Arrow–
Debreu prices for the linear case, in Lecture Notes in Computer Science, Vol. 2914, Springer, Berlin,
2003, p. 149.

[14] Jain, K., Mahdian, M., and Saberi, A., Approximating market equilibria, in Lecture Notes in Computer
Science, Vol. 2764, Springer, Berlin, 2003, p. 98.

[15] Angelopoulos, S., Sarma, A. D., Magen, A., and Viglas, A., On-line algorithms for market equilibria,
in Lecture Notes in Computer Science, Vol. 3595, Springer, Berlin, 2005, p. 596.

[16] Nenakhov, E. and Primak, M., About one algorithm for finding the solution of the Arrow–Debreu
model, Kibernetica, 3, 127, 1983.

[17] Jain, K., A polynomial time algorithm for computing the Arrow–Debreu market equilibrium for
linear utilities, Proc. FOCS, 2004, p. 286.

[18] Jain, L., Vazirani, V. V., and Ye, Y., Market equilibria for homothetic, quasi-concave utilities and
economies of scale in production, Proc. SODA, 2005, p. 63.

[19] Ye, Y., A path to the Arrow–Debreu competitive market equilibrium, Math. Prog., (in press).
Published online: 15 December 2006.

[20] Eisenberg, E. and Gale, D., Consensus of subjective probabilities: the pari-mutuel method, Annal.
Math. Stat., 30, 165, 1959.

[21] Eisenberg, E., Aggregation of utility functions, Manage. Sci., 7(4), 337, 1961.
[22] Arrow, K. J., Block, H. D., and Hurwicz, L., On the stability of the competitive equilibrium, II,

Econometrica, 27(1), 82, 1959.
[23] Codenotti, B., Pemmaraju, S., and Varadarajan, K., On the polynomial time computation of

equilibria for certain exchange economies, Proc. SODA, 2005, p. 72.
[24] Huang, Z., Khachiyan, L., and Sikorski, K., Approximating fixed-points of weakly contracting maps,

J. Complexity, 15, 200, 1999.
[25] Tarasov, S. P., Khachiyan, L., and Erlikh, I. I., The method of inscribed ellipsoid, Soviet Math. Dokl.,

37, 226, 1988.
[26] Lenstra, A. K., Lenstra, H. W., Jr., and Lovasz, L., Factoring polynomials with rational coefficients,

Math. Ann., 261(4), 515, 1982.
[27] Lenstra, H. W., Jr., Integer programming with a fixed number of variables, Math. Oper. Res., 8(4),

538, 1983.

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C082 March 20, 2007 20:24

82-18 Handbook of Approximation Algorithms and Metaheuristics

[28] Codenotti, B., Saberi, A., Varadarajan, K., and Ye, Y., Leontief economies encode nonzero sum
two-player games, Proc. SODA, 2006.

[29] Gilboa, I. and Zemel, E., Nash and correlated equilibria: some complexity considerations, Games
Econ. Behav., 1, 80, 1989.

[30] Deng, X. and Huang, L-S., On the complexity of market equilibria with maximum social welfare,
Inf. Proc. Lett., 97(1), 4, 2006.

[31] Chen, N., Deng, X., Sun, X., and Yao, A. C.-C., Dynamic price sequence and incentive compatibility
(extended abstract). Proc. ICALP, 2004, p. 320.

[32] Chen, N., Deng, X., Sun, X., and Yao, A. C.-C., Fisher equilibrium price with a class of concave
utility functions, Proc. ESA, Lecture Notes in Computer Science, Vol. 3221, 2004, p. 169.

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C083 March 20, 2007 20:27

83
Approximation Algorithms and
Algorithm Mechanism Design

Xiang-Yang Li
Illinois Institute of Technology

Weizhao Wang
Illinois Institute of Technology

83.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83-1
83.2 Technical Preliminaries and Previous Works . . . . . . . . . 83-2

Approximation Algorithms • Algorithm Mechanism
Design • Binary Demand Games and General Demand Games

83.3 Limitations of VCG Mechanisms . . . . . . . . . . . . . . . . . . . . . . 83-5
Untruthfulness of VCG Mechanism: An Example •
Untruthfulness of VCG Mechanism: General Results

83.4 Approximation Algorithms and Binary
Demand Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83-7
Characterize the Strategyproof Mechanism • Simple
Composition Technique • Complex Composition Technique

83.5 General Demand Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83-13
Characterize the Strategyproof Mechanism •
DiffServ Multicast Game

83.6 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83-16
83.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83-17

83.1 Introduction

The majority of the algorithms and protocols designed in computer science implicitly assumes that the
participating computers/users will act as instructed—except, perhaps, for a few faulty or malicious ones.
The Internet, which is composed of different heterogeneous and autonomous systems, raises a doubt about
this common belief. Computing devices, owned by different people or organizations, will likely do what is
most beneficial to their owners. For example, routing on the Internet today is as much about money as it
is about traffic. The business relationships of an Internet Service Provider (ISP) largely dictate its routing
policy. This leads to a number of well-known pathologies in today’s routing mechanism.

A selfish user always finds the best strategy that maximizes his own gain when others’ strategies are
known. Through the interaction of selfish users, the system may reach a stable point (called Nash equilib-
rium) where no user can improve his gain by unilaterally switching his action. However, the outcome at
a Nash equilibrium may be inefficient: it could be arbitrarily worse than the global optimum coordinated
by all users together [1]. This is often called the price of anarchy, which happens everywhere, for example,
the chaotic traffic in most developing countries on the crash of some electronic submission systems. In
the latter example, majority of the authors submit their papers at the last minute because there are no
incentives for them to submit earlier.

With the emergence of the network as the platform of computing (e.g., grid computing and peer-to-
peer (P2P) networks), algorithms or protocols intended for selfish computers/users must be designed in
advance to cope with selfishness since the outcome at Nash equilibria may be inefficient. Such protocols and
algorithms will likely involve incentives (e.g., monetary payments) between or to/from selfish participants.
Thus, the algorithms and protocols should take into account not only the computational issues, such as

83-1
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CPU time, memory usage, communication cost, and robustness, but also the incentive issues, such as
the selfishness of individual users, strategies used by users, and the possible cooperations among users.
To ensure that the selfish behavior results in a desirable outcome, researchers proposed several different
ways to deal with selfish behaviors. Previous approaches include detecting and then avoiding or punishing
selfish agents, studying the worst-case inefficiency of a Nash equilibrium, influencing the selfish users’
behaviors via a variety of ways, such as pricing policies, differentiated services, reputations, and algorithm
mechanism design [2–13].

Among those approaches, Nisan and Ronen [14] proposed the framework of algorithmic mechanism de-
sign (AMD). The main idea of AMD is to find certain mechanism to affect the behavior of the selfish
users such that every user maximizes its utility when it tells the truth no matter what other users
do, which is known as truthful or strategyproof. Among those strategyproof mechanism, the most well
known is the so-called Vickrey–Clarke–Groves (VCG) mechanisms [15–17]. The VCG mechanisms are
applicable to mechanism design problems whose outputs optimize the utilitarian objective function,
which is simply the sum of all agents’ valuations. Nisan and Ronen applied VCG mechanisms to some
fundamental problems in computer science, including shortest paths, minimum spanning trees, and
scheduling on unrelated machines. Unfortunately, in practice, some objective functions are not utilitar-
ian; even for those problems with a utilitarian objective function, sometimes it is impossible to find the
optimal output in polynomial time unless P = NP. Someone may persist to use the VCG mechanism
even when some approximation algorithms and heuristics are used to solve the problem. In the first
part of this chapter, we will review several literatures [18–20], which show that it is almost univer-
sal that if we use some approximation algorithms and heuristics, then VCG mechanisms are no longer
truthful.

In light of this failure, some mechanisms other than VCG mechanisms are needed to address these
issues. Thus, in the second part of the chapter, we study how to design truthful mechanisms for bi-
nary demand games where the output of an agent is either “selected” or “not selected.” Recall that a
mechanism M = (O, P) consists of two parts, an output function O and a payment scheme P . In
contrast to the VCG mechanisms, the binary demand game does not require that the output should
optimize the objective function. In fact, binary demand games do not even require the existence of an
objective function. Given any output function O for a binary demand game, we show that a truthful
mechanism M = (O, P) exists for the game if and only if O satisfies a certain monotonicity prop-
erty (MP). We complement this existence theorem with a general framework to design such a payment
scheme P . Furthermore, we present general techniques to compute the payments when the output
is a composition of the outputs of subgames through the operators “or” and “and”; through round-
based combinations; or through intermediate results, which may be themselves computed from other
subproblems.

We then further generalize the binary demand game to demand games in which the output of an agent
could be characterized as any real number. We also present a necessary and sufficient condition for the
existence of the truthful mechanism and illustrate how to find the truthful mechanism by two concrete
examples. We conclude this chapter with some literature review and the discussion of some interesting
future works.

83.2 Technical Preliminaries and Previous Works

83.2.1 Approximation Algorithms

A computational optimization problem is a problem to find a solution a in the feasible region � which
has the minimum (or maximum) value of the objective function g (a). Let aopt ∈ � be the solution that
minimizes or maximizes the objective function g (a). A ρ-approximation algorithm A, for ρ ≥ 1, always
finds the solution b such that g (b) ≤ ρg (aopt) for a minimization problem and g (b) ≥ g (aopt)/ρ for a
maximization problem. We denote ρ as the approximation ratio of the algorithm A.
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83.2.2 Algorithm Mechanism Design

A standard model for mechanism design is as follows. There are n agents 1, 2, . . . , n. Each agent i has
some private information ti , called its type, only known to itself. For example, the type ti can be the cost
that agent i incurs for forwarding a packet in a network or can be a payment that the agent is willing to
pay for a good in an auction. The agents’ types define the type vector t = (t1, t2, . . . , tn). Each agent i has
a set of strategies Ai from which it can choose. For each strategy vector a = (a1, . . . , an), where agent i
plays strategy ai ∈ Ai , the mechanism M = (O, P) computes an output o = O(a) and a payment vector
P(a) = (P1(a), . . . , Pn(a)). Here the payment Pi (·) is the money given to agent i and depends on the
strategies used by the agents.

A valuation function vi (ti , o) assigns a monetary amount to agent i for each possible output o. For
example, in an instance of unicast routing, the agents are the n nodes in the network. Agent i ’s type is its
cost ci of forwarding a (unit amount of ) data packet. The space of feasible outputs consists of all paths
that connect the source node and the destination node. The valuation of node k for a path connecting the
source and the destination is −ck if node k is on the path, and 0 otherwise.

Let ui (ti , o) denote the utility of agent i at the output o of the game, given its type ti . Here, following a
common assumption in the literature, we assume the utility for agent i is quasilinear, that is, ui (ti , o) =
vi (ti , o) + Pi (a). Let a−i = (a1, . . . , ai−1, ai+1, . . . , an) denote the strategies of all the other agents
except i . Let (x , a−i ) denote the vector (a1, . . . , ai−1, x , ai+1, . . . , an). Sometimes, we also denote it as
a|i x . Usually, we let a−i denote that agent i did not participate the game at all. We adopt the assumption
in neoclassic economics that all agents are aiming to optimize their utilities.

A strategy ai is called a dominant strategy for agent i if it maximizes agent i ’s utility for all possible
strategies of the other agents, that is,

ui (ti , O(ai , b−i )) ≥ ui (ti , O(a ′
i , b−i ))

for all a ′
i �= ai and all strategies b−i of the agents other than i .

A strategy vector a� is called a Nash equilibrium if it maximizes the utility of each agent i when the
strategies of all the other agents are fixed as a�

−i , that is,

ui (ti , O(a�)) ≥ ui (ti , O(a ′
i , a�

−i ))

for all i and all a ′
i �= a�

i . A system-wide goal in mechanism design is defined by a an objective function g (·),
which selects the optimal output given the agents’ types. Given a mechanism with output function O(·),
we say that the mechanism implements the objective function g (·) if the output optimizes the objective
function for all possible agent types.

A game is defined as G = (S , M), where S is the setting for the game G. Here, S consists of the
parameters of the game that are set before the game starts and do not depend on the players’ strategies. As
a concrete example, in a unicast routing game [14], the setting also includes the topology of the network,
the source node, and the destination node. Throughout this chapter, unless explicitly mentioned otherwise,
the setting S of the game is fixed and we focus on how to design P given an output O. All information
about a game G, including the setting S , the output function O, and the payment scheme P , is public
knowledge except each agent i ’s actual type ti , which is private information to agent i .

A direct-revelation mechanism is a mechanism in which the only actions available to each agent are to
report its private type either truthfully or falsely to the mechanism. An incentive compatible (IC) mechanism
is a direct-revelation mechanism in which if an agent reports its type ti to the mechanism truthfully, then
it will maximize its utility. Incentive compatibility captures the essence of designing a mechanism to
overcome the self-interest of agents in that in an IC mechanism an agent will choose to report its private
information truthfully, out of its own self-interest. A direct-revelation mechanism is truthful if reporting its
truth type is a dominant strategy. In a direct-revelation truthful mechanism, the payment scheme should
satisfy the property that, for each agent i ,

vi (ti , O(t)) + Pi (t) ≥ vi (ti , O(t|i t ′i )) + Pi (t|i t ′i )
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A truthful mechanism wants each agent to report its private type truthfully by providing incentives to the
agents. Another common requirement in the literature of mechanism design is the so-called individual
rationality (IR): an agent’s utility of participating in the output of the mechanism is not less than its utility
of not participating.

Arguably the most important positive result in mechanism design is the generalized VCG mechanisms by
Vickrey [17], Clarke [15], and Groves [16]. An objective function g (o, t) is called utilitarian if it is g (o, t) =∑

i vi (ti , o). The VCG mechanisms apply to (affine) maximization problems where the objective function
is utilitarian and the set of possible outputs is finite. A direct-revelation mechanism M = (O, P) belongs
to the VCG family if (1) the output O(t) computed based on the type vector t maximizes the utilitarian
objective function, and (2) the payment to agent i isPi (t) = ∑

j �=i v j (t j , O(t))+hi (t−i ). Here hi (·) is an
arbitrary function of t−i , which typically is −∑

j �=i v j (t j , O(t−i )) to guarantee the IR property. Green and
Laffont [21] proved that, under mild assumptions, the VCG mechanisms are the only truthful mechanism
for utilitarian maximization problems. VCG mechanisms can be further generalized to be applicable to
problems with objective function g (o, t) = ∑

i βi vi (ti , o), where βi (1 ≤ i ≤ n) are fixed constants.
The output function of a VCG mechanism is required to maximize the utilitarian objective function.

This makes the mechanism computationally intractable in many cases. Furthermore, replacing an optimal
algorithm for computing the output with an approximation algorithm usually leads to untruthful mech-
anisms if a VCG payment scheme is used. In this chapter, we review the approaches to design a truthful
mechanism that does not optimize a utilitarian objective function.

83.2.3 Binary Demand Games and General Demand Games

A binary demand game is a game G = (S , M), where M = (O, P) and the range of O is {0,1}n. In other
words, the output is an n-tuple vectorO(t) = (O1(t), O2(t), . . . , On(t)), whereOi (t) = 1 (respectively, 0)
means that agent i is (respectively, is not) selected in the output.

Hereafter, we make the following further assumptions:

1. The valuation of the agents are not correlated, that is, vi (ti , o) is a function of ti and oi only and is
denoted as vi (ti , oi ).

2. The valuation vi (ti , 0) is a publicly known value and is normalized to 0. This assumption is needed
to guarantee the IR property.

Notice that in applications where agents provide services and receive payments, for example, unicast
and job scheduling, the valuation vi of an agent i is usually negative. For the convenience of presentation,
we let vi (oi ) = vi (ti , oi ) and the cost of agent as ci = −vi (ti ,1), that is, it costs agent i c i to provide the
service. Throughout this chapter, we will use ci instead of vi in our analysis when vi is negative. All our
results can apply to the case where the agents receive the service rather than provide it by setting ci to
negative, as in auction. From now on, we will replace ti with ci .

In a binary demand game, if we want to optimize an objective function g (o, c), then we call it a binary
optimization demand game. The main differences between the binary demand games and those problems
that can be solved by VCG mechanisms are as follows:

1. For the binary demand games, the objective function is arbitrary; for the VCG mechanisms, the
objective function is utilitarian.

2. For the binary demand games, the output function O does not necessarily optimize an objective
function; for the VCG mechanisms, the output function should optimize the objective function.

3. For the binary demand games, the range of the output function is {0,1}n; for the VCG mechanisms,
the range of the output function may be any finite set.

4. For the binary demand games, the agents’ valuations are not correlated by assumption; for the VCG
mechanisms, the agents’ valuations may be correlated.

A demand game is a game G = (S , M), where M = (O, P) and the range of O is Rn. In other words,
the output is an n-tuple vector O(c) = (O1(c), . . . , On(c)), where Oi (c) is a nonnegative real number
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and the valuation of agent i is vi (c) = −ci ·Oi (c). In a demand game, we treat Oi (c) as the “load” on the
agent i and ci is the cost for a unit of load by agent i . The examples of demand games include but are not
limited to

1. Job scheduling. Assign different jobs of different workload to different machines. Here, the machine
is the agent and its cost is the unit load of the job.

2. DiffServ multicast. Given a set of receivers, each with its own quality (e.g., bandwidth) requirements,
find a multicast tree and the quality assignment for each link (or node) of the tree such that the
receivers’ requirements are satisfied. The links (or nodes) are agents and each of them has different
costs to provide different qualities of service.

83.3 Limitations of VCG Mechanisms

83.3.1 Untruthfulness of VCG Mechanism: An Example

In this section, we begin with an example to show that VCG mechanism fails when it is simply coupled
with almost all approximation algorithms. The example is the set cover problem: there is a set U of m
elements needed to be covered, and each agent 1 ≤ i ≤ n can cover a subset of elements Si with a cost
ci . Let S = {S1, S2, . . . , Sn} and c = (c1, c2, . . . , cn). We want to find a subset of agents D such that
U ⊆ ⋃

i∈D Si . The selected subsets Si with i ∈ D is called a set cover for U . The total cost
∑

i∈D ci

is the objective function to be minimized. Clearly, this objective function is utilitarian and thus a VCG
mechanism can be applied if we can find a D with the minimum cost. It is well known that finding the
minimum cost set cover is NP-hard. In Ref. [22], an algorithm of approximation ratio of Hm has been
proposed and it has been proved that this is the best ratio possible for the set cover problem, where
Hm = 1 + 1

2 + · · · + 1
m = O(log m) is the harmonic number. For the completeness of our discussion, we

review this algorithm as follows.
Let GSC(·) be the sets selected by Algorithm 83.1. Notice that the output set D is a function of S and c .

Some works [23] assumed that the type of an agent is ci , that is, Si is assumed to be a public knowledge.
Here, we consider a more general case in which the type of an agent is 〈Si , ci 〉. In other words, we assume
that every agent i can lie about not only its cost ci but also the set Si . The problem is now similar to
the combinatorial auction with single-minded bidders in Ref. [24], with the following difference: in the
set cover problem we want to cover all the elements and the chosen sets overlap while in combinatorial
auction the chosen sets are disjoint.

Algorithm 83.1 Greedy Set Cover (GSC)

Input: A set U , S = {S1, S2, . . . , Sn}, and c = (c1, c2, . . . , cn).
Output: A set of agents D that covers all the elements in U .

1: Initialize r = 1, T0 = ∅, and D = ∅.
2: while R �= U do
3: Find the set S j with the minimum density

c j
|S j −Tr | .

4: Set Tr+1 = Tr
⋃

S j and add agent j to the set D.
5: r = r + 1
6: Output D.

Assume that we use Algorithm 83.1 to find a set cover, and want to apply VCG mechanisms to compute
the payments to the selected agents. The payment to an agent i is 0 if Si �∈ R. Otherwise, its payment is

PVCG
i = |GSC(S\Si )| − |GSC(S)| + ci

Here |T | is the total costs of the sets in T for T ⊆ S. Following theorem shows that the VCG payment
PVCG is not truthful.
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Theorem 83.1

The mechanism M = (GSC, PVCG) is not truthful, where GSC is the set cover computed by Algorithm 83.1.

Proof
We prove with the following counterexample. Let U = {x1, . . . , xn} and S = {S1, . . . , Sn+1}, where
Si = {xi } for 1 ≤ i ≤ n, and Sn+1 = {x1, x2, . . . , xn}. Let ci = 1

n−i+1 , for 1 ≤ i ≤ n, and cn+1 = 1 + ε,
where ε is a small positive number. If we apply Algorithm GSC, it is easy to show that the resulting output
GSC(S) = {S1, . . . , Sn} with |GSC(S)| = ∑n

i=1
1
i = Hn. We now consider what payment agent i will get.

When we remove the set S1, we can show that GSC(S\S1) = Sn+1, and consequently, |GSC(S\S1)| = 1+ε.
Thus, the payment to agent 1 is pVCG

1 = 1 + ε − Hn + 1/n, which is less than its cost 1/n. Thus, the
mechanism M = (GSC, PVCG) is not truthful.

83.3.2 Untruthfulness of VCG Mechanism: General Results

In this section, we show that the VCG mechanism not only fails for certain approximation algorithms,
but also fails for almost all approximation algorithms satisfying certain weak properties. Notice that some
algorithm may try to optimize some object function g that is not utilitarian. Thus, µ(o, t) = ∑

i vi (ti , o)
is a utilitarian objective function while g could be an arbitrary objective function. Following is a definition
that will be used later.

Definition 83.1

Let A be an algorithm that maps the declared type vector into allowable output. Let Ti be the allowable
declared type for agent i , and T = �n

i=1Ti be the space of all possible types. Let OA(T) be the range of the
output from the space T. We say A is local maximal in its range if for every pair of t and t ′ in T such that
they only differ in type t j , µ(OA(t), t) ≥ µ(OA(t ′), t).

Following theorem characterizes the VCG mechanism with an approximation algorithm that is
truthful.

Theorem 83.2

A VCG-based mechanism with an algorithm A is truthful if and only if A is local maximal in its range.

Proof
The sufficient condition follows directly from Definition 83.1 about the local maximal. We then prove that
if a VCG-based mechanism with an algorithm A is truthful, then A is local maximal in its range. Recall
that the utility for agent i is µ(OA(t), t) + hi (t−i ). From the definition of IC, µ(OA(t), t) + hi (t−i ) ≥
µ(OA(t|i t ′i ), t) + hi (t−i ). Thus, µ(OA(t), t) ≥ µ(OA(t|i t ′i ), t) for any agent i , which implies local
maximal.

It is not difficult to observe that that A is local maximal does not imply that it outputs the optimal
solution. However, under most circumstance, we can show that local maximal is closely related to the
optimal solution.

Theorem 83.3

If algorithm A is local maximal for the set cover game, then it is either optimal or has an arbitrary large
approximation ratio.

Proof
Let t be a type vector such that µ(OA(t), t) is not optimal over all possible outputs o ∈ OA(T). Then there
exists an output oopt ∈ OA(T) such thatµ(oopt , t) is maximal over all possible output o ∈ OA(T). Without
loss of generality, we assume that OA(topt) = oopt . Recall for the set cover game, OA

i (t) = 0 or 1 and the
valuation of agent i is vi (o, t) = −oi ci , where ci is the cost of the set i . Thus, µ(o, t) = −∑n

i=1 oici . Since
the type ti is solely determined by ci , we will abuse our notation and let ti = −ci . Therefore, vi (o, t) = oiti
and µ(o, t) = ∑n

i=1 oiti .
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Let us consider a new type vector z such that zi = t
opt
i if o

opt
i = 1 and zi = δ

∑n
j=1 t j if o

opt
i = 0, where

δ > 1 is an positive number. Following we argue that µ(oopt , z) is also maximal over all possible output
o ∈ OA(T). Considering an o ∈ OA(T), if oi = 1 and o

opt
i = 0, then µ(o, z) ≤ oi zi = δ

∑n
j=1 t j <

µ(oopt , z). Thus, we only need to consider the output o �= oopt such that oi = 0 if o
opt
i = 0. Since

o �= oopt , there must exist an agent j such that o j = 0 and o
opt
j = 1. Thus, µ(o, z) = ∑n

i=1 oi zi ≤
∑n

i=1 oiti ≤ ∑n
i=1 o

opt
i ti = ∑n

i=1 o
opt
i zi = µ(oopt , z), which is a contradiction. Thus, there does not

exist such kind of output o, and in consequence, µ(oopt , z) is also maximal over all possible output
o ∈ OA(T).

Following we consider a series of type t(i) where i = 0 to n.






t(0) = t = (t1, t2, . . . , tn)
t(1) = (z1, t2, . . . , tn)

...

t(i) = (z1, z2, . . . , zi , ti+1, . . . , tn)
...

t(n−1) = (z1, z2, . . . , zn−1, . . . , tn)
t(n) = z = (z1, z2, . . . , zn−1, . . . , zn)

Since A is local maximal, µ(OA(t(i)), t(i)) ≥ µ(OA(t(i+1)), t(i)) for 0 ≤ i ≤ n − 1. In contrast, t(i)
j ≥ z j

for every agent j . Thus, µ(OA(t(i+1)), t(i)) ≥ µ(OA(t(i+1)), t(i+1)). Therefore, µ(OA(t(i)), t(i)) ≥
µ(OA(t(i+1)), t(i+1)) for 0 ≤ i ≤ n − 1. This proves that µ(OA(t), t) ≥ µ(OA(z), z). Since µ(oopt , z)
= µ(oopt , t) > µ(OA(t), t), OA(z) �= oopt . Thus, µ(OA(z), z) ≥ δ

∑n
i=1 ti ≥ δµ(oopt , z). Notice

that δ is arbitrary. Thus, the approximation ratio could be arbitrary large. This finishes our proof.

Theorem 83.3 reveals a negative result for the set cover game and similar result holds for most of the
game. Nisan and Ronen [18], proves that Theorem 83.3 also holds for a more general cost minimization
game and a similar result holds for any approximation algorithm for the combinatorial auctions. One can
further extend this idea to prove similar results for most approximation algorithms.

83.4 Approximation Algorithms and Binary Demand Game

We showed that the VCG mechanism is not truthful for most of the games if we use some approximation
algorithm instead of the optimal solution. In observance of this negative result, we discuss how to design
some non-VCG truthful mechanism for some commonly used approximation algorithms if possible. We
discuss the truthful mechanism design for approximation algorithms in binary demand game in this
section and general demand games in next section.

83.4.1 Characterize the Strategyproof Mechanism

In this section, we discuss how to characterize the strategyproof mechanism for a binary demand game.
Given the output function O for a binary demand game, following is a sufficient and necessary condition
for the existence of a truthful payment scheme P . This condition has been observed by several literatures
before, for more details refer to Refs. [19,23,25]. Before we present the main result, we review some lemmas
proved in Ref. [19].

Lemma 83.1

If a direct revelation mechanism M = (O, P) satisfies I C , then it satisfies the property that for any agent i ,
if Oi (t|i ti1 ) = Oi (t|i ti2 ), then Pi (t|i ti1 ) = Pi (t|i ti2 ).
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Lemma 83.2

For any truthful mechanism for a binary demand game G with setting S , if we fix the cost c−i of all agents
other than i , then the payment to agent i is a constant P 1

i if Oi (c) = 1, and it is another constant P 0
i if

Oi (c) = 0.

Theorem 83.4

Fix the setting S for a binary demand game. If a mechanism M = (O, P) satisfies I C , then the mechanism
M′ = (O, P ′) with the same output function O but with P ′

i (c) = Pi (c) − δi (c−i ) for any function δi (c−i )
satisfies I C .

Definition 83.2 (MP)

An output function O for a game G is said to satisfy the MP if for every agent i and two of its possible costs
ci1 < ci2 , Oi (d|i c i2 ) ≤ Oi (d|i c i1 ) for any d.

For a binary demand game, this definition implies that if Oi (c |i c i2 ) = 1, then Oi (c |i c i1 ) = 1. The
following theorem is summarized in Ref. [19].

Theorem 83.5

Given an output function O for a binary demand game, the following three conditions are equivalent:

1. There exists a value κi (O, c−i ) (which we will call a cut value), such that Oi (c) = 1 if ci <

κi (O, c−i ) and Oi (c) = 0 if c i > κi (O, c−i ).
Remark. When ci = κi (O, c−i ), Oi (c) can be either 0 or 1 depending on the tie-breaker of the output
function O. Hereafter, we will not consider the tie-breaker scenario.

2. The output function O satisfies MP.
3. There exists a payment scheme P such that the mechanism (O, P) is truthful.

We now formulate a general framework (Figure 83.1) for designing a truthful payment scheme for a
binary demand game as follows.

83.4.2 Simple Composition Technique

In this section, we introduce techniques to compute the cut-value function by combining multiple output
functions with conjunctions or disconjunctions. For simplicity, given an output function O, we will use
κ(O, c) to denote an n-tuple vector

(κ1(O, c−1), κ2(O, c−2), . . . , κn(O, c−n)),

General Framework 1: Design Payment for A Binary Demand Game Input: An output function O
for a binary demand game.
Output: A payment scheme P such that the mechanism (O, P) is truthful.

GF-Stage 1:  Check whether the output function O satisfies MP. If it does not, then there is no payment
scheme P such that mechanism M = (O, P) is truthful. Otherwise, define the payment scheme P as
follows.

GF-Stage 2:  Based on the output function O, find the cut value κi(O, c−i) for agent i such that
Oi(c|idi) = 1 when di < κi(O, c−i), and Oi(c|idi) = 0 when di > κi (O, c−i).

GF-Stage 3:  The payment for agent i is 0 if Oi(c) = 0; the payment is κi(O, c−i) if Oi(c) = 1.

FIGURE 83.1 General framework.
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where κi (O, c−i ) is the cut value for agent i when the output function is O and the costs c−i of all other
agents are fixed.

Theorem 83.6

Fix the setting S of a binary demand game. Assume that there are m output functions O1, . . . , Om satisfying
MP, and κ(Oi, c) is the cut-value function vector for Oi, where i = 1, 2, . . . , m. Then the output function
O(c) = ∨m

i=1 Oi (c) also satisfies MP, and the cut-value function for O is

κ(O, c) = m
max
i=1

{κ(Oi , c)}

where κ(O, c) = maxm
i=1{κ(Oi, c)} denotes κ j (O, c) = maxi {κ j (Oi, c− j )} and O(c) = ∨m

i=1 Oi (c)

denotes O j (c) = O1
j (c) ∨ O2

j (c) ∨ · · · ∨ Om
j (c) for every agent j , 1 ≤ j ≤ n.

Proof
Assume that ci > c ′

i and Oi (c) = 1. Without loss of generality, we assume that Ok
i (c) = 1 for some

k, 1 ≤ k ≤ m. From the assumption that Ok
i (c) satisfies MP, we obtain that Ok

i (c |i c ′
i ) = 1. Thus,

Oi (c |i c ′
i ) = ∨m

j=1 O j (c) = 1. This proves that O(c) satisfies MP. The correctness of the cut-value
function for O follows directly from Theorem 83.5.

To demonstrate Theorem 83.6, we discuss a concrete example here.
In a network, sometimes we want to deliver a packet to a set of nodes instead of one. This problem is

known as multicast. The most commonly used structure in multicast routing is the so called shortest path
tree (SPT). Consider a network G = (V, E , c), where V is the set of nodes, and vector c the actual cost
of the nodes forwarding the data. Assume that the source node is s and the set of receivers is Q ⊂ V .
For each receiver qi ∈ Q, we compute the shortest path, that is, least cost path, denoted by P(s , qi , d),
from the source s to qi under the reported cost profile d . The union of all such shortest paths forms the
SPT.

We define LCP(s ,qi ) as the output function corresponds to path P(s , qi , d), that is, LCP(s ,qi )
k (d) = 1 if

and only if node vk is in P(s , qi , d). Then the output SPT is defined as
∨

qi ∈Q LCP(s ,qi ). In other words,
SPTk(d) = 1 if and only if qk is selected in some P(s , qi , d). We now use General Framework 1 to design
a payment scheme P such that the mechanism M = (SPT, P) is truthful. The output function LCP is a
utilitarian and satisfies MP. Thus, from Theorem 83.6, SPT also satisfies MP, and the cut-value function
vector for SPT is

κ(SPT, c) = max
qi ∈Q

κ(LCP(s ,qi ), c)

where κ(LCP(s ,qi ), c) is the cut-value function vector for P(s , qi , c). Consequently, the payment schemeP
defined by General Framework 1 with respect to κ(SPT, c) is the minimum among all payment Q such
that (S P T, Q) is truthful.

The next theorem is a companion theorem of Theorem 83.6.

Theorem 83.7

Fix the setting S of a binary demand game. Assume that there are m output functions O1, . . . , Om satisfying
MP, and κ(Oi , c) is the cut-value function for Oi, where i = 1, 2, . . . , m. Then the output function O(c) =∧m

i=1 Oi (c) also satisfies MP. Moreover, the cut-value function for O is

κ(O, c) =
m

min
i=1

{κ(Oi , c)}

The next corollary uses Theorems 83.6 and 83.7 to derive a new technique for computing a payment
scheme for IF–THEN–ELSE statements.
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Corollary 83.1

Assume there are two output function O1 and O2 satisfying MP, and κi (O1, c−i ) and κi (O2, c−i ) are the
cut-value functions for O1, O2, respectively. Let cond(c) be the function vector such that

condi(c) =
{

0, κi (O1, c−i ) − δ2
i (c−i ) ≤ ci ≤ κi (O1, c−i ) + δ1

i (c−i )
1, otherwise

(83.1)

where δ1
i (c−i ) and δ2

i (c−i ) are two positive functions. Then the output O defined as

O = IF (cond(c)) THENO1 ELSEO2

satisfy MP.

Proof
Notice that the function Oi (c) can be treated as Oi (c) = [(ci ≤ κi (O1, c−i ) + δ1

i (c−i )) ∧O2(c−i , ci )] ∨
(ci < κi (O1, c−i ) − δ2

i (c−i )). From Theorems 83.6 and 83.7, the output function O satisfies MP
and κi (O, c−i ) = max{min(κi (O1, c−i ) + δ1

i (c−i ), κi (O2, c−i )), κi (O1, c−i ) − δ2
i (c−i ))}. This finishes

our proof. Observe that the output function O is exactly the IF–THEN–ELSE function in
Ref. [23].

83.4.3 Complex Composition Technique

Some approximation algorithms are round-based, where each round of an algorithm selects some agents
and updates the setting and the cost profile if necessary. For example, several approximation algorithms
for minimum-weight vertex cover [26], minimum-weight set cover [22], and minimum-weight Steiner
tree [27] fall into this category.

As an example, we discuss the minimum-weighted vertex cover problem (MWVC) [28] to show how
to compute the cut values for a round-based output. Given a graph G = (V, E ), where the nodes
v1, v2, . . . , vn are the agents and each agent vi has a weight ci , we want to find a node set V ′ ⊆ V such
that for every edge (u, v) ∈ E at least one of u and v is in V ′. Such V ′ is called a vertex cover of G . The
valuation of a node i is −ci if it is selected; otherwise its valuation is 0. For a subset of nodes V ′ ∈ V , we
define its weight as c(V ′) = ∑

i∈V ′ ci .
We want to find a vertex cover with the minimum weight. Hence, the objective function to be imple-

mented is utilitarian. To use the VCG mechanism, we need to find the vertex cover with the minimum
weight, which is NP-hard [28]. Since we are interested in mechanisms that can be computed in polynomial
time, we must use polynomial-time computable output functions. Many algorithms have been proposed
in the literature to approximate a minimum-weight vertex cover. In this chapter, we use a 2-approximation
algorithm given in Ref. [28]. For completeness, we briefly review this algorithm here. The algorithm is
round-based. Each round selects some vertices and discards some vertices. For each node i , w(i) is initial-
ized to its weight ci , and when w(i) drops to 0, i is included in the vertex cover. To make the presentation
clear, we say edge (i1, j1) is lexicographically smaller than edge (i2, j2) if (1) min(i1, j1) < min(i2, j2), or
(2) min(i1, j1) = min(i2, j2) and max(i1, j1) < max(i2, j2).

Algorithm 83.2 outputs a vertex cover V ′ whose weight is within two times of the optimum. For
convenience, we use VC(c) to denote the vertex cover computed by Algorithm 83.2 when the cost vector
of vertices is c . Below we generalize Algorithm 83.2 to a more general scenario. Typically, a round-based
output can be characterized as following Algorithm 83.3.

Definition 83.3

An updating rule U r satisfies crossing-independence if, for any agent i not selected in round r , (1) Sr+1 and
cr+1
−i do not depend on cr

j and (2) for fixed cr
−i , c r

i1
≤ cr

i2
implies that cr+1

i1
≤ cr+1

i2
.

We have the following theorem on the existence of a truthful payment using the output function A
defined by Algorithm 83.3.
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Algorithm 83.2 Approximate Minimum-Weight Vertex Cover

Input: A node weighted graph G = (V, E , c).
Output: A vertex cover V ′.

1: Set V ′ = ∅. For each i ∈ V , set w(i) = ci .
2: while V ′ is not a vertex cover of G do
3: Pick an uncovered edge (i, j ) with the least lexicographic order among all uncovered edges.
4: Let m = min(w(i), w( j )).
5: Update w(i) to w(i) − m and w( j ) to w( j ) − m.
6: If w(i) = 0, then add i to V ′.
7: If w( j ) = 0, then add j to V ′.
8: Output V ′.

Algorithm 83.3 Compute a Round-Based Output Function A

Input: A game G, and the agents’ cost vector c .
Output: An output O(c).

1: Set r = 0, c 0 = c , and G0 = G initially.

2: repeat
3: Compute an output or using a deterministic algorithm

Or : Sr × cr → {0, 1}n,

where Or , cr and Sr are the output function, cost vector and game setting in game Gr , respectively.

Remark: For the example of vertex cover, Or will always select the light-weighted node on the
lexicographically least uncovered edge (i, j ).

4: Let r = r + 1. Update the game Gr−1 to obtain a new game Gr with setting Sr and cost vector cr

according to a rule

U r : Or−1 × (Sr−1, cr−1) → (Sr , cr ).

Here we updates the cost and setting of the game.

5: until a valid output is found

6: Return the union of the set of the selected players of each round as the final output.

Remark. For the example of vertex cover, it is the union of nodes selected in all rounds.

Theorem 83.8

The output function A defined by Algorithm 83.3 satisfies MP if the output functions Or satisfy MP and the
updating function U r satisfies crossing-independence for every round r.

Proof
Consider an agent i , and fix c−i . We prove that if an agent i is selected with cost ci , then it is also selected
with cost di < ci . Assume that i is selected in round r with cost ci . Then under the cost vector c |i di , if
agent i is selected in a round before r , our claim holds. Otherwise, consider round r . The setting Sr and
the costs of all other agents are the same as those when agent i had cost ci since i is not selected in the
previous rounds due to crossing-independence. Notice that if i is selected in round r with cost ci , i is also
selected in round r with di < ci because Or satisfies MP. This finishes the proof.

By Theorem 83.8, if the round-based output satisfies MP, the cut values exist. We next show how to find
the cut value for a selected agent k in Algorithm 83.4.
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Algorithm 83.4 Compute The Cut Values For A Round-Based Output Function A

Input: A round-based output function A, a game G1 = G, an updating function vector U , and the agents’
cost vector c .
Output: The cut value x for agent k.

1: Set r = 0 and ck = ζ . Recall that ζ is a value such that Ak = 0 when an agent reports the cost ζ .

2: repeat
3: Compute an output or using a deterministic algorithm based on setting Sr using Or : Sr × cr →

{0, 1}n.

4: Find the cut value for agent k based on the output function Or for costs cr
−k . Let 
r = κk(Or , cr

−k)
be the cut value.

5: Set r = r + 1, and obtain Gr from Gr−1 and or according to the updating rule U r .

6: Let cr be the new cost vector for game Gr .

7: until a valid output is found.

8: Let gi (x) be the cost of c i
k when the original cost vector is c |k x .

9: Find the minimum value x such that





g1(x) ≥ 
1;
g2(x) ≥ 
2;

...

gt−1(x) ≥ 
t−1;
gt (x) ≥ 
t .

Here, t is the total number of rounds.
10: Output the value x as the cut value.

To compute the cut values, we assume that (1) we can solve the equation gi (x) = b to find x in
polynomial time when the cost vector c−i and b are given; (2) the cut value 
i for each round i can be
computed in polynomial time.

Now we apply Algorithm 83.4 and Theorem 83.8 to the vertex cover problem. For each round r , we
select a node with the least weight that is incident with the lexicographically least uncovered edge. The
output function satisfies MP. For agent i , we update i ’s cost to cr

i − cr
j if and only if edge (i, j ) is selected.

Observe that this updating rule satisfies crossing-independence. We can apply Algorithm 83.4 to compute
the cut values as shown in Algorithm 83.5.

Algorithm 83.5 Compute Cut Value for MVC

Input: A node-weighted graph G and a node k selected by Algorithm 83.2.
Output: The cut value κk(VC , c−k).

1: For each i ∈ V , set w(i) = ci .

2: Set w(k) = ∞, pk = 0, and V ′ = ∅.

3: while V ′ is not a vertex cover do

4: Pick an uncovered edge (i, j ) with the least lexicographic order among all uncovered edges.

5: Set m = min(w(i), w( j )).

6: Update w(i) = w(i) − m and w( j ) = w( j ) − m.
7: If w(i) = 0, add i to V ′; else add j to V ′.
8: If i == k or j == k then set pk = pk + m.
9: Output pk as the cut value κk(VC , c−k).
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83.5 General Demand Game

83.5.1 Characterize the Strategyproof Mechanism

For general demand games, we have a similar observation as the binary demand games. Here, we assume
that the Oi (c) is piecewise continuous with respect to any variable ci for any agent i , that is, a finite number
of piecewise linear functions. The only possible types of discontinuities for a piecewise continuous function
are removable and step discontinuities. Recall the definition of MP does not restrict to the binary demand
games: MP could be a property for general demand games as well. More interestingly, the MP is not only
a necessary and sufficient condition for the existence of truthful mechanism in binary demand games,
but also a necessary and sufficient condition for the existence of truthful mechanism in general demand
games.

Theorem 83.9

For a given output function O, there exists a payment scheme P such that the mechanism M = (O, P) is
truthful if and only if O satisfies MP.

Proof
First, we prove that if there exists a strategyproof mechanism M = (O, P) thenO satisfies MP. We consider
two coefficients profile d|i c i1 and d|i c i2 where ci1 ≤ ci2 .

Consider the case when agent i has unit cost ci1 . Recall that P is strategyproof, thus if agent i lies its
unit cost to ci2 , its utility should not increase. Thus, we have Pi (d|i c i1 ) − ci1Oi (d|i ai1 ) ≥ Pi (d|i c i2 ) −
ci1Oi (d|i c i2 ).

Now consider the case when agent i actually has cost coefficient ci2 . Similarly, we have Pi (d|i ai2 ) −
ai2Oi (a|i ai2 ) ≥ Pi (O, a|i ai1 ) − ai2Oi (a|i ai1 ).

Combining the above two inequalities, we have ci2 [Oi (d|i c i1 ) −Oi (d|i c i2 )] ≥ Pi (d|i c i1 )−Pi (d|i c i2 ) ≥
ci1 [Oi (d|i c i1 )−Oi (d|i c i2 )]. Thus, we haveOi (d|i c i1 ) ≥ Oi (d|i c i2 ) as ci1 ≤ ci2 . This proves thatO satisfies
MP.

To prove that ifO satisfies MP then there exists a strategyproof paymentP by construction. For an agent
i , we first fix d−i and use x to denote cost vector d|i x if no confusion is caused. From the assumption that
O satisfies MP, function Oi (x) is nonincreasing. Recall that Oi (x) is a piecewise continuous function. We
let x1 < x2 < · · · < xm be the points at which Oi (x) is not continuous, and introduce a dummy point
xm+1 = ∞. We define a function κi (x) such that, for x p < x ≤ x p+1,

κi (x) = xOi (x) +
∫ x p+1

x
Oi (y) dy +

m∑

j=p+1

∫ x j+1

x j

Oi (y) dy

Given an output function O and a declared cost vector d, Algorithm 83.6 defines the payment based on
algorithm O.

Thus, we only need to prove the payment scheme computed by Algorithm 83.6 is truthful. The proof is
omitted here, refer to paper [29] for more details.

Algorithm 83.6 Payment Scheme based on O

Input: Algorithm O and vector d.
Output: The payment scheme P .

1: for each agent i do
2: Fix d−i . The payment to i is Pi (d) = κi (di ).
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If we specify that if an agent i has payment 0 when Oi (d) = 0 (which is called normalized payment
scheme), then we have the following theorem:

Theorem 83.10

Given an algorithm O satisfying MP, the payment scheme defined by Algorithm 83.6 is the only normalized
truthful payment scheme.

With Theorem 83.9 and Algorithm 83.6, one could design the truthful payment scheme if it exists.
However, the truthful payment scheme may not exist at the first place. Thus, one need to modify the
existing approximation algorithm to make it monotonic while still keep the approximation ratio if possible.
Following we use DiffServ Multicast Game as an example to show how we can achieve this under certain
circumstance.

83.5.2 DiffServ Multicast Game

In this section, we use the DiffServ multicast game as an example to show how to design the truthful
mechanisms. We first show that the previous approximation algorithm does not satisfy the monotonic
property and as a result there does not exist truthful mechanism. In light of this negative result, we
modify the approximation algorithm such that it satisfies monotonic property and still achieves the same
approximation ratio.

Network model and problem statement. We assume that there is a connected network G = (V, E ) with
vertex set V , edge set E , where |V | = n and |E | = m. Every edge ei has a cost function ci x if x is
the bandwidth ei dedicated to a multicast transmission. There is a source node s and a set of receivers
R ⊂ V that request to receive the multicast service. Every receiver ri ∈ R has a bandwidth demand hi

that specifies the minimum bandwidth it needs. The DiffServ multicast problem consists of two parts: (1)
finding a tree rooted at the sender s that spans all receivers in the receiver set and (2) find a bandwidth
reservation for each link for this multicast. The tree topology and bandwidth reservation should satisfy
that for any receiver ri , each link on the tree path between ri and s has a bandwidth reservation not
smaller than di . Thus, for a link ei , the reserved bandwidth should not be smaller than the maximum
bandwidth demand of its downstream receivers. The weight of a multicast topology T with link bandwidth
reservation vector b = {b1, b2, . . . , bm} is ω(T, b) = ∑

ei ∈T cibi . Given the cost vector c of all links and
the bandwidth demand h of all receivers, the DiffServ multicast problem is to construct a tree T and a
bandwidth reservation b with the minimum cost ω(T, b).

Approximation algorithm. The high level idea of the algorithm to construct the DiffServ Multicast Tree is
as follows. The receiver set is divided into subsets, each containing receivers with demands in a particular
range. These subsets are handled in multiple rounds, in a descending order according to their bandwidth
demand ranges. In each round, the demands of all receivers in a subset are treated equally and we apply
the 2-approximation algorithm by Ref. [30] for a general link-weighted Steiner tree. The new Steiner tree
is connected to the DiffServ multicast tree being built and the links picked in earlier rounds are set to cost
0 for later rounds. Following Algorithm 83.7 illustrates the details.

Theorem 83.11

Algorithm 83.7 constructs a tree whose weight is at most eight times the weight of the minimal cost DiffServ
multicast tree T opt.

However, as shown in the following lemma, Algorithm 83.7 does not satisfy the MP property, which
implies that there does not exist truthful mechanism if we use Algorithm 83.7 as the output of the
mechanism.

Lemma 83.3

Algorithm 83.7 does not satisfy MP.
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FIGURE 83.2 The spanning tree constructed by Algorithm 83.7. (a) original G , (b) tree when e2 = 1.1, and (c) tree
when e2 = 0.9.

Algorithm 83.7 Construct DiffServ Multicast Tree

Input: A network G with cost vector c, a source node s , a set of receivers R and a bandwidth demand
vector h.
Output: A tree DMT and a bandwidth allocation vector B .

1: Sort all receivers according to their bandwidth demands in an descending order, say R =
{r1, r2, . . . , rk}.

2: Initialize the tree T to empty and index t = 1.
3: for each link ei do
4: Label it as WHITE and set Bi = 0.
5: repeat
6: Let r j be the first receiver in the receiver set R.

7: Find the maximal index k such that hk ≥ h j
2 .

8: Set di = 0 for each BLACK link and di = bi · ci for each WHITE link.
9: Let Rt = {r j , . . . , rk} and find the spanning tree Tt = L ST(Rt , d).

10: Remove Rt from R and mark all links in tree Tt as BLACK.
11: Set T = T

⋃
Tt and t = t + 1.

12: until the receiver set R is empty.
13: for each link ei ∈ T do
14: Find ei ’s downstream receiver with the maximum bandwidth demand, say q j and set Bi = h j .
15: Output T as DMT and bandwidth vector B .

Proof
We prove it by presenting an example here. A network G has three receivers r1, r2, r3 with bandwidth
demand d1 = d2 = 1 and d3 = 2. The unit costs of the links are shown in Figure 83.2(a). When we apply
Algorithm 83.7 to network G , we obtain a tree shown in Figure 83.2(b). Let agent 2 be link v2v3. The
bandwidth allocation of link e2 = v2v3 is 2. Consider the scenario when the unit cost of link e2 changes
from 1.1 to 0.9 while other unit costs remain the same. The new spanning tree topology constructed by
Algorithm 83.7 is shown in Figure 83.2(c). The bandwidth allocation of e2 becomes 1, which decreases by
half compared with the bandwidth reservation with coefficient 1.1. This finishes our proof.

New monotonic algorithm. In light of the negative result of Algorithm 83.7, we modify Algorithm 83.7 as
follows to obtain Algorithm 83.8 that satisfies the MP property which still has the approximation ratio 8.

Theorem 83.12

Algorithm 83.8 constructs a tree whose weight is at most eight times the weight of the minimal cost DiffServ
multicast tree T opt and satisfies MP.
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Algorithm 83.8 Construct New DiffServ Multicast Tree

Input: A network G with coefficient vector a , a source node s , a set of receivers R and a bandwidth
demand vector d .
Output: A spanning tree DMT and a bandwidth allocation vector B .

1: Sort all receivers according to their bandwidth demands in an descending order, say R =
{r1, r2, . . . , rk}.

2: Initialize the tree T to empty and index t = 1.
3: for each link ei do
4: Label it as WHITE and set Bi = 0.
5: repeat
6: Let r j be the first receiver in the receiver set R.

7: Find the maximal index k such that dk ≥ d j
2 .

8: Set the cost of each WHITE link ei as ci = ai · d j and each BLACK link as 0.
9: Let Rt = {r j , . . . , rk} and find the spanning tree Tt = L ST(Rt , c) using Algorithm in [30].

10: Remove Rt from R and mark all links in tree Tt as BLACK.
11: Set T = T

⋃
Tt .

12: for each link ei ∈ Tt do
13: If Bi = 0 then set Bi = d j .
14: Set t = t + 1.
15: until the receiver set R is empty.
16: Output T as DMT and bandwidth vector B .

With Theorem 83.12, we can apply the general framework 83.6 to obtain the truthful mechanism. The
details of the truthful mechanism depends on the specific structure of the tree DMT and is omitted here.
Interesting reader can refer to paper [29] for more details.

83.6 Literature Review

In this section, we review the literatures in the designing of truthful mechanism for the approximation
algorithms.

Designing strategyproof mechanisms, when an approximated algorithm to the objective function is
used, was studied for some specific problems [1,8,31,32]. Nisan and Ronen [14] studied the strategyproof
mechanism for the job scheduling. Auletta et al. [33] studied deterministic strategyproof approximation
schemes for scheduling on related machines. Lehmann et al. [24] studied the combinatorial auctions.
Archer et al. [34] studied the approximate strategyproof mechanism for combinatorial auctions with
single-parameter agents. Devanur et al. [35] studied the strategyproof cost-sharing mechanisms for set
cover and facility location games.

Lehmann et al. [24] studied how to design an efficient truthful mechanism for single-minded com-
binatorial auction. In a single-minded combinatorial auction, each agent i (1 ≤ i ≤ n) only wants to
buy a subset Si ⊆ S with private price ci . A single-minded bidder i declares a bid bi = 〈S ′

i , ai 〉 with
S ′

i ⊆ S and ai ∈ R+. In Ref. [24], it is assumed that the set of goods allocated to an agent i is either S ′
i or

∅, which is known as exactness. Lehmann et al. gave a greedy round-based allocation algorithm that has
an approximation ratio

√
m, where m is the number of goods in S. On the basis of the approximation

algorithm, Lehmann et al. gave a truthful payment scheme. For an allocation rule satisfying (1) exactness:
the set of goods allocated to an agent i is either S ′

i or ∅; (2) monotonicity: bidding more money for
fewer goods cannot cause a bidder to lose its bid, they proposed a truthful payment scheme as follows:
(1) pay a winning bidder the amount that does not depend on its own bidding; and (2) pay a losing
bidder 0.
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Mu’alem and Nisan [23] further generalize this idea and proposed several combination algorithms
including MAX, IF–THEN–ELSE construction to perform partial search. All of their algorithms required
the welfare function associated with the output to satisfy a certain bitonic property. Kao et al. [19] fur-
ther generalize this direction for any binary demand game in which an agent is either selected or not
selected. An output method is said to be monotonic if, given fixed valuations of all other agents, there
exists a threshold value κi for an agent i such that the agent i is selected if and only if its valuation is
at least κi . Interesting, as shown by Kao et al. [19], the MP is still a necessary and sufficient condition
for the existence of truthful mechanism in this broader setting. Furthermore, an approximation algo-
rithm whose output is monotone and the payment scheme pays a selected agent its threshold value is
truthful.

The demand game is a natural generalization of binary demand game and has also been studied in
literatures. Archer and Tardos [36] showed how to design truthful mechanisms for several combinatorial
problems where each agent’s private information is naturally expressed by a single positive real number,
which will always be the cost incurred per unit load. The mechanism’s output could be an arbitrary real
number but their valuation is a quasilinear function tw , where t is the private per unit cost and w the
work load. Archer and Tardos characterized that all truthful mechanisms should have decreasing “work
curves” w and that the truthful payment should be

Pi (bi ) = Pi (0) + bi wi (bi ) −
∫ bi

0
wi (u) du

Using this model, Archer and Tardos designed the truthful mechanisms for several scheduling related prob-
lems, including minimizing the span, maximizing flow, and minimizing the weighted sum of completion
time problems.

Recently, people are studying how to transfer an approximation algorithm that is not monotonic into
an approximation algorithm that is monotonic without loss of much approximation ratio. Briest et al.
[37] first showed that the most basic techniques for the approximation algorithm does not satisfy the
monotonic property: the transformation of a pseudopolynomial-time algorithm into a fully polynomial-
time approximation algorithm scheme (FPTAS); the distinction of elements according to size of the
parameters as often used in the design of the polynomial-time approximation scheme (PTAS); and ran-
domized rounding for packing integer programs (PIPS). In light of these observations, they provide
some new techniques that result in some monotonic approximation algorithm for FPTAS, PTAS, and
PIPS.

83.7 Conclusion

In this chapter, we mainly discuss how to design the truthful mechanism for the approximation algorithms.
First of all, we show that if we use the approximation algorithms instead of the optimal solution, then it
is almost universal that the celebrated VCG mechanism is not truthful anymore. In light of this failure,
some mechanisms other than VCG mechanisms are needed to address these issues. We study how to design
truthful mechanisms for binary demand games in Section 83.4 and more generalized demand game in
Section 83.5. The monotonic property for approximation algorithm is a necessary and sufficient condition
for the existence of truthful algorithm and present some general techniques to compute the payment
scheme for the monotonic approximation algorithms. However, one important question that has not been
explored fully is that how we can convert an approximation algorithm that does not satisfy the monotonic
property into an approximation algorithm that satisfies the monotonic property with same or similar
approximation ratio. Briest et al. [37] made the progress in this direction by presenting some general
techniques to design some FPTAS, PTAS, and PIPS algorithms.

We end this chapter by pointing out some possible future directions in the mechanism design for the
approximation algorithms. First of all, there are some algorithms that are beyond the demand games, that
is, there may have more than one parameter to be optimized. It is interesting to study how to design truthful
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mechanism for the bicriteria approximation algorithms. Second, it is of great importance if we analyze
the algorithms that do not satisfy the monotonic property and design general techniques to convert them
into the approximation algorithms that satisfy the monotonic property.
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84.1 Introduction

Over the past decade, the size of data seen by a computational problem has grown immensely. There
appears to be more web pages than human beings, and we have successfully indexed the pages. Routers
generate huge traffic logs, in the order of terabytes, in a short time. The same explosion of data is felt in
observational sciences because our capabilities of measurement have grown significantly. In comparison,
computational resources have not increased at the same rate. In particular, it has been found that the
ability of random access to data itself is a resource. In some settings, each individual input item is not
so significant by itself—consider monitoring a network, estimating costs of query plans, etc.—but the
quantity we are interested in is the aggregate picture that emerges from the data. In several scenarios,
such as network monitoring, some data are never stored but merely used to infer aggregate health of the
network. At the same time, in several data-intensive computations, making passes over the data has been
found to be significantly more efficient. This has brought the data stream model to the fore. The model
consists of an algorithm with a small random access memory, typically sublinear in input size, operating in
passes over the input. Any input item not explicitly stored is inaccessible to the algorithm in the same pass.
The model captures the essence of a monitoring process that is allowed to observe a system unobtrusively
using some small “extra” space. Of particular interest is the one pass model, where the input may simply
not be stored at all. The data stream model poses several challenges. Intriguingly, even simple problems,
which were thought to be fully understood at small scales, have been found to be ominous at the current
scale of data and have required reexamination. As mentioned earlier, the aggregate picture that emerges
from the the data, or the synopsis, is often the desiderata.

The idea of synopses is not new. We can view the data as a function over a suitable domain. Expressing
a function accurately as a combination of a few simpler functions has been at the heart of approximation
theory in mathematics, and dates back centuries starting with polynomial approximations and the work
of Fourier. Histograms and bar charts have been in use since the middle ages. The Haar system was
proposed as early as 1910. Initially, the thrust of synopsis construction had been to project the data on to
a fixed space. The benefit of such schemes is that the sum of two synopses is the synopsis of the sum of
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the original functions. This had led to the bulk of work in mathematical approximation theory, known as
linear approximation theories. The theorems proved about these were largely extremal, namely, projections
that work for all data: what is the maximum error (again considering all data) given a fixed projection
strategy, etc. Schmidt, in 1909, was one of the earliest to consider nonlinear theories where the image
space is dependent on data; which in modern terms can be viewed as a data-dependent or data-driven
synopsis. This immediately raised the question of approximating the given data in the best possible way.
This question is closer to common optimization problems—and since the end goal is approximation, it
is only natural to consider approximation algorithms for these problems. Most synopses techniques used
currently are in the nonlinear category.

In the context of databases, synopses date back to Selinger et al. [1] in the late 1970s. They proposed
estimating the cost of various operators using synopses of data to decide between alternative query plans.
The first synopsis structure proposed for this purpose was a simple division of the domain into equal sizes.
Over time, it was recognized that piecewise constant approximations of the data, or serial histograms, are
significantly more accurate descriptions of distributions. Subsequently, it was demonstrated that the �2

distance between the representation and the data was an accurate estimate, which brought histograms
closer to the mathematical definition of approximating functions. Since the late 1980s, wavelets have
became popular as a tool in image processing. Their success was primarily due to the existence of fast
algorithms for transforms and their multiresolution nature. They were introduced in databases in the
context of “data cubes” to describe the data hierarchically. Wavelets and histograms are, by no means, the
only synopses structures used. Quantiles and other estimates have been used as well. We will only consider
histograms and wavelet approximations of data in this chapter.

Our goal in this chapter will not be to catalog the problems and the best results known. Our main aim
is to introduce the reader to these problems and demonstrate what style of analysis is used. To that end we
will consider the simpler versions of the problems, and restrict ourselves to one dimension mostly. The
problems we will focus on will be illustrative and will not be exhaustive. The notes at the end of the chapter
contain pointers to the more commonly known variants of these problems and the respective references.
We will only refer to works on histograms and wavelets in the main body of the chapter. The sources of
the algorithms discussed can be found in the notes. We will focus on those problems that are the simplest
to state and are yet nontrivial to solve in massive data set context, and therefore are the basic problems in
this area. We subsequently discuss histograms and then wavelets. We conclude with notes on the literature
in this area.

84.2 Definitions and Problems

Definition 84.1 (DATA STREAMS)

A data stream is a model of computation that treats random access as a resource.

In particular, given a set of m objects Y = Y (1), . . . , Y (m) we want to compute a function f (Y ) using
small space and one pass over the data under the following restrictions: (i) the items Y ( j ) are inspected
in an increasing order of j , and (ii) any item not explicitly stored is “forgotten”—we do not know its
value any longer (in the same pass). the computation proceeds in passes over the data. Unless otherwise
mentioned, a data stream algorithm will refer to a one pass streaming algorithm. The streaming models
differ in the semantics of the stream items Y ( j ). There is a multitude of models, but we will discuss the two
most common ones: (1) We can have Y ( j ) = X( j ) and m = n, where we are considering a function X(i)
defined on integers, which is specified in an increasing order of (i). This is a Time series model. (2) We
can have Y ( j ) = 〈i, δ j 〉 where i ∈ [0, n] for some n. Each element Y ( j ) implies “set X(i) = X(i) + δ j ”
(δ j can be negative) and thus specifies a function X as a sequence of updates. This is the Update model;
also known as the cash-register/dynamic model.

In this chapter, we mainly focus on the time series model of data streams. This model is the simplest
stream model and relevant in the context of sensor data, stocks, etc., where the order in which the data
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arrives has a natural meaning. A good sublinear space algorithm for this model implies a good algorithm
with small “extra” space—as is typical in the monitoring setting. Concrete examples of such systems are
the “self-tuning” systems ([2]) where the system executes queries and a monitoring component gathers
information about various parameters to optimize/maintain the system performance. In essence, the
input to the monitoring process is “free” because that input to the monitoring system is the result of some
computation that was necessary anyways. An example in this context is the work of Bruno et al. [3], who
consider learning histograms from observing answers to database queries. Any resource allocated to the
monitor implies less resource for the actual system and it is naturally desired that the monitor has a small
footprint.

Although the above is true for the update model of streams, the maintenance of relevant information
under updates is often a bigger challenge than solving the original problem from the maintained informa-
tion. These algorithms typically find nontrivial ways of capturing similar computation as in a time-series
model stream. The techniques used in these algorithms are exciting, but orthogonal to the question of
histogram construction.

In summary, the time series model captures the problem at an abstract level that is restricted compared
with offline computation, but rich enough to allow us to design interesting algorithms. Very often, these
algorithms are the stepping stones to the most general results on update streams. In the interest of space,
we omit discussing the results in the update stream model, but the notes contain references to them. In
this chapter, we focus on the following problems:

Problem 84.1 (HISTOGRAMS)

Given a set of numbers X = X(0), . . . , X(n − 1) in a (time series) stream, find a piecewise constant function
H with at most B pieces to minimize some suitable function of the error X − H, e.g., ‖X − H‖2, ‖X − H‖∞,
etc. Each “piece” corresponds to a subinterval [a , b] of [0, n − 1] and is represented by one number. Unless
otherwise specified, we would assume that the B pieces induce a partition of the interval [0, n − 1].

Each of the pieces is defined as a “bucket.” Given an i , we find the bucket to which i belongs to and
return the representative number, say v, for the bucket as an estimate of X(i). The error introduced by
this process is X(i) − v, which can be viewed as X(i) − H(i). A natural goal of any accurate description
would be to minimize a suitable function of X − H . One of the most natural measures is the �2 norm
(or its square) of the error vector X − H ; however, �1, �∞ measures are common as well. We can also
consider weighted variants where given a weight vector {πi } we seek to minimize a suitable function of
the terms πi (X(i) − H(i)). The weighted variants are sometimes termed “workload optimal.” Several
questions arise immediately—are the intervals allowed to overlap, should they cover the entire [0, n − 1],
etc. In the case of overlapping intervals, it is unclear how to define the value of a point that belongs to two
buckets. However, under any definition, we can easily see that B overlapping buckets define at most 2B −1
nonoverlapping buckets over any interval. A natural extension of the above is to piecewise polynomials.
These have a rich history in numerical estimation algorithms. A priori, it is not clear why we should be
able to achieve near optimal solutions for these problems in near linear time, which brings us back to the
motivation of studying time series models.

Problem 84.2 (PIECEWISE POLYNOMIALS)

Solve the above problem of expressing a function using B nonoverlapping pieces where the pieces are small
degree polynomials.

We can pose a problem about wavelets analogously, and about the connections:

Problem 84.3 (WAVELETS)

Given a wavelet basis {ψi } and a set of numbers X = X(0), . . . , X(n − 1) in a data stream, find a set of
values Z(i) with at most B nonzero values such that a suitable error of X − ∑

i Z(i)ψi is minimized.
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Problem 84.4 (CONNECTIONS BETWEEN SYNOPSES)

What are the connections between the various synopses and can we leverage them to devise better algorithms?

The above problems do not make an explicit assumption on the dimension of the data set. For wavelets,
there are very few changes in the results in the offline setting. Histograms, in contrast, turn out to be
NP-hard, primarily due to two-dimensional partitioning. The issue of overlap of buckets becomes critical,
since the number of nonoverlapping buckets required to express B overlapping buckets is exponential in
the dimension.

Further, two- or more dimensional streaming is tricky to define except in update streams. The time
series model is implicitly one-dimensional, in the special dimension that corresponds to the semantics of
time. In this chapter, we will focus on the one-dimensional case and point the reader to the specific papers
for the higher dimensional case.

The above, by no means, is an exhaustive list of interesting problems. However, the above are indeed
basic in the sense that they are simple to pose and not always easy to solve in sublinear space.

84.3 Histograms

As mentioned earlier, histograms are piecewise constant approximations of data. Recall that the histogram
problem is defined as follows: Given a set of numbers X = X(0), . . . , X(n − 1) in a streaming fashion,
find a piecewise constant function, H with at most B pieces to minimize some suitable function of the
error X − H , e.g., ||X − H||2, ||X − H||∞, etc. We will assume that X(i) are polynomially bounded
integers, since the histograms are most often used to approximate frequency. The discussion will extend
to reals provided the minimum nonzero error of estimation using a histogram can be bounded from
below, which is also a finite precision assumption. We will focus on the �2

2 measure. Using this as an
example, we will see how to construct faster approximation algorithms. Subsequently, we will see how to
extend the result to measures similar to �∞. All the discussion extends to weighted variants using standard
techniques.

84.3.1 The Vopt or the �2
2 Measure

The measure is popular in databases and is also interesting mathematically. In this problem, the interval
[0, n − 1] is partitioned into B pieces.

Observation 84.1

Due to the partitioning, we can express the �2
2 error as a sum of bucket errors. In each bucket, the best

representative is the mean/average of the numbers.

Let TERR[i, k] be the minimum �2
2 error of approximating [0, i] using at most k buckets. TERR[i, k]

is computed for the points in [0, i] only. A natural dynamic program (DP) that tries all possible guesses
of the last interval [ j + 1, i] is immediate. If the �2

2 error of approximating the interval [ j + 1, i] by
its mean is SQERROR( j + 1, i) = ∑i

r= j+1 X(r )2 − (
∑i

r= j+1 X(r ))2/(i − j ), we have TERR[i, k] =
min j {TERR[ j, k − 1] + SQERROR( j + 1, i)}.

The final solution is given by TERR[n, B]. Maintaining the prefix sums
∑ j

r=0 X(r ),
∑ j

r=0 X(r )2, the
values of SQERROR( j +1, i) can be computed in O(1) time. Immediately, we arrive at an O(n2 B) algorithm
using O(nB) space. The space requirement can be reduced to O(n), but a natural question arises: “Since
the primary role of histograms is in approximating data, can we develop linear time algorithms that are
near optimal approximations of the best histogram?” In what follows, we show how to achieve such an
algorithm. The starting point is as follows.

Observation 84.2

TERR[ j, ·] is nondecreasing and SQERROR( j, ·) (and therefore SQERROR( j + 1, ·)) is non-increasing.
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SQERROR( j+1, i)

i

Minimization over

(a) (b) (c)

TERR[ j, k−1]

Last bucket of TERR[i, k]First k −1 buckets

FIGURE 84.1 (a) Approximating TERR[i, k − 1] by a histogram, (b) front moving left to right, and (c) front moving
bottom up.

It may appear that we can immediately use the above properties to get faster algorithms, but that is not
the case. Consider v1, . . . , vn where each vi ≥ 0. Let f (i) = ∑i

r=1 vr , and g (i) = f (n) − f (i − 1).
The function f (i) is nondecreasing and g (i) is nonincreasing. But finding the minimum of f (i) + g (i)
amounts to minimizing f (n) + vi , or in other words minimizing vi . Note that this does not rule out
that over B levels, the cost of the searching can be amortized—but no such analysis exists to date. The
interesting aspect of the example is that picking any i gives us a 2 approximation (since f (n)+vi ≤ 2 f (n)
and the minimum is no smaller than f (n)). In essence, the searching can be reduced if we are willing to
settle for an approximation.

The central idea is that instead of storing the entire function TERR[ j, k−1], we approximate the function
as shown in Figure 84.1. The interval [1, i] is broken down into τ intervals (au , bu) to approximately
represent the function with a “staircase.” We have a1 = 1, au+1 = bu + 1, and bτ = n. Furthermore,
the intervals are created such that the value of the function at the right hand boundary of an interval is at
most a factor (1 + δ) times the value of the function at the left hand boundary. The number of maximum
such intervals is O( 1

δ
log n).

Now for any au ≤ j ≤ bu , we have (1+ δ)TERR[au , k −1]+SQERROR(au +1, i) ≤ (1+ δ)TERR[ j, k −
1]+SQERROR( j +1, i) and which in turn is at most TERR[bu , k −1]+SQERROR(bu +1, i); this rewrites to
(1+δ)TERR[i, k] ≤ TERR[bu , k −1]+SQERROR(bu +1, i). This implies that evaluating the sum at bu gives
us a (1+δ) approximation. However, there is a caveat—we cannot simultaneously approximate TERR[i, k]
and assume that we know TERR[ j, k −1] exactly for all j < i, k > 2. The solution is to employ the “ostrich
algorithm,” i.e., ignore the issue and simply use the approximation APXERR[ j, k − 1] (of TERR[ j, k − 1])
to compute APXERR[i, k]. We can show by induction that the ratio of APXERR[i, k] to TERR[i, k] is at most
(1 + δ)k−1. Setting δ = ε

2B gives us a (1 + ε) approximation since (1 + ε
2B )B ≤ 1 + ε for ε ≤ 1. The

benefit of the algorithm is that we evaluate the sum at O( 1
δ

log n) points assuming that the input integers
are polynomially bounded. The entire algorithm runs in O( nB

δ
log n) time. The algorithm proceeds from

left to right, and as more data arrive the function TERR[i, k] does not change and the staircase we have
constructed remains valid. This, along with the fact that we only need to store

∑bu
r=1 X(r ),

∑bu
r=1 X(r )2

for the points bu allow the algorithm to be an O( B2

ε
log n) space streaming algorithm. Therefore:

Theorem 84.1

We can compute a (1 + ε) approximation of the optimal histogram under �2
2 error over a data stream in

O( nB2

ε
log n) time and O( B2

ε
log n) space.

The algorithm in retrospect. A metaphoric view of the algorithm could be the following: Consider the DP
table generated by the optimum algorithm with n columns and B rows, the bottommost row corresponding
to TERR[i, 1]. This new algorithm maintains a “front” that moves from left to right and creates (approx-
imately) the same table as the optimal algorithm, but only chooses to remember a few “highlights” (see
Figure 84.1). The highlights correspond to boundary points that are sufficient to construct an approximate
histogram. We can view the optimum algorithm as using n buckets to represent the nondecreasing error
function TERR[i, k − 1] exactly. But we need at most O( 1

δ
log n) buckets for polynomially bounded input
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if we approximate the function in the above geometrically growing fashion. This geometrically growing
staircase has been subsequently used in several problems of interest in time windowed data streams [4].

Improving the above algorithm. The algorithm mentioned above still computed all the θ(nB) table entries,
though each entry was computed faster. We were forced to evaluate all entries in the table in the absence
of any indication whether that value will be irrelevant later in a streaming setting.

To improve the algorithm, we begin by ignoring the streaming aspect and develop on an offline algorithm
with O(n) memory. We subsequently show how to adapt the improved algorithm to a stream setting. One
way of viewing the new offline algorithm is that we want to create a similar dynamic table as the optimal,
but we only want to compute the APXERR[ j, k − 1] entries that are useful for some APXERR[i, k] entry. In a
sense, we want the front to move from bottom to top and only evaluate the necessary values (see Figure 84.1),
and this is requires the offline setting.

Note, we immediately have a problem that APXERR[i, k + 1] may depend on APXERR[i − 1, k] and
APXERR[i − 1, k] was later replaced by some APXERR[i ′, k] where i ′ > i . If we are only computing the
values that are necessary, we will be computing different values since APXERR[i, k + 1] now has to use
APXERR[i ′, k]. This is where the induction in the proof of the earlier algorithm fails. However, the reassuring
aspect is that APXERR[i ′, k] must have been within a (1 + δ) factor of APXERR[i − 1, k] and a more subtle

induction goes through. This idea in itself gives an algorithm with running time O(n + B3 log n
ε−2 ). But we

will improve the algorithm even more.
Note that we are interested in the entry APXERR[B , n −1]. This is the top right-hand corner of the table.

Now, the elements in the bottom right-hand corner of the table are likely to contain very large values,
because they correspond to the approximation by very few buckets. Likewise, the elements in the top
left-hand corner are likely to contain very small answers, which correspond to approximating very small
amounts of data with a large number of buckets. Either of these sets of values is unlikely to influence the
optimum solution. However, we need to quantify “large” and “small” in this discussion. The idea would
be to first find the scale of the optimum solution and subsequently search in that scale to find the (near)
best solution.

Assume that we were guaranteed that the optimum solution is less than 2� for some �. We find the
largest i such that APXERR[i, 1] = SQERROR(1, i) ≤ (1+ ε)2�. This we set to be bu . We proceed backward
to determine the smallest number au such that APXERR[au , 1] + ε�

B−1 ≤ APXERR[bu , 1]. This defines the
last interval (au , bu). We set bu−1 = au − 1 and proceed (backward). After we have created the list of
intervals corresponding to 1 bucket (or k buckets), we will proceed to the list of intervals corresponding
to 2 (or k + 1) buckets. The size of each list will be O( B

ε
). Finding the smallest au would involve a binary

search and each evaluation of APXERR[i, k] would involve using O( B
ε

) values from the list corresponding

to bu for k − 1 buckets. The running time over all the B lists can be shown to be O( B3

ε2 log n). Observe
that the algorithm incurs approximation error additively and over the entire algorithm, the total error can
be shown to be an additive ε�.

Suppose we started from the smallest possible nonzero value as � and we got a solution whose error
is more than 2�(1 + ε′). Then we know that the optimum solution is above 2� and we can double the
estimate of �. This way, after at most O(log n) rounds we will get to a point where we get a solution whose
error is at most 2�(1+ε′), but recursively we have maintained the invariant that the optimum is at least �.
At this point, set �′ = �(1+ ε′); and by virtue of the existence of some solution of cost 2�(1+ ε′), we are
guaranteed that the optimum is within 2�′. We choose a ε′′ such that ε′′ = ε�/�′ and apply the above
algorithm. The final solution has additive error ε�, which is a (1 + ε) approximation since � is less than

the optimum solution. The running time of the algorithm is O( B3 log n
ε2 + B3 log n

ε2 log n) considering all
O(log n) rounds. Now observe that we can set ε′ = 1, i.e., try to get a fast 4 approximation. We compute
the sums

∑
i X(i) etc., in O(n) additional time. In summary,

Theorem 84.2

We can find a (1 + ε) approximation to the optimal histogram in O(n + B3 log2 n + B3

ε2 log n) time.
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A return to streams. The above algorithm appears to be hopelessly offline. In our metaphor of “front,” we
are proceeding row by row upward, and the entire data are required to be present to allow us to compute
SQERROR(). The idea we would now use is to read in a block of data of size M in left-to-right order, but use
the bottom-to-top approach to construct the staircases for the new data (using staircases of the old data).
We would have to maintain the geometric approximation as in the first-approximation algorithm (since
across different blocks we cannot proceed backward as in the second algorithm). The number of items we
would consider for each list would be O( B

ε
log n) as in the first algorithm, plus n

M , corresponding to the
endpoints of the blocks since in each block we will proceed backward and always evaluate the endpoint.
To find the smallest au , however, would only require O(log M) evaluations since we would be searching
over the new elements only. Thus, over all the lists the algorithm will use O(B( n

M + B
ε

log n) log M)
evaluations of some APXERR[i, ·]. We will use a better algorithm to compute APXERR[i, k]. Along with the
lists Q[k] of intervals, where APXERR[·, k] increase geometrically in powers of (1 + ε

2B ), we would keep
track of a sublist SubQ[k] inside this list of intervals where the APXERR[·, k] increase in powers of 2. Thus,
the sublist will be of size O(log n). We will use SubQ[k − 1] to compute a 4 approximation (say A) of
TERR[i, k] of APXERR[i, k]. Then we would proceed backward inside the list Q[k −1] and only consider the
APXERR[ j, k −1] elements that are separated by A/(cB) for some constant c , and use these new elements to
compute a better approximation of TERR[i, k]. This approximation can be shown to be (1 + δ)k ; the proof
is detailed and is omitted. The upshot of this more complicated algorithm is that the time to compute
each APXERR[i, k] is O(log n + B

ε
log τ ) (where τ = B log n

ε
, the same as earlier); the extra log term arises

from the backward binary search inside Q[k − 1]. Thus, the total running time (we add the O(n) time to
compute the sums for all the elements) is

n +
(

log n + B

ε
log τ

)

B

(
n

M
+ B

ε
log n

)

log M

We can now set M to get the coefficient of n to be a true constant, and thus

Theorem 84.3

Let τ = B
ε

log n and M = O(( B
ε

log τ + log n)B log τ ). We can construct a (1 + ε) approximation
data stream algorithm for computing the optimal histogram that runs in time O(n + Mτ ) and uses space
O(Bτ + M).

For fixed B , ε, and any γ > 0, using O(γ log n) space we get a (1 + ε) approximation in O(n+ n log log n
γ

)
time, which is a nice tradeoff. A natural question that would arises at this point—do these approximations
help? Note that the approximations were motivated from very common sense “pruning strategies” or
heuristics that should be a part of a good code. It is gratifying that in this case we can analyze the pruning
strategies and in fact prove their correctness as well as improved performance. For an implementation,
the dependence on ε, B matters and getting a better theoretical algorithm does allow us to have better
algorithms for practice.

84.3.2 Beyond �2
2 Error: Workloads, Piecewise Polynomials

If we inspect the algorithms in the previous section, the following ideas were used in the DP and the
approximation algorithm(s), respectively:

1. OPT. The error SQERROR(i, j ) of a bucket depends only on the values in the bucket and the endpoints
i, j . We can maintain small information for each element such that given any i, j the value of
SQERROR(i + 1, j ) can be computed efficiently. The overall error is the sum of the errors of the
buckets.

2. APX. The error is interval monotone, i.e., a subinterval has error no more than the whole interval.
The minimum nonzero error and the maximum error are lower and upper bounded, respectively,
by polynomials in n.
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We can now revisit the proof in the previous section (with P = Q = T = O(1)), and the next theorem
follows:

Theorem 84.4

Suppose that we are given a histogram construction problem where the error ET [·, ·] satisfies the above
conditions. Suppose that the error of a single bucket EB (i + 1, j ) can be computed in time O(Q) from the
records INFO[i] and INFO[ j ] each requiring O(P ) space. Assume that the time to create the O(P ) structure
is O(T); then by changing the function that computes the error given the endpoints we achieve the following:

(i) We can find the optimum histogram in time O(nT + n2(B + Q)) time and O(n(P + B)) space.
(ii) In O(nT + Q B3(log n + ε−2) log n) time and O(nP ) space, we can find a (1 + ε) approximation to

the optimum histogram.
(iii) In O(nT + MQτ ) time and O(PBτ + MQ) space we can find a (1+ε) approximation to the optimum

histogram over a data stream where MQ = B( Q B
ε

+Q log n + B
ε

log τ ) log(Qτ ) and τ = Bε−1 log n.

Example 84.1 (Workloads)

Workloads are weighted �p norms. Typically, the workload is specified as a k-bucket histogram as well
(since specifying n weights requires a lot of space) and each EB () can be computed in time Q = O(k)
time. The space requirement to store the lists increases by an additive O(k) since it is simpler to add the
endpoints of the workload histogram to all the queues. T = P = O(1) in this case.

Example 84.2 (Piecewise Polynomials)

For polynomials of degree d , we need to store prefix sums such as
∑

r X(r )m for 0 ≤ 2d + 2. To find the
best representative, we need to solve an O(d) × O(d) matrix that makes Q = O(d3). P = T = O(d) in
this case.

Example 84.3 (�1 Error)

In this case, the representative of a bucket is the median. In an offline setting, we can preprocess the data
in O(n log n) time and space to achieve Q = O(log2 n). In the stream setting, we need to prove that an
approximate median of rank within n

2 ± εn increases the error of a bucket by (1 + ε) factor. Approximate

medians can be found using the algorithms of Manku et al. [5] or Greenwald and Khanna [6] using O( log n
ε

)
space. However, this needs to be done for each of the Bτ endpoints (each of which could potentially form a
bucket with the current data we are seeing). Thus, we can apply Theorem 84.4 (i i i) with T = Bτ log log n

ε
,

Q = P = log log n
ε

.

Example 84.4 (χ2 Error and Information Distances)

In this case, the error of representing a set of numbers v1, . . . , vm by h is given by
∑

r
(vr −h)2

h . Using prefix
sums similar to �2

2, we can show Q = T = P = O(1). This is interesting since one of the objectives of
histograms is to represent distributions and information theoretic metrics are obviously more suited for
comparing distributions.

Example 84.5 (Relative Error)

One of the issues with �p error is that approximating 1000 by 1010 counts as much toward the error as
approximating 1 by 11. One way of ameliorating the problem is to define a relative error measure that
computes a function (�2, �1 norm of the vector) |X(i)−X̂(i)|

max{|X(i)|,c} , where X̂(i) is the estimate of X(i) constructed
from the synopsis. c is a constant to avoid division by 0 and the effect of arbitrarily small numbers.
The different measures lead to different settings of P , Q, and T . For example, for relative �2 we need to
compute the harmonic mean, but that can be achieved with P = Q = T = O(1).

84.3.3 �∞ and Variants

The histogram algorithms can be significantly simplified for �∞ variants (workload, relative error, etc.).
Note that
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Observation 84.3

For most reasonable error metrics based on �∞ (relative �∞), the error of a bucket depends on the (suitably
weighted) maximum and minimum values in the bucket.

Thus, as long as the maximum and minimum values are fixed the error of a bucket does not change.
If we were told that the error of an interval using k buckets is τ , we can verify the claim by “eating up”
maximal subintervals from the left of error τ and see if we can “cover” the entire interval. Assuming that we
can compute the error of any interval in O(Q) time, the running time of such an algorithm is O(k Q log n)
using binary search. We can easily maintain a tree using O(n) preprocessing and O(n) space that gives
gives Q = log n. Let the error of a single bucket defined by the interval [a , b] be EB ,∞(a , b).

The above gives a simple algorithm where we guess the first bucket. If the first bucket is defined by the
interval [0, i], then we can check if B − 1 buckets cover the interval [i + 1, n] using τ = EB ,∞(0, i). If
yes, then we need to try lower values of i (or i may be the correct answer). Otherwise, we know that the
error of the optimum solution is larger than τ . Thus, either (a) we need to increase i , which increases τ or
(b) we need to increase τ but [1, i] is the first bucket. So we find an i such that if the error of the optimum
solution is τ , then it satisfies EB ,∞(0, i) < τ ≤ EB ,∞(0, i + 1). This is found in time O(B log3 n) using
binary search. Now if the optimum error of representing the interval [i + 1, n] using B − 1 buckets is
τ∗ (which we will find recursively), then the final error is min{EB ,∞(0, i + 1), τ∗}. More explicitly, if
τ∗ < EB ,∞(0, i +1) then the optimum solution is the solution of [i +1, n] (found recursively) along with
the first bucket defined by the interval [0, i]. Otherwise, the solution is the result of taking out intervals
whose error is less or equal to EB ,∞(0, i +1). Note that this sets up a recursion f (B) = B log3 n+ f (B −1)
and thus we conclude:

Theorem 84.5

For variants of �∞ error (weighted, workload, relative error), we can compute the optimal histogram in time
O(n + B2 log3 n) and O(n) space.

However, in a streaming scenario where we cannot afford linear space, we can use an algorithm similar to
(i i i) in Theorem 84.4. We can begin by writing a worse algorithm, which is O(n2B) time but computes the
optimum solution in a fashion similar to �2

2, but uses ET,∞[i, k] = minj max{ET,∞[ j, k − 1], EB ,∞( j +
1, i)}. But then,

Observation 84.4

We can compute the minimum of max{ f ( j ), g ( j )} in O(log n) evaluations of g () if f ( j ) = ET,∞[ j, k − 1]
is nondecreasing and g ( j ) = EB ,∞( j + 1, i) is nonincreasing.

Therefore, we immediately improve the worse optimum algorithm to run in time O(nB log2 n) using
the O(n) preprocessing to answer EB ,∞() in O(log n) time. Now consider maintaining a staircase approx-
imating ET,∞[ j, k − 1] using τ = O( B log n

ε
) endpoints. Now, the block-by-block algorithm performs

n
M + τ insertions into each interval list. Each requires a binary search of log M and over B lists we evaluate
APXE∞[] at most O(B( n

M + τ ) log M) times, each requiring O(log τ ) time. There is one complication,
namely, in evaluating EB ,∞(bu , i) if bu was in some block r − 2 or before and i was in block r . The answer
depends on the maximum and minimum values in block r − 1. So as we process one block and move to
the next, we may have to update the O(Bτ ) entries in the list to take care of the above issue. This adds
O( n

M Bτ ) to the running time. The overall running time is thus

B
( n

M
+ τ

)
(log M)(log τ ) + n

M
Bτ + n

We can set M = O(Bτ ) to make the coefficient of n to be O(1) and thus

Theorem 84.6

We can compute a (1 + ε) approximation of the �∞ variants (workloads, weighted, etc.) in O(n + B2 log n
ε

log2 B log n
ε ) time and O( B2 log n

ε
) space over a data stream.
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84.4 Wavelet Synopses

We begin with a brief review of wavelets and their main properties. One of the most important reasons
for the popularity of wavelets is captured in Proposition 84.1, which states that (for compact wavelets) at
most O(log n) basis vectors are relevant to a point. Also, the fact that the basis set is orthonormal and the
existence of fast forward and inverse transforms has been a strong attraction for their wide use.

84.4.1 A Compact Primer on Compact Wavelets

Definition 84.2

The support of any vector 
 is the set SUPP(
) = {t|
(t) 
= 0}.
Definition 84.3

Let h[], g [] be two arrays defined on {0, 1, . . . , 2q − 1}, s.t., g [k] = (−1)kh[2q − 1 − k]. Assume that∑
k h[k] = √

2 and
∑

k g [k] = 0, (along with few other properties, see Refs. [7,8]). Let φ 0,s (t) = δst ∈ Rn,
i.e., the vector which is 1 at s and 0 everywhere else. Define φ j+1,s = ∑

t h[t − 2s ]φ j, t and ψ j+1,s =∑
t g [t − 2s ]φ j, t .

The set of wavelet vectors {ψ j,s }( j,s )∈Z2 define an orthonormal basis forRn. For ease of notation, we will
use both ψi and ψ j,s depending on the context and assume that there is a consistent map between them.
The function ψ j,s is said to be centered at 2 j s and of scale j and is defined on at most (2q −1)2 j points. It
can be shown that φ j,s = ∑

t h[s − 2t]φ j+1, t + ∑
t g [s − 2t]ψ j+1, t , [7]. Further φ j,s (x), ψ j,s (x) when

scaled to the (continuous) domain [0, 2q − 1] converge to 2− j/2φ( x−2 j s
2 j ),2− j/2ψ( x−2 j s

2 j ); i.e., the vectors
look similar, but are shifted and scaled.

Example 84.6 (Haar Wavelets)

In this case, q = 1 and h[] = { 1√
2

, 1√
2
}. Thus g [] = { 1√

2
, − 1√

2
}. Given X , the algorithm to compute

the transform finds the “difference” coefficients d1[i] = X(2i)−X(2i+1)√
2

. The “averages” X(2i)+X(2i+1)√
2

,

correspond to a1[i], and the entire process is repeated on these a1[i] but with n := n/2 since we have halved
the number of values. In the inverse transform we get, for example, a0[0] = (a1[0] + d1[0])/

√
2 = X(0)

as expected. The coefficients naturally defines a coefficient tree where the root is alog n+1[0] (the overall
average scaled by

√
n) with a single child dlog n[0] (the scaled differences of the averages of the left and

right halves). Underneath dlog n[0] lies a complete binary tree as shown in Figure 84.2(c). Note that in this
case the support of the basis vectors defines a hierarchical structure and each wavelet coefficient “affects”
the values in its subtree only.

Note that ψ is discontinuous, i.e., if a wavelet basis vector with a large support is mapped to the
continuous interval [0, 1], the transition from positive to negative values remain and the gap is 2̃ j/2 at
scale j . Thus, the synopses using Haar wavelets are better suited to handle “jumps” or discontinuities in
data. This simple wavelet proposed in 1910 is still useful since it is excellent in concentrating the energy of
the transformed signal (sum of squares of coefficients). A natural question arises if “smooth” wavelets exist,
i.e., when a wavelet vector with a large support is mapped to the continuous interval [0, 1], the values get
significantly closer. The seminal work of Daubechies gives us several examples which we discuss next ([8]).
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FIGURE 84.2 The φ , ψ , the set of Haar basis vectors at scale 3, and the tree defined by the coefficients.
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Example 84.7 (Daubechies Wavelets D2)

In this case, q = 2 and h[] = { 1+√
3

4
√

2
, 3+√

3
4
√

2
, 3−√

3
4
√

2
, 1−√

3
4
√

2
}. Thus g [] = {h[3], −h[2], h[1], −h[0]}. The φ

and the ψ functions are shown below (normalized to the domain [0,1]) and they converge quite rapidly.
The coefficients now form a graph rather than a tree, which is given in Figure 84.2. The Dq wavelets have
compact support (q is a fixed integer) but are unfortunately asymmetric. It turns out that Haar wavelets
are the unique real symmetric compactly supported wavelets [8]. Moving to the complex domain one can
define symmetric bi-orthogonal wavelets.

Proposition 84.1

For a compactly supported wavelet, there are O(q log n) basis vectors with a nonzero value at any point t.
Further, given t, ψ j,s (t) and φ j,s (t) can be computed in O(q log n) time.

The Cascade algorithm for 〈X, ψ j, s〉, 〈X, φ j, s〉. To compute the forward transform: Given a function X ,
set a0[i] = X(i), repeatedly compute a j+1[t] = ∑

s h[s − 2t]a j [s ] and d j+1[t] = ∑
s g [s − 2t]a j [s ].

It is easy to see that a j [t] = 〈X, φ j, t〉 and d j [t] = 〈X, ψ j, t〉. To compute the inverse transform, we
compute a j [t] = ∑

s h[t − 2s ]a j+1[s ] + ∑
s g [t − 2s ]d j+1[s ].

Definition 84.4

Let W(X) denote the wavelet transform, i.e., W(X)(t) = 〈X, ψt〉 and let W−1
(Z) = ∑

i Z(i)ψi denote the
inverse transform.

Recall that the synopsis problem is: Given a wavelet basis {ψi } and X = X(0), . . . , X(n − 1) in a
data stream, find a set of values {Z(i)} with at most B nonzero values minimizing a suitable function of
X − ∑

i Z(i)ψi .

84.4.2 Wavelet Synopses and �2 Theory

Suppose that we were interested in minimizing ‖X − W−1
(Z)‖2. We can use the result of Parseval which

states that “lengths are preserved under rotations.” Since an orthonormal transformation defines a rotation
and the wavelet basis vectors define an orthonormal basis, ‖X − W−1

(Z)‖2 = ‖W(X − W−1
(Z))‖2.

Since the transformation is linear we get ‖X − W−1
(Z)‖2 = ‖W(X) − W(W−1

(Z)))‖2, which is
equivalent to minimizing

∑
i (Z(i) − W(X)(i))2. The constraint is that at most B of the Z(i)s can be

nonzero. The solution is clearly choosing the largest |W(X)(i)| = |〈ψi , X〉| and set Z(i) = W(X)(i) =
〈ψi , X〉. Observe that the fact that we retain some of the coefficients was a consequence of the proof and not a
constraint.

The synopsis construction problem for �2 error reduces to choosing the largest (ignoring sign) wavelet
coefficients of the data. It is not too difficult to see that this can be computed over a data stream.
The simplest way of viewing the computation is a “level-by-level” construction of running several al-
gorithms in parallel, each corresponding to a level. The basic insight of the paradigm is reduce-merge
[9] and for streaming algorithms this idea was first used in the context of clustering [10]. We need to
implement the cascade algorithm in a similar format.

We describe an algorithm that reads a stream of values X(0), . . . , X(n − 1) and outputs the set of
coefficients 〈ψi , X〉 (in some order). This algorithm uses O(q log n) space. We can feed the output of this
algorithm that maintains the largest (ignoring signs) B values seen in the stream. This can be achieved
using O(B) space in O(n) time.

In the lowest level, the algorithm sees the data and computes d1[q] for the first 2q values. For the Haar
basis, this is X(0)−X(1)√

2
. The value a1[] (for Haar, a1[0] = X(0)+X(1)√

2
) is passed to the algorithm in the next

(higher) level.
The algorithm in the lowest level now proceeds to read two new values and output d1[q + 1]. For a

non-Haar basis, there is an issue of wrap-around and the first 2q −2 data values are useful for a coefficient
that depends on data that arrive at the end; thus they need to be stored. For Haar, the values X(0), X(1) can
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be discarded. It is clear that in each level j we need to store O(q) information and output the coefficients
of scale j . The total space of the algorithm across all levels is O(q log n).

Theorem 84.7

We can compute the optimal wavelet synopsis under �2 error using O(n) space and O(B + q log n) space, for
any compact wavelet basis.

84.4.3 Wavelet Synopses under Non-�2 Error

Suppose that we were interested in minimizing ‖X − W−1
(Z)‖∞. We cannot use the result of Parseval

since the �∞ norm is not preserved under rotations. In fact, we can easily see that storing any subset wavelet
coefficient is suboptimal. Consider B = 1 the Haar basis and X = {2, 2, 2, 0}, thenW(X) = {3, 1, 0,

√
2}.

The best solution restricted to storing the coefficients is Z = {3, 0, 0, 0} and W−1
(Z) = { 3

2 , 3
2 , 3

2 , 3
2 } with

‖X −W−1
(Z)‖∞ = 1.5. It is easy to see that Z = {2, 0, 0, 0} gives ‖X −W−1

(Z)‖∞ = 1. It is not difficult
to construct a similar example for �1 error as well. We will prove a polynomial time approximation scheme
for the Haar basis, which extends to a quasi-polynomial time scheme for a general compact basis. We begin
by computing a lower bound for any �p error.

Let the minimum possible value of ‖X − W−1
(Z)‖p = τopt be achieved by the solution Z∗. For all j ,

we have −τopt ≤ X( j ) − W−1
(Z∗)( j ) ≤ τopt . Multiplying the equation by ψi ( j ) and summing over j ,

we get −‖ψi ‖1|τopt | ≤ 〈X, ψi 〉 − 〈ψi , W−1
(Z∗)〉 ≤ ‖ψi ‖1|τopt |. But 〈ψi , W−1

(Z∗)〉 = z∗
i . Thus, we can

write a system of equations

min τ s.t.

−τ‖ψ1‖1 ≤ 〈X, ψi 〉 − z∗
1 ≤ τ‖ψ1‖1 for all i (84.1)

At most B of the z∗
i are nonzero

The constraints are satisfied by τopt . Let the optimum solution of the above system be τ∗. Thus τ∗ ≤ τopt .
The system of equations is nonlinear.1 However, the above system (84.1) can be solved optimally, and the
minimum solution is the (B + 1)th largest (ignoring signs) value of 〈X, ψi 〉/‖ψi ‖1. We can also derive
the following:

−‖ψi ‖1|τopt | ≤ 〈X, φi 〉 − 〈φi , W−1
(Z∗)〉 ≤ ‖ψi ‖1|τopt |

The above equation shows the effect of the coefficients whose support contains the entire support of ψi .
In effect, given the optimum error, we have a handle on how the rest of the input must behave in relation
to the {X( j )| j ∈ SUPP(ψi )}. We are interested in keeping track of all possible scenarios of 〈φi , W−1

(Z∗)〉.

84.4.3.1 Streaming PTAS for Haar Systems

We solve the problem in a scaled bases and translate the solution to the original basis. We begin with the
following:

Proposition 84.2

Define ψP
j,s = 2− j/2ψ j,s and ψD

j,s = 2 j/2ψ j,s . Likewise, define φP
i , φD

i . The Cascade algorithm used with
1√
2

h[] computes 〈X, ψP
i 〉 and 〈X, φP

i 〉. The problem of finding a synopsis Z with basis {ψi } is equivalent to

finding a synopsis Y using the basis {ψD
i } for the inverse transform, i.e., we are seeking to minimize a function

of X − ∑
i Y (i)ψD

i . The correspondence is Y (i) = 2− j/2 Z(i) where i = ( j, s ).

1The last constraint can be expressed as a linear constraint, but it is not clear how to “round” the fractional solution
we would obtain.
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(a) (b) (c)

FIGURE 84.3 The dynamic programming along the stream.

Lemma 84.1

Let Y ∗ be the optimal solution using the basis set {ψD
i } for the reconstruction, i.e., X̂ = ∑

i Y ∗(i)ψD
i

and ‖X − X̂‖p = τopt . Let Y ρ be the vector where each Y ∗(i) is rounded to the nearest multiple of ρ. If
Xρ = ∑

i Y ρ(i)ψD
i then ‖X − Xρ‖p ≤ τopt + O(qn1/pρ log n).

The proof follows from standard accounting of the error at each point and the triangle inequality. If we
can find Y ρ for ρ = ετopt

qn1/p log n
we have a (1 + ε)-approximation. Note that q = 1.

Haar and the art of streaming We can find Y ∗ using a DP. At each node i , we will compute a table
ERRi [v, b] that corresponds to the contribution of the subtree rooted at i to the error of the minimum
solution assuming that the combined effect (signed sum) of all coefficients corresponding to ancestors of
i is v. In other words, this is the interaction between the subtree rooted at i and the rest of the tree. Note
that this value will lie in the range 〈X, φP

i 〉 ± τ∗. The size of the table is O( τopt B2

ρ ), the extra B term arises
from keeping track of the solution.

We can compute the DP table at i given the tables for its children. As we read data from left to right,
we can keep generating the tables in postorder fashion. Figure 84.3(a) shows the state when we have
read four values and have created two tables for two sibling nodes. We can discard the tables for the
children once we have computed the table at their parent. This is shown in Figure 84.3(b), along with
the evolution of the state corresponding to more data being read. When we reach the configuration
in Figure 84.3(c), we would recursively collapse the tables and propagate them upward and finish the
computation.

It is immediate that the space taken would be log n times the space of a table. For each entry, we have to
decide on the value of Z(i) and the allocation of b coefficients to the subtrees rooted at its children. This
corresponds to O(

τopt B
ρ

) choices, but for nodes with very few descendants this can be reduced. However,
there is small complication: we cannot solve the system (84.1) since the order of the coefficients cannot be
determined until we have seen all the data. To avoid this, we will guess the value of τopt and verify that no
more than B coefficients exceed the required limit. This would involve a further O(log n) term (assuming
polynomially bounded input). Thus, we can conclude with:

Theorem 84.8

We can compute the optimal wavelet synopsis under �p error using O(n1+ 2
p B2 log3 n

ε2 ) time and O( B2n
1
p log3 n
ε )

space, for Haar wavelets.

The running time can be improved slightly since at the lower part of the tree, the number of descendants
is less than B . The above results extend to multiple dimensions. In the case of non-Haar compact systems,
e.g., Daubechies-4, we can achieve a quasi-polynomial time approximation scheme.

84.4.4 Restricted Optimizations

A question arises in this context—“If we are only interested in a synopsis such that Z(i) = 0 or Z(i) =
〈ψi , X〉, what is the best possible reconstruction?” One motivation of the question can be that we may be
interested in multiple uses of the synopsis and retaining the wavelet coefficients presses some advantage
in some other direction. The above problem can be solved optimally in O(n2 log B) time and O(n) space
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for a variety of error measures (any weighted �p , which subsumes all “workload” versions, for �∞ the time
is O(n2)) for the Haar system.

Problem 84.5

What is the relationship between the minimum error of the restricted and the original problem?

We show that a modified greedy heuristic that retains B coefficients of the data gives a O(n
1
p log n)

approximation algorithm in O(n) time and O(B + log n) space for any compact wavelet. Recall the

equation system (84.1). Consider the set of values { |〈X,ψi j
〉|

‖ψi j
‖1

} in the decreasing order. Set Z(i j ) = 〈X, ψi j 〉
for 1 ≤ j ≤ B and Z(i) = 0 otherwise. The resulting Z is an optimal solution of the system (84.1), but
not of the original synopsis construction problem. To analyze the error we would require the next lemma,
which follows from the properties of compact wavelets.

Lemma 84.2

For all basis vectors ψi , there exists a constant C (depends on q) such that ‖ψi ‖∞‖ψi ‖1 ≤ C.

The above proposition allows us to conclude ‖X − W−1
(Z)‖p = O(τn

1
p log n) where τ ≤ E . Thus,

Theorem 84.9

The algorithm of retaining the B coefficients with largest |〈X,ψi 〉|
‖ψi ‖1

is an O(n1/p log n) approximation for the
synopsis construction problem under the �p norm. The algorithm can be implemented over a stream to run in
O(n) time and O(B + log n) space. This is a simultaneous approximation of all �p norms.

84.5 From (Haar) Wavelets Form Histograms

The first idea that comes to one’s mind is that can we simply represent X using a number (to be chosen later)
of large projections onto the wavelet basis, i.e., using a few large wavelet coefficients? The idea does work,
but requires many wavelet coefficients. Stepping back, we can reason that what we want to achieve from the
process is the discovery of the places where X “jumps” significantly and use that information. This points
us to the Haar basis, since the Haar basis is best suitable for functions with discontinuities (jumps). The
idea would be to find a few large coefficients and store information relevant to the boundaries defined by the
function. Note that storing information about the boundaries is tantamount to storing more coefficients,
except that we use less space. As mentioned, we will focus on the Haar system. Define PROJ(X, V), to be
the projection of X onto the basis vectors in set V .

Definition 84.5

Given a B-bucket histogram H, define POSS(H), the set of wavelet vectors ψi such that the support SUPP(ψi )
is not completely contained inside one of the buckets. Observe that if ψi 
∈ POSS(H) then ψi · H = 0.

Note that |POSS(H)| ≤ 2B log n and POSS(H) is hierarchically closed (upward) with respect to the
coefficient tree, since the coefficients form a tree defined by the set SUPP().

Lemma 84.3

Given a B-bucket histogram H, let V0 be the set of 2B(1 + ε−2) log n basis vectors that have the largest
(unsigned) projection with X. LetV be the hierarchical upward closure of V0. Then ‖PROJ(X, POSS(H)\V)‖2

2
≤ ε2‖X − H‖2

2.

The above follows from the fact that |POSS(H) \ V| ≤ 2B log n. Consider V0 and W(X − H); since
H can change at most 2B log n coefficients, W(X − H) has at least 2Bε−2 log n coefficients of V0, each
of which is larger than any of the 2B log n coefficient in PROJ(X, POSS(H) \ V) (since the\operation took
out the potentially large coefficients). Therefore, ‖W(X − H)‖2

2 ≤ ε−2‖PROJ(X, POSS(H)\V)‖2
2. Now by

Parseval, ‖W(Y ′)‖2 = ‖Y ′‖2 for any Y ′, and thus the lemma follows.
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(a) (b) (c)

FIGURE 84.4 The use of the flattened function.

Definition 84.6

Given a B-bucket histogram H, and a set of hierarchically closed set of basis vectorsV , define FLAT(X, V , H) =
X − PROJ(X, POSS(H)\V), i.e., all the places where H differs from the projection defined on V are flattened.

It is immediate if Y = X − FLAT(X, V , H), then from Lemma 84.3 ‖Y‖2 ≤ ε‖X − H‖2. Now, from
the triangle inequality we have ‖X − H‖2 + ‖Y‖2 ≥ ‖FLAT(X, V , H) − H‖2 ≥ ‖X − H‖2 − ‖Y‖2.
Summarizing,

Lemma 84.4

If H f minimizes ‖FLAT(X, V , H) − H‖2 then ‖X − H f ‖2 is a 1+ε
1−ε approximation of the optimum error

‖X − H∗‖2.

We first show that if we “flatten” the signal at places where the coefficients are not large, then the error
of a histogram in estimating the original signal X remains approximately the same if we use the same
histogram to estimate the “flattened” signal.

Finding minH‖FLAT(X, V , H)−H‖ We would first find the large Haar wavelet coefficients corresponding
toV0 in a streaming fashion. For each of the four endpoints (including the middle two values corresponding
to the jump) of the wavelets, we store SUM, SQSUM. Then instead of using the function X in the optimiza-
tion, we would use the function FLAT(X, V , H). The illustration is in Figure 84.4, part (a) shows the
approximation by the large wavelet functions. Part (b) shows what exactly we are computing, given a set
of boundaries for H . Note that we are not approximating by wavelets, we are merely using the flat part
from the wavelets corresponding to where the boundaries of H lie.

By definition, FLAT(X, V , H) = X −PROJ(X, POSS(H)\V), i.e., when we decide on a particular bound-
ary u of H , FLAT(X, V , H) looks flat between the two boundary points v1, v2 defined by V between which
the boundary u falls. Note that this means that for different H, H ′ the FLAT(X, V , H), FLAT(X, V , H ′) look
different (c.f. Figure 84.4 [b] and [c]). Since FLAT(X, V , H) looks flat, let that flat height between v1, v2 be
h, we know this h since we know PROJ(X, V). Now, we also know that SUM′[u] = SUM[v1] + h(u − v1),
where SUM′ refers to FLAT(X, V , H). Likewise, SQSUM′[u] = SQSUM[v1] + h2(u − v1). At this point,
we have all the pieces of the algorithm, we run the offline algorithm mentioned in Section 84.3. As
the algorithm is described, our space requirement appears to be O(n), but we can avoid that and use
O(Bε−2 log n) space corresponding to the size of PROJ(X, V). We omit the details in the interest of
space. The running time is O(n + B3(log n + 1

ε2 ) log2 n), the extra log n appears from the fact that
given u, we need to find v1, v2, h which takes O(log n) time. This immediately allows us to conclude
that:

Theorem 84.10

We can compute a 1 + ε approximation for the optimal B-bucket histogram under �2
2 error in a single pass in

time O(n + B3(log n + 1
ε2 ) log2 n) and space O(Bε−2 log n).

Notes
Equiwidth histograms were introduced by Kooi [11]. Muralikrishna and DeWitt [12] considered equidepth/
equiheight histograms, which are essentially quantiles. The piecewise constant definition arises from the
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work of Ioannidis and Christodoulakis [13] and led to the work of Ioannidis [14]. Ioannidis and Poosala
[15] proposed several different measures and the �2

2/V-Optimal measure was introduced by Poosala et al.
[16]. For a history of histograms, see Ref. [17].

The O(n2B) time O(nB) space dynamic programming algorithm was given by Jagadish et al. [18]. They
also showed that a (B + �)-bucket histogram, which has the same error as the optimal B-bucket histogram,
can be constructed in O(n2B/�) time. The running time remained quadratic even if the approximation
algorithm was allowed a constant factor larger resources. Guha et al. [19] gave the first FPTAS running
in O( nB2

ε
log n) time while preserving the number of buckets. Guha and Koudas [20] considered the

question of constructing histograms over sliding window data streams and showed that a data structure
can be maintained in O(1) time, such that a (1 + ε) approximation of the optimal histogram of the last n
values can be constructed on demand in O( B3

ε2 log3 n) time. The net result is an O(n + poly(B , ε, log n)
algorithm for histogram construction. Gilbert et al. [21] gave a polytime approximation scheme for the
stronger dynamic/update model. The result holds for all �p norms with 0 < p ≤ 2. Guha et al. [22] gave the
first Õ(B) space histogram algorithm for the weaker time series streaming model. This is interesting since
B is not always a “small” constant and space is the premium in a streaming model; however, this algorithm
only works for the �2 error. Guha et al. [23] considered the relative error and introduced the block-by-
block algorithm and the amortized analysis. The journal version of Ref. [19], in Ref. [24], subsumed
and improved several of these algorithms and provided the experimental validation of the approximation
algorithms. Guha [25] improved Ref. [18] and gave an O(n2B) time O(n) space algorithm as well as
improved the space complexity of Refs. [22,24]. The result concerning the �∞ histograms in Section 84.3.3
are from Ref. [26]. The discussion on piecewise polynomials and other extensions in Section 84.3.2 is from
Refs. [19,24]. Donjerkovic et al. [27] considered the χ2 measure.

The above discussion applied to point queries. Range queries form an important class of queries and
pose significantly more complicated optimizations. Several early papers consider only the restricted version
where we store the mean of the values in a bucket, which is suboptimal. Koudas et al. [28] considered
hierarchical queries and gave an algorithm that runs in time O(|T |n6 B2) for a hierarchy of size |T |. Gilbert
et al. [29] gave a pseudo-polynomial time algorithm for the case when all

(n
2

)
ranges are present. Guha

et al. [30] gave a sparse set system–based algorithm that improved the running time of the hierarchical
case to O(n + |T |B2nγ ) but used 12B/γ buckets, while preserving the optimum guarantee with respect
to B buckets. However, all these algorithms considered the restricted model where we are restricted
to store the mean of a set of values as a representative. Muthukrishnan and Strauss [31] considered
the unrestricted version when all

(n
2

)
ranges are present and gave an O(n2B) algorithm that uses 2B

buckets and guarantees less or equal error compared to the best B-bucket histogram. They also gave an
O(B3 N4/ε2) time approximation scheme for this case. The space requirement of most of these algorithms
were improved in [25].

Wavelets have a rich history dating back to the work of Haar (1910). However, they became significantly
more popular in early 1990s primarily due to the application in image analysis [32,7], and the seminal work
of Daubechies [8]. In the context of database systems, wavelets were introduced by Matias et al. [33]. Their
paper proposed greedy algorithms for optimum wavelet selection for several error measures including
�1. Chakraborty et al. [34] consider using wavelets for modeling time series data. Gilbert et al. [35] gave
the streaming algorithm for the �2 case for Haar wavelets. Gilbert et al. [21] extend the �2 result to the
stronger model of update streams. Garofalakis and Gibbons [36] considered constructing synopses based
on randomized rounding techniques. Garofalakis and Kumar [37] considered the restricted version (of
retaining the coefficients) for �∞ (and similar measures) and gave an O(n2B) time and space algorithm.
This was improved to O(n2) time and O(n) space in Ref. [25], for a broad range of error measures,
including workloads. All the above are in the context of Haar wavelets.

Matias and Urieli [38] considered the problem of designing a basis for weighted �2 measures such that
greedy coefficient selection was optimum for that basis. Guha and Harb [39] gave the first-approximation
schemes for the original (unrestricted) optimization problem, which is discussed in Section 84.4.3. For
�p error measures with p > 2 (e.g., �∞), the algorithm can be implemented as a small space streaming
algorithm for Haar wavelets. They also proved the upper bound on the gap between the optimum of the

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C084 March 20, 2007 20:28

Histograms, Wavelets, Streams, and Approximation 84-17

restricted version and the unrestricted optimum, which is discussed in Section 84.4.4. In case of range
queries using wavelets, Matias and Urieli [40] show that a scaled greedy strategy is provably optimal when
all

(n
2

)
ranges are equally likely. Gilbert et al. [29] also discusses a similar scenario. Guha et al. [41] consider

the hierarchical case in the restricted model.
The algorithm in Section 84.5 is based primarily on the ideas in Ref. [22]. The improved space bounds

follows from Ref. [25].
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85.1 Introduction

A virtual community can be defined as a group of people sharing a common interest or goal who interact
over a virtual medium, most commonly the Internet. Virtual communities are characterized by an absence
of face-to-face interaction between participants which makes the task of measuring the trustworthiness of
other participants harder than in nonvirtual communities. This is due to the anonymity that the Internet
provides, coupled with the loss of audiovisual cues that help in the establishment of trust. As a result,
digital reputation management systems are an invaluable tool for measuring trust in virtual communities.

Trust is an important component of all human interactions whether they take place online or not. There
is an implicit assumption of trust in each interaction that we participate in that involves some investment
on our part. The Merriam-Webster dictionary defines trust as assured reliance on the character, ability,
strength, or truth of someone or something. Even more pertinent to virtual communities is an alternative
definition which states that trust is a dependence on something future or contingent; reliance on future
payment for property (as merchandise) delivered. These definitions illustrate that the basis of trust is an
expectation of future payment or reward and that the transaction partner will behave in an honest fashion
and fulfill their obligations.

The processes behind the creation of trust can be classified into four broad categories:

1. Personality-based trust. A person’s innate disposition to trust others.
2. Cognitive trust. Through recognition of the characteristics of the transaction partner.
3. Institution-based trust. A buyer’s perception that effective (third-party) institutional mechanisms

are in place to facilitate transaction success [1].
4. Transaction-based trust. That relies on a participant’s past behavior to assess their trustworthiness.

Personality-based trust does not have a significant use in virtual communities where decisions on trust
are made algorithmically. Most cognitive factors that form trust in real-life interactions such as the manner

85-1
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of a person, their body language, and the intonations of their speech are also absent in virtual communities.
However, there are alternative forms of cognition that can be used instead. These are almost invariably based
on the virtual identity of the community member. In most purely online contexts—as opposed to contexts
where the online identity is linked to a non-online identity such as with online banking—there are virtually
no costs to creating a new virtual identity. Obtaining an e-mail address on any of the free web-based e-mail
services such as Yahoo, Hotmail, Gmail is trivial and with each one comes a new virtual identity. While these
services are increasingly adopting strategies such as requiring text perception to counter automated regis-
tration programs, it is not difficult to create, say, a dozen accounts in 10 min. And as the e-Bay scam case [2]
showed, that is all a malicious user needs to surmount simple feedback systems and commit online fraud.

Enforcing trust in virtual communities is hard not only because of the difficulties in recognizing the
trustworthiness of participants but also because of the lack of adequate monitoring and appropriate
sanctions for dishonest behavior. This lack of institution-based trust is because there are not enough
trusted third parties with the power to punish to ensure honesty of all the players [3]. This problem is
exacerbated in decentralized virtual communities and electronic marketplaces. An organization like e-Bay
with a centralized infrastructure can act as the trusted third party to at least store feedback information
in a reliable fashion even though the information itself may not be reliable. The problem becomes much
harder with decentralized systems such as peer-to-peer (P2P) networks where the absence of a centralized
authority is a defining feature of the system.

Hence, it appears that the best strategy for creating trust in virtual communities is through transaction-
based trust where feedback on participants’ past behavior is collected and aggregated to decide their
trustworthiness. A transaction-based trust strategy is far from perfect and suffers from many of the same
shortcomings as the other strategies. For instance, the lack of verifiable identities [4] can make a transaction-
based system vulnerable to manipulation. However, as many recent proposals have shown [5–10] such
strategies are not contingent upon a trusted third party and the community as a whole provides the
institutional basis for trust. Hence, if the problem of identity can be solved, transaction-based systems are
capable of providing the solution for virtual communities.

Transaction-based trust creation strategies are also commonly known as reputation-based trust man-
agement systems or just reputation systems. Some authors use the term reputation systems narrowly to
include only those systems that monitor past transactions of participants to compute their trustworthi-
ness. This information is then shared with other participants who decide whether or not to interact with
the target participant on its basis. We use the term in a more general sense to include recommendations
systems that recommend items as well as systems that perform distributed authentication by inferring
trustworthiness. All these systems have one feature in common: the collection and aggregation of feedback
in order to rate objects or people.

Reputation systems research lies at the intersection of several disciplines including evolutionary biology
[11–13], economics (game theory and mechanism design) [14–17], sociology (social network theory [18–
20]), and computer science (e-commerce, P2P systems, cryptography, etc.). In this chapter, we survey the
approaches taken by researchers from these disciplines to provide the context for digital reputation schemes.
We begin by listing the various applications of digital reputation systems. This is followed by a discussion of
what motivates the participants of a virtual community to cooperate with each other. We then look at what
are the requirements of a good reputation system. This is followed by a more detailed analysis of the com-
ponents of reputation systems. We classify different types of feedback and their role in constructing reputa-
tions. We discuss second-order reputation and the motivations for providing feedback. Reputation modify-
ing factors such as transaction context are looked at next followed by a discussion on how reputations can be
interpreted. We conclude by looking at several specific digital reputation systems that have been proposed.

85.2 Applications of Reputation Management

The main uses of digital reputation management systems in virtual communities are:

1. Incentivizing cooperation
2. Identifying and excluding malicious entities
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3. Authenticating users in a distributed manner
4. Providing recommendations

Resnick et al. [21] define three requirements for a reputation system: (1) to help people decide whom
to trust, (2) to encourage trustworthy behavior and appropriate effort, and (3) to deter participation
by those who are unskilled or dishonest. To this we can add the requirements that a reputation system
(4) must preserve anonymity associating a peer’s reputation with an opaque identifier, and (5) have minimal
overhead in terms of computation, storage, and infrastructure.

The participation of an individual in a virtual community strongly depends on whether and how much
benefit they expect to derive from their participation. If an individual feels that they will not gain anything
from joining the community, they are unlikely to participate. Hence, a good distributed system must be
designed such that it incentivizes cooperation by making it profitable for users to participate and withhold
services from users that do not contribute their resources to the system.

An equally serious challenge to distributed systems and virtual communities comes from users who act
in a malicious fashion with the intention of disrupting the system. Examples of such malicious behavior
include users who pollute a file-sharing system with mislabeled or corrupted content, nodes that disrupt
a P2P routing system to take control of the network, nodes of a Mobile Ad hoc NETwork (MANET)
that misroute packets from other nodes [10] and even spammers [22] who are maliciously attacking the
e-mail community. Therefore, a central objective of all digital reputation schemes is to identify such users
and punish them or exclude them from the community. This exclusion is usually achieved by allowing
members to distinguish between trustworthy and untrustworthy members. An untrustworthy member
will not be chosen for future interactions. In contrast with incentivizing cooperation that motivates truth
from participants, this is based on punishing falsehoods.

Another use for digital reputation systems is for distributed authentication. Distributed authentication
does not rely on strict hierarchies of trust such as those using certification authorities and a centralized
public key infrastructure that underpin conventional authentication. Such networks capture trust relation-
ships between entities. Trust is then propagated in the network so that the trust relationship between any
two entities in the network can be inferred. PGP [23], GnuPGP, and OpenPGP-compatible [24] systems
all use webs of trust for authentication. Closely related are virtual social networks including the Friend of
a Friend (FOAF) system, LinkedIn, Tribe.net, Orkut, and Friendster that use some or the other form of
trust propagation.

Recommendation systems are another application that relies on principles similar to digital reputation
systems. Instead of computing the trustworthiness of a participant, recommendation systems compute
the recommendation score of objects based on collective feedback from other users. These systems are in
widespread commercial use and examples include the Amazon recommendation system and the IMDB
movie recommendations. In recommendation systems, objects instead of members of a virtual community
are rated. The members may then be rated on the quality of feedback they provide just like in reputation
systems.

When the number of objects to be rated is usually large compared to the user-base, the collected data
can be very sparse. Collaborative-filtering-based recommendation systems use the collective feedback to
compute the similarity in the ratings made by any two users and using this similarity to weigh the rating
of one user when predicting the corresponding choice for the other user. There are many ways in which
this similarity can be computed. One method uses the Pearson’s correlation coefficient [25]:

wu, i =
∑

j
(vu, j − v̄u)(vi, j − v̄i )

√∑

j
(vu, j − v̄u)2

∑

j
(vi, j − v̄i )2

(85.1)

where wu, i computes the similarity between users u and i on the basis of their votes for all objects j that
both have voted for and v̄u and v̄i denote, respectively, the average ratings given by users u and i .
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Another method is to use vector similarity [26]:

wu, i =
∑

j

vu, j
√∑

k∈Iu
v2

u,k

vi, j
√∑

k∈Ii
v2

i,k

(85.2)

where vu, j is the rating given by user u for object j as before and Iu the set of objects for which user u has a
rating. Other model-based methods exist that use Bayesian network models or clustering models to group
users together and use group membership to predict what a user may vote for a given object. Clustering
models have also been shown to be useful in reputation systems for eliminating spurious ratings [27] made
by malicious users in an electronic marketplace.

85.3 Motivating Cooperation

Motivating cooperation among participants has been a subject of research since long before the first virtual
communities were formed. As long as there are shared resources, there will be users who are tempted to
use more than their fair share for their own benefit even if it is at the expense of the community as a
whole. This conflict between individual interests and the common good is exemplified in the “tragedy
of the commons,” a term coined by Hardin [28], who used the overgrazing of the English “commons”
(property that was shared by the peasants of a village) as an example. In reputation systems research such
selfish users are termed as free-riders or free-loaders.

An example of free-riding can be found in MANETs. MANETs function on the premise that nodes will
forward packets for each other even though forwarding a packet consumes power. However, if there are
free-riders that inject their own packets in the network but do not forward any packets from other nodes,
they can exploit the cooperative nature of other users.

Another example of free-riding in virtual communities is found in early file-sharing systems, where an
individual is allowed to download files without being required to contribute any files for uploading. In
their measurement study of Napster and Gnutella, Saroiu et al. [29] reported that this resulted in significant
fractions of the population indulging in client-like behavior. They reported that a vast majority of modem
users were free-riders who did not share any files and only downloaded files offered by others. However,
equally interesting is the fact that many users with high bandwidth connections indulged in server-like
behavior and offered their own files for sharing but did not download any files at all. This unselfish behavior
is the flip side of free-riding where users in a virtual community indulge in altruism.

Altruism has been studied by evolutionary biologists [11–13] in humans and other primates. These
authors have sought to explain altruistic behavior by arguing that it signals “evolutionary fitness.” By
behaving generously an individual signals that it has “plenty to spare” and is thus a good mating choice.
In the context of virtual communities, altruistic behavior is motivated in part by a desire to signal that
interacting with the individual is likely to be beneficial in other contexts as well.

Another strand of research comes from economists who have studied cooperation by setting up
non-zero sum games and determining the equilibria that result both through analytic game theory and
through simulation. In game theory, it is usually assumed that players are “rational” or “selfish,” that is, they
are only interested in maximizing the benefit they obtain with no regard to the overall welfare of the com-
munity. This is distinct from an “irrational” player whose utility function depends on something more
than just their own benefit and whose behavior cannot be predicted. An example of irrational players
are “malicious” players who actively wish to harm other players or the game as a whole even if it means
reducing their own personal benefit.

The “game” that is typically used for modeling the problem of cooperation is the Prisoner’s
Dilemma [30,31]. The classic prisoner’s dilemma concerns two suspects who are questioned separately by
the police and given a chance to testify against the other. If only one prisoner betrays the other, the betrayer
goes free while the loyal prisoner gets a long sentence. If both betray each other they get a medium sentence
and if both stay silent they get a small sentence. Hence, if both prisoner’s are “selfish” and have no regard for
the other prisoner, we see the best strategy for a prisoner is always to betray the second prisoner, regardless
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of what the other prisoner chooses. If the second prisoner confesses, the first prisoner must confess too
otherwise the first prisoner will get a long sentence. And if the second prisoner does not confess, the first
prisoner can get off free by confessing as opposed to getting a short sentence by not confessing.

If the game is played only once, the solution is obvious. “Always Defect” is the dominant strategy.1

Axelrod [14] studied an interesting extension to the classic problem which he called the iterated prisoner’s
dilemma. Here, members of a community play against each other repeatedly and retain memory of their
past interactions. Hence, they have an opportunity to punish players for their past defections. Axelrod
set up an experiment with various strategies submitted by fellow researchers playing against each other.
He discovered that “greedy” strategies tended to do very poorly in the long run and were outperformed
by more “altruistic” strategies, as judged by pure self-interest. This was true as long as cheating was not
tolerated indefinitely. By analyzing the top-scoring strategies, Axelrod stated several conditions necessary
for a strategy to be successful. A successful strategy should be (1) Nice: it will not defect before an opponent
does. (2) Retaliating: it will always retaliate when cheated. A blind optimist strategy like “Always Cooperate”
does not do well. (3) Forgiving: in order to stop endless cycles of revenge and counterrevenge a strategy
will start cooperating if an opponent stops cheating. (4) Non-envious: a strategy will not try to outscore an
opponent. Axelrod found that the best deterministic strategy was “tit-for-tat” in which a player behaved
with its partner in the same way as the partner had behaved in the previous round.

The prisoner’s dilemma is a game with a specific reward function that encourages altruistic behavior
and discourages selfish behavior. Let T be the temptation to defect, R the reward for mutual cooperation,
P the Punishment for mutual defection, and S the Sucker’s punishment for cooperating while the other
defects. Then, the following inequality must hold:

T > R > P > S (85.3)

In the iterated game, yet another inequality must hold:

T + S < 2R (85.4)

If this is not the case, then two players will gain more in the long run if one cooperates and the other defects
alternately rather than when both cooperate. Hence, there will be no incentive for mutual cooperation.
Recall that the objective of a rational player is to maximize their individual score and not score more than
the opponent.

Other virtual communities may have different cost and reward functions. The game-theoretic approach
is to devise strategies to maximize individual utility in a fixed game. However, if a community is designed
so that its interests as a whole are not aligned with those of an individual, the system will be “gamed” by
the rational users leading to the ultimate failure of the virtual community. Mechanism design [15] deals
with the design of systems such that players’ selfish behavior results in the desired system-wide goals. This
is achieved by constructing cost and reward functions that encourage “correct” behavior.

Another example of incentivizing cooperation can be found in collaborative content distribution mech-
anisms [32–34] such as BitTorrent [35], where peers cooperate to download a file from a server by down-
loading different chunks in parallel and then exchanging them with each other to reconstruct the entire
file. In fact, BitTorrent implements a “tit-for-tat” strategy to prevent free-riding. Basic reputation schemes
have also been implemented in second generation file-sharing systems such as Kazaa that measure the
participation level of a peer based on the number of files the peer has uploaded and downloaded. Peers
with a higher participation level are given preference when downloading a file from the same source.

85.4 Design Requirements for a Reputation System

While mechanism design may help achieve overall system goals through proper incentivization, it is
ineffective against deliberately malicious (or irrational) participants. To solve this problem a number of
reputation systems have emerged. These operate by allowing a user to rate the transactions they have had

1A dominant strategy always give better payoff than another strategy regardless of what other players are doing.
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with other users. This feedback is collected and aggregated to form a reputation value which denotes the
trustworthiness of a user. This reputation information is made available to requesting users who then make
their decisions on whether or not to interact with a given user based on its reputation. Several competing
schemes for aggregating this feedback have been proposed [5–9,36,37].

The architectural and implementation details of the aggregation mechanism depend on the underlying
network on which the virtual community is based. When the community is built on top of a traditional
client-server network, a trusted third party exists which can be relied on to collect and aggregate opinions
to form a global view. e-Bay feedback, Amazon customer review and the Slashdot-distributed moderation
systems are all examples where feedback from users is stored in a centralized trust database. The aggregation
is performed in this centralized database and all users have access to the global reputations thus computed.
When the community is built on top of a P2P network, the challenges of managing feedback become
much harder. There is no centralized, trusted, reliable, always-on database and the collection, storage,
aggregation, and dispersal of trust information must be done in a distributed way. Relying on third parties
for storage and dissemination also makes the system vulnerable to tampering and falsification of trust
information in storage and transit. Moreover, the system must also provide redundancy because users may
drop out of the network at any time.

Hence, there are two separate but interrelated challenges that must be overcome by any distributed
trust management system. The first is the choice of an appropriate trust metric that accurately reflects the
trustworthiness of users and is resistant to tampering and other attacks. This was recognized by Aberer
and Despotovic as “the semantic question: which is the model that allows us to assess trust [of an agent
based on that agents behavior and the global behavior standards]” [5]. The second is designing a system
architecture that is robust against the challenges mentioned above or the “data management” problem.

At this point, it is useful to ask why a reputation system would work in a virtual community and what may
cause it to fail. The reasons for potential success are: (1) The costs of providing and distributing reputations
are negligible or zero. (2) The infrastructure for decentralized aggregation and dissemination already exists
in the form DHT-based2 routing systems [38,39]. (3) It is easy to build redundancy in the reputation system.
And the potential failings are: (1) Users may lie about the feedback they provide. (2) Users may not bother
to give feedback. (3) Untrustworthy users may mask their behavior or retaliate against negative feedback
by sending negative feedback about other users. (4) Users may try to game the system by building up their
reputation by acting honestly over several small transactions followed by cheating in a large transaction
in a process known as milking. (5) Users may form malicious groups that give false positive ratings to each
other to boost each other’s reputations. (6) Users may re-enter the system with a new identity to conceal
their past behavior. Hence, a good reputation system must try to overcome these potential failings.

85.5 Analysis of Reputation System Components

85.5.1 Direct versus Indirect Evidence

Two distinct types of evidence are usually combined by reputation systems to form the reputation of a user.
These are (1) direct evidence, which consists of a user’s first-hand experiences of another user’s behavior
and (2) indirect evidence which is the second-hand information that is received from other nodes about
their own experiences. If only first-hand information were used to decide the reputation of another peer,
the sparseness of feedback would be a problem because in large virtual communities the interaction matrix
is usually very sparse. A user would not be able to make a trust judgment on another user with whom they
have never interacted before. Hence, users must rely on indirect evidence to compute the reputation of
users that are new to them.

2In systems using distributed hash tables or DHTs, objects are associated with a key (usually produced by hashing
an object ID such as the filename) and each node in the system is responsible for all objects associated with a key that
falls in a certain range.
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In a centralized system such as e-Bay all indirect evidence is collected at the central trust database and
is made available to other users. In a decentralized system indirect evidence can be shared in a number
of ways. The interested user may ask for indirect evidence from its neighbors or other users it trusts [6].
The indirect evidence may also be propagated to all users in the network using a recursive mechanism
[7]. Designated Agents3 may also be chosen from within the community to store indirect evidence which
can then be furnished to requesting users [5,8,9]. In the latter schemes, designated agents responsible for
specific users in the system are chosen using distributed hash tables. Multiple agents are chosen to ensure
redundancy in case an agent leaves the network or tries to falsify the stored evidence.

85.5.2 Second-Order Reputation

Using second-hand information in a decentralized system leads to another problem. How can a user know
that the provider of the second-hand information is telling the truth? We can think of an individual’s
reputation for providing accurate reputation information on others as their second-order reputation
information. Second-order reputation is often termed as credibility as it measures the truthfulness of an
individual as a provider of information.

The problem was first addressed by Aberer and Despotovic [5] who were among the first to use a
decentralized reputation storage system. They use the trustworthiness of an agent (first-order reputation),
to decide whether to take its feedback into account. The feedback from agents who are deemed trustworthy
is included and that from untrustworthy agents is excluded. Kamvar et al. [7] use the same strategy of
using first-order reputation as second-order reputation as well. However, while it is reasonable to assume
that an individual who cheats in the main market cannot be relied upon for accurate feedback, the reverse
is not necessarily true. An individual can act honestly in the main market and enjoy a high reputation and
at the same time provide false feedback to lower the reputation of others in the community who may be
his/her competitors. An example where such a strategy would be advantageous is a hotel rating system
where a hotel may provide very good service and thus have a high reputation but at the same time may
give false feedback about its competitors to lower their reputation. Hence its credibility is very different
from its reputation.

The solution is to recognize credibility as different from first-order reputation and compute it separately.
Credibility can be computed in several different ways. Credibility values can be expressed explicitly and
solicited separately from reputation values. However this leads to a problem of endless recursion. To ensure
that users do not lie about other users credibility, we need third-order reputation to measure an individual’s
reputation for providing accurate second-order reputation information and so on.

Credibility can also be computed implicitly. This can be done in two ways. In the first method, inspired
by collaborative filtering, the similarity of user j ’s opinions to those of user i are used to compute the
credibility of user j in the eyes of user i (Cij). This can be done using Pearson’s correlation coefficients
as used by Resnick et al. [25] or by using vector similarity like in Breese et al. [26]. PeerTrust [8] uses yet
another similarity metric that resembles the Pearson coefficient. In this method, if user i ’s opinions are
often at variance with those of user j , i will have a lower credibility value for j and vice versa.

The second approach for implicit credibility computation measures the credibility of a user by taking
into account the agreement between the feedback furnished by the user and the views of the community
as a whole. The community average view can be represented by the reputation value computed from the
feedback from all the reporting users. If a user gives wrong feedback about other users, that is, his or her
feedback is very different from the eventual reputation value computed, its credibility rating is decreased
and its subsequent reports have a reduced impact on the reputation of a user. This method of computing
credibility has an advantage in that it is more scalable and it can operate in decentralized systems where
a complete record of all opinions expressed by other individuals may not be available due to privacy

3The term Designated Agents was coined by the authors and includes all systems where one or more users are made
responsible for storing and sharing another user’s reputation information by the system.
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concerns. However, there is a danger of “group-think” in such systems. There is strong encouragement for
an individual to agree with the opinion of the group as a whole as disagreements are punished by lowering
the credibility of the individual who disagrees.

85.5.3 Motivation for Providing Feedback

A closely related issue is how to motivate community members to provide feedback to others when
providing feedback consumes their own resources. In some respects this problem is the same as that
of motivating cooperation between community members as discussed above. However, there are some
important differences. In a designated agent system, designated agents must use their own resources to
store, compute, and report reputation values for other members. Most literature assumes that agents will
perform this task because they are “altruistic” or because they too will benefit from a designated agent
system. However, in a large network, there is little incentive for a particular individual to expend resources
to maintain the reputation system. How do we prevent such an individual from free-riding the reputation
system itself? Moreover, from a game-theoretic perspective, not reporting feedback may be advantageous
to an agent in a competitive situation. By reporting feedback to other agents, it is sharing information with
them which if kept to itself may have given it an advantage.

One strategy to encourage truthful reputation reports is to create a side market for reputation where
accurate reputation reports are rewarded with currency that can be traded for accurate reports from
others [40]. Such a system needs to be structured in such a way that providing more feedback and providing
honest feedback results in more credit. However this solution suffers from the recursion problem mentioned
above as third-order market would need to be created and so on.

An alternative way to avoid the recursion problem is to incorporate the credibility of an individual
in the reputation system as a separate variable as discussed in the previous section. If the credibility is
computed through direct evidence only and is not shared with others [9] then the recursion problem can be
avoided.

85.5.4 Motivation Is Not a Problem: Dissenting Views

A number of authors do not agree that motivation (of cooperation and of sharing feedback) is a problem
at all. Fehr and Gächter [13] develop a theory of “altruistic punishment.” They designed an experiment
that excluded all explanations for cooperation other than that of altruistic punishment. They designed a
McCabe style investment game [41] where players could punish their partners if they wished. However,
punishing was costly both to the punisher (one point) and the punished (three points). Punishment
induced cooperation from potential noncooperators thus increasing the benefit to the group as a whole
even though it was costly to the punisher. For this reason punishment was an altruistic act. They concluded
that negative emotions are the cause of altruistic punishment and that there is a tendency in humans to
punish those that deviate from social norms.

Similarly, Gintis et al. [12] argue that behaving in an altruistic fashion sends a signal to other participants
that interacting with that individual is likely to prove beneficial. This argument cuts at the heart of the
game-theoretic notion of how rational agents operate. Rational agent behavior now becomes probabilistic
in that an agent may act in an altruistic fashion in the hope of future reward instead of only interacting
when an immediate benefit is expected. This interpretation also depends on whether the individuals in the
system are humans or are automated agents that do not share the “altruistic” characteristics and behave
in a strictly rational sense.

This has been used as evidence that altruism serves an agent’s self-interest. It also explains why greedy
strategy are outperformed by more altruistic strategies in Axelrod’s experiment. Hence, there is some
theoretical basis to the claim that a virtual community can be be self-correcting and will exclude bad
participants.
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85.5.5 Other Design Issues

A number of other design choices must be made in a reputation system.

Reputation context. There has been some research on whether reputation is contextual. It is often assumed
that reputation is heavily dependent on context. This point of view was aptly expressed by Mui et al. [42]

“Reputation is clearly a context-dependent quantity. For example, one’s reputation as a computer
scientist should have no influence on his or her reputation as cook.”

However, in a contrary argument, Gintis et al. [12] suggest that compartmentalizing reputation too strictly
can have a negative effect. Their contention is that altruistic behavior is motivated in part by a desire to
signal that interacting with the individual in question will be beneficial in other contexts as well. They
argue that the notion of reputation in a real world is far more fuzzy and incorporates generosity as well. A
generous participant is more likely to be honest as well. This gives participants an incentive to behave in
an altruistic fashion in addition to behaving in an honest fashion.

Transaction value. A reputation system must also be able to distinguish between small and large trans-
actions. Buying a pencil online is not the same as buying a car. If all transactions are rated equally, an
individual may exploit the system through a strategy called milking where they act honestly in a number
of small transactions to build their reputation and then cheat in a large transaction without hurting their
reputation too much. In PeerTrust [8] this problem is solved by incorporating a transaction context factor
that weighs the feedback according to size, importance, and the recency of the transaction.

Interpreting reputation. Once the reputation of a user (or object in case of recommendation systems)
has been computed, it can be used in several ways depending on the application context. In a file-sharing
system [6] a peer may choose the peer with the highest reputation to download the file from. On Amazon, the
recommendation system may prompt one to buy a book that one was not aware of before. GroupLens [25]
helps decide which movie a user decides to watch.

Equally common are applications that demand a Boolean yes/no decision on “Should i trust j ?”. There
are several methods by which this translation from an arbitrary range of reputation values to a binary
value can be achieved. These include (1) using a deterministic threshold (I will trust you if your reputation
value exceeds 6 on a scale of 10), (2) relative ranking (I will trust you if your reputation is in the top 10%
of community members), (3) probabilistic thresholds (the probability that I trust you is a monotonically
increasing function on the range of possible trust values), and (4) majority rounding (I will trust you if I
trust a majority of people with reputation values close to your reputation).

Another approach [19,43] is to include information that allows a user to decide how much faith it should
place in the reputation value. On e-Bay this information is the number of feedbacks a user has received.
A user with a high reputation and a large number of feedbacks is much more trustworthy than one with a
low number of feedbacks.

Benefits of high reputation. Many reputation systems particularly those proposed for file-sharing applica-
tions [5–7] do not consider the consequences of a peer having a high reputation. In file-sharing systems
the most reputable peer in the network will be swamped with requests as all peers are going to want to
download the resources from it. Hence peers with high reputations are “punished” for their high repu-
tations by having to expend more of their resources to serve others instead of being benefited from their
reputation. In this scenario the interests of the system are not aligned with that of individuals and the
individual peers have no motivation to act honestly and thus increase their reputation.

To motivate individuals to try and acquire high reputations, there needs to be a mechanism by which
nodes that have a high reputation are rewarded. In a file-sharing application this could be achieved through
preferential access for higher reputation nodes to resources at other nodes.

Positive versus negative feedback. A reputation system may be based on either positive feedback only,
negative feedback only or a combination of both. The disadvantage of a negative feedback only system [5]
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is that each new entrant into the system has the highest possible reputation. Hence, a misbehaving individual
may create a new identity and shed their bad reputations to start afresh. Using only positive feedback, in
contrast, makes it hard to distinguish between a new user and a dishonest user. If old users choose not
to interact with any users without a minimum level of positive feedback, a new user may thus find itself
frozen out of the group and interacting only with malicious users.

Identities. A reputation system that allows unlimited creation of new identities is vulnerable to manip-
ulation [4]. Hence, there must be a cost associated with creating an identity. However, at the same time
this cost must not be so large as to discourage newcomers from joining. Friedman and Resnick argue that
in social situations there is inevitably some form of initiation dues [44]. They also find that while these
dues are inefficient, especially when there are many newcomers to a community, no other strategy does
substantially better in terms of group utility.

85.6 Some Reputation Systems

We now look at some reputation management algorithms that have been proposed in recent years.

85.6.1 Complaints-Based Trust

One of the first reputation management algorithms for the P2P systems was proposed by Aberer and
Despotovic [5]. This system is based solely on negative feedback given by peers when they are not satisfied
by the files received from another peer. The system works on the assumption that a low probability of
cheating in a community makes it harder to hide malicious behavior.

Let P denote the set of all peers in the network and B be the behavioral data consisting of trust
observations t(q , p) made by a peer q ∈ P when it interacts with a peer p ∈ P . We can assess the
behavioral data of a specific peer p based on the set

B( p) = {t( p, q) or t(q , p) | q ∈ P } (85.5)

In this manner, the behavior of a peer takes into account not only all reports made about p but also all
reports made by p. In a decentralized system a peer q does not have access to the global data B( p) and B .
Hence it relies on direct evidence as well as indirect evidence from a limited number of witnesses r ∈
Wq ⊂ P :

Bq ( p) = {t(q , p) | t(q , p) ∈ B} (85.6)

Wq ( p) = {t(r, p) | t(r, p) ∈ B ∧ r ∈ P } (85.7)

However, the witness r itself may be malicious and give false evidence. Aberer and Despotovic assume
that peers only lie to cover their own bad behavior. If peer p is malicious and cheats peer q , q will file a
complaint against it. If p also files a complaint against q at the same time it could be difficult to find out
who is the malicious peer. However, if p keeps acting maliciously it will become easy to detect it since there
will be a lot of complaints filed from peer r about a set of good peers and a lot of complaints filed from
these good peers all about peer p. Based on this, the reputation of p can be calculated as

T( p) = |{t( p, q) | q ∈ P }| × |{t(q , p) | q ∈ P }| (85.8)

Aberer and Despotovic proposed a decentralized storage system called P-Grid to store reputation infor-
mation. Each peer p can file a complaint about another peer q at any time as follows:

insert(ai , t( p, q), key( p)) and insert(a j , t( p, q), key(q))

where ai and a j are two arbitrary agents. Insertions are made on the keys of both p and q since the system
stores complaints both by and about a given peer.

Assuming that an agent is malicious with probability π and that an error rate of ε is tolerable, then a
peer p will need to receive r replicas of the same data satisfying π r < ε to ensure that the error rate is not
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exceeded. If a simple majority rule is employed, the total number of queries for each trust verification will
never exceed 2r + 1.

A peer p making s queries will obtain a set

W = {(cri (q), c fi (q), fi , ai ) | i = 1, . . . , w}
where w is the number of different witnesses found, ai the identifier of the i th witness, fi the frequency
with which witness ai is found and s = ∑w

i=1 fi . cri (q) and c fi (q) are the complaints about q and filed
by q , respectively, as reported by witness ai . Different witnesses are found with different frequencies and
the ones which are found less frequently have probably been found less frequently also when complaints
were filed. So it is necessary to normalize cri (q) and c fi (q) using frequency fi in this way4:

crnorm
i (q) = cri (q)

(
s − fi

s

)s

(85.9)

cf norm
i (q) = cf i (q)

(
s − fi

s

)s

(85.10)

Each peer p can keep a statistics of the average number of complaints filed (c f avg
p ) and received (cr avg

p )
and can determine if a peer q is trustworthy basing on the information returned from an agent i using
this algorithm:

Algorithm (Trust Assessment Using Complaints)

decide(crnorm
i (q), cf norm

i (q)) =
if

crnorm
i (q)cf norm

i (q) ≤
(

1
2 + 4√

cr
avg
p cf

avg
p

)2

cr
avg
p cf

avg
p

then return 1; else return −1.

This algorithm assumes that if the total number of complaints received exceeds the average number of
complaints by a large amount, the agent must be malicious.

85.6.2 EigenTrust

Kamvar et al. [7] presented a distributed algorithm for the computation of the trust values of all peers
in the network. Their algorithm is inspired by the PageRank algorithm used by Google and assumes that
trust is transitive. A user weighs the trust ratings it receives from other users by the trust it places in the
reporting users themselves. Global trust values are then computed in a distributed fashion by updating
the trust vector at each peer using the trust vectors of neighboring peers. They show that trust values
asymptotically approach the eigenvalue of the trust matrix, conditional on the presence of pretrusted users
that are always trusted.

A peer i may rate each transaction with peer j as positive (tr (i, j ) = 1) or negative (tr (i, j ) = −1).
The local trust value at i for j can then be computed by summing the ratings of individual transactions:

sij =
∑

tr(i, j ) (85.11)

Local trust values are normalized as follows:

cij = max (sij, 0)
∑

l

max (sil, 0)
(85.12)

to keep them between 0 and 1.

4Note that the equation below corrects the one presented in the original paper.
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To aggregate normalized local trust values, trust values furnished by acquaintances are weighted by the
trust a peer has in the acquaintances themselves:

tik =
∑

j

c ijc jk (note that
∑

j
tij = 1) (85.13)

where tik is the trust a peer i places in peer k based on the opinion of its acquaintances.

If we define
→
ti the vector containing the values tik and C the matrix containing the values cij, we get

→
ti = C T →

ci . The preceding expression only takes into account opinions of a peer’s acquaintances. To get a
wider view a peer may ask its friends’ friends and so on:

→
t = (C T )

n →
ci (85.14)

Kamvar et al. show that if n is large, peer i can have a complete view of the network and the trust vector→
ti will converge to the same vector for every peer i (the left principal eigenvector of C), conditional on
C being irreducible and aperiodic.

They further add three practical issues to this simple algorithm. If there are peers that can be trusted a
priori the algorithm can be modified to take advantage of this. They define pi as 1

|P | (where P is the set
containing the pretrusted peers) if i is a pretrusted peer, and 0 otherwise. In presence of malicious peers,

using an initial trust vector of
→
p instead of

→
e generally ensures faster convergence. If a peer i has never

had any interaction with other peers, instead of being left undefined, cij can be defined as

cij =





max (localij ,0)
∑

l
max (localil, 0)

if
∑

l
max (localil, 0) �= 0

pj otherwise

(85.15)

To prevent malicious collectives from subverting the system, Kamvar et al. further modify the trust vector
calculation on the k+1th iteration to:

→
t

k+1= (1 − a)C T →
t

k + a
→
p (85.16)

where a is some constant less than 1. This ensures that at each iteration some of the trust must be placed
in the set of pretrusted peers thus reducing the impact of the malicious collective.

Hence, given Ai the set of peers which have downloaded files from peer i and Bi the set of peers from
which peer i has downloaded files, each peer i executes the following algorithm:

Algorithm (Distributed EigenTrust)

Query all peers j ∈ Ai for c jit
(0) = c ji p j ;

repeat

t(k+1)
i = (1 − a)

(
c1i t(k)

1 + c2i t(k)
2 + · · · + cni t(k)

n

)
+ api ;

send cijt
(k+1)
i to all peers j ∈ Bi ;

wait for c jit
(k+1)
j from all peers j ∈ Ai ;

δ =
∣
∣t(k+1) − t(k)

∣
∣ ;

until δ < ε;

Each peer thus obtains the same global trust value matrix for all other peers in the network. Kamvar et
al. further describe a DHT-based solution to anonymously store multiple copies of the trust value for a
given peer at several score managers. This alleviates the problem caused by malicious peers reporting false
trust values for themselves to other peers to subvert the system.
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85.6.3 PeerTrust

In PeerTrust, Xiong and Liu [8] define five factors used to compute the trustworthiness of a peer. These are
(1) feedback obtained from other peers, (2) scope of feedback such as number of transactions, (3) credibility
of feedback source, (4) transaction context factor to differentiate between mission-critical and noncritical
transactions, and (5) community context factor for addressing community-related characteristics and
vulnerabilities.

Given a recent time window, let I (u, v) denote the total number of transactions between peer u and v,
I (u) the total number of transactions of peer u, p(u, i) the peer u’s partner in its i th transaction, S(u, i)
the normalized amount of satisfaction peer p(u, i) receives from u in this transaction, Cr (v) the credibility
of peer v, TF(u, i) the adaptive transaction context factor for peer u’s i th transaction, and C F (u) the u’s
community context factor. Then, the trust value of peer u denoted by T(u) is

T(u) = α ∗
I (u)∑

i=1

S(u, i) ∗ Cr ( p(u, i) ∗ TF(u, i) + β ∗ C F (u) (85.17)

where α and β are weight factors.
In their experimental study, Xiong and Liu turn off the transaction context factor and the community

context factor and use two credibility metrics. The first is based on the trust value of the reporting peer
(similar to EigenTrust) while the second is based on the similarity between the reporting peer and the
recipient of the trust information. They further propose using a PKI-based scheme and data replication
to increase the security and reliability of their system.

85.6.4 ROCQ

Garg et al. [9,45] proposed a scheme that combines local opinion, credibility of the reporter and the quality
of feedback to compute the reputation of a peer in the system. In their scheme direct evidence in the form of
local opinion is reported to score managers which are chosen using distributed hash tables.

The reputation Rmj of user j at score manager m is

Rmj =
∑

i
O

avg
ij Cmi Qij

∑

i
Cmi Qij

(85.18)

where Cmi is the credibility of user i according to m, O
avg
ij i ’s average opinion of j and Qij the associated

quality value reported by i .
The quality value of an opinion depends on the number of transactions on which the opinion is based

and the consistency with which the transaction partner has acted. Thus an opinion is of greater quality
when the number of observations on which it is based is larger and when the interactions have been
consistent (resulting in a smaller variance). When the number of observations is high but they do not
agree with each other, the quality value is lower.

The credibility of a user is based on direct evidence only and is not shared with other users. This prevents
the recursion problem of calculating the third-order reputation and so on. The credibility is based upon
the agreement of the reported opinion with the group consensus as reflected in the reputation value
and is updated after every report received. The precise formula for adjusting the credibility of user i by
user m is

C k+1
mi =






C k
mi + (1−C k

mi) · Qij
2

(

1 − |Rmj − O
avg
ij |

smj

)

if |Rmj − Oavg
ij | < smj

C k
mi − C k

mi · Qij
2

(

1 − smj

|Rmj − O
avg
ij |

)

if |Rmj − Oavg
ij | > smj

(85.19)

where C k
mi is the credibility of user i after k reports to user m, O

avg
ij the opinion being currently reported

by user i , Qij the associated quality value, Rmj the aggregated reputation value that user m computed for
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j , and smj the standard deviation of all the reported opinions about user j . In this way, if a reporting
user is malicious, its credibility rating is gradually reduced since its opinion does not match that of the
community as a whole.

The authors also propose combining both direct and indirect evidence to create reputation. They
proposed a threshold number of interactions between two users below which users will rely on the global
reputation of their prospective partner and above which they would rely on first-hand evidence only. This
eliminates the problem of sparsity of data while at the same time allowing for reputation to be tailored
according to personal experience.

85.6.5 Propagation of Trust and Distrust

A number of mathematical approaches to propagating trust [46,47] and distrust [48] have been proposed.
In particular, Guha et al. gave a number of models of atomic (single-step) propagation. Let B be a belief
matrix whose ijth element signifies i ’s belief in j . B can be composed of either the trust matrix (Tij is i ’s
trust in j ) or both the trust and the distrust (Dij is i ’s distrust in j ) matrices (say Bij = Tij − Dij). Then,
atomic propagation of trust takes place by (1) direct propagation (matrix operator5: B) : assumes that trust
is transitive so if i trusts j and j trusts k then we can infer that i trusts k, (2) co-citation (B T B): if both i
and j trust k and if i trusts l , then j also trusts l , (3) transpose trust (B T ): assumes that trust is reflexive
so that if i trusts j then trusting j should imply trusting i , and (4) trust coupling (BBT ): if i and j trust k,
then trusting i should also imply trusting j . They then go on to propagate trust using a combined matrix
that gives weights to the four propagation schemes:

C B ,α = α1 B + α2 B T B + α3 B T + α4BBT (85.20)

Thus, applying the atomic propagations a fixed number of times, new beliefs can be computed. In a
limited set of experiments, they study the prediction performance of their algorithm on real data and
find that the best performance comes with one-step propagation of distrust while trust can be propagated
repeatedly.

85.7 Conclusions and Future Work

The area of reputation systems remains fertile for future research. Initial research in this area has focused
on applying lessons from diverse fields such as evolutionary biology and game theory to computer science.
In particular game-theoretic models such as the iterated prisoner’s dilemma were adapted to virtual
communities. However this analysis is limited by not considering the presence of irrational (malicious)
players in the community.

Simultaneously, several new reputation schemes have been proposed. These schemes typically propose a
new trust model followed by experimental simulation. However it is difficult to compare the schemes side-
by-side as each scheme makes its own assumptions about the interaction model, modes of maliciousness
and levels of collusion among malicious peers, not to mention widely varying experimental parameters
such as the number of peers in the system and the proportion of malicious peers.

More recently, there has been some work on analyzing systems in the presence of malicious peers. For
instance, Mundinger and Le Boudec [49] analyze the robustness of their reputation system in the presence
of liars and try to find the critical-phase transition point where liars start impacting the system.

As the interest in virtual communities, particularly self-organizing communities grows, we are likely to
see a lot more research on the various facets of this topic.

Note: This work was supported in part by the European Commission through the FET project
CASCADAS.

5The matrix operator when applied to a belief matrix would yield a new matrix indicating inferred trust.
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86.1 Introduction

Quantization is originally defined as the digitization of a continuous signal. The signal may represent
a monochromatic tone varying between black and white, and be measured by its intensity. The task of
quantization is to map the signal’s intensity values into a series of gray levels (e.g., 256 levels from black to
white along the gray axis). The signal may also carry chromatic information, with multiple attributes that
characterize the signal within a multidimensional color space (e.g., c = (r, g , b) for the RGB space). In
this case quantization amounts to mapping color points onto a grid that discretizes the color space (e.g.,
256 levels in each dimension).

The advent of digital image processing gives rise to the need to reduce the number of colors that are
present in an image (e.g., a 24-bit image with tens of thousands of colors from a 256 × 256 × 256 grid)
by reassigning pixels to a smaller set of grid values (e.g., 256 for the 8-bit lookup table representation).
Thus the problem of color quantization or color image quantization evolves to become the problem
of remapping already quantized image colors. This serves a variety of purposes as quantized images
have lower memory consumption, allow speedier transmission, and place lesser demand on processing
hardware.

Let G be the set of grid values (i.e., possible colors) and C ={c1, c2, . . . , cn} ⊆ G be the set of n original
colors in an image. The problem of quantizing the image into k final colors, which are now referred to
as quantized colors and denoted by Q = {q1, q2, . . . , qk} ⊂ G , can be stated as finding Q along with
a mapping from C to Q, where Q is generally not a subset of C , and is often called the color map or
color palette (or codebook, where each quantized color is a code word) for the image. On the other hand,
considering that this mapping from C to Q implies that pixels with the same original color are destined to
have the same quantized color, which is usually the case but rather restrictive, we may adopt a more general
characterization by defining the quantization task as finding Q along with an assignment of a quantized
color to each pixel.

Quantization inevitably introduces distortion. An ideal quantization algorithm should make the quan-
tized image look as close to the original and exhibit as few objectionable artifacts as possible. Aside from
the apparent difficulty in quantifying this objective due to its subjective nature, we also face a couple of
complicating factors that are relatively immune to variations in individual judgment. Together they make
color quantization a good candidate for approximation algorithms and heuristics.

The first complicating factor stems from the fact that the sensation of color is a psychophysical phe-
nomenon, which results from physical stimulus in the form of visible light entering our visual system.

86-1
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Ideally, distances in a color space where the physical stimulus is measured are proportional to the perceived
differences by the viewer—such a color space is often referred to as being perceptually uniform. We can
then equate the task of minimizing the distances between original and quantized colors (quantization
errors) with the task of minimizing the visible discrepancies between those colors. However, the prevailing
RGB color model for image representation is far from being perceptually uniform, and the visualization of
an RGB image is affected by the physical characteristics of the display or printing device [1,2]. A numerical
displacement to an original color may result in a minute color change that is hardly visible when the
displacement occurs in some parts of the RGB color space, but manifests as a clearly noticeable color shift
when it takes place in other regions. Although we may map RGB colors into another color space that
is device-independent and significantly more uniform to carry out the quantization task [3,4], it is still
work-in-progress to find a color model that is truly perceptually uniform.

The second complicating factor comes from the context-dependent nature of the quantization errors
that are considered visually offensive by an average observer. An image is not a simple collection of isolated
individual data points in the eyes of the viewer, its quality needs to be judged with all pixels taken as a
sophisticated whole. Even if we conduct quantization in a color space that is perfectly perceptually uniform
(and we have perfectly calibrated display and printing devices), the resulting distribution of quantization
errors (minimized one way or another without regard to context) does not necessarily guarantee the
minimization of their visual offensiveness. For instance, consider the impact of a certain visible shift of the
colors that are referred to as the skin tones in a quantized image. The shift may very well be acceptable when
the colors depict ordinary objects such as a piece of fabric or flowers (the objects are quite likely to look just
fine in the shifted colors); however, the same shift can be rather objectionable when the colors happen to
portray a human face (proper skin tones are indicative of the subject’s well being). Furthermore, there are
such factors as the spatial averaging effect of color stimuli from adjacent pixels through our visual pathway—
much like the spatial averaging of subpixels that enables RGB display devices to work, and the phenomenon
of simultaneous contrast [5] that affects our perception of color when differently colored patches are viewed
in each other’s presence—the two small disks in Figure 86.1 have exactly the same color but the one on the
right looks brighter because it is surrounded by a dark ring. There are also many other aspects (ranging
from psychophysical to cognitive) of visual information processing that are not yet fully understood.

Given the complexity of the color quantization problem, it should come as no surprise that existing
color quantization methods tend to focus on limited aspects of the problem and have relatively confined
goals. Based on the scope of the information that is used in the construction of the color map, we may
divide these methods into three broad categories (see Figure 86.2): (1) image-independent methods that
determine a universal set of quantized colors without regard to any specific image; (2) image-dependent,
context-free methods that take into account the actual colors that appear in the input image as well as
the frequency (i.e., number of occurrences or pixel population) of each of those colors, and typically
focus on the minimization of the numerical discrepancies between original and quantized colors based on

FIGURE 86.1 Demonstration of simultaneous contrast.
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FIGURE 86.2 Categorization of color quantization methods.

certain statistical criteria; and (3) image-dependent, context-sensitive methods that make use of additional
contextual information beyond original colors and their frequencies that can be derived from the input
image (e.g., spatial relationship between the pixels) as heuristics to help better restrain visible quantization
artifacts.

Many algorithms are essentially color space-neutral by design, leaving it a separate issue for the pixel
colors to be represented in an appropriate color space. However, the RGB color space is frequently used in
experimental implementation.

Three common options exist for the mapping of original colors to quantized colors, or more broadly, the
assignment of quantized colors to pixels: (1) replace each original color with the closest counterpart in the
color map (mostly image-independent methods); (2) replace each original color with a specific quantized
color whose association with the original color has already been determined during the construction of
the color map (mostly image-dependent methods), and (3) make use of such techniques as error diffusion
[6–9] to select the appropriate quantized color for each pixel. The latter option helps to smooth out some
of the visible quantization artifacts, with the trade-off being that it may also degrade sharp edges and fine
details.1

86.2 Color Spaces for Quantization

The CIELUV and CIELAB are two prominent candidate spaces that are derivatives of the CIE 1931 XYZ
color model, which is device-independent but nonuniform in terms of perceived color differences [10].
Both are defined as nonlinear transformations of XYZ with respect to a reference white point, which
may be the standard illuminant D50 for reflective reproduction, with XYZ coordinates being (0.9642, 1.0,
0.8249), or D65 for emissive display, with XYZ coordinates being (0.9504, 1.0, 1.0889).

The CIELUV or CIE 1976 L∗u∗v∗ color space is defined by

L∗ =






116

(
Y

Yw

)1/3

− 16,

(
Y

Yw

)

> 0.008856

903.3

(
Y

Yw

)

, otherwise

u∗ = 13L∗(u′ − u′
w )

v∗ = 13L∗(v′ − v′
w )

where

u′ = 4X

X + 15Y + 3Z
u′

w = 4Xw

Xw + 15Yw + 3Zw

v′ = 9Y

X + 15Y + 3Z
v′

w = 9Yw

Xw + 15Yw + 3Zw

Xw , Yw , and Zw are determined from the reference white point.

1Edge detection has been used to suppress error diffusion across edges to preserve image sharpness [28]; and edge
enhancement may be incorporated into the error diffusion process [54].
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The CIELAB or CIE 1976 L∗a∗b∗ color space is defined by

L∗ =






116

(
Y

Yw

)1/3

− 16,

(
Y

Yw

)

> 0.008856

903.3

(
Y

Yw

)

, otherwise

a∗ = 500

(

f

(
X

Xw

)

− f

(
Y

Yw

))

b∗ = 200

(

f

(
Y

Yw

)

− f

(
Z

Zw

))

where

f (t) =





t1/3 t > 0.008856

7.787t + 16

116
otherwise

Xw , Yw , and Zw are determined from the reference white point.

The L∗ component in both trivariant models is designed to carry luminance and the remaining two
specify chrominance. Although often referred to as being perceptually uniform, these two color spaces
still depart from uniformity over the visible gamut, with variations that may reach as high as 6:1 when
color differences are measured by Euclidian distances �E uv = √

�L∗2 + �u∗2 + �v∗2 and �E ab =√
�L∗2 + �a∗2 + �b∗2 [11,12]. An improved color difference formula was introduced in 1994 [11]:

�E
∗
94 =

√
(

�L∗

kL SL

)2

+
(

�C
∗
ab

kC SC

)2

+
(

�H
∗
ab

kH SH

)2

which is based on using polar coordinates to address color points in the CIELAB space in terms of perceived
lightness L∗, chroma C

∗
ab = √

a∗2 + b∗2, and hue angle H
∗
ab = tan−1( b∗

a∗ ). Standard reference values for
the formula are kL = kC = kH = 1, SL = 1, SC = 1 + 0.045C

∗
ab , and SH = 1 + 0.015C

∗
ab .

The conversion between RGB (assumed to be linear without γ correction for cathode ray tubes) and
XYZ may be carried out by the following standard transformation, with white illuminant D65:




R
G
B



 =



3.0651 −1.3942 −0.4761

−0.9690 1.8755 0.0415
0.0679 −0.2290 1.0698








X
Y
Z





86.3 Image-Independent Quantization

In contrast with the image-dependent methods that choose quantized colors in an image-specific fashion,
quantization may also be carried out on an image-independent basis, with a fixed/universal palette for all
images. These image-independent methods enjoy high computational efficiency since they avoid the need
to analyze each original image to determine the quantized colors for that image. And there is no overhead
for the storage and transmission of the individualized color map for each image. The trade-off is that a set
of quantized colors that are specifically tailored to the distribution of the original colors in a given image
tends to do a better job in approximating those original colors and lowering quantization errors.

Uniform quantization. In this approach we preselect k colors that are uniformly distributed in the chosen
color space (preferably perceptually uniform). A ready example would be the 6 × 6 × 6 browser/web-safe
palette, with integer values 0, 51, 102, 153, 204, and 255 for each primary for a total of 216 RGB colors
[13]. The quantization of an image now entails mapping each pixel to a preselected color (e.g., one that is
the closest to the pixel’s original color).
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FIGURE 86.3 Trellis-coded quantization.

An easy and fast implementation of uniform quantization involves the truncation of a few least-
significant bits from each component of an original color, rounding the original color down to a quantized
color. For example, we may truncate 3 bits from each component of a 24-bit RGB color to arrive at its
counterpart in a set of 32×32×32 quantized colors. Alternatively, aiming to better preserve luminance (a
key ingredient that conveys details) and taking hint from the standard formula for computing luminance
from RGB values: Y = 0.299R + 0.587G + 0.114B , we may truncate 3 bits from the red component,
2 bits from the green component, and 4 bits from the blue component to partially compensate for the
nonuniform nature of the RGB color space.

This bit-cutting technique effectively places all quantized colors below the maximum intensity level in
each dimension of the color space, and causes a downward shift in intensity (as well as hue shift) across
the entire image. These are often unacceptable when a relatively high number of bits are truncated.

Trellis-coded quantization. Consider the case of uniform quantization using one byte for the direct encod-
ing of pixel colors, for example, 3-3-2 for red-green-blue, we would have a rather coarse grid of 8 × 8 × 4
quantized colors. Now if we can “extend” the capacity of the limited number of bits used for each primary
to specify intensity values at a higher resolution, we will be able to approach the effect of uniform quan-
tization within a finer grid. This is made possible by the application of the Viterbi algorithm [14,15] in
trellis-coded quantization [16–18].

Take, for example, the encoding of one of the primaries with x = 3 bits, which normally yields
2x = 23 = 8 intensity levels. In contrast, we may have two color maps (see Figure 86.3), each of which
consists of eight equally spaced intensity levels. The values in one map can be obtained by offsetting the
values in the other map by half the distance between two adjacent levels. We further partition the intensity
values in each map into two subsets. Given a specific map, only x = 3 bits are necessary to identity one of
the two subsets (1 bit needed) and the particular intensity level within the chosen subset (x − 1 = 2 bits
needed). Operating as a finite state machine, described by a trellis, the algorithm uses the bit that identifies
the subset within the current map to determine the next state of the trellis, which in turn determines
the choice of color map for the next input bit-string. This approximates the effect of quantizing with
2x+1 = 24 = 16 intensity levels.

Sampling by Fibonacci lattice. Unlike scalar values on the gray axis, points in a multidimensional color space
do not lend themselves to easy manipulation and ordering. In this variation of uniform quantization [19],
the universal color palette is constructed by sampling within a series of cross planes along the luminance axis
of the CIELAB color space. Each cross plane is a complex plane centered at the luminance axis, and sample
points z j in the plane (with equal luminance) are determined by the Fibonacci spiral lattice (see Figure 86.4):

z j = j δeiθ , θ = 2πjτ + α0

where parameter δ controls the radial distribution of the points (higher value produces greater disper-
sion), τ determines the overall pattern of distribution (a Markoff irrational number yields the most
uniform distribution), and α0 denotes an initial angle of rotation to better align the sample points with
the boundaries of the color space.
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FIGURE 86.4 Points on the Fibonacci spiral lattice.

The values δ = 0.5 and τ =
√

5−1
2 (the golden mean) are used in implementation, along with an

additional scaling factor to help adjust the sample points’ coverage of the color space within each cross
plane. To produce a universal palette of a certain size, the number of luminance levels and the number of
sample points per level need to be carefully chosen, and the set of luminance values be determined through
image-dependent quantization of luminance values from a large set of training images.

A unique aspect of this sampling method comes from the Fibonacci lattice. Each sample point z j in
the spiral lattice is uniquely determined by its scalar index j , and two neighboring points are always some
Fibonacci number apart in their indices. These plus other useful properties of the Fibonacci lattice make
the resulting color palette amenable to fast quantization and ordered dither. In addition, a number of
gray-scale image processing operations such as gradient-based edge detection can be readily applied to the
quantized color images.

86.4 Image-Dependent, Context-Free Quantization

Image-dependent, context-free quantization methods select quantized colors based solely on original
colors and their frequencies, without regard to the spatial relationship of the pixels and the context of the
visual information that the image conveys. A basic strategy shared by numerous quantization algorithms
in this category is to proceed in two steps. The first partitions the n original image colors into k disjoint
clusters S1, S2, . . . , Sk based on a certain numerical criterion—this makes color quantization a part of the
broader area of data clustering [20]; and the second computes a representative (i.e., a quantized color) for
each cluster. The quantized image may then be constructed by recoloring each pixel with the representative
of the cluster that contains the pixel’s original color, or with the application of such techniques as error
diffusion using the resultant color map.

Intuitively, these methods differ in how to balance two interrelated and competing objectives: the
preservation of popular colors versus the minimization of maximum quantization error (see Figure 86.5).
The former may be characterized as achieving an error-free mapping for the k most popular original
colors; whereas the latter is the minimization of the upper bound for all d(c, qi ), 1 ≤ i ≤ k, where c is an
original color in the i th cluster Si , qi the representative of Si , and d(c, qi ) the nonnegative quantization
error, typically the Euclidean distance between c and qi .

A classic approach to strike a balance between the two objectives is to minimize the sum of squared errors∑
1≤i≤k

∑
c∈Si

P (c)d2(c, qi ) across the entire image, where P (c) is the frequency (pixel population) of
color c. As an alternative, we may try to minimize the total quantization errors

∑
1≤i≤k

∑
c∈Si

P (c)d(c, qi ),
which represents a lesser bias towards capping the maximum quantization error. Such statistical criteria
can trace their origin to the quantization of a continuous-tone black-and-white signal [21,22], and have
been proven to be NP-complete [23–26].
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FIGURE 86.5 An intuitive scale for comparing statistical criteria.

Regardless of the operational principle (e.g., limiting the spatial extent of each cluster) for the clustering
step of an approximation algorithm, the frequency-weighed mean of the original colors in each resulting
cluster is almost always used as the cluster’s representative, often called the cluster’s centroid but sometimes
referred to as the center of gravity (the two notions are equivalent in this context). This reflects a common
consensus on minimizing intracluster variance.

The popularity algorithm. This early quantization method aims at the preservation of popular colors [27].
It creates a histogram of the colors in the original image and selects the k most popular ones as quantized
colors. Pixels in other colors are simply mapped to the closest quantized colors, respectively. The advantage
here is that relatively large and similarly colored image areas are kept little changed after quantization;
however, smaller areas, some of which may carry crucial information (e.g., a uniquely colored signal light),
can take on significant distortion as a result of their being mapped to popular colors.

An implementation technique that may alleviate this problem preprocesses the 24-bit original colors by
truncating a few least-significant bits from each color component (i.e., performing a uniform quantization),
effectively combining several popular colors that are very similar to each other into a single quantized color,
thus allowing some of the less popular colors to be selected as quantized colors. This preprocessing step
(e.g., 3-3-3 or 3-2-4 bit-cutting for red-green-blue) can also be used to achieve color reduction and to alter
color granularity for other algorithms. The downside here is that bit-cutting itself can cause false contours
to appear on smoothly shaded surfaces.

One may also avoid having several popular colors that are neighbors of each other as quantized colors
by choosing one quantized color at a time, and artificially reducing the pixel count of the remaining colors
in the vicinity of the chosen color (currently the most popular), with the reduction being based on a
spherically symmetric exponential function in the form of 1 − e Kr 2

(note that this sets the pixel count of
the chosen color to 0 so it will never be selected again in subsequent iterations), where r is the radius of
the sphere that is centered at the chosen color and K an experimentally determined constant [28].

Detecting peaks in histogram. Instead of choosing the k most popular original colors for the color map, we
may find peaks in the histogram and use colors at the peaks as quantized colors. The peaks may be identified
by a multiscale clustering scheme based on discrete wavelet transform (DWT), where computational
efficiency comes from carrying out three-dimensional DWT as a series of independent one-dimensional
transforms followed by downsampling [29]. The quantizer can determine the value of k from the number
of detected peaks, or it may be adjusted to produce a preset number of quantized colors.

Peano scan. In another technique to lessen the difficulty associated with multidimensional data processing,
a recursively defined space-filling curve, referred to as a Peano curve, is used to traverse the space (e.g., the
RGB color cube), creating a one-to-one mapping between points in space and their counterparts along
the curve. Subject to the spatial relationships that are preserved by the mapping, certain spatially oriented
operations may now be carried out along a single dimension. For example, since points close on the Peano
curve are also close in space, given a specific color we may easily find some of its neighbors by searching
along the curve [30,31]. The shortfall of this approach comes from the fact that points close in space are
only likely, but not necessarily to be close on the curve.
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The Median-cut algorithm. This two-step algorithm conducts a hierarchical subdivision of clusters that
have high pixel populations, attempting to achieve an even distribution of pixels among the quantized
colors [27]. We first fit a rectangular box over an initial cluster containing all original colors, and split the
box into two with a plane that is orthogonal to its longest dimension to bisect the cluster in such a way that
each new cluster is now responsible for half of the pixel population in the original cluster. The new clusters
are then treated the same way repeatedly until we have k clusters. The criterion for selecting the next
cluster to split is based on pixel count. By splitting the most popular cluster in each step, the algorithm will
eventually produce k clusters each of which is responsible for roughly 1/k of the image’s pixel population.

In comparison with the popularity algorithm, this alternative for resource distribution often brings
about better quantization results. However, having the same number of pixels mapped to each quantized
color does not necessarily lead to effective control of quantization errors.

The center-cut algorithm. As a variation to the median-cut algorithm, this method bisects a cluster at the
midpoint of the longest dimension of its bounding box without regard to pixel population [32]. And it
ranks candidate clusters for subdivision based on the longest dimension of their bounding boxes—the
longest one is split first. These changes put more emphasis on restraining the spatial extent of the clusters,
and do a better job in keeping grossly distinct colors from being grouped into the same cluster and mapped
to the same quantized color.

Both the median-cut and the center-cut algorithms take a top-down approach to partitioning a single
cluster into k clusters. Alternatively, we may follow a bottom-up strategy that merges the n original colors
into the desired number of clusters. To this end the octree data structure [33] can be used to provide a
predetermined hierarchical subdivision of the RGB color space for merging clusters.

Octree quantization. With the entire RGB color cube represented by the root node and each octant of the
color cube by a child node descending from the root, an individual 24-bit RGB color corresponds to a leaf
node at depth 8 of the octree [34]. Conceptually, once we populate an octree with pixel colors from an
input image, we may start from the bottom of the octree (greatest depth) and recursively merge leaf nodes
that have the same parent into the parent node, transforming the parent node into a leaf node at the next
level, until we reduce the number of leaf nodes from n to k. Each remaining leaf node now represents a
cluster of original colors that inhabit the spatial extent of the node.

In an actual implementation, only an octree structure with no more than k leaf nodes needs to be
maintained, where each leaf node has a color accumulator and a pixel counter for the eventual calculation
of its centroid. As we scan an original image, the color of each pixel is processed as follows. If the color falls
within the spatial extent of an existing leaf node, then add it to the node’s color accumulator and increase
the node’s pixel count by 1. Otherwise, use the color to initialize the color accumulator of a new leaf node
and set the node’s pixel counter to 1. If this increases the number of leaf nodes to k + 1, merge some of
the existing leaf nodes (leaves with greatest depth first) into their parent node, which becomes a new leaf
node whose color accumulator takes on the sum of the accumulated color values from the children, and
whose pixel counter gets the total of the children’s pixel count.

Note that each splitting operation in median-cut or center-cut is performed either at the median or the
midpoint of the longest dimension of a bounding box, and the merging operation in the octree algorithm
is along predetermined spatial boundaries. This leaves the possibility of separating color points that are
close to each other in a naturally forming cluster into different clusters.

Agglomerative clustering. There are other bottom-up approaches where we start with n clusters each of
which contains one original color, and merge clusters without regard to preset spatial boundaries. In
a method that relies on a three-dimensional representation of all 24-bit original colors as well as the
clusters they belong to [35], we begin with n initial clusters that have the smallest bounding boxes. By
gradually increasing the size limit on bounding boxes (with increments 2, 1, and 4 for red, green, and
blue, respectively, to partially compensate for the nonuniform nature of the RGB color space), we merge
neighboring clusters into larger ones to reduce the number of clusters. For a given size limit, we search the
vicinity of each existing cluster S in the three-dimensional data structure to find candidates to merge, that
is, clusters that can fit into a new bounding box for S that satisfies the size limit. The process terminates
when k clusters remain.
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In addition to limiting the size of bounding boxes, the criterion for merging clusters may also be based
on variance or distance between centroids (see below).

Variance-based methods. The two-step top-down or bottom-up methods we have discussed so far decouple
the formation of clusters and the computation of a representative for each cluster (the centroid) in the
sense that the two steps are designed to achieve different numerical objectives: evenly distributed pixel
population or size-restricted bounding boxes for clustering, and minimum variance for selecting cluster
representatives after clustering. Several approximation algorithms are devised with variance-based criteria
for the clustering step as well.

A K -means algorithm starts with an initial selection of quantized colors q1, q2, . . . , qk , which may
simply be evenly spaced points in the color space, or the result of some other algorithm. It then partitions
the n original colors into k clusters S1, S2, . . . , Sk such that c ∈ Si if d(c, qi ) ≤ d(c, q j ) for all j , 1
≤ j ≤ k. After the partition it calculates the centroid of each cluster Si as the cluster’s new representative
q′

i . The algorithm terminates when the relative reduction in overall quantization error from the previous

choice of quantized colors is below a preset threshold. This relative reduction may be defined as E −E ′
E ′ ,

where previous overall quantization error E =∑
1≤i≤k

∑
c∈Si

P(c)d2(c, qi ) and current overall quanti-
zation error E ′ =∑

1≤i≤k

∑
c∈Si

P(c)d2(c, q′
i ). Otherwise, the algorithm reiterates the partitioning step

(followed by the recalculation of centroids) using the newly selected quantized colors. This quantization
method is rather time consuming (with O(nk) for each iteration), and its convergence at best leads to a
locally optimal solution that is influenced by the initial selection of quantized colors [36–38].

In one of the bottom-up approaches we merge clusters under the notion of pairwise nearest neighbors
[39]. Each iteration of the algorithm entails searching among current clusters to find two candidates, viz.,
Si and S j that are the closest neighbors, that is, two that when merged together into Sij = Si ∪ S j , will
result in minimum sum of squared errors for Sij :

∑
c∈Sij

P(c)d2(c, µij ), where µij is the centroid of Sij . A
full implementation of this method is rather time-consuming since it would take at least O(nlog n) just
for the first iteration. To this end a k–d tree, where existing clusters (each cluster is spatially located at its
centroid) are grouped into buckets (roughly equal number of clusters in each buckets), is used to restrict
the search for pairwise nearest neighbors within each bucket (one pair per bucket). The pair that will result
in the lowest sum of squared errors is merged first, then the pair in another bucket that yields the second
lowest error sum, etc. The tree is rebalanced to account for the merged clusters when a certain percentage
(e.g., 50%) of the identified pairs have been merged.

Another bottom-up method [40] randomly samples the input image for original colors and their
frequencies; sorts the list of sampled original colors based on their frequencies in ascending order; and
merges each color ci , starting from the top of the list (i.e., low frequency first), with its nearest neighbor

c j , chosen based on a weighted squared Euclidean distance
P (ci )P (c j )

P (ci ) + P (c j ) d2(ci , c j ) to favor the merging of

pairs of low-frequency colors. Each pair of merged colors is removed from the current list and replaced by

cij = P (ci )ci + P (c j )c j
P (ci ) + P (c j ) , with P (cij ) = P (ci ) + P (c j ), which will be handled as an ordinary color during

the next iteration of sorting and pairwise merging. The algorithm terminates when k colors remain on the
list, which are used as quantized colors.

In a couple of approaches that follow the strategy of hierarchical subdivision, we start with a single
cluster containing all original colors, and repeatedly partition the cluster S whose sum of squared errors∑

c∈S P (c)d2(c, µ), also termed weighted variance, with µ being the centroid of S, is the highest. We
move an orthogonal cutting plane along each of the three dimensions of the RGB color cube to search for
a position that divides the chosen cluster into two. One way to determine the orientation and position
of the cutting plane is to project color points in the cluster, bounded by r1 ≤ r ≤ r2, g1 ≤ g ≤ g2,
and b1 ≤ b ≤ b2, onto each of the three color axis; find the threshold that minimizes the weighted
sum of projected variances of the two intervals adjoining at the threshold for each axis; and run the
cutting plane perpendicular to and through the threshold on the axis that gives the minimum sum of
projected variances [41]. More specifically, the frequency of a projected point on the r -axis is P (r, 0, 0) =∑

g1≤g≤g2

∑
b1≤b≤b2

P (r, g , b). Likewise, we have P (0, g , 0) = ∑
r1≤r≤r2

∑
b1≤b≤b2

P (r, g , b) for the
g -axis and P (0, 0, b) = ∑

r1≤r≤r2

∑
g1≤g≤g2

P (r, g , b) for the b-axis. Given an axis along with a series
of projected points between l and m, a threshold l < t ≤ m partitions the points into two intervals [l , t−1]
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and [t, m], with the resulting weighted sum of projected variances being E t = ∑
l≤i≤t−1 Pi (i − µ1)2 +∑

t≤i≤m Pi (i − µ2)2, where µ1 and µ2 are the means of the two intervals, respectively, and Pi = P (i , 0,

0), P (0, i , 0), orP (0, 0, i). The optimal threshold value that minimizes E t is in the range of [ l+µ
2 , µ+m

2 ]
and maximizes w1

w2
(µ − µ1)2, where µ is the mean of the projected points in [l , m], w1 = ∑

l≤i≤t−1 Pi ,
and w2 = ∑

t≤i≤m Pi are the weights for the two respective intervals [42].
Another way to determine the cutting plane is to minimize the sum of weighted variances (without

projecting points onto the three color axes) on both sides of the plane [43]. A rectangular bounding box
is now defined by r1 < r ≤ r2, g1 < g ≤ g2, and b1 < b ≤ b2; and it is denoted by �(cl , cm], where cl = (r1,
g1, b1) and cm = (r2, g2, b2). And we define Md (ct ) = ∑

c∈�(o, ct ] cd P (c), with d = 0, 1, 2, c0 = 1, c2 = ccT ,
and o being a reference point such that

∑
c∈�(−∞, o] P (c) = 0. We precompute and store Md (c), d = 0,

1, 2, for each grid point in the RGB space to facilitate efficient computation of the pixel population w(cl ,
cm], mean µ(cl , cm], and weighted variance E (cl , cm] of any cluster of image colors bounded by �(cl , cm]:

w(cl , cm] =
∑

c∈�(cl , cm]

P (c)

µ(cl , cm] =

∑

c∈�(cl , cm]

cP(c)

w(cl , cm]

E (cl , cm] =
∑

c∈�(cl , cm]

P (c)d2(c, µ(cl , cm]) =
∑

c∈�(cl , cm]

c2 P (c) −




∑

c∈�(cl , cm]

cP(c)





2

w(cl , cm]

The evaluation of these items in O(1) time is made possible by designating the remaining six corners of
the bounding box as

ca = (r2, g1, b1); cb = (r1, g2, b1); cc = (r1, g1, b2);
cd = (r1, g2, b2); ce = (r2, g1, b2); c f = (r2, g2, b1)

and applying the rule of inclusion–exclusion to obtain
∑

c∈�(cl , cm]

f (c)P (c) =



∑

c∈�(o, cm]

+
∑

c∈�(o, ca ]

+
∑

c∈�(o, cb ]

+
∑

c∈�(o, cc ]

−
∑

c∈�(o, cd ]

−
∑

c∈�(o, ce ]

−
∑

c∈�(o, c f ]

−
∑

c∈�(o, cl ]



 f (c)P (c)

where f (c) may be 1, c, or c2. Furthermore, to determine a cutting plane for �(cl , cm], we need to minimize
E (cl , ct ] + E (ct , cm], with ct = (r, g2, b2)|r1<r≤r2 or (r2, g , b2)|g1<g≤g2 or (r2, g2, b)|b1<b≤b2 . Since

E (cl , ct ] + E (ct , cm] =
∑

c∈�(cl , cm]

c2 P (c) −

(
∑

c∈�(cl , ct ]
cP(c)

)2

w(cl , ct ]
−

(
∑

c∈�(ct , cm]
cP(c)

)2

w(ct , cm]

minimizing E (cl , ct ] + E (ct , cm] is equivalent to maximizing
(

∑

c∈�(cl , ct ]
cP(c)

)2

w(cl , ct ]
+

(
∑

c∈�(ct , cm]
cP(c)

)2

w(ct , cm]
=

(
∑

c∈�(cl , ct ]
cP(c)

)2

w(cl , ct ]
+

(
∑

c∈�(cl , cm]
cP(c) − ∑

c∈�(cl , ct ]
cP(c)

)2

w(cl , cm] − w(cl , ct ]

where w(cl , cm] and
∑

c∈�(cl , cm]
cP (c) are the constants.
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In addition to exploring cutting planes that are perpendicular to axes of the color coordinate system,
we may also look into other orientations as well. For example, we may take a random sample of the
cluster S that has the highest weighted variance, and subdivide it into two in the following way [44].
For every linearly separable two-clustering of the sample set T into T1 and T2, compute their centroids
t1 and t2, divide S by the perpendicular bisector of t1t2, then compute the centroids s1 and s2 of the
two resulting subsets, and divide S again by the perpendicular bisector of s1s2. Finally, choose among all
second bisectors the one that yields the minimum sum of weighted variances of the two subsets of S to
divide S.

Alternatively, we may place cutting planes orthogonally to each cluster’s principal axis, which is found
from the largest eigenvalue and the corresponding principal eigenvector of the cluster’s covariance matrix
[45]. During each iteration of the subdivision process, the algorithm finds a cluster whose principal
eigenvalue is the highest among all existing clusters, and bisects the found cluster with a plane that is
perpendicular to the corresponding eigenvector and through the cluster’s mean. The two resulting clusters
become independent candidates for further partitioning in subsequent iterations.

Minimizing total quantization errors. Principal analysis is also the basis for an approximation method
for the minimization of total quantization errors [46]. The algorithm is inspired by the observation
that colors in any given image tend to form a cluster that spreads out more in terms of differences in
luminance than in chromaticity variations. It first finds the principal axis for the entire set of original
colors. It then introduces parallel cutting planes that are perpendicular to the principal axis to minimize∑

1≤i≤κ

∑
c∈Si

P (c)d(c, µi ), where µi is the centroid of Si , and κ is increased as cutting planes are
introduced one by one by way of dynamic programming until none of the resulting clusters has a strongly
biased orientation in the principal direction of the original set. Now if κ = k the algorithm terminates
with k clusters; otherwise, it continues to subdivide the κ existing clusters, either by using one of the
hierarchical methods, or by splitting each chosen cluster with a cutting plane that is perpendicular to the
cluster’s principal axis and minimizes the total quantization errors of the two resulting subsets.

Minimizing maximum intercluster distance. Unique among quantization algorithms that are based on
numerical criteria, and unlike hierarchical methods that partition or merge clusters based on local infor-
mation (i.e., color points inside a restricted spatial extent), the following method achieves proven tight
approximation to global optimality for its clustering operation. The method attempts to minimize the
maximum quantization error across the entire image by partitioning original colors into tight clusters
under a formal notion of minimizing the maximum intercluster2 distance: finding a partition of n points
in an m-dimensional Euclidean space into k disjoint clusters S1, S2, . . . , Sk such that max(M1, M2, . . . ,
Mk), where Mi is the maximum distance between two points in cluster Si , is minimized [47]. This min-
imization problem is polynomial solvable for m = 1 [23] and NP-hard for m = 2 [48]. When m = 3,
which is typically the case in color image quantization, even finding a partition with maximum intercluster
distance less than two times the optimal solution value, referred to as the (2 − ε)-approximation problem,
is NP-hard for all ε > 0 [48,49]. Hence we make use of an efficient 2-approximation algorithm that has
worst-case time complexity O(nk) [48]:

S1 = {c1, c2, . . . , cn}; // Start with a single cluster containing all original colors

h1 = c1; // Each cluster has a designated point as the head of the cluster

for (x = 1; x < k; x ++) {

d = max {d(ci , h j )| ci ∈ S j , 1 ≤ i ≤ n, and 1 ≤ j ≤ x};

2Since we are trying to minimize the maximum distance between color points in each cluster it might be more
appropriate to use the word intracluster. However, if we view each color point as a singleton cluster we are indeed
minimizing the maximum intercluster distance. We adopt this second view to be consistent with the existing literature
on clustering.
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c = one of the points whose distance to its respective cluster head is d ;

move c to Sx+1;

hx+1 = c ;

for each c ′ ∈ (S1 ∪ S2 ∪ . . . ∪ Sx ) {

let j be such that c ′ ∈ S j ;

if (d(c ′, h j ) ≥ d(c ′, c)) move c ′ from S j to Sx+1;

}

}

86.5 Image-Dependent, Context-Sensitive Quantization

Context-sensitive quantization methods work with not only original colors and their frequencies, but
also the image’s context. The latter spans from the adjacency relationship between pixels, to the primitive
elements of visual information above the pixel level (e.g., edges and boundaries), and to the overall meaning
of the visual information that the image and various parts of the image convey. Effective use of contextual
information should bring about a better balance for the allocation of resources (i.e., selection of quantized
colors along with the mapping of colors) in terms of moderating visually offensive distortion than what
we may achieve with context-free quantization.

86.5.1 Dithered Quantization

This color quantization method takes into consideration the impact of neighboring pixels on the viewer’s
perception of each individual pixel in both the original and the quantized images [50]. Let cx , y be the color
of pixel (x , y) in the original image, and c ′

x , y the perceived color at (x , y), calculated by a linear blurring
operation that convolutes the original image with a localized kernel to account for the phenomenon of
spatial averaging in human vision (e.g., a Gaussian kernel of identical standard deviation for all color
components, with choice of neighborhood size from 3 × 3 to 11 × 11). Similarly, let qx , y be the color of
pixel (x , y) in the quantized image, and q ′

x , y the perceived color at (x , y), calculated by convoluting the
quantized image with the same kernel. The goal of color quantization is now defined as the minimization
of

∑
1≤x≤w

∑
1≤y≤h d2(c ′

x , y , q ′
x , y ), where w and h are the width and height of the image. Hence the

task of quantization becomes finding the right set Q of quantized colors along with a proper assignment
A of each pixel to a quantized color—simultaneous quantization and dithering.

A twofold minimization scheme—first optimize A for a fixed Q and then optimize Q for a fixed A—is
iterated to achieve convergence to a local minimum of the stated goal. The optimization of A is solved
by a local Iterative Conditional Mode (ICM) algorithm in Ref. [50], whereas more accurate results can be
produced with deterministic annealing [51].

86.5.2 Feedback-Based Quantization

Short of being able to reliably predict the type, severity, and location of eye-catching artifacts in the
quantized image, we may try to develop techniques to detect the artifacts, and use the findings as feedback
to modify the behavior of the quantizer to alleviate the distortion. A couple of studies have looked into a
commonly occurring type of visible artifacts, viz., the appearance of false contours in areas that have gradual
shadings before quantization. These false contours are the direct result of mapping a series of smoothly
changing colors into a low number of quantized colors that make up a staircase-like profile across a troubled
area—the effect of simultaneous contrast can make the steps look more profound than they really are.

In an extension to an aforementioned variance-based quantization method [45], a weighting mechanism
is activated after the number of clusters have reached a preset threshold (e.g., 2

3 k) to adjust the ranking of
existing clusters for further subdivision. Each candidate cluster is now given a weight that represents the
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FIGURE 86.6 Detecting and reducing false contours.

size (number of interior pixels) of a continuous region that is colored by the cluster’s representative in the
quantized image. The candidate cluster whose principal eigenvalue multiplied by its weight is the highest
is chosen for splitting. Doing so helps to eliminate large and uniformly colored regions. However, these
regions are only necessary, rather than sufficient conditions for false contours. Even when they do border
false contours, we need more than their sizes to distinguish a severe false contour from a minor one.

Another investigation involves an iterative process where findings from the last complete quantized image
are used to requantize the original for better results [52,53]. An agglomerative clustering quantizer [35]
that operates on 24-bit RGB colors is adapted to be the embedded quantization mechanism, since the usual
3-3-3 or 3-2-4 bit-cutting color-reduction technique itself causes false contours to appear when the original
is a computer-synthesized or high-quality photographic image that depicts smooth/glossy surfaces.3

The system detects false contours in the quantized image by convoluting both the original (Figure 86.6[a])
and the quantized (Figure 86.6[b]4) images with a set of 5 × 5 directional edge detectors. The detectors are

3The introduction of a random perturbation to slightly degrade the original before quantization tends to inhibit
the occurrence of false contours in the quantized image.

4The effect of simultaneous contrast is visible when the image is reproduced with good fidelity: Each uniformly
shaded band on the spherical surface in the foreground looks nonuniform—darker on the side that is adjacent to a
brighter band and brighter on the side that is adjacent to a darker band.
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first applied independently to each primary component. A magnitude value in Euclidean color distance is
then calculated for each detector (the corresponding results in the red, green, and blue directions are first
scaled by 2, 4, and 1, respectively, to make the measurement more indicative of the change in luminance),
and the highest magnitude is recorded as the magnitude of the edge element in an edge map. Next, we
construct a mask (Figure 86.6[c]) based on the edges in the original image’s edge map, and use the mask
to suppress their counterparts (i.e., the true edges) in the quantized image’s edge map (Figure 86.6[d]).
After further elimination of relatively insignificant edge elements by thresholding, the resulting edge map
for the quantized image becomes a false contour map (Figure 86.6[e]), which identifies areas in the quan-
tized image that border false contours. Each of these areas in turn identifies a set of original colors that
have been mapped to the same quantized color, and need to be better preserved during requantization
to alleviate the artifacts (Figure 86.6[f]—no error diffusion). The latter is accomplished by increasing
the importance factor (initially all original colors have equal importance) of each affected original color,
and having the quantizer restrict the growth of each cluster based on the highest importance factor of its
constituents. The increment in importance for colors in an area that needs to reduce quantization errors is
proportional to

maxedge2 × (1 + tcd/maxtcd) × (1 + pp/maxpp)

where maxedge is the magnitude of the highest edge element from the corresponding region of the false
contour map, tcd the total discrepancies between the quantized color and the colors in the area, pp the
area’s pixel population, and maxtcd and maxpp are the maximum tcd and pp, respectively, of all areas in
the image that are identified by the false contour detection process.

Figure 86.7 shows a gray-scale reproduction of a ray-traced image with photo-edited background (blue
sky, white cloud, and brown mountain), where the five model cars are in silver, green, gold, orange, and
cyan, respectively. Figure 86.8 is the gray-scale reproduction of the result of quantizing Figure 86.7 to 256

FIGURE 86.7 Gray-scale reproduction of a ray-traced color image with added background.
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FIGURE 86.8 Context-free quantization.

FIGURE 86.9 Context-sensitive quantization.

colors using the original agglomerative quantizer, where false contours are clearly visible on four of the
cars. Figure 86.9 is the gray-scale reproduction of what is produced by the feedback-based system at the
end of the 47th iteration (without error diffusion), where false contours are greatly reduced with no clear
degradation elsewhere.
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