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Preface

This book contains a selection of the contributions presented at MPF2013 in June
2013 in Chia Laguna (Sardinia), the fifth edition of a series devoted to the mathe-
matical and numerical modeling of physiological flows.

The focus of this fifth symposium was on data analysis, digital imaging, math-
ematical models, and numerical simulation of the human circulatory system as a
whole, and more specifically on cardiac mechanics and electrophysiology, heart per-
fusion, ventricular fluid dynamics, fluid-vessel wall interactions, multiscale analysis
of blood rheology in small vessels, and system integration. The contributions pre-
sented in this book provide a very interesting overview on the state of the art of some
of these topics and contain several original contributions to the field. What follows
is a short account of the most relevant contents of each chapter.

In the first chapter, written by N. Trayanova and coauthors, it is explained how
biophysically detailed simulations can clarify experimental observations and help
reveal how organ-scale arrhythmogenic phenomena emerge from pathological ef-
fects at the tissue, cell, and protein levels. This “virtual heart” approach seeks to
use experiments and simulation to quantitatively characterize the action potential
response of cardiac cells to electrical stimuli.

The construction of multiscale models of the electrical functioning of the heart
aims at representing the integrative behavior from the molecule to the entire organ
and is an essential methodological step towards clinical applications of cardiac organ
modeling. This chapter focuses on both achievements in mechanistic understanding
of heart function and dysfunction and on the trends in the computational medicine
aspect of biophysically detailed cardiac modeling applications.

Key in attaining predictive capabilities of multiscale biophysically detailed car-
diac models at the level of the organ has been the use of geometrically realistic
(typically MRI- or CT-based) models of the ventricles and the application of diffu-
sion tensor imaging to measure the anatomy, fiber, and sheet structure of the heart
in ex vivo studies. Models of cardiac function have benefitted significantly from this
revolution in medical imaging. Cardiac models have been used to gain insights into
mechanisms of arrhythmia in many disease settings and to understand how external
currents can terminate ventricular arrhythmias.
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The most frequently applied approach to model the mechanics of cardiac tissue
is based on continuum mechanics. There is, however, another possibility based on
the use of discrete mechanical approaches. In Chapter 2, written by A.V. Panfilov
and coauthors, discrete mechanical models are proposed for the simulation of the
mechanoelectrical feedback (MEF) on the process of spiral wave formation in car-
diac tissue. The two principal ways of formulating discrete mechanical models of
cardiac tissue are presented. The so-called off-lattice models, which describe cells as
not being restricted to a regular grid, allow the description of biological phenomena
such as cell division and growth without causing immediate mechanical long-range
effects. Lattice-based models are instead more appropriate for describing mechani-
cal long-range interactions such as the finite elastic deformations of the heart tissue.

MEF is the effect of the deformation of cardiac tissue on its excitation processes.
This chapter shows that MEF substantially affects the process of spiral wave ini-
tiation and discusses several new mechanisms that are found using the proposed
discrete mechanical approach.

Another study concerns the effect of structural changes in cardiac tissue on the
heart’s mechanical properties and, further, how these effects may cause cardiac ar-
rhythmia. The authors also propose and investigate how to couple a discrete mechan-
ical model to a reaction-diffusion model for continuous electrical pulse propagation.

In Chapter 3, N. Smith and co-authors investigate the mechanisms governing coro-
nary blood flow in healthy and diseased coronaries, with the aim of understanding
the relationship between the structure of the coronary vasculature and its function,
which exhibits distinct characteristics over multiple scales. More specifically, the
coupled fluid-structure model of coronary flow outlined in this chapter aims to bring
together the principal components of the system to establish an integrated frame-
work for investigating and, later, predicting myocardial perfusion on an individual-
specific basis in a physiologically relevant manner. To this end a model of flow in
macroscopic arteries [the left anterior descending (LAD), left circumflex (LCx), and
right coronary (RCA) arteries], a multicompartment Darcy model representing my-
ocardial perfusion over a range of vessel sizes, and a poroelastic model capturing the
flow phenomena in the beating heart are proposed. Wave intensity analysis and tis-
sue signal in perfusion MRI, both of which representing the current state of the art in
invasive and noninvasive cardiological exams, create a basis for clinical translation
of the present work.

In Chapter 4, written by F. Nicoud and coauthors, the geometry of the heart cav-
ities and associated wall motion are extracted from 4D medical images while the
valves of the heart are simulated by using low-order geometrical models. Equations
are solved using a fourth-order low-dissipative finite-volume scheme and a mixed
arbitrary Lagrangian-Eulerian/immersed boundary framework.

Recent technological innovations in imaging techniques have provided valuable
opportunities for direct noninvasive in vivo assessment of hemodynamics. Blood
flow velocities can be measured in vivo using phase-contrast magnetic resonance.
Medical images are then used to generate a moving patient-specific domain, in which
the blood flow equations are solved. Heart geometry movements are generated from
a 4D sequence. The authors devote specific attention to the generation of high-quality
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mesh that deforms consistently with the heart motion. On such a high-quality grid the
unsteady turbulent flow is simulated by a large eddy simulation technique in the left
heart described by ECG-gated 3D CT scan. The results show that fluid inertia makes
the flow differ from one cycle to another in the upper part of the left atrium, where
the collision of the jets issuing from the pulmonary veins makes the flow chaotic. In
the left ventricle, velocity fluctuations are reported mainly during late diastole.

In Chapter 5, G. Karniadakis and H. Lei present a comprehensive computational
framework based on the mesoscale dissipative particle dynamics (DPD) method to
investigate the three key hallmarks (heterogeneous morphology, rheology, and vaso-
occlusion) of the hematological disorder sickle cell anemia (SCA). The multiscale
nature of the DPD model allows the authors to address the different dynamic pro-
cesses over a wide range of length and time scales involved in this disease. A coarse-
grained stochastic model is built up to represent the development of the intracellular
aligned sickle hemoglobin polymer domain for sickle red blood cells (SS-RBC).
Using only the experimentally measured bulk growth rate of the sickle hemoglobin
polymer as the input, the model successfully predicted the typical sickle cell mor-
phologies without introducing further ad hoc assumptions. The inferred cell mor-
phologies enabled the authors to further explore the rheology of heterogeneous SS-
RBCs suspensions with accurate prediction of the shear viscosity for the different
cell rigidity and morphologies. In particular, their simulations of the hemodynamics
of SS-RBC suspensions suggested that the sickle/elongated SS-RBC suspension,
once in microcirculation, does not induce vaso-occlusion by itself. Moreover the
flow resistance induced by this cell group could be even lower than that induced by
other cell groups. Despite being counterintuitive, this result is consistent with recent
experimental studies on vaso-occlusion crisis.

In Chapter 6, written by A. Gizzi and coauthors, the mathematical model formula-
tion of the mechanochemical coupling in single cardiomyocytes based on an active
strain approach has been analyzed and extended to realistic three-dimensional ge-
ometries. The proposed activation mechanism is consistent with a thermodynamic
framework entailing a nonlinear coupling among calcium dynamics and local stret-
ches. The continuum approach adopted is along the line of recent bio-chemomechan-
ical models of single cells formulated in terms of active-strain hyperelasticity. The
model is capable of reproducing the propagation of calcium waves and the corre-
sponding spontaneous contraction within the cell, as well as the bending behavior,
peculiar features of a three-dimensional structure. A finite element method is used to
discretize the model equations; a set of numerical experiments comparing two- and
three-dimensional reconstructed cardiomyocyte geometries provide evidence of the
main features of the model and its ability to predict calcium propagation patterns and
contractility, in good agreement with experimental observations. Different boundary
conditions are considered to reproduce physiological constraints. The corresponding
resulting stress patterns are then analyzed.

Chapter 7, written by K.A. Mardal and O. Evju, develops a critical review on the
assumption of laminar flow in physiological flow applications. Most fluid flows in
our human body are believed to be laminar in healthy individuals, an exception being
the blood flow in the heart and aorta. On the other hand, various pathologies, such
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as atherosclerosis and aneurysms, involve anatomical alterations causing distributed
flow and possibly even turbulent flow. This may lead to an unhealthy mechanotrans-
duction (the process whereby cells convert mechanical stimuli to chemical activity,
which is vital in the remodeling that occurs in vessels), causing remodeling of the
vasculature that again increases flow disturbances. Recent research has therefore
challenged the assumption of laminar flow in such pathologies and placed the focus
on the possible role of transitional or turbulent flow.

While the laminar regime and in many applications the fully developed turbu-
lent regime are reasonably well understood from both a modeling and a numerical
point of view, the transitional regime with occasional turbulence poses additional
challenges. Modeling is difficult in particular because it is challenging to precisely
predict the onset of the turbulent spots. Instead of modeling the turbulence, one might
increase the resolution in space and time and resolve all scales of the turbulent flow
numerically, a technique called direct numerical simulation (DNS).

The authors address blood flow in cerebral aneurysms, discussing the consequen-
ces of the assumption of laminar flow, and validate the use of stabilization tech-
niques and time discretizations on numerical dissipation. They also review clinical
and biomechanical findings suggesting that transitional flow is common or at least
not unusual in several pathologies. Finally they discuss cerebral aneurysms in depth
and show that for some aneurysms transition may occur at a Reynolds number as
low as 300.

In Chapter 8, P. Zunino and coauthors investigate the effects of poroelasticity
on fluid-structure interaction in arteries. Blood flow is modeled as an incompress-
ible Newtonian fluid confined by a poroelastic wall. A two-layer model is used for
the artery, where the inner layers (the endothelium and the intima) behave as a thin
membrane modeled as a linearly elastic Koiter shell, while the outer part of the artery
(the media and adventitia) is described by the Biot model. The assumptions are made
that the membrane can transduce displacements and stresses to the artery and that it
is permeable to flow. Because of poroelasticity, the interaction of the fluid and the
structure at the interface is more complicated than in the case of a standard fluid-
structure interaction problem. The weak enforcement of interface conditions based
on Nitsche’s type mortaring techniques guarantees stability. In particular, the au-
thors are interested in qualitatively characterizing how the presence of intramural
flow coupled to the arterial wall deformation affects the displacement field as well
as the propagation of pressure waves. Their results suggest that accounting for the in-
tramural plasma filtration significantly affects the arterial wall displacement as well
as the propagation of pressure waves. However, it is observed that resorting to a
poroelastic material model is not essential to capture these effects. A simpler model
based on Darcy equations combined with approximate kinematic conditions may be
adequate to capture similar effects.

Chapter 9, written by Y. Vassilevski and coauthors, addresses the process of gen-
erating anatomical meshes of the entire human body. According to the authors, the
ideal approach for construction of an anatomically correct 3D geometric model is to
produce 3D geometry from individual medical images (CT, MRI, or other slice-like
data). This requires strong involvement of human expertise. Moreover, such data
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can be unavailable or may feature low quality due to several factors. The authors
propose an alternative approach that consists in fitting a reference anatomically cor-
rect model based on either individual data or detailed post-mortem examination or
a conventional database.

For patient-specific body meshing the authors adopt a four-stage algorithm which
relies on the assumption that the patient has the same structural body composition
as the reference VHP (the Visible Human Project) model, i.e., the same set of tis-
sues and organs. First, they apply the semiautomatic segmentation of the reference
VHP images. Second, they perform the anthropometric mapping of the reference
model to the patient dimensions. Third, for selected cross-section planes they gen-
erate a piecewise affine transformation to map the reference segmentation to the
patient segmentation on the basis of user-defined control points on both references
and patient images.

For patient-specific vascular network reconstruction the open source library
VMTK is adopted to produce vascular centerlines on the basis of CT/MRI data fol-
lowed by the automated “skeletonization” algorithm. The produced vascular graph
possesses all the necessary geometric data for hemodynamic simulation. The authors
demonstrate the applicability of their approach to predictive personalized postsurgi-
cal blood flow simulations.

Lausanne, October 2014 Alfio Quarteroni
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1

Cardiac Arrhythmias: Mechanistic Knowledge
and Innovation from Computer Models

Natalia A. Trayanova and Patrick M. Boyle

Abstract Computational simulation is increasingly recognized as an integral as-
pect of modern cardiovascular research. Realistic and biophysically detailed models
of the cardio-circulatory system can help interpret complex experimental observa-
tions, dissect underlying mechanisms, and explain emerging organ-scale phenomena
resulting from subtle changes at the tissue, cellular, and/or sub-cellular scales. This
chapter provides an overview of recent advances in the simulation of cardiac electri-
cal behavior, focusing specifically on detailed models of the initiation, perpetuation,
and termination of ventricular arrhythmias, including fibrillation. The development
and validation of such models has opened several noteworthy avenues of research,
including close scrutiny of arrhythmia dynamics in healthy and diseased hearts, dis-
section of arrhythmogenic and cardioprotective properties of specialized cardiac tis-
sue regions such as the Purkinje system, and exploration of emerging paradigms for
anti-arrhythmia treatment, such as optogenetics. Excitingly, the clinical community
is currently taking the first steps towards using patient-specific ventricular models to
stratify arrhythmia risk, personalize treatment planning, and optimize device place-
ment for difficult or unusual procedures.

1.1 Introduction

Computer modeling has emerged as a powerful platform for the investigation of
lethal heart rhythm disorders. Biophysically detailed simulations can clarify exper-
imental observations and help reveal how organ-scale arrhythmogenic phenomena
(ectopic heartbeats, conduction failure, electrical turbulence, etc.) emerge from path-
ological effects at the tissue, cell, and protein levels. The development of this ex-

N.A. Trayanova (B) · P.M. Boyle
Institute for Computational Medicine, Johns Hopkins University, 3400 N Charles St, 316 Hacker-
man Hall, Baltimore MD 21218, USA
e-mail: ntrayanova@jhu.edu; pmjboyle@jhu.edu

© Springer International Publishing Switzerland 2015
A. Quarteroni (ed.), Modeling the Heart and the Circulatory System,
MS&A 14, DOI 10.1007/978-3-319-05230-4_1
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tensive “virtual heart” methodology [88, 119, 126, 132] builds upon a strong foun-
dation of research that seeks to use experiments and simulation to quantitatively
characterize the action potential response of cardiac cells to electrical stimuli. Simu-
lated action potentials arise from the solution of coupled ordinary differential equa-
tion (ODE) systems that model transmembrane current flow through ion channels,
pumps, and exchangers as well as the movement of calcium ions between sub-cellular
domains. The governing equation for transmembrane current (Im) is:

Im = Cm
∂Vm

∂ t
+ Iion, (1.1)

where Cm is the membrane capacitance, Vm is the potential difference between the
intracellular and extracellular spaces, and Iion is the sum of all ionic currents through
membrane channels, pumps, and exchangers. Individual terms added to Iion are also
governed by differential equations; for example, the classical description of the fast
sodium current (INa) is:

INa = gNam3h(Vm −ENa) , (1.2)

where gNa is the maximal conductance (based on single channel conductance and
overall expression levels), m and h are gating variables defining channel kinetics,
and ENa is the reversal potential for sodium ions. The ODE for m is:

∂m
∂ t

= αm (1−m)−βmm =
[

0.1(25−Vm)
e0.1(25−Vm) −1

]
(1−m)−

[
4e−

Vm
18

]
m, (1.3)

where αm and βm are forward and reverse rate constants, respectively. Other gating
variables, for INa and other Iion components, are governed by equations of similar
form with parameters tuned to match experimentally observed behavior.

More recently, cardiac modeling has also progressed to the level of the tissue and
the whole heart, where the propagation of a wave of action potentials is simulated
by a reaction–diffusion partial differential equation (PDE):

∇ ·σm∇Vm = β Im, (1.4)

where σm is the tissue conductivity tensor and β is the myocyte surface area-to-
volume ratio. This PDE, known as the monodomain formulation, describes current
flow through tissue composed of myocytes that are electrically connected via low-
resistance gap junctions. Cardiac tissue has orthotropic electrical conductivities that
arise from the cellular organization of the myocardium (cardiac muscle) into fibers
and laminar sheets. Global conductivity values are obtained by combining fiber and
sheet organization with myocyte-specific local conductivity values. Current flow in
the tissue is driven by ionic exchanges across cell membranes during the myocyte
action potential. Simultaneous solution of the PDE with the set of action potential
ODEs over the tissue volume represents simulation of electrical wave propagation
in the myocardium. In certain cases, such as when external current delivery to the
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myocardium is simulated, a system of coupled PDEs is used:

∇ · (σ i +σ e)∇φe = −∇ ·σ i∇Vm − Ie (1.5)

∇ ·σ i∇Vm = −∇ ·σ i∇φe +β Im, (1.6)

where σ i and σ e are the intracellular and extracellular conductivity tensors, φe is the
extracellular potential, and Ie is the current density of extracellular stimulus. This
pair of PDEs, known as the bidomain formulation, allows for the explicit represen-
tation of current flow in the interstitial (extracellular) space outside cells. Readers
interested in a more detailed discussion of the underlying mathematics of cardiac
simulations are advised to consult the excellent introductory textbook on bioelec-
tricity by Plonsey and Barr as a starting point [93].

As documented in reviews by Fink et al. [52] and Roberts et al. [101], recent ad-
vancements in single-cell action potential modeling have produced building blocks
for constructing models of the atria [43, 56, 89], the ventricles [53, 57, 91, 121] and
the cardiac conduction system [13, 71, 108, 112, 124] with unprecedented levels of
biophysical detail and accuracy. Such developments have helped to fuel the exciting
progress made in simulating cardiac electrical behavior at the organ level, which this
review is devoted to chronicling. In general, many of the emergent, integrative be-
haviors in the heart result not only from complex interactions within a specific level
but also from feed-forward and feedback interactions that connect a broad range of
hierarchical levels of biological organization. The ability to construct multi-scale
models of the electrical functioning of the heart, representing integrative behavior
from the molecule to the entire organ, is of particular significance since it paves the
way for clinical applications of cardiac organ modeling. The review below, while
not exhaustive, focuses on both achievements in mechanistic understanding of heart
function and dysfunction, and on the trends in the computational medicine aspect of
biophysically detailed cardiac modeling applications.

1.2 Basic Cardiac Electrophysiology under Normal and
Arrhythmic Conditions

The conduction pathways that underlie normal ventricular activation are shown
schematically in Fig. 1.1. During a typical heartbeat (a sequence of events often
referred to as normal sinus rhythm), excitation originates spontaneously from a spe-
cialized tissue region in the right atrium called the sinoatrial node (SAN). Activa-
tion then propagates through the atria to the atrioventricular node (AVN), which
is normally the only electrical link between the heart’s upper and lower chambers.
Excitation then enters the His Bundle (HB), which penetrates into the ventricular
septum and divides into the Tawara branches, also called the left and right bundle
branches; activation then spreads through the Purkinje system (PS), a topologically
complex branching network of fast-conducting fibers that are electrically isolated
from underlying myocytes except at endpoints, known as Purkinje-myocardial junc-
tions (PMJs). Finally, coordinated activation of the working ventricular myocardium
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SAN

Fig. 1.1. Schematic illustration of cardiac structures involved in normal electrical activation
during a heartbeat. The right atrium and ventricle (RA and RV; blue), left atrium and ventricle
(LA and LV; red), and specialized conduction system (yellow) are highlighted. In a typical
heartbeat, electrical activity initiates spontaneously in the sinoatrial node (SAN) then prop-
agates through the RA to the atrioventricular node (AVN); excitation then spreads into the
His bundle (HB) and then the Purkinje system (branching network in LV and RV), which
is electrically isolated from ventricular myocardium except at its endpoints. Modified with
permission from [30]

is initiated by the emergence of excitatory wavefronts from the spatially distributed
PMJ network, which covers a large part of the endocardial surface.

Under certain conditions, normal sinus rhythm can be interfered with or com-
pletely subverted by aberrant sources of activation. This state, known as arrhythmia,
can be driven by spontaneous ectopic excitations originating from deranged tissue
outside the SAN or by reentrant activations, which are periodic self-sustaining waves
that rotate around organizing centers. Readers interested in a comprehensive review
of concepts and terminology related to reentrant sources and an extensive discussion
of implications for cardiac arrhythmia dynamics should consult the excellent review
recently published by Pandit and Jalife [92].
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1.3 Simulation of Cardiac Arrhythmia

1.3.1 Pro-Arrhythmic Effects of the Cardiac Conduction System

The PS plays a critical role in the coordination of ventricular excitation but it has
also been implicated as a key player in arrhythmia initiation and maintenance [36,
44,45,102]. Unfortunately, detailed analysis of PS contributions is difficult because
its spatiotemporal excitation sequence in the intact heart must be inferred from low-
amplitude electrograms [102]. Moreover, chemical ablation of the PS to isolate ar-
rhythmogenic mechanisms is non-selective, since it also destroys several layers of
endocardial cells [37]. Circumventing these limitations, computational modeling has
provided important insights on arrhythmias involving the PS that would be impossi-
ble to achieve otherwise [14,32,33]. For example, ectopic activations from the PS are
known to drive catecholaminergic polymorphic ventricular tachycardia (CPVT) [36]
but exact organ-scale mechanisms are unknown; Baher et al. [14] proposed an expla-
nation using a 2D ventricular slice model including a representation of the PS. Their
study showed that simulation of reciprocating delayed afterpolarization-induced ec-
topic activations from the left and right sides of the PS gave rise to a bidirectional
ECG pattern consistent with CPVT. Another recent study [32] used models of the
ventricles with and without the PS to clarify whether elevated endocardial activa-
tion rates observed during ventricular fibrillation (VF) were due to activity from
nearby PS terminals. Simulations revealed that although PS effects increased the lo-
cal complexity of VF, transmural rate heterogeneity was most likely caused instead
by locally increased expression of ATP-sensitive potassium channels. Finally, in ar-
rhythmias where the PS is a critical part of the reentrant pathway, simulations can
be used to guide improvements in clinical diagnosis and treatment. In some patients,
the existence of an accessory pathway (AcP) – an abnormal conductive pathway
between the atria and ventricles – creates a substrate for macroreentrant supraven-
tricular arrhythmia. Boyle et al. [33] used models with and without AcPs to identify
optimal sites for overdrive pacing, a technique used to distinguish AcP-mediated ar-
rhythmia from other tachyardias [125]. As shown in Fig. 1.2, the diagnostic value
of this maneuver was greatly improved by pacing near the suspected AcP and far
from PS endpoints. For the case where the ventricles were paced from a site near
the PS (Fig. 1.2b), the QRS complexes with AcP (left) and without (right) were in-
distinguishable; in contrast, for second case (Fig. 1.2c), where the pacing site was
located far from PS terminals, the “fused” QRS complex from the simulation with
the AcP (left) was visibly different from the purely paced case (right). These studies
demonstrate how computer modeling can bypass limitations of in vitro experiments
to provide mechanistic insights on arrhythmias involving the PS.

Thus far, arrhythmia contributions have only been studied with simple branching
network models of the PS, such as those described above [14, 32, 33]; these mod-
els adequately simulate the macroscopic functional role of the specialized tissue but
lack geometric complexity. In dissected hearts, PS fibers on the endocardium form a
distinct network but 3D imaging of these structures remains difficult [109]; as such,
another recent research trajectory has focused on the generation of anatomically re-
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a b

c

Fig. 1.2. (a) Model of the rabbit ventricles (blue) and Purkinje system (PS; red) with two
possible ventricular overdrive pacing sites for diagnosis of supraventricular tachycardia, pos-
sibly involving an accessory pathway (AcP) between the atria and the ventricles; (b) and
(c) Pseudo-ECG recordings (leads I, II, and III) during overdrive pacing from sites 1 and 2,
respectively; sites closer to the PS (e.g., site 1) are a poor choice in terms of diagnostic qual-
ity because they fail to produce distinct (“fused”) QRS complexes in simulations with (left)
versus without (right) the accessory pathway. Modified with permission from [33]

alistic PS models that mimic the physiological network, which could provide insight
on how interactions of myocardial tissue with the conduction system affect ventricu-
lar arrhythmia dynamics. Ijiri et al. used fractal growth patterns to generate networks
that qualitatively resembled the physiological PS [61]. Other groups have adapted
this technique [28,109] to construct patient-specific PS models and explore how PS
network complexity affects sinus activation sequence. It will be interesting to see
what new insights on PS-mediated arrhythmia dynamics can be gained from simu-
lations that incorporate PS models with increased geometric complexity, which are
now a possibility.

1.3.2 Mechanisms Underlying Turbulent Dynamics of Cardiac
Arrhythmia

Simulation studies of ventricular electrophysiology have made major contributions
to understanding the onset of alternans and the dynamics of VF, the most lethal
of all arrhythmias. Particularly interesting are the studies on human hearts [114],
which revealed that human VF is driven by a small number of reentrant sources,
and is thus much more organized than VF in animal hearts of comparable size; the
human action potential duration (APD) was found to be responsible for the specific
VF dynamics in the human heart. Electrical alternans, which is beat-to-beat varia-
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tion in APD, has long been recognized as a precursor to the development of VF.
Alternans can be concordant, with the entire tissue experiencing the same phase of
oscillation, or discordant, with opposite-phase regions distributed throughout the tis-
sue. The APD restitution curve slope has been viewed as a major factor both in the
onset of arrhythmias following the development of discordant alternans and in the
dynamic destabilization of reentrant waves leading to the transition of VT into VF.
In what has become known as the restitution hypothesis, flattening the APD restitu-
tion curve is postulated to inhibit alternans development and subsequent conduction
block, and prevent the onset of VF [54]. Simulation studies employing ventricular
models [41, 68, 69] have made important contributions to ascertaining the intricate
set of mechanisms by and the conditions under which steep APD restitution could
lead to VF onset. These include, but are not limited to, the role of electrotonic and
memory effects in suppressing alternans and stabilizing reentrant waves, and the
effect of heterogeneous restitution properties on human VF.

Wavefront breakup due to steep APD restitution is not the only possible cause of
electrical turbulence seen in VF; Alonso et al. recently showed that in a ventricular
model with modestly reduced excitability and APD, the organizing centers (fila-
ments) around which scroll waves rotate tend to increase in length, a phenomenon
called “negative tension” [4]. As first characterized in geometrically simple 3D mod-
els [5,51], negative tension destabilizes scroll waves, causing increased vorticity and
leading to degradation from orderly, VT-like arrhythmias into chaotic VF. Better un-
derstanding of negative filament tension could explain situations where VF can be
induced despite flat APD restitution.

1.3.3 Mediation of Arrhythmia Dynamics by
Mechanically-sensitive Ionic Currents

One of the most important mechanisms of mechanoelectric coupling in the heart
is the existence of sarcolemmal channels that are activated by mechanical stimuli.
Of these, stretch-activated channels (SACs) have long been implicated as important
contributors to the pro-arrhythmic substrate in the heart. However, uncovering the
mechanisms by which SACs contribute to ventricular arrhythmogenesis is hampered
by the lack of experimental methodologies that can record the 3D electrical and
mechanical activity simultaneously and with high spatiotemporal resolution. Thus,
computer simulations have emerged as a valuable tool to dissect the mechanisms by
which SACs contribute to the ventricular arrhythmogenic substrate.

Early whole-heart modeling attempts to address the role of SACs in the initiation
and termination of arrhythmia by a mechanical impact to the chest used pseudo-
electromechanical models, in which mechanical activity was not represented but its
effect on ventricular electrophysiology was, through SAC recruitment [74,75]. True
electromechanical models of the ventricles have been recently developed [60, 67],
aimed at investigating the effect of mechanoelectric coupling via SACs on ventric-
ular reentrant wave stability. The study by Hu [60] used an MRI-based electrome-
chanical model of the human ventricles to test the hypothesis that SAC recruitment



8 N.A. Trayanova and P.M. Boyle

affects scroll wave stability differently depending on SAC reversal potential and
conductance. The study thus provided a mechanistic insight into the change of or-
ganization of VF under abnormal stretch.

1.3.4 Virtual Pharmalogical Screening for Arrhythmogenic Drugs

Relating effects of drugs on ion channels beyond the action potential requires vir-
tual tissue or whole heart organ simulation, so that arrhythmia onset, termination
and prevention can be explored. Moreno et al. incorporated both state-dependent
Markov modeling of drug effects and full integration to the human action potential
(AP), human tissue, and finally realistic MRI image-based human heart [84]. This
is the first instance of such massive integration across the space and time scales at
play. Their study showed that the effects of flecainide and lidocaine on INa block
are globally similar in response to dynamic protocols. However, clinical trials have
shown previously that flecainide tended to be pro-arrhythmic at therapeutic doses,
while lidocaine was not. Simulation results made clear that neither simple reduction
in INa, nor single cell behavior could explain this paradox. However, at the macro-
scopic scale, the vulnerable window was greater for flecainide than for lidocaine
(especially in heart failure simulations due to shortened diastole) and reentrant ar-
rhythmia in the ventricle persisted; as discovered by examining Markov states, this
was due to the relatively slow accumulation of and recovery from use-dependent
block with flecainide.

A common approach to testing potential drugs for cardiotoxicity is to measure
hERG channel binding affinity, which indicates whether a compound will prolong
the QT interval of the ECG by blocking the rapid delayed rectifier potassium cur-
rent (IKr). Many recent studies have sought to use computer modeling to overcome
limitations of this screening methodology, such as its high rate of false positives and
false negatives. Wilhelms et al. [130] used detailed multiscale models of healthy
and ischemic hearts to examine the effects of two drugs that both fail the hERG
screening test: cisapride, which is pro-arrhythmic, and amiodarone, which is anti-
arrhythmic. Simulations revealed the amiodarone is comparatively safe because in
addition to QT prolongation (which was seen for both drugs on simulated ECGs) it
also flattened APD restitution. This study and others [35, 48, 136] demonstrate the
feasibility of predicting specific drug dose effects on the thoracic ECG. It is hoped
that this approach will lead to the development of screening systems that will acceler-
ate cardiotoxicity testing by providing improved reliability compared to the present
standard.

1.3.5 Modeling Pathological States to Identify Arrhythmogenic
Factors

Simulations have also been conducted to understand ventricular arrhythmia mech-
anisms for a variety of diseases. Models representing acute myocardial ischemia
have characterized the substrate for arrhythmogenesis during the delayed phase (also
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called phase 1B), 15 to 45 minutes following coronary artery occlusion; phase 1B is
characterized by the presence of an inexcitable midmyocardial layer between still-
viable endocardial and epicardial layers; the latter are referred to as border zones.
One study [64] showed that heterogeneous coupling between the inexcitable layer
and the border zones was pro-arrhythmic; in the case of complete decoupling, reentry
could not be induced. In subsequent work [65], the same authors showed that crit-
ical levels of sub-epicardial potassium elevation, decoupling between layers, and
border zone width were necessary to induce reentry during ischemia phase 1B. Jie et
al. [63] used a model of the beating rabbit ventricles to gain insight into the role of
electromechanical dysfunction in arrhythmogenesis during acute regional ischemia,
both in the induction of ventricular premature beats and in their subsequent degen-
eration into ventricular arrhythmia.

Computer simulations of ventricular ischemia and infarction and the correspond-
ing body surface potentials have also been used to determine how the extent of the is-
chemic zone is reflected in the 12-lead ECG. Specifically, modeling research has pro-
vided insight on how ECG signals are influenced by the size and shape of acute [127]
and healed [135] myocardial infarction. Simulations have also been employed to dis-
tinguish between diseases that have similar ECG properties but different underlying
cause, which can confound diagnosis and treatment. Potse et al. [95] used ventricu-
lar models to show that left bundle branch block and diffuse electrical uncoupling,
both of which prolong the QRS complex, can be differentiated by examining ECG
amplitude.

Uncovering arrhythmia mechanisms in genetically inherited diseases has also ben-
efited significantly from models of ventricular function [2, 46, 59, 134]. Adeniran et
al. [2] developed a Markov model of a mutant IKr channel known to cause short QT
syndrome. Whole heart simulations revealed that increased arrhythmia susceptibility
was due to a both APD abbreviation caused by the mutation and intrinsic transmu-
ral heterogeneity of IKr channel expression; when combined, these two factors gave
rise to arrhythmogenic APD dispersion. Deo et al. [46] characterized an inward rec-
tifier potassium channel (IK1) mutation from an individual with a different type of
short QT syndrome. In addition to reproducing the electrocardiographic phenotype,
ventricular simulations with the mutant channel showed that slight (20%) INa reduc-
tion dramatically increased arrhythmia inducibility, suggesting that the use of class I
anti-arrhythmic drugs must be closely monitored in the patient. Finally, Hoogendijk
et al. [59] showed that INa reduction, which is associated with Brugada syndrome,
leads to conduction block due to source-sink mismatch at microscopic tissue hetero-
geneities; simulations revealed that the severity of this effect is modulated by other
Brugada-linked mutations, such as increased transient outward potassium current
and decreased L-type calcium current.
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1.3.6 Modeling to Identify Individuals with a High Risk of
Developing Arrhythmia

Robust methods for stratifying the risk of lethal cardiac arrhythmias decrease mor-
bidity and mortality in patients with cardiovascular disease and reduce health care
costs [55]. The most widely used approaches currently used for stratifying cardiac ar-
rhythmia risk involve testing for ECG abnormalities, then using the results to identify
patients who would benefit from implantable cardioverter defibrillator (ICD) ther-
apy. However, the mechanisms underlying these ECG indices, and their relationship
to lethal arrhythmias, are not fully understood. Computational models of the heart
have made inroads in this clinical cardiology arena [17, 18, 38, 47, 66, 85, 90, 137].
Specifically, research has reported a strong correlation between increased arrhythmia
risk and the presence of microvolt T-wave alternans (MTWA) [26,58]. However, the
mechanistic basis of MTWA preceding lethal ventricular arrhythmias has been un-
der debate since MTWA is most successful in stratifying risk in patients at heart
rates < 110 bpm, where APD restitution is flat [86]. Computational models of the
left ventricular (LV) wall in combination with clinical data revealed that abnormal
intracellular calcium handling underlies alternans in action potential voltage, which
result in MTWA at heart rates < 110 bpm [17, 85]; abnormalities in intracellular
calcium have long been linked to ventricular fibrillation [80, 129]. Computational
modeling studies have also shown that under conditions of abnormal calcium dy-
namics, the T-wave alternans magnitude is enhanced by structural heterogeneities
in the myocardium [47].

Recently, a computational model of the human ventricles was used to demon-
strate that detecting instabilities in the QT interval in the clinical ECGs could pre-
dict the onset of VT, particularly in patients with acute myocardial infarction [38].
The study explored the effect of frequency of premature activation, which was con-
trolled in the model by shortening the beat-to-beat coupling interval for different
numbers of randomly-selected beats in minute-long sinus activation sequences; in-
creased frequency of premature activation was found to precede VT onset by leading
to instability in the QT interval. Therefore, screening the QT interval of the ECG for
instabilities using the novel algorithm developed by Chen and Trayanova [38, 40]
could potentially be a robust risk stratification method for patients with acute my-
ocardial infarction. Recently, the approach was successfully applied to stratify the
risk of arrhythmias in 114 patients with ICDs [39]. These studies pave the way for
executing computer simulations to determine patient-specific thresholds for arrhyth-
mia stratification ECG indices, rather than relaying on clinical guidelines based on
large and diverse patient cohorts. Another approach to arrhythmia risk stratification
that has recently gained traction is the use of computer models to predict the arrhyth-
mia outcome in patients that exhibit potentially lethal mutations in genes encoding
cardiac proteins associated with long QT syndrome [18, 66, 90, 137]. These studies
chart new directions for future genotype-based risk stratification and personalized
gene therapy.
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a b c

d e

Fig. 1.3. (a) and (b) Clinical MRI scan of an infarcted patient heart and the corresponding
segmentation; (c) 3D geometric model of the patient heart with the epicardium and the in-
farct border zone rendered semi-transparent; (d) Estimated fiber orientations; (e) Simulated
activation map of ventricular tachycardia (VT) revealing reentry on the left ventricular endo-
cardium. VT frequency is 3.05 Hz. Color bar indicates activation times. White arrow indicates
path of reentrant wave. Modified with permission from [132]

1.3.7 Clinical Applications of Simulation-based Arrhythmia
Research

Recent years have witnessed revolutionary advances in imaging, including ex vivo
structural and diffusion tensor (DT) magnetic resonance imaging (MRI) that facili-
tate acquisition of the intact structure of explanted hearts with high resolution. Lever-
aging these advances, a new generation of whole-heart image-based models with
unprecedented detail has emerged [22, 123]. Such models are currently being used,
in combination with experimental electrophysiological data, to provide better under-
standing of the role of the individual infarct region morphology in the generation and
maintenance of infarct-related VT, the most frequent clinical ventricular arrhythmia,
present in 64% of patients with ventricular rhythm disorder and in 89% of patients
with sudden cardiac death [111]. Using a model of the infarcted pig ventricles re-
constructed from ex-vivo MRI and DTMRI data, Pop et al. [94] demonstrated good
correspondence between in-silico and experimental electroanatomical voltage maps,
and successfully predicted infarct-related VT inducibility after programmed electri-
cal stimulation. Arevalo et al. [8] examined the role infarct border zone extent in ar-
rhythmogenesis, establishing that a minimum volume of remodeled tissue is needed
for VT maintenance and demonstrating that the organizing center of infarct-related
VT is located within the border zone, regardless of the pacing site from which VT
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Fig. 1.4. (a) and (b) Comparison between simulation-guided and standard electrophysio-
logical approaches for identifying ablation targets in two patients with infarct-related VTs.
Left column: propagation pathways (green) and lines of conduction block (blue) are over-
laid over VT activation maps simulated in image-based patient heart models. Middle column:
pre-ablation infarct geometry (infarct scar: orange, border zone: yellow, non-infarcted: gray)
along with ablation lesions delivered by the standard approach (red circles) and conduction
block lines as calculated from ventricular simulations. Right column: optimal ablation zones
(green shading) predicted by simulations, with narrowest isthmuses indicated (cyan); in both
cases, only a fraction of the ablation sites from the standard approach were within the pre-
dicted optimal ablation zone (yellow circles). Modified with permission from [12]

is induced. Such simulation methodology could have a major clinical impact in pre-
dicting the optimal targets for catheter ablation of infarct-related VT in individual
hearts, should the methodology be able to reconstruct patent hearts from clinical
imaging data and evaluate the 3D patterns of infarct-related VT in the patient. The
first attempts in this direction have already been made. Figure 1.3 presents a simu-
lation of arrhythmia in a patient-specific model of the infarcted ventricles; it shows
model generation from clinical MR scans of the patient heart as well as simulated
infarct-related ventricular tachycardia [132]. Figure 1.4, from the recent study by
Ashikaga et al., [12] demonstrates that non-invasive simulation prediction of opti-
mal targets for ablation of infarct-related VT could result in lesions that are much
smaller than those executed in the clinic.

Several additional studies are noteworthy. Zhu et al. [138] showed that models of
the heart can be used to carry out non-invasive localization of accessory pathways
in patients with Wolff-Parkinson-White syndrome. Ng et al. [87] demonstrated the
feasibility of using simulations to predict VT circuits. Relan et al. [99] used a hy-
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brid X-ray and MR environment to image a patient heart, which was further person-
alized with voltage measurements. The results demonstrated that the heart model
could successfully be used to assess infarct-related VT inducibility from sites not
accessible in the clinic. Further translation of ventricular simulations in the clinic
will be facilitated by the development of methodologies to estimate patient-specific
fiber orientations from clinical MRI scans [16, 122].

1.4 Simulation of Cardiac Arrhythmia Termination

Controlling the complex spatio-temporal dynamics underlying life-threatening car-
diac arrhythmias such as fibrillation is extremely difficult because of the nonlinear
interaction of excitation waves within the heterogeneous anatomical substrate. In the
absence of a better strategy, strong electrical shocks have remained the only reliable
treatment for cardiac fibrillation. Over the years, biophysically-detailed multi-scale
models of defibrillation [3, 6, 105, 107] have made major contributions to under-
standing how defibrillation shocks used in clinical practice interact with cardiac tis-
sue [7, 9, 11, 29, 50, 78, 103, 104, 115, 118]; these models have been validated by
comparing to the results of optimal mapping experiments [20, 24, 25]. Computer
modeling of whole-heart defibrillation has been instrumental in the development
of the virtual electrode polarization (VEP) theory for defibrillation. Research has
found that mechanisms for shock success or failure are multifactorial, depending
mainly on the postshock distribution of transmembrane potential as well as the tim-
ing and propagation speed of shock-induced wavefronts. Recent simulation studies
have been instrumental in understanding mechanisms of the isoelectric window that
follows defibrillation shocks with strength near the defibrillation threshold (DFT):
one of the proposed explanations for the isoelectric window duration is propaga-
tion of postshock activations in intramural excitable areas (“tunnel propagation”),
bounded by long-lasting postshock depolarization of the cardiac surfaces [10, 42].

Ventricular simulations have also ascertained the role of cardiac microstructure
in the mechanisms of defibrillation. For example, Bishop et al. applied shocks to a
very high-resolution (∼ 25 μm voxel size) image-based rabbit ventricular model;
VEPs formed at the boundaries between blood vessels and myocardium [19], which
gave rise to secondary sources that eliminated excitable gaps and led to successful
defibrillation [23]. Simulations have also contributed to understanding of the process
of defibrillation in hearts with myocardial ischemia and infarction [96,105,106], un-
covering the role of electrophysiological and structural remodeling in the failure or
success of the shock. Finally, simulations were conducted in a rabbit ventricular elec-
tromechanics model to examine vulnerability to strong shocks and defibrillation un-
der the conditions of LV dilation and determine the mechanisms by which mechani-
cal deformation may lead to increased vulnerability and elevated DFT [72,117,120].
The results suggested that ventricular geometry and the rearrangement of fiber ar-
chitecture in the deformed ventricles is responsible for the reduced defibrillation
efficacy in the dilated ventricles.
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1.4.1 Model-Based Innovation to Improve Arrhythmia Termination
by Electric Shocks

Recently, defibrillation modeling has focused on the development of new method-
ologies for low-voltage termination of lethal arrhythmias or for applying defibrilla-
tion in novel, less damaging ways. The study by Tandri et al. [113] used sustained
kilohertz-range alternating current (AC) fields for arrhythmia termination. Termi-
nation of arrhythmia with AC fields has been attempted previously in simulations
[81–83] with limited success; the frequencies used in these studies were, however,
substantially lower. The premise of the Tandri et al. study was that such fields have
been known to instantaneously and reversibly block electrical conduction in nerve
tissue. Aided by ventricular modeling, the article provided proof of the concept that
electric fields, such as those used for neural block, when applied to cardiac tissue,
similarly produce reversible block of cardiac impulse propagation and lead to suc-
cessful defibrillation; it also showed that this methodology could potentially be a
safer means for terminating life-threatening reentrant arrhythmias. Since the same
AC fields block equally well both neural and cardiac activity, the proposed defibril-
lation methodology could possibly be utilized to achieve high-voltage yet painless
defibrillation. The follow-up study by Weinberg et al. [128] provided, again using
ventricular simulations, a deeper analysis of the mechanisms that underlie the suc-
cess and failure of this novel mode of defibrillation.

Recent experimental studies have shown that applied electric fields delivering
multiple far-field stimuli at a given cycle length can terminate VT, atrial flutter, and
atrial fibrillation with less total energy than a single strong shock [73,76,79]. How-
ever, the mechanisms and full range of applications of this new mode of defibrillation
have remained poorly explored. The recent simulation study by Rantner at al. [97]
aimed to elucidate these mechanisms and to develop an optimal low-voltage defib-
rillation protocol. Based on the simulation results using a complex high-resolution
MRI-based ventricular wall model, a novel two-stage low-voltage defibrillation pro-
tocol was proposed that did not involve the delivery of the stimuli at a constant cycle
length. Instead, the first stage converted VF into VT by applying low-voltage stimuli
at instants of maximal excitable gap, capturing large tissue volume and synchroniz-
ing depolarization. The second stage was designed to terminate VT, in cases where
it persisted, by multiple low-voltage stimuli given at constant cycle lengths. The
energy required for successful defibrillation using this protocol was 57.42% of the
energy for low-voltage defibrillation when stimulating at the optimal fixed-duration
cycle length.
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1.4.2 Exploration of an Emerging Paradigm for Anti-arrhythmia
Treatment: Cardiac Optogenetics

Cardiac optogenetics is an emerging field that involves inserting light-sensitive ion
channels (opsins) in heart tissue to enable control of bioelectric behavior with il-
lumination instead of electric current [49, 131]. This technology is poised to open
a new avenue for the development of safe and effective anti-arrhythmia therapies
by enabling the evocation of spatiotemporally precise responses in targeted cells or
tissues. Abilez et al. [1] conducted ventricular simulations with a Markov model of
light-sensitive current incorporated at the cell scale in selected regions; a later study
from the same group [133] showed that differences between optically and electrically
stimulated cells were limited to mild changes in intracellular sodium and potassium
concentrations. Boyle et al. [34] developed a comprehensive whole-heart optoge-
netics simulation platform that incorporates realistic representations of opsin deliv-
ery as well as the response to illumination at the molecular, cell, tissue, and organ
scales. This framework was then used to explore how opsin delivery characteristics
determine energy requirements for optical stimulation and to identify cardiac struc-
tures that are potential pacemaking targets with low optical excitation threshold. As
shown in Fig. 1.5, optical stimulation was more efficient when cell-specific optoge-
netic targeting was used to express opsins in the PS compared to ventricular cells.
This finding is particularly noteworthy because direct pacing of the His bundle has
therapeutic advantages compared to conventional pacing for cardiac resynchroniza-
tion [15], but the practical usefulness of this maneuver is limited by high energy re-
quirements and low selectivity (i.e., electrical stimuli capture the ventricular septum
as well as the His bundle). Results from optogenetics simulations indicate that both

a b c

Fig. 1.5. Activation sequences in response to intracardiac optical stimulation (blue circles) in
a model of the rabbit ventricles and PS with simulated optogenetic delivery of light-sensitive
ion channels targeted to ventricular cells only (a) or Purkinje system (PS) cells only (b, c). The
threshold irradiance (Ee,thr) to elicit a propagating AP response by illumination was signifi-
cantly lower in cases where the PS was targeted. All activation times (tact ) are measured with
respect to the delivery of a 2 ms light pulse at 1.1×Ee,thr to the endocardial surface under
each site shown. Modified with permission from [34]
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of these shortcomings could be overcome by using a light-based approach for the
same type of stimulation. Modeling will provide valuable insights to help guide the
development of this type of low-energy solution for managing cardiac arrhythmias.

As summarized in a recent editorial [31], innovative developments in light-sensi-
tive protein engineering [77], intracardiac optics [70], and cardiac gene therapy [27,
62] suggest that such optogenetics-based arrhythmia termination therapies could be a
reality in the not-so-distant future. However, the clinical feasibility of these strategies
remains largely untested. Simulations conducted in virtual light-sensitized hearts
will provide valuable insights to help guide the development of experiments that
will lay the groundwork for therapeutic applications of cardiac optogenetics. For
example, Boyle et al. reported [31] that simulated gene delivery of the light-sensitive
protein channelrhodopsin-2 (ChR2) to a model of the diseased human atria enables
cardioversion of arrhythmias by illumination of the endocardial surface.

1.4.3 Leveraging Patient-Specific Models to Optimize Difficult
Clinical Procedures

Finally, a recent study [98] has made the first attempt towards clinical translation of
computer models of arrhythmia termination. It addressed a clinical need: ICDs with
transvenous leads often cannot be implanted in a standard manner in pediatric and
congenital heart defect (CHD) patients; currently, there is no reliable approach to
predict the optimal ICD placement in these patients. The study provided proof-of-
concept that patient-specific, biophysically detailed computer simulations of the dy-
namic process of defibrillation could be used to predict optimal ICD lead location in
these patients. A pipeline for constructing personalized, electrophysiological heart-
and-torso models from clinical MRI scans was developed and applied to a pediatric
CHD patient, and the optimal ICD placement was determined using patient-specific
simulations of defibrillation. In a patient with tricuspid valve atresia, two configu-
rations with epicardial leads were found to have the lowest defibrillation threshold.
As shown in Fig. 1.6, the optimal configurations were associated with significantly
lower defibrillation thresholds compared to alternative lead/can combinations. The
study demonstrated that by using such methodology the optimal ICD placement in
pediatric/CHD patients could be predicted computationally, which could reduce de-
fibrillation energy if the pipeline is used as part of ICD implantation planning.

1.5 Computational Complexity of Cardiac Electrophysiology
Simulations

Although it would be impractical to provide model details and runtime information
for all of the 100+ models cited in this review, we provide here a brief discussion
of computational complexity in cardiac simulations, which is an important practi-
cal consideration for the field. Many factors contribute to the overall complexity
of each individual model, including the type of activity being simulated; the scale
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Fig. 1.6. (a) Patient-specific model of heart (red) and torso with skin (pink), lungs (blue),
and bones (white); possible locations for the implantable cardioverter defibrillator (ICD) can
(purple; a–e) and lead (black; 1-6) are also superimposed; (b) Lead and can positions and
relative defibrillation thresholds (DFT) for each of the 11 ICD configurations tested in the
study are tabulated. Relative DFT values are calculated with respect to those determined for
the first two cases (top lines in table). Modified with permission from [98]

and resolution of the cardiac geometry; and, the size and characteristics of the ODE
system representing myocyte membrane kinetics. These factors and their impact on
the computational resources required vary dramatically from study to study. Simu-
lations that require application of the bidomain formulation (e.g., defibrillation stud-
ies [23, 44, 96, 97, 116]) are more time-consuming than those in which the mon-
odomain formulation is adequate. Mesh size varies dramatically depending on the
size of the model and the resolution necessary to capture details relevant to phenom-
ena of interest; this review discusses studies involving models with degrees of free-
dom (i.e., mesh nodes) ranging from hundreds of thousands [32,33,44,45,104–107]
to millions [19,21–23,96–98] and even tens of millions [95]. At the cell level, ionic
models that aim to represent different levels of detail vary considerably in terms of
the size of the associated ODE system; for example, the Courtemanche human atrial
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model has 19 equations [43], the O’Hara human ventricular model has 43 [91], and
the Sampson human Purkinje fiber model has 83 [108]. Furthermore, in cases where
these ODE systems are stiff (i.e., rate constants associated with individual state vari-
ables in the model differ dramatically), computational complexity increases because
it becomes necessary to use extremely short time steps or implement higher-order
ODE solvers (e.g., Runge-Kutta or Rosenbrock schemes) [110]. Due to these many
layers of complexity, biophysically detailed whole heart simulations tend to be ex-
tremely time consuming, even when state-of-the-art computing resources are used –
one recent review estimated that compute time generally lags real time by 3 to 4 or-
ders of magnitude (i.e., a one-second heart beat takes 1000 to 10000 seconds to
simulate) [119]. As of this writing, simulations conducted on the most powerful
supercomputer ever used to conduct high-resolution, organ-scale cardiac modeling
research still lagged real-time by 12% [100].

1.6 The Future of Computational Cardiac Electrophysiology

As this review demonstrates, the key in attaining predictive capabilities of multi-
scale biophysically-detailed cardiac models at the level of the organ has been the
use of geometrically realistic (typically MRI- or CT- based) models of the ventri-
cles, and the application of diffusion tensor DT-MRI to measure the anatomy, fiber,
and sheet structure of the heart, in cases of ex-vivo studies. This has led to a new
generation of image-based ventricular models with unprecedented structural and bio-
physical detail. Clearly, models of cardiac function have benefited significantly from
this revolution in medical imaging.

As outlined above, cardiac models have been used to gain insights into mecha-
nisms of arrhythmia in many disease settings and to understand how external currents
can terminate ventricular arrhythmias. In addition, a major thrust in computational
cardiac electrophysiology is to use models as a test bed for evaluation of new antiar-
rhythmic drugs. It is now possible to test hypotheses regarding mechanisms of drug
action on the scale of the whole heart. Multi-scale heart models of antiarrhythmic
drug interactions with ion channels have provided insights into why certain pharma-
cological interventions result in pro-arrhythmia, whereas others do not. This work
has the potential to more effectively guide the drug development pipeline – a process
that currently has high failure rates and high costs.

The use of heart models in personalized diagnosis, treatment planning, and pre-
vention of sudden cardiac death is also slowly becoming a reality, as reviewed here.
The feasibility of subject-specific modeling has been demonstrated through the use
of heart models reconstructed from clinical MRI scans. Computer simulations of the
function of the diseased heart represent a profound example of a research avenue in
the new discipline of computational medicine. Biophysically detailed models of the
heart assembled with data from clinical imaging modalities that incorporate elec-
trophysiological and structural remodeling in cardiac disease are poised to become
a first line of screening for new therapies and approaches, new diagnostic develop-
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ments, and new methods for disease prevention. Implementing patient-specific car-
diac simulations at the patient bedside could become one of the most thrilling exam-
ples of computational science and engineering approaches in translational medicine.
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Discrete Mechanical Modeling of
Mechanoelectrical Feedback in Cardiac Tissue:
Novel Mechanisms of Spiral Wave Initiation

Louis D. Weise and Alexander V. Panfilov

Abstract Discrete mechanical modeling offers an attractive alternative to contin-
uum mechanics approaches in studies of finite elastic deformations of cardiac tissue.
However, discrete mechanical approaches are not widely used in cardiac modeling.
We discuss applications of discrete mechanical modeling, and review our work on
the study of the effect of mechano-electrical feedback (MEF) on the process of spi-
ral wave formation in cardiac tissue. MEF is the effect of the deformation of cardiac
tissue on its excitation processes. It has been shown that MEF can cause cardiac ar-
rhythmias, which are often underpinned by spiral waves of excitation. We show that
MEF substantially affects the process of spiral wave initiation and discuss several
new mechanisms which we found using our discrete mechanical approach. Over-
all, we illustrate the value of discrete mechanical modeling to study MEF in cardiac
tissue.

2.1 Introduction

The heart is an organ which pumps blood through the body. The rhythmical pumping
of the heart is governed by nonlinear waves of electrical excitation. These electrical
waves form at a special pacemaking region in the heart, from where they propagate
through the cardiac muscle and initiate its contraction. The propagation of electrical
activity in the heart is possible, because cardiomyocytes are electrically coupled and
excitable. At resting state, the cardiomyocyte maintains a transmembrane potential
of around −0.1V. When the cell is depolarized above a certain threshold e.g. from an
excited neighboring cell, it generates an action potential. During the action potential
the conductivity of several ion channels changes with specific dynamics, first causing
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a rapid depolarization, followed by a plateau phase of approximately one third of a
second, before the cell returns to its resting state and becomes excitable again.

In the normal physiological situation, electrical waves of excitation originate only
from the natural pacemaker in the heart. However, abnormal sources of excitation
can emerge which cause cardiac arrhythmias. One type of abnormal source of exci-
tation is a rotating spiral wave. When a single spiral wave is present in cardiac tissue
it rotates with a high frequency compared to the pacing of the heart’s natural pace-
maker, which causes a very rapid heartbeat, an arrhythmia called tachycardia [74].
If a single spiral wave breaks up into a complex state where many wave sources are
present it results in an arrhythmia called fibrillation [47]. During ventricular fibrilla-
tion the electrical activity of the heart is disorganized and the synchronized mechan-
ical contraction stops. This causes immediate loss of consciousness and soon after
death. Understanding the mechanisms of onset of arrhythmias, and thus the initiation
of spiral waves, is one of the most important tasks in cardiology.

The contraction of a cardiac muscle cell is caused by its excitation via the process
of excitation-contraction coupling [2]. However, deformation of a cardiomyocyte is
not only caused by electrical excitation, but also feeds back on it. The most im-
mediate, and perhaps most important effect of this “mechano-electrical-feedback”
(MEF), is the activation of stretch-activated depolarizing currents (Isac) [21], which
has been shown to be able to cause excitation in the heart after mechanical stimu-
lation. Isac occur as there are special stretch-activated ion channels present in the
cardiomyocyte, and thus deformation directly affects its excitation. Two examples
of immediate MEF with clinical relevance are connected to the heart’s response to
a mechanical impact. An impact of a ball or a hockey puck on the chest of a healthy
person can cause severe arrhythmia and sudden cardiac death. This phenomenon
has been reported by clinicians at the end of the 19th century, and is known today as
commotio cordis. Another example is that a strong punch on the chest of a patient
who is in a state of severe cardiac arrhythmia may immediately restore normal car-
diac rhythm. This clinical procedure is called precordial thump. Thus, MEF is not
only able to cause arrhythmia, but also to abolish it. For a further review on MEF
see [30].

Mathematical modeling of the heart is a valuable tool in cardiology, it experienced
a rapid growth in 1962 when Denis Noble extended the Hodgkin-Huxley theory of
neuronal cell excitability [20] to cardiac cells [45]. Many models for cardiac elec-
trophysiology were developed at cell, tissue, and whole organ level. These cardiac
models have been shown to be able to reproduce experimental findings, and more
importantly, also to be able to make robust predictions, which often get experimental
confirmation. For example, computer simulations of cardiac tissue provided predic-
tions on the structure and dynamics of rotating spiral waves of electrical excitation,
that were validated afterwards in experiments [18, 50, 78].

Yet, despite the success of mathematical models of the heart’s excitation pro-
cesses, they do not include mechanical effects and thus are not directly applicable to
study MEF. Early studies on MEF did not describe the excitation-contraction cou-
pling, but assumed a constantly stretched tissue [63,66]. Later, mathematical models
started to describe electromechanical coupling, but they did not account for MEF
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effects [17, 39]. The first electromechanical models that described some MEF ef-
fects were [23, 40], but they did not account for the most immediate MEF effect of
Isac. The first electromechanical model that included MEF via Isac was from Nash
et al. [48] who coupled a low-dimensional model for cardiac excitation to a con-
tinuous mechanical model. They applied this model to study basic effects of MEF
on the heart’s functioning. They showed that MEF via Isac causes new phenom-
ena, mechanically caused pacemaking activity in a tissue that without deformation
is non-oscillatory [48], spiral drift and breakup [49]. From that point on many elec-
tromechanical models were created on various levels of complexity, where the most
sophisticated account for the heart’s anatomy and its complex excitation-contraction
coupling [26,28]. For a review on electromechanical models of the heart from single
cell to whole organ level see [64].

There are two principal ways to formulate mechanical models of cardiac tissue.
The most frequently applied approach is to model the mechanics of cardiac tissue in
terms of continuum mechanics [24]. It is a challenging problem to implement a con-
tinuum mechanics approach in a computationally efficient manner, especially with
high spatio-temporal resolution. There is also a possibility to describe cardiac tissue
using discrete mechanical approaches. Compared to continuous methods these dis-
crete approaches are not often used in cardiac modeling; however, they have some
advantages. In this text we will discuss the application of discrete mechanical ap-
proaches in cardiac modeling. In the main part of this text we will focus on our
discrete mechanical modeling approach that we developed to study basic effects of
MEF. This approach couples a lattice-based discrete mechanical model to models of
cardiac excitation and contraction [68, 71].

We applied our discrete mechanical model to systematically study mechanisms
of spiral wave initiation. Using the discrete mechanical approach we found that MEF
substantially affects the process of spiral wave formation causing novel mechanisms
for its initiation [69, 70]. Overall, in this text we demonstrate the value of discrete
mechanical modeling of cardiac tissue to study MEF.

2.2 Discrete Mechanical Modeling of Cardiac Tissue

Cardiac tissue is a complex material, it is non-homogeneous and anisotropic, as it
consists of interconnected sheets of muscle fibers organized by extracellular matrix
[33, 39, 67]. Furthermore, the cardiac muscle consists not only of cardiomyocytes
which take up approximately 75% of the heart’s volume, but also of other cell types
with their own characteristic mechanical properties.

The most common approach for modeling the elastic deformations of the heart is
to apply the theory of continuum mechanics, and to use finite element techniques to
solve the equations [24,25]. In that approach the passive elastic properties of the car-
diac tissue is given by phenomenological macroscopic constitutive relations between
stress and strain. Often, cardiac tissue is assumed to be an hyperelastic material when
constitutive relations are energy density functions of strain components. In simpli-
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fied models the energy density function can e.g. be expressed by the Mooney-Rivlin
material relation [40, 48, 49], which was formulated for rubber-like materials. More
accurate hyperelastic material relations for cardiac tissue were proposed, for exam-
ple by the Pole-zero energy density function of Hunter et al. [23] and the material
relation of Guccione et al. [16].

Continuum mechanics is widely used in mechanical engineering; however, its ap-
plication to cardiac tissue is not straightforward. Cardiac tissue is not a continuous
material, but an inherently discrete medium. Continuous models for cardiac mechan-
ics do not account for individual structural components, and thus are difficult to use
to include structural changes that are known to happen in cardiac disease [13]. In
general, the main volume fraction of cardiac tissue is built up by cardiomyocytes
which are approximately 100 microns long and interconnected to a network by var-
ious mechanical junctions organised by extracellular matrix. It is therefore a natural
approach to model cardiac tissue as a structure of discrete elements. In modeling the
electrical activity of the heart, this approach is normally used, properties of individ-
ual cells and their locations directly come into the equations for electrical excitation.
There are experimental techniques to measure the mechanical properties of isolated
cardiomyocytes [5, 77] which can be used to built up a mechanical model for the
cardiac tissue. However, also the extracellular matrix has a substantial effect on the
heart’s mechanical properties [13]. There are attempts to measure contributions and
the structure of components of the extracellular matrix on mechanical properties, and
they can also be modeled as discrete elements [13]. There are still many problems
to be solved until a mechanical model for the heart based on properties of discrete
elements and tissue structures will be available.

Discrete mechanical modeling in general is used in various fields, for example
to describe solids that discontinuously deform such as in fracture and plastic defor-
mation processes [46, 55]. It is also used to model mechanical properties of tissues.
There are different classes of discrete mechanical tissue models. A class named off-
lattice models describes cells as not being restricted to a regular grid, and to directly
interact with neighboring cells only. This model type allows to describe biological
phenomena such as growth, cell division and growth without causing immediate
mechanical long-range effects [53]. Another class of discrete tissue model form the
lattice-based models in which cells are constrained to a regular grid. Lattice-based
models are considered not to be applicable to describe the above mentioned rel-
atively slow biological processes (e.g. growth, cell motion) [53]. However, these
models are good to describe mechanical long-range interactions such as the finite
elastic deformations of the heart tissue. The class of lattice-based discrete models is
computationally efficient, and therefore often applied in various fields such as com-
puter graphics [41], tissue visualization [12], and also for developing mechanical
models of anisotropic materials [4].

To our knowledge, the first applications of lattice-based discrete mechanical mod-
els of cardiac tissue were done by the group of Olaf Dössel. This group developed
three-dimensional lattice-based discrete models for the heart [35–37]. These models
describe the incompressibility and anisotropy of cardiac tissue by using a method
introduced by Bourguignon et al. [4]. They also extended their discrete modeling
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approach to perfectly describe advanced hyperelastic material relations such as the
Pole-zero or the Guccione law [14].

The papers mentioned above show that lattice-based discrete mechanical mod-
els can reproduce known constitutive laws and follow incompressibility constraints,
thus they can be used for simulations similar to those using continuous models. How-
ever, these models do not provide a direct relation from individual cell mechanical
properties and tissue structure to macroscopic deformation laws. This problem on
how one can obtain macroscopic constitutive laws from microscopic properties was
investigated in a series of papers by Raoult, Caillerie and coauthors [7, 8]. In this
work they considered a regular network of cardiac myocytes as a model for cardiac
tissue. The individual cells were represented as elastic bars with prescribed local con-
stitutive laws. The group applied homogenization techniques on the tissue structure
and properties of individual elements to derive macroscopic constitutive relations for
the tissue. Unfortunately, this approach has not been further extended yet to include
measured properties of the individual cardiac cells.

We believe that we will see a lot of developments in the discrete modeling ap-
proach for cardiac applications in the future, both on the relation of tissue structure
to constitutive relations, and on the direct modeling of cardiac tissue as a discrete
mechanical system.

In the next section we will explain the setting up of a discrete lattice-based model
for cardiac tissue to study basic effects of MEF. Then we will present the results we
achieved with this model to study which influence MEF has on basic mechanisms
of spiral wave formation.

2.3 A Discrete Mechanical Model for Cardiac Tissue

Our electromechanical model for cardiac tissue combines models for cardiac excita-
tion and excitation-contraction coupling with a discrete mechanical model. Here we
explain the model setup using generic models for cardiac excitation and contraction-
coupling, that were also applied in [48]. The same approach can easily be extended to
other models for cardiac excitation and contraction. For example, in [71] we coupled
the discrete mechanical model to an detailed ionic model for cardiac excitability of
Tusscher et al. [61,62], and a biophysical model for cardiac contraction of Niederer
et al. [42, 44].

The Aliev-Panfilov model [1] provides a low-dimensional description of excita-
tion for cardiac cells. The equations of this model are

∂u
∂ t

= Δu− ku(u−a)(u−1)−uv− Is (2.1)

∂v
∂ t

= ε(u)(ku− v), (2.2)

where u is represents the transmembrane potential, and v is the conductance of a slow
repolarizing current. The term −ku(u− a)(u− 1) describes the fast excitation pro-
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cess of the action potential. The parameter a = 0.08 describes the activation thresh-
old, and k = 8 is the magnitude of the transmembrane current. ε(u) is a step func-
tion which sets the time scale of the recovery and the contraction process (ε(u) = 1
for u < 0.05, and ε(u) = 0.1 for u ≥ 0.05). A repolarizing current is given by −uv.
The term Is is a generic description of Isac which we describe later in Eq. (2.9). The
term Δu models the propagation of electrical excitation through the tissue [27]. In a
non-deforming medium Eqs. (2.1), (2.2) describe non-oscillatory cardiac tissue.

During the action potential of a cell its contraction is initiated by an increase
in calcium concentration. We describe the excitation-contraction coupling using a
generic model

∂Ta

∂ t
= ε(u)(kT u−Ta), (2.3)

where Ta modulates active contraction force given by Eq. (2.5) to mass points of the
medium. The parameter kT = 1.5 controls the rate of active force development. The
Eq. (2.3) was also used in the continuous mechanical model [48] to account for the
active stress.

To model the mechanical part of the model we use a two-dimensional mass-spring
lattice that is illustrated in Fig. 2.1a. This forms an ideal crystal lattice whose unit cell
is shown in Fig. 2.1b. Each mass point is connected to its neighbouring mass points
by springs that follow Hooke’s law. Horizontal and vertical springs produce active
contraction forces. The resting length of a horizontal and vertical spring is r0, and it
is
√

2r0 for a diagonal spring. As in a previous continuous mechanical model [48]
we assume elastostatics. Therefore, the stationary deformations corresponding to
each given configuration of active forces and boundary conditions are computed. At
steady state, the total force at each node is zero. If the configuration of the active
forces is changed the mass points will be deformed to the new corresponding sta-
tionary configuration. For efficient computations of this system, viscous forces are
added to dampen possible oscillations. Figure 2.1c demonstrates main forces and the
displacements of active and passive lattice springs connecting the mass point � to

a                                                                         b                                                                 c

Fig. 2.1. (a) Coupled mechanical and electrical mesh of the model. The mass points are in-
dicated as large black dots. The finite difference points to solve Eqs. (2.1)–(2.3), (2.9) are
indicated as small white dots. The lattice springs are indicated as black lines; (b) Unit cell
of the lattice. Mass point � and its horizontal and vertical neighbors are connected with ac-
tive springs. Diagonal neighbors are connected with passive springs. Springs are indicated
by zigzagging lines, where fat lines represent active springs, and thin lines passive springs.
Dotted contours indicate insets; (c) Vectors used in Eqs. (2.4)–(2.6). From [68]
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the mass points � and �. The positions of the mass points are given by x1, x2, x3,
with the corresponding velocities v1, v2 and v3. Mass points � and � are connected
by an active spring. The force generated by this spring on the mass points is given by

f1a = −f2a =

[
c

(‖l12‖− r0

r0

)
−d

(
l̇12 · l12

)
‖l12‖

]
l12

‖l12‖ +F12, (2.4)

where l12 = x2 − x1 is a vector along an active spring, l̇12 = v2 − v1 is the time
derivative of the spring vector l12, parameters c = 1 and d = 30 (in mechanical in-
homogeneity: d = 10× c) are the stiffness and damping constants. The active force
between mass points � and � is

F12 = p

(
Ta(1)+Ta(2)

2

)
l12

‖l12‖ , (2.5)

where Ta(i) is the value of variable Ta from Eq. (2.3) at the ith mass point. Parameter
p is a scaling factor which we apply to model mechanical heterogeneity in active
tension development (p = 1 in normal tissue). Mass points � and � are connected
by a passive spring. The force generated by this spring is given by

f1p = −f3p = 1/2

[
c

(
‖l13‖−

√
2r0√

2r0

)
−d

(
l̇13 · l13

)
‖l13‖

]
l13

‖l13‖ . (2.6)

Each mass point follows Newton’s law of motion:

N

∑
α=1

fiα = mẍi, (2.7)

where N is the number of springs connected to mass point i with mass m,
and α indicates connected springs. By solving Eq. (2.7) to mechanical equilib-

rium (
N
∑
α=1

fiα = 0), the steady state configuration of the lattice for each given dis-

tribution of active forces generated by the excitation processes is found. Note that
the “mechanical” time variable τ , damping parameter d and the mass of a node m = 1
have no physical relevance in this model, but can be chosen for optimal efficiency
of computations. Here we did not aim at developing a model where mass points,
springs and mesh structure represent a direct biophysical property, but focussed on
creating a computationally efficient, generic model for cardiac tissue with given ma-
terial properties. However, our approach can be extended in that aspect, to include
the parameters with a direct physical meaning.

It is possible to formulate the elastic properties of the discrete mechanical model
model in terms of an equivalent continuous material. The mass-lattice structure
(Fig. 2.1b) in this paper was extensively studied for various aspects of elasticity. In
most cases the mass-lattice model was studied under conditions of small deforma-
tions (linear elasticity). Schargott et al. showed that if the stiffness ratio of diagonal
to active springs was 1/2, the lattice would be macroscopically isotropic for small
deformations [57]. We apply this stiffness ratio in our model. In this case the consti-
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tutive relations simplify to the generalized Hooke’s law [57]. We demonstrated in a
numerical study that the model can be considered in good approximation as isotropic
for deformations occurring during our simulations. Krivtsov et al. explained in [32],
that even for non-linear deformations, the elastic properties of our model can be
approximated by a generalization of Hooke’s law for finite deformations (Seth ma-
terial) [58].

σi j = 2μEi j +λ (trE)δi j, (2.8)

where σi j are elements of Cauchy’s stress tensor, Ei j elements Almansi’s finite strain
tensor E, δi j is the Kronecker delta and λ and μ are the Lamé coefficients, which
in this case are equal to each other [57]. The two-dimensional Young’s modulus in
terms of the spring stiffness is E2D = 4/3c, and Poisson’s ratio ν2D = 1/3 [57].

Experimental studies showed that the direct physiological influence of contrac-
tion on cardiac tissue is given by depolarising stretch-activated current Isac through
stretch activated channels [30]. Experimental studies have shown, that these chan-
nels are activated instantaneously with mechanical stretch and follow a linear current-
voltage relationship [22,76]. Linear models have been proposed for Isac [63,66], and
are often used in electromechanical models for cardiac tissue [48,49]. Therefore we
use a very similar term of a generic stretch-activated current

Is = Gs(
√

A−1)(u−Es) , (2.9)

where Gs and Es are the maximal conductance and reversal potential of the stretch
activated channels. We also follow [48, 49], and set Es = 1. Variable A is the sur-
face area of a quadrilateral formed by 4 neighboring mass points (see Fig. 2.1a)
normalized using the reference surface area of this quadrilateral in undeformed
state (r2

0 s.u.2). The stretch activated current is active only if A > 1 (stretch). We
vary Gs in different simulations.

2.3.1 Numerical Methods

The model was solved with a hybrid integration approach which combines an explicit
Euler method for the electrical system (Eqs. (2.1)–(2.3)) with a Verlet integration
scheme [65] to solve the mechanical problem (Eqs. (2.4)–(2.7)). Using the Verlet
method the position of a mass point i for the integration time τ+mτ is computed by

xi(τ +mτ) = 2xi(τ)−xi(τ−mτ)+ ẍi(τ)× (mτ)2,

where mτ = 0.01 is the Verlet integration time step and τ is the integration time.
The acceleration of a mass point ẍi(τ) is given by Eq. (2.7). At each time step the
velocities of the mass points are calculated by

vi(τ) =
xi(τ)−xi(τ−mτ)

mτ
.

The solution procedure of the model is as follows: following a time integration step
for the electrical system, the equations of the mechanical system are solved for all
springs until the sum of forces for each mass point is under the convergence thresh-
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old 2e−5 (dimensionless force units [f.u.]). Euler computations were performed on
a quadratic deforming grid of finite difference points using no-flux boundary con-
ditions. We used for all simulations an Euler integration time step of ht = 0.001
(dimensionless time units [t.u.]) and a space integration step of hx = hy = 0.3 (di-
mensionless space units [s.u.]). During the simulations the boundaries of the medium
were fixed in space. This approach was applied in similar models [48, 49]. This as-
sumption corresponds to the isometric contraction in tissue experiments, and is sim-
ilar to the isovolumic phases of the cardiac cycle at the whole organ level.

2.4 Mechanisms of Spiral Wave Initiation Due to MEF

In this section we present results on our study on how MEF affects the formation
of spiral waves in cardiac tissue. However, before we do it we will give some back-
ground information on classical mechanisms of spiral wave initiation. Here we men-
tion only two classical mechanisms of spiral wave initiation, for more mechanisms
see [52].

Two classical mechanisms for the initiation of spiral waves are due to hetero-
geneities in the refractory period in the tissue and the so-called vulnerability phe-
nomenon. The mechanism of spiral formation caused by an inhomogeneity in re-
fractory period was found by Krinsky [31]. We illustrate it in Fig. 2.2. To explain
this mechanism let us consider a thin slice of cardiac tissue with an inhomogeneity
in which the refractory period Rinh is longer than in the rest of the tissue (R < Rinh).
Let us consider two plain waves (Fig. 2.2a). In this situation wave break occurs,
when the coupling interval T lies within the refractory periods of the inhomogene-
ity and the bulk medium (R < T < Rinh). In this situation the second wave can not
propagate into the inhomogeneous region as it is still refractory from the excitation

a                                              b                                            c

Fig. 2.2. Spiral wave formation due to inhomogeneity in refractory period (schematic). The
inhomogeneity with longer refractory period (Rinh) than the surrounding medium (R) is
shown as a rectangle. The wave front is indicated as black, refractory wave back is indi-
cated grey. Propagation direction of waves is upwards. (a) Two connected waves propagate
through the medium, the medium in the inhomogeneity is still refractory from the excitation
from the first wave, (b) and causes a wave break of a second wave (c), which results in two
counter-rotating spiral waves
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a                                                  b                                                        c

Fig. 2.3. Spiral wave formation due to classical vulnerability. (a) A stimulus “S2” is applied
in the vulnerable zone of a traveling wave “S1”; (b) The resulting wave from the S2 stimulus
is able to propagate away from the S1 wave, but is blocked towards it because of the refractory
tail of the S1 wave; (c) The unidirectionally blocked S2 wave forms a pair of counter-rotating
spiral waves System size was 60 s.u.

of the previous wave (Fig. 2.2b). After some while, the two wave fronts, which re-
sulted from the wave break can enter the previously inexcitable region, and form
two counter-rotating spiral waves (Fig. 2.2c).

Another mechanism for spiral wave formation is connected to the vulnerability
phenomenon [59], which has been described in 1946 by Wiener and Rosenblueth in
a modeling study [73], and validated experimentally 1988 by Chen et al. [9]. In this
protocol a “secondary stimulus” (S2) is applied in the back of a previously initiated
“S1 wave” (Fig. 2.3a). If S2 is applied at the boundary of the refractory tail of the S1
wave, then its wave response can be blocked towards the S1 wave (Fig. 2.3b). As a
result a pair of counter-rotating spiral waves occurs (Fig. 2.3c).

It is important to realize that the vulnerability phenomenon can contribute to the
onset of spiral activity during normal heart activity, because S1 waves are naturally
present. Thus, a critically timed external S2 stimulus may cause cardiac arrhythmias.
Note that due to MEF via Isac such a scenario is also possible when the S2 stimulus is
due to a mechanical impact, which may be the mechanism for commotio cordis [34].

2.4.1 Mechanically Caused Vulnerability

Above we explained the classical vulnerability phenomenon using our model with-
out considering deformations. To study how MEF due to Isac affects the vulnerable
zone we performed S1S2 experiment in our full, deforming model. For most S2 stim-
ulation positions and strengths we found similar results as for the undeformed case,
the classical vulnerable zone is present, and only the parametric regime is slightly
altered. However, we found a new type of vulnerability for longer S1S2 coupling
intervals which is illustrated in Fig. 2.4. As in the previous example, where we illus-
trated classical vulnerability, we applied an S2 stimulus in the back of a previously
initiated wave, which results in a wave response. However, in this case unidirec-
tional block takes place not in forward but in backward direction which results in
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a                                               b                                              c

Fig. 2.4. Spiral wave formation due to mechanically caused vulnerability. (a) A S2 stimulus
is applied in the mechanically caused vulnerable zone; (b) Unidirectional block due to me-
chanically caused vulnerability occurs opposite compared to classical vulnerability; (c) A pair
of counter-rotating spiral waves emerges which rotates oppositely compared to the classical
mechanism shown in Fig. 2.3. System size was 60 s.u. and Gs = 2.6. From [69]

the onset of a counter-rotating pair of spiral waves rotating oppositely compared to
the classical vulnerability (compare Figs. 2.3 and 2.4).

To understand this new mechanism one must note that a depolarizing current
has two effects on the excitability of a cardiomyocyte. First, it has an immediate
effect of increasing the excitability by bringing it closer to a threshold of critical
transmembrane potential which triggers an action potential. However, in addition
it has a slow effect of decreasing its excitability by the so-called accommodation
effect, which happens due to a closing of sodium ion channels. In our generic model
accommodation is respected by the slow variable v (see Eq. (2.2)).

We illustrate the influence of deformation on the wave back in Fig. 2.5. We can
see from this figure, that in absence of deformation transmembrane potential u mono-
tonically decreases to zero (red line). However, in the presence of deformation, we
see a transient increase of the transmembrane potential u (black line for 33 s.u. <
position < 40 s.u.) which is a result of Is. This makes the tissue more excitable.
Around the local maximum of transmembrane potential u the medium is most ex-
citable and less excitable around it. We illustrate the mechanically caused vulnerable
zone in Figure 2.5 as the region within dotted lines. Right from the dotted region the
excitability decreases due to the recovery tail of the S1 wave (classical vulnerabil-
ity), whereas left from the dotted region it decreases because of an accumulation
of variable v (mechanically caused vulnerability). Thus, a S2 wave response within
the mechanically caused vulnerable zone may travel along with the S1 wave, and be
blocked from propagation away from it forming a pair of rotating spiral waves (see
Fig. 2.4).

It is interesting to note here that the accommodation effect has been studied in
electrophysiology since 1936 [19, 20]. However, the connection of accommodation
to deformation became clear only recently in a study of Panfilov et al. [49]. In this
study it was shown that deformation can cause accommodation via Isac, and that it
can result in a block of waves during spiral wave rotation.
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We gave a short explanation of the emergence of the mechanically caused vul-
nerability. For a more detailed explanation see [69].

2.4.1.1 Self-generation of Spiral Waves

Above we reported that deformation can cause a new vulnerable zone in which a
counter-rotating pair of spiral waves can be initiated via the S1S2 protocol for longer
S1S2 coupling intervals compared to the classical vulnerability. We found that this
new mechanism of spiral wave formation occurs in this numerical experiment in a
small region of S2 stimulation strengths. However, it may still be an important mech-
anisms as the new vulnerable zone is located at the position of highest excitability,
and a wave may itself cause an S2 stimulus due to its mechanical activity [48]. Thus,
a wave itself can induce spiral wave activity. Indeed, we found that this phenomenon
of “self-generation” of spiral waves occurs in many situations. We illustrate this phe-
nomenon in the following examples.

The first example is connected to a phenomenon that can occur in real tissue,
is the diffraction of a travelling wave at an isthmus. This phenomenon has been
studied extensively in cardiac electrophysiology [6]. We found that the induction of
curvature by such a diffraction event can cause spiral wave self-generation in our
model via the new mechanism. We illustrate this phenomenon in Fig. 2.6. A plain
wave � is initiated at a border of a thin slice of tissue (Fig. 2.6a). The wave �
is then diffracted at an isthmus (Fig. 2.6b). The curvature of wave � causes high
stretch in the location of the highest excitability which initiates an additional wave �
(Fig. 2.6c). The new wave � is blocked due to the mechanically caused vulnerability

Fig. 2.5. Effect of deformation on the vulnerable zone. Transmembrane potential u is shown
in the back of the S1 waves from systems shown in Figs. 2.4 and 2.3 immediately prior the
S2 stimulus (along horizontal center). The mechanically caused vulnerable zone lies within
dotted lines. Data is from systems shown in Figs. 2.3 and 2.4.
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a                                                 b                                                c

d                                                e                                                 f

Fig. 2.6. Spiral wave formation following a wave diffraction at an isthmus. (a) A plain wave
propagates towards an isthmus (t = 5.5 t.u.); (b) Plain wave is diffracted at the isthmus (t =
20.5 t.u.); (c) Diffracted wave produces stretch activated current that initiates a new wave
(t = 37.5 t.u.); (d) Initiated wave is unidirectionally blocked in the mechanically induced
vulnerable zone of wave (t = 41.5 t.u.); (e) New wave forms a counter-rotating spiral wave
pair (50.5 t.u.); (f) Spiral wave pair after 1.5 rotations (75.5 t.u.). System size 42.0 s.u. and
Gs = 2.0. Stiffness of the isthmus (contoured red) is twofold the stiffness in medium (2× c).
From [69]

opposite to the propagation of wave � (Fig. 2.6d). A pair of counter-rotating spiral
waves forms via the new mechanism (Fig. 2.6e,f).

Another more complex scenario for mechanical spiral wave initiation is presented
in Fig. 2.7. In this example a wave � propagates around a non-conducting obstacle
(Fig. 2.7a). The obstacle curves the wave � which causes high stretch in the tissue
initiating a new wave � (Fig. 2.7b) due to Is. Note that for this first mechanically
caused wave the mechanical stimulus is strong, so that no spiral is initiated but a
connected wave (Fig. 2.7b). This new wave � itself is curved and initiates another
wave � (Fig. 2.7c,d). However, this new wave is caused by a weaker mechanical
stimulus close above threshold, so that � is unidirectionally blocked by the mechan-
ically caused vulnerability of wave � (Fig. 2.7e). In result a rotating spiral wave is
initiated (Fig. 2.7f).

In all the examples shown above the formation of new spiral waves is caused by
mechanically induced “close-above-threshold” in the location of maximal excitabil-
ity, thus in the areas prone to the new mechanism of spiral wave formation.
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a                                                     b                                            c

d                                                      e                                            f

Fig. 2.7. Spiral wave formation following a wave deflection. (a) A plain wave propagates
around a non-conducting static block (t = 8.0 t.u.); (b) A new wave is initiated due to Is

(t = 41.8 t.u.); (c) New Wave propagates around non-conducting static block (t = 53.8 t.u.);
(d) A third sequent wave is caused which is unidirectionally blocked by the mechanically
caused vulnerable zone of previous wave (t = 71.8 t.u.); (e) A rotating spiral wave forms
(t = 78.0 t.u.); (f) Rotating spiral wave after one rotation (t = 100.0 t.u.). System size is
60 s.u. and Gs = 2.0. The static block is contoured green. From [69]

2.4.2 Mechanical Heterogeneity

In the beginning of this section we stated that electrical heterogeneity is known to be
an important determinant for the initiation of spiral waves. However, many forms of
cardiac decease cause also mechanical heterogeneity. Despite this fact, basic mech-
anisms of how mechanical inhomogeneity can cause spiral wave activity have not
systematically been studied yet. Therefore, we used our model to study basic mech-
anisms of spiral wave formation due to mechanical heterogeneity. For this study we
considered a thin piece of cardiac tissue where a local mechanical inhomogeneity is
present. This local inhomogeneity possesses different active and passive mechani-
cal properties compared to the rest of the tissue. In this system we initiated a wave
at one border. We found that self-sustaining spiral wave patterning emerges for a
wide space of mechanical parameters of the inhomogeneity, and found five basic
mechanisms involved. Here, we will briefly explain the mechanisms. For a detailed
presentation of this research see [70].

In Fig. 2.8 we illustrate mechanisms of spiral formation due to mechanical het-
erogeneity in our model. In Fig. 2.8 I we see that the initial wave � causes a wave �
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Fig. 2.8. Spiral wave formation caused by a mechanical inhomogeneity. The mechanical pa-
rameters (p,c) in the inhomogeneity are I: (1.00,0.51), II: (0.00,0.75), III: (0.50,1.20), IV’:
(0.25,0.68), and IV”: (0.25,0.92). System size was 60 s.u., and Gs = 2.5. Waves are labeled
by order of appearance. From [70]

in the inhomogeneity at time 36 t.u.. This occurs because the stiffness of the tissue
is reduced in the inhomogeneity which causes high stretch and Is, and the tissue is
most excitable there due to the effect of mechanically caused vulnerability. The new
wave � is then unidirectionally blocked by the mechanically caused vulnerable zone.
This results in a pair of counter-rotating spiral waves (Fig. 2.8 I, 48 t.u., 60 t.u.).
Note the similarity of this mechanism to the mechanism shown in the previous sec-
tion, where spiral waves also form due to an S2 stimulus in the mechanically caused
vulnerable zone. However, here this S2 stimulus occurs because of the mechanical
inhomogeneity.

In Fig. 2.8 II we illustrate a mechanism where the mechanical inhomogeneity can
causes an S2 stimulus in the classical vulnerable zone of a wave �. However, we
found this mechanism to appear in a very small parametric regime compared to the
other mechanisms. Note that here the S2 stimulus which causes spiral activity did
not occur to the initial wave, but to a sequent wave, after the initial wave � waves �
and � are formed, but they do not cause spirals.
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In Fig. 2.8 III we illustrate another mechanism of spiral wave formation due to
mechanical heterogeneity. The increased stretch in the inhomogeneity causes ac-
commodation of the tissue, it becomes temporarily inexcitable, and thus causes a
break of the traveling wave front at time 24 t.u.. After some while, the tissue in
the inhomogeneity becomes excitable again, and the two waves that resulted from
the wave break can propagate into the tissue causing a counter-rotating pair of spi-
ral waves (Fig. 2.8 III, 32 t.u., 42 t.u., 48 t.u.). Note that this mechanism was first
shown in [49] where break occurs to a spiral wave, and also in whole heart whole
heart models in [26, 28].

In Fig. 2.8 IV’ we illustrate a similar mechanism, where wave break also occurs
in the inhomogeneity. However, here it emerges because of an incomplete excita-
tion in the inhomogeneity. At time 26 t.u. we see a pulse forming in the inhomo-
geneity; yet, it can not propagate further. A wave � breaks at this region which is
temporarily inexcitable (29.2 t.u.,33.0 t.u.). It results in a pair of counter-rotating
spiral waves (48.0 t.u.).

Note the similarity of the mechanisms III and IV’ compared to the mechanism we
illustrated in Fig. 2.2. In both mechanisms spiral waves form after a traveling wave
breaks. However, in Fig. 2.8 wave break occurred because of an inhomogeneity in
refractory period, whereas here it is because of a mechanical inhomogeneity.

In Fig. 2.8 IV” we illustrate another mechanism that is caused by an incom-
plete excitation in the inhomogeneity. Here, a wave � forms in the inhomogeneity
(28 t.u.), and it can exit the inhomogeneity partially (41 t.u.), which causes pairs of
spiral waves (48 t.u.).

2.5 Discussion

The aim of this text was to demonstrate the value of discrete mechanical model-
ing to study MEF in cardiac tissue. After a small section where we discussed the
discrete mechanical modeling approach for cardiac tissue, we explained the setup
of our lattice-based discrete mechanical model to study MEF in cardiac tissue, and
showed novel mechanisms of spiral wave formation that emerge in the model as a
consequence of MEF.

The discrete mechanical modeling of cardiac tissue is an attractive approach. It
may be possible to study the effect of structural changes in cardiac tissue on the
heart’s mechanical properties, and further how these effects may cause cardiac ar-
rhythmia. We believe such relationships are likely to be found as our studies showed
that mechanical inhomogeneities may well underly basic mechanisms for spiral wave
formation.

It may also be possible to use discrete mechanical modeling of cardiac tissue
as a modeling setup to include patient specific data. Biopsies in different regions
of the heart of a patient may provide properties of discrete elements and the tissue
structures. First steps on incorporating measured cell mechanical properties into a
discrete mechanical model have been done in [38]. Moreover, the computational
efficiency of discrete mechanical models may allow such patient-specific modeling
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studies on “clinical timescales”, which means that a model is providing modeling
results within “time critical needs of clinical scenarios” [43].

In this review we explained a discrete mechanical model for cardiac tissue in
which we coupled a discrete mechanical model to a reaction-diffusion model for con-
tinuous electrical pulse propagation. Most frequently used models for cardiac tissue
make the assumption of continuity in wave propagation, when the tissue is described
as a regular arrangement of excitable units connected by resistances [10]. This as-
sumption of continuous propagation is often legitimated by a close match between
experimental and theoretical results on important macroscopic properties [29]. How-
ever, cardiac tissue has a granular structure built up of myocytes, extracellular tissue
and other cell types, and therefore electrical pulse propagation in cardiac tissue in-
teracts with structural boundaries. In fact, discontinuous electrical pulse propagation
has been shown to be able to substantially affect mechanisms of arrhythmias [29].
It would be interesting to add discrete description of electrical activity to our elec-
tromechanical model. Such a full discrete model of cardiac tissue can be a valuable
tool for studying discrete effects on arrhythmia initiation, for example in fibrotic
cardiac tissue.

One of the important feedback mechanisms in the heart is the Frank-Starling re-
lationship, which is the ability of cardiac tissue to produce greater contraction force
in response to stretch [15]. The underlying mechanisms of the Frank Starling effect
are not completely understood yet; however, it has been shown to be caused by pro-
teins of the sarcomere affecting the process of cross-bridge cycling [15]. A discrete
mechanical model for cardiac tissue offers the possibility to directly describe the
sarcomere. It would be interesting to develop a discrete mechanical model of car-
diac tissue to study the mechanisms of the Frank-Starling relationship, and how they
affect mechanisms of onset of cardiac arrhythmias. In our current model [71], the
Frank-Starling relationship is qualitatively embedded into the equations for active
cardiac contraction (the Niederer-Hunter-Smith model [42, 44]).

In our model we assume deformations to occur at mechanical equilibrium, ignor-
ing dissipative energy loss. Although this approach can be used as an approximation,
and is commonly applied in modeling studies on MEF from generic two-dimensional
models to sophisticated whole heart models [28,40,71] it is not formally thermody-
namically correct. In a more realistic model, contraction development should be set
as an irreversible thermodynamic process. Examples for thermodynamically con-
sistent models of muscular tissues have been proposed in [56, 60]. In these papers
the authors formulate the first and second law of thermodynamics in terms of con-
tinuum mechanics, and deduce an evolution equation for the mechanical activity of
cardiac and smooth muscle tissue. It would be interesting to formulate a thermody-
namically consistent discrete mechanical model for cardiac tissue, and to compare
its predictions with currently used methodology.

The computation time of the model scales linearly against the number of mechan-
ical nodes in the medium [68]. This allows to increase the model’s spatial resolution
with minimal computational cost. High spatial resolution of the model may be impor-
tant to study the effect of MEF on cardiac arrhythmias, where the excitation patterns
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are more complex compared to the normal excitation of the heart which can cause
steeper deformation gradients.

The modeling results reviewed in this text were achieved in a generic formula-
tion for cardiac tissue [68]. The most important insight is that MEF may cause new
mechanisms of spiral wave formation. Moreover, the results highlight the impor-
tance of mechanical heterogeneity in cardiac tissue. It can cause wave breaks via
accommodation or incomplete excitation, and induce spirals via classical and me-
chanically caused vulnerability. Thus, even though our model is generic, our results
still may lead to a better understanding of the underlying causes for the onset of
cardiac arrhythmia.

The novel mechanisms for spiral wave formation that we identified emerge as a
consequence of MEF via Isac, they are either connected to a new type of mechani-
cally caused vulnerability, or to wave break caused by a mechanical inhomogeneity
However, other classical concepts important for spiral wave formation have not been
studied yet. A well known phenomenon that can cause wavebreak and thus spirals
is the alternans phenomenon, a heterogeneity in cardiac tissue can occur because of
dynamical instabilities [72]. It must be studied how the occurrence of alternans is af-
fected by MEF. Moreover, also the curvature of a wave is known to be an important
determinant for spiral wave formation [51, 54]. We are currently using our discrete
mechanical approach [68, 71] to address these open questions.

The results of our studies were performed in low-dimensional models for cardiac
excitation and contraction coupling. As a next step, these mechanisms need to be
studied in more biophysical model formulations. We extended our model by cou-
pling our discrete mechanical approach to biophysical models of cardiac excitation
and contraction coupling [71]. It must be tested if the previously found mechanisms
hold also in this more accurate model.

Most importantly, our results need to be studied in experiments. It might be pos-
sible to test some of our predictions in experimental systems similar to our two-
dimensional setup, for example in slices of cardiac tissue [3] or cell cultures [11,75].
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Multiscale Modelling of Cardiac Perfusion
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Abstract To elucidate the mechanisms governing coronary blood flow in health and
disease requires an understanding of the structure–function relationship of the coro-
nary system, which exhibits distinct characteristics over multiple scales. Given the
complexities arising from the multiscale and distributed nature of the coronary sys-
tem and myocardial mechanical coupling, computational modelling provides an in-
dispensable tool for advancing our understanding. In this work, we describe our strat-
egy for an integrative whole-organ perfusion model, and illustrate a series of exam-
ples which apply the framework within both basic science and clinical translation
settings. In particular, the one-dimensional reduced approach common in vascular
modelling is combined with a new poromechanical formulation of the myocardium
that is capable of reproducing the full contractile cycle, to enable simulation of the
dynamic coronary and myocardial blood flow. In addition, a methodology for es-
timating continuum porous medium parameters from discrete network geometry is
presented. The benefit of this framework is first demonstrated via an application to
coronary wave intensity analysis, a technique developed to study time-dependent
aspects of pulse waves invasively measured in the vessels. It is shown that, given
experimentally-acquired boundary conditions the 1D model is capable of reproduc-
ing a wave behaviour broadly consistent with that observed in vivo, however, its
utility is limited to a phenomenological level. The integrated 1D-poromechanical
model on the other hand enables a mechanistic investigation of wave generation
thus allowing the influence of contractile function and distal hemodynamic states
on coronary flow to be described. In addition, when coupled with the advection-

J. Lee · A. Cookson · R. Chabiniok · S. Rivolo · E. Hyde · M. Sinclair · C. Michler · T. Sochi
Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineer-
ing, King’s College London, King’s Health Partners, St. Thomas’ Hospital, London, SE1 7EH,
United Kingdom
e-mail: jack.lee@kcl.ac.uk

N. Smith (B)
Faculty of Engineering, The University of Auckland, Auckland, New Zealand
e-mail: np.smith@auckland.ac.nz

© Springer International Publishing Switzerland 2015
A. Quarteroni (ed.), Modeling the Heart and the Circulatory System,
MS&A 14, DOI 10.1007/978-3-319-05230-4_3



52 J. Lee et al.

diffusion-reaction equation, the integrated model can be used to study the transport
of tracers through the vascular network, thus allowing the dependence of noninva-
sive imaging signal intensities on the diffusive properties of the contrast agent to
be quantified. A systematic investigation of the commonly used clinical indices and
whole-organ modelling results are illustrated. Taken together, the proposed model
provides a comprehensive framework with which to apply quantitative analysis in
whole organ coronary artery disease diagnosis using noninvasive perfusion imag-
ing modalities. The added value of the model in clinical practice lies in its ability
to combine comprehensive patient-specific information into therapy. In this regard,
we close the chapter with a discussion on potential model-aided strategies of disease
management.

3.1 Introduction

To elucidate the mechanisms governing coronary blood flow in health and disease
requires an understanding of the relationship between the structure of the coronary
vasculature and its function, which exhibits distinct characteristics over multiple
scales. The coronary vessels feature diameters which span over three orders of mag-
nitude from μm to mm scales, and are organised in a morphometrically asymmetric
branching network of vessels. A common classification of vessels derives from both
structural and functional considerations, attributing major conducting, resistance,
exchange and capacitance functions to the epicardial arteries, arterioles, capillaries
and veins respectively. The unique mechanical environment of continual contrac-
tile cycles within which the coronary system operates, leads to a substantial fluid-
structure interaction within each vessel and results in the phasic and asynchronous
flow patterns observed over the vascular hierarchy. Integrated over the whole net-
work, these interactions indirectly couple coronary blood flow to many important
factors governing cardiac function, including contractility, venous return and sys-
temic afterload.

Given the complexities arising from the multiscale and distributed nature of the
coronary system and myocardial mechanical coupling, computational modelling pro-
vides an indispensable tool for advancing our understanding of cardiac function.
Specifically, this approach provides the potential for quantitative and integrative in-
sights that are currently inaccessible to experimental modes of investigation. Such
a framework can be used to gain mechanistic insights into the physiological de-
terminants of flow, aid in the design and optimisation of medical technology, and
be directly applied in the clinics for diagnosis and treatment planning. The coupled
fluid-structure model of coronary flow outlined in this chapter aims to bring together
the principal components of the system to establish an integrated framework for in-
vestigating, and later, predicting cardiac perfusion on an individual-specific basis.
Whilst the characterisation of the autoregulatory mechanisms and remodelling re-
mains a challenge outside the current scope, in the following sections we will pro-
vide a series of examples of how our model is being applied in the realm of basic
science as well as clinical translation.
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3.2 Background

3.2.1 Basic Anatomy and Perfusion Territories

The large epicardial conducting arteries of the coronary network – with three main
stems being left anterior descending (LAD), left circumflex (LCx) and right coro-
nary artery (RCA) – originate from the coronary ostia situated at the aortic sinus and
give rise to many intramural vessels that are predominantly oriented in the trans-
mural direction towards the subendocardium [91]. These vessels further branch into
arterioles that provide significant resistance to flow. From the terminal arterioles
stem capillaries, which are closely integrated with bundles of myocytes and serve
as the principal site of gas and nutrient exchange. These vessels are then collected
into venules and larger veins, which finally collect blood from the coronary circu-
lation into the right atrium via the coronary sinus. The optimal design underlying
the branching patterns of vascular segments have been the subject of morphometric
measurement [55], theoretical [110] and data driven [54, 62] analyses.

Aside from this intrinsic compartmentalisation of the vascular hierarchies, the
sub-networks of the coronary vasculature are spatially arranged into distinct territo-
ries occupying different regions of the myocardium [91]. Typically the LAD supplies
the anterolateral myocardium and a part of the septum, the LCx, the lateral wall of
the left ventricle, whereas the RCA supplies the right ventricle, a part of the sep-
tum and a part of the inferior wall. The exact extension of these perfusion regions is
subject to inter-individual variations, for example the inferior and inferolateral wall
of the left ventricle can be supplied by RCA (the so-called right dominant coronary
circulation), or by LCx (left-dominant circulation) or by both RCA and LCx (co-
dominant circulation). All these possibilities are considered as variants of anatom-
ical norm [32] and need to be reflected in the patient-specific modelling. The flow
supplies to different territories are separate at the distal level [29], unless collateral
vessels exist between the regions at a lower hierarchy. In healthy humans no angio-
graphically identifiable collaterals are found, but their development in the presence
of disease has been reported [36]. The functional relevance of the human coronary
collaterals is gauged via indirect methods [98] and has been under debate [40, 104].
However, the beneficial effects of the recruitable collaterals to long–term survival
have been documented [65].

3.2.2 Distribution of Resistance and Volume

Under resting conditions and intact vasomotor tone, it is estimated that approxi-
mately two thirds of the vascular resistance resides in the microvessels [18]. In this
situation the large epicardial vessels contribute very little to the overall resistance
unless significant stenoses are present. However, substantial redistribution of resis-
tance may occur during vasodilation induced by exercise, a compensation due to
disease or after administering a pharmacological agent e.g. during clinical examina-
tion. These changes are predominantly caused by the vasodilation taking place in the
microcirculation, made possible because at resting conditions microvessels are in a
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state of spontaneous constriction. The degree of such constriction (or tone) in rela-
tion to the maximal dilation of the vessel walls determines the flow reserve which
can be recruited in times of increased demand.

Although estimates vary, it is reported that the coronary volume is divided among
the arterial (around 20% of coronary blood volume), capillaries (approximately 30%
of coronary blood volume) and venous compartments (around 50% of blood vol-
ume), altogether occupying roughly 12–15% of the total myocardial volume [90].
An important observation is that within the timescale of a single cardiac cycle, this
percentage can decrease by a factor of two [52] indicating a significant storage effect
in the governance of coronary flow. This capacitance is, of course, a consequence of
the compliance of individual vascular segments. Experimental estimates place most
of this capacitance effect as residing within veins and venules, which exhibit the
largest compartmental volume and compliance.

3.2.3 Mechanical Coupling of Coronary Flow and Myocardium

Around 80% of the anterograde arterial flow occurs in the coronary system during
diastole. In contrast, the venous flow is greatest during systole and is reduced in
diastole. Such phasic flow patterns are the consequence of the extravascular forces
interacting with the hemodynamics of the coronary system [3, 38]. During systole,
the large compressive stress developed within the myocardium is transmitted to the
embedded vasculature, whereupon it acts in a manner akin to a pump, driving the
movement of the fluid accumulated by the enhanced proximal flow during diastole.
The direction of the flow depends on the pressure gradient within the local vascular
hierarchy. That is, proximal vessels are largely under the influence of the rising per-
fusion pressure and thus experience a reduced, but still anterograde net flow. With
lower pressures in the venous vessels on the other hand, the compressive forces act
to augment the net flow during systole.

The historical development of coronary-myocardial coupling has been previously
reviewed [105]. Earlier modelling concepts have regarded intramyocardial pressure
(IMP) to directly reflect the left ventricular cavity pressure transmitted through the
extracellular space. However, subsequent experiments have demonstrated that the
flow-impeding influence of myocardial contraction is of similar magnitude even
when the ventricle is empty and the heart is beating against zero afterload, thereby
suggesting a much stronger role of the specific microstructural coupling between the
coronary vasculature and myocyte architecture. The direct action of myofibre thick-
ening on the adjacent vessels is thus revealed as a significant driving mechanism.
Conclusive evidence has been difficult to obtain due to the experimental inaccessi-
bility of the system, however, there is a general consensus that IMP exhibits a trans-
mural gradient and that its magnitude can exceed that of left ventricular pressure.
Accordingly, the fluid-structure coupling of the coronary flow depends strongly on
the hierarchical position of the vessel under consideration and its location within the
myocardium, as well as the specific manner and scale of its structural coupling with
the surrounding constituents of the myocardial tissue.
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3.2.4 Invasive Clinical Indices of Coronary Disease

Coronary disease may manifest over a spectrum of disorders spanning focal/diffuse
stenoses in the large vessels to microvascular dysfunction. Although they are non-
mutually exclusive conditions, historically clinical investigations were mainly fo-
cussed on the large vessel disease first, perhaps due to their accessibility.

In the 1980s when coronary angiography became widely adopted, diagnosis of
coronary disease focused on the anatomical measures of stenosis. Nowadays, it is
known that solely-angiographic indices are poor at characterising the consequen-
tial severity of a stenosis [31, 96]. For this reason, modern clinical assessments of
coronary function chiefly aim to quantify the flow reserve i.e. the capacity of the
coronary system to match the supply in times of increased demand. Invasive ex-
aminations involve catheter measurements of pressure and/or velocity waveforms
in selected vessels under resting and induced hyperaemic conditions. The Coronary
Flow Velocity Reserve (CFVR) is a derived index, defined as the ratio of maxi-
mal hyperaemic blood flow velocity to the resting flow velocity. Whereas in healthy
individuals CFVR may reach a maximum value of around 4, in disease it can be
reduced below a value of 2 [37]. Note however that it is difficult to define an unam-
biguous clinical threshold for CFVR, since the resting flow rate is maintained at a
near-constant level across a wide range of coronary pressure (thus reflecting a wide
range of vasodilatory states of the distal bed) by coronary autoregulation [12].

In order to isolate a clinical assessment to focus exclusively on the stenotic sever-
ity free from confounding distal physiologic parameters, the Relative CFVR metric
has been proposed. For this index, the ratio of hyperaemic velocity during maxi-
mum vasodilation in a stenotic vessel to a normal vessel velocity is calculated. In
practice, however, this measure would require a priori knowledge of the location
of normal vessels, which may be difficult to obtain (an additional catheter inside a
healthy artery poses additional risk and multi-vessel disease may exist). The Frac-
tional Flow Reserve (FFR) [78] circumvents this problem by directly measuring the
ratio of pressures distal and proximal to a stenosis in the same vessel during maxi-
mal hyperaemia. This provides a surrogate measure of the hyperaemic flow that is
actually obtained in the presence of the stenosis versus maximum attainable flow,
if the vessel were non-stenotic. FFR has the advantage of being intrinsically nor-
malised between 0 and 1, but requires the realisation of minimal distal resistance
using pharmacological means for an accurate and reproducible assessment.

In a subset of cases, CFVR and FFR will give contradictory diagnoses. These dif-
ferences likely reflect the divergent extremes of the balance between large and small
vessel diseases, and reinforce the point that a full understanding of coronary disease
requires characterisation of both epicardial and myocardial resistance to flow [51].

3.2.5 Non-invasive Imaging Modalities

Clinically, non-invasive imaging modalities provide a low-risk and cost-effective
means to stratify patient cohorts and rule out negative cases before proceeding to
the more invasive and costly catheter laboratory. Broadly speaking, non-invasive
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imaging may be applied in two different ways, angiographic imaging which visu-
alises vessel lumen anatomy (using computed tomography (CT) or magnetic reso-
nance (MR)), and perfusion imaging which focuses on characterising the delivery
of blood to the myocardium. In addition, some modalities offer the means to as-
sess localised plaque composition which is related to the risk of rupture leading to
thrombosis [63, 67, 82].

While there is no clinical non-invasive angiographic imaging modality that out-
performs the traditional X-ray angiography in terms of resolution, CT offers a num-
ber of advantages including the imaging of three dimensional morphology and coro-
nary artery calcification. Modern CT scanners can offer up to 330 μm spatial and
75 ms temporal resolution. Furthermore, large clinical studies have demonstrated
that low ionisation (1–2 mSv) and contrast–free CT–derived calcium scores have a
negative predictive value of 99% making it an ideal screening tool for intermediate-
risk patients experiencing chest pain [74].

Patients with microvascular or multi-vessel disease, previous infarcts and other
associated cardiac conditions may benefit from the diagnostic information provided
by the assessment of perfusion, which is a measure of blood supplied to the cells of
the organ. With these increased complexities, shifting the focus away from the large
epicardial vessels to the whole myocardium can reveal a more complete picture. Per-
fusion imaging is often conducted with a stress-protocol, during which higher flow
demand of myocardium is induced to reveal regions of unmatched supply (thus again
revealing the flow reserve). Major modalities for perfusion imaging include Single
Photon Emission Computed Tomography (SPECT), Positron Emission Tomogra-
phy (PET) and perfusion MR Imaging. While nuclear medicine techniques have an
advantage in robust absolute quantifications and have the potential to target specific
metabolic consequences of tissue perfusion [8], one of the strong points of perfusion
MRI lies in its significantly higher spatio-temporal resolution (1.2 mm in-plane/1 s
imaging time for MRI vs 5 mm/1 min imaging time for PET). This resolution in
turn provides the observation of localised perfusion defects which may otherwise be
obscured. A further advantage of MRI is its ability to combine imaging of cardiac
function, scar and other diagnostic targets into a single session, providing the po-
tential to serve as a “one-stop shop” for cardiac diagnosis. And yet more, the zero
ionising property makes MRI suitable for regular follow-up of patients.

3.2.6 Research Modalities

Often in research applications, far greater image resolutions can be obtained when
compared to clinical modalities since ex vivo techniques can be applied with ex-
tended imaging time. In terms of coronary anatomical imaging, vascular casting com-
bined with high-resolution modalities has brought routine automation to what was
once a labour-intensive task two decades ago. The imaging cryomicrotome, microCT
and confocal microscopy all fall into this category, offering resolutions ranging from
1–25 μm [92]. In terms of functional characterisation, it would appear that similar
breakthroughs have yet to take place, and the microsphere injection technique [80]
remains the gold standard for flow measurements in the myocardium.
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3.3 Model Description

3.3.1 Coronary Flow Modelling

As outlined in the previous sections, mathematical modelling of cardiac perfusion
necessitates a multiscale framework. The anatomical and functional nature of cardiac
perfusion means that no single modelling approach can accommodate all aspects of
the integrated system. The series of models presented in this chapter aims to cap-
ture the dominant physical phenomena at each representative scale, guided by the
need to simulate and predict clinically-relevant quantities. We emphasise, however,
that our contribution is primarily directed at characterising the whole organ tissue
perfusion and its surrogate measures observable in the clinics. This means that cer-
tain major aspects of coronary disease including fluid patterns in the presence of
stenoses, and in silico FFR quantification, which require the determination of de-
tailed localised flow dynamics will not be covered. Correspondingly, a framework
to represent the 3D flow regime based on the Navier-Stokes equations is excluded.
Nevertheless, there is a wealth of literature available on these topics, and the inter-
ested reader will find an entry point to the key contributions in [95] and references
therein.

Wave propagation phenomena in the upper arterial vessels of the coronary net-
work is an emerging clinical target which can be effectively addressed by a one-
dimensional Navier Stokes flow model, at a fraction of the computational complex-
ity of its 3D alternative. The key characteristics of the Stokes regime flow in the
microvascular network can be captured by a porous media approach which bypasses
the requirement for modelling individual vascular segments and allows for extended
applications that informs protocols associated with non-invasive perfusion imaging.
Such an approach also enables the natural extension of incorporating the effects of
cardiac contraction via the poromechanical framework. A brief description of each
of these models is provided in the following sections.

3.3.2 1D Blood Flow Model

The physiological lengths of the coronary pulse waves are large compared to the ves-
sels’ diameters so that the wave propagation occurs mainly in the axial direction. The
one-dimensional approximation is the preferred approach in network flow modelling
since it can accurately reproduce the wave-propagation phenomena resulting from
cardiac events, which cannot be accommodated by lumped parameter models. Fur-
thermore, it affords numerical tractability in large multi-scale simulations where 3D
Navier-Stokes becomes intractable [61]. The mathematical background behind the
1D blood flow formulation has been extensively described in literature both from a
theoretical [43,77] and computational [2,33,35,85,87] perspective. This framework
has been widely applied for investigating wave propagation in the systemic arteries,
as reviewed in [99], and has been validated both in vitro [64] and in vivo [83]. The
application of the 1D blood flow framework to the coronary arteries is a relatively
recent field [61, 89]. However, the suitability of this modelling approach has been
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recently strengthened by in vivo validation in the left coronary circulation of ani-
mal subjects [69]. The following section provides an overview of the selected 1D
blood flow modelling approach with brief comparisons to other options available in
literature. We refer to more extensive reviews for further details [2, 35, 61, 99].

3.3.2.1 Modelling Framework

Each vessel of the coronary network is modelled as a one dimensional impermeable
tube of length l with cross-sectional area A(x, t), where A(x, t) =

∫
S dσ is defined as

the area of a generic cross section S along the axial coordinate x. The cross-sectional
area is allowed to vary non-uniformly thus making A(x, t) both space- and time-
dependent. The underlying assumption is that the local curvature is small enough so
that the problem can be described in one spatial dimension [43,77,87,89,99]. Blood
flow in the vessel is described as Q(x, t) = A(x, t)u(x, t), where u(x, t) = 1

A(x,t)
∫

S ûdσ
is the axial velocity averaged over the cross-sectional area. Radial velocity is as-
sumed to be negligible compared to the axial component.

As reviewed previously [83, 99], circular cross-sectional areas and axisymmetry
are assumed meaning that the axial velocity can be represented as a function of ra-
dius, space and time. Furthermore, the axial velocity is assumed to be the product of
a radially-dependent profile function and a mean velocity component that is space-
and time-dependent u(x, t). Several different ways to model the velocity profile can
be found in literature [99]. Our choice here is to model the velocity profile with a
blunt shape based on experimental observations [89].

Blood is modelled as an incompressible Newtonian fluid such that density ρ and
dynamic viscosity μ can be considered constant at the scale considered here. In ad-
dition, flow is considered to be laminar due to the low Reynolds number throughout
the coronary network in physiological conditions.

3.3.2.2 Governing Equations

The 1D blood flow equations can be derived from first principles [43, 77, 85, 99] or,
alternatively, they can be obtained by averaging the 3D Navier-Stokes equations [89]
over the cross-section of an axisymmetric circular cylinder. The equations have been
widely described in literature [2,35,43,77,85,89,99]. They comprise statements of
the conservation of mass and momentum which can be written as

∂A
∂ t

+
∂Q
∂x

= 0, (3.1)

∂Q
∂ t

+
∂
∂x

(
α

Q2

A

)
+

A
ρ
∂ p
∂x

+κ
Q
A

= 0. (3.2)

The unstressed area A0 can vary spatially to model a tapering geometry of a coronary
vessel. The term

α(x, t) =
∫

S û2dσ
Au2 (3.3)
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is a non-dimensional correction factor for momentum flux which accounts for the
shape of velocity profile over the cross-sectional area. The variable α is usually
assumed to be constant since it leads to considerable mathematical simplifications
[33,89,99]. In the results below we assumeα = 1.1, following [89], for all the results
presented unless otherwise stated. The variable κ is obtained from the integration of
the 3D incompressible Navier-Stokes equations and represents the viscous resistance
of the flow per unit length of vessel [89].

To close the system of equations and solve for the three unknowns (A,Q, p), a
constitutive law, relating pressure to area, has to be introduced. Several different
forms have been proposed in literature, mainly derived from a linear elastic shell
model [61, 99]. A commonly-employed example of these types of constitutive rela-
tions, used in our modelling framework, is of the following form

p = pext +
β (x)
A0

(√
A(x)−

√
A0(x)

)
, (3.4)

where pext is an extravascular pressure and β (x) = 4
√
πE(x)h(x)

3 is a parameter both
dependent on the Young modulus E(x) and the vessel wall thickness h(x) [5]. This
relation assumes a static equilibrium in the radial direction of a cylindrical tube.

In the general case, p is spatially dependent through its dependence on the under-
lying variables i.e. p = p(β (x),A(x),A0(x)) such that

∂ p
∂x

=
∂ p
∂β

∂β
∂x

+
∂ p
∂A

∂A
∂x

+
∂ p
∂A0

∂A0

∂x
(3.5)

should be taken into account for the vessel tapering and the spatial variation in mate-
rial properties. Note that, as demonstrated in [33], additional terms can be included
in the constitutive law to model the impact of wall inertia, viscoelasticity and longi-
tudinal vessel pre-stress. However, these additional terms are generally assumed to
have secondary effects and are difficult to parameterise thus they are not considered
in the current modelling approach.

The solution system can be written in quasi-linear form as

∂U
∂ t

+H(U)
∂U
∂x

= B(U) , (3.6)

where U =
[

A
Q

]
, and the Jacobian H(U),

H(U) =
∂F
∂U

=

(
0 1

−α Q2

A2 + c2 2α Q
A

)
, (3.7)

and the right-hand term B(U),

B(U) =

[
0

−κ Q
A − A

ρ

(
∂ p
∂β

∂β
∂x + ∂ p

∂A0

∂A0
∂x

)]
. (3.8)

In (3.7), c(x) =
√

β
2ρA0

A
1
4 denotes the wave propagation velocity.
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The analysis of this characteristic system has been performed in literature, to
which we refer for further details [33, 85, 87]. However, it is important to highlight
that, under the necessary condition that A > 0, the equation system (3.6) has two real
and distinct eigenvalues

λ1,2(U) = αu±
√

c2 +α(α−1)u2. (3.9)

With the physiological condition c � u, (3.6) results in a hyperbolic system. This
means that from each point of the computational domain, two characteristic curves
originate, one directed towards the inlet and one towards the outlet of the vessel. As
a consequence, an inflow and an outflow boundary conditions have to be specified.

From a numerical implementation point of view several different approaches have
been pursued in literature, including second order Taylor-Galerkin schemes [33] and
discontinuous Galerkin formulations [85, 87]. Our current model [60] is based on
the spectral/hp elements scheme reported in [87]. The temporal discretisation has
been performed with a Crank-Nicolson scheme, which is implicit and second-order
accurate.

The numerical problem requires the specification of a full set of boundary condi-
tions for (3.1)–(3.2) at the inlet and outlet, even if the differential problem requires
only one physical boundary condition per boundary [33, 87]. To address this, the
current implementation projects the differential equations along the outgoing char-
acteristic curves [34], fully retaining the differential equations’ non-linearities. Other
approaches in literature rely on characteristic extrapolation [33, 85].

3.3.2.3 Network Formulation

The single-vessel formulation outlined above can be extended to a network of vessels
by imposing suitable coupling conditions at the junctions. The junctions can either
include [33] or ignore the impact of the branching angles, and be represented as a
single point or a separate tract containing the branch [94]. Our modelling choice here
is to represent junctions as a single point and to exclude the impact of the branching
angles and momentum loss through junctions, since they play a minor role in the
physiological range of pressure and velocity [33].

The coupling conditions imposed are based on physical conservation laws [33,
35,60,85,87]. Under the assumption that no fluid can be stored in the junctions, the
mass conservation equation in an n-vessel junction states that

∑
j

Q j = 0, j = 1 . . .n, (3.10)

where Q j denotes the flow into the junction from the jth vessel. Imposing the con-
servation of total pressure across the junction according to Bernoulli’s law

p j +
1
2
ρu2

j = p j+1 +
1
2
ρu2

j+1, j = 1..n−1 (3.11)
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combined with the mass equation provides n equations in 2n variables (A j,Q j),
j = 1 . . .n. The remaining n equations are obtained by imposing the compatibility
equations [34] which prescribe appropriate conditions on the characteristics.

3.3.2.4 Boundary Conditions

A key challenge in formulating the boundary conditions for the 1D system arises
from the requirement that the complex physiological responses originating from out-
side the simulation domain must be adequately reproduced. A brief overview of the
most commonly used types is provided here.

Due to the hyperbolic nature of the problem as highlighted in Sect. 3.3.2.2, both
an inlet and an outlet boundary condition must be prescribed. For the inlet bound-
ary condition two possible approaches include the straightforward prescription of a
measured waveform (pressure or flow) or a lumped model of the heart [14, 57].

Outflow boundary conditions on the other hand have to reproduce the effects of
the truncated vasculature distal to the terminal vessels of a model. The simplest dis-
tal boundary condition is to impose a given pressure or a pressure-dependent flow
(resistive boundary condition) at vessel terminals, however this brings with it the
undesirable effect of unphysiological numerical wave reflections in the computa-
tional domain [86,107]. Reflections can be avoided altogether using a non-reflecting
boundary condition where the backward-traveling wave is prescribed as zero [33],
although this is also unphysiological as it assumes an outlet vessel of infinite length.

An improved physiological outflow boundary condition is provided by lumped
parameter Windkessel models, which approriately reproduces the input impedance
measured in the epicardial arteries [57,106,107]. Windkessel models with different
levels of complexity have been successfully used both in modelling the systemic ar-
teries [2,35,99] as well as the coronary vasculature [57]. A Windkessel model com-
posed of several resistance–compliance (R–C) components combined with a time-
varying distal pressure has been coupled to a coronary epicardial network for vali-
dation purposes [69], showing good agreement with in vivo measurements.

On the other hand, the Windkessel model parameters for R and C of the truncated
network are difficult to estimate from in vivo measurements due in part to the car-
diac contraction. Furthermore the Windkessel model does not faithfully reproduce
high-frequency flow features [106]. The poor performance of Windkessel models in
the high frequency range has been addressed with impedance boundary conditions,
calculated as the root impedance of structured networks distal to the modelled vas-
cular segment [75, 103], yielding an improvement over the Windkessel approach.
However, these types of boundary conditions give rise to additional derivation and
implementation issue that are not always straighforward to apply, as highlighted
in [61]. Significant work remains to be done to parameterise the Windkessel and
impedance boundary conditions in the coronary circulation.

A further alternative approach to modelling outflow boundary condition is to use
a tapering vessel, which reproduces a series of reflected waves similar to a distal
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network [68]. Finally, in order to capture the spatial heterogeneity of flow in the
distal circulation, the 1D blood flow model can be coupled to a 3D porous medium
representing the distal circulation (see Sect. 3.3.3.3).

3.3.3 Regional Perfusion Modelling by Porous Media Flow

While appropriate for modelling flow within the systemic and major coronary arter-
ies, the 1D flow model is unsuitable for whole-organ perfusion modelling for a num-
ber of reasons: (i) the level of discrete vascular detail acquired via clinical imaging
modalities cannot resolve beyond the largest epicardial vessels; (ii) the large number
of branching vessels represent a significant computational challenge even with a 1D
formulation; and (iii) if the discrete network was not fully-formed (i.e. the entire net-
work was described from arteries to veins, inclusive of the capillaries), then a large
number of intramural terminal vessels would require the prescription of boundary
conditions which are difficult, if not impossible, to determine.

In contrast, mathematical models of flow through porous media provide a promis-
ing alternative framework whereby the flow at the microvascular scale is approxi-
mated by a spatially-averaged flow on the macroscopic scale. In the context of perfu-
sion modelling, it is generally assumed that the medium consists of two overlapping
phases – the solid matrix and the fluid (pore space), each occupying a fraction of the
volume at every point. In this work, we assume that the pore space is fully intercon-
nected and saturated.

The most commonly applied porous media flow model is Darcy’s Law, whereby
the Darcy velocity, �w, is linearly proportional to the gradient of the fluid pressure, p

w+K ·∇p = 0 in Ω , (3.12a)

∇ ·w = Sv in Ω , (3.12b)

where K is the permeability of the porous medium Ω , ρ denotes fluid density and Sv

is a fluid volumetric source field. Darcy’s Law has been used by previous perfusion
models for biological tissues [17, 101]. Furthermore, the continuum approach has
the additional advantage of matching the level of detail observable in clinical per-
fusion imaging which is inherently spatially-averaged, readily allowing comparison
without ambiguity in postprocessing.

3.3.3.1 Multi-compartment Static Darcy

In practice, when a vascular tree spanning a broad scale range is considered, the
lumping of all pore spaces into a common compartment as represented by (3.12)
becomes an inadequate assumption. These situations lead us to consider a multi-
compartment extension of the model as outlined here.

From high resolution imaging studies of coronary anatomy, the close spatial prox-
imity of vessels with widely-varying length and diameter scales is well-known [92]
and would be expected to lead to a corresponding heterogeneity in pressure and flow.
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Fig. 3.1. Illustration of multiple spatially coexisting Darcy compartments. Each point of the
physical domain Ω will have a set of parameters and state variables for each compartment,
with the particular parameters dependent on the vessels assigned to the compartment after
vascular model partition. Note the decreasing scale of vessel in each compartment from left
to right

Thus, to characterise the flow occuring within widely-disparate vessel scales, the ap-
proach taken below in our work is to employ multiple porous compartments, with
each compartment representing a different range of vascular scale. Each compart-
ment spatially coexists with all other compartments and occupies its own fractional
volume (Fig. 3.1). Note that in perfusion modelling, the contribution of the intersti-
tial volume is generally disregarded, due to the comparatively limited flux of fluid
across the capillary membranes, and the slower diffusion-driven mode of transport in
the interstitial space. The multi-compartment static Darcy system, and the methods
used to parameterise the material properties of the porous domains, are presented
below.

The multi-compartment Darcy system extends the single compartment Darcy
model to N porous domains, and has been applied to previous perfusion modelling
problems [21,102]. The Darcy system for a compartment i ∈ [1,N] is (Einstein sum-
mation is not in use):

wi +Ki ·∇pi = 0 in Ω , (3.13a)

∇ ·wi = Svi −
N

∑
k=1

βi,k(pi − pk) in Ω , (3.13b)

where subscripts i and k are compartment indices and βββ is a matrix of inter-
compartment pressure-coupling coefficients. Note that βi,k ∈ R+

0 and βi,k = βk,i for
i,k = 1, . . . ,N in order to conserve fluid mass across the system. Eqs. (3.13) were
set on an open bounded domain Ω ⊂ Rn with spatial dimension n and a piece-wise
smooth boundary ∂Ω , upon which zero flux boundary conditions were enforced.

As previously mentioned, the permeability tensor field K contains the coefficients
of proportionality relating the Darcy velocity w to the pressure gradient. The perme-
ability K is a material property of the porous medium and it has the following key
properties related to the physical constraints of the system [6]:

• K is symmetric, by the Onsager’s reciprocal relation. This ensures that there is
no bias in the material and a reversal in the pressure gradient should lead to a
matching reversal in flow.
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• K is positive definite. This property ensures that the direction of flow is always
in the same direction as the pressure drop, i.e. fluid flows from region of high
pressure to lower pressure.

3.3.3.2 Poroelasticity

The static Darcy perfusion model developed thus far lacks the ability to capture
fluid-solid interactions as it assumes a rigid solid skeleton. In certain physiological
applications, it is crucial to account for such interactions in order to capture the
dynamics of the cardiac phase dependence of flow. For this reason, we now extend
the porous flow framework to a general poromechanical one in which deformation
of the medium and the resulting interactions with the pore fluid are defined. The
application of poromechanical models in the context of perfusion in a contracting
myocardium has been limited to a small number of studies to date [17, 44]. The
comprehensive theoretical background can be found in [23, 24], which establishes
a finite strain theory of poromechanics. Where applicable, we defer the description
of specific constitutive relations and geometrical modelling choices employed to the
results in Sect. 3.4.1.3.

Kinematics

In the poromechanical framework adopted here, a porous medium is treated as a su-
perposition of solid and fluid continua, each occupying a fraction of the total volume
at every point in the material. The smallest relevant unit of the material is termed
a Representative Elementary Volume (REV), denoted as dΩ , and contains a suf-
ficient number of pores to allow a macroscopically averaged description. Thus an
REV is not infinitesimal but must satisfy the requirement of being “small” relative
to the total body, which is dependent on the particular problem under consideration.
Note the standard terminologies matrix and skeleton indicate a distinction between
the microscopic and macroscopic (averaged) solid phases, respectively.

The volume fraction occupied by the fluid is referred to as porosity, defined by
φ = dΩ f

dΩ where superscript f refers to fluid. Fully saturated and connected pores
are assumed in this work, which leads to the solid fraction being φ s = 1−φ = dΩ s

dΩ ,
where s refers to solid. In the following, a Lagrangian reference frame (i.e. tied to the
skeleton) is employed since skeletal deformation is most readily observable, and it
leads to similar results familiar from existing work in cardiac mechanical modelling.

Briefly, a skeleton particle at position X in the reference configuration is identified
with the particle at deformed position x, such that x = x(X, t). This leads to the
standard definitions of deformation gradient F =∇Xx, Jacobian J = det(F), and the
right Cauchy-Green deformation tensor C = FT F. The Green-Lagrange strain tensor
is then defined to be E = 1

2 (C− I).
An alternative definition of J is expressed as J = dΩ

dΩo
, where the subscript o refers

to the reference configuration, and dΩ now refers to the REV in the current config-
uration. In addition, because dΩ in general changes with altered fluid content, the
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change in pore volume is better captured by the Lagrangian porosity Jφ = dΩ f

dΩo
,

which expresses the ratio of the current fluid content to the reference volume.
A common assumption made in cardiac mechanics is the incompressibility of

the myocardial tissue. In the context of poromechanical models, however, such an
assumption requires a further clarification. Considering the macroscopic skeleton to
be an incompressible medium would be inappropriate as the net flow in and out of the
tissue can always cause a bulk volume change. Rather, it is the solid matrix which we
regard as incompressible. Assuming there is no solid mass creation occurring within
the time scale under consideration, the conservation of solid phase can be written as

ρs(1−φ)dΩ = ρs
o(1−φo)dΩo (3.14)

which, upon inserting the incompressibility condition of density ρs = ρs
o, can be

expressed as
J− Jφ = 1−φo = φ s

o. (3.15)

This can be contrasted with the hyperelastic incompressibility condition J−1 = 0.

Conservation Laws

The fluid continuity equation is expressed as

dm
dt

+∇X · (ρ f W) = S, (3.16)

where m represents the current additional fluid mass content per unit reference vol-
ume, and S, a mass source term. W is a Lagrangian counterpart to the Eulerian Darcy
velocity w which is now generalised to be

w = φ
(
v f −vs) = φ

(
dx f

dt − dxs

dt

)
. (3.17)

The conservation of momentum is often described for the combined medium,
such that

∇X · (FS)+ms(f−as)+m f (f−a f ) = 0, (3.18)

where S represents the second Piola-Kirchoff stress, and f and a represent body force
density and acceleration, respectively. Variables ms and m f can be regarded as den-
sity-like quantities which denote respectively the skeletal and fluid mass content per
unit reference volume. Note that m f and m are related via

m f = ρ f
o φo +m. (3.19)

Constitutive Relation

Formulation of a constitutive relation for an open porous medium involves many
challenges. Thermodynamic considerations can help to identify appropriate state
variables and equations which are consistent with the assumptions made for a spe-
cific medium. In a continuum mechanics framework the entropy condition is ex-
pressed by the Clausius-Duhem inequality, the general expression for a porous
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medium of which is [27]

D = S :
dE
dt

+ p
d(Jφ)

dt
−S

dT
dt

− dΨ s

dt
, (3.20)

which states that the intrinsic dissipation D is dependent on both skeletal and pore
strain work rates and entropy variation. Here, S and T denote entropy and tempera-
ture respectively andΨ s denotes the Lagrangian free energy density of the skeleton.
In cardiac modelling, further simplification can be made if we assume the myocar-
dial tissue to be an isothermal, poroelastic medium, for which dissipation is zero,
yielding

dΨ s

dt
= S :

dE
dt

+ p
d(Jφ)

dt
(3.21)

giving the state equations

S =
∂Ψ s

∂E
, p =

∂Ψ s

∂ (Jφ)
(3.22)

stating that S and p respectively are the thermodynamic forces driving the changes
in E and Jφ .

Additional requirements can be posed on the general form of the free energy
functionΨ s(Jφ ,E) to address the cases when the porosity reaches the physical limits
of 0 or 1. However, in the incompressible regime, (3.15) implies that φ < 1 for
0 < J <∞, thus we focus our attention on the compaction limit (φ → 0). Following
[30], an effective barrier potential would remain inactive (contributes zero pressure
and stiffness) until compaction is approached, but once activated, provides pressure
and stiffness which tend toward infinity thus preventing further extraction of the pore
fluid. Thus we seek to construct a barrier potential Θ(Jφ) which satisfies

∂Θ
∂ (Jφ)

=
∂ 2Θ
∂ (Jφ)2 = 0, for J ≥ 1, (3.23)

− ∂Θ
∂ (Jφ)

→ +∞, for Jφ → 0, (3.24)

∂ 2Θ
∂ (Jφ)2 → +∞, for Jφ → 0. (3.25)

This leads to the general form of free energy

Ψ s = Φ(E,Jφ)+Θ(Jφ). (3.26)

As there is substantial work still to be undertaken in designing and validating a spe-
cific cardiac poroelastic constitutive law, at this stage we propose a further decom-
position ofΨ s such that

Ψ s = Φ̄(E)+ Φ̂(Jφ)+Θ(Jφ) (3.27)

which enables the previously characterised hyperelastic constitutive laws and coro-
nary pressure-volume relationships to be substituted.
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In addition, in a contracting myocardium the stress tensor is augmented by an
active component such that

S = Sp +Sa (3.28)

where Sp and Sa represent the passive and active components, respectively. The ac-
tive stress is assumed to act along the fibre direction f in the deformed configuration,
thus yielding the active component of the Cauchy stress tensor

σσσa = Ta f⊗ f (3.29)

which is related to the second Piola–Kirchoff stress tensor via

Sa = J F−1σσσaF−T . (3.30)

The fibre active stress Ta is calculated by an auxiliary model of time-dependent fibre
stress development and f denotes the deformed fibre axis direction. The specific re-
lations we have used to represent the components of the constitutive law are outlined
in Sect. 3.4.1.3.

3.3.3.3 Vascular-porous Medium Coupling

For applications that warrant subject–specific anatomy, coronary–contraction cou-
pling or involve integrative physiological mechanistic investigations, combining the
1D framework with the porous approach may be instrumental. The 1D–3D coupling
can also address the problem of potentially reversing inflow boundary conditions in
the porous domain, and more accurately represent the distal mechanical interactions
responsible for wave generation, thereby helping to overcome the shortcomings in
each respective model.

Anatomically, the interface domain between the explicit proximal vascular seg-
ments and porous medium consists of meso-scale arterioles which transition into the
microcirculation over several bifurcating generations. Therefore, instead of treating
the interface as a point-to-point coupling – which would result in concentrated tissue
inflow and thus unphysiological pressure peaks – we assume that the exchange of
fluid between a vessel terminal and the porous tissue occurs in a distributed manner
over the volume Ωint in the neighbourhood of the terminal, such that

ρ f Q1D(t) =
∫
Ωint

S(x, t)dΩ . (3.31)

For clarity, variables in the 1D flow model are denoted with a subscript 1D here. We
choose to express S via a distribution function f such that

S(x, t) = ρ f Q1D(t) f (x) (3.32)

which, together with (3.31) implies that∫
Ωint

f (x)dΩ = 1 (3.33)
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must be held. The pressure–flow relationship of the coupling interface is described
by observing that the meso-scale vessels are predominantly resistive elements com-
prising thick–walled arterioles, leading to

Q1D(t) =
p1D(t)− p̄(t)

Rmeso
(3.34)

where Rmeso is the resistance of the coupling interface. As a first approximation, we
define the average pore pressure p̄ as

p̄ =
∫
Ωint

p(x, t) f (x)dΩ . (3.35)

The coupling problem therefore seeks to find values of Q1D and p which satisfy
(3.34) and (3.35). Several strategies can be envisioned to specify the function f (x),
including an analytic derivation from an assumed branching structure, or directly
characterised from detailed network morphology. In the absence of such data how-
ever, we employ a simpler approach in this work and approximate f with a Gaussian
function. To ensure (3.33) holds, f is formulated as

f (x) =
1∫

Ωint
G(x−xterm)dΩ

G(x−xterm) (3.36)

where xterm denotes the position of the vessel terminal, and G is a standard Gaussian
kernel.

3.3.3.4 Parameterisation of Porous Medium

We now depart from the largely theoretical focus examined up to this point and
briefly consider the issue of characterising the porous medium parameters from real-
world data. This will assist in addressing questions such as whether the continuum
approach is a suitable one for modelling coronary network flow, and how a detailed
anatomical network morphology can be condensed into equivalent porous medium
parameters. The methods outlined below necessitates the use of high-resolution an-
imal data, but in exchange offers the means by which to determine the appropriate
parameter ranges in health and disease, as a basis for extrapolation to humans as is
common in medical research. Further discussions on clinical translational strategies
are provided in Sect. 3.5.

Models of the discrete vascular network reconstructed from high-resolution imag-
ing data [100] are well-suited for the distillation of important microvascular charac-
teristics into continuum parameters. To enable the parameterisation of the individual
compartments, one must first compartmentalise (or longitudinally partition) the vas-
cular model. The so-called hierarchic parameter vascular model field is used for this
purpose. This is a monotonically decreasing field with respect to a proximal-distal
direction of flow, with the value 1 at the proximal node of the network, 0 at all distal
terminal nodes, and the value of the summed length of all distal vessels at intermedi-
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a                                                   b                                                   c

Fig. 3.2. Compartmentalisation of a porcine artertial network derived from cryomicrotome
data. This example, which assumes two Darcy compartments, consists of (a) the 1D portion
which drives the fluid flow in the continuum model, and the compartment 1 and 2 discrete
vessels that will be spatially-averaged into macroscale continuum permeability parameters
((b) and (c), respectively)

ate nodes divided by the summed length of all vessels. Note that pressure solutions
from a discrete flow model have also been previously applied to define the hierarchic
parameter field [102]. This robust partitioning metric preserves the “natural order”
of flow, i.e. proximal vessels are allocated to proximal Darcy compartments. Ulti-
mately the particular hierarchic parameter values that dictate the vascular partition
must be selected on an application-dependent basis. For instance, Fig. 3.2 shows an
example compartmentalisation of a porcine arterial model for use in parameterising
a two-compartment porous perfusion model. For simplicity of this illustration, an
approximate equal split in the number of vessels to be spatially-averaged between
Darcy compartments 1 and 2 was applied.

Once compartmentalised, spatial-averaging techniques (using an averaging win-
dow of constant size, denoted dΩ ) are employed to extract the effective parameter
fields, such as the porosity of compartment i, defined to be

φi(x) =
∑v∈Vi(x) volv

voldΩ
, (3.37)

where Vi(x) is the set of vessels assigned to Darcy compartment i within the averag-
ing volume centered at a point x ∈Ω , and volε is defined as the volume of a domain
ε that intersects Ω . Thus the total porosity of the material is

φ(x) =
N

∑
i=1

φi(x). (3.38)

Importantly, we use a discrete Poiseuille flow model solution to produce local
variables that are dependent on the entire network topology. Specifically, the Poi-
seuille pressure at a node in the discrete vascular model is calculated using the Poi-
seuille network matrix [79]. Note that the pressure derived from the linear Poiseuille
model is also dependent on the boundary conditions applied. However we have pre-
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Fig. 3.3. Schematic of a simple network to illustrate the vessels involved in parameterising
the continuum permeabilities at a point x. The averaging window is delineated by the dashed
circle, with centrepoint x (x is typically a finite element mesh node). Note that for this example
point, V1(x) and the compartment-connecting vessel sets c1,2(x) and c1,3(x) are equal to the
null set, whereas c2,3(x) = V2(x) as both vessels in V2(x) are connected to vessels in V3(x)

viously shown the robustness of using the Poiseuille model to characterise flow pa-
rameters with respect to varying boundary conditions [47]. Thus, we define the spa-
tially-averaged discrete pressure for vessels in the ith compartment to be

pi(x) =
∑v∈Vi(x) Pv volv

∑v∈Vi(x) volv
, (3.39)

where Pv is the averaged discrete pressure (mean of the two nodal values) for the
vth vessel within Vi(x), and �pv is the difference in pressure across the vessel.

The discrete mass flux between compartments is a key variable in the evolution
of multi-compartment porous flow. The set of all vessels within dΩ that belong to
compartment k but share a node with a compartment i vessel is denoted by ci,k (see
Fig. 3.3 for a schematic illustrating these sets of compartment-connecting vessels).
The flux from compartments i to k is then

Qi,k(x) = ∑
v∈ci,k(x)

πr4
v

8μ lv
(�pv). (3.40)

From the perspective of the Darcy model, βi,k can be viewed as the local constant
of proportionality between the fluid flux transfer and the difference in the Darcy
pressures. Thus, we use the data derived from the discrete model to define these
continuum fields via

βi,k(x) =

{
0 if pi(x)− pk(x) = 0.

Qi,k(x)
|pi(x)−pk(x)| , otherwise.

(3.41)

Unsurprisingly, these inter-compartment coupling fields play a major role in deter-
mining the overall fluid flow within the model, due to their widespread heterogeneity
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Fig. 3.4. The spatial distribution of the continuum β fields allows for heterogeneous mass
transfer amongst compartments. Here we consider a three-compartment Darcy model, where
the left ventricular endocardial surface is opaque while the epicardial surface is transparent.
Each finite element mesh node is represented by a spherical glyph whose diameter is equal to
the β value at that node. Note in particular the heterogeneous β1,3 field, which illustrates the
level of non-adjacent compartment coupling in this N = 3 model scenario

and the presence of “long-range” coupling, i.e. coupling between non-neighbouring
compartments (Fig. 3.4).

Finally, we present two methods which may be applied to parameterise the per-
meability tensor fields, depending on the level of discrete data available. The simpler
method is to assume a porosity-scaled isotropic permeability, i.e.

Ki(x) = cKiφi(x)I, (3.42)

where I ∈M3×3 is the identity tensor with assumed units of mm2 Pa−1 s−1, and cKi

is a constant scaler of the permeability which is solved for in a post-processing min-
imisation problem to best match the continuum pressures with the spatially-averaged
discrete pressures [46]. Alternatively, one can use a previously proposed method [45]
whereby the permeability tensor is defined as

Ki j =
π

128voldΩδx0μ ∑ns

d4
ns � xns,i � xns, j

lns
, i, j = 1,2,3, (3.43)

with δx0 being an infinitesimal element of their hierarchic parameter, ns is the set
of vessels within the hierarchic parameter range δx0, d is the vessel diameter, and
�xns,i is the absolute difference in spatial coordinate i between the vessel end points.

3.4 Model Applications

In this section we present clinically-oriented applications of the modelling frame-
work described in the previous sections. Selected examples include a model for in
silico wave intensity analysis featuring varying degrees of complexity, and a my-
ocardial transport model for calculating contrast agent dynamics. The reduced com-
plexity WIA model is aimed particularly at time-bound interventional clinical set-
tings, whereas the full poroelastic model enables the interpretation of limited data
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collectable in these situations through mechanistic investigation unachievable with
the simpler model. These examples illustrate our efforts to address real-world prob-
lems in which the quantity of observable data and time constraints play a significant
role in directing the appropriate modelling approach. The transport model, on the
other hand, allows the perfusion simulations to be compared directly with clinically-
acquired data, thus closing the loop between modelling and imaging. Taken together,
these applications focus on assessing the combined states of myocardial perfusion
and function.

3.4.1 Coronary Wave Intensity Analysis

Due to the technological advancements over the past decade in coronary catheter
wires which enabled simultaneous measurements of pressure and velocity, wave in-
tensity analysis (WIA) has emerged as a useful tool with which to study the underly-
ing cardiac and hemodynamic function. Its application to the human coronary system
has identified six major waves, each attributed to different events of the cardiac cy-
cle [25], the characteristics of which are now being applied for clinical diagnosis.
Simultaneous measurements of pressure and velocity acquired in vivo in a human
LAD are shown along with the calculated WIA in Fig. 3.5 for illustrative purposes.

3.4.1.1 Theoretical Background

This section outlines the mathematical background for calculating wave intensity
from coronary waveforms. For an in-depth theoretical and practical discussion, we
refer the readers to a recent review [76]. The catheter-acquired pressure and velocity
raw data in the clinic are ensemble averaged and then smoothed using the Savitzky-
Golay filter. The time derivatives of the pressure and velocity signal can be obtained
directly from the filter or estimated as the time increments of the smoothed pressure
p(t) and velocity u(t) signals, as

d p = p(t +dt)− p(t), du = u(t +dt)−u(t), (3.44)

where dt indicates the sampling time. Using the water hammer equations, relating
changes in velocity and change in pressure in a wavefront

d p+ = ρcdu+ for forward travelling waves (3.45)

d p− = −ρcdu− for backward travelling waves (3.46)

where ρ denotes fluid density. It is then possible to compute the wave intensity as

dI(t) ≡ d p(t)
dt

du(t)
dt

. (3.47)

Dividing the time increments by dt avoids the dependence of WIA on the sampling
time step size. The fundamental property of wave intensity is that at each sampling
point of the measured waveform, dI(t) highlights if the forward or backward trav-
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Fig. 3.5. The pressure and velocity signals, acquired in vivo in a human subject, have been
ensemble-averaged over 9 beats (top). The resulting forward and backward separated waves
are shown (bottom). For each of the major waves the related cardiac event and the associated
change in coronary pressure are highlighted (compression=increase, expansion=decrease).
The coloured waves are associated with flow acceleration whereas the uncoloured ones in-
dicate flow deceleration. The waves have been numbered following [25]. It is important to
highlight that the wave 1 is not always detectable due to the relatively low amplitude. AV =
aortic valve, LV = left ventricle
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elling wave is dominant at that instance. With the further assumption that forward
and backward travelling waves sum linearly when interacting

d p = d p+ +d p− , du = du+ +du− , (3.48)

combined with (3.45), it is possible to separate the simultaneous forward and back-
ward travelling waves

dI± ≡ d p±
dt

du±
dt

= ± 1
4ρc

(
d p
dt

±ρc
du
dt

)2

, (3.49)

where

d p± =
1
2
(d p±ρcdu), du± =

1
2

(
du± d p

ρc

)
. (3.50)

The pulse wave speed (PWS) of the coronary vessel (c) is then usually estimated by
using the sum-of-squares method [1, 25]

c =
1
ρ

√
∑d p2

∑du2 , (3.51)

which is to date the only single point method published. It is important to stress that
the summations have to be taken over an integer number of cardiac cycles. Finally,
the separated component of pressure and velocity can be computed as follows

p±(t) =
t

∑
0

d p±(t)+ p0, u±(t) =
t

∑
0

du±(t)+u0, (3.52)

where p0 = p(t = 0) and u0 = u(t = 0).

3.4.1.2 Physiological Applications

Applying the theoretical framework outlined in Sect. 3.4.1.1, the key question we
seek to answer first is whether or not the one-dimensional coronary model, presented
in Sect. 3.3.2, can appropriately capture the epicardial flow and reproduce the main
waves of the WIA profile. To address this question the model setup combines a
patient-specific geometry and a RCR Windkessel boundary condition with a time-
varying distal pressure (representing the LV pressure impact), as previously applied
in [57, 69].

The motivations behind this modelling setup are practical. Firstly, if interven-
tional clinical translations are of interest then the computation of the model must be
fast. Secondly, the model inputs are constrained by the data available in the clinic,
commonly limited to simultaneous single-point pressure and velocity measurements,
at times augmented by the geometry of the large epicardial vessels or their 2D pro-
jection.

Despite its simplicity, this approach retains its clinical relevance as the measured
waveforms can be fitted to estimate the Windkessel parameters (R-C) providing in-
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formation about the distal vasculature. Moreover, when applied to healthy and dis-
eased vessels, deviation in the estimated distal parameters can complement the infor-
mation available in the clinical setting. Furthermore, a template distal time-varying
pressure can be fitted to the measured data, providing an estimate of the left ven-
tricular pressure which is highly desirable but usually inaccessible in the clinical
diagnosis.

In an illustrative simulation below, the patient-specific geometry and the inlet
and outlet area of the left anterior descending artery (LAD) were extracted from CT
data and meshed using spectral elements of 5th order [87]. The LAD was assumed
to taper linearly. The pressure and velocity waveforms were simultaneously mea-
sured using a dual pressure and Doppler sensor (Combowire, Volcano Corp). The
PWS of 23 m/s was estimated using the sum-of-squares method (3.51) and β was ad-
justed such that the PWS is constant throughout the whole vessel (implying constant
distensibility [83]). The inlet boundary condition was prescribed to be the pressure
measured in the proximal part of the LAD. The values of the distal boundary condi-
tion parameters Rt = R1 +R2 = 4.5 ·109 Pa · s/m3 and C = 0.625 ·10−12 m3/Pa are
within the physiological range found in literature [57, 83]. The scaled left ventric-
ular pressure and the outlet boundary condition parameters were adjusted to obtain
physiological flow. The model was run for several cardiac cycles until periodic flow
was achieved.

Physiological coronary pressure and velocity profiles were obtained (shown in
Fig. 3.6). Major features of the velocity waveform such as the early-systolic and
late-systolic minima [68] and the sharp diastolic rise were represented in the sim-
ulated results. The modelled velocity profile (Fig. 3.6) qualitatively reproduces the
measured data (from a different patient) shown in Fig. 3.5, demonstrating the capac-
ity of the framework to capture the main features of wave propagation in a coronary
vessel. (Direct comparison between the simulated and the measured velocity wave-
form in the same patient has not been possible due to the poor quality of the acquired
velocity data in this case.)

The spatial variation in the velocity profile between the proximal and distal part of
the LAD qualitatively follows the expected changes, as measured in [53]. The main
relative variations between the proximal and distal velocities are an increase in the
early-systolic negative velocity and a less evident early-systolic peak (at t ≈ 0.1 s)
and late-systolic minima (at t ≈ 0.38 s), as described in [53].

In the current simulation setup, the calculated distal velocities are higher than in
the patient due to the absence of side branches in the model. There are several prac-
tical considerations associated – with the current imaging technology, the clinically
observable number and length of side branches are inconsistent across the patients
and depends strongly on the image quality. If we were to model every observable
side branch it will multiply the number of boundary Windkessel models, prevent-
ing a standardised interpretation of these parameters and their comparison across a
population. Furthermore, the relative magnitudes of the main waves can be consid-
ered to be of greater clinical interest than the absolute values. In light of the inter-
and intra-patient variabilities and the effect of autoregulation on basal flow and pres-
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Time (s) 
Time (s) 

Fig. 3.6. The pressure and velocity waveforms in the proximal part of the LAD are visualised
along with the coronary WIA profile, where the main waves of the coronary WIA profile [25]
are clearly visible. The waves have been numbered following Fig. 3.5. The wave associated
to the aortic valve transition is not reproduced, as the valve behaviour at the inlet was not
included in the model

sure, the absolute wave intensity magnitude is uninformative unless acquired under
several well-defined conditions and compared, thereby limiting its utility.

In conclusion, this model can be used to realistically reproduce the coronary WIA
(cWIA), as shown in Fig. 3.6, as well as to investigate the impact that distal param-
eters (R, C or left ventricular pressure) have on the cWIA outcome. Moreover, by
applying this model in an inverse manner, the underlying parameters of the model
can be estimated as surrogate measures of distal vascular bed resistance and com-
pliance. However, it is not suitable for investigating the link between each different
wave and the mechanisms behind its origin, motivating the modelling approach pre-
sented in Sect. 3.4.1.3. Nevertheless, this application of the one-dimensional mod-
elling reaffirms its ability to correctly reproduce wave propagation phenomena, even
in the coronary epicardial vessels that are relatively short (≈ 10 cm) with respect to
the measured PWS (≈ 15-25 m/s).

3.4.1.3 Wave Intensity and Integrated Cardiac Function

Recent clinical research has shown that a coronary WIA-derived index can predict
functional recovery following a myocardial infarction [26], demonstrating the clini-
cal potential of the approach. However, a systematic investigation of the modulating
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factors underlying each wave is currently not available. While such a study would
be instrumental in advancing our prognostic capabilities through further mechanis-
tic understanding, at present experimental options are limited due to the physiolog-
ical complexity of the system under study. Detailed biophysical modelling on the
other hand offers the possibility to establish quantitative and mechanistic linkages
between cardiac function and the observed coronary waves, through parameter sen-
sitivity analyses.

Here we present an integrative framework aimed at enabling an in silico WIA.
It combines the one-dimensional vascular flow representation with a model of con-
tracting myocardium that incorporates the poromechanical framework outlined in
Sect. 3.3.3.2. The coupling between the two systems occurs both distally, at vas-
cular termini distributed throughout the myocardium, and proximally, via the aor-
tic sinus hemodynamics described as part of the reduced-order systemic circula-
tion model. Rather than prescribing measured quantities as boundary conditions, the
components of the model interact with one another and drive the evolution of the
coronary waves, thus allowing mechanistic investigations of wave generation. The
inlet pressure of the coronary system is determined by the aortic sinus pressure in
the systemic circulation model, which in turn depends on the outflow from the left
ventricle. Mechanical stress generation in the myocardium due to passive filling or
the contractile forces contributes to the pore fluid pressure, which in turn feeds back
onto the vascular flow. This framework thus allows the coupled wave propagation–
perfusion–contraction dynamics to be studied throughout the full heart cycle.

The poroelastic constitutive relation (3.27) was composed of: Φ̄ , an existing
hyperelastic formulation of cardiac tissue [41] supplemented with a linearly vis-
coelastic term; and Φ̂ , an adapted coronary pressure-volume relationship charac-
terised from experimental measurements [13]. The compaction barrier potential Θ
was based on a functional form proposed in [30]. Active tension generation in the
myofibres was modelled using a previously proposed relation employed for patient-
specific modelling [71], which is a reduced-parameter formulation of [56].

The resulting poroelastic problem was discretised using a Galerkin finite element
formulation, with quadratic and linear hexahedral elements for displacement and
pressure fields, respectively. The incompressibility constraint (3.15) was addressed
via Lagrange multipliers. The 1D vascular flow problem was discretised using a
5th order spectral element basis. Time discretisation was performed using a Crank-
Nicolson scheme. The resulting system comprised three sub-problems (poroelas-
ticity (3.16),(3.18) vascular flow (3.1),(3.2) supplemented by the 1D-3D coupling
(3.34),(3.35), and systemic windkessel) which were solved via a sequential fixed-
point approach, ensuring nonlinear convergence at each time step.

The results are demonstrated on a porcine cardiac geometry obtained via high-
resolution cryomicrotome imaging [92], from which the myocardial mesh and a
truncated vascular mesh featuring 4000 vessels were obtained. After pre-processing,
around 2000 vascular-myocardial coupling interfaces remained, distributed through-
out the myocardium. The diameter of the truncated terminal vessels were approxi-
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mately 200μm. Because the terminal generation of vessels extended to the level of
microcirculation in this case, for the current application a single porous compartment
was considered adequate. Boundary conditions applied to the myocardium include
a viscoelastic support at the base and elastic support over the epicardial surface. The
porous medium outflow condition was determined by a distributed resistance reflect-
ing distal vessels. The boundary conditions on the vascular problem was completely
defined proximally by the coupling to aortic pressure, and distally by the 1D-3D
coupling.

Simulations were performed with CHeart [58], an mpi-based parallel multiphysics
solver developed at King’s College London. The full set of model parameters and
discussions of the results can be found in [59], and expanded descriptions on the
employed numerical algorithms in [58].

Figure 3.7 shows an example of the physiological wave intensity profiles repro-
duced by the model. The dominant forward compression and backward expansion
waves are accurately reproduced, as well as the smaller waves which occur during
early diastole and late systole. Parameter perturbation analysis revealed key cardiac
event-wave associations including a strong dependence of the forward compression
wave (2) on the myocyte tension development rate, and the dominant backward ex-
pansion wave (5) on QRS duration and vascular resistance. The late forward com-

Fig. 3.7. Coronary pressure, velocity and wave intensity profiles from the integrated perfu-
sion model. The results were sampled from a mid-LAD region. Good qualitative reproduction
of the major forward and backward waves can be observed. For further discussion, refer to text
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pression wave (6) was observed to exhibit sensitivity to the rate at which the aortic
valve transitioned between open and closed states. The late backward compression
wave (3) is expected to depend strongly on the wave transmission characteristics of
the vascular network itself. In the current work, the vascular segments were param-
eterised based on a simplifying assumption of constant wave speed that is likely to
have led to reduced reflections and suppressed backward propagation, that may ex-
plain the diminished magnitude of this wave in comparison to experimental findings.
Further discussions on the dependence of each wave on the underlying cardiac events
are available in [59]. The myocardial perfusion, estimated by the arterial inflow into
the porous domain is shown in Fig. 3.8. It can be seen that the model reproduces the
layer-dependent perfusion pattern, including systolic subendocardial flow reversal
and endo-to-epi redistribution of flow [97].

a

b

Fig. 3.8. (a) Vascular velocity and tissue pore pressures are shown for a late diastolic phase;
(b) Myocardial perfusion throughout the cardiac cycle shows endo-to-epi fluid shift in systole.
Perfusion was calculated as the sum of arterial outflow into the segments of the porous domain
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In the following section, we present an extension of the current framework to
enable a consistent comparison between the perfusion fields calculated by the current
approach, with those which are clinically measured using non-invasive imaging.

3.4.2 Perfusion Imaging and Modelling

Perfusion MRI is employed in the assessment of tissue perfusion and provides in-
formation about the state of the coronary circulation over various vessel diameter
scales. In contrast-enhanced perfusion MRI a bolus of gadolinium-based contrast
agent (c.a.) is injected and a fast MRI acquisition is employed in order to obtain
image information over every heart beat during the first pass of c.a. through the my-
ocardium. An MR signal increase caused by the inflow of c.a. into the myocardial
tissue is compromised in the region of perfusion defect. This can be qualitatively
evaluated directly from the image data as shown in Fig. 3.9. A semiquantitative as-
sessment of the time evolution of MR contrast in Fig. 3.10 demonstrates a delayed
signal increase, lower peak signal and upslope in the diseased myocardium.

3.4.2.1 Perfusion MRI Background

The particular behaviour of perfusion MRI depends on the pharmacokinetics of the
c.a., for example extravascular agents diffuse freely through capillary membranes
into extracellular space, whereas intravascular contrast agents bind strongly to plas-
ma proteins and remain within the blood. There also exist c.a. that contain both extra-
cellular and intravascular components. The c.a. concentration, bolus injection dura-
tion, and total quantity of c.a. that is administered will also affect the final perfusion
images.

Combining rest and stress perfusion scans allows for a detailed functional eval-
uation. The high spatio-temporal resolution of perfusion MRI makes it possible to
observe a number of typical physiological phenomena in in vivo conditions, for in-
stance different perfusion levels in subendocardial and subepicardial zones [39] or

Fig. 3.9. Three slices of 2D perfusion MRI (covering base, mid-third and apical part of heart).
Note the dark region in the mid-third of the lateral wall of left ventricle corresponding to the
perfusion defect (yellow arrows). Courtesy of Prof. Eike Nagel, King’s College London
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Fig. 3.10. Time evolution of MR signal in the middle slice of Fig. 3.9 with regions of interest
placed into the healthy LV mycoardium and into the perfusion defect. Note the lower peak
signal and decreased upslope (dashed red line) in the hypoperfused region

the effect of phasic flow in the coronary circulation during cardiac cycle [81]. This
demonstrates the significant potential of MRI in basic research – to better understand
cardiac physiology both in healthy and diseased states – and in clinical research – to
better stratify patients. Furthermore, the optimal adjustment of the many degrees of
freedom in an MRI perfusion exam – some of which have been mentioned above –
could ultimately also enhance the diagnostic efficacy of perfusion MRI.

3.4.2.2 Contrast Agent Transport Modelling

Although contrast-enhanced perfusion MRI shows great promise, it currently re-
mains a technique which is confined mainly to research environments. The deter-
mination of optimal imaging strategies is complicated by the vast array of scanning
parameters that can be chosen, the multiple pathologies that the modality can reveal,
competing spatial-temporal requirements, and the selection of appropriate contrast
agents. In this context computational modelling provides a means to more efficiently
assess new imaging protocols and accommodate these disparate requirements.

Mathematical Description

The suitability of porous media formulations for modelling myocardial perfusion
was summarised in Sect. 3.3.3. These justifications remain valid for modelling per-
fusion imaging. However an additional consideration is that the imaging data against
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which the model would be validated is already the result of a volume averaging pro-
cess as a typical voxel in MR perfusion imaging has dimensions of approximately
1.2×1.2×10 mm (Fig. 3.9).

To model the transport of contrast agent through the coronary circulation requires,
in the most basic form, two equations, which for the sake of brevity and ease of
analysis are presented here in nondimensional form (for full derivation see [20] and
earlier works [7] and [88]). The first, an advection-diffusion equation, tracks the
transport of c.a. concentration (henceforth denoted c) in the fluid phase of the porous
medium, which represents the blood (denoted by superscript f ):

∂c f

∂ t
+u ·∇c f =

1
Pe
∇2c f −Da(1−φ f )(c f − cs)+

q
φ f . (3.53a)

Note that u is related to the Darcy velocity (Eq. 3.12a) as: w/φ f .
To track the transport of c.a. in the solid phase of the porous medium – represent-

ing the extravascular space of the myocardium (superscript s) – a diffusion equation
is used:

∂cs

∂ t
=

Dr

Pe
∇2cs +Daφ f (c f − cs). (3.53b)

In these equations the concentration c is defined per phase volume, and therefore
the product φc gives the concentration per total volume. D f and Ds are the diffusion
coefficients of the contrast agent in the blood and extracellular space, respectively.
Finally, q is a volumetric source term, typically applied at a few nodal points to
represent the largest epicardial feeding vessels. In this model a temporal Gaussian
inflow pattern is used to approximate the dispersion the bolus undergoes as it travels
to and through the large coronary arteries.

These two transport equations are coupled by a reaction term which accounts for
the diffusion of contrast agent through the vessel walls and into the extracellular
space of the myocardial tissue. This model assumes that the flux through this ves-
sel wall is proportional to the concentration difference that exists across it, which is
commonly used in membrane models. The constant of proportionality α is a phe-
nomenological parameter that encapsulates both the permeability of the vessel wall
to a particular contrast agent molecule, and the efficiency of the vascular geometry
at allowing mass transfer across its surface and into the tissue.

The four nondimensional parameters are defined as follows.

1. Peclet number (Pe) = Ud
D f , characterises the relative time scales of advective and

diffusive processes in the blood.
2. Damköhler number (Da) = αd

U , characterises the relative rates with which contrast
agent passes through the vessel wall and is swept past it by the blood.

3. Diffusivity ratio (Dr) = Ds

D f , indicates the relative importance of diffusive pro-
cesses in the intra- and extravascular spaces.

4. Fluid porosity (φ f ), the volume fraction of the porous medium occupied by the
blood.
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Once the concentration value in each phase has been determined, the total con-
centration in the bulk volume can be calculated by the following porosity weighted
sum of the component concentrations.

ctotal = φ f c f +φ scs. (3.54a)

Denoting the signal response as I, the observed myocardial signal Imyo is given by:

Imyo = I(φ f ,φ s,c f ,cs). (3.55)

Data characterising typical nonlinear signal responses I(c) can be found in [49] and
[42]. In the linear regime of I, before the signal begins to saturate, ctotal is propor-
tional to the signal.

In the Darcy flow model zero Neumann conditions are specified on all surfaces
of the domain, used for the results in Figs. 3.11 to 3.14. The flow is driven by mass
source models of the arteries and distributed sink terms that model the venous circu-
lation [46]. Similarly, zero Neumann boundary conditions are applied in the trans-
port model, with concentration sources specified at the same locations as the fluid
mass sources, as used to generate the results in Fig. 3.14. The diffusion equation of
the transport model is discretised using the Galerkin finite element method, whilst
the advection-diffusion equation uses a Petrov-Galerkin method with streamline up-
winding to improve numerical stability of the advection operator. The discrete forms
of both equations are assembled into a monolithically-coupled linear system, such
that both concentration values are solved simultaneously. The time stepping is per-
formed by a backward-Euler scheme.

3.4.2.3 Results

Time Series Data

These time series data are taken from an idealised model of perfusion in the cap-
illaries. A rectangular domain – discretised with linear Lagrange, quadrilateral el-
ements – is used to represent the capillary bed, with uniform inflow and outflow
boundary conditions in the Darcy model. A point source of concentration is situated
near to the inflow and the c.a. swept downstream.

Figures 3.11a–11d show pointwise values of the c.a. concentration (fluid, tissue
and total) taken at the centre of the domain, downstream of the point of contrast
agent injection, for four values of Da. All of the figures show the arrival, dispersion
and subsequent wash-out of the c.a. bolus. Fig. 3.11a is the concentration signal for a
blood-pool (intravascular) c.a., the case Da = 0 and thus all the signal orginates in the
fluid phase, preserving the Gaussian nature of the input bolus. As Da is increased to
0.1 in Fig. 3.11b, a small quantity of c.a. now diffuses into the tissue phase, creating
a long tail in the total signal as the c.a. slowly diffuses back into the blood to be
transported away downstream. At Da = 1.0, Fig. 3.11d, the storage in the tissue is
significant, causing the peak concentration to be roughly halved, but these levels of
signal now persist for much longer. Note that because the transport of c.a. through
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a b

c d

Fig. 3.11. Concentration time series data measured downstream from the c.a. injection point,
for increasing values of Da. (a) Da = 0; (b) Da = 0.1; (c) Da = 0.5; (d) Da = 1.0. Adapted
from Cookson et al., 2014 [20]. Reproduced under the Creative Commons License 3.0
(http://creativecommons.org/licenses/by/3.0/)

the capillary walls is driven by the concentration difference between fluid and tissue,
the c.a. enters the tissue much more quickly than it leaves.

Parameter Space Study

A common method for quantitatively estimating perfusion proposed in the clinical
literature uses the signal upslope [4] as a key part of the calculation. This upslope
is defined as the maximum positive temporal gradient of the time series at a given
point (see Fig. 3.10). It is therefore useful to understand the potential variation of
this quantity with changing parameter values in the model, and thereby assess the
impact on this quantification technique.

Figure 3.12 shows the variation of perfusion signal properties with changing Da
and Dr. These plots reveal a previously-unknown non-monotonic behaviour in both
the peak concentration and upslope with respect to changes in Da. Parameter estima-
tion suggests that contrast agents currently used for cardiac perfusion imaging lie in
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Fig. 3.12. Concentration signal properties display non-monotonic behaviour with respect to
increases in Da, which means these properties alone are insufficient for use in parameter
estimation. (a) Variation of peak concentration with Da and Dr; (b) Variation of signal upslope
with Da and Dr. Adapted from Cookson et al., 2014 [20]. Reproduced under the Creative
Commons License 3.0 (http://creativecommons.org/licenses/by/3.0/)

the range of 0.25 < Da < 2, indicating that this non-monotonic behaviour will be im-
portant for interpreting current perfusion images. Furthermore, within this estimated
range, the signals are far more sensitive to changes in Da than they are in Dr.

Similar trends are observed when varying Pe and Da, while keeping the other
parameters constant. As in Fig. 3.11, for fixed Pe, both signal properties display
monotonic behaviour, with a minimum point at Da ≈ 1. As Pe increases, both ups-
lope and peak value increase, which is due to the reduced diffusion of the contrast
agent bolus as it travels to the sampling point. Finally, both upslope and peak con-
centration are largely insensitive to the changes in porosity that might be expected
to occur due to regional variation or tissue contraction during the cardiac cycle.

Simulating Perfusion Images

Figure 3.13 shows the complete modelling framework with respect to its ability to
represent a regional perfusion defect in the Darcy flow model, where the regional
defect is defined based on the local vascular network in that area. This flow de-
fect is then subsequently observable as an area of very low c.a. concentration in the
transport model results. This 3D time-varying dataset can also be presented in the
manner observed in clinical perfusion imaging, as in Fig. 3.14. This figure shows a
set of three simulated imaging slices, with their locations along the heart long-axis
marked. Clearly visible in the upper left portion of the slices is an area of dark blue,
signifying low concentration of c.a. and therefore indicating a regional perfusion
deficit.
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a b c

Fig. 3.13. (a) The cross-sectional area of the feeding artery of the red subtree was decreased
by a factor of 0.7 to model stenosis of a branch of the coronary artery. Total concentration of
contrast agent in the tissue 20 seconds after administering a bolus injection for a physiological
case is shown in (b) and for the simulated occlusion of a coronary artery branch in (c). Adapted
from Nolte et al. (2013) [72]

Fig. 3.14. A set of simulated perfusion images, taken at the three slice planes used in clinical
imaging and using the non-dimensional form of the transport model. A perfusion defect is
visible in the upper-left portion of the slices

3.5 Conclusions

In this chapter, we have presented a computational modelling framework coupling
fluid and structure in order to simulate myocardial perfusion in a physiologically
relevant manner. To this end we introduced a model of flow in macroscopic ar-
teries, a multi-compartment Darcy model representing myocardial perfusion over
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a range of vessel sizes and a poro-elastic model capturing the flow phenomena in
the beating heart. The in silico obtained quantities – wave intensity and tissue signal
in perfusion MRI, both of which represent the current state-of-the-art in invasive
and non-invasive cardiological exams – create a basis for clinical translation of our
work.

A key strength of wave intensity analysis in the coronary circulation is its abil-
ity to gauge the combined haemodynamic and mechanical function within a specific
vascular territory and its associated myocardial region. Under the interventional clin-
ical settings in which an acute coronary event must be managed with speed, WIA
offers the potential to simplify the diagnostic procedure and improve its accuracy as
recently demonstrated [26]. Despite these promises WIA is rarely, if at all, used in
the current clinical landscape, one of the key reasons being that our understanding
of the individual waves and their mechanistic origins is incomplete.

To this end we have approached the modelling of WIA via two complementary
strategies representing the extremes of the clinical–physiological spectrum. The 1D
model of the epicardial flow is oriented towards the real-time clinical usage, due to
its reduced complexity, computational time and the amount data required to tune it.
It aims to integrate the available in vivo patient data (simultaneous measurements
of pressure and flow, and optionally the epicardial geometry and left ventricular
pressure, if available) against the observed wave intensity characteristics to assess
the impact of the disease on the distal and vessel mechanical parameters.

On the other hand, the poroelastic model provides a comprehensive framework
with which to investigate the complex interaction between the aortic pressure, wave
propagation and the myocardial contraction that underpins the change in the ob-
served wave intensities. This approach facilitates investigations currently inacces-
sible to experimental means, due to the overwhelming complexity of aquiring such
detailed measurements in the beating heart. Together with the 1D model, the com-
bined approaches provide a tool for examination and interpretation of the clinically
accessible invasive wave measurements.

In the perfusion MRI simulations we demonstrated the feasibility of coupling the
porous medium flow model with advection-reaction-diffusion equations. In terms of
validation and translation aspects, this capability to simulate the tracer-kinetic pro-
cess underlying image formation is crucial to advancing the model into the realm of
real-world relevance. The application of this work is primarily aimed at supporting
the development of an optimal clinical non-invasive image acquisition protocol. Cur-
rently in perfusion MR imaging there are several open questions regarding the 2D
vs 3D readout [50], spatio-temporal sampling resolution tradeoffs and the timing of
data collection within the cardiac cycle [81]. While such investigations are generally
tackled through direct population imaging studies, our integrated modelling frame-
work has the capacity to contribute clarifications to these questions based on fun-
damental biophysical mechanisms. Further, the framework can be used to perform
a parameter space exploration for the optimal design of imaging contrast agents,
which is a costly and time-consuming exercise to undertake in the laboratory.
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The added value of modelling in clinical practice lies in merging all patient in-
formation – beyond the qualitative intuition of the physician – and applying this
integrated knowledge in the diagnosis and therapy planning. In this respect the next
major challenge remaining in our clinical translation is the characterisation of the
patient-specific parameters from clinical data. Of the various inverse estimation tech-
niques available, the variational and sequential data assimilation approaches [16]
have received particular recent interest in the cardiac community for image-based
tuning of finite element models. To date, estimations of e.g. active [15, 48], pas-
sive [108, 109], electrical activation [22], myocardial fiber direction [70], vascular
wall stiffness [9, 10] and aortic boundary tissue support parameters [66] have been
reported. The application of such techniques to the models outlined in this chapter
will reveal distal vascular parameters and porous permeability in a patient-specific
manner. In concert with parallel efforts in the image analysis community on per-
fusion quantification [111] and associated emerging indices such as MRI gradien-
togram [39], the modelling framework will enable a comprehensive assessment of
regional perfusion in ischaemic heart disease.

With an expanded scope for real-world applications, the critical urgency of model
validation must be emphasised. Whereas an experimental validation aims to ensure
the model accurately reproduces the targeted physical and physiological phenom-
ena, clinical validation is equally important for ensuring that the model will perform
robustly on larger patient cohorts in spite of statistical and practical variations. In
cardiovascular modelling, although a number of experimental validations have been
performed to date [9, 11, 69, 93], clinical validation of models is at present infre-
quently attempted.

A notable recent exemplar for translation has been achieved through an appli-
cation of 3D CFD to predict FFR from CT angiography data (FFRCT), bypassing
the need for invasive procedures. This analysis, available as a commercial service,
has undergone three prospective multicentre trials to date and has begun to be re-
ceived by the medical community as a disruptive technology with the potential to
transform clinical practice [28]. The outcomes of the most recent trial indicate that
FFRCT is capable of providing comparable sensitivity (FFRCT 86% vs CTA 94%)
and a marked increase in specificity (FFRCT 79% vs CTA 34%), as compared to
using CTA alone [73].

A key strength of the FFRCT approach therefore derives from its capacity to ex-
trapolate physiological function from purely anatomical information through mod-
elling. But on the other hand, such a task inevitably involves assumptions regard-
ing model parameters, necessitating their estimation from typical group behaviour.
Therefore it is likely that the current gap between the diagnostic accuracy of FFRCT

and the gold standard invasive FFR is engendered by the intrinsic physiological vari-
ability among the individual patients. Particularly with regards to the distal circula-
tion, a recent meta-analysis of published CFVR-FFR measurements showed that on
the whole the therapeutic action recommended by these two indices disagree around
40% of the time, reflecting a potentially serious consequence of neglecting the rel-
ative contributions of focal, diffuse and microvascular disease in a specific individ-
ual [51]. Replacing the generic assumptions on maximal vasodilation of the distal
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bed, minimal resistance level and flow distribution parameters with individualised
estimations could help to bridge this gap.

At present the experimental validation of our modelling framework is under way,
utilising previously established platforms of perfusion phantoms [19] and animal
models [84]. Furthermore, recent advances in coronary MR imaging [63] open the
future prospect for high-resolution MR-based anatomical characterisation of steno-
sis geometry that can leverage the perfusion imaging considered in this work. While
the clinical utility of the framework remains to be elucidated through future trials,
our experience so far has reinforced our belief that a fundamentally interdisciplinary
approach is essential in developing new and effective strategies of disease manage-
ment. A sufficient understanding of the problem through collaboration across mul-
tiple disciplines, holds the key to generating a truly revolutionary approach for un-
derstanding and treating coronary disease.
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Using Image-based CFD to Investigate
the Intracardiac Turbulence

Christophe Chnafa, Simon Mendez, Ramiro Moreno and Franck Nicoud

Abstract A numerical framework designed to compute the blood flow in patient-
specific human hearts is presented. The geometry of the heart cavities and associated
wall motion are extracted from 4D medical images while the valves of the heart are
accounted for thanks to low order geometrical models. The resulting blood flow
equations are solved using a fourth-order low-dissipative finite-volume scheme and
a mixed Aribtrary Lagrangian-Eulerian / Immersed Boundary framework. On top
of retrieving the main fluid flow phenomena commonly observed in the left heart,
the methodology allows studying the heart flow dynamics, including the turbulence
characteristics and cycle-to-cycle variations.

4.1 Introduction

Heart pathologies are closely related to intracardiac hemodynamics. Recent techno-
logical innovations in imaging techniques have provided valuable opportunities for
direct non-invasive in vivo assessment of hemodynamics. Blood flow velocities can
be measured in vivo using phase-contrast magnetic resonance imaging (PC-MRI) or
by echocardiography techniques.

PC-MRI studies have contributed to the understanding of the main hemodynamic
features [10, 18, 25]. Although very comprehensive, the PC-MRI velocity mapping
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is not real-time. Hence, beat-to-beat variations in the flow cannot be recorded (the
k-space is filled over many cardiac cycles). Moreover, PC-MRI suffers from a rela-
tively low spatio-temporal resolution, precluding the observation of small scales and
fast time-varying flow features [15].

Echocardiography techniques [11, 19], with higher spatio-temporal resolution
make an alternative to PC-MRI. However, they only give access to velocity compo-
nents directed towards or away from the ultrasonic beam, while one would want to
measure the full 3D flow vectors. Nevertheless, investigations have been conducted
on normal and abnormal hearts and interesting potential indicators of cardiac health
hemodynamics arose [4, 13, 16].

With the development of these cardiac imaging techniques, patient-specific ge-
ometries have been progressively used in computational fluid dynamics (CFD) [5,
21,28,30,42,44]. Realistic heart wall movements on the basis of cine MRI or Com-
puted Tomography (CT) scan data can be used: heart movement is prescribed from
the patient-specific medical images, which can be acquired using standard clinical
imaging procedures, instead of being computed. This strategy allows computation
of the patient-specific hemodynamics and provides detailed insights into the cardiac
flow field, providing potentially valuable clinical information. If the feasibility of
this kind of approach has been shown, the results usually suffer from limited spatial
resolution, partial geometry (only the left ventricle (LV) is considered in most cases)
or numerical limitations (dissipative schemes). Besides, except in a few experimen-
tal works [7, 41], cycle-to-cycle variations in the heart flow is an issue that is rarely
dealt with.

In the present work, an image-based CFD method developed to compute flows
in aortas [29] is extended to compute intracardiac flows. Medical images are used
to generate a moving patient-specific domain, in which the blood flow equations are
solved. Heart geometry movements are generated from a 4D sequence (MRI or CT
scan images) treated by an appropriate image registration algorithm [35]. A specific
attention is paid to the generation of a high-quality mesh which deforms consistently
with the heart motion. This allows solving the flow equations with an essentially non-
dissipative scheme compatible with the description of unsteady turbulent flows by
Large Eddy Simulation. In order to demonstrate the ability of the method to compute
heart flows, application to a complete human left heart described by ECG-gated 3D
CT scan images is presented. The resulting flow is described, emphasizing the flow
characteristics usually reported in the literature. Characteristics of the cycle-to-cycle
variations are also reported.

The numerical method is detailed in Sect. 4.2. The characteristics of the applied
case is presented in Sect. 4.3 and the flow field obtained is described in Sect. 4.4.
Concluding remarks are given in Sect. 4.5.
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4.2 Methodology

The present computational method approaches couples an Arbitrary-Lagrangian Eu-
lerian framework with an immersed boundary method in order to represent the blood
flow within the moving endocardium while accounting for the heart valves motion.
This section describes the flow solver and the treatment of the medical images needed
to perform the computations.

4.2.1 Fluid Problem

Blood is an incompressible, non-Newtonian fluid [9]. However, in large vessels, non-
Newtonian effects are usually neglected in numerical simulations [30, 46] and con-
stant kinematic viscosity ν is assumed in this paper. Note however that the present
numerical method could be applied to non-Newtonian fluids.

The flow is thus governed by the incompressible Navier-Stokes equations (NSE),
over a moving domain Ω f (t) ⊂ R3 of boundary ∂Ω f (t). The Arbitrary Lagrangian
Eulerian (ALE) framework [8] is used in order to account for the computational do-
main deformation over time. Introducing the pointwise computational domain ve-
locity ug, the NSE read:

du
dt

+((u−ug) ·∇)u = − 1
ρ
∇p+ν∇2u+ f

∇ ·u = 0,

⎫⎬⎭ on Ω f (t) (4.1)

where u is the fluid velocity, p is the pressure, ρ the density and f a force per mass
unit. Note that the time derivative denotes an ALE time derivative [8]. At the bound-
ary of the computational domain, no-slip conditions are applied on walls (u = ug)
and Dirichlet conditions are applied over the inlet boundaries.

These equations are implemented in the flow solver YALES2BIO (www.math.
univ-montp2.fr/∼yales2bio) [27], developed from the massively parallel finite-
volume flow solver YALES2 [34]. At each time step, the grid velocity ug at each
node of the computational domain is calculated (see next section). A projection
method is used to solve the NSE: the momentum equation is first advanced using the
fourth-order Runge-Kutta time-advancement scheme. Fluxes are discretized with a
4th-order central scheme. Any forcing term coming from immersed boundaries is ac-
counted for in this prediction step. At the end of the prediction step, the grid reaches
the final position of the time step. Hence, the projection step to calculate pressure
is performed over a fixed grid. A Deflated Preconditioned Conjugate Gradient algo-
rithm is used to solve the Poisson equation [24] involved in the projection step. Note
that due to the transitional nature of the flow, Reynolds Averaged Navier-Stokes
(RANS) approaches for modelling turbulence (e.g. k-ε , k-ω models, etc) are not ap-
propriate since they rely on the assumption that turbulence is fully developed and
ergodic. Even if adaptations have been proposed in order to handle transition, they
essentially require the user to prescribe the transition location in advance. Instead, in
the present study, the Large Eddy Simulation approach is followed, taking advantage
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of the low-dissipative scheme of integration used in YALES2BIO. In this view, only
the smallest scales are modelled (scales smaller than the mesh size) while the evolu-
tion of the large scales is computed by solving a filtered version of NSE [33,39,43].
In the latter, a subgrid-scale model must be used in order to account for the effect of
the unresolved scales on the dynamics of the resolved ones. This is usually done by
an eddy-viscosity-based model [45]. In the present study, where the flow is strongly
confined and piloted by the wall motions, an advanced subgrid scale model able to
represent the proper turbulence damping near solid walls was used [36] as well as a
well established formulation based on the dynamic procedure of Germano [12].

4.2.2 Computational Domain

4.2.2.1 Extraction of the Heart Deformation

Determining the movement of the computational domain, where the NSE are solved
is all but an easy task. One solution is to compute the deformations of the bound-
ary thanks to a full electrical-fluid-structure interaction solver. Unfortunately, there
are many uncertainties regarding the constitutive laws (both mechanical and electri-
cal) of the heart muscle as well as the external constraints the heart is submitted to.
Moreover, accurate heart models are still under development today [47] as well as
robust numerical method to solve them. A way of by-passing this issue is to extract
the computational heart grid from 4D (3D + time) patient medical images. The fol-
lowing question must then be addressed: given several 3D images of a heart taken at
different times in the heart cycle, how to extract the heart deformations from these
images and how to deform a patient-specific grid accordingly? The first part of the
question is actually a classical “image registration” problem.

Nowadays, there is a growing interest in the development of cardiac image reg-
istration methods [23]. Given two cardiac images, a template and a reference one, a
transformation is determined to map the template image to the reference image. The
deformation field can notably provide clinical information on the myocardial con-
tractile function. Here, the same process is used to compute the heart deformations,
but instead of focusing on functional data of the heart muscle, the computed de-
formation is used to extract patient-specific boundary conditions for the blood flow
computation.

Among many registration algorithms [22,31], voxel similarity measure techniques
were preferred. This class of method operates directly on the image grey values, pro-
viding a flexible algorithm suitable for the complex heart movements.

In the present case, N 3D images Ii of a patient heart are taken at different times
ti, 0 ≤ t0, t1, . . . , tN−1 < T during the heart cycle of period T . One of the N images is
selected as a template image. Note that this choice is somewhat arbitrary and that,
without loss of generality, one can always tune the time origin so that the template
corresponds to the I0 image at time t0. From this image, N−1 transformations ψi are
computed such that the transformed template image becomes similar to images Ii (i
between 1 and N−1) successively considered as the reference image: transformation
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ψi is search so that I0(ψi(x)) = Ii(x) for each voxel. Here, Ii(x) stands for the voxel
grey-level value at position x in the i-th 3D discrete image.

Each ψi is calculated by minimizing the distance between I0(ψi(x)) and Ii(x), an
appropriate distance measure being based on the so-called sum of squared differ-
ences. The transformation ψi is computed through an optimisation problem reading:
given two images I0 and Ii, find a mapping ψi such that the squared intensity dif-
ferences between I0(ψi(x)) and Ii(x) is minimized for each voxel. The number of
parameters describing the transformation is too high so that the solution ψi of this
problem is not unique. Additional constraints are needed to compute the mappingψi.

In the present work, a constraint on ψi is applied thanks to prior knowledge of
the deformation sought [2]. The idea is to penalize unlikely deformations by impos-
ing the heart deformations to be smooth. Bayesian statistics are used to obtain an a
posteriori computation of the deformation field. The prior deformation probability
is incorporated through the Bayes’ theorem: p(Y|I)∝ p(I|Y)p(Y), where p(I|Y) is
the likelihood of observing the images data I (template I0 and reference Ii images)
given the deformation parameters Y. p(Y) is the prior knowledge of the deforma-
tion translated in the a priori probability of seeing the parameters Y and p(Y|I) is
the a posteriori probability of getting Y knowing the two images data I. Using this
Bayesian framework, the goal is to maximise the probability p(Y|I). Knowing that
a probability is related to its Gibbs form by p(Y)∝ e−H(Y), the problem can be seen
as a minimisation of the Gibbs potential:

H(Y|I) = H(I|Y)+H(Y)+ c, (4.2)

where c is a constant. The likelihood potential H(I|Y) of observing the images data
given the deformation parameters Y is directly linked to the squared intensity dif-
ference between I0(ψi(x)) and Ii(x) for each voxel:

H(I|Y) =
1
2

∫
Ω

(I0(ψi(x))− Ii(x))2 dΩ , (4.3)

where the integral is taken over the image volume Ω .
The second term H(Y) in the right hand side of Eq. (4.2) is the wanted constraint,

applied thanks to prior knowledge. The prior deformation knowledge put in this
potential is expressed as a geometrical constraint on the mapping through the two
studied images. A suitable prior probability is linked to the deformation of each
voxel of the template image and to the reverse deformation [1]. This potential acting
as a regularization term allows a penalization based on the Jacobian of the locals
deformations J. A detailed description of this term can be found in [1].

This regularization term is weighted by a parameter λ linked to the belief in the
amount of deformation of the heart. A high value of the λ parameter results in a
high penalty on the voxels deformation, hence only small and smooth deformations
are allowed. Given the high deformation of the left heart, high λ values result in
partial deformation and a high residual squared difference between the template im-
age and the reference one. In the case of small values of λ , a lower residual squared
difference will be reached, but the resulting deformation can be non physical due to
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excessive warping. Actually, the variability of heart movements is highly different
from one region to the other. The aorta needs high values of λ , whereas small values
are needed for the atrium or the ventricle.

One method of increasing the likelihood of achieving a good solution without
introducing a spatial variability on λ (and consequently avoiding more operator-
dependant work as well) is to apply successive filters to the images using a Gaus-
sian smoothing convolution kernel G σ of width σ . High-frequency information of
the image is removed thanks to this filter then gradually re-introduced as the kernel
width σ becomes smaller and smaller. This iterative process is defined as the outer
iterations: for each kernel width, distance between the images are minimized. This
"coarse-to-fine" strategy has the effect of making the registration algorithm estimate
the most global deformations during the first outer iteration, leaving out fine-scale
structures. The optimum transformation for this kernel width is used to initialize the
computation of the next optimum computation, which deals with finer details. This
method increases the likelihood of finding the globally optimal match while avoid-
ing the classical problem of the intensity-based method: their susceptibility to poor
starting estimates.

As the regularization term, the intensity difference (first term H(I|Y) in the right
hand side of the Eq. (4.2)) is weighted. The weight for the j-th inner iteration is
defined as the inverse of the residual sum of the squared differences computed at the
previous inner iteration of a given outer iteration of the algorithm and is denoted by

1
d j−1 . Because d has a high value for the first iterations, more weight is given to the
regularization term, in order to get smooth deformations. As the algorithm gets close
to the final solution, d theoretically tends to zero, giving less weight to the priors and
letting the algorithm computing more detailed deformations.

Finally, the sought transformation ψ j,k
i at the inner iteration j and the outer iter-

ation k minimizes the function f j,k defined as:

f j,k
1 (ψ j,k

i ) =
1

2d j−1

∫
Ω

([G σ k ∗ I0](ψ j,k
i (x))− [G σ k ∗ Ii](x))2 dΩ , (4.4)

f j,k
2 (ψ j,k

i ) = g(J(ψ j,k
i )), (4.5)

f j,k(ψ j,k
i ) = f j,k

1 (ψ j,k
i )+λ f j,k

2 (ψ j,k
i ), (4.6)

where the function g is computed from the Jacobian singular values and determi-
nant [2]. Finally the N −1 deformations are computed through this iterative optimi-
sation process. This approach was successfully applied before to large vessels as the
aorta cross [29].

4.2.2.2 Patient-specific Computational Grid and Application of the
Patient-specific Deformation

Once the N − 1 mappings ψi are computed, a patient-specific computational grid
must be extracted from the template image and warped thanks to the computed de-
formations. The template image corresponding to volumetric data I0 is imported into
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an image processing software (ScanIP;Simpleware Ltd., Exeter, UK). Before seg-
mentation, the image I0 is prepared: the region of interest is isolated and the image
is smoothed to erase noise inherent to the medical images protocols. The segmenta-
tion itself is done by a classical thresholding method [38]. A suitable image intensity
range which encompasses the voxel intensities of the region occupied by blood in
the heart is selected. The quality of the segmentation relies on the operator’s skills
and knowledge of the human heart morphology and the quality of the chosen med-
ical image. Image resolution plays a role in the potential domain simplification at
this step. Trabeculae, left atrial appendage or papillary muscles can either be kept
or neglected depending on the image quality and spatial resolution available. The
3D geometric reconstruction covers all the space occupied by blood in the left heart
cavities. The surface of the geometric reconstruction of the heart is triangulated.

Once a template 3D patient-specific surface mesh is created, a procedure to de-
form this surface model thanks to the images must be provided. For each couple of
images (I0,Ii) a suitable spatial transformation ψi was found thanks to the method
described in the previous section. These deformations ψi are 3D deformation fields.
Trilinear interpolation from these deformation fields to the template surface mesh
is done. Thus, a set of N −1 successive surface meshes matching the physiological
cardiac images at different times ti is produced as schematized in Fig. 4.1.

Position and velocity of all surface points are needed at any discrete time of the
simulation, not only at the times t0, t1, . . . ,tN−1. Since all the generated surface mesh-
es share the same topology (number and connection between nodes, number of cells),
interpolation is used to compute the position of each node and the velocity by taking
the time derivative of this quantity. As geometry variations are periodic, a trigono-
metric interpolation is used. The surface position and velocities read:

xs(t) =
m

∑
i=0

[ai cos(2iπ
t
T

)+bi sin(2iπ
t
T

)],

us(t) =
2iπ
T

m

∑
i=1

[−ai sin(2iπ
t
T

)+bi cos(2iπ
t
T

)],

⎫⎪⎪⎪⎬⎪⎪⎪⎭ on ∂Ω f (t) (4.7)

where T is the heart cycle period, m the number of Fourier modes (m = N−1
2 or N

2
depending on the parity of N) and ai, bi the Fourier coefficients. Surface velocity us
needed at the computation domain boundary ∂Ω f (t) is hence not computed as a FSI
problem, but entirely extracted from the medical images. In the present study, it is
used to handle the cardiac chambers and their connected vessels.

The template surface is imported in a commercial mesher (Gambit, ANSYS) to
generate a template unstructured tetrahedral mesh. The computed boundary Fourier
coefficients of Eq. (4.7) are interpolated in this template numerical domain. The
computational mesh boundary now follows the shape of the patient endocardium
and is updated in every step of the simulation. Motion of all internal points in the
computational mesh is based on the prescribed boundary motion. At each iteration,
nodal velocity ug is calculated through the computation of a Laplace equation [26]
using the prescribed boundary motion as boundary condition for this problem.
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t0                                                                                   ti

ψi

Fig. 4.1. Mesh deformation procedure applied to a left human heart. The template mesh seg-
mented from the image at time t0 is deformed thanks to ψi to obtain the mesh at time ti. This
procedure is done for each image in the cardiac cycle in order to obtain the corresponding
meshes

The grid quality is monitored during the simulations. When the boundary dis-
placement becomes too large compared to the local cell sizes, the cell quality can be
highly deteriorated. This can lead to convergence problems or negative cell volumes.
In this case, the numerical domain is re-meshed, Fourier coefficients are interpolated
on this new discretized surface domain, as is the fluid solution at the new internal
nodes.

4.2.3 Valves

Given their spatio-temporal resolution, MRI and CT scans fail to provide the nec-
essary information to characterize precisely the movements of the aortic (AV) and
of the mitral (MV) valves. Their geometry and movement have thus to be mod-
elled. Accounting for the moving valves with the ALE method would be extremely
complex due to grid quality issues. Here, an immersed boundary technique is used
instead. A body force is imposed to drive the flow velocity to zero where the valves
are located [3].

The opening and closing valve time is generally small (of the order of 5% of the
heart cycle [48]). As a first modelling effort, it has been considered that valves open
and close instantaneously, following the evolution of the ventricle volume. Systole
lasts as long as the ventricle volume decreases. During systole, the AV is open and
the MV closed. Diastole is defined as the heart period during which the ventricle
volume increases: then, the AV is closed and the MV open.

Valve reconstruction starts with the definition of the valves annuli. Their geom-
etry is reconstructed by inspecting the medical images. A number of markers are
placed manually to define the valve annuli at a given time. The motion of these mark-
ers is then obtained thanks to the Fourier coefficient defining the boundary motion
(Eq. (4.7)).
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Fig. 4.2. Left plot: annulus markers and grid cells where a body force is added to model the
MV leaflets. Diameters a(t) and b(t) of the elliptic opening are indicated. Right plot: full MV
model included in the numerical domain (the AV is represented as well)

As the focus is on the flow in the atrium and in the ventricle, the aortic valve
is modelled very simply. Physiologically, the leaflets of the aortic valve are pushed
against the vessel, offering small resistance to the flow. Hence, when the aortic valve
is open, no immersed force is applied: aortic valve is only active when closed.

The mitral valve is represented by a more complex model, since its shape is ex-
pected to strongly impact the LV haemodynamics. The position of the mitral valve
annulus being known over time, the mitral valve opening is defined using an ad
hoc model. From visual inspection of the images, parameters as the average leaflets
length, the orientation of the valve opening and an ellipse defining the opening area
are imposed. Details of the procedure are described in Chnafa et al. [3].

Knowing the MV leaflets position during the heart cycle, their effect on the blood
flow is accounted for by using an immersed boundary method (IBM) [32]. For this
purpose, the leaflets representations are given a thickness so that a few mesh nodes
are located within the valves. Then, the force f in the NS Eqs. (4.1) is set to impose
the fluid velocity to zero within the leaflets. Figure 4.2 shows an example of the
valves models during diastole, when the MV is open.

4.2.4 Inlet Boundary Conditions

Inlet boundary conditions at the pulmonary veins must be provided. Under the present
assumptions, either the aortic valve or the mitral valve is closed. Pulmonary veins
thus always inject blood in a closed domain. As a consequence, blood being incom-
pressible, the total mass flow rate entering the domain is entirely determined by the
mass conservation constraint. With QPV (t) denoting the inlet flow rate (sum of the
volumetric flow rates at the four pulmonary veins) and VLA, VLV and VAO denoting
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respectively the LA, LV and the aortic root volumes, mass conservation yields:

QPV (t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dVLA

dt
during systole

dVLA

dt
+

dVLV

dt
during diastole.

(4.8)

Uniform velocity profile are imposed at each inlet condition. With n j the outward
normal vector and A j the area of inlet condition j ( j=1,..,4), the inflow velocity reads:

u j(t) =−
(

Qi(t)
A j

ζ j

)
n j, (4.9)

where ζ j determines the distribution of the flow between the four pulmonary veins.
In the absence of additional measurement (typically flow rates from PC-MRI), it is
fair to assume a uniform distribution between the different pulmonary veins (ζ j =
0.25 for all j).

4.3 Application to a Patient Left Heart: Problem Formulation

4.3.1 Heart Model

Using the framework described above, an actual CT exam of a patient treated at the
University Hospital of Toulouse Rangueil (France) is used to generate a numerical
domain and its deformation. The CT exam consists of N = 10 medical images along
the cardiac cycle of period T = 1 s with a spatial resolution 2×2×2 mm.

Due to the limited resolution of the images, the intra-cardiac geometry is simpli-
fied. As shown in Fig. 4.3, the numerical domain includes the LA, LV, the aortic
root and four pulmonary veins. Left atrial appendum and geometrical details as the
cordae tendinae or papillary muscles are omitted. The LA has a height of 5.5 cm
from the MV to the upper pulmonary root and a maximum diameter of order 4 cm.
The LV has a height of 8.8 cm from the MV to the apex (the lowest extremity of
the LV in Fig. 4.3) and a maximum diameter of order 5 cm. The four pulmonary
veins can be identified at the top of the views shown in Fig. 4.3. Each of the four
pulmonary veins directly issues in the LA.

Valves are modeled as explained in Sect. 4.2.3. A close examination of the med-
ical images from the CT scan allowed to set the leaflets length to l = 12 mm for the
MV. The open area presented to the blood flow is represented by an ellipse of axis
a = 15 mm and b = 8 mm. As a first approximation, this area is supposed constant
over the time when the MV is open.

4.3.2 Grid Mesh and Simulation Details

A nearly isotropic grid is created from the heart model described in the previous
section using the commercial software Ansys Gambit, which was selected for its
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AO

LV

LA

Inlets
Outlet

16 cm

5 cm

Fig. 4.3. Template computational domain extracted from a 3D medical image. The same do-
main is represented for four different points of view and the left ventricle (LV), left atrium
(LA) and Aorta (AO) are indicated. Black line passing through the left heart indicates the
position of slices used to describe the flow in Sect. 4.4

ability to generate good-quality tetrahedral mesh, appropriate for non-dissipative
finite-volume formulations. The spatial resolution is of order 0.8 mm, which yields
grids of approximately three-million tetrahedral elements. In this study, in order to
maintain the quality of the grid along the cycle, re-meshing (see Sect. 4.2.2.2) was
used at each acquisition instants ti, i = 1, . . . ,N −1.

The simulation time step is fixed by a CFL condition (CFL=0.9) consistent with
the explicit time integration used in the CFD solver, which corresponds to a time
step of order 10−4 s.

Figure 4.4 displays the flow rates at the aortic valve (top plot), mitral valve (mid-
dle plot) and the heart inflow (bottom plot) gathering the four PV. Two verticals
dotted lines separate the systolic phase and the diastolic one. For this heart, systole
lasts t/T = 0.36 (from t/T 0.015 to 0.375) and diastole t/T = 0.64.

The pulmonary flow rate derived from time evolution of the heart cavities is con-
sistent with classical medical dataThe aortic valve flow rate behaves as expected:
it increases during systole with a maximum flow rate of QMV = 320 mL.s−1, then
decreases until its shutting at t/T = 0.375. The aortic flow rate stays null during di-
astole. The mitral flow rate is usually composed by two peaks. The E wave, or rapid
filling, and a second one, the A wave corresponding to late diastole. They are sepa-
rated by a phase with almost no heart motion called diastasis. The flow rate shows
only one main peak in the present case: the E wave (t/T = 0.51, QMV = 410 mL.s−1).
The fact that the A wave is weak is symptomatic of pathologies.

The blood properties are: ρ = 1040 kg.m−3 and ν = 4 × 10−6 m2s−1. Relevant
flow conditions at different locations of the heart are reported in Table 4.1. Inlet
Reynolds number for each pulmonary vein varies from 0 to approximately 2000,
based on the vein diameter. The Reynolds number at the mitral tips varies from
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Fig. 4.4. Flow rates at the aortic valve (top plot), mitral valve (middle plot) and the total
heart inflow (bottom plot) imposed at the pulmonary veins during the heart cycle. Vertical
dotted lines mark the limit between the systolic phase (t/T between 0.015 and 0.375) and the
diastolic phase

0 to approximately 5000 (based on the effective mitral mean diameter D = 2Ra =
2
√

ab, the area of the open MV, the kinematic viscosity and the maximum flow rate).
The maximum transmitral velocity Umax falls into the usual measurements (around
1.0 m.s−1) [14]. The Reynolds number of the aortic valve is about 5300. Table 4.1
reports the maximum velocity magnitude and the maximum Reynolds number for
different elements of the heart model: pulmonary veins, mitral valve and aortic valve.
These ranges of Reynolds numbers and the pulsating nature of the inlet flow clearly
indicate that this complex cyclic flow may be transitional if not fully turbulent. This
justifies the use of Large-Eddy Simulation (LES) which is more suitable than other
simulation approaches for unsteady and/or transitional flows. In order to achieve
a quality assessment of the presented simulation, the Pope criterion [40] is used.
According to this criterion, a reliable LES should be able to resolve at least 80% of
the turbulent kinetic energy. Looking at the phase where the turbulent activity is the
highest (t/T=0.65), it was found that this criterion is met in 85% of the numerical
domain. The last 15% are mainly located in the atrial cavity.
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Table 4.1. Main flow parameters describing the simulation. The section-averaged maximum
velocity is indicated as Umax. Reynolds numbers are based on the diameter D of the region of
interest. The instants when they reach their maximum value Remax are reported as tm/T . For
valves, A is the area of the lumen when open

Element Umax D = 2
√

A
π Remax tm/T

AV 0.96 m.s−1 2.20 cm 5300 0.16
MV 1.08 m.s−1 1.87 cm 5000 0.52

Pulm. vein 0.79 m.s−1 1.00 cm 2000 0.52

4.4 Discussion

4.4.1 Global Description of the Cardiac Cycle

Fifteen cardiac cycles were simulated and phase-averaged in order to provide a clear
view of the flow organization over the cardiac cycle. A detailed flow description can
be found in [3]; only the main flow characteristics are recalled here for the sake of
completeness. Six salient instants are illustrated in Fig. 4.5: the ventricular mid and
end-systole (t/T = 0.25–0.35), the beginning, peak and end of the E wave (t/T =
0.45–0.55–0.65) and the end of the A wave, just before the beginning of the next
ventricular systole (t/T = 0.99). The velocity field is scaled by ua = q̇ls/Vs = 0.1
ms−1 where q̇ = 7.50× 10−5 m3s−1 is the cardiac output, Vs = 5.55× 10−5 m3 is
the end systolic volume and ls = 7.40×10−2 m is the ventricle length at the end of
systole. Note that due to the strong velocity variations along the cycle, the vector
scale was adapted for each instant.

During systole (t/T = 0.25–0.35), the mitral valve is closed (in light gray in
Fig. 4.5), preventing backflow towards the atrium, while the aortic valve is open
(in dark gray in Fig. 4.5). The decrease of the ventricle volume causes ejection of
blood into the aorta. Note that the velocity amplitude is the highest in the ascending
aortic root. The computed flow at mid-systole is also highly swirled in the atrium,
as reported in vivo [18, 25]. This movement is hardly discernible in Fig. 4.5, be-
cause the vortical movement is mainly perpendicular to the cutting plane [3]. Two
recirculation zones are however visible in Fig. 4.5 (top center): just under the MV
and within the aorta, just above the AV, in agreement with [17]. At the end of the
ventricle contraction, the aortic valve closes and the mitral valve opens: ventricle
filling starts. At t/T =0.375 (not shown), the ventricle diastole starts: the LV vol-
ume increases and blood passes from the LA to the LV, forming a strong jet through
the MV. The shear layer between the jet generated during the E wave and the sur-
rounding quiescent fluid rolls-up and shapes the jet head as a vortex ring [20]. The E
wave vortex ring signature and its evolution are visible in Fig. 4.5 (t/T = 0.45–0.55)
which illustrates a mechanism already reported by several authors [6]. The vortex
ring does not remain symmetric, as the lateral wall prevents its full development.
A large recirculating cell is clearly visible in the LV at t/T = 0.65 (Fig. 4.5, bot-
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Fig. 4.5. Phase-averaged velocity field over a cutting-plane through the left heart. Velocity
vector scale is not constant though the heart cycle and is indicated for each plot. Mitral valve
is depicted in light grey the aortic one in dark grey

tom center), as often described in the literature [16,21,25]. It is characteristic of the
flow in the ventricle after the E wave. Two less intense blood recirculation zones
can be detected: one at the apex, which is visible during the whole diastole and an
intermittent one between the aortic valve and one of the MV leaflet. These blood
recirculations are also described in silico [5, 30, 44]. Between the E wave and the
A wave, the recirculating cell core in the LV moves from the ventricle center to the
septum wall. During the A wave occurring at t/T=0.99 (Fig. 4.5, bottom right), the
blood flux passing though the MV strengthens the recirculating cell in the LV, as
classically reported [37]. Atrial contraction expels blood from the LA, both through
the MV, as seen in the lower half part of the LA and through the pulmonary veins,
as shown by the upward velocity vectors visible in the upper half part of the LA.
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4.4.2 Cycle-to-cycle Variations

The studied flow configuration is a breeding ground for weak turbulence. The tran-
sitional nature of this cyclic flow due to the highly complex evolving geometry and
the unsteady inflows results in cycle-to-cycle variations. As an illustration, Fig. 4.6
shows the time evolution of the vertical velocity at four different points within the left
heart. Velocity signals corresponding to six different heart cycles are superimposed
to visualize the cycle-to-cycle variations. Moderate (2ua) to high (5ua) variations
are present at all the locations, although not uniformly distributed over the cardiac
cycles. The second plot (corresponding to a probe located under the aortic valve)
shows the lowest variations: almost no cycle-to-cycle variations are visible during
the diastolic phase, which is expected, given the quiescent flow beneath the aor-
tic valve during diastole. Cycle-to-cycle variations are however visible (variations
around 2ua) during the systolic phase, as expected given the typical Reynolds num-
ber. Cycle-to-cycle variations decrease during the systolic phase in the LV (see third
plot), beginning from variations up to 4ua to almost null variations. This absence of
fluctuations carries on even after the passage of E-wave vortex ring, visible on the
signal. Variations are visible from t/T = 0.55 and amplify during the late diastole. A
similar behaviour is visible in the lower part of the LV (see fourth plot): during sys-
tole, variations decrease, then rise after t/T = 0.55, reaching an amplitude of order

Fig. 4.6. Temporal evolutions of the scaled vertical velocity w/ua (the w direction is indicated
in the figure and ua = q̇ls/Vs) at four different points within the left heart. Six cycles are
reported to illustrate the cycle-to-cycle variations
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5ua. The largest relative fluctuations are obtained in the left atrium (top plot) with
small cycle-to-cycle variations during systole (t/T between 0.015 and 0.375) but
fluctuations as large as 2ua at t/T = 0.35 and 5ua at t/T = 0.6. Theses variations are
related to the interaction between the four inlet flows from the four pulmonary veins.

A more quantitative assessment of the cycle-to-cycle variations is obtained by
computing the kinetic energy of the velocity fluctuations. The velocity flow is de-
composed in a mean (phase-averaged) velocity field u and a fluctuating part u′. The
turbulent kinetic energy k and the mean flow kinetic energy Ek are defined as:

k(t) =
1

2V (t)

∫
V (t)

(urms(x, t)2 + vrms(x, t)2 +wrms(x, t)2)dV, (4.10)

Ek(t) =
1

2V (t)

∫
V (t)

(u(x, t)2 + v(x, t)2 +w(x, t)2)dV, (4.11)

where urms, vrms and wrms are the root-mean-square values of the velocity fluctuations
in the three directions. The volume V (t) is either the volume of the ventricle or the
volume of the atrium at time t.

Fig. 4.7. Volumetric mean flow kinetic energy Ek (full line) and five times the turbulent
kinetic energy k (dashed line) in the left ventricle (top plot), and in the left atrium (bottom
plot). The energies are nondimensionalised by u2

a. Vertical dotted lines mark the limit between
the systolic phase (t/T between 0.015 and 0.375) and the diastolic phase
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Figure 4.7 shows how these energies evolve over the heart cycle, both in the ven-
tricle (top plot) and the atrium (bottom plot). Note that 5 times k is plotted, so that the
same scale is used to represent both energies. The mean flow kinetic energy evolves
similarly in both cavities. During the systolic phase (t/T between 0.015 and 0.375)
it increases and reaches a plateau at t/T =0.15. After a decrease just before the be-
ginning of diastole, the mean flow kinetic energy increases again and reaches a peak
at t/T =0.54, viz. 0.04T after the the peak of the E wave. The maximum value of
Ek corresponds to the presence of high velocities when blood flows from the atrium
to the ventricle (see the mitral jet in Fig. 4.5, bottom left). The ventricular turbulent
kinetic energy k remains low during the systolic phase thanks to the stabilizing effect
of the flow acceleration, with values of less than 5% of Ek. It then increases substan-
tially, reflecting the amplification of the disturbance after the jet impingement on the
lateral ventricle wall. The turbulent energetic peak is reached T /10 after the peak of
mean flow kinetic energy, corresponding to the convection time of the vortex ring
and the decelerating phase of the flow. The turbulence intensity k/Ek in the ventricle
is as high as 50% during the k peak.

The atrial turbulent kinetic energy behaves somewhat differently. First, it increa-
ses during the whole systolic phase, because of the interaction/collision of the four
inflowing jets issued from the pulmonary veins. A first peak is thus reached near the
beginning of the diastolic phase and turbulence intensity is then attenuated during
the flow acceleration through the atrium, as expected. The atrial turbulent kinetic
energy rises again after t/T=0.5 and reaches its peak before t/T = 0.6 during the
flow deceleration. On top of occurring earlier in the heart cycle, this peak is around
twice less energetic than the one occurring in the ventricle. Still, it corresponds to a
large turbulence intensity of approximatively 20%. As in the ventricle, the turbulent
kinetic energy then decreases until the end of the heart cycle.

4.5 Conclusions

The approach presented here allows patient-specific blood flow simulations in the
heart from a series of gated 3D images. Starting from 4D medical images, the nu-
merical domain is first extracted and the heart wall movements are then calculated
thanks to a proper image registration algorithm. In order to demonstrate the ability
of the method to reproduce the cardiac flow, a computation of the blood flow in a
whole left heart has been conducted. Results consistent with the current knowledge
in terms of left heart flow is presented. All presented features have been reported
several times in the literature, both in numerical and experimental studies and by
medical imaging.

Furthermore, the use of fluid numerical method well adapted to fluctuating tur-
bulent flows enables the observation of cycle-to-cycle variations in the flow field.
Such variations are expected in the present flow, due to the high Reynolds numbers
encountered and the unsteadiness of the flow incoming from the pulmonary veins.
The present results show that in spite of rigorously identical contraction and bound-
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ary conditions, fluid inertia makes the flow differ from one cycle to another. More
precisely, cycle-to-cycle variations in the left atrium can be observed in its upper
part, where the collision of the jets issuing from the pulmonary veins makes the
flow particularly chaotic. Spatially averaged kinetic turbulent energy level reaches
a turbulent intensity of 20% at its peak then slowly decreases. In the left ventricle,
velocity fluctuations are reported mainly during late diastole. Between the impact of
the E wave jet on the lateral wall and the end of diastole, the left ventricle displays
high levels of cycle-to-cycle fluctuations. Indeed, both the vortex ring impact and
the E wave deceleration occur approximately at the same time, and both are features
tending to generate turbulence. This translates into turbulent intensity levels as high
as 50%. This turbulent activity dissipates little by little, until the flow acceleration
at early systole.

The presented method does not include or simplifies some aspects of the physio-
logical heart. Blood is considered as a Newtonian fluid, which is an approximation
commonly accepted for the heart flow. A non-Newtonian model could be included
in our simulations. The spatio-temporal resolution of medical imaging imposes tem-
poral interpolation and geometrical simplifications of the heart model. Consistently
with the poor time resolution of the input medical data, a rough model of the mi-
tral valve was used, which constitutes the main drawback of our method. Valves
are instantaneously switch from their closed position to their open position and vice
versa. This simple approach is justified by the fact that the opening and closing of
the valves last only 5% of the whole cycle. Change of aperture area along time is
not considered either. Note however that the model can be refined depending on the
available data. Nevertheless, the presented approach allows to retrieve features re-
ported in the literature and, in addition, it can provide detailed information about the
complex intermittent flow in the left heart.
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Multiscale Modeling of Sickle Cell Anemia

Huan Lei and George Em Karniadakis

Abstract Sickle cell anemia (SCA) is a genetic inherited hematological disorder
mainly characterized by three biophysical hallmarks: heterogeneous cell morphol-
ogy, abnormal rheology and vaso-occlusion crisis. The major challenge for numer-
ical investigation of this disease is to model the dynamic processes over the wide
range of length scales incorporated (sickle hemoglobin (HbS) polymerization to
vaso-occlusion). In this chapter, we present a multi-scale computational framework
of sickle red blood cell (SS-RBC), based on dissipative particle dynamics, to investi-
gate the above three hallmarks. We first predict the heterogeneous SS-RBC morpho-
logical transition by coupling a RBC model with a stochastic coarse-grained model
representing the intracellular HbS polymerization. We then quantify the abnormal
rheology and hemodynamics of SS-RBC suspensions with a multi-scale SS-RBC
model accounting for heterogeneous cell rigidity and the previously predicted cell
morphologies. Finally, we employ the present model to quantify the mechanism of
vaso-occlusion crisis associate with SCA. The heterogeneous cell adhesivity among
the different cell groups and their specific contribution to occlusion crisis, as well as
the role of inflammation-stimulated leukocyte are discussed.

5.1 Introduction

Sickle cell anemia (SCA), the first identified “molecular disease”, is one of the most
common genetic inherited hematological disorder, which can cause several types
of chronic complications such as vaso-occlusion crisis, splenic sequestration cri-
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sis, hemolytic crisis, etc. This disease is named by the special “elongated, sickled-
shape” cells identified in the blood sample of an American-African patient, as first
described by James B. Herrick [51] in 1910. In 1949, Linus Pauling and his col-
leagues, for the first time, proposed that this disease is attributed to the abnormal
hemoglobin molecules within the erythrocyte [85]. Subsequent studies [58] reveal
that in the sickle hemoglobin molecule (HbS), the hydrophilic amino acid glutamic
acid is substituted by the hydrophobic amino acid valine at the β -6 chain site. In hy-
poxic conditions, the intracellular HbS solution transitions into a polymerized state,
resulting in a series of alterations in the cell membrane functions and blood micro-
circulation. With regards to pathophysiology, this disease is mainly characterized
by three major hallmarks: (i) irregular and heterogeneous cell morphologies, (ii) de-
crease of cell deformability and abnormal blood rheology, and (iii) vaso-occlusion
crisis, which is the major cause of the morbidity and mortality of the SCA patients.
Despite modern health care and technology, the life expectancy of an individual with
SCA in the US is less than 50 years.

During the past few decades, there have been many successful investigations on
different aspects of this disease. At the molecular scale, the HbS polymerization pro-
cess is well characterized by the double nucleation model [40,41] and the following
experimental studies [2, 13, 14, 18, 42–44, 60, 90, 96, 97]. According to this model,
the formation of a HbS polymer domain is triggered by the homogeneous nucle-
ation of the HbS molecules in bulk solution and proceeds with the explosive growth
via polymer elongation and heterogeneous nucleation on the pre-existing HbS poly-
mers. These studies successfully revealed the mechanism of the nucleation “delay
time” [29,92] and its high concentration dependence on the intracellular HbS. At the
cellular scale, Kaul et al. [65] revealed the heterogeneous cell density groups in sus-
pension of sickle red blood cells (SS-RBCs), as roughly divided into four fractions
according to the intracellular mean corpuscular hemoglobin concentration (MCHC).
Fraction I (SS1) and II (SS2) with moderate MCHC are mainly composed of retic-
ulocytes and discocytes, respectively, with MCHC similar to healthy cells. On the
other hand, fractions III (SS3) and IV (SS4) with high MCHC are mainly composed
of rigid discocytes and irreversible sickle cells (ISC). Associated with the hetero-
geneous cell groups are the heterogeneous cell rigidity [17, 33, 59] and abnormal
blood rheology [52, 68, 69, 95]. At the microcirculation scale, recent studies further
revealed the multi-interactional and multi-stage nature of the vaso-occlusion crisis.
While early studies postulated that the HbS polymerization resulted in the entrap-
ment of single sickled cell in capillaries, later in vivo and ex vivo [8, 62–64, 66, 94]
studies demonstrate that the vaso-occlusion crisis comprises a complex and mul-
tistep process triggered by interaction between multiple SS-RBC density groups,
endothelial cells, inflammation activated leukocytes, platelets, etc.

Despite these findings, understanding the mechanism of this disease in an inte-
grated way is still an open question [8]. Currently, hydroxyurea (HU) [12,29,72,87]
is the only FDA-approved drug used for patients of sickle cell anemia. The major
mechanism of this drug is to target the intracellular HbS polymerization process,
which is the pre-cursor event of the vaso-occlusion crisis. It can induce the produc-
tion of the fetal hemoglobin (HbF) and therefore increase the “delay time” of the
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Fig. 5.1. Left: image of oxygenated SS-RBCs separated by different density; SS-RBCs of
different density exhibit heterogeneous cell morphologies; the effect of hydroxyurea (HU) is
shown on the densest population (1.11 g/ml), where the red dashed circles represent typical
shapes of SS-RBCs under full oxygenated condition. Right: shape evolution of SS-RBCs
during a deoxygenated-oxygenated cycle. Experimental images courtesy of Dr. E Du and
Dr. Ming Dao at MIT, from [1]

cell sickling process. However, clinical studies report that this drug is ineffective
for many patients with unclear reason [4]. Moreover, the aforementioned micro-
circulation studies indicate that the predominant stimuli of the crisis enrolls with het-
erogeneous cell interactions through multiple steps. Therefore, numerical modeling
and quantitative study of this disease by considering cell groups with heterogeneous
morphology, rigidity and adhesivity can greatly facilitate our understanding of the
specific role and contribution of the individual cell groups in occlusion crisis. Hence
computational modeling may provide a new paradigm for investigating therapeutic
treatments for this disease by targeting the individual physiological conditions such
as endothelium activation and up-regulation, adhesive interaction between endothe-
lium cells and heterogeneous SS-RBC, and secondary entrapment of SS-RBC by the
adherent cells.

One of the major challenges for the numerical modeling of SCA is the wide range
of the spatial and temporal scales incorporated. While SCA originates from the ab-
normal HbS molecule on length scale O(1) Å, the resultant cell sickling process is on
length scale of O(10)μm. Similarly, the adhesive proteins expressed on SS-RBCs in-
teract with endothelial cells in time scale O(1) ps, in contrast with the vaso-occlusion
crisis occurring in time scale of O(1) s. Several numerical methods and physical
models have been developed to investigate SCA in different aspects. In the contin-
uum scale, Berger and King [9,10] proposed a model to predict the sickle blood ve-
locity in capillary by coupling the oxygen transport to the motion of SS-RBCs; how-
ever, this model suffers from the lack of realistic blood rheology. In molecular scale,
Lykotrafitis et al. [78] constructed a coarse-grained model for individual HbS fiber
and the zippering dynamics, but it cannot be readily extended to cellular level [23,79]
due to the computational cost. Besides these two aforementioned approaches, a num-
ber of numerical methods has been developed to model individual healthy red blood
cells (RBCs) in mesoscopic or semi-continuum scale [26–28, 36, 81, 84, 86], which
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can potentially be extended to modeling this hematological disorder by bridging
the dynamic processes on the microscopic and macroscopic scales incorporated in
SCA. Here, we will focus on the accurate mesoscopic modeling of SS-RBCs. Re-
markably, Dong et al. [24] developed a 2D model of sickle cell in capillaries where
a SS-RBC is represented as a 2D cylinder with different membrane elasticity and
cytosol viscosity. This model does not take into account realistic SS-RBC morpho-
logical and biomechanical properties, and therefore it can not quantitatively capture
the abnormal rheology of the SS-RBC suspension. Dupin et al. [27] coupled the
individual RBC with an Eulerian discretization of fluid domain represented by the
Lattice Boltzmann method [91]. Having obtained promising results healthy blood
flow, they investigated a collection of SS-RBCs passing through an aperture with
diameter less than the size of a single RBC. However, this model does not consider
the heterogeneous cell-cell and cell-endothelium interaction discussed above and
therefore it is insufficient to quantify the hemodynamics of SS-RBC suspension.

In this chapter, we will present a multi-scale model of SS-RBC to address the
three hallmarks of SCA discussed above. This model is based on the multi-scale
model of heathy RBC previously developed by Pivkin, Fedosov and Karniadakis et
al. [36, 86] and validated in healthy and malaria-infected blood systems [11, 37, 38,
88] using Dissipative Particle Dynamics [30, 45, 54]. The multi-scale nature of the
model enables us to directly impose biomechanical properties of the RBC membrane
on different length scales. Furthermore, we developed stochastic models to predict
the resultant morphology of the intracellular aligned HbS polymer (APH) domains
and simulate the adhesive interaction between the SS-RBC and endothelial cells.
These models can be used to represent seamlessly the heterogeneous cell-APH, cell-
cell and cell-endothelium interactions and hence they can address abnormal SS-RBC
morphology, rheology and vaso-occlusion crisis, respectively.

This chapter is organized as follows: in section two we briefly review the DPD
simulation method, the multi-scale RBC model, as well as two coarse-grained
stochastic models representing the intracellular HbS polymerization and the cell-
endothelium adhesive interaction. In section three we investigate the SS-RBC mor-
phologic transition by predicting the resultant heterogeneous SS-RBC morphologies
due to the intracellular HbS polymerization and compare the results with experimen-
tal measurements. In section four we explore the abnormal rheology of SS-RBC sus-
pensions consisting of heterogeneous cell morphologies and rigidities in shear and
tube flows. In section five we probe the mechanism of vaso-occlusion crisis using
the multi-scale model of SS-RBC, accounting for diversity in cell morphology and
rigidity, interactions between SS-RBC and vascular endothelium as well as SS-RBC
and inflammation-activated leukocytes to quantify the specific biophysical charac-
teristics triggering the vaso-occlusion crisis. The main results of this chapter are
summarized in section six, adding a brief discussion about possible extension of the
present work for studying this hematological disorder.
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5.2 Models and Simulation Methods

The multi-scale red blood cell (RBC) model is developed within the framework of
dissipative particle dynamics (DPD) method. We first briefly review the derivation
and formulation of this method. Next we introduce the multi-scale RBC model and
the stochastic cell adhesion model. Finally, we present the kinetic model representing
the development of intracellular HbS polymer domain.

5.2.1 Dissipative Particle Dynamics

Dissipative Particle Dynamics is a Lagrangian based particle method initially pro-
posed by Hoogerbrugge and Koelman [32, 54] to simulate the complex hydrody-
namic processes of isothermal fluid systems. This particle-based framework enables
us to easily incorporate additional physical features into the systems and extend its
application to complex fluid and soft-matter systems. Severals studies have shown
that the DPD particles can be viewed as coarse-grained (CG) virtual clusters of mul-
tiple atomistic particles [31,53,71,74] but at a coarser scale, as sketched in Fig. 5.2.
The standard equation of motion is given by

dri = vidt

dvi = (FC
i dt +FD

i dt +FR
i

√
dt)/m,

(5.1)

where ri, vi, m are the position, velocity, and mass of the particle i, and FC
i , FD

i ,
FR

i are the total conservative, dissipative and random forces acting on the particle
i, respectively. Under the assumption of pairwise interactions the DPD forces are

Fig. 5.2. Sketch of the length scales for dissipative particle dynamics. Each DPD particle
can be viewed as a virtual cluster of multiple atomistic particles. The conservative force field
represents the ensemble average of the pairwise approximated atomistic force field. The dis-
sipative and random force terms originate from the eliminated atomistic degrees of freedom
in the coarse-graining procedure. In the macroscopic regime, the DPD fluid recovers the con-
tinuum fluid governed by the Navier-Stokes equation
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given by the sum of the pair interactions with the surrounding particles as follows

FC
i j =

{
a(1.0− ri j/rc)ei j, ri j < rc

0, ri j > rc
(5.2)

FD
i j = −γwD(ri j)(vi j · ei j)ei j,

FR
i j = σwR(ri j)ξi jei j,

(5.3)

where ri j = ri − r j, ri j = |ri j|, ei j = ri j/ri j, and vi j = vi − v j. rc is the cut-off ra-
dius beyond which all interactions vanish. The coefficients a, γ and σ represent the
strength of the conservative, dissipative and random force, respectively. The last
two coefficients are coupled with the temperature of the system by the fluctuation-
dissipation theorem [32] as σ2 = 2γkBT . Here, ξi j are independent identically dis-
tributed (i.i.d.) Gaussian random variables with zero mean and unit variance. The
weight functions wD(r) and wR(r) are defined by

wD(ri j) =
[
wR(ri j)

]2
,

wR(ri j) =

{
(1− ri j/rc)k, ri j < rc

0, ri j > rc

(5.4)

where k is a parameter that determines the extent of dissipative and random force
envelopes. The above stochastic equation can be integrated using the velocity-Verlet
algorithms [46].

5.2.2 Blood Cell Models

5.2.2.1 Red Blood Cell

A healthy red blood cell maintains a biconcave shape in equilibrium state. In the
present model, we constructed the RBC membrane as a two-dimensional triangu-
lated surface as described in [35] with Nv vertices. Each vertex is represented by a
DPD particle. The vertices are connected by Ns visco-elastic bonds to impose proper
membrane mechanics [23, 36, 86]. The free energy of each cell is defined by

Vrbc = Vs +Vb +Va +Vv, (5.5)

where Vs, Vb, Va, Vv represent the in-plane visco-elastic bond interaction, cell mem-
brane bending rigidity, cell area and volume constraint, respectively. In the present
work, Vs is represented as the summation of an attractive wormlike chain potential
and a repulsive potential

Vs = ∑
j∈1...Ns

[
kBT lm(3x2

j −2x3
j)

4p(1− x j)
+

kp

(n−1)ln−1
j

]
, (5.6)
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where l j is the length of the spring j, lm is the maximum spring extension, x j = l j/lm,
p is the persistence length, kBT is the energy unit, kp is the spring constant, and n = 2
is the adopted power index.

The membrane viscosity is represented by imposing a viscous force on each bond
interaction. Following the general framework of the fluid particle model [31], we can
define the dissipative force FD

i j and random force FR
i j given by

FD
i j = −γT vi j − γC(vi j · ei j)ei j, (5.7)

FR
i jdt =

√
2kBT

(√
2γT dWS

i j +
√

3γC − γT tr[dWi j]
3

1
)
· ei j, (5.8)

where vi j is the relative velocity between the two vertices i and j, γT and γC are dis-
sipative parameters, tr[dWi j] is the trace of a random matrix of independent Wiener
increments dWi j =

√
dtξi j, where ξi j ∼ N (0,1) is identical independent Gaussian

random variable. dWS
i j = dWS

i j − tr[dWS
i j]1/3 is the traceless symmetric part.

The equilibrium length of individual bond and the visco-elastic properties of the
cell membrane can be determined by performing a linear analysis, as proposed in
[22] for a regular hexagonal network; the derived shear modulus of the membrane
μ0 is given by

μ0 =
√

3kBT
4plmx0

(
x0

2(1− x0)3 − 1
4(1− x0)2 +

1
4

)
+

√
3kp(n+1)

4ln+1
0

, (5.9)

where l0 is the equilibrium spring length and x0 = l0/lm. The membrane shear vis-
cosity is given by ηm =

√
3γT + γC/4.

Vb represents the bending energy of the cell membrane. The bending resistance
of the RBC membrane is modeled by

Vb = ∑
j∈1...Ns

kb [1− cos(θ j −θ0)] , (5.10)

where θ j is the instantaneous angle between two adjacent triangles having the com-
mon edge j, θ0 is the spontaneous angle, and kb is the bending constant. Using the
Helfrich model [50], the model bending coefficient kb can be related to the macro-
scopic bending rigidity kc as

kb = 2kc/
√

3 (5.11)

by approximating the local two adjacent triangle surface as spherical membrane.
Va and Vv represent the area and volume constraints to mimic the incompress-

ibility of the lipid bilayer and the intracellular cytosol. The corresponding energy is
defined by

Va+v = ∑
j∈1...Nt

kd(A j −A0)2

2A0
+

ka(A−Atot
0 )2

2Atot
0

+
kv(V −V tot

0 )2

2Vtot
0

, (5.12)
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where Nt is the number of triangles in the membrane network, A0 is the triangle area,
and kd , ka and kv are the local area, global area and volume constraint coefficients,
respectively. The terms A and V are the total RBC area and volume, while Atot

0 and
V tot

0 are the specified total area and volume, respectively. The corresponding area-
compression K and Young’s modulus Y are given by

K = 2μ0 + ka + kd , Y =
4Kμ0

K +μ0
. (5.13)

For healthy red blood cell, we set the shear modulus μ0 = 6.8μN/m and bend-
ing rigidity kc0 = 2.4× 10−19J, similar to experimental measurements [57, 83, 93]
The 2D cell membrane viscosity is set to be ηmb = 5.4R0η0 by setting γT =
2.97R0η0,γC = 0.99R0η0, where R0 = 3.3μm is the mean RBC radius [84] defined
by

√
S/4π (S is the surface area of a RBC). We refer to [36] for a detailed discussion

on scaling from DPD units to physical units.

5.2.2.2 Leukocyte

Leukocyte is modeled as a triangulated spherical shape with radius of 5μm, where
the individual cell free energy is determined by Vwbc similar to Eq. (5.5). According
to experimental measurements, a leukocyte exhibits larger cell rigidity than a healthy
RBC; we set the Young’s modulus to 0.6×10−3N/m [20, 61] and bending rigidity
to 3×10−18J [99].

Under inflammation activated state, the experimental study by Turhan et al. [94]
in transgenic-knockout mice shows that the inflammation stimulated (by cytokine
TNF-α) adherent leukocytes interact with SS-RBCs in later stages. In the present
work, we adopt the Morse potential to represent the adhesive interaction between
the SS-RBCs and the leukocytes

UM(r) = De

[
e2β (r0−r)−2eβ (r0−r)

]
, (5.14)

where r is the distance between cell-membrane vertices of RBCs and leukocytes,
β determines interaction range, and r0 and De are the zero-force distance and well-
depth of UM(r), respectively.

5.2.2.3 Cell-endothelium interaction

SS-RBC membrane expresses multiple types of abnormal protein epitopes due to
the membrane injury by the intracellular HbS polymerization. Therefore, SS-RBCs
exhibit adhesive interaction with endothelium cells through multiple pathways, e.g.,
adhesive interaction between the receptor VLA-4 expressed on the cell membrane
and the ligand VCAM-1 expressed on the endothelium. Moreover, other adhesive
receptors such as CD36 on SS-RBC membrane can interact with endothelial lig-
ands such as αvβ3 through the extracellular matrix proteins such as TSP. Similarly,
leukocytes may interact with vascular endothelium through multiple pathways. A
thorough review of the adhesive interaction mediated by the multiple proteins ex-
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pressed on the cell membrane and their responses on the different inflammation level
are discussed in [48].

Due to the physiological complexity and multi-function characteristics of the ad-
hesive interaction, an explicit modeling of the individual receptor/ligand interactions
is out of the scope of the current work. Moreover, the temporal scale of the protein
molecular interaction is O(1) ps; therefore, a complete modeling the dynamic inter-
action is beyond the computational capacity on the time scale of the present work.
Instead, the adhesive proteins are represented as the effective receptor particles ex-
pressed on the cell membrane and the effective ligand particles on the vascular en-
dothelium, respectively. We employ a stochastic model [37, 47, 70] to represent the
transient bond formation and dissociation. The adhesive interaction is modeled by
the transient bond formation and dissociation between the receptor and ligand par-
ticles in a stochastic way. Specifically, we assume that the cell vertices can interact
with the endothelial ligands within interaction distance don. For each time step Δ t,
transient bonds can be formed between the cell vertices and the endothelial ligands
with probability Pon = 1− e−konΔ t , while the existing bonds can be ruptured with
probability Po f f = 1− e−ko f f Δ t , where kon,ko f f are the reaction rates defined by

kon = k0
on exp

(
−σon(l − l0)2

2kBT

)
,

ko f f = k0
o f f exp

(
σo f f (l − l0)2

2kBT

)
,

(5.15)

where σon and σo f f are the effective formation/rupture strengths. For existing bonds,
the force between the receptors and ligands is defined by F(l) = 2ks(l − l0), where
ks is the spring constant and l0 is the equilibrium length.

5.2.3 Intracellular Aligned HbS Polymer

In hypoxic conditions, a post-homogeneous HbS nucleus develops into polymer state
and further form into bundles of sickle hemoglobin fibers. A single HbS fiber is com-
posed of seven double strands in the style of a twisted rope with diameter of about
d0 = 21 nm; fully representing the detailed structure of a single sickle hemoglobin
fiber is too expensive in the scale of a single RBC (∼ 10μm). On the other hand,
experimental studies [16,19] show that the morphology of SS-RBC is mainly deter-
mined by the intracellular aligned HbS polymer domain (AHP), e.g., see Fig. 5.3.
To investigate the morphological transition of SS-RBC, we develop a CG model to
represent a bundle of Nf sickle hemoglobin fibers where the detailed structure of a
single fiber is omitted. Each bundle is represented by single DPD particles connected
by visco-elastic bond interactions defined by Eqs. (5.6)–(5.8), yielding the Young’s
modulus Y ≈ 0.1 GPa.

The bending rigidity of the aligned hemoglobin polymer bundle is modeled by

Vangle = ka(θ −θ0)2, (5.16)
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Fig. 5.3. Left: image of the intracellular aligned hemoglobin polymer (APH) domain. Label
A denotes the APH domain within a classic, sickled shape cell. Label B denotes the center
constrained APH domain observed in cell with holly leaf shape. Label C denotes the spherulite
APH domain. Right: Sketches of typical cell shapes for deoxygenated SS-RBCs observed in
experiments [19]. The three sketches represent the “sickle”, “holly leaf” and “granular” shapes
of SS-RBCs. The various cell morphologies are mainly determined by the specific intracellular
AHP configurations, represented by the solid lines. The dots represent the post homogeneous
nucleus. Reproduced with permission from [19, 75]

where θ0 is the spontaneous angle representing the deflection of the aligned
hemoglobin polymer. ka is the bending coefficient, determined by the bending mod-
ulus κ = N2

f κ0, where κ0 = 1.0×10−24Nm2 [98] is bending modulus of single HbS
fiber. Finally, the aligned hemoglobin polymer model includes an in-plane dihedral
potential to represent the fixed growth direction in global scale; the corresponding
potential is given by

Vdihedral = kd
[
1+ cos(φi jkl)

]
, (5.17)

where i, j, k and l are four adjacent DPD particles on the modeled aligned
hemoglobin polymer, φi jkl is the instantaneous angle between the triangle Δi jk and
Δlk j, and kd is the constraint coefficient such that the growing fiber is in the same
plane.

The growth rate of the sickle hemoglobin polymer was measured by Aprelev [2]
as a function of monomer activity in bulk solution, given by

J = k+γcc− k−, (5.18)

where γc is the activity coefficient, and c is the monomer concentration determined
by intracellular mean corpuscular hemoglobin concentration (MCHC). k+ and k−
are the monomer addition and subtraction rates.

The development of the AHP domain is modeled in a coarse-grained manner,
where each single DPD particle is added to the end of the sickle hemoglobin
polymer, forming elastic bonds with its adjacent particles with equilibrium length
l0 = 0.15μm, as shown in Fig. 5.4. Since the CG polymer represents an aligned
hemoglobin polymer bundle composed of Nf HbS fibers. The unit increase length
per bundle δ scales as

δ = δ0/Nf , (5.19)
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Fig. 5.4. Sketch of the coarse-grained model for the AHP domain development: free HbS
monomers (green color), represented by the DPD particles, can potentially join with the pre-
existed polymers (red color) with probability defined by Eq. (5.22). A linear polymer con-
figuration is adopted in the current case to represent the specific growth direction. Multiple
polymers are adopted to represent the AHP domains with finite angle width, see the holly leaf
and granular shapes in Fig. 5.5. From [75]

where δ0 ≈ 0.45 nm is the unit increase length per single fiber. To this end, we choose
Nf = 100, and the polymerization rate kp and depolymerization rate kd p scale as

kp =
Nf k+γccδ

l0
; kd p =

Nf k−δ
l0

. (5.20)

Numerical values of kp and kd p for different monomer concentration are presented
and discussed in Sect. 5.3.1.

When the HbS polymers approach the cell membrane, the development of the
APH domain is modeled by adding single beads to the end of the polymer as “Brow-
nian Ratchets” with the growth rate kt given by

kt = kpe−(fs·ê)δ/kBT − kd p, (5.21)

where fs is the instantaneous stall force exerted on the end of the polymer bead, and
ê is the polymer growth direction. For each time step Δ t, a single DPD particle is
added to the polymer end with probability

Pt = 1− e−ktΔ t . (5.22)

5.3 Heterogeneous SS-RBC Morphologies

SS-RBCs can undergo a transition into heterogeneous cell morphologies (sickle,
holly leaf, granular, etc.) in hypoxic conditions. Kaul et al. [65] investigated the de-
oxygenated SS-RBC morphology using the intracellular MCHC values. While the
cell groups with moderate MCHC (< 35 g/dL) exhibit apparent cell deformation
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in deoxygenated conditions, most of the cells with high MCHC exhibit granular or
near biconcave shapes. Experimental visualization of individual SS-RBCs using op-
tical birefrigence [16] and differential polarization microscopy [19] revealed that the
wide variety of SS-RBC morphologies is closely related to the intracellular aligned
hemoglobin polymer (AHP) configuration. Although AHP occupies only about 5%
of the total sickle hemoglobin polymer [82], the SS-RBC morphology is mainly
determined by the total number of the AHP domains and the configuration of each
domain [16,19] developed under various MCHC and deoxygenation rate conditions.

In this section, we employ the coarse-grained stochastic model for the growth
of intracellular APH domain presented in Sect. 5.2.3, calibrated with experimental
measured bio-mechanical properties (Young’s modulus, bending rigidity) and cou-
pled with the multi-scale RBC model presented in Sect. 5.2.2.1, to systematically
investigate the SS-RBC morphological transition process. In particular, we examine
if the various cell morphologies and degrees of membrane distortion can be obtained
from the present kinetic model without introducing any further ad hoc assumptions.
Finally, we quantify the cell shapes using structural factors and compare the simu-
lation results with medical image results.

5.3.1 Morphological Transition

SS-RBCs undergo various membrane distortions due to the variable stress exerted
from the growing HbS polymer. The final cell shape is mainly determined by two
factors: (i) the intracellular aligned hemoglobin polymer domain configuration. (ii)
the effective sickle hemoglobin polymer growth rate kt . Double nucleation the-
ory [40, 41] indicates that the formation of a HbS polymer domain is initialized
by the homogeneous nucleation of the HbS molecules and proceeds with explo-
sive growth via polymer elongation and heterogeneous nucleation. The structure
of the AHP domain is mainly controlled by the heterogeneous nucleation and the
fiber growth rates [13, 44, 89], which is highly concentration dependent [16, 60].
With high MCHC values, a post-nucleation aggregate of twofold symmetry tends to
develop into spherulitic domain through the fast growth of heterogeneously nucle-
ated fibers and further deflection from the parent fibers. In contrast, for lower MCHC
value, the angular widening of the polymer domain, originated from the fiber branch-
ing, is largely suppressed due to smaller heterogeneous nucleation rate as observed
in both experiments [13] and numerical simulations [25]. Therefore, we relate the
various AHP configurations to the MCHC values by constructing different types
of post-homogeneous nucleuses, from which the angular width of polymer domain
with various MCHC values observed in experiment can be obtained. We emphasize
that the Hbs polymer configuration as an input rather than the natural consequence
of the simulation output. Here we only model the aligned hemoglobin polymer do-
main (AHP) instead of the full polymer domain. Starting with a post-nucleus, the
detail configuration development is omitted in the present work. Instead, we are
particularly interested in the SS-RBC morphological transition process during the
intracellular AHP development.
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Table 5.1. Simulation parameters for each type of SS-RBC. The symbol “S”, “H” and “G”
represents the sickle, holly leaf and granular shape of the SS-RBC. μ and μ0 represent the
shear modulus of the deoxygenated SS-RBC and healthy RBC respectively; θ0 and w repre-
sent the spontaneous deflection angle and the angular width of the aligned hemoglobin poly-
mer domains, respectively

MCHC μ θ0 w

S 32 g/dL [20μ0,80μ0] [178.5◦,179◦] 0◦

H 34 g/dL [30μ0,120μ0] 180◦ [45◦,60◦]
G 38 g/dL [40μ0,2000μ0] 180◦ 180◦

The effective growth rate kt , in contrast, depends not only on the MCHC values
but also on the effective cell rigidities. While the HbS polymer growth rate in bulk
J is directly related to HbS concentration by Eq. (5.18), the intracellular effective
growth rate kt also depends on the stall force fs exerted on the polymer ends by
Eq. (5.21) and therefore depends on the cell rigidity. As the growing fibers approach
and distort the cell membrane, kt decreases due to the increasing stall force. The
development of the aligned hemoglobin polymer domain is terminated automatically
as the effective growth rate kt approaches 0, defining the final cell morphological
states without any further ad hoc parameters. To explore the dual effects of HbS
polymer configuration and effective growth rate kt on the morphological transition
of SS-RBCs, we simulate the development of the AHP domain with various angular
width values w and cell membrane shear modulus according to the experimental
measurements [59]. Values of simulation parameters are summarized in Table 5.1.

First, we consider SS-RBCs with low MCHC value as 32 g/dL, corresponding to
a bulk growth rate 1.2×104 molecules s−1. Heterogeneous nucleation and branch-
ing is largely suppressed, yielding the largest portion of AHP domain, as noted
in [19] and shown in Fig. 5.3. Therefore, we set the angular width w to 0. The HbS
polymer domain develops along a specific direction with certain deflection due to
heterogeneous growth process. To incorporate this effect, we set the spontaneous
angle θ0 = 179◦. Figure 5.5 shows successive snapshots of the cell morphology
at different stages of the aligned hemoglobin polymer development. Starting from
the post-homogeneous nucleation, the aligned hemoglobin polymer domain devel-
ops towards the cell membrane. As the sickle hemoglobin polymer approaches the
membrane, two spicules appear on the cell membrane near the interaction points.
Moreover, as the length of the aligned hemoglobin polymer domain continuously
increases and exceeds the size of the original cell, the cell membrane undergoes
subsequent distortion. Accordingly, the elongated cell membrane follows the spon-
taneous curvature of the aligned hemoglobin polymer domain, resulting in the clas-
sical “sickle” shape of SS-RBC as widely observed under slow deoxygenation.

Next, we consider the SS-RBC morphological transition with medium MCHC
value as 34 g/dL, with the bulk growth rate 1.97× 104 molecules/s. The AHP do-
main has finite angular width represented by the angle between the two main polymer
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Fig. 5.5. Successive snapshots of the sickle cell with growing AHP domain, resulting in the
classical “sickle” (upper), holly leaf (middle) and granular (lower) shape. The image on the
right hand of each line represents the typical AHP domain in SS-RBCs with various cell
morphologies adopted from [19]. Reproduced with permission from [19, 75]

branches, varying from 45◦ to 60◦. Free sickle hemoglobin monomers can join the
AHP domain at each of the four polymer ends. This configuration corresponds to
another type of widely observed AHP domain named “central-constriction” accord-
ing to [19]. The polymer domain resembles a dumbbell shape; a limited amount of
aligned hemoglobin polymer is observed near the center of the nucleation while a
large amount of aligned hemoglobin polymer is found in the outer regions. Succes-
sive snapshots of a SS-RBC with this type of AHP domain are shown in Fig. 5.5.
The growing HbS fibers expand the cell along the growth direction and result in
multiple spicules on the cell membrane. The final cell morphology resembles the
“holly leaf” shape as widely observed in the SS-RBC with low/medium MCHC val-
ues [56, 65, 69].

Finally, we consider SS-RBC morphological transitions with high MCHC value
38 g/dL and the bulk growth rate 5.3 × 104 molecules/s, corresponding to the
spherulite configuration observed in HbS solution [13], individual cells [19], and
numerical simulation [25]. With high MCHC value, the heterogeneous nucleation
rate is large; the polymer domain can transform into spherulite configuration and
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subsequently develop a radial symmetry, yielding in the smallest AHP density near
the spherulite center as reported in experiments [19] and shown in Fig. 5.5. As the
isotropic distribution of sickle hemoglobin polymer branches, free HbS monomers
are added to the AHP domain with full angular symmetry, resulting in multiple
spicules appearing on the cell membrane. However, different from the “sickle” and
“holly leaf” cells, this type of SS-RBC does not bear further distortion. This is mainly
due to two reasons: (i) the depletion of the free sickle hemoglobin monomers due to
the high heterogeneous nucleation and growth rate. The polymer domain may run
out of free sickle hemoglobin monomer as the domain develops towards the cell
membrane; (ii) the larger cell rigidity with high MCHC values, resulting in much
larger stall force on the growing polymer ends. The final cell morphology resembles
the near-biconcave shape with multiple spicules on the cell surface, which corre-
sponds to the granular shape of deoxygenated SS-RBC widely observed in the cells
of high mean corpuscular hemoglobin concentration value or with fast deoxygena-
tion procedure.

5.3.2 Morphology Quantification by 2D/3D Structural Factors

To further quantify the various cell morphologies obtained in the previous section,
we introduce both 3D and 2D structural factors to characterize the individual SS-
RBC membrane distortion. The 3D structural factors can be identified by the eigen-
value analysis of the gyration tensor defined by

Gmn =
1

Nv
∑

i

(ri
m − rC

m)(ri
n − rC

n ), (5.23)

where ri is the coordinate of RBC vertex i, rC is the center-of-mass coordinate, and
m, n represent the x, y, or z direction. λ1, λ2 and λ3 represent the three eigenvalues
obtained from the gyration tensor, where λ1 < λ2 < λ3. The asphericity shape factor
(ASF) and the elliptical shape factor (ESF) are defined by

ASF = ((λ1 −λ2)2 +(λ2 −λ3)2 +(λ3 −λ1)2)/2R4
g,

ESF = λ3/λ2,
(5.24)

where Rg is the radius of gyration defined by R2
g = λ1 +λ2 +λ3. ASF measures the

deviation of the RBC from a perfect sphere shape while ESF measures the degree of
distortion on the plane perpendicular to the eigenvector of λ1.

To systematically quantify the heterogeneous SS-RBC morphologies induced by
the various AHP domain configuration and intracellular HbS growth rate kt , we eval-
uate the structural shape factors for each type of SS-RBC within the physiological
region of the cell shear modulus listed in Table 5.1. As shown in Fig. 5.6, the gran-
ular cells show similar characteristics with a healthy cell for both ASF and ESF. On
the contrary, the elongated cells exhibit the largest deviation from the perfect bicon-
cave shape. Compared with the elongated cells, the sickle cells exhibit smaller ASF
due to the curvature membrane surface while the holly leaf cells exhibit smaller ESF
due to the larger angular width of the AHP domain.
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Fig. 5.6. Left: ASF and ESF for the various cell morphologies obtained. The label “B”, “G”,
“S” and “H” represent the biconcave, granular, sickle, holly leaf shape, respectively. “E”
represents an elongated cell shape similar to the sickle shape, where θ0 is set to be 180◦.
The snapshots show the typical cell shapes for each type of SS-RBC morphology obtained
in the present study. Right: 2D Circular (CSF) and 2D elliptical shape factors (ELSF) for
different cell morphologies obtained from both medical image processes (red) and present
simulations (blue). The circle and square symbols represent the shape factors of the granular
and holly leaf SS-RBC. The red inverted triangle symbols represent both the “sickle” and the
“elongated” SS-RBC obtained from experiment as they are unclassified in the experiment.
The blue inverted triangle symbols represent the simulated “elongated” cells while the blue
triangle symbols represent the simulated “sickle” cells. From [75]

Similar to the 3D structural shape factors, 2D morphological analysis has also
been conducted using the medical images of different sickle cells, where the circular
shape factor (CSF) and 2D elliptical shape factors (ELSF) are adopted to quantify
the various SS-RBC morphologies [3,56]. Accordingly, we analyze the 2D structural
properties of the SS-RBC with CSF and ELSF defined by

CSF = 4π area/(perimeter)2

ELSF = Db/Da,
(5.25)

where area and perimeter are the in-plane area and perimeter of the 2D projection
of individual cells. Da and Db are the long and short diameters, respectively. CSF
and ELSF characterize the deviation of a curve from the circular shape. These two
factors are unit for a perfect circle and close to zero for a “line” shape. Similarly,
the structural factors are analyzed for each type of the SS-RBC with shear modu-
lus values shown in Table 5.1. Figure 5.6 plots both CSF and ELSF for the various
cell membranes obtained from the above simulations, compared with the experimen-
tal results from medical image of SS-RBC in [56]. SS-RBCs are classified into the
“sickle”, “holly leaf” and “granular” types according to the cell morphologies under
deoxygenated states [56].
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Fig. 5.7. Simulating HbS polymerization: Left: a schematic of a coarse-grained model of HbS
adopted from [80]. One hemoglobin molecule consists of two hydrophilic particles (green
color) and two hydrophobic particles (yellow color). Middle: self-assembled elongated step-
like fibers. Right: Shape deformation of RBC induced by the growth of HbS fibers. From [80]

While the structural factors of SS-RBCs obtained from the simulation fall within
the region of the experimental observations, the simulation results do not cover the
entire range of experimental results. The difference is probably due to our limited
knowledge of the physiological conditions for the SS-RBCs in the experiment as well
as the over-simplification of the AHP model adopted in the present studies, where
bundles of aligned sickle hemoglobin polymers are modeled on the length scale of
O(1) μm. Modeling the HbS polymerization on sub-micrometer scale may reveal
further insight of the SS-RBC sickling process. Some preliminary studies on this
direction have been conducted in [80] and presented in Fig. 5.7 . Moreover, several
other physical conditions omitted in the present model, such as the heterogeneous
HbS growth rate, depletion of free HbS monomer and multiple intracellular AHP
domain, may also contribute to the heterogeneous distributions of cell morphologies.

Nevertheless, by using only the experimentally measured bulk HbS growth rate,
we can successfully predict the major types of the SS-RBC morphologies observed
in experiments. These heterogeneous cell morphologies, in turn, result in abnormal
rheology of SS-RBC suspensions, as discussed in next section.

5.4 Abnormal Rheology of SS-RBC Suspensions

SS-RBC suspensions exhibit abnormal rheology and hemodynamics [65,68,69,95]
due to the heterogeneous cell morphology and elevated cell rigidity [34, 59]. In this
section, we constructed a multi-scale model of SS-RBC with various cell morpholo-
gies resembling to the shapes predicted in the previous section and observed in
experiments [65, 69]. Then we employ the constructed SS-RBC model to investi-
gate the abnormal rheology of SS-RBC suspension under constant shear flow. We
compute the shear viscosity and compare the simulation results with experimental
measurements for heterogeneous cell rigidities and shapes. Next, we investigate the
hemodynamics of the SS-RBC suspension by quantifying the elevated flow rate of
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SS-RBC suspension in tube flow with a discussion on possible mechanisms for the
heterogeneous hemodynamic properties.

5.4.1 Multi-scale Model of SS-RBC

As shown in previous section, SS-RBCs exhibit distorted shapes due to the interac-
tion between intracellular HbS polymer and the cell membrane. In this section, we
focus on the rheology of a collection of multiple SS-RBC suspension and therefore
neglect the modeling of individual HbS polymer. Instead, we directly consider the
surface tension applied on the cell membrane exerted by the growing HbS fibers,
similar to the systems discussed in previous section and [21]. Fig. 5.8 shows the
triangulated mesh of a healthy RBC with biconcave shape. The letters “A", “B",
“C" and “D" represent four anchor points where the intracellular growing fibers can
potentially approach the cell membrane. Surface tension exerted on the cell mem-
brane further depends on the configuration of the HbS polymer domain. Similar to
the previous section, for SS-RBCs with low MCHC, the intracellular HbS polymer
tend to develop small angular width due to the limited heterogeneous nucleation and
branching rates, resulting to the classical sickle shape. Accordingly, the stretching
force is applied only on points “A” and “C” to represent the specific direction of the
polymer growth. In contrast, for SS-RBCs with high MCHC, the intracellular HbS
polymers tend to form spherulitic configurations due to the explosive growth via the
high heterogeneous nucleation rate on the pre-existed HbS polymers, resulting in
the granular shape. The growing HbS fibers may approach the cell membrane from
multiple directions. Therefore, the stretching force is applied on all the four anchor
points for this case. Values of simulation parameters are summarized in Table 5.2.
Here we note that the stretching force adopted here is about 10 times smaller than

Fig. 5.8. Left: triangulated mesh of the RBC membrane. The label “A”, “B”, “C” and “D”
represents the four anchor points where the stretching force is applied. Right: Successive
snapshots of a RBC during the morphological transition to the “sickle" shape. From [77]
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Table 5.2. Stretching force (pN) applied on the anchor points for each type of the cell mor-
phology along x, y and z direction. “A”, “B”, “C”, “D” represents the anchor points sketched
in Fig. 5.8

A B C D

S (0,55,54) (0,0,0) (0,−55,54) (0,0,0)
G (0,23,31) (−23,0,31) (0−23,31) (23,0,31)
E (0,55,11) (0,0,0) (0,−55,−11) (0,0,0)

the stall force of HbS fiber growth presented in Sect. 5.3. However, this is because
we start the cell stretching procedure with a healthy RBC, where the cell rigidity is
much smaller than the cell rigidity of SS-RBC we adopted in Sect. 5.3. Instead, if we
start the cell stretching procedure by assuming the cell rigidity is similar to the value
of SS-RBC, the stretching force is about 500 pN, similar to the stall force predicted
by the lower scale model.

The successive snapshots in Fig. 5.8 show the shape transition of a SS-RBC from
the biconcave to the classical sickle shape. Similarly, the granular shape is con-
structed by applying the stretching force on all of the four anchor points. Similar to
Sect. 5.3.2, we quantify the distortion of SS-RBC membrane with the 3D aspheric-
ity shape factor (ASF) and the elliptical shape factor (ESF) defined in Eq. (5.24), as
shown in Fig. 5.9.

ES
F

Asphericity

Fig. 5.9. Asphericity and elliptical shape factors for the different shapes of the sickle cells.
The label “G”, “S” and “E” represents the granular, sickle and elongated shape of the sickle
cells respectively, and the inset sketches represent their morphologic projections on the x-z
and x-y planes; the inset images represent the experimental observations on different morpho-
logic states of deoxygenated SS-RBC by scanning electron microscopy, reproduced from [69].
The label “B” corresponds to the original biconcave shape, whose morphological projection
is shown in Fig. 5.8. Reproduced with permission from [69, 77]
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5.4.2 Shear Viscosity of SS-RBC Suspensions

With the SS-RBC model constructed above, we investigate the abnormal rheology
of SS-RBC suspension in shear flow. We first consider the shear flow system with
hematocrit Hct = 45% following the experiment of [95]. The viscosity of the sol-
vent is chosen to be η0 = 1.2 cp. The specific morphological characteristics of the
SS-RBCs were not specified in the experiment. However, we note that the reported
MCHC value of the sickle cell is relatively high (37.7g/dL). Periodic Lees-Edwards
boundary conditions are imposed on the fluid system where different shear rates
can be obtained. The simulation domain has the size of 40×38×28 in DPD units,
with 182 cells placed in the system. Therefore, the granular shape is adopted for
the present simulation. A short range repulsive force is imposed for volume ex-
clusion between the cells. Fig. 5.10 shows the viscosity computed for both healthy
and diseased blood under different shear rates. For both types of blood, good agree-
ment with the experimental results is obtained. It is well-known that healthy blood
behaves as non-Newtonian fluid with shear-dependent viscosity [39]. Under high
shear rate, blood cells undergo large deformation with fluid properties pronounced;
in contrast, blood cells behave as solid-like, less deformed under low shear rate con-
ditions, resulting in relatively higher viscosity. Therefore, the viscosity of healthy
blood increases as the shear rate decreases, as shown in Fig. 5.10. On the other
hand, the deoxygenated SS-RBC suspension shows elevated viscosity values, which
are nearly independent of the shear rate. This result is mainly due to the largely el-
evated cell rigidity; the deoxygenated SS-RBC cannot be deformed under the high
shear rate employed in the experiment [95]. Therefore, SS-RBCs exhibit “solid”
behavior throughout the entire shear rate regime, leading to this transition from non-
Newtonian to Newtonian flow.

Moreover, we examine the effect of the cell morphology on the rheology of SS-
RBC suspension under shear flow. A similar experimental study has been conducted
by Kaul et al., where the shear viscosity of SS-RBC suspensions subjected to both
fast and gradual deoxygenation procedures [69] was measured. Two distinct stages
were observed for SS-RBC suspensions subjected to the fast deoxygenation. The
shear viscosity of the SS-RBC suspensions exhibits fast elevation within the first
7 mins of deoxygenation accompanied with the cell morphology transition to gran-
ular shape. However, the shear viscosity gradually decreased during increased de-
oxygenation, accompanied with a large portion of cells transitioned into extremely
elongated shape with the intracellular HbS fibers aligned in one direction. In con-
trast, SS-RBC suspensions subjected to gradual deoxygenation procedure showed
monotonic elevation of shear viscosity and the formation of the sickle shape of blood
cells over a period of 30 mins until the full deoxygenated state was achieved. Fol-
lowing this experimental study, we computed the shear viscosity of SS-RBC sus-
pensions with the three distinct types of sickle cell reported in the experiment (Hct
= 40%). Figure 5.11 shows the shear viscosity values under shear rate from 25 to
75s−1 with similar cell rigidity applied to all the three types. Similar to Fig. 5.10,
the SS-RBC suspensions show shear-independent Newtonian behavior. Moreover,
shear viscosity further depends on individual cell shapes, with the value 13.8, 13.1
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Fig. 5.10. Shear viscosity of the healthy blood and SS-RBC suspensions with Hct = 45%.
The dash lines represent the fitted curve to the simulation result by η = be−a/γ0.5

+ c, where
γ is the shear rate. a, b and c equal to 1.43s−1/2,−6.04cp,8.78cp for healthy blood and
1.08s−1/2,−5.5cp,23.9cp for deoxygenated SS-RBC suspension. The inset plot shows a
snapshot of the “granular" SS-RBCs in shear flow. From [77]

Fig. 5.11. Shear viscosity of the sickle blood flow with different cell morphologies reported
in [69], Hct = 40%. From [77]
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and 9.6 cp for the granular, sickle and elongated shape, respectively. The simula-
tion results are consistent with the experimentally observed progressive decrease of
the viscosity during the increased deoxygenation, since a large portion of granular
cell transforms into the elongated shape during the procedure. This result reveals the
heterogeneous “effective volume” among the different types of SS-RBC under the
shear flow system [69]. Given the same Hct, heterogeneous cell morphologies may
further affect the momentum transport between the cells, resulting in different shear
viscosity values.

5.4.3 SS-RBC Suspension in Tube Flow

The hemodynamics of SS-RBC suspensions was studied in an isolated vasculature
in [65] with different cell groups. While the oxygenated SS-RBC suspensions ex-
hibit hemodynamics similar to healthy blood flow, the deoxygenated SS-RBC sus-
pensions show heterogeneous hemodynamics among the different cell groups. Sim-
ilar to the experimental study [65], we simulate SS-RBC suspensions in a tube flow
system with Hct = 30%. We set the diameter of the tube to 9.0μm as in capillary
flow, since the detailed size and topology information of the microvasculature for
the experiment is unknown. In this sense, we do not expect the apparent viscosity
obtained from the simulation to match exactly with the experiment results. Instead,
we focus on the effect of different SS-RBCs groups on the flow resistance in the
microcirculation.

Deoxygenated blood flow is modeled as a suspension of SS-RBCs with sickle and
granular shapes, where the same cell rigidity is applied to both cell groups. The vis-
cosity of the cytosol is set to 4η0 and 50η0 for the healthy and deoxygenated blood
flow, where η0 = 1.2 cp is the viscosity of the blood plasma. The increase of the
flow resistance for the sickle and granular shapes under different oxygen tensions is
shown in Fig. 5.12a. While SS-RBC suspension of both cell groups show further in-
creased flow resistance at deoxygenated state, the granular type of blood flow shows
a more pronounced elevation compared with the sickle shape. This result is also con-
sistent with the experimental study of SS-RBCs transiting in a micro-fluidic channel
conducted by E. Du and M. Dao [1]. Figure 5.12b shows the transit velocities of in-
dividual SS-RBCs with different cell morphologies (discocyte, oval, sickle) through
a periodic array of obstacles (4μm between the two obstacles). The cell group of the
“sickle” shape exhibits the largest cell velocity.

One possible explanation for the above result, as proposed by the Kaul et al., is
the different orientational distribution of SS-RBCs in the capillary: a cell of sickle
shape tends to flow along the axis of the tube as also observed by La Celle et al. in
experimental studies in [73]. This is consistent with the inset snapshots of the sickle
and granular cells in Fig. 5.12a. To quantify this phenomenon, we computed the cell
orientation angle distribution for different cell groups in the tube flow, as shown in
Fig. 5.13. The cell orientation is defined by the angle θ between the flow direction
and the eigenvector of the gyration tensor V1 defined by Eq. (5.23). Compared with
the granular cell, the orientation angle of the sickle cell shows a wider distribution
for larger value, indicating that the sickle shape SS-RBCs are more likely to ori-
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a

b

Fig. 5.12. (a) Increase of the flow resistance induced by the sickle blood flow for both gran-
ular and sickle shapes. The inset plot shows a snapshot of the sickle cells in the tube flow;
(b) Experimental study on SS-RBC cell transition velocity for different cell morphologies
through a periodic array of obstacles in microchannel, courtesy of Dr. E Du and Dr. Ming
Dao at MIT. From [1, 77]

ent along the flow direction. Moreover, we note that this morphology of the sickle
SS-RBC in the present study resembles to the irreversible sickle cell (ISC) generated
during multiple deoxygenation-reoxygenation cycles, with its rheological properties
as consistently noted by Kaul in [65] “[. . . ] deoxygenated ISC once in the capillary
microcirculation of mice orient themselves along the vessel axis, posing no signif-
icant problem to the capillary flow [. . . ]” Therefore, this configuration results in a
lower flow resistance compared with the granular cells.

Finally, we note that the simulation of SS-RBC suspension in tube flow does not
induce blood occlusion in the present study. We performed several sets of simula-
tions with different combinations of cell rigidities and cytosol viscosity; however, no
full occlusion was observed in any of these simulations. Moreover, the sickle shape
SS-RBC, the widely believed pre-cursor of the vaso-occlusion crisis, actually may
result in lower flow resistance than other cell groups. We note that this is mainly due
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Fig. 5.13. Cell orientation angle distribution f (θ) for healthy, sickle and granular cells in
pipe flow. The cell orientation is defined by the angle θ between the flow direction (x) and
the eigenvector V 1 of the gyration tensor, as shown in the inset plot. From [77]

to the omission of the cell-endothelium adhesive interaction in the present study; we
address this issue in the next section.

5.5 Vaso-occlusion crisis

Vaso-occlusion crisis is the key hallmark out of the three biophysical characteris-
tics related to SCA. While early studies suggested that this crisis is triggered by the
blockage of single sickle/elongated SS-RBC in capillaries, later studies [8, 62–64]
have shown that vaso-occlusion mainly occurs in post-capillaries (the microvascu-
latures following the capillaries). Moreover, some studies demonstrated that there
exists no direct correlation between the percentage of the dense SS-RBCs and the
disease severity [5], which is consistent with our numerical simulation of the hemo-
dynamic of SS-RBC suspensions in capillaries presented in Sect. 5.4.3. On the other
hand, Hebbel et al. [49] and Hoover et al. [55] find that there exists abnormal adhe-
sive interaction between the SS-RBCs and cultivated endothelial cells. Recent stud-
ies further revealed that vaso-occlusion is a complex process triggered by the interac-
tions between multiple cell groups [6,15,94], including SS-RBCs of heterogeneous
density groups, vascular endothelial cells, and inflammation-activated leukocytes,
with each group contributing differently to the vaso-occlusion crisis.

In this section, we employ the multi-scale model of SS-RBC to investigate the
biophysical characteristics of the vaso-occlusion in SCA. We quantify the specific
physiological conditions triggering the occlusion crisis and therefore identify the
specific contribution of individual cell groups within the occlusion process. First,
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we investigate the adhesive dynamics of different SS-RBC groups under shear flow.
Next, we quantify the heterogeneous cell adhesive properties in static condition and
examine the results using free energy analysis. Finally, we study the hemodynam-
ics of SS-RBC suspensions in post-capillaries as well as in venular flows, where
inflammation-activated leukocytes play an important role.

5.5.1 Adhesive Dynamics under Shear Flow

In vitro studies [7] by Barabino et al. show that SS-RBCs exhibit heterogeneous
cell adhesivity among different density groups. The light density group shows the
largest adhesion while the densest irreversible sickle cells (ISCs) shows the least ad-
hesion. Ex vivo studies by Kaul et al. [62] further examined the alteration of SS-RBC
adhesivity after a dehydration/rehydration treatment on individual cell groups and
found that the cell adhesivity of the deformable SS2 and the dense SS4 cells can be
reversed after controlled treatment. They suspected that different cell groups have
similar “adhesion potential”, while the heterogeneous cell adhesivity is mainly at-
tributed to the different cell morphological and bio-mechanical properties among the
multiple cell density group. Accordingly, we investigate this hypothesis by simulat-
ing the adhesive dynamic of SS-RBCs with different cell rigidity and morphologies.

As shown in Fig. 5.14, we consider three different SS-RBCs under shear flow.
Cell I represents a SS2 deformable discocyte. The cell rigidity is similar to the
healthy RBC and we set the shear modulus μ0 = 6.8μN/m and bending rigidity
kc0 = 2.4× 10−19J, i.e., similar to healthy cell rigidity [57, 83, 93]. Cell III repre-
sents an ISC generated through the deoxygenation-reoxygenation process; we set
the shear modulus μ = 10μ0 following [17, 59]. Modification to cell bending rigid-
ity in the deoxygenation-reoxygenation process is unknown; here we set kc = 10kc0

and also conduct sensitivity studies. Cell II represents a rigid discocyte [33] with
medium MCHC value; we set μ = 3μ0 and kc = 3kc0 for the comparative study.

Following [62], we assume that the three cells have similar “adhesive potential,”
and set identical adhesive parameters. With the same shear rate γ̇ = 192s−1, the
three cells exhibit substantially different adhesive dynamics as shown in Fig. 5.14a.
Cell I exhibits firm adhesion to the lower plate with contact area around 40.5μm2.
Cell II, however, shows weaker adhesivity than Cell I. Although it also exhibits
transient adhesion to the lower plate initially, it undergoes a periodic flip movement
along the flow direction and eventually detaches from the plate after two to three
flips, as characterized by the peak values of the instantaneous cell velocity at 0.30,
0.53 and 0.72s. Accordingly, the contact area achieves minimum values at those
times. Different from cells I and II, cell III does not show any adhesion to the plate;
instead, it directly detaches from the lower plate and moves freely without adhesive
bonds established thereafter. Given the same “adhesive potential”, the present results
validate the hypothesis that heterogeneous cell adhesive dynamics is mainly due to
the different cell rigidities and peculiar cell morphologies. To further investigate this
effect, we use free energy analysis to quantify the cell adhesion in static condition.
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Fig. 5.14. Sickle cells in shear flow: (a) Successive snapshots of SS-RBCs in shear flow. The
labels I, II and III correspond to a deformable SS2 cell, rigid SS3 cell and ISC, respectively.
The arrow indicates the flow direction; (b–c) Instantaneous contact area and velocity for SS-
RBC in shear flow conditions. From [76]

5.5.2 Static Condition and Free Energy Analysis

Similar to the previous section, cells I, II, and III are initially placed at a distance of
0.12μm from a plane coated with ligand particles, where same adhesive parameters
are adopted. We compute the instantaneous contact area for each cell until steady
state is reached, as shown in Fig. 5.15a. While the contact area for all of the cells
increases sharply to 10μm2 within the initial stage, the contact area between the
plate and cell I and II further increases to 30μm2 and 21μm2 at the later stage. This
inverse relationship is consistent with the different cell adhesive dynamics in shear
flow system, and it can be understood by the free energy analysis during the adhesion
process. If we define the cell and the ligand particles as a single system, the change
of total free energy ΔE during the process can be written as

ΔE = ΔEde f orm −ΔEadhesion, (5.26)
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Fig. 5.15. Adhesion in static conditions: (a) Instantaneous contact area between the SS-RBC
and the plate coated with adhesive ligands. The black curve represents the contact area of a
discocyte with cell rigidity similar to the ISC (cell III); (b) Increase of the cell free energy as a
function of the contact area; (c) Cell contact areaΔA computed from direct simulation and free
energy analysis by Eq. (5.27); (d) Adhesive force between the cell and the plate as a function
of the membrane rigidities for cell morphologies. The error bar represents the adhesive force
computed from four independent simulations. The inset plot shows a sketch of the simulation
set up, where a uniform lift force is applied on the upper part of an ISC. From [76]

where ΔEde f orm represents the increase of the cell free energy due to the deviation of
cell shape from the equilibrium state. ΔEadhesion represents the absolute value of the
energy decrease due to the adhesive bond formation between the cell and the ligand
particles. The final state is determined by the balance between the two free energy
terms. A deformable SS2 cell is prone to form larger contact area than the rigid cell;
it can be understood as follows. For SS2 cell with smaller cell rigidity, the energy
barrier induced by the cell deformation is relatively small, and free energy decrease
induced by cell adhesion plays a dominant role, resulting in further cell deforma-
tion and larger cell contact area. In contrast, the rigid SS4 cell exhibits “solid” like
properties with a larger energy barrier for cell deformation. The adhesive interaction
between the cell and plate is more like the attraction between two solid objects where
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the cell deformation plays a less important role. After the initial incubation stage, the
adhesive interaction driven by the bond formation cannot overcome the free energy
increase induced by the cell deformation, and therefore it prohibits further increase
of the contact area.

Figure 5.15b shows the ΔEde f orm as a function of the contact area ΔA for the
three cells induced by different adhesive affinities. The numerical results are fitted
by αΔA4, where α depends on the cell rigidity of individual cells. The adhesion free
energy ΔEadhesion can be approximated by βΔA, where β is the energy coefficient
determined by the adhesive affinity. In the present work, the adhesive interaction is
modeled by the adhesive bond interaction between ligands coated on the substrate
and the receptors on the cell membrane. While each receptor on cell membrane can
form multiple adhesive bonds with ligands, each ligand can only form one adhesive
bond with the receptor. Therefore, β can be approximated by ksl2

s nligand , where ks is
the adhesive spring bond constant, ls is the cut-off length of the adhesive bond inter-
action, and nligand is number density of the ligands on the substrate. The equilibrium
state is determined as the state with minimum free energy term, e.g.

ΔA =
(

β
4α

)1/3

. (5.27)

According to Fig. 5.15b, α is about 3.8× 1025, 8.0× 1025 and 1.8× 1026J/m8 for
cell I, II and III. The yields the contact area A = A0 + ΔA approximately 26.5, 21.3
and 14.0μm2 for cell I, II and III, where A0 is the initial contact area without any ad-
hesion, which is 3.5μm2 for cell I and II, and 0.6μm2 for cell III. This result agrees
well with the direct simulation results of 29.5, 20.7μm2 and 12.0μm2, as shown in
Fig. 5.15c. Compared with the shear flow system, the contact area of cell I computed
in static condition is smaller. This discrepancy is mainly due to the increased cell de-
formation induced by the hydrodynamic interaction under shear flow condition. The
extended cell membrane facilitates the bond formation and result in larger contact
area. For cell III, we note that the contact area is smaller than the value for a disco-
cyte with similar cell rigidity. This result indicates that the peculiar cell morphology
may further affect the cell adhesivity.

To quantify the effects discussed above, we directly compute the adhesive force
between the plate and SS-RBCs with different cell rigidities and morphologies. The
adhesive force is determined as the lift force that detach the cell from the plate in
quasi-static process, as shown in Fig. 5.15(d). Similar to the contact area, the ad-
hesive force also exhibits an inverse relationship with the cell rigidity. Moreover,
compared with the discocyte, the ISC exhibits smaller adhesive force given the sim-
ilar cell rigidity, indicating less adhesivity induced by its peculiar cell morphology.

5.5.3 SS-RBC Suspensions in Post-capillaries and Venules

We model blood circulation of SS-RBC suspensions in post-capillaries as in a tube
with diameter D = 10μm and hematocrit Hct = 30% similar to [62, 64]. As shown
in Fig. 5.16, small green particles represent the adhesive ligands which can interact
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Fig. 5.16. Vaso-occlusion in post-capillaries: instantaneous mean velocity of blood flow in
a cylindrical tube of D = 10μm infused with different SS-RBC suspensions. The red curve
represents the resultant velocity infused with SS2 and ISC cell groups. The inset plots repre-
sent the instantaneous snapshots where SS2 cells adhere to vessel wall, consequently trapping
the ISCs and resulting in cell blockage. The green curve represents the blood velocity infused
with SS2 and ISC cell groups, where adhesive interaction is only applied to the ISC group. The
time axis is scaled by 0.5 for better visualization. The inset plot represents a snapshot where
transient adhesion is established between ISC and the tube wall. Steady flow is recovered as
the cell detaches from the tube wall. The blue curve represents the instantaneous velocity of
blood flow infused with SS2 and healthy cell groups. Blood flow exhibits a slow down but
not a full occlusion. From [76]

with the SS-RBCs. To quantify the distinct role of different cell groups, we infuse
suspensions of different cell groups into the tube by applying a pressure gradient
ΔP/Δx = 8.7×104Pa/m.

First, we consider suspensions composed of SS2 cells (labeled by blue) and ISC
cells (labeled by red) with ratio 1 : 1. We prepare the steady flow by turning off the
adhesive interaction. The mean flow velocity at the initial stage is round 150μm/s.
Starting from the steady state (t = 0), we turn on the adhesive interaction between
the SS-RBCs and the ligand particles and compute the instantaneous flow velocity
across the tube, as represented by the red curve in Fig. 5.16. Blood flow maintains
steady state until one of the SS2 cells adheres to the vessel wall, triggering a sharp
decrease of blood flow around t = 0.5s. As a positive feedback, the decreased blood
flow induces more SS2 cells adherent to the vessel wall, leading to a further decrease
of flow rate at t = 0.63s and t = 0.7s. Moreover, these adherent cells decrease the
effective vessel lumen near the adherent region resulting in a secondary trapping of
the ISC groups. The final occlusion state is reached around t ≈ 2s with cell patterns
similar to the experimental observations [62,64]. This result demonstrates that under
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physiological conditions similar to microcirculation in post-capillaries, the interplay
of deformable SS2 cells and ISCs can potentially trigger full blood occlusion. Al-
though the same adhesive parameters are applied to the two cell groups, no adherent
ISC is observed in the present simulations. Several independent sets of simulation
were conducted with different initial conditions and similar patterns of full occlusion
were observed.

To identify the unique contribution of the deformable SS2 cell group, we per-
formed a similar simulation for suspension consisting of ISC and healthy RBCs.
Starting from the steady flow at t = 0, we compute the instantaneous velocity of the
blood suspension for 6 s, as represented by the green line in Fig. 5.16. Blood flow
shows decreased velocity due to the ISC-ligand interaction, where transient adhesive
bonds can be formed. However, blood occlusion is not observed in this simulation
since blood flow can recover the initial flow rate when the adherent ISCs detach from
the tube wall, as consistently observed in ex vivo studies [62], where the ISCs, when
infused alone, did not result in microvascular blockage. This result reveals the spe-
cific contribution of the SS2 cell group in the vaso-occlusion crisis and is consistent
with clinical investigation results [5].

In contrast, the ISC cell group, contributes differently to the occlusion crisis. We
investigate its unique contribution by simulating the blood suspension mixed with
the deformable SS2 and healthy cells. Starting from the steady flow at t = 0, we
compute the instantaneous velocity of the blood flow, as represented by the blue line
in Fig. 5.16. Although blood flow slows down due to the cell adhesion at t = 0.25s
and t = 0.48s, full occlusion is not observed in the present simulation. In particular,
we find that healthy RBCs can squeeze through the sieve-like region formed by ad-
herent SS2 cells due to its high deformability. The present result, in turn, identifies
the specific contribution of the ISC group in the vaso-occlusion crisis. Although the
ISC group may not participate in the cell adhesive interaction with the vascular wall,
it serves as the particular cell group trapped by adherent cells in the post-capillaries.

Sensitivity studies have been conducted with different tube diameters and hema-
tocrit values. Simulation results show that for microcirculation of SS-RBC suspen-
sions, blood occlusion mainly occurs in post-capillaries with diameter smaller than
13.4μm. However, recent studies [67] have shown that SCA is often accompanied
with an inflammatory endothelial phenotype with elevated leukocyte recruitment in
blood circulation, where the inflammation-stimulated leukocytes may further inter-
act with SS-RBC, leading to blood occlusion in venular flow [94]. We explore this
process by employing the multi-scale model of SS-RBC and the leukocyte model
presented in Sect. 5.2.2.2. First, we simulate the SS-RBC suspension with a leuko-
cyte in a tube with diameter D = 13.4μm and Hct = 30%. Starting from the initial
condition (t = 0s), the leukocyte migrates toward to the tube wall with firm adhe-
sion established at t ≈ 0.47s. The blood velocity drops from 150μm/s to 45μm/s
during this stage. The adherent leukocyte further interacts and traps the SS-RBCs,
resulting in full occlusion at t ≈ 2.4s. For venular flow with larger diameter, multi-
ple leukocytes recruitment may occur in the inflammation regions. Following [94],
we simulate a SS-RBC suspension with three leukocytes in a tube with diameter
D = 20.4μm and Hct = 13.4%. Starting with the steady flow free of cell adhesion (t
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Fig. 5.17. Effect of leukocytes: instantaneous mean velocity of the blood flow in a tube of D =
13.4μm Hct = 30%, 1 leukocyte (a) and D = 20.4μm, Hct = 13%, 3 leukocytes (b). The inset
snapshots represent blood cells in free motion, leukocyte adhesion and blood occlusion states.
For D = 20.4μm, the inset plot represents the blood flow velocity of the present study (blue)
and the experimental results (red) [94], where measurements are taken on 23−41 venules with
average diameter 20.9 ± 1.3 and 24.9 ± 1.8μm before and after inflammation-stimulation.
From [76]

= 0s), the following blood flow can be roughly divided into three stages. In stage I,
instantaneous blood velocity drop to 160μm/s due to the leukocyte recruitment at
t = 0.40,0.71,0.88s. In stage II, blood flow undergoes further slow down due to the
moderate SS-RBC - leukocyte interaction. Stage III represents the late stage of the
inflammation response, where the SS-RBC - leukocyte interaction is further intensi-
fied, resulting multiple SS-RBC trapped on the leukocytes and the full occlusion at
t ≈ 3.2s.
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5.6 Conclusions

In this chapter, we presented a comprehensive computational framework based on
the dissipative particle dynamics (DPD) method to investigate the three key hall-
marks (heterogeneous morphology, rheology and vaso-occlusion) of the hematolog-
ical disorder SCA. The multi-scale nature of the present mesoscopic model enabled
us to address the different dynamic processes over a wide range of length and time
scales involved in this disease. We modeled the SS-RBC morphological transition by
constructing a coarse-grained stochastic model to represent the development of the
intracellular aligned sickle hemoglobin polymer domain. By using only the experi-
mentally measured bulk growth rate of the sickle hemoglobin polymer as the input,
the model successfully predicted the typical sickle cell morphologies without intro-
ducing further ad hoc assumptions. The inferred cell morphologies enabled us to
further explore the rheology of heterogeneous SS-RBCs suspensions with accurate
prediction of the shear viscosity for different cell rigidity and morphologies. In par-
ticular, our simulations of the hemodynamics of SS-RBC suspensions suggested that
the sickle/elongated SS-RBC suspension, once in microcirculation, does not induce
vaso-occlusion by itself. Moreover, the flow resistance induced by this cell group
could be even lower than other cell groups. This result, although counter-intuitive,
is consistent with recent experimental studies on vaso-occlusion crisis.

We explored the vaso-occlusion crisis by further introducing the adhesive cell-
endothelium and RBC-leukocyte interactions. We quantified the particular physio-
logical conditions triggering the vaso-occlusion crisis and further identify the spe-
cific role of individual cell groups during the occlusion procedure. The specific cell
pattern (ISCs trapped by adherent SS2 cells) widely observed in occlusion region
is successfully predicted by the present study. Sensitivity studies on tube diameter
and hematocrit values validated the prevalence of blood occlusion in post-capillaries
with diameter smaller than 12–14 μm, as consistently reported in experimental stud-
ies. Also, we investigated the effect of the adherent leukocyte under inflammation,
which may further trap the sickle cells and result in blood occlusion in venular flow.
These results reveal the multi-stage and multi-interactional nature of vaso-occlusion
crisis. While the present medical treatment by hydroxyurea can effectively prolong
the “delay time” of cell sickling procedure, targeting other processes such as the ves-
sel endothelium activation and cell-endothelium adhesion may provide alternative
paths to the treatment of this disease. This would require further experimental and
numerical investigations.

For future work, the present computational framework can be further extended
to investigate the following important questions related to SCA: (I) Quantify the
hemodynamic properties of SS-RBC suspensions with patient-specific single-cell
density (MCHC) distribution. This study can reveal the microcirculation and vaso-
occlusion characteristics for patient-specific condition with particular cell morpholo-
gies, rigidity and adhesivity. (II) Couple the present model with the oxygen trans-
port equation. We note that the blood occlusion is a dynamic process where the
local oxygen saturation may further affect the individual SS-RBC properties. This
study may help to quantify the in vivo sickle blood circulation with instantaneous
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oxygen-controlled SS-RBCs groups. (III) Simulate diffusion of chemicals (e.g., hy-
droxyurea, decitabine, erythropoietin) to quantify the therapeutic effects of drug
treatments on the microcirculation of the sickle blood flow. These numerical stud-
ies, combined with microfluidic experiments (e.g., cell transport in microchannels
resembling blood vessel and networks, etc.) can be used to evaluate and quantify re-
lated therapeutic treatment and clinical outcomes. (IV) Model blood circulation by
considering the endothelium surface roughness and the venular tortuosity. In in vivo
conditions, these effects may further slow down the blood flow velocity and increase
the probability of cell-endothelium and cell-cell interactions, resulting an elevated
chance of blood occlusion crisis. Therefore, we expect that for in vivo system, vaso-
occlusion may occur in micro-vasculatures with diameters even larger than the value
predicted in the present work. These effect are worth further investigation.
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A Three-dimensional Continuum Model of
Active Contraction in Single Cardiomyocytes

Alessio Gizzi, Ricardo Ruiz-Baier, Simone Rossi, Aymen Laadhari,
Christian Cherubini, and Simonetta Filippi

Abstract We investigate the interaction of intracellular calcium spatio-temporal
variations with the self-sustained contractions in cardiac myocytes. A 3D contin-
uum mathematical model is presented based on a hyperelastic description of the
passive mechanical properties of the cell, combined with an active-strain frame-
work to describe the active shortening of myocytes and its coupling with cytosolic
and sarcoplasmic calcium dynamics. Some numerical tests of combined boundary
conditions and ionic activations illustrate the ability of our model in reproducing
key experimentally established features. Potential applications of the study for pre-
dicting pathological subcellular mechanisms affecting e.g. cardiac repolarization are
discussed.

6.1 Introduction

Single cells respond to several endogenous and exogenous mechanical stimuli such
as stress, strain, strain-rate, strain energy, etc. [24], according to their internal struc-
ture. Active cardiac cells, the cardiomyocytes, contain myofibrils bundles in which
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the subcellular contractile units, the sarcomeres, consist of thick and thin interacting
myofilaments (myosin and actin proteins, respectively) that generate movement. In
the context of muscular tissues, several examples of muscle organizations have been
proposed [20,36,45] as the product of a full functional adaptation spanning from the
sarcomere length up to the muscle bundle [53].

The excitation-contraction mechanism in these media is usually coordinated by
an external electrical activation and propagated through specialized networks, the
Purkinje fibers, to the whole tissue [29].

At the microscale, calcium ions (Ca2+) flow through the cell membrane from the
extracellular matrix and are exchanged between the cytosol and sarcoplasmic reticu-
lum thus regulating the interaction of the myofilaments. This chemical process onsets
the shortening of the sarcomeres and drives the excitation-contraction coupling of
the whole cardiac cell. The Calcium-Induced Calcium Released (CICR) feedback,
in particular, originates in the excited state when the sarcolemma gets depolarized
inducing the influx of extracellular calcium into the cardiomyocytes; the increase
of intracellular calcium induces more Ca2+ to be released from the sarcoplasmic
reticulum; cytosolic Ca2+ ions bind to troponin-C and activate the myofilaments.
The process ends when the cell gets depolarized thus reducing the level of calcium
concentration via both outflow fluxes and calcium sequestration in the sarcoplasmic
reticulum. Although the excitation-contraction mechanism and the CICR feedback
have major evidences both at the theoretical [56] and experimental [12] levels, the
full understanding of the exact interplay between the different processes involved is
still lacking. Nonetheless, these subcellular mechanisms play a key role in the over-
all cardiac function. Their understanding can therefore be of utmost importance and
interest for the study of many physiological and pathological conditions [2, 22].

Different systemic effects of cardiac mechano-electric interactions can be ex-
plored by studying the elastic properties of isolated cardiac myocytes [21,26,37,53].
Experimental evidences have shown that stress concentrations can often be recorded
at locations without visible fibers deformations [10]. Such a phenomenon motivates
the hypothesis that stresses are induced by micro-structure remodeling acting on a
much smaller scale than the cell one and justifies the choice of a contractility model
formulated at the continuum level. This allows to characterize a multiscale process
rather than the description of an ensemble of particles by assuming: (i) a sufficient
level of calcium concentration without limiting the mechanical activation; (ii) a rep-
resentative volume element (RVE) inside the cell can be identified; and (iii) a me-
chanical response can be observed from any direction.

In this contribution we provide a quantitative description of the behavior of a
single myocyte by proposing a complete chemo-active-mechanical model for three-
dimensional cell geometries under specified experimental conditions and in agree-
ment with the current mechanobiology approach [58]. Ionic kinetics and voltage-
dependent equations at the cellular level are carefully considered [46]. Due to the
complexity of the problem at hand, we focus our numerical simulations on describing
the behavior of the principal calcium concentrations inside the cardiomyocyte and
their nonlinear interplay with the mechanical quantities. Specific applications in the
cardiovascular context analyzing boundary constraints, e.g. cell-cell and cell-matrix
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adhesion, are discussed in terms of a positive feedback loop towards the functional
organization and stress level on the cell membrane [21, 37].

The mathematical model here proposed is based on the active-strain approach [39,
51] in which the mechanical activation is formulated as a virtual multiplicative de-
composition of the deformation gradient into a passive elastic response and an ac-
tive deformation contribution. The latter is directly coupled to a simplified non-
linear model of calcium dynamics [19, 54, 61]; this allows us to consider both
the anisotropic passive intracellular organization, i.e. the T-tubule system, and the
anisotropic active emerging cellular structures.

The generalized formulation is thermodynamically consistent [17,50,55] and al-
lows the characterization of the interactions among ionic quantities, cellular me-
chanical properties and environmental effects. In particular, it explains the influence
of cell shape and boundary conditions on the onset of structural anisotropies and
stress concentrations. We address all of these requirements with the aid of finite-
element-based simulations characterizing the feasibility and adequateness of em-
ploying a macroscopic description of the mechano-chemical behavior of a single
cell. Such a modeling strategy, moreover, is well suited to explain the complex rela-
tions between microscopic cell dynamics and macroscopic cardiac functions. Three-
dimensional simulations in this direction will be discussed. Our model is myocyte
bending-contraction dynamics and end terminals deformations.

6.2 Continuum Model for Single Cell Biomechanics

Let x represent the current position of a material particle of the myocyte Ωt , that oc-
cupied the position X in the natural stress-free configuration Ω0 ⊂R3 with boundary
Γ0. Motion can be expressed in terms of the displacement vector field d = x−X, and
as usual, we denote by F = ∇Xx, C = FT F and B = FFT the deformation gradient
tensor and the right, left Cauchy-Green deformation tensors, respectively, where ∇
is the gradient with respect to material coordinates.

In a general form, the passive mechanical response of an isolated cell can be
described through a hyperelastic, anisotropic constitutive law derived from the one
proposed in [23] to model tissue properties, here written for a quasi-incompressible
material:

W (F) =
a

2b
[exp(b[I1 −3])−1]+

a f

2b f

[
exp(b f [I4, f −1]2)−1

]
+
κ
4

[(J−1)2 +(lnJ)2],
(6.1)

where a is a shear modulus, κ a bulk modulus, a f ,b,b f are experimentally fitted in
order to recover the strain-stress relationships found in [61] employing a polynomial
strain energy function (see Fig. 6.1 and Table 6.1), and I1 := J−2/3 tr(C), I4, f :=
J−2/3Ff0 ·Ff0, are isotropic and direction-dependent invariants. Here f0 is a unitary
direction vector in the reference configuration representing the myofibrils alignment.
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Table 6.1. Parameters for passive mechanical anisotropic response on a single cell

Transversely isotropic passive response

a = 3.2639 kPa a f = 0.1354 b = 2.7492 kPa b f = 5.4536 κ = 350 kPa

The governing equations of motion are set in the reference configuration and are
endowed with Robin boundary conditions:

ρ∂ttd−∇ ·P = ρb in Ω0 × (0,T ),
Pν +αRd = d0 on Γ0 × (0,T ),

(6.2)

where b is a body force per unit mass, ν is the unit normal vector to the cell on Γ0,
d0 is a prescribed boundary load, αR is a Robin coefficient, ρ is the referential mass
density, and the (first Piola-Kirchhoff) stress tensor associated to (6.1) is specified
as

P = aexp(b[I1 −3])J−2/3
(

F− I1

3
F−T

)
+2a f (I4, f −1)exp(b f [I4, f −1]2)J−2/3

(
Ff0 ⊗ f0 − I1

3
F−T

)
+
κ
2

(
J2 − J + lnJ

)
F−T .
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W
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Fig. 6.1. Fitting of the transversely isotropic strain energy (6.1) with respect to the poly-
nomial energy function proposed in [61]. Here W1 = a

2b [exp(b[I1 − 3]) − 1] and W4, f =
a f

2b f

[
exp(b f [I4, f −1]2)−1

]
. The obtained parameters are displayed in Table 6.1
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6.3 Intracellular Ionic Dynamics

This section briefly introduces the model equations of the phenomenological car-
diac action potential propagation [6] and of the CICR calcium dynamics [19] for
deformable anisotropic media.

6.3.1 Minimal Model

The four-variable minimal phenomenological model for cardiac action potential
propagation [5] allows us to quantify the key parameters necessary to correctly re-
produce the experimental restitution properties (see also [15]) within minimal levels
of computational requirements. Other effects can be recovered with significantly
more complex ionic models [14]. Using the monodomain description for cardiac
electrophysiology, the model equations are given by:

Cmχm∂tu = ∇ · (D∇u)−χm
(
Jf i + Jso + Jsi

)
in Ω0 × (0,T ),

∂t v = [1−H(u−θv)]v∞− v/τ−v −H(u−θv)v/τ+
v in Ω0 × (0,T ),

∂tw = [1−H(u−θw)](w∞−w)/τ−w −H(u−θw)w/τ+
w in Ω0 × (0,T ),

(6.3)

∂t s =
(
1+ tanh[ks(u−us)]

)
/2τs − s/τs in Ω0 × (0,T ),

(D∇u) ·ν = 0 on Γ0 × (0,T ),

where Cm is the specific membrane capacitance per unit area, χm is the surface-
to-volume ratio of the cell, and D = F−1 diag(D f ,Ds,Dn)F−T is a tensor of tissue
conductivities D f ,Ds,Dn. The ionic density currents are defined as

Jf i = −H(u−θv)(u−θv)(uu −u)
v
τ f i

,

Jso = [1−H(u−θw)]
u−uo

τo
+

H(u−θw)
τso

, Jsi = −H(u−θw)
ws
τsi

,

and refer to a fast inward, Jf i, a slow outward, Jso, and a slow inward, Jsi, flux,
respectively. Other than fixed time constants, the model is equipped by the following
voltage-dependent time constants

τ−v (u) = [1−H(u−θ−
v )]τ−v1 +H(u−θ−

v )τ−v2,

τ−w (u) = τ−w1 +(τ−w2 − τ−w1){tanh(k−w [u−u−w )]+1}/2,

τso(u) = τso1 +(τso2 − τso1){tanh[kso(u−uso)]+1}/2,

τs(u) = [1−H(u−θw)]τs1 +H(u−θw)τs2,

τo(u) = [1−H(u−θo)]τo1 +H(u−θo)τo2 .

Here H(·) is the Heaviside step function; u is the dimensionless membrane potential
rescaled to physical dimensions by using the map Vm = (85.7u−84)mV ; v, w and s
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Table 6.2. Parameters for ionic activity according to the minimal and Goldbeter models (units
are given in ms, cm, mV , mS, μF , g, kΩ−1cm−1)

Minimal model

uo = 0, uu = 1.55, θv = 0.3, θw = 0.13, θ−
v = 0.006, θo = 0.006,

τ+
v = 1.4506, τ−v1 = 20, τ−v2 = 1150, τ−w1 = 120, τ−w2 = 300, τ+

w1 = 120, τ+
w2 = 140,

k−w = 65, u−w = 0.03, k+
w = 5.7, u+

w = 0.15, τ f i = 0.11 τo1 = 400, τo2 = 6,
τso1 = 30.0181, τso2 = 0.9957, kso = 2.0458, uso = 0.65, τs1 = 2.7342, τs2 = 16,
ks = 2.0994, us = 0.9087, τsi = 1.8875, τw∞ = 0.07, w∗

∞ = 0.94,
D f = 1.33417721, Ds = 0.17606, Dn = 0.17606, Cm = 1, χm = 1400

Goldbeter model

α = 0.01, a = 0.496, ν1 = 1.58, ν2 = 16, ν3 = 91, ν4 = 2, ν5 = 1,
k2 = 4, k3 = 0.7481, D f = 60, Ds = 30, Dn = 30

are the three local gating variables, and the asymptotic values are given by

v∞ =
{

1, u < θ−
v

0, u ≥ θ−
v

, w∞ = [1−H(u−θo)]
(

1− u
τw∞

)
+H(u−θo)w∗

∞ .

Model parameters are reported in Table 6.2.

6.3.2 Goldbeter Model

In experiments on skinned isolated ventricular myocytes, or when the sarcolemma
is hyper-permeable to calcium [3,13], spontaneous contractile waves have been ob-
served. These waves are related to slow calcium propagation (∼100 μm/s) driven
by the spontaneous release of calcium from the sarcoplasmic reticulum [60]. While
these waves are not physiological (they do not develop during physiological pac-
ing [6]), their occurrence during normal stimulation can be regarded as pathological
and may give rise to arrhythmic scenarios [62]. The study of intracellular calcium
wave propagation requires a model tuned to recover slow diffusion of [Ca2+], cou-
pled to CICR, from channels sensitive to ryanodine release in the sarcoplasmic retic-
ulum [57]. Here we focus on the following system of partial differential equations
governing simplified CICR dynamics [19]:

∂twc = ∇ · (D∇wc)+K(wc,ws) in Ω0 × (0,T ),
∂tws = L(wc,ws) in Ω0 × (0,T ), (6.4)

(D∇wc) ·ν = 0 on Γ0 × (0,T ),

where wc and ws represent the concentrations of cytosolic and sarcoplasmic calcium,
respectively. Only two calcium species are considered under the assumption that the
level of IP3 (responsible for the increase in the intracellular calcium concentration)
remains constant during external stimulation. Anisotropy of the cell is accounted by
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the form of the diffusion tensor D = JF−1 diag(D f ,Ds,Dn)F−T , where D f ,Ds,Dn

are diffusivities of cytosolic calcium in three orthogonal directions, and the reaction
terms are

K(wc,ws) = ν1 − ν2w2
c

k2 +w2
c

+
ν3w4

cw2
s

(k3 +w2
s )(k4 +w4

c)
−ν4wc,

L(wc,ws) =
ν2w2

c

k2 +w2
c
− ν3w4

cw2
s

(k3 +w2
s )(k4 +w4

c)
−ν5ws,

with ν1 representing an inflow flux plus intracellular calcium pulses originated from
the asynchrony of calcium pools receptors, ν2 and ν3 accounting for low and high
levels of free cytosolic calcium flux pumped from the sarcoplasmic reticulum, and ν4

modeling an efflux of calcium out of the cell following a chemical exchange process
(see also e.g. [61]). Model parameters are displayed in Table 6.2.

6.4 A Mathematical Model for Mechanical Activation

Our description follows the active strain approach [8,38,50], where the deformation
gradient is split into a passive and an active component, F = FPFA, implying that a
passive (say, purely elastic) intermediate configuration exists between the reference
and the deformed one (see Fig. 6.2). Such a multiplicative decomposition of the
deformation gradient is typical in many constitutive theories in finite kinematics
(see e.g. [32,42–44,63]), and it has been shown to yield computational efficiency in
numerical applications.

Fig. 6.2. Schematic representation of the active strain framework leading to the decompo-
sition of the deformation gradient into a pure active and an elastic (passive) factor. Here
Ω0,ΩP,Ωt represent a body in its reference, incompatible intermediate, and deformed con-
figuration, respectively
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The tensor FA represents the intermediate motion and describes the active defor-
mations of the cell. It can be written in the general form

FA = I+ γff0 ⊗ f0 + γss0 ⊗ s0 + γnn0 ⊗n0,

where γf, γs and γn are smooth scalar functions encoding the active shortening of the
cardiomyocytes and their corresponding thickening [25]. If we define CA = FT

AFA,
FP = FF−1

A , CP = F−T
A CF−1

A , JA = detFA, JP = detFP, J = JPJA, then the strain
energy (6.1) can be rewritten in the intermediate configuration ΩP, now in terms of
FP and as a function of the following quantities

I
P
1 := I1 − ∑

l∈{ f ,s,n}

γl(γl +2)
(γl +1)2 Fl0 ·Fl0, I

P
4, f := (1+ γf)−2I4, f ,

ψP
1 :=

a
2

exp(b[IP
1 −3]), ψP

4, f := a f (I
P
4, f −1)exp(b f [I

P
4, f −1]2).

Even if the isolated myocyte is not a closed system in equilibrium, energy dissi-
pation, achieved by means of internal state variables, allows us to derive an evo-
lution law for the mechanical activation field γ f . The multiplicative decomposition
of the deformation gradient suggests that the active deformation gradient tensor can
be regarded as the internal state variable describing mechanical activation [50]. In
practice we consider a free energy ψ additively decomposed as

ψ(FE ,c) = ψ(F,FA,c) = ψP(F)+ψA(F,FA)+ψC(c),

where c is a vector containing all the chemical species involved in the myocyte con-
traction. We suppose that there exists a microstructural stress PA yielding the mi-
crostructural stress power PA : ḞA. The active stress PA is a function of subcellular
chemical quantities encoded in the vector c. By means of the generalized dissipation
inequality, using the Coleman-Noll procedure we obtain(

P− ∂ψP

∂F
− ∂ψA

∂F

)
: Ḟ+

(
PA − ∂ψA

∂FA

)
: ḞA − ∂ψC

∂c
ċ ≥ 0.

The quantity ∂ψA
∂FA

represents the configurational forces associated with FA. This re-
lation holds in particular for

P =
∂ψP

∂F
+
∂ψA

∂F
,

μAḞA = PA(c)− ∂ψA

∂FA
,

0 ≤ ∂ψC

∂c
· ċ.
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We consider an orthotropic stress tensor incorporating an active contribution

P = 2ψP
1 J−2/3

[
(1+ γ f )2F−g(γ f )Ff0 ⊗ f0 − IP

1

3
F−T

]
− κ

2

(
J2 − J + lnJ

)
F−T

+2ψP
4, f

[
1(

1+ γ f
)2 Ff0 ⊗ f0 −

IP
4, f

3
F−T

]
, (6.5)

where g(γf) = γf + γf
γf+2

(1+γf)2 . We consider the activation dynamics to be given as
in [51] by the relation

∂tγf = β−1(PA − [2(1+ γf)I1 +g′(γf)I4, f ]ψP
1 − 2

(1+ γf)3 I4, fψP
4, f

)
in Ω0 × (0,T ),

(6.6)
where PA is fitted from data and β is a function of calcium concentration, provided by
either s from the minimal model, or wc from the Goldbeter model. For more details
we refer to [50, 51].

The final set of equations describing the mechano-chemical coupling in a single
cell are given by the nonlinear elasticity problem (6.2) with ρ = 0 and P as in (6.5),
the activation dynamics (6.6), and the ionic activity governed by either (6.3) or (6.4).

6.5 Discretization and Numerical Examples

The spatial segregation of cell-matrix and cell-cell adhesions to individual myocyte
borders has important effects for the electromechanical coupling within the tissue
as well as for the onset of electrical arrhythmias [33]. Such adhesions consist of lo-
calized boundary conditions anchoring cells and tissues to the extracellular matrix.
From the biomechanical point of view, moreover, these specialized boundaries are
mechanosensitive and can act as tunable constraints locally modifying the stress con-
centration according to the cell function or modulating tissue organization as well.
Recently, cell membrane boundary condition effects on cardiomyopathies have been
experimentally characterized by increased fibrosis and tissue stiffening [1, 18] via a
fine characterization of the interaction between cells and stiff substrates. These com-
plex feedbacks and focal adhesions, moreover, play an important role in the organi-
zation of cytoskeletal scaffolds, stabilizing the mechanical response of the myocyte,
their structure and function as well as their resulting contractile response [9,21,37].

In the following sections we present numerical examples in this direction by com-
paring different boundary conditions and activation processes on a realistic three-
dimensional myocyte geometry. Domain segmentation, mesh generation and FEM
implementation are described.

6.5.1 Geometry Segmentation and Mesh Generation

A three-dimensional computational domain was obtained with image segmentation
tools applied to a canine cardiomyocyte [4] (employing a Zeiss LSM-510 META
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Fig. 6.3. Cell geometry, subdomain partitions and tetrahedral mesh (left), and lateral, aerial,
back and front views of the constructed fibers field (right). In the text we mention “left” and
“right” ends of the cell referring to the endpoints at y = −1.7μm and y = 61.2μm, respec-
tively

confocal microscope). The starting images were in a stress-free/strain-free config-
uration and the cell has approximate dimensions of 15.3μm× 62.9μm× 8μm. An
in-house code based on MATLAB and COMSOL Multiphysics interface was used
to discretize the surface geometry into an initial triangular mesh that merged the set
of confocal cell image slices. Such initial surface mesh exhibits several irregular-
ities (e.g. holes, boundary edges, flipped triangles and poor quality edges) which,
in particular, violate the correct cell shape. These issues were solved using Mesh-
lab (meshlab.sourceforge.net): we removed self intersecting faces and non-manifold
faces, and we applied several local smoothing and remeshing steps in order to obtain
a well-resolved boundary. Additional mesh optimization (faces regularity and so on)
along with volumetric mesh generation was performed in Gmsh [16]. The final mesh
consists of 77031 tetrahedral elements and 18191 vertices (see Fig. 6.3, left).

A preferred direction field for the mechanical activation within the myocyte (here
denoted with f0) basically corresponds to the sarcomeres orientation (see e.g. [61]).
We generated such a direction field using a general rule-based method detailed in
[50] for fibers and sheets directions in ventricular tissue. The algorithm uses a La-
place-Dirichlet approach. Once boundaries patches on the “top” and “bottom” of
the cell are defined, we solve a diffusion problem imposing homogeneous Dirichlet
conditions on these boundaries. The resulting preferred direction of anisotropy is
oriented according to the direction of diffusion gradient (see Fig. 6.3, right).

6.5.2 Finite Element Approximation

The equations of nonlinear elasticity and the reaction-diffusion systems for ionic ac-
tivity and mechanical activation are discretized in space by P2 and P1, respectively.
The solution of the coupling employs a modular approach, which allows us in par-
ticular to use different time steps for the elasticity and reaction-diffusion solvers.
All other nonlinearities are treated with a nonlinear Richardson method and the time
discretization of the coupled problem is as follows. An operator-splitting scheme is
employed for the solution of the electrophysiology (or alternatively calcium) equa-
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tions. The diffusion part is discretized in time using the implicit Euler method and
the system of equations is solved using the conjugate gradient method with an al-
gebraic multigrid preconditioner using 4 levels computed by smoothed aggregation,
where the pre- and post-smoother at each level is two sweeps of Gauss-Seidel iter-
ation, and at the coarse level we take two sweeps of the conjugate gradient method.
Further details can be found in [50].

Code implementation has been carried out in the framework of the open source
finite element library LifeV (www.lifev.org). All simulations were performed on
four cluster nodes with two Sandy Bridge processors (8 core, 2.2 GHz CPU) each,
representing a total of 64 CPUs using Infiniband QDR 2:1 connectivity (hpc.epfl.ch/
clusters/bellatrix).

6.5.3 Example 1: Single Cell Electromechanics

Under physiological conditions a single myocyte is excited almost instantaneously.
In fact, considering a conduction velocity of about 70 cm/s for the electrical signal,
a cell with an approximate length of 100 μm is fully electrically activated in about
0.1 ms. In this way the subcellular contraction mechanism is initiated almost simul-
taneously in all regions of the cell. These circumstances allow us to test the proposed
activation model on simplified yet significant cases. The monodomain equation de-
scribes the transmembrane potential and therefore cannot be applied in the whole
cell. On the other hand, by the considerations above, there is no need to consider elec-
trical propagation. By solving the ionic model alone, we can extend the calcium-like
variable s in the whole intracellular space allowing the triggering of the mechanical
activation model and cellular contraction. In Fig. 6.4 (left) we recall the evolution
of the minimal model and the calcium-like variables. The gating variable s is used
in the activation model in place of intracellular calcium concentration, not available
in the minimal model. The computed evolution of the active strain is also shown in
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Fig. 6.5. Example 1: Displacement field and deformed domain for times t = 0, 20, 40, 80,
120, 180, 220, 240, 280 ms

Fig. 6.4 (left). Given the specific kinetics of species s, more prolonged with respect
to intracellular calcium concentration, the active strain γ f is able to represent cellular
contraction.

Since pure stress-free boundary conditions do not eliminate possible rigid motion,
we set Robin boundary conditions as in (6.2), with d0 = 0 and αR = 50Pa/m on the
left and right ends of the cell, and we put αR = 10Pa/m elsewhere in Γ0. In this
way the cell shortens symmetrically by about 6% of its resting length as shown in
Fig. 6.5, in accordance with other cellular models [48, 64].

6.5.4 Example 2: Intracellular Calcium Transients

We now turn to the simulation of slow calcium waves inside the cell. Self-sustained
mechano-chemical interactions are initiated by a single cytosolic calcium spark near
the nucleus of the cell (as in e.g. [26,61]). The kinetics of a single point near the cell
center are plotted in Fig. 6.4 (right). We test Robin and Dirichlet boundary con-
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ditions simulating adhesion regions, or alternatively the contact with surrounding
myocytes. In Figs. 6.6 and 6.7 we observe the propagation of wc towards the extrem-
ities of the cell comparing the two sets of boundary conditions: the displacements
are constrained to Robin data on the whole boundary (Fig. 6.7) and fixed to zero the
left end of the cell and stress-free elsewhere (Fig. 6.6). As predicted in our previous
2D tests (see [51]) we here observe cell bending in the first case, whereas for spring

Fig. 6.6. Example 2: Snapshots of the propagation of cytosolic calcium and deformed domain
(left panels) and activation function γ f with displacement vectors (right panels) for times
t = 0.1,0.5,2.0,4.0s (from top to bottom) when the cell is fixed on the left end
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Fig. 6.7. Example 2: Snapshots of the propagation of cytosolic calcium and deformed domain
(left panels) and activation function γ f with displacement vectors (right panels) for times
t = 0.1,0.5,2.0,4.0s (from top to bottom) for pure Robin boundary data

boundary data the contraction patterns are symmetric with respect to the cell center.
Movement with respect to the principal direction f0 and bending are expected in re-
alistic scenarios [9]. Finally we compare our cases with the study reported in [28] in
terms of contractility patterns of the cell ends (see also [31]). Our results (for pure
Robin boundary data) show a reasonable qualitative agreement, considering that the
cell shapes do not coincide (see Fig. 6.8).
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Fig. 6.8. Example 2: Cell contraction dynamics measured by displacements on the left and
right ends of the myocyte (left and right panels, respectively) and comparison with respect to
experimental observations from [28]

6.6 Discussion

The mathematical model formulation of the mechano-chemical coupling in single
cardiomyocytes based on an active strain approach [51] has been analyzed and ex-
tended to realistic three-dimensional geometries. The proposed activation mecha-
nism is consistent with a thermodynamic framework [55] entailing a nonlinear cou-
pling among calcium dynamics and local stretches. The continuum approach adopted
is on the line of recent bio-chemo-mechanical models of single cells [10, 11, 49]
here formulated in terms of active-strain hyperelasticity. The model is capable to
reproduce the propagation of calcium waves and the corresponding spontaneous
contraction interacting within the cell [59], as well as the bending behavior, pe-
culiar features of a three-dimensional structure. A finite element method is used
to discretize the model equations; a set of numerical experiments comparing two-
and three-dimensional reconstructed cardiomyocyte geometries give evidence of the
main features of the model and its ability in predicting calcium propagation pat-
terns and contractility in good agreement with experimental observations. Different
boundary conditions have been analyzed reproducing physiological constraints thus
analyzing the resulting stress patterns.

Limitations to the present study deal in particular with the correct treatment
of boundary conditions in order to obtain physiological displacements of the cell.
For the chemo-mechanic approach here discussed, numerical simulations show that
Robin boundary conditions are better suited to reproduce the experimental obser-
vations even though a finer tuning of the Robin coefficients would be necessary. In
this perspective an effective alternative would consider a level-set approach [31],
in which an Eulerian description of the fluid-structure interaction problem considers
the extracellular fluid interacting with the elastic cell via a fictitious interface. A care-
ful representation of the internal cell anisotropy is equally fundamental due to the
highly nonlinear coupling involved in the problem. In particular, intracellular micro-



172 A. Gizzi et al.

structures, i.e. intercalated discs, should be taken into account for a more accurate
geometric model. However, the lack of specific mechanical properties knowledge
requires the usage of simplified cellular models. Therefore, the mathematical prob-
lem here addressed represents a good compromise in terms of continuum mechanics
theory.

More realistic boundary conditions should be introduced also in terms of ionic
exchanges other than calcium, i.e. Na and K [46]. The specific role of gap junctions
and stretch-activated channel [52], discarded in the present study, can be addressed
extending the numerical simulations to patch of cardiac tissue in a full multiscale
approach characterized by a complete electromechanical coupling [66]. In this per-
spective, a more accurate modeling of the complex intracellular and extracellular cal-
cium dynamics itself (Sodium-Calcium Exchanger and the NCX-NKA system [48])
would be considered for the analysis of rate-dependent effects, i.e. the positive force-
frequency staircase effects [26, 35].

Extending the present formulation upon the discussed limitations would give in-
sights and simulation-based predictions both for physiological [41] and pathological
conditions [65] (failing myocardium conditions). We foresee the application of our
model in describing the intra- and inter-cellular organization and remodeling of the
myocyte structures during contraction [30] and the description of the diastolic cal-
cium homeostasis as well [35]. Besides, our modeling approach can be extended
to nonlocal constitutive laws mimicking micro-structure cellular adaptation to the
external substrate [40]. It is tunable for cell biomechanics measurements tools and
could be used as a framework to design and interpret novel experimental settings. We
finally stress that the present model could be adopted as a building block in view of a
multiscale cardiac model integrating cell, tissue and organ levels. Particular interest
for the role of mechano-electric feedback in vulnerability to electric shocks [34] and
in tissue pinning phenomena associated with arrhythmias [7, 47] is implied.
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On the Assumption of Laminar Flow in
Physiological Flows: Cerebral Aneurysms as an
Illustrative Example

Øyvind Evju and Kent-Andre Mardal

Abstract In physiological fluid flows, except for in the heart and the aorta, the
Reynolds numbers are moderate (below 1000). This is far below the typical point
of transition in pipe flow, which occurs around Reynolds number 2300. Because of
this, laminar flow is commonly assumed in the modelling of these flows, resulting
in computational methods tailored for this flow regime.
This chapter presents a critical review of this assumption, and both clinical and nu-
merical evidence of transitional physiological flows are presented. The pulsatility
and complex geometries in physiological flow are highlighted as the main reasons
for a lower transition point in physiological flows.
Furthermore, we discuss the threshold of transition in a particular case of an
aneurysm with respect to resolution, Reynolds number and non-Newtonian viscosity
modelling.

7.1 Introduction

Most fluid flows in our human body, except for the blood flow in heart and aorta,
are believed to be laminar in healthy individuals. A good reason for this, from an
evolutionary point of view, is that turbulence introduces extra friction and hence
transport is more efficient in the laminar regime than in the turbulent regime. It has
also been shown that laminar flow ensures a healthy mechanotransduction1 in the
vessel walls. On the other hand, various pathologies, like for example atheroscle-
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rosis and aneurysms, involve anatomies causing disturbed flow and possibly even
turbulent flow. The disturbances trigger a downward spiral where the disturbed flow
leads to an unhealthy mechanotransduction causing remodelling of the vasculature
which again worsen the flow disturbances. Recent research has therefore challenged
the assumption of laminar flow in such pathologies and put the focus on the possible
role of transitional or turbulent flow in these pathologies.

Transition to turbulence in steady pipe flow occurs at Reynolds number (Re)
around 2300, while fully developed turbulence is obtained around 4000. The
Reynolds number in large arteries and also elsewhere in our body is usually far
below 2300 and laminar flow is therefore usually assumed. However, both the pul-
satile nature of the flow and deviations from straight pipe geometry might introduce
transition to turbulence at lower Reynolds numbers, as we will demonstrate in this
chapter.

While the laminar regime and in many applications the fully developed turbu-
lent regime are reasonably well understood from both a modelling and numerical
point of view, the transitional regime with occasional turbulence poses additional
challenges. Modelling is difficult in particular, because it is challenging to precisely
predict the onset of the turbulent spots. Instead of modelling the turbulence, one
might increase the resolution in space and time and resolve all scales of the turbu-
lent flow numerically, a technique called direct numerical simulation (DNS). This
approach is feasible only for flows with moderate Reynolds numbers because re-
solving the small structures (Kolmogorov microscales) induces computational costs
scaling as Re3. In addition to the high resolution requirement, it is necessary to em-
ploy schemes that introduce as little dissipation as possible. It may also be necessary
to carefully construct the boundary conditions such that these allow for or induce
small perturbations or unstable modes that may grow into turbulence. In numerical
simulations that do not sufficiently address these requirements, transition is often not
seen even though physical experiments reveal them under similar flow conditions.

This chapter is devoted to a critical review on the assumption of laminar flow in
physiological flow applications and we will use blood flow in cerebral aneurysms
as an illustrating example. We will discuss the consequences of this assumption,
which lowers the requirement on the resolution and validates the use of stabilization
techniques and time discretizations with dissipation. We will also review clinical and
biomechanical findings suggesting that transitional flow is common or at least not
unusual in many pathologies. Finally, we discuss cerebral aneurysms in depth and
show that for some aneurysms transition may occur already for Reynolds number as
low as 300.

7.2 On the Definition of Turbulence

Defining and identifying transitional or turbulent flow in a pulsatile and complex 3D
geometry is a challenging task. For completeness we include a formal definition of
turbulence:
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Turbulent flow is an irregular condition of flow in which the various quanti-
ties show a random variation with time and space coordinates, so that statistically
distinct average values can be discerned.

The above definition was provided in [18] and later Bradshaw adds an impor-
tant observation; namely that turbulence has a wide range of scales. See for ex-
ample [46] for discussions concerning this definition. Following this definition we
consider random fluctuations on a wide range of scales as the defining characteris-
tics of turbulence. Laminar flow on the other hand is characterized as smooth and
deterministic.

Between the regimes of laminar and fully developed turbulent flows there is a
regime with complex flow such as occasional turbulence or spots of turbulence that
is often called the transitional regime. According to White [45, p. 344] most analyses
are devoted to either the fully developed turbulent regime or the laminar regime and
engineers are advised to avoid the transitional regime. While engineers may choose
to avoid this regime, several diseased states may lead to transitional flow and the
unpredictability of transition may even be a factor that worsen the condition, as will
be discussed in the following.

The distinction between laminar, transitional and turbulent flow dates back to
1883 when Osbourne Reynolds observed that the flow condition was governed by
the ratio of inertial forces to viscous forces (the Reynolds number) in stationary pipe
flow. In his famous experiments Reynolds showed that transition to turbulence in
stationary pipe flow occurs at Re=2300 and fully developed turbulence is achieved at
Re=4000. Subsequent experiments have shown that turbulence might be suppressed
until Re=40 000 given sufficiently smooth pipe, inflow and outflow. On the other
hand, the lower limit seems to be about 2000 [31].

Transitional or turbulent flow causes extra friction. For example, in stationary
pipe flow the pressure drop needed to drive the flow under laminar conditions scales
as V , where V is the mean flow, while in transitional or turbulent flow the pressure
drop scales as ≈V 1.75. This was observed by Hagen in 1839. In pipe flow the tran-
sition point is clearly defined as the pressure drop increases from V and V 1.75 and it
occurs around around Reynolds number 2100. The sharpness of the transition point
suggests that the pressure drop might give insight into the precise transition point
and we will therefore also discuss pressure drops in the following.

Pulsatility may both increase and decrease the threshold for transition. In partic-
ular, flow deceleration typically promote transition, while acceleration delay transi-
tion. Concerning flow in straight pipes, it was demonstrated in [40] that transition to
turbulence is highly dependent on the Womersley number. Of particular importance
for physiological flow is the fact that the transitional regime occur early for Womer-
sley numbers between 2–5, numbers that are physiologically reasonable. Alternative
definitions of the Reynolds number that put the focus on the pulsatility was proposed
in this publication.

Probably even more important than the pulsatility is the geometry. For instance,
in Couette flow or flow around cylinders, transition occurs at Re=500 and Re=300,
respectively. For this reason a wide range of other Reynolds numbers has also been
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proposed in the literature, see [31] for an overview, but it remains difficult to employ
these numbers as guidelines for when transition occurs in the complex vasculature of
the body. Still, many works consider the Reynolds number as an important guideline
for whether the flow is laminar or not and justify their laminar assumption by a
Reynolds number calculation.

7.3 Clinical Observations

Clinically, turbulent blood flow has been observed in vivo associated with the heart
valves, the ascending aorta, and in arteriovenous grafts. Audible sounds (20-20 000
Hz) caused by the high frequency pressure fluctuation of turbulence are for some
conditions symptoms of severely disturbed flow. For instance heart murmurs are
associated with turbulence generated by malfunctioning mitral valves or a stenosed
aorta. Arteriovenous grafts sometimes produce audible thrills at frequencies 100-200
Hz caused by vein wall vibration.

Turbulence or transition have received less attention in other pathologies like
atherosclerosis and aneurysms, but there are still significant evidence in the clinical
literature suggesting that it is common or at least not unusual. For example, severe
stenosis in the carotid artery can result in transition to turbulent flow, which may
produce an audible sound (bruit) that physicians can detect. Another manifestation
of turbulence is pulsatile tinnitus, or tinnitus that is synchronous with a person’s
heartbeat, which are audible sounds that is transmitted to the inner ear [15]. This
condition is likely caused by the abnormal blood flow associated with conditions
such as arteriovenous malformations, stenosed carotid arteries, cerebral aneurysms
etc. The topic of pulsatile tinnitus in association with cerebral aneurysms dates back
to 1936 where Bergstrand et.al. [6] demonstrated pulsatile tinnitus in 4 of 22 cases
of intra cranial aneurysms. While their relative high fraction of pulsatile tinnitus per
aneurysms have been challenged in, e.g. Beadles [5], several resent studies report
that pulsatile tinnitus is indeed present and caused by aneurysms [3, 35]. Pulsatile
tinnitus, both subjective (as experienced by the patients) and objective (detected by
the clinician), does however require that the sounds generated by the turbulent or
transitional flow are transmitted either to the patients inner ear or through the the
skull for detection. To improve the sound detection procedure, Ferguson employed
a phonocatheter on the exposed aneurysm during craniotomy and found that 10 out
of 17 aneurysms had bruits of sounds with predominate frequencies in the range of
270 to 660 Hz [10]. This suggests that a significant fraction of aneurysms may have
transitional blood flow.

Clinicians have performed various glass model studies to consider the issue of
turbulence in blood flow. Already in 1958, Stehbens [36] investigated the transi-
tion threshold in idealized bifurcations and S-shaped arteries modelling the carotid
siphon. The critical Reynolds numbers in the bifurcation and the S-shaped geom-
etry were 600 and 900, respectively. In all cases he used stationary inflow condi-
tions. Later, in 1972, Roach et.al. [29] considered bifurcations and bifurcations with
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aneurysms at the apex using glass models and found that turbulence was present in
bifurcations (depending on the angle of the bifurcation) at Re=1200 under steady
conditions and around 800 under pulsatile condition. In aneurysms transition oc-
curred already at Reynolds numbers between 400 and 500, with only a slight differ-
ence between stationary and pulsatile flow.

7.4 Mechanotransduction and the Remodelling of the
Vasculature

The vasculature is an active system that adapt to facilitate a healthy blood flow. In
particular, it seems that the arterial system adapt vessel radius to a flow that on aver-
age has a uniform wall shear stress (WSS) of around 5 Pa [13]. This finding is called
the uniform WSS hypothesis and has been found to apply to most parts of the car-
diovascular systems. Furthermore, bifurcations in most part of the vasculature have
angles and radii that satisfy an optimum principle known as Murray’s law. This law
states that the energy requirements for metabolism and transport are minimized in
blood flow. Murray used this optimum principle to derive a relationship between
angles and radii in bifurcations and this relationship has been validated in various
parts of the cardiovascular in e.g. rats, dogs and humans [32, 48]. This law suggest
that the cardiovascular system is tuned to be cost efficient. However, a notable ex-
ception from this law is the bifurcations associated with the circle of Willis, where
cerebral aneurysms form [1, 20]. Hence, large parts of the vasculature appear to be
constructed for an energy efficient transport of blood throughout the body. More-
over, the vasculature plays an active role and remodel itself to optimize the flow and
maintain a uniform WSS. An example of this process can be found in [19,26]. Here,
the authors surgically closed both of the carotid arteries in a rabbit. The consequence
was an increased flow of about 400% in the basilar artery. Over the course of a week,
the artery grew radially until a baseline WSS was again obtained and the artery re-
mained rather unchanged in the following weeks. Complex geometries like many
bifurcations lead to deviations from the principle of uniform WSS and are particu-
larly prone to e.g. atherosclerosis [23] and aneurysms [1]. These complex geometry
also often cause early transition.

Research on the mechanotransduction, the process where living cells turn me-
chanical stimuli to chemical signals, have firmly established that endothelial cells
(EC), the cells that surface the innermost layer of the blood vessels, play an active
role in the remodelling of blood vessels. Experiments have shown that EC respond
to flow, and in particular that undisturbed flow leads to healthy remodelling, while
disturbed or oscillating flow fail to do so [4, 7]. Turbulent shear stress also substan-
tially increases the endothelial cell turnover when compared to laminar flow with
similar shear [8].

It is however an open question at what time scales the mechanotransduction oc-
cur. The biomechanical signalling of EC involves reaction-diffusion process that are
slow (tens of seconds) compared to the high-frequency fluctuations in blood flow.
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However, recent research suggest that the mechanical signaling can be transmit-
ted more rapidly (within 100 ms) through the cytoskeletal filaments within the EC
layer and allow for rapid transmission over longer distances. Furthermore, there is
evidence that also the medial and adventitial layers are responsive to this mechani-
cal signalling [4]. It is, however, not known precisely how the various vessel layers
remodel themselves and to what extent there are individual variations in the mechan-
otransduction and remodelling.

Finally, turbulent blood flow introduce clot formation. In fact, in [37] they gener-
ated turbulent flow in canine models and it was found that the weight of the throm-
bosis was proportional to the Reynolds number and turbulence intensity.

7.5 Modelling of Blood Flow

Blood is a suspension of blood cells, platelets and plasma and does therefore not nec-
essarily display a Newtonian rheology. A wide range of different models have been
proposed and analysed, see e.g. [30]. For blood flow in larger arteries and aneurysms,
Newtonian models typically capture the main flow quite accurately, for example
maximal WSS, average WSS and area of low WSS correlate strongly (>0.95) be-
tween Newtonian and commonly used non-Newtonian models [9], but may overes-
timate WSS in areas of low shear [47].

In large arteries there is also a pulsatile response in the vessel to the blood flow,
and this fluid-structure interaction has been the subject of many recent publica-
tions [27, 28]. The pressure propagation throughout the vasculature can only be de-
scribed by fluid-structure interaction models, but there is evidence that the main
flow in localized regions can often be modelled by assuming rigid vessels. The main
reason for this is that for localized vessel segments the whole segment deforms in
synchrony [38]. Hence, for modelling of main flow features in large localized arter-
ies it appears that Newtonian modelling with rigid vessels may be adequate under
the assumption of laminar flow, bearing in mind the large flow differences caused
by the geometrical variations between different patients.

The previously mentioned studies that report turbulence, all consider Newtonian
flow within rigid geometries. However, both non-Newtonian viscosity and fluid-
structure interaction may both delay or accelerate transition. From an engineering
point of view, delay of transition has been a hot topic for over 50 years because of
its potential to reduce drag and suppress noise.

Concerning transition and fluid–structure interaction, Kramer [22] demonstrated
already in 1960 that compliant coating, based on the dolphin’s epidermis, may sub-
stantially delay transition. Naturally, this spurred a lot of research activity, which
mostly failed to reproduce the drag reduction demonstrated by Kramer. Now, more
than 50 years after the initial experiments of Kramer, there is little doubt that com-
pliant coating may delay transition, c.f. e.g., [16]. Reynolds numbers for transition
in geometries with compliant coating may exceed corresponding Reynolds numbers
for flow within rigid geometries by more than an order of magnitude. However, it is
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also clear that delaying transition is delicate and that compliance might even intro-
duce instabilities.

An interesting case here is the audible sounds caused by vein wall vibration in
arteriovenous grafts. The vein wall vibration is present in vivo and is believed to
be caused by high frequency pressure fluctuation in the turbulent blood flow occur-
ring already at Reynolds number as low as 500. However, in vitro models and also
numerical simulations have failed to demonstrate turbulent flow in models of arteri-
ovenous grafts at such low Reynolds numbers [34]. In fact, the studies suggest that
the graft geometry and flow pulsatility are not sufficient to explain the transition at
such low Reynolds numbers and it appears that the only likely explanation is either
the non-linear viscosity of blood or the compliance of the vessel walls. In particu-
lar, the high frequency content of the vortical structures appear to be strongly linked
with the natural harmonics of the wall. We also remark that in arteriovenous grafts
there is a strong correlation between vein wall vibration and intimal thickening [11],
suggesting that the veins are able to sense and react to the turbulence although not
in a beneficial manner.

7.6 On the Modelling of Transitional Flow

The process of transition is a difficult topic that has been under intensive research
since Reynolds and Hagen did their famous experiments. Transition occurs because
unstable modes are triggered, starting often as minor perturbations to the flow that
grow either in space, time or both. The Navier-Stokes equations are non-linear and
non-normal and a consequence is that the standard approach of stability analysis
in terms of eigenvalue fail to predict the occurrence of unstable mode leading to
transition. For instance, transition in simple flow problems as Couette and Poiseuille
can not be explained in terms the linear analysis of eigenvalues [41]. Because the
exact mechanism behind transition (or the procedure to calculate the unstable modes)
is not known, it is difficult to model transition using for instance Reynolds averaged
Navier-Stokes equations for transition even though they often are powerful tools for
fully developed turbulence.

For flow problems such as physiological flow applications where the Reynolds
number is moderate, it is usually not possible to predict whether transition will occur
or not. The only feasible approach seems to be to perform a DNS. This is, however,
challenging for at least three reasons: 1) special care needs to be taken to construct
discretization schemes to avoid dissipation, 2) the resolution needs to be extremely
high compared to corresponding laminar simulations, and 3) boundary conditions
needs to be chosen such that instabilities are allowed.

This is in sharp contrast to simulations where laminar flow is assumed and where
most simulations, at least for aneurysms studies, employ first order schemes with
built-in dissipation that avoid stability issues [44]. Here, the justification for these
schemes is that laminar flow is assumed. Moreover, as [44] points out, convergence
studies are not always reported or are performed in a poor fashion. It is therefore
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difficult to determine whether transition would occur at a higher resolution in these
studies. A recent benchmark study [39], where 25 research groups performed CFD
analysis in a prescribed geometry of a cerebral aneurysm with a proximal steno-
sis given boundary conditions, reveals that the flow varied remarkably inside the
aneurysms among the results of the different research groups. There was a clear ten-
dency that simulations with research codes on high resolutions demonstrated flow
instabilities to a greater extent than low resolution simulations performed with com-
mercial codes.

Concerning the resolution of the discretization, the requirement of a DNS is that
the so-called Kolmogorov scales are resolved. Determining the Kolmogorov scale is
challenging from a numerical point of view as it needs to be estimated based on the
simulation results, and grid independence of local quantities needs to be established.
However, as pointed out in [2], performing DNS studies that concern blood flow is
particularly challenging as the Kolmogorov length scale may be on the same scale as
the red blood cells and thus it is on the scale where the continuum hypothesis breaks
down.

Still, several attempts of DNS studies in carotid arteries [24], arteriovenous grafts
[25], cerebral aneurysms [42] have been performed, albeit at a much coarser resolu-
tion than the estimates provided in [2]. These simulations report cycle-to-cycle vari-
ations on a wide range of scales, e.g., temporal fluctuations in the range of 100–1000
Hz. An important observation is that instabilities seems to be caused by geometry
rather than the pulsatility and therefore that stationary inflow/outflow conditions can
be used to detect possible transition effects and for grid-independence studies, c.f.
e.g. [24, 43, 44]. This is because the pulsatility is relatively slow as compared with
the velocities in the sense that the number of flow-throughs per cycle is sufficiently
high. However, it has been pointed out that transition most often occurs in the de-
celeration phase [42]. Simulations with constant flow can therefore be assumed to
predict a higher critical Reynolds number, than a similar simulation with pulsatile
flow.

7.7 An Illustrating Example: Transition in a Cerebral Aneurysm

To investigate the threshold to transition, we consider an aneurysms from a canine
model [21]. The aneurysm, although artificially produced, is a prototype for human
aneurysms created by a technique often used in clinical trials. The aneurysm is shown
in Fig. 7.1.

The aneurysm model was meshed with 3,275,000 tetrahedra, with a coarser mesh
at the distal parts of the geometry. This corresponds to approximately 25-50 cells
across the parent artery diameter and 120–150 cells across the diameter of the aneu-
rysm, with an average edge length of 0.137mm. This is not claimed to be fully con-
verged, as Fig. 7.2 illustrates, but it is in the upper range of resolutions used in CFD
studies within the field. However, to capture any high-frequency flow effects, the
time step was set to 7.5e–6s, several orders of magnitude below what is typically
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Fig. 7.1. The canine aneurysm that is used in our computations. The dark slice is used to
display the flow field, the red dot denoted by a P shows the point used in our analysis of the
turbulent characteristics, and the balls A, B1 and B2 are used to calculate the pressure drop
over the aneurysm (Δ p := p̄A − p̄B1+p̄B2

2 )

Fig. 7.2. The figure shows the velocity magnitude in a slice through the aneurysm at Reynolds
numbers 1000 at various resolutions
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employed. Blood was modelled with a density of 1056 kg/m3 and a Newtonian vis-
cosity of 3.45 mPa s.

Dirichlet boundary conditions were set for the velocity, with no-slip conditions at
the walls, and paraboloid-shaped inflows and outflows, with the flow rate distributed
evenly between the two outflows. For the pressure, natural boundary conditions were
used, and the resulting pressure was normalized around zero.

As was demonstrated in [12, 24], the transition to turbulence in larger arteries is
predominantly governed by the geometry rather than the relatively slow pul- satility
that merely turns the turbulence on and off. That is, given the relatively long cardiac
cycle (> 10 flow-throughs in a typical model), it is preferable to consider the ques-
tion of turbulence under static conditions, which is done in the following. Notice,
however, that while the boundary conditions are static, as the Reynolds number in-
crease, the flow inside the aneurysm and surrounding will not be stationary. In fact,
as was demonstrate in [43], we might expect high frequency fluctuations (>100 Hz)
already at Reynolds numbers around 200–300.

The Navier-Stokes equations were solved with a finite element incremental pres-
sure correction scheme, following the idea of [14]. The scheme applies a Crank-
Nicolson method for the time stepping and a linear handling of the convection term
as introduced by [33], making the tentative velocity step second order in both time
and space. This scheme is chosen because it preserves the exact same stability prop-
erties as Navier-Stokes and hence does not introduce additional dissipation in the
flow. The scheme reads as:

At t = tn+1 := (n + 1)Δ t with the solution (uk, pk) := (u(tk), p(tk)) known for
k = 0, . . . ,n, kinematic viscosity ν , and density ρ , do

1. Solve a reaction-diffusion-advection equation for a tentative velocity, ũn+1:

1
Δ t

(
ũn+1 −un)−∇ ·ν∇ũn+α +u∗ ·∇ũn+α +∇pn−1 = 0,

where

ũn+α = α ũn+1 +(1−α)un (α = 1
2 for Crank-Nicolson),

u∗ =
3
2

un − 1
2

un−1.

2. Solve a Poisson equation for the pressure, pn+1:

Δ pn+1 = Δ pn +
ρ
Δ t

∇ · ũn+1.

3. Update for the correct velocity, un+1:

un+1 = ũn+1 − Δ t
ρ
∇

(
pn+1 − pn) .

4. Increment (n ← n+1) and repeat.
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The scheme was implemented in the open source software package FEniCS2, and
is available through the open source CFD package cbc.flow3. Linear elements were
used for both velocity and pressure.

We first ran simulations at a coarser time resolution to obtain steady state so-
lutions to be used as initial condition for our main simulations with 0.2 to 6 flow-
throughs depending on the Reynolds number. We then disregarded the first 5000
time steps of our main simulations to allow for the finer time scales to reach a quasi-
steady state.

To analyse the turbulent characteristics of the flow over time, we analyse the
power spectral density (PSD) of the velocity magnitude in a point of the interior
of the aneurysm sac, as shown in Fig. 7.1. The PSD for a discrete time-signal is as
follows. Let

Sxx(ω) =
(Δ t)2

T

∣∣∣∣∣ N

∑
n=1

xne−iωn

∣∣∣∣∣
2

,

where ω is the frequency, Δ t is the time step, T is the time interval, N is the number
of samples and xn denotes the sample at t = nΔ t. Since the velocity magnitude is
real-valued, the PSD is symmetric, i.e. S‖u‖‖u‖(ω) = S‖u‖‖u‖(−ω). We therefore
define PSD‖u‖ as

PSD‖u‖(ω) := 2S‖u‖‖u‖(ω), ω > 0.

This is related to the sample variance of ‖u‖ with the relation

σ2 =
∫ ∞

0
PSD‖u‖(ω) dω .

Thus, PSD‖u‖ can provide information about which frequencies are required to re-
solve, in our case, the pointwise velocity magnitude. In the following, we report
ω0.95 as the approximate frequency that is required to capture 95% of the variance,
that is, ∫ ω0.95

0
PSD‖u‖(ω) dω = 0.95σ2.

Given our time stepping, we are limited by the Nyquist frequency of 1
2Δ t ≈

66667 Hz. The number of bins in the discrete Fourier transform are given by T 1
2Δ t =

20000, and the bin size is thus 3.33 Hz.
The PSD analysis seen in Fig. 7.3 revealed a significant change in the frequencies

of the flow between Re=250 and Re=500. When Re<250, ω0.95 is less than 60 Hz,
but this jumps to 313 Hz at Re=500 and further to 923 Hz and 2046 Hz at Re=1000
and Re=2000, respectively. To capture any flow effects at these frequencies, the
resolution requirements are minimum twice the reported frequency. However, this is
no guarantee for the correct flow effects at these frequencies. It should also be noted
that when considering pulsatile flows, the frequencies present in the flow are likely

2 http://fenicsproject.org
3 https://bitbucket.org/simula_cbc/cbcflow
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Fig. 7.3. The figure shows the power spectrum of a point in the aneurysm at different
Reynolds numbers

significantly higher, due to the deceleration phase of the flow at late systole/early
diastole.

Considering the slice views in Fig. 7.4, the pattern is clearly seen of the increasing
complexity in the flow from Re = 250 and upwards. Worth noting is also the flow
field in the parent artery, which appears laminar as expected.

While blood displays non-Newtonian rheology, in many CFD studies the shear
rates are assumed adequately high to assume a Newtonian behaviour. While this
assumption is often adequate [9], its effect on the transition of flow has not been
studied. To address this, we employ a Modified Cross viscosity presented in Fig. 7.5.
The model parameters are fitted to viscometer data [30], and the computation was
done explicitly. We re-ran simulations at the flow rates corresponding to Re=250 and
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5mm

5mm 5mm

Fig. 7.4. The figure shows the velocity magnitude in a slice through the aneurysm at different
Reynolds numbers

Re=500 in the Newtonian case. Since the flow rates are equal, but the viscosity is
not, the actual Reynolds number is somewhat lower for the non-Newtonian case. The
Reynolds number will be similar to the Newtonian case in the parent artery, where
the shear rate is high, but will change in the parts of the geometry where the shear
rate drops. On average, the Modified Cross model predicted 20% higher viscosity
compared to the Newtonian case.

The resulting PSD can be seen in Fig. 7.6, with slice-views of the flow in Fig. 7.7.
Keeping in mind the effects on the Reynolds number, it would appear that the non-
Newtonian viscosity model delays the transition of the flow significantly.

In pipe flow the transition to turbulence is clearly identified by a marked change
in the pressure drop relation to velocity. The pressure drop increases linearly as the
velocity (or Reynolds number) increase in laminar flow, but has a sharp point of tran-
sition that occur around Re=2000 after which the pressure drop grows like ≈V 1.75,
see e.g. Fig. 6.4 in [45]. In Fig. 7.8, we show the pressure drop as a function of the
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Fig. 7.5. The two viscosity models used. The Modified Cross model is given by μ−μ∞
μ0−μ∞ =

1
(1+(lγ̇)m)a with l = 3.736s, m = 2.406, a = 0.254, μ0 = 0.056Pas, μ∞ = 0.00345Pas. Note
that the Modified Cross approaches the Newtonian model used as γ̇ → ∞

Fig. 7.6. The figure shows the PSD‖u‖ Reynolds numbers 250 and 500 with a Newtonian and
non-Newtonian viscosity model

Reynolds number in the parent vessel. For Reynolds number between 0 and 200, the
pressure drop demonstrate a linear dependency to the Reynolds number. However,
already at Re=200 deviations start to occur, also with notable variations over time.
The transition point is, however, not as easily identified as in stationary pipe flow.
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Fig. 7.7. The figure shows the velocity magnitude of the flow for simulations with a non-
Newtonian viscosity compared to simulations with a Newtonian viscosity

Fig. 7.8. The figure shows the pressure drop over the aneurysm as a function of the Reynolds
number. Clearly, the pressure drop demonstrate a close to linear relation with respect to the
Reynolds number for low numbers, but already at around Reynolds number 200 deviations
from the linear relation occur and the pressure drop is no longer static in time

7.8 Discussion

This chapter mainly discuss aspects of cerebral aneurysms and aim to illustrate that
transition to turbulence might be an important factor for some aneurysms. We mod-
elled a canine aneurysm model, under steady in- and outflow conditions, and transi-
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tion occurred already at Reynolds number around 200–500. It remains to be inves-
tigated whether transition is important in vivo and whether it is linked to rupture.

Aneurysms have strong geometrical variation. A recent publication [43] found
transition in 5 of 12 middle cerebral artery aneurysms at comparable Reynolds num-
bers (also under stationary conditions). Some clinical research have also reported
signs of transition. For instance, Ferguson found that 10 out of 17 aneurysms had
bruits of sounds with predominate frequencies in the range of 270 to 660 Hz [10]
and suggested that the sounds were generated by transitional or turbulent flow in-
side the aneurysm. Other studies such as [3, 6, 35] suggest that pulsatile tinnitus
sometimes is caused by transition to turbulent flow inside aneurysms.

There are many factors that may both promote and delay transition. In addition
to the geometry, both flow pulsatility, non-Newtonian rheology, and fluid–structure
interaction between blood and vessels may significantly both decrease and increase
the threshold for transition. Furthermore, these factors may even promote transition
in some aneurysm and delay transition in others. In this paper, we have demonstrated
that a non-Newtonian model (Modified Cross) delayed transition in one particular
aneurysm. It is not clear whether this applies to other aneurysm or non-Newtonian
models.

Many other conditions related to abnormal blood flow, such as stenosed carotid
arteries, aortic aneurysms, arteriovenous malformation share the characteristics of
Reynolds number significantly less than 2000, but involve flow in highly complex
geometry that might significantly reduce the threshold of transition. Furthermore,
audible sounds are often indicative of the severity of the conditions. It therefore
seems that transitional or turbulent flow may be associated with many cardiovascular
conditions and this observation suggest that an increased focus on transition in the
computational modelling community might be needed.

The flow of cerebrospinal fluid flow that surrounding the central nervous system
is in many respect similar to cardiovascular flow. Rough calculations of the Reynolds
number suggest that it is around 200 in healthy flow, but several conditions are as-
sociated with hyper-kinetic flow. Clinicians often report turbulence in normal pres-
sure hydrocephalus, a form of dementia. A recent publication [17] shows that the
cerebrospinal fluid flow is on the threshold to transition in a patient with the Chiari
malformation – a condition where the lower part of the brain is herniated through
the skull and obstruct the pulsatile flow between the neck and skull. Hence, tran-
sition may also be an issue for conditions associated with abnormal cerebrospinal
fluid flow.

Detecting transitional or turbulent flow by performing numerical simulations are
challenging because the mechanism behind transition is only partly understood. De-
laying or removing transition in numerical simulations are easily done by for exam-
ple employing stabilizing schemes or using too coarse resolution. However, clinical
evidence over a wide range of applications suggest that flow instabilities, transition
and turbulence might be important in several conditions. Finally, the fluid-structure
interaction between the flow and surrounding tissue and the non-linear viscosity of
blood might both stabilize and de-stabilize the flow depending on the circumstances.
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Hence, at this point, it seem that there are many open questions and unresolved issues
concerning transitional flow in several important diseases.

7.9 Conclusions

Some evidence in the clinical literature suggest that conditions such as for exam-
ple cerebral aneurysms may sometimes cause transition to turbulence. Still, this is-
sue has largely been neglected in the biomechanical modelling and numerical sim-
ulations. The current chapter present simulations that demonstrate that transition
may occur already at Reynolds number of the order of 300–500 in a typical canine
model aneurysm. Aneurysm geometry, flow pulsatility, non-Newtonian rheology,
and fluid–structure interaction may both promote and delay transition and it is there-
fore unclear how important transition is in vivo.
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Effects of Poroelasticity on Fluid-Structure
Interaction in Arteries: a Computational
Sensitivity Study

Martina Bukac, Ivan Yotov, Rana Zakerzadeh and Paolo Zunino

Abstract We model blood flow in arteries as an incompressible Newtonian fluid con-
fined by a poroelastic wall. The blood and the artery are coupled at multiple levels.
Fluid forces affect the deformation of the artery. In turn, the mechanical deformation
of the wall influences both blood flow and transmural plasma filtration. We analyze
these phenomena using a two layer model for the artery, where the inner layers (the
endothelium and the intima) behave as a thin membrane modeled as a linearly elas-
tic Koiter shell, while the outer part of the artery (accounting for the media and the
adventitia) is described by the Biot model. We assume that the membrane can trans-
duce displacements and stresses to the artery and it is permeable to flow.
We develop a numerical scheme based on the finite element method to approximate
this problem. Particular attention must be addressed to the discrete enforcement of
the interface conditions. Because of poroelasticity, the interaction of the fluid and
the structure at the interface is more complicated than in the case of a standard fluid-
structure interaction problem. Among different possible strategies to address this
task, we consider the weak enforcement of interface conditions based on Nitsche’s
type mortaring, which is easily adapted to this particular problem and it guarantees
stability.
The ultimate objective of this work is to use the available solver to investigate the
effect of poroelastic coupling on the behavior of fluid-stucture interaction for large
arteries. In particular, we are interested to qualitatively characterize how the presence
of intramural flow coupled to the arterial wall deformation affects the displacement
field as well as the propagation of pressure waves.
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8.1 Introduction

The material properties of arteries have been widely studied [1,6,14,18,22,32,36].
Pseudo-elastic [18, 37], viscoelastic [1, 6, 14] and nonlinear material models repre-
sent well known examples. Poroelastic phenomena are interesting in different appli-
cations where soft biological tissues are involved. We mention for example cerebro-
spinal flow [25], which also involves fluid-structure interaction (FSI), the study of
hysteresis effects observed in the myocardial tissue [20,21], as well as the modeling
of lungs as a continuum material [31]. Poroelasticity becomes particularly interest-
ing when looking at the coupling of flow with mass transport. This is a significant
potential application, since mass transport provides nourishment, removes wastes,
affects pathologies and allows to deliver drugs to arteries [29]. Besides biological
applications, this model can also be used in numerous other applications: geome-
chanics, ground-surface water flow, reservoir compaction and surface subsidence,
seabed-wave interaction problem, etc.

To our knowledge, only a few of these constitutive models for the arterial wall
have been deeply analyzed in the time dependent domain, when coupled with the pul-
sation induced by heartbeat. The coupling between a fluid and a single layer poroe-
lastic structure has been previously studied in [4, 28, 33, 35]. In particular, the work
in [4] is based on the modeling and a numerical solution of the interaction between
an incompressible, Newtonian fluid, described using the Navier Stokes equations,
and a poroelastic structure modeled as a Biot system. The problem was solved using
both a monolithic and a partitioned approach.

With respect to the previous studies, an innovative aspect of the proposed in-
vestigation, is to represent the artery as a multilayered structure. While there exist
many complex and detailed models for mutilayered structures in different applica-
tions [7, 15, 23, 34], the dynamic interaction between the fluid and a multilayered
structure remains an area of active research. To our knowledge, the only theoretical
result was presented in [27], where the authors proved existence of a solution to a
fluid-two-layered-structure interaction problem, in which one layer is modeled as a
thin (visco)elastic shell and the other layer as a linearly elastic structure.

In this work, we propose a model that captures interaction between a fluid and a
multilayered structure, which consists of a thin elastic layer and a thick poroelastic
layer. We assume that the thin layer represents a homogenized combination of the
endothelium, tunica intima, and internal elastic lamina, while the thick layer repre-
sents the tunica media. The thin elastic layer is modeled using the linearly elastic
Koiter membrane model, while the poroelastic medium is modeled using the Biot
equations. The Biot system consists of an elastic skeleton and connecting pores filled
with fluid. We assume that the elastic skeleton is homogeneous and isotropic, while
the fluid in the pores is modeled using the Darcy equations. The Biot system is cou-
pled to the fluid and the elastic membrane via the kinematic (no-slip and conserva-
tion of mass) and dynamic (conservation of momentum) boundary conditions. More
precisely, we assume that the elastic membrane can not store fluid, but allows the
flow through it in the normal direction. In the tangential direction, we prescribe the
no-slip boundary condition. This assumption is reasonable in blood flow modeling,
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since it has been shown in [24] that predominant direction of intimal transport is the
radial direction normal to the endothelial surface, for all ranges of relative intimal
thickness.

A similar problem setting is addressed in [10], where we propose and thoroughly
analyze the approximation properties of an operator splitting method aiming at de-
coupling the solution of the governing equation at every time step. Here, we consider
an alternative strategy to come up with a loosely coupled FSI algorithm. It is based
on the weak enforcement of interface conditions by means of Nitsche’s type mortar-
ing combined with the introduction of suitable stabilization operators, as originally
proposed for a more standard FSI problem in [11].

The objective of this work is to use the latter computational model to investi-
gate the role of poroelastic effects on the characteristic traits of FSI in arteries. In
particular, we aim to determine how much intramural plasma filtration and its dy-
namic coupling with the mechanical stresses within the artery affect arterial wall
deformation when pressure waves are propagated along an arterial segment. To this
purpose, we perform a sensitivity analysis of the model parameters, centred in the
range relevant to cardiovascular applications. More precisely, we use the numerical
scheme applied to a classical FSI benchmark problem, to determine how and why
FSI simulations based on a poroelastic material differ from the more classical case
where a linear elastic constitutive law is adopted. The numerical investigation is also
supported by heuristic considerations arising form appropriate manipulations of the
Biot model.

8.2 Description of the Problem

We are interested in simulating a pressure-driven flow through the deformable chan-
nel with a two-way coupling between the fluid, thin elastic interface, and poroleastic
structure. Without loss of generality, we restrict the model to a two-dimensional
(2D) geometrical model representing a deformable channel. We consider only the
upper half of the fluid domain supplemented by a symmetry condition at the axis of
symmetry, see Fig. 8.1. We consider the flow of an incompressible, viscous fluid in a
two-dimensional channel of reference length L, and reference width 2R. The channel
is bounded by a poroelastic wall, where the lateral boundary of the channel repre-
sents a thin elastic interface between the fluid and poroelastic structure. We assume
that the volume of the thin elastic interface is negligible. Thus, it acts as a membrane
that can not store fluid, but allows the flow through it in the normal direction. We
denote the thickness of the membrane by rm, and the thickness of poroelastic struc-
ture by rp. Thus, the reference fluid and structure domains in our problem are given,
respectively, by

Ω̂ f := {(x,y)| 0 < x < L,0 < y < R},
Ω̂ p := {(x,y)| 0 < x < L,R < y < R+ rp},
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Fig. 8.1. Deformed domains Ω f (t)∪Ω p(t)

and the reference lateral boundary by Γ̂ = {(x,R)| 0 < x < L}. The inlet and outlet
fluid boundaries are defined, respectively, as Γ f

in = {(0,y)| 0 < y < R} and Γ f
out =

{(L,y)| 0 < y < R}.
We model the flow using the Navier-Stokes equations for a viscous, incompress-

ible, Newtonian fluid:

ρ f

(
∂vvv
∂ t

+ vvv ·∇vvv

)
= ∇ ·σσσ f +ggg in Ω f (t)× (0,T ), (8.1)

∇ · vvv = 0 in Ω f (t)× (0,T ), (8.2)

where vvv = (vx,vy) is the fluid velocity, σσσ f = −p f III + 2μ f DDD(vvv) is the fluid stress
tensor, p f is the fluid pressure, ρ f is the fluid density, μ f is the fluid viscosity and
DDD(vvv) = (∇vvv+(∇vvv)τ)/2 is the rate-of-strain tensor. At the inlet and outlet boundary
we prescribe the normal stress:

σσσ f nnn f (0,y, t) = −δ pin(t)nnn f on Γ f
in × (0,T ), (8.3)

σσσ f nnn f (L,y, t) = 0 on Γ f
out × (0,T ), (8.4)

where nnn f is the outward normal unit vector to the fluid boundaries and δ pin(t) is
the pressure increment with respect to the ambient pressure surrounding the artery.
Along the middle line of the channel y = 0 we impose the symmetry conditions:

∂vx

∂y
(x,0, t) = 0, vy(x,0, t) = 0 on (0,L)× (0,T ). (8.5)

The lateral boundary represents a deformable, thin elastic wall, whose dynamics is
modeled by the linearly elastic Koiter membrane model, given in the Lagrangian
formulation by:

ρmrm
∂ 2η̂x

∂ t2 −C2
∂ η̂y

∂ x̂
−C1

∂ 2η̂x

∂ x̂2 = f̂x on Γ̂ × (0,T ), (8.6)

ρmrm
∂ 2η̂y

∂ t2 +C0η̂y +C2
∂ η̂x

∂ x̂
= f̂y on Γ̂ × (0,T ), (8.7)

where η̂ηη(x̂, t) = (η̂x(x̂, t), η̂y(x̂, t)) denotes the axial and radial displacement, f̂ff =
( f̂x, f̂y) is a vector of surface density of the force applied to the membrane, ρm de-
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notes the membrane density and, given the Lamé coefficients for the membrane co-
efficients μm and λm, we define,

C0 = rm
R2

( 2μmλm
λm+2μm

+2μm
)
, C1 = rm

( 2μmλm
λm+2μm

+2μm
)
, C2 = rm

R
2μmλm
λm+2μm

.

The fluid domain is bounded by a deformable porous matrix consisting of a skele-
ton and connecting pores filled with fluid, whose dynamics is described by the Biot
model, which in the Eulerian formulation reads as follows:

ρp
D2UUU
Dt2 −∇ ·σσσ p = 000 in Ω p(t)× (0,T ), (8.8)

κ−1qqq = −∇pp in Ω p(t)× (0,T ), (8.9)

D
Dt

(s0 pp +α∇ ·UUU)+∇ ·qqq = 0 in Ω p(t)× (0,T ), (8.10)

where D
Dt denotes the classical concept of material derivative. The stress tensor of

the poroelastic medium is given by σσσ p = σσσE −α ppIII, where σσσE denotes the elastic-
ity stress tensor. With the assumption that the displacement UUU = (Ux,Uy) of the
skeleton is connected to stress tensor σσσE via the Saint-Venant Kirchhoff elastic
model, we have σσσE(UUU) = 2μpDDD(UUU) + λptr(DDD(UUU))III, where λp and μp denote the
Lamé coefficients for the skeleton, and, with the hypothesis of “small” deforma-
tions, DDD(UUU) = (∇UUU + (∇UUU)T )/2. System (8.8)–(8.10) consists of the momentum
equation for the balance of total forces (8.8), Darcy’s law (8.9), and the storage
equation (8.10) for the fluid mass conservation in the pores of the matrix, where the
flux qqq is the relative velocity of the fluid within the porous structure and pp is the
fluid pressure. The density of saturated porous medium is denoted by ρp, and the hy-
draulic conductivity is denoted by κ . To account for anisotropic transport properties,
κ is in general a symmetric positive definite tensor. For simplicity of notation, but
without loss of generality with respect to the derivation of the numerical scheme,
in what follows we consider it as a scalar quantity. The coefficient s0 > 0 is the
storage coefficient, and the Biot-Willis constant α is the pressure-storage coupling
coefficient. We assume that the poroelastic structure is fixed at the inlet and outlet
boundaries:

UUU(0,y, t) = UUU(L,y, t) = 0 on [R,R+ rp]× (0,T ), (8.11)

that the external structure boundary Γ p
ext is exposed to external ambient pressure

nnnp ·σσσEnnnp = 0 on Γ p
ext × (0,T ), (8.12)

where nnnp is the outward unit normal vector on ∂Ω p, and that the tangential displace-
ment of the exterior boundary is zero:

Ux(x,R+ rp, t) = 0 on Γ p
ext × (0,T ). (8.13)

On the fluid pressure in the porous medium, we impose following boundary condi-
tions:

pp = 0 on Γ p
ext , qqq ·nnnp = 0 on Γ p

in ∪Γ p
out × (0,T ), (8.14)
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whereΓ p
in = {(0,y)| R < y < R+rp} andΓ p

out = {(L,y)| R < y < R+rp} are inlet and
outlet porous medium boundaries, respectively. Initially, the fluid, elastic membrane
and the poroelastic structure are assumed to be at rest, with zero displacement from
the reference configuration

vvv = 0, UUU = 0,
DUUU
Dt

= 0, ηηη = 0,
Dηηη
Dt

= 0, qqq = 0. (8.15)

To deal with the motion of the fluid domain we adopt the Arbitrary Lagrangian-
Eulerian (ALE) approach. We introduce a (arbitrary, invertible, smooth) mapping
At , defined on Ω̂ f , which tracks the domain in time:

At : Ω̂ f →Ω f (t) ⊂ R2, xxx = At(x̂xx) ∈Ω f (t), for x̂xx ∈ Ω̂ f . (8.16)

Since the mapping At is arbitrary, with the only requirement that it matches the
displacement of the structure on Γ (t), we define At as

At(x̂xx) = x̂xx+Ext(η̂ηη(x̂, t)) = x̂xx+Ext(ÛUU(x̂xx, t)|Γ̂ ), ∀x̂xx ∈ Ω̂ f . (8.17)

In order to prescribe the coupling conditions on the physical fluid-structure inter-
face Γ (t), denote by ηηη := η̂ηη ◦ (A −1

t |Γ (t)), the displacement of the membrane in the
physical domain. While the lumen and the poroelastic medium contain fluid, we as-
sume that the elastic membrane is not able to store fluid, but allows the flow through
it in the normal direction. Denote by nnn the outward normal to the fluid domain and
by τττ the tangential unit vector. Since the thin lamina allows the flow through it, the
continuity of normal flux is

vvv ·nnn− Dηηη
Dt

= qqq ·nnn on Γ (t). (8.18)

We prescribe no-slip boundary conditions between the fluid in the lumen and the
elastic membrane in the tangential direction, and between the elastic membrane and
poroelastic medium:

vvv · τττ =
Dηηη
Dt

· τττ, ηηη = UUU on Γ (t). (8.19)

We notice that this condition prevents filtration in the tangential direction. The bal-
ance of normal components of the stress in the fluid phase requires that the following
is satisfied

nnn ·σσσ f nnn = −pp on Γ (t). (8.20)

The conservation of momentum implies balance of contact forces, that is:

σσσ f nnn−σσσ pnnn+ J−1 fff = 000 on Γ (t), (8.21)

where fff := f̂ff ◦ (A −1
t |Γ (t)), and J denotes the Jacobian of the transformation from

Γ (t) to Γ̂ given by

J =

√(
1+

∂ηx

∂x

)2

+
(
∂ηy

∂x

)2

. (8.22)
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8.3 A Qualitative Study of the Poroelastic Effects on FSI

From the inspection of Eqs. (8.8), (8.9), (8.10) we observe that α , κ , s0 are the pa-
rameters that characterize the influence of poroelasticity on the mechanical behavior
of the artery. The purpose of this section is to qualitatively compare the mechanical
properties of the arterial walls when the poroelastic behavior of the arterial wall is
enabled or not. To this purpose, we aim to reformulate the Biot model, namely (8.8),
(8.9), (8.10) using one single equation. As a result, we will be able to compare this
equivalent representation of Biot model with a simple elasticity equation, such as
(8.8). Appropriate considerations will then emerge. To manipulate Biot model such
that it can be represented into one single expression, we multiply (8.8) by the operator
s0D(·)/Dt and we define VVV as the velocity of the arterial wall, namely VVV := DUUU/Dt.
We obtain,

ρps0
D2VVV
Dt2 − s0μp∇ ·DDD(VVV )− s0λp∇(∇ ·VVV )+ s0α

D∇pp

Dt
= 000. (8.23)

Then, we apply the operator α∇ to Eq. (8.10) obtaining,

αs0∇
Dpp

Dt
+α2∇(∇ ·VVV )+α∇(∇ ·qqq) = 000. (8.24)

Finally, in order to account for (8.9) we observe that

∇(∇ ·qqq) = Δqqq+∇×∇×qqq = Δqqq (8.25)

because ∇×∇×qqq = 000 since qqq = −κ∇p and κ is assumed to be a scalar parameter.
Replacing (8.25) and (8.24) into (8.23) and dividing by s0, we obtain the desired
equivalent representation of Biot equation,

ρp
D2VVV
Dt2 −μp∇ ·DDD(VVV )−(

λp +
α2

s0

)
∇(∇ ·VVV ) =

α
s0
Δqqq (8.26)

which can be compared term by term to the following equivalent expression of the
standard elastodynamic equation,

ρp
D2VVV
Dt2 −μ∇ ·DDD(VVV )−λ∇(∇ ·VVV ) = 000, (8.27)

for a material characterized by the same Lamé parameters as the ones used for the
poroelastic model. The comparison of Eqs. (8.26) and (8.27) informs us about the
effects of poroelastic effects on the mechanical behavior of the arterial wall. Two
major considerations emerge:

(i) Poroelasticity introduces an additional forcing term, that is α
s0
Δqqq. Since the

reference elastodynamics Eq. (8.27) preserves the energy of the system, it is clear
that the additional term breaks this equilibrium. It may either positively or negatively
contribute to the energy balance. We also remark that the magnitude of Δqqq is pro-
portional to the hydraulic permeability κ , which appears in (8.9). At this stage, it is
difficult to determine whetherΔqqq does add or subtracts energy to the system, because
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qqq is indeed coupled to the solution of the problem. However, the energy estimate that
will be discussed later on for the discrete scheme, clearly puts into evidence that this
term dissipates energy, at a rate which is directly proportional to κ .

(ii) Poroelasticity affects the natural Lamé parameters of the material. Denoting
with μ∗,λ ∗ the new Lamé constants of (8.26) we easily observe that

μ∗ = μp, λ ∗ =
(
λp +

α2

s0

)
. (8.28)

In other words, poroelasticity only affects the physical behavior that is governed
by the second Lamé constant, λ . Some conclusions are more easily obtained if the
result is interpreted using the Young modulus E and the Poisson ratio ν . We remind
the classical expressions,

E = μ
3λ +2μ
λ +μ

, ν =
λ

2(λ +μ)
,

and that the arterial wall is modeled as a quasi-incompressible material, which means
that λ is usually large. Accordingly, we conclude that: (a) introducing poroelastic-
ity only slightly affects the stiffness of the material, i.e. the Young modulus remains
almost unchanged; (b) the poroelastic effects significantly perturb the original com-
pressibility of the material. Surprisingly, the analysis shows that as long as the pa-
rameter α2/s0 increases, the equivalent Poisson ratio ν∗ approaches the ideally in-
compressible limit 0.5. This behavior can be explained observing that accounting
for poroelasticity corresponds to introducing an incompressible liquid into a porous
deformable structure. As a result, the original compressibility of the material may
naturally decrease.

In the final section of this work, we will support these qualitative conclusions
on the basis of numerical simulations, which will be performed using the numerical
scheme that is introduced and analyzed below.

The analysis of the Biot-Willis constant α deserves additional attention. Admis-
sible values of α span in the interval [0,1]. The case α = 1 corresponds to the full
poroelastic coupling in the Biot equation. Conversely, for α = 0 the displacement
of the structure no longer affects the intramural flow. More precisely, Eq. (8.8) is
decoupled from (8.9) and (8.10). It is thus interesting to analyze the asymptotic be-
havior of the interface conditions for poroelastic FSI coupling approaching the limit
α = 0. From the inspection of Eqs. (8.18)–(8.21), we observe that the system of cou-
pling conditions is almost invariant with respect to α . The presence of α is hidden in
the definition of σσσ p. Anyway, in the limit case α = 0 Eq. (8.21) simply transforms
into

σσσ f nnn−σσσEnnn+ J−1 fff = 000 on Γ (t),

which represents the equilibrium of mechanical and fluid stresses acting on the mem-
brane. The approach we will adopt to enforce these interface conditions into the nu-
merical scheme is fully robust and stable for the entire admissible range of α . This
property enables us to investigate the role of this parameter by means of numerical
simulations.
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8.4 Finite Element Approximation of the Coupled Problem
Using Nitsche’s Type Mortaring for the Interface Conditions

For the sake of simplicity, we develop and analyze the numerical scheme under the
assumption that domains Ω f (t) and Ω p(t) are fixed, namely

Ω f (t) = Ω̂ f , Ω p(t) = Ω̂ p, ∀t ∈ (0,T ).

Although simplified, this problem still retains the main difficulties associated with
the added-mass effect and with the fluid-porous media coupling. Since now all the
variables are defined on the fixed domain, we will drop the hat notation to avoid
cumbersome expressions. For the sake of simplicity, we also restrict the analysis to
the linear case, namely to the Stokes flow model.

To define the weak form of the problem, introduce the appropriate function
spaces:

VVV f = {ϕϕϕ ∈ (H1(Ω f ))2, ϕy|y=0 = 0}, Q f = L2(Ω f ),

VVV p = {ϕϕϕ ∈ (H(div,Ω p))2, ϕϕϕ ·nnnp = 0 on Γ p
in ∪Γ p

out},
Qp = {ψ ∈ H1(Ω p),ψ |∂Ω p\Γ = 0}.
XXX p = {ϕϕϕ ∈ (H1(Ω p))2, ϕϕϕ = 0 on Γ p

in ∪Γ p
out ,ϕx = 0 on Γ p

ext},

and XXXm = (H1
0 (Γ ))2. Finally, we denote with WWW the joint space where the weak

solution and test functions are defined. The weak formulation of the coupled Navier-
Stokes/Koiter/Biot system reads as follows: given t ∈ (0,T ) find (vvv,ηηη,qqq,UUU , p f , pp)
∈WWW ∗ such that for all (ϕϕϕ f ,ζζζ ,rrr,ϕϕϕ p,ψ f ,ψ p) ∈WWW :

∫
Ω f

(
ρ f

∂vvv
∂ t

·ϕϕϕ f d +2μ f DDD(vvv) : DDD(ϕϕϕ f )d − p f∇ ·ϕϕϕ f +ψ f∇ · vvv
)

dxxx

+ρmrm

∫
Γ

(∂ 2η̂x

∂ t2 ζ̂xdx+
∂ 2η̂y

∂ t2 ζ̂y

)
ds

+
∫
Γ

(
C0η̂yζ̂y +C1

∂ η̂x

∂ x̂
∂ ζ̂x

∂ x̂
+C2

∂ η̂x

∂ x̂
ζ̂y −C2

∂ η̂y

∂ x̂
ζ̂x

)
ds

+
∫
Ω p

(
ρp

∂ 2UUU
∂ t2 ϕϕϕ p +σσσE : ∇ϕϕϕ pd −α pp∇ ·ϕϕϕ pd +κ−1qqq · rrr− pp∇ · rrr

+ s0
∂ pp

∂ t
ψ p +α∇ · ∂UUU

∂ t
ψ p +∇ ·qqqψ p

)
dxxx

=
∫
Γ

(
σσσ f nnn ·ϕϕϕ f −σσσ pnnn ·ϕϕϕ p + pprrr ·nnn+ J−1 fff ·ζζζ

)
ds

+
∫ R

0
pin(t)ϕ f

x |x=0dy. (8.29)
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where WWW ∗ is the space of admissible solutions

WWW ∗ = {(ϕϕϕ f ,ζζζ ,rrr,ϕϕϕ p) ∈V f ×V m ×V q ×V p|
ζζζ ·nnn = ϕϕϕ p|Γ ·nnn,ϕϕϕ f |Γ ·nnn =

(
αζζζ + rrr|Γ

)
·nnn,

ϕϕϕ f |Γ · τττ = ζζζ · τττ , ζζζ · τττ = ϕϕϕ p|Γ · τττ}.

We denote by IΓ the interface integral

IΓ =
∫
Γ
(σσσ f nnn ·ϕϕϕ f −σσσ pnnn ·ϕϕϕ p + pprrr ·nnn+ J−1 fff ·ζζζ )ds.

Owing to the interface conditions, we observe that IΓ = 0 if the trial and test functions
are selected in WWW ∗.

Working in this constrained space, it is straightforward to prove the energy esti-
mate corresponding to Eq. (8.29). The main advantage of this problem formulation
is indeed the cancellation of the interface terms, which no longer pose technical dif-
ficulties in the analysis. However, Eq. (8.29) is not prone to directly proceed with the
numerical discretization based on the finite element method. The main drawback at
the discrete level consists in the difficulty to satisfy the constraints on test functions
required by WWW ∗. As a result, for the discrete enforcement of interface conditions we
adopt a different strategy, based on the weak enforcement of such conditions us-
ing penalty operators. This approach, usually called Nitsche’s method when used to
boundary conditions or Nitsche’s mortaring when applied on an internal interface,
will be applied below to enforce Eqs. (8.18)–(8.21) into (8.29). For an introduction to
this technique applied to general boundary and interface conditions we refer to [19],
while this method is applied to FSI in [11].

We denote with V f
h ,Q f

h the finite element spaces for the velocity and pressure
approximation and with Vp

h ,Qp
h the spaces for velocity and pressure approximation

in the porous matrix,Ωp. The discrete spaces for the approximation of displacements
and velocities of the thick structure and the membrane are denoted with Xp

h , Xm
h ,

Ẋp
h ,Ẋm

h . Before addressing the time discretization, we rewrite Eq. (8.8) as a system
of first order equations in time. As a result, for the time discretization we adopt the
Backward Euler scheme for all the equations. We denote with tn the current time
step and with dτ the first order discrete time derivative dτun := τ−1(un −un−1).

According to Eq. (8.29), the bilinear forms for the structure problem, namely the
problem accounting for the deformation of the porous matrix (s, p) and the mem-
brane (m) in the arterial wall are:

as(UUUh,ϕϕϕ p,h) :=
∫
Ω p

(
2μpDDD(UUUh) : DDD(ϕϕϕ p,h)+λp(∇ ·UUUh)(∇ ·ϕϕϕ p,h)

)
dxxx

bs(pp,h,ϕϕϕ p,h) :=α
∫
Ωp

pp,h∇ ·ϕϕϕ p,hdxxx

am(ηηηh,ξξξ h) :=+
∫
Γ

(
C0η̂yζ̂y +C1

∂ η̂x

∂ x̂
∂ ζ̂x

∂ x̂
+C2

∂ η̂x

∂ x̂
ζ̂y −C2

∂ η̂y

∂ x̂
ζ̂x

)
ds.
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The fluid-problem, accounts for the free flow ( f ) and the filtration through the porous
matrix (p). The corresponding bilinear forms are:

a f (vvvh,ϕϕϕ f ,h;uuuh) :=2μ f

∫
Ω f

DDD(vvvh) : DDD(ϕϕϕ f ,h)dxxx

b f (p f ,h,ϕϕϕ f ,h) :=
∫
Ω f

p f ,h∇ ·ϕϕϕ f ,hdxxx

ap(qqqh,rrrh) :=
∫
Ωp

κ−1qqqh · rrrhdxxx

bp(pp,h,rrrh) :=
∫
Ωp

pp,h∇ · rrrhdxxx

cp(pp,h,ψp,h) :=
∫
Ωp

s0dτ pp,hψp,hdxxx.

The application of Nitsche’s type mortaring to (8.18)–(8.21) allows us to rewrite the
interface terms collected in IΓ as follows,

− IΓ (vvvh,qqqh, p f ,h, pp,h,UUUh,ηηηh;ϕϕϕ f ,h,rrrh,ψ f ,h,ψp,h,ϕϕϕ p,h,ξξξ h) =

−
∫
Γ

nnn ·σσσ f ,h(vvvh, p f ,h)nnn
(
ϕϕϕ f ,h − rrrh −ξξξ h

) ·nnn
−

∫
Γ

ttt ·σσσ f ,h(vvvh, p f ,h)nnn(ϕϕϕ f ,h −ξξξ h) · ttt

+
∫
Γ
γ f μ f h−1(vvvh −qqqh −dτηηηh

) ·nnn(
ϕϕϕ f ,h − rrrh −ξξξ h

) ·nnn
+

∫
Γ
γ f μ f h−1(vvvh −dτηηηh

) · ttt (ϕϕϕ f ,h −ξξξ h

) · ttt
+

∫
Γ
γp(μp +λp/2)h−1(ηηηh −UUUh

) · (ξξξ h −ϕϕϕ p,h

)
−

∫
Γ

(
σσσE,h(UUUh)nnn−α pp,hnnn

) · (ξξξ h −ϕϕϕ p,h)

where γ f ,γp > 0 denote penalty parameters that will be suitably chosen. Further-
more, in order to account for the symmetric, incomplete or skew-symmetric variants
of Nitsche’s type mortaring, we introduce the following additional terms

−SςΓ (vvvh,qqqh, p f ,h, pp,h,UUUh,ηηηh;ϕϕϕ f ,h,rrrh,ψ f ,h,ψp,h,ϕϕϕ p,h,ξξξ h) =

−
∫
Γ

nnn ·σσσ f ,h(ςϕϕϕ f ,h,−ψ f ,h)nnn
(
vvvh −qqqh −dτηηηh

) ·nnn
−

∫
Γ

ttt ·σσσ f ,h(ςϕϕϕ f ,h,−ψ f ,h)nnn(vvvh −dτηηηh) · ttt

−
∫
Γ
σσσE,h(ϕϕϕ p,h)nnn ·

(
ηηηn−1

h −UUUn−1
h

)−∫
Γ
αψp,h(dτηηηh −dτUUUh)

which anyway do not violate the consistency of the original scheme because they
vanish if the kinematic constraints are exactly satisfied. The flag ς ∈ {1,0,−1} in
σσσ f ,h(ςϕϕϕ f ,h,−ψ f ,h) determines if we adopt a symmetric, incomplete or skew sym-
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metric formulation for the interface terms coupling the fluid and the membrane. A
similar technique is not applied to σσσE,h(ϕϕϕ p,h), because this part of the operator SςΓ
requires special attention. In particular, the symmetry terms relative to the coupling
between the structure and the membrane are evaluated at the previous time step, i.e.
we use σσσE,h(ϕϕϕ p,h)nnn ·

(
ηηηn−1

h −UUUn−1
h

)
instead of σσσE,h(ϕϕϕ p,h)nnn ·

(
ηηηn

h −UUUn
h

)
, in order

to preserve the energy of the structure. This is shown choosing the test functions
ϕϕϕ p,h = dτUUUn

h, ξξξ h = dτηηηn
h, summing up with respect to n and applying discrete time

integration by parts as follows,

− τ
N

∑
n=1

∫
Γ
σσσE,h(UUUn

h)nnn · (dτηηηn
h −dτUUU

n
h) = τ

N

∑
n=1

∫
Γ
σσσE,h(dτUUUn

h)nnn · (ηηηn−1
h −UUUn−1

h )

+
∫
Γ
σσσE,h(UUU0

h)nnn · (ηηη0
h −UUU0

h)−
∫
Γ
σσσE,h(UUUN

h )nnn · (ηηηN
h −UUUN

h ).

As a result, the interface terms coupling the membrane with the structure preserve
the energy of the elastic structure, because the following identity holds true,

− τ
N

∑
n=1

(∫
Γ
σσσE,h(UUUn

h)nnn · (dτηηηn
h −dτUUU

n
h)+

∫
Γ
σσσE,h(dτUUUn

h)nnn ·
(
ηηηn−1

h −UUUn−1
h

))
=

∫
Γ
σσσE,h(UUU0

h)nnn · (ηηη0
h −UUU0

h)−
∫
Γ
σσσE,h(UUUN

h )nnn · (ηηηN
h −UUUN

h ).

Numerical experiments confirm that this adjustment of the Nitsche’s type mortaring
to the wave equation is essential to ensure the stability of the scheme.

The coupled fluid / solid problem consists to find vvvh, p f ,h,qqqh, pp,h ∈ V f
h ×Q f

h ×
Vp

h ×Qp
h and UUUh,ηηηh,U̇UUh, η̇ηηh ∈ Xp

h ×Xm
h × Ẋp

h × Ẋm
h such that for any ϕϕϕ f ,h,ψ f ,h,rrrh,

ψp,h ∈ V f
h ×Q f

h ×Vp
h ×Qp

h and ϕϕϕ p,h,ξξξ h, ϕ̇ϕϕ p,h, ξ̇ξξ h ∈ Xp
h ×Xm

h × Ẋp
h × Ẋm

h we have

ρp

∫
Ωp

dτU̇UUh ·ϕϕϕ p,h +ρp

∫
Ωp

(
U̇UUh −dτUUUh

) · ϕ̇ϕϕ p,h (8.30)

+ρmrm

∫ L

0
dτ η̇ηηh ·ξξξ h +ρmrm

∫ L

0

(
η̇ηηh −dτηηηh

) · ξ̇ξξ h

+as(UUUh,ϕϕϕ p,h)+am(ηηηh,ξξξ h)−bs(pp,h,ϕϕϕ p,h)+bs(ψp,h,dτUUUh)

+ρ f

∫
Ω f

dτvvvn
h ·ϕϕϕ f ,hdxxx+a f (vvvh,ϕϕϕ f ,h;vvvn−1

h )−b f (p f ,h,ϕϕϕ f ,h)+b f (ψ f ,h,vvvh)

+ap(qqqh,rrrh)−bp(pp,h,rrrh)+bp(ψp,h,qqqh)+ cp(pp,h,ψp,h)

− (IΓ +SςΓ )(vvvh,qqqh, p f ,h, pp,h,UUUh,ηηηh;ϕϕϕ f ,h,rrrh,−ψ f ,h,−ψp,h,ϕϕϕ p,h,ξξξ h)

= −
∫
Γ f

in

pin(t)ϕϕϕ f ,h ·nnn f .
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To address the stability of the scheme, we define the energy of the system as
follows:

(Fluid) En
f ,h :=

1
2
ρ f ||vvvn

h||2L2(Ω f )

(Wall) En
p,h :=

1
2

(
ρp‖U̇UU

n
h‖2

L2(Ωp) +as(UUUn
h,UUU

n
h)+ s0||pn

p,h||2L2(Ωp)

)
(Membrane) En

m,h :=
1
2

(
ρmrm‖η̇ηηn

h‖2
L2(0,L) +am(ηηηn

h,ηηη
n
h)

)
.

Following the lines of [9], we derive the following stability result, where CTI ,
CT , CPF , CK denote the constants related to the standard forms of trace, Poincare-
Friedrichs and Korn inequalities [16, 30] that are used in the proof.

Property 1. For any ε̂ ′f , ε̌ ′f ,ε ′p that satisfy

0 < ε ′p < C−1
TI ,

(
1− (ς +1)

2
ε̂ ′fCT I −

ε̌ ′f
2

C2
TCPFCK

)
> 0

where ς ∈ {−1,0,1} provided that γp ≥ (ε ′p)−1 and γ f > (ς + 1)(ε̂ ′f )−1, there ex-
ist constants 0 < c,cp < 1 and Cp,Cf > 1, uniformly independent from the mesh
characteristic size, such that

EN
f ,h + cpEN

p,h +EN
m,h + cτ

N

∑
n=1

[
2μ f ‖DDD(vvvn

h)‖2
Ω f

+κ−1‖qqqn
h‖2

Ωp

+
τ
2

(
ρ f ‖dτvvvn

h‖2
Ω f

+2μp‖dτDDD(UUUn
h)‖2

Ωp
+Cμmrm‖dτηηηh‖2

Γ + s0‖dτ pp,h‖2
Ωp

+λp‖dτ∇ ·UUUh‖2
Ωp

+ γp(2μp +λp)h−1‖dτηηηn
h −dτUUU

n
h‖2

Γ

)
+μ f h−1(‖(vvvn

h −qqqn
h −dτηηηn

h

) ·nnn‖2
Γ +‖(vvvn

h −dτηηηn
h

) · ttt‖2
Γ
)]

≤ E0
f ,h +CpE0

p,h +E0
m,h +Cp(2μp +λp)h−1‖ηηη0

h −UUU0
h‖2

Γ + τ
N

∑
n=1

Cf

μ f
‖pin(tn)‖2

Γ f
in
.

More precisely, we have

cp < (1− ε ′pCT I)

c < min{(1− (ς +1)
2

ε̂ ′fCTI −
ε̌ ′f
2

C2
TCPFCK

)
,
(
(γ f − (ς +1)(ε ′f )−1)}

Cf > (2ε̌ ′f )
−1

Cp > max{(1+ ε ′pCT I),
1
2

(
γp +(ε ′p)−1)}.

In practice, we will not use the fully coupled scheme to solve the FSI problem.
We adopt a partitioned scheme instead, where structure mechanics, the intramural
filtration and the blood flow problem are solved separately at each time step. In
particular, the following subproblems are solved once at each time step:
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1. given vvvn−1
h , pn−1

f ,h ,qqqn−1
h , pn−1

p,h find UUUh,ηηηh,U̇UUh, η̇ηηh in Ωp such that

ρp

∫
Ωp

(
dτU̇UUh ·ϕϕϕ p,h +

(
U̇UUh −dτUUUh

) · ϕ̇ϕϕ p,h

)
+ρmrm

∫
Γ

(
dτ η̇ηηh ·ξξξ h +

(
η̇ηηh −dτηηηh

) · ξ̇ξξ h

)
+as(UUUh,ϕϕϕ p,h)+am(ηηηh,ξξξ h)+

∫
Ωp

βUUUh ·ϕϕϕ p,h

+
∫
Γ
σσσE,h(UUUh)nnnp ·

(
ξξξ h −ϕϕϕ p,h

)
+

∫
Γ
γp(μp +λp/2)h−1(ηηηh −UUUh

) · (ξξξ h −ϕϕϕ p,h

)
+

∫
Γ
γ f μ f h−1dτηηηh · ttt p ξξξ h · ttt p +

∫
Γ
γ f μ f h−1dτηηηh ·nnnp ξξξ h ·nnnp

=bs(pn−1
p,h ,ϕϕϕ p,h)+

∫
Γ
α pn−1

p,h

(
ξξξ h −ϕϕϕ p,h

) ·nnnp −
∫
Γ
σσσE,h(ϕϕϕ p,h)nnnp ·

(
ηηηn−1

h −UUUn−1
h

)
−

∫
Γ

nnnp ·σσσn−1
f ,h nnnp

(−ξξξ h

) ·nnnp −
∫
Γ

ttt p ·σσσn−1
f ,h nnnp

(−ξξξ h) · ttt p

+
∫
Γ
γ f μ f h−1vvvn−1

h · ttt p ξξξ h · ttt p +
∫
Γ
γ f μ f h−1(vvvn−1

h −qqqn−1
h

) ·nnnp ξξξ h ·nnnp;

2. given vvvn−1
h , pn−1

f ,h and UUUh,ηηηh, find qqqh, pp,h in Ωp such that

ap(qqqh,rrrh)−bp(pp,h,rrrh)+bp(ψp,h,qqqh)+ cp(pp,h,ψp,h)

+s f ,q
(
dτqqqh ·nnnp,rrrh ·nnnp

)
+

∫
Γ
γ f μ f h−1qqqh ·nnnp rrrh ·nnnp

=−bs(ψp,h,dτUUUh)−
∫
Γ
αψp,h

(
dτηηηh −dτUUUh

) ·nnnp

+
∫
Γ
γ f μ f h−1(vvvn−1

h −dτηηηn−1
h

) ·nnnp rrrh ·nnnp +
∫
Γ

nnnp ·σσσn−1
f ,h nnnp rrrh ·nnnp;

3. given qqqh, pp,h,UUUh,ηηηh, find vvvh, p f ,h in Ω f such that

ρ f

∫
Ω f

dτvvvh ·ϕϕϕ f ,hdxxx+a f (vvvh,ϕϕϕ f ,h;vvvn−1
h )−b f (p f ,h,ϕϕϕ f ,h)+b f (ψ f ,h,vvvh)

+s f ,p(dτ p f ,h,ψ f ,h)+ s f ,v
(
dτvvvh ·nnn f ,ϕϕϕ f ,h ·nnn f

)
−

∫
Γ
σσσ f ,h(ςϕϕϕ f ,h,−ψ f ,h)nnn f · vvvh +

∫
Γ
γ f μ f h−1vvvh ·ϕϕϕ f ,h

=
∫
Γ
σσσn−1

f ,h nnn f ·ϕϕϕ f ,h −
∫
Γ

ttt f ·σσσ f ,h(ςϕϕϕ f ,h,−ψ f ,h)nnn f dτηηηh · ttt f

−
∫
Γ

nnn f ·σσσ f ,h(ςϕϕϕ f ,h,−ψ f ,h)nnn f
(
qqqn

h +dτηηηh

) ·nnn f

+
∫
Γ
γ f μ f h−1(qqqh +dτηηηh

) ·nnn f ϕϕϕ f ,h ·nnn f +
∫
Γ
γ f μ f h−1dτηηηh · ttt f ϕϕϕ f ,h · ttt f ;
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4. (optional) When the movement of the fluid domain is taken into account, we
calculate the discrete ALE velocity: given η̇ηηn

h find wwwn
h in Ω f such that

∫
Ω f

∇wwwn
h ·∇zzzh −

∫
∂Ω f

(
(∇wwwn

hnnn f ) · zzzh +(∇zzzhnnn f ) ·wwwn
h

)
+

∫
∂Ω f

γ f h−1wwwn
h · zzzh

= −
∫
Γ
(∇zzzhnnn f ) · η̇ηηn

h +
∫
Γ
γ f h−1η̇ηηn

h · zzzh.

Then, wwwn
h is used to move the points of the fluid domain and in particular the nodes

of the corresponding mesh xxxn = xxxn−1 + τwwwn
h.

The stability of the partitioned algorithm is a very delicate question that has been ad-
dresses by the authors in [9]. In particular we observe that the stability properties are
guaranteed thanks to the introduction of the following stabilization operators. When
the blood flow and the structure problems are decoupled, we introduce a stabilization
term proposed in [12, 13] and acting on the free fluid pressure,

s f ,p(dτ p f ,h,ψ f ,h) := γstab
hτ
γ f μ f

∫
Γ

dτ p f ,hψ f ,h .

According to the analysis performed in [9], when the solution of mechanical and
flow problems into the Biot equation are solved in two separate steps, the following
new stabilization terms are recommended in order to control the increment of vvvh,qqqh
over two subsequent time steps,

s f ,q
(
dτqqqh ·nnn,rrrh ·nnn

)
= γ ′stabγ f μ f

τ
h

∫
Γ

dτqqqh ·nnnrrrh ·nnn ,

s f ,v
(
dτvvvh ·nnn,ϕϕϕ f ,h ·nnn

)
= γ ′stabγ f μ f

τ
h

∫
Γ

dτvvvh ·nnnϕϕϕ f ,h ·nnn .

8.5 Numerical Results and Discussion

In this section we discuss a collection of numerical experiments aiming at clarify-
ing and supporting the qualitative considerations on the role of poroelasticity on
FSI in arteries, addressed in Sect. 8.3. We adopt a classical benchmark problem
used for FSI problems [2, 5, 8, 11, 17], which consists in studying the propagation
of a single pressure wave whose amplitude is comparable to the pressure difference
between systolic and diastolic phases of the heartbeat. In particular, the following
time-dependent inflow pressure profile is prescribed,

pin(t) =
{ pmax

2 (1− cos( 2πt
Tmax

)) if t ≤ Tmax

0 if t > Tmax,
(8.31)

where pmax = 13334 dyne/cm2 and Tmax = 0.003 s. At the outflow, we prescribe
homogeneous (traction-free) Neumann type boundary conditions. To make this test
case represent more closely the behavior of an artery, we also slightly modify the
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governing equation for elastic skeleton as follows,

ρp
D2UUU
Dt2 +βUUU −∇ ·σσσ p = 0.

The additional term βUUU comes from the axially symmetric formulation, account-
ing for the recoil due to the circumferential strain. Namely, it acts like a spring
term, keeping the top and bottom structure displacements connected in 2D, see,
e.g., [3, 5, 26]. The reference values of the parameters used in this study fall within
the range of physiological values for blood flow and are reported in Table 8.1. The
propagation of the pressure wave is analyzed over the time interval [0,0.006] s. The
final time is selected such that the pressure wave barely reaches the outflow section.
In this way, the unphysical reflected waves that may originate at the outflow section
when the pressure wave passes through (because of homogeneous Neumann con-
ditions) do not pollute the considered results. All the forthcoming simulations are
obtained using Stokes flow model and a fixed mesh algorithm. In order to assess the
impact of these simplifications on the conclusions of the work, we have preformed
some additional simulations using Navier-Stokes equations, a deformable fluid com-
putational domain and the physiological parameters of Table 8.1. The results, shown
in Fig. 8.2, confirm that for the considered test case the deformation of the compu-
tational mesh and the inertial effects of the flow do not play a significant role on the
calculated blood flow rate and the arterial wall displacement. As a result, we claim
that the final conclusions of this study are still valid when Navier-Stokes equations
and a deformable fluid mesh are used.

Table 8.1. Geometry, fluid and structure parameters

Parameter Symbol Units Reference value

Radius R (cm) 0.5
Length L (cm) 6
Membrane thickness rm (cm) 0.02
Poroelastic wall thickness rp (cm) 0.1
Membrane density ρm (g/cm3) 1.1
Poroelastic wall density ρp (g/cm3) 1.1
Fluid density ρ f (g/cm3) 1
Dyn. viscosity μ (g/cm s) 0.035
Lamé coeff. μm (dyne/cm2) 1.07×106

Lamé coeff. λm (dyne/cm2) 4.28×106

Lamé coeff. μp (dyne/cm2) 1.07×106

Lamé coeff. λp (dyne/cm2) 4.28×106

Hydraulic conductivity κ (cm3 s/g) 5×10−9

Mass storativity coeff. s0 (cm2/dyne) 5×10−6

Biot-Willis constant α 1
Spring coeff. β (dyne/cm4) 5×107
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Fig. 8.2. A simulation using Stokes flow model and a fixed fluid domain is compared with one
obtained by Navier-Stokes equations and a deformable fluid domain. The top row shows the
displacement of the fluid-wall interface at t = 3.5,5.5 ms (the snapshot t = 1.5 ms is omitted
because we could not observe any significant difference between the two sets of plots). The
bottom row shows the blood flow rate variation along the longitudinal axis, for the same time
snapshots

For the discretization of the blood flow equations we adopt P2 −P1 approxima-
tions for velocity and pressure respectively. This choice ensures inf-sup stability
of the scheme [16, 30]. For simplicity of implementation, the same type of spaces
are used for the intramural filtration and pressure, namely qqqh, pp,h. To facilitate the
exchange of information across the interface and avoid issues with interpolation of
finite element functions, we use conforming computational meshes for the discretiza-
tion of the fluid and solid domains. In addition, we also use P2 finite elements for
the discretization of the structure and membrane displacement fields. These choices
may not be extremely efficient from the computational standpoint, but this aspects
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do not represent an issue for the simple 2-dimensional test case that is considered
here. We remind that the proposed numerical scheme turns out to be stable provided
that several penalty and stabilization parameters are appropriately selected. Accord-
ing to the analysis and the numerical tests discussed in [11] for a similar scheme,
we have used the following values: γ f = γp = 2500, γstab = 1, γ ′stab = 0. Finally, all
the simulations discussed below have been performed using an uniform time step
τ = 10−5 seconds.

8.5.1 Sensitivity of κ

We compare the results obtained using three exponentially increasing values of the
hydraulic conductivity κ = 5×10−9, 5×10−7, 5×10−5, starting from the reference
value of Table 8.1. In Fig. 8.3 (top) we analyze the displacement of the fluid-wall
interface Γ at the intermediate time t = 3.5ms when the peak of the pressure wave
is located almost at the center of the arterial segment. The results show that the
amplitude of the pressure wave inversely depends on the hydraulic conductivity.
For the same test cases, we visualize in Fig. 8.3 (bottom) the evolution in time of the
total energy of the system, precisely,

En
f ,h +En

p,h +En
m,h for n = 1, . . . ,N. (8.32)

The energy plot nicely illustrates the mechanics of this particular example. The initial
increasing trend of the energy is motivated by the incoming pressure wave, which
acts as a forcing term pumping energy into the system. Once the wave has completely
entered the domain, by the time t = 3ms, in absence of dissipation the energy would
reach a constant plateau. The combination of the results shown in Fig. 8.3 clearly
suggests that the hydraulic conductivity is responsible for energy dissipation. From
the theoretical standpoint, this conclusion is supported by the presence of the term

τ
N

∑
n=1

κ−1‖qqqn
h‖2

Ωp
= τ

N

∑
n=1

κ‖∇pn
p,h‖2

Ωp

on the left-hand side of the discrete energy estimate. In conclusion, the intramural
flow activated by the deformations of the wall subtracts mechanical energy from the
artery.

8.5.2 Sensitivity of sss000

We expect that changing s0 corresponds to modifying the second Lamé parameter
characterizing the arterial wall. However, looking at the elasticity Eq. (8.8), it is not
straightforward to determine what is the role of λ on the fluid-structure interaction.
The numerical simulations based on the proposed FSI scheme turn out to be effective
also in this respect. More precisely, we have simplified the discrete scheme (8.30) in
order to model the interaction of a viscous fluid with a purely elastic impermeable
structure. We notice that the resulting scheme is exactly the one proposed in [11].
Using this tool, we have performed a simple sensitivity study of the parameter λ in
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Fig. 8.3. Displacement of the fluid-wall interface for κ = 5× 10−9, 5× 10−7, 5× 10−5 at
t = 3.5 ms (top). Time evolution of the total energy of the system (8.32) for the same values
of κ (bottom)

the linear wave Eq. (8.8). The results reported in Fig. 8.4 (top) suggest that decreas-
ing λ slightly slows down the propagation of the pressure waves. Using this result,
we can then proceed to test the validity of our hypothesis on the effect of s0. To
this purpose, we now use the FSI scheme for the poroelastic model where λ is set
to the reference value of Table 8.1 but the value of the mass storativity is varied as
s0 = 5×10−7, 5×10−6, 10−5. The results shown in Fig. 8.4 (bottom ) completely
agree with the conclusions of Sect. 8.3 and in particular with the formula (8.28).
More precisely, increasing s0 from 5× 10−6 to 10−5 corresponds to decrease λ ∗,
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Fig. 8.4. Displacement of the fluid-wall interface at t = 3.5 ms for λ = 4.28×106 and λ =
4.28× 105 using a purely elastic material model (top). The same quantity is plotted when
using the parameter s0 = 5×10−7, 5×10−6, 10−5 for a poroelastic material (bottom)

which in turn slows down the pressure wave propagation. Conversely, decreasing
the mass storativity corresponds to increase the equivalent second Lamé parameter.
As a result, the pressure wave speeds up.
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8.5.3 Sensitivity of α

Figure 8.5 shows the sensitivity of the solution with respect to the Biot-Willis con-
stant, when it varies in the range [0,1]. Surprisingly, the solution is almost insensi-
tive to α , even in the limit case α = 0 where the displacement and intramural flow
in Biot system, Eqs. (8.8) and (8.9), (8.10) respectively, are uncoupled. This obser-
vation seems to contradict the previous conclusions. How can the FSI dynamics be

Fig. 8.5. Displacement of the fluid-wall interface at t = 3.5 ms for α = 1.0,0.5,0.0. Almost
no influence of the parameter α can be detected (top). The normal component of the intramu-
ral flow qqqh · nnn is displayed along the length of the arterial segment (bottom). Only a modest
influence of α can be detected in the region of maximum flow
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affected by s0 and κ in (8.9), (8.10) and not by the parameter regulating the cou-
pling of these equations with (8.8)? A plausible explanation arises from the analysis
of interface conditions, namely (8.18)–(8.21). Indeed, they provide a secondary way
of coupling blood flow, intramural filtration and arterial displacement. Then, the re-
sults of Fig. 8.5 lead us to conclude that the motion of the artery is barely affected
by the pororelastic coupling per-se. What mostly affects the differences between the
considered model, namely Eqs. (8.8), (8.9), (8.10), and the purely elastic case is the
presence of intramural flow in the wall, coupled with the velocity and displacement
fields through the kinematic conditions enforced at the fluid-structure interface.

8.6 Conclusions

We have investigated the role of poroelasticity on FSI using a computational method
that allows us to simulate the propagation of pressure waves and the related arterial
wall deformation into a straight arterial segment. Owing to the poroelastic material
model, blood flow, intramural plasma filtration and mechaincal deformation of the
wall are coupled. The solution of the corresponding equations by means of a numer-
ical method may become computationally intensive. We have facilitated this task
by developing a loosely coupled algorithm, which allows to independently solve the
equations at each time step. This tool enabled us to perform a sensitivity analysis
of the effects of poroelasticicty on FSI in arteries, guided by the qualitative com-
parison of the governing equations for a poroelastic material with the ones for pure
linear elasticity. The numerical results support and complement the observations
arising from the analysis. These results suggest that accounting for the intramural
plasma filtration significantly affects the arterial wall displacement as well as the
propagation of pressure waves. However, resorting to a poroelastic material model
is not essential to capture these effects. A simpler model based on Darcy equations
combined with appropriate kinematic conditions may be adequate to capture similar
effects.
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Personalized Anatomical Meshing of the Human
Body with Applications

Yuri Vassilevski, Alexander Danilov, Yuri Ivanov, Sergey Simakov and
Timur Gamilov

Abstract The frontier research in computational modeling of human physiology
and medical applications is tightly connected to computational meshing technique.
Meshes of hard and soft tissues, organs and network-like structures such as vessels
network, trachea-bronchial tree and similar ones provide the basis for lots of sim-
ulations. We present two applications and associated numerical models requiring
personalized anatomically correct meshing of the whole human body or its vascular
network.

9.1 Introduction

The frontier research in computational modeling of human physiology and medical
applications is tightly connected to computational meshing technique. Meshes of
hard and soft tissues, organs and network-like structures such as vessels network,
trachea-bronchial tree and similar ones provide the basis for lots of simulations. They
are closely related to a modern virtual physiological human concept [14]. Accuracy
of geometric models plays important role in every biomechanical simulation. One
of the two anatomical data types is commonly assumed: general data from human
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anatomy atlases or individual data of the particular organism. Both data types require
technical work on correct volume extraction, meshing, network skeletonisation etc.

In this paper we present two applications and associated numerical models re-
quiring personalized anatomically correct meshing of the whole human body or its
subsystems.

The first application, numerical simulation of bioelectrical impedance analysis
(BIA) [5–7, 29, 44], requests a 3D meshing technique for hard and soft tissues and
organs of the patient. BIA is generally used for body composition and abdominal
adiposity assessment in clinical medicine, dietology, and sports medicine [12]. It
is also used for body fluids redistribution monitoring under various physiological
conditions.

Many factors affect correct BIA. The measured signal highly depends on elec-
trode position, electric frequency, body constitution and shape. Accurate modeling
of these processes requires adaptive geometric models either individual or the set of
generic models adapted to sex, age, and important morphometry parameters (height,
weight, etc). Computational analysis of the measurement schemes is the essential
part of accurate data interpretation and optimization of electrode positions. Our ap-
proach is based on the direct simulation of electric current propagation through tis-
sues and organs during bioimpedance measurements of a body segment. In this work
we suggest a multi-stage algorithm to produce a personalized anatomically correct
3D mesh of the patient body. The first preliminary stage is performed once for all
simulations: we use Visible Human Project data [40] as input for generation of a
reference segmented model similar to [13]. At the next stages, on the basis of in-
dividual imaging data from CT/MRI we design the piecewise affine transformation
of the reference body to the patient body, in order to produce its segmented geo-
metric model. Finally, we generate the adapted tetrahedral mesh on the basis of the
personalized segmented model.

The second application, network blood flow simulation [1, 10, 18, 19, 24, 30] re-
quires a correct structural scheme (a vascular graph with nodes connected by edges)
of the 3D individual vascular network. Given a 3D vascular domain extracted from
CT/MRI data, one needs an algorithm producing the vascular graph. Two state-
of-the-art software libraries provide tools for such functionality, commercial code
Amira R© [42] and open source code VMTK [41]. We use VMTK for 3D volume
extraction from individual CT/MRI data for the vascular centerlines reconstruction.
The vascular graph is produced from the set of centerlines by a new algorithm pre-
sented in detail in [26]. As a practical example of the personalized hemodynamic
model we present simulations of revascularization procedure for the case of thigh
artery stenting caused by atherosclerotic occlusion.

The proposed approach is described bellow. In Sect. 9.2 we introduce two ex-
amples of models which demand personalized anatomical meshing. In Sect. 9.3 we
present our approach to anatomical meshing of patient body. In Sect. 9.4 we describe
our methodology for automated generation of vascular graphs on the basis of patient
CT/MRI data.
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9.2 Examples of Mathematical Models Requiring Personalized
Anatomical Meshing

Bioelectrical Impedance Analysis (BIA) numerical simulations require anatomically
correct 3D geometrical model of the body including internal structure of organs and
tissues with different electrical properties. As stated in [6], the electrical fields gen-
erated during bioimpedance measurements are governed by the equation

div(C∇U) = 0 in Ω (9.1)

with the boundary conditions

(J,n) = ±I0/S± on Γ± (9.2)

(J,n) = 0 on ∂Ω\Γ± (9.3)

U(x0,y0,z0) = 0 (9.4)

J = C∇U (9.5)

where Ω is the computational domain, ∂Ω is its boundary, Γ± are the electrode con-
tact surfaces, n is the external unit normal vector, U is the complex-valued electric
potential, C is the complex-valued conductivity tensor, J is the current density, I0 is
the electric current, S± are areas of the electrode contacts. Equation (9.1) determines
the distribution of electric field in the domain with heterogeneous conductivity C.
Equation (9.2) sets the constant current density on the electrode contact surfaces.
Equation (9.3) defines the no-flow condition on the domain boundary. Uniqueness
of the solution is guaranteed by Eq. (9.4), where (x0,y0,z0) is some point in the
domain Ω .

Discretization of Eqs. (9.1)–(9.5) is obtained on the basis of the conventional
finite element method with the piecewise linear elements on unstructured tetrahedral
meshes. We use the open source finite element and meshing library Ani3D [39]. Our
approach to personalized tetrahedral meshing is presented in Sect. 9.3. Figure 9.1
represents the simulation results for the conventional four-electrode scheme with a
pairs of electrodes placed on right hand and right leg.

Blood flow in the cardio-vascular network numerical simulations require anatom-
ically correct vessel graph reconstruction. The governing equations of the hemo-
dynamic model describe viscous incompressible fluid flow through the network of
elastic tubes, see [24, 25, 30, 31] and references therein. The flow in every tube is
described by mass and momentum balance as

∂Sk/∂ t +∂ (Skuk)/∂x = 0, (9.6)

∂uk/∂ t +∂
(
u2

k/2+ pk/ρ
)
/∂x = f f r(Sk,uk) , (9.7)

where k is index of the tube, t is the time, x is the distance along the tube, ρ is
the blood density (constant), Sk(t,x) is the cross-section area, uk(t,x) is the linear
velocity averaged over the cross-section, pk(Sk) is the blood pressure, f f r is the
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Fig. 9.1. Cutplane of the potential field (left) and current lines (right) for conventional
bioimpedance measuring scheme

friction force given by

f f r(Sk,uk) = −4πμuk

SkS̃k

(
S̃k + S̃−1

k

)
, (9.8)

where μ is the blood viscosity, S̃k = Sk/S0
k and S0

k is the reference unstressed cross-
section. At the vessels junctions the Poiseuille’s pressure drop and mass conservation
conditions are applied

pk (Sk (t, x̃k))− pl
node (t) = εkRl

kSk (t, x̃k)uk (t, x̃k) ,k = k1,k2, . . . ,kM, (9.9)

∑
k=k1,k2,...,kM

εkSk (t, x̃k)uk (t, x̃k) = 0, (9.10)

where M is the number of the connected tubes, {k1, . . . ,kM} is the range of the in-
dexes of the connected tubes, l is the node index; pl

node(t) is the pressure at the l-th
junction point; εk = 1, x̃k = Lk for incoming tubes, εk = −1, and x̃k = 0 for out-
going tubes, Rl

k is the hydraulic resistance. The set (9.9)–(9.10) is closed by finite
differences approximation of compatibility conditions along outgoing characteris-
tics [25]. The resulting system is reduced from 2M +1 to M equations and is solved
by Newton method separately for each junction point [24,30]. Elasticity of the tube
wall is described by the transmural pressure to cross-section relationship (wall state
equation)

pk(Sk)− p∗k = ρc2
k f (Sk) , (9.11)
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where S-like function f (S) studied in [20] is approximated as

f (Sk) =

{
exp

(
S̃k −1

)−1, S̃k > 1,

ln S̃k, S̃k � 1,
(9.12)

where p∗k is the pressure in the tissues surrounding the vessel, ck is the pulse wave
velocity (PWV) in the unstressed vessel characterizing material stiffness [35]. The
relationship was verified by fiber-spring model of vessel wall elasticity [32, 33].
Equations (9.9)–(9.10) are discretized by a hybrid explicit scheme corresponding
to the most accurate first order monotone scheme and the less oscillating second
order scheme [15, 17].

The main geometric data for the model (9.6)–(9.12) is the vessel network in terms
of 3D graph with given edge lengths, diameters and nodes positions. Our approach
to personalized graph construction and meshing is presented in Sect. 9.4. In the same
section we show an example of the personalized hemodynamic simulation of thigh
vasculature.

9.3 Personalized 3D Meshing of the Human Body

The ideal approach for construction of anatomically correct 3D geometric model is
to produce 3D geometry from individual medical images (CT, MRI or other slice-
like data). This requires strong involvement of human expertise. Moreover, such
data can be unavailable or have low quality due to hardware limitations, human ex-
pert qualification, medical restrictions, etc. The other reasonable approach analysed
below is to fit a reference anatomically correct model. Such reference model should
be based on individual data (in vivo [37] or detailed post mortem examination [40]),
or a conventional database [43]. It should provide correct detailed anatomy without
organs intersection and void regions due to errors in processing, segmentation, and
3D volume reconstruction algorithms. This tedious work, of course, requires human
expert involvement but once the reference model is approved it could be used in
automatic or semi-automatic manner.

9.3.1 Segmentation and Meshing of Reference Models

As input for the reference model we have chosen Visible Human Project (VHP) [40]
data and applied a semi-automatic algorithm implemented by ITK-SNAP software
[38] in order to produce a grid of labeled voxels with resolution 1×1×1 mm. A de-
tailed description of this algorithm can be found in [6].

The voxel-based geometric model of the human body is a building block to
produce the unstructured tetrahedral mesh. The surface mesh can be generated by
marching cubes algorithm for surface reconstruction [36], surface triangulation,
smoothing and coarsening [28, 34]. The volume mesh can be generated using 3D
Delaunay triangulation [9] or advancing front technique [4, 9]. We applied the De-
launay triangulation algorithm from the CGAL-Mesh library [21]. This algorithm
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Fig. 9.2. Segmented whole body model of the Visible Human Man (left) and a part of related
generated mesh (right)

allows one to use specific mesh size definition for each model material. In order to
preserve geometric features of the segmented model while keeping a feasible num-
ber of vertices, we assigned smaller mesh size for the blood vessels and larger mesh
size for the fat and muscle tissues. The resulted mesh contains 32 materials, 574.128
vertices and 3.300.481 tetrahedra (Fig. 9.2). This mesh retains most anatomical fea-
tures of the human male body [7]. Similar model have been developed for the whole
female body model.

The model was finalized by adding skin layer and multi-layered electrodes to the
surface of the mesh. Boundary triangulation was used to create a prismatic mesh on
the surface. Then each prism was split into three tetrahedra resulting in a conformal
mesh. Mesh cosmetics algorithms from Ani3D library [39] were used to improve
mesh quality. This essential step reduces discretization errors and the stiffness of
the resulted system of linear equations.

9.3.2 Segmentation and Meshing of Patient-specific Models

The segmentation process is a tedious work which requires a lot of processing time.
Although existing technologies of semi-automatic segmentation can speed-up the
work, creating a new personalized segmented model from scratch is time consuming
process. In order to construct a patient-specific segmented model, we propose to fit
the anatomically correct reference segmented model by patient anthropometric and
CT/MRI data.

The first step is anthropometric scaling. The reference model can be split into
several parts and adjusted by the height according to the height of the related parts of
the actual patient. In the same way the width is adjusted. This scaling is not sufficient
since the patient may have different body constitution: fat/muscle ratio, pathologies,
anatomical features, etc.

On the second step we propose a transformation of the segmented reference model
using control planes and control points. At first, several control planes are selected
and patient CT/MRI image is fitted to the reference model image in these planes.
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Model fitting in every plane is based on the piecewise affine mapping defined by
the set of control points. The user marks the same set of control points both on the
reference image and on the patient image. Then the reference image is mapped to the
patient image shifting the control points from original positions to the new ones. The
control points may represent anatomical or geometric features of the human body.
We assume here that anatomical structure on the segmented images of the reference
and patient models is the same. The size and the form of the contours (material
boundaries) may be varied using this fitting.

The piecewise affine transformation is constructed on the basis of the Delaunay
triangulation for the control points from the patient image. The same triangulation
with the identical topology is constructed using the corresponding control points in
the reference image. Assuming the latter triangulation is not tangled we can construct
the piecewise affine mapping of each triangle from one mesh to the corresponding
triangle in the second mesh. An example of the transformed segmented image is
presented in Fig. 9.3.

Once the transformations on two parallel control planes are constructed we can
define the transformation on any plane between these planes using linear combina-
tion of these two transformations.

To make the piecewise affine transformation isomorphic, we assume that both
Delaunay meshes are not tangled. If the user specifies the positions of control points
in such a way that the Delaunay mesh tangles, we propose to set auxiliary points.
These points and the control points are used to construct a more flexible Delaunay
mesh. Auxiliary points are placed between user defined control points in order to

Fig. 9.3. Control points mapping. Left: the reference segmented image with control points.
Right: the mapped image with control points
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smooth the mesh deformation. The positions of the auxiliary points are determined
by the variational mesh modification method. The detailed algorithm for such mesh
adaptation is presented in [5]. The number of auxiliary points needed to create a
set of two untangled meshes may vary depending on the positions of control points.
In practice, if the control points movements are small enough, we do not need any
auxiliary points. If the deformation is not very large, the number of auxiliary points
is also not too large.

Once the segmented patient-specific model is ready, one can apply already dis-
cussed automated tetrahedral meshing procedures.

The proposed technique is used to fit reference segmented model for patients
with the same anatomical structure. This process relies on some expert-defined con-
trol points sets. Once the new automated control point detection algorithm is devel-
oped, this mapping technique may be extended automatically. Patients with different
anatomical structure, i.e. with some pathologies, should be treated with other refer-
ence models.

9.4 Personalized Skeletonisation and Meshing of Network
Structures

The algorithm of vessel graph reconstruction is divided into the following steps: 3D
volume segmentation of vascular structure, meshing and centerlines extraction by
VMTK, centerlines merging and graph reconstruction.

We should note that commercial software Amira R© provides about the same func-
tionality. It helps to perform semi-automatic blood vessels segmentation as well as
to produce skeletonisation based on distance map and thinning methods providing
connected set of voxels. After that Euclidean distance to the nearest boundary is
calculated at every point to generate centerlines and spatial vascular graph.

In this work we propose a method which uses open source library VMTK. This
library can be modified and easily extended with new methods. We use VMTK to
produce centerlines of the 3D vascular domain extracted from CT/MRI data and ex-
tend it with the new algorithm for graph reconstruction. To perform vascular domain
extraction, we filter input data and eliminate bones, void regions and surrounding
tissues from the original image by thresholding. The level set method is used for
tracking vascular branches and marching cubes method is used to extract the sur-
face. The result of this preprocessing stage based on patient CT data is presented in
Fig. 9.4.

The spatial vascular graph of the vascular network is described by a set of ver-
tices Ai with radius vectors ai = (xi,yi,zi) and a set of edges given in terms of edge
endpoints, length of the vessel segment and its averaged radius. This representation
can be produced from centerline extraction of the initial 3D vascular domain. Sev-
eral methods of centerline extraction are compared in [8, 16]. We select the method
from VMTK based on Voronoi diagrams [2]. The result of meshing and centerlines
computation is presented in Fig. 9.5.
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a b c d

Fig. 9.4. 3D segmentation based on CT data: vessels with bones (a,b); vessels (c,d)

a b

Fig. 9.5. 3D vascular domain: polygonal surface mesh (a); computed centerlines (b)

9.4.1 Skeletonisation Algorithm

Every centerline extracted with VMTK goes from every chosen inlet to every out-
let. It is described by ordered set of pairs (ai,ri), where ai = (xi,yi,zi) is radius vec-
tor of the central point in the vessel cross section and ri is the mean radius of the
vessel at this point. These centerlines are merged by removing coincided parts and
segmented with junction points. In Fig. 9.6 we demonstrate the set of centerlines
[O,P], [O,Q], [O,R], [O,S] before splitting and the new segmented set [O,P], [O1,Q],
[O2,R], [O3,S].

Centerlines intersection is determined by the following condition. Centerline C′ =
{(a′i,r′i)}n′

i=1 intersects centerline C = {(ai,ri)}n
i=1 if

∃a ∈ {a′1, . . . ,a
′
n′}, ∃k ∈ {1, ..,n−1} : |a−a∗| ≤ rk+0.5(a∗)
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a b c

Fig. 9.6. Centerlines before (a) and after (b) splitting; intersection of centerlines (c)

where a∗ is the projection of a onto [ak,ak+1] and rk+0.5 is obtained by the linear
interpolation between the radii of two neighbours

rk+0.5(a∗) =
{

rk(1−λk+0.5(a∗))+ rk+1λk+0.5(a∗),a∗ ∈ [ak,ak+1]
0,a∗ /∈ [ak,ak+1],

λk+0.5(a∗) =
|a∗ −ak|
|ak+1 −ak| .

We define a∗ as the branching point (Fig. 9.6c).
The algorithm of skeletonisation is initialized by choosing the root centerline.

The other centerlines are checked for the intersection with the root; branching points
are determined for every intersection. After that the algorithm recursively proceeds
through the centerlines intersecting the root taking them subsequently as new roots.
This can produce a graph with loops, but with vertices degree not greater than 3.

In order to avoid generation of branches with extra small length, we define the
minimal branch length valueΔ ∈ [2R(x),4R(x)], where R(x) is the local vessel radius
at centerline point x. Then we merge points for centerlineC = {(ai,ri)}n

i=1 as follows.
If

∃ai, ..,ai+k ∈C :
k−1

∑
j=0

|ai+ j+1 −ai+ j| < Δ ,

and
� ∃ai−1,ai+k+1 : |ai −ai−1| < Δ , |ai+k+1 −ai+k| < Δ ,

then redefine

ai = · · · = ai+k =
k

∑
j=0

ai+ j

k +1
.

The process is illustrated in Fig. 9.7 where only one vertex Pk is added to the set of
graph nodes.

The complexity of the skeletonisation algorithm is O
(
M2N

)
where M is the num-

ber of centerlines, N is the maximal number of points in the centerlines. The PC run
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Fig. 9.7. Points merge due to the minimal branch length

time for the automated skeletonisation is of order of one minute in case of M = 200
and N = 200. The meshing procedure for the vascular graph is trivial since the mesh
nodes are added uniformly on each graph edge.

The skeletonisation and meshing algorithm was tested on the vessel network
given by the vascular 3D geometric model [43]. The resulting core graph for sys-
temic arteries is presented in Fig. 9.8.

Fig. 9.8. The vascular network of arterial part of systemic circulation based on virtual 3D
model [43]
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9.4.2 Application to Occlusion Treatment of the Femoral Artery

We consider the application of the hemodynamic model for thigh vasculature in the
case of the occlusion treatment in femoral artery.

Presurgical patient specific CT data were used to produce vascular graph of the
thigh arterial vasculature with the method discussed above. The arteries and resulting
graph of vessels are presented in Fig. 9.4 and Fig. 9.9, respectively. The geometric
parameters of the vascular network are identified by our skeletonisation algorithm
and correspond to the patient specific morphology.

In this paper we omit the description of boundary conditions at the network inlet
and outlet as well as the description of parameters ck in (9.11) and the hydraulic
resistances Rl

k in (9.9). Presurgical values of ck and Rl
k are fitted to match the available

presurgical Doppler ultrasound measurements at some points of the vascular network
and general values provided by [3, 11, 22, 23]. These issues constitute the body of
another paper [26]. Here we present only geometric parameters identified by the
skeletonisation algorithm (Table 9.1).

Table 9.1. Parameters of the arterial part: lk is length of the kth vessel, dk is diameter of the
kth vessel

k 1 2 3 4 5∗ 5∗∗ 6 7 8 9 10 11 12 13 14

lk, cm 4.63 6.51 14.09 1.0 0.79 0.79 4.11 2.08 8.07 38.75 1.67 4.5 8.17 3.55 12.7

dk, cm 1.25 0.72 0.94 0.93 0.93 0.37 0.45 0.84 0.41 0.61 0.83 0.46 0.63 0.45 0.44
∗ denotes vessel without occlusion, ∗∗ denotes vessel with occlusion

Fig. 9.9. Arterial network of the left thigh
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The occlusion is modeled as a fragment of femoral artery (vessel 5 in Fig. 9.9).
Except for vessel 5 we assume the model parameters lk, dk, ck, Rl

k remain the same
for the postsurgical case since the Reynolds number is not changed significantly in
the most vessels in presurgical and postsurgical simulations. During presurgical sim-
ulations parameters of vessel 5 are modified as follows. The hydraulic resistance is
increased by the factor 3, diameter is decreased by 60% thus providing lumen de-
crease (S0 in (9.11)) by 84%. During postsurgical simulations parameters of vessel 5
were set equal to parameters of the normal femoral region 4 (Fig. 9.9).

We applied the personalized hemodynamic model to predict postsurgical blood
flow through the left thigh arteries without occlusion. Measured peak velocities were
used in this case to check the model output. The column postsurgical in Table 9.2 (for
details see [26]) shows quite good coincidence between these data sets. The maxi-
mum relative error is not greater than 20% that is observed in distal part of superficial
femoral artery. The maximal error is attributable to insufficient CT resolution. Gen-
eral anatomy [27] states that one of the deep femoral artery branches has a connection
with the popliteal artery which provides an alternate pass in the case of femoral artery
occlusion. We failed to observe this connection in patient CT data. Being introduced
to the model, the alternate pass would decrease the peak velocity due to occurrence
of the collateral flow and thus decrease the error.

Table 9.2. Peak blood velocities

Peak blood velocity (cm/s)
presurgical postsurgicalMeasurement points (see Fig. 9.9)

patient model patient model

3 - common femoral art. 148 149 150 155
4 - superficial femoral art. (proximal) 48 54 65 70
12 - deep femoral art. 103 93 69 83
5 – occlusion above 300 340 – 71
7 - superficial femoral art. (distal) – 67 98 86
9 - popliteal art. 52 56 72 72

9.5 Conclusions

In this work we addressed approaches for personalized anatomical meshing of the
patient body or patient vascular network.

For patient-specific body meshing we adopt the four-stage algorithm which relies
on the assumption that the patient has the same structural body composition as the
reference VHP model, i.e. the same set of tissues and organs. First, we apply the
semi-automatic segmentation of the reference VHP images. This is tedious work to
be done only once. Second, we perform the anthropometric mapping of the reference
model to the patient dimensions. Third, for selected cross section planes we generate
the piecewise affine transformation to map the reference segmentation to the patient
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segmentation on the basis of user-defined control points on both reference and patient
images. The future development of the adaptation technique is expected to utilise
either the automatic control points placement, or automatic mapping reconstruction
techniques.

For patient-specific vascular network reconstruction we adopt the open source li-
brary VMTK to produce vascular centerlines on the basis of CT/MRI data followed
by the automated skeletonisation algorithm. The produced vascular graph possesses
all necessary geometric data for hemodynamic simulations. We demonstrated ap-
plicability of our approach to predictive personalized postsurgical blood flow simu-
lations.
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